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PARAMETERIZING INTEREST RATE MODELS

ABSTRACT

Actuarics arc now being called upon 10 incorporate interest rate models in a varicty of
applications. including dynamic financial analysis (DFA). ratcmaking, and valuation. Although
therc arc many articles and texts on interest rate modcels. most of these presume an understanding
of financial tcrminology and mathematical techniques that makes it difficult to begin to lcarn this
material. This paper provides an overvicw, at a level aimed at actuarics, of some common
interest rate models used by financial economists. The purpose of this paper 1s to explain the
basics of interest rate modeling by demonstrating the different models both graphically and
cmpirically. and by showing how changing the various model parameters affccts the results.
Scveral of the more popular interest rate models are simulated, and the results arc compared with

historical interest rate movements.



Introduction

The volatility of interest rates has become an important feature of the modern financial
cnvironment. Changes i interest rates can impact the way 1in which companics compete and can
cven impact the ultimate survival of the firm. Financial intermediarics. such as banks and
msurance companics, may be cspecially exposed to interest rate fluctuations because both their
asscts and habiliues are corrclated with mterest rate movements.  Mismatches of interest rate
scnsitivitics (or durations) of asscts and habilitics can have a magnificd cffect on surplus. A
popular cxample of the potential vulnerability of financial intcrmedianics is based on the
experience of the savings and loan industry in the 1980s.  Rapidly increasing interest rates
quickly turned profits into bitlions of dollars of losscs and numcrous insolvencies. The assets of
S&Ls were prnimarily long-term, fixed-raic mortgages. their Labilitics were mostly short-lerm
demand deposits. When the interest rates paid on thosc short-term deposits increased. the normal
differential between the interest rate they were receiving on their asscts and that which they were
paying on their liabilitics disappeared or cven reversed.  Given such potential effects of interest
rate volatihity, it has become 1mportant to develop models of nterest rate changes so that risk
management tools can be used to insulate the firm from (inancial disaster.

Traditionally. insurance companics have not incorporated interest rate models nto the
product development and pricing processes  Pricing actuarics typically used “"conservative.”
fixed interest rates when developing products. By crediting policyholders with a low interest rate.
or ignoring investnent income when sciting propenty -liability mnsurance rates, insurcers had some
assurance that they could ulumately carn the assumed rate of return used in pricing. Aoy excess
nterest carmings scrved as a cushion to protect surplus against adverse expenience, as well as
being a source of insurcr profits.

The assumption of fixed interest rales was an acceptable practice during periods when
interest rates were low and relatively stable. In fact, such an environment existed in the U.S. mio

the 1970s.  The fixed interest ratc assumption uscd by most insurers scemed 1nnocuous.



Howesver, in 1979, the U S. Federal Reserve altered its policy from one that targeted interest rates
1o a policy that now targets inflation via the money supply. As a result, interest rates became
significantly morc volatile. Durning the transition of the carly 1980s, intcrest rates spiked upward
to unprecedented levels. It was clear that the interest rate environment had shifted dramatically

The change in the Fed policy affecied insurers in several ways.  First, the underlying
value of nsurance products changed duc to the change in intcrest rate volatility. Insurance
products typically include embedded options that give specific rights to policyholder and, 1n some
cases, to the insurer. An example of these oplions is the right to renew the policy on terms set at
the beginning of the coverage period. The valuc of these embedded options is highly sensitive to
the underlying interest rate assumption and, more importantly, to the volatlity of future nterest
rates.  Insurers that used a fixed interest rate assumption ignored the interest-sensitive option
values in their policics

It has long been recogmized that life insurers are exposed to interest rate nisk. The life
msurance industry experienced heavy disintermediation when interest rates increased in the
1980s. Before the rapid increasc in ratcs, life insurers belicved that high interest rate scenarios
were in their favor because they implicd additional income  However, they failed to understand
the risks in their Habilitics. The pohicy Joan feature of ordinary life insurance policies capped the
interest rate that could be charged to the policyholder.  Once interest rates exceeded that cap,
policyholders were able to borrow at the policy loan rate, and then turn around and invest the
procceds at higher vields. The result was an outflow of cash from the life insurance industry that
causcd many insurers to sell bonds at depressed prices duc to the high vield environment,

It is also becoming evident that property -liability insurers arc exposed 10 mierest rate nsk
on both sides of the balance shect. Fixed income asscts of property-liabilily insurcrs have the
samc cxposure to interest rate risk that life insurer assets have, with market values declining as
interest rates increase. On the other hand. the habilities of propertyv-liability insurers are not fixed

values.  Since inflation is correlated with interest rates, and future claim payments on loss




reserves will increase with inflation, the statutory valucs of liabilitics will tend to increase as
mterest rates incrcasc. Thus, an increase in interest rates Icads 1o a decline in assct valuc and an
increase in the value of habilities, creating a magnified effect on the surplus of property-liability
insurers.

In most DFA models for property-liability insurers, interest rates arc the driving factor in
the model. affecting investment income, loss scverity, asset returns, and target underwriting profit
margins (scc, for cxample, D"Arcy, Gorvett, et al, 1997 and 1998) DFA modcls are being used
for analyzing insurer solvency, in valuing insurers in mergers and acquisitions, and as a business
planning 1ool. The results from DFA applications are heavily dependent upon the particular
interest rate model used, as well as the parameters chosen for the models.

These examples help illustrate how critical the underlying interest rate assumption is to
the evaluation of insurance company asscts and habilitics. Insurers must incorporate the ncw
interest rate paradigm into their pricing and assct/liability management (ALM) processcs by using
assumptions that reflect the stochastic nature of interest rates. Fortunately, within the field of
finance. extensive cffort has been devoted to developing stochastic interest rate models.

Financial researchers have long been concerned with the dynamics of interest rates
Models have been formulated using two approaches: (1) a gencral cquilibrium framework, where
interest rate changes are derived from cconomic agents who maximize expected utility; and (2)
the no-arbitrage approach, which assumes that financial markets have no arbitrage opportunitics.
Examples of the general cquilibrium approach include the models of Vasicek (1977). Dothan
(197R), Cox, Ingersoll, and Ross (CIR) (1985), Brennan and Schwartz (1979) and Longstaff and
Schwartz (1992). Two models bascd on arbitrage arguments are Ho and Lee (1986) and Heath,
Jarrow, and Morton (HIM) (1992).

The choice of interest rate model 15 not a trivial decision. The form of the model used in
the pricing or ALM process depends on the characteristics of the insurance products being

reviewed.  Choosing a model is always a tradeoff between perfectly describing the actual interest



rate process and having a tractable model that can be used to valuc a variety of financial
instruments. One consideration n sclecting an interest rate assumption 1s to compare modeled
prices of financial asscts with market prices, 1f a market cxists. When using a modcl for a
specific application, one should comparc market prices of assets that arc similar in terms of
intercst rate sensitivity. Another consideration is choosing which intcrest rate to model. The spot
ratc is today's intercst ratc for a specific maturity. A fornward ratc is an interest rate that is
applicable to futurc periods'. Afier deciding on which intcrest rates to model, onc must
determine how many paramcters to include. Using more parameters obviously increases the
complexity of a modcl, so onc must consider whether the added complexity yields sufficient
bencfits. Finally, choosing the values of the paramecters in an interest rate model can be the most
important, as well as the most challenging, factor in tmplementation

This paper aims to illustratc how various models operate and to show how well the
models fit historical data. Through descriptions and illustrations of the models. it is hoped that
this paper will increase the comfort level of casualty actuarics with these new tools and encourage
them to begin to apply them in pricing and asset/hability management functions.

The cstimates uscd in this presentation arc based on previous work in the arca.  Chan,
Karoly1i, Longstaff, and Sanders (1992) (hercafter CKLS), empirically cstimatc and comparc
several popular intcrest rate processes used in the literature. Their most important finding is that
the interest rate volatility is sensitive to the Ievel of the intcrest rate.  Also. Amin and Morton
(1994) estimate paramcters for six forms of the HIM model. They find that two-parameter

models fit market price data better, but that the resulting estimates arc less stable.

! Example: The expected forward rate from vear one to year two can be implied from the current spot rates
bascd on the following formula: (1+1,)(1+) = (1+,)*, where [is the forward rate and 1, is the 1-vear spot
rate. If the one-year spot rate is 3% and the two-year spot rate is 4% (expressed as an annual rate), this
implies that the forward rate is 1.04°/1.03 - 1 =501%



Introduction to Notation

The various interest ratc models will be presented here in the mathemaucs of continuous
ume.  The finance lierature is based on continuous tume because funcuions of continuous time
processes (¢ g.. options that arc dependent on the interest rate) have desirable features including
continuity and differennabihn . This allows many of (hese functions 1o have closed form
solutions without the need for numenical procedurcs  The mathemaucs behind discrete time
processes 1s not always as clegant. Later m this paper. we discuss how to translate the continuous
time processes into discrete time for use i insurance appheations (see the “Simulations™ scetion)

The mterest rate models that are presenmed 1o ilus paper are either models of the short-
term rate or the forward rate. The short-term rate (also called the short rate or instantancous ratc)
1s the (annualized) rate of return expected over the next mstant. For example. the return (r) over

the next nstant (0 on an uaual wealth level (B9 cams
W = riVdr

The ume 1 prices of bonds () that pay $1 at ume 1 are determined by expeclations of mvestors

regarding the evolution of the short rate from wme ¢ unul maturnty

Par)y=1~ cxp(— ]r(u)duj

This formula shows that the price of a bond 15 simply the discounted value over every instant
from tume 7 unul matunty at I Instcad of modeling mterest rates explicitls, many financial
cconomists {¢ g. Vasiceh (1977). Dothan (1978), Cox-Ingersoll-Ross (1983) and Brennan-
Schwantz (1979)) model the changes in the short-term rate using the following gencric, stochastc

form

dr, = alr, Nt + o (r,.0dB,



To understand the changes in interest rates, consider individually the two terms on the right-hand
sidc of the cquation. The first term represents the predictable, deterministic portion of changes in
the interest rate  Thus, afr,t) is the expected change in the short-term rate and is called the
instantancous drift. The sccond term represents the uncertainty in interest rate changes; B,
represents a standard Brownian motion so that df, 1s cssentially a random draw from the standard
normal distribution, which is then scaled by the magnitude afr,i). The second term in the
stochastic cquation thus denotes the volatility of interest rate changes. Most interest rate models
begin with this form but differ in their specifications of the terms afr,.t) and o(r,t).

Instcad of modeling the shornt-tcrm rate, other authors (Ho-Lee (1986) and Heath-Jarrow-
Morton (1992)) usc a process for forward rates. The instantaneous forward rate (f) represents the
interest rate available now for an investment to bec made at a future time. It is implicitly defined
by a difference in bond prices. which reflects the expected instantaneous interest rate 7-f periods

in the future
P T +dn) e
— = =exp(—f {1, T)d!
POT) p(—f {1, T)ar)

By recarranging and intcgrating, we can obtain thc bond price in terms of the existing

instantaneous forward rates:

P, T)= exp[— }f(l,u)a’u J

One can interpret this formula in the same manner as in footnote 1. We arc “constructing” a spot
rate which applies from time ¢ to 7' by including consccutive instantaneous forward rates. Ho-Lee

and HIM model the entire term structure by using a process for forward rates of all maturitics:

df(t,Ty = a(t,T, £ (6, T))dt + (0, T, f(1,1))dB,



Here, the terms a(t, T./{t,T)) and o(1,7./1, 7)) arc thc drift and the volatility, respectively, of the
forward ratc and arc analogous to the short-rate drift and volaulity discussed above.

Having defined the notation and gencral stochastic process used to model interest rates,
we tumn to describing desirable features of an interest rate model and then present alternative

modcls that have been used in the literature.

Characteristics of Interest Rate Movements

Before presenting the interest rate modcls, we discuss some general features of interest rate

movcements. Our attempt is 1o provide some intuitive form for an intercst rate model.

1. The volatulity of yields at different maturitics varies. In particular, Jong-term rates do not
vary as much as shoricr term rates

2. Intcrest ratcs arc mean-reverting.  Interest rate increases tend to be followed by rate
dccreases, conversely. when rates drop, they tend 1o be followed by ratc increases.

3. Rates of different maturities are positively corrclatcd. Rates for maturities that are closer
logether have higher corrclations than maturitics that are farther apart.

4. Interest rates should not be allowed to become negative.

5. Based on the results reported in CKLS, the volatility of intcrest rates should be proportional
to the level of the rate.

No known model captures all of the features mentioned above. Therefore, one of the first
steps in choosing an intcrest rate modcl is to understand which of these characteristics arc
important based on the use of the model. Onc should resist the urge to rank models based on the
number of listed conditions that arc satisfted  Instead. it is imperative that thc modeler

understand the limitations of alternative models and their impact on the desirced application.
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Equilibrium vs. Arbitrage

The first distinction of intcrest ratc models is between those that are derived from
cquilibrium models of the cconomy, and thosc that arc based on arbitrage argumecnts.
Equilibrium interest rate modcls arc based on the assumption that bond prices, and yiclds, are
determined by the market’s assessment of the cvolution of the short-term interest rate. In the
models discussed here, the short rate is assumed 1o follow a diffusion (a continuous time
stochastic) proccss. The gencral form for these models 1s described in terms of changes in the

short rate, as follows

dr, =x(0 —r)dr + ar] dB,

r, = current level of the instantancous rate
x = spced of the mean reversion
8 = rate to which the short rate reverts
o = volatility of the short rate
y = proportional conditional volaulity exponent

B, = standard Brownian motion
The first important featurc of this tvpe of model is mcan reversion of the short-term ratc. This
featurc 1s appealing since it presumes that when rates bccome very high or very low, they will
tend to revert to "normal” levels. The specd of reversion is determined by the parameter x. This
parameter ultimately affects the shape of the vield curve. If x 1s high, the yicld curve quickly
trends toward the long-run vield rate 8. If x is low, the vicld curve stowly trends toward 8. (Sce
Figure 1 versus Figure 2)

The difference between the Vasicek, CIR, and Dothan models (sce below) primarily
revolves around the parameter ¥ (the cxponent). Vasicck assumcs it to be 0, CIR assumes 1t to be
0.5, and Dothan assumes it to be 1.0. The basic question distinguishing the modcls is whether the
conditional volatility of changes in interest rates is proportional 1o the level of the rate. This

subscquently determines the parameter y. CKLS (1992) have provided empirical estimates of the

cxponent. Their main finding is that the conditional volatility of interest rates 1s significantly
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related to the level of the short rate. In fact, their esumate of y 1s around 1.5, Although their
work has been the subject of some criticism duc to thewr estimation period. it nonctheless
illusirates the stuong relationship between the level of interest rates and volathity.  Throughout
most periods. ¥ has been estmated between 0.5 and 1 0 (Phoa 1997). The exponcent of individual
maodels will be discussed more fully when we look at the individual models in the next section

Equilibrium models are cnnicized because they do not it the existing term structure.
Although parameters can be chosen to mimmize errors from today's vield curve. the fit will not be
perfect Whereas this is a valid criticism for models being used 1o value financial asscts for
trading purposes. 1t tmay not be a problem when the models arc being used for long-term Nnancial
modcling, such as in DFA

Arbrrage-frec models take the entire vield curve as given and model the dynamics of the
cnure curve  The only constramt of such an approach is that vield curve movements do not
preduce any arbitrage opportunttics Heath, Jarrow. Morton (1992, hereafter HIM) genceralive the
arbutrage-free framework by modeling the forward rates derived from the current yicld cunve.
The continuous time model of Ho and Lee (1986, hereafter Ho-Lee) is the simplest casc of the
HIM framcwork

In the next section we look at scveral of the popular interest rate models used today.

The Vasicek Model
Vasicek lormulates the interest rate model in terms of changes in the shon-term (or

mstantancous) nlerest rate”

dr, = k(0 —r)dt + ouB,

The price of a bond, P¢.7), is then dependent on the expected path of future interest rates.

Vasicek shows that bond prices have the following form:

I’([I) - A([‘II-)(’»HLHH_T)



where A¢,T) and B¢, T) are functions of only x. 0, and 0 and indcpendent of the current spot rate,

r(t). Bond yiclds. Rft, 1) arc then related 1o prices by:

P([ T) - e—R(r,T){T—v)

These two cquations determine the entire term structure of interest rates.  Since bond prices and
yiclds have closed-form solutions, the Vasicck modcl is very easy to implement in practice, with
no need for complicated simulation techniques.  Also, there arc closed form solutions for certain
intcrest rate-dependent claims such as options.

The Vasicek model assumces that (absolute) changes in the interest rate are normally
distributed. duc to the inclusion of the Wicner process. From the normality assumption it follows
that bond prices arc lognormally distributed. Onc wcakness of the model is that normahty in
intcrest ratc changes results in a (small) positive probability of negative interest rates °.

Another feature of the Vasicek model is that all bond prices arce related to the same factor,
the instantancous interest rate.  Consequently, all bond pricc movements arc derived from
movements in the same factor. This implies that all bond prices are perfectly corrclated. Thus,
another shortcoming of the Vasicck model is that the dynamics of the term structure are severely
limited.

Note that. from the gencral case above, the Vasicek model assumes y=0 The conditional
volatlity of interest rate changes is constant and cqual 1o 6. The results of CKLS (1992)
illustratc that the assumption of constant volatility is questionable. The link between interest ratc
volaulity and the level of the ratc implies that the Vasiceck model may provide unrcalistic intcrest
ratc forccasts. When rates arc low, volatility is overstated, and when interest rates are high,

volatility is understated.

? It may be argued that this is not necessarily an implausible scenarto. There have been some periods in the
U 8. that real interest rates have been negative.



In summary, the Vasicek model is very tractable and provides convenicent closed-form
solutions for many interest rate-dependent instruments. However, the model has some serious
drawbacks 1ncluding restricted dynamics of the term structure and constant conditional volatility.

The Vasicck model is illustrated in Figures 1 through 3. Each cxhibit illustrates the vield
curves based on three different realizations of the modeled instantaneous rate.  Figure 1 is based
on parameter cstimates from CKLS. However, it should be pointed out that, in their tests, they
reject the model of Vasicek (1977) because of its homoskedastic feature. Note that when the
instantancous yicld is high, the curve is inverted, and when the shon rate is low, the curve is
normal. In all cases, the long-tcrm yiclds tend toward the parameter 0, the long-run average. In
Figure 2, thc mcan reversion paramcter (k) has been increased. Note that longer yiclds revert
back to the long-run average morc quickly. In Figure 3, the long-run average is decrcascd and all

yvield curves tend to the lower long-run curve.

The Cox, Ingersoll, Ross Model

Another model of interest rates was formulated by Cox, Ingersoll, and Ross (1985) (CIR)

The model is as follows:
dr, = k(@ ~r,)dt + o [r,dB,

The CIR model is also known as the "square-root” process because the volatility is related to the
squarc root of the current level of the interest rate.  Unlike the Vasiceck model, the CIR model
relates the conditional volatility to the level of the short ratc. A second improvemient of the CIR
model over the Vasicck model is that interest rates cannot be negative *. Although CKLS find

that interest rate volatility is more sensitive to the level of interest rates than proposed by the CIR

* Note that negalive interest rates arc ruled out in the continuous time casc. ]lowever, it is possible that
interest rates become negative if a discrete process is used in simulations.



specification, other rescaschers defend the model by commenting on the cstimation approaches
employed by CKLS (see Eom, 1994).

The CIR modcl can also be uscd to detcrmine bond prices analytically. CIR show that
bond prices arc detecrmined by the following (the "hats" simply indicate that the cquations for

A¢t.T) and B, T) arc different under CIR vs. the Vasicch modcl).

PO.TY = A T)e 0%

Thus, the cquation above can be used to derive the yield curve for the CIR model. Because the
driving factor of bond prices and yiclds is still the short-term rate, the CIR specification again
assumes perfect correlation among all bonds and thereforc restricts term structure dynamics

The resulting yield curves of the CIR model arc very similar to the Vasicek curves
presented in Figures 1 through 3. The difference betwceen the models relate more to the dynamics

of vicld curve fluctuations than to the shapc of a particular curve given the instantancous rale.

The Dothan Model

The model of Dothan (1978) increases the volatility exponent to 1.0:

ar, = or,dB,

Becausc of the higher exponent, the model relates the volatility of interest rate movements more
strongly to the level of interest rates. Courtadon (1982) extends Dothan's model to include mean
reversion in the drift. Dothan's model is more difficult to implement in practice because there are
no closcd form, analytic solutions as in the Vasicek and CIR models. The user must resort to
simulation to implement the model. Given the lack of closcd form solutions and the inability of
general equiibrivm models to match the cxisting yield curve, the Dothan model has not been a

popular model for use in cvaluating intcrest rate securities.



Muiti- Fuctor Models

To alleviate the problem of correlated bond prices. a model can incorporate two or more
stochastic factors. In the two-factor moedel as described i Brennan and Schwartz (1979, 1982).
one factor 1s used to represent the short-tenm rate while the other factor 1s the rate 0 on a

perpetutty (e . the long-term rate).

dr, = (B = r )t = o, r B,
dO = o ik,
dB\UB. = ;i
o, ax - volanlits of the short- and long-rate processes. respectively
dB;. (B = standard Brownian motions
p — correlation between short- and long-rale processes
Another popular two-factor model 1s presented i Longstalf and Schwartz (1992), where the

sccond lactor 1s stochastic volatility of the short-term rate. By cxplicitly modeling these factors

separately . the potenual range ol yicld curve dvnamics 1s enhanced.

Heath, Jarrow, Morton Framework

The restncnons on vield cunve movements of the one-factor modcls make them less
cxacl. which 1 some cascs. such as invesuncent banking. represents a serious drawback. The
main hinutation 1s that viclds of alt matunucs are perfectly corrclated. However. history shows
that different pants ol the yield cunve can shift in different directions and this can wreak havoc on
an insurer’s surplus  The unerdependence across all maturitics 1s most critical for insurers where
asscts and liabrhties have uncqual sensiuvitics at different points on the yicld curve (sce Reitano,
1990 and 1992)

Litterman and Scheinkman (1991) show that there are two additional factors. aside from
parallel shifts m the vield curve, that have affected bond returns.  The first factor. called
steepening. reflects the fact that short-term rates may move 1 the opposite direction of long-term

rates.  The Brennan and Schwartz (1979) model above addresses the potenual for a steepening

16



term structure. The sccond factor affecting bond returns in Litterman and Scheinkman (1991) is a
curvature component.  This factor addresses the potential for intermediate yields to be morc or
Iess volatile than extreine maturitics

As mentioned above, a criticism of cquilibrium models is that they are not arbitrage-{ree
in the sensc that the yield curves produced by the models do not match the existing term structure.
This makes these modcls unsatisfactory for pricing option-cmbedded securities.  If the model
cannot accuratcly portray the existtng term structure, there is little confidence that it will
accuralely imitate the dynamics of the curve (Hull, 1993).

Heath, Jarrow, and Mornion (1992) usc the no-arbitrage argument to develop the process

for the forward raie implicd by the relationship of bond prices

AU, 1) = e, T, 0, T+ o (T, (. T)B,

/{1.7T) = instantancous forward ratc at time f with maturity 7°
w771, 7))} = drift of the forward ratc process
o, T/t 7)) = volatility of the forward rate process
B, = standard Brownian motion
HIM find that by imposing the no-arbitrage argument to term structure movements, the drifl of
the forward rate process can be stated in terms of volatilitics. Thus, the structure of the volatility
becomes the most important clement of the HIM model.  Different functional forms of the

volatility rcveal an entire family of HIM modcls. In particular, a simple functional form is of the

following type:

o(t,T, f(1t.T)=0,f0.T)

Amin and Morton (1994) look at a more general form and cstimate the paramcters of several

specifications.



Historical Data

The choice of interest rate model can have an cnormous umpact on the resulting intcrest
ratc risk of any financial instrument. Although determining a perfect model of interest rates 15
bevond the scope of this paper. understanding the impact of the choice of interest rate model will
assist insurers in analyzing the inherent risks of the cmbedded options in their liabilities and in
choosing the appropriate model for their analyses. Any individual who wishes to usc a model 10
simulate interest ratc movements must first get a feel for historical changes. This scction
illustrates the historical movements in Treasury yields over the last 45 ycars. For ease of
presentation, the focus will be on four critical points on the yicld curve: (1) the onc-year rate, (2)
the three-year rate, (3) the five-year rate, and (4) the ten-year rate.  Historical rates will then be
comparcd with the theoretical models at these pomts.  The data is taken from the St. Louis
Federal Reserve web site.

The time scrics of the four yiclds is illustrated in Figure 4. A casual inspection of
Figure 4 shows that intcrest ratcs increascd from 1953 through 1979. Then, interest rates spiked
in the early 1980s during the transition of the Federal Reserve policy mentioned above.  Finally,
since the peak in 1981, yiclds have cxhibited a gencral downward trend.

Table 1 presents some summary statistics on the levels of yiclds over the 45 ycar period.
Thesc statistics help illustrate several features of historical interest rates. The first result relates to
the shape of the yield curve on any particular date. The yield curve is a graphical representation
of the relationship of the vield on bonds and their maturitics. Figures 5 through 7 show three
yicld curves that have been observed historically.  Typically, long-term yiclds arc higher than
short-term yields. When this occurs, the yield curve is upward sloping. The upward sloping
yield curve is common enough that it 1s characterized as a "normal” curve as depicted in Figure 5
Occasionally, yield curves become inverted — short-term rates cxceed long-term rates (sce Figure
6). Inverted curves arc typically observed in periods of high interest rates and the yicld inversion

is usually short-lived. Finally, humped yicld curves are characterized by increasing yiclds at the



short end of the curve. Eventually, as the term to maturity increases more, the yiclds begin to fall
slightly (sce Figure 7). Many humped vicld curves occur during the transition from an inverted
vield curve to a normal curve.

In Table I, the yicld curve is categorized according lo its shape: normal, inverted,
humped, or other. Thesc classifications arc made strictly on the four yicld points, [ year, 3 ycar,
5 year and 10 year. The precisc definition of yicld curve shape, as it is used here, ts based on
vicld curve slope. The slope is the difference between two adjacent yiclds. A normal curve has
positive slope everywhere, while an inverted curve has ncgative slope everywhere. A humped
yicld curve initially has positive slope and cventually has ncgative slope. [f the yield curve does
not fit into onc of these profiles. it is classificd as "other.” Note that the vicld cunve
classifications arc based on end-of-thc-month vields, so that a monithly observation is based on
only onec moment in time. If the vicld curve 1s normal at that time even though 1t was inveried at
all other times during the month, the curve is nonctheless classified as normal.

It should be noted that the magnitude of the slope docs not impact our classification of
yicld curve slope. In particular. we do not use a "flat” vield classification. A flat yield curve
exists if the viclds on bonds of all maturitics arc cqual. At no time in the 45 year history is the
vicld curve cxactly flat, However, differences in yields of various maturitics may be ncgligible.
Rather than define the term negligible, the approach used here amounts to distributing almost-flat
yield curves into the other categorics.

Several statistics in Table 1 illusirate how often the normal yicld curve occurs. First, the
yicld curve has been upward sloping over two-thirds of the time. Inversions occurred in only
11 6% of the months and a humped curve occurred 13.4% of the time.  In addition to the
frequencics of the various shapes, other statistical information pomnts to the tendency of rates to
be increasing with maturity. The mean of cach of the four vields increases with maturity, and the
yicld percentiles scem 10 imply that the typical shape of the yield curve 1s normal, except when

viclds are high.



The next group of results illustrates the relationship of yvield volatlity and maturity.
Long-term rates have lower standard deviations. lower skewness, a smaller range of outcomes,
and higher autocorrelations than shon rates  Thus, our carlier conjecture that long-term yiclds are
less volatle than short-term rates scems to have staustical support

Two other results arc worth poinung out  First, short-term rates appear more positively
skewed than longer vields.  This could mcean that changes v the long-term ratc arc more
symmetric. or 1t could indicate that large. posiive changes in the nicrest rates are more common
in the short-term rate The second point is that correlations between viclds decrease as the rates
arc further apan

Instcad of looking at yvield levels. Figures 8 through 11 look at changes in interest rates.
Figure 8 looks at the monthly tune scrics of absolute changes in the onc-year vield rate. The Fed
policy transition period stands out as an extremely volatile period for short-term rates. To gain
further perspective on the transition penod. Frgure 9 looks at these changes on a relative basis.
The extreme volatuhity of the carly 19805 loses some of its distinction when viewed on a relative
basis. The implication of Figures 8 and 9 provide some intuittve support for the CKLS result that
interest rate volauhty is related to the level of the interest rate. When interest rates were high. the
percemtage changes in viclds were about the same as the percentage changes when rates were low.
Figures 10 and 11 present a similar story for the [0-yvear vield

To get a feel for the volaulity of interest rate movements, we computed the standard
deviauons of the one-vear and ten-year changes in vield.  For the one-year vield, the standard
deviation of absolute changes in the monthlv raie over the entire period is 0.47 and the standard
deviation of relative changes is 0.07. As expected, the volatility of changes in the ten-year vicld
is significantly less. The standard deviation of absolute changes in the monthly ten-year vicld

rat¢ over the entire peniod 1s 0.29 and of percentage changes, the standard deviation is 0.03,



Simulations

The interest tate maodels presented in this paper have been introduced in a continuous
time framework. Although some continuous time models may lcad to closed form solutions for
simple cash flows such as non-callable bonds, insurance habilitics are more complicated. To use
the model’s dynamics in tnsurance applications, such as in DFA. one nwst usc discrete time
intervals for the interest rate process. This section discusses how to translate the continuous time
process into a discrete process and then illustrates the interest rate models presented in this paper
through simulations.

As an cxample of discretization, consider the Vasicek model.  Other models follow

directly from the Vasicek results. Recall the Vasicck model:

dr, = k(0 —r,)dr + ouB,

By using short time inicrvals, the discrete proccss approximates the continuous process. Morc
precisc cstimates will be obtained through the use of short time intervals (hours or minutes)
which is most appropriate for trading activitics. However, with insurance applications, long-term
modeling is required and the use of longer intervals (such as monthly) is morc appropriate.

All models presented here include a standard Brownian motion. Random changes in the
Brownian moton are bascd on draws from the standard normal distribution scaled by the time
interval. There arc two popular approaches for gencrating standard normal distribution random
vanables. The first method is to take the average of twelve uniform random variables on the
interval [0.1]. The sccond mcethod is to translate two uniform random variables (), 1#;) according

to the following:

£ = \/—_ZIn(_zﬁ ) x cos(2mi,)

The monthly interest rate process then becomes (e is the standard normal random variable):

Ar, :,.‘(49—;-,)><L+(fz:1 L
12 1
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We usc this discrete approach to perform monthly simulations of several intcrest rate
models. Our goal 1s to get a feel for how the modcels operate and to compare the resulting
simulated yield distributions with the historical distribution. The Vasicek and CIR models are the
most straightforward to simulate because yiclds have closed form solutions that depend on only
the short ratc. Also, the simulations are stable duc to the mean reversion dnft term. We simulate

the yicld curve for 10.000 months using the parameter cstimates of CKLS:

Parameter Vasicek CIR
Mean reversion strength ()} 0.1779 02339 |
_Long-tcrmrate (8)_ | _0.0866 00808
Volatility (0) 0.0200 0.0854

The results of the Vasicck simulations arc shown in Table 2. The shape of the yield
curve is more frequently inverted than in the historical experience. In fact, the statistics show that
the “average™ vield curve is actually slightly inverted. but closc to being flat. An inspection of
the percentile statistics reveals that at low percentiles (when the onc-year yicld is low), the yicld
curve appears to be upward sloping.  As the short rale increases. the curve is inverted.  Another
note from the shape frequencics illustrates the restrictions of the Vasicek model on the shape of
the yield curve. The yield curve is normal, inverted, or humped. No other shape 1s scen under
the Vasicek model. The standard deviation and percentile statistics show that the long yields arc
less volatile n the Vasicek model. Al yiclds arc perfectly correlated. as expected based on the
fact that all yiclds are derived from the same instanmtancous (short) rate.  As explained in the
presentation of the model, intcrest rates can become negative with the Vasicek model. In fact, the
first percentle is negative,

Compared to the historical rates, the Vasicck model is negatively skewed and less
peaked. This can be scen in the skewncess and excess kurtosis statistics as well as by looking at
the distributions of the onc-year and ten-ycar viclds. The historical distributions are shown in

Figures 12 and 13 while the Vasicek simulation distributions are shown in Figurcs 14 and 15.
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The CIR simulation results are presented in Table 3. and the distributions of onc- and ten-
year vields arc illustrated in Figures 16 and 17. As in the Vasicek case, the CIR model 1s more
{requently inverted than in historical data (47.6% inversions in the CIR simulation vs. 11.6%
historically). The average yicld curve is inverted but is close to being flat. The percentiles reveal
a pattern similar to the Vasicek results,. When the short rate is low. the curve appears normal. As
the one-year yield increases, the vield curve inverts. One dilference [rom the Vasicek results is
that the median yield curve is almost perfeetly flat. The yield curve shape is never other than
normal. inverted, or humped

The volatility of the ten-year yield is lower than the onc-year yicld volatility as measured
by the standard deviation and interquartile range. Also, note that mterest rates in the CIR model
rematn positive.  The corrclations among yields of all maturitics arc all 1.0. Finally, there 1s
positive skewness for all rates, and the value is closer to the historical statistics than the Vasicek
model. The distribution of longer maturitics appears more peaked rclative to historical numbers
(scc the excess kurtosis numbers and Figures 13 vs. 17).

Given the populanty of arbitrage free models, we present some short simulations of 100
months lo scc how these models function. Because the Ho-Lee model is the constanl volatility
case of the HIM model, we present a simulation on the more general HJIM framework. Recall
that the drift m an HIM framework is a function of the velatlitics. Thus, unlike the Vasicek and
CIR models, the drift is positive and the interest rate is not mcan-reverting.  Using long
simulations 10 generate smooth distributions of yiclds is not possible because the curve will (on
average) continue 10 increasc. Rates quickly begin to drift to “unrealistic™ levels. The arbitrage-
frecc models arc usced to assurc that the interest rate process docs not penerate arbitrage
opportunitics in the short term. As the interest rates are obscrved, the maodel is recalibrated and
another simulation is performed. Thus, the simulation performed here uses only 100 months. In
that simulation, the ending yield curve is near 13%, demonstrating the drift in these types of

models
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Another difficulty when comparmg HIM models to others 1s i calculating the shape
statistics given the drifting problem. The shape of the curve becomes too dependent on the inual
curve given the short stmulation period 1 the cunve starts out as normal. most of the subsequent
curves remain normal. Sumlarly. just the opposite occurs when the vield curve 1s 1nlliall_\'_
mverted. In the simulations presented. the imtial curve was based on year-end 1998 yiclds

Results of the HIM simulatton are presented m Table 4 and tn Figurcs 18 and 19. The
important feature of these results is that viclds of dillerent maturiucs are not drniven by the same
tactor  Therefore. stausuics such as skewness. excess hurtosis. and correlations are not exactly the
same for all viclds (although they are close)  Contrast these dilferences with the results of

Vasiceh and CIR models. where these statistics are identical for all matuntics.

Cuveats

The results iflustrated here use the cnure historical period of April 1933 10 July 1998 as a
benchmark for comparing altiernatine models This choice was based oun obtamning a larger
amount of data {compared with other studics) 1o generate smoother vicld distributions, as well as
o provide some perspective on lerest rates over longer periods. However. the change in Fed
policy w1979 presents an imponant question repgarding whether comparisons among inlerest rate
models are robust (o the Fed's shift in focus. To look at these effects. a similar analysis could be
performed across different subpeniods  One possible breakdown would look at results under the
o different Federal Reserve policies. Yield statistics can be generated under the "interest rate
target policy” and also under the "inflation target policy.”  Another subperiod analysis could
attempt to asolate the transiion perntod and compare the pre- and post-transition periods 1o
determune 1f the new Fed policy has affected the underlving interest rate dynamics. It should be
pomnted out that other faclors may be contributing to the dynamics of the curve across any
subperiod analysis  For example, the post-transition economy has been very sirong with only one

short recessionary peniod. Using only post-iransition statistics may not compleicly embody the
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true potenual for 1nterest ratc movements.  The main point is that when using yicld curve
slalisics to parameterize an interest ratc model, onc should be aware of any underlying factors
that may be affecting the dynamics of yiclds and incorporate judgment in choosing specific
models

As mcntioncd above. the parameters used in the simulations were bascd on estimates
reported by CKLS (1992) and Amin and Morton (1994). The CKLS study looks at the period
from Junc 1964 through December 1989, Amm and Morton look at the period from 1987
through 1992.  Esumation over different time periods will more than likely generatc different
paramecters.  Thus, one must kecp in mind the interest rate cnvironment when cstimating
paramcters from past data for usc in future periods. Care should be taken to cnsure that the

potential interest rate dynamics are consisient with the parameter assumptions.

Conclusion

Intcrest rate volatility now requires that actuarics incorporate stochastic intercst rate
assumptions into the pricing, forecasting, and valuation processes. The goal of this paper has
been to provide a simplified introduction to and illustration of these models. The focus has been
on comparing the results of simulations based on a varicty of stochastic intcrest ratec models with
historical interest rate statistics. [t is hoped that this work helps casnalty actuaries begin the

process of incorporating these modeling skills into their actuarial woolkits.
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TABLE 1
Historical Yield Statistics
Entire Period (4/53 - 7/98)

Yield Curve Shape

Normal 68.8%
Inverted 11.6%
Humped 13.4%
Other 6.3%

Yield Statistics

1Yr 3Yr
6.08 6.47
3.01 2.88
097 084
1.10 0.69
Percentiles
1Yr 3Yr
1.07 1.59
2.05 2.52
2.94 3.38
3.81 4.17
5.61 6.20
7.71 8.01
997 1047
12.08 1248
1517 14.69
Correlations
1Yr 3Yr
1.000 0.985
1.000
0.988 0.991
0.967 0.976
0.948 0.963
0.932 0.951
0918 0.940

28

5Yr
6.64
2.84
0.77
0.48

5Yr
1.94
2.72
3.47
4.24
6.44
8.04
10.63
12.59
14.59

5Yr
0.969
0.997
1.000

0.993
0.980
0.970
0960
0.951

10 Yr
6.81
2.81
0.68
0.16

10 Yr
2.38
2.90
3.48
4.25
6.68
8.20
10.78
12.56
14,29

10 Yr
0.944
0.984
0.995
1.000

0.995
0.986
0.979
0.972
0.964
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TABLE 2

Vasicek Simuiation Statistics
(10,000 Simuiations)

Yield Curve Shape

Normal 41.6%
Inverted 54.8%
Humped 3.6%
Other 0.0%

Yield Statistics

1Yr 3Yr 5¥r
8.81 8.75 8.68
3.83 3.24 2.77
-0.16 -0.16 -0.16
-0.19 -0.19 -0.19
Percentiles
1¥r 3Yr 5Yr
-0.38 0.97 2.04
2.33 3.27 4.00
3.69 4.42 4.98
6.26 6.60 6.84
8.94 8.86 8.77

11.62 11.13 10.72
13.60 12.80 12.14
14.69 13.73 12.94
17.22 15.87 14.76

Correlations

1Yr 3Yr 5Yr
1.000 1.000 1.000
1.000 1.000

1.000

0.991 0.991 0.991
0.982 0.982 0.982
0.973 0.973 0.973
0.965 0.965 0.965
0.956 0.956 0.956

10 Yr
8.52
1.95
-0.16
-0.19

10 ¥Yr
3.84
5.22
5.92
7.23
8.59
9.96

10.97

11.53

12.82

10 Yr
1.000
1.000
1.000
1.000

0.991
0.982
0.973
0.965
0.956

Note: Model parameters from CKLS estimates: & = 0.1779, 8 = 0.0866, ¢ = 0.0200
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TABLE 3
CIR Simulation Statistics
(10,000 Simulations)

Yield Curve Shape

Normal 47.7%
Inverted 47.6%
Humped 4.7%
Other 0.0%

Yield Statistics

1Yr 3Yr 5Yr
8.08 8.04 7.98
2.89 2.31 1.88
0.92 0.92 0.92
1.49 1.49 1.49

Percentiles

1Yr 3Yr 5Yr
2.92 3.90 4.62
3.95 473 5.29
4.73 5.35 5.80
6.14 6.48 6.71
7.71 7.73 7.73
9.57 9.23 8.95

11.80 11.01 10.40
13.42 12.31 11.45
17.19 15.33 13.90

Correlations

1Yr 3Yr 5Yr
1.000 1.000 1.000
1.000 1.000

1.000

0.976 0.976 0.976
0.955 0.955 0.955
0.934 0.934 0.934
0.914 0.914 0.914
0.894 0.894 0.894

10 Yr
7.86
1.20
0.92
1.49

10 Yr
5.71
6.14
6.46
7.05
7.70
8.48
9.41
10.09
11.66

10 Yr
1.000
1.000
1.000
1.000

0.976
0.955
0.934
0.914
0.894

Note: Model parameters from CKLS estimates: « = 0.2339, 8 = 0.0808, ¢ = 0.0854
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TABLE 4
HJM Simulation Statistics
(100 Simulations)

Yield Statistics

1Yr 3Yr 5Yr 10 Yr

Mean 7.39 7.51 7.60 7.80

Std Dev 226 2.27 231 2.44

Skewness 0.51 0.53 054 0.54

Excess -0.88 -0.85 -0.85 -0.86

Kurtosis

Percentiles

1Yr 3Yr 5Yr 10 Yr

1% 4.45 4.48 452 4.59

5% 479 4.85 4.90 499

10% 5.00 5.10 513 521

25% 5.25 545 5.53 563

50% 7.48 7.58 765 7.83

75% 8.65 8.75 885 910

90% 11.02 11.16 11.30 11.68
95% 11.67 11.74 11.92 12.38
99% 12.09 12.26 12.44 12.89

Correlations
1Y¥r 3Yr 5Yr 10 Yr
1Yr 1.000 0.999 0.999 0.999
3vYr 1.000 1.000 1.000
5Yr 1.000 1.000
10 Yr 1.000

Auto

0.986 0.986 0.987 0.987
0.969 0.969 0.969 0.972
0.954 0.953 0954 0.957
0.938 0.938 0.939 0.943
0.925 0.923 0.925 0.929

A h W=

Note: Mode! parameters from Amin and Morton: ¢ =0.0485, y =0.5
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FIGURE 1
Vasicek Model Yield Curves

CKLS Parameters
— - — -Short Rate = 4% - Short Rate =8%  ~----- Short Rate = 12%
AB% o e e e e S
|
|
LT e
10% - o Tt e J‘
. e e e e
v [
5% e o T e = —_— T S - . 4
..... — T !
i
|
; |
0% |
0 1 2 3 4 5 6 7 8 9 10
Maturity

Parameters: x =0.1779, & = 0.0866, ¢ = 0.0200



FIGURE 2
Vasicek Model Yield Curves
CKLS Estimates - Change in Mean Reversion
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FIGURE 3

Vasicek Model Yield Curves
CKLS Parameters - Change in Long-Term Rate
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FIGURE 4
Time Series of Yields
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FIGURE 5
Normal Yield Curve
June 19971
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FIGURE 6
Inverted Yield Curve
August 1973
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FIGURE 7
Humped Yield Curve
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FIGURE 8
Time Series of Monthly Absolute Change in 1 Year Yield
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FIGURE 9
Time Series of Monthly Percentage Change in 1-Year Yields
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FIGURE 10
Time Series of Monthly Absolute Change in 10-Year Yield
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FIGURE 11
Time Series of Monthly Percentage Change in 10-Year Yield (Historical)
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FIGURE 12
Historical 1 Year Yield Distribution
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FIGURE 13
Historical 10 Year Yield Distribution
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FIGURE 14
Vasicek Simulation
1 Year Yield Distribution
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Note: Model parameters from CKLS estimates: x = 0.1779, & = 0.0866, o = 0.0200

18 19 20 21 22 23 24 25



9%

FIGURE 15
Vasicek Simulation

10 Year Yield Distribution
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Note: Model parameters from CKLS estimates: x = 0.1779, € = 0.0866, ¢ = 0.0200
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FIGURE 16
C/R Simulation
1 Year Yield Distribution
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Note: Model parameters from CKLS estimates: « = 0.2339, 6 = 0.0808, ¢ = 0.0854
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FIGURE 17

CIR Simulation
10 Year Yield Distribution

8

9

10

11

12

———

13 14 15 16 17 18
Yield

Note: Model parameters from CKLS estimates: » = 0.2339, 8 = 0.0808, o = 0.0854
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FIGURE 18
HJM Simufation
1 Year Yield Distribution
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Note: Model parameters tfrom Amin and Maorton: ¢=0.0485, y=0.5
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FIGURE 19
HJIM Simulation
10 Year Yield Distnibution
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Note: Model parameters from Amin and Morton: ¢=0.0485, ¥=0.5
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