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ABSTRACT 

In this article we introduce a relatively new method for deciding con- 
tingency provisions in insurance ratemaking by the use of proportional 
hazard(PH) transforms. This method is easy to understand, simple to 

use, and supported by theoretical properties as well as economic jnstifica- 
tion. After an introduction of the PH-transform method, we show through 
examples how it can be used in pricing ambiguous risks, excess-of-loss cov- 
erages, increased limits, and risk portfolios with dependency risk. We also 
show how a minimum rate-on-line can be achieved. As well, we propose 
a right-tail index for insurance risks. 
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1 INTRODUCTION 

Recently, there has been considerable interest in and extensive discussion on risk loads 
by Fellows of the Casualty Actuarial Society. These discussions have focused on what 
measures a risk and methods to arrive at a ‘reasonable risk load. Although there are 
diverse opinions on the appropriate measurement of risk, there is general agreement 

on the distinction between process risks and parameter risks, and on the importance 
of parameter risks in ratemaking; see Finger (1976), Miccolis (1977), McClenahan 

(1990), Feldblum (1990), Philbrick (1991), Meyers (1991) and Robbin (1992). 
Following Venter’s (1991) advocacy of adjusted distribution methods, Wang (1995) 

proposes using proportional hazard (PH) transforms in the calculation of risk-adjusted 

premiums. Although extensive discussion on the economic justifications is valuable, 
this paper focuses on the practical aspects of implementation of PH-transforms in 
ratemaking. More specifically, we will show how it can be used to quantify process 

risks, parameter risks and dependency risks. 
Consistent with previous papers, this paper will consider only pure premiums, 

excluding all expenses and commissions. To utilize the PH-transform in ratemaking, 

a probability distribution for the insurance claims is needed. With the advent of com- 
puterized technology, a probability distribution can often be estimated from industry 
claim data or by computer simulations. Even though a probability distribution can 
be obtained from past claim data, sound and knowledgeable judgements are always 
required to ensure that the estimated loss distribution is valid for ratemaking. 

It is safe to say that no theoretical risk-load formula can claim to be the r@t 

one, since subjective elements always exist iu any practical exercise of ratcmaking. 
However, a good theoretical risk-load formula can assist actuaries and help maintain 
logical consistency in the ratemaking process. In this respect, it is hoped that the PH- 
transform method offers a useful tool to practicing actuaries in insurance ratemaking. 

The remainder of this paper is divided into three sectious. Section 2 introduces 

the PH-transform method and applies it to pricing of ambiguous risks, excess-of-loss 
layers, increased limits and risk portfolios. Section 3 discusses two simple mixtures 
of PH-transforms. The first mixture can yield a minimal rate-on-line and the second 
mixture suggests a new index for the right tail risk. Section 4 briefly reviews the 
leading economic theories of risk and uncertainty, and their relations with insurance 
ratemaking. 
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2 PROPORTIONAL HAZARD TRANSFORM 

An insurance risk X refers to a non-negative loss random variable, which can be 
described by the decumulative distribution function (ddf): S,(t) = Pr{X > t}. 

An advantage of using the ddf is the unifying treatment of discrete, continuous and 
mixed-type distributions. In general, for a risk X, the expected loss can be evaluated 

directly from its ddf: 
E(X) = Lrn Sx(t)dt. 

Definition 1 Given a best-estimate loss distribution Sx(t) = Pr(X > t}, for some 

ezogenovs index T (0 5 r 5 l), Ihe proportional hazard (PH) lransform refers 

to a mapping Sy(t) := [5-x(1)]‘, and the PH-mean refers to the expected value 

under the transformed distributton: 

H,(X) = ~m[Sx(t)lrdt, (0 5 f 5 1). 

The PH-mean was introduced by Wang (1995) to represent risk-adjusted premi- 

ums. 

Example 1: The following three loss distributions 

&J(t) = 1 - &t, 0 5 t 5 2 b (uniform) 

S”(t) = e-b (exponential) 

SW(t) = (&$ (Pareto), 

have the same expected loss, b. One can easily verify that 

H,(U) = 2, H,(V) = ;, 

Table 1: Some values of PH-mean H,(.) 

The PH-mean, interpreted as risk-adjusted premium, preserves the 
ordering of relative riskiness among those three distributions (see Table 1). 
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Example 2: When X has a Pareto distribution with parameters (0, X): 

Sx(Q = (&Y> 

the PH-transform Sy(t) also has a Pareto distribution with parameters 
(ra, A). 

\Vhen X has a Burr distribution with parameters (o, X, 7): 

s,(t) = (&y> 

the PH transform S,,(t) also has a Burr distribution with parameters 
(T-0, A, T). 

\Vhen X has a gamma (or log-normal) distribution, the PH transform 
S,,(t) is no longer a gamma (or log-normal). In such cases, numerical 
integration may be required to evaluate the PH-mean. 

2.1 Pricing of Ambiguous Risks 

In practice, the underlying loss distribution is seldom known with precision. There 
are always uncertainties regarding the best-estimate loss distribution. Insufficient 
data or poor-quality data often results in sampling errors. Even if a large amount 

of high-quality data is available, due to changes in the claim generating mechanisms, 
past data may not fully predict the the future claim distribution. 

Figure 1: Margins for parameter uncertainty by PH-transforms 

As illustrated in Figure 1, the PH-transform, S,(t) = [Sx(t)]‘, can be viewed as 

an upper confidence limit for the best-estimate loss distribution S,v(t). A smaller 
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index r yields a wider range between the curves Sv and SX. This upper confidence 
limit interpretation has support in a statistical estimation theory (see Appendix). 
The index r can be assigned accordingly with respect to the level of confidence in the 
estimated loss distribution. The more ambiguous the situation is, the lower the value 

of T should be used. 

Example 3: Consider the following experiment conducted by Hogarth 
and Kunreuther (1992). An actuary is asked to price warranties on the 
performance of 10,000 units of a new line of microcomputers. Suppose that 
the cost of repair is $100 per unit, and there can be at most one break- 

down per period. Also, suppose that the risks of breakdown associated 
with any two units are independent. The best-estimate of the probability 
of brealtdown has three scenarios: 

9 = 0.001, e = 0.01, e = 0.1. 

The level of confidence regarding the best estimate has two scenarios: 

Non-ambiguous: There is little ambiguity regarding the best-estimate 
loss distribution. Experts all agree with confidence on the chances 
of a breakdown. 

Ambiguous: There is considerable ambiguity regarding the best-estimate 

loss distribution. Experts disagree and have little confidence in the 
estimate of the probabilities of a breakdown. 

Note that the loss associated with a computer component can only 
assume two possible values, either zero or $100. For any fixed t < 100, 
the probability that the loss exceeds t is the same as the probability of 

being exactly $100, 6’. For a fixed t 2 100, it is impossible that the loss 

exceeds t. Thus, the best-estimate ddf of the insurance loss cost is 

s,(t) = 
{ 

e, 0 < t < 100; 

0, 100 5 1. 

A PH-transform with index T yields a risk-adjusted premium at 1008’. 

If we choose T = 0.97 for the non-ambiguous case, and T = 0.87 for the 
ambiguous case, we get the following premium structures as in Table 2: 
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Table 2: The ratio of the risk-adjusted premium to the expected loss 

e = 0.001 0 = 0.01 9 = 0.1 

Non-ambiguous (r = 0.97) 1.23 1.15 1.07 

Ambiguous (r = 0.87) 2.45 1.82 1.35 

In summary, the PH-transform can be used as a means of provision for estimation 

errors. The actuary can subsequently set up a table for the index r according to 
different levels of ambiguity, such as the following: 

Ambiguity Level Index r 

Non-ambiguous 0.96-1.00 
Slightly ambiguous 0.90-0.95 

Moderately ambiguous 0.80-0.89 
Highly ambiguous 0.50-0.79 

Extremely ambiguous 0.00-0.49 

2.2 Pricing of Excess-of-Loss Layers 

Since most practical contracts contain clauses such as a deductible and a maximum 

limit, it is convenient to use the general language of excess-of-loss layers. A layer 
(a, a + h] of a risk X is defined by the loss function: 

I 

0, O<X<a; 
I~~,~+hj = (X - a), a 5 X < a + 11; 

h, a+h<X, 

where a is the attachment point (retention), and h is the limit. 

One can verify that the loss variable I(++,,) has a ddf: 

s&.+,,(t) = Sx(a+t), O<t<h 

0, h 5 t, 

and that the average loss cost for the layer (a, a + /I] is 

E[l~,,.,+h]] = I” Sx(a + t)dt = [+‘S,(t)dt. 

Note that Sx(t)dt represents the net premium for an infinitesimal layer at (t, t + dt]. 
Thus, the ddf Sx(t) plays an important role of layer net premium density. 
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Under the PH-transform Sy(t) = (S,(t)]‘, the PH-mean for the layer (a, a -t-h] is 

(t)]‘dt = i”[Sx(a + t)]‘dt = l(ICh[S,y(t)]‘dt. 
a 

In other words, the net premium and the risk-adjusted premium for the layer 
(a, a + h) are represented by the aress over the interval (a, a + h] under the curves 

S,(t) and S,(t), respectively (see Figure 2). 

Figure 2: Risk load by layers: an illustration 

:“p’:p -, 
0 L1 a+h b b+h 

In Wang (1995), it is shown that, for 0 < 7 < 1, the PH-mean has the following 

properties: 

. Positive loading: 

%(&,a+h]) > E(I(a,a+h]). 

. Decreasing risk-adjusted premiums: 

For a < b, Hr(I(a.o+h] ) > H#(b.b+/,]). 

. Increasing relative loading: 

For a < b, H&.o+h] ) < H&b+h]) 

E(I( ) o..+h] E(l(b.b+h]) 

These properties are consistent with market premium structures (Patrick, 1990; 
Venter, 1991). 
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Example 4 : .A risk has a 10% chance of incurring a claim. and if a 
claim occurs the claim size has a Pareto distribution (A = 2.000, C-I = 1.2). 

Putting frequency aud severity together, we have 

S,(t) = Pr{S > t} 
= Probability of occurrence x Pr{Loss Size > !} 
= 0.1 x (s$&)‘.*. 

Suppose that,, the actuary infers an index, say I’ = 0.833. from individual 

risk a~~alysis and market conditions. The actuary may need t,o compare 
\vit,h the risk loads for other contracts with similar characteristics in the 
market. The PH-transform with r = 0.833 yields a ddf: 

s,,(t) = 0.10.833 x ( 2;;;t J 2~0.833~ 

which produces risk-adjusted layer premiums as shown in Table 3. 

Table 3: Layer premiums using PH-transforms 

Layer 

(0, lOOO] 

(5000, GOOO] 
(10000. llOOO] 
(50000, 51000) 

(100000. 101000] 
(500000, 501000) 

:1000000: 1001000] 

Net 
Premium 

ii.892 

20.512 
11.098 
1.9sa 
o.sss 
0.132 

0.058 

Risk-adjusted 
Premium 

119.129 

39.250 
23.533 

5603 
2.STO 
0.587 

0.294 

Pcrccnt.agc 
Loading 

53% 

112% 

183% 
223% 
345% 

412% 

2.3 Increased Limits Ratemaking 

In commercial liability insurance, a policy generally covers a loss up to a specified 

maximum dollar amount that will be paid to any individual loss. 
It is general practice to publish rates for some standard limit called the basic limit 

(used to be $25,000 and nowadays $100,000). Increased limit rates are calculated 
using a multiple factor, called the increased limit factors (ILFs). Without risk load. 
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the increased limit factor is the expected loss at the increased limit divided by the 
expected loss at the basic limit. The increased limit factor with risk load is the sum 
of the expected loss and the risk load at the increased limit divided by the sum of 
the expected loss and the risk load at the basic limit: 

ILF(w) = E(X’; w] + RL(o.ul 
E[X’; 100,0001 + RL,o, IOO.OOOI 

It is widely felt that ILFs should satisfy the following conditions (Rosenberg, 1977; 
h4cyers, 1991; Robbin, 1992): 

1. The relative loadiug with respect to the expected loss is higher for increased 
limits. 

2. ILFs should produce the same price under any arbitrary division of layers. 

3. The ILFs should exhibit a pattern of declining marginal increases as the limit 
of coverages is raised. In other words, when 5 < y, 

ILF(r + h) - ILF(s) 2 ILF(y + h) - ILF(y), 

In the U.S., most companies use the Insurance Service Office (ISO) published 
ILFs. Traditionally, only the severity distribution is used (IS0 aSsumes a Pareto 
loss severity distribution) when producing ILFs. Until the mid-1980’s, IS0 used the 
variance of the loss distribution to calculate risk loads, a method proposed by Robert 
S. Miccolis (1977). From mid-1980’s to early 1990’s, IS0 used the standard deviation 

of the loss distribution to calculate risk loads (e.g. Feldblum, 1990). A4eyers (1991) 
presents a Competitive Market Equilibrium approach, which yields a variance-based 

risk load method; however, some authors have questioned the appropriateness of the 
variance-based risk load method for the calculation of ILFs (e.g. Robbin, 1992). 

The following is an illustrative example to show how the PH-transform method 

can be used in increased limits ratemaking. 

Example 5: Assume that the claim severity distribution has a Pareto 
distribution with ddf: 

with X = 5,000 aud Q = 1.1. This is the same distribution used by Meyers 

(1991), although he also considered parameter uncertainty. 
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Assume that. based on the market premium structure, the actuary 

feels that [for illustration only) an index r = 0.8 provides an appropri- 
ate provision for parameter uncertainty. When using a Pareto severity 
distribution, there is a simple analytical formula for the ILFs: 

ILF(w) = 
1 - (&)r,-’ 

l-(--x- A+ 100.000 Y 

One can then easily calculate the increased limit factors at any limit (see 
Table 4). 

Table 4: Increased limit Factors using PH-transforms 

Policy 
Limit w 

100000 
250000 

500000 
750000 

1000000 

2000000 

16255. 

18484. 
19726. 
20579. 

22543. 1 

1.24 

1.41 
1.50 
1.57 

1.71 

Risk ILF 
Load With RL 
5251. 1.00 
8866. 1.37 

12344. 168 
14687. 1.87 
16490. 2.02 

21330. 2.39 

2.4 Pricing of Risk Portfolios and Dependency Risk 

For ratemaking based on the aggregate claims from a risk portfolio, the actuary often 
considers claim frequency and claim severity separately, due to the type of iuformatiou 
available. 

Let N denote the claim frequeucy with probability function f,(k) = Pr{ N = I;} 
and ddf: .SN(k) = f(l; + 1) + f(k + 2) + ., (I; = 0, 1,2,. .). 

Let ?.’ denote the claim severity and let 

.z=x, +x*+...x,&yi 
i=l 

represent the aggregate claims from the risk portfolio. 

Depending on the available information, the actuary may have different levels of 
confidence in the estimates for the frequency and severity distributious. Accordiug 
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to the level of confidence in the estimated frequency and severity distributions, the 
actuary can choose an index ~1 for the frequency and an index r2 for the severity. As 

a result, the actuary can calculate the risk-adjusted premium for the risk portfolio 
as: 

H(Z) = H,,(N) x Hr,(X’). 

Example 6: Consider a group coverage of liability insurance. The actu- 
ary has estimated the following loss distributions: (i) the claim frequency 

has a Poisson distribution with X = 2.0, and (ii) the claim severity is 

modeled by a log-normal distribution with a mean of $50,000 and coeffi- 
cient of variation of 3, which was used by Finger (1976) for liability claim 

severity distribution. Suppose that the actuary has low confidence in the 
estimate of claim frequency, but higher confidence in the estimate of the 
claim severity distribution, thus chooses rl = 0.7 for the claim frequency 

and r2 = 0.8 for the claim severity. The premium can be calculated using 
numerical integrations: 

Ho.,(N) = 2.527, and I Has(X) = 82,960. 

Thus, the required total premium is 

H,,,7(N) x H&S’) = 209, G40. 

Iiunreuther et al (1993) discussed the ambiguities associated \vith the estimates 
for claim frequencies and severities. They mention that for some risks such as play- 
ground accidents, there are considerable data on the chances of occurrence but much 
uncertainty about the potential size of the loss due to arbitrary court awards. On the 

other hand, for some risks such as satellite losses or new product defects. the chance 
of a loss occurring is highly ambiguous due to limited past claim data, however, the 
magnitude of such a loss is reasonably predictable. 

For some risk events such as earthquake insurance, it is more plausible to consider 
the dependency between claim frequency and claim severity. For instance, the Richter 

scale value of an earthquake may affect both the frequency and severity simultane- 
ously; and for hurricane losses the wind velocity would affect both the frequency and 
severity simultaneously. 

Regardless of the dependency structure, computerized simulation methods can 
always be used to model the total claims ! red on given geographic concentration. 
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For instance, in simulating earthquake losses, one can use the following procedures: (i) 
simulate some numerical values of the Richter scale; (ii) conditional on the simulated 
Richter scale values, run a secondary generator for the claim frequency and the claim 
severity (of course both the frequency and the severity depend ou the Richter scale 
values). Once the actuary has obtained sample distributions for the claim frequencies 

and severities, or a sample distribution for the total claims, he or she can apply a 

PH-transform directly to the simulated sample distributions. 

2.5 Some Properties of the PH-Mean 

In general, for 0 5 r 5 1, the PH-mean has the following properties: 

l E(S) 5 H,(X) 5 max(X). When r declines from one to zero, H,(S) increases 
from the expected loss, E(X), to the maximum possible loss, max(S). 

l Scale and translation invariant: H,(nS + b) = aH,(X) + b, for n, 6 2 0. 

l Sub-additivity: H,(Xi + ?12) 5 HT(Xi) + H,(Sr). 

. Layer additivity: when a risk A’ is split into a number of layers 

the layer premiums are additive (the whole is the summation of the parts): 

Hr(X’) = Hr(4,,,,,1) + H&,,,,]) + . . . 

Pricing often assumes that a certain degree of diversification will be reached 
through the market efforts. In real life examples, risk-pooling is a common phe- 
nomena. It is assumed that, in a competitive market, the benefit of risk-pooling is 
transferred back to the policy-holders (in the form of premium reduction). In the 

PH-model, the layer-additivity property has already taken into account of the effect 
of risk-pooling. 

Theoretically, in an efficient market (no transaction expenses in risk-sharing schemes) 
with complete information, the optimal cooperation among insurers is to form a mar- 
ket insurance portfolio (like the Dow Jones index), and each insurer takes a layer or 
quota-share of the market insurance portfolio. 
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In real life, however. the insurance market is not efficient. This is mainly because 
of incomplete information (ambiguity) and extra expenses associated with the risk- 
sharing transactions. There exist distinctly different local market climates in different 

geographic areas and in different lines of insurance. For instance, one can compare 

the automobile insurance market with the market for earthquake damage coverages 
in both California and Ontario. As a result, the value of the index T may vary with 
respect to the local market climate, which is characterized by the levels of ambiguity, 
risk concentration, and competition. 

3 MIXTURE OF PH-TRANSFORMS 

While a single index PH-transform has one parameter T to control the relative pre- 
mium structure, one can obtain more flexible premium structures by using a mixture 
of PH-transforms: 

PI%, + PzH,, + ’ . . + PA-L, kPj=l, O<Tj<l(j=1,“‘,7?3). 
j=l 

Let P = xv- ]-, PjT, be the weighted average index. It can be verified that 

l Foranyrisk X, plH,,(X)+p2H,,(X)+~~.+p,H,~(X) 1 Hi-(X) 

l For a layer ZZ = (5, z -t h), the ratio 

p,%,(L) + PzH,(L) +. . . +~nHrn(L) 
h(L) 

is an increasing function of 2. 

The PH-measure mixture can be interpreted as a collective decision-making pro- 

cess. Each member of the decision-making ‘committee’ chooses a value of T: and the 

index mixture represents different r’s chosen by different members. It also has inter- 
pretations as (i) an index mixture chosen by a rating agency according to the indices 
for all insurance companies in the market; (ii) an index mixture which combines an 
individual company’s index with the rating agency’s index mixture. 

For ratemaking purposes, mixtures of PH-transforms add more flexibility than a 

single index. In the remaining sections of this article, we shall discuss some special 
two-point mixtures of PH-transforms: 

(1 - cr)H,,(X) + oH,,(X), 0 < o 5 1, TI, 72 5 1 
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3.1 Minimum Rate-on-Line 

In most practical circumstances, very limited information is available for claims at 
extremely high layers. In such highly ambiguous circumstances, most (re)insurers 
adopt a survival rule of minimum rate-on-line. The rate-on-line is the premium 
divided by the coverage limit, and most (re)insurers establish a minimum they will 
accept for this ratio (see Venter, 1991). 

By using a two-point mixture of PH-transforms with r1 5 1 and r2 = 0, the 
premium functional 

(1 - cy)H,,(X) + aHs(X) = (1 - cr)H,,(X) + amax 

can yield a minimum rate-on-line at a. 

Example 7: Reconsider Example 4, the best-estimate loss distribution 
(ddf) is 

Sx(t) = 0.1 x (=)I.? 

By choosing a two-point mixture with rr = 0.85, Q = 0, and Q’ = 0.02, 
we get an adjusted distribution: 

Sy(t) = 0.98 x 0.1 x (&)1.2xo.85 + 0.02. 

As shown in the table below, this two-point mixture guarantees a 
minimum-rate-on-line at 0.02 (1 full payment out of 50 years). By com- 
paring Table 5 with Table 3 one can see that, at higher layers, this method 
yield distinctly different premiums from those in Example 4. 

3.2 The Right-Tail Deviation 

Consider a two-point mixture of PH-transforms with rr = 1 and r2 = f: 

Cl- aM(X) + d-Q(X), O<a<l, 

which can be rewritten as (noting that HI(X) = E(X)): 

E(X) + 0 [H+(X) - E(WI, 

which is analogous to the standard deviation method: E(X) + o a(X). 
Now we introduce a new risk-measure analogous to the standard deviation. 
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Table 5: Layer premiums under an index mixture 

Net Risk-adjusted 
Premium Premium 

77.892 131.802 

20.512 56.006 

11.098 41.363 

1.982 24.940 

0.888 22.497 

0.132 20.493 

0.058 20.244 

Definition 2 The right-tail deviation is defined as 

D(X) = H:(X) - E(X) = jgm JSx-odt - lrn S,,(t)&. 

and the right-tail index is defined as 

d(X) = H(X’) 
E(X) 

Analogous to the standard deviation, the right-tail deviation D(S) satisfies: 

l If Pr{X = b} = 1, then D(X) = 0. 

l Scale-invariant: D(cX) = CD(X) for c > 0. 

l Sub-additivity: D(X + Y) 5 D(X) + D(Y). 

. If X and Y are perfectly correlated, then D(X + 1’) = D(X) i- D(Y) 

At very high layers, the standard deviation and the right-tail deviation converge 

to each other, as demonstrated in the following example. 

Example 8 : Re-consider the claim distribution in Example 4 with a 

ddf: 
S,y(t) = 0.1 x (G,r.r 

For different layers with fixed limit at 1000, we compare the standard 
deviation and the right-tail deviation in the following table. 
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Layer 

(0, 10001 77.89 

(1000, ZOOO] 51.5G 
(10000, 1 lOOO] 11.10 

(100000, 101000] .8879 

(1000000, 1001000~ .05X4 

(10000000, 10001000] .003640 
(100000000, 100001000] .0002297 

(1000000000, 1000001000] .00001450 

Expected 
loss 

E(I) 

Std-deviation Right-tail 
of the loss deviation 

40 

256.0 
214.3 
103.9 
29.76 

7.584 

1.908 
.4793 
.1204 

D(I) 
200.5 
17’5.2 
94.24 
28.91 

7.528 

1.904 
.4791 

.1204 

Percentage 
difference 

z-1 

27.7% 

22.3% 
10.3% 
2.93% 

.75% 

.19% 

.05% 

.Ol% 

It can be shown that, for any small layer [cz,~ + If.), D(lt,,,+,,l) < g(l~~,~+,,l), 
D(Ic,,,+,,l) converges to g(lta,a+hl) at upper layers (i.e. the relative error goes to zero 

when o becomes large). As a result, for any ndn-negative random \:ariable S, the 
right-tail clcviat.ion D(S) is finite, if anti only if, the standard deviation u(S) is finite. 

Having st.ated a number of similaritirs, hcrc WC point out some clucial differences 
betlveen the right-tail deviation D(S) and the standard deviation o(S): 

l D(S) is layer-additive, but o(S) is not. additive. 

. D(S) preserves sonic natural ordering of risks such as first stochast,ic dominance’, 
but n(S) cloes not. 

3.3 Links to the Gini Index in Welfare Studies 

Historically, some long-tailed distribut.ions have an origin in income distributions 
(e.g. Pareto, log-normal distribut.ions, see Arnold, 1983). 1n social welfare studies, a 
celebrated measure for income iuequality’ is the Gini index. .4ssumc that individual’s 
wealth level in a country (community) can be summarized by a distribution: S,Y(U) = 
Proportion{S > 11.). .4s a measure of income inequality of a society, the Gini index is 

‘Risk S is stall than risk 1’ ill first stochastic dominance if Sx(t) 5 S\,(t) for all 1 1 0; 
or eqllivalently. Y has the same distribution as X + Z where Z is another non-negative rrtndom 
variable. 

*Here ‘income inequality’ refers to t.he polarization of the wealth distribution. 
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defined as 
G(x) = 2E(IX - Yl) 

E(X) ’ 
where X and Y are independent and identically distributed. 

.4n equivalent definition of the Gini index is 

The higher the Gini index is, the more polarized a society is. As a measure of welfare 
inequality, the Gini index has the following properties: 

l Each dollar transferred from the rich to the poor will lower the Gini index. 

l Adding an equal amount to all persons’ wealth will decrease the Gini index. 

It is noted that d(X) and G(X) are similar in their definition formulae. This 
similarity may suggest that the role of the right-tail index d(X) in measuring the 
right-tail risk is parallel to the role of the Gini index G(X) in measuring income 
inequalities. 

Consider the following loss distributions each with the same mean and vari- 
ance(=3). Without referring to higher moments, we can order them by the right-tail 
index d(X). 

Risk Xi Distribution E(X,) u(Xi) d(Xi) Gini index 

Pareto w = (&I” 1 J3 3.00 0.600 

Log-normal p = -lag(2), c7 = log(4) 1 fi 2.46 0.595 

Inverse-Gaussian ,(+~$3 1 d3 2.17 0.632 

Gamma o=p=; 1 fi 1.96 0.713 
Bernoulli f(O)= f, f(4)= f 1 L/3 1.00 0.750 

As its name may suggest, the right-tail deviation measures the right-tail risk, as 
opposed to the standard deviation which measures the deviation about the mean, 
and as opposed to the Gini index which measures the polarization of the wealth 
distribution. 
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4 ECONOMIC THEORIES 

4.1 Expected Utility Theory 

Traditionally, expected utility (EU) theory has played a dominant role in modeling 
decisions under risk and uncertainty. To a large extent, the popularity of EU was 
attributed to the axiomatization of van Neumann and Morgenstern (1947). They 
proposed five axioms (somewhat self-evident) and showed that any decision-making 
which is consistent with these axioms can be modeled by using a utility function of 

wealth. However, due to difficulties associated with implementation, EU remains as 

an academic pursuit and has had little direct impact in practice. 
When EU is applied to produce an insurance premium for a risk X, the minimum 

premium P that an insurance company will accept for full insurance is defined by 
u(w) = E(74w + P - X)], in which u and w refer to the insurer’s utility and wealth 
(see Bowers et al, 1986). As pointed out by Meyers (1995), EU gives lower and upper 

bounds of an insurance premium, without due consideration of the market setting. 

The EU does have an indirect application in actuarial work via the mean-variance 
analysis, which is viewed by some authors as a rough approximation of utility theory 

(Meyers, 1995). A commonly used actuarial method for deciding risk loads is based 
on the first two moments. Since loss distributions are often highly skewed, the first 
two moments cannot accurately reflect the level of insurance risk. In fact, actuaries 

often find that Iong tailed claim distributions, such as Pareto distributions, are more 
appropriate to describe the potential losses for some insurance contracts (e.g. liability 
insurance). Even for a large risk portfolio, the total claim distributiou can be highly 
non-normal due to correlations or ambiguities in the initial estimates of individual 
risks. 

The inconsistency of moment-based methods in calculating layer premiums are 

discussed by a number of authors (e.g. Venter, 1991; Robbin, 1992). 

4.2 The Dual Theory of Yaari 

A new theory of decision under uncertainty has been developed in the last decade by a 

gr.oup of economists (e.g. Quiggin, 1982; Yaari 1987). Analogous to the development 
of non-Euclidean geometry, Yaari (1987) formalized an alternative set of axioms and 
developed a dual theory of decision under uncertainty. In Yaari’s dual theory, risk- 
aversion is described by a distortion function (increasing and convex) g : (0, I] I-+ 10, l] 
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which is applied to probability distributions. The certainty equivalent to a bounded 

random economic prospect V (0 5 V < m) is 

I 0 m dSv(t)ldt, where S,(t) = Pr{V > t}. 

In other words, the certainty equivalent to a random economic prospect, V, is just 
the expected value under the distorted probability distribution, g[&(t)]. 

4.3 Schemeidler’s Ambiguity-Aversion 

As early as 1921, John Keynes identified a distinction between the implicalion of 
evidence (the implied likelihood) and weight of evidence (confidence in the implied 
likelihood). Frank Knight (1921) also drew a distinction between tisk (with known 

probabilities) and vncerlainly (ambiguity about the probabilities). A famous example 

on ambiguity-aversion is Ellsberg’s (1961) paradox which can be briefly described as 
follows: There are two urns each containing 100 balls. One is a non-ambiguous urn 
which has 50 red and 50 black balls; the other is an ambiguous urn which also contains 
red and black balls but with unknown proportions. When subjects are offered $100 
for betting on a red draw, most subjects choose the non-ambiguous urn (and the 

same for the black draw). Such a pattern of preference cannot be explained by EU 

(Quiggin, 1993, p.42). 
Ellsberg’s work has spurred much interest in dealing with ambiguity factors in risk 

analysis. Schmeidler (1989) brought to economists non-additive probabililies in his 
aviomization of preferences under uncertainty. For instance, in Ellsberg‘s experiment, 
the non-ambiguous urn, with 50 red and 50 black balls, is preferred to the ambigu- 

ous urn with unknowu proportions of red or black balls. This phenomenon can be 
explained if we assume that one assigns a subjective probability $ to the chance of 
getting a red draw (or black draw). Since 3 + 3 = f which is less than one, the 
difference 1 - ! = f may represent the magnitude of ambiguity aversion. 

Built on its own ,axiomatic system, Schmcidler’s theory leads to the same math- 

ematical formulation as that of Yaari; that is, a certainty equivalent to a random 

economic prospect \I (0 5 V 5 m) can be evaluated as 

where g : (0, l] H [O, l] is a distortion function and g[Sx(t)] represents the subjective 
probabilities. 
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The method of using adjusted distributions is widely known by actuaries. How- 

ever, actuaries often use a transformed random variable, Y = g(X), which yields 
Sv(t) = Sx(g-l(t)), a different formulation from Yaari’s and Schmeidler’s. A key 
point in the theories of Yaari and Schmeidler is that one needs to transform directly 

the distribution function S,(t). 
Using a market argument, Venter (1991) discussed the no-arbitrage implications 

of insurance pricing. He observed that in order to ensure additivity when layering a 
risk, it is necessary to adjust the loss distribution so that layer premiums are expected 
losses under the adjusted loss distribution. Inspired by Venter’s insightful observation, 

Wang (1995, 1996a) proposed the PH-transform method, which is in agreement with 

the formulation in Yaari and Schmeidler, thus is supported by their economic theories. 

5 SUMMARY 

In this paper we have introduced the basic methodologies of the PH-transform method 

and have shown by example how it can be used in insurance ratemaking. We did not 
discuss how to decide the overall level of contingency margin, which depends greatly 
on market conditions. .4n important avenue for future research is to link the overall 
level of risk load with the required surplus for supporting the written contract. Some 
pioneer work in this direction can be found in Iireps (1990) and Philbrick (1994). 

The use of adjusted/conservative life tables has long been practiced by life actuar- 

ies (see Venter, 1991). To casualty actuaries, the PH-transform method contributes a 
theoretically sound and practically plausible way to adjust the loss distributions. For 
economic interpretations and empirical tests of the PH-transform method, see Wang 
(1996b). For updating risk-adjusted premiums in the light of new information, see 
Wang and Young (1996). 

Acknowledgments: The author thanks the CAS Ratemaking Committee, es- 

pecially Israel Krakowski, for numerous comments and suggestions. 
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APPENDIX: Ambiguity and Parameter Risk 

Most. iwxrance risks arc cllarackrized by t,ltc uxcrt,aint.y about. t.hr cstimak of 
t.lw hi1 prohabilitirs. This is often drlc to data sparsity for rare rvcwt.s (small tail 
probabilities), which in ~,IIIII causes t,llc cstimatcs for tail prohbilitics t.o Iw unreliable. 

To illwtratc, assume t,ht WC have n finite sample of 11 obsrrwtiolls from a class 
of identical insrlrancc politics. The empirical rst,imat,c for the loss dist.rih~t~ion is 

S(t) = # of obwrvatioiis > f. 
, t>o. 

R 
Let. S(t) rcprcscnt thr he rlnderlying loss distriblltion, which is generally ~II~IIO~II 
AIKI different from t.hc empirical cst~imat,ion S(t). From st,at.ist.ical est~imation tlwory 

(r.g.. Lawlrss, 1982. pp. 402; Hogg and Iilugman, 1%4), for SOIIW spccifietl va111c of 
t, {VP CRII t.rcat. the quantit.) 

S(t) - s(t) 
dS(f)) ’ 

RI; having a stxiidartl 110rmal tlistrihltioll for hrgc valnrs of 11. \vllcrc 

Thr r/‘%’ upper confidence limit (UCL) for tllr trw unclcrlying dist.ribution S(t) 

cali Iw ;iI)l,rL-,siiiiRt,c~l 11) 

UCL(f) = S(/) + $=\/(m. 

~vlirrr q,, is il quwihlc of t.lie staiidard normal dist.rihit.ioti: Pr(N(0, 1) 5 q,,} = 11. 
liwpiiig 11 fisetl and Ming f - 03, tlic ratio of t,lic UCL t.0 t,llc best.-cst.inmte S(t) is 

L’CL(1) ‘I,, 1 - S(t) 
----=I+7 =+cQ, 

S(i) J 
\vhic:Ii grows \vit.holit. I~olliitls a.5 I iiicrwscs. 

.As a means of tlralillg nit,11 ambiguit.y regarding t.hc best,-cst.imat,c. t.llcx PH-transform: 

S,.(t) = [S,y(t.)]‘, 1’ 5 1, 

C~II bc vicwtl as a11 nppcr confidcncc limit (UCL) for t.hc best-cst,imatc 3,\(t). It 
Rllt.onlnt.icRlly givca higher rc‘lat.ivc safety margills for the t;lil probabilities. and the 
Glt.iO 

E$ = [s,(t)]‘-’ -) co, as t + 00, 

incrrascs wit.liout. bollncl t,o iilfinity. 
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