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PARAMETERIZING INTEREST RATE MODELS 

ABSTRACT 

Ac~uar~cs are no\v bcing callcd upon IO ~ncorpora~c imcrcs~ rarc modcls m a varicly ol’ 

ripphcatmns. mcludmg dynnmic fi~xmx~l analysis (DFA). ratcmakmg, and valual~on. Although 

Ihcrc are many ar111c1cs and 1~x1s on intcrcst rnk modcls. mosl ofthcsc prcsumc an undcrstandmg 

of fmanclal wminolog~ and mathcmaucal tcchniqucs Ihat makcs II dlffícult to bcgm to Icarn thls 

matcrral Thls pnpcr pro, Idcs an o~crww. at a Icvel almcd at acnmncs. of somc common 

m~crcs~ mtc modcls uscd b) linanc~al cconomlsts Thc purposc of thls papar IS lo crpla~n thc 

bnws of intcrcst ratc modcling by dcmonstratmg thc dllkrcnt modcls both grnphlcall) and 

cmplrlcnlly. and by showmg han changmg thc various model paramctcrs affccis thc rcsuk 

Scvcral of thc morc popular ~IIICICSI raw modcls are sm~ulstcd. and IIIC resuhs are compnrcd w~h 

hlstoncal ~ntcrcst ratc ~novcnwnts 
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Thc \olalihl> of mkrcs~ ratcs has bccomc un mlportant fcak~rc of thc modcm tinanclal 

cm ~ronn~cnt Changcs m IIIKKSI ralcs can impact thc wa! III l\hlch companxs compcw and can 

c\cn mmpac, thc uhima~ sur~~\nl of thc tirm Fmancial mwrmcdmrlcs. such as banks and 

msurancc compamcs. may bc cspcc~nlly cxposcd lo 1111crcs1 ratc flucruarmns bccausc bolh rhclr 

assc& and habllmcs ax conclatcd \\ith mkxcst WC mo\cmcn~s Mlsmatchcs 01’ mtcrcsL râIc 

scns~~i~~lics (or durahons) of assc~s and habilmcs can havc a magmficd cfkct on surplus A 

popular csamplc ot’ Ihc poknt~al w~lncrnbd$ OT fmnnc~al mkrmcdlancs 1s bnscd on thc 

cxpcr~cncc of thc sa\mgs and loan mdustn m thc l3XOs Rapldly mcrcnsmg IIIICKSI rau 

qulchl‘ mmcd proli~ mto bllhons ol’dollnrs of Iosscs and numcrous msoIvcnc~cs Thc asws OI” 

S&Ls wcrc prnnard) long-krm. fiwd-ralc mortgagcs. rhcu habitmcs I~CTC mostl! shon-krm 

dcmnnd dcposits WIcn thc mhxcst ratcs patd on thosc shon-tcrm dcpows mcrcascd. lhc normal 

dit-fcrcntlal bct\\ccn thc Intcrcst rak thcy NCK rccc~\mg on thur assc& and !hnt whlch thc!. \\crc 

pn! mg on kxr Ilabllks disappcarcd or crcn rcvcrscd Glxcn such pownual cfrcc~ of mtcrcs~ 

ratc \-olardlt‘ , it has bccomc rmporiant lo dcvctop modcls of IIILCICS~ r& changcs so that r~sk 

managcmcnr ~4s can bc uscd LO mularc thc firm liom financla dlsnîtcr 

l’radmonall) msurancc compannx hwc not mcorporarcd mwcs1 ruk modcls mio thc 

producl dwclopnxnt nnd pricmg proccsscs Prlcmg ;ìcIuaTIcs typically uscd “co~sc~~~I~~.” 

tixcd mwrcs~ rûtcs r\hcn dcvclopmg products B> crcditmg pohc\ holdcrs wllh a lo\v Inwrcst m,c. 

or rgnormg int CWIICIII mcomc whcn sc~hng proprrtj -lrabrh!~ msuroncc ratcs. msurc~s had somc 

assurancc thnt thc! coold ultmmatcl~ cam ~hc assumcd rak of rcwm uscd in pricmg Ay CYCCSS 

mwrcsL cnnungs scncd as a cushlon 10 protcct surplus ngamst adlcrsc c~pcr~cncc. as uctl as 

bcmg a sourcc of IIISUTCT protì~s 

Thc assomplion of tiucd mtcrcsf râks tras an acccptablc pracucc durmg pcriods \\hcn 

mwrcst ralcs I$CTC 101% 2nd rclauvcly swblc. In ract. such ûn cn\~ronmcnt cslwd III thc U S HIIO 

lhc 1970s Thc fiwd mtcrcst ratc assumpiion uscd by most msurcrs sccmcd mnocuous 
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Ho\\c\cr. m 1979. 1hc U S Fcdcral Rcscrkc alrcrcd its polq fronl onc Ihat targcwd ~ntcrcst ralcs 

IO a polq that now targcts mtlalion lia thc moncy suppl) As a rcsulr. intcrest rnlcs bccamc 

signlficantty morc \olahlc Durmg lhc transirlon of hhe carly t9ROs. in~rcst raws spikcd upward 

10 unprcccdcnlcd Ic\cIs IL was clcar that thc mtcrcs~ rnlc cn\uonmcm had shdicd drnmawall! 

Thc changc m thc Fcd policy affc‘fcclcd msurcrs m scveral ways First. thc undcrlying 

value of msnrancc products changcd duc 10 ~1~ changc m Intcrcst ratc volatihry Insurancc 

products p pIcall! mcludc cmbcddcd oplions that glve spcc~fic rlgtus lo pohcyholdcr and, m somc 

cases. 10 thc msurcr An cxnmplc of Ihcsc ophons IS tic rlghl IO rcncw thc poliq on tcrms SC! 31 

thc bcgmmng of Ihc covcragc pcriod Thc kaluc of thcsc cmbcddcd optlons is highly scnsmvc lo 

~hc undcrl! mg IIIICKSI rarc assumptlon and. morc rnponnntty. 10 thc volarlllty of hmre mtcrest 

rn~cs IIISIIK~S thai uscd n fixcd lnlcrcst ratc assumpl~on Ignorcd thc mwcst-scwovc opuon 

values in thclr pohc~cs 

Il has tong bccn rccognwcd Ihar hfc msurcrs are esposcd 10 mtercst ratc rlsk. Thc hfc 

msurancc tndus@ cxpwcnccd hca\y dwntcmwdlallon \\hcn mIereSI raws mcrcascd In thc 

I’Nlls Bcforc thc rapad mcrcasc m raics, lifc msurcrs bchcvcd thai high uwrcs~ ratc sccnanos 

~CTC m thclr favor bccnusc thcy imphcd addmonal mcomc Howver. thcy fadcd 10 undcrstand 

thc TIS~F In thc~r hahlhtlcs Thc pohcy loan fcawrc ofordlnar) hfc msurancc polic~cs cappcd thc 

mlcrw WC Iha1 could be chnrgcd 10 thc polqholdcr Once mtcrest ra~cs cscccdcd ihat cap. 

pol~c! holdcrs \scrc ablc IO borro\\ at thc polq loan ratc. and thcn turn around and invcsl thc 

procccds ar hlgher ! lelds ‘Thc rcsuh \\as an outflou of cash from the Me insurancc mdustry that 

causcd man‘ msurcrs 10 scll bonds at dcprcsscd przcs duc 10 Ihc hlgh 1 Icld cnwonmcnl. 

II 1s also bccoming cwdcw thnt propcny-Ilabltl!) msurcrs are cxposed 10 Interest rale rlsk 

on bolh sidcs of !hc balance shcct Flxcd mcomc asws oi propcrty-tlatxhly msurcrs ha\c the 

samc cuposurc io IIWICSI ratc rlsk lhat I~fc msurcr asscis havc. wh markct balucs dcclinmg as 

mtcrcst raws uucasc On lhc othcr hand. thc habltmcs ofpropcny-hablhty msurcrs are not fixed 

\alucs Smcc mftation IS corrclalcd \\llh IIIICIC.S~ raws. and tiiturc clnim paymcnts on loss 
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rcscrvcs wilt incrense wnh inflarion. Ihc statutory values of habihrics will tcnd to increase as 

mlcrcst rntcs mcrcasc. Thus, an mcreasc m mtcrest ratcs Icads IO a dccbnc m assct >aluc and an 

mcrcasc m thc baluc of Itablhtss. crcating a magmfied effcct on thc surplus of propcny-liabihly 

msurcrs. 

In most DFA modcls for propc*-habdity insurcrs. in~rcst ralcs are thc driving factor III 

the model. affcctmg mlcstmcnt incomc, loss scvcr~&, assel retums, and targer undenvriting prolit 

margms (scc. for cxamplc. D‘Arcy, Gon~ctl. ct al. 1997 and 1998) DFA modcls are bcmg uscd 

for analyzmg msurer sohency, in valumg insurers m mergers and acqulsitlons, and as a busmess 

plannmg 1001. Thc resulrs from DFA apphcations are heavily dependem upon the particular 

mtcrcst ratc modcl uscd. as wcll as tie paramctcrs choscn for the models. 

These examptcs hclp illustrate how cnucal the underlymg interest rate assumphon 1s 10 

thc cvalunt~on of msu~ancc company asscts and liatxhtlcs. Insurcrs must incorporatc Ihc ncw 

mtcrcst ratc paradlgm ~110 thelr pncmg and assctihabdity managcmcnt (ALM) proccsscs by usmg 

assumptions Ihal rcflcct thc stochastic nature of intcrest ratcs Fortunately. wthin the ficld of 

Iinancc. cxtenS,vc ctTor~ has becn devoted IO devcloplng slochasiic mlcrest rare models. 

Fmanclal researchers have long b-een concemcd wth thc dynamics of intcrcst rates 

Models hale bccn formulatcd usmg hvo approachcs (t) a gcncral cquhbnum framcwork. where 

mtcxs1 raw changes *are derwed from ccononuc agcms \ìho maumizc cxpccrcd UIIIIIY, and (2) 

thc no-arbluagc approach, nhich assumes Lhat finanual markcts havc no arbitrage opportunihcs 

Esamptcs of rhc gcncral cqudibrium approach mcludc thc modcls of Vasicck (1977). Dothan 

(1978). COY. tngcrsoll, and Ross (CIR) (1985). Brcnnan and Schrvarv (1979) and LongstaJT and 

Schaartl (1992) Tuo modcls bascd on arbxragc argumcnts are Ho and Lee (1986) and Hcath, 

Jarrow and Morton (HJM) (1992). 

The cholcc of inwrcst rate model IS not a biivlal dccwon Thc form of thc modcl uscd m 

thc pncmg or ALM proccss depends on the charactcristics of the msurance products bcmg 

rc\lcwd Choosing a modct is always a uadeoff behìccn pctfecdy descnbmg the actual mterest 
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ratc proccss and having a tractablc modcl that can be uscd to \aIuc a \arieb of linanctal 

instmmcnts Onc consndcration m sclcctmg un intcrcst ratc assumptlon IS to compare modclcd 

preces of fianclal asscts ~4th marhct pnccs. tf a markct cxis~s Whcn usmg a modcl for a 

specifíc apphcatlon, onc should compare markct priccs of asscts that are similar in tcrms of 

intcrcst ratc scns~tivity Anothcr consideration is choosing which intcrcst ra~c to modcl. Thc spot 

ratc is today’s intcrcst ratc for a spcclfic matwlty. A forward ratc IS nn mtcrest rate that is 

applicablc to futurc pcnods’. Afcr dcclding on which mtcrcst ratcs 10 modcl, onc must 

dctcmlinc how many paramctcrs to mcludc. Usmg more parametcrs obviously incrcascs thc 

complcxlty of n modcl. so onc mus1 considcr whcthcr thc addcd complcx~ty ylclds sollic~cnt 

benclits Finally, choosing thc values of thc pammctcrs in an intcrcst ratc model can bc thc most 

important. as ucll as thc most challcngmg. factor in anplcmcntntlon 

‘Ihs paper a~ms to lllustratc how various models operate and to show how wcll thc 

modela fit hlstoncnl data Through dcscnptlons nnd ~llustnt~ons of the models. it is hopcd thnt 

hs papcr wll mcrcase the comfon Icvcl of casualty actuarics wth thcsc ncw tools and cncourngc 

them fo begin to apply thcm m pncing and assetihabiltty managcmcnt functlons. 

Thc cstimatcs uscd m this prcscntatlon are based on prev~ous work m thc arca Chan. 

Karol!], Longstaff, and Sandcrs (1992) (I crcaftcr CKLS). cmplrically cstlmatc and compare 

severa1 popular intcrcst ratc processes used m the hteratare. Thcir most mlponant tindmg IS that 

tbc mtcrcst ratc volatdity IS sensltive to the Icrcl of thc intcrcst rntc. Also. Amm .and Morton 

(1994) estimate paramctcrs for six fomls of thc HJM modcl Thcy liad that hvO-para!IICtCr 

modcls II markct pricc data bctter. but that thc rcsultmg cstmmtcs are Icss stablc 

’ Esnmple The expected fonvard ratc hom ycar ene to year two can bc Implicd from thc current splt ratcs 
bascd on the follwwg formular (l+,)( i+lS = (Iti>)‘. whcrc f IS thc foward ratc and I, is the t-ycar spot 
rale Ifthe me-year spot rnte IS 3% nnd the mo-year spot rate is 4% (expreved ns nn nnnu~?I rnle), rbls 
mphes lhat Ihe folward rötc IS l.04z/l 03 I = 5.01% 
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To andcrstand thc changcs m intcrcst ratcs. conslder individually the hvo tenas on the nght-hand 

sldc of rhc cquatlon Thc lirst ~crm rcprcscnts thc prcdlctnblc. dctcrrmmsnc portion of changcs m 

thc mtcrcst rntc Thus. n(r,,f) 1s thc cxpcctcd changc m thc short-tcml ratc and LS callcd thc 

mstantancous drlft. Tbc sccond tcrm rcprcscn~s thc unccrtainty m mtcrest ratc changcs, A, 

rcprcscnts a standard Brownlan mot1on so that clN, 1s cstcntlally a random draw from thc standard 

normal dlstrlbutlon. whlch is thcn scalcd b! thc mngmtudc o(r,ij. The second tcrm in thc 

stocbnstlc cquntlon thus dcnotcs thc \olntAty of Intcrcst ratc changcs Most intcrcst ratc modcls 

bcgm n~tb this form but dlffcr m thcir spccitícanons of thc tcrms o(r,.fl and o(r,r). 

Instcad of modcling thc shon-tcm ratc. othcr authors (Ho-Lee (1986) and Hcatl-Jamow- 

Morlon (1092)) usc a process for fonsard ratcs Thc instantaneous fonvard ratc c1) rcprcscnts thc 

mtcrcst rate nallablc non’ for an mvestmcnt to bc madc at a futurc tlmc It IS implntly defíncd 

by a diffcrcncc m bond proís. which rcflects the cspcctcd mstantancous mterest rate ï‘f pcriods 

111 thc filturc 

I’(l. T + dr) 
-- = exp(-/(/,ï'jd/) 

W, Tl 

By rcarrangmg and intcgrating. WC can obtam thc tmnd price in tcm~s of thc enishng 

mstantancous fonvard ratcs 

P(r,Tj = exp(+.u)du) 

Onc can intcrpret thls formula m tbc samc manncr as in footaotc 1 WC are “constructing” a spot 

ratc nhich appbes from time f to 7’by including consccutlve instantaneous fonvard rates. Ho-Lee 

and HJM modcl tbc cntirc tcrm structurc by using n proccss for fonvard ratcs of all maturitics: 

bf(l,T) = a(f,T. f(r,T))df + a(r,T,,f(r.7’))dH, 
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Hcrc. the lenns a(t.T,J(I,T)) and o(f,ï;J(r,7IJ, are tbc drift and the \~olat~l~ty, rcspectively, of thc 

fonvard ratc and are analogous 10 thc short-rate dnft and volatdity dwusscd above. 

Havmg dclincd tbc notatlon and gcncral stcchastlc proccss uscd IO modcl mtcrcs~ ratcs, 

WC tum lo dcscribing dcwable fcatorcs of an intcrcst ratc modcl and tbcn prcscnt altcmatnc 

modcls that hale bccn uscd in thc litcraturc. 

Bcforc prcscntmg thc intcrcst ratc modcls. WC dlscuss somc gcncral fcatures of mtcrcst rntc 

movcmcnts. Our attcmpt 1s IO prowdc somc ttttu~ti~c form for an mtcrcst ratc modcl. 

1. Thc volatdrt~ of ylclds at dlffcrcnt maturitlcs varics In parncular, long-w-m ratcs do no, 

\-ary as much as shoncr tcnn ratcs 

2. [ntcrcst ratcs are mean-reverting. Intcrcst ratc incrcascs tcnd to bc followcd by ratc 

dccrcases, convcrsel~. whcn ratcs drop, thcy tcnd lo bc followcd by ratc increascs 

3. Rates of dlffercnt maturities are positivcly corrclatcd Rates for maturities that are closcr 

togcther hale highcr corrclatlons than maturitlcs that are ra&cr apti. 

4 Intcrcst ratcs should not bc allowcd to bccome ncgat~ve 

5 Based on thc rcsults rcportcd NI CKLS, tbc volatllit) of intcrcst ratcs should bc proportional 

10 lbc Icvcl of tbc rate 

No knonn modcl captures all of thc fcatures mcntloncd abovz Thcrcforc. ene of the first 

stcps m choosmg an intcrcst ratc modcl is to understand which of these charactcnsbcs are 

Imponant based on the use of thc mcdcl Ox should rcsist the urge to rank mcdcls bascd on thc 

numbcr of listcd condmons that are satislied Instcad. tt IS impcrativc that thc modcler 

undcrstand thc hmrtatlons ofaltemat~vc models and thelr Impact on tbc dcwcd application. 
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Equilibrium VS. A rbifropr 

Thc 1k.1 dtstmctlon of 1111crcst ratc modcls IS bcnrccn 1hosc that are dcrwcd from 

cqudlbrwm modcls of thc cconomy. and tiosc 1ha1 are based on arbitragc argumcnts 

Equlhbrnun m~eres~ rale modcls are bascd on IIIC assump~ion that bond proís, and yiclds. are 

dctcrmmcd by 1hc market’s asscssmcnt of thc cvohmon of the shorr-term m~crcs~ ratc In the 

modcls dwzusscd hcre. rhc shorr TDIC is assumed 10 follow a dlffuslon (a continuous 1unc 

stochastlc) proccss Thc gcncral form for thcsc modcls IS dcscrlbcd in teme of changcs m thc 

shon ratc, as follows 

r, = currem lewl of thc mstantancous ratc 
K = spccd of the mean rc~crs~on 

0 = ratc IO \\hich the shorl ralc rcvcr~s 
o = volatility of thc short rae 

y = proportlonal condilionnl vola11111y crponcnt 
B, = standard Bro\tnian mouon 

Thc firsr irnpor~n1 fcaturc of this tope of model IS mean rcvers~on of thc short-rcrm ratc Thls 

fcawrc IS appcaling sincc it prcsumcs 1hat \+hen raws bccomc ve? hlgh or very low, they wdl 

tcnd to rwcr~ 10 “noTmal” Ic\cls Thc spccd of rcvcrs~on IS dctcrmmcd by the paramclcr K. Thls 

paramctcr ultnnatel! arrece the shapc of thc yicld curve lf K IS hlgh. thc yicid curve quxkly 

mnds toward tbc long-run yeld rare 0 II K IS low. thc yicld curve slo\\ly trcnds toward 0 (Sce 

Figure 1 vcrsus Figure 2 ) 

Thc dlffcrence betuccn thc Vasicck, CIR, and Dolhan modcls (scc bclow) prmlarlly 

rcvol~cs xound ~hc paramctcr y (tic cxponcnt). Vasrck DSSUIH~S 1~ IO bc 0. ClR assumcs II IO bc 

0.5. and Dothan assumes it 10 bc I 0. The basic qucsnon dlsrmguulshing thc modcls IS whelhcr thc 

condmonal volarlhty of changcs m mterest rates IS propomonal IO tllc IwcI of thc ratc Thls 

subscqucntly dctcrmines Ihe parameter y. CKLS (1992) havc provided cmpirical csumates of Lhc 

csponcnt Their mam linding is that thc condltlonal volatillty of I~~CTCSI ratcs IS s~gmficantl) 
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rclarcd IO rhc Ic\cl of rhc shon rû,c In ~XI. IIICII csfm~û~c of y IS around I i Allhough thclr 

\\ork has bccn thc SubJccl of somc C~IIICISIII duc 10 thclr cstm~alion pcrrod. 11 noncthclcss 

IIIUSIIIIICS 111~ wong rcln~~onsh~p bcwccn ~hc Ic\cl of mfcrcs~ ratcs nnd VOIO~IIIC~ Throughout 

rnos~ pcrmds. y has bccn cwmatcd bc[wccn 0 F ond I 0 (Phoa 1997) Thc csponcm of mdlvldual 

modclt 1\1ll bc dlscusscd morc full! \\hcn NC look JI Ihc mdr\ldul modcls m thc ncx~ SCC,IOII 

Equlllbrlum modcls nrc crltuzi/cd bccnusc lhc> do no, f~r 111~ custmg ~crm struch~rc 

Although paramctcrs can bc choscn IO mmm~~x crrors from today’s !~cld curve. thc f~t ~111 noI bc 

pcrfcc~ \\‘hcrcns rhls 1s n \nltd crnlcwu fòr modcls bcmg uscd IO \aIuc financlal assc~s for 

~r;ldmg purpoïcs. II ma! no, bc 3 problcm \\ hcn ~hc nlodcls xc bcmg uscd for long-lcrm linanc~nl 

mudcllng. such as III lIF.1 

hrbmngc-frcc rnodcls tnkc thc cmirc ! wld cunc as g~\cn and modcl ~hc dj namu of thc 

cn~~rc cur\c Thc onl! CO~SI~BIIII of soch an approach IS IJKII ! wld cumc mo\cmcnls do Noé 

produce an! arbttrngc upporwnlr~cs Hcath. Jnrrow. Morron ( 1992. hcrcaflcr HJM) gcncrallx 111~ 

nrbmagc-frcc I’rnmc\\orh b> modclmg 111~ fon\nrd ra~cs dcrl\cd from thc currcn~ >rcld cunc 

Thc CO~II~OCNS III~C modcl of tlo nnd Lee (IOX(r. hcrcnftcr Ho-Lee) IS rhc s,mplcs~ cûsc of ~hc 

tml rr31~lc\\orh 

In IIIC IIC\I scchon uc look 01 sc\crrll of ~hc popular IIIICICSI ralc modcls uscd toda> 

tir, = Y( H - r, )dl + <xiy 

Thc pnct: oî a bond. l’(r.7). IS thcn dcpcndcnl on ihc cupccxd path of futurc ~n~crcs~ rxcs 

V~icck shoL\s ~hat bond prlccs h3vc IIIC folloamg form 
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\\hcrc .4(I.n and R(!,TJ are functrons of only x. 0. and o and indcpcndcnt of thc corrent spot rate, 

r(r). Bond ylclds. N{f.ï] are thcn rclated 10 priccs by: 

Thcsc tuo cquatlons dctcrnunc thc cntlrc tcrm structurc of mtcrcst *ates. Smce bond prlccs and 

yiclds have closed-foorm solutions. thc Vasrcck modcl IS vxy easy IO implcment m practicc, with 

no nccd for comphcatcd smiulatlon tcchmqucs Also. thcrc are closcd foml soluttons for certam 

intcrcst ratc-dcpcndcnt claims such as options 

Thc Vnslcck modcl assumcs that (absolute) changc$ m the mtcrest rate are normally 

distrtbutcd. duc IO thc incluslon of thc Wlcncr proccss. Frorn thc normahty assumptlon it follow 

that bond priccs are lognonnally dlsmbutcd. Onc ~rcakncss of thc modcl IS thar normahty m 

mtcrcst ratc changcs rcsults in a (smnll) positivc probablhty of ncgativc mtcrcst ratcs ’ 

Anorhci fcaturc of thc Vasicck modcl is that all bond prxcs are rclatcd lo thc same factor, 

thc rnstantancous mterest ratc. Conscqucntly, all bond prlcc movcmcnts are dcrivcd from 

mo\ements In thc samc factor. This unpIles that all bond prxes are pcrfcctl! corrclatcd Thus. 

anolher shortcommg of thc Vasicck modcl IS that thc dynnmlcs of thc ~crm struchwc are severely 

Imutcd. 

Note that. from the general casc above. the Vaslcek model assumcs y=O Thc conditional 

volarllity of mtcrcst rate changcs 1s constan1 and cqual LO o Thc rcsults of CKLS (1992) 

dlustratc that thc assumption ofconstant volatihty LS qucstlonablc The link betwen interest ratc 

volnl~l~l} and thc Icvcl of ihc ratc lmphcs that the Vawck modcl may providc wcahstic mtcrcst 

ratc forecasts. When ratcs are low, volatihty IS ovcrstared, and when mterest ratcs are hrgh. 

volatd~ty IS undcrstated. 

’ II mey he argued thar rhls 1s not ncccssanly an implawble sccnano. Thcrc havc bccn somc @ode in the 
II S Iha{ real mtercst ratcs haw bccn ncgatiw 
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In summary. the Vasicek modcl 1s very txactablc and providcs convcmcnt closcd-form 

solutlons for many mtcrcst rarcdependcnt mstrumcnts Hoacvcr, thc model has somc serlou 

drawbacks mcluding rcstrictcd dynamlcs of thc tcrm structure and constaant condmonal volatilit) 

Thc Vaslcck model IS dlusuated in Figures 1 through 3 Each cxhibit illustratcs thc yield 

curves bascd on threc dSxnt rcahsations of thc modcled mstantaneous rate. Figure 1 IS based 

on parametcr cstimatcs from CKLS However. lt should be pointcd out that, In thcn ICSIS, thcy 

rcjcct thc modcl of Vasicck (1977) bccausc of ¡IS homoskedastlc fcaturc Note that whcn thc 

mstantancous yield is high. thc curve is mvcrtcd. and uhen thc shon rate is low. the curve IS 

normal In all cases, the long-tcrm ylclds lcnd toward the parametcr 0, thc long-run average In 

Figure 2. thc mean rcversion paramctcr (K) has bccn incrcascd Note that longcr yiclds rcvcrt 

back IO thc long-tun avcragc morc quickly In Flgwc 3, thc long-nm avcragc IS dccrcascd and all 

! leld curves tcnd to the lowcr long-nm curve. 

The Cm, Inat-rsoll, Ross hfodd 

Anothcr model of mtcrcst ratcs was formulatcd by Cox, Ingersoll. and Ross (1985) (CIR) 

The model is as follows: 

di-, = h-ce - r,)dr + c&iB, 

The CIR modcl is also known as the “squarc-root” process becausc thc volatihty IS rclatcd to thc 

squarc root of thc currcnt Icvcl of the mtcrcst ratc Unhkc thc Vaslcck modcl. thc CIR model 

rclatcs thc conditronal volatihw lo thc Icvcl of thc short ratc A sccond improvcmcnt of thc CIR 

modcl over the Vasicck modcl is that mtcrcst ratcs cannot bc ncgatrvc ‘. Although CKLS fmd 

that mtcrcst ralc volalthty IS more sensm\‘c lo thc Icvcl of inlerest ratcs than proposed by thc CIR 
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spcc~ticat~on, othcr rcscarchcrs dcfcnd thc modcl by commc~~tmg on tbc cstm~a~~on npproachcs 

cnrploycd bu CKLS (see Eom, 1994). 

Thc CIR modcl can also be uscd to dctcrminc bond pnccs analytically CIR show that 

bond prices are dctcnmncd b! the follo\wng (thc “hats” sm~pl~ tndicatc thai thc cquations for 

A(r.7) and H(t.7) are diffcrcnt undcr CIR vs thc Vasicch modcl). 

/q, 7’) = ,&,. ï.)e-r,rleir.ri 

Thus. thc cquatlon abo\c can bc uscd to dcnxe the yxld curve for thc CIR modcl. Bccausc the 

drlving factor of bond pnccs and yiclds IS stdl the shon-tcrm ratc, thc CIR spccilicat~on agam 

assumcs pdect corrclation among all bonds and thcrcforc rcsrricts tcrm structurc dj%mncs 

Thc rcsultmg yicld cwvcs of thc CIR modcl are \cq smnlur 10 tbc Vasicck cu~cs 

prcscntcd m Flgurcs I through 3 Thc dllTcrcncc betwccn thc modcls relate morc to thc dynamlcs 

of ylcld cunr Iluctuat~ons than to thc shapc of a parocular cunc gncn thc mstantancous ratc 

Thc model of Dothan (1978) mcreascs thc volatlhv cxponcnt to 1 0 

Bccnusc of thc highcr c~poncnt, thc modcl relates the vola~lhty of intcrcsl ratc mowmcnts morc 

strongly to thc Icvcl of intcrcst rates. Counadon (1982) cxtcnds Dothan’s modcl to mcludc mean 

ICVC~SIOII in the dril? Dotban’s modcl is morc dlflicult to m~plcnvz~~t 111 pract~c bccausc tbcrc are 

no closcd form, analyric solutions as m thc Vasicek and ClR modcls. Thc uscr mus1 rcsort 10 

simulatlon lo Implement thc model. Givcn thc lack of closcd form solutlons and thc inablht) of 

gcncral cqulhbrmm modcls to match thc cxisting ylcld cune. the Dothsn modcl has not bccn a 

popular model for use m cvaluatmg intcrcst ratc secwitics 



1.111Crtn~n nnd Scbcmhmon (IWI) sho\\ thnt tbcrc nrc two addltlonal factors. asldc from 

pnrallcl shlli\ 111 thc ! ICId cunc. Ih;lt hn\c alkctcd botld rcturns Thc first factor. cnllcd 

stccpcnmg. rcllccrs IIIC faci itnt sbort-tcnn ratcs rnn‘ mo\c m thc opposltc dnrcction of long-tcrm 

rnrcs Tbc BrCnnan and Scb\\an/. (1979) modct abo\c addrcsscs IIIC potcnttat for P stccpcnmg 

16 



tcrm strxturc Thc sccond factor affcctmg bond TCIU~S in Littcrman and Schcinkmnn (1991) IS a 

cur~aturc component This factor nddrcsses thc potcntlal for mtcrmedlate ~xlds IO bc morc or 

Icss lolatdc than cxtrcmc maturmcs 

As mentloned abovc. n crw~sm of cqudlbrnun modcls 1s that thcy are not artxtrage-free 

in thc scnsc that thc ) icld curves produccd bl thc modcls do not match thc cwsting tcrm strucwe. 

Thls mnkcs thcsc modcls unsatisfactov for pncing optwn-cmbcddcd sccuri1xs If thc modcl 

cannot accuratcly pomay the extsttng term stmcture, thcrc is littlc cont’idence that it \vill 

accuralcl~ Imitate the dynamxs ofthc cunc (HA 1993) 

Hcath. Jarros. and Morton (1992) usc thc no-arbitragc argumcnt IO develop thc proccss 

for theji>nvcrrn’ratc Imphcd by thc rclatlonship of bond prws 

</(/,7’) = p(r,T,f(/,T))dr + cT(f.T,f(l:T))dR, 

/&T) = mstantancous fomard ratc at time f \clth maturity 7 
p(l.í”J(/.T)) = dnft of the fonvard ratc process 

o(f,TI/(I.ï)~ = volatility of thc fonvard ratc process 
B, = standard Brownmn mouon 

HJM find that by Imposing thc no-arbitrage argumcnt to tcrm structurc movements. thc drift of 

thc fonvard ralc process can bc statcd m tcrms of volatihttcs. Thus, thc structure of the volatility 

bccomes thc most mlportanl clcmcnt of thc HJM modcl D~ffcrcnt funcnonal forms of the 

volatihty rcvcal an cntlre family of HJM modcls In pamcular, a simple functlonal form is of the 

following type. 

<r(f,T,f(/,T)) = OJ(l.7’)’ 

Amm and Monon (1994) look at a more general form and cstimatc thc paramctcrs of severa1 

spcc1ficn110ns. 
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Historical Data 

Thc chotcc of intcrest ratc model can havc an cnormous Impact on thc rcsulting inrcrcst 

ratc rtsk of any finnncral mstrumcnt Although dctcrmining a pcrfcct modcl of intcrcst ratcs IS 

bcymd the scopc of thls papcr. undcrstandmg thc impact of thc choicc of intercst ratc modcl will 

asust msurcrs in anulyu~g thc inhercnt rtsks of thc cmbcddcd optlons m thcir liabdities and m 

choosmg thc approprlatc modcl for thc~r analyscs. Aq indlr Idual \! ho wshcs to usc a modcl to 

simulatc intercst ratc movcments must lirst gct a feel for hlstoncal changcs ThlS scction 

dlustrates thc historical movements in Trcasury ylelds over thc last 45 yxus. For case of 

prcsentahon. the focus wdl bc on four critlcal pomts on thc Ficld cwc: (1) thc onc-ycar ratc. (2) 

thc thrcc-ycar ratc, (3) thc fwc-~car ratc, and (4) thc ten-ycar rate Hlstorlcal ratcs wll thcn bc 

comparcd with thc thcorctxal models at thcse pomts The data 1s taken from thc St. Louis 

Fcdcral Rescrvc wcb sitc. 

Thc time scncs of thc four ylclds is dlustrated in Figure 1 A casual mspcctlon of 

Figure 4 shorrs that mtcrest ratcs incrcascd kom 1953 tiuough 1979 Then. mtcrcst ratcs spkcd 

in the earll 1980s dwing thc uansition of the Fcdcral Rcscrvc poliq mcntioncd abovc Fmally. 

smcc thc pcak in 19X1. ylclds havc cxhlblted a general downaud trcnd 

Tablc 1 prescnts somc summ- statlstics on the levels of yiclds ovcr thc 45 ycar pcnod 

Thcsc statistlcs help lllustratc scvcral feahues of historlcal mtcrcst rates. Thc first rcsult rclatcs to 

thc shapc of thc ylcld cunc on any particular date The ywld curw is a graphlcal rcprcscntation 

of thc rclatlonship of thc XicId on bonds and thcir matantics. Figures 5 tIuough 7 show thrcc 

ycld cunzs that havc bccn obscn-cd hlstorlcallj Typlcally, long-tcnn ylclds are hlghcr than 

short-tcrm ytclds b’hen thts occurs, thc yield curve IS upward slopmg Thc upward slopittg 

yicld curw is common enough that ~t 1s charactcrired as a “normal” cuwc as dcplctcd tn F~gurc 5 

Occastonally, yield cun’cs bccomc mvertcd - short-tcrm ratcs cxcccd long-tcrm ratcs (scc Figure 

6). Invertcd cwcs are typlcally obscrved in pcriods of high interest rates and thc ylcld mvcrsion 

is usually short-hved Fmally, humped yicld cwvcs are characterizcd by increasing ylelds at thc 
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short cnd nf thc curw Evcntuall), as thc tcm to mahmb incrcascs morc. thc uvzlds bcgm to fall 

slightly (scc Flgurc 7) Many humpcd ~xld cun~cs occw durmg the transmon from an mvencd 

rxld curve to a normal curve. 

In Tablc 1. thc ylcld curve 1s catcgorucd accordmg to lts shape normal, invcrtcd, 

humped. or othcr Thcsc clnsslficntions are madc strictly on the four ~lcld pomts, 1 ycar. 3 ycar. 

5 year and 10 year Thc prccw dcfmmon of yicld cunc shapc. as 1t 1s used herc. IS bascd on 

yxld curve slope Tlw slopc is thc chfkrencc betwecn two adjaccnl ~xlds. A normal curve has 

positive slope cvcvwherc. whde un mvcncd curve has ncgauvc slopc c\erywhere A humpcd 

yvzld curve mmally ha5 posm!c slopc and cvcntunlly has ncgatlbc slopc lf thc ) IcId cwc docs 

not fit mto onc of these proliles. It is clawlícd as “othcr.” Note that thc yicld cune 

classllicatlons are based on end-of-thc-month ~lelds, so that a monlhly observatlon IS bascd on 

only onc momcnt m time. lt” the yicld cwv IS normal at that tlmc r\en though It was mvcncd at 

all olhcr times dunng Ihe month. thc curve 1s noncthclcss clnssif~ed as normal 

II should bc notcd that thc magmtude of thc slopc docs not mlpact our clawlicatlon of 

~xld CUIYC slopc In pamcular. WC do not usc a “ilnt” ìxld i;lassCxat~on A llat )leld curvz 

cxisLs if thc J iclds on bonds of all maturitu are cqual At no II~C m thc 45 lcar hlstory IS thc 

?rcld curxr csactly fiat. Houever, d~lTcrcnces in J lelds of various matunws may bc ncghglblc 

Rather than dclinc the term ncghglblc, thc approach used herc amounts to dlstrlbutmg almost-fiat 

íleId curves into thc othcr catcgoncs 

Scvcral statistzs m Table I illostratc how oftcn thc normal yicid CUTIC occurs Fwst, the 

yicld cwc has been upward sloping over tIro-thlrds of the U~C lnvers~ons occurrcd in only 

ll 15% of thc months and a humpcd curve occurred 13 4% of thc hmc In addmon to thc 

frcqucnclcs of thc vanous shapes, other statistlcal Informaclon pomts to thc tcndcncy of ratcs to 

be incrcasing with maturity. Thc mean of cach of thc four yiclds incrcascs nith maturity, and thc 

yield pcrccnnlcs sccm IO unpiy that thc typical shapc of thc ytcld cune IS normal, except when 

yiclds are hlyh. 
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Thc IICYI group of rcsults Illustratcs thc rclatlonshlp of ~zld volatdit! and maturu!. 

Long-rcrm KIICS ha\c lowcr standard dc\wlons. lo\\cr shcwncss, a smaller rangc of outcomcs. 

nnd hlglxr autocorrclawms than shon KIICS Thus. ON carIu con~ccturc that long-tcrm ~xlds are 

Icss \olntllc 111311 shon-ICrlll r31cs sccms 10 ha\<: sIaIIslIcaI support 

T\ro o~hcr rcsul~s xc u onh pomung OUI I’lrst. short-term mtcs appcar morc posmvcl> 

sLc\\cd than longcr blclds ‘l’hls co”ld mcan 11131 changcs m lhc long-tcm ratc are morc 

~~mmc~rx. or II could ~nd~cak that largc pos~hvc changcs m thc mtcrcs~ ratcs OK morc common 

un ths rhofl-tcrm rmc ‘1 hc sccond pomo 1s that corrcla~~ons bcwccn ! Iclds dccrcasc as thc rntcs 

are funhcr apnn 

Instud 01 loohmg al ! IcId Ic\cIs F~gurcs X Ihrough I I looh at changcs in mtcrcst ratcs 

F~gurc X loohs at IIIC nwmhl! nmc scr~cs of .r~bsoluw changcs in thc onc-)car ! wld ratc Thc Fcd 

pollc\ transwon pcrlod srands ou as an cwcmcl! \olatllc pcwd for shon-tcrm ratcs To gain 

fi~rthcr pcrspcct~~c on thc trnns~~~on pcnod. I:Igurc 0 loohs at rhcsc chnngcs on a rclalnc basls 

Thc cxtrcmc \olard~t! 01‘ thc Carl‘ IOXOs k~scs somc of Its dlstmcuon nhcn \ Icncd on a rcIaII\c 

basls Thc m~phca~~on of F~gurcb X and ‘1 pro\ Idc somc imu~llxc suppon for thc CKLS rcsult that 

~ntcrcst IPIC \oln~lhl! IS rclaud IO thc Ic~cl ofthc mtcrcst ratc N’hcn intcrcst ratcs wrc hlgh. thc 

pcrccmagc chnngcs m J rclds ISCTC nbo”l thc ~nmc 9s thc pcrcrn~a~~c changcs x\hcn mtcs ~crc low 

Flgurcs II) and I ) prcecnt a wn~lar SIOQ for thc IU-ycar ! xld 

To gct a fccl for Ihc \olanllt! OI” IIIIC~CSI TDIC mo\cmcn~s, DC computcd Ihc standard 

dc\latlons of rhs onc-!car nnd ten-!car changcs m yxld. For thc onc-!cx >Icld, thc standard 

dc\ muon of absolutc changcs m thc monthlb ratc OVCT thc cnllrc pcrlod IS 0.47 and thc standard 

dcxlatlon of rcln~~\c chnngcs IS 0 07 As cupcctcd. thc volatlh- of changcs m thc Icn-!car ylcld 

IS slgnlflcantly Icss Thc standard dc\ uuon of’ absolutc changcs UI thc monthl) ten-ycar ylcld 

ratc o\cr thc cnuc pu& IS 0 29 and of pcrccntagc changcs. thc standard dc\ latlon is 0 03. 



The intercst Tate modcls prcscntcd in thls popcr havz bccn mtroduccd m u continuous 

tlme framcwork. Although somc contmuous hmc modcls may lcad IO closcd form solutions for 

simple cash flows such as non-callablc bonds, insurance liabllities are more complicatcd To use 

thc modcl’s dynamxs m msurancc apphcations. such as m DFA. onc must use dlscretc tlmc 

mtcrvals for thc mtcrcst rãtc proccss Thls SCCIIO~ dlscusses how lo translatc thc contmuous time 

proccss mto a dlscretc proccss and thcn ~llustrates thc mtcrcst ratc modcls prcscntcd in this papcr 

through smIulatlons 

As an csamplc of dlscrctvatlon. considcr thc Vasicck modcl Othcr modcls folloa 

dmxtly from thc Vasicck rcsults Rccall thc Vaslcck model: 

By using shon time mtcnals, thc discrctc proccss approslmates the continuous pmcess Morc 

prccisc cst1matcs \rill bc obtamcd through the use of shon tmlc mtcrvals (Tours or mmutes) 

whlch IS most approprtate for trading activitlcs Houcvcr. wvlth inswancc apphcatlons. long-tcrm 

modclmg 1s required and thc use of longer intcrvals (such as monthly) IS morc appropriatc. 

AII modcls prcscntcd hcrc mclude a standard Broanian mo~~on. Random changes in the 

Bro\\n~nn mot~on are bascd on draas from the stand‘ard nomlal dlstrlbution scaled by thc tlmc 

mtcrval Thcrc are IWO popular approaches for gcncrating standard normal distnbutton random 

varIables Thc first method is to takc the avcragc of txclvc umform random vanablcs on the 

mtcnal 10.11 Thc sccond mcthod IS lo translate IWO unlfoml rnndom vnnablcs (u,, u2) accordmg 

10 thc fOllO\\ mg’ 

Thc monthl! IIIICKSI rntc proccss thcn bccomcs (E 1s thc standard normal rnndom variable). 
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WC use this dlscretc approach 10 perfonn monthly slmulations of severa1 intcrcst rate 

modcls Otu goal IS lo gct a feel for how thc modcls opcratc and 10 compare the resultmg 

simulatcd gleld dlstnbutions with thc historical dlstributlon Thc Vawck and CIR modcls are thc 

most straightfonwd to slmulatc bccausc yiclds havc closcd fomt solutions rhat dcpcnd on only 

thc short ratc Also. the slmulatlons are stablc duc 10 thc rncan rc~crs~on dnft rcrm WC slmulatc 

the yicld curve for 10.000 months usmg the parametcr cstimates of CKLS: 

Thc results of the Vasicck simulat~ons are shoxvn m Tablc 2. The shape of thc yield 

curve IS more frcqucntly itncrrcd tban m thc hlstoncal cxpcncncc In fact. thc statistlcs show that 

thc “a\cragc” ycld cunc is acrually slightly imcrtcd. but closc fo bcing fiat. An mspccrion of 

thc pcrccnt~lc staustxs rcvcals that at low pcrccnttlcs (nhcn thc onc-!car yrzld is low), thc ylcld 

WI-K appcars to bc upenrd slopmg. As thc short ratc mcrcascs. tbc cwc is invcncd Anothcr 

note lirom thc shapc frcqucncics illusuatcs rhc rcs~~~ct~ons of thc Vasxck modcl on thc shapc of 

thc ylcld cunc Thc ylcld cune IS normal. mvcrtcd. or humpcd. No othcr shapc IS sccn under 

thc Vawck modcl. Thc standard deuation and pcrcenulc statlstics show that thc long ylelds are 

Icss ~olutilc m thc Vawck model All ytclds are pcrfcctl~ corrclared. as cxpxtcd based on the 

fact thai all j~clds are dcrivcd from thc samc mstantancous (shott) ratc. As csplamcd m the 

presentation of thc modcl. intcrcst ratcs can bccomc ncgatw wth thc Vasicek model. In fact. thc 

first pcrccntllc Is ncgauw 

Comparcd to thc hlstorical ratcs. thc Voslcck modcl IS ncgatwly skcwcd and Icss 

pcahed Tlns can bc sccn in thc skcwncss and csccss kurtow s~at~stics as wcll as b! looking al 

thc dlstrlbutlons of thc onc-year and ten-ycar j Iclds. Thc hlstoncal dlstnbutlons are sho\rn in 

Figures 12 and 13 whdc lhc Vaslcck simulatlon dlstnbutlons are shown m Flgurcs 14 and 15 
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Thc CIR slmulahon rcsults are prcscntcd in Tablc 3. and tbc distrtbutions of onc- and ten- 

ycar ylelds nrc illusuatcd in Figures Ih nnd 17 As m 111~ VaGcck casc. thc CIR modcl 1s morc 

fxqucntlg uwcrtcd than 111 h~stor~cal data (47 6% mìerslons in thc CIR s\mulatton vs. 11.6% 

histoncally). The awragc ylcld cune is imcrtcd but is ciosc fo bcmg fiat. Tbc pcrccntilcs rcvcal 

a partern sim~lx to tbc Vasicek rcsults. Whcn the shon ~atc IS low. !hc curve appcnrs normal As 

the ene-ycar ylcld increases, the yld curxc tnverts Onc dGcxncc from thc Vasicek rcsults IS 

that thc mcdmn yleld curve IS almost pcrfcctly flat Thc ! uld cwvc sbapc is ncver other than 

normal. mvcned. or humpcd 

Thc volatdlb of thc ten-year yield IS lowcr than ~hc onc-ycar ylcld \olatdlty as mcasurcd 

by thc slandard dcwatlon and mtcrq~~ar~~lc rnngc. Also. note that ~ntcrcst ratcs 111 thc CIR modcl 

rcmam posm\c The corrclauons nmong llelds of all matun~~cs xc all I II F~nall\. ~hcrc IS 

posm\c skc\vncss for all ratcs. snd thc value IS closcr to thc Instorical stxl?tlcs than thc Vas\cck 

modcl. Tbc dwibutlon of longcr maruritlcs nppcars more penkcd rclatnc to hlstoncal numbcrs 

(scc hc cxcss kurtosls numbcrs and Flgurcs 13 \s 17) 

G~vcn the populanty of arbltragc frcc modcls. wc prescnt somc shorl wnulat~ons of 100 

months IO scc han dtcsc modcls fùnct~on Bccausc the Hn-l.cc modcl IS thc cw~slm~ xolalihr! 

casc of the HJM model, rve prcscnt a SIIIIUIIIIOII on thc morc gcncral HJM framcnork Rccall 

that thc dnft m an HJM frnmcaork IS â funcnon ofthc volatdiucs. Tbus, uultkc thc Vasuxk nnd 

CIR modcls. the drift is posmvc and tbe in~crcst rarc IS not mean-rcvcrtmg usu1g long 

smmlat~o~~s to gcneratc smooth distnbutlons of yclds IS not posslblc bccause thc cunc nd1 (on 

averagcj contmue lo incrcasc. Raws qwckly bcgm lo dril7 10 “unrcahsuc” lc\cls. Tlic arbmagc- 

frcc modcls nrc uscd to assu~c that thc intcrcst rntc proccss docs no1 gcncratc arbItrage 

opportumttcs m 11x shoti tcmt As tbc mtcrcs~ ratcs are obscn-cd, thc modcl is rccallbratcd nlld 

anothcr sm~ulat~on is pcrfomicd Thus. tbc s~mulauon pcrformcd hcrc uses only 100 months In 

that smtulatlon. thc cndmg yield cuwc is near 13%. dcmonstratmg thc dnft m ihcse typcs of 

modcls 
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Thc TCSLIII- ~llusuatcd hsrc use thc cnurc h~~tor~cal pcrlod of Aprd IV53 to July IVOX as a 

bcnchmarh for con~,,nr~ng altun;1t1\<: modcls Thls cho~cc \\as bascd 01, obtnmmg a largcr 

;tmo~~nt of dxn (cwnlnrcd u 1t11 othcr stud~csl to gcncrntc smoothcr ! tcld dlstributlons. as ncll as 

IO pro\ ~di: somc pcrspccu\c: on IIIICTCSI ratcs o\cr longcr pwodr Hoac\cr. thc changc 111 Fcd 

pohc! 111 IV?‘) prcw~ts :,n ~mportant qucwon rcgsrdmg 1% hcrbcr compnr~so,,s among IIIICTCSI LXC 

IIIWJCIS drc rohust to III<: I’cd’\ shlft 11, focus ‘lo look al thcsc cflccrs a smt1lar a~~alys~s could hc 

pufomlcd xros? dlllkrcnt subpcnods OK powblc brcakdonn nould look at rcsults tmdcr tbc 

IDO dlffcrcnt kdcral Kcscnc pohc~c< Y icld statlstu can bc gcncratcd undcr thc “intcrcst ratc 

,.îqc, pcrhc!” 3nd ;1lso ondcr thc “mllnt~on targct pohc‘ ” Ano~l~cr subpcnod analysls could 

nttc~npt to ~solatc thc tr~~ts~t~on pcnod and compnrc thc prc- nnd post-trnns~t~on pcrtods to 

dctcrnlmc lf thc IICU Fcd polg has afkctcd Ihc undcrl! mg in1crcs1 ratc d! namtcs II should bc 

pomtcd out tlut o~hcr facrorî rna! bc cowrlhuttng to thc d! nant1cs of thc curw ocross any 

subpcrwd nn,71! SIC Far c\amplc. thc post-trnns,t,on cconom! has bccn \cry strong nlth only onc 

short rcccss~~na~ pcnod l’smg onI\ post-unns~t~on stût~st~~s tna! not complctcl> cmbody thc 
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,rul: polclltlal t-or ,“tcrcs, ratc mo\cmcnts Thc mam pomt is that uhen ustng yjcld cuwe 

sta,~st,~s to paramcter,se an ~ntcrcst rûtc modcl. onc should bc awarc of any undcrlying factors 

that nta! bc affcctmg thc dlnamtcs of h~clds and mcorporate judgment in choosing spcciftc 

modcls 

As mcntloncd abo\c. thc parnmctcrs used in rhc s~mulattons wcrc bascd on cstm>ates 

rcportcd by CKLS (1992) and Amm and Morton (1394) Thc CKLS study looks at the period 

from Junc 196-l through Dcccmbcr 1089 Amm and hlorton look at thc pcriod from 19x7 

throogh 1992 Estlmatlon owr dtffcrcnt ttmc plrlods adl morc than likcly gcncratc dlrîerent 

pûramctcrs Thus. onc must kccp m mind thc mtcrcst ratc cnwronmcnt whcn cstimarmg 

paramctcrs from past data for WC m future pcrtods Carc should bc takcn lo cnsurc that the 

potcnttnl mtcrcst ratc dytamtcs are cotwstcm ~ith thc paramctcr assumptions. 

Con chion 

Intcrcst ratc volattllty no\v rcquircs that actuarics mcorporate stochastic intcrcst ratc 

assumptlons mto thc pncmg. forecsstlng. and valuntion proccsscs Thc goal of this paper has 

txcn to prowde a stmplifted introductton to and illustratlon of thcse models Thc focus has been 

on comparmg thc rcsults of simulatmns based on a varicty of stochasúc mtcrcst ratc modcls Htth 

hlstortcal mtcrest rate stattwcs It is hopcd that thls aork hclps casualty achtaries begin the 

proccss of mcorporating thesc modelmg skills mto thctr actuartal toolkits. 
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TABLE 1 
Hisfort’cal Yield Statisfics 

Enhe Period (4/53 - 7/98) 

Yleld Curve Shape 

Normal 68.8% 
Inverted ll .6% 
Humped 13.4% 
Other 6.3?b 

Yleld Statistlcs 

1 Yr 3 Yr 5 Yr 10Yr 
Mean 6.08 6.47 6.64 6.81 
Std Dev 3.01 2.80 2.84 2.81 
Skewness 0.97 0.84 0 77 0.68 
Excess 1.10 0.69 0.48 0.16 
Kurtosls 

1% 
5% 

10% 
25’0 
50% 
75% 
9O”ó 
95% 
99% 

1 Yr 
3 Yr 
5 Yr 
10 Yr 

Auto 

1 Yr 3 Yr 5 Yr 10 Yr 
1 07 1 59 1.94 2.38 
2 05 2 52 2.72 2.90 
2.94 3 38 3.47 3.48 
3.81 4.17 4.24 4.25 
5.61 6.20 6.44 6.68 
7.71 8.01 8.04 8.20 
9 97 10.47 10.63 10.78 

i 2.08 1248 12.59 12.56 
15.17 14 69 14.59 14.29 

Con 

1 Yr 
1.000 

0.988 0.991 0.993 
0.967 0.976 0.980 
0.948 0.963 0.970 
0.932 0.951 0 960 
0918 0.940 0.951 

,elatlons 

3 Yr 
0 985 
1 000 

5 Yr 
0.969 
0.997 
1 000 

10 Yr 
0.944 
0.984 
0.995 
1 .ooo 

0.995 
0.986 
0.979 
0 972 
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Std Dev 

Excess 
Kurtos~s 

1% 
5% 

10% 
25% 
50% 
75% 
90% 
95% 
99% 

1 Yr 
3 Yr 
5 Yr 
10Yr 

Auto 
1 
2 
3 
4 
5 

TABLE 2 
Vasicek Simulation Statistics 

(YO, 000 Simulatiansj 

Yield Curve Shape 

Norma) 41.6% 
Inverted 54.8% 
Humped 3.6% 
Other 0.0% 

Yield Statistics 

1 Yr 3 Yr 5 Yr 10 Yr 
8.81 8.75 8.68 8.52 
3.83 3.24 2.77 1.95 
-0.16 -0.16 -0.16 -0.16 
-0.19 -0.19 -0.19 -0.19 

Percentiles 

1 Yr 3 Yr 5 Yr 10 Yr 
-0.38 0.97 2.04 3.84 
2.33 3.27 4.00 5.22 
3.69 4.42 4.98 5.92 
6.26 6.60 6.84 7.23 
8.94 8.86 8.77 8.59 

ll .62 11.13 10.72 9.96 
13.60 12.80 12.14 10.97 
14.69 13.73 12.94 ll .53 
1722 15.87 14.76 12.82 

Correlations 

1 Yr 
1.000 

3 Yr 
1.000 
1.000 

0.991 0.991 0.991 0.991 
0.982 0.982 0.982 0.982 
0.973 0.973 0.973 0.973 
0.965 0.965 0.965 0.965 
0.956 0.956 0.956 0.956 

5 Yr 
1.000 
1.000 
1.000 

10 Yr 
1.000 
1.000 
1.000 
1.000 

Note: Model parameters from CKLS estimates: R = 0.1779, 8 = 0.0866. 0 = 0.0200 
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Mean 
Std Dev 
Skewness 
Excess 

Kurtosls 

1% 
5% 

10% 
25% 
50% 
75% 
90% 
95% 
99% 

1 Yr 
3 Yr 
5 Yr 
10 Yr 

Auto 
1 
2 
3 
4 
5 

TABLE 3 
Ch7 Simulation Statistics 

(10,000 Simulations) 

Yield Curve Shape 

Normal 47.7% 
Inverted 47.6% 
Humped 4.7% 
Other 0.0% 

Yield Statistics 

1 Yr 3 Yr 5 Yr 10Yr 
a.oa 8.04 7.90 7.86 
2.89 2.31 1.88 1.20 
0.92 0.92 0.92 0.92 
1.49 1.49 1.49 1.49 

Percentiles 

1 Yr 3 Yr 5 Yr 10 Yr 
2.92 3.90 4.62 5.71 
3.95 4.73 5.29 6.14 
4.73 5.35 5.80 6.46 
6.14 6.48 6.71 7.05 
7.71 7.73 7.73 7.70 
9.57 9.23 8.95 8.48 

ll .80 ll .Ol 10.40 9.41 
13.42 12.31 ll.45 10.09 
17.19 15.33 13.90 ll.66 

Correlations 

1 Yr 
1.000 

3 Yr 
1.000 
1.000 

0.976 0.976 0.976 
0.955 0.955 0.955 
0.934 0.934 0.934 
0.914 0.914 0.914 

5 Yr 
1.000 
1.000 
1.000 

0.894 0.894 0.894 

10 Yr 
1.000 
1.000 
1 .ooo 
1.000 

0.976 
0.955 
0.934 
0.914 
0.894 

Note: Model parameters from CKLS estimates: A- = 0.2339, 8 = 0.0808. 0 = 0.0854 
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TABLE 4 
HJM Simulafion Statistics 

(100 Simulafions) 

Mean 
Std Dev 
Skewness 
Excess 

Kurtos~s 

1% 
5% 

10% 
25% 
50% 
75% 
90% 
95% 
99% 

Yteld Statistics 

1 Yr 
7.39 
2.26 
0 51 

-0.88 

3 Yr 
7 51 
2.27 
0 53 

-0 85 

Percentiles 

1 Yr 3 Yr 
4.45 4 48 
4.79 4.85 
5.00 5.10 
5.25 545 
7 48 7.58 
8 65 a 75 

ll 02 11 16 

ll.57 1174 
12.09 12 26 

5 Yr IOYr 
7 60 7 80 
2 32 2 44 
0 54 0.54 

-0 85 -0 86 

5 Yr 10 Yr 
4.52 4 59 
4 90 4.99 
5 13 5.21 
5.53 5.63 
765 7 63 
a 85 9 10 

1130 11 68 
1192 12 38 
1244 12.89 

Correlattons 

1 Yr 3 Yr 5 Yr 10 Yr 
1 Yr 1.000 0.999 0.999 0.999 
3 Yr 1 .ooo 1 000 1.000 
5Yr 1 .ooo 1 000 
10 Yr 1 000 

Auto 
1 0 986 0.986 0 987 0 987 
2 0 969 0 969 0.969 0 972 
3 0 954 0 953 0 954 0 957 
4 0.938 0 938 0.939 0.943 
5 0.925 0.923 0.925 0 929 

Note Model parameters from Amln and Morton (I -0 0485. y =0.5 
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FIGURE 1 
Vasicek Model Yield Curves 
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Parameters: R = 0.1779, 8 = 0.0866, ~7 = 0.0200 



FIGURE2 
Vasicek Model Yield Curves 

CKLS Estimares - Change in Mean Reversion 
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FIGURE 3 
Vasicek Model Yield Curves 

CKLS Parameiers - Change in Long-Term Rare 
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FIGURE 4 
Time Series af Yields 
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FIGURE 6 
lnverted Yield Curve 

August f 973 
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FIGURE 7 
Humped Yield Curve 

July 1970 
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FIGURE 8 
Time Series of Monthly Absolute Change in 1 Year Yield 



FIGURE 9 
Time Series of Monthly Percentage Change in I- Year Yields 
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FIGURE 10 
;rïme Series of Monthly Absolute Change in IO- Year yield 
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FIGURE ll 
Time Series of Monthly Percentage Change in lo- Year yield (Historica0 
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FIGURE 12 
Histoncal 1 Year Yield Dist~butim 
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FIGURE 13 
Historical 10 Year Yield Distribution 
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FIGURE 14 
Vasicek Simulation 

1 Year Yield Disttibution 
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Note: Model parameters from CKLS estimates: R = 0.1779, B = 0.0866, (I = 0.02~~~ 



FIGURE 15 
Vasicek Simulation 

10 Year yied Distribution 
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Note: Model parameters from CKLS estimates: k = 0.1779, 0 = 0.0866. (I = 0.0200 



FIGURE 16 
CIR Simulation 
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Note: Model parameters from CKLS estimates: A- = 0.2339, ~9 = 0.0808, Q = 0.0854 



FIGURE 17 
CIR Simulation 

10 Year yield Distnbution 
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Note: Model parameters from CKLS estimates: A- = 0.2339, 8 = 0.0808, Q = 0.0854 



FIGURE 18 
HJM Simulation 
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FIGURE 19 
HJM Simu/ation 
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Abstract 

Stochastic scenario generators for assets and liabilities are critica1 components of a robust DFA 
model. Vital to any stochastic scenario generation system is the selection of the underlying 
parameters. The process of parameter estimation is second only to model structure in the quest 
for generating reasonable results. If the model is simple, we can use standard statistical methods 
such as maximum likelihood to estimate parameters. However, for very complex models, we 
need to establish criteria for evaluation and fmd the parameters that are best with respect to those 
criteria. 

In this paper, we discuss a parameter estimation system called Ameritan Re-lnsurance 
Company’s Constraint Evaluator System. This system allows modelers to define a multitude of 
targets and to assign a weight to each target to create a comprehensive objective function. Each 
target represents a quality that the model should possess with an assigned leve1 of significance 
(weight). The targets are based on historical analysis or on some rational vision for future 
relationships. We discuss the analysis involved in setting appropriate targets including the 
monitoring of relationships between variables in a multi-period environment. 

Our goal is to minimize the deviation between the user-defined targets and the model output. 
This is a non-convex optimization problem, which we use a combination of techniques to solve. 
Finally, we study the robustness of our parameter estimates as it relates to the number of 
scenarios and the obscrved model outputs. 
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1. Introduction 

Stochastic sccnario generators for asscts and liabilitics are imponnnt componcnts of n robuît DFA 
systen. These generators will forecnst asset and liability distributions over time as part of the 
drvrlopmcnt of incomr statemcnt and balance sheet proJections. Thrsr forccahts are dc\elupcd 
as a collectinn of individual scenarios. Each scenario rcprescnth onc possihlc futurr, and by 
looking at many scenarios. distributions can be calculated at any point in time. Esamplcs of such 
systcms can be found in Berger and Mulvey (19%). Dcmpster nnd I horlaciw (I998), Wilkic 
(1986). nnd Mulvcy and Thorlacius (1998). 

In developing this scenario-bascd approach. modclcrs try to undrrstand hmdamcntal economic 
2nd ass market structnrcs. For csample. when inflation is incrrwing. h(w will thc stock and 
bond markrls rcact? 13~ w~derstandinp fundamental relationshlps, morc rcalistic sccnarios can he 
generntcd. These rclationahips can hc modelcd with mathetnatical equations. thus yrounding thc 
modcl in somc amount of rconomic theory. The dangcr. hwcvcr, is that thc resulting scenarinî 
don’t cxhibit charactcri~tics seen in the markct historicnlly. For in\tance. wc brould not wnnt a 
modcl thnt pr”duccs sccnarios with ncgative intcrcst ratcs. 

After the undcrlqing economic relstionships are determmcd and modelcd. wc control (he cccnnrio 
output by thc sclcction of modcl parameters, called ~rr/rhw/r~~ fhc wo&l. or ~r/i/wo/io~. Model 
paramrrers could include mean reversion levcl for interest rates, volatility Iòr stock returns, and 
espcctcd intlntion yrowth. For simple models, standard statistical methods such as maximum 
likelihood cstimation are approprinte. For complex modck. we nccd to employ morc 
sophisticated methnds tn detrrminc the hect paramckrr. 

Thr cnlibration mcthod described in this papcr allows thc usar 10 bpecify characteristics thc 
scenarios should havc, referred lo as targets. Each target reprcscnts a quality that the scenarios 
should cshibit. such as a range of bond returns over time. and un accompanying level of 
si~nikance (\\eight! The tagcts can he based un historicnl nnalysir or some rational vision of 
l‘uturc relatlonships. We then utilix an optimiration prnccdure to dcterminc best paramctcr 
srttingb 10 meet thc tarpcts. 

This papcr focuses on un economic scenarin generator and the calibration process employcd by 
.American Re-lnsurancc Company hcadquartered in Princeton. NJ. In the ncst sectmn. we hriefly 
describe thr cntire DFA sybtcm. of which the sccnario generation is onc important piece. Yection 
.> lixx~scs on thc cconomic Imodcling s>stem, the different typcs of economic models, and 
characteristics of a good model. In Section 4, we discuss how to set targets for the calihration 
proccss. Section 5 presents an esamplc afthe calibration process, utilizing software developcd 
hy Lake FinanciaI. Some final thoughts are in Section 6. 

2. A Dynamic Financia1 Analvsis Svstem 

Amrrican Re-lnsurance Conrpany’s Risk Management Systcm (ARMS) is an integratcd 
compilation uf models. The system is applied to determine intcrnal capital allocation for the 
i‘ompany. The system is also used to assist both Munich Re’ and Ameritan Re-lnsurance 
Compa+ clients in evaluating and wtting up cfficient re-inburancc structwes. Thc structurr of 
the system is hud nut in Figure 1. 

’ Anvxican Re-lnsurance Company IS a member of the Munich Re Group 



ARMS Structure 

Figure 1. Ameritan Re-lnsurancc Company’s Risk Management System (ARMS) is an integrated 
compilation of models. Historical data from tinancial and economic markets. underwriting decision 

procerses, and insurance market trends are inputs to the system (left). Output includes balance sheet and 
income statements. optinral investment mires and reinsurance structures. 

The Global Economic Model’ generates plausible time series outcomes of future economies 
basrd on user specitications and parameter settings. The user specitications are inputs reflectirtg 
the current economic environment and expectations for long-term median trends. The parameter 
settings are referred to as calibration parameters and those are set via the Constraint Evaluator 
System. 

Each of the economic time series scenarios are fed to the Asset Model as well as the Liability 
snd Re-insurance Model. These two models project different asret and liability classes along 
each economic scenario. It is important to recognize that the economic scenario generator lays 
the foundation for the calibration of the liability and asset models. Although the liability tosses 
are based on fítted frequency and severity distributions (see Hogg & Klugman (1984). Panjer & 
Willmot (l992)), our analysis of loss data shows dependency on inflation for many lines of 
business. Thcrcfore, intlation scenarios from the economic model define the trend in the 
prospectivc severity distributions over time. Simitarty. the prospcctive premium is trended with 
inflation. Any discounting for future pricing purposes is based on output from the economic 
model. WC consider thousands of scenarios for many years in the future and thus develop 
distributions for our undcrlying asset and liabitity returns in a multi-period environment. 

The Busincss hlodel considers the underlying strategy of the business managers. It models the 
decisions we make as the business moves fonvard through time. por example, how witl the 

’ Global Economic Model (GEM) is under development. At the time of writing and for the foreseeahle 
future. the only country modelrd is the United States. 
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business grow if gross margins are reduced by 10% next year? This also includes any change in 
asset altocation or in re-insurance structure. 

The Accounting Framework refers not only ta accounting but also ta tax implications. There 
are severa1 advantages ta separating this functionality Thcy inctude the facilitation of opcrating 
in a multi-counby (and therefor multi-regulatory) environment. 

Wrapped around all this fimctionality is a non-convex optimization engine - the driving forte 
behind the Coostraint Evaluator System. Since each ofthese models must be calibrated in one 
form or another, access ta a non-convex optimization system minimizes traditional trial and error 
attempts ta ensure the reasonability of results. Idealty, we want ta back-test the models with 
historical data and ensure optima1 perfomtancc before we start modeting prospectively. 

Ta better understand the catibration process, we witl focus on calibrating the economic scenario 
generator. A description of tbe generator in the context of previous modeling efforts is in tbe next 
section. 

3. Scenario Generator 

3.1 What Makes A Good Scenario Generator? 

Unforhmatety, there are no agreed upan standards for scenario generation techniques. For some, 
the modet must be a series ofmathematical equations that am solved analytically (e.g.. Btack- 
Scholes option pricing model). Others have a more empirical approach. preferring ta forecast 
frtture returns directly on current and past conditions (cg., vector auto-regressivc and kerncl 
rcgression approaches). 

The Global Economic Model (GEM) scenario generator strikes a balance behveen the hvo. 
Retationships among economic variables are modeted with explicit stochastic difference 
equations and the equation parameters are based on historical data via the calibration process’. 
Thc set of equations is toa complex to llavea clascd form solution. Thus, Monte Carlo simulation 
is utitized to gencrate a multitude of paths (scenarios). 

Ameritan Re-insurance defined the following criteria for the GEM system: 

KI Must be logically defensible - relationships among the economic variables must bc consistcnt 
with economic theory and be statistically defensible given historical data 

o Must produce the proper relationships over time - movements in the economic variables must 
be reasonable across long time horizons and across different time steps. That is, the statistical 
properties ofthe factors must be consistent whether the modet is run monthly, quartcrty, or 
annualty. 

A good modet must be able ta capture risk both within and across time. This can be 
accomplished with a mutti-period modet. As a counter-exampte, the traditional Markowitz model 
is a one-period asset attocation model based on statistical observations of means, variances and 
correlations and as such. the Markowitz model does not address risk over time. One of the key 

’ We could calibrate for pricing pumoscs, but in our experience this does not gcncrate reasonable results for 
lüuture economies. 
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statistics for risk over time is serial correlation (sometimes referred to as auto-correlation) which 
is any time series correlation with itself lagged ene (or more) time periods. 

The Markowitz model also does not create a direct link behveen underlying economic variables 
and the asset model. Thus, the Markowitz model cannot consistently create an asset liability 
framework as there is no direct link behveen assets and liabilities. A more preferable approach is 
to build atr underlying economic framework and then evaluate both assets and liabilities based on 
that framework. As an example, an increasing inflation environment will affect both equity 
markets and certain insurance liabilities. 

Many interest rate models do not build a term structure per SC, but rather build short-term rates 
and short-trrm forward rates. The forward rates imply a tcrm structure ata given point in the 
future, and the term structure implied based on forward rates today can be viewed as the market’s 
expectation of the future yield curve. However, this is not necessarily a good predictor or even 
estimator of future yield curves. 

Brennan and Schwartz (1979) propose using stochastic differential equations to price bonds. 
Thcy start with a model for short-term interest rates and long-term interest rates with some inter- 
dependencies. Based OII these two models. they apply Ito’s Lemma to derive the necessary 
structure ofthe stochastic equations to create a no-arbitrage condition. This is a pricing 
application. 

While the approach vve proposc is similar in some regards, we do not solve algebraically to create 
no-arbitrage stochastic equations. Rather. we monitor thc modeled results for reasonability and 
arbitrage opportunitirs. C‘learly arry model that crcates persistetu arrd sigrriticant arbitrage 
opportunitirs must be questioned. 

Though the yield curve today is a peor prcdictor of future rates, it is reasonahle to assume that the 
short-term rate will co-move to some extent with the long-term ratc, as the long-term rate holds 
informatiotr ahout the future expected values of the short-term ratc. Brennan-Schwarz captures 
this through a joint Gauss-Markov process and this retlects both the pure expectations hypothesis 
and the liquidity prcmium hypothesis. GEM utilizes a similar mcthodology - though employing it 
with forwnrd rates rather than with yields or spot rates. 

Thr Wilkic interest rate model breaks intcrcst rates into two components, sprcitically a real 
interest rate, which tends to be fairly stable, and inflation. which can be quite volatile al times. 
Wilkic notes that equity dividend yields and inflation tend to he highly corrclated. lle virws 
inflation as driving interest rates rather than the opposite. Note, that Brennan-Schwartz does not 
consider inflation or other indicators in a largar economic context. 

Heath-Jarro\r,-Morton (Heath et al., 1990) has received much attention during the past few years. 
Thc HJM model is a more recent extension of the arbitrage-free pricing model. HJM cleverly 
estends thc sinule factor (short interest rate only) to a multi-factor environment (two or thrcc) hut 
the con,plcsity‘i~~creases dramatically. In addition, just because thc market espects a giverr term 
structure irr the future does not hy any means suggest that this is at all a reasonable estrmator of 
the future. Thc markrt changes its expectations ahnost instantaneously and continuously. The 
HJM modcl is bascd on forward rates from which spot rates and yields can be derived. There are 
some advantages to hasing a stochastic model (pricing or strategic) on forward rates. Namely, if 
a reasonable forward ratc curve is modeled. it is likely that spot ratcs and yields look reasonable 
as well. The reverse is not true (Tilley, 1992). 
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The GEM system incorporates ideas from all of the ahove. In addition. we have complemented 
with our own analysis as shown in the pages that follow. 

3.2 Types of Models 

WC distinguish heh\ccn two types of assct modcling approaches. Pricing models are entirely 
bascd on thc notion that any rrsk-frcc profit (above the risk-liee rntc - this is known as arbitrage) 
will bc exploitcd in the markct place until it no louger exists. The very nature of this action 
eliminatcs the risk-free protit. Pricing models generally work in thc risk-neutral world. which is 
pnrtv.xlarly useful for pricing liquid contiugcnt options that cau be replicatcd through other 
vchiclcs that are alco liquid (and can be shorted). Hut ihe rish-neutral approach falls short whcn 
trying to dctcrminc reasonahle returns for asset classes nnd intcrcst rates in gcncral ovcr multiple 
time horizons. Specitically, the inhcrcut assumptions that all assct classes return the risk-free 
rate’ is not satisfactory for a risk management systcm whcrc onc al Icast should have the option to 
spccify diffcrent rish premia for different asset classes. ‘There are also practica1 implications in 
termn 01’“rsploding” lattice models, which require a geometrically increasing numbcr ofhranches 
v,ith incrcasing number of time pcrinds. 

Stratcgic models cousider an almost infirme series of possibilitics. The more scenarios oue 
creates through the Monte Carlo simulation. the more possibilities ene can explore. Thcse 
sccnarios dcpict plausible paths for the future. Somc paths have high cquity returns, somc have 
Icnv rcturns. Somc havc risiug interest rates. Some havc falling intcrest rates. On average. the 
asset class rcturns rctlect the risk-premiums associatcd wuh 111~ economic environments undcr 
which thcy are modclcd. There is no reason that this should bc thc risk-free ratc - just libe in thc 
real world 

I’riciug models give a pricing snap-shot at a point in time ofcertain contingeut claims. Strategic 
modrlr provide a vicw over time that can hc usad to dcsign strategies that manage risk and return. 
Thc GEM system utilizes Monte Carlo simulations. 

3.3 (iloba Economic Modcl 

The Global Economic Model (GEM) is based on a series of stochastic differcucc equations. Thc 
diffcrcncc equatwus havc an underlying structure as graphed bclo\! (IYigurc 2). We adopt this 
structure as a way to capture the complex relationships that the real waorld offers. 

l‘he structurc demonstrates how me model is developed within ench time period. Although thc 
time iucrements in the model are flexible, the default is monthly. Each month the system 
simulates values for ench itcm in accordance witb this structurc. 

We use stochastic differential equations to build our undcrlying tiamcwork. The esamplcs iu 
Figure 3 below show the most basic form of Brownian motion. The “dZ” is a Wiener process. 
which is generared from a standard normal distribution. “l,.’ rcpreseuts the long interest ratc (for 

examplc. thc ene-period 30 year forward ratc) and “I,, ” is thc long-tc:‘m cquilihrium for 1,. “al” aud 
“o,” are calibration parameters. They control the movement and overall volatility ofthe 

stochastic process. a, is often rcferred to as the “mean rcversion parameter”. whilc o, is thc 
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Figure ?. Thc economic Framework underlying GEM. Each variable is modeled via srochastic difference 
equatlons Asterisks indicate variables that could have tinks 10 other countries. 

volatilitg parameter. Note, that we are modeling the difference from one time period to the next. 
This captures the basic notion that economic time series tend to exhibit significant serial 
correlntion over time, while any change in the series tend to be more independently distributed. 
Similar observations apply to the short rafe process shown below the long rate process. 

Figure 3: 

Long interest rates 

tiI, = Ll, (Ir - 1, )df + l,a,dZ, 

Shon interest rales 

dr; = a,(ry -r, )df + r,o,dZ, 

We normatly staTt the procrss with the economic environment today (for prospectivc 
simulations). Specitically, we get lo and the rest of the starting yield curve from publicly available 
data. When calibrating the model jback-testing). however. \+e start the model in theeconomic 
enviromnent that matches the data starting point. 

Gcnerally, we sill define a stable long-tenn economic environment that looks very much like the 
current environment escept for a change in the short interest rate to create a more normal looking 
yield curve. The normal yield curve spread is assumed to be 150 basis point (bp), and short real 
yiclds are assumed to be 200 bp. Based on this information. rve develop our base line simulation 
(“base”). We calibrate to tit our targets to the base. 
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Once the base has been fitted, we change the long-term median assumptions. Clients will often 
want to explore the risk they are facing if the median environment differs from the one assumed. 
What happens if interest rates are most likely to increase ovcr the next ten years? What if they 
are most likely to fall? We can explore all of these options separately or together, and we must 
ensure that the model holds up to thesc stress tests and still generates acceptable results (Mulvey 
and Madsen. 1999). 

4. Settiw Tarpets 

Targets are properties we would like the generated scenarios to possess. The statistic is the actual 
value calculated from the scenarios. To fix the idea, a target could be the average value (across 
scenarios) for the annualized standard deviation of stock prices, such as 20%. The statistic would 
be the calculated average standard deviation of stock prices from the generated scenarios. which 
H’C would hope would be close to 20%. Our goal could be to have the statistic as closc as possible 
to the target. Alternatively, we can specify a range of acceptable values and penalize statistics 
outside the target range. 

Sotne targets we specify are: 

q Arithmetic means 
o Compound means 
o Standard deviations 
o Skewness and kurtosis (though we generally place less weight on these) 
q Tails of non-normal distributions 
LI Minimum and maximum observations 
0 Corrclations 
0 Serial correlations 
o Yield curve statistics 

David Recker of Lincoln National studied US interest rates (Recker, 1995). He uscd the period 
1955 --I 994 and made a number of interesting obscrvations. Bascd on his observations, hc 
developed a number of “stylized facts” that an interest rate model should posscss: 

0 

0 

Cl 

0 

0 

0 

0 

3 

0 

0 

0 

Rates are non-negative 
Rates do not go to zero nor do they go low and stay lo\\ 
Rates do not go to infinity nor do they go high and stay high 
Ratcs ncither increase nor decrease rapidly with signilicant frequency 
Rates have the appearance of a random walk 
Rates have the appearance of mean reversion, ix. whcn ratcs fall they rebound to “normal” 
Icvcls, and similarly when rates rise 
Rates tend to cluster in trading ranges, or narrow bands, before breaking out to a highcr or 
lower range 
Pcriodic movements in rates are not independent, but are correlated to a limited numher of 
prior period movements 
Lcvels of serial correlation tend to decrease with maturity 
Short term and long term rates are highly correlated, but not perfectly correla~ed 
Generally, rates tend to rise and fall together. Thus. shifts in term structure are largcly 
“parallel” 
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O Hipher absolute interest rate levels are associated with higher ahsolute interest rate volatility 
o Rate volatility declines with maturity 
O Y ield curve inversions: 

o Frequency: Less than 16% absolute 
o Infrequent and of limited duration 
o Occur during severe economic stress, geopolitical and/or policy volatility 

o Yicld spreads decrease with maturity, i.c. 1 year - 3 month spread > 3 year - 1 year spread 
nnd so on 

o Correlation hetween increase in CPI and Treasuries declines as maturity increases 
o In general. as rates rise spreads narrow such that the yield curve flattens; and as rates fall, 

spreads widen such that the yield curve steepens 

We designed our model targets IO capture these stylized facts as wcll as othcr calibration targets. 

Cash tends to have a high serial correlation as does inflation. whereas stocks tcnd to have slightly 
negative serial correlation. Even these general observations. however, change over time as is 
illustrated by the example below. 

Example of Target: 

Thc corrrlation between long-term yiclds and intlation has ranged from -35% to 70% 
(Figure 4). 

10 Year Correlation Belween LT Yields and Inflation 

-- 

Figure 4. Historicnl correlation hehveen long-term govemmenr bond yields and inflation. 

How do we set a reasonable target basad on this information? Our target becomes a 
distribution with an ekpected value of 30%.40%. We still create some paths with 
correlation of -40%. but they occur less frequently than paths with 30% correlation 
hetween the two variables (Figure 5). 
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Figure 5. Slmulated correlalion between long-term govemment bond yields and inflation (distribution 
looks “choppy” as only 100 simulations were tun). 

5. Calibration Methodolom 

Calibration targets can be rnonthly. annual or any other time period. A penalty is assigned for 
each deviation from a target. The goal is to calihrate the model to minimizz the assigned 
penalties. AmRe’s Constraint Evaluator System is used in this process. The Constraint Evaluator 
System utilizes a non-convex optimizer developed hy Lattice Financia]. See Berger et al. (1998) 
for an algorithm overview and Berger (1999) for technical information. 

Model parameters are set to initial values using linear multiple regression. We take historicai 
data, set up the difference equation, perform the regression, and utilize the results as the starting 
point for the analysis. 

Calihration Examole #l: 

/lf, =A.hl, +B.AY, +C.Au, +D,,h.AZz” 

Hcref represents the 3-month ene-period forward rate, I represents inflation, Y 
represents the 30 year one-period fonvard rate, u represents the inflation adjusted mean 
reversion process. and dZ is Wiener term and I is time unit. A, B, C, and D are the 
calibration parameters for this difference equation. A controls the effect inflation has on 
the 3 month forward rate and B controls the relationship with the long end of the forward 
rate curve. C controls the rate of reversion. while D reflects the volatility added to the 
stochastic process. 

Regressing this on monthly historieal data from 1974 through 1998 (Figure 6), we get 
(A, B, C) = (0.015, 1.3, -O.OlS}. All parameters have significant t-statistics with 90% 

’ The difference equation offered here is actually a two-pti log-linear process 
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contidence, and the R’ is 58%. D is added after reviewing the residual standard error, 
which is 0.004. The ratio of the residual standard error to the mean is 0.06. Since this is a 
log-linear process, D is 1.06. 

Now wc need to incorporate the regressed results with our simulation goals and simulated 
data. We have a number of criteria that we monitor with respect to the generated time 
series. Is serial correlation high enough for shorter term yields? Are we generating a 
reasonahle number of recessions? Are recessions characterized hy hoth inverted yield 
curves and drops in real GDP? The list goes on to include basic statistics of the modeled 
indicators. 

Wr code our targets and perfonn the following optimization descrihed below. Notice that 
each time series depends on the calibration vector. Specitically, changing the values of 
(A, B, C. D) will give us different time series, as the difference equations change. We 
use our regression as a starting point and we want the calibration vector that comes 
closest to our targets. We run the following optimization: 

In this case, the result is {0.75,0.5, -0.04, I .OS), and we utilize these new values to 
generate the economic scenarios. The main vector changes were: 

u shift wcight from the 30 year rate to inflation to increase the correlation between 
inflation and the 3 month treasury bill 
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o increase the level of intlation-adjusted mean reversion to avoid “tun-away” scenarios 
(tails were overstated using regression scenarios) 

o decrease volatility slightly 

If we had wanted to maintain a closer correspondence with the historical regression 
parameters, we could have penalized deviations from our initial calculated values. In this 
esample. we were more concemed with matching our other calibration targets. 

Calibration Examole #2: 

The optimization (minimize penalties by changing the calibration parameter set - see 
equation above) can be reviewed from other perspectives as well. We take a closer look 
at inflation in the calibration. The starting vectors (cxcept for monetary growth. which is 
at the top of the structure - Figure 2) are all based on linear regressions using historical 
data. In this particular case, we can see from the chti below (Figure 7) that the volatility 
of inflation associated with our staning catibratiou parameters is understatcd compared 
with the historicat data. 

The differences between simulated and historical results are dueto a nnmber of factors. 
There are sources of variation that are not represented in the regressed data. In addition, 
estimating the error term from the regression in terms of difference equations is oftcn 
tricky. Further, statistics such as serial correlation is not monitored through regression, 
and the relationship may not be perfectly linear. In the graph above, we note that the tails 
based on historical inflation are much wider. 

To address this discrepancy, we specify the volatility of inflation as a calibration target 
The historical volatility is 0.33% (3.2% annually) and the volatility from the simulated 

63 



scenarios above is much less. We speci@ the historical volatility of 0.33% as a target for 
the optimization. Afier optimizing, the resulting inflation levels are shown in Figure 8. 
The distribution is now much closer to the historical observations. Note that we were 
able to accomplish this by spccifying only one parameter of the distribution (volatility). 
If this still did not produce the desired results, or if we wish to match more closely, we 
could specify quantiles on the distribution as targets. 

The optimizer helps us tit our model to the available data. Thus, we are able to maintain our 
economic framework, which is consistently applied to our loss simulation and our asset 
simulations. We are simultaneously capturing data we would otherwise only be able to capture 
with more limited methodologics. 

In practice. we work with up fo 245 calibration parameters for the US model though 
approximately 50 parameters capture the main process. Optimizing on all these at once has not 
been practical. Rather, we work our way down the structure shown in Figure 2. We initially 
calibrate the parameters associated with monetary grotith and velocity Then we calibrate 
inflation and so on. 

6. Conclusion 

In this paper, we have discussed the scenario generation component of a dynamic linancial 
analysis s)xtem. The goal is to produce coherent and comprehensive scenarios for use in 
modeling an insurance company’s financia1 position over time. Ameritan Re-lnsurance’s GEM 
system is an esample of a generator grounded in economic theory, but one which produces 
scenarios consistent with historical observations. The calibration process is the mechanism for 
achieving rhis: Model parameters are chosen so that the generated scenarios have statistics 

64 



consistent with user-specified targets. Lattice Financial’s optimization software automates the 
process of determining the best model parameters to meet the desired targets. 
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Abstract 

In order to be complete dynamic financia1 analysis (DFA) models should deal with both 
the amount and timing of future loss and loss adjustment expense payments. Even 
more than asset cash flows, these future payments are very uncertain. 

This paper begins by estimating both process and parameter uncertainty in reserves for 
annulty-type benefits such as available in some automobile no-fault states or in workers 
compensation. Arguably, such reserves have underlying distributions (inherent in the 
mortality models) that may be more easily understood and treated than many other 
casualty coverages. We explore the estimation of both process and parameter 
uncertainty for this example. In the process we derive formulae that can be used to 
model uncertainty in other applications, once the various parameters are estimated. 
Many of the estimation methods covered should generalize to non-annuity applications. 

There IS also a companion of this paper, titled “Modeling Parameter Uncertainty in Cash 
Flow Projections” that provides motivation for the estimates contained in this paper. In 
that paper we discuss approaches to modeling future cash flows and argue for 
separation of parameter and process uncertainty as well as describing methods to model 
them both 

Roger is a Fellow of the Casualty Actuarial Society, a Member of the Amerizan Academy 
of Actuaries, and Consulting Actuary in the Pasadena, California Office of Milliman 8 
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ESTIMATING UNCERTAINTY IN CASH FLOW PROJECTIONS 

1. Inh-oducfion 

There have been a number of papers and articles dealing with uncertainty in loss 

reserve estimates. However, dynamic financia1 analysis for risk bearing entities requires 

more than simply the clistribution of reserves. Also of critica1 importance is the timing of 

those futufe payments and their distributron. 

A simple example may clarify the point. Suppose two insurers, Shorl Ta¡/ Insurance 

Company and Long Ta¡/ Insurance Company are identical in all aspects except for the 

timing of future payments. Both companies are in runoff, both have $1 million in assets 

invested in the bank yielding 3% interest, and both will settle all losses in a single 

payment according to the following distribution: 

Table 1: Hypothetical Distribution of Payments 

Probability Amount 
20% $ 500,000 
20% 750,000 
20% 1 .ooo,ooo 

20% 7.250,000 
20% 1,500,000 

The only difference is that Long Tai/ will not pay this amount for 10 years, while ShoH 

Ta;/ must pay it at the end of this year. Even though both insurers have the same assets 

and face the same distribution of reserves, Short Ta;/ would face insolvency 40% of the 

time while Long Tail will only be insolvent 20% of the time (since 1,000,000 x 1.03 = 

1,030.000 and 1 ,OOO,OOO x 1.03’0=1 ,343,916). Though timing may not be everything, it 

is substantial. 

Thus knowing the distribution of the reserves is necessafy to model the financia1 

condition of a risk bearing entity. but it is not sufficient. Rather, to appropriately model 

the future cash flows we need to know the distribution of payments in each future year 
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In addition, economic conditions and unanticipated changes in cost inflation often impact 

reserves and contribute to the variability in both reserves and future payments as well as 

on assets. Thus, in dynamic financia1 analysis (DFA) applications where economic 

assumptions may be used as a “linkage” between asset and liability models, It will 

probably be necessary to separate the contributions of these economic factors from 

others in modeling liabilities. 

In this paper we will begin with an example of how estimates of the means and 

variances of payment distributions by year can be made. This first example will focus on 

claims involving lifetime payments, such as for certain workers compensation claims or 

unlimited no-fault medical claims. Unlike many casualty claims, the fact that payments 

are contingent on survival actually provides us with an underlying probability sttucture for 

the payments on individual claims and makes discussion of many of the topics we will 

address more accessible. However, unlike many life coverages, the future payments 

are contingent not only on the claimant’s survival, but on uncertain future costs. 

We will then consider how to cany these concepts over to other coverages. These 

concepts also can be useful in constructing models for use in dynamic financia1 analysis. 

2. A Relafively Simple Example 

Suppose our insurer only has a fixed book of life pension workers’ compensation 

indemnity claims and does not need to fund for the medical portion of these losses. 

Further, to keep this first example relatively simple, we also assume: 

2.1 We have mortallty tables that appropriately reflect survival probabilities for these 

claimants. 

2.2 There is no escalation of benefits for individual claimants due to inflation or some 

other index 

2.3 Future annual payments for each claimant are fixed and known. 

2.4 We are not currently mterested in the time value of money (Le. no discounting). 

2.5 The various claimants are statistically independent. 
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Here the expected future payments for any individual claim can easily be calculated 

using a life annuity. Not only can we use the mortality tables to obtain expected costs, 

but we can also use them to review the expected distribution of payments for our 

populatlon in any particular future year. 

To see this we let. 

a,, denote the payment for claimant x in year t in current dollars. 

Pd denote the probabillty that claimant x lives for t years and then dies or otherwise 

exits the claim population. 

It is easy to see the distribution of payments in any future year s is given by: 

Table 2: Payment Distribution for a Single Claim 

Probability Amount 

ZP.! a,, 

l-TP., 0 
I-I 

From this it IS easy to see the payments in year s, have expected value 

(2 1) 4x,) =a13Cp,, 
I-S 

and variance 

Var(X,) = E(X:) - E(X,)2 

(2.2) 

This is the result we would expect from the binomial distribution for the payments in year 

S. 

73 



In addition, from our assumptions we see that the future payments for this claimant will 

have a discrete distribution with payments totaling iars , occurring with probability p,, 
*:, 

Thus the total expected future payment for this claimant is given by: 

(2.3) 

The second is simply the total expected payments in each future year. 

Similarly we can also calculate the variance. 

Although this formula may not be immediately obvious it is not diffiwlt to derive. We 

show the derivation in Appendix A. 

Thus for a single claimant we can easily obtain the distribution of future payments, its 

mean and variance as well as the distribution of payments in any future year. We can 

still explicitly determine the distributions for multiple claimants, however, the calculations 

become more complex (such calculations may be necessaty if, for example, reinsurance 

attaches on a per incident not per claimant level). For example, for two independent 

claimants. x and y, the payments in year s have the following discrete distribution: 

Table 3: Payment Distribution for Two Claims 

We could derive a similar table for the distribution of total future payments for two 

claimants. Rather than having simply four separate points, the resulting table would 

74 



have nxm points where n denotes the number of future years having non-zero 

probabilities for claimant x and m the number for claimant y. Although we can exactly 

calculate the resulting distributions for many claimants. the resulting exponential growth 

in size makes such calculations prohibitive. 

On a practica1 level, however. the problem of combining two disttibutions is simply one of 

calculating the aggregate loss distribution for two distributions. Heckman 8 Meyers[l] 

provide one means of performing these calculations, Robertson[Z] gives another. 

We can also approximate the aggregate distribution of the drscrete distributions 

iteratively. We first calculate the aggregate distribution of two distributions exactly, 

resulting in mxn cells. We then compress this large distribution to. say, m cells and 

repeat the process with the next distribution. Straightforward combination of cells will 

usually result in a reduction in the variance in the final distribution tiile maintaining the 

mean. The following is an example of this approach. 

Consider the two distributions 

Table 4: Distributions for Convolution Example 

Variable 1 
Probability Amount 

0.60 100 
0.40 300 

Variable 2 
Probabilitv Amount 

0.20 250 
0.80 500 

The resulting aggregate clistribution is: 

Table 5: Distribution of the Sum of Variables 

Probability Amount 
0.12 350 
0.08 550 
0.48 600 
0.32 800 

A possible compression of this aggregate distribukon is: 

Table 6: Collapsed Distribution of Sum 

Probability Amount 
0.20 430 
0.80 680 
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Here 0.20=0.12+.0.08, 430=(0.12x350+0.08x550)/0.20, and so forth. Note the expected 

value of 630 is preserved in the compressed distribution but the variance of the exact 

distribution is 22,240 while that of the wmpressed disttibution is 10.000. There is some 

flexibility in this method, however, in that the algorithm used to combine the cells could 

take into account the purpose of the modeling. For example. if the interest is in 

probabilities of high loss amounts. then we could maintain more detail in the “tail” of the 

distribution by combining more cells with smaller loss amounts with less combination of 

higher loss cells. In the above example, the following is another compression: 

Table 7: Alternative Collapsed Distribution 

Probability Amount 
0.68 550 
0.32 600 

The mean IS again preserved but the variance is now 13,600, closer to that of the exact 

distribution. 

Another possible approximation would be to assume that the aggregate distribution 

follows a smooth distribution with a limited number of parameters. We could then “back 

into” the aggregate distribution making use of moments of the true aggregate 

distnbution. For this, however, we need to be able to Calculate those moments. For our 

simple example, however, the calculations follow very simply from (2.3) and (2.4) if we 

assume that individual claims are independent from one another. Given the fact that the 

distributions are based on survival probabilities, and our assumption that the 

probabilities themselves are correct, this is probably not too restrictive in practice 

In this case, letting T denote the random variable wrresponding to the aggregate 

distribution. we see that, assuming we have N claims. the expected aggregate loss IS 

given by: 
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(2.5) = t E(X, ) I-7 

Similarly, because we assumed the claims are independent. we can calculate the 

variance for the aggregate distribution as 

Var(T) - Var 2 X, 
t 1 / 1 

P.6) = 2 Var(X,) 
,~l 

Similar calculations based on (2.1) and (2.2) will give LIS the mean and variance of the 

total expected annual payments: 

(2.7) 

(2.8) 

Var(T,) = Var 2X3 
t 1 i-1 

= CVar/X, j 
,‘I 

We note we can calculate the exact distribution for payments in any particular year as 

with the aggregate distnbution for the total. However. in this case, there will “only” be 2N 

cells in the distribution. Again. we could use a compression algorithm to obtain 

approximate distributions. 
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3. Introducing Some Uncertainty 

The problem thus far considers only random fluctuations due to the fact that the exact 

time of exit from the claimant population is unknown. We have assumed that all other 

aspects of the problem are known. In short. we have only discussed process uncertainty 

thus far, i e.. that uncertainty remaining in the situation even if the process itself is known 

with certainty. 

In the real worid models used are generally approximations of the underlying process, 

sublect to uncertainty either In their parameters or even whether or not they are 

appropriate. In this section we begin to introduce uncertainty into the assumptions from 

section 2 

The first restriction we will relax will be the assumption that underlying survival 

probabilities for IndIvIduaI clalmants are known. In reality payments will often be 

contingent on the survival of an individual who is already injured and whose injuries may 

significantly impair chances for continued survival. Thus it may not be appropriate lo 

use standard mortality tables to determine the survival probabilities. It is possible that 

the tables that are used witl be modified or based in some way on populations of injured 

claimants and thus subject to estimation error. 

In addition, it is possible that a claimant will sufficiently recover from his or her injuries so 

as not to require additional payments from the insurer. Thus exit from the population 

could occur for reasons other than death. We may need additional modeling to study 

the effects of such recoveries on exits from the population by claimants. 

Since most such analyses focus on the mortality in a year, we let 

9,r denote the probability that claimant x will die in year t. given survival through year 

t-1. 

These are the standard mortality probabilities. In terms of the p,, variables defined 

above we have (possibly mixing notation somewhat): 
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I-1 
Pd =9z.,n(l-9..,> 

,=o 

(3.1) 
I-1 

= (l-(1- s,*,>,~<l-%*~~ 
,=O 

,-1 
=l-J-9”.~~-fil-s,.,) 

Very conveniently. these collapse in the sum to yield: 

In addition to allowing uncertainty in the survival probabilities we will also aliow the 

annual benefits to change over time with economic conditions and allow for discounting 

of the reserves. as would be the case for the medical portion of workers’ compensation 

or certain automobile no-fault benefits. We will allow the combined economic effect of 

inflation and discounting to be uncertain. Finally we will allow for some uncertainty in the 

annual payment estimates for individual claimants. Specifically we will relax our various 

assumptions to the following: 

3.1 The relative survival probabilities among various claimants are known, however, the 

absolute probabilities are based on an analysis of n exposures. Analytically, we 

assume that there is a random variable y and constants 9:, , such that for all x and t 

values: 

(3.3) l-9,, =(1-9i)Y 

3.2 The a,, values are stated in current dollars. There is escalation in those amounts 

between time t-l and time t in the amount of 1+ 4. This escalation will be the same 

for all claimants but may vary from year to year. The 1+ f, amounts are not known 

with certainty. 
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3.3 The present value of 1 at time t-7 is 1+ v, at time t. The l+v, amounts are not 

known with certainty. 

3.4 There is a random variable u and constants a:, such that for all claimants x and time 

t, the following holds: 

(3.4) a,, = a:,u 

3.5 The various claimants are statistically independent. 

3.6 There are random variables w, and constants f,*, and v; such that, for all I values: 

(3.5) 
l+f,’ lcf; 

1 + v, 1+v; / 

The variable y in 3.1 could be considered as a global load, reflecting the uncertainty In 

estimating the overall closure rate from experience. We recognize that this does not 

consider the uncertainty regarding the relative closure probabilities. For example. It is 

likely that younger claimants will expenence a greater reduction in survival chances due 

to the injury causing the claim than older claimants will. Thus, except in the simplest 

situations, the variable y probably should not be considered as a mortality load, but 

rather a global uncertainty parameter. 

We can estimate the degree of uncertainty arising from the sample size of n life-years 

used lo estimate the survival or closure probabilities. For this we use sample theory and 

an application of Bayes’ Theorem In fact, if we assume: 

1. The random variable y has a binomial distribution with expected value 8. 

2. The random vanable Uitself has a uniform distnbution between 0 and 1 (i e we have 

no prior knowledge of the appropriate value of a). 

3. Our sample size is n 

4. We observe z claims remainlng open after one year from our sample 
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If we make the more general assumption in 2 above that B has a beta distribution with 

parameters a and p it turns out that Ogiven the observations has a beta distribution with 

parameters z+u and n-z+fl. We show thts in Appendix B. In particular, then. 

(3.6) 
=r(z+a)r(nmz+p) 0 

+.d(, -u)n-h-l 

T(a+p+n) r(2 + f + a)r(n -z + p) 
=r(z+a)rjn-z+p) r(atrtp+n) 

r(a+ptnjr(z+r+a) 
= r(z + a)r(a t r t p + n) 

Thus, in particular, 

(3.7) 

E(ojzj = ~~~~fl+~~::~~~i 

r(a + p t n)rjz +a)(z ta) 
r(z+ajr(a+p+n)(a+p+n) 

zta 

a+p+n 

Thus we have: 

Now, the special case we will conslder is no preferente In the prior distribution for 0 

This IS simply a special case of the beta distnbution with cx = p =l. In this case we have 
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(3.9) 
n+2 -c 1 ' r(n +2)r(z+ r+l) 

z+l r(z+i)r(f+n+2) 

= jj(n +2)(z+i+l) 

,=o (zt l)(n ci +2) 

The last equation follows from the recursive properties of the gamma function and 

makes calculation easier in practice In terms of the survival probabilities we have: 

E,[~p~,)=E~,[~(l-9,.,)) 

( 

m-1 
=Ec,.Q(l-9;+,)~ 

1 

= E,(ym~(1-9:.;)) 

(3.10) m-1 

= E,,(vm)Q(7-9:.,) 

=L 

= $n+Z)(z+i+l) .z(,m9. 

i 
~___ 

1 .,~,(z+l)(nc1+2) ,0‘ “’ 
) 

As one would expect. the first term in the last product tends to unity as the sample size n 

becomes large if 

(3.11) lim~=O n-b- n 

for some value 0. The proof is shown in Appendix B 

Assumptions 3.2 and 3 4 deal wlth cost escalation and discounting and 3.6 relates the 

two We assume that the combined impact of inflation and discounting is uncertain with 

the variables w, providing that uncertainty. 
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Finally we will modify the assumption that all future payments (at curient cost levels) are 

known to one wherein there is “global” uncertainty regarding future payments. This is 

reflected in the variable u. 

For simplicity we will assume that the variables w, and u all have independent lognormal 

distributions, and that the distribution for the various wI have the same means and 

variances. In particular we will assume that all these variables are independent and: 

(3.12) 
u - lognormal(-t~‘,<r2) and 

w, -lognormal(-+r’,r2) for all t. 

Here and throughout this paper we will use the normal-transformed parameterization of 

the lognormal distribution. For example. (3.12) assumes that the normal variable In u 

has a normal distribution with mean -~LT> and variance &. More generally when we 

w 

(3.13) x - lognormal(/l, CT*) 

we mean that the random variable x has the probability density function 

(3.14) f(x) = 
xaJ2IT 

With this parameterization. then we have: 

(3.15) 

E(x) = ex& + +2j 
Var( X) = exp(2,u + c2)(exp(a2) - 1) 

c.v.(X) = 
Var(X) r- q$=JGvp 

This last relationship shows that, with this parameterization, the coefficient of variation 

(rabo of standard deviation to the mean) depends only on the u’ parameter. 
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It could be argued quite convincingly that u would not be the same for all claimants or for 

all years. That is clearly a refinement to the methodology we present here. However. to 

keep the calculations to a manageable level, we have elected to make this simplifying 

assumption here. However, the assumption of lognormality for the economic variables is 

probably much more plausible, although the assumption of constant variance may be 

somewhat restrictive. In both cases, here, we note that the expected values of both 

distributions are unity. that is both u and the w, variables are assumed to represent 

random shocks to our overall expectations 

We are now ready to calculate the mean and variance of the total populatlon reserve. 

The calculation makes repeated applications of the following relationships that hold for 

independent conditional dlstributions: 

(3.16) 
E(Z) = E:(E(Z(C)) 

Var(Z) = E,(VarfZ({)) + Var.(E[Zl<)) 

In this case we assume that the distribution of the random variable Z with probability 

density function f(z.9 that depends on a parameter < which itself is a random variable 

with probability density function g(,3. These assumptions result in the following formulae 

for the mean and variance of the total distribution: 

(3.17) 

In these formulae we have taken 
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(3.18) 
’ l+f’ 

b:, = a;, n d 
s 11+v; 

These are the present value of future payments wlthout consideration of uncertainty or 

the probability of payment. As a practlcal matter, the value of u7 IS not needed In the 

detailed calculations. We can calculate the various terms in (3 17) that involve IndIviduaI 

claim informatlon separately. and then include the value of O? in a fairly simple 

calculation 

If. now, we assume that there is no uncertarnty in any of the estimates then o = r = Cl 

and the expectations of all powers of y are 1 (infinlte sample size) the first three terms in 

the vanance sum vanish leaving 

Here. and throughout this paper, we use the term “Certainty” in the formulae to denote 

the sltuatlon where there IS no parameter uncertainty. We use this shorthand to help 

keep the formulae as simple as posslble. 

Thus incorporating unceriainty regarding the closure rates adds to the expected value of 

the total With this we see that E(T) WIII equal the reserve estimates calculated by the 

model If the survival rate were based on an infinite population, otherwise said, If we are 

certaln about the annual survival rate. 

If we defme 

(3 20) p;, =&,:J 
5 0 

Then this last formula becomes the standard variance formula 
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The actual calculations in deriving (3.17) are quite lengthy and are contained in 

Appendix C. Simllarly we have the following formulae for the mean and variance of 

payments in year s. as shown in detail in Appendix LI. 

Although, to maintain some simplicity we have not substituted from formula (3.9) in the 

variance formula in either (3.17) or (3.22). both formulae. with this substitution. no longer 

depend on the conditional variables It can be easily seen that in the case of no 

uncertainty (1.e. 0 = r = 0, E(y’ ) = 1) the formulae in (3.22) reduce to (2.7) and (2.8). We 

also see that the expected total reserve in (3.17) is simply the sum of the expected 

payments by future year from (3.22) However. as we would expect. the variance terms 

are much less comparable. This IS due to the nature of the dependencies we introduced 

with some of the uncertainty variables 

Thus, for the relatively simple case of known lifetime care claimants we can calculate the 

mean and vanance for both the total reserves and the payments in each future year. We 

can incorporate at least some parameter uncertainty in these calculations. 
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In short, these calculations provide a way to estimate the mean and variance of e 

reserves, including a potential provision for uncertainty in the case estimates as 

evidenced by the parameter u, but do not consider uncertainty regarding claims that are 

incurred but not reported. lt also does not consider reported claims that are not yet 

recognized as potential lifetime care claimants or for which there is not sufficient 

information available to establish estimates of future claim and medical costs. 

4. Additional Areas of Uncwtainty 

We consider three categories of claims 

1. Those having annual cost estimates with case reserves calculated using the annuity 

model described in sections 2 and 3 above. 

2. Claims reported but for whtch annual cost information is not yet available, and 

3. Claims incurred but not reported (true IBNR). 

Continuing with our development we have implicitly incorporated additional development 

in case reserves, along with ~ts corresponding uncertainty, in the estimates in section 3. 

Thus there is increasing uncertainty as we move through these categories of claims. In 

the first instance we have information regarding individual claims with uncertainty 

regarding inflation. investment, exit from the population, and some uncertainty regarding 

the accuracy of the annual cost estimates. All these elements of uncertainty are present 

in the second category along with additional uncertainty as to the overall average for the 

claims themselves. Finally the third category incorporates all this uncertainty as well as 

uncertainty as to the number of claims to ultimately be reported. 

In order to reflect this uncertainty we will use the following notation. Let: 

NR denote the number of claims having annual cost estimates 

NB denote the number of reported claims without specific annual cost estimates 

A denote the expected number of IBNR claims 

x denote a random variable with Ek)=l and VarCy)=c 

P denote a random variable with EM=1 and Var(J)=b 
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Y denote a random variable with E(y)=a and Var(y)=d 

6 denote a random variable with E(Q=r and Var(i)=z 

With this notation. we will use a modification of Algorithm 3.3 from the Heckman 8 

Meyers[l] paper 

1. Select claims with case reserves, X,. X,. .._, X, 

2. Randomly select a value for x. 

3. Randomly select N from a Poisson distribution with expected value 1~. 

4. Randomly select independent claims X,+,, X,.,, . . . . X+N,.N from the same 

distribution having the mean and variance equal to that of the case reserved claims. 

5. Randomly select values for ,& < and y 

6. Calculate the aggregate reserve as 

Here x incorporates uncertainty regardlng the clatm count estimate, p global uncertainty 

regarding the overall estlmates. < additional uncertainty and scaling for known but not- 

case-reserved claims, and y addttional uncertainty and scaling for IBNR claims. We will 

assume in the following, that clalms other than those with case reserves, except for the 

scallng values a and r, will have the same mean and variance as those with individual 

case reserves. 

If we consider the case where there are no IBNR claims and that we have case reserve 

estimates for all claims, (4.1) becomes: 

(4.2) T=& 
i?l 

From this we can calculate the mean as: 
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(4.3) 

= E,($E(X,) = cE = N,E(X) 
1 1 , I 

Since we are assuming all the claims are independent, this last term denotes the 

expected claim costs wlth no parameter uncertainty Thls can be calculated using (3 17) 

by letting the sample size tend to tnfinity. Now if we let all the uncertainty above be 

expressed in the parameter p, then we have 

WG 1 = E,j(Var(JRIP)) + Var,,(%IP)) 

(4 4) 

=E,.~,~‘Var(~X,))+Var,,(~E(~X,)) 
-,(,‘i,,r!~X,]tVar,,~~~E~~X,~ 

=(Var,,(pj+E,,(p’)2)Var TX (, , 

= (b + l)Var(J,lCertainty) + bE(J,ICertainty)* 

Solving for b we obtain- 

(4.5) b= 
Var(J,) - Var(J,ICertainty) 

Var(J,jCertaintyj + E(J,Jcerti 

We can then use (3 17) or (3 22) to derive a value for b that will explicitly Incorporate 

parameter uncertainty into thls algorithm. Assumlng, in addition, that estimates for the 

second and third claim categories depend on case reserves, we are able to quantify a 

level of global uncertainty inherent in the estlmates 

We use calculattons slmllar lo those led us to the mean and variance estimates In 

Appendices C and D to obtain the following 

89 



E(T) = (NR + rN, + ad)E(T,ICertainty)/N, 

q J ,Certainty)* 
R 

These are shown in detail in Appendix E 

Thus, under the above assumptions, we can express the mean and variance of the 

distributlon of total claims in terms of the mean and variance of the distribution of case 

reserved claims, without parameter uncertainty, and the various parameters spectfied 

above 

On review of that analysis we see that we did not specifically assume that the 

calculations were For total reserves. Thus a similar formula holds For payments in a 

particular year: 

E(J,) = (NR + rN, + aA)E(J,,ICekW)/N, 

N,(z + ?,)+(d +a’)A 

NI? 
Var(J,,ICertainty) 

(b+lj((d+a*XA+ck)+lid+zNi)+b 

NR2 

Inherent In these calculations is that we can use the same uncertainty variables for both 

the aggregate reserves and For the payments in each year. 

We note that, although the genesis of (4.6) and (4.7) were based on a book of life- 

pension claims, there is nothing In the derivation that requires such a book. IF we can 

separate our reservlng problem Into the three categories above and are willing to make 

the assumptlons indicated above, we can calculate the variance of the aggregate 

distribution. 
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5. Estimafing the farameters 

We will consider parameter estimation in two phases, we will first address the b 

parameter and then the remaining ones. Again, the discussion will begin wlth the life 

annuity model and then move to potential For generalization. 

5.1 Esfimafing fhe b Parameter 

We have already hinted at an approach that we could use to estimate the b parameter. 

Using (4.5) all we need are estimates of the variance of reserved claims with and without 

parameter uncertainty. The estimate without parameter uncertainty Follows directly From 

the annuity calculations as given in (3.19) or (3.21). Using (3.17) and the assumptions 

going into that estimate we can derive an estimate of the variance For claims having case 

reserves if we can estimate: 

E(y? Uncertainty regarding the mortality assumptions 

2 Uncertainty regarding (composite) economic estimates 

Uncertainty regarding the annual cost estimates 

5 1.1 Mortality Considerations 

There are other practica1 issues in the use of mortality assumptions, especially in usual 

applicatlons in property and casualty insurance. In almost every situation property and 

casualty claimants eligible For lifetime care will be physically impaired in some manner, 

either by trauma or disease. Often one may expect the impairment to affect the 

claimant’s Future survival chances as compared lo the general population. In addition. 

we could expect different injuries to have different effects on survival probabilities. 

There has been substantial research on the effect of spinal cord injuries on survival 

rates. As opposed to head trauma, spinal cord injurtes are relatively easy to categorize 

and are relatively uniform from patient to patient. and generally do not change during a 

claimant’s life. For example, the Following table. attnbuted to the National Spinal Cord 

Injury Statistical Center, University of Alabama at Birmingham, shows differences in Me 

expectancies for various levels of spinal cord injury[3]: 
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Table 8: Life Expectancies by Age and Spinal Cord lnjuty 

Life Expectancy 
Motor 

Function 
Current Ventilator High Low at Any 

Age Normal Dependent Tetrapleclic Tetrapleqic Paraplegic Level 
20 56.3 19.9 32.8 38.6 44.6 49.0 
30 46.9 15.9 26.0 30.7 36.7 40.5 
40 37.6 12.4 20.9 23.6 28.8 31.7 
50 20.6 9.3 15.5 17.0 21.2 23.4 

We have not been able to locate similar statistics For traumatic head injuries. Analysis 

For such injuries are complicated by the fact that head injuries are more difficult to 

categorize than spinal cord Injuries and, in contrast to spinal cord injuries usually 

identified by the location and degree of lesion in the spinal column. In addition, the level 

of severity of a head injury can change substantially during the course of treatment 

Other property and casualty claimants could have still different mortality profiles. For 

example. a back injury though disabling a person from employment, may have little or 

no effect on that person’s Future life expectancy. Conversely, hearl conditions or stress 

related illnesses could have a substantial impact on future survival chances. 

Compounding difficulties are the effects of medical treatment on the claimant’s survival 

chances, especially in situations where there is no limit on the amount that can be 

expended For medical treatment Thus. unlike many situations where mortality is a 

consideration. the appropriate survival Functions are often uncertain. 

For this reason, it may be useful to consider construction or modification of mortality 

tables to reflect the injured populatlon. In this case the table could be based on a Fairly 

small sample. though could still produce reasonable results. In this case Formula (3.9) 

gives an estimate of E(y”) under the assumption that uncertainty in the mortality table is 

uniform across all claimants and ages and depends only on the sample size used in 

estimating the mortality table and the overall average mortality For the population. 

However. the considerations above would seem to indicate that (3.9) may only produce 

a lower bound on the level of uncertainty inherent in the selection of mortality 

assumptions. 
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5.1 2 Uncertainty in Economic Assumpbons 

We note in (3.5) and (3.12) we have made the simpliFying assumptions that the net 

discount rates (ratio of annual cost inflatron to annual interest rate) are rndependent From 

year to year. In additron. we assumed that the distributlons of the rates In each year all 

have the same coeffflcrent of variation 

There has been much attention recently devoted to modeling economic scenarios in 

conjunction with dynamic Financia1 analysis, For example Daykin et.al.[4] If we were 

using such models one could estimate the value of ? using the results of those models 

Although the models can be quite complex, actual economic conditions have 

experienced some rather spectacular swlngs, even over the past twenty to thrrty years. 

For example, the hospital room component of the U S. Consumer Price Index For Urban 

Wage Earners (CPI-W) increased by 15.7% dunng 1981 and by only 3.5% during 1998 

Interest rates also expenenced similar swings during that same tlme with the average 1 

year United States Treasury 8111 moving From 14.8% in 1981 to 5.5% in 1998 

We could also use this histonc volatikty to estimate ?. For this we review the historical 

volatility In the quantity: 

Here we use f,. to denote the annual change in the medical care cost component of 

the U.S. Consumer Prrce Index for Urban Wage Eamers measured From month t-12 to 

month t and Y,* to denote the average yield For 1 Year U S Treasury Bilis during month t. 

Of course, IF we assume that claim costs would experience a different market basket 

than medtcal costs in general then we would re-weight them accordingly. 

We also somewhat randomly selected the 1-Year U.S. Treasury Bill rate for this 

example. Again, unique characteristics of the company’s investment portFolio may 

dictate a different measure For investment return. These values should be illustrative of 

the degree of variatron we could expect in our appkcations The Following graph shows 

values of (5.1) for each month from Apnl 1953 through July 1997. 

93 



Figure 1: Relative Real Retums 

Rdo of Change in Medical CPI Divided by 1 -Year T-Bill Rate Minus 1 

Since we have assumed that uncertainty in future net discount will show a lognormal 

distortion we can estimate the ? parameter as the variance of the natural logarithms of 

the amounts in (5.1). plus 1. In this case the result IS i = 0 000457. 

57.3 Uncerfatainfy in Cosi Assumptions 

The third area of uncertainty reflected in (3 17) deals with the fact that afl, the annual 

payment amounts in current dollars, may themselves be uncertain. In workers 

compensation claims the indemnity amounts are often specified by statute. so the 

amounts of those payments for life pension cases may not be subject to change. 

However. one would probably not expect the same degree of certainty in medical 

payments either for workers compensatlon or no-fault benefits. 

As noted In Section 3. Introducing Some Uncwtainty, we have assumed that claim 

annual cost estimates in current dollars have the same uncertainty distribution as 

reflected by the random variable u. In addition to u, the (present value of) annual 

payments are also affected by the w, random variables From a practical viewpoint. this 

effectively separates two factors that affect the accuracy of estimates of future costs; 

unexpected levels of inflation (andior Investment return) and actual costs (or services) 

differing from what had been expected for reasons other than economic conditions. 
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This dichotomy suggests a way to estimate the parameter d. We could compare actual 

annual payments with the forecasts made in previous analyses, after adjustment for 

trend in the form of some index reflecting underlying cost changes. The following table 

provides an example of such an approach. 

Table 9: Actual VS. Expected Payments 

Payment Forecast Annual Payment 
Year ye&f Actual Estimated InlAIE) 

1 0 $ 50,000 $ 45,000 0.1054 
2 0 40,000 35,000 0.1335 
2 1 40,000 45,000 -0.1178 
3 0 30,000 25,000 0.1823 
3 1 30,000 35,000 -0.1542 
3 2 30,000 30,000 0.0000 

Average 0.0249 

In this example. for a single claim, we have actual payments of $50,000, $40,000, and 

$30,000 in each of the first three years of a claim. In the first analysis (at the beginning 

of year 1) we estimated payments of $45,000, $35,000, and $25,000 Vended to future 

levels using the selected cost index. The second analysis we adjusted the forecasts for 

years 2 and 3 to $45.000 and $35,000 respectively, while for the third analysis we 

estimated $30,000 for the third year. 

Since the sample mean of the natural logarithms is the maximum likelihood estimator for 

the first parameter of a lognormal distribution in our parameterization, and the sample 

variance is a minimum variance estimator for the second parameter, we could use the 

sample variance for as an estimator of the C? parameter. We note here that the average 

does not satisfy the relationship assumed in (3.12). In particular the expected value of 

the resulting lognormal variable is not unity. Hence our estimates are biased and we 

should adjust the forecast estimates to remove this indicated bias. Such an adjustment 

would leave the 4 parameter unchanged. 

This approach ignores any “aging” considerations. For example. one would expect 

short-term forecasts to be more accurate than long term enes. all other things being 

equal. In addition, the longer-term estimates can-y less weight in the reserve forecasts 

due to discounting for mortality if not for investment income. 
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Also, for medical payments on seriously injured claimants, one would often expect 

payments in the first years after the accident to be much higher than those in later years 

after the claimant has medically stabilized. In addition, it could be argued that payments 

rise during the time just before a claimant’s death. The approach we outlined gives 

equal weight to all forecast errors in estimating the $ parameter. It does, however. have 

the appeal of a direct comparison of actual versus expected results 

An altemative approach would be to consider the development of claim estimates over 

time In such an approach, as in usual incurred loss development, annual cost 

estimates are gradually replaced by actual payments over the development period. If we 

take this approach we must keep in mind that we want to separate economic influentes 

from the measurement of movement of claim costs over tlme. 

One such approach would involve recalculating all expected incurred losses each year. 

replacing expected future payments with actual payments in the annuity calculations and 

reviewing the development. This would be the most consistent way to handle changes 

in economic assumptions in the valuations. However. it could be quite time-consuming, 

especially in situations where there are many claims evaluated over many different 

development periods, not to mention the need to maintain records of past annual cost 

estimates for indlvidual claims 

There is an approximatlon, however, that would allow for the separation of changes in 

economic assumptlons from development in estimates from other causes At this polnt 

we only consider claims having annual cost estimates, slnce we are trying to quantify the 

uncertainty in those annual cost estimates. Thus we do not want the development 

patterns we obtain to be influenced by emergence of new claims, hence aggregation by 

accldent period would not be useful. 

This may suggest grouping by report period. However. in that grouping there could be 

claims reported but which do not yet have individual annual cost estimates attached. 

The manner in whtch reserves are set on those claims could influente the review of 

development on claims having annual cost estimates. Hence report period grouping 

also seems to be lacking for this purpose. 

We thus conslder a third alternative, akin to report period. For this we group claims by 

the period in which they are first case reserved. calling this a reserve period grouping In 
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the case that there are no ‘Yormula” reserves for known claims. this alternative would be 

equivalent to a reporl period grouping. 

Once claims are grouped in this fashion, we can consider the development of expected 

incurred losses (calculated using the annuity approach of (2.3)) on fixed groups of claims 

using a development array format. However. we are faced with severa1 additional 

difficulties if we wish to focus on the movement and variability in the individual annual 

cost estimates (the focus of the (3 parameter). Those difficulties arise because our 

reserve estimates may be discounted and because changes in economic or mortality 

assumptions will cause changes in the expected amounts during the calendar period 

containing the change and should not be considered when evaluating the variability 

Inherent in the individual annual cost estimates. 

Even without changes in underlying assumptions. we are faced with the “unwinding of 

the discount” phenomenon. By this we mean the fact that incurred losses calculated 

with discounted reserves wil contlnue to develop upward due to a decreasing effect of 

discounting. even if all underlylng assumptions prove exactly correct. To deal with the 

unwlnding of the discount we discount 4 amounts to the beginning of the reserve 

period. Thls discounting lncludes the dlscountlng of all payments made to date, as well 

as discounting of reserves. For conveniente we discount to the beginning of the reserve 

period we are evaluatlng 

An obvious alternative at this juncture would be to not discount at all The appeal of 

discounting at this polnt. however, is the decreasing Influente of remote payments have 

on the final reserve calculated As noted above. these remote amounts are probably 

subject to greater uncertainty. The author recognizes at this point the current 

discusslons regarding the appropriateness of calculatlng reserves on a discounted basis. 

None of the methods or results presented here rely on the dlscount rate belng positive. 

Thus If reserves are carried on a undlscounted basis all the above analysis WIII apply. 

However, if the discount rate is negative (implying a significant risk-adjustment due to 

uncertainty) later payments are given increasing weight in the final expected value 

calculatlons. 

In any event, however. if we were to discount all amounts to the beglnning of the reserve 

period and If all estimates were exactly correct we would see no development in these 

amounts over time. In addttion, if economic conditions (and assumptlons regardlng 
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future conditions) remain unchanged all movement in total incurred amounts would 

reflect changes in future annual cost estimates making up the case reserve estimates. 

Hence we could quantify variation in those estimates over time, using, for example, 

techniques developed in Hayne[5], Mack[G] or others. 

A practica1 consideration still remains. however. In reality, assessments of future 

economic conditions change over time. For example, in the 1980’s it may not have been 

unreasonable to assume that medical cost inflation would remain quite high overa fairly 

long period of time. However, given the situation in the late 199O’s, we may be hard 

pressed to justify estimates of future inflation at levels experienced in the 1980’s. As 

noted above, such changes would appear as calendar period effects in the development 

patterns and could mislead estlmate of uncertainty in claim cost estimates. 

Specific changes such as those In assumed future economic conditions will affect 

reserve estimates similar to those of currency fluctuations on losses denominated in 

more than one currency. Borrowing techniques developed to handle such changes, as 

presented In Duncan and Hayne[7] we can consider a type of two-step development 

array. 

Table 10: Example Two-Stage Development 

Reserve 12 
Year m 

1995 $100,000 
1996 125,000 
1997 175.000 

Months of Development 
24 36 

Prior w Prior Current 
$110,000 $105,000 $107,100 $109,500 

143,750 137,500 

Development Factors 
24/12 36/24 

1995 1.10 1.02 

In this two-stage approach we use “Current” to denote the assumptions inherent in the 

final selected analysis at the rndicated valuation date. For example, $105,000 indicates 

the total incurred (dlscounted to the beginning of 1995) using the economic assumptions 

at the 1996 valuation. Similarly $109,500 represents the discounted incurred (again to 

the beginning of 1995) using the 1997 economic assumptions. 
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The “Priof amounts denote the calculations using the economic assumptions from the 

prior analysis. For example, the $110,000 represents the forecasts for 1995 claims, 

using 1996 claim information, but using the economic assumptions inherent in the 1995 

(prior) analysis. Thus the difference between $100,000 (1995 at 12 months) and 

$110,000 is due to the evaluation of the individual claims and not due to different 

economic assumptions used in calculating the losses. The development factors are then 

comparisons between the “Prior” at one stage of development with the “Current” at the 

previous stage. In effect. then, the development isolates changes in economic 

assumptions from development in underlying cost estimates. 

From this point we could use the variation inherent in these development factors to 

estimate uncertainty in annual cost estimates, and thus the (T* parameter. 

5.2 Estimating the r and z Parameters 

The next portion of total reserves in our consideration is that for known but not-case- 

reserved claims. If we assume that there is no inherent difference behveen these claims 

and those already reported, we could assume their disttibution is the same as that for 

known claims and take r= 1 and z = 0. 

However. there may be other factors considered in setting the formula reserves for these 

claims. The r and z parameters can then be used to account for these factors and 

resulting additional uncertainty. For example, assume the formula reserves are set only 

during the ftrst three years after claim occurrence, using only the most recent three 

accident years. without any adjustment for trend or differences by report lag. The 

following then shows one approach to estimating rand z in this case: 
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Table ll: Estimate of r and z Parameters 

Accident 
Year 

Loss 
Report Reported Standard 
Year Losses Claims - Averaoe Deviation 

1995 1995 $ 5,000 200 $ 25,000 $ 27,500 
1995 1996 5,100 300 17,000 15,300 
1995 1997 5,500 250 22,000 23,100 
1996 1996 9,800 350 28,000 22,400 
1996 1997 4,180 220 19,000 20,900 
1997 1997 10,500 350 30,000 31,500 

Total $ 40,080 1,670 $ 24,000 $ 24,635 

Expected Without Uncertainty $ 20,000 $ 18,000 

Parameter Estimates. 
r 
Z 

1.20 
0.19 

The estimate for r is simply the ratio of the average for the “formula” reserved claims to 

the expected average (without parameter uncertainty). The estimate of z follows from 

the assumptions regarding the form of uncertainty for these formula reserves. In 

particular, assuming the random variable Y is defined using the notation in Section 4. 

Additional ARas of Uncertainlyas: 

(5.2) V=&X 

We then have the following formula for the variance of Y. 

Var[Y) = EsjVar(XIc)j + Var.(E(XlS)j 

= E+.(Var(X<)) + Var.(E(X<)) 

= E;(i: Var(X)) + Var.(<E(X!) 

= var(x)qc2 j + E(X)’ Var(<) 

= Var(X)(Var(;j + E(C)‘) + E(X)’ Var(c) 

= Var(X)(z + r2) + E(X)>z 

Solving for z we obtain: 
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(5.3) 2 = 
Va+) - r2 Var(X) 

Var(X) + Ex- 

5.3 Estimating the c, a, and d Parameters 

The final ponion of total reserves IS for claims that are incurred but not reported. As with 

known claims with formula reserves, if IBNR reserves are estimated using averages for 

known clarms we could estimate the a and d parameters similar to the way we estimated 

the r and z parameters as descnbed in Section 5 2, Estimafing the r and z Paramefers 

We could estimate the c parameter in severa1 ways. One approach starts with the 

assumption that the number of IBNR claims has a Porsson distribution with a “contagion” 

parameter similar to that used by Heckman and Meyers.[l] With that assumption we 

see from Appendix E that with our notation above if N denotes the number of IBNR 

claims: 

(5 4) E(rV) 7 2, and 

(5.5) Var(N) = 1 + cI.2 

Solving (5.5) for c we obtain: 

Var(N) - A 
(5.6) c = >’ 

If we estimated the number of IBNR claims using development of reponed claims then 

Hayne[S] provides an approach we could use to estimate total variance in the IBNR 

estimates, if we are willing to assume independence among the various accident (or 

exposure) years. Consider the foltowing example: 
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Table 12: Example Reported Count Development 

Atident 
Year 

1989 
1990 
1991 
1992 
1993 
1994 
1995 
1996 

Months of Development 

12 23 35 t!!l 60 72 
176 363 417 477 500 500 
314 384 519 524 550 550 
178 294 382 405 425 425 
323 472 535 590 620 620 
264 492 503 572 600 
253 419 441 495 
137 324 410 
304 415 

Following Hayne, and assuming independence of the age-to-age factors (to keep the 

calculations simple) we calculate the natural logarithms of the age-to-age factors, their 

means and standard deviations as parameter estimates for the lognormal distributions of 

the age-to-age factors. Also. given independence the parameters for the age-to-ultimate 

factors can then be determined from the parameters of the age-to-age factors by simply 

summing the means and variances. The following shows these calculations: 

Table 13: Logarithms of Claim Age-to-Age Factors 

Acùdent Months of Development 
& 24/12 36/24 48/36 60/48 72/60 

1989 0.7239 0.1387 0.1344 0.0471 0.0000 
1990 0.2012 0.3013 0.00% 0.0484 0.0000 
1991 0.5018 0.2618 0.0585 0.0482 0.0000 
1992 0.3793 0.1253 0.0979 0.0496 0.0000 
1993 0.6225 0.0281 0.1226 0.0478 
1994 0.5045 0.0512 0.1155 
1995 0.8608 0.2354 
1996 0.3113 

Mean 0.5132 0.1631 0.0897 0.0482 o.oooo 
Std.Cev. 0.2182 0.1058 0.0473 0.0009 0.0000 

Cumulative: 
Mean 0.8142 0.3011 0.1380 0.0482 0.0000 

Finally, using standard formulae for the lognormal we obtain the following projected 

number of claims and their corresponding variance: 

102 



Table 14: Estimate of c Parameter 

Acàdent Cumulative Parameters Reported Forecast 
Year m StdDev. - Claims _Mean Std.Dev. 

1989 o.oooo 0.0000 540 500 - 
1990 0.0000 0.0000 550 550 - 
1991 0.0000 o.oooo 425 425 - 
1992 o.oooo 0.0000 620 620 - 
1993 0.0000 0.0000 600 600 - 
1994 0.0482 0.0009 495 519 0.5 
1995 0.1380 0.0474 410 471 22.3 
1996 0.3011 0.1157 415 565 65.5 
1997 0.8142 0.2470 282 656 164.6 

Total 4.297 4,906 178.6 

Indicated IBNR 609 1786 

Indicated c Value: 0.084 

6. Conchsion 

In this paper we have set out one approach that can be used to systematically estimate 

variation in both total reserve estimates and in payments in individual future years. In 

explicitly accounting for various components of uncertainty the actuary can adapt these 

estimates to be used in DFA applications. In such applications economic conditions can 

form a link between asset and liability models. Explicit recognition of the influente of 

such factors on loss reserve and payment uncertainty in the liability models will prevent 

“double counting” of its effect and result in potentially more realistic DFA models. 

We have presented this as a first step. There are obviously many simplifying 

assumptions even in this rather complex presentation. We hope this framework can 

provide a useful starting point to build and parameterize models of the amount and 

timing of insured liabilities. 
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AffEND/X A 

In this appendix we derive the formula for the variance for an individual life pension 

claimant, formula (2.4). From our definitions we have: 

We also have- 

Thus we have: 
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Var(X) = E(X’) -E(X)’ 
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APPENCVX B 

In this appendix we derive the conditional distribution of Bgiven z observed open claims 

from our population of n claims. We also review the asymptotic behavior of this 

distribution. 

1. Conditional Disiribution of B 

We first assume that the number of claims remaining open from one year to the next has 

a binomial distribution with parameter 8. Although we will assume that B will be 

uniformly distributed between 0 and 1. the following result holds in the more general 

case when B has with a beta distribution with parameters CI and p. In this case z. the 

number of “successes” (01 claims remaining open) is given by: 

f(z) = 
0 

” 8’(1-o)“-’ 
z 

The parameter Bthen has the distribution: 

r(a+P) u-1 

htH) = r(a)-(p) 
-e (l-o)"-' 

The joint distribution for z and Ois then given by: 

k(z,fl) = s(z)h(‘J) 

We will take y = B/E(B). Now we need to get the distribution of 0 given our observed 

annual closure rate, or conversely, rate of claims that remain open. From Bayes 

Theorem we obtain: 
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The integral in the denominator becomes: 

This then gives: 

n r(a+Pj . 

íl z r(dr(b) 

@‘” 1(, u)“-w-’ 

k(Blz) = n qa +a) r(z+a)r(n--z+p) 

0 z r(a)r(O I-(a+p+n) 

r(a+p+n) 

= r(z +a)rjn -2 +p) 
/y'" '(,- e)"~"" ' 

That is, k($z) has a beta distribution with parameters z+u and n-z+p 

2. Asymptotic Behavior 

We first assume that if the portion of claims remaining open tends to a finite limit as the 

sample size increases then the expected adjustment in (3.16) tends to unity. With this 

assumption, then. we conslder 

lim n+2 i 1 5 r(n +2)r(2 +S +i) 

- z -i-i r(z+i)r(s+f7+2) 

For this evaluation we will use Stirling’s approximation for the gamma function for large 

values of n: 

Using this approximation we have: 
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n +2 t 1 s rjn+2)r(z+~+i) í"+2)' ,2,,,.(y)":J%qy);*s 

z+i r(z+i)r(s+n+2)= z+l 
q gz jln(sYi(zqs +,q"* 

As n gets large we have: 

The limits for the other two terms follow from an alternative definltion for the exponential 

functlon. 

í 1 

n 

e’= lim l+’ O-n n 

We thus have: 
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Similarly we have: 

Thus we obtain, 

l;m 222 
( 1 

5 r(n + 9-k + s + 1) = e.ses = , 
fl-- z + 1 r(z + i)r(s + n + 2) 
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APPENDIX C 

In this appendix we derive formulae (3.17). using repeated application of the 

relationships in (3.16). First. we consider (3.16). From the definitions of the conditional 

distributions it is clear that 

E(z) = J Jzf(WWzdr 
= qfPl4) 

As for the variance we have 

Var(Z) = J Jz’ f(zl{)g(<)dzd{- E(Z)’ 

= E$(Z*1E)) - E(Zj2 

= E,(Var(Zl<) + E(ZI$) - E,(E(Z14j)2 

= E,(“arPH) + E~(W - Ec(E(zIC))Z) 

= E;( Var(Zkj) + Var&l5)) 

From our assumptions we have 

Similarly, we can compute 

Var(TIB,u,w,)= Var(~XlO,u.w,) 

= CVar(XIe,u,w,) 
I 

The last sum holds since we assumed the claims are independent for fixed 0, u, and w,. 

We thus need only consider the variance for a single claim. We thus have: 

From this we have 
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We also have 

Thus 

E(X*IB,u,w,)-E(XIH,u.w,i2 
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Which gives 

We will apply the Bayesian relationships above for each variable in succession so to as 

to appropriately track the various dependencies. First we remove the Bdependence: 

In calculatlons, the second-to-last representation is probably easier to manage. The 

variance estimate follows too: 

var(+,w,) = Var,(E(T\B.u,w,)) + E,(Var(@.u,w,)) 

From the above relationshios 

From the definitions of y we have 
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Var(y’) = E(y’“) - E(y”)* 

=2fi(n+2)(z+i+l)- fi(n+2)(z+i+l) ’ 

,.,(z+l)(n+i+2) ~- i ,.o (z + IXn + i + 2) 1 

i 

s-1 (n + 2)(z + i + 1) 

= Q(z+lxn+i+2) 1t 

~fp+2~z+i+l)~~("+2)(z+i+l) 

,;s (z +l)(n +i+2) ,-0 (2 + 1Xn + i + 2) 1 

Again, the first representation will probably be easier from a coding point of view. This 

then gives: 

As for the other term, 

Combining these two terms we have: 

Now removing w, from the terms: 



Again the second-to-last term may be easier to work with computationally. This last item 

follows from the lognormal assumptions regarding w,. In particular these assumptions 

imply that: 

( 1 Qwc p -lognormal((-$f(ps2).P2sr2) 

Thus the expectation: 

f( 11 f-p p =exp((-+)(spr2)++sp’r’) 

For p = 1 this gives an expectation of unity, giving the above formula. Similarly for the 

variance term: 

Va($) = Var, (E(T(w,)) + Ew,(Var(T(uzw,)) 

Taking the terms one at a time: 
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Again, from the lognormal assumptions: 

Var(n-~)=E([~wr)‘jE(gw.)’ 
= exp(-+)(2sr2)+$(4sr2)) - expi2((-t)(d) ++‘)) 

= exp(sr’ j - 1 

We thus obtain: 

As for the second term we have: 

Now from the lognormality assumptions 
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- lognormal[(- $2m r2 + (n -m)? j,4m? + (n - m)r2), thus 

lpQ2 - lognormal~(- +x(n t m)r’),(n + 3m)r’) 

This then gives 

E[fpQ,~) = exkf- +)((n + m)r2) + -((n + 3m)r’)) 

T: exp(mr2) 

This results in. 

Addlng these two terms together we obtaln. 

Finally we eliminate u from the formulae. Flrst 
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E(T) = E$(T(u)) 
=E”(i~b:~u[acl-q:,>,Ecy”i) 
=C~b:,[~(1-q;,))Ejys)4ui 
= ~~b;s(fl(l-q:,))E(f) 

As for the variance formula we have: 

Var(T) = Var,(E(Tju)) + E,(Var@)) 

Again we consider the two poftions separately 

Since u is lognormal with mean 1 we have 

Var(u) = exp(02) - 1 

We thus obtain: 

As for the second term we have: 



= +2)f&‘:@(l - ‘+(y’))2(exp(s~‘) -1) 

+E(u~)~ex~sr’)(~b:,[~(l-q:,)))z(~Y”) - E(Y’)‘j 
Sil x II-o 

Since u is lognormal, i.e 

u -lognormal(-~~2.~2) 

then u2 is also lognormal and 

u’ - lognormal(-õ2,42) 

Thus we have 

E(u2) = exd(-02) + f(4.2 j) = exp(u2) 

This then gives: 



Finally putting the ko terms together we obtain: 

120 



In this appendix we show the denvation of formulae (3.19) for payments in a particular 

year. As with the total mean and variance we begin with the mean and variance for fixed 

parameter values and then, step, by step, remove dependency on the various 

uncertainty parameters. Without any uncertainty and dropping the explicit i subscript. 

(2.7) and (2 8) give: 

E(T,/Certainty) = ~aIS~P1, 
I I I 

Thus, Incorporating cost escalation, discountlng, and our uncertainty variables, we have: 

As with the aggregate, 

Var(,T,Jf?,u.w~:) = Var CX,jO.u,w, 
( 7 1 

= C Var(X,jll,u, w, j 

The last sum holds since we assumed the claims are tndependent for fixed 0. u, and w, 

We thus need only consider the variance for a single clalm We thus have 

Breaking this into parts then we have: 

and 
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Hence we have 

=(bb’@‘s)‘[ ‘-’ )( ‘-’ YpI:,) 1-Yy-pc) ) 
This then gives: 

Var(T,Ru,w,)=~[b,unw,)2[y’~(l-91:,))(l-~;,)) 
r I 1 

We now use the Bayeslan relationships to work down the conditional variables. First we 

remove the Odependence. 

In calculations. the second-to-last representation is probably easier to manage. The 

variance estimate follows too. 

From the above relationships: 
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From Appendix C we have: 

-s-l 

t 

(fo + 2)j2 + i + ij 

var(ys)= n(z+l,“+i.,) )í ,,;,(z~l)(n+i~2)-~,z+l,,+;.2) 

?yp+2)(z+i+l) ~~‘(n+2)jz+i+l) 

1 

Again. the first representation will probably be easier from a coding point of view. This 

then gives: 

As for the other term. 

E,,(Var(T,ID,u,W,)~ = E, c b’ ufi ( , [ IS ,-( w,)l(Y~~(l-.:,))(l-Y~~(l-q:!lji 

=~(b~~~~w,~E,((Ys~(l-q~,))-[Yzs~(1-~~~)2j) 

=~(b;~u~W,)‘(~(l-~~~))jqy’)-dy7i)(~~1-~~~~2~~ 

Combining these two terms we have: 

Now removing W, from the terms: 
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Again the second-to-last term may be easier to work with computationally. This last item 

follows from the lognormal assumptions regarding w, as in Appendix C. 

Similarly for the variance term: 

Var(T,lu)- Var,,(~EIT,lu.w,:l)+E,(var(T,lu.w,)) 

Taking fhe terms one at a time, using the lognormal relaGonsh¡ps in Appendix C: 

As for the second term we have: 



Adding these two terms together we obtaln 

Flnally we ellminate u from the formulae Flrst 

As for the variance formula we have: 



Var(T,) = Var,(E(J$)) + E,(Var(T,b)) 

Again we considel the two portions separateiy. 

As for the second term we have- 

E,(Var(Tlu)) = E, +expjsri)u2[ xbL( ~(14,)))2[4v2s)-dv’ji 
r 
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Finally putting the two terms together we obtain: 
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APPENDIX E 

We will calculate the mean and variance of J in stages. We first consider IBNR claims. 

As with Heckman & Meyers, Algorithm 3.3 gives: 

E(N) = E,(U?+)) = E,(.k) = J-E,(x) = 2 

and we also have, 

WV = Ez(Var(NIx)) + Var(E(qz)) 

= E,(G) + V=,(Q) 

= 2 E,(X) + 2.’ Vay 

= A + CA2 

To ease the notatlon In what follows we will assume that the clalms 

x &.l, X,,& XN&*, are independently selected from a distribution wlth mean 

E(X) = E(J$ertainty)/N, 

and variance 

Var(X) = Var(T,lCertaintyj/N, 

Th6 last relationship follows since 

= CVar(X,ICertainty) 
/ 1 

Now fixing b, <, and ywe have, 

= E&(N, E(X) + 0’4 E(X) + flE(X))) 
=/?(NR+.&+y~)E(X) 
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For the variance in this case we have- 

= E,jp’(,Var(T,!Certainty) + N,C2 Var(X) + Ny2 Var(X))) 

+ Var,,(P(Nn E(Xj + N,<E(X) + Ny E(X))) 

= ,L?‘(N, Var(X) 1 NB;’ Var(X)+E,(N]y’Var(X))+ @Y’E(X\~ Var,(N) 

=/I’jN, tN,c +i.í’!Var(X)+P’y’qXj’i/. -cÁ’) 

Stmilarly we have. for a flxed values of pand < we have 

E(T1P.S) = E,(E(qPm~z<j) 

= E,.(P(A’, +irv, +;d)E(X!j 

=/l(NR +gV3 +aE.)E(X) 

For the variance in this case we have: 

Var(qfl,i) = EF(Var(J(p.y.ij) + VarF(E(Jl,Kly,ij) 
= E,(,G’(N, + NS<’ ~L;/2)Var(Xj+,LI’;~‘E~X)Z(,J +~A~))+Var~~[~fl(N~ i-<NB +yi.jE(Xj) 

= E,W(p2(N, -I NB<’ )Var(X) + ,v2fi2(E(X)?(,? * cA2] i 2 Var(X)]) + Vaf? (/?(A$ + &?il, + yA)E(X)) I. 

= ,&(NR + N,<‘)Var(X’i + E.(~‘)p’(E!X)‘(2 + ci2) + i Var(X))-t$A’E(X) Var.,[y) 

= p2(N, + N,i’)Var(X) c (d + a2)/î2(E(X)‘(A -4 cJ2) + 2 Var(Xj) + /3?ñ2 E(X)‘d 

= p’((N, + N,c2 + (d + a 2jA)Var(X)+([d ia’)(:E. +cJ?j + 12d)E(X)2) 
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Now for a fixed p we have: 

Tl4 = E,(E(W)) 
= E;(P& + 4% + Y+O)) 
= p(N, + rN, + ad)E(X) 

The variance calculation also follows: 

var(TiPj = E,(Var(Jkj) + Var.(E(JjLK)) 
= E,[,!J2((N, + IV&’ + (d + a’)A)Var(X) + ((d + a’)(A +cA’)+ A2d)E(X)‘)) + VarL(flNR + p, +aA)E(Xl 

= j?‘((fV, + NBEi(j2) + (d + a’)A)Var(X) + ((d + a’)( ñ + CA’) + A2d)E$X)2) +E(X)2Nz/12 VarJc) 

= p2((NR + N,(z + r2) + (d + a’)A)Var(X) + (( d + a*)(A + cl’) + A’d)E(X)?) -+ zfl’~Vi E(X)2 

= p2((NR +N,(z +r2)+(d+aZ)A)Var(X)+((d+a2~A+c~2)+n-’d+z~~)E(X)2) 

Thus, combining these results, we have: 

E( JI = b(E(Jl~)) 
= E,(p(fv, + r/v, +aAjE(x)) 

= E,,cpXNR + fN, + aA)E(Xj 

= (NR + rN, + aA)EjX) 

Finally we have. 



Var( Tl = Ea( Var(qP)) + “ar,( E(‘-lP)) 
=EB(p’((N, +N,(z +r’)+(d +a’)ñ)Var(X)+((d+a2XA+cA2)+ A2d +zN~)~X)~)) 

+Var,(p(N, +rfV, +aA)E(X)) 

= EB(P2X(NR +N,(z + r’) + (d + a’)ñ)Var(X) +((d + a’)(A + cA*) + A*d + zNi)E(X)‘) 

+Var#)(& + fN, +aA)2 E(Xj2 

= (b + lj((N, + N,(z + r2) + (d + a’)A)Var(X) + ((d + a’)(A +cA2) + A2d + zNi)E(X)‘) 

+b(N, + rN, + aA)’ E(X)’ 

=(b+ l)(& + N,(~+r*)+(d+a~)A)Var(X) 

+((b + l)((d + a’)(A + cA2) + A*d + ZN:) + b(N, + rNB + aA)‘)E(X)’ 

Thus, in terms of estimates for case reserved claims without parameter uncertainty: 

Var(T) = (b + l)(N, + NB(z + r2) + (d + a2)1) 
Var(T,/No uncertalntyj 

NR 

E(T,INo uncertainty) ’ 
+((b + Ix(d + a’)(A + CA*) + A*d + ZN:) + b( NR + rN, + aA>‘) 

47 

NB(z+r2)+(d+a2)A. 

NR 
Var(T,INo uncertainty) 

(b + lf(d + a’)(A + c;l’) + A’d + ZN:) + b 

NR2 
E(T,INo uncertainty)’ 
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MODELING PARAMETER UNCERTAINTY IN CASH FLOW PROJECTIONS 

by 

Roger M. Hayne 

In order to be complete dynamic financia1 analysis (DFA) models should deal with both 
the amount and timing of future loss and loss adjustment expense payments. Even 
more than asset cash flows, these future payments are very uncertain. However, even 
with this uncertainty, one would expect to see payments that are somewhat stable from 
year to year. 

This paper presents an approach that can deal with this seeming wntradiction. By 
separating total uncertainty in future cash flows into its parameter and process 
componen& we present a method to model future liability cash flows that maintains the 
desired total uncertainty characteristics. However, it will also result in speclfic payment 
flow “paths” having less variation from year to year than would a completely random 
sample from the expected total payout would indicate 

There is also a companion of this paper, tltled “Estimating Uncertainty in Cash Flow 
Projections” that considers the problem of estimating the distributions, including separate 
consideration of process and parameter uncertainty. 

Biography 

Roger is a Fellow of the Casualty Actuarla1 Society, a Member of the Ameritan Academy 
of Actuaries, and Consulting Actuar-y in the Pasadena, California Office of Milliman & 
Robertson, Inc. with over twenty-one years of casualty actuarial consulting experience. 
Roger is a frequent speaker on reserve and DFA related topics and has authored 
severa1 papers dealing with considerations and estimates of uncertainty in reserve 
projections. Roger is currently the chair of the CAS Research Policy and Management 
Committee and has served as chair of both the CAS Committee on Theory of Risk and 
the CAS/AAA Joint Committee on the Casualty Loss Reserve Seminar. 
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MODELING PARAMETER UNCERTAINTY IN CASH FLOW PROJECTIONS 

Introduction 

With the increased focus on dynamic financia1 analysis (DFA) as a tool to assist in 

quantifying the financia1 strength of insurers and other risk bearing entities, comes 

increased demands on tools for use in those models. As with reserves, insurer cash 

outflows representing those liabilities are subject to considerable uncertainty. Capturing 

and appropriately modeling this uncertainty will greatly enhance the accuracy and 

reliabillty of DFA models. 

The purpose of this paper is to outline a simple approach that can be used to capture 

various sources of uncertainty and incorporate them into stochastic cash flow models. A 

simple example should help illustrate this point. 

Consider two insurers, both with expectbd reserves of $90 million, assets of $110 

million, ignoring interest, and experiencing the following future payment possibilities, 

Table 1’ Distribution for Stable Insurer. Inc. 
Year 

Probability 1 2 Total 
50.0% $80 $40 $120 
50.0% 40 20 60 

Expected $60 $30 $90 

Table 2: Distribution for Random Insurer. Inc. 
Year 

Probability 1 2 Total 
25.0% $80 $40 $120 
25.0% 
25.0% 
25.0% 

Expected 

80 20 100 
40 40 80 
40 20 60 

$60 $30 $90 

Each Insurer experiences the same distribution of possible payments in each year. 

However. the first Insurer has a 50% chance of becoming insolvent at the end of two 

years while the second has only a 25% chance. 

The primary difference is that Random Insurer is allowed to experience all possible 

“futures” with either $80 or $40 paid in the first year and either $40 or $20 paid in the 
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second. Stable Insurer is only allowed two possible “futures,” the best and the worst. As 

we will see, these are simple examples of hvo approaches to modeling liability cash 

flows. 

If historically the second year’s payments were always half of those in the first year, then 

it could be argued that Stable Insurer’s pattern is closer to “reality” than that of Random 

Insurer. The challenge, then, is to develop methods of modeling liability cash flows that 

capture the full variation that can be expected in future payments, without “unrealistic” 

swings in payments from year to year. That is the purpose of this paper. 

Types of Uncertainty 

There are many ways to categorize uncertainty. Here we will divide uncertainty faced by 

actuaries into three categories: 

1, Process - uncertainty present simply from the random nature of a particular process, 

even if the process itself is known with certainty, 

2. Parameter- uncertainty that parameters selected for a particular model accurately 

reflect the reality to be modeled, and 

3. Specification and/or Model - uncertainty that the models selected themselves 

accurately reflect the reality to be modeled. 

Sometimes the thlrd category is divided into two parts. model and specification where 

speclflcation refers to the selectlon of distributions and model refers to the selection of 

the underlying model itself. 

For example, if we throw a fair die. even though we know the underlying physical model 

with (relative) certainty, there is still an equal chance of each of the six sides showing up. 

This is an example of process uncertainty. 

If, however, the die may be “loaded,” but that we know we are observing the throw of a 

die, we have added parameter uncertainty to the situation Here we know we will 

observe throws from one through six. but with one result potentially having higher 

probability than the others do. 
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Finally, we could be observing a series of digits from 1 through 6 without knowing the 

underlying process generating the series. We can still use a loaded die model. 

However, there is the possibility that some other process is generating the digits that 

cannot be modeled using a loaded die. For example, the digits could be the last digit 

from a Geiger counter reading with 1 substituted for 7 and 8 and 6 substituted for 9 and 

0. Here we have specification or model uncertainty 

Modeling Process Uncerlainty 

These categories of uncertainty are increastngly dlfficult to estimate. Reserves for 

insurers, or other risk bearing entities. are often set using non-statistical actuarial 

forecasting methods, including broad applicatlon of “actuarla1 judgment ” 

Even when statistical methods are used, the information regarding the resulting 

uncertainty is usually limited to conclusions within the framework of the model. For 

example, two different statistical models may result in two different probabillty ranges 

about their estimates with possibly little or no overlap in the ranges.’ The same 

statistical model applied to two different sets of data, paid and incurred losses for 

example, could even give widely different results and ranges. 

Statistical projection methods also tend to concentrate on “squaring the triangle” for a 

single set of data, usually paid losses. As Berquist and Shermar? and many other 

papers dealing with reserve estimation indicate. there is valuable information in many 

different insurer statistics. Claim count statistics are extremely valuable in a reserve 

analysis. Frequency and severity methods are often less volatile than development 

factor (or link ratio) methods for less mature exposure periods. In addltion, claim counts, 

in conjundon with other insurer data, can help identify changes that could affect one or 

another projection method For example, changes in average case reserves per open 

claim could signa1 a change In relative reserve adequacy thus affecting projections 

’ See. for example, Transcripts ol the 1992 Casualty Loss Reserve SemInar. pp. 1123-1150 
This Advanced Case Sludy presented two actuaries with the same set of data and asked them lo 
develop reserve and variability estimates. One estimated reserves to be 8239 million with a 
$12.7 million standard error. The other estimated reserves lo be $178 million with a standard 
deviation of $10.7 million. 

’ Berquist, J.R. and Sheman, R.E.. ‘Loss Reserve Adequacy Testing: A Comprehensive. 
Systematic Approach,” froceedings of the Casualty Actuarial Society. LXIV. 1977. pp. 123-l 84. 
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based on incurred loss development. Similarly, changes in the rate at whlch claims are 

closed will affect methods based on pald losses The author IS unaware of any statistical 

method that Incorporates all these items of mformation in estimating ultimate losses. 

The collectlve rlsk model offers a rather easlly understood framework to model insured 

uncertalnty Bnefly the collectlve rlsk model is based on the following algorithm 

Algonfhm f - Coliechve Risk 

1. Randomly select N. the number of clalms that will OCCUI 

2. Randomly select N mdependent clalms, X,.X:.. ,, X,,from the selected claim size 

dlstnbutlon 

3. Total the amounts T = 5 X 
I 

4. Repeat steps 1 through 3 “many” tlmes 

With a minimum of additional assumptions we can denve some very useful relationships 

between the distnbubons of the number (IV) and s!ze (x) of IndIvIduaI claims and that of 

the total In particular, if sufficlent moments exist for the various distributlons and if all 

random variables are independent then we have, 

(1) 
E(T) = E( 

Var(T) = E(N)Var(X) + Var(N 

Similar fcrmulae also hold for higher moments 3 

The coliective risk model also seems to be a logical choice to model process uncertainty 

in the drstnbution of insured losses. There has been considerable attention paid to thls 

baslc model in the hterature and severa1 algorithms have been developed to calculate 

the dlstributlon of T glven distributlons of N and X Probably of greatest interest to 

3 See, for example. Mayerson. A L., Jones, D.A.. Bowers, N L. (Jr.). “The Credibility of the Pure 
Premium.” Proceedings of the Casualty Acfuarral Society, LV, 1968, p, 179 for these and 
formulae for third and fourth moments. 
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practicing casualty actuaries are referentes by Heckman and Meyers,’ Panjer and 

Willmot,5 Robertson,6 and the text about to appear by Klugman. Panjer, and Willmot.’ 

The attractiveness of the collective risk model, aside from ~ts description of the insurance 

process is that it breaks the problem of estimating process variation into more 

manageable parts, i.e., to estimating the distribution of claim counts and the dlstribution 

of the size of claims. As with any model, the collective risk model is an approximation of 

reality. Many actuaries are concerned with some of its inherent assumptions, not the 

least of which is the assumption of independence among claims and between the claim 

size and the claim count distributions. Recent work by Wang’, sponsored by the 

Casualty Actuarial Society, addresses this issue. Although derived independently, the 

methods here follow closely with those presented by Wang. 

Some Approaches lo farameter Uncertainfy 

Probably the most mtuitive approach to modeling parameter uncertainty would be 

Bayeslan. Generally one would assume the distribution we wished to model, that of 

aggregate losses, had a particular distnbution with one or more of its parameters being 

uncertaln, itself having a separate distribution There are many distribution pairs of 

conditional and prior distributions that mix to closed form mixed distributions. In the 

appendix to his chapter in Foundations of Casualty Actuarial Science, Vente? for 

example has assembled of useful distribution pairs. 

’ Heckman, P.E., Meyers, G.G.. “The Calculation of Aggregate Loss Distributions From Claim 
Severily and Claim Count Distributions.” Proceedings of the Casua/ty Actuarial Society. LXX. 
1983. pp. í’2-61 

5 Panjer. G., Willmot, G. Insufance Risk Models, Society of Actuaries. Chicago, 1992 

6 Robertson. J.P.. ‘The Computation of Aggregate Loss Distributions,” Froceedings of the 
Casua/fy Actuaria/ Society, LXXIX. í992, pp. 57-133 

’ Klugman. S A.. Panjer. H.H Willmot. G.E.. Loss Modek: From Data fo Decisions. John Wlley & 
Sons. New York, 1998 

’ Wang, S.S. “Aggregation of Correlated Risk Porifolios: Models & Algorithms.” Casualty 
Actuarial Society at w.casact.orq (part of the CommlHee on Theory of Risk page of the 
Research portion of lhe web site). 

’ Venter. G.G.. “Credibility,” Foundations of Casuaffy Actuarial Science, Casualty Actuarial 
Society. 1992. Chapter 7. pp. 375483. 
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One example here may be helpful. Suppose X has a lognormal distribution with 

parameters p and 02. By this we mean that X has the probability density function: 

It is well known that the random variable X is lognormal if and only if the random variable 

InX is normal. In this parameterization the variable InX has a normal distribution with 

mean kr and variance o? If, now, we assume fl LS uncertain but has a normal distnbution 

with mean m and variance t, then the random variable X is still lognormal with 

parameters m and d+F. We note that the inclusion of parameter uncertalnty in thls way 

has the effect of increaslng both the mean and variance of the distribution Thls follows 

from the following results for a lognormal distribution with parameters p and d 

(3) 
Var(X) = exp(.+ + 2)(exdc2) - 1) = EZ(X)(exp(02) - 1) 

As an aside, the reader should note that Venter’s parameterization of the lognormal 

distr¡buGon differs from what we use here. The first parameter in our parameterization is 

the mean of the normal dlstribution of InXwhereas Venter’s parameter is the exponential 

of this amount. Thus in the appendix Venter assumes the prior distribution of the 

parameter is lognormal to conclude the mixed distribution is lognormal. Because of the 

log transformation between the two paramterizations, and the fact that a variable X is 

lognormal if and only if the variable InX is normal, the two results are actually identical. 

Thus one Intuitive way to model parameter uncertainty would be to select a pair of 

distributions (lognormal and normal in this example), use the lognormal to model 

process uncertainty (as an approximation to the results of a collective risk model). 

Parameter uncertainty could then be built in by allowing the ,u parameter to have a 

distribution of its own. In this paper we will label method this the Bayesian approach. 

140 



Another approach to modeling parameter uncertainty is discussed in Heckman and 

Meyers.” In their approach they separate parameter and process uncertainty by use of 

additional random variables. The following is a slight modification of the algorithm they 

present: 

Algorifhm 2 - Refined Collective Risk: 

1. Randomly select N, the number of claims that will occur from a distribution with mean 

A and variance A+cA? 

2. Randomly select N independent claims, X,, X,. . . . . X,from the selected clalm size 

distribution. 

3. Randomly select a mixing parameter p from a distribution with mean 1 and vanance 

b. 

4. Total the amounts and divide by p. T = 

5. Repeat steps 1 through 4 “many” times 

Actually, In Heckman and Meyers the authors assume the claim count distribution is a 

mix of a Polsson prior distribution wlth a gamma uncertainty distribution for a negative 

binomial posterior distribution. Their results, however, generalize to situations where the 

parameter c is negative, which does not make sense in terms of mixed distributions. 

The algorithm they present for calculating the aggregate distribution does requtre either 

a Poisson, binomial, or negative binomial claim count distribution. but the results we use 

here do not need that assumption. 

The primary result we will use, however, is that given Algotithm 2. and assuming all the 

distributions are independent from each other, then we have the following relationships: 

(4) 
E(T) = nE 

Var(T)= A(l+b)E(X2)+,I’(b+c+bc)E2(X) 

” Heckman. P.E.. Meyers. G.G.. ibtd 
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We note that these formulae reduce to formulae (1) in the case that b=O. Rearranging 

terms in the variance formula we obtain: 

(5) 

Var(T) = AE(X2) + bAqX2) + A’cE’(X) + A?bE2(X) + A2bcE2(X) 

= A.E(X’)+A2cE2(X)+b(AE(X2)+,12cE2(X)+A2E2(X)) 

= Var(qb = 0) + b(Var(qb = 0) + A2 E’(X)) 

Which can be used to obtain the following useful relationship for the coefflcient of 

vanation (ratio of the standard deviation to the mean) of the respective distributions 

(6) 

Var(qb = 0) + b(Var(T]b = 0) + A’ E’(X)) 

E’(qb = 0) 

Var(qb = 0) + b 

i 

Var(qb = 0) n2 E’(X) 
z 

E’(Tjb = Oj E’(‘rb = ‘Jj + 0’ -1 
=cv?(Tlb= 0)+ +v2(7jb=Oj+l) 

Solving for b we obtain: 

(7) 
b = CV?(T) - cv2(Tlb = 0) 

cv'[7jb= O)+l 

Recalling that b=O refers to the situation with only process variation, this formula 

provides a way to model parameter uncertainty given knowledge of the coefficient of 

variatlon for the final distribution and that for the distribution with only process 

unceftainty. 

From this point on we will assume that we know the various means and variances of the 

distributions with and without parameter uncertainty and concentrate on practica1 

considerations in modeling these sources of uncertainty. 

Moving to the example with a lognormal prior distribution mixed with a normal 

distribution let us consider two different ways of modeiing the amounts. We will identify 

two methods to generate random loss amounts. 
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Intuifive Mefhod: 

1. Randomly pick vfrom a normal distribution with mean m and vanance t. 

2. Randomly pick X from a lognormal distribution with mean vand variance d. 

“Smarte? Method: 

1. Randomly pick X from a lognormal dlstribution with mean m and variance c++ F. 

As we saw above. both methods glve exactly the same result. The Intuitive Method is 

simply the Bayesian statement of the problem and the Smarter Method is the posterior 

dlstnbution 

A Dllemma? 

Conslder a very simple extension of our Bayesian type of algortthm with a lognormal 

mlxed with a normal but for multiple years. 

Algon’thm 3. Multiple Year Bayesian 

1 Assume X, has a lognormal distribution with parameters ,II, and 0:. with af known 

but 

2. /r, = m,/l where p has a normal distribution with mean b and variance r2, with both 

b and r2 known. 

Here the parameter p provides “global” parameter uncertainty. The above discussion 

leads us to conclude that each X, has a lognormal distribution with parameters bm, 

and 0; t rn’r?. Thus we are templed to use either the Inluitive Method or the Smarler 

Method in modeling. In this case we would have the methods described as: 

Intuilive Mefhod: 

1. Randomly pick pfrom a normal distribution with mean b and variance r2 

2. Randomly pick X, from a lognormal distribution with parameters p, = m,p and uf 

“Smarter” Method: 
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1, Randomly pick X from a lognormal distribution with parameters bm, and uf + rn,‘$ 

Our reasoning abpve could lead to the conclusion that the lwo methods give the same 

answer. In fact the distributions for each year are identical. However, consider the 

example where miO.25, all the uf =O, and b=+l. The following graphs make it clear 

that, at least in this case, the two methods give considerably different answers: 

Figure 1: Intuitive Method. First Example 

i:Z ll 
1 2 3 

Year 

Figure 2: “Smartei’ Method. First Example 

i::l 
1 2 3 

Year 

Even though each year has a lognormal distribution by itself, the structure does not 

imply that each year is independent of the others. That is the major difference behveen 
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the Infuitive and “Smatief’methods. It is also the difference behveen Stable Insurer and 

Random Insurer in the /ntroduction. 

The above statement of the multiple year algorithm may lead to some ambiguity 

regarding the role of the uncertainty parameter. The following restatement may help 

clarify the ambiguity and provide us with a more explicit means to move AlgoMm 2 to a 

multiple year setting. 

Algorithm 4, Refined Mulfiple Year Bayesian Algorithm 

1. Selectpwith O<p<l 

2. Set ,u, x m, + r,W’(p), where W’(p) represents the inverse normal distribution, that 

is the value such that P(Z < W’(p)(Z - N(0,l)) = p 

3. Randomly select X, from a lognormal distributlon with parameters ,LI, and ~2, 0; 

are known. 

4. Repeat steps 2 and 3 for each year to be modeled 

5. Repeat steps 1 through 4 “many” times 

We recognize a slight inconsistency in the parametizations of these two versions. 

Strictly speaking we should have i,, = m,(b + r,@‘(p)) to be consistent with the first, but 

this parameterization leads directly to the conclusions for each year individually exactly 

parallel to those of the single year case. 

lmplications in Modeling Liabililies 

Liabilities for most lines of insurance are characterized by fairly (a very relative term) 

stable payments from year to year. Obvious exceptions are lines subject to catastrophe 

losses and small liability books with large loss exposure. Even large claims may have 

extended settlement provisions, affecting the timing and variation of future payments. 

If we consider only process variation we see that the law of large numbers soon comes 

into play. From (1) in the case of the collective risk model we have: 
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Var(T) 
cv2(T) = Eh 

(8) 

= E(N)Var(X) + Var(N)E2(X) 

E>(X)E’(N) 

V=(X) Var( N) 

= E*(X)E(N) + E2(N) 

CV’(X) 
= - + CV2(Nj 

E(N) 

If we make the usual assumption now that N has a Poisson distribution with variance 

equal to the mean then this becomes: 

Thus, no matter how volatile the claim size distribution is. the total amounts paid could 

have arbitrarily small relative variation simply by having E(N) sufficiently large. We note 

the law of large numbers is a special case here where the variance of the number of 

claims is zero. The same result will follow for any claim count distribution whose 

standard deviation grows more slowly than the mean, more precisely, whenever 

(10) Var(N) = o(E(N)) as E(N) -+ 3- 

The power of the law of large numbers should not be underestimated. Even if the claim 

count distribution were fairly “noisy” with a standard deviation of 5 times the mean, it 
would only require a Poisson distribution with 100 claims to result in the standard 

deviation of the total to 51% of the total. With 5,000 claims, not unusual for a fairly large 

insurer. the standard deviation reduces to 7% of the total. If one would use a rule of 

thumb that results beyond two standard deviations Yare” in this case it would be rare for 

actual payments to deviate by more than 15% of the mean. 

We recognize that “fairly noisy” is a soft term. Many would argue, and quite 

persuasively, distributions that are interesting to actuaries may not have finite standard 

deviations, or maybe not even have finite means. However. with policy limits usually in 

effect, distributions losses faced by insurers usually have finite means and variances. 
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The conclusion we reach is the same reached by Meyers and Schenker.” For insurers. 

and larger self-insured entities, the law of large numbers gives process variation much 

less influente on the overall variation of results than other sources of uncertainty Thus 

parameter uncertainty and model or speciflcation uncertainty are more significant issues 

lo insurers than simple process uncertainty 

Realistic modeling of liabilities in a dynamic financia1 model then must balance two 

realities. Flrst payments for an insurer are often fairly consisten1 from year to year. 

Second the liabilities for insurers or self-insureds ofien have a high degree of 

uncertainty, often well beyond that which can be attributed to process variation alone 

One way lo look at the problem is to consider payments as falling along various future 

“paths” with relatively little vanation in payments from year-lo-year on any given path but 

wlth potentially widely varying paths or futures. If this is actually the case, modeling 

future cash payments should be relatively straightforward. We could assume that 

variation in payments from year to year would be caused by process variation whereas 

other sources of uncertainty reflect various posible future paths. 

Consider, for example. Algorithm 4 with a multiple year runoff of reserves, as given by 

the following table, assuming no parameter uncertainty: 

Table 3: Refined Example Data 
&Yg Efa Es!u E(L1 

1 5,000 1,000 5,000,000 
2 11,000 300 3.300,000 
3 13.000 150 1,950.000 
4 20,000 50 1,000,000 
5 25,000 20 500,000 
6 30,000 7 210,000 
7 40,000 1 40,000 

CVJ-J 
0.100 
0.155 
0.183 
0.255 
0.316 
0.423 
1.031 

If, now for simplicity, we assume that the payments in each year have lognormal 

distributions, but v;iith “global” parameter uncertainty as described in Algodhm 4 with 

5, = 0.5 we can then view alternative future reserve runoffs in the following chart: 

” Meyers. G.G.. Schenker. N., ‘Parameter Uncertainty in the Colledive Risk Model.” Pfoceedings 
ofthe Casualiy Actuarial Sociely, LXX. 1983. pp.1 11-143. 
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Figure 3: Two “Paths” with Probability Levels 

1 2 3 4 5 6 7 

Year 

Here the two sets of lines present two of the many possible “futures,” corresponding to 

two different probability levels for the parameter uncertainty. The solid lines indicate the 

simulated reserve runoff. while the dotted lines represent the 5% and 95% probability 

bounds accounting only for process uncertainty as defined in the above table. Thus, for 

these two selected parameter uncertainty levels, we would expect 90% of the possible 

futures to lie between the dotted lines. 

The following graph shows the global 90% range with severa1 simulated runoffs (using 

our “lntuitlve” approach). 

Figure 4: Refined Example, Intuitive Method 

1 2 3 4 5 6 7 

Year 

To show the difference with the “Smartef” method the following is a graph showing the 

fully random lognormal approach: 
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Figure 5: Refined Example, “Smarter” Method 

1 2 3 4 5 6 7 

Year 

Again, the Infuifive approach gives smoother paths, yet still does provide the total 

uncertainty expected. 

We can also generalize Algorifhm 2 to model muitiple year uncertainty 

Algotithm 5 - Multiple Year Refined Collective Risk 

1 

2. 

3. 

4. 

5. 

6. 

Assume that payment amount process uncertainty can be modeled by known 

distributions in each year. 

Assume that other sources of uncertainty in each year can be reflected by dividing 

by a “distortion” variable p, , having mean 1 and known variance 9. 

Randomly select 0 -C p < 1 

Select each p, from the distortion distributions at probability level p 

Randomly select payments in year i, X, from the assumed distributions. 

Model amounts by the ratio of X, and the selected p, 

We note for each i this model is similar to Algorithm 2. The principal difference is the 

“linkage” between years provided by selecting the distortion variable at the same 

probability level for each year. 

For each year, then, if we can estimate total variation. the variances required in the 

second step can actually be easily determined using formula (7) above Of course. 

149 



estimating total variation is not a trivial matter. There currently may be no agreed-upon 

method to derive such estimates. however this continues to be an active area of 

actuarial research. 

Assuming that we can get the total variance estimates, the following is an example of 

estimating the b, values and the resulting graphs. These estimates are based on a 

fairly comprehensive attempt to estimate process uncertainty as well as other sources of 

uncertainty in the estimates. All estimates are in current dollars (with the effect of 

inflation removed) and are for total forecast payments in future years. including those 

arising from future exposures. 

Table 4: Comprehensive Example 
Expected Standard Deviation 

p&r Paid Process Total 
1 $213,000 $5,900 $60,700 
2 218,000 14,200 96,900 
3 237,000 22,800 125,000 
4 255.000 30,700 144.700 
5 274,000 36,100 167,800 
6 294,000 38,200 189,300 
7 316,000 42,900 209,100 
8 337,000 29,500 228,700 

Implied 
b Value 

0.0804 
0.1925 
0.2665 
0 3031 
0.3516 
0.3911 
0.4118 
0.4494 

The following graph shows simulations based on Algorithm 5 using the simplifying 

assumptlons that the uncertainty parameters all have gamma distributions and that 

process uncertainty can be adequately modeled by a lognormal distribution. 

Figure 6: Comprehensive Example. Intuitive Method 
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This shows relatively moderate vanatlon from year to year but a fairly wtde spread of 

posslble outcomes Both would be expected glven the standard devlatlons shown 

above As we compared in other situat!ons, the followlng graph follows the “Smarter” 

method and results in substantially more variatlon from year to year than Algonfhm 5. 

Figure 7 Comprehenslve Example, “Smarte<’ Method 

800,000 

600,000 

400.000 

200,000 

0 

1 2 3 4 5 6 7 8 9 10 

Year 

As in pnor examples of the “Smarter” method. there are substantial swlngs in payments 

from year to year. If we would expect some predictabillty of payments then uslng these 

sirnulalions in a dynamc fInancIaI analysis model may be mlsleading. In shorl the 

“Smarter”model is not really so smart In these situatlons 

Conciusion 

Stmply knowmg the total dlstributlon of payments un any particular future year does not 

necessanly glve the actuary sufflcient information to accurately and adequately model 

future payments. whether the appllcation be In a full dynamlc financia1 analysis model or 

In other applications where modelmg of reserve payout is Important This paper 

presents one of many posslble alternatives that can be used to separate process 

variatlons that WIII happen even tf all information about the model is completely known. 

from other, potentjally more global, influentes. Still rematnmg. however, is significant 

research rnto the proper models to be used and in estimating the parameters of those 

models 
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Taking Uncertainty Into Account: Bias Issues Arising 

from Parameter Uncertainty in Risk Models 

by John A. Major, ASA 

(;il~n II rtmdom vrtritthlr of itz/rrr.r/. a hislorical .wmple of i/s realized values, 

and the d~srrc 10 model its possible .firlure values. acluarial training provides many 

ttte~hotl.\ f& selec~/ing a $ttrtily (?f’ probabilify modcls (disrribu/ions) und derermining 

spprcific parattw/er ~~llurs /hur bes/ represen/ if. But how should ene iakr purameler 

uttcc~rrairtt)~ (partrmerrr ri.ck) into accoutti? In particular. uncertainry can leud io bias in 

es/ittta!orr comtnot~!)~ ured b), acruarie.~. This paper namines Ihe problem o/ adjusting 

es~ttnatc~l distrihtrtion.~ (ri.vk L~~I.IW) to twttove thc undesiruble bius eJfec{J of parameter 

ri.sk. trnd .shmt:\ .rcvcral so1urion.s. Ii goes on. howeïer. io critique the ver.); notion oj 

trnl,errrrinty-uIlilr.,te<l risk curve.s. emphasizing thar fhi.y is un ambiguous concep!. The 

.jitrm U/ thr trdjus~tttent depend.s crucially on deruils of lhe speclfic question being 

trddressL~ti, JO tttuch .w thaf an cslimalor can seem IO be ,simultaneousJy overestimaring 

and trttifereslittlutit2g risk. l’aramefer uncet-tuinrI, thew/¿tre cannot he “ruken inro 

U~‘C’<~UII/ ” itf att rrncyui~~ocal manner. Ir i.s recommended thar paramerer risk be held 

aparl.fiotn process risk and presenled in iertns of‘confìdence in~ervals; only with that as 

hackgroutul atui rvirh great care - should bias correcrions be artempted. 
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0. INTRODUCTION 

0.1 Parameter Estimation for DFA 

For DFA in particular, thc problem of parameter estimation occurs in the process 

of determining the appropriate method for generating random variables in the simulation 

of a financia1 security system. For example, if it is desired to invcstigate the relative 

efficacy of various reinsurance altematives, a simulation can be created that tests the 

alternatives in a series of hypothetical “future histories” of loss expcricncc. ‘fo simulate 

many realizations of possible ftrture losses - many more than have been observed in the 

past - it is necessan to first create a model of the probability distribution of losses. Such 

a model would be based. at thc vcry least: on the loss experience observed in the past. 

If one can determine an appropriate cumulative probability distribution function 

(risk curve) Fx(X,o) to associate with the random variable of interest X, then random 

instances of X can be created by the inverse lookup method: X = Fx-‘(Ll,@ where l-1 is a 

uniformly distributed random variable between 0 and 1, For specific distributions, more 

efficient techniques are available, but inverse lookup will always work whcn F can be 

inverted, either analytically or numerically. 

Generated variables X, Y, Z, etc., can be combined in pro forma financia1 

statements or other actuarial calculations to simulatc financia1 resuits R=(p(X,Y,Z!. .). 

After a suffcient number of simulation cycles. thc cmpirical distribution of K values can 

be used to assess the risk to the financia1 system, answering questions such as “What 

value of R is not likely to be exceeded with probability q?” and “What is the probability 

that R will be greater than (a fixed value) L?” 
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0.2 Randomness and Uncertain ty 

“Thc uncertainty associated with a stochastic model has two distinct sources: the 

inhcrcnt variability of the phenomenon. [ami] incomplete knowledge... of the 

probabilities. ._. Sometimes (hese sources of uncertainty are referred to as ‘process risk’ 

and ‘parameter risk.‘ rrspectively. The terms ‘risk’ and ‘uncertainty,’ respectively, have 

also been uscd.. .” [C’ommittee on Principles, 19971 In this paper, the terms 

“randomness” and “uncertainty” are used. 

Standard statistical theory. as taught to actuaries. offers many methods for fitting 

risk models (distributions) to data. With parametric models, there are a variety of 

tcchniques for estimating the parameters and assessing thc uncertainty in thosc estimates. 

What is relativcly lacking, howevrr, is adrice on how to incorporate uncertainty 

information into the rish model itself. or morc grncrally. into the advice being given to 

the user ofthc risk model. 

The prcdictivc approach to probability modeling is one such method for 

embedding unccrtainty (parameter risk) into the (process risk) model for a random 

variable. Thc random variable’s assumed family of distributions and its parameters are 

augmrntcd to includc variation in the estimation process itself. A familiar example of 

this is the construction of a prediction interval for a yet-to-be observed time series or 

regression value. The formula for the variance of thr predicted value includes terms for 

both the residual error (noise) variancc and the bariance of the estimator for the mean 

\alur. Another way of saying this is that thc cstimatcd risk curve for the random variable 

is modiíied somehow to account for the phenomenon of parameter uncertainty. 



II is the purpose of this papcr to critique the predictive approach (or indccd any 

modcl-cmhedded approach) to “taking uncertaint) into account” in parametcr cstimation 

and risk curo constructlon. In so doing, it will emphasize that this is not an unambiguous 

opcratian. ‘l’hc dcsired iom ~1 the risk curve adjustmcnt drprnds crucinlly on subtlc 

details of thc specitic qucstion heing addressed. so much so that a risk CUITC can secm to 

be simultaneously o\-erestimating and undcrestimnting risk 

0.3 Contents 

‘lllIS papcr con\ist5 UF six parvi ‘l’he rrmaindcr ol’ thc introduction discusscs 

previous lireraturc in 0~1s ärea. In particular. a seminal work by Kreps [IV971 is 

5ummari7cd. Part 1 discusscs cstimation and hias in thc cuntcxt 01‘ probabilit> 

distribution parametrrs and prrcentilcs ‘fo help clarit~ thcar). an csponential cxampls 

and a lognormal examplc NC‘ wnrkcd out in some detail. I hc lognormal cxample IS thc 

samc ene uscd by Kreps ~1907]. Par1 2 prcscnts some motivation for “adjusting tòr 

unccrtüint, .’ _ ‘laklng a Frequrntist appruach. it L‘M> thc i~uc in terms ~>f a particular 

type of biah anal \rork?; out thc ncsrssary -- predictivc rld.iu5tnlcnt fòr thc two eY:amples. 

Bllile Frequcntist. II draw:s strong parallels to the Ra)csinn approach in Kreps [ 19071. 

Part 3 cxtcnds the bias conccrns of part 2 in othcr dircctions and rcveals thc cxistence of 

an apparcnt parados. rnUkiny the case against adjustmrnt. Part 4 discusses confidencc 

intervals as un altcrnnti\~e lo “adjusting for unccrtalrit~ ..’ C‘onlidrncc intcrvals Iòr 

parameters. percentiles. and excccdance probabilities are given for the two csamplcs 

Part 5 concludes with advicr to thc 01:A pructitionrr. 
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0.4 Previous Research 

Previous actuarial literature has addressed “parameter uncertainty,” but it is 

sometimes not clear what the teml is intended to encompass. 

0.4.1 The View from PCAS 1983 

Venter ] 19833 refers to the possibility of modeling “parameter risk” in the context 

of transformed gamma and beta models for losses where “because of uncertain trend (or 

other factors) therc is substantial uncertainty about the scale parameter h. _. .” He goes on 

to suggest putting a gamma distribution on J.?” and mising the loss distribution over i, as 

a “practica] technique for quantifying this uncertainty.” The parameters for the 

distribution of j, itsclf can be estimated throuyh percentile matching or, altematively, an 

esamination ofindustry or sub-sector loss ratios. 

h,lcyers Rr Schenker [ 19831 and Hcckman & Meyers [1983] discuss parameter 

unccrtainty in thc collectivc risk modcl. “Parameter uncertainty can arise from sampling 

\ariahilit> and changes., over time.. ,. [or] when some members of the group have 

dttt‘erent [espectations). ‘. ‘fheir model uses a “contagion parameter” c in the claim count 

distribution and n “mising parametcr“ h in the claim severity distribution. Specificahy, 

j.. thc cxpectrd numbcr ofclaims (sny. tiom a Poissvn distribution). is multiplied by r,, a 

~~~~llr~~~-distrih~lt~d ranJom \~ariable with mean 1 and \,ariance c’. Z, the claim amount, is 

dividcd by 13. a L-arnlnn-distributed random variable whose inverse has mean 1 and 

variancs h. 

hlcycrs 6 Schcnkcr [1Y83] provide threr cxamples of fitting the parameters b and 

( to empit~ical data. In thc most general form, their modcl treats r, years of experience of 



insureds i = 1.. ..T as manifesting T independent draws of the x and p random variables. 

Thcir equations then estimate h and c through variance components (random eflects 

ANOVA). 

Thus, we seern to have three sources of parameter uncertainty which perhaps 

should be carefully distinguished: sampling error. nonstationarity. and hcterogcneity. 

The recommended mathematical treatmcnt is to interpret uncertainty as a hierarchical 

random effect. While this method admirably represents nonstationarity and 

heterogcncity, it docs not appear to address sampling error. Sampling error is distinct 

from heterogeneity; it determines the accuracy with which b, c, A, etc.. can bc cstimated. 

The standard errors of the estimates will diminish with increasing numbers of insureds T. 

The values of h and c themselves. however. will not converge to zero with increasing T. 

0.42 Kreps 1997 

Kreps [ 19971 discusses parameter uncertainty in normal and lognomral 

distributions. In his introduction, he states “One of thc most ubiquitous sources of 

paramcter unccrtainty is thc fact that samples in real lifc are ncver infinite.” IIere. he is 

explicitly addressing sampling error, and devclops a theory of predictive distributions 

%ith” paramctcr uncertainty.’ He concludes that “thc effcct of parameter uncertainty is 

to pusb probability away from the mean out into thc tail.” As will be seen below. thc 

’ Mathematically. his technique is again to treat uncertainty as a hierarchical 

random effect. however, with the imprimatur ofesplicitly Bayesian justifications. 
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predictive approach can be interpreted as creating percentile estimators that are unbiased 

in a probabilistic sense. 

For a case study. hc analyzes Best’s reserving data. IBNR is assumed to be 

distributed lognormally. Based on n=S years, the maximum likelihood estimates of the 

mean and standard deviation of X = ln(IBNR1 are 23.01923 and 0.06653, respectively. 

This “point estimare” implies a probability of IBNR exceeding $1 1.5 billion equal to 

1.39?& For Kreps. taking parameter uncertainty into account, “thc exact result... is 

12.78%. To get to the true I .39% levcl, it is necessar) to reserve $13.1 billion!” 

Subsequent sections vvill follow throuyh on this esample and parallels to Kreps’s 

work will be sketched in more detail. 

1. ESTIMATION 

This section discusses the estimation of parameters and percentage points. While 

the estimation of parameters is the usual goal. the theory of point cstimation applies 

equally wcll to the estimation of functions of the parameters. Because of the typical DFA 

intcrcst in tail beha\ior of variables, the estimation of percentiles (specilic points on the 

risk curve) is arguably more important thnn thc estimation of parameters per se. At the 

vep least. tht: choicr ofparameter estimation technique should be informed by the effect 

it has on percentile estimntes. Birr.c is defined and illustrated in both parameter and 

percentile contcxts. Thc conccpt of a ri.sX- cwrc is formally defined and examples are 

presented. The specilic notions of X-unbiased risk curves and estimation techniques are 

detined and illustrated. 
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í.7 Estimafion of Pafamefers 

While various trchniques are availablc tòr cstimating parameters. we focus herc 

on Masimum Likelihood Jw tu its general applicnbilit~ and iridespread use. Considcr u 

family of probability density tiuwtions g(s:fJ \\here x is n real \wiahle nnd B is a 

(possihly \ector) paramctcr. Ciiven a samplc [ll, x2. . sn]. thc Maximum I.ikelihood 

Estimatr (hILE) ofthc parameter Bis the valueH that maximizcs thc joint likelihood 

II 
L(H) = nfip,:Lq 

j-1 

‘I-he sampling di~tribution of 6 has (asymptotically. i.c. with large samplcs) a 

dispersirw matriz cqual to the in\erse of the matris of sccond dericatives (witb resprct to 

@J of the natural log of thc likelihood. ‘lhus. standard errors of thc MLE map he 

ccwlputed nc,uly AS casil>, as thc cstimator itsclf. In man) commonly-used families of 

distributions, the MI-Es are the ob\,ious moment estimators. 

For the t! pical distributions in UC b! actuaries, h4I.F.s arr c~q~mp~o~icol~~ 

~‘fJic~c~/. This menns tl1;11 for large samplcs, thcy uniformly providc thc most accuracy, 

regardlcss of the true parameter value. IIowe\cr. thq tcnd not to have strong smail- 

samplejustlfications [Lchmnnn. 3981I. 

1 .l .l The Exponential Case 

Considcr n random valiablc X distrihuted as exponential with scale parameter Á: 

Pr{ .Y 5 .Y} = b‘,. (.Y;,%) = 1 - csp(- .Y/A) (1.2) 

Givcn a sample {XI. Y,, ., . s,,}. thc likclihood function is givcn by 
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Differentiating by /i and setting to Tero. we can see that the value of A that 

masimizes the likelihood is given by 

(1.4) 

I‘his is also thc samc cstimator obtained hy cquating first moments of the 

theoreticnl distrihution and the sample. 

1.1.2 The Normal Case 

Consider a random variable X distributed according to the normal cumulative 

distribution function: 

The likclihood can be written 

I (1.6) 
L =esp 

\ 

Differentiating thr cspression inside the esponential and setting to zero. we get 

the so-cnlled likelihood eyuorions: 
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(1.7) 

The solutions. thc maximum likelihood estimators. consist of the samplc mean 

and variance, respectively: 

Again. this gets the same result as moment matching. For a lognormal variable Y 

= exp(X). thr sample mean and variance of In(Y) make up the MLE. This follows from 

an invarinnce property of MLEs. 

In the example set out in Kreps [1997], we have the iog of IRNR modcled as a 

normal distribution with s = 73.01923 and â = 0.06653 based on n = 5 sample points. 

1.2 Estímating a Percentile 

‘l‘ypically, actuarial risk calculations concrrn themselves with onc tail of a 

distribution. In DFA, the “interesting” or “risky” behavior of the system will ofien be 

driven by the upper or lower extreme values of one or more key variables. For example, 

in thc contcxt of reserving. it is common to ask. what leve1 of the loss variable will only 

be exceeded with specitied low probability? This sort of quantity is also known in other 

linancial disciplines as the vulzre al fisk. 
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The lOO( 1 -q)lh percentile X, of a distribution is given by solving 1 -q = Fx(X,,Q. 

I-lowever. this requires knowing the true value of 0. In practice, we only have some 

estimator s^ of 6’. thcrefore we are lefì with the problem of constructing estimators of X,. 

1.2.1 The Exponential Case 

Given the pnrametcr 1. it is rradily determined that X,- -/i In(q). This suggests 

an ohvious cstimator: 

X,, = -T. In (1.9) 

1.2.2 The Normal Case 

For normal variables, X, = ,~r + Z~D where 74 is the lOO( 1 -q)lh percentage point of 

the standard normal distribution. e.g.. ZU,I~=I ,645. Again, this suggests an obvious 

estimalor: 

“,, = ,; + z,, à (1.10) 

For the lognormal. we simply transform by f, = esp( -t,, ) Kreps’s example 

notes that thc probability of rxceeding Y = $1 1.5 billion is 1.39% (if the estimated 

parametcrs nrc csactly corrrct). Equi\,alently. .? u “,,,) = 13.166 or î;,,,;, = 1 1.5.10” 

1.3 Bias in Parameter and Percentile Estimators 

Sincr estimntors are themselves rnndom \,ariables. it is meaningful to inquire into 

their sampling behaG«r (distributional properties). Imagine there are modelers. m = 

I....,M. cnch drawing an independent samplc (SI “,,. ..sN,,,) from some tixed distribution. 
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Each modcler assumcs (corrcctly) the form F(s;ll) of thc distribution. but must estimate 

the parametcr 0 basrd solely on his or her o\vn sample. Each modeler will then, 

presumably. have a different cstimate for B and some will get closer to the actual value 

of 0 than others. 

An cstimator S for a quantity.fiO) is said to be unbiased ii 

E,,[S - f(O)] = 0 (1.11) 

where the notation 13,) [] denotes mathcmatical espectation with resprct to the distribution 

charactcrized by 0. Note that 0. hencr f/& is a fìxcd number and S is a random vzariable. 

In the cxamplc ofthe M modelers. unbiasedncss means that the average estimate obtained 

among modelers. as M gcts arbitrarily large, will converge to the truc value 01’ thc 

parameter. Unbiasedncss IS only one property that an estimator may possess. and not 

having it docs not necessarily make an estimator interior w enes that do.’ 

Note that thr detinition of unbiasedness applies to cstimators of any quantity 

associatcd with a distribution, parameters as well as pcrccntilrs, cxcecdance probabilities, 

etc. 

’ “Bias” is such a loaded word thst statisticians would have been better off with n 

more technical teml like “expectation nrutrality.” Alas, we are stuck with the baggage of 

historical usage. 
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1.3.1 The Exponential Case 

The distribution of T. the MLE for the exponential scale parameter 1, can be 

shown to be a gamma with scale parameter A/n and shape parameter n, 

(1.12) 

dz 

The mean of T is therefore A, and the variance is A’/n. T is therefore an unbiased 

estimator for A. Bccause T is unbiased for 2. x,, is also unbiased for X,. 

1.3.2 The Normal Case 

The sample mean of a normal distribution is distributed as a normal with mean ,u 

ami variance c?in. therefore it is unbiased for ~1. The sample variance is distributed as 

din times a X’(n-1) variable; the MLE for 0 is therefore biased. We can distinguish 

severa] alternatives. If an unbiased estimate ofthc ~urir?/zce (2) is desired, then we want 

the familiar 

In. - 3, =vnel fl 

This gives us a value of 0.07439 in the Kreps example. 

(1.13) 
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Unbiased estimation of the standard deviation (0) is much less familiar to 

beginning students of statistics. Lehmann [ 19831 gives a general form for unbiased crL 

estimation3 which specializes for k = 1 to: 

This gives us a value of 0.0791 1 in the Kreps cxample 

We may generalize our percentile estimator by considering 

(1.14) 

(1.15) 

where we have a choice of cstimators s, for ch Recall that the MI, estimator of the 

1.39% exceedancc point (zoo,~~ = 2.2) is X .= 23.166 translating to an IBNR of Y = 

exp(23.166) = 11.5 billion. 

An unbiased estimator for X, uses ô,, = â, which yields 23.193, translating to an 

1BNR of ll .82 billion. This is not unbiased for IBNR, however, because an unbiased X 

does not imply an unbiased exp(X). This author is not aware of an unbiased estimator for 

l’,,. We can estimate the magnitude of the bias, however, by noting that if the normal 

parameters were indeed equal to their ML estimators, then, approximately, 

’ Johnson, Kotz, and Balakrishnan [ 19941 discuss the special case of k=l and 

present a simpler approximation. 
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E[exp(iV,,)] 2 
-___- = exp 

‘; ;- 
+ 

where the subscript J indicates we are using the unbiased estimator for 0. This is only an 

approximation because it assumes that â> is distributed as a normal variable: for o<l. 

howevcr. it is accurate to within 5%. In our example, for values of cr in the 

ncighborhood’ of the ML value, the ratio of equation 1.16 is within 1.3% of unity. 

indicating little bias. However. for larger values of C. the bias can be substantial. 

í.4 The Rhk Curve and X-Unbbiasedness 

We can present thc results of many percentage point estimators in graphical form. 

The locus of points (<X,,q>) is known as the risk curve or exceedance probability (EP) 

curve. We place the esceedancc probability q on the vertical axis and the percentile 

estimate x,, on thc horizontal axis. Depending on the range of interest, we may want to 

plot onc or hoth axcs logarithmically. An alternative for the vertical axis is to plot the 

rcturn period, I/q, in units of time. e.g.. years if the variable represents an annually 

measured quantity. 

’ Specifically, for values of the parameter within a two-tailed 90% contidence 

interval. as detined in section 4.1. 
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If, for evrry q. thc pcrccntilc csrimator .c4 is unhiaîed, we say that thc risk curve 

is X-unbiased. or unbiased in the X domain. If a parameter cstimation technique leads to 

an X-unbiascd risk curve. wt: will cull 11 an X-unbiased tcchnique. 

1.4.1 The Exponential Case 

Ila\ ing drvrloprd T. the Iocus ofpoints (- T In(q).<,) is the MI, risk curve. This 

risk curve is unbiascd in thc X domain. Thr MI,T: tcchniqur for exponentially-distributcd 

data is thus X-unbiased. 

1.4.2 The Normal Case 

Dependiny on \rhich ü,, is used. therc are corrcsponding altematives for thc risk 

cur\e. Figure I shorr-s thc MI.E-bascd curve as a thin solid line and the X-unbiascd 

(approximatel>, Y-unhiased) curve as a thick dotted linr. For referente. the target 

;$I.l57 billion. 1.39%~ prohability point is markcd \vith a box. Note that the two 

versions of thc curve differ markedly. Around thc rcfercnce point, the difference 

amounts to $300mm on the dollar axis or 1.7% on the probability axis. ‘fhe MLE 

technique for normally distributed data is therefore not X-unbiascd, but an X-unbiased 

altcrnativc. based on equation 1.14. is nvailable. 

2. THE CASE FOR ADJUSTMENT 

Llnbiased estimation in thc X (log) or Y (dollar) domain may or may not be 

appropriatc for the decisions to be made in a real application of the theory. For example. 

while the Ameritan Academy of Actuaries [ 19931 says, “Consideration must also bc 
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given to any [statistical] bias in the reserves or premiums.” it doesn’t specify in what 

manncr this consid&ation should be given. This section considers a different sort of bias, 

Icading to the notion of P-unbiasedness. and how that can be achieved through the 

predictivc distribution approach. 

2.7 Probabilisfic Bias and Predictive Bounds 

We can ask a slightlq different question about estimators for & (equivalently, Yq), 

based on thc property thcy purport to represent, namely. an exceedance probability of 4: 

What is thr sxpectcd value of this probability? In particular. we might like estimators 

that arr “probabilistically unbiased” (P-unbiased) in the sense that 

E[l-I;(&.O)]=q. (2.1) 

Such probabilistically unbiased estimators do exist. They are known aspredicCon 

houtds. because 

(2.2) 

where A’ is another draw from the population. independent of the sample upon which the 

estimator is based. Since X, is the point satisfying I-q = Fx(X,.B), if i, is unbiased for 

X,, it is natural to assume that the probability of X > x,, is also equal to q. This is not 

generally the case: X-unbiasedness does not imply P-unbiasedness. By establishing the 

true “predictive probability” of an estimator k,, 

P(%@)= Pr(X> iy) = E,[l4&QI)] (2.3) 
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we might be abie to solve for an adjusted q* satisfying p(q’.Q) = q Then. i,. may 

serve as a P-unbiased estimator for X,. Other routes are available, also. If, for every q. 

the percentile estimator ,f,,. is P-unbiascd, we say that the risk CUTVC is P-unbiascd. If a 

parameter estimation technique leads to an P-unbiased risk curve. we will call it an P- 

unbiased technique. 

2.1 .l The Exponential Case 

The predictive probability for an exponential percentile MLE is independent of 

the parameter: 

For example, with n = 20 and nominal q = 0.01, the true predictive probability is 

0.016. 

Inverting the relationship. we get the adjusted q* for a “probabilistically 

unbiased” i,,. : 

q*=exp(n.(l-q-j.)). 
(2.5) 

For example, with n = 20 and q = 0.01, the computed q* = 0.006. The adjusted 

(P-unbiased) risk curve is then the plot of 

Can we !ind a P-unbiased estimator for the exponential parameter? In other 

words, can we compute T in such a way that the straightforward k, from equation 1.9 is 
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P-unbiased? Not in general; there is no solution S to the equation 

that holds for all O<q<l simultaneously (although as n 

increases without bound. .S=T is an asymptotic solution). This means that therc is no 

parameter estimation technique ~ilhin IAL’ expu,onet7/iul dishibution that yields a P- 

unbiased risk curve. 

That is because the predictive distribution for an csponential variable is not an 

esponential distribution. it is a Pareto! This can be seen by solving X = -I‘. rr. 

for q in temis of X: 

(2.6) 

In summary: to create an X-unbiased risk curve from presumed exponential data. 

first dctemtine the MLE T of the cxponential parameter as in equation 1.4. Then 

substitute 7‘ tòr ?, in equation 1.2. This is not P-unbiased, however. because the true 

escecdance probability at an estimated percentilr is affccted by parameter estimation 

uncertainty. For a P-unbiased risk curve. construct the Pareto distribution corresponding 

to equation 2.6. Drawing simulated values X from the Pareto instead of the exponential 

will “take unccrtainty into account” in the sense that the true exceedance probabilities of 

the simulated percentage points will bc accurate in expectation5 

5 Here, “in expectation” means “averaged over all random samples of data from 

the same exponential population.” 
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2.1.2 The Normal Case 

A prediction bound which a single future. independently selected normal variable 

will not csceed Mith probability 4 is given by: 

-C,, -= Ii + I ,,,,, , 6, 
rl (3.7) 

d n 
1 + - 

where / is the lOO( 1-q)th percentile of a Studcnt I distribution with n-l degrees of 

frerdom. For our rsample of n = 5 and t, = 1.39%. we get I = 3.379 and the prediction 

bound is ay -r 23.295. corrrsponding to 613.08 billion. 

This must mean thc cstimators in section 1 are probabilistically biasrd. Indeed, 

by sctting ,v,,, = .?, (cquarions 2.7 and I .lS. rcspectively) \\c may compute the 

predictive prohahility cl* corrcspondin g to thc nominal y probability for the estimator 

.t,, Thr ML estimator for the 4 = 1.39% cxceedance point, sho\\m prsviously to he 

biased in the loy domain. has an espcctcd actual esceedance of CI* = 7.34%. Thus. in 

probabilistic terms. it is drastically hiased downward underestimating the taiI risk. 

Míhnt about thc (log) unbiased estimator basrd on c?>‘? This is a little bctter. with 

cspcctcd actual cxcccdance of y * = 4.98%. but it is still far from being unbiased in the 

probabilistic sense. 

Figure 2 adds lxyy .q) to the plot of risk cu~cs as a dash-dot linc. This represents 

a dramatic increase in cstimated risk. Values of IBNR cscecding $1.35 billion. 

essentially inconceivable according to thc MLE and dollar-unbiascd curves (20,000-year 

rctum period or higher), are now seen as a distinct possibility (1 OO-year retum period). 
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1s there a P-unbiased estimator for o? As with the exponential case, no. The 

predictive distribution is from the Student f family, not the normal family (although. 

again. in the limit as n increases without bound, therc is convergence). To create an X- 

unbiased (or log-unbiased) risk curve from presumed normal data. the methods of section 

1.3.2 suffice. For a P-unbiased risk curve, however. one must construct the Student I 

distribution corresponding to cquation 7.7. 

2.2 Discussion 

A apecitic family of distributions will lead to a specific form for the predictive 

distribution. However. there is an approsimation method which can bypass the analysis. 

By sampling the parameters (according to an estimate of their distribution) as well as the 

object random variable (according to the particular parameter values selected in their 

most rcccnt draw). one can create a random variable drawn from a mixture.6 This 

mixture represents a predictive distribution insofar as it incorporates variability in the 

random variable (process risk) as well as uncertainty in the parameters (parameter risk). 

Making this sort of adjustment - analytically or numerically - is often what is 

meant by “taking uncertainty into account.” Notice correcting this new sort of bias is a 

matter of increasing an understated (on average) risk. For typical actuarial distributions 

with decreasing density in the upper tail and small enough q, on average, the true 

excecdancc probability 1 F,. (.“,, .Q) for the quoted value of an unbiased estimator x, 

’ cf. Venter’s recommendation discussed in section 0.3.1 
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will be higher than the nominal probability q from which the estimate is developed. The 

adjusted value k,,. will therefore be higher (farther up in the tail); this is why it is ofien 

claimed that “uncertainty fattens the tails.“’ 

Why does this happen? The function F, is nonlinear in its X argument. Values of 

an X-unbiased,?, deviate from the true value in a balanced fashion between high and 

low; the average is the true value X,. However, a deviation on the high side contributes 

Icss to the expectation of F, (2,,;,19) than an equally large deviation on the low side 

diminishes it, due to the curvature of F,. Therefore the expectation is not the same as the 

function evaluated at the true value X,. 

As mentioned in section 0.4.2, Kreps [ 19971 addrcsses this issue from a Baycsian 

perspective. His result for the “true“ 1.39% exceedance point is $14.1 billion. about a 

billion highcr than was calculated in section 2.12. It is interesting to note that Kreps 

[ 19971 summarizes his computations of percentagc points with analogous expressions 

,íT + :. â involving the MLEs of the parameters. For the MLE of the percentage point, z 

is the corrcsponding percentile of a unit normal. For the predictive distribution, Kreps’s z 

is zCtn, the percentile from a normal with variance (n+ l)/(n + r - 4), where r is a 

parameter defming the “uninformative” Bayesian prior distribution on o, typically 0 or 1 

(he used zero). Sincc a 1 distribution with v degrees of freedom has variancc v/(v-2) the 

’ cf. Kreps’s comment, discussed in section 0.4.2 
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equivalent Frequentist coefficient /y,,,., s (derived from equation 2.7) can be 

considered analogous to the Bayesian z,tr with r = I 

Bayesians feel free to treat uncertainty in the parameters on an equal footing with 

the stochastic behavior of the random variable. Above, we saw how Frequentist 

mathematics can, in effect, yield the same results. If probabilistically unbiased 

estimation (or simulation) is the gonl. it is appropriate to utilizc the prcdictive 

distribution. rather than the ML-estimated distribution, to look up percentiles (or generate 

random variables). This is the Frequentist rationalc for “adjusting the risk curve for 

uncertainty.” 

3. THE CASE AGAINST ADJUSTMENT 

In this section. the search for hidden forms of bias continues. The concept of Q- 

unbiasedness will be defined. It will be seen that the adjustments of section 2 can lead to 

worsening of estimator behavior with rcspect to Q-unbiasedness. Moreover, it will be 

seen ho\v it is typically impossible to make an adjustment which simultaneously 

improvrs thc two competing measures of bias. 

3.7 Estimating Exceedance Probabilitíes and Q-Unbiasedness 

Rather than divulge a dollar limit X, corresponding to a given exceedance 

probability q. we may view a risk curve as telling us a probability QL of exceeding a 

specific threshold L. This might be the perspective. say. in a ruin-theoretic analysis. The 

dccisionmaker could have in mind that $1.152 billion is the most that could be lost 
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without dirc conscqucnccs. and might requcst nn estimate of the probability of suffering 

them. As far as the geomrtry ofthe risk curve is conccrncd, this new situation is simply a 

matter of entering the graph from a different asis. trcating thc locus of points as CL,&> 

rather than CC,.q? 

If an estimator 0, is unbiascd. we will say that a risk curve constructed from 

such estimators is Q-unbiascd. If a DF.4 modcl aims at constructing risk curves for both 

X, and Qr lookups. then Q-unbiascdncss and I’unbiasedness are arguably cqually 

desirable. 

A natural point cstimntor is $, = I - fi\, (L.6). Indeed, if6 is the MLE of H. 

then $, is the Ml.E of <Ir. It should come as no surprise that E~[G,,] does not in 

general equal Ql. again. due IO nonlinearity of F, - this time in its 0 argument 

In the two rxamplcs it will he seen that. on average. thc estimated exceedance 

probability 8, for thc spccified loss threshold L will be higher than the true probability 

Qt To corrcct for this bias. an adjusted probability estimate ti, * will have to be /ower 

than the estimate ti,, computed from maximum likelihood. Thus, this variety of bias is 

in thc direction of o~rsrn/i~tg thc risk, in marked contrast with the case of thc previous 

section. which understated the risk. Q-unbiasedness is not the samc as P-unbiasedness. 

In a sense. thep are duals, if not opposites, of each other. 
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3 1.1 The Exponential Case 

.I’he point estimator 0, is obtained from equation 1.2 as exp(-L/T). This is 

biased. and Johnson. Kotz. and Balakrishnan [1994] give the minimum variance unbiased 

(MVU) estimator as: 

>/ / c 1 (3.1) 
O,,‘,, = 1-A 

This represents the risk curve as a form of beta distribution. As with P- 

unbiasedness. there is no estimator of the exponential parameter to make a Q-unbiased 

cxponcntial risk curve. However (and again, similarly). in the limit as n increases 

without bound, equation 3.1 approaches an exponential. With ?, = 1 1 n = 20, and L = 

4.605. thc true value of QL is 1%; were T to equal A. this estimator would produce the 

value 0.69%. 

‘l‘his estimator has the unfortunate property that if L is greater than nT then the 

estimated esceedancc probability is zero. making very-high-tail estimates impractical. 

By taking a Taylor expansion, we may approximate 

Unfortunately, the “bias correction” term in this approximation is dependent on 

the true value of i. which is unknown. By substituting T for X, we may compute an 

approximately unbiased estimate as: 
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For tail thresholds 1, greater than tvvice thc cstimated mean T, the denominator is 

grcater than one and the estimated probability is thcrefore less than the MLE. In this 

numerical rxample (ti = 20, L = 4.605, and 2. = l), simulation shows this estimator to 

average I .1% versus the true 1% For n = 20. L = 4.605, and T = 1, this adjusted 

estimator produces 0.77%. about three-fourths of the ML-estimated probability, and Il % 

higher than the MVU estimator. 

3.1.2 The Normal Case 

Again we have a variety of estimatrs 

(3.4) 

available. depending on the estimator used for o. Here, cb is the cumulative (standard) 

normal probabiiity function corresponding to the integral in equation 1.5. The MI, 

version of this estimator gives us an exceedance probability estimate at L = $11.5 billion 

(s z In(L)) of 1.39?/,. 

At this point, readers should not be surprised to leam that the MLE is biased. 

Lehmann [ 19831 and Johnson, Kotz, and Balakrishnan [1994] provide the minimum 

variarme unbiased estimator for the exceedance probability of a normal distribution: 
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(3.5) 

C!nfortunately. for values of x such that U = S. (which includes our numerical 

example) this estimator takes on the value of zero. Again. this is likely to be 

unacceptable in the typical actuarial application. 

Alternatively. we can. by numerical integration or simulation, estimate the bias of 

the MLE (assuming various parameter values). For parameters taking on their MLE 

values in our example. the espected value for the ML esceedance probability estimator is 

approximately 1.83%. versus the hypothesized 1.39% a ratio of 1.3. For other 

parameter values in the neighborhoodY of the ML values, this ratio is at least O.Y, usually 

grcater than one. often greater than two. and sometimes greater than 10. This means we 

should suspect the MLE of being biased high in the situation representing our data, that 

is. ovcrestimating the tail risk. This is in contrast to the MLE percentile estimator, which 

was biased ION, nnderestimating the tail risk. 

What about the altemative estimators? Using an unbiased estimator for a, we get 

an expected exceedance estimate (again, assuming parameters at the ML values) of 

3.17%. high by a factor of 2.3, substantially worse. This is because the unbiased estimate 

* See footnote 4 
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of u is greater than the ML estimator, decreasing the Z-score, hence the cumulative 

probability. and hence incrcasing the csceedance probability. 

What ahout invcrting the prediction bound equation’? This is the equivalent of 

“looking up” cxcccdance probabilities from the predictive distribution. This is worse 

still. with an cxpccted cscecdance estimate of 6.13%. high by a factor of 4.4 1, 

Applq ing the same stratrgy as with thc cxponential distribution, we can take a Znd 

ordrr ‘l‘a~lor scrics approximation to the esceedance probability and csprcss thc rclative 

bias as 

(3.6) 

As in the case with thc csponential. \vc rna! substitutr the MI. cstimators for 11 

and o. obtaining 

(3.7) 

This cstimator. while nut exactly unbiascd, docs managc to shrinh the hias of the 

MI. estimator, typically by 60-90% in the neighborhood of thc ML values. 
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Figure 3 estends our family of candidate risk curves to include Q* and Qua. 

3.2 The Paradox 

We have seen that to fit a model to data from an assumed distribution, the ML 

estimators of parameters led us to straightfonvard construction of risk curves. However! 

“taking unccrtainty into account” in the parameter estimates led us to a profusion of 

sometimcs opposing adjustments. 

The ML estimators nndrrestimate tail risk in one or two ways. First, the MLE of 

a normal LOO(l-q)th percentile (for small enough q) is. on average, too low. Second, 

even the unbiased version (or the naturally unbiased estimator in the case of an 

esponential distribution) still provides “too low” of an estimate because the true 

escredance probability of this estimator (the predictive probability) is, on average, 

greater than the specitied amount q. 

On the other hand. an MLE of esceedance probability at a (high enough) 

prespeciticd threshold is. on average, too high, thereby overestimating the tail risk. The 

substitution of a predictive distribution, corresponding to the probabilistic bias correction 

for cstimating percentiles. is even ,nore biased than the MLE. 

Thc scarch to achieve simultaneous X-. P-. and Q-unbiasedness. even 

approsinxrtely. leads us in conflicting directions. 

C’onsidcr thc implications of this in practice. An actuary has performed a 

Dynamic Financia1 Analysis of a client’s balance sheet. Numerous sources of random 

varianon in liability and asset values were modeled, each of them having been fit to 

historical data. After esplaining the methodology and walking through various charts 
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and tables, the actuary summarizes: “There appears to be a 1% chance that your surplus 

will experience a drop exceeding $1 billion.” 

In an atypical response. the client might rcmind the actuary that there is sampling 

error in the various historical estimates and that actual probability distributions may well 

be different from the point estimatcs used in the model. 1s this not another source ofrisk? 

Should the analysis not be adjusted to “take uncertainty into account?” 

They meet a few days later, after the actuary has had a chance to enhance the oid 

“Ccrtainty Model” to include unccrtainty adjustments. The following dialog between the 

client (C) and the actuary (A) ensues. 

C’: OK, now that you ‘ve tuken uncertainy into account. what is an unhiu.red 

estimate qf my 1% exceedance point? 

A: II ‘s slill SI billion. Tl7rrt ‘.v an unbiased estimate. 

(‘: Buf isn’t it true thar exceedance points including sampling error should be 

higher rhan exccedance points withouf? 

.4: Yes. Iha/ makes sense See. !he prohability of your experiencing a koss 

grearer /han rhe point the Cerfainty Model pi& 0741 as /he I % poinf. that is IU 

say, rhe predictive probability, is actually grealer lhun Ia%, so the $1 billion 

jìgure is probab!y loo low A berrer answer is morc like SI. 2 billion. 

C:‘. So an unbiased estimate oflhe prabubiii~~ qfcscccding SI hillion is acrual1.p 

pxwter rhan 1 YO? 

,4: No. ewredance e.vtimarion in the Certainty Model i.r biased upwards. An 

unbiased estimate ofthe probabili& oj’exceeding SI billion i.y more like 0 8% 
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C’: First you (ell me $1 billion is an unbiased esrimare for (he 1% point. Then 

you kll me Ihe risk is worsc. (ha/ (he probabilil~~ is aclually greafer (han 1%. 

Thrn you rell me the risk is beflrr, fhaf an unhiased estimare is less {han 1%. 

Non, rell me why 1 shouldn ‘1 reporr yo~r W the Actuarial Boardfor Counseling 

und Discipline! 

What. then is the correct response? How is uncertainty to be taken into account? 

4. CONFIDENCE INTERVALS 

The classical approach to expressing parameter uncertainty is through summaries 

of the estimator distributions. either moments or selected percentage points. The latter 

become confìdence in!erval.v when couched in terms of the probability that the quoted 

percentage points bracket the true quantity. 

Following Hahn & Meeker [l991]. we may define a contidence interval as an 

interval bracketed by two estimators (functions of the sample data) intended to contain an 

unkno\vn charactrristic of the sampled population. Such a characteristic could be a 

parameter of the distribution. c.g.. the mean or standard deviation of a normal 

distribution. or a function of thosc parameters, e.g.. a pcrcentilc or an esceedance 

probability. The interval will contain the true value of the characteristic with a specified 

“contidence.” e.g.. 99%. This can be interpreted by Frequentists in terms of sampling, 
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bccause the interval endpoints are random variables4 If independent satnples were 

rcpcatcdly drawn. and the intcn al computcd from the samplrs. thrn thr intcrval would 

contain thc true value of thc characteristic with thc spccitied frequency, e-g.. 99% of the 

time. 

4.1 CI for Parametefs 

4 1 1 The Exponentlal Case 

A lOO( I-u)‘% conlidcncc intcrval for the esponential paramctrr 0 is given h> 

~hcrs í is thc 100(0:7)th or 1 OtI( I-aP)th percrntile tiom n gamma distrihution v.ith 

shapc parameter II. I:or our numcricid csamplc with ‘I- 1. the interval is 10.717, 1 .509]. 

4.12 The Normal Case 

A 1 OO( l -u)% confidente interval for thc mean is given by 

9 Interprrtation is even easier for Rayesians, because they are free to treat the 

parameters themselves as random variables. 
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where I is thc lOO( 1 -a/2)th percentile from a Student’s I distribution with n-l degrees of 

lieedom. A 90% contidence interval for thc mean in Kreps’s reserving example (see 

prrvious scction) is therefore [22.Y48,73.090]. 

A IOO( 1 -u)% comidence inter\.al for the standard dcviation is given by 

(4.3) 

where x2 is thc 1 OO(a!l)th or lOO( 1 -a/Z)th perccntile from a chi-square distribution with 

n-l degrees of fieedom. A 90% contidence intcrval for cr in our example is [O.Oi183, 

0.17651. 

4.2 CI for Percentiles 

4.21 The Exponential Case 

Since the esponential is defined by only one patameter 8, a contidence interval 

for a q-csccedance percentile can be obtained directly from the confidente interval for 

the parameter by suhstituting endpoints: 

4.2.2 The Normal Case 

Sincc the normal is detined by two parameters that mus: be estimated. the 

situation is a bit morc complex. .4 lOO( l-a) ?G contidence interval for X, is given by 
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where tables of g are available in Hahn Rr Meeker [ 19911. More complete tables, as well 

as the underlying theory based on the noncentral 1, are availablc in Odeh & Owen [ 19801. 

Johnson, Kotz. and Ralakrishnan [ 19941 also give thc distribution of iq in terms of the 

noncentral I. A 90% confidente interval for the 1.39% exceedance point in the example 

is [23.l 13. 23.431. This translates to an IBNR intervnl ot’[lO.Yl billion. l4,YX billion]. 

4.3 CI for Exceedance Probabilities 

4.3.1 The Exponential Case 

Agnin, sincc thc cxponential is defined by only onc parameter 8. a confidence 

interval for exceedance prohabilities can bc obtaincd directly from thc confidcncc 

intcrval for the parameter hy substituting endpoints: 

4.3.2 The Normal Case 

A 1 OO( 1 -a)?h confídence interval for Q is yiven by 

(4.6) 

(4.7) 

[a,:.Y,+] = 11 ^ 3 1 -h 
l-;.~,” 1 -;,-z,, 

CT ” Y _ 
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where values oí’ h are tabulated in Odeh & Owen [ 19801. For the reserving example. a 

90% contidence intrrval for exceeding Y= $1 1.5 billion is [0.000617. 0.28351]. This is a 

stupetjiingly large confidente interval. encompassing a factor of 459 between the two 

extremes. Figure 4 adds the upper and lower 90% confidente risk curves to the previous 

risK curves. 

5. CONCLUSION 

This paper rxamined the general problem of estimating parameters of probability 

distributions and the sprciiic problem ofestimating the nctuarially interesting percentage 

points and exceedance probabilities as captured in the notion of a “risk cune.“ The 

choicc of risk cun’c translates directly into thc gcncration of random variables in DFA if 

the invcrse lookup method is used. or. indirectly. as it affects the selection of 

distributional parameters for other methods. In particular. the paper showed ho\\ 

parameter unccr~ain~y (parameter risk), stemming from sampling variability. can induce 

bias in estimators. It presented thrce varieties 01‘ bias that a risk curve could exhibit. 

depending on what nspcct of thc cuna is considered relevant. It demonstrated that. at 

Ieast in the common examples ofexponential and normalilognormal distributions. there is 

no \\\a) to correct thrsr binLes. even approximatcly. in a single “uncertainty-adjusted” 

risk curve. l‘hc conclusion. that a risk curve cstimation procedure can seem to be 

simultaneously overestimating or underestimating risk. appeared as something of a 

parados. 
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‘l‘he resotution of this parddox is to examine our intuitive expectations about 

uncertainty-induccd bias.‘” It is not the case that a single ünccrtainty-adjusted” curve 

can replace the “point-estimatcd” curve. yielding better estimators alt the way around. 

Uncertaintv (parameter risk). it seems. cannot be put on n par nith randomness (process 

risk). Thc problem is inhercnt in the nature ofparameter uncertainty: likc a carpet too big 

for a moni. attempts to “tlatten it out” in one spot will only make it “bulge up” 

somewhere clsc. 

Ihr solution that would-be DFA mude1 builders should considcr is to make 

explicit the distinction between uncertainty and randomncss by placing (uncertainty) 

contidence intzrvals around the (randomness) estimares. For directly fitted distributions. 

confidcncc intcr\als can bc calculated as v.as done in section 4. Por DF.4 outputs. the 

situation is not so straightforward. The modcl can he “stress tested” by substituting 

extreme’. hut not implausiblc (sce section 4.1). vslucs of the parameters (equivalcntly, 

versions of thc risk cunej nud ubscrving how thc rcsults change. Morc thorouyhly. 

multiple runs. with parnmeters selcctcd randomly tiom cstimates of their distributions 

(agatn. refer to scction 4.1 ) and ftxed \\ithin each run. can provide multiplc versions ot 

the results. These multiple rcsults can be summarizcd in tcmrs of percentilcs of their 

empirical distribution. giving. in cffect. confidcnce intcrvals on thc model outputs. 

‘” Bayrsians would say that thc rcsolution is to not be conccrned about bias; thnt 

bias as a statistical concept is problematical per se. I suspcct fcw actuaries would feel 

totally comfortahlc with this advicc. 

189 



After showing a client stress test or confidence interval results, bias can be 

addressed according to the particular goals of the problem. Given that bias is typically 

small compared to confidence inten?als, a proper appreciation of confidence intervals 

would tend to dampen concern over the minutiae of bias adjustments. 
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Abstract 

When appiymg the collect~ve nsk model to an analysis of insurer capttal needs, It is 

crucial to constder the effect of correlation betaeen lines of msurance. Recent tvork 

sponsored by the Comnuttee on the Theoty of Risk has sparked the development of 

methods that include correlation m the collecti\e risk model. One of these methods IS 

butlt around the view that correlation IS generated by parameter uncertamty affecting 

several lines of msurance simultaneously. 

This paper uses simulation analyses to esplore the properties of both clawcal and 

Bayesmn methods of quantifymg parameter uncertainty. We conclude that m order to get 

suffícient accuracy to determine the necessary capnal, one must use the combined data of 

several insurers Using the combined data of several insurers forces us to constder a 

collecttve nsk model where parameter uncertamty affects several insurers - as well as 

several lines of tnsurance - simultaneously 
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1. Introduction 

Thc coIIectI\e nsk model has long becn one ofthc pnmary toolh of actuarIal sclcnce. 

Onc can \le\\ thls model <as a computer slmula1lon \\hcrc onc lirst p~cks a random 

numbcr of clalms and then sums the random loss amounts for each claml 

The earl! uscs ofthe collectl\e rlsh model \\crc mos1l>, theoretlcal lllustratlons of the role 

of Insurer surplus and profit mnrgms Such Illustratlons are SIIII common toda‘ m 

msurancc cducational readmgs such as Bo\\ers. Gerber. Jones. ll~chman and Nesbltt 

1 l’I’)7. Ch 131 

Hy 1he late IO7O’s. members of 1he Casualt‘ Actuanal Soclety {vere begmnlng 10 use the 

collect~~c nsk model as Input for real-llfe msurance decwons The early applxations of 

thc coIIectI\e nsk model mcluded retrospectl\e ratmg. c g Mtycrs [19X0]. and aggregate 

stop Ioss relnsur,axce. e g John and Patn!-. [ IYXO1 Mhlch IS also descnbed by Patnk 

~1006~ Bcnr and Nemllck [ IWO] pro, Ide furthcr examples of the use of the collectlre 

nsb modcl m the prlcjng of relnsur,ance contracts Meyers ~19110~ beyns to apply the 

coIIcc~~~c nsl, model to an analysls of Insurer capltal 

‘fh~s paper IS part of a COIICCII~C cffort to eutend the use of the collective risk modcl 10 

D~narn~c Flnanclal .Anal!sls (DFA) One gal of DFA 1s the management of an insurer’s 

capttal An !nsurcr rcqulres suflictent capltal so that Its chance of msol\ency IS 

reasonabh remo1c An Insurer can mannge 11s capital nccds b! structunng lts bwness so 

that It has an acceptably remote chance ola large loss Thls structunng can mclude 1he 

use of relnsurance 

Whlle the collecti\e nsk model arose from theoretlcal eserclses In Insurer solvency, 11 has 

not heen wdel~ urcd In practlce for seltlng solvency standards The mam reason for this 

has bccn that II rcqulrcs that Indlvldual Imes of msurance be Independent Almost 

nobod! belleves thls 10 be true And as \vc shall demonstrate below, assumlng 

mdependcncc can lead to a sigmlicantly understated sol\ ency standard. 
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RecogmLmg this problem. the CAS Committee on the TheoE of Risk commissioned Dr. 

Shaun Wang to debelop versions of the collectlve risk model that do not require one to 

ilssume Independence betiveen Iones of msurance Th~s work led lo a paper titled 

.‘Aggregatlon of Correlated Risk Portfolios Models & Algonthms” which 1s to appear m 

the ne\-t Lolume of the ~ro~~,eedrngs c$rhe Curuaf~y.kruar~al S¿met~~ 

Insplrcd by Dr Wang‘s work, \\e followed v,ith a dlscuwon of his paper, Mqers [ 19991, 

that focused on a verslon of the collective nsk model uhere the cltim count dlstribution 

for cach Ilne of insurance xras conditionally independent given a parameter a Treatmg CI 

as a random vanable leads to a particular kmd of dependence bet\veen lines of msurance. 

In thls paper \ve propose a methodoloE for estnnatmg the variance of a and explore the 

data requirements necessary to provide reliable estimates of thls vanance. 

2. The Collective Risk Model 

For the hti Ime of msurance let 

ph = Espected claim severity, 

CJ,= Variance of the claim severity distributlon. 

hh = Espected claim count. and 

jih + ch.hi = Variance of the clam count distnbution 

Followng Heckman and Me):ers [ 19831. ne call ch the contaglon parameter Ifthe claim 

count dlstrlbutlon IS. 

Pmsson, then ch = 0: 

negative binomial. then ch > 0; and 

bmomial with n lrials, then ch = -I/n 
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A good way to wew the collecttve nsk model is by a Monte-Carlo simulation. 

Simulation Algorithm #l 

The Collective Risk Model Assuming Independence Between Lines of Insurance 

1, For lmes of rnsurance 1 to n, select a random number of claims, I(h, for each line of 

msurance h. 

2. For each line of insurance h, select random clarm amounts Zhk, for k = 1, Kt, Each 

Z,,k has a common distribution (Zk}. 

3. Set X, = EZt+. 
k=l 

4 SetX=EXh. 
h=l 

The collective risk model describes the dtstribution of X 

Meyers [ 1’9’991 sho\\s that lf Kh is independent of Kd for d 3 h, and íT.+ is mdependent of 

h we ha\ e: 

and Cov[Xd,Xh]=Oford#h (2.2) 

We now introduce parameter uncertainty that affects the clrum count distribution that 

affects several Imes of msurance simultaneously. We partition the Imes of msurance into 

cowrmnce groups {G,}. Our next version of the collecttve risk model is deftned as 

follows. 
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Simulation Algorithm #2 

The Collective Risk Model with Parameter Uncertainty 

in the Claim Count Distributions 

1. For each covaxmce group 1. select a, > 0 from a dlstrlbutlon \\lth. 

E[q] = 1 and Var[a,] = g, 

g, is called the cox anance generator for the covanance group i 

2 For Ime of~nsurance h In covanance group I. select a random number of claims Kh, 

from a dlstnbutlon \\rith mean q&, 

3. For each hne of msurance h in colanance group I. select random clalm amounts Zhll 

Iòr L, = 1. bl Each Zhlk has a common dlstri butlon {Z,, [ 

5 Set X., = &- X,, ‘1 

6 Set X :: 2X., 
a-1 

Me)ers [ 1 ‘WI] show that for d # h: 

For d = h: 

(2.3) 

C0\[X,,.X,,]= vÍir[x,]- ih, .a; +p;, .(hh +(l+g,).c,, -k:,,)+g, .hi, .p;, (2.4) 

And for I #J: 

c0v[x,,x,,] = 0 (2 5) 
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The ultimate purpose of thls papcr IS to dlscuss the estlmatlon of the 6,‘s from clami 

count data, so \\e remove clalm sever+ from the aboye equatlons by settmg cach 

pi, = 1 and of> = 0 111s yves us: 

C’ot[K<,>.K,,] = g, -L -h,, (2.6) 

Co\[K ,,,. K,,]=Var[K,]=h,“+(c,,+g,~c,, g,).h?,,. (2 7) 

andforl#J 

Cov[K,,K,,] :- 0. (2 w 

3. The Impact of the Covariance Generator on Required Capital 

The purpose of thls paper 15 IO y\e some estlmators of the co\ ariancc gcncrntor. g. To 

thls end, \\e gve an esample on a hypothetlcal Insurer \vrttmg tòur Iones of~nsurance 

The Insurcr espects 1.000 clams In each lme. and the contayon parameter for each Imc 

1s equal lo 0 ll2 The coianance generator 1s equal to 0 0-I The clalm scverlt! 

dlstrlbutlons are gl\en 111 Meyrrs ~109~~~ Tablcs 3 1 and 3 2 gve various summar) 

statlstlcs of the Insurer’s aggregate loss dlstnbrmon 

Table 3.1 
Aggregate Summary Statistics 

Aggregate Mean 101.581,230 

Aggregate Std De\ 23.270.480 

Table 3.2 
Claim Severity and Claim Count Statistics 

Dlstributlon Name EICountJ StdlCount] E]Scvcr~t?] StdlSe\erityj ElTotal Loss) 

GL-% I M 1000 248 60 36.966 16 124.853 59 36.X6,160 
CL-ã5M I 000 24x 60 40.3-M 87 160.21851 40.348.870 
AL-â I M IOOO 24X.60 11.456 65 76,434 03 1 I .456,650 
AL-FSM I no0 248.60 I2.809 55 99,730 27 12,809~550 
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Table 3 3 and 3 4 give the correlations betaeen each of the lines of insurance for the 

clarrn counts. and for the total tosses. 

Table 3.3 
Claim Count Correlation Matrix 

CL-SIM GL-S5M AL-SlM AL-S5M 

CL-$ I M 1 .ooo 0 647 0 647 0.647 
CL-$SM 0.647 1.000 0 647 0.647 
AL-$lM 0.647 0.647 1 .ooo 0.647 
AL-S5M 0.647 0.647 0 647 1.000 

Table 3.4 
Total Loss Cordation Matrix 

GL-$1 M CL-$5M AL-$IM AL-SSM 

GL-$1 M 1.000 0.53 1 0.453 0.423 
GL-S5M 0 531 1 000 0 440 0.410 
AL-S 1 M 0.453 0 440 1.000 0351 
AL-S5M 0.423 0410 0351 I.000 

We no\v consider some capttal requtrement formulas Let X be a random variable 

representmg the insurer’s aggregate loss. Let: 

F(s) = Pr(X < s) 

f(x) = F’(x) 

0 = Standard Deviatton of X 

C = Required lnsurer Capnal 

Then the requtred capttal can be detined by one of the followmg equattons 

I Probabthty of Rutn Formula F(C + E[X]) = 1 -E 

2. Expected Poltcyholder Delictt Formula: 
~~~-b,\,(~-C-EIX1).f(g)d~ 

E[Xl 
=q 

3 Standard Devtation Formula C = T.a 
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The probablhty of ruin is a common testbook capnal rcquirement formula m actuarial 

mathematics The standard devlatlon formula 1s the probability of ruin formula, when 

apphed to anormal approsimatton of the insurer’s aggregate loss distribution. The 

expected pohcyholder deíiclt formula IS more recent. and takes into account the amount 

of insolvency as well as the probatxhty of insolvency 

We calculated the distnbution of X using the Heckman/Meyers algonthm [ 19831 as 

modiíied by Meyers [ 19991 We then calculated the capital requirements using the above 

formulas (ulth E = 0.01, ?l= 0 OO1 and T = 2 32) for the insurer using various balues of g. 

The results are in Tables 3 5 and 3 6 

s 

0.02 
0.03 
0.04 
0 05 
0 06 

Table 3.5 
The Effect of g on Capital Requirements 

Standard Probabihik Espected 
Dewatton of Rum Pohcyholder Detkt 

42,388,424 43,179,2Y5 46,210,851 
48,535,720 52,492,867 49,606,674 
53,987,534 57,818,856 55,052,91 1 
58,937,183 62.5 16,435 59.X58.191 
63$)2,lYR 66,763.256 64,205.165 

Table 3.6 
The ElTect of g on Capital Requh-ements 

% Deviations from the Base g = 0.04 

Standard Probability Expected 

.5 Dewation of Ruin Policyholder Deliclt 

0.02 -21.5% -25 3% -16 1% 
0.03 -10.1% -9 2% -9 9% 
0.04 0.0% 0 0% 00% 
0 05 9 2% 8 1% 87% 
0 06 176% 15 5% 166% 

The above tables shon that the value of g can have a sygmlicant effect on the required 

surplus 
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4. The Likelihood Function for a Multivariate Claim Count Distribution 

From this point fonvard, \ve shall assume there is only one COI anance group and drop the 

subscnpts i and j m Simulatlon Algonthm #2 

As we estnnate the g parameter across different hnes m a covanance group, we Wll be 

estlmatmg the parameters. xt,and ch. of each claim counl dlstnbution slmultaneously In 

effect. we \\~ll be estlmatmg the parameters of a muhivarlate dlslnbutlon on the random 

vector K = {Kh} 

At thls polnt. It IS helpful to adopt the vector notation C = {c,,}and i = {&} 

The negatlve bmomial claim count dlstnbutlon. condlConal on a. will be obtamed from 

the standard negatiue blnomlal distnbution by multlplymg ils mean, hh, by a 

Following Mqers 1 ISUS]. we shall use the follo\vlng form of the negatike binomlal 

dlstributlon for the probablllty of kh condltlonal on a 

r(lic, tk,,) tc,,a&) k. 
Pr{K, = k,la} = T 

l71íc,,)-r(h,~ + 1) (I+c,,ah,,)““‘i” 

Grven g 2 0. define’: 

a,=I-&,az=l.anda,=l+fi. 

and 

Pr{a=a,}=l/6.Pr{u;az}=2/3.and Pr{a=a,}=l/G. 

One can easily venfy that E[a] = 1 and Varia] = g 

The condltlonal hkellhood of a clalmcount lector kla = {khla} is glven b) 

î(E,h,Cla)= nPr(K, = k,Iaj 
h 

(4 1) 

(4.2) 

(J 3) 
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As I\C go about the cornputatlonal efforts descnbed belo\v. de ~111 \\ork \\lth the log- 

libchhood functlons 

5. Masimum Likelihood Estimation 

Undrr thc assumptlon that clalms are generated b! the process descnbed m Slmulatlon 

Algonthm fil. .a” insurcr \\izhlng to csllmate the parnmeters 7,. C and gtight gaiher data 

hhe that III the follo\\~ng table from IIS OI\TI clams expenence 

Table 5. I 
Insurer Data for Estimating E and g 

Exposure by Line and Yeal 
Ycar Lene 1 Lene 2 Lene 3 Lene 4 
I wx I OO 80 40 20 
I 0’)7 100 x0 JO 20 
1 YK loo X0 40 20 
1 Cl')5 100 X0 40 20 
1 ‘N4 100 x0 JO 20 

Claim Count by Line and Year 
Lene 1 Lme 2 I.lne 3 L1ne 4 

1 ‘)0X 153 131 53 31 
I ‘90 7 96 17 JI 20 
I ‘l’xí 53 x0 35 I 6 
I 995 92 72 45 30 
1994 02 ‘?O 43 I 0 

Estlmated o CI72tj 
Frequenc‘ 

I 1475 1 1350 1 1300 
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We esumated the insurer‘s frequencl- by Ime of insurance by drvtdmg the total claim 

count b‘ the total esposure. We then assumed that c,, q c for all h 

Let c! nnd h! be respectrvely, an obsened claim count vector ‘and an esttmated espected 

chm count x ector for the year ) 

In Table 5 1 the obsened clatm count tector. k 1~~i8.rsequalto(l53, 131,53.31)1 The 

expected clarm count vector. h,,B,. IS equal 10 (1 OO-O 9720, 80. I 1475, 40. I 1350, 

20 1 1300) \\hrch IS equal to (!I7. , 2 01 8. 45 4. 22 6)r The parameler vector, c , 

IS equal lo CC. c. c, cj’ The mastmum hkehhood estrmates cand g of c and S are the 

values ofc nnd g that maGmrt.es: 

(5.1) 

LJsrng Ewel Sol\ er’. we found the maximum ltkelihood estrmate (MLE). E. of c to be 

0 OlO<> and the maxtmum lrkehhood esttmate g ofg to be 0 0245. 

We should note that the data m Table 5 1 was not generated from actual insurer data. II 

was taken from Iixe random drawngs from SimuLaCon Algortthm #2 wrth the “true” 

frequencres set equal to 1 .OOOO for each hne of insurance, the “true” value of c set equal 

lo 0 0200. and he ‘ïrue” value of g set equal lo 0.0400. We repeated the stmulation 100 

trmcs \\rth the follo\\lng results 

Table 5.2 
Properties of MLE’s for c and g 
Derived from 100 Simulations 

of a Single Insurw’s Data 
C Et 

True Value 0.0200 0.0400 
Average MLE 0.0 134 0.0226 
Std. Dev of the MLE 0.0126 0.0208 

One can see from Tables 3 5 and 3 6 that the esttmation errors can lead to a signilicant 

understatmg of the reqwred surplus 
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Based on thls and other similar simulations we conclude that esttmatmg c and g in this 

manner can lead to bmsed and highty volatile results 

We now examine some other estimation methods 

The tirst alternauve is to combine the data of several “sinular” insurers Let A be the set 

of msurers and let a EA We created 40 nearly tdentical “coptes” of our insurer and 

simulated the MLE’s for c and g Table 5.3 belo\v shows the exposures and clatm counts 

for the tirst two msurers in a typical stmulation 

When combming the data of several msurers we maximrze the log-likelihood expression. 

(5 2) 
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Table 5.3 
Multi-lnsurer Data for Estimating c and g 

Lnsurer f# 1 Exposurr by Line and Year 
Year Lene I Lene 2 Line 3 Lme 4 
1998 100 x0 40 20 
19’17 1 00 80 40 20 
1996 100 80 40 20 
1995 100 80 40 20 
1994 100 80 40 20 

Claim Count by Line and Year 
Line I Lene 2 Lene 3 Lene 4 

1 998 69 69 53 20 
1997 09 X0 51 17 
1996 101 7x hX 18 
1995 129 94 47. 17 
1994 82 76 30 15 

hurer #2 Exposurr by Line and Year 
Year Lene 1 Lene 2 Line 3 Lene 4 
199x 20 100 x0 JO 
1997 20 100 X0 40 
I 9% 20 1 OO no 40 
199s 20 100 X0 40 
I w-1 20 1 OO no 40 

Claim Count by Line and Year 
Line 1 Lene 2 Lme 3 Lene 4 

1998 2S 10X 64 4s 
1997 18 88 75 42 
1996 22 x7 94 44 
1995 22 130 69 47 
1994 30 l-17 III 6X 

Insurer #3 Exposure by Line and Yea? 
Year Lene I Lme 2 Lene 3 Line 4 

u ll u u u 

Estlmated 
Frequencq 

, ,oo88 1 0077 1 0088 0 9877 
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WC ran I OO s~mulat~ons of data Ithe that m Table 5 3 and cakulated the mawmum 

Ilhellhood estlmators for c and r: \rlth the follo\\ing results 

Table 5.1 
Properties oTMLE’s for c and g 
Derived from 100 Simulations 

of 40 Insutws’ Data 
c g 

True Value 0 0200 0 o-ion 
Average MLE 0.0 II)‘) 0 03’Y) 
Std. Deu of the MLE o.no22 0 0030 

Based on thls and other s~mllar slmulatlons we conclude that \\e can obtam accurate 

estlmaws of c and g- ~C\ve can get the comblned results of seteral “slmllar” msurers’. 

The ewtence (or non-exIstence) of slmllar insurers opens up a host oflssues We no\\ 

cxplorc a fc\v of thcsc ~ssues 

6. Bayesian Estimation 

\Vc suspcct fe\\ Insurers would agree that they are sufliclently “slmllar” to ‘any othrr 

group of Insurers to full\ accept the results of an analysls Ilhe that gl\en above The) 

might acccpt thc rcsults because they have no quantitatixc altcmatlve. and then 

Judgmrntally modlfy the results Slnce \re conslder it lAel! thatludgment wl1 enter the 

plcturc. ne constder a Bayesian approach to the problem 

Cowdcr a grid (c,.~,) of posslble Lalues of c and g Let {G, } be a set of observatlons 

needed IO calculate the IILellhood functlon for each pomt (c,.&) Let p;, be thr “prior“ 

probablllty of each pomt (c,.g,) 
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Then accordmg to Bayes’ Theorem, the posterior likehhood of each (c,,g,) will be 

proportlonal to’ 

As an Illustration, suppose that we choose a prior so that the pij’s are equally likely. For 

one simulated Ir<?} based on a single msurer’s esposure \re obtened the follo\\mg 

postcnor dlstnbutlon of (c,,gj), nhlch \ve show (part oT) graphically. 

Craph 6.1 

Poslcrior Likclihood lora Sin& lnsunx 
with a UnifoormPnorDistribution 
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As an esample, we construct a pnor dlstnbutlon so that 

P,, = flt(Q,c,.g,), 
3.Y 

(6.2) 

where { i;:.} comes from the (simulated here, but m practlce real) data of the 40 “peer 

group” insurers gwen above. We obtamed the follo\\ing posterior distributlon for the 

same msurer that we show graphically. 

Belo\\. UC xx111 shon how to use the posterior dlstributlon ZE input into the collectlve nsk 

model, as described m Simulation Algorithm HZ. 

Graph 6.2 

Posten’or Likclihood fora Sin& Inm-ernith a 
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7. Industry Driven of Correlation 

The Ilhehhood Equatlon 3 6 was denved under the assumptlon that the “driver” of the 

correlation. i e the random vanable a, was mdependent for each IndIvIduaI msurer Thls 

sectlon conslders the consequences of the random variable a being common to all 

msurers To this end. \\e replace Steps 1 and 2 of Slmulatlon Algorithm #2 with the 

more compllcated process 

Simulation Algorithm #3 

The Collective Risk Model with Parameter Uncertainty 

in the Claim Count Disttibutions 

Driven by Industry and Insurer Parameter Uncertaiuty 

I For each co~~arulance group I, select a: and a, as follons 

I 1. Select a> from a distributlon \\lth E[a>] = 1 and Var[a:] = 9,’ 9: IS called 

the Industy covanance generator for co\anance group i 

I 2 Select a, from a distributlon \\lth E[a,] = 1 and Var[a,] = g,. g, 1s called the 

lnsurer cownCance generator for cowiance group 1 

2 For line of Insurance h 111 covanance goup I, select n random number of clzums Khl 

from a dlstributlon \\lth mean aî .a, K,,, 

3. For each hne of Insurance h m covanance group 1. select random clalm amounts Zhll. 

fork = 1, Kh, Each Zhrl has a common dlstnbutton {Z,,} 

5 Set x., = &;, Xh, 

6 Set X=tX., 
I-I 
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We noi\ cnlcul3tc thc moments of the aggregate loss dlstnbutlon descrlbcd by Slmulallon 

Alg0nthn1 03 

(7 1) 

‘1‘0 c~~~lcula~e the \ wanccs and COI annnces analogous to S~mulat~on Algorlthm #2. \\e 

s~mply rc+x the \ anance g, m tlquatlons 2 3.2 4.2 6 and 2 7 \\lth the ehpresslon 

g, ‘2,; ‘2, g,’ 

Let k>’ bc a 1 ec~or of obscrwd cla~m counfs for thc “mdus~r) ” rn )‘ear J An examplc of 

such a tector bnsed on l.able 5.3 IS c,:,,, = (69. 09. 53, 20. 2s. 108. 6-k 45. j’ 

Slnularl! let h: be a \ector of cxpccred clalm COUII~S for thc”mdustn“ III year > 

Thc Ilhellhood funct~on of L,’ condrtlonal nn a ” IS ylen b! 

771~ assoclated lo;-llhcllhood functlon IS ylven b! 

(7 3) 

(7 4) 
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Gven 9” 2 0 deEne 

a” = I-@.a; =l.anda;\ =l+m, 

and (7.5) 

Pr{a~~=a~}=I/6,Pr{a”=a~}=2/3,andPr{aA=a;\}=1/6 

The uncondluonal log-llhehhood funcuon is then gven by: 

8. Manimum Likelihood Estimation Revisited 

Conslder the follomng t\vo situations 

1 g-r>Oandg.‘=O 

2 g = 0 and 8,’ = r > 0. 

From the msurer’s pomt of vie\v, me two situations are identlcal Its espected clarm 

counls are muluphed by a random number each year 

But from the polnt of vle\v of one \\ho IS uymg IO esumate the vanance of the random 

multipller. the srtuations are different In the lirst situatlon. a nen- a IS pmked for each 

msurer for each year In the second situalion’ a” is p~ked owz each year for all rnsurers. 

The esumator should use ihe log-hhelihood function in Equauon 4.6 In the second 

sltuatlon the esumator should use the log-lrkellhood function In Equation 7 6 

We dld 100 slmulations of our 40 insurers where the claim counts are generated b) 

Simulanon Ngonthm #3, \\lth c = 0 02, g = 0 and g* = 0.04. We hen estimated c and 

“g“ using maximum hkehhood on Equatron 4.6, wth the follo\\ing results 
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Table 8.1 
Properties OC MLE’s for c and g 

Dcrived from 100 Simulations of 40 Insurers’ Data 
with Industrywide Parameter Uncertainty 

True Value 0 oczoo 0 Ogo”0 
g:’ 

0.0400 
Average MLE 0 0215 0 0249 - 

Std. Dev of the MLE 0.0039 0.0158 - 

We nest chd 100 slmula~lons of our 40 insurers where the ckum coun% are generated by 

Simulation Algorlthm #3, with c = 0 02, CJ = 0 01 and gn = 0 03 We then estlmatcd c, g 

and g!’ using maximum likehhood on the “correct” Equation 7 6, with the follwlng 

results 

Table 8.2 
Properties of IMLE’s for c, g and g” 

Using Estimated Frequencies 
Derived from 100 Simulations of 40 Insurers’ Data 

with Industrywide Parameter Uncertainw,, 
C s 

True Value 0.0200 0 0100 0 &,o 
Ax erage MLE 00201 0 0114 0 0213 
Std. Dev. of the MLE 0.0023 0 0026 0 0090 

If you used the estimated g and g4 m equatlon 7 2 instead of the true value of g ‘and g”, 

you could signilicantly understate your capital requirements 

II may occur to one that the reason for thls do\\nward blas 1s dueto the fact that we use 

estunated frequencles. rather than true frequencles To test thls we repeated the 

slmulation usmg thc ‘tme” frequency rather than the estlmatcd frequency and obtened 

lhe followng results 

Table 8.3 
Properties of MLE’s for c, g and g” 

Using “True” Frequencies 
Derived from 100 Simulations of 40 Insu~-em’ Data 

with Industrywide Parameter Uncertainty 
5 

n 

True Value o.oc2oo 0 0: “0 0.0300 
Average MLE 0 0200 0 0104 0.0298 
Std. Dev. of the MLE 0.0023 0 0029 0.0033 
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Thts simulation indicates that the bras IS indeed caused by ustng estimated frequenctes in 

the MLE. Howeler, tn practice the “tme” mean is not kno\\n. 

9. Bayesian Estimation Revvisited 

Consider a gnd (eI .c,.g,.g;\) of posstble values of 2, c. g and g” Let {E;‘} be a set of 

obser\attons needed IO calculate the Ithelthood functton for each point(q+ .c,,g,.g’). 

Let p, be the “prtor” probabthty of each pomt()i~y,c,.g,.g~) 

Then accordmg to BaSes’ Theorem. the postertor lthelthood of each (p: ,c, .g, .g:) is 

propontonal to 

Let e;\ be a Lector of exposures for the set of msurers. .4. In bear y Let r,” be tector of 

clarm frequenctes Then each coordrnate of the e\pected clatm count xector ?;ì, IS equal 

to the product of the correspondmg coordmates of CI\ and T,’ Smce the esposures are 

hno\\n ,and the clatm frequenctes are unkno~~n, v.e should put a pnor dtstnbution on the 

gnd (i,'.c,,g,.g,\) 

Let 21 be the postenor probabtltty of cach pomt in the gnd (i,“.c,,g,,g;i) Then one can 

obtam esttmates of ?,‘.c,.g, and g> by the follo\\ang fommlas 

(9.2) 
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We then tested the x anatxlity of these eshmators on our simulated set of40 msurers. Thc 

gnd ~as constructed b! vae m g i;‘,c,.g, and & m the follo\\mg manner. 

I Each component of ro’ fas set equal lo 0 9X75. Each component of i> kxas set 

cqual lo 1 0125 The components for 1 1.2 and 3 mere equally spaced m between. 

2. cn \\as set cqual lo 0 0 I OO CJ 1ia.s set equal 10 0 0300 The components for IZ 1, 2 

and 3 itere equally spaced in betx\een 

3 s,, vas sct cqual 10 0 0020 g.> \!<2$ set equal lo 0 OI XI) lhc components for 1x1. 2 

‘and 3 \\ere equally spaced 111 bet\\een 

4 F i \\as set cqual lo 0 0200 3 i \\as sct equal lo 0 0400 ?hc components for i -1, 2 

and 3 x\erc cqually spnccd m bctneen 

In total. the gnd had 5’ 7 625 polnts We nssumed all pomts m the gnd Lxere equall) 

lik‘zl\ ) 

We mnde IOO slmulated estlmates wth the follo\v~ng results 

Table 8.4 
Proper-ties of Bayesian Estimates for c, g and g’ 

Using “True” Frequencies 
Derived from 100 Simulations of 40 Insu~ws’ Data 

with Industtywide Parameter Ilncertainty 
C s 6 

.\ 

Truc Value 0 0200 0 0 1 00 0 0300 

A\erage Est~matc 0.020 I 0.u ll)5 0 0303 

Std Dev of the Estimate 0.0021 0 002(1 0 ooî7 

Here \\e sec that one can obtaln stable and unlxased (111 the clâsstc statlwcal sense) by an 

approynate use of Bayes’ Theorem 
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9. Using Real Data 

Ths paper has taken a version of the collective rrsk model. in \vhlch the lines of 

msurance are correlakd and esplored some methods of eslimaling parameten of the 

claim count dlstrlbutlons The data used in these methods conwted of both exposures 

and clalm counts that span several years 

We esplored the use of mawmum hkelihood on a smgle msurer’s data to estlmate the 

parameters and concluded that the random variatlon of the eshmates \vere IOO large IO 

derl\ e a reliable estimate of the msurer’s requlred surplus. One can obtain more stable 

esttmates of the parameters by combmmg the data of se\ eral msurers. 

We dre\v [hese concluslons from experiments performed on slmulated “data.” 

We noi\ ralse some of the Issues that one mus1 address when estimating these parameters 

of ihe collect~~c rlsh model UIUI real data from several Insurers. 

1. Clalm Counl Developmenl 

When analy/mg scveral yxs of claim count data, one must take c‘are to dlstmgulsh 

the rnndom 1 analion from the systematlc ckum count development that occurs 

because of delays m reportmg clalms 

2 Insurer Class Dlfferences 

Dlnèrent Insurers can focus on dlfferent ckasses of busmess When analy/.mg Ihe data 

of se\ eral Insurers. one must take care to dlstmgulsh the random variation from íhe 

s>stemauc dllTcrcnces that occur because of the dlfferent cl‘asses of business that 

lnsurers wnte 

3 Insurer StraleLy Changes 

M’hrn anal! ,.tng Ihe data of several Insurers. one must take care IO note thai planned 

chnrlges III lnsurer slrategy that result In changes In clalm counts Thls can be 

dll‘licult becnuse Insurers usually keep thelr strategy changes lo themselles. 

\Ve arr: 111 ihe process of fíttmg this model IO the data of several insurers We are not get 

In a posltlon to sa! ho\\ \\e are addressmg these and other issues. Suffce it to say that 



w are uslng ourJudgment, and we anticipate that the ultimate users ofthis mformalion 

~\nll v,ant to Impose thelr onn judgment. The Bayesian methodology provides a 

frameivork for making theseJudgmentS 

In spite ofthe judgments that one must make, \ve do feel that parameter eslimatcs using 

the combined data of severa1 insurers provIdes a useful starllng pomt for msurers as thq 

go about doing thelr Qnamic Fmanc~al Analys~s. 
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The process cntails comhining feedhack and rwision in ordcr to hecome comfortahl~ with 

the recommendations 

236 



227 



228 



229 
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(I~fmwi~ie.~ Treasury Yield Curve - Price Inflation 
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Real yields 4 
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Fixed-income Stock div. 
Returns y iy 
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Stock rcturns 
bonds 
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Class Returns 

Fi~urc 4: Thc cascarle CAP:l.ink structure within a single rountry. Exch country in Global 

CAP:l.ink dcpictq a commnn hcritagc. 
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Stcp 1: Anülyze Historirnl Data 

‘l’hc t’ir\t strp to :my cöllhrötton process should start wth h~stoncal data. Wr analyzed historial 
Jata to dctermiw he clwacteristics ofrhe index. For Medical CPI we took data covering the 
I947-IO9Y penad. Thc hiwicnl data on Legal Scrviccs CPI is much shorter, covering the period 
Crom 1986.1998. 

step 2: Set Targcts 

St;m&d dcwattotl 
Corrclatinn 10 CPI 

A~erace snrrad owr CPI 

_ Mrdic;il CPI Lr!+l scrvice\ CPI 
1.9 - 2.2% 0 ir - I .O% 
0.6 SI.7 0.45 - 0.55 

09 0.7 

We esprc>!. thr targets ~1s rangeb. These targets depict ú blcnd of htstortcnl experience axl 
fi>r\~nld-lorrktt1g H nalywx. Firut, WC start with the rclnges that are consiutent with hi\toncal 
expcrirnce. Then xvi ;Idju>t for historical trends. For example. for thc Ia51 ll yws mcdicnl CPI 
ha\ outpxcd CPI hy 2.5% Can we reasonably expcct thls trcnd to continur’? Over a long-term 
honzon. WC mtght esptrc~ the growth in medical costc to hr closcr to CPI. This issue must be 
wlvcd bu tbr model dcwloper~ SO that proper targrt\ CXI hc 521 

Figure 5 

Historical Data for Txget Itlflatiott Serieï 
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42.1 tkncrating thr Assrt/Liability Eflkicnt Frontier 

~L’c C;I~ LI\C an ;wet/liability ophmizer to generate an efflcirnt frontw. Thr cfflclcnt fronttcr tell\ 
LI\ lhc awhination nf ~ssrts that produce portfolios with the hlghest cxprctcd rcward for it given 
Jcwl of r14. ;It thc rnd of thc multi-pcrtod howun. In thls casc, WL’ hnvr drfinrd rrwtrd tn hc 
ctd~ng tli>ll;u surplu and rl\k to bc thc ~t~~nd~d drviatlon of doltar ~~rplus. Tu gcneratc the 
surplu\ cfficient fronrwr requires a propcr multi-period DFA hystcm. Thew resultb show thc 
benefits uf calibrating thr aset% and linhilitieï to a common set of economic factora. 
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Projected Distrihutions of Medical and Legal lntlation over the Planning Horizon 
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Asset class Min % Max % Current Portfolio % 
Cash 0 100 5 
US Large Cap Equity 0 100 20 
Bond Index 0 100 75 

Asset/Liability Efficient Frontier (ALEF’“) 
Figure 7 

5.0 Concluding Remarks 

Two line’l of rewarch merlt attention. The flrst rrquires the development of hetter ways to address 
the non-convex optimization model. We are curnntly investigûtin~ an adaptive algorithm that 
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Abstract 

Dynamic Financia1 Analysis is an extremely powerful tool for all aspects of the insurance operation. With 
the constantly increasing amounts of information availahle to the public. DFA models can be better 
customized to fit the needs of the end user. This paper will examine severa1 areas in which a publicly 
available model can be customized to tit a company’s specific management structure and risk management 
priorities. Specific approaches to these customizations will be provided along with possible data sources, 
reasonableness checks. and potential advantages and disadvantages of each approach. Where possible the 
paper will use publicly availablc data in order to provide thc reader with available sources for developing 
DFA applications like this one. 

Introduction 

This paper will discuss specific nreas to consider for customization in a DFA model, alternative approaches 
to take in perfonning such a customization, available sources of data to aid in the changing of the 
parameters. and advantages and disadvantages of the tactics presented. We will provide general 
commentary on the area of customization and then specific cxamplcs using the workers compensation line 
as an example. 

We will discuss four general areas ofmodel parameterization: Interest Rate and Economic Condition 
Modeling. Premium Modeling. Loss Modeling, and Other Modeling Considerntions. First, we will briefly 
describe the model. 

About DynaMo 

The model uscd in this anulysis is DynaMo by MRH&T’. Dynamo is a publicly available model. which 
allows DFA users to learn about DFA in a forum which proprietary rystems do not allow. It is intended to 
be a learning tool for the public and to help gcnerate ideas on DF.4. It has been developed using Excel to 
facilitate real-time run times and ease of use. DynaMo is completely open so as to hclp in thc understanding 
of the intricacics in devcloping and running a DFA model. This includcs the formulas for assets, liabilities, 
and interest rate models. All parameters are readily accessible and can be easily changrd. Since every 
company is different and some parameters may not be appropriate. it is recommended that the users review 
these parameters prior to using the model. 

The model can be thought of as a combination of interactive asset and underwriting cashflow generators. 
.4s new money becomes available. either from investments or premiums. undenvriting and tas cashflows are 
generated and any remaining monies are reinvested. Should the outflows exceed the inflows. assets are sold 
to cover the difference. These cashflow generators are tied together by the workhorse variable -- the interest 
rate. Eshibit 1 displays a general schematic of the data flows within the model. 

The model contains a number of inputs, including company specific historical data and model parameters. 
Much of the historical data inputs can be taken directly from the company’s year-end actuarial report and 
Plnnual Statement. In addition to these inputs. rconomic and underwriting cycle parameters are required. 
These parameters, combined with some of the company specific input, are used to stochastically generate 
the following variables: 

’ DynaMo can be downlonded free at www.mrht.com. 
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1. L~ndrrwriting Frcyucncics 
2. I lndcwriting Scvcrities 
3. 1 .oss and I.i\E Pnymcnt l’attcrns 
4. Catastrophic Losscs 
- 3. Shnrt Term Intercst Ratcs 

6. Yicld C’urvc 
7. Cldims Inflation by Linc of Business 
8. I:quity Rrturns 
0. Linderwriting Cycle Positions 

I‘hzw variables are uwl IO quantif! thc iollo\\ ing rish catcgorics to \vhich companics urc cxposcd: 

1. Prlciny 
2. I.crss Rc~r\ e Development 
3. Catastrophe 
4. tnvcslment 

‘l’hc modet grnerates cashfloxts at an espoburr tc~rl basis to aid in thc quantification ofthe impact of the 
kariablcs listcd ahow In particular thc Ios5 rlttio is not modclcd in total but calculated as the result of its 
componcnts. 

l:u~urc prcmiums are gencrated by the follow.jng two stcp proccss: I ) adjust thc prcvious periods average 
rate per wposure to rcflcct inflation, company rate changes. .jurisdictional, and undcrwriting cycle 
(compctiti\,c) imp,lct>. ;md 2) multipl~ the adlustcd a\‘crage rate per exposurc by the future exposurcs. For 
cu,unplc. thc starting areragc ratc ma> be SI OO, the modeled rate change 6%. and estimated exposures of 
I .01)0. .I‘his ir ould Icad to written prcmium of $4 106.000. 

+priori uttimatc losses iòr futul-c qcars are generated by multiplying the exposures by the stochastically 
ocnrrated frequcncics and severities. These frequencies and scvcritics are adjusted to reflect inflation and 
underwriting cyclc impacts. For example. inflation may forte the average severity upwards and the 
unrlcr\\riting cycle may indicatc that thc market is softcning thus bringiny riskicr busincss into the company 
and highcr frcqucncy of loss. By brcaking thc loss ratio into its pieces. we are abte to adjust each of its 
componcnts to reflrct thr changing economic and cotnpctitivc cnvironment. lt is particularly useful to 
model the componcnts of the Inss ratio when considering thr impact of inHation and unemployment. 

T\\o prc\ious papcrs hy this DFA research team provide additional information about the development and 
application of DFA models gcncrally and this model specifically. The general approach used in this model, 
thc key risks of U.S. property-liability insurers subjcct to modeling. thc parameters incorporated in the 
financia1 nspccts ofthr modal and esamplcs ofthc output are dcscribcd in D’Arcy. Gorvett. et al. (1997)*. 
An application of an enhanccd version of the original model to a multiline, multistate primary insurance 
company is dcscribed in D’Arcy, Gorvctt. ct al. (1998)‘. This paper inctudes a case study examining 
sevcral of the kzy features of the model, the process of parameterizing the model and refining the resutts. 
and the communication process with a company’s managemrnt tram. 

’ D’ Are). Skphcn P Richard W. Gowett. Joseph A. Herbers, Thomas E I-lcuinyer. Steven G. Lebmann, and Micbael J. Miller 
< 1 YY7) “Buildmg a Public Acccss PC-Based DFA Model.” Casualty Acruxlal Socicty Fwwn. Summer 1997, Volumc 2. pp. I-40. 

D‘hrcy. Stephen P., Richard W. GorvetI. Thomas E. Heninger. Robcrl J. Walling 111 (1998)“Using the Public Access DFA 
hlodrl A Case Study,” Casualty Ac~uarial Socxry funrm. Summer 1998 Edition, pp. 53-t 18. 

241 



INTEREST RATE AND ECONOMIC CONDITION GENERATION 

f3eforr discussing the modeling of the fundamental insurance \,ariables. it is best to review the key 
economic drivers involved in the model. Particular discttssion should be provided about the workhorse 
variable -- intrrcst ratcs. The model utilizes gencratcd interest rates to affect other relevant economic 
variables. 

Cox-lngersoll-Ross Jnterest Rate Generator 

Recognizing that an intrrest rate model rcquircs detinition as to preciscly what type of rate \Gll be modeled, 
vve chosc short-tcrm trrasury rates as the base rate resulting from modcl gcnerations. Ln particular. we will 
modcl OO-day treasury t-ates on an annunl basis. 

/^\s Jiscussed in D‘ Arcy et al. (1997). Cos-lngcrsoll-Ross (CIR) prnvides a workable process for modeling 
intercst ratcs. CIR offers a mean-reverting random \valk, where interest rates are projected by modeling 
incrementa1 movcments in intcrcst rates. Thesc incrrments are thc sum of mean-ward and purely random 
generared movements. W’r provide the fommla on Exhibit 2. This process is advantageous in that it 
balances tlcxibility. simplicity. and intuitive appeal. CIR. by itself, is merely a parameter driven formula 
concept: it is not intended to be n completely comprehensive or universally accurate system of projection 
methodologirs. Nonetheless. it appears to suit most DFA modeling purposes quite well. 

Appropriate paramrterization ofintcrcst rates demands that one study historical interest rate data as a 
mcthod for assuring reasonableness. From links to the CAS DFA Web Site3. a monthly time series was 
av.ailable as shoun in Exhibit 3. Observing a graph of severa1 decades of data, our parameter analysis 
ultimatcly focuscd on T-Bill rates obscrved since 1983. This choice was made to aïoid rcliance on the 
unusual econornic conditions prcvalcnt early in thc 198O’s, combined with thc belief that future intcrest 
ratcs may remain relatively low in future years given the recent emergence ofa balanced federal budget. 
Thc long term mean. b. we ultimatcly selected for the sub.ject model was 6.0%. 

CIR also demands that the user provide a mean reversion parametcr. a. This was selected based on our 
judgment in consideration of the historical movements obscrved about the long-term mean. We selected .25 
as the frequency of reversion parameter, a. indicating that we believe the rate should revert around b 
appro\imately rvery four years. 

The rnndom element discussed above is the last parameter to select. The standard deviation of the generated 
normal variatc, SI. represents the volatility parameter of CIR. It is projected by ohserving the standard 
deviation of prior annual incrementa1 movements in T-Bill rates. We have selected I .40 as. SI, the volatility 
parameter. 

How do we assure CIR is providing us with a reasonable interest rate result? We use two techniques to 
accomplish parnmeter validation: 1) descriptive statistic analysis. and 2) graphical validation. First, we 
observe the basic descriptive statistics of the historicai data in comparison to the same measurements ofthe 
projected interest rates. For example. over the process of 1 OO CIR trials. the mean of the projected data 
should approximate b (adjusted to consider the impact of low initial rates), and the standard deviation of 
incrementa1 movements should also approsimate SI. Second, we utilized basic spreadsheet graphing 
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processrs to annlyze the graphical bchavior of historical ratcs vcrsus projcctcd rates. This was 
accomplished by rrcnlculating the random gcncrntion proccsb scveral times and illustrating to our o\vn cycs 
the graphical reasonableness of the projection range. Exhibit 3 shows a single itcration of this proccss. 

Finally. CIR creates a term structure for longer-term treasury maturities. Due to the relatively long duration 
ofassets and liabilities, we felt this property of the yield curve was a variable we shoutd model directly. 
Therrforr. using a slight departure from CIR‘s original tcrm structure formula; we separately modcled a 
stochastic spreatl variable, p. Detined as the difference between 90-day T-Rills and 30 Yrars T-Bonds, p is 
projected by a normal random process. using selected mean and standard dcviations based on historical 
spread observations. To project T-Bill rates at points between 90 day and 30 years we utilized an arctangcnt 
curve. This providcd the proper first (increasing) and sccond (concave down) dcrivatives of a t),pical yield 
curve. We found that this form atso accommodatcd an invcrtcd yield curve. A graphical validation similar 
to thc 90.day validation process is sho\vn in lixhibit 4. 

Inflation Models 

Based on the cxpcctation of a positivc correlation bctwcen mterest rates and gcncral price inflation. QC 
utilized a simple linear modcling proccss shown on Eshlbit 5. l‘he critica1 parameters to be analyzcd. 
thcreforc, nrc the slope. m. and intercept. b. of the line ah well alr thc volatility paramcter. 2. CPI data’ was 
obtnincd from thc CAS DFA Weh Sitc. and a linear rcgrcssion was run bctwccn thc OO-day T-Bit1 rates and 
the (‘1’1 data. Wc present tbc rcgrcssion rcsults on Eshibit 5. The graphical illustration ofthe fittcd general 
inflation is shown on Exhibit 6. 

General inflation should bc distinguishrd from the inflation componcnts affecting Lrorkcrs compensution 
premiums and Ioss. These components include wage inflation and medical inflation. Waye inHationh was 
also retrieved from pubtic sources and was compared via its basic stntistical properties to CPI data. Our 
basic obsenation was that wagc inflation and general inflation rates did not diffcr materially. As a result de 
used the general inflation variable as representativc of ~agr inllation rates. 

Medical inflation rates, by contrast, havc cxhibited very unique historical bchavior rclative to ycncr;il price 
inflation. Specifically, medical inflation has historically tcntlcd to bc highcr and more volatile. This is 
particularly evident for workers compensation medical costs during the early 1990’s. \\hich wcre 
unprotected from deductibles, limits, or benefit coordination. Workers compcnsation medical losses over 
these years often exhibited annual inflation levels in excess of 10%. More rccently. ho\vc\,er. majar 
legislative reforms, combined with the impact of mana@ carc initiatives, have reduced workers 
compcnsation medical inflation to levels lower than the CPI. Obscming the graph on E~iibit 7 wc can sec 
thc illustration of these historical rate movcments. 

As we did for inflation rates, we matched descriptive statistics hetween historicnl and projected data as well 
as the graphical validation of stochastic projections on Exhibit 7. 
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Lnemployment Rate 

Worlirrs comprnsation loss costs are widely thought to be positi\ely correlated with unemployment rates. 
Previously written CIIS papers’ have offered and supported that when unemployment (particularly 
involuntac uncmploymcnt) increases the averagr frequency ot‘claims increases. This is apparently due, for 
the most paro. to the Inck ofreturn to work prospects for an Injured worker. Therefore. the unemployment 
rate is an important variable to be considered in a workers compcnsation DFA model as an indicator of 
general rconomic conditions and a spcciiic driver of loss rcsult trends. 

One possible approach that can bc considered for modeling uncmployment rates is to use data from the 
Rureau of Labor Statistics Wrb Site’. This source provided data specifically from the single state where the 
subject company in this example trrites its workers compensation business. When observing the graph of 
historical intercst and unemployment rates. a correlation is not immrdiately evident. However, upon deeper 
anal! sis. wc considcrcd thnt a laggcd effect of interest ratcs OII uncmptoyment rates was possible. We ran 
tintar correlations OII historical data using lagyed unemploymcnt ratcs as thr dependent (affected) variable 
and 90 dny ‘1‘.hills as the indcpcndent (causal) variable. Specifically wc ran correlations against 
unemplo~mrnt ratcs \rith /CI‘I~ onz’. Iv.u. an d thrcc ycar lays. Thc bc5t R-Squared mcasures occurred using 
thr tuvo 2nd thrcc gcar la+ U’K lùrthrr used the averagr of two and three year lagged unemployment and 
found thc bcst lit. Thcrcfcxc. a two-and-a-half year lag on uncmployment rates appeared optimal. The lag 
concept atso ol’lèrs intuitive appcal in that observed higher intrrcst rates generally tead topoorrr economic 
condirio~~s ox’cr a span ot‘\;c\cral months. \\hich latcr Icad to \\orkforce rrductions. 

Thc rcsulls ol‘our lincx rcyrsssion NC sho~n m1 Eshibit 8. A linear slope. intercept. and error term mere 
obscr\cd and ultimatel~ selcctcd in thc samc manncr that \\c usad to project medical inflation. ‘fo validate 
thcsc xlcctcd paramct& wc agnin uscd thc toots of dcscriptivc stntisticnl matching and graphical 
simulation. .4n rsnnlplc ot‘thc graphical vnlidntion can bc sccn in ICshibit 9. 

Jurisdictional Risli 

WC wilt dctinc jurisdicti~xxll ri’;k as thc risk assuciatrd with:iudicial, lcgistatibe and/or rrgulatory actions 
that Impnct thc opcrations ofan insurancc company. \h.lhilc 11 is clcar that no DI’A modet could simulate al1 
possiblc govcrnmcntal intcrventions (nor should an cfticicnt modcl nced to), many states have jurisdictional 
climates that signiiicantly intlucnce operating results. Th? element ofjurisdictionat risk that we have 
chosen to focus on iirsr in The model is in the area of underkvriting. Spccificall-, jurisdictionat risk’s 
influente on undcr\\riting rcsults is modelcd in t\vo \vays: rate change constraints (capping) and 
implcmcntation lags. 

First. proposrd ratc changcb produccd by a combination ofprior underwriring results and futurc growth 
goals are rcquircd to sta) ~bithin an “allo\rable range“. This capping does not mean that rate leve1 changes 
outside the reasonable rangr aren’t possible. Rather. changes outside the reasonabte range mill require 
additional time and!or cspcnsc (additionat anatysis and tiling preparation. consultan& fees. insurance 
depnrtmsnt trips. etc.) for approval. Second. htatc5 ha\c reyulatory structures that rangc from altowing 
retatixrly rapid implemrntation ofdesired rates (e.g. open compctition. use K: fite statutes) to structures that 

’ rhe reader is r&ncd IO Lommele. Jan A and Stqis. Roben W. (1977) “An Econometnc Model of Workers Comprnsation.” 
Procesdings ofthe Caaualty Ac~uar~al Society and Butter. Richard J. and Worralt. John D (I98Z)“Workers‘ Compensation: 
Benefil nnd Injun C~:IIIII R.lleb m he Sevrnt~es,” Review of Econom~cs nnd Sta~isrics for two relevant sta~istical analyses of this 
relar~onsh~p betnwn uncmplo~mcnt and workcrs compensarion loss results. 
li http: 146 142 4 24 cxi-hm wrw\~mos1”r5 IS a data page at thr Bureau of Labor Statistics site at http:‘!stats.bls.«ov’blsllome.htln 
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almost assure a lengthy delay (prior approval statutes with lcngthy waiting periods). This implementation 
lag phenomenon and its impact have been evaluated bl a number of sources, including research done by the 
Virginia Rureau of Insurance in their study on alternate methods of rate regulation’. It should also be noted 
that a certain amount of lag in rate implementation exists purcly duc to data collection and analysis”. 
Intuitively. the capping and implementation lag factors create a maximum and minimum rate change that 
can bc rcasonably implemented and impose a dclay on ho\v quickly the capped ratc change can be 
implemcntrd”. 

Thc rcason for customizing thc jurisdictional risk paramcters of This model is that for a given line of 
husiness. a numher of factors may substantially increase or decrease thejurisdictional risk for an individual 
company. These factors include the size (c.g. large market share), target market (e.g. non-standard 
programs). state of domicile (e-g. domestic companies). and regulatory history (e.g. severzl previous Iilings 
poing to hearing) of thc company. Thc paramctcrization of the jurisdictional risk clcmcnt of a DFA model 
should use actual company rate filing experience to the extent that the information is credible. The broadest 
use of company data would be to analyze historical ratc levels tiled vcrsus those tinally approved and delays 
in the rffrctive dates ofthose filines to paramctcrizc thc ratc caps and lags. Howcvcr, a company’s own 
filing rspcricncc may not hnve enough tilinps. particularly cnough large increnses and dccrcascs. to be fully 
crediblc. Furlhcrmorc. a statu can change its regulatory structurc (r.g. a “use and ljle” state converting to 
prior appro\,al ora change from an appointed commissioner to an elected onc) thcreby making a company’s 
liling hislory les?; relevant. 

As a proa!’ for meaningful tiling history. the public access ver!,ion uf The model has been paramcterizcd to 
rcprcscnt n “typicnl” insurance company’s jurisdictional ribk ha4 on thc “1991 Property-Casualt) 
Rcgula~~) Survcy” from (I’onninF 8~ C‘ompany. ‘fhis report surveys insurancc company executives fòr their 
asscssmcnt ofcach statc’s rcgulatory rcstrictiveness as related to reduced husiness uritings, ratr 
supprcsGon. and frecdom tu managc personal and commercial lincs business. The paramrterization of the 
public access 111ode1 also constders the typc of liling statutc that cxlsts in an individual statc (use & filc, filc 
R: use. prior nppro\al. statc mandatcd ratcsj. thc typc of insurance commissioner (appointcd or elected), as 
~cll as any stnte specific requirements (Georgia‘s rate hearing requirement for tilings over +9.9°/o). Data 
such as ~hc C‘onning stutly. thc filing stntutc. and the typc of cummissioncr can scrvc as LI baluablc \\ay to 
estrapolalc il compüny‘s cxperience into new states and/or lines. For example. assume a company wrltes in 
State X and is considcring cspanding into State Y. If Statc X has ~1 prior approval filing statutc and nn 
clcctcd commissioncr and Statc Y has a tilc and use statute. an appointed commissioner. and a more 
prcfcrablc ranking in thc Conning study. ‘L looser set of caps and a shorter,juris<liction;ìl lag may hr 
approprintc tor Statc Y. 

Thc kc> to parameterizing the jurisdiction risk componrnt of thc underwriting cycle is thc rcasonableness 
chcck. Regardless of the blend ofcompany data and industry experiencc that is usrd IO parameterize the 
impnct ofjurisdictionnl risk. t\vo qucstions need to be ans\vered in the rensonablcncss asscssment: “Do the 
factors sc’cm rcasc~nable lo practitioners’?” and -‘Do the jurisdictional risk parameters change the 
untlrr\\riting results un vn intuitivc ~vay’?” Thc answcr to thc tirst qucstion depends on thc skill nnd 
Itldgmcnt ofthe practitioncrs. We used a numbcr ofacluarics and undcrwriters \rith filing ~xpcriencc in all 
stntcs nnd a varicty of bnckgrounds (diffcrcnt company sirrs nnd a tòrmer regulator) tu sivc our selections a 

*I Competirmn in the Property and Cûsualty Insurance Industry- An Evalualion of Altcrnatwc Mcthods of Rate Regulation. 
Rureau of Insuranìe, Statc Corporation Comm~ssion, Janunry 1978. 
Iii lI+km. C D.. Pentlkamen. T : and Pesonen. M., Protrrwl Rihk &oy/ür Actrraries (First Edition). 1991. p. 340. Thc 
cuwbi~~&x~ uf Ihe rate rwiw lap and the jurisdictional lag are dcscribcd as follows. “Profitabllity and olher relevanr factors can 
onl) bs nacertamed aticr 3 ccrtam delay and timhcr time 15 rcquirrd 10 implrment correc~ive medwres If tariffbureaus and 
reguk~to~ approv4 is mvolved. the process may take even longrr. Thc total time delay is usually 1.5-2.5 ycars ” 
” Ir shuuld bc pomtcd out that thc selectcd rates are capped first and rhrn subjected to the lag. This approsimates a realistic 
wualion \chers rhe company prepares their tiling proposing a capprd ratr change that is rhen nub.jrcted 10 jur~cd~ctional Ing. 
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peer revicw. To assess the impact ofjurisdictional risk. we expected underwriting results to be impacted in 
twn ways: 1) more disparity between indicated and implemented rate changes and 2) more variance in 
simulated loss ratios. Intuitively. if a company’s ability to respond to rate inadequacies and redundancies is 
capped and lagged. loss ratios above a company’s pennissible Ioss ratio cannot be reduced completely (in 
sevcre circumstances) or immrdiately. Similarly, loss results better than permissible will not worsen to the 
prrmissible leve1 as quickly. due to caps and Iags on rate decreases. Exhibit 10 sho\vs an example of what 
the differcnccs in the implemented rate changes for a sample company might look like \\\ith and without 
jurisdictionat risk. This esample takes a typical selectcd rate Ic\;cl (a blend ofmarket drmand and indicated 
rate need) and subjects it to jurisdictional capping and lagging. As can bc seen. the capping component 
limits any possibility for large rate changcs and the lag component forcrs a portion of thr rate leve1 change 
to not be realized until thc following calendar year. Exhibit 1 I then demonstrates the impact on loss ratios 
for the next accident year. The model’s random number reseed feature allows thc user to run simutations 
with all randomly generated elements identical to a previous set ofsimulations. Ibis allowed us to test the 
impact on Ioss ratios of introducing jurisdictional risk with othcrwise identical parameters and simulatcd 
IYIIUCS. .Q you can ser, there is both a higher \ariance in thc simulatrd loss ratios and the mean loss ratio 
has incrcascd. 

Advantages and disadvantages ot‘thesc methodologies are as tOllo\~: 

AdWll3gKS 
1. ~~dding jurisdlction;ll componcnts atlo~s simulalcd prcmiums to morc closely modrl realith 
7. Allo\\~ rhe tcstiny ofchanges in rnvironment including: 

Rale ti.eezes 
C‘hanges in rcgulatory 5ystcm 

3. Increasrz accuracy of testing state cnlrancc or esit implications 
4. l~akcs ad\antagc ofn company’s o\\n liling rsperiencr to thr rstent that it is credible 

Disad\ itntu~t’s 
1 Tough lo paramctcr¡Lc in a jurisdiction or tine whrre the company has littlc arr no cspcrience 
2. Modcler needs to kno\v historical rrlationship bctwccn company and .jurisdiction 
3. C‘ommi‘;sioncrs und rcgulatory xystcms changc in ~omctimcs uncspcctcd \\ays 

Impact of Rate Adcquacy on Future Rate Levels 

Thcrc are ~1 numher ol‘\~ays a model can handlc changcs in rntc adcquacy”. u!e \rill proposc tivc methods 
that can be uscd to parameterize thc modcl to handle the issue ofratc Icvct adcquacy. The first ene is the 
simple\t approach. It assumcs thc companq’s ratrs are adequate to begin \\ith nnd onI> impactcd b> 
intlation. blrthod 2 assumcs thc company is only concemed about thc competitivencss of its ratcs. 
Dcpcnding W thr markrt position a supply/dcmand curve is used to determine the required rate change 
nccded tu ohtain the desircd c’sposurc gro\\;th. 

Method -3 allo\\s the campan) to look at actual experience when developing thc mtc changc. ‘fhis becomes 
more complrs as managemrnt intervention may rcsult. Thc basis for this approach is to build into thr 
modet techniques similar to the company’s actual ratc rc\ ie\v proccss. Past loss. premium. inllation. and 
invrstmrnt clperience are rcviewed to dctcrminc the rate adequacy. Loss ratios are dcvclopcd for thc 
prcccding time peri& by using the a priori ultimate losses ud.iustcd to reflect inflation as of time period t-l. 
‘Thesr ICKWS are thcn trcndcd to thc midpnint ofprriod t using an a~cragc ofclaims intlation ovcr the past 
thrcc J’cars. Prcmiums are adjusted to bring thcm to current level and to reflcct intlation. The average Ioss 



ratio adiuxtcd to pcrlnd t cost lcvels is compared to thc compan~‘s pcrmissiblc loss ratio, witb an invcstnlent 
incomc ol‘l’scl (similar 10 tbc S:\l(‘ ~‘alcndnr Ycar In\.estnlenl Incoinc Ollset Appronch”) to gcncratc an 
indicatcd ratc levcl ~hm~c”. Ibis rate levcl changc ~~oultl nccd IO he cappcd bascd WI nlanagenlcnt rules. 

Thc nc\t t\\o nxthods are hgbrids ot’prcccding mes. Mcthod 4 15 a \icighting bctwccn methods 1 and 2. 
Mcthod 5 is a cornhination of 7 and .3. Thc combinations are hcavily dependent upon manayement‘s vicws 
ol‘ho\r thc compnn! v,ould handlc rach ol‘thesc situatlons. Thc mising ofthc dil‘fcrcnt methods i>; intcndcd 

to hclp approxlmntc thc rcalit>. that a company ~ill not al\\ays Iùllow thr indicatcd trcnds but \~ill ;o with 
competitite 1i)rccs in s~mc cases. .4t this point :III rtxample ~ill be helpfùl. 

1. 
1. 

3 
1. 
5. 
6. 

7. 

s I 

(‘Ialni< inllation ((‘1) = +W’W 
I‘rc’ndcd and adlustcd Ioss ratio (.Al.l<j = 0.75 

Pcrniissiblc 1~55 ratio (1’l.R) = 0.75 
In\cstmcnt inconic ofl~sel tlOj 2 0.05 
Gru\\tll oh.icctibc (( i) = 10% cspoburch 
Simplilicd suppl~.‘demand cur1.c 01‘ I<C Ci\{-!. Whcrc KC is indicatcd ratc cbnngc and G is growth 
clhlccti\,c. 
StAft hlnrkct \\ith x -1).05 and > = -0 05 

-\s5unics W5U wciglits are giken in xvcightlng togelher nirtbods 

:\Cl\‘llllilLx~ 

I :\llo\rs pricing tn hr tl~nnmic 
2. IiAects inllntionar~ prcssures also pur 011 Iosxs 
3. Rlcthod I is simple IL) in~plrnienl and undrrstand 

J. Llethod 2 rccognizrs impact olthc mnrkct conditions 
5. blethod .3 is consistent \vith companv’s currcnt actuarial proccsh 
6. ‘ClcthoJ~ 4 & 5 providc a way to halancc thcsc impacrs on :I morc rcnlistlc lia- 

I)isatl\allta~es 
1. Kcquircs managcment intcr\ention to hc huilt in. which niay not alwaís hc prcdictable and 

\vhich is not consistcnt \\itbin or bctwccn companics 
2. Alcthod 1 IS an 01 cr siniplitication antl rnaí not he realistic 



3. The supplyidemand curves in Method 2 vary between companies. lines of business. and states. 
4. Method 3 requires the user to select an actuarial methodology for adjusting rates. including trend 

selection. credibility issues and catastrophe loads 

Once the method of rate change is chosen. it should be tested for reasonableness. This test of 
rcasonableness should look at the following items over a number ofsimulations: 

a. Inllation 
b. Trcndcd and developed loss ratio 
c. Pcrmissible loss ratio 
d. In\ehtment income offset 
e. Ratc change allowed bq competition (.This inhcrently mcans the supply demand curves have 

becn checked tòr reasonableness) 
f. Actual modelcd change 

Ifitrm fgoes qainst manayement intuition given a through c. the wrightings should be modificd. 

Impact of Esposure Trend on Premium Level 

One ofthe I\mdamcntal pt-operties ofthis model is that prcmiums are simulated based on projected 
esposures and al’erage rales. This premise creates a need tòr care to be eserciscd when estimating projectec 
esposurc gro\\th so that real esposure grov.Th and inflationary pressure are both reflected in the esposure 
growth estimate. Scveral commonly used exposure bases are inflation sensitive. Thrse include property 
value (used in homeo\\ners), sales (used in general liability). and payroll (used in workers compensation). 
Wc haw uscd xvngc inflation for this norkers compcnsation applicntion: hoxvevcr, the approaches presented 
could casily bc applied to othcr inllation sensiti\,e exposurc bases. 

For Lvorkers wmpcnsntion. Lvagr: intlation affects premiums through the payroll exposurc base. Wage 
inflation is projectcd through the random process describcd earlier and the effect on payroll is calculated. 
Normally, this is thouyht to be a fairly instantaneous relationship. Careful consideration should be given to 
thr impact of unionization involx~ing long-tcrm wage agrccments and their potential to delay the impact on 
payroll inllation. For a rrcent customization project. it appearcd from our analysis of thr company’s owm 
data that such a Ing i\as nut material. Therefore. \ve chase II»[ to huild in a wage intlation lag. 

Palrol data U:I> projwtcd using auditrd payroll estimatcs in arder to avoid the concern ofestimating 
subsequent premiums due to audits. 

LOSS hlOl)EL PARAhlETERIZATION 

Impact of Wage and Medical Inflation 

Workers compensation bcnefits include indemnity and medlcal pal’ments. Loss adjustment expenses (LAE: 
will also be modeled as a percentage of the sum of the two henefir components. Indemnity losses are 
typically a direct function of injured worker wagcs. Therefore. wage inflation is a natural and direct driver 
of indemnity inflation through its influente on the average replaced wages under the workers compensation 
statutc. Howcvcr, in addition to the amount of the paymcnt, the average time duration of disability 
payments should also bc considered in the modeling process. Thus, a duration trend element was also 
necessaq to projcct indemnity inflation. 

248 



To develop an indemnity duration trend parameter, in a rcccnt customization project. wc analyzed a 
company’s actual indemnity loss experience relative to actual wage inflation. .4 fairly constant additive 
incrcmcnt of 2.0% ovcr wage inflation appcared evident through most statistical indications. ‘l‘herefore. the 
formula for indemnity intlation was set at wayc intlation t 2.0?/0. 

Having previously modeled medical intlation, w uscd a percentage mix of benetits to develop a total loss 
intlation. 1 Iistorical data for the subject company and others in its market indicatc a fairly stcady 
ohservntion of two-thirds indemnity to ene-third medical. By calculating annual loss costs through the 
pmjection period \vc could rcbalance the~ wcights. Through this apportionment of benefits. a total Ioss 
trend can be modelcd which offers an analyticA basis of inflation through its cclmponents. 

Unemployment’s Effect on Frequency 

As discussed enrlier. changes in unemploymcnt ratcs are thoupht to havc an cffcct un claim frequcncics. 
For the sub.ject ctunpany in a recent customization and other compnnics \vriting III lts jurisdiction. we havc 
analyzed the historical unemployment time series WC uscd abovc in comparison to thc changc in rcported 
claims per unit payroll for thesc companics. WC ran a linear regression on thcsc licqucncy mcit\ures lersus 
unemployment rates nnd found thr relationship to be nenrly direct. That is. for each point ( I .O%) change in 
the unemployment mte, the claim frequency chan& approsimately ene point as \vell. As a result. we 
utilizrd a formula that increosed the lirqurncy per $100 payroll. onc point for cach point thc modclcd 
nnnu~l u~~mploymcnt rate changed. 

OTHER PARAMETERKATIOK ISSCES 

Collütrralized Mortgage Obligations 

The model has the ability to m~&l diffcrcnt typcs of bonds lSr)nd~ are scgrcgatcd bascd upon thcir cIass 
and maturity. The maturity groupings are 1) I.ess than I Ycar. 2) Over 1 Ycar throuch 5 Ycars. 3) Ovcr 5 
Years through 10 Ycars. 4) Over I 0 Years through 70 Years. and 5) Ovcr 20 Years. ‘The model then uses 
thc samc undcrlying methodology to dcvclop the appropriutc ca~hllo\+s. ‘1 bis methodnlogy is as follovvs. 

1. Start with face values and coupon ratcs 
1. Model coupon payments by multiplying the tàce value by thc coupon ratcs 
3. Determine cnd of yrar statutory book values using straight linc amortiration 
3. Dctermine end of ycar market value according to the follouiny formula: 

MV = IV x S C’F, i (I-i i)’ vvhere (‘1: is thc Cash flo\v rntioed to the tàce vduc 

5. :Mature bonds hctwecn maturity huckets assuming uniform distributivn. Thus 10% of the market values 
in thc maturity grouping “O\.er 5 years through 10 years” are assumed to migrate into maturity grouping 

6. 
“Over 1 Ycar through 5 Years” 
Coupon rates are adjustcd for cach maturity group to rcflcct bonds maturing in and out and thc purchase 
of ncw bonds 

This model can be re-pammeterized fairly easily to model collateralized mortgage obligations (CMO’s) on a 
simplified basis. The inclusion of CMO’s involves two additional steps. The first step is the modeling of 
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thc cspected percentagc ofmortgage prepapmcnts. Thc prcpayment percentage is based upon thc Public 
Securities :\ssociation (PS,\) modcl. which assumcs that thr proportion of mortgages prepaid increases 
linearly bv O.Y”o annually ttir the tirst thirty months. then levels off at 6?/0 per year thereafter. These 
assumptions are then indcscd to represent greater or lesser prepayment activity due to change i11 interest 
rate‘;. For esanlplc. if thc interest ratc werc to increase b> 1 OO basis points we would expect a decrease in 
rhe prepa) mrnt activity. ‘l‘hus thc PS,\ model \\ould bc adjustcd do\\n to reflect fewer mortgagc 
prcpaymcnts and accordingly fcwrr prcpayments of CMO’s. Thc CM0 model can be set up to handle a 
number ol‘intcrcst ratc changc rangos. Currently it is set up according to thc following: 

Intcrrst Rate ?/o / 
Changc From of : 
Starling Point PS/\ I 

+l .Y% 5O”ó 
+ 1.5”/0 10 +o.joió 75% 
45% t0 -0.5% 100% 
-0.5Oá 10 --l.j?ó IY?j% 

-I.j?ó 1 joo, 

C‘hcckb liar r<ast~n,lbl~nc5s iirc hcsr perlVrmcd u<ing historicul rcsull. Past prepayment Ievcls can be 
c~~nipnrcd lo intcrcst ratc Icvcl chnngrs in dstsrminjn, 11 thc lilctor adjuatmrnt to the PSA study. 

;\d\ anrays 
1 Siniplc 10 undcrstand 
I :\llo\\s thc usar to tcst thc impnct ~~I‘<‘MO’~ on the compnn)‘s rcturns and cashtlorvs 
3 h.lodcls the correlation hct\vccn chanyc of intercst ratcs and prspayment of CMO’s in nn 

untlcrstandablc nianncr 

Ilndrnr ritinn, E\-pensï Modeling 

In IIFA anti gencr,ll actuarIal lilrraturc. underwriting cspcnscs havc historically talien a back seat lo 
rc\c‘Irch on Iosscs (in tcrmx ofthcir impact OII rntes and resemes) and asscts. ‘fhc rcason for this lower 
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priority in the development of DFA research is that underwriting expenses have less variability and 
therefore have u smaller impact on the mean and varinbility of future company results. However, as more 
companies focus on operational efticiency. the need for morc sophisticated cxpcnsc modeling has grown. 
We will examine two added levels of complexity that some insurers may wish to consider adding to n 
general DFA modrl if their company’s situation warrants a morc dctailcd parameterization: fixed versus 
vnriable expenses and step-wise incrementa1 fixed expenses. 

For the purpose of this discussion we will dctinc othcr undcrwTiting expenses (OUE) as the sum of the other 
acquisition expense and general expense items. Thc easiest approach that can bc takcn for parameterizing 
and simulating other underwriting expense ratios is to assumc a constant percentage of direct written 
premium will be used for underwriting expenses regardless of increases or decreases in premium Icvel, rate 
adcquacy. or any other operational change. This approach works esceptionally well for commissions and 
tases that are almost completcly variable with written premium. For companies with stable expense ratios, 
this tixed percentagr approach also provides a rensonnble approximation of reality for other underwriting 
expenses that can be programmed and modelrd casily. In fact. the public access version of’l‘he model uses 
this approach for simplicity and the broadest possible applicability. However, companies can he faced with 
many situations whcrc this approach is not reasonable. For cxamplc, a start-up organization whosc 
premiums are yrowing rapidly may see substantial decreases in their expense ratios as fixed costs (Office 
spacr. computer systcms. etc.) are sprcad ovcr a largcr prcmium basc. Companics going through premium 
rcductions, do\rn-Gngs. changes in distrihution channels. or acquisitions nfothcr companics or additional 
blocks ot‘business may also be in situations where the underwriting cxpcnse ratio is a moving target rather 
than a flxcd one. 

I‘hc frst paramctcrization alternati\.e 13 to rrcogni/c somc othcr underwriting expenses as tised. :2ny other 
undcrwriting cxpcnsc thnt rcmains complctrly unchangcd regardlrhs ol‘premium lcvcl cm bc vicrred as 
tixcd. Typical lised espcnbcs are such itcms as computcrs (cspccially large mainframe computcrs), rcnt and 
other overhcad itrms. A common assumption nbout fiscd cxpcnscs is that about halfofall currcnt OUE is 
tiscd. ‘fhis approach is intuitively appealing and is commonly used in the devclopmcnt ofexpcnsc 
constants. For a company that fc& that their expenses are matcrinlly differcnt from this general 
assumption. an analksis ol‘the “Acquisition. Field Supcn isiun nnd Collection Espenscs” column of Part 1 of 
thc Insurancc Lxpcnsc Eshihit may hc appropriate. We did ~ULII an analysis (scc Exhibir 13) for a rcccnt 
clirnt and fòund thc rcsults not suhstantially diffcrcnt frorn Ihr 50150 split. 

Anothcr Icvcl ofsophistication that can hc addcd to projecting other underwriting cspcnses is the addition of 
incrcmcntal fixcd cxpcnses at specilic levels ot‘premium growth and needs a laryer computer nr morc spacc. 
This modi tication rcllects the renlisric situation of additional fiscd cspcnses bcing incun-cd as n company 
cxpcricnccs sigiticant growth. Situations that might gibe rise to this situation would include computer 
upgradcs and rcnting additional Office spacc. It should he noted that scvcrai of thcsc itcms impact assets as 
well as liabilities and the DFA model needs to hc customizcd on thc assct sidc to reflect thcsc additional 
non-inlcsted assrts. One simple approach to approximnting this step-wise tised expense bchavior is to 
selcct a prcmium growth amount at which a fixcd cspensc amount (cither a dollar nmount ofincurrect lixed 
espcnse or a pcrcentagr increase of the other underwriting espensc ratio) is incurrcd. Note that when 
prcmium is dcclining this modeling approach has the effect of making the expense ratio increase until a 
lixcd crpcnsc itcm can hc eliminated. This parameterization cau~s the expense ratio to dccrcasc Icss 
rapidly than a simple fised expense approach and may creatc a more realistic projection of expense levels in 
modcls predicting suhstantial growth or decline. 

Anothrr expense modeling altemative is reflecting expenses that vas by unit cost. ltems in this categnrv 
would include loss control surveys, policy forms and jockets. identification cid isbuance and loss reporting 
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bits. These items behave like variable expenses but are scnsitive to rate adequacy per esposure and changes 
in average policy size. 

A simple reasonableness check for the parameterization ofthe other undenvriting expense genrrator is a 
graph comparing the other underwriting expense ratio (to direct written premium) to the change in direct 
xvritten premium. As ynu can see in Exhibit I-l. an all-variable expense model crentes a horizontal line. A 
partially tiscd expense model implies a line v.ith somc rccognition ofcconomies ofscale. A partial tiscd 
expense model with n recognition ofadditional fised expenses aher wfficient premium grov.Th. decrcases in 
a somrwhat jagged fashion and at a slower ratr than the partial !ixed expense without the step-avise 
adjustment. 

Ad\nntages and disadvantagcs of thcsc mcthodologies are as f~~llows: 

Advantníyzs 
1. Componies f~xused on operational cfficicncq as û stylc will Lvant thc split 
2. .Allows companies to incorporate staffing models into DFA analysis 
3. Allo~~s much bcttcr forecnsts of UIU results undrr gro\\th scenarios 
4. ;\llo~s more nccuratc mcasurcmcnt ofthe expense componcnt ofthc nc~v busincss pcnalty” 

Disadbanta w 
1. Future expense Icvcls nnd mana~~ment dccisions difticult to paramctcrize 
3. C‘ould be ~II O~er-C);lrililieteri/ati(~li ofthc modcl fur thc sul$rct c~xnpany that could distract tiom 

more sigilicnnt risk5 

I’olicyholder Dividcnds 



book of business that are offered each kind of dividend plan in a given phase of the market, and 2) the 
expected payout for each plan given a known loss result. 

Eshibit 15 provides an example of how this model could be parameterized in the case of a company with 2 
variable dividend plans. The modeler could develop an expected distribution of written premium in each 
dividend plan at each point in the cycle based on actual company experience and discussions with company 
personnel conceming their expected behavior. Information estimating dividend payouts at different loss 
ratios should be available for each plan or can be fairly easily approximated. Once this parameterization is 
accomplished. future dividend payouts are computed as the weighted average of the expected payouts for 
the two prior accident years as is shown in Exhibit 15. Nct loss ratios can be used to approximate loss 
capping that occurs in somc dividcnd plans, if rctcntion levcls are similar. A straightforward reasonableness 
chcck for this customization is a graph comparing loss ratios (net or direct as selected above) from a two 
year period versus the policyholder dividend ratio (to direct eamed premium) paid in the first subsequent 
year. 

This tcchnique of modeling items as a percentaye of premium based on loss results and market position has 
two other significant uses: 1) contingent commissions. and 2) residual market burdens. Contingent 
commissions are in many respects simply dividends paid to the agent instead of the policyholder. Multiple 
agency incentive plans with different payouts which can be extended Lo different numbers of agents 
depending on markct conditions can be parameterized using an approach almost identical to the one shown 
in Exhibit 15. Residual market burdens can be viewed as a cost of doing busincss (literally a percentage of 
eamed premium) in certain lincs. most notably workers compensation, automobile and property lincs in 
certain s~atcs. This cost of doing business varies by market position and jurisdiction. An approach that 
incorporatcs somc clements of a jurisdictional risk assesstnent and is designed similarly to the dividend 
approach providcs a reasonable approximation to filture residual tnarket loads. NCCI and AIPSO both 
provide data lo member companies by line and state that assists greatly in parameterizing this customizaGon. 
.4n exatnplc ofa straightforward parameterization of residual markct burdcns is shown as Exhibit 16. 

Advantages and disadvantages of these methodologies are as follows: 

Advantages 
1. Intuitively more rcasonable 
2. Easy lo program 
3. Rccognizes the impact dividends, contingcnt commissions, and residual market burdens can have 

on operating results 
4. Recognizes the loss and/or market sensitivity of these items 

Disadvantages 
1. Difficult to validate some parametcrs 
2. May overcompensate 
3. Increases impact underwriting cycle position has on underwriting results 

AREAS OF CONTINUED RESEARCH 

I‘here are a number of areas of research in the area of model parameteriration that the DynaMo research 
team is continuing to develop. Some of these include the following: 

Enterprise-Wide Modeling - How are foundational risk factors that are common to many industries but 
with sometimes different impacts. like catastrophes. inflation. and interest rates, used to build an enterprise- 
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wide DFA model for an organization that includes propertyicasualty insurance companies and other entities 
like banks and life insurance companies? What kinds ofmetrics are needed? How are the unique risk 
factors for [hese other industries paramcterized and modeled? 

Managed Care Impacts - How are the impacts of managed care penetration and network strength 
incorporated into estimated frequency and severity for a workers compensation writer? How will managed 
care impact loss payment pattems’? How should network access and network tnanagement fees, especially 
contingent fee structures. be parameterized and modeled? 

Securitkation - How are the bond modeling and catastrophe modcling capabilities of a DFA model best 
blended to estimate the price of catastrophe bonds’? How can a DFA model be used to test the loss payout 
risk in an apparcnt financia1 reinsurance agreement? 

Ratemaking - What is the bcst approach to using a DFA model to simulate a range of possible indicated 
ratc necds? Can this approach bring somrthing akin to risk margins into ratemaking as an altemative 
method for computing a profit provision? 

Demutualization, Mergers, and Acquisitions How can a DFA model be customized to assist an 
insurance company deciding whcther to demutualize? How can a cotnpany combine their own data with 
one or more merger or acquisition candidates in a DFA model to assess and potentially rank possible 
candida~es? How can this information be uscd to estimatc dilution value? 
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Exhibit 1 - Operational Schematic 

DynaMo Overview 

Exhibit 2 

Cox Ingersoll Ross 

Interest Ratc Cenerator Formula 

General Formula: r, = a x ( b - r,.,) + s, x z, 

Selected Formula: r, = 0.25 x ( 0.06 - Ti.,) + 1.40 x 2, 

where r, = 90 day rate for year i 

û = rcvcrmn frequcncy parameter 

b - long-term mean for 90 day raes 

51 = volatility parameter 

z, = standard nomnl vanate 



Exhibit 3 

90 Day T-Bilis 
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Exhibit 5 

CPI = m (intereso + b + s2 x z2 

Date Interest CPI 

1984 9.36 3.58 

1985 8.34 4.04 
1986 7.33 3.79 
1987 5.68 1.19 
1988 5.96 4.42 
1989 8.35 4.41 
1990 7.88 4.64 

1991 6.95 6.25 
1992 4.18 2.98 

1993 3.29 2.96 
1994 3.13 2.81 
1995 5.76 2 60 

1996 5 29 2 60 
1997 5.04 3 31 
1998 5 30 1.70 
1999 6 66 3 56 
2000 4 50 2 88 
2001 4.85 3 48 
2002 740 3 87 
2003 7 75 3 33 

SUMMARY OUTPUT 

Regressm Stabsbcs 

Multiple R 0.494962134 
R Square 0.244987514 
Adjusted R Square 0.186909631 
Standard Error 1.133478755 
Observations 15 

Intercept 
X Variable 1 

Coeffcients Standard Error 
1.386254038 1031405168 
0331762727 0.161532906 

Exhibit 6 

Inflatioo VS. 90 Day T-Bilis 
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Exhibit 7 

Medical Inflation VS. CFI 
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Exhibit 8 

CPI = m (interest) + b + s2 x 22 

Date TB 3M UE+2.5 

1983 8 12 

1984 9 36 
1985 8 34 
1986 7.33 
1987 566 
1988 5.96 
1989 6.35 
1990 7.88 
1991 695 
1992 4 18 
1993 329 
1994 3.13 
1995 5 76 
1996 5 29 
1997 5 04 

14 00 
ll 10 
9 70 
665 
a 20 
7.50 
7 50 
8.05 
870 
8 45 
7 00 
6 OO 
5 20 

1998 5 30 4.80 
1999 2.63 6.08 
2000 3.31 5.99 
2001 434 592 
2002 301 5 18 
2003 2.75 591 

Eshibit 9 

1800 

16 10 
1600 \ 

SUMMARY OUTPUT 

Regmsion Sfatistics 
Multiple R 0385638451 
R Square 0.148717015 
Adjusted R Square 0.077776766 
Standard Error 2.270314616 
Obsewatlons 14 

Coefficients Standard Error 
Intercept 5.062361825 2252755614 
X Variable 1 0 533179613 0.368247289 

Unemploymeot VS. 90 Day T-Bilis 
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Exhibit 10 - Impact of Jurisdictional Risk on Selected Rate Leve1 

------____ 

/ 
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Exhibit ll - Impact of Jurisdictional Risk on Direct Loss Rcsults 
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Exhibit 13 - Selected Rate Leve1 Altematives 

Assumptions: 
Loss Inflation ~ 4.0% 
Change required for desired premium grotih at existing point in cycle. - 5.0% 
Method 4 weight assigned to inflation - 50% 
Method 4 weight assigned to indicated rate leve1 - 75% 
No jurisdictional effects 
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Exhibit 13 - Insurance Expense Exhibit Analysis of Fixed versus Variable Expenses 

Category 
Allowances to Managers 
Advertising 
Boards B Bureaus 
Surveys 
Audits 
Salaries 
Payroll Taxes 
Employee Relations 
Insurance 
Directors’ Fees 
Travel 
Rent 
Equipment 
Printing 
Postage 8 Telephone 
Legal & Auditing 
TOTAL 

Expense Percent 
Dollars Fixed 

350 50% 
750 80% 

0% 
0% 
0% 

2,675 40% 
200 40% 
500 50% 

0% 
100% 

125 75% 
175 100% 
425 100% 
125 0% 
200 0% 
700 100% 

6,225 57% 
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Exhibit 14 - Graphical Representation of Various Other Undewriting Expense Models 

Assumes a current other underwriting expense ratio (to Direct Written Premium) of 18% and the 
ability/need to incrementally reduce/increase tixed expenses by 2% of DWP for every 15% 
decreaselincrease in DWP. 
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Expected Drvrdend Drstrtbutlon 

% of DWP by Divrdend Plan 1 
Phase No Plan Plan 1 Plan 2 

Mature Hard 40% 50% 10% 
tmmature Soft 
Mature Soft 
Immature Hard 

25% 40% 35% 
10% 3 5 Ya 55% 
25% 40% 35% 

lrvidend Payout Estrmate 

oss Ratro Plan 1 

20% 24% 

Plan 2 

37% 

22% 
24% 
26% 
28% 
30% 
32% 
34% 
36% 
38% 
40% 
42% 
44% 
46% 
46% 
50% 
52% 
54% 
56% 
58% 
60% 
62% 
64% 
66% 
68% 
70% 

23% 
22% 
20% 
19% 
18% 
17% 
16% 
14% 
13% 
12% 
1 1% 
10% 
as 
7% 
6% 
5% 
4% 
2% 
1% 
0% 
0% 
0% 
0% 
0% 
0% 

35% 
34% 
32% 
30% 
29% 
27% 
26% 
24% 
22% 
21% 
19% 
18% 
16% 
14% 
13% 
11% 
10% 
8% 
6% 
5% 
3% 
2% 
0% 
0% 
0% 

Dividend Computation 

Assume 
Mature Soft 2 years ago, wrth 56% toss ratro. $24 M DWP 
Immature Hard last year. wrth 54% loss ratro, $30 M DWP 

Expected Dlvldend = [Year 1 DWP * (% DWP in each plan * payout) + 
Year 2 DWP * (% DWP rn each plan ’ payout)] i (Total DWP) 

Expected Dtvrdend = 124’ (0 35’0 02 + 0 55’0 06) + 30 * (0 40’0 04 + 0 35’0 lo)] / (24 + 30) 
=5 1% 
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Exhibit 16 Sample Residual Market Burden Paramrterimtion 

* Mvlodulc I, programmcd to calculate thr dlffcrrtlce between thr last obscrvcd mnture markct burden 
.md rhc wxt lopical m<,ture mdrkct burden and For cumple. âsst~tne ü Yd )ear maure hard market 
\\<I\ smluldtcd to change to nnmaturc soft The differsnce beween 111r Yd ycar mature hard residual 

~narkcl hurde~~ (7 Osó) and the first ycar maturc soft burden (1 0%) which equals 6.0% (7.0% I .O%) 

would hs dlvldcd hy .T to rcflccl a zlcction that gencrally it takes 3 ycan for a residual market burden 
tu chan~c from maturc hard to mût”re soft. ‘1 hta 7 0 pomt rcducrlon (0 0613) would be subrracted 
fronl rhc Prmr )enr burden of 7 00. 10 compute a hurden of 5 O”.. It thc mnrket stayed ,n the 
mlmdturc wft \tate for a sccund yur, the burdcn would br 3 O?õ (5 00. - 7 OOÓ) Thr immature 

burdrnh xc’ capped ar the appropriate iirsr )ear mature markct hurdens. 
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Suwiving Price Deregulation 

Emily Gilde, Ph.D., ACAS, and 
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Abstract 

Theory and c\ Idencc from the paso two dccades demonstrate that pricc deregulatton Increases 
cHt~¡cncy and Io~vcrs COSIS and p~cs. The ~mpact of dercgulatlor on profit, ho\\evcr. is 
amhiguous and depcnds tn part on thc Industry‘s market structtw. Theory predlcts that. un 
compctlti\e industnes, prlce deregula~ion tends to I.cduce pnces by about as much ils costs. 
productng little change in proflt. In Industrlcs wth monopolistic char;lctwstic~, however. prlcc 
deregulurion mrìy pennit highcr profits for thc wwving firms. This papel- argucs that pricc 
dercgulation Itseli can have ;I profound tmpact on an industry‘s markct btt-ucture. Underst:lndtng 
ho\v thts changr 111 market str-ucture may occur IS UIICI;I~ ,n prcdlctlng ~hc tmpnct of pt-tce 
del-esulatlon on an industry’s pl.oi’itabillty. 

.fhis papar tocuscs on hw prlcc dcrcgulatlon is I~kcly to tmpact thc U.S. auto I~SUI~UICC Indu~tly. 

At prcscnt, thc tndusrry 1s compctitivc. Llnllke thc transportation tnduslries. cxlbtlng rcgulalton 
has not sertously impeded cntry into or esit from the m;trket. In this compe~ittvc markct 
cnvlronment, pnce deregulatlon may exert only u m~nirnal Impact on prol‘its. On thc othcl hund. 
Incleased pncing frccdom is likely to stimulatc dcvelopment of nc~ technologic\ for \‘arytng ratw 
and scgmenrlng markets. similar to those devcloped by the deregulatcd ;tirllnc Industry. 
Spcc~iically. pnce deregulatlon will lead to more sophisticated class plans, morc frequent ratc 
changa, and mwe consumcl- shopping. To exploit these changes. Insul-ers must Intcgrutc 
computcrsystcms, Incrcase employcc shills in garhcting and annlyzln, 0 custotner data, and offct 
h~gh quality. Indlvldualized service. Pnce dcrcgulation. thereby. nlay create new proflt 
opportunitlcs for the largest cxisting insurel-s. who possess the duta and expcrtlsc for sophisticatcd 
analysls. Actuaries need to be prepared tor these chnnges. 
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Introduction 

In thc latc 1970’s and carly IYW’s se~eral indusrrics In rhe energy, transportatlon, and fInancla 

sector-s of thc U.S. cconomy experienccd slgnlficunt deregulation. Pricc restrIctIons and 

restrictlons on entry und eult WI-~ Iiftcd for alrlincs. truching. natural gas. petrolcum. and 

brokcragc. Rates for railroads and telecommumcations wcrc partially dercgulatcd. Many tmkmg 

Industry r-cstnctions on priccs and cnrry were eliminatcd. Thc chart helo\+ IIsts nccent mejor 

I I . -  _.l..Y.. .  .  . . -  I . . . _  

Industrv Major Initiative 
Brokcrage Secuntles Acts hmendments (19753 
Airlincs Airhne Deregulation ,412 (1978) 
Natural Gas Natural Cias Pohcy ,412 (1978) 
Pctrolcum Dccon~rol ofcrude 011 and refined petroleum 

products (executive orders bcglnnlng In IY79) 
-rI-d.il~g Lqotor Carrier Rcform Act (IYSO) 
Rallroads Staggcrs Kall Act (1980) 
Bankm~ Depository Institution Dcrcgulation and Monetary 

Control Act (lY80). Gurn-St. Germain Depositwy 
Innritutions Act (lY82) 

TeIc’coii1iIIIIiiic;itions .ATYrT Settlcment (1982) 
Cable Tclcv~sion Cable Tclewslon Dercgularlon Act (1981) 

Although thls wavc of dcregulation had tittlc impact on rhe insu~ancc indusrry. thc Industry and 

scveral state legisfaturrs have begun to show an increased intelrst in deregulating in~urance. In 

199s Pcnnsyluania passcd ncw Icgislation exempting carricrs from rate 2nd policy fol-m fitings 

involvq large commemial nsks. Other states plan to follow Pcnnsylvama’s lcad in 1999. Some 

,malysts bclicve that deregulation of personal lines will follow. Scvcral trade ol-ganizations. 

~nclutl~~l~ thc .Ame~-~can Insurx~ce Associ~~rror~. thc Alllancc of Amerlcan Insurers. thc Natlnn;ll 

Assoclation of Indepcndent Insurers, and thc Natlonal Associatlon of Mutual Insurance 

Compnnies, havc appcalcd to the National Association of Insurancc Commissioners to hold a 

hcxinp on the ~ssue of complete fo-ec markct pricing. The groups argue that price controls havc 

distorted tnarkets. are political, deny choices to customcrs, and are an “cuílfact of industry 

pracnces and ;I relic of an cconomIc theory dlscredltcd domestlcally and glnbally” (The Insul-ms 

Reoulator. November 30. 1998 and Dcccmbcr 14. lYY8). 
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1. Irtcfticicncics of Rrgul;~tion 
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A~rlinc Ind--y_l 

In 1938 thc Ci~l Acronau~s Board (C.4B) bcgan to rcgulntc the alrllne rndustry. It immediately 

rcstrlctc‘d cntry. To begln servlcln, u a ncw roure, an airhnc fil-st nccded to obtaln II cemflcate from 

the CAB showing thnt thc prcscncc of anothcr camer was required by “public conveniente and 

necesslty.” One of the first acts of the CAB in 1938 was to grandfather in the 16 existing trunk 

carrlers. Over the ncxt 40 yearb, more than 150 applicntions were submitted to the CAB to add 

long distance routes, but not a single entry was allowed! According to ctitics, the CAB 

specifically rewarded Inefflclency through its practtce of awarding monopoly routes to airlines In 

troublcd financia1 conditlon in ordcr to “mnintain competltlve balance and prevent bankruptcies.” 

The CAB also strrctly controlted air Pares. For a partlculnr route. airlines could charge only conch 

UI 111sl class, with the fare bascd primarily on miles traveled. Sincc costs involvcd a hcavy fixed 

component that dld not vary with miles traveled, thc long distance mures gcncrated excess profit. 

u hile thc sholt routcs WCI-c unprofitablc. Thc airlincs responded by competing intensely for the 

profltable, long distance routes. S~nce regulatlon prcvcnted competition bnsed on pricc. airlines 

cngaged in non-price competition based on flight frequency, meal quality, width of seats, and 

fricndllncss of staff. This behavior greatly increased operatmg costs. 

Airlinc deregulation began in 1976 when thc CAB began to aliow airlines to offcr discount fares 

(“super savcrs”) and to make route awnrds to all npplican~s “fit, able, and willing” to compete. 

Thc Alrline Deregulation Act uf 1978 codifzd these changcs. Deregulation ted to severa1 

imponant changes m the alrline industry. First, airlines developed a computerized pricing and 

rcservvtion systcm thar allowed them to vary prices according to marginal cost and differcnccs in 

~u~tom~r pnce sensitivlty. Deregulation atso dramatlcally altered airtines’ route networks. Prior 

to drregulation. airlines travcled in a hnear fashion bctween particular cities as required by CAB 

~rulcs. This systcm was Incfflclcnt, oftcn resutting in planes being ilowtl half empty. Aftcl 

dcrc:ulatlon. ;ul,lincs dcvclopcd the much morc cfflclcnt “hub and spoke” system for carryin; 

pussengers betwccn cities. Third, after deregulation. airlincs tumed to non-unionized labor m 

ordcr to rcducc costs and bcgan to use equipment more intrnslvely. Wages of pilots lèlt 

Jr;1matlcalty. whilc time spent In the air increased. Similarly. planes were flown more hours each 

day. Over the past 10 years, the net impact of these changes has been a dramatic reduction in 

’ This dlscussion draws on Wlllnms (1993) 
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operating costs. After adjusting for inflntlon, the average aitfare has dropped about 40 percent 

(Avlatlon Week and Space TcchnoloEv, November 9, 1998). 

Propertv and Casualtv Insurancc 

Rcgulatlon also contnbutes to hlgher produchon costs and pnces in the insurance industry. Flrst 

of all, regulated rates cannot be chnnged rapidly. making it more difficult for insurers to respond 

ro cost changes or competltive changcs. Smce the regulatory process requued for approval of 

rate increases can be especiully time consumin g. Insurers are hesitant to decrease prices for fear 01 

difficulty 111 increaslng them later. Restrictions on classifying risks for prrclng purposes also Icad 

to higher costs. Studles show consistently that “class plan” restrictions result in an increase in the 

size of the “involuntary” market that Insurers must support (Grabowski et, 1989; Tennyson, 

199s). 

One interesting questlon is whether insurance rcgulation has created barriers to entry and/or er;lt 

akln to those present in the airline Industry. If so, this is another important sourcc of Inefflciency. 

Although most economists assume that the insurance industry has low “natural” balTiers to entry, 

the Natlonal Assoclation of Independcnt lnsurers (NAll) argues thai the bureaucrntic 

requiremcnts that must be satisfled to enter a new state markel xc excessive (Harrington. 1954; 

NAII, undatcd). For cxample. hcensmg requirements for new companies can create delays of a 

yenr or more. Insurdncc rcgulation also includes exit baniers: the tnsurance commissloncr In u 

statc has the authority to deny a company’s requcst to withdraw from B product linc ora markct. 

DespIte these costs, many insurance companies have entered and exited the indus~ry over the past 

few dedes.’ 

II. Will Deregulation Increase Industry Profits? 

The effect of deregulation on profits depends on the competitive characteristics of the industry. 

Some industnes operate competltlvely, evcn under I.egulatlon. In these tndustries, films enter and 

leavc the market freely. Therc are no significant economies of scale. If regulators fis pnces 

above the competitive level, non-price competltion between firms elimmates any excess profits. 
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In thls type of industry. deregulation tends to have Iltttr impact on profits. Atthough operating 

costs may fall. competition cnsurcs that prices fall along with costs. Economists \*lcwcd thc 

airline industry us competitive 2nd predicted that deregulatlon would not incrense Industry profits 

hy much (Winston. 1993). In other Indusrrles. legulatlon Insulates flrms from comperltlon so that 

excess profits are made. When these industries deregulatc, profits of existing firms can fall. The 

trucking industry falts into this categoly. Finally, industria with production technologies that 

involvc economics of scatc are the most likely to experience an increase in profits following 

deregutation. Deregulatlon frccs thcse flrrns to aert market powcr and prlcc discrimlnatc. Fo! 

example, the raltroad lndustry. whlch IS a natural monopoly. expellenced 3 stgnlficant Increase tn 

profits following deregulation. 

Predictm_o rhe cffect of deregulation on profits 1s compltcnted by the dependence of markel 

stl-ucture on existlng tcchnotogy. Dcregulatlon of thc past two dccadcs showx that the sourccs of 

an Industry’s competitlveness can change rnpidly because of new technology. In precllcting 

M hether deregutation will incrrase or decrease profits. II is Important Lo consider ho\\ 

deregutntion is likety to Influente an Industry’s technolopy. and how the change in tcchnology will 

Influrncc markct structure. Thc fottouing examines theïe questions In thc contcxt ofthe alrllne, 

trucking and property-casualty insurance Industria. 

Airtinc Industrv’ 

Airline industry profits suffered under CAB regutation. Desptte the absence of price comprtitlon. 

the regulared airllnes made no monopoly profits. Thesc were dissipated through cxlcnsivc non- 

prlce competihuri. On the eve of deregulation in the 1970‘s. cconomlsts generally predlcted that 

dcrcgutnnon would not increase airlme profits by much. becausc the industry seemed so nalurally 

competitive. Analysts assumed that dercgulation woutd altow mnny new, smatt alrhnes to enter 

thc marhct and chattcngc thc cstablishcd playcrs. Thcy bcllcvcd that falting costs and ficr-CC pricc 

wars \vould lead to a less concentrated, more competittve market structurc. 

At first, thcse predtctions hcld. Initiatly. many ncw ca*Iers did cntcr thc Industq. Most. 

’ Bclwcen 1980 and 1993, 613 IICW propuly-Lazualty companies wcre forrnzd ;md 320 lefc rhc mdualry volunrxtly 

or because of merger (Narionat Assoc~a~~on of Independenf Inrurers. 1989-1993). 

’ Thls dwasslon draws on Wiltiams (1993). 
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Florn 1980 10 IOS5. trucking firms f:lced masslve market entry and fall~ng pmzes. Although 4,500 

truching compan~cs wcnt ou~ of business~ there were 40 percent more trucking flrms at the cnd of 

1983 than before deregulatlon (Zlngalel>. 1998). In thts case. deregulatlon reduce11 Industry 

pnrtlts (Wlriston. 1993). 

Espccially ha~d hit by dcrcgulatinn wcrc laro,e trucklng compnnics specializlng In c~~ying many 

\rnall loads for diffcrcnt customcrs (Fortune, April 27. 1998). These compnnies had developed 

crtcnslvc netv.orks of hundreds of warehouscs whcre the many partial loads were consohdated 

unto fu11 loads. whlch could thcn hc transported more efficiently. All the consohdation was 

c\pcnsi\c ;md tlme consumlng. Truckmg fir-ms could proiit despide such lnefflciency because 

~c;ut;~r~tm rcsr~-~~,~cd cntry. With dequlatinll. sn~ll. independent trucklng fil-ms emerged These 

II~IS NCI-c n11l1nz to work fur Icss ;Ind could deliver srn;~ll lo;tds morc qulckly. The smal ilms 

dr~)\c m:~n! of thc I:lrgc. patita-load speclallsts out of business. Thus. In this case, competitive 

;ILI\ ;~nt:~sc duc to SIX and nrtwol-ks hecame ohsoletc undcl- dcregulation. 

In ~onclu~on. [he a1rl1nes and trucklng industnes had ver-y differ-ent expzricnccs undct 

&rc:ulation. Although analysts predicted that airline dcrcgulation would lcad to morc 

comperitivcnc~s ;~nd lcss mlrrket concentratlon. thls I”edlctlon tumed out to be wrong. 

Dere~ulatlon rncouragcd thc dcvelopment of new tcchnolqes, such as 111~ “hub and spokc” 

sysrem. \vhich could only be exploited by thc largcst carriers. These ncw tcchnologics Icd to 

Increascd profits and greater markct concentration. By contrast, deregulntion of the trucking 

industry Icd to rcduccd profits and less market conccntratlon. Thc load and dclivcry networks 

dc\,ctopcd hy large trucklng companies under rcgulation were no longer profltahlc. These 

striLin:ly opposite cxpcricnces show the danger in drawmg conclusions ahout how dcrcgulation 

\v111 affcct tin industry. based solely on thc industry’s current technology and market structure. 

Property and Casualty lndustry 

Joskow’s seminal 1973 paper on the property and casualty rcgulation describes the industry as 

including ;I large number of firms wlth low murket share. cnrcnng 2nd exiting the market rclativcly 

I’I-ccly nnd producing nearly identical products using consrant r-ctul-ns to scale technology. As 

explained :tbove, theory predicts that deregulatlon of a competiuve industry such as this rcsults in 

efficiency galns and customcr benefits but has little impact on industry profits. Empirical studies 
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comparing statcs with dlffcrcnt degrees of auto insur‘ance regulatlon generally supports this 

prrdlctlon. There IS no consistent evidente thut preces. profas. or Ioss ratios are consistently 

hlghcr or lowcr in states rcqulnng “prior approval” tòr ratc changes. The results vary. dcpending 

on the tlmc pcrlod and particular statcs bcing consldered (Ippolito. 1979: Harrington. 1984; 

Tennyson, 1997. EI:~j~elsm~t. 1998). 

Therc is cvidence, however, that thc property nnd cnsualty Industry does not f~t thc compctitlvc 

industry pnr;~d~gm completely. ParricuLlr insurüncc distrrbutlon systems do involve s,gnrhcant 

economies ot scale.’ Economles of scalc clearly xc important m a direct response arrangcmcnt. 

as most of thc acquisition expenses are flxed costs assoclated with the start-up period. Scvc~~al 

analysts have illso su ggested that economles of scale exlst In production of Insurancc by dlrect 

wnters s~nce developing an cxclusi~e agent dlstributlon system entals hlgh í‘lxed costs (Joskow, 

1973; Hanington, 1984). Once these fixed costs have been mude, direct v+riters can produce 

more cheaply th:m Independcnt agents. Thus. the cost of estabhshing an exclusive agency 

potentlally creates a baticr to entry by smal firms. Over the Inst few decndes, concentratlon of 

the Industry has increased due to fuster growrh by dlrect writcrs (Tennyson, 1997). Theo1.y 

suggcsts thnt del-egulation Lvould most heneflt the sector-s ot thc Insurance industry with 

cconomlcs ofscale and market powcr. 

The key questlun is how pncing deregulatlon would affect thc profitahlllty of different productlon 

and distribution strcltegles - 2nd whether thcsc strtrtegies would benefit large establlshed 

companies or ncw “upstarts.” For example, attcr deregulation of thc arlines. it became both 

posslblc 2nd profitable fo develop “hub 2nd spoke” networks. Only the largest airlines could 

manage thls on ~1 national scale. Thus, a new economy of scalc emerged after dercgulatlon. On 

the other hund, the networks developed by the truckmg mdustry became obsolete aftel 

deregulation. climinating a source of competitlve rtdvantage to large firms. In hoth cases, these 

changes reflcct thc Incrcused emphasis on competiti\,e pnc~ng following deregulation. The “hub 

and spoke” alrline system allowcd prices fo fall - cven though the systcm is Icss convenient for 

air travelers. A similar shift In emphasis may occur following deregulatlon of auto Insui-ante. 

Considenng the cxperience of the airline industry, the production and distributlon strategies most 
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I~kcly to succeed in XIIO insurunce wll bc thosc thnt pelmit the lowest prices. even at the expense 

~~I‘cu~lomcr convcnlcncc. 

Deregulation IS llkely to have ;I profuund ellcct on Insurancc pncing. Deregulatlon crcatcd 

Incentives for thc atrllncs to vary prices. This in tum madc complcx pricing tcchnologics 

profitable. Sincc thc pricing technolog) wa JO expenslvr, ~t providcd UI opportunity for the 

larpcst airlincs to exploit new ecnnomles of scalc. A similar sttuation could occur II Insurancc is 

dcregulated. With morc pricing fwcdom, it wll become more profltable IO Invest in risk 

assessment knowledge ;rnd systems The class plans of personal ;I~I« InwrcI-s alrcady rcflcct a 

widc vnrintior in risk assessment capabillties. At prcscnt. those cIass pluns are subjcct to 

rquI;Itor) lillns and :~ppr«wl In most states With dcrcgul;tt~on. wch plans would bccomc 

prqmctary Infom~;~tior nnd thus potcntlally morc important. Th¡\ proplictary Infor-matior ~111 

hcc~wr :I CI-UCI;II nw source r)lccrmpetitlve ad\antagc for companlca largc cnough to makc thc 

invcstmcnt. 

EVCII it prescnted w’ith ncu’ growth opportunlties, thc incumbcnts III ~II indu~try must mow 

quichly to tahc ad\anta~e of thelr Insider status. In Bntain, tr;~d~~~on:~l Insurcrs falled to respontl 

vlgorously to the opportunihcs prcscnted by pricc tlwcgulat~on 111 thc 1970’s :md 80’s (Wcstall. 

1997). At the end of thc 19SO‘s. a IIC~ company, Direct Line. bcgn to scll 1nsurance dlrcctly IO 

pohcyholders over thc telcphonc. This direct markehng pioneer has bccomc cxtremely successful. 

Althougl~ the initi;d cost of advcrtlsing was very high, Direct Linc has rcduced costs dramatlcally 

by chmmating agents antI bl-anch cxpcnses. Datnbnse managcmcnt ;~IIowx l’ine dlscrlminatlon 

bctwccn risks and rupid prcmium rute adjustments. As Dlrcct Ltnc’s markct sharc grc\v, It hcgnn 

to opcratc Its own body shops. These Thops, which reduce clalms costs through hcticr 

management of thc repair proccss, are only feasiblc for a company \vlth n large market 

concentration. Currently. Dircct Linc’s markct share is 1.1 percent, about thc samc ns Allstatc’s. 
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III. Surbiving Ikregulation: Esperiences of the Airline Leaders 



Eastem fkrlinc” -____ 

By 1975, Eastcm was aIready in dcep trouhle. At the time, annlysts predicted that the a~rlinc 

could not sur\i\e dcrcgulatlon. Eastem’s problcms H’CIC many. It operatcd many short flights 

berwcen small citics, requiring too many planes and toa many peoplc. The planes used for these 

routeb tvere too big. Eastern’s halance sheet includcd considerable long term debt. Its corporate 

oftkes were spllt betuecn Miami and New York, Icadlng to confuscd managcment. Eastcm had a 

reputarlon for poor qualiry servicc. The airline ceased tlying in 1991. 

Delta is a protltablc nlrllne with a strong halancc shcct. The source of its strength is its 

conscrva.1Ive upproach to financc and manngemcnt. Delta has aluays engaged in consistent 

capital spcndlng on 11s Ilcets. It buys steudily and carciully, 111 good (Imes as wcll as bad. In thls 

way. lt kerps its flccts rclativcly young., ,md avoids excessive spending in any yeal-. During the 

1980‘s. Delta had thc highcst retained cash flo\+ as n pcrcentage of long term deht of any U.S. 

Carrera, .Anothcr strcngth IS Dcltu’s hub 111 Atlanta. At ils hub, Delta consolidates all of lts 

opcratlons. which generates economxs of scale for the a~rline. Delta also has a rcputation for its 

loyal. wcll pnid. huy non-union wol-hforce. Delta. howcver, has been slow to selze new 

oppolrunltics. Followine dercgulauon, Delta hesltated to buy intcmntional routcs and was slow 

to dcvclop CRS’s. The airhne allowcd Amencan to heat it out in developing a second majo’ hub 

In Dallas. Flnally. in I%G, cight yrxs after deregulation. Delta hecnmc a transcontinental airline 

whcn It mergrd wifh Western Airlines. At that point, Its market share (Including Intcmational 

passcnger mIes) shot from s~.x~h place to thlrd. In 1992. rvhcn other canicrs were adverhslng 

pi~~c cuts. Delta increa~ed spcndint 10 promotc its ;ood sel-vice 1 Delta rcmatns suong hecause it 

\r:lys out of too much deht antl focuses on long tel‘rn \lrate$es. 

&i;~lo~~~cs Bct\re~n tlic Alrllnei and Prlvatc Pus\cn~c~utr~ Insurcr.5 ~.--__ 

Ir IS InsmxtIvc ID dmw an analogy hctwecn these expcnenccs and whar might happen tn the 

~:LJUI playcrs 111 the personal au~o insurnncc ~ndus@y rhould del-egulation occur. The chalt below 

” scc BllhllW\.\l Wceh l Dec 22. 1975) and AVI;IIIO~ Wwk 2nd Spacc Tcchnot(~ (Jmuary 28. 1991). 
’ l’mba (Set” 15. 1980). Av~nuw Week 2nd Sp;~~e’I‘~chn~lw~ (Ocr. 14 1991). Brandwwk (Mq IS. 1992). _. 
Ruwr\\ Week (Nov 8. 1082). and &r Trans~or~ Wofi (Junc. 1993) -___ 
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shows market shares for personal auto for thc ftve largest insurers (One Sourcc Information 

Services, Inc. Market Share Appllcation): 

Market Share: Personal Auto (as) 

Insurance Group 1993 199.5 1997 

State Farrn 21.8 % 21.7 % 20.8 Ra 

Allstate Il.7 11.9 1’.2 

Farmers 0.0 5.E 5.9 

Natlonwide 3.5 3.1 3.9 

Progrewve 1.4 2.4 3.7 

The two largest insurers, Statc Farm and Allstate. can be compared to Umted and Ameritan, the 

two Iargest airlines. Like United ;md Ameritan, Stnte Farm and Allstate have dominatcd the 

industry for years. Both are national insurers with u long hlstory ofexcellence in risk assessment. 

The compunies are lqe and financially stable. They are both m a strong posltion to takc 

advnntage of new opportunities presented by dcregulatlon. The thlrd and fourth mnrkct share 

players, Farmers and ?Jlntionwide, are both repronal companies who havc attempted in recent 

years tu become more national. These companies resemble Delta, ;dso ;I regional company prior 

ro del.egulation Dcre@:mon may well lend tn a bnttlc bctwccn these companics to become thc 

thlrd largest auto Insurer. 

Who ~111 be thc Pan Am and Eastern of auto insurtrnce after dcregulatlon’! 

IV. Knal Comments 

Althouph deregulation clearly Increasrs efficiency. the impact on thc proflts of cxlsting fil-ms 111 

the lndustry depends on market structure and competltlveness: 

l If ;m industry behaves competitivcly, consumers are the main bcnctlciaries ofdcregulatlon, as 

cfticiency gams are passed on to them in lower pnccs. The effect on existing lirm proflts may 

be mmimal. 

l To thc extent thnt deregulation protects industry profits by fixin: pr-ICS ahove the compctiuve 

level or by restricting entry mto thr market, existing fums may he worsc off after deregulation. 
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Faced v.lth new competltion. thc cxlsting flrms mny lose prollts or go WI of buslness. 

l Existing tirms m ~ndustrics with hamcrs to entry tend to be morc prol.ltahle afrc:l drqulatron. 

Essentially, deregulatton ullows the firms to cxploit monopolistic pn~~er. 

The wild card in this analysis is tcchnolqcal change. The expenence of the last two decndcs 

shows that dcrcgulation stimulatcs tcchnolog& change. This paper has tried to show how 

deregulation. by freeing firms to pursue new pricing and distribution stratcgies. suddcnly mahcb 

ncw tcchnolog~cs much more profltable than brl’orc. Thcsc tcchnologlcs may gi\c risc to ncw 

economies of scale and may make traditional economics of scalc ohsolctc. Thus, in predicting 

haw deregulation may Influencc proflts of cxisting flrms in an industry, it is impnrtant to consldet 

how dercgulation may infl ucncc thc sourccs of competiti ve advantage. 

How uould deregulation influcncc thc propcrty nnd casualty tndustry” Thc propcrty 2nd casualt) 

inburanc‘c industry has muny of thc charactcl.istlcs of u compctillvc miAI Thcrc IS no conii\tcnt 

cv~dcncc showing that rcgulation aIlo\\s ¡nsuI-crs to mahc cxccss~vc profits or that it SCI-iously 

rcstncts cntry and cxit from thc Industry. Ignonng tcchnologlcal chanuc. thls suggcsts that 

dcregulatlon rnlsht not affect the proftts ofcxisting insurcrs vcry much. Dcrcgulation, howcvcr. 

would give Insurers the freedom to dcvclop new market segments and rate rclativitlcs and ta 

rcspond qutckly to extcrnal shocks. Tcchnologcs thut pcnntt this ~111 hccc>rnc much morc 

profitahlc. Insul~ers with thr capital to dcvclop and lmplcmcnt ncw pncing capahillties will 

cspenence new competitive advnntagcs. Insurcrs who do not rcspond qu]ckIy may find that 

tmdltional sources of compelltlvc advantage. such as branch offlccs. agent networks. and 

rclationships with rcgulutors. at-c no longcr profitablc. One piecc of cvidcncc sugcstint, that 

thcsc changes may be coming: in thc last 26 months, Progrcssive Insurancc rcduccd Its rates in 

Texas, a state allowing flcxiblc rating. un scven scparate occaslons (PR Newswire. May 14. 

1998) Uy contrast. in Illinois. the state with perhaps the mo~t pricing frccdom, Statc Farm. 

AlIstare. and Nationwide chan@ thcir rntcs only f~vc or SIY tlmcs 111 thc past scvcn ycars. 

hctuartes need to prepare for thcse changes. 
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