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Abstract

The definition and application of random effects linear models as a better alternative to empirical
Bayesian credibility will be presented. A short review of Bihlmann-Straub credibility is
contained in section 2. The author presents tractable formulas for quantifying the variability of
credibility estimates. The variability of credibility estimates is produced without having to make
distribution assumptions. However, if one assumes normality, hypothesis tests and confidence

intervals can be constructed.

1 would like to thank Rhonda Puda, Brandon Keller and Willam R. Gillam for their critiques of

the paper. 1 would also like to thank John Wiley & Sons, Inc.. NCCI, Inc. and Gary Venter for

use of their data.
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1. INTRODUCTION

Credibility Theory allows casualty actuaries to answer the question: "How much of the
difference in experience of a given policyholder is due to random variation in the underlying
claims experience and how much is due to the fact that the policyholder is really a better or
worse risk than the average for a given rating class?" [1:385]. Of course the difference among

states, territories, and classes can also be the item of interest.

Random effects statistical models allow casualty actuaries to answer the above question and
others. This model provides valuable information about the variability of the credibility estimate
without having to assume a particular distribution. Moreover, the estimated parameters are Best

Linear Unbiased Estimates of the true, but unknown parameters.

The definition of the linear model, applicable results, and several applications of the model will
be presented. The estimation of K in the Whitney credibility formula Z = E / (E+K), as proposed

by Biihlmann-Straub, will also be reviewed.

2. REVIEW OF BULHMANN-STRAUB CREDIBILITY

Assume Y|, ..., Y, are independent conditional on ©, with common mean p(0) =E(Y;| @ =90),

and with conditional variances V(B)/E; =Var(Y;/® =0). F, is a known constant measuring

exposure. The credibility formula, Z; = E;/ (E;+K), is derived from those assumptions. When

each risk has the same number of exposure units, the credibility formula is Z =n / (n + K), where
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n is the number of observations per risk (Bithlmann credibility). The credibility estimate is equal

10 Y;Z; +(1-Z). Y; is the weighted average for the ith risk. and [i is the credibility weighted

average of each Yi.

For an excellent history of credibility please see Venter's Credibility Chapter in Foundations of
Casualty Actuarial Science [2:375-387). Also see Loss Models [1:385-510] for a concise

presentation of the principal components of credibility theory.

3. RANDOM EFFECTS LINEAR STATISTICAL MODELS

In using linear models to study the variability in data, we are interested in assigning that
variability to the various categorizations of the data. The classifications that identify the source
of observations are called factors. Usually there is more than one level of each factor. In
classifying data in terms of factors and their levels, we are interested in the extent the different
levels of each factor impacts the variable of interest. This is referred to as the effect of a level of
a factor on that variable. The effects of a factor are classified as fixed effects or as random
effects. Fixed effects are the effects from a finite set of levels of a factor that occur in the data
and which are there because we are interested in them. Random effects are the effects from an
infinite (usually) set of levels of a factor, of which only a random sample are deemed to occur in
the data. For example, to test the tread-wear on sports cars compared to luxury sedans, four high
perfomance tires were taken from each of seven batches. Whereas the effects due to type of car
would be considered fixed effects (presumably we are interested in the particular cars), the

effects due to batches would be considered a random sample of batches from some hypothetical,
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infinite population of batches. Since there is definite interest in the particular type of car used,
the statistical concern is to estimate those car effects; they are fixed effects. Each individual tire
is of no particular interest of itself to the trial; it is of interest solely as being one of twenty-eight
tires randomly chosen from a larger population of tires. Inferences can and will be made about

that population.

No assumption has been made that the type of cars are selected at random from a distribution of
car types. In contrast, this kind of assumption has been made about the batch effects; interest in
them lies in estimating the variance of those effects. Therefore the data are considered as having
two sources of random variation: batch variance and, as usual, error variance. These two sources
are known as variance components: their sum is the variance of the variable being observed.
Models having only fixed effects are called fixed models. Models that contain both fixed and
random effects are called mixed models. Finally, those having (apart from a single general mean

common to all observations) only random effects are called random models.

Table 3.01 taken from [9:17] summarizes the mathematical characteristics of both classes of

models.
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Table 3.01
Characteristics of the fixed effects model and the random effects model for

the 1-way classification

Characteristic Fixed Effects Model Random Effects Model
Model equation Yi=B+a, +ey yi=B+o, tey
Mean of y;, Eyy) =P+, Eyyla)=p+a,
Epy)=B
o Fixed, unknowable constant o; ~iid. (0.62)
ey ey =y —E(y) €y =Yy —E(}',,|(1,-)
=y; —(B+o) =y; —(B+a)
ey ~iid. (0,62) ey ~iid. (0.062)
Elezo) E(eya;)=o;E(ey)=0 E(eyo,) =0, cov(o,a,) =0
var(yy) var(y,) = 6} var(y;) = 62 + G2
cov(yy, yir) cov(yi, ¥ ii') cov(yy.yi)
_{03 fori=i’andj=j’} o2 +olfori=i"andj=/
0 otherwise =4 ol fori=iandj = j’
0 otherwise

To illustrate via the question posed in the introduction; assume the policyholders are in the same

class. The classification plan attempts to group risks with similar characteristics. If the class plan
is effective, the overall class mean, 3, can be considered common to all the risks. Some risks

will have better experience than the average risk and others will have worse. The actual
experience of the risks are samples from a random variable representing the experience of each

risk. How the actual experience of each risk varies from the class' average/expected experience

can be modeled as the random effects, a;, in the linear statistical model. Thus we seek to
estimate the conditional mean E(B + c.i1Y), where Y is the vector of observed experience for the

risks.
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A matrix presentation of the random effects model which includes exposure weights follows:

Y =Xp +WA +e, A~ (0,031, e~(0,02ly) (3.1

Y a Nx1 matrix, contains the experience; losses or number of claims. N is the total number of
observations, N = rm, where n is the number of observations per risk, and r is the number of

risks. X a Nx1 matrix, contains exposures. W is a Nxr block diagonal matrix of exposures.

B is the overall class mean and A is a rx1 matrix of random effects parameters, i, i = 1,....t.

From Table 3.01, the random effects are independent of the error terms e, and also independent

across risks.

Var (Y) = V= Wo2 W+ ocX(Diag(X)) , (3.2)

V is block diagonal across risks and is the sum of the familiar terms: Variance of the

Hypothetical Means (VHM), WciW’ and Expected Value of the Process Variance (EVPV),
o3(Diag(X).

If Var(A) and Var(e) are known, the estimators of § and A shown below are the best linear

unbiased estimators (given the observations in Y). In most cases, Var(A) and Var(e) are also
estimated. Hence, the following generalized least squares [5:597] formulas for fi and A
produce empirical best linear unbiased estimators. Here, "best" means minimum mean squared

€ITor.

B =X V1 Xy (X'VY) (3.3)
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A =GXW/V-1(Y- XB) (3.4

If (X’ v-! X) is singular, the Moore-Penrose (generalized) inverse,"-" instead of the regular

inverse "-1", can be used in fi [3:1-28].

Unbiased estimators of Var(A) and Var(e) are estimated by using a weighted analysis of variance
(ANOVA) table and equating mean squares to their expected value [3:388-389, 452]. The

derivation is presented below.

Table 3.02: Weighted ANOVA Table for a One Way Classification

Source of Varation d.f. Sum of Squares Mean Square
Rows r-1 SSR =Z] Ei(Yi-7) MSR = 5%/ |
Residual Error N-r SSEz'él f;l E; (Y; -¥i)? MSE = 55/

=1)=
E(MSE) = o2 (3.5)
E(MSR) = ﬁ(_}il E,-—_)':l EX zl E)o? +o? (3.6)
= = =

Substituting the estimate of 62 into equation (3.7) produces an unbiased estimator of &3 .

r r r -1 r. - - ~
&§=[ZI Ei- _El E,z/ El E,J [§ E,‘(Yi—Y)Z— Cs(l’—l)] (37)
It turns out equation (3.7) is the same formula for the estimated variance of the hypothetical

means found in Herzog [4] and Klugman ef a/ [1]. These estimates are used in V and the

estimates of Band A are then produced.
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The variance-covariance matrix, C, of f} and A can be used to analyze the variability of linear
combinations of f} and A,

- X'Z'X X'z'w |-

Cov(p,A)=C = .
VB A =C=| s x WE W4z 38

T, =62(Diag(X)) and T, =831,

If the reasonable assumption that A~N(O,o’il,) and e~N(O,0'fIN) is invoked, then

hypothesis tests and confidence intervals of linear combinations of the parameters can be

evaluated. For example, the following hypothesis test

H(,:L[ ]ﬂ
L2

can be performed by calculating the following t-statistic, t = Ik This t-statistic has degrees
LCL

> T
> T

:|=0 compared to Ha:LI:

of freedom, N-rank(X). If a confidence interval is of interest, then use L': 2 }i‘tm LCL' . In

addition, the coefficient of variation (CV) of the estimates can be used to assess variability

without making the normality assumption.
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4. APPLICATIONS

The first application, like Halliwell's [6] paper, uses an example from the Foundations of
Casualty Actuarial Science [2:433]. Y contains six pure premiums for nine risks, all with the
same number of exposure units. The objective is to calculate credibility weighted pure premiums
for each state, i.e., the predicted pure premium for each risk given all the pure premiums. The
overall mean will serve as the fixed effect across risks. and the individual experience is the

random effects. The model and the results are presented in Exhibits 1- 2.

First, 62 and o'_i are estimated from equations (3.5) and (3.7). Next, these values are used in \%
to produce ﬁ and A in Exhibit 2. Each L. f and A is used to calculate each value in Y. Lastly,

C is used conduct significance tests of the linear combinations of the parameters. Each risk
parameter combined with the fixed effect is significantly different from 0 at the 5.0% Jevel. The
key addition to this analysis is the variance of the linear combination of the mean and random

effects. The variability of the credibility estimates is now quantified; via the confidence interval

and the coefficient of variation. T-tests of each risk parameter, A, can also be calculated by

redefining each L, , starting with 0 instead of 1. Fach risk parameter and all risk parameters

together are not significantly different from 0. If a particular risk parameter is significant,
chances are that risk(s) should be reclassified; remember A ~ (0,52). The credibility estimates

are also provided in Exhibit 1. There should be no surprise that the random effects model

produced the same values as the credibility weighted estimates.
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Another example using varying exposures is the case study presented in Loss Models [1:504]. In
Exhibit 3, four years of claims and exposures are presented for professional liability coverage of
life / health, pension, and property / liability actuaries. The objective is to calculate a credibility
weighted frequency for each group of actuaries, i.e., the predicted frequency for each type of
liability coverage given all the observed frequencies. The same steps as in example 1 are

followed.

However, two credibility estimates are calculated; one using a weighted average for the
complement and the other using a credibility weighted average of each ¥; as the complement.

The credibility weighted average was introduced in Loss Models [1:468] so that the total

experience is reproduced using the credibility estimates; 221 claims. Notice that [i and é are the

same and both differ from the weighted average of the individual frequencies. The variability of

the frequency predictions again are a valuable addition to the analysis of this data.

Last, the method was applied in the initial stages of designing a frequency based experience
rating system for smaller workers compensation risks. Again, the objective is to calculate a
credibility weighted frequency for each risk. Data for State D is partitioned among risks in a
particular class code where their 3 year average earned premium is between 3,000 and 5,000,

The individual experience of each group is modeled as random effects. The data and results are
in Exhibit 4. Y contains first, second and third reports of the number of claims for 22 risks. X
contains the payroll (in hundreds). Again, the random effects linear model produced the same

frequency as the credibility model.
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Now for a few directions on the analysis that can be performed. Risk 16 has the highest
credibility, but it also has the highest CV. As a result of the high CV and no claims, it fails the
t-test. Risk 11 has the smallest credibility, and it also fails the t-test. The credibilities of both
these risks are driven primarily by volume: Risk 16 the most, Risk 11 the least. Risk 12 has the
smallest CV and above average credibility. Risk 12 has produced one claim for each year while
its exposures have been relatively steady. All claim free risks fail the t-test, while all risks with
at least one claim pass the t-test. These results make intuitive sense, because failing the t-test
suggests that the predicted frequency is not significantly different from zero. All the claim free
risks have a predicted frequency less than the average but not equal to zero. The CV and
confidence intervals provide an objective quantification of the variability underlying the potential
frequencies. For instance, the upper end point of the confidence interval for Risk 16 is 49%
higher than the overall frequency. This type of analysis aids the use of judgment needed to place

swing limits on the experience modification for the small risks.
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5. CONCLUSION

Credibility models are only a subset of the applications of random effects linear models to
actuarial science. This paper provides a complete method for quantifying the variability of
credibility estimates. The random effects model is relevant wherever credibility is required.
Hopefully, others will see the great benefit of this technique, and start the climb out of the

Flatlands regarding our statistical modeling skills.
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EXHIBIT 1

Jad
%
=
-
e

0.430

0.37]
2.341
0.175
1.016
0.466
0.247
1,587
1.939
0.712
0.054
0.261
0.661
0.237
0.063
0.250
0.602
0.700
0.182
0.351
0.011
0.022
0.019
0.252
0.311
0.664
1.002
0.038
0.370
2.502
0.301
0.253
0.044
0.109
2.105
0.891
0.219
1.186
0.431
1.405
0.241
0.804
0.002
0.058
0.235
0.018
0.713
0.208
0.796
0.260
0.932
0.857
0.129
0.349
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Var(e) ~ Var(A)

0.35701  0.00669

K
53.33244

Zi
0.10113

Yi
0.80050
0.80000
0.41883
0.13950
0.81450
0.61717
0.71433
0.20567
0.55383

z
=

OCOE~NOOEWN=

0.56270
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Credibility
Weighted

Pure Prem.
0.58675
0.58670
0.54815
0.51991
0.58817
0.56821
0.57804
0.52660
0.56181




EXHIBIT 2

T 0563

L 4 LS. L6 L7 LS Ly
Risk__ A 1 1 il 1 1 1i 1; 1
1 ( 0.024 1 0 0 0! 0 4 0 0 0
2 0.024 0 1 0: 0 0 0 0 0; 0
3 -0.015 0 0 1 0 0 0 0: 0! 0
4 -0.043 0 0 0! 1+ 0 0 0! 0 0
5! 0.025 0 0 0. 0. 1 0 0, 0 "}
6! 0.006 0 0 0! 0: 0] 1] 0 o 0
71 0.015) 0 0 [\ ol 0} 0! ! 0 0
8: -0.036 r 0 0 0 0l 0 ‘ i 0 1 0
9 0001 0 0 0 of ol 0 ol ___o 1
E(A)= -8.0E-07
0007355 -0.000744 -0000744 -0.000744 0000744 -0.000744 -0000744 -0000744 -0.000744 -0.000744
-0.000744 0006092 0000075  0.000075 0000075 0000075 0000075 0.000075 0.000075  0.000075
-0.000744 0000075  0.006092  0.000075 0000075 0000075 0000075 0000075 0.000075  0.000075
-0.000744 0000075  0.000075  0.006092 0.000075 0000075 0.000075 0000075 0000075  0.000075
-0.000744 0000075  0.000075  0.000075  0.006092  0.000075 0.00007S 0000075  0.000075  0.000075
-0.000744 0000075 0000075 0000075 0000075 0006092 0000075 0000075  0.000075  0.000075
-0000744  0.000075 0000075 0000075 0.000075 0.000075 0006092 0.000075  0.000075  0.000075
-0.000744 0000075 0000075 0000075  0.000075 0000075 0000075 0006092  0.000075  0.000075
-0000744  0.000075  0.00007S 0000075 0.000075 0000075 0.000075 0.000075 0.006092  0.000075
-0000744 0000075  0.000075 0000075 0000075 _ 0.000075  0.000075 0000075 = 0.000075 _ 0.006092
Predicted Var of Coeff of Degrees  Confidence Interval
Risk Pure Prem Pure Prem Variation t-statistic t0.025 of Freedom Lower pt Upper pl
1 0.58675 001196  0.18639 536524  2.00575 53 036740 0.80610
2 058670 001196  0.18640 536478  2.00575 036735 080605
3 054815 001196  0.19951 501232 200575 032880 076751
4 051991 001196 021035 475402  2.00575 030055 0.73926
S 058817 001196 0.18594 537818  2.00575 0.36881 0.80752
6 056821 001196  0.19247 51957t 2.00575 034886  0.78756
7 057804 001196  0.18920 528556  2.0057S 035869 079739
8 052660 001196 020768 481520  2.00575 030725  0.74595
9 056181 001196  0.19466 513715 2.00575 034245 078116
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EXHIBIT 3

Group Year Y X w
LH 1990 20 853 853
LH 1991 14 1,105 1,105
LH 1992 6 1,148 1,148
LH 1993 21 1,270 1,270 ;
P 1990 | 27 1,446 1,446 i
P 1991 35 1,780 1,780 |
P 1992 36 1,717 1,717 i
P 1993 24 2,065 2,065 i
PL 1990 5 639 639"
PL 1991 . 8 725 725
PL 1992 4 685 685!
PL 9930 mjl sl 864,
Totat 221 14,297 4,376 7,008 2,913
Weighted Credibility Credibility
Average  Weighted Weighted
Var(e) Var(A) K Group Zi Frequency Frequency [i} Frequency, @
0.0209424  0.0000097 2151.668 L/H 0.67038 0.01622 0.01597 0.01478 0.01575
P 0.76509 0.0174) 0.01695 0.01679
P/L 0.57516 0.00961 0.01210 0.01181
Total Weighted Frequency 0.01546
Total Claims 224 221
L W
8 Group A I 1! 1 1-
770.014784 LH | 0.00097 1! 0 0
P! 0.00201 0. 1 0
PL ! -0.00297|: 0 0] ) 1,
E(A)=  0.000674
_C
4.840BE-06 -3.245E-06 -3.704E-06 -2.784E-06
-3.245E-06 5.3837E-06 2.4828E-06 |.8665E-06
-3.704E-06 2.4828E-06 5.12E-06 2.1302E-06
=2.784E-06 1.8665E-06 2.1302E-06 5.7364E-06
Predicted Var. of CoefT. of Degrees of  Confidence Interval
Group  Frequency  Frequency Variation  t-statistic ¢ 0.025 Freedom  Lower pt Upper pt
L/H 0.01575  3.7342E-06 0.12269 8.15034 2.20099 11 0.01150 0.02000
P 0.01679  2.5535E-06 0.09516  10.50839 2.20099 0.01327 0.02031
P/L 0.01181  5.0087E-06 0.18951 5.27664 2.20099 0.00688 0.01674
Total Claims 221
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EXHIBIT 4

Weighled Credibility
Average Weighted

Risk Report Y X Var(e) K Risk Zi Frequency i Frequency Mod
1 1 0 312.65  0.000942 5845.66 1 0.122301  0.000000  0.000867 0.000761 0.88
1 2 0 350.65 2 0125390  0.000000 0.000758 0.87
1 3 0 151.25 Degrees of 3 0064045  0.005000 0.001132 1.31
2 ] 0 328.07 Var(A) Freedom 4 0.244153  0.001059 0.000914 1.05
2 2 o] 270.00 1.6116E-07 65 5 0.164303  0.000870 0.000868 1.00
2 3 0 240.00 €  0.062664  0.002559 0.000973 1.12
3 1 0 136.00 7 0079641  0.000000 0.000798 0.92
3 2 1 140.00 8  0.084338  0.000000 0.000794 0.92
3 3 i 124.00 9 0.099930  0.000000 0.000780 0.90
4 ! 0 800.34 10 0221455 0.001203 0.000941 1.09
4 2 1] 758.03 11 0.051005  0.000000 0.000823 0.95
4 3 2 329.89 12 §¢.162465  0.002646 0.001156 1.33
5 1 0 502.80 13 0101119 0.003041 0.001087 125
5 2 0 404.56 14 0.068280  0.000000 0.000808 0.93
5 3 { 241.93 15 0.170368  0.001666 0.001003 1.16
6 | 0 108.50 16 0.341144  0.000000 0.000571 0.66
6 2 0 80.50 17 0.142031  0.001033 0.000891 1.03
6 3 1 201.80 18  0.057159  0.000000 0.000817 0.94
7 | 0 7.50 19 0.168952  0.000841 0.000863 1.00
7 2 0 69.04 20  0.140068  0.000000 0.000746 0.836
7 3 0 429.30 21 0.080016  0.000000 0.000798 0.92
8 | 0 160.49 22 0.084814  0.000000 0.000794 0.92
8 2 0 279.83

8 3 0 98.10 1.00
9 1 ¢ 173.23

9 2 0 260.17

9 3 ¢ 215.61

10 1 1 518.20

10 2 0 588.10 Predicted Coefficient of Confidence Interval

10 3 1 556.48 B Risk A Frequency Varijation  t-statistic 10.025 Lowerpt  Upperpt
B 1 0 128.54  0.000867 1 -0.000106 0.000761  0.565540  1.768220  1.997138 0.000000  0.001621
11 2 0 98.70 2 -0.000109 0.000758 0566302 1765841 1997138 0.000000  0.001616
1 3 0 86.94 3 0.000265 0.001132 0395768 2526732  1.997138 0.000237  0.002026
12 1 1 453.65 4 0.000047 0.000914 0429760 2326880 1.997138 0.000130  0.001698
12 2 1 364.33 5 0.000001 0000868 0481326 2.077592 1.997138 0.000034  0.001702
12 3 1 31596 6 0000106 0.000973 0460730 2170469  1.997138 0.000078  0.001868
13 1 2 235.85 7 -0.000069  0.000798  0.555441  1.800370  1.99713R 0.000000  0.001683
13 2 0 156.03 8 -0.000073  0.000794 0.556516  1.796894  1.997138 0.000000  0.001676
13 3 0 265.72 9 -0.000087 0.000780 0.560148  1.785244 1997138 0.000000  0.001653
14 t 0 115.30 10 0.000074  0.00094]  0.424785 2354132  1.997138 0.000143  0.001740
14 2 0] 61.51 11 -0.000044 0.000823  0.549078  1.821235 1.997138 0.000000  0.001725
14 3 ] 251.58 12 0.000289 0.001156 0361709  2.764652  1.997138 0.000321  0.001991
15 1 i 37417 13 0000220 0.001087 0.401858 2488444 1997138 0.000215  0.001959
15 2 0 340.99 14 -0.000059  0.000808 0.552879  1.808715 1.997138 0.000000  0.001700
15 3 1 48527 15 0.000136 0.001003 0414397 2.413147 1997138 0.000173  0.001833
16 ! 0 135345 16 -0.000296  0.000571  0.633215  1.579242  1.997138 0.000000 0.001294
16 2 0 111916 17 0.000024  0.000891  0.476477  2.098739  1.997138 0.000043  0.001738
16 3 0 554.17 18 -0.000050 0.000818  0.550419  1.816797 1997138 0.000000  0.001716
17 1 1 278.11 19 -0.000004  0.000863  0.482365  2.073119 1997138 0.000032  0.001694
i7 2 0 432.80 20 -0.000121  0.000746  0.569984  1.754434 1997138 0.000000  0.001594
17 3 0 256.80 21 -0.000069 0.000798  0.555527  1.800093  1.997138 0.000000  0.001683
18 1 0 78.97 22 -0.000074 0.000794 0.556625  1.796541 1.997138 0.000000 0.001676
i8 2 0 165.28

8 3 0 110.14 E(A) = -0.000022

19 1 0 574.94

i9 2 0 416.60

19 3 ! 196.88

20 1 0 485.73

20 2 0 27133

20 3 0 195.10

21 1 0 203.69

21 2 0 21230

21 3 0 92.44

22 1 0 34728

22 2 0 107.19

22 3 0 87.27



