
The Complement of Credibility 
by Joseph A. Boor 

323 



ABSTRACT 

THE COMPLEMENT OF CREDIBILITY 

This paper explains the most commonly used complements of credibility and offers a 
comparison of the effectiveness of the various methods. It includes numerous examples. 
It covers credibility complements used in excess ratemaking as well as those used in tirst 
dollar ratemaking. It also offers six criteria for judging the effectiveness of various 
credibility complements. One criterion, statistical independence, has not previously been 
covered in the actuarial literature. This paper should explain all the common credibility 
complements to the actuarial student. 
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THE COMPLEMENT OF CREDIBILITY 

Many actuarial papers discuss credibility. Actuaries use credibility when data is sparse 
and lacks statistical reliability. Specifically, actuaries use it when historical losses have a 
large error around the underlying expected losses (average of the distribution of potential 
loss costs) the actuary is estimating. In those circumstances, the statistic that receives the 
remainder of the credibility can be more important than the credibility attached to the 
data. For example, if the ratemaking statistic varies around the true expected losses with 
a standard deviation equal to its mean, it will probably receive a very low credibility. So, 
the vast majority of the rate (in this context, expected loss estimate) will come from 
whatever statistic receives the complement of credibility. So, it is very importan1 to use 
an effective statistic for the complement of credibility. -This paper will discuss 
fundamental principles to use in choosing the complement. And, it will discuss severa1 
methods actuaries use regularly. 

1. Fundamental Princbles- What Should The Actuary Consider? 

There are four types of issues that any actuary must consider when choosing the 
complement: practica1 issues; competitive market issues; regulatory issues; and, 
statistical issues. 

A. Pructical Issues 

The easiest statistic to use is one that is readily available. For example, the best possible 
statistic is next year’s loss costs. Unfortunately, that statistic is not available (otherwise, 
companies would not need actuaties). The actuary must choose from the statistics that 
are available to him. Since some statistics require more complicated programming or 
expensive processing than others, some statistics are more readily available than others. 

Ease of computation is another factor to consider. If a statistic is easy to compute, it is 
often easier to explain to management and customers. Since few actuaries have 
unlimited budgets, they usually weigh the time involved in computing a very accurate 
statistic against the accuracy improvement it generates. Also, when computations are 
easy to do there is less chance of error. 

8. Competitive Market Issues 

Rates are rarely made in a vacuum. Generally, whatever rate the actuary produces will 
be subject to market competition. If the rate is too high, competitors can undercut the 
tate and still make a profít. That will cosí the actuary’s employer customers and profít 
opportunities. If the rate is toa low, the employer will lose money. So, in mathematical 
terms, the rate should be unbiased (neither too high nor too low over a large number of 
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loss cost estimates) and accurate (the rate should have as low an error variance as 
possible around the future expected losses being estimated). Hence the complement of 
the credibility should help make the rate as unbiased and accurate as possible. 

C. Renularoty Issues 

Usually, rates require some level of approval from insurance regulators. The classic rate 
regulatory law requires that rates be ‘not inadequate, not excessive, and not unfairly 
discriminatory.’ The principles of adequacy and non-excessiveness imply that rates 
should be as unbiased as possible. 

Those principles could be stretched to imply that rates should be accurate. The argument 
goes as follows. Highly inaccurate rates create a much greater risk of insolvency through 
random inadequacies. The law is concemed with inadequacy because tt seeks to prevent 
insolvencies. So, law suggests rates should be as accurate as possiblc. For most 
purposes, actuaries interpret ‘unfairly discriminatory’ in the ratemaking context as 
‘unbiased’. Many believe that if a rate truly reflects a class’s probable loss experience, it 
is fair by defínition. 

The actuary can mitigate regulatory concems by choosing a complement that has some 
logical relationship to the loss costs of the class OT individual being rated. That means it 
is easier to explain a high rate for a class or individual in light of thc related loss costs. 

B. Stulistical I.5me.v 

Clearly, the actuar-y must attempt to produce the most accurate rate that is practical. If the 
complement of the credibility is accurate in its own right and relatively indepcndent of 
the base statistic (which receives the credibility), the resulting rate will be more accurate. 
The rationale involves statistical properties of credibility-weighted estimates. As 
Appendix A shows, if the optimum credibility for two unbiased statistics is used, then the 
prediction error of the credibility-weighted estimate is 

r:r:<1 -p2) 

r: + r; - Zpr,r, 

where 

r: is the average squared error (inaccuracy) of the base statistic as a stand-alone 

predictor of next years’ loss costs; 
7: is the average squared error (inaccuracy) of the complement of the credibility as a 
stand-alone predictor of next year’s mean loss costs; 
p is the correlation (interdependence) between the fírst statistic’s prediction error (error 
in predicting next year’s mean loss costs) and the second statistic’s prediction error. 

326 



Reviewing that error expression shows that greater inaccuracy in either the base statistic 
g the compiement of credibility will yield greater inaccuracy in rhe rrsulting prediction. 
The expresslon is symmetric in the two errors. So, the accuracy of the complement of 
credibility is just as importanl as the accuracy of the base statistic. 

The benefíts of independence are more subtle. As it tums out, independence is most 
important when credihilitv is most important. That is indcpendencc is most importan1 for 
the intermediate credibil&es (Z hetween IW 10 and 90%). Following Appendix B, that 

occurs when the largest standard predicting error (dE= r ) is within two to 

three times’ the smaller error. Consider the following graphs of the total prediction error 
by correlation for r2 = one, two. and three times r,. 

-_. _ _ . _ _. _ _ _ . - - 

Predlctlon Error asa Functlon of Comlation 

-0.20 -cTauZ=Taul 

Correlation 
-m- Tau2 = 27~3~1 

‘d-Tau2 = 1’Taul 

. .._ 

Figure 1 

As you can see, thr predictions are generally best when there is actually a negative 
correlation between thr two crrors (that IS. they offset). But, that rarely occurs in 
practice. Generally, the complement ol‘credibility will have some weak correlation with 
the base statistic. In that range the prediction error is clearly lowest as the correlation is 
smaller. Further. the graph heyond the maximum error (correlations near unity) is 
misleading. Appcndix B shows that the downward slope near unity brings negative 
credibilities. Those negative credibllities are clearly outside the general actuarial 
philosophy of credibitity. So, a complement of credibitity is best when it is statisticalty 
independent (that is. not related to) the base statistic. 

- --- 
’ Since Boor[ 11 shows that credibility is roughly proponional to the relative f2 ‘s. [hese examples cover 
credibilities between lO?k and 90%. That range covers mosts instances where credibility matters most. 
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The previous sections show six desirable qualities for a complement of credibility: 

- Accuracy as a predictor of next year’s mean loss costs; 

- Unbiasedness as a predictor of next year’s mean subject expected losses; 

- Independence from the base statistic; 

- Availability of data; 

- Ease of computation; and 

- Explainable relationship to the subject loss costs 

II. First Dollar Ratemaking 

First dollar (that is, not pricing losses excess above a very high deductible) ratemaking 
credibility complements are affected by a common characteristic of fírst dollar 
ratemaking. First dotlar ratemaking generally uses historical loss data for the base 
statistic. And, in tirst dollar ratemaking the historical losses are usually roughly the same 
magnitude as the true expected losses. The regulatory quality of an explainable 
relationship to the subject loss costs is more important for first dollar than excess 
ratemaking. 

There are a wide variety of techniques actuaries use to develop credibility complements. 
The following pages discuss some of the major methods in use. 

A. Loss Costs of a Lurger Group Includinp rhe Class -- Classic Bayesian Credibility 

The most basic credibility complement comes from the most classic casualty actuarial 
technique ___ Bayesian credibility. In Bayesian credibility actuaries are typically either 
making rates for a large group of classes or making rates for a number of large insureds 
that belong to a single class. The classes (or individual insureds) do not contain enough 
exposure units for their historical loss data to reliably predict next year’s mean loss costs. 
So, actuaries supplement the class’s historical loss data by credibility weighting them 
with the loss costs of the entire group. 
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In mathematical terms, we use 

where 

L, is the historical loss costs for the subject class, c; 

E, is the historical exposure units for class c; 

Li is the historical loss costs for the ith class in the group; 

Ei is the historical exposure units for the ith class in the group; and 

Z is the credibility. 

(For the rest of this paper P, will denote the historical loss rate for class c (LJE,). P, will 
do the same for the group’s historical loss cost rate.) 

This complement has problems in two areas, accuracy and unbiasedness. The group 
mean loss costs may be the best available substitute. And they may be unbiased with 
respect to all the information the actuary has when making the rate (e.g., historical loss 
data - the real means remain unknown). But, the actuary should believe that the true 
expected class losses will take a different value than the group expected losses. So, this 
method contains an intrinsic bias and inaccuracy that is unknown. 

This complement generally has some independence from the base statistic. As long as 
thè base class does not predominate in the whole group, the process errors of all the other 
classes should be independent from that of the base class. And the error created by using 
the group mean instead of the class mean is independent of the base class process 
variance (error). To the extent that the actuary uses the same loss development, trend, 
and current level factors on the class and group, the error from those factors is 
interdependent between the class and group loss costs. But, you could view the 
ratemaking process as first estimating undeveloped, untrended historical expected losses 
at previous rates; then applying adjustment factors. In the first part of that process, the 
predicting errors are nearly independent. 

This complement performs well on availability and ease of computation. Generally, 
actuaties compute the group mean and group rate indication as the tirst stage of the 
pricing process for the entire line of business. 
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As long as all the classes in the group have something in common that puts them in the 
group, that forrns the logical connection between the class’s loss costs and those of the 
group. However, that does not totally eliminate controversy from this credibility 
complement. Customers may often complain that they are treated ‘just like everyone 
else’ when their historical losses are below average. Overall, this has an average degree 
of relationship to the expected subject losses. 

Choosina the Lamer Groun 

An actuary should be careful when choosing which larger group to use. For example, 
given a choice between using same class data from other states (provinces) or other class 
data from the same state. the actuar-y should consider: Whether the differences by state 
in loss levels are more signnifícant than the differences between class costs in the same 
state? (Usually, class differences are larger); Can the other state’s class data be adjusted 
to reflect the base state loss levels? (reducing bias); Is there a group of classes in the state 
that the actuaty would expect to have about the same loss costs? (small bias.) All those 
factors merit consideration. The actuary should attempt to find the larger group statistic 
that has the least expected bias. 

Consider the data table below. 

Data for Bayesian Credibility Complement 

Rate 
Group Class 

Pure 
Premium 

Las1 Three Year’s Data 
Pure 

Exposures Losser Premium 

A 1 100 5000 $50 250 16000 $64 
2 300 20000 S67 850 55000 $65 
3 400 19000 $48 1100 55000 $50 

Subtotal 800 44000 $55 2200 126000 $57 

B Subtotal 600 29000 $48 1700 55000 $32 
C Subtotal 500 36000 $72 1400 120000 586 
D Subtotal 800 75000 $94 2300 200000 $87 

Total 2700 184000 $68 7600 501000 $66 

Table 1 

If one is making rates for class 1 in rate group A, one must tirst consider whether to use 
the one year or three year historical losses. One must consider that the three year pure 
premiums will be less affected by process variance (year-to-year fluctuations in 
experience due to small samples from the distribution of potential claims). On the other 
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hand, sometimes the exposure base is large enough to minimize process variance and 
societal events are causing pure premiums to change (changes in the potential losses one 
is sampling from). In that situation the one year pure premiums are preferable. 

Suppose one chooses the one year pure premium (SSO) for historical data. Then using 
the three year pure premiums of the class ($64) for the complement would be 
inappropriate. That is because the thrce year pure prcmiums are heavily interdependent 
with the one year class pure premium. Also, presumably the actuary has already decided 
that the three year data is biased because of changes in loss cost levels. So, the actuary 
believes the three year data does not add accuracy -to the prediction. For the same 
reasons, the three year rate group and grand total pure premiums would bc inappropriate 
complements. 

The next decision is between the rate bToup and grand total pure premiums. The choice 
between these involvcs a tradeofl bctwecn bias reduction and process variance 
reduction. The rate group data should rcflect risks that are more similar to class 1. So, it 
should have less bias. On the other hand, the grand total data is spread over more risks, 
so it has less process variance. This example makes the choice difticult. The one year 
and threc year rate group purc premiums are vcry similar ($55 versus $57). But the other 
rate groups show more pronounced inconsistencies (i.e. $32 versus $48 for rate group B). 
The grand total shows it has little process variance. But it appears to contain roughly $15 
of bias. The one year rate group A pure premium ($55) is probably the best choice. 

One could also consider using the three year pure premium for historical losses. That 
does not preclude using the one year rate group data as a complement. Using the one 
year rate group A pure premium would simply assume that the entire rate group A 
exposures were sufticient to minimize process variance. ‘So, it may be appropriate IO use 
one year data as a complement to three year data. 

Actuaries sometimes use the loss costs of a larger, but related class for the complement 
of credibility. For example, if a company writes very few picture framing stores but 
writes a large number of art stores. the actuary may choose to use the art store loss costs 
for the framing store complement of credibility. He may or may not make some 
adjustments to the art store loss costs to make them more applicable to framing stores. 
For example, he may wish to adjust for the minor woodworking exposure. Actuaries 
pricing General Liability often use this ‘base class’ (meaning the larger related class in 
this context) approach. 
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Comnlement’s Oualities 

This approach has qualities similar to the large group complement. lt is biased (though 
the bias and its direction are unknown) and so it is inaccurate. The more the actuary 
adjusts the related class loss data to match the loss exposure in the subject base class; the 
more the bias is reduced. The independence may be slightly less if the factor relating the 
classes generates high losses for the hvo classes simultaneously. But the actuary must be 
careful that this seeming independence is not just a simultaneous shil? in the expected 
losses (which is not prediction error, it is an increase in expected losses). It is usually the 
latter. 

This complement does not fare quite a.,well as the group mean in other categories. Data 
is not as readily available for this complement as the group mean. But, if the company 
writes some related class, data should be available and already computed for that class’s 
rates. 

The computations involved in adjusting related class data may be more difticult. Any 
loss cost adjustments will require some extra work. Since there is some relationship 
between the base class and the related class (they must be related some way by 
defínition), explaining this complement may be easier than explaining the larger group 
complement. 

Consider the case of the framing stores. Suppose the actuary wishes to estimate a fire 
rate for framing stores and already has a well-established rate for art stores. Perhaps the 
actuary sees that the only visible difference in exposure is the presente of substantial 
wood and sawdust. So he might choose to add a judgmental 10% of the excess of the fire 
rate for lumberyards over the fire rate for att stores. 

C. Harwavne’s Method 

Harwayne’s method[3] uses a specilic type of data from a related class. Usually it is also 
a case of using loss costs from the larger group. In Harwayne’s method actuaries use 
countrywide (excepting the base state being reviewed) class data to supplement the loss 
cost data for each class. But we adjust countrywide data to remove overall loss cost 
differences between states (or provinces). 

The process is as follows. First we determine what the total countrywide average pure 
premium would be if the countrywide data had the same percentage mixture of classes 
(class distribution) as the base state. The result reflects the base state class distribution 
but probably reflects the differences in overall loss costs differences between states. 
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Next, actuaries use that difference in overall loss costs to adjust the countrywide class 
data to match the base state overall loss cost levels. We determine the ratio of overall 
state loss costs to overall (all classes) adjusted countrywide loss costs. Then we multiply 
that ratio times the counhywide base class loss costs to get the complement of credibility. 

That is Harwayne’s basic method. In a variant forrn, actuaries may adjust each state’s 
loss costs individually to the base state level to eliminate biases due to different state 
distributions between classes (Harwayne used this variant). Then, actuaries compute the 
average class complement by weighting the individual. state’s adjusted loss costs. In 
another variant, actuaries adjust other state’s historical loss ratios by class to match the 
base state’s overall loss ratio. In either variant, the basic principles are the same. 

Formulas 

The simplified formula for Harwayne’s method is as follows. Let 

L,, denote the historical losses for class c in the base state s; 
E,, denote the associated exposure units; 
P,. denote tbe state pure premium for class c 
L,, denote the historical losses for an arbitrary class ‘i’ in some state j; and 
bJ w-ill denote the associated exposure units; and 
P,j will denote the state j pure premium for class i. 

First, actuaries compute the countrywide pure premium adjusted to the state class 
distribution. The first step is to compute the “state s” average pure premium (rate) 

The next step is to compute the countrywide rates by class 

Pi = 1 L, / 1 Eij, 
jzs j*s 

Then, actuaries compute the counttywide rate using the state s distribution of exposures 

So, the overall pure premium adjustment factor is 

And the complement of the credibility for class c is assigned to F x P, 

333 



‘. 
- ‘, 

\ 

/ I I 

Hatwayne’s more complicated (and more accurate) formula replaces the overall 
adjustments to countrywide data with separate adjustments for each state. That is, 
actuaries compute state overall means with the base state (2.“) class distribution. 

Then, we compute individual state adjustment factors 

And then we adjust each state’s class c historical rates using the Fj’s. That is, we 
compute the adjusted “state j” rates 

Pi,, = Fj Pcj. 

and then we weight them with the countrywide distribution betwecn states 

Complement = C = J 
‘Ec.j 

The result is Harwayne’s more complicated complement of credibility 

Comulement’s Oualities 

This complement has very high statistical quality. Because Harwayne’s method uses data 
from the same class in other states and attempts to adjust for state-to-state differences, it 
is very unbiased. It is also reasonably accurate as long as there is sufftcient countrywide 
data to minimize process variance. Since the loss costs are from other states, their 
prediction errors (remaining bias) should be fairly independent of the base class process 
error in the base state. One exception might be where there is an across-the-board jump 
in all class’s loss costs in state s that alter the adjustment to the state experience level. 
But, across-the-board jumps usually flow through into the next year’s expected losses, so 
they are rarely prediction errors. 

This complement has a mixed performance on the less mathematical qualities. Data are 
usually available for this process. But the computations do take time and are 
complicated. Thankfully, they do bear a much more logical relationship to class loss 
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costs in individual states than unadjusted countrywide statistics. On the other hand, this 
may be harder to esplain because of complesity. 

Example 

Consider the data below. II is for Hanvayne’s method on class 1 in state S. 

State 
“S” 

S 

T 

U 

All 

Data for Harwayne’s hlethod 

Class Esposure Losses 
‘IC,’ “E” “L” 

I 100 200 
2 180 600 

Subtotal 280 800 

.I 150 550 
2 300 1200 

Subtotal 450 1750 

I 90 200 
2 220 900 

Subtotal 310 ll00 

1 340 950 
2 700 2700 

Total 1040 3650 

Table 2 

For Hanvayne’s full mcthod, onc fìrst computes 

F, = 
100x3.67+180x4.00 

lOO+ 180 
= 3.88, And 

Pure 
Premium 

“P” 

2.00 
3.33 
2.86 

3.67 
4.00 
3.89 

7 37 -.-u 
4.09 
3.55 

2.19 
3.86 
3.51 

F 100 x 2.22 + 180 x 4.09 
II 

= = 3,43 

lOO+ 180 
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Then, one computes the state adjustment factors FT = 2.86/3.88 =.737 and 

F,, = 2.86/3.42 =.836. The next step is to compute the other state’s adjusted class 1 rates 
PI’,-, =.737 x 3.67 = 2.70 and PI’,” =.836 x 2.22 = 1.86. The last step is to weight the two 

state’s adjusted rates with their class 1 exposures to produce 

c = 2.70x 150+1.86x90 
= 2.39 

150+90 

That is Harwayne’s complement of the credibility. 

In some cases, most notably countrywide rate indications, there is no larger group to use 
for the complement. So, actuaries use present rates adjusted for inflation (trend) since 
the last rate change. If there was a difference between the last actuarial indication and 
the charged rate, we build that in too. Essentially, this test allows some credibility 
procedure to dampen swings in the historical loss data yet still forces the manual rates to 
keep up with inflation. 

The formula for this complement of credibility is 

T’ x R, x P, t Pc , where 

T is the annual trend factor, expressed as one plus the rate of inflation (this will usually 
be the same as the trend factor in the base indication); 

t is the number of years between the original target effective date of the current rates (not 
necessarily the date they actually went into effect) and the target effective date of the 
new rates (This will often be different than the nurnber of years in the base class trend. 
It is also usually different than the number of years between the experience period and 
the effective date of the new rates); 

RI. represents the loss costs presently in the rate manual; 

PL represents the last indicated pure premium (loss costs); and 

Pc represents the pure premiums actually being charged in the current manual. This may 
differ from RL because PL and Pc may be taken overa broader group. 
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This complement is not as desirable as the previous complements but sometimes it may 
‘be the only altemative. It is less accurate for loss costs with high process variance. That 
is because that process variance is presumably reflected in last year’s rate.’ That is why it 
is primarily used for countrywide indications or state indications with voluminous data. 
It is unbiased in the sense that pure trended loss costs (Le., with no updating for more 
current loss costs) are unbiased. Since it includes no process variance, it is fairly 
independent from the base statistic. 

On the less mathematical side, this statistic performs fairly well. Evetything an actuary 
needs to compute it is already in the base rate filing. So, it is available and easy. There 
is one exception to this. Should you wish to analyze the effects of rate changes the 
company did not achieve at the level of individual classes, this may require more data 
than companies typically maintain. This statistic is also very logically related to the loss 
costs being analyzed. After all, the present rates are based on this complement. 

Example 

Consider the following data for 1996 policy ratea: 

Present pure premium rate -- $120; 

Annual inflation (trend) -- 10%; 

Amount requested in last rate change - +20%; 

Effective date requested for last rate change -- 1/1/94; 

Amount approved by state regulators -- + 15%; 

Effective date actually implemented -- 3/1/94. 

The complement of the credibility would be 

c = $120x1.1* x1.20 = $152. 
1.15 

E. Rate Channe from the Lurner Grour, Auulied to Present Rates 

This complement is very similar to the Bayesian complement. But it does not have the 
substantial (though unknown) bias of the Bayesian complement. That is because the true 
class expected losses may be very different from the large group expected losses. This 
larger group test uses the large group rate change applied to present rates instead of the 
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large group historical loss data (Bayesian complement). Presumably, present rates are an 
unbiased predictor of the prior (i.e., before changes reflected in current ratemaking data) 
loss costs. And, as long as both rates need reasonably small changes, any bias in the 
overall larger group rate change as a predictor of the class rate change should be small. 
Also, using large group rate changes instead of straight trend allows the rate to mirror 
broad changes in loss cost levels that may not be reflected in trend. 

Examole 

An example may help to illustrate how eliminating bias improves rate accuracy over 
time. In the graph bclow the group experience was simulated by successively applying 
N(l0%,0.25%) (normal distribution with a mean of 10% and a standard deviation of 

m = 5%) trends to a value starting at one. The true class expected losses were set 
at exactly half the group expected losses each and every year (a slightly unrealistic 
assumption). The historical class losses have a standard deviation of one-third the true 
expected losses for the class. A detailed chart of the values actually simulated is m 
Appendix C. 

r- Classlc Complement va Group Rste Change as Estlmators 
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Figure 2 

As the graph shows, the classic complement results in rates with consistent bias above 
the true expected losses. The complement based on applying group changes to present 
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rates starts too high but very quickly becomes unbiased. It is almost always a better 
estimate. 

Formula 

This complement has a fairly straightforward formula. It is 

R, is the presrnt manual loss cost rate for class c; 

P, is the present indicated loss cost rate for the entire group of classes; and 

R, is the present average Ioss cost ratc for the entire group. 

Complement’s Qualifies 

This is a significant improvement over the Bayesian complement. It is largely unbiased. 
If the year-to-year changes are fairly small, it is very accurate over the long term (though 
otien not as accurate as Iianvayne’s complement in practice). And since the complement 
is based on group variance. it is fairly independent. Since this requires a group rate 
change that must be calculated anyway. it is both available and easy to compute. Since it 
includes the prcsent rate, it has a logical relationship to the class loss costs. 
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Numerical Examnle 

Consider the following data. 

Data for Applyiog Group Rate Change to Class Data 

Class Exposure Losses 

Indicated 
Pure 

Premium 

Present 
Pure 

Premium 

Underlying 

Losses 

1 100 $70,000 $700 $750 - $75,000 

2 200 SI 80,000 $900 $920 $184,000 

3 300 $200,000 $667 $700 $2 10,000 
Total 600 $450,000 $750 $782 $469,000 

Notes : -Both indicated and present pure premiums are at current cost levels. 
- Underlying losses are extension of exposures by present premiums 
-Total present premium is ratio of total underlying to total exposures. 

Table 3 

Using this data, the complement for class 1 would be 

$750 x (1 + ($750 - $782) / $782) = $719, 

New companies and companies with small volumes of data ofien find their own data too 
unreliable for ratemaking. So their actuaries use competitor’s rates for the complement 
of credibility. They rationalize that if the competitor has a much larger number of 
exposures, the competitor’s statistics have less process error. An actuary in this situation 
must consider that manual rates reflect marketing considerations, judgment, and the 
effects of the regulatory process as well as loss cost statistics. So competitor’s rates have 
significant inaccuracies. They are also affected by differences in unde’rwriting and claim 
practices between the subject company and its competitors. So, competitor’s rates 
probably have systematic bias as well. The actuary will often attempt to correct for those 
differences by using judgment. But those corrections and their size and direction may 
generate controversy. However, using competitor’s rates may be the best viable 
altemative in some situations. 
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Complement’s Oualities 

Competitor’s rates generally have prediction errors that are independent of the subject 
class loss costs. That is because their errors stem more from inter-company differences 
that are unrelated to subject company loss cost errors. They are ofIen available from 
regulators, although the process may take some work. They are harder to use since they 
usually must be posted manually. 

Regulators may complain that competitor’s rates are unrelated to the subject company’s 
own loss costs. But, if the company’s own data is too unreliable, competitor’s rates may 
be the only altemative. 

Example 

Consider a competitor’s rate of $100. Suppose a Schedule P analysis suggests the 
competitor will t-un a 75% loss ratio. Further, suppose one’s own company has less 
underwriting expertise. So, one’s company expects 10% more losses per exposure than 
the competitor. The complement would be $100~.75 x 1.1 = $83. 

G. Loss Ratio Methodv 

This paper discussed all the previous complements in terms of pure premium ratemaking. 
But all the methods except the loss costs from a larger related class and competitor’s 
rates also work with loss ratio methods. All the actuary needs to do is consider eamed 
premium to be the exposure base. Replacing the exposure units with eamed premium 
yields usable formulas. 

III. Specific Excess Ratemaking 

Complements for excess ratemaking are structured around the special problems of excess 
ratemaking. Since specitic excess policies only cover losses that exceed a very high per 
claim deductible (attachment point), there usually are very few actual claims in the 
historical loss data. So, actuaries will try to predict the volume of excess loss costs using 
the loss costs below the attachment point. For liability coverages, the loss development 
of excess claims may be very slow. That accentuates the sparsity of ratemaking data. 
Also, the inflation inherent in excess layers is different (usually higher) than that of total 
limits losses (see [2]). Since the ‘buming cost’ (historical loss data) is an unreliable 
predictor, the statistic that receives the complement of credibility is especially important. 
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A. Increased Limits Facfor 

When loss costs for the first dollar coverage up to the insurer’s limit of liability are 
available, actuaries may use an increased limits factor approach. Actuaries multiply the 
‘capped’ loss costs by the increased limits factor for the attachment point plus the limit 
of liability. Then, we divide the result by the increased limits factor for the attachment 
point. That produces an estimate of loss costs from the first dollar up to the limit of 
liability. Then we subtract the loss costs below the original attachment point. The 
remainder estimates the expected losses in the specifíc excess layer. 

Actuaries use a variety of sources for increased limits factors. The Insurance Services 
Offíce publishes tables of estimated increased limits factors for products, completed 
operations, premises and operations liability, and manufacturers and contractors liability. 
The National Council on Compensation Insurance publishes excess loss pure premium 
factors that allow actuaries to compute increased limits factors for workers 
compensation. The Proceedings of the Casualty Actuar-ial Society may contain tables of 
property losses by ratio to probable maximum loss. Those can be converted to increased 
limits factors by using the factors for the ratio of the attachment point to the probable 
maximum loss (and the ratio of the attachment point plus the limit of liability to the 
probable maximum loss). Actuaries may compute increased limits factor tables using a 
company’s own data (if the company sells enough specifíc excess). Actuaries may 
modify industry tables to reflect their company’s loss cost history. Competitor prices may 
allow actuaries to estimate increased limits factors for obscure coverages. We would 
consider the ratios between competitor prices for various limits of liability. 

Formula 

The formula is as follows: 

(PA x ILF,., + ILF,)- P, or P, x(*-l) 

And in this case 

PA is the loss costs capped at the attachment point (A) (by convention, it usually 
premium capped at the attachment point multiplied by the loss ratio the actuary 
projects.); 

W,+I. is the increased limits factor for the sum of the attachment point and the limit of 
liability(L); and 

lLFA is the increased limits factor for the attachment point. 

342 



Comolement’s Qualities 

As long as the insured being rated has a different loss severity distribution than the norm, 
this complement contains bias. In that fairly likely event, it is also inaccurate. But. 
actuaries must weigh those facts against the greater maccuracy of burning cost statistics. 
When pricing specific excess insurance, actuaries must usually settle for less accurate 
and potentially biased estimators. That is because there are few highly accurate 
estimators available. 

This complement’s error is fairly independent of the buming cost error. This 
complement tends to contain a systematic (parameter-type) error rather than the process 
error inherent in buming cost. It is dependent on burning cost only to the extent that both 
are highly related to the losses below the attachment point. 

Very few specific excess statistics are readily available or easy to compute. Considering 
the altcmatives. the availability of industry increased limits tables (in the United States) 
makes this the easiest specific excess complement to compute. Also. the data for this test 
is available as long as premiums or loss costs capped at the attachment point are 
available. 

The excess loss cost estimates this complement produces are more logically related to the 
losses below the attachment point than those above. That can be controversia1 with 
customers. But that is a common problem with excess insurance pricing. However, 
buming cost is unreliable in isolation. And that problem is common to all excess 
complements. 

Examole 

Consider the following table of increased limits factors. 

Increased Limits Factors 

Limit of Liability Increased Limits Factor 

$50.000 1 .oo 
$100,000 1.50 
S250.000 1.90 
6500,000 2.50 

6 I ,ooo.ooo 3.50 

Table4 
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r ’ 

Suppose one tishes to estimate the layer between $500,000 and $1 ,OOO,OOO given losses 
capped at $500,000 of $2,000,000. The complement using increased limits would be 

= $800,000 

U. l,ower Limirs Analvsrs 

Sometimes the historical losses near the attachment point may be too sparse to be 
reliable. So an actuary may wish to base his complement on basic limits losses, where 
the basic limit is some fairly low loss cap. In this case the formula is almost exactly the 
same as that of the previous analysis. The actuary simply multiplies the historical basic 
limits losses by a difference of increased limits factors. Specifically, he multiplies basic 
limits losses by the difference between the increased limits factor for the attachment 
point plus the limit of liability and the increased limits factor for the attachment point. 
The result is the complement of credibility. 

Formula 

The formula is 

P, x (ILF,+ - ILF,) ; where 

Pb represents the historical loss data with each loss capped at the basic limit (b); and 

lLFA+L and ILFA are as before. 

Altemately, the actuary might choose to use a low capping limit (d) that is different from 
the basic limit underlying the increased limits table. Then, the formula would be 

Comolement’s Qualities 

Actuaries must usually use judgnient to decide whether loss costs capped at the 
attachment point or some lower limit are more accurate and unbiased predictors of the 
excess loss. Estimates made using the lower cap are more prone to bias. That is because 
using losses far below the attachment point accentuates the impact of variations in loss 
sevetity distributions. But, when there are few losses near the attachment point, 
historical losses limited to the attachment point may be unreliable and inaccurate 
predictors of future losses. So, using higher loss caps may produce even more inaccurate 
predictors of excess losses. 
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By an argument similar to that of the previous test. this complement’s errors are fairly 
independent of those of buming cost. 

Generally, this complement features more available statistics and a slightly greater 
complexity. Basic limits losses may need to be ceded for statistical reporting. So, they 
may be readily available for this complement. On the other hand, since insureds and 
reinsureds may place a higher prior@ on accounting for the total losses they retain, they 
are not as available as losses limited to the attachment point. The calculations are no 
more complicated for basic limits analysis than retained limits (attachment point) 
analysis. The only exception would where actuaries must manually compute the loss 
costs between basic limits and the attachment point from a claims list. 

As with the straight increased limits factor approach, this complement may generate 
controversy with customers because it is not based on actual buming cost. 

Examole 

Suppose an actuary is estimating the losses between $500,000 and $l,OOO,OOO and the 
actuary feels he can only rely on historical losses limited to $100,000. The estimated 
historical losses limited to $100,000 are $1,000,000. Then, using the increased limits 
factors from Table 4, he would calculate the complement at 

c = $1 ,ooo,ooo x = $666,667 

C. Limits AM~VS¡S 

The previous approaches work well when losses limited to a single capping point are 
available, but sometimes they are not. Reinsurance customers generally sell policies with 
a wide variety of policy limits. Some ofthe policy limits will fall below (not expose) the 
attachment point. Some limits may extend beyond the sum of the attachment point and 
the reinsurer’s limit of liability. In any event, each subject (first dollar) policy limit will 
require its own increased limits factor. 

So, actuaties analyze each limit of coverage separately. Generally, we assume that all the 
limits will experience the same loss ratio. So, we multiply the all limits combined (total 
limits) first dollar loss ratio times the premium in each first dollar limit to estimate the 
loss costs for that limit. Then, we perform an increased limits factor analysis on each 
first dollar limit’s loss costs separately. The formula is as follows: 
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Formula 

LRr is the estimated total limits loss ratio; 

The ‘d’ are all the policy limits the customer sells that exceed the attachment point ( t A); 
and 

each Wd is the premium volume the customer sells with policy limits of ‘d’. 

The ILF’s have the same meaning as previously. 

Comolement’s Qualities 

Actuaries use this approach because it may be all that is available. Reinsureds may be 
unable to split their histotical losses any more finely than losses that would have pierced 
the cover in the past versus all other losses. Since the total limits loss costs (which are 
almost always available, at least as an estimate) may include claims beyond the layer, it 
may be impossible to calculate losses limited to the attachment point. In any event, if 
some of the reinsured’s policy limits are below the attachment point, they do not expose 
the layer and should be excluded from an increased limits factor calculation. So, this 
may the only available complement with low bias. 

It is biased and inaccurate to the same extent that the previous increased limits factor- 
based complements were biased or inaccurate. It is more time-consuming to compute 
(unless the altemative is computing limited claims from claims lists). And it generates 
the same controversy as the other methods since it is not the same as the actual buming 
cost. 

Examole 

Suppose an actuary is estimating the losses in a layer between $250,000 and $500,000. 
Breakdowns of losses by size are unavailable. But, the actuary believes the loss ratio of 
the customer’s entire business to be 70%. He does have a breakdown of premiums by 
limit of liability. Using that breakdown and the increased limits factors from Table 4, he 
computes the losses in the layer below. 
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Limits Analysis for Layer Between $250,000 and %SOO,OOO 

Times 70% Increased 
Limit of Loss Limits % i n Loss in 
Liability Premium Rano Factor Layer Layer 

S250,OOO % 600,000 $ 420,000 1.9 0.00% $ - 
$500,000 9 300,000 â 210,000 2.5 24.00% $ 50,400 

$1 ,ooo,ooo s 300,000 8 2 10,000 3.5 17.14% % 36,000 

Total % 1,200,000 $ 840,000 $ 86,400 

Table 5 

So, he estimates the losscs in the layer at $86.400. 

The problem with most of the previous complements is that they do not give special 
attention to the claims above or near the attachment point. So, they miss differences in 
loss severity distributions between insureds. But of course that must be counterbalanced 
against the fact that individual insured’s large claims histories usually lack credibility 

By fitting a family of loss severity curves to the distribution, actuaries make the most of 
the large claim data that is available. If the loss history shows no claims beyond the 
attachment point but many claims that are very near to the attachment point, a fitted 
curve will usually reflect that and project high loss costs in the subject layer. On the 
other hand, if there are few large claims close to the attachment point, the fítted curve 
will project low loss costs for the layer. 

The details of how to fit curves are beyond the scope of this paper(see [4]), but’ it will 
provide an outline of how to use fítted curves in practice. After fítting and trending the 
curve, an actuary will use the curve to estimate what percentage of the curve’s total loss 
costs lie in the subject layer. He may do this by evaluating the difference between the 

limited mean function ~~~(.r)dx+(l-/~(L))L at the attachment point and the 

attachment point plus the limit of liability He would then divide the result by the total 
mean (or the mean when claims are capped at the typical policy limit) to get the 
percentage of the total loss costs that lie in the layer. Multiplying that percentage by the 
total claims cost yields the estimate of claim costs in the layer (for details, see [4]). 
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Of course, excess values from curve fits need extensive loss development just like 
buming costs. Actuaries may use excess loss development factors such as those 
published by the Reinsurance Association of America, or they may triangulare the fítted 
loss costs. 

Comolement’s Oualities 

This method is generally unbiased (except for concems that the general shape of a family 
of curves may predispose the results for the family to estimated costs in particular layers 
that are either too high or too low.) When there are few large claims, it is more accurate 
than buming cost. It is often more accurate than increased limits factors simply because 
it does a better job reflecting any general tendency towards large or small claims. On the 
hand, fítting curves forces data into a mold that may not fit the data. The actual loss 
severity distribution will almost cettainly look very different from all the members of the 
family of curves, This ‘super-parameter’ risk introduces error of its own. The ‘super- 
parameter’ risk is totally distinct from process risk. and that makes the complement fairly 
independent. On the other hand, the presente or absence of burning cost claims in the 
layer can influente the curve fit heavily. So, this complement has somewhat more 
dcpendent (relative to buming cost) errors than the increased limits approaches. 

Data availability and computational complexity are problems here. To fit a loss severity 
curve an actuary must either use a detailed breakdown of all the claims into size ranges 
or use a listing of every single claim. Usually, that data is not readily available. Further, 
the processing required to ftt curves requires fairly complex mathematical calculations. 
Besides the fact that complex calculations require special personnel, the complexity 
makes the results difftcult to explain to lay people. 

On one hand, this complement uses more of the insured’s own data in and near the layer 
than any other excess complement. On the other hand, its complexity may make that fact 
dificult to communicate. 

Iv. Summary 

The complement of the credibility deserves at least as much actuatial attention as the 
base statistic (historical loss data). Actuaries owe special attention to its unbiasedness 
and accuracy. In some cases, interdependence must be avoided. And any actuarial 
method must be implemented using reasonable labor on available statistics. Meeting 
those qualities may require stattstics that make less explainable sense to lay people, but 
explainability must be considered, too. 

This paper has detailed severa1 statistics that are commonly used for the complement of 
credibility. Their use improves many actuarial projections considerably. 
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Appendix A 

THE ERROR IN CREDIBILITY ESTIMATES 

This appendix will show that the error in an optimum ciedibility weighted estimate is 

W,,x,) = 
5;r;(I-p2) 

r: +5; -2pr,r,. 

The proof involves three equations from Boor[ 1): 

(1) O(x,,x,)=ZrF +(l-Z)ri +(Z2 -Z)& (p.182, the simplified error of the 

credibility-weighted estimate); 

2 2 * 
(2) z = 52 y-g+42 (p. 183, the formula for the optimum credibility); and 

1.2 

(3) Sf,, = rf + r: - ZCov(x, ,xJ (p. 179, the formula relating 6:: to the correlation). 

In this case r,,r2, andp are the same as they were in the body of thc papcr (the 

prediction errors of buming cost and the credibility complement and their correlation): 
O(x,,x,) is the minimum possible average squared prediction error from credibility 

weighting buming cost (x1) and the credibility complement (.x2); and Si,, is the average 

squared difference between buming cost and the credibility complement. 

Simple algebra on (1) allows one to pull out severa1 terms that will create the numerator 
of (2). 

O(x,,x,) = -Z(r:-s;+6;,,) + r; + Z26f,,; 

Using the detinition of Z (equation (2)) once again with some algebra gives 

= 2 
5, - 

(5: - rf +6f,,)* 

4% 
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Appendix A 

Using (3) and the relationship between the covariance and correlation gives 

= ri _ (4 - rt + rf + r: -~COV(X,.X,))~ ; 

4% 

= ri _ (4 - 5: + 5: + r: -2pr,r,)’ 

46, 

= *- r2 (24 -2pr,r2)2 
4c2 ’ 

= 2 
r2 - 

(6 -pr,r212 
8.2 

Then, more algebra gives 

= 5: l- 
( 

tr2 -Pr,)* 

1 rf+r:-Zpr,r, ’ 

2 
= r2 

5: +r: -2pr,r, 
x(rf t ri -2pr,r, -5: +2pr,r, -p2r:); 

2 
= r2 

rt + ri - 2pr,r, 
x(rf -p2rf); 

= r:rf(l-p2) 

rf+r:-2pr,r, 

and that is the error formula we sought to prove. 
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Appendix B 

FOR CORRELATIONS NEAR UNITY, 
CREDIBILITY IS NEGATIVE 

This appendix will show that whenever the correlation exceeds the point of maximum 
error, the credibility of one statistic is negative. To explain this principie, reviewing the 
graph of error by correlation will help. 

Pradktion Error 88 a Function of Correlatlon 1 

/ Fig. 1 (reprinted) 

As one can see, the prediction error is initially minimized when the correlation is 
negative. Then it increases until the error is maximized. Then the error decreases again 
beyond that maximum point. This section will show that the one credibility is actually 
negative beyond that maximurn point. 

As it happens, when r2 2 7,. that maximum point is wherep = r,/r2. And all 

correlations beyond that yield negative credibility fo; the complement. Altemately, when 
r, 2 r2, p = r2/r, 5 1 is the point of maximum prediction error. Beyond that, the 
buming cost’s credibility will be negative. But, this appendix must prove that. 
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Appendix B 

It is easy to show that 0 has a maximum where p = r,/r2 One need only note that 

the function ú>(p) has a maximum where 

o= E = 2P(7f +rZ -2pr,r,) - 27,7,(1-p2) 
JP (7: +5: -2p7,7,)2 

(using the definition of Q(p) from appendix 1). Using some algebra, that is equivalent to 

0= 2prf +2pri -4p2r,r2 -25,~~ +2p2r,r2;or 

0 = (7, - ~7~)(7~ -PT,). 

So. the maximum is at T, /r, or r2 /T, , whichever is less than one 

To show that correlations beyond that maximum point result in negative credibilities, it 
suffices to show that they firlfill Boor’s condition for negative credibility ([ 11, p. 183) 

7: t 7: +s;,,. 

But that follows directly from Boor’s equation relating the credibility and covariance 
([ 11, p. 179). That is, since 

si.2 = 7; +7; -2cOV(X,,X,) = 7: +T; -2pT,T,, 

Boor’s condition is equivalent to 

T~k-T~+T;+T:-2pT,T2. 

Or, 

that is, Boor’s condition for negative credibility is fulfilled and fulfilled only for p 

beyond the point of maximum error. So, the correlations near unity yield negative 
credibilities. 
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Appendix C 

DATA FOR EXAMPLE APPLYING COMPLEMENT 
TO GROUP RATE CHANGE 

ta) (b) Cc) 

3 
4 

6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 

GrOUP GKUp 
N(.I,.OO25) Loss 

Trend Cost 
0 115 1.000 
0 101 1 ll5 
0021 1 228 
0.107 1.254 
0.137 1.389 
0.091 1.579 
0.082 1.723 
0 082 1.865 
0.143 2.017 
0.188 2.305 
0.075 2 739 
0.000 2 945 
0 093 2.946 
0.192 3 220 
0.075 3.839 
0.009 4.128 
0.077 4.167 
0.136 4.487 
0.062 5.096 
0.133 5411 
0.093 6.128 

Cd) 
Mean 
Cias5 
Loss 
cost 

(el (9 
Class with 

Process 
Variance Classic 

W.WYW2) Z 

(8) 00 
Estimate 
w/( 1 -Z) 

Classic Applied 
Estimate to Change 

0.500 0 188 0.692 I 000 1.000 
0.558 0.256 0.692 0.481 0.438 
0.614 0.825 0 692 0.572 0.306 
0.627 0.695 0.692 1.044 0 724 
0.694 0.782 0.692 0.954 0731 
0790 1037 0.692 1.065 0.792 
0.862 0.747 0.692 1 324 1.025 
0.932 I 034 0.692 1.153 0.885 
1.009 0.468 0.692 1418 1.056 
1.153 1.759 0.692 1.039 0.659 
1.369 1.393 0 692 2.119 1 498 
1.472 1.653 0 692 1.988 I 545 
1.473 0 992 0.692 2.256 1.782 
1610 1.516 0.692 1.753 1.315 
1919 3.501 0.692 2.244 1 527 
2.064 2.358 0.692 3 966 3.162 
2.083 2.213 0.692 3.193 2.862 
2.244 2.225 0.692 3.096 2 616 
2.548 2.733 0.692 3.214 2 525 
2.705 2.394 0.692 3.806 2.917 
3.064 2.819 0.692 3.654 2.752 

Notes - COIU~ (g) is [(,f)*(previous column (e) + (1 -(f))(previous column (c)l * (1 t 10% trend) 
- COIU~ (h) is {(f)*[previous column (e) - previous column (h)] + (1-(f))*[previous column (b) 
*previous column (c) -1, I l previous column (c)] + previous column (h) I l ( 1 + 10% rrend) 
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