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Abstract

Link ratio techniques can be regarded as weighted
regressions. We extend these regression models to handle
different exposure bases and modeling of trends in the
incremental data, and we develop a variety of diagnostic
tools for testing the assumptions of these models.

This “extended link ratio family” (ELRF) of regres-
sion models is used to test the assumptions made by
standard link ratio techniques, and compare their predic-
tive power with modeling trends in the incremental data.
Most loss arrays don’t satisfy the assumptions of stan-
dard link ratio techniques. The ELRF modeling struc-
ture creates a bridge to a statistical modeling framework
where the assumptions are more consistent with actual
data. There is a paradigm shift from standard link ratio
techniques to the statistical modeling framework—the
ELRF models form a bridge from the “old” paradigm
to the “new.”

There are three critical stages involved in arriving at
a reserve figure: extracting information from the data
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in terms of trends and stability, and distributions about
these trends; formulating assumptions about the future
leading to forecasting of distributions of paid losses; and
consideration of the correlations between lines and their
effect on the desired security level.

Other benefits of the new statistical paradigm are dis-
cussed, including segmentation, credibility, and reserves
or distributions for different layers.

1. INTRODUCTION AND SUMMARY

A model that is used to forecast reserves cannot include ev-
ery variable that contributes to the variation of the final reserve
amount. The exact future payment (being a random variable) is
unknown and unknowable. Consequently, a probabilistic model
for future reserves is required. If the resulting predictive distri-
bution of reserves is to be of much use, or to have any meaning,
the assumptions contained in that probabilistic model must be
satisfied by the data. An appropriate probabilistic model will en-
able the calculation of the distribution of the reserve that reflects
both the process variability producing the future payments and
the parameter estimation error (parameter uncertainty).

The regression models based on link ratios developed by Bro-
sius [2], Murphy [8], and Mack [6], [7] are described in Section
2, and are extended to include trends in both the incremental data
and different exposure bases. We refer to that family of models
as the extended link ratio family (ELRF). The ELRF provides
both diagnostic and formal tests of the standard link ratio tech-
niques. It also facilitates the comparison of the relative predictive
power of link ratios vis-a-vis modeling the trends in the (log) in-
cremental data.

Very often, for real data, even the best model within the ELRF
is not appropriate, because the data doesn’t satisfy the assump-
tions of that model. The common causes of this failure to satisfy
assumptions motivate the development of the statistical modeling
framework discussed in Section 3. The rich family of statistical
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models in that framework contains assumptions more in keeping
with reality.

This statistical modeling framework is based on the analy-
sis of the logarithms of the incremental data. Each model in the
framework has four components of interest. The first three com-
ponents are trends in each of the directions: development period,
accident period, and payment/calendar period, while the fourth
component is the distribution of the data about the trends. Each
model fits a distribution to each cell in the loss development ar-
ray and relates cell distributions by trend parameters. This rich
family of models we call the Probabilistic Trend Family (PTF).
We describe how to identify the optimal model in the statis-
tical modeling framework via a step by step model identifica-
tion procedure, and illustrate that in the presence of an unstable
payment/calendar year trend, formulating assumptions about the
future may not be straightforward. Because it is statistical, the
modeling framework allows separation of parameter uncertainty
and process variability.

It also allows us to:

e check that all the assumptions contained in the model are sat-
isfied by the data;

e calculate distributions of reserve forecasts, including the total
reserve;

e calculate distributions of, and correlations between, future pay-
ment streams;

e price future underwriting years, including aggregate deduct-
ibles and excess layers;

e casily update models and track forecasts as new data arrive.

The final part of the paper discusses how the combination
of information extracted from the data and business knowledge
allows the actuary to formulate appropriate assumptions for the
future in terms of predicting distributions of loss reserves. Corre-
lations between different lines and a prescribed security level are
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important inputs into a final reserve figure. Finally, other benefits
of the statistical paradigm are alluded to, including segmentation,
credibility, and the pricing of different layers.

2. EXTENDED LINK RATIO FAMILY

2.1. Introduction

Brosius [2] points out that the use of regression in loss re-
serving is not new, dating back to at least the 1950s, and says
that using link ratio techniques corresponds to fitting a regres-
sion line without an intercept term. Mack [6] derives standard
errors of development factors and forecasts (including the total)
for the chain ladder regression ratios. He mentions the connec-
tion to weighted least squares regression through the origin, and
he presents diagnostics that indicate that an intercept term may
be warranted on the data he analyses.

Working directly in a regression framework, Murphy [8] de-
rives results for models without an intercept (such as the chain
ladder ratios), as well as models with an intercept.

Under the assumption of heteroscedastic (i.e., with non-
constant variance) normality, we derive results for a more general
family of models (ELRF) that also include accident-year trends
for each development year. We discuss calculations and diag-
nostics for fitting and choosing between models and checking
assumptions. Standard errors of forecasts for both cumulatives
and incrementals are also derived.

In the current section, we analyze a number of real loss de-
velopment arrays. Diagnostics, including graphs of the data and
formal statistical testing, indicate that models based on link ra-
tios suffer several common deficiencies; and frequently even the
optimal model in the ELRF is inappropriate. Moreover, models
based on the log incremental data have more predictive power
than the optimal model in the ELRF.

The standard link ratio models carry assumptions not usually
satisfied by the data. This can lead to false indications and low
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FIGURE 1
CUMULATIVE LOSS ARRAY
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predictive power, so that the standard errors of forecasts become
meaningless. Hence, we relegate the calculation of standard er-
rors to the appendices to this paper.

2.2. Calculating Ratios Using Regressions

Suppose x(i), i =1,2,...,n, represent the cumulative values
at development period j— 1 for accident periods i = 1,2,...,n,
and y(i) are the corresponding cumulative values at development
period j. See Figure 1.

A graph of y versus x may appear as in Figure 2.

A link ratio y(7)/x(i) is the slope of a line passing through the
origin and the point [x(7),y(i)], so each ratio is a trend.

Accordingly, a link ratio (trend) average method is based on
the regression
y(@) = bx(i) + (i), (2.1.2)
where
Var[e(i)] = o%x(i)’. (2.1.b)

The parameter b represents the slope of the “best” line through
the origin and the data points [x(i),y({)], i = 1,2,...,n.

The variance of y(i) about the line depends on x(i), via the
function x(i)°, where § is a “weighting” parameter. The term
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FIGURE 2
CUMULATIVE LOSSES VERSUS PREVIOUS DEVELOPMENT YEAR
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CHAIN LADDER RATIO REGRESSION
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o? represents an underlying level of variance (or base variance)
common to the whole development period.

In Figure 3, Var[e(i)] = o2x(i)°, where ¢ = 1. It turns out that
the assumption that, conditional on x(i), the “average” value of
y(i) is bx(i), is rarely true for real loss development arrays.
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Consider the following cases:

Case 1 6 =1. The weighted least squares estimator of b is
>x(@) - y(@)/x()
>_x(0) '

This is the weighted (by volume) average ratio (i.e., the chain
ladder average method, or chain ladder ratio).

b=

2.2)

CAseE 2 6 =2. The weighted least squares estimator of b is

~ 1 N
b=—% y(@/x(@). (2.3)
This is the simple arithmetic average of the ratios.

Case 3 6 =0. This yields a weighted average (weighted by
volume squared) corresponding to ordinary least squares regres-
sion through the origin.

So, by varying the parameter ¢, we obtain different link ratio
methods (averages).

One of the advantages of estimating link ratios using regres-
sions is that both the standard errors of the parameters in the
average method selection and the standard errors of the fore-
casts can be obtained. A more important advantage is that the
assumptions made by the method can be tested.

One important assumption is that the standardized errors,
e(@)/ ox(0)%/?,i=1,2,...,n, are normally distributed with mean 0
and standard deviation 1. Otherwise, the weighted least squares
estimator of b is not necessarily efficient; and the reserve fore-
casts consequently may be poor estimates of the mean—they
will have a large variance. The normality assumption can be
checked by examining a number of diagnostic displays, includ-
ing the normal probability plot, box-plot, and histogram of the
weighted standardized residuals. The Shapiro—Francia test [10],
based on the normality plot, is a formal test for normality of the
residuals.
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FIGURE 4

Wtd. Std. Residuals
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The link ratio method also carries with it other assumptions
that should always be tested.

Another basic assumption is that

E(y() |x(@)) = bx(0).

That is, in order to obtain the mean cumulative at development
period j, take the cumulative at the previous development period,
j— 1, and multiply it by the ratio. A quick diagnostic check of
this assumption is given by the graph of y(i) versus x(i). Very
often this shows that a (non-zero) intercept is also required. (See
Figure 6.)

(2.4)

Equation 2.4 can be re-cast

E((y@) — x(0) [x(D)) = (b — Dx(0).

That is, the mean incremental at development period j equals the
cumulative at development period j — 1 multiplied by the link ra-
tio, b, minus 1. What are the diagnostic tests for this assumption?

(2.5)

If the assumption underlying Equation 2.4 is valid, then the
weighted standardized residuals versus fitted values should ap-
pear random. Instead, what you will usually see is a downward
trend like that depicted in Figure 4, representing the residuals



BEST ESTIMATES FOR RESERVES 253

from the chain ladder ratios model for the Mack [7] data. (See
Example 1 below.)

This indicates that large values are overpredicted and small
values are underpredicted, so that E(y|x) = bx is not true.

Comparison of graphs of weighted standardized residuals
with graphs of the data will indicate that accident periods that
have “high” cumulatives are overfitted and those with “low” cu-
mulatives are underfitted. Figure 5 shows the two displays for
the Mack [7] data. Note that as a result of the equivalence of
Equations 2.4 and 2.5, the residuals of the cumulative data are
also the residuals of the incremental data.

If you think of the way the incrementals are generated and the
fact that there are usually payment-period effects, the cumulative
at development period j — 1 rarely is a good predictor of the next
incremental (after adjusting for accident period trends).

Murphy [8] suggested an extension of the regression model
represented by Equation 2.1 to include the possibility of an in-
tercept:

y(i) = a+ bx(i) + (i), (2.6a)

such that
Var[e(i)] = o2x(i)°. (2.6b)

If the intercept a is non-zero and we do not include it in the
regression model, then the estimate of the link ratio b (slope) is
biased. Note that in the graph in Figure 6 of cumulative values at
development period 1 versus cumulative values at development
period O, the intercept appears to be different from zero (the
origin sits well below the graph). Indeed, it is significant between
every pair of contiguous development periods. See the data of
Example 1 below. We can rewrite Equation 2.6 thus:

y(@) —x@) = a+ (b — Dx(@@) + (7). 2.7

So here, y(i) — x(i) is the incremental at development period j.
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FIGURE 5
RAW DATA AND RESIDUALS FROM CHAIN LADDER MODEL
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Consider the following two situations:
e b>1landa=0.

Here, to forecast the mean incremental at development pe-
riod j, we take the cumulative x at development period j — 1
and multiply it by (b —1).
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FIGURE 6

CUMULATIVE IN DEVELOPMENT PERIOD 1 VERSUS
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e b=1and a #0.

In this case, x(i) has no predictive power in forecasting
(i) — x(i). The estimate of a is a weighted average of the incre-
mentals in development period j. We would therefore forecast
the next accident period’s incremental by averaging the incre-
mentals down a development period. Accordingly, the stan-
dard link ratio approach is abandoned in favor of averaging
incrementals for each development period down the accident
periods.

If b =1 then the graph of y(i) — x(i) against x(i) should be
flat, as depicted in Figure 7, which represents the incrementals
versus previous cumulatives (development period 0) for the
Mack [7] data. It is clear that the correlation is essentially
zero. This is also true for every pair of contiguous development
periods.

In conclusion, if the incrementals y(i) — x(i) in development
period j, say, appear random, it is very likely that the graph
of y(i) —x(i) versus x(i) is also random. That is, there is zero
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FIGURE 7

INCREMENTALS IN DEVELOPMENT PERIOD 1 VERSUS
CUMULATIVE IN DEVELOPMENT PERIOD O
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correlation between the incrementals and the previous cumula-
tives.

Now, if the incrementals possess a trend down the accident
periods, it is likely that the cumulatives in the previous develop-
ment period also trend down the accident periods. In this case,
the estimate of the parameter » in Equation 2.7 will be signifi-
cant; and so the link ratio b, together with the intercept a, will
have some predictive power. In this circumstance, we should in-
corporate an accident period trend parameter for the incremental
data; that is,

y(i) —x(@) = ag+ a;i + (b —1)x(i) + (), (2.8a)
where
Var[e(i)] = o2x(i)°. (2.8b)

For most real cumulative loss development arrays that pos-
sess a constant trend down the development period, the trend
parameter a; will be more significant than the ratio minus 1 (i.e.,
b —1). Indeed, more often than not, b — 1 will be insignificant,
if the trend parameter a; is included in the equation. That is,
more often than not, the trend will have more predictive power
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than the ratio, and the residual predictive power of the ratio after
including the trend will be insignificant.

We use the following naming convention for the three param-

eters:
apg = mntercept;

a; = trend;
b = ratio (slope).

Here are some models included in the ELRF described by
Equation 2.8.

e Chain Ladder Link Ratios
In this model, ap =a; =0 and 6 = 1.
e Cape Cod—intercept only

Here it is assumed that » =1 and a; = 0. The Cape Cod
estimates a weighted average (with weights depending on §) of
the incrementals in each development period. The forecasts are
also based on a weighted average down the accident periods
for each development period.

The model can be written as:
y(@i) — x(@) = ag + (i), (2.9a)
where
Var[e(i)] = o?x(i)’. (2.9b)
e Trend with b =1

The model estimates a weighted (depending on ¢) trend
(parameters a; and a;) down the accident periods for each de-
velopment period. The forecasts are also based on a weighted
trend down the accident periods for each development period.

2.3. Example 1: The Mack Data

The data for the first example is from Mack [7] (see Table 2.1).
The data are incurred losses for automatic facultative business
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TABLE 2.1
INCURRED LOSS ARRAY FOR THE MACK DATA"

Accident Development Year
Year 0 1 2 3 4 5 6 7 8 9

1981 5012 8269 10907 11805 13539 16181 18009 18608 18662 18834
1982 106 4285 5396 10666 13782 15599 15496 16169 16704

1983 3410 8992 13873 16141 18735 22214 22863 23466

1984 5655 11555 15766 21266 23425 26083 27067

1985 1092 9565 15836 22169 25955 26180

1986 1513 6445 11702 12935 15852

1987 557 4020 10946 12314

1988 1351 6947 13112

1989 3133 5395

1990 2063

"Note that 1982 accident year values are low.

in general liability, taken from the Reinsurance Association of
America’s Historical Loss Development Study [9].

We first fit the chain ladder ratios regression model; that is,
we fit Equation 2.1 with ¢ = 1 for every pair of contiguous de-
velopment periods. The standardized residuals are displayed in
Figure 8. Note that the equivalence of Equations 2.5 and 2.6
means that the residuals of the model for the cumulative data
are identical to the residuals for the model of the incremental
data.

We have already observed the downward trend in the fitted
values (Figure 4), and that the high cumulatives are overpredicted
whereas the low cumulatives are underpredicted. This is mainly
due to the fact that intercepts are required.

So we now fit a model of the type given in Equation 2.6
to each year (i.e., with intercepts, except for the last two pairs
of contiguous development periods, as there is insufficient data
there). (See Table 2.2 for the regression output.) Note that none
of the slope (ratio) parameters are significantly different from 1
and, if both parameters are insignificant, the slope (ratio) is less
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TABLE 2.2
FIT OF THE MODEL WITH INTERCEPT' AND RATIO, WITH 6 = 1

259

Develop. Intercept Slope  Slope—1  Slope

Period  Estimate Std. Error p value Estimate Estimate Std. Error p value
00-01 4,329 516 0.000 1.21445  0.21445 0.42131 0.626
01-02 4,160 2,531 0.151 1.06962  0.06962 0.35842  0.852
02-03 4,236 2,815 0.193 0.91968 —0.08032 0.24743  0.759
03-04 2,189 1,133 0.126 1.03341  0.03341 0.07443  0.677
04-05 3,562 2,031 0.178 0.92675 —0.07325 0.11023  0.554
05-06 589 2,510 0.836 1.01250  0.01250 0.12833  0.931
06-07 792 149 0.118 0.99110 —0.00890 0.00803  0.467
07-08 — — — 1.01694  0.01694 0.01506  0.463
08-09 — — — 1.00922  0.00922 — —

" Due to lack of observations in the tail, there is no intercept fitted for the last two years.

Witd. Std. Residuals

FIGURE 8
RESIDUAL PLOT FOR THE CHAIN LADDER RATIOS MODEL'"
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RESIDUAL PLOT FOR MODEL WITH INTERCEPTS FITTED, ALL
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FIGURE 9
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significant. This means that the previous cumulative is not really
of much help in predicting the next incremental incurred loss.

The model is overparameterized (i.e., has many unnecessary
parameters), so we eliminate the least significant parameter in
each regression. We find that in each case the intercept is the
parameter retained; that is, for every pair of contiguous devel-
opment periods, the model reduces to Cape Cod. This results in
the model:

(i) — x(i) = ay + (i) (2.10)

The residual plots for the reduced model (Cape Cod) are given
in Figure 9.

Note that residuals versus fitted values are “straight” now and
that we do not have the high-low effect in the plot of residu-
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TABLE 2.3

COMPARISON OF CAPE COD COEFFICIENTS OF VARIATION
WITH THOSE FOR THE CHAIN LADDER

Cape Cod Chain Ladder
Accident Mean Standard Coeff. of Mean Standard Coeff. of
Year Forecast Error Variation | Forecast Error Variation
1981 0 0 — 0 0 —
1982 172 41 0.244186 155 148  0.954839
1983 483 465 0.899142 616 586 0.951299
1984 1,113 498  0.385531 1,633 702 0.429884
1985 1,941 1,218  0.512170 2,779 1,404  0.505218
1986 4,200 1,555  0.408791 3,671 1,976  0.538273
1987 6,878 1,677  0.271393 5,455 2,190 0.401467
1988 10,252 3,247  0.308234 10,934 5,351  0.489391
1989 14,874 3,657  0.253810 10,668 6,335 0.593832
1990 19,336 4,532 0.215021 16,360 24,606  1.504034
Total 59,248 8,494  0.110347 52,272 26,883  0.514291

als versus accident period. The plot of residuals versus accident
year does not exhibit a trend; if we were to include a trend, by
estimating

y(@)—x@) =ag+aji+e, (2.11)

we would find that the estimate of a; would not be significantly
different from zero.

We now present forecasts and coefficients of variation (mean
divided by standard deviation) of forecasts based on the Cape
Cod (intercept-only) model with § = 1, and compare this with
the forecasts and coefficients of variation for the chain ladder
ratios (see Table 2.3).

Note that, for the Cape Cod model, the standard errors are
generally decreasing as a percentage of the accident-year fore-
cast totals as we proceed down to the later years. This is be-
cause the model relates the numbers in the triangle to a cer-
tain degree—it assumes that the incremental values in the same
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development period are randomly drawn from the same distribu-
tion. This does not happen with the chain ladder ratios, because
the model does not relate the incrementals in the triangle in any
meaningful way. For example, how are the values in the develop-
ment period 0 related? Consequently, the coefficients of variation
are substantially higher for the chain ladder ratios model. More-
over, the coefficient of variation for 1990 is 150%, but for the
previous year it is 59%. Note that 1990 has one more incre-
mental value to forecast than 1989; if anything, a good model
will on average have smaller coefficients of variation for totals
of years with more observations. Since the 1990 accident-year
total pools one more uncertain value than 1989 and the remain-
ing values (conditionally on the first) could be expected to have
similar coefficients of variation to the corresponding values from
19809, this appears to violate the fundamental statistical principle
of insurance—risk reduction by pooling.

For the Mack data, the model with intercepts is reasonable,
as there is no accident-year trend in the incrementals. For data
where a constant trend (on a dollar scale) does exist, then the
trend will be significant, but very often the ratio will not be
significantly different from one.

2.4. Summary

We have so far considered two cases that can occur in real
data: incrementals for a particular development period have no
trend, and incrementals have trend in the accident period direc-
tion (after possibly adjusting the data by accident period expo-
sures). In the first case, link ratios are often insignificant and
so lack predictive power. In the second case, when incremen-
tals versus accident periods for a particular development period
have a constant trend, it is likely that the cumulatives in the pre-
ceding development period also exhibit a trend so that the ratio
has some predictive power (equivalently, the ratio is significantly
different from one). However, more often than not, the accident
period trend has more predictive power than the ratio; and, once
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FIGURE 10
RESIDUAL PLOTS FOR THE CHAIN LADDER RATIOS MODEL
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it is included in the model, the term (b — 1) is often insignificant
(i.e., the ratio does not have any residual predictive power). The
situation encountered most often in practice, however, involves
a trend change along the payment/calendar periods (diagonals).
This means that as you look down each development period, the
change in trend will occur in different accident periods. Conse-
quently, none of the above models in the ELRF can capture these
trends.

The weighted standardized residual plots depicted in Figures
10 and 11 are those of the chain ladder ratios and Equation
2.8, respectively, applied to project ABC (Workers Compensa-
tion Portfolio) discussed in Section 3. Note that the chain ladder
ratios indicate a payment-year trend change, and the model in
Equation 2.8, which fits a constant trend down the accident years
for each development year, indicates that the trend before pay-
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FIGURE 11
RESIDUAL PLOTS FOR TREND PLUS RATIO MODEL
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ment year 1984 is lower than the trend after 1984. This project
(ABC) is analyzed in more detail in Section 3.

The models subsumed by Equation 2.8 can be used to di-
agnostically identify payment period trend changes but do not
identify these trend changes or forecast with them. The models
in the ELRF form a bridge to models that also include payment
period trend parameters; that is, statistical models in the Proba-
bilistic Trend Family (PTF) of the next section.

It is important to note that ELRF models also make the im-
plicit assumption that the weighted standardized errors come
from a normal distribution. If the assumption is true, the esti-
mates of the regression parameters are optimal. If the assump-
tion is not true, the estimates may be very poor. This normal-
ity assumption is rarely true for loss reserving data. In fact,
the weighted standardized residuals are generally skewed to the
right, suggesting that the analysis should be conducted on the
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FIGURE 12

RESIDUALS VERSUS FITTED VALUES FOR THE CHAIN LADDER
RATIOS

Witd. Std. Residuals
vs. Fitted Values
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logarithmic scale. The graph in Figure 12 illustrates the skew-
ness of a set of weighted standardized residuals based on chain
ladder ratios for Project PAN6 (analyzed in detail in Example 4
of Section 3). The positive-weighted standardized residuals are
further from zero than the negative ones. If the normality as-
sumption were correct, the plot would look roughly symmetric
about the zero line.

In summary, using the ELRF regression methodology you
will discover that, for any type of real loss development array,
the standard development factor (link ratio) techniques are fre-
quently inappropriate. Analyzing the incrementals on the loga-
rithmic scale with the inclusion of payment period trend param-
eters has more predictive power.

Finally, but importantly, the estimate of a mean forecast
of outstanding (reserve) and corresponding standard deviation
based on a model may be quite meaningless, unless the assump-
tions made by the model are supported by the data.
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3. STATISTICAL MODELING FRAMEWORK

3.1. Introduction

Clearly, we require a model that is able to deal with changing
trends. Trends in the data on the original (dollar) scale are hard
to deal with, since trends on that scale are not generally linear
but instead move in percentage terms—for example, 5% super-
imposed (social) inflation in early years, and 3% in later years. It
is the logarithms of the incremental data that show linear trends.
Consequently, we introduce a modeling framework for the loga-
rithms of the incremental data that allows for changes in trends.
The models of this type provide a high degree of insight into the
loss development processes. Moreover, they facilitate the extrac-
tion of a great deal of easily communicated information from the
loss development array.

The details of the modeling framework and its inherent bene-
fits are described in Zehnwirth [12]. However, given that there is
a paradigm shift from the standard link ratio methodology to the
statistical modeling framework, we review the salient features of
the statistical modeling framework.

3.2. Trend Properties of Loss Development Arrays

Since a model is supposed to capture the trends in the
data, it behooves us to discuss the geometry of trends in
the three directions; viz., development-year, accident-year and
payment/calendar-year.

Development years are denoted by j, j =0,1,2,...,5s — 1; ac-
cident years by i, i =1,2,...,s; and payment years by ¢, t =
1,2,...,s. See Figure 13.

The payment-year variable ¢ can be expressed as =i+ j.
This relationship between the three directions implies that there
are only two independent directions.
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FIGURE 13

Development year .

Accident year
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The two directions, development-year and accident-year, are
orthogonal. That is, trends in either direction are not projected
onto the other. The payment-year direction ¢ is not orthogo-
nal to either the development- or accident-year directions. That
is, a trend in the payment-year direction is also projected onto
the development-year and accident-year directions. Similarly,
accident-year trends are projected onto payment-year trends.

The main idea is to have the possibility of parameters in each
of the three directions—development-years, accident-years and
payment-years. The parameters in the accident-year direction de-
termine the level from year to year; often the level (after adjust-
ing for exposures) shows little change over many years, requiring
only a few parameters. The parameters in the development-year
direction represent the trend from one development year to the
next. This trend is often linear (on the log scale) across many of
the later development years, often requiring only one parameter
to describe the tail of the data. The parameters in the payment-
year direction describe the trend from payment year to payment
year. If the original data are inflation-adjusted (by a price or wage
index) before being transformed to the log scale, the payment-
year parameters represent superimposed (social) inflation, which
may be stable for many years or may not be stable at all. This
is determined in the analysis. We see that very often only a few
parameters are required to describe the trends in the data. Con-
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sequently, the (optimal) identified model for a particular loss
development array is likely to be parsimonious. This allows us
to have a clearer picture of what is happening in the incremental
loss process.

In this section, let y(i, j) be the natural log of the incremental
payment data in accident year i and development year j. This
is different from our use of y(i,j) in Section 2, but we do it
for consistency with the literature appropriate to the models in
each section. The mathematical formulation of the models in the
statistical modeling framework is given by Equation 3.5. We now
illustrate the geometry of trends with a simulation example.

3.3. Example 2—Simulated Data

To illustrate the trend properties of a loss development array,
let us examine a situation where we know the trends (because we
have selected them). Consider a set of data where the underlying
paid loss (at this point without any payment-year trends or even
randomness—just the underlying development) is of the form

¥, j) = In(p;;) = 11.51293 - 0.2j. 3.1)

On a log scale, this is a line with a slope of —0.2. The acci-
dent years are completely homogeneous. Let’s add some pay-
ment/calendar year trends: a trend of 0.1 from 1978 to 1982, 0.3
from 1982 to 1983 and 0.15 from 1983 to 1991. Note that a
linear trend of 0.1 per year on the log scale is about a 10% per
annum increase on the original scale.

The trends are depicted in Figure 14. Patterns of change like
this are quite common in real data. Note that trends in the pay-
ment/calendar year direction project onto the other two direc-
tions, as they must. The resultant trends for the first six accident
years are shown in Figure 15.

Note that each line in the graph is the resultant development-
year trend for a single accident year. As you go down the acci-
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FIGURE 14

DIAGRAM OF THE TRENDS ON THE LOG SCALE IN THE DATA
ARRAY
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FIGURE 15

PLOT OF THE LOG(PAID) DATA AGAINST DELAY FOR THE
FIRST S1X ACCIDENT YEARS
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FIGURE 16
TREND PLUS RANDOMNESS FOR THE FIRST SIX ACCIDENT
YEARS
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dent years (1978 to 1983), the 30% trend always kicks in one
development-period earlier. The payment-year trends also project
onto the accident years, which is why the early years are at the
bottom and the later years are at the top. Note how the “kink”
moves back as we go up to the more recent accident years. The
resultant development-year trends are different for each accident
year now. We can’t model even this simple situation with link
ratios or any other ELRF model.

Of course, real data are never so smooth. On the same log
scale, we add some noise—random numbers with mean O and
standard deviation 0.1, as shown in Figure 16.

Now the underlying changes in trends are not at all clear for
two reasons—the payment-year trends project onto development
years, and the data always exhibits randomness that tends to ob-
scure the underlying trend changes. It has many of the properties
we observe in real data; and yet it is plain that, even with the
extensions presented there, the regression models in ELRF from
Section 2 are inadequate for this data. We instead look to a model
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FIGURE 17

PROBABILISTIC MODEL FOR DEVELOPMENT-YEAR TRENDS
(LOG SCALE)

that incorporates the trends in the three directions and the vari-
ability about those trends, measured on a log scale.

Consider a single accident year (dropping the i subscript for
the moment). We represent the expected level in the first de-
velopment year by the parameter a. We can model the trends
across the development years by allowing for a (possible) pa-
rameter to represent the expected change (trend) between each
pair of development years. We model the variation of the data
about this process with a zero-mean, normally-distributed ran-
dom error, represented as:

J
Y =a+d y+e;. (3.2)
k=1
This probabilistic model is depicted in Figure 17 (for the first
six development years).

For this probabilistic model, « is not the value of y observed
at delay 0. It is the mean of y(0); indeed, y(0) has a normal
distribution with mean o and variance o2. Similarly, 7; is not
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the observed trend between development year j — 1 and j, but
rather, it is the mean trend between those development years—

Ely() —y(j — D] = ;.

The parameters of the probabilistic model represent means of
random variables. Indeed, the model (on a log scale) comprises a
normal distribution for each development year, where the means
of the normal distributions are related by the parameter o and
the trend parameters 7;,7,, and so on.

Based on the model in Equation 3.2, the random variable p(j)
has a lognormal distribution with

J
median = exp [a + Z%} , (3.3)
k=1
mean = median x exp[%aZ], (3.4)

and
standard deviation = mean x \/exp[c?] — 1. (3.5)

The probabilistic model for p(j) comprises a lognormal distri-
bution for each development year, where the medians of the log-
normal distributions are related by Equation 3.3 and the means
are related by Equation 3.4. So, in estimating the model, we
are essentially fitting a lognormal distribution to each develop-
ment year. The trend (on a log scale) comprising the straight
line segments is only one component of the model. A principal
component comprises the distributions about the trends.

Note from Equation 3.3 that exponentiating the mean on the
log scale gives the median on the dollar scale. This is why the
line in Figure 17, after exponentiation in Figure 18, joins the
medians (the lower of the two lines on each density) not the
means. We will normally use the mean as our forecast, rather
than the median, but the uncertainty (measured by the standard
deviation) of the lognormal distribution is just as important a
component of the forecast.
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FIGURE 18

MODEL FOR TRENDS ALONG A DEVELOPMENT YEAR (DOLLAR
SCALE)
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If we compute expected values of the logs of the develop-
ment factors on the incremental data with this model, we obtain
Elln(p(j)/p(j — )] = El(y; +&; —£;_)] = 7;. That is, trend pa-
rameters also underpin this new model, but in a way that will
allow it to appropriately model the trends in the incremental data
(in the three directions).

The model described so far only covers a single accident year;
we have not yet accounted for the payment-year and accident-
year trends. Let the mean of the (random) inflation between pay-
ment year ¢ and 7 + 1 be represented by ¢, (iota-t).

Hence the family of models can be written:

i+J

J
YN =+ D Dy te (3.6)
k=1 t=1

We call this family of models the probabilistic trend family
(PTF). Note that the mean trend between cells (i, j — 1) and (i, )
1s 9 + ¢4 j, and the mean trend between cells (i — 1, ) and (i, )
s oy — o + 4y
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TABLE 3.1
PARAMETER ESTIMATES FOR THE MODEL WITH CONSTANT
TRENDS
Parameter Estimate Standard Error t-ratio
o 11.4256 0.0302 378.57
¥ —0.2062 0.0037 —55.08
L 0.1563 0.0037 41.74
s=0.1129 R? =97.0%

A member of this family of models relates the lognormal dis-
tributions of the cells in the triangle. On a log scale, the distri-
bution for each cell is normal, where the means of the normal
distributions are related by the “trends” described by the partic-
ular model.

If the error terms ¢; ; (each coming from a normal distribution
with mean 0) do not have a constant variance, then the changes
in variance must also be modeled. Note that there are numer-
ous models in the PTF, even if we do not include the varying
(stochastic) parameter models discussed in Section 3.7. The ac-
tuary has to identify the most appropriate model for the loss
development array being analyzed. The assumptions made by
the “optimal” model must be satisfied by the data. In doing so,
one extracts information in terms of trends, stability of trends,
and the distributions of the data about the trends.

3.3. Example 2 continued—Estimation

Let’s now try to identify the model that created the data. We
begin by fitting a model with all the development-year trends
equal to each other (one 7), all payment-year trends equal to
each other (one ¢), and no accident-year trends (one «); that is,
with v, =, ¢, =, and «; = « for all parameters. The parameter
estimates are given in Table 3.1.
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FIGURE 19

PLOTS OF STANDARDIZED RESIDUALS VERSUS THE THREE
DIRECTIONS AND FITTED VALUES FOR THE SINGLE
PAYMENT-YEAR TREND MODEL
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The estimate of 0.1563 for ¢ (iota) is a weighted average of
the three trends 0.1, 0.3 and 0.15.

Removing constant trends makes any changes in trend more
obvious; the residuals are shown in Figure 19.

The residuals need to be interpreted as the data adjusted for
what has been fitted; accordingly, the residuals versus payment
years represent the data minus the fitted value of 0.1563 per
year.

Immediately, the changes in trends in the payment-year di-
rection become obvious. We can see that the trend in the early
years is substantially less than the estimated average of 0.1563;
that the trend from 1982 to 1983 is much larger than it; and, after
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FIGURE 20

PLOTS OF STANDARDIZED RESIDUALS VERSUS THE THREE
DIRECTIONS AND FITTED VALUES FOR THE
THREE-PAYMENT-YEAR-TRENDS MODEL
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that, the trend is pretty close to the fitted trend, as 0.15 —0.1563
is approximately zero. This suggests that we should introduce
another ¢ (iota) parameter between 1982-1983, and a further ¢
parameter between 1983—-1984 (that will continue to 1991).

The residuals of the model with three payment-year trends
are given in Figure 20—this model seems to have captured the
trends. The parameter estimates are given in Table 3.2.

Note that the estimates of the trend parameters 0.1, 0.3, 0.15
are not equal to the true values; indeed, 0.3927 (standard error
0.0442) is a bit off the mark (which is about two standard er-
rors). The estimate is far from 0.3 because in the payment years
1982 and 1983, there aren’t many data points. Given that the
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TABLE 3.2

PARAMETER ESTIMATES FOR THE
THREE-PAYMENT-YEAR-TRENDS MODEL

277

Parameter Estimate Standard Error t-ratio
a 11.5321 0.0612 188.34
ol —0.2062 0.0033 —6191

1 78-82 0.0873 0.0209 4.18

. 82-83 0.3927 0.0442 8.90

v 83-91 0.1446 0.0046 31.72

s =0.1005 R? =97.7%
TABLE 3.3

FORECASTS, STANDARD ERRORS, TREND ESTIMATES AND
THEIR STANDARD ERRORS AS THE LATER PAYMENT YEARS
ARE REMOVED

Standard

Years in Standard Standard Mean Error of
Estimation N v (83-91) Error (y) ¢ (83-91) Error () Forecast Forecast
78-91 105 -0.2062 0.0033 0.1446 0.0046 23,426,542 927,810
78-90 91 —-0.2075 0.0036 0.1527 0.0051 25,333,522 1,191,129
78-89 78 —0.2086  0.0042 0.1512 0.0064 24,850,972 1,526,246
78-88 66 —0.2119 0.0045 0.1575 0.0075 26,296,366 1,997,089
78-87 55 -0.2131 0.0055 0.1563 0.0103 25,894,931 2,868,948

trend of 0.15 is in the data since 1983, we would expect sta-
bility of forecasts, and trend parameter estimates as we remove

years.

The forecasts are stable—if we remove the most recent data,
the forecasts of this model don’t change much relative to the
standard error in the forecast, as we can see in Table 3.3.

Note that the estimate of ~ (recall that v = —0.2) is pretty
stable, as we remove the latest years.
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PREDICTION ERRORS FOR 1988-1991, FOR MODEL ESTIMATED
IN 1987
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Figure 21 gives the prediction errors (on a log scale) for the
four payment years 1988—1991, based on the model estimated at
year end 1987.

The estimated model at the end of payment year 1987 slightly
over-predicts the payment periods 1988—1991. That is because
the trend estimate since 1983 (see Table 3.4) is now 15.63% +
1.03% (where we are writing mean =+ standard deviation as short-
hand), in place of 14.46% + 0.46% when we use all the years in
the estimation. Hence the forecast of $26M (+$2.9M) is “higher”
than $23M (£$0.9M). When you test for a trend change be-
tween 1987 and 1988, it is not significant (as we would ex-
pect). Note that removal of recent payment years to check the
model’s ability to predict them (validation analysis) is part of
the model identification procedure and extraction of information
process.
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TABLE 3.4

VALIDATION RESULTS—PARAMETER ESTIMATES AND
FORECASTS AS PAYMENT YEARS ARE REMOVED FROM THE
SELECTED MODEL

Payment Years Estimate of Estimate of iota Forecast +

in Estimation gamma (83-91) Standard Error ($M)
1978-91 —20.62+0.33 14.46 £0.46 23+0.9
1978-90 —20.75+0.36 15.27+£0.51 25+1.2
1978-89 —20.86+0.42 15.15+£0.64 25+1.5
1978-88 —21.194+0.45 15.75+£0.75 26+£2.0
1978-87 —21.31+0.55 15.63£1.03 26£2.9

3.4. Example 3—Real Data With Major Payment-Year Trend
Instability

We now analyze a real data array as presented in Table 3.5.

This loss development array has a major trend change between
payment years 1984 and 1985, even though the data and link
ratios are relatively smooth. Indeed, it needs to be understood
that, in general, trend instability has nothing to do with volatility
or smoothness of the data and link ratios. When there is a trend
change, formulation of the assumptions about the future trend
will depend on the explanation for that trend change.

The individual link ratios for the cumulated data are very
stable, as can be seen in Figure 22. It is very dangerous to try
to make judgements about the suitability of development fac-
tor techniques from the individual link ratios on the cumulated
data.

We first conduct some diagnostic PTF analysis, then show
how the ELRF modeling structure also indicates payment-year
trend change, indeed that any method based on link ratios is
quite meaningless for this data. Consequently, there is little to be
gained by forecasting any of the ELRF models. Figure 23 shows
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FIGURE 22
PLOT OF INDIVIDUAL LINK RATIOS BY DELAY"

2.50
225
2.00
1.754
1.50

1.254

1.00+

04 12 23 34 45 56 67 78 89 910

 The line joins Chain Ladder ratios.

FIGURE 23

STANDARDIZED RESIDUALS OF THE STATISTICAL CHAIN
LADDER MODEL
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the standardized residuals of the statistical chain ladder in PTF
(i.e., the statistical chain ladder fits all the gamma parameters
and all the alpha parameters with no iotas). The residuals are
just the data (less the average level) adjusted for the (average)
trend between every pair of contiguous development periods and
every pair of contiguous accident periods. This is why the plots
of standardized residuals versus development years and accident
years are centered on zero! We use this model only as a di-
agnostic tool to determine quickly whether there are payment-
year trend changes that can be attributed solely to the payment
years.

Contrast the smoothness of the ratios above with the plot
of the residuals from this model. We can now see dramatic
changes in the payment-year direction. It might be very dan-
gerous to use forecasts from any model assuming no changes in
payment-year trend, such as a model from the ELRF. There is
a difference between Figures 23 and 10—the statistical chain
ladder shows the payment-year trends after adjusting for the
trends in the other two directions, while the chain ladder ra-
tios (Figure 10) do not do that. But the change in trend is clear
in either graph. In the current statistical modeling framework,
we are able to model this change; we have a lot more con-
trol over how we incorporate the trend changes into our model
and hence into the forecasts. Even the best ELRF model for
this data hardly uses ratios and is deficient because it gives
us no control in the payment-year direction. It turns out that
the trend before 1984 is approximately 10% whereas the trend
after 1984 is approximately 20%. So which trend should we
assume for the future? This depends on the explanation for
the change. If the trend instability is due to new legislation
that applies retrospectively (to all accident periods), then one
would revert to the 10%—as a change to the level of pay-
ments will be a single jump in level (possibly taking sev-
eral years to be completely manifested). If there is no expla-
nation for the trend change, except that the payments have
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TABLE 3.6
PAID LOSS ARRAY FOR THE PAN6 DATA FOR EXAMPLE 4

Accident Development Year
Year 0 1 2 3 4 5
1986 194324 571621 327880 249194 524483 1724274
1987 1469 57393 485791 169614 121410 599021
1988 1860 161538 408008 314614 6744000 ok
1989 23512 185604 260725 1134272 851099 2174200
1990 1044 70096 93600 1283752 1595466 913215
1991 HkEE 3730 869959 187019 2764795 HkEE
1992 Hokk 443205 180064 683407 878117
1993 HkEE 12808 433511 118017
1994 1431 77765 151161
1995 51539 okl

increased, then calling the future in terms of trends is more dif-
ficult.

3.5. Example 4—Volatile Data With Stable Trends

We now consider an array where the paid losses are very
volatile, but the trends are stable (see Table 3.6). Recall that
trend stability/instability is dependent on neither the volatility of
the data nor the volatility of the link ratios. Since the random
component is an integral part of the model, this model captures
the behavior of this volatile data very well. We call this array
PANG.

A good model can be identified quickly for the logarithms of
these data; it has no payment-year trends, and only two different
development-year trends—between development years 0—1 and
for all later years (the residual plot is given in Figure 24).

Note that the spread of the first two development years is
wider than for the later years, and the spread for “small” fit-
ted values is larger than the spread for “large” fitted values. If
we estimate the standard deviations in the two sections, we find
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FIGURE 24

PLOT OF STANDARDIZED RESIDUALS FOR THE MODEL WITH
TwOo GAMMA PARAMETERS AND ONE ALPHA PARAMETER
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that they are 3.0177 and 0.8015, respectively. This requires a
weighted regression; development years 0 and 1 are given weight
(0.8015/3.0177)2, and the other years (2+) have a weight of 1.
The weighted, standardized residual plots now look fine (see Fig-
ure 25). A check of the plot of residuals against normal scores
(not presented here) indicates that the assumption of normality
of the logarithms of the data is very reasonable—the squared
correlation is greater than 0.99.

The normal distributions for this model have relatively large
variances—the estimate of o2 for development periods 0-1 is
2.923, and for development periods 2+ is 0.80346. Note that
if a normal distribution has a variance o2, then the corre-
sponding lognormal distribution has a coefficient variation of

exp(c?)—1>o.
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FIGURE 25

PLOT OF WEIGHTED STANDARDIZED RESIDUALS AFTER THE
WEIGHTED REGRESSION
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This model also has forecasts that are stable as we remove the
most recent data, as we see in Table 3.7. This is a very important
attribute of the identified model that captures the information
in the data—if the trends in the data are stable, then so are the
forecasts based on the estimated model. In this case, we were
able to remove almost half the (most recent) data. The standard
errors of the forecasts are large because the lognormal distribu-
tions are skewed—insurance is about measuring variance, not
just means.

While the variability of the data and hence the standard errors
of the forecasts are large, the message from the data has been
consistent over many years. We are predicting the distribution
of the data in each cell, not merely their mean and standard
deviation, so a large standard deviation does not imply a bad
model. Indeed, the model is very good. It captures the variances,
indeed the distributions, in each cell.
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TABLE 3.7

FORECASTS, FORECAST STANDARD ERRORS, FINAL TREND
ESTIMATES AND THEIR STANDARD ERRORS FOR THE FINAL
MODEL AS THE LATER PAYMENT YEARS ARE REMOVED

Years in Trend Standard Mean Standard
Estimation N (dev. period 1+) Error Forecast Error
86-96 44 0.6250 0.1432 20,352,011 9,136,870
86-95 41 0.6102 0.1479 21,410,781 9,839,127
86-94 35 0.6149 0.1681 21,037,520 10,654,173
86-93 29 0.5024 0.1977 19,755,944 11,647,274
86-92 25 0.5631 0.2143 18,567,664 11,529,359

The high standard errors of forecasts are due to large process
variability. As we remove recent years (diagonals) from the esti-
mation, we note forecasts are stable. This is further evidence of
a stable trend in the data.

Note that at the end of year 1992, the estimated model would
have predicted the normal distributions for the log(payments)
in years 1993-1996 (see Figure 26), and would have pro-
duced statistically the same forecast of outstanding claims. Fig-

ure 27 indicates that the assumption of normality is reason-
able.

We now turn to ELRF analysis. Since the data are extremely
skewed (lognormal with large coefficient of variation), the resid-
uals of the chain ladder (regression) ratios in ELRF are extremely
skewed to the right (see Figure 28). The plot of residuals against
fitted values shows a downward trend, indicating that we over-
predict the large values and underpredict the small ones. The
residuals also show strong indications of non-normality. More-
over, all the ratios have no predictive power (provided there is
an intercept). In any event, residuals are skewed (not normal), so
even the best model in ELRF—the Cape Cod (y —x = ay + £)—is
not a good one.
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FIGURE 26

PREDICTION ERRORS FOR YEARS 1993-1996
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FIGURE 27

NORMALITY PLOT OF PREDICTION ERRORS FOR 1993-96
BASED ON MODEL ESTIMATED AT YEAR END 1992
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FIGURE 28
RESIDUALS OF CHAIN LADDER RATIOS REGRESSION MODEL
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Recall that if model assumptions are not satisfied by the data,
then forecast calculations may be quite meaningless.

3.6. Example 5—Simulated Array Based on a Model With Only
Two Parameters

The following array, which we call SDF, is a simulated data set
where the incremental paid losses have completely homogeneous
accident years. The actual model driving the data has one alpha
(a) = 10, one gamma (y) = —0.3, and has o> = 0.4. That is,

y(i,j) =10—-0.3j7 + (@, ), 3.7)

where the (i, j) are independent and identically distributed from
a normal distribution with mean O and variance 0.4.

The simulated data is presented in Table 3.8.
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The first thing to note with this data is that, once noise is
added, it looks like incremental paid data for a real array, even
though it was generated from a very simple model.

The relatively large o2 (0.4) explains the high variability in the
observed paid losses. The incremental data displayed in Table 3.8
appear volatile, but the values in the same development period are
independent realizations from the same lognormal distribution.

For example, in development period zero, the simulated val-
ues 80,451 and 9,017 come from a lognormal distribution with
mean 26,903 and standard deviation 18,867. Since a lognormal
distribution is skewed to the right, realizations larger than the
mean are typically further away from the mean compared to re-
alizations less than the mean, which are bounded below by zero
(and so are closer to the mean).

The apparent volatility in the data is not due to instability in
trends; indeed, the reality is quite the opposite—though volatile,
the incremental paid losses have stable trends. Since we know the
exact probability distributions driving the data, we can compute
the exact mean and exact standard deviation for each cell in the
rectangle and also the exact means and standard deviations of
sums.

The exact mean of the total outstanding is $284,125, with an
exact standard deviation of $30,970, and so the process vari-
ance is 30,9702. When we analyze the data in PTF, we identify
only two significant parameters—a = 9.9667 (with standard er-
ror 0.0847) and 4 = —0.2867 (standard error 0.0126), and the
estimate of o2 is 0.4085. Residuals from this estimated model
are displayed in Figure 29.

Table 3.9 gives forecasts of total outstanding, including vali-
dation forecasts (note that the forecasts are stable, as expected).

We now study the cumulative array, displayed in Figure 30.
Even though the incremental data was generated with homoge-
neous accident years, the cumulated data have each accident year
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FIGURE 29

RESIDUALS BASED ON THE ESTIMATED PARAMETERS OF THE
MODEL FROM WHICH THE DATA WERE GENERATED
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TABLE 3.9

6.00 7.00 8.00 9.00 10.00

ESTIMATES OF DEVELOPMENT-YEAR TRENDS AND TOTAL
OUTSTANDING WITH STANDARD ERRORS AS YEARS ARE
REMOVED FROM THE ANALYSIS

Payment Years  Estimate  Standard Error Mean Standard Error
in Estimation  of Gamma of Gamma Forecast of Forecast
1978-94 —0.2867 0.0126 299,660 35,487
1978-93 —0.2858 0.0146 303,980 37,886
1978-92 —0.2865 0.0166 302,601 38,843
1978-91 -0.2926 0.0195 304,711 42,148
1978-90 —0.2940 0.0228 296,650 43,625
1978-89 —0.2861 0.0271 313,604 50,001
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FIGURE 30
CUMULATIVE DATA (SDF)*

Unadjusted Data
vs. Dev. Year
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 Accident year 1981 has high development; 1979 has low development.

at a completely different level. The plot against accident years
jumps all over the place—the values along an accident year tend
to be high or low. This is a common feature with cumulative
arrays.

The cumulative values for 1979 lie entirely below those for
1982 (see Figure 30), yet most of the incremental payments are
“close” together. One “large” incremental value from the tail of
the lognormal has a major impact on the cumulative data. The
link ratio techniques assume that the next incremental payment
will be high if the current cumulative is high, and this looks
like what is going on with the cumulative data. So the cumula-
tives deliver a false indication, even for data where there are no
payment-year trend changes.

Note that for 1979, cumulative paid at development year 5
is $45,750, whereas for 1981 it is $176,315. For this array, we
know that current emergence is not a predictor of future emer-
gence.

The chain ladder ratios model gives a mean outstanding fore-
cast of $254,130 and a standard error of the outstanding forecast
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FIGURE 31

PLOT OF WEIGHTED STANDARDIZED RESIDUALS FOR CHAIN
LADDER RATIOS FOR TRIANGLE SDF
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of $59,419. The plot of residuals against fitted values makes it
clear where the problem lies, as we see in Figure 31.

Again, we have a year with high cumulatives (1981) overpre-
dicted, and a year with low cumulatives (1979) underpredicted.

Note how there is a distinct downward trend in the plot of
fitted values. It indicates that the model overpredicts the high
cumulative values and underpredicts the low values—which it
will do if the cumulatives don’t really contain information on the
subsequent incrementals. Plots of residuals against normal scores
show non-normality (not presented here). If we look at the plot
of the incremental paid losses against the previous cumulative
(see Figure 32), we can see that models involving ratios will be
inappropriate since there is no relationship.

The best model in the ELRF sets all of the ratios to 1 and
only uses intercepts (i.e., it takes averages of incrementals in
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FIGURE 32
PLOT OF INCREMENTAL PAYMENTS AGAINST PREVIOUS
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each development year). But, due to the non-normality, this is
insufficient. At least the ELRF analysis informs us that the in-
crementals in a development period may be regarded as ran-
dom values from the same distribution, and that these incre-
mentals are not correlated with the previous cumulatives (just
as the data were generated). It also tells us that the data are
skewed, so we need to take a transformation. By way of sum-
mary, the ELRF analysis informs us that the data were created
incrementally, accident years are homogeneous, and we should
be modeling the logs of the incremental data—it is telling us the
truth.

If you generate (simulate) data using link ratios, the ELRF
will tell you that ratios have predictive power and that the data
were generated cumulatively. Importantly however, for most real
loss development arrays, ELRF analysis indicates that the data
were generated incrementally and that ratios have much less pre-
dictive power than trends in the log incrementals. The ELRF
analysis also shows when there may be payment/calendar year
trend changes.
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3.7. Varying (Stochastic) Parameters

In view of the trend relationships between the development-
year, accident-year, and payment-year directions, a model with
several parameters in the payment-year and accident-year di-
rections may suffer from multi-collinearity problems. Zehnwirth
[12, Section 7.2] discusses the importance of varying (stochas-
tic) parameter models, especially the introduction of a varying
alpha parameter (in place of adding parameters), to overcome
multi-collinearity. This is akin to exponential smoothing in the
accident-year direction. This approach is necessary, very pow-
erful, and increases the stability of the model, especially if in
the more recent accident years there are some slight changes in
levels. The amount of stochastic variation in « is determined by
the SSPE statistic, which is explained in Zehnwirth [12].

3.8. Model Identification

It is important to identify a parsimonious model in PTF
that separates the (systematic) trends from the random fluctu-
ations, and moreover determines whether the trend in the pay-
ment/calendar year direction is stable.

The model identification procedure is discussed in Section 10
of Zehnwirth [12]. We start off with a model that only has one
parameter in each direction, model (sequentially) the trends in
the development-year direction, and follow that by looking at the
trends in the payment-year or accident-year directions (depend-
ing on which direction exhibits more dramatic trend changes).
Adjustments for different variances may also be necessary. Vali-
dation analysis is an integral component of model identification,
extraction of information, and testing for stability of trends.

3.9. Assumptions About the Future

Stability and assumptions about the future are discussed in
Section 9.6.2 and 10.2 of Zehnwirth [12]. If payment/calendar



296 BEST ESTIMATES FOR RESERVES

year trend has been stable in the more recent years, then the
assumption about the future is relatively straightforward. For ex-
ample, if the estimate in the last seven years of ¢ is ¢ with stan-
dard error s.e.(2), then we assume for the future a mean trend
of 7, with a standard deviation of trend of s.e.(2); we do not as-
sume the trend in the future is constant. Our model includes the
variability (uncertainty) in trend in the future, in addition to the
process variability (about the trend).

If on the other hand, payment/calendar year trend has been
unstable, as was illustrated with Project ABC, assumptions about
the future will depend on the explanation for the instability—for
Project ABC we revert to the 10% trend if the dramatic change
is explained by new legislation. Zehnwirth [12] also cites some
other practical examples where special knowledge about the busi-
ness is a contributing factor in formulating assumptions about the
future, especially in the presence of trend instability. Importantly,
however, that special knowledge is combined with the informa-
tion that is extracted from past experience.

It is not possible to enumerate all feasible cases, though sev-
eral cases are discussed in Zehnwirth [12]. The more experi-
ence the actuary has with the new statistical paradigm, the better
he/she is equipped to formulate assumptions about the future in
the presence of unstable trends. Bear in mind, of course, that
quite often trends are stable; but we only know this after per-
forming an analysis like that described for the PTF.

3.10. How Do We Know That Real Data Triangles Can Be
Generated By the Members of the PTF?

Let’s conduct the following experiment. Begin with 100 data
arrays (triangles) and, for each triangle, the “best” model in the
PTF is given. Recall that a fitted (best) model relates the distri-
butions of each cell in terms of trends on the log scale. These
models are tested to ensure they are good models. ELRF analysis
is then conducted on each triangle. Now assume that some of the
triangles are real data from some companies, but some are not.
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That is, for some triangles the data represent a sample path from
the so-called “fitted” distributions. Which are the real data and
which are simulated data from the model?

Both the real and simulated data display similar features to
each other, whether we analyze them using PTF models or ELRF
models. For example, both usually indicate that once you fit
an intercept (and accident-year trend, if present), ratios are not
needed. Both tend to display trends in the payment years. Since
you cannot distinguish between real triangles and simulated tri-
angles generated from models in the PTF, these kinds of models
must be valid. That is, the rich family of models in PTF possess
probabilistic mechanisms for generating real data.

Of course, the models do not represent the underlying com-
plex generation process that is driven by many variables. How-
ever, the variables that drive the data are implicitly included in
the trends and the noise (¢2). We do the same thing when we fit
a loss distribution (e.g., Pareto) to a set of severities. The esti-
mated Pareto did not create the severities, but it has probabilistic
mechanisms for creating the data as a sample.

Suppose we now simulate (cumulative) loss development ar-
rays from ratio models. The ELRF methodology applied to the
simulated arrays will inform us that ratios have predictive power
(indeed more predictive power than using the trends in the in-
crementals). If we now analyze the corresponding incremen-
tal arrays using PTF models, we notice a phenomenon that is
very rarely observed for real data. After removing trends in
the development-year direction, there are distinct patterns in the
accident-year direction—the levels jump up and down dramati-
cally, much more so than is typical for real data. This is because
if an incremental value in development period zero is low, then
the subsequent incrementals for the same accident period remain
relatively low, as all accident years are multiplied by the same
ratios. Similarly, if the initial incremental value is high, the subse-
quent incrementals from the model are high. This pattern occurs
even when you include considerable randomness.
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Finally, suppose an actuary is presented with many develop-
ment arrays, some real, and the others simulated using mod-
els based on ratio-techniques. By applying the ELRF and PTF
methodologies, the actuary is very frequently able to distinguish
the real arrays from the ones simulated from the ratio models.

4. THE RESERVE FIGURE

Loss reserves often constitute the largest single item in an
insurer’s balance sheet. An upward or downward 10% movement
of loss reserves could change the whole financial picture of the
company.

4.1. Prediction Intervals

We have argued for the use of probabilistic models, espe-
cially in assessing the variability or uncertainty inherent in loss
reserves. The probability that the loss reserve carried in the bal-
ance sheet will be realized in the future is effectively zero, even
if the loss reserve is the true mean!

Future (incremental) paid losses may be regarded as a sam-
ple path from the forecast (estimated) lognormal distributions,
which include both process risk and parameter risk. Forecasting
of distributions is discussed in Zehnwirth [12].

The forecast distributions are accurate provided the assump-
tions made about the future are, and remain, true. For example, if
it is assumed that future payment/calendar year trend (inflation)
has a mean of 10% and a standard deviation of 2%, and in two
years time it turns out that inflation is 20%, then the forecast
distributions are far from accurate.

Accordingly, any prediction interval computed from the fore-
cast distributions is conditional on the assumptions about the
future remaining true. The assumptions are in terms of mean
trends, standard deviations of trends, and distributions about the
trends.
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It is important to note that there is a difference between a
fitted distribution and the corresponding predictive distribution.
A predictive distribution necessarily incorporates parameter es-
timation error (parameter risk); a fitted distribution does not. Ig-
noring parameter risk can result in substantial underestimation
of reserves and premiums (see the paper by Dickson, Tedesco
and Zehnwirth [4] for more details).

Under the model, the distribution of a sum of payments (e.g.,
accident-year outstanding payments) is the distribution of a sum
of correlated lognormal variables. The lognormal variables are
correlated because of the correlations between the estimated pa-
rameters describing their mean level—indeed many forecasts will
even share some parameters. The distribution of the sum can be
obtained by generating (simulating) samples from the estimated
multivariate lognormal distributions. The same could be done for
payment-year totals (important for obtaining the distributions of
the future payment stream) or for the overall total. This infor-
mation is relevant to Dynamic Financial Analysis. Distributions
for future underwriting years can also be computed—this infor-
mation is useful for pricing, including aggregate deductibles and
excess layers.

An insurer’s risk can be defined in many different ways. One
common definition is related to the standard deviation of the risk,
in particular a multiple of the standard deviation. If the reserve
is based on a given percentile of the distribution of the total
outstanding, the size of the loading as a multiple of the standard
deviation will be dependent on the skewness of the distribution.

If an insurer writes more than one long-tail line and aims for
a 100 (1 — a)% security level on all the lines combined, then the
risk margin per line decreases the more lines the company writes,
no matter which allocation principle is used. This is always true,
even if there is some dependence (and so correlation) between the
various lines. In the following example, the standard deviation
principle is used.
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Consider a company that writes n independent long-tail lines.
Suppose that the standard error of loss reserve L(j) of line j is
s.e.(j) (i.e., s.e.(j) is the standard error of the loss reserve variable
L(j)). The standard error for the combined lines L(1) + - -- + L(n)

1S
s.e.(Total) = [s.e.2(1) + - + s.e.2(n)]*. 4.1)

If the risk margin for all lines combined is k x s.e.(Total), where k
is determined by the level of security required, then an allocation
of the risk margin for line j is

k x s.e.(Total) x s.e.(j)/[s.e.(1) + -+ + s.e.(n)] < k x s.e.(j).
“4.2)

The last inequality is true even when s.e.(Total) is not given by
the expression above.

If as a result of analyzing each line using the statistical mod-
eling framework, we find that, for some lines, trends change in
the same years and the changes are of similar size, then the lines
are not independent. (There may also be correlations between the
residuals, but that is generally only important when forecasting
sums of lines.)

In that situation, if line i and j are correlated, say, then one
could use s.e.(i) + s.e.(j) as the upper bound of the standard error
of L(i) + L(j). (Based on our experience, it is not often the case
that different lines are much correlated in terms of trends.)

Suppose we assume for the future payment/calendar years a
mean trend of ¢ with a standard deviation (standard error) s.e.(2).
Specifically, we are saying that the trend ¢, a random variable,
has a normal distribution with mean : and standard deviation
s.e.(1). Recognition of the relationship between the lognormal
and normal distributions tells us that the mean payment increases
as s.e.(1) increases (and © remains constant). The greater the
uncertainty in a parameter (the mean remaining constant), the
more money is paid out. The same argument applies to the other
estimated parameters in the model. This is known as Jensen’s
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inequality (this concept is in many college finance texts—see for
example Brearley & Myers [1]). It is dangerous to ignore this
concept.

4.2. Risk-Based Capital

There are a number of misconceptions regarding risk-based
capital. It is important to note the following:

e The uncertainty in loss reserves (for the future) should be
based on a probabilistic model (for the future) that may bear
no relationship to reserves carried by the company in the
past.

e The uncertainty for each line for each company should be
based on a probabilistic model, derived from the company’s
experience, that describes the particular line for that company.
A model appropriate for one loss development array will usu-
ally not be appropriate for another.

e The company’s experience may bear very little relationship to
the industry as a whole.

The approach discussed here allows the actuary to determine
the relationships within and between companies’ experiences
and their relationships to the industry in terms of simple, well-
understood features of the data.

In establishing the loss reserve, recognition is often given to
the time value of money by discounting. The absence of dis-
counting implies that the (median) estimate contains an implicit
risk margin. But this implicit margin may bear no relationship to
the security margin sought. The risk should be computed before
discounting (at a zero rate of return).

4.3. Booking of the Reserve

There are no hard and fast rules here, but three very important
steps are critical.
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Step 1

Extract information, in terms of trends, stability of trends, and
distributions about trends, for the loss development array; in par-
ticular, the incremental paid losses. Information is extracted by
identifying the best model in the PTF. Model identification and
extraction of information necessarily involves validation analy-
sis (re-analyzing and forecasting the array after removal of past
recent payment/calendar years).

Step 2

Assumptions about the future are formulated. If payment/cal-
endar year trend is stable, this is straightforward. If trends are
unstable in more recent years, then an attempt is made to de-
termine the cause by analyzing other data types and using any
relevant business knowledge. A number of examples are given
in Zehnwirth [12], but it is impossible to give an exhaustive list
as each case may be different.

Step 3

Using the distributions of reserves, the security margin sought
on combined lines, and the risk capital available to the company,
a percentile can be selected. Incidentally, the more uncertain the
trends are for the future, the higher the security margin that may
be called for.

4.4. Other Benefits of the Statistical Paradigm

Finally, the statistical modeling framework has other benefits,
including:
e Credibility models

If a particular trend parameter estimate for an individual
company is not fully credible, it can be formally shrunk to-
wards an industry estimate.

e Segmentation and layers
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Very often the statistical model identified for a combined
array of all payment types applies to some of the segments
(by the same model, we mean the same parameter structure,
not that the estimates are identical). Indeed, the variance of
the normal distribution for a segment is larger than for the
whole—on the original scale, the coefficient of variation is
larger for the components. These ideas can also be applied to
territories, etc., and to layers.
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APPENDIX A

WEIGHTED LEAST SQUARES ESTIMATES WITHOUT INTERCEPT

In this appendix, we give a brief outline of the simplest case
of the derivation of weighted least squares estimates. This cor-
responds to the no-intercept models at the start of Section 2—
including the standard chain ladder.

Consider the following model:
v(i) = bx(Q) + (i), with (A.l1a)
e(i) ~ Normal(0, 02 /w(i)). (A.1b)
The value w(i) is called the weight of observation i. Note that
weights are inversely proportional to variances. Estimation of the

parameters via maximum likelihood corresponds to minimizing
the weighted sums of squared residuals:

3w (i) — bx(i)). (A.2)

i=1
We find the minimum using calculus in a straightforward

manner: taking derivatives with respect to b, and setting the result
equal to zero, we get

3 —2x()w(i)(y (i) — ba(i)) = 0 (A.3)
i=1
then solving for b we obtain:
b= wi@yG) /3 wix()>. (A.4)
i=1 i=1

When w(i) = x(/)~°, we obtain the estimates given near the
start of Section 2; specifically, with 6 = 1 we obtain Equation
2.2; and, with 6 = 2, we obtain Equation 2.3.
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APPENDIX B

CALCULATIONS FOR LINK RATIO MODELS WITH INTERCEPTS
AND ACCIDENT-YEAR TRENDS

Let there be n accident years, numbering the most recent ac-
cident year as 0, and the first as n — 1, as in Murphy [8]. Let y;;
be the cumulative amount paid in accident year i, development
year j,i=0,...,n—1,j=0,...,n—1, as in Figure 33. This sim-
plifies many of the formulas. Let x;; = y; ;_;, so that y;;/x;; is the
observed development factor from j — 1 to j in accident year i.

The only difference a more complex array shape (such as
missing early payment years, or with late development years cut-
off) will make is to change the limits on summations.

Now let p;; = a; + Ajz;; + (8; — Dx;j + u;;, where p;; is the in-
cremental paid loss in accident year i at development year j, x;;
is the cumulative paid in accident year i, up to development year
J—1, and z;; is the count of accident years from the top, start-
ing from 0. Since we number from the bottom, in the current

FIGURE 33

TRIANGULAR LOSS DEVELOPMENT ARRAY OF SIZE n, WITH
ACCIDENT YEARS LABELED IN REVERSE ORDER

Development Year
n-1

0 .
n-1
Yn-1,0

Yij

Accident Year
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notation, z;; = n — 1 —i. Denote the cumulative by y;;. Note that
Pij = Yij —X;;- Here, a; is an intercept (level) term, A; represents
accident-year trend, and 3; represents the dependence on the
previous cumulative. We can also write the model as y;; = a; +
Ajzij + Bx;; + u;;, and we will proceed with this formulation of
the model. As before, Var(u;;) = sz-xfj.

The regressions are independent, so most of the calculations

are straightforward.

Parameter Estimates and Standard Errors

With three parameters in each regression, it will be easiest to
use a standard regression routine. We now describe how to do a
weighted regression with an unweighted routine.

Writing the j® regression in matrix form (and dropping the
J subscript), we have: y = X3 + u, where y = (yn_l,yn_z,...,yj)’,
B =(\0), w=(u, 1, 5,....u;),
1 Zn—1 Xn—1
1 in—2 Xp—2

X=|. ) ) and
1 Zj xJ'
'xﬁfl 0 07
0 o
Var(u) = 02U = o2 -2
0
L O 0 x4

Let y* = U2y, X* =U"'?X, e =U""/>u. Then we have
y* = X*3 + e, with the ¢;’s independently normal with variance

o2. That is, y* = (y”,lx;fqz, yn,zx;ff,..., ijj_‘s/ %) and similarly
with each column of X, including the column of 1s. The parame-

ter estimates (and parameter variance-covariance matrix) for this
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new (unweighted) regression are the same as that of the old
regression; standard regression results give 8 = (X*X*)~1X*'y*
(see, for example, Cook and Weisberg [3]).

Consequently, we will simply take &, S\B and their estimated
variances and covariances as being available. Note that in the fi-
nal development years it isn’t possible to fit all three parameters;
usually we would choose to fit « and/or § as appropriate.

Residuals

Note that the residuals, L?,- j» are the same whether we con-
sider incremental or cumulative values: i;; = y;; —V;; = p;; —
pij- We now derive the variance of tAhe residuals. Let H* =
X*(X¥X*)"1X*. Note that y*=X*8=X"X"X")"1X"y" =
H*y*. Then Var(e) = Var(y* —y*) = Var((I — H*)y*) = (I — H*)
-Var(y*)(I — H*) = 0?(I —H*)*>. Note that H*?> = H*. Hence
Var(e) = 0>(I — H*). This is a standard regression result (see,
for example, Cook and Weisberg [3]). Consequently Var(a) =
U'/2Var(e)(UV?Y, from which we can find the variance of
an individual observation. Consider the regression for devel-
opment year j, and suppress that subscript. Then Var(e;) =
o1 — (x;*)’(X*’X*)_lx;*], where X7 is the i row of X*. Therefore
Var(it;) = o?[1 — (x;*)’(X*’X*)‘lx;*]xf.

Forecasts and Standard Errors

Note that all forecasts and standard error calculations given
here are conditional on the observed data.

o Forecasts: Clearly y; ;.\, = Qi+ AivrZiivk + Bivnijivk—1, Where
Yii = Vii-
e Standard Errors:
Vaf()’i,i+k - yi,i+k) = Vaf()’i,i+k — Mk T vk *)’i,i+k)
= Var(y; ;o x — Miivk) + VarQy ivr — Mijvk)

_ P
=Viiek ¥ Viieke (B.1)
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The first term is what Murphy [8] calls the parameter variance,
and the second the process variance. These may be thought of
as the variability of the predictions about the true model and the
variability of the data about the true model, respectively. Both
must be estimated. Now:

Viier = Var(Qi )
= Var(&,, ¢ + NisxZijek + @i+k5)i,i+k71)
= Var(&;, ) + 22, COV(& o Ny ) + 2 Var(yy )
+ 2911441 COV(G 4 Byt
+ 2Zi,i+k§’i,i+k—1COV(S\Hk’BHk)

+ Var(@i+k57i,i+k71)- (B.2)

Note that if X and Y are independent random variables, with
means iy and sy, respectively, then E[(X — jix)?(Y — py)?] =
E[(X — ,uX)Z]E[(Y— /.Ly)z]. Expanding the left hand side, using
the elementary properties of expectation and rearranging, we
readily obtain Var(XY) = Var(X)Var(Y) + Var(X)uZ + Var(Y)u%.

Consequently,

Var(ﬂi+k5’i,i+k—l) = ﬁi2+kvaf6’i,i+k—1) + yz‘z,i+k—1var(5i+k)
+ Var(B;, ) Var(3iisx 1), (B.3)
which we estimate by

ﬂi2+k Var()A]i,i+k—l) + 5’i2,i+k—1 Var(5;,) + Vaf(ﬂmk)vaf@i,mk—l)-

(B.4)
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Hence we estimate

Bk = Var(Gyg) + 221k COV@y o Ajag) + g Var(y )
+ 29, 1ok 1 COVi g Bt + 220 kFs k1 COVOy i By )
+VPiek Var(f;,) + [ + VAar(@Hk)]ﬁfHk_]. (B.5)

Note that v/ is zero, since we are conditioning on the data. Fur-
ther,

Viiek = Var(V g — i vk)
= Var(a p + Nk Ziisk—1 + BiskViisk—1 + Uijrk)
= B Var(y; 1) + Var(u; ;)
= ﬂi2+kvar(yi,i+k—1 — Wijirk—1) + 0i2+kx?,i+k
= BrkViivko1 + OreXe ik (B.6)
which we estimate as:
Vi ik = VAar(yi,Hk)
= B2 Var(y ;1) + 624 EOY 1)
= 3iz+k‘7i€,i+k—1 + &i2+k}ii‘+k—l’ (B.7)
where £ = E(y? ). We have
1, 6=0
= Jijs 5=1, (B.8)
5%+ Var(y;)), =2

just as with Murphy [8]. With the normality assumption we can
obtain estimates at other values of §, but we omit details here.
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Forecasts and standard errors on the incrementals can be ob-
tained in similar fashion.

Forecasts and Standard Errors of Development-Year Totals

Let D; be the unknown future development-year total forecast,

SO
j—1
i=0
and
. il
Dj = Zyij‘ (B.10)
i=0
Note that
-1
i=0
-1 -1
= Var 5’1’]’ — ij | + Var Zyij — Hj
i=0 i=0
=V’ + Ve, (B.11)

J J

Taking Z; Z’ 0 Zij» then

j—1
V7 = Var <Zyij)
i=0

-1
= Var (Z aj+ Az + 5]%',11)

i=0

= Var(nj&j +ZiAi+B3[Dj_y +yj_1j-1D
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= n2Var(&;) + 2n,Z,Cov(a;,\;) + Z2Var()))
+2n,[D;_y +y;_1;-11Cov(a;, ;)
+ 2Z][D171 + yjfl,jfl]cov()\j’ﬂj)
+ Var(ﬂj[D];l + yj*l,j*l])

— 2 ~ AN 2 3

+2[D; 1 +y; 1,110, Cov(a;, B) + Z,Cov(A;, B))]

+[D;_y +y;_1 ;1 1*Var(3)) + [8? + Var(3)]Var(D;_,).
(B.12)

Note that the last term, Var(D ;1) is just Vﬁ |- We estimate Vjp
by replacing D;_,, 3;, and the variance and covariance terms by
their estimates, which have either been defined or are immedi-
ately available from standard regression calculations. Also,

i1
Vi = Var (Zyij)
i=0

j—1 j—1
= Var (njozj +Z N B Y Vgt Z”m‘)

i=0 i=0

j—1
= Var(5;[D;_y + yj_1 j—1]) + Var (Z ”uj)

i=0

j—1
— 32 22 : 5
i=0

-2
=BV + 0] (yf_l,j_l +ny,j_1). (B.13)

i=0
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Due to independence across accident years, E(Z{;g yf ; D=
Z E(yl - D= 0 fl "i_1> 80 the process variance term is esti-
mated by V¢ = ﬂzVe L+ az(y] Nk, S5 fl] 1)- The estimated
standard error of D is then \/VJ’7 + V]e.
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APPENDIX C

EXPOSURES AND FORECASTING

Let us extend the notation of the previous section. Let y;; be
the observed cumulative at accident year i, development year j;
let y;; be the corresponding normalized-for-exposures cumula-
tive. Similarly, let pf; and pj; be the corresponding incremental
values.

Let ¢; be the exposure for accident year i. Then y[; = y/:/c;,
and pj; = Py /c;. We fit the ELRF model to y”, but we use it to
forecast y°.

Individual Forecasts and Standard Errors (all models)

Clearly, y{;=c;yf:, and similarly for p, pf, =c;pl; also
Var(3¢; — yf;) = ¢ Var(3}; — y1}) and Var(pf; — p;) = ci Var(pj; — pl}).
So individual observed forecasts and standard errors are just the
corresponding normalized values, multiplied by the exposure.

Cumulative Development-Year Totals
Var(D¢ — D9) = V7 + V™, (C.1)

where

j—1
op _ 80
Vj = Var Eyij

i=0

j-1
= Var | > ¢, 3%
i=0
i1 . .
B . n
i=0

j—1 j—1 Jj—1
=Var |6 [ D oe; | + A D oezy | +8;D 57
i=0 i=0 i=0
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Jj—1
= A * Z"O
i=0

2 ~ * A3 *3\2 N
+2C;(y9_y ;_1 +D?_)Cov(G,, ;)
+2Z;(v7 0+ IA);'LI)COV(S\]"@J')

+ (991 j_1 +D9_1)*Var(B3)) + [37 + Var(3))]Var(D}_)

A

_ 2 ~ * ~ 32 3
—CjVaI‘(OzJ-)+2CijC0V(Ozj,)\j)+(ZJ-) Var(AJ-)

+2(0%_1 ;_1 + DI_IC;Cov(&;, 3)) + Z;Cov(M,, ;)]

+ 07+ Df_l)zvar(@j) +[67 + Var(ﬁj)]vj"_f’1 ,

(C.2)
and

j-1
()
i=0
j-1
= Var | Y ¢yl
i=0

fi1
= Var Zci(aj + )\JZU + /Bjylrf]fl + uij)]
i=0

j—1

= Var Zciuij) + 3} Var

i=0

j—1

[
Zyi,j_l
i=0

i1
= > Var(c;u;j) + 37 Var
i=0

j—1

[
Zyi,j—l
i=0



316 BEST ESTIMATES FOR RESERVES

j—2
5 9 n 5 2 ne 2y 0e
07011+ DV + BV
i=0

j—2

2.2=6¢0 o oe 2v70e

oy (V11 +Zvi,j71 + 57V, (C.3)
i=0

where again we estimate this variance by replacing the D’s, 3’s,
variances and covariances by their estimates.



BEST ESTIMATES FOR RESERVES 317
APPENDIX D

LIKELIHOOD AND CONDITIONAL REGRESSIONS

Let y(j) be the vector of data in development year j, and
0(j) be all the parameters for that development year. Let y =
(»(0),...,y(n—1)), so the development years are stacked one
on top of the other, and 6 = (0(1),...,0(n — 1)"). Then, straight-
forward application of conditional probability and some simpli-
fication gives us:

L@ |y) xply | 0]
xply(n—=1)[0(n—1),y(n—2),y(n—3),...,y(0)]
ply(n—2) | 6(n—2),y(n—3),y(n—4),...,y(0)]

-ply(D) [ 6(1),y(0)]
-ply(0)]
x ply(n—1)[6(n —1),y(n —2)]
ply(n=2) [ 0(n—2),y(n - 3)]
- ply(D) 101, y(0)] - ply(0)]. D.1)

Since, for each regression, we are conditioning on the data
from previous development years, the fact that the previous de-
velopment data is stochastic and not fixed is not an issue—the
conditional likelihoods still correspond to ordinary regressions.

The likelihood for y(0) doesn’t contain any of the parameters.
At any value for 6, then, the likelihood of y(0) is just a constant;
consequently, it cannot affect the location of the maximum of the
likelihood, nor its curvature there. So the way that the forecasts
depend on the parameters isn’t affected by y(0), apart from the
way it enters the regression for y(1).
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The model for the data says that the values in future devel-
opment years depend on the earlier development years. We’ve
observed the whole of y(0), so we know exactly how it will
impact the future runoff, because the model describes that. Of
course, the model may be wrong (and we argue that it is); but,
given the model, the regressions may all be performed as ordi-
nary regressions.

The forecasts are made conditionally on the data. We’ve ar-
gued above that even the stochastic nature of y(0) can be ignored
in the forecasting because the model fully describes its impact
on the future observations. However, this is not an important
point—if an argument were made that the stochastic nature of
v(0) should somehow affect the forecasts, it would not affect any
of our arguments about the unsuitability of these models.
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APPENDIX E

DESIGN MATRICES FOR THE MODELS DESCRIBED IN SECTION 3

Readers may wish to fit the regression models described in
Section 3 of this paper. The models described there can be fit-
ted to data in any of the common statistical packages, or using
spreadsheet software such as Excel. Here we briefly describe
what the various predictors look like. We begin by describing
the full model (which is not used in practice, as it’s overparam-
eterized, but is the general case of which all the useful models
are special cases) and then some of the more common simpler
models.

Table E.1 displays the expected values in each cell in the
log(incremental) array under the general model using the nota-
tion of Section 3.

The vector of observations may be produced by stacking up
the development years one on top of another: y= (y(0),y(1),...,
y(n—1)"), as in the previous appendix. Similarly, there is a col-
umn in the X-matrix for each parameter, and the parameters be-
come a column with rows in the same order as the corresponding
columns of the X-matrix (design matrix). Note that « is already
an intercept parameter, so we don’t add an intercept (i.e., the
regression is written y = X3 + €). A good approach is to do all
the a’s, then all the +’s, and finally all the ¢’s.

For n = 4, this corresponds to the X-matrix in Table E.2 (the
zeroes have been suppressed to make the patterns more clear).

In general, the (i, j) row for an array of size n would have a
1 for the column for o s it would have 1’s for the columns for
Y (where k < j), and it would have 1’s for the columns for ¢,
(where r <i + j), with zeroes everywhere else.

Setting some of the parameters to be equal is simply a matter
of adding together columns from the full design matrix. For ex-
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TABLE E.1

EXPECTED VALUES OF LOG(INCREMENTAL) UNDER THE
GENERAL MODEL

Development Year

0 1 J n—1
Accident 0 |og Oty R R AL Y T Ot T Vit T s
Year 1 |oyty oty E b Ot ZL WAL

ot ot outytsin ot SRS L

n=1 |01+ Tt

TABLE E.2

DESIGN MATRIX (X-MATRIX) FOR THE FULL MODEL FOR A
TRIANGLE WITH 4 YEARS’ DATA

O O O O3 i Y2 V3 U L Uy

¥(0,0) |1

y(1,0) |1 1 1

y(2,0) |1 11 11
¥(3,0) |1 1 1 1 1 1 1
y(0,1) 1 1

y(1,1) 1 1 11
y(2,1) 1 11 11 1
¥(0,2) 1 11
y(1,2) 1 1 11 1
¥(0,3) 1 1 1 1
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TABLE E.3

DESIGN MATRIX (X-MATRIX) FOR A SIMPLE MODEL FOR A
TRIANGLE WITH 4 YEARS’ DATA

— 1

¥(0,0)
y(1,0) |1 1

y2,00[1 1 1
y3,0) (1 1 2
y(0,1)
y(1,1) 1

y(2,1) 11
¥(0,2)
y(1,2) 1
¥(0.,3)

D W N W N = W e

ample, Table E.3 shows the design matrix for the array of size 4,
with one level of log payments for all years, two development-
year trends (0-1, and all later years), and a single payment-year
trend—that is, all a’s equal, v, = 73, and all ¢’s equal.



