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UNBIASED LOSS DEVELOPMENT FACTORS 

Abstract 

Casualty Actuarial Society literature is inconclusive regarding whether the loss development 
technique is biased or unbiased, or which of the traditional methods of estimating link ratios is 
best. This paper presents u mathematical framework IO answer those questions for the class of 
linear link ratio estimators used in practice. A more accurate method of calculating link ratios 
is derived based on classical regression theory. The circumstances under which the traditional 
methods could be considered optimal are discussed. It is shown that two traditional estimators 
may in fact be least squares estimators depending on the set of assumptions one believes governs 
the process of loss development. Form&s for variances ox and confidence intervals around, 
point estimates of ultimate loss and loss reserves are derived. A triangle of incurred loss dollars 
is analyzed to demonstrate the concepts and techniques. A summary of a simulation study is 
presented and suggests that the performance of the incurred loss development technique based 
on the more general least squares estimator may approach that of the Bomhuetter-Ferguson and 
Stanard-Buhlmann techniques in some situations. The requisite mathematics is within the reach 
of the actuarial student equipped with the first three exams. 
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1. INTRODUCTION 

Three standard methods of estimating link ratios in practice are the Simple Average 
Development (SAD) method - the arithmetic average of the link ratios; the Weighted Average 
Development (WAD) method - the sum of losses at the end of the development period divided 
by the sum of the losses at the beginning; and the Geometric Average Development (GAD) 
method - the n* root of the product of n link ratios. Casualty Actuarial literature is 
inconclusive regarding which method is “best” or even whether the methods are biased or 
unbiased.’ The purpose of this paper is to present a mathematical framework for evaluating the 
accuracy of these methods, to suggest alternatives, and to unearth valuable information. about 
the variance of the estimates of developed ultimate loss. It is assumed that the actuary has 
exhausted all leads to discover systematic or operational reasons why a development triangle may 
appear as it does, and the only concern now is how to deal with the remaining noise. 

Proofs of the technical theorems are relegated to the Appendix. The mathematics within the 
body of the paper is intended to motivate discussion and application. 

An example will help motivate the exposition, so consider the accident year incurred loss 
development triangle and its triangle of link ratios in Figures 1A and 1B. The specific content 
of the example triangle is incidental to the purpose of this paper. It is hoped that the data is 
sufficiently realistic to exemplify adequately the application of these results. The extension of 
the results to other kinds of triangles should be self-evident. 

Denote the link ratio as b, and the SAD, WAD, and GAD estimates of b as bs,, lawAD, and 
b CAD respectively. For 12-24 months of development in the example triangle, these statistics 
evaluate to b,,,=3.953, b,=2.480, and b cm=3. 129. To determine which estimate is best, 
we must first unveil the hidden assumptions implicit in the actuarial technique called loss 
development. 

I see, for example, James N. Stanard, "A Simulation Test of Prediction 
Errors of Loss Reserve Estimation Techniques," andJohn P. Robertson's discussion 
in the Proceedings of the Casualty Actuarial Society, LXXII, 1985. 
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2. POINT ESTIMATES 

When we say that we expect the value of incurred losses as of, say, 24 months to equal the 
incurred value as of 12 months multiplied by a link ratio, it is possible that what we really mean 
is this: the value of incurred losses as of 24 months is a random variable whose expected value 
is conditional on the 12 month incurred value, and equals that 12 month value multiplied by an 
unknown constant. Symbolically, 

y=bx+e 
where x and y are the current and next evaluations respectively, b is the unknown constant 
development factor, called the age-to-age factor or link ratio, and e represents random variation. 
The first step in developing losses is estimating the link ratios. 

Expected Value of the Link Ratio 

Let us generalize and suppose that the relationship between x and y is truly linear rather than 
strictly multiplicative. The more general model is 

Model I y=a+bx+e 
E(e) =O, Var(e) is constant across accident years, the e’s are uncorrelaced 
between accident years and are independent of x. 

This model is clearly a regression of 24-month losses y on 12-month losses x. Although x is a 
ptioti a random variable, once an evaluation is made it is treated as a constant for the purpose 
of loss development. More precisely, the model says that the expected value of the random 
variable y conditional on the random variable x is linear in x: EO, 1 x)=a+bx. With this 
understanding of the relationship between x and y, all classical results of least squares regression 
may be brought to bear on the theory of loss development.’ For the remainder of this paper 
all expectations are conditional on the current evaluation. 

It is a well known theorem, the Gauss-Markoff Theorem, that the “best estimates” of a and b 

are the least squares estimates, denoted & and lj : 

lj- c(x-FlY 
c (x-3 * 

and a .y-6,- 

For example, the least squares estimates 2 and 6 for the 12-24 month development period in 

the triangle of Figure 1 are a = $373.63 (all amounts will be given in thousands of dollars) 

and 6 = 2.027. These estimates were calculated using a popular spreadsheet software package. 

: see, for example, Henry Scheffk, The Amlysis of Variance, Wiley, 1956, 
p. 195. 



The indicated regression line is shown in Figure 2A 

The method of estimating link ratios’ by least squares under the assumptions of Model I will 
be called the Least Squares Linear (LSL) method. The least squares estimators of the line’s 
parameters will be denoted aLSL and b,,. 

Five properties of the least squares estimates are particularly appealing.4 

The least squares estimates are linear functions of the variables y 1 x. 
They are unbiased; i.e., E(a,,)=a and E(b,,)=b. 
Within the class of all linear unbiased estimates of a and b, the least squares estimates 
have the smallest variance. Least squares estimators are therefore called B.L.U.E.: Best 
Linear Unbiased Estimators. 
The vertical deviations of the (x,y) observations from the regression line sum to zero; in 
other words, the average residual is zero. 

5. The least squares regression line passes through the sample average (?,y7 

Before continuing, glance again at Figure 2A. By visual inspection one might say that the 
y-intercept is close enough to zero that it could reasonably be ignored in the predicted 
relationship between y and x.~ If one believes the y-intercept should truly be zero in the first 
place, perhaps the model to use is 

Model II y=bx+e 
E(e)=O, Var(e) is constant across accident years, the e’s are uncorrelated 
between accident years and are independent of x. 

This model would be inappropriate if there were a significant probability that x = 0. 

The BLUE estimator for b under Model II is 

The method of estimating link ratios by least squares under this strictly multiplicative 
development model will be called the Least Squares Multiplicative (LSM) method. The least 
squares estimator of the line’s parameter will be denoted bu,,,. 

' The estimate B of the constant term can be considered a "link ratio" if 

the link ratio function is viewed as being vector valued (a,61 

' These results can be found in many Introductory texts on statistical 
regression. Property 3 is the Gauss-Markoff Theorem. 

' Although it will be demonstrated that the y-intercept is significantly 
different from zero. 
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In the example triangle the 12-24 month LSM link ratio is b,, = 2.204. Figure 2B illustrates 
the difference between the LSL and LSM indicated regression lines. 

Does b,, satisfy the five properties of the LSL estimator above? Obviously, b,, is a linear 
function of the y’s (again, conditional on the known x values). The fact that it is unbiased is 
easy to prove. It has minimum variance within the class of linear unbiased estimators by virtue 
of the Gauss-Markoff Theorem because it is the least squares estimator. But b,, does not 
necessarily satisfy Properties 4.and 5. At first, the fact that btsM does not zero out the sum of 

the residuals nor determine a regression line passing through CT,3 may seem to be a 
drawback. But on second thought, it must be inevitable. Indeed, a least squares regression line 
is required to satisfy two conditions: it must be close to the data and it must zero out the 
residuals. A two parameter line is free to satisfy two conditions. But a one-parameter line has 
the ability to satisfy only one condition. LSM satisfies the first, so it cannot be expected to 
satisfy the second as well. 

If one were to define a “good” linear unbiased estimator as one which satisfies Properties 4 and 
5, but not necessarily Property 3, then &,u would be best (Theorem 1). However, the price 
of adopting bw,,u rather than blsM is an increase in the probability that the prediction of losses 
as of the next evaluation would be off the mark because the variance of bw,,, is greater than the 
variance of blSM. 6 Such are the standards by which b,,, may be considered “optimal.” 

In the example, with bmM= 2.204 for 12-24 months of development, the average residual is 
$227.9 and the standard deviation of the residuals is $876.5. With bw,,=2.480, the average 
residual is $0.4 and the standard deviation of the residuals is $953.1. 

Let us continue now to attack the assumptions of LSL and LSM to discover what we can about 
bsru, and b,, Take the constant variance assumption for example. The impact of trend would 
imply that the variance of e is not constant across accident years. On-leveling the loss triangle 
may adjust for such heteroskedasticity but in addition may introduce unwelcome side effects. 
A model that speaks directly to the issue of non-constant variances is 

Model III Y =bx+ne 
E(e)=O, Var(e) is constant across accident years, the e’s are uncorrelated 
between accident years and are independent of X. 

This model differs from Model II in that it explicitly postulates a dependent relationship between 
the current evaluation and the error term, xe. By dividing both sides of this equation by x we 
see that this model also says that the ratio of consecutive evaluations is constant across accident 
years. In other words, it is the development percent, not the development dollars, and the 
random deviation in that percent that behave consistently from one accident year to the next. 
This model’s BLUE for b is b sAD (Theorem 3). The technique of estimating link ratios under 
the assumptions of Model IIf will be called the SAD method. 

6 Again, the Gauss-Markoff Theorem. This fact is proved directly for this 
actuarial problem as Theorem 2. Intuitively. var(b,,)rVar(b,,,) because bu,,, 
gives more weight to the larger values of x. 
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Another model that can adjust for trend is 

Model IV y = bxe 
E(e) = 1, Var(e) is constant across accident years, the e’s are uncorrelated 
between accident years and are independent of x. 

This model says that random noise shocks the development process multiplicatively, and may 
be appropriate in those situations in which the random error in the percentage development is 
itself expected to be skewed. The BLUE for b under Model IV is the geometric average of the 
link ratios, b, (Theorem 4). The technique of estimating link ratios under the assumptions 
of Model IV will be called the GAD method. 

For the remainder of the paper, results will be stated in terms of the LSL and LSM methods. 
Results for SAD and GAD, which are left to the reader, can be derived directly or by applying 
the results below to the transformed SAD and GAD models on which Theorems 3 and 4, 
respectively, depend. 

Estimate of the Next Evaluation 

The point estimate of the expected value of incurred losses as of the next evaluation given the 
current evaluation is 

LSL LSM 
ylsL = aLSL + b,x YLSM = b, x 

The estimates are unbiased under the assumptions of their respective models (Theorem 5). For 
the example triangle the LSL and LSM estimates of the 24-month evaluation of accident year 
1991 are, respectively, $2983 = $374 + 2.027 x $1287 and $2837 = 2.204 x $1287. 

Estimated Ultimate Loss: A Sinale Accident Year 

The Chain Ladder Method states that if b, is a link ratio from 12 to 24 months, b2 is a link ratio 
from 24 to 36 months, etc., and if U is the number of links required to reach ultimate, then 
B”=b,b,- + * b, is the (to ultimate) loss development factor (LDF). The implicit assumption is 
that future development is independent of prior development. This assumption implies a type 
of “transitive” property of loss development: if the conditional expectation of y given x is b,x 
and the conditional expectation of z given y is b,y then the conditional expectation of z given x 
is b,b$.’ 

This all-important Chain Ladder Independence Assumption (CLIA) says that the relationship 
between consecutive evaluations does not depend on the relationship between any other pair of 
consecutive evaluations. In mathematical terms, the random variable corresponding to losses 
evaluated at one point in time conditional on the previous evaluation is independent of any other 
evaluation conditional on its previous evaluation. A direct result of this assumption is the fact 

'See Lemma 1 in Appendix A. This assumption may not hold in practice, for 
example, when a claims department issues orders to "strengthen reserves" after 
having operated for some time under a less conservative strategy. 

190 



that an unbiased estimate of a to-ultimate loss development factor is the product of the unbiased 

link ratio estimates; i.e., 8,=f$.-6,. 

The very simplicity of the closed form LDF is one of the beauties of the multiplicative 
development approach. A closed form expression for the intercept term of the more general 
LSL approach is not nearly as simple, but this should not be considered a deterrent because a 
closed form, to-ultimate expression is unnecessary. Instead, this paper proposes the use of a 
recursive formula. A recursive estimate of developing ultimate loss illuminates the missing 
portion of the triangle (clarifying the communication of the analysis to management and clients), 
enables the actuary to switch models mid-chain, and is easy to program, even in a spreadsheet. 
Perhaps the most compelling reason, however, is that a recursive estimate is invaluable for 
calculating variances of predicted losses (Section 31, so the point estimates may as well be 
calculated in the same step. 

The mathematical theory for developing recursive estimates of ultimate loss conditional on the 
current evaluation proceeds as follows. Consider a single fixed accident year. Let x0 denote the 
(known) current evaluation and let X, 1 x0 denote the random variable corresponding to the n* 
subsequent (unknown) evaluation conditional on the current evaluation. The goal is to find an 
unbiased estimator for x, 1 xg. By definition, an unbiased estimate of x, 1 x0 is one which 
estimates pn=E(x, f x0). The unbiased chain estimate is built from the individual links x, 1 x,] 
of losses as of one age conditional on losses at the previous age. 

Under the more general LSL model, it is assumed that for each n there exist constants a,, and 
b, such that the random variable x, conditional on x,,.* can be expressed as 

x, I x,,., = a,+ b&,,., + e, . 
It is also assumed that E(e,)=O, that Var(e,) =$., and that the e,‘s are independent of all the x’s 
and, by the CLIA, of each other. Theorem 6 proves that the following recursive formulas yield 
unbiased estimates of future evaluation. 

!A LSM 

P, = a, + 61% Pi = 6l% 

F” = % + ~“fLl P, = 6,~ 

An unbiased estimate of ultimate loss conditional on the current evaluation is therefore F, 

For the example, the LSM estimate for 24-36 months of development is b,,= 1.133. 
Therefore, the prediction of accident year 1991 losses evaluated as of 36 months would be 
$3380 = $2983 x 1.133 if LSL had been used for the 12-24 development period; if LSM had 
been used, the estimate would be $3214 = $2837 x 1.133. The LSM prediction of accident year 
1990 losses as of 36 months would be $3167 = $2795 x 1.133. 

Estimated Total Ultimate Loss: MultivIe Accident Years 
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It should be obvious that an estimate of total ultimate loss for more than one accident year 

combined could be obtained by adding up the separate accident year &, ‘s. However, for the 

purpose of calculating variances, a recursive expression is preferred because development 
estimates of ultimate loss for different accident years are not independent. 

The idea behind the recursive estimate for multiple accident years is this. Starting at the bottom 
left corner of the triangle, add up columns of estimated future evaluations. Find a recursive 
unbiased estimate of those column sums. Then an unbiased estimate of total losses at ultimate 
will be the final sum. 

The formulas are developed as follows, To keep the notation from becoming too convoluted, 
index the rows of the triangle in reverse order so that the youngest accident year is the zeroth 
row. the next youngest is row 1, and so on. Next, index the columns so that the 12 month 
column is the zeroth column, the 24 month column is column 1, etc. A full triangle of N + 1 
accident years appears as in Figure 3. If 

denotes the sum of the accident years’ future evaluations conditional on the accident years’ 
current evaluations, then an unbiased estimate of the future evaluation of multiple accident years 
is an estimate of E(S,J. Let M, denote this expectation. Recursive formulas for estimates of M, 
are: 

UL LSM 

A, = 2, + 6>X0,,) $1 = ~,?u 

Stop when n=U, the age at which all accident years are assumed to have reached ultimate. 
These estimates are unbiased under the assumptions of their respective models. See 
Theorem 10. 

The completed triangle of Figure 1A is shown in Figure 4 where it was assumed that LSL is 
appropriate through 84 months of development. LSM thereafter. and that losses are fully mature 
(i.e.. case reserves are adequate, on average) after 108 months. Then, for example, 

fi, =$2,982 because the 1991 accident year is the only one for which 24 months is a future 

development point. Accident years 1991 and 1990 are the only years which have yet to reach 

the age of 36 months. so i?J = $3,268 + 53.470 = S6.735. And so on. Accident years 1984 

through 1991 have yet to reach ultimate (108 months) so A, = $47,554 
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Estimated Reserves for Outstanding Losses 

Unbiased estimates of outstanding losses are 

p, -paid to date 

for a single accident year and 

&, - Total Paid To Date 

for multiple accident years. 

Estimated Pure Premiums and Loss Ratios 

Assuming exposures and earned premiums are static variables,’ unbiased estimates of the pure 
premium rate and of the Ioss ratio for a single accident year are 

FLI and P" 
exposure earned premium' 

respectively. For multiple accident years, the estimates are 
^ ^ 
MU and MU 

Total Exposure Total Earned Premium 

Of course, the latter statistics are most useful when all quantities are brought onlevel. 

' Audit and reinsurance exposures and premiums may be random variables. 
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3. VARIANCE 

The least squares point estimators of Section 2 are functions of random variables. As such, they 
are themselves random variables with their own inherent variances. Exact formulas for, and 
estimates of, these variances will be addressed in turn. 

Variance of the Link Ratio Estimates 

It is well known9 that the exact variances of the link ratio estimators are 
UL LSM 

VdI(6) = --zL 
c(x-x7* 

where 

var(6) = & (1) 

and I is the number of accident years used in the estimate of the link ratio. Unbiased estimates 
of these variances are obtained by plugging in the unbiased estimate s* of &r where sz is the 
Mean Square for Error (MSE) of the link ratio regression. The MSE or its square root s (the 
standard error of the estimate) is a standard statistic produced in the output of regression 
software. Most regression software will calculate an estimate of the square root of the variance 
in equation (1) sometimes called the standard error of the coefftcient. 

For 12-24 months of development in the example triangle $,,=848.8*. Estimates of the 
standard deviations of the 12-24 month LSL intercept and slope factor are 77.35 and 0.194, 
respectively. For the LSM model the MSE is 876.52 and the standard error of the coefftcient 
is 0.157. The spreadsheet software used to calculate these statistics automatically generates suiL 
and the standard error of the coefficient. The average .? value had to be calculated “by hand” 

to derive the estimate of var (2) 

Variance of Estimated Ultimate Loss: A Sinnle Accident Year 

Before continuing, it is time to make an important distinction. The point estimate of ultimate 

loss nu calculated recursively above is an estimate of the expected value of the (conditional on 

' See for example Robert 8. Miller and Dean W. Wichern, Intermediate 
Business Statistics, Halt, Rinehart and Winston, 1977. 
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x0) ultimate loss XV” Actual ultimate loss will vary from its expected value in accordance 
with its inherent variation about its developed mean pu. As a result, the risk that actual ultimate 

loss will differ from the estimate nu is comprised of two components: the variance in the 

estimate of the expected value of xt, j .x0 - Parameter Risk - and the inherent variability of 
ultimate loss about its mean pu - Process Risk.” Symbolically, if (conditional on x0) ultimate 
loss for a given accident year is expressed as the sum of its (conditional) mean plus a random 
error term eu 

xu I x0 = t4J + GJ 
then the variance in the prediction pred” of ultimate loss is 

var fpred,f = var fp,) + var (Eg) 

= Parameter Risk + Process Risk 

= Total Risk . 

The following recursive formulas for exact values of these two variance components are derived 
in Theorems 8 and 9. 
Parameter Risk 

LSL LSM 
For n= 1: 

For n> 1: 

varp, = -ir + (c,.1 -jr,-,) 2 var6, + 
n 

b.ZVar p,-, + Var6,Var&, 

va= PI = x,2var6, 

" For better or for worse, it is usually the expected value of an unknown 
quantity - e.g., rates or reserves - that actuaries are called upon to produce. 
The "Stateme<t of Principles Regarding Property and Casualty~loss and Loss 
Adjustment Exoense Reserves" is rather vactue on that issue. but "The "Statement 
of-Principles-Regarding Property and Cas&lty Insurance Ratemaking" (Principle 
1) and, for example, "Actuarial Standard of Practice NO. 7: Performing Cash Flow 
Testing for Insurers" (section 5.5) are quite explicit. 

" This process risk is the conditional variance of developing losses about 
the conditional mean. As pertaining to triangles of incurred loss dollars, it 
includes, but is not limited to, the unconditional a priori process risk of the 
loss distribution (mitigated by the knowledge of losses emerged to date), the 
random variation of the claims occurrence and reporting patterns, and the random 
variation -within case reserves. 
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var (Xl 1 x,) = 0; 

and 

var (x, I x,) = o; + b,2 Var (x.,-i Ixo) 

The equation for Process Risk is the same under both models. Unbiased estimates of these 

variances are obtained by plugging in unbiased estimates so2 for CT,‘. 6, for b,, and 6, for p,,. 

Parameter Risk and Total Risk are illustrated in the familiar graphs of Figures 5A and 5B where 
+2 standard deviation prediction bands are drawn around the LSL and LSM estimates, 
respectively, of 12-24 months of development from the example triangle. First, Parameter Risk 
is represented by two curves +2 standard deviations (the square root of the estimated Parameter 
Risk) away from the least squares line. Total prediction risk is represented by two curves +2 
standard deviations (the square root of the sum of estimated Parameter Risk plus estimated 
Process Risk) away from the least squares line. The actuary may represent Process Risk to the 
layman as the distance between the Total Risk and Parameter Risk bands; of course, this is 
technically incorrect. 

Notice that in Figure .5A the Parameter Risk bands widen in both directions as x moves away 
from its average value of $824 and that in Figure 5B the bands widen as x moves away from 
zero. This occurs because the equation for parameter risk is a function of distance of x0 from 
the average value of x for the LSL model and a function of the absolute value of x0 for LSM. 

There is a subtle difference between a “prediction band” which measures the error one would 
expect in a prediction based on the regression, and the more common “confidence band” which 
measures the fit of the regression relative to the sample data. The concept of the confidence 
band is illustrated in Figure 5C where, for example, a one-standard-deviation confidence band 
is drawn around the LSL regression of 12-24 months of development. The radius of the 
confidence band is the square root of the MSE, 848.8. Using the techniques of the next section, 
it can be shown that one should expect about 34% of the data points to fall outside the 
confidence band. In other words, one should expect about six outliers. In this case, there are 
only four. The identification of outliers can provide the actuary with useful information before 
he or she enters into fact-finding interviews with the claims and underwriting departments. The 
identification of outliers provides information of a more technical nature as well. Indeed, note 
that the outliers in Figure 5C occur at the higher values of x. This suggests that the variance 
of y is not independent of x. The assumptions of the SAD or GAD methods, or a variant, may 
more appropriately describe the random processes underlying these particular data. 

As a final note, ultimate loss is not ultimate until the final claim is closed. Suppose it takes C 
development periods, C 2 U. to close out the accident year. Then the estimate of ultimate loss 
is not of xu 1 x0 but of sc 1 x0. Although estimated ultimate loss through U development periods 
may be the same as estimated ultimate loss through C development periods, the variances of the 
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two estimates are not the same. Even if it is true that b,= 1 for n> U, whereby parameter risk 
halts at n=U, process risk continues to add up, so recursive estimates of Var(x, 1 x0) should be 
carried out beyond n=U. 

In the example, it was assumed that an accident year will be closed after 144 months based on 
a visual inspection of Figure 1B (accident year 1974 was considered a data anomaly). The 
recursive projection of ultimate accident year 1991 loss was already displayed in Figure 4. The 
detailed calculation of the variance (Total Risk) is shown in Figure 6A. 

Variance of Estimated Ultimate Loss: Multivie Accident Years 

Actual total ultimate loss S,, for multiple (open) accident years will vary from the estimate A, as 

a result of two sources of uncertainty: PARAMETER RISK - the variance in the estimate of 
Mu - and PROCESS RISK - the inherent variance of S, about its developed mean Mu. 
Symbolically, if we express total ultimate loss for multiple accident years (conditional on the 
current evaiuation of all accident years) as the sum of its mean Mu plus a random error term Eu 

S, = Mu f E, 
then for a given accident year the variance in the prediction PRJZD, of ultimate loss is 

Var (PREQ) = Var C&J + Var (EJ 

= PARAMETER RISK + PROCESS RISK 

= TOTAL RISK . 

In Theorems 10 and 11 are derived the following recursive formulas for exact values of these 
two variance components. 
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PARAMETER RISK 

LSL 
For n=l: 

For n> 1: 

varf& = 

LSM 

varlfi, = xj,,varfi, 

+ b,2Var%-, + Var&,Var&,, 

is the average “x value, I’ and I, = N-n+ 1 (assuming a full column in the triangle) is the number 
of data points, in the regression estimate of the n* link ratio. 

PROCESS RISK 

Var(E,) = 0: 

and 

Var (En) = nap + b,fVar (17~~~) 

The equation for Process Risk is the same under both models. Unbiased estimates of these 

variances are obtained by plugging in unbiased estimates s,’ for u,*, 6, for b,, and 9 for M,. 

For the example, Figure 6B shows the calculation of the estimate of the variance of the estimate 
of total ultimate loss for accident years 1984 through 1991 combined. Most of the basic 
statistics are the same those appearing in Figure 6A. 
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Variance of Estimated Outstandim Losses: Sinnle or Multivie Accident Years 

Assuming paid losses are constant at any given evaluation, ‘* it is obvious that the variance of 
a reserve equals the variance of total ultimate losses: 

v~r(EstimatedReserve) = Var (Estimated Ultimate Loss - Paid Loss) 

= Var (Estimated Ultimate Loss) 

This equality holds for estimated reserves for a single accident year and for multiple accident 
years. 

Variance of Estimated Pure Premiums and Loss Ratios: Sir&e or Muttivle Accident Years 

Assuming static exposures and pure premiums, the variances of the estimated pure premium rate 
and of the estimated loss ratio are 

Var (Estimated Ultimate Loss) and Var (Estimated Ultimate Loss) 
eXpOSUreS2 earned premiums2 

Again, these formulas hold for single or multiple accident years, 

One final note before leaving this section. Aggregate losses are often expressed as the 
compound product of a frequency distribution (e.g., Poisson or negative binomial) and a severity 
distribution (e.g., lognormal or Pareto). In practice, parameters for those distributions are 
estimates, the result being that the variance of the aggregate loss distribution depends not only 

on the inherent variance of the postulated frequency and severity distributions but on the 
variance of the parameter estimates. The parameter error of the frequency distribution could 
be estimated by applying the above techniques to the frequency triangle, defined to he the 
triangle of claim counts per exposure. The parameter error of the severity distribution could be 
estimated by applying the above techniques to the incurred (or paid) severity triangle, defined 
as the triangle of cumulative incurred @aid) dollars divided by cumulative incurred (paid) 
claims. Furthermore, since it is the mean of the distributions that are usually sought, only the 
Parameter Risk above need be considered. 

" Salvage and subrogation could be handled as a separate category. 
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4. CONFIDENCE INTERVALS 

Confidence intervals necessarily are phrased in terms of a probability measure. As a result, this 
discussion can no longer avoid making assumptions about the probability distribution of the error 
terms, e,. The traditional assumption is that they are normally distributed (lognormally 
distributed under GAD which may be a bit more believable). 

Let Q be the probability measurement of the width of the confidence interval. Then lOOa% 
confidence intervals around the true LSL link ratios (a,.b,) are: 

and 

where t&-2) denotes the two-tailed a point (the “t-value”)” of Student’s t distribution with 
I,-2 degrees of freedom and where I, is the number of accident years used in the estimate of the 
n* link ratio. The degrees of freedom under LSL is I,-2 because two parameters are estimated 
under that model. These formulas may be used for the LSM model as well; in that case the 
degrees of freedom are 1,-l. 

To demonstrate how these formulas can be used, suppose we want to test the hypothesis that the 
12-24 month LSL constant term is not significantly greater than zero. Recall that this constant 
term was estimated to be $373.63. Refer to Figure 7. There are 18 data points and two 
parameters. so the degrees of freedom equals 16. At the 99% confidence level, the one-tailed 
t-value is 2.62. It was shown above that the estimated variance of the constant term is 77.35’. 
Then, if the constant term were truly zero, there would be a 99% chance that the estimated 
intercept would be less than or equal to 202.66 = 77.35 x 2.62. Since the estimated value of 
the intercept falls outside the confidence interval, it appears that LSL is an appropriate model 
for this young stage of development. In fact, it appears that LSL is appropriate for the youngest 
six stages of development. The confidence of that statement is 94% = .996. 

As another example, the decision to assume that case reserves are reasonably adequate by I08 
months is based on the apparent random nature of the link ratios thereafter. Notice in Figure 
7 that the LSM link ratios are either at. or well within, one standard deviation (“Std(b)“) of 
unity for 120.132 months and beyond, but the 108-120 link ratio (.992) is more than one 

!' Tbls assumes that the available t-table is presented in terms of a one- 
tailed test, or, if not, tbat the actuary 1s able to look up the appropriate 
value accordingly. 
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standard deviation away from unity. Somewhat subjectively, it was deemed appropriate to 
ignore this significant average negative development, as well as the relatively insignificant 
positive development thereafter. If the actuary were to set the 108-120 factor to, say, an 
interpolated value between the 96-108 and 120-132 factors, it may generally be considered a not 
unreasonable application of actuarial judgment and may just so happen to reflect an amount of 
conservativism consistent with the risk posture of the owners of the enterprise. However, in the 
end, the ability of that actuary to convince management that this judgment is appropriate depends 
on the level of trust established between the parties. 

It is clear that near the tail of the triangle the degrees of freedom drop prohibitively. Inferences 
about the link ratios become less precise. If it can be assumed that the variances of the residuals 
in the development model are the same for all development periods (i.e., ui=aj for all i and j), 
then a single estimate of the MSE can be obtained by solving for all link ratios simultaneously. 
The result is that the t-value should become reasonably smalli and can make for “tighter” 
inferences for all development periods. 

Confidence Intervals Around Estimated Ultimate Loss 

This section will begin with the GAD model because all results are exact.” Under the 
transformed GAD model 

ln(x,,) = In(b,) + In&,.,) + ln(e,) 
or 

the point estimate of ultimate transformed loss is 

and the estimate of the variance of the prediction is 

" For an NxN triangle, df-(N-1) (N-2)/2 under LSM if no data points are 
discarded. For example, with a moderately-sized 5x5 triangle the two-tailed 90%- 
ile t-value is only 18% greater than the smallest possible 90%-ile t-value, 
namely the 90%-ile point on the standard normal curve. This can be especially 
important for the small triangles that consultants or companies underwriting new 
products are wont to see. 

" Commonlyusedprobability distributions are location oriented, so additive 
models such as the transformed GAil model are quite tractable. The use of scale- 
oriented probability distributions may yield results more directly applicable to 
the multiplicative models actuaries favor. 
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v&(pred') = (c+ (Theorem 13) 

where we assume under transformed GAD that all a,,‘~ are equal. It is well known that in this 
case the MSE is proportional to a chi-square random variable with degrees of freedom equal to 
the number of data points less the number of estimated parameters. Therefore, a one-sided 

100a% confidence interval” for ultimate transformed losses XL given the current transformed 

evaluation x,’ is exactly equal to 

p: * t,(df)&ar @red') . 

The corresponding lOOcr% confidence interval around the “untransformed” prediction of ultimate 
loss xc given x0 is 

exp(@: t t,(df)&r (pred')) . 

If df is large enough, t,(df) may be replaced by z,, the standard normal point, without significant 
loss in accuracy.” 

With this justification, an approximate lOOa% confidence interval around a prediction under any 
of the models is 

pred f t; (df)&& (pred) 

Figures 6A and 6B show how this approach is used to derive estimates of ultimate loss at the 
80% confidence level. 

Confidence Intervals around Reserves 

Confidence intervals around reserves are obtained by subtracting paid dollars from the endpoints 
of the confidence intervals around ultimate loss. This is simply due to the fact that if 

I6 At the risk of pedantry, "prediction interval" is more correct 

" This is often done in practice, particularly in time series analysis, even 
when df is not large. The t distribution 1s prefer-red. however, because the 
thinner tails of the standard normal will understate the radius of the confidence 
interval. For another perspective on th1.s subject, see Everette S. Gardner Jr., 
"A Simple Method of Computing Prediction Intervals for Time Series Forecasts," 
Management Science, Vol. 34, No. 4. Aprzl 1988, p. 541-546. 
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CY = P(lower bound I ultimate loss 5 upper bound) 
then it is also true that 

cy = P(lower bound - paid I outstanding loss 5 upper bound - paid). 

Figures 6A and 6B demonstrate the application of this concept as well. The 80% risk load for 
all outstanding losses for accident years 1984 through 1991 is about 27% of the expected value. 
It would be interesting to see how much this toad is reduced for the same level of confidence 
when an analysis of paid dollar triangles is also conducted. Incurred and paid estimates should 
be negatively correlated, therefore the variance of their average should be reduced even more 
than if independence were simply assumed. 

Contidence Intervais around Pure Premium and Loss Ratios 

Confidence intervals around pure premiums and loss ratios are obtained by dividing the 
endpoints of the confidence intervals around ultimate loss by exposures or premiums, 
respectively. This scale shift is akin to the location shift for the confidence intervals around 
reserves. 
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5. AN ARGUMENT IN SIJPPORT OF A NON-ZERO CONSTANT TERM 

When the current evaluation is zero, the practice is to abandon the multiplicative loss 
development methods and adopt an alternative. e.g., Bornhuetter-Ferguson, Stanard-Buhlmann, 
or a variation on frequency-severity. LSL may be a fourth possibility. 

To elaborate, consider the development of reported claim counts. Let N be the true ultimate 
number of claims for a given accident year. Let r, be the random report year of the i”’ claim. 
Assume that the r, are independent and identically distributed for all claims so that if p, is the 
probability that a claim is reported before the end of the n”’ year, then p. is independent of i. 
Based on these assumptions it is not difficult to show that if x, is the number of reported claims 
at the n’ evaluation then 

E(x,!x,.,) = N+ + -+,yn-, (2) 
n L 

which is of the form a,,++,&,. Clearly the constant term a, is non-zero until all claims are 
reported. 

Figure 8A shows the true development line for evaluation 1 to evaluation 2 when N =40 and the 
pn’s are 112, 3/4, 7/S, , I-%“, along with a scattering of ten random data points. 

Equation (2) becomes even more interesting when the reporting pattern is exponential, as might 
be expected from a Poisson frequency process. In that case it is straightforward to prove that 
the LSL coefficients (a,,,b,) are identical for every age n. This somewhat surprising result can 
be put to good use when the triangle is too small to give stable LSL estimates of individual link 
ratios, as will be demonstrated in the following section. 

From Equation (2) one can see that the slope factor b, does not depend on the exposure (N) but 
only on the reporting pattern, and that the constant term a, is proportional to the exposure. An 
increase in exposure from one accident year to the next will cause an upward, parallel shift in 
the development regression line. Equation (2) may also be used as a paradigm for loss dollars. 
although the bias of case reserves complicates the analysis, and systematic factors such as trend 
can change expected ultimate loss dollars from one accident year to the next. Development 
triangles, therefore, can be expected to display data samples randomly distributed about not a 
single regression line but about multiple parallel regression lines as claim frequency increases. 
as the volume of business expands, or simpi), through the impact of trend. This is pictured in 
Figure 8B where a random sample is displayed about the regression line of Figure 8A and about 
a parallel line determined by N=80. The estimated regression line based on all the points 
combined will indicate a less significant consrant term. 
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6. COMPARING THE MODELS USING SIMULATION 

In the 1985 Proceedings Mr. James N. Stanard published the results of a simulation study of the 
accuracy of four simple methods of estimating ultimate losses using a 5x5 incurred loss triangle. 
For the exposure tested” it was demonstrated that WAD loss development was clearly inferior 
to three additive methods - Bomhuetter-Ferguson (BF), Stanard-Buhlmann’q (SB), and a little- 
used method called the Additive Model (ADD) - because it had greater average bias and a 
larger variance. The additive methods differ from the multiplicative methods in that they adjust 
incurred losses to date by an estimated dollar increase to reach ultimate, whereas the 
multiplicative methods adjust by an estimated percentage increase. ADD’s estimated increase 

is a straightforward calculation of differences in column means, F-x BF and SB estimated 
increases are based on inverted LDFs and are therefore nonlinear functions of the y’s. 

Stanard’s simulation was replicated here to test additionally the accuracy of LSM, LSL. SAD 
and GAD.” The model does not attempt to predict “beyond the triangle,” which is to say that 
the methods project incurred losses to the most mature age available in the triangle, namely the 
age of the first accident year. In the discussion below, by “ultimate loss” is meant case incurred 
Ioss as of the most mature avaiiabfe age. 

The LSL method was modified to use LSM in those instances when the development factors 
were “obviously wrong,” defined to be when either the slope or the constant term was negative. 
In real-life situations, this rudimentary adjustment for outliers can be expected to be improved 
upon with more discerning application of actuarial judgment. The reason this modification was 
necessary is due to the fact that a model that fits data well does not necessarily predict very 
well. As an extreme example, LSL provides an exact fit to the sample data for the penultimate 
link ratio (two equations, two unknowns), but the coefficients so determined reveal nothing about 
the random processes that might cause another accident year to behave differently. It is not 
possible to identify every conceivable factor that could explain the otherwise “unexplained” 
variance of a model. Such unidentified variables are reflected through the averaging process of 
statistical analysis: as the number of data points minus the number of parameters (the definition 
of degrees of freedom) increases, the model captures more of the unexplained factors and 

"Normally distributed frequency with mean = 40 and standard deviation = 140 
claims per year, uniform occurrence date during the year, lognormal severity with 
mean = $10,400 and standard deviation = $34.800, exponential report lag with mean 
= 18 months, exponential payment lag with mean = 12 months, and case reserve 
error proportional to a random factor equal to a lognormal random variable with 
mean = 1 and variance = 2, and to a systematic factor equal to the impact of 
trend between the date the reserve is set and the date the claim is paid. 

" Which Mr. Stanard tailed the 'Adjustment to Total Known Losses" method, 
a.k.a. the "Cape Cod Method." 

iv For the details behlnd the computer model, the reader is referred to Mr. 
Stanard's published results. The simulation was reproduced in C on an IBM PS/2 
Model 70 with a math co~3rocessor. The most comolicated scenarios reauirinq 15000 
iterations took about -an hour and a half to process. 

- - 
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becomes a better predictor. 

In Exhibits I through IV, the average bias and standard deviation of the first accident year are 
zero because the simulation defines ultimate to be the current age of that accident year. 

Exhibit I: Claim Counts Only 

In this case, 5000 claim count triangles were simulated, the “actual ultimate” as of the last 
column was simulated as well, accident year ultimates were estimated using the various methods, 
and averages and standard deviations of the prediction errors were calculated. 

Of the multiplicative estimators, LSM has the smallest bias and the smallest variance for every 
accident year. As can be expected, WAD is close behind. The remaining methods could 
perhaps be ordered BF, SB, ADD, and LSL, in increasing order of accuracy as measured by 
the standard deviation of the accident-year-total projection. 

Consider first the average bias. In Figure 9A is graphed the relationship between incurred 
counts at 12 months, x, with incurred losses at 24 months, y, which we know from the previous 
section must be a linear relationship with a positive constant term. The ADD and WAD 
estimates are also shown. All relationships are shown in their idealized states where LSL is 

collinear with the true relationship and where the point (X,3 coincides with its expectation 
(E(x),E(y)). Note that the ADD model is parallel to the line y=x because it adds the same 
amount for every value of x. The conditional (on x) bias is the signed, vertical distance from 
the estimated relationship to the true relationship. As is clear from Figure 9A, WAD and ADD 
can be expected to overstate y for x > E(x) and understate y for x < E(x). The weighted 
average of the conditional bias across all values of x, weighted by the probability density f(x), 
is simulated by the average bias that appears in Exhibit I. 

Ideally, this weighted average of the bias across all values of x should be expected to be zero, 

which it is for the Additive Model. ADD estimates E(y)-E(x) via F-x calculated from prior 
accident years. Since the environment in Exhibit 1 - exposure, frequency, trend, etc. - does 
not change by accident year, the average of 5000 simulated samples of this dollar difference 
across all possible values of x should get close to the true average dollar difference by the law 
of large numbers, so the average bias should get close to zero. For the multiplicative 
estimators, the average bias will probably not be zero. Take the WAD method for example. 
Clearly there is a positive probability (albeit small) that X=0, so the expected value of the 

WAD link ratio g is infinity. The average of 5tXlO simulations of this ratio attempts to 

estimate that infinite expected value, so it should not be surprising that WAD usually overstates 

development - and the greater the probability that X=0, the greater the overstatement .:’ 

" This argument can be made more rigorous. The condition that the 
probability of the sample average of x be greater than zero is a sufficient but 
not necessary condition that E(b,& = m. For a general, heuristic argument that 
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The average bias of the BF and SB methods should be greater than zero as well because the 
LDFs on which they rely are themselves overstated more often than not. The average LSM bias 
is a more complicated function of the probability distribution of x because the LSM link ratio 
involves x terms in the numerator and squared x terms in the denominator. The average bias 
appears to shift as an accident year matures. The LSL method as modified herein has residual 
average bias because it incorporates the biased LSM method when it detects outliers. It also 
seems to be the case that the bias of the estimated 4-5 year link ratio is driving the cumulative 
bias for the immature years. 

Figure 9A illustrates the difference between a model that is unbiased for each possible value of 
x, LSL, and a model which is “unbiased” only in the average, ADD. To reiterate, the purely 
multiplicative and purely additive estimators will understate expected development when the 
current evaluation is less than average and overstate expected development when the current 
evaluation is greater than average. 

Next, consider the variance. in simplified terms, the average bias statistic allows expected 
overstatements to cancel out expected understatements. This is not the case for the variance 
statistic. In Figure 9A it is clear that, ideally, the ADD estimate of y will be closer to the true 
conditional expected value of y (the idealized LSL line) than will the WAD estimate for virtnally 
all values of X. Thus, the variance of ADD should be less than the variance of WAD. The 
variance of LSL should be the smallest of all. However, LSL estimates twice as many 
parameters than do ADD and LSM, so it needs a larger sample size to do a comparable job. 
For the relatively small and thin triangles simulated here, a pure unmodified LSL estimate flops 
around like a fish out of water - the price it must pay to be unbiased for all values of x. In 
other words, in actual practice, the variance of an LSL method unmodified for outliers and 
applied to a triangle with few degrees of freedom, will probably be horrendous. What is 
perhaps remarkable is the degree to which the rudimentary adjustment adopted here tames the 
LSL method. 

Finally, let’s look at what would happen if we estimated the LSL parameters under the 
assumption that all link ratio coefficients (a,,,h,) are equal. We know from the previous section 
that this is true because the reporting pattern is exponential. The results of this model are: 

Average 
A/Y Bias 

I 0000 
2 0:025 
3 0.006 
4 -0.034 
5 -0.oo6 

Total -0.010 

std uev Average 
Bias %Bias 

0000 
I:275 

0 000 
0:001 

1.669 0.001 
1.850 0.000 
1.815 o.001 
5.064 0.000 

Std Uev Age-Age Age-Age 
%Bias Bias %Bias 

0000 
0:034 1.035 1.001 
0.044 -0.019 0.000 
0.049 -0.040 -0.001 
0.049 0.028 0.001 
0.027 

This model is the beneficiary of more degrees of freedom (eight - two parameters estimated 

WAD yields biased estimates, see [Stanardl. 
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from ten data points for each iteration) and as a result has the smallest average bias and variance 
yet. These results lead to a somewhat counterintuitive conclusion: information about 
development across immature ages sheds light on future development across mature ages. For 
example, the immature development just experienced by the young accident year 4 from age 1 
to age 2 is a valuable data point in the estimate of the upcoming development of the old accident 
year 2 from age 4 to age 5. This should not be viewed simply as a bit of mathematical 
prestidigitation but as an example of the efficiencies that can be achieved if simplifying 
assumptions - even as innocuous as exponential reporting - can be justified. 

Exhibit II: Random Severitv, No Trend 

In this case, 5000 triangles of aggregate, trend-free incurred losses were simulated and the same 
calculations were performed. 

Rarely does the property/casualty actuary experience loss triangles devoid of trend, so this model 
is of limited interest. The introduction of uncertainty via the case reserves makes it more likely 
that negative development will appear, in which case LSL reverts to LSM. As a result, the 
additive models overtake LSL in accuracy. 

Exhibit III: Random Sever&. 8% Severity Trend Per Year 

This is where it gets interesting. This could be considered the standard situation in which an 
actuary compiles a loss triangle that includes trend and calculates loss development factors. In 
this case, the environment is changing. The trending process follows the Unified Inflation 
Model with Q= ‘/2 ,” which is to say that half of the impact of inflation is a function of the 
occurrence date and half is a function of the transaction date (e.g., evaluating the case incurred 
or paying the claim). 

At first, one might think that a multiplicative estimator would have had a better chance of 
catching the trend than would an additive estimator, but such does not appear to be the case. 
Consider Figure 9B which graphs expected 12-24 month development for the first four accident 
years. Trend has pushed the true development line upward at an 8% clip, illustrated by four 
thin lines. The LSL model tries to estimate the average of the development lines, the WAD 

estimator tries to pass through the average (X,y7 midpoint of all accident years combined. 
and the additive estimators try to find the line parallel to the line y =x which also passes through 
the average midpoint. Again, ADD will probably be closer than WAD to the average LSL line 
for every value of X. The upward trend makes it more likely that the estimated LSL intercept 
will be less than zero. which makes it more likely that LSL reverts to LSM, so the modified 
LSL’s variance gets closer yet to the variance of LSM. 

Exhibit IV: Random Severirv. 8% Trend, On-Level Triangle 

" Robert P. Buts:c and Rafal J. Balcarek, "The Effect of Inflation on Losses 
and Premlunis for Property-Llabllity Insurers," inflation Impllcatlons fcr 
Property-Casualty Insurance, 1981 Casualty Actuarial Society Discussror. Paper 
Program, p. 58. 
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In this case, rows of the triangle were trended to the level of the most recent accident year 
assuming that the research department is perfectly prescient in its estimate of past trend. For 
most of the models the total bias decreases while the total variance increases. LSM and WAD 
are virtually unchanged, GAD and SAD are exactly unchanged (of course), and the nonlinear 
estimates move in opposite directions. 

For the most part, working with the on-level triangle does seem to improve the accuracy of 
estimated ultimate loss, but perhaps not to the degree one might hope. It would be interesting 
to see if working with separate claim count and on-level severity triangles would successfully 
decompose the random effects and further improve the predictions. 
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7. CONCLUSION 

Loss development predictions can be improved by the use of least squares estimators. In certain 
situations the least squares estimators coincide with the more traditional simple average 
development and geometric average development estimators. Under the four sets of assumptions 
about the loss development process considered here, the weighted average link ratio estimator 
is always inferior to an alternative, least squares estimator. 

If the assumptions of a given model considered here can be married with the independence 
assumption that forms the basis of the Chain Ladder Method, the developed estimates of ultimate 
loss are unbiased. The variance of estimated ultimate loss can itself be estimated through 
relatively straightforward application of recursive formulas. A range of estimates can be given 
with associated approximate levels of confidence if one is willing to make some assumptions 
about the probability distribution of the error terms. 

At this point, statistical techniques may be of some guidance in selecting one model over 
another, but the final choice of the most appropriate set of assumptions will probably be a 
judgment call depending on, among other things, the exposure and the claims operation of the 
book of business. 

The simulation study suggests that the performance of the more general Least Squares Linear 
method exceeds that of the multiplicative development methods and may, in some situations, 
rival that of the nonlinear additive methods in common use today. It would be interesting to 
investigate the correlation between development estimates of ultimate loss based on incurred and 
paid triangles, and use that information to derive optimal, variance-minimizing weights for 
making final selections. 
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Figure 3 
Notation for the 

llKnown*' and B*Completed*' Portions of a Loss Triangle 

The shaded area highlights S, = -& Xi,fi 1q.i. M,=E(S,). 
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Aqe (months) 12 24 3s 48 
” 0 1 2 3 
mu hat $128: $2.982 $3,470 w302 
x bar 624 2,000 2,317 2,495 
b hat 2.027 1.076 1.056 
Var@ hat) 0.0377 o.Oo17 0.0007 
s 849 384 278 
I 18 17 16 
Uf 16 15 14 
Parameter Risk 48,112 66,266 79,751 

s Process Risk 7.20E+05 9.85E+05 l.l8E+06 
o Total Risk 7 69E+05 l.O5E+06 126E+06 

Std Dw 876.671 1,025.227 1 ,120.290 

Auto Liability 
Variance of Estimated Ultimate Loss 

Accident Year 1991 

Figure 6A 

Ultimate Closed Paid 10 Indicated 
so 72 a4 ss m 120 132 144 Date e 

14.02: 5 z 
$4.45: $4.49: $4.49? 

32 1 
64,223 $4,313 $4,491 $4,491 $202 $4.269 

2,325 1,866 
1.017 1.034 1.011 1.022 1.032 1 1 1 

o.oLw4 0.0001 o.OaI2 0.0035 0.0006 0 0 0 
212 76 72 146 139‘ 73 31 3 
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13 12 11 10 11 10 9 8 
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80% Confidence Risk Load (t-value x Std Dw) $1,124 $1,124 
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80% Confidence Risk Load as a Percent of the Expected Value 25% 26% 
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Auto Liability 
Variance of Estimated Ultimate Loss 
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Total dt 129 

One-tailed 80% t-value (same as standard normal when df=129) 0.642 

80% Confidence Risk Load (t-value x Std Dev) $2.647 $2.647 

Upper bound on 80% Confidence Interval for Ultimate Loss $50,202 $37,854 $12,348 

60%Confidence Risk Load as a Percent of the Expected Value 6% 27% 



Auto Liability 
Incurred Loss + ALAE Development 

Estimated Least Squares Development Coefficients 

Figure 7 
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Claim Count Development 
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Figure 8A 
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Claim Count Development 
Expected Number of Claims = 40 & 80 

Figure 8B 
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Idealized Development Estimators 
No Trend 

Figure 9A 
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ADD 

LSM 

WAD 

GAD 

SAD 

Nonlinear 
SB 

SF 

m 
Average Std Dev Average Std Dev Age-Age Age-Age 

Bias Bi8s YBias %6i8S Bias %Bias 

1 0.000 0.000 0.000 0.000 
2 0.116 2.000 0.003 0.053 
3 0.153 2.772 0.004 0.073 
4 0.101 3.166 0.003 0.083 
5 o.080 3.780 o.003 0.1M) 

TOtA 0.451 8.251 0.002 0.043 

1 0.000 0.000 0.000 0.040 
2 0.059 1.868 0.002 0.049 
3 0.075 2.847 0.002 0.075 
4 0.047 3.644 0.002 0.096 
3 0.096 3.692 0.003 g&sJ 

Total 0.277 8.407 0.001 0.044 

1 
2 
3 
4 
5 

Total 

0.000 
0.116 
0.143 
0.004 

E 

0.000 0.000 
2.000 0.003 
3.321 0.004 
5.246 0.000 

10.536 
14.009 gg 

O.WO 0.000 
2.000 0.903 
3.336 0.005 
5.308 0.007 

tt.lOl 0.023 
f4.520 O.CQ8 

0.000 
0.053 
0.087 
0.136 
0.277 
0.074 

1 0.000 
2 0.116 
3 0.203 
4 0.281 
5 0.888 

Total 1.488 

0.000 
0.053 
0.088 
0.139 
0.292 
0.076 

1 0.000 0.000 0.000 0.000 
2 0.116 2.000 0.003 0.053 
3 0.234 3.345 0.006 0.086 
4 0.424 5.346 0.011 0.140 
5 1.873 11.585 0.049 0.305 

Total 2.647 14.943 0.014 0.079 

: 
3 
4 
5 

T&l 

0.000 0.000 O.OQO 0.000 
0.116 2.000 o.OQ3 0.053 
0.265 3.354 0.007 0.088 
0.571 5.390 0.015 0.142 
2.958 12.268 0.078 0.322 
3.910 15.530 0.021 0.082 

: 
3 
4 
s 

Total 

0.000 0.000 0.000 
0.102 1.940 0.003 
0.147 3.021 0.004 
0.137 3.997 0.004 
O.t85 4.280 o.006 
0.571 9.564 0.003 

1 0.000 0.000 0.000 
2 0.114 1.952 0.003 
3 0.164 3.064 0.005 
4 0.215 4.151 0.006 
3 0.338 5.164 o.010 

Total 0.851 10.626 0.004 

0.000 
0.051 
0.079 
0.105 
0.113 
0.050 

0.000 
0.051 
0.081 
0.109 
0.136 
0.056 

EXHIBIT I 
Claim Counts Only 
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0.003 
0.001 

w&J 

0.059 0.002 
0.016 0.000 

(0.028) 0.000 
0.049 0.001 

0.116 0.003 
0.027 0.001 

(0.139) (0.004) 
(0.752) (0.020) 

0.116 0.003 
0.087 0.002 
0.078 0.002 
0.607 0.016 

0.116 0.003 
0.118 0.003 
0.190 0.005 
1.449 0038 

0.116 0.003 
0.149 0.004 
0.306 0.008 
2.387 0062 

0.102 
0.045 

(0.010) 
0.048 

0.114 
0.070 
0.031 
0.123 

0.003 
0.001 
0.000 
0.002 

0.003 
0.002 
0.001 
0.004 



EXHIBIT II 
RandomSeverlty,NoTrend 

ADD 

LSM 

WAD 

GAD 

SAD 

Nonlinea 
SB 

BF 

m 
Average Std Dev Average Std Dev 

BiaS BieS %Bias XBi8S 

1 0 0 0.000 0.000 
2 9,206 193,945 0.026 0.302 
3 8,749 218.463 0.069 0.420 
4 30,028 429,112 0.138 0.650 
5 39.426535.959 0.228 1.004 

Total 87,410 888,404 0.040 0.356 

1 
2 
3 
4 
s 

Total 

0 0 

(7.E) 
185,077 
196,201 

324 272,189 
271,443 
546.942 

0.000 O.OW 
0.010 0.329 
0.023 0.472 
0.066 0.581 
0.140 0.680 

(0.004) 0.255 

: 
3 
4 
5 

Total 

0 0 
9,206 193,945 
6,192 221,114 

24,331 477.371 
(2,29ol3J 
52,019 1,127,243 

0.000 0.040 
0.026 0.302 
0.033 0.415 
0.052 0.742 
0.036 1.404 
0.020 0.453 

1 
2 
3 
4 
3 

Total 

0 0 
9,206 193,945 

11,815 222,675 
51.641 515.997 

116;6648&?&7 
189,327 I,208220 

0.000 O.OW 
0.026 0.302 
0.048 0.421 
0.119 0.807 
0.310 1.597 
0.088 0.487 

: 
3 
4 
5 

Total 

: 
3 
4 
5 

Total 

0 0 
9,206 193,945 

13,873 219,115 
61,706 484,892 

194.903854,318 
289,687 1,130,473 

0 0 
9,206 193,945 

20,621 227,597 
97,144 598.072 

0.000 O.WO 
0.026 0.302 
0.054 0.412 
0.147 0.763 
0.489 1.593 
0.130 0.469 

405,202 I,241904 
532,174 1,552,136 

O.OQO 0.000 
0.026 0.302 
0.072 0.440 
0.233 0.980 
1.063 2.516 
0.255 0.640 

1 0 0 0.000 0.000 
2 6,126 184,062 0.026 0.304 
3 3,909 196.494 0.052 0.430 
4 15,414 291,195 0.097 0.575 
s iJo7l286.813 0.172 0.698 

Total 36,520 633,658 0.017 0.271 

1 
2 
3 
4 
3 

Total 

0 0 
9,040 200,965 

10,750 221,175 
29.330 331.648 
-374.743 
86,244 820,177 

0.000 0.000 
0.034 0.373 
0.073 0.525 
0.132 0.691 
o.n5 0.886 
0.040 0.342 

Age-Age Age-Age 
Bias 

9,206 0.026 
(458) 0.042 

21,279 0.065 
9,398 0.079 

(7.E) 
7,769 

(2,991) 

0.010 
0.013 
0.042 
0.069 

9,206 0.028 
(3,015) 0.007 
18,140 0.018 

(12,042) (0.015) 

9,206 0.026 
2,608 0.021 

39,826 0.068 
65,023 0.171 

9,206 0.026 
4,666 0.027 

47,833 0.088 
123,197 0.298 

9,206 0.026 
11,415 0.045 
76,523 0.150 

308,058 0.673 

6,126 0.026 
(2.217) 0.025 
11,506 0.043 
(4,344) 0.068 

9,040 0.034 
1,710 0.038 

18,580 0.055 
7,794 0.082 
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MHIEIT Ill 
Random Severity, 8% Trend 

ADD 

LSht 

WA0 

GAD 

SAD 

Nonlinear 
SB 

BF 

Average 0td Dev AVW8tJe Std Oev Age-Age Age-Age 
Bias Bias KBias %Bias Bias %Bi8S 

1 
2 
3 
4 
3 

Total 

0 0 
12,646 tSo,77t 
11,815 318,796 
8,339 515,561 

1 
2 
3 
4 
s 

Total 

(2.24:) 
0 

177,223 
(15,161) 262,260 
t3-5.5761 335.003 
&$2tJ 399;076 

(145,207) 757,285 

1 
2 
3 
4 
s 

Total 

0 0 
12,848 190,771 
16,307 328,599 
27.133 580.424 
8&t 1.111;762 

64,698 1.504,260 

: 
3 
4 
3 

Total 

0 0 O.OW 0.000 
12,848 190,771 0.030 0.300 
23,423 333,524 0.057 0.477 
62,726 606,272 0.122 0.775 

169.257 1.272.791 0.310 1.620 
268,255 f $59,744 0.088 0.527 

t 0 0 
2 12,848 190,771 
3 26,050 331,370 
4 77,169 580,779 
5 I,295202 277,757 

Total 393,824 1,619,314 

1 
2 
3 
4 
s 

TOtal 

0 0 
12,848 190,771 
35,174 346,105 

124,456 665,305 
647,473 4,oS6.366 
819,951 4,2S1,335 

1 
2 
3 
4 
3 

Total 

1 
2 
3 
4 
5 

Total 

0 0 
10,229 177,339 

7.628 272,101 
(5wJ) 357,093 

(62.9461 420,117 
KW398) 825,565 

0 0 
16,575 212,872 
23.046 310,265 
25.574 422.741 

5e 
534,249 

1,113,743 

O.OQO 0.000 
0.030 0.300 
0.061 0.469 
0.080 0.629 
g&g 0.944 
0.002 0.367 

0.000 
0.008 
0.008 
0.005 

gzg 

0.090 
0.337 
0.461 
0.511 
0.551 
0.249 

0.000 0.000 
0.030 0.300 
0.043 0.475 
0.057 0.728 
0.035 1.360 
0.021 0.472 

8% 
0.062 
0.149 
0.495 
0.148 

0.000 
0.300 
0.466 
0.755 
1.717 
0.534 

O.WO 0.004 
0.030 0.300 
0.080 0.497 
0.235 0.924 
1.107 4.508 
0.288 1.164 

O&M 0.000 
0.036 0.323 
0.055 0.456 
0.057 0.530 
pJ2J 0.590 

(0.018) 0.289 

0.000 0.000 
0.052 0.421 
0.091 0.589 
0.114 0.668 
O.tOt 0.780 
0.020 0.357 

12,648 

g%; 
(311912) 

0.030 
0.030 
0.018 

(0.005) 

r&w 
(12,912) 
(20,414) 
W.645) 

12.848 0.030 
3,458 0.013 

10,828 0.013 
(18,722) (0.021) 

12,648 0.030 
10,575 0.026 
39,303 0.061 

106,531 0.188 

12,848 0.030 
13,201 0.031 
51,119 0.082 

200,588 0.301 

12,848 0.030 
22,326 0.049 
89,282 0.144 

523,017 0.706 

10,229 
(2.601) 

I:::::; 

0.036 
0.018 
0.002 

(0.034) 

16,575 0.052 
6,471 0.037 
2,529 0.021 

(35,103) (0.012) 
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EXHIBIT IV 
Random Severity, 8% Trend, Estimates Based on On-Leveled (at 8%) Tri8ngla 

Arf 
Unear 

LSL 
1 
2 
3 
4 
5 

Total 
ADD 

1 
2 
3 
4 
5 

Total 
LSM 

2 
3 
A 

3 
Total 

WAD 

2 
3 
4 
s 166.470 1,251,178 

Total 285,149 1.635,365 
GAD 

2 
3 
4 
5 277,757 1.295,202 

Total 393,824 1,619,314 

1 
2 
3 
4 
3 

Total 
Nonlinear 

SB 

BF 

2 
3 
4 

Average Std Dev Average Std Dev Age-Age Age-Age 
Bias Bias %Bias %Bias Bias %Bias 

0 0 0.000 0.000 
12,848 190,771 0.030 0.300 
19,663 321,503 0.080 0.479 
38,827 508,047 0.147 0.637 
44,325695,596 0.216 0.928 

115,663 1,148,516 0.045 0.357 

(20:) 182,866 0 

(4,949) 272,965 
(3.371) 352,774 
(7.726) 422.975 

(16,251) 833,130 

0 0 0.000 0.000 
12,848 190,771 0.030 0.300 
16,069 326,583 0.043 0.473 
26,536 577,658 0.055 0.725 

3.262 1.070.100 0.027 1.316 
58,715 1,459,667 0.019 0.460 

0 0 
12,848 190,771 
23,310 332,453 
62.521 607,521 

0.000 0.000 
0.030 0.300 
0.057 0.476 
0.121 0.774 
0.305 1.598 
0.097 0.520 

0 0 
t 2,848 190,771 
26,050 331,370 
77,169 580.779 

0 0 0.000 0.000 
12,848 190.771 0.030 0.300 
35,174 346,105 0.080 0.497 

124,456 685,305 0.235 0.924 
647,473 4,098,366 1.107 4.508 
819,951 4.291,335 0.298 1.164 

0 0 
8,650 175,543 

10,927 275,491 
17,818 368,370 

s 12,875= 
Total 50,271 870,120 

1 0 0 
2 12,243 199,538 
3 20,320 303,669 
4 38,157 423.818 
5 -547,415 

Total 121,948 1,110,267 

0.000 0.000 
0.014 0.358 
0.033 0.505 
0.074 0.577 
0.140 0.664 

(0.003) 0.277 

0.000 0.000 
0.030 0.304 
0.062 0.466 
0.149 0.755 
0.495 1.717 
0.148 0.534 

0.000 0.000 
0.032 0.316 
0.063 0.471 
0.106 0.570 
0.173 0.684 
0.021 0.284 

0.000 0.000 
0.041 0.382 
0.084 0.567 
0.142 0.879 
0.223 0.842 
0.046 0.356 

12,848 0.030 
6,815 0.049 

19,164 0.062 
5,498 0.060 

(205) 0.014 
(4,744) 0.019 
1,578 0.040 

(4,355) 0.061 

12,848 0.030 
3,220 0.013 

10,467 0.012 
(23,274) (0.027) 

12,848 0.030 
10,461 0.026 
39,211 0.061 

103,950 0.164 

12,848 0.030 
13,201 0.031 
51,119 0.082 

200,588 0.301 

12,848 0.030 
22,326 0.049 
89,282 0.144 

523,017 0.706 

8,650 0.032 
2,277 0.030 
6,891 0.040 

(4,943) 0.061 

12.243 0.041 
8,078 0.041 

17,837 0.054 
13,070 0.071 
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APPENDIX 

Theorem 1: The b,,m estimator satisfies Properties 4 and 5: the sum of the 

residuals is zero and the line through the origin with slope b,, passes through 

the sample average CEV? . 

Proof: 

c(y - b,,x) = xy - +x 

= n(T- $3 

=o 

This proves Property 4. Next, y- SF= 0, so F= b,% demonstrating that the 

sample average is on the line through the origin with slope bwu), Property 5. 

Theorem 2: Var(b,,) Z Var(b,,). 

Proof: First, write b,, = Zqy,/Zd = Ew,y, where w,-x,/Cti. Recall that all 

expectations of y are conditional on x, including the variance, which means that 

expressions involving x, in particular w, may be manipulated as constants. 

Therefore, 

Var fb,,) = Var (P,Y,/ (x,,x,....,x,)) 

= ZfwjVar (y, ix,) 

= cwfo' 

= :q+T) 

02 _i- 
xx= 

Next, 
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var b,, = v+z) 

= -&pVaIY 

2 
E-E!-, 

(EC)* 

To show that Var(b,,,) + Var(b,,,) we only have left to show that 

But the latter is just the Schwartz Inequality.' QED. 

Theorem 3: Under Model III, the least squares estimator is b,,. 

Proof: The transformed Model III 

I= b+e 
x 

is of the form 

u=bv+e 

where the variable v is identically equal to unity. Thus, the transformed model 

satisfies all the assumptions of Model II. Accordingly, its least squares 

estimator is 

'see for example John F. Randolph, Basic Real and Abstract Analysis, p. 35. 
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Theorem 4: Under Model IV, the least squares estimator is b,,. 

Proof: The transformed Model IV 

In(y) = In(b) + in(x) + In(e) 

or 

is of the form 

In(y) - In(x) = In(b) + In(e) 

" = b'v + ve' 

where b'=ln(b), v-1, and E(e')=O. Thus, the transformed model satisfies the SAD 

assumptions. By Theorem 3 

Therefore, the least squares estimator of the "untransformed" parameter b is 

6 = expf6') = .+,ln~) = ('xp.+)+ =nm = b,, 

Theorem 5: Under the assumptions of Model I, yrsr = aLSL + b,,x is an unbiased 

estimator of y; i.e., E(Y,,) = E(y). Under the assumptions of Model II, 

yLsM = b,,x is an unbiased estimator of y. 

Proof: Model I assumes that E(y) = a + bx. Since all expectations are 

conditional on x and since auL and b,, are unbiased, we have 

E(y,,! = E(a,, l b,,x) 
= E(a,,) + E(b,,x) 
= E(a,,) + E(b,,)x 
=a+bx 
= E(Y) . 

The proof for LSM is similar. 
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Lemma 1: Under LSL, E(x,jx,) = a, + b,E(x+,Ix,). Under LSM, E(x,lx,) = b,E(x*,/x,). 

Proof 1: The proof will be given for LSL. The proof for LSM is similar. 

First, 

Next, the "Multiplication Rule" of conditional density functions' states that 

ffx",~",,&?~ = ffX.1 (X"~,XD))f(X"~IXb)ffXg). 

Therefore, 

I f(x,l Lx"~,.XJ) f(x,-, 1x0) f(xJ %-I 

fLx,lx,) = +' 
f(q) 

= k, 
f(x,l (?&-1,x0) 1 f(%,-,l%)~n-1 . 

By the CLIA, the random variable x~/x.., is independent of x0. Therefore 

f(x, 1 (x ".,, x0)) does not depend on x0, so f(x, 1 Ix.., ,x0) I =f Ix, 1 x..,) . The rest of the 

proof hinges on our ability to interchange the order of integration. We will 

make whatever assumptions are necessary about the form of the density functions 

'See Robert V. Hogg and Allen T. Craig, Introduction to Nathematical 
Statistics, p. 64. 
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to justify that step. Then 

E(X,!XJ = J x,f(x,!x,ldx, 

flx,l (X"~l,XO) ff(x,.,lx,)dw,~, 

(1) 

Proof 2: Recall the well-known identity E(X)=E,(E(X\Y)].' Consider the 

following variation reiterated in equation (1) above: 

E(x,lx,,) = E,&,[E(x,/ (x,..,,x,))l . 

For LSL we have 

by CLIA 

Theorem 6: ElF.;x,) = E&.x,) 

Proof: By induction On n. The proof will be given for LSL; the proof for LSM 

is similar. 

I see for example I. 8. Hossack, J. H. Pollard, and B. Zehnworth, 
Introductory Statistics with Applications in General Insurance, 1983, p. 63. 
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For n=l the theorem is simply a restatement of Theorem 5. 

are functions of the random variables X,(X*,, and p,-, is a function of the random 

variables x..,/x..~, . . . ,x,1x0 and x0. The CLIA implies that x.Ix,., is independent 

of x.-,~x~~,...,x,~x~, and x,, so fi,and 6" are independent of pP1. Therefore, 

E(P,/x,) = E(8,jxO) + E(fi,~~,,)E(P,.~ix~) :. 6,and p,-, are independent 

= 4 .>,xo n [Efd,i (x,.,,xo))l + E,>.1!,o[E(6,/ (x,-,.X,))] E(P,-lIXo) 

= E,.,.xo [E(~,Ix,.,II + Ep+ i+ , [E(fj,~x,~,)l E(P,e,!x,) 

= E, .,,& [a,1 + &,1x0 Lb,1 EC@,-, 1x0) n 

= a, + b,E(Fa-lix,l 

= a, + b,E(x,+ 1 x0) by the induction hypothesis 

= E(x,,lx,,) by Lemma 1. 

Theorem 7: 

g& 

For n=l: 
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Proof: We will prove the LSM case first. We saw in Theorem 6 that 6, and 

P.-l are independent random variables. The formula' for the variance of the 

product of two independent random variables x and y is 

var(xy) = a*%y2 + ,u*'ayZ + ,uy%,' . 

This proves the theorem for LSN because &, is unbiased. 

For LSL, 

varp, - Varl, + 2Cov(d,,6,pn~,) l var (8,P,.,) . 

It is well known' that the random variables znand$, are uncorrelated when 6" 

'See Hogg and Craig, p. 178, problem 4.92. 

' See R. Miller and D. Wichern, Intermediate Business Statistics, 1977, 
p.202, for example. 
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is determined by least squares; since all expectations are conditional, we have 

that 

= var (x7, - 

= var x;, + 

=-T- 
+ xi., var 6, (21 

n 

Next, 

C0V(8,,lj,P,.~l = EP,_,Cov(l,,lj,) 

= pnM1 cov(s,,6,1 

7 fine1 is independent of 8, and6, 

and 

cov(a,.6,l = COV(X, - x,~,6,,EJ 

= COV(-FnJ5*,6,) 

= -Fn-1var6, . (3) 

Putting these together with the formula for Var (6,,pnm1) from the LSM derivation 

above we have 

Var p, = - + x& vargn - 2 p'n-l ~,,-~va16, + P:-, W& + 6: V=r L-1 + “=I @n-x 
In 
d? I-+ 
1, 

tp,-, -X,.,I~V~I~, + b,'varP,-, + var6,var~,., 

238 



Theorem 8: 

"ar(x,:xo) = o', + b;Vac(x,.,.&,) . 
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Lemma 2: E(Sn) = nan+b,(E(S..,) + x..,.m.,t. 

Proof: 

n-1 
EC.5,) = E(~x,,,.x,,,) 

1.0 

= “a, + b, (E(S,-,) + x~->,~.~) . 
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Theorem 9: Let XD"=(x,,,x,,,,...,x~,,.,) denote the current diagonal of the triangle 

for the n youngest accident years. Then 

E(t%,jXD,) = Et.9,). 

Proof: By induction on n. The proof will be given for LSL; the proof for LSM 

is similar. For n=l, we know that 

E(fi,lXDl) = E(P,~,Ix,,,)) 

= EIX,,, I x4.0) by Theorem7 

= ECS,) 

a,, and gn are functions of the random variables %,,Ix,,, and t?,,., ie a function 

of random variables x,~(+., and of xIJ for j<n. By the CLIA ~5~ and 6,, are 

independent of &,.,. Therefore 

E(fi,/XD,) = E(nb,+6,(~-,+X,-,,,-,) lx%) 

= E(n&I XD,J f E&IxD,, E @,.I + x,.,.,.~ixn,) 

= na, + b, (Et%-, / XQ1) +x,-,,,-,) 

= na, + b, (E(S,w,) + x,,-,.n.i) by the induction hypothesis 

= E(S") by Lemma 2. 
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Theorem 10: PARAMETER RISK 

For n=l: 

0: varti, = - + (xo,,-xa)'varb, 
I, 

For n>l: 

vExi%, = varA, = (M,,-~ + ~,,,,)~mb, + 

b,'var%., + varb,var%-, 

Proof: 

We will prove the LSM case first. Since A,=&, 6i,,m,+xn-,.,-,) , the proof is 

immediate by virtue of the formula for the variance of the product of two 

independent random variables once ws note that 

Var Cq., + x,-,,,m,) = var (6&.,) 

because x..,~., can be treated as a constant with respect to this conditional 

variance. 

For LSL, 

var P, = var (nd, + 6" (t++, + Xn.l,"-l) 1 

= var cd,) + 2c0~(nd,,6,(t&~ + x~+.~)) + var Cb,C6$-, +-Y~.~,.-~) ) 

In the proof of Theorem 7 we saw that (equation (2)) 
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and that (equation (3)) 

cov(S,,6,) = -F"-,Vaxf;, 

Since C$-, is independent of b,and 6" and since all expectations are 

conditional on the current diagonal, 

therefore 
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Theorem 12: v==(s") = nun2 + b,‘Var(S,., ) . 

Proof: 

V.x(S,) = EG$>!," [Var(S,i CX,.,.XD,) )I + Var~.,;,~[E(S,/ (X,.,.xD,) 1 I 

n-1 

= no: + biVar(S,.,). 

Theorem 13: Under the transformed GAD model 

where we assume that d,' = var (e;) are identical for every j, the estimate of 

the variance of the prediction of ultimate (transformed) loss 

fi'" = x: + $6; . 

is 

where S’Z denotes the MSE of the simultaneous solution of the link ratios of 

the transformed model. 

Proof: Since we assume equal variances by development age, we may solve for all 

parameters b, simultaneously with the equation (refer to Figure 4) 
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I 

: : : ! 
I \ 1 0 0 0 b: 

0 1 0 0 b: 
+ 

0 1 . 0 0 d-1 
ji 
oo... 10 t b: , 

0 

0 1 
0 0 0 0 I 1 

or, in more concise format, Y=XR + E. It is well known that the least squares 

estimator of I3 is @=(X'X),-lX'Y and that the variance-covariance matrix of this 

estimator is (X/X)-'cr" . In this caee, it is clear by inspection that X'X 

is a diagonal matrix whose j* entry equals Ij, the number of data points in the 

est.&te of the j" lti ratio, and whose off-diagonal elenznts are zezo. ~i-zus, ~ar6: q 2 
15 

and Cov(6~,6$)=0 for iwj. Therefore, the Parameter Risk Var(c+CC;) is 
1-1 

exactly equal to The Process Risk is equal to 

c 
CVar(eQ = Co” 
1-i 

These variances are estimated by substituting the estimate s I2 for 0" 
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