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Russell H. Greig, Jr. FCAS, MAAA 

Abstract 

The definition and application of random effects linear models as a better alternative to empirical 

Bayesian credibility will be presented. A short review of Btihlmann-Straub credibility is 

contained in section 2. The author presents tractable formulas for quantifying the variability of 

credibility estimates. The variability of credibility estimates is produced without having to make 

distribution assumptions. However, if one assumes normality, hypothesis tests and confidence 

intervals can be constructed. 

I would like to thank Rhonda Puda, Brandon Keller and Willam R. Gillam for their critiques of 

the paper. 1 would also like to thank John Wiley & Sons. Inc.. NCCI, Inc. and Gary Venter for 

use of their data. 
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I. INTRODUCTION 

Credibility Theory allows casualty actuaries to answer the question: “How much of the 

difference in experience of a given policyholder is due to random variation in the underlying 

claims experience and how much is due to the fact that the policyholder is really a better or 

worse risk than the average for a given rating class?’ [1:385]. Of course the difference among 

states, territories, and classes can also be the item of interest. 

Random effects statistical models allow casualty actuaries to answer the above question and 

others. This model provides valuable information about the variability of the credibility estimate 

without having to assume a particular distribution. Moreover, the estimated parameters are Best 

Linear Unbiased Estimates of the true, but unknown parameters. 

The definition of the linear model, applicable results, and several applications of the model will 

be presented. The estimation of K in the Whitney credibility formula Z = E I (E+K), as proposed 

by Biihlmann-Straub, will also be reviewed. 

2. REVIEW OF BtiLHMANN-STRAUB CREDIBILITY 

Assume Y,, . . . . Y, are independent conditional on 0, with common mean p(0) =E(YiI 0 = B), 

and with conditional variances u(0)& =Var(YrlO = 9). Ei is a known constant measuring 

exposure. The credibility formula, Zi = Ei I (E,+K), is derived from those assumptions. When 

each risk has the same number of exposure units, the credibility formula is Z = n I (n + K), where 
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n is the number of observations per risk (Biihlmann credibility). The credibility estimate is equal 

to YiZi +(l-Z,)fi. Yi is the weighted average for the ith risk. and fi is the credibility weighted 

average of each ri. 

For an excellent history of credibility please see Venter’s Credibility Chapter in Foundufions of 

Casually Actuarial Science [2:375-3871. Also see Loss ~4odels [ 1:385-5101 for a concise 

presentation of the principal components of credibility theory. 

3. RANDOM EFFECTS LINEAR STATISTICAL MODELS 

In using linear models to study the variability in data, we are interested in assigning that 

variability to the various categorizations of the data. The classifications that identify the source 

of observations are called factors. Usually there is more than one level of each factor. In 

classifying data in terms of factors and their levels, we arc interested in the extent the different 

levels of each factor impacts the variable of interest. This is referred to as the ~~,7&? of a level of 

a factor on that variable. The effects of a factor are classified as fixed effects or as random 

effects. Fixed effects are the effects from a finite set of levels of a factor that occur in the data 

and which are there because we are interested in them. Random Q,%cfs are the effects from an 

infinite (usually) set of levels of a factor, of which only a random sample are deemed to occur in 

the data. For example, to test the tread-wear on sports cars compared to luxury sedans, four high 

perfomance tires were taken from each of seven batches. Whereas the effects due to type of car 

would be considered fixed effects (presumably we are interested in the particular cars), the 

effects due to batches would be considered a random sample of batches from some hypothetical, 
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infinite population of batches. Since there is definite interest in the particular type of car used, 

the statistical concern is to estimate those car effects; they are fixed effects. Each individual tire 

is of no particular interest of itself to the trial; it is of interest solely as being one of twenty-eight 

tires randomly chosen from a larger population of tires. Inferences can and will be made about 

that population. 

No assumption has been made that the type of cars are selected at random from a distribution of 

car types. In contrast, this kind of assumption has been made about the batch effects; interest in 

them lies in estimating the variance of those effects. Therefore the data are considered as having 

two sources of random variation: batch variance and, as usual, error variance. These two sources 

are known as variance components: their sum is the variance of the variable being observed, 

Models having only fixed effects are called fixed models. Models that contain both fixed and 

random effects are called mixed models. Finally, those having (apart from a single general mean 

common to all observations) only random effects are called random models. 

Table 3.01 taken from [9: 171 summarizes the mathematical characteristics of both classes of 

models. 
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Table 3.01 

Characteristics of the fixed effects model and the random effects model for 

the I-way classification 

Characteristic Fixed Effects Model Random Effects Model 

Model equation yg =p+a,+e,j 

Mean ofyi, ECv,-)=p+a, 

a, 

ey 

E(e,-a,) 

V~cvci) 

covlv,,y,y) 

Fixed, unknowable constant 

e,- =Y!, -Eti~) 

=Y,- - 03 + ad 
ev -4.i.d. (0,of) 

E(eqa,) = a,E(e,) = 0 

WV,) = OS 

covCv,,y,y) 
0, for i= i’andj=j’ 

0 otherwise 

Y, = P + a, + e, 

ECvi, la,) = B + a, 

ECv,) = P 
a, - i.i.d. (0.o:) 

eg =y, -Kvlila,) 

=y4 -@+a,) 

e, -i.i.d. (0.~3) 

E(e,,a,) = 0. cov(a,ak) = 0 
varCyk) = 0: + 0: 

cov(v;,.y,y) 

a: + 03 for i = i’ and j = j’ 
= 0; for i = i’ and j # j’ 

0 otherwise 

To illustrate via the question posed in the introduction: assume the policyholders are in the same 

class. The classification plan attempts to group risks with similar characteristics. If the class plan 

is effective, the overall class mean. p, can be considered common to all the risks. Some risks 

will have better experience than the average risk and others will have worse. The actual 

experience of the risks are samples from a random variable representing the experience of each 

risk. How the actual experience of each risk varies from the class’ average/expected experience 

can be modeled as the random effects, oi, in the linear statistical model. Thus we seek to 

estimate the conditional mean E(P +ailY). where Y is the vector of observed experience for the 

risks. 
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A matrix presentation of the random effects model which includes exposure weights follows: 

Y = Xp +WA +e, A - (0, o:IJ, e - (0, &.J) (3.1) 

Y a Nxl matrix, contains the experience; losses or number of claims. N is the total number of 

observations, N = m, where n is the number of observations per risk, and r is the number of 

risks. X a Nxl matrix, contains exposures. W is a Nxr block diagonal matrix of exposures. 

p is the overall class mean and A is a rxl matrix of random effects parameters, ai, i = l,...,r. 

From Table 3.01, the random effects are independent of the error terms e, and also independent 

across risks. 

Var (Y) = V = Wa:W’+ of@iag(X)) , (3.2) 

V is block diagonal across risks and is the sum of the familiar terms: Variance of the 

Hypothetical Means (VHM), WcsiW’ and Expected Value of the Process Variance (EVPV), 

&PiagW. 

If Var(A) and Var(e) are known, the estimators of p and A shown below are the best linear 

unbiased estimators (given the observations in Y). In most cases, Var(A) and Var(e) are also 

estimated. Hence, the following generalized least squares [5:597] formulas for fi and A 

produce empirical best linear unbiased estimators. Here, “best” means minimum mean squared 

error. 

fj = gr' G-1 x)-l &r-ly) (3.3) 
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If (X’ $-I X) is singular, the Moore-Penrose (generalized) inverse,“-” instead of the regular 

inverse “-I”, can be used in fi [3: I-281. 

Unbiased estimators of Var(A) and Var(e) are estimated by using a weighted analysis of variance 

(ANOVA) table and equating mean squares to their expected value [3:388-389, 4521. The 

derivation is presented below. 

Table 3.02: Weighted ANOVA Table for a One Way Classitication 

Source of Varation d.f. Sum of Squares Mean Square 

Rows r-l SSRci$ Ei (Pi--k)’ MSR = SSR/r-, 

Residual Error N-r SSE=;$ jz Ed (Yv mYi)’ MSE = ‘SE/N+ 

E(MSE) = 03 (3.5) 

(3.6) 

Substituting the estimate of 0: into equation (3.7) produces an unbiased estimator of 0: 

i E, - i E;l;, E, I-’ [i, E,(?, - fi’ - &:(r - I)] (3.7) i=l ,=I 

It turns out equation (3.7) is the same formula for the estimated variance of the hypothetical 

means found in Herzog [4] and Klugman et al [I]. These estimates are used in c and the 

estimates of pand A are then produced. 
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The variance-covariance matrix, k, of 6 and i can be used to analyze the variability of linear 
combinations of b and A. 

co& A) = k = 
[ 

XT;’ x x’c;‘w - 
W’Z.;’ x w’c;’ w + z;a 1 (3.8) 

C, = $(Diag(X)) and CA = &:I,. 

If the reasonable assumption that A - N(O,o:I,) and e - N(O,a&) is invoked, then 

hypothesis tests and confidence intervals of linear combinations of the parameters can be 

evaluated. For example, the following hypothesis test 

H, : L rj [ 1 i = 0 compared to H, : L 

can be performed by calculating the following t-statistic, t = - This t-statistic has degrees 

of freedom, N-rank(X). If a confidence interval is of interest, then use L kt&JiZ. In 

addition, the coefficient of variation (CV) of the estimates can be used to assess variability 

without making the normality assumption. 
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4. APPLICATIONS 

The first application, like Halliwell’s [6] paper, uses an example from the Foundarions of 

Cus~al& Acruarial Science [2:433]. Y contains six pure premiums for nine risks. all with the 

same number of exposure units. The objective is to calculate credibility weighted pure premiums 

for each state, i.e., the predicted pure premium for each risk given all the pure premiums. The 

overall mean will serve as the fixed effect across risks. and the individual experience is the 

random effects. The model and the results are presented in Exhibits 1 - 2. 

First, D: and ~12, are estimated from equations (3.5) and (3.7). Next, these values are used in c 

to produce b and A in Exhibit 2. Each L,. fi and A is used to calculate each value in $. Lastly. 

6 is used conduct significance tests of the linear combinations ofthe parameters. Each risk 

parameter combined with the fixed effect is significantly different from 0 at ihc 5.0% level. The 

key addition to this analysis is the variance of the linear combination of the mean and random 

effects. The variability of the credibility estimates is now quantified: via the confidence interval 

and the coefficient of variation. T-tests of each risk parameter. A. can also bc calculated by 

redefining each L, , starting with 0 instead of I. Each risk parameter and all risk parameters 

together are not significantly different from 0. If a particular risk parameter is significant. 

chances are that risk(s) should be reclassified; remember A s (O,o:). The credibility estimates 

are also provided in Exhibit I. There should be no surprise that the random effects model 

produced the same values as the credibility weighted estimates. 

396 



Random Effects Linear Statistical Models and Biihlmann-Straub Credibility 

Another example using varying exposures is the case study presented in Loss Models [I :504]. In 

Exhibit 3, four years of claims and exposures are presented for professional liability coverage of 

life / health, pension, and property / liability actuaries. The objective is to calculate a credibility 

weighted frequency for each group of actuaries, i.e., the predicted frequency for each type of 

liability coverage given all the observed frequencies. The same steps as in example 1 are 

followed. 

However, two credibility estimates are calculated; one using a weighted average for the 

complement and the other using a credibility weighted average of each l’i as the complement. 

The credibility weighted average was introduced in Loss Models [1:468] so that the total 

experience is reproduced using the credibility estimates; 221 claims. Notice that fi and b are the 

same and both differ from the weighted average of the individual frequencies. The variability of 

the frequency predictions again are a valuable addition to the analysis of this data. 

Last, the method was applied in the initial stages of designing a frequency based experience 

rating system for smaller workers compensation risks. Again, the objective is to calculate a 

credibility weighted frequency for each risk. Data for State D is partitioned among risks in a 

particular class code where their 3 year average earned premium is between 3,000 and 5,000. 

The individual experience of each group is modeled as random effects. The data and results are 

in Exhibit 4. Y contains first, second and third reports of the number of claims for 22 risks. X 

contains the payroll (in hundreds). Again, the random effects linear model produced the same 

frequency as the credibility model. 
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Now for a few directions on the analysis that can be performed. Risk I6 has the highest 

credibility, but it also has the highest CV. As a result of the high CV and no claims, it fails the 

t-test. Risk I I has the smallest credibility, and it also fails the t-test. The credibilities of both 

these risks are driven primarily by volume: Risk 16 the most; Risk 1 I the least. Risk I2 has the 

smallest CV and above average credibility. Risk I2 has produced one claim for each year while 

its exposures have been relatively steady. All claim free risks fail the t-test, while all risks with 

at least one claim pass the t-test. These results make intuitive sense, because failing the t-test 

suggests that the predicted frequency is not significantly different from zero. All the claim free 

risks have a predicted frequency less than the average but not equal to zero. The CV and 

confidence intervals provide an objective quantification of the variability underlying the potential 

frequencies. For instance, the upper end point of the confidence interval for Risk I6 is 49% 

higher than the overall frequency. This type of analysis aids the use ofjudgment needed to place 

swing limits on the experience modification for the small risks. 
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5. CONCLUSION 

Credibility models are only a subset of the applications of random effects linear models to 

actuarial science. This paper provides a complete method for quantifying the variability of 

credibility estimates. The random effects model is relevant wherever credibility is required. 

Hopefully, others will see the great benefit of this technique, and start the climb out of the 

Flatlands regarding our statistical modeling skills. 
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EXHIBIT1 

Risk Y 
I1 
I 0.375 
I 2.341 
I 0.175 
I 1.016 
I 0.466 
2 0.247 
2 I.587 
2 1.939 
2 0.712 
2 0.054 
2 0.261 
3 0.661 
3 0.237 
3 0.063 
3 0.250 
3 0.602 
3 0.700 
4 0.182 
4 0.351 
4 0.011 
4 0.022 
4 0.019 
4 0.252 

5 0.038 
5 0.370 
5 2.502 
6 0.301 
6 0.253 
6 0.044 
6 0.109 
6 2.105 
6 0.891 
7 0.219 
7 I.186 
7 0.431 
7 1.405 
7 0.241 
7 0.804 
8 0.002 
8 0.058 
8 0.235 
8 0.018 
8 0.713 
8 0.208 
9 0.796 
9 0.260 
9 0.932 
9 I 0.857 
9 1 0.129 
9Lo.349 

VW+) Var(A) K 
0.35701 0.00669 53.33244 

I 
I 
I 
I 

I 

I 

I 

I 

I 

I 

I 

I 
I 

Zi Risk yi pure Prcm. 
0.10113 1 0.80050 0.58675 

2 0.80000 0.58670 
3 0.41883 0.54815 
4 0.13950 0.51991 
5 0.81450 0.58817 
6 0.61717 0.56821 
7 0.71433 0.57804 
0 0.20567 0.52660 
9 0.55383 0.56181 

Y 

Credibility 
Weiehted 

0.56270 
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EXHIBIT 2 

6 Risk A 
--=- ;r---,024 1 0 024 

-o!xm,44 -0ow744 -0ow744 -0Mx1744 -0cQo744 -0ow744 -0ow744 .owo744 

0 woo75 0 wm7s ooQm75 ocmo75 0 ww7.5 0 owm,s 0 ooMl75 1 ococo75 
0 W6092 O.CNO75 0 oocQ75 OoooO7S 0 cow75 0 oMlo75 oocmo7s owoo7s 
000(x1,5 0 w6092 0 oow75 0 M)w75 0 ww,s 0 ww75 0 owo75 om7s 
OWW75 O.WW75 0 W6092 O.comfS ocmo75 00@30,5 O.WOO75 o.m75 
0 ww,5 oww7s oocm75 0 ww92 Cl ww,s 0 !xxm3,5 0 woo75 0 oooo75 
OwoO75 oww75 oooo75 ooMM75 om o.cKo75 0 caoo75 o.m75 
OWW75 0 000075 0woO75 OowO75 ooooo75 0 cm092 0 cm0075 ocmm 
0 owo75 0 oooo,s 0 ww,5 cl m,s OOOW,S 0 oooo75 0 W-5092 o.ww75 I 
0 coo075 0 ww75 OWCO7S 0 ww7s 0 oow,s oww,5 0 WC?. 0.006692 ! .- 
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EXHIBIT 3 

GKNlp 
LH 
LH 
LH 
LH 

P 
P 
P 
P 

PL 
PL 
PL 
PL 

Year 
I990 
1991 
I992 
1993 
I990 
1991 
1992 
1993 ~ 
1990. 
1991 
1992 ~ 
1993, 

Y 

35 
36 
24 

5 
8 
4 

II 

TOMI 221 14,297 

Var(e) Vu(A) K 
0.0209424 0.0000097 2151.668 

E(A) = 0.000674 

Predicted var. of Coefi. of Degrees of 

0.00201 I 
1 -0.00297 

W 
853 

1,105 
1,148 
1,270 

1,446 
1.780 
1,717 
2.065 

4,376 7,008 

Gr0lJp Zi 
Lm 0.67038 

P 0.76509 
PiL 0.575 16 

Total Weighted Frequency 0.01546 

639: 
725 
685 j 
864 

2,913 

Weighted Credibility Credibility 
Average Weighted Weighted 

Frequency Frequency a Frequency, Q 
0.01622 0.0 1597 0.01478 0.01575 
0.01741 0.01695 0.01679 
0.00961 0.01210 0.01181 

Total Claims 224 221 

I! 0 0 
0 Ii 0 
0: o_l--~ ’ 

C ___.- 
4.8408E-06 -3.245E-06 -3.7048-06 -2.784E-06 
-3.2458-06 5.3837E-06 2.48288-06 1.86658-06 
-3.7048-06 2.48288-06 S.lZE-06 2.1302E-06 
-2.7848-06 I .8665E-06 2.1302E-06 5.7364E-06 

Group Frequency Frequency Variation t-statistic t 0.025 Freedom 
Lm 0.01575 3.7342E-06 0.12269 8.15034 2.20099 II 

P 0.01679 2.55358-06 0.09516 10.50839 2.20099 
P/L 0.01181 5.0087E-06 0.18951 5.27664 2.20099 

Total Claims 221 

Confidence Interval 
Lower pt UPPer Pt 
0.01 I50 0.02000 
0.01327 0.02031 
0.00688 0.01674 
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EXHIBIT4 

Risk Repon 
I 
I 
I 
2 
2 
2 
3 
3 
3 
4 
4 
4 
5 
5 
5 
6 
6 
6 
7 
1 
7 
8 
8 
8 
9 
9 
9 

IO 
IO 
IO 
II 
II 
II 
I? 
I2 
12 
13 
13 
13 
I4 
I4 
I4 
I5 
I5 
I5 
I6 
I6 
I6 
I7 
I7 
I7 
I8 
I8 
I8 
I9 
I9 
I9 
20 
20 
20 
?I 
21 
21 
22 
22 
22 

I 
2 
3 
I 
2 
3 
I 
2 

3 
I 
2 
3 
I 
7 

3 
I 
2 

3 
I 
2 
, 
I 
2 
3 
I 
2 
, 
I 

3 
I 
2 
3 
I 
2 
-3 
I 
7 

3 
I 
2 
3 
I 
2 
3 
I 
2 
3 
I 
2 
3 
I 
2 
3 
I 
2 
3 
I 
2 
3 
I 
2 
3 
I 
2 
3 

\ 
0 
0 
0 
0 
0 
0 
0 
I 
I 
0 
0 
2 
0 
0 
I 
0 
0 
I 
0 
0 
0 
0 
0 
0 
0 
0 
0 
I 
0 
I 
0 
0 
0 
I 
I 
I 
2 
0 
0 
0 
0 
0 
1 
0 
I 
0 
0 
0 
I 
0 
0 
0 
0 
0 
0 
0 
I 
0 
0 
0 
0 
0 
0 
0 
0 
0 

x var(e K Risk Zi 
312.65 0000942 5845.66 1 0122301 
350.65 2 0125390 
151.25 
32807 Var(A) 
270.00 1.6116E.07 
240.00 
136.00 
140.00 
124.00 
800.34 
758.03 

404.56 

329.89 

241.93 
IO8.50 

502.80 

80.50 
201.80 

7.50 
69.04 

429.30 
16049 
279.83 

98.10 
173.23 
260.17 
215.61 
518.20 
588 IO 
556.48 
128.54 
98.70 
86.94 

45365 
364 33 
315.96 
23585 
15603 
265.72 
115.30 
61.51 

251.58 
374 I7 
340.99 
485.27 

1353.45 
II1916 
554 I7 
278.11 
432.80 
256.80 

78.97 
165.28 
110.14 
574.94 
416.60 
196.88 
485.73 
27133 
195.10 
203.69 
21230 

92.44 
347.28 
107.19 
87.27 

Degreesof 3 0064045 
Freedom 4 0.244153 

65 5 0164303 
6 0.062664 
7 0.079641 
8 0084338 
9 0099930 

IO 

12 

0221455 
11 

0.162465 
0.05l005 

13 0.101119 
14 0.068280 
15 0.170368 
16 0.341144 
17 0.142031 
18 0.057159 
19 0.168952 
20 0.140068 
21 0.080016 
22 0.084814 

PredictedCoeflicient of 
0 Risk A Frequency Variation i-statistic 10.025 

0.000867 1 -0.000106 0000761 0.565540 1.768220 1.997138 
2 -0.000109 0000758 0.566302 1765841 1.997138 
3 0.000265 0.001132 0.395768 2.526732 1.997138 
4 0.000047 0.000914 0.429760 2 326880 1.997138 
5 0.000001 0000868 0481326 2.077592 1.997138 
6 0000106 0.000973 0460730 2 17046') I.997138 
7 -0.000069 0.000798 0.55544I IR00370 I.997138 
0 -0.000073 0.000794 0556516 1.796894 1.997138 
9 -0.000087 0.000780 0.560148 I785244 1997138 

10 0.000074 0.000941 0.424785 2354132 1.997138 
11 -0.000044 0000823 0549078 I821235 1997138 
12 0.000289 0.001156 0361709 2 764652 199713B 
13 0.000220 0.001087 0.401858 2.488444 1997138 
14 -0oooo59 0.000808 0.552879 I808715 1997138 
15 0000136 0001003 0414397 2.413147 1997138 
16 -0.000296 0.000571 0.633215 1.579242 1997138 
17 0.000024 0.000891 0.476477 2.098739 1997138 
16 -0.000050 0000818 0.550419 1.816797 1997138 
19 -0.000004 0.000863 0482365 2.073llY I.997138 
20 -0.000I2I 0.000746 0569984 I754434 I.997138 
21 -0.000069 0000798 0555527 1.800093 I.997138 
22 -0.000074 0000794 US56625 1.796541 I997111 

E(A)= -0.000022 

Weighled 
AWage 

Frequency ,, 
0 000000 0000867 
o.oOooofJ 
0.005000 
0.001059 
0.0#0870 
0.002559 
0.000000 
0.000000 
0 000000 
0.001203 
0.000000 
0.002646 
0.003041 
0.000000 
0001666 
0 000000 
0001033 
0.000000 
0.000841 
0.000000 
0.000000 
0.000000 

Credibility 
Weighted 

Frequency 
0.000761 
0.000758 
O.oOll32 
0.000914 
0.000868 
0.000973 
0.000798 
0.000794 
0000780 
0.000941 
0.000823 
0.001156 
0.001087 
0000808 
0001003 
0000571 
0.000891 
O.OOO817 
0.000863 
0000746 
0.000798 
0.000794 

Mod 
0.88 
0.87 
I.31 
1.05 
1.00 
I.12 
0.92 
0.92 
0.90 
1.09 
0.95 
1.33 
1.25 
0.93 
I.16 
0.66 
1.03 
0.94 
I.00 
0.86 
0.92 
0.92 

1.00 

Confidence Interval 
Lower pt UPperPI 

0 000000 0.001621 
0.000000 0.001616 
0000237 0.002026 
0.000130 0.001698 
ooOOo34 0.001702 
0.000078 0.001868 
0 000000 0.001683 
0.000000 0.001676 
0.000000 O.OOl653 
0.000143 0.001740 
0 000000 0.001725 
0.000321 0.001991 
0.000215 0.001959 
0.000000 0.001700 
0000173 0.001833 
0.000000 0.001294 
0.000043 0.001738 
0.000000 0.001716 
0000032 0.001694 
0.000000 0.001594 
0.000000 0.001683 
0.000000 0.001676 
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