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ABSTRACT

The Bailey and Simon (1960) and Bailey (1963) papers on class and
merit rating discuss models and estimation criteria in a non-probabilistic
framework. it has been shown, for example, Van Eeghen et al (1983),
that the Bailey and Simon criterion of class balance is equivalent to
maximum likelihood estimation of a claim frequency model with Poisson
distributed claim numbers. It tums out that the Poisson based modei
is part of a large body of recently developed statistical methodology
known as Generalised Linear Regression Modelling.

Indeed, the Bailey and Simon papers provide the motivation for
generalised linear regression models. By applying the regression
framework some results are developed that relate the various estimation
criteria and a number of extensions are given for the case where the
condition of class balance is not appropriate as a resuit of lack of
credibility for some of the classes. The regression framework moreover
facilitates the consideration of a much wider family of models than that
considered by Bailey and Simon. Generalised regression models are
also motivated and indeed introduced as an extension to the classical
normal based regression models. Many of the benefits afforded by
regression modelling are discussed.
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INTRODUCTION AND SUMMARY

The present paper has two important objectives.

. Relata the work of Bailey and Simon [1] and subsequently Bailey [2] to
some modern statistical technology that falls under the heading of
Generalised Linear Regression Modeis.

. Demonstrate that Regression modelling is very powerful and
accordingly facilitates a number of significant extensions of the works
of Bailey and Simon.

There are two principles in insurance that play an important role in ratemaking.

(P1): Each individual risk should pay for its own claims.

But, on the other hand, the basic quintessential idea of insurance is that

(P2): A given portfolio forms a collective of risks *with equal rights®, each of
them paying the same pure (collective) premium.

Both principles {P1) and (P2} are in agreement for an homogeneous collective.

The pure premium differentials should be directly related to the ‘type and
degree' of heterogeneity. How do we measure the hetsrogeneity in the
experience?

Consider the following example. Suppose we have a portfolio of motor car
policyholders each having a claim rate A. The parameter A is the true claim
intensity and is unobservable. Since A is different for each policyholder we
could assume that A has a distribution f(A) depicted below.
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£(a)

AN

The mean of A, viz., 4, = E[A], is the pure premium for the collective (or
portfolio). However, if we consider a sub-population of the collective that has
A- values in the interval I, then A, is biased downwards for the sub-population.
The pure premium for the sub-population (or sub-class) is the mean of the A-

values that lie in the interval 1.

Quoting from Bailey [2]:

“The more we sub-divide the data, the less biased are the
resulting rates for each class®”.

But we add, that the finer the sub-divisions the "less credible® may be the

individuai experience for that individuai sub-class.

By ‘less credible" is meant, that an appropriate model, only based on the
individual experience, leads to much uncertainty. We discuss a similar

example in Section 2 that provides some compelling reasons for regression.

The paper is organised as follows.

Section 2 examines a ratemaking example involving only one risk (tariff)
variable. The power and usefulness of a regression model is illustrated,

especially in the context of lack of credibility for each level (sub-class) of the
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tariff variable. Regression is not a single method. Regression is a modelling
approach.

Regression has been used as the scientific method in scientific fields ranging
from physics, engineering to psychology. We use regression to extract
information from data. We use regression to determine whether the data we

have supports our hypotheses.

Section 3 presents well known discrete distributions and their relationships that
prove useful in the analysis of categorical data.

In Section 4 we visit a ratemaking example involving two risk variables
discussed by Bailey and Simon [1] and Bailey [2].

it is shown that the Bailey and Simon criterion of “class balance” is equivalent
to the “criterion of average bias = 0 which in tum is equivalent to "maximum
likelihood estimation assuming Poisson counts*, which is equivalent to

‘maximum likelihood estimation for the multinomial distribution”.

Moreover, the multiplicative model (or hypothesis) is equivalent to the
hypothesis of ‘independence of the two tariff variables®, altemnatively, "no
interaction" or "no association”.

By applying the regression concepts of Section 2 we extend the Bailey and
Simon multiplicative model to situations where "class balance" is inappropriate
as some classes possess loss experience that is not sufficiently credible for the

corresponding class risk parameter.

Brown [3] also introduces a number of models within the Generalised
Regression Modelling framework.

Section 5 revisits the well known Normal based regression madel as a lead up
to the Poisson based regression models of Section 6.
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The foregoing sections set up the ground work for the introduction of

Generalised Linear Regression Models.

The generalisations from the Normal based regression are in three directions

* distributions other than the Normal including Poisson, Binomial and
Gamma;

* the response variable Y need to be continuous;

* link functions that are not the identity link functions.

Section 8 discusses inference and hypothesis testing in the context of
generalised linear models and demonstrates, using an example, that the
difference in scaled deviance is the generalisation of the F-ratio statistic from

Normal-based regression modeis to generalised regression models.

Section 9 provides a summary of conclusions.

The paper is, by and large, pedagogical and is only intended to give the
reader a glimpss of the current available statistical technology in the belief that
with the advent of fast computers actuaries should be cognisant of it.

There are a number of statistical packages that the reader will find useful for
Generalised Linear Regression Modelling, for example, BMDP (Biomedical
Computer Programs, UCLA), SAS (SAS Institute, Rayleigh, North Carolina) and
GLIM (Numerical Algarithms Group, Oxford, U.K)).
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REGRESSION - A RATEMAKING EXAMPLE INVOLVING LACK OF SuUB-
CLASS BALANCE

Bailey and Simon [1] argue that a necessary condition to be satisfied by a
satisfactory rating systemn is that for large groups of insureds, (total) premium
is approximately equal to (total) observed losses. (This condition is related to
the Law of Large numbers). The condition is known as the criterion of class
balance.

For the ratemaking example formulated below we have lack of sub-class
balance as a result of some sub-classes loss experiences being non-credible.

We solve this problem by relating the sub-classes through a regression model.

Suppose X is a tariff or risk variable, e.g. X is age.

Aim: Determination (or estimation and uncertainty) of loss size

distributions for ten levels (values) of X, viz., x,, X, ..., X,

Question; Is there any heterogeneity between the sub-classes x;, x,, ..., X,,?

If the answer is in the affirmative, what is its nature?

O
2
I

Losses Y, ..., Y,, corresponding to sub-class (or risk level) x,.

X, X3 Xy0
Yy Ya Yot
Yo, . .
Yon
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Problem:; For some sub-classes x, the sampie size n, is too small to be
able to fit or estimate a loss size distribution with reasonable

accuracy, (e.g. n; < 2) to that sub-class independently.

The sub-ciasses cannot be analysed separately as for some sub-classes there
is insufficient loss experience. Equivalently, some sub-classes are not
sufficiently credible. SO, WE NEED A MODEL

Based on some preliminary diagnostic analyses of the data the foliowing

model may suggest itself.

Y, =exp (@ + px) € @.1)
Let U, =log (Y)and ¢ = log €, then
Ui=a+Bx+eg . (2.2)

We also assume that ¢ ~ N(O, ¢®), so that ¢ is lognormally distributed.

lognormal : \

explo + §x)

- Fig 2.1
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N Normal

a + px,

Fig 2.2

Fig 2.1 represents a display of equation (2.1) and Fig 2.2 a display of equation
(2.2). Fig 2.1 depicts the regression model on a $ scale whereas Fig 2.2
depicts the same model on a log scale.

Every regression model contains assumptions or information.

Assumptions

(A1): Loss distributions are lognormal (equivalently, normal on a log scale).
(A2): Constant variance (on log scale) of Normal distributions.
(A3): Mean of U=log Y is linear in x.

The mode! relates the loss distributions of the different sub-classes. Itis a

probabilistic, equivalently, a stochastic model.

The model parameters (o, # o*) are estimated using maximum likelihood
estimation theory. We emphasise that THE ASSUMPTIONS (A1), (A2) AND
(A3) MUST BE TESTED.
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The assumptions that apply to the model must aiso apply to the data.
Otherwise, all our subsequent computations are meaningless. If none of the
assumptions are vioclated by the data then we have extracted much
information. Let's see now. We have an estimate of the loss size distribution
for sub-class x,, for example, even though we only have two observed losses
(n, = 2) corresponding to this sub-class. This information is extracted from
the model, since it relates the loss size distributions of the different sub-

classes.

Note that the regression model comprises the lognormal distributions whose
median is related by exp(a + Bx). So regression modeliing is much more than

just estimating thg curve explg + Bx).

REGRESSION IS THE ESTIMATION OF DISTRIBUTIONS AND THEIR
RELATIONSHIPS.

Suppose assumptions (A1), (A2) and (A3) are not violated by the data and
when we test the hypothesis H:8=0 we find that we do not have sufficient
evidence to reject it. We can therefore conclude that the sub-classes are

indeed homogeneous in terms of loss size distributions.

WE ALSO USE REGRESSION MODELLING TO DETERMINE WHICH
HYPOTHESES THE DATA SUPPORT.

In the case of Normal distributions, maximum likelihood estimation theory is

equivalent to least squares estimation theory.

indeed, the Normal based regression has been the basis of much of statistical
modelling until the early 1970's when regression modelling was extended to
what is now called:

GENERALISED REGRESSION MODELLING

There are essentially two extensions in the generalisation.
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1. From Normal distributions to other distributions including Gamma,

Poisson, Pareto and Binomial.

2. From a continuous response variable Y to categorical response

variables.

GENERALIZED REGRESSION

NORMAL  POISSON PARETO BINOMIAL
= LOG-LINEAR GAMMA = LOGISTIC
REGRESSION REGRESSION

We will show in subsequent sections that the models and estimation criteria
of Bailey and Simon {1] and Bailey (2] are related to log-linear regression.
REGRESSION IS A VERY POWERFUL TOOL IN RATEMAKING.

in a way, what we did in the ratemaking example, when faced with insufficient

loss experience for each sub-class, is to employ a type of credibility analysis.
Indeed, regression may be viewed as a type of credibility analysis. See the

Zehnwirth notes on credibility presented at the CAS Ratemaking Seminar held
in Chicago in 1991.
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3.1

3.2

PRELIMINARIES ON DISTRIBUTIONS

In the present section we develop some basic distributional theory that will
prove useful in relating @ number of ratemaking criteria discussed by Bailey

and Simon.
BINOMIAL

We say that Y has a Binomial distribution with index n and parameter 8,
equivalently, Y ~Bin(n,8), if Y represents the total number of ‘successes’ in n
independent Bernoulli trials where the probability of success at each trial is 6.
A Bernoulli trial has only two possible outcomes ‘Success’ or ‘Failure’ = ‘Not

Success'.

MULTINOMIAL

The Multinomial distribution is an extension of the Binomial where at each trial

there are k possible outcomes, where k = 2.

Prob (jth outcome) = §,: 26, = 1.

Let Y, denote the total number of cutcomes " in n independent trials.
We write (Y,, ... Y,) ~ Multi(n; 6,, ... 8,).

Note ZY, = nand ¢, = 1.

nl
yl-yd

Y1 ¥
o)..0%

Prob (Y, = Yy v Yyl =

Note Y; ~ Bin(n, 8) so that

E[Y] = ng, and Var[Y] = n(8)(1-6).
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3.3

POISSON

The Poisson can be thought of as a limiting form of the Binomial distribution.
It represents the distribution of the number of events in a fixed time interval if
it is assumed that (i) each ‘small’ time interval may be regarded as a Bernoulli
trial - either one event occurs in the time interval or it doesn't, (i) the
probability that an event occurs in a small time interval is proportional to the

length of the interval and (iii) non-overlapping time intervals are independent.

We say Y ~ Po(4) if

AY-y) = 67 -;1  y=0,1.2...

We have,
E[Y] = VarY] = A.

We now state two results and only prove the second.

(R1): IfY,, Y, .. Y, are independent such that Y, ~ Po(}) then
zY, ~ Po(zd).

(R2): 1fY,, Y, ... Y, are independent such that Y, ~ Po(4) then

M, o Y ] IY) ~ MUi(EY; ©,, .., 8

8 = 1
where ST
Y

So, if we know the sum of Poisson counts, then the distribution of the
individual counts is Multinomial where the probabilities are equal to the relative

Poisson means. This result is almost intuitive if we bear in mind that the
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Poisson is a limit of Binomial that comprises independent Bernoulli triais.

Proof; PriY, =y, ... Y=y, | Z¥;=n)

Pr(Y,=¥ys - Y=y 0 (XYn)

Pr(ZY/=n)
k1
Pr(Ys=¥a o Yis =yk-1'Yk=n~; 7
= PrYY/n)

Bearing in mind that IV, is Poisson from (R1), we have the conditional

probability

&1

3y
et el ein, T
Wt E
(- y
1
9'2‘1(212’1
m
Mg e,
nleoyd
¥ X
where Ye=N-Y Y% and &= .
1 Iy

The proof is now complete.
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4.1

BAILEY {2] - MOTIVATION FOR LOG-LINEAR REGRESSION
MOODELS

INTRODUCTION

Let us take out an excerpt from Bailey's [2] paper.

"In making rates for insurance we are faced with the problem that
there are many different classes of risks with a different rate for
each class, and that no one class by itself has a sufficient volume
of premium and losses to give a reliable basis for the rate of that
class®”.

Is this not the kind of problem we considered in Section 2? And we solved it
by using an appropriate regression model. Indeed, Bailey and Simon aiso
solve this probiem by indirectly applying regression because class balance is
equivalent to Poisson regression. The following cross-classification example

is considered by Bailey and Simon [1].
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4.2 CROSS-CLASSIFICATION EXAMPLE

Consider two categorical tariff variables A and B. Variabie A is at | levels

whereas B is at J levels.

We can construct the following two-way table.

B 1 2 3 i I

A -

1 ! Yy

2 i

3 :

L et Y, = e

1 ‘: Af
Y, Y, Ly

We denote by Y, a count representing the total number of claims

corresponding to level i of variable A and level j of variable B.

Y, = ¥, = TOTAL OF ROW i
’ = TOTAL FOR "CLASS" | OF |
Y,= Y ¥, = TOTAL OF COLUMN |

il

TOTAL FOR "CLASS"j OF ]

1

joi

Let's assume that the counts Y; ~ Po{4,) and are independent. Without loss

of generality, we also assume the exposure n; = 1, for ail cells (ij).
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The parameter A, represents the mean claim rate for cell (i,).
Now, mast of the celis (sub-classes) are not sufficiently credible in the sense
that the individual ‘loss" experience Y, is nct a reliable estimate of the
corresponding risk parameter A,
Our assumed model currently has [ X J parameters (4)), too many to be
estimated from the 'sparse’ data. Let's postulate a model that has fewer
parameters.

Hidy = A Al
This is called a multiplicative model. It appears that this model has I + J
parameters. Actually, it only has I + J - 1 parameters. This will be explained

later.

Now, Bailey and Simon [1] and Baitey [2] argued that the ‘rate should be
balanced in each class and in total".

That is, each class experience is sufficiently credible to estimate the

corresponding class parameter.

The class parameter for level i of variable I is
"
PIPIRY
l

=AY A

!

The class parameter represents the mean (total) number of claims for the

class. It's estimate is the sample total Y,, also called the marginal row total.
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So, for class i of I we have

Y, - ZI:L{A}’ =i ;X}’ . (4.2.1)
Similarly, for class j of ] we have

Y, = ); PR ; A (4.2.2)
The ~ above the parameter denotes an estimate.

See Section 4.6 for a discussion of the situation where Y ; is not credibie for the
corresponding class mean parameter. That is, we cannot apply “class
balance".

Equations (4.2.1) and (4.2.2) are the equations of "class balance". They can
be solved iteratively for 3/ and ij’ . ltis straightforward to see that a

solution is

i = Yi T (4.2.3)

Yy
Y.

X

incidentally, if i/ and i/ are solutions to (4.2.1) and (4.22), then so are i,

and j_;//a for any constant a.

From equations (4.2.1) and {4.2.2) we also have total balance, viz.,

Y = ;); i (4.2.4)
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We now re-write the equations of "class balance" as follows:

TR

J 0o ,
; Y, (4.2.5)
and
pAULAH
g -0 . (4.2.6)

£

Se, the criterion of "class balance” is equivalent to the criterion of "Average

bias = 0"
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4.3

THE CROSS CLASSIFICATION EXAMPLE AS A RETROSPECTIVE
STUDY

Suppose the preceding cross-classification example is regarded as a
retrospective study. Thatis, on our books we have Y claims that we segment
(equivalently, cross-classify) according to the levels of the two risk variables
A and B.

So it Y, ~ Po(A) then (Y,,, Yy, .. Y5, ... Yy, | Y) has a Multinomial

A
distribution with ceil probabilities 8, = =<i— . See (R2) of Section 3.3.

IR

Assume the hypothesis:
H: 9, = 6/.8/ is valid.

That is, the probability of a claim being in cell (i,j) is the product of two
probabilities.

The hypothesis is equivalent to (i) independence of the two tariff variables A
and B, (i) no association between the tariff variables A and B and (i) no

interaction between the tariff variables A and B.

So, under H
6, = 6.8/
Y= -1 . (4.3.1)
i i
The Multinomial likelihood function is L(Y,,, ..., ; 6,y, 8,; ...)
=75%%mﬁﬁmeﬁ, (4.3.2)
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where ¢, = 8/ 6/

and Z’:e’=zj:67=1

So, the log-likelihood / is given by
! = constant + 33Y, log[6/.6]] . (4.3.3)
The “constant” is a function of the Y's but not of the &'s.

To determine the maximum likelihood estimators subject to the constraints,

(4.3.1), we set up the Lagrangian.

t=l- (e - -GEe - (4.3.)

To maximise the Lagrangian, we set the partial derivatives to zero.

& _ & _ &

'~
o T

AR AR
Similarly, éﬁ’ =Y, ¢
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. Y, . Y.
SQ' al = _—L. , e” =
Y Y

(almost obvious!)

Equations (4.3.5) can be recast

Y, =Y. Y6 & -v8 Y§
j ]

and,

Y, =Y. 8 8 -Y§T§
i f

Equivalently,

&= v, 18y
)

&=y 18y
I

(4.3.5)

(4.3.6)

(4.3.7)

(4.3.8)

(4.3.9)

Equations (4.3.6) and (4.3.7) are the "equations of class balance". They are

equivalent to equations (4.2.3).

So, maximum likelihood estimation for the

Multinomial is equivalent to the criterion of "class balance" (under the

hypothesis of no interaction).
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4.4 THE CROSS-CLASSIFICATION EXAMPLE AS A PROSPECTIVE (POISSON)
MODEL

Consider the muitiplicative model (Bailey and Simon [1]) hypothesis again,

viz,,

H: Ay = A AL
The study here is regarded as an observational study where we begin
recording the claims at the beginning of the year and conduct the analysis at
the end of the year. Accordingly, we do not condition on the total count Y .
The likelihood function is given by
L (Yii : Ail Aj”, i=1, ., =1 ..J)

2 (A AT
=H 91'1’
A

Therefore, the log-likelihood [ is given by

{=constant + Yy, lloga/ }.;’] -y A l;l

=¥ ¥,/ % - Y4/ = 0, which implies that
J l

iy (4.4.1)
Il
Similarly, we obtain
-y 3/
=4 TH (4.4.2)
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Observe that (4.4.1) and (4.4.2) are equivalent to (4.2.1) and (42.2)
respectively.

So, maximum likelihood estimation for the multiplicative Poisson prospective

model is also equivalent to the Bailey and Simon [1] criterion of class balance.

The maxirnum likelihood estimation criterion is also equivalent to what is

sometimes termed "the method of marginal totals",

It is also important to recognise that maximum likelihood for the Multinomial
retrospective multiplicative model yields the same results as maximum
likelihood for the Poisson prospective multiplicative model. This is because
both likelihoods only depend on the observed cell frequencies and the
expected cell frequencies. One conclusion here is the interpretation of the
Bailey and Simon [1] multiplicative modei:

H: A=A A

The assumption is equivalent to the assumption of “no interaction between

rating variables A and B" = ‘independence of rating variables A and B” = "no

association between variables A and B".

In the more recent statistical literature, the method of estimation based on

equations (4.4.1) and (4.4.2) is cailed iterative proportionai fitting procedure.

The iterative proportional fitting procedure involves adjusting the expected cell
frequencies until they add up to the required marginal totals (at least to within
some specified accuracy) We begin with some initial estimates of

il,’, iﬁ » say, adjust the estimates of 5-'1. e il; using equation (4.4.1)

so that the row margins are the sum of the cell frequencies in the

corresponding row. Then using equation (4.4.2), adjust the estimates of
i','. i/j » so that the column margins are the sum of the cell frequencies
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4.5

in the corresponding column, and so on.

Summary
ITERATIVE PROPORTIONAL FITTING
- MAXIMUM LIKELIHOOD PROSPECTIVE MULTIPLICATIVE POISSON
= MAXIMUM LIKELIHOOD RETROSPECTIVE MULTINOMIAL
= CRITERION OF CLASS BALANCE
= AVERAGE BIAS = 0

AND the multipticative hypothesis is

= INDEPENDENCE (OF THE TWO RATING VARIABLES)
- NO INTERACTION

= NO ASSOCIATION

NON-CONSTANT EXPOSURES

Suppose that for the cross-classification of the two categorical rating variables
A and B, the exposures n, corresponding to cell (ij) are not constant.

We have

~<
I}

, = COUNT IN CELL i)

EXPOSURE (e.g. numbr of policyholders)

-]
o
I

4; = CLAM RATE
= MEAN CLAIM/EXPOSURE UNIT,

The count Y; ~ Po (nA), where n, is known and we also assume the
hypothesis H: 4, = A/ . A/

Equations (4.4.1) and (4.4.2) are now
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4.6

Y, = & Zn,ij’ , (45.1)
/

Y, =Yl . (45.2)
i

So, these equations provide the maximum likelihood solutions for Ai’ and Al”.

Here, there is not a close solution for the estimates iﬂ and 7\7 .

The summary of resuits given in the foregoing section still apply.

EXTENSIONS TO SITUATIONS WHERE CLASS BALANCE IS NOT
APPROPRIATE

Hitherto we have assumed, as Bailey and Simon do, the condition of class
balance. That is, the loss experience of a class is sufficiently credible for the

corresponding risk parameter for that class.

Suppose instead that some of the classes j of variable B are not credible in the
sense that Y; is not a reliable estimator of the corresponding class pure

premium,

MY A

l

Furthermore, let us assume that variable B (e.g. age) can also be regarded as
a continuous variable. In place of having an "independent” parameter A;’ for

each class j, we could relate the parameters thus:

IogAj’ =a + BX;, . (4.6.1)
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Our multiplicative Poisson model now contains oniy I - 1 + 2 parameters.

Of course, all the assumptions of this madel would have to be tested to ensure
they are supported by the data.

By way of summary, we have used regression to circumvent the problem of

lack of balance.

We make the additional remark the even when class balance is appropriate,
the model involving the relation (4.6.1) is better than the model involving J

‘independent” l;’ parameters, provided it is not violated by the data.

Parsimony is an important principie in modelling.
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NORMAL BASED REGRESSION MODEL

The model:

Y =X8 +¢€ e ~NO D (5.1)
has formed the basis of most statistical analyses of continuous data. Models
ranging from "straight line" regression to analysis of variance and analysis of

covariance possess the formulation (5.1).

The model can be written as foilows:
Y =Y, ..Y) B =8, B)and € = (e, .. €). The zero mean error
terms ,, .., €, are independent from N(O, ¢®). The Normal distribution is an

integral part of the model. See Section 2.

We can write
Y, =u + ¢ where y = E[Y], and

y =x.8

-~ '

The vector X/, = (x,, ..., X,,) is the “design” corresponding to Y. The design

matrix X is given by

X = =
RS I Y
The mean of Y, y, is linear in the parameters g, ..., 8,, hence the term "linear"

in linear regression.

Example

Consider the example of Section 2.
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U, =a+Bx +¢.: € ~ N0,

4

Using the notation of the current section,

Y = Uy oo Uny Usgy oo Urgys s Ungn s
B = (a, B and the design x/ corresponding to U; is
,_x,lli = (1' x])

in order to find the least squares estimates of ¢ and # and other statistics
using a statistical package the user typically has to specify the design matrix
X

Just a brief comment about the |ink function.
We can write g(u) =5'i B where g a function of the mean g, of Y, that links

4, with a linear function of parameters, x’, B8 . Heregisthe identity function.

So, the link function for the Normal based regression is the identity function.
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LOG-LINEAR (REGRESSION) MODEL
Consider the model

Y, ~ Po (4) with

H: Ay = A A (6.1)
This suggests the log as the natural link function.

The link function relates A; (= E[Y,]), the mean of Y,, to a linear combination

i

of parameters.

The above hypothesis regarding multiplicativity may be re-cast,

log, = uy+a+8 , (6.2)

LIV (6:3)

So, the log of the mean is related linearly to a set of parameters v, g, and 8,
The parameter vector 8 = (u, a,, 0, ..., G, By, By - B)), and the design

i1 11 j- g1
X =(1,0..0,1,0..0,0..0,10..0).

"

The Poisson based regression model is called log-linear regression because

the link function is the logarithm function.
We return to this log-linear regression model in Section 7.
The log-linear regression model of Section 4.6 is formulated as follows:

Y, ~ Po(4) (6.4)



with
log Ay =pu + a + Bx . (6.5)

The design corresponding to Y is

i-1 L1
—r—
X =(1,0..,0,1,0..,0, %)

and the parameter vector £ is

Q = (‘J| au bl | alt B)I

For those readers who have not used a statistical package to conduct log-
linear analysis it is important to recognise that the design matrix is specified
indirectly by just specifying the variables.
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7.1

GENERALISED LINEAR REGRESSION MODELS

EXPONENTIAL FAMILY OF DISTRIBUTIONS

Recent advances in statistical theory and computer software allows us to
use methods other for those developed for Normal based linear regression
models (5.1).

There have been a number of generalisations or extensions:

(1) response variable Y has a distribution other than the Normal;

(2} response variable Y can be categorical;

{3)  the link function is not necessarily the identity function.

It turns out that some of the 'nice’ properties of the normal distribution are

shared by a wider class of distributions cailed the exponential family of

distributions.

Consider a random variable Y that is discrete or continuous whose

distribution depends on a single parameter of interest 6.

The distribution belongs to the exponential family if it is of the form

fly;6) = s(y) (6) exp[a(y)b(8)], (7.1.7)

where a, b, s and r are known functions.

So, f(y;8) can be written

fHy;8) = exp [a(y)b(8) + c(6) + d(y}], (7.1.2)

where s(y) = exp [d(y)] and r(8) = exp [c(8)].
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if in equation {7.1.2) aly) = vy, then (7.1.2) is said to be the canonical form

and b(8) is called the natural parameter.

Any other parameters apart from @ are regarded as nuisance parameters,

Example 1: Poisson

-8,
6% . 012

Suppose Ay:8) =

We can express f in exponential form as follows:

f(y;8) = exp (ylogé - 8 - logy!).

So, here afy) = y, b(@) = log8, c(6) = -8 and d(y) = -logy!. Since fis
expressed in canonical form, log#@ is the natural parameter for the Poisson

distribution.

Example 2: Binomial

Suppose f(y.8)

[g)ey“ -8)™Y; y=0,1,...,n.

Therefore,

f(y.8) exp(yioge +(n-Y)log(1-6) + |og( g ))

exp(ylog( 1?9) « nlog(1-6) + Iog( ;’D
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So, here a(y) = vy, 17(lr'>)=log1—?e , ¢(6) = nlog(1-6) and a(y)=log( g) )

The quantity log1—e_-§ is called logitd and is the natural parameter for the

Binomial. Logitf is the log "odds ratio". In Binomial regression the link
function is the logit so that we have

logitg, = x’; 8 where
Y, ~ Bin (n,, 8),

B is a vector of parameters and '5’i is the "design" carresponding to Y.

Binomial regression is more populary known as logistic regression.

Example 3: Normal

1 Ay ?). - o

f(y; i ) . 2n8X§{ 2( 5 ) H <y<
_l.ﬁ+.ﬂi __1 ..E__z_ ]
= exp{\ Z RN + 22 Iongn,

The parameter of interest is y, so that o is a nuisance parameter. The
exponential expression shows that y is the natural parameter. That's the
principal reason why in Normal based regression the link function is the
identity function. See Sections 5 and 6.
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7.2

GENERALISED LINEAR REGRESSION MODELS

We are now in a position to generalise the Normal based linear regression

model.

1. Y, has probability density (mass) function f(y, ; 8) such that
flyi . 6) = exp [y; b(6) + c(8) + d(y)]

2. EMY] =
3. gi{w) =_.X,/i 8

~

g is called the link function;
x’, is a vector of explanatory variables;
£ is a vector of parameters.

Let's reconsider the example of Section 6.

Y, ~ Po(4), where
logAj=w+a+8 .

This model is equivalent to the multiplicative model. We also require the

side conditions  } «,=)_ §,=0.
/ J

In Sections 4.3 and 4.4 we developed the maximum likelihood estimators of
Al and A/ (also 8/ and 6/).

Let the total number of counts Y_be denoted by n.

. Y . Y
We had 9’,=-——L- and 97=—-'1
n n
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oy Y Y
So, the fitted (expected) cell frequency AAY = L4

But, log X/ ¥ =5 + & +

So, log Y, +log Y, -logn=i+a-+8 . (7.2.1)

Summing (7.2.1) over i and j and setting Y} &, = Y} ﬁi =0, we have
! i

i = JI_ Y logY; + % Y logY, - logn . (7.2.2)
7 j

Summing (7.2.1) only over j and using (7.2.2) we have

& = logy, - -}- Y legy, . (7.2.3)
i

Similarly, §, = log¥, - % Y logY, . (7.2.4)
i

For this ‘simple’ generalised regression model we are able to compute the
maximum likelihood estimates by ‘hand’. A statistical package facilitates the
computation of maximum likelihood estimates and associated statistics for

any generalised linear regression model.

We remark again that the model
logh; =pu+a+ 8, (7.2.5)

is equivalent to
a=AA (7.2.6)

The parameter y represents the overall mean effect. The parameter o
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represents the differential effect of row i beyend the average y and similarly
the parameter g, represents the differential effect of column | beyond the

average effect y.

As with analysis of variance models, model (7.2.5) has too many

parameters, sa that the constraints ¥~ «, = ¥ B ;= 0 are needed.
I 7
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INFERENCE BASED ON GENERALISED LINEAR REGRESSION MODELS

Inferences involving Normal based regression maodels are based on F-ratio

statistics (and T-ratio statistics).
in the present section we define the scaled deviance and show that it
represents the generalisation of the F-ratio statistic to generalised

regression models.

Statistical modelling involves an iterative cycle containing three or four

steps.

* Preliminary diagnostic analysi

* Specifying a model —
NO

* Testing assumptions ——]

* MAKING INFERENCES

If any of the assumptions possessed by the model are not supported by the
data {equivalently, are violated by the data), then a new modei has to be
specified and tested.

The identified probabilistic (stochastic) model is not intended to represent
the generating process of the data. Rather, it explains the salient features
in the data and the residual variation resides in the error term (or
distribution).

The observed data may be regarded as a sample (path) from the identified

model.

In order to draw inferences based on the identified (or assumed) model, we

can proceed in two alternative ways.

For the generalised linear regression model it can be shown that
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8, 8- M2Z,
where & is the Fisher information matrix. So we can use the sampling

distribution of the maximum likelihcod estimator ﬁ‘y[_E of 8. Alternatively,

we can test hypotheses about g by specifying each hypothesis in terms of

the carresponding model and comparing goodness of fit.

Consider the "maximal* model where the number of parameters = number

of observations;

Bu = B - Byl
Suppose for the hypothesised model g= (8,, ..., 8], P < N.

The parameter g would be regarded as a "poor* description if and only if

UB:Y << LUA,:H

That is, if the likelihood at 8 is ‘much’ less than the likelihood at g,

Equivalentty, L(ﬁ_ Y << L(ﬁu Y] , where fi denotes maximum
likelihood estimator of £ and ﬁu denotes the maximum likelihood

estimator of £,

Let A:L_(M

L9

Large values of logA (log likelihood ratio) provide evidence that the model

is poor. It tums out that if the hypothesis assumption about £ is valid then
D= 2logA - Anr .
where 4%, » is a chi-square distribution with N-P degrees of freedom.
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That is, if model is good under

HI£= CB‘, o Bp)l '
then D ~ x°»- D is called the scaled deviance. So if the hypothesised
model describes the data as well as the maximal model then D ~ 4, and

so it is unlikely that we would observe *large” values of D.

Consider the hypothesis testing situation:

Hy B= (Bo - B = fo

versus the alternative
H,: = (8, .. B) = g, suchthatQ <P <N.

If D, is the scaled deviance under H; and D, is the called deviance under

H,, then if both models give a "good” description of the data then
D=D,-D, ~ feq -

If the value of D is not in the tail of the x*, 4 distribution then we prefer the

model corresponding to H, since it is more parsimonious.

Example

Consider two random samples:

Yoo Vi =~ N, 0
Yo - - Yon ~ Nl o).

We want to test the null hypothesis;
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Ho: 1, = u, versus the altemative,

H1: Hy & Uy
H, H,
2 n y
MAXIMUM )IDIR YV,
LIKELIHOOD B=Y =28 A=Y = £
- n,+ / L n,

ESTIMATES

(i=1,2).
Now, the log (iikelihcod) for §  is

LY (Y‘

It (ﬁo ;¥ = - (n, + n)loga2n - —EZ

249 i

The log (ikelihood) for B, is

2
I, ;0 = -(n, + nlogoyZr - -EE i

l-l j=1 0

= "Total sum of squares” - "Within group sum of squares"

= "Between group sum of squares”

Straightforward algebra shows that
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B,

oDy - Dy = —= (7, - )
1 2
Now under H;
m I'L)_ —_— —_
-D=—2— (¥, - T,)*/ o
Q t ("1" "‘z) i. b X

is ~ X,

We cannot test H, directly since the quantity ¢® is unknown. We can

estimate ¢* by the pooled sample variance

g DS -1
2. .

no+n -2
The statistic (#, + n, -2) S:/ o -~ X:‘-,.,-z
So, if H, is correct
D, -Dy /1
- R TS
e
o?

where F is the F-distribution.

1 ongemy-2

The quantity f is the F-ratio statistic for testing equality of population means.

nn
ot il
§?

ld

¥, - )
Now, f =
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£ where t is the Tratio statistic with n, + n, -2

degrees of freedom.

The one-way ANOVA model can be cast in regression form as tollows.
Y, =u+¢ : &~ N@O 0, and

Ui =,§/i,§

The link function is the identity function. The parameter vector § is given by

£ = w u,) and the corresponding design is

X, = (1,0) if i=1
and x, = (1,0)ifi=2.

So, for Normal based regression models hypothesis testing based on
differences of scaled deviances is equivalent to hypothesis testing based on

F-ratio statistics.

Scaled deviances are generalisations of F-ratio statistics to generalised

regression models.
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CONCLUSIONS

We discussed a number of relationships between the seminal works of
Bailey and Simon [1] and Bailey {2] and the modern statistical body of
methodology known as Generalised Linear Regression Modelling.

The relationships facilitate the consideration of a broad family of ratemaking
models in a probabilistic framework. In particular, it was shown how to
apply regression concepts in the case where the condition of class balance
may be inappropriate as a result of the class experience being insufficiently

credible for the corresponding class risk parameter.
Regression models are employed to extract maximum information from the
data and to draw inferences from the data. They also afford the principle

advantage of being testable.

The advent of statistical software packages that run on PC's has made

interactive regression modelling possible.
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