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PARAMETERIZING INTEREST RATE MODELS

ABSTRACT

Actuarics arc now being called upon 10 incorporate interest rate models in a varicty of
applications. including dynamic financial analysis (DFA). ratcmaking, and valuation. Although
therc arc many articles and texts on interest rate modcels. most of these presume an understanding
of financial tcrminology and mathematical techniques that makes it difficult to begin to lcarn this
material. This paper provides an overvicw, at a level aimed at actuarics, of some common
interest rate models used by financial economists. The purpose of this paper 1s to explain the
basics of interest rate modeling by demonstrating the different models both graphically and
cmpirically. and by showing how changing the various model parameters affccts the results.
Scveral of the more popular interest rate models are simulated, and the results arc compared with

historical interest rate movements.



Introduction

The volatility of interest rates has become an important feature of the modern financial
cnvironment. Changes i interest rates can impact the way 1in which companics compete and can
cven impact the ultimate survival of the firm. Financial intermediarics. such as banks and
msurance companics, may be cspecially exposed to interest rate fluctuations because both their
asscts and habiliues are corrclated with mterest rate movements.  Mismatches of interest rate
scnsitivitics (or durations) of asscts and habilitics can have a magnificd cffect on surplus. A
popular cxample of the potential vulnerability of financial intcrmedianics is based on the
experience of the savings and loan industry in the 1980s.  Rapidly increasing interest rates
quickly turned profits into bitlions of dollars of losscs and numcrous insolvencies. The assets of
S&Ls were prnimarily long-term, fixed-raic mortgages. their Labilitics were mostly short-lerm
demand deposits. When the interest rates paid on thosc short-term deposits increased. the normal
differential between the interest rate they were receiving on their asscts and that which they were
paying on their liabilitics disappeared or cven reversed.  Given such potential effects of interest
rate volatihity, it has become 1mportant to develop models of nterest rate changes so that risk
management tools can be used to insulate the firm from (inancial disaster.

Traditionally. insurance companics have not incorporated interest rate models nto the
product development and pricing processes  Pricing actuarics typically used “"conservative.”
fixed interest rates when developing products. By crediting policyholders with a low interest rate.
or ignoring investnent income when sciting propenty -liability mnsurance rates, insurcers had some
assurance that they could ulumately carn the assumed rate of return used in pricing. Aoy excess
nterest carmings scrved as a cushion to protect surplus against adverse expenience, as well as
being a source of insurcr profits.

The assumption of fixed interest rales was an acceptable practice during periods when
interest rates were low and relatively stable. In fact, such an environment existed in the U.S. mio

the 1970s.  The fixed interest ratc assumption uscd by most insurers scemed 1nnocuous.



Howesver, in 1979, the U S. Federal Reserve altered its policy from one that targeted interest rates
1o a policy that now targets inflation via the money supply. As a result, interest rates became
significantly morc volatile. Durning the transition of the carly 1980s, intcrest rates spiked upward
to unprecedented levels. It was clear that the interest rate environment had shifted dramatically

The change in the Fed policy affecied insurers in several ways.  First, the underlying
value of nsurance products changed duc to the change in intcrest rate volatility. Insurance
products typically include embedded options that give specific rights to policyholder and, 1n some
cases, to the insurer. An example of these oplions is the right to renew the policy on terms set at
the beginning of the coverage period. The valuc of these embedded options is highly sensitive to
the underlying interest rate assumption and, more importantly, to the volatlity of future nterest
rates.  Insurers that used a fixed interest rate assumption ignored the interest-sensitive option
values in their policics

It has long been recogmized that life insurers are exposed to interest rate nisk. The life
msurance industry experienced heavy disintermediation when interest rates increased in the
1980s. Before the rapid increasc in ratcs, life insurers belicved that high interest rate scenarios
were in their favor because they implicd additional income  However, they failed to understand
the risks in their Habilitics. The pohicy Joan feature of ordinary life insurance policies capped the
interest rate that could be charged to the policyholder.  Once interest rates exceeded that cap,
policyholders were able to borrow at the policy loan rate, and then turn around and invest the
procceds at higher vields. The result was an outflow of cash from the life insurance industry that
causcd many insurers to sell bonds at depressed prices duc to the high vield environment,

It is also becoming evident that property -liability insurers arc exposed 10 mierest rate nsk
on both sides of the balance shect. Fixed income asscts of property-liabilily insurcrs have the
samc cxposure to interest rate risk that life insurer assets have, with market values declining as
interest rates increase. On the other hand. the habilities of propertyv-liability insurers are not fixed

values.  Since inflation is correlated with interest rates, and future claim payments on loss




reserves will increase with inflation, the statutory valucs of liabilitics will tend to increase as
mterest rates incrcasc. Thus, an increase in interest rates Icads 1o a decline in assct valuc and an
increase in the value of habilities, creating a magnified effect on the surplus of property-liability
insurers.

In most DFA models for property-liability insurers, interest rates arc the driving factor in
the model. affecting investment income, loss scverity, asset returns, and target underwriting profit
margins (scc, for cxample, D"Arcy, Gorvett, et al, 1997 and 1998) DFA modcls are being used
for analyzing insurer solvency, in valuing insurers in mergers and acquisitions, and as a business
planning 1ool. The results from DFA applications are heavily dependent upon the particular
interest rate model used, as well as the parameters chosen for the models.

These examples help illustrate how critical the underlying interest rate assumption is to
the evaluation of insurance company asscts and habilitics. Insurers must incorporate the ncw
interest rate paradigm into their pricing and assct/liability management (ALM) processcs by using
assumptions that reflect the stochastic nature of interest rates. Fortunately, within the field of
finance. extensive cffort has been devoted to developing stochastic interest rate models.

Financial researchers have long been concerned with the dynamics of interest rates
Models have been formulated using two approaches: (1) a gencral cquilibrium framework, where
interest rate changes are derived from cconomic agents who maximize expected utility; and (2)
the no-arbitrage approach, which assumes that financial markets have no arbitrage opportunitics.
Examples of the general cquilibrium approach include the models of Vasicek (1977). Dothan
(197R), Cox, Ingersoll, and Ross (CIR) (1985), Brennan and Schwartz (1979) and Longstaff and
Schwartz (1992). Two models bascd on arbitrage arguments are Ho and Lee (1986) and Heath,
Jarrow, and Morton (HIM) (1992).

The choice of interest rate model 15 not a trivial decision. The form of the model used in
the pricing or ALM process depends on the characteristics of the insurance products being

reviewed.  Choosing a model is always a tradeoff between perfectly describing the actual interest



rate process and having a tractable model that can be used to valuc a variety of financial
instruments. One consideration n sclecting an interest rate assumption 1s to compare modeled
prices of financial asscts with market prices, 1f a market cxists. When using a modcl for a
specific application, one should comparc market prices of assets that arc similar in terms of
intercst rate sensitivity. Another consideration is choosing which intcrest rate to model. The spot
ratc is today's intercst ratc for a specific maturity. A fornward ratc is an interest rate that is
applicable to futurc periods'. Afier deciding on which intcrest rates to model, onc must
determine how many paramcters to include. Using more parameters obviously increases the
complexity of a modcl, so onc must consider whether the added complexity yields sufficient
bencfits. Finally, choosing the values of the paramecters in an interest rate model can be the most
important, as well as the most challenging, factor in tmplementation

This paper aims to illustratc how various models operate and to show how well the
models fit historical data. Through descriptions and illustrations of the models. it is hoped that
this paper will increase the comfort level of casualty actuarics with these new tools and encourage
them to begin to apply them in pricing and asset/hability management functions.

The cstimates uscd in this presentation arc based on previous work in the arca.  Chan,
Karoly1i, Longstaff, and Sanders (1992) (hercafter CKLS), empirically cstimatc and comparc
several popular intcrest rate processes used in the literature. Their most important finding is that
the interest rate volatility is sensitive to the Ievel of the intcrest rate.  Also. Amin and Morton
(1994) estimate paramcters for six forms of the HIM model. They find that two-parameter

models fit market price data better, but that the resulting estimates arc less stable.

! Example: The expected forward rate from vear one to year two can be implied from the current spot rates
bascd on the following formula: (1+1,)(1+) = (1+,)*, where [is the forward rate and 1, is the 1-vear spot
rate. If the one-year spot rate is 3% and the two-year spot rate is 4% (expressed as an annual rate), this
implies that the forward rate is 1.04°/1.03 - 1 =501%



Introduction to Notation

The various interest ratc models will be presented here in the mathemaucs of continuous
ume.  The finance lierature is based on continuous tume because funcuions of continuous time
processes (¢ g.. options that arc dependent on the interest rate) have desirable features including
continuity and differennabihn . This allows many of (hese functions 1o have closed form
solutions without the need for numenical procedurcs  The mathemaucs behind discrete time
processes 1s not always as clegant. Later m this paper. we discuss how to translate the continuous
time processes into discrete time for use i insurance appheations (see the “Simulations™ scetion)

The mterest rate models that are presenmed 1o ilus paper are either models of the short-
term rate or the forward rate. The short-term rate (also called the short rate or instantancous ratc)
1s the (annualized) rate of return expected over the next mstant. For example. the return (r) over

the next nstant (0 on an uaual wealth level (B9 cams
W = riVdr

The ume 1 prices of bonds () that pay $1 at ume 1 are determined by expeclations of mvestors

regarding the evolution of the short rate from wme ¢ unul maturnty

Par)y=1~ cxp(— ]r(u)duj

This formula shows that the price of a bond 15 simply the discounted value over every instant
from tume 7 unul matunty at I Instcad of modeling mterest rates explicitls, many financial
cconomists {¢ g. Vasiceh (1977). Dothan (1978), Cox-Ingersoll-Ross (1983) and Brennan-
Schwantz (1979)) model the changes in the short-term rate using the following gencric, stochastc

form

dr, = alr, Nt + o (r,.0dB,



To understand the changes in interest rates, consider individually the two terms on the right-hand
sidc of the cquation. The first term represents the predictable, deterministic portion of changes in
the interest rate  Thus, afr,t) is the expected change in the short-term rate and is called the
instantancous drift. The sccond term represents the uncertainty in interest rate changes; B,
represents a standard Brownian motion so that df, 1s cssentially a random draw from the standard
normal distribution, which is then scaled by the magnitude afr,i). The second term in the
stochastic cquation thus denotes the volatility of interest rate changes. Most interest rate models
begin with this form but differ in their specifications of the terms afr,.t) and o(r,t).

Instcad of modeling the shornt-tcrm rate, other authors (Ho-Lee (1986) and Heath-Jarrow-
Morton (1992)) usc a process for forward rates. The instantaneous forward rate (f) represents the
interest rate available now for an investment to bec made at a future time. It is implicitly defined
by a difference in bond prices. which reflects the expected instantaneous interest rate 7-f periods

in the future
P T +dn) e
— = =exp(—f {1, T)d!
POT) p(—f {1, T)ar)

By recarranging and intcgrating, we can obtain thc bond price in terms of the existing

instantaneous forward rates:

P, T)= exp[— }f(l,u)a’u J

One can interpret this formula in the same manner as in footnote 1. We arc “constructing” a spot
rate which applies from time ¢ to 7' by including consccutive instantaneous forward rates. Ho-Lee

and HIM model the entire term structure by using a process for forward rates of all maturitics:

df(t,Ty = a(t,T, £ (6, T))dt + (0, T, f(1,1))dB,



Here, the terms a(t, T./{t,T)) and o(1,7./1, 7)) arc thc drift and the volatility, respectively, of the
forward ratc and arc analogous to the short-rate drift and volaulity discussed above.

Having defined the notation and gencral stochastic process used to model interest rates,
we tumn to describing desirable features of an interest rate model and then present alternative

modcls that have been used in the literature.

Characteristics of Interest Rate Movements

Before presenting the interest rate modcls, we discuss some general features of interest rate

movcements. Our attempt is 1o provide some intuitive form for an intercst rate model.

1. The volatulity of yields at different maturitics varies. In particular, Jong-term rates do not
vary as much as shoricr term rates

2. Intcrest ratcs arc mean-reverting.  Interest rate increases tend to be followed by rate
dccreases, conversely. when rates drop, they tend 1o be followed by ratc increases.

3. Rates of different maturities are positively corrclatcd. Rates for maturities that are closer
logether have higher corrclations than maturitics that are farther apart.

4. Interest rates should not be allowed to become negative.

5. Based on the results reported in CKLS, the volatility of intcrest rates should be proportional
to the level of the rate.

No known model captures all of the features mentioned above. Therefore, one of the first
steps in choosing an intcrest rate modcl is to understand which of these characteristics arc
important based on the use of the model. Onc should resist the urge to rank models based on the
number of listed conditions that arc satisfted  Instead. it is imperative that thc modeler

understand the limitations of alternative models and their impact on the desirced application.
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Equilibrium vs. Arbitrage

The first distinction of intcrest ratc models is between those that are derived from
cquilibrium models of the cconomy, and thosc that arc based on arbitrage argumecnts.
Equilibrium interest rate modcls arc based on the assumption that bond prices, and yiclds, are
determined by the market’s assessment of the cvolution of the short-term interest rate. In the
models discussed here, the short rate is assumed 1o follow a diffusion (a continuous time
stochastic) proccss. The gencral form for these models 1s described in terms of changes in the

short rate, as follows

dr, =x(0 —r)dr + ar] dB,

r, = current level of the instantancous rate
x = spced of the mean reversion
8 = rate to which the short rate reverts
o = volatility of the short rate
y = proportional conditional volaulity exponent

B, = standard Brownian motion
The first important featurc of this tvpe of model is mcan reversion of the short-term ratc. This
featurc 1s appealing since it presumes that when rates bccome very high or very low, they will
tend to revert to "normal” levels. The specd of reversion is determined by the parameter x. This
parameter ultimately affects the shape of the vield curve. If x 1s high, the yicld curve quickly
trends toward the long-run vield rate 8. If x is low, the vicld curve stowly trends toward 8. (Sce
Figure 1 versus Figure 2)

The difference between the Vasicek, CIR, and Dothan models (sce below) primarily
revolves around the parameter ¥ (the cxponent). Vasicck assumcs it to be 0, CIR assumes 1t to be
0.5, and Dothan assumes it to be 1.0. The basic question distinguishing the modcls is whether the
conditional volatility of changes in interest rates is proportional 1o the level of the rate. This

subscquently determines the parameter y. CKLS (1992) have provided empirical estimates of the

cxponent. Their main finding is that the conditional volatility of interest rates 1s significantly
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related to the level of the short rate. In fact, their esumate of y 1s around 1.5, Although their
work has been the subject of some criticism duc to thewr estimation period. it nonctheless
illusirates the stuong relationship between the level of interest rates and volathity.  Throughout
most periods. ¥ has been estmated between 0.5 and 1 0 (Phoa 1997). The exponcent of individual
maodels will be discussed more fully when we look at the individual models in the next section

Equilibrium models are cnnicized because they do not it the existing term structure.
Although parameters can be chosen to mimmize errors from today's vield curve. the fit will not be
perfect Whereas this is a valid criticism for models being used 1o value financial asscts for
trading purposes. 1t tmay not be a problem when the models arc being used for long-term Nnancial
modcling, such as in DFA

Arbrrage-frec models take the entire vield curve as given and model the dynamics of the
cnure curve  The only constramt of such an approach is that vield curve movements do not
preduce any arbitrage opportunttics Heath, Jarrow. Morton (1992, hereafter HIM) genceralive the
arbutrage-free framework by modeling the forward rates derived from the current yicld cunve.
The continuous time model of Ho and Lee (1986, hereafter Ho-Lee) is the simplest casc of the
HIM framcwork

In the next section we look at scveral of the popular interest rate models used today.

The Vasicek Model
Vasicek lormulates the interest rate model in terms of changes in the shon-term (or

mstantancous) nlerest rate”

dr, = k(0 —r)dt + ouB,

The price of a bond, P¢.7), is then dependent on the expected path of future interest rates.

Vasicek shows that bond prices have the following form:

I’([I) - A([‘II-)(’»HLHH_T)



where A¢,T) and B¢, T) are functions of only x. 0, and 0 and indcpendent of the current spot rate,

r(t). Bond yiclds. Rft, 1) arc then related 1o prices by:

P([ T) - e—R(r,T){T—v)

These two cquations determine the entire term structure of interest rates.  Since bond prices and
yiclds have closed-form solutions, the Vasicck modcl is very easy to implement in practice, with
no need for complicated simulation techniques.  Also, there arc closed form solutions for certain
intcrest rate-dependent claims such as options.

The Vasicek model assumces that (absolute) changes in the interest rate are normally
distributed. duc to the inclusion of the Wicner process. From the normality assumption it follows
that bond prices arc lognormally distributed. Onc wcakness of the model is that normahty in
intcrest ratc changes results in a (small) positive probability of negative interest rates °.

Another feature of the Vasicek model is that all bond prices arce related to the same factor,
the instantancous interest rate.  Consequently, all bond pricc movements arc derived from
movements in the same factor. This implies that all bond prices are perfectly corrclated. Thus,
another shortcoming of the Vasicck model is that the dynamics of the term structure are severely
limited.

Note that. from the gencral case above, the Vasicek model assumes y=0 The conditional
volatlity of interest rate changes is constant and cqual 1o 6. The results of CKLS (1992)
illustratc that the assumption of constant volatility is questionable. The link between interest ratc
volaulity and the level of the ratc implies that the Vasiceck model may provide unrcalistic intcrest
ratc forccasts. When rates arc low, volatility is overstated, and when interest rates are high,

volatility is understated.

? It may be argued that this is not necessarily an implausible scenarto. There have been some periods in the
U 8. that real interest rates have been negative.



In summary, the Vasicek model is very tractable and provides convenicent closed-form
solutions for many interest rate-dependent instruments. However, the model has some serious
drawbacks 1ncluding restricted dynamics of the term structure and constant conditional volatility.

The Vasicck model is illustrated in Figures 1 through 3. Each cxhibit illustrates the vield
curves based on three different realizations of the modeled instantaneous rate.  Figure 1 is based
on parameter cstimates from CKLS. However, it should be pointed out that, in their tests, they
reject the model of Vasicek (1977) because of its homoskedastic feature. Note that when the
instantancous yicld is high, the curve is inverted, and when the shon rate is low, the curve is
normal. In all cases, the long-tcrm yiclds tend toward the parameter 0, the long-run average. In
Figure 2, thc mcan reversion paramcter (k) has been increased. Note that longer yiclds revert
back to the long-run average morc quickly. In Figure 3, the long-run average is decrcascd and all

yvield curves tend to the lower long-run curve.

The Cox, Ingersoll, Ross Model

Another model of interest rates was formulated by Cox, Ingersoll, and Ross (1985) (CIR)

The model is as follows:
dr, = k(@ ~r,)dt + o [r,dB,

The CIR model is also known as the "square-root” process because the volatility is related to the
squarc root of the current level of the interest rate.  Unlike the Vasiceck model, the CIR model
relates the conditional volatility to the level of the short ratc. A second improvemient of the CIR
model over the Vasicck model is that interest rates cannot be negative *. Although CKLS find

that interest rate volatility is more sensitive to the level of interest rates than proposed by the CIR

* Note that negalive interest rates arc ruled out in the continuous time casc. ]lowever, it is possible that
interest rates become negative if a discrete process is used in simulations.



specification, other rescaschers defend the model by commenting on the cstimation approaches
employed by CKLS (see Eom, 1994).

The CIR modcl can also be uscd to detcrmine bond prices analytically. CIR show that
bond prices arc detecrmined by the following (the "hats" simply indicate that the cquations for

A¢t.T) and B, T) arc different under CIR vs. the Vasicch modcl).

PO.TY = A T)e 0%

Thus, the cquation above can be used to derive the yield curve for the CIR model. Because the
driving factor of bond prices and yiclds is still the short-term rate, the CIR specification again
assumes perfect correlation among all bonds and thereforc restricts term structure dynamics

The resulting yield curves of the CIR model arc very similar to the Vasicek curves
presented in Figures 1 through 3. The difference betwceen the models relate more to the dynamics

of vicld curve fluctuations than to the shapc of a particular curve given the instantancous rale.

The Dothan Model

The model of Dothan (1978) increases the volatility exponent to 1.0:

ar, = or,dB,

Becausc of the higher exponent, the model relates the volatility of interest rate movements more
strongly to the level of interest rates. Courtadon (1982) extends Dothan's model to include mean
reversion in the drift. Dothan's model is more difficult to implement in practice because there are
no closcd form, analytic solutions as in the Vasicek and CIR models. The user must resort to
simulation to implement the model. Given the lack of closcd form solutions and the inability of
general equiibrivm models to match the cxisting yield curve, the Dothan model has not been a

popular model for use in cvaluating intcrest rate securities.



Muiti- Fuctor Models

To alleviate the problem of correlated bond prices. a model can incorporate two or more
stochastic factors. In the two-factor moedel as described i Brennan and Schwartz (1979, 1982).
one factor 1s used to represent the short-tenm rate while the other factor 1s the rate 0 on a

perpetutty (e . the long-term rate).

dr, = (B = r )t = o, r B,
dO = o ik,
dB\UB. = ;i
o, ax - volanlits of the short- and long-rate processes. respectively
dB;. (B = standard Brownian motions
p — correlation between short- and long-rale processes
Another popular two-factor model 1s presented i Longstalf and Schwartz (1992), where the

sccond lactor 1s stochastic volatility of the short-term rate. By cxplicitly modeling these factors

separately . the potenual range ol yicld curve dvnamics 1s enhanced.

Heath, Jarrow, Morton Framework

The restncnons on vield cunve movements of the one-factor modcls make them less
cxacl. which 1 some cascs. such as invesuncent banking. represents a serious drawback. The
main hinutation 1s that viclds of alt matunucs are perfectly corrclated. However. history shows
that different pants ol the yield cunve can shift in different directions and this can wreak havoc on
an insurer’s surplus  The unerdependence across all maturitics 1s most critical for insurers where
asscts and liabrhties have uncqual sensiuvitics at different points on the yicld curve (sce Reitano,
1990 and 1992)

Litterman and Scheinkman (1991) show that there are two additional factors. aside from
parallel shifts m the vield curve, that have affected bond returns.  The first factor. called
steepening. reflects the fact that short-term rates may move 1 the opposite direction of long-term

rates.  The Brennan and Schwartz (1979) model above addresses the potenual for a steepening
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term structure. The sccond factor affecting bond returns in Litterman and Scheinkman (1991) is a
curvature component.  This factor addresses the potential for intermediate yields to be morc or
Iess volatile than extreine maturitics

As mentioned above, a criticism of cquilibrium models is that they are not arbitrage-{ree
in the sensc that the yield curves produced by the models do not match the existing term structure.
This makes these modcls unsatisfactory for pricing option-cmbedded securities.  If the model
cannot accuratcly portray the existtng term structure, there is little confidence that it will
accuralely imitate the dynamics of the curve (Hull, 1993).

Heath, Jarrow, and Mornion (1992) usc the no-arbitrage argument to develop the process

for the forward raie implicd by the relationship of bond prices

AU, 1) = e, T, 0, T+ o (T, (. T)B,

/{1.7T) = instantancous forward ratc at time f with maturity 7°
w771, 7))} = drift of the forward ratc process
o, T/t 7)) = volatility of the forward rate process
B, = standard Brownian motion
HIM find that by imposing the no-arbitrage argument to term structure movements, the drifl of
the forward rate process can be stated in terms of volatilitics. Thus, the structure of the volatility
becomes the most important clement of the HIM model.  Different functional forms of the

volatility rcveal an entire family of HIM modcls. In particular, a simple functional form is of the

following type:

o(t,T, f(1t.T)=0,f0.T)

Amin and Morton (1994) look at a more general form and cstimate the paramcters of several

specifications.



Historical Data

The choice of interest rate model can have an cnormous umpact on the resulting intcrest
ratc risk of any financial instrument. Although determining a perfect model of interest rates 15
bevond the scope of this paper. understanding the impact of the choice of interest rate model will
assist insurers in analyzing the inherent risks of the cmbedded options in their liabilities and in
choosing the appropriate model for their analyses. Any individual who wishes to usc a model 10
simulate interest ratc movements must first get a feel for historical changes. This scction
illustrates the historical movements in Treasury yields over the last 45 ycars. For ease of
presentation, the focus will be on four critical points on the yicld curve: (1) the onc-year rate, (2)
the three-year rate, (3) the five-year rate, and (4) the ten-year rate.  Historical rates will then be
comparcd with the theoretical models at these pomts.  The data is taken from the St. Louis
Federal Reserve web site.

The time scrics of the four yiclds is illustrated in Figure 4. A casual inspection of
Figure 4 shows that intcrest ratcs increascd from 1953 through 1979. Then, interest rates spiked
in the early 1980s during the transition of the Federal Reserve policy mentioned above.  Finally,
since the peak in 1981, yiclds have cxhibited a gencral downward trend.

Table 1 presents some summary statistics on the levels of yiclds over the 45 ycar period.
Thesc statistics help illustrate several features of historical interest rates. The first result relates to
the shape of the yield curve on any particular date. The yield curve is a graphical representation
of the relationship of the vield on bonds and their maturitics. Figures 5 through 7 show three
yicld curves that have been observed historically.  Typically, long-term yiclds arc higher than
short-term yields. When this occurs, the yield curve is upward sloping. The upward sloping
yield curve is common enough that it 1s characterized as a "normal” curve as depicted in Figure 5
Occasionally, yield curves become inverted — short-term rates cxceed long-term rates (sce Figure
6). Inverted curves arc typically observed in periods of high interest rates and the yicld inversion

is usually short-lived. Finally, humped yicld curves are characterized by increasing yiclds at the



short end of the curve. Eventually, as the term to maturity increases more, the yiclds begin to fall
slightly (sce Figure 7). Many humped vicld curves occur during the transition from an inverted
vield curve to a normal curve.

In Table I, the yicld curve is categorized according lo its shape: normal, inverted,
humped, or other. Thesc classifications arc made strictly on the four yicld points, [ year, 3 ycar,
5 year and 10 year. The precisc definition of yicld curve shape, as it is used here, ts based on
vicld curve slope. The slope is the difference between two adjacent yiclds. A normal curve has
positive slope everywhere, while an inverted curve has ncgative slope everywhere. A humped
yicld curve initially has positive slope and cventually has ncgative slope. [f the yield curve does
not fit into onc of these profiles. it is classificd as "other.” Note that the vicld cunve
classifications arc based on end-of-thc-month vields, so that a monithly observation is based on
only onec moment in time. If the vicld curve 1s normal at that time even though 1t was inveried at
all other times during the month, the curve is nonctheless classified as normal.

It should be noted that the magnitude of the slope docs not impact our classification of
yicld curve slope. In particular. we do not use a "flat” vield classification. A flat yield curve
exists if the viclds on bonds of all maturitics arc cqual. At no time in the 45 year history is the
vicld curve cxactly flat, However, differences in yields of various maturitics may be ncgligible.
Rather than define the term negligible, the approach used here amounts to distributing almost-flat
yield curves into the other categorics.

Several statistics in Table 1 illusirate how often the normal yicld curve occurs. First, the
yicld curve has been upward sloping over two-thirds of the time. Inversions occurred in only
11 6% of the months and a humped curve occurred 13.4% of the time.  In addition to the
frequencics of the various shapes, other statistical information pomnts to the tendency of rates to
be increasing with maturity. The mean of cach of the four vields increases with maturity, and the
yicld percentiles scem 10 imply that the typical shape of the yield curve 1s normal, except when

viclds are high.



The next group of results illustrates the relationship of yvield volatlity and maturity.
Long-term rates have lower standard deviations. lower skewness, a smaller range of outcomes,
and higher autocorrelations than shon rates  Thus, our carlier conjecture that long-term yiclds are
less volatle than short-term rates scems to have staustical support

Two other results arc worth poinung out  First, short-term rates appear more positively
skewed than longer vields.  This could mcean that changes v the long-term ratc arc more
symmetric. or 1t could indicate that large. posiive changes in the nicrest rates are more common
in the short-term rate The second point is that correlations between viclds decrease as the rates
arc further apan

Instcad of looking at yvield levels. Figures 8 through 11 look at changes in interest rates.
Figure 8 looks at the monthly tune scrics of absolute changes in the onc-year vield rate. The Fed
policy transition period stands out as an extremely volatile period for short-term rates. To gain
further perspective on the transition penod. Frgure 9 looks at these changes on a relative basis.
The extreme volatuhity of the carly 19805 loses some of its distinction when viewed on a relative
basis. The implication of Figures 8 and 9 provide some intuittve support for the CKLS result that
interest rate volauhty is related to the level of the interest rate. When interest rates were high. the
percemtage changes in viclds were about the same as the percentage changes when rates were low.
Figures 10 and 11 present a similar story for the [0-yvear vield

To get a feel for the volaulity of interest rate movements, we computed the standard
deviauons of the one-vear and ten-year changes in vield.  For the one-year vield, the standard
deviation of absolute changes in the monthlv raie over the entire period is 0.47 and the standard
deviation of relative changes is 0.07. As expected, the volatility of changes in the ten-year vicld
is significantly less. The standard deviation of absolute changes in the monthly ten-year vicld

rat¢ over the entire peniod 1s 0.29 and of percentage changes, the standard deviation is 0.03,



Simulations

The interest tate maodels presented in this paper have been introduced in a continuous
time framework. Although some continuous time models may lcad to closed form solutions for
simple cash flows such as non-callable bonds, insurance habilitics are more complicated. To use
the model’s dynamics in tnsurance applications, such as in DFA. one nwst usc discrete time
intervals for the interest rate process. This section discusses how to translate the continuous time
process into a discrete process and then illustrates the interest rate models presented in this paper
through simulations.

As an cxample of discretization, consider the Vasicek model.  Other models follow

directly from the Vasicek results. Recall the Vasicck model:

dr, = k(0 —r,)dr + ouB,

By using short time inicrvals, the discrete proccss approximates the continuous process. Morc
precisc cstimates will be obtained through the use of short time intervals (hours or minutes)
which is most appropriate for trading activitics. However, with insurance applications, long-term
modeling is required and the use of longer intervals (such as monthly) is morc appropriate.

All models presented here include a standard Brownian motion. Random changes in the
Brownian moton are bascd on draws from the standard normal distribution scaled by the time
interval. There arc two popular approaches for gencrating standard normal distribution random
vanables. The first method is to take the average of twelve uniform random variables on the
interval [0.1]. The sccond mcethod is to translate two uniform random variables (), 1#;) according

to the following:

£ = \/—_ZIn(_zﬁ ) x cos(2mi,)

The monthly interest rate process then becomes (e is the standard normal random variable):

Ar, :,.‘(49—;-,)><L+(fz:1 L
12 1
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We usc this discrete approach to perform monthly simulations of several intcrest rate
models. Our goal 1s to get a feel for how the modcels operate and to compare the resulting
simulated yield distributions with the historical distribution. The Vasicek and CIR models are the
most straightforward to simulate because yiclds have closed form solutions that depend on only
the short ratc. Also, the simulations are stable duc to the mean reversion dnft term. We simulate

the yicld curve for 10.000 months using the parameter cstimates of CKLS:

Parameter Vasicek CIR
Mean reversion strength ()} 0.1779 02339 |
_Long-tcrmrate (8)_ | _0.0866 00808
Volatility (0) 0.0200 0.0854

The results of the Vasicck simulations arc shown in Table 2. The shape of the yield
curve is more frequently inverted than in the historical experience. In fact, the statistics show that
the “average™ vield curve is actually slightly inverted. but closc to being flat. An inspection of
the percentile statistics reveals that at low percentiles (when the onc-year yicld is low), the yicld
curve appears to be upward sloping.  As the short rale increases. the curve is inverted.  Another
note from the shape frequencics illustrates the restrictions of the Vasicek model on the shape of
the yield curve. The yield curve is normal, inverted, or humped. No other shape 1s scen under
the Vasicek model. The standard deviation and percentile statistics show that the long yields arc
less volatile n the Vasicek model. Al yiclds arc perfectly correlated. as expected based on the
fact that all yiclds are derived from the same instanmtancous (short) rate.  As explained in the
presentation of the model, intcrest rates can become negative with the Vasicek model. In fact, the
first percentle is negative,

Compared to the historical rates, the Vasicck model is negatively skewed and less
peaked. This can be scen in the skewncess and excess kurtosis statistics as well as by looking at
the distributions of the onc-year and ten-ycar viclds. The historical distributions are shown in

Figures 12 and 13 while the Vasicek simulation distributions are shown in Figurcs 14 and 15.
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The CIR simulation results are presented in Table 3. and the distributions of onc- and ten-
year vields arc illustrated in Figures 16 and 17. As in the Vasicek case, the CIR model 1s more
{requently inverted than in historical data (47.6% inversions in the CIR simulation vs. 11.6%
historically). The average yicld curve is inverted but is close to being flat. The percentiles reveal
a pattern similar to the Vasicek results,. When the short rate is low. the curve appears normal. As
the one-year yield increases, the vield curve inverts. One dilference [rom the Vasicek results is
that the median yield curve is almost perfeetly flat. The yield curve shape is never other than
normal. inverted, or humped

The volatility of the ten-year yield is lower than the onc-year yicld volatility as measured
by the standard deviation and interquartile range. Also, note that mterest rates in the CIR model
rematn positive.  The corrclations among yields of all maturitics arc all 1.0. Finally, there 1s
positive skewness for all rates, and the value is closer to the historical statistics than the Vasicek
model. The distribution of longer maturitics appears more peaked rclative to historical numbers
(scc the excess kurtosis numbers and Figures 13 vs. 17).

Given the populanty of arbitrage free models, we present some short simulations of 100
months lo scc how these models function. Because the Ho-Lee model is the constanl volatility
case of the HIM model, we present a simulation on the more general HJIM framework. Recall
that the drift m an HIM framework is a function of the velatlitics. Thus, unlike the Vasicek and
CIR models, the drift is positive and the interest rate is not mcan-reverting.  Using long
simulations 10 generate smooth distributions of yiclds is not possible because the curve will (on
average) continue 10 increasc. Rates quickly begin to drift to “unrealistic™ levels. The arbitrage-
frecc models arc usced to assurc that the interest rate process docs not penerate arbitrage
opportunitics in the short term. As the interest rates are obscrved, the maodel is recalibrated and
another simulation is performed. Thus, the simulation performed here uses only 100 months. In
that simulation, the ending yield curve is near 13%, demonstrating the drift in these types of

models
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Another difficulty when comparmg HIM models to others 1s i calculating the shape
statistics given the drifting problem. The shape of the curve becomes too dependent on the inual
curve given the short stmulation period 1 the cunve starts out as normal. most of the subsequent
curves remain normal. Sumlarly. just the opposite occurs when the vield curve 1s 1nlliall_\'_
mverted. In the simulations presented. the imtial curve was based on year-end 1998 yiclds

Results of the HIM simulatton are presented m Table 4 and tn Figurcs 18 and 19. The
important feature of these results is that viclds of dillerent maturiucs are not drniven by the same
tactor  Therefore. stausuics such as skewness. excess hurtosis. and correlations are not exactly the
same for all viclds (although they are close)  Contrast these dilferences with the results of

Vasiceh and CIR models. where these statistics are identical for all matuntics.

Cuveats

The results iflustrated here use the cnure historical period of April 1933 10 July 1998 as a
benchmark for comparing altiernatine models This choice was based oun obtamning a larger
amount of data {compared with other studics) 1o generate smoother vicld distributions, as well as
o provide some perspective on lerest rates over longer periods. However. the change in Fed
policy w1979 presents an imponant question repgarding whether comparisons among inlerest rate
models are robust (o the Fed's shift in focus. To look at these effects. a similar analysis could be
performed across different subpeniods  One possible breakdown would look at results under the
o different Federal Reserve policies. Yield statistics can be generated under the "interest rate
target policy” and also under the "inflation target policy.”  Another subperiod analysis could
attempt to asolate the transiion perntod and compare the pre- and post-transition periods 1o
determune 1f the new Fed policy has affected the underlving interest rate dynamics. It should be
pomnted out that other faclors may be contributing to the dynamics of the curve across any
subperiod analysis  For example, the post-transition economy has been very sirong with only one

short recessionary peniod. Using only post-iransition statistics may not compleicly embody the
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true potenual for 1nterest ratc movements.  The main point is that when using yicld curve
slalisics to parameterize an interest ratc model, onc should be aware of any underlying factors
that may be affecting the dynamics of yiclds and incorporate judgment in choosing specific
models

As mcntioncd above. the parameters used in the simulations were bascd on estimates
reported by CKLS (1992) and Amin and Morton (1994). The CKLS study looks at the period
from Junc 1964 through December 1989, Amm and Morton look at the period from 1987
through 1992.  Esumation over different time periods will more than likely generatc different
paramecters.  Thus, one must kecp in mind the interest rate cnvironment when cstimating
paramcters from past data for usc in future periods. Care should be taken to cnsure that the

potential interest rate dynamics are consisient with the parameter assumptions.

Conclusion

Intcrest rate volatility now requires that actuarics incorporate stochastic intercst rate
assumptions into the pricing, forecasting, and valuation processes. The goal of this paper has
been to provide a simplified introduction to and illustration of these models. The focus has been
on comparing the results of simulations based on a varicty of stochastic intcrest ratec models with
historical interest rate statistics. [t is hoped that this work helps casnalty actuaries begin the

process of incorporating these modeling skills into their actuarial woolkits.
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TABLE 1
Historical Yield Statistics
Entire Period (4/53 - 7/98)

Yield Curve Shape

Normal 68.8%
Inverted 11.6%
Humped 13.4%
Other 6.3%

Yield Statistics

1Yr 3Yr
6.08 6.47
3.01 2.88
097 084
1.10 0.69
Percentiles
1Yr 3Yr
1.07 1.59
2.05 2.52
2.94 3.38
3.81 4.17
5.61 6.20
7.71 8.01
997 1047
12.08 1248
1517 14.69
Correlations
1Yr 3Yr
1.000 0.985
1.000
0.988 0.991
0.967 0.976
0.948 0.963
0.932 0.951
0918 0.940

28

5Yr
6.64
2.84
0.77
0.48

5Yr
1.94
2.72
3.47
4.24
6.44
8.04
10.63
12.59
14.59

5Yr
0.969
0.997
1.000

0.993
0.980
0.970
0960
0.951

10 Yr
6.81
2.81
0.68
0.16

10 Yr
2.38
2.90
3.48
4.25
6.68
8.20
10.78
12.56
14,29

10 Yr
0.944
0.984
0.995
1.000

0.995
0.986
0.979
0.972
0.964
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TABLE 2

Vasicek Simuiation Statistics
(10,000 Simuiations)

Yield Curve Shape

Normal 41.6%
Inverted 54.8%
Humped 3.6%
Other 0.0%

Yield Statistics

1Yr 3Yr 5¥r
8.81 8.75 8.68
3.83 3.24 2.77
-0.16 -0.16 -0.16
-0.19 -0.19 -0.19
Percentiles
1¥r 3Yr 5Yr
-0.38 0.97 2.04
2.33 3.27 4.00
3.69 4.42 4.98
6.26 6.60 6.84
8.94 8.86 8.77

11.62 11.13 10.72
13.60 12.80 12.14
14.69 13.73 12.94
17.22 15.87 14.76

Correlations

1Yr 3Yr 5Yr
1.000 1.000 1.000
1.000 1.000

1.000

0.991 0.991 0.991
0.982 0.982 0.982
0.973 0.973 0.973
0.965 0.965 0.965
0.956 0.956 0.956

10 Yr
8.52
1.95
-0.16
-0.19

10 ¥Yr
3.84
5.22
5.92
7.23
8.59
9.96

10.97

11.53

12.82

10 Yr
1.000
1.000
1.000
1.000

0.991
0.982
0.973
0.965
0.956

Note: Model parameters from CKLS estimates: & = 0.1779, 8 = 0.0866, ¢ = 0.0200
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TABLE 3
CIR Simulation Statistics
(10,000 Simulations)

Yield Curve Shape

Normal 47.7%
Inverted 47.6%
Humped 4.7%
Other 0.0%

Yield Statistics

1Yr 3Yr 5Yr
8.08 8.04 7.98
2.89 2.31 1.88
0.92 0.92 0.92
1.49 1.49 1.49

Percentiles

1Yr 3Yr 5Yr
2.92 3.90 4.62
3.95 473 5.29
4.73 5.35 5.80
6.14 6.48 6.71
7.71 7.73 7.73
9.57 9.23 8.95

11.80 11.01 10.40
13.42 12.31 11.45
17.19 15.33 13.90

Correlations

1Yr 3Yr 5Yr
1.000 1.000 1.000
1.000 1.000

1.000

0.976 0.976 0.976
0.955 0.955 0.955
0.934 0.934 0.934
0.914 0.914 0.914
0.894 0.894 0.894

10 Yr
7.86
1.20
0.92
1.49

10 Yr
5.71
6.14
6.46
7.05
7.70
8.48
9.41
10.09
11.66

10 Yr
1.000
1.000
1.000
1.000

0.976
0.955
0.934
0.914
0.894

Note: Model parameters from CKLS estimates: « = 0.2339, 8 = 0.0808, ¢ = 0.0854
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TABLE 4
HJM Simulation Statistics
(100 Simulations)

Yield Statistics

1Yr 3Yr 5Yr 10 Yr

Mean 7.39 7.51 7.60 7.80

Std Dev 226 2.27 231 2.44

Skewness 0.51 0.53 054 0.54

Excess -0.88 -0.85 -0.85 -0.86

Kurtosis

Percentiles

1Yr 3Yr 5Yr 10 Yr

1% 4.45 4.48 452 4.59

5% 479 4.85 4.90 499

10% 5.00 5.10 513 521

25% 5.25 545 5.53 563

50% 7.48 7.58 765 7.83

75% 8.65 8.75 885 910

90% 11.02 11.16 11.30 11.68
95% 11.67 11.74 11.92 12.38
99% 12.09 12.26 12.44 12.89

Correlations
1Y¥r 3Yr 5Yr 10 Yr
1Yr 1.000 0.999 0.999 0.999
3vYr 1.000 1.000 1.000
5Yr 1.000 1.000
10 Yr 1.000

Auto

0.986 0.986 0.987 0.987
0.969 0.969 0.969 0.972
0.954 0.953 0954 0.957
0.938 0.938 0.939 0.943
0.925 0.923 0.925 0.929

A h W=

Note: Mode! parameters from Amin and Morton: ¢ =0.0485, y =0.5
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FIGURE 1
Vasicek Model Yield Curves
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FIGURE 2
Vasicek Model Yield Curves
CKLS Estimates - Change in Mean Reversion
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FIGURE 3

Vasicek Model Yield Curves
CKLS Parameters - Change in Long-Term Rate

— « — - Short Rate = 4% Short Rate =8%  ----- Short Rate = 12%
15% B ;
10% - — - e — - - — 1
= - e o
2 -
b=l - - -
S% - - S — . _ -
0% — _ — _
0 I 2 3 4 5 6 7 8 9 10
Maturity
Parameters: x =0.1779, 8 =0.0500, ¢ =0.0200



FIGURE 4
Time Series of Yields
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FIGURE 5
Normal Yield Curve
June 19971

1Yr

3Yr

Maturity

5Yr

10Yr



LE

Yield

FIGURE 6
Inverted Yield Curve
August 1973
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FIGURE 7
Humped Yield Curve
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FIGURE 8
Time Series of Monthly Absolute Change in 1 Year Yield
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FIGURE 9
Time Series of Monthly Percentage Change in 1-Year Yields
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FIGURE 10
Time Series of Monthly Absolute Change in 10-Year Yield
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FIGURE 11
Time Series of Monthly Percentage Change in 10-Year Yield (Historical)
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FIGURE 12
Historical 1 Year Yield Distribution
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FIGURE 13
Historical 10 Year Yield Distribution
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FIGURE 14
Vasicek Simulation
1 Year Yield Distribution
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FIGURE 15
Vasicek Simulation
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FIGURE 16
C/R Simulation
1 Year Yield Distribution
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10 Year Yield Distribution
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Abstract

Stochastic scenario generators for assets and liabilities are critical components of a robust DFA
model. Vital to any stochastic scenario generation system is the selection of the underlying
parameters. The process of parameter estimation is second only to model structure in the quest
for generating reasonable results. If the model is simple, we can use standard statistical methods
such as maximum likelihood to estimate parameters. However, for very complex models, we
need to establish criteria for evaluation and find the parameters that are best with respect to those
criteria.

In this paper, we discuss a parameter estimation system called American Re-Insurance
Company’s Constraint Evaluator System. This system allows modelers to define a multitude of
targets and to assign a weight to each target to create a comprehensive objective function. Each
target represents a quality that the model should possess with an assigned level of significance
(weight). The targets are based on historical analysis or on some rational vision for future
relationships. We discuss the analysis involved in setting appropriate targets including the
monitoring of relationships between variables in a multi-period environment.

Our goal is to minimize the deviation between the user-defined targets and the model output.
This is a non-convex optimization problem, which we use a combination of techniques to solve.
Finally, we study the robustness of our parameter estimates as it refates to the number of
scenarios and the observed mode! outputs.
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1. Introduction

Stochastic scenario generators for assets and liabilities are important compenents of a robust DFA
system. These generators will forecast asset and liability distributions over time as part of the
development of income statement and balance sheet projections. These forecasts are developed
as a collection of individual scenarios. Cach scenario represents one possible future, and by
looking at many scenarios, distributions can be calculated at any point in time. Examples of such
systems can be found in Berger and Mulvey (1998), Dempster and Thorlacius (1998), Wilkie
(1986), and Mulvey and Thorlacius (1998).

In developing this scenario-based approach, modeliers try to understand fundamental econamic
and assct market structures, For example. when inflation is increasing, how will the stock and
bond markeis react? By understanding fundamental relationships, more realistic scenarios can be
generated. These relationships can be modeled with mathematical equations, thus grounding the
model in some amount of economic theory. The danger, however, i3 that the resulting scenarios
don’t exhibit characteristics seen in the market historically. For instance, we would not want a
maodel that produces scenarios with negative interest rates.

After the underlying economic relationships are determined and modeled. we control the scenario
output by the sclection of model parameters, called calibrating the model, or calibration. Model
parameters could include mean reversion level for interest rates, volatility for stock returns, and
expected inflation growth. For simple models, standard statistical methods such as maximum
likelihood estimation are appropriate. For complex models, we need to employ more
sophisticated methods to determine the best parameters.

The calibration method described in this paper allows the user to specify characteristics the
scenarios should have, referred 1o as targets. Each target represents a quality that the scenarios
should exhibit, such as a range of bond returns over time, and an accompanying level of
signiticance (weight). The targets can be based on historical analysis or some rational vision of
future relationships. We then utilize an optimization procedure to determine best parameter
settings Lo meet the targets,

This paper focuses on an economic scenario generator and the calibration process employed by
American Re-Insurance Company headquartered in Princeton, NJ. In the next section, we briefly
describe the entire DIFA system, of which the scenario generation is one important piece. Section
3 Tocuses on the economic modeling system, the different types of economic models, and
characteristics of a good model. In Section 4. we discuss how to set targets for the calibration
process. Section 5 presents an example of the calibration process, utilizing software developed
by Lattice Financial. Some final thoughts are in Section 6.

2. A Dynamic Financial Analysis System

American Re-Insurance Company’s Risk Management System (ARMS) is an integrated
compilation of models. The system is applied to determine internal capital allocation for the
Company. The system is also used to assist both Munich Re' and American Re-Insurance
Company clients in evaluating and setting up cfficient re-insurance structures. The structure of
the system is laid out in Figure 1.

' American Re-Insurance Company is a member of the Munich Re Group
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ystem (ARMS) is an integrated
compilation of models. Historical data from financial and economic markets, underwriting decision
processes, and insurance market trends are inputs to the system (left). Output includes balance sheet and
income statements, optimal investment mixes and reinsurance structures.

The Global Economic Model® generates plausible time series outcomes of future economies
based on user specifications and parameter settings. The user specifications are inputs reflecting
the current economic environment and expectations for long-term median trends. The parameter
settings are referred to as calibration parameters and those are set via the Constraint Evaluator
System.

Each of the economic time series scenarios are fed to the Asset Model as well as the Liability
and Re-insurance Model. These two models project different asset and liability classes along
each economic scenario. [t is important to recognize that the economic scenario generator lays
the foundation for the calibration of the liability and asset models. Although the liability losses
are based on fitted frequency and severity distributions (see Hogg & Klugman (1984), Panjer &
Willmot (1992)), our analysis of loss data shows dependency on inflation for many lines of
business. Therefore, inflation scenarios from the economic model define the trend in the
prospective severity distributions over time. Similarly, the prospective premium is trended with
inflation. Any discounting for future pricing purposes is based on output from the economic
model. We consider thousands of scenarios for many years in the future and thus develop
distributions for our underlying asset and liability returns in a multi-period environment.

‘The Business Model considers the underlying strategy of the business managers. It maodels the
decisions we make as the business moves forward through time. For example, how will the

? Global Economic Model (GEM) is under development. At the time of writing and for the foreseeable
future, the only country modeled is the United States.
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business grow if gross margins are reduced by 10% next year? This also includes any change in
asset allocation or in re-insurance structure.

The Accounting Framework refers not only to accounting but also to tax implications. There
are several advantages to separating this functionality. They include the facilitation of operating
in a multi-country (and therefor multi-regulatory) environment.

Wrapped around all this functionality is a non-convex optimization engine — the driving force
behind the Constraint Evaluator System. Since each of these models must be calibrated in one
form or another, access to a non-convex optimization system minimizes traditional trial and error
attempts to ensure the reasonability of results. Ideally, we want to back-test the models with
historical data and ensure optimal performance before we start modeling prospectively.

To better understand the calibration process, we will focus on calibrating the economic scenario
generator. A description of the generator in the context of previous modeling efforts is in the next
section.

3. Scenario Generator
3.1 What Makes A Good Scenario Generator?

Unfortunately, there are no agreed upon standards for scenario generation techniques. For some,
the model must be a series of mathematical equations that arc solved analytically (e.g., Black-
Scholes option pricing model). Others have a more empirical approach, preferring to forecast
future returns directly on current and past conditions (c.g., vector auto-regressive and kernel
regression approaches).

The Global Economic Model (GEM) scenario generator strikes a balance between the two.
Relationships among economic variables are modeled with explicit stochastic difference
equations and the equation parameters are based on historical data via the calibration process’.
The set of equations is too complex to have a closed form solution. Thus, Monte Carlo simulation
is utilized to generate a multitude of paths (scenarios).

American Re-insurance defined the following criteria for the GEM system:

2 Must be logically defensible - relationships among the economic variables must be consistent
with economic theory and be statistically defensible given historical data.

Q Must produce the proper relationships over time - movements in the economic variables must
be reasonable across long time horizons and across different time steps. That is, the statistical
propertics of the factors must be consistent whether the model is run monthly, quarterty, or
annually.

A good model must be able to capture risk both within and across time. This can be
accomplished with a multi-period model. As a counter-example, the traditional Markowitz model
is a one-period asset allocation model based on statistical observations of means, variances and
correlations and as such, the Markowitz model does not address risk over time. One of the key

* We could calibrate for pricing purposes, but in our experience this does not gencrate reasonable results for
future economies.
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statistics for risk over time is serial correlation (sometimes referred to as auto-correlation) which
is any time series correlation with itself lagged one (or more) time periods.

The Markowitz model also does not create a direct link between underlying economic variables
and the asset model. Thus, the Markowitz model cannot consistently create an asset liability
framework as there is no direct link between assets and liabilities. A more preferable approach is
to build an underlying economic framework and then evaluate both assets and liabilities based on
that framework. As an example, an increasing inflation environment will affect both equity
markets and certain insurance liabilities.

Many interest rate models do not build a term structure per sc, but rather build short-term rates
and short-term forward rates. The forward rates imply a term structure at a given point in the
future, and the term structure implied based on forward rates today can be viewed as the market’s
expectation of the future yield curve. However, this is not necessarily a good predictor or even
estimator of future yield curves.

Brennan and Schwartz (1979) propose using stochastic differential equations to price bonds.
They start with a model for short-term interest rates and long-term interest rates with some inter-
dependencies. Based on these two models, they apply Ito’s Lemma to derive the necessary
structure of the stochastic equations to create a no-arbitrage condition. This is a pricing
application.

While the approach we propose is similar in some regards, we do not solve algebraically to create
no-arbitrage stochastic equations. Rather, we monitor the modeled results for reasonability and
arbitrage opportunities. Clearly any model that creates persistent and significant arbitrage
opportunities must be questioned.

Though the yield curve today is a poor predictor of future rates, it is reasonable to assume that the
short-term rate will co-move to some extent with the long-term rate, as the long-term rate holds
information about the future expected values of the short-term rate. Brennan-Schwarz captures
this through a joint Gauss-Markov process and this reflects both the pure expectations hypothesis
and the liquidity premium hypothesis. GEM utilizes a similar methodology - though employing it
with forward rates rather than with yields or spot rates.

The Wilkic interest rate model breaks interest rates into two components, specifically a real
interest rate, which tends to be fairly stable, and inflation, which can be quite volatile at times.
Wilkie notes that equity dividend yields and inflation tend to be highly correlated. 1e views
inflation as driving interest rates rather than the opposite. Note, that Brennan-Schwartz does not
consider inflation or other indicators in a larger economic context.

Heath-Jarrow-Morton (Heath et al., 1990) has received much attention during the past few years.
The HIM model is a more recent extension of the arbitrage-free pricing model. HIM cleverly
extends the single factor (short interest rate only) to a multi-factor environment (two or threc) but
the complexity increases dramatically. In addition, just because the market expects a given term
structure in the future does not by any means suggest that this is at all a reasonable estimator of
the future. The market changes its expectations almost instantaneously and continuously. The
HIM model is based on forward rates from which spot rates and yields can be derived. There are
some advantages to basing a stochastic model (pricing or strategic) on forward rates. Namely, if
a reasonable forward rate curve is modeled, it is likely that spot rates and yields look reasonable
as well. The reverse is not true (Tilley, 1992).
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The GEM system incorporates ideas from all of the above. In addition, we have complemented
with our own analysis as shown in the pages that follow.

3.2 Types of Models

We distinguish between two types of asset modeling approaches. Pricing models are entirely
based on the notion that any risk-free profit (above the risk-free rate — this is known as arbitrage)
will be exploited in the market place until it no longer exists. The very nature of this action
eliminates the risk-free profit. Pricing models generally work in the risk-neutral world, which is
particularly useful for pricing liquid contingent options that can be replicated through other
vehicles that are also liguid (and can be shorted). But the risk-neutral approach falls short when
trying to determine reasonable returns for asset classes and interest rates in general over multiple
time horizons. Specifically, the inherent assumptions that all assct classes return the risk-free
rate' is not satisfactory for a risk management system where one at least should have the option 1o
specity different risk premia for different asset classes. There are also practical implications in
terms of "exploding" lattice models, which require a geometrically increasing number of branches
with increasing number of time periods.

Strategic models consider an almost infinite series of possibilitics. The more scenarios one
creates through the Monte Carlo simulation, the more possibilities one can explore. These
scenarios depict plausible paths for the future. Some paths have high equity returns, some have
low returns. Some have rising interest rates. Some have falling interest rates. On average, the
asset class returns retlect the risk-premiums associated with the economic environments under
which they are modeled. There is no reason that this should be the risk-free rate — just like in the
real world.

Pricing models give a pricing snap-shot at a point in time of certain contingent claims. Strategic
models provide a view over time that can be used to design strategies that manage risk and return.
The GEM system utilizes Monte Carlo simulations.

3.3 Global Economic Modcl

The Global Economic Model (GEM) is based on a series of stochastic difference equations, The
difference equations have an underlying structure as graphed below (Figure 2). We adopt this
structure as a way to capture the complex relationships that the rea! world offers.

The structure demonstrates how the model is developed within each time period. Although the
time increments in the model are flexible, the default is monthly. Each month the system
simulates values for each item in accordance with this structure.

We use stochastic differential equations to build our underlying tramework. The examples in
Figure 3 below show the most basic form of Brownian motion. The “dZ” is a Wiencr process,
which is generated from a standard normal distribution. *1,” represents the long interest rate (for
cxample, the one-period 30 year forward rate) and 1, is the long-term equilibrium for I, "™ and
“o;" are calibration parameters. They control the movement and overall volatility of the
stochastic process. g, is often referred to as the “mean reversion parameter”, while oy is the

* Arguably one could replace the risk-neutral probabilities with “real-world” probabilities to gencrate “real-
world” scenarios
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Figure 2. The economic framework underlying GEM. Each variable is modeled via stochastic difference
equations. Asterisks indicate variables that could have links to other countries.

volatility parameter. Note, that we are modeling the difference from one time period to the next.
This captures the basic notion that economic time series tend to exhibit significant serial
correlation over time, while any change in the series tend to be more independently distributed.
Similar observations apply to the short rate process shown below the Jong rate process.

Figure 3:

Long interest rates

dl =afll, -1 )t +1,0,d2,
Short interest rates

dr, = a,(rﬂ -, )d{ +ro,dZ,

We normally start the process with the economic environment today (for prospective
simulations). Specifically, we get | and the rest of the starting yield curve from publicly available
data. When calibrating the model (back-testing), however, we start the model in the economic
environment that matches the data starting point.

Generally, we will define a stable long-term economic environment that looks very much like the
current environment except for a change in the short interest rate to create a more normal looking
yield curve. The normal yield curve spread is assumed to be 150 basis point (bp), and short real
yiclds are assumed to be 200 bp. Based on this inforination, we develop our base line simulation
(“base™). We calibrate to fit our targets to the base.



Once the base has been fitted, we change the long-term median assumptions. Clients will often
want to explore the risk they are facing if the median environment differs from the one assumed.
What happens if interest rates are most likely to increase over the next ten years? What if they
are most likely to fall? We can explore all of these options separately or together, and we must
ensure that the model holds up to thesc stress tests and still generates acceptable resuits (Mulvey
and Madsen, 1999).

4. Setting Targets

Targets are properties we would like the generated scenarios to possess. The statistic is the actual
value calculated from the scenarios. To fix the idea, a target could be the average value (across
scenarios) for the annualized standard deviation of stock prices, such as 20%. The statistic would
be the calculated average standard deviation of stock prices from the generated scenarios, which
we would hope would be close to 20%. Our goal could be to have the statistic as closc as possible
to the target. Alternatively, we can specify a range of acceptable values and penalize statistics
outside the target range.

Some targets we specify are:

Arithmetic means

Compound means

Standard deviations

Skewness and kurtosis (though we generally place less weight on these)
Tails of non-normal distributions

Minimum and maximum observations

Corrclations

Serial correlations

Yield curve statistics

ocoopoQopDoOoocoD

David Becker of Lincoln National studied US interest rates (Becker, 1995). He used the period
1955 --1994 and made a number of interesting observations. Based on his observations, he
developed a number of “stylized facts” that an interest rate model should possess:

Rates are non-negative

Rates do not go to zero nor do they go low and stay low

Rates do not go to infinity nor do they go high and stay high

Rates neither increase nor decrease rapidly with significant frequency

Rates have the appearance of a random walk

Rates have the appearance of mean reversion, i.c. when rates fall they rebound to “normal”

levels, and similarly when rates rise

Rates tend to cluster in trading ranges, or narrow bands, before breaking out to a higher or

lower range

O  Periodic movements in rates are not independent, but arc correlated to a limited nunber of
prior period movements

0 Levels of serial correlation tend to decrease with maturity

Short term and long term rates are highly correlated, but not perfectly correlated

0 Generally, rates tend to rise and fall together. Thus, shifts in term structure arc largely

“parallel”

o Doooooo
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Higher absolute interest rate levels are associated with higher absolute interest rate volatility
Rate volatility declines with maturity

Yield curve inversions:

0 Frequency: Less than 16% absolute

o Infrequent and of limited duration

@ Occur during severe economic stress, peopolitical and/or policy volatility

Yicld spreads decrease with maturity, i.c. | year — 3 month spread > 3 year — 1 year spread
and so on

Correlation between increase in CPI and Treasuries declines as maturity increases

In general, as rates rise spreads narrow such that the yield curve flattens; and as rates fall,
spreads widen such that the yield curve steepens

We designed our model targets to capture these stylized facts as well as other calibration targets.

Cash tends to have a high serial correlation as does inflation, whereas stocks tend to have slightly
negative serial correlation. Even these general observations, however, change over time as is
illustrated by the example below.

Example of Target:

The correlation between long-term yields and inflation has ranged from -35% to 70%
(Figure 4).

10 Year Correlation Between LT Yields and Inflation

Figure 4. Historical correlation between long-term govemment bond yields and inflation.

How do we set a reasonable target based on this information? Our target becomes a
distribution with an expected value of 30%-40%. We still create some paths with
correlation of —40%, but they occur less frequently than paths with 30% correlation
between the two variables (Figure 5).

60



Anruial Corelation of nSation and 30 Yr T-Bond Yisid

*# Simulations

V-N% B0% -70% 0% -S0% 0% MON -X0% -10% 0% 10% 20% 0% 40% 50% 0% TON  80% 90% 100%
Cotralation
Figure 5. Simulated correlation between long-term government bond yields and inflation (distribution
looks “choppy” as only 100 simulations were run).

5. Calibration Methodology

Calibration targets can be monthly, annual or any other time period. A penalty is assigned for
each deviation from a target. The goal is to calibrate the model to minimize the assigned
penalties. AmRe’s Constraint Evaluator System is used in this process. The Constraint Evaluator
System utilizes a non-convex optimizer developed by Lattice Financial. See Berger et al. (1998)
for an algorithm overview and Berger (1999) for technical information.

Model parameters are set to initial values using linear multiple regression. We take historical
data, set up the difference equation, perform the regression, and utilize the results as the starting
point for the analysis.

Calibration Example #1:

Af, = A-A, +B-AY,+C-Au, + D-Jt - AZ'*

Here f represents the 3-month one-period forward rate, / represents inflation, ¥
represents the 30 year one-period forward rate, u represents the inflation adjusted mean
reversion process, and dZ is Wiener term and ¢ is time unit. A, B, C, and D are the
calibration parameters for this difference equation. A controls the effect inflation has on
the 3 month forward rate and B controls the relationship with the long end of the forward
rate curve. C controls the rate of reversion, while D reflects the volatility added to the
stochastic process.

Regressing this on monthly historical data from 1974 through 1998 (Figure 6), we get
{A, B, C} ={0.015, 1.3, -0.015}. All parameters have significant t-statistics with 90%

* The difference equation offered here is actually a two-part log-linear process.
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confidence, and the R? is 58%. D is added after reviewing the residual standard error,
which is 0.004. The ratio of the residual standard error to the mean is 0.06. Since this is a
log-finear process, D is 1.06.
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Figure 6. Lincar regression resufts (using historical data) of regressing the change in 3 month yield versus the
change in 30 year yield, change in monthly inflation rate, and real inflation-adjusted mean reversion

Now we need to incorporate the regressed results with our simulation goals and simulated
data. We have a number of criteria that we monitor with respect to the generated time
series. Is serial correlation high enough for shorter term yields? Are we generating a
reasonable number of recessions? Are recessions characterized by both inverted yield
curves and drops in real GDP? The list goes on to include basic statistics of the modeled
indicators.

We code our targets and perform the following optimization described below. Notice that
each time series depends on the calibration vector. Specifically, changing the values of
{A, B, C, D} will give us different time serics, as the difference equations change. We
use our regression as a starting point and we want the calibration vector that comes
closest to our targets. We run the following optimization:
Scenarioy T argens 2
Minimize Z z w, -(S!atistic,_, —Target, )

’

T A

In this case, the result is {0.75, 0.5, -0.04, 1.05}, and we utilize these new values to
generate the economic scenarios. The main vector changes were:

u  shift weight from the 30 year rate to inflation to increase the correlation between
inflation and the 3 month treasury bill



a increase the level of inflation-adjusted mean reversion to avoid “run-away” scenarios
(tails were overstated using regression scenarios)
0 decrease volatility slightly

If we had wanted to maintain a closer correspondence with the historical regression
parameters, we could have penalized deviations from our initial calculated values. In this

example, we were more concerned with matching our other calibration targets.

Calibration Example #2:

The optimization {(minimize penalties by changing the calibration parameter set — see
equation above) can be reviewed from other perspectives as well. We take a closer look
at inflation in the calibration. The starting vectors (except for monetary growth, which is
at the top of the structure — Figure 2) are all based on linear regressions using historical
data. In this particular case, we can see from the chart below (Figure 7) that the volatility
of inflation associated with our starting calibration parameters is understated compared
with the historical data.

Frequency of Monthly Inflation

a50% -

Frequency

-10% -05% 0.0% 2.5% 10% 15% 20%
Inflation

Figure 7. Distribution of monthly inflation levels in generated scenarios based on regression vector has a
higher mean and tighter range compared with historical observations from 1974 through 1998.

The differences between simulated and historical results are due to a number of factors.
There are sources of variation that are not represented in the regressed data. In addition,
estimating the error term from the regression in terms of difference equations is often
tricky. Further, statistics such as serial correlation is not monitored through regression,
and the relationship may not be perfectly linear. In the graph above, we note that the tails
based on historical inflation are much wider.

To address this discrepancy, we specify the volatility of inflation as a calibration target.
The historical volatility is 0.33% (3.2% annually) and the volatility from the simulated
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scenarios above is much less. We specify the historical volatility of 0.33% as a target for
the optimization. After optimizing, the resulting inflation levels are shown in Figure 8.
The distribution is now much closer to the historical observations. Note that we were
able to accomplish this by specifying only one parameter of the distribution (volatility).
If this still did not produce the desired results, or if we wish to match more closely, we
could specify quantiles on the distribution as targets.

Frequency of Monthly Inflation

Frequency

—+— Simulated
| 8- Actual

STO% -0 5% 0% a5% 10% 15% 20%
inflation

Figure 8. Distribution of monthly inflation levels in generated scenarios based on optimized vector now
matches historical observalions.

The optimizer helps us fit our model to the available data. Thus, we are able to maintain our
economic framework, which is consistently applied to our loss simulation and our asset
simulations. We are simultaneously capturing data we would otherwise only be able to capture
with more limited methodologies.

In practice, we work with up to 245 calibration parameters for the US model though
approximately 50 parameters capture the main process. Optimizing on all these at once has not
been practical. Rather, we work our way down the structure shown in Figure 2. We initially
calibrate the parameters associated with monetary growth and velocity. Then we calibrate
inflation and so on.

6. Conclusion

In this paper, we have discussed the scenario generation component of a dynamic financial
analysis system. The goal is to produce coherent and comprehensive scenarios for use in
modeling an insurance company’s financial position over time. American Re-Insurance’s GEM
system is an example of a generator grounded in economic theory, but one which produces
scenarios consistent with historical observations. The calibration process is the mechanism for
achieving this: Model parameters are chosen so that the generated scenarios have statistics
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consistent with user-specified targets. Lattice Financial’s optimization software automates the
process of determining the best model parameters to meet the desired targets.
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ESTIMATING UNCERTAINTY IN CASH FLOW PROJECTIONS
by

Roger M. Hayne

Abstract

In order to be complete dynamic financial analysis (DFA) models should deal with both
the amount and timing of future loss and loss adjustment expense payments. Even
more than asset cash flows, these future payments are very uncertain.

This paper begins by estimating both process and parameter uncertainty in reserves for
annuity-type benefits such as available in some automobile no-fault states or in workers
compensation. Arguably, such reserves have underlying distributions (inherent in the
mortality models) that may be more easily understood and treated than many other
casualty coverages. We explore the estimation of both process and parameter
uncertainty for this example. In the process we derive formulae that can be used to
model uncertainty in other applications, once the various parameters are estimated.
Many of the estimation methods covered should generalize to non-annuity applications.

There is also a companion of this paper, titled “Modeling Parameter Uncertainty in Cash
Flow Projections” that provides motivation for the estimates contained in this paper. In
that paper we discuss approaches to modeling future cash flows and argue for
separation of parameter and process uncertainty as well as describing methods to model
them both.
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ESTIMATING UNCERTAINTY IN CASH FLOW PROJECTIONS

1. Introduction

There have been a number of papers and articles dealing with uncertainty in loss
reserve estimates. However, dynamic financial analysis for risk bearing entities requires
more than simply the distribution of reserves. Also of critical importance is the timing of

those future payments and their distribution.

A simple example may clarify the point. Suppose two insurers, Short Tail Insurance
Company and Long Tail Insurance Company are identical in all aspects except for the
timing of future payments. Both companies are in runoff, both have $1 million in assets
invested in the bank yielding 3% interest, and both will settle all losses in a single

payment according to the following distribution:

Table 1: Hypothetical Distribution of Payments

Probability Amount
20% $ 500,000
20% 750,000
20% 1,000,000
20% 1,250,000
20% 1,500,000

The only difference is that Long Tail will not pay this amount for 10 years, while Short
Tail must pay it at the end of this year. Even though both insurers have the same assets
and face the same distribution of reserves, Short Tail would face insolvency 40% of the
time while Long Tail will only be insolvent 20% of the time (since 1,000,000 x 1.03 =
1,030,000 and 1,000,000 x 1.03'°=1,343,916). Though timing may not be everything, it
is substantial.

Thus knowing the distribution of the reserves is necessary to mode! the financial
condition of a risk bearing entity, but it is not sufficient. Rather, to appropriately model
the future cash flows we need to know the distributicn of payments in each future year.
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In addition, economic conditions and unanticipated changes in cost inflation often impact
reserves and contribute to the variability in both reserves and future payments as well as
on assets. Thus, in dynamic financial analysis (DFA) applications where economic
assumptions may be used as a "linkage” between asset and liability models, 1t will
probably be necessary to separate the contributions of these economic factors from
others in modeling liabilities.

In this paper we will begin with an example of how estimates of the means and
variances of payment distributions by year can be made. This first example will focus on
claims involving lifetime payments, such as for certain workers compensation claims or
unlimited no-fault medical claims. Unlike many casualty claims, the fact that payments
are contingent on survival actually provides us with an underlying probability structure for
the payments on individual claims and makes discussion of many of the topics we will
address more accessible. However, unlike many life coverages, the future payments

are contingent not only on the claimant’s survival, but on uncertain future costs.

We will then consider how to carry these concepts over to other coverages. These
concepts aiso can be useful in constructing models for use in dynamic financial analysis.

2. A Relatively Simple Example

Suppose our insurer only has a fixed book of life pension workers’ compensation

indemnity claims and does not need to fund for the medical portion of these losses.
Further, 1o keep this first example reiatively simple, we also assume:

2.1 We have mortality tables that appropriately reflect survival probabilities for these

claimants.

2.2 There is no escalation of benefits for individual claimants due to inflation or some

other index.
2.3 Future annual payments for each claimant are fixed and known.
2.4 We are not currently interested in the time value of money (i.e. no discounting).

2.5 The various claimants are statisticaily independent.
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Here the expected future payments for any individual claim can easily be calculated
using a life annuity. Not only can we use the mortality tables to obtain expected costs,
but we can also use them to review the expected distribution of payments for our

population in any particular future year.
To see this we let:

a denote the payment for claimant x in year ¢t in current dollars,

xt

P denote the probability that claimant x lives for ¢ years and then dies or otherwise

exits the claim population.
It is easy to see the distribution of payments in any future year s is given by:

Table 2: Payment Distribution for a Single Claim
Probabitity Amount

2 P a,
1.5

1_prl 0

From this it is easy to see the payments in year s, have expected value

@1 €(X,)=0.3 5.
and variance
Var(X,) = E(X?) -E(X,)’
2.2) -al3 e, —a[zp]
afgn v 20)

This is the result we would expect from the binomial distribution for the payments in year
s.
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In addition, from our assumptions we see that the future payments for this claimant will

t
have a discrete distribution with payments totaling Za" , occurring with probability p,, .

s=1

Thus the total expected future payment for this claimant is given by:

© 1 £ w
(2.3) E(X)=3 Pud.d=2.8,9 Pu
t=1 =1 51 i-s

The second is simply the total expected payments in each future year.

Similarly we can also calculate the variance.

(2.4) Var(X):iZa,sa,,[ ip,,)[‘l-[ ip,,]]

o
s=1r=1 1- max({r.s) {=min{r,s)

Although this formula may not be immediately obvious it is not difficult to derive. We
show the derivation in Appendix A.

Thus for a single claimant we can easily obtain the distribution of future payments, its
mean and variance as well as the distribution of payments in any future year. We can
still explicitly determine the distributions for multiple claimants, however, the calculations
become more complex (such calculations may be necessary if, for example, reinsurance
attaches on a per incident not per claimant level). For example, for two independent

claimants, x and y, the payments in year s have the following discrete distribution:

Table 3: Payment Distribution for Two Claims

Probability Amount

()E)
(Zel-ge) e
[-ZelEn)
(e 2

We could derive a similar table for the distribution of total future payments for two

[

xs T ays

claimants. Rather than having simply four separate points, the resulting table would
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have nxm points where n denotes the number of future years having non-zero
probabilities for claimant x and m the number for claimant y. Although we can exactly
calculate the resulting distributions for many claimants, the resulting exponential growth
in size makes such calculations prohibitive.

On a practical level, however, the problem of combining twe distributions is simply one of
calculating the aggregate loss distribution for two distributions. Heckman & Meyers[1]
provide one means of performing these calculations, Robertson[2] gives another.

We can also approximate the aggregate distrbution of the discrete distributions
iteratively. We first calculate the aggregate distribution of two distributions exactly,
resulting in mxn cells. We then compress this large distribution ta, say, m cells and
repeat the process with the next distribution. Straightforward combination of cells will
usually result in a reduction in the variance in the final distribution while maintaining the
mean. The following is an example of this approach.

Consider the two distributions:

Table 4: Distributions for Convolution Example

Variable 1 Variable 2
Probability = Amount Probability Amount
0.60 100 0.20 250
0.40 300 0.80 500

The resulting aggregate distribution is:

Table 5: Distribution of the Sum of Variables

Probability Amount
0.12 350
0.08 550
0.48 600
0.32 800

A possible compression of this aggregate distribution is:

Table 6: Collapsed Distribution of Sum

Probability  Amount
0.20 430
0.80 680
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Here 0.20=0.12+.0.08, 430=(0.12x350+0.08x550)/0.20, and so forth. Note the expected
value of 830 is preserved in the compressed distribution but the variance of the exact
distribution is 22,240 while that of the compressed distribution is 10,000. There is some
flexibility in this method, however, in that the algorithm used to combine the cells could
take into account the purpose of the modeling. For example, if the interest is in
probabilities of high loss amounts, then we could maintain more detail in the “tail” of the
distribution by combining more cells with smaller loss amounts with less combination of
higher loss cells. In the above example, the following is another compression:

Table 7: Alternative Collapsed Distribution

Probability Amount
0.68 550
0.32 800

The mean is again preserved but the variance is now 13,600, closer to that of the exact

distribution.

Another possible approximation would be to assume that the aggregate distribution
follows a smooth distribution with a limited number of parameters. We could then “back
into” the aggregate distribution making use of moments of the true aggregate
distribution. For this, however, we need to be able to calculate those moments. For our
simple example, however, the calculations follow very simply from (2.3) and (2.4) if we
assume that individual claims are independent from one another. Given the fact that the
distributions are based on survival probabilities, and our assumption that the
probabilities themselves are correct, this is probably not too restrictive in practice.

In this case, letting T denote the random variable corresponding to the aggregate
distribution, we see that, assuming we have N claims, the expected aggregate loss is

given by:
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&7)=

(2.5)

m
x

M= ,—m—\
_MZ

a,Y P

1=

"MZ
e

@

Similarly, because we assumed the claims are independent, we can calculate the
variance for the aggregate distribution as:

N
Var(T) - Var| ¥ X,]

(2.6) i_v:Var(X )

3350 50 £

I-max(r.s) t-mintr sy

Similar calculations based on (2.1) and (2.2) will give us the mean and variance of the
total expected annual payments:

N
E(T,) = }:xg]
-t

.7 = 2 EX,)
I;JI )
=2 8,50 Py
Var(T,) = Var[iXyJ
i-1
(2.8) :iVar(_Xy)

N
=ZaZs(Zp,.}[1 Zp,.]
We note we can calculate the exact distribution for payments in any particular year as
with the aggregate distribution for the total. However, in this case, there will “only” be 2"
cells in the distribution. Again, we could use a compression algorithm to obtain
approximate distributions.
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3. Introducing Some Uncertainty

The problem thus far considers only random fluctuations due to the fact that the exact
time of exit from the claimant population is unknown. We have assumed that ali other
aspects of the problem are known. In short, we have only discussed process uncertainty
thus far, i.e., that uncertainty remaining in the situation even if the process itself is known
with certainty.

in the real world models used are generally approximations of the underlying process,
subject to uncertainty either in their parameters or even whether or not they are
appropriate. {n this section we begin to introduce uncertainty into the assumptions from

section 2.

The first restriction we will relax will be the assumption that underlying survival
probabilities for individual claimants are known. In reality payments will often be
contingent on the survival of an individual who is already injured and whose injuries may
significantly impair chances for continued survival. Thus it may not be appropriate to
use standard mortality tables to determine the survival probabilities. It is possible that
the tables that are used will be modified or based in some way on popuilations of injured

claimants and thus subject to estimation error.

In addition, it is possible that a claimant will sufficiently recover from his or her injuries so
as not to require additional payments from the insurer. Thus exit from the population
could occur for reasons other than death. We may need additional modeling to study
the effects of such recoveries on exits from the population by claimants.

Since most such analyses focus on the mortality in a year, we let

q,. denote the probability that claimant x will die in year ¢, given survival through year

1.

These are the standard mortality probabilities. In terms of the p,, variables defined

above we have (possibly mixing notation somewhat):
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-1

Py = q:.ln(1_qx.:)

i=
f-1

@.1) =(1-(1-q.))[ 10 -9..)

i=0
t

IL;[1 q..)-[101-4..)

=0

Very conveniently, these collapse in the sum to yield:

s

S .= ([10-0.)-1]0-0..))

10-0.)-T]01-4..)

i=0

T
3

3

(3.2)

5

3 =

=[](1-q,.)

=1

In addition to allowing uncertainty in the survival probabilities we will also aliow the
annual benefits to change over time with economic conditions and allow for discounting
of the reserves, as would be the case for the medical portion of workers’ compensation
or certain automobile no-fault benefits. We will allow the combined economic effect of
inflation and discounting to be uncertain. Finally we will allow for some uncertainty in the
annual payment estimates for individual claimants. Specifically we will relax our various
assumptions to the following:

3.1 The relative survival probabilities among various claimants are known, however, the
absolute probabilities are based on an analysis of n exposures. Analyticailly, we

assume that there is a random variable y and constants g;,, such that for all x and t

Xt

values:
(3.3) 1-q,=(1-4q5 )y

3.2 The a, values are stated in current dollars. There is escalation in those amounts
between time -1 and time ¢ in the amount of 1+f,. This escalation will be the same
for all claimants but may vary from year to year. The 1+, amounts are not known

with certainty.
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3.3 The present value of 1 at time {-7is 1+v, at time {. The 1+v, amounts are not

known with certainty.

3.4 There is a random variable u and constants a;, such that for all claimants x and time

t, the following holds:
(3.4) a, =ayu
3.5 The various claimants are statistically independent.

3.6 There are random variables w, and constants £’, and v, such that, for all ¢ values:

1+£ 1+

3.5 =
3:5) T+v, 1+v]

t

The variable y in 3.1 could be considered as a global load, reflecting the uncertainty in
estimating the overall closure rate from experience. We recognize that this does not
consider the uncertainty regarding the relative closure probabilities. For example, it is
likely that younger claimants will experience a greater reduction in survival chances due
to the injury causing the claim than older claimants will. Thus, except in the simplest
situations, the variable y probably should not be considered as a montality load, but

rather a global uncertainty parameter.

We can estimate the degree of uncertainty arising from the sample size of n life-years
used to estimate the survival or closure probabilities. For this we use sample theory and
an application of Bayes' Theorem. In fact, if we assume:

1. The random variable y has a binomial distribution with expected value 6.

2. The random variable @itself has a uniform distribution between 0 and 1 (i.e. we have

no prior knowledge of the appropriate value of &).
3. Qur sample size is n.

4. We observe z claims remaining open after one year from our sample.
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If we make the more general assumption in 2 above that ¢ has a beta distribution with
parameters ¢ and g it turns out that ¢ given the observations has a beta distribution with

parameters z+a and n-z+4. \We show this in Appendix B. in particular, then,

' = ‘Mﬁ zerea fpq -2 A1
E(O IZ)_,[or(z+a)r(n_z+ﬁ)o (1 0)

MNMa+p+n 1 nz.pA
B r(z +(a)1"(/r}7 - z)+ﬂf)J'og“*°*’(1_g) ’
Ma+p+n) Mz+r+a)(n-z+f)
Nz+a)(n-z+p) Tla+r+p+n)
_Tla+pB+nl(z+r+a)
T(z+a) (a+r+p+n)

(3.8)

Thus, in particular,

. Ha+pg+nl(z+1+a)
Bdz)= Mz+a)(a+1+ f+n)
_ HMa«prni(z+a)z+a)
- r(z+t;)[‘(a+ﬂ+ nYa+ pg+n)
Z+a
:a+ﬂ;+7r>7"

3.7

Thus we have:

E'( 6. ] _E0e)
E0) ) Eoz)
:[a+ﬂ+n]’rl‘(a+ﬁ+n)r(z+r+a)
Nz+a)(a+r+p+n)

(3.8)

Z+a

Now, the specia!l case we will consider is no preference in the prior distribution for 6.

This is simply a special case of the beta distribution with « = #=1. In this case we have:
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0
E(o

E(y')=

/_L\

n+2) T(n+2)0(z+r+1)
1) T(z+ 0 (r+n+2)
n+2)z+i+1)

Nn+i+2)

(3.9)
Z

+

1l
Camm)

.

—_

L
—
N

The last equation follows from the recursive properties of the gamma function and
makes calculation easier in practice. In terms of the survival probabilities we have:

SR

(3.10) oy

As one would expect, the first term in the last product tends to unity as the sample size n
becomes large if

(3.11) hm—:O
v )

for some vatue 0. The proof is shown in Appendix B.

Assumptions 3.2 and 3.4 deal with cost escalation and discounting and 3.6 relates the
two. We assume that the combined impact of inflation and discounting is uncertain with
the variables w, providing that uncertainty.
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Finally we will modify the assumption that alf future payments (at current cost levels) are
known to one wherein there is “global” uncertainty regarding future payments. This is
reflected in the variable u.

For simplicity we will assume that the variables w, and v all have independent lognormal
distributions, and that the distribution for the various w, have the same means and

variances. In particular we will assume that all these variables are independent and:

u~ lognormal(— 1 cr’,az) and
(3.12) '
w, ~lognormal{- £ ¢7,7%) for all t.

Here and throughout this paper we wilt use the normal-transformed parameterization of
the lognormal distribution. For example, (3.12) assumes that the normal variable In u

has a normal distribution with mean —%az and variance o?. More generally when we

say
(3.13) x ~lognormal(y, o*)
we mean that the random variable x has the probability density function

(inx - p)
P [ 257

(3.14) f(x) = oy

With this parameterization, then we have:

E(X)=exp(u +307)
(3.15) Var(X) = exp(2u + o (exp(0?) - 1)

Var(X -
v.(X)= E(a;gr)z) = yexp(a?)-1

This last relationship shows that, with this parameterization, the coefficient of variation

{ratio of standard deviation to the mean) depends only on the o° parameter.
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It could be argued quite convincingly that v would not be the same for all claimants or for
all years. That is clearly a refinement to the methodology we present here. However, to
keep the calculations to a manageable level, we have elected to make this simplifying
assumption here. However, the assumption of lognormality for the economic variables is
probably much more plausible, although the assumption of constant variance may be
somewhat restrictive. In both cases, here, we note that the expected values of both

distributions are unity, that is both v and the w, variables are assumed to represent

random shocks to our overall expectations.

We are now ready to calculate the mean and variance of the total population reserve.
The calculation makes repeated applications of the following relationships that held for
independent conditional distributions:

E(Z)=E,(E(Zl¢))
Var(Z) = E,(Var(Z|¢)) + Var, (g )

(3.16)

In this case we assume that the distribution of the random variable Z with probability
density function f(z,£) that depends on a parameter ¢ which itself is a random variable
with probability density function g(£). These assumptions result in the following formulae

for the mean and variance of the total distribution:
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In these formulae we have taken
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These are the present value of future payments without consideration of uncertainty or
the probability of payment. As a practical matter, the value of ¢’ is not needed in the
detailed calculations. We can calculate the various terms in (3.17) that involve individual
claim information separately, and then include the value of % in a fairly simple

calculation.

If, now, we assume that there is no uncertainty in any of the estimates then o =7 =0
and the expectations of all powers of y are 1 (infinite sample size) the first three terms in

the variance sum vanish leaving:

c max(rsj 3 minir si-1
13.19) VaqUCenamty’;:EZZb;sb;,[ I (_Lq;,)][p 1 (1_q:’))

© s 1 ro e

Here. and throughout this paper, we use the term "Certainty” in the formulae to denote
the situation where there is no parameter uncertainty. We use this shorthand to help

keep the formulae as simple as possible.

Thus incorporating uncertainty regarding the closure rates adds 1o the expected value of
the total. With this we see that E(T) will equal the reserve estimates calculated by the
model if the survival rate were based on an infinite population, otherwise said, if we are

certain about the annual survival rate.

If we define

[

(3.20) p.=1101-9.)

5-0

Then this last formula becomes the standard variance formuia.
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The actual calculations in deriving (3.17) are quite lengthy and are contained in
Appendix C. Similarly we have the following formulae for the mean and variance of
payments in year s, as shown in detail in Appendix D.

5" li_[‘ (n+2)z+i+ 1)
ro(z+ Y (n+i+2)

(3.22) Var(T, [st[_s' -q., ]J (exp(n vsrt)E(y*) - (y‘)z)
+exp(o’ +st° b,;[ls_i 1-q;, ]LE(y‘)—E(y’s)(s>1(1_q:,)jj

to 1:0
Although, to maintain some simplicity we have not substituted from formula (3.9) in the
variance formula in either (3.17) or (3.22), both formulae, with this substitution, no tonger

depend on the conditional variables. It can be easily seen that in the case of no

uncertainty (i.e. o=r =0, E(ysi) =1) the formulae in (3.22) reduce to (2.7) and (2.8). We

also see that the expected total reserve in (3.17) is simply the sum of the expected
payments by future year from (3.22). However, as we would expect, the variance terms
are much less comparable. This is due to the nature of the dependencies we introduced

with some of the uncertainty variables.

Thus, for the relatively simple case of known lifetime care claimants we can calculate the
mean and variance for both the total reserves and the payments in each future year. We

can incorporate at least some parameter uncertainty in these calculations.
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In short, these calculations provide a way to estimate the mean and variance of case
reserves, including a potential provision for uncertainty in the case estimates as
evidenced by the parameter v, but do not consider uncertainty regarding claims that are
incurred but not reported. it aiso does not consider reported claims that are not yet
recognized as potential lifetime care claimants or for which there is not sufficient

information available to establish estimates of future claim and medical costs.

4. Additional Areas of Uncertainty
We consider three categories of claims.

1. Those having annual cost estimates with case reserves calculated using the annuity
model described in sections 2 and 3 above.

2. Claims reported but for which annual cost information is not yet available, and
3. Claims incurred but not reported (true IBNR).

Continuing with our development we have implicitly incorporated additional development
in case reserves, along with its corresponding uncertainty, in the estimates in section 3.
Thus there is increasing uncertainty as we move through these categories of claims. In
the first instance we have information regarding individual claims with uncertainty
regarding inflation, investment, exit from the population, and some uncertainty regarding
the accuracy of the annual cost estimates. All these elements of uncertainty are present
in the second category along with additional uncertainty as to the overall average for the
claims themselves. Finally the third category incorporates all this uncertainty as well as
uncertainty as 1o the number of claims 1o ultimately be reported.

In order to reflect this uncertainty we will use the following notation. Let:
Ne denote the number of claims having annual cost estimates
Ny denote the number of reported claims without specific annual cost estimates

A denote the expected number of IBNR claims
denote a random variable with E(y)=1 and Var(y)=c

B denote a random variable with E(/)=1 and Var(#)=b
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¥ denote a random variable with E(»)=a and Var(y)=d
4 denote a random variable with E(¢)=r and Var(¢)=z

With this notation, we will use a modification of Algorithm 3.3 from the Heckman &
Meyers[1] paper

1. Select claims with case reserves, X,, X,, ..., X

2. Randomiy select a value for z.
3. Randomly select N from a Poisson distribution with expected value Ay.

4. Randomly select independent claims X, ., Xy ,. ... Xy_.,.» from the same

distribution having the mean and variance equal to that of the case reserved claims.
5. Randomly setfect values for £, ¢, and ;.

8. Calculate the aggregate reserve as

Ne Ng +Ng Ng+Ng+ N
41) T=f83 X+ 3 X +y ZX,).
1 1-Ng+1 ; Ne+Nget

Here y incorporates uncertainty regarding the claim count estimate, g global uncertainty
regarding the overall estimates, ¢ additional uncertainty and scaling for known but not-
case-reserved claims, and y additional uncertainty and scaling for IBNR claims. We will
assume in the following, that claims other than those with case reserves, except for the
scaling values a and s, will have the same mean and variance as those with individual

case reserves.

If we consider the case where there are no IBNR claims and that we have case reserve

estimates for all claims, (4.1) becomes:
Ne

42) T=p3 X,
-1

From this we can calculate the mean as:
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(4.3) - El,[ﬂiE(X,)]
= Eﬂ(ﬂ)iE(X,) = iE(X_,) = N, E(X)

11

Since we are assuming all the claims are independent, this last term denotes the

expected claim costs with no parameter uncertainty. This can be calculated using (3.17)

by letting the sample size tend to infinity. Now if we let all the uncertainty above be

expressed in the parameter S, then we have

Var(T, (Var (7, \,B)+ Var,(E (TR]ﬂ))

:E,,[var[ﬂgx,)]war 48]
BAGSA

(4.4)
=E 5 r[‘\ix ]+Var /j)E[zx,)
)

=(Var,(f) +E, ﬁ)2 Var i&‘ ]+Varl,(ﬁ)E[§X‘]‘

1

= (b + 1) Var{T,|Certainty) + bE(Ty|Centainty)’
Solving for b we obtain:

Var(T, ) - Var(T|Certainty)

(4.5) =
Var( Tr[Certainty) + E(T, |Certaxnty)

We can then use (3.17) or (3.22) to derive a value for b that will explicitly incorporate
parameter uncertainty into this algorithm. Assuming, in addition, that estimates for the
second and third claim categories depend on case reserves, we are able to quantify a

level of global uncertainty inherent in the estimates.

We use calculations similar to those led us to the mean and variance estimates in

Appendices C and D to obtain the following:
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E(T) = (Ng + N, +aA)E(T;|Certainty) /N,
No(z+r)+(d+a*)a

(4.6)Var(T)=(b+1) 1+ N,

]Var(TR]Certainty)

b+ W(d +a?)(A +ca)+ Ad + ZN2 :
i (b+ )(( +a’)( A:'f )+ Ad+z B)+b[1+¥) E(TR|(:ertainty)2
R R

These are shown in detail in Appendix E.

Thus, under the above assumpticns, we can express the mean and variance of the
distribution of total claims in terms of the mean and variance of the distribution of case
reserved claims, without parameter uncertainty, and the various parameters specified
above.

On review of that analysis we see that we did not specifically assume that the
calculations were for total reserves. Thus a similar formula holds for payments in a

particular year:

E(T,) = (Ne + 1N, + a4)E(T,,|Certainty) /N,
No(z+r?)+{d+a’)2
Ne

(@.7)Var(T,)=(b+ 1|1+ ]Var(TRS|Certainty)

(b+1)(d+a* )1 +ca)+ Xd + 2N} N +aiY

n { X _ ) ) b1+ e re E(TRS|Certain’(y)2
N N ’

Inherent in these calculations is that we can use the same uncertainty variables for both

the aggregate reserves and for the payments in each year.

We note that, although the genesis of (4.6) and (4.7) were based on a book of life-
pension claims, there is nothing in the derivation that requires such a book. If we can
separate our reserving problem into the three categories above and are willing to make
the assumptions indicated above, we can calculate the variance of the aggregate
distribution.
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5. Estimating the Parameters

We will consider parameter estimation in two phases, we will first address the b
parameter and then the remaining ones. Again, the discussion will begin with the life

annuity model and then move to potential for generalization.
5.1 Estimating the b Parameter

We have already hinted at an approach that we could use to estimate the b parameter.
Using (4.5) all we need are estimates of the variance of reserved claims with and without
parameter uncertainty. The estimate without parameter uncertainty follows directly from
the annuity calculations as given in (3.19) or (3.21). Using (3.17) and the assumptions
going into that estimate we can derive an estimate of the variance for claims having case

reserves if we can estimate:

E(y*) Uncertainty regarding the mortality assumptions
r? Uncertainty regarding (composite) economic estimates
o? Uncertainty regarding the annual cost estimates

5.1.1 Mortality Considerations

There are other practical issues in the use of mortality assumptions, especially in usual
applications in property and casualty insurance. In almost every situation property and
casualty claimants eligible for lifetime care will be physically impaired in some manner,
either by trauma or disease. Often one may expect the impairment to affect the
claimant’s future survival chances as compared to the general population. In addition,

we could expect different injuries to have different effects on survival probabilities.

There has been substantial research on the effect of spinal cord injuries on survival
rates. As opposed to head trauma, spinal cord injuries are relatively easy to categorize
and are relatively uniform from patient to patient, and generally do not change during a
claimant's life. For example, the following table, attributed to the National Spinal Cord
Injury Statistical Center, University of Alabama at Birmingham, shows differences in life

expectancies for various levels of spinat cord injury[3):
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Table 8: Life Expectancies by Age and Spinal Cord Injury
Life Expectancy

Motor
Function
Current Ventilator High Low at Any
Age Normal Dependent Tetraplegic Tetraplegic Paraplegic Level
20 56.3 19.9 32.8 386 448 49.0
30 46.9 15.9 26.8 30.7 36.7 40.5
40 376 12.4 20.9 236 28.8 31.7
50 286 93 15.5 17.0 21.2 23.4

We have not been able to locate similar statistics for traumatic head injuries. Analysis
for such injuries are complicated by the fact that head injuries are more difficult to
categorize than spinal cord injuries and, in contrast to spinal cord injuries usually
identified by the location and degree of lesion in the spinal column. In addition, the level
of severity of a head injury can change substantially during the course of treatment.

Other property and casualty claimants could have still different mortality profiles. For
example, a back injury, though disabling a person from employment, may have little or
no effect on that person’s future life expectancy. Conversely, heart conditions or stress
related illnesses could have a substantial impact on future survival chances.
Compounding difficulties are the effects of medical treatment on the claimant's survival
chances, especially in situations where there is no limit on the amount that can be
expended for medical treatment. Thus, unlike many situations where mortality is a

consideration, the appropriate survival functions are often uncertain.

For this reason, it may be useful to consider construction or modification of mortality
tables to reflect the injured population. In this case the table could be based on a fairly

small sample, though could stifl produce reasonable results. [n this case formula (3.9)

gives an estimate of E(y“] under the assumption that uncertainty in the mortality tabie is

uniform across all claimants and ages and depends only on the sample size used in
estimating the mortality table and the overall average mortality for the population.
However, the considerations above would seem to indicate that (3.9) may only produce
a lower bound on the level of uncertainty inherent in the selection of mortality

assumptions.
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5.1.2 Uncentainty in Economic Assumptions

We note in (3.5) and (3.12) we have made the simplifying assumptions that the net
discount rates (ratio of annual cost inflation to annual interest rate) are independent from
year to year. In addition, we assumed that the distributions of the rates in each year all

have the same coefficient of variation.

There has been much attention recently devoted to modeling economic scenarios in
canjunction with dynamic financial analysis, for example Daykin et.al.{4] If we were

using such models one could estimate the value of 7 using the results of those models.

Although the modeis can be quite complex, actual economic conditions have
experienced some rather spectacular swings, even over the past twenty to thirty years.
For example, the hospital room component of the U.S. Consumer Price Index for Urban
Wage Earners (CPI-W) increased by 15.7% during 1981 and by only 3.5% during 1996.
Interest rates also experienced similar swings during that same time with the average 1
year United States Treasury Bill moving from 14.8% in 1981 to 5.5% in 1996.

We could also use this historic volatility to estimate . For this we review the historical
volatility in the quantity:
Ieh g

51
e 1+v,

Here we use f” to denote the annual change in the medical care cost component of
the U.S. Consumer Price Index for Urban Wage Eamers measured from month ¢-12 to
month ¢ and v, to denote the average yield for 1 Year U.S. Treasury Bills during month ¢.

Of course, if we assume that claim costs would experience a different market basket

than medical costs in general then we would re-weight them accordingly.

We also somewhat randomly selected the 1-Year U.S. Treasury Bill rate for this
example. Again, unique characteristics of the company's investment portfolio may
dictate a different measure for investment return. These values should be illustrative of
the degree of variation we could expect in our applications. The following graph shows
values of {5.1) for each month from April 1953 through July 1997,
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Since we have assumed that uncertainty in future net discount will show a lognormal
distortion we can estimate the 7 parameter as the variance of the natural logarithms of

the amounts in (5.1), plus 1. In this case the resultis 7 = 0.000457.

5.1.3 Uncertainty in Cost Assumptions

The third area of uncertainty reflected in (3.17) deals with the fact that a,, the annual
payment amounts in current dolflars, may themselves be uncertain. In workers
compensation claims the indemnity amounts are often specified by statute, so the
amounts of those payments for life pension cases may not be subject to change.
However, one would probably not expect the same degree of cerainty in medical
payments either for workers compensation or no-fault benefits.

As noted in Section 3. Introducing Some Uncertainty, we have assumed that claim
annual cost estimates in current dollars have the same uncertainty distribution as
reflected by the random variable v. In addition to u, the (present value of) annual
payments are also affected by the w; random variables. From a practical viewpoint, this
effectively separates two factors that affect the accuracy of estimates of future costs;
unexpected levels of inflation (and/or investment return) and actual costs (or services)
differing from what had been expected for reasons other than economic conditions.
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This dichotomy suggests a way to estimate the parameter o°. We could compare actual
annual payments with the forecasts made in previous analyses, after adjustment for
trend in the form of some index reflecting underlying cost changes. The following table
provides an example of such an approach.

Table 9: Actual vs. Expected Payments

Payment Forecast Annual Payment
Year Year Actual Estimated In(A/E)

1 0 $ 50,000 $ 45000 0.1054
2 o] 40,000 35,000 0.1335
2 1 40,000 45,000 -0.1178
3 0 30,000 25,000 0.1823
3 1 30,000 35,000 -0.1542
3 2 30,000 30,000 0.0000

Average 0.0249

In this example, for a single claim, we have actual payments of $50,000, $40,000, and
$30,000 in each of the first three years of a claim. In the first analysis (at the beginning
of year 1) we estimated payments of $45,000, $35,000, and $25,000 trended to future
levels using the selected cost index. The second analysis we adjusted the forecasts for
years 2 and 3 to $45,000 and $35,000 respectively, while for the third analysis we
estimated $30,000 for the third year.

Since the sample mean of the natural logarithms is the maximum likelihood estimator for
the first parameter of a lognormal distribution in our parameterization, and the sample
variance is a minimum variance estimator for the second parameter, we could use the
sample variance for as an estimator of the ¢ parameter. We note here that the average
does not satisfy the relationship assumed in (3.12). in particular the expected value of
the resulting lognormal variable is not unity. Hence our estimates are biased and we
should adjust the forecast estimates to remove this indicated bias. Such an adjustment

would leave the o parameter unchanged.

This approach ignores any "aging” considerations. For example, one would expect
short-term forecasts to be more accurate than long term ones, all other things being
equal. In addition, the longer-term estimates carry less weight in the reserve forecasts
due to discounting for mortality if not for investment income.



Also, for medical payments on seriously injured claimants, one would often expect
payments in the first years after the accident to be much higher than those in later years
after the claimant has medically stabilized. In addition, it could be argued that payments
rise during the time just before a claimant's death. The approach we outlined gives
equal weight to all forecast errors in estimating the o” parameter. It does, however, have

the appeal of a direct comparison of actual versus expected results.

An altemative approach would be to consider the development of claim estimates over
time. In such an approach, as in usual incurred loss development, annual cost
estimates are gradually replaced by actual payments over the development period. If we
take this approach we must keep in mind that we want to separate economic influences

from the measurement of movement of claim costs over time.

One such approach would involve recalculating all expected incurred losses each year,
replacing expected future payments with actual payments in the annuity caiculations and
reviewing the development. This would be the most consistent way to handle changes
in economic assumptions in the valuations. However, it could be quite time-consuming,
especially in situations where there are many claims evaluated over many different
development periods, not to mention the need to maintain records of past annuat cost

estimates for individual claims.

There is an approximation, however, that would allow for the separation of changes in
economic assumptions from development in estimates from other causes. At this point
we only consider claims having annual cost estimates, since we are trying to quantify the
uncertainty in those annual cost estimates. Thus we do not want the development
patterns we obtain to be influenced by emergence of new claims, hence aggregation by

accident period would not be useful.

This may suggest grouping by report period. However, in that grouping there could be
claims reported but which do not yet have individual annual cost estimates attached.
The manner in which reserves are set on those claims could influence the review of
development on claims having annual cost estimates. Hence report period grouping

also seems to be lacking for this purpose.

We thus consider a third alternative, akin to report period. For this we group claims by
the period in which they are first case reserved, calling this a reserve period grouping. In
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the case that there are no "formula” reserves for known claims, this alternative would be
equivalent to a report period grouping.

Once claims are grouped in this fashion, we can consider the development of expected
incurred losses (calcufated using the annuity approach of (2.3)) on fixed groups of claims
using a development array format. However, we are faced with several additional
difficulties if we wish to focus on the movement and variability in the individual annual
cost estimates (the focus of the o parameter). Those difficulties arise because our
reserve estimates may be discounted and because changes in economic or mortality
assumptions will cause changes in the expected armounts during the calendar peried
containing the change and should not be considered when evaluating the variability
inherent in the individual annual cost estimates.

Even without changes in underlying assumptions, we are faced with the “unwinding of
the discount” phencmenon. By this we mean the fact that incurred losses calculated
with discounted reserves will continue to develop upward due to a decreasing effect of
discounting, even if all underlying assumptions prove exactly correct. To deal with the
unwinding of the discount we discount all amounts to the beginning of the reserve
period. This discounting includes the discounting of all payments made to date, as well
as discounting of reserves. For convenience we discount to the beginning of the reserve

period we are evaluating

An obvious alternative at this juncture would be to not discount at all. The appeal of
discounting at this point, however, is the decreasing influence of remote payments have
on the final reserve calculated. As noted above, these remote amounts are probably
subject to greater uncertainty. The author recognizes at this point the current
discussions regarding the appropriateness of caiculating reserves on a discounted basis.
None of the methods or results presented here rely on the discount rate being positive.
Thus if reserves are carried on a undiscounted basis all the above analysis will apply.
However, if the discount rate is negative (implying a significant risk-adjustment due to
uncertainty) later payments are given increasing weight in the final expected value

calculations.

In any event, however, if we were to discount all amounts to the beginning of the reserve
period and if all estimates were exactly correct we would see no development in these

amounts over time. In addition, if economic conditions (and assumptions regarding
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future conditions) remain unchanged all movement in total incurred amounts would
refiect changes in future annual cost estimates making up the case reserve estimates.
Hence we could quantify variation in those estimates over time, using, for example,
techniques developed in Hayne[5], Mack[6] or others.

A practical consideration still remains, however. In reality, assessments of future
economic conditions change over time. For example, in the 1980’s it may not have been
unreasonable to assume that medical cost inflation would remain quite high over a fairly
long period of time. However, given the situation in the late 1980's, we may be hard
pressed to justify estimates of future inflation at levels experienced in the 1980's. As
noted above, such changes would appear as calendar period effects in the development

patterns and could mislead estimate of uncertainty in claim cost estimates.

Specific changes such as those in assumed future economic conditions will affect
reserve estimates similar to those of currency fluctuations on losses denominated in
more than one currency. Borrowing technigues develeoped to handle such changes, as
presented in Duncan and Hayne[7] we can consider a type of two-step development
array.

Table 10: Example Two-Stage Development

Months of Development

Reserve 12 24 36
Year Current Prior Current Prior Current
1995 $100,000 $110,000 $105,000 $107,100 $109,500
1996 125,000 143,750 137,500

1997 175,000

Development Factors
24/12 36/24
1995 1.10 1.02

In this two-stage approach we use “Current” to denote the assumptions inherent in the
final selected analysis at the indicated valuation date. For example, $105,000 indicates
the total incurred (discounted to the beginning of 1995) using the economic assumptions
at the 1996 valuation. Similarly $109,500 represents the discounted incurred {again to

the beginning of 1995) using the 1997 economic assumptions.
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The “Prior” amounts denote the calculations using the economic assumptions from the
prior analysis. For example, the $110,000 represents the forecasts for 1995 claims,
using 1996 claim information, but using the economic assumptions inherent in the 1995
(prior) analysis. Thus the difference between $100,000 (1995 at 12 months) and
$110,000 is due to the evaluation of the individual claims and not due to different
economic assumptions used in calculating the losses. The development factors are then
comparisons between the “Prior” at one stage of development with the “Current” at the
previous stage. In effect, then, the development isolates changes in economic

assumptions from development in underlying cost estimates.

From this point we could use the variation inherent in these development factors to

estimate uncertainty in annual cost estimates, and thus the o parameter.
5.2 Estimating the r and z Parameters

The next portion of total reserves in our consideration is that for known but not-case-
reserved claims. If we assume that there is no inherent difference between these claims
and those already reported, we could assume their distribution is the same as that for

known claims and take r=1and z= 0.

However, there may be other factors considered in setting the formula reserves for these
claims. The r and z parameters can then be used to account for these factors and
resulting additional uncertainty. For example, assume the formula reserves are set only
during the first three years after ctaim occurrence, using only the most recent three
accident years, without any adjustment for trend or differences by report lag. The
following then shows one approach to estimating r and z in this case:

99



Table 11: Estimate of r and z Parameters

Loss
Accident Report Reported Standard
Year Year Losses Claims Average Deviation
1995 1995 $ 5,000 200 $ 25000 § 27,500
1995 1996 5,100 300 17,000 15,300
1995 1997 5,500 250 22,000 23,100
1996 1996 9,800 350 28,000 22,400
1996 1997 4,180 220 19,000 20,900
1997 1997 10,500 350 30,000 31,500
Total $ 40,080 1,670 $ 24000 $ 248635
Expected Without Uncertainty $ 20,000 $ 18,000
Parameter Estimates:
r 1.20
z 0.19

The estimate for ris simply the ratio of the average for the “formula” reserved claims to
the expected average (without parameter uncertainty). The estimate of z foliows from
the assumptions regarding the form of uncertainty for these formula reserves. In
particular, assuming the random variable Y is defined using the notation in Section 4.

Additional Areas of Uncertainty as:
(5.2) Y=¢X
We then have the following formula for the variance of Y:

Var(Y) = E,('Var(

<))+ Var, ([E(X[¢))

= E,(Var(X¢)) + Var.(E(X¢))

=E. (¢ Var(X))+ Var.([E(X))

= Var(X E(( Var(()

= Var(X)(Var(¢) + E(¢)") + E(X)" Var(¢)

= Var(X)(z +r*) +E(X)"z

Solving for z we obtain:
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”- Var(¥) - r? Var(X)

(5.3) :
Var(X)+E(X)’

5.3 Estimating the ¢, a, and d Parameters

The final portion of total reserves is for claims that are incurred but not reported. As with
known claims with formula reserves, if IBNR reserves are estimated using averages for
known claims we could estimate the a and ¢ parameters similar to the way we estimated
the rand z parameters as described in Section 5.2, Estimating the r and z Parameters.

We could estimate the ¢ parameter in several ways. One approach starts with the
assumption that the number of IBNR claims has a Poisson distribution with a “contagion”
parameter similar to that used by Heckman and Meyers.[1] With that assumption we
see from Appendix E that with our notation above if N denotes the number of IBNR

claims:

(5.4) E[N)=4 and

(5.5) Var(N)=A+c
Solving (5.5) for ¢ we obtain:

oo variN) -4

(5.6) .

If we estimated the number of IBNR claims using development of reported claims then
Hayne[5) provides an approach we could use to estimate total variance in the IBNR
estimates, if we are willing to assume independence among the various accident (or

exposure) years. Consider the following example:
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Accident
Year
1989
1990
1991
1992
1993
1994
1995
1996

Table 12: Example Reported Count Development

Months of Development

12

24
176
314
178
323
264
253
137
304

36
363
384
294
472
492
419
324
415

48
417
519
382
535
506
441
410

60
477
524
405
590
572
495

500
550
425
620
600

500
550
425
620

Following Hayne, and assuming independence of the age-to-age factors (to keep the

calculations simple) we calculate the natural logarithms of the age-to-age factors, their

means and standard deviations as parameter estimates for the lognormal distributions of

the age-to-age factors. Also, given independence the parameters for the age-to-ultimate

factors can then be determined from the parameters of the age-to-age factors by simply

summing the means and variances. The following shows these calculations:

Table 13: Logarithms of Claim Age-to-Age Factors

Accident
Year

Mean

Months of Development

1989
1990
1991
1992
1993
1994
1995
1996

Std.Dev.

Cumulative:

Mean

24/12 36/24 48/36 60/48 72/60
0.7239 0.1387 0.1344 0.0471 0.0000
0.2012 0.3013 0.0096 0.0484 0.0000
0.5018 0.2618 0.0585 0.0482 0.0000
0.3793 0.1253 0.0979 0.049%6 0.0000
06225 0.0281 0.1226 0.0478
0.5045 0.0512 0.1155
0.8608 0.2354
0.3113
0.5132 0.1631 0.0897 0.0482 0.0000
0.2182 0.1056 0.0473 0.0009 0.0000
0.8142 0.3011 0.1380 0.0482 0.0000

Finally, using standard formulae for the lognormal we obtain the following projected

number of claims and their corresponding variance:



Table 14: Estimate of ¢ Parameter

Accident Cumulative Parameters  Reported Forecast
Year Mean Std.Dev. Claims Mean Std.Dev.

1989 0.0000 0.0000 500 500 -
1990 0.0000 0.0000 550 550 -
1991 0.0000 0.0000 425 425 -
1992 0.0000 0.0000 620 620 -
1993 0.0000 0.0000 600 600 -
1994 0.0482 0.0009 495 519 0.5
1995 0.1380 0.0474 410 471 223
1996 0.3011 0.1157 415 565 85.5
1997 0.8142 0.2470 282 656 164.6

Total 4,297 4,906 178.6

Indicated IBNR 609 178.6

Indicated ¢ Value: 0.084

6. Conclusion

In this paper we have set out one approach that can be used to systematically estimate
variation in both total reserve estimates and in payments in individual future years. In
explicitly accounting for various components of uncertainty the actuary can adapt these
estimates to be used in DFA applications. In such applications economic conditions can
form a link between asset and liability models. Explicit recognition of the influence of
such factors on loss reserve and payment uncertainty in the liability models will prevent
“double counting” of its effect and result in potentiatly more realistic DFA models.

We have presented this as a first step. There are obviously many simplifying
assumptions even in this rather complex presentation. We hope this framework can
provide a useful starting point to build and parameterize models of the amount and
timing of insured liabilities.
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APPENDIX A

In this appendix we derive the formula for the variance for an individual life pension
claimant, formula (2.4). From our definitions we have:

puy
%
e
s
i
~—
M..
_m
N

.
m
i

™
[~
B~
A
o
)

t1s1re
= zz prla:sa
s=1r-11 max(s.s)
= Za,sa,, ZP,,
s-1r-1 r=max(s.r)
- 5
zzfza,s ,,Zp,,]+(zauanZPnJ
s\ 1=sed

We also have:

${$0a $5) 50 Son (5030,

Thus we have:
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Var(X) = E(X?) - E(X)*

%iz (zp (zp ]
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APPENDIX B

In this appendix we derive the conditional distribution of g given z observed open claims
from our population of n claims. We also review the asymptotic behavior of this
distribution.

1. Conditional Distribution of 0

We first assume that the number of claims remaining open from one year to the next has
a binomial distribution with parameter 9. Although we will assume that & will be
uniformly distributed between @ and 1, the following result holds in the more general
case when @ has with a beta distribution with parameters « and £. In this case z, the

number of “successes” (or claims remaining open) is given by:
n n
f(z) = (2)0’(1— )

The parameter 8then has the distribution:

h(6) = I'a +B)

a-t7q4 _ mA!
“Tar’ Y

The joint distribution for z and @is then given by:

k(z,8) = gz)n(6)

- [Z }ol( 1-g)"" *—FF((Z); (/;)) 0= (1- )"

n) [ n-z248-
:( ] (a+p) 01«;.-1(1*0) 7+ 8-1
z)[{a)T(B)

We will take y = 6/E(6). Now we need to get the distribution of & given cur observed

annuai closure rate, or conversely, rate of claims that remain open. From Bayes
Theorem we obtain:

k(8.z)

)= [ K(0.2)d0
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The integral in the denominator becomes:

J.;k(g.l)d(): J;(:)—[%;%ella—1(1_ ()-)n—z.ﬁ-1d0

_[(PYT(@*B) ¢t perarq  pyo-ees
_(er(a)r(ﬁ).l.ug (1-0) do

:[n] Ma+p) Tz+a)l(n-z+p)

z

(@)r(g)  Tla+p+n)

This then gives:

') e+ p) Zea-1(q  p\0-2eA-1
LerTa}F(F)O (1=0)

k(glz) = (n) Cla+ ) V(z+a){(n -7+ f8)

z

@) () Tla+p+n)
~ M(a + 0 +n)
TMz+a)(n-z+p)

n-z.01

0" (1= 9)

Thatis, k(f}z) has a beta distribution with parameters z+a and n-z+4.

2. Asymptotic Behavior

We first assume that if the portion of claims remaining open tends to a finite limit as the
sample size increases then the expected adjustment in (3.16) tends to unity. With this

assumption, then, we consider

i (n+2)5 F(n+2)r(z+s+1)
el 7 41

Mz+NM(s+n+2)

For this evaluation we will use Stirling's approximation for the gamma function for large

values of n:
r(n+ 1):,/27#)(2—)

Using this approximation we have:
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[”+2Js F{n+2)[(z+5+1) :(n_+2)5 2”(n+1)(n;1j”" /2n(z+s)(f_gﬁjz.s
Mz+N0(s+n+2) \/ﬁ(g)z 2”(5*n+1)($+*gil]s.m1

i (£+ 2]3 (n+ 1)z +s)" i mes

zZ+1 z+1

! Sen

2% (s+n+1)

_(n+2s n+1 "‘%( 1 S(Z+S]Z'§(2+S)s
Lz+1)ls+n+1 s+n+1 z

R | Faa N

2+5+m 1)

z+1 ‘Se'(

As n gets large we have;

Iim

vl

(z+1)(s+n+1)

[ (n+2)z +s) J

The limits for the other two terms foliow from an alternative definition for the exponential

n
: . r4
e’ = I|m[1+—)
-1 n

function:

We thus have:
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] n+1 acd ) N+t 3-s s senel
lim| ——— =lim| —— -
noo\ s+ 0+ 1 roe\ S+ +1 s+n+1

9
14+ — s Sens
=1 lim "1 Iim(1——) —es
n—a 1+_SL o0 sS+n+1
n

Similarly we have:

73 z
- fz+s . Z+s s
lim = lim 1+—
N—rn)] z PETE Z Z

z
= lim(1 + i) Iim(1 + i) =e°
2ol Z 2] Z

Thus we obtain:

=e’e* =1

. (n+2Y T(n+2)[(z +s+1)
|'m(z+‘1) T(z+ N (s+n+2)

n—so0
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APPENDIX C

In this appendix we derive formulae (3.17), using repeated application of the
relationships in (3.186). First, we consider (3.16). From the definitions of the conditional
distributions it is clear that

= ” zf(2|¢) g £)dzd &
= Ec(E(Zlg))

As for the variance we have
Var(Z) = [ [ 22 1(z[¢) g(g)arzdg-fz(z)2
:(E(Zzlf)
(var(Zle E(Z|£ ) -E,(E218)
E,(Var(zle))+£,(E(2e)" -E,(EZ8) )
{(Var(Z|¢)) + var, (E(2]2))

E.

1]
m

§

From our assumptions we have

Emguwlzgjb,s[“( q,n)]( 1'”]

-1 1=0

Similarly, we can compute

Var(T|g.u.w,)= Var[z X|6,u,w, J

=Y Var(X|g.uw,)

The last sum holds since we assumed the claims are independent for fixed 8, u, and w,.

We thus need only consider the variance for a single claim. We thus have:
var(X|6,u.w,) =E(X?|6,u,w,) - E(X|6,u,w,)’

From this we have
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We also have

N w ' s 2
E(X|o.u.w)’ = [z o3 b w,]
=1 s=1 r=1
(SurTwgen )
s=1 r=1 t=5
:ZZ[U Wasz' XS][UI_IW prr xr]
s.tr-1 =1
a o s Is Ea x
=ZZ[~2 wanl][ ,sZp,.][b;,zp,,)
s g-1 21 t=s t=r
_ z[zb;sb;,uznw: nw,[zp,,)[zp,,]]+[ 3. s [wi [ 50 Zp.,])
s=1\ r=% q-1 z=ri1 t=s t.r rassl g-1 2-8s1 t=s 1=r
Thus

K q-t z 1 -3 t
o YV o
+( S bLpLu?[]wl [Tw. Zp,,{kZp,]]
r=se1 a- 1 r-a+1 t-r =5
o w© min(r.5) max(r,3
=2 2 bt [Twg HW.
3=1r=1 q=1 2=mn(r 8}+1\ t-max(s,

min(rs)  max{r.s)

:iib,,b Hw IIw.|¥

st z-min(r )1

/ﬁ/-”_\
!
P
=
1 -
2
s
\;/

=g e = )



Which gives:

@ o mun(ls) max(s.s) max{r.s)-1 min{r.s)-1
Var(Tig,uw) = 333 007 1% ﬂw[ Y <1—q1v>]{"(”'"‘”' 1§t ﬁ-q:&)]

x s-tr=t q-1 z=munfr,s)e 1 t-0 t=0

We will apply the Bayesian relationships above for each variable in succession so to as

to appropriately track the various dependencies. First we remove the & dependence:

E(Tluw, )= (E(T[()‘u,w,))

In calculations, the second-to-last representation is probably easier to manage. The

variance estimate follows tco:

Var(Tju,w,) = Var,(E(TI6.u.w, )} + E,(Var(Tl0.u.w, )

From the above relationships:

From the definitions of y we have
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Var(y*) = E{y**) -E(y*)
M n+2)z+i+) S"(n+2)(z+i+1)2
_,-_0(z+1)(n+i+2)—[H(z+1)(n+i+2)]
stn+2)z+i+ N2 (n+2{z+i+1) &=

:[g(z+1)(n+i+2)J[,=s (Z+Nn+i+2) &

(n+2)z+i+1)
(z+1)(n+l+2)]

&

Again, the first representation will probably be easier from a coding point of view. This

then gives:

i

verde(roan)= 5o (o1 0-00)) (e6)-))

51 x t=0

As for the other term,

s = minfes)  max(r.s) max{s.g)-1 7 mm(/.() 1
Ea(Varme.u.w»)ie[zzz o Tz T y="1] (1-"?')11‘[”"(”) B
x 3 1 1 =0

q= z=min(r,3)+1 1
e = mn( s} max(r.s) . max(r,:) 1 mn(l Y (r.:)1
-w e Tl Tiwel (o1 -0 s -a.)
x 1 q::1 z=mn(r.s}+1 1= t=0

”ﬁ’iv: "ﬁ"w,[“ﬁ"'o—q:,>]x[E(y"""“)—E(y"*)[ (1" 0-a:1)

q-1 z=rmin{r2)«1 t=

RN

EMs

Combining these two terms we have:

Var(Tlu.w, ) = i[uﬁ W,] (Z b.(s([!‘@ qn))}?(E(yzs) - E(ys)z)

s-1 r=

m inir.s) max(r s) [max(r.s)-!

w55 e T Tlwf 1] (1—q:,>][Ea(y""‘“"")~Es<y'*)[""'”ﬁ"(1~q:,)]]

X os=1r=1 Z=min(r,s)«1 t=0 1=0

Now removing w, from the terms:
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(x5 s(f fo-enferte o)
b,su[“o a3) ety e{TTw
f(1-a2) et

szt (n +2)( 1
-y ,,“u( (1-a;) JH(M_Z_)
x s=t t-0

ia(Z+N(n+i+2)

Again the second-to-last term may be easier to work with computationaily. This last item
follows from the lognormal assumptions regarding w,. In particular these assumptions

imply that:

(ﬁ w,] ~lognormaf((- 1) pst?).p*s7?)
1

r=

Thus the expectation:

E([ﬂw] ]—exp( Yspr?) ++sp’c?)

For p = 1 this gives an expectation of unity, giving the above formula. Similarly for the

variance term:

Var(Tlu) = Var,, (E(T]u,w, )) +E,, (Var(‘l’(u,w, ))

Taking the terms one at a time:
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vec, (& Tas) - Ver, (50, [H( )J(unw )E(y )
8l e
- Soven (11w Jei [0 oty
el obor i
Again, rom th lognormal assumptions
vl ({1 | {11

= exp((— 12sr?)+ %(45#]) - exp(iz((— 3 se?)+ %82'2))
=exp(st?)-1

We thus obtain:

var, (E(Tlu,w,)) = g[zx: b,‘s[g[ (1-qx ))u E(ys)]Z(exp(Srz) -1)

As for the second term we have:

e (% b([n ]] E(y')z)
XYbe ﬂ I(‘[ . ](E(y 1 ]

Sl oz [n i) (=)-°)
EE e T ][n o)) T -

Now from the lognormality assumptions
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[we Tiw. ~ |ognormal((—%)(Zmr2 +(n-myr*ldmr +(n- m)rz), thus
q Toml

ﬁwg ﬁw, ~ lognormal{- +)(n -+ m)r*}(n + 3m)r2)

qg-1 2-ms1

This then gives

E[ﬁ w? ij,] = exp{(- P(n+m)r? )+ H{(n + 3m)r2))
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Adding these two terms together we obtain:

5»1

Var(Tju) = uZ;[Z b,'s(

,I'O

-q. )]E(y J exp(sr?)- 1)

..,uzsz;exp(sr )[S“b ([‘[( -q; )]J (Elv™)-y))

x s=1+01 !

Finally we eliminate u from the formulae. First

17

ttan(rs) -

+u° ZZZDSb"exp min(r,s)r (ma( «1 a; ][E(ymams,)_ ( /s)(
o}
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E(T) = E, (E(T1u))

e, 25 enaf [ 0-02) )

=0
S[

(1- q,,)je(w)au’)
(

( -qy )]E(ys)
As for the variance formula we have:

1
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Z
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si{n+2)(z+i+1)
Z )JH (z+n+i+2)

0

&

Var(T) = Var,(E(Tju)} + E,(Var(Tu))

Again we consider the two portions separately.

Var, (g(Tlu)) = Varu[z i (fi ]E(,V )]

= Var, [uZZbS(S [(- q,,)JE( )J

X 5=1 =0
-1 2

= (;;b“(f_gu - q;,)]E(ys)] Var(u)

Since v is lognormal with mean 1 we have
Var(u) = exp{c?) - 1
We thus obtain:

s-1

Var, (E(Tju)) = [ZZ b;[{ I (1- q;,))E(ys)T(exp(a?) -1)

As for the second term we have:
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uZ[Zb( (630 el foels?)
E,(Var(Tlv)) =E,| +u ZeXp(s )[Zb [ (1-g; )]]( (y x),E(ys)?)
+u g;;u,,b,,exp(mm .$ )(mﬁl-‘@—q:.)]{E(ymw.s))_E(yn,)[m*"ﬁ"(1—q;,)]]

ez fj- et emtsr)
+E(u2)§exp(s#)[gb;[ﬁ(1 -q; ))T(E(Y”) -E(y")')
CE{u? )ZZbe exp(min(r, s)72 )[mﬁ“U - q;,))[e(y”a“"’)) - E(y"‘)(mﬁJ ‘(1 -, )}]

Since v is lognormal, i.e.

u ~lognormal(-$o*,o7)
then u? is also lognormal and
u® ~lognormal(-o” 40 )
Thus we have
(o) = oxl{-o7)  40)) = 0(o)

This then gives:
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E, (Va r(T]u))

()Z[Zb {Fio-a) ey ](exo(s )-9)

om0

vexp(a”). 5 3 bt explmintrs)r )[ 1-a. IE(y )[ﬂ(w)ﬂ
gar{slivfor gl
onfer)Soolor'| 201 [r-0)] e07) - omlo?}S ot )[Zb' ft-a)) e
veole L5 S0 exrirar| 1] I )ty T -
- o) (12| (et )t ) el

vexplo? )S_;;;b,,b"e xp{min(r. s)r 2)[”",'(';1’“(1-q:,)I'e(y"’"’)-e(y,.s)[""”ﬁ”(1-q;.)n

Finally putting the two terms together we obtain:

s S5 S e )
¥ s=1r=1 =0 -0
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APPENDIX D

In this appendix we show the derivation of formulae (3.19) for payments in a particular
year. As with the total mean and variance we begin with the mean and variance for fixed
parameter values and then, step, by step, remove dependency on the various
uncertainty parameters. Without any uncertainty and dropping the explicit / subscript,
(2.7) and (2.8) give:

E(T,[Certainty) = Za,SZp,,

Var(T!Certainty) = Zafs[}: P, ][1 - Z o ]
x ts i=s

Thus, incorporating cost escalation, discounting, and our uncertainty variables, we have:

As with the aggregate,

Var(T,|0.uw,) = Var[z XJ0.uw, )

=% Var(X |duw,)

The last sum holds since we assumed the claims are independent for fixed & v, and w,.

We thus need only consider the variance for a single claim. We thus have:
Var(X,|0,u,w,) = E(XZ6,u.w, ) - E(X,|0.u.w, ¥

Breaking this into parts then we have:

e{cinu)= (el | (T (1-40)

-0

and
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This then gives:

5

Var(T.|6,u.w,) = Z [bISUIj ws)z[y‘ﬁﬁ -5 ))[1 v (1-q; ))

1=0 t-0

We now use the Bayesian relationships to work down the conditionai variables. First we

remove the 0dependence.

XAy (R )j(uﬁw,)ﬁ (022)z i+

o (Z+ Y (n+i+2)

In calculations, the second-to-last representation is probably easier to manage. The

variance estimate follows too:
var(T,|u,w,) = Var,(E(T|6,u,w, )) + E,,(Var(T$|0,u, w, ))

From the above relationships:



Var, (BT 0.uw,)- Var{); e[ fo-a Tl w]]
e )
e s

From Appendix G we have:

n+2)z+i+1) n+2§z+i+1)

(n+2)(z+i+1)) 23
Var(y) [H(z+1)(n+/+2)}(H(z+1)(n+/+2) Hz+1)(n+/+2)J

Again, the first representation will probably be easier from a coding point of view. This

then gives:
Var, (E(T,|0.u,w,)) = (un W, )2[leb;s(ﬁ(1 - q;,)))z(E(y") - E(y‘)g)
As for the other term,
e veriow) - 5 sl o [ o)1= -9
ot fdetie o))
st (H- e - )
Combining these two terms we have:
Var(T,|u.w, ) (unw ) ( (Q( )]]2
o5 (ssal T (F100-02) o) - - )

Now removing w, from the terms:



E(T.Ju) = E, (E(TeJu.wi))

=Zb.;u('s (1-q;,))s f(n+2)z+i+1)

o (z+n+i+2)

Again the second-to-last term may be easier to work with computationally. This last item

follows from the lognormal assumptions regarding w, as in Appendix C.

Simitarly for the variance term:
Var(T,|u) = Var,, (:E(Ts|u,w, )) +E,, (Var(Ts]u,w, ))

Taking the terms one at a time, using the lognormal relationships in Appendix C:

Var,, (E(Ts|u.w, )) = Var,, {[uﬁ W,jzb 5(5 1 (1-95 ) )J

x 0

van, (I S22 f -0 b))

[zb,-s -] ve{ )

x t o r-1

_ [ (
[z fr o)) (o)

2 1=0

As for the second term we have:
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Adding these two terms together we obtain:

Var(T ju} = L [”(1 q; }JE(y ] exp(Sr) }

s 26 [0 o ]]( ) ey )

0
+7b u” exp(st’ (HU g ))( ) Ely* )(n(
[}
Finally we eliminate v from the formulae. First
E(7,) = E,(E(T.w)]

- Eu[; b:su[frj (1-g, ~)}E(y5)'J
1

o[- a2) ey e
= Zb,}[ﬁ[_‘] 45 JE(y"
zol [l TG

As for the variance formula we have:
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Var(T,) = Varu(E(Ts]u)) + EU(Var(Tslu))

Again we considet the two portions separately.

Var, (E(T,|u)) = Var, [Zb u[ ]E(y ]
)

= Var [qu u( 1 q:

(51 JVa,
1z J )

As for the second term we have:

Eu(Var(Tlu)) =E,

[): b;s(ij(j - q;,‘)}JE(yS))z(exp(sr’) 1)
+exp(sr2)u2(z':b;s[ﬁ(1—q;,)le(E(yzs)—E(ys)z)
+;b;§u2exp(sf)[ﬁ(vq;,)][e(w)-E(y“)[ﬁu—q;,))]

- o[ 1) o) otor’)
+E(u® exp(sr? )(Z b:s[ﬁﬁ -a;, )DZ(E(Y“) - E(ys)z)
()3 exp(srz)[ﬁ(w:f)][E(W) - E(y”)[fjﬁ-q:l)n




I iginal
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renfo”)S 63 exsfsr?) 11 J(E(y - -4
- expla?) ( ( J ))
vesslo?)S iz exelse” [ (1-4 )[( -Ey? )( fjo-a))

Finally putting the two terms together we obtain:

Var(T,) - [Z b:{ﬁ@ —q;)]E(y’)Jz(exp(ff?)“ )

+exp(az)(gb;s[ﬁ(1—q;,)]) (ool ey)’)
exo{e |3 o exelse” - )](E(V ~Ey’ )[H“ e )J
-(zi{fo- ))} (explo)exelss?)E(y)-(y*) )
ol 65 o) [ - )[EM )(““ )

127



APPENDIX E

We will calculate the mean and variance of T in stages. We first consider IBNR claims.
As with Heckman & Meyers, Algorithm 3.3 gives:

E(N) =E,(E(Nz)) =E,(r) = AE,(x)= 4
and we also have:

Var(N) = E, (Var(Nly)) + Var, (E(My))
=E,(Ax)+ Var,(Ay)
= AE,(x)+ A Var,(y)
=A+ck

To ease the notation in what follows we will assume that the claims

Xoeore Xugozi oo Xnon,.n a@re independently selected from a distribution with mean

E(X) = E(T,|Certainty) /N,
and variance
Var(X) = Var(T,|Certainty) /N,

This last relationship follows since
. Na Ne
Var(T,[Certainty) = Var[z X,|Certainty] = Var({X |Certainty)
-1 i

Now fixing B, ¢, and y we have:

E(T|,U,y.g”\) = EN(E(ﬂ(IX! + Xyt Xy, + ‘:(XNR«‘!+'“+XNR-N5 ) + 7(:XNR-/‘/E~1+‘ "+XN~>Nst))))

Sl IR SO S )|

= EN(/}(NR E(X) + (N E(X) + WE(X)))
= B(Ng +¢Ng + pA)E(X)
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For the variance in this case we have:
Var(T|p.y.{)=E (Var TIB.7.¢. N“;)+ VarN(E(np r.d N
[Var[ ZX +£ZXN ,+YZX~. Nyt J

J
vl B S x|
z

B )

+Var~[:E[E(ixr } . E(cZ XN,‘,j+E[ri‘ XNJ}]

= E,(#(Var(T:Certainty) + No¢? Var(X) + Ny ? Var(X)))

+Var (BN E(X} + NeGE(X) + Ny E(X)))
= BN, Var{ X+ Noo™ Var(X) + Ep{N)72 Var( X)) + £757 E{X)" Vary(N)
= PH(Ng + No&™ + 277 Var(X) + g7 E(X Y (2 +c4?)

Similarly we have, for a fixed values of gand £ we have:

E(TI5.) = E, (E(T18.7.£))
=E,(B(Ny +¢Ns + 7A)E(X))
= PNy + Ny +ad)E(X)

For the variance in this case we have:

var(Tip.¢) = E,(Var(Tlp.7.¢)) + Var, [E(T|8.7.¢))

H(Ng + No¢® + 372 )Var(X) + g2 E(X) (2 + 02 )} + Var, (B{Ng + N + 74 )E(X))

II

v

E,

n

2Ny + Npg? JVar(X)+ p 2 F(E(XY (2 + c&”) + A var(X))) + Var, ({(N, + Ny + yA)E(X))

1i

YNy + No¢?)Var(X) « (o +a? )8 (E(X) (4 + 2 )+,1.Var(x))+ﬁzfg(xfd

1

E(
E (£
s
B2(Ne + Ngg?)Var(X) + E, (7 * )5 ([E(X)(2 + c22) + 4 Var(X)) + g* 2 E(X)" Var, ()
B
BN+ Ngg? + (0 +a?)a)var(X) + ((d + a2} 2 + o) + FA)E(X)’)

n
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Now for a fixed gwe have:

E(718) = E,(E(TIA.0))
=E(B(Ng + N, +7A)E(X))
= B(Ng + Ny +aR)E(X)

The variance calculation also follows:

var(T]p) = E-(Var(Tl4.)) + Var{E(T]4.0))
E{ F((Ne + Nog? +(d + a*)2)Var(X) + (d + 82)( A + o) + Azd)E(x)’)) + Var,(A(Nq + N, +aA)E(X)
((Ne +N,E(¢?)+(d +a ) 1)var(X) + (0 +a?)(2 + e2?) + Pd)E(X)") +E(X) N2 5* Var,(¢)
(Ne + Na(z +72) +(d +a%)2) Var(X) + ((d + &* {2 + c2*) + 2A)E(X)") + 28 N2 E(X)’
(

(N + Na(z+72) + (d +@%)2) Var(X) + ((d + &7 {2 + 022} + 2% + ZNZ)E(X)*)

Thus, combining these resuits, we have:

E(T) = E,(E(T15))
= E,(B(Ng + N + aA)E(X))
=E,(BYNg + Ny +al)E(X)
=(Ng + Ny +ad)E(X)

Finally we have:
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Var(T (Var(T] )) + Var (E(T],B))

( ((Ng +No(z +12) +(d + a*)) Var(X) +((d +a? ) 4 + o) + 2o + zNg)E(X)z))
+Var,(B(N, + Ny +a}.)E(X))
=E, (82 Y(Na + No(z+ 1)+ (@ +@)2) Var(X) +((d + a*)(2 + c2) + P + 2N JE(X)')
+Var,(B)(Ng + Ny +a2) (XY’
= (b+(Ne + Ng(z + %)+ (d+ %)) Var(X) + ({0 + 872+ cA?) + 22 + N3 )E(X)')
+b(N + N, +aA) E(X)
=(b+ )Ny + Na(z +77) +(d +a%)2) Var(X)

{0+ W(d+a?)(A +cA)+ Ao+ 2N )+ B(Ng + N + a2)’ JE(x)’

Thus, in terms of estimates for case reserved claims without parameter uncertainty:

Var(T,[No uncertainty)
NR

var(T) = (b +1) (N + NB(z + rz) + (d + az),l)

E(Tz|No uncertainty) ’
NR

H{(b+Y(d+a°)(A+ca)+ Fd + ZNG) + b(Ng + N, +a;¢)’)[

Ne(z+r?)+(d+a)a
Ng

=(b+ 1)[1+

]Var(TR|No uncertainty)

R

(b+1(d A+ch)+ Ad + N2 : 2
J{ +(d+a’) N+2C )+ Ad + 2NG) b(ﬂrNBN;aA] ]E(TR[NO uncertainty)’

131






Modeling Parameter Uncertainty in
Cash Flow Projections

Roger M. Hayne, FCAS, MAAA

133



MODELING PARAMETER UNCERTAINTY IN CASH FLOW PROJECTIONS
by

Roger M. Hayne

Abstract

In order to be complete dynamic financial analysis (DFA) models should deal with both
the amount and timing of future loss and loss adjustment expense payments. Even
more than asset cash flows, these future payments are very uncertain. However, even
with this uncertainty, one would expect to see payments that are somewhat stable from
year to year.

This paper presents an approach that can deal with this seeming contradiction. By
separating total uncertainty in future cash flows into its parameter and process
components we present a method to model future liability cash flows that maintains the
desired total uncertainty characteristics. However, it will also result in specific payment
flow "paths” having less variation from year to year than would a completely random
sample from the expected total payout would indicate.

There is also a companion of this paper, titled “Estimating Uncertainty in Cash Flow
Projections” that considers the problem of estimating the distributions, including separate
consideration of process and parameter uncertainty.
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MODELING PARAMETER UNCERTAINTY IN CASH FLOW PROJECTIONS

Introduction

With the increased focus on dynamic financial analysis (DFA) as a tool to assist in
quantifying the financial strength of insurers and other risk bearing entities, comes
increased demands on tools for use in those models. As with reserves, insurer cash
outflows representing those liabilities are subject to considerable uncertainty. Capturing
and appropriately modeling this uncertainty will greatly enhance the accuracy and
reliability of DFA models.

The purpose of this paper is to outline a simple approach that can be used to capture
various sources of uncertainty and incorporate them into stochastic cash flow models. A
simple example should help illustrate this point.

Consider two insurers, both with expected reserves of $30 million, assets of $110
million, ignoring interest, and experiencing the following future payment possibilities:

Table 1: Distribution for Stable Insurer, Inc.

Year
Probability 1 2 Total
50.0% $80 340 $120
50.0% 40 20 80
Expected $60 $30 $90

Table 2: Distribution for Random Insurer, Inc.

Year
Probability 1 2 Total
25.0% $80 $40 $120
25.0% 80 20 100
25.0% 40 40 80
25.0% 40 20 60
Expected $60 330 $90

Each insurer experiences the same distribution of possible payments in each year.
However, the first insurer has a 50% chance of becoming insolvent at the end of two
years while the second has only a 25% chance.

The primary difference is that Random Insurer is allowed to experience all possibie
“futures” with either $80 or $40 paid in the first year and either $40 or $20 paid in the
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second. Stable Insurer is only allowed two possible “futures,” the best and the worst. As
we will see, these are simple examples of two approaches to modeling liability cash

flows.

If historically the second year's payments were always half of those in the first year, then
it could be argued that Stable Insurer’s pattern is closer to “reality” than that of Random
Insurer. The challenge, then, is to develop methods of modeling liability cash flows that
capture the full variation that can be expected in future payments, without “unrealistic”
swings in payments from year to year. That is the purpose of this paper.

Types of Uncertainty

There are many ways to categorize uncertainty. Here we will divide uncertainty faced by

actuaries into three categories:

1. Process — uncertainty present simply from the random nature of a particular process,

even if the process itself is known with certainty,

2. Parameter — uncertainty that parameters selected for a particular model accurately
reflect the reality to be modeled, and

3. Specification and/or Model - uncertainty that the models selected themseives
accurately reflect the reality to be modeled.

Sometimes the third category is divided into two parts, model and specification where
specification refers to the selection of distributions and model refers to the selection of
the underlying model itself.

For example, if we throw a fair die, even though we know the underlying physical model
with (relative) certainty, there is still an equal chance of each of the six sides showing up.

This is an example of process uncertainty.

If, however, the die may be “loaded,” but that we know we are observing the throw of a
die, we have added parameter uncertainty to the situation. Here we know we will
observe throws from one through six, but with one result potentially having higher
probability than the others do.
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Finally, we could be observing a series of digits from 1 through 6 without knowing the
underlying process generating the series. We can still use a loaded die model.
However, there is the possibility that some other process is generating the digits that
cannot be modeled using a loaded die. For example, the digits could be the last digit
from a Geiger counter reading with 1 substituted for 7 and 8 and 6 substituted for 9 and

0. Here we have specification or model uncertainty.

Modeling Process Uncertainty

These categories of uncertainty are increasingly difficult to estimate. Reserves for
insurers, or other risk bearing entities, are often set using non-statistical actuarial

forecasting methods, including broad application of “actuarial judgment.”

Even when statistical methods are used, the information regarding the resulting
uncertainty is usually limited to conclusions within the framework of the model. For
example, two different statistical models may result in two different probability ranges
about their estimates with possibly little or no overlap in the ranges." The same
statistical model applied to two different sets of data, paid and incurred losses for

example, could even give widely different results and ranges.

Statistical projection methods also tend to concentrate on “squaring the triangle” for a
single set of data, usually paid losses. As Berquist and Sherman?® and many other
papers dealing with reserve estimation indicate, there is valuable information in many
different insurer statistics. Claim count statistics are extremely valuable in a reserve
analysis. Frequency and severity methods are often less volatile than development
factor (or link ratio) methods for less mature exposure periods. In addition, claim counts,
in conjunction with other insurer data, can help identify changes that could affect one or
another projection method. For example, changes in average case reserves per open

claim could signal a change in relative reserve adequacy thus affecting projections

! See. for example, Transcripts of the 1992 Casualty Loss Reserve Seminar, pp. 1123-1150.
This Advanced Case Study presented two actuaries with the same set of data and asked them to
develop reserve and variability estimates. One estimated reserves to be $239 million with a
$12.7 million standard error. The other estimated reserves to be $178 million with a standard
deviation of $10.7 million.

? Berquist, J.R. and Sherman, R.E., “Loss Reserve Adequacy Testing: A Comprehensive,
Systemaltic Approach,” Proceedings of the Casualty Actuarial Sociely, LXIV, 1977, pp. 123-184.
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based on incurred loss development. Similarly, changes in the rate at which claims are
closed will affect methods based on paid losses. The author is unaware of any statistical

method that incorporates all these items of information in estimating ultimate losses.

The collective risk model offers a rather easily understood framework to model insured

uncertainty. Briefly the collective risk model is based on the following algorithm:
Algonthm 1 — Collective Risk:
1. Randomly select N, the number of claims that will occur

2. Randomly select N independent claims, X, X.,..., X, from the selected claim size

distribution.
3. Totalthe amounts T=3 X .
[

4. Repeat steps 1 through 3 ‘many” times.

With a minimum of additional assumptions we can derive some very useful relationships
between the distributions of the number (N) and size (X) of individual claims and that of
the total. In particular, if sufficient moments exist for the various distributions and if all

random variables are independent then we have:

1 .
w Var(T) = E(N)Var(X) + Var(N)E*(X)

Similar formulae also hold for higher moments *

The coliective risk model also seems to be a logical choice to model process uncertainty
in the distribution of insured losses. There has been considerable attention paid to this
basic model in the literature and several algorithms have been developed to calculate

the distribution of T given distributions of N and X. Probably of greatest interest to

3 See, for example, Mayerson, A.L., Jones, D.A., Bowers, N.L, (Jr.), “The Credibility of the Pure
Premium.” Proceedings of the Casualty Actuarial Society, LV, 1968, p. 179 for these and
formulae for third and fourth moments.
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practicing casualty actuaries are references by Heckman and Meyers® Panjer and
Willmot,® Robertson,® and the text about to appear by Klugman, Panjer, and Willmot.”

The attractiveness of the collective risk model, aside from its description of the insurance
process is that it breaks the problem of estimating process variation into more
manageable parts, i.e., to estimating the distribution of claim counts and the distribution
of the size of claims. As with any model, the collective risk model is an approximation of
reality. Many actuaries are concerned with some of its inherent assumptions, not the
least of which is the assumption of independence among claims and between the claim
size and the claim count distributions. Recent work by Wang®, sponsored by the
Casualty Actuarial Society, addresses this issue. Although derived independently, the
methods here follow closely with those presented by Wang.

Some Approaches to Parameter Uncertainty

Probably the most intuitive approach to modeling parameter uncertainty would be
Bayesian. Generally one would assume the distribution we wished to model, that of
aggregate losses, had a particular distribution with one or more of its parameters being
uncertain, itself having a separate distribution. There are many distribution pairs of
conditional and prior distributions that mix to closed form mixed distributions. In the
appendix to his chapter in Foundations of Casualty Actuanal Science, Venter® for
example has assembled of useful distribution pairs.

“ Heckman, P.E., Meyers, G.G., "The Calculation of Aggregate Loss Distributions From Ciaim
Severity and Claim Count Distributions,” Proceedings of the Casually Actuarial Society, LXX,
1983, pp. 22-61

5 Panjer, G., Willmot, G. Insurance Risk Models, Society of Actuaries, Chicago, 1992

5 Robertson, J.P., *The Computation of Aggregate Loss Distributions,” Proceedings of the
Casualty Actuarial Sociely, LXXIX, 1992, pp. 57-133

7 Klugman, S A., Panjer, HH., Willmot, G.E., Loss Models: From Data to Decisions, John Wiley &
Sons, New York, 1998.

& Wang, S.S., “Aggregation of Correlated Risk Porifolios: Models & Algorithms,” Casualty
Actuarial Society at www.casact.org (part of the Committee on Theory of Risk page of the
Research portion of ihe web site).

? Venter, G.G., “Credibilty,” Foundations of Casualty Actuarial Science, Casualty Actuarial
Society, 1992, Chapter 7, pp. 375-483.
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One example here may be helpful. Suppose X has a lognormal distribution with

parameters 1 and o? By this we mean that X has the probability density function:

exp[r- %(*2{; /1)2]

2 flx)= —— S
@ (x} <oTon

It is well known that the random variable X is lognormal if and only if the random variable
InX is normal. In this parameterization the variable inX has a normal distribution with
mean  and variance o’. If, now, we assume y is uncertain but has a normal distribution
with mean m and variance 72 then the random variable X is still lognormal with
parameters m and o2 We note that the inclusion of parameter uncertainty in this way
has the effect of increasing both the mean and variance of the distribution. This follows

from the following results for a lognormat distribution with parameters 4 and o2

E(X) = exp{u + 10?)
(3)
Var(X) = exp(z;/ + 02)(exp(0'2) - 1) = Ez(X)(exp(az) - 1)
As an aside, the reader should note that Venter's parameterization of the lognormal
distribution differs from what we use here. The first parameter in our parameterization is
the mean of the normal distribution of InX whereas Venter's parameter is the exponential
of this amount. Thus in the appendix Venter assumes the prior distribution of the
parameter is lognormal to conciude the mixed distribution is lognormal. Because of the
log transformation between the two paramterizations, and the fact that a variable X is
lognormal if and only if the variable InX is normal, the two results are actually identical.

Thus one intuitive way to model parameter uncertainty would be to select a pair of
distributions (lognormal and normat in this example), use the iognormal to model
process uncertainty (as an approximation to the results of a collective risk model).
Parameter uncertainty could then be built in by allowing the 4 parameter to have a
distribution of its own. In this paper we will label method this the Bayesian approach.
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Another approach to modeling parameter uncertainty is discussed in Heckman and
Meyers." In their approach they separate parameter and process uncertainty by use of
additional random variables. The foliowing is a slight modification of the algorithm they

present:
Algorithm 2 — Refined Collective Risk:

1. Randomly select N, the number of claims that will occur from a distribution with mean

A and variance A+ci2

2. Randomly select N independent claims, X, X,,..., X, from the selected claim size

distribution.

3. Randomly select a mixing parameter £ from a distribution with mean 1 and variance
b.

N
4. Total the amounts and divide by S, T = (Z X, ]//3
i=1

5. Repeat steps 1 through 4 "many” times.

Actually, in Heckman and Meyers the authors assume the claim count distribution is a
mix of a Poisson prior distribution with a gamma uncertainty distribution for a negative
binomial posterior distribution. Their results, however, generalize to situations where the
parameter ¢ is negative, which does not make sense in terms of mixed distributions.
The algorithm they present for calcuiating the aggregate distribution does require either
a Poisson, binomial, or negative binomial claim count distribution, but the results we use

here do not need that assumption.

The primary result we will use, however, is that given Algonthm 2, and assuming all the

distributions are independent from each other, then we have the following relationships:

E(T) = AE(X)

@ Var(T) = A(1+ b)E(X?) + (b + ¢+ bc)EX(X)

'® Heckman, P.E., Meyers, G.G., ibid
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We note that these formulae reduce to formulae (1) in the case that b=0. Rearranging

terms in the variance formula we obtain:
Var(T) = AE(X?) + BAE(X?) + PCE*(X) + bE*(X) + A’bcE*(X)
(5) = AE(X?) + ZcBX(X)+ b(2E(X?)+ 2cE*(X) + 2 E¥(X))
= Var(T|p = 0) + b Var(Tib = 0) + 2 E*(X))

Which can be used to obtain the following useful relationship for the coefficient of

variation (ratio of the standard deviation to the mean) of the respective distributions:

(1) =g
Var(T}b = 0) + b(Var(T|p = 0) + #*E*(X))
(6) i E*(Tlp=0)

~ Var(T|b = 0) . Var(Tib = 0) . PE(X)
TE(Tp=0) | E(Mb=0)  (aEx)
= cv¥(T|p = 0)+ b{cv?(Tib = 0) + 1)

Solving for b we obtain:

_ov(T)-ev¥(T|p = 0)

" Vi (Tl = 0) 1

Recalling that b=0 refers to the situation with only process variation, this formula
provides a way to model parameter uncertainty given knowledge of the coefficient of
variation for the final distribution and that for the distribution with only process
uncertainty.

From this point on we will assume that we know the various means and variances of the
distributions with and without parameter uncertainty and concentrate on practical

considerations in modeling these sources of uncertainty.

Moving to the example with a lognormal prior distribution mixed with a normal
distribution let us consider two different ways of modeling the amounts. We will identify
two methods to generate random loss amounts.
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Intuitive Method:

1. Randomly pick vfrom a normat distribution with mean m and variance 2

2. Randomly pick X from a lognormal distribution with mean v and variance o
"Smarter” Method:

1. Randomly pick X from a lognormal distribution with mean m and variance o™ 2

As we saw above, both methods give exactly the same result. The intuitive Method is
simply the Bayesian statement of the problem and the Smarter Method is the posterior

distribution.

A Dilemma?

Consider a very simple extension of our Bayesian type of algorithm with a lognormal

mixed with a normal but for multiple years.

Algorithm 3, Multiple Year Bayesian

1. Assume X, has a lognormal distribution with parameters g, and o2, with 2 known

but

2. u, =m3 where B has a normal distribution with mean b and variance 72, with both

b and r?known.

Here the parameter g provides “global” parameter uncertainty. The above discussion

leads us to conclude that each X, has a lognormal distribution with parameters bm,

and o2 +m?r?. Thus we are tempted to use either the Intuitive Method or the Smarter

Method in modeling. In this case we would have the methods described as:

Intuitive Method:
1. Randomly pick 8 from a normal distribution with mean b and variance 2.
2. Randomly pick X, from a lognormal distribution with parameters 4, =m,8 and o?.

“Smarter” Method:
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1. Randomly pick X from a lognormal distribution with parameters bm, and o2 +mirt.

1

Our reasoning above could lead to the conclusion that the two methods give the same
answer. In fact the distributions for each year are identical. However, consider the
example where m=0.25, all the ¢”=0, and b=r=1. The following graphs make it clear

that, at least in this case, the two methods give considerably different answers:

Figure 1: Intuitive Method, First Example
3.5 4
3.0
25 | /
2.0 /
15 ~/’/
1.0 4

0.5
0.0 T 1

Year

Figure 2: “Smarter’ Method, First Example

1.0

0.5 A

0.0 T —
1 2 3

Year

Even though each year has a lognormal distribution by itself, the structure does not
imply that each year is independent of the others. That is the major difference between
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the Intuitive and "Smarter” methods. It is also the difference between Stable Insurer and
Random Insurer in the Introduction.

The above statement of the multiple year algorithm may lead to some ambiguity
regarding the role of the uncertainty parameter. The following restatement may help
clarify the ambiguity and provide us with a more explicit means to move Algorithm 2 to a

multiple year setting.
Algornithm 4, Refined Multiple Year Bayesian Algonthm

1. Selectpwith 0<p<1.

2. Set y, =m,+r,0'(p), where ®(p) represents the inverse normal distribution, that

is the value such that P(Z <v(p)z ~ N(O,1)) =p.

2
1

3. Randomly select X, from a lognormal distribution with parameters x4, and o?, o

are known.
4. Repeat steps 2 and 3 for each year to be modeled.
5. Repeat steps 1 through 4 “many” times
We recognize a slight inconsistency in the parametizations of these two versions.

Strictly speaking we should have x4, = m,.(b + r,.tD"(p)) to be consistent with the first, but

this parameterization leads directly to the conclusions for each year individually exactly
paraiiel to those of the single year case.

Implications in Modeling Liabilities

Liabilities for most lines of insurance are characterized by fairly (a very relative term)
stable payments from year to year. Obvious exceptions are lines subject to catastrophe
losses and small liability books with large loss exposure. Even large claims may have
extended settlement provisions, affecting the timing and variation of future payments.

If we consider only process variation we see that the law of large numbers soon comes

into play. From (1) in the case of the collective risk model we have:
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covi(T) = \[/;%S'T))
_E(N)Var(X) + Var(N)E*(X)
) E*(X)EX(N)
_ Var(X) . Var(N)
EXX)E(N)  EXN)
o (X)
E(N)

(8)

+ovi{N)

If we make the usual assumption now that A has a Poisson distribution with variance

equal to the mean then this becomes:
(9) cv¥(T)=

Thus, no matter how volatile the claim size distribution is, the total amounts paid could
have arbitrarily small relative variation simply by having E(N) sufficiently large. We note
the law of large numbers is a special case here where the variance of the number of
claims is zero. The same result will follow for any ciaim count distribution whose

standard deviation grows more siowly than the mean, more precisely, whenever
(10) Var(N) = o(E(N)) as E(N) - o=

The power of the law of large numbers should not be underestimated. Even if the claim
count distribution were fairly “noisy” with a standard deviation of 5 times the mean, it
would only require a Poisson distribution with 100 claims to result in the standard
deviation of the total to 51% of the total. With 5,000 claims, not unusual for a fairly large
insurer, the standard deviation reduces to 7% of the total. If one would use a rule of
thumb that results beyond two standard deviations “rare” in this case it would be rare for
actual payments to deviate by more than 15% of the mean.

We recognize that ‘fairly noisy” is a soft term. Many would argue, and quite
persuasively, distributions that are interesting to actuaries may not have finite standard
deviations, or maybe not even have finite means. However, with policy limits usually in
effect, distributions losses faced by insurers usually have finite means and variances.
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The conclusion we reach is the same reached by Meyers and Schenker.!" For insurers,
and larger self-insured entities, the {aw of large numbers gives process variation much
less influence on the overall variation of results than other sources of uncertainty. Thus
parameter uncertainty and model or specification uncertainty are more significant issues

to insurers than simple process uncertainty.

Realistic modeling of liabilities in a dynamic financial model then must balance two
realities. First payments for an insurer are often fairly consistent from year to year.
Second the liabilities for insurers or seff-insureds often have a high degree of

uncertainty, often well beyond that which can be attributed to process variation alone.

One way to look at the problem is to consider payments as falling along various future
“paths” with relatively little variation in payments from year-to-year on any given path but
with potentially widely varying paths or futures. If this is actually the case, modeling
future cash payments should be relatively straightforward. We could assume that
variation in payments from year to year would be caused by process variation whereas

other sources of uncertainty reflect varicus possible future paths.

Consider, for example, Algonthm 4 with a multiple year runoff of reserves, as given by

the following table, assuming no parameter uncertainty:

Table 3. Refined Example Data
Year E(X) E(N)Y EM) cv(T)

1 5,000 1,000 5,000,000 0.100
2 11,000 300 3,300,000 0.155
3 13,000 150 1,950,000 0.183
4 20,000 50 1,000,000 0.255
5 25,000 20 500,000 0.316
6 30,000 7 210,000 0.423
7 40,000 1 40,000 1.031

if, now for simplicity, we assume that the payments in each year have lognormal
distributions, but with “global” parameter uncertainty as described in Algorithm 4 with

7, = 0.5 we can then view alternative future reserve runaffs in the following chart:

" Meyers, G.G., Schenker, N., “Parameter Uncertainly in the Collective Risk Model,” Proceedings
of the Casualty Actuarial Society, LXX, 1983, pp.111-143.
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Figure 3: Two “Paths” with Probability Levels

Here the two sets of lines present two of the many possible “futures,” corresponding to
two different probability levels for the parameter uncertainty. The solid lines indicate the
simulated reserve runoff, while the dotted lines represent the 5% and 95% probability
bounds accounting only for process uncertainty as defined in the above table. Thus, for
these two selected parameter uncertainty levels, we would expect 90% of the possible

futures to lie between the dotted lines.

The following graph shows the global 90% range with several simulated runoffs (using

our “Intuitive” approach).

Figure 4: Refined Example, Intuitive Method

To show the difference with the “Smarter’ method the following is a graph showing the

fully random lognormal approach:
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Figure &: Refined Example, “Smarter” Method

12,000 1
10,000

Again, the Intuitive approach gives smoother paths, yet stil does provide the total
uncertainty expected.

We can also generalize Algonthm 2 to model multiple year uncertainty.
Algorithm 5 — Multiple Year Refined Collective Risk

1. Assume that payment amount process uncertainty can be modeled by known

distributions in each year.

2. Assume that other sources of uncertainty in each year can be reflected by dividing

by a “distortion” variable £, , having mean 1 and known variance b,.
3. Randomly select 0 <p <1
4. Select each g, from the distortion distributions at probability level p.
5. Randomly select payments in year i, X, from the assumed distributions.
6. Model amounts by the ratio of X; and the selected g, .

We note for each i this model is similar to Algorithm 2. The principal difference is the
“linkage” between years provided by selecting the distortion variable at the same

probability level for each year.

For each year, then, if we can estimate total variation, the variances required in the

second step can actually be easily determined using formula (7) above. Of course,
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estimating total variation is not a trivial matter. There currently may be no agreed-upon
method to derive such estimates, however this continues to be an active area of
actuarial research.

Assuming that we can get the total variance estimates, the following is an example of
estimating the b, values and the resulting graphs. These estimates are based on a

fairly comprehensive attempt to estimate process uncertainty as well as other sources of
uncertainty in the estimates. All estimates are in current dollars (with the effect of
inflation removed) and are for total forecast payments in future years, including those
arising from future exposures.

Table 4: Comprehensive Example
Expected _ Standard Deviation Implied
Year Paid Process Total b Value
1 $213,000 $5,900 $60,700 0.0804
2 218,000 14,200 96,900 0.1925
3 237,000 22,800 125,000 0.2665
4 255000 30,700 144,700 0.3031
5 274,000 36,100 167,800 0.3516
6
7
8

294,000 38,200 189,300 0.3911
316,000 42,900 209,100 0.4118
337,000 29,600 228,700 0.4494

The following graph shows simulations based on Algonthm 5 using the simplifying
assumptions that the uncertainty parameters all have gamma distributions and that
process uncertainty can be adequately modeled by a lognormal distribution.

Figure 6: Comprehensive Example, Intuitive Method
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This shows relatively moderate variation from year to year but a fairly wide spread of
possible outcomes. Both would be expected given the standard deviations shown

)

above. As we compared in other situations, the following graph follows the “Smarter

method and resuits in substantially more variation from year to year than Algorithm 5.

Figure 7. Comprehensive Example, "Smarter” Method
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As in prior examples of the "Smarter” method, there are substantial swings in payments
from year to year. If we would expect some predictability of payments then using these
simulations in a dynamic financial analysis mode! may be misleading. In short, the

“Smarter”model is not really so smart in these situations.

Conclusion

Simply knowing the total distribution of payments in any particular future year does not
necessarily give the actuary sufficient information to accurately and adequately mode!
future payments, whether the application be in a full dynamic financial analysis model or
in other applications where modeling of reserve payout is important. This paper
presents one of many possible alternatives that can be used to separate process
variations that will happen even if all information about the model is completely known,
from other, potentially more global, influences. Still remaining, however, is significant
research into the proper mode!s to be used and in estimating the parameters of those
models.
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Taking Uncertainty Into Account: Bias Issues Arising

from Parameter Uncertainty in Risk Models

by John A. Major, ASA

Given a rundom variable of interest, a historical sample of its realized values,
and the desire to model iis possible future values, actuarial training provides many
methaods for selecting a family of probability models (distributions) and determining
specific parameter values thut best represent it.  But how should one take parameter
unceriainty (parameter risk) into account? In particular, uncertainty can lead 1o bias in
estimators commonly used by actuaries. This paper examines the problem of adjusting
estimated distwributions (risk curves) to remove the undesirable bias effects of parameter
risk. and shows several solutions. It goes on, however, to critique the very notion of
unceriainty-adjusted risk curves, emphusizing that this is an ambiguous concept. The
Jorm of the adjustment depends crucially on details of the specific question being
addressed, so much so that an estimator can seem to be simultaneously overestimating
and underestimating risk.  Parameter uncerluinty therefore cannot be “taken into
account ' in an unequivocal manner. [t is recommended that parameter risk be held
apart from process risk and presented in terms of confidence intervals, only with that as

background - und with great care — should bias corrections be attempted.



0. INTRODUCTION

0.1 Parameter Estimation for DFA

For DFA in particular, the problem of parameter estimation occurs in the process
of determining the appropriate method for generating random variables in the simulation
of a financial security system. For example, if it is desired to investigate the relative
efficacy of various reinsurance alternatives, a simulation can be created that tests the
alternatives in a series of hypothetical “future histories” of loss expericnce. To simulate
many realizations of possible future losses — many more than have been observed in the
past — it is necessary to first create a model of the probability distribution of losses. Such

a model would be based, at the very least, on the loss experience observed in the past.

If one can determine an appropriate cumulative probability distribution tunction
(risk curve) Fx(X,®) to associate with the random variable of interest X, then random
instances of X can be created by the inverse lookup method: X = Fy'(U,6) where U is a
uniformly distributed random variable between 0 and 1. For specific distributions, more
efficient techniques are available, but inverse lookup will always work when F can be

inverted, either analytically or numerically.

Generated variables X, Y, Z, etc., can be combined in pro forma financial
statements or other actuarial calculations to simulate financial results R=¢(X,Y,Z,...).
After a sufficient number of simulation cycles, the empirical distribution of R values can
be used to assess the risk to the financial system, answering questions such as “What
valuc of R is not likely to be exceeded with probability q?” and “What is the probability

that R will be greater than (a fixed value) L?”
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0.2 Randomness and Uncertainty

“The uncertainty associated with a stochastic mode] has two distinct sources: the
inherent  variability of the phenomenon. [and] incomplete knowledge... of the
probabilities.... Sometimes these sources of uncertainty are referred to as “process risk’
and ‘parameter risk,” respectively. The terms ‘risk” and ‘uncertainty,’ respectively, have
also been used....” [Commitiee on Principles, 1997] In this paper, the terms

“randomness’ and “uncertainty” are used.

Standard statistical theory, as taught to actuaries, offers many methods for fitting
risk models (distributions) to data. With parametric models, there are a variety of
techniques for estimating the parameters and assessing the uncertainty in those estimates.
What 1s relatively lacking, however, is advice on how to incorporate uncertainty
informatim.l into the risk mode] itself, or more generally. into the advice being given to

the user of the risk model.

The predictive approach to probability modeling is one such method for
embedding uncertainty (parameter risk) into the (process risk) model for a random
variable. The random variable’s assumed family of distributions and its parameters are
augmented to include variation in the estimation process itself. A familiar example of
this is the construction of a prediction interval for a yet-to-be observed time series or
regression value. The formula for the variance of the predicted value includes terms for
both the residual error (noise) variance and the variance of the estimator for the mean
value. Another way of saying this is that the estimated risk curve for the random variable

is modified somehow to account for the phenomenon of parameter uncertainty.



It is the purpose of this paper to critique the predictive approach (or indecd any
modcl-embedded approach) to “taking uncertainty into account™ in parameter cstimation
and risk curve construction. In so doing, it will emphasize that this is not an unambiguous
aperation.  The desired form of the risk curve adjustment depends crucially on subtle
details of the specific question being addressed. so much so that a risk curve can seem to

be simultancously overestimating and underestimating risk.

0.3 Contents

This paper consists of six parts.  The remainder of the introduction discusses
previous literature in this area. In particular. a seminal work by Kreps [1997} s
summarized.  Part 1 discusses estimation and bias in the context of probability
distribution parameters and percentiles. To help clarify theory, an exponential cxample
and a lognormal example are worked out in some detail. The lognormal example is the
same one used by Kreps [1997]. Part 2 presents some motivation for “adjusting for
uncertainty.” Taking a Frequentist approach. it casts the issue in terms of a particular
type of bias and works out the necessary - predictive - adjustment for the two examples.
While Frequentist, it draws strong parallels 10 the Bavesian approach in Kreps [1997].
Part 3 extends the bias concerns of part 2 in other directions and reveals the existence of
an apparcnt paradox. making the case against adjustment. Part 4 discusses confidence
intervals as an alternative to “adjusting for uncertainty.”  Confidence intervals for
parameters, percentiles. and exceedance probabilities are given for the two cxamples.

Part 5 concludes with advice to the DFA practitioner.



0.4 Previous Research

Previous actuarial literature has addressed “parameter uncertainty,” but it is

sometimes not clear what the term is intended to encompass.

0.4.1 The View from PCAS 1983

Venter [1983] refers to the possibility of modeling “parameter risk” in the context
of transformed gamma and beta models for losses where “because of uncertain trend (or
other factors) there is substantial uncertainty about the scale parameter A....”" He goes on
to suggest putting a gamma distribution on A“ and mixing the loss distribution over 4, as
a “practical technique for quantifving this uncertainty.” The parameters for the
distribution of A itself can be estimated through percentile matching or, alternatively, an

examination ot industry or sub-sector loss ratios.

Meyers & Schenker [1983] and Heckman & Meyers [1983] discuss parameter
uncertainty in the collective risk model. “Parameter uncertainty can arise from sampling
variability and changes... over time.... [or] when some members of the group have
difterent fexpectations].” Their mode!l uses a “contagion parameter” ¢ in the claim count
distribution and a “mixing parameter” b in the claim severity distribution. Specifically,
. the expected number of claims (say. from a Poisson distribution), is multiplied by ¥, a
gamma-distributed random variable with mean 1 and variance ¢. Z, the claim amount, is
divided by P. a pamma-distributed random variable whose inverse has mean 1 and

varianee h.

Meyers & Schenker [1983] provide three examples of fitting the parameters b and

¢ to empirical data. In the most general torm, their model treats #, years of experience of



insureds / = 1,...,T as manifesting T independent draws of the ¥ and P random variables.
Their equations then estimate b and ¢ through variance components (random effects

ANOVA).

Thus, we seem to have three sources of parameter uncertainty which perhaps
should be carefully distinguished: sampling error, nonstationarity, and heterogeneity.
The recommended mathematical treatment is to interpret uncertainty as a hierarchical
random effect. ~ While this method admirably represents nonstationarity and
heterogeneity, it does not appear to address sampling error. Sampling error is distinct
from heterogeneity; it determines the accuracy with which 4, ¢, A, etc., can be estimated.
The standard errors of the estimates will diminish with increasing numbers of insureds T.

The values of # and ¢ themselves, however, will not converge to zero with increasing T.

0.4.2 Kreps 1997

Kreps [1997] discusses parameter uncerlainty in normal and lognormal
distributions.  In his introduction, he states “One of thc most ubiquitous sources of
parameter uncertainty is the fact that samples in real life arc never infinite.” Here, he is
explicitly addressing sampling error, and develops a theory of predictive distributions
“with™ parameter uncertainty.' He concludes that “the effcct of parameter uncertainty is

to push probability away from the mean out into the tail.” As will be seen below, the

' Mathematically, his technique is again to treat uncertainty as a hierarchical

random effect, however, with the imprimatur of explicitly Bayesian justifications.



predictive approach can be interpreted as creating percentile estimators that are unbiased

in a probabilistic sense.

For a case study, he analyzes Best’s reserving data. IBNR is assumed to be
distributed lognormally. Based on n=$ years, the maximum likelihood estimates of the
mean and standard deviation of X = In(IBNR) are 23.01923 and 0.06653, respectively.
This “point estimate™ implies a probability of IBNR exceeding $11.5 billion equal to
1.39%. For Kreps, taking parameter uncertainty into account, “the exact result... is

12.78%. To get to the true 1.39% level, it is necessary to reserve $14.1 billion!™

Subsequent sections will follow through on this example and parallels to Kreps's

work will be sketched in more detail.

1. ESTIMATION

This section discusses the estimation of parameters and percentage points. While
the estimation of parameters is the usual goal. the theory of point cstimation applies
equally well to the estimation of functions of the parameters. Because of the typical DFA
interest in tail behavior of variables, the estimation of percentiles (specific points on the
risk curve) is arguably more important than the estimation of parameters per se. At the
very least, the choice of parameter estimation technique should be informed by the effect
it has on percentile estimates. Bias is defined and illustrated in both parameter and
percentile contexts. The concept of a risk curve is formally defined and examples are
presented. The specific notions of X-unbiased risk curves and estimation techniques are

defined and illustrated.

160



1.1 Estimation of Parameters

While various techniques are available for estimating parameters. we focus here
on Maximum Likelihood due to its general applicability and widespread use. Consider a
family of probability density functions g(x:6) where x is a real variable and & is a
(possibly vector) parameter. Given a sample {x). xa. ... xp}. the Maximum Likelihood

Estimate (MLE) of the parameter #is the value 6 that maximizes the joint likelihood

. (LD
1(8) = ng(.\',:é)).

i

The sampling distribution of @ has (asymptotically. i.c. with large samples) a
dispersion matrix cqual to the inverse of the matrix of sccond derivatives (with respect to
&) of the nawral log of the likelihood. Thus, standard errors of the MLE may be
computed nearly as casily as the estimator itself. [n many commonly-used families of
distributions, the MLEs are the obvious moment estimators.

For the typical distributions in use by actuaries, MILEs are asympiotically
efficient. This means that for large samples, they uniformly provide the most accuracy,
regardless of the true parameter value. However, they tend not to have strong small-

sample justifications [Lchmann, 1983].

1.1.1 The Exponential Case

Consider a random variable X distributed as exponential with scale parameter A:

PriX <x} =K, (x12) = 1 - exp(- x/4). (1.2)

Given a sample {x). Xz, .... Xp}, the likclihood tfunction is given by
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a1 1y [ & (1.3)

Difterentiating by A and setting to zero, we can see that the value of A that

maximizes the likelihood is given by

T-1=

S (14
X, .

'

1
n
this is also the same estimator obtained by cquating first moments of the

theoretical distribution and the sample.

1.1.2 The Normal Case

Consider a random variable X distributed according to the normal cumulative

distribution function:

/ . 2 (1.5)
(ve o | H }7 _]_. ) _l'(zf,u) .
PriX¥ <x;= F[.\.[Uz} = _‘: 5 exp T dz

(v )] 0O

Differentiating the expression inside the exponential and setting to zero, we get

the so-called likelihood equations:
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(1.7

The solutions, the maximum likelihood estimators, consist of the sample mean

and variance, respectively:

1 (1.8)

Again, this gets the same result as moment matching. For a lognormal variablc Y
= exp(X). the sample mean and variance of In(Y) make up the MLE. This follows from
an invariance property of MLEs.

In the example set out in Kreps [1997], we have the log of IBNR modcled as a

normal distribution with £ =23.01923 and ¢ = 0.06653 based on n = 5 sample points.

1.2 Estimating a Percentile

Typically, actuarial risk calculations concern themselves with onc tail of a
distribution. In DFA, the “interesting” or “risky” behavior of the system will often be
driven by the upper or Jower extreme values of one or more key variables. For example,
in the context of reserving, it is common to ask. what level of the loss variable will only
be exceeded with specitied low probability? This sort of quantity is also known in other

financial disciplines as the value af risk.
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The 100(1-q)"™ percentile X, of a distribution is given by solving 1-q = Fx(Xg,6).
However, this requires knowing the true value of € In practice, we only have some

estimator § of @, therefore we are left with the problem of constructing estimators of X,.

1.2.1 The Exponential Case
Given the parameter 4, it is readily determined that X= -4 In(q). This suggests

an obvious estimator:

X =-T-In(g). (1.9)

o

1.2.2 The Normal Case
For normal variables, Xg = y + 230 where z, is the 100(1-q)™ percentage point of
the standard normal distribution, e.g.. zo0s=1.645. Again, this suggests an obvious

estimaltor:

(1.10)

For the lognormal. we simply transform by )Ajl :c,\'p(;\A’,l). Kreps’s example
notes that the probability of exceeding Y = $11.5 billion is 1.39% (if the estimated

arameters are exactly correct). Equivalently, X, =23166 or f, o =115-10.
p b q ) 001w 00130

1.3 Bias in Parameter and Percentile Estimators

Since estimators are themselves random variables. it is meaningful to inquire into
their sampling behavior (distributional properties). Imagine there are modelers, m =

1.....M, cach drawing an independent sample {xn.....Xnm} from some fixed distribution.
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Each modecler assumes (correctly) the form F(x:¢) of the distribution, but must estimate
the parameter & based solely on his or her own sample. Each modeler will then,
presumably. have a different estimate for 8 and some will get closer to the actual value

of # than others.
An estimator S for a quantity f€) is said to be unbiased it
E S~ f(0)=0 (L1

where the notation E; [] denotes mathematical expectation with respect to the distribution
characterized by € Note that ¢, hence £ 8). is a fixed number and S is a random variable.
In the example of the M modelers, unbiasedness means that the average estimate obtained
among modelers, as M gets arbitranly large, will converge to the true value of the
parameter. Unbiasedness is only one property that an estimator may possess, and not

- . . . . - . 2
having it does not necessarily make an estimator inferior o ones that do.”

Note that the detinition of unbiasedness applies to estimators of any quantity
associated with a distribution, parameters as well as percentiles, exceedance probabilities,

etc.

? “Bias™ is such a loaded word that statisticians would have been better off with a
more technical term like “expectation neutrality.” Alas, we are stuck with the baggage of

historical usage.
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1.3.1 The Exponential Case

The distribution of T. the MLE for the exponential scale parameter A, can be

shown to be a gamma with scale parameter A/n and shape parameter n,

(oL Z (1.12)
L_m) P( 1'/;)

(n=114/n “

™

Pr{T <} = |
0

The mean of T is therefore A, and the variance is A*n. T is therefore an unbiased

estimator for 4. Because T is unbiased for 4, X’q is also unbiased for X,.

1.3.2 The Normal Case

The sample mean of a normal distribution is distributed as a normal with mean g
and variance o/n, therefore it is unbiased for 4 The sample variance is distributed as
o&/n times a xz(n-l) variable; the MLE for o is therefore biased. We can distinguish
several alternatives. [f an unbiased estimate of the variance (02) is desired, then we want

the familiar

>

Ny (1.13)
‘—Vn—l'a

This gives us a value of 0.07439 in the Kreps example.
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Unbiased estimation of the standard deviation (o) is much less familiar to
beginning students of statistics. Lehmann [1983] gives a general form for unbiased o*

estimation® which specializes for k = 1 to:

‘(”_]J (1.14)
n ! 2 N
O

This gives us a value 0of 0.07911 in the Kreps cxample.

We may generalize our percentile estimator by considering

Y SN 1.15
X, =p+z, -0, (1.15)

where we have a choice of estimators 6’0 for oo Recall that the ML estimator of the

1.39% exceedance point (zgn39 = 2.2) is X = 23.166 translating 1o an IBNR of Y =

exp(23.166) = 11.5 billion.

An unbiased estimator for X, uses 6'() = o, which yields 23.193, translating to an
IBNR of 11.82 billion. This is not unbiased for IBNR, however, because an unbiased X
does not imply an unbiased exp(X). This author is not aware of an unbiased estimator for
¥,. We can estimate the magnitude of the bias, however, by noting that if the normat

parameters were indeed equal to their ML estimators, then, approximately,

3 Johnson, Kotz, and Balakrishnan [1994] discuss the special case of k=1 and

present a simpler approximation.
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o (1.16)
_E[exp(/f'qv_‘)]_ex o , a1 r( 2*)
RIS W [ EANCEA

1
—tz ;
¥ 2 0ln F 2 (n)
q 1" —
. 2

where the subscript s indicates we are using the unbiased estimator for . This is only an
approximation because it assumes that &, is distributed as a normal variable; for o <I,
however, it is accurate to within 5%. [In our example, for values of o in the
neighborhood® of the ML value, the ratio of equation 1.16 is within 1.3% of unity,

indicating little bias. However, for larger values of o the bias can be substantial.

1.4 The Risk Curve and X-Unbiasedness

We can present the results of many percentage point estimators in graphical form.
The locus of points {<Xg,q>} is known as the risk curve or exceedance probability (EP)

curve. We place the exceedance probability q on the vertical axis and the percentile
estimate );’q on the horizontal axis. Depending on the range of interest, we may want to

plot one or both axes logarithmically. An alternative for the vertical axis is to plot the
return period, l/q, in units of time. e.g., years if the variable represents an annually

measured quantity.

* Specifically, for values of the parameter within a two-tailed 90% confidence

interval, as defined in section 4.1.
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If, for every q, the pereentile estimator .Q'q is unbiased, we say that the risk curve
is X-unbiased, or unbiased in the X domain. 1f a parameter estimation technique leads to

an X-unbiased risk curve. we will call it an X-unbiased technique.

1.4.1 The Exponential Case

Taving developed T, the locus of points (— T ln(q).q) is the ML risk curve. This
risk curve is unbiased in the X domain. The MLE technique for exponentially-distributed

data is thus X-unbiased.

1.4.2 The Normal Case

Depending on which g, is used. there are corresponding alternatives for the risk
curve. Figure | shows the MIL.E-based curve as a thin solid line and the X-unbiascd
(approximately Y-unbiased) curve as a thick dotted line. For reference. the target
<$1.152 billion. 1.39%:> probability point is marked with a box. Note that the two
versions of the curve differ markedly. Around the reference point, the difference
amounts o $300mm on the dollar axis or 1.7% on the probability axis. The MLE
technique for normally distributed data is therefore not X-unbiased, but an X-unbiased

alternative, based on equation 1.14, is available.

2. THE CASE FOR ADJUSTMENT

Unbiased estimation in the X (log) or Y (dollar) domain may or may not be
appropriate for the decisions to be made in a real application of the theory. For example,

while the American Academy of Actuaries [1993] says, “Consideration must also bc
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given to any {statistical] bias in the reserves or premiums,” it doesn’t specify in what

manner this consideration should be given. This section considers a different sort of bias,
leading to the notion of P-unbiasedness, and how that can be achieved through the

predictive distribution approach.

2.1 Probabilistic Bias and Predictive Bounds

We can ask a slightly different question about estimators for X; (equivalently, ¥),
based on the property they purport to represent, namely, an exceedance probability of g:
What is the expected value of this probability? In particular, we might like estimators

that are “probabilistically unbiased™ (P-unbiased) in the sense that
El—F(/§’(I.9)]=q_ 2.1

Such probabilistically unbiased estimators do exist. They are known as prediction

bounds. because

E[F(Xq,a)] = Pr{X < /‘I'.,} 22
where A’ is another draw from the population, independent of the sample upon which the
estimator is based. Since X, is the point satisfying 1-q = Fx(X4.0), if /\74 is unbiased for

X,. 1t is natural to assume that the probability of X > X’,, is also equal to g. This is not
generally the case: X-unbiasedness does not imply P-unbiasedness. By establishing the

true ““predictive probability” of an estimator /\A’q

0la.8) = Pr{X > X} = E[1- Fo(X,;0)] (2.3)
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we might be able to solve for an adjusted g* satisfying g/)(qﬁ) =g . Then, X

o may

serve as a P-unbiased estimator for X, Other routes are available, also. If, for every q.
the percentile estimator /f’q. is P-unbiascd, we say that the risk curve is P-unbiased. Ifa

parameter estimation technique leads to an P-unbiased risk curve, we will call it an P-

unbiased technique.

2.1.1 The Exponential Case

The predictive probability for an exponential percentile MLE is independent of

the parameter:

I3

" " (2.4
Pr{X>X’q}:( ) . )

n—In(q)

For example, with n = 20 and nominal q = 0.01, the true predictive probability is

0.01e.

Inverting the relationship, we get the adjusted q* for a “probabilistically

unbiased” X .:

g* = exp(n .(1 _gh )) 2.5)

For example, with n = 20 and q = 0.01, the computed q* = 0.006. The adjusted
(P-unbiased) risk curve is then the plot of <-— T-n- (1 - q_""'; ),q>.

Can we find a P-unbiased estimator for the exponential parameter? In other

words, can we compute T in such a way that the straightforward X , from equation 1.9 is
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P-unbiased? Not in general; there is no solution S to the equation

—S-ln(q):—T-n-(lfq'l")lhat holds for all 0<q<l simultaneously (although as n

increases without bound. S=7 is an asymptotic solution). This means that there is no
parameter estimation technique within the exponential distribution that yields a P-

unbiased risk curve.
That is because the predictive distribution for an exponential variable is not an

exponential distribution, it is a Pareto! This can be seen by solving X =-7-n -(1 -g L”)

for q in terms of X:

% ) (2.6)

=11
4 (.+'['-n

In summary: to create an X-unbiased risk curve from presumed exponential data,
first determine the MLE T of the exponential parameter as in equation 1.4. Then
substitute 7" for A in equation 1.2. This is not P-unbiased, however, because the true
excecdance probability at an estimated percentile is affected by parameter estimation
uncertainty. For a P-unbiased risk curve. construct the Pareto distribution corresponding
to equation 2.6. Drawing simulated values X from the Pareto instead of the exponential
will “take uncertainty into account” in the sense that the true exceedance probabilities of

the simulated percentage points will be accurate in expectation.’

> Here, “in expectation” means “averaged over all random samples of data from

the same exponential population.”
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2.1.2 The Normal Case

A prediction bound which a single future, independently selected normal variable

will not exceed with probability ¢ is given by:

- 1 (2.7

X, =a+1,., 0 Vl -

where ¢ is the 100(1-q)th percentile of a Student / distribution with n-1 degrees of
tfreedom. For our example of n = 5 and ¢ = 1.39%, we get 1 = 3.379 and the prediction

bound is ¥ =23.295. corresponding to $13.08 billion.

This must mean the estimators in section 1 arc probabilistically biased. Indeed,

by setting j’q. :.\-'q (cquations 2.7 and 1.15. respectively) we may compute the

predictive probability ¢* corresponding to the nominal ¢ probability for the estimator

,\”W. The ML estimator for the ¢ = 1.39% exceedance point, shown previously to be

biased in the log domain, has an expected actual exceedance of ¢* = 7.34%. Thus, in

probabilistic terms. it is drastically biased — downward - underestimating the tail risk.

What about the (log) unbiased estimator based on &,? This is a little better, with
expected actual exceedance of g* = 4.98%, but it is slill far from being unbiased in the

probabilistic sense.

Figure 2 adds <,\7q .q> to the plot of risk curves as a dash-dot line. This represents
a dramatic increase in estimated risk. Values of IBNR exceeding $1.35 billion,
essentially inconceivable according to the MLE and dollar-unbiased curves (20,000-year

return period or higher), are now seen as a distinct possibility (100-year return period).



Is there a P-unbiased estimator for &? As with the exponential case, no. The
predictive distribution is from the Student ¢ family, not the normal family (although,
again, in the limit as n increases without bound, there is convergence). To create an X-
unbiased (or log-unbiased) risk curve from presumed normal data, the methods of section
1.3.2 suffice. For a P-unbiased risk curve, however, one must construct the Student ¢

distribution corresponding to cquation 2.7.

2.2 Discussion

A specific family of distributions will lead to a specific form for the predictive
distribution. However. there is an approximation method which can bypass the analysis.
By sampling the parameters (according to an estimate of their distribution) as well as the
object random variable (according to the particular parameter values selected in their
most recent draw), one can create a random variable drawn from a mixture.® This
mixture represents a predictive distribution insofar as it incorporates variability in the

random variable (process risk) as well as uncertainty in the parameters (parameter risk).

Making this sort of adjustment — analytically or numerically — is often what is
meant by “taking uncertainly into account.” Notice correcting this new sort of bias is a
matter of increasing an understated (on average) risk. For typical actuarial distributions

with decreasing density in the upper tail and small enough q, on average, the true

exceedance probability 1- F_\,(AXA’,I .8) for the quoted value of an unbiased estimator /\;q

° ¢f. Venter’s recommendation discussed in section 0.4.1.
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will be higher than the nominal probability q from which the estimate is developed. The

adjusted value )?q. will therefore be higher (farther up in the tail); this is why it is often

claimed that “uncertainty fattens the tails.””’

Why does this happen? The function Fy is nonlinear in its X argument. Values of
an X-unbiased ,’?q deviate from the true value in a balanced fashion between high and
low; the average is the true value X;. However, a deviation on the high side contributes

less to the expectation of F_(.(X'qﬁ) than an equally large deviation on the low side

diminishes it, due to the curvature of F;. Therefore the expectation is not the same as the

function evaluated at the true value X,.

As mentioned in section 0.4.2, Kreps [1997] addresses this issue from a Bayesian
perspective.  His result for the “true” 1.39% exceedance point is $14.1 billion, about a
billion higher than was calculated in section 2.1.2. It is interesting to note that Kreps
[1997] summarizes his computations of percentage points with analogous expressions
£+ z-0 involving the MLEs of the parameters. For the MLE of the percentage point, 2
is the corresponding percentile of a unit normal. For the predictive distribution, Kreps's z
is zem the percentile from a normal with variance (n+1)/(n+7~4), where 7 is a
parameter defining the “uninformative™ Bayesian prior distribution on o, typically 0 or 1

(he used zero). Since a ¢ distribution with v degrees of freedom has variance v/(v-2), the

Tef. Kreps’s comment, discussed in section 0.4.2.
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R . . n+l . . .
equivalent Frequentist coefficient ¢, ,f—l (derived from equation 2.7) can be
: n-
considered analogous to the Bayesian z witht = 1.

Bayesians feel free to treat uncertainty in the parameters on an equal footing with
the stochastic behavior of the random variable. Above, we saw how Frequentist
mathematics can, in effect, yield the same results. [If probabilistically unbiased
estimation (or simulation) is the goal, it is appropriate to utilizc the predictive
distribution, rather than the ML-estimated distribution, to look up percentiles (or generate
random variables). This is the Frequentist rationale for “adjusting the risk curve for

uncertainty.”

3. THE CASE AGAINST ADJUSTMENT

In this section, the search for hidden forms of bias continues. The concept of Q-
unbiasedness will be defined. It will be seen that the adjustments of section 2 can lead to
worsening of estimator behavior with respect to Q-unbiasedness. Moreover, it will be
seen how it is typically impossible to make an adjustment which simultaneously

improves the 1wo competing measures of bias.

3.1 Estimating Exceedance Probabilities and Q-Unbiasedness

Rather than divulge a dollar limit X, corresponding to a given exceedance
probability q. we may view a risk curve as telling us a probability Qr of exceeding a
specific threshold L. This might be the perspective, say. in a ruin-theoretic analysis. The

decisionmaker could have in mind that $1.152 billion is the most that could be lost
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without dire consequences, and might request an estimate of the probability of suffering
them. Ag far as the geometry of the risk curve is concerned, this new situation is simply a
matter of entering the graph from a different axis, treating the locus of points as <L,Q>

rather than <X,.q>.

If an estimator Q, is unbiased, we will say that a risk curve constructed from
such estimators is Q-unbiased. If a DFA modcl aims at constructing risk curves for both
Xy and Q; lookups. then Q-unbiasedness and P-unbiasedness are arguably cqually
desirable.

A natural point estimator is O, =1~ F,(L.6). Indeed, if§ is the MLE of 6.
then (), is the MLE of Q. It should come as no surprise that EH[Q,,] does not in
gencral equal Q. again. due to nonlinearity ot Fy — this time in its @ argument.

In the two examples 1t will be seen that. on average, the estimated exceedance
probability Q, for the specified loss threshold L will be higher than the true probability
Qi To correct for this bias, an adjusted probability estimate Q, * will have to be lower

than the estimate Q,‘ computed from maximum likelihood. Thus, this variety of bias is
in the direction of overstating the risk, in marked contrast with the case of the previous
section, which understated the risk. Q-unbiasedness is not the same as P-unbiasedness.

In a sense, they are duals, it not opposites, of each other.
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3.1.1 The Exponential Case

The point estimator Q,_ is obtained from equation 1.2 as exp(-L/T). This is
biased, and Johnson. Kotz, and Balakrishnan [1994] give the minimum variance unbiased
(MVU) estimator as:

N I - nel 3.1
O, :(1——) .
Yiew n- T

This represents the risk curve as a form of beta distribution. As with P-
unbiasedness. there is no estimator of the exponential parameter to make a Q-unbiased
cxponential risk curve. However (and again, similarly), in the limit as n increases
without bound, equation 3.1 approaches an exponential. With A=1,n =120, and L =
4.605. the true value of Qp is 1%; were T to equal A, this estimator would produce the

value 0.69%.

This estimator has the unfortunate property that if L is greater than nT then the
estimated exceedance probability is zero, making very-high-tail estimates impractical.

By taking a Taylor expansion, we may approximate

£,]0,]= E[1-Frsn]= exP(_ )[1 JUL-2-4)

Unfortunately, the “bias correction” term in this approximation is dependent on
the true value of A, which is unknown. By substituting T for A, we may compute an

approximately unbiased estimate as:
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ool 1) (1 4227) o3

For tail thresholds L greater than twice the estimated mean T, the denominator is
greater than one and the estimated probability is therefore less than the MLE, In this
numerical example (n = 20, L = 4.605, and 2 = 1), simulation shows this estimator to
average 1.1% versus the true [%. For n = 20, L = 4.605, and T = [, this adjusted
estimator produces 0.77%, about three-fourths of the ML-estimated probability, and 11%

higher than the MVU estimator.

3.1.2 The Normal Case

Again we have a variety of estimates

. (34)
3,(x) = 1—@(". "]

() -

available, depending on the estimator used for oo Here, ® is the cumulative (standard)
normal probability function corresponding to the integral in equation 1.5. The ML
version of this estimator gives us an exceedance probability estimate at L = $11.5 billion

(x =In(L)) of 1.39%.

At this point, readers should not be surprised to learn that the MLE is biased.
Lehmann [1983] and Johnson, Kotz, and Balakrishnan [1994] provide the minimum

variance unbiased estimator for the exceedance probability of a normal distribution:
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where S=.—— and U =m1n[S, ,]
n Jn-é

Unfortunately, for values of x such that U = S, (which includes our numerical
example) this estimator takes on the value of zero. Again, this is likely to be

unacceptable in the typical actuarial application.

Alternatively. we can. by numerical integration or simulation, estimate the bias of
the MLE (assuming various parameter values). For parameters taking on their MLE
values in our example, the expected value for the ML exceedance probability estimator is
approximately 1.83%, versus the hypothesized 1.39% - a ratio of 1.3. For other
parameter values in the neighborhood® of the ML values, this ratio is at least 0.9, usually
greater than one. often greater than two, and sometimes greater than 10. This means we
should suspect the MLE of being biased high in the situation representing our data, that
is, overestimating the tail risk. This is in contrast to the MLE percentile estimator, which

was biased low, underestimating the tail risk.

What about the alternative estimators? Using an unbiased estimator for o, we get
an expected exceedance estimate (again, assuming parameters at the ML values) of

3.17%, high by a factor of 2.3, substantially worse. This is because the unbiased estimate

# See footnote 4.
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of o is greater than the ML estimator, decreasing the Z-score, hence the cumulative

probability, and hence increasing the exceedance probability.

What about inverting the prediction bound equation? This is the equivalent of
“looking up” cxceedance probabilities from the predictive distribution. This is worse
still, with an expected exceedance estimate of 6.13%, high by a factor of 4.41.

Applying the same strategy as with the exponential distribution, we can take a o

order Tavlor series approximation to the exceedance probability and cxpress the relative

bias as
. (3.6)
@] 1 27/
o, g V2-m-n
(!
where I :(5-:—_-:"] e l\'f+ 2.n-1)-2'~5zn+3-z.
-
)
I -
and =~ ad
a

As in the case with the exponential. we may substitute the M1, estimators for p

and o, obtaining
- N (3.7
Q.\u = l‘(D(X -luJ
Lo
A .‘.',)_-_\_u_.,i e
exp| - 5 -2
45— —=" W
N2Zomen

This estimator, while not exactly unbiased, does manage to shrink the bias of the

MTI. estimator, typically by 60-90% in the neighborhood of the ML values.
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Figure 3 extends our family of candidate risk curves to include Q* and Qys.

3.2 The Paradox

We have seen that to fit a model to data from an assumed distribution, the ML
estimators of parameters led us to straightforward construction of risk curves. However,
“taking uncertainty into account™ in the parameter estimates led us to a profusion of

sometimes opposing adjustments,

The ML estimators underestimate tail risk in one or two ways. First, the MLE of
a normal L00(1-g)th percentile (for small enough q) is, on average, too low. Second,
even the unbiased version (or the naturally unbiased estimator in the case of an
exponential distribution) still provides “too low™ of an estimate because the true
exceedance probability of this estimator (the predictive probability) is, on average,

greater than the specified amount q.

On the other hand, an MLE of exceedance probability at a (high enough)
prespecified threshold is. on average. too high, thereby overestimating the tail risk. The
substitution of a predictive distribution, corresponding to the probabilistic bias correction

for estimating percentiles, is even more biased than the MLE.
The scarch to achieve simultaneous X-. P-. and Q-unbiasedness. even
approximately. leads us in conflicting directions.

Consider the implications of this in practice. An actuary has performed a
Dynamic Financial Analysis of a client’s balance sheet. Numerous sources of random
variation in liability and asset values were modeled, each of them having been fit to

historical data. After explaining the methodology and walking through various charts
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and tables, the actuary summarizes: “There appears to be a 1% chance that your surplus

will experience a drop exceeding $1 billion.”

In an atypical response, the client might remind the actuary that there is sampling
error in the various historical estimates and that actual probability distributions may well
be different from the point estimates used in the model. Is this not another source of risk?

Should the analysis not be adjusted to “take uncertainty into account?”

They meet a few days later, after the actuary has had a chance to enhance the old
“Certainty Model” to include uncertainty adjustments. The following dialog between the

client (C) and the actuary (A) ensues.

C: OK, now that you've taken uncertainty into account, what is an unbiused

estimate of my 1% exceedance point?
A: Ir's still 81 billion. That's an unbiased estimate.

C: But isn't it true that exceedance points including sampling error should be

higher than exceedance points without?

A: Yes, that makes sense. See, the probability of your experiencing a loss
greater than the point the Certainty Model picks out as the 1% poini, that is to
say, the predictive probability, is actually greater than 1%, so the $1 billion
figure is probably too low. A better answer is more like 81.2 billion.

C: So an unbiased estimate of the probability of exceeding $1 billion is actually
greater than 1%?

A: No. exceedance estimation in the Certainty Model is biased upwards. An

unbiased estimate of the probability of exceeding $1 billion is more like 0.8%.



C: First you tell me §1 billion is an unbiased estimate for the 1% point. Then
you tell me the risk is worse, that the probability is actually greater than 1%.
Then you tell me the risk is better, thut un unbiased estimate is less than 1%.
Now tell me why 1 shouldn't report you to the Actuarial Board for Counseling

and Discipline!

What, then is the correct response? How is uncertainty to be taken into account?

4. CONFIDENCE INTERVALS

The classical approach to expressing parameter uncertainty is through summaries
of the estimator distributions, either moments or selected percentage points. The latter
become confidence intervals when couched in terms of the probability that the quoted

percentage points bracket the true quantity.

Following Hahn & Meeker [1991]. we may define a confidence interval as an
interval bracketed by two estimators (functions of the sample data) intended to contain an
unknown characteristic of the sampled population. Such a characteristic could be a
parameter of the distribution, ec.g., the mean or standard deviation of a normal
distribution, or a function of thosc parameters, e.g., a percentile or an exceedance
probability. The interval will contain the true value of the characteristic with a specified

“confidence.” e.g.. 99%. This can be interpreted by Frequentists in terms of sampling,
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because the interval endpoints are random variables.’ If independent samples were
repeatedly drawn. and the interval computed from the samples. then the interval would
contain the true value of the characteristic with the specitied frequency, e.g., 99% of the

time.

4.1 Cl for Parameters

4.1.1 The Exponential Case
A 100(1-00%0 confidence interval for the exponential parameter 6 is given hy

T-n CRY

where v is the 100(c/23th or 100(1-e/2)th percentile from a gamma distribution with

shape parameter n. For aur numerical example with =1, the interval is [0.717, 1.509].

4 1.2 The Normal Case

A 100(1-)% confidence interval for the mean is given by

o (4.2)

® Interpretation is even easier for Bayesians, because they are free to treat the

parameters themselves as random variables.
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where 1 is the 100(1-a/2)th percentile from a Student’s ¢ distribution with n-1 degrees of
freedom. A 90% confidence interval for the mean in Kreps's reserving example (see

previous section) is therefore [22.948, 23.090].

A 100(1-0)% confidence interval for the standard deviation is given by

(4.3)

where X2 is the 100(a/2)th or 100(1-a/2)th percentile from a chi-square distribution with
n-1 degrees of freedom. A 90% confidence interval for o in our example is [0.0483,

0.1765].

4.2 Cl for Percentiles

4.2.1 The Exponential Case

Since the exponential is defined by only one parameter 0, a confidence interval
for a g-exceedance percentile can be obtained directly from the confidence interval for

the parameter by substituting endpoints:

. Ten (4.4)
bt

4.2 2 The Normal Case

Since the normal is defined by two parameters that must be estimated, the

situation is a bit more complex. A 100(1-a)% confidence interval for X, is given by
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I{"lt =g+ 1 i 0, (4:5)
IR

g

where tables of g’ are available in Hahn & Meeker [1991]. More complete tables, as well
as the underlying theory based on the noncentral ¢, are available in Odeh & Owen [1980].
Johnson, Kotz and Balakrishnan {1994} also give the distribution of )?q in terms of the

noncentral 1. A 90% confidence interval for the 1.39% exceedance point in the example

is [23.113.23.43]. This translates to an IBNR interval ot {10.91 billion, 14.98 billion|.

4.3 Cl for Exceedance Probabilities

4.3.1 The Exponential Case

Again, since the exponential is defined by only one parameter 0, a confidence
mterval for exceedance probabilities can bc obtained directly from the confidence

interval for the parameter by substituting endpoints:

L.;,{]‘Iia . (4.6)

Lo

0, = expl - ———

4.3.2 The Normal Case

A 100(1-00)% confidence interval for QQ is given by

4.7
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where values of h are tabulated in Odeh & Owen {1980]. For the reserving example, a
90% confidence interval for exceeding Y= $11.5 billion is [0.000617, 0.28351]. Thisisa
stupefyingly large confidence interval, encompassing a factor of 459 between the two
extremes. Figure 4 adds the upper and lower 90% confidence risk curves to the previous

risk curves.

5. CONCLUSION

This paper examined the general problem of estimating parameters of probability
distributions and the specific problem of estimating the actuarially interesting percentage
points and exceedance probabilities as captured in the notion of a “risk curve.” The
choice of risk curve translates directly into the generation of random variables in DFA if
the inverse lookup method is used. or, indirectly, as it affects the selection of
distributional parameters for other methods. In particular, the paper showed how
parameter uncertainty (parameter risk), stemming from sampling variability, can induce
bias in estimators. It presented three varieties of bias that a risk curve could exhibit,
depending on what aspect of the curve is considered relevant. It demonstrated that. at
least in the common examples ot exponential and normal/lognormal distributions, there is

3

no way to correct these biases, even approximatcly, in a single “uncertainty-adjusted”
risk curve.  The conclusion. that a risk curve estimation procedure can seem to be

simultaneously overestimating or underestimating risk. appeared as something of a

paradox.
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The resolution of this paradox is to examine our intuitive expectations about

® 1t is not the case that a single “uncertainty-adjusted” curve

uncertainty-induced bias.'
can replace the “point-estimated™ curve, yielding better estimators all the way around.
Uncertainty (parameter risk), it seems, cannot be put on a par with randomness (process
risk). The problem is inherent in the nature of parameter uncertainty; like a carpet too big

for a room. attempls to “flatten it out”™ in one spot will only make it “bulge up”

somewhere clse.

The solution that would-be DFA model butlders should consider is to make
explicit the distinction between uncertainty and randomness by placing (uncertainty)
confidence intervals around the (randomness) estimates. For directly fitted distributions,
confidence intervals can be calculated as was done in section 4. For DFA outputs, the
situation is not so straightforward.  The model can be “stress tested” by substituting
extreme. but not implausible (sce section 4.1). values of the parameters (equivalently,
versions of the risk curve) and observing how the results change. Mare thoroughly,
multiple runs, with parameters selected randomly from estimates of their distributions
(again. refer to section 4.1 and fixed within each run. can provide multiple verstons of
the results. These multiple results can be summarized in terms of percentiles of their

empirical distribution. giving, in cffect. confidence intervals on the model outputs.

1o Bayvesians would say that the resolution i1s to not be concerned about bias; that
bias as a statistical concept is problematical per se. 1 suspeet few actuaries would feel

totally comfortable with this advice.
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After showing a client stress test or confidence interval results, bias can be
addressed according to the particular goals of the problem. Given that bias is typically
small compared to confidence intervals, a proper appreciation of confidence intervals

would tend to dampen concern over the minutiae of bias adjustments.
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Abstract
When applying the collective nsk model to an analysis of insurer capital needs, it is
crucial to consider the effect of correlation between lines of insurance. Recent work
sponsored by the Commuttee on the Theory of Risk has sparked the development of
methods that include correlation in the collective risk model. One of these methods is
built around the view that correlation i1s generated by parameter uncertainty affecting

several lines of insurance simultaneously.

This paper uses simulation analyses to explore the properties of both classical and
Bayesian methods of quantifying parameter uncertainty. We conclude that in order to get
sufficient accuracy to determine the necessary capital, one must use the combined data of
several insurers. Using the combined data of several insurers forces us to consider a
collective nsk model where parameter uncertainty affects several insurers — as well as

several lines of insurance — simultaneously.
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1. Introduction
The collective nsk model has long been one of the primary ools of actuarial science.
One can view this model as a computer simulation where one first picks a random

number of ¢claims and then sums the random loss amounts for each claim

The early uses of the collective risk model were mostly theoretical illustrations of the role
of insurer surplus and profit margins. Such illustrations are still common today 1n
insurance educalional readings such as Bowers. Gerber, Jones, Hickman and Nesbitt

[1997. Ch 13]

By the lale 1970°s, members of the Casualty Actuanal Society were beginning to use the
collective risk model as input for real-life insurance decisions. The early applications of
the collective risk model included retrospective rating. e g Mevers {1980}, and aggrepate
stop loss reinsurance, e g John and Patnk [1980] which is also descnbed by Patrik
{1996] Bear and Nemlick [1990}] provide further examples of the use of the collective
nsk model in the pricing of reinsurance contracts. Mevers {1989} begins 1o apply the

collective nisk model 1o an analysis of insurer capital

This paper is part of a collective effort to extend the use of the collective risk modecl to
Dynamic Financial Analysis (DFA). One goal of DFA 15 the management of an insurer’s
capttal  An insurer requires suffictent capital so that 1ts chance of insolvency 1s
reasonably remote  An insurer can manage its capital needs by structunng its business so
that 1t has an accepiably remote chance of a large loss. This structurning can include the

use of remsurance

While the collective risk model arose from theoretical exercises in insurer solvency, it has
not been widelv used in practice for setting solvency standards. The main reason for this
has been that it requires that individual lines of insurance be independent. Almost
nobody beheves this to be true. And as we shall demonstrate below, assuming

independence can lead to a significantly understated solvency standard.
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Recognizing this problem, the CAS Committee on the Theory of Risk commissioned Dr.
Shaun Wan'g to develop versions of the collective nisk model that do not require one to
assume independence between lines of insurance. This work led to a paper titled

= Aggregation of Correlated Risk Portfolios: Models & Algorithms™ which is to appear in

the next volume of the Proceedings of the Casualty Actuartal Society.

Inspired by Dr. Wang's work, we followed with a discussion of his paper, Meyers [1999],
that focused on a version of the collective risk model where the claim count distribution
for cach line of insurance was conditionally independent given a parameter . Treating o

as a random variable leads to a particular kind of dependence between lines of insurance.

In this paper we propose a methodology for estimating the variance of o and explore the

data requirements necessary to provide reliable estimates of this variance.

2. The Collective Risk Model

For the h™ line of insurance let:
u, = Expected claim severity,

o, = Variance of the claim severity distribution;

Ay = Expected claim count; and
Ay + o A} = Variance of the claim count distribution.

Following Heckman and Meyers [1983], we call ¢, the contagion parameter. If the claim

count distribution is:
Poisson, then ¢, = 0;
negative binomial, then ¢, > 0; and

binomial with n trials, then ¢, = -1/n.
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A good way to view the collective nsk model is by a Monte-Carlo simulation.
Simulation Algorithm #1
The Collective Risk Model Assuming Independence Between Lines of Insurance

1. For lines of insurance | 10 n, select a random number of claims, Ky, for each line of

insurance h.

1o

For each line of insurance h, select random claim amounts Zy, fork =1, ... K;. Each

Zi has a common distribution {Z,}.

Kh
3. Set Xy = 3 Zy .
k=l

n
4. Set X=Y X!
h=1

The collective risk model describes the distribution of X.

Meyers [1999] shows that if K, is independent of K4 for & # h, and Z, is independent of
Ky, we have:

Var[Xp ] =Ay -0f +pE (Ap+ep M) @1

and Cov[Xy,X,]=0ford=h. (2.2)
We now introduce parameter uncertainty that affects the claam count distribution that
affects several lines of insurance simultaneously. We partition the lines of insurance into

covariance groups {G;}. Our next version of the collective risk model is defined as

follows.
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Simulation Algorithm #2
The Collective Risk Model with Parameter Uncertainty
in the Claim Count Distributions

1. For each covaniance group i, select o > 0 from a distribution with:
Eloe] = I and Var[as] = g,

g, is called the covariance generator for the covariance group i.

[§8]

For line of insurance h in covanance group i, select a random number of claims Kj;

from a distribution with mean oAy,

3. For each line of insurance h in covanance group i, select random claim amounts Zy;

fork = 1. .. K, Each Z; has a common distribution {Z,;}.
Ky,
4 Set X, =X 7Z,.
Bl
5. Set X,, = thc,xhl'

6 SetX=¥ X,

-1
Mevers [1999] shows that for d = h:

CO\"[Xd”X}“]:gI Ay Ha Ay, (2.3)

Ford = h:

Cov[X, Xy ]=Var[X, ] =&, -op +ui (A +(+g) ¢y AL ) +e, A1, 24
And fori:):

Cov[X,.X,]=0. (2.5)



The ultimate purpose of this paper is to discuss the estimation of the g;’s from claim

count data, so we remove claim seventy from the above equations by setting each

p, =land o; =0 This gives us:

Cov[K,.K,]=8 A, A, (2.6)

and ford = h
CO\[Km ,K_“] = Var[Km ] =A,+ (Cm +8 +C, 8, )- }‘:h.- (V)]

and for1#:
CO\'[KWKM] =0, (2.8)

3. The Impact of the Covariance Generator on Required Capital

The purpose of this paper is o give some estimators of the covanance generator, 8. To
this end, we give an example on a hypothetical insurer writing tour lines of insurance.
The insurer expects 1,000 claims in each line, and the contagion parameter for each line
1s equal 1o 0.02. The covanance generator is equal to 0.04. The claim seventy
distributions are given in Mevers 1999} Tables 3.1 and 3.2 give various summary

statistics of the insurer’s aggrepate loss distribution

Table 3.1
Aggregate Summary Statistics
Aggregate Mean 101,581,230
Aggregate Std. Dev. 23.270,489
Table 3.2

Claim Severity and Claim Count Statistics
Distribution Name E[Count] Std[Count] E|Scverity] Stdf{Severity] E[Total Loss)

GL-$1M 1000 248.60 36.966 16 124,853.59 36,966,160
GL-$5M 1000 248 60 40348 87 160,218.51 40,348,870
AL-$1M 1000 248.60 11,456.65 76,434.03 11,456,650
AL-$5M 1000 248.60 12,809.55 99,730.27 12,809,550
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Table 3.3 and 3.4 give the correlations between each of the lines of insurance for the

clatm counts, and for the total losses.

GL-$IM
GL-$5M
AL-$1M
AL-$5M

GL-$1M
GL-$5M
AL-31M
AL-$5M

Table 3.3
Claim Count Correlation Matrix

GL-$1M GL-$5M AL-$1IM AL-$5M

1.000
0.647
0.647
0.647

0.647
1.000
0.647
0.647

Table 3.4
Total Loss Correlation Matrix

0.647
0.647
1.000
0.647

0.647
0.647
0.647
1.000

GL-$1M GL-$5M AL-$1M AL-$5M

1.000
0.531
0.453
0.423

0.531
1.000
0.440
0.410

0.453
0.440
1.000
0.351

0.423
0.410
0.351
1.000

We now consider some capital requirement formulas. Let X be a random vanable

representing the insurer’s aggregate loss. Let:

C = Required Insurer Capiial

F(x) = Pr{X <x}
f(x)=F(x)
¢ = Standard Deviation of X

Then the required capital can be defined by one of the following equations

1 Probability of Ruin Formula:

2. Expected Policyholder Deficit Formula:

3. Standard Deviation Formula

F(C+E[X]D)=1-¢.

J’" (x - C— E[X])- f(x)dx
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The probabulity of ruin is a common textbook capital requirement formula in actuarial

mathematics. The standard deviation formula is the probability of ruin formula, when

applied to a normal approximation of the insurer’s aggrepate loss distribution. The

expected policyholder deficit formula 1s more recent, and takes into account the amount

of insolvency as well as the probability of insolvency.

We calculated the distribution of X using the Heckman/Mevers algorithm [1983] as

modifted by Meyers [1999]. We then calculated the capital requirements using the above

formulas (with € = 0.01, 1 =0.001 and T = 2.32) for the insurer using various values of g.

The results are in Tables 3.5 and 3.6.

0.02
0.03
0.04
0.05
0.06

8

0.02
0.03
0.04
0.05
0.06

Table 3.5
The Effect of g on Capital Requirements
Standard Probability Expected
Deviation of Ruin Policyholder Deficit
42,388,424 43,179,285 46,210,851
48,535,720 52,492,867 49,606,674
53,987,534 57,818,856 55,052,911
58,937,183 62,516,435 59,858,191
63,502,198 06,763,256 64,205,165
Table 3.6

The Effect of g on Capital Requirements
% Deviations from the Base g = 0.04

Standard Probability Expected
Deviation of Ruin Policyholder Deficit
-21.5% -25.3% -16.1%
-10.1% -92% -9.9%

0.0% 0.0% 0.0%

9.2% 8.1% 87%

17.6% 15.5% 16.6%

The above tables show that the value of g can have a significant effect on the required

surplus.
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4. The Likelihood Function for 2 Multivariate Claim Count Distribution

From this point forward, we shall assume there is only one covarnance group and drop the
subscripts i and j in Simulation Algonthm #2

As we estimate the g parameter across different lines in a covariance group, we will be
estimating the parameters, An and cn, of each claim count distribution simultaneously In
effect. we will be estimating the parameters of a multivariate distribution on the random

vector K ={K, }

Al this point, it is helpful to adopt the vector notation ¢ = {c, and A = {1, }

The negative binomial claim count distribution, conditional on ¢, will be obtained from

the standard negative binomal distnbution by multiplying its mean, Ay, by o

Following Meyers | 1999}, we shall use the following form of the negative binomial

distribution for the probability of ki conditional on o.

I'(lic, +k,) _A('c,,alh_)k“ @)

T7e,) Tk, + 1) (1+c,on,) ™™

Pr{K, = kla}=

Given g > 0, define’:

o, = l—@,a: =lLand ;= l+\/£,
and 4.2)
Pric=o,}=1/6 Priu=a.}=2/3 and Pria=0,} = 1/6.
One can easily venfy that E[o] = 1 and Var|a| = g.
The conditional likelihood of a claim count vector Ko = {kh]a} is given by:

(kA To) = [T Pr(K, =k, Jo). #3)

" As pointed out i Meyers [ 1999], this discrete distribution for o was motivated by the Gauss-FHermite
numencal integration formula. One can casily derive similar distributions with more points.
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The unconditional likelihood of a claim count vector k = {k,}is given by:

L ARAde) 2ok da .
[kih€.g) - ‘ U ; ,;+7,.6_,

44)

As we go about the computational efforts described below, we will work with the log-

likelihood functions:

L{kA.ga) = In{¢{k.A.€la)): and (4.5)
Lkicu} PCLEREN L[k Aa)
L R T (4.6)

! 6 3 6

5. Maximum Likelihood Estimation

Under the assumption that claims are generated by the process described in Simulation
Algorithm #2, an insurer wishing 10 estimate the parameters %. ¢ and gmight gather data

hke that in the following table from 11s own claims experience
Table 5.1
Insurer Data for Estimating c and g

Exposure by Line and Year
Year Line | Line 2 Line3 Line 4

1998 100 80 40 20
1997 100 80 40 20
1996 100 80 40 20
1995 100 30 40 20
1994 100 80 40 20

Claim Count by Line and Year
Line | Line2 Line 3 Line 4

1998 153 131 53 31

1997 96 77 41 20

1996 53 89 45 16

1995 92 72 45 30

1994 92 90 43 16
Estimated

09720 L1475 11350  1.1300
Frequency
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We estimated the insurer’s frequency by line of insurance by dividing the total claim

count by the total exposure. We then assumed that ¢, = ¢ for all h.

Let k, and A be respectively, an observed claim count vector and an estimated expected

clarm count vector for the vear y.

In Table 5 1 the observed claim count vector, Ewm, is equal to (153, 131, 53,31)". The
expected claim count vector, ;\,‘\\)qx. is equal to (100-0.9720, 80-1 1475, 40-1.1350,
20-1.1300)" which is equal to (97.2, 91 8, 45 4. 22 6)". The parameter vector, ¢,

is equal to (c. ¢, ¢. ¢)'. The maximum hkelihood estimates &and § of ¢ and g are the

values of ¢ and p that maximizes:
Yk, Ee) 6.1

Using Excel Solver'™, we found the maximum hkelihood estimate (MLE), ¢, of ¢ to be

0.0169 and the maximum likelihood estimate § of g to be 0.0245.

We should note that the data in Table 5.1 was not generated from actual insurer data. It
was taken from five random drawings from Simulation Algonthm #2 with the “true”
frequencies set equal to 1.0000 for each line of insurance, the “true” value of ¢ set equal
10 0.0200. and the “true” value of g set equal to 0.0400. We repeated the simulation 100
times with the following results.
Table 5.2
Properties of MLE’s forc and g

Derived from 100 Simulations
of a Single Insurer’s Data

C g
True Value 0.0200 0.0400
Average MLE 0.0134 0.0226

Std. Dev. of the MLE  0.0126  0.0208

One can see from Tables 3.5 and 3.6 that the estimation errors can lead to a significant

understating of the required surplus.
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Based on this and other similar simulations we conclude that estimating ¢ and g in this

manner can lead to biased and highiy volatile results.
We now examine some other estimation methods

The first alternative is to combine the data of several “similar” insurers. Let A be the set
of insurers and let a € A We created 40 nearly tdentical “copies™ of our insurer and
simulated the MLE’s for ¢ and g. Table 5.3 below shows the exposures and claim counts

for the first two mnsurers in a typical simulation.

When combining the data of several insurers we maximize the log-likelihood expression:

gL(i;;i',,z,g). (5.2)
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Table 5.3

Multi-Insurer Data for Estimating c and g

Insurer #1
Year
1998
1997
1996
1995
1994

1998
1997
1996
1993
1994

Insurer #2
Year
1998
1997
1996
1995
1994

1998
1997
1996
1995
1994
Insurer #3
Year

L

Estimated
Frequency

Exposure by Line and Year
Line 1 Line 2 Line 3 Line 4

100 80 40 20
100 80 40 20
100 80 40 20
100 80 40 20
100 80 40 20

Claim Count by Line and Year
Line | Ling 2 Line 3 Line 4

69 69 33 20
99 80 51 17
101 78 68 18
129 94 42 17
82 76 30 15

Exposure by Line and Year
Line 1 Line2 Line3 Line4

20 100 80 40
20 100 80 40
20 100 80 40
20 100 80 40
20 100 80 40

Claim Count by Line and Year
Line | Line2 Line3 Lined

25 108 64 45
18 38 75 42
22 87 94 44
22 130 69 47
30 147 111 68
Exposure by Line and Year?
Line 1 Line2 Line3 Lined
U 4 u L

1.0088 1.0077 1.0088 0.9877
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We ran 100 simulations of data like that in Table 5.3 and calculated the maxtmum

likelihood estimators [or ¢ and g with the following results.

Table 5.4
Properties of MLE’s forcand g
Derived from 100 Simulations
of 40 Insurers’ Data

c B
True Value 0.0200  0.0400
Average MLE 0.0199  0.0399

Sid. Dev. of the MLE ~ 0.0022  0.0030

Based on this and other similar simulations we conclude that we can obtain accurate

estimates of ¢ and g —1f we can get the combined results of several “similar™ insurers”.

The existence (or non-existence) of similar insurers opens up a host of issues. We now

explore a few of these 1ssues.

6. Bayesian Estimation

We suspect few msurers would agree that they are sufficiently “similar™ to any other
group of insurers to fully accept the results of an analysis like that given above. They
might accept the results because they have no quantitative alternative, and then
judgmentally modify the results. Since we consider it likely that judgment will enter the

picture. we constder a Bayvesian approach to the problem.

Consider a grid (c,.g)) of possible values of c and g. Let {f(_‘_}be a set of abservations

needed to calculate the likelithood function for each point (ci.g;) Let pj be the “prior”

probability of each point (c,.g)

* We varied the exposure for the Iines i the pattern: 100,80,40.207 20,100 .80 43, 40,20,100 .80, and
80.40,20.100

* The reader may observe that the expected claim counts [or the insurer 1o this simulated sample were
significantly smaller than the insurer discussed in Section 3 above. We also did a simulation where the
nsurers were 10 times as large. We obtained $td Dev[¢]= 00011 and $td Dev[2] = 00022
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Then according to Bayes® Theorem, the posterior likelihood of each (c;,g;) will be

proportional to®
[14k,:%,.c..8,)p,. (6.1)
;

As an 1llustration, suppose that we choose a prior so that the p;'s are equally likely. For

one simulated {i(_‘, } based on a single insurer’s exposure we obtained the following

posterior distribution of (ci,gj), which we show (part of) graphically.

Graph 6.1

Posterior Likelihood for a Single Insurer
with a Uniform Prior Distribution

* For the time being we are assuming that the expected claim count is known. We wll address this problem
below
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As an example, we construct a prior distribution so that

p, = [Tek;:Rc..8,). (62)
ay

where {I_(;} comes from the (simulated here, but in practice real) data of the 40 “peer

group” insurers given above. We obtained the following posterior distribution for the

same insurer that we show graphically.

Below, we will show how to use the posterior distribution as input into the collective risk

model, as described in Simulation Algornithm #2.

Graph 6.2

Posterior Likelihood for a Single Insurer with a
Prior Distribution Based on Industry Data




7. Industry Drivers of Correlation

The likelihood Equation 3 6 was denved under the assumption that the “driver” of the

correlation. i.e. the random variable o, was independent for each individual insurer. This

section considers the consequences of the random variable ¢ being common to all

insurers. To this end, we replace Steps 1 and 2 of Simulation Algorithm #2 with the

more complicated process.

6.

Simulation Algorithm #3
The Collective Risk Model with Parameter Uncertainty
in the Claim Count Distributions
Driven by Industry and Insurer Parameter Uncertainty

For each covariance group i, select o and a, as follows.

A

1.1. Select o from a distribution with E[(x;‘] =1land Var[otj\]: gt g’ iscalled
the industrv covariance generator for covariance group i.

L 2. Select o, from a distribution with E[r,]=1and Var[er, |=g,. g, is called the
insurer covanance generator for covariance group 1
For line of insurance h in covariance group i, select a random number of claims Ky,

from a distribution with mean af* -o; - K.

For each line of insurance h in covariance group 1, select random claim amounts Zy,;,

fork =1, ... K, Each Zy; has a common distnbutton {Z;}.
Ky,

Set X, =3 Z,, .
k-l

Set X,, = zhe(i, Xy -

Set X:iX,,.

=1
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We now calculate the moments of the aggregate loss distribution described by Simulation

Algonthm #3

F{u;‘ -(1,] = E [(xj‘ -a,lu;‘" ] =k, [n.',"]f 1 (7.1)

'
v,

Var[u;" u] = E“‘\[Var[ul“ -al\a;‘ ]]+\""(,¢[If[a;" .u,,u," H

_E A PV b
“E . [(Lx, } \ar[u‘]} var,, [(1| ] 72)
H(1-gt) e el
g gl ey
To calculate the variances and covariances analogous to Simulation Algorithm #2, we

simply replace the vanance g, in Equations 2.3, 2.4, 2.6 and 2 7 with the expression

Let li;‘ be a vector of observed claim counts for the “industny ™ in veary. An example of
such a vector based on Table 5.3 1s K, = (69, 69. 53. 20,25, 108, 64,45, . )"
Simtlarly let l\\ be a vector of expected claim counts for the “industry™ in year y

The hikelihood function of k* conditional en o™ is given by
v g N

[(R;‘;X";,E,glu"):Hf(:ldc;‘_‘u"i"}..é,g). (73)

a

The assoctated log-likelihood function is given by:

L[:l};";)_(: ,E.g}a'*) =y L(f(;;a'\i‘y cg,) (7.4

(3]
—
h



Given g* > 0 define
(.)L;*:]—\/3g_",oz':N =1l and o} = [+3g*,
and (1.5)
Pr{a’ =} =1/6, Pr{a* =} =2/3,and Pr{a* =aj}=1/6

The unconditional log-likelihood function is then given by:

L{K} 23 i gl ) Z.e[.(li':_l’:.é.g‘u?) e[.(i,*_i;,:gn;‘)

Ll_("\;)—»'\_.", g*)=1In + += 7.6
( TN cgg) A 3 A (7.6)

8. Maximum Likelihood Estimation Revisited
Consider the following two situations.
1 g=r>0andg*=0

2 g=0Oandg'=r1r>0.

From the insurer’s point of view, the two situations are identical. lts expected claim

counts are multiplied by a random number each vear.

But from the point of view of one who is trying to estimate the vanance of the random
multiplier, the situations are different. In the first situation, a new o is picked for each
insurer for each year In the second situation, o™ is picked once each year for all insurers.
The estimator should use the log-likelihood function in Equation 4.6. In the second

situation the esttmator should use the log-likelihood function in Equation 7.6.

We did 100 simulations of our 40 insurers where the claim counts are generated by
Simulation Algorithm #3, with ¢ = 0.02, g = 0 and g" = 0.04. We then estimated ¢ and

“g” using maximum likelihood on Equation 4.6, with the following results.
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Table 8.1
Properties of MLE’s forcand g

Derived from 100 Simulations of 40 Insurers’ Data

with Industrywide Parameter Uncertainty\

¢ g g

True Value 0.0200 00000 0.0400
Average MLE 0.0218 00249 —
Std. Dev. of the MLE  0.0039  0.0158 —

We next did 100 simulations of our 40 insurers where the claim counts are generated by
Simulation Algorithm #3, with ¢ = 0.02, g =0.01 and g* =003 We then estimated ¢, g
and g" using maximum likelthood on the “correct” Equation 7.6, with the following

results.

Table 8.2
Properties of MLE’s for ¢, g and g*
Using Estimated Frequencies
Derived from 100 Simulations of 40 Insurers’ Data
with Industrywide Parameter Uncertainty\

c
True Value 00200 00100 00300
Average MLE 0.0201 0.0114  0.0213

Std. Dev. of the MLE ~ 0.0023  0.0026  0.0090

If you used the estimated g and g* in equation 7.2 instead of the true value of g and g*,

you could significantly understate your capital requirements

It may occur to one that the reason for this downward bias 1s due to the fact that we use
estimated frequenctes, rather than true frequencies. To test this we repeated the
simulation using the “true” frequency rather than the estimated frequency and obtained
the following results.
Table 8.3
Properties of MLE’s for ¢, g and g*
Using “True” Frequencies

Derived from 160 Simulations of 40 Insurers’ Data
with Industrywide Parameter Uncertainty

c g g
True Value 0.0200  0.0100  0.0300
Average MLE 00200 00104 00298

Std. Dev. of the MLE ~ 0.0023  0.0029  0.0033
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This simulation indicates that the bias is indeed caused by using estimated frequencies in

the MLE. However, in practice the “true” mean is not known.

9. Bayesian Estimation Revisited

Consider a grid (7_&\) c.g.et ) of possible values of A", ¢, gand g* Let {i\\} be a set of
observations needed 1o calculate the likelihood function for each poim(i",\y.c,,g,.g, )

Let p; be the “prior” probability of each poim(i',\y,cl.g\,g(‘) .

Then according to Bayes™ Theorem. the posterior likelihood of each (X“ C,.8 gf) is

proportional to:

Hf(ﬁ;j;ig.c,.g‘,g;“)-p, .1

Let é;" be a vector of exposures for the set of insurers, A, in yeary. Let £ be vector of
clam frequencies. Then each coordinate of the expected claim count vector Xl\\ 1s equal
to the product of the corresponding coordinates of é;‘ and T*. Since the exposures are
known and the claim frequencies are unknown, we should put a prior distribution on the

gnd (f}c.g,.8').

Let 2 be the posterior probability of each point in the gnd (f',",c,,g,,g,"). Then one can

obtain estimates of f*.c g and g* by the following formulas

ff‘\ :Z~‘\ 2
¢= Zc, P

' (9.2)
8= 2
=Yg
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We then tested the vanability of these estimators on our simulated set of 40 insurers. The

gnd was constructed by varving f“‘,c,.gl and g" n the lollowing manner.

I Each component of f* was set equal to 0 9875. Each component of i was set

equal 10 1.0125. The components for1 = 1.2 and 3 were equally spaced in belween.

2. cowas sel equal to 00100 ¢y was set equal to 0.0300. The components for i=1, 2
and 3 were equally spaced in between
3. gowas set equal 1o 0.0020. g4 was set equal to 0.0180. The components for i=1, 2

and 3 were equally spaced in between.

4 g’ was set equal to 0.0200. g} was set equal to 0 0400. The components for i-1, 2

and 3 were cqually spaced 1n between

In total. the gnd had 5' = 625 points. We assumed all points in the grid were equally

likely*
We made 100 simulated estimates with the following results.

Table 8.4
Properties of Bayesian Estimates for ¢, g and g*
Using “True” Frequencies
Derived from 100 Simulations of 40 Insurers® Data
with Industrywide Parameter Uncertainty

c g
True Value 0.0200  0.0100 00300
Average Estimate 0.0201  0.0105 00303

Std Dev of the Esumate  0.0021 0.0020 00027

Here we see that one can obtain stable and unbiased (in the classic statistical sense) by an

appropnate use of Bayes™ Theorem.

* This “equally hikchy™ is as subjective as any other assumption that one can make. The spacing of the grid
15 one part of the subjectivaly. Another subjeclive assumption 1s that the frequencies for the four lines of
insurance move logether.
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9. Using Real Data

This paper has taken a version of the collective risk model, in which the lines of
insurance are correlated and explored some methods of estimating parameters of the
claim count distributions. The data used in these methods consisted of both exposures

and claim counts that span severa! vears.

We explored the use of maximum likelihood on a single insurer’s data to estimate the
parameters and concluded that the random variation of the estimates were too large to
derive a rehable estimate of the insurer’s required surplus. One can obtain more stable

estimates of the parameters by combining the data of several insurers.
We drew these conclusions from experiments performed on simulated “data.”

We now raise some of the issues that one must address when estimating these parameters

of the collective risk model with real data from several insurers.

1. Claxm Count Development
When analyzing several years of claim count data, one must take care to distinguish
the random variation from the systematic claim count development that occurs

because of delays in reporting claims.

=]

Insurer Class Differences
Different insurers can focus on different classes of business When analyzing the data
of several insurers. one must take care 1o distinguish the random variation from the
systematc differences that occur because of the different classes of business that

insurers wnte

3. Insurer Strategy Changes
When analyzing the data of several insurers, one must take care 1o note that planned
changes in mnsurer strategy that result in changes in claim counts. This can be

difficult because insurers usually keep their strategy changes 1o themselves.

We are in the process of fitting this model to the data of several insurers. We are not yet

In a position to sayv how we are addressing these and other issues. Suffice it to say that



we are using our judgnient, and we anticipate that the ultimate users of this information
will want to impose their own judgment. The Bayesian methodology provides a

framework for making these judgments.

In spite of the judgments that one must make, we do feel that parameter estimates using
the combined data of several insurers provides a useful starting point for insurers as they

20 about doing their Dynamic Financial Analysis.
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Abstract

Feading actuarial companies employ stochiastie simulition models o evaluate the viability of
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L. Introduction to Integrated Financial Risk Management

Over the past several years, mnovative imsurance companies have begun building integrated
financial risk managerent systems. These efforts aim to evaluate the company’s activities within
a common Iramework. The goal is to maximize sharcholder wealth by focusing on the overall
risha and rewards to the organization as measured in several wavs. Ideally, the major areas
affecting the company s results should be integrated: asset allocation. business management.,
corporate structure, and re-insurance. Doing <o provides the best opportunity to achieve the
company’s goals over tine,

For some insurance businesses, the nportance of Jinking asset and liability risks is well
understood. An exanmple s anannuity whose payoff 1s set ata proportion of the TS S&PS00
stock return above a set index. It would be foolhardy to invest the assets for this business without
understanding the risks of mismatching assets and habilities. Given recent performance, it1s a
simple matter to assign assets that exactly match the product’s payoff patterns, through options or
futures contracts, or funding reserves by dynamically purchasing or selling the stock. Asset and
lability management for this type of insuranee is a cleay and obvious concern. FFor all insurance
compintes, there s need to manage the assels and labilities so that surplus will grow at a rapid
pace, as compared with maintaining the surplus at a constant or slowly growing trajectory. In
addition, shareholders will seek out insurance companies that grow rapidly and possess
diversification benefits.

A dynamic financial analysis (DFA} system consists of three major elements: a stochastic
scenario generator. a multi-period simulator, and an optimization module (Figure 1). The first two
elements form the corporate simulation system; these are deployed before the optimization
module searches for the best compromise decisions given the relevant business, poliey, and
regulatory constraints, In effect. the optimization runs the simulation by identitymg the
combination of decisions that best fits the proposed objective function over the multi-period
planning horizon.

A critical issue mvolves constructing the economic scenarios. Each scenario depicts a single
coherent path for the primary uncertainties, such as interest rates, inflation, and business activity.
Typically, the scenarios are generated by sampling tfrom a system of stochastic differential or
difference equations. As a simple example, we could gencrate short government interest rides by
means of it mean reverting equalion:

dry = af{r,-r)dt + o 7 by

where  dZ = Wicner white noise term
o= nterest rales at tme

Here. the equation shows that the change in interest rates at time t depend upon three factors — the
distance to the target reversion parameter (ry), the drft parameter (1), und the instantaneons
volatility (@), Thus, there are three parameters associated with equation (1.1). These parumeters
dictate the chuaracteristics ot the sumple P:Ilh\l. The calibration process determines the uppropnate
vilues Tor these purameters. We call the approach - integrated parameter estimation (1PE). The
basics are taken up in the next section.

| ) . . . . .

Three sourees of ervars must be considered in o DIFA system: model error, calibration error, and sampling
error, We are solely concerned with the second source in this paper. Sec Mulvey and Madsen (199%) for a
further discussion of addressing errors in DFA systems.
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Components of DFA Technology

2. An Optimal Fitting Modecl for Calibration

This section deseribes the calibration of the scenario generator ax a spectal optimization model.
The primary concept is to match summary statistics and other idicators such as inter-quartile
ranges and quantiles as closely as possible, while defining the model parameters as decision
vartables in the optimization model. The approach dircetly traces to traditional fitting models.
including maximum likelihood, method of moments, and simulated moment esumation. As with
these approaches, the model parameters are determined by reference to specalized optimal fiting
problems.

Judgement is necessiry when determining the parameters of a stochastic model. Fixing
parameters is cquivalent to setting assumptions. Ideally, we would test the impact of various
settings of the parameters on the model™s recomimendations as shown in Figure 2.

| N .

| Assumption ' Risk and Reward . Decision

o Makmg

Setting . Analysis

Figure 2: The Three Stages for Conducting a DFA

The process entails combining teedback and revision in order to become comfortable with
the recommendations.
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2.1 The Estimation Problem

This section reviews the generalized method of mements (GMM) of Tlansen €1982) and the
simulated moments estimation (SME) of Duftic and Singleton 1993). The notation follows
Duffie and Singleton (1993).

Consider a funcuon H: ¥ 2 2" x G — &7 with pariuneter set © < % Also
X . . N Y .
consider an observation function f18 7 %@ = & A SCURUTiO process {Y, } 18 generated

hy the difference cquation

Vo= HiY e ) (2.1

where the parameter vector 3, 1s to he estimated. and {E‘l} i< an 11.d. sequence of random
variables defimed ona given probability space. Let Z =Y. ¥ .Y ) defining the state of
the process over time. Iistmation of i, is based on the statisties of the observed process

/. = [(Z . BY. For example. we might be interested in the means and standard deviations of the

asset returns,

2.1.1 Generalized Method of Moments

Deline [ € © to be an arbitrary purameter setung. When [ [+ I;{_/ Uz, [3)] is anatyticatly
known and time independent. the estimation of f; can be done with the generalized method of

moments (GMM). For these cases, the estimator is:
by =arg min GMM (Y W (Bicas, () 2.2
ooy

&
whoere f, = (U2 By, GMM,(f3) = 72/ - /:'[ . )]_ W, (3} 15 a0 a1 = 7 positive-
i

definite synmetric weighung matrix., and T is the actual number of vbservations on /7 In
words, the vector b, is the solution” to the minmuzation model defined by the least square GMM
function. Hansen (19825 shows that the above minmmization produces the estimator with the

|
smallest asymptotic covariance matrix it Wt ) = [E[(;_\i,\/, (franar; (/3)” .

2.1.2 Simulated Moments Estimator

For wider classes of problems where the GMM assumptions faill the mapping

f:p— [:'[ VAN )} may be replaced by its simulited version. We assume asequenee | € ) of

T The wey nun notaton reters o the solution of the posed optimzation modet.



. of )
random vartables with s distnbution identica] to and independent o '[Fr} - The simulated state

S and etting
=Y E By =120 12.3)

Ihe simulated observations (umnuary statisties) are defined as £ = (2P gy ar {/} and

[ -
! } are governed by the liw of Lrge numbers, and dentitication conditions «Duftie and

Smgleton (199350 gre met then, T SME, (fr= 0 =[5,

[yl . .
provess (B occurs by choosing astarting poimt

he SME estnitor s,

fo=are min sME, CBVWL s, o) (2.4

|
where SvEL (S = I'Z /

1 The Ayovectoras the solution o the equation €241 Prools of consistency (strong and weak) and
asyimprotie normadiny are given i Duttie and Singleton (19931 Additional discussions ot
pacameter estimation through semulation can be found m Hansen and Simgleton (1982), Pakes and
Palland 1 T9x0i Mcbadden 1989 Grrezorny and Smith (19901 and Lee and Tngram (19915

I z £ oand TEF s the simelation sample size fora aiven
T

2.2 Integrated Parameter Estimation

Fhe mtegrated parameter estimation (QPE) approach extends simulated moments estingtion i
twenwas s Frestothe targer vector includes aovariety of descriptive statistics besides moments, tor
example. serial correlution. distribution percentiles. and range estimates Lee and Ingram (1991
allow Tor serial correlatron m the ditae setcbut they requite thae the crterton function be
centinuons m the mean. e centrist IPE does ot require a continuous objective Tunction:

seneralb innctian er even process can be emplosed. Second. v place hounds on the values of
selevted parimeters. These constramts assist i the search for the best solution

Given i vecton of paramctens oS as deasion variables the IPE eaiinutor solves the followimg
optimization moeded

boooare min GsME YW hasar o (

Lo

)
=

ie'

<pef

where asae offy cmod” = 8 omicer s the IPE objective Tunction. S denotes the model
statistics, /7 denotes the tugetstatistios. Sand [ e bounds on the parameter vector fiand

oindexes the pertiment statistios. When the abjective function equals o distance metrie, the

set'Fncludes only moments.and the Teasible region is uncenstianed. IPE is equivalent to SME.

I the werehtmyg maris W davomal then 2.5 reduces o are min Z\\ l""l _y II where

L e

Wooare the diagenal elements.,

139
o
o



The IPE approach fits simulated samples from the stochastic model to a given set of descriptive
statistics. Each of these descriptive statistics serves as a target, and deviations from the targets are
expressed as constraints in (2.5) with tolerances L, and U, The feasible region 1s determined by a
user specified tolerance level, the maximum allowable difference between u given summary
statistic and its target. One can also penalize constraints, rather thun keeping them explicit.
Suitable penalty functions include absolute value and quadratic functions which penalizes
underage differently than overage. and asymmetric risk measure. The penalty function relatives
must account for differences in scale s well as serving us importance factors. See Mulvey,
Roscnbaamy, and Shetty (1996) Tor further discussion. and Berger and Madsen (1999) for a simtlar
approach.

The actual parameter setting process combines the actuary’s judgement with the computationl
ahility of the TPE calibration tool. Typically, several tterations are required in order to find the
most desired combination of penallies and constraints to meet the target goals (equation 2.5).

3. Dealing with Non-Convexity

The solution of the calibration model is complicated by the presence of non-convexities. At its
simplest. non-convexity causes standard hill elimbing algorithms to stall at local optimal points.
Thereby, software systems such as Microsoft's Excel solver may not find the global optimal
solution. Figure 3 shows an example of numerous locul optimal solutions.

The scarch procedure must extend itself in order to cope with non-convexities. To do this, we
employ the Tabu scarch method. one of the most successtul methods for overcoming these
difficultics. The approach depends upon several memory functions that guide the search and pass
through tocul optimal points as needed. Both long-term and short-term memory are employed.

Tabu search has proven effective lor solving combinatorial optimization problems; see Glover
1990 and 1995 The procedure provides for an efficient search of a feasibility region by
monitoring key attributes of the points that comprise the search history. Potential search iterates
possessing attributes that are undesirable with respect o those already visited become tabu;
appropriate penaltics discourage the search from visiting them.

Consider a general non-convex optimization problem of the form: minimize, f(x), x € X. (The
function fix) indicates the responses of a system to a given strategy or decision vector x.) For
deterministic problems, there is a single response associated with any x. Our adaptation ol tabu
scarch hus three basic clements:

1) ufunction g(x) = f(x) + d(x) + t(x). The function d(x) penalizes x for infeasibility. The
function t(x) penalizes x for being labeled tabu.
the current iterate X.. and
a neighborhood of the current point N.. The procedure generates i new iterate Xg. by
selecting the element of N, for which g(x) 15 smallest.

The tabu restrictions represented in t(x), can address short-, intermediate-, and long-term
components of the search history. Short-term monitoring is designed to prevent the scarch from
returning Lo recently visited points, allowing the procedure to “climb out of valleys™ associated
with local minima. Short-term monitoring can also serve as a rudimentary diversification vehicle.
Intermediate- and long-term monitoring techniques provide for a much more effective
diversification of search over the feasible region. The t(x) function in our version of tabu search
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relies on exploitation of short-term search history. Details of three processes are required to
define our adaptation: formation of the neighborhood of the current point, assignment of tabu
penalties. and termination of scarch procedure. Sce Glover, Mulvey, and Hoyland (1993).
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Figure 3
A Non-convex Region with Numerous Local Solutions

4. Calibration Example

The Towers Perrin — Tillinghast company employs the CAP:Link/OPT:Link system for helping
pension plan and insurance clients understand the risks and opportunities related to capital market
investments. The scenarios generated by CAP:Link contain key economic variables such as price
and wage inflation, interest rates for twelve maturities (real and nominal). stock dividend yields
and growth rates, and currency exchange rates through each year for a period of up 1o 20 years.
We model returns on asset classes and liability projections consistent with the underlying
cconomic factors, especially interest rates and inflation. The economic variables are
simultancously determined for multiple economies within a common global framework. Long-
term asset and liability management is the primary application.

The global CAP:Link system forms a linked network of single country modules. The three major
cconomic powers — the United States, Germany, and Japan -- occupy a central role, with the
remaining countries designated as home or other countries. We assume that the other countries
are affected by, but do not impact the economies of the three major countries. The busic
stochasue differential equations are identical in cach country, although the parameters reflect
unique characteristics of cach particular economy. Additional countries cun be readily included in
the framework by increasing the number of other countries.
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Figure 4: The cascade CAP:Link structure within a single country. Each country in Global
CAP:Link depicts a common heritage.

Within cach country. the basic economic structure is illustrated in Figure 4. Variables at the top of
the structure influence those below, but not vice-versa. This approach eases the task of calibrating
the model’s parameters. The ordering does not reflect causality between economic variables, bul
rather captures significant co-mavements. Linkages across countries occur at vurious levels of the
model -- for example, interest rates and stock returns. These connections are discussed in Mulvey
and Thorlacius (1998). Roughly, the economic conditions in a single country are more or less
affected by those of its neighboring countries and by its trading partners. The degree of
interaction depends upon the country under review.

The structure is based on a cascade format. Modules above and egual to that module can atfect
cach sub-module within the system. Briefly. the first level consists of short and long interest
rates, and price inffaton. Interest rates are a key attribute in modeling asset returns and especially
in coordinating the linkages between asset returns and labihity investments. To culculate a
pension plan or an insurance company's surplus, we must be able to discount the projected
liability cash flows at a discount rate that 15 consistent with bond returns, under each scenario.
Also, since dynamic refationships are essential in risk analysis, the interest rate modef forms a
critical vlement.

The second level entails real yields, currency exchange rates and wage inflatton. At the third
tevel. we focus on the components of equity returns: dividend yields and dividend growth.
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Returns for the remaining asset classes form the next fevel. with fixed income assets reflecting the
term structure ot interest rates and other mechanisms, Each cconomic vartable is projected by
means of o stochastic differental equation -- relating the variable through tme and with the
stochastic elements of the equation and. of course. to other varbles and factors at the same or
higher levels in the cascade.

A cntical feature for a global scenano generator is the currency model. Several complicating
issties arise when modeling currency exchange rates. First. currencies must enforee the arbitrage
free candimion among spot exchange rates and among forward rates with differential interest rates,
The second tssue myvolves symmetry and numeraire independence: we must create a structure in
which the distribution of currency returns from country A to B has the same distribution as
returns from B to A. Both issues limit the form of the currency exchange models. especially when
integrating three or more currencics. To avoud these problems, we focus on the strength of cach
country’s currency . Exchange rates follow as the ratio between the strengths of any twa countries.
The absolute streneth of any currencey is a notional concept: the relative tevels reflect the
difterence inthe exchange rates. See Mulvey and Thorkicius (19983 for further detals.

4.1 Example of Calibrating a Scenario Generator with both Assets and Liabilities

We now present an example of calibrating a DFA model that includes both asset and liabilities. In
thix example, we calibrate the CAP:Link model to produce lability growth, as well as asset
retarns. We then use the OPT:Link system to find a set of efficient portfolios for a hypothetical
property/casualty insurer. These efficient porttolios comprise the asset-liability efticient trontier
(ALEF"™ for the DFA. The IPE approach forms the hasis for the automatic calibration tool.

4.1.1 Form of the Liability Model

For thix example. we are interested in modeling a line of msurance that relates to medical and
legal mitation. Liability inflation is modeled us a tunction of its value in the prior period, price
intlavon, and random volaulity. The user inputs consist of an initial rate of inflation, and an
assumption of future inflation. The model has two additional calibration parameters: a parameter
that determines the sensitivity to modeled price inflavon. and a parameter that determines the
amount of random volatility. These two parameters will be calibrated in conjunction with the
standard CAP:Link parameters. The Lituee optimization solver carries out the non-convex
seareh.

4.1.2 The Calibration Process
We propuose four steps for conducting a calibration exercise as shown below. It is advisable to get

actuaries and users involved in the process al an early stage so that everyone understands the
issues and is comfortable with the resulting model parameters.
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Step 1t Analyze Historical Data

The first step to any calibration process should start with historical data. We analyzed historical
data to determine the characteristics of the index. For Medical CPL we took data covering the
1947-1998 period. The historical data on Legal Services CPIis much shorter, covering the period
from 1986-1998.

Step 2: Set Targets

From our analysis of historical data we determined the following targets:

Medical CPI Lepal Services CP1
Standard deviation 1.9-2.2% 038 - 1.0%
Correlation to CPI 0.6-.0.7 1 0.45-0.55
Average spread over CPI 0.9 0.7

We express the targets as ranges. These targets depict a blend of historical experience and
forward-fooking analysis. First, we start with the ranges that are consistent with historical
experience. Then we udjust for historical trends. For example. for the last 11 vears medical CPI
has outpaced CPI by 2.3% . Cun we reasonably expect this trend to continue? Over a long-term
horizon, we might expect the growth in medical costs to be closer to CPI. This issue must be
solved by the model developers so that proper targets can he set

inftation
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Figure 5
Historical Data for Target Inflation Series
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Step 3: Use the Calibration Tool

The calibrution system solves the IPE optimization model presented in section 2.2 (equation 2.5).
We set up the calibrution tool to run 100 scenarios per iteration. We have found through
experience that 100 scenanos is a small enough number to run quickly, yet 100 scenarios produce
a large enough sample to be representative of the 500 or 1,000 simulations we typically run. We
have also discovered through experience that it is best to base cahibrations on pure normative
conditions. Calibrating to normative conditions removes the effect of trends, as initial conditions
move toward their normative states. Depending on the differences between initial and normative
conditions, these trends may be significant. If the trends are significant. then they may prevent the
calibration tool from being able to meet the targets. Since the targets are set by essentially
“normalizing” history. it 15 best to base calibrations on a normalized environment.

Step 4: Review Model Output

The final step is to take the optimum set of calibration parameters and use them to generate a 500-
scenario CAP:Link projection. In this projection we have started with initial conditions so that
we can evaluate the effect of the trends. Now we are able to fully evaluate the effect of initial
conditions on the optimized parameters. These results must be fully reviewed by an experienced
asset simulation expert to determine the reasonableness of the results, In the end, any calibration
15 only ax good s the credibility of the results.

4.2 Linking Assets and Liabilitics in DFA Simulations

Next, we consider a hypothetical insurance line of automobile policies. We assume that these
liabilities are driven by an equally weighted combination of medicat inflation and legal services
inflation. Using a starting liability value of $80 million, combined with the stochastic lability
growth rates. we can project future liabilities. The mitial asset value of S100 million can hikewise
be combined with the stochastic asset growth rates to project future asset values. For our analysis,
we focus on the difference between the assets and habilities — dollar surplus. The simulation
renders investment and business decisions each month over the 10 yvear horizon.

4.2.1 Generating the Asset/Liability Efficient Frontier

We can use an asset/lability optimizer to generate an efficient frontier. The efficient frontier tells
us the combination of assets that produce portfolios with the highest expected reward for a given
Jevel of risk at the end of the multi-period horizon. In this case, we have defined reward to be
ending dollar surplus and risk to be the standard deviation of dollar surplus. To generate the
surplus efficient frontier requires a proper multi-period DFA system. These results show the
benefits of calibrating the assets and liabilities to a common set of econormnic factors.
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4.2.2 Asset Classes and Constraints

For our analysis we have included the following asset ciasses and constraints. The DFA model
resets the asset proportions to these value at each time step. Rebalancing the portfolio is

conducted by following a fixed mix decision rule.

Asset class Min % Max % Current Portfolio %
Cash 0 100 5

US Large Cap Equity | 0 100 20

Bond Index 0 100 75
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Figure 7

5.0 Concluding Remarks

This paper described a systematic method for calibrating a stochastic scenario generator for DFA
based on an optimal fitting problem over a set of sampled scenarios. As shown by the example,
the resulting calibration tool can be solved by Tabu search and related meta-heuristic approaches.
Assels and labilities should be calibrated together since there are underlying driving factors that
aftect the company’s surplus. To properly calculate risk, we must consider both sides of the
batiance sheet within a DFA system. The integrated parameter estimation provides a practical
method tor solving this problem.

Two lines of research merit attention. The first requires the development of better ways to address
the non-convex optimization model. We are currently investigating an adaptive algorithm that
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takes into consideration sampling errors. The goal is to solve the optimization model with the
greatest degree of confidence and the least amount of siampling error. The second avenue for
rescireh is 1o extend the procedure to the selection of the forecasting model structure itself.
Certiin weli-defined structural changes could possibly improve greatly our ability to generate
scenarios exhibiting the desired behavior. Here, we are taking up the difficult issue of moded
structure error.

Notwithstanding these issues, we have shown that employing an optimization model for
calibration ix a practical procedure. We have iHustrated the approach on a forecasting model for
financial planning -- CAP:Link. We believe the approach holds promise for forecasting systems
i other plinning domains.
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Abstract

Dynamic Financial Analysis is an extremely powerful tool for all aspects of the insurance operation. With
the constantly increasing amounts of information available to the public, DFA models can be better
customized to fit the needs of the end user. This paper will examine several areas in which a publicly
available model can be customized to fit a company’s specific management structure and risk management
priorities. Specific approaches to these customizations will be provided along with possible data sources,
reasonableness checks, and potential advantages and disadvantages of each approach. Where possible the
paper will use publicly available data in order to provide the reader with available sources for developing
DFA applications like this one.

Introduction

This paper will discuss specific areas to consider for customization in a DFA model, alternative approaches
to take in performing such a customization, available sources of data to aid in the changing of the
parameters, and advantages and disadvantages of the tactics presented. We will provide general
commentary on the area of customization and then specific examples using the workers compensation line
as an example.

We will discuss four general areas ot model parameterization: Interest Rate and Economic Condition
Modeling, Premium Modeling, Loss Modeling, and Other Modeling Considerations. First. we will briefly
describe the model.

About DynaMo

The model used in this analysis is DynaMo by MRH&T'. Dynamo is a publicly available model, which
allows DFA users to learn about DFA in a forum which proprietary systems do not allow. It is intended to
be a learning tool for the public and to help generate ideas on DFA. It has been developed using Excel to
facilitate real-time run times and ease of usc. DynaMo is completely open so as to help in the understanding
of the intricacies in developing and running a DFA model. This includes the formulas for assets, liabilities,
and interest rate models. All parameters are readily accessible and can be easily changed. Since every
company is different and some parameters may not be appropriate, it is recommended that the users review
these parameters prior to using the model.

The model can be thought of as a combination of interactive asset and underwriting cashflow generators.

As new money becomes available, either from investments or premiums, underwriting and tax cashflows are
generated and any remaining monies are reinvested. Should the outflows exceed the inflows, assets are sold
to cover the difference. These cashflow generators are tied together by the workhorse variable -- the interest
rate. Exhibit 1 displays a generat schematic of the data flows within the model.

The model contains a number of inputs, including company specific historical data and model parameters.
Much of the historical data inputs can be taken directly from the company’s year-end actuarial report and
Annual Statement. In addition to these inputs, economic and underwriting cycle parameters are required.
These parameters, combined with some of the company specific input. are used to stochastically generate
the following variables:

! DynaMo can be downloaded free at www.mrht.com.
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I, Underwriting Frequencies 6. Yield Curve

2. Underwriting Severities 7. Claims Inflation by Line of Business
3. loss and LAE Payment Patterns 8. Equity Returns

4. Catastrophic Losscs 9. Underwriting Cycle Positions

5. Short Term Interest Rates

These variables are used to quantify the following risk categorics to which companies are exposed:

1. Pricing

2. Loss Reserve Development
3. Catastrophe

4. Invesiment

The moedel generates cashflows at an exposure level basis 1o aid in the quantification of the impact of the
variables listed above. In particular the loss ratio is not modeled in total but calculated as the result of its
components.

Future premiums are generated by the following two step process: 1) adjust the previous periods average
rate per exposure to reflect inflation, company rate changes, jurisdictional, and underwriting cycle
{competitive) impacts, and 2) multiply the adjusted average rate per exposure by the future exposures. For
example. the starting average rate may be $100, the modeled rate change 6%, and estimated exposures of
1.000. This would lead to written premium ot $106,000.

A-priori ultimate losses for future years arc generated by multiplying the exposures by the stochastically
venerated frequencics and severities. These frequencies and severitics are adjusted to reflect inflation and
underwriting cycle impacts. For example. inflation may force the average severity upwards and the
underwriting cycle may indicate that the market is softening thus bringing riskier business into the company
and higher frequency of loss. By breaking the loss ratio into its pieces, we are able to adjust each of its
components to reflect the changing economic and competitive cnvironment. 1t is particularly useful to
model the components of the loss ratio when considering the impact of inflation and unemployment.

Two previous papers by this DFA research team provide additional information about the development and
application of DFA models gencrally and this model specifically. The general approach used in this model,
the key risks of U.S. property-liability insurers subject to modeling, the parameters incorporated in the
financial aspects of the model and examples of the output are described in D’ Arcy, Gorvett, et al. (1997)%
An application of an enhanced version of the original model to a multiline, multistate primary insurance
company is described in D" Arcy, Gorvelt, et al. (1998)°.  This paper includes a case study examining
several of the key features of the model, the process of parameterizing the model and refining the results,
and the communication process with a company’s managenent leam.

* D' Arcy, Stephen P, Richard W. Gorvett, Joseph A. Herbers, Thomas £ Heuinger. Steven G. Lehmann, and Michael J. Miller
(1997) “Building a Public Access PC-Based DFA Model.” Casualty Actuarial Society Forum, Summer 1997, Volume 2, pp. 1-40.
"D Arcy. Stephen P, Richard W. Gorvett, Thomas E. Hettinger, Robert J. Walling 111 {1998) *Using the Public Access DFA
Model: A Case Study,” Casualty Actuarial Society Forum, Summer 1998 Edition, pp. §3-118.
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INTEREST RATE AND ECONOMIC CONDITION GENERATION

Betore discussing the modeling of the fundamental insurance variables, it is best to review the key
economic drivers involved in the model. Particular discussion should be provided about the workhorse
variable -- interest rates. The model utilizes gencrated interest rates to affect other relevant economic
variables.

Cox-Ingersoll-Ross Interest Rate Generator

Recognizing that an interest rate model requires definition as to precisely what type of rate will be modeled,
we chose short-term treasury rates as the base rate resulting from model generations. [n particular, we will
model 90-day treasury rates on an annual basis.

As discussed in D Arcy et al. (1997), Cox-Ingersoll-Ross (CIR) provides a workable process for modeling
interest rates. CIR offers a mean-reverting random walk, where interest rates are projected by modeling
incremental movements in interest rates. These increments arc the sum of mean-ward and purely random
generated movements. We provide the formula on Exhibit 2. This process 1s advantageous in that it
balances flexibility. simplicity, and intuitive appeal. CIR. by itself| is merely a parameter driven formula
concept; it is not intended to be a completely comprehensive or universally accurate system of projection
methodologies. Nonetheless, it appears to suit most DFA modeling purposes quite well.

Appropriate parameterization of interest rates demands that one study historical interest rate data as a
method for assuring reasonableness. From links to the CAS DFA Web Site®, a monthly time series was
available as shown in Exhibit 3. Observing a graph of several decades of data, our parameter analysis
ultimately focused on T-Bill rates observed since 1983, This choice was made to avoid reliance on the
unusual economic conditions prevalent early in the 1980°s, combined with the belief that future intcrest
rates may remain relatively low in future years given the recent emergence of a balanced federal budget.
The long term mean. b. we ultimately selected for the subject model was 6.0%.

CIR also demands that the user provide a mean reversion parameter, a. This was selected based on our
judgment in consideration of the historical movements observed about the long-term mean. We selected .25
as the frequency of reversion parameter, a, indicating that we believe the rate should revert around b
approximately every four years.

The random element discussed above is the last parameter to select. The standard deviation of the generated
normal variate, sl. represents the volatility parameter of CIR. It is projected by observing the standard
deviation of prior annual incremental movements in T-Bill rates. We have selected 1.40 as, s1, the volatility
parameter.

How do we assure CIR is providing us with a reasonable interest rate result? We use two techniques to
accomplish parameter validation: 1) descriptive statistic analysis, and 2) graphical validation. First, we
observe the basic descriptive statistics of the historical data in comparison to the same measurements of the
projected interest rates. For example, over the process of 100 CIR tnials, the mean of the projected data
should approximate b (adjusted to consider the impact of low initial rates), and the standard deviation of
incremental movements should also approximate s1. Second, we utilized basic spreadsheet graphing

* hitp:Uwwwstls. frb.ore/fred/datadirates’as3m is “hot-linked” 1o the CAS’s website at
hup:www.casact.org/research/dta‘appendix | .hun
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processes to analyze the graphical behavior of historical rates versus projected rates. This was
accomplished by recalculating the random generation process several times and illustrating to our own cycs
the graphical reasonableness of the projection range. Exhibit 3 shows a single iteration of this process.

Finally, CIR creates a term structure for longer-term treasury maturities. Due to the relatively long duration
of assets and liabilities, we felt this property of the yield curve was a variable we should model directly.
Therefore, using a slight departure from CIR’s original term structure formula; we separately modeled a
stochastic spread variable, p. Defined as the difference between 90-day T-Bills and 30 Years T-Bonds, p is
projected by a normal random process, using selected mean and standard deviations based on historical
spread observations. To project T-Bill rates at points between 90 day and 30 years we utilized an arctangent
curve. This provided the proper first (increasing) and second (concave down) derivatives of a typical yield
curve. We found that this form also accommodated an inverted yield curve. A graphical validation similar
to the 90-day validation process is shown in Exhibit 4.

Inflation Models

Based on the cxpectation of a positive correlation between interest rates and general price inflation, we
utilized a simple linear modcling process shown on Exhibit 5. The critical parameters to be analyzed.
therefore, are the slope. m. and intercept. b. of the line as well as the volatility parameter. 52, CPI data” was
obtained from the CAS DFA Web Site. and a linear regression was run between the 90-day T-Bill rates and
the CPl data. We present the regression results on Exhibit 5. The graphical illustration of the fitted general
inflation is shown on Exhibit 6.

General inflation should be distinguished [rom the inflation components affecting workers compensation
premiums and loss. These components include wage inflation and medical inflation. Wage inflation® was
also retrieved from public sources and was compared via its basic statistical properties to CPI data. Our
basic observation was that wage inflation and general inflation rates did not differ materially. As a result we
used the general inflation variable as representative of wage inflation rates.

Medical inflation rates, by contrast, have exhibited very unique historical behavior relative 1o general price
inflation. Specifically, medical inflation has historically tended to be higher and more volatile. This is
particularly evident for workers compensation medical costs during the early 1990s, which were
unprotected from deductibles, limits, or benefit coordination. Workers compensation medical losses over
these years often exhibited annual inflation levels in excess of 10%. More recently. however, major
legislative reforms, combined with the impact of managed carc initiatives, have reduced workers
compensation medical inflation to levels lower than the CPI. Observing the graph on Exhibit 7 we can see
the illustration of these historical rate movements.

As we did for inflation rates, we matched descriptive statistics between historical and projected data as well
as the graphical validation of stochastic projections on Exhibit 7.

* hup:/www stls frb.ore/fred/data/cpi/epiaucsl is “hot-linked” to the CAS's http:/iwww casact.org/research/dfa’appendix 1.him
® http://146.142.4.24/caj-bin‘surveymost?ee is a data page at the Bureau of [Labor Statistics site at http:/stats bls.pov/blshome.htm
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Unemployment Rate

Workers compensation loss costs are widely thought to be positively correlated with unemployment rates.
Previously written CAS papers’ have offered and supported that when unemployment (particularly
involuntary uncmployment) increases the average frequency ot claims increases. This is apparently due, for
the most part. to the lack of return to work prospects for an injured worker. Therefore. the unemployment
rate is an important variable to be considered in a workers compensation DFA model as an indicator of
general economic conditions and a specific driver of loss result trends.

One possible approach that can be considered for modeling unemployment rates is to use data from the
Bureau of Labor Statistics Web Site®. This source provided data specifically from the single state where the
subject company in this example writes its workers compensation business. When observing the graph of
historical interest and unemployment rates. a correlation is not immediately evident. However, upon deeper
analysis. we considered that a lagged effect of interest rates on unemployment rates was possible. We ran
linear correlations on historical data using lagged unemployment rates as the dependent (affected) variable
and 90 day T-bills as the independent (causal) variable. Specifically we ran correlations against
unemplovment rates with zero. one. two. and three year lags. The best R-Squared measures occurred using
the two and three year lags. We further used the average of two and three year lagged unemployment and
found the best [it. Thercfore, a two-and-a-half year {ag on uncmployment rates appeared optimal. The lag
coneept also offers intuitive appeal in that observed higher interest rates generally lead to poorer economic
conditions over a span of several months. which later lead to workforee reductions.

The results of our linear regression are shown on Exhibit 8. A lincar slope. intercept, and error term were
observed and ultimately selected in the same manner that we used to project medical inflation. To validate
these selected parameters we again used the tools of descriptive statistical matching and graphical
simulation. An example ot the graphical validation can be seen in Exhibit 9.

PREMIUM MODELING
Jurisdictional Risk

We will define jurisdictional risk as the risk associated with judicial, legislative and/or regulatory actions
that impact the operations of an insurance company. While it is clear that no DIFA model could simulate all
possible governmental interventions (nor should an efticient model nced to), many states have jurisdictional
climates that significantly influence operating results. The element of jurisdictional risk that we have
chosen to focus on first in The model is in the area of underwriting. Specifically, jurisdictional risk’s
influence on underwriting results is modeled in two ways: rate change constraints {capping) and
implementation lags.

First, proposed rate changes produced by a combination of prior underwriting results and future growth
goals are required to stay within an “allowable range™. This capping does not mean that rate level changes
outside the reasonable range aren’t possible. Rather. changes outside the reasonable range will require
additional time and/or expense (additional analysis and filing preparation, consultants’ fees. insurance
department trips. etc.) for approval. Second. states have regulatory structures that range from allowing
relatively rapid implementation of desired rates (e.g. open competition. use & file statutes) to structures that

" The reader is referred to Lommele, Jan A. and Sturgis. Robert W. (1977) “An Econometric Model of Workers Compensation,”
Proceedings of the Casualty Actuarial Society and Butler, Richard J. and Worrall, John D. (1982) “Workers” Compensation:
Benefit and Injury Claim Rates in the Seventies,” Review of Economics and Statistics for two relevant statistical analyses of this
relationship between unemployment and workers compensation loss results.

* hup: ' 146.142.4 24 coi-bin‘surveymost?rS is a data page at the Bureau of Labor Statistics site at http;//stats.bls.gov/blshome.htm
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almost assure a lengthy delay (prior approval statutes with lengthy waiting periods). This implementation
lag phenomenon and its impact have been evaluated by a number of sources, including research done by the
Virginia Bureau of Insurance in their study on alternate methods of rate regulation®. It should also be noted
that a certain amount of lag in rate implementation exists purcly due to data collection and analysislo.
Intuitively, the capping and implementation lag factors create a maximum and minimum rate change that
can be reasonably implemented and impose a delay on how quickly the capped rate change can be
implemented' .

The reason for customizing the jurisdictional risk paramecters of This model is that for a given line of
business, a number of factors may substantially increase or decrease the jurisdictional risk for an individual
company. These factors include the size (c.g. large market share), target market (e.g. non-standard
programs), state of domicile (e.g. domestic companies). and regulatory history (e.g. several previous filings
going to hearing) of the company. The parameterization of the jurisdictional risk element of a DFA model
should use actual company rate filing experience to the extent that the information is credible. The broadest
use of company data would be to analyze historical rate levels filed versus those finally approved and delays
in the effective dates of those filings to parameterize the rate caps and lags. However, 4 company’s own
filing experience may not have enough filings. particularly enough large increases and decreases, to be fully
credible. Furthermore, a state can change its regulatory structure (e.g. a “use and file” state converting to
prior approval or a change from an appointed commissioner to an elected once) thereby making a company's
tiling history less relevant.

As a proxy tor meaningtul filing history, the public access version of The model has been parameterized to
represent a “typical” insurance company’s jurisdictional risk based on the 1994 Property-Casualty
Regulatory Survey™ from Conning & Company. This report surveys insurance company executives for their
assessment of cach state’s reguiatory restrictiveness as related to reduced business writings, rate
suppression, and freedom to manage personal and commiercial lines business, The parameterization of the
public access model also considers the type of filing statute that exists in an individual state (usc & file, file
& use. prior approval. state mandated rates). the type of insurance commissioner (appointed or elected), as
well as any state specific requirements (Georgia’s rate hearing requirement for filings over +9.9%). Data
such as the Conning study, the filing statute, and the type of commissioner can serve as a valuable way Lo
extrapolute o company’s experience into new states and/or lines. For example, assume a company writes in
State X and is considering expanding into State Y. If State X has a prior approval filing statute and an
elected commissioner and State Y has a tile and use statute. an appointed commissioner. and a more
preferable ranking in the Conning study. a looser set of caps and a shorter jurisdictional lag may be
appropriate for State Y.

The key to parameterizing the junsdiction risk component of the underwriting cycle is the rcasonableness
check. Regardless of the blend of company data and industry experience that is used to parameterize the
impact of jurisdictional risk. two questions need to be answered in the reasonableness assessment: “Do the
factors seem teasonable to practitioners?” and “Do the jurisdictional risk parameters change the
underwriting results in an intuitive way?™ The answer to the first question depends on the skitl and
judgment of the practitioners. We used a number of actuaries and underwriters with filing experience in all
states and a varicty of backgrounds (different company sizes and a former regulator) to give our selections a

* Competition in the Property and Casualty Insurance industry: An Evaluation of Alternative Mecthods of Rate Regulation.
Bureau of Insurance, State Corporation Commission, Janvary 1978.

" Daykin, C.D.: Pentikainen, T.. and Pesonen, M., Practical Risk Theory for Actuaries (First Edition), 1994, p. 340. The
combination of the rate review lag and the jurisdictional lag are described as follows: “Profitability and other relevant factors can
only be ascertained afier a certain delay and further time is required to implement corrective measures. [f tariff bureaus and
regulatory approval is involved, the process may take even longer. The total time delay is usually 1.5-2.5 ycars.”

"' It should be pointed out that the selected rates are capped first and then subjected to the lag. This approximates a realistic
situation where the company prepares their filing proposing a capped rate change that is then subjected 0 jurisdictional lag.
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peer review. To assess the impact of jurisdictional risk, we expected underwriting results to be impacted in
two ways: 1) more disparity between indicated and implemented rate changes and 2) more variance in
simulated loss ratios. I[ntuitively, if a company’s ability to respond to rate inadequacies and redundancies is
capped and lagged. loss ratios above a company s permissible loss ratio cannot be reduced completely (in
severe circumstances) or immediately. Similarly, loss results better than permissible will not worsen to the
permissible level as quickly, due to caps and lags on rate decreases. Lxhibit 10 shows an example of what
the differences in the implemented rate changes for a sample company might look like with and without
jurisdictional risk. This example takes a typical selected rate level (a blend of market demand and indicated
rate need) and subjects it to jurisdictional capping and lagging. As can be seen. the capping component
limits any possibility for large rate changes and the lag component forces a portion of the rate level change
to not be realized until the following calendar year. Exhibit 11 then demonstrates the impact on loss ratios
for the next accident year. The model’s random number reseed feature allows the user to run simulations
with all randomly generated elements identical to a previous set of simulations. This allowed us to test the
impact on loss ratios of introducing jurisdictional risk with otherwise identical parameters and simulated
values. As you can sce, there is both a higher variance in the simulated loss ratios and the mean loss ratio
has increased.

Advantages and disadvantages ot these methodologies are as follows:

Advantages
1. Adding jurisdictional components allows simulated premiums to more closely model reality
2. Allows the testing of changes in environment including:

- Rate treezes

- Changes in regulatory system

Increases accuracy ot testing state entrance or exit implications

4. Takes advantage of a company s own filing experience to the extent that it is credible

]

Disadvantages
t. Tough to parameterize in a jurisdiction or line where the company has little or no experience
2. Modeler needs to know historical relationship between company and jurisdiction
3. Commissioners and regulatory systems change in sometimes unexpected ways

Impact of Rate Adequacy on Future Rate Levels

There are a number of ways a model can handle changes in rate adequacy'®. We will propose five methods
that can be used to parameterize the model to handle the issue of rate level adequacy. The first one is the
simplest approach. 1t assumes the company’s rates are adequate to begin with and only impacted by
intlation. Method 2 assumes the company is only concerned about the competitiveness of its rates.
Depending on the market position a supply/demand curve 1s used to determine the required rate change
needed to obtain the desired exposure growth.

Method 3 allows the company to look at actual experience when developing the rate change. This becomes
more complex as management intervention may result. The basis for this approach is to build into the
model techniques similar to the company s actual rate review process. Past loss. premium. inflation. and
investment cxperience are reviewed to determine the rate adequacy. Loss ratios are developed for the
preceding time periods by using the a priori ultimate losses adjusted to reflect inflation as of time period t-1.
These losses are then trended to the midpoint of period t using an average of claims inflation over the past
three years. Premiums are adjusted to bring ther to current level and to reflect inflation. The average loss

" Daskin, C.D: Pentikiinen, T.: and Pesonen, M, Praciical Risk Theory for Actuaries (First Edition), 1994, p. 315-319
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ratio adjusted to periad t cost levels is compared to the company”s permissible loss ratio, with an investment
income offset (similar to the NALC Calendar Year Investment Income Offset Approach') 1o generate an
indicated rate level change"™. This rate level change would need to be capped based on management rules,

The next two methods are hybrids of preceding ones. Method 4 15 o weighting between methods 1 and 2.
Method 3 is a combination of 2 and 3. The combinations are heavily dependent upon management’s views
of how the company would handle each of these situations. The mixing of the different methods is intended
to help approximate the reality that a company will not always follow the indicated trends but will go with
competitive forces in some cases. Al this point an example will be helpful.

Example 1
Claims inflation (Cl) = +6%

1.
2. I'rended and adjusted loss ratio (ALR) = 0.75
3. Permissible loss ratio (PLR) = 0.73

4. Investment income offset (10) = 0.05
S. Growth objective ((i) = T0% cxposures
6. Simplihed supplvidemand curve of RC - Gxty, where RC is indicated rate change and G is growth

ohjective.
7. Sott Marketwith x - -0.05 and y = -0.05
8. Assumes 3050 weights are given in weighting together methods

[ Mthod 1} Method 2 [ Method 3~ 1 Method 4 [ Method 5
RO Gy RC= 1-ALRAPLR - 10) RC = 06( 3) +-055(.3) RC - -0625(.3)~ -033( 5)
ke REC— T0005)-0108 T RC_1- 7580 RC - 0.35% RC =-59%

This same example can also be thought of'in a graphical sense. The comparison of the implemented rate
change to the actuarially indicated change for cach method is shown as xhibit 12,

Advantages and disadvantages of these methodologies are as follows:

Advantages

1. Allows pricing to be dynamic

2. Reflects inflationary pressures also put on losses

3. Method 1 s simple o implement and understand

4. Method 2 recognizes impact of the market conditions

5. Method 3 is consistent with company s current actuarial process

6. Methods 4 & 5 provide a way 1o balance these impacts on a more realistic way

Disadvantages
1. Reguires management intervention to be built in. which may not always be predictable and
which is not consistent within or between companics
2. Method 1is an over simplification and may not be realistic

" The model contains all of the necessary information to compute a provision for investment income from fnsurance operations
using the NAIC calendar year investment income offsel approach. The advantages and disadvantages of calculating investment
income using this approach arc beyond the scope of this paper. Other methods of calculating investment income and profit
provisions {¢.g. Discounted Cash Flows) are also easily computed using the information available in the model. The reader is
referred 1o Robbin, fra, “The Underwriting Profit Provision™, 1992 for a detailed discussion of alternatives in this area.

" The approach 10 calculating indicated rate need is provided as an example. Advantages of this methodology and alternative
methods to caleulating rate need are beyond the scope of the paper. It should be pointed out however that given the data available
in the model, a number of different approaches to indicated rate need could be customized into the underwriting module.
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3. The supply/demand curves in Method 2 vary between companies, lines of business, and states.
4. Method 3 requires the user to select an actuarial methodology for adjusting rates, including trend
selection, credibility issues and catastrophe loads

Once the method of rate change is chosen, it should be tested for reasonableness. This test of
reasonableness should look at the following items over a number of simulations:
a. [ntlation
Trended and developed loss ratio
Permissible loss ratio
Investment income offset
Rate change allowed by competition (This inherently means the supply demand curves have
been checked for reasonableness)
f.  Actual modeled change

e o o

[

If item f goes against management intuition given a through c. the weightings should be modified.

Impact of Exposure Trend on Premium Level

One of the [undamental properties of this model is that premiums are simulated based on projected
exposures and average rates. This premise creates a need for care to be exercised when estimating projected
exposure growth so that real exposure growth and inflationary pressure are both reflected in the exposure
growth estimate. Several commonly used exposure bases are inflation sensitive. These include property
value (used in homeowners), sales (used in general liability). and payroll (used in workers compensation).
We have used wage inflation for this workers compensation application; however, the approaches presented
could casily be applied to other inflation sensitive exposure bascs.

For workers compensation. wage inflation affects premiums through the payroll exposure base. Wage
inflation is projected through the random process described earlier and the effect on payroll is calculated.
Normally. this is thought to be a fairly instantaneous relationship. Careful consideration should be given to
the impact of unionization involving long-term wage agreements and their potential to delay the impact on
payroll intlation. For a recent customization project. it appeared from our analysis of the company’s own
data that such a lag was not material. Therefore, we chose not to build in a wage inflation lag.

Payroll data was projected using audited payroll estimates in order to avoid the concern of estimating
subsequent premiums due to audits.

LOSS MODEL PARAMETERIZATION

Impact of Wage and Medical Inflation

Workers compensation benefits include indemnity and medical payments. Loss adjustment expenses (LAE)
will also be modeled as a percentage of the sum of the two benefit components. Indemnity losses are
typically a direct function of injured worker wages. Therefore, wage inflation is a natural and direct driver
of indemnity inflation through its influence on the average replaced wages under the workers compensation
statute. However, in addition to the amount of the payment, the average time duration of disability
payments should also be considered in the modeling process. Thus, a duration trend element was also
necessary to project indemnity inflation.
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To develop an indemnity duration trend parameter, in a recent customization project, we analyzed a
company's actual indemnity loss experience relative to actual wage inflation. A fairly constant additive
increment of 2.0% over wage inflation appeared evident through most statistical indications. Therefore, the
formula for indemnity inflation was set at wagce inflation + 2.0%.

Having previously modeled medical inflation, we used a percentage mix of benefits to develop a total loss
inflation. Historical data tor the subject company and others in its market indicate a fairly stcady
observation of two-thirds indemnity to one-third medical. By calculating annual loss costs through the
projection period we could rebalance these weights. Through this apportionment of benefits, a total loss
trend can be modeled which offers an analytical basis of inflation through its components.

Unemployment’s Effect on Frequency

As discussed earlier, changes in unemployment rates are thought to have an cffect on ¢laim frequencics.
For the subject company in a recent customization and other companies writing in its jurisdiction, we have
analvzed the historical unemployment time series we used above in comparison to the change in reported
claims per unit payroll for these companies. We ran a linear regression on these Irequency measures versus
unemployment rates and found the refationship to be nearly direct. That is. for each point (1.0%) change in
the unemployment rate, the claim frequency changed approximately one point as well. As a result, we
utilized a formula that increased the frequency per $100 payroll, onc point for cach point the modeled
annual uncmployment rate changed.

OTHER PARAMETERIZATION ISSUES

Collateralized Mortgage Obligations

The model has the ability to model different types of bonds. Bonds are segregated based upon their class
and maturity. The maturity groupings are 1) Less than 1 Year. 2) Over 1 Year through 5 Years, 3) Over 5
Years through 10 Ycars, 4) Over 10 Years through 20 Years. and 3) Over 20 Years. The model then uses
the same underlying methodology to develop the appropriate cashflows. This methodology is as follows:

Start with face values and coupon ratcs

Model coupon payments by multiplying the face value by the coupon rates
Determine end of year statutory book values using straight line amortization
Determine end of year market value according to the following formula:

Bty —

MV = EV x T CF, /7 (141) where CI is the Cash flow ratioed to the face value

LA

Mature bonds between maturity buckets assuming uniform distribution. Thus 20% of the market values
in the maturity grouping “Over 5 years through 10 years” are assumed to migrate into maturity grouping
“Over | Year through S Years™

6. Coupon rales are adjusted for cach maturity group to reflect bonds maturing in and out and the purchase
of new bonds

This model can be re-parameterized fairly easily to model collateralized mortgage obligations (CMO’s) on a
simplified basis. The inclusion of CMO’s involves two additional steps. The first step is the modeling of
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the expected percentage of mortgage prepayments. The prepayment percentage is based upon the Public
Securities Association (PSA) model. which assumes that the proportion of mortgages prepaid increases
linearly by 0.2% annually tor the first thirty months, then levels off at 6% per year thereafter. These
assumptions are then indexed to represent greater or lesser prepayment activity due to change in interest
rates. For example. if the interest rate were to increase by 100 basis points we would expect a decrease in
the prepayment activity. Thus the PSA model would be adjusted down to reflect fewer mortgage
prepayments and accordingly fewer prepayments of CMO’s. The CMO model can be set up to handle a
number of interest rate change ranges. Currently it is set up according to the following:

Interest Rate % |

Change From of
Starting Point PSA
+1.5% 50%%
+1.5% 1o +0.5% 75%
+0.5% to -0.5% 100%
-0.5% to --1.5% 125%
-1.5% 150%

Once the percentages of prepayments are known. we assume the CMO’s are prepaid in the same proportion
according to the maturity ot the bond. Using the same steps as outlined above we offer three additional
steps to include in the process:

2a. Face value redemption would be caleulated as the prepayment percentage times the
tace vatue. This will generate a cashfNow available for claims or reinvestment.

3a. Book values are recaleulated assuming a decrease according to the modeled
percentages.

Ja. Market values are also decreased in proportion to the modeled prepayment
percentages.

Checks for reasonableness are best performed using historical result. Past prepayment levels can be
compared 1o interest rate tevel changes in determining the factor adjustment to the PSA study.

Advantages and disadvantages of these methodologies are as lollows:

Advantages

1. Simple to understand
Allows the user to test the impact oI CMO’s on the campany s returns and cashtlows
Models the correlation between change of mterest rates and prepayment of CMO’s 1n an
understandable manner

Ll L2

Disadvantages
1. Docs not take into consideration impacts on ditterent traunch holdings
2. May be an over simplification of the real warld
Underwriting Expense Modeling
In DFA and general actuarial literature, underwriting expenses have historically taken a back seat o

rescarch on losses (in terms of their impact on rates and reserves) and assets. The reason for this lower
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priority in the development of DFA research is that underwriting expenses have less variability and
therefore have a smaller impact on the mean and variability of future company results. However, as more
companies focus on operational efficiency, the need for more sophisticated ¢xpense modeling has grown.
We will examine two added levels of complexity that some insurers may wish to consider adding to a
general DFA model if their company’s situation warrants a more detailed parameterization: fixed versus
variable expenses and step-wise incremental fixed expenses.

For the purpose of this discussion we will define other underwriting expenses (OUE) as the sum of the other
acquisition expense and general expense items. The easiest approach that can be taken for parameterizing
and simulating other underwriting expense ratios is to assume a constant percentage of direct written
premium will be used for underwriting expenses regardless of increases or decreases in premium level, rate
adcquacy, or any other operational change. This approach works exceptionally well for commissions and
taxes that are almost completely variable with written premium. For companies with stable expense ratios,
this tixed percentage approach also provides a reasonable approximation of reality for other underwriting
expenses that can be programmed and modeled easily. In fact, the public access version of The model uses
this approach for simplicity and the broadest possible applicability. However, companies can be faced with
many situations where this approach is not reasonable. TFor cxample, a start-up organization whose
premiums arc growing rapidly may see substantial decreases in their expense ratios as fixed costs (office
space. computer systems, etc.) are spread over a larger premium base. Companics going through premium
reductions. down-sizings, changes in distribution channels, or acquisitions of other companies or additional
blocks of business may also be in situations where the underwriting cxpense ratio is a moving target rather
than a fixed one.

The tirst parametcrization alternative is to recognize some other underwriting expenses as fixed. Any other
underwriting expense that remains completely unchanged regardless of premium level can be viewed as
fixed. Typical fixed expenses are such items as computers (especially large mainframe computers), rent and
other overhead items. A common assumption about fixed cxpenscs is that about half of all current QUE is
fixed. This approach is intuitively appealing and is commonly used in the development ol expensc
constants. For a company that {eels that their expenses arc materially ditferent from this gencral
assumption, an analysis of the “Acquisition, Field Supervision and Collection Expenses™ column of Part | of
the Insurance Expense Exhibit may be appropriate. We did such an analysis (sec Exhibit 13) for a recent
client and found the results not substantially different from the 50/50 split.

Another level of sophistication that can be added 1o projecting other underwriting expenses is the addition of
incremental fixed expenses at specific levels of premium growth and needs a larger computer or more space.
This modilication reflects the realistic situation of additional fixed cxpenses being incurred as a company
cxperiences significant growth. Situations that might give rise o this situation would include computer
upgrades and renting additional office space. It should be noted that several of these items impact assets as
well as liabilities and the DFA model needs to be customized on the assct side 1o reflect these additional
non-invested assets. One simple approach to approximating this step-wise fixed expense behavior is to
select a premium growth amount at which a fixed expense amount {cither a dollar amount of incurred fixed
expense or a percentage increase of the other underwriting expensc ratio) is incurred. Note that when
premium is declining this modeling approach has the effect of making the expense ratio increase until a
fixed expense item can be eliminated. This parameterization causes the cxpense ratio to decreasc less
rapidly than a simple fixed expense approach and may create a more realistic projection of expense levels in
models predicting substantial growth or decline.

Another expense modeling alternative is reflecting expenses that vary by unit cost. ltems in this category
would include loss control surveys, policy forms and jackets, identification card issuance and loss reporting
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kits. These items behave like variable expenses but are sensitive to rate adequacy per exposure and changes
in average policy size.

A simple reasonableness check for the parameterization of the other underwriting expense generator is a
graph comparing the other underwriting expense ratio (to direct written premium) to the change in direct
written premium. As you can see in Exhibit 14, an all-variable expense model creates a horizontal line. A
partially tixed expense model implies a line with some recognition of economies of scale. A partial fixed
expense model with a recognition of additional fixed expenses after sufficient premium growth. decrcases in
a somewhat jagged fashion and at a slower rate than the partial fixed expense without the step-wise
adjustment.

Advantages and disadvantages of these methodologies are as tollows:

Advantages
1. Companies focused on operational efticiency as a style will want the split

2. Allows companies to incorporate staffing models into DFA analysis
3. Allows much better forecasts of U/W results under growth scenarios
4. Allows morc accurate measurement of the expense component of the new business penalty '

Disadvantages
. Future expense levels and management decisions ditticult to parameterize
2. Could be an over-parameterization of the model for the subject company that could distract trom
more significant risks

Policyholder Dividends

Another expense related issue that may not be directly related to premiums is policyholder dividends. Many
workers compensation writers. for example, have a wide variety ol policyholder dividend plans that pay
cither a tlat percent of premiums (flat dividend plans) or a pereent of premium that varies depending on the
insureds size and loss results (variable dividend plans). Neither the variable expense approach used for
commissions. nor the fixed expense approach presented for other underwriting expenses works well for
dividend plans. There are two reasons for this: 1) the market inlluences the type and number of dividend
plans extended o a company’s insureds, and 2) loss results. not premium. dictate how much of a dividend is
paid out'’. Furthermore. dividends are generally paid out six 1o nine months after policy expiration and so
lag behind the carned premium and incurred losses with which they are associated.

The public access version of The model assumes policyholder dividends to be a minimal issue and is
initially parameterized with a fixed percentage of premium approach. This accommadated our desire for the
public access model o be as widely applicable and straightforward as possible. However. any company
with a sutficient amount of written premium subject to dividend plans needs a more sophisticated approach.
Two basic issues need to be parameterized in a more sophisticated dividend model: 1) the percentage of the

" Traditionally. the new business penalty has been thought of as a quantification of the inferior loss ratio results of new business.
There is a similar penalty to the expense ratio for lines of business with substantial fixed costs associated with the first policy (e.g.
MVRs, loss control surveys. policy file set up).

“ 1ushoult be noted that the payout trom flat dividend plans do not vary with loss results, except to the extent that by law. no
dividend disbursement can be guaranteed so even a flat dividend could not be paid il loss results were poor enough. Flat dividend
programs are currently used almost exclusively in states where the rate regulatory environment precludes deviation of rates trom
burcau levels (e.g Wisconsin and New Jersey): therefore our discussion focuses on the more commonly used variable plans. 1f a
company used predominately flat dividend plans a percentage of premium approach or an approach that varied the dividend
according o market position might be more appropriate.
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book of business that are offered each kind of dividend plan in a given phase of the market, and 2) the
expected payout for each plan given a known loss result.

Exhibit 15 provides an example of how this model could be parameterized in the case of a company with 2
variable dividend plans. The modeler could develop an expected distribution of written premium in each
dividend plan at each point in the cycle based on actual company experience and discussions with company
personnel conceming their expected behavior. Information estimating dividend payouts at different loss
ratios should be available for each plan or can be fairly easily approximated. Once this parameterization is
accomplished. future dividend payouts are computed as the weighted average of the expected payouts for
the two prior accident years as is shown in Exhibit 15. Net loss ratios can be used to approximate loss
capping that occurs in some dividend plans, if retention levels are similar. A straightforward reasonableness
check for this customization is a graph comparing loss ratios (net or direct as selected above) from a two
year period versus the policyholder dividend ratio (1o direct earned premium) paid in the first subsequent
year.

This technique of modeling items as a percentage of premium based on loss results and market position has
two other significant uses: 1) contingent commissions, and 2) residual market burdens. Contingent
commissions are in many respects simply dividends paid to the agent instead of the policyholder. Multiple
agency incentive plans with different payouts which can be extended to different numbers of agents
depending on market conditions can be parameterized using an approach almost identical to the one shown
in Exhibit 15. Residual market burdens can be viewed as a cost of doing business (literally a percentage of
earned premium) in certain lines, most notably workers compensation, automobile and property lines in
certain states. This cost of doing business varies by market position and jurisdiction. An approach that
incorporates some elements of a jurisdictional risk assesstment and is designed similarly to the dividend
approach provides a reasonable approximation to future residual market loads. NCCI and AIPSO both
provide data to member companies by line and state that assists greatly in parameterizing this customization.
An example of a straightforward parameterization of residual markct burdens is shown as Exhibit 16.

Advantages and disadvantages of these methodologics arc as follows:

Advantages
1. Intuitively more reasonable
Easy to program
Recognizes the impact dividends, contingent commissions, and residual market burdens can have
on operating results
4. Recognizes the loss and/or market sensitivity of these items

‘) N

Disadvantages
1. Difficult to validate some parameters
2. May overcompensate
3. Increases impact underwriting cycle position has on underwriting results

AREAS OF CONTINUED RESEARCH

There are a number of areas of research in the area of model parameterization that the DynaMo research
team is continuing to develop. Some of these include the following:

Enterprise-Wide Modeling — How are foundational risk factors that are common to many industries but
with sometimes different impacts, like catastrophes, inflation, and interest rates, used to build an enterprise-
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wide DFA model for an organization that includes property/casualty insurance companies and other entities
like banks and life insurance companies? What kinds of metrics are needed? How are the unique risk
factors for these other industries parameterized and modeled?

Managed Care Impacts — How arc the impacts of managed care penetration and network strength
incorporated into estimated frequency and severity for a workers compensation writer? How will managed
care impact loss payment patterns? How should network access and network management fees, especially
contingent fee structures, be parameterized and modeled?

Securitization — How are the bond modeling and catastrophe modeling capabilities of a DFA model best
blended to estimate the price of catastrophe bonds? How can a DFA model be used 1o test the loss payout
risk in an apparent financial reinsurance agreement?

Ratemaking ~ What is the best approach to using a DFA model to simulate a range of possible indicated
ratc needs? Can this approach bring something akin to risk margins into ratemaking as an alternative
method for computing a profit provision?

Demutualizatien, Mcrgers, and Acquisitions — How can a DFA model be customized to assist an
insurance company deciding whether to demutualize? How can a company combine their own data with
one or more merger or acquisition candidates in a DFA model to assess and potentially rank possible
candidates? How can this information be uscd to estimate ditution value?
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Exhibit 1 — Operational Schematic

DynaMo Overview

.
N

Interest Rate
Generator

Exhibit 2

Cox Ingersoll Ross

Interest Rate Generator Formula
General Formula: rr=ax{b-r,)+s x2z

Selected Formula: =025x (0.06-r,)+1.40xz

where r, = 90 day rate for yeari
a = rcversion frequency parameter
b - long-term mean for 90 day rates
sy = volatility parameter
z; = standard normal variate
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Exhibit 3

90 Day T-Bills
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Exhibit §

CPIl = m (interest) + b + s2 x z2

Date Interest CP!1
SUMMARY OUTPUT
1984 9.36 3.58
1985 8.34 4.04 Regression Statistics
1986 7.33 3.79 Multiple R 0.494962134
1987 568 1.19 R Square 0.244987514
1988 5.96 4.42 Adjusted R Square 0.186909631
1989 8.35 4.41 Standard Error 1.133478755
1990 7.88 4.64 Observations 15
1991 6.95 6.25
1992 418 2.98
1993 3.29 2.96 Coefficients  Standard Error
1994 3.13 2.81 Intercept 1.386254038 1.031405168
1995 576 2.60 X Variable 1 0.331762727  0.161532906
1996 529 260
1997 5.04 3.31
1998 5.30 1.70
1999 6.66 356
2000 4.50 2.88
2001 4.85 3.48
2002 7.40 387
2003 715 3.33
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Inflation vs. 90 Day T-Bills
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Exhibit 7
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Exhibit 8
CPIl =m (interest) + b + s2 x 22

Date TB M UE+2.5
SUMMARY OUTPUT
1983 8.12
1984 9.36 Regression Statistics
1985 834 14.00 Multiple R 0385638451
1986 7.33 11.10 R Square 0.148717015
1987 5.68 9.70 Adjusted R Square 0.077776766
1988 5.96 8.65 Standard Error 2.270314616
1989 8.35 8.20 Observations 14
1980 7.88 7.50
1991 6.95 7.50
1992 4.18 8.05 Coefficients  Standard Error
1993 329 870 Intercept 5.062381825  2.252755614
1994 313 845 X Variable 1 0.533179613  0.368247289
1995 576 7.00
1996 529 6.00
1997 5.04 5.20
1998 5.30 4.80
1999 2.63 6.08
2000 3.31 599
2001 4.34 582
2002 3.01 518
2003 2.75 591
Exhibit 9
Unemployment vs. 90 Day T-Bills
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Exhibit 10 — Impact of Jurisdictional Risk on Selected Rate Level
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Exhibit 11 - Impact of Jurisdictional Risk on Direct Loss Results

Percentage of Simulated
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Exhibit 12 — Selected Rate Level Alternatives

Assumptions:

Loss Inflation — 4.0%

Change required for desired premium growth at existing point in cycle. — 5.0%
Method 4 weight assigned to inflation — 50%

Method 4 weight assigned to indicated rate level — 75%

No jurisdictional effects
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Exhibit 13 — Insurance Expense Exhibit Analysis of Fixed versus Variable Expenses

Expense| Percent

Category Dollars Fixed

Allowances to Managers 350 50%
Advertising 750 80%
Boards & Bureaus - 0%
Surveys - 0%
Audits - 0%
Salaries 2,675 40%
Payroll Taxes 200 40%
Employee Relations 500 50%
Insurance - 0%
Directors' Fees - 100%
Travel 125 75%
Rent 175 100%
Equipment 425 100%)
Printing 125 0%
Postage & Telephone 200 0%
Legal & Auditing 700 100%
TOTAL 6,225 57%
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Exhibit 14 — Graphical Representation of Various Other Underwriting Expense Models

Assumes a current other underwriting expense ratio (to Direct Written Premium) of 18% and the
ability/need to incrementally reduce/increase fixed expenses by 2% of DWP for every 15%
decrease/increase in DWP.

0%

18%

Other Underwriting Expense Ratio (DWP)
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Exhibit 13 - Policyholders Dividend Ratio Parameterization

Expected Dividend Distribution Dividend Payout Estimate
% of DWP by Dividend Plan Loss Ratio Plan 1 Plan 2
Phase No Plan Plan 1 Plan 2 20% 24% 37%
Mature Hard 40% 50% 10% 22% 23% 35%
Immature Soft 25% 40% 35% 24% 22% 34%
Mature Soft 10% 35% 55% 26% 20% 32%
Immature Hard 25% 40% 35% 28% 19% 30%
30% 18% 29%
32% 17% 27%
34% 16% 26%
36% 14% 24%
38% 13% 22%
40% 12% 21%
42% 1% 18%
44% 10% 18%
46% 8% 16%
48% 7% 14%
50% 6% 13%
52% 5% 11%
54% 4% 10%
56% 2% 8%
58% 1% 6%
80% 0% 5%
62% 0% 3%
64% 0% 2%
66% 0% 0%
68% 0% 0%
70% 0% 0%

Dividend Computation

Assume:

Mature Soft 2 years ago, with 56% loss ratio, $24 M DWP
Immature Hard last year, with 54% loss ratio, $30 M DWP

Expected Dividend = [Year 1 DWP * {% DWP in each plan " payout) +

Year 2 DWP * (% DWP in each plan * payout}] / (Total DWP)

Expected Dividend = (24" (0.35"0.02 + 0.55*0.08) + 30 * (0.40*0.04 + 0.35'0.10)] / (24 + 30)

=51%
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Exhibit 16 - Sample Residual Market Burden Parameterization

I"Residual Market Burdens as a Percentage of Direct Earned Premium

Year in Market Condition

Market Condition I 2 3 4" and subsequent

Mature Hard 5.0%  6.5% 7.0% Increase 0.3 points per year (no maximum)
Immature Solt 113 of gap 1o mature soft*  1.0%

Malure Soll 0%  0.8% 0.6% Decrease 0.2 points per year (minimum 0)
Immature Hard 143 of gap to mature hard*  5.0%

* Module is programined to caleulate the difference between the last observed mature market burden
and the next logical mature market burden and . For example, assume a 3" year mature hard market
was simulated to change to immature soft. The difference between the 3* year mature hard residual
market burden (7.0%) and the first year mature soft burden (1.0%) which equals 6.0% (7.0% - 1.0%)
would be divided by 3 1o reflect a selection that gencrally it takes 3 years for a residual market burden
to change tfrom mature hard to mature soft. This 2.0 point reduction (0.06/3) would be subtracted

- from the prior year burden of 7.0%6 to compute a burden of 5.0%. If the market stayed in the

immature soft state for a second year, the burden would be 3.0% (5.0% - 2.0%3). The immature
burdens are capped at the appropriate first year mature market burdens.
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Abstract

Theory and evidence from the past two decades demonstrate that price deregulation increases
cticiency and lowers costs and prices. The impact of deregulation on profit, however, is
ambiguous and depends in part on the industry’s market structure. Theory predicts that, in
competitive industries, price deregulation tends to reduce prices by about as much as costs,
producing little change in profit. In industries with monopolistic characteristics, however. price
deregulation may permit higher profits for the surviving firms. This paper argues that price
deregulation itself can have a profound impact on an industry’s market structure. Understanding
how this change i market structure may occur is crucial in predicting the impact of price
deregulation on an industry’s profitability.

This paper tocuses on how price deregulation is tikely to impact the U.S. auto insurance industry.
At present, the industry is competitive. Unlike the transportation industries, existing regulation
has not seriously impeded entry into or exit from the market. In this competitive market
environment, price deregulation may exert only a minimal impact on profits. On the other hand,
increased pricing freedom is likely to stimulate development of new technaologies for varying rates
and segmenting markets, similar to those devcloped by the deregulated airline industry.
Specifically. price deregulation will lead to more sophisticated class plans, more frequent raie
changes, and more consumer shopping.  To exploit these changes, insurers must integrate
compulter systems, increase employee skills in gathering and analyzing customer data, and offer
high quality, individualized service. Price deregulation. thereby. may create new profit
opportunitics for the largest existing insurers. who possess the data and expertise for sophisticated
analysis. Actuarics need to be prepared for these changes.
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Introduction

In the tute 1970°s und carly 1980°s several industrics in the energy, transportation, and financial
sectors of the U.S. economy experienced significant deregulation. Price restrictions and
restrictions on entry and exit were lifted for airlines, trucking, natural gas, petroleum, and
brokerage. Rates for railroads and telecommunications were partially dercgulated. Many banking
industry restrictions on prices and entry were eliminated. The chart below lists recent major

regulatory relonm initiatives by industry (Winston, 1993, Table 1):

Deregulation Time Linc

Industry Major Initiative

Brokerage Secunities Acts Amendments (1973)

Airlines Airline Deregulation Act (1978)

Natural Gas Natural Gas Policy Act (1978)

Petroleum Decontrol of crude oil and refined petroleum
products {executive orders beginning in 1979)

Trucking Motor Carrier Reform Act (1980)

Ratlroads Staggers Rail Act (1980)

Banking Depository Institution Deregulation and Monetary
Control Act (1980), Gurn-St. Germain Depository
Institutions Act (1982)

Telecommunications | AT&T Settlement (1982)

Cable Television Cable Television Dercgulation Act (1984)

Although this wave of deregulation had little impact on the insurance industry. the industry and
several state legislatures have begun to show an increased intercst in deregulating insurance. In
1998 Pennsylvania passed new legislation exempting carriers from rate and policy form filings
involving Jarge commercial risks. Other states plan to follow Pennsylvania’s lead in 1999. Some
analysts believe that deregulation of personal lines will follow. Several trade organizations,
ncluding the Amernican Insurance Association, the Alliance of American Insurers, the National
Association of Independent Tnsurers, and the National Assaciation of Mutual Insurance
Companies, have appealed to the National Association of Insurance Commissioners to hold a
hcaring on the issue of complete frec market pricing. The groups argue that price controls have
distorted markets, are political, deny choices to customers, and are an “artifact of industry
practices and a relic of an cconomic theory discredited domestically and globatly” (The Insurance

Regulator. November 30, 1998 and Dceember 14, 1998).
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This paper exanunes how deregulation would likely affect the property and casualty insurance
industry. Considering experiences in airlines and trucking, this paper draws implications for the
impact of deregulation on auto wnsurance companies. We locus on airtines and trucking tor two
reasons. First ot all both of these industries have undergone swilt and nearly complete price
dereculunion. Although banking deregulution is an obvious candidate for comparison with
insurance. deregulation i that industry has oceurred rather slowly and is not complete. Sccondly,
the underlving rationale for regulating the airline industry is sinnlar to that of insurance: concern
for public safety. The Federal government onginally regulated the airlines to promote air safety.
Alrline derceulation in the fate 1970s generated concern that competitive price wars would
cause flving w become less safe. Similarly, one of the nunn justifications for insurance regutation

has been to prevent reckless competition that could lead to insurer msolvency.

The paper has Tour sections. In Section | the paper deseribes the impact of deregulation on costs.
The second section argues that the eifect of deregulation on industry prolits depends in part on
market structure. In Section 11 the paper compares and contrasts the experiences of the top five
airlines betore and atter dercgulation. The aim s to better understand how auto imsurance

companics nught survive deregutation. The tfourth section s a conclusion,

I. Incftficiencics of Regulation

Regutation causes ietliciency by hmiting competition and weakening the incentive (o minimize
costs. Entry and exit barriers prevent development of optimal networks and make it more difficubt
to shed exeess capacity. Price regulation discourages etficient marketing and prevents {irms from
responding eftectively to external disturbances.  Empirical studies conclude that regulation has
resulted in higher costs and prices in several industries. including airlines, trucking, railroads.
elecommunicanons, cable welevision, brokerage, and natural gas (Winston. 1993, Table 3:
Conference Suategy Board, July 1998). We discuss these issues below for airlines and property-

casualty insurance.
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Airline Incw‘y_I

In 1938 the Civil Acronautics Board (CAB) began to regulate the airline industry. It immediately
restricted entry. To begin servicing a new route, an airline first needed to obtain a certificate from
the CAB showing that the presence of another carrier was required by “public convenience and
neeessity.” One of the first acts of the CAB in 1938 was to grandfather in the 16 existing trunk
carriers. Over the next 40 years, more than 150 applications were submitted to the CAB to add
long distance routes, but not a single entry was allowed! According to critics, the CAB
specifically rewarded inefficiency through its practice of awarding monopoly routes to airlines in
troubled financial condition in order to “maintain competitive balance and prevent bankrupicies.”
The CAB also strictly controlled air fares. For a particular route, airlines could charge only coach
ot first class, with the fare based primarily on miles traveled. Since costs involved a heavy fixed
component that did not vary with miles traveled, the long distance routes generated excess profit,
while the short routes were unprofitable.  The airlines responded by competing intensely for the
profitable, long distance routes. Since regulation prevented competition based on price, airlines
engaged in non-price competition based on flight {requency, meal quality, width of seats, and

fricndliness of staff. This behavior greatly increased operating costs.

Airline deregulation begun in 1976 when the CAB began to allow airlines to offer discount fares
(“'super savers™) and to make route awards to all applicants “fit, able, and willing” to compelte.
The Airline Deregulation Act of 1978 codified these changes. Deregulation led to several
important changes in the airline industry. First, airlines developed a computerized pricing and
reservation system that allowed them to vary prices according to marginal cost and differences in
customer price sensitivity. Deregulation also dranatically altered airlines” route networks. Prior
to deregulation, airlines traveled in a linear fashion between particular cities as required by CAB
rules. This system was inefficient, often resulting in planes being flown half empty. After
deregulation, airlines developed the much more cfficient “hub and spoke™ system for carrying
passengers between cities. Third, after deregulation, airlines tumed to non-unionized labor in
order to reduce costs and began to use equipment more intensively. Wages of pilots fell
dramatically, while time spent in the air increased. Similarly, planes were flown more hours each

day. Over the past 20 years, the net impact of these changes has been a dramatic reduction in

' This discussion draws on Williams (1993).
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operating costs. After adjusting for inflation, the average airfare has dropped about 40 percent

{Aviation Week and Space Tcchnology, November 9, 1998).

Property and Casualty Insurance

Regulation also contributes to higher production costs and prices in the insurance industry. First
of all, regulated rates cannot be changed rapidly, making it more difficult for insurers 1o respond
to cost changes or competitive changes. Since the regulatory process required for approval of
rate increases can be especially time consuming. insurers are hesitant to decrease prices for fear of
difficulty in increasing them later. Restrictions on classifying risks for pricing purposes also lead
to higher costs. Studies show consistently that “class plan” restrictions result in an increuse in the
size of the “involuntary” market that insurers must support (Grabowski et al, 1989; Tennyson,

1998).

One interesting question is whether insurance regulation has created barriers to entry and/or exit
akin to those present in the airline industry. If so, this is another important source of mefficiency.
Although most economists assume that the insurance industry has low “natural™ barriers to entry,
the Naunional Association of Independent Insurers (NATL) argues that the bureaucratic
requirernents that must be satisfied to enter a new state markel arc excessive (Harrington, 1934,
NAII, undated). For example, licensing requirements for new companies can create delays of a
year or more. Insurance regulation also includes exit barriers: the insurance commissioner in a
state has the authority to deny a company's request to withdraw from a product linc or a market.
Despite these costs, many insurance companies have entered and exited the industry over the past

few decades.”

H. Will Deregulation Increase Industry Profits?

The effect of deregulation on profits depends on the competitive characteristics of the industry.
Some industries operate competitively, even under regulation. In these industries, firms enter and
leave the market freely. There are no significant economies of scale. If regulators fix prices

above the competitive level, non-price competition between firms eliminates any excess profits.
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In this type of industry, deregulation tends to have little impact on profits. Although operating
costs may fall, competition cnsures that prices fall along with costs. Economists viewed the
airline industry as competitive and predicted that deregulation would not increase industry profits
by much (Winston, 1993). In other industries, regulation insulates firms from competition so that
excess profits are made. When these industries deregulate, profits of existing firms can fall. The
trucking industry falls into this category. Finally, industries with production technologies that
invalve economics of scale are the most likely to experience an increase in profits following
deregulation. Deregulation frees these firms to exert market power and price discriminate. For
example, the railroad industry. which is a natural monopoly, experienced a sighificant increase in

profits tollowing deregulation.

Predicting the cffect of deregulation on profits is complicated by the dependence of market
structure on existing technology. Deregulation of the past two decades shows that the sources of
an mdustry’s competitiveness can change rapidly because of new technology. In predicting
whether deregulation will increase or decrease profits. it is important to consider how
deregulation is likely to influence an industry’s technology, and how the change in technology will
intluence market structure. The following examines these questions in the context of the airline,

trucking and property-casualty insurance industries.

Airline Industry’

Airline industry profits suffered under CAB regulation. Despite the absence of price competition,
the regulated airlines made no monopoly profits. Thesc were dissipated through extensive non-
price competition. On the eve of deregulation in the 1970"s, economists generally predicted that
deregulation would not increase airline profits by much. because the industry seemed so naturally
competitive. Analysts assumed that dercgulation would allow many new, small airlines to enter
the market and challenge the established players. They belicved that falling costs and ficree price

wars would lead to a less concentrated, more competitive market structure.

At first, these predictions held. Initially, many new carriers did enter the industry. Most.

* Between 1980 and 1993, 613 new property-casualty companies were formed and 320 left the industry voluntarily
or because of merger (National Association of Independent Insurers, 1989-1993).
' This discussion draws on Williams (1993).
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however, have not been able to survive the ensuing price wars. Instead, a few large existing
carriers have held on to and strengthened therr market positions. They accomplished this in
several ways. First, exasung airlines monopolized take-oft and lunding slots. Consequently. new
entrants could only fly at less attractive times. Second. incumbents alrecady had national networks
and could offer atractive frequent flver packages. which regronal carriers could not match. Third,
incumbents had code sharing wlliances with each other that put new entrants at a competitive
disudvantage. Fourth, existing carners. partcularly American and United Airlines. increased their
market dominance through the development ol in-house computer reservaton systems (CRS’s).
Airlines negotiated deals to have therr CRS's installed exclusively in farge travel agencies.
Airlines then manipulated the presentation of CRS data to theyr advantage and paid agents extra
commission o book flights with them. Fmally, incumbents protected and expanded their markets
by developing “hub and spoke™ networks. In so doing. they were able o drive out small
compames. For example. before deregulation, one small carrier. Frontier Air. had developed a
madest “hub and spoke” system out of Denver. As a small commuter airline, Frontier did not
have to follow all of the CAB regulations enforeed for the trunk camiers and was highly
compettive and mnovative. Because Frontier was small. the Targe atrlimes were not threatened.
After deregulation. however. the big airlines began rapidly developing new route systems.
Contmental and United began operaung “hub and spoke™ systems out of Denver. Unable to

compete with these brand names, Frontier went out of business.

Overall. airhne deregulation led to a substantial increase in growth and profitability for the
industry and for several of the large. incumbent carriers in particular. No one helieves any longer
that the deal airkine 1 “small. quick. and nimble.”™ The experience ot the lust two decades shows
that the airline industry now mvolves significant cconomies of scale. und that “big is better.”  This
lact has led to more and more calls for re-regulation of the airline industry in order to end

“monopolistic abuse” by the large cairiers.

Trucking

In the 193075, the Interstate Commerce Commiission (ICC) began to regulate the trucking
industry, largely in order to protect the rinlroads from competition. The [CC kept trucking rates
artificially high and restricted entry into the industry. These regulations allowed existing truck

compames 1 make monopoly profits. [n the early 1980°s, the trucking industry was deregulated.



From 1980 to 1985, trucking firms faced massive market entry and falling prices. Although 4,500
trucking companies went out of business, there were 40 percent more trucking firms at the end of
1983 than before deregulation (Zingales, 1998). In this case, deregulation reduced industry

profits (Winston, 1993).

Especially hard hit by dercgulation were large trucking companies specializing in carrying many
smiall loads for difterent customers (Fortune, April 27, 1998). These companies had developed
extensive networks of hundreds of warehouses where the many partial loads were consolidated
into Tull loads, which could then be transported more efficiently. All the consolidation was
expensive and time consuming. Trucking firms could profit despite such inefficiency because
regulation restricted entry. With deregulation, small. independent trucking firms emerged. These
firms were willing to work for less and could deliver small foads more quickly. The small firms
drove many of the large, parttal-load specialists out of business. Thus, 1n this case, competitive

advimtage due to size and networks became obsolete under deregulation.

In conclusion, the airlines and trucking industries had very different experiences under
deregulation. Although analysts predicted that airline deregulation would lead to more
competitiveness and less market concentration, this prediction tumed out to be wrong.
Deregulation encouraged the development of new technologies, such as the “hub and spoke”
system, which could only be exploited by the largest carriers. These new technologics led to
increased profits and greater market concentration. By contrast, deregulation of the trucking
industry led to reduced profits and less market concentration. The load and delivery networks
developed by large trucking companies under regulation were no longer profitable. These
strikingly opposite cxperiences show the danger in drawing conclusions about how deregulation

will affect an industry. based solely on the industry’s current technology and market structure.

Property and Casualty Industry

Joskow’s seminal 1973 paper on the property and casualty regulation describes the industry as
including a large number of firms with low market share, entering and exiting the market relatively
frecly and producing nearly identical products using constant returns to scale technology.  As
explained above, theory predicts that deregulation of a competitive industry such as this results in

efficiency gains and customer benefits but has little impact on industry profits. Empirical studies
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comparing states with different degrees of auto insurance regulation generally supports this
prediction. There is no consistent evidence that prices. profits, or loss ratios are consistently
higher or lower in states requining “prior approval™ for rate changes. The results vary, depending
on the time period and particular states being considered (Ippolito, 1979, Harrington, 1984;

Tennyson, 1997 Bajtelsmit, 1998).

There is evidence, however, that the property and casualty industry does not fit the competitive
industry paradigm completely. Particular insurance distnibution systems do involve significant
economies of scale.” Economies of scale clearly arc important in a direct response arrangement,
as most of the acquisition expenses are fixed costs associated with the start-up period. Scveral
analysts have also suggested that economies of scale exist in production of insurance by direct
writers since developing an exclusive ugent distribution system entails high fixed costs (Joskow,
1973; Harvington, 1984). Once these fixed costs have been made, direct writers can produce
more cheaply than independent agents. Thus, the cost of establishing an exclusive agency
potentially creates a barrier 1o entry by small firms. Over the last few decades, concentration of
the industry has increased due to faster growth by direct writers (Tennyson, 1997). Theory
suggests that deregulation would most benefit the sectors of the insurance industry with

cconomies of scale and market power.

The key question is how pricing deregulation would affect the profitability of different production
and distribution strategies — and whether these strategies would benefit large established

companies or new “upstarts.” For example, atter deregulation of the airlines, it became both
possible and profitable to develop “hub and spoke” networks. Only the largest airlines could
manage this on a national scale. Thus, a new economy of scale emerged after dercgulation. On
the other hand, the networks developed by the trucking industry became obsolete after
deregulation. climinating a source of competitive advantage to large firms. In both cases, these
changes reflect the increased emphasis on competitive pricing following deregulation. The “*hub
and spoke” airline system allowed prices to fall — even though the system is less convenient for

air travelers. A similar shift in emphasis may occur following deregulation of auto insurance.

Considering the experience of the airline industry, the production and distribution strategies most
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likely o succeed in auto insurance will be those that permit the lowest prices, even at the expense

of customer convenicnee.

Deregulation is likely 1o have a profound effect on insurance pricing. Deregulation created
incentives for the airlines to vary prices. This in turn made complex pricing technologices
profitable. Since the pricing technology was so expensive, it provided an opportunity for the
largest airlines (o exploit new economies of scale. A similar situation could oceur if insurance is
dercgulated. With morc pricing freedom, it will become more profitable to invest in risk
assessment knowledge and systems. The class plans of personal auto insurers alrcady reflect a
wide variation in risk assessment capabilities. At present, those class plans are subject to
regulatory filing and approval in most states. With deregulation, such plans would become
proprietary information and thus potentially more important. This proprictary infarmation will
become a cructal new source of competitive advantage for compunics large enough to make the

investment.

Even if presented with new growth opportunities, the incumbents in an industry must move
quickly 1o take advantage of their insider status. In Britain, traditional insurers failed to respond
vigorously to the opportunitics presented by price deregulation in the 1970°s and 80's (Westall,
1997). At the end of the 1980’s, a new company, Direct Line, began to sell insurance dircetly to
policyholders over the telephone. This direct marketing pioneer has become extremely successful.
Although the initial cost of advertising was very high, Direct Linc has reduced costs dramatically
by climinating agents and branch cxpenses. Database management allows [ine discrimination
between risks and rapid premium rate adjustments. As Dircet Line’s market share grew, it began
to operate its own body shops. These shops, which reduce claims costs through better
management of the repair proccss, are only feasible for a company with a large market

concentration. Currently, Direct Line’s market share is 13 percent, about the same as Allstate’s.

* Economies of scale also appear to be important in handling of ¢laims. particularly in controlling use of body
shops and local defense attorneys.
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I1. Surviving Deregulation: Experiences of the Airline Leaders

The table below shows market share leaders in the airhine industry, belfore and alter deregulation

n 1978 (Aviation Week and Space Technology, 22 December 1986: Williams, 1993). Market

share 1s measured as a percentage of revenue passenger nmules (RPM):

Top Five Aivhines” Domestic Market Share Comparison (% RPM)
Market Shure 1970 1978 1983 1993 1998
[ Cmied United United American United
2 TWA Amenican | Amencan United American
3 American | Delha Delta Delta Delta
4 Pun Am Eastern Eastern Northwest Northwest
5 Eastem TWA TWA US Air US Air

As the table shows the two market share leaders in 1978, United and American, are still the top
o atrines today, The combined market share of the two airlines has increased from 34.0
pereent in 1978 1o about 40 percentin 1993, and 36.9 percent in 1998, The market share of
Dela. the third largestairline. rose from 12 pereent to 15.7 percent. TWA™s market share has
dropped from 14 percent o under 5 percent. Pan Am and Eastern Airlines went out of husiness

in 1991 (Aviation Week and Space Technology. January 28, 1991, We discuss TWA Pan Am.

Eustern. and Deltan more detail below

TWA and Pan Am

Both airlines spectadized in domestic fong distance und internationaf travel, which arc the most
compeutive segments of the market. On the eve of deregulation, the market shares of TWA and
Pan Am were talling. The airlines were especially huit by the recession ind fuel crisis in the
1970°s. During the 1980 s, they continued to lose market share because they did not have a good
domestic system to feed their international routes. Unlike United. American, and Delta, TWA
had only o small hub in St. Lows, while Pan Am had none. Pan Am sold 1ts internauonal routes in
a desperate eftort to survive. TWA sold its profitable London routes to raise money and allowed
its aur fleet to detenorate. By 1990, TWA had diversitied o real estate, fust foods, und hotels.
The non-airline portion of the business continues to ahsorb capital, making it difficult for TWA o

upgrade 1ts planes. By 1992, TWA had survived two bankrupicies and Pan Am was gone.

Y This discussion comes from The Times (July 19, 1996) and Business Week (May 19, 1980)
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Eastern Airline®

By 1975, Eastern was already in deep trouble. At the time, analysts predicted that the airline
could not survive dercgulation. Eastern’s problems were many. It operated many short flights
between small cities, requiring too many planes and too many people. The planes used for these
routes were too big. Eastern’s bulance sheet included considerable long term debt. Its corporate
offices were sphit between Miami and New York, leading to confused management. Eastern had a

reputation for poor quality service. The airline ceased tlying in 1991,

Delta’

Delta is a profitable airline with a strong balance sheet. The source of its strength is its
conservative approach to finance and management. Delta has always engaged in consistent
cupital spending on its fleets. [t buys steadily and carcfully, in good times as well as bad. In this
way, it keeps its flects relatively young, and avoids excessive spending in any year. During the
19805, Delta had the highest retained cash flow as a percentage of long term debt of any U.S.
carrier. Another strength is Delta’s hub in Atlanta. At its hub, Delta consolidates all of its
vperations, which generates economies of scale for the airline. Delta also has a reputation for its
loyal. well paid, but non-union workforce. Delta, however, has been slow to seize new
opportunitics. Following deregulation, Delta hesitated to buy international routes and was slow
to develop CRS's. The airline allowed American to beat it out in developing a second major hub
in Dallas. Finally, in 1980, cight years ofter deregulation, Delta became a ranscontinental airline
when it merged with Western Airlines. At that point, its market share (including international
passenger miles) shot from sixih place to third.  In 1992, when other carriers were advertising
price cuts, Delta increased spending (0 promote its good service! Delta remains strong because it

stays out of too much debt and focuses on long term strategies.

Analogies Between the Airhines and Privaie Passenger Auto Insurers

Jtis instructive 1o draw an analogy between these experiences and what might happen to the

major players in the personal auto insurance industry should deregulation occur. The chart below

" See Business Week (Dec. 22, 1975) and Aviation Week and Space Technology (January 28, 1991).
7 Forbes (Sept. 13, 1980). Aviation Week and Space Technology (Oct. 14, 1991), Brandweek (May 18, 1992),
Rusiness Week (Nov. 8, 1982), and Air Transport World (June, 1993).
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shows market shares for personal auto for the five largest insurers (One Source Information

Services, Inc. Market Share Application):

Market Share: Personal Auto (%)
Insurance Group 1993 1995 1997
State Farm 218 % 21.7 % 20.8 %
Allstate 1.7 1.9 122
Farmers 0.0 S.8 5.9
Nationwide 3.5 37 39
Progressive 1.4 24 37

The two largest insurers, State Farm and Allstate, can be compared to United and American, the
two largest airlines. Like United and American, State Farm and Allstate huve dominated the
industry for vears. Both are national insurers with a long history of excellence in risk assessment.
The companies are large and financially stable. They are both in a strong position to take
advantage of new opportunities presented by deregulation. The third and fourth market share
players, Farmers and Nationwide, are both regional companies who have attempted in recent
years to become more national. These companies resemble Delta, also a regional company prior
to dereguluation. Deregulation may well lead to a battle between these companies to become the

third largest auto nsurer.

Who will be the Pan Am and Eastern of auto insurance after deregulation?

IV. Final Comments

Although deregulation clearly increases efficiency, the impact on the profits of existing firms in

the industry depends on market structure and competitiveness:

e If an industry behaves competitively, consumers are the main beneficiaries of deregulation, as
cfficiency gains arc passed on to them in lower prices. The effect on existing firm profits may
be mimmal.

o Tothe extent that deregulation protects industry profits by fixing prices above the competitive

level or by restricting entry into the market, existing firms may be worsc off after deregulation.
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Faced with new competition, the existing firms may lose profits or go out of business.
e Existing firms in industries with barriers to entry tend to be more profitable after deregulation.

Essentially, deregulation allows the firms to cxploit monopolistic power.

The wild card in this analysis is technological change. The experience ol the last lwo decades
shows that deregulation stimulates technological change. This paper has tried to show how
deregulation, by freeing firms to pursue new pricing and distribution strategies, suddenly makes
new technologics much more profitable than belore. These technologics may give risc to new
cconomies of scale and may make traditional economics of scale obsolete. Thus, in predicting
how deregulation may influence profits of existing firms in an industry, it is important to consider
how dercgulation may influence the sources of competitive advantage.

How would deregulation influence the property and casualty industry”? The property and casualty
msurance industry has many of the characteristics of 4 competitive market. There is no consistent
cvidenee showing that regulation allows insurers to make cxcessive profits or that it seriously
restricts entry and exit from the industry. Ignoring technological change, this suggests that
deregulation might not affect the profits of existing insurers very much. Deregulation, however,
would give insurers the freedom to develop new market segments and rate relativities and to
respond quickly to external shocks. Technologies that permit this will hecome much more
profitable. Insurers with the capital to develop and implement new pricing capabilities will
experience new competitive advantages. Insurers who do not respond quickly may find that
traditional sources of competitive advantage, such as branch offices, agent networks. and
relationships with regulators, are no longer profitable.  One picece of evidence suggesting that
these changes may be coming: in the last 26 months, Progressive Insurance reduced its rates in
Texas, a state allowing flexible rating, on seven separate occasions (PR Newswire, May 14,
1998). By contrast, in Illinois. the state with perhaps the most pricing freedom, State Farm,
Allstate. and Nationwide changed their rates only five or six times tn the past seven years.

Actuartes need to prepare for these changes.
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