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Abstract

Feading actuarial companies employ stochiastie simulition models o evaluate the viability of
pension plans and msurance compianies ever aset of projected seenartos, A eriteal element
mvohves seneratime Tutare seenarios. We show that the problem ol cahbratng i stochastic
SCCIEIO SYatem can be posed as acspecial optinnzanion moded, and ilhastrate the process by means
af the Towers Perrm = Tillinghast CAP:Link systeny, We briefly discuss solution algorithms for
the resulting non-conmvex problem. Areus Tor future rescarch are indicated.
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L. Introduction to Integrated Financial Risk Management

Over the past several years, mnovative imsurance companies have begun building integrated
financial risk managerent systems. These efforts aim to evaluate the company’s activities within
a common Iramework. The goal is to maximize sharcholder wealth by focusing on the overall
risha and rewards to the organization as measured in several wavs. Ideally, the major areas
affecting the company s results should be integrated: asset allocation. business management.,
corporate structure, and re-insurance. Doing <o provides the best opportunity to achieve the
company’s goals over tine,

For some insurance businesses, the nportance of Jinking asset and liability risks is well
understood. An exanmple s anannuity whose payoff 1s set ata proportion of the TS S&PS00
stock return above a set index. It would be foolhardy to invest the assets for this business without
understanding the risks of mismatching assets and habilities. Given recent performance, it1s a
simple matter to assign assets that exactly match the product’s payoff patterns, through options or
futures contracts, or funding reserves by dynamically purchasing or selling the stock. Asset and
lability management for this type of insuranee is a cleay and obvious concern. FFor all insurance
compintes, there s need to manage the assels and labilities so that surplus will grow at a rapid
pace, as compared with maintaining the surplus at a constant or slowly growing trajectory. In
addition, shareholders will seek out insurance companies that grow rapidly and possess
diversification benefits.

A dynamic financial analysis (DFA} system consists of three major elements: a stochastic
scenario generator. a multi-period simulator, and an optimization module (Figure 1). The first two
elements form the corporate simulation system; these are deployed before the optimization
module searches for the best compromise decisions given the relevant business, poliey, and
regulatory constraints, In effect. the optimization runs the simulation by identitymg the
combination of decisions that best fits the proposed objective function over the multi-period
planning horizon.

A critical issue mvolves constructing the economic scenarios. Each scenario depicts a single
coherent path for the primary uncertainties, such as interest rates, inflation, and business activity.
Typically, the scenarios are generated by sampling tfrom a system of stochastic differential or
difference equations. As a simple example, we could gencrate short government interest rides by
means of it mean reverting equalion:

dry = af{r,-r)dt + o 7 by

where  dZ = Wicner white noise term
o= nterest rales at tme

Here. the equation shows that the change in interest rates at time t depend upon three factors — the
distance to the target reversion parameter (ry), the drft parameter (1), und the instantaneons
volatility (@), Thus, there are three parameters associated with equation (1.1). These parumeters
dictate the chuaracteristics ot the sumple P:Ilh\l. The calibration process determines the uppropnate
vilues Tor these purameters. We call the approach - integrated parameter estimation (1PE). The
basics are taken up in the next section.

| ) . . . . .

Three sourees of ervars must be considered in o DIFA system: model error, calibration error, and sampling
error, We are solely concerned with the second source in this paper. Sec Mulvey and Madsen (199%) for a
further discussion of addressing errors in DFA systems.
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Components of DFA Technology

2. An Optimal Fitting Modecl for Calibration

This section deseribes the calibration of the scenario generator ax a spectal optimization model.
The primary concept is to match summary statistics and other idicators such as inter-quartile
ranges and quantiles as closely as possible, while defining the model parameters as decision
vartables in the optimization model. The approach dircetly traces to traditional fitting models.
including maximum likelihood, method of moments, and simulated moment esumation. As with
these approaches, the model parameters are determined by reference to specalized optimal fiting
problems.

Judgement is necessiry when determining the parameters of a stochastic model. Fixing
parameters is cquivalent to setting assumptions. Ideally, we would test the impact of various
settings of the parameters on the model™s recomimendations as shown in Figure 2.

| N .

| Assumption ' Risk and Reward . Decision

o Makmg

Setting . Analysis

Figure 2: The Three Stages for Conducting a DFA

The process entails combining teedback and revision in order to become comfortable with
the recommendations.
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2.1 The Estimation Problem

This section reviews the generalized method of mements (GMM) of Tlansen €1982) and the
simulated moments estimation (SME) of Duftic and Singleton 1993). The notation follows
Duffie and Singleton (1993).

Consider a funcuon H: ¥ 2 2" x G — &7 with pariuneter set © < % Also
X . . N Y .
consider an observation function f18 7 %@ = & A SCURUTiO process {Y, } 18 generated

hy the difference cquation

Vo= HiY e ) (2.1

where the parameter vector 3, 1s to he estimated. and {E‘l} i< an 11.d. sequence of random
variables defimed ona given probability space. Let Z =Y. ¥ .Y ) defining the state of
the process over time. Iistmation of i, is based on the statisties of the observed process

/. = [(Z . BY. For example. we might be interested in the means and standard deviations of the

asset returns,

2.1.1 Generalized Method of Moments

Deline [ € © to be an arbitrary purameter setung. When [ [+ I;{_/ Uz, [3)] is anatyticatly
known and time independent. the estimation of f; can be done with the generalized method of

moments (GMM). For these cases, the estimator is:
by =arg min GMM (Y W (Bicas, () 2.2
ooy

&
whoere f, = (U2 By, GMM,(f3) = 72/ - /:'[ . )]_ W, (3} 15 a0 a1 = 7 positive-
i

definite synmetric weighung matrix., and T is the actual number of vbservations on /7 In
words, the vector b, is the solution” to the minmuzation model defined by the least square GMM
function. Hansen (19825 shows that the above minmmization produces the estimator with the

|
smallest asymptotic covariance matrix it Wt ) = [E[(;_\i,\/, (franar; (/3)” .

2.1.2 Simulated Moments Estimator

For wider classes of problems where the GMM assumptions faill the mapping

f:p— [:'[ VAN )} may be replaced by its simulited version. We assume asequenee | € ) of

T The wey nun notaton reters o the solution of the posed optimzation modet.



. of )
random vartables with s distnbution identica] to and independent o '[Fr} - The simulated state

S and etting
=Y E By =120 12.3)

Ihe simulated observations (umnuary statisties) are defined as £ = (2P gy ar {/} and

[ -
! } are governed by the liw of Lrge numbers, and dentitication conditions «Duftie and

Smgleton (199350 gre met then, T SME, (fr= 0 =[5,

[yl . .
provess (B occurs by choosing astarting poimt

he SME estnitor s,

fo=are min sME, CBVWL s, o) (2.4

|
where SvEL (S = I'Z /

1 The Ayovectoras the solution o the equation €241 Prools of consistency (strong and weak) and
asyimprotie normadiny are given i Duttie and Singleton (19931 Additional discussions ot
pacameter estimation through semulation can be found m Hansen and Simgleton (1982), Pakes and
Palland 1 T9x0i Mcbadden 1989 Grrezorny and Smith (19901 and Lee and Tngram (19915

I z £ oand TEF s the simelation sample size fora aiven
T

2.2 Integrated Parameter Estimation

Fhe mtegrated parameter estimation (QPE) approach extends simulated moments estingtion i
twenwas s Frestothe targer vector includes aovariety of descriptive statistics besides moments, tor
example. serial correlution. distribution percentiles. and range estimates Lee and Ingram (1991
allow Tor serial correlatron m the ditae setcbut they requite thae the crterton function be
centinuons m the mean. e centrist IPE does ot require a continuous objective Tunction:

seneralb innctian er even process can be emplosed. Second. v place hounds on the values of
selevted parimeters. These constramts assist i the search for the best solution

Given i vecton of paramctens oS as deasion variables the IPE eaiinutor solves the followimg
optimization moeded

boooare min GsME YW hasar o (

Lo

)
=

ie'

<pef

where asae offy cmod” = 8 omicer s the IPE objective Tunction. S denotes the model
statistics, /7 denotes the tugetstatistios. Sand [ e bounds on the parameter vector fiand

oindexes the pertiment statistios. When the abjective function equals o distance metrie, the

set'Fncludes only moments.and the Teasible region is uncenstianed. IPE is equivalent to SME.

I the werehtmyg maris W davomal then 2.5 reduces o are min Z\\ l""l _y II where

L e

Wooare the diagenal elements.,
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The IPE approach fits simulated samples from the stochastic model to a given set of descriptive
statistics. Each of these descriptive statistics serves as a target, and deviations from the targets are
expressed as constraints in (2.5) with tolerances L, and U, The feasible region 1s determined by a
user specified tolerance level, the maximum allowable difference between u given summary
statistic and its target. One can also penalize constraints, rather thun keeping them explicit.
Suitable penalty functions include absolute value and quadratic functions which penalizes
underage differently than overage. and asymmetric risk measure. The penalty function relatives
must account for differences in scale s well as serving us importance factors. See Mulvey,
Roscnbaamy, and Shetty (1996) Tor further discussion. and Berger and Madsen (1999) for a simtlar
approach.

The actual parameter setting process combines the actuary’s judgement with the computationl
ahility of the TPE calibration tool. Typically, several tterations are required in order to find the
most desired combination of penallies and constraints to meet the target goals (equation 2.5).

3. Dealing with Non-Convexity

The solution of the calibration model is complicated by the presence of non-convexities. At its
simplest. non-convexity causes standard hill elimbing algorithms to stall at local optimal points.
Thereby, software systems such as Microsoft's Excel solver may not find the global optimal
solution. Figure 3 shows an example of numerous locul optimal solutions.

The scarch procedure must extend itself in order to cope with non-convexities. To do this, we
employ the Tabu scarch method. one of the most successtul methods for overcoming these
difficultics. The approach depends upon several memory functions that guide the search and pass
through tocul optimal points as needed. Both long-term and short-term memory are employed.

Tabu search has proven effective lor solving combinatorial optimization problems; see Glover
1990 and 1995 The procedure provides for an efficient search of a feasibility region by
monitoring key attributes of the points that comprise the search history. Potential search iterates
possessing attributes that are undesirable with respect o those already visited become tabu;
appropriate penaltics discourage the search from visiting them.

Consider a general non-convex optimization problem of the form: minimize, f(x), x € X. (The
function fix) indicates the responses of a system to a given strategy or decision vector x.) For
deterministic problems, there is a single response associated with any x. Our adaptation ol tabu
scarch hus three basic clements:

1) ufunction g(x) = f(x) + d(x) + t(x). The function d(x) penalizes x for infeasibility. The
function t(x) penalizes x for being labeled tabu.
the current iterate X.. and
a neighborhood of the current point N.. The procedure generates i new iterate Xg. by
selecting the element of N, for which g(x) 15 smallest.

The tabu restrictions represented in t(x), can address short-, intermediate-, and long-term
components of the search history. Short-term monitoring is designed to prevent the scarch from
returning Lo recently visited points, allowing the procedure to “climb out of valleys™ associated
with local minima. Short-term monitoring can also serve as a rudimentary diversification vehicle.
Intermediate- and long-term monitoring techniques provide for a much more effective
diversification of search over the feasible region. The t(x) function in our version of tabu search
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relies on exploitation of short-term search history. Details of three processes are required to
define our adaptation: formation of the neighborhood of the current point, assignment of tabu
penalties. and termination of scarch procedure. Sce Glover, Mulvey, and Hoyland (1993).
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Figure 3
A Non-convex Region with Numerous Local Solutions

4. Calibration Example

The Towers Perrin — Tillinghast company employs the CAP:Link/OPT:Link system for helping
pension plan and insurance clients understand the risks and opportunities related to capital market
investments. The scenarios generated by CAP:Link contain key economic variables such as price
and wage inflation, interest rates for twelve maturities (real and nominal). stock dividend yields
and growth rates, and currency exchange rates through each year for a period of up 1o 20 years.
We model returns on asset classes and liability projections consistent with the underlying
cconomic factors, especially interest rates and inflation. The economic variables are
simultancously determined for multiple economies within a common global framework. Long-
term asset and liability management is the primary application.

The global CAP:Link system forms a linked network of single country modules. The three major
cconomic powers — the United States, Germany, and Japan -- occupy a central role, with the
remaining countries designated as home or other countries. We assume that the other countries
are affected by, but do not impact the economies of the three major countries. The busic
stochasue differential equations are identical in cach country, although the parameters reflect
unique characteristics of cach particular economy. Additional countries cun be readily included in
the framework by increasing the number of other countries.
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Figure 4: The cascade CAP:Link structure within a single country. Each country in Global
CAP:Link depicts a common heritage.

Within cach country. the basic economic structure is illustrated in Figure 4. Variables at the top of
the structure influence those below, but not vice-versa. This approach eases the task of calibrating
the model’s parameters. The ordering does not reflect causality between economic variables, bul
rather captures significant co-mavements. Linkages across countries occur at vurious levels of the
model -- for example, interest rates and stock returns. These connections are discussed in Mulvey
and Thorlacius (1998). Roughly, the economic conditions in a single country are more or less
affected by those of its neighboring countries and by its trading partners. The degree of
interaction depends upon the country under review.

The structure is based on a cascade format. Modules above and egual to that module can atfect
cach sub-module within the system. Briefly. the first level consists of short and long interest
rates, and price inffaton. Interest rates are a key attribute in modeling asset returns and especially
in coordinating the linkages between asset returns and labihity investments. To culculate a
pension plan or an insurance company's surplus, we must be able to discount the projected
liability cash flows at a discount rate that 15 consistent with bond returns, under each scenario.
Also, since dynamic refationships are essential in risk analysis, the interest rate modef forms a
critical vlement.

The second level entails real yields, currency exchange rates and wage inflatton. At the third
tevel. we focus on the components of equity returns: dividend yields and dividend growth.
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Returns for the remaining asset classes form the next fevel. with fixed income assets reflecting the
term structure ot interest rates and other mechanisms, Each cconomic vartable is projected by
means of o stochastic differental equation -- relating the variable through tme and with the
stochastic elements of the equation and. of course. to other varbles and factors at the same or
higher levels in the cascade.

A cntical feature for a global scenano generator is the currency model. Several complicating
issties arise when modeling currency exchange rates. First. currencies must enforee the arbitrage
free candimion among spot exchange rates and among forward rates with differential interest rates,
The second tssue myvolves symmetry and numeraire independence: we must create a structure in
which the distribution of currency returns from country A to B has the same distribution as
returns from B to A. Both issues limit the form of the currency exchange models. especially when
integrating three or more currencics. To avoud these problems, we focus on the strength of cach
country’s currency . Exchange rates follow as the ratio between the strengths of any twa countries.
The absolute streneth of any currencey is a notional concept: the relative tevels reflect the
difterence inthe exchange rates. See Mulvey and Thorkicius (19983 for further detals.

4.1 Example of Calibrating a Scenario Generator with both Assets and Liabilities

We now present an example of calibrating a DFA model that includes both asset and liabilities. In
thix example, we calibrate the CAP:Link model to produce lability growth, as well as asset
retarns. We then use the OPT:Link system to find a set of efficient portfolios for a hypothetical
property/casualty insurer. These efficient porttolios comprise the asset-liability efticient trontier
(ALEF"™ for the DFA. The IPE approach forms the hasis for the automatic calibration tool.

4.1.1 Form of the Liability Model

For thix example. we are interested in modeling a line of msurance that relates to medical and
legal mitation. Liability inflation is modeled us a tunction of its value in the prior period, price
intlavon, and random volaulity. The user inputs consist of an initial rate of inflation, and an
assumption of future inflation. The model has two additional calibration parameters: a parameter
that determines the sensitivity to modeled price inflavon. and a parameter that determines the
amount of random volatility. These two parameters will be calibrated in conjunction with the
standard CAP:Link parameters. The Lituee optimization solver carries out the non-convex
seareh.

4.1.2 The Calibration Process
We propuose four steps for conducting a calibration exercise as shown below. It is advisable to get

actuaries and users involved in the process al an early stage so that everyone understands the
issues and is comfortable with the resulting model parameters.
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Step 1t Analyze Historical Data

The first step to any calibration process should start with historical data. We analyzed historical
data to determine the characteristics of the index. For Medical CPL we took data covering the
1947-1998 period. The historical data on Legal Services CPIis much shorter, covering the period
from 1986-1998.

Step 2: Set Targets

From our analysis of historical data we determined the following targets:

Medical CPI Lepal Services CP1
Standard deviation 1.9-2.2% 038 - 1.0%
Correlation to CPI 0.6-.0.7 1 0.45-0.55
Average spread over CPI 0.9 0.7

We express the targets as ranges. These targets depict a blend of historical experience and
forward-fooking analysis. First, we start with the ranges that are consistent with historical
experience. Then we udjust for historical trends. For example. for the last 11 vears medical CPI
has outpaced CPI by 2.3% . Cun we reasonably expect this trend to continue? Over a long-term
horizon, we might expect the growth in medical costs to be closer to CPI. This issue must be
solved by the model developers so that proper targets can he set

inftation

—cp
Al MescP
HERRITEE

Figure 5
Historical Data for Target Inflation Series
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Step 3: Use the Calibration Tool

The calibrution system solves the IPE optimization model presented in section 2.2 (equation 2.5).
We set up the calibrution tool to run 100 scenarios per iteration. We have found through
experience that 100 scenanos is a small enough number to run quickly, yet 100 scenarios produce
a large enough sample to be representative of the 500 or 1,000 simulations we typically run. We
have also discovered through experience that it is best to base cahibrations on pure normative
conditions. Calibrating to normative conditions removes the effect of trends, as initial conditions
move toward their normative states. Depending on the differences between initial and normative
conditions, these trends may be significant. If the trends are significant. then they may prevent the
calibration tool from being able to meet the targets. Since the targets are set by essentially
“normalizing” history. it 15 best to base calibrations on a normalized environment.

Step 4: Review Model Output

The final step is to take the optimum set of calibration parameters and use them to generate a 500-
scenario CAP:Link projection. In this projection we have started with initial conditions so that
we can evaluate the effect of the trends. Now we are able to fully evaluate the effect of initial
conditions on the optimized parameters. These results must be fully reviewed by an experienced
asset simulation expert to determine the reasonableness of the results, In the end, any calibration
15 only ax good s the credibility of the results.

4.2 Linking Assets and Liabilitics in DFA Simulations

Next, we consider a hypothetical insurance line of automobile policies. We assume that these
liabilities are driven by an equally weighted combination of medicat inflation and legal services
inflation. Using a starting liability value of $80 million, combined with the stochastic lability
growth rates. we can project future liabilities. The mitial asset value of S100 million can hikewise
be combined with the stochastic asset growth rates to project future asset values. For our analysis,
we focus on the difference between the assets and habilities — dollar surplus. The simulation
renders investment and business decisions each month over the 10 yvear horizon.

4.2.1 Generating the Asset/Liability Efficient Frontier

We can use an asset/lability optimizer to generate an efficient frontier. The efficient frontier tells
us the combination of assets that produce portfolios with the highest expected reward for a given
Jevel of risk at the end of the multi-period horizon. In this case, we have defined reward to be
ending dollar surplus and risk to be the standard deviation of dollar surplus. To generate the
surplus efficient frontier requires a proper multi-period DFA system. These results show the
benefits of calibrating the assets and liabilities to a common set of econormnic factors.
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4.2.2 Asset Classes and Constraints

For our analysis we have included the following asset ciasses and constraints. The DFA model
resets the asset proportions to these value at each time step. Rebalancing the portfolio is

conducted by following a fixed mix decision rule.

Asset class Min % Max % Current Portfolio %
Cash 0 100 5

US Large Cap Equity | 0 100 20

Bond Index 0 100 75
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Figure 7

5.0 Concluding Remarks

This paper described a systematic method for calibrating a stochastic scenario generator for DFA
based on an optimal fitting problem over a set of sampled scenarios. As shown by the example,
the resulting calibration tool can be solved by Tabu search and related meta-heuristic approaches.
Assels and labilities should be calibrated together since there are underlying driving factors that
aftect the company’s surplus. To properly calculate risk, we must consider both sides of the
batiance sheet within a DFA system. The integrated parameter estimation provides a practical
method tor solving this problem.

Two lines of research merit attention. The first requires the development of better ways to address
the non-convex optimization model. We are currently investigating an adaptive algorithm that
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takes into consideration sampling errors. The goal is to solve the optimization model with the
greatest degree of confidence and the least amount of siampling error. The second avenue for
rescireh is 1o extend the procedure to the selection of the forecasting model structure itself.
Certiin weli-defined structural changes could possibly improve greatly our ability to generate
scenarios exhibiting the desired behavior. Here, we are taking up the difficult issue of moded
structure error.

Notwithstanding these issues, we have shown that employing an optimization model for
calibration ix a practical procedure. We have iHustrated the approach on a forecasting model for
financial planning -- CAP:Link. We believe the approach holds promise for forecasting systems
i other plinning domains.
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