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A GENERALIZED FRAMEWORK
FOR THE STOCHASTIC LOSS RESERVING

The traditional actuarial methods like loss (paid and incurred) development methods,
Bornheutter-Ferguson method, or Berquist-Sherman method have been served well as long
as point estimates are concerned. Since they are not stochastic approaches, they do not
provide confidence intervals which are getting more attention connected to the risk-based
capital requirements, explicit discounting the future liabilities, etc. So far, most of the
stochastic reserving models which are either in the developing stage or are being used by
some companies or organizations, have been explanatory models. The Hoerl curve fitting
is their basic formulation. These types of models are fundamentally deficient, because
they fit the Hoerl curve to the loss history data. Hoerl curve fitting may be fine, as
long as it fits a simple, one dimensional, small series of data to obtain a fitted curve
without any statistical implications. If the Hoerl curve fitting method is used with some
statistical perspectives in mind, it may produce inconsistent estimtates which may not
make any sense. In this article, the author suggests a generalized framework which starts
by understanding the unique data characteristics of the insurance data. By expanding a
Box-Jenkins type time-series model, we developed a generalized framework for modelizing
a stochastic process on the loss history data. It turned out that some lines require more
complex specifications than the others. We may presume that some lines are more sensitive
to the insurance business cycle than the others. Our contributions will be to provide a
generalized framework to derive confidence intervals in which the business cycle was taken
mto account as well as to provide future estimates for the planning process. This paper is
the first step to that direction.
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- I. INTRODUCTION

Insurance data arranged to evaluate future liabilities takes a unique form which is
different from ordinary non-insurance data. The ordinary non-insurance data usually takes
a one-dimensional time-series form. For example, monthly unemployment figures for the
period January 1948 — October 1977 was used to forecast November 1977 and onward
monthly unemployment rate. On the while, the insurance data has to be arranged either
by accident year, policy year or report year and development year in order to figure out the
future liabilities of each of those years separately. Because of this, the typical insurance

data takes an upper triangular form.

The traditional actuarial methods like loss (paid and incurred) development methods,
Bornheutter-Ferguson method, or Berquist-Sherman method have been served well as long
as point estimates are concerned. Since they are not stochastic approaches, they do not
prévide confidence intervals which are getting more attention connected to the risk-based

capital requirements, explicit discounting the future liabilities, etec.

There have been hundreds of methods which were contended to provide confidence
intervals. The fundamental problems of these methods are they are lacking in theoretical
backgrounds because these methods are intended to apply to the one-dimensional data
array. Minor adjusiments are added to solve the problems. However, they have never been

successful.

In this article, the author suggests a generalized framework which starts by under-
standing the unique data characteristics of the insurance data. In the next chapter, we
provide the critics regarding the problems of those suggested stochastic methods. In chap-
ter TII, we articulate the characteristics of the insurance data. We also state how these

characteristcs have been incorporated in the traditional actuarial methods. In chapter IV,
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the theoretical framework will be provided. We will show some applicaitons in chapter V

and conclude in chapter VI

II. CRiTICS ON SUGGESTED STOCHASTIC MODELS

Makridakis and Wheelwright (1985) suggested:

If the user wants to increase forecasting accuracy, a time series method

should be used. If the objective is to understanding better the factors

that influence forecasting (prediction) accuracy, then an explanatory

model should be selected.

So far, most of the stochastic reserving models which are either in the developing stage
or are being used by some companies or organizations, have been explanatory models.
The Hoerl curve fitting is their basic formulation. First of all, the explanatory variables
in their models are either the number of development years and its functional variations,
the number of accident years, the number of calendar years or a combination of these.
Because of these formulations, their explanatory variables do not explain the dependent

variable quite well. For example, “increase one unit of log transformed development years

will decrease .3 unit of total loss paid” does not provide any valuable information.

Secondly, normally it is assumed that the time series data consists of four parts of
components. They are trend, seasonality, cycle and ramdom components. If we use time
and its functional variation as only explanatory variables, we are ignoring the seasonal and
cyclical components of data. If the annual data is used, we may ignore the seasonality,
but not the cyclical component. Since some insurance business is sensitive to the busiress

cycle, we may expect that the cyclical movement is a critical component of the data.

Thirdly, since one of the explanatory variables is a functional variation of the other,
these two explanatory variables are highly correlated. This problem is called multicollinear-

ity. If one of these two variables is deleted, there will be an autocorrelation problem because
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the remaining explanatory variables will not fully explain the dependent vanriable. The con-
sequences of these problems include: unstable estimates, spurious predictions, inconsistent

estimation of standard errors and confidence intervals.

Some argue that as long as the autocorrelations between the two explanatory variables
are lower than that bewieen the dependent and explanatory variables, we do not have to
worry about this problem. This may be true if the two explanatory variables are inde-
pendently created. This is why explanatory variables are sometimes called independent
variables. They are supposed to be independent. However, as long as correlations between
these explanatory variables are not high compared to correlations between dependent vari-
able and explanatory variables, the problem may not be that serious. The issue here is
whether we should use models which contain multicollinearity problems due to the model

formulation (one of the explanatory variables is a functional variation of another).

The other problem of these types of explanatory models is what type of indicator we
should use for the accident year trends. Some authors normelized all incremental payments
based on some readily available index of inflation. We cannot simply divide incremental
payments by some indices, because these indices are estimated with their own variances.
Consequently, it requires to assume that these indices are deterministic. However, this
assumption is hardly persuasive at all. Because of this problem, some authors divide the
payments by some types of exposures. The problem of this approach is we need to find
an alternative if there isn’t any exposure data available, which is often the case. Still
others introduce level parameters which are assigned same values to each accident years.
Since the level parameters themselves have to be estimated, this automatically violate the
assumption that explanatory variables are supposedly nonrandom variables which are the
cases of the other two variables. Others create another explanatory variable using the sum
of the accident year and the development year. They chose this as another explanatory

variable because they could not use the number of accident years as their explanatory
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variable due to the perfect linearity with the number of development years. This choice is

as bad as choosing the number of development years as an explanatory variable.

Still another problem of this type of model is that they do not provide any method
that deals with interrelationships between series of incremental payments and incremental
claims reported. Other things being equal, we expect more incremental payments if there
are more claims reported. Therefore, if claims reported data is available, we should utilize
these data assuming that this is also a stochastic process. So far no method has been
suggested to deal with this situation. Some authors apply traditional loss development
approach in obtaining ultimate claims reported. They treat them as a determinstic variable

to divide incremental payments by these estimated ultimate claims reported.

What if we need to analize quarterly data instead of annual data? Quite possibly that
quarterly data may contain seasonal patterns. No methods have been suggested to deal

with this seasonality problem.

These types of models are fundamentally deficient, because they fit the Hoerl curve
to the loss history data. Hoerl curve fitting may be fine, as long as it fits a simple, one
dimensional, small series of data to obtain a fitted curve without any statistical implica-
tions. If the Hoerl curve fitting method is used with some statistical perspectives in mind,

it may produce inconsistent estimtates which may not make any sense.

I11. INSURANCE DATA As A TwWoO-DIMENSIONAL TIME-SERIES

1. Data itself.

Insurance loss or claim history data can be considered as a two dimensional time series
data. Loss or claim development, in which additional losses or claims are paid/reported

in chronological order upon accidents occurred or claims reported is one dimension. A
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chronogical order of claims grouped by date of occurence is another dimension. As a
result, a typical insurance loss or claim history takes an upper triangle form. A prediction
of future loss payments or claims reported corresponds to filling out the bottom lower
triangle area assuming that the first accident or reported year losses or claims are fully

developed.

There are at least two factors which cause loss history data as time-series through the
accident years. The first factor is inflation. Ever increasing price levels (at least prior to
the current recession) is called economic inflation. Increased tendency to file more claims
helped by trial lawyers or increasing amount of jury awards is called social inflation. Some
authors have tried to catch these inflations by either normalizing the incremental payments
or by inserting a level parameter. The indices used were either general price indices or at
most industry-specific indicator. Because of ever increasing tendencies of the loss payment
and these general indices, you may obtain significant t-values for the estimated coefficient
of these indices. These t-values are disguising. Even if you insert any series which is
increasing, you may still obtain significant t-values. Instead of inserting or dividng by an
extraneous series, we should use the data’s own indices! We should look at every trend
and/or cyclical pattern of incremental payment of each development year. Interestingly,
there is an approach which utilizes these trends to estimate ultimate losses. The problem
is it is not a stochastic approach. We cannot obtain confidence intervals based on this

approach. We will present this approach later.

As more consumers or insureds are getting more information on their insurance policy
provisions, and as more trial lawyers are eagerly recruiting their clients, we can expect
more claims to be reported over the accident year horizon. As overall population grows,
there will be more policies written. Other things being equal, consequently there will be
more claims reported. These utilization increase and additional new polcies will be the

main driving force for the consistent upward trend through the accident year horizon.

659



For the development horizon, since there is a fixed number of policies written during
the policy effective period, there is a fixed number of occurrence of accidents for each
accident year. There may be some incurred but not reported claims which are reported
later. There may be some cumulative injury claims which take many years to be closed.
Still every claim will be closed eventually. In a mathematical term, total cumulative
loss payments or total reported claims will be converged to certain levels. Because of
this characteristic, all incremental payments and all incremental reported claims will be
automatically satisfied with the stability condition of the time-series analysis. This stability

is a necessary condition in applying Box-Jenkins types time-series framework.

The traditional actuarial method called the “loss or claim development method ", uti-
lizes the development period dimension in a simple manner. The accident period dimension
in this method is partially utilized by taking current cumulative payments as “given”. Re-
cently proposed regressional approaches are lacking in these two dimensional features. As
in the traditional actuarial loss development (LD) method, these new methods reflect the
loss development dimension by using “age” of loss development. However, the other di-
mension is either completely ignored or grouped together by assigning dummy variables or
filled with a so-called level parameter. There is an inherent autocorrelation problem which
may not be significant in some lines due to negligence of the time related features in the
loss history data, especially for long tail lines in which regulators or company’s executives

are most interested.

In the traditional development approach, by multiplying the selected factors for each
development year, some sort of time-series conception was used in a simple fashion. For
instance, assuming that there are no additional payments after ten years of development,
the ultimate factor for the 1982 accident year will be obtained by taking a ratio of the
10th year development to the 9th year of development. Notice that only the accident year

1981 and prior provides .the information required to obtain a factor for the 9th to 10th
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development. The ultimate factor for 1983 is derived through multiplying the selected
factor from the 8th to 9th year of development by the selected factor from the 9th to 10th
year of development. Again the selected factor for 8th to 9th year of development is based
on the factors which are available in 1982 and prior accident years. Although it is a simple
fashion, without a consideration of cyclical patterns, the development method reflects time
series characteristic through development years. In the accident year direction, the LD
method simply takes most current actual payments as selected estimates. If these values
are outliers, the LD method will generate biased estimates. Otherwise, the LD method will
produce reasonable estimates. For the older accident years, the actual values are fairly close
to the estimates which are supposed to be compared to its maturity because the payments
have already been made quite a few times (approximately more than 3 or 4 years for short
tail lines). The problem is most recent immature accident years. Bornheutter-Ferguson
(B-F, 1978) and Berquist-Sherman (B-S, 1979) suggested a couple of methods to get over

these problems.

2. Time-series Reflected in B-F Method.

In the adjusted development method suggested by Bornheutter and Ferguson, a two-
year average of total payment at a particular development adjusted by the increase or
decrease in the second year’s exposure relative to the two-year average exposure was re-
placed for total payment. The ultimate factors derived in the development method is then
applied to these adjusted losses. This method will correct some irregularities of the data.
However, the adjustments contain too short memory (one year backward). The probability
of two data points being outliers is only half of the probability of one data point being an
outlier. Consequently, this does not provide appropriate remedies to correct the problem
in the development method. This may be the reason why this method is seldomly used in

the ordinary actuarial analysis.
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In the well-known B-F approach, the expected losses are first derived. Unpaid fac-
tors are then calculated from the ultimate development factors. The ultimate losses are
estimated as the sum of total payment and indicated reserve, where indicated reserve is ex-
pected loss times the unpaid factor. Two methods are suggested to calculate the expected
loss. The undiscounted loss provisions in the rates multiplied by the units of exposure
is one, trending, or otherwise extrapolating, mw}—%‘#m relationships of
the prior accident years is the other. The author prefers the latter methods based on two
reasons. First, it is very difficlut to obtain the undiscounted loss provision. One of the
major reasons is the differences in line-breakdown between pricing and reserving. Second,
by trending the past history, we can glean the time-series nature of the loss history data.
You may notice that in LD method, only the time-series nature across the development
years was recognized. By applying trending or extrapolating method to %
across the accident years, we are able to utilize the time-series nature in another dimension

at least partially (cosidering only trend factors).

This indicated (B-F) method is one of the most popular methods in the actuarial
analysis because this method can be used to correct the estimated ultimate loss for the

recent accident years produced by the development method.

Although these two methods are a little more advanced than loss development methods
in terms of utilizing the time-series nature across the accident years, the method is not
sophisticated and also performed partially (only trend factors are considered). Instead
of trending a whole loss history across the accident years, only the indicated severity for
each accident year was used. Since the indicated seventy is also estimated, it may be
contaminated with estimating errors. Berquist and Sherman suggested a few methods

which utilize a whole loss history in a simple fashion.

3. Time-series Reflected in B-S Method.
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Berquist and Sherman suggested six methods ( Method I through VI) except for
Method II which is exactly paid loss development method applying weighted average to
loss development factors in order to obtain ultimate development factors, all methods
assume that there are some trends to be utilized across the accident years. Method I
applies a straight linear regression to the loss development factors for each development
years as long as there are at least three factors. For columns with two factors, a straight
average is taken for all future development factors. For columns which only one factor,

that factor is used.

In Method III, the total payments per ultimate claim count (CS; ;) by accident year
(#) and by development year (j) are calculated. By applying a exponential fit to CS; ; for
each j, a growth rate B; for each development year j is estimated. Then by multiplying
eBi by DS, ; where DS; ; is the incremental payment for the accident year i and develop-
ment year j, we obtain a incremental payment on current cost level IS, ;. After applying
appropriate weights to these IS;;, the estimated incremental payments evaluated as of
current date WS; m_iy1, where i = m,m ~ 1,... !, the oldest accident year and m the
latest accident year are calculated. By applying growth rate €55 to WS, m-it1, future
incremental payment per claim is produced. After adding them up across the development
years to obtain ultimate loss per claim, ultimate loss is derived by multiplying the ultimate

claim count.

In Method IV, overall growth rate is calculated by weighting various column growth
rates calculated in Method III, in proportion to the square of number of rows of that
column. The adjusted column growth rate is then calculated by applying the formula
B, = ﬂjﬂﬂ%ll;w where W; is the weight for the particular column, W) is that for the
initial colmun (development year 1) and R; is column growth rate. The same procedure

with the Method III is then applied to produce the ultimate loss.

In Method V, the paid loss development factors minus unity are used instead of total
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payment per claim in Method IV to derive growth factor for the development factors. After
applying the same steps as in Method IV to derive future factors (minus one), adding one
to each of the results and applying resulting factors to total payments, the ultimate losses
are derived. In Method VI, the incremental payments per claim are used to estimate

growth rate. The exact same steps as Method IV are then used.

Notice that in the various Berquist-Sherman methods except for Method II, more
emphases are levied on the trends across the accident years. In Method I and Method 111,
the trend factors (growth rates) are estimated by development years. Each trend factor
for a particular development year is independent of those of the other development years.
On the while, in the Method 1V, V, and VI, the overall trend factor was calculated by
the weighted average of all the trends for each development years. The adjusted trend for
individual development year was then calculated as a weighted average of its own trend
and the overall trend. Since these methods are focused on the time-series nature of the
loss history across the accident years ignoring possible cyclical patterns, by combining the
ultimate loss based on these method and the ultimate loss based on the loss development

method, we can produce relatively reasonable selected ultimate loss.

As we have seen in this chapter, even if the word of time-series has never been spelled
out, one way or the other, every method tried to utilize the time-series concept. The trouble
was that the concept was utilized partially. Except for Berquist-Sherman methods, more
weights were given to the claim development process. Even in one direction, only the trend
component of the time-series was reflected. A cyclical movement and seasonal pattern were
completely ignored. In our approach, the two dimensions are explicitly taken into account.
Today's loss payment is not only a function of losses paid in the past loss development
periods, but also a function of losses paid in the past accident periods. The implication
of various statistics in the time series method are also considered in a two dimensional

perspective. Empirical results based on various lines of industry total are shown.
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IV. A FRAMEWORK OF Two DIMENSIONAL TIME SERIES MODEL

1. The Univariate Model.
1) Assumptions

In this univariate model, we assume that only the payment series is available. There
is no reliable case reserve, exposure or reported claim information available. More often
than not, actuaries, especially consulting actuaries, have to provide ultimate loss payment

based on exclusively loss payment series.

We also assume that the available data is not separable to the individual claim level.
In other words, we treat the incremental payment for a particular accident period and
development period itself as a random variable. This is a realistic assumption because
most loss history data takes an upper triangular form in which the incremental payment

is & minimum unit of counting.

We assume that the tail of the loss payment development is known. This assumption
may not be realistic. However, it is at least practical. Whenever we fit any distributional
curve to the loss payment developments, the estimated curve converges to the ultimate
level a lot more slowly than we ever expect in actual loss developments. Unless we assume

a certain cut-off point, the estimated length of the development will be extremely long.

We assume that any payment in a certain point is affected only orthognally. For
example, total or incremental payment in [accident year 83 — third development year] is
a function of {accident year 83 - second deveopment year] and [accident year 82 - third
development year]. This is a reasonable assumption to simplify the algorithms and also
consistent with the average norm. We can expect the incremental payment at [accident
year 83 — third development year] will be high if the incremental payment at [accident year

83 - first and second development years| due to either volume increase or frequency /severity
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increase. Also we can expect the incremental payment at [accident year 83 - third develop-
ment year] will be high if the incremental payments at [third development year - accident
year 81 or 82] are high. The former tendency may be related to the inflation, exposure,
and frequency/severity change. The latter may be related to the company’s individual line

characteristics - like a liability line develops more slowly than a property line.

Finally, we assume that the selected model is the true model. In others words, spec-
ification error is ignored. This error exits only in a hypothetical sense. Since in reality
the true model is never known, you can never measure the direct error. This assumption
is consistent with most econometric or time-series literatures. By assigning higher proba-
bility confidence intervals than what is necessary, we can eliminate the specifiaction error
problem. For example, if the confidence intervals with 90% probability is required, then by
raising the probability to the 95% level, we may take into consideration the specification

error problem.
2) Model

Parzen suggested a very powerful time-series forecasting model. It extends the Box-
Jenkins methodology and provides a more practical alternative to the time-series forecast-
ing model. Also the theoretical supports of “ARAM A” models are solid and their potential

contribution to good forecasting is excellent.

Contrary to the Box-Jenkins methodology, Parzen’s approach is not as concerned with
parsimony. Parzen’s model is willing to sacrifice the parsimony that would result from
introducing the moving average terms, and simply includes more autoregressive terms.
The M A terms are available but used only for special cases when a scheme cannot be used

to produce random residuals.

We utilize Parzen’s view of Box-Jenkins time-series methodology. The main reason

is the tractability without giving away any theoretical merits. In our application, the
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stability may not be an important issue. In the development period herizon, because any
open claim will be closed eventually, the convergence of the time-series is guranteed. In
the accident period, due to the regulation constraint of premium-surplus ratio, there exists
a limit of maximum expansion. Consequently, as long as there are enough data points, we

expect the stability condition will be met in the average insurance data.

Across the accident year we restrictly use AR terms. However, across the development
year, we first take differencing on the total payments and then take log transformation if
it is possible. After transforming long memory time series across the development years,

the AR terms are used to produce white noise errors.

It is a matter of semantic, whether you need a differencing operation or not across
the development years. If you start with incremental payment data, there is no need of
differencing. However, if you start with the total payment data, you do need differencing

due to the conspicuous cumulative nature of the payment data.

In a general form we can express the model as:

F(IP.;)) =) ¢ F(IPictjo) +eij 1=0,1,2,..,i -1
Lk

and k£=0,1,2,..,7—1 excluding I=0 & k=0 (4-1)

where F(.) notates any functional form {most of the case log operator if it is possible,
otherwise identity operator), IP denotes incremental payment for the accident year i -
development year j. Since we assumed any non-orthogonal lag variables can be ignored,

equation 4.1 can take much simpler form as:

FUIP;) =Y éaF(IPiciji) +eij 1=12,.,i-1 & k=0

Lk

or k=1,2,..,j—-1 & [!=0 excluding /=0 & k=0 (4-2)
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Note that since no nonlinearity is invloved, we can use Ordinary Least Square Method to
estimate ¢; . This is a whole advantage expressing the model with AR terms only. The

most simple case will be:
IP,; = d10IPic1j+ doalPij1 + € (4-3)

where the incremental payment for the accident i — development j is explained the incre-
mental payment of the one year previous accident year and the incremental payment of

the one year previous development year.

For a better understanding, an example will be {ollowed. Say you allow two lags
in each direction as explanatory variables. Then there are eight possible explanatory
variables. They are [No lag in accident year(AY) - lllag in development year(DY)], [No
lag in AY - 2 lagin DY], (1 lag in AY - 1 lag in DY), [1 lag in AY - 2 lag),[2 lag in AY -1
lag in DY],(2 lagin AY - 2 lag in DY}, {1 lag in AY - no lag in DY], (2 lag in AY - no lag
in DY]. Out of these eight combinations, the set of DY lag only is orthogonal to the set of

AY lag only (four cases).

First of all, it does make sense modelizing the fact that the current incremental pay-
ments is explained by previous incremental payment series by accident and development
year-wise because the current payment can be explained or can be a function of prior
payments. Second, it does not have any multicollinearity problem because there is no
functional relationship between the explanatory variables (note that accident year series
are orthognal to the development series). Third, because it does not involve any nonlin-
earity, it is fairly easy to estimate parameters. Even we can use Lotus 1-2-3 to estimate
these parameters. Fourth, most importantly, it provides a reasonable fit and also is also

stable.
3) Interval Forecasts

Since the major contribution of the stochastic method in loss reserving is providing
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the confidence intervals, the variance of the forecast errers should be well defined. In order
to derive the variance of the forecast errors, we first express AR(l, k) process in the error-
shock form by successive substitution for 3 ¢;xfPi_sj—_a. By doing this, we can write the

model in terms of current and past errors only as:
IP,j =eij+oncij-1+&100i-1,5 +Haeimj1 +. - (4-4)

The values of the parameters (§0,1,61,0,£1,1,- . ) depend upon the particular AR(I, k) model

and are called error learning coefficients.

The selected forecast IP; j(g,h) can also be expressed using the equation 4-4 in terms

of current and past errors:
IP; j(g,h) =& nei; + Egprntior,j + Egnprtij—1 +. .. (4-5)
As a result, the (g, k) step ahead forecast error can be expressed as:
ei,j(9,h) = Py j+n — IP; (9, h) (4-6)
Again the equation 4-6 can be written as:
€ij(g,h) = €ipgjtn + E10ig—-1j4b +E0,18i4g.54h-1 FE11Ci4g-1,j40-1 + ... 47

Because the errors are independent, it follows from the equation 4-7 that e, ;(g, h) is an
MA(g ~ 1, — 1) process. From the equation 4-7, the forecast errors e; j(g, h) have mean

0 and variance equal to

9.h
Vieis(9, M) = Ele} j(9, 1)) =02 Y &, excluding (p,q) = (g,h) (4-8)

Pg=0
Based on the model, not only can the future development year forecast be performed, but
also the accident year forecast. However, since our main objective is to obtain confidence

intervals for the future liabilities, we can focus on the development year horizon only.

4) Some Examples
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For example, the one year ahead forecast to the development period horizon of the

AR(1,1) model can be expressed using equation 4-3 as:

1P, j+1 = ¢1,0IPiy ;41 + doa I Py + €iji1 (4-9)
Then the equation 4-9 can be expressed as:
IP; ;1 =é10(b1,0lPica jur + o1 dPicy j + €im1,j41)
o1 P10l Pic1j+ b0 IP;j—y + €ij) + €ijir (4-10)

Since the only errors terms ey j4+1, ei;j and e;;4; are unkown and their variances

are o2, the variace of IP; ;4 can be expressed as:
VP ;)= (¢]0+ $t1 +1)o? (4-11)
The two year ahead forecast to the development period will be:
IPijy2 = 61,0lPicy jaz + G001 IPijs1 + ijar (4-12)
Again, the equation 4-12 can be expressed as:
IP, ;12 =¢1,0(é10lPica juz + donIPisy j41 + izt jy2)
=60,1(¢1,0fPio1 j41000IP;; + € j41) + €42 (4-13)

By applying the equation 4-10, we can obtain a two year ahead forecast variance to the

development period as:

V(IP;j42) = ((¢§,o)(¢¥,o + ¢(2),1 +1)+ (¢g,1)(¢3,o + 4’(21,1 +1) +1)o? (4-14)

Similarly we can obtain an n year ahead forecast variance to the development period by

applying a inductive procedure as:

V{IP;

T an) Dy 4 (g2, LB

——————’*" l))+1) 2 (4-15)

C

V(IP.',H.,.) = ((d’ o)(
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We can also apply the same inductive process to the AR(2,1) or AR(3,1) model. For the
AR(2,1) mode), one year head, two year ahead and n year ahead forecast variances are

given as:

V(IPI',.H'I) =(¢¥_o + ég,, + 1)03 (4-16)
VUP:j+2) =(#0)(610 + 630 + 1D+ (3080 + dha + D+ 82+ Dl (417)
VP, o) =((B o) ittomtly g (g (L Bbiact)y,

V(IPI )+n—2)

(42.2)( ) +1)o? (4-18)

For the AR(3,1) model, one year head, two year ahead, three year ahead and n year

ahead forecast variances are given as:

V(IPij41) =(83 0 + 651 + 1)0? (4-19)
V(IP;js2) =((61 00810 + do.0 + 1) + (65,1 )(#1 0 + 60,0 + 1) + 602 + 1ot (4-20)
VP j49) =((81) T ) + (83, ) F 2424
¢“(%)+¢o,+1)a (+-21)
VUP, ja) (& o)(—”i’e*"—“’) (T Tty
(#ha) L ety a3 PUTPusncaly 4 g2 (+22)

If we expect any seasonality either across the development horizon or across the acci-
dent horizon or both, by inserting do,m or ¢, 0 or both lags, we can take care of seasonality,

where m is the seasonality interval.
2. The Multivariate Model.

By applying either vector autoregressive model or transfer function model, we can
expand the univariate model to the multivariate mode. Either closed counts development

or reported counts development will be a good candidate for the right-hand side variable
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because we can presume that the claim counts will have a impact on the loss development;
not vice versa. It is theoretically possible to derive the formula for the variances. However,

we decided to postpone further articulation of the model due to the time constraint.

V. MODEL SELECTION PROCESS WITH EMPIRICAL DATA

1. Statistics to be used.

In order to find a right (or reasonable) model, we need certain criteria to identify
whether the estimated errors are not correlated. Since we are going to use the AR(!, k)
model, we need to estimate partial autocorrelations (PCAF) of the residuals. We also use
Q-statistic to verify overall randomness of errors. Since these statistics are intended to
serve for the one-dimensional data, we have to apply these statistics to each accident year
and development year separately. Because of this, we may have to be a little lenient when

we reject the null hypothesis.
1). Partial Autocorrelation.

In practice, we never know the population values of autocorrelations and partial au-
tocorrelation of the underlying stochastic process. Consequently, in identifying a tentative
model, we must use the estimated autocorrelation and estimated partial autocorrelation
to see if they are similar to those of typical models for which the parameters are known.
Notice that since we do not have any M A terms in our model, there is no need to calcu-
late estimated autocorrelations. However, partial autocorrelations are ealculated from a
solution of the Yule-Walker equation system, expressing the partial autocorrelation as a

function of the autocorrelation. We need to calculate estimated autocorrelation.

In any time series textbook, an estimate of autocorrelation r(h) is defined as:

Ch
Th= — 5-1
Ve (5-1)
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where cj defined as ¢y = 1/n X Y z¢z¢4a h 2 0, and c, is the estimate of the autocovari-
ance. For our model we can redefine this estimated autocorrelation for the development

year dimension of the accident year n as:

Cn,k
ok = Cno (5 2)

in which cp 4 = 1/m Z;":l Zn,jZnj+k k2 0 where m is the number of development years.
For the accident year dimension of the development year m, the estimated correlation can

be defined as:

Cl,m
Fim = —— 5-3
l.m P ( )
where ¢;m = 1/n ELI Zi mZi+1,m{ 2 0. And n is the number of accident years.
The Yule-Walker equation is expressed as:
=4 + dn + + $pop-1
p= dpr + b2+ + Pppp-2
. ) . Fee (5-4)
: : + : + + N
Pp= $pp-1 + P2pp-2 + + ép
The equation 5-4 can be written as:
1 2 P e Pr-l 28 [
£ 1 A e Pi-2 D2 P2
. . . : . . =1 . (5-5)
Pk-1 Pk-2 Pk~3 ... 1 Pak Pk

Hence, as soon as we calculate these autocorrelation, we can derive the estimated par-
tial autocorrelations by applying Box and Jenkins’s recursive method, which are due to

Durbin(1960):

$p+!.j = ép.i - ‘;p+1,p+l$v.p—i+l J=12,...,p (5-6)

P A . .

Tp+l — Z,‘:x Pp,iTp+1-j
P 4 .
1- Ei:l Bp.iT;

In order to identify the exact form of the model, we need to find out when population

Bpr1pt1 = (5-7)

partial autocorrelations can be considered to be zero. We therefore need to evaluate the
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standard error of the estimated partial autocollreations. Quenouille (1949) showed that

the variance of the estimate of the partial autocorrelations is approximately equal to
V(gna)=1l/n, h>0 (5-8)

where n equals the number of observations after suitable differencing and transformation,
and ¢ represents the partial autocorrelations that are assumed to be zero. Equation 5.8
provides a way, after identifying the tentative model, by calcuating ¢ns on the estimated
residuals, to evaluate if all other estimated partial sutocorrelations are different from zero.
We can also define the variance of the estimate of the partial autocorrelation for the

development year dimension as:

V(énkr) = 1/m, k>0 (5-9)
and for the accident year dimension as:

V(dum) = 1/n, 1>0 (5-10)
2). Q-test.

Box and Pierce (1970) showed that for a purely random process, that is, a model with

all pp = 0, the statistic called Q-statiste:

K
QUE) =n(n +2) Y —— ~ x3(K) (5-11)
k=

n—k
1

where 7} is defined as
n - A
o Steaniéréens
= e
Ex €y

with € is a fitted residual. It should be noted that the Q-test is not a very powerful test for

(512)

detecting specific departures from white noise. However, it is useful to check how a series
of autocorrelations (first order, second order and third order autocorrelations etc.) is white

noise or not in an overall sense. Furthermore, the Q-test is also sensitive to the values of
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K, the number of autocorrelations used to calculate Q-test. For economic data, K = 12
and K = 24 have proven to be useful. Since insurance data have fewer data points, K = 4
may be sufficient. Since the Q-statistic was also designed to apply to the one dimensional

deta points, we performed the Q-test on each accident year and each developmemt year.

2. Creation of Auxiliary Observations.

We first calculate age-to-age factors for each dvelopment years. We then select age-
to-age factor for each development years based on the last 5 years average method. We
assume that payments of the Homeowner/Farmowners (HOMFAM), Private Passenger Au-
tomobile Liability /Medical (PRVAUT), Commercial Auto/Truck Liability/Medical (CO-
MAUT), Commercial Multiple Peril (COMMUL), Workers’ Compensation (WOKCOM),
Medical Malpractice (MEDMAL), Special Liability (SPELIA), Other Liability (OTHLIA)
and Product Liability (PROLIA) are paid off at 10th, 11th, 13th, 13th, 14th, 16th, 11th,
15th and 16th years of development, respectively. With this tail-factor assumption we
create future incremental payments based on the LD method. In other words, we fill out

the lower part of triangles.

There are two purposes in creating these auxiliary observations. The first purpose is
creating initial values of lag variables based on the backward forecasting. Since we started
with small amount of data points, we cannot afford to lose any data elements by the intializ-
ing process. By running Oridnary Least Squares with logarithms of incremental payments
as dependent variables and development years for each accident year as explanatory vari-
ables, we were able to create development year initial lag values. For the accident year
initial lag values we ran OLS on accident years for each development years. The second
purpose was to obtain tentative models. We did not attempt to use upper triangle angle
only because the model utilize the whole data at once, this will put too much emphasis
on the earlier years which contain more data points. This is a major disadvantage of any

stochastic model which fits the entire data at once without filling up the lower triangle
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portion. Even though the development method does not provide confidence intervals, it
does provide at least an approximate estimate. It is also consistent with the NAIC model

act for the liability discount which explicitly specifies the future payout patterns.
3. Model Selection.

We started with AR(1,1) model for all nine lines we used for this analysis. Estimated
coefficients are listed in Table 1. Estimated Q-test on the residuals by accident year and
by development years are listed in Table 2. Due to small data points, we only estimated
up to four years. Estimated partial autocorrelations on the residuals by accident year and
development year are shown in Table 3. The thresholds with 95% confidence level for
Q-tests are 7.81 with K=3, 9.49 with K=4, 11.1 with K=5 and 12.6 with K=6, 14.1 with
K=7. Most of the cases, Q-tests do not reject the Null Hypothesis that the errors are
not white noise. Applying the iz formula, the thresholds with 95% confidence level for
PCAF are 0.653 with n=9, 0.693 with n=8, 0.741 with n=7 and 0.800 with n=6. Except

for few cases, there aren’t any such cases that reject the whiteness of the errors.

Identifying a model as AR(1,1) is equivalent to saying that the loss history can be
explained as a combination of constant trends through accident period and development
period. Since the coefficients of all lines are less than 1, we can say that data satisfies the
stability condition. This is a desirable condition, otherwise, the estimated variances will
be blown up. You may also notice that in every case, the coeflicents for the accident year
are a lot higher than those of development years. This indicates that the trends through

the accident periods are much more important than those through the development years.

You may want to stop here because all the PACF are satisfactory and because the
parsimony dictates the fewer the coefficients are, the better the model is. However, since
the model with more coefficients will provide more stable forecastings, we tried up to

AR(3,2). Except for COMMUL, since the coefficients for development years are already
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small, we didn't bother to try more development lag coefficients except COMMUL. When
we tried AR(3,2) for COMMUL, the second development lag term became very close to
the zero. Hence we selected the AR(3,1) for COMMUL. The second lag term indicates
that there are more than just straight trend. We may interpret this as a simple cycle. If

we require a third lag term, this will indicate that the data contains a complicate cycle.

When we tried AR(2, 1) for HOMFAM, suprisingly the second lag term for the accident
year became bigger than the first term. Consequently, we tried AR(3,1). Even though the
coefficient for the third lag term is still high, we decided to stop here due to the limitation of
the data points. We also didn’t want those artificially generated initial values to dominate

the whole actual data.

For PRVAUT, we tried up to AR(3, 1). Since the third lag term of accident years wasn’t
big enough, we decided to go with AR(2,1). The same was true for PROLIA. For COMAUT
as soon as we tried AR(2,1) the second lag became relatively small. Hence, we selected
AR(1,1) for COMAUT. The same was true for MEDMAL, SPELIA. For WOKCOM, as
soon as we added one more lag term, the first lag term became bigger than 1.0 (which
became unstable). Consequently, we chose AR(1,1) for WOKCOM. Finally, for OTHLIA,
we chose AR(3,1) as a selected model as HOMFAM. Interestingly, the coefficent of the
third lag term was highest. We showed estimated coefficients of the AR(2,1) models,
their Q-statistics and PCAF's on the residuals in Table 4, 5 and 6, respectively. Estimated
coefficents of the AR(3, 1) models, their Q-statistics and PCAF's on the residuals are shown

in Table 7, 8 and 9, respectively.

As you may noticed, the process of personal lines like HOMFAM and PRVAUT ar
either more complicated or as complicated as comercial lines. Secondly, the longer tail

lines like MEDMAL do not necessarily possess a more complicated process.

4. Point Estimates and Confidence Intervals.
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After we selected each model based on the rectangular form of data, we eliminated
auxiliary observations in the lower triangular area. We filled the lower triangle with forcast
values. By adding up row-wise we obtained ultimate loss based on the selected model.
Based on the variance formula mentioned on the prior chapter, we estimated each variance

for the forecast value.

In Table 10, in the first column, the upper limit of the estimated ultimate loss with
95% probability (one-tail test) are shown. This indicates that if we repeatedly estimate
the ultimate loss with different samples, but with same formula, and in each case we
construct confidence intervals, then 95% of all the cases of the interval given will inclcude
the true parameter. Thus, the probability statement is not about population parameter

but estimated parameter.

The distance of the interval is determined by the size of the estimated variance for
the error, the complexity of the model and the size of the tail. In the third column the
relative distance of the confidence interval in terms of the ultimate loss are provided. In
the fifth and seventh column, the upper limit of the estimated future expected liability

and its relative distance of the confidence interval are shown, respectively.

If we look at the relative size of the confidence interval in terms of ultimate loss,
personal lines’ (HOMFAM and PRVAUT) sizes are a lot smaller than commercial lines’.
Among the commercial lines, WOKCOM’s relative size of the confidence interval is the
smallest even though its tail is longer than either COMAUT, COMMUL or SPELIA. The
WOKCOM’s relative size of the confidence interval may be the smallest because its stability
of the exposure growth as well as as its stable payment pattern. SPELIA’s relative size of
the confidence interval is bigger than either COMAUT or COMMUL or WOKCOM, even
though its tail is the shortest among the commercial lines. As we expected, MEDMAL’s
relative size is biggest among all lines, despite of its simplicity of the model. HOMFAM

and SPELIA’s relative size of the confidence interval in terms of the future liability are
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extremely high compared to their size in terms of ultimate loss due to their large estimated

variance of the error terms. Other lines’ relative size are consistent with their counterparts.

Except for the cases of COMMUL and SPELIA whose estimated constant coefficients’
signs are negative, all point estimates based on the models are slightly smaller than those
based on the loss development methods. This does not necesarily indicate that model-
created estimates are understated. One of the evidences are shown column (9) through
column (13). We reserved column (9) of actual paid loss as of 12/91 for the comparison
purpose. In column (10), we provided the estimated paid loss as of 12/91 based on the
models and in column (11) the projected paid loss as of 12/91 are shown based on the
development method. The performances of five lines out of nine lines were better with the

_models rather than the loss development methods. To the contrary of the ultimate loss
comparison cases, where seven out of nine cases, the model estimates were bigger than the
actuals. While five out nine cases, the estimates of loss development methods were bigger

than the actuals.

One of the main advantages of our model is that it provide future estimates for the
future accident years with confidence intervals. Neither ordinary regressional models nor
loss development methods provide these estimates, which are valuable for planning pur-
poses. The last rows of column (10) are future accident year estimates and their confidence
intervals. Compared to the actual values in column (9), the estimates seem to be reason-

able.

By looking at columns (1) through (4), you may notice that every case, the ultimate
losses based on the development method has fallen inside of the confidence intervals. This is
a small evidence showing that our estimated confidence intervals are reasonable. However,
figures on lower rows of the columns (9) and (10) indicate that one out of nine cases, the
actual payment located outside the confidence interval with a probability of 97.5%, and

two out of nine cases the actual payments laying outside the confidence interval with the
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probability of 95%. These appear to show that our confidence intervals for the accident year
may be too narrow because the actual probabilities indicate that 77.8% and 88.9% instead
of the theoretical values of 95% and 97.5%, respectively. This is not the case because the
confidence interval with 95% probability means that there is a 95% chance that the interval
includes the true parameter (true mean) not the actual value. Consequently, the 77.8%
and 88.9% regarding the actual values are reasonable considering that the population
possesses its own distribution. This is the main reason why the theoretical probability

with the normality assumption was larger than the empirical one in Gardner (1988).

In Table 11, the actual cumulative payment triangles, age-to-age factors and ultimate

losses based on the loss development methods are shown.

IV. CoNcCLUSION

By expanding a Box-Jenkins type time-series model, we developed a generalized frame-
work for modelizing a stochastic process on the loss history data. It turned out that some
lines require more complex specifications than the others. We may presume that some lines
are more sensitive to the insurance business cycle than the others. Our contributions will
be to provide a generalized framework to derive confidence intervals in which the business
cycle was taken into account as well as to provide future estimates for the planning process.

This paper is the first step to that direction.

We would like to incorporate claim count estimates into our framework by utilizing
vector autoregressive model in the near future. We may also incorporate outstanding

reserve which is also a valuable information.
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TABLE Y. ESTIMATED COEFFICENTS FOR AR(1,1) MODEL

18T YEAR 1ST YEAR
AY LAG DY LAG CONST

HOMFAN  0.85250 0.134% 0.11621
PRVAUT  0.99250 0.00708 0.11526
COMAUT  0.98074 0.01818 0.09425
COMUL  0.73432 0.27660 -0.218%
WOKCOM  0.99844 0.00328 0.09810
MEDMAL  0.85550 0.14628 -0.07682
OTHLIA  0.97503 0.02445 0.11304
SPELIA  0.97018 0.02990 0.10406
PROLIA  0.97063 0.03365 0.06055
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TABLE 2. ESTIMATED Q-STATISTICS OF THE RESIDUALS FOR AR(1,1) MODEL
Page 1 of 2
ACCIOENT YEAR = 82
Ka3 Ku4 Ka§ K= Ko7

HOMFAM 2.38778 2.6B498 S5.43214 6.40556 7.67962
PRVAUT  6.20165 7.43330 8.03333 9.57421 10.27192
COMAUY  B.02664 9.08966 12.78114 22.70867 27.734ké
COMMUL 15.50455 18.74024 21.77020 24.20164 26.17824
WOKCOM 17.20664 24.02996 24.85543 32.13953 34.81509
MEOMAL 3.63634 4.52361 9.18822 13.88175 14.61208
OTHLIA 4.38933 6.13802 6.52584 6.80700 6.81674
SPELIA 2.00038 2.33159 3.48908 3.51597 3.51782
PROLIA 10.63477 11.35506 11.47956 11.52169 11.52889

ACCIDENT YEAR = 83
Ks3 x4 Ks5 K=6

HOMFAM  2.54875 2.76390 2.93312 3.76485
PRVAUT  3.19666 4.15370 4.68083 5.11533
COMAUT  5.94915  7.45970 7.67292 23.55836
COMMUL  9.28121 12.03609 16.41462 17.97051
WOKCOM  7.81576 14.92529 16.12265 17.08352
MEOMAL 20.22335 25.45722 30.65844 19.76625
OTHLIA 7.81660 7.94727 10.83099 10.87109
SPELIA  1.58167 2.12018 3.56477 3.96429
PROLIA 9.95443 16.92331 18.41628 21.73013

ACCIDENT YEAR = 84 ACCIDENT YEAR = B35
Ke3 =4 Ke$ Ks3 Knd

HONFAM  1.50912 1.84325 2.69574 12.44707 14.18820
PRVAUT  0,90452 1.73380 3.31919 B8.57997 8.92221
COMAUT 11.85483 18.02801 19.35910 23.75158 30.68252
COMWL 19.31421 1980757 20.31336 15.62485 17.12087
WOKCOM 15.00407 16.46119 16.83647 5.94221 6.27584
MEORAL  1.52935 2.50451 13.99429 1.81445 2.17930
OTHLIA  7.44905 B8.13170 9.67102 12.64123 17.46448
SPELIA 8.21914 10.63992 23.36301 4.13378 4.18%4S
PROLIA 19.23100 26.05147 33.40982 9.72884 11.05814
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TABLE 2. ESTIMATED Q-STATISTICS OF THE RESIOUALS FOR AR(1,1) MODEL
Page 2 of 2
DEVELOPMENT YEAR = 1
K=3 K=d K25 K=b K=7

HOMFAM 20.86283 27.43541 29.97995 39.16037 44.28323
PRVAUT 16.45263 24.27383 31.32747 36.31636 38.33991
COMAUT 10.11426 14.08209 19.90366 35.09818 39.43475
comL 17.38610 26.24465 29.21483 32.85728 36.79327
WOKCOM 13.65747 21.10487 22.18290 26.12949 24.29261
MEDMAL 9.07254 11.45357 12.16451 12.43951 12.53369
OTHLIA 14.13229 17.98598 23.45365 24.57243 28.50565
SPELIA 8.23842 8.89819 9.60571 10.40635 10.46272
PROLIA 10.2B675 11.52355 12.65645 14.36266 14.92514

OEVELOPMENT YEAR = 2
K=3 K=4 Ks5 K=6

HOMFAM 15.80416 17,02433 24.92092 34.06265
PRVAUT 14.36262 16.41183 19.37089 24.11920
COMAUT  9.50703 11,75657 14.57927 22.44170
CoMMUL 11.90035 15,55383 16.78860 30.58926
WOKCOM 10.04670 1B.99859 22.83892 25.65263
MEOMAL 17.35611 22.35855 24.53940 26.06088
OTNLIA 14.20316 15.72022 14.72064 16.99232
SPELIA 24.34332 30.12124 36.38168 38.53164
PROLIA  9.35144 13.16147 13.46168 13.71009

- =

DEVELOPMET YEAR = 3 OEVELOPMENT YEAR = 4
Ka3 Kaé Ko5 k=3 K=k

HOMFAM 12.64103 13.35973 13.49182 6.16684 7.02828
PRVAUT 11,42169 13.92889 19.69748 13.35642 15.11712
COMAUT 10.18653 12,17216 17.63906 8.03854 10.13738
COMUL 14.08152 16.70407 17.94427 10.95556 13.88891
WOKCOM  6.13730 7.06503 7.34507 9.18472 9.82891
MEDMAL 5.66534 12.20602 14.21097 $5.38781 7.75356
OTHLIA 14.29288 22.40355 27.73785 10.06279 14.94903
SPELIA 18,25537 21.90669 27.88511 6.28131 4.59398
PROLIA 15.05529 17.17875 18.72870 7.20772 8.26060
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TABLE 3. PCAF OF THE ESTIMATED RESIDUALS FOR AR(1,1) MODEL

HOME AN
PRVAUT
COMAUT
COMMUL
WJOKCON
MEDMAL
OTKLIA
SPELIA
PROLIA

HOMFAM
PRVAUT
CONAUT
coL
WOKCOM
MEDMAL
QTHLIA
SPELIA
PROLIA

MEDMAL
OTHLIA
SPELIA
PROLLA

HOMFAN
PRVAUT
COMAUT
cosuL
WOKCOM
MEDMAL
OTHLIA
SPELIA
PROLIA

RESIDUAL PARTIAL AUTOCORRELATIONS FOR AY
1ST LAG 2D LAG 3RD LAG &TH LAG 5TH LAG

-0.37076 -0.03665 -0.07618 0.00852 -0.17023
-0.34487 -0,00366 -0.00112 -0.00223 0.00111
-0.10285 0.00115 -0.00226 -0.00255 -0.00431
0.09514 -0.01340 -0.00179 -0.00324 -0.00126
0.16951 0.00892 -0.00934 -0.00782 -0.00939
-0.14126 -0.10140 -0.11312 -0.12456 0.02052
0.44427 -0.00304 -0.00352 -0.00171 0.00037
-0.22599 -0.03193 -0.00833 -0.01076 -0.044%4
0.25349 -0.0198% -0.00540 0.00476 0.00134

RESIDUAL PARTIAL AUTOCORRELATIONS FOR AY
1ST LAG 2ND LAG 3RD LAG 4TH LAG STH LAG

-0.18333 -0.02987 -0.04104 -0.05068 0.08708
-0.02935 0.00670 -0.00169 -0.00649 -0.00482
+0.47491 -0.00447 0.00382 -0.00309 -0.00181
0.25051 -0.01295 -0.01081 -0.00404 -0.00315
0.36364 -0.01617 -0.00188 -0.02261 -0.04645
<0.57419 0.01834 -0.03797 -0.03747 -0.01874
0.30091 -0.00597 -0.00298 0.00018 0.00095
-0.18716 -0.01487 0.01288 -0.01212 -0.01795
-0.70515 0.00688 -0.02618 -0.00267 -0.00430

RESIDUAL PARTIAL AUTOCORRELATIONS FOR DY
1ST LAG XD LAG 3RD LAG &4TH LAG 5TH LAG

-0.18377 -0.03396 0.00009 0.01791 -0.00445
-0.45164 -0.00008 -0.00018 0,00010 -0.00002
-0.21997 -0.02538 -0.00589 0.01806 0.00802
-0.10355 -0.03000 -0.00079 0.00355 -0.00545
-0.35143 -0.09390 -0,37586 -0.77899 -1.58942
-0.10960 -0.03756 -0.01395 0.00318 0.02590
-0.13521 -0.01166 -0.00083 0.00683 -0.00041
-0.14748 -0.36557 0.02584 -0.05500 -0.04185
<0.46299 -0.22962 0.09621 -0.01529 -0.04378

RESIDUAL PARTIAL AUTOCORRELATIONS FOR OY
1ST LAG 2D LAG 3RD LAG ATH LAG STN LAG

-0.49241 -0.05105 0.03597 -0.02773 -0.00072
0.12929 0.00019 -0.00200 -0.00348 -0.00112
-0.12691 -0.00915 -0.00679 -0.00327 0.00723
-0.20871 -0.01654 -0.00699 0.00686 0.01078
0.23198 -0.02239 -0.02952 -0.01093 0.00814
0.10842 -0.01020 -0.05544 -0.02723 0.02407
0.05596 -0.01590 0.00112 0.00798 -0.00592
-0.30055 -0.01253 -0.00252 -0.01439 0.01012
-0.20443 -0.08523 0.03853 0.02532 -0.05277

82
ATH LAG

-0.26534
0.00201
-0.00255
-0.00043
-0.00908
0.00782
0.00209
+0.00522
-0.00012

84
6TH LAG

-0.17562
-0.01315

s.o021
-0.00162
-0.0027m
+0.0029¢
-0.00036

0.00782
-0.01450

1
6TH LAG

-0.0127¢
0,00003
-0.01858
-0.0033%
2.35511
-0.00361
-0.00166
0.03707
0.00849

3
6TH LAG

0.02678
-0.00004
-0.02852
-0.00357

0.01704
-0.00287
-0.02045

0.00566

0.00191
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RESIDUAL PARTTAL AUTOCORRELATIONS FOR AY &3
1ST LAG 2ND LAG 3RD LAG 4TH LAG STH LAG 6TH LAG

-0.28725 -0.44010 -2.8894% 2.02737 O0.43195 0.14616
<0.37356 -0.01520 -0.00476 -0.01134 -0.00362 0.00860
-0.30156 0.00355 -0.00414 -0.01290 -0.00372 -0.02474
-0.43576 0.00571 -0.00343 -0.00719 -0.02689 -0.00648
0.12489 0.00450 -0.01047 -0.01656 -0.00316  -0.00483
0.1525¢ -0.27062 -0.19031 -0.04040 -0.09085 -0.08738
0.10988 0.00077 -0.00673 -0.00701 -0.00103  -0.00195
+0.12508 -0.07599 -0.07512 -0.11286 -0.28879  -0.27434
0.03450 -0.01090 -0.01662 -0.05354 -0.00867  0.00463

RESIOUAL PARTIAL AUTOCORRELATIONS FOR AY 85
1ST LAG 2ND LAG 3RD LAG 4TH LAG 5TH LAG OTH LAG

~0. 17577 -0.126k2 0.07477 0.01706 -0.04701 -0.02116
0.02938 -0.00062 -0.00214 0.00043 0.00000 -0.00000
-0.46176 -0.00270 0.00132 -0.00348 0.00029 0.00101
0.06822 0.00182 -0.00738 -0.00228 -0.00159 0.00008
-0.02170 -0.05033 -0.11814 -0.05752 -0.21919  -0.03884
=0.20607 -0.00680 -0.00968 -0.01695 0.01045 0.00267
-0.44420 -0,00020 -0.00140 -0.00011 -0.0000% -0.00016
~0.46475 -0.01362 -0.00260 -0.00066 0.00161 0.00082
0.02055 -0.00099 -0.02622 0.00490 -0.02459 -0.00013

RESIDUAL PARTIAL AUTOCORRELATIONS FOR DY 2
1ST LAG 2KD LAG 3RD LAG &TH LAG S5TH LAG 6TH LAG

-0.57390 0.01386 -0.07921 -0.00814 -0.01905 0.04257
0.25633 -0.00027 -0.00065 -0.00004 -0.00105 -0.00041
-0.11445 0.01353 -0.014%4 -0.00924 -0.01754 0.0018%
-0.46323 -0.01015 -0.08047 0.01340 0.00891 0.03430
0,04069 -0.02385 -0.01581 -0.00568 -0.00437 0.00722
-0.06726 -0.03033 -0.08582 0.03129 0.00811 0.01127
-0.03812 -0.00776 -0.00575 0.00938 -0.00156 -0.00708
-0.30293 -0.00657 0.00221 -0.00923 0,00570 0.00422
-0.20689 -0.00140 -0.06373 -0.03099 0.02172 0.00733

RESIDUAL PARTIAL AUTOCORRELATIONS FOR DY 4
1ST LAG 2ND LAG 3RD LAG 4TH LAG S5STH LAG 6TR LAG

-0.33917 -0.00705 -0.00676 -0.00166 -0.00732 0.01159
0.31263 -0.00149 -0.00539 -0.00035 -0.00200 0.00086
0.10055 0.00706 -0.02027 -0.0019% -0.02065 -0.00043
-0.25202 -0.01538 -0.01829 0.00486 0.01590 -0.00168
0.2474Y -0.02784 -0.01471 -0.0206% 0.01033  -0.00124
0.03956 -0.04485 -0.02243 0.04137 -0.02612 -0.03618
0.12130 -0.01779 -0.00050 0.00182 0.00055 -0.01890
-0.20675 -0.03803 -0.01484 0.01032 0.00542 -0.00049
-0.05020 -0.12462 -0.04818 0.02097 0.01188 -0.00370



TABLE &. ESTIMATED

HOMFAM
PRVAUT
comaut
coMmMuL
WOKCOM
MEDMAL
OTHLIA
SPELIA
PROL1A

1ST YEAR
AY LAG

0.30030
0.55030
0.96540
0.53940
1.05840
0.94113
0.52058
0.73300
0.76355

COEFFICENTS FOR AR(2,1) MODEL

D YEAR
AY LAG

0.63392
0.44051
0.01553
0.20832
-0.08517
0.05838
0.46175
0.13460
0.20860
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1ST YEAR
DY LAG

0.06093
-0.00025
0.01800
0.26344
0.02632
0.00222
0.01822
0.13427
0.03330

CONST

0.13195
0.17295
0.09608
-0.19622
0.09982
0.10451
0.18178
-0.06073
0.07551




TABLE 5. ESTIMATED Q-STATISTICS OF THE RESIOUALS FOR AR(2,1) MODEL
Page 1 of 2
ACCIDENT YEAR = 82
Ka3 K=k K5 K=6 K7

HOMFAM  1.98996 2.16136 3.38277 3.8997% 3.99259
PRVAUT  5.67318 6.52377 6.88369 B8.01349 B8.49348
COMAUT  8.26154 9.46501 13.10957 23.54066 28.98261
COMMUL 15.91527 19.07583 22.34244 24.80556 27.03102
WOKCOM 17.42113 24.40334 25.35317 32.47001 35.49136
MEDMAL 3.48411 4.34488 8.93030 13.57876 14.25841
OTHLIA £.28978 5.97255 6.34765 6.62106 6.62712
SPELIA 1.91596 2.24384 3.28078 3.30467 3.31895
PROLIA 10.68277 11,42674 11,54250 11.63724 11.65731

ACCIDENT YEAR = 83
Ke3 Kng K=5 Kb

HONFAM  2.76251 2.95369 3.2104 &.180M1
PRVAUT 3.03098 &£.00322 4.50045 4.81416
COMAUT  5.97849 7.44506 7.64307 23.31010
COMMUL  9.54224 12.34727 16.56810 17.93802
WOKCOM  7.98853 15.33981 16.52810 17.33435
MEDMAL 20.13985 25.52529 30.47728 39.19085
OTHLIA B8.1147T1 8.28323 11.36782 11.42579
SPELIA 1.47905 1.97616 3.32353 3.71314
PROLIA 10.47838 17.39252 19.15444 22.12186

ACCIDENT YEAR = 84 ACCIDENT YEAR = 85
K=3 =l KsS Ks3 Knb

HOMFAM  2.05900 6.74390 7.46354 5.50849 $5.96703
PRVAUT  2.83376 5.38306 7.92033 7.48222 8.40334
COMAUT 10.06838 16.17177 16.83B47 24.26775 31.7923
COMML 18.55787 19.17945 19.70395 15.43779 16.71569
WOKCOM 15.31477 16.47673 16.96448 6.42555 6.96612
MEDMAL 1.54353 2.58499 13.71380 1.85397 2.21731
OTHLIA 5.51755 6.19861 7.76043 11.90048 13.22891
SPELIA 8.40713 10.13824 23.01675 3.15066 3.23195
PROLIA 18.54066 25.60754 34.80326 11.18560 13.16175
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TABLE 5. ESTIMATED O-STATISTICS OF TKE RESIDUALS FOR AR(2,1) MODEL
Page 2 of 2
OEVELOPMENT YEAR = 1
K=3 Kok K=5 =4 Ka?

HOMFAM 14.63397 19.64255 20.59734 23.40826 24.88184%
PRVAUT 11.98079 15.66238 21.10133 24.99560 27.26196
COMAUT  8.08051 11.72902 16.20662 31.76165 36.63307
COMMUL 20.63175 26.85026 30.63580 32.90643 37.20489
WOKCOM 1493724 22.40663 23.92360 25.82408 25.96615
MEDMAL 8.96038 11.48971 12,57961 12.90309 13.02912
OTHLIA 17.73336 22.70700 27.48417 29.51769 33.14230
SPELIA 18.02518 18.93740 19.53405 20.26905 20.59254
PROLIA 7.84471 9.180135 9.98272 11.64293 11,87074

=

DEVELOPMENT YEAR = 2
=3 Ksk k=5 K6

HOMFAM 12.67954 15.72676 18.39232 32.04126
PRVAUT 13.09267 16.42352 20.74574 22.55493
COMAUT  7.63526 9.50123 11.62120 18.42212
COMMUL 10.80210 14.60958 14.63837 27.08606
WOKCOM 10.45595 19.07627 23.99037 26.13308
MEDNAL 16.61188 21.45131 23.27465 24.53169
OTHLIA 16.80799 18.60625 19.69520 20.20313
SPELIA 14.71297 15.86508 18.18733 19.24083
PROLIA  9.03563 11.83704 12.33777 12.70747

F

DEVELOPMET YEAR = 3 DEVELOPMENT YEAR = 4
k=3 K=4 K=5 K=3 K4

HOMFAM 12.59476 13.41527 13.83793 6.64678 11.21330
PRVAUT 13.30942 18.24313 20.58350 13.25334 13,34350
COMAUT 11.90572 14.96047 20.73482 7.95809 11.02764
COMIUL 14.98182 18.14605 19.30833 B8.18434 10.32852
WOKCOM  6.89509 7.86649 8.11614 10,03878 10.80485
MEDMAL  6.65933 13.80642 16.30530 6.24661 8.74575
OTHLIA 15.36807 26.11567 28.18779 10.07870 14.35889
SPELIA 7.65181 9.61350 11.73637 6.15198 6.24645
PROLIA 15.55548 18.15833 20.22100 6.75053 7.67302
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TABLE 6. PCAF OF THE ESTIMATED RESIDUALS FOR AR(2,1) MODEL

KEDMAL
QTHLIA
SPELIA
PROLIA

HOMFAM
PRVAUT
CoMAUT
CoMUL
WOKCOM
MEDMAL
OTHLIA
SPELIA
PROLIA

HOMFAN
PRVAUT
COMAUT
co UL
YoKCoM
HEDMAL
OTHLIA
SPELIA
PROLIA

ROMFAM
PRVAUT
comauT
comsL
WoKcomn
MEDMAL
OTHLIA
SPELIA
PROLIA

RESIDUAL PARTIAL AUTOCORRELATIONS FOR AY

18T LAG
-0.29839
-0.35057
-0.10371
0.09390
0.45075
0.16519
-0.21331
-0.12282
0.25919

20D LAG 3RD LAG
-0.0302¢ -0.08139
-0.00372 -0.00093
0.00114 -0.00225
-0.01189 -0.00157
-0.00315 -0.00362
0.00912 -0.00928
-0.03138 -0.00947
-0.09918 -0.11554
-0.01946 -0.00555

RESIDUAL PARTIAL AUTOCORRELATIONS FOR AY

1ST LAG 28D LAG 3RD LAG
-0.005058 -0.006 +0.01433
0.0156667 0.003217 -0.00109
-0.46568 -0,00652 0.003445
0.2397241 -0.00472 -0.01994
0.2756712 -0.00533 -0.00256
0.3682351 -0.01603 -0.004S
0.0061007 -0.01844 0.039313
-0.473081 0.041366 -0.07167
-0.601772 0.009743 -0.0404

82

6TH LAG
-0.20061
0.00181
-0.00254
-0.00045
0.00214
-0.00932
-0.01222
0.00631
0.00024

ATH LAG
-0.02566
-0.00169
-0.00254
-0.00268
-0.00178
-0.00782

STH LAG
-0.14819
0.00082
-0.00430
-0.00151
0.00035
-0.00957
-0.01174 -0.04283
-0.11675 0.02340
0.00416 0.00140

&

6TH LAG
-0.01964
-0.00571

ATH LAG 5TH LAG
+0.03493 0.014516
-0.00263 -0.00098
-0.00293 -0.0018 0.001218
-0.00238 -0.00305 -0.00132
0.000319 0.000797 -0.00034
-0.02342 -0.04879 -0.00312
-0.0169% -0.02119 0.003093
-0.05588 -0.03586 -0.00849
0.003948 -0.01829 -0.00817

RESIDUAL PARTIAL AUTOCORRELATIONS FOR OY 1

1ST LAG 23D LAG 3RD tAG
0.10441 -0,05122 -0.00100
-0.12470 -0,00017 -0.00012
-0.21823 -0,02537 -0.00582
-0.01338 -0.03375 -0.00120
-0.15666 -0.01164 -0.00086
-0.30151 -0.02300 -0.37307
0.00015 -0.39626 0.05815
-0.06512 -0,04156 -0.01473
+0.38248 -0.18376 0.07492

&TH LAG STH LAG
0,01980 -0.01004
0.00008 -0.00002
0.01307 0.00780
0.00760 -0.00828
0.00692 -0.00051
-0.68592 -0.84343
-0.11715 -0.05436
0.00451 0.02518
-0.03374 -0.05593

ATH LAG
-0,00983
0.00002
-0.01841
-0.00234
-0.00156
-4 .48305
0.01327
-0.00397
0.01576

RESJDUAL PARTIAL AUTOCORRELATIONS FOR OY 3

18T LAG
-0.18953
0.44993
-0.11604
-0.12782
0.0213
0.25400

20 LAG 3RD LAG
-0.04044 0.00878
-0.00274 -0.00413
-0.00928 -0.00675
-0.01971 -0.00771
-0.0155% 0.00073
-0.02553 -0.03058
0.04945 -0.01640 -0.01122
0.17825 -0.01958 -0.06156
-0.20953 -0.07372 0.03710

4TH LAG 5TH LAG
-0.03115  0.00606
-0.00426 -0.00055
-0.00334 0.00681
0.00835 0.01224 -0.00631
0.00846 -0.00461 -0.02015
-0.01050 0.00958 0.01747
-0.01399 0.01147 0.00525
<0.02226 0.02695 0.00058
0.01521 -0.05075 -0.00047

6TH LAG
0.02137
0.00079
-0.02858
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RESIDUAL PARTIAL AUTOCORRELATIONS FOR AY 83

1ST LAG
-0.3133¢9
-0.33088
-0.30283
-0.44897
0.128483
0.11239
-0.13467
0.15227
<0.01047

2ND LAG
-0.21206
-0.00887
0.00347
0.00397
0.00068
0.00401
-0.03399
-0.2270%
-0,00492

3RD LAG
-0.59748
-0.00269
-0.00404
-0.00549
+0.00764
-0.00926
-0.04098
<0.15534
-0.01241

4TH LAG 3TH LAG 6TH LAG
-1.99424  1.94932 0.56558
-0.00790 -0.00272 0.00433
-0.01270 -0.00360 -0.02437
-0.00561 -0.02227 -0.0057%
-0.00770 -0.00093 -0.00190
-0,01538 -0.00271 -0.00427
-0.06096 -0.16086 -0.12339
-0.02243 -0.05877 -0.06188
-0.04244 -0.00831 0.00169

RESIDUAL PARTIAL AUTOCORRELATIONS FOR AY 85

1ST LAG
-0.11976
0.26675
-0.45725
0.195429
-0.53336

-0.026
-0.41031
-0.17857
0.094585

24D LAG
-0.05905
-0.00133
-0.,00256
-0.00175
~0.00045
-0.04862
-0.00536
-0.00338
-0.00995

3R0 LAG
0.040935
-0.00292
0.001196
=0.00777
-0.00097
-0.11593
-0.00605
-0.01325

-0.00978 0.000482

4TH LAG 5TH LAG 6TH LAG
0.016000 -0.0523 -0.0090964
-0.00016 0.000178 2.210€-06
-0.00344 0.00032 0.0009861
-0.00161 -0.00073  0.000206
-2.4E-05 0.000084 -0.0002153
-0.05448 -0.20505 -0.0372327
-0.00085 0.000995 0.0001095
-0.0101 0.007809 0.0014824
-0.0181 0.0017349

AESIDUAL PARTIAL AUTOCORRELATIONS FOR DY 2

1ST LAG
0,09371
0.44546
-0.09615
-0.30425
-0.04033
0.06494
-0.11248
-0.01628
-0.00534

20D LAG
-0,01559
-0.00104
0.01338
-0.02329
-0.00734
-0.02510
-0.00791
+0.04230
-0.00816

3RD LAG
-0,06582
-0.0008%
-0.01452
-0.07604
-0.00633
-0.01789
-0.00253
-0.08082
~0.06%3

RESIDUAL PARTIAL AUTOCORRELATIONS FOR DY &

1ST LAG
0.17352
0.53043
0.11468
-0.11636
0.08589
0.2¢950
0.04172
0.08795
0.05577

28D LAG
-0.00906
-0.00635
0.00666
-0.01955
-0.01757
-0.03012
-0.05498
-0.05177
-0.13833

3RD LAG
-0.01119
-0.00713
«0.02046
+0.02103
-0.00009
-0.01741
-0.01581
-0.01969
-0.04611

4TH LAG 5TH LAG 6TH LAG
-0.01545 -0.0055¢9 0.03722
-0.00055 -0.00123  -0.00032
-0.00935 -0.01747 0.00200
0.01252 0.01284 0.04627
0.00939 -0.00130  -0.00678
-0.00599 -0.002469 0.00850
-0.00697 0.00876 0.00234
0.03488 0.00849 0.01003
-0.02396 0.01872 0.00306
&4TN LAG 5TH LAG OTH LAG
+0.00946 -0.00037 0.00912
-0.00195 -0.00060 0.00190
~0.00220 -0.02066 -0.00040
0.00670 0.01472 -0.00424
0.00203 0.00214 -0.01867
-0.01940 0.01161 -0.00188
0.01260 0.00645 -0.00000
0.04080 -0.03065 -0.04013
0.01823 0.00958 -0.00575



KOMFAM
PRYAUT

MEDMAL
OTHLIA
SPELIA
PROLTA

TABLE 7. ESTIMATED

1ST YEAR
AY LAG

0.02596
0.52211
0.96374
0.57237
1.04169
0.94271
0.32960
0.67767
0.69942

2ND YEAR
AY LAG

0.47760
0.39606
-0.03759
-0.15216
-0,72885
0.06672
0,24380
-0.16442
-0.20058

COEFFICENTS FOR AR(3,1) MODEL

3RD YEAR
AY LAG

0.44232
0.0a301
0.05602
0.35489
0.69056
-0.01021
0.41686
0.39012
0.47181
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1ST YEAR
DY LAG

0.05052
-0.00161
0.01672
0.23524
-0.00487
0.00256
0.01021
0.09871
0.03426

CONST

0.17460
0.18837
0.10371
-0.14156
0.23127
0.10270
0.2419%
-0,00733
0.11847




TABLE 8. ESTIMATED Q-STATISTICS OF THE RESIOUALS FOR AR(3,1) MODEL
Page 1 of 2
ACCIDENT YEAR » 82
K=3 K=4 =5 K=é Ka7

HOMFAN  1.89961 2.04500 2.97544 3.43541 3.46336
PRVAUT §.56150 6.32262 6.64156 7.64102 8.05960
COMAUT  8.14380 9.2905) 12.72664 22.8771% 28.23228
CoMMUL 16.53650 19.75038 23.49269 25.95561 28.53064
WOKCOM 19.11617 24.39896 25.27048 32.04011 33.54338
MEDMAL 3.49878 4.36072 B.94902 13.59271 14.28146
OTHLIA 4.18413 S5.46641 6.06382 6.31609 6.32329
SPELIA 1.80286 2.09206 2.94262 3.02819 3.02980
PROLIA 10.78075 11.56971 11.72503 11.82286 11.84372

ACCIDENT YEAR = 83
K=3 Kzb Xa5 K=6

HOMFAM 3.00390 3.19140 3.47231 4.55810
PRVAUT 3.02413 4,0260 4.63506 4.84792
COMAUT  6.02254 7.46375 7.86840 23.16026
COMMUL  7.74866 10.0124) 13.87038 15.45627
VOKCOM  8.21531 15.54758 16.70029 16.93862
KEDMAL 20.14428 25,51812 30.48372 39.23301
OTHLIA 7.27898 7.38832 10.29606 10.34080
SPELIA 1.46445 1.97280 3.36048 3.68359
PROLIA 10.85263 17.76777 19.67225 22.63424

ACCIDENT YEAR = 84 ACCIDENT YEAR = 85
K3 k=g K=5 K=3 [ &)

HOMFAN  3.47004 11.40593 12.13779 2.39762 3.26036
PRVAUT 2.77704 5.20330 7.77981 7.33106 8.51191
COMAUT  9.32228 15.07253 15.79316 21.97061 30.34643
CoMUL 18.38219 18.77972 19.25388 9.07117 10.22135
WOKCOM  7.16027 7.49055 7.90569 4.38527 5.2952¢
WEDMAL 1.54678 2.59282 13.74100 1.85422 2.21259
OTHLIA 7.29723 7.87348 9.74389 10.06132 10.63347
SPELIA 10.78656 13.38671 25.73312 6.81150 7.12185
PROLIA 18.87935 26.42670 34.61287 6.16343 6.58304



TADLE 8. ESTIMATED Q-STATISTICS OF TME RESIDUALS FOR AR(3,1) MODEL
Page 2 of 2
DEVELOPMENT YEAR = 1
x=3 X=& Ka5 Xz6 x=7

HOWFAN 17.B2687 21.04413 23.07158 24.98393 27.15608
PRVAUT 11.03701 14.39888 19.89780 23.07583 24.94225
COMAUT  6.57248 8.72126 13.03380 28.91539 35.40280
COMMUL 20.03356 25.71469 31.46851 33.42196 39.33703
WOKCOM  8.08914  9.10004  9.93333 11.51103 11.78411
MEDMAL 8.74491 11.48403 12.35361 12.67248 12.79704
OTHLIA 10.38935 14.33840 17.31645 17.82988 13.070%3
SPELIA 18.52091 19.44997 20.03453 20.46299 20.93029
PROLIA 15.27199 19.91718 21,19592 23.37152 24.59059

DEVELOPMENT YEAR = 2
K=3 Kod K=$ Kz§

HOMFAM 10.88493 11.93953 12.21178 20.84214
PRYAUT 13.52875 17.50895 21.48084 23.50739
COMAUT  7.98087 9.05037 11.05467 17.58706
COMMUL 11.90663 15.01756 16.33284 29.18758
WOKCOM  8.21686 14.10539 24.69604 28.53668
MEDMAL 16.56766 21.43637 23.26615 24.55222
OTHLIA 14.50624 15.88895 17.126B9 17.76154
SPELIA 10.22151 11.52239 14.49992 16.72538
PROLIA 8.03753 9.61459 10.63513 11.23291

OEVELOPMET YEAR = 3 DEVELOPMENT YEAR ® &
k=3 Kb K=5 K3 K=é

HOMFAN  9.64579 1036975 10,58742 11.04662 18.18216
PRVAUT 13.42957 18.21212 20.00778 12.42276 12.60348
COMAUT 11.80267 15.14643 21.79389 6.32948 8.06215
COMMIL 16.69330 17.66878 20.20201 12.39557 15.46746
WOKCOM 12.18456 1946557 22.84906 $5.10041 10.99673
WMEDMAL 6.85049 13.76803 16.19655 6.22434 8.72807
OTHLIA 15.37184 24.13344 26.0687% 8.66626 10.23055
SPELIA 14.85188 18.34796 23.94580 4.27263 4.47297
PROLIA 15.87020 18.06519 19.86379 5.08702 3.69904
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TABLE 9. PCAF OF THE ESTIMATED RESIDUALS FOR AR(3,1) MODEL

HOMFAN
PRVAUT

oML

NEDMAL
OTHLIA
SPELIA
PROLIA

HOMFAM
PRVAUT
COMAUT
CoMMUL
VOKCOM
MEDRAL
OTHLIA
SPELIA
PROLIA

HOMFAM
PRVAUT
COMALIT
ComuL
voxcon
MEDMAL
OTHLIA
SPELIA
PROLIA

HOMFAM
PRVAUT
[=¢ o
ConL
WOKCOM
HEDMAL
OTHLIA
SPELIA
PROLIA

RESIDUAL PARTIAL AUTOCORRELATIONS FOR AY 82
1ST LAG 2ND LAG 3RD LAG A4TH LAG STH LAG &6TH LAG

-0.26716
-0.35392
-0.10556
0.07346
0.42938
0.16511
-0.20786
-0.06205
0.26115

-0.05608
-0.00374

0.00113
-0.00964
-0.00243

0.00910
-0.03110
-0.09696
-0.0189%9

-0.09823
-0.00087
-0.00222
-0.00113
-0.00288
-0.00928
-0.01044
+0.12202
-0.00559

-0.03268
-0.00155
-0.00252
-0.00155
-0.00118
-0.00781
-0.01123
-0.09324

0.00428

-0.15005
0.00078
-0.00424
-0.00185
0.00076
-0.00955
-0.03803
0.03265
0.00163

RESIDUAL PARTIAL AUTOCORRELATIONS FOR AY

18T LAG
0.07795
0.01303
-0.48487
0.25694
0.01346
0.36923
-0.02931
-0.58797
-0.71820

A0 LAG
-0.00494
0.00306
-0.00436
-0.01070
-0.00281
<0.01605
=0.01409
0.01067
0.00228

38D LAG
-0.01208
-0.00103
0.00393
+0.00853
-0.00141
-0.00473
0.01504
-0.02147
-0.01896

&TH LAG
-0.02316
-0.00244
-0.00318
+0.00239

0.00052
-0.02360
-0.01398
-0.02793

0.00097

STH LAG
0.00795
-0.00097
-0.00176
-0.00244
0.00050
-0.04905
-0.01551
-0.01883
-0.00332

RESIDUAL PARTIAL AUTOCORRELATIONS FOR DY
1ST LAG 2MD LAG 3RD LAG
0.23170 -0.05298 -0.00917

-0.14311
-0.25192

0.02573
-0.29811
-0.12728
-0.50265

-0.00015
-0.02294
-0.01432
-0.09055
-0.02112
-0.00245

-0.00013
-0.00552
-0.0074%
-0.37332
-0.01534
~0.0007%

0.23052 -0.25837 -0.00921
-0.38036 -0.05829 0.03004

4TH LAG
0.01944
0,00003
0.01620
-0.00118
-0.68566
-0.00478
0.00121
-0.0534k
-0.07761

STN LAG
-0.00427
-0.00002

0.00802
-0.00065
-0.84675

0.01630
<0.00103
-0.06884
-0.06791

RESIOUAL PARTIAL AUTOCORRELATIONS FOR DY

15T LAG
0.10623
0.25605
-0.2697¢
-0.02071
0.19224
0.17799
-0.40906
0.20983
-0.42933

20 LAG
~0.02944
-0.00344
-0.012350
-0.0049%
-0.00518
~0.01470
-0.00249
-0.01628
-0.0191%

3RD LAG
-0.00545
-0.0039%0
-0.01730
-0.00785
-0.01352
-0.02706
0.000%8
-0.01917
0.01781

ATH LAG
-0.00213
-0.00250
-0.00502
-0.00020
-0.003873
-0.00848
-0.00629
-0.01090
-0.00325

3TH LAG
0.00105
0.00136
0.01743
0.00301
0.00337
0.01132
0.00166
0.01290
-0.01107

-0.19583
0.00171
-0.00254
+0.0001¢
0.00140
-0.00930
-0.01716
0.00158
0.00018

84

6TH LAG
-0.00433
-0.00552
0.00115
-0.00148
0.00004
-0.00309
0.00166
+0.00098
-0.01019

1

6TH LAG
-0.01357
0.00002
-0.01801
-0.00504
-b.64384
-0.00126
0.00052
0.01160
0.01103

3
6TH LAG
0.00075
0.00258
<0.00279
0.00026
0.00103
-0.00330
0.00011
0.00292
-0.00225

693

RESIDUAL PARTIAL AUTOCORRELATIONS FOR AY 83
1ST LAG 2ND LAG 3RD LAG ATH LAG 5TH LAG

-0.34105 -0.14883
-0.37978 -0.00842
-0.30055 0.00354
-0.43714  0.00220
0.21134 -0.00119
0.11287 0.00404
-0.14054 -0.02174
0.14931 -0.20989
-0.02798 -0.00349

-0.28184 -0.54963
-0.00266 -0.00779
-0.00412 -0.01273
-0.00590 -0.00454
-0.00924 -0.00813
-0.00929 -0.01541
-0.03029 -0.04556
-0.13831 -0.02612
-0.01099 -0.04032

RESIDUAL PARTTAL AUTOCORRELATIONS FOR A

1ST LAG 2ND LAG
-0.17042 -0.03758
0.26761 -0.00172
-0.42019 -0.00234
-0.07603 0.00781
-0.10101 0.00206
-0.02576 -0.04798
<0.04590 -0.00403
0.06009 0.04129
-0.01319 -0.00640

3RD LAG &TN LAG
0.02303 0.01861
-0.00316 -0.00024
0.00080 -0.00406
«0.00963 -0.00349
-0.00480 -0.00246
-0.11721 -0.05509
-0.01476 0.00086
-0.05578 -0.01232
-0.02216 0.00609

RESIDUAL PARTIAL AUTOCORRELATIONS FOR OY 2

18T LAG 2ND LAG
0.10000 -0.01616
0.36253 -0.00109
-0.18645 0.00064
-0.40701 0.01556
0.14061 -0.03839
+0.00312  0.01149
-0.51547 -0.00022
-0.11998 -0.00057
-0.02004 -0.00532

3RD LAG &4TH LAG
-0.10801 -0.00389
-0.00092 -0.00055
-0.00954 -0.00842
-0.08795 0.00264
-0.01055 0.01633
-0.04696 0.0025%
-0.00081 0.00116
-0.0031% -0.00269
-0.06729 -0.04119

RESIDUAL PARTIAL AUTOCORRELATIONS FOR DY &

1ST LAG 2ND LAG
0.49432 -0.00582
0.27579 -0.00612
~0.05468 -0.00942
0.19221 -0.01643
0.01502 -0.01277
0.04140 -0.02958
-0.19410 -0.00397
0.01638 -0.03931
0.21993 -0.02344

3RD LAG 4&TH LAG
-0.00624 -0.00158
-0.00425 0.00164
-0.01159 0.00530
-0.00648 0.0050%
0.00102 -0.01046
-0.02602 0.01337
-0.00276 -0.01209
+0.01341 0.00531
-0.04364 -0.00585

6TH LAG
-1.00750 165.03700
-0.00259 0.00420
-0.00370  -0.02435
-0.02300  -0.00490
<0.00126  -0.000&
-0.00274  -0.00430
-0.12731  -0.08358
-0.06189  -0.04440
-0.00852 0.00083

Y 85

5TH LAG 6TH LAG
-0.04912  -0.01055
0.00028  -0.00001
0.00055 0.00102
-0.00504  -0.00044
-0.00149  -0.00015
-0.20639  -0.03788
+0.00257 -0.00033
-0.03542 0.00085
-0.00750  -0.00051
STH LAG 6TH LAG
-0.00775 0.03960
-0.00025 0.0005%
-0.01235 0.00311
-0.00734 0.04367
0.00467 -0.0057%
+0.01053 0.00084
-0,00069 0.00013
0.00245  -0.00151
0.01474 0.00795
S5TH LAG 6TH LAG
0.00199 0.00023
0.00180  -0.00035
-0.00062  -0.00006
0.00242 -0.00062
-0.00261  -0.00022
-0.00174 0.00002
0.00510 0.00139
0.0059 0.00015
-0.01262 0.00146
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Accident
Year

1982
1983
1984
1985
1986
1987
1988
1989
1990

Total

191

Upper
Lowe:

3

S

Uppe:
Lower

Table 10. HOMFAM Comperison of Estizstes

(1) (2) 3> (%)
Ultimate Loss Comparison

95X Point Loss Dev

Limit Estimate (1-2)/(2) Method
8,227,483 8,222,584 0.06X 8,222,506
8,896,303 8,883,211 0.12X 8,884,462
9,223,736 9,198,101 0.28X 9,195,274
10,440,020 10,376,815 0.61X 10,299,264
9,756,426 9,631,000 1.30X 9,597,963
10,259,092 10,038,562 2.20% 10,008,421
11,486,361 11,100,605 3.48% 11,098,940
14,651,688 13,968,085 4.89% 14,199,606
15,710,658 13,473,811 16.60% 13,819,411
98,649,765 94,892,774 3.96X 95,325,847

Linit with 97.5 X Two-Tefl Test
Limit with 97.5 X Two-Tail Test

Linft with 95 X Two-Tall Test
Limit with 95 X Two-Tail Test

5

95 X
Limit

10,775
28,618
70,010

179,966
354,433
618,497

1,076,049

1,906,785

6,473,740

10,718,873

6)

(44]

(8)

Liability Comparison

Point

Estimate (5-6)/(6)

5,876
17,526
375

116,761
229,009
397,967
690,293
1,223,182
4,236,893

6,961,882

83.37%
63.29%
57.77%
54.13%
S4.7TX
55.41X
55.88%
55.89%

LDF
Method

5,798
18,777
41,548
39,210

195,972
367,826
688,628
1,454,703

52.79% 4,582,493

S3.97x

7,394,955

(§5)
Actual
Paid L
/N

8,224,257
8,883,252
9,183,429
10,314,312
9,497,598
9,789,919
10,656,496
13,254,760
12,358,709

92,162,732

10,670,718

10y 1)
Loss Dev
Method

@12/9

Model
M

8,222,506
8,873,197
9,175,840
10,252,727
9,477,972
9,827,809 9,804,068
10,699,876 10,691,036
13,272,218 13,318,598

8,222,584
8,877,052
9,178,785
10,344,095
9,515,095

12

Page 1 of @

3

€10)-¢(9) (11)-(9)

(1,673)
(6,200)
(4,665)
2,783
17,497
37,890
43,380
17,458

12,249,764 12,403,657 (108,965)

92,187,239 92,224,603
9,411,233

4,766,733
14,075,752

5,044,205
12,878,280

24,507

(1,751
(5,055)
(7,589)
(61,585)
(19,626)
14,149
34,540
63,838
44,948

61,87
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Teble 10. PRVAUT Comparison of Estimates

)
Accident 95X
Year timit

1982 15,782,753
1983 17,927,403
1984 20,670,924
1985 23,488,419
1986 26,412,360
1987 29,571,320
1988 33,027,267
1989 36,606,510
1990 40,625,515

Totsl 244,112,471

1991

[¢)]

95X
Limit

40,393
97,846
198,108
475,428
1,178,061

&)

(£4) 8)

Liabitity Comparison

Point

LOF

Estizate (5-6)/(6) Nethod

35,448
88,364
180,585
436,13
1,083,576

29,531,112 2,737,075 2,519,603
32,925,117 6,020,076 5,542,213
36,497,086 12,477,209 11,484,638
40,181,987 27,283,305 25,119,768

(2) 3 (O]
Ultimete Loss Comperison
point Loss Dev
Estimate (1-2)/(2) Pethod
15,777,808 0.03x 15,776,929
17,917,921 0.05% 17,921,001
20,653,401 0.08x 20,672,629
23,449,125 017X 23,508,711
26,317,875 0.36X 26,419,174
29,353,848 0.74%
32,549,404 14T
35,613,939 2™
38,461,978 5.63x
240,095,299

1.67% 243,433,686 50,507,501 45,490,329

Upper Limit with 97.5 X Two-Tall Test
Lower Limit with 97.5 X Two-Tail Test

Upper Limit Wwith 95 X Two-Tail Test
Lower Limit with 95 X Two-Tail Test

195X X,569
10.73% 91,444
9.70x 199,813
9.01X 495,720
8.72% 1,184,815
8.63% 2,606,867
8.62% 5,917,926
8.64% 12,367,785
8.61X 26,839,777

B.64X 49,828,716

Page 2 of ¢
[$4] (§19] an (12> Qa3
Actual Loss Dev
Paid L Mode Rethod (10)-(?  Q1)-("
812/91 a12/9t a1/

15,779,034 15,765,978 15,765,395 (13,056) (13,639)
17,901,737 17,881,747 17,881,735 €19,990) (20,002)
20,622,934 20,564,722 20,567,14é (58,212) (55,790)
23,320,319 23,264,891 23,281,485 (55,428 (38,834)
25,881,852 25,866,542 25,842,024 (15,310) (19,828)
28,250,991 28,264,057 28,206,733 13,066 (44,258)
20,844,056 30,007,063 29,918,300 163,007 74,244
20,852,941 30,043,508 29,937,138 190,567 8,197
26,102,083 26,936,751 26,565,498 834,668 483,415

217,555,947 218,595,259 217,985,451 1,039,312 429,504
13,340,803 14,876,242

16,270,389
13,482,096

15,994,073
13,758,411
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Table 10. COMAUT Comparison of Estimates

Poge 3 of 9
(4] (2) 3 %) (5 (6) 7 (8) (49 (10) an 12) 13)
Ultimate Loss Comparison Liebility Comparison Actual Loss Dev
Accident % % Point Loss Dev %X Point LDF Paid L Model Method (10)-(9) (11)-(?)
Year Limft Estimate (1-2)/(2) Method Limit Estimate (5-6)/(6) Method 3N2/N a9 212/9N
1982 4,105,218 4,092,216 0.32% 4,058,434 76,713 63,711 20.41% 29,929 4,042,160 4,062,119 4,044,430 19,959 2,270
1983 4,666,126 4,643,961 0.48% 4,813,709 120,39 93,231 22.57% 69,979 4,577,032 4,580,530 4,581,670 3,498 4,638
1984 5,713,126 5,673,248 0.70X 5,673,773 210,465 170,587  23.38% 171,112 5,583,276 5,575,213 5,587,753  (B,063) 4,477
1985 6,606,130 6,524,735 1.25% 6,557,468 432,697 351,302  23.37% 384,035 6,360,828 6,353,997 6,359,705 (6,831) (1,123)
1986 7,325,185 7,161,108 2.29% 7,235,420 870,487 706,410  23.23% 780,722 6,839,937 6,809,762 6,811,681 (30,175) (28,256)
1987 8,188,251 7,850,104 431X 7,933,205 1,797,660 1,459,513  23.97X 1,542,814 7,085,223 7,143,435 7,077,190 58,412 (8,033)
1988 8,982,215 38,334, ™ T7.77X 8,427,419 3,401,045 2,753,621 23.51% 2,846,249 6,815,728 6,878,66h 6,783,705 62,936 (27,023)

1989 10,081,724 8,955,483 12.58X 9,280,319 5,787,786 4,681,545 24.18% 4,984,381 6,220,537 6,215,497 6,146,015  (5,040) (74,522)
1990 10,817,614 9,015,129 19.99% 9,205,528 9,022,573 7,220,088  24.96% 7,410,487 &,195,956 4,386,378 4,259,333 190,422 63,377

Total &6,485,590 62,250,775 6.80X 62,987,274 21,719,823 17,485,008 264.22% 18,221,507 51,720,677 52,005,795 51,656,481 285,118 (64,196)
1991 1,704,288 1,997,109
Upper Limit with 97.5 X Two-Tail Test 2,383,303
Lower Limit with 97.5 X Two-Tail Test 1,610,914
Upper Liait with 95 X Two-Tail Test 2,292,035

Lower Limit with 95 X Two-Tail Test 1,702,182
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Table 10. COMMUL Comperison of Estimstes

Page 4 of 9
(§}] ) ($1] ) (5 (C)] (4] @) [C2] [§1:}] (41 }] Qa2 (13)
Ultimate Loss Comparison Liebility Comparison Actual Loss Dev
Accident X Point Loss Dev 108 3 Point LOF Paid L Rodel Method (10)-(9) (11)-(9)
Year Limit Estimete (1-2)/(2) Method Limjt Estimete (5-6)/(4) Method 12/ N a12/91
1982 5,437,398 5,422,912 0.27TX% 5,417,230 85,087 70,601 20.52% 64,919 5,381,291 5,389,061 5,385,804 7,770 5,513
1983 6,354,958 6,321,652 0.53X 6,315,166 193,894 160,588 20.74X 155,102 6,206,690 6,234,573 6,240,475 27,883 33,785
1984 7,305,313 7,236,856 0.95% 7,225,004 395,729 327,22 20.92X 315,420 7,053,579 7,044,965 7,047,584 (8,614) (5,995
1985 7,999,620 7,864,431 1.72% 7,832,537 777,351 642,162 21.05% 610,268 7,492,393 7,479,635 7,490,595 (12,758) (1,798)
1986 7,681,575 7,434,025 3.33x 7,200,161 1,413,268 1,165,718 21.24% 931,856 6,600,445 6,681,956 6,639,166 21,511 (21,280)
1987 8,505,365 8,078,574 S.28% 7,634,479 2,415,107 1,988,316 21.46% 1,544,221 6,715,892 6,692,439 6,6k5,415 (23,453) (69,47
1988 9,909,739 9,220,743 T.47X 8,619,542 3,864,267 3,173,2M 21.70X 2,574,070 6,914,450 6,884,622 6,876,073 (29,828) (38,377
1989 12,567,415 11,485,820 9.42% 11,191,586 6,031,693 4,950,098 21.85% 4,655,864 7,743,973 7,800,080 7,849,421 36,107 85,448
1990 14,158,039 12,282,635 15.27% 10,497,573 10,517,534 6,642,130 21.70% 6,857,068 6,133,380 6,400,062 6,130,429 266,682 (2,951
Total 79,919,422 75,347,647 6.07X 71,934,279 25,693,930 21,122,155 21.564% 17,708,787 60,322,093 60,607,392 60,305,960 285,299 (15,133)
1994 3,906,185 4,080,413
Upper Limit with 97.5 X Two-Tail Test 4,860,506
Lower Limit with 97.5 X Two-Tail Test 3,300,321
Upper Limlt with 95 X Two-Tafl Test 4,676,217

Lower Linit with 95 X Two-Tail Test 3,484,550
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Accident
Year

1982

Total

w91

Upper

Lower

Upper
Lower

Table 10. WOKCOM Comparison of Estimates

(3]

95 X
Limit

9,213,514
10,598,467
13,069,409
14,643,669
16,006,922
18,214,288
21,159,960
23,809,901
26,395,660

153,111,789

5)

95 %
Limit

466,195

732,055
1,110,585
1,728,692
2,676,469
4,191,669
6,850,868

%)

(¢4 (-}

Liability Comperison

Point

LOF

Estimate (5-6)/(6) Method

399,470
620,570
93,688

1,450,094

2,240,136

3,505,195

$,735,355

23,820,266 11,928,420 10,014,837
26,455,565 21,095,488 17,744,541

@) 3 %)
Ultimate Loss Comparison
Point Loss Dev
Estimste (1-2)/(2) Method
9,146,789 0.73% 8,942,805
10,436,982 1.06X 10,317,945
12,893,512 1.36% 12,879,912
14,365,071 1.94X 14,450,843
15,570,589 2.80x 15,752,839
17,527,014 3.92% 18,033,056
20,044,447 S.STX 21,345,500
21,896,318 8.74%
23,044,713 14.54%
164,976,235 5.61%

Linit with 97.5 X Two-Tail Test
Limit with 97.5 X Two-Tafl Test

Limit with 95 X Two-Tefl Test
Limlt with 95 X Two-Tail Test

149,998,771 50,780,440 42,644,886

18.70x 195,486
17.96x 451,533
18.82% 921,088
19.21% 1,535,906
19.48% 2,422,386
19.58% 4,010,437
19.45% 7,036,408
19.11% 11,938,785
18.88% 19,155,393

19.08X 47,667,622

(L))
Actusl
Paid L
an/on

8,893,778
10,059,841
12,296,335
13,439,155
14,105,048
15,266,334
16,567,748
16,069,736
12,900,611

119,618,586

5,488,466

€10)

Model
a12/9

8,949,043
10,086,206
12,211,112
13,426,764
14,116,942
15,278,500
15,521,593
16,124,360
12,964,768

119,737,287
5,048,709

6,9%7,191
5,145,628

5,737,861
5,355,558

()
Loss Dev
Method
a2/

8,847,496
10,092,399
12,316,262
13,417,449
14,078,555
15,260,031
16,598,396
15,968,068
12,198,366

118,777,022

Page 5 of 9

(12) a3

(10)-(9) (11)-«9)

55,265 (46,282)
26,35 32,558
25,223) 19,927
12,391) (21,706)
9,89 (26,493)
12,166 (6,303)
(66,155) 10,648
54,624 (101,668)
6,157 (702,245)

118,701 (841,564)



Teble 10. MEDMAL Comparison of Estimstes

Page 6 of 9
(§}] (€3] [4.3] L) (5) (6) (12} (8) 9 «10) (1) 2) ayn
Ultimate Loss Comperison Lisbility Comperison Actual Loss Dev
Accident 95 X Point Loss Dev 5 X Point LDF Paid L Mode!{ Method (10)-(%) (11)-(9)
Year Limit Estimeste (1-2)/(2) Method Limit Estimate (5-6)/(6) Hethod /N NN /N

1982 1,996,508 1,873,257  6.56% 1,755,479 365,566 262,313 50.86X 124,535 1,706,316 1,747,222 1,692,177 41,106 (13,939)
1983 2,350,126 2,147,009  9.66% 2,049,968  S7B,607 375,580  S.06X 278,449 1,808,418 1,899,876 1,904,541 1,458 6,123
1984 2,730,153 2,408,021  13.38% 2,336,516 894,527  S72,415  S6.27X 500,910 2,000,148 2,026,658 2,019,146 24,510 18,998
1985 3,062,136 2,573,302  19.00% 2,537,082 1,325,6% 836,850  SB8.41X 800,640 1,923,757 1,988,787 1,993,176 65,030 9,417
1986 3,323,606 2,589,890  28.33% 2,660,406 1,961,478 1,227,672  S9.TTX 1,098,188 1,621,187 1,734,912 1,683,963 113,725 62,776
1987 3,719,757 2,685,266  38.52% 2,568,473 2,690,760 1,656,267  62.46X 1,539,476 1,347,595 1,430,709 1,422,050 83,116 74,457
1988 4,270,137 2,870,635  48.75% 2,991,231 3,536,882 2,137,380  65.48X 2,257,976 1,091,625 1,177,769 1,198,365 86,146 108,742
1989 4,843,472 3,026,259  60.05% 3,665,678 4,447,701 2,630,488  69.0BX 3,260,907 852,508 841,429 898,586 (11,079) 46,078
1990 5,363,128 3,132,196  T71,86% 4,744,960 5,295,116 3,064,186  73.94X 656,948 444,715 443,456 512,297 (1,259) 67,582

Total 31,679,093 23,305,923  3S.93X% 25,109,792 21,096,329 12,723,159  65.81X 14,527,028 12,886,045 13,288,818 13,324,299 402,753 438,234

=)

o

-]
1991 97,729 9,978
Upper Linit with 97.5 X Two-Tall Test 140,418
Lower Liait with 97.5 X Two-Tail Test 59,538
Upper Limit with 95 X Two-Tall Test 130,248

Lower Limit with 95 X Two-Tail Test 69,687
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Table 10. OTHLIA Comperison of Estimates

Page 7 of ¢
(5] ) 3 (%) (5) (O] N (8 (] 10) (1 (12) (13)
Ultimete Loss Comperison Lisbility Comparison Actual Loss Dev
Accident 95 X point Loss Dev L 3 Point LDF Paid L Model Method (10)-(9) (11)-(9)
Year Linit Estieate (1-2)/(2) Method Limit Estimste (5-6)/(6) Methed a9 a12/9% a2z
1982 4,604,844 4,551,164 1.18X 4,545,694 236,338 182,658 29.39% 178,188 4,49 388 4,450,185 4,457,828 (34,203) (36,560)
1983 5,082,057 4,968,894 2.28X 4,966,155 497,989 384,826 29.41% 382,087 5,077,919 4 778,656 4,771,528 (299,263)(306,391)
1984 6,300,135 6,125,941 2.84% 4,261,412 757,147 582,953 29.88% 718,426 5,952,007 5,726,08k 5,779,671 (225,923)(172,336)
1985 7,456,156 7,097,853 $.05% 7,418,525 1,565,652 1,207,349 29.68% 1,526,021 6,568,768 6,486,247 6,565,565 (82,521) (3,203)
1986 7,930,839 7,287,319 B.83% 7,630,093 2,821,185 2,177,665 29.55% 2,520,439 5,983,973 6,083,38 6,060,128 99,411 76,155
1987 8,889,403 7,803,392  13.92X 7,944,806 4,721,624 3,635,613 29.87% 3,777,027 5,317,321 5,473,511 5,320,409 156,190 3,083
1988 10,460,042 8,817,891  18.62% 9,535,151 7,084,123 5,641,972 30.18X 6,160,232 4,917,109 5,124,972 5,002,585 207,863 85,476
1989 11,476,012 9,278,585 23.68% 10,978,423 9,391,578 7,194,151 30.54X 8,893,989 3,770,531 3,858,661 3,886,502 98,130 NM5,971
1990 12,226,490 9,507,210 28.60% 12,404,269 11,480,261 8,760,981 31.04X 11,658,040 2,170,377 2,248,189 2,355,154 77,812 184,777
Totat 74,425,977 65,438,249 13.73% 71,484,526 38,555,896 29,563,158 30.40% 35,814,445 44,252,393 44,249,880 44,199,370 (2,504) (53,023)
1991 745,429 960,584
Upper Limit with 97.5 % Two-Tafl Test 1,231,188
Lower Limit with 97.5 X Two-Tail Test 689,981
Upper Limit with 95 X Two-Tail Test 1,165,511

Lower Limit with 95 X Two-Tail Test 755,657
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Table 10. SPELIA Comparison of Estimstes

Page B8 of 9
) @) 3 %) (5) ) (£4] (£.}] [$2] 10) 1) 12y ay
Ultimote Loss Cosparison Liability Comparison Actual Loss Dev
Accident L point Loas Dev 95X Point LDF Paid L Hodel Method (10)-(9) (11)-(9)
Yesr Limit Estimete (1-2)/{2) Rethod Limit Estimate (5-6)/(6&) Method 12/ agn arm
1982 1,129,276 1,126,763 0.22% 1,124,166 1,876 5,383 46.87x 2,766 1,124,673 1,124,843 1,133,243 175 (1,430)
1983 1,279,849 1,274,976 0.38x 1,272,515 14,624 9,751 49.97% 7,290 1,273,497 1,269,268 1,269,384  {4,229) (4,11))

198 1,370,003 1,358,845  0.82X 1,357,735 33,498 22,340  49.95% 21,230 1,355,886 1,347,930 1,349,957 (7,954) (5,927)
1985 1,382,886 1,357,925 1.84% 1,354,815 74,656 49,695  50.25% 46,585 1,327,123 1,332,671 1,333,631 5,548 6,508
1986 1,381,856 1,332,072 34X 1,313,246 147,088 97,306 S1.16X  TBATB 4,283,582 1,276,620 1,268,090  (6,962) (15,492)
1987 1,580,592 1,490,415  6.05% 1,469,089 262,730 172,553  52.26x 151,227 1,393,829 1,383,098 1,381,298 (10,731) (12,531)
1988 1,883,734 1,716,565  0.87X 1,609,189 492,560 323,391  s2.31x 308,015 1,535,560 1,522,262 1,524,276 (13,298) (11,284)
1989 2,200,011 1,865,627  17.92X% 1,821,966 978,618 64, 2%  S1.90X 600,573 1,479,785 1,501,293 1,491,695 21,508 11,910
1990 2,521,771 1,830,600  37.76X 1,538,000 2,034,359 1,343,138  S1.46X 1,050,588 1,102,659 1,093,583 1,031,030 (4,076) (71,629)

Total 34,729,978 13,351,788 10.32% 12,950,722 4,046,000 2,667,819 51.66X 2,266,753 11,876,592 11,856,573 11,772,604 (20,019)(103,988)

1991 ’ S76,235 541,688
Upper Limit with 97.5 X Two-Tail Test e, 17
Lower Limit with 97.5 X Two-Taf( Test 305,219
Upper Limit with 95 X Two-Tail Test 718,209

Lower Limit with 95 X Two-Tajl Test 365,047
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Table 10. PROLIA Comparison of Estimates

()] () (3) (&) ) é) (18] ®8) ($2] «10)

Ultimate Loss Comparison Liability Comparison Actual
Accident % x Point Loss Dev s X point LOF Paid L Nodel
Year Limit Estimate (1-2)/(2) Method Limit Estimate (5-6)/(6) Method at2/91 M

1982 989,769 966,017  2.46% 967,05 88,316 64,564  36.79% 65,601 93,316 933,372
1983 1,145,164 1,096,816  4.60% 1,101,458 187,046 136,718  36.81X 143,360 1,033,765 1,025,827
1984 1,298,761 1,207,311  7.57% 1,223,989 335,820 244,370  37.42X 261,048 1,097,859 1,061,559
1985 1,640,065 1,291,714  11.48% 1,328,108 537,273 388,922 38.14x 425,316 1,066,652 1,032,31
1986 1,621,608 1,389,740  16.68% 1,431,263 832,621 600,753 38,601 642,276 978,808 976,726
1987 1,770,715 1,418,404  26.84X 1,310,343 1,257,356 905,045  38.93x 796,084 729,495 780,349
1988 2,066,076 1,592,506  29.76% 1,755,785 1,680,121 1,186,551  39.91X 1,349,832 661,341 629,879
1989 2,341,619 1,739,953 34.58% 2,370,755 2,078,041 1,476,375  40.75% 2,107,477 497,061  484,%0
1990 2,582,807 1,849,230  39.67X 2,523,669 2,500,189 1,766,612  41.52% 2,441,051 260,440 282,845

Total 15,256,563 12,549,689  21.5T% 14,012,422 9,476,784 6,769,910  39.98% 8,232,843 7,268,743 7,207,772
1991 102,397 83,792
Upper Limit with 97.5 X Two-Tail Test 132,583
tower Limit ufth 97.5 X Two-Tafl Test 45,000
Uppar Limit with 95 X Two-Teil Test 124,386

tower Limit uith 95 X Two-Tail Test 53,198

«an
Loss Dev

«2)

Page 9 of 9

[QF)]

Method (103-¢(9) (11)-(9)

a/an

933,745
1,026,740
1,064,681
1,044,854

972,913

722,330

687,872

548,140

280,579

7,281,852

(9,944)
(7,938)
(36,310)
(34,338)
{2,080)
50,854
(31,462)
€12,161)
22,405

(60,973)

(9,571
(7,025)

(33,188)
21,798

(5,893)
(7,165)
26,531
51,079
20,139

13,107



Table 11. Cumulative Lose and OLAE Payment Triangie

YEAR 1

10902 5683422
19653 5,564,000
1964 8211008
1085 7150620
1900 0,562 558
19687 6,571,191
1008 7.415240
108 $.102,150
1960 228018

1091 106,718

1T 2

1m0 1.3067

1963 14181

1984 13218

1508 13180

1068 1.300

1067 1.30%

1008 1.3440

10680 1.3854

LAST 5AVGQ 1428

a AGE-TO-WLT v.a0m
8 ESTLASTL
£5T ULT LOSS

HOMEOWNERS/FARMOOWNERS

2 3 .
7.434,110 7,714556 7010504
7000008 G2048% 840100
8213101 80170657  06.040285
0424085 0773028 10017275
8580605 6008577 0248197
BE57,742  S380020  0,840.500
04870108  10,410312 10,601,008
1274003 13318508 10,877,747
12403857 12061082 13311528
12368700 13254780 10.670.406
2703 3T04 4TOS
10377 1.0254 1.0151
1.0450 10273 10t
1.0402 1.02% 10174
1.00% 1.02% 1018
10478 1.0277 1.01808

1040 1.0278

1.0441

10450 1.0270 10170
11141 1.0087 10002
1240057 13018508 10,001,000
13819411 14100000 11,008,940

5

8,029,608
8,053,400
9.003,580
10,160,409
9,401,801
9,804,008
10872322
13,500 878
135377 248

0,780810

5TO8
10118
10100
10111
[:J-- 4

1,008t
1.0208

0,804,068
10,008,421

8122750
68.747.820
103002
10,170,505
0477072

10980,184
14,022,000
13,040,044
9407508
sTQ7

1013
1.00%5

1.0081
10

0477072
0507903

0.861,820
0.15a720
1029727
0554508
©.0,100
11,048,701
14,135,448
13,750,000

10314312
7TO8

1.0044
1.000¢

1.0
1.0045

1w2R727
10,290 204

Nots: Amaurt In AY 1065 — DY 6th adiusted 10 prevent rom being & negative incremena payment in our madel.

tappears tobea

erros in Bests

8,206,128
8,806,005
9,175840
10277400
0.577.878
0.007208
11,075,483
14,180,506
13,700,204

9183420

at09
10014

10014
1000

0.175840
9,106274

0218708
e.a78107
9188780
10,262,001
9,501,105
10,001 363
11,000,114
14,180 583
13,600,008

8.683.252
eTOWLT

1.0007
10007

887107
8,884 482

8224257

6,222 500
8222500



Tadle 11. Cumulative Lose and OLAE Peyment Triangie

1.0011
ao018

PRIVATE PASSENGER AUTO LIABILIT Y/MEDICAL
2 3 4 L] L]

10773841 13072270 14372670 1500154 15432107
12,107,804 145841844 10340205 17147860 1758000
13777.714 10985354 10744230 19.7H08) 202222374
15,404,708 10,180,333 21,318,063 22443382 23012001
172,158 21,583,704 NDL61,700 2B52M200 230020
10421048 24107360 JOSMME SBAE T  WK0.5m
21,7080 27007,191 MWOI800 4058 20837
2410301 22007,138 218000 MBANI05 BTT484
20305490 XRHW710 IS12452 IVINHW  ININ08
28,12.083 20,102,003 20844060 28250001 25881852

2703 3TO4 4TOB 87060 aTO 7?7

1210 1.0008 1.0480 1.0248 10127

1258 11015 1.0458 1.02@ 1.0008

12244 1.1080 1053 1.0251 10124

1248 11115 10628 10254

12475 1@ 10535

12444 1.110¢

1.2400

12407 11078 1061 10240 10117

15128 129 1.1008 1.0470 1.0218
V5400 VLT3 WHILI0 22073 2380024
40,151,067 DAX0M0 RLBI17T  W5N,112 419,114

1.0040
1.0088

D20 485
250711

15,000,425
17.625 557
20,507,144
23388755
20,204 307
20380425
2,772
30,310,854
30,970,953

20,622,834

aTO®
1.000

10029
1.006¢

20,507,144
20,672,620

1.0015
10022

17,881,735
17,821,001

40,1R.011

15,779,004

1.0007
10007

15,766,306
15,778,020

Page20al9



Table 11. Cumuiative Loss and OLAE Peymem Triangle

COMMERCAL AUTO/TRUCK LABILITY/MEDICAL
3 4 s

2y
Jomerz

12104
1810

6,148015
9200319

3,300,005
3713387
4574553
82T M
5, 788301
6300501
6,788 708
7478758
7418810

eR15728

4708
1.0082
1.10%
1.102
1.10685
11104

1.1074
12434

6,788,706
8427419

1.0653
1.12%0

71.077,100
LE st

s 788
47823
530236
0173433
0811081
7,408,001
7933871
arsan2
8080410

083857

1.0902
1.0822

411,081
12365420

7

3,832,860
4480017
5,502,601
6,360,706
707211

105
1.0311

6,350,705
0557 «08

1.007%
1.0154

5.587,753
S587ATTY

4,028,506
4581670
5831632
0500110
11802082
7874701
8388270
0,211,881
0,137,841

4571032
eTO T

1.0040
1.0074

4,581,870
4415700

4044430
4500782
5,854,100
0534841
7210454
7006831

0.248297
9.173784

4042100

1.0020
10035

4,044,430
4058434

o20a87Tr
0,101,897

10010
1.0013

1.0006
1.0005

4,058434
4015700
5673773
a557.408

7533206
0,427,410
0280319
0.208528

Page a0



2204710
25mIn

2,060.200
2517583
2532600

12100
12080
1.1

6130420
10497 573

COMMERCAILL MULT! PERIL
3 .
3807011 430420
4506300 Bo482%
6065182 5758158
5510000 025130
40T1444 85000005
8290530 600028
6045472 Gp5TROTY
7540421 0927871
730803 8374230
TTRIOTY  6,014450
3TOs 4708
1.1148 1.0082
112 1.0887
1.1 1.0007
1.130 1.080%
11443 11018
1.1488

1.1374 10013
1429 1230
TM4R421 6.872073
MIN L8 80105842

10682
1147

6,844418
781,470

10372
1006

0.630,104
7200181

7

s 817

1020
1.0488

7,400,508
7832837

6.284.202
6,181,004
7.047.584
7,840,100
700351
7,447,008
6,407877
10.918.781
10.23%,790

7.081579

aT0®
1012

1018
1022

7,047584
7.225,004

6,362311
0240475
7,130.421
7.730874
7.112870
7,542,000
8518248
11,067 480
1031.7
6,200800

eTowr

1.008¢
1011

8240473
8314108

10

5,380,804
0200002
7,184,420
7.780547
risarz
7501801
8571,132
11,128,730
1043815

8301201

1.0082
1.0088

53060,804
B 417230

11,184,500
10,472,251

1.000
1.000¢

1.0008
1.0008

8417220
6318180
7,

7200101
784470

11,191 588
10,447 573

Page 4l ®



Table 11. Cumulztive Lows and OLAE Peyment Triangie

LoL

1.34%
200

12,198,308
2445 508

WORKERS' COMPENSATION
3 4
170 7.000277
7008517 8,087,087
6817204 00977587
0833075 11 2R4K
10438582 12210,194
12083204 14028616
14300002  16.568.300
15000008 18822761
16.363,0¢4 10,018,803
180,73 16.587.748
3704 4705
ARE - 1.0812
1.1408 1.0872
1.16% 10011
1.1a8 1.0008
AR F ] 1.0012
11624
11800 1.0882
14917 1200
18900005 10,508,300
DAV NIBE0

7578183

1.0661
11817

15.280,031
18,030,088

258310

14,106,048

10080
1118

14 078,555
18,792 630

1349155

1708
1.0008
1.0

1.0208
1070

13,417 440
14,480 883

6,551,451

0888412
12318262
13,818 484
15,080 484
1720 806
2041370
22,777 48
23842

12208335

atoe
1.0220

1.02%
10458

12318262
12,879,012

a741.310
10,062 390
12508362
14,134,002
15,408,480
17,830,800
20,878,005
2,200 504
p <3 L

1000841
eTOUAT

10115
.02

10,002,200
10317045

10

8647408
10,207 960
12,742,042
14.290,870
15,584 051
17,600,808
21,118,007
23,500,300
24,104 G228

6,004,778

10057
10108

8,847,400
6,042,805

5,808,158
10,208,433
12,015,000
14 378,737
16,074,100
17,900,020
2128 02
2,701 343
2433470

1.00%
1.0050

12

88218
10285828
12882301
14,410,004
16,719,008
17,904,308
21.28,741
2,780,202
24.400,1%

1004
1.0

6,800,400
10,310,585
12,870,800
14,440,547
18.741.672
16,020,158
2130202

24,438,073

1.0007
1.0007

8042806
1017,045
12670012
14,450,683
15,752,600
18,033,058
21,348,500
23,60 .200
24,45 506

PageScl
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LAST § AVQ
AGE-TO-WLT

ESTLASTL
EST LT LOSS

Table 11. Cumuiutive Lows and OLAE Puymant Trangie

MEDICAL MALPRACRITICE
2 3 .
172063 362,008 75118
21843 487207 800.3%
28416 602,004 a7
253787 200 1,024,538
281420 aanser 1000077
267380 34,881 1028907
337808 7,288 1,108,308
WETTY 808,580 1,480,500
812297 118,185 1,000,954
“4715 852,508 1,001,629
2703 3TO4 ATOS
22005 1.782) 1.4100
22308 16420 1.400
20410 15080 1370
2374 17017 13718
2361 1.808 1.3540
23703 18208
2.1700
22705 18343 1382
[ -] 40704 24081
5122097 808,580 1,190305
4,744 000 3685078 280120

951002
1120576
1337378
1405056
1382218
1422060
1060113
U524
2827075

134750

12382
18082

1,422,050
2508473

1.1678
14811

1,883,060
2,480,408

1.1000
1278

1,080,174
2537082

1,517,034
1771510
2010148
2,102,408
2.120207
2210500
250460
367,707
4,100,448

2,000,148

8109
10751

1.0751
11572

201148
2334518

aTOULT

1.0375
10704

1,004,541
2,040,008

10

1082177
1070047
2445568
2371088
2475855

3531400
4573850

1,708,118

107688
10374

1.682177
1.755470

3
4,650,721

1.000¢
1.018

1.0047
1.0088

1.748201
2041574
2,320950
2520004

2587987
20078084

472553

10023
10041

1752304
2048305
2332410
2532623
2458081
2,301060
2085074

4736820

10012
10018

1 0on
1.0008

4,744 000
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Tabie 11. Cumuintve Loas and OLAE Peyment Triangle

488

471503

a2 T2
007517

&2 190
862,741

634,308
1,14.015
121,50
1,031,630
1,102,050

2703

11082
12470

1224
12213
14817

1,031,030
1,538,000

SPECIAL UABILITY
3 4

008243 1
10702 1,941087
1100448 1208004
1,001,405 1.200.008
1,172340
1183111 131702

101978 1,
1491005 153415
1,250,204 1370000
1470785 1506500
3104 4TOS
1.0081 10402
1,108 1.050¢
1105 106

1.1048

1.0087 1.0481
1224 11148
1601096 1524278
1521908 1800100

10270
1.0030

1381208
1,480,000

1.0104
1.0358

1.264,000
1313248

1,106,001
1254410

t
12
1,448,117
1072820

1.79Q477
1513881

127

7708
10113

1.0100
1019

1333631
1264815

1,003
1.0068

1,340057
1357735

1,121,400
1,200,304
1,354,304
1,361,482
1310018
1485474
1,005,008
1817453
1534218

1273497
eTouLt

10010
1.00%

1200364
1272515

10

1123243
1271470
1350020
1352703
1312108
1.457.082
1,007,794
1420470
1538737

1,124073

100
1.0008

1123243
1,124,100

1"

1,124,108
1272518
1A57,735
1354015
1313248
1,460,000
1,000,180
1521000
1538000

Page?7dl®
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Tabie 11. Cumuistve Lase and OUAE Paymant Triengle

OTHER UABUTY
2 3
1,027,130 154502
1058764 1AM
1224747 2243819
1452577  254085%
1348006 2003487
1445008 27w
1842748  A37R0W
2084434 3508007
264,184 4301200
2170377 37705
2703 ATo«
.0z 1.430
1.0 1440
15318 1439
17813 1540
10757 1459
18919 148
18350
1.8068 14818
5200 2820
265,154
12401200 1007R4D

1210
1508

6,002585
9808151

8308783
satrax

5700
11747
1ATTA
12064
1.187

1.1880
1450

5,320,400
7544808

11148
1254

4,000,128
7,530,063

1.0427
ARY-

6,508,505
7410525

1040
1.085%

5,770,671
0201412

4,308,508
4I71528
ep1aon
7,125.808
7A31,084
7834444
9,162423
10,548,171
11018137

5077918

eTOWT

1.0204
1.04m

4171528
4908155

4,404,358

101
108

4457828
4548004

4503402
4018050
0.201,7%
7,245008
7,557,442
7.000,1%
9,448.552
10,873,801
12,208,191

1.0061
1.0088

1002
10048

4537991
49058640
0240427
1402320
1818488

0517.006
10957410
12360520

1.0013
1.0019

454701

6,257,411
7411700
7825220

700.7X
0530002
108N .413
12308 348

1.0008
1.0008

4540004
4,000,155
a1412
7414525

7944 500
253151
10578423
12,404 200

Paga8 of @
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Table 11. Cumuintive Loss and OLAE Peyment Triangle

2T03
21032
2180

2018
23610

19645
20708
6.0048

200579
25n000

PACOUCTS LAILTY
3 4
27,048 arasi¢
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