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Abstract 

We present a general methodology for fitting feed-forward neural networks when both 

right censoring and covariate information (claim attribut,es) exist. Right censoring occurs 

when only intermediate, but not. final values of a time-dependent variable (such as claim 

durat.ion) are known for some data points, and final values of the variable are known for 

all other observations. This situation frequentl,v arises in casualt,y insurance when there are 

active claims in an analysis data set. The techniques we develop ate applicable for estimating 

the distribution of claim lifetimes when awards are disbursed over the unknown claim life. 

The neural-network framework allows us to handle complex relationships between the claim 

artributes and claim duration. 

\?Fe will derive a generalization for right-censored data of the hack-propagation method 

used for fitting feed-forward neural networks. A connection between least squares estimation 

and maximum likelihood estimation will bc used to est.ablish the genrralization. A typical 

cross-validation approach to modeling will be described t.o reduce over-fitting. An appli- 

cation of our methods is demonstrated for prcdict.ing the duration of a claim in worker’s 

compensation insurance in the presence of covariates. 
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1 Introduction 

Itt casrta1t.y ittsurattcc. it is comtnott for tlir pitynt~~nts ott it (.laittt to hc dislwwtl over tittw. 

For CSRI~I~IC. in workers’ cotttpettsatiott ittsutxtlw, it claittl is filet1 sotttc titnr itffrr itijur! 

to the worker and payments arc mad<> on thr (.laittt over a period of scvcral years. III this 

setting. tttost data santplrs cotttain c,lailtts that arc still itc.t.ivc~ itud do not ltavc~ cuttlplrh~ 

information Tltrwfow. wltett building mc~lrls to oslitttato rlaitn drtrat.iott. wvc ttwtl to ttw 

terltttiqrtes dcsignrd to handl(~ ittcotttplrtc~ olwrv;rtiotts. 

\jIictt it claittt is opctt at thr titnr of satttpling. tltc5 claim tluratiott is said to bc tight 

cr~lsorcd. Tltc, rlaittt is rigltt c~~lso~~tl bwansr all WC ktto~~ is the final claim drtrat,ion ~swetl~ 

tltr cttrwnt duratiott. From a graphical pwspc-ctivc’. thus right c~ntl of the claitn’s timc~linr has 

bcctt hitltlctl frottt \.icw. FOI cwtttplr. if tltc, (.laittt is opctt for 16 tttottt,hs prior to sampling. 

wr ktto\v that nt clositlg the claittt’s duratiott will c~swctl IF months. 

\\%YI wtitttatittg tltr tlttratiott of it rlainl. it is itttportattt, to cottsidcr the poittt itt the 

claim’s lifr at which uv arc tttaking tit? rstitttatr. For cwttnplc. if we make a prediction on 

tlt~ da!- that a claittt is Icportc>d. WC will br litnit.rd to availablr infortnation. Alternately, if 

our prcdir~tion is tttadr aftrr tltrec tttonths of claim act.ivity. w will have tttore information. 

\Iotlcls sltor~ltl rc\Hcct I 11~s Iwittt itt timr at which data arc available. For csatnplr. WC ntal 

wattt to use tltts total ttwdic~al paid at six motttlts as a pwtlict,or of durat,iott. However, this 

inforntatiotr will not br limwl at thr bcgitttting of a claitn’s lifr. Therefore. this model 

is applic.al~lr only for prrtlirtions at F ntottths duration for claims that cxcced G tnonths 

duration. 

Estitttatitlg claim dltration and the distribution of duratiotts can be useful for a numl)?; 

of rwsons. For cwmplr. thcrc tnay bc a nrcd to make an early assrsstnent of the claim’s 

scvrrit!- I)asctl on all availablr claim information. This bypc of prncrdurr may be useful in 

providing an ittdcs of tltcs claim’s scvcriby rrlat,i\Tr t,o claittt duration. Methods such as these 

provitlP a systematic way of evaluating a large amouttt of claitn inforinatiott in an efficient 

and logical manner. Using a neural network to predicts duration provides a comprcltensiw 

method t.hat uses complet,e hist.orical data t.o develop the predictions of duration. 
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In this paper, wc develop methods t.o model thr rrlationship betwwn claim characteristics 

and the duration of a claim. Thcsc mctttods ttsc a gwtwdization (of the hack-propagation 

algorit.hm to right.-censored data for feed-forward IIIW~;I~ Itcttvorks n;lc,k-I,ro~agatioil is H 

rtttntcrical optimization technique that is con~rnotrly ttwl to rstirrlate :I ucttr~~l network’s 

paramctcrs (oftcu refcrrcd to ti weights iti tttc, twttral n~~tn.ork litr,rature). Fwtl-forwar~l 

refers to the specific order in which each subjec,l’s informatic)tt is prweswl. Tttr terhniqrtcs 

developed hcrc build on ideas prcscnt.cd iI1 (Faraggi L- Simott 19%. T.irstol. .\ttclcrwn Sr 

Anderscn 1991). LVe will gettcralizc tltr neural nctwnt-k. l,a~.k-I~r~~i~aF;ntjol, algot-itltttt to 

right-crnsored data using a Iikelihootl-l)a,~rtl approach. 

1.1 Introduction to Neural Networks 

Figrtrr 1 is a graphic rcpresentatiou of a typical ttrttral network :trc.llitcctttrr. Sttch a 

diagritttt is c~o~t~rnoitl~ rtwd iii lit.wat.urc on ncuriil ttct.aiwks. 111 thr ligluw. t hv How of ittfor- 

mation. or data prowssitt g seqttcwcr. is downward Rcc~a~tsc tltv How is rmly one-way and 

brgins \vith the ittpttt variables; the ttct\vork is satd to bc it l’wtl-fc~rwud network. Eactl circle 

in the Sgttrc is ~allrtl it node. or “processing uuit .” 111 actltalitv. wt(,ll IIO~IV rrpwsrnt,s the 

(Ivaluation of a function. Estimnt,ion of the fttnctional paramrtots I:, c..dlcrl “titting.” Thus. 

each node can hc thought of as a srparatc rcgwssiott. .\lso. c~aclt row of circlrs itt Figure 1 
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Figure 1: Diagram of a Feed-Forward Neural Network 
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is referred to as a “layer.” 

Consider the nonlinear regression 

y = 4 cos(7 + 32) 

For a given value of z, the function 7 + 3x is first evaluated and then the cosine of the 

intermediate value is calculated. In neural network problems. z corresponds to the input 

level, i + 3s refers to the input to the node in t.he hidden layer, and cos(.) is the activation 

function of the hidden layer’s node, and the result of cos(7 + 35) is the output of bhe hidden 

layer’s node. The layer of nodes is said to be “hidden” because it is unavailable to the 

network’s user. The output, of t,he hidden layer is then mult,iplied hy 4 and passed to the 

output layer. The information flow is said to be one-way because a given I value determines 

the value for 7 + 3s which in turn determines the out.put. of the hidden layer and the output 

layer through the model weights. In this setup, there is only one hidden node and the model 

weights are 7, 3, and 4. 
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In the general representation of Figure 1. the top layer of nodes reprpsrnts the input data 

or predictor variables, where each circle signifies one continuous variable3 or one level of a 

cat,egorical variable. The middle layer represents rhe hitlden layer of thr nrt.work. There 

are different projections of the input layer into each circle in the hicldcn layer. .4 projection 

is simply a linear combination of t,he input. variables. Thr output from each uodr of the 

first. hidtlcn layer is typically scaled t,o the unit, interval by an activation function. The final 

bottom layer rrprescnts a single linear combination of the hidden layer and is called the 

prediction or output layer. This diagram drpicts a one hidden-tayclr model. but more hidden 

layers can hr added. 

.4 neural network can model complex relationships between t,he input. and output vari- 

ables. Such relationships include interactions between rnult~iplc input variables and nonlinear 

transformations of input variables. With morr traditional analysis rnc>thods. discovering sub- 

tle interact,ions and transformations may be tirrtc-cortsumitlg and dificult, if not impossible. 

LVith a neural network. thy network architrctllrc, is easily adapted to include suht.le interac- 

tions and transformations. 

Nrural networks can be powclrfrll tools for modeling Clairol (luratioll and costs. To in- 

t,uitiyc‘ly underst,and t.his assertion, assume that the mean of thr olitput variable can be 

ac(.uratPIy approximated by a (possibly vtsry con~ples) ~.r)ul~inllous fllnrtion. Consider Fig- 

ure I with only one hidden layrr and assume t,hr olltput of ra(‘h hidden notl~ is a simple 

continuous function. Wit,h linear combinations of the certain simple cont.inuoua functions, 

the result can be made arbit.rarily complex by utilizing a suf’iiciently large number of hidden 

nodes. This allows the neural network to approximate a wide class of functions. 

Parameters of a feed-forward neural network are often estimated using a technique known 

as thr back-propagat.ion algorithm. The algorithm is an optimization technique and is related 

to the gradient descent algorithm. Some details of thr algolitllm arc presented in section 

2.2. Int,erest.ed readers are referred to (Wasserman 1989) for more details. 
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Example 1.1: Representing Nonlinear Deterministic Functions To demonstrate 

the ability of neural networks t,o capturr nonlinear relationships, we generat,ed data randomly 

frotn the pol~riotnial equat,ioti 

2 = ;Ts - 7 + 1. (1.1) 

\\;e generated values of .I’ from a uniform distribtttiott on the interval [-3: 31 and determined 

i values using equation 1 .l. 

Figure 2 shows the fit to thcw (1at.a of a fcctl-forward neural nc?t.work with one hidden layrt 

and three nodes in t.hr hid&n layer. .\lethotls for spccif!,ing the, form, or architecture. of a 

neural network and for cstitttating its paratttrters will 1)~ describctl in the next, section. This 

example is intended solcl!- to dcnionst rate- that wural twt.works can accurately approximate 

nonlinear wlationships. 

The solid littc in Figllre 2 reprcscnts tllc> ncur;tl ttctnork equation and the superimposed 

scatter plot. wprcscttts thtl trite ~xlucs that ncrc grncratcd. Figure 2 demonstrates thr abilit! 

of the neural nctn’ork to atlapt to nonlinear rrlatiottships with relatively few nodes iu thr 

hidden layer. Thr gcweral mean structuw of tlw tttwral network allows us to represent, a 

polynomial rclatiotthhip without hprcifviug qititdtatic. or twttlittcar tcrtus in our tnodcl. 

2 Neural Networks for Right-Censored Data 

The feed-fotxwtl nrural notwork is a~talogot~s to a togwssiott IIKKIPI IW~~~IISC thaw is a sc% of 

input values. rypically callctl pwtlic.tors itt stabisticxl ttiotl(~ls. iitul i111 output variable. itsiiall.~ 

known as then ~w,lmtsr wriablr. In rcgrcssiotl aualvsis. tlw IIIO~IPI ix 

z, = ,f.Y; + vc,. (2-l; 
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Figure 2: Neural Network (line) and Randomly Generated Values (scatter) versus s 
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F and density function f. The covariate vector, X,, is hypothesized to have an additive 

relationship to the outcome Z, *. 

While properties of such a regression model are well known and parameter estimates are 

straightforward t.o obtain, the model in equation 2.1 is often inappropriate due to model 

misspecificat,ion. The primary misspecification issue is the additivity in the mean structure. 

An alternat.ive t,o the linear model is a mean structure wit.11 a more general formulation. 

In order to employ a neural network model, replace the linear mean structure, P’X,, in 

equation 2.1 with a more general mean function, h(B, X,), as 

z, = h(B, X,) + 06,. (2.2) 

Here, h is an arbitrary function with a univariate response and 8 is a parameter vector 

corresponding to the mean structure being fit. By choosing h properly, we can represent 

many feed-forward network architectures with equat.ion 2.2. We will restrict our attention to 

feed-forward neural networks with a single hidden layer. Our methods generalize to multiple 

hidden layers without much difficulty. 

For a feed-forward neural net,work wit,h one hidden layer, specify 

(2.3) 
j=l 

In this equation, ae,...,on are scalars, pi, . . ..p. are p x 1 vectors. H is the number of 

nodes in the hidden layer, f is known as the activation function of the ouput layer, sJ(.l 

are known as the activation functions for the hidden layer, and 6’ = {cre, . . ..cyH.@;, . . . . flH}’ 

is the vector of all parameters in the neural network. For the work prcscnted in this paper. 

f(r) = z is assumed to be the identity function and s,(z) = = sH(z) are al1 assumed 

to be equal. Using the same activation functions for sl, . . . . sH is common in most neural 

network literature, but this is not necessary. Some commonly chosen activation functions 

are linear (s(z) = az+ b) and logistic (s(z) = [l +exp(-x)1-‘). The reader should note that 

‘With the formulation of equation 2.1, interactions between and transformations of the input variables 

are represented as additional covariates. 
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this model is a special case of projection pursuit regression which is described in (Hubrr 

1985). 

If all of the activation functions in t,he hidden layer s,, .,,. sH are set to the identity 

function, this procedure is equivalent to tradit.ional regression analysis. In this setting, 

many of the parameters in the neural network will not be identifiable. but the equation can 

be reduced to ident.ifiable e1ement.s that arc equivalent to regression parameters. 

The neural network’s ability to represent complex relationships between the input values 

and t,hr output value is derived through t.hc act,ivat,ion functions. By taking linear combi- 

nations of simple nonlinear functions. it is possible to represent complex rl~lationships. By 

coupling t.his ability with mult.iplr projections (linear comhinat.ion+,) uf the input. variables 

onto the hidden layer, the nonlinear relationships mtl int.cract.ions can be represented by the 

network structure. 

Using Equation 2.2, we can develop a likelihood equation for the data when a form is 

specified for the error distribution, F. In t.he next section, wc will use this formulation t.o 

generalize the hack-propagation algorithm to accommodate’ right-censored data. 

2.1 Parametric Estimation 

Let T,, . . ..T., represent a random sample of claim durations allcl let 0,. 0, represent the 

associated injury dates for the claims. Define the sampling date u So. The associated fixed 

censoring times for each claim are C, = So - 0,. [Ve observe 1; = min(T,. C,). If a claim 

is open, I: = C,, otherwise, 1: = T,. Censoring is rcprcsrntcd t)y an lnrlicator variable 

6, = I(}< = T,). If 6, = 1 the claim is uncensored and if 6, = 0. the claim is censored. Let 

X, = (d%‘Lz, . . . . S,,)’ represent the p x 1 vector of rovariatrs. 01 claim attributes, for the ilh 

individual. 

Censored regression techniques are developed under the assumption that T, is indepen- 

dent of C$ conditional on X,. We consider C, t,o be a fixed censoring timr since our samples 

are collected at a fixed point, in time. When the rcnsoring variahlc is considered fixed. but 

each individual’s censoring time can be different. t.hen the censoring is often referred to as 
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Figure 3: Diagram of Sample Worker’s Compensation Claims 

Sampling 
Date 

Year 

generalized Type I censoring. The independence assumption is satisfied when T, is indepen- 

dent of 0, conditional on X,. This assumption implies that any association the durat.ion of 

claim has with injury date is explained by t.he covariat.es. 

Consider the following situation to illustrate the notation. Suppose we sample on a par- 

ticular day, say .January 31, 1995. In our notation, January 31, 1995 minus the injury date, is 

the censoring time. Since each claim has a different injury date, they have different censoring 

times. The situation is depicted for five sample claims in Figure 3. In Figure 3, claims 2, 

3, and 4 arc uncensored, while claims 1 and 5 are censored. We have partial information 

on the censored claims and would have technical difficulties accurately calculating the mean 

duration of a claim without incorporating censored dat,a analysis techniques. 

Let 0 = (0’. u) be the complete vector of model parameters. In equation 2.2, let Z, = 

log(T,) and e, = (Z,-h(0, Xi))/a. If e has a standard normal distribution, then the likelihood 

of the data is 

With maximum likelihood estimation, estimates of members of the parameter vector, 8, will 
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2.2 Numerical Estimation Procedures 

Ilininiizatioll of rquation 2.4 can be perforlnrd with x variety of algorithms. We propose the 

I,ac,k-l)rol)agatiol~ algorithm herause it. has provc~~ sllcccssful for fittin, 0 ncllral network mean 
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structures. Unfortunately, since C(O) is not differentiable with respect to 0 at o = 0, the 

algorithm does not perform adequately for estimating 0. Therefore, we employ a two-step 

estimation approach with 0 being estimated using back-propagation and 0 being estimated 

using maximum likelihood. 

The back-propagation algorithm is related to the gradient-descent algorithm and can to 

found in its general form in many neural network textbooks (see for example (Hecht-Nielsen 

1990)). The algorithm minimizes C(B) with respect to the parameter .9 while considering 

(T to be fixed. Unlike traditional optimization routines, estimates are typically updated one 

observation at a time. The model parameters are updated for the ith observation and the 

pth iteration by the following updating mechanism: 

where 

4,7l(,-1) = kl+n(p-1) + M-1+7+-l), (2.8) 

Aei-l+n(p-l) = XVoC,(B~-l+n(p-l),~), 

X is known as the learning rate, and C,() represents the iLh term in the summation of equation 

2.1, and V&,() is the partial derivative of C,() with respect to 19. The reader should note 

that the parameter estimates (network weights) are updated at each observation. Typical 

values for X range from 0.0001 to 0.1 and are typically chosen by trial and error methods. 

This defines the basic version of the back-propagation algorithm. Many modifications 

for adjusting the learning rate, A, for estimating the parameters have been proposed. The 

learning rate is typically decreased if there is an increase in the cost function through one 

pass of t,he data. For more details on this algorithm see (Wasserman 1989). 

We assume that u is fixed through each pass of the data. After each pass through the 

data, 0 is re-estimated using maximum-likelihood techniques treating 0 as fixed. Considering 

19 to be fixed, we estimate 0 by using t.he Newton-Raphson algorithm 

gj+1 = UJ - [v~c(e,u,)]-‘v,c(e,~~,). (2.9) 

This procedure can be initialized by choosing 00 to be the previous value of 0 or by using 
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where 19 represents the most, recent value for the 8 paramet,ers. The reader should note that 

choosing a good initial value for (T is crucial for t.hr stability of our algorit.hm 3 

3 Example of a Neural Network With Simulated Data 

In this se&on an example with simulated tlat,a is wt~l to dcmonstratr t 1~ prcdict.ion potential 

of neural n&works. In this rxample, simulat.rd (Iata WIG IIW(I so w c~o111tl r~const.lru(‘t the 

true values that, would be censored in a real data set. This pxamplr \vill provide somp 

indication of the accuracy of our proposed methods for prrdiction. 

For this example, we randomly generated data fkm R nlodcl lvitll tr111’ valurs distributed 

as 

7, = rxp(.rf + o.r, * F,,). 

and censoring valucls distributed as 

C, = exp(0.25 + of + 0.5 * fzL). 

where fir and ~2, are deviates from a standard normal distribution and S, is a uniform 

random deviate on t.he interval (-3.3). Wc consider t.ht> minimum of t,hcsc two quantities, 

Y, = min(T,. C,), to be the observation when censoring is prcsellt. 

Both T, and C, follow log-normal diatribut.ions c~orl(lir iotlal 011 .Y, To WC’ this. note t,hat 

wherr 

log(T,) = Sf + E,, and 

log(C*) = A-;’ + f.‘t. 

Cl, - N(O.O.‘25) and 

f2r - ,V(O.25,0.25). 

3Tl~~: Newton-Raphson procedure still contains derivativrs of C’(e) with wspect tu O. Therefore, it will 

experience similar problems near o = 0. We IMVC found that with a good starting value, this problem is 

mirlirrlizA and t!le nbo~ algorithm is reasonably stal&:. 
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Thus. condItIona on X,, 

log(T,) w N(X:,0.25) and 

biCJ - N(Xf + 0.25,0.25). 

We generated 1000 observations and achieved approximately 35% censoring. This level of 

censoring is moderately heavy. We fit this data with the algorithms described in section 

2.2. The architecture employed was a five-node, feed-forward neural network with a single 

hidden layer and normally distribut.ed error t,erms. This network can be described with the 

following model equation. 

log(T) = cyo + & CZ,S(/~~~ + &X) + UC. 
,=t 

In this equation s(u) = [l + ezp(-u)]- ’ is the logistic function, and epsilon has a standard 

normal distribution. 

Our data set of 1000 observations was split randomly into two parts with approximately 

75%, in the t,raining set and 25% in the testing set. The data in the training set were used 

t,o fit. or “t,raiu” the network. The data in the test set were used to assess or “test” the 

network’s predictive abilities. Historically, the 75/25 split has been found to be adequate 

in most circumstances and is the common choice for training networks, but. this choice is 

somcwhat arbitrary. 

The graph in Figure 4 shows values for the cost equation 2.4 plotted against p from 

equation 2.8 for rhe t,raining set and the testing set. The algorithm described by equations 

2.8 and 2.9 was applied to the training set only. In this graph the dashed lines (- - - -) 

rrprcnrnt the loss function calculated on the testing set and the solid line (---) represents 

thr cost functiou calculated on rhe training set. Convergence was considered obtained when 

thr besting set.‘s cost function failed to decrease for 40 consecutive iterations. The point 

at uhich thr t.esting set’s cost function stopped decreasing was considered the convergence 

point.. This approach guards against. the dangers of over fitting that can occur in over- 

paramet,erized models. 

.4ftcr t.hc mural network model was fit, we reconstructed the log predictions and plotted 

them against, the log of the true observations log(T,) for the test set. Figure 5 shows a plot of 
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the estimated relationship between 5 and E(log(T)j ) ( h 5 s own by the solid line) superimposed 

on a scatter plot of the log of the true values, T,. With this comparison, we demonstrate ttz 

ability of neural networks to produce accurate predictions of true values even with censoring. 

4 Application of Neural Networks to Workers’ Com- 

pensation Data 

In this section we apply the methods outlined in this paper to a single state insurance carrier. 

Our data set consisted of all claims that opened after December 31, 1987. The data were 

sampled in June of 1997 and all claims that were open at that time are considered to be 

right censored. We construct a predict,ion model for estimating the duration on an individual 

claim with data containing right-censored observations. 

Our predict.ion model uses several covariates that are typically available early on in a 

claim’s life so t.hat our models will be valid from the beginning of a claim. The characteristit.s 

used for the model are accident code, gender, weekly wage, zip code, injury type, class rode, 

body part. nature of injury, and age at the time of injury. Accident code, injury type, c1a.s~ 

code, body part, and nature of injury variables are encoded using the National Council on 

Compensation Insurance (NCCI) standards. 

The duration of a claim is considered to be the duration since the claim was reported 

to the insurance carrier. Only claims with indemnity payments were used in modeling 

and claims with permanent tot.al disabilities were excluded since they typically last until a 

claimant is deceased. The assumptions on the distribution of the error term and censoring 

mechanism are defined in section 2.1. 

Figure 6 demonstrates the ratio of the neural network model prediction t.o the achat du- 

ration against the actual duration in days. The axes are displayed in log-base 10 increments. 

For open cases, the duration t,o date was used in the plot. If all predictions are perfect. thp 

cloud of points would lie directly on the line “l/l.” Typically. the model under-predicts long 

duration claims and over-predicts short duration claims. The plot demonstrates that most 
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predicted durations are reasonably close to the actual duration. 

5 Conclusions 

This paper presented a generalization of a commonly used algorithm for neural networks 

using a likelihood-based approach. A connection between this algorithm and the typical least 

squares approach to estimation was demonstrated. We showed that. our algorithm could make 

accurat.e predictions in the presence of right-censored data. The example with the simulated 

data demonstrat.ed the ability of neural networks to identify nonlinear relationships even in 

the presence of right censoring. The example from workers’ compensation insurance showed 

how this method can be applied to estimating duration in the presence of many covariates. 

The ideas presented in this paper are general in nature and there are many other applica- 

tions that could benefit from these techniques. We merely scratched the surface of possitle 

applications. Neural net,works have proven very useful in modeling complex situations. By 

adding a generalization to handle the problem of right censoring, this ponrrful technique 

can be applied to a new range of actuarial problems. 
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Figure G: Error ratio plot. (prediction)/(actual duration) versus actual duration 
Prediction Error Ratio Plot 
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