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ABSTRACT

This paper explains the most commonly used complements of credibility and offers a
comparison of the effectiveness of the various methods. It includes numerous examples.
It covers credibility complements used in excess ratemaking as well as those used in first
dollar ratemaking. It aiso offers six criteria for judging the effectiveness of various
credibility complements. One criterion, statistical independence, has not previously been
covered in the actuarial literature. This paper should explain all the common credibility
complements to the actuarial student.
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THE COMPLEMENT OF CREDIBILITY

Many actuarial papers discuss credibility. Actuaries use credibility when data is sparse
and lacks statistical reliability. Specifically, actuaries use it when historical losses have a
large error around the underlying expected losses (average of the distribution of potential
loss costs) the actuary is estimating. In those circumstances, the statistic that receives the
remainder of the credibility can be more important than the credibility attached to the
data. For example, if the ratemaking statistic varies around the true expected losses with
a standard deviation equal to its mean, it will probably receive a very low credibility. So,
the vast majority of the rate (in this context, expected loss estimate) will come from
whatever statistic receives the complement of credibility. So, it is very important to use
an effective statistic for the complement of credibility. _This paper will discuss
fundamental principles to use in choosing the complement. And, it will discuss several
methods actuaries use regularly.

1. Fundamental Principles- What Should The Actuary Consider?

There are four types of issues that any actuary must consider when choosing the
complement. practical issues; competitive market issues; regulatory issues; and,
statistical issues.

A. Practical Issues

The easiest statistic to use is one that is readily available. For example, the best possible
statistic is next year’s loss costs. Unfortunately, that statistic is not available (otherwise,
companies would not need actuaries). The actuary must choose from the statistics that
are available to him. Since some statistics require more complicated programming or
expensive processing than others, some statistics are more readily available than others.

Ease of computation is another factor to consider. If a statistic is easy to compute, it is
often easier to explain to management and customers. Since few actuaries have
unlimited budgets, they usually weigh the time involved in computing a very accurate
statistic against the accuracy improvement it generates. Also, when computations are
easy to do there is less chance of error.

B. Competitive Market Issues

Rates are rarely made in a vacuum. Generally, whatever rate the actuary produces will
be subject to market competition. If the rate is too high, competitors can undercut the
rate and still make a profit. That will cost the actuary’s employer customers and profit
opportunities. If the rate is too low, the employer will lose money. So, in mathematical
terms, the rate should be unbiased (neither too high nor too low over a large number of
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loss cost estimates) and accurate (the rate should have as low an error vanance as
possible around the future expected losses being estimated). Hence the complement of
the credibility should help make the rate as unbiased and accurate as possible.

C. _Regulatory Issues

Usually, rates require some level of approval from insurance regulators. The classic rate
regulatory law requires that rates be ‘not inadequate, not excessive, and not unfairly
discriminatory.' The principles of adequacy and non-excessiveness imply that rates
should be as unbiased as possible. :

Those principles could be stretched to imply that rates should be accurate. The argument
goes as follows. Highly inaccurate rates create a much greater risk of insolvency through
random inadequacies. The law is concerned with inadequacy because it seeks to prevent
insolvencies. So, law suggests rates should be as accurate as possible. For most
purposes, actuaries interpret ‘unfairly discriminatory” in the ratemaking context as
‘unbiased’. Many believe that if a rate truly reflects a class’s probable loss experience, it
is fair by definition.

The actuary can mitigate regulatory concerns by choosing a complement that has some
logical relationship to the loss costs of the class or individual being rated. That means it
is easier to explain a high rate for a class or individual in light of the related loss costs.

D. Statistical Issues

Clearly, the actuary must attempt to produce the most accurate rate that is practical. If the
complement of the credibility is accurate in its own right and relatively independent of
the base statistic (which receives the credibility}, the resulting rate will be more accurate.
The rationale involves statistical properties of credibility-weighted estimates. As
Appendix A shows, if the optimum credibility for two unbiased statistics is used, then the
prediction error of the credibility-weighted estimate is

2.2 2
7 (-p7)
2 2 ?
T, +Ty, - 2pr\T,

where

7} is the average squared crror (inaccuracy) of the base statistic as a stand-alone
predictor of next years’ loss costs;

73 is the average squared error (inaccuracy) of the complement of the credibility as a
stand-alone predictor of next year’s mean loss costs;

p is the correlation (interdependence) between the first statistic’s prediction error (error
in predicting next year’s mean loss costs) and the second statistic’s prediction error.
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Reviewing that error expression shows that greater inaccuracy in either the base statistic
or the compiement of credibility will yield greater inaccuracy in the resulting prediction.
The expression is symmetric in the two errors. So, the accuracy of the complement of
credibility is just as important as the accuracy of the base statistic.

The benefits of independence are more subtle. As it turns out, independence is most
important when credibility is most important. That is independence is most impontant for
the intermediate credibilities (Z between 10% and 90%). Following Appendix B, that

occurs when the largest standard predicting error (,/inaccurac_v=r) is within two to

three times' the smaller error. Consider the following graphs of the total prediction error
by correlation for r, = one, two, and three times r,.

Squared Error

| e Tau2=Tau1
—8— Tau2 = 2'Taul .
‘—a— Tau2 = 3*Taut

Correlation

Figure 1

As vou can see, the predictions are generally best when there is actually a negative
correlation between the two errors (that is. they offset). But, that rarely occurs in
practice. Generally, the complement of credibility will have some weak correlation with
the base statistic. In that range the prediction error is clearly lowest as the correlation is
smaller. Further, the graph bevond the maximum error (correlations near unity) is
misleading. Appendix B shows that the downward slope near unity brings negative
credibilities. Those negative credibilities are clearly outside the general actuarial
philosophy of credibility. So, a complement of credibility is best when it is statistically
independent (that is, not related to) the base statistic.

! Since Boor| 1] shows that credibility is roughly proportional to the relative 7%, these examples cover
credibilities between 10% and 90%. That range covers mosts instances where credibility matters most.
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k. Summary of Desirable Qualities

The previous sections show six desirable qualities for a complement of credibility:
- Accuracy as a predictor of next year’s mean loss costs;

- Unbiasedness as a predictor of next year’s mean subject expected losses;

- Independence from the base statistic;

- Availability of data;

- Ease of computation; and

- Explainable relationship to the subject loss costs.

I1. First Dollar Ratemaking

First dollar (that is, not pricing losses excess above a very high deductible) ratemaking
credibility complements are affected by a common characteristic of first dollar
ratemaking. First dollar ratemaking generally uses historical loss data for the base
statistic. And, in first dollar ratemaking the historical losses are usually roughly the same
magnitude as the true expected losses. The regulatory quality of an explainable
relationship to the subject loss costs is more important for first dollar than excess
ratemaking.

There are a wide variety of techniques actuaries use to develop credibility complements.
The following pages discuss some of the major methods in use.

A. Loss Costs of a Larger Group Including the Class -- Classic Bayesian Credibility

The most basic credibility complement comes from the most classic casualty actuarial
technique ... Bayesian credibility. In Bayesian credibility actuaries are typically either
making rates for a large group of classes or making rates for a number of large insureds
that belong to a single class. The classes (or individual insureds) do not contain enough
exposure units for their historical loss data to reliably predict next year’s mean loss costs.
So, actuaries supplement the class’s historical loss data by credibility weighting them
with the loss costs of the entire group.
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Z(LJE) + (1-ZXZL; /ZE;);
v

E. is the historical exposure units for class c;

L; is the historical loss costs for the ith class in the group;

E; is the historical exposure units for the ith class in the group; and
Z is the credibility.

(For the rest of this paper P, will denote the historical loss rate for class ¢ (L/E,). P, will
do the same for the group’s historical loss cost rate.)

Complement’s Qualities

This complement has problems in two areas, accuracy and unbiasedness. The group
mean loss costs may be the best available substitute. And they may be unbiased with
respect to all the information the actuary has when making the rate (e.g., historical loss
data - the real means remain unknown). But, the actuary should believe that the true
expected class losses will take a different value than the group expected losses. So, this
method contains an intrinsic bias and inaccuracy that is unknown.

This complement generally has some independence from the base statistic. As long as
the base class does not predominate in the whole group, the process errors of all the other
classes should be independent from that of the base class. And the error created by using
the group mean instead of the ciass mean is independent of the base ciass process
variance (error). To the extent that the actuary uses the same loss development, trend,
and current level factors on the class and group, the error from those factors is
interdependent between the class and group loss costs. But, you could view the
ratemaking process as first estimating undeveloped, untrended historical expected losses
at previous rates; then applying adjustment factors. In the first part of that process, the
predicting errors are nearly independent.

This complement performs well on availability and ease of computation. Generally,

actuaries compute the group mean and group rate indication as the first stage of the
pricing process for the entire line of business.
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As long as all the classes in the group have something in common that puts them in the
group, that forms the logical connection between the class’s loss costs and those of the
group. However, that does not totally eliminate controversy from this credibility
complement. Customers may often complain that they are treated ‘just like everyone
else’ when their historical losses are below average. Overall, this has an average degree
of relationship to the expected subject losses.

An actuary should be careful when choosing which larger group to use. For example,
given a choice between using same class data from other states (provinces) or other class
data from the same state, the actuary should consider: Whether the differences by state
in loss levels are more significant than the differences between class costs in the same
state? (Usually, class differences are larger), Can the other state’s class data be adjusted
to reflect the base state loss levels? (reducing bias); s there a group of classes in the state
that the actuary would expect to have about the same loss costs? (small bias.) All those
factors merit consideration. The actuary should attempt to find the larger group statistic

that has the least expected bias.

Example

Con
Lo

cider th
NSIGer 4

Data for Bayesian Credibility Complement

Last Year's Data Last Three Year's Data
Rate Pure Pure

Group Class Exposures  Losses Premium Exposures  Losses Premium
A 1 100 5000 $50 250 16000 $64
2 300 20000 $67 850 55000 365
3 400 19000 $48 1100 55000 $50
Subtotal 800 44000 355 2200 126000 $57
B Subtotal 600 29000 $48 1700 55000 $32
C Subtotal 500 36000 372 1400 120000 386
D Subtotal 800 75000 $94 2300 200000 387
Total 2700 184000 $68 7600 501000 366

Table 1

If one is making rates for class 1 in rate group A, one must first consider whether to use
the one year or three year historical losses. One must consider that the three year pure
premiums wiii be iess affected by process variance (year-to-year fluctuations in
experience due to small samples from the distribution of potential claims). On the other
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hand, sometimes the exposure base is large enough to minimize process variance and
societal events are causing pure premiums to change (changes in the potential losses one
is sampling from). In that situation the one year pure premiums are preferable.

Suppose one chooses the one year pure premium ($50) for historical data. Then using
the three year pure premiums of the class ($64) for the complement would be
inappropriate. That is because the three year pure premiums are heavily interdependent
with the one year class pure premium. Also, presumably the actuary has already decided
that the three year data is biased because of changes in loss cost levels. So, the actuary
believes the three year data does not add accuracy -to the prediction. For the same
reasons, the three vear rate group and grand total pure premiums would be inappropriate
complements.

The next decision is between the rate group and grand total pure premiums. The choice
between these invoives a tradeofi  beiween bias reduction and process variance
reduction. The rate group data should reflect risks that are more similar to class 1. So, it
should have less bias. On the other hand, the grand total data is spread over more risks,
so it has less process variance. This example makes the choice difficult. The one year
and threc vear rate group purc premiums are very similar (355 versus $57). But the other
rate groups show more pronounced inconsistencies (i.e. $32 versus $48 for rate group B).
The grand total shows it has little process variance. But it appears to contain roughly $15

of bias. The one year rate group A pure premium ($55) is probably the best choice.

One could also consider using the three year pure premium for historical losses. That
does not preclude using the one year rate group data as a complement. Using the one
year rate group A pure premium would simply assume that the entire rate group A
exposures were sufficient to minimize process variance. ‘So, it may be appropriate 1o use
one year data as a complement to three year data.

B. Loss Costs of a Larger Reluted Cluss

Actuaries sometimes use the loss costs of a larger, but related class for the complement
of credibility. For example, if a company writes very few picture framing stores but
writes a large number of ant stores, the actuary may choose to use the art store loss costs

for the framing store complement of credibility He mav aor mav nat make come
the framing store compiement crediptiity. e may or may nhot maxe some

adjustments to the art store loss costs to make them more applicable to framing stores.
For example, he may wish to adjust for the minor woodworking exposure. Actuaries
pricing General Liability often use this “base class’ (meaning the larger related class in
this context) approach.
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Complement’s Qualities

This approach has qualities similar to the large group complement. It is biased (though

tha hinc and ite diragtian ara nunknagum) and ¢a it ig inaspurate  The mara the actuary
N Bias and its Qireclion are unknéwn) and s it 1§ inaccurai¢. 1 n¢ More ne aciuary

adjusts the related class loss data to match the loss exposure in the subject base class; the
more the bias is reduced. The independence may be slightly less if the factor relating the
classes generates high losses for the two classes simultaneously. But the actuary must be
careful that this seeming independence is not just a simultaneous shift in the expected
losses (which is not prediction error, it is an increase in expected losses). It is usually the
latter.

This complement does not fare quite as well as the group mean in other categories. Data
is not as readily available for this complement as the group mean. But, if the company
writes some related class, data should be available and already computed for that class’s
rates.

The computations involved in adjusting related class data may be more difficult. Any
loss cost adjustments will require some extra work. Since there is some relationship
between the base class and the related class (they must be related some way by
definition), explaining this complement may be easier than explaining the larger group
complement.

Example

Consider the case of the framing stores. Suppose the actuary wishes to estimate a fire
rate for framing stores and already has a well-established rate for art stores. Perhaps the
actuary sees that the only visible difference in exposure is the presence of substantial
wood and sawdust. So he might choose to add a judgmental 10% of the excess of the fire
rate for lumberyards over the fire rate for art stores.

C. Harwayne’s Method

Harwayne’s method[3] uses a specific type of data from a related class. Usually it is also
a case of using loss costs from the larger group. In Harwayne’s method actuaries use
countrywide {excepting the base state being reviewed) class data to supplement the loss
cost data for each class. But we adjust countrywide data to remove overall loss cost

differences between states (or provinces).

The process is as follows. First we determine what the total countrywide average pure
premium would be if the countrywide data had the same percentage mixture of classes
(class distribution) as the base state. The result reflects the base state class distribution

but nrnhnhlu reflects the diffarences in overall loss costs differences hetwean states,
tpro erences QOSts aifierences oeiween stale
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Next, actuaries use that difference in overall loss costs to adjust the countrywide class
data to match the base state overall loss cost levels. We determine the ratio of overall
state loss costs to overall (all classes) adjusted countrywide loss costs. Then we multiply
that ratio times the countrywide base class loss costs to get the complement of credibility.

That is Harwayne’s basic method. In a variant form, actuaries may adjust each state’s
loss costs individually to the base state level to eliminate biases due to different state
distributions between classes (Harwayne used this variant). Then, actuaries compute the
average class complement by weighting the individual state’s adjusted loss costs. In
another variant, actuaries adjust other state’s historical loss ratios by class to match the
base state’s overall loss ratio. In either variant, the basic principles are the same.

Formulas

The simplified formula for Harwayne’s method is as follows. Let

L.s denote the historical losses for class ¢ in the base state s;

E.. denote the associated exposure units;

P., denote the state pure premium for class ¢

L;, denote the historical losses for an arbitrary class ‘i’ in some state j; and
E;; will denote the associated exposure units; and '

P;; will denote the state j pure premium for class i.

First, actuaries compute the countrywide pure premium adjusted to the state class
distribution. The first step is to compute the “state s” average pure premium (rate)

Ps=z Li.s/}: Ei.s.
i i

The next step is to compute the countrywide rates by class

Pi = Z L,J/ Z Ei.i.
j#s J*S

Then, actuaries compute the countrywide rate using the state s distribution of exposures

P= % E/®/ ¥ E,
i i

So, the overall pure premium adjustment factor is
F=P4P.

And the complement of the credibility for class ¢ is assigned to F x P,
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Harwayne’s more complicated (and more accurate) formula replaces the overall
adjustments to countrywide data with separate adjustments for each state. That is,
actuaries compute state overall means with the base state (“s™) class distribution.

— z Em.spm.j

" ZE,,

Then, we compute individual state adjustment factors
F;=P/P,.

And then we adjust each state’s class ¢ historical rates using the Fj’s. That is, we
compute the adjusted “state j” rates

P, = FjP..

and then we weight them with the countrywide distribution between states

ZE P,
YE,

]

Complement=C=

The result is Harwayne’s more complicated complement of credibility.

Complement’s Qualities

This complement has very high statistical quality. Because Harwayne’s method uses data
from the same class in other states and attempts to adjust for state-to-state differences, it
is very unbiased. It is also reasonably accurate as long as there is sufficient countrywide
data 1o minimize process variance. Since the loss costs are from other states, their
prediction errors (remaining bias) should be fairly independent of the base class process
error in the base state. One exception might be where there is an across-the-board jump
in all class’s loss costs in state s that alter the adjustment to the state experience level.
But, across-the-board jumps usually flow through into the next year’s expected losses, so
they are rarely prediction errors.

This complement has a mixed performance on the less mathematical qualities. Data are

usually available for this process. But the computations do take time and are
complicated. Thankfully, they do bear a much more logical relationship to class loss
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cosis in individual states than unadjusted counirywide statistics. On the other han

may be harder to explain because of complexity.

Example

Consider the data below. It is for Harwayne's method on class | in state S.

Data for Harwayne's Method

Pure

State Class Exposure Losses Premium
"SII llcll l|EII !ILII l|p"
S | 100 200 2.00
2 180 600 3.33
Subtotal 280 800 286
T A 150 550 3.67
2 300 1200 4.00
Subtotal 450 1750 3.89
U 1 90 200 222
2 220 900 4.09
Subiotal 310 1100 - 3.55
All | 340 950 2.79
2 700 2700 3.86

Total 1040 3650 3.51
Table 2
For Harwayne's full method, one first computes

0 x 367 + 180 x 4.00

<

P, = o/ =388, And
100+ 180

< 100x222+180x 4,09

B, = =342,
100+ 180
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Then, one computes the state adjustment factors F; =2.86/388=737 and
F, = 2.86/342 =836. The next step is to compute the other state’s adjusted class 1 rates
P/; =737x367=270 and P, =836x222=186. The last step is to weight the two

state’s adjusted rates with their class 1 exposures to produce
270 x 150 + 1.86 x 90

= =239.
¢ 150+ 90

That is Harwayne’s complement of the credibility.

D. Trended Present Rates

In some cases, most notably countrywide rate indications, there is no larger group to use
for the complement. So, actuaries use present rates adjusted for inflation (trend) since
the last rate change. If there was a difference between the last actuarial indication and
the charged rate, we build that in too. Essentially, this test allows some credibility
procedure to dampen swings in the historical loss data yet still forces the manual rates to
keep up with inflation.

Formula for the Complement

The formula for this complement of credibility is
T' xRy x P_ + P, where

T is the annual trend factor, expressed as one plus the rate of inflation (this will usually
be the same as the trend factor in the base indication);

t is the number of years between the original target effective date of the current rates (not
necessarily the date they actually went into effect) and the target effective date of the
new rates (This will often be different than the number of years in the base class trend.
It is also usually different than the number of years between the experience period and
the effective date of the new rates);

R, represents the loss costs presently in the rate manual;

Py represents the last indicated pure premium (loss costs); and

Pc represents the pure premiums actually being charged in the current manual. This may
differ from Ry because P, and Pc may be taken over a broader group.
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Complement’s Qualities

This complement is not as desirable as the previous complements but sometimes it may
"be the only alternative. It is less accurate for loss costs with high process variance. That
is because that process variance is presumably reflected in last year’s rate.” That is why it
is primarily used for countrywide indications or state indications with voluminous data.
It is unbiased in the sense that pure trended loss costs (i.e., with no updating for more
current loss costs) are unbiased. Since it includes no process variance, it is fairly
independent from the base statistic.

On the less mathematical side, this statistic performs fairly well. Everything an actuary
needs to compute it is already in the base rate filing. So, it is available and easy. There
is one exception to this. Should you wish to analyze the effects of rate changes the
company did not achieve at the level of individual classes, this may require more data

than companies typically maintain. This statistic is also very logically related to the loss
costs being analyzed. Afier all, the present rates are based on this complement.

Example

Consider the foilowing data for 1996 policy rates:
Present pure premium rate -- $120;

Annual inflation (trend) -- 10%,;

Amount requested in last rate change -- +20%,
Effective date requested for last rate change -- 1/1/94;
Amount approved by state regulators -- +15%;
Effective date actually implemented -- 3/1/94.

The complement of the credibility would be

C= $120x1.12x@ = $152.
115

E. Rate Change from the Larger Group Applied to Present Rates

This complement is very similar to the Bayesian complement. But it does not have the
substantial (though unknown) bias of the Bayesian complement. That is because the true
class expected losses may be very different from the large group expected losses. This
larger group test uses the large group rate change applied to present rates instead of the
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large group historical loss data (Bayesian complement). Presumably, present rates are an
unbiased predictor of the prior (i.e., before changes reflected in current ratemaking data)
loss costs. And, as long as both rates need reasonably small changes, any bias in the
overall larger group rate change as a predictor of the class rate change should be small.
Also, using large group rate changes instead of straight trend allows the rate to mirror
broad changes in loss cost levels that may not be reflected in trend.

Example

An example may help to illustrate how eliminating bias improves rate accuracy over
time. In the graph below the group experience was simulated by successively applying
N(10%,0.25%) (normal distribution with a mean of 10% and a standard deviation of
V0.25% = 5%) trends to a value starting at one. The true class expected losses were set
at exactly half the group expected losses each and every year (a slightly unrealistic
assumption). The historical class losses have a standard deviation of one-third the true
expected losses for the class. A detailed chart of the values actually simulated is in
Appendix C.

Classic Complement va. Group Rate Change as Estimators

4.000

3500 |
3.000

2,500

F_e—Mean Ciass Loss Cost

2,000

1.500 —i— Classic Estimate

! N
; —A— Estimate w /(1-2) Applied to*
i Change :

Figure 2

As the graph shows, the classic complement results in rates with consistent bias above
the true expected losses. The complement based on applying group changes to present
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rates starts too high but very quickly becomes unbiased. It is almost always a better -
estimate.

Formula

This complement has a fairly straightforward formula. It is

P, -R
R, x{l +(—‘§—“)},where

R, is the present manual loss cost rate for class c;

P, is the present indicated loss cost rate for the entire group of classes; and

g

R, is the present average loss cost rate for the entire group.
Complement’s Qualities

This is a significant improvement over the Bayesian complement. It is largely unbiased.
If the year-to-vear changes are fairly small, it is very accurate over the long term (though
often not as accurate as Harwayne’s complement in practice). And since the complement
is based on group variance, it is fairly independent. Since this requires a group rate
change that must be calculated anyway, it is both available and easy to compute. Since it
includes the present rate, it has a logical relationship to the class loss costs.
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Numerical Example
Consider the following data.

Data for Applying Group Rate Change to Class Data

Indicated Present
Pure Pure Underlying

Class Exposure Losses Premium Premium Losses

1 100 $70,000 $700 $750 - $75,000

2 200 $180,000 $900 $920 $184,000

3 300 $200,000 $667 $700 $210,000
Total 600 $450,000 $750 $782 $469,000

Notes : -Both indicated and present pure premiums are at current cost levels.

- Underlying losses are extension of exposures by present premiums
-Total present premium is ratio of total underlying to total exposures.

Table 3
Using this data, the complement for class 1 would be

$750 x (1+($750 - $782) / $782) = $719.

F. Competitor's Rates

New companies and companies with small volumes of data often find their own data too
unreliable for ratemaking. So their actuaries use competitor’s rates for the complement
of credibility. They rationalize that if the competitor has a much larger number of
exposures, the competitor’s statistics have less process error. An actuary in this situation
must consider that manual rates reflect marketing considerations, judgment, and the
effects of the regulatory process as well as loss cost statistics. So competitor’s rates have
significant inaccuracies. They are also affected by differences in underwriting and claim
practices between the subject company and its competitors. So, competitor’s rates
probably have systematic bias as well. The actuary will often attempt to correct for those
differences by using judgment. But those corrections and their size and direction may
generate controversy. However, using competitor’s rates may be the best viable
alternative in some situations.
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Compiement’s Qualities

Competitor’s rates generally have prediction errors that are independent of the subject
class loss costs. That is because their errors stem more from inter-company differences
that are unrelated to subject company loss cost errors. They are often available from
regulators, although the process may take some work. They are harder to use since they
usually must be posted manually.

Regulators may complain that competitor’s rates are unrelated to the subject company’s
own loss costs. But, if the company’s own data is too unreliable, competitor’s rates may
be the only alternative.

Example

D nmalucic anioaacte tha

1nn Quarenman Cohaduila 3
11UV, NCUUIC 7 alidiydid SuppEias uiv

Consider a competitor’s rate o Suppose a Sche
competitor will run a 75% loss ratio. Further, suppose one’s own company has less
underwriting expertise. So, one’s company expects 10% more losses per exposure than

the competitor. The complement would be $100x.75 x 1.1 = $83.

G. Loss Ratio Methods

This paper discussed all the previous complements in terms of pure premium ratemaking.
But all the methods except the loss costs from a larger related class and competitor’s
rates also work with loss ratio methods. All the actuary needs to do is consider earned
premium to be the exposure base. Replacing the exposure units with eamed premium
yields usable formulas.

I11. Specific Excess Ratemaking

Complements for excess ratemaking are structured around the special problems of excess
ratemaking. Since specific excess policies only cover losses that exceed a very high per
claim deductible (attachment point), there usually are very few actual claims in the
historical loss data. So, actuaries will try to predict the volume of excess loss costs using

tha lase cacte halaw not iahali
the loss costs below the attachment point. For liability coverages, the loss development

of excess claims may be very slow. That accentuates the sparsity of ratemaking data.
Also, the inflation inherent in excess layers is different (usually higher) than that of total
limits losses (see [2]). Since the ‘burning cost’ (historical loss data) is an unreliable
predictor, the statistic that receives the complement of credibility is especially important.
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A. Increased Limits Factor

When loss costs for the first dollar coverage up to the insurer’s limit of liability are
available, actuaries may use an increased limits factor approach. Actuaries multiply the
‘capped’ loss costs by the increased limits factor for the attachment point plus the limit
of liability. Then, we divide the result by the increased limits factor for the attachment
point. That produces an estimate of loss costs from the first dollar up to the limit of
liability. Then we subtract the loss costs below the original attachment point. The
remainder estimates the expected losses in the specific excess layer.

Actuaries use a variety of sources for increased limits factors. The Insurance Services
Office publishes tables of estimated increased limits factors for products, completed
operations, premises and operations liability, and manufacturers and contractors liability.
The National Council on Compensation Insurance publishes excess loss pure premium
factors that allow actuaries to compute increased limits factors for workers
compensation. The Proceedings of the Casualty Actuarial Society may contain tables of
property losses by ratio to probable maximum loss. Those can be converted to increased
limits factors by using the factors for the ratio of the attachment point to the probable
maximum loss (and the ratio of the attachment point plus the limit of liability to the
probable maximum loss). Actuaries may compute increased limits factor tables using a
company’s own data (if the company sells enough specific excess). Actuaries may
modify industry tables to reflect their company’s foss cost history. Competitor prices may
allow actuaries to estimate increased limits factors for obscure coverages. We would
consider the ratios between competitor prices for various limits of liability.

Formula

The formula is as follows:

ILF,.
(P, xILF,., +ILF,)-P, or P, x[ ILI/;AL —l).

And in this case

P, is the loss costs capped at the attachment point (A) (by convention, it usually
premium capped at the attachment point multiplied by the loss ratio the actuary
projects.);

ILFA+1. is the increased limits factor for the sum of the attachment point and the limit of
liability(L); and

ILF4 is the increased limits factor for the attachment point,
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Complement’s Qualities

As long as the insured being rated has a different loss severity distribution than the norm,
this complement contains bias. In that fairly likely event, it is also inaccurate. But,
actuaries must weigh those facts against the greater inaccuracy of burning cost statistics.
When pricing specific excess insurance, actuaries must usually settle for less accurate
and potentially biased estimators. That is because there are few highly accurate
estimators available.

This complement’s error is fairly independent of the buming cost error.  This
complement tends to contain a systematic (parameter-type) error rather than the process
error inherent in burning cost. It is dependent on burning cost only to the extent that both
are highly related to the losses below the attachment point.

Very few specific excess statistics are readily available or easy to compute. Considering
the alternatives, the availability of industry increased limits tables (in the United States)
makes this the easiest specific excess complement to compute. Also, the data for this test
is available as long as premiums or loss costs capped at the attachment point are
available.

The excess loss cost estimates this complement produces are more logically related to the
losses below the attachment point than those above. That can be controversial with
customers. But that is a common problem with excess insurance pricing. However,

buming cost is unreliable in isolation. And that problem is common to all excess
complements.

Example

Consider the following table of increased limits factors.

Increased Limits Factors

Limit of Liability  Increased Limits Factor

$50.000 1.00
$100,000 1.50
$250,000 1.90
$500,000 2.50

$1,000,000 3.50
Table 4
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Suppose one wishes to estimate the layer between $500,000 and $1,000,000 given losses
capped at $500,000 of $2,000,000. The complement using increased limits would be

C-= $2,000,000x(%—1) = $800,000.

B. Lower Limits Analysis

Sometimes the historical losses near the attachment point may be too sparse to be
reliable. So an actuary may wish to base his complement on basic limits losses, where
the basic limit is some fairly low loss cap. In this case the formula is almost exactly the
same as that of the previous analysis. The actuary simply multiplies the historical basic
limits losses by a difference of increased limits factors. Specifically, he multiplies basic
limits losses by the difference between the increased limits factor for the attachment
point plus the limit of liability and the increased limits factor for the attachment point.
The result is the complement of credibility.

Formula
The formula is

P, x(ILF, , —ILF,); where

P, represents the historical loss data with each loss capped at the basic limit (b); and
ILFA+ and ILF, are as before.

Alternately, the actuary might choose to use a low capping limit (d) that is different from
the basic limit underlying the increased limits table. Then, the formula would be

p X[ILFM,, _ILFA)
S"UILF, 1ILF, )

Complement’s Qualities

Actuaries must usually use judgment to decide whether loss costs capped at the
attachment point or some lower limit are more accurate and unbiased predictors of the
excess loss. Estimates made using the lower cap are more prone to bias. That is because
using losses far below the attachment point accentuates the impact of variations in loss
severity distributions. But, when there are few losses near the attachment point,
historical losses limited to the attachment point may be unreliable and inaccurate
predictors of future losses. So, using higher loss caps may produce even more inaccurate
predictors of excess losses.

344



By an argument similar to that of the previous test, this complement’s errors are fairly
independent of those of burning cost.
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complexity. Basic limits losses may need to be oded for statistical reportmg So, they
may be readily available for this complement. On the other hand, since insureds and
reinsureds may place a higher priority on accounting for the total losses they retain, they
are not as available as losses limited to the attachment point. The calculations are no
more complicated for basic limits analysis than retained limits (attachment point)
analysis. The only exception would where actuaries must manually compute the loss

costs between basic limits and the attachment mvnf from a claims list.
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As with the straight increased himits factor approach, this complement may generate

_controversy with customers because it is not based on actual burning cost.

Example

Suppose an actuary is estimating the losses between $500,000 and $1,000,000 and the
actuary feels he can only rely on historical losses limited to $100,00 . The estimated
historical losses limited to $100,000 are $1,000,000. Then, using the increased limits

factors from Table 4, he would calculate the complement at

C =$1,000,000 x (?—:— %52) = $666,667 .

C. Limits Analysis

The previous approaches work well when losses limited to a single capping point are
available, but sometimes they are not. Reinsurance customers generally sell policies with
a wide variety of policy limits. Some of the policy limits will fall below (not expose) the
attachment point. Some limits may extend beyond the sum of the attachment point and
the reinsurer’s limit of liabitity. In any event, each subject (first dollar) policy limit will
require its own increased limits factor.

So, actuaries analyze each limit of coverage separately. Generally, we assume that all the
limits will experience the same loss ratio. So, we multiply the all limits combined (total
limits) first dollar loss ratio times the premium in each first dollar limit to estimate the

loss costs for that limit. Then. we nerform an increased limits factor analvsis on each
108s costs Ior that Iimm inen, we perionm an increased iimits 1actor analysis on €ach

first dollar limit’s loss costs separately. The formula is as follows:
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L Fmi"‘d'A_'.li_.llfA_) - where

& ILF,

LR is the estimated total limits loss ratio;

The “d’ are all the policy limits the customer sells that exceed the attachment point (2 A);
and

each Wy is the premium volume the customer sells with policy limits of ‘d’.

The ILF’s have the same meaning as previously.

Complement’s Qualities

Actuaries use this approach because it may be all that is available. Reinsureds may be

unable to split their historical losses any more finely than losses that would have pierced

the cover in the past versus all other losses. Since the total limits loss costs (which are
almost always available, at least as an estimate) may include claims beyond the layer, it

may be il’i‘lp\’)SSiuw to calculate losses limited to the attachment pUlIlL In any event, if
some of the reinsured’s policy limits are below the attachment point, they do not expose

the layer and should be excluded from an increased limits factor calculation. So, this

may the only available complement with low bias.

It is biased and inaccurate to the same extent that the previous increased limits factor-
based complements were biased or inaccurate. It is more time-consuming 1o compute

{unlacc the altarnative ic comnuting limitad claime from claime licted  And it ceneratec
LU8Ness tne a:iermanve Is compuling imited iatms Irom C:aims ists). ARG it generates

the same controversy as the other methods since it is not the same as the actual burning
cost.

Example

Suppose an actuary is estimating the losses in a layer between $250,000 and $500,000.

Breakdowns of losses by size are unavailable. But, the actuary believes the loss ratio of
the customer’s entire business to be 70%. He does have a breakdown of premiums by
limit of liability. Using that breakdown and the increased limits factors from Table 4, he

computes the losses in the layer below.
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Limits Analysis for Layer Between $250,000 and $500,000

Times 70%  Increased

Limit of Loss Limits % in Loss in
Liability Premium Ratio Factor Layer Layer
$250,000 $ 600,000 $ 420000 1.9 0.00% $ -
$500,000 S 300,000 $ 210,000 25 24.00% $ 50,400
$1,000,000 S 300,000 $ 210,000 35 17.14% $ 36,000
Total $1,200,000 $ 840,000 $ 86,400
Table §

So, he estimates the losses in the layer at $86,400.

D. Fitted Curves

The problem with most of the previous complements is that they do not give special
attention to the claims above or near the attachment point. So, they miss differences in
loss severity distributions between insureds. But of course that must be counterbalanced
against the fact that individual insured’s large claims histories usually lack credibility.

By fitting a family of loss severity curves to the distribution, actuaries make the most of
the large claim data that is available. If the loss history shows no claims beyond the
attachment point but many claims that are very near to the attachment point, a fitted
curve will usually reflect that and project high loss costs in the subject layer. On the
other hand, if there are few large claims close to the attachment point, the fitted curve
will project low loss costs for the layer.

The details of how to fit curves are beyond the scope of this paper(see {4]), but it will

provide an outline of how to use fitted curves in practice. After fitting and trending the

curve, an actuary will use the curve to estimate what percentage of the curve’s total loss

costs lie in the subject layer. He may do this by evaluating the difference between the
1

limited mean function I,\_rf(.r)dx +(1-/(L)).  at the attachment point and the
attachment point plus the limit of liability. He would then divide the result by the total
mean (or the mean when claims arc capped at the typical policy limit) to get the
percentage of the total loss costs that lie in the layer. Multiplying that percentage by the
total claims cost yields the estimate of claim costs in the layer (for details, see [4]).
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Of course, excess values from curve fits need extensive loss development just like

burning costs. Actuaries may use excess loss development factors such as those
published by the Reinsurance Association of America, or they may triangulate the fitted
loss costs.

Complement’s Qualities

This method is generally unbiased (except for concerns that the general shape of a family
of curves may predispose the results for the family to estimated costs in particular layers
that are either too high or too low.) When there are few large claims, it is more accurate
than buming cost. It is often more accurate than increased limits factors simply because
it does a better job reflecting any general tendency towards large or small claims. On the
hand, fitting curves forces data into a mold that may not fit the data. The actual loss
severity distribution will almost certainly look very different from all the members of the
family of curves. This ‘super-parameter’ risk introduces error of its own. The ‘super-
parameter’ risk is totally distinct from process risk, and that makes the complement fairly
independent. On the other hand, the presence or absence of burning cost claims in the
layer can influence the curve fit heavily. So, this complement has somewhat more
dependent (relative to burning cost) errors than the increased limits approaches.

Data availability and computational complexity are problems here. To fit a loss severity
curve an actuary must either use a detailed breakdown of all the claims into size ranges
or use a listing of every single claim. Usually, that data is not readily available. Further,
the processing required to fit curves requires fairly complex mathematical calculations.
Besides the fact that complex calculations require special personnel, the complexity
makes the results difficult to explain to lay people.

On one hand, this complement uses more of the insured’s own data in and near the layer
than any other excess complement. On the other hand, its complexity may make that fact
difficult to communicate.

IV. Summary

The complement of the credibility deserves at least as much actuarial attention as the
base statistic (historical loss data). Actuaries owe special attention to its unbiasedness
and accuracy.  In some cases, interdependence must be avoided. And any actuarial
method must be implemented using reasonable labor on available statistics. Meeting
those qualities may require statistics that make less explainable sense to lay people, but
explainability must be considered, too.

This paper has detailed several statistics that are commonly used for the complement of
credibility. Their use improves many actuarial projections considerably.
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Appendix A

THE ERROR IN CREDIBILITY ESTIMATES

This appendix will show that the error in an optimum credibility weighted estimate is

riri(1-p*)

d(x,,x,) = —2 7 |
(1. %,) 2+ 72 -2p1,7,

The proof involves three equations from Boor{1]:

(1) Ox,,x;) =212 +(1-Z)7] +(Z*-Z2)8;, (p.182, the simplified error of the
credibility-weighted estimate);

i -1l + 3],

25,2.2 (p-183, the formula for the optimum credibility); and

(3) &, =1 +17]-2Cov(x,,x,) {p.179, the formula relating &}, to the correlation).

In this case 7,,7,, and p are the same as they were in the body of the paper (the
prediction errors of burning cost and the credibility complement and their correlation);
d(x,,X,) is the minimum possible average squared prediction error from credibility

weighting burning cost (x;) and the credibility complement (x,); and vaz is the average
squared difference between burning cost and the credibility complement.

Simple algebra on (1) allows one to pull out several terms that will create the numerator
of (2).

O(x;,X,) = -Z(ry - 1] +87,) + 13 + 26),;
=228, + 13+ 206, = 1 - s,
Using the definition of Z (equation (2)) once again with some algebra gives

22 g2 N2
2 (T3-10+87,)
? 46,
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Using (3) and the relationship between the covariance and correlation gives

2 _ (r2—ri+ 12 + 12 -2Co%(x,,x,)) ]
467, '

1_ 2, 2 2 2
2 _(ma—my 47 +13-2p0,7,)

3 ;
461,

2 _ (277 -2p1,7,)
46}, ’

2 (r7 - p1i75)’°
S,

Then, more algebra gives

2 (r,-p1)’ .
ol =5
T+ 1 - 2p1 7,

2

= 73 2, 2 2 22

s x(f t 1 - 20,0, - T + 20Ty T, - POTY);
Ty +7; = 2pr 1,

TZ

= 2 2 2 2y

= — > x(ri=p°11);
Ty +71;-2p7 1T,

s
i+l -2pr 1,

and that is the error formula we sought to prove.
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Appendix B

FOR CORRELATIONS NEAR UNITY,
CREDIBILITY IS NEGATIVE

‘This appendix will show that whenever the correlation exceeds the point of maximum

error, the credibility of one statistic is negative. To explain this principle, reviewing the
graph of error by correlation will help.

Prediction Error as a Function of Correlation

1.00 -
0.80
0.60

0.40

Squared Error

—o— Tau2 = Tau1
—&— Tau2 = 2*Taul
—&— Tau2 = 3*Taul

Correlation

Fig. 1 (reprinted)

As one can see, the prediction error is initially minimized when the correlation is
negative. Then it increases until the error is maximized. Then the error decreases again
beyond that maximum point. This section will show that the one credibility is actually
negative beyond that maximum point.

As it happens, when 7, 2 7,, that maximum point is wherep = 7,/r,. And all
correlations beyond that yield negative credibility for the complement. Alternately, when
7,27,, p= 1,/7, $1 is the point of maximum prediction error. Beyond that, the
burning cost’s credibility will be negative. But, this appendix must prove that.
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It is easy to show that & has a maximum where p = r,/r,. One need only note that
the function ®(p) has a maximum where

D _ 2p(t + 12 =2p1,1,) - 21,7,(1~ p?)
P (7} +73-2p1y7,)°

0=

(using the definition of ®(p) from appendix I). Using some algebra, that is equivalent to
0=2p1? +2p15 —dp’r 1, = 21,1, +2p° 1,7, 01

0= (r,— pr, )z, - pr)).

So, the maximum is at 7, /r, or r,/r, , whichever is less than one.

To show that correlations beyond that maximum point result in negative credibilities, it
suffices to show that they fulfill Boor’s condition for negative credibility ([1], p.183)

2 2 2
327 +0,,.

But that follows directly from Boor’s equation relating the credibility and covariance
([1], p. 179). That is, since

81, = 12 +7} -2Cov(x,,X,) = 12 +73 -2p1,1,,
Boor’s condition is equivalent to

2 2 2 2
2T+ +1T;~2p1 7,

that is, Boor’s condition for negative credibility is fulfilled and fulfilled only for p

beyond the point of maximum error. So, the correlations near unity yield negative
credibilities.
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Year

Notes

00~ NV bW - O

B — — o e
OO 0NV D WD~ O\

R EXAMPLE APPLYING COMF
TO GROUP RATE CHANGE
(b) (©) (d) (e)
Mean Class with
Group Group Class Process
N(.1,.0025) Loss Loss Variance
Trend Cost Cost N(0,((d)/3)*2)
0.115 1.000 0.500 0.188
0.101 1.115 0.558 0.256
0.021 1228 0.614 0.825
0.107 1.254 0.627 0.695
0.137 1.389 0.694 0.782
0.091 1.579 0.790 1.037
0.082 1.723 0.862 0.747
0082 1.865 0.932 1.034
0.143 2.017 1.009 0.468
0.188 2.305 1.153 1.759
0.075 2.739 1.369 1.393
0.000 2.945 1.472 1.653
0.093 2.946 1.473 0.992
0.192 3.220 1.610 1.516
0.075 3839 1.919 3.501
0.009 4,128 2.064 2.358
0.077 4.167 2.083 2213
0.136 4.487 2244 2.225
0.062 5.096 2.548 2.733
0.133 541t 2.708 2.394
0.093 6.128 3.064 2.819

Appendix C

®

Classic

4
0.692
0.692
0.692
0.692
0.692
0.692
0.692
0.692
0.692
0.692
0.692
0.692
0.692
0.692
0.692
0.692
0.692
0.692

(8)

Classic
Estimate
1.000
0.481
0.572
1.044
0.954
1.065
1.324
1.153
1418
1.039
2.119
1.988
2.256
1.753
2244
3 966
3.193
3.096
3214
3.806
3.654

- Column (g) is [(f)*(previous column (e) + (1-(D)(previous column (c}] * (1+10% trend)
- Column (h} is {(f)*[previous column (e) - previous column (h)] + (1-(f))*[previous column (b)
*previous column (c) -1.1*previous column (c)] + previous column (h)}*(1 +10% trend)
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(h)
Estimate
wi(1-Z)
Applied

to Change
1.000
0.438
0.306
0.724
0.731
0.792
1.025
0.885
1.056
0.659
1.498
1.545
1.782
1.315
1.527
3.162
2.862
2616
2525
2917
2.752



