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Abstract

In recent years a number of authors (Brosius, 1992; Mack, 1993, 1994; and Murphy,
1994) have shown that link ratio techniques for loss reserving can be regarded as
weighted regressions of a certain kind. We extend these regression models to handle
different exposure bases and modelling of trends in the incremental data, and develop a
variety of diagnostic tools for testing the assumptions these techniques carry with them.

The new 'extended link ratio family' (ELRF) of regression models is used to test the
assumptions made by the standard link ratio techniques and compare their predictive
power with modelling (trends in) the incremental data. Not only does the ELRF of
regression models indicate that for most, if not all, cumulative arrays the assumptions
made by the standard link ratio techniques are not satisfied by the data, but that modelling
the trends in the (log) incremental data has more predictive power.

The ELRF modelling structure creates a bridge to a statistical (probabilistic) modelling
framework where the assumptions are more in keeping with what we see in actual data.
There is a paradigm shift from the standard link ratio techniques to the statistical
modelling framework; and the ELRF can be regarded as the bridge from the 'old'
paradigm to the 'new'.

There are three (critical) stages involved in arriving at a reserve figure, namely,
extraction of information from the data in terms of trends and stability thereof, and
distributions about trends; formulation of assumptions about the future leading to
forecasting of distributions of paid losses; and correlation between lines and security
level sought.

Finally, other benefits of the new statistical paradigm are discussed, including
segmentation, credibility and reserves or distributions for different layers.



1 Introduction and Summary

A model that is used to forecast reserves cannot include every variable that contributes to
the variation of the final reserve amount. The exact future payment (being a random
variable) is unknown and unknowable. Consequently a probabilistic model for future
reserves is required. If the resulting predictive distribution of reserves is to be of any use,
or have any meaning, the assumptions contained in that probabilistic model must be
satisfied by the data. An appropriate probabilistic model will enable the calculation of the
distribution of the reserve that reflects both the process variability producing the future
payments and the parameter estimation error (parameter uncertainty).

The regression models based on link ratios developed by Brosius (1992), Murphy (1994)
and Mack (1993, 1994) are described in Section 2 and extended to include trends in the
incremental data, and different exposure bases. We refer to that family of models as the
extended link ratio family (ELRF). The ELRF provides both diagnostic and formal tests
of the standard link ratio techniques. It also facilitates the comparison of the relative
predictive power of link ratios vis-a-vis modelling the trends in the (log) incremental
data.

Very often, for real data, even the best model within the ELRF is not appropriate, because
the data doesn’t satisfy the assumptions of that model. The common causes of this failure
to satisfy assumptions motivate the development of the statistical modelling framework
discussed in Section 3. The rich family of statistical models in the framework contains
assumptions more in keeping with reality.

In Section 3, a statistical modelling framework, based on the analysis of the log
incremental data, is described where each model in the framework has four components
of interest. The first three components are trends in each of the directions: development
period, accident period and payment/calendar period. The fourth component is the
distribution of the data about the trends. Each model fits a distribution to each cell in the
loss development array and relates cell distributions by trend parameters. This rich family
of models we call the Probabilistic Trend Family (PTF). We describe how to identify the
optimal model in the statistical modelling framework via a step by step model
identification procedure and illustrate that in the presence of an unstable
payment/calendar year trend, formulating assumptions about the future may not be
straightforward. The statistical modelling framework allows separation of parameter
uncertainty and process variability.

It also allows us to:

1. check that all the assumptions contained in the model are satisfied by the data,
2. calculate distributions of reserve forecasts, including the total reserve,
3. calculate distributions of, and correlations between future payment streams,
4. price future underwriting years including aggregate deductibles and excess layers,
5. easily update models and track forecasts as new data arrive.



The final part of the paper discusses how the combination of information extracted from
the data and business knowledge allow the actuary to formulate appropriate assumptions
for the future in terms of predicting distributions of loss reserves. Correlations between
different lines and a prescribed security level are important inputs into a final reserve
figure. Finally, other benefits of the statistical paradigm are alluded to, including
segmentation, credibility and pricing different layers.

2 Extended Link Ratio Family

2.1 Introduction

Brosius (1992) points out that the use of regression in loss reserving is not new, dating
back to at least the 1950’s, and says that using link ratio techniques corresponds to fitting
a regression line without an intercept term. Mack (1993) derives standard errors of
development factors and forecasts (including the total) for the chain ladder regression
ratios. He mentions the connection to weighted least squares regression through the
origin, and he presents diagnostics that indicate that an intercept term may be warranted
on the data he analyses.

Working directly in a regression framework, Murphy (1994) derives results for models
without an intercept, such as the chain ladder ratios, and also models with an intercept.

Under the assumption of (heteroscedastic) normality, we derive results for a more general
family of models that also include accident year trends for each development year. This
extended family we call the Extended Link Ratio Family (ELRF). We discuss
calculations and diagnostics for fitting and choosing between models, and checking
assumptions. Standard errors of forecasts for both cumulatives and incrementals are also
derived.

In the current section we analyse a number of real loss development arrays. Diagnostics
including graphs of the data and formal statistical testing both indicate that models based
on link ratios suffer several common deficiencies and frequently even the optimal model
in the ELRF is inappropriate. Moreover, models based on the log incremental data have
more predictive power than the optimal model in the ELRF.

The standard link ratio models carry assumptions not usually satisfied by the data. This
can lead to false indications and low predictive power, so that the standard errors of
forecasts are meaningless. Hence, we relegate the calculation of standard errors to the
Appendix.

2.2 Calculating Ratios using Regressions

Suppose � �ix ; ni ,...,2,1�  represent the cumulative at development period 1�j  for

accident periods ni ,...,2,1�  and � �iy  are the corresponding cumulative values at
development period j.



A graph of y versus x may appear as follows.

A link ratio � � � �ixiy  is the slope of a line passing through the origin and the point

� � � �� �x i y i, . So, each ratio is a trend.

Accordingly, a link ratio (trend) average method is based on the regression

y(i) = bx(i) + �(i), Var[�(i)] = �2x(i)�  (2.1)

The parameter b represents the slope of the ‘best’ line through the origin and the data
points � � � �� � .,...,2,1 ; , niiyix �

The variance of � �iy  about the line depends on � �x i , via the function � �x i� , where � is a
“weighting” parameter.
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Figure 2.1   Chain Ladder Ratios Regression

In the above figure Var[�(i)] = �2x(i)�, where � = 1. Interestingly, the assumption that
conditional on x(i) the “average” value of y(i) is bx(i) is rarely true for real loss
development arrays.

Consider the following cases:

Case (i): �=1

 The weighted least squares estimator of b is

� � � � � �

� �
�b

x i y i x i

x i
�

��
�

.           (2.2)

This is the weighted average by volume, i.e. the chain ladder average method, or chain
ladder ratio.

Case (ii): �=2

The weighted least squares estimator of b is

� � � ��b
n

y i x i� �1
.           (2.3)

This is the simple arithmetic average of the ratios.

Case (iii): �=0

This yields a weighted average weighted by volume squared.
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So, by varying the parameter � we obtain different link-ratio methods (averages).

One of the advantages of estimating link-ratios using regressions is that both standard
errors of the average method selection and standard errors of the forecasts can be
obtained. Another more important advantage is that the assumptions made by the method
can be tested.

One important assumption is that �(i)/�x(i)�/2, i = 1, 2, ..., n are normally distributed.
Otherwise, the weighted least squares estimator of b is not necessarily efficient, and the
reserve forecasts consequently may be biased for the mean and will have a large variance.
The normality assumption can be tested by examining the three diagnostic displays:
normal probability plot, Box-plot and histogram of the weighted standardised residuals.
The Shapiro-Wiks test based on the normality plot is a formal test.

The link ratio method also makes other assumptions that should always be tested.

Another basic assumption is that

� � � �� � � �E y i x i bx i� .           (2.4)

That is, in order to obtain the mean cumulative at development period j, take the
cumulative at the previous development period j-1and multiply it by the ratio. A quick
diagnostic check of this assumption is given by the graph of y(i) versus x(i). Very often a
(non-zero) intercept is also required. See Figure 2.4.

Equation (2.4) can be re-cast

� � � � � �� � � � � �E y i x i x i b x i� � �1 .           (2.5)

That is, the mean incremental at development period j equals the cumulative at
development period j-1 multiplied by the link ratio b minus 1. What are the diagnostic
tests for this assumption?

 If the assumption (2.4) is valid, then the weighted standardised residuals versus fitted values
should appear random. Instead, what you will usually see is a downward trend depicted in
the Figure 2.2 below, representing the chain ladder ratios residuals for the Mack (1994)
data. (See Example 1 below).



Figure 2.2

This indicates that large values are over fitted and small values are under fitted so that
� � bxxy �|E  is not true.

Comparison of graphs of weighted standardised residuals with graphs of the data will
indicate that accident periods that have 'high' cumulatives are over fitted and those with
'low' cumulatives are under fitted. Here are the two displays for the Mack (1994) data.
Note that as a result of the equivalence of equations (2.4) and (2.5), the residuals of the
cumulative data are also the residuals of the incremental data.

Figure 2.3a



Figure 2.3b

If you think of the way the incrementals are generated and the fact that there are usually
payment period effects, the cumulative at development period j �1 rarely is a good
predictor of the next incremental (after adjusting for trends).

Figure 2.4.   Cumulative Development Period 1 versus Cumulative Development Period 0

Murphy (1995) suggested to extend the regression model (2.1) to include the possibility
of an intercept.

y(i) = a + bx(i) + �(i)           (2.6)

such that Var[�(i)] = �2x(i)�.

If the intercept “a” is significant and we do not include it in the regression model then the
estimate of the link ratio b (slope) is biased. Note that in the above graph (Figure 2.4) of
cumulative at development period 1 versus cumulative at development period 0, the
intercept appears significant. Indeed, it is significant between every pair of contiguous
development periods. (See the data of Example 1 below).
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We can rewrite (2.6) thus:

y(i) � x(i) = a + (b�1) x(i) + �(i)           (2.7)

So, here y(i) � x(i) is the incremental at development period  j.

Consider the following two situations:

1. b 	1 and a � 0
 
Here to forecast the mean incremental at development period j we take the cumulative x
at development period j �1 and multiply it by � �b�1 .

2. b = 1 and a � 0

This means that x(i) has no predictive power in forecasting y(i) � x(i). The estimate of a
is a weighted average of the incrementals in development period j. So, we would forecast
the ‘next’ accident periods incremental by averaging the incrementals down a
development period. Accordingly, the standard link ratio technique is abandoned in
favour of averaging incrementals for each development period down the accident periods.

If b=1 then the graph of y(i) – x(i) against x(i) should be flat, as depicted below in Figure
2.5, which represents the incrementals versus previous cumulatives (development period
0) for the Mack (1994) data. It is clear that the correlation is zero. This is also true for
every pair of contiguous development periods.

Figure 2.5  Incrementals Development Period 1 versus Cumulative Development Period 0

In conclusion, if the incrementals y(i) – x(i) in development period j, say, appear random
it is very likely that the graph of y(i) – x(i) versus x(i) is also random. That is, there is
zero correlation between the incrementals and the previous cumulatives.



Now, if the incrementals possess a trend down the accident periods, the estimate of the
parameter b in equation (2.7) will be significant and so the link ratio (b) plus the intercept
(a) will have some predictive power. We should, however, incorporate an accident period
trend parameter for the incremental data, namely,

y(i) � x(i) = a0 + a1i + (b�1) x(i) + �(i), Var[�(i)] = �2x(i)�.           (2.8)

For most real cumulative loss development arrays that possess a constant trend down the
development period the trend parameter (a1) will be more significant than the ratio
minus 1 (b�1). Indeed, very often b�1 will be insignificant. That is, the trend will have
more predictive power than the ratio, and the residual predictive power of the ratio after
including the trend will be insignificant.

We use the following naming convention for the three parameters:

a0 - Intercept
a1 - Trend
b - Ratio (Slope)

Here are some models included in the ELRF described by equation (2.8).

� Chain Ladder Link Ratios

Here Intercept = Trend = 0 and �  = 1.

� Cape Cod – Intercept Only

Here it is assumed that the Ratio = 1 and the Trend = 0. The Cape Cod estimates a
weighted (depending on �) average of the incrementals in each development period. It
also forecasts a weighted average down the accident periods for each development
period.

The model can be written 

y(i) � x(i) = a0  + �(i),  Var[�(i)] = �2x(i)�.

� Trend with Ratio = 1

The model estimates a weighted (depending on �) trend (parameters a0  and a1) down
the accident periods for each development period. It also forecasts a weighted trend
down the accident periods for each development period.



Example 1: The Mack data

The data for the first example is from Mack (1994). The data are incurred losses for
automatic facultative business in general liability, taken from the Historical Loss
Development Study, 1991, published by the Reinsurance Association of America.

0 1 2 3 4 5 6 7 8 9
1981 5012 8269 10907 11805 13539 16181 18009 18608 18662 18834
1982 106 4285 5396 10666 13782 15599 15496 16169 16704
1983 3410 8992 13873 16141 18735 22214 22863 23466
1984 5655 11555 15766 21266 23425 26083 27067
1985 1092 9565 15836 22169 25955 26180
1986 1513 6445 11702 12935 15852
1987 557 4020 10946 12314
1988 1351 6947 13112
1989 3133 5395
1990 2063

Table 2.1.  Incurred loss array for the Mack data. Rows are accident years and columns
are development years. Note that 1982 accident year values are low.

We first fit the chain ladder ratios regression model. That is, we fit equation (2.1) with
�=1 for every pair of contiguous development periods. The standardised residuals are
displayed in Figure 2.6. Note that the equivalence of equations (2.5) and (2.6) means that
the residuals of the cumulative data are identical to the residuals of the incremental data.

Figure 2.6    Residual plot for the chain ladder ratios model.

Wtd. Std. Residuals
vs. Dev. Year

� � � � � � � � 	

��

�

�

�

Wtd. Std. Residuals
vs. Acc. Year

�� �� �� �� �� �� �� �� �	 	�

��

�

�

�

Wtd. Std. Residuals
vs. Pay. Year

�� �� �� �� �� �� �� �	 	�

��

�

�

�

Wtd. Std. Residuals
vs. Fitted Values

� ���� ����� ����� �����

��

�

�

�



We have already observed the downward trend in the fitted values (Figure 2.2) and that
the high cumulatives are overfitted whereas the low cumulatives are underfitted. This is
mainly due to the fact that intercepts are required.

So, we now fit models (2.6) with intercepts except for the last two pairs of contiguous
development periods, as there is insufficient data here. See Table 2.2 for the regression
output. Note that none of the slope (ratio) parameters are significantly different from 1
and if both parameters are insignificant, the slope (ratio) is less significant. This means
that the previous cumulative is not really of much help in predicting the next incremental
incurred loss.

Intercept and Ratio Regression Table � = 1
Develop. Intercept Slope
 Period Estimate Std.Error p value Estimate Slope - 1 Std. Error p value
  00-01 4,329 516 0.000 1.21445 0.21445 0.42131 0.626
  01-02 4,160 2,531 0.151 1.06962 0.06962 0.35842 0.852
  02-03 4,236 2,815 0.193 0.91968 -0.08032 0.24743 0.759
  03-04 2,189 1,133 0.126 1.03341 0.03341 0.07443 0.677
  04-05 3,562 2,031 0.178 0.92675 -0.07325 0.11023 0.554
  05-06 589 2,510 0.836 1.0125 0.0125 0.12833 0.931
  06-07 792 149 0.118 0.9911 -0.0089 0.00803 0.467
  07-08 - - - 1.01694 0.01694 0.01506 0.463
  08-09 - - - 1.00922 0.00922 - -

(AIC=760.8)

Table 2.2. Fit of the model with intercept and ratio, with � at 1.
(There is no intercept fitted for the last two years).

The model is overparameterized, so we eliminate the least significant parameter in each
regression. We find that in each case the intercept is the parameter retained: that is, for
every pair of contiguous development periods the model reduces to Cape Cod, that is,

� �iaixiy �
�� 0)()( .

The residual plots for the reduced model (Cape Cod) are given in Figure 2.7.



Figure 2.7. Residual plot for � = 1, model with intercepts and with slopes set to 1.
The line joins mean residuals.

Note that residuals versus fitted values are 'straight' now and that we do not have the high
low effect in residuals versus accident periods. Since residuals versus accident years do
not exhibit a trend, if we were to include a trend, that is, estimate

�

�� iaaixiy 10)()( ,

we would find that the estimate of a1 is insignificant.

We now present forecasts and coefficients of variation based on the Cape Cod (intercept
only) with �=1 model and compare this with the forecasts and coefficients of variation for
the chain ladder ratios.



                Cape Cod    Chain Ladder  

Accident
Year

Mean
Forecast

Standard
Error

Coeff. of
Variation

Mean
Forecast

Standard
Error

� Coeff. of
Variation

1981 0 0 - 0 0 -
1982 172 41 0.244186 155 148 0.954839
1983 483 465 0.899142 616 586 0.951299
1984 1,113 498 0.385531 1633 702 0.429884
1985 1,941 1,218 0.51217 2779 1404 0.505218
1986 4,200 1,555 0.408791 3671 1976 0.538273
1987 6,878 1,677 0.271393 5455 2190 0.401467
1988 10,252 3,247 0.308234 10934 5351 0.489391
1989 14,874 3,657 0.25381 10668 6335 0.593832
1990 19,336 4,532 0.215021 16360 24606 1.504034

Total 59,248 8,494 0.110347 52272 26883 0.514291

Table 2.4. Comparison of Cape Cod coefficients of variation with those for the Chain
Ladder Ratios.

Note that for the Cape Cod model the standard errors are generally decreasing as a
percentage of the accident year forecast totals as we proceed down to the later years. This
is because the model relates the numbers in the triangle to a certain degree- it assumes
that the incremental values in the same development period are random from the same
distribution. This does not happen with the chain ladder ratios, because the model does
not relate the incrementals in the triangle in any meaningful way. For example, how are
the values in the development period 0 related? Consequently, the coefficients of
variation are substantially higher for the chain ladder ratios model, and moreover violate
the fundamental statistical principle of insurance - risk reduction by pooling. It does not
make sense that the coefficient of variation for 1990 is 150%, but for the previous year,
1989, it is 59%, when 1990 has only one more incremental value to forecast than 1989.

For the Mack data, the model with intercepts is reasonable, as there is no accident year
trend in the incrementals. For data where a constant trend (on a dollar scale) does exist,
then the trend will be significant, but very often the ratio -1 will be insignificant.

2.3 Summary

We have so far considered two modelling cases: incrementals for a particular
development period have a zero trend, and incrementals have a constant trend (after
possibly adjusting the data by accident year exposures). In both these real data cases link
ratios are often insignificant and therefore also lack predictive power. The case
encountered most often in practice, however, involves a trend change along the
payment/calendar periods (diagonals). This means that as you look down each



development period, the change in trend will occur in different accident periods.
Consequently, none of the above models in the ELRF can capture these trends.

The weighted standardised residuals depicted in Figure 2.8 and Figure 2.9 are those of the
chain ladder ratios and model (2.8) respectively, applied to project ABC (Worker's
Compensation Portfolio) discussed in Section 3. Note that the chain ladder ratios indicate
a payment year trend change and model (2.8) that fits a constant trend down the accident
years for each development year, indicates that the trend before payment year 1984 is
lower than the trend after 1984. This project (ABC) is analysed in more detail in
Section 3.
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Figure 2.8. Residual plot for chain ladder ratios. The line joins the means of the
residuals.
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Figure 2.9   Residual plots for trends plus ratio model

The types of models described by equation (2.8) can be used to diagnostically identify
payment period trend changes, but cannot estimate these trend changes or forecast with
them. These models in the ELRF form a bridge to models that also include payment
period trend parameters, that is, statistical models in the PTF.

It is important to note that ELRF models also make the implicit assumption that the
weighted standardised errors come from a normal distribution. If the assumption is true,
the estimates of the regression parameters are optimal. If the assumption is not true, the
estimates may be very poor. This normality assumption is rarely true for loss reserving
data. In fact, the weighted standardised residuals are generally skewed to the right,
suggesting that the analysis should be conducted on the logarithmic scale. The graph
below illustrates the skewness of a set of weighted standardised residuals based on chain
ladder ratios for Project Pan6 analysed in detail in Section 3. The positive weighted
standardised residuals are further from zero than the negative ones. If the normality
assumption were correct, the plot would look roughly symmetric about the zero line.
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In summary, using the regression methodology of ELRF, you will discover that for most
real loss development arrays of any data type, standard development factor (link-ratio)
techniques are inappropriate. Analysing the incrementals on the logarithmic scale with
the inclusion of payment period trend parameters has more predictive power.

Finally, but importantly, the estimate of a mean forecast of outstanding (reserve) and
corresponding standard deviation based on a model are meaningless unless the
assumptions made by the model are supported by the data.



3 Statistical Modelling Framework

3.1 Introduction

Clearly we require a model that is able to deal with changing trends; trends in the data on
the original (dollar) scale are hard to deal with, since trends on that scale are not
generally linear, but move in percentage terms – for example, 5% superimposed (social)
inflation in early years, and 3% in later years. It is the logarithms of the incremental data
that show linear trends. Consequently we introduce a modelling framework for the
logarithms of the incremental data that allows for changes in trends. The models of this
type provide a high degree of insight into the loss development processes. Moreover, they
facilitate the extraction of maximum information from the loss development array.

The details of the modelling framework and its inherent benefits are described in
Zehnwirth (1994). However, given that there is a paradigm shift from the standard link
ratio methodology to the statistical modelling framework, we review the salient features
of the statistical modelling framework.

3.2 Trend Properties of Loss Development Arrays

Since a model is suppose to capture the trends in the data, it behoves us to discuss the
geometry of trends in the three directions, viz., development year, accident year and
payment/calendar year.

Development years are denoted by j; j = 0, 1, 2, ..., s-1; accident years by i; i = 1, 2, ..., s;
and payment years by t; t = 1, 2, ..., s.

Figure 3.1

The payment year variable t can be expressed as t = i + j.  This relationship between the
three directions implies that there are only two ‘independent’ directions.
 
The two directions, development year and accident year, are orthogonal, equivalently,
they have zero correlation. That is, trends in either direction are not projected onto the
other. The payment year direction t however, is not orthogonal to either the development
or accident year directions. That is, a trend in the payment year direction is also projected
onto the development year and accident year directions. Similarly, accident year trends
are projected onto payment year trends.



The main idea is to have the possibility of parameters in each of the three directions –
development years, accident years and payment years. The parameters in the accident
year direction determine the level from year to year; often the level (after adjusting for
exposures) shows little change over many years, requiring only a few parameters. The
parameters in the development year direction represent the trend from one development
year to the next. This trend is often linear (on the log scale) across many of the later
development years, often requiring only one parameter to describe the tail of the data.
The parameters in the payment year direction describe the trend from payment year to
payment year. If the original data are inflation adjusted before being transformed to the
log scale, the payment year parameters represent superimposed (social) inflation, which
may be stable for many years or may not be stable. This is determined in the analysis.
Consequently, the (optimal) identified model for a particular loss development array is
likely to be parsimonious. This allows us to have a clearer picture of what is happening in
the incremental loss process.

The mathematical formulation of the models in the statistical modelling framework is
given by equation (3.6) below. We now illustrate the geometry of trends with a
simulation example.

Example 2 - Simulated Data:

To illustrate the trend properties of a loss development array, let us examine a situation
where we know the trends, because we have selected them. Consider a set of data where
the underlying paid loss (at this point without any payment year trends or even
randomness – just the underlying development) is of the form

� � � � jpjiy ij 2.051293.11ln, ���

On a log scale this is a line with a slope of -0.2. The accident years are completely
homogeneous. Let's add some payment/calendar year trends. A trend of 0.1 from 1978 to
1982, 0.3 from 1982 to 1983 and 0.15 from 1983 to 1991.

1978        -0.2
0.1
    0.3
      0.15

1982
1983

1991

Figure 3.1. Diagram of the trends on the log scale in the data array.



Patterns of change like this are quite common in real data. Trends in the
payment/calendar year direction project onto the other two directions. The resultant
trends for the first six accident years are shown below.

Figure 3.3. Plot of the log(paid) data against delay for the first six accident years.

Note that each line in the graph is the resultant development year trend for a single
accident year. As you go down the accident years (1978 to 1983) the 30% trend always
kicks in, one development period earlier. The payment year trends also project onto the
accident years, which is why the early years are at the bottom and the later years are at
the top. Note how the “kink” moves back as we go up to the more recent accident years.
The resultant development year trends are different for each accident year now. We can’t
model even this simple situation with link ratios, or any model in ELRF.

Of course, real data is never so smooth. On the same log scale, we add some noise –
random numbers with mean zero and standard deviation 0.1.

Figure 3.4. Trend plus randomness for the first six accident years.
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Now the underlying changes in trends are not at all clear for two reasons. The payment
year trends project onto development years and the data always exhibits randomness that
tends to obscure the underlying trend changes. It has many of the properties we observe
in real data – and yet it is plain that even with the extensions, the regression models in
ELRF from Section 2 are inadequate for this data. We instead model the trends (in the
three directions) and the variability. We measure these things on the log scale. In this
Section, let y(i,j) be the natural log of the incremental payment data in accident year i and
development year j. This is different from our use of y(i,j) in Section 2, but we do it for
consistency with the literature appropriate to the models in each Section. We will analyze
this data shortly.

Consider a single accident year. We represent the expected level in the first development
year by a parameter (�). We can model the trends across the development years by
allowing for a (possible) parameter to represent the expected change (trend) between each
pair of development years. We model the variation of the data about this process with a
zero-mean normally distributed random error. That is:

� � j

j

k
kjy ��� 

� �

�1

(3.1)

This probabilistic model is depicted below (for the first six development years).

Figure 3.5. Probabilistic model for trends along a development year on the log scale.

For this probabilistic model, � is not the value of y observed at delay 0. It is the mean of
� �y 0 . Indeed, � �y 0  has a normal distribution with mean � and variance �2. Similarly, �j

is not the observed trend between development year j-1 and j, but rather it is the mean
trend between those development years – E[y(j)�y(j�1)] = �j.

The parameters of the probabilistic model represent means of random variables. Indeed,
the model (on a log scale) comprises a normal distribution for each development year
where the means of the normal distributions are related by the parameter � and the trend
parameters �1, �2, ..., .

�

j10 2 3 4 5

y(j)


1


2



Based on the model in equation 3.1, the random variable p(j) has a lognormal distribution
with

Median � 

�

�
�

�

�
�

�

�exp � � j
j

d

1

          (3.2)

Mean = median � exp[0.5�2]           (3.3)

and

Standard Deviation = mean � �� �exp� 2 1           (3.4)

The probabilistic model for p(j) comprises a lognormal distribution for each development
year where the medians of the lognormal distributions are related by equation 3.2 and the
means are related by equation (3.3). So, in fitting or estimating the model we are
essentially fitting a lognormal distribution to each development year. The trend (on a log
scale) comprising the straight line segments is only one component of the model. A
principal component comprises the distributions about the trends.

Figure 3.6. Model for trends along a development year (dollar scale). Means and medians
of the distributions are marked.

Note equation (3.2) that exponentiating the mean on the log scale gives the median on the
dollar scale (which is why the line above joins the medians). We will normally use the
mean as our forecast, rather than the median, but the uncertainty (measured by the
standard deviation) of the lognormal distribution is just as important a component of the
forecast.

If we compute expected values of the logs of the development factors on the incremental
data with this model, we obtain E[ln(p(j)/p(j��))] = E[(�j+�j��j-1)] = �j. That is, trend
parameters also underpin this new model, but in a way that will allow it to appropriately
model the trends in the incremental data, in the three directions.

P(j)

j10 2 3 4 5



The model described so far only covers a single accident year. We have not yet accounted
for the payment year and accident year trends. Let the mean of the (random) inflation
between payment year t and t+1 be represented by �t (iota-t).

Hence the family of models can be written:

� � ji

ji

t
t

j

k
kijiy ,

11

, ���� 


� ��
�

��

          (3.6)

We call this family of models the probabilistic trend family (PTF). Note that the mean
trend between cells (i,j-1) and (i,j) is �j+�i+j , and the mean trend between cells (i-1,j) and
(i,j) is �i+1��i+�i+j .

A member of this family of models relates the lognormal distributions of the cells in the
triangle. On a log scale the distribution for each cell is normal where the means of the
normal distributions are related by the “trends” described by the member.

If the error terms �i,j coming from a normal distribution with mean zero do not have a
constant variance, then the changing variance also has to be modelled. Note that there are
numerous models in PTF, even if we do not include the varying (stochastic) parameter
models discussed in Section 3.3. The actuary has to identify the most appropriate model
for the loss development array being analysed. The assumptions made by the 'optimal'
model must be satisfied by the data. In doing so, one extracts information in terms of
trends, stability thereof and the distributions of the data about the trends.

Example 2 continued - Estimation:

Let’s now try to identify the model that created the data. We begin by fitting a model
with all the development year trends equal (one 
) and all payment year trends equal (one
� and with no accident year trends (one �). That is, with �k=�, �t=�, and �i=�, for all
parameters. The parameter estimates are given in Table 3.2.

Parameter Estimate Std. Error t-ratio
�  11.4256  0.0302  378.57

  -0.2062  0.0037  -55.08
�   0.1563  0.0037   41.74

s = 0.1129  R2 = 97.0%

Table 3.2. Parameter estimates for the model with constant trends.

The estimate of � (iota) 0.1563 is the weighted average of the three trends 0.1, 0.3 and
0.15.

Removing constant trends makes any changes in trend more obvious. The residuals are
shown in Figure 3.7.
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Figure 3.7. Plots of standardized residuals against the three directions, and against fitted
values for the single payment year trend model. The lines join mean residuals.

The residuals need to be interpreted as the data adjusted for what has been fitted.
Accordingly, the residuals versus payment years represent the data minus the fitted
0.1563.

Immediately the changes in trends in the payment year direction become obvious. We can
see that the trend in the early years is substantially less than the estimated average of
0.1563, that the trend from 1982 to 1983 is much larger than it, and after that, the trend is
pretty close to the fitted trend, as 0.15 - 0.1563 is approximately zero. This suggests that
we should introduce another � (iota) between 1982-1983 and another � between 1983-
1984 (that will continue to 1991).
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 Figure 3.8. Plots of standardized residuals against the three directions, and against fitted
values for the model with three payment year trends.



The residuals of the model with three payment year trends are given in Figure 3.8. This
model seems to have captured the trends.

Parameter Estimate Std. Error t-ratio
�  11.5321  0.0612  188.34

  -0.2062  0.0033  -61.91
�      78-82  0.0873  0.0209  4.18

82-83 0.3927 0.0442 8.90
83-91 0.1446 0.0046 31.72

s = 0.1005  R2 = 97.7%

Table 3.3. Parameter estimates for the model with three payment year trends.

Note that the estimates of the trend parameters 0.1, 0.3, 0.15 are not equal to the true
values, indeed 0.3927 (±0.0442) is a bit off the mark (but not significantly). That is
because in the payment years 1982 and 1983 there aren't many data points. Given the
trend of 0.15 is in the data since 1983, we would expect stability of forecasts, and trend
parameter estimates as we remove years.

The forecasts are stable – if we remove the most recent data, the forecasts of this model
don’t change much relative to the standard error in the forecast, as we can see in Table
3.4.

Yrs in
Estim.

 N 
 (83-91) std. err.  � (83-91) std. err.   Mean
Fcst

std. error.
Fcst

78-91 105 -0.2062 0.0033 0.1446 0.0046 23,426,542 927,810
78-90 91 -0.2075 0.0036 0.1527 0.0051 25,333,522 1,191,129
78-89 78 -0.2086 0.0042 0.1512 0.0064 24,850,972 1,526,246
78-88 66 -0.2119 0.0045 0.1575 0.0075 26,296,366 1,997,089
78-87 55 -0.2131 0.0055 0.1563 0.0103 25,894,931 2,868,948

Table 3.4. Forecasts and standard errors, and trend estimates (and their standard errors),
for the selected model as the later payment years are removed.

Note that the estimate of 
 (= -0.2) is pretty stable, as we remove the latest years.



The display below, Figure 3.9, gives the prediction errors  (on a log scale) for the four
payment years 1988 - 1991 based on the model estimated at year end 1987.

Figure 3.9  Prediction errors for 1988-1991, based on model estimated at year end 1987.

So the estimated model at the end of payment year 1987 slightly over-predicts the
payment periods 1988-1991. That is because the trend estimate (since 1983) is now
15.63% � 1.03%, in place of 14.46% � 0.46% when we use all the years in the
estimation. Hence the forecast of $25.89M (�$2.87M) is 'higher' than $23.4M (�$0.93M).
When you test for a trend change between 1987 and 1988 it is not significant (as we
would expect). Note that removal of payment years (validation analysis) is part of the
model identification procedure and extraction of information process.

Payment Years in
Estimation

Estimate of gamma Estimate of iota
(83-91)

Forecast � SE
$M

1978-91
1978-90
1978-89
1978-88
1978-87

-20.62 � 0.33
-20.75 � 0.36
-20.86 � 0.42
-21.19 � 0.45
-21.31 � 0.55

14.46 � 0.46
15.27 � 0.51
15.15 � 0.64
15.75 � 0.75
15.63 � 1.03

23 � 0.9
25 � 1.2
25 � 1.5
26 � 2.0
26 � 2.9
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Example 3 - Real data with major payment year trend instability

We now analyze a real data set.

0 1 2 3 4 5 6 7 8 9 10
1977������� ������� ������� �	���� �
���� ����
� ������ ������ ������ �����
 ����



1978�	����� ������� ������� �
����� 	����� �	���
 ����	� ������ ������ ���




1979��
��	� ������� ������� ����
	� �����
 ���
�� ������ ���	�� �	��



1980������� ������� �����	
 ����
�
 	����� �
���� ������ ���




1981������
 �����
� ������
 ��
�
�� �	���� ���	�
 ���




1982�
����� ����	�� �		��
� ������� ���	�� ����



1983��	�	�� �����
� ������� ������� �
���



1984����	�� ������� �����
� ��
��



1985�����
� �	��	�� �	���



1986��
�		� ��
��



1987�����



Acci. Yr 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987
Exposure 2.2 2.4 2.2 2.0 1.9 1.6 1.6 1.8 2.2 2.5 2.6

Table 3.5. Incremental paid losses and exposures for ABC.

This loss development array has a major trend change between payment years 1984 and
1985, even though the data and link ratios are relatively smooth. Indeed, it needs to be
understood that in general trend instability has nothing to do with volatility or
smoothness of the data and link ratios. Formulation of the assumptions about the future
trend will depend on the explanation for the trend change (when there is one).

The individual link ratios for the cumulated data are very stable, as can be seen in Figure
3.10 below. It is very dangerous to try to make judgements about the suitability of
development factor techniques from the individual link ratios on the cumulated data.

Individual Link Ratios by Delay
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Figure 3.10. Plot of individual link ratios by delay. The line joins Chain Ladder ratios.



We first conduct some diagnostic PTF analysis and then show how the ELRF modelling
structure also indicates payment year trend change and moreover that any method based
on link ratios is quite meaningless. Figure 3.11 below shows the standardised residuals of
the statistical chain ladder in PTF, i.e. the statistical chain ladder fits all the gamma
parameters and all the alpha parameters (no iotas). So, the residuals are the data adjusted
for the (average) trend between every pair of contiguous development periods and every
pair of contiguous accident periods. This is why the residuals versus development years
and residuals versus accident years are centred on zero! We use this model only as a
diagnostic tool to determine (speedily) whether there are payment year trend changes
which can be attributed solely to the payment years.

Contrast the smoothness of the above ratios with the plot of the residuals from this model.

Figure 3.11   Standardised residuals of the statistical chain ladder model.

We can now see dramatic changes in the payment year direction. It might be very
dangerous to use forecasts from any model assuming no changes in payment year trend,
such as a model from the ELRF  – it would correspond to forecasting along the zero line
in Figure 2.8. (the residuals of the standard chain ladder ratios). There is a difference
between Figures 3.10 and 2.8. The statistical chain ladder shows the payment year trends
after adjusting for the trends in the other two directions. The chain ladder ratios (Figure
2.8) do not do that. But the change in trend is clear in either graph. In the current
statistical modelling framework, we are able to model this change; we have a lot more
control over how we incorporate the trend changes into our model and hence into the
forecasts. Even the best ELRF model here hardly uses ratios and is deficient because it
gives us no control in the payment year direction. It turns out that the trend before 1984 is
approximately 10% whereas the trend past 1984 is approximately 20%. So which trend
should we assume for the future? This depends on the explanation for the change. If the
trend instability is due to new legislation that applies retrospectively (to all accident
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periods) then one would revert to the 10%. If there is no explanation for the trend change,
except that the payments have increased, then calling the future in terms of trends is more
difficult.

Example 4 - Volatile data with stable trends

We now consider an array where the paid losses are very volatile, but the trends are
stable. Recall that trend stability/instability is not dependent on the volatility of the data
nor of the link ratios. Since the random component is an integral part of the model, this
model captures the behaviour of this volatile data very well. We call this array PAN6.

Development Year
Acci. Yr 0 1 2 3 4 5
1986 194324 571621 327880   249194   524483 1724274
1987     1469   57393 485791   169614   121410   599021
1988     1860 161538 408008   314614 6744000      ****
1989   23512 185604 260725 1134272   851099 2174200
1990     1044   70096   93600 1283752 1595466   913215
1991     ****     3730 869959   187019 2764795       ****
1992     **** 443205 180064   683407   878117
1993     ****   12808 433511   118017
1994     1431   77765 151161
1995   51539    ****
1996     ****

Table 3.6. Paid loss array for the PAN6 data for Example 4.

A good model can be identified quickly for the logarithms of these data; it has no
payment year trends, and only two different development year trends; between
development years 0-1, and for all later years. The residual plot is given in Figure 3.12.

However, note that the spread of the first two development years is wider than for the
later years and the spread for 'small' fitted values is larger than the spread for 'large' fitted
values. If we estimate the standard deviations in the two sections, we find that they are
3.0177 and 0.8015 respectively. This requires a weighted regression; development years
0 and 1 are given weight (0.8015/3.0177)2, and the other years (2+) have weight 1. The
weighted standardized residual plots now look fine; see Figure 3.13. A check of the plot
of residuals against normal scores (not  presented here) indicates that the assumption of
normality of the logarithms of the data is very reasonable; the squared correlation is
greater than 0.99.

The normal distributions for this model have relatively large variances. The estimate of
�2 for development periods 0-1 is 2.923 and for development periods 2+ is 0.80346. Note
that if a normal distribution has a variance �2, then the corresponding lognormal

distribution has a coefficient variation of � � �� 	�1exp 2 .



This model also has forecasts that are stable as we remove the most recent data, as we see
in Table 3.7. This is a very important attribute of this identified model that captures the
information in the data – if the trends in the data are stable, then so are the forecasts
based on the estimated model. In this case we were able to remove almost half the (most
recent) data. The standard errors of the forecasts are large because the lognormal
distributions are skewed - insurance is about measuring variance (not just mean).
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Figure 3.12. Plot of  standardized residuals for the model with two gamma parameters
and one alpha parameter.
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Figure 3.13. Plot of  weighted standardized residuals after the weighted regression.
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While the variability of the data and hence the standard errors of the forecasts are large,
the message from the data has been consistent over many years. We are predicting the
distribution of the data in each cell, not merely their mean and standard deviation, so a
large standard deviation does not imply a bad model. Indeed, the model is very good. It
captures the variances, indeed the distributions, in each cell;

Years in
Estimation

N Trend
(dev period 1+)

standard
error

  Mean
Fcst

 Standard
   Error

86-96      44 0.6250 0.1432 20,352,011 9,136,870
86-95      41 0.6102 0.1479 21,410,781 9,839,127
86-94      35 0.6149 0.1681 21,037,520 10,654,173
86-93      29 0.5024 0.1977 19,755,944 11,647,274
86-92      25 0.5631 0.2143 18,567,664 11,529,359

Table 3.7. Forecasts and standard errors, and the final trend estimates (and their standard
errors), for the final model as the later payment years are removed.

The high standard errors of forecasts are due to large process variability. As we remove
recent years (diagonals) from the estimation we note the stability of forecasts
(outstanding). This is further evidence of a stable trend in the data.

Figure 3.14 - Prediction errors for years 1993-1996

Note that at end of year 1992, the estimated model would have predicted the normal
distributions for the log(payments) in years 1993-1996 and would have produced
statistically the same forecast outstanding.



Figure 3.15.  Normality plot of prediction errors for 1993-96 based on model estimated at
year end 1992.

We now turn to ELRF analysis. Since the data are extremely skewed (lognormal with
large coefficient of variation), the residuals of the chain ladder (regression) ratios in
ELRF are extremely skewed to the right. See Figure 3.16 below. The plot of residuals
against fitted values shows a downward trend indicating that we overpredict the large
values and underpredict the small ones. The residuals also show strong indications of
non-normality. Moreover, all ratios have no predictive power (provided there is an
intercept). In any event, residuals are skewed (not normal), so even the best model in
ELRF, the Cape Cod (y � x = a0  + �), is not a good one.

Recall that if model assumptions are not satisfied by the data, then any forecast
calculations are quite meaningless.

Figure 3.16.  Residuals of chain ladder ratios regression model
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Example 5 - Simulated array based on a (simple) model with only two parameters.

This array termed SDF contains a simulated data set where the incremental paid losses
have accident years that are completely homogeneous. The actual model driving the data
has one alpha (�) = 10, one gamma (
) = -0.3 and �2 = 0.4. That is,

� � � �jidjiy ,3.010, �
��

where the �(i,j) are i.i.d. from N(0, 0.4).

The simulated data is presented in Table 3.8.

Acci. Development Year
Year 0 1 2 3 4 5 6 7 8
1978 24,307 44,260 3,900 13,393 17,731 5,802 1,975 6,294 4,758
1979 19,122 7,003 8,147 2,872 5,639 2,967 3,455 2,364 4,005
1980 18,082 27,708 27,901 5,699 9,297 2,899 7,461 6,885 1,854
1981 80,451 11,411 68,627 6,703 6,430 2,693 5,560 847 4,706
1982 49,099 7,144 11,979 3,481 2,279 5,975 4,472 2,066 509
1983 33,475 54,717 8,774 4,859 5,808 20,750 1,903 2,449 937
1984 23,070 49,554 5,659 9,909 9,123 8,805 7,008 8,634 3,053
1985 14,324 8,352 7,955 8,092 6,044 8,542 7,700 2,849 1,130
1986 58,785 16,833 6,068 5,227 3,276 16,592 2,407 908 2,508
1987 9,017 7,999 10,796 12,737 3,880 6,536 6,779 2,336
1988 12,205 24,980 13,835 9,881 4,978 3,380 7,105
1989 17,883 5,194 11,429 2,769 9,540 5,107
1990 25,584 14,468 12,543 5,774 10,414
1991 49,089 22,514 24,075 9,591
1992 24,064 49,272 3,231
1993 17,858 19,689
1994 24,869

Acci. Development Year
Year 9 10 11 12 13 14 15 16
1978 1,529 2,383 161 760 445 640 501 255
1979 2,029 1,370 718 432 1,282 456 232
1980 2,681 792 1,338 820 702 179
1981 1,245 1,289 717 754 436
1982 2,345 755 1,702 596
1983 796 1,446 1,271
1984 493 2,108
1985 1,754

Table 3.8. Incremental paid loss data for simulated example SDF.



The first thing to note with this data is that once noise is added, it looks like incremental
paid data for a real array, even though it was generated from a very simple model.

The relatively large �2 = 0.4 explains the high variability in the observed paid losses. The
incremental data displayed in Table 3.8 appear volatile, but the values in the same
development period are independent realizations from the same lognormal distribution.

For example, in development period zero, the simulated values 80,451 and 9,017 come
from a lognormal distribution with mean 26,903 and standard deviation 18,867. Since a
lognormal distribution is skewed to the right, realizations larger than the mean are
typically 'far' away, whereas realizations less than the mean are bounded by zero and the
mean, and so are 'closer' to the mean.

The apparent volatility in the data is not due to instability in trends - indeed the reality is
quite the opposite - though volatile, the incremental paid losses have stable trends. Since
we know the exact probability distributions driving the data we can compute the exact
mean and exact standard deviation for each cell in the rectangle and also the exact means
and standard deviations of sums.

The exact mean of the total outstanding is $284,125 with an exact standard deviation of
$30,970. (So, the process variance is 30,9702). When we analyse the data in PTF we
identify only two significant parameters �̂ = 9.9667 � 0.0847 and �̂ = -0.2867 � 0.0126.
The estimate of �2 is 0.4085. Residuals of this estimated model are displayed in Figure
3.17 below.

The table below gives forecasts of total outstanding, including validation forecasts. Note
stability as expected.

Figure 3.17  Residuals based on the estimated parameters of the true model.
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Payment Years in
Estimation

Estimate of Gamma Mean Forecast � SE

1978-94 -0.2867 � 0.0126 299,660 � 35,487
1978-93 -0.2858 � 0.0146 303,980 � 37,886
1978-92 -0.2865 � 0.0166 302,601 � 38,843
1978-91 -0.2926 � 0.0195 304,711 � 42,148
1978-90 -0.2940 � 0.0228 296,650 � 43,625
1978-89 -0.2861 � 0.0271 313,604 � 50,001

We now study the cumulative array.

Figure 3.18  Accident year 1981 high development, 1979 low development.

Even though the incremental data was generated with accident years homogeneous, the
cumulated data have each accident year at a completely different level; the plot against
accident years jumps all over the place – the values along an accident year tend to be high
or low. This is a common feature with cumulative arrays.

The cumulative values for 1979 lie entirely below those for 1982, (Figure 3.18) yet most
of the incremental payments are 'close' together. One 'large' incremental value from the
tail of the lognormal has a major impact on the cumulative data. The link ratio techniques
assume that the next incremental payment will be high if the current cumulative is high,
and this looks like what is going on with the cumulative data. So, the cumulatives deliver
a false indication, even for data where there are no payment year trend changes.

Note that for 1979, cumulative paid at development year 5 is $45,750, whereas for 1981
it is $176,315. So, "current emergence is not a predictor of future emergence," a term
used by Gary Venter.

The chain ladder ratios model gives a mean outstanding forecast of $254,130 and a
standard error of the outstanding forecast of $59,419. The plot of residuals against fitted
values makes it clear where the problem lies, as we see in Figure 3.19 below.
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Figure 3.19  Plot of weighted standardized residuals for chain ladder ratios.

Again, we have a year with high cumulatives over fitted and year with low cumulatives
under fitted. So, 1979 accident year is under fitted and 1981 accident year is over fitted.

Note how there is a distinct downward trend in the fitted values plot. It indicates that the
model overpredicts the high cumulative values and underpredicts the low values – which
it will do if the cumulatives don’t really contain information on the subsequent
incrementals. Normal scores plots show the non-normality. If we look at the plot of the
incremental paid losses against the previous cumulative, we can see that models
involving ratios will be inappropriate, since there is no relationship.
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Figure 3.20. Plot of  incremental payments against previous cumulative.
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The best model in ELRF sets ratios to 1 and only uses intercepts. That is, it takes
averages of incrementals in each development year. But due to non-normality, this is not
good enough. At least ELRF analysis informs us that the incrementals in a development
period are random from a distribution and these incrementals are not correlated to the
previous cumulatives - the way the data were generated. It also tells us that the data are
skewed and so we need to take a transformation. By way of summary, the ELRF analysis
informs us that the data were created incrementally, accident years are homogeneous and
we should be modelling the log incremental data. It is telling us the truth.

If you generate (simulate) data using ratios, ELRF will tell you that ratios have predictive
power and that the data were generated cumulatively. But, and this is an extremely
important qualification, for most real loss development arrays ELRF analysis will
indicate that the data were generated incrementally, that ratios have no, or much less
predictive power than trends in the log incrementals and that there may be
payment/calendar year trend changes.

3.3 Varying (stochastic) parameters

In view of the trend relationships between the three directions, development year,
accident year and payment year, a model with several parameters in the payment year and
accident year directions will suffer from multi-collinearity problems. Zehnwirth (1994) in
Section 7.2 discusses the importance of varying (stochastic) parameter models, especially
the introduction of a varying alpha parameter (in place of adding parameters) to
overcome multi-collinearity. This is akin to exponential smoothing in the accident year
direction. This approach is necessary, very powerful and increases the stability of the
model, especially if in the more recent accident years there are some slight changes in
levels. The 'amount' of stochastic variations in alpha is determined by the SSPE statistic
which is explained in Zehnwirth (1994).

3.4 Model Identification

The aim is to identify a parsimonious model in PTF that separates the (systematic) trends
from the random fluctuations and moreover determines whether the trend in the payment/
calendar year direction is stable.

The model identification procedure is discussed in Section 10 of Zehnwirth (1994). We
start off with a model that only has one parameter in each direction, model (sequentially)
the trends in the development year direction followed by payment year or accident year
directions, depending on which direction exhibits more dramatic trend changes.
Heteroscedastic adjustments may also be necessary. Validation analysis is an integral
component of model identification, extraction of information and testing for stability of
trends.



3.5 Assumptions about the future

Stability and assumptions about the future are discussed in Section 9.6.2 and 10.2 of
Zehnwirth (1994). If payment/calendar year trend has been stable in the more recent
years, then the assumption about the future is relatively straightforward. For example, if

the estimate in the last seven years of i, is )ˆ(ˆ isei � , then we assume for the future a mean

trend of î  with a standard deviation of trend of se(î). We do not assume the trend in the
future is constant. Our model includes the variability (uncertainty) in trend in the future
in addition to the process variability (about the trend).

If on the other hand, payment/calendar year trend has been unstable as was illustrated
with Project ABC, assumptions about the future will depend on the explanation for the
instability - for Project ABC we revert to the 10% trend if the dramatic change is
explained by new legislation. Zehnwirth (1994) also cites some other practical examples
where special knowledge about the business is a contributing factor in formulating
assumptions about the future, especially in the presence of trend instability. Importantly,
however, that special knowledge is combined with the information that is extracted from
past experience.

It is not possible to enumerate all possible cases, though several cases are discussed in
Zehnwirth (1994). The more experience the actuary has with the new statistical paradigm,
the better he/she is equipped to formulate assumptions about the future, in the presence of
unstable trends. Bear in mind, of course, that quite often trends are stable. We only know
after performing a PTF analysis.

3.6 How do we know that real data triangles are generated by the members of the rich
PTF?

Let's conduct the following experiment. I give you 100 triangles, say, and for each
triangle I tell you which model in the PTF is 'best'. So, corresponding to each triangle
there is a corresponding 'best' fit model in PTF. You do your own testing and you agree.
You can also conduct ELRF analysis on each triangle. Recall that a fitted (best) model
relates the distributions of each cell in terms of trends on the log scale. Now, I tell you
that some of the triangles are real company's data but some are not. That is, for some
triangles the data represent a sample path from the so called "fitted" distributions. Which
is real company's data and which is simulated data from the so called "fitted" model? As
you cannot distinguish between real triangles and simulated triangles generated from
models in the PTF, these kinds of models must be valid. That is, the rich family of
models in PTF possess probabilistic mechanisms for generating real data. Of course, the
models do not represent the complex underlying generating process that is driven by
many variables. However, the variables that drive the data are implicitly included in the
trends and the noise (�2). We do the same thing when we fit a loss distribution (e.g.
Pareto) to a bunch of severities. The estimated Pareto did not create the severities. But, it
has probabilistic mechanisms for creating the data as a sample.



4 The reserve figure

Loss reserves often constitute the largest single item in an insurer’s balance sheet. An
upward or downward 10% movement of loss reserves could change the whole financial
picture of the company.

4.1 Prediction Intervals

We have argued for the use of probabilistic models, especially in assessing the variability
or uncertainty inherent in loss reserves. The probability that the loss reserve, carried in
the balance sheet, will be realized in the future, is necessarily zero, even if the loss
reserve is the true mean!

Future (incremental) paid losses may be regarded as a sample path from the forecast
(estimated) lognormal distributions. The estimated distributions include both process risk
and parameter risk. Forecasting of distributions is discussed in Zehnwirth (1994).

The forecast distributions are accurate provided the assumptions made about the future
will remain true. For example, if it is assumed that future payment/calendar year trend
(inflation) has a mean of 10% and a standard deviation of 2%, and in two years time it
turns out that inflation is 20%, then the forecast distributions are far from accurate.

Accordingly, any prediction interval computed from the forecast distributions is
conditional on the assumptions about the future remaining true. The assumptions are in
terms of mean trends, standard deviations of trends and distributions about the trends.

It is important to note that there is a difference between a fitted distribution and the
corresponding predictive distribution. A predictive distribution necessarily incorporates
parameter estimation error (parameter risk); a fitted distribution does not. Ignoring
parameter risk can result in substantial underestimation of reserves and premiums. See
the paper by Dickson, Tedesco and Zehnwirth (1998) for more details.

The distribution of sums, for example, accident year outstanding payments, is the
distribution of a sum of lognormal variables that are correlated. The exact distribution of
the sum can be obtained by generating (simulating) samples from the estimated
multivariate lognormal distributions. The same could be done for payment year totals
(important for obtaining the distributions of the future payment stream), or for the overall
total. This information is relevant to Dynamic Financial Analysis. Distributions for future
underwriting years can also be computed. This information is useful for pricing,
including aggregate deductibles and excess layers.

Insurer's risk can be defined in many different ways. Most definitions are related to the
standard deviation of the risk, in particular a multiple of the standard deviation.



If an insurer writes more than one long-tail line and aims for a 100 (1��)% security level
on all the lines combined, then the risk margin per line decreases the more lines the
company writes. This is always true, even if there exists some dependence (correlation)
between the various lines.

Consider a company that writes n independent long tail lines. Suppose that the standard
error of loss reserve L(j) of line j is s.e.(j). That is, s.e.(j) is the standard error of the loss
reserve variable L(j). The standard error for the combined lines L(1) +...+ L(n) is

s.e.(Total) = [s.e.2(1)+...+ s.e.2(n)]0.5

If the risk margin for all lines combined is k � s.e.(Total), where k is determined by the
level of security required, then the risk margin for line j is

k � s.e.(Total) � s.e.(j)/ [s.e.(1)+...+ s.e.(n)] < k � s.e.(j) (n).

The last inequality is true even when s.e.(Total) is not given by the above expression.

If as a result of analyzing each line using the statistical modelling framework, we find
that for some lines, trends change in the same years and the changes are of the same order
of magnitudes, then the lines are not independent. (There may also be some correlations
between the residuals, but that would be negligible).

In that situation, line i and j are correlated, say, then one should use s.e.(i) + s.e.(j) as the
upper bound of the standard error of L(i)+ L(j). (Based on our experience, it is not often
that different lines are correlated in terms of trends.)

Suppose we assume for the future payment/calendar years a mean trend of î with a
standard deviation (standard error) s.e.(î). Specifically we are saying that the trend �, a
random variable, has a normal distribution with mean î and standard deviation s.e.(î).
Recognition of the relationship between the lognormal and normal distributions tells us
that the mean payment increases as s.e.(î) increases (and î remains constant). The greater
the uncertainty in a parameter (the mean remaining constant), the more money is paid
out. The same argument applies to the other estimated parameters in the model. This is
what is known as Jensen's inequality, explained in college finance texts. See for example
Brealey & Myers (1991). It is dangerous to ignore this concept.

4.2 Risk Based Capital

There are a number of misconceptions regarding risk-based capital. It is important to note
that:

� The uncertainty in loss reserves (for the future) should be based on a probabilistic
model (for the future) that may bear no relationship to reserves carried by the
company in the past;



� The uncertainty for each line for each company should be based on a probabilistic
model, derived from the company's experience, that describes the particular line for
that company. A model appropriate for one loss development array will not be
appropriate for another.

� The company’s experience may bear very little relationship to the industry as a
whole.

 The approach discussed here allows the actuary to determine the relationships within and
between companies’ experiences and their relationships to the industry in terms of simple
well understood features of the data.

In establishing the loss reserve, recognition is often given to the time value of money by
discounting. The absence of discounting implies that the (median) estimate contains an
implicit risk margin. But this implicit margin may bear no relationship to the security
margin sought. The risk should be computed before discounting (at a zero rate of return).

4.3 Booking of Reserve

There are no hard and fast rules here. However, three very important steps are critical.

Step 1

Extract information, in terms of trends, stability thereof and distributions about trends, for
the loss development array, in particular the incremental paid losses. Information is
extracted by identifying the 'best' model in PTF. Model identification and extraction of
information necessarily involves validation analysis (removal of past recent
payment/calendar years).

Step 2

Assumptions about the future are formulated. If payment/calendar year trend is stable this
is straightforward. If more recently trends are unstable, then an attempt is made to
determine the cause by analyzing other data types, and using any relevant business
knowledge. A number of examples are given in Zehnwirth (1994), but it is impossible to
give an exhaustive list as each case may be different.

Step 3

Using the distributions of reserves, security margin sought on combined lines, risk capital
available to the company, a percentile can be selected. Incidentally, the more uncertain
the trends are for the future, the higher security margin may be called for.



4.4 Other benefits of the statistical paradigm

Finally, the statistical modelling framework has other benefits, including:

� Credibility models

If a particular trend parameter estimate for an individual company is non-credible, it
can be formally "shrunk" towards an industry estimate.

� Segmentation and layers

Very often the statistical model identified for all payment types applies to some of the
segments. By the same model we mean the same parameter structure but the estimates
are not identical. Indeed, the variance of the normal distribution for a segment is
larger than for the whole. These ideas can also be applied to territories etc. and to
layers.
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Appendices

 Appendix A.1: Calculations for Link Ratio models with intercepts and accident

year trends.

Let there be n accident years, numbering the most recent accident year as 0, and the
first as n-1, as in Murphy (1994). Let yij  be the cumulative amount paid in accident year i,
development year j, i=0,...,n-1, j=0,...,n-1, as in Figure 1. This simplifies many of the

formulas. Let xij  = yi,j-1, so that yij /xij  is the observed development factor from j-1 to j in
accident year i.

Figure A.1.1  Triangular loss development array of size n, with accident years
labelled in reverse order.

The only difference a different array shape will make is to change the limits on
summations.

Let pij  = �j + �j zij  + (�j �1) xij  + uij , where pij  is the incremental paid loss in
accident year i, at development year j, (denote the cumulative by yij ), zij  is the count of

accident years from the top, starting from 0; since we number from the bottom, in the
current notation zij  = n�1�i, and where xij  is the cumulative paid in accident year i, up to

development year j�1. Here, �j is an intercept (level) term, �j  represents accident year

trend and �j the dependence on the previous cumulative. We can also write the model as

yij  = �j + �j zij  + �j xij  + uij , and we will proceed with this formulation of the model. As

before, Var(uij ) = �j2 xij �.

The regressions are independent, so most of the calculations are straightforward.
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Parameter estimates and standard errors
With 3 parameters in each regression, it will be easiest to use a standard regression

routine. We now describe how to do a weighted regression with an unweighted routine.

Writing the jth regression in matrix form (and dropping the j subscript), we have:
y = X 	 + u, where  y= (yn��, yn�2, ..., yj) ',  	 = (�, 
, 	)',  u = (un��, un�2, ..., uj) ',
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Let y* = U�½y,  X* = U�½X,  e = U�½u Then we have  y* = X*	 + e, with the ei 's

independent normal with variance ��. That is, y* y x y x y xn n n n j j� � � � �( , , , )'/ / /
1 1

2
2 2

2 2� � �
�  and

similarly with each column of X, including the column of 1's. The parameter estimates
and variance-covariance matrix of this new regression are the same as that of the old
regression.

Consequently, we will simply take 	
� ˆ,ˆ,ˆ  and their estimated variances and
covariances as being available. Note that in the final development years it isn’t possible
to fit all three parameters; usually we would choose to fit either � and/or � as appropriate.

Residuals
Note that the residuals are the same whether we consider incremental or cumulative

values – ijijijijij ppyyu ˆˆˆ ���� . Again considering only the regression for development

year j, Var(ui) = �2[1� (xi
*)' (X*'X*)�1xi

*], where xi
* is the ith row of X* .

Forecasts and standard errors

Forecasts: Obviously 1,,, ˆˆˆˆˆ
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Standard Errors: Conditioning on the data,
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The first term is what Murphy calls the parameter variance, and the second the process
variance. Now
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As with Murphy (1994), we note that here
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We estimate this by substituting the estimated variance of 	i k�  in for the variance

above. Note that vii
p  is zero, since we are conditioning on the data.
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where f yi j i j, , )� �= E( . We estimate the process variance as:
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just as with Murphy (1994); with the normality assumption we can obtain estimates at
other values of �, but we’ll omit details here.

Forecasts and standard errors on the paid scale can be obtained in similar fashion.

Forecasts and Standard Errors of Development Year Totals

Forecasts:
Let Dj be the unknown future development year total forecast, so:
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We estimate this by replacing the variance and covariance terms by their estimates.
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Appendix A.2: Exposures and Forecasting

Let o
ijy  be the observed cumulative at accident year i, development year j, let n

ijy  be

the corresponding normalized-for-exposures cumulative. Similarly, let o
ijp  and n

ijp  be the

corresponding paid values.

Let ci be the exposure for accident year i. Then i
o
ij

n
ij cyy � , and i

o
ij

n
ij cpp � . We fit

the OLRT model to yn, but we use it to forecast yo.

Individual Forecasts and Standard Errors (all models).

n
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o
ij ycy ˆˆ � , and similarly for p, n
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o
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o
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o
ij yycyy ���  and )ˆ(Var)ˆ(Var 2 n

ij
n
iji

o
ij

o
ij ppcpp ��� .

So individual observed forecasts and standard errors are just the corresponding
normalized values  multiplied by the exposure.
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Appendix A.3: Likelihood and Conditional regressions

Let y(j) be the data in development year j. Let !(j) be all the parameters for that
development year. Let y = (y(0),...,y(n�1)) and ! = (!(1), ..., !(n�1)). Then straight-
forward application of conditional probability and some simplification gives us:
L(!|y) " p[y |!]

" p[y(n�1)|!(n�1), y(n�2), y(n�3), #, y(0)]
     �p[y(n�2)|!(n�2), y(n�3), y(n�4), #, y(0)]

�

     �p[y(1)|!(1), y(0)]
     �p[y(0)]
" p[y(n�1)|!(n�1), y(n�2)]�p[y(n�2)|!(n�2), y(n�3)]�#�p[y(1)|!(1), y(0)]�p[y(0)]

Since, for each regression, we are conditioning on the data from previous
develop-ment years, the fact that the previous development data is stochastic and not
fixed is not an issue – the conditional likelihoods still correspond to ordinary regressions.



The likelihood for y(0) doesn't contain any of the parameters. At any value for !,
then, the likelihood of y(0) is just a constant; consequently it cannot affect the location of
the maximum of the likelihood, nor its curvature there. So the way that the forecasts
depend on the parameters isn't affected by y(0) apart from the way it enters the regression
for y(1).

The model for the data says that the values in future development years depend on
the earlier development years. We've observed the whole of y(0), so we know exactly
how it will impact the future runoff, because the model describes that. Of course, the
model may be wrong (and we argue that it is), but given the model, the regressions may
all be performed as ordinary regressions.

The forecasts are made conditionally on the data. We’ve argued above that even
the stochastic nature of y(0) can be ignored in the forecasting because the model fully
describes its impact on the future observations. However, this is not an important point –
if an argument were made that the stochastic nature of y(0) should somehow affect the
forecasts, it would not affect any of our arguments about the unsuitability of these
models.



Appendix A.4: Design Matrices for the models described in Part 2.

Readers may wish to fit the regression models described in Part 2 of this paper.
The models described there can be fitted to data in any of the more common statistical
packages, of course, or in a spreadsheet such as Excel. Here we briefly describe what the
various predictors look like. We begin by describing the full model (which is not used in
practice – it’s overparameterized), and then some of the more common simpler models.

Let us examine the expected values in each cell in the log(incremental) array
under the general model; using the notation of Part 2:

0 1 � j � n�1
0 �0 �0+
1+�1 � �0+ �

j
k 1
k+ �

j
r 1 �r � �0+ �

j
k 1
k+ �

j
r 1 �r

1 �1+�1 �1+
1+ �

2
1r �t � �1+ �

j
k 1
k+ �

�

1
1

j
r �r �

� � � � �

i �i+ �

i
r 1 �r �1+
1+ �

�

1
1

i
r �r �i+ �

j
k 1
k+ �

�

ji
r 1 �r

� � � �

n�1 �n-1+ �

t
r 1 �r

Table A.4.1 Expected values of  log(incremental) under the general model of Part 2.

Produce the vector of observations by stacking up the development years one on
top of another: y = (y(0)',y(1) ', ... , y(n�1) ') '. Similarly, produce a column in the X-
matrix for each parameter, and the parameters become a column with rows in the same
order as the corresponding columns of the X-matrix (design matrix). Note that � is an
intercept parameter, so we don’t add an intercept. That is, the regression is written
y = X	+�. A good approach is to do all the �’s, then all the 
’s and then all the �’s.

For n=4, this corresponds to the X-matrix below (the zeroes have been suppressed
to make the patterns more clear):



�0 �1 �2 �3 
1 
2 
3 �1 �2 �3
y(0,0) 1
y(1,0) 1 1 1
y(2,0) 1 1 1 1 1
y(3,0) 1 1 1 1 1 1 1
y(0,1) 1 1
y(1,1) 1 1 1 1
y(2,1) 1 1 1 1 1 1
y(0,2) 1 1 1
y(1,2) 1 1 1 1 1
y(0,3) 1 1 1 1

Table A.4.2  Design matrix (X-matrix) for the full model for a triangle with 4
years’ data. The zeroes have been suppressed.

In general, the (i,j) row for an array of size n would have a 1 for the column for
�j, it would have 1s for the columns for 
k, where k $ j, and it would have 1s for the
columns for �r, where r $ i+j, with zeroes everywhere else.

Setting some of the parameters to be equal is simply a matter of adding together
columns from the full design matrix. For example, here is the design matrix for the array
of size 4, with level of log payments for all years, with two development year trends (0-1,
and all later years), and a single payment year trend – that is, all �’s equal, 
2 = 
3, and all
�’s equal.

� 
1 
2+ �
y(0,0) 1
y(1,0) 1 1 1
y(2,0) 1 1 1 2
y(3,0) 1 1 2 3
y(0,1) 1
y(1,1) 1 2
y(2,1) 1 1 3
y(0,2) 2
y(1,2) 1 3
y(0,3) 2

Table A.4.3  Design matrix (X-matrix) for a simple model for a triangle with 4
years’ data. The zeroes have been suppressed.


