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4. Estimation of Reserves, and Variances of Reserves. 

It has been shown that  the chain ladder model can be considered as a two-way analysis of variance. 

This linear model, and other linear models, can be used effectively for analysing claims data  and 

producing estimates of expected total outstanding claims for each year of business. The methods 

have in common the assumption that  the data  is Iognormally distributed, and the linear models are 

therefore applied to the logged incremental claims rather than the raw incremental claims data.  The 

problem therefore arises of reversing the log transformation to produce estimates on the original 

scale. It is this problem which is addressed in this section; in particular the unbiasedness of the 

estimates is considered. This problem was first addressed in Verrall(1991a), in which the following 

analysis was given. 

4.1. Identically Distributed Data 

Before considering the claims run-off triangle, consider n independently, identically distributed 

observations which are lognormally distributed. 

i.e. Z 1 , ... , Zn are independent 

and Zi ~ lognormal. 

Suppose also that  E ( Z i ) : 0. (4.1) 

The aim is to est imate 0 and to find the mean square error (or variance, if the est imate is unbiased) 

of the estimate. One way of proceeding towards the estimation of 0 is to take logs of the da ta  and 

analyse the resulting sample using normal distribution theory. This is an approach which can be 

generalisod to da ta  which is not identically distributed and so is the mint  appropriate for claims 

data.  

Let Yi = log Zi (i=l, . . . ,n).  (4.2) 

Since Z i has a Iognormal distribution, Yi has a normal distribution. 

Suppose Yi ~ N ( p ,  o r ). 

Then 0 = exp ( p + Jo 2 ). (4.3) 
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The maximum likelihood estimates of p and o "2 are 

i = l  

1 n )2 6.2 ~ E ( 7 , - ~  
i=l 

and the maximum likelihood estimate of 0 can be obtained by substituting ~s and 6 .2 into equation 

(4.3): 

= exp ( is + 16. 2 ) (4.4) 

Finney (1941) showed that the maximum likelihood estimate of 0 is biased. In order to correct for 

the bias, Finney introduced the function 8m ( t ) , where 

co m k ( m + 2k ) t k 

g m ( t ) =  ~'~ m ( m  + 2 ) . . . ( m + 2 k )  ~. 
k=0 

(4.5) 

and m is the degrees of freedom eusaociated with b 2. In this case m = n -  1. 

It can be shown that an unbiased estimate of 0 is 0 where 

= e x p ( ~ ) g m (  t ( 1 - ~ ) s ~ )  (4.6) 

and a= = n ~r= is an unbiased estimate of ¢~. 
n - 1  

One advantage of the use of linear models is that standard errom of the parameter estimates can be 

produced. These can be used to find standard errors on the original unlogged scale. The variance of 

is ~= , where 

~2 = z(~2)_ (z(~)?. 

An unbiased ~ t ims te  of E ( @= ) is obviously ~2 (since the expectation of this is E ( 0= ) ) and 

(z(°)) ~ =(~P(~ + i"))= 
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= e x p ( 2 p  + ~2).  

By analogy with the unbiased estimation of 0, an unbiased estimate of 

exp ( 2p + c, 2 ) 

e x p ( 2 7 ) g m  ( ( 1 - 3 )  s 2). 

Thus an unbiased estimate of ~.2 is 

72 =exp(27)E  ( g m ( ~ ( 1 - ~ )  s 2 ) )2  _gm ( ( 1 - 3 )  s 2 ) ] .  (4.7) 

For comparison purposes, the corresponding maximum likelihood estimates are also found. The 

maximum likelihood estimate of the variance of the maximum likelihood estimate of 0, 0, is 

+ o,,,. _ [ , _  ] - (n- , )  . (4.g) 

4.2" Unbiased Estimation for Claims Runoff Triangles 

A claims runoff triangle consisting of incremental claims (assumed positive) is now considered. It is 

assumed that the data have been adjusted for inflation and expoeure. Zij is incremental claims in 

row i, column j. 

Let 01j = E ( Zij ). (4.9) 

Estimates of 01j are required along with standard errors of these estimates. In particular, estimates 

of { 0ij : i=l,.. . ,t  ; j=t-i+2,... ,t  } ate required, as these are the estimates of the expected 

outstanding claims. The row totals of the estimates also have to be considered, as these ate the 

estimates of the expected totai outstanding claims for each year of business. 

{ Zij : i=l, . . . , t~=l, . . . , t- i+l } are assumed to be independently, lognormaily distributed. 
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Let Yij = log Z~j. (4.10) 

Then Yij are independently normally distributed. 

Suppose tha t  { Yij : i=l, . . . , t ;  j= l , . . . , t - i+ l  } are modelled by 

E ( Y~i ) = X q (4.11) 

Var ( Yq  = o.2 (4.12) 

where ~ij m a row vector of explanatory variables and ~ is a column vector of parameters, both of 

length p. 

The linear model for the whole triangle is 

E ( X )  = X a  (4.13) 

where X is an (axp) matrix whaee rows are Xij  

and Y is the vector of observations. 

n is the number of ol~ervations ( for a triangular array n=~ t ( t+ l )  ), and the errors are assumed to 

be independently, identically normally distributed. 

The expected value of the lognormally distributed data,  0~j , is related to the mean and variance of 

the normally distributed data  by 

01j = exp ( Xi j  ..~ + ~ o .2 ) (4-141 

Thus  the m a x i m u m  likelihood estimate of 0~i is 

Oij = exp ( ~i j  ~ + ~ b2 ) (4-151 

where ~ _ ( XlX ) - t  Xtv 

and ~2 = ~ ( z - x~ 1'( z - x~ ) 

The general theory of estimation from linear models when the data  is Iognormally distributed wad 
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considered by Bradu and Mundlak (1970). It can be shown that  an unbiased estimate of 

exp ( Z ~  + a~r2 ) 

for any row vector ~t of length p and scalar a, is 

~ p  ( z ~ ) gm ~ ( a - ~ a ( x ' x ) - '  ~' ) . '  (4.16) 

where s ~ is an unbiased estimate of ~2 and m is the number of degrees of freedom associated with 

B y . 

i . e .  s 2 = n h~ n - p  

and m 

1 ( z - x ~  ) ' (  z - x~_ ) n - - p  

- - - -n - -p .  

Thus  an unbiased estimate of Oij is 0ii  , where 

0, j  = e x p ( ~ - i ~ ) g m E  ~ ( 1  --~.~j  (X'X) -x~.~j ) s  ~ 2 .  (4.17) 

Note tha t  Vat ( ~ ) = (X'X) - I  e 2 

and heave Vat ( X~j ~ ) ---- ~ j  (X'X) - l  ~ . j  ~2. 

It can therefore be seen that  ~ j  (XIX) -1 ~ j  s ~ is an estimate of Var ( X i  / ~ ). 

" • 2 where The  variance of the unbiased estimate of 01j ,  0 , j ,  m r~i, 

~2j = v ~  ( ° , i  ) 

(4 .18)  : E ( 0 ~ j ) - ( E ( 0 q ) )  2. 
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An unbiased estimate of E ( 8~/ ) is 8~i and 

( E ( #,~ ) )~ = 0,~ 

= exp(2Xi  i ~  + o 2). 

Hence an unbiased estimate of ri~ i is rrli-2 , where 

-2 = exp(2..:_iih)~(g m (~ ( l - -~ i j  (XtX) - l  ~ i  )s2))2--gm((l--2X~'j (X'X) -I .--~j )s2)]" r , j  

(4.19) 

4.3. Unbiased Estimates of Total Outstanding Claims 

The purpose of the analysis of the claims data is to produce estimates of the expected total 

outstanding claims, R, , for each year of business, and the total outstanding claims, R, for the whole 

triangle. 

An unbiased estimate of R i is B-i , where 

R'~ : £ Oii • (4.20) 
j=t-i+2 

The variance of Ri can be calculated as follows: 

* Oii 1 Vat ( Ri ) = Vat ~-~+2 
i= 

= .i--,-i+2 £ I Var(''')'k2 ,../+t£ Coy( " J ' ' " ) l  (4.21) 

Now 

Coy(  B ¢ i ' 0 ¢ k ) =  E ( 0 ~ i 0 ~ ) -  E ( 9 ~ i ) E ( 0 ¢ j ) ,  

and an unbiased estimate of this can be obta.med using the same method as Lhat which was used to 

find ~ j  in section 4.2. 

It can be showu thag if 
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r , i  k = Cov( 0 , i , 0 ,* ) '  

an unbiased est imate of r l i  ~ is "~ii~ , where 

~-o~=exp((X,j +.X,k)/~) [ gm(~(l-.~.,j (X'X)-' X[j )s2)gm(~(I--.~.,k (XtX) -t ~[~ ) s2) 

-gm((l-- ~(~'i + X--'n(X'X)-'(~'J +~'~))s~) I 

(4.22) 

Hence an unbiased estimate of Var ( Ri ) is 

j=l--i+2 l=/+l 

By extending the limits of the summat ions ,  the total outs tanding claims for the whole tr iangle can 

also be considered. 

4.4 Prediction Intervals 

Having found an unbiased est imate of total  ou ts tanding  claims, it is now possible to produce a 

prediction interval for total ou ts tanding  claims. The purpose of the analysis  so far h ~  been to 

produce an est imate of total ou ts tanding  claims and an estimate of the variance of this est imate.  It 

is often desirable to find a 'safe '  value which is unlikely to be exceeded by the total ac tual  claims. 

Let R = total ou ts tanding  claims for the whole triangle 

and R. be an unbiased est imate of E ( R ) .  

Suppose tha t  a 95% upper confidence bound on R. is required, i.e. it is required to find a value, k, 

such tha t  

p ( I t  _< ft + k ) = 0.95 (4.24) 

i.e. find k s,lch that 

P (  It -- ft < k ) = 0.95. (4.25) 
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Since R is an unbiased estimate of E(R),  

E(R.) = E(R) 

and hence 

(4.26) 

Z(R- R ) = 0. (4.2Z) 

Also, B. is based on past data and is thus independent of R under the assumptions of the model. 

Thus 

Vat(R- R ) = Vat(R) + Vat(R). (4.28) 

In section 4.3, an unbiased estimate of Vat ( I 3. ) was derived and it is possible to derive an unbiased 

estimate of Vat (R)  using the theory which was used in that section. By independence, 

V a r ( R ) =  ~ ~ Var(Zij ) (4.29) 
i=2 j = ¢ - i + 2  

and an unbiased estimate of Vat(Zij ) is required. This can be derived as follows, using the method 

of section 4.2. 

Zij has a Iognormal distribution, and the variance of this distribution is given by: 

Var(Zij)  = e x p ( 2 ~ i j ~  + o'a)(exp(¢3) - I)  

= e x p ( 2 X q ~  + 2a a) -- exp(2~, , j~ + ¢2) (4.30) 

Hence, applying equation (4.16), an unbiased estimate of Var(Z~ ) is 

exp(2~j  ~ g  m ( 2 ( l - - ~ j  (X'X)- '  ~-j  ) s 2 ) - g m ( ( l - 2 ~ j  (XrX) -! ~ j  )s~)~. (4.31) 

It is not ~napproprlate to use a Normal approximation since K and R are, typicMiy, combinations of 

a reasonably large number of lognormaUy distributed random vmriables. Thus a 95% upper bound on 

total outstanding claims can be found: 
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+ 1.645 ~ V a r ( R )  + Vax(R)  (4.32) 

~ V a r ( R )  + Var( R ) is the root mean square error of prediction. 

4.5 Bayesian Estimation for Claims Runoff Triangles 

When a method is used which is based on Bayes theory, Bayesian estimators should be used. The 

Bayesian estimators have a sightly simpler form than the unbiased estimators and so a r e  sometimes 

used in their place in a classical analysis. When used in a classical analysis, no prior information is 

assumed. 

Suppose that Zkl has a Iognormal distribution with parameters 0 and q, and that  the posterior 

distribution of 0, given D, is normal with mean m and variance ~'a. 

i.e. l o g Z ~ l l 0  ~ N ( 0 , o  "2) 

0 1 D  ~ N ( m , v  ~ ) 

Suppose also that ~2 and r 2 are known. Then 

E ( Z k l l D )  = e m+~2+~1"2 

and Var(Zkl I D)= e 2m+¢2+r3(e °':2+~2- I) 

Similar methods can be used to calculate the eovariances, total outstanding claims and the variance 

of the total outstanding claims. 

The Bayes estimate of outstanding claims for year of business i is 

Z E ( Z,j I D ) (4.33) 
$>n- i÷!  

and the Bayes estimate of the variance is 

E I D) + 2 E  I 
j>n--i÷l h ) j  
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4.6. Example 

This example illustrates and compares the two most basic methods of claims reserving considered in 

this thesis: the chain ladder method and the two-way analysis of variance. This gives an 

opportunity to compare the two. For the analysis of variance model, both the unbiased and 

maximum likelihood estimates of outstanding claims are given. The data used is taken from Taylor 

and Ashe (1983), and wv.s given in section 2. 

The estimates of the parameters in the chain ladder linear model and their standard errors are 

shown in table 4.1. 

Table 4.1 

Overall mean 

Row parameters 

Column parameters 

Estimate Standard error 

6.106 0.165 

0.194 0.161 

0.149 0.168 

0.153 0.176 

0.299 0.186 

0.412 0.198 

0.508 0.214 

0.673 0.239 

0.495 0.281 

0.602 0.379 

0.911 0.161 

0.939 0.168 

0.965 0.176 

0.383 0.186 

-0.005 0.198 

-0.118 0.214 

-0.439 0.239 

-0.054 0.281 

- 1.393 0.379 

The standard errors are obtained from the estimates of the variance-covariance matrix of the 

parameter estimates: 

( XrX )-x ~2 

where 6 .2 is the estimate of the residual variance. For this example, ~.2 = 0.116. 

Since the data  is in the form of a triangle (there are the same number of rows and columns) and the 

matrix X is based solely on the design, the standard errors are the same for each row and column 
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parameter .  The row parameters  are contained within a much smaller range th~.u the column 

parameters :  (0.149, 0.673) compared with (-1.393, 0.965). It can also be seen tha t  there is an 

indication tha t  the row parameters  follow an increasing trend. It is to be expected tha t  the row 

parameters  should be contained within a fairly small range, since the row8 are expected to be 

similar.  Any pat te rn  in the row parameters  gives an insight into, and  depends upon, the par t icular  

claims experience. It is thus quite common to observe tha t  the row parameters  lie in a small  range, 

but  not  typical tha t  they follow a trend. 
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Table  4.2 

286170 711785 731359 750301 418911 283724 252756 182559 266237 67948 

357848 766940 610542 482940 527326 574398 146342 139950 227229 67948 

410587 1021245 1049329 1076506 601040 407078 362646 261930 381987 

352118 884021 933894 1183289 445745 320996 527804 266172 425046 

379337 943516 969461 994572 555294 376094 335044 241994 

290507 1001799 9262L9 1016654 750816 146923 495992 280405 

339233 843767 866971 889425 496588 336334 299624 

310608 1108250 776189 1562400 272482 352053 206286 

378676 941872 967773 992840 554327 375439 

443160 693190 991983 769488 504851 470639 

389421 968599 995234 1021012 570056 

396132 937085 847498 805037 705960 

420963 1047052 1075844 1103710 

440832 847631 1131398 1063269 

457887 1138894 1170213 

359480 1061648 1443370 

396651 986582 

376686 986608 

344014 

344014 

The  fitted values for the analysis of variance model are shown in table 4.2. These are the unbiased 

est imates  and  are shown with the actual  observations for comparison,  in this figure, and  in all 

s imilar  ones in future, the top entries are the est imates and  those underneath  are the ac tua l  

observations.  

Table  4.3 shows a plot of residuals (fitted value - actual  value) agains t  fitted value. 
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There is no discernible pat tern  in the residuals, and  they seem to be randomly  scattered,  so there is 

no cause to question the model on the basis of this plot. Of  course, it is possible to look further  into 

a residual analysis and  s tudy the plots of residuals against  year of business and delay. This  is 

considered further  using the GLIM system, by Renshaw (1989). The main purpose of this paper  is to 

extend the possible range of analyses and  to consider rigorous statist ical  est imation,  ra ther  than to 

find the most  appropr ia te  linear model to fit, and so the residual analysis will not be commented  on 

further.  

Of  most  interest to pract i t ioners  are the predicted outs tanding  claims for each year  of business, 

which are the row totals of predicted values. Table 4.4 shows the m a x i m u m  likelihood predictions of 

the ou t s tand ing  claims in the lower triangle, and table 4.5 shows the unbiased predictions. The 

method does not produce any  predictions for the first row, and  each row contains  one more predict~ed 

value, 

Table  4.4 

888831 

101269 

357398 93599 

217465 319835 83761 

335047 243001 357392 93597 

386433 345088 250283 368102 96402 

617309 418743 373941 271209 398880 104462 

1206369 674243 457364 408430 296223 435668 114097 

1026594 1053911 589034 399564 356813 258787 380610 99678 

913640 937951 524224 355600 317554 230313 338732 88710 
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Table 4.5 

96238 

350362 88841 

215218 313105 79394 

332848 240075 349268 88564 

384305 342028 246696 358900 91006 

613257 415031 369373 266419 387593 08281 

1193906 666126 450811 401216 289387 421005 106752 

1006382 1031734 575643 389575 346716 250077 363813 92248 

844677 867203 889047 496032 335695 298762 215487 313486 79483 

It can be seen that the ataximum likelihood estimates are all higher than the unbiased estimates, as 

was to be expected. 

Table 4.6 

Analysis of Variance Chain Ladder 

Ro__w MaximumLikelihoed Unbiased 

2 101269 96238 94630 

3 459997 439203 464668 

4 621061 607717 702101 

5 1029037 1010755 965576 

6 1446307 1422934 1412202 

7 2184544 2149953 2176089 

8 3592393 3529202 3897142 

9 4164990 4056189 4289473 

10 4595556 4339873 4618035 

The total predicted outstanding claims for each year of business (the row totals of the predicted 

outstanding claims) are shown in table 4.6. There are three estimates given, the maximum likelihood 

and unbiased estimates from the analysis of variance model, and the chain ladder estimate. 

It can be seen that the maximum likelihood estimates differ most significantly from the unbiased 
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which is where the number of observations used in the estimation is the greatest. The maximum 

likelihood estimate is asymptotical ly unbiased, and the greater the number of ohservatlons used to 

estimate ~he parameters,  the closer are the two. The chain ladder estimates are sometimes higher 

and sometimes lower than the analysis of variance estimates. There is nothing significant tha t  can 

be inferred from the differences. This confirms that  the crude chain ladder method is a reasonable 

' rough-and-ready '  method for calculating outstanding claims, al though the more proper method, 

statistically, is the analysis of variance method (using unbiased estimation). 

The total predicted outstanding claims are: 

Analysis of Maximum Likelihood 18186154 

Variance Unbiased 17652064 

Chain Ladder 18619916 

The following table shows the unbiased estimates of the total outs tanding claims for each year of 

business, the s tandard errors of these estimates and the root mean square error of prediction. This 

table can be used in setting safe reserves, and gives an idea of the likely variation of outs tanding 

. claims. 

Table 4.7 

~pbiasqc~ Standard Mean Square Error 

Estimat© Erro¢ Of  Prediction 

96238 35105 47202 

439203 108804 163217 

607717 127616 182847 

1010755 195739 269224 

1422934 273082 357593 

2149953 429669 538533 

3529202 775256 942851 

4056189 1052049 1197009 

4339873 1534943 1631306 
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The unbiased estimate of total outs tanding claims is 17652064 and the root mean square error of 

prediction is 2759258. Thus a 95% upper bound on total outstanding claims is 

17652064 + 1.645 x 2759258 = 22191043 

This could be regarded as a "safe* reserve for this triangle according to the chain ladder linear 

model using unbiased estimation. 

5. Estimation of the Development Factors 

When considering outstanding claims, it is important  to use unbiased estimators. However, when 

comparing several sets of runoff patterns it is simpler to use maximum likelihood theory since 

unbinsedness is not critical. There are two sets of parameters whose distributions can usefully be 

found: the development factors, { Aj : j = 2 . . . .  , t }, and the proportions of ul t imate claims, { Sj 

: j = 1 . . . .  , t ; ~ Sj = I }. It has already been shown tha t  the following relationship between 
j=l  

the proportions of ult imate claims and the development factors holds: 

(5.1) 

1=2 

Sj ~i - 1 = , ( j > 2 ) (5.2) 
,Xz 

I= j  

It was also shown by Kremer tha t  the proportions of ult imate claims are related to the column 

parameters  off the linear model as follows 

S.i = " ~ e  I 

i=! 

j = 1 . . . . .  t ( 5 . 3 )  

where t~l = 0 by definition. 
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Finally, the relationship between the parameters of the chain ladder and linear models waa proved in 

Ver rail ( 1991 b): 

Ai = I + i - Z e ~  ~ (5.4) 

I=1 

The parameters of the additive model can be estimated using maximum likelihood estimation. The 

variance-covariance matrix of the parameter estimates can be obtained from the Fisher information 

matr ix  by differentiating the Iog-llkelihood a second time. Further details of the theory of maximum 

likelihood which is used in this section can be found in Cox and Hinkley (19774). 

Since maximum likelihood estimates are invariant under parameter transformations, the maximum 

likelihood estimates of the development factors and the proportions of ul t imate claims can be 

obtained by substi tut ing the estimates of { /~j : j ---- 1 , ... , t ; /~t = 0 } into equations (5.3) and 

(5.4). In addition to the parameter estimates, it is useful to have standard errors of the parameter 

est imates which can be obtained by maximum likelihood theory. The particular advantage of using 

maximum likelihood estimation is that  the second moments are relatively straightforward to obtain. 

Denoting the variance-covariance matrix of { flj : j = 1 . . . . .  t ; 81 = 0 } by V ( ~ ) , the 

variance-covariance matr ix  of { ~tj : j  ---- 2 . . . . .  t } and { Sj : j  = 1 . . . . .  t ; ~ Sj = 1 } are 
j= l  

given by 

(5.5) 

It  is thus necessary to obtain the matrices of the first derivatives of the respective parameter vectors. 

The (j,k)th element of ~ - ~ )  be obtained from equation (5.4) and is given by: 
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0 k > j  

- -  = k - - - - j  

0.8 t ~x e.Si 

e~e~t k < j  

0 k > j  

~j - x k = j (5.7) 

- ( x j -  1 ) ( ~ t -  1)  k < j  

Similarly, the (j,k)th element of ( ~ / c a n  be obtained from equation (5.3)and is given by: 

419 



0 S.__.2 = 

a r k  

e~Je~k k ~ j  

k = j  

- S i Sk k ~ j 

s j  ( 1 - s j  ) k = j  

(s .8)  

Estimates of the variance-covariance matrices can be obtained by substi tut ing est imates of the 

parameters  into equations (5.7) and (5.8). 

A technical note is that  the parameter El (which is defined to be zero) has to be included in the 

matr ix  of partial  derivatives in equation (5.8) since there are a parameters in the vector ~.. The 

variance-covariance matr ix  of the parameters of the additive model which is obtained from a 

standard least squares analysis has to augmented to include an extra row and column, all of whose 

entries are zero. This is not necessary for equation (5.7). 
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5.1 Example 

The method described in section 5 is of use when comparing several different sets of da t a  and 

therefore a different example will be used than in other sections for illustration purposes. The 

method is applied to six sets of employers'  liability da ta  which have been obtained from the DTi 

returns. The names of the companies to which the da ta  apply have been suppressed, and it should be 

commented tha t  this mathematical  analysis is only one part  of the process by which reserves are set. 

In particular,  the DTI da ta  are graza of reinsurance. The results here should therefore be regarded as 

a statistical analysis which would give further information to the claims reserver who would use the 

other information available. 

We now consider the parameter estimates for each of the three models in turn. Beginning with the 

additive model the estimates of the column parameters { ~ i  : j -- 2 . . . . .  t } and their s tandard 

errors are given in the following figure: 

COMPANY: 

1 2 3 4 5 6 

1.796 0.121 1.748 0.148 2.230 0.249 1.840 0.248 1.941 0.201 2.010 0.082 

1.848 0.126 1.857 0.155 2.080 0.261 2.200 0.260 2.248 0.211 2.246 0.086 

1.669 0.133 1.654 0.163 1.978 0.273 2.159 0.272 2.204 0.221 2.129 0.091 

1.413 0.139 1.400 0.171 1.725 0.287 1.986 0.286 1.981 0.232 1.863 0.095 

0.994 0.147 1.200 0.180 1.535 0.303 1.535 0.302 1.514 0.245 1.485 0.100 

0.015 0.155 0.705 0.190 1.057 0.320 1.235 0.319 0.788 0.259 1.050 0.106 

0.415 0.164 0.339 0.201 0.667 0.338 0.644 0.337 0.227 0.274 0.?82 0.112 

0.038 0.175 0.025 0.215 -0.099 0.360 0.222 0.359 -0.540 0.291 0.234 0.120 

-0.812 0.189 -0.407 0.232 -0.300 0.390 0.047 0.388 -0.993 0.315 0.155 0.129 

-0.915 0.212 -1.821 0.200 -0.715 0.437 0.382 0.435 -1.311 0.353 -0.324 0.145 

-2.513 0.264 -1.492 0.323 -1.708 0.543 -0.896 0.541 -3.206 0.430 -0.304 0.180 

Before going on to the parametem which have a physical interpretation, it should be noticed tha t  it 

is already pomible to see some differences between the companies. In part icuar,  the s tandard  errors 
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of the parameters are larger for some companies (3 and 4) than for others (6). This will be mirrored 

in the parameter estimates and standard errors of the other models. 

Next, consider the chain ladder model. The estimates of the development factors {A j: j = 2 , ... , t} 

and their standard errors are given in following table: 

COMPANY: 

I 2 3 4 5 6 

7.027 0.727 6.742 0.850 10 .36  2.327 7.332 1 .569  7.963 1.401 8.466 0.616 

1.904 0. I01 1.950 0.130 1 .773 0.181 2.307 0.300 2.189 0.222 2.117 0.086 

1.397 0.041 1.398 0.050 1.394 0.084 1.512 0.109 1 .520 0.090 1.469 0.033 

1.220 0.022 1.221 0.027 1.219 0.046 1.285 0.059 1.274 0.046 1.245 0.017 

1.119 0.012 1.148 0.019 1 .149 0.032 1.141 0.030 1 .135  0.023 1.135 0.009 

1.073 0.008 1.079 0.010 1.080 0.018 1.092 0.020 1.057 0.010 1.077 0.006 

1.055 0.006 1.051 0.007 1.050 0.012 1.047 0.011 1.031 0.006 1.055 0.004 

1.036 0.005 1.035 0.006 1.022 0.006 1.029 0.008 1.014 0.003 1.030 0.003 

1.015 0.002 1.022 0.004 1.018 0.005 1.024 0.007 1.009 0.002 1.027 0.003 

1.013 0.002 1.005 0.001 1.012 0.004 1.032 0.011 1.006 0.002 1.016 0.002 

1.003 0.001 1.007 0.002 1.004 0.002 1.009 0.004 1.001 0.000 1.016 0.003 

Finally, consider the multiplicative model. The estimates of the proportions of ul t imate  claims in 

each development year { Sj : j - -  1 . . . .  , t ; ~ Sj = 1 } and their standard errors are given in the 
j=l  

following table: 
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COMPANY:  

I 2 3 4 5 6 

0.032 0.003 0.032 0.004 0.023 0.005 0.021 0.005 0.023 0.004 0.022 0.002 

0.196 0.016 0.184 0.019 0.218 0.036 0.135 0.025 0.162 0.023 0.162 0.010 

0.206 0.015 0.205 0.019 0.186 0.029 0.204 0.032 0.220 0.027 0.205 0.011 

0.172 0.013 0.167 0.015 0.168 0.026 0.184 0.028 0.211 0.025 0.182 0.000 

0.133 0.011 0.130 0.013 0.131 0.021 0.155 0.024 0.169 0.022 0.140 0.0077 

0.088 0.008 0.106 0.011 0.108 0.019 0.099 0.017 0.106 0.015 0.096 0.006 

0.060 0.006 0.065 0.0077 0.0677 0.013 0.073 0.014 0.051 0.008 0.062 0.004 

0.049 0.005 0.045 0.006 0.045 0.010 0.040 0.009 0.029 0.005 0.047 0.003 

0.034 0.004 0.033 0.005 0.021 0.005 0.027 0.007 0.014 0.003 0.027 0.002 

0.014 0.002 0.021 0.004 0.017 0.005 0.022 0.006 0.009 0.002 0.025 0.002 

0.013 0.002 0.005 0.001 0.011 0.004 0.031 0.011 0.006 0.002 0.016 0.002 

0.003 0.001 0.007 0.002 0.004 0.002 0.009 0.004 0.001 0.000 0.016 0.002 

The runoff  pa t te rns  of the companies  can be compared  using the two tables above. For example,  1 

and  2 seem quite similar,  and  some of the companies  have more runoff  in later development  years 

than  others.  The s t anda rd  errors can also be compared,  with the same conclusions a8 above. 
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6. Bayesian Linear Models and Credibility Theory 

Bayes estimates for the linear model were investigated by Lindley and Smith 0972)  and also 

Smith (1973). In the actuarial literature, the recent paper by Klugman (1989) has studied the use of 

hierarchical linear models in a rating context. It has already been seen that  many of the models 

commonly used to analyse claims runoff triangles can be regarded as linear models, and we now 

analyse these models from a Bayesian point of view. This analysis has two purposes: firstly the 

practitioner may have some information, from other data  for example, which can be used to specify 

a prior distribution for the parameters in the model and secondly the Bayesian analysis gives rise in 

a natural way to estimators which have a credibility theory interpretation. 

In the first case the prior distribution is set by the practitioner and the usual prior-posterior analysis 

can be carried out. The models which we are using assume normal (really log-normal) distributions, 

and so it is only necessary to specify the mean and variance of the prior distribution (which is also 

normal). For example, if there is a lot of evidence to suggest that  the row parameters are all 0.1, a 

normal distribution with mean 0.1 and small variance can be used as prior. If there is not much 

prior information, the prior variance can be set larger. Indeed, in the limit, as the prior variance 

becomes large, we revert back to ordinary least-squares estimation of the parameters. 

In the second case, we will be using empirical priors. Thus the estimation will be empirical Bayes 

and we will assume tha t  certain of the parameters are exchangeable. The historical requirement that  

credibility estimators be linear will also be considered and we could claim to have credibility 

formulae. The situation has some similarities with credibility estimators of risk premiums in that  we 

can regard the rows in a runoff triangle as a set of risks and proceed as Buhlmann (1967) - see 

Goovacrts and Hoogstad (1987) for a full description of Buhlmann's  method, in the case of claims 

runoff triangles the rows contain different numbers of elements, and there are also the column 

parameters to contend with. This approach, start ing from credibility premiums and working through 

to a credibility theory for Ices runoff triangles was suggested by De Vylder (1982) - again see 

Goovaerts and Hoogstad (1987) for an exposition of the method. The present method starts from 

runoff triangles and proceeds to credibility formulae via the linear models. One of the major 

advantages of the linear model approach is that  standard errors of the estimates are also produced. 

For consistency, the constraints 

424 



on the first stage distribution have been retained. This also facilitates the comparison with the 

recursive approaches such as tha t  based on the Kalrnan filter. It does, however, introduce a slight 

degree of b.~symmetry into the prior distribution and it might  be considered more appropriate  to use 

a constraint  such as 

~a~ = ~ f l i = O "  

It is also possible to apply the constraint a t  the second stage and use the following prior distribution: 

a i ~  N ( 0 , ~ )  i = l  . . . . .  t. 

The affect of the exchangeability a~umpt ion  is similar whichever constraint  is used: the estimates 

are shrunk towards a central value and stability is introduced. The amount  of shrinkage is greatest 

where the number of observations is small. 

6.1 Bayes Estimates for the Analysis of Variance Model 

In this section the use of two-stage Bayesian linear models which assume tha t  there is 

some prior information is described. A prior distribution can be written down using the prior 

knowledge. It was shown earlier that  the chain ladder linear model can be written as a linear model 

in the form: 

z la  ~ N( X l ,  E) 

and the prior information is quantified in the prior distribution on 

A situation which may occur is tha t  there are similar sets of da t a  a v ~ a b l e  which give information 

on the individual parameters.  [n this case A I can be taken as an identity matr ix ,  the prior estimates 

can be put  into ~-I and their variances into Cl.  |n  many cases C I will be a diagonal  matr ix  of 

variances, a l though it is not nece~ary tha t  the covarianees are zero. In this ease, the prior 

distribution becomes: 
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a l ~  ~ N(_Ot, C~ ) (6.1) 

Amuming that  the errors are independent, E = #2I n. I n is a square identity matrix of dimension 

(n~). 

The Bayes estimate of the parameter vector is the solution, ~ ,  of 

(~-~x'x + c 7 ' ) ~  = , , -2x'xh+ c7'£, (6.2) 

and the variance-covariance matrix of the estimates is 

var(~) = [ a-' x'x + c7' l-' (6.3) 

The equation for ~ (3.4.2) can be written as a credibility formula: 

= ~ a  + ( ] - z ) 0 ,  (6.4) 

wherez = (o '-~XlX + C ~ ' l ) - t o ' - 2 X t X  is the credibility factor. 

It is interesting to note that  the credibility factor has been generalised into a credibility matrix, 

since z is a (pxp) matrix. There will be a subtle dependence of the elements in the Bayes estimator 

on each of the elements in the least squares estimator. It is not possible to write a credibility 

formula separately for each factor in the form 

6i = z , i  i + ( l - z ) O  i 

To estimate the variance ~ ,  the modal procedure described is used. The estimate of ~2 is s 2, where 

~ = (z- x~)'(z- x~)/(n+2) (e.s) 

Thus the equations which give the Bayes estimates are (6.2), with a2 replaced by s 2, and (6.5). 
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The procedure begins with s ~ = 0 and iterates between the solutions of 

(s-:X'X + C71)~ = s-~X'X~ + C~-I~, 

and s2 = (Z -- X~_)t(X -- X ~ ) / ( n + 2 )  

6.2 Empirical Bayes Estimates for the Chain Ladder Linear Model 

The previous section described the use of a two-stage conventionai Bayesian model to analyse claims 

data .  This section u ~ s  a three-stage Bayesian model described in Verrail (1990) to derive empirical 

Bayes estimates for the chain ladder model. This method uses an improper prior distribution a t  the 

third stage for the row parameters and improper priors a t  the second stage for the overall mean and 

the column parametem. This means tha t  for the overall mean and the column parameters the same 

~mumptious are made as for the maximum likelihood estimators. 

The row parameters are assumed to be independent samples from a common distribution - of course, 

they are unobeervable, but  this is the underlying assumption. A similar assumption is made in 

credibility theory. When premiums are calculated using credibility theory, a risk parameter  is 

amigned to each risk and these are assumed to be independently, identically distributed. The set of 

risks is known as n collective, and the distribution from which the risk parameters  is drawn is known 

as the structure of the collective. The situation in the claims reserving case is similar for the row 

parameters,  but  is complicated by the column parameters.  

The est imators produced will combine information from each row with information from the triangle 

as a whole. The prior distribution (i.e. the second stage distribution) is estimated from the da ta ,  and 

hence the est imators have an empirical l~,yes interpretation. 

The linear model for the chain ladder method is 

via ~ N ( X ~ , # h )  (s.0) 

and  the constraint  ~** = ~: = 0 will be used. 

The errors have been assumed to be independently, identically distributed. X is as defined in the 

first section. 

As in credibility theory, a structure is put  onto the row parameters o2, a s ,  ... , a  t : they are 
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assumed to be independent  observations from a common distribution. For the overall mean,  p, and 

the column pa ramete r s  .8~, Ba . . . . .  fit  ' the same distributional assumptions as for ordinary 

m a x i m u m  likelihood es t imat ion will be used. Thus  at  the second stage 

/ 

al,,,,,#,J£ ~ N 
1 0 . . .  

0 1 0 

i i : 
0 l 0 

i 0 I 

0 ...... 0 

0 w 

: 
G 

G 

0 

I 

and take #~2 _ 0 and a~ ~ O. (6.7) 

g' is t he  m e a n  of  the common  distribution of  the row parameters  a 2, ... , a t .  

Al though the assumptions  on the est imation of F and 0 2 . . . . .  .0t are the same as for the m a x a m u m  

likelihood est imat ion,  the es t imators  produced will not be the same because of the t r ea tmen t  of  the 

row parameters. 

A vague prior distr ibution (a third-stage distribution) is used for tb. Since e ~  2 ~ 0 and ~ 

0, a third-stage distr ibution is not needed for w and ~2 , . . . .  ~t ' Hence a combinat ion of  two-stage 

and three-stage models  is used. 

The  Bayes es t imate  of  ..~, ~_, is given by 

~= ~-2 x'x+L[ "~2o 

0 

t 
whoreS. = ,~ ~ 

i=2 

and has a credibility interprctat ion.  

- I  

2xx  [° lo o 
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0 

6 
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It can be seen tha t  the empirical Bayes estimates of the row parameters are in the general form of 

credibility estimates: they are the weighted average of the maximum likelihood estimates and the 

(weighted) average of the estimates from all the rows. The situation is complicated by the fact that  

X;X is not a diagonal or blot:k-diagonal matrix,  so that  the estimation of p, f12, "" , ~'t involves the 

estimates of a 2, ... , a ,  and vice versa. This is entirely natural  since changing the estimates of the 

row parameters obviously forces changes in the other estimates. However, it can be seen that  the 

form of the estimates is the same as the form of credibility estimates. They are the weighted average 

of the maximum likelihood estimates and the (weighted) average of the estimates to which the 

credibility theory type a~umpt ious  have been applied. The weights depend on the precision of the 

estimates. 

As before, the variances #2 and #2 a are replaced by modal estimates s 2 and s~ , which are given by 

s~ v~+(x-  x ~ ) ' ( x - x ~ )  (6.9) 
= n + u + 2  

I 
U a ~ a +  E ( 6 , -  6 .  )2 

s~ = ,=2 (6.10) 
t + v a - I - I  

where v, ~, v a and h a are set by the prior distribution of the variances. The derivation of these 

formulae~ and the diacusion of the prior parameter  values is given in Lindley and Smith (1972). 

Again, the estimates are obtained by iterating between (6.8) and (6.9),(6.10). This is illustrated in 

the example. 

The empirical Bayes assumptions could also be applied to the column parameters,  a l though this is of 

little practicaJ use. 

6.3. Example 

To illustrate the effect of the assumptions made in the empirical Bayes theory, namely tha t  the row 

parameters  eure independent oheervatious from a common distribution, the Taylor  and  Aahe da t a  is 

rcaaalyaed in this example. 

The estimates of the parameters and their s tandard errors are shown in table 6.1: 
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Overall Mean 

Row Parameters 

Column Parameters  

Table 6. I 

Empi~'ica~ 

Bayes No Prior Standard Error 

Estimate Estimate Of  Bayes Estimate 

6.157 6.106 0.131 

0.225 0.194 0.124 

0.193 0.149 0.129 

0.198 0.153 0.133 

0.300 0.299 0.138 

0.371 0.412 0.144 

0.421 0.508 0.150 

0.493 0.673 0.159 

0.383 0.495 0.170 

0.391 0.602 0.105 

0.893 0.9 ! 1 0.128 

0.911 0.939 0.133 

0.915 0.965 0.139 

0.319 0.383 0.147 

-0.080 -0.005 0.156 

-0.199 -0.118 0.170 

-0.515 -0.439 0.190 

-0.120 -0.054 0.224 

- 1.444 - 1.393 0.306 

The estimate of the variance of the row parameter distribution is 0.0289. 

The empirical Bayes assumptions have been applied to the row parameters only. The effect of these 

Msumptions is tha t  the row parameters have been drawn towards a central point (a weighted 

average). The lower row pars~neter esthnates have increased, while the higher ones have decreased. 

This  can be seen more dear ly  from the ~raph given in section 7.3 which shows a plot of the 

max imum likelihood and empirical Bayes estimat¢~ of the row parameters,  togther with the 

estimates from the dynamic model discussed in section 7. 
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Table 6.2 shows the row totals and their s tandard errors. For comparison purposes, the Bayes 

estimates with no prior assumptions are also given. 

Table 6.2 

Empirical Bayes Bayes Empirical Bayea 

Estimates No Prior Standard Error 

109448 110927 46963 

479568 482157 148617 

655656 660810 162104 

1033109 1090752 220459 

1388261 1530532 270730 

2002772 2310959 374041 

3018896 3806976 572899 

3780759 4452398 720836 

3811869 5066116 752593 

The empirical Bayes est imate of total outs tanding claims is 16280338 and the est imate of the 

s tandard  error of total outs tanding claims is 1313997. 

The empirical Bnyes s tandard errors are lower than the estimates with no prior information. The 

estimates of  total outs tanding claims for the later rows have benn quite considerably reduced, 

reflecting the reduction in the estimates of the row parameters.  The empirical Bayes procedure has 

thus given less weight to the estimates of the parameters from the later years: it has allowed tha t  

the rise in the maximum likelihood parameter  estimaten from row to row may be due to random 

variation. As more da t a  becomes available, and there is more evidence in favour of either o f  these 

possibilities, this may,  or may not, be revised. 
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7. State Space Models 

The previous section described the empirical Bayes framework in which it is assumed that  the row 

parameters  have the same prior mean. The advantage of this assumption is the connection made 

between the accident years. The chain ladder technique suffers from over-parameterisation which is a 

result of the accident years being regarded as cimpleteiy separate. The empirical Bayes a~umpt ion  is 

one way of overcoming this. Another way of tackling this problem, and in some ways a superior 

way, is to use a state space approach. This method assumes a recursive connection between the rows, 

rather than the static assumption made by the empirical Bayes method that  all the rows are similar. 

The state space model assumes tha t  each accident year is similar to the previous one. Jus t  how 

similar can be governed by the choice of a parameter variance. Section 7.1 de~,cribes the s tate  space 

approach to the chain ladder linear model. 

Another problem with the chain ladder technique is, paradoxically, tha t  it makes too much 

connection between the accident years. It does this by assuming that  the shape of the run-off is the 

same for all accident years: the same development parameters are used. It is also possible to relax 

this assumption,  and details of this are given in section 7.2. 

7.1 A state  space representation of the chain ladder linear model. 

In order to consider the state space model and dynamic estimation methods, it is necesaacy to set up 

the two-way analysis of variance model in a recursive form. This takes advantage of the natural  

causality of the data .  The da ta  which makes up the claims runoff triangle are received in the form : 

iz,21 rz,, l , , /z : , : / , . . . ,  
LZ:,'J LZs,'J 

and  in year t the d a t a  which are received are 

(7.1) 

I Zl's 1 Z2,!,-i I (7.2) 

Zt,l J 
The set of d a t a  vectors which together make up the whole triangle form a t ime series: 
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Zx , ] 2 ,  . . . .  Zt , ..- 

In this t ime series, the da ta  vector expands with t: for a tr iangular set of da ta ,  dim ( ~t ) = t. 

If the da ta  are in the shape of a rhombus, which occurs when the early years of business are fully 

run off, then ~,  will reach a point when its dimension does not increase. 

The analysis can be approached from in the context of multivariate t ime series. However, the special 

relationships between the elements of consecutive da t a  vectors mean tha t  it is simpler to generalise 

the theory of clemaical and Bayesian time series to two-dimensional processes. For n fuller discussion 

of the use of classical time series, the reader is referred to Verrall (1989). 

There are two methods for calculating the forecast values and their s tandard errors. The simplest is 

to use the final parameter  estimates and variance-covariance matr ix  as would be the case in a 

s tandard  least-squares analysis. The more proper method calculates one-step-ahead , two-step-ahead 

, ... , ( t-l)-steps-ahead forecasts at  time t and their variance-covariance matrices. However, since the 

recureive approaches do not store covariances between, for example, the one-step-ahead and the 

(t-l)-step-ahend forecasts, the calculation of the variances of  the forecasts causes problems. For this 

reason the first method will be used. 

The chain ladder linear model takes the following form when three years '  da t a  have been received: 

Ytx 

Yx2 

Y~t 

Y:s  

Y~2 

Ysl 

where Yij = log Zij .  

l ooo ] 
1 0 1 0  ~ 
1 1  O 0  
1 0 0 0  
1 1 1 0  

= 1 O 0 1  

/J 

~2 

~3  

#s 

• e l l  1 

el2 

e21 

e l3  

e22 

. e31 J 

When the da ta  are handled recursively, the model becomm: 
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Yt,1 = P + et,l 

[~,,,j ~ I o ~, o,,, 

iYi31 IlOOOljlil i 12  e3 IY2,1  = , , ,  o o + e~,~ 
L~,, j  , o o l o  e3,, 

(7.3) 

etc. 

In general, the state vector at t ime t is defined by: 

o, = 

P 

ot 2 

~2 

# ,  

(7.4) 

and equation (7.3) is called the observation equation. The state vector at  t ime t is relsted to the 

state vector s t  time t-I by the system equation. A recursive version of the chain ladder method is 

achieved by defining the system equation matrices as 

1 

1 

! 

0 . . . . . .  0 

0 . . . . . .  0 

0 0 

i : 

0 0 P.t 

1 0 

0 1 

(7.5) 

where u, contains the prior distribution of J~'+~I. 
LP J t÷ l  

The new parameters at  t ime t + l  are I , '+~I and equati°n (7'5) 'mp|ies that the existing Parameters , . !  

are unchanged, while the new parameters  a te  treated as stochastic inputs. 
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If the variance of the errors, eij , is known and vague priors are used for the parameters, this 

method gives exactly the same results as ordinary least-squares estimation. It has the advantage that 

the data can be handled recursively. Also, it gives a method of implementing Bayesian estimation on 

some or all of the parameters. It has been assumed that the prior estimates of the parameters are 

uncorrelated: in other words that the stochastic input vector, u~ , and the state vector, 0_t , are 

independent. 

The equations above are an example of a state spare system; a more general form is now considered. 

The models for --YI , -Y.-2 , "-" , ~ t  . . . .  , which together make up the triangle can be written as 

--Yt = Ft-Ol + £t 

~2 = F ~ 2  + ~.~ 

~ t  = Ft£t + t ,  (7.6) 

where Y, = log Z t 

Equation (7.6) is an observation equation and forms one part of a state system to which the Kaiman 

filter can be applied in order to obtain recursive estimates of the parameters. ~, is known as the 

state vector and is related to _0t_ t by the system equation. The observation equation and the system 

equation together make up the state spare representation of the analysis of variance model. 

The system equation relates ~t to 0_l_ I and defines how the state vector evolves with time. Thus, 

the time evolution of the system is declined on the state vector and the obeervation vector is then 

related to the state vector by the observation equation. There axe many choices of system equation, 

the most general being: 

_0t+l = G t ~ t  + H ~ t  + w--t (7.7) 

where 1!z is a stochastic input vector 

and w, is a disturbance vector 

and the distributions of ~ and w~ are: 
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~, ~ N(~,,U,) 

_w, ~ N(~,W,) 

The choices of G, , W t and the distribution of l!t govern the dynamics of the system. 

S u p p o ~  _o, I ( ~t~, ~t2 . . . . .  ~ , _ ,  ) ~ N ( ~',l ,-t ' C, ). (7.8) 

i .e.  the distribution of the parameters, based on the data up to time t - 1  is normal with mean _0it_ I 

and variance-covariance matrix C t. 

From equations (7.6) and (7.7), the distribution of ~ l  given information up to time t - -  1 is 

~,I,-, ~ N ( F, ~-,I,-, ' F, C, F~ + V, ) (7.9) 

When the observed value of --Yi is received, the state estimate can be updated to ~tlt and the 

distribution of the state vector at  time t forecast using equation (7.8). 

The recursion is given by the following equations, a proof of which can be found in (for example) 

Davis & Vinter (1985). If the system and observation equations are given by equations (7.6) and 

(7.7), and the distribution of~t  given information at time t-I is given by (7.9), then the distribution 

of the state vector can be updated when ~ ,  is received using the following recursion: 

~-,+iI, = o, °-,I,-, + H, .~, + K, ( X, - ~, ) (7.X0) 

where K, : G, C t F ~ ( F t C ,  F~ + V t ) - t  (7.11) 

i--" )-~ C , G ~  + C,+z: GtC, G~ + at U, a~- G, C, F~ ( F, C, F, + V, F, W, (7.12) 

and ~, ---- F, ~,l,-z (7.13) 
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7.3 Dynamic Estimation of the Row Parameters 

A model which applies dynamic estimation to the row parameters has the following system 

equation: 

~ , + j  = 

1 

1 

1 

0 ... | 0 

0 . . . . . .  0 l 
O 

O_~ + 0 

0 

1 

IOJ 
u , +  0 w t 

1 

0 

where ut has the prior distribution of/5't+ t 

and w~ is a disturbance term. 

Thus the new row parameter, at+ t , is related to a t  by: 

a t +  I = a t + w ,  ( 7 . 1 4 )  

and a sophisticated smoothing method is produced. 

The row parameters are related recursively and the column parameters are left as they were if their 

• prior distribution is vague (although the estimates change because of the change in the estimation of 

the row parameters). The state variance is set as 0.0289, in order to compare with the empirical 

Bayes procedure. The practitioner is free to chocee this variance as he sees fit: the larger the 

variance, the less connection is made between the rows. It is also possible to let this variance depend 

on t, and thus allow the amount of smoothing to be controlled by the perceived changes in the 

claims experience. It is also possible to obtain an estimate of this variance from the data, using 

maximum likelihood estimation. In the case in which the variance is set as 0.0289, the parameter 

estimates are as follows: 

437 



~aramete I Estimate 

Table 

~taq~ard 

Erroc¢ 

p 6.119 0.163 

a 2 0.187 0.151 

a 3 O.170 0.148 

o 4 0.196 0.152 

o 5 0.296 0.158 

o e 0.396 0.164 

o 7 0.482 0.171 

o s 0.550 0.183 

o 9 0.536 0.202 

or0 0.546 0.238 

f12 0.906 0.158 

~3 0.940 0.165 

~4 0.951 0.173 

~5 0.364 0.183 

8 e -0.028 0.195 

~7 -0.145 0.212 

~s -0.457 0.236 

~9 -0.062 0.278 

~lo -1.406 0.378 

The row totals and their standard errors are given in the following table: 
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l o w  

Table 7.2 

Predicted Standarcl 

Outs tandinf  Error 

Clairn~ 

2 109955 59278 

3 491787 187134 

4 686441 206954 

5 1076957 277762 

6 1486991 347441 

7 2217311 491998 

8 3309887 744931 

9 4545466 1048855 

10 4591188 1189469 

The predicted overall total outs tanding claims is 18515984 and the s tandard error of this estimate is 

2660211. The s tandard error is lower than that  when no prior knowledge is assumed because of the 

recursive relationship between the parameters.  The effect of the Kalman filter on the parameter  

estimates will be illustrated by a graph1 but  it is interesting to compare the results with the 

empirical Bayes approach.  

The following graph shows the parameter estimates for three c a N :  the model with no prior 

knowledge, the empirical Bayes model and the state space model. It can be eeea from the graph that  

the s tate  space model and empirical Bayes estimates have both smoothed the estimates of the row 

parameters  to a certain degree. The empirical Bayes estimates have been drawn towards the overall 

est imate I with the amount  of change depending on the da ta  through the variation in each row and 

between the rows. The differences in the estimates of the row parameters has affected the estimates 

of outs tanding claims. The s tandard  errors have been reduced because the estimation has involved 

more of the da t a  for each parameter.  This is a beneficial effect of any of the Bayesian methods. 
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7.4 Dynamic estimation of the development factors 

It is well-known that  the chain ladder technique assumes that  the shape of the run-off curve is the 

same for each accident year, since the same development factors are used. However, it is doubtful 

whether this is justified in practice. It is likely that  there will be a similarity between the run-offs in 

successive accident years, and it is possible to formulate a state space model to allow this without 

imposing an identical shape for each year. The basic chain ladder linear model is 

E ( Y , ~ )  = p + a~ + ~1 (7.15) 

Allowing the devolpment factors to be completely separate for each accident year would lead to the 

following model: 

E ( Yli ) = P + el  + f l l i  (7.16) 

We would expect the parameters ~ i i  to be similar for succesive values of i and so we impose the 

model 

//~+1,i = /~ii + stochastie disturbance (7.16) 

The variance of the stochastic disturbance can be treated in much the same way ~s for the row 

parameters  in section 7.3. We can now allow the shape of the run-off to vary from accident year to 

accident year by the choice of the variance of this stochastic disturbance. If it is zero, the run-off 

pat tern is the same in each accident year and as it increases, the connection becomes less significant. 

We can allow the variance to depend on t and input a large value for one time point if it is believed 

that  there has been a sudden change in the run-off pattern. 

To illustrate the effect of this model, we analyse the da ta  given in section 2, with the variance in 

equation (7.16) taken as 0.01. The main interest in this case is the effect on the run-off pattern,  and 

so table 7.3 gives jus t  the column parameters,  ~ j .  
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Table 7.3 

Column parameters from model with the same run-off in each row (from table 7.1): 

0.906 0.940 0.951 0.364 -0.028 -0.145 -0.457 -0.062 -1.406 

Column 

0.925 0.886 0.914 

0.917 0.895 0.945 

0.920 0.907 0.964 

0.918 0.920 0.980 

0.895 0.942 0.951 

0.894 0.960 0.940 

0.890 0.990 0.944 

0.898 1.014 

0.897 

parameters from model with the same dynamic run-off pattern: 

0.383 0.025 

0.361 -0.035 

0.361 -0.080 

0.332 -0.050 

0.352 -0.026 

0.375 

-0.175 -0.479 -0.074 -1.413 

-0.135 -0.460 -0.063 

-0.130 -0.447 

-0.161 

This illustration shows how change~ in the run-off pat tern can be observed. For example, the first 

column parameter  is generally decreasing and the second one is increasing. 
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8. Conclusions 

This paper has explored the various models which are available within the framework of the chain 

ladder linear" model. It is envisaged that  the practitioner will find all of these of use. The following 

points are of particular note. 

Firstly, any of the Bayesian methods will improve upon the least squares (or uninformative prior) 

approach on the basis of parameter stability. This is because more information is used in est imating 

each parameter.  For example, in the least squares case, there is only one da ta  point from which to 

estimate the last row parameter;  the Bayesian methods use the da ta  from the other rows as well. To 

illustrate the affect of this consider a change in the da ta  point in the last row from its present value 

of 344014 to 544014. The following table shows the predicted outstanding claims for each row from 

the different models. The first column shows the original results with no prior information. 

Table 

Original Results Revised Results 

prior Dypamic Emvirical ~ prior Dynamic Empiric.a[ 

Information Est:imation Bayes Information Estimation Bayes 

2 II0927 109955 109448 110927 I09958 110094 

3 482157 491787 479568 482157 491822 481329 

4 660810 686441 655656 660810 686637 657998 

5 1090752 1076957 1033109 1090752 1078058 1039692 

6 1530532 1486991 1388261 1530532 1491978 1400466 

7 2310959 2217311 2002772 2310959 2239482 2024720 

8 3806976 3309887 3018896 3806976 3399256 3063229 

9 4452396 4545466 3780759 4452396 4847221 3819051 

I0 5066116 4591188 3811869 8011412 5261069 4411270 

The last row prediction using no prior information has changed in proportion with the change in the 

da t a  point. The other methods have dampened down this.change because they use more information 

in the estimation of the parameter.  They therefore exhibit greater predictor stability. 
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It is important to realise that the results must be used correctly. For example, it is often not 

necessary to produce a 95% upper confidence bound (a 'safe' reserve) on oustnanding claims 

for each row, hut only for the whole triangle, although the 'safe' reserve for the whole triangle may 

be allocated among the rows. This is important since it can be seen that the standard errors for each 

row are, in general, relatively large. The standard error of the overall total is more reasonable. To 

extend this further, the practitioner may be required to set a 'safe' reserve for the whole company, 

rather than for each triangle; this would reduce the relative size of the standard error still further. 

There are now a number of Bayesian methods which are available to the claims reserver, all of 

which have particular advantages over the classical estimation method. The chain ladder linear 

model represents a great step forward from the crude chain ladder technique and has opened the way 

to more sophisticated estimation methods. 
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1.0 INTRODUCTION AND SUMMARY 

The present paper aims to present a statistical modelling framework and environment 

for conducting loss reserving analysis. The modelling framework and approach 

affords numerous advantages including increased accuracy of estimates and 

modelling of loss reserve variability. Since the loss reserve is likely to be the largest 

item in the insurer's balance sheet and is subject to much uncertainty, modelling of 

loss reserve variability is an integral component of assessing insurer solvency and 

assessment of risk based capital. 

The paper is organised as follows: 

Forecasting and some modelling concepts are introduced in Section 2. The salient 

features of the data that ought to be captured by a model are discussed and 

arguments in favour of probabilistic models are presented. It is emphasised that the 

only way to assess loss reserve variability is through probabilistic models. The 

statistic~ MODELLING FRAMEWORK is introduced where each model in the 

framework has four components of interest. The first three involve trends in the three 

directions, development year, payment~calendar year and accident year and the 

fourth component is the random fluctuations (distributions) about the trends. 

In Section 3 we begin by discussing trend adjustments to a univariate time series and 

illustrate how analogous adjustments to loss reserving data cannot be handled by 

graph and ruler, mainly as a consequence of the projection of the payment/calendar 

year trends onto the development year and accident year directions. Two 

deterministic, models Cape Cod (CC) and Cape Cod with constant inflation (CCI) are 

discussed. Age-to-age development factors are defined as trend parameters. 

A rich class of deterministic development factor models is introduced in Section 4 

where each model in the framework contains the three trend components of interest. 

It is shown how as a result of the projection of calender year (trends), a very simple 
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trend model causes very different development year trends (development factors) for 

different accident years. Standard actuarial techniques based on age-to-age link 

ratios of the cumulative payments cannot capture the payment/calendar year trends 

in the payments. 

In Section 5 the class (or family) of deterministic development factor models that only 

contain trend components in the three directions is extended to include random 

fluctuations. The resulting models in the rich Development Factor Family (DFF) are 

probabilistic models that relate the distributions of 'payments' in the various cells in 

the triangle by trend parameters. It is emphasised that one of the principal uses of 

regression is the estimation (or fitting) of distributions. Estimation of a model 

belonging to the DFF involves the fitting of distributions to the cells in the loss 

development array. Data based on a simple DFF model are generated (simulated) 

and it is demonstrated how the development year patterns are invariably complex. 

The trends cannot be determined from the age-to-age link ratios nor from graphs. 

For readers who are sceptics and may argue "But this is simulated data" should read 

Section 1 2 where we analyse real life data involving a line written by a larger insurer 

for which the age-to-age link ratios on the cumulative payments are relatively smooth. 

HOWEVER, there are major shifts in payment~calendar year trends in the payments 

that are quite alarming. 

We use regression for a number of purposes: 

Estimation of trends. 

Estimation or fitting of distributions. 

In Section 6 we demonstrate how regression can also be employed to adjust data for 

trends. We state as a THEOREM that the only way to separate payment/calendar 

year trends from development year trends is by application of regression. Practical 

applications of regressions involving real life data sets are given in Sections 12 and 

13. 

In Section 6 we also present a number of tests that we believe any sound loss 
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reserving statistical framework should pass. It is shown that standard actuarial 

techniques based on age-to-age link ratios fail these minimum tests. 

As a result of the dependence of the payment/calendar year direction on the other 

two directions, many of the models in the DFF that contain many parameters cannot 

be estimated in a spreadsheet or statistical package and some that can be estimated 

may contain much parameter uncertainty. This phenomenon, known as 

multicollinear'ity, is discussed in Section 7 and motivates the introduction of varying 

parameter, dynamic or credibility models. Varying parameters or stochastic 

parameters can also be regarded as proxies for the myriad of variables that affect the 

complex claims generating process. 

In Section 8 we show how the (fixed) parameter regression models may be estimated 

in a spreadsheet or statistical package and how an estimated model may be 

employed in producing forecast distributions of (incremental) payments. The forecast 

(estimated) distributions provide information required for the assessment of risk based 

capital and solvency. 

Additional modelling concepts including parsimony, Akaike Information Criterion and 

distributional assumptions are discussed in Section 9. Moreover, we describe the 

importance of the twin concepts of stability and validation analysis and show how 

data with unstable trends (in the payments) are less predictable (subject to greater 

uncertainty) than data with staple trend (and some random fluctuations). Parameter 

uncertainty (or instability) can reduce predictability much more than process 

uncertainty. 

Accuracy of forecast distributions is also discussed. We empha,~ise that the "optimal" 

statistical model, when trends are unstable, may not be the best for producing 

forecasts and discuss what assumptions may be appropriate for the future, especially 

in the light of analysing other data types. Instability in trends in the more recent 

payment years in the incremental payments requires more actuarial judgment about 

future trends. 
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The model building strategy and selection of appropriate assumptions about the 

future are discussed in Section 10. It is stressed that the model building strategy ~s 

necessarily an iterative cycle of model specification, estimation and testing. If trends 

in the more recent payment/calendar years are unstable, the nature of the instability 

and possible explanation for the instability is relevant information in deciding on 

assumptions for the future. This typically may require analysis of other data types 

employing the advocated modelling framework. We conclude in Section 10 with a 

discussion of time series models versus explanatory (or casual) models and offer 

arguments for the superiority of the former over the latter. 

Section 11 discusses how prediction intervals may be derived from the forecast 

distributions and how they are relevant to the assessment of risk based capital and 

solvency. Prediction intervals computed from the forecast distributions are 

conditional on the assumptions made about the future remaining true. 

The preliminary diagnostic analysis and the model building strategy are illustrated 

with two real life examples. Project 1 of Section 12 is concerned with real data of a 

large company. In terms of standard age-to-age link ratio techniques the data and 

ratios are relatively smooth and it does not appear that there are any problems. 

HOWEVER, there are major shifts in payment/calendar year trends in the payments 

that are alarming especially since the new high trend cannot be explained by a 

corresponding increase in speed of closure of claims. Project 2 of Section 13 also 

involves real data. Here the link ratios are relatively irregular, yet trends are stable, 

so that three years earlier estimation of the, same model would have forecast the 

distributions of payments in the ceils of the last three payment~calendar years and 

moreover would have produced the same outstanding reserve estimates. 

In Section 14 we remark about an important extension of the DFF MODELLING 

FRAMEWORK that makes the family of models infinitely richer. 

The paper concludes with summary remarks in Section 15. 

Throughout the paper we also hope to dispel a number of pervasive loss reserving 
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myths regarding data, age-to-age link ratios, volume, credibility, sources of 

information, actuarial judgment (when and where required), business knowledge, 

statistical probabilistic modelling and forecasting. 
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2.0 STATISTICAL FORECASTING 

The best way to suppose what may come, is to remember what is past. 

George Savile, Marquis of Halifax. 

In this section we discuss a number of fundamental statistical forecasting concepts 

including which salient features of the data should be "remember what is past". 

2.1 FORECASTING 

Indeed it (forecasting) has been likened to driving a car blindfolded while following 

directions given by a person looking out the back window. Nevertheless, if this is the 

best we could do, it is important that it should be done properly, with the appreciation 

of the potential errors involved. In this way it should at least be possible to negotiate 

straight stretches of road without a major disaster. 

Andrew C. Harvey [9] 

In the loss reserving context the 'straight stretches' are the stable trends in the 

(incremental) payments. If the trends have been stable in past years, we are 

confident in supposing the same trends in the future. 

2.2 WHY A PROBABILISTIC OR STOCHASTIC MODEL? 

There are extremely compelling reasons as tp why we should be using probabilistic 

models to model insurance data, whether for the purpose of loss reserving, rate 

making or any other purpose. 

According to Arthur Bailey's [2] paper Sampling Theory in Casualty Insurance, 

any insurance data can only be regarded as "an isolated sample ,,,", See top of page 

8 of the text book Foundations of Casualty Actuarial Science [5], Bailey is 

basically saying that any insurance data can only be regarded as a sample (path) 

from perhaps a very complex process. 
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If a fair coin is tossed 100 times, the mean number  of heads is 50, but the probabil i ty 

of observ ing 50 heads is only 0.08. If a fair dice numbered 1 to 6 is rolled, the mean 

is 3.5, yet the probabi l i ty of observing 3.5 ~s zero. (The variabil i ty inherent in coin 

tossing in known as process uncertainty). 

So, the probabi l i ty of observ ing the mean in most, if not all, insurance processes is 

zero. Given, that we do not observe the mean, we need to compute  more than just 

the mean. The mean on its own is not terribly informative. We need to also compute  

the standard deviat ion, so that we have some idea of how 'far' our (future) 

observat ions will be from the mean. The best, of course, is to compu te  the whole 

distr ibution. From the computed  distr ibution we can derive the moments ,  percenti les 

and predict ion (conf idence (sic)) intervals. 

Returning to the text book  Foundations of Casualty Actuarial Science [5], 

the int roductory chapter 1, top of page 2, says "The mention of probabilities reminds 

us to state the obvious, that probability theory (whether classical or Bayesian) forms 

the basis of actuarial science. If the actuaries hadn't probability theory, they would 

have to invent it." Indeed, the author also bel ieves that statistical probabi l ist ic 

methods  are essential to actuarial studies, and it is pnncipal ly  by the aid of such 

methods  that these studies may be raised to the rank of sciences. 

2.3 MODELLING FRAMEWORK 

The mode ls  cons idered in the present paper  are relatively simple. They have four 

componen ts  of interest that have a straightforward interpretation. 

The first three componen ts  are the trends in the three direct ions, development 

year, accident year and payment/calendar year. The fourth componen t  is 

the random f luctuat ions about  the trends. The random f luctuat ions componen t  is just 

as impor tant  as the three trend componen ts  and is necessari ly an integral part of the 

model .  The data or t ransform thereof are decomposed  thus: 

DATA = TRENDS + RANDOM FLUCTUATIONS 
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The concept of trends and random fluctuations about trends is over two 

hundred years old. These concepts have been widely used in analysing (and 

forecasting) any univariate time series such as sales, stock market prices, interest 

rates, consumption, energy and so on. 

The principal aim of analysing a loss development array is to obtain a sensible 

description of the data. The trends in the past, especially in the payment/calendar 

year direction, are determined and the random fluctuations about the trends are 

quantified, so that it can be best judged which assumptions should be used for future 

trends (and random fluctuations). The models are probabilistic (equivalently, 

stochastic) since the probability distributions of the random fluctuations 'about' the 

trends are identified. Probabilistic models are testable and can also be validated. 

They also afford numerous other advantages including computation of risk margins 

required for the assessment of risk based capital. 

IF THE TRENDS ARE STABLE THEN THE MODEL WILL VALIDATE WELL AND BE 

STABLE. If the trends are unstable then the decision about future trends is no longer 

straightforward. Instability in trends with little random variation about the trends makes 

data less predictable then stable trends with much random fluctuation. See Sections 

9.6, 10.2 and 10.3. The same principles apply to the modell ing of a univariate time 

series. 

The 'best' identified model contains assumptions (equivalently, information). All the 

assumptions must be tested to ensure they are supported by the data (experience). 

As we proceed through the model identification strategy we are extracting reformation 

(about trends and stability thereof and the amount of random variation) and we 'hope' 

that the 'best' identified model tells us that the calendar year trend is stable 

(especially more recently). If trends are not stable then we may not necessarily use 

the optimal statistical model for forecasting. See Section 9.6. 

None of the numerous models contained in the MODELLING FRAMEWORK actually 

represent explicitly the underlying claims generating processes. The multitude of 
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variables involved in generating the claims are invariably complex. What we attempt 

to achieve is the identification of a parsimonious model in terms of the simple 

components of interest for which all the assumptions inherent in the (proba~ilist~c) 

model are supported by the data. It is subsequently argued that the experience (data) 

can be regarded as a sample (path) from the identified probabitist~c model. The 

multitude of variables that are the determinants of the claims processes are proxied 

by the TRENDS and the (residual) variance of the RANDOM FLUCTUATIONS. 

Another classical modelling example in insurance where the same kind of modelling 

concepts are used is when a Pareto distribution, say, is fitted to loss sizes. It is not 

assumed that the Pareto distribution represents the underlying generating process. 

Whatever is driving the claims is very complex and depends on many variables. All 

that is assumed is that the experience (sample) can be regarded as a realisation from 

the estimated Pareto distribution. Subsequently the estimated Pareto distribution is 

used to estimate probabilities of very large claims including those exceeding the 

maximum observed claim in our sample and most importantly it is used to quantify 

proDabilistically the variability in loss sizes. 

The principal advantage of an explicit statistical model is that it makes the 

assumptions dear. Other advantages include improved accuracy and quantification 

of variability required for assessment of risk based capital and testing of solvency. 
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3.0 THE GEOMETRY OF TRENDS AND AGE-TO-AGE DEVELOPMENT FACTORS 

In this section we show that loss development arrays possess only two independent 

directions, not three, and define age-to-age development factors as development year 

trends 

3.1 TREND ADJUSTMENTS TO A UNIVARIATE SERIES 

In one dimension, or equivalently for any univariate series, trend concepts are intuitive 

and natural. 

Consider the series log P, where P, is the pdce of gasoline in year t. Figure 3.1.1 

below depicts the log P, series (dark line segments) over a 20 year period. 

TRENDS ADJUSTMENTS 

2 3 ,I $ 6 7 | 9 .  JO I I  J2 1} 1,1 l.$ 16 17 1 |  19 

L~ I:J'ices (m m:minBl val~s) ~ Mjj,~.~ed 1ol} I:mces (m$ vlllue of year 20) 

Figure 3.1.i 

It appears that there is a constant average trend.in the nominal prices. The least 

squares estimate of the trend is 0.23, say. So prices have been growing at an 

average rate of 23% However, 23% is the nominal growth, since there has been 

economic inflation over the 20 year period. Suppose economic inflation has been 8% 

continuous rate for the whole 20 year period. The light line segments represent the 

log prices adjusted to the $ value of year 20. 
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The trend in the adjusted prices is 23% - 8% = 15% If instead, one was only given 

the nominal prices and the adjusted prices (without knowing the adjustment), the 8% 

adjustment could be determined by estimating the difference in trends in the two 

series. Trends (on a log scale) are additive. 

So, REGRESSION as an approach to estimating trends and adjusting data, 

immediately suggests itself. 

3.2 TREND PROPERTIES OF LOSS DEVELOPMENT ARRAYS 

Since a model is suppose to capture the trends in the data, it behoves us to discuss 

the geometry of trends in the three directions, v~z., development  year (or delay), 

accident year and payment (or calendar) year. 

Development years are denoted by cl; d=0,1,2 ..... s- l ;  accident years by w; 

w=1,2 ..... s; and payment years by t; t = l  ..... s. 

d 

t 

Figure 3.2.1 
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The payment year variable t can be expressed as t = w + d. This relationship 

between the three directions implies that there are only two ' independent '  directions. 

The two directions, delay and accident year, are or'thogonal, equivalently, they have 

zero correlatton. That is, trends in either direction are not projected onto the other. 

The payment year direction t however, is not orthogonal to either the delay or 

accident year directions. That is, a trend in the payment year direction is also 

projected onto the delay and accident year directions. Similarly, accident year trends 

are projected onto payment year trends. 

In order to aid the exposit ion we shall assume, without loss of generality, that the 

numbers in the loss development array are incremental payments. It Is emphasised 

that all the arguments and concepts presented apply to all loss development 

arrays including incurreds, counts, averages and so on. 

We now illustrate the geometric properties of trends of a loss development  array with 

some data. 

Consider the fol lowing triangle of incremental paid losses: 

Triangle One 

100 200 150 100 
100 200 150 100 
100 200 150 100 
100 200 150 100 
100 200 150 100 
100 200 150 
100 2OO 
I O0 

80 60 40 20 
80 60 40 
80 60" 
80 

This triangle will be said to satisfy the Cape Cod assumptions, viz., homogenei ty  of 

age-to-age development  factors across accident years and homogenei ty  of levels 
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across accident years. Each accident year has the same initial starting value, that is. 

same value ~n delay O. 

Suppose we subject the payments to 

years. We obtain the next triangle: 

Triangle Two 

a 10% yearly inflation across the payment 

100 220 182 133 117 97 
110 242 200 146 129 106 
121 266 220 161 142 117 
133 293 242 177 156 
146 322 266 195 
161 354 292 
177 390 
195 

71 39. 
78 

To obtain the t ~" diagonal of the second triangle, we multiply each payment in the t " 

diagonal of tr iangle one by (1.1)"'. 

We observe the following: 

For triangle two, age-to-age development factors are homogeneous across 

accident years but are 10%. higher than" in triangle one. 

2. In triangle two there is a 10% accident year trend. 

Observations 1 and 2 imply that triangle two could be obtained from one by the two 

successive (and commutative) operations: subject triangle one to 10% per year trend 

in accident year direction to obtain: 
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Triangle Three 

100 200 150 100 80 
110 220 165 110 88 
121 242 182 121 97 
133 266 200 133 106 
146 293 220 146 
161 322 242 
177 354 
195 

60 40 
66 44 
73 

20 

and then subject triangle three to 10% trend in the development year direction to 

obtain: 

Triangle Four 

100 220 182 133 117 97 
110 242 200 146 129 106 
121 266 220 161 142 117 
133 293 242 177 156 
146 322 266 195 
161 354 292 
177 390 
195 

71 39 
78 

Triangle four is the same as triangle two. A loss development array depicted by 

triangle two (or four) is said to satisfy the Cape Cod with constant payment year 

inflation assumptions. 
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The following displays demonstrate the equivalence of trends ~n general. 

[I 11 

)I 1 

m ~ -12 

~'Z 12 

The above equivalence relations are exemplified by the relationships between the four 
triangles. We also have, 

' )2.. i 

' > -IZ 

3. I +3. 2 
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It is important that the reader understands the relationship and difference between 

Cape Cod (CC) data and Cape Cod with constant inflation (CCI) data. 

CC data have accident years that are completely homogeneous (homogeneity of level 

or values at development year zero and homogeneity of age-to-age factors). CCI 

data can be obtained from CC data by subjecting the payment years to a constant 

trend. If we remove the constant payment year trend from the CCI data we will have 

CC data. 

So, the difference between CCI data and CC data is a calendar year trend 

adjustment. If we did not know how the CCI data were created from the CC data, 

how would we determine the (simple) difference? 

With the univariate series considered in Section 3.1 the difference between the 

nominal prices and adjusted prices can be determined by estimating the trend, using 

eye and ruler, for each series. Estimating trend using eye and ruler can be regarded 

as a form of crude regression. With the loss reserving data CC and CCI, it also 

makes sense to estimate the payment year trends and subsequently conclude that 

the difference in the two loss development arrays resides in the difference in the two 

trends. But how do we estimate the trends? Given the dimensionality of the data, 

eye and ruler are not useful. Moreover, given the geometry of trends, we need to 

separate the trends in the three directions. Equivalently, we need to determine the 

payment year trends after adjusting for development year trends. 

Accordingly, formal regression is suggested as the only way of separating the trends. 

A number of words of caution. In actual fact the "true" trends in the three directions 

are non-identifiable. It is only the resultant trends that are identifiable. 

Here is an example. Consider a CC triangle for which the (continuous) trend a.cross 

development years is constant and is -0.25. Suppose to this CC triangle we 

introduce a continuous calendar year trend of 0.2 and a continuous accident year 

trend of 0.1. The adjusted triangle can be represented thus: 
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0.2 

-0 .25  

o.1 

Al ternat ively,  it can be represented  as: 

-0.05 

0.3 

or, 

0.3 

-0.35 
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All three trend triangles are the same and would produce the same projections for the 

completion of the rectangle. We have three directions (or variables) but only two 

independent equations. 

3.3 DETERMINISTIC AGE-TO-AGE DEVELOPMENT FACTORS 

Consider, at first, only one accident year (say, the first) that takes the value p(d) at 

development year d and let y(d) = log p(d). 

Oefine: ¢ = log p(o) 

and 

'Y = y(,j)-y(,j-1) 

A 

Q 

R 

> 
j-1 j d 

Figure 3.3.1 

The parameter ¢¢ (alpha), denotes the initial value, or intercept, or level whereas the 

parameter Yi represents the trend, on a logarithmic scale, from development year 

j-1 to development year j. 

The parameter Yi is a difference on a log scale and since the length of PR in Figure 
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3.3.1 is 1, Yi is the slope of the line PQ, and hence is the trend between 

development yea?s j-1 and j. 

Now, 

y(d) = y(o) + y(1) - y(o) + ... + y(d) -y(d-1) 

¢/ 

=¢z + ~ y i  
j=l 

(3.3.1) 

That is, y(d) can be expressed as the initial value plus the sum of the differences to 

development  year d. The differences can also be regarded as trends. Indeed, 

YJ = y(j) -y(j-1) 

= log p(.j) - l o g  p(.j-1) 

,o0[  1 

One of the principal reasons for taking logari thms of the data is because the 

difference of two logar i thms is equivalent to analysing trends and approximately 

equivalent to analysing percentage changes. 

The trend parameter  ~1 is the log of the ratio p(j)/p(j-1). The latter ratio is an age-to- 

age deve lopment  factor. So, Yj can also be interpreted as a log of a development  

factor. Indeed, in what fol lows we shall refer to it as a development  factor (on a log 

scale). 

466 



Consider the following monotonically increasing series {p(j)} for which the trends are 

depicted in the Figure 3.3.2 below. 

A 

y(dl 

Ts y~....j._.__1 Y2 
7 f 

> 
1 2 3 4 5 d 

Figure 3.3.2 

The 'f's represent both the differences in y values and the trends depicted by the 

straight line segments. 

Accordingly, development factors on a log scale form a curve comprising of straight 

line segments (trends). 
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4.0 DETERMINISTIC DEVELOPMENT FACTOR MODELS 

In this section we develop the mathematical descnption of the two models 

corresponding to triangles one and two respectively of Section 3.2. 

Let p(w,d) denote the value in the loss development array corresponding to accident 

year w and development year d and set y(w,d)=logp(w,d).  

4.1 CAPE COD (CC) 

Consider triangle one of Section 3.2. Each accident year has the same a value, viz., 

¢ = log100 and each accident year has the same development factors Y ~, Y 2 .... , Y 

(Y ,). For example, Y 3=1og(100/150). 

So, we can write 

d 

jol 
(4.1.1) 

Equation (4.1.1) describes the deterministic CC model. 

4.2 CAPE COD WITH CONSTANT INFLATION (CCI) 

Consider now triangle two of Section 3.2. It was obtained from triangte one by 

subjecting it to a constant trend {n the payment year direction. 

Let's denote the payment  year trend on a logarithmic scale by the Greek letter, 

(called iota). For triangle two ~ = log 1.1. 
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The value y(w,d) that lies in payment year w + d is inflated by t (w • d - 1). 

So, for triangle two, 

d 

/ - 1  
(4.2.1) 

The last equation may be re-cast, 

d 

.,l~W,O) = ¢ + t 'W - t + ~ (yi ÷ t) . (4.2.2) 
J , 1  

The two foregoing equations are identical and represent the CCI determinist ic model. 

The latter equat ion tells us that the level parameter for accident year w is 

¢ * t + w -  t, so that there is an t trend along the accident years and that the 

deve lopment  factor from delay j-1 to j is Y i + t . This is just a mathematical  

verif ication that the payment  year trend t projects on the other two directions. 

4.3 CC FAMILY AND CCI FAMILY 

There are other CC models for which the CC assumpt ions viz., homogenei ty  of 

accident  years, apply. 
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For example, it may be that Y 3 = Y ,=... = Y 8, so that the trends from development year 

two to eight are constant as depicted below: 

y(d) 

2 ~f3 

> 
2 3 4 5 $ 77 8 

Figure 4.3,1 

Another possibi l i ty is that all development  factors Y ,, "f 2 ..... are equal to Y say, so 

that we could write: 

y (w,d)= • + ¥ d  (4.3.1) 

This model  we call the single development  factor (SDF) model. It is a straight line 

curve on a log scale and exponent ial  curve on the $ scale. It is the same curve for 

each accident year. 

So, we can construct many variants of the CC model  (4.1.1 .). In the sequel, anytime 

we refer to CC without an added qualif ication we shall mean model  (4.1.1) with 
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aistinct Y 's. 

Similarly, depending on the "relationships" in the Y's in the CCI model, we can 

construct  many variants of the CCI model. 

4.4 A CC MODEL WITH THREE INFLATION PARAMETERS 

The data in Appendix A1 to Appendix A4 are generated as follows. 

First we create payments based on formula: 

p(w,d)= exp(alpha- 0.2*d). 

So this is deterministic SDF data (where the accident years are homogeneous). See 

Appendix AI. 

On a log scale we introduce a 10% trend from 1978-82, 30% trend from 1982-83 and 

15% trend from 1983-91. See Appendix A2. 

1,3 

I l J  

|2 

II.S 

II 

IOJ, 

I0 

Development year trends 

Accid~e,nt year 1983 

/~:odent year 1978 Accident year 1979 

i i i i i i i i i i | i i i 

0 l 2 3 4 S 6 77 | 9 |0 I1 12 13 

Figure 4.4.1 
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Figure 4.4.1 displays the graph of the log data versus development year for the first 

six accident years. The reader can reproduce this graph ~n a spreadsheet. 

Observe how calendar year trends project onto development years and accident 

years. 

Consider the first accident year 1978. The 10% calendar year trend projects onto the 

development year, so that the resultant trend from development year 0 to 

development year 4 is -0.2 (the gamma) + .  1 (the iota)= -. 1. The 30% trend between 

calendar years 1982 and 1983 also projects onto the development year so that the 

trend between development year 4 and 5 is +.1 =-0.2+.3. Thereafter the trend is 

-.2+ 15=-.05. Since .15 is larger than 1, the decay in the tail is less rapid (-.05>-.1). 

Consider the next accident year 1979. First up to development year 3, this accident 

year is 10% higher than the previous one since the 10% calendar year trend also 

projects onto the accident years. The 10% upward trend is one development year 

earlier than in prewous accident year since the 30% trend is a calendar year change. 

So, changing calendar year trends can cause some interesting development year 

patterns. The pattern is different for each accident year. The calendar year trends 

cannot be determined by the link ratios (Appendix A4). 

The patterns became much more complicated in the presence of random fluctuations 

super imposed on the trends. See Section 5 for a discussion of the current example 

including random f luctuat ions 

The model  describing the data we have constructed can be represented pictorially 

thus: 
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Y d 

y 
w 

Figure 4.4.2 

where Y=-0.2, ~ ,=0.1, t 2=0.3 and t ==0.15. 

Writing the equations explicitly is not necessary. Indeed, it is too complicated. 

We note that the resultant trend (age-to-age development factor) between 

development years j-1 and j is the (base) development factor Y between the two 

development ye~l.rs plus the payment, year trend ~ (iota) between the two 

corresponding payment years. 

The above model can be described succinctly in terms of the five parameters, a, y, 

,, t 2 and t 3. We could create a slightly more involved model by adding 

accident year trends (more a's). 
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4.5 CHAIN LADDER (CL) 

The chain ladder (CL) statistical model is described in Christofides [4]. It is a two- 

way ANOVA model where accident years and development years are two factors at 

various levels. The CL statistical model is the direct statistical extension of the 

standard age-to-age development factor technique. See Christofides [4] for details. 

It is written (omitting the random fluctuations). 

y(w,d)  = = .  + ~ ~'i (4.5.1) 
j . 1  

The parameter a w corresponding to accident year w represents the effect of accident 

year w and the parameter Yi-Y~, (difference in trends) represents the effect of 

development year j. The number of parameters in the model is 2s-1. 

The CC model assumes complete accident year homogeneity, that is, same ~z and 

same Y i's. For the CL model we assume homogeneity of development factors ('Y/s). 

but heterogeneity of levels (a's). 

The principal deficiency of the CL model is that it does not relate the calendar years 

in terms of trends. 

If we do not have an estimate of trends in the past, how do we know what 

assumptions we can make about the future trends? See comments by George Savile 

at beginning of Section 2.0 and the discussion in Section 9.6. 

HOWEVER, the CL model is an extremely powerful interpretive tool as we shall see 

in Section 6 and more impressively in an application to a real life example in Section 

12. 
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4.6 THE SEPARATION MODEL (SM) 

The separat ion method  separates the base systematic run-off partern (assumed 

h o m o g e n e o u s  across accident years) from exogenous  influences, viz., payment  year 

inflation (or effects). The determinist ic model  is usual ly expressed (parametr ized) as 

p(w,d) = e(~t~ d ~.w. 

where the { e (w) } are the exposures, propor t ional  to number  of claims incurred. 

{ bd} are the deve lopmen t  factors and the parameter  Xw • ~ expresses the 'effect' 

of payment  year  t = w + d. 

The corresponding mode l  in our  framework is wri t ten (parametrized) as 

d w - d 

y(w,O~ = ,  + ~ Yi + ~ t, (4 .61)  
j . 1  t - 2  

where  the parameters  { YJ } are the base systemat ic  deve lopmen t  factors and t t is 

the force of inf lat ion f rom payment  year t - 1 to paymen t  year  t. 

The mode l  has 2s - 1 parameters.  

Note that this mode l  necessar i ly assumes that there are signif icant changes in 

inf lat ion rates (trends) be tween every two cont iguous  paymen t  years and, moreove r  

that there are signif icant changes in base deve lopmen t  factors be tween  every two 

deve lopmen t  years. 

Refer to the d iscussion of Sect ion 9,6 where  we  show that if t rends are indeed 

unstable then the paymen ts  are not terr ibly wel l  predic table.  
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4.7 DETERMINISTIC DEVELOPMENT FACTOR FAMILY 

Let's reconsider the model  of Section 4.4. It can be descr ibed succinct ly as a version 

of CC (viz., SDF) subjected to three payment  year trends. If we remove the three 

payment  year trends, we are back to SDF. On this model  we could also super impose 

(add) accident year  trends. 

So, any determist ic deve lopment  factor model  (DFF) can be descr ibed as some 

version of CC subject to payment  year trends and accident year  trends. 

Mathemat ical ly ,  the family of deve lopment  factor models  is 

d w * d  

y(w, e = e ,  + ~ yj , C t, (4.7.1) 
i , 1  t - 2  

A mode l  has a level parameter  a .  for accident year w - it represents the effect or 

level or exposure  of the acc ident  year, Between every two deve lopmen t  years, we 

have a deve lopmen t  factor or trend parameter  .f j (the factor f rom de lay  j-1 to j) and 

be tween every two paymen t  years we have a trend (or inflation) parameter  L t , the 

inflation from paymen t  year  t-1 to t 

All mode ls  cons idered thus far be long to the deve lopment  factor family. For example.  

CC is wdt ten as: 

d 

j ° l  
(4.7.2) 

So for CC type mode l  ~ = ~  (for e a c h w )  and ~ t = °  for each t .  
w 

There is no need to memor i se  the equat ion represent ing the fami ly of models.  All 
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that needs to be understood ~s that the parameters of a model  compr ise (i) trends 

(development factors) in the development  year direction (the y's), (JJ) leveJs 

(exposures) for each accident year (the ~'s) and (iJ) trends (inflation) in the payment 

year direction ( t 's). Furthermore, any payment  year trend projects on the other two 

directions. 
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5.0 STOCHASTIC DEVELOPMENT FACTOR MODELS 

In this section the class of deterministic DFF models (4.7.1) that only contain trend 

components is extended to include random fluctuations. 

Consider one accident year only for which the deterministic model is 

d 

~ = = * ~  xj (5.1) 
/.,I 

This model says that at delay o we can on!y observe one (log) value, viz a. Similarly, 

for the other delays. Between any two delays we can only observe one trend, the 

trend corresponding to the development factor. 

We now assume that around the trends there are random fluctuations. We write 

d 

~ = = ' ~ Y j * ~  , (5.2) 
hi 

where ~ the error term, has a normal distribution with mean 0 and variance 0.2. In 

actuarial par'lance ~ is known as the process uncertainty. Given that the errors are 

random variables, the dependent variable y is arso a random variable. 
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The probabil ist i¢ (stochastic or regression) model  is depicted below. 

y(d} 

~ normal 

i I I I I 
0 1 2 3 4 5 

For the stochastic model,  ¢ is no longer the value of y observed at delay O. It is the 

mean of y(o). Indeed, y(o) has a normal distr ibution with mean ¢ and variance o;. 

Similarly, 7 i is not the observed trend between delay j-1 and j, but rather it is the 

mean trend. 

The parameters of the stochast ic model  represent means of random variables. 

Indeed, the model  (on a log scale) compr ises a normal distr ibution for each 

deve lopment  year where the means of the normal distr ibutions are related by the 

parameter  ¢ and the trend parameters 7,, I' = . . . .  , 7 s. 

From equat ion (5.2) we have 

y ( d ) - y ( d - 1 )  = '/d + c a -  8d., (5.3) 

where ¢ d is the 'error' at delay d. 
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Accordingly,  

That is, the deve lopment  factor Yd is the mean of the log of the ratio on the $ 

scale. A deve lopment  factor is a parameter. 

Based on model  (5.2), the random variable p(d) has a Iognormal  distr ibut ion with, 

(/ 

Median = exp[= - ~ y i ] ,  (5.5) 
j ' -  1 

Mean  = m e a n .  exp [0.5 02 ] ,  (5 6) 

and 

Standard 

Deviation = mean • ~/exp I o21 - 1 . {5.7) 

Since, y(d) - y(d-1) ~ N(Yd ' 2°z)  , we have 

E l.~.~.L -.-~] = exp[y, " o2], (5 8) 

so that the deve lopmen t  factor on the $ scale (the mean  of a ratio) is given by the last 

equat ion.  

The stochast ic mode l  for p(d) compr ises a Iognormal  distr ibut ion for each 

deve lopmen t  year  where  the medians of the Iognormal  d ist r ibut ions are related by 
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equat ion (5.5) and the means are related by equat ion (5.6). So. in fitt,n G cr 

est imat ing the mode l  (Section 8) we are essentially fitting a tognormal  distr ibution to 

each deve lopment  year. The curve (on a log scale) compns ing  straight line segments 

is only one componen t  of the model.  The principal componen t  compnses the 

distributions, 

As another example,  we consider the stochastic CC model ,  viz., 

d 

y(w,~ -- . - Z x j -  ~ (5.9) 
j o l  

In this mode l  we assume, for example,  that y(1,0) ..... y(s,0) are observat ions from a 

normal  distr ibut ion with mean  ~z and var iance ~ .  

The assumpt ions conta ined in the model  must be tested to ensure that they are not 

v iolated by the data. 

The stochast ic deve lopment  factor family (DFF) is wri t ten as: 

d w - d  

j - ~  t , 2  

Note that the mean  trend be tween cells (w,d-1) and (w,d) is Y= + 

mean  trend be tween cells (w,d) and ( w + l , d )  is a . ~z + w ~ l  w-1 -d • 

and the w o a  

A mode l  be long ing  to the DFF of (stochastic) mode ls  relates the Iognormal  

distr ibut ions of the cells in the tr iangle On a log scale the distr ibut ion for each cell 

is normal  where  the means  of the normal  distr ibut ions are related by the "trends" 

equat ion be long ing  to the family (4.7.1). 
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We now return to the deterministic development factor model of Section 4.4. 

To all the log "payments" in the triangle we add random numbers from a normal 

distribution with mean zero, Equivalently, to the trends depicted in Figure 4.4.1. we 

add random numbers from a normal distribution displayed in Appendix A5. The sum 

of trends (Appendix A2) plus random fluctuations (Appendix A5) is displayed in 

Appendix A6. 

The graph of the first six accident years of the data in Appendix A6 is given in the 

Figure 5.2 below, 

13 

12.5 

12 

it.5 

11 

10.5 
Impoml~e to detecl ~an~r'~ trends ~ eye 

Trends plus random fluctuations 

Another deficiency of the CL probabilistic model is that it contains the explicit 

assumption that the errors for the youngest accident year and the last development 

year are both zero, The chance of that, is zero! 

| 0  I I | | I I l I I I I I I I 

0 I 2 3 4 ~ 6 7 I 9 I0 11 |2  13 

Figure 5.2 

NOTE that it is impossible to determine the trends and/or change in trends by eye 

or from the age-to-age link ratios of the cumulative payments (Appendix A9). See 

Appendices A7 - Ag. THE TRENDS CAN ONLY BE DETERMINED BY USING 

REGRESSION. 
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Notwithstanding the fact that the DFF modell ing framework can be applied to any loss 

development array, muclq of the remainder of the discussion will involve analysis of 

the incremental payments for the following reasons: 

the geometry of trends: 

simplicity ana parsimony: 

distributions of future payments is relevant information for financia; 

statements. 

Other reasons are given in Sections 10.3 and 10.4. 
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6.0 REGRESSION AS A FORM OF ADJUSTMENT AND MINIMUM TESTS 

Hitherto we have apphed regression for two related purposes. Estimation of trends 

in the 'payments' and estimation of the distribution of payments in each cell. The 

estimated trends relate the means of the distributions on a log scale. 

For example, if the CC model is an appropriate model, then the 'payments' come 

from Iognormal distributions and the means of the log 'payments' lie on the surface: 

d 

~w,a~==-Z Yj 
j=1 

6.1 REGRESSION AS A FORM OF ADJUSTMENT 

Regression is also a very powerful approach to adjusting data, especially in the loss 

reserving context. 

In view of the fact that payment~calendar year trends project onto the other two 

directions, a graph of the data in one direction gives no indication of the trends. See 

for example, the simulated data with three payment year trends discussed in Section 

5, and in particular, Figure 5.2. 

We define a residual by 

= y - ~  

That is, a residual is an observed value minus its fitted value. 

Residuals can be interpreted as the data adjusted for what has been fitted. Let's 

consider a number of examples. 
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Suppose we simulate (generate) a tr iangle based on a CC model .  The model  

generat ing the data can be writ ten 

CC DATA = CC TRENDS + ERROR (randomness) 

If to the data we est imate the CC model ,  then the residual is 

residual = CCDATA - FITTED CC TRENDS 

= est imate of error, 

that is, the residuals represent  the data after we take away (subtract.) what  we fitted, 

alternatively, the residuals represent  the data adjusted for what  we  fit. Here we 

subtract  the est imates of the t rends we  used to create the data, so residuals should 

represent  what  is left, which is " randomness" in the three direct ions. "Random" 

residuals versus payment  years are depicted in Figure 6.1.1. 

Residuals versus payment years 

1970 1975 19|0 1985 1990 1995 2 ~  

F i g u r e  6 . 1 . 1  

Suppose  we  now  generate,  

DATA = CC data  + 10% ca lendar  year  t rend 
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If we fit the CC model to this data the residual is 

residual = DATA - fired CC TRENDS 

= estimate of error + 10% calendar year trend 

So here residuals versus payment/calendar years will exhibit a straight upward trend 

(÷ randomness) as depicted in Figure 6.1.2. After removing the CC trends from the 

data, there still remains the 10% calendar year trend plus the random fluctuation. 

Residuals versus payment years 
Irdieatiota of  pos i t i ,~  ' ~ t ~ '  

J 

2 

I 

o 

-1 

-Z 

-3 
1970 1975 1910 [~t$ 1990 19'95 2 ~  

Figure 6.1.2 

If you estimate the. average trend in these residuals in a spreadsheet you would 

obtmn an estimate of approximately 10% (the trencl introduced into the data). 

If we estimate the CCl model to the data, we are essentially estimating a trend 

parameter through the payment year residuals (Figure 6.1.2) of the previous CC 

model. 
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Now the residuals versus payment years should be random as we have removed 

/subtracted) all the (estimated) trends we introduced into the data. 

Consider now data created as follows 

DATA = CC data + 
+ 

10% trend (calendar years 1978-85) 

20% trend (calendar years 1985-91) 

If we fit the CC model to this data the residual is 

residual = DATA - fitted CC TRENDS 

= estimate of error + 10% (78-85)+15% (85-91) 

The residuals versus payment/calendar years exhibit two trends, one from 1978-85 

and sharper trend from 1985-91. See Figure 6.1.3 below. 

Residuals versus payment years 
T~ distinct tnmds 

3 

2 

I 

o 

-t 

-Z 

-3 
1970 197S 19|0 1915 19'90 1995 2900 

F i g u r e  6 . 1 . 3  

In now estimating the CCI model to the data, we are essentially estimating a trend 

parameter through the payment year residuals of Figure 6.1.3. The average trend is 

between 10% and 20%. The residuals versus payment years are now 'v-shaped'. See 

Figure 6.1.4 below. 
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Residuals versus payment years 
A , ~  adjuslmg for averse u'mxl 
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Figure 6.1.4 

We are now  led to est imate the two trends. 

In v iew of the fact that ca lendar year trends project  onto  the other two directions, we 

can only  obtain an indicat ion of payment  year  trends, after we first remove the 

deve lopmen t  year  t rends from the data (and vice versa). 

R E G R E S S I O N  I S  A V E R Y  P O W E R F U L  T E C H N I Q U E  F O R  S E P A R A T I N G  T H E  

T R E N D S  I N  T H E  T H R E E  D I R E C T I O N S  F R O M  R A N D O M  F L U C T U A T I O N S  

In Sect ion 12 we  analyse a real life example  that possesses relat ively smooth  age-to- 

age link ratios, yet  there are major  shifts in ca lendar  year trends that are quite 

a larming.  

6 . 2  M I N I M U M  T E S T S  

The author  bel ieves that a sound loss reserving statistical mode l l ing  f ramework  

should  pass a number  of very s imple basic fundamenta l  tests. 

Turning to the univar iate (log price) series of Sect ion 3.1, if the (average) trend in the 

nomina l  pr i ces  is zero, that is, the prices are random about  a zero trend then th~s 
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feature in the data could be determined informally by examining the graph with eye 

and ruler and formally in a spreadsheet by estimating the trend, showing that it is 

insignificant and testing the residuals for randomness. Hence, 

Test 1: If the (incremental) payments in a loss development array are random 

observations (from a Iognormal distribution), and accordingly there are no trends in 

each of the three directions, then a sound loss reserving methodology should 

determine this. 

We illustrate with an example. Appendix B1 contains incremental payments drawn 

at random from the same tognormal distribution. Note the variability. The mean 

forecast or fitted value for each cell is the same. Indeed, estimation of the CC model, 

for example, to the data would yield insignificant Y 's, as they should be. Application 

of the DFF modelling framework will allow us to identify the salient features ot the 

data extremely fast. 

The age-to-age link ratios are displayed in Appendix B3 and do not appear to convey 

much relevant information. (Compare with age-to-age link ratios in Appendix B5. 

What can you tell?) 

For those readers who feel that random data (no trends) represents a pathological 

case, should analyse a number of Lloyd's Syndicates data. 

Returning to the univariate series of Section 3.1, it is rather straightforward to identify 

both informally and formally the difference between the nominal prices and the 

adjusted pdces. A second loss reserving test is suggested. 

Test 2: Consider any real life incremental paid loss development array. Create from 

this array a second array by subjecting it to a number of trends, for example, a 10% 

trend (say) in the first five calendar years (say), and a 15% trend (say) in the 

subsequent calendar years, then a sound loss reserving methodology will allow for 

a quick determination of the simple difference between the two loss development 

arrays. 
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The DFF modelling framework passes Test 2 with flying colors. The reader will find 

that by applying Test 2 to standard age-to-age link ratio techniques they fail it. That 

is because standard techniques do not satisfy the necessary and simple property of 

additivity of trends. 

In order to dispel the myth that smooth age-to-age link ratios imply stability of trends 

we analyse in Section 12 a real life array with smooth factors and find major trend 

instability that is quite alarming and in order to dispel the converse myth that rough 

age-to-age link ratios imply trend instability, we analyse in Section 13 a real life array 

with rough ratios and find stability so that had we used the same model estimated 

three years earlierl it would have accurately predicted the distributions for the ~ast 

three calendar years and would have given the 'same' outstanding estimates. 

To further illustrate the impact of randomness of payments on age-to,age link ratios, 

Appendix B4 contains an array generated by an SDF probabilistic model with 

constant 20% calendar year trend. The link ratios are presented in Appendix B5 and 

appear relatively rough. Yet, the same model estimated four years earlier would have 

predicted the distributions of the payments of the ~ast four years and would have 

produced the 'same' completion of the rectangle! 

It is interesting to also observe that even though the data in Appendix B4 has a 20% 

calendar year (and accident year) trend, as you step down a column (development 

year), sometimes the numbers decrease rather than increase (by 20%). 

For example, (1989, 1) to (1991, 1) the.payment reduces from 767664 to 350789. 

This is explained by the random fluctuations component of the model. Examine now 

Figure 3.1.1 and note that even though the mean trend in nominal prices is 23%, 

prices from one year to the next do not necessarily increase. This is due to the 

random fluctuations. So, the same phenomenon applies to loss reserving data. 

Consider now the unusual large value of 1317425 corresponding to (1985,6). it is no j 

unusual. It comes from the tail of the Iognormal distribution. Given that the 

Iognormal is skewed to the right, values greater than the median tend to be 'far' from 
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the median, whereas values less than the median tend to be relatively close to the 

median. 
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7.0 VARYING PARAMETER, DYNAMIC OR CREDIBILITY MODELS 

7.1 MULTICOLLINEARITY 

Many of the models within the family (5.1 O) cannot be estimated in a spreadsheet or 

any statistical package. Models that contain "many" iotas, alphas and gammas suffer 

from a problem known as multicollinearity. This problem is explained as follows. 

To estimate the Ordinary Least SQuares line for the simple linear regression: 

y j = = ~ - p x j - c  ' , 
(7.111) 

we estimate the intercept ¢ and slope .8 by minimising the error sum of squares, 

SS=~ (y~-=-pxy 

Taking partial derivatives of the tast equatLon with respect to = and /Y, and setting 

them to zero we obtain: 

--2]E ~ (yj--=--pXj) = 0 (7i 1.2) 

and 

- 2 ~  X,(y~-=-13X,) = 0 (7.113) 

Equivalently, 

Y-~-~x = o (7,114 ) 
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and 

x t y : n a ~ ' - p ~  x~ = 0 (7.~.5) 

The two linear homogeneous equations are known as the normal equations anq their 

solution yields the least squares estimates of a and 6'. 

For a model having P parameters in t~e DFF family, a spreadsheet (or a statistical 

package) sets up P linear homogeneous equations in.order to solve for P unknowns. 

However, as a result of the non-orthogonal i ty of the payment year direction with the 

other two directions, some of the equations in the normal equations are redundant, 

e.g., 

a -P  = 2 

and 

2 = - 2 ~  = 4 

So, there is no unique solution. 

If there are some equations that are almost redundant, e.g., 

and 

=-I~ = 2 

2a -213 = 4.00001, 

then the estimates will have high standard errors, so that the resulting model  will be 

unstable. 
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7.2 OVERCOMING MULTICOLLINEARITY 

The phenomenon of multicollinearity associated with fixed parameter models can be 

interpreted in terms of information. There is not sufficient information ~n one loss 

development array to estimate many payment year parameters and accident year 

parameters (especially, for more recent accident years). Another interpretation is that 

the independent variables in the regression are not really independent. We showed 

in Section 3 that calendar year trends are related to development year trends and 

accident year trends. 

If we include another ¢ parameter for the last accident in our model we are using 

one single datum to estimate that parameter. That is, we assign full c[edibility to the 

last accident year's datum and zero credibility to previous years in respect of the 

estimation of the additional a parameter. A better approach may be to assign some 

credibility to the previous years data and less than full credibility to the last year's 

datum. 

We are motivated to introduce exponential smoothing/varying parameter/credibility 

models, as a result of multicollinearity. Multicollinearity can lead to fixed parameter 

regression models that (i) are unstable and (ii) have large prediction errors. 

The technique of exponential smoothing has received widespread use in the context 

of forecasting a time series. It originated more than 40 years ago without any 

reference to an underlying model thai makes the technique optimal. 

We first present heuristic arguments for exponential smoothing and varying parameter 

models. The following illustrations aqd arguments may be viewed from two different 

perspectives. The data may be regarded as either 

(1) sales data over time, or 

(2) incremental paid losses for delay 0 across accident years. 
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(i) Constant  mean level (one parameter)  

Suppose we have a sequence of t ime series observat ions y,. Y2.,.,Y. such that 

Yr = ~ , ¢ t  , t=l  ..... n 

where a i5 a constant  mean level and Lt is a sequence of uncorel lated errors with 

constant variance. Figure 7.2.1 be low depicts such a series. 

Yt 

The mode l  descr ib ing the data is the simplest regression model .  

Our mode l  has only  one parameter ,  so that the years are comple te ly  h o m o g e n e o u s  

(stable!). 

If ~ is known,  the best  forecast  of a future observat ion Y(,)~I, based  on in format ion 

up to t ime n, ~s 

(n).~ = a . 
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If the parameter  e is unknown,  we est imate it from the past data (y, . ,y . )  by its 

ord inary least squares estimate, 

6. = ~ yJn, 

so that the one-s tep-ahead forecast of y(.)., is now 

9(n}+1 = Y " 

We can now write,. 

,Y(n • 1) • 1 = ,V(n) - 1 ÷ 
(.Y. • ~ - Yl.) - ~) 

n ~ l  

The last equat ion indicates how a forecast from t ime origin n+  1 can be expressed 

as a l inear combina t ion  of the forecast from t ime origin n and the most  recent 

observat ion.  This is the s implest  credibi l i ty formula, due to Gauss [8], used when 

updat ing sample  averages. Since the mean level o is assumed constant,  each 

observat ion contr ibutes equal ly  to the forecast. 

The above  formula for updat ing sample averages is an exper ience  rating (credibdity) 

formula  in the context  of adjust ing a premium, assuming the risk (parameter)  does 

not change  f rom year  to year. 

In comput ing  & ( = ~  we  assign the same weight  to each obse rva t i on  From the 

loss reserving perspect ive,  we are assuming that the acc ident  years are comple te ly  

h o m o g e n e o u s .  In order  to est imate the next years premium,  we use all the acc ident  

years'  data! 

We now  turn to another  example .  
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(ii) Unstable mean level (each vear its own parameter) 

Here, 

yf=~t÷Cf 

where the mean level at changes dramatically in successive time periods. Each year 

t has its own parameter at. Figure 7.2.2 depicts a series of Yt values that may ~e 

generated by this model. 

Figure 7.2.2 

Here, the best we could do, is forecast y~,j., by 

We are assigning zero weight to the past and full weight to the current observation. 

From the loss reserving perspective, accident years are completely heterogeneous. 

so that each accident year's individual parameter is estimated by that year's individual 

experience. 
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(iii) Local ly constant mean level exponent ial  smooth inq and credibi l i ty 

Often situations present themselves where the mean is approx imate ly  constant locally. 

Assigning equal  weights to the past would be too restrictive and assigning zero 

weight  would result in loss of in fo rmat ion .  It would be more reasonable to choose 

weights that decrease (geometr ical ly) with the age of the observat ions. 

We could have 

.P(n) .~ = K Y n  + K(1 - K ) y  n _~ * K(1 -/.~2yn. 2 . . . .  

For n sufficiently large this may be writ'ten 

9 (,I., = • (,-,)*, + K(y, - 9 in-,)-,) 

= ( l -K)9( , .~1. ,  + K y , .  

This is also a credibi l i ty formula. 

(7.2.1) 

Muth [12] showed that the exponent ia l  smooth ing  formula (7.2.1) is an opt imal  

forecast for the fo l lowing model :  

y ,  = ~ ,  • ~, : V a d ¢  ~ = o~ 

cz, = cz,.,+Tir :Var'[r l~] = o~ (7.2.2) 

Here the mean  level ct  3rocess is a random walk. If o~ = 0. then we have the 
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constant mean level situation (i) and if o~ ~s large we have the unstable mean levee 

situation (ii). The parameter o~ should be chosen as small as possible at the same 

time ensuring that the trend in the data ~s captured, 

Choosing o~ (relative to 

likelihood estimates of o~. 

o~) that minimises the SSPE yields the maximum 

Figure 7.2.3 

The exponential smoothing formula (7.2.1) formally credibility weights all the 

observations. It is" an experience rating formbla for a risk (parameter) that changes. 

If in the situation depicted in Figure 7.2.3, one were to assign zero weight to the past 

in place of using formula (7.2.1), then much information would be potentially lost. 

We illustrate the methodology of formula (7.2.1) in the loss reserving context. 

Suppose, for the sake of argument, there are only two accident years (but more than 

three development years), and the y and t parameters are zero. 
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We have, 

y(1.d) = a 4- ~(1.d): d=0 ,1 ,2  ..... n , - l (say)  (7.2 3) 

and 

y(2,d) = ¢ + ¢(2,d); d=0 ,1 .2  ..... n=-l(say) 
2 

(7.2.4) 

The first acc ident  year  has n, observat ions and the second  n= observat ions.  Denote 

the s igma-squared  ass igned  to observat ions by o 2. Accord ing ly ,  Var[ ¢ (1,d)] = 

Var[ ¢ (2,d)] = o .2 . 

The relat ion be tween  e 2 and e, is g iven by 

a = ¢ + 11 V a r i a n c e ( q )  = o~ (7.2.5) 2 t 

Subst i tu t ing equat ion  (4.4) for ¢ ,  into (4.3) yields: 

y(2,d)  = ¢ ,  + n + t (2,d)  . (7.2.6) 

C o m b i n i n g  the  last equa t ion  with (4.2) we  have, 

y(1,d)  = ¢ ,  + c (1,d) 

wi th (7.2.7) 

y(2,d) = a ÷ ~ + ¢ (2,d) 

500 



Since, cond i t iona l  on a~ the observa t ions  y(2,0), y(2,1) . . . . .  are cor re la ted we 

reduce  by suf f ic iency to obta in:  

E l  = ~ 1  + FZ1 

and 

Y2 = (11 * £2 

where  V a r [ t J  = o21nl . Va r [ t z ]  = o21h2 . o~ 

n 1 - I  ~ - 1 

and ~', = ~ y (1 ,d~ ln ,  , y2 = ~ y ( 2 , o ) l n , .  
d-O d , O  

The es t imate  of  a~ min im ises  the we igh ted  error  sum of squares  

w,(y ,  - ,~2) 2 • w2(~ 2 - ~ , )2  

where  

wl ~ - V a r i e d  = o21ni 

and 

w~ ~ = Vat [e2]  . oz ln2  - o2 n . 
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Similarly, the est imate of =2 is ob ta ined by minimis~ng, 

w , ( ~ 2  - = 2 )  2 + w 2 ( y ,  - = 2 )  2 , 

2 where  now w~ -1 = °2/n2 and w2 1 = 0 2 / n l  - oq 

The est imates of &l and &2 are g iven by respect ivel  V. 

and 

a= = (1  - z , ) ~ ,  • z2~,2 

where, 

nl n 2 

0 2 0 2 
z 1 = z 2 =  

n~. ~ n 2 , and n._.E . n~ 

2 0 2 0 2 2 °2  02 * n2 o71 o n~oq 

Both 6.1 and  6. 2 are credib i l i ty  est imators. 
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2 
The smaller Or} is (relative to ~), the more information is being pooled across the 

two years in estimating al and a2. We are credibility weighting the two years' data. 

For a description of general recursive credibility formulae, see Zehnwirth [14]. 

We conclude this section by remarking that even in the absence of multicollinearity, 

varying parameter models are more stable and validate better than the 

'corresponding' fixed parameter regression models.' Moreover, according to A.C. 

Harvey's [9] modern book on forecasting, explanatory variables are "proxied by a 

stochastic trend". 

503 



8.0 PARAMETER ESTIMATION AND FORECASTING OF DISTRIBUTIONS 

In the present section we describe how the (fixed parameter) regression models may 

be set up m a spreadsheet (or a statistical package) for the twofold purpose of 

estimating the model parameters and forecasting the distnbutions of future 

(incremental) payments. 

A practical illustration of this procedure for the chain ladder statistical model is given 

by Christofies [4] in the second volume of the Institute of Actuaries Loss Reserving 

Manual [11 ]. 

8.1 EST IMATION 

In order to estimate a regression model in a spreadsheet we need to create. 

corresponding to each dependant observation y, the values of the (row) design vector 

containing the values of the independent variables. 

Let y(w,d) = log p(w,d) ancl let 

model, that is, 

13/=(~1,=2,...,=~ Y1 ..... ,f, 

13/ be a row vector holding the parameters of the 

t 1, . . . ,  ~,nO 

The model has (i) k distinct e parameters where ~ , represents the level for accident 

y e a r s  1,2. w, (say):  ¢ r e p r e s e n t s  the  level of a c c i d e n t  y e a r s  w, -~ 1. w 2 (say) 
• ' 2 . . . .  
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and  so on, (ii) I d is t inct  Y p a r a m e t e r s  w h e r e  Y, is t rend a long  d e v e l o p m e n t  years  O. 

1 . . . .  d~; Y2 is t rend  a long  d e v e l o p m e n t  years  d,, d, + 1 . . . .  d= and  so on and (iii) m 

d is t inct  iota p a r a m e t e r s  w h e r e  ~1 rep resen ts  the t rend a long  p a y m e n t  years  

0,1,2,. . . ; t , ;  t2 rep resen ts  the t rend a long  p a y m e n t  years  t, . . . . .  t=, and  so o n  

The a r g u m e n t s  k, I and  m m a y  take  the va lue  O. 

The c o r r e s p o n d i n g  des ign  vec to r  is 

J,.{(w,O) = (~11,812, ' .61 k , t~2 1 - - 6 2  i ,83 1 .... 6= , .  ) 

w h e r e  each  6 is a va r i ab le  de f ined  as fo l lows  

61i = 1 ifw~.~ + 1 _< w <_ wj(Wo = 1) 

= O, o t he rw i se  ; 

621 = 1 

and  6=j = d-di. 1, I f d  >_ d~., + 1 (j >_ 2) 

= 0 o t h e r w i s e  ; 

and  

63j = w + d- t~ , ,  i f w + d  >_ ti. , 

= 0 o therw ise .  
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We now stack the y observations to form a column vector 

= (y(1,0) ..... y(1,s-'i), y(2.1) ..... y (2,s-2) . . . . . . . . .  y(s,0)) 

and corresponding design vectors to form a design matrix, 

x = (,d(1.o) ....... £ (s .0 ) )  

The observat ion equation can now be written 

= X ~-~ , 

where £ contains independent errors from a normal distribution with mean zero and 

variance o =. 

To estimate a DFF model in"a spreadsheet, one needs to specify the column vector,V 

and the co lumns of X as the independent  variables. 

The spreadsheet  will create .~. the ordinary, least squares estimator of ~ and some 

other statistics including FI 2, S 2 and standard errors of parameters. 

The estimate of the variance - covariance matrix of ~. is given by 

~ )  = s2(x/ .xl  -' 

Some statistical packages such as MINITAB will p roduce the variance - covariance 
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matrix as explicit output. Residuals and standardised residuals are straightforward 

to compute. 

A lucid exposition of multivariate regression theory is given in Charterjee and PNce 

[3]. 

8.2 FORECASTING (PREDICTION) OF DISTRIBUTIONS 

We have stressed repeatedly that a regression model is a probabilistic model and 

that the models contained in our rich DFF framework relate the normal distributions 

of the log payments of the cells in the loss development array by (trend) parameters. 

We now would like to obtain estimates of normal distributions for payment years 

exceeding s. 

That is, for calendar years beyond the evaluation year. 

0 1 s-1 

Consider a cell (w,d) for which w + d > s  and d ~s-1. 
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Suppose we assume that the mean trend along payment years _> s is 7.5. the 

estimate of trend from payment year s-1 to s. (If ~s is not a parameter in the model 

then ~'s = 0). We also assume that the standard deviation of the trend is se ('~s). the 

standard deviation of the estimate. We stress emphatically that the larger se (~'s) is. 

the mean trend ~s being the same. the larger the (mean) payments. 

The vector of parameter estimates now contains the 6./s, ~/s but only one iota 

estimate, viz, is. 

The (design) independent  value in the design vector g.~(w,e) corresponding to ~ ,  is 

now (w+d-s)  = number of payment years from s to w+d .  The other parameters 

contain the same design elements as in the estimation stage. The forecast .# of y 

corresponding to cell (w,d) is given by: 

(w,~ = ~ ( w , ~ .  

We can now stack all forecasts ~ into a vector ,,Y and design vectors ~ into a matrix 

X. 

The est imate of the variance - covariance matrix of ~ is 

V ~ = X / V (.~) X -a 2 I 

where I is the identity matrix. 
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The quantity ~z is the estimate of the process variance (uncertainty), whereas 

x / v (~,)x 

is a function of the variance of ~ , representing the parameter uncertainty. 

Since V (~) is a function of ~2 , the estimates of parameter uncertainty and 

process uncertainty are related. Quite often the smaller 0 2 is (relatively speaking), 

the smaJler the parameter uncertainty. 

Using Fisher's fiducial approach we can argue that our forecast for the distnbution 

of y(w,d) is normal with mean ,~w,~ and variance V ~ (w,d)), the diagonal element 

of V (,~ corresponding to y(w,d). 

Indeed, ,,it' has a multivariate normal dist~bution with mean ~ and variance 

covariance V (j~. 

So, by applying standard regression theory we can compute our estimate of the 

multivariate normal distribution of the y values in the lower right of the rectangle. 

Each estimate ,~ of the corresponding y variable is best in the sense that it minimises 

the mean square error. 
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E [ ( y - f  (.y) )2 ] ,  

over all statistics f(.), where f(.) ~s a function of the data E. 

In order to obtain the distr ibutions (multivariate) of the (incremental) payments ana 

accident year and payment  year sums, we employ  the relat ionship between the 

mult ivariate Iognormal  and the mult ivariate normal distr ibutions and standard 

statistical theory involving variances of sums. The means of the Iognormal 

distr ibut ions are best est imates of the corresponding incremental  payments.  

We remark that our forecast distr ibutions can also be argued for from a Bayesian 

viewpoint .  The forecasts are Bayes with respect to a noninformat ive prior. 

The reader will appreciate that to write a macro in a spreadsheet  for a part icular 

model  in the model l ing f ramework would be extremely prohibi t ive in terms of t ime  let 

a lone writ ing a macro for each model  

For readers that are interested, the author can make  avai lable a Lotus worksheet  

contain ing some of the models  discussed in the real life study of Sect ion 13. 
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9.0 MODELLING CONCEPTS 

9.1 INTRODUCTION 

The mechanisms by which claim severities, frequencies and delays are generated are 

invariably complex. When a model is constructed, it is not intended to be an accurate 

description of every aspect of the claims processes. The aim is to simplify the 

underlying processes in such a way that the essential features are brought out. 

According to Milton Friedman [7]: 'A hypothesis is imPortant if it 'explains' much by 

little...'. Similar views are expressed by Popper [13]: 'Simple statements.., are to be 

prized more highly than less simple ones because they te!l us more," because their 

empirical content is greater, and because they are better testable.' 

The "essential features" of the data in the loss reserving context are the trends and 

the random fluctuations about the trends. We decompose the data thus: 

Log 'payments' = Trends + Random Fluctuations 

Another way of thinking of this statistical model is to regard the Trends as a 

mathematical description of the main features of the data and the Random 

Fluctuations (or error or noise component) as all those characteristics not 'explained' 

by the Trends. All the complex mechanisms involved in generating the data are 

implicitly included in the model as creating the Trends plus the residual variance in 

the Random Fluctuations. See also Section,7 on varying parameter models. 

The final identified model that 'explains' the data does not represent explicitly the 

underlying generating process. The model has probabilistic properties for which the 

data may be regarded as a sample (path) from it. Another classical modell ing 

example in insurance where the same kind of modell ing concepts are used is when 

we fit a Pareto distribution, say, to loss sizes. We do not assume that the Pareto 

distribution represents the underlying generating process. Whatever is driving the 

claims is very complex and depends on many factors. All we are saying is that our 

experience (sample) can be regarded as a random sample from the estimated Pareto 
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distribution. The estimated Pareto distribution describes the vanabdity ~n the loss 

sizes. 

By way of summary, in order to take account of variables (or factors) not includea ~n 

the Trends, we consider probabilistic models. See also Sect=on 7 on varying 

parameter models. 

There are a number of criteria for a good model with high predictive power: 

Ockham's Razor - parsimony; 

goodness of 'fit'; 

validation and stability. 

9.2 O C K H A M ' S  RAZOR - P A R S I M O N Y  

Ockham's razor, also known as the principle of parsimony, says that in a choice 

among competing models, other things being equal, the simplest is preferable. 

Accordingly, a parsimonious model that provides a description of the salient features 

of the data may be preferable to a complicated one for which the residual variance 

in the error is smaller (and so R-squared is larger). See also Section 10.4. 

We stress R-squared (or adjusted R-squared) does not measure the predictive power 

of a model. 

Consider two data generating models, Model 1 is, 

i t  =p" *¢t (9.2.1) 

where ¢, ~ N (o, o =) and the signal to noise ratio ~/o 2 is large. Here, R-squared = 

0 and since o= is "small" predict=ons based on samples from this model will be 

relatively accurate. 
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For Model 2, 

yt=cL .~ t+¢  t , (9.2.2) 

where ~t ~ N(O, o2). Suppose o 2 is relatively large and R-squared is 85% 

Predictions based on samples from this model will have larger errors than predictions 

in the first model. The forecasting errors are not a function of R-squared. 

The consequences of adopting an inappropriate model will depend on its relationship 

to the 'true' model. 

Underparametrisation - it imposes invalid constraints on the 'true' model. 

Overparametrisation - the model is more general than is necessary. 

Overparametrisation has different consequences to underparametrisation. 

Overparametrisation leads to high errors of prediction. The forecasts are extremely 

sensitive to the random component (in contrast to the trends) in the observations. 

Indeed, over'fitting can be disastrous in certain circumstances. Over'fitting a model is 

equivalent to including randomness as part of the (systematic) trend (component). 

Underparametrisation, on the other hand, tends to lead to bias rather than instability. 

The dangers of overparametrisatjon are illustrated with a simple example. Imagine we 

have some yeady sales figures, as depicted below in Figure 9.2.1, and generated by 

Yt = 1 + 2t + 3t = + ct , 

say, where the t t 's are random from N(O,G2), and Yt represents the number of sales 

in year t. 
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We wish to forecast sales for 1987. We could estimate a straight line model: 

Y, = Po + p , ' t  * ¢, (9.2.3) 

This model  produces residuals that are not random and is therefore rejected. The 

quadrat ic model,  

Y, = Po + [31 * t  ~" p2* t  2 ÷ c t (9.2.4) 

on the other hand, produces residuals that appear random. Moreover, R-squared is 

higher and parameters are significant. 

We could try a fifth degree polynomial,  viz., 

Y, = Po + P l * t  + pZ*F  . . . . . .  PS " P + zt (9.2.5) 

This model  will p roduce zero residuals, that is, it will go through every data point and 

the R = = 100%. However, it is useless from the point of view of forecasting. Why? If 
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we change only one data point marginally, the forecast will change to a very large 

degree. Moreover, if we use the model at year end 1986 to forecast sales for 1988. 

re-estimate the model at year end 1987 to update our forecast for 1988, the two 

forecasts would be completely different. The data are NOT unstable. IT IS THE 

MODEL THAT IS UNSTABLE. The model is incredibly sensitive to the random 

component  in the data. It should only be sensitive to the systematic trend. 

Incidentally, standard techniques based on calculation of age-to-age link ratios suffer 

from the same defect. 

9.3 AKAIKE INFORMATION CRITERION AND INFORMATION 

It has been emphasised that in comparing the goodness of 'fit' of various models, an 

appropriate al lowance should be made for parsimony. This has a good deal of 

appeal, especially where the model may be based primarily on pragmatic 

considerations. 

Akaike Information Criterion (AIC) is both a function of S 2 and the number of 

parameters in the model. It is an information theoretic criterion that can be used for 

discriminating between any two models, even if they are non-nested. It originated with 

the work of Akaike. 

In general the AIC is given by 

AIC = -21og(l~elihood) + 2P 

For DFF models it reduces to 

AIC = Nlog[2T" [ S=(MLE)] o N ÷2P, 
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where  

(i) N = Number  of observat ions. 

(ii) s 2 (MLE) is the max imum l ikel ihood est imator of 0 2 , 

and (iii) P denotes the number  of parameters. 

The aim is to select a model  with a min imum (relative) AIC. Note that the AIC can be 

used to discr iminate between any two models,  irrespective of whether  they have any 

parameters in common.  

9.4 R E C U R S I V E  R E S I D U A L S  A N D  SSPE 

Consider  a t ime series z,, ~ . . . . .  z, where 2 t . , ( t  ) denotes a forecast of ~ . ,  based 

on the data z,, ~ . . . .  , z.,. That is, the forecast is based on the informat ion up to t ime 

t only. The one-s tep-ahead forecast (predict ion) error is given by 

~,(1 )--z,.,-2,.,(0 

The notat ion ~ t(1) expresses the fact that it is the one-s tep-ahead predic t ion error that 

is ca lcu lated f rom past data up to and including t ime t. The est imates of the 

parameters  of the mode l  are on ly 'based  on the data Z,, Z 2 . . . . .  ~.  

In order  to compu te  the errors { ~ 1 ) }  the mode l  has to be est imated many  t imes. 

The sum of the squared one-s tep-ahead predict ion errors, deno ted  by SSPE is given 

by 

n 
SSPE = E ~2 -,o , (1) 
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The time t o is chosen so that it exceeds the maximum number of parameters amongst 

the models being considered: by at least one. 

Computation of the SSPE may take much time even with a good spreadsheet 

program, as the model has to be estimated for sub-samples, (Z ...... Z~); t=t  o, 

to+ 1 ,..,n-l. 

Readers familiar with exponential smoothing will note that the optimal smoothing 

constant of exponential smoothing is determined by minimising the SSPE. See 

Abraham and Ledholter [1] for a lucid exposition of exponential smoothing. 

By way of summary of the quality of 'fit' statistics, consider the quadratic polynomial 

example of Section 9.2, and suppose there are at least twenty data points. The 

relative magnitudes of R =, AIC and SSPE as we fit polynomials of order one to six 

(say) are: 

R = increases with more parameters; 

AIC decreases from polynomial of order one to polynomial of order two, 

subsequently increasing as degree of polynomial increases (for most 

samples); 

SSPE behaves in much the same way as AIC. 

Accordingly, a polynomial of degree exceeding two would have performed worse in 

a forecasting context than a polynomial of degree two, had we used them each year. 

A relatively 'low' SSPE is preferable to a high SSPE. Naturally, there are other aspects 

of testing, including significance of parameters, distributional assumptions, residual 

displays and the number of parameters. 

The 'tests' should be seen as complementary rather than competitive. 
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9.5 OUTLIERS, SYMMETRIC DISTRIBUTIONS AND NORMALITY 

Outliers are data points with large standardised residuals. Observations classified as 

outliers have residuals that are large relative to the residuals for the remainder of the 

observations. 

Estimates of parameters and supporting summary statistics may be sensitive to 

outliers. Residual displays provide information on outliers. Moreover, if omission of 

outliers from the regression affects the output, then that provides more evidence that 

the omit'ted observations are in fact outliers. 

An outlier may be a result of a coding error, in which case it should be assigned zero 

weight, or it may be a genuine observation that is unusual and accordingly has a 

large influence on the estimates, unless it is assigned reduced weight. 

To detect outliers routinely, we need a rule of thumb that can be used to identify 

them. A Box plot  is a schematic plot devised by J.W. Tukey. The following steps 

summarise the general procedure for constructing a Box plot. 

Order the data. 

Find the median (M), lower quartile (LQ), upper quartile (UQ) and mid-spread 

(MS), where MS = UQ - LQ. ' 

Find the upper and lower boundaries defined by 

L8 = LQ - 1.5*MS 

UB = LQ + 1.5°MS. 

Footnote: LQ and UQ are 
hinges. They 
quartiles. 
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List all outliers. An outlier is defined as any observation above the upper 

boundary or below the lower boundary. 

Construct a Box plot as follows: 

(a) Draw a horizontal scale; 

(b) Mark the position of the median using " I "; 

(c) Draw a rectangular box around the median, with the right side of the box 

corresponding to the UQ and the left side corresponding to the LQ. The 

length of the box is equal to the MS. The median divides the box into two 

boxes; 

(d) Find the largest and smallest observations between the boundaries and 

draw straight horizontal lines from the UQ to the largest observation below 

the upper boundary and from the LQ to the smallest observation above the 

lower boundary; 

(e) Mark all observations (outliers) outside the ~oundaries with hollow circles 

(o). If an outlier is repeated, mark the nun-~=.r of times it is repeated. 

to.Wet boundary ~per boundary 

1 I 1 o 

I-"- M~DSPRZAD "--'t 
out outlier 
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We can also conclude (diagnostically) that a distribution is symmetric if the median 

is approximately half way between the LQ and the UQ. 

A DFF model assumes that the weighted standardised residuals come from a normal 

distribution. Accordingly a normal probability plot should appear approximately linear. 

That is, the plot of weighted residuals against normal scores should have points that 

fall close to a straight line. This means that the correlation should be close to unity. 

9.6 VALIDATION AND STABILITY 

The important question is whether the estimated model can predict outside the 

sample. It is therefore important to retain a subset (the most recent one or two 

payment years) of observations for post-sample predictive testing. This post-sample 

prediction testing is called VALIDATION. 

VALIDATION of the last payment year, or any payment year, is also related to the 

concept of STABILITY. If we don't use the last payment years' data to estimate the 

model, the ultimate losses should not differ from that obtained by using the last years' 

data by more than one standard error. We would like to identify a model that delivers 

STABILITY of reserves from year to year (only if trends are stable). 

9.6.1 VALIDATION 

Consider the triangle of incremental paid losses depicted below. 

1976 

1989 

1990 

1991 

15 
) d 

Figure 9.6.1.1 
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We have model that has been identified and estimated using all the data, up to 1991 

If the same model were estimated at year end 1988, would it predict accurately the 

incremental payments for 1989, 1990 and 1991? And what do we mean by 'predict 

accurately'? 

Let's illustrate with a fair coin. If a fair coin is to be tossed 100 times we can 'predict 

accurately' the distribution of the number of heads. The exact distribution is Binomial 

(100, 0.5). The distribution details the probabilities of all the possible outcomes. If 

instead, we had.a mutilated coin and we required a future prediction based o n a  

sample data then our predicted distribution is.Binomial .(100, ~) where ,b is an 

optimal estimate of the true probability p of a head occurring, based on the sample. 

We now return to our triangle. At year end 1988, we would estimate the parameters 

of the same model using the smaller sample and we would predict a distribution for 

each of the log 'payments' in 1989, 1990 and 1991. See Section 8.2 on forecasting 

of distributions. 

So, one of the most important validation tests is to determine whether the observed 

log 'payments' in 1989, 1990 and 1991 can be regarded as a sample from the 

predicted distributions. 

More specifically,.tet j;' be a prediction of a log 'payment' y for a cell in payment year 

1989, 1990 or 1991. We call, 

E =y-~ , 

the validated residual or the prediction error. 

We test the validated residuals for (i) randomness in the three directions delay, 

accident  year and payment  year; (ii) randomness versus predicted values ~ and (iii) 
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most importantly, normality. 

9.6.2 STABILITY 

Returning to our example of the foregoing section, we ask the question whether at 

year end 1988 our completion of the rectangle should be materially different to our 

completion at year end 1991. The answer is in the negative if trends (especially in 

the payment year direction) are stable. 

We illustrate with four examples. (There are numerous others that occur in practice.) 

Example 1: Suppose payment year trends (after &djusting for trends in the other two 

directions) are as depicted in Figure 9.6.2.1 below. The trend is stable and suppose 

its estimate is 10% + 2%, How do we know that the trend is stable? Well, as we 

remove the more recent payment years from the estimation, the estimates of trends 

do not change (significantly). For example, after removing 1990 and 1991, the 

estimate of trend is 9.5% ~ 2.1%, say. Alternatively, we could estimate a new trend 

parameter from 1989-1991 and examine whether the trend has changed significantly. 

17..5 

12 

11.5 

11 

10.5 

10 

9.5 
1977/ 1971 15rt9 L910 1911 1912 1913 19114 19115 19116 

Stable trends 

1976 1917 1911 1919 1990 1991 

Figure 9.6.2.1 
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Typically, if the payment/calendar year trend is stable, the model will also validate 

well. Here our estimates of outstanding payments do not change significantly as we 

omit recent years. 

Example 2: Consider the payment year trends depicted in Figure 9.6.2.2 below. 

Instability in trends 
12.~1 

12 

11.5 

I I  

I0.$ 

10 

9.5 
197/6 1977/ 1971 1979 1910 1911 1912 19113 19114 19t$ 19116 19117 1911 1919 1990 1991 

Figure 9.6.2.2 

The trend in the years 1976 to 1989 is relatively stable. Its estimate is 10% + 2%, 

say. However, the trend from 1989 to 1990 is higher at 15% ~ 1%) and from 1990 

to 1991 it is -4%.(_t 1.3%), say, This information is extracted from the "optimal" 

statistical model. The shifts in trends is a property of the data (determined through 

the model). A question now emerges as to which trend assumption do we make for 

the future, first in the absence of any other information. It would be foolhardy to 

assume the estimate between the last two years of -4% ~ 1.3%. The most 

reasonable assumption (for the future) is a mean trend of 10% with a standard 

deviation of 2%, that which was estimated for the years 1976-1989. 

Suppose we also have access to another data type, the number of closed claims 

development array. See Sections "10.2 and 10.3. We find utilising our DFF modelling 
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framework that the additional 5% above the 10% between 1989 and 1990 can be 

explained by a corresponding increase in speed of closures of claims and the -15% 

from 1990 to 1991 below the 10% from 1976-1989 can be explained by a 

corresponding decrease in the speed of closures of claims. What assumption about 

future trends in payments should we adopt then? I would still recommend 10% ± 2% 

for the future. That's a decision based on my judgement and experience. The 

instability in trends in the last few years means that the model will not validate well. 

At year end 1990, we would not have forecast the distributions for 1991, for example. 

Example 3: It is possible to have a transient change in trend. Consider Figure 

9.6.2.3. The business has been moving along 10% ± 2% but between the last two 

calendar years 1990 and 1991 the trend increases to 20% ~ 3%. What do we 

assume for the future? Well, that depends on the explanation for the increase in 

trend. Suppose its a "transient" change that can be explained by a new level of 

benefits that apply retrospectively. Then it is reasonable to assume 10% ~ 2% for 

the future. Suppose instead that subsequent to analysis of claims closed triangle, the 

trend change is explained by increase in severities. That's a problem, because this 

means that it is now more likely that the new trend will continue. 

Transient change in trends 
12.~ 

1976 1977 1971 1979 19110 L9|l 1912 1913 1914 19|5 19116 19117 1911 19119 1990 1991 
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Figure 9.6.2.3 

524 



So the decision making process about the future becomes more complicated when 

trends are unstable. We are talking about trends in the (incremental) payments not 

age-to-age link ratios. 

The last example illustrates an 'unpredictable' loss development array. 

Example 4: The payment year trends are depicted in Figure 9.6.2.4 below. 
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Figure 9.6.2.4 

Note instability in trends. At year end 1989, would anyone be able to predict a flat 

trend for the next, year and a downward trend for the following year? 

Here, maybe, one could calculate a ~ , a weighted average of trends estimated in 

the past with a weighted variance ~= and assume for the future a mean trend of 

with standard deviation of trend 6. Since ~ will De relatively large, mean forecasts 

will be well above the median forecasts and the standard deviation of the distributions 

relatively large. See Section 8.2 
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It is instructive to relate the foregoing discussion with the quote from A.C. Harvey [9] 

given at the beginning of Section 2.1. 

9.7 POST-SAMPLE PREDICTIVE TESTING AND MODEL MAINTENANCE 

Once a model has been identified for year end 1991, and assumptions about the 

future are made, the model is stored. 

One year later, in 1992, on receipt of additional information (diagonal), there is no 

need to analyse the (augmented) triangle from the sta~. We already have a model 

for which we now conduct post-sample predictive testing and model updating and 

maintenance. 

Has the model at year end 1991, predicted the distributions for 1992? This question 

is answered by restoring the model, assigning zero weight to "payments" in 1992 and 

validating the year. We also test for stability of parameters. If the model estimated 

at year end 1991 does not predict 1992 accurately, we know which parameter is the 

culprit and accordingly may have to amend the model (slightly). 

For example, consider Example 2 of the preceding sub-section. If the 1992 data do 

not lie on the 10% + 2% trend, then we have more evidence of changes in trends 

and our assumption of 10% +_ 2% becomes pretty suspect. 

Typically, once a model is identified for an incremental paid loss development array: 

the same model (with occasional minor amendments) is used in every subsequent 

year. 
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There is no way that a statistical method can automatically determine the "best" 

model and assumptions to be adopted for the future Rather. this decision is based 

on the model identification strategy (that may include analysis of other data types) 

and considerable judgment, especially if trends in the incremental payments are 

unstable. 

Of course, any information about the nature of the business (especially change in 

business) may be critical in determining the assumptions for the future 

For example, in a number of loss development arrays of Lloyd's Syndicates analysed 

by the author, asbestos and pollution claims are not covered by policies written after 

1978, say. This means that the calendar year effects of asbestos and, pollution claims 

only apply to accident years prior to. 1978. So, the iota estimates applying to 

accident years prior to 1978, do not apply to accident years post 1978. 

For loss development arrays where the forecast uncertainties are relatively large, 

analysis of "similar" arrays within the company or anaJysis of industry wide arrays, for 

the purpose of formally credibility adjusting the parameter (estimates) could prove 

very useful. Incidentally, credibility is not just a function of volume. It is a myth that 

if claim numbers are "small" or incremental paids are small, or the triangle dimensions 

are small, then random fluctuations necessarily swamp the pattern (trends). The 

noise to signal ratio, equivalently, process uncertainty, may be very small even with 

small volume. Of course large volume and little process uncertainty does not mean 

that standard actgarial techniques will pick Up the changing trend. See Section 12 

for a study of a real life example involving (very) large volume and alarming calendar 

year shifts that cannot be detected using standard actuarial techniques. 

On every subsequent evaluation date post-sample predictive testing is conducted and 

the model is updated. Since data are recorded sequentially over time, updating 

procedures that can be applied routinely and that avoid re-analysis of the history are 

very desirable. See Section 9.6.2. 
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criterion is not satisfied, the model may have to be re-specified and :he 

identification cycle repeated. 

Step 6: Assumptions about the future based on Step 5 involving possibly analysis 

of other data types (Sections 10.2 and 10.3), are decided and forecasts and 

standard errors are produced. The final model is stored. 

Step 7: Finished. 

STEPS IN MODELLING 

PRELIMINARY I 
ANALYS I S 

SPE= F =A=ON I 
I 

[ MODEL 
ESTIMATION 

,k 

TESTING 

YES 

FORECASTING 

VALIDATION NO 
AND 

STABILITY 

YES 

. ,  v 

FINISHED 
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10. MODEL IDENTIFICATION AND ASSUMPTIONS ABOUT THE FUTURE 

The aim is to identify a parsimonious model that separates the (systematic) trends 

from the random fluctuations and moreover determine whether the trend in the 

payment/calendar year direction is stable. 

Recall that models contain information and accordingly the 'best' identified model 

conveys information about the loss development array being analysed. 

For example, CCI (with constant development in the tail) indicates that the calendar 

year trend has been stable. This model should validate well and produce 'stable' 

outstanding estimates as recent calendar years are added or removed from the 

estimation. See preceding Sections 9.6.1 and 9.6.2. 

10.1 MODEL IDENTIFICATION 

The identification of the 'optimal' statistical model involves a number of iterative steps. 

Step 1: Preliminary analysis facilitates the diagnostic identification of the 

heterogeneity in the data. The types of heterogeneity are also 

diagnostically identified. 

Step 2: Based on step 1 a (preliminary) model is specified. 

Step 3: The specified model is estimated. 

Step 4: The model is checked to ensure that all assumptions contained in the 

model are satisfied by the data. If the model is inadequate, it has to be re- 

specified (step 2), and the iterative cycle of model specification - estimation 

- checking must be repeated. 

Step 5: The best identified model is validated and tested for stability. If either 
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10.2 ASSUMPTIONS ABOUT THE FUTURE 

We demonstrated in Section 9.6 that if payment~calendar year trend has been stable, 

especially in the more recent years, then the assumption about the future trend is 

relatively straightforward. For example, if the estimate in the last five years has 

been ~ ± s . e .  ( £ ), then we assume for the future a mean trend of E with a 

standard deviation of trend of s.e. ( ~ ). We do no..~, assume that trend in the future 

is constant. Our model does include the variability (uncertainty) in trend in the future. 

If on the other hand, payment/calendar year trend has been unstable as is illustrated 

in examples 2 and 3 of Section 9.6, assumptions about future trends are not so 

obvious and may depend on analysis of other data types. 

In Section 10.1 we also cited a practical example where special knowledge about the 

business is a contributory factor in making decisions about the future. Bu.~, that 

special knowledge is combined with what we found in the past experience. 

10.3 OTHER DATA 'TYPES AND METHODS 

Hitherto much emphasis has been placed on the importance of analysing and 

predicting distributions for (incremental) paid loss development arrays. Reasons 

given include: 

• the geometry of trends; 

* simplicity and parsimony; 

• distributions of future payments is 

statements. 

relevant information for financial 

We now discuss other data types and methods. 

10.3.1 PAYMENTS PER CLAIM CLOSED 

Let the "series" {p,} denote the payments loss development array and the series {n,} 

denote the closed claims development array. 
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We shall say that {n,} causes {p,}, if taking account of past values of n, leads to 

improved predictions of future values of p,. (This is know as Granger causality.) 

Typically, an actuary analyses ~ = pen t and obtains predictions ~= of future values 

of %. The analysis of {n,} leads to predictions ,rt= of future values of n,. 

The future values of p, are then predicted by P= = ~= #= . 

So, is the forecast ~= better than the forecast ~', that only depends on past 

values of p,. A forecast is better if its mean square error is less. That is, ~ is 

better than '~', if 

El(pc-p=) =] < E[(~-pc) = ] 

The author believes that ~'~ is better than P= . That is, there is no reduction in 

forecast error with respect to the given information set { ~=, ~¢, .,~c }. However, 

this does not rule out the possibility that when there is an instability in calendar year 

trends in {p,} as described in Section 9.6, analysis of {nt} will not lead to improved 

accuracy of predicting future values of {Pt}- The information extracted from the 

analysis of {nt} may improve the actuary's judgment in respect of which assumptions 

to use for future trends of Pt. 
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10.3.2 INCURRED LOSSES AND CASE RESERVES 

Analysis of incurred losses (paid to date plus case reserves) does not provide 

information about what is still to be paid. We have given sufficient reasons why any 

analysis of cumulative data is unsound. And adding case reserves to cumulative 

paids reduces the information (not increases the information). 

Incremental paid losses and case reserves should be analysed separately. That is 

the best way to determine the information contained in each data type and any 

relationships that may exist between the two data t'ypes. 

For example, if there is a trend shift in the incremental paids between calendar years 

1984 and 1985 and a corresponding shift in the case reserves one year later, 

between 1985 and 1986, then we know that the case reserves are lagging the 

payments. 

If instead we found that case reserves are leading the payments then a change in 

trend in the case reserves between the last two calendar years, for example, may 

suggest an increase in trend in payments one year later (in the future). See Sections 

10.1 and 10.2. 

For a small dimensional triangle of a long tail line, case reserves for the early accident 

years will be helpful in determining the development year trend (y)  in the future. 

There are ways of determining whether case reserves have been "accurate" in 

forecasting subsequent payments. See the paper by Fisher and Lange [6]. 

Perhaps we should also remark that case reserves vary between and within claims 

personnel and due to changing reserving philosophy of the company. 
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10.4 TIME SERIES MODELS VERSUS EXPLANATORY (OR CAUSAL) 

MODELS 

The rich modelling framework advocated by the author contains essentially ttme 

series models. The only "causal" variable is time, equivalently payment year, accident 

year and development year. The past values of the incremental payments are used 

to forecast future values of the payments. 

There is an alternative approach to forecasting in statistics called explanatory or 

causal models. These models make an at'tempt to discover the factors (or variables) 

affecting the behaviour of the claims process. 

There are many reasons for preferring time series models to explanatory models. 

• Causality based on the definition given in Section 10.3.1 is hard to prove, 

especially since the causal variables need to also be forecast. 

• Simplicity and parsimony discussed in Sections 9.1 and 9.2. 

The claims process is complex and is unlikely to be understood and even 

if it were understood, it may be extremely difficult to determine the 

relationships that govern the behaviour of claims. Moreover, its likely the 

relationship changes with time. This last reason is part motivation for 

varying parameter models. (See Section 7). 

Explanatory models are difficult to validate and test for stability and when 

they don't work it may be hard to determine the reason. 

By way of summary, we advocate the use of the DFF of models applied primarily to 

the incremental payments and applied to "related" data types, especially for the case 

in which calendar year trend instabilities are found in the incremental payments. 
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11.0 PREDICTION INTERVALS, RISK BASED CAPITAL AND RELATED ISSUES 

11.1 INTRODUCTION 

Loss reserves often constitute the largest single item in an insurer's balance sheet. 

An upward or downward 10% movement of loss reserves could change the whole 

financial picture of the company. 

The current paper is not meant to focus on risk based capital and solvency issues, 

but mainly to stress that these are necessarily probabilistic concepts. The paper's 

principal intention is to show how the distributions (or variability) of loss reserves may 

be derived from sample data. It is the variability or uncertainty of loss reserves that 

is relevant to risk based capital and solvency considerations. 

11.2 PREDICTION INTERVALS 

We have given persuasive arguments for the use of probabilistic models, especially 

in assessing the variability or uncertainty inherent in loss reserves. The probability 

that the loss reserve, carried in the balance sheet, will be realised in the future, is 

necessarily zero, even if the loss reserve is the best estimate. See Sections 8.0 and 

10.3 for definition of best. 

Future (incremental) paids may be regarded as a sample path from the forecast 

(estimated) Iognormal distributions. The estimated distributions include both process 

risk and parameter risk. 

The forecast distributions are accurate provided the assumptions made about the 

future will remain true. For example, if.it is assumed that future calendar year trend 

(inflation) has a mean of 10% and a standard deviation of 2%, and in two years time 

it turns out that inflation is 20%, then the forecast distributions are far from accurate. 

Accordingly, any prediction interval computed from the forecast distributions is 

conditional on the assumptions about the future remaining true. 

534 



Suppose ,5 is a mean of a forecast Iognormal distribution corresponding to payment 

p. Both /~ and p are random variables. 

Letu = Iogp,  ~ = E[u]  and o z = Var[u].  

u (a random variable) is given by 

~. = o Z ( ~ / 2 )  , 

A 100 (1-~)% prediction interval for 

where Z ( ~z/2) is the 1 - ¢/2 percentage point of the standard unit normal distribution. 

A 100 (1-a)% prediction interval for p (=log u) is 

exp [# ~ o Z ( a / 2 ) ] .  

The latter interval is non-symmetric about # since the tognormai distribution is 

skewed (to the right). The parameters ~ and o are computed from the mean and 

standard deviation of p, and the relationship between the Iognormal and normal 

distributions. 

The limits of the interval can be interpreted as follows. Suppose repeated samples 

of the rectanqle are taken (from the estimated probabilistic model), then the 

proportion of times the observed p value will lie in the observed interval (in the long 

run) is 1-a. Bear in mind that p is a random variable. 

The distribution of sums, for example, accident year outstanding payments, is the 

distribution of a sum of Iognormal variables that are correlated. The exact distribution 

of the  sum can  be obtained by generating (simulating) samples from the estimated 

multivariate Iognormai distributions. Alternatively, one can approximate the 
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distr ibut ion of the sum by a Iognormal.  Indeed. the Iognormal  wou ld  be the riskiest. 

If there are 'many '  components  in the sum. then the Central Limit Theorem could be 

invoked, especial ly if the Iognormal  distr ibut ions of the paids are not terribly skewed. 

See Section 13 for a real life example. 

Insurer's risk can be def ined in many different ways. Most definit ions are related to 

the standard deviat ion of the risk, in part icular a mult iple of the standard deviat ion. 

If an insurer writes more than one long tail l ine and aims for a 100(1 - a )% secunty 

level on all the lines combined,  then the risk margin per l ine decreases the more lines 

the c o m p a n y  writes. This is a lways true, even if there exists some dependence  

(correlat ion) be tween the var ious lines. 

Consider  a company  that writes n independent  long tail lines. Suppose that the 

standard error of loss reserve L(j) of l ine j is se(j). That is, se(.j) is the standard error 

of the loss reserve var iable L0). The standard error for the comb ined  lines 

L(1)+.. .  + L ( n ) i s  

se(Total) = [se2(1 +. . .+se=(n)]  05 

If the risk marg in  for all l ines comb ined  is k*se(Total),  where  k is de te rmined by the 

level of securi ty required, then the risk margin for l ine j is 

k 'se(Total)*se(. j ) / [se(1) +... + se(n)] 

<kse(j) .  

The last inequal i ty  is t rue even when se(Total) is not given by the above  expression.  

If as a result of analys ing each line using the DFF model l ing  f ramework  we find that 

for some  lines t rends change in same years and the changes  are of the same order  

of magni tudes,  then the paid losses are not independent .  (There may also be some  
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probabJlistJ¢ model, derived from the company's experience, that describes the 

particular line for that company. In the hundreds of arrays that the author has 

analysed, no one model described more than one loss development array. 

The approach the author is advocating allows the actuary to determine the 

relationships within and between companies experiences and their relationships to 

the industry in terms of simple well understood features of the data. 

In establishing the loss reserve, recognition is often given to the time value of money 

by discounting. The absence of discounting implies that the (median) estimate 

contains an implicit risk margin. But this implicit margin may bear no relationship to 

the security margin sought. The risk should be computed before discounting (at a 

zero rate of return). 
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correlations between the residuals). 

In that situation, line i and j are correlated, say, then one should use se(i)+se(j) as 

the upper bound of the standard error of L(i)+L(.j). 

We now return to an important modelling concept or 'law of payments'. 

Suppose we assume for the future payment/calendar years a mean trend of (~) with 

a standard deviation (standard error) se (~). Specifically we are saying that the trend 

t ,  a random variable, has a normal distribution With mean 7, and standard deviation 

se (~). Recognition of the relationship between the Iognormal and normal 

distributions tells us that the mean payment increases as se ( t )  increases (and ;, 

remains constant). The greater the uncertainty in a parameter (the mean remaining 

constant), the more money is paid out. 

The foregoing arguments apply to each parameter in the model. 

11.3 RISK BASED CAPITAL 

The author understands that the NAIC is drafting regulations where part of the risk 

based capital requirements will be based on loss reserves. In the article by 

Laurenzano [10], page 50, the loss reserve component of the risk based capital 

formula "selects the worst reserve development ...". 

The approach advocated by the NAIC is flawed for many reasons including: 

The uncertainty in loss reserves (for the future) should be based on a 

probabilistic model (for the future) that may bear no relationship to reserves 

carried in the past; 

* The uncertainty for each line for each company should be based on a 

537 



12.0 ANALYSIS OF PROJECT 1 

12.1 INTRODUCTION AND SUMMARY 

The principal objectives of the analysis of real life data in this section are to 

demonstrate that: 

Age-to-age link ratios based on the cumulative paid losses give no indication 

about the trends and random fluctuations in the (incremental) payments. 

2. Smooth data may have major shifts in calendar year trends. 

3. Regression as an approach to .adjusting data and determining trends and 

changes thereof is very powerful. 

4. Large company's run-off payments are not necessarily stable in respect of 

calendar year trends, even though the payments may be extremely smooth 

(with very little random fluctuations about the trends). 

12.2 DATA AND AGE-TO-AGE LINK RATIOS 

The data (save a multiplicate factor in order to preserve confidentiality) come from a 

large insurer and are given in Appendix C1. Accident year exposures, (from 

memory), represent earned premium (rela~tivities). As we shall see in the next section, 

the exposures are not that important. 

The age-to-age link ratios presented in Appendix C2 are relatively smooth. For the 

early development years they tend to decrease slightly in the middle accident years 

and then increase in the latter payment years. 
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12,3 ANALYSES 

We define a normalised payment as the (incremental) paid divided by the 

corresponding accident year exposure and apl31y the MODELLING FRAMEWORK to 

the normalised payments. 

If p(w,d) is the incremental payment corresponding to accident year w and 

development year d, and e(w) is the accident year exposure, then the normalised 

payment is p(w,d)/e(w) and we define, 

y(w,d) = log [p(w d)/e(w)] 

Figure C3 (in Appendix C3) represents a graph of the normalised payments versus 

delay for the first two accident years in the triangle. Observe that the run-off 

development for both years is remarkably smooth. 

The chain ladder (CL) statistical model is given by, 

d 

y(w,d) = ~w " ' ~  Yj* c 
1-1 

Since the exposures e(w) are absorbed into the parameters a ~,, the estimates of the 

development trends y j do not depend on the exposure base used. Indeed, there are 

other statistics that are invariant (for CL) with respect to exposure base including, AIC, 

residuals, S-squared, normality testing and forecasts. The chain ladder model adjusts 

for the different levels (¢ 's) of each accident year. 

The estimates of the CL parameters and associated regression table are presented 

in Appendix C4. R-squared is high and S-squared is small. Hence, the random 
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fluctuations are small. Now, the CL model adjusts the data for development year 

trends and accident year trends (or levels). Many parameter differences are 

insignificant but that is not important since we are not trying to identify a 

parsimonious model here but rather show how some of the models in the 

FRAMEWORK may be used for fast identification of payment/calendar year trend 

changes. 

So, the residuals represent the data adjusted (after removing) for the average 

development year trends and the average accident year trends. 

Residuals versus development years (Figure C5.1 ) and accident years (Figure C5.2) 

are the "best" we can obtain since we have removed the trends in these two 

directions. In Figure C5.1, the sum of residuals for any one development year is zero 

and in Figure C5.2, the sum of residuals for any one accident year is zero. 

HOWEVER, residuals versus payment years (Figure C5.3) exhibit a very strong V 

shape AND THIS IS FOR SMOOTH DATA OF A LARGE COMPANY. So, after 

removing accident year and development year trends from the data we observe major 

shifts in calendar year trends. (Compare this with the simulated data of Sections 4.4 

and 5). There appears to be a change in trend in 1984 and definitely a change in 

trend in 1985. 

We now estimate the CC model. It adjusts the data for the average development year 

trends. Appendix C6 presents the regression output and Figure C7 is a graph of 

residuals versus payment years-that indicates an upward trend (positive inflation). 

It is hard to tell from this graph whether there is a major shift in trends. 

In order to estimate a trend parameter through the residuals of Figure C7, we 

estimate the CCI model to the data. The'regression output is presented in Appendix 

C8 and the residuals versus payment years are displayed in Figure C9. The average 

payment year trend is 12.1% (~  0.53%). The V shape in residuals is distinct, 

suggesting very strongly the change in trends. 

Our final model introduces another two payment year trend parameters. One from 

541 



1984-1985 and one from 1985-1987. The regression output is given in Appendtx C10. 

Note shift in trend from 9.85% to 19.52%. This is quite alarming, especially if it 

cannot be explained by an increase in speed of finalisations of claims. See Section 

10.2, for a discussion of assumptions to be applied for the future. 

We now graph in Appendix C11 the Iognormalised payments versus delay for the first 

two accident years. Since 19.52% is much higher than 9.85%, observe that the trend 

in the tail increases for both accident years, and for accident year 1978 the change 

is one development year earlier than in accident year 1977. That is because the 

trend change is a calender year change. 

So there is overwhelming statistical evidence of a major shift in calendar year trends 

in the last two calendar years. What assumptions do we make about the future 

trends? We could analyse the number of claims closed development array and 

determine whether the substantial increase in trend in the payments is due to a 

corresponding increase in trend in the number of closed claims. If the answer is in 

the negative, then the trend increase must be due to increase in severities which 

would then be a major concern for the company. See Section 10.2. 

In this section we have not identified a parsimonious model for the data. Instead the 

objective was to demonstrate how some of the models in the MOOELLING 

FRAMEWORK may be used for quick determination of major calendar year shifts (in 

data that are relatively smooth and do not appear problematic if we are to employ the 

standard actuarial approaches based on link ratios). 

The reader will appreciate that our modelling approach is interactive and terribly 

computer intensive. In order to identify the calendar year trend changes we have had 

to estimate four models. To set up each model in a spreadsheet is extremely time 

consuming. See Section 8. 
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13.0 ANALYSIS OF PROJECT 2 

13.1 INTRODUCTION AND SUMMARY 

In the present section we analyse a real life loss development array for which the age- 

to-age link ratios of the cumulative paids are relatively unstable, yet the trends in the 

pa.ids are stable. 

The "best" identified model is essentially a version of CC with two additional iotas 

(payment year trend parameters) that are used.to adjust for "low" payments in one 

payment year. The model (and so the trend in the data) is stable and validates very 

well. Had the model been employed three years earlier, it would have yielded the 

"same" outstanding payments and would have forecast the distributions of 

(incremental) payments for the last three years extremely accurately. 

13.2 DATA AND PRELIMINARY ANALYSIS 

The incremental paid loss development array and accident year exposures are 

displayed in Appendix D1. The exposures are estimates of the number of ultimate 

claims incurred in each accident year. We define a normaiised payment as the paid 

divided by the corresponding accident year exposure and identify a DFF model for 

the normaJised payments. 

The first step in the preliminary (diagnostic) analysis is to graph the data. Figure D2.1 

displays a graph of normalised payments versus development year for all accident 

years combined. It exhibits a band whose width (variability) increases as the 

normaiised payments get larger. 

On the other hand, the graph of the Iognormalised payments depicted in Figure D2.2 

exhibits a band whose width is relatively constant. That is, % variability is constant 

with development year suggesting a Iognormal distributions for the normalised 

payments. 
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The graph in Figure D2.2 also gives us a preliminary idea of a parsimonious numC, er 

of Y's (development year trend parameters) that may be required in the model. 

It appears we require one Y from delay 0-1, one from delay 1-2 (that turns out to be 

insignificant to zero), one from delay 2.4 and one from delay 4-8. 

13.3 MODEL IDENTIFICATION 

In this sub-section we implement the model selection Strategy discussed in Section 

10. 

Model 0 and 1 : Estimate a CC model with the four Y parameters suggested by the 

preliminary diagnostic analysis. It turns out that the parameter Y 2 is insignificant from 

zero, as was anticipated from the graphs. Set Y 2 to zero and re-estimate the model. 

Regression tables and residual displays are given in Appendix D3 and Appendix D4. 

respectively. 

Residuals versus delay and accident years suggest that the trends in these two 

directions have been captured well. This diagnostic test can be formalised by adding 

more parameters and testing for significance of parameters and their differences. 

Since we have estimated a CC model, the residuals may be interpreted as the data 

adjusted for the development year trends. 

Residuals versus payment years (Figure D4.3) suggest (i) zero trend from 1975-1979, 

(ii) tow payments in 1974 and (iii) perhaps zero trend from 1969-1973. So we next 

estimate. 

Model 2: This model  is the previous CC model with four iota parameters. The first 

iota represents the trend from 1969-1973, the second iota the trend from 1973-1974 
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the third iota represents the trend from 1974-1975 and the fourth iota represents the 

trend from 1975-1979. We find that both the first and fourth iota are insignificant, and 

the first being less significant than the fourth. 

Model 3: Previous model with first iota set to zero. We find that fourth iota is stdl 

insignificant. 

Model 4: Previous model with fourth iota set to zero. We find all parameters and 

their differences are significant. Moreover, SSPE and AIC are the lowest amongst the 

four models. Outlier analysis indicates that the observation in accident year 1972, 

delay 7 is an outlier. 

So our final identified model (before conducting validation and stability analysis) has 

three gammas (0-1, 2.-.4 and 4-8), two iotas (1973-1974 and 1974-1975) and one 

alpha, and it also assigns zero weight to (1972,7). 

The regression tables and various statistical displays are given in Appendices D5 to 

D7. 

Figure D7.5 of Appendix D7 displays a normal probability plot where r 2 (correlation 

squared) between the normal scores and ordered residuals is 0.993. The P-value is 

in excess of 0.5. 

So we have shown that the log incremental payments in the cells of the loss 

development array can be regarded as observations from normal distributions whose 

means are related by the (trend) parameters given in Appendix DS. 

Forecasts, standard errors and % errors based on the model are presented in 

Appendices D8 and D9, respectively, 

Appendix D8 

This appendix presents: 
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(i) each observed payment (OBS); 

(ii) each expected model payment (EXP), that is a mean of a Iognormal 

distribution; 

(iii) forecasts for each accident year subdivided according to development 

year (right side of stair.case corresponding to EXP row); 

(iv) standard errors of each individual forecast (below each forecast); 

(v) total forecast (outstanding) for each accident year and associated 

standard error (right hand column); 

(vi) total forecast (payment) to be made in each future payment year in 

respect of all the accident years and ass°ciated standard errors (bottom 

row). This is the.future liability stream with corresponding uncertainties 

that may prove useful for asset/liabiiity matching; 

(vii) total outstanding with associated standard error (bottom right hand 

corner). 

Expected values and forecasts are estimates of means of Iognormal distributions. 

Standard errors are estimates of standard deviations of Iognormal distributions. 

Appendix D9 

Here we present a quality of fit table comparing the original observed payments with 

the model expected payments. For each accident year and for each payment year 

we compute the ratio of the difference in total observed and total expected to the total 

observed. The quality of fit is high. 

13.4 VALIDATION AND STABILITY ANALYSIS 

We now re-estimate the same model and assign zero weight to the last three 

calender years (1979, 1978 and 1977). We aim to determine (i) whether the model 

estimated at year end 1976, would have forecast the distributions of payments in 

years 1977-1979 and (ii) are the parameter estimates of the model and the forecasts 

based on the model stable. 
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Appendix 010 presents the parameter estimates as of year end 1976. Compare 

these estimates with those obtained at year end 1979 (Appendix D5). Note that none 

of the parameter estimates have changed significantly. The estimate of the tail. 

-0.5544 (+  0.0753) at year end 1976, is slightly higher than the estimate-0.6749 (+  

0.0390), at year end 1979, hence the higher forecasts in the tail. The estimates of 

iotas 1973-1974 and 1974-1975 are very close (and so stable). 

Appendix D l l  represents "All" residuals displays. All residuals include those 

corresponding to observations used in the estimation .(1969-1976), and the validated 

residuals (1977-1979) corresponding to observations not included in the estimation. 

All displays are great. 

In particular, Figure D11.3 shows the distribution of the validated residuals (prediction 

errors) for 1977-1979 relative to residuals corresponding to years used in the 

estimation. 

Appendix D12 presents displays of the validated residuals (only those corresponding 

to years 1977-1979). All displays are in good shape. 

Most importantly, Appendix D12.4 presents a test whether the Iognormalised 

payments in 1977-1979 come from the forecasted distributions as at year end 1976. 

The squared correlation between normal scores and validated residuals is 0.959 with 

a P-value of 0.313. 

By way of summary, there is very strong statistical evidence that the model at year 

end 1976 would have predicted accurately the distributions of 'payments' for 1977- 

1979. 

Let's now compare the forecasts, Appendix D13 (validation model) with Appendix D8. 

Total outstanding beyond 1979, based on estimated model at year end 1976 is 

12,620,833 ~ 1,072,089 compared with estimated model at year end 1979 of 

12,948,473 ~ 1,030,808. No difference. 
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So, we could have obtained the same answers three years ago (that is, without the 

last three years information). All other forecasts compare extremely favourably 

Note that in Appendix D13 the expected va]ues corresponding to payment years 

1977-1979 actually represent mean forecasts based on estimated model at year end 

1976. 

From Appendix D14 we see that had we reserved mean forecasts at year end 1976 

(for years 1977-1979) we would have underferecast 1977 and 1978 by 13% and 1% 

respectively, and over'forecast 1979 by 5%. 

Our findings using probabilistic models have shown that: 

and 

calendar year trends are essentially stable, save the dip in the year 1974; 

the model used three years earlier would have predicted accurately the 

distributions of payments for the last three years; 

rough (irregular) age-to-age link ratios, especially in the early development 

years, give no indication of stal:)ility of trends. 

The author has analysed numerous data sets with rough (or irregular) age-to-age link 

ratios for which the payment/calendar year trends are stable. Converse{y, smooth 

age-to-age link ratios does not mean stability of trends. 

We conclude this section by showing how to compute a prediction interval for the 

total outstanding payments, using the discussion of Section 11.2. 

From Appendix DS, the mean outstanding is given by 

m = mean = 12,948,473 

and the standard deviation (or standard error) by 
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sd = 1.030,808 

We assume that the total reserve (or liability) L is a random variable with mean m ana 

standard deviation sd and moreover the distribution of L is Iognormal. 

Put y = log L, then y has a normal distnbution with mean P. and standard deviation 

o, say. 

Therefore, 

m = exp [p. + 0.5 02 ] 

and 

sd = m [exp (02 ) -1] 0, 

Solving the last two equations for p and ~ we obtain, 

P' = 16.37332 

and 

o = 0.079482 

Employ ing Section 11.2, a 100 (1-¢)% predict ion interval for the random variable L 

is given by 

exp [16.37648 ~ 0.079482Z (¢/2) ]  
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where Z (= /2)  is the 1 - a /2  percentage point of the standard unit normal distr ibution 

The median of the distr ibut ion of L is exp [ ~ ] = 12,907,636 which is very close to the 

mean of 12,948,473. Since a z is small the Iognormal  distr ibut ion is not terribly 

skewed, so that were we to assume that the distr ibut ion of L is normal  (rather than 

Iognormal),  the predict ion intervals would be almost  the same. 
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14. EXTENSION OF THE DFF MODELLING FRAMEWORK 

We observed t~at a fruitful extension of the DFF model l ing  f ramework  was the 

introduct ion of vary ing parameter  (dynamic) mode ls  in Sect ion 7. 

Another  important  extension is related to the distr ibut ional assumpt ion of normality. 

Hitherto, we have assumed that the var iances of the y values, denoted by o 2 . are 

identical (constant) 

The var iance on a log scale can be interpreted as % variabil i ty. So constant o 2 

implies constant % variabil i ty. For many loss deve lopment  arrays this assumpt ion is 

not valid. For some arrays, % variabil i ty increases in the tail, for some  others, % 

variabi l i ty is h igher in the early deve lopment  years. When o z is not constant  and 

varies with deve lopmen t  years we need to also model  the o z's. That is, we  int roduce 

a secondary  equat ion. 

This is outs ide the scope of the present paper. 
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15. CONCLUSIONS 

We have argued that the four components of interest regarding a loss development 

array are the trends in the three directions and the distributions (random fluctuations) 

about the trends. 

A MODELLING FRAMEWORK was introduced where each model contained therein 

possesses the four components of interest. The modelling approach offers the 

actuary a way of fitting (estimating) distributions to the cells in a loss development 

array and predicting (forecasting) distributions for future years that affords numerous 

advantages including: 

simplicity; 

clarity of assumptions; 

testing of assumptions; 

assessment of loss reserve variability; 

asset/liability matching; • 

model maintenance and updating. 

We showed how the identified optimal statistical model for the (incremental) payments 

conveys information about the loss experience to date. In applying the model to 

predicting distributions of future payments the actuary may (need to) adjust some of 

the parameters to reflect knowledge about the business and to incorporate his view 

of the future. View of the future may be based on analysis of other data types, 

especially if there are instabilities in the payments in the recent calendar years. 

A prediction interval computed from the forecast distributions is conditional on the 

assumptions made about the future remaining true. 

In passing we have debunked a number of pervasive loss reserving perceptions 

concerning data types, age-to-age link ratios, stability, forecasting and regression. 

Methods based on age-to-age link ratios do not (and cannot) separate trends from 
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random fluctuations and moreover do not satisfy the basic fundamental property of 

additivity of trends. 
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Appendix A1 

Mode l ls  p = exp(elpha-.2d) with no error or rendomness  
alpha = 11.51293 

Yea~deley 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 
1978 100000 81873 67032 54881 44933 36788 30119 24660 20190 16530 13534 11080 9072 7427 
1979 100000 81873 67032 54881 44933 36788 30119 24660 20190 16530 13534 11080 9072 
1980 100000 81873 67032 54881 44933 36788 30119 24660 20190 16530 13534 11080 
1981 100000 81873 67032 54881 44933 36788 30119 24660 20190 16530 13534 
1982 100000 81873 67032 54881 44933 36788 30119 24660 20190 16530 
1983 100000 81673 67032 54881 44933 36788 30119 24660 20190 
1984 100000 81873 67032 54881 44933 36788 30119 24660 
1965 100000 81873 67032 54881 44933 36788 30119 
1986 100000 81873 67032 54881 44933 36788 
1987 100000 81873 67032 54881 44933 
1988 100000 81873 67032 54881 
1989 100000 81873 67032 
1990 100000 81873 
1991 100000 



A_ipjB2pndlx A2 

y= lo t I (p  ) plu.I ;.1 Inf. I rom 197882 . .3  Inf. from 1982-83 and .15 Inf. from 1983-91 

Year,delay 

0 
1976 11,5129 
1979 11,6129 
1980 11,7129 
1981 11,8129 
1982 11.9129 
1983 12,2129 
1984 12,3629 
1985 12,5129 
1988 12,6629 
1987 12.8129 
1988 12,96 29 
1989 13,1129 
1990 13,2629 
1991 13.4129 

1 
11.4129 
11.5129 
11.6129 
11.7129 
12.0129 
12.1629 
12.3129 
12.4629 
12.8129 
12,7629 
12.9129 
13.0629 
13.2129 

2 
11.3129 
11.4129 
11.5129 
11.8129 
11.9629 
12.1129 
12.2629 
12.4129 
12.5629 
12.7129 
12.8629 
13.0129 

3 
11.2129 

11.3129 
11.6129 
11.7629 
11.9129 
12.0629 
12.2129 
12.3629 
12.5129 
12.6629 
12.8129 

4 5 6 7 8 9 10 11 12 13 
11.1129 11,2129 11,1629 11.1129 11.0629 11.0129 10.9629 10.9129 10.8629 10.8129 
11.4129 11.3629 11.3129 11.2829 11.2129 11.1629 11.1129 11.0629 11.0129 
11.5629 11.5129 11.4629 11.4129 11.3629 11.3129 11.2629 11,2129 
11.7t29 11.6629 11.6129 11,5629 11.5129 11.4629 11,4129 
l f ,8829 11.8129 11.7629 11.7129 11,6629 11.6129 
12.0129 11.9629 11.9129 11.8629 11.8129 
12.182'9 12.1129 12.0629 12,0129 
12.3129 12.2629 12,2129 
12.4629 12.4129 
12.6129 



Appendix A3 

Cumulative dale (on a $ scale) derived from Appendix A2 

¢0 

100000 190484 272357 346439 413471 487552 558021 625053 688816 749469 807164 862045 914250 963908 
110517 210517 301001 382874 ~73358 559428 641302 719182 793263 863732 930764 994527 055180 
122140 232657 332657 443174 548302 648302 743425 833908 919979 001852 1079732 1153814 
134986 257126 392112 520515 642655 758838 869355 974482 1074482 1169605 1260089 
149182 314055 470886 620068 761975 896961 1025363 1147504 1263687 1374204 
201375 392929 575141 748467 913339 1070170 1219352 1361259 1496245 
233965 456519 668219 869594 1061148 1243360 1416685 1581557 
271828 530399 776359 1010324 1232878 1444578 1645954 
315819 616236 902001 1173829 t432400 1678360 
366930 715964 1047976 1363795 1664212 
426311 831831 1217574 1584504 
495303 966450 1414619 
575460 1122855 
668589 



Appendix A4 

I I .904837 
1.904837 
1.904837 
1.9O4837 
2.105170 

11.951229 
t .951229 
1.951229 
1.951229 
1.951229 
1.951229 
1.951229 
:1.951229 

Age-to- age link ratios of the cumulative losses of Appendix A3 

1.429816 1.272002 1.193488 1,179170 1.144535 1.120124 1.102011 1.088054 1.078981 1.067992 1.060558 1.054316 
1.429816 1.272002 1.23632,7 1.181830 1.146351 1.121440 1.103008 1.088834 1.077607 1.068505 1.060986 
1.429816 1,332224 1.237213 1.182381 1,146726 1.121712 1.103213 1.088994 1.077736 1.068611 
1.524979 1.327463 1.234652 1.180786 1.145639 1.120925 1.102618 1.088529 1.077362 
1.499375 1.316812 1.228856 1.177152 1.143152 1.119119 1,101248 1.087456 
1.463726 1.301361 1.220279 1.171712 1.139400 1.116378 1.099162 
1.463726 1.301361 1.220279 1.171712 1.139400 1.116378 
1.463726 1.301361 1.220279 1.171712 1.139400 
1.463726 1.301361 1.220279 1.171712 
1,463726 1.301361 1.220279 
1,463726 1.301361 
1.463726 



Append ix  A5 

Random error  random f rom Normal  with mean 0 

Year, delay 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 
1978 0.083 0.075 .0.076 -0.065 -0.188 -0.164 -0.101 0.076 0.021 0.029 0.005 0.03 -0,073 .0.241 
1979 -0.113 .0,049 -0,086 -0.123 0,148 0.09 -0,06 .0.099 -0.032 0,096 0.028 0.1 -0,331 
1980 0.086 -0.007 .0.037 0.17 0.071 .0.138 0.047 0.022 0.036 0.003 0.004 0058  
1981 -0,071 0,147 0.067 -0.028 -0,132 0.049 0 -0.117 -0.042 0.026 -0.078 
1982 0.081 0.059 0.073 0.048 0.025 0.029 -0.023 .0.133 .0.044 0.066 
1983 0.117 0.059 -0.017 -0,081 .0.051 -0.024 -0.048 0.124 0,033 
1984 -0.024 -0.026 0,134 0,214 0,071 0.193 .0,022 0.012 
1985 0.022 0.015 0.076 -0.028 -0,004 0,155 0.032 
1986 -0.043 0.181 0.184 .0.192 -0.16 -0.048 
1987 0.07 0,106 0.144 0,032 -0.102 
1988 0.056 -0.195 0.032 0.041 
1989 0,145 0.187 -0.159 
1990 0.001 .0.153 
1991 -0,142 



Appendix A6 

Sum of data in Appendices A2 and AS to produce trends + randomness 

Yen~delay 

1978 
1979 
1980 
1981 
1982 
1983 
1984 
1985 
1986 
1987 
1988 
1989 
1990 
1991 

0 
11,5959 
11.4999 
11.7989 
11.7419 
11.9939 
12.3299 
12.3389 
12.5349 
12.6199 
12.8829 
13.0189 
13.2579 
13.2639 
13,2709 

1 
11.4879 
11.4639 
11.6059 
11.8599 
12.0719 
12.2219 
12.2869 
12.4779 
12.7939 
12,8689 
12.7179 
13.2499 
13.0599 

2 
11.2369 
11.3269 
11.4759 
11.8799 
12.0359 
12.0959 
12.3969 
12.4889 
12.7469 
12.8569 
12,8949 
12.8539 

3 4 5 6 
11.1479 10.9249 11.0489 11.0619 
11.1899 11.5609 11.4529 11.2529 
11.7829 11.6339 11.3749 11.5099 
11,734911,5809 11.7119 11,6129 
11,9609 11~879 11,8419 11,7399 
11.9819 11.9619 11,9389 11.8649 
12.4269 12.2339 12.3059 12.0409 
12.3349 12,3089 12.4179 12.2449 
12.3209 12,3029 12,3649 
12.6949 12.5109 
12.8539 

7 8 9 10 11 12 13 
11.1909 11.0839 11.0419 10.9679 10.9429 10.7899 10.5719 
11.1639 11.1809 11.2589 11.1409 11.1629 10.6819 
11.4349 11,3989 11.3159 11,2669 11.2709 
11.4459 11.4709 11.4889 11.3349 
11,5799 11.6189 11.6789 
11.9869 11.8459 
12.0249 



Appendix A7 

Incrernenlal pelds derived from Appendix A6 

1978 108651 97529 75879 69418 55542 62875 63697 72468 65114 62436 57983 5 6 5 5 1  48528 39023 
1979 98706 95216 83025 72396 104914 94174 77103 70538 71747  77567  68934 70467 43560 
1980 133106 109743 96365 130993 112860 87108 99698 92494 89224 82117 78190 78504 
1981 125731 141478 144336 124854 107034 122015 110514 93517 95885 97626 83692 
1982 161765 174888 168704 156514 145495 138954 125480 106927 111179 118054 
1983 226364 203191 179136 159835 156670 153108 142187 160637 139511 
1984 228411 216837 242050 249422 205644 220996 169549 166858 
1985 277868 262472 26S375 227499 221660 247187 207918 
1986 302519 360015 343485 224336 220334 234427 
1987 393525 388054 383425 326081 271278 
1988 450855 333667 398276 382277 
1989 572576 568013 382277 
1990 576021 469724 
1991 580068 



Appendix A8 

Cumulative palds from Appendix A7 

1978 
1979 
1980 
1981 
1982 
1983 
1984 
! 985 
1986 
1987 
1988 
1989 
1990 
1991 

108651 
98706 

133106 
125731 
161765 
226364 
228411 
277868 
302519 
393525 
4,50855 
572576 
576021 
580068 

206180 282059 351477 
193922 2769473 49343 
242849 339214 470207 
267209 411545 536399 
336653 505357 661871 
429555 608691 768526 
445248 687298 936720 
540340 805715 1033214 
6625341006019 1230355 
781579 11650041491085 
784522 1182798 1565075 

1140589 1522866 
1045745 

407019 469894 533591 606059 671173 733609 791592 848143 896671 
454257 548431 625534 696072 767819 845386 914320 984787 1028347 
583067 670175 769873 862367 951591 1033708 1111898-1190402 
643433 765448 875962 969479 10653641162990 1246682 
807366 9463201071800 1178727 12899061407960 
925196 10783041220491 1381128 1520639 

1142364 13633601532909 1699767 
1254874 1502061 1709979 
1450689 1685116 
1762363 

935694 



Appendlx A9 

1978 1.897635 
1979 1.964642 
1980 1.824478 
1981 2,125243 
1982 2.081123 
1983 1.897629 
1984 1.949328 
1985 1.944592 
1986 2.19O057 
1987 1.986097 
1988 t.740076 
1989 1,992030 
1990 1.815463 
1991 

1.368023 
1.428136 
1.396810 
1.540161 
1.501121 
1.417026 
1.5436629 
1,491125 
1.518441 
1.490577 
1,507667 
1.335157 

1.246111 
1.261407 
1.386166 
1.303378 
t .309709 
1.262588 
1.362902 
t .282356 
t .222993 
t .279896 
1.323197 

Age-to-age factors (link ratios) of the cumulative payments 

1.158024 1.154476 1.135556 1,135811 1,1074381,093025 1.079039 1.071439 1.057216 't,043519 
1.300318 1.207314 1,140588 1.112764 1.1030741,101022 1,081541 1.077070 1.044232 
1.240021 1.149396 1,148764 1.120141 1.1034641.086294 1,075640 1.070603 
1.199j541 1.189631 1,144378 1,106759 1.0989031,091636 1,071962 
1.219823 1.172107 1.132597 1,099763 1,094321 1.091521 
1.203857 1.165487 1.131861 1,131616 1.101012 
1.219536 1.193454 1.124361 1.108650 
1.214534 1.196981 1.138421 
1.179081 1.161597 
1,181933 

ONe cannot determine changing calendar year trends from the age-to-age link ratios. 



APPENDIX B1 

ACC. YEAR 

Random Incremental paids from (same) Iognormal distribution 

DELAY 

1 2 3 4 5 6 7 

1976 10266 3419 3724 9606 
1977 1767 2454 6580 2819 
1978 6232 5143 2667 4278 
1979 4597 3591 5909 5156 
1980 2483 3805 3995 6315 
1981 1643 2077 5101 1907 
1982 3270 7230 1853 4158 
1983 3161 2065 5890 
1984 5305 6078 
1985 6127 

8152 8175 3958 3030 
1957 2150 3677 4751 
2289 6215 6273 4905 
4013 3557 1961 
3480 3486 
3274 

8 £ 

1733 381 
2832 

565 



APPENDIX B2 

Cumulative payments 

DELAY 
0 1 2 3 4 5 6 7 8 9 

ACC. YEAR 

1976 10266 13685 17409 27015 35167 43342 47300 50330 52063 55574 
1977 
1978 
1979 
1980 
1981 
1982 
1983 
1984 
1985 

1767 4221 10801 13620 15577 17727 21404 26155 28987 
6232 11375 14042 18320 20609 26824 33097 38002 
4597 8188 14097 19253 23266 26623 26784 
4248 8053 12048 18363 21843 25329 
1643 3720 8821 10728 14002 
3270 10500 12353 16511 
3161 5226 11116 
5305 11383 
6127 

566 



APPENDIX B3 

Age- to -Age [,.Ink Rat los 

DELAY 

0/1 1/2 2/3 3/4 4/5 5/6 6/7 7/8 8/9 

ACC. YEAR 

1976 1.333041 1.272122 1.551783 1.301758 1.2324.62 1.091320 1.064,059 1.034,432 1.067437 
1977 2.388794 2.558872 1.280994 1,14,3885 1.138024 1.207423 1.221987 1.108277 
1978 1.825258 1.234461 1.304657 1.124945 1.301567 1,233857 1.148200 
1979 1.781181 1.721665 1.385781 1.208435 1.182884 1.073108 
1980 1.895715 1.496088 1.524153 1.189511 1.159593 
1981 2,264150 2,371236 1,218188 1,305182 
1982 3,211009 1,176476 1,336598 
1983 1,653274 2.127057 
1984 2.145711 
1985 

567 



APPENDIX 84 

YEAR 

Incremental palds generated by SDF model with 20% calendar year trend 

DELAY 

2 3 4 5 6 7 8 9 

1978 53275 66971 121278 292065 86300 79271 240147 
1979 31912 85884 42106 150200 88290 62798 230017 
1980 24g64 96951 208159 697227 213581 251802 489886 
1981 82867 117837 279958 469997 577054 378084 438640 
1982 41268 252181 101806 219303 283631 352082 748704 
1983 32190 491133 239252 228226 375903 494626 323417 
1984 231651 401780 626068 496230 388360 395640 653268 
I985 31273 409583 433997 831822 572?87 468844 1317425 
1986 92728 342040 246087 530327 837381 694392 
lg87 1477/72 208578 389162 602683 743423 
1988 14,6151 209864 1827396 1391050 
1989 81526 767664 1042474 
1990 206885 350789 
1991 559279 

86269 73645 225638 
346594 169950 113715 
387322 524382 133462 
556884 338201 173980 
727854 147742 299994 
482001 157137 
535755 

lO 

218708 
48703 

206570 
161958 

11 

72438 
82441 
76440 

661J 
16891 



A P P E N D I X  B5 

A g e - t o - a g e  l i nk  ra t i os  

DELAY 

0/1 1/2 2/3 314 4/5 5/6 6/7 . 7/8 8/9 9/10 10/I ! 

1978 2.26 
1979 3.69 
1980 4.88 
1981 2.42 
1982 7.11 
1983 16.26 
1984 2.73 
1985 14.10 
1986 4,69 
1987 2.41 
1988 2,44 
1989 10.42 
1990 2.70 
1991 

2.01 2.21 1.16 1.13 1.34 1.09 
1.36 1,94 1.28 1,21 1.48 1.49 
2.71 3.11 1.21 1.20 1.33 1.20 
2.39 1,98 1,61 1.25 1.23 1.24 
1.35 1.55 1.46 1.39 1.60 1.36 
1.46 1.30 1,38 1,36 1. t 7 1.22 
1.99 1,39 t .22 1,18 1.26 1.17 
1.98 1,95 1.34 1,21 1.48 
1.57 1.78 t .69 1.34 
2.09 1,81 1,55 
6,13 1.64 
2.23 

1.07 1.21 
t. 16 1.09 
t .22 1.05 
1.12 1.05 
1.05 1.10 
1.06 

Note that link ratios do not tell us that we have a constant stable calendar year trend 

1.17 
I.Q4 
1.07 
1.05 

1.05 
1.06 
1.02 

11112 

1.05 
1.11 



APPENDIX CI 

ACC. YEAR 

1977 153638 
1978 178536 
1979 210172 
1980 11448 
1981 219810 
1982 205654 
1983 197716 
1984 239794 
1985 326304 
1986 420778 
1987 496200 

DELAY 
4 5 6 

188412 134534 87456 60348 42404 31238 
226412 158894  104.686 71448 47990 35576 
259168 168388 1 2 3 0 7 4  83380 56086 38496 
253482 183370 131040 78994 60232 45568 
266304 194650 1 2 0 0 9 8  87582 62750 51000 
252746 177,506 1 2 9 5 2  96786 92400 
255408 194648 142328  105600 
329242 264802 190400 
471744 37540O 
590400 

ACCl EXPOSURES 

YEAR 

1977 2.20 
1978 2.40 
1979 2.20 
1980 2.00 
1981 1.90 
1982 1.60 
1983 1.60 
1984 1.80 
1985 2.20 
1986 2.50 
1987 2.60 

21252 
24818 
33768 
38000 

16622 
22662 
27400 

14440 
18000 

10 

12200 



APPENDIX C2 

AGE LINK RATIOS OF CUMULATIVE PAYMENTS 

DELAYS 

0/I 112 213 3/4 4/5 5/6 617 7/8 

1977 2.226337 1.393316 1.183505 1 .106992  1,067912 
1978 2.268158 1 ,392381  1.185665 1.106873 1.064853 
1979 2,233123 1.401389 1.187119 1 .106787  1.064900 
1980 2,198791 1 , 3 9 4 4 0 3  1.202128 1.101360 1.070173 
1981 2.211519 1,400420 1.176416 i.109359 1.070629 
1982 2,228986 1,387229 ~ .203681 1 . 1 2 6 4 4 6  1,095567 
1983 1.291792 1 ,429568  I . . 219719  1.133653 
1984 2.373077 1,465360 1.228344 
1985 2.445719 1,470397 
1986 2,403115 

1.046848 1 .030445  1.023109 
1.045149 1 .030135  1.026712 
1,041831 1 .035220  1.027606 
1,049607 1.039413 
1,053616 

8/9 

1,019622 
1.020665 

9/10 

1.016259 



A P P E N D I X  C 3  

Normalised payments versus delay 
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APPENDIX C4 - (Statistical Chain Ladder) 

R E G R E S S I O N  T A B L E  

PARAMETER ESTIMATES 

OEV. 
YEAR GAMMA 

DIFFERENCE 
S . E .  T-RATIO IN GAMMA S.E. T-RATIO 

1 0.2511 0.0370 6.79 
2 *0.3069 0.0385 -7.97 -0.5580 0.0650 -8.59 
3 -0.3928 0.0406 -g.68 ~.0859 0.0682 -1.26 
4 -0.3803 0.04,32 -8.81 0.0124 0.0723 0,17 
5 -0.3402 0.04,64 -7.34 0.04,01 0,0773 0,52 
6 -0.3384 0.0505 -6.71 0.0018 0.0835 0,02 
7 -0.2908 0.0559 ,5,20 0.0476 0.0917 0,52 
8 ~.224,8 0.0637 -3.53 0.0660 0.1030 0.64 
9 -0.2152 0,0763 -2.82 0.0095 0.1202 0,08 
0 -0.1893 0,1030 -1,84 0.0259 0,1526 0,17 

NOT ALL PARAMETERS ARE SIGNIFICANT 

ACCI 
YEAR 

1977 
1978 
1979 
1980 
1981 
1982 
1983 
1984 
1985 
1986 
1987 

ALPHA 

11.04,84 
11.1402 
11.3935 
11,5218 
11.8001 
11.7939 
11.7979 
11.9095 
12,0116 
12.07"74 
12.1592 

PARAMETER ESTIMATES 

DIFFERENCE 
S . E .  T-RATIO IN ALPHA 

0.0380 290.75 
0.0380 293.17 0.0918 
0,0385 295,97 0.2533 
0.0393 293.10 0.1283 
0.0405 286.71 0.0783 
0.0,420 280,55 0.1938 
0.0442 266,67 0.0040 
0.0474 251.04 0.1115 
0.0524 229,08 0.1022 
0.0613 196,88 0.0657 
0.0827 147,00 0.0818 

ALL PARAMETERS ARE SIGNIFICANT 

S.E, 

0.0370 
0.0385 
0.0406 
0.0432 
0.04,64 
0.0505 
0.0559 
0.0637 
0,0763 
0.1030 

T-RATIO 

2.48 
6.58 
3.16 
1 81 
4,18 
0.08 
1.9g 
1.60 
0.86 
0.79 

573 



APPENDIX C4 

(REGRESSION OUTPUT CONTINUED) 

S = 0.0827 S-SQUARED = 0.0068 S-SQUARED(SCI) = 0.0449 

S(B) = 0.0827 S(B)-SQUARED = 0.0068 DELTA = 0.0000 

R-SQUARED = 99.5 PERCENT N = 66 P = 21.0 

SSPE = 0.94,8 WSSPE = 0.948 AiC = .124.97 AIC(SCI) = -52.18 

574 



A P P E N D I X  C 5  

Residuals versus development years 
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APPENDIX C5 

Residuals versus payment years 

.2 
1974 1976 1971 1950 1912 19114 1911.6 L9 | |  199~ 

Figure C$.3 
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APPENDIX C6 • Cape Cod 

R E G R E S S I O N  T A B L  

PARAMETER ESTIMATES 

DEV, 
YEAR GAMMA 

DIFFERENCE 
S .E .  T-RATIO IN GAMMA S,E. T.RATIO 

1 0.2029 0.1416 1.43 
2 -0.3567 O. 14.89 -2.40 -0.5596 0.2514 -2.23 
3 -0.4468 O. 1574 -2.84. -0.0901 0.2651 -0.34 
4 -0.4.352 0.1677 -2.59 0.0116 0.2814 0.04 
5 -0.3947 O. 1803 -2.19 0.0404 0.3010 0.13 
6 -0.4139 O. 1962 -2.11 -0.0192 0.3256 -0.06 
7 -0.3656 0.2174 .1.64 0.0563 0.3574 0,16 
8 -0.3067 0.2475 - 1.24 .0.0489 0.4012 0.12 
9 -0.3150 0.2958 - 1.06 -0.0083 0.4677 -0.02 
10 -0,2352 0,3966 -0,59 0,0797 0,5916 0,13 

NOT ALL PARAMETERS ARE SIGNIFICANT 

ACCI 

YEAR ALPHA 

PARAMETER ESTIMATES 

DIFFERENCE 
S,E. T-RATIO IN ALPHA S.E. T-RATIO . 

1977 11.6776 0.0977 119.53 
1976 11.6776 0.0977 119.53 0.0000 0.0000 0.00 
1979 11.6776 0.0977 119.53 0.0000 0.0000 0.00 
1980 11.6776 0.0977 119.53 0.0000 0.0000 0.00 
1961 11.6776 0.0977 119.53 0.0000 0.0000 0.00 
1982 11.6'776 0.0977 119.53 0.0000 0.0000 0.00 
1983 11.6778 0.097"7 119.53 0.0000 0.0000 0.00 
1954 11.6776 0.0977 119,53 0.0000 0,0000 0.00 
1985 11.6776 0.0977 119,53 0.0000 0,0000 0,00 
1986 11.6776 0.0977 119.53 0,0000 0.0000 0,00 
1987 11.6776 0.0977 119.53 0.0000 0.0000 0.00 

ALL PARAMETERS ARE SIGNIFICANT 
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APPENDIX C6 

(REGRESSION O U T P U T  CONTINUED)  

S = 0.3240 S .SQUARED = 0 .1050 S-SQUARED(SCI)  = 0.04.49 

S(B) = 0.324.0 S(B) -SQUARED = 0.1050 DELTA = 0.0000 

R-SQUARED = 91.1 PERCENT N = 66 P = 11.0 

SSPE = 7.4,33 WSSPE = 7.433 AIC = 45.51 AIC(SCI)  = -52.18 
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~ P P E N D  X C7  

Residuals versus payment years 
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APPENDIX C8 - Cape Cod with constant inflation 

DEV 
YEAR GAMMA $.E. 

R E G R E S S I O N  T A B L  
. . . . . . . . . . . . . . . . . . . . . . . . . .  

PARAMETER ESTIMATES 

DIFFERENCE 
T-RATIO IN GAMMA S,E. -RATIO 

1 0.1424 0,0439 3.24 
2 .0.4172 0.0462 -9.03 -0.5596 0.0779 -7.19 
3 -0.5072 0,0488 - 10.39 -0.0901 0.0821 - 1.10 
4 -0.4956 0.0520 -g. 53 0.0116 0.0871 0.13 
5 -0.4552 0.0559 -8.14 0.0404 0.0932 0 43 
6 -0.474-4 0,0608 -7 80 -0.0192 0.1008 -0.19 
7 -0.4161 0.0674 -6.18 0.0583 0.1107 0.53 
8 -0.3672 0.0767 -4.79 0.0489 0.1243 039 
9 -0.3754 0.0917 -4.10 -0.0083 0.1449 -0.06 
10 -0.2957 0.1230 .2.41 0.0797 0,1832 0.4,.4 

ALL PARAMETERS ARE SIGNIFICANT 

PARAMETER ESTIMATES 

DIFFERENCE ACCI 
YEAR ALPHA S.E. S.E. T.RATIO IN ALPHA T-RATIO 

1977 11.0728 0.0403 275.09 
1978 11 0728 0.0403 275.09 0.0000 0.0000 0.00 
1979 11.0728 0.0403 275.09 0.0000 0,0000 0.00 
1980 11.0728 0.0403 275.09 0.0000 0.0000 0.00 
1981 11.0728 0.0403 275.09 0.0000 0.0000 0.00 
1982 11.0728 0.0403 275.09 0.0000 0.0000 0.00 
1983 11.0728 0.0403 275.09 0.0000 0.0000 0.00 
1984 11.0728 0.0403 275.09 0.0000 0.0000 0.00 
1985 11.0728 0.0,403 275.09 0.0000 0.0000 0.00 
1986 11.0728 0.0403 275,09 0.0000 0.0000 0.00 
1987 11.0728 0.0403 275.09 0.0000 0.0000 0.00 

ALL PARAMETERS ARE SIGNIFICANT 

S.E. 

PARAMETER ESTIMATES 

DIFFERENCE 
T-RATIO IN IOTA S.E. 

PMNT 
YEAR IOTA 

1978 0.1210 
1979 0.1210 
1980 0,1210 
1981 0.1210 
1982 O,1210 
1983 0,1210 
1984 0.1210 
1985 0.1210 
1986 0.~210 
1987 0.1210 

T-RATIO 

580 

ALL PARAMETERS ARE StGNIFICANT 

0,0053 22,79 
0.0053 22,79 0.0000 0.0000 0,00 
0,0053 22.79 00000 0.0000 0,00 
0.0053 22.79 0.0000 0.0000 0.00 
0.0053 22.79 0.0000 0.0000 0.00 
0.0053 22.79 0.0000 0.0000 0.00 
0.0053 22.79 0.0000 0.0000 0.O0 
0.0053 22,79 0.0000 0.0000 0.00 
0.0053 22.79 010000 0.0000 0100 
0,0053 22.79 0,0000 0.0000 0 00 



APPENDIX C8 

(REGRESSION O U T P U T  C O N T I N U E D )  

S = 0 .1oo4 S-SQUARED = 0.9101 S-SQUARED(SCI )  = 0 .0449 

S(8)  = 0 .1004 S(B) -SQUARED = 0.0101 DELTA = 0 .0000 

R-SQUARED = 99.2 PERCENT N = 66 P = 1 2 0  

SSPE = 1.176 WSSPE = 1.176 AIC = -105.40 AIC(SCI)  = -52.18 
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A P P E N D I X  C 9  

Residuals versus payment years 
A.~cr adjL~tu~ for a~mgc pal, mere year trend 
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F i g u r e  C 9  
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APISENDIX C10 - Cape Cod with three payment year parameters 
(1977-84, 1984-1985 and 1985-1987) 

R E G R E S S I O N  T A B L E  
. . . . . . . . . . . . . . . . . . . . . . . . . . . .  

PARAMETER ESTIMATES 

DEV. DIFFERENCE 
YEAR GAMMA S . E .  T-RATIO IN GAMMA S.E. T-RATIO 

1 .0.1505 0.0371 4.05 
2 -0.4098 0.0390 -10.50 -0.5603 0.0657 -8.52 
3 -0.5008 0,0413 -12.14 -0,0910 0.0693 .1.31 
4 -0.4906 0.04.39 -11.17 00102 0.0736 0.14 
5 -0.4522 0.0472 -9.56 0.0384 0.0787 0.49 
6 -0.4748 0.0514 -9.24 0.0225 0.0851 -0.26 
7 -0.4222 0.0569 -7.41 0.0526 0.0935 0.56 
8 -0.3849 0.0651 -5.91 "0.0373 0.1050 0.36 
9 -0.4126 0.0780 -5.29 -0.0277 0.1229 -0.23 
10 -0.3329 0.1042 -3.19 0.0797 0.1547 0.52 

ALL PARAMETERS ARE SIGNIFICANT 

PARAMETER ESTIMATES 

ACCI DIFFERENCE 
YEAR ALPHA S . E .  T.RATIO IN ALPHA S,E. T-RATIO 

1977 11.1536 0.0400 276.91 
1978 11.1536 0.0400 278.91 0.0000 0.0000 0.00 
1979 11.1536 0.0400 278.91 0.0000 0.0000 0,00 
lg80 11.1536 0.0400 278.91 0.0000 0.0000 0.00 
1981 11.1536 0.0400 278.91 0.0000 0.0000 0.00 
1982 11.1536 0.0400 278.91 0.0000 0,0000 0.00 
1983 11.1536 0.0400 278.91 0.0000 0.0000 0.00 
1984 11.1536 0.0400 278.91 0.0000 0.0000 0.00 
1985 11.1536 0.0400 278.91 0.0000 0.0000 0.00 
1986 11.1536 0.04,00 278.91 0.0000 0.0000 0.00 
1987 11.1536 0.0400 278.91 0.0000 0.0000 0.00 

ALL PARAME'rERS ARE SIGNIFICANT 

PARAMETER ESTIMATES 

PMNT DIFFERENCE 
YEAR iOTA S . E .  T-RATIO IN IOTA 

1978 0.0985 0.0077 12.74 
1979 0.0985 0.0077 12.74 0.0000 
1980 0.0985 0.0077 12.74 0.0000 
1981 0.0985 0.0077 12.74 0.0000 
1982 0.0985 0.0077 12.74 0.0000 
1983 0.0985 0.0077 12.74 0.0000 
1984 0.0985 0.0077 12.74 0.0000 
1985 0.1174 0.034,3 3.42 0.0189 
1986 0.1952 0.0197 9.91 0.0778 
1987 0.1952 0.0197 9.91 0.0000 

S . E .  

0,0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0385 
0.0484 
0.0000 

T-RATIO 

0.00 
0.00 
0 O0 
0.00 
0,00 
0.00 
0.49 
1.61 
0.00 
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A P P E N D I X  C 1 0  

( R E G R E S S I O N  O U T P U T  C O N T I N U E D )  

S = 0 . 0 8 4 7  S - S Q U A R E D  = 0 . 0 0 7 2  S - S Q U A R E D ( S C I )  = 0 . 0 4 4 9  

S(B) = 0 . 0 8 4 7  S ( B ) - S Q U A R E D  = 0 . 0 0 7 2  D E L T A  = 0 . 0 0 0 0  

R - S Q U A R E D  = 9 9 . 4  P E R C E N T  N = 66  P = 14.0 

S S P E  = 1 .000  W S S P E  = 1 .000 A IC = -126 ,26  A IC(SCI )  = - 52 .18  

, . . '  . . .  

.i~ ~ ,,,! :~:.~ .!. . 

',t". • , . . . : . .  .. . .  , .'l" 

4 ~ ,  ¸ • ,  " ~ . :  . 
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APPENDIX D1 

INCREMENTAL PAID LOSSES 

DELAY 

ACCI. YR 0 1 2 3 4 5 6 7 8 

1969 193013 1584331 1151882 778980 
1970 376473 1541950 17t9509 1032570 
1971 568891 1579158 1277822 734670 
1972 428753 970640 955898 1095771 
1973 458252 989072 1417606 953222 
1974 355229 948807 1292900 748003 
1975 282419 688332 1158793 903450 
1976 2676(X) 1044790 1216437 527644 
1977 560307 940002 1185899 
1978 360171 1011773 
1979 445545 

475203 143352 128612 
289305 382508 270087 
680369 217221 147800 
510072 491853 242995 
881133 278778 197156 
547288 274367 
629983 

70645 
108354 
57099 

299845 

25077 
23133 
64829 

ACCl 

1969 
1970 
1971 
1972 
1973 
1974 
1975 
1976 
1977 
1978 
1979 

YR EXPOSURES 

523.00 
643.00 
676.00 
673.00 
809.00 
669.00 
513.00 
543.00 
622.00 
703,00 
743,00 



APPENDIX  D2 

Normalised payments versus delay 
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Log normalised payments versus delay 
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APPENDIX D3 
R E G R E S S I O N  T A B L E  

PARAMETER ESTIMATES 

DEV. DIFFERENCE 
YEAR GAMMA S.E. T-RATIO IN GAMMA 

1 1.1647 0.1234 9.4.4 
2 0,0000 0,0000 0,00 -1.1647 
3 -0.3769 0,0631 -5,98 -0,3769 
4 -0,3769 0,0631 -5.98 0.0000 
5 -0.8226 0,0466 -13.35 -0,2457 
6 -0,6226 0.0466 -13,35 0.0000 
7 -0,6226 0.0466 -13,35 0.0000 
8 -0.6226 0.0466 -13.35 0.0000 

ACCI 
YEAR ALPHA 

ALL PARAMETERS ARE SIGNIFICANT 

PARAMETER ESTIMATES 

DIFFERENCE 
S.E. T.RATIO IN ALPHA 

1969 6.3672 0.0997 63.84 
1970 6.3672 0,0997 63.84 0.0000 
1971 6,3672 0,0997 63.84 0.0000 
1972 6,3672 0,0997 63,84 0.0000 
1973 6.3672 0.0997 63,84 0,0000 
1974 6.3672 0.0997 63.84 0.00O0 
1975 6,3672 0.0997 63,84 0.0000 
1976 6,3672 0,0997 63,84 0,0000 
1977 6.3672 0,0997 63,84 0.0000 
1978 6.3672 0,0997 63.84 0,0000 
1979 6.3672 0.0997 63.84 0.0000 

PMNT 
YEAR IOTA 

ALL PARAMETERS ARE SIGNIFICANT 

PARAMETER ESTIMATES 

DIFFERENCE 
S.E. T-RATIO IN IOTA 

1970 0.0000 0.0000 0.00 
1971 0.0000 0.0000 0.00 0.0000 
1972 0.0000 0.0000 0.00 0.0000 
1973 0.0000 0.0000 0,00 0.0000 
1974 0.0000 0,0000 0,00 0,0000 
1975 0,0000 0.0000 0.00 0,0000 
1978 0,0000 0,0000 0.00 0.0000 
1977 0.0000 0.0000 0,00 0.0000 
1978 0.0000 0,0000 0,00 0,0000 
1979 0.0000 0,0000 0,00 0,0000 

ALL PARAMETERS ARE SIGNIFICANT 

S.E. 

0.1234 
0.0631 
0.0000 
0.0985 
0.0000 
0.0000 
0.0000 

S.E. 

0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 

0.0000 
0.0000 

S.E. 

0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 

T-RATIO 

-9.44 
-5.98 
0.00 

-2.49 
0.00 
0.00 
0.00 

T-RATIO 

0.00 
O.O0 
0.00 
0,00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 

T-RATIO 

0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
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Residuals versus delay 
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Residuals versus payment years 

I ~  1961 1970 197l 1974 1976 197I 1910 1912 

Figure D4.3 
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APPENDIX D5 

DEV. 
YEAR 

ACCI 
YEAR 

1969 
1970 
1971 
1972 
1973 
1974 
1975 
1976 
1977 
1978 
1979 

PMNT 
YEAR 

1970 
1971 
1972 
1973 
1974 
1975 
1976 
1977 
1978 
1979 

GAMMA 

1.1777 
0.0000 

-0.3478 
-0.3478 
-0.6749 
-0.6749 
.0.6749 
-0,6749 

ALPHA 

6.4594 
6.4594 
6.4594 
6.4594 
6.4594 
6.4594 
6.4694 
6,4594 
6,4594 
6.4594 
6.4594 

IOTA 

0.0000 
0.0000 
0.0000 

0.0000 
-0.4792 
0.3723 
0.0000 
0.0000 

0.0000 
0.0000 

R E G R E S S I O N  T A B L E  

PARAMETER ESTIMATES 

DIFFERENCE 
S.E. T-RATIO IN GAMMA S.E. 

0.0993 11.86 
0.0000 0.00 -1.1777 0.0993 
0.0519 -6.70 -0.3478 0.0519 
0.0519 -6.70 0,0000 0.0000 
0.0390 -17,32 -0,3270 0,0803 
0.0390 -17,32 0.0000 0,0000 
0,0390 -17,32 0.0000 0,0000 
0,0390 -17.32 0.0000 0,0000 

ALL PARAMETERS ARE ~GNIFICANT 

PARAMETER ESTIMATES 

DIFFERENCE 
S.E. T-RATIO IN ALPHA S.E. 

0.0927 69.68 
0.0927 69.68 0.0000 0.0000 
0.0927 69.66 0.0000 0.0000 
0.0927 69.68 0.0000 0.0000 
0.0927 69.68 0.0000 0.0000 
0.0927 69.68 0.0000 0.0000 
0.0927 69.68 0.0000 0.0000 
0.0927 69.68 0.0000 0.0000 
0.0927 69.66 0.0000 0.0000 
0.0927 69.68 0.0000 0.0000 
0.0927 69.68 0.0000 0.0000 

ALL PARAMETERS ARE SIGNIFICANT 

S.E. 

0.0000 
0.0000 
0.0000 
0.0000 
0.1306 
0.1182 
0.0000 
0.0000 
0.0000 
0.0000 

PARAMETER ESTIMATES 

DIFFERENCE 
T-RATIO IN IOTA S.E. 

0.00 
0.00 0.0000 0.0000 
0.00 0.0000 0.0000 
0.00 0.0000 0.0000 
-3.67 -0.4792 0,1306 
3.15 0.8515 0.2330 
0.00 -0.3723 0.1182 
0.00 0.0000 0.0000 
0.00 0.0000 0.0000 

0.00 0.0000 0.0000 

ALL PARAMETERS ARE SIGNIFICANT 

T-RATIO 

- 11 .86  

-6.70 
0.00 
-4.07 
0.00 
0.00 
0.00 

T-RATIO 

0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 

T-RATIO 

0.00 
0.00 
0.00 

-3.67 
3.65 
-3.15 
0.00 
0 O0 
0.00 
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APPENDIX D6 

( R E G R E S S I O N  O U T P U T  C O N T I N U E D )  

S = 0 . 2 6 5 4  S . S Q U A R E D  = 0 . 0 7 0 4  S - S Q U A R E D ( S C I )  = 0 . 5 4 6 9  

S(B) = 0 . 2 6 5 4  S ( B ) . S Q U A R E D  = 0 , 0 7 0 4  D E L T A  = 0 . 0 0 0 0  

R - S Q U A R E D  = 93 .5  P E R C E N T  N = 62  P = 6 .0  

SSPE = 7,:360 W S S P E  = 7 .360  A IC = 17.13 A IC(SCI )  = 43.81 
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APPENDIX D7 

Residuals versus delay 

0 I 2 3 4 ~ 6 7 I 9 

Figure D7.1 

Residuals versus accident years 
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Residuals versus payment years 
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Normal scores versus residuals 
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F O R E C A S T I N G  O U T P U T  

ASSUMED FUTURE INFLATION = 0.0000 
STANDARD ERROR = 0.0000 

EXPECTED PAYMENTS/OBSERVED PAYMENTS + . . . . . . . .  .4- 
(PAYMENTS IN $1 S) 

FORECAST MEAN PAYMENTS/STANDARD ERRORS 

EXP: 346295 1123112 1123112 793172 561671 177321 130329 66469 33951 
OBS: 193013 1584331 1151882 778980 475203 143352 128612 70845 25077 

EXP: 425750 1380806 1380806 975161 428440 314654 160233 81720 41741 
OBS: 376473 1541950 1719509 1032570 289305 382508 270087 108354 23133 

EXP: 447601 1451671 1451671 636733 650595 330803 168456 85914 43883 
OBS: 568891 1579158 1277822 734670 680369 217221 147800 57099 64829 

+ ......... 4 
EXP: 445614 1445229 898519 915576 647708 329335 167709 85533 I 43689 

m 

OBS: 428753 970640 955898 1095771 510072 491853 242995 299845 I 12280 
+ ......... + 

EXP: 535664 1080091 1559962 1100596 778597 395887 201599 102817 52517 
3BS: 458252 989072 1417606 953222 881133 278778 197156 27673 14762 

+ ......... + i 
EXP: 275565 1290006 1290006 910134 643858 327378 I 166712 85024 43429 
~BS: 355229 948807 f292900 748003 547288 274367 I 43841 22884 12207 

+ . . . . . . . .  + 

~XP: 305191 989197 989197 697906 493721 251038 127837 65198 33302 
)BS; 282419 688332 1158793 903450 629983 65999 33618 17546 9361 

÷ ......... + 
I 

~XP: 323039 1047045 1047045 738719 J 522593 265719 135313 69011 35249 
)BS: 267600 1044790 1216437 527644 I 140549 69858 35584 18574 9908 

+ ......... + 

!XP: 370037 1199377 1199377 846194 598624 304378 155000 79051 40378 
)BS: 560307 940002 1185899 221766 160997 80022 40761 21276 11350 

+ ......... + 
!XP: 418225 1355566 1355566 956389 676580 344016 175185 89345 45636 
)BS: 360171 1011773 360708 250646 181963 90443 46069 24047 12827 

0 

0 

0 

0 

O 

0 

43689 
1228O 

155334 
32822 

295165 
53323 

477376 
79132 

1027886 
167258 

2023625 
300456 

3642717 
502218 

4 .......... + 
:XP: 442022 1432697 1432697 1010807 715077 363590 185152 94429 48233 5282681 
)BS; 445545 381231 381231 264907 192317 95589 48690 25415 13557 674135 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  + . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

PAYMENT YRS: ! 4721306 3518808 2235705 1316405 653075 314876 140065 48233 12948473 
30 ERRORS: i 623018 504462 345451 223516 111688 57649 29752 13557 103080~ 



APPENDIX D9 

ACC. 
YEAR EXPECTED OBSERVED 

(PAYMENTS IN $1'S) 

69 4355433 4551295 
70 5189312 5743889 
71 5267328 5327859 
72 4849689 4695982 
73 5652397 5175219 
74 4736946 4166594 
75 3475212 3662977 
76 3155847 3056471 
77 2768792 2686208 
78 1773792 1371944 
79 442022 445545 

TABLE OF OBSERVED AND EXPECTED BY YEAR 

DIFFERENCE 

$95862 
554577 
60531 

-153707 
-477178 
-57O352 
187765 
-99376 
-82584 

-401848 
3523 

PMNT 
%ERROR YEAR EXPECTED OBSERVED DIFFERENCE 

(PAYMENTS IN $1's) 

4 69 346295 193013 -153282 
9 70 1548863 1960804 411941 
1 71 2951519 3262723 311204 

-3 72 4071263 4506400 435137 
-9 73 4969396 4214487 -754909 

-13 74 3496670 3467526 -29144 
5 75 5166314 4936092 -230222 

-3 76 4908050 4270279 -637771 
-3 77 4708472 5166110 457638 

-29 78 4697662 4569353 -128309 
0 79 4802265 4337196 -465069 

%ERROR 

-79 
21 
9 
9 

-17 
0 

-4 
-14 

8 
-2 

-10 



4DI) 
F O R E C A S T I N G  O U T P U T  

ASSUMED FUTURE tNFLA]ION = 00000  
STANDARD ERROR = 0.0000 

EXPECTED PAYMENTS/OBSERVED PAYMENTS 
EAR 

+ . . . . . . . .  4- 
(PAYMENTS IN $1 S) 

FORECAST MEAN PAYMENTS/STANDARD ERROrri 

169 EXP: 346295 1123112 1123112 
OBS: 193013 1584331 1151882 

J70 EXP: 425750 1380806 1380806 
OB S: 376473 15,41950 1719509 

171 EXP: 447601 1451671 1461671 
OBS: 568891 1579158 1277822 

J72 EXP: 445614 1445229 898519 
OBS: 428753 970640 955898 

}73 EXP: 535664 1080091 1559962 
OBS: 458252 989072 1417606 

~74 EXP: 275565 1290006 1290006 
OBS: 355229 948807 12929QQ 

175 EXP: 305191 989197 989197 
OBS: 282419 688332 1158793 

J76 EXP: 323039 1047045 1047045 
OBS: 267600 1044790 1216437 

=77 EXP: 370037 1199377 1199377 
OBS: 560307 940002 1185699 

~78 

793172 561671 177321 130329 66469 33951 
778980 475203 143352 128612 70845 2507? 

975161 428440 314654 160233 81720 41741 
1032570 289305 382508 270087 108354 23133 

636733 650595 330803 168456 85914 43883 
734670 680369 217221 147800 57099 64829 

+ . . . . . . . .  + 

915576 647708 329335 167709 85533 I 43689 4368' 
1095771 510072 491853 242996 299845 I 12280 1228, 

+ ......... + i 
1100596 778597 395887 201599 ] 102817 52517 15533 
953222 881133 278778 197156 I 27673 14762 3282 

÷ ......... + I 
910134 643858 327378 ~ 166712 85024 43429 29516' 
748003 547288 274367 I 43841 22884 12207 5332 

÷ ......... + 

697906 493721 251038 127837 65198 33302 477371 
903450 629983 65999 33618 17548 9361 7913: 

+ ......... + ! 

738719 ~ 522593 265719 135313 69011 35249 1027861 
527644 I 140549 69858 3558~ 18574 9908 16725~ 

+ ......... + 

I 846194 598624 304378 155000 79051 40378 202362! 
221766 160997 80022 40761 21276 11350 300451 

i + ......... ÷ 
EXP: 418225 1355566 1355566 956389 676580 344016 175185 89345 45636 364271, 
OBS: 360171 lO 11773 360708 250646 181963 90443 46069 24047 12827 5022 I 

+ ......... 
~79 EXP: 442022 i 1432697 1432697 1010807 715077 363590 185152' 944229 48233 5282r~L 

OBS: 445545 | 381231 381231 264907 192317 95589 48690 25415 13557 67413' 

) T.FOR PAYMENT YRS: I I 4721306 3518808 2235705 1316405 653075 314876 140065 482233 1294 84 / 

fANOARD ERRORS: I 623018 504462 345451 223516 111688 57849 29752 13557 103()HH~ 



APPENDIX D1O 

VAU DATION 

OEV. 
YEAR GAMMA 

1 1.2466 
2 0.0000 
3 -0.4024 
4 -0.4024 
5 -0,5544 
6 -0.6544 
7 -0.6544 
8 -0.5544 

ACCI 
YEAR ALPHA 

1969 6.4278 
1970 6.4278 
1971 6.4278 
1972 6.4278 
1973 6.4278 
1974 6,4278 
1975 6.4278 
1976 6.4276 
1977 6.4276 
1978 6,4278 
1979 6,4278 

PMNT 
YEAR IOTA 

1970 0.0000 
1971 0.0000 
1972 0,0000 
1973 0.0000 
1974 -0.4798 
1975 0.3067 
1976 0.0000 
1977 0.0000 
1978 0.0000 
1979 0.0000 

R E G R E S S I O N  T A B L E  

PARAMETER ESTIMATES 

DIFFERENCE 
S.E. T-RATIO IN GAMMA S.E. T-RATIO 

0.1076 11.58 
0.0000 0.00 -1.2468 0.1076 -11,58 
0.0639 -6.29 -0.4024 0.0639 -6.29 
0.0639 -6.29 0.0000 0,0000 0.00 
0.0753 -7,37 -0,1520 0,1213 -1,25 
0,0753 -7.37 0.0000 0.0000 0,00 
0,0753 -7.37 0.0000 0.0000 0.00 
0,0753 -7.37 0,0000 0,0000 0.00 

ALL PARAMETERS ARE SIGNIFICANT 

PARAMETER ESTIMATES 

DIFFERENCE 
S.E. T-RATIO IN ALPHA S.E. T-RATIO 

0.0922 69.72 
0.0922 69.72 0.0000 0,0000 0.00 
0.0922 69.72 0.0000 0.0000 0.00 
0,0922 69.72 0.0000 0.0000 0 00 
0,0922 69.72 0.0000 0,0000 0.00 
0,0922 69.72 0.0000 0.0000 0,00 
0,0922 69.72 0,0000 0.0000 0,00' 
0,0922 69.72 0,0000 0,0000 0.00 
0.0922 69,72 0,0000 0,0000 0.00 
0.0922 69.72 0,0000 0.0000 0,00 
0,0922 69.72 0.0000 0,0000 0.00 

ALL PARAMETERS ARE SIGNIFICANT 

PARAMETER ESTIMATES 

DIFFERENCE 
S.E. T-RATIO IN IOTA S.E. T-RATIO 

0.0000 0,00 
0.0000 0.00 0.0000 0.0000 0,00 
0.0000 0.00 0.0000 0.0000 0.00 
0.0000 0.00 0.0000 0.0000 0.00 
O, 1206 -3,97 -0,4796 O. 1206 -3.97 
0.1203 2.57 0,7686 0.2196 3.59 
0,0000 0.00 -0.3087 0.1203 -2.57 
0.0000 0.00 0.0000 0.0000 0.00 
0.0000 0,00 0.0000 0.0000 0.00 

0.0000 ALL 0 O0 0.0000 0.0000 0.00 
PA~AM~TEIZS ARE 5~61,1ilCieANT 
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A P P E N D I X  0 1 1  

All residuals versus delay 

-I 
0 1 2 ] 4 S iS 7 I 

Figure 011.1 

All residuals versus accident years 
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A P P E N D I X  D I  1 

All residuals versus payment years 
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All residuals versus predicted values 
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Validated residuals versus delay 
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A P P E N D I X  D 1 2  

Validated residuals versus payment years 

0.$ 

.03 

-I 
I Sl"/6.$ 19"/'/ 19'77.$ 19"71 19"/1.5 l~r'/9 | 91~;~,: 

F i g u r e  0 1 2 . 3  

Normal scores versus residuals 

-I .0.$ 0 0.I$ I I.~ 

F t g u r l  0 1 2 . 4  



F O R E C A S T I N G  O U T P U T  
. IDATION MODEL 

ASSUMED FUTURE INFLATION = 0.0000 
STANDARD ERROR = 0.0000 

~R 
EXPECTED PAYMENTS/OBSERVED PAYMENTS 

(PAYMENTS IN $1 2) 
FORECAST MEAN PAYMENTS/STANDARD ERROR: 

EXP: 333078 1157384 1157384 
ORS: 193013 1584331 1151882 

774069 519825 184730 144344 83624 48721 
778980 475203 143352 128612 70845 25077 

) EXP: 409501 1422941 1422941 
ORS: 376473 15419,50 1719509 

951676 395746 308064 177464 102811 59900 
1032570 289305 382508 270087 108354 23133 

EXP: 430518 1495969 1495969 
OBS: 568891 157915,8 1277822 

EXP: 428607 1489330 925009 
ORS: 428753 970640 955898 

EXP: 515220 1111935 1510497 
OBS: 582529 989072 1417606 

EXP: 264794 1249101 1249101 
ORS: 355229 948807 1292900 

EXP: 275840 957831 957831 
ORS: 282419 688332 1158793 

EXP: 291071 1013844 1013844 
OBS: 267600 1044790 1216437 

EXP: 334450 1161346 1161346 
ORS: 560307 940002 1185899 

+ ......... -F I 
E XP: 378003 1312583 [ 1312583 
ORS: 360171 1011773 I 318349 

+ ......... + 

1387267 1387267 EXP: 

FOR PAYMENT YRS: 
~DARD ERRORS: 

399511 

620480 565416 323874 186571 108087 62974 
734670 680369 217221 147800 57099 64829 

+ ......... + I 
839313 562907 322437 185743 107607 I 62695 

1095771 510072 491853 242995 299845 I 20985 
+ . . . . . . . .  + i 

1008922 676660 387595 223278 I 129353 75364 
953222 881133 278778 197156 I 36802 25226 

+ ......... ÷ 

834325 559561 320521 184639 106968 62322 
748003 547288 274367 46231 30433 20860 

+ . . . . . . . .  + 

639774 429081 245780 141584 82025 47790 
903450 629983 58502 35451 23336 15996 

+ ......... + 

677187 454173 260153 149864 86821 50584 
527644 113657 61923 '37524 24701 16931 

+ ......... + 
I 775710 520250 298003 171668 99453 57944 

184214 130192 70932 42983 28295 19395 

876727 588000 336810 194023 112404 65489 
208204 147147 80169 48581 31980 21920 

926612 621456 355974 205063 118800 69216 

OBS: 445545 336463 336463 320050 155519 84731 51345 33799 23168 
.................................. ~ ................... + . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  + ......................................... 

4552200 3368314 2106825 1264545 700034 375411 184289 69216 
578766 453677 299060 193348 117101 77112 47562 23168 

0 
0 

0 
0 

0 
O 

62695 
20985 

204717 
52836 

353929 
72717 

517179 
85810 

1001596 
147670 

1923027 
262653 

3486O36 
452821 

5071655 
625691 

12620833 
10720~9 



A IDlY 

TABLE OF OBSERVED AND EXPECTED BY YEAR 

ACC. 
YEAR 

69 
70 
71 
72 
73 
74 
75 
76 
77 
78 
79 

PMNT 
EXPECTED OBSERVED DIFFERENCE %ER YEAR EXPECTED OBSERVED DIFFERENCE 

(PAYMENTS IN l l "S )  (PAYMENTS IN $1's) 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

4403160 4551295 148135 3 69 333078 193013 -140065 
7251043 5743889 492846 8 70 1566886 1960804 393918 
5289859 5327859 38000 0 71 3010843 3262723 251880 
4753347 4695982 -57365 -1 72 4121587 4506400 384813 
5434107 5175219 -258888 -5 73 4972020 4214487 -757533 
4477402 4166594 -310808 -7 74 3502693 3467526 -35167 
3260356 3662977 402621 10 75 4892575 4936092 43517 
2996847 3056471 59624 1 76 4655693 4270279 -385414 
2657142 2686208 29066 1 77 4477648 5166110 688462 
1690586 1371944 -318642 -23 78 4493854 4569353 75499 
399511 445545 46034 10 79 4586481 4337196 -249285 

%ER 

-72 
20 

7 
8 

-17 
-1 
0 

-9 
13 
I 

-5 
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IBNR Reserve Under a Loglinear 
Location-Scale Regression Model 

by Louis Doray 
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I B N R  R E S E R V E  U N D E R  A L O G L I N E A R  
L O C A T I O N - S C A L E  R E G R E S S I O N  M O D E L  

A b s t r a c t  

In this paper ,  we develop models for known claims, when the data are grouped into the 
usual triangle and the goal is to predict IBNR claims. We assume that  the payment for 
a certain accident and development year is composed of a deterministic part and a multi- 
plicative random error. We use aloglinear location-scale regression model for the amount 
of claims. The parameters  are estimated by maximum likelihood methods,  so that their 
asymptot ic  properties are well known. The regression model presents many advantages 
over the chain ladder method: it has fewer parameters ,  and does not underestimate the 
reserve. Moreover, it will he possible with a simulation to establish a reserve with a certain 
level of confidence (for example 80%). 

The logari thm of the error is assumed to follow certain known distributions (normal, 
extreme value, generalized loggamma, logistic and log inverse gaussian).  We derive certain 
theoretical propert ies of these distributions and prove that the MLE's of the regression 
and scale parameters  exist and are unique, when the error has a log-concave density. 

In conclusion, we advocate the use of regression models over the chain ladder method, 
since they take into account both the error involved in the estimation of the parameters 
and the statistical error inherent in the prediction of future claims, the fit of the model 
can be tested statistically and confidence intervals for the reserve can be derived. 

Keywords: Chain-ladder method; Weibull-extreme value regression; maximum like- 
lihood; prediction; generalized loggamma; logistic; inverse gaussian; consistency. 

1The author gratefully acknowledges the financial support of the CAFIR research fund and of the Natural 
Sciences and Engineering Research Council of Canada. 
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1 I n t r o d u c t i o n  

1.1 IBNI:t claims 

All insurance companies registered to do business in Canada  are required by the 

regulatory authorities to set up reserves for claims which have been incurred but have not 

yet been reported as of their financial s ta tement  date, usually December 31. In determining 

the liabilities of the insurance company, the valuation actuary must  also estimate the 

liabilities generated by claims incurred but not enough reserved (IBNER),  (also called 

reported but not settled (RBNS)). 

The distinction between these two parts of the loss reserve, the IBNR part and the 

IBNER part,  is not always made in practice, especially when the data are aggregated. In 

this paper,  by IBNR. reserve, we will refer to both types of claims. 

The pri'mary purpose of those reserves is to ensure the protection of the policyholders: 

when the insurance company is notified of these claims, it will have the reserves, backed 

by sufficient assets, to pay those claims. 

The delay in reporting the claim may depend on the type of claim (for example, asbesto- 

sis may take more than 10 years to manifest itself in a worker). The long delay observed 

in the settlement of certain claims is sometimes due to the fact that  some of them are 

resisted by the insurance compauy, put t ing into motion a long judiciary process. In other 

cases, there will be a long delay before the ultimate cost of a claim can be determined 

exactly (in workers'  compensation for example, the insurance company will have to wait 

609 



for an annu i ty  to te rminate) .  

T h e  1987 Loss Deve lopment  Study,  under taken  by the  Reinsurance  Associat ion of 

Amer ica ,  compares  the development  of losses for various lines of  business.  Automobi le  

liability was the  line where the claims got developed the fas tes t ,  while Workers '  Compen-  

sa t ion  was slower to develop. General  liability, excluding asbes tos  claims,  had a develop- 

m e n t  pa t t e rn  similar  to Workers '  Compensa t ion ,  bu t  a lit t le bit slower initially. Medical 

malprac t ice  experienced the  slowest development  among  those  lines of business.  

Due to this long repor t ing  and se t t l ement  lag, it will be extremely i m p o r t a n t  for the 

va lua t ion  ac tuary  to develop adequate  s tat is t ical  models  to project  known losses to u l t imate  

losses. 

1.2 T h e  chain  l adder  m e t h o d  and its deficiencies 

By grouping the  claims by accident year (year  in which the accident  giving rise to the 

claim occurred)  and development  year  (number  of  years elapsed since this accident  year), 

the  d a t a  can be presented in a trapezoidal array. 

In this paper ,  to i l lustrate  the various models  proposed,  we will use the  da ta  in table I 

( taken from CIA Proceedings,  Volume 20 no 1, p.183), which represents  the  liability claims 

in t h o u s a n d s  of dollars incurred by a Canadian  insurance  company  over the ten-year  period 

1978-1987. We will do the  analysis  with the  incrementa l  claims (in table 2), obta ined by 

differencing successive cumula t ive  amoun t s .  

The  problem of e s t ima t ing  IBNR claims consists in predict ing,  for each accident  year, 
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Table h Claims Incurred 

Development year 
Accident year 1 2 [ 3 4 5 

1978 8489 9785 110709 11289 
1979 12970 14766 16201 17060 
1980 17522 20305 21774 22797 

1981 21754 24338 25501 26284 
1982 "19208 21549 22769 23388 

1983 19604 22073 23296 24543 

1984 21922 24233 25374 26882 

1985 25038 28401 30545 
1986 ~ 32532 37006 
1987 139862 

11535 11661 

17714 17979 
23220 23872 
27171 27526 
24229 24932 

25155 

the ult imate amount  of claims incurred. The amount  paid by the insurance company 

for those claims is then subtracted, leaving the reserve the insurer should hold for future 

payments .  To calculate the reserve, all methods or models usually assume that the pattern 

of cumulative or incremental claims incurred or paid is stable across the development 

years, for each accident year. Since for the last accident year, only one amount  will be 

available, the reserve will be highly sensitive to this amount .  Moreover, because of growth 

experienced by the company, it will be bigger than any other amoun t  in the data set, hence 

the importance of verifying that the development pattern of the claims has not changed 

over the years. 

One of the earliest methods, and now most commonly used in the actuarial profession, 

is the chain ladder method. Assuming that for each accident year, the development pattern 

remains stable, development factors are calculated by dividing cumulative paid or incurred 
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Table 2: Incremental claims incurred 

Development year 

Accident year 1 2 3 4 5 

1978 8489 1296 924 580 246 
1979 12970 1796 1435 859 654 

1980 17522 2783 1469 1023 423 
1981 21754 2584 1163 783 ~887 

1982 19208 2341 1220 619 '841 
1983 19604 2469 1223 1247 612 

1984 21922 2311 1 1 4 1  1508 

1985 25038 3363 2144 
i 

1986 32532 4474 I 
l 

1987 39862 I 

126 
265 

652 
355 
703 

claims after j periods since incurral by the cumulative amount  after j - 1 periods. These 

factors can be weighted by the amount  each year. The year-to.year development factors 

are then applied to the most recent amount  for each accident year, i.e. the amounts  on 

the right-most diagonal. 

Using the weighted approach with the cumulative claims of table 1, we obtain the 

development factors of table 3. Projecting the claims incurred to ult imate amounts  with 

those development factors, we obtain a reserve estimate of 23,919. 

Table 3: Loss Development Factors 

Year I Development factors 

1-2 1.13079 
2-3 1.06479 
3-4 1.04545 
4-5 1.02922 
5-6 1.02023 
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Many variations have been presented for the basic chain ladder method just  introduced; 

a linear trend or an exponential growth may be assumed to be present among the devel- 

opment  factors. Instead of taking their weighted average, they would be extrapolated into 

the future. The chain ladder method can also be adjusted for inflation. 

However, the chain ladder method suffers from the following deficiencies: 

1- it implicitly assumes too many parameters (one for each column). 

2- it does not give any idea of the variability of the reserve estimate,  or a confidence 

interval for the reserve. 

3- as will be shown in section 2, it is negatively biased, which could lead to serious 

underreserving, a threat  t o  the insurer 's solvency. 

We will therefore develop a stochastic model, which involves only 5 parameters.  With 

this model, we will be able to calculate an amount  such that  there is an 80% probability 

that the reserve will be sufficient to cover the liabilities generated by the current block of 

business. 

1.3 The general model 

In this paper,  we will consider loglinear location-scale regression models of the form 

Z i = l n Y i =  X i B + a ~ i ,  I."~> 0 
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where 

and 

Yi is the  ith e lement  of vector Y (the da ta ) ,  of d imens ion  n, 

X is the  regression mat r ix ,  whose first co lumn conta ins  l ' s ,  

and whose ith row is the vector denoted  by Xi 

and ( i , j )  e lement  is denoted Xij, 

is the vector of unknown pa ramete r s  to be e s t ima ted ,  

of d imension p, 

Xi~ is the location pa ramete r  for Z~, 

a is the scale paramete r ,  

ci is a r andom error with known dens i ty  f(~).  

The  loglinear location-scale model  has  been used extens ively  in reliability theory and in 

survival  analysis  (see for example ,  Kalbfleisch and Prent ice  (1980), Lawless (1982), Cohen 

and W h i t t e n  (1988), Bain and Engelhard t  (1991)). It is easily shown tha t  the random 

variable Zi will have densi ty  

l _ f (  ~ - x,~o ), - o o  < z~ < co .  
a a 

As in Zenwir th  (1990), for the location parameter ,  we will use a + .0In j + 7J + t ( i +  j - 2 ) ,  

where i is the accident  year  and j ,  the deve lopment  year.  Taylor (1986) caut ions not 

to use cumula t ive  claims a m o u n t s ,  but  incremental  c laims in the analysis;  otherwise,  the 

e s t ima te s  obta ined would be biased, because  of the  non- independance  of the  cumulat ive  

amounts. 

We will assume that Y', > 0. To model negative values of Yi, Cohen and Whitten (1988) 
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use modified momen t  es t ima tors  and Cohen (1988), local m a x i m u m  likelihood methods .  

1.4 Outline of the paper 

Section 2 considers the lognormal  linear regression model  and presents  the  results 

of  a s imula t ion  s tudy  showing tha t  the  chain ladder e s t ima te  of the  reserve is negatively 

biased. Other choices possible for the distribution of the random error are the extreme 

value distribution, leading to the Weibull-extreme value regression model (section 3), the 

generalized loggamma (section 4), the logistic (section 5), and the log inverse gaussian 

distribution (section 6). We derive certain theoretical properties of these distributions, 

such as their moment generating function and moments. We show how the actuary can 

establish a reserve with a certain level of confidence (for example 80%), with a simulation. 

In section 7, we show that the MLE's of the regression and scale parameters exist and 

are unique when the error c in the logUnear location-scale regression model has a log- 

concave density. Under misspecification of the error distribution in a linear location-scale 

model, the M LE's of the regression parameters are shown to be consistent (section 8), while 

we present a su~ncient condition for the consistency of the ML]~ of the scale parameter, 

when the postulated model has lognormal errors. Finally, we present some remarks. 

2 L o g n o r m a l  l i n e a r  r e g r e s s i o n  m o d e l  

When  it is assumed tha t  ~i are independen t  and identically d is t r ibuted  N(0,  I) random 

variables,  we obtain the lognormal  linear regression model.  Doray (1992) has  studied 
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Table  4: Frequency d is t r ibut ion  of the IBNR 

A mount  

< 13000 

13000-14000 
14000-16000 
15000-16000 
16000.17000 
17000.18000 
18000.19000 
|9000-20000 

20000-21000 
21000-22000 

22000.23000 
23000-24000 
24000-25000 

25000-26000 

26000.27000 
27000-28000 
28000.29000 
29000-30000 

reserve under  the normal error assumpt ion  

M LE C L E  Amount M LE C L E  
0 0 30000-31000 165 152 

4 2 31000-32000 150 126 
12 11 32000-33000 103 80 
33 30 33000-34000 96 68 
62 72 34000-35000 76 47 

126 131 35000-36000 50 40 
191 199 36000-37000 36 26 
253 301 37000-38000 28 16 

323 376 38000-39000 20 5 

372 391 39000-40000 14 2 

449 441 40000-41000 13 10 
449 498 41000-42000 8 2 
393 443 42000.43000 7 3 

366 436 43000.44000 7 0 
342 375 44000-45000 2 2 

334 274 45000-46000 2 1 
285 231 46000-47000 6 0 
214 207 > 47000 9 2 

extens ively  this model ,  t ak ing  into account  the e s t ima t ion  error on the parameters  and 

the s ta t i s t i ca l  predict ion error in the model,  lie has derived various es t imators  for the 

IBNR reserve, among them the max imum likelihood e s t ima to r  and the uniformly min imum 

variance unbiased e s t ima to r  (UMVUE),  as well as an expression for the variance of the 

l a t t e r  es t imator .  The variance of the IBN R reserve is also calculated.  The joint  d i s t r ibu t ion  

of the amounts  in each cell of the lower t r iangle  is shown to follow a mul t ivar ia te  Iognormal 

( M L N )  d i s t r ibu t ion .  

To compare the t rad i t iona l  chain ladder e s t ima to r  of the reserve with the MLE, a 

s imula t ion  was performed,  assuming the model In Y;j = o,  + 3j + e0 is the true model. 
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Five thousand sets of realizations of Yij in the trapezium were randomly generated, 

where each Yq is independent LN(~i+~j,~2), where the values o f f  and 72 are the MLE's 

of the parameters.  For each set, we calculated the chain ladder estimate (CLE) and the 

MLE of the predicted value of IBNR. claims using the multivariate Iognormal distribution 

(see appendix 10.1 for the algorithm used for the simulation).  The results of the simulation 

are summarized in table 4 and figure 1. We see from those results that  the reserve has 

a distribution skewed to the right, which comes from the Iognormal assumption.  The 

reason why the chain ladder estimate, generally used by actuaries to determine insurance 

company reserves, underestimates the expected liability, is that  it does not capture this 

long.tail behaviour, as is apparent  from table 4. 

The MLE of the reserve gives 25,262, while the CLE gives 23,919. The reserve for IBNR 

claims the insurance company will hold could be set at, for example, the 8O-th percentile of 

the predicted distribution of IBNR claims, that  is at 29,019 in our example. The actuary 

could then state, that  in his or her opinion, there is an 80% probability that the reserve 

will be sufficient to meet the liabilities of the current block of business. 

Asymptotically (i.e. as the upper trapezium of data gets larger), the various variables 

to be predicted will become independent, and from that  perspective, we can consider an 

asymptot ic  confidence interval for the reserve, using the central limit theorem. The lower 

bound for the 80% asymptotic confidence interval of the reserve is 29,514, which can be 

compared with the amount  of 29,019 obtained in the simulation. 

A provision for adverse deviation could also be defined as equal to the 80-th percentile 
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of the predicted distribution of IBNR claims minus the UMVUE of the reserve (24,403). 

This gives 4616 as the PAD for the claims of section 1.2. 

3 W e i b u l l - e x t r e m e  v a l u e  r e g r e s s i o n  m o d e l  

In this section, we examine the Weibull-extreme value regression model. Let us assume 

that  ~ follows a standard type I extreme value (or Gumbel)  distribution with 

probability density function (pdf) 

cumulative distribution function (cdf) 

moment  generating function (mgf) 

mean 

and variance 

f(¢)  = exp (~ - - e  c) , --oo < ~ < co , 

FF(ee) = I - exp(-eC),  

Me(t) = I'(1 + t), t > -1,  

EE(c) = - 7  = -0..5772156649015329... ,  

where 7 is Euler's constant  

V a r ( ~ )  = a'~/6. 

The extreme value density is skewed to the left. The probability that  a s tandard normal 

random variable take a value greater than 1.96 is 0.025, while the corresponding probability 

for the s tandard extreme value is only 0.0008256. Lawless (1982, p. 17-19) and Johnson 

and Kotz (1970) discuss the properties of the extreme value distribution. 

Under this assumption for the density of ~, ¥~ has the pdf 

oeX,!O \e~,~j exp - ~ - ~  , yl > 0, 

which wil l be recognized as that o fa Weibull random variable (Hogg and Klugman (1984)). 

Under this parametrization, the shape parameter is equal to 1/a and the scale parameter 
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to • x 'O.  The hazard rate will be increasing if o < 1, decreasing if o > 1 and constant if 

o = 1, in which case the Weibull distribution reduces to the exponential  distribution. The 

mean and variance of Yi are: 

E(Y+) = eX'ar(i + o) 

Var(Yd = e2X'a[r(1 + 20) - r ( l  + a)2].  

A proof of those results is contained in Lawless (1982). 

The likelihood function based on the data z, = In Yi, is 

1;(~,o)  ; r l - e x p  .z~ . .  
i = t  0 0 

and the log likelihood is 

- -  ° 

i=1 ff 

Let us define w l  = ( z l  - X i ~ )  / 0 .  

The first and second partial derivatives of I with respect to ~i and o are 

- -  = ----  X i i  + X i j e  w+, j = I . . . .  , p .  
Off i o +=l a i=l 

at . , " t ~ 
- -  ---- -- E Wi ~ - -~ .~  Uliewi" 
8 0 '  o o i=1 O i = l  

821 1 " 
= -- X i j X i k e  , j , k  = , , . . . , p .  

821 n 2 " v .  2 " . ..1_, 
- -  = - -  / 

. .2£ - . ,  8o, ~2 + ~ ~ w, - ~ ~ ~,e +' wpe '+' 
= i=1 0 i - - t  

821 , n ' " I " 

8 B j 8 0  02 X i j  02 g'Jeta - " ~  Z X i i  wietgi' J = l . . . . .  P" 
. ~  o i=1  

In appendix ,0.2, we have listed some asymptotic properties of MLE's. The terms in 

the observed information matrix can be simplified by using the fact that  the MLE's for 
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and o satisfy the equa t ions  ~ ,  = ~ = 0. T he  observed informat ion mat r ix  Io then  

becomes  

1 
#2 

n Z l n j  ~ j  ~ i + j - 2  a+~tbl 

~ l n j  ~(Inj)Ze ~' ~ j ( l n j ) e  ¢' ~(i+j-2)(Inj)e ¢' ~(In ../) d.,,e '6. 

E J  E J( In j)e~' E j2e'' E J( i ' t ' j -  2)e~' E J  tbi'*" 

~ i + j - 2  ~ ( i + j - 2 ) ( I n j ) e  ~' ~ j ( i + j - 2 ) e  °' ~ ( i + + j - 2 ) ~ e  ~" ~ ( i + j - 2 ) ~ e  ~" 

. + E w ,  E ( InJ ) ,~  ~' E J ~ J  e~' E C i + J - 2 ) ~ ,  e~' " + E , ~ * "  

where  ~ = (zl - X i~) /b .  

The asymptotic variance-covariance matrix of the parameters is equal to the inverse of 

/o, and could be found using a symbolic computational language like MAPLE, or evaluated 

numerically. The expected information matrix can also easily be obtained (ref. Lawless 

(1982),  p. 301-302). 

Maximizing  the log likelihood with the da t a  of section 1.2 by us ing the Newton-Raphson  

a lgor i thm or the SAS (1985) LIFEREG procedure,  we find the  MLE's ,  es t imated  s t anda rd  

errors and correlation mat r ix  appear ing  in table 5. In sect ion 7, we show that  for certain 

locat ion-scale models,  the MLE's  exist and are unique;  this  is t rue in part icular  for the  

Weibul l -ex t reme value regression model. 

All pa ramete rs  are highly significant (at the  0.0001 level). It should also be noticed tha t  

the  scale pa ramete r  e s t ima to r  b is not independen t  of the  location parameter  es t imator ,  as 

is the  case in normal  regression. This  complicates  s o m e w h a t  the  es t imat ion of the  IBNR 

reserve, 
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Table 5: Weibu l l . ex t reme value regression 

p a r a m e t e r  MLE i s t d .  error 
a 9.02897 0.11505 

- 3 . 2 6 6 3 7  0.25407 
7 0.40378 0.10372 

i 

0.10811 i 0.01641 
a 0.02459 0.00642 

correlat ion mat r ix  
I 0.429 -0.515 -0.461 -0.017 

0.429 I -0.972 0.214 0.0004 

-0.515 -0.972 l -0.280 -0.006 

-0.461 0.214 -0.280 I 0.011 

-0.017 0.0004 -0.006 0.011 l 

A Q-Q plot of the residuals appears in figure 2. It shows no evident departure from 

the extreme value distribution. It should be noted that the above standard errors and 

correlat ion ma t r i x  of the  paramete rs  are based on the  jo int  a sympto t i c  mul t ivar ia te  normal  

d is t r ibut ion  of the  MLE's .  This  approx imat ion  will be appropr ia te  only when the number  

of ceils in the  t r apez ium of da ta  is large enough  (in our example ,  we have  45 cells). 

How large is large enough?  Bain and Enge lhard t  (1991) considered this problem for 

the  Weibul l  d i s t r ibu t ion ,  bu t  wi thout  covariates in the  location pa ramete r .  They  provide 

a table giving the  bias of the MLE of the  shape  pa r ame te r  of the Weibull  dis t r ibut ion 

for different sample  sizes. With  a sample  size of 40, the  MLE overes t imates  the  shape  

pa rame te r  by only 3.5%. If the sample  size is only 10, care should be taken,  since the 

bias is then  a round  15%. Those  factors were obta ined by a s imulat ion s tudy.  We will not 

correct for the  bias in our  analysis ,  but  we should r emember  tha t  this  might  be a good 

idea for smal l  sample  sizes. 

To test  for a = 1 ( test  o fexponen t i a l i t y  of Yi), we can use the asympto t i c  normali ty  

of  the  MLE's ;  unless the  sample  size is large, Lawless (1982) caut ions  tha t  the normal  

approx ima t ion  migh t  not  be very good. A likelihood ratio test  can also be performed 
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using the test stat ist ic 

,x  : -2log ~(~,~), 

where ~ is the M L E  of  ~ under  He : a = 1:, the l ike l ihood ra t io  stat ist ic A has an asymptot ic  

X~I) d is t r ibu t ion .  Per forming a simple normal  test leads us to reject the hypothesis H0 : a = 

1. A Weibul l  d is t r ibu t ion  is therefore more appropr ia te  for the da ta  than an exponent ia l  

d i s t r i bu t ion .  

We now turn our  a t ten t ion  to the problem o f  pred ic t ing the I B N R  reserve. [n a l o g -  

l inear  locat ion-scale model ,  the total  er ror  in the log predicted amount  Z~l is composed 

o f  two parts:  an est imat ion error  on the parameters  and a stat is t ica l  predict ion error.  

We saw ear l ier  that  in the Weibul l -ext reme value regression model,  the est imators of  the 

parameters  have an asympto t ic  mul t ivar ia te  normal  d is t r ibu t ion ,  whi le the process er ror  

has an independent  ex t reme value d is t r ibu t ion.  

Let Yk~ denote the random variable for the amount  to be predicted in accident year k 

and development year I, and let us define Z&i = In Ykl. The random variable Z&i being 

equal to Zkl = ~ + ~ In k + ~,k + i(k + I - 2) + 6'e, we can appreciate the difficulty involved 

in trying to get its exact distribution. For this, we would need to find the distribution of 

the product  of a normal and an extreme value random variable (b and ~) and convolute 

this with a non-independent normal random variable. To get the distribution of Yti, the 

distribution of Z&l is then exponentiated. It is highly doubtful that  such a distribution 

would have a simple density. Instead of trying to accomplish this task, we will perform a 

simulation study to evaluate IBNR reserves. This will make it possible to find a confidence 
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interval for the reserve. 

Table 6: 
sumption 

Frequency distribution of the IBNR reserve under the extreme value error as- 

Amount  Frequency 

< 15000 0 
15000-16000 1 
16000-17000 12 
17000-18000 54 
18000-19000 144 
19000-20000 357 
20000-21000 664 
21000-22000 904 
22000-23000 982 
23000-24000 791 
24000-25000 605 
25000-26000 285 
26000-27000 142 
27000-28000 46 
28000-29000 8 
29000-30000 4 
30000-31000 1 

> 31000 0 

In appendix 10.1, we show how to generate a multivariate normal distribution, using 

the Choleski decomposition method. To be able to simulate the random variable Ykto we 

just  need to show how to generate a standard extreme value random variable ~, with cdf 

P[~ <- ~0] = 1 - exp( -e '* ) ,  - o o  < ~o < oo. 

This cdf is easily inverted, yielding 

~ = l n ( - I n ( l - U ) ) ,  0 <  U < 1, 

625 



Figure 3: IBNR reserve for Weibull-extreme value regression 
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where U is a uniform random variable on the interval [0, I.]. Note that I - U  is also uniform 

on [0, 1], simplifying the algorithm. 

Table 6 and figure 3 contain the results of a simulation of ,5000 values for the IBNR 

reserve. The mean of the IBNR claims is 22,402 and the s tandard deviation of this est imate 

is 2011. The 80-th percentile for the simulated distribution of the IBNR reserve is 23,980. 

Comparison of the extreme value and the normal distr ibutions shows that  the former 

has a heavier left tail and a lighter right tail than the latter. The est imation error on the 

regression parameters  is of the same order in both models, while the stochastic error is 

smaller in the extreme value case. 

4 Generalized loggamma regression model 

The regression model used in this section will be the following 

where ci has a loggamma distribution with pdf 

f (¢ ;q)  = ~ q  exp[q ( q c -  )1, - o o <  c < cx~, 

and the shape parameter  q can take any non-zero value (ref. Lawless (1982), p. 322-328). 

Under this parametrization,  as q tends to O, we obtain the normal distribution with pdf 

1 
f(¢) = - ~ e x p ( - ¢  / 2 ) ,  - o o  < ~ < oo.  

The following special cases for the random variable Yi can be obtained for certain 

values of the parameters  q and a: Weibul] (q = 1), exponential (q = ~ = 1), lognormal 
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(q = 0) and reciprocal Weibull (q = - I ) .  The  densi ty  is negat ively skewed for q > 0, 

with abso lu te  skewness  and kurtosis  increasing as q increases;  it is posit ively skewed for 

q > 0. A likelihood ratio test can be performed to test  for the  appropr ia teness  of  a certain 

m e m b e r  of the  family. 

Prent ice  (1974) and Farewell and Prent ice  (1977) have s tudied  the  proper t ies  of this 

general ized d is t r ibut ion .  If we define the  pa ramete r  k = q-2, then  it has  m o m e n t  gener- 

a t ing funct ion  F(k + t), t > - k ,  mean tb(k) and var iance tb'(k), where tb(.) and ~'(.) are 

respect ively  the  d i g a m m a  and t r i g a m m a  funct ions,  the  first and second derivatives of the 

g a m m a  funct ion.  The  series expans ion for these two funct ions  are: 

n- t  1 
tb(n) = - 7 +  ~ ,  for an integer  n > 2  

= 

~ ' (z )  = ~ ( z + k )  -2, z ~ 0 , - l , - 2  . . . .  
k=O 

T h e  log likelihood function gives 

l (13,a ,q)  = ~ l n f ( w , ; q ) - - l n a ,  
i = l  

where wi = (zi  - X d ~ ) / a  and 

In f ( w i ; q )  = In ] q I --2q -2In q - In r(q -2) + q - 2 ( q w  i - eq~) .  

The  first and  second partial  derivat ives of I with respect  to /3 and a gives 

- -  = e x p ( q w , ) -  1], j = 1 . . . . .  p. 
O#j .= qa I 1 

al V"I__" wi I } 
= Z . . , t - - [ e x p ( q w i ) -  1 ] -  -- 

i = 1 0 f f q  0 
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n - 1  
021 = ~ XijXi~,(-~-)exp(qwi) 

OBiO#~ ~:~ 

0o.---- ~ = [1 -- wy e x p ( q t o l ) ] -  ~ [ e x p ( q w l )  -- 11 
.= 

n _ 1  
OZl = ~ Xi , (~)[wlexp(qwi )  + -l ( exp(qwl ) -  1]. 

O~jOa i=1 q 

Again,  using the fact t ha t  the  MLE's  sat isfy ot ot = 5~" = 0, we can simplify the  last two 

par t ia l  derivatives and obtain  

and 

021 
~ ' ~  ~.bl = - ~ [ n  + ~ t b i : e x p C q ~ , ) l  

0~1 (~,~) 1 
Ol~jOa = - ~  ~ Xijtblexp(qtbl). 

To find the  MLE's  of the  pa ramete rs ,  we can use the  approach  sugges ted  by Farewell 

and Prentice (1977). The  pa r ame t e r  q is fixed at a value q0 and  the profile log likelihood is 

maximized using the Newton.  Raphson a lgor i thm over the  regression pa rame te r s  ~ and the  

scale pa ramete r  a.  This  gives the es t ima tes  (~(q0), O(qo)). Th i s  procedure  of maximiz ing  

the  profile log likelihood is repeated for many  values of  q0, unti l  an overall m a x i m u m  of 

the  log likelihood over qo is a t ta ined.  Th i s  value gives the  MLE ~. 

The  SAS package fits generalized l o g g a m m a  regression models .  Using the SAS LIFEREG 

procedure for complete  da ta ,  we find the  results  appear ing  in Table 7. 

The  default  convergence criterion used by SAS is tha t  a m a x i m u m  is a s sumed  to have 

occurred if the relative change in the paramete rs  is less than  0.001. However, as can be 

seen from table 8, the likelihood keeps increasing beyond this value of ~. The  convergence 

criterion we used is tha t  the  score s ta t is t ic  with respect  to each pa r ame te r  should be of 
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paramete r  

Table 7: Generalized l o g g a m m a  regression (SAS program)  

MLE std.  error correlation mat r ix  
a 9.32243 0.02789 1 0.469 -0.521 -0.160 -0.497 0.497 

-3.12566 0.07028 0.469 1 -0.991 0.645 -0.150 0.150 
7 0.35670 0.02969 -0.521 -0.991 I -0.626 0.124 -0.123 

0.10058 0.00357 -0.160 0.645 -0.626 1 -0.087 0.086 
0.04035 0.03187 .0.497 -0.150 0.124 -0.087 1 -0.981 

q 9.99342 7.63421 0.497 0.150 -0.123 0.086 -0.981 1 

the order of 10 -s .  Past  the  value ofqo = 31.623 (corresponding to k = q~.2 = 0.001), some 

e lements  of the  informat ion mat r ix  become so large tha t  it cannot  be inverted and the 

s t anda rd  Newton-Raphson  algori thm fails. 

Table 8: Generalized Ioggamma  regression for various values of q0 

qo ~(qo) 9(qo) ~(qo) i(qo) 
0 8.97986 -3.14641 0.30881 0.12298 
I 9.02897 -3.26637 0.40378 0.10811 
2 9,15105 -3.19165 0.38375 0.10369 
3 9.24020 -3,13178 0.35787 0.10264 
4 9.27974 -3.12132 0.35336 0.10188 
6 9.30818 -3.12572 0.35608 0.10088 
8 9.31835 -3.12611 0.35666 0.10061 
10 9.32308 -3.12419 0.35609 0.10063 
20 9.33019 -3.11565 0.35"2296 0.10088 
30 9.33340 -3.11023 0.35061 0.10092 

~(qo) t(qo) 
0.31380 -11.70862 
0.24588 -8.66845 
0.17552 -7.82173 
0.12742 -7.23110 
0.09803 -6.64823 
0.06590 -5.68347 
0.04950 -5.03186 
0.03964 -4.62194 
0.01986 -3.87515 
0.01324 -3.68571 

A few remarks  should be made  here. 

1- the  likelihood is so flat t ha t  it makes  the s t andard  error of ~ (7.63421), calculated 

a s suming  asympto t ic  normali ty ,  totally unreliable. Bain and Enge lhard t  (1991, p. 

393) report  tha t  the asympto t i c  normal  dis t r ibut ion for k will not  be very accurate  
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unless the sample size is greater than 200 or 400. Farewell and Prentice (1977) note 

that  the skewness in the ~ distribution is related to an asymptotic variance that  

i ncreases  rapidly as Iql increases. To get a confidence interval for ~, a likelihood ratio 

test would be preferable. This interval for ~ would include all the values q0 satisfying 

-2[In t(#,/~, O) - In t(qo,/~(qo),b(qo)] LS 3.841. 

2- the correlation between b and ~ almost equal to -1  should be noted. From table 8, 

we can see that as q0 increases, b(q0) decreases. Cox and H'inkley (1968) have shown 

that  in the general regression model Z = a + X ~  + at(q) ,  (&,b,~)  are asymptotically 

independent of ~, if the columns of X add to zero. 

3- The regression parameters (c~,~,'7,t) for any fixed value of q0 are very close to those 

obtained in the normal and extreme value regression, and so is their s tandard error 

and their correlation matrix. 

It should be remembered however that ,  although the MLE q cannot be found accu- 

rately, we know that it exists and is unique, because of the log-concavity of the loggamma 

distr ibution (see section 7). 

If the exact value of ~,, was available, this would make the estimation of E(IBNR 

claims) much more complicated than in the normal or extreme value cases, because of the 

non-independence of ~ with /~ and b. In this model, Ykt is equal to 

Ykl = e ~+~lntt÷Sk+g(~+t-2)÷#~(#), 
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and we can see tha t  the est imation error on the  pa r ame te r s  is not  i ndependen t  of the 

process error c(~), since ~, b are e s t ima ted  using the same  set of past da t a  which is used 

in e s t ima t ing  ~. 

To assess the  adequacy of the l o g g a m m a  regression model ,  we fitted tha t  model  with 

a fixed q value,  q = 10. Figure 4 presents  the cor responding  Q-Q plot. Since the left tail 

of the  d is t r ibut ion is too short ,  we will not s imula te  the  IBNR reserve; however,  Devroye 

(1986) presents  many  algor i thms to genera te  g a m m a  r andom variables. 

5 Logistic regression model 

The  logistic linear model is 

Zi = In Yi = XiB + eel,  

where c has a s t andard  logistic d is t r ibut ion with (see Lawless (L982), p. 46) 

pdf f(~) = e' 

cdf F ( E ) =  1 - ( l + e ' )  - l ,  

mgf  F(I + t)F(L - t ) ,  I t 1< L, 

mean E(~) = 0, 

variance Var(e) = rr2/3. 

The  dens i ty  of the  logistic d is t r ibut ion somewha t  looks like the s t andard  normal  density.  

The  s y m m e t r y  of the pdf  around ¢ = 0 implies tha t  there is probabil i ty 1/2 tha t  the  amoun t  

Yi be unde r s t a t ed  or overstated.  T he  probabil i ty tha t  a s t anda rd  logistic r andom variable 
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exceeds 1.96 is 0.12347. The  logistic d is t r ibut ion  has thick tails, which behave  like tha t  

of  the  exponen t ia l  distr ibution.  The  loglogistic is a special  case of the Burr  d is t r ibu t ion ,  

with the  pa rame te r  a equal to 1 (ref. Panjer  and Wi l lmot  (1992), p. 120). 

T h e  random variable Zi has densi ty  

1 exp[ zi -ox'° ] 
lz ,(zi)  = - [I + e x p ( " - x ' ~ ) ] 2 '  - o o  < z~ < oo, 

and Y~ has  the Ioglogistic density 

~ex,~ ~ ,~Z~/  1 + ~ , ~ > 0, (S . l )  

where again  e x'~ is the scale pa ramete r  and l/~r the  shape  parameter .  In proposi t ion 5.1, 

we derive the  momen t s  of order k of a Ioglogistic r andom variable with densi ty  5.1 and 

show tha t  its m o m e n t  generat ing funct ion does not exist .  

P r o p o s i t i o n  5.1: If Y has densi ty 

61/~ yl/¢,-i 

fY(tt) = ~ [1 +~l/°yl/°]2' y > O, 

then  

E(Y k) = 6~-('+IJ{I - cr(k + l)]Tr cosec[xa(k  + I)], 

for all k such tha t  ~ - I < k < ~ - I, and the  m o m e n t  genera t ing  funct ion of Y does not  

exist .  

P r o o f :  E ( y k )  = f~o Y~61t'Til~TrT7~] . 

By le t t ing It I/¢ = u, we obtain 

E(Yk)  = 6 lh' [oo 
;j~{k+ll-I 

[1 + 611~v] zdv" JO 
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Using the formula 

~oo zu;'z)2dz = l--"Tr c o s e c . . ,  
(l + fl , '  

the result is easily obtained. The integral will have a finite value iff 

o r  

- I  < ( k +  1 ) ¢ - 3  < I 

2 4 
- - l < k <  - - - 1 .  
ff a 

The moments of all positive orders do not exist; therefore, the moment generating 

function of Y does not exist. D 

The likelihood function is 

'~ 1 exp(w l )  
{z e x p ( ~ i ) 1 2 1  + m 

where w ,  = '1-o x~p, from which we get the log l ike l ihood 

n 
l(fl ,  a )  = ~ { ~  - 21n(Z + e ~') - I n  o]. 

i = l  

For first and second order partial derivatives with respect to the parameters,  see 

Kalbfleisch and Prentice (1980; p. 54-57). The SAS procedure LIFEREG was used to 

fit a logistic regression model to the data of section 1.3. The MLE's of the parameters,  

their estimated standard error and the estimated correlation matr ix appear in table 3.5. 

A Q-Q plot of the residuals in figure 5 shows that the logistic distribution does not 

provide a very good fit for the right tail. We will therefore not a t t empt  to predict the IBNR 

reserve, but just indicate how it could easily be done by simulation, if it was appropriate 

to do so. 
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paramete r  M LE 
a 8.94023 

-3.31681 

7 0.38904 
t 0.11789 

a 0.17957 

Table 9: Logistic regression 

std.  error correlat ion mat r ix  

0.13799 1 0.437 -0.516 -0.540 0.039 
0.30143 0.437 l -0.964 0.078 0.072 
0.12058 -0.516 -0.964 l -0.169 -0.083 
0.02004 -0.540 0.078 -0.169 l 0.025 
0.02203 0.039 0.072 -0.083 0.025 1 

T h e  loglogistJc model for V~l is Ykl = e ~+~l"~+~k+q~+l-2)+~'. The  joint asymptot ic  

d i s t r ibu t ion  for (~,6") is mul t ivar ia te  normal  with pa ramete r  e s t ima te s  given in table 9 

and  can be easily s imula ted  (see  Appendix  10.1). Invert ing the edf of the  logistic random 

variable  ~ yields 

I - U  
r = l n ( - - ~ - - - ) ,  where U is uniform [0,1]. 

T h e  value of is then exponen t ia ted  to give Fkl. 

6 Log Inverse Gaussian regression model 

The  inverse gauss ian  regression model  for ¥, is Y~ -- e xm+'~, where the multiplicative 

error  e c is a s sumed  to have a s t anda rd  inverse gauss ian (IG),  or Wald dis t r ibut ion,  with 

dens i ty  

(v - 1)2~ 
fv(v) = (2~'Av3)-t/2exp -----~--- , {  u > O, A > O. 

This  long-tail positively skewed dis t r ibut ion with exponent ia l  tails has a shape similar 

to t ha t  of the lognormal  d is t r ibut ion (ref. Cohen and Whi t t en  (1988), p. 77) and is 

located between the g a m m a  and lognormal  in Pearson 's  sys tem of dis t r ibut ions ,  which 

637 



shows  possible regions of variation of the skewness and kur tos ls  ( Jorgensen  (1982) ,p .  19). 

To learn more  about  the inverse gaussian d is t r ibu t ion ,  see Chh ika ra  and Folks (1989) and 

Jo rgensen  (1982). Here are some of its i m p o r t a n t  proper t ies .  The  m e a n  equals I and the  

var iance  A. It is un imoda l  and a member  of the exponen t i a l  family. If V is IG(1,A) ,  and 

a > 0 is a cons tan t ,  aV is IG(a ,aA) .  The sum o f n  i ndependen t  /G(1 ,A)  is IG(n ,A) .  

Taking  the log of'Vi, we obtain  the loglinear model  

Zi = InYi = Xi~ + ~i, 

where  ¢ has a log inverse gauss ian  (LIG) d is t r ibut ion.  The  pdf  of ¢ is now derived. 

Let ¢ = InV,  where V is IG(1,A) .  Then  V = e' and d V [ d ¢ =  e ~. It follows that  

(e' - I)21 

= (2~Ae , )_ l /2exp [_ (e '  - 2 + e-~)] 
2A 

= (27rA)-1/2e-C/2e I/'x e x p [ - - ~  cosh (], (6 . t )  

where cosh ~ = (e'  + e - ' ) / 2 .  

In the next  two proposi t ions ,  we derive the m o m e n t  genera t ing  funct ion and the mean 

of  the  LIG dis t r ibut ion .  

P r o p o s i t i o n  6.1: The  mgf  of the LIG dis t r ibut ion with pdf  (6.1) is 

M,( t )  = (27rA)-112etl~2Kii2_t(1/A). 

Proof: Let the constant C = (27rA)-ll:e ]/~. Then 

/5 Me(t) = E ( e U ) =  et ' f ( ( )d~ 
~ o  

= C e '{ - cosh ~ . 
oo 
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Using the formula  

/~oo exp[-az  - = 2Ko(I/A), £cosh~ld~ 
A 

on page 309 of Gradsh t eyn  and Kyzhik (1980), we get  

Me(t) = (2rA)-1/2et/~2Kt/2_t(l/A), 

for t c [ -oo ,  1/2], where Ko(-) denotes  the Bessel funct ion of the  third kind of order  a .  

P r o p o s i t i o n  6 .2  

E(~) = e m { - - r  - In(2/a) - ~ (-1)'~(2/a)~ 
~=t n . n !  } 

P r o o f :  We know tha t  E(c) = M~'(t) It=0. 

The  reader  will apprecia te  the d imcul ty  involved in tak ing  the  der ivat ive  of M, ( t )  with 

respect  to t, since we need to differentiate with respect  to the  order  of the  Bessel funct ion.  

From Abramowi t z  and Stegun (1972), p. 445, we get 

0 
~ K a ( z )  la=l/2= -V~Ei(-2z)e~: ,  

e- !  where - E i ( - z )  = E l ( z )  = f~O.Tdt" So 

E(~) = (2x~)-112ellX. 2v[~El (2 /~ )e l lX  

= e21~Et(2/A), 

where the  series expans ion for E l ( z )  is 

El(z) = -3, - In z - 
n'n! 

n--I 
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Let us now consider the estimation of the parameters A and /3. Yi has an inverse 

gaussian distr ibution with parameters  (e x~, AeX'~). The likelihood function is 

{ (yi--eX'~) ~} 
L(# ,  ~) = I I  ex'~(2~eX'~Y~) -'/~ . e x p  7~x,~~ ' 

i =1  

and the log likelihood is 

i = l  

(Yi --  e X ; ~ )  2 

2AeX~y i " 

The partial derivatives are 

so that  A nex~a~; • 

OI n - -1  f :X,0)2 

: ~.: 5i" + .~,%, ' 

OI ~ Xii e_X~O eX~O] 
= -~i-[~ + y, - O # i  i = l  

021 ~ .  I (lli - eX~°); 
= 2.., OA 2 2A 2 A3eX,~y i i=! 

021 = ~- -X i j r  .e_X, ~ eX,O/yl] 
OAO~i i=l 2A2 [Y, - 

X~jXik, ,e_X, ~ _ eX,O/y~] = - - ~ - - t - r  

To find the MLE's of/3 and A, one could use the Newton-Raphson algorithm. The 

log-concavity of the LIG distribution will guarantee the existence of unique MLE's (see 

section 7). 

The quantiles of this distribution could be obtained from the IG distr ibution,  since 

P[~ <_ col = p [ e '  < e"]  = p [ v  _< e~'l, 
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where Y ~ I G .  Therefore the q quantile of the LIG distribution is equal to the log of 

the q quaati le of the IG distribution. Those can be calculated or obtained from a table, 

e.g. Koziol (1989). If an inverse gaussian regression model was found to be appropriate,  

to simulate Y~l = e '~+$h~+~+z{~+t-2)+', we would need to simulate e ' ,  which is IG( I ,A) .  

Michael, Schucany and Haas (1976) developed an algorithm to simulate such a distribution. 

7 Exis t ence  and  uniqueness  of M L E ' s  

In this section, we show that  all the distributions used in this chapter  for the error 

e are log-concave. A consequence of this fact is that the NILE's will exist and be unique, 

al though they need not be finite (ref. Burridge (1981)). When convergence is achieved in 

the Newton-Raphson algorithm, this implies that  we found a global maximum,  not just a 

local maximum.  

Let us consider the loglinear location-scale model 

Z~ = In Y~ = X ~  + aci. 

If we reparametrize to ¢ = l ] a ,  the log-likelihood of the data  becomes 

l ( a , ~ )  = nlnq5 + ~ l n  f(w~) 
i=1 

where w~ = (z~-  X~/3)$ and f ( - )  is the density function of the error ¢~. Since wl is a linear 

function of each of the parameters  // and ¢ and is therefore concave, and the function 

In is concave, I will be concave provided lnff(.) is concave (ref. Burride (1981)). We 

have therefore shown the remarkable property that,  in a Ioglinear location-scale regression 
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model, the existence of the MLE's does not depend on the data but only on the log- 

concavity of the density of the error ~. We now show this is indeed the case for the five 

distributions used so far. 

1- I f ~ , , - N ( O , l ) , f ( ~ ) =  exp(-~/2),andlnf(Q= K-~/2;so~Tslnf(Q=-I < 

0 V~. 

8z 2 .  I f  ~ ~ ext reme value, [ ( Q  = exp( ,~  - e ' ) ,  and In f ( Q  = ~.~- eC; so ~ . ] n . f ( Q  = - e  c < 

0 Vc. 

3- If c ~ generalized loggamma, 

l q] -2q .... ~, .f(~;q) = F(~q exp[q t~q-eqe)], 

az 
and In/(~;q) = K + q-2(~q _ eqC); then ~irln f(~:q) = -e qc < O, V¢. 

logistic, er . f(~) -- -r 4- If E ~ f(~) = ~'rp', then In = c-21n(I+e c) and ~In/(~) = ~f~ 

0 W. 

5- If c ~ LIG, f(~) (27r.Se')-½ '-(~'/=-'-'/=~=' c {~'/=-'-'/=)= = exp[ 2a , j; so In f(~) = K - ~ - 2a , 

Oln f(Q I e' - - e - '  

2~ 2 2~ 

and ~ln f(e) = _(~.~Z~) < 0 Ve. 

An example of a distribution for ~ which does not have the property of log-concavity 

for all ~ is the Student ' s  t distribution with n degrees of freedom, and density 

(I + ~2/2n) -(~+1)/2 
f(~) = v'~(I/~,~/2) 
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T h e n  In f(~) = K - ~(n + l ) ln(1  + ~2/n),  

a 
In f(~) = - ( n  + l )e / (c  2 + . ) ,  

I ~ " - "  which is positive for e > ,~/n" or c < - v / ~ -  and  ~ In f(~) = - ( n  + q%//V.~,r, 

8 Cons i s t ency  of the  p a r a m e t e r s  u n d e r  e r r o r  misspecificati~ 

Gould and  Lawless (1988) invest igated the consis tency of the m a x i m u m  likelihood 

e s t ima to r s  of the  regression pa ramete r s  under  misspecif icat ion of the  error d is t r ibut ion in 

a linear locat ion.scale  model.  

The  pos tu la ted  model is 

Z =a+X~+c,~, -oo< ~< oo, (8.1) 

where a is a scale pa ramete r  and ~ has a specified d is t r ibut ion with densi ty  f(~) .  They  

a s sume  tha t  the true unknown model is given by 

Z = # 0 + X # + ~ w ,  - o o <  w <  co, (8.2) 

where tu has  densi ty  g(w). The  location-scale s t ruc tu re  of the  pos tu la ted  model  has the  

correct form; only the error dis t r ibut ion is misspecified. 

If the  following three a s sumpt ions  are satisfied, 

I- the  covariates are centered; 

2- all the  expec ta t ions  below exist  and 
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3- n - I ( X ' X )  is bounded as n ~ co, 

White (1982) proves that the MLE's of ( a , ~ , a )  converge in probability to a unique limit 

(a ' ,~3" ,o ' ) .  Gould and Lawless (1988) then show that  ~ = p" and /J is therefore a consis- 

tent est imator of #. In addition, for & and 8 to be consistent est imators  of go and r ,  they 

must  satisfy the two equations 

ET(~-~-W log W ) = O 

and 

0 
E T ( W  - ~ - I o g ( W )  "4" 1) = 0 (8.3) 

where W = ( r w  + po - a ' ) / a "  and ET indicates that  the expectation is taken with respect 

to the true error distribution g(w) .  

Gould and Lawless (1988) also analyze the asymptot ic  efficiency of the MLE based on 

the correct model. We will derive conditions that g(w)  must  satisfy in order for d and b 

to be consistent estimators of#0  and r ,  when the error e in the postulated model (8.1) has 

a normal N(0,  1) distribution. 

L e m r n a  8.1: Under the assumption of standard normal errors in model (8.1), a sufficient 

condition for 5 and & to be consistent estimators of #o and v is that  E ( w )  = 0 and 

V a t ( w )  = 1. 

1 e-(2/2 P r o o f :  If f(ee) = ~7~ , then ~ |ogf (ee)  = - ( ,  and the equations (8.3) become 

ET(W) ~- 0 and E T ( W  2) = 1. 

Since W = ( r w + p o - a ° ) / a  °, the condition E T ( W )  = 0 implies that  #o = a ° i.e. df is a 

consistent estimator ofpo.  I f E T ( W )  = 0, then E T ( W  2) = V a r T ( W )  = ( r / a ' ) ~ V a r ( w )  = 

J 
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I. The condition Var(w) = I will imply that  r = a ' ,  i.e. that b is a consistent es t imator  

of r .  O 

The consistency of ~ and 0 therefore depends only on the first two moments  of the 

distribution of w, when the postulated model is lognormal linear. 

We must point out here that one of the assumptions  for the above development to be 

valid is that n-1(X'X) be bounded as n ~ or. This condition is not verified in the model 

Y;j = a + j 3 1 n j + T j + t ( i + j - 2 ) + ¢ , / .  

The covariate i would need to be removed from the model, for example by normalizing the 

amounts  Y~j, in order for n-I(X'X) to be bounded as n ~ oo. 

9 Conclusion 

In this paper, we have presented an anthology of models differing between them only 

in the distribution assumed for the error ¢. To discriminate between the normal, extreme 

value, logistic and Ioggamma distribution for ¢, we can assume that ¢ belongs to the 

generalized log_F distribution (Prentice (19774)), with pdf 

.f(~) = (ml/mT)"~'e~'[l + rule'°/m2] -{'~'/'~). 
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After  finding the  MLE's  (ml , rh2) ,  we can perform a l ikelihood ratio tes t  for 

( m , , m 2 ) =  ( 1 , 1 ) :  

(ml ,m2)  = (1 ,oo)  : 

logistic d is t r ibut ion  

ex t reme value d i s t r ibu t ion  

generalized I o g g a m m a  dis t r ibut ion  

(ml ,m2)  --. (oo, oo) : normal  d i s t r ibu t ion ,  

to select one part icular  member  of the  family. Gould (1986) did an ex tens ive  s tudy  of the  

locat ion-scale  model with the error ~ following the log F d is t r ibu t ion .  Her conclusions are 

t ha t  if one tries to es t imate  two shape  pa rame te r s  as in the  log F family,  the precision of 

the  e s t ima t e s  may be so low as to make  them vir tual ly un in fo rmat ive .  However, as we 

have also observed,  the MLE ~ of the  regression pa r ame te r s  is qui te  robus t  with respect 

to misspecif icat ion of the d is t r ibut ion of ~. 

N u m e r o u s  other  researchers have in the  past  also encoun te red  d imcul ty  when trying to 

e s t ima t e  the  shape  pa ramete r  of the  generalized l o g g a m m a  dis t r ibu t ion .  Lawless (1982, 

p. 237), observed tha t ,  even with sample  sizes of 200 or 300, it is not  uncommon  for the 

N e w t o n - R a p h s o n  algori thm not to converge to the MLE ' s .  Because  in usual  insurance 

s i tua t ions ,  the t rapezium of da ta  conta ins  a small  n u m b e r  of  cells (in our case, 45 obser- 

va t ions  with 5 parameters  to es t imate ) ,  the ac tua ry  migh t  encoun te r  problems with this 

d i s t r ibu t ion .  According to Prent ice  ( t974) ,  two d i s t r ibu t ions  in the  i o g g a m m a  family with 

very different values of the shape  pa r ame t e r  k, will look very similar ,  creat ing est imation 

problems.  The  ext reme value d is t r ibut ion  (q = t) is difficult to d iscr iminate  from the 

normal  dis t r ibut ion (q = 0), when the sample  size is small .  

In view of these facts,  we therefore r ecommend  t ha t  a s imple d is t r ibut ion  be assumed 
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for ~, like the extreme value or the normal. After comparing the log likelihood, fit can 

be assessed by a Q.Q plot. If a symmetric  distribution is needed, the normal distribution 

should be assumed for ~, since it is the only symmetric  member  of the generalized loggamma 

family. Fitting the normal model is useful for finding initial parameter  estimates for the 

extreme value model. The estimated IBNR reserve can then be easily calculated under 

both assumptions.  

The assumption of a normal distribution for ~ presents one advantage over that  of the 

extreme value distribution. When reserves are to be discounted for interest, we can still 

find the distribution of the present value of the future payments .  If the force of interest 6 is 

constant  over a year, it follows from a property of the Iognormal distribution that the joint 

distribution of the discounted value of the future payments  is also multivariate Iognormal. 

Stochastic interest rates could also be built into the model and the reserve estimated by 

simulation. 

In conclusion, regression models present many advantages over the chain ladder method: 

they have fewer parameters  and do not underest imate the reserve; the properties of the 

est imators  of the parameters  have been well studied; they take into account both the 

error involved in the estimation of the parameters  and the statistical error inherent in the 

prediction of future claims; the fit of the model can be tested statistically by a Q - Q  plot; 

and confidence intervals for the reserve can be calculated with a simulation. We therefore 

strongly advocate the use of regression models. 
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10 A p p e n d i c e s  

10.1 Algorithm to generate a multinormal random variable 

To s imulate  the distribution of the IBNR reserve, we need to generate a M L N ( I ~ , ~  ) 

random variable. The following algorithm was used. 

1. Generate Z .,. M N ( O , [ ) ,  using the Box-Muller t ransformation 

ZI = ( - 2 1 n  Ui)cos(27rU2) 

Z2 = (--2 In U2) cos(27rU~), 

where Ut and U2 are i.i.d., uniform on (0, 1). 

2. Transform Z to Y, a M N ( p , ~ )  distr ibution: 

Y = I ~ + C Z ,  

where ~ = C C '  and C is calculated from the Choleski factorization algorithm (ref. 

ell -~ V / ~  
j - I  

Cij kfi 

Cii = ¢Yii -- C,~L 
] k=l 

Kellison (1975)): 

3. Exponent ia te  each component  of Y 
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lO.2 A s y m p t o t i c  p r o p e r t i e s  of  M L E ' s  

If Xi . . . . .  X,~ is a random sample of size n from the density /(z;0_), where 0 = 

(01 , . . . , 0p+ i )  contains the regression parameter  vector /J and the scale parameter  a,  then 

under certain regularity conditions, the following results hold. 

I- The  MLE ~ = (01 . . . . .  0k) exists. 

2- It is a consistent estimator of 0. 

3- 0t . . . .  ,0~,+l are asymptotically efficient, 

i.e. lim Var(Oj) = 1, 
.-oo C RLB(Oj) 

where CRLB(0i) is the Cram~r-Rao lower bound,  obtained as l /nE[°0~o,  ] 2. 

4- vfn '(0--0) has an asymptotically multivariate normal MN(~.,I~ "t) distribution where 

I0 is the observed information matrix,  with element  

02 
l~j = -00,00-----~ log L(0; zl . . . . .  z.) [0=~. 
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A G E N E R A L I Z E D  F R A M E W O R K  
F O R  T H E  S T O C H A S T I C  LOSS R E S E R V I N G  

The traditional actuarial methods like loss (paid and incurred) development methods, 
Bornheutter-Ferguson method, or Berquist-Sherman method have been served well as long 
as point estimates are concerned. Since they are not stochastic approaches, they do not 
provide confidence intervals which are getting more attention connected to the risk-based 
capital requirements, explicit discounting the future liabilities, etc. So far, most of the 
stochastic reserving models which are either in the developing stage or are being used by 
some companies or organizations, have been explanatory models. The Hoerl curve fitting 
is their basic formulation. These types of models are fundamentally deficient, because 
they fit the Hoerl curve to the loss history data. Hoerl curve fitting may be fine, as 
long as it fits a simple, one dimensional, small series of data to obtain a fitted curve 
without any statistical implications. If the Hoerl curve fitting method is used with some 
statistical perspectives in mind, it may produce inconsistent estimtates which may not 
make any sense. In this article, the author suggests a generalized framework which starts 
by understanding the unique data characteristics of the insurance data. By expanding a 
Box-Jenkins type time-series model, we developed a generaliied framework for modelizing 
a stochastic process on the loss history data. It turned out that some lines require more 
complex specifications than the others. We may presume that  some lines are more sensitive 
to the insurance business cycle than the others. Our contributions will be to provide a 
generalized framework to derive confidence intervals in which the business cycle was taken 
into account as well as to provide future estimates for the planning process. This paper is 
the first step to that direction. 
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I. I N T R O D U C T I O N  

Insurance data arranged to evaluate future liabilities takes a unique form which is 

different from ordinary non-insurance data. The ordinary non-insurance data  usually takes 

a one-dimensional time-series form. For example, monthly unemployment figures for the 

period January 1948 - October 1977 was used to forecast November 1977 and onward 

monthly unemployment rate. On the while, the insurance data  has to be arranged either 

by accident year, policy year or report year and development year in order to figure out the 

future liabilities of each of those years separately. Because of this, the typical insurance 

data takes an upper triangular form. 

The traditional actuarial methods like loss (paid and incurred) development methods, 

Bornheutter-Ferguson method, or Berquist-Sherman method have been served well as long 

as point estimates are concerned. Since they are not stochastic approaches, they do not 

provide confidence intervals which are getting more attention connected to the risk-based 

capital requirements, explicit discounting the future liabilities, etc. 

There have been hundreds of methods which were contended to provide confidence 

intervals. The fundamental problems of these methods are they are lacking in thegretical 

backgrounds because these methods are intended to apply to the one-dimensional data  

array. Minor adjustments are added to solve the problems. However, they have never been 

successful. 

In this article, the author suggests a generalized framework which starts by under- 

standing the unique data characteristics of the insurance data. In the next chapter,  we 

provide the critics regarding the problems of those suggested stochastic methods. In chap- 

ter III, we articulate the characteristics of the insurance data. We also state how these 

characteristes have been incorporated in the traditional actuarial methods. In chapter  IV, 
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the theoretical framework will be provided. We will show some applieaitons in chapter V 

and conclude in chapter VI. 

II. CRITICS ON SUGGESTED STOCHASTIC MODELS 

Makridakis and Wheelwright (1985) suggested: 

If the user wants to increase forecasting accuracy, a t ime series method 
should be used. If the objective is to understanding bet ter  the factors 
tha t  influence forecasting (prediction) accuracy, then an explanatory 
model should be selected. 

So far, most of the stochastic reserving models which are either in the developing stage 

or are being used by some companies or organizations, have been explanatory models. 

The Hoed curve fitting is their basic formulation. First of all, the explanatory variables 

in their models are either the number of development years and its functional variations, 

the number of accident years, the number of calendar years or a combination of these. 

Because of these formulations, their explanatory variables do not explain the dependent 

variable quite well. For example, "increase one unit of log transformed development years 

will decrease .3 unit of total loss paid" does not provide any valuable information. 

Secondly~ normally it is assumed that  the time series da ta  consists of four parts of 

components. They are trend, seasonality, cycle and ramdom components. If we use time 

and its functional variation as only explanatory variables, we are ignoring the seasonal and 

cyclical components of data. If the annual data is used, we may ignore the seasonality, 

but not the cyclical component. Since some insurance business is sensitive to the business 

cycle, we may expect tha t  the cyclical movement is a critical component of the data. 

Thirdly, since one of the explanatory variables is a functional variation of the other, 

these two explanatory variables are highly correlated. This problem is called multicollinear- 

ity. If one of these two variables is deleted, there will be an autocorrelation problem because 
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the remaining explanatory variables will not fully explain the dependent variable. The con- 

sequences of these problems include: unstable estimates, spurious predictions, inconsistent 

estimation of standard errors and confidence intervals. 

Some argue that  as long as the autocorrelations between the two explanatory variables 

are lower than that  bewteen the dependent and explanatory variables, we do not have to 

worry about this problem. This may be true if the two explanatory variables are inde- 

pendently created. This is why explanatory variables are sometimes called independent 

variables. They are supposed to be independent. However, as long as correlations between 

these explanatory variables are not high compared to correlations between dependent vari- 

able and explanatory variables, the problem may not be that  serious. The issue here is 

whether we should use models which contain multicoUinearity problems due to the model 

formulation (one of the explanatory variables is a functional variation of another). 

The other problem of these types of explanatory models is what type of indicator we 

should use for the accident year trends. Some authors normalized all incremental payments 

based on some readily available index of inflation. We cannot simply divide incremental 

payments by some indices, because these indices are estimated with their own variances. 

Consequently, it requires to assume that  these indices are deterministic. However, this 

assumption is hardly persuasive at all. Because of this problem, some authors divide the 

payments by some types of exposures. The problem of this approach is we need to find 

an alternative if there isn't  any exposure data  available, which is often the case. Still 

others introduce level parameters which are assigned same values to each accident years. 

Since the level parameters themselves have to be estimated, this automatically violate the 

assumption that  explanatory variables are supposedly nourandom variables which are the 

cases of the other two variables. Others create another explanatory variable using the sum 

of the accident year and the development year. They chose this as another explanatory 

variable because they could not use the number of accident years as their explanatory 

657 



variable due to the perfect lineaxity with the number of development years. This choice is 

as bad as choosing the number of development years as an explanatory variable. 

Still another problem of this type of model is that they do not provide any method 

that deals with interrelationships between series of incremental payments and incremental 

claims reported. Other things being equal, we expect more incremental payments if there 

are more claims reported. Therefore, if claims reported data is available, we should utilize 

these data assuming that this is also a stochastic process. So fax no method has been 

suggested to deal with this situation. Some authors apply traditional loss development 

approach in obtaining ultimate claims reported. They treat them as a determinstic variable 

to divide incremental payments by these estimated ultimate claims reported. 

What if we need to analize quarterly data instead of annual data? Quite possibly that 

quarterly data may contain seasonal patterns. No methods have been suggested to deal 

with this seasonality problem. 

These types of models are fundamentally deficient, because they fit the Hoerl curve 

to the loss history data. Hoerl curve fitting may be fine, as long as it fits a simple, one 

dimensional, small series of data to obtain a fitted curve without any statistical implica- 

tions. If the Hoerl curve fitting method is used with some statistical perspectives in mind, 

it may produce inconsistent estimtates which may not make any sense. 

Ill. INSURANCE DATA AS A Two-DIMENSIONAL TIME-SERIES 

1. D a t a  i tselL 

Insurance loss or claim history data can be considered as a two dimensional time series 

data. Loss or claim development, in which additional losses or claims are paid/reported 

in chronological order upon accidents occurred or claims reported is one dimension. A 
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chronogical order of claims grouped by date of occurence is another dimension. As a 

result, a typical insurance loss or claim history takes an upper triangle form. A prediction 

of future loss payments or claims reported corresponds to filling out the bot tom lower 

triangle area assuming that  the first accident or reported year losses or claims are fully 

developed. 

There are at least two factors which cause loss history data  as time-series through the 

accident years. The first factor is inflation. Ever increasing price levels (at  least prior to 

the current recession) is called economic inflation. Increased tendency to file more claims 

helped by trial lawyers or increasing amount  of jury awards is called social inflation. Some 

authors have tried to catch these inflations by either normalizing the incremental payments 

or by inserting a level parameter. The indices used were either general price indices or at 

most industry-specific indicator. Because of ever increasing tendencies of the loss payment 

and these general indices, you may obtain significant t-values for the estimated coefficient 

of these indices. These t-values are disguising. Even if you insert any series which is 

increasing, you may still obtain significant t-values. Instead of inserting or dividng by an 

extraneous series, we should use the da ta ' s  own indices! We should look at every trend 

and/or  cyclical pattern of incremental payment of each development year. Interestingly, 

there is an approach which utilizes these trends to estimate ultimate losses. The problem 

is it is not a stochastic approach. We cannot obtain confidence intervals based on this 

approach. We will present this approach later. 

As more consumers or insureds are getting more information on their insurance policy 

provisions, and as more trim lawyers are eagerly recruiting their clients, we can expect 

more claims to be reported over the accident year horizon. As overall population grows, 

there will be more policies written. Other  things being equal, consequently there will be 

more claims reported. These utilization increase and additional new polcies will be the 

main driving force for the consistent upward trend through the accident year horizon. 
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For the development horizon, since there is a fixed number  of policies written during 

the policy effective period, there is a fixed number of occurrence of accidents for each 

accident year. There may be some incurred but not reported claims which are reported 

later. There may he some cumulative injury claims which take many )'ears to be closed. 

Still every claim will be closed eventually. In a mathematical  term, total cumulative 

loss payments or total reported claims will be converged to certain levels. Because of 

this characteristic, all incremental payments and all incremental reported claims will be 

automatically satisfied with the stability condition of the time-series analysis. This stability 

is a necessary condition in applying Box-Jenkins types time-series framework. 

The traditional actuarial method called the "loss or claim development method ", uti- 

lizes the development period dimension in a simple manner. The accident period dimension 

in this method is partially utilized by taking current cumulative payments as "given". Re- 

cently proposed regressional approaches are lacking in these two dimensional features. As 

in the traditional actuarial loss development (LD) method, these new methods reflect the 

loss development dimension by using "age" of loss development. However, the other di- 

mension is either completely ignored or grouped together by assigning dummy variables or 

filled with a so-called level parameter. There is an inherent autocorrelation problem which 

may not be significant in some lines due to negligence of the time related features in the 

loss history data, especially for long tail lines in which regulators or company's executives 

are most interested. 

In the traditional development approach, by multiplying the selected factors for each 

development year, some sort of time-series conception was used in a simple fashion. For 

instance, assuming that  there are no additional payments after ten years of development, 

the ultimate factor for the 1982 accident year will be obtained by taking a ratio of the 

10th year development to the 9th year of development. Notice that  only the accident year 

1981 and prior provides .the information required to obtain a factor for the 9th to 10th 
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development. The ultimate factor for 1983 is derived through multiplying the selected 

factor from the 8th to 9th year of development by the selected factor from the 9th to 10th 

year of development. Again the selected factor for 8th to 9th year of development is based 

on the factors which are available in 1982 and prior accident years. Although it is a simple 

fashion, without a consideration of cyclical patterns, the development method reflects time 

series characteristic through development years. In the accident year direction, the LD 

method simply takes most current actual payments as selected estimates. If these values 

are outliers, the LD method will generate biased estimates. Otherwise, the LD method will 

produce reasonable estimates. For the older accident years, the actual values are fairly close 

to the estimates which are supposed to be compared to its maturity because the payments 

have already been made quite a few times (approximately more than 3 or 4 years for short 

tail lines). The problem is most recent immature accident years. Bornheutter-Ferguson 

(B-F, 1978) and Berquist-Sherman (B-S, 1979) suggested a couple of methods to get over 

these problems. 

2. Time-serles  Reflected in B-F Met hod .  

In the adjusted development method suggested by Bornheutter and Ferguson, a two- 

year average of total payment at a particular development adjusted by the increase or 

decrease in the second year's exposure relative to the two-year average exposure was re- 

placed for total payment. The ultimate factors derived in the development method is then 

applied to these adjusted losses. This method witl correct some irregu]arltles of the data. 

However, the adjustments contain too short memory (one year backward). The probability 

of two data points being outliers is only half of the probability of one data point being an 

outlier. Consequently, this does not provide appropriate remedies to correct the problem 

in the development method. This may be the reason why this method is seldomly used in 

the ordinary actuarial analysis. 
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In the well-known B-F approach, the expected losses are first derived. Unpaid fac- 

tors are then calculated from the ultimate development factors. The ultimate losses are 

estimated as the sum of total payment and indicated reserve, where indicated reserve is ex- 

pected loss times the unpaid factor. Two methods are suggested to calculate the expected 

loss. The undiscounted loss provisions in the rates multiplied by the units of exposure 

ult imate Ion  relationships of is one, trending, or otherwise extrapolating, ultimate claim count (or premium) 

the prior accident years is the other. The author prefers the latter methods based on two 

reasons. First, it is very dimclut to obtain the undiscounted loss provision. One of the 

major reasons is the differences in line-breakdown between pricing and reserving. Second, 

by trending the past history, we can glean the time-series nature of the loss history data. 

You may notice that in LD method, only the time-series nature across the development 

ult imate loss years was recognized. By applying trending or extrapolating method to ultimate claim count 

across the accident years, we are able to utilize the time-series nature in another dimension 

at least partially (cosidering only trend factors). 

This indicated (B-F) method is one of the most popular methods in the actuarial 

analysis because this method can be used to correct the estimated ultimate loss for the 

recent accident years produced by the development method. 

Although these two methods are a little more advanced than loss development methods 

in terms of utilizing the time-series nature across the accident years, the method is not 

sophisticated and also performed partially (only trend factors are considered). Instead 

of trending a whole loss history across the accident years, only the indicated severity for 

each accident year was used. Since the indicated severity is also estimated, it may be 

contaminated with estimating errors. Berquist and Sherman suggested a few methods 

which utilize a whole loss history in a simple fashion. 

3. T ime-se r i e s  Ref lec ted  in B-S M e t h o d .  
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Berquist and Sherman suggested six methods ( Method I through VI) except for 

Method II which is exactly paid loss development method applying weighted average to 

loss development factors in order to obtain ul t imate development factors, all methods 

assume that  there are some trends to be utilized across the accident years. Method I 

applies a straight linear regression to the loss development factors for each development 

years as long as there are at least three factors. For columns with two factors, a straight 

average is taken for all future development factors. For columns which only one factor, 

that  factor is used. 

In Method III, the total payments per ult imate claim count (CSi6) by accident year 

(i) and by development year ( j )  are calculated. By applying a exponential fit to CSi,i for 

each j, a growth rate B i for each development year j is estimated. Then by multiplying 

eBJ by DSi,i where DSi,i is the incremental payment for the accident year i and develop- 

ment year j, we obtain a incremental payment on current cost level IS,,. i. After applying 

appropriate weights to these ISi,j, the estimated incremental payments evaluated as of 

current date WSi,m-i+l,  where i = m , m  - 1 , . . . ,  1, the oldest accident year and m the 

latest accident year are calculated. By applying growth rate e Bj to WS,,m-i+~, future 

incremental payment per claim is produced. After adding them up across the development 

years to obtain ult imate loss per claim, ult imate loss is derived by multiplying the ul t imate 

claim count. 

In Method IV, overall growth rate is calculated by weighting various column growth 

rates calculated in Method III, in proportion to the square of number of rows of tha t  

column. The adjusted column growth rate is then calculated by applying the formula 

B~ = W~Rj+(Wx-WDR where W i is the weight for the particular column, W1 is tha t  for the wl 

initial colmun (development year 1) and Rj is column growth rate. The same procedure 

with the Method III is then applied to produce the ultimate loss. 

In Method V, the paid loss development factors minus unity are used instead of total 
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payment per claim in Method IV to derive growth factor for the development factors. After 

applying the same steps as in Method IV to derive future factors (minus one), adding one 

to each of the results and applying resulting factors to total payments, the ultimate losses 

are derived. In Method VI, the incremental payments per claim are used to estimate 

growth rate. The exact same steps as Method IV are then used. 

Notice that  in the various Berquist-Sherman methods except for Method II, more 

emphases are levied on the trends across the accident years. In Method I and Method III, 

the trend factors (growth rates) are estimated by development years. Each trend factor 

for a particular development year is independent of those of the other development years. 

On the while, in the Method IV, V, and VI, the overall t rend factor was calculated by 

the weighted average of all the trends for each development years. The adjusted trend for 

individual development year was then calculated as a weighted average of its own trend 

and the overall trend. Since these methods are focused on the time-series nature of the 

loss history across the accident years ignoring possible cyclical patterns,  by combining the 

ultimate loss based on these method and the ult imate loss based on the loss development 

method, we can produce relatively reasonable selected ult imate loss. 

As we have seen in this chapter, even if the word of time-series has never been spelled 

out, one way or the other, every method tried to utilize the time-series concept. The trouble 

was that  the concept was utilized partially. Except for Berquist-Shennau methods, more 

weights were given to the claim development process. Even in one direction, only the trend 

component of the time-series was reflected. A cyclical movement and seasonal pat tern  were 

completely ignored. In our approach, the two dimensions are explicitly taken into account. 

Today's loss payment is not only a function of losses paid in the past loss development 

periods, but also a function of losses paid in the past accident periods. The implication 

of various statistics in the time series method are also considered in a two dimensional 

perspective. Empirical results based on various lines of industry total  are shown. 
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IV. A FRAMEWORK OF Two DIMENSIONAL TIME SERIES MODEL 

1. T h e  U n i v a r i a t e  Model .  

I) Assumptions 

In this univariate model, we assume that  only the payment  series is available. There 

is no reliable case reserve, exposure or reported claim information available. More often 

than not, actuaries, especially consulting actuaries, have to provide ultimate loss payment 

based on exclusively loss payment series. 

We also assume that  the available data is not separable to the individual claim level. 

In other words, we treat the incremental payment for a particular accident period and 

development period itself as a random variable. This is a realistic assumption because 

most loss history data  takes an upper triangular fonn in which the incremental payment 

is a minimum unit of counting. 

We assume that the tail of the loss payment development is known. This assumption 

may not be realistic. However, it is at least practical. Whenever we fit any distributional 

curve to the loss payment developments, the estimated curve converges ~o the ultimate 

level a lot more slowly than we ever expect in actual loss developments. Unless we assume 

a certain cut-off point, the estimated length of the development will be extremely long. 

We assume that  any payment in a certain point is affected only orthognally. For 

example, total or incremental payment in [accident year 83 - third development year] is 

a function of [accident year 83 - second deveopment year] and [accident year 82 - third 

development year]. This is a reasonable assumption to simplify the algorithms and also 

consistent with the average norm. We can expect the incremental payment at  [accident 

year 83 - third development year] will be high if the incremental payment at [accident year 

83 - first and second development years] due to either volume increase or frequency/severity 
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increase. Also we can expect the incremental payment at [accident year 83 - third develop- 

ment year] will be high if the incremental payments at [third development year - accident 

year 81 or 82] are high. The former tendency may be related to the inflation, exposure, 

and frequency/severity change. The latter may be related to the company's individual line 

characteristics - like a liability line develops more slowly than a property line. 

Finally, we assume that  the selected model is the true model. In others words, spec- 

ification error is ignored. This error exits only in a hypothetical sense. Since in reality 

the true model is never known, you can never measure the direct error. This assumption 

is consistent with most econometric or time-series literatures. By assigning higher proba- 

bility confidence intervals than what is necessary, we can eliminate the specifiaction error 

problem. For example, if the confidence intervals with 90% probability is required, then by 

raising the probability to the 95% level, we may take into consideration the specification 

error problem. 

2) Model 

Parzen suggested a very powerful time-series forecasting model. It extends the Box- 

Jenkins methodology and provides a more practical alternative to the time-series forecast- 

ing model. Also the theoretical supports of " A R A M A "  models are solid and their potential 

contribution to good forecasting is excellent. 

Contrary to the Box-Jenkins methodology, Parzen's approach is not as concerned with 

parsimony. Parzen's model is willing to sacrifice the parsimony that  would result from 

introducing the moving average terms, and simply includes more autoregressive terms. 

The M A  terms are available but used only for special cases when a scheme cannot be used 

to produce random residuals. 

We utilize Parzen's view of Box-Jenkins time-series methodology. The main reason 

is the tractability without giving away any theoretical merits. In our application, the 
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stability may not be an important issue. In the development period horizon, because any 

open claim will be closed eventually, the convergence of the time-series is guranteed. In 

the accident period, due to the regulation constraint of premium-surplus ratio, there exists 

a limit of maximum expansion. Consequently, as long as there are enough data points, we 

expect the stability condition will be met in the average insurance data. 

Across the accident year we restrictly use A R  terms. However, across the development 

year, we first take differencing on the total payments and then take log transformation if 

it is possible. After transforming long memory time series across the development years, 

the A R  terms are used to produce white noise errors. 

It is a matter of semantic, whether you need a differencing operation or not across 

the development years. If you start  with incremental payment data, there is no need of 

differencing. However, if you start with the total payment data, you do need differencing 

due to the conspicuous cumulative nature of the payment data. 

In a general form we can express the model as: 

F ( I P i j ) )  = E ¢b,t F ( I P i _ , j _ t )  + e i j  I = O, 1,2 ..... i - 1 
l,k 

and k = O ,  1 , 2 , . . . , j - 1  excluding I = 0  ~ k = 0  (4-1)  

where F(.) notates any functional form (most of the case log operator if it is possible, 

otherwise identity operator), I P  denotes incremental payment for the accident year i - 

development year j. Since we assumed any non-orthogonal lag variables can be ignored, 

equation 4.1 can take much simpler form as: 

F(IP~,i ) = E q h , ~ F ( I P i _ , , j _ ~ ) + e i , i  I = 1,2 ..... i -  1 & k = 0  
l,k 

or k = 1 , 2  ..... j - I  g~ I = 0  excluding I = O  k = o (4-2)  
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Note that since no nonlinearity is invloved, we can use Ordinary Least Square Method to 

estimate ¢1,~. This is a whole advantage expressing the model with A R  terms only. The 

most simple case will be: 

IP,. i  = ~l .o lPi- I , )  + ¢o, l lPi , j - I  + e~.i (4-3) 

where the incremental payment for the accident i - development j is explained the incre- 

mental payment of the one year previous accident year and the incremental payment of 

the one year previous development year. 

For a better understanding, an example will be followed. Say you allow two lags 

in each direction as explanatory variables. Then there are eight possible explanatory 

variables. They are [No lag in accident year(AY) - 1 lag in development year(DY)], [No 

lag in AY - 2 lag in DY], [1 lag in AY - 1 lag in DY], [1 lag in AY- 2 lag],[2 lag in AY - 1 

lag in DY],[2 lag in AY - 2 lag in DY], [! lag in AY - no lag in DY], [2 lag in AY - no lag 

in DY]. Out of these eight combinations, the set of DY lag only is orthogonal to the set of 

AY lag only (four cases). 

First of all, it does make sense modelizing the fact that the current incremental pay- 

ments is explained by previous incremental payment series by accident and development 

year-wise because the current payment can be explained or can be a function of prior 

payments. Second, it does not have any multicollinearity problem because there is no 

functional relationship between the explanatory variables (note that accident year series 

are orthognal to the development series). Third, because it does not involve any nonlin- 

earity, it is fairly easy to estimate parameters. Even we can use Lotus 1-2-3 to estimate 

these parameters. Fourth, most importantly, it provides a reasonable fit and also is also 

stable. 

3) Interval Forecasts 

Since tlae major contribution of the stochastic method in loss reserving is providing 
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the confidence intervals, the variance of the forecast errors should be well defined. In order 

to derive the variance of the forecast errors, we first express AR(I ,  k) process in the error- 

shock form by successive substitution for ~ ~bI,JPi-t , i-~.  By doing this, we can write the 

model in terms of current and past errors only as: 

I P i j  = ei,j + ~0,1ei,j-t -~"/~l,0ei-l,j + ~ l , le i - i , j - i  "~- • • • (4.4) 

The values of the parameters (~0,1, ~1,0, ~1,1,...) depend upon the particular AR(I ,  k) model 

and are called error Icarninf coe~icien~s. 

The selected forecast IP i j (g ,  h) can also be expressed using the equation 4-4 in terms 

of current and past errors: 

IP i j (g ,  h) = ~g,hei,j + ~f+t ,hel- t , j  + ~,h+le i , j - I  + . . -  (4.5) 

As a result, the (g, h) step ahead forecast error can be expressed as: 

ei j (9 ,  h) = IPi+~,j+h - IPi , i(9,  h) (4.6) 

Again the equation 4-6 can be written as: 

e~,j(g, h) = ei+g,j+h + ~,,0e~+g-l,j+h + ~0,1ei+g,j+s-, + ~,,lei+,-,,.~+h-, + . . .  (4-7) 

Because the errors are independent, it follows from the equation 4--7 that  edj(g, h) is an 

M A ( g  - 1, h - 1) process. Fi'om the equation 4-7, the forecast errors e i j (g ,  h) have mean 

0 and variance equal to 

g,h 
2 2 V[e~.j(a,h)] = E[e~.j(a,h)] = ~, ~ ~p., e x c l u d i n g  (p ,q )  = (g,h) (4--8) 

p ,q=O 

Based on the model, not only can the future development year forecast be performecf, but  

also the accident year forecast. However, since our main objective is to obtain confidence 

intervals for the future liabilities, we Can fOCUS on the development year horizon only. 

4) Some Examples 

669 



For example, the one year ahead forecast to the development period horizon of the 

AR(1,1) model can be expressed using equation 4-3 as: 

IPi,j+l = ¢l,olPi-l,j+t + ¢oalP, a + ei,i+l (4.9) 

Then the equation 4-9 can be expressed as: 

IPi.j+l =¢l.o(~l.olPi-2,j+i + ¢o,llPi-l.i  + ei- l , i+l )  

~o,t(~l,olPi-t,j + t~o,i IPi.i-I + ei,j) + ei,i+l (4.10) 

Since the only errors terms ei-i,./+l, ei,i and e,,j+l are unkown and their variances 

are a~, the variace of IPi,j+l can be expressed as: 

= ( e l . 0  + 0,1 V(IP,,j+l) 2 ¢~ + l)a~ (4-11) 

The two year ahead forecast to the development period will be: 

IPi,j+2 = ¢l ,0IPi - I j+2 + ¢o,llP~,i+t + ei,i+2 (4-12) 

Again, the equation 4-12 can be expressed as: 

IP,,i+2 =~bl,o(¢l,olPi-2.j+2 + ¢o, l lPi-I j+l  + ei-Li+2) 

=~bo,l(¢LolPi-l,i+l¢o,llPi,.i + ei,i+O + eL/+2 (4.13) 

By applying the equation 4.10, we can obtain a two year ahead forecast variance to the 

development period as: 

V(IPi,i+2) = 2 2 ¢2 2 2 1)%2 (4-14) ((¢I)0)(¢1,0 + ¢~,1 + I) + ( 0,I)(¢I,0 4" ~0,I "4" I) + 

Similarly we can obtain an n year ahead forecast variance to the development period by 

applying a inductive procedure as: 

V(IPi,j+.) = ((q~,o)( V(IPi, j+._,  ) ) + (~2o I)( V(IPi , j+.- ,  ) ) + 1)o2 . (4-15) 
~,~ , ,,~ 
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We can also apply the same inductive process to the AR(2, 1) or AR(3, 1) model. For the 

AR(2, 1) model, one year head, two year ahead and n year ahead forecast variances are 

given as: 

V(IPij+1) =(4~,o + ¢~o,I -6 1)a~ (4-16) 

V(IPij+2) ~ 2 2 t¢~ vz2  + 2 ~ 1)a~ (4-17) =((41,o)(41,o + 40,1 + 1) + ~ o,lJwl,o ~0,1 + 1) + 4o,2 + 

vcIP, i+.)  =((4G)(  ~ -  , ~ ,*o,,,, ~ ,~  
' O"  e ( 7  e 

(.2 , ,V(IP/ i+ , -2 ) ,  1)a~ (4-18) ¢0,2]( ~ J + 

For the AR(3, 1) model, one year head, two year ahead, three year ahead and n year 

ahead forecast variances are given as: 

V(IPij+l)  ¢2 1)a~ (4-19) =( 1,o + ~'~,, + 

¢2 + 42 2 2 2 1)a~ (4-20) V(IPi,j+2)=((¢i,o)( 1,o 4 o ~ j + l ) + (  o , | ) ( 4 | , o + 4 o , 1 + 1 ) + 4 o a . 6  

t.a2 ~tV(IPii+2~ 2 . .V ( IP i j+2 , .  
v(IP,, i+,)  =(,~,,0,, ~ ,, + (¢o,1)( ~- '  )+ 

4a ( V(IPi,i+] 2 
o,~ ~ -  ) + 40,~ + 1)~,~ (4-21) 

.2 , ,  V ( I P i  i + . _ i ) ~  "" v( /a , . . )  =((~,,o)~ ~ J + (g,1)( v(zv~+._,))+ 
#.2 wV(IPi,J+.-2)w~2 ~ ,V(IPi j+. -3)x  1)o,2 (4--22) 

O" e O" e 

If we expect any seasonality either across the development horizon or across the acci- 

dent horizon or both, by inserting 40.m or 4,,~,0 or both  lags, we can take care of seasonality, 

where ra is the seasonality interval. 

2. T h e  M u l t i v a r i a t e  Model .  

By applying either vector autoregressive model or transfer function model, we can 

expand the univariate model to the multivariate mode. Either closed counts development 

or reported counts development will be a good candidate for the right-hand side variable 
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because we can presume that  the claim counts will have a impact  on the loss development;  

not vice versa. It is theoretically possible to derive the formula  for the variances. However, 

we decided to pos tpone  further articulation of the  model  due to the time constraint.  

V. MODEL SELECTION PROCESS WITH EMPIRICAL DATA 

1. S tat i s t i c s  to be  used.  

In order to find a right (or reasonable) model ,  we need certain criteria to identify 

whether  the es t imated errors are not correlated. Since we are going to use the  AR(I, k) 

model,  we need to es t imate  partial autocorrelat ions ( P C A F )  of the residuals. We also use 

Q-statistic to verify overall randomness of errors. Since these statistics are intended to 

serve for the one-dimensional data, we have to apply these stat is t ics  to each accident year 

and development year separately. Because of this, we may have to be a little lenient when 

we reject the null hypothesis.  

1). P a r t i a l  A u t o c o r r e l a t i o n .  

In practice, we never know the populat ion values of  autoeorrelat ions and partial  au- 

tocorrelation of the underlying stochastic process. Consequently,  in identifying a tentat ive 

model, we must  use the estimated autocorrelat ion and es t imated  partial autoeorrelat ion 

to see if they are similar to those of typical models for which the parameters  are known. 

Notice that  since we do not have any MA terms in our model ,  there is no need to calcu- 

late es t imated autocorrelations. However, part ial  autocorrela t ions  are calculated from a 

solution of the  Yule-Walker equation system, expressing the  partial  autocorrelation as a 

function of the autocorrelation. We need to calculate es t imated  autocorrelation. 

In any t ime series textbook, an es t imate  of autocorrela t ion r (h)  is defined as: 

Ch 4 •  4 •  

rh = - -  / ~ - ~ J  

co 
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where eh defined as ca = 1 /n  x ~ ztzt+h h > 0, and ch is the est imate of the autocovari- 

ance. For our model we can redefine this estimated autocorrelation for the development 

year dimension of the accident year n as: 

c,,,k (5-2) rn,k = m 

Cn,o 

in which ~ ,k  = 1 / m  ~ = l  zn,JznJ+~ k > 0 where m is the number  of development years. 

For the accident year dimension of the development year m, the estimated correlation can 

be deftned as: 

CI,m 
rj,m = - -  (5-3) 

co 

where cl,m = 1In ~ = 1  zl,rnzi+a,~l >_ O. And n is the number  of accident years. 

The Yule-Walker equation is expressed as: 

I 
pl = Ct + ¢2pi + . . .  + C v P p - t \  
p2 = ¢lPl  + ¢2 + "'" + CvPv-~ ) 
pp!= : + : + ".. + 

¢ , p p - ,  + ¢ , p , - ,  + . .  + . / 

The equation 5..4 can be writ ten as: 

l1 ... / (i 1) Pl 1 Pl . . .  Pk-2 ¢k2 = P2 

_ : : ' . .  : i k 
Pk ! Pk-2 .Pk-3 . . .  1 \ ¢  ~ /  k 

(5-4) 

(5-5) 

Hence, as soon as we calculate these autocorrelation, we can derive the est imated par- 

tial autoeorrelations by applying Box and Jenkins 's  recursive method,  which are due to 

Durbin(1960): 

,~p+l,~ = ,~,,i - ¢~+1,~+,¢~ ,p- i+ ,  j = 1,2 . . . .  ,p  (5-6) 

,~p+,,~+, = , , + ,  - E ~ = ,  Cp,ir~+,-~ 
P " r .  (5-7) 

In order to identify the exact form of the model, we need to find out when populat ion 

partial.autocorrelations can be considered to be zero. We therefore need to evaluate the 
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standard error of the estimated partial autocollreations. Quenouille (1949) showed that 

the variance of the estimate of the partial autocorrelations is approximately equal to 

V(¢hh) ~ 1/n, h > 0 (5-8) 

where n equals tb.e numher of observations after suitable differencing and transformation, 

and $ represents the partial autocorrelations that  are assumed to be zero. Equation 5.8 

provides a way, after identifying the tentative model, by calcuating @~h on the estimated 

residuals, to evaluate if all other estimated partial sutocorrelations are different from zero. 

We can also define the variazace of the estimate of the partial autocorrelation for the 

development year dimension as: 

V(¢. ,~k) z 1/m, k > 0 (5-9) 

and for the accident year dimension as: 

2).  Q-tes t .  

V(¢u,,~) -~ 1/n, l > 0 (5-10) 

Box and Pierce (1970) showed that  for a purely random process, that  is, a model with 

all pt  = 0, the statistic called Q-statistc: 

N 
1 -2 

Q(K) = n(n + 2) Z ~ - ~ ~  rk ~ x~(K) (5-11) 
k_-i 

where rk is defined as 

with ~ is a fitted residual. It should be noted that the Q-test is not a very powerful test for 

detecting specific departures from white noise. However, it is useful to check how a series 

of autocorrelations (first order, second order and third order autocorrelations etc.) is white 

noise or not in an overall sense. Furthermore, the Q-test is also sensitive to the values of 
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K, the number of autocorrelations used to calculate Q-test. For economic data, K = 12 

and K = 24 have proven to be useful. Since insurance data  have fewer data  points, K = 4 

may be sufficient. Since the Q-statistic was also designed to apply to the one dimensional 

data points, we performed the Q-test on each accident year and each developmemt year. 

2. C r e a t i o n  of  A u x i l i a r y  O b s e r v a t i o n s .  

We first calculate age-to-age factors for each dvelopment years. We then select age- 

to-age factor for each development years based on the last 5 years average method. We 

assume that  payments of the Homeowner/Farmowners (HOMFAM), Private Passenger Au- 

tomobile Liability/Medical (PRVAUT), Commercial Auto/Truck Liability/Medical (CO- 

MAUT), Commercial Multiple Peril (COMMUL), Workers' Compensation (WOKCOM), 

Medical Malpractice (MEDMAL), Special Liability (SPELIA), Other  Liability (OTHLIA) 

and Product Liability (PROLIA) are paid off at 10th, l l t h ,  13th, 13th, 14th, 16th, l l t h ,  

15th and 16th years of development, respectively. With  this tall-factor assumption we 

create future incremental payments based on the LD method. In other words, we fill out 

the lower part  of triangles. 

There are two purposes in creating these auxiliary observations. The first purpose is 

creating initial values of lag variables based on the backward forecasting. Since we started 

with small amount of data  points, we cannot afford to lose any data  elements by the intializ- 

ing process. By running Oridnary Least Squares with logarithms of incremental payments 

as dependent variables and development years for each accident year as explanatory vari- 

ables, we were able to create development year initial lag values. For the accident year 

initial lag values we ran OLS on accident years for each development years. The second 

purpose was to obtain tentative models. We did not a t tempt  to use upper triangle angle 

only because the model utilize the whole data at once, this will put too much emphasis 

on the earlier years which contain more data points. This is a major disadvantage of any 

stochastic model which fits the entire data at once without filling up the lower triangle 
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portion. Even though the development method does not provide confidence intervals, it 

does provide at least an approximate estimate. It is also consistent with the NAIC model 

act for the liability discount which explicitly specifies the future payout patterns. 

3. M o d e l  Se lec t ion .  

We started with AR(1, 1) model for all nine lines we used for this analysis. Estimated 

coefficients are listed in Table 1. Est imated Q-test on the  residuals by accident year and 

by development years are listed in Table 2. Due to small da ta  points, we only estimated 

up to four years. Estimated partial autocorrelations on the residuals by accident year and 

development year are shown in Table 3. The thresholds with 95% confidence level for 

Q-tests are 7.81 with K=3, 9.49 with K=4, 11.1 with K=5  and 12.6 with K=6, 14.1 with 

K=7. Most of the cases, Q-tests do not reject the Null Hypothesis that  the errors are 

not white noise. Applying the ~p~ formula, the thresholds with 950~ confidence level for 

PCAF are 0.653 with n=9~ 0.693 with n=8,  0.741 with n = 7  and 0.800 with n=6.  Except 

for few cases, there aren't  any such cases that  reject the whiteness of the errors. 

Identifying a model as AR(1,1) is equivalent to saying that  the loss history can be 

explained as a combination of constant trends through accident period and development 

period. Since the coefficients of all lines are less than 1, we can say that  data  satisfies the 

stability condition. This is a desirable condition, otherwise, the estimated variances will 

be blown up. You may also notice that  in every case, the coefficents for the accident year 

are a lot higher than those of development years. This indicates tha t  the trends through 

the accident periods are much more important than those through the development years. 

You may want to stop here because all the PACF are satisfactory and because the 

parsimony dictates the fewer the coefficients are, the bet ter  the model is. However, since 

the model with more coefficients will provide more stable forecastin~s, we tried up to 

AR(3, 2). Except for COMMUL, since the coefficients for development years are alr'eady 
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small, we didn ' t  bother to try more development lag coefficients except COMMUL. When 

we tried AR(3, 2) for COMMUL, the second development lag term became very close to 

the zero. Hence we selected the AR(3, 1) for COMMUL. The second lag term indicates 

that  there are more than just straight trend. We may interpret this as a simple cycle. If 

we require a third lag term, this will indicate that  the data  contains a complicate cycle. 

When we tried AR(2,1) for HOMFAM, suprisingly the second lag term for the accident 

year became bigger than the first term. Consequently, we tried AR(3, 1). Even though the 

coefficient for the third lag term is still high, we decided to stop here due to the limitation of 

the data points. We also didn ' t  want those artificially generated initial values to dominate 

the whole actual data. 

For PRVAUT, we tried up to AR(3, 1). Since the third lag term of accident years wasn't 

big enough, we decided to go with AR(2, 1). The same was true for PROLIA. For COMAUT 

as soon as we tried AR(2,1) the second lag became relatively small. Hence, we selected 

AR(1,1) for COMAUT. The same was true for MEDMAL, SPELIA. For WOKCOM, as 

soon as we added one more lag term, the first lag term became bigger than 1.0 (which 

became unstable). Consequently, we chose AR(1,1) for WOKCOM. Finally, for OTHLIA, 

we chose AR(3,1) as a selected model as HOMFAM. Interestingly, the coefllcent of the 

third lag term was highest. We sl~owed estimated coefficients of the AR(2,1) models, 

their Q-statistics and PCAFs on the residuals in Table 4, 5 and 6, respectively. Estimated 

coefficeats of the AR(3,1) models, their Q-statistics and PCAFs on the residuals are shown 

in Table 7, 8 and 9, respectively. 

As you may noticed, the process of personal lines like HOMFAM and PRVAUT ar 

either more complicated or as complicated as comercial lines. Secondly, the longer tail 

lines like MEDMAL do not necessarily possess a more complicated process. 

4. Po int  E s t i m a t e s  and C o n f i d e n c e  Intervals .  
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After we selected each model based on the rectangular form of data, we eliminated 

auxiliary observations in the lower triangular area. We filled the lower triangle with forcast 

values. By adding up row-wise we obtained ult imate loss based on the selected model. 

Based on the variance formula mentioned on the prior chapter, we estimated each variance 

for the forecast value. 

In Table 10, in the first column, the upper limit of the estimated ultimate loss with 

95% probability (one-tail test) are shown. This indicates tha t  if we repeatedly est imate 

the ult imate loss with different samples, but with same formula, and in each case we 

construct confidence intervals, then 95% of all the cases of the interval given will inclcude 

the true parameter. Thus, the probability s tatement  is not about population parameter  

but estimated parameter. 

The distance of the interval is determined by the size of the estimated variance for 

the error, the complexity of the model and the size of the tail. In the third column the 

relative distance of the confidence interval in terms of the ultimate loss are provided. In 

the fifth and seventh column, the upper limit of the estimated future expected liability 

and its relative distance of the confidence interval are shown, respectively. 

If we look at the relative size of the confidence interval in terms of ultimate loss, 

personal lines' (HOMFAM and PRVAUT) sizes are a lot smaller than commercial lines'. 

Among the commercial lines, WOKCOM's relative size of the confidence interval is the 

smallest even though its tail is longer than either COMAUT, COMMUL or SPELIA. The 

WOKCOM's relative size of the confidence interval may be the smallest because its stability 

of the exposure growth as well as as its stable payment pattern.  SPELIA's relative size of 

the confidence interval is bigger than either COMAUT or COMMUL or WOKCOM, even 

though its tail is the shortest among the commercial lines. As we expected, MEDMAL's 

relative size is biggest among all lines, despite of its simplicity of the model. HOMFAM 

and SPELIA's relative size of the confidence interval in terms of the future liability are 
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extremely high compared to their size in terms of ul t imate loss due to their large estimated 

variance of the error terms. Other lines' relative size are consistent with their counterparts.  

Except for the cases of COMMUL and SPELIA whose estimated constant coefficients' 

signs are negative, all point estimates based on the models axe slightly smaller than those 

based on the loss development methods. This does not necesaxily indicate tha t  model- 

created estimates axe understated. One of the evidences axe shown column (9) through 

column (13). We reserved column (9) of actual paid loss as of 12/91 for the comparison 

purpose. In column (1O), we provided the estimated paid loss as of 12/91 based on the 

models and in column (11) the projected paid loss as of 12/91 axe shown based on the 

development method. The performances of five lines out of nine lines were bet ter  with the 

models rather than the loss development methods. To the contrary of the ul t imate loss 

comparison cases, where seven out of nine cases, the model estimates were bigger than the 

actuals. While five out nine cases, the estimates of loss development methods were bigger 

than the actuals. 

One of the main advantages of our model is tha t  it provide future estimates for the 

future accident years with confidence intervals. Neither ordinary regressional models nor 

loss development methods provide these estimates, which axe valuable for planning pur- 

poses. The last rows of column (10) axe future accident year estimates and their confidence 

intervals. Compared to the actual values in column (9), the estimates seem to be reason- 

able. 

By looking at columns (1) through (4), you may notice tha t  every ease, the ult imate 

losses based on the development method has fallen inside of the confidence intervals. This is 

a small evidence showing that  our estimated confidence intervals axe reasonable. However, 

figures on lower rows of the columns (9) and (10) indicate tha t  one out of nine eases, the 

actual payment located outside the confidence interval with a probability of 97.5%, and 

two out of nine cases the actual payments laying outside the confidence interval with the 

679 



probability of 95%. These appear to show that  our confidence intervals for the accident year 

may be too narrow because the actual probabilities indicate that  77.8% and 88.9% instead 

of the theoretical values of 95% and 97.5%, respectively. This is not the case because the 

confidence interval with 95% probability means that  there is a 95% chance that  the interval 

includes the t r u e  p a r a m e t e r  ( t r u e  m e a n )  not the actual value. Consequently, the 77.8% 

and 88.9% regarding the actual values are reasonable considering that  the population 

possesses its own distribution. This is the main reason why the theoretical probability 

with the normality assumption was larger than the empirical one in Gardner (1988). 

In Table 11, the actual cumulative payment triangles, age-to-age factors and ult imate 

losses based on the loss development methods are shown. 

IV. CONCLUSION 

By expanding a Box-Jenkins type time-series model, we developed a generalized frame- 

work for modelizing a stochastic process on the loss history data.  It turned out tha t  some 

lines require more complex specifications than the others. We may presume that  some lines 

are more sensitive to the insurance business cycle than the others. Our contributions will 

be to provide a generalized framework to derive confidence intervals in which the business 

cycle was taken into account as well as to provide future estimates for the planning process. 

This paper is the first step to that  direction. 

We would like to incorporate claim count estimates into our framework by utilizing 

vector autoregressive model in the near future. We may also incorporate outstanding 

reserve which is also a valuable in.formation. 
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TABLE 1. ESTIKATED 

HOMF~lgq 

PRVAUT 

COI4ALrI' 

COIOIUL 

~OICCO4 

MEDHAL 

OTHL|A 

SPELIA 

PROL IA 

COEFFICENT5 FOR AR( I ,1 )  MODEL 

1ST YEAR 1ST YEAR 

AY LAG OY LAG 

0.85250 0.13494 

0.9'9250 0.00708 

0.98074 0.01018 

0.73432 0.27660 

0.9'9844 0.00328 

0.85550 0.14628 

0.9;"~03 0.02445 

0.97018 0,02990 

0.9?'063 0.03365 

COqST 

0.11621 

0.11526 

0.09425 

-0.21094 

0.09810 

-0.07682 

0.11304 

0.10,406 

0.06065 
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TABLE 2. EBTIIqAT£D Q-STATISTICS OF THE RESIDUALS FOR AR(1,1) MCOEL 

ACCIDENT YEAR • 82 
K-3 K~  K-5 Nu6 [ ' 7  

NON;AM 2.38778 2.68698 5.43214 6.40956 7.67962 
PRVAUT 6.20165 7.&3330 8.03333 9.57421 10.27192 
COI4A;JT 8,02664 9.08966 12.715114 22,70667 27,73A44 
COIqtJL 15.59455 10.74024 21.77020 24.20164 26.17824 
kqT~COM 17.29664 24.029'96 24.85543 32.13953 34.81509 
KEDMAL 3.63634 4.52361 9.18822 13.8817'5 14.61208 
OTHLIA 4.38933 6.13802 6.52584 6.80700 6.81674 
SPELIA 2.00036 2,33159 3.48908 3.51597 3.5170,2 
PROLiA 10.63477 11.35506 11.&71i~6 11.52169 11.52889 

ACCIDENT YEAR • 833 

HOI4FAM 2.54875 2.76390 2.93312 3.76485 
PRVAUT 3.19666 4.15370 6.68083 5.11533 
COMJUJT 5.94915 7.&5970 7.67292 23.55856 
COm4UL 9.28121 12.03609 16.41462 17.97051 
WCXCCCI4 7.81576 14.92529 16.12265 17.08.352 
KEDNAL 20.22335 25.45722 30.65844 39.76625 
OTHLIA 7.01660 7.94727 10.83099 10.87109 
SPEktk 1.50167 2.12010 3.56,4?'7 3.96&29 
PROLiA 9.95443 16.92331 18.41628 21.73013 

ACCIDENT YEAR • 84 ACCIDENT YEAR • 85 
E,3 E,,4 ge5 [ , 3  [,,,4 

NOMFN4 1.50912 1.84325 2.69576 12.64707 16.18820 
PRVAUT 0.90452 1.73380 3.]1919 8.5~nJ)97 8.92221 
CCIuU.rT 11.856833 18.02801 19.35910 23.7'5158 30.68252 
CGIqqUL 19.31421 19.807'57 20.31336 15.62485 17.12087 
~OCCCI'q 15.00407 16.46119 16.83647 5.94221 6.2?'584 
MEDMAL 1.52935 2.59451 13.99429 1.81445 2.17930 
OTNLIA 7.44905 8.13170 9.67102 |2.64123 17.46t~.8 
SPELL~ 8.21914 10.63992 23.36301 4.133715 4.16345 

PROLIA 19.23100 26.05147 33.40982 9.72884 11.05814 
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TABLE 2. ESTINATEO O-STATISTICS OF THE RESIDUALS FOIR AR(1,1) 14(~OEL 

DEVEL(~MENT YEAR • 1 

K•3 K~4 EuS K,6 K•7 

HOMFAM 20.86283 27.43541 29.979'95 39.16037 44.28323 

PlIVAUT 16.65263 24.27383 31.32747 36.31636 38.33991 

10.11426 14.08209 19.90366 35.09818 39.43475 

COIOtlL 17.38610 26.24465 29.21483 32.857'28 36.79327 

VOKOON 13,65747 21.10487 22.18290 24.12949 24,29261 

KEDMAL 9.07254 11.45357 12.16,t,31 12.43951 12.53369 

OTRLIA 14.13229 17.98698 23.45365 24,57'243 28.50565 

SPELIA 8.23842 8.89819 9.60571 10.40635 10.~?.7'2 

PROLIA 10.286?S 11.5235S 12.656,~5 14.36246 14.92514 

OEVELOPMERT YEAR = 2 

g-3 K,'~, [uS IC~6 

HOI4FN4 15.80416 17.02433 24.92092 34.06265 

PRVAUT 14.36262 16.41183 19.37089 24.11920 

C~IAUT 9.50703 11.7'5657 14.57927 22,44170 

COeeJL 11.90035 15.55383 16,78860 30.58926 

~(XCOM 10.04670 1B.998S9 22.83892 25.65263 

MEDNAL 17,35611 22.35855 24.53940 26.06088 

OTNLIA 14.20316 15.7'2022 16.72064 16.99232 

SP£LIA 24,34332 30.12124 36.38168 38.53166 

PROLIA 9.35144 13.16147 13.46168 13.71009 

DEVELOPMET YEAR • 3 DEV1ELOP'IqERT YEAR • 4 

[ • 3  [~"; I(,S 1(•3 [,,4 

HGqFAM 12.64103 13.35973 

PRVAUT 11.42169 13.928,89 

COIMUT 10.18653 12.17216 

CIOIqIJL ltJ.08152 16.70407 

~31(C~14 6.137'30 ?.06503 

IqEDRAL 5.66534 12.20602 

OTRLIA 14.29285 22.40355 

SPELIA 18.25537 21.90669 

PROLIA 15.05529 17.1787'5 

13.49182 6.16684 7.02828 

19.69768 13.35642 15.11712 

17,63906 8.03854 10.13738 

17.94.627 10.95356 13.88891 

7.34507 9.1847~ 9.82891 

14.21097 5.387'81 7.7'5356 

27.T3T85 10.06279 14.94903 

27.88511 6,28131 6,59398 

18.728F0 7.207?2 8.26060 
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TABLE 3 .  PCAF OF TRE ESTINATED RESIDUALS FOR A I ( I , I )  MOOEL 

RESIDUAL PARTIAL AUTOC(~RELATIONS FOR AY 
1ST LAG 2NO LAG 3RD LA0 4TH LAG 5TH LAG 

~ONPkq -0.37076 "0.03665-0.676T0 0.00852 "0.17023 
PRVAUT -OJd, J,.87 °0,00564 "0.00112 -0,00223 0.00111 
CONAUT "0,10285 0,00115 "0.00226 "0,00255 -0.00431 
COmUL 0.09514 "0.01340 "0,00179 "0.0032& "0.00126 
UOKCCIq 0.16951 0.00892 "0.0093A "0.00782 "0.00939 
N(DNAL -0.14126 "0,101/,0 "0,11312-0,12456 0.02052 
OTNLIA 0.44&27 "0.00,,~ "0.00352 -0.00171 0.00037 
SPRLIA -0.22599 -0.03193 "0.008,33 "0,01076 "O.O~T& 
PROLIA 0,~340 -0.01~1 "0.00540 0.0CK76 0.00134 

RESIOUAL PARTIAL AUTOOOQRELATIONS FOR AY 

1ST LAG 2ND LAG 51iLD LAG &TR LAG 5TH LAG 

HONFAM -0.18333 -0.02987 -O.CKI04 -0.05068 0.08708 
PRVAUT -0.02935 0.00070 -0.00169 -0.006,&9 -0.00482 
COICALIT -0.&7491-0.0Gt~7 0.00382-0.00309-0.00101 
CCNCJL 0.25051 -0.0129~ .0.01081 -0.00404 -0.00315 
UOKCCM 0.3636~ -0.01617 -0.00168 -0.02261 -0.04645 
KEDKAL -0.57419 0.01834 -0.03797 -0.03747 -0.01874 
OTHLIA 0.30091-0.00~97-0.002'98 0.00010 0.00095 
SRELIA -0.18716-0.01481 0.01288-0,01212-0.01795 
PROLIA -0.70515 0.00668 -0.02610 -0,00267 -0.00430 

RESIOUAL PAJITIAL AUTOCCaRELATIOIdS FOR DY 
15T LAG ZN9 LAG 3JtO LAG 4TH LAG 5TH LAG 

HOIqFAM -0.18311-0.03396 0.00009 0.01791-0.0(~45 
PRVAUT -0.45164 -O.{XX)08 -0.00018 0.00010 -0.00002 
CCmUT -0 .21007-0 .02538-0 .00509  0.018C6 0.00802 
CGq4UL -0.10355-0.03~0-0.00019 0.0M55-0.00545 
uOKCm -0.35143 -0.09390 -0,37586 -0.77800 -1.589,,.2 
KEDIqAL -0.10960-0.03756-0.0139~ 0,00318 0.02590 
OTRLIA -0.13521-0.01166-0.00083 0.0068.1-0.00C41 
SPELIA -O.TA?&8-0,36557 0,02584-0,05500-0.CK183 
PROLIA -0.4~99-0.22962 0.00621-0.01529-0.06378 

RESIDUAL PARTIAL NJTOi:~RRELATIORS FOR OY 
1ST LAG 2110 LAG 3RD LAG 4TH LAG 5TN LAG 

HGMFAM -0.49241 -0.05100 0.03597 -O.02TrJ -0.000P2 
PIIVAUT 0.1292'9 0.00019 -0.00200 -0.00348 -0,00112 
COKtUT -0.12691 -0.00915 -0.00079 -0.0~327 0.00723 

-0,20871 -0.01654 -0.00699 0.0G686 0.01073 

UOKCOR 0,2,3198 -0.02239 -0.02952 -0.01003 0.00816 
MEDNAL 0.108~2 -0.01029 -0.055~ -0.02?23 0.02407 
OTHLIA 0.05596 -6.01590 0.00112 0.007V8 -0.00592 
SPELIA -0,30055 -0.01253 -0.00252 -0.01689 0.01012 
PROt.IA -0.29443 -0.08523 0.03855 0.02532 -0.05277 

82 RESIDUAL PARTIAL AUTOCORRELATIONS FOR AY 83 
6TH LAG 1ST LAG 2RD LAG 3RD LAG &TH LAG 5TH LAG 6TH LAG 

-0.25534 -0.20T25 -6.~,0~0 -2.8,8914 2.02737 0.63195 6.14616 
0.00201 -0,37356 -0.01520 -0 .00476 -0 .01134 -0,00362 0,00860 

-0.00255 -0.30156 0.00355 -0,00414 -0.01290 -O.O03TZ -0.02474 
-0.00043 -0.43576 0.00511 -0.0M43 -0.00719 -0.02689 -0.00648 
-0.00008 0.12489 0.00460 -O,010A? -0.01656 -0.00316 -0.00483 
0,00732 0.15254 -0,27'062 -0.19031 -0.04040 -0,00085 -0.08738 
0,00209 0.10988 0,00077 -0,00673 -0.00701 -0.00103 -0.00195 

• 0.00522 -0.12508 -0 ,07599  -0 .01512 -0.11286 -0,28879 -0.27434 
-0.00018 0.03450 -0.01090 -0.01Cd~2 -0.05356 -0.00867 0,00463 

84 RESIDUAL PARTIAL AUTOCCRRELATIGqS FOR AY 65 

6TH LAG 1ST LAG 2ND LAG 5RD LAG 4TR LAG 5TH LAG 6TI4 LAG 

-0,17562-0,17377-0.12642 0.07477 0.01706-0,04701 -0.02116 
-0.01315 0.02938 -0.00062 -0.0021& 0.00043 0.00000 -0.00000 
0.00121 -0,46176 -0.00270 0.00132 -0,00348 0.00029 0.00101 

-0.00162 0.06822 0.00162 -0.00738 -0.00228 -0.00159 0.00008 
-0.00271 -0.02170 -0.05033 -0.11616 -0.05752 -0.21919 -0.03886 
-0.00296 -0.2060? -0 .006~0 -0 .00968 -0.01695 0.01045 0.00267 
-0.00036 -0.4~20 -0,00020 -0.00140 -0.00011 -0,00003 -0.00016 
0.00782 -0.&6475 -0.01362 -0.00260 -0.00066 0.00161 0.00082 

-0.01450 0,02055 -0.00099 -0.02622 0.00400 -0.02&59 -0.00013 

1 RESIDUAL PARTIAL AUTCCCRRELATIORS F(X~ DY 2 
6TH LAG 1ST LAG 2140 LAG 3RD LAG 4TH LAG 5TH LAG 6TH LAG 

-0.01272 -0.57390 0.01386 -0.07921 -0.0081& -0.01905 0.04257 
0.00003 0.25633 -0.00027 -0.00065 -0.00004 -0.00105 -0.000,41 

-0.01858 -0.11~5 0.01353 -0.01&14 -0.00924 -0.0175& 0.00189 
-0.00335-0.46323-0.01815-0.08047 0.01340 0.00891 0.05A30 
2.35511 0.04069 -0.02385 -0,01581 -0.00568 -0,00437 0.00722 

-0,00361 -0.06726 -0.03033 -0.08582 0.03129 0.00811 0.01127 
-0.00166 -0.03812 -0.00TF6 -0.00573 0.00938 -0.00156 -0.00708 
0.037'07 -0.30293 -0.00657 0.00221 -0.00923 0.00570 0.00422 
0.00849 -0.20689 -0.00140 -0.06315 -0.03099 0.02~12 0.0011~3 

3 RESIDUAL PARTIAL AUTOC~MIREL.ATIONS FOR DY 4 
6TH LAG 1ST LAG 2NO LAG 5RD LAG 4TN LAG 5TR LAG 6TN LAG 

0.02678 -0.33917 "0,00705 -0.00676 "0.00166 -0.00732 0.01159 
-0.00004 0.31263 -0.00149 .0.00539 -0.00035 -0.00200 0,00086 
-0.02852 0,10055 0.007106 -0.02027 -0.00191 -0.02065 -0.00043 
-6.00357 -0.25202 -0.015M -0.01829 0.0C486 0.01590 -0.00168 
0.01704 0.24741 -0,0218& -0.01471 "0,02001 0.01033 -0.00124 

-0.00287 0.03956 -0.04484 -0.02243 0.04137 -0.02612 -0.03618 
-0.02045 0.12130 -0.01779 -0.00050 0.00182 0.00005 -0.01890 
0.00566 -0.20075 -0.03803 -0.01484 0.01032 O.OOS&2 -0.00049 
0.00191 "0.05020-0.1244S2-0.04810 0.02097 0.01188 -0.00370 
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TABLE 4. ESTII,tATED C~FFICENTS FOR AR(2,1) IqQOEL 

ISY YEAR 2~0 YEAR IST YEAR 

AY LAG AY LAG D¥ LAG CONSY 

H~IFAM 0.30030 0.63392 0.0,6093 0.13195 

PRVAUT 0.55930 0.44031 -0.00025 0.17295 

~IAUT 0.96540 0.01353 0.01800 0.09608 

COmUL 0.53940 0.20832 0.26.'1,44 -0.19422 

WOICCON 1.03840 -0.08317 0.026.12 0.09982 

MEDNAL 0.94113 0.05838 0.00222 0.10451 

OTNLIA 0.52058 0.4617'5 0.01822 0.1617'8 

SPELIA 0.73300 0.13/,.60 0.134,27 -0.060T3 

PROLIA 0.76355 0.20860 0.03330 0.07551 
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TABLE 3. ESTIMATED D'STATISTICS OF THE RESIDUALS FOR AR(2,1) I,t(~EL 

ACCIDENT YEAR • 62 

K,3 Kt4 Kn5 K=6 KI7 

HOMFAM 1.98996 2.16336 3.362?'7 3.89974 5.99259 

PRVAUT 5.67316 6.5237'7 6.88369 8.01349 8.49348 

8.26154 9.46501 13.10.957 23.54066 28.98261 

COIqqUL 15.91527 19.07'583 22.54244 24.80556 27.03102 

~ C O 4  17.42113 24.40334 25.35317 32.47001 35.49136 

NEDMAL 3.48411 4.34488 8.93030 13.571~76 14.25~1 

OTRLIA 4.2897B 5.972.55 6.34?65 6.62104 6.62712 

SPELIA 1.91596 2.2t~384 3.28O78 3.304~7 3.31895 

PROLIA 10.68277 11.42674 11.54250 11.637'24 11.65731 

ACCIDENT YEAR • 63 

KB3 K~  R•5 K~6 

HOI4FAM 2.76251 2.95369 3.21&04 &.18011 

PRVAUT 3.03098 4.00322 4.60043 4.81416 

COMAUT 5.97649 ?.44506 7.6~307 23.31011 

COI~JL 9.54224 12.34727 16.56810 17.93802 

~ l ( ~  ?.98863 15.35981 16.52810 17.33435 

NEDMAL 20.13986 25.5252'9 30.47'728 39.19085 

OTNLIA 8.11471 8.28323 11.367'8.2 11.&2579 

$PELIA 1.4?90~ 1.97616 3.32353 3.7131& 

PBOLIA 10.471~38 17.59252 19.15444 22.12186 

ACCIDENT YEAJ 

Km3 K ~  

u 8 4  ACCIDENT YEAR • 85 

[w3 Ku3 K'~, 

HOMFAM 2.05900 6.74590 7.6635& 5 . 3 0 ~ 9  3 . ~ ? 0 3  

PBVAUT 2.a3376 5.38396 7.92933 7.&.6222 8.&033.4 

C~IqAUT 10.06888 16.17177 16.83847 24.267?~ 31.77923 

g~q4JL 18.55?87 19.17945 19.70395 15.437"79 16.71569 

~,X~ICCOq 15.51477/ 16.47673 16.964.48 6.42555 6 . 9 ~ 1 2  

NEDiqAL 1.54353 2.58/..99 13.71380 1.85397 2.21131 

OTKLIA 5.517'55 6.19861 7.76043 11.90048 13.22891 

SPI:'LIA 8.40715 10.138.24 23.0167'5 3 . 1 5 ~ 6  3.23195 

PROLIA 1 8 . 5 4 ~  25.60754 34.80326 11.18560 13.16175 
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TABLE 5. ESTIMATED O-STATIST]CS OF THE RESIDUALS W~ AR(2,1) MODEL 

DEVELOPMENT YEAR : 1 

Ku3 K•4 K:5 K:6 Ku7 

RCNFAR 14.63397 

PRVAUT 11.9807V 

CGqAUT 0.08051 

CONe,IL 20.63175 

WOKCClq 14.93724 

MEDMAL 8.96038 

OTHLIA 17.73336 

SPEL |A 18.02518 

PROL [A 7.84471 

19,64255 20.59734 23.40826 26.88186 

15,66238 21.10133 26.99560 27.26196 

11.72902 16.20662 31.76165 36.63307 

26,85926 30,63580 32.90663 37.20689 

22.406,63 23.92360 25.82408 25.96615 

11.68971 12,57961 12.90309 13.02912 

22.70700 27.48417 29,51769 33.14230 

18,93740 19.33405 20.26905 20,59234 

9.18015 9.98272 11.64293 11,87074 

OEVELCPMENT YEAR w 2 

K:3 K=4 Ku5 [=6 

HGqFN4 

PRVAUT 

CDMAUT 
CCI, e,ILIL 

UOICCOK 

MEDNAL 

OTRLIA 

SPELIA 

PROL|A 

12.67954 15,72676 18.39232 32.04126 

13.09267 16.42352 20.74574 22.55493 

7.63526 9.50123 11,62120 18.42212 

10,80210 14.60958 1A.63837 27.08606 
10.45595 19.07627 23.9'9037 26.13308 

16.61186 21.45131 23,27465 24.53169 

16.80799 18.60625 19.69520 20.20313 

14.71297 15.86508 18.18733 19.2408,3 

9.03563 11.83704 12.33T77 12.70747 

DEVELOP'NET YEAR • 3 DEV1ELOPMENT YEAR • 4 

Km3 K'~. [ ' 5  R=3 K•4 

N{]4FAM 

PRVAUT 

CGqAUT 
CCPg4UL 

~dClCC~l 

I~NAL 

OTRLIA 

S,PEL |A 

PROLIA 

12.59476 13.41527 

13.30942 18.24313 

11.9057'2 14.96067 

14.98182 18.16603 

6.89309 7.86649 
6.63933 13.80642 

15.36807 24.11587 
7.65181 9.61350 

15.55548 18.15833 

13.837'93 6.64678 11.21330 

20.58350 13.25334 13,34350 

20.73/,.82 7.95809 11.02764 

19.30833 8.16434 10.32852 

8.11614 10.0387'8 10.80485 

16.30530 6.24.661 8.74373 

28.18779 10.071570 14.33889 

11.73637 6.13198 6.24645 

20.22100 6.7'5053 7.67302 
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TABLE 6. PCAF OF THE ESTIIq~TLED RESIDUALS FOR AR(2,15 MOOEL 

RESIDUAL PARTIAL AUTOC, ORR£LATIONS FOR AY 82 RESIOUAL PARTIAL AUTOCORRELATIONS FOR AY 83 
15T LAG 2N0 LAG ]RD LAG 4TH LAG 5TH LAG 6TH LAO 1$T LAG 2N0 LAG 3R0 LAO 4TH LAG 5TH LAG 6TH LAG 

HOMFAJq -0.29839 -0,03024 -0.08139 -0.02566 -0.14019 -0.20061 -0.31339 -0.21206 -0.59744S -1.99424 1.94932 0.56558 
PRVAUT -0.35057 -0,00372 -0.00093 -0.00169 0.00082 0.00101 -0,38088 -0,00887 -0.00269 -0.00790 -0.00272 0.OO,433 
CCMAUT -0.10371 0.00114 -0,00225 -0.00254 -0,00430 -0.00254 -0.30283 0,00347 -0.00404 -0.01270 -0.00360 -0.02437 
CCIq4JL 0,09390 *0,01189 ,0,00157 -O.O02M -0.00151 -0.00045 -0,44897 0,00397 -0,00569 -0,00561 -0.02227 -0,00574 
UOKCCR 0.4507'5-0,00315-0,00362-0.00170 0,00035 0.00214 0,12863 0,0(X568-0,0(~764-0,007?0-0,00093 -0.00190 
NEONAL 0,16519 0.00912 -0,00928 -0.00782 -0.00957 -0,00932 0.11230 0,00401 -0.00926 -0,01538 -0,00271 -0,004~27 
OTNLIA -0,21331 -0.03158 -0.00947 -0,01174 -0.04263 -0.01222 -0.13467 -0.03399 -O,OAOgG -0,06096 -0.16086 -0.12331 
SPELIA -0.12282 -0.09918 -0.11554 -0.11673 0,02340 0.00631 0.15227 -0.2270S -0.1553,4 °0.02243 -0.05877 -0.061M 
PROLIA 0.25919-0.01946 *0.00555 0.00416 0.00140 0.00024-0.01047-0.00492-0.01241-0.04244-0.00831 0.00169 

RESIDUAL PARTIAL AUTOCI~ILRELATIONS rOq AY 84 RESIOUAL PARTIAL AUTOCO~RELATIOHS FOR AY 85 
15T LAG 2k~ LAG ]RD LAG &TH LAG 5Tfl LAG 6TH LAG 1$T LAG 2RD LAG 3RD LAG 4TN LAG 5TH LAG 6TH LAG 

HOMFAM -0.005058 -0.006 .0.01433 -0.03495 0.014516 -0.01964 -0.11976 -0.05905 0.040935 0.016009 -0.0523 -0.009096~ 
PRVAUT 0.0156&67 0.003217 -0.00109 -0.00263 -0.00098 -0.00571 O.2&6?q~ -0.00153 -0.002'92 -0.00016 0.000171B 2.210E-06 
C04AUT -0.46568 -0.00452 0.003665 -0.00293 -0.0010 0.001218 -0.45725 -0.00256 0.001196 -0.0034,4 0.00032 0.0009861 
COIq4UL 0.23972&1 -0.00472 -0.01994 -0.00238 -0.00305 -0.00132 0.195429 -0.00173 -0.00777 -0.00161 -O.O00T3 0.000206 
WORLCCmq 0.2736712 -0.00533 -0.00256 0.00O319 0.000?'97 -0.0003~, -0.53336 -0.00045 -0.00097 -2.4E-05 O.O0008& -0.0002153 
NEOMAL 0.3682351 -0.01603 -0.0045 -0.02342 -0,04879 -0.00312 -0.026 -0.04862 -0.11593 -0.05468 -0.20505 -0.03??,.327 
OTHLIA 0.0061007 - 0 . 0 1 ~  0,019313 -0,01696 -0.02119 0,003093 -0.&1031 -0.00536 -0.00605 -0.00085 0.000995 0.0001095 
SP£LIA -0.4TJ081 0.041366 -0.07167 -0.05588 -0.03586 -0,00849 -0.17857 -0.00338 -0.01325 -0.0101 0.0071509 0.0014824 
PROLIA -0.6017'72 0,000743 -0,0404 0.003948 -0.01889 -0.00817 0.094,585 -0,00995 -0.00978 0.000682 -0.0181 0.0017349 

R E S I ~ L  PART|At. AUTOC~(~REt.ATIQItS fOR OY 1 RESIOU/~L PAgTIAL AUTOC~)ItltEUkTIQNS FOO 0¥ 
1ST LAG 2;dO LAG 5RD LAG 4TH LAG 5TR LAG 6TH LAG 1ST LAG 2RD LAG 3RD LAG &Tll LAG 5TH LAG 

HCIqFAfl 0.10441 -0,05122 -0.00100 0.01980 -0.01004 
PRVAUT -0.12&?0 -0.00017 -0.00012 0.00008 -O.O00Q2 
CCmUT -0.21823 -0.02557 -0.00582 0.01807 0,007'80 
COIq4UL -0,01338 -0,03375 -0,00120 0.00760 -0.00828 
~¢aCCOIq -0.15666-0.01164-0.00086 0.00692-0.00(351 
NZDHAL -0.30151 -0.08300 -0.57307 -0.M592 -0.84343 
OTHLIA 0.00015-0.39626 0.05815-0.11715-0.05436 
S~PELIA -0,06512-0,04156-0.0147~ 0.00451 0,02518 
PROLIA -0.38248-0.18376 0.07492-0.03374-0.05593 

2 
6TH LAG 

-0.00983 0.09371 -0o01559 -0.06582 -0.015&5 -0.00559 0.037'22 
0,00002 0 ,~546  -0,00104 -0,00089 -O.OOOS5 -0,00123 -0,00032 

-0,018~1 -0,09615 0,01338 -0.01452 -0.00935 -0,01747 0,00200 
-0.00234 -0.30425 -0.02329 -0.076,9,& 0.01252 0.01284 0.04627 
-0.00156 -0.04033 -0.0073,4 -0.00633 0,00930 -0,00130 -0.00678 
-4.48305 0.06,494 -0.02510 *0.01T89 -0.0059'9 -0.00269 0,00850 
0.01327 -0.11245 -0.00701 -0.00255 -0.00697 0.00876 0.0023,& 

-0.00397 -0.01620 -0.04230 -0.0808,2 0.034815 0,00849 0.01003 
0.01576 *0.00534 -0.00816 -0.06Sq,3 -0.02396 0.01872 0.00306 

RESIDUAL PARTIAL AUT(X:ORRELATIONS FOR OT 
l I T  LAG ~ LAG ~RD LAG 4TH lAG STH LAG 

1401qFAN -0.189~3-O.O&04#; 0.00873-0.03115 0 .00~6 
PRVAUT 0.64993 -O.O027& -0.00&13 -0.00&26 -0.00055 
C~IqAUT -0.1160&-0.00928-0.0067~-0.0033& 0.0~681 
0CH4.0. -0.127'82 -0.01971 -0.007'71 0.00885 0.01224 
UOKCCN 0,02123 -0,01555 O,OGOTJ 0.(X5846 "0,00461 
I~OPtAL 0.25400 -0.02533 -0.03058 -0.01050 0.00958 
OTRLIA 0,0494,5 -0,016&0 -0.01122 -0,01399 0.01147 
SPELIA 0,171L25 -0,01958 -0,06156 -0,02226 0,02695 
PROLIA -0,20953 -0,07'3?2 0,03710 0,01521 -0.05073 

3 RESIOUAL PARTIAL AUTOCOItRELATICRIS FOR DY & 
6TH LAG 1ST LAG 2RD LAG 3lid LAG &TH LAG 5TH lAG 6TH LAG 
0,02137 0,173S2 -0,000~6 -0,01119 -0,0094,6 -0,00037 0,00912 
O,O00?g 0,53043 -0,00635 -0,00715 -0,0G195 -0,00060 0,00190 

-0,02858 0.114.68 0.0g666 -0,02046 -0.0@220 -0.02066 -0,00G40 
-0,00631 -0,11636 -0.01955 -0,02103 0,0067'0 0.01472 -0,00424 
• 0.02015 0,08589-0,01757-0,00009 0.00203 0,00214 -0,01867 
0.01747 0.26950 -0.03012 -0.017&1 -0.0194.0 0.01161 -O.O01M 
0,00525 0,04,17'2 -0,05498 -0.01581 0,01260 0,00645 -O,O0~O 
0,00058 O,M?RS-0.05177-0.01969 0,0/..080-0,03065 -0,04013 

-0.00047 0.05577 -0.13833 -0.04611 0.01823 0.00958 -0.00573 
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K ~ F ~  

PRV~T 

O(J4ALIT 

CCI4¢UL 

gOKCCIq 

~ D ~ L  

OTRLIA 

SPELIA 

PROLIA 

TABLE 7. ESTIMATED 

1ST YEAR 2ND YEAR 

AY LAG AT LAG 

0.02596 0.47'760 

0.52211 0.39606 

0.9637& -0.037'59 

0.57237 -0.15216 

1.04169 -0,7'2885 

0.942771 0.06672 

0.32960 0.2&380 

0.6?767 -0.16662 

0.69942 -0,20050 

C~FFICENTS FOR AR(3,1) NQOEL 

3RD YEAR 1ST TEAR 

AT LAG OY LAG COIIST 

0.44232 0.05052 O. 17460 

0.08301 "0.00161 0.18,837 

0.05602 0.01672 0.103771 

0.35489 0.23524 -0,1&156 

0.69056-0.00&87 0.231277 

-0.01021 0.00256 0,102770 

0.41666 0.01021 0.24194 

0.39012 0.09871 -0,00T33 

0.47181 0.03626 0.11847 
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TABLE 8. ESTIMATED Q-STATISTICS OF THE RESIDUALS FOR ARC3,1) NOOEL 

E~3 

HOMFAJq 1.89961 2.04500 2 .975~ 
PRVAUT 5.56150 6.32262 6.64156 
~I4AUT 8.14380 9,29051 12.72664 
COIM.IL 16.53650 19.75038 23.49269 
WOICCOM 19.11617 24.39896 25.27048 
NEDMAL 3.49'878 A.3607~ 8.949Q2 
OTHLIA 4.18Jo13 3.666A1 6.06382 
$PELIA 1.80286 2.09206 2.94262 
PROLIA 10.78075 11.56971 11.72503 

ACE|DENT YEAR u 83 
Ku3 K,:4 K.5 

HOMFAM 3.00390 3.19140 3.47231 
PRVAUT 3,02413 4,02694 4.63506 
COMAUT 6,02254 7.46375 7,66840 
COINJL 7.74866 10,01261 13.87038 
~COlq 8.21531 15.547q58 16.70029 
MEDMAL 20.14428 25,31812 30.~8372 
OTHLIA 7,27898 7.38832 I0.29606 
SPELIA 1.46445 1.97280 3.369~.8 
PROLIA 10.83263 17.76777 19.67223 

ACCIDENT YEAR • 84 

NOXFkq 3.47006 11.40593 12.1377'9 
PRVAUT 2.7770~ 5.20330 7.77981 
COMAUT 9.32228 15.07253 15.79316 
C CWlUL 18o38219 18,F79~ 19,25388 
VOKC~4 7.16027 7.&9055 7.90569 
NEDMAL 1.54678 2.59282 13.74100 
OTNLIA 7.297?.3 7.87348 9.74389 
SPELIA 10.78656 13.38671 25.73312 
PROLIA 18.87933 26,42670 34.61267 

ACClOENT YEAR • 82 

[ •A E=5 E•6 E=7 

3.43541 3.46336 
7.64102 8.05960 

22.87711 28.23228 
25.95561 28.53D6A 
32.04011 33.54338 
13.59271 14.28146 
6.31699 6.372329 
3.02819 3.02'980 

11.82286 11.84372 

me-.6 

4.55810 
4.84792 

23.16026 
13.45627 
16.93862 
39.23301 
10.34080 
3,6,B359 

22.63626 

ACCIDENT YEA,R • 83 
[ - 3  Jr.& 

2.39762 3.26036 
7.33106 8.51191 

21.97061 30.34.663 
9,07117 10.22135 
4.38527 5.29524 
1.85422 2.21239 

10,06132 10.63347 
6.81150 7.12185 
6.163a;3 6.58306 

Page 1 of 2 
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TABLE 8. EST|MAIED Q-$1AYISlIC$ OF THE RESidUALS FOR AR(3,1) MODEL 

DEVELOPIqERT YEAR - 1 

lC-3 K=4 K=5 K•6 1[-7 

HCMFA/q 17.82687 21.0~,t,13 23.07158 24.98393 27.15608 
PRVAUT 11.03701 14.39888 19.69?80 23.07588 2&.94225 
COmUT 6.$724.8 6.72126 13.03380 28.91539 35.4028O 
CClqAJL 20.03356 25.71469 31.46851 33.42196 39.33703 
k~l~Cl~q 8.08914 9.10014 9.93583 11.511103 11.76411 
I~DMAL 8.74491 11.48403 12.35361 12.67248 12.7970, 
OTNLIA 10.38935 14.33840 17.316,65 17.82'988 18.0?095 
SPELiA 18.52091 19.~997 20.03453 20.46299 20.93O29 
PROLXA 15.27199 19.91718 21.19592 23.37152 24.59059 

DEVELOPMENT YEAR : 2 
K~3 K•4 K:$ K=6 

HOIAFAM 10.88493 11.93953 12.21178 20.8421/, 
PRVAUT 13.528;'5 17.5089~ 21./,8084 23.50739 
COIqAUT 7.98067 9.05037 11.054677 17.58706 
COIMJt. 11.90663 15.01736 16.33284 29.167'58 
~ r C ~  8.21686 14.10539 24.69604 28.53668 
MED(AAL 16.56766 21.43.637 23.26615 24.55222 
OTNLIA 1&.5062t, 15.88895 17.12689 17.7615& 
SPELIA 10.22151 11.52239 14.&9992 16.72538 
PROLIA 8.037~3 9.61459 10.63513 11.2.3291 

OEVELOPMET YEAR • 3 DEVELOPMENT YEAR • 4 

[ - 3  K ~  KIn5 K-3 K,u,~, 

HOMFAM 9.64579 10.36975 10.50742 1 1 . 0 ~ 2  18.18216 
PRVAUT 13.&2957 18.21212 20.00778 12.62276 12.603M 

11.802677 15.146~3 21.79389 6.32948 8.06215 
CGqqU1. 16.69330 17.668;8 20.20201 12.39557 15.46746 
t,/OKC~lq 12.18/.56 19.46557 22.~906 $.10041 10.99673 
iqEDMAL 6.65049 13.76803 16.19655 6.22484 8.72807 
OTNLIA 15.371~ 24,15344 26.06879 8.66626 10.23055 
SPELIA 14.85186 16,34796 23.94580 4.2726,3 4.4?2'97 

PROLiA 15.87020 18.06519 19.86379 5.08T02 5.69'g0/i 

Page Z of 2 
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TABLE 9. PCAF OF THE ESTIIqATE~ RESIDUALS FOR AR(3,1) NCOEL 

RESIDUAL PARTIAL AUTOCORRELATIONS FOR AT 82 

1ST LAG 21~ LAG 3R0 LAG 4TR LAG 5TH LAG 6TH LAG 

~4ORFAJq -0.26716 -0.05608 -0.09823 -0.03268 -0,15005 -0.19583 

PRVAUT -0.35392 -0.003?4 -0.00087 -0.00155 0.0007'8 0.00171 

C~qAUT -0.10556 0 .00113 -0 .00222 -0 .00252 -0 .00424 -0 .00254  

CORNUL 0.0?346 "0,009~, -0.00113 -0.00155 -0.00185 -O.(M)OI1 

V(xoaq 0.42938 -0.00243 -0.00288 -0.00110 0.00076 0.00140 

NEDMAI. 0.16511 0.00910 -0.00928 -0,00781 -0,00955 "0.00930 

OTHLIA -0.20786 -0.03110 -0.010,~ -0.01123 -0.83803 -0.01716 

SPELIA -0.06205 -0,09696 -0.12202 -0.09324 0.03265 0.00158 

PROLIA 0 .26115-0 .01099-0 .00559  0.00428 0.00163 0.00018 

RESIDUAL PARTIAL AUTOCORRELATIONS FOR AT 84 

1ST LAG 2 ~  LAG 3RD LAG 4TH LAG 5TN LAG 6TH LAG 

½0NFAM 0 . 0 7 7 ~  -0.00494 -0.012O8 -0,O2316 0.00795 -0.00433 

PRVAUT 0.01303 0.00306 -0.00103 -0.00244 -0,00097 -0.00552 

COMAUT -0.48487 -0.00436 0.00393 -0.00318 -0.00176 0.00115 

COI,NJL 0.2569& -0.0107'0 - 0 . ( ~ 5 3  -0.00239 -0.00244 -0.00148 

VORC~I 0.01346 -0.00201 -0.00141 0.00052 0.00050 0.0Q004 

NEDMAL 0.36923 -0.01605 -0.004T5 -0.023,60 -0.04905 -0.00309 

OTRLIA -0.029~1 -0.01409 0.01604 -0.01390 -0.01551 0.00166 

SPELIA -0.58797 0 .01067-0 .02147-0 .027q~-0 .0188 .3 -0 .00090  

PROLIA -0.71820 0.00228-0.01896 0 .00097-0 .00332-0 .01319  

RESIDUAL PARTIAL AUTOCCMRELATIORS FOR DT I 

1ST lAG 2lid LAG 3RD LAG ATN LAG 5TN LAG 6TN LAG 

HONFAN 0.2.~170-0.05298-0.00917 0.01044-O.OOA2T-0.01357 

PRVAUT -0.14311 -0.00015 -0.0Q013 0.00008 -0.00002 0.00002 

CCIqAUT -0.23192 -0,0229~ -0.00552 0.01620 0.00802 -0.01801 

COIWJL 0.02573 -0.01432 -0.00745 -0.00118 -0,00065 -0.00504 

v(XCCIq -0.29811 -0.09055 -0.37'332 -0.68566 -0.84675 -4.6,L384 

REDMAL -0 .12720-0 .02112-0 .01534-0 .0047 '8  0 .01630-0 .00126  

OTHLIA -0 .50265-0 .00245-0 ,00075  0.00121-0.00105 0.00052 

SPELIA 0 .23052-0 .25837-0 ,00921-0 .0534 ,4 -0 .06884  0.01160 

PROLIA -O~L~U~L6 "0.0582'9 0 .08D04-0 .07761-0 .~791  0.01103 

RESIDUAL PARTIAL NJTOCCI~RELATIORS FOR OY 3 
1ST LAG 2110 LAG 3RD LAG ATN LAG 5Tit LAG 6TH LAG 

HCMFNq 0.10623 -0.029~& -0.00545 -0.00213 0.00105 

PRVAUT 0.25605 -0.08344 -0.00390 -0.00250 0.00136 

C~MAUT -0.26974 -0.01250 -O.O1T~O -0.00502 0.01743 

C(~ILIL -0.02071 -0.00495 -0.00786 -0.00020 0.08301 

VCICCCI4 0.19224 -0.00518 -0.01352 -0.00~75 0.00337 

Iq[D~AL 0.17799 -0.01470 -0.02706 -0.008/,.8 0.01132 

OTNLIA -0.&0906 -0.00249 0.00018 -0 .0~29  0.00166 

SPELIA 0.20983 -0.01628 -0.01917 -0.01090 0.01290 

PROLIA -0.42933 -0.01915 0.017151 -0.00325 -0.01107 

RESIDUAL PARTIAL AUIiX:CItRELATIONS FOR AY 83 

IST LAG 2HD LAG 3RD LAD 4TR LAG 5TB LAG 6TN LAG 

-0.3,4105 -0.I~,&83 -0.2818/. -0.54963 - I .00730 165.83700 

-0.37978 -0.00842 -0.00266 -0.00779 -0.00259 0.00420 

-0.30055 0.00354 -0.00412 -0.012T5 -0.0037'0 -0.02435 

-0.&3714 0.00220 -0.00590 -0.0Ca&54 "0.02300 "0.00490 

0.21134 -0.00119 -0.00924 -0.00818 -0.00126 - 0 . 0 0 0 ~  

0.11287 0.00/,04 -0.00929 -0.01541 -0.00274 -0.00430 

-0.14054 -0.02174 -0.03029 "0.04656 "0.12731 -0.08358 

0.14931 -0.20989 -0.13631 -0.02L,12 -0.06189 -O.OU.40 

-0.02798 -0.08369 -0.01099 -0.04032 -0.00832 0.00083 

RESIDUAL PARTIAL AUTOCOMRELATIORS FOR AT 8.5 

1ST LAG 2N~ LAG 3RD LAG 4TN LAG 5TH LAG 6TH LAG 

-0.17042 -0.037158 0.02303 0.01861 -0.04912 -0.01055 

0.26761 -0.00172 -0.00316 -0.0002& 0.00028 -0.00001 

-0.42019 -0.00234 0.00080 -0.00406 0.00055 0.00102 

-0.07683 0.007'81 -0.00963 -0,00349 -0.00504 -0.00044 

-0.10101 0.00206 -0.00480 -0.00246 -0.00149 "0.00015 

-0.025776 -0.04798 -0.11721 -0.05509 -0.20639 -0.03768 

-0.04590 -0.00408 -0.01476 0.00086 -0.00257 -0.00033 

0,06009 0.04129 -0.05578 -0.01232 -0.03542 0.00085 

-0 .01319 -0 .006~0 -0 .02216  0.00609-0.007q50 -0.000S1 

RESIDUAL PARTIAL AUTOCCI~RELATIONS FOR 0¥ 2 

1ST LAG 2ND LAG ~ LAG ATN LAG 5TN LAG 6TH LAG 

0.10000 -0.01616 -0.10801 -0.00389 -0.0077~ 0.03960 

0.3,6253 -0.00109 -0.00092 -0.000~5 -0.00025 0.00051 

-0.18645 0.(X1064 -0.0~954 -0.00842 -0.01235 0.00811 

-0.&0701 0.01556 -0.0~795 O.O02AR -0.0073& 0.04367 

0.14061 -0.03839 -0.01055 0.016.,33 0.00~67 -0.00571 

-0.00312 0.01149 -0.04696 0.00255 -0.01053 0.00084 

-0.51547 - 0 . ~ 2 2  -0.00081 0.00116 -0.00069 0.00010 

-0.11998 -0.00057 -0.00311 -0.00269 0.00245 -0.00151 

-0.02004 -0.00532 -0.06729 -0.04119 0.01474 0.00795 

RESIDUAL PARTIAL AUT~RELATICUS FOR DY & 

1ST lAG 2ND LAG 3R~ tAG &TH tAG STH LAG 6TH tAG 

O.O00?S 0.49#,32 -0.00582 -0.0062& -0.00158 0.00199 0.00023 

0.00Z58 0.2?'579 -0.00612 -0.00425 0.00164 0.00180 -O.O00~S 

-0.00279 -0.05468 -0.Q094.2 -0.01159 0.08330 -0.00062 -0.00006 

0.00026 0.19221 -0.016~,3 -0.00646 0.00501 0.00242 -0.00062 

0.00103 0.01502 -0.01277 0.00102 -0.01046 -0.00261 -0.00022 

-0.00830 0.04140 -0.02958 -0.02602 0.01337 -0.00174 0.00002 

0.00011 -0.19410 -0.08397 -0.00276 -0.01209 0.00510 0.00139 

0.00292 0.01638 -0.03931 -0.013,41 0.00531 0.00501 0.00015 

-0.00225 0.21993 -0.02346 -0.04364 -0.00565 -0.01262 0.00146 
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TabLe 10. ~FAN Comperleon of EltlXlites 

Plrsle 1 of 9 

(1) 

Accident 95 X 
Year Limit 

1982 8,227,483 
1983 8,894,303 
198/,. 9,223,7'36 
1985 10°/,40,020 
1986 9,756,424 
1987 10,259,092 
1988 11,486,561 
1989 14,651,688 
1990 15,710,658 

Total 98,649,765 

1991 

(2) (3) (&) 
uI t l rmte Less C~:mpilrlaon 

Point LOSS Oev 
Estimate (1-23/(23 Nethod 

(5) (6) (7) (8) (9) 
L lab l t l t y  Conlperlson Actual 

95 X Point LDF Paid L 
Limit Estimste (5-6) / (6)  Nethod a12/91 

8,222,584 O.06Z 8,222,506 10oT/3 5,876 
8,883,211 0.12Z 8.884,462 28.618 17,526 
9,198.101 0.28X 9,195.274 70,010 ~.375 

10,376,815 0.61X 10,299,264 179,966 116,761 
9,631,000 1.3O'X 9°597,963 354,433 229.009 

10,038,562 2.201 10,008.421 618,497 397,967 
11,100.605 3.&SX 11,098,940 1,076,049 690,Z93 
13,968,085 &.89X 14,199,606 1,906,785 1,223,182 
13,473,811 16.60X 130819,411 6,473,740 4,236,893 

3.96X 9~,32S,847 10, F18,875 6,961,882 W.,892.774 

Upper Limit uJth 97.5 X TwD-TiIt Test 
Lowl~r Ltmlt v i th  97.5 X T~-Ta i t  Test 

Upper Limit ul th 95 X Two*Tell Test 
Lower Limit v~th 95 X T~-Tat l  Test 

83.37'Z 5,7'98 8,224,257 
63.Z9X 18,777 0,883,252 
57.77'~ 41,548 9,183,429 
54.13X 39,210 10,314o312 
54.77X 195.972 9,497,598 
S5,&IX 367,826 9,789,919 
55.88X 6.88,628 10,656,496 
55.89Z 1,&54.703 13,254.760 
52.791i &,582,493 12,358,709 

53.97X 7,394,955 92,162,732 

10,670,718 

(103 

Madet 
&12/91 

8,222,584 
8,8?7,052 
9.17'3,7'64 

10,3,1.4,095 
9,515,095 
9,827,809 

10,699,876 
13,27'2,218 
12,249,744 

92,187,239 

9,411,233 

4, ?&6,733 
14.075,732 

5,944.205 
12,87'8, 2~) 

(11) (12) (13) 
Loss Dev 

Method (10)-(9) (11)-(9) 
1)12/91 

8,222,506 (1,67'3) (1,751) 
8,87'8,197 (6,200) (5,055) 
9,175,8&0 (4,665) (7,589) 

10,252,727 2'9, Y83 (61,585) 
9,477,972 17,497 (19,626) 
9,804,06,8 37,89g 14,149 

10,691,036 43,380 34,540 
13,318,598 17,458 63,838 
12,&03,657 (108,965) 44,948 

92.224,603 24,507 61,8F1 



Tabte 10. PRVAUT Coeperlmon of Estimates 
Page 2 of 9 

Accident 
Year 

(1) (2) (3) (4.) 
Uttlmate LCqLS Comparison 

9~ 1{ Point Loss Oev 
Limit Estimate (1-2)/(2) Method 

(3) (6) (7) (8) 
L iab i l i t y  Camparison 

95 X Point LDF 
Limit Estimate (5"6)/(6) Method 

(9) 
Actt.m( 
Paid L 
gIZ/91 

198.2 15,782,733 13,777,808 0.03X 15,776,929 4 ,0 ,393  35,448 13.951{ 34,569 15,779,034 
1983 17,927,4.03 17,917,921 0.051{ 17,921,001 9 7 o 8 4 6  M,~4~ 1 0 . T J X  91,444 17,901,TJ7 
1984 20,670,924 20,653,4.01 O,08X 20,672,629 198,108 180,585 9.798 199,813 20.622.934 
1985 23.4.88,4.19 23.~9,125 0,17X 23,308,711 475.428 436.13~. 9.011{ 4.95,?'20 23,320,319 
1986 Z6.&12,360 26.317.875 0,361{ 26.419,114 1,17~8,061 1,083,576 8.T28 1,184..815 2'5.M1,832 
1987 29.$71,320 29,353,8418 0,7&Z 29,531,112 2,737.075 2,519.603 8.63~ 2,696,867 28.250,991 
1988 33.027,267 32.5&9,4.04 1,4.78 32,923,117 6.020,076 5,542,213 8.6ZX 5.917,926 29,844.056 
1989 36,b06,510 35o613,939 2,7'92 36.497,086 12,477,209 11,484.638 8.641{ 12,367,785 29.852.941 
1990 4.0,625.515 38.461,978 5.638 40,181,9137 27.283.305 ZS.119,7M 8.618 Z6.839. TT'7' Z6,102.083 

To(at Z4~,11Z.4Tl 240,093.2'99 1.6~ 2~3,4.33,686 50,507,5DI 4.6.4.90°329 8.641{ 4.9,828,716 217,555,94.7 

1991 13.340.803 

Upper Limit u|th 97.5 1{ Tuo-T||I Test 
Loucr LImft ui th 97.5 8 Tuo-Tel( Tsslt 

Upper Limit uith 95 1{ Tuo-Tali Te.=t 
Louer Limit ul th 95 1{ Tuo-T=|[ Test 

(10) 

lqode( 
81Z/91 

15,765,9~ 
17,881,747 
20,564,T22 
23,264.,891 
25,866,~2 
ZS,2&&.057 
30,007,063 
30,043,508 
26o936,751 

218.$93. 239 

14.876.242 

16,27'0,389 
13,682,096 

15,994,073 
13,~8,411 

(11) (12) (13) 
LOESS Dev 

Rethod (I0)-(9) (11)-(9) 
812/91 

1S. 763,393 (13.056) (13.639) 
17,881,735 (19.9,90) (20,002) 
20,567,144 (58.212) (35.790) 
23,281.4.85 (55.428) (38,834.) 
25°862o024 (13,310) (19.828) 
28,2(~6,733 13.066 (44. 258) 
29,918.300 163.007 7&,2/~ 
29.937,138 19'0. 567 84,197 
26,565,4M 83 ,4 ,~  463,415 

217,9Q$,451 1,039,312 429,304 



Table 10. C~IqAUT Comparison of Eettllttes 
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o~ 

A c c i d e n t  

Year 

(1) (2) (3) (4) 
UItlmte LO'il C0mperilon 

95 ¢ Point Loss Div 
LJait Eatlmte (I-2)/(2) Nethod 

(5) (6) (7) (8) (9) 
LiabiLity Comparison Actual  

95 X Point LDF Psid L 
Limit £1timlte (5-6)/(6) Rethocl g12/91 

1982 4,105,218 4,092,216 0.32Z 4,058,4~ 76 ,713  63,711 20.41• 29,929 4,042,160 
1983 4,666,126 4,643,961 0.48X 4,613,709 120,396 98 ,231 22 .573  69,979 4°577,032 
1984 5,713,126 5,673,248 0.70¢ 5°673,7T3 210,465 170,587 23.38¢ 171,112 5,583,2;6 
1985 6,606,130 6,524,735 1.23¢ 6,557,A68 432,697 351,302 23.1~ 384,035 6,360,828 
1986 7°325o 185 7,161°I08 2.29Z 7°Z35,420 870° 487 706,410 23.23• ?'150,722 6,839,937 
1987 8,188,251 7,850,104 4.31¢ 7,q33,205 1,797,660 1~4390513 23.17~; 1,542,614 7,085,223 
1988 8,982,215 8,334,~1 7.TIC 8,427,419 3,401,045 2,753,621 23.51• 2,846,249 6,815,728 
1989 10,081,TZ4 8,9'55,483 12.58¢ 9,280,319 5,787,71~6 4,661,545 24.16¢ 4,986,381 6,220,537 
1990 10,817,614 9,015,129 19.99• 9,205,528 9,022,5T3 7,220,088 24.96¢ 7,410,487 4,195,956 

Toter 66,685,590 62,250,T/q~ 6 . ~  62,987,274 21,719,82.3 17,685,00~ 24.22¢ 18,221,507 51,720,67/ 

1991 1,704,288 

Upper Limit with 97.5 ~[ Tuo-Telt Test 
Lower Limit with 97.5 • T~ - t i l l  Test 

Upper l l= i t  with 95 X Trio-Tail Test 
Louer Limit with 95 • Tv~-tatt Test 

(10) 

Nodet 
al2/9t 

4,062,119 
4,580,530 
5,575,213 
6,353,99? 
6,809,?62 
7,143,&35 
6,87'8,664 
6,215,497 
4,386,37'8 

52o005, 79'~ 

1,997,109 

2,383,303 
1,610,914 

2,292,035 
1,702,182 

(11) (12) (13) 
Loss Dev 

Method (10)-(9) (11)-(9) 
812/91 

4,044,430 19,959 2,270 
4.581,670 3 , 6 9 8  4,638 
5,587,753 (B,063) 4,477 
6,359,705 (6,831) (1,123) 
6,811,681 (30,175) (28,256) 
7,077,190 58,412 (8,033) 
6,788,7'05 62,936 (27,02.3) 
6,146,015 (50040) (74,$22) 
4,259,333 190,422 63,37"7 

51,656,481 285,118 (64,196) 



teb(e 10. ODmlJL Comparison of Estlmites 
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Accident 
Year 

(1) (2) (3) (4) 
uttimute Loss Comparison 

95 • Point Loss Day 
Limit Estl l l te (1-2)/(2) Method 

(5) (6) (7) (8) (9) 
Lieblt i ty ¢aqperiscm AcZuat 

95 • Point LDF Paid L 
LIm|t Estimate ($-6)/(6) Method g12/91 

1982 5,43?,39e S,422,912 0.27'~ 5,417,230 8 5 , 0 8 ?  70,601 20.52'X 64,919 5,381,291 
1983 6,354,9S8 6,321,652 O.S3Z 6,316,166 193,894 160,588 20.74X 155,102 6,206,690 
1984 T,305,313 7.2.36,856 0.gS'X 7,225,004 395,729 327,272 20.92X 315,420 ?,053,5?9 
1985 7,999,620 7,864,431 1.72X 7,832,537 777o351 6&2,162 21.0511 610,2M 7,492,393 
1986 ?,M1,5~ 7,43.4,02S 3.33X 7,200,161 1,&13,2M 1,165e718 21.2&1~ 931,854 6,660,445 
1987 8,505.365 8.078,57& 5.ZaX ?,63&,479 2,415,107 I,9SS,316 21.4.6~ 1,5~,221 6,7~5,892 
1988 9,90'9,T39 9,220,743 7.47X 8,619,542 3,864,267 3,17'5,271 21.?0Z 2,57&,070 6,914,450 
1989 12,567,415 11,485,820 9.42X 11,191,$86 6,031,693 4,9S0,0M 21.851l 4,65S,86& 7,763,9TJ 
1990 14,158,039 12,282,635 15.27X I0,49T, S73 10,517,S3A 8,642,130 21.701i 6,857',068 6,133.380 

Toter 7'9,919,422 7~,347.647 6.07X 71,9]-4,279 25,693,930 21,122,1SS 21.64X 17,708,787 60,322,093 

1991 3,906,165 

Upper L(mlt uith 97,5 X Two-Tai[ Test 
Lover Limit uJth 97.5 X Tuo*Ta|| Test 

Upper Limit with 9'5 X Tvo-Telt Test 
Lotder Limit vJth 9'5 X Tim-Tail Test 

(10) 

Node| 
812/91 

5,389,061 
60~,5T5 
?,0SA,965 
?,4~,635 
6,681,956 
6,692,439 
6,884,622 
?,800°080 
6,400,062 

60,607,392 

4,080,413 

4,860,506 
3,300,321 

4,676,27'? 
3,48&,550 

(11) (12) (13) 
Loss Day 

Method (10)-(9) (11)-(9) 
812/9t 

$°386,804 7 ,770  5,513 
6,240,4~"J 27,883 33,785 
7,047,584 (8,614) (5,99'5) 
7,490,59S (12,?58) C1,?~P8) 
6,639,164, 21,511 (21,281) 
6,646,415 (~,453) (69,477) 
6,876,073 (29,828) (38,3?7) 
7,849,421 36,107 8S,448 
6o130,429 7.66.682 (2,951) 

60,306,960 285,299 (15,133) 



Tabte 10. UOKCCM Comporla~ of h t l m t e s  
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co 

Accident 
Year 

(1) (2) (3) (4) 
Uiticmte Lole Ccxq=erla4m 

95 X Point LOSS Oev 
L|mlt Eattlmte ( I - 2 ) / ( 2 )  Method 

(5) (6) (7) (01 (9) 
L iab i t i t y  CoBp,nriscrl Actual 

95 X Point LGF Paid L 
Limit Eatinmte (5-6) / (6)  Method 812/91 

(10) (11) (12) (13) 
Loss Dev 

Model Method (10)-(9) (11)-(9) 
812/91 a12/91 

1982 9,213,514 9, I/.6, T89 0.73X 8,942,805 466,195 399,47'0 16.70X 195,486 8,093,778 8,949,043 8,847,496 55,265 (46,282) 
1983 10,598,467 10,&86,982 1.06% 10,317,945 732,055 620,570 17.96% 451,533 10,059,841 10,086,206 10,092,399 26,365 32,558 
1984 13,069,409 12,893,512 1.36X 12,87'9,912 I , I I0,505 934,688 18 .8ZX 921,088 12,296,335 12,271,112 12,316,262 (25,223) 19,927 
1985 1/%643,669 14,365,071 1.gtiX 14,450,883 1,720,6q2 I,450,094 19.21X 1,535,9'06 13,439,155 13,&26,764 13,417,449 (12,391) (21,706) 
1986 16,006,922 15,57'0,589 2.80X 15,7'52,839 2,6?6,469 2,240,13,6 19.&81i 2,422,386 14,105,048 14,114,942 14,07'8,555 9,894 (26,/,93) 
1987 10,214,2M 17,527,814 3.9ZX 18,0.33,056 4,191,669 3,505,195 19.58X 4,010,437 150266,334 15,278,500 15,260,031 12,166 (6,303) 
1988 21,159,960 20,044,4,47 5.57X 21,345,500 6,850,868 5,735,355 19.45X 7,036,408 16,507,748 16,521,593 16,598,396 (66,155) 10,648 
1989 23,809,901 21,896,318 8.74X 7..3,820,266 11,928,420 10,014,837 19.11X 11,938,785 16,069,736 16,124,360 15,968,068 54,624 (101,668) 
1990 26,395,660 23,044,713 14.54X 24,&55,565 21,095,&88 17,744,541 18.085i 19,155,393 12,900,611 12,964,76,8 12,198,3~56 64,157 (?02,245) 

Totat 153,111,789 144,976,235 5.61Z 149,996,771 50,7'80,440 42,644,8,86 19.08Z 47,667,422 119,618,586 

1991 5,488.466 

Upper L in l t  u| th 97.5 1; T~-TalL Test 
Lc~r  Limit u| th 97.5 Z T~-Tal l  Test 

Upper Limit with 95 • Tk, o-TalL Ttat 
Lover Limit utth 95 X T~-TaI t  Teat 

119,737,287 118,777,022 118,701 (8~1,564) 

6,046,709 

6,947,791 
5,145,628 

6,737,861 
5,355,558 



TabLe 10. NEDPtAL Compar(lan of Eatlmutml 
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Accident 
Year 

(1) (2) (3) (4) 
UttJmte Less ¢omperllon 

9~ X Po(nt L~B Day 
Limit Estimte (I-5)/(2) Method 

(S) (6) (T) (8) (9) (10) 
Liabit i ty Comparison Actual 

95 X Point LDF Paid L Made( 
Limit Eatimete (5-6)/(6) Method 812/91 812/91 

1982 1,996,508 1,873,2'57 6.58X 1,?'$5,479 365,564 242,313 50.862 124,535 1,706,116 1,74T,222 
1983 2,350,126 2.147,099 9.46X 2,049,96B 57~,607 37'5,580 54.06Z 2T8,449 1,898,418 1,89'9,876 
1984 2,TJ0,133 2.408,021 13.382 2,336,516 894,52T 572,415 56.27X 500o910 2,000,148 2,024,658 
1985 3,062,136 2.5Y3,302 19.00X 2,537,~?. 1,32'5,694 836.860 58.41Z 8~0,640 1,923,~7 1,98,8,~Y 
1986 3,323,696 2,589,B90 ~.33~ 2,~60,406 1,961,4'r8 ~,227,6T2 S9.TT~, 1,098,188 1,62~,187 1,7'34,912 
1987 3,719,7'57 2,685,264 3.8.$2X 2,5M.473 2.690,760 1,656,267 62.46X 1,539,676 1,347,593 1,430,7'09 
1988 4,2T0,137 2,87'0,63S 48.75X 2,991,231 3,536,882 2,137,380 65.48X 2,~7,976 1,091,623 1,177,769 
1989 ¢,843,472 3,026,Z59 60.OSX 3,665,6?8 4,,447.70! 2,630,4~18 69.0~ 3,269,907 852,508 8J,1,429 
1990 5,383,128 3,132,196 71.86X 4,7~,960 5,295,116 3,044,184 73.gL, x 4,656,948 ~4,715 ~3,456 

Total 31,679,093 23,305,923 ~S,93X ~5.109,792 21,096,329 12,723,159 6S,8~Z 14,527,Q28 12,886,065 13,2M,81B 

1991 97,729 

Upper Limit uith 97.5 X TWO-TalL Test 
Loner LtmJt with 97.5 X Two-Tel| Test 

Upper Limit with 9~ % Tuo-Talt Test 
Lc~er L(mlt uith 95 Z Tuo-TalL Test 

(11) 
Loss Dew 

Method 
812/91 

1,692,177 
1.90~,541 
2,019,146 
1,993,1Y4 

1,422,050 
1,198,365 

898,586 
S12.297 

~$,324,299 

99,978 

140,418 
59,538 

130,268 
69,687 

(12) (13) 

(10)-(9) (11)-(9) 

41,106 (13,939) 
1,458 6,123 

24,510 18,998 
65,030 6'9,417 

~15,7'~5 62,7"r6 
83,116 74,457 
86,146 106,742 

(11.079) 46,078 
(1,259) 67,582 

402,?53 43.8,234 



Table 10. OTHLIA Cc~iperlslx~ of E|tlmtOl 
Page 77 of 9 

c~ 

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) 
Uttllmte LOSS Campertllort Llabit i ty Ccmperlson Actuat 

Accident 9S X Point LOSS Dev 95 X Point LDF Paid L Iqodet 
'rear Limit Estimate (1-2)/(2) Nethod Limit Estimate (5-6)/(6) Method 812/91 812/91 

1982 &,6G&,S&& 4,551,164 1.18X 4.546.694 236,338 182,658 Z9,3911 178,158 4,494.388 &.4~).185 
1983 5.082..057 4,968.894 2.28~ &,966,155 497,989 38&,826 29./~1X 382.087 5o077,919 4.778,656 
1984 6,300,135 6,125,941 2.84X 6.Z61,41Z 7957,147 582,953 29,88X 718,424 5,952,007 5,726,084 
19~5 7,456,156 7,097,~3 S.OSX 7,416,525 1.565,652 1.207,349 29,68X 1,5Z6,021 6,568,768 6,&86,247 
1986 7.930.839 t.287.319 8,83X 7.630.093 2.821,185 2,1?7,665 29.55X 2,520,439 5,9B3,91'3 6,083,38~, 
1987 8,889,403 7,803,392 13.9ZX ?,944,806 4,721,624 3,635,613 29.87'~ 3,7'77,027 5,317,321 5,&73,511 
1988 10,/~0,042 8,017,891 18.62Z 9,536,151 7,08&,123 5 ,~1.9~ 30,18X 6,160,232 &,917,109 $,124,972 
1989 11,476,012 9,ZT'B,585 23.68X 10,97'8,423 9,391,578 7.t94,151 30,5&X S,893,91F) 3,?70,531 3.868,661 
199'0 12,226,490 9,507',210 28.60'X 12,404,269 11,480,261 8,760,981 31.04Z 11,650,040 2,170,377 2,24,8,189 

Iota( 74,&25,9T/ 65,438,2&9 13.73~. 7t,684,526 38,555,896 2%568,168 30.&O~ 35,814,445 U.,252,393 ~,249,8B9 

1991 7&S,&29 q60,584 

Upper Limit vith 97.5 X Tuo-TalI Test 1,231.186 
Lover Limit vith 97.5 S Tko-Tal( Test 689,9el 

Upper Limit ulth 9S li Tuo-Tull Test 1,165,511 
Lover Limit ulth 95 Z TI.~-TalI Test ?$5.657 

(11) (12) (13) 
LOll Oev 

Method (10)-(9) (11)-(9) 
812/91 

&,&SY,8,28 (34,203) (3,6,56dD) 
4. 771.$28 (2990Z63)(306.391) 
5,?'7%67'1 (2250923) (172,336) 
6,565,$65 (82,521) (3.203) 
6,~,IZ8 99,4~.1 76,155 
5,320,&09 156,190 3,088 
5,002,585 207,863 0~,&76 
3.886,S02 98,130 11.~,971 
2,355,154 77,812 184, ?77 

~ ,  199.370 (2,50,4) (53,023) 



Table 10. SP~LIA Camperiserl of Estimates 
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Accident 
Tear 

(1) (2) (3) (4) 
ULtllmte La~s Camper(son 

95 X Point Loss Day 
Limit Estlmte (1-2)/(2) Flethod 

(5) (6) (7) (8) (9) 
Llmblllty C"n'~mrlSOrb ACtual 

95 X Point LDF Paid L 
Llmtt Estimate (5-6)1(6) Method ~12/91 

1982 I,129,2Y6 1,126,763 0,2~ 1,124,166 7,876 5,363 46.87X 2, F66 1,124,673 
1983 1,279,849 1,2F4,976 0,38~1 1,2T~,515 14,624 9,~1 49.973 7,290 1,273,&97 
1984 1,37'0,003 1,358,845 0.82X 1,35F, T35 3 3 . 4 9 8  22 .340  &9.951i 21,230 1.355.8,B4 
1985 1,382,886 1,357.925 1.84X 1,354.815 7 4 , 6 5 6  49 .695 50.231; / .6,585 1.327,123 
1M6 1,M1,856 %332,072 3,T41; 1,313,2t,& 147.g88 9T,3~ 51.16.Z "r8,478 1,21~33,582 
1987 1,580,592 1,490,415 6oOSX 1,469,089 262,T30 1TZ,$53 52.26X 151,227 1,393,829 
1988 %883,734 1,71&,565 9,871[ 1,699,189 492°560 323,391 52.31X 308,015 1,535,$60 
1989 2.200,011 1.~t65.627 17.9~ 1.821.966 9?8.618 6~,Z~l& SI ,90X 600.ST5 1.479.T85 
1990 2,$21,T/'I 1,830.600 37.76X I°538,0G0 g.034.$$9 1.$4].1~B $1.46X 1.0'~0.$88 1,102.659 

Total 14.T~9.978 13,351,T88 10.32I 12,950,722 4,046,009 2,6670819 51.66X 2,266,733 11,8~'6,592 

1~1 5~ ,~5  

Upper Limit uith 97.5 X Tr~*Tal~ Test 
Lover Limit mllth 9?.5 1[ Tm*Tuit TUt 

Upper Limit ulth 95 X Trio-Tilt Test 
L~wer Limit with 95 X T~o*T*II Test 

(10) 

Node[ 
a12/91 

1,124,848 
1,269,268 
I, 347,930 
1,332,671 
1,276,620 
1,383,098 
1,522,762 
1.$01,Z95 
1,OM,M3 

11,856,§73 

541,668 

~'8,11T 
305,219 

718~Z89 
365,04T 

(11) (12) (13) 
Lees Day 

Nethocl (10)-(9) (11)-(9) 
812/91 

1,123,243 17S (1,430) 
1,269,384 (4,229) (4,113) 
%349,957 (F,954) (5,927) 
1,333,631 5,548 6,508 
1,2M,~90 (6,962) (15,~92) 
1,381,Z98 (10,7'31) (12,531) 
t,S2&,2T6 (13,298) (11,284) 
1.&91.69S 21,5M 11.910 
1,031,030 (4,076) (71,629) 

11. Tl2o 606 (20.019)(103.9W5) 



TaMe 10. PROLIA Comparison of EstlmntetJ 
Page 9 of 9 

Accident 
Year 

(1) (2) (3) (4) 
U t t i ~ te  Loss Comparison 

95 X Point Loss Oev 
Limit Estimate (I-21/121 Method 

(5) (6) (7) (8) 
Liabi tJty Col13Jerlson 

9'~ X Point LDF 
Limit Estimate (5-6)/(6) Method 

1982 989,769 966,017 2.46• 967,054 88,316 64,564 36.79~ 65,601 
1983 1,145,144 1,094,816 4.60X 1,101,458 107,046 136,718 36.81• 143,360 
1984 1,298,761 1,207,311 7.57X 1,223,989 335,820 244,3?0 37.4ZX 261,048 
1985 1,4~0,065 1.291,714 11.48X 1,328,108 537,273 388,922 38.14• 4Z5,316 
1986 1,621,608 1,389,740 16.681¢ 1,431,263 832,621 600,753 38.60X 642,2T6 
1987 1,770,715 1,418,404 24.8k• 1,310,343 1,257,356 905,045 38.93• 796,984 
1988 2,066,074 1,592,504 Z9.74X 1,7'JS,785 1,6~S0,121 1,186,551 39.91• 1.3,.9,832 
1989 2.3&1,619 1,139,953 34.58Y, 2,370,7~$ 2,078,0/,1 1,476,3~ 40.7~Y. 2,107,177 
1990 2.582,807 1,849,230 39.67~ 2,52,3,669 2,500,189 1,766,612 41.52X 2,441,051 

';otat 15,256,563 12,549,689 21.$71; 14.012.422 9,&76,71~* 6.769,910 39.98% 8,232,6/.3 

1991 

UlCer Limit uith 97.5 Z Two-Tall Test 
Louer Limit ulth 97.5 • Two-To(( Test 

Upper Limit ul th 9S X Tuo-Tall Test 
Lover Limit ulth 95 X Ti~-TaJi Test 

(9) 
ActUaL 
Paid L 
J12/91 

943,316 
1.033.765 
1,097.869 
1,066,652 

9?8,806 
729,495 
661,341 
497,061 
260,440 

7,268,71.5 

102,397 

110) 

Model 
;;112/91 

933,372 
1.025.827 
1,061,559 
1,032.314 

9T6,726 
780.349 
629,879 
1.84,900 
282,8~,5 

7,207,772 

88.7'92 

132,583 
45,(X30 

124°386 
53,198 

(11) (12) 113) 
Lou Oev 

Method (101-(91 111)-191 
a12/91 

933, F45 (9,944) 19.571) 
1.026.740 (7.938) (7.02551 
1,064,681 (36o3101 133.1881 
1,044,854 (34,338) (21,798) 

97'2,913 (Z,QaCI) (5,893) 
722,330 $0,854 iF, 165) 
687,872 (31,4.62) 26,531 
548,140 (12,161) 51,07~) 
280,579 22,405 20.139 

7,281.852 (60.973) 13.107 



l g ~  

1084 
18e5 

19W' 

II;~0 

LAST S A'~K3 
N3E -TO-ULT 

EST L ~ T  L 
EST I.~.T L.OS~ 

1TO2 2 T O 3  
1.3(~' 1 .(~TF 
1.4161 1,O4,~0 
1,3218 1,0,482 
1.31180 1.(~07Q 
1.3030 1.047~ 
1.3~3g I 0471 
1.3448 1 J0441 
1.3854 

Tabl l  11. CaJm uJl~q,,e Low and ( X , ~  PIlym,IB1t T~angde 

I-O48 OWNE}~,FN:UUIO(~,ICE1q8 
I 2 3 4 6 • 7 8 9 10 

19(S2 5,0G~,422 7.4,.,4,118 ? , 7 1 4 ~  7,8101,564 8.02Q,B~I IS.12~.?'50 8,100~a~0 8,2T)S.128 8 2 1 6 . ~  8 , 2 ~ , ~  
lgE3 5 . ~ 4 . ~  7.m'~ w'sq 8~84.1~4 8.44;I 1.~1CI3 8 . 0 ~ . 4 ~  8.747.C1~0 O.~ 1.1~0 8.B8~185 6.B7~107 0.884.4.(~ 
lg~4 (I,213,1~0~ 6.213,101 IB,Ol T.J~7 0 . 8 4 . g ~  ~,1,O(~,5~O 0,1G3.8~ O. 15,3.7'2~ 0,17~840 0.18B,7'80 0.195,.274 
11;185 7,150.1~8 g.424.gS~ O.T r t~B  10.01Z.27~ 10,1~,431g 10.170..~ 10,2~..727 10.277,4.g~ 10.2,8R,001 10.2S8.2~4 
lgl8~ 0,5~,55~ 8 . ~ 1  ~ O ~  ~ 8,248,187 g,401,g81 9,477,gZ2 0,.~4 SQ~ 0.577.078 g,.~I.IBS g,5~17.10~13 
lg87 0,571,181 8,gS7,74~ ll~.~v~'lrJ~J O.~4O.~O 0~104,008 0 . 0  e,O183~lgg ll),gOT,~ I0.001 ~,~3 10,(X~8.421 
II~IB 7.41S.24~ g~7'O, 1gig 10,410,312 lO,Og1.1~ 10,B~,,322 I0,G1~,184 11.048.'791 11,0"~,4&3 'N ,C1~1,114 11 ,CI;B.840 
1 l i b  9.19G,1~ 12.744.GQ3 13,318.,~ 13.~T/,747 13,~1~71S 1 4 . 0 ~ , ~  14.135.44e 14 .10g .~  14.1m.~3 14 ,1~1.~  
18GO g,23~,g18 12,4G3,867 12,O81.9~ 13.311,525 13,537,245 13.848.O44 13.7'~ 9 m  13.7'~O,,~4 13.8C1~,~ 13,819,411 

IWI  10.8"~.718 12,.~58.7'C~ 13,~4,780 I 0.1~S~B.44Ri g,78G.glg g , 4 8 7 , ~  10.314.312 g.18,.1,4~ 8.~u~ ~'r'-~ B,224,257 

3 T O 4  4 T O 5  5 T O 8  6 T O 7  71"O8 8TOG g TO ULT 
1.CQ54 1,0151 1.0118 1.00~' 1 .CO44 1 00T4 
1 . ~  1,O101 1.010g 1,0131 1.(X304 
1 ~  1.0174 1.0111 1.00~ 
1.~4g 1.0108 0 ~  
1 .CQ77 1.0108 
1.0278 

1.342B 1 04.~0 I ~ 7 0  10170 1.0~1 1,0~1 1 .Cl:l~q 1 O014 1 .CIQCg 

12.4~0.~7 13A'18.*~ 10.08'1 . ( ~  g . 8 0 4 . ~  g.477.g72 1 0 ~ . 7 ' 2 7  g.175.040 8.878.107 8.,~2.500 
13.819,411 14.1GD,~ 11.QmBJ)40 10,O[~,421 O H  10.290,204 g.1GI5,~'4 8.1S84,4el2 8,~. .~36 

~k~tB: Amoul, i1 kl Ay I g l~ - OY 6 ~  m,'~ , ~ t  Io p c w ~  b~m b,m~ Ii ml~qlrlncl'wnw11B ~:lrfmw11 bl ~,lr mode. 



Tlt:,kl 11. ~,m'lUtl~ht LZ~II and OLAE I~Mn,lt~[ Tdlmg~ 

ACC PI~'VA'J'~ P M  AUTO IJNBIu'r Y/'I,EDIC, AL 
YEAR 1 2 3 4 5 O 7 8 9 10 11 

Igl~l;~ 5,757.145 I0,773,841 1 3 , 0 7 ~  1 4 ~ 7 0  " 15.~.154 15,4,,~,107 15,~B.071 15.~GO,4ZS 15,7¢2.3~0 15.705,385 15.T/15.1~ 
11;i~[~ 8,3d1~1,141L9 12.107,B04 14rB41~B44 10.34B206 17.147.B88 17,~.3EI0 17.7412.978 1 7 . ~ . ~ 7  17.881.735 17rgO?.GO0 17.1Q'1.001 
1084 7,124.948 13.777.714 18,91~;,~'4 1(Jl,744.230 19.7~B,OIS3 20.~2,374 2'0.4~,818 ~'0,~,144 ~0,~.3,33 ~0,057.§18 ;[0,872,029 
lg~8 7 .~ .9~  1 15.4~,.71i~S 10.1E0.333 21.318.8153 ~ .443,~2 2:3.012.001 23.~B1.4a5 23~.7'5,5 23,45;'.,~)1 23.491 ~ 4  2:3.5~.711 
1 ~  8,?O~. 107 17.2~,1~ 21,5~,704 23~1,71~0 ~.2214.2'88 25.~,024 2~,I(0,T~ 28.~4.3107 ~1,3~1 ~.27 2~,3;8,B00 28.419.114 
ll;le~' 0,70~,3111 10.42'1.048 214,14;'~*~ ;~,1134,,g48 ~8,2K38,/331 ;RI,BK]8...~I 2g,24~,e?8 g9.180.425 ~.41~1~.4114[)~ 29,5(~1.5~ 29,531.112 
1ram 10.9~,881 21 ,'~r/9,~l~ 27,~0(~.191 ~.B'18.3~0 31.4,48.~ 32.230.837 32.808,BT7 32,T'~',112 32,8~,g75 32,~1.04~ 3Q.JI~,,117 
1GIm 12,0~.J063 24.1 g8,3101 29.9~',13~ 33.184.,1~ 34,B1~1 . . ~  35.T~,484 3~, 144~.,1~0 318,310,854 38.417.117 310,4 ~,1.403 318.411~l~'.~ 
IGtRK) 13,342,210 28.~ ,4g~ 32,gOO,71g 318~5 t2,482 38,370,G40 30.*.134 , ~ 3  ~ , ~ , a 0 4  38,~7~,~3 40,08~.~14 40,1~R,811 40,181~7 

1GIG'1 13,340,1BOG 28,102,1~3 28,102,10~3 2 9 , B 4 4 ~  2B.250,G01 25,881.B52 2 : ] , 3 ~ 1 9  2'O,~Z2.g34 17,gOl,?3J7 1S,77G,G34 

I T 0 2  2 T 0 3  
1 ~  1.8714 1.21~13 
19e0 lg073 I . . ~  
1984 1,9037 1.~114 
1 ~ ~ .9T51 1.24~03 
1N8 I.g8.55 12475 
1987 2.0(X8 12444 
lgg8 1.Og~r 1.24400 
l t~g 2.C013 

L E T  5 A'vO 1.8011 
AGE - TO- ULT 3.01 la 

EST LAST L 
EST LILT LO6S 

3 T 0 4  4 T 0 5  8 T 0 4  81"07 7 T 0 6  8TOg OTO ULT 
1 . ( ~  1.0,~0 1.0248 1.0127 1 JC043 1.0C~9 
1.1015 1.048B 1.Q2'IB t.J~88 1.0048 
1.1040 I . ~ . 5  1 . ~ 1  1.01,~. 
1.1115. I . ~ B  1,Q~4 
1.11~' 1.1~,15 
1,1104 

124G7 1.1018 1.0511 1.0240 1.0117 1.00410 ! 0 ( ~  1.0015 1.00~ 
1.51g8 12191 1.10(]5 1.04~ l r ~  1 ~  1.0(~1 1 ~ 1000;' 

28JSm,486 29.g3g',136 ~,g'lS.3QO 26,2~.T33 2'5,EI~R.G24 23.281.4,85 20,5~,1414 17,881.736 15,7~15.3~ 
40.181J~)' 3B.4~',OIQ 32.J1~,117 2g,5,3'1.112 :~8,41,1.114 ~,.~(]8.711 20,672,~29 17 ~ 'UXI I  15,~,G29 

P l lg l2  d 9 



Tablm 11. CWlS u l i ~  L ~  wld OLNE PIlmtenl Tdlmg~e 

C X ~ M ~ , I I .  Au'ro/ 'rRucX UABIU'rWMEO~.,N. 
1 2 3 4 5 0 ? 8 g 10 I1 12 13 

18183 ~ , 8 4 4  2.201,4~1g 3,0TKU~72 3,713,31S7 4.114,104 4 3 3 7 ~  4.4~Q017 4,~4S.T30 4,561.~r/10 4,5~.~82 4,008,874 4,813.428 4,81 ~7'og 
1BBi 1 ,d.2 l.JMI4 2.~,41.41,40 3 ,TBI ,~)  4 .~74.~53 5,04~.880 5 . ' m  ~'tK 5,..~]2J581 5.,~7,7'$3 5.831,g~2 5.054.1M 5.~,37 '~ 5,070,g71 5,073.Tr3 
16iO~ 1.308,1~ 3 J ~ T 8  4 .,~4,/rl'o 6~2T~,B~ 6J~41,344 0,1T3,433 0,3150, ~'10~ O.4S8,CI~ 0,.,~0,110 8,5,34~41 0.547.~1 8,$54,~8~0 0~7 .488  
al~B 1,37'2,338 3 . ~ 7  4,T25~715 6,788...~1 8,4,S4.~ O.B11,8~1 7.011,211 2,125,7'2~i 7,1 ~..082 2210,454 ?.~4.7101~S t.231Jl4~ 7.~,41~J 
lgl87 1,4,2Q.4,29 3 , ~ 4 1 8  8,,d~]O, qJ3 O~31DO.,E~ I 7.077,1g0 7,445B.~101 7,,Sg3,gG~ 7 81 ~il~SI 7~74~?01 7.B08~831 7~121.48G 7 ~ B 7  7.g~33,A.O15 
111(1~ 1,,E~,lB7 3.~l~?gO B.~tl~ 171~ ~/88~7~DB 7,.1510,07"7 7,S03.871 L1T~ ,~ I  82gg,~EO 8,*.~.27'0 8 , . ~ 4 0  B,414JHO 6, L ~ ' ~ q  ll,427,41g 
1 ~  1.B65,a97 4.~1.G08 0.14~,018 7 , 4 T 8 ~  0.278~,0,4 ? 8.T38.B21 O.(XX)~431g g, 1 ~ 1 ~  0211.081 0 .24~87  8,~88.~r"~ 0 ,2~T35 g . ~ . 3 1 8  
181i0 1,796,041 8 ¢1~*.~ 0~1~,4~13 7,41~J~I0 8212 .~8  0,~8,410 8,827,;10~ 0.G~6,8182 g,137.841 0,173,784 0,101,887 0 , ~ 0 ~ 1  O.~'ze~ cUR 

190'1 1 .?04.a.O~ 4,1051rG~ 0~220,~37 OJI~T2O 7. i~ .a~3 e .A'~a~.~'l ? ~.'mr'J.A~q 5.~,~,27e 4r577.G3Q 4,04~., 100 

1 T O 2  2 T 0 3  
t g ~  2,077'8 1.3eeg 
18~3 22.111 1 ..)EGg 
IgG4 2 ,16~ 1,4.31~Di 
18B5 2 . ~  1.4134 
1080 23721 1,4517 

IGeB 2~7~l  1,48~ 
1G~ 2.2T/'B 

L ~ T  5 AVO 2.37218 
AGE -TO-ULT 5.1;~83 

EST L E T  L 
EST ULT I..OSS 

3 T 0 4  4 T 0 5  6 T 0 6  O T 0 7  7 T O 0  
1,18m 1.0g~ 1,O63g 1 . ~  1.011~B 
1.2~8 1,107g 1.~44 1 .IO0~SS 1.0147 
1 . ~ 8  1.10012 1.0677 1 .CK31CB 
1..2~R~ I.lOlEB 1 . ~  
1,22{]2 1.1194 
1.22W 

8 T O g  OTQ ULT 
1.00?g 

1,4313 1,210& 1.1074 1.05~ 1.03CKZ 10155 1.0079 1 0040 1 ,iXI2) 
2.101..3 1,51~0 1.2414 1.1210 I . ~  1.G311 1 0154 1.0074 1 

L ~ , " t ' t l  0,14~S,015 O,TBB.T05 7.077,1GIO 0,Bl1,081 8~3150,7'05 fl *.~7,753 4~,.~ 1,870 4,04.4,430 
g l ~  10.2a0,.310 8,4v,rT,418 T .~L~ I~  T.23~420 Q J.~V,4~8 tS.GT3. TZr3 4~1~110g 4,05~, 4,.14 

li00'I0 I .iO~(,l~ 
1.0015 I.~ 

Plmge 3 d 9 



0~ 

T ~  11. (~, lmul~e L~s  wv:l GIJ~E Pe/mWlt TdlmOM 

AOC GC&O,ERCJJLL MULl1 PEtq;L 
1 2 3 4 8 0 7 8 8 10 11 12 13 

1 ~  2 ~ .  ~ ~ 1 ~  3 ~ 1 1  4 ~  4 . ~ 1 ~  4 ~ 4 1 1  5.181217 6 ~  6 ~ 1 1  . ~ . ~ . ~  B , ~ l ~  5 . 4 1 ~  6 , 4 1 7 ~  

1884 2.571~181 4,280,448 8 ~ 1 0 2  6.TV~l~dl 6.277,.324 8.8M, d ~  e.w'm~,w,4 7.047~8,4 7.136.421 7,184.428 7.~07J571~ 721~188 7.d~G04 
1Olin ~.MO ~qa 4 ~ 6  5 ~ I ~  0 ~ 1 3 1 0  6~1U10  7 ~'J~qnP 7 , ~  7,040.180 7.T31B.674 7 .7 '~47 7~13,044 7 m s ~ t  7.A5o L'47 

1 ~  ~ . ~  4 ~ 1 ~  8 ~  ~ 0 ~ 4 1 6  7 ~  7 ~ 1 , 1 ~  7 . ~ 7 ~  7 ~  7 ~ 1 ~  7 ~ 1 ~  7 . m ~  7 ~ 4 ~  

I ~  3 ~  ~ 1 ~  7 ~  8 ~  9 . 1 ~  g ~  1 0 ~  1 0 ~ , ~  1 0 ~ . ~  1 0 , ~ 5  1 0 . 4 ~ 1  1 ~ . 1 ~  I 0 , ~  

I ~  3.908,108 8 , I ~  1,783,,gT3 @,014,4~[0 0,718.88~ 8 , I ~  7.4a2.3gG 7,10~3.57g 8,20~.880 8.381,291 

I ~ 2  2 ~ 3  3 ~ 4  4 T 0 5  S ~ 8  6 ~ 7  7 ~ 0  8 T O g  O T O ~ T  
1 ~  1~174 

1984 1~81g 
1885 1 ~  
1988 1~1S 

tgeO 1.7737 

LAST S AV~ 1.8840 
~GE-TO-ULT 2.~8~8 

EST LAST L 
E ~ T ~  

1 . 1 ~  1 . 1 ~  1 I  1 1  

12137 1.1485 
121m 

I~1W I 0 1 m  
1£GO1 

I 0.4~IQ',873J 11.11M ,Im8 8JllUI,42 7,834,479 7.200.101 7.a3~.,B37 7 ~ 0 0 4  0.318,108 8,417,230 

l m  
1.00(~8 

10tOe4 d g 



Tabkl 11. OJmUrm~ Liom and (~.~E PIt1~n4tllt Tr t m ~  

1 2 3 4 5 0 7 O g 10 11 12 13 ~4 

1 ~  2 . 4 ~ , ~ 7  4.804.045 8.173,1010 7 ~ 7  7,578.103 7,gGQ,402 IJ~48~1 8.5~ 1.451 8.747.310 8,847.480 6 . ~ , 1 5 0  0rB23.034 6,GQB.4.0O 6.842.805 
IEIB3 2,901,g~ 6.,4~B,306 7.JOOL617 8,~7.1~7 0,737,53Q 9 ~.~,Cl l  0,500,07'5 0,988.4 ~12 IO.I~I~E~,3gG 10.~]7.glflO I0.~88.433 1 0 , ~  10r310.~15 I0.317,9d,~ 
lEO4 3,105.(~11 6.'484 ~12~ II.l~ 17,~4 O~DTt~7 10,1~1~.4~ 11.~r~1.4~ 11.~8,824 12.318.4~/~ 12.~8,382 12,7~.842 12,915.00g I 2,9~.301 12.870.ag0 12.6~.g12 
l g ~  3,318,4.3~ 7,241.2g~ Ig ,933,1il7~ 11 ~2~.,4,g~ 12.217.4~ 12.914,91'7 13.417.440 13,918.484 14.134,9G2 14.,,~8,97'0 14.37e.737 14.41U,904 14.440,547 S4.4~0.083 
lIMB 3.418,1318 7.?01,036 10,,l13m./m2 1221~1,194 13,.13D,4,.~.1 14,0~mr~l 1 4 . a ~ . ~  15,(~3.484 15.4C1~.'48~ 15,5~4,gGI 15.ff74.11;i[3 I ~7  IU.~IE 16.741,672 15.7~.8,31g 
11;1~ 3,/~llO, Ig~lg 111,9~4,318 18,J0~,~4 ~4.10~.810 18.,~I),Q~I I 18,1116,420 t e,74113,440 17,2di3,~ 17,63B ,91~0 17.B40,9~ I Y~II~,O~ 17~4.811~ 18,0~0.1M 18.~.1~d58 
11M~B 4,J~7.J~1 10~4B.~101 14 ,.,IOLOg~ S 6.5G8.,,108 10,1~,10~ I 0,0~1,902 T g,910.008 ~0.411 ~ l l l  ;~)r~ ~1,0~5 81,118.007 81,238.gCl2 ;M,d~,741 81,330,22Q 81,348.500 
Ig~B 4,934.351 11,~1.'481 15,91~,0~ SO.]~'M)I ~0,1~g'~18 81,2BB.~I4O 22,1 l~,~l'~gG 22.T/7,9,4~ ~,4~g,.~4 23,~B.30~ 23,7'01 ~,,143 ;~.ZEIO.~Q ~ 3 , 9 ~  23.1~1Q0~2~ 
1gird 5 . . , ~ 1 ~  1~1~,,18~ 16~31g~.~44 10,918,903 20.004 JIG 1 21,9~8,,118 ~.7'0~,081 23.3~1,342 ~.~1,97"5 84.1G4,928 24 ~..~.4710 24.4~,13g 24,43B,07'3 24.4~15.,~1S 

1gig1 5.4188,4~ 12,g~O.fJt 1 I 8,0~,7318 10.5~',7'48 15,208.334 14,1C~.048 13,43g,1~ 12,298r335 10,C~1~.84 I 8,880,778 

I T 0 2  2 T 0 3  
1 ~  2.00;~ 1.27'g8 
IglEO 2 .0~*  1.2910 
lg84 2JOg18 1,32~ 
lgE6 2.1836 1,3304 
I g ~  2.2543 1.3,~i5 
1987 2.33~'1 1 ~,5CI2 
Ig03 2.3297 1.3587 
IgEg 2.40~1~ 

[,JI.~T 6 A I ~  2.3015 
AGE -TO-ULT 4.8141 

EST L.AST L 
EST ULT LCGS 

3 T 0 4  4 T 0 5  6TOO OT07  7 T 0 8  8TOO g TO ULT 
1.1384 1.0812 ~ .C844 1.0302 I.Oo(Jg 1.022g 
1,14~8 1.0872 I OMO 1JOOm I . l ~ m  
1.1879 I J0011 1.0~7 I C0~8 
1.1a~ I .IO~e 1.01571 
1.17(13 1,0912 
1.11594 

1,,:HL3D 1.11~0 I ~ 1 ~  I . ~ 1  'l.ici38r/ I.(12~g 1 . ( ~  1 0115 t 0(~7 1.0~;l 
2.0040 1,4817 1 2 8 m  1.1617 1.118g 1,0TJO 1.04~ 1.CQ23 1.01ClB 1.0050 

12.188.,.~ 1 ~.gO0.1(~ 1 ~ , , . ~  I ~.2~).CI31 14 .078 .~  13,417.448 12.~ 1 8 . ~  IO,C~.~IGO B,647.4QO 
~,4,4~.~0 2 3 , J ; ~  21.34S.E~X) 18.1~,~1~ I S.7'OR,O3g 14,4ZIO,9103 t2.Bm,912 10.317.045 6 . 0 , 4 ~  

1J0014 1.00(~ 
1~121 1.()0100' 

F t ~ S ~  0 



Til~k) 11. OJmLd~m I . ~  w ~  OL,AE Pmlmmm,~l T~,~Ofm 
PwO,w Sar D 

MEDICAL M ~ ' r l ~  
YEAR 1 ~ 3 4 S O 7 8 8 11) I1 12 13 14 15 18 

19~  ~SO.CCrl 17'2,01~1 383.(~l 075.119 g51,802 1.187,25,4 1,364,J:tl 0 1,517.O31 1,030944 1.0t~ 1T7 1.723,G43 1,740.12~ 1.748281 1.752...304 1.7'5,4,450 1 .?t~,4"~8 
IG~l ~1.0~8 21 ~43~1 487,~? w v l . " m  1.120,570 1.38~,81R0 I ,~O3,?'Gt8 1.??t,StO 1,904.541 1.97(S.047 2.013,142 2.0~.(~i~ 2,041.574 ;~.04~.3~t5 2,0,46,708 2,044~.g~8 
I ~ 4  104.213 ~ 4 1 8  N a n . ~  g73,318 1,3,77,37'8 I , ~ | t , , ~  1.8. .~.~ 2.011).14~ 2,170.7~r~ 2 .~ .2G3  2,,~4.543 2,31AK~D 2,,32f1950 ;~.332. 410 2,33~ 144~ 2,338,S1(I 
1G~IS 42.71;18 253.7~r An~ls ' t  1 .1024~ 1.4~,GI5~ 1.73~4,42 1 ,~t~.174 2 . 1 R 4 ~  2.3~7,(~ 2,445,5~ 2.44;I 1,..~ 2.~14881 2.52~0D4 ~.52Q.823 2.5315.~t8,4 2,S37.(~2 
tg~l~ F~4~'  2~1 420, ~ 1,008.1077 1,3182.~18 I , ~  ~ ' t  t .¢L~'~t, 2.1 ~ , ~ 7  2.28~tB82 2,371.08,5 2 ,418~7 2 43tA.B~8 . 2 .~'l'l.'t'G' 2,45~.CIB 1 2 4~,B~i .  2 4~lCl,,tl~ . 

191m ISS,~' ~?J01S T33,2~8 1.1GtB,3O~ 1 ,8~113 2.047,~73 ~,348,9151 2,~O4.830 2, T'r81(~Ci I 2.88~3~8 ~,807.4.8~ 2.G~0El~ 2,87'8~984 a.Rl~i174 a,G~Q,4T? 2,981.231 
1N8 7'8,198 38~,771 888.548 1.4~8...~8 ~.nX* ~ 4  ;~ ~ ' ~ m  ;1~79,816 3.167,787 3,408.8~33 3,533.480 3.~S~.~2S 3,(~3~01 ? 3.0~.070 3,0502~0 3.1m~*'~ 3.0~,8'7'8 
1080 ~ ,012 6 1 2 ~ 7  1 , 1 ~ 1 ~  l~IY~or'*4 2,~rJ.OT5 3,247,5~ 3,727.718 4, t(~0.44.8 4,4~34.Q 4 573,8.~Gt 4 , ~ 1  4,710~46~ 4,7'~.r~"t~ 4.73~.0~0 4.742.178 4,74,4.G~SO 

180'I S~7.72G 444.715 a r~  rv'~ I.K)QI.~iZ3 1 , 3 4 7 ~  1,821,187 1,823.7'57 2.000,148 1,88~.418 1,70~110 

1TO2 2 T O 3  3TO4 4 T O 5  5 T O 8  8 T O 7  7TO8 8TOR) OTO ULT 
2 . . ~  1.71923 1.41~0 1.2S77 1 . 1 ~  I .~54  1 07"51 
2..,~K:B 1,04~ 1.400rl 1 24.~' 1.14~D 1.1048 
2.G4 t0 l,SgEtO 1.3740 1 , ~ 3  1.13t~B 
2,3734 1,7017 1 3718 1 2 ~ 1  
2.3030 I .~1083 1.3540 
2.3743 t R2~B 
2,17'0D 

1162 3.4412 
1853 3.27"70 
1984 2.8~15 
1 ~  5.0280 
11~B 4Ge84 
19~' 7.1417 
lt;RI8 tS 0,4.88 
1080 4,EISE8 

U ~ T  5 A ~  6,~08 
AOE-TO-ULT 5 3 0 1 ~  

EST I .~T  L 
EgI" UtT t C ~  

2.27~ 1,~343 I.,3e20 1,23~2 1.1478 1,1(](30 1.0751 1.0375 1.0188 
8.2~'1 4.0794 2.'W61 1 ~ 1.4811 1 272D 1.15;2 1.0704 1.0074 

512,297 6188.508 1 . 1 8 8 . ~  1.42~.060 1 , z ~ ' *  1,883,174 2,010.148 1.804,541 1,OGQ.I~7 
4,T44.GO0 3 , ~ 0 7 8  2,EQ1~31 2 ,5~473  2.480.4Qe 2.&,37,aIQ 2.33B.516 2 .04~1~ 1,755,4~1J 

f.OOIN 1.0047' 1 0O~ 1 0012 ! (XX)~ 
1.011113 1.0Clm I (X)41 1 0K.118 1.00CO 



Telb~4~ 11. CumuilzZ~ Lore rand OI.~E Plzllmm'~t Tr~lml~e 

1TO2 
1 ~  1 .Iz258 
1085 I~G~m 

1060' 2.,~,r/ 
1088 2.1848 
112~0 2.2323 

[./~3T 8 A"~3 2.11~D 
AI3~ -TO-- t.A.T 3.1554 

EST t.A..~ L 
EST ULT t J I M  

S~'ECtAL IJAdBtUTY 
1 Z 3 4 5 0 7 iS 0 10 I1 

1 ~  418,836 EICQ.'7~2 DSB,248  1.032,~3 1.07'3,T77 1.G64.T81 1,1Q~I3D1 1.117.72(5 1.121.4~0 I. 12;~1,243 1.124.188 
10m 4 ~  Tl'4 ~ ' , 5 1 7  1,0W,~2 1,141,0BT 1,197,Jl57 1 , ~ , 1 2 0  1,254,410 1 285,4.25 1 ,~ ,384  1.271,47'0 1,27'2,~I 5 
t~lB4 44~,307 842,B83 I, 11~,4,441 ~ ~'z~r['t,4 1 ~ 7 ' S l  1,312,,~1~2 " I ' t ' ~  1 ~ 3 , 4 ~ /  1.36,4,31B4 1 , , ,~0~0 1 .,~,7'36 
II 411J503 820,190 1~1.485 1 ~2[~188 1 ,~ ,407 '  1. ~ ~'zrz I ,..~.831 1.34 I.~,4 1,361.482 1,35,3.7'03 1.3S,4.818 
I1~1~ d1.4~4 ~ 1 4 1  I ~ l ~ , * ~  1.17~..148 1.234,788 1.288,080 1 .~ .111 1 , . .~? '~  1.310,015 1,31~1~ 1~1~k2445 
1887 4 ,07 ,18 '7  ~ 1,103~,111 1~11',08~ 1~3181.,2~ 1,418,574 1,44~117 1,400,~'3 1,44~474 1 , 4 6 7 ~  1,468,J0~ 
1 ~  81Q,a~4 I, l~4,glS 1,381,114 I ~ / ' 0  t ,~JOT~4e 1,640,T~12 Ur/~,~20 I , ~ B , 4 ~  1 ,~ ,0~1  1,~7,7~,4 1~ , IE1~  
l~ l~m 848,437 I,~1,303 1,481Ji6 1~1~4.415 1,113.1D88 1,TSQ,310 1.7~13,477 lr811,,528 1,81/,483 1.B2047'0 1 . /~1~8  
I~1~0 4,87,412 I~J~31,~ 1 , 2 ~ 4  1 , , , , ~ )  1,4,4~,0~1 1,'48~.110 1,~13,~1 IrS~9,18Q 1,634,210 1,~38,2r37 1 . ~  rn ' l  

IgBl ~ 1,1( ]~.~ 1,479,?'815 1 ~31~,5a0 1,31~02B 1 ~q i ,~ '~  1,*,~,123 1 3 ~ i ~ 4  1,2773.497 1,124,073 

2TO3 31"O4 4 T O 5  5 T O e  O T O I  7TO8 8TOG g TO ULT 
1 . . 2~  1.0oB1 1.04(,~ 1.0102 1.0188 1.0115 1 (X~3  
1.11~R 1,1048 1.0504 1.0330 
12470 1 . 1 ~  I.(~1~1~ 
1 .~r~) 1,1048 
122~1 

I.,.21.1 1.| I.~ 1 ~  1.011)I 1.010'I 1.~ 1 0010 I 

1,031,030 I . , q , l l ~  1 .E,24,~15 1.,,~ 1,2~ 1.288.1~) 1,,333,([31 I ~.,4~GI57 I ~ , 3 6 4  1.123,243 
I I ~ r l r l r t  1 ~ 1 ~ 8 8  1 , ~ , 1 8 8  1,4aO, ID~ 1.31,3,248 1,315,4,,815 1,367,7"35 1~72,515 1,124,108 



Taltm 11. G u m u i ~  Line wv:i OLJdE I ~ m l t  TrbnsIB 

OTHB~ LMBUI'Y 
1 2 a 4 IS IS ? IS O 10 11 12 13 14 15 

1 ~  ~ 1,~7,130 1 , ~ , A ~  ~ 3,10~0,570 ~ l . ~ r ~  3,~138,24~) 4, IGqO, OlflO 4,30B.5(~ 4,457.(~8 4~d]~.4~Q 4,~,,423 4.~37.~1 4 5,4.1.7'~ 1 4,54~.08,4 
t~lB 377,7 '81 1,1~8.~ 1~,4C~78,4 ~ l~d l l10  3.382.*.~ 3 J 8 4 . ~  4,48S,3~16 4~4.08B 4,T/'1.~8 4~BOQ.QEO 4.018J88 4.844.013 4.8E~84.8 4.8~G6,,I 4.888,156 
1004 J~,'t I r ~  1 ,~4,747 2~43JS10 3,2"16,DIS0 4,1318JS7'0 4.884,B22 §,S42,Qm 6,T~I,O?I 6,018J0~:3 0,138.(~11 O.a~) I,?SlO 0.233,486 il,24Kl,4,27 8,257,413 0~1,412 
18~ eR1.T/O 1 .4~ ' rY  U4k,~,8~4 3,J~181 4.oevt r'~'t S,800Jl04 G.~d~UW, 6,B45,B 11 7,125.11a8 ?.ZIP 1.,5~ 7 ,34S,~ 7.*~83,4Z~8 ? . 4 0 ~  7,411.~ 7.418,*.~ 
1988 1 1 8 3  1 ~3dla,lOO6 U8~,4~1~ 3.iiT8,014 0.10Q,~64 O.OeO, l ~  8.71S'4,8~ 7.043,048 7~331,084 7,48G,881 1~S61,442 l J ~ r 4  1.i51~488 7 1 ~  7.830.C~ 
181~' ~47.1~ 1.41,4~.806 2,.7'll~...IJ'l 2 4 ,I ~rzP,T~I1) G ,,ll~O,4Ql~ G31Q.Q87 7 (~3.~3 1,3;3;5.548 ? ~ ,44 ,4  7,~.S~4 ? , ~ , ~ l ~  7 ~1~'~,4 7.8~. . .~  7.83B.7~1 7,J44J~ 
18i~ ~1~.T88 %842.748 U T U l l l  FL.nrl~FU~q O , , ~ U 7  7}T3.~8/ e , 4 4 1 ~  O,~l~. 4..~ 0,Ia2.423 0,34Q.788 9 , 4 4 , . ~  ID,4~1~3.~4 0.~17.B8~ O,~"lr~ ~ 0.~31~151 
1 ~  '7/1~.308 ~J~84.434 ~l.Jm~w.*~ L/88,188 7 ~ 1 , 0 ~  8 . 7 1 ~  li l.718,~ r 10.133.7'04 10.548.171 10,'7~,848 I O . B T ~  10.~,47~ lO,gEO'.410 10.97'1.413 10.8'/8.423 
10190 74a,2~ L , ~ 1 8 4  4~1111,~l~ 0.~O?,171 lil~lO~7~l Ilr~1J172J I0.~61.1~4 11,44B,8(~ 11,0te1.137 12, l~Sl.B2S 12~1FJ I  12,.~4B,~4 12.31~ JS~'8 12J8,34~ 12,404 ~ 8  

t ~ l  74,~,429 ~ t  71~37'? 3,771D,53r I 4.B17. f ~  6.31 t',,321 5 . M 3 ~  g.~MS.TOI8 SJS2,007 5,0",910 4,484,386 

11'O2 2" [03  31"04 41"05 5TOO OTO? 7 T 0 8  8TOO g TO ULT 
I ~  2JIr/'88 1.81 ;~' 1.4,,.~l~ 12741 1.1147 1.1C~Qi 1 . ~ *  1.0,40B 

1804 2.84~18 1,8~1'f,8 1.4~1 1.2B~, 1.2044 1.11~0 
181~ 2.T8~ 1.7613 1 ,Z~t,,.~ 1 . ~  t.1878 
1 ~  3.4glib 1 .I;[TB~ 1.44i~ 1,~45 
101~ 4.1848 1.,gOre 1 . 4 ~  
'rlBeB 2.~12i8 t.lg3aO 
11088 2 . 1 ~  

~VI[~ 3.1~'I 1 ,B~41S 1.4~1~ 1 ,~71~i 1.181~0 1.1148 1.0,II~ 1 04~  1 .~ ) !  1,01GZ 1.100~1 I.O~g 1.001,3 1.000S 
dld]~11Jt.T lqB.( l~ ~ , , ~  ~ 1.80~ 1.4~13~ I ~ ' i  ~1.1~ 1 .Jl~l~ 1,040D 1.01~ 1 . ~ 8  1,00,4S 1.(]019 lOC~g 

E~T (J~T ~r.,,15~,I ~4 q~.il~lq~ 6.0O2JS~ S~,320.4~8 e.,OSO, 1~8 e. r , ,~q~ 5,T/' i~871 4 ,771.~  4,457.B2~ 
E~T ULT 1~,408~0 10.Jr/~4,23 9JS31s,151 7,94,4,mD8 T.R'v'I. rll~l 1.410,,525 0.201.412 4 ~ 1 ~  4,54~.0G4 

PmgIGd 0 



TM)k) 11. C u m u d ~  I.L:m I ' Id OI.AE Pmy,mult Tr/ngie Pmgm g ~  g 

ACC PRCOUCI"S LL~BIUT Y 
I 2 3 4 S 8 7 8 g 10 11 12 13 14 15 10 

IG02 3~.484 1 0 7 ~ 3  227,048 3711 .014  511,~3J 0 3 8 . 4 , 9 1  7f~.l~J 041.187 GiO 1.453 i(33.745 850 ,4010  8~9181 G813.275 905.432 ~ $ 1 3  GiOTj~4 
11883 33,238 121,.~3 282.0~3 431.183 ( i 2 1 , 1  784.4~7 87"fJ~)f lB 056 , (~  1.C~.740 1 ,(3113.5~ 1 , I . I  I . I . ~ 3  1,G87,154 I .C08.811 1,100,04,2 1 ,lOl,4~A~i 
1004 34,825 131~48 ~ 4 7 ~ I ~  874 ,G [38  ~ G~.lik41 I ,[3~,4.M 1 1,14,0.05~l 1,1111.83U 1 ,,2QQ.I 1,21~1,T71 1,2 lli.~q30 1 ,Z21.0~i0 1 , ~ . 3 0 4  1 ~ I  
1 I  45,801 1441,032  301,118 ~ 74~1.3104 GK~ 7'lit 1,044,3~,4 1.1~.2441 1 2310.015 1,202.3153 1306.3.11 I,,317.~(~ 1 I..~2~L01 g 1 . . . ~ , !  1,327,30~ 1,3~.100 
1 I  3~I.012 134~1137 31Y,108 5,47.1~ 788.G07 0T~813 1.1~.I0~I 1244.07"7 1,334,1/'2 I , .181.1  1.408,710 1,410.315 1.4,2~,071 1.420,803 1.4310~,il4QI2 1 . 4 3 1 ~  
1 ~  41 . , l l  187~00 327.041 813,,, '160 7'22,330 000,717 1 .i0~0.078 1.139J'GO 1~1,4..~1 1 ~ 7 1 1  1,207,07~ 1,2~I,406 1,.105,224 1, . .~  1,ile 1,3(30.010 1 ~10.34,11 
1GlO 71~ , 3 4 2  ~07.7~ a~'~oK't 007,87'2 O O ? . !  1,1gU,..~)O 1,381,310 I , .~7,~ I 1 , 8 3 0 . I  1 , 1 . . ~  1 .7~674 1.741,1~ 1,74~,GQS 1,Z52JI,40 1.21'5,48(~ 1 , ~ T E B  
1 I  0~.067 ~ 0,44U 40 g l ( } l  I ~v~dm4 1.011~4G 1.00~,1310 2.002.1GQ a ,208.1ii~4 2.,208.CI 2 , 3 1  2~ub'~ ~ t  2,,.~ 1,,IB~ 2...~.710 2,300.420 2~17'I017~[~ 
1 I  82,818 ~ l )~ :~7 ' l )  8 0 3 / I I  1,21'1:18 1.3101.17'0 1.715.485 1 .~ .430  2. 185,,~CQ~ 2,352.47~ 2.4310.74.8 2 . x I ~ ' ~ I  2.5(~.1~K)3 2~13.0Qi 2.510,437 ~.~-~ ~ 7  2.~'q I~ql 

1Orl 1~3Q7 ~ ,  4 ,40  44;17,1081 a I;3'41 7~0.4,G~ 078,808 1,008,~ I .~17.8~0 1 ,CQ3.7~0~ 0,4~318 

1TO2 2 T O 3  3 T O 4  4 T O 5  5 T O 6  BTO7 7 T 0 8  0 T O 0  OTO ULT 
118~2 3.3Q21~ 2.1CI32 1,0500 1.38~ 1.24~ 1.1004 1.1138 10718 
IGIB3 3.0574 2.1E~D 1~4~8 1.4418 121310 1,1572 1 .C1074 
1984 4J0014 1 J i l l3  1.7870 1,41E4 12043 1.1~;~4 
lg~5 3.2~1~ g JO'T58 1,~44 1,37m 1..20;8 

11~7 3.7904 2.~51) I . t 4  
190I 2.0612 1.0546 
11 3.1~i~12 

LAST 55 A~K~ ,~ ..3~'1 2.07'G~ 1.8045 1.4071 I . ~ 1  I IB74 1 . 1 ~  1 0710 1 . ~  1 0170 1.0(3~0 1 .~,4~ 1 ~ 1 0011 1 (X3(~ 
AGE-TO-U~T 3~.8402 8.I04S 4.~1~1 2 . ~  1.0141 1.4711 1..2711 I 14100 1.07'~0 1 ~ 1.0174 1.(X~4 1.003;l t 0017 1.0(3(~0 

EST ~ L 2001,5~'0 E54~. 140 887,872 722.330 07~ . .813  1,044,05,4 1,0~,4.~ 1 1 rO~740 0,33.745 
EST ULT U:~SS a ~ I  2~710.~  1.7~5.7'e5 1,31o,343 1.431.203 1 ,3~ .1~  1 223,1~1 1,101,4M G107,(~.4 
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