CASUALTY ACTUARIAL SOCIETY FORUM Spring 1994

 Volume Two

Including Selected Papers from the 1994 Variability in Reserves Prize Program

CASUALTY ACTUARIAL SOCIETY ORGANIZED 1914

CASUALTY ACTUARIAL SOCIETY

Date: March 1994
To: CAS Readership
Re: The Forum 1994 Special Edition

This special edition of The Forum includes Stephen Philbrick's "Accounting for Risk Margins," a paper that was commissioned by the Committee on Reserves. Mr. Philbrick's paper is preceded by a brief introduction by Paul O'Connell, explaining the committee's charge in funding this paper.

The main body of this issue is devoted to ten papers submitted for the Committee on the Theory of Risk prize on how to measure the variability of loss reserves. Gary Venter gives an introduction and summary of the ten Theory of Risk papers. He ends his introduction by listing outstanding issues that merit further research.

As always, any submissions, question or comments may be directed to me, or anyone on the Committes on The Forum.

Very Truly Yours,

The Casualty Actuarial Society Forum

The Casualty Actuarial Society Forum is a non-refereed journal printed by the Casualty Actuarial Society. The viewpoints express in it do not necessarily reflect the views of the Casualty Actuarial Society.

The Forum is edited by the committee for the Casualty Actuarial Society Forum. The committee for the Forum invites all members of the CAS to submit papers on topics of interest to the actuarial community. Articles need not be written by a member of the CAS, but should have content of interest to the CAS membership.

The Forum is printed on a periodic basis, based on the number of articles submitted. Its goal is to publish two editions during the calendar year.

Comments or questions about the Forum may be directed to the committee for the Casualty Actuarial Society Forum.

Casualty Actuarial Soclety Forum
Joel M. Kleinman, Chairperson
George R. Busche, Vice Chairperson

Paul E. Lacko James C. Wilson
Stephen W. Philbrick's paper "Accounting for Risk Margins" was edited by the CAS Committee on Reserves.

The Committee on Reserves
Paul G. O'Connell, Chairperson

Raja R. Bhagavatula	Mark J. Sobel
Charles F. Cook	Chris M. Suchar
Todd J. Hess	Ronald J. Swanstrom
Jeffrey P. Kadison	John P. Tierney
Stephen P. Lowe	Ronald F. Wiser
Steven D. Marks	

The Theory of Risk call papers were edited by the CAS Committee on the Theory of Risk

The Committee on the Theory of Risk
Isaac Mashitz, Chairperson
Roger M. Hayne, Vice Chairperson

John G. Aquino
Robert J. Finger
Louise A. Francis
William R. Gillam
Philip E. Heckman
Stuart A. Klugman

Rodney E. Kreps
Glenn G. Meyers
Gary S. Patrik
John P. Robertson
Richard J. Roth, Jr.
Gary G. Venter

VOLUME TWO OF
 TWO VOLUMES

Correction

The paper "A Quantification of Snader's Deductible Safety Factor," by John Rollins and Monty J. Washburn, which appeared in the 1994 edition of the Forum, Including the 1994 Ratemaking Call Papers, is a copyrighted paper. The copyright notice was inadvertently deleted in printing the Forum.

The copyright notice should have read as follows:
Copyright 1993. National Council on Compensation Insurance.
All rights reserved.
The material contained in this paper represents the ideas of the au-
thors and not necessarily those of the National Council on Com-
pensation Insurance.
We regret the error, and apologize to all affected parties.

CASUALTY ACTUARMAL SOCHCTE
1100 NORTH GLEBE ROAD
SUITE 600
ARLINGTON, VA 22201

Spring 1994 CAS Forum

Table of Contents

Paper/Author Page Number Volume
Accounting for Risk Margins, Stephen W. Philbrick with an introduction by Paul G. O'Connell 1 1
Selected Papers from the Variability in Reserves Prize Program Introduction, Gary G. Venter 91 1
Measuring the Variability of Chain Ladder Reserve Estimates, Thomas Mack 101 1
Unbiased Loss Development Factors, Daniel M. Murphy 183 1
Correlation and the Measurement of Loss Reserve Variability, Randall D. Holmberg 247 1
Variability of Loss Reserves, Robert L. Brown 279 1
A Method to Estimate Probability Level for Loss Reserves, Roger M. Hayne 297 1
A Note on Simulation of Claim Activity for Use in Aggregate Loss Distributions, Daniel K. Lyons 357 1
Statistical Methods for the Chain Ladder Technique, Richard J. Verrall 393 1
Probabilistic Development Factor Models with Applications to Loss Reserve Variability, Prediction Intervals and Risk Based Capital, Ben Zehnwirth 447 2
IBNR Reserve Under a Loglinear Location-Scale Regression Model, Louis Doray 607 2
A Generalized Framework for the Stochastic Loss Reserving, Changseob Joe Kim 653 2

It has been shown that the chain ladder model can be considered as a two-way analysis of variance.
This linear model, and other linear models, can be used effectively for analysing claims data and producing estimates of expected total outstanding claims for each year of business. The methods have in common the assumption that the data is lognormally distributed, and the linear models are therefore applied to the logged incremental claims rather than the raw incremental claims data. The problem therefore arises of reversing the log transformation to produce eatimates on the original scale. It is this problem which is addressed in this section; in particular the unbiasedness of the estimates is considered. This problem was first addressed in Verrall(1991a), in which the following analysis was given.

4.1. Identically Distributed Data

Before considering the claims run-off triangle, consider a independently, identically distributed observations which are lognormally distributed.

$$
\begin{aligned}
& \text { i.e. } \mathrm{Z}_{1}, \ldots, \mathrm{Z}_{n} \text { are independent } \\
& \text { and } \\
& \mathrm{Z}_{i} \sim \text { lognormal. }
\end{aligned}
$$

Suppore also that $\mathrm{E}\left(\mathrm{Z}_{\mathbf{i}}\right)=\boldsymbol{\theta}$.
The aim is to estimate θ and to find the mean square error (or variance, if the estimate is unbiased) of the estimate. One way of proceeding towarda the estimation of θ is to take logs of the data and analyse the resulting sample using normal distribution theory. This is an approach which can be generalised to data which is not identically distributed and so is the moat appropriate for claims data.

Let $\quad Y_{i}=\log Z_{i} \quad(i=1, \ldots, n)$.

Since $\mathbf{Z}_{\boldsymbol{i}}$ has a lognormal distribution, $\mathbf{Y}_{\mathbf{i}}$ has a normal distribution.

Suppose

$$
Y_{i} \sim N\left(\mu, \sigma^{2}\right)
$$

Then

$$
\begin{equation*}
\theta=\exp \left(\mu+\frac{1}{2} \sigma^{2}\right) . \tag{4.3}
\end{equation*}
$$

The maximum likelihood estimates of μ and σ^{2} are

$$
\begin{aligned}
& \dot{\mu}=\frac{1}{n} \sum_{i=1}^{n} Y_{i} \\
& \dot{\sigma}^{2}=\frac{1}{n} \sum_{i=1}^{n}\left(Y_{i}-\hat{\mu}\right)^{2}
\end{aligned}
$$

and the maximurn likelihood eatimate of $\boldsymbol{\theta}$ can be obtained by substituting $\hat{\mu}$ and $\hat{\sigma}^{\mathbf{2}}$ into equation (4.3):

$$
\begin{equation*}
\dot{\theta}=\exp \left(\hat{\mu}+\frac{1}{2} \dot{\sigma}^{2}\right) \tag{4.4}
\end{equation*}
$$

Finney (1941) showed that the maximum likelihood estimate of θ is biased. In order to correct for the bias, Finney introduced the function $8 \mathrm{~m}(\mathrm{t})$, where

$$
\begin{equation*}
g_{m}(t)=\sum_{k=0}^{\infty} \frac{m^{k}(m+2 k)}{m(m+2) \ldots(m+2 k)} \frac{t^{k}}{k!} \tag{4.5}
\end{equation*}
$$

and m is the degrees of freedom associated with $\dot{\sigma}^{2}$. In this case $m=n-1$.
It can be shown that an unbiased estimate of θ is $\tilde{\theta}$ where

$$
\begin{equation*}
\bar{\theta}=\exp (\hat{\mu}) \operatorname{gm}\left(\frac{1}{2}\left(1-\frac{1}{h}\right) \mathrm{s}^{2}\right) \tag{4.6}
\end{equation*}
$$

and $\quad s^{2}=\frac{n}{n-1} \dot{\sigma}^{2}$ is an unbiased estimate of σ^{2}.

One advantage of the use of linear models is that standard errors of the parameter eatimatea can be produced. These can be used to find standard errors on the original unlogged scale. The variance of $\bar{\theta}$ is τ^{2}, where

$$
r^{2}=\mathrm{E}\left(\bar{\theta}^{2}\right)-(\mathrm{E}(\bar{\theta}))^{2}
$$

An unbiased estimate of $E\left(\tilde{\theta}^{2}\right)$ is obviously $\tilde{\theta}^{2}$ (since the expectation of this is $E\left(\tilde{\theta}^{2}\right)$) and

$$
(E(\bar{\theta}))^{2} \quad=\left(\exp \left(\mu+\frac{1}{2} \sigma^{2}\right)\right)^{2}
$$

$$
=\exp \left(2 \mu+\sigma^{2}\right)
$$

By analogy with the unbiased estimation of θ, an unbiased eatimate of

$$
\exp \left(2 \mu+\sigma^{2}\right)
$$

is

$$
\exp (2 \hat{\mu}) g_{m}\left(\left(1-\frac{2}{n}\right) s^{2}\right)
$$

Thus an unbiased estimate of τ^{2} is

$$
\begin{equation*}
\dot{\tau}^{2} \quad=\exp (2 \hat{\mu})\left[\left(\operatorname{gm}\left(\frac{1}{2}\left(1-\frac{1}{n}\right) s^{2}\right)\right)^{2}-\operatorname{gm}_{\mathrm{m}}\left(\left(1-\frac{2}{n}\right) \mathrm{s}^{2}\right)\right] \tag{4.7}
\end{equation*}
$$

For comparison purposes, the corresponding maximum likelihood estimates are also found. The maximurn likelihood estimate of the variance of the maximum likelihood estimate of θ, $\hat{\theta}$, is

$$
\begin{equation*}
\exp \left(2 \tilde{\mu}+\frac{\dot{\sigma}^{2}}{n}\right)\left[\exp \left(\frac{\dot{\sigma}^{2}}{n}\right)\left[1-\frac{2 \hat{\sigma}^{2}}{n}\right]^{-\frac{1}{2}(n-1)}-\left[1-\frac{\hat{\sigma}^{2}}{n}\right]^{-(n-1)}\right] . \tag{4.8}
\end{equation*}
$$

4.2 Unbiased Estimation for Claims Runoff Triangles

A claims runoff triangle consisting of incremental claims (assumed positive) is now considered. It is assumed that the data have been adjusted for inflation and exposure. $\mathbf{Z}_{i j}$ is incremental claims in row i , column j .

Let $\theta_{i j}=E\left(Z_{i j}\right)$.

Eatimates of $\theta_{i j}$ are required along with standard errors of these eatimates. In particular, eatimates of $\left\{\theta_{i j}: i=1, \ldots, t ; j=t-i+2, \ldots, t\right\}$ are required, as these are the estimates of the expected outstanding claims. The row totals of the estimates also have to be considered, as these are the estimates of the expected total outstanding claims for each year of business.
$\left\{Z_{i j}: i=1, \ldots, t ; j=1, \ldots, t-i+1\right\}$ are assumed to be independently, lognormally distributed.

Let $Y_{i j} \quad=\log Z_{i j}$.

Then $Y_{i j}$ are independently normally distributed.
Suppose that $\left\{Y_{i j}: i=1, \ldots, t ; j=1, \ldots, t-i+1\right\}$ are modelled by
$E\left(Y_{i j}\right) \quad=\underline{X}_{i j} \underline{\beta}$
$\operatorname{Var}\left(Y_{i j}\right) \quad=\sigma^{2}$
where $X_{i j}$ is a row vector of explanatory variables and $\underline{\beta}$ is a column vector of parameters, both of length p .

The linear model for the whole triangle is
$\mathrm{E}(\mathrm{X}) \quad=\mathrm{X} \underline{\underline{B}}$
Where $\quad X$ is an (nxp) matrix whose rows are $\underline{X}_{i j}$
and $\quad X$ is the vector of observations.
n is the number of observations (for a triangular array $n=\frac{1}{2} t(t+1)$), and the errors are assumed to be independently, identically normally distributed.

The expected value of the lognormally distributed data, $\theta_{i j}$, is related to the mean and variance of the normally distributed data by

$$
\begin{equation*}
\theta_{i j} \quad=\exp \left(\underline{X}_{i j} \underline{\theta}+\frac{1}{2} \sigma^{2}\right) \tag{4.14}
\end{equation*}
$$

Thus the maximum likelihood estimate of $\theta_{i j}$ is

$$
\begin{equation*}
\hat{\theta}_{i j} \quad=\exp \left(\underline{X}_{i j} \dot{\underline{\theta}}+\frac{1}{2} \hat{\sigma}^{2}\right) \tag{4.15}
\end{equation*}
$$

where

$$
\hat{\underline{g}}=\left(X^{\prime} X\right)^{-1} X^{\prime} \mathbf{y}
$$

and

$$
\dot{\sigma}^{2}=\frac{1}{n}(\mathbf{y}-\mathbf{X} \underline{\hat{g}})^{\prime}(\mathbf{y}-\mathbf{X} \underline{\hat{g}})
$$

The general theory of estimation from linear models when the data is lognormally distributed was
considered by Bradu and Mundlak (1970). It can be shown that an unbiased eatimate of

$$
\exp \left(\underline{Z} \underline{\theta}+a \sigma^{2}\right)
$$

for any row vector Z of length p and scalar a, is

$$
\begin{equation*}
\exp (\underline{Z} \hat{\underline{\theta}}) \operatorname{gm}\left[\left(a-\frac{1}{2} \underline{Z}\left(X^{\prime} X\right)^{-1} Z^{\prime}\right) s^{2}\right] \tag{4.16}
\end{equation*}
$$

where g^{2} is an unbiased eatimate of σ^{2} and m is the number of degrees of freedom associated with s^{2}.
i.e. $s^{2}=\frac{n}{n} \underline{p} \dot{\sigma}^{2}$

$$
=\frac{1}{\bar{n}-\bar{p}}(y-X \dot{\theta})^{\prime}(y-X \dot{Q})
$$

and $m \quad=\mathbf{n}-\mathbf{p}$.

Thus an unbiased estimate of $\theta_{i j}$ is $\bar{\theta}_{i j}$, where

$$
\begin{equation*}
\tilde{\theta}_{i j} \quad=\exp \left(X_{i j} \hat{\theta}\right) g_{m}\left[\frac{1}{2}\left(1-X_{i j}\left(X^{\prime} X\right)^{-1} X_{i j}^{\prime}\right) s^{2}\right] \tag{4.17}
\end{equation*}
$$

Note that $\quad \operatorname{Var}(\underline{\dot{\theta}})=\left(X^{\prime} X\right)^{-1} \sigma^{2}$
and hence

$$
\operatorname{Var}\left(X_{i j} \dot{\underline{Q}}\right)=X_{i j}\left(X^{\prime} X\right)^{-1} X_{i j}^{\prime} \sigma^{2}
$$

It can therefore be seen that $X_{i j}\left(X^{\prime} X\right)^{-1} X_{i j}^{\prime} g^{2}$ is an estimate of $\operatorname{Var}\left(X_{i j} \underline{\underline{B}}\right)$.

The variance of the unbiased estimate of $\theta_{i j}, \tilde{\theta}_{i j}$, is $\tau_{i j}^{2}$, where

$$
\begin{align*}
\tau_{i j}^{2} \quad & =\operatorname{Var}\left(\bar{\theta}_{i j}\right) \\
& =E\left(\tilde{\theta}_{i j}^{2}\right)-\left(E\left(\tilde{\theta}_{i j}\right)\right)^{2} \tag{4.18}
\end{align*}
$$

An unbiased estimate of $E\left(\hat{\theta}_{i j}^{2}\right)$ is $\bar{\theta}_{i j}^{2}$ and

$$
\begin{aligned}
\left(E\left(\bar{\theta}_{i j}\right)\right)^{2} & =\theta_{i j}^{2} \\
& =\exp \left(2 \underline{X}_{i j} \underline{\beta}+\sigma^{2}\right) .
\end{aligned}
$$

Hence an unbiased estimate of $\tau_{i j}^{2}$ is $\tilde{\tau}_{i j}^{2}$, where

$$
\begin{equation*}
\bar{\tau}_{i j}^{2}=\exp \left(2 \underline{X}_{i j} \dot{\underline{Q}}\right)\left[\left(\operatorname{gm}\left(\frac{1}{2}\left(1-\mathbf{X}_{i j}\left(X^{\prime} X\right)^{-1} \underline{X}_{i j}^{\prime}\right) s^{2}\right)\right)^{2}-\operatorname{grm}_{\mathrm{m}}\left(\left(1-2 \underline{X}_{i j}\left(X^{\prime} X\right)^{-1} \mathbf{X}_{i j}^{\prime}\right)^{2}\right)\right] . \tag{4.19}
\end{equation*}
$$

4.3. Unbiased Eatimates of Total Outstanding Claims

The purpose of the analysis of the claims data is to produce estimates of the expected total outstanding claims, $\mathbf{R}_{\boldsymbol{i}}$, for each year of business, and the total outstanding claims, R , for the whole triangle.

An unbiased estimate of \mathbf{R}_{i} is $\tilde{\mathbf{R}}_{\boldsymbol{i}}$, where

$$
\begin{equation*}
\overline{\mathrm{R}}_{\mathrm{i}} \quad=\sum_{j=1-i+2}^{\dot{1}} \tilde{\theta}_{i j} \tag{4.20}
\end{equation*}
$$

The variance of $\overline{\mathrm{R}}_{\boldsymbol{i}}$ can be calculated as follows:

$$
\begin{align*}
\operatorname{Var}\left(\tilde{\mathrm{R}}_{i}\right) & =\operatorname{Var}\left[\sum_{j=i-i+2}^{i} \tilde{\theta}_{i j}\right] \\
& =\sum_{j=i-i+2}^{1}\left[\operatorname{Var}\left(\tilde{\theta}_{i j}\right)+2 \sum_{k=j+1}^{1} \operatorname{Cov}\left(\tilde{\theta}_{i j}, \tilde{\theta}_{i k}\right)\right] \tag{4.21}
\end{align*}
$$

Now

$$
\operatorname{Cov}\left(\bar{\theta}_{i j}, \tilde{\theta}_{i k}\right)=\mathbf{E}\left(\tilde{\theta}_{i j} \tilde{\theta}_{i k}\right)-\mathbf{E}\left(\bar{\theta}_{i j}\right) \mathbf{E}\left(\bar{\theta}_{i k}\right),
$$

and an unbiased estimate of this can be obtained using the same method as that which was used to find $\hat{\tau}_{i j}^{2}$ in section 4.2.

It can be shown that if

$$
r_{i j k}=\operatorname{Cov}\left(\dot{\theta}_{i j}, \dot{\theta}_{i k}\right)
$$

an unbiased estimate of $\tau_{i j k}$ is $\bar{\tau}_{i j k}$, where

$$
\begin{align*}
\tilde{\tau}_{i j k}= & \exp \left(\left(\underline{X}_{i j}+\underline{X}_{i k}\right) \dot{\underline{Q}}\right)\left[\operatorname{gm}\left(\frac{1}{2}\left(1-\underline{X}_{i j}\left(X^{\prime} X\right)^{-1} \underline{X}_{i j}^{\prime}\right) s^{2}\right) g_{m}\left(\frac{1}{2}\left(1-\underline{X}_{i k}\left(X^{\prime} X\right)^{-1} X_{i k}^{\prime}\right) s^{2}\right)\right. \\
& \left.-g_{m}\left(\left(1-\frac{1}{2}\left(\underline{X}_{i j}+\underline{X}_{i k}\right)\left(X^{\prime} X\right)^{-1}\left(X_{i j}+\underline{X}_{i k}\right)\right) s^{2}\right)\right] \tag{4.22}
\end{align*}
$$

Hence an unbiased estimate of $\operatorname{Var}\left(\overline{\mathrm{R}}_{\boldsymbol{i}}\right)$ is

$$
\begin{equation*}
\sum_{j=i=i+2}^{1}\left[\bar{\tau}_{i j}^{2}+2 \sum_{k=j+1}^{1} \bar{\tau}_{i j k}\right] \tag{4.23}
\end{equation*}
$$

By extending the limits of the summations, the total outstanding claims for the whole triangle can also be considered.

4.4 Prediction Intervals

Having found an unbiased estimate of total outstanding claims, it is now possible to produce a prediction interval for total outstanding claims. The purpose of the analysis so far has been to produce an estimate of total outstanding claims and an estimate of the variance of this estimate. It is often desirable to find a 'safe' value which is unlikely to be exceeded by the total actual claims.
$\begin{array}{ll}\text { Let } & R=\text { total outstanding claims for the whole triangle } \\ \text { and } & \bar{R} \text { be an unbiased estimate of } E(R) .\end{array}$

Suppose that a 95% upper confidence bound on R is required. i.e. it is required to find a value, k, such that

$$
\begin{equation*}
P(R \leq \tilde{R}+k)=0.95 \tag{4.24}
\end{equation*}
$$

i.c. Find k such that

$$
\begin{equation*}
P(R-\bar{n} \leq k)=0.95 \tag{1.25}
\end{equation*}
$$

Since $\tilde{\mathbf{R}}$ is an unbiased estimate of $\mathbf{E}(\mathbf{R})$,

$$
\begin{equation*}
E(\tilde{\mathbf{R}})=E(R) \tag{4.26}
\end{equation*}
$$

and hence

$$
\begin{equation*}
E(\mathbf{R}-\tilde{\mathbf{R}})=0 \tag{4.27}
\end{equation*}
$$

Also, $\tilde{\mathbf{R}}$ is based on past data and is thus independent of \mathbb{R} under the assumptions of the model. Thus

$$
\begin{equation*}
\operatorname{Var}(\mathbf{R}-\tilde{\mathbf{R}})=\operatorname{Var}(\mathbf{R})+\operatorname{Var}(\tilde{\mathbf{R}}) \tag{4.28}
\end{equation*}
$$

In section 4.3, an unbiased estimate of $\operatorname{Var}(\tilde{\mathbf{R}})$ was derived and it is possible to derive an unbiaged estimate of $\operatorname{Var}(\mathrm{R})$ using the theory which was used in that section. By independence,

$$
\begin{equation*}
\operatorname{Var}(R)=\sum_{i=2}^{1} \sum_{j=i-i+2}^{1} \operatorname{Var}\left(Z_{i j}\right) \tag{4.29}
\end{equation*}
$$

and an unbiased eatimate of $\operatorname{Var}\left(Z_{i j}\right)$ is required. This can be derived as follows, using the method of section 4.2.
$\mathbf{Z}_{i j}$ has a lognormal distribution, and the variance of this distribution is given by:
$\operatorname{Var}\left(\mathrm{Z}_{i j}\right) \quad=\exp \left(2 \mathrm{X}_{\mathrm{ij}} \underline{\theta}+\sigma^{2}\right)\left(\exp \left(\sigma^{2}\right)-1\right)$

$$
\begin{equation*}
=\exp \left(2 \mathbf{X}_{i j} \underline{\theta}+2 \sigma^{2}\right)-\exp \left(2 \mathbf{X}_{i j} \underline{g}+\sigma^{2}\right) \tag{4.30}
\end{equation*}
$$

Hence, applying equation (4.16), an unbiased eatimate of $\operatorname{Var}\left(Z_{i j}\right)$ is
$\exp \left(2 X_{i j} \underline{B}\right)\left[g_{m}\left(2\left(1-X_{i j}\left(X^{\prime} X\right)^{-1} X_{i j}^{\prime}\right) a^{2}\right)-g_{m}\left(\left(1-2 X_{i j}\left(X^{\prime} X\right)^{-1} X_{i j}^{\prime}\right)^{2}\right)\right]$.

It is not insppropriate to use a Normal approximation since \mathbf{R} and $\overline{\mathbf{R}}$ are, typically, combinations of a reasonably large number of lognormally distributed random variables. Thus a 95% upper bound on total outstanding claims can be found:

$$
\begin{equation*}
\overline{\mathbf{R}}+1.645 \sqrt{\operatorname{Var}(\mathrm{R})+\operatorname{Var}(\tilde{\mathbf{R}})} \tag{4.32}
\end{equation*}
$$

$\sqrt{\operatorname{Var}(R)+\operatorname{Var}(\tilde{R})}$ is the root mean square error of prediction.

4.5 Bayesian Estimation for Claims Runoff Triangles

When a method is used which is based on Bayes theory, Bayesian estimators should be used. The Bayesian estimators have a alghtly simpler form than the unbiased estimators and so are sometimes used in their place in a classical analysis. When used in a classical analysis, no prior information is assumed.

Suppose that $\mathrm{Z}_{k i}$ has a lognormal distribution with parameters θ and σ, and that the posterior distribution of θ, given D, is normal with mean m and variance r^{2}.
i.e. $\quad \log Z_{k i} \mid \theta \sim N\left(\theta, \sigma^{2}\right)$

$$
\theta \mid D \quad \sim N\left(m, r^{2}\right)
$$

Suppose also that σ^{2} and τ^{2} are known. Then

$$
E\left(Z_{k i} \mid D\right)=e^{m+\frac{1}{2} \sigma^{2}+\frac{1}{2} \tau^{2}}
$$

and

$$
\operatorname{Var}\left(Z_{k l} \mid D\right)=e^{2 m+\sigma^{2}+\tau^{2}}\left(e^{\sigma^{2}+\tau^{2}}-1\right)
$$

Similar methods can be used to calculate the covariances, total outstanding claims and the variance of the total outstanding claims.

The Bayes estimate of outstanding claims for year of business i is

$$
\begin{equation*}
\sum_{j>n-i+1} E\left(Z_{i j} \mid D\right) \tag{4.33}
\end{equation*}
$$

and the Bayes estimate of the variance is

$$
\begin{equation*}
\sum_{j>n-i+1}\left[\operatorname{Var}\left(Z_{i j} \mid D\right)+2 \sum_{k>j} \operatorname{Cov}\left(Z_{i j}, Z_{i k} \mid D\right)\right] \tag{4.33}
\end{equation*}
$$

4.6. Example

This example illustrates and compares the two most basic methods of claims reserving considered in this thesis: the chain ladder method and the two-way analysis of variance. This gives an opportunity to compare the two. For the analysis of variance model, both the unbiased and maximum likelihood estimates of outstanding claims are given. The data used is taken from Taylor and Ashe (1983), and was given in section 2.

The estimates of the parameters in the chain ladder linear model and their standard errors are shown in table 4.1.

Table 4.1

	Estimate	Standard error
Overall mean	6.106	0.165
Row parameters	0.194	0.161
	0.149	0.168
	0.153	0.176
	0.299	0.186
	0.412	0.198
	0.508	0.214
	0.673	0.239
	0.495	0.281
	0.602	0.379
	0.911	0.161
	0.939	0.168
	0.965	0.176
	0.383	0.186
	-0.005	0.198
	-0.118	0.214
	-0.439	0.239
	-0.054	0.281
	-1.393	0.379

The standard errors are obtained from the estimates of the variance-covariance matrix of the parameter eatimates:

$$
\left(X^{\prime} X\right)^{-1} \dot{\sigma}^{2}
$$

where $\dot{\sigma}^{\mathbf{2}}$ is the estimate of the residual variance. For this example, $\dot{\sigma}^{\mathbf{2}}=0.116$.
Since the data is in the form of a triangle (there are the same number of rows and columns) and the matrix X is based solely on the design, the standard errors are the same for each row and column
parameter. The row parameters are contained within a much smaller range then the column parameters: $(0.149,0.673)$ compared with $(-1.393,0.965)$. It can also be seen that there is an indication that the row parameters follow an increasing trend. It is to be expected that the row parameters should be contained within a fairly small range, since the rows are expected to be similar. Any pattern in the row parameters gives an insight into, and depends upon, the particular claims experience. It is thus quite common to observe that the row parameters lie in a small range, but not typical that they follow a trend.

Table 4.2

| 286170 | 711785 | 731359 | 750301 | 418911 | 283724 | 252756 | 182559 | 266237 | 67948 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 357848 | 766940 | 610542 | 482940 | 527326 | 574398 | 146342 | 139950 | 227229 | 67948 |

$410587102124510493291076506601040407078 \quad 362646 \quad 261930 \quad 381987$
3521188840219338941183289445745320996527804266172425046

379337943516969461994572555294376094335044241994
290507100179919262191016654750816146923495992280405
$\begin{array}{llllllll}339233 & 843767 & 866971 & 889425 & 496588 & 336334 & 299624\end{array}$
31060811082507761891562400272482352053206286

378676941872967773992840554327375439
443160693190991983769488504851470639

3894219685999952341021012570056
396132937085847498805037705960
$42096310470521075844 \quad 1103710$
$\begin{array}{lllll}440832 & 847631 & 1131398 & 1063269\end{array}$

45788711388941170213
35948010616481443370

396651986582
376686986608

344014
344014

The fitted values for the analysis of variance model are shown in table 4.2. These are the unbiased estimates and are shown with the actual observations for comparison. In this figure, and in all similar ones in future, the top entries are the estimates and those underneath are the actual observations.

Table 4.3 shows a plot of residuals (fitted value - actual value) against fitted value.

There is no discernible pattern in the residuals, and they seem to be randomly scattered, so there is no cause to question the model on the basis of this plot. Of course, it is possible to look further into a residual analysis and study the plote of residuals against year of business and delay. This is considered further using the GLIM system, by Renshaw (1989). The main purpose of this paper is to extend the possible range of analyses and to consider rigorous statistical estimation, rather than to find the most appropriate linear model to fit, and so the residual analysis will not be commented on further.

Of most interest to practitioners are the predicted outstanding claims for each year of business, which are the row totals of predicted values. Table 4.4 shows the maximum likelihood predictions of the outstanding claims in the lower triangle, and table 4.5 shows the unbiased predictions. The method does not produce any predictions for the first row, and each row contains one more predicted value.

Table 4.4

Table 4.5

It can be seen that the maximum likelihood estimates are all higher than the unbiased estimates, as was to be expected.

Table 4.6
Analysis of Variance
Chain Ladder

Row	Maximum Likelihood		Unbiased
2	101269	96238	94630
3	450997	439203	464668
4	621061	607717	702101
5	1029037	1010755	965576
6	1446307	1422934	1412202
7	2184544	2149953	2176089
8	3592393	3529202	3897142
9	4164990	4056189	4389473
10	4595556	4339873	4618035

The total predicted outstanding claims for each year of business (the row totals of the predicted outstanding claims) are shown in table 4.6. There are three estimates given, the maximum likelihood and unbiased estimates from the analysis of variance model, and the chain ladder estimate.

It can be seen that the maximum likelihood eatimates differ most significantly from the unbiased
which is where the number of observations used in the estimation is the greatest. The maximum likelihood estimate is asymptotically unbiased, and the greater the number of observations used to estimate the parameters, the closer are the two. The chain ladder estimates are sometimes bigher and sometimes lower than the analysis of variance estimates. There is nothing significant that can be inferred from the differences. This confirms that the crude chain ladder method is a reasonable 'rough-and-ready' method for calculating outstanding claims, although the more proper method, statistically, is the analysis of variance method (using unbiased estimation).

The total predicted outstanding claims are:

Analysis of	Maximum Likelibood	18186154
Variance	Unbiased	17652064
	Chain Ladder	18619916

The following table shows the unbiased estimates of the total outstanding claims for each year of business, the standard errors of these estimates and the root mean square error of prediction. This table can be used in setting safe reserves, and gives an idea of the likely variation of outstanding . claims.

Table 4.7

Unbiased	Standard	Mean Square Error
Estimate	$\underline{\text { Error }}$	Of Prediction
96238	35105	47202
439203	108804	163217
607717	127616	182847
1010755	195739	269224
1422934	273082	357593
2149953	429669	538533
3529202	775256	942851
4056189	1052049	1197009
4339873	1534943	1631306

The unbiased estimate of total outstanding claims is 17652064 and the root mean square error of prediction is 2759258 . Thus a 95% upper bound on total outstanding claims is

$$
17652064+1.645 \times 2759258=22191043
$$

This could be regarded as a "safe" reserve for this triangle according to the chain ladder linear model using unbiased eatimation.

5. Estimation of the Development Factors

When considering outstanding claims, it is important to use unbiased estimators. However, when comparing several sets of runoff patterns it is simplet to use maximum likelihood theory since unbiasedness is not critical. There are two sets of parameters whose distributions can usefully be found: the development factors, $\left\{\lambda_{j}: j=2, \ldots, t\right\}$, and the proportions of ultimate claims, $\left\{S_{j}\right.$ $\left.: j=1, \ldots, t ; \sum_{j=1}^{i} S_{i}=1\right\}$. It has already been shown that the following relationship between the proportions of ultimate claims and the development factors holds:

$$
\begin{equation*}
S_{1}=\frac{1}{\sum_{i=2}^{i} \lambda_{1}} \tag{5.1}
\end{equation*}
$$

$$
S_{j}=\frac{\lambda_{j}-1}{\sum_{l=j}^{T} \lambda_{l}}
$$

It was also shown by Kremer that the proportions of ultimate claims are related to the column parameters of the linear model as follows

$$
\begin{equation*}
S_{j}=\frac{e^{\beta_{j}}}{\sum_{i=1}^{t} e^{\beta_{t}}} \quad \mathbf{j}=1, \ldots, t \tag{5.3}
\end{equation*}
$$

where $\quad \beta_{1}=0$ by definition.

Finally, the relationship between the parameters of the chain ladder and linear models was proved in Verrall (1991b):

$$
\begin{equation*}
\lambda_{j}=I+\frac{\mathrm{e}^{\beta_{j}}}{\sum_{i=1}^{j-1} \mathrm{e}^{\beta_{1}}} \tag{5.4}
\end{equation*}
$$

The parameters of the additive model can be estimated using maximum likelihood estimation. The variance-covariance matrix of the parameter estimates can be obtained from the Fisher information matrix by differentiating the log-likelihood a second time. Further details of the theory of maximum likelihood which is used in this section can be found in Cox and Hinkley (1974).

Since maximum likelihood estimates are invariant under parameter transformations, the maximum likelihood estimates of the development factors and the proportions of ultimate claims can be oblained by substituting the estimates of $\left\{\beta_{j}: j=1, \ldots, t ; \beta_{t}=0\right\}$ into equations (5.3) and (5.4). In addition to the parameter estimates, it is useful to have standard errors of the parameter estimates which can be obtained by maximum likelihood theory. The particular advantage of using maximum likelihood estimation is that the second moments are relatively straightforward to obtain. Denoting the variance-covariance matrix of $\left\{\beta_{j}: \mathrm{j}=1, \ldots, \mathrm{t} ; \beta_{1}=0\right\}$ by $\mathrm{V}(\underline{\beta})$, the variance-covariance matrix of $\left\{\lambda_{j}: j=2, \ldots, t\right\}$ and $\left\{S_{j}: j=1, \ldots, t ; \sum_{j=1}^{i} S_{j}=1\right\}$ are given by

$$
\begin{equation*}
V(\underline{\lambda})=\left(\frac{\partial \hat{\lambda}}{\partial \underline{\beta}}\right) V(\underline{\beta})\left(\frac{\partial \hat{\lambda}}{\partial \underline{\theta}}\right) \tag{5.5}
\end{equation*}
$$

$$
\begin{equation*}
\text { and } \quad \mathrm{V}(\underline{\mathrm{~S}})=\left(\frac{\partial \mathrm{S}}{\partial \underline{\theta}}\right) \mathrm{V}(\underline{\beta})\left(\frac{\partial \mathrm{S}}{\partial \underline{\theta}}\right) \tag{5.6}
\end{equation*}
$$

It is thus necessary to obtain the matrices of the first derivatives of the respective parameter vectors.
The (j,k)th element of $\left(\frac{\partial \lambda}{\partial \hat{\beta}}\right)$ can be obtained from equation (5.4) and is given by:
$\frac{\partial \lambda_{j}}{\partial \beta_{k}}= \begin{cases}0 & k>j \\ \begin{array}{ll}\frac{e_{e}^{\beta_{j}}}{\sum_{i=1}^{-1} e^{\beta_{i}}} & k=j \\ \frac{\sum_{e}^{\beta_{j} \beta_{k}}}{\left.\sum_{i=1}^{i-1} e^{\beta_{l}}\right)} & k<j\end{array}\end{cases}$

$$
= \begin{cases}0 & k>j \tag{5.7}\\ \lambda_{j}-1 & k=j \\ -\left(\lambda_{j}-1\right)\left(\lambda_{k}-1\right) & k<j\end{cases}
$$

Similarly, the (\mathbf{j}, \mathbf{k}) th element of $\left(\frac{\partial \mathrm{S}}{\partial B}\right)$ can be obtained from equation (5.3) and is given by:

$$
\begin{align*}
\frac{\partial S_{j}}{\partial \beta_{k}} & = \begin{cases}\frac{-\frac{e^{\beta_{j} e_{k}}}{\left(\sum_{i=1}^{i} e^{\beta_{l}}\right)}}{} & k \neq j \\
\frac{e^{\beta_{j}\left(\sum_{i=1}^{i} e^{\beta_{l}}-e^{\beta_{j}}\right)}}{\left(\sum_{i=1}^{i} e^{\beta_{i}}\right)} & k=j \\
-S_{j} S_{k} & k \neq j \\
S_{j}\left(1-S_{j}\right) & k=j\end{cases}
\end{align*}
$$

Estimates of the variance-covariance matrices can be obtained by substituting estimates of the parameters into equations (5.7) and (5.8).

A technical note is that the parameter β_{1} (which is defined to be zero) has to be included in the matrix of partial derivatives in equation (5.8) since there are n parameters in the vector \underline{S}. The variance-covariance matrix of the parameters of the additive model which is obtained from a standard least squares analysis has to augmented to include an extra row and column, all of whose entries are zero. 'This is not necessary for equation (5.7).

5.1 Example

The method described in section 5 is of use when comparing several different sets of data and therefore a different example will be used than in other sections for illustration purposes. The method is applied to six seta of employers' liability data which have been obtained from the DTI returns. The names of the companies to which the data apply have been suppressed, and it should be commented that this mathematical analysis is only one part of the process by which reserves are set. In particular, the DTI data are gross of reinsurance. The results bere should therefore be regarded as a statistical analyais which would give further information to the claims reserver who would use the other information available.

We now consider the parameter estimates for each of the three models in turn. Beginning with the additive model the eatimates of the column parameters $\left\{\beta_{j}: \mathbf{j}=2, \ldots, \mathrm{t}\right\}$ and their atandard errors are given in the following figure:

COMPANY:

1		2	3	4	5					
1.796	0.121	1.748	0.148	2.236	0.249	1.846	0.248	1.941	0.201	2.010
1.848	0.126	1.857	0.155	2.080	0.261	2.260	0.260	2.248	0.211	2.246
1.669	0.133	1.654	0.163	1.978	0.273	2.159	0.272	2.204	0.221	2.129
1.413	0.139	1.400	0.171	1.725	0.287	1.986	0.286	1.981	0.232	1.863
0.994	0.147	1.200	0.180	1.535	0.303	1.535	0.302	1.514	0.245	1.485
0.615	0.155	0.705	0.190	1.057	0.320	1.235	0.319	0.788	0.259	1.050
0.415	0.164	0.339	0.201	0.667	0.338	0.644	0.337	0.227	0.274	0.782
0.038	0.175	0.025	0.215	-0.099	0.360	0.222	0.359	-0.540	0.291	0.234
-0.812	0.189	-0.407	0.232	-0.300	0.390	0.047	0.388	-0.993	0.315	0.155
-0.915	0.212	-1.821	0.260	-0.715	0.437	0.382	0.435	-1.311	0.353	-0.324
-2.513	0.264	-1.492	0.323	-1.708	0.543	-0.896	0.541	-3.206	0.439	-0.304

Before going on to the parameters which have a physical interpretation, it should be noticed that it is already possible to see some differences between the companies. In particuar, the standard errors
of the parameters are larger for some companies (3 and 4) than for others (6). This will be mirrored in the parameter estimates and standard errors of the other models.

Next, consider the chain ladder model. The estimates of the development factors $\left\{\lambda_{j}: j=2, \ldots, t\right\}$ and their standard errors are given in following table:

COMPANY:

1		2		3	4	5		6			
7.027	0.727	6.742	0.850	10.36	2.327	7.332	1.569	7.963	1.401	8.466	0.616
1.904	0.101	1.950	0.130	1.773	0.181	2.307	0.300	2.189	0.222	2.117	0.086
1.397	0.041	1.398	0.050	1.394	0.084	1.512	0.109	1.520	0.090	1.469	0.033
1.220	0.022	1.221	0.027	1.219	0.046	1.285	0.059	1.274	0.046	1.245	0.017
1.119	0.012	1.148	0.019	1.149	0.032	1.141	0.030	1.135	0.023	1.135	0.009
1.073	0.008	1.079	0.010	1.080	0.018	1.092	0.020	1.057	0.010	1.077	0.006
1.055	0.006	1.051	0.007	1.050	0.012	1.047	0.011	1.031	0.006	1.055	0.004
1.036	0.005	1.035	0.006	1.022	0.006	1.029	0.008	1.014	0.003	1.030	0.003
1.015	0.002	1.022	0.004	1.018	0.005	1.024	0.007	1.009	0.002	1.027	0.003
1.013	0.002	1.005	0.001	1.012	0.004	1.032	0.011	1.006	0.002	1.016	0.002
1.003	0.001	1.007	0.002	1.004	0.002	1.009	0.004	1.001	0.000	1.016	0.003

Finally, consider the multiplicative model. The estimates of the proportions of ultimate claims in each development year $\left\{S_{j}: j=1, \ldots, t ; \sum_{j=1}^{1} S_{j}=1\right\}$ and their standard errors are given in the following table:

COMPANY:

I		2		3		4			5		6
0.032	0.003	0.032	0.004	0.023	0.005	0.021	0.005	0.023	0.004	0.022	0.002
0.196	0.016	0.184	0.019	0.218	0.036	0.135	0.025	0.162	0.023	0.162	0.010
0.206	0.015	0.205	0.019	0.186	0.029	0.204	0.032	0.220	0.027	0.205	0.011
0.172	0.013	0.167	0.015	0.168	0.026	0.184	0.028	0.211	0.025	0.182	0.009
0.133	0.011	0.130	0.013	0.131	0.021	0.155	0.024	0.169	0.022	0.140	0.007
0.088	0.008	0.106	0.011	0.108	0.019	0.099	0.017	0.106	0.015	0.096	0.006
0.060	0.006	0.065	0.007	0.067	0.013	0.073	0.014	0.051	0.008	0.062	0.004
0.049	0.005	0.045	0.006	0.045	0.010	0.040	0.009	0.029	0.005	0.047	0.003
0.034	0.004	0.033	0.005	0.021	0.005	0.027	0.007	0.014	0.003	0.027	0.002
0.014	0.002	0.021	0.004	0.017	0.005	0.022	0.006	0.009	0.002	0.025	0.002
0.013	0.002	0.005	0.001	0.011	0.004	0.031	0.011	0.006	0.002	0.016	0.002
0.003	0.001	0.007	0.002	0.004	0.002	0.009	0.004	0.001	0.000	0.016	0.002

The runoff patterns of the companies can be compared using the two tables above. For example, 1 and 2 seem quite similar, and some of the companies have more runoff in later development years than others. The standard errors can also be compared, with the same conclusions as above.

6. Bayesian Linear Models and Credibility Theory

Bayes estirnates for the linear model were investigated by Lindley and Smith (1972) and also Smith (1973). In the actuarial literature, the recent paper by Klugman (1989) has studied the use of hierarchical linear models in a rating context. It has already been seen that many of the models commonly used to analyse claims runoff triangles can be regarded as linear models, and we now analyse these models from a Bayesian point of view. This analysis has two purposes: firstly the practitioner may have some information, from other data for example, which can be used to specify a prior distribution for the parameters in the model and secondly the Bayesian analysis gives rise in a natural way to estimators which have a credibility theory interpretation.

In the first case the prior distribution is set by the practitioner and the usual prior-posterior analysis can be carried out. The models which we are using assume normal (really log-normal) distributions, and so it is only necessary to specify the mean and variance of the prior distribution (which is also normal). For example, if there is a lot of evidence to suggest that the row parameters are all 0.1 , a normal distribution with mean 0.1 and small variance can be used as prior. If there is not much prior information, the prior variance can be set larger. Indeed, in the limit, as the prior variance becomes large, we revert back to ordinary least-squares estimation of the parameters.

In the second case, we will be using empirical priors. Thus the estimation will be empirical Bayes and we will assume that certain of the parameters are exchangeable. The historical requirement that credibility estimators be linear will also be considered and we could claim to have credibility formulae. The situation has some similarities with credibility estimators of risk premiums in that we can regard the rows in a runoff triangle as a set of risks and proceed as Buhlmann (1967) - see Goovarts and Hoogstad (1987) for a full description of Bublmann's method. In the case of claims runoff triangles the rows contain different numbers of elements, and there are also the column parameters to contend with. This approach, starting from credibility premiums and working through to a credibility theory for loss runoff triangles was suggested by De Vylder (1982) - again see Goovaerts and Hoogstad (1987) for an exposition of the method. The present method starts from runoff triangles and proceeds to credibility formulae via the linear models. One of the major advantages of the linear model approach is that standard errors of the estimates are also produced.

For consistency, the constraints

$$
\alpha_{1}=\beta_{1}=0
$$

on the first stage distribution have been retained. This also facilitates the comparison with the recursive approaches such as that based on the Kalman filter. It does, however, introduce a slight degree of àssymmetry into the prior distribution and it might be considered more appropriate to use a constraint such as

$$
\sum \alpha_{i}=\sum \beta_{j}=0
$$

It is also possible to apply the constraint at the second stage and use the following prior distribution:

$$
\alpha_{i} \sim N\left(0, \sigma_{\alpha}^{2}\right) \quad i=1, \ldots, t
$$

The affect of the exchangeability assumption is similar whichever constraint is used: the estimates are shrunk towards a central value and stability is introduced. The amount of shrinkage is greatest where the number of observations is small.

6.1 Bayes Estimates for the Analysis of Variance Model

In this section the use of two-stage Bayesian linear models which assume that there is some prior information is described. A prior distribution can be written down using the prior knowledge. It was shown earlier that the chain ladder linear model can be written as a linear model in the form:

$$
\mathrm{y} \mid \boldsymbol{\beta} \quad \sim \quad \mathrm{N}(\mathrm{X} \boldsymbol{\beta} \boldsymbol{\beta}, \Sigma)
$$

and the prior information is quantified in the prior distribution on \underline{B}

$$
\underline{\varrho} \mid \underline{\theta}_{1} \quad \sim \quad N\left(A_{1} \underline{\theta}_{1}, C_{1}\right)
$$

A situation which may occur is that there are similar sets of data available which give information on the individual parameters. In this case A_{1} can be taken as an identity matrix, the prior estimates can be put into $\underline{\theta}_{1}$ and their variances into C_{1}. In many casea C_{1} will be a diagonal matrix of variances, although it is not necessary that the covariances are zero. In this case, the prior distribution becomes:

$$
\begin{equation*}
\underline{\theta} \mid \underline{\theta}_{1} \quad \sim \quad N\left(\underline{\theta}_{1}, C_{1}\right) \tag{6.1}
\end{equation*}
$$

Assuming that the errors are independent, $\Sigma=\sigma^{2} \mathbf{I}_{\mathrm{n}}$. I_{n} is a square identity matrix of dimension (nxn).

The Bayes eatimate of the parameter vector is the solution, $\overline{\underline{Q}}$, of

$$
\begin{equation*}
\left(\sigma^{-2} \mathrm{X}^{\prime} \mathrm{X}+\quad \mathrm{C}_{1}^{-1}\right) \tilde{\underline{\theta}}=\sigma^{-2} \mathrm{X}^{\prime} \mathrm{X} \dot{\underline{g}}+\mathrm{C}_{1}^{-1} \underline{\underline{\theta}}_{1} \tag{6.2}
\end{equation*}
$$

and the variance-covariance matrix of the eatimates is

$$
\begin{equation*}
\operatorname{Var}(\bar{Q}) \quad=\left[\sigma^{-2} X^{\prime} X+C_{1}^{-1}\right]^{-1} \tag{6.3}
\end{equation*}
$$

The equation for $\hat{\boldsymbol{B}}$ (3.4.2) can be written as a credibility formula:

$$
\begin{equation*}
\underline{\dot{\theta}} \quad=z \underline{\dot{\theta}}+(1-z) \underline{\theta}_{1} \tag{6.4}
\end{equation*}
$$

where $z=\left(\sigma^{-3} X^{\prime} X+C_{1}^{-1}\right)^{-1} \sigma^{-2} X^{\prime} X \quad$ is the credibility factor.

It is interesting to note that the credibility factor has been generalised into a credibility matrix, aince z is a (pxp) matrix. There will be a subtle dependence of the elements in the Bayes estimator $\underline{\underline{\beta}}$ on each of the elements in the least squares estimator. It is not possible to write a credibility formula separately for each factor in the form

$$
\tilde{\alpha}_{i} \quad=z \hat{\alpha}_{i}+(1-z) \theta_{i}
$$

To estimate the variance σ^{2}, the modal procedure described is used. The estimate of σ^{2} is s^{2}, where

$$
\begin{equation*}
s^{2} \quad=\left(y^{\prime}-X \dot{\underline{g}}\right)^{\prime}(x-x \underline{\underline{g}}) /(n+2) \tag{6.5}
\end{equation*}
$$

Thus the equations which give the Bayes eatimates are (6.2), with σ^{2} replaced by s^{2}, and (6.5).

The procedure begins with $\mathrm{s}^{2}=0$ and iterates between the solutions of

$$
\begin{aligned}
\left(s^{-2} X^{\prime} X+C_{1}^{-1}\right) \tilde{\mathcal{Q}} & =s^{-2} X^{\prime} X \hat{\hat{\theta}}+C_{1}^{-1} \underline{\theta}_{1} \\
s^{2} & =(\underline{x} X \underline{\hat{\theta}})^{\prime}(x-X \underline{\underline{\theta}}) /(n+2)
\end{aligned}
$$

and

6.2 Empirical Bayes Eatimates for the Chain Ladder Linear Model

The previous section described the use of a two-stage conventional Bayesian model to analyse claims data. This section uses a three-stage Bayesian model described in Verrall (1990) to derive empirical Bayes eatimates for the chain ladder model. This method uses an improper prior distribution at the third stage for the row parameters and improper priors at the second stage for the overall mean and the column parameters. This means that for the overall mean and the column parameters the same asaumptions are made as for the maximum likelihood estimators.

The row parameters are assumed to be independent aamples from a common distribution - of course, they are unobservable, but this is the underlying assumption. A similar assumption is made in credibility theory. When premiums are calculated using credibility theory, a risk parameter is assigned to each risk and these are assumed to be independently, identically distributed. The set of risks is known as a collective, and the distribution from which the risk parameters is drawn is known as the structure of the collective. The situation in the claims reserving case is similar for the row parameters, but is complicated by the column parameters.

The estimators produced will combine information from each row with information from the triangle as a whole. The prior distribution (i.e. the second stage distribution) is eatimated from the data, and bence the estimators have an empirical Bayes interpretation.

The linear model for the chain ladder method is

$$
\begin{equation*}
\mathrm{y} \mid \underline{\theta} \sim \mathrm{N}\left(\mathrm{X} \underline{\theta}, \sigma^{2} \mathrm{I}\right) \tag{6.6}
\end{equation*}
$$

and the constraint $\alpha_{1}=\beta_{1}=0$ will be used.
The errors have been assumed to be independently, identically distributed. X is as defined in the firat section.

As in credibility theory, a structure is put onto the row parameters $\alpha_{2}, \alpha_{3}, \ldots, \alpha_{t}$: they are
assumed to be independent observations from a common distribution. For the overall mean, μ, and the column parameters $\beta_{2}, \beta_{3}, \ldots, \beta_{t}$, the same distributional assumptions as for ordinary maximum likelihood estimation will be used. Thus at the second stage

$$
\begin{align*}
& \text { and take } \sigma_{\mu}^{-2} \rightarrow 0 \text { and } \sigma_{\beta}^{-2} \rightarrow 0 \text {. } \tag{6.7}
\end{align*}
$$

ψ is the mean of the common distribution of the row parameters $\alpha_{2}, \ldots, \alpha_{t}$.
Although the assumptions on the estimation of μ and $\beta_{2}, \ldots, \beta_{\mathrm{t}}$ are the same as for the maximum likelihood estimation, the estimators produced will not be the same because of the treatment of the row parameters.

A vague prior distribution (a third-stage distribution) is used for ψ. Since $\sigma_{\mu}^{-2} \rightarrow 0$ and $\sigma_{\bar{\beta}}^{-2} \rightarrow$ 0 , a third-stage distribution is not needed for w and ξ_{2}, \ldots, ξ_{t}. Hence a combination of two-stage and three-stage models is used.

The Bayes estimate of $\underline{\beta}, \overline{\underline{\beta}}$, is given by

$$
\overline{\underline{\beta}}=\sigma^{-2} X^{\prime} X+\left(\left[\begin{array}{llllll}
0 & & & & & \tag{6.8}\\
& \sigma_{\alpha}^{-2} & & & & \\
& & \ddots & & & \\
& & \sigma_{\alpha}^{-2} & & & \\
& & & 0 & & \\
& & & \ddots & \\
& & & & 0
\end{array}\right]\right)^{-1}\left(\sigma^{-2} X^{\prime} \mathbf{X} \dot{\underline{\rho}}+\left[\begin{array}{cccccc}
0 & & & & & \\
& \sigma_{\alpha}^{-2} & & & & \\
& & \ddots & & & \\
& & \sigma_{\alpha}^{-2} & & & \\
& & & 0 & & \\
& & & & \ddots & \\
& & & & & 0
\end{array}\right]\left[\begin{array}{c}
0 \\
\bar{\alpha} . \\
\vdots \\
\bar{\alpha} \\
0 \\
\vdots \\
0
\end{array}\right]\right)
$$

where $\bar{\alpha} .=\frac{1}{i-1} \sum_{i=2}^{1} \tilde{a}_{i}$
and has a credibility interpretation.

It can be seen that the empirical Bayes estimates of the row parameters are in the general form of credibility estimates: they are the weighted average of the maximum likelihood estimates and the (weighted) average of the estimates from all the rows. The situation is complicated by the fact that $\mathrm{X}^{\prime} \mathrm{X}$ is not a diagonal or block-diagonal matrix, so that the estimation of $\mu, \beta_{2}, \ldots, \beta_{1}$ involves the estimates of $\alpha_{2}, \ldots, \alpha_{1}$ and vice versa. This is entirely natural since changing the estimates of the row parameters obviously forces changes in the other estimates. However, it can be seen that the form of the estimates is the same as the form of credibility estimates. They are the weighted average of the maximum likelihood estimates and the (weighted) average of the estimates to which the credibility theory type assumptions have been applied. The weights depend on the precision of the eatimates.

As before, the variances σ^{2} and σ_{α}^{2} are replaced by modal eatimates s^{2} and s_{α}^{2}, which are given by

$$
\begin{align*}
& \mathrm{s}^{2}=\frac{\nu \lambda+(\mathrm{y}-\mathrm{X} \tilde{\tilde{\theta}})^{\prime}(\mathrm{x}-\mathrm{X} \tilde{\tilde{\theta}})}{\mathrm{n}+\nu+2} \tag{6.9}\\
& \mathrm{~s}_{\alpha}^{2}=\frac{\nu_{\alpha} \lambda_{\alpha}+\sum_{i=2}^{1}\left(\tilde{\alpha}_{i}-\bar{\alpha} .\right)^{2}}{t+\nu_{\alpha}+1}
\end{align*}
$$

where $\nu, \lambda_{1} \nu_{\alpha}$ and λ_{α} are set by the prior distribution of the variances. The derivation of these formulae, and the discusion of the prior parameter values is given in Liadley and Smith (1972).

Again, the estimates are obtained by iterating between (6.8) and (6.9),(6.10). This is illustrated in the example.

The empirical Bayes assumptions could also be applied to the column parameters, although this is of little practical use.

6.3. Example

To illustrate the effect of the assumptions made in the empirical Bayes theory, namely that the row parameters are independent observations from a common distribution, the Taylor and Ashe data is reanalysed in this example.

The estimates of the parameters and their standard errors are shown in table 6.1:

Table 6.1

	Empirical		
	Bayes	No Prior	Standard Error
	Estimate	Estimate	Of Bayes Ebtimate
Overall Mean	6.157	6.106	0.131
Row Parameters	0.225	0.194	0.124
	0.193	0.149	0.129
	0.188	0.153	0.133
	0.300	0.299	0.138
	0.371	0.412	0.144
	0.421	0.508	0.150
	0.493	0.673	0.159
	0.383	0.495	0.170
	0.391	0.602	0.185
Column Parameters	0.893	0.911	0.128
	0.911	0.939	0.133
	0.915	0.965	0.139
	0.319	0.383	0.147
	-0.080	-0.005	0. 156
	-0.199	-0.118	0.170
	-0.515	-0.439	0.190
	-0.120	-0.054	0.224
	-1.444	-1.393	0.306

The estimate of the variance of the row parameter distribution is 0.0289 .
The empirical Bayes assumptions have been applied to the row parameters only. The effect of these assumptions is that the row parameters have been drawn towards a central point (a weighted average). The lower row parameter eatimates have increased, while the higher ones have decreased. This can be seen more clearly from the graph given in section 7.3 which shows a plot of the maximum likelihood and empirical Bayes estimatea of the row parameters, logther with the estimates from the dynamic model discussed in section 7.

Table 6.2 shows the row totals and their standard errors. For comparison purposes, the Bayes estimates with no prior assumptions are also given.

Table 6.2

| Empirical Bayes | Bayes | }{} |
| :--- | :--- | :--- | :--- |
| Estimates | $\underline{\text { No Prior }}$ | |
| 109448 | 110927 | 46963 |
| 479568 | 482157 | 148617 |
| 655656 | 660810 | 162104 |
| 1033109 | 1090752 | 220459 |
| 1388261 | 1530532 | 270730 |
| 2002772 | 2310959 | 374041 |
| 3018896 | 3806976 | 572899 |
| 3780759 | 4452396 | 720836 |
| 3811869 | 5066116 | 752593 |

The empirical Bayes estimate of total outstanding claims is 16280338 and the estimate of the standard error of total outatanding claims is 1313997.

The empirical Bayes standard errors are lower than the estimates with no prior information. The estimates of total outstanding claims for the later rowa have benn quite considerably reduced, reflecting the reduction in the estimates of the row parameters. The empirical Bayes procedure has thus given less weight to the estimates of the parameters from the later years: it has allowed that the rise in the maximum likelihood parameter eatimates from row to row may be due to random variation. As more data becomes available, and there is more evidence in favour of either of these possibilities, this may, or may not, be revised.

7. State Space Models

The previous section described the empirical Bayes framework in which it is assumed that the row parameters have the same prior mean. The advantage of this assumption is the connection made between the accident years. The chain ladder technique suffers from over-parameterisation which is a result of the accident years being regarded as cimpletely separate. The empirical Bayes assumption is one way of overcoming this. Another way of tackling this problem, and in some ways a superior way, is to use a state space approach. This method assumes a recursive connection between the rows, rather than the static assumption made by the empirical Bayes method that all the rows are similar. The state space model assumes that each accident year is similar to the previous one. Just how similar can be governed by the choice of a parameter variance. Section 7.1 deacribes the state space approach to the chain ladder linear model.

Another problem with the chain ladder technique is, paradoxically, that it makes too much connection between the accident years. It does this by assuming that the shape of the run-off is the same for all accident years: the same development parameters are used. It is also possible to relax this assumption, and details of this are given in seetion 7.2.

7.1 A state space representation of the chain ladder linear model.

In order to consider the state space model and dynamic estimation methods, it is necessary to set up the two-way analysis of variance model in a recursive form. This takes advantage of the natural causality of the data. The data which makes up the claims runoff triangle are received in the form :

$$
z_{1,1},\left[\begin{array}{l}
z_{1,2} \tag{7.1}\\
z_{2,1}
\end{array}\right],\left[\begin{array}{l}
z_{1,3} \\
z_{2,2} \\
z_{3,1}
\end{array}\right], \cdots,
$$

and in year the data which are received are

$$
\left[\begin{array}{c}
z_{1, t} \tag{7.2}\\
z_{2, t-1} \\
\vdots \\
z_{t, 2}
\end{array}\right]
$$

The set of data vectors which together make up the whole triangle form a time series:

$$
\mathbf{Z}_{1}, \mathbf{z}_{2}, \ldots, \mathbf{Z}_{4}, \ldots
$$

In this time series, the data vector expands with t for a triangular set of data, dim (\mathbf{Z}_{i}) $=\mathbf{t}$.

If the data are in the shape of a rhombus, which occurs when the early years of business are fully run off, then $\mathbf{Z}_{\text {s }}$ will reach a point when its dimension does not increase.

The analysis can be approached from in the context of multivariate time series. However, the special relationshipa between the elements of consecutive data vectors mean that it is simpler to generalise the theory of classical and Bayesian time series to two-dimensional processes. For a fuller discussion of the use of classical time series, the reader is referred to Verrall (1989).

There are two methods for calculating the forecast values and their standard errors. The simpleat is to use the final parameter estimates and variance-covariance matrix as would be the case in a standard least-aquares analysis. The more proper method calculatea one-step-ahead, two-step-ahead , ... , ($t-1$)-stepe-ahead forecasts at time t and their variance-covariance matrices. However, since the recursive approaches do not store covariances between, for example, the one-step-ahead and the (t-1)-step-abead forecasts, the calculation of the variances of the forecasta causes problems. For this reason the firat method will be used.

The chain ladder linear model takes the following form when three years' data have been received:

$$
\left[\begin{array}{l}
Y_{11} \\
Y_{12} \\
Y_{21} \\
Y_{13} \\
Y_{22} \\
Y_{31}
\end{array}\right]=\left[\begin{array}{lllll}
1 & 0 & 0 & 0 & 0 \\
1 & 0 & 1 & 0 & 0 \\
1 & 1 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 1 \\
1 & 1 & 1 & 0 & 0 \\
1 & 0 & 0 & 1 & 0
\end{array}\right]\left[\begin{array}{l}
\mu \\
\alpha_{2} \\
\beta_{2} \\
\alpha_{3} \\
\beta_{3}
\end{array}\right]+\left[\begin{array}{l}
e_{11} \\
e_{12} \\
e_{31} \\
e_{13} \\
e_{22} \\
e_{31}
\end{array}\right]
$$

where $Y_{i j}=\log Z_{i j}$.

When the data are handled recursively, the model becomes:

$$
\begin{align*}
& Y_{1,1}=\mu+e_{1,1} \\
& {\left[\begin{array}{l}
Y_{1,2} \\
Y_{2,1}
\end{array}\right]=\left[\begin{array}{lll}
1 & 0 & 1 \\
1 & 1 & 0
\end{array}\right]\left[\begin{array}{c}
\mu \\
\alpha_{2} \\
\beta_{2}
\end{array}\right]+\left[\begin{array}{l}
e_{1,2} \\
e_{2,1}
\end{array}\right]} \\
& {\left[\begin{array}{l}
Y_{1,3} \\
Y_{2,2} \\
Y_{3,1}
\end{array}\right]=\left[\begin{array}{lllll}
1 & 0 & 0 & 0 & 1 \\
1 & 1 & 1 & 0 & 0 \\
1 & 0 & 0 & 1 & 0
\end{array}\right]\left[\begin{array}{c}
\mu \\
\alpha_{2} \\
\beta_{2} \\
\alpha_{3} \\
\beta_{3}
\end{array}\right]+\left[\begin{array}{l}
e_{1,3} \\
e_{2,2} \\
e_{3,1}
\end{array}\right]} \tag{7.3}
\end{align*}
$$

etc.
In general, the state vector at time t is defined by:

$$
\underline{\theta}_{1}=\left[\begin{array}{c}
\mu \tag{7.4}\\
\alpha_{2} \\
\beta_{2} \\
\vdots \\
\alpha_{i} \\
\beta_{1}
\end{array}\right]
$$

and equation (7.3) is called the observation equation. The state vector at time t is related to the state vector at time t-l by the system equation. A recursive version of the chain ladder method is achieved by defining the systern equation matrices as

$$
\underline{\theta}_{i+1}=\left[\begin{array}{cccc}
1 & & & \tag{7.5}\\
& 1 & & \\
& & \ddots & \\
& & & 1 \\
0 & \ldots & \ldots & 0 \\
0 & \ldots & \ldots & 0
\end{array}\right] \quad \underline{\theta}_{i}+\left[\begin{array}{cc}
0 & 0 \\
\vdots & \vdots \\
0 & 0 \\
1 & 0 \\
0 & 1
\end{array}\right] \underline{u}_{i}
$$

where \underline{u}_{t} contains the prior distribution of $\left[\begin{array}{l}\alpha_{i+1} \\ \beta_{i+1}\end{array}\right]$.

The new parameters at time $t+1$ are $\left[\begin{array}{l}\alpha_{t+1} \\ \beta_{t+1}\end{array}\right]$ and equation (7.5) implies that the existing parameters are unchanged, while the new parameters are treated as stochastic inputs.

If the variance of the errors, $e_{i j}$, is known and vague priors are used for the parameters, this method gives exactly the same results as ordinary least-squares estimation. It has the advantage that the data can be handled recursively. Also, it gives a method of implementing Bayesian estimation on some or all of the parameters. It has been assumed that the prior estimates of the parameters are uncorrelated: in other words that the stochastic input vector, $\underline{\underline{u}}_{\mathbf{t}}$, and the state vector, $\underline{\theta}_{1}$, are independent.

The equations above are an example of a state space system; a more general form is now considered. The models for $\underline{Y}_{1}, \underline{Y}_{2}, \ldots, Y_{t}, \ldots$, which together make $u p$ the triangle can be written as

$$
\begin{align*}
& \underline{Y}_{1}=\mathbf{F}_{1} \underline{\theta}_{1}+\underline{e}_{1} \\
& \underline{\mathbf{Y}}_{2}=\mathrm{F}_{2} \underline{\theta}_{2}+\underline{\mathbf{e}}_{2} \\
& \vdots \tag{7.6}\\
& \underline{\mathbf{Y}}_{t}=\mathrm{F}_{t} \underline{\theta}_{t}+\mathbf{e}_{t}
\end{align*}
$$

where $\quad \underline{Y}_{\mathbf{t}}=\log \underline{Z}_{\mathbf{t}}$

Equation (7.6) is an observation equation and forms one part of a state system to which the Kaiman filter can be applied in order to obtain recursive eatimates of the parameters. $\boldsymbol{Q}_{\mathbf{r}}$ is known as the state vector and is related to $\underline{\theta}_{\mathrm{t}-1}$ by the system equation. The observation equation and the system equation together make up the state space representation of the analysis of variance model. The system equation relates $\underline{\theta}_{i}$ to $\underline{\theta}_{i-1}$ and defines how the state vector evolves with time. Thus, the time evolution of the system is defined on the state vector and the obeervation vector is then related to the state vector by the observation equation. There are many choices of system equation, the most general being:

$$
\begin{equation*}
\underline{\theta}_{t+1}=G_{t} \underline{\theta}_{t}+B_{t} \underline{u}_{t}+\underline{H}_{t} \tag{7.7}
\end{equation*}
$$

```
where u}\mp@subsup{\underline{q}}{\mathbf{t}}{}\mathrm{ is a stochastic input vector
    and m}\mp@subsup{\underline{F}}{1}{}\mathrm{ is a disturbance vector
```

and the distributions of \underline{u}_{1} and \underline{w}_{4} are:

$$
\begin{aligned}
& \underline{u}_{t} \sim \mathbf{N}\left(\underline{\mathbf{u}}_{t}, \mathbf{U}_{t}\right) \\
& \underline{\mathbf{w}}_{t} \sim \mathbf{N}\left(\mathbf{Q}, \mathbf{w}_{t}\right)
\end{aligned}
$$

The choices of $G_{\mathbf{1}}, W_{\mathbf{t}}$ and the distribution of $\underline{u}_{\mathbf{G}}$ govern the dynamics of the system.

Suppose $\quad \underline{\theta}_{t} \mid\left(\mathbf{Y}_{1}, X_{2}, \ldots, X_{t-1}\right) \sim N\left(\hat{\boldsymbol{Q}}_{t \mid t-1}, C_{t}\right)$.
i.e. the distribution of the parameters, based on the data up to time $t-1$ is normal with mean $\dot{\hat{\theta}}_{1 \mid t-1}$ and variance-covariance matrix $\mathrm{C}_{\mathbf{z}}$.

From equations (7.6) and (7.7), the distribution of $\mathbf{Y}_{\mathbf{t}}$ given information up to time $\mathbf{t - 1}$ is

$$
\begin{equation*}
\hat{\mathbf{Y}}_{t \mid t-1} \sim N\left(F_{t} \dot{\underline{\theta}}_{t \mid t-1}, F_{t} C_{t} F_{t}^{\prime}+V_{t}\right) \tag{7.9}
\end{equation*}
$$

When the observed value of $\underline{Y}_{\mathbf{1}}$ is received, the state estimate can be updated to $\dot{\underline{\theta}}_{t \mid 4}$ and the distribution of the state vector at time t forecast using equation (7.8).

The recursion is given by the following equations, a proof of which can be found in (for example) Davis \& Vinter (1985). If the system and observation equations are given by equations (7.6) and (7.7), and the distribution of $\underline{\theta}_{\mathbf{1}}$ given information at time $t-1$ is given by (7.9), then the distribution of the state vector can be updated when X_{1} is received using the following recursion:

$$
\begin{align*}
& \hat{\underline{Q}}_{t+1 \mid t}=G_{i} \hat{\theta}_{t \mid t-1}+H_{t} \dot{\underline{U}}_{t}+K_{t}\left(X_{t}-\dot{X}_{t}\right) \\
& \text { where } \quad K_{t}=G_{i} C_{i} F_{i}^{\prime}\left(F_{t} C_{i} F_{i}^{\prime}+V_{t}\right)^{-1} \\
& C_{t+1}=G_{t} C_{i} G_{i}^{\prime}+H_{t} U_{i} B_{t}^{\prime}-G_{i} C_{t} F_{t}^{\prime}\left(F_{i} C_{t} F_{i}^{\prime}+V_{t}\right)^{-1} F_{i} C_{i} G_{i}^{\prime}+W_{t} \tag{7.12}
\end{align*}
$$

and

$$
\begin{equation*}
\hat{\mathbf{X}}_{t}=F_{t} \hat{\mathbf{E}}_{t \mid t-1} \tag{7.13}
\end{equation*}
$$

A model which applies dynamic estimation to the row parameters has the following system equation:

$$
\underline{\theta}_{t+1}=\left[\begin{array}{cccc}
1 & & & \\
& 1 & & \\
& & \ddots & \\
& & & 1 \\
0 & \ldots & 1 & 0 \\
0 & \ldots & \ldots & 0
\end{array}\right] \underline{\theta}_{t}+\left[\begin{array}{c}
0 \\
\vdots \\
0 \\
0 \\
1
\end{array}\right] \mathbf{u}_{i}+\left[\begin{array}{c}
0 \\
\vdots \\
0 \\
1 \\
0
\end{array}\right] \boldsymbol{w}_{t}
$$

> where $\quad u_{i}$ has the prior distribution of β_{t+1}
> and $\quad w_{1}$ is a disturbance term.

Thus the new row parameter, α_{t+1}, is related to α_{t} by:

$$
\begin{equation*}
\alpha_{t+1}=\alpha_{t}+w_{t} \tag{7.14}
\end{equation*}
$$

and a sophisticated smoothing method is produced.
The row parameters are related recursively and the column parameters are left as they were if their - prior distribution is vague (although the estimates change because of the change in the estimation of the row parameters). The state variance is set as 0.0289 , in order to compare with the empirical Bayes procedure. The practitioner is free to choose this variance as he sees fit: the larger the variance, the less connection is made between the rows. It is also possible to let this variance depend on t, and thus allow the amount of smoothing to be controlled by the perceived changes in the claims experience. It is also possible to obtain an estimate of this variance from the data, using maximum likelihood estimation. In the case in which the variance is set as 0.0289 , the parameter estimates are as follows:

Table 7.1

Parameter	Estimate	Standard
		Error
μ	6.119	0.163
α_{2}	0.187	0.151
α_{3}	0.170	0.148
α_{4}	0.196	0.152
α_{5}	0.296	0.158
α_{6}	0.396	0.164
α_{7}	0.482	0.171
α_{8}	0.550	0.183
α_{9}	0.536	0.202
α_{10}	0.546	0.238
β_{2}	0.906	0.158
β_{3}	0.940	0.165
β_{4}	0.951	0.173
$\boldsymbol{\beta}_{5}$	0.364	0.183
β_{6}	-0.028	0.195
β_{7}	-0.145	0.212
$\boldsymbol{\beta}_{\mathbf{8}}$	-0.457	0.236
β_{9}	-0.062	0.278
β_{10}	-1.406	0.378

The row totals and their standard errors are given in the following table:

Table 7.2

Row	Predicted Qutatanding	Standard
	Claims	Error
2	109955	59278
3	491787	187134
4	686441	206954
5	1076957	277762
6	1486991	347441
7	2217311	491998
8	3309887	744931
9	4545466	1048855
10	4591188	1169469

The predicted overall total outstanding claims is 18515984 and the standard error of this estimate is 2660211. The standard error is lower than that when no prior knowledge is assumed because of the recursive relationship between the paramelers. The effect of the Kalman filter on the parameter estimates will be illustrated by a graph, but it is interesting to compare the results with the empirical Bayes approach.

The following graph shows the parameter eatimates for three cases: the model with no prior Enowledge, the empirical Bayes model and the state apace model. It can be seen from the graph that the state space model and empirical Bayes estimates have both amoothed the estimates of the row parameters to a certain degree. The empirical Bayea eatimates have been drawn towards the overall estimate, with the amount of change depending on the data through the variation in each row and between the rows. The differencea in the eatimates of the row parameters has affected the eatimatea of outatanding claims. The standard errors have been reduced because the eatimation bas involved more of the data for each parameter. This is a beneficial affect of any of the Rayesian methods.

7.4 Dynamic estimation of the development factors

It is well-known that the chain ladder technique assumes that the shape of the run-off curve is the same for each accident year, since the same development factors are used. However, it is doubtful whether this is justified in practice. It is likely that there will be a similarity between the run-offs in successive accident years, and it is possible to formulate a state space model to allow this without imposing an identical shape for each year. The basic chain ladder linear model is

$$
\begin{equation*}
E\left(Y_{i j}\right)=\mu+\alpha_{i}+\beta_{j} \tag{7.15}
\end{equation*}
$$

Allowing the devolpment factors to be completely separate for each accident year would lead to the following model:

$$
\begin{equation*}
E\left(Y_{i j}\right)=\mu+\alpha_{i}+\beta_{i j} \tag{7.16}
\end{equation*}
$$

We would expect the parameters $\boldsymbol{\beta}_{\mathbf{i}}$ to be similar for succesive values of \boldsymbol{i} and so we impose the model

$$
\begin{equation*}
\beta_{i+1, j}=\beta_{i j}+\text { stochastic disturbance } \tag{7.16}
\end{equation*}
$$

The variance of the stochastic disturbance can be treated in much the same way as for the row parameters in section 7.3. We can now allow the shape of the run-off to vary from accident year to accident year by the choice of the variance of this stochastic disturbance. If it is zero, the run-off patiern is the same in each accident year and as it increases, the connection becomes less significant. We can allow the variance to depend on t and input a large value for one time point if it is believed that there has been a sudden change in the run-off pattern.

To illustrate the effect of this model, we analyse the data given in section 2, with the variance in equation (7.16) taken as 0.01 . The main interest in this case is the effect on the run-off pattern, and so table 7.3 gives juat the column parameters, $\beta_{i j}$.

Table 7.3
Column parameters from model with the same run-off in each row (from table 7.1):
$\begin{array}{lllllllll}0.906 & 0.940 & 0.951 & 0.364 & -0.028 & -0.145 & -0.457 & -0.062 & -1.406\end{array}$

Column parameters from model with the same dynamic run-off pattern:

0.925	0.886	0.914	0.383	0.025	-0.175	-0.479	-0.074	-1.413
0.917	0.895	0.945	0.361	-0.035	-0.135	-0.460	-0.063	
0.920	0.907	0.964	0.361	-0.080	-0.130	-0.447		
0.918	0.920	0.980	0.332	-0.050	-0.161			
0.895	0.942	0.951	0.352	-0.026				
0.894	0.960	0.940	0.375					
0.890	0.990	0.944						
0.898	1.014							
0.897								

This illustration shows how changes in the run-off pattern can be observed. For example, the first column parameter is generally decreasing and the second one is increasing.

8. Conclusions

This paper has explored the various models which are available within the framework of the chain ladder linear model. It is envisaged that the practitioner will find all of these of use. The following points are of particular note.

Firstly, any of the Bayesian methods will improve upon the least squares (or uninformative prior) approach on the basis of parameter stability. This is because more information is used in estimating each parameter. For example, in the least squares case, there is only one data point from which to estimate the last row parameter; the Bayesian methods use the data from the otber rows as well. To illustrate the affect of this consider a change in the data point in the last row from its present value of 344014 to 544014 . The following table shows the predicted outstanding clairns for each row from the different models. The first column shows the original results with no prior information.

Table 8.1

Row	Original Results			Revised Results		
	No prior	Dynamic	Empicical	No prior	Dynamic	Empirical
	Information	Estimation	Bayes	Information	Estimation	Bayes
2	110927	109955	109448	110927	109958	110094
3	482157	491787	479568	482157	491822	481329
4	660810	686441	655656	660810	686637	657998
5	1090752	1076957	1033109	1090752	1078058	$8 \quad 1039692$
6	1530532	1486991	1388261	1530532	1491978	81400466
7	2310959	2217311	2002772	2310959	2239482	22024720
8	3806976	3309887	3018896	3806976	3399256	63063229
9	4452396	4545466	3780759	4452396	4847221	13819051
10	5066116	4591188	3811869	8011412	5261069	94411270

The last row prediction using no prior information has changed in proportion with the change in the data point. The other methods have dampened down this change because they use more information in the estimation of the parameter. They therefore exhibit greater predictor stability.

It is important to realise that the results must be used correctly. For example, it is often not necessary to produce a 95% upper confidence bound (a 'safe' reserve) on oustnanding claims for each row, but only for the whole triangle, although the 'safe' reserve for the whole triangle may be allocated among the rows. This is important since it can be seen that the standard errors for each row are, in general, relatively large. The standard error of the overall total is more reasonable. To extend this further, the practitioner may be required to set a 'safe' reserve for the whole company, rather than for each triangle; this would reduce the relative size of the standard error still further. There are now a number of Bayesian methods which are available to the claims reserver, all of which have particular advantages over the classical eatimation method. The chain ladder linear model represents a great step forward from the crude chain ladder technique and has opened the way to more sophisticated estimation methods.

9. References

B. Ajne (1989) Exponential Run-off Claims Reserving Manual, Vol.2, Institute of Actuaries.
D.Bradu and Y.Mundlak (1970) Eatimation in Lognormal Linear Models. JASA Vol 6?, pp 198-211
H.Bublmann (1967) Experience Rating and credibility. Astin Bulletin, Vol.4. No.3, pp 199-207.
S.Christofides (1990) Regression Modets based on Log-incremental Payments Claims Reserving Manual, Institute of Actuaries, London.
D.R.Cox and D.V.Hinkley (1974) Theoretical Statistics. Chapman and Hall, London.
M.H.A.Davis \& R.B.Vinter (1985) Stochastic Modelling and Control. Cbapman \& Hall.
D.J.Finney (1941) On the Distribution of a Variate whose logarithm is Normally Distributed. JRSS

Suppl. 7 pp 155-61

Goovaerta and Bloggtad (1987) Credibility Theorg. Surveys of Actuarial Studies, No.4.
S.Klugman (1989) Credibility for Classification Ratemaking via the Bierarchical Normal Linear ModeL Proc. of Casualty Actuarial Society, Vol. 74, pp 272-321.
E.Kremer (1082) IBNR-Claims and the Two Way Model of ANOVA. Scand. Act. J., Vol.1, pp 4755.
D.V.Lindley and A.F.M.Smith (1972) Bayes Estimates for the Linear Model (with Discussion) JRSS, Series B, Vol. 34, No. 1 pp 1-41.
A.Renshaw (1989) Chain Ladder and Interactive Modelling J.I.A. Vol.116, pp 559-587.
A.F.M.Smith (1973) A General Bayesian Linear Model. JRSS, Series B, Vol.35, No.1, pp67-75.
G.C.Taylor and F.R.Ashe (1983) Second Moments of Estimates of Outstanding Claims. J. of Econometrics, Vol.23, pp 37-61.
R.J.Verrall (1989) Modelling Claims Runoff Triangles with Two-Dimensional Time Series, Scand. Act. J, pp 129-138.
R.J.Verrall (1990) Bayes and Empirical Bayes Estimation for the Chain Ladder Model Astin Bulletin, Vol.20, No2, pp217-243.
R.J.Verrall (1991a) On the Unbiased Estimation of Reserves from Loglinear Models Insurance: Mathematics and Economics, Vol. 10 pp75-80.
R.J.Verrall (1991b) Chain Ladder and Maximum Likelihood J.I.A. Vol.118, pp 489-499.
F.de Vylder (1982) Estımation of IBNR claims by Credibility Theory. Insurance: Mathematics and Economics 1, pp 35-40.
B.Zehnwirth (1985) Interactive Claims Reserving Forecasting System, Benhar Nominees Pty Ltd., Tunawarra, NSW, Australia.

Probabilistic Development Factor Models with Applications to Loss Reserve Variability, Prediction Intervals, and Risk Based Capital

by Ben Zehnwirth

1.0 INTRODUCTION AND SUMMARY

The present paper aims to present a statistical modeling framework and environment for conducting loss reserving analysis. The modelling framework and approach affords numerous advantages including increased accuracy of estimates and modelling of loss reserve variability. Since the loss reserve is likely to be the largest item in the insurer's balance sheet and is subject to much uncertainty, modelling of loss reserve variability is an integral component of assessing insurer solvency and assessment of risk based capital.

The paper is organised as follows:

Forecasting and some modelling concepts are introduced in Section 2. The salient features of the data that ought to be captured by a model are discussed and arguments in favour of probabilistic models are presented. It is emphasised that the only way to assess loss reserve variability is through probabilistic models. The statistical MODELLING FRAMEWORK is introduced where each model in the framework has four components of interest. The first three involve trends in the three directions, development year, payment/calendar year and accident year and the fourth component is the random fluctuations (distributions) about the trends

In Section 3 we begin by discussing trend adjustments to a univariate time series and illustrate how analogous adjustments to loss reserving data cannot be handled by graph and ruler, mainly as a consequence of the projection of the payment/calendar year trends onto the development year and accident year directions. Two deterministic models Cape Cod (CC) and Cape Cod with constant inflation (CCl) are discussed. Age-to-age development factors are defined as trend parameters.

A rich class of deterministic development factor models is introduced in Section 4 where each model in the framework contains the three trend components of interest. It is shown how as a result of the projection of calender year (trends), a very simple
trend model causes very different development year trends (development factors) for different accident years. Standard actuarial techniques based on age-to-age link ratios of the cumulative payments cannot capture the payment/calendar year trends in the payments.

In Section 5 the class (or family) of deterministic development factor models that only contain trend components in the three directions is extended to include random fluctuations. The resulting models in the rich Development Factor Family (DFF) are probabilistic models that relate the distributions of 'payments' in the various cells in the triangle by trend parameters. It is emphasised that one of the principal uses of regression is the estimation (or fitting) of distributions. Estimation of a model belonging to the DFF involves the fitting of distributions to the cells in the loss development array. Data based on a simple DFF model are generated (simulated) and it is demonstrated how the development year patterns are invariably complex. The trends cannot be determined from the age-to-age link ratios nor from graphs. For readers who are sceptics and may argue "But this is simulated data" should read Section 12 where we analyse real life data involving a line written by a larger insurer for which the age-to-age link ratios on the cumulative payments are relatively smooth. HOWEVER, there are major shifts in payment/calendar year trends in the payments that are quite alarming.

We use regression for a number of purposes:

* Estimation of trends.
- Estimation or fitting of distributions.

In Section 6 we demonstrate how regression can also be employed to adjust data for trends. We state as a THEOREM that the only way to separate payment/calendar year trends from development year trends is by application of regression. Practical applications of regressions involving real life data sets are given in Sections 12 and 13.

In Section 6 we aiso present a number of tests that we believe any sound loss
reserving statistical framework should pass. It is shown that standard actuarial techniques based on age-to-age link ratios fail these minimum tests.

As a result of the dependence of the payment/calendar year direction on the other two directions, many of the models in the DFF that contain many parameters cannot be estimated in a spreadsheet or statistical package and some that can be estimated may contain much parameter uncertainty. This phenomenon, known as multicollinearity, is discussed in Section 7 and motivates the introduction of varying parameter, dynamic or credibility models. Varying parameters or stochastic parameters can also be regarded as proxies for the myriad of variables that affect the complex claims generating process.

In Section 8 we show how the (fixed) parameter regression models may be estimated in a spreadsheet or statistical package and how an estimated model may be employed in producing forecast distributions of (incremental) payments. The forecast (estimated) distributions provide information required for the assessment of risk based capital and solvency.

Additional modelling concepts including parsimony, Akaike Information Criterion and distributional assumptions are discussed in Section 9. Moreover, we describe the importance of the twin concepts of stability and validation analysis and show how data with unstable trends (in the payments) are less predictable (subject to greater uncertainty) than data with stable trend (and some random fluctuations). Parameter uncertainty (or instability) can reduce predictability much more than process uncertainty.

Accuracy of forecast distributions is also discussed. We emphasise that the "optimal" statistical model, when trends are unstable, may not be the best for producing forecasts and discuss what assumptions may be appropriate for the future, especially in the light of analysing other data types. Instability in trends in the more recent payment years in the incremental payments requires more actuarial judgment about future trends.

The model building strategy and selection of appropriate assumptions about the future are discussed in Section 10. It is stressed that the model building strategy is necessarily an iterative cycle of model specification, estimation and testing. If trends in the more recent payment/calendar years are unstable, the nature of the instability and possible explanation for the instability is relevant information in deciding on assumptions for the future. This typically may require analysis of other data types employing the advocated modelling framework. We conclude in Section 10 with a discussion of time series models versus explanatory (or casual) models and offer arguments for the superiority of the former over the latter.

Section 11 discusses how prediction intervals may be derived from the forecast distributions and how they are relevant to the assessment of risk based capital and solvency. Prediction intervals computed from the forecast distributions are conditional on the assumptions made about the future remaining true.

The preliminary diagnostic analysis and the model building strategy are illustrated with two real life examples. Project 1 of Section 12 is concerned with real data of a large company. In terms of standard age-to-age link ratio techniques the data and ratios are relatively smooth and it does not appear that there are any problems. HOWEVER, there are major shifts in payment/calendar year trends in the payments that are alarming especially since the new high trend cannot be explained by a corresponding increase in speed of closure of claims. Project 2 of Section 13 also involves real data. Here the link ratios are relatively irregular, yet trends are stable, so that three years earlier estimation of the, same model would have forecast the distributions of payments in the cells of the last three payment/calendar years and moreover would thave produced the same outstanding reserve estimates.

In Section 14 we remark about an important extension of the DFF MODELLING FRAMEWORK that makes the family of models infinitely richer.

The paper concludes with summary remarks in Section 15.

Throughout the paper we also hope to dispel a number of pervasive loss reserving
myths regarding data, age-to-age link ratios, volume, credibility, sources of information, actuarial judgment (when and where required), busıness knowledge, statıstical probabilistic modelling and forecasting.

2.0 STATISTICAL FORECASTING

The best way to suppose what may come, is to remember what is past.
George Savile. Marquis of Halifax.

In this section we discuss a number of fundamental statistical forecasting concepts including which salient features of the data should be "remember what is past".

2.1 FORECASTING

Indeed it (forecasting) has been likened to driving a car blindfolded while following directions given by a person looking out the back window. Nevertheless, if this is the best we could do, it is important that it should be done properly, with the appreciation of the potential errors involved. In this way it should at least be possible to negotiate straight stretches of road without a major disaster.

Andrew C. Harvey [9]

In the loss reserving context the 'straight stretches' are the stable trends in the (incremental) payments. If the trends have been stable in past years, we are confident in supposing the same trends in the future.

2.2 WHY A PROBABILISTIC OR STOCHASTIC MODEL?

There are extremely compelling reasons as to why we should be using probabilistic models to model insurance data, whether for the purpose of loss reserving, rate making or any other purpose.

According to Arthur Bailey's [2] paper Sampling Theory in Casualty Insurance. any insurance data can only be regarded as "an isolated sample ...". See top of page 8 of the text book Foundations of Casualty Actuarial Science [5]. Bailey is basically saying that any insurance data can only be regarded as a sample (path) from perhaps a very complex process.

If a fair coin is tossed 100 times. the mean number of heads is 50, but the probability of observing 50 heads is only 0.08 . If a fair dice numbered 1 to 6 is rolled, the mean is 3.5 , yet the probability of observing 3.5 is zero. (The variability inherent in coin tossing in known as process uncertainty).

So, the probability of observing the mean in most, if not all, insurance processes is zero. Given, that we do not observe the mean, we need to compute more than just the mean. The mean on its own is not terribly informative. We need to also compute the standard deviation, so that we have some idea of how 'far' our (future) observations will be from the mean. The best, of course, is to compute the whole distribution. From the computed distribution we can derive the moments, percentiles and prediction (confidence (sic)) intervals.

Returning to the text book Foundations of Casualty Actuarlal Science [5], the introductory chapter 1, top of page 2, says "The mention of probabilities reminds us to state the obvious, that probability theory (whether classical or Bayesian) forms the basis of actuarial science. If the actuaries hadn't probability theory, they would have to invent it." Indeed, the author also believes that statistical probabilistic methods are essential to actuarial studies, and it is principally by the aid of such methods that these studies may be raised to the rank of sciences.

2.3 MODELLING FRAMEWORK

The models considered in the present paper are relatively simple. They have four components of interest that have a straightforward interpretation.

The first three components are the trends in the three directions, development year, accident year and payment/calendar year. The fourth component is the random fluctuations about the trends. The random fluctuations component is just as important as the three trend components and is necessarily an integral part of the model. The data or transtorm thereof are decomposed thus:

> DATA = TRENDS + RANDOM FLUCTUATIONS

The concept of trends and random fluctuations about trends is over two hundred years old. These concepts have been widely used in analysing (and forecastıng) any univariate time series such as sales, stock market prices, interest rates. consumption, energy and so on.

The principal aim of analysing a loss development array is to obtain a sensible description of the data. The trends in the past, especially in the payment/calendar year direction, are determined and the random fluctuations about the trends are quantified, so that it can be best judged which assumptions should be used for future trends (and random fluctuations). The models are probabilistic (equivalently, stochastic) since the probability distributions of the random fluctuations 'about' the trends are identified. Probabilistic models are testable and can also be validated. They also afford numerous other advantages including computation of risk margins required for the assessment of risk based capital.

if THE TRENDS ARE STABLE THEN THE MODEL WILL VALIDATE WELL AND BE

STABLE. If the trends are unstable then the decision about future trends is no longer straightforward. Instability in trends with litte random variation about the trends makes data less predictable then stable trends with much random fluctuation. See Sections 9.6, 10.2 and 10.3 . The same principles apply to the modelling of a univariate time series.

The 'best' identified model contains assumptions (equivalently, information). All the assumptions must be tested to ensure they are supported by the data (experience).

As we proceed through the model identification strategy we are extracting information (about trends and stability thereof and the amount of random variation) and we 'hope' that the 'best' identified model tells us that the calendar year trend is stable (especially more recently). If trends are not stable then we may not necessarily use the optimal statistical model for forecasting. See Section 9.6.

None of the numerous models contained in the MODELLING FRAMEWORK actually represent explicitly the underlying claims generating processes. The multitude of
variables involved in generating the claims are invariably complex. What we attempt to achieve is the identification of a parsimonious model in terms of the simple components of interest for which all the assumptions inherent in the (probabilistic) model are supported by the data. It is subsequently argued that the experience (data) can be regarded as a sample (path) from the identified probabilistic model. The multitude of variables that are the determinants of the claims processes are proxied by the TRENDS and the (residual) variance of the RANDOM FLUCTUATIONS. Another classical modelling example in insurance where the same kind of modelling concepts are used is when a Pareto distribution, say, is fitted to loss sizes It is not assumed that the Pareto distribution represents the underlying generating process. Whatever is driving the claims is very complex and depends on many variables. All that is assumed is that the experience (sample) can be regarded as a realisation from the estimated Pareto distribution. Subsequently the estimated Pareto distribution is used to estimate probabilities of very large claims including those exceeding the maximum observed claim in our sample and most importantly it is used to quantify probabilistically the variability in loss sizes.

The principal advantage of an explicit statistical model is that it makes the assumptions clear. Other advantages include improved accuracy and quantification of variabllity required for assessment of risk based capital and testing of solvency.

3.0 THE GEOMETRY OF TRENDS AND AGE-TO-AGE DEVELOPMENT FACTORS

In this section we show that loss development arrays possess only two independent directions. not three, and define age-to-age development factors as development year trends

3.1 TREND ADJUSTMENTS TO A UNIVARIATE SERIES

In one dimension, or equivalently for any univariate series, trend concepts are intuitive and natural.

Consider the series $\log P_{1}$ where P_{1} is the price of gasoline in year t. Figure 3.1 .1 below depicts the $\log P$, series (dark line segments) over a 20 year period.

Figure 3.1 .1

It appears that there is a constant average trend in the nominal prices. The least squares estimate of the trend is 0.23 . say. So prices have been growing at an average rate of 23%. However, 23% is the nominal growth, since there has been economic inflation over the 20 year period. Suppose economic inflation has been 8% continuous rate for the whole 20 year period. The light line segments represent the \log prices adjusted to the $\$$ value of year 20 .

The trend in the adjusted prices is $23 \%-8 \%=15 \%$. If instead, one was only given the nominal prices and the adjusted prices (without knowing the adjustment), the 8% adjustment could be determined by estimating the difference in trends in the two series. Trends (on a log scale) are additive.

So, REGAESSION as an approach to estimating trends and adjusting data. immediately suggests itself.

3.2 TREND PROPERTIES OF LOSS DEVELOPMENT ARRAYS

Since a model is suppose to capture the trends in the data, it behoves us to discuss the geometry of trends in the three directions, viz., development year (or delay), accident year and payment (or calendar) year.

Development years are denoted by d; $d=0,1,2, \ldots, s \cdot 1$; accident years by w; $w=1,2, \ldots, s$; and payment years by $t ; t=1, \ldots, s$.

w

Figure 3.2.1

The payment year variable t can be expressed as $t=w+d$. This relationship between the three directions implies that there are only two 'independent' directions.

The two directions, delay and accident year, are orthogonal, equivalently, they have zero correlation. That is, trends in either direction are not projected onto the other. The payment year direction t however, is not orthogonal to either the delay or accident year directions. That is, a trend in the payment year direction is also projected onto the delay and accident year directions. Similarly, accident year trends are projected onto payment year trends.

In order to aid the exposition we shall assume, without loss of generality, that the numbers in the loss development array are incremental payments. It is emphasised that all the arguments and concepts presented apply to all loss development arrays including incurreds, counts, averages and so on.

We now illustrate the geometric properties of trends of a loss development array with some data.

Consider the following triangle of incremental paid losses:

Triangle One


```
100 200 150}100 80 60 40 40
100 200 150 100 80 60.
100 200 150 100 80
100 200 150 100
100 200 150
100 200
100
```

This triangle will be said to satisty the Cape Cod assumptions, viz., homogeneity of age-to-age development factors across accident years and homogeneity of levels
across accident years. Each accident year has the same initial starting value. that is. same value in delay 0 .

Suppose we subject the payments to a 10% yearly inflation across the payment years. We obtain the next triangle:

Triangle Two

To obtain the $t^{\text {th }}$ diagonal of the second triangle, we multiply each payment in the $t^{\text {th }}$ diagonal of triangle one by $(1.1)^{1 \cdot 1}$.

We observe the following:

1. For triangle two, age-to-age development factors are homogeneous across accident years but are 10% higher than in triangle one.
2. In triangle two there is a 10% accident year trend.

Observations 1 and 2 imply that triangle two could be obtained from one by the two successive (and commutative) operations: subject triangle one to 10% per year trend in accident year direction to obtain:

Triangle Three

| 100 | 200 | 150 | 100 | 80 | 60 | 40 | 20 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 110 | 220 | 165 | 110 | 88 | 66 | 44 | |
| 121 | 242 | 182 | 121 | 97 | 73 | | |
| 133 | 266 | 200 | 133 | 106 | | | |
| 146 | 293 | 220 | 146 | | | | |
| 161 | 322 | 242 | | | | | |
| 177 | 354 | | | | | | |
| 195 | | | | | | | |

and then subject triangle three to 10% trend in the development year direction to obtain:

Triangle Four

```
100}22
110}2242\quad200 146 129 106 78 
```



```
133 293 242 177 156
146 322 266 195
161 354 292
177 390
195
```

Triangle four is the same as triangle two. A loss development array depicted by triangle two (or four) is said to satisfy the Cape Cod with constant payment year inflation assumptions.

The following displays demonstrate the equivalence of trends in general.

The above equivalence relations are exemplified by the relationships between the four triangles. We also have,

It is important that the reader understands the relationship and difference between Cape Cod (CC) data and Cape Cod with constant inflation (CCI) data.

CC data have accident years that are completely homogeneous (homogeneity of level or values at development year zero and homogeneity of age-to-age factors). CCl data can be obtained from CC data by subjecting the payment years to a constant trend. If we remove the constant payment year trend from the CCl data we will have CC data.

So, the difference between CCl data and CC data is a calendar year trend adjustment. If we did not know how the CCl data were created from the CC data, how would we determine the (simple) difference?

With the univariate series considered in Section 3.1 the difference between the nominal prices and adjusted prices can be determined by estimating the trend, using eye and ruler, for each series. Estimating trend using eye and ruler can be regarded as a form of crude regression. With the loss reserving data CC and CCl , it also makes sense to estimate the payment year trends and subsequently conclude that the difference in the two loss development arrays resides in the difference in the two trends. But how do we estimate the trends? Given the dimensionality of the data, eye and ruler are not useful. Moreover, given the geometry of trends, we need to separate the trends in the three directions. Equivalently, we need to determine the payment year trends after adjusting for development year trends.

Accordingly, formal regression is suggested as the only way of separating the trends.

A number of words of caution. In actual fact the "true" trends in the three directions are non-identifiable. it is only the resultant trends that are identifiable.

Here is an example. Consider a CC triangle for which the (continuous) trend across development years is constant and is -0.25 . Suppose to this CC triangle we introduce a continuous calendar year trend of 0.2 and a continuous accident year trend of 0.1. The adjusted triangle can be represented thus:
Cole

Alternatively, it can be represented as:

All three trend triangles are the same and would produce the same projections for the completion of the rectangle. We have three directions (or variables) but only two independent equations.

3.3 DETERMINISTIC AGE-TO-AGE DEVELOPMENT FACTORS

Consider, at first, only one accident year (say, the first) that takes the value $p(d)$ at development year d and let $y(d)=\log p(d)$.

Define:

$$
\approx \quad=\quad \log \mathrm{p}(0)
$$

and

$$
\gamma \quad=y(j)-y(j-1)
$$

Figure 3.3.1

The parameter α (alpha), denotes the initial value, or intercept, or level whereas the parameter $\gamma_{/}$represents the trend, on a logarithmic scale, from development year $j-1$ to development year j.

The parameter Y_{j} is a difference on a log scale and since the length of $P R$ in Figure
3.3 .1 is $1, \gamma_{j}$ is the slope of the line $P Q$, and hence is the trend between development years $\mathrm{j}-1$ and j .

Now.

$$
\begin{align*}
y(d) \quad & =y(0)+y(1)-y(0)+\ldots+y(d)-y(d-1) \\
& =\alpha+\sum_{j=1}^{0} \gamma_{j} . \tag{3.3.1}
\end{align*}
$$

That is, $y(d)$ can be expressed as the initial value plus the sum of the differences to development year d. The differences can also be regarded as trends. Indeed,

$$
\begin{align*}
\gamma_{i} & =y(j)-y(j-1) \\
& =\log p(j)-\log p(j-1) \\
& =\log \left[\frac{p(0}{p(j-1)}\right] \tag{3.3.2}
\end{align*}
$$

One of the principal reasons for taking logarithms of the data is because the difference of two logarithms is equivalent to analysing trends and approximately equivalent to analysing percentage changes.

The trend parameter $\gamma_{/}$is the \log of the ratio $p(j) / \rho(j-1)$. The latter ratio is an age-toage development factor. So, Y_{j} can also be interpreted as a log of a development factor. Indeed, in what follows we shall refer to it as a development factor (on a log scale).

Consider the following monotonically increasing series $\{\mathrm{P}(\mathrm{i})\}$ for which the trends are depicted in the Figure 3.3.2 below.

Figure 3.3.2

The γ 's represent both the differences in y values and the trends depicted by the straight line segments.

Accordingly, development factors on a log scale form a curve comprising of straight line segments (trends).

4.0 DETERMINISTIC DEVELOPMENT FACTOR MODELS

In this section we develop the mathematical description of the two models corresponding to triangles one and two respectively of Section 3.2

Let $p(w, d)$ denote the value in the loss development array corresponding to accident year w and development year d and set $y(w, d)=\log p(w, d)$.

4.1 CAPE COD (CC)

Consider triangle one of Section 3.2. Each accident year has the same α value, viz., $\alpha=\log 100$ and each accident year has the same development factors $\gamma_{1,} \gamma_{2}, \ldots, \gamma_{0}$ $\left({ }^{Y}{ }_{7}\right)$. For example, $Y_{3}=\log (100 / 150)$

So, we can write

$$
\begin{equation*}
y(w, d)=a+\sum_{i=1}^{a} y_{j} \tag{4.1.1}
\end{equation*}
$$

Equation (4.1.1) describes the deterministic CC model.

4.2 CAPE COD WITH CONSTANT INFLATION (CCI)

Consider now triangle two of Section 3.2. It was obtained from triangle one by subjecting it to a constant trend in the payment year direction.

Let's denote the payment year trend on a logarithmic scale by the Greek letter, 1
(called iota). For triangle two $:=\log 1.1$

The value $y(w, d)$ that lies in payment year $w+d$ is inflated by ${ }^{2}(w+d-1)$.

So, for triangle two.

$$
\begin{equation*}
y(w, d)=\alpha+\sum_{j=1}^{d} \gamma_{j}+i \cdot(w+d-1) \tag{4.2.1}
\end{equation*}
$$

The last equation may be re-cast.

$$
\begin{equation*}
y(w, 0)=a+1 \cdot w-1+\sum_{j=1}^{0}\left(\gamma_{j}+1\right) \tag{4.2.2}
\end{equation*}
$$

The two foregoing equations are identical and represent the CCl deterministic model. The latter equation tells us that the level parameter for accident year w is $\alpha+1+\boldsymbol{w}-\mathfrak{l}$, so that there is an 1 trend along the accident years and that the development factor from delay $\mathrm{j}-1$ to j is $\mathrm{Y}_{\mathrm{i}}+\mathrm{b}$. This is just a mathematical verification that the payment year trend ' projects on the other two directions.

4.3 CC FAMILY AND CCI FAMILY

There are other CC models for which the CC assumptions viz., homogeneity of accident years, apply.

For example, it may be that $Y_{3}=Y_{4}=\ldots=Y_{8}$, so that the trends from development year two to eight are constant as depicted below:

Figure 4.3.1

Another possibility is that all development factors Y_{1}, Y_{2}, \ldots, are equal to Y say, so that we could write:

$$
\begin{equation*}
y(w, d)=\alpha+\gamma d \tag{4.3.1}
\end{equation*}
$$

This model we call the single development factor (SDF) model. It is a straight line curve on a log scale and exponential curve on the $\$$ scale. It is the same curve for each accident year.

So, we can construct many variants of the CC model (4.1.1.). In the sequel, anytime we refer to CC without an added qualification we shall mean model (4.1.1) with
distinct $\boldsymbol{\gamma} \mathbf{s}$.

Similarly, depending on the "relationships" in the γ 's in the CCl model, we can construct many variants of the CCl model.

4.4 A CC MODEL WITH THREE INFLATION PARAMETERS

The data in Appendix A1 to Appendix A4 are generated as follows.

First we create payments based on formula:

$$
p(w, d)=\exp \left(\text { alpha }-0.2^{\star} d\right)
$$

So this is deterministic SDF data (where the accident years are homogeneous). See Appendix A1.

On a log scale we introduce a 10\% trend from 1978-82, 30\% trend from 1982-83 and 15\% trend from 1983-91. See Appendix A2.

Figure 4.4.1 displays the graph of the log data versus development year for the first six accident years. The reader can reproduce this graph in a spreadsheet.

Observe how calendar year trends project onto development years and accident years.

Consider the first accident year 1978. The 10\% calendar year trend projects onto the development year, so that the resultant trend from development year 0 to development year 4 is -0.2 (the gamma) +.1 (the iota) $=-.1$. The 30% trend between calendar years 1982 and 1983 also projects onto the development year so that the trend between development year 4 and 5 is $+1=-0.2+3$. Thereafter the trend is $-2+15=-.05$. Since .15 is larger than 1 , the decay in the tail is less rapid ($-.05>-1$).

Consider the next accident year 1979. First up to development year 3, this accident year is 10% higher than the previous one since the 10% calendar year trend also projects onto the accident years. The 10% upward trend is one development year earlier than in previous accident year since the 30% trend is a calendar year change

So, changing calendar year trends can cause some interesting development year patterns. The pattern is different for each accident year. The calendar year trends cannot be determined by the link ratios (Appendix A4).

The patterns became much more complicated in the presence of random fluctuations superimposed on the trends. See Section 5 for a discussion of the current example including random fluctuations

The model describing the data we have constructed can be represented pictorially thus:

Figure 4.4.2
where $Y=-0.2, \quad \imath_{1}=0.1, \imath_{2}=0.3$ and $t_{3}=0.15$.

Writing the equations explicitly is not necessary. Indeed, it is too complicated.

We note that the resultant trend (age-to-age development factor) between development years $j-1$ and j is the (base) development factor γ between the two development years plus the payment year trend 1 (iota) between the two corresponding payment years.

The above model can be described succinctly in terms of the five parameters, α, γ, $b_{1} l_{2}$ and t_{3}. We could create a slightly more involved model by adding accident year trends (more α 's).

4.5 CHAIN LADDER (CL)

The chain ladder (CL) statistical model is described in Christofides [4]. It is a twoway ANOVA model where accident years and development years are two factors at various levels. The CL statistical model is the direct statistical extension of the standard age-to-age development factor technique. See Christofides [4] for detalls. It is written (omitting the random fluctuations).

$$
\begin{equation*}
y(w, d)=\alpha_{w}+\sum_{i=1}^{d} \gamma_{i} \tag{4.5.1}
\end{equation*}
$$

The parameter ${ }^{\alpha}{ }_{w}$ corresponding to accident year w represents the effect of accident year w and the parameter $\gamma_{i}-\gamma_{r,}$ (difference in trends) represents the effect of development year j. The number of parameters in the model is $2 \mathrm{~s}-1$.

The CC model assumes complete accident year homogeneity, that is, same α and same ${ }_{\gamma}{ }_{j} \mathrm{~s}$. For the CL model we assume homogeneity of development factors (${ }^{\gamma} ; \mathbf{\prime}$). but heterogeneity of levels (a 's).

The principal deficiency of the CL model is that it does not relate the calendar years in terms of trends.

If we do not have an estimate of trends in the past, how do we know what assumptions we can make about the future trends? See comments by George Savile at beginning of Section 2.0 and the discussion in Section 9.6.

HOWEVER, the CL model is an extremely powerful interpretive tool as we shall see in Section 6 and more impressively in an application to a real life example in Section 12.

4.6 THE SEPARATION MODEL (SM)

The separation method separates the base systematic run-off pattern (assumed homogeneous across accident years) from exogenous influences, viz., payment year inflation (or effects). The deterministic model is usually expressed (parametrized) as

$$
P(w, d)=\theta(w) D_{d} \lambda_{w} \cdot d,
$$

where the $\{e(w)\}$ are the exposures, proportional to number of claims incurred. $\left\{b_{d}\right\}$ are the development factors and the parameter $\lambda_{w} \cdot d$ expresses the 'effect' of payment year $t=w+d$.

The corresponding model in our framework is written (parametrized) as

$$
\begin{equation*}
y(w, \alpha)=\alpha+\sum_{i=1}^{d} \gamma_{i}+\sum_{i=2}^{w-d} i_{i} . \tag{4.61}
\end{equation*}
$$

where the parameters $\left\{\gamma_{j}\right\}$ are the base systematic development factors and $\mathbf{i}_{\text {, }}$ is the force of inflation from payment year t - 1 to payment year t.

The model has 2s - 1 parameters.

Note that this model necessarily assumes that there are significant changes in inflation rates (trends) between every two contiguous payment years and, moreover that there are significant changes in base development factors between every two development years.

Refer to the discussion of Section 9.6 where we show that if trends are indeed unstable then the payments are not terribly well predictable.

4.7 DETERMINISTIC DEVELOPMENT FACTOR FAMILY

Let's reconsider the model of Section 4.4. It can be described succinctly as a version of CC (viz. SDF) subjected to three payment year trends. If we remove the three payment year trends, we are back to SDF. On this model we could also superimpose (add) accident year trends.

So, any determistic development factor model (DFF) can be described as some version of $C C$ subject to payment year trends and accident year trends

Mathematically, the family of development factor models is

$$
\begin{equation*}
y(w, d)=a_{w}+\sum_{i=1}^{d} Y_{j}+\sum_{i=2}^{w-d} i_{i} . \tag{4.7.1}
\end{equation*}
$$

A model has a level parameter α_{ω} for accident year w - it represents the effect or level or exposure of the accident year. Between every two development years, we have a development factor or trend parameter $\boldsymbol{\gamma}_{j}$ (the factor from delay $j-1$ to j) and between every two payment years we have a trend (or inflation) parameter if, the inflation from payment year t-1 to t.

All models considered thus far belong to the development factor family. For example, CC is written as:

$$
\begin{equation*}
y(w, d)=\alpha+\sum_{j=1}^{\alpha} y_{j} . \tag{4.7.2}
\end{equation*}
$$

So for CC type model $\alpha_{w}=\alpha$ (for each w) and $t_{t}=0$ for each t.

There is no need to memorise the equation representing the family of models. All
that needs to be understood is that the parameters of a model comprise (i) trenos (development factors) in the development year direction (the γ 's). (ii) levels (exposures) for each accident year (the α 's) and (ii) trends (inflation) in the payment year direction (: 's). Furthermore, any payment year trend projects on the other two directions.

5.0 STOCHASTIC DEVELOPMENT FACTOR MODELS

In this section the class of deterministic DFF models (4.7.1) that only contain trend components is extended to include random fluctuations.

Consider one accident year only for which the deterministic model is

$$
\begin{equation*}
x(a)=\alpha+\sum_{j=1}^{d} \gamma_{j} \tag{5.1}
\end{equation*}
$$

This model says that at delay o we can only observe one (log) value, viz α. Similarly, for the other delays. Between any two delays we can only observe one trend, the trend corresponding to the development factor.

We now assume that around the trends there are random fluctuations. We write

$$
\begin{equation*}
y(\alpha)=\alpha+\sum_{j=1}^{d} y_{l}+\varepsilon . \tag{5.2}
\end{equation*}
$$

where ϵ the error term, has a normal distribution with mean 0 and variance σ^{2}. In actuarial parlance σ^{2} is known as the process uncertainty. Given that the errors are random variables, the dependent variable y is also a random variable.

The probabilistic (stochastic or regression) model is depicted below.

For the stochastic model, α is no longer the value of y observed at delay 0 . It is the mean of $y(0)$. Indeed, $y(0)$ has a normal distribution with mean α and variance σ^{2}

Similarly, γ_{j} is not the observed trend between delay $j-1$ and j , but rather it is the mean trend.

The parameters of the stochastic model represent means of random variables. Indeed, the model (on a log scale) comprises a normal distribution for each development year where the means of the normal distributions are related by the parameter α and the trend parameters $\boldsymbol{\gamma}_{1}, \boldsymbol{\gamma}_{2}, \ldots, \boldsymbol{\gamma}_{\mathbf{g}}$.

From equation (5.2) we have

$$
\begin{equation*}
y(d)-y(d-1)=\gamma_{d}+\varepsilon_{d} \cdot \varepsilon_{d .1}, \tag{5.3}
\end{equation*}
$$

where ε_{d} is the 'error' at delay d.

Accordingly.

$$
\begin{equation*}
E\left[\log \frac{p(d)}{\rho(d-1)}\right]=\gamma_{d} \tag{5.4}
\end{equation*}
$$

That is, the development factor γ_{d} is the mean of the \log of the ratio on the $\$$ scale. A development factor is a parameter.

Based on model (5.2), the random variable $p(d)$ has a lognormal distribution with.

$$
\begin{equation*}
\text { Median }=\exp \left[\alpha \cdot \sum_{i=1}^{d} \gamma_{j}\right] \tag{5.5}
\end{equation*}
$$

Mean $=$ mean $\cdot \exp \left[0.5 \sigma^{2}\right]$.
and

Standard
Deviation $=$ mean $\cdot \sqrt{\exp \left[\sigma^{2}\right]-1}$.

Since, $y(d) \cdot y(d-1) \sim N\left(\gamma_{d}, 2 \sigma^{2}\right)$, we have

$$
\begin{equation*}
E\left\lfloor\frac{\rho(d)}{\rho(d-1)}\right\rfloor=\exp \left[y_{d}-\sigma^{2}\right] \tag{58}
\end{equation*}
$$

so that the development factor on the \$ scale (the mean of a ratio) is given by the last equation.

The stochastic model for $\rho(d)$ comprises a lognormal distribution for each development year where the medians of the lognormal distributions are related by
equation (5.5) and the means are related by equation (5.6). So. in fitiris cr estimating the model (Section 8) we are essentially fitting a lognormal distribution io each development year. The curve (on a log scale) comprising straight line segmenis is only one component of the model. The principal component comprises the distributions.

As another example, we consider the stochastic CC model. viz..

$$
\begin{equation*}
\gamma(w, d)=\alpha-\sum_{j=1}^{d} \gamma_{j}+\varepsilon . \tag{5.9}
\end{equation*}
$$

In this model we assume, for example, that $y(1,0), \ldots, y(s, 0)$ are observations from a normal distribution with mean α and variance σ^{2}.

The assumptions contained in the model must be tested to ensure that they are not violated by the data.

The stochastic development factor family (DFF) is written as:

$$
\begin{equation*}
y(w, a)=\alpha_{w}+\sum_{j=1}^{a} y_{l}+\sum_{t=2}^{w-a} l_{t}+\varepsilon . \tag{5.10}
\end{equation*}
$$

Note that the mean trend between cells $(w, d-1)$ and (w, d) is $\gamma_{j}+t_{w-a}$ and the mean trend between celis (w, d) and $(w+1, d)$ is $\alpha_{w+1} \alpha_{w}+1_{w-1-d}$

A model belonging to the DFF of (stochastic) models relates the lognormal distributions of the cells in the triangle On a log scale the distribution for each cell is normal where the means of the normal distributions are related by the "trends" equation belonging to the family (4.7.1)

Another deficiency of the CL probabilistic model is that it contains the explicit assumption that the errors for the youngest accident year and the last development year are both zero. The chance of that, is zero!

We now return to the deterministic development factor model of Section 4.4.

To all the log "payments" in the triangle we add random numbers from a normal distribution with mean zero. Equivalently, to the trends depicted in Figure 4.4.1. we add random numbers from a normal distribution displayed in Appendix A5. The sum of trends (Appendix A2) plus random fluctuations (Appendix A5) is displayed in Appendix A6.

The graph of the first six accident years of the data in Appendix A6 is given in the Figure 5.2 below.

NOTE that it is impossible to determine the trends and/or change in trends by eye or from the age-to-age link ratios of the cumulative payments (Appendix A9). See Appendices A7 - A9. THE TRENDS CAN ONLY BE DETERMINED BY USING REGRESSION.

Notwithstanding the fact that the DFF modelling framework can be applied to any loss development array, much of the remainder of the discussion will involve analysis of the incremental payments for the foliowing reasons:

* the geometry of trends;
* simplicity and parsimony:
- distributions of future payments is relevant information for financial statements

Other reasons are given in Sections 10.3 and 10.4.

6.0 REGRESSION AS A FORM OF ADJUSTMENT AND MINIMUM TESTS

Hitherto we have applied regression for two related purposes. Estimation of trends in the 'payments' and estimation of the distribution of payments in each cell. The estimated trends relate the means of the distributions on a log scale.

For example, if the CC model is an appropriate model, then the 'payments' come from lognormal distributions and the means of the log 'payments' lie on the surface:

$$
y(w, d)=\alpha-\sum_{j=1}^{d} \gamma_{j} .
$$

6.1 REGRESSION AS A FORM OF ADJUSTMENT

Regression is also a very powerful approach to adjusting data, especially in the loss reserving context.

In view of the fact that payment/calendar year trends project onto the other two directions, a graph of the data in one direction gives no indication of the trends. See for example, the simulated data with three payment year trends discussed in Section 5, and in particular, Figure 5.2.

We define a residual by

$$
\dot{\varepsilon}=y-\dot{y}
$$

That is, a residual is an observed value minus its fitted value.

Residuals can be interpreted as the data adjusted for what has been fitted. Let's consider a number of examples.

Suppose we simulate (generate) a triangle based on a CC model. The model generating the data can be written

$$
\text { CC DATA }=C C \text { TRENDS }+ \text { ERROR (randomness) }
$$

If to the data we estimate the $C C$ model, then the residual is

$$
\begin{aligned}
\text { residual } & =\text { CCDATA }- \text { FITTED CC TRENDS } \\
& =\text { estimate of error. }
\end{aligned}
$$

that is, the residuals represent the data after we take away (subtract) what we fitted, aiternatively, the residuals represent the data adjusted for what we fit. Here we subtract the estimates of the trends we used to create the data, so residuals should represent what is left, which is "randomness" in the three directions. "Random" residuals versus payment years are depicted in Figure 6.1.1.

Figure 6.1.1
Suppose we now generate,

DATA $=C C$ data $+10 \%$ calendar year trend

If we fit the CC model to this data the residual is

```
residual = DATA - fitted CC TRENDS
    = estimate of error + 10% calendar year trend
```

So here residuals versus payment/calendar years will exhibit a straight upward trend (+ randomness) as depicted in Figure 6.1.2. After removing the CC trends from the data, there still remains the 10% calendar year trend plus the random fluctuation.

Figure 6.1 .2

If you estimate the average trend in these residuals in a spreadsheet you would obtain an estimate of approximately 10% (the trend introduced into the data).

If we estimate the CCI model to the data, we are essentially estimating a trend parameter through the payment year residuals (Figure 6.1.2) of the previous CC model.

Now the residuals versus payment years should be random as we have removed (subtracted) all the (estimated) trends we introduced into the data.

Consider now data created as follows

$$
\begin{aligned}
\text { DATA }=\text { CC data } & +10 \% \text { trend (calendar years 1978-85) } \\
& +20 \% \text { trend (calendar years 1985-91) }
\end{aligned}
$$

If we fit the CC model to this data the residual is

```
residual = DATA - fitted CC TRENDS
    = estimate of error + 10% (78-85)+15% (85-91)
```

The residuals versus payment/calendar years exhibit two trends, one from 1978-85 and sharper trend from 1985-91. See Figure 6.1.3 below.

Figure 6.1.3
In now estimating the CCl model to the data, we are essentially estimating a trend parameter through the payment year residuals of Figure 6.1.3. The average trend is between 10% and 20%. The residuals versus payment years are now 'v-shaped'. See Figure 6.1.4 below.

Figure 6.1.4

We are now led to estimate the two trends.

In view of the fact that calendar year trends project onto the other two directions. we can only obtain an indication of payment year trends, after we first remove the development year trends from the data (and vice versa).

REGRESSION IS A VERY POWERFUL TECHNIOUE FOR SEPARATING THE trends in the three directions from random fluctuations

In Section 12 we analyse a real life example that possesses relatively smooth age-toage link ratios, yet there are major shifts in calendar year trends that are quite alarming.

6.2 MINIMUM TESTS

The author believes that a sound loss reserving statistical modelling framework should pass a number of very simple basic fundamental tests.

Turning to the univariate (log price) series of Section 3.1, if the (average) trend in the nominal prices is zero, that is, the prices are random about a zero trend then this
feature in the data could be determined informally by examining the graph with eye and ruler and formally in a spreadsheet by estimating the trend, showing that it is insignificant and testing the residuals for randomness. Hence.

Test 1: If the (incremental) payments in a loss development array are random observations (from a lognormal distribution), and accordingly there are no trends in each of the three directions, then a sound loss reserving methodology should determine this.

We illustrate with an example. Appendix B1 contains incremental payments drawn at random from the same lognormal distribution. Note the variability. The mean forecast or fitted value for each cell is the same. Indeed, estimation of the CC model, for example, to the data would yield insignificant γ 's, as they should be. Application of the DFF modelling framework will allow us to identity the salient features of the data extremely fast.

The age-to-age link ratios are displayed in Appendix B3 and do not appear to convey much relevant information. (Compare with age-to-age link ratios in Appendix B5. What can you tell?)

For those readers who feel that random data (no trends) represents a pathological case, should analyse a number of Lloyd's Syndicates data.

Returning to the univariate series of Section 3.1, it is rather straightforward to identify both informally and formally the difference between the nominal prices and the adjusted prices. A second loss reserving test is suggested.

Test 2: Consider any real life incremental paid loss development array. Create from this array a second array by subjecting it to a number of trends, for example, a 10% trend (say) in the first five calendar years (say), and a 15% trend (say) in the subsequent calendar years, then a sound loss reserving methodology will allow for a quick determination of the simple difference between the two loss development arrays.

The DFF modelling framework passes Test 2 with flying colors. The reader will find that by applying Test 2 to standard age-to-age link ratio techniques they fail it. That is because standard techniques do not satisty the necessary and simple property of additivity of trends.

In order to dispel the myth that smooth age-to-age link ratios imply stability of trends we analyse in Section 12 a real life array with smooth factors and find major trend instability that is quite alarming and in order to dispel the converse myth that rough age-to-age link ratios imply trend instability, we analyse in Section 13 a real life array with rough ratios and find stability so that had we used the same model estimated three years earlier, it would have accurately predicted the distributions for the last three calendar years and would have given the 'same' outstanding estimates.

To further illustrate the impact of randomness of payments on age-to-age link ratios, Appendix B4 contains an array generated by an SDF probabilistic model with constant 20% calendar year trend. The link ratios are presented in Appendix $\mathrm{B5}$ and appear relatively rough. Yet, the same model estimated four years earlier would have predicted the distributions of the payments of the last four years and would have produced the 'same' completion of the rectangle!

It is interesting to also observe that even though the data in Appendix B4 has a 20\% calendar year (and accident year) trend, as you step down a column (development year), sometimes the numbers decrease rather than increase (by 20\%).

For example, $(1989,1)$ to $(1991,1)$ the payment reduces from 767664 to 350789 This is explained by the random fluctuations component of the model. Examine now Figure 3.1.1 and note that even though the mean trend in nominal prices is 23%. prices from one year to the next do not necessarily increase. This is due to the random fluctuations. So, the same phenomenon applies to loss reserving data.

Consider now the unusual large value of 1317425 corresponding to (1985,6). It is not unusual. It comes from the tail of the lognormal distribution. Given that the lognormal is skewed to the right, values greater than the median tend to be 'far' from
the median, whereas values less than the median tend to be relatively close to the median

7.0 VARYING PARAMETER, DYNAMIC OR CREDIBILITY MODELS

7.1 MULTICOLLINEARITY

Many of the models within the family (5.10) cannot be estimated in a spreadsheet or any statistical package. Models that contain "many" iotas, alphas and gammas suffer from a probiem known as multicollinearity. This problem is explained as follows.

To estimate the Ordinary Least Squares line for the simple linear regression:

$$
\begin{equation*}
y_{i}=\alpha+\beta x_{i}+\varepsilon \text {, } \tag{7.1.1}
\end{equation*}
$$

we estimate the intercept α and slope β by minimising the error sum of squares,

$$
S S=\sum\left(y_{i}-\alpha-\beta x\right)^{2} .
$$

Taking partial derivatives of the last equation with respect to α and β, and setting them to zero we obtain:

$$
\begin{equation*}
-2 \sum\left(y_{i}-\alpha-\beta x_{i}\right)=0 \tag{7.1.2}
\end{equation*}
$$

and

$$
\begin{equation*}
-2 \sum x_{1}\left(y_{1}-\alpha-\beta x_{1}\right)=0 \tag{7.1.3}
\end{equation*}
$$

Equivalently,

$$
\begin{equation*}
\bar{y}-\alpha-\beta \bar{x} \quad=0 \tag{7.1.4}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum x_{i} y_{i}-n \alpha \bar{x}-\beta \sum x_{i}^{2}=0 \tag{7.1.5}
\end{equation*}
$$

The two linear homogeneous equations are known as the normal equations and their solution yields the least squares estimates of α and β.

For a model having P parameters in the DFF family, a spreadsheet (or a statistical package) sets up P linear homogeneous equations in order to solve for P unknowns. However, as a result of the non-orthogonality of the payment year direction with the other two directions, some of the equations in the normal equations are redundant, e.g.

$$
\alpha-\beta \quad=2
$$

and

$$
2 \alpha-2 \beta \quad=4
$$

So, there is no unique solution.

If there are some equations that are almost redundant, e.g.,

$$
\alpha-\beta \quad=2
$$

and

$$
2 \alpha-2 \beta \quad=\quad 4.00001
$$

then the estimates will have high standard errors, so that the resulting model will be unstable.

7.2 OVERCOMING MULTICOLLINEARITY

The phenomenon of multicollinearity associated with fixed parameter models can be interpreted in terms of information. There is not sufficient information in one loss development array to estimate many payment year parameters and accident year parameters (especially, for more recent accident years). Another interpretation is that the independent variables in the regression are not really independent. We showed in Section 3 that calendar year trends are related to development year trends and accident year trends.

If we include another $\boldsymbol{\alpha}$ parameter for the last accident in our model we are using one single datum to estimate that parameter. That is, we assign full credibility to the last accident year's datum and zero credibility to previous years in respect of the estimation of the additional a parameter. A better approach may be to assign some credibility to the previous years data and less than full credibility to the last year's daturn.

We are motivated to introduce exponential smoothing/varying parameter/credibility models, as a result of multicollinearity. Multicollinearity can lead to fixed parameter regression models that (i) are unstable and (ii) have large prediction errors.

The technique of exponential smoothing has received widespread use in the context of forecasting a time series. It originated more than 40 years ago without any reference to an underlying model that makes the technique optimal.

We first present heuristic arguments for exponential smoothing and varying parameter models. The following illustrations and arguments may be viewed from two different perspectives. The data may be regarded as either
(1) sales data over time, or
(2) incremental paid losses for delay 0 across accident years.

(i) Constant mean level (one parameter)

Suppose we have a sequence of time series observations $y_{1}, y_{2} \ldots y_{n}$ such that

$$
y_{t}=\alpha \sim \varepsilon_{t} \quad, t=1, \ldots, n
$$

where α is a constant mean level and t, is a sequence of uncorellated errors with constant variance. Figure 7.2.1 below depicts such a series.

The model describing the data is the simplest regression model.

Our model has only one parameter. so that the years are completely homogeneous (stable!).

If a is known, the best forecast of a future observation $y_{(n)+1}$, based on information up to time n, is

$$
\nabla_{(n+1}=a .
$$

If the parameter a is unknown. we estimate it from the past data $\left(y_{1} \ldots y_{n}\right)$ by its ordinary least squares estimate.

$$
\dot{\alpha}=\Sigma y_{1} / n .
$$

so that the one-step-ahead forecast of $y_{(n+1}$ is now

$$
\theta_{(n+1}=\bar{y}
$$

We can now write.

$$
\dot{y}_{(n \cdot 1) \cdot 1}=\dot{y}_{(n) \cdot 1}+\frac{\left(y_{n \cdot 1}-y_{(n)}-1\right)}{n+1}
$$

The last equation indicates how a forecast from time origin $n+1$ can be expressed as a linear combination of the forecast from time origin n and the most recent observation. This is the simplest credibility formula, due to Gauss [8], used when updating sample averages. Since the mean level a is assumed constant, each observation contributes equally to the forecast.

The above formula for updating sample averages is an experience rating (crediblity) formula in the context of adjusting a premium, assuming the risk (parameter) does not change from year to year.

In computing $\dot{\boldsymbol{\alpha}} \quad(=\bar{y}) \quad$ we assign the same weight to each observation. From the loss reserving perspective, we are assuming that the accident years are completely homogeneous. In order to estimate the next years premium, we use all the accident years' data!

We now turn to another example.
(ii) Unstable mean level (each year its own parameter)

Here.

$$
y_{p}=\alpha_{p}+\varepsilon_{p}
$$

where the mean level $\boldsymbol{\alpha}_{\mathbf{1}}$ changes dramatically in successive time periods. Each year
t has its own parameter α_{ℓ}. Figure 7.2 .2 depicts a series of y_{l} values that may be generated by this model.

Figure 7.2 .2

Here, the best we could do, is forecast $y_{(n)-1}$ by

$$
\rho_{(n+1}=y_{n} \text {. }
$$

We are assigning zero weight to the past and full weight to the current observation. From the loss reserving perspective, accident years are completely heterogeneous. so that each accident year's individual parameter is estimated by that year's individual experience.

(iii) Locally constant mean level exponential smoothing and credibility

Often situations present themselves where the mean is approximately constant locally. Assigning equal weights to the past would be too restrictive and assigning zero weight would result in loss of information. It would be more reasonable to choose weights that decrease (geometrically) with the age of the observations.

We could have

$$
\dot{y}_{(n) \cdot 1}=K y_{n}+K(1-K) y_{n-1}+K(1-K)^{2} y_{n-2}+\ldots
$$

For n sufficiently large this may be written

$$
\begin{align*}
\vartheta_{(n)+1} & =\vartheta_{(n-1)+1}+K\left(y_{n} \cdot \vartheta_{(n-1)+1)}\right) \\
& =(1-K) \oint_{(n-1)+1}+K y_{n} . \tag{7.2.1}
\end{align*}
$$

This is also a credibility formula.

Muth [12] showed that the exponential smoothing formula (7.2.1) is an optimal forecast for the following model:

$$
\begin{align*}
& y_{1}=\alpha_{1}+\varepsilon_{1}: \operatorname{Var}\left[\varepsilon_{d}\right]=\sigma_{\varepsilon}^{2} \\
& \alpha_{1}=\alpha_{t-1}+\eta_{1}: \operatorname{Var}\left[n_{d}\right]=\sigma_{\eta}^{2} \tag{7.2.2}
\end{align*}
$$

Here the mean level α_{1} process is a randorn walk. If $\sigma_{\eta}^{2}=0$, then we have the
constant mean level situation (i) and if σ_{η}^{2} is large we have the unstable mean leve: situation (ii). The parameter σ_{η}^{2} should be chosen as small as possible at the same ume ensuring that the trend in the data is captured.

Choosing σ_{η}^{2} (relative to σ_{ε}^{2}) that minimises the SSPE yields the maximum likelihood estimates of σ_{η}^{2}.

Figure 7.2.3

The exponential smoothing formula (7.2.1) formally credibility weights all the observations. It is an experience rating formula for a risk (parameter) that changes. If in the situation depicted in Figure 7.2.3, one were to assign zero weight to the past in place of using formula (7.2.1), then much information would be potentially lost.

We illustrate the methodology of formula (7.2.1) in the loss reserving context.

Suppose, for the sake of argument, there are only two accident years (but more than three development years), and the γ and i parameters are zero.

We have,

$$
\begin{equation*}
y(1, d)=\alpha_{1}+\varepsilon(1, d): d=0,1,2 \ldots, n_{1}-1(\text { say }) \tag{7.23}
\end{equation*}
$$

and

$$
\begin{equation*}
y(2, d)=\alpha_{2}+\varepsilon(2, d) ; d=0,1,2, \ldots n_{2}-1 \text { (say) } \tag{7.2.4}
\end{equation*}
$$

The first accident year has n_{1} observations and the second n_{2} observations. Denote the sigma-squared assigned to observations by σ^{2}. Accordingly, $\operatorname{Var}[\varepsilon(1, d)]=$ $\operatorname{Var}[\varepsilon(2, d)]=\sigma^{2}$.

The relation between a_{2} and a_{1} is given by

$$
\begin{equation*}
\alpha_{2}=\alpha_{1}+\eta: \operatorname{Variance}(\eta)=\sigma_{\eta}^{2} \tag{7.2.5}
\end{equation*}
$$

Substituting equation (4.4) for α, into (4.3) yields:

$$
\begin{equation*}
y(2, d)=\alpha,+\eta+\varepsilon(2, d) \tag{7.2.6}
\end{equation*}
$$

Combining the last equation with (4.2) we have.

$$
\begin{equation*}
y(1, d)=a_{1}+\varepsilon(1, d) \tag{7.2.7}
\end{equation*}
$$

with

$$
y(2, d)=\alpha_{1}+\eta+c(2, d)
$$

Since, conditional on α, the observations $y(2,0), y(2,1)$. are correlated we reduce by sufficiency to obtain:

$$
\bar{y}_{1}=\alpha_{1}+\varepsilon_{1}
$$

and

$$
\bar{y}_{2}=\alpha_{1}+\varepsilon_{2}
$$

where

$$
\operatorname{Var}\left[\varepsilon_{1}\right]=\sigma^{2} / n_{1} \quad, \quad \operatorname{Var}\left[\varepsilon_{2}\right]=\sigma^{2} / \dot{n}_{2}+\sigma_{\eta}^{2}
$$

and $\quad \bar{y}_{1}=\sum_{d=0}^{n_{1}-1} y(1, d) / n_{1}, \bar{y}_{2}=\sum_{d=0}^{n_{2}-1} y(2, d) / n_{2}$.

The estimate of α_{1} minimises the weighted error sum of squares

$$
w_{1}\left(\bar{y}_{1}-\alpha_{2}\right)^{2}+w_{2}\left(\bar{y}_{2}-\alpha_{1}\right)^{2} .
$$

where

$$
w_{1}^{-1}=\operatorname{Var}\left[e_{1}\right]=\sigma^{2} / n_{1} .
$$

and

$$
w_{2}^{-1}=\operatorname{Var}\left[\varepsilon_{2}\right]=\sigma^{2} / n_{2}-\sigma_{\eta}^{2}
$$

Similarly, the estimate of α_{2} is obtained by minimising.

$$
w_{1}\left(\bar{y}_{2}-\alpha_{2}\right)^{2}+w_{2}\left(\bar{y}_{1}-\alpha_{2}\right)^{2} .
$$

where now

$$
w_{1}^{-1}=\sigma^{2} / n_{2}
$$ and

$$
w_{2}^{-1}=\sigma^{2} / n_{1}-\sigma_{\eta}^{2}
$$

The estimates of $\hat{\alpha}_{1}$ and $\hat{\alpha}_{2}$ are given by respectively.

$$
\dot{\alpha}_{1}=\left(1-z_{1}\right) \bar{y}_{2}+z_{1} \bar{y}_{1}
$$

and

$$
\hat{\alpha}_{2}=\left(1-z_{2}\right) \bar{y}_{1}+z_{2} \bar{y}_{2}
$$

where,

$$
z_{1}=\frac{\frac{n_{1}}{\sigma^{2}}}{\frac{n_{1}}{\sigma^{2}}+\frac{n_{2}}{\sigma^{2}+n_{2} \sigma_{\eta}^{2}}} \quad \text {, and } \quad z_{2}=\frac{\frac{n_{2}}{\sigma^{2}}}{\frac{n_{2}}{\sigma^{2}}-\frac{n_{1}}{\sigma^{2}-n_{1} \sigma_{\eta}^{2}}}
$$

Both $\bar{\alpha}_{1}$ and $\bar{\alpha}_{2}$ are credibility estimators.

The smaller σ_{η}^{2} is (relative to σ^{2}), the more information is being pooled across the two years in estimating α_{1} and α_{2}. We are credibility weighting the two years' data. For a description of general recursive credibility formulae, see Zehnwirth [14].

We conclude this section by remarking that even in the absence of multicollinearity, varying parameter models are more stable and validate better than the 'corresponding' fixed parameter regression models. Moreover, according to A.C Harvey's [9] modern book on forecasting, explanatory variables are "proxied by a stochastic trend".

8.0 PARAMETER ESTIMATION AND FORECASTING OF DISTRIBUTIONS

In the present section we describe how the (fixed parameter) regression models may be set up in a spreadsheet (or a statistical package) for the twofold purpose of estimating the model parameters and forecasting the distrbutions of future (incremental) payments.

A practical illustration of this procedure for the chain ladder statistical model is given by Christofies [4] in the second volume of the Institute of Actuaries Loss Reserving Manual [11]

8.1 ESTIMATION

In order to estimate a regression model in a spreadsheet we need to create. corresponding to each dependant observation y, the values of the (row) design vector containing the values of the independent variables.

Let $y(w, d)=\log \rho(w, d)$ and let β^{\prime} be a row vector holding the parameters of the model, that is.

$$
\beta^{\prime}=\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{k} \quad \gamma_{1}, \ldots, \gamma_{n} \quad \mathfrak{l}_{1}, \ldots, 1_{m}\right) .
$$

The model has (i) k distinct ${ }^{\alpha}$ parameters where ${ }^{\alpha}$, represents the level for accident years $1,2 \ldots, w_{1}$ (say); α_{2} represents the level of accident years $w_{1}+1, \ldots w_{2}$ (say).
and so on, (ii) I distinct ${ }^{Y}$ parameters where ${ }^{Y}$, is trend along development years C.
$1, \ldots d_{1}, \gamma_{2}$ is trend along development years $d_{1}, d_{1}+1_{1} \ldots d_{2}$ and so on and (iii) m distinct iota parameters where i_{1} represents the trend along payment years $0,1,2, \ldots, t_{1}, t_{2}$ represents the trend along payment years t_{1}, \ldots, t_{2}, and so on

The arguments k, l and m may take the value 0 .

The corresponding design vector is

$$
x^{\prime}(w, d)=\left(\delta_{1}, \delta_{12}, \ldots \delta_{1}, \quad \delta_{2}, \ldots, \delta_{2}, \delta_{3}, \ldots, \delta_{3 m}\right)
$$

where each δ is a variable defined as follows

$$
\begin{aligned}
& \delta_{1 j} \quad=1 \text { if } w_{j 1}+1 \leq w \leq w_{1}\left(w_{0}=1\right) \\
& =0 \text {, otherwise ; } \\
& \delta_{21}=1 \\
& \text { and } \\
& \delta_{21} \quad=d-d_{j,}, \text { If } d \geq d_{1: 1}+1(j \geq 2) \\
& =0 \text {, otherwise : } \\
& \text { and } \\
& \delta_{3_{1}} \quad=w+d-t_{1}, \text { if } w+d \geq t_{1-1} \\
& =0 \text {, otherwise. }
\end{aligned}
$$

We now stack the y observations to form a column vector
x

$$
\begin{equation*}
=\langle y(1,0), \ldots y(1, s-1), y(2,1), \ldots, y(2, s-2), \tag{s,0}
\end{equation*}
$$

and corresponding design vectors to form a design matrix,

$$
x \quad=\left(x^{\prime}(1,0), \ldots, x^{\prime}(s, 0)\right)
$$

The observation equation can now be written
$\boldsymbol{y} \quad=\quad X \beta-\epsilon$
where $£$ contains independent errors from a normal distribution with mean zero and variance σ^{2}.

To estimate a DFF model in a spreadsheet. one needs to specify the column vector y and the columns of X as the independent variables.

The spreadsheet will create $\hat{\mathbb{B}}$, the ordinary least squares estimator of \mathcal{B}, and some other statistics including $\mathrm{R}^{2}, \mathrm{~S}^{2}$ and standard errors of parameters.

The estimate of the variance - covariance matrix of $\hat{\mathfrak{L}}$ is given by

$$
\text { V(̂) } \quad=\dot{\sigma}^{2}\left(X^{\prime} x\right)^{-1} .
$$

Some statistical packages such as MINITAB will produce the variance - covariance
matrix as explicit output. Residuals and standardised residuals are straightforward to compute.

A lucid exposition of multivariate regression theory is given in Chatterjee and Price [3].

8.2 FORECASTING (PREDICTION) OF DISTRIBUTIONS

We have stressed repeatedly that a regression model is a probabilistic model and that the models contained in our rich DFF framework relate the normal distributions of the log payments of the cells in the loss development array by (trend) parameters.

We now would like to obtain estimates of normal distributions for payment years exceeding s.

That is, for calendar years beyond the evaluation year.

Consider a cell (w, d) for which $w+d>s$ and $d \leq s-1$.

Suppose we assume that the mean trend along payment years $\geq s$ is i_{s}, the estimate of trend from payment year $\mathrm{s}-1$ to s . (If i_{s} is not a parameter in the model then $i_{s}=0$). We also assume that the standard deviation of the trend is se $\left(i_{s}\right)$. the standard deviation of the estimate. We stress emphatically that the larger se (i_{s}) is. the mean trend i_{s} being the same, the larger the (mean) payments.

The vector of parameter estimates now contains the $\dot{\alpha}^{\prime} \mathbf{s}, \dot{\gamma}^{\prime}$ s but only one iota estimate, viz, i_{s}

The (design) independent value in the design vector $\boldsymbol{X}^{\prime}(\boldsymbol{w}, \boldsymbol{d})$ corresponding to $\hat{i} s$ is now $(w+d-s)=$ number of payment years from s to $w+d$. The other parameters contain the same design elements as in the estimation stage. The forecast \dot{y} of y corresponding to cell (w,d) is given by:

$$
\dot{y}(w, d)=x^{\prime}(w, d) \dot{\mathfrak{B}} .
$$

We can now stack all forecasts \dot{y} into a vector \dot{y} and design vectors $\dot{\mathcal{L}}$ into a matrix X.

The estimate of the variance-covariance matrix of $\dot{\boldsymbol{y}}$ is

$$
V(\mathbb{D}) \quad=X^{\prime} V(\dot{\mathfrak{B}}) X-\dot{\sigma}^{2} \mathrm{I} .
$$

where I is the identity matrix.

The quantity $\dot{\mathbf{o}}^{\mathbf{2}}$ is the estimate of the process variance (uncertainty), whereas

$$
x^{\prime} \vee(\hat{\beta}) x
$$

is a function of the variance of $\stackrel{\hat{\beta}}{\underline{0}}$, representing the parameter uncertainty.

Since $V(\hat{\beta})$ is a function of $\hat{\sigma}^{2}$, the estimates of parameter uncertainty and process uncertainty are related. Quite often the smaller $\sigma^{\mathbf{2}}$ is (relatively speaking), the smaller the parameter uncertainty.

Using Fisher's fiducial approach we can argue that our forecast for the distribution of $y(w, d)$ is normal with mean $\hat{y}(w, d)$ and variance $V(\hat{y}(w, d))$, the diagonal element of $V(\downarrow)$ corresponding to $y(w, d)$.

Indeed, $\boldsymbol{\chi}$ has a multivariate normal distribution with mean $\dot{\boldsymbol{y}}$ and variance covariance $V(n)$.

So, by applying standard regression theory we can compute our estimate of the multivariate normal distribution of the y values in the lower right of the rectangle.

Each estimate \hat{y} of the corresponding y variable is best in the sense that it minimises the mean square error.

$$
E\left[(y-f(y))^{2}\right]
$$

Over all statistics $f($.$) , where f($.$) is a function of the data y$

In order to obtain the distributions (multivarıate) of the (incremental) payments and accident year and payment year sums, we employ the relationship between the multivariate lognormal and the multivariate normal distributions and standard statistical theory involving variances of sums. The means of the lognormal distributions are best estimates of the corresponding incremental payments.

We remark that our forecast distributions can also be argued for from a Bayesian viewpoint. The forecasts are Bayes with respect to a noninformative prior

The reader will appreciate that to write a macro in a spreadsheet for a particular model in the modelling framework would be extremely prohibitive in terms of time let alone writing a macro for each model

For readers that are interested. the author can make available a Lotus worksheet containing some of the models discussed in the real life study of Section 13.

9.0 MODELLING CONCEPTS

9.1 INTRODUCTION

The mechanisms by which claim severities, frequencies and delays are generated are invariably complex. When a model is constructed, it is not intended to be an accurate description of every aspect of the claims processes. The aim is to simplify the underlying processes in such a way that the essential features are brought out. According to Milton Friedman [7]: 'A hypothesis is important if it 'explains' much by little...'. Similar views are expressed by Popper [13]: 'Simple statements... are to be prized more highly than less simple ones because they tell us more; because their empirical content is greater, and because they are better testable.'

The "essential features" of the data in the loss reserving context are the trends and the random fluctuations about the trends. We decompose the data thus:

Log 'payments' = Trends + Random Fluctuations

Another way of thinking of this statistical model is to regard the Trends as a mathematical description of the main features of the data and the Random Fluctuations (or error or noise component) as all those characteristics not 'explained' by the Trends. All the complex mechanisms involved in generating the data are implicitly included in the model as creating the Trends plus the residual variance in the Random Fluctuations. See also Section. 7 on varying parameter models.

The final identified model that 'explains' the data does not represent explicitly the underlying generating process. The model has probabilistic properties for which the data may be regarded as a sample (path) from it. Another classical modelling example in insurance where the same kind of modelling concepts are used is when we fit a Pareto distribution, say, to loss sizes. We do not assume that the Pareto distribution represents the underlying generating process. Whatever is driving the claims is very complex and depends on many factors. All we are saying is that our experience (sample) can be regarded as a random sample from the estimated Pareto
distribution. The estimated Pareto distribution describes the variability in the loss sizes.

By way of summary, in order to take account of variables (or factors) not included in the Trends, we consider probabilistic models. See also Section 7 on varying parameter models.

There are a number of criteria for a good model with high predictive power:

* Ockham's Razor - parsimony;
* goodness of 'fit';
* validation and stability.

9.2 OCKHAM'S RAZOR - PARSIMOṄY

Ockham's razor, also known as the principle of parsimony, says that in a choice among competing models, other things being equal, the simplest is preferable. Accordingly, a parsimonious model that provides a description of the salient features of the data may be preferable to a complicated one for which the residual variance in the error is smaller (and so R-squared is larger). See also Section 10.4.

We stress R-squared (or adjusted R-squared) does not measure the predictive power of a model.

Consider two data generating models, Model 1 is,

$$
\begin{equation*}
y_{i}=\mu+\varepsilon_{1} \quad, \tag{9.2.1}
\end{equation*}
$$

where ${ }^{\varepsilon}, \sim N\left(0, \sigma^{2}\right)$ and the signal to noise ratio μ / σ^{2} is large Here, R-squared $=$ 0 and since 0^{2} is "small" predictuons based on samples from this model will be relatively accurate.

For Model 2.

$$
\begin{equation*}
y_{f}=\alpha+\beta t+\varepsilon_{f}, \tag{9.2.2}
\end{equation*}
$$

where $\epsilon_{\mathrm{f}} \sim \mathrm{N}\left(0, \mathrm{o}^{2}\right)$. Suppose o^{2} is relatively large and R-squared is 85%. Predictions based on samples from this model will have larger errors than predictions in the first model. The forecasting errors are not a function of R-squared

The consequences of adopting an inappropriate model will depend on its relationship to the 'true' model.

Underparametrisation - it imposes invalid constraints on the 'true' model.

Overparametrisation - the model is more general than is necessary.

Overparametrisation has different consequences to underparametrisation. Overparametrisation leads to high errors of prediction. The forecasts are extremely sensitive to the random component (in contrast to the trends) in the observations. Indeed, overfitting can be disastrous in certain circumstances. Overfitting a model is equivalent to including randomness as part of the (systematic) trend (component). Underparametrisation, on the other hand, tends to lead to bias rather than instability.

The dangers of overparametrisation are illustrated with a simple example. Imagine we have some yearly sales figures, as depicted below in Figure 9.2.1, and generated by

$$
Y_{t}=1+2 t+3 t^{2}+\varepsilon_{t}
$$

say, where the ε_{f} 's are random from $N\left(0, \sigma^{2}\right)$, and Y_{1} represents the number of sales in year t .

Figure 9.2.1
We wish to forecast sales for 1987. We could estimate a straight line model:

$$
\begin{equation*}
Y_{1}=\beta_{0}+\beta_{1} * t+\varepsilon_{1} . \tag{9.2.3}
\end{equation*}
$$

This model produces residuals that are not random and is therefore rejected. The quadratic model,

$$
\begin{equation*}
Y_{1}=\beta_{0}+\beta_{1} * t+\beta_{2} * t^{2}+\varepsilon_{t}, \tag{9.2.4}
\end{equation*}
$$

on the other hand, produces residuals that appear random. Moreover, R-squared is higher and parameters are significant.

We could try a fith degree polynomial, viz.

$$
\begin{equation*}
Y_{1}=\beta_{0}+\beta_{1} * t+\beta_{2} * t^{2}+\ldots+\beta_{5} * \beta+c_{1} \tag{9.2.5}
\end{equation*}
$$

This model will produce zero residuals, that is, it will go through every data point and the $R^{2}=100 \%$. However, it is useless from the point of view of forecasting. Why? If
we change only one data point marginally, the forecast will change to a very large degree. Moreover, if we use the modet at year end 1986 to forecast sales for 1988. re-estimate the model at year end 1987 to update our forecast for 1988, the wo forecasts would be completely different. The data are NOT unstable. IT IS THE MODEL THAT IS UNSTABLE. The model is incredibly sensitive to the random component in the data. It should only be sensitive to the systematic trend Incidentally, standard techniques based on calculation of age-to-age link ratios suffer from the same defect.

9.3 AKAIKE INFORMATION CRITERION AND INFORMATION

It has been emphasised that in comparing the goodness of 'fit' of various models, an appropriate allowance should be made for parsimony. This has a good deal of appeal, especially where the model may be based primarily on pragrnatic considerations.

Akaike Information Criterion (AIC) is both a function of S^{2} and the number of parameters in the model. it is an information theoretic criterion that can be used for discriminating between any two models, even if they are non-nested. It originated with the work of Akaike.

In general the AIC is given by

$$
A \mid C=-2 \log (\text { likelihood })+2 P
$$

For DFF models it reduces to

$$
A I C=N \log \left[2 \Pi S^{2}(M L E)\right] \cdot N+2 P_{1}
$$

where
(i) $\mathrm{N}=$ Number of observations.
(ii) s^{2} (MLE) is the maximum likelihood estimator of σ^{2},
and (iii) P denotes the number of parameters.

The aim is to select a model with a minimum (relative) AIC. Note that the AIC can be used to discriminate between any two models, irrespective of whether they have any parameters in common.

9.4 RECURSIVE RESIDUALS AND SSPE

Consider a time series $\mathbf{z}_{1}, \mathbf{z}_{\mathbf{2}} \ldots, \mathbf{z}_{\mathrm{n}}$ where $\mathbf{z}_{\mathbf{1 + 1}}(\mathbf{t})$ denotes a forecast of \mathbf{z}_{1+1} based on the data $z_{1}, z_{2}, \ldots, z_{1}$. That is, the forecast is based on the information up to time t only. The one-step-ahead forecast (prediction) error is given by

$$
\hat{\varepsilon}_{\Omega}(1)=Z_{l-1}-\hat{Z}_{r-1}(t)
$$

The notation $\bar{\varepsilon}_{\Gamma}(1)$ expresses the fact that it is the one-step-ahead prediction error that is calculated from past data up to and including time t. The estimates of the parameters of the model are only based on the data $Z_{1}, Z_{2}, \ldots, Z_{\text {. }}$.

In order to compute the errors $\left\{\hat{\varepsilon}_{(}(1)\right\}$ the model has to be estimated many times.

The sum of the squared one-step-ahead prediction errors, denoted by SSPE, is given by

$$
\text { SSPE }=\sum_{n=0}^{n} \dot{\varepsilon}^{2},(1)
$$

The time t_{a} is chosen so that it exceeds the maximum number of parameters amongst the models being considered; by at least one.

Computation of the SSPE may take much time even with a good spreadsheet program, as the model has to be estimated for sub-samples, $\left\{Z_{1}, \ldots, Z\right\} ; t=t_{0}$, $t_{0}+1, \ldots, n-1$.

Readers familiar with exponential smoothing will note that the optimal smoothing constant of exponential smoothing is determined by minimising the SSPE. See Abraham and Ledholter [1] for a lucid exposition of exponential smoothing.

By way of summary of the quality of 'fit' statistics, consider the quadratic polynomial example of Section 9.2, and suppose there are at least twenty data points. The relative magnitudes of $R^{2}, A I C$ and SSPE as we fit polynomials of order one to six (say) are:
A^{2} increases with more parameters;

AIC decreases from polynomial of order one to polynomial of order two, subsequently increasing as degree of polynomial increases (for most samples);

SSPE behaves in much the same way as AIC.

Accordingly, a polynomial of degree exceeding two would have performed worse in a forecasting context than a polynomial of degree two, had we used them each year.

A relatively 'low' SSPE is preferable to a high SSPE. Naturally, there are other aspects of testing, including significance of parameters, distributional assumptions, residual displays and the number of parameters.

The 'tests' should be seen as complementary rather than competitive.

9.5 OUTLIERS, SYMMETRIC DISTRIBUTIONS AND NORMALITY

Outliers are data points with large standardised residuals. Observations classified as outliers have residuals that are large relative to the residuals for the remainder of the observations.

Estimates of parameters and supporting summary statistics may be sensitive to outtiers. Residual displays provide information on outliers. Moreover, if omission of outliers from the regression affects the output. then that provides more evidence that the omitted observations are in fact outliers.

An outlier may be a result of a coding error, in which case it should be assigned zero weight, or it may be a genuine observation that is unusual and accordingly has a large influence on the estimates, unless it is assigned reduced weight.

To detect outliers routinely, we need a rule of thumb that can be used to identify them. A Box plot is a schematic plot devised by J.W. Tukey. The following steps summarise the general procedure for constructing a Box plot.

Order the data.

Find the median (M), lower quartile (LQ), upper quartile (UQ) and mid-spread (MS), where MS = UQ \cdot LQ. '

Find the upper and lower boundaries defined by

$$
\begin{aligned}
& L B=L Q \cdot 1.5^{*} M S \\
& U B=L Q+1.5^{*} M S .
\end{aligned}
$$

[^0]List all outliers. An outlier is defined as any observation above the upper boundary or below the lower boundary.

Construct a Box plot as follows:
(a) Draw a horizontal scale;
(b) Mark the position of the median using " \mid ";
(c) Draw a rectangular box around the median, with the right side of the box corresponding to the UQ and the left side corresponding to the LQ. The length of the box is equal to the MS. The median divides the box into two boxes;
(d) Find the largest and smallest observations between the boundaries and draw straight horizontal lines from the UQ to the largest observation below the upper boundary and from the LQ to the smallest observation above the lower boundary;
(e) Mark all observations (outliers) outside the soundaries with hollow circles (0). If an outlier is repeated, mark the nurr - rat of times it is repeated.

Box Pics

We can also conclude (diagnostically) that a distribution is symmetric if the median is approximately half way between the LQ and the UO.

A DFF model assumes that the weighted standardised residuals come from a normal distribution. Accordingly a normal probability plot should appear approximately linear. That is, the plot of weighted residuals against normal scores should have points that fall close to a straight line. This means that the correlation should be close to unity.

9.6 VALIDATION AND STABILITY

The important question is whether the estimated model can predict outside the sample. It is therefore important to retain a subset (the most recent one or two payment years) of observations for post-sample predictive testing. This post-sample prediction testing is called VALIDATION.

VALIDATION of the last payment year, or any payment year, is also related to the concept of STABILITY. If we don't use the last payment years' data to estimate the model, the ultimate losses should not differ from that obtained by using the last years' data by more than one standard error. We would like to identify a model that delivers STABILITY of reserves from year to year (only if trends are stable).

9.6.1 VALIDATION

Consider the triangle of incremental paid losses depicted below.

Figure 9.6.1.1

We have model that has been identified and estimated using all the data, up to 1991.

If the same model were estimated at year end 1988, would it predict accurately the incremental payments for 1989, 1990 and 1991? And what do we mean by 'predict accurately'?

Let's illustrate with a fair coin. If a fair coin is to be tossed 100 times we can 'predict accurately the distribution of the number of heads. The exact distribution is Binomial ($100,0.5$). The distribution details the probabilities of all the possible outcomes. If instead, we had a mutilated coin and we required a future prediction based on a sample data then our predicted distribution is Binomial $(100, \hat{p})$ where \hat{p} is an optimal estimate of the true probability p of a head occurring, based on the sample.

We now return to our triangle. At year end 1988, we would estimate the parameters of the same model using the smaller sample and we would predict a distribution for each of the log 'payments' in 1989, 1990 and 1991. See Section 8.2 on forecasting of distributions.

So, one of the most important validation tests is to determine whether the observed log 'payments' in 1989, 1990 and 1991 can be regarded as a sample from the predicted distributions.

More specifically, let \bar{y} be a prediction of a log 'payment' y for a cell in payment year 1989, 1990 or 1991. We call,

$$
\bar{\varepsilon}=y-\bar{y},
$$

the validated residual or the prediction error.

We test the validated residuals for (i) randomness in the three directions delay, accident year and payment year; (ii) randomness versus predicted values \hat{y} and (iii)

most importantly, normality.

9.6.2 STABILITY

Returning to our example of the foregoing section, we ask the question whether at year end 1988 our completion of the rectangle should be materially different to our completion at year end 1991. The answer is in the negative if trends (especially in the payment year direction) are stable.

We illustrate with four examples. (There are numerous others that occur in practice.)

Example 1: Suppose payment year trends (atter adjusting for trends in the other two directions) are as depicted in Figure 9.6.2.1 below. The trend is stable and suppose its estimate is $10 \% \pm 2 \%$. How do we know that the trend is stable? Well, as we remove the more recent payment years from the estimation, the estimates of trends do not change (significantly). For example, after removing 1990 and 1991, the estimate of trend is $9.5 \% \pm 2.1 \%$, say. Alternatively, we could estimate a new trend parameter from 1989-1991 and examine whether the trend has changed significantly.

Figure 9.6.2.1

Typically, if the payment/calendar year trend is stable, the model will also validate well. Here oup estimates of outstanding payments do not change significantly as we omit recent years.

Example 2: Consider the payment year trends depicted in Figure 9.6 .2 .2 below.

Figure 9.6.2.2

The trend in the years 1976 to 1989 is relatively stable. Its estimate is $10 \% \pm 2 \%$, say. However, the trend from 1989 to 1990 is higher at $15 \%(\pm 1 \%)$ and from 1990 to 1991 it is -4%. $(\pm 1.3 \%)$, say. This information is extracted from the "optimal" statistical model. The shifts in trends is a property of the data (determined through the model). A question now emerges as to which trend assumption do we make for the future, first in the absence of any other information. It would be foolhardy to assume the estimate between the last two years of $-4 \% \pm 1.3 \%$. The most reasonable assumption (for the future) is a mean trend of 10% with a standard deviation of 2%, that which was estimated for the years 1976-1989.

Suppose we also have access to another data type, the number of closed claims development array. See Sections 10.2 and 10.3. We find utilising our DFF modelling
framework that the additional 5\% above the 10\% between 1989 and 1990 can be explained by a corresponding increase in speed of closures of claims and the -15% from 1990 to 1991 below the 10% from 1976-1989 can be expiained by a corresponding decrease in the speed of closures of claims. What assumption about future trends in payments should we adopt then? I would still recommend $10 \% \pm 2 \%$ for the future. That's a decision based on my judgement and experience. The instability in trends in the last few years means that the model will not validate well. At year end 1990, we would not have forecast the distributions for 1991, for example.

Example 3: It is possible to have a transient change in trend. Consider Figure 9.6.2.3. The business has been moving along $10 \% \pm 2 \%$ but between the last two calendar years 1990 and 1991 the trend increases to $20 \% \pm 3 \%$. What do we assume for the future? Well, that depends on the explanation for the increase in trend. Suppose its a "transient" change that can be explained by a new level of benefits that apply retrospectively. Then it is reasonable to assume $10 \% \pm 2 \%$ for the future. Suppose instead that subsequent to analysis of claims closed triangle, the trend change is explained by increase in severities. That's a problem, because this means that it is now more likely that the new trend will continue.

Figure 9.6.2.3

So the decision making process about the future becomes more complicated when trends are unstable. We are talking about trends in the (incremental) payments not age-to-age link ratios.

The last example illustrates an 'unpredictable' loss development array.

Example 4: The payment year trends are depicted in Figure 9.6.2.4 below.

Figure 9.6.2.4
Note instability in trends. At year end 1989, would anyone be able to predict a flat trend for the next year and a downward trend for the following year?

Here, maybe, one could calculate a $\hat{\mathfrak{i}}$, a weighted average of trends estimated in the past with a weighted variance $\dot{\boldsymbol{\sigma}}^{\mathbf{2}}$ and assur:- for the future a mean trend of \hat{i} with standard deviation of trend $\hat{\mathbf{a}}$. Since $\hat{\boldsymbol{o}}$ will be relatively large, mean forecasts will be well above the median forecasts and the standard deviation of the distributions relatively large. See Section 8.2

It is instructive to relate the foregoing discussion with the quote from A.C. Harvey [9] given at the beginning of Section 2.1.

9.7 POST-SAMPLE PREDICTIVE TESTING AND MODEL MAINTENANCE

Once a model has been identified for year end 1991, and assumptions about the future are made, the model is stored.

One year later, in 1992, on receipt of additional information (diagonal), there is no need to analyse the (augmented) triangle from the start. We already have a model for which we now conduct post-sample predictive testing and model updating and maintenance.

Has the model at year end 1991, predicted the distributions for 1992? This question is answered by restoring the model, assigning zero weight to "payments" in 1992 and validating the year. We also test for stability of parameters. If the model estimated at year end 1991 does not predict 1992 accurately, we know which parameter is the culprit and accordingly may have to amend the model (slightly).

For example, consider Example 2 of the preceding sub-section. If the 1992 data do not lie on the $10 \% \pm 2 \%$ trend, then we have more evidence of changes in trends and our assumption of $10 \% \pm 2 \%$ becomes pretty suspect.

Typically, once a model is identified for an incremental paid loss development array: the same model (with occasional minor amendments) is used in every subsequent year.

There is no way that a statistical method can automatically determine the "best" model and assumptions to be adopted for the future Rather, this decision is based on the model identification strategy (that may include analysis of other data types) and considerable judgment, especially if trends in the incremental payments are unstable.

Of course, any information about the nature of the business (especially change in business) may be critical in determining the assumptions for the future.

For example, in a number of loss development arrays of Lloyd's Syndicates analysed by the author, asbestos and pollution claims are not covered by policies written atter 1978, say. This means that the calendar year effects of asbestos and. pollution claims only apply to accident years prior to 1978 . So, the iota estimates applying to accident years prior to 1978, do not apply to accident years post 1978.

For loss development arrays where the forecast uncertainties are relatively large. analysis of "similar" arrays within the company or analysis of industry wide arrays, for the purpose of formally credibility adjusting the parameter (estimates) could prove very useful. Incidentally, credibility is not just a function of volume. It is a myth that if claim numbers are "small" or incremental paids are small, or the triangle dimensions are small, then random fluctuations necessarily swamp the pattern (trends). The noise to signal ratio, equivalently, process uncertainty, may be very small even with small volume. Of course large volume and little process uncertainty does not mean that standard actuarial techniques will pick $u p$ the changing trend. See Section 12 for a study of a real life example involving (very) large volume and alarming calendar year shifts that cannot be detected using standard actuarial techniques.

On every subsequent evaluation date post-sample predictive testing is conducted and the model is updated. Since data are recorded sequentially over time, updating procedures that can be applied routinely and that avoid re-analysis of the history are very desirable. See Section 9.6.2.
criterion is not satisfied, the model may have to be re-specified and the identification cycle repeated.

Step 6: Assumptions about the future based on Step 5 involving possibly analysis of other data types (Sections 10.2 and 10.3), are decided and forecasts and standard errors are produced. The final model is stored.

Step 7: Finished.
steps in modelling

10. MODEL IDENTIFICATION AND ASSUMPTIONS ABOUT THE FUTURE

The aim is to identify a parsimonious model that separates the (systematic) trends from the random fluctuations and moreover determine whether the trend in the payment/calendar year direction is stable.

Recall that models contain information and accordingly the 'best' identified model conveys information about the loss development array being analysed.

For example, CCl (with constant development in the tail) indicates that the calendar year trend has been stable. This model should validate well and produce 'stable' outstanding estimates as recent calendar years are added or removed from the estimation. See preceding Sections 9.6.1 and 9.6.2

10.1 MODEL IDENTIFICATION

The identification of the 'optimal' statistical model involves a number of iterative steps.

Step 1: Preliminary analysis facilitates the diagnostic identification of the heterogeneity in the data. The types of heterogeneity are also diagnostically identified.

Step 2: Based on step 1 a (preliminary) model is specified.

Step 3: The specified model is estimated.

Step 4: The model is checked to ensure that all assumptions contained in the model are satisfied by the data. If the model is inadequate, it has to be respecified (step 2), and the iterative cycle of model specification - estimation - checking must be repeated.

Step 5: The best identified model is validated and tested for stability. If either

10.2 ASSUMPTIONS ABOUT THE FUTURE

We demonstrated in Section 9.6 that if payment/calendar year trend has been stable, especially in the more recent years, then the assumption about the future trend is relatively straightforward. For example, if the estimate in the last five years has been $\hat{\mathfrak{i}} \pm \mathbf{s . e}$. ($\hat{\mathfrak{i}}$), then we assume for the future a mean trend of $\hat{\mathfrak{i}}$ with a standard deviation of trend of s.e. ($\hat{\imath}$). We do not assume that trend in the future is constant. Our model does include the variability (uncertainty) in trend in the future.

If on the other hand, payment/calendar year trend has been unstable as is illustrated in examples 2 and 3 of Section 9.6. assumptions about future trends are not so obvious and may depend on analysis of other data types.

In Section 10.1 we also cited a practical example where special knowledge about the business is a contributory factor in making decisions about the future. But, that special knowledge is combined with what we found in the past experience.

10.3 OTHER DATA TYPES AND METHODS

Hitherto much emphasis has been placed on the importance of analysing and predicting distributions for (incremental) paid loss development arrays. Reasons given include:

- the geometry of trends:
- simplicity and parsimony;
- distributions of future payments is relevant information for financial statements.

We now discuss other data types and methods.

10.3.1 PAYMENTS PER CLAIM CLOSED

Let the "series" $\left\{p_{t}\right\}$ denote the payments loss development array and the series $\left\{n_{t}\right\}$ denote the closed claims development array.

We shall say that $\left\{n_{1}\right\}$ causes $\left\{p_{1}\right\}$, if taking account of past values of n_{1} leads to improved predictions of future values of p_{r}. (This is know as Granger causality.)

Typically, an actuary analyses $z_{1}=p_{\downarrow} / n_{t}$ and obtains predictions z_{t} of future values
of $z_{\text {. }}$. The analysis of $\left\{n_{t}\right\}$ leads to predictions \hat{A}_{t} of future values of n_{t}

The future values of p_{t} are then predicted by $\hat{p}_{E}=\hat{A}_{t} \boldsymbol{z}_{E}$.

So, is the forecast p_{t} better than the forecast \bar{p}_{z} that only depends on past
values of p_{r} A forecast is better if its mean square error is less. That is, \hat{p}_{t} is
better than \tilde{p}_{c} if

$$
E\left[\left(p_{t}-p_{t}\right)^{2}\right]<E\left[\left(\tilde{p}_{t}-p_{t}\right)^{2}\right]
$$

The author believes that \tilde{D}_{z} is better than \hat{p}_{ε}. That is, there is no reduction in
forecast error with respect to the given information set $\left\{\begin{array}{llll}\boldsymbol{z}_{c} & \hat{f}_{\epsilon}, & \hat{p}_{\epsilon}\end{array}\right\}$. However, this does not rule out the possibility that when there is an instability in calendar year trends in $\left\{p_{t}\right\}$ as described in Section 9.6, analysis of $\left\{n_{\}}\right\}$will not lead to improved accuracy of predicting future values of $\left\{p_{1}\right\}$. The information extracted from the analysis of $\left\{n_{1}\right\}$ may improve the actuary's judgment in respect of which assumptions to use for future trends of p_{r}

10.3.2 INCURRED LOSSES AND CASE RESERVES

Analysis of incurred losses (paid to date plus case reserves) does not provide information about what is still to be paid. We have given sufficient reasons why any analysis of cumulative data is unsound. And adding case reserves to cumulative paids reduces the information (not increases the information).

Incremental paid losses and case reserves should be analysed separately. That is the best way to determine the information contained in each data type and any relationships that may exist between the two data types.

For example, if there is a trend shift in the incremental paids between calendar years 1984 and 1985 and a corresponding shift in the case reserves one year later, between 1985 and 1986, then we know that the case reserves are lagging the payments.

If instead we found that case reserves are leading the payments then a change in trend in the case reserves between the last two calendar years, for example, may suggest an increase in trend in payments one year later (in the future). See Sections 10.1 and 10.2 .

For a smail dimensional triangle of a long tail line, case reserves for the early accident years will be helpful in determining the development year trend (γ) in the future.

There are ways of determining whether case reserves have been "accurate" in forecasting subsequent payments. See the paper by Fisher and Lange [6].

Perhaps we should also remark that case reserves vary between and within claims personnel and due to changing reserving philosophy of the company.

10.4 TIME SERIES MODELS VERSUS EXPLANATORY (OR CAUSAL) MODELS

The rich modelling framework advocated by the author contains essentially ime series models. The only "causal" variable is time, equivalently payment year, accident year and development year. The past values of the incremental payments are used to forecast future values of the payments.

There is an alternative approach to forecasting in statistics called explanatory or causal models. These models make an attempt to discover the factors (or variables) affecting the behaviour of the claims process.

There are many reasons for preferring time series models to explanatory models.

- Causality based on the definition given in Section 10.3.1 is hard to prove. especially since the causal variables need to also be forecast.
- Simplicity and parsimony discussed in Sections 9.1 and 9.2.
- The claims process is complex and is unlikely to be understood and even if it were understood, it may be extremely difficult to determine the relationships that govern the behaviour of claims. Moreover, its likely the relationship changes with time. This last reason is part motivation for varying parameter models. (See Section 7).
- Explanatory models are difficult to validate and test for stability and when they don't work it may be hard to determine the reason.

By way of summary, we advocate the use of the DFF of models applied primarily to the incremental payments and applied to "related" data types, especially for the case in which calendar year trend instabilities are found in the incremental payments.

11.0 PREDICTION INTERVALS, RISK BASED CAPITAL AND RELATED ISSUES

11.1 INTRODUCTION

Loss reserves often constitute the largest single item in an insurer's balance sheet. An upward or downward 10% movement of loss reserves could change the whole financial picture of the company.

The current paper is not meant to focus on risk based capital and solvency issues, but mainly to stress that these are necessarily probabilistic concepts. The paper's principal intention is to show how the distributions (or variability) of loss reserves may be derived from sample data. It is the variability or uncertainty of loss reserves that is relevant to risk based capital and solvency considerations.

11.2 PREDICTION INTERVALS

We have given persuasive arguments for the use of probabilistic models, especially in assessing the variability or uncertainty inherent in loss reserves. The probability that the loss reserve, carried in the balance sheet, will be realised in the future, is necessarily zero, even if the loss reserve is the best estimate. See Sections 8.0 and 10.3 for definition of best.

Future (incremental) paids may be regarded as a sample path from the forecast (estimated) lognormal distributions. The estimated distributions include both process risk and parameter risk.

The forecast distributions are accurate provided the assumptions made about the future will remain true. For example, if.it is assumed that future calendar year trend (inflation) has a mean of 10% and a standard deviation of 2%, and in two years time it turns out that inflation is 20%, then the forecast distributions are far from accurate.

Accordingly, any prediction interval computed from the forecast distributions is conditional on the assumptions about the future remaining true.

Suppose $\hat{\rho}$ is a mean of a forecast lognormal distribution corresponding to payment p. Both $\dot{\rho}$ and ρ are random variables.

Let $u=\log p, \quad \mu=E[u]$ and $\sigma^{2}=\operatorname{Var}[u] . \quad$ A $100(1-\alpha) \%$ prediction interval for u (a random variable) is given by

$$
\mu \pm \sigma Z(\alpha / 2) .
$$

where $Z(\alpha / 2)$ is the $1-\alpha / 2$ percentage point of the standard unit normal distribution.

A $100(1-\alpha) \%$ prediction interval for $p(=\log u)$ is

$$
\exp [\mu \pm a Z(\alpha / 2)]
$$

The latter interval is non-symmetric about $\hat{\boldsymbol{p}}$ since the lognormal distribution is skewed (to the right). The parameters μ and σ are computed from the mean and standard deviation of p, and the relationship between the lognormal and normal distributions.

The limits of the interval can be interpreted as follows. Suppose repeated samples of the rectangle are taken (from the estimated probabilistic model), then the proportion of times the observed p value will lie in the observed interval (in the long run) is $1-a$. Bear in mind that p is a random variable.

The distribution of sums. for example, accident year outstanding payments, is the distribution of a sum of lognormal variables that are correlated. The exact distribution of the sum can be obtained by generating (simulating) samples from the estimated multivariate lognormal distributions. Alternatively, one can approximate the
distribution of the sum by a lognormal. Indeed. the lognormal would be the riskiest.

If there are 'many' components in the sum, then the Central Limit Theorem could be invoked, especially if the lognormal distributions of the paids are not terribly skewed. See Section 13 for a real life example.

Insurer's risk can be defined in many different ways. Most definitions are related to the standard deviation of the risk, in particular a multiple of the standard deviation.

If an insurer writes more than one long tail line and aims for a 100(1- α) \% security level on all the lines combined, then the risk margin per line decreases the more lines the company writes. This is always true, even if there exists some dependence (correlation) between the various lines.

Consider a company that writes n independent long tail lines. Suppose that the standard error of loss reserve $L(j)$ of line j is se(j). That is, se(j) is the standard error of the loss reserve variable $L(j)$. The standard error for the combined lines $L(1)+\ldots+L(n)$ is

$$
\operatorname{se}(\text { Total })=\left[\operatorname{se}^{2}(1)+\ldots+\operatorname{se}^{2}(n)\right]^{\text {os }}
$$

If the risk margin for all lines combined is k^{*} se(Total), where k is determined by the level of security required, then the risk margin for line j is

```
k*se(Total)*se(j)/[se(1) +\ldots. +se(n)]
<kse(j).
```

The last inequality is true even when se(Total) is not given by the above expression.

If as a result of analysing each line using the DFF modelling framework we find that for some lines trends change in same years and the changes are of the same order of magnitudes, then the paid losses are not independent. (There may also be some
probabilistic model, derived from the company's experience, that describes the particular line for that company. In the hundreds of arrays that the author has analysed, no one model described more than one loss development array.

The approach the author is advocating allows the actuary to determine the relationships within and between companies experiences and their relationships to the industry in terms of simple well understood features of the data.

In establishing the loss reserve, recognition is often given to the time value of money by discounting. The absence of discounting implies that the (median) estimate contains an implicit risk margin. But this implicit margin may bear no relationship to the security margin sought. The risk should be computed before discounting (at a zero rate of return)
correlations between the residuals).

In that situation, line i and j are correlated, say, then one should use se(i)+se(j) as the upper bound of the standard error of $L(i)+L(j)$.

We now return to an important modelling concept or 'law of payments'.

Suppose we assume for the future payment/calendar years a mean trend of ($\hat{\imath}$) with a standard deviation (standard error) se (i). Specifically we are saying that the trend 1, a random variable, has a normal distribution with mean i and standard deviation se (i). Recognition of the relationship between the lognormal and normal distributions tells us that the mean payment increases as se (i) increases (and \hat{i} remains constant). The greater the uncertainty in a parameter (the mean remaining constant), the more money is paid out.

The foregoing arguments apply to each parameter in the model.

11.3 RISK BASED CAPITAL

The author understands that the NAIC is drafting regulations where part of the risk based capital requirements will be based on loss reserves. In the article by Laurenzano [10], page 50, the loss reserve component of the risk based capital formula "selects the worst reserve development ...".

The approach advocated by the NAIC is flawed for many reasons including:

* The uncertainty in loss reserves (for the future) should be based on a probabilistic model (for the future) that may bear no relationship to reserves carried in the past;
* The uncertainty for each line for each company should be based on a

12.0 ANALYSIS OF PROJECT 1

12.1 INTRODUCTION AND SUMMARY

The principal objectives of the analysis of real life data in this section are to demonstrate that:

1. Age-to-age link ratios based on the cumulative paid losses give no indication about the trends and random fluctuations in the (incremental) payments.
2. Smooth data may have major shifts in calendar year trends.
3. Regression as an approach to adjusting data and determining trends and changes thereof is very powerful.
4. Large company's run-off payments are not necessarily stable in respect of calendar year trends, even though the payments may be extremely smooth (with very little random fluctuations about the trends)

12.2 DATA AND AGE-TO-AGE LINK RATIOS

The data (save a multiplicate factor in order to preserve confidentiality) come from a large insurer and are given in Appendix C1. Accident year exposures, (from memory), represent earned premium (relativities). As we shall see in the next section, the exposures are not that important.

The age-to-age link ratios presented in Appendix C2 are relatively smooth. For the early development years they tend to decrease slightly in the middle accident years and then increase in the latter payment years.

12.3 ANALYSES

We define a normalised payment as the (incremental) pard divided by the corresponding accident year exposure and apply the MODELLING FRAMEWORK to the normalised payments.

If $p(w, d)$ is the incremental payment corresponding to accident year w and development year d, and $e(w)$ is the accident year exposure, then the normalised payment is $p(w, d) / e(w)$ and we define.

$$
y(w, d) \quad=\quad \log [p(w, d) / e(w)]
$$

Figure C3 (in Appendix C3) represents a graph of the normalised payments versus delay for the first two accident years in the triangle. Observe that the run-off development for both years is remarkably smooth.

The chain ladder (CL) statistical model is given by,

$$
y(w, d) \quad=\quad \alpha_{w}+\sum_{j=1}^{d} \gamma_{j}+\varepsilon
$$

Since the exposures $e(w)$ are absorbed into the parameters α_{w} the estimates of the development trends γ, do not depend on the exposure base used. Indeed, there are other statistics that are invariant (for $C L$) with respect to exposure base including, AIC, residuals, S-squared, normality testing and forecasts. The chain ladder model adjusts for the different levels (α 's) of each accident year.

The estimates of the CL parameters and associated regression table are presented in Appendix C4. R-squared is high and S-squared is small. Hence, the random
fluctuations are small. Now, the CL model adjusts the data for development year trends and accident year trends (or levels). Many parameter differences are insignificant but that is not important since we are not trying to identify a parsimonious model here but rather show how some of the models in the FRAMEWORK may be used for fast identification of payment/calendar year trend changes.

So, the residuals represent the data adjusted (after removing) for the average development year trends and the average accident year trends.

Residuals versus development years (Figure C5.1) and accident years (Figure C5.2) are the "best" we can obtain since we have removed the trends in these two directions. In Figure C5.1, the sum of residuals for any one development year is zero and in Figure C5.2, the sum of residuals for any one accident year is zero. HOWEVER, residuals versus payment years (Figure $C 5.3$) exhibit a very strong V shape AND THIS IS FOR SMOOTH DATA OF A LARGE COMPANY. So, after removing accident year and development year trends from the data we observe major shifts in calendar year trends. (Compare this with the simulated data of Sections 4.4 and 5). There appears to be a change in trend in 1984 and definitely a change in trend in 1985.

We now estimate the CC model. It adjusts the data for the average development year trends. Appendix C6 presents the regression output and Figure $C 7$ is a graph of residuals versus payment years that indicates an upward trend (positive inflation). It is hard to tell from this graph whether there is a major shift in trends.

In order to estimate a trend parameter through the residuals of Figure C7, we estimate the CCl model to the data. The regression output is presented in Appendix C8 and the residuals versus payment years are displayed in Figure C9. The average payment year trend is $12.1 \%(\pm 0.53 \%)$. The V shape in residuals is distinct, suggesting very strongly the change in trends.

Our final model introduces another two payment year trend parameters. One from

1984-1985 and one from 1985-1987. The regression output is given in Appendix C10. Note shift in trend from 9.85% to 19.52%. This is quite alarming, especially if it cannot be explained by an increase in speed of finalisations of claims. See Section 10.2. for a discussion of assumptions to be applied for the future.

We now graph in Appendix C11 the lognormalised payments versus delay for the first two accident years. Since 19.52% is much higher than 9.85%, observe that the trend in the tail increases for both accident years, and for accident year 1978 the change is one development year earlier than in accident year 1977. That is because the trend change is a calender year change.

So there is overwhelming statistical evidence of a major shift in calendar year trends in the last two calendar years. What assumptions do we make about the future trends? We could analyse the number of claims closed development array and determine whether the substantial increase in trend in the payments is due to a corresponding increase in trend in the number of closed claims. If the answer is in the negative, then the trend increase must be due to increase in severities which would then be a major concern for the company. See Section 10.2.

In this section we have not identified a parsimonious model for the data. Instead the objective was to demonstrate how some of the models in the MODELLING FRAMEWORK may be used for quick determination of major calendar year shifts (in data that are relatively smooth and do not appear problematic if we are to employ the standard actuarial approaches based on link ratios).

The reader will appreciate that our modelling approach is interactive and terribly computer intensive. In order to identity the calendar year trend changes we have had to estimate four models. To set up each model in a spreadsheet is extremely time consuming. See Section 8.

13.0 ANALYSIS OF PROJECT 2

13.1 INTRODUCTION AND SUMMARY

In the present section we analyse a real life loss development array for which the age-to-age link ratios of the cumulative paids are relatively unstable, yet the trends in the paids are stable.

The "best" identified model is essentially a version of CC with two additional iotas (payment year trend parameters) that are used. 10 adjust for "low" payments in one payment year. The model (and so the trend in the data) is stable and validates very well. Had the model been employed three years earlier, it would have yielded the "same" outstanding payments and would have forecast the distributions of (incremental) payments for the last three years extremely accurately.

13.2 DATA AND PRELIMINARY ANALYSIS

The incremental paid loss development array and accident year exposures are displayed in Appendix D1. The exposures are estimates of the number of ultimate claims incurred in each accident year. We define a normalised payment as the paid divided by the corresponding accident year exposure and identify a DFF model for the normalised payments.

The first step in the preliminary (diagnostic) analysis is to graph the data. Figure D2.1 displays a graph of normalised payments versus development year for all accident years combined. It exhibits a band whose width (variability) increases as the normalised payments get larger.

On the other hand, the graph of the lognormalised payments depicted in Figure D2. 2 exhibits a band whose width is relatively constant. That is, \% variability is constant with development year suggesting a lognormal distributions for the normalised payments.

The graph in Figure D2.2 also gives us a preliminary idea of a parsimonious number of γ 's (development year trend parameters) inat may be required in the model.

It appears we require one γ from delay $0-1$, one from delay $1-2$ (that turns out to be insignificant to zero), one from delay 2-4 and one from delay 4-8

13.3 MODEL IDENTIFICATION

In this sub-section we implement the model selection strategy discussed in Section 10.

Model 0 and 1: Estimate a CC model with the four ${ }^{\gamma}$ parameters suggested by the preiiminary diagnostic analysis. It turns out that the parameter \boldsymbol{Y}_{2} is insignificant from zero, as was anticipated from the graphs. Set Y_{2} to zero and re-estimate the model. Regression tables and residual displays are given in Appendix D3 and Appendix D4. respectively.

Residuals versus delay and accident years suggest that the trends in these two directions have been captured well. This diagnostic test can be formalised by adding more parameters and testing for significance of parameters and their differences.

Since we have estimated a CC model, the residuals may be interpreted as the data adjusted for the development year trends.

Residuals versus payment years (Figure D4.3) suggest (i) zero trend from 1975-1979. (ii) low payments in 1974 and (iii) perhaps zero trend from 1969-1973. So we next estimate.

Model 2: This mode! is the previous CC model with four iota parameters. The first iota represents the trend from 1969-1973, the second iota the trend from 1973-1974
the third iota represents the trend from 1974-1975 and the fourth iota represents the trend from 1975-1979. We find that both the first and fourth iota are insignificant, and the first being less significant than the fourth.

Model 3: Previous model with first iota set to zero. We find that fourth iota is still insignificant.

Model 4: Previous model with fourth iota set to zero. We find all parameters and their differences are significant. Moreover, SSPE and AIC are the lowest amongst the four models. Outlier analysis indicates that the observation in accident year 1972, delay 7 is an outlier.

So our final identified model (before conducting validation and stability analysis) has three gammas ($0-1,2-4$ and 4-8), two iotas (1973-1974 and 1974-1975) and one alpha, and it also assigns zero weight 10 (1972,7).

The regression tables and various statistical displays are given in Appendices D5 to D7.

Figure D7.5 of Appendix D7 displays a normal probability plot where r^{2} (correlation squared) between the normal scores and ordered residuals is 0.993 . The P-value is in excess of 0.5 .

So we have shown that the \log incremertal payments in the cells of the loss development array can be regarded as observations from normal distributions whose means are related by the (trend) parameters given in Appendix D5.

Forecasts, standard errors and \% errors based on the model are presented in Appendices D8 and D9, respectively

Appendix D8

This appendix presents:
(i) each observed payment (OBS);
(ii) each expected model payment (EXP), that is a mean of a lognormal distribution;
(iii) forecasts for each accident year subdivided according to development year (right side of stair-case corresponding to EXP row);
(iv) standard errors of each individual forecast (below each forecast);
(v) total forecast (outstanding) for each accident year and associated standard error (right hand column);
(vi) total forecast (payment) to be made in each future payment year in respect of all the accident years and associated standard errors (bottom row). This is the future liability stream with corresponding uncertainties that may prove useful for asset/liability matching;
(vii) total outstanding with associated standard error (bottom right hand corner).

Expected values and forecasts are estimates of means of lognormal distributions. Standard errors are estimates of standard deviations of lognormal distributions.

Appendix D9

Here we present a quality of fit table comparing the original observed payments with the model expected payments. For each accident year and for each payment year we compute the ratio of the difference in total observed and total expected to the total observed. The quality of fit is high.

13.4 VALIDATION AND STABILITY ANALYSIS

We now re-estimate the same model and assign zero weight to the last three calender years (1979, 1978 and 1977). We aim to determine (i) whether the model estimated at year end 1976, would have forecast the distributions of payments in years 1977-1979 and (ii) are the parameter estimates of the model and the forecasts based on the model stable.

Appendix D10 presents the parameter estimates as of year end 1976. Compare these estimates with those obtained at year end 1979 (Appendix D5). Note that none of the parameter estimates have changed significantly. The estimate of the tail. $-0.5544(\pm 0.0753)$ at year end 1976, is slightly higher than the estimate $-0.6749(\pm$ 0.0390), at year end 1979, hence the higher forecasts in the tail. The estimates of iotas 1973-1974 and 1974-1975 are very close (and so stable).

Appendix Dil represents "All" residuals displays. All residuals include those corresponding to observations used in the estimation.(1969-1976), and the validated residuals (1977-1979) corresponding to observations not included in the estimation. All displays are great.

In particular, Figure D11.3 shows the distribution of the validated residuals (prediction errors) for 1977-1979 relative to residuals corresponding to years used in the estimation.

Appendix D12 presents displays of the validated residuals (only those corresponding to years 1977-1979). All displays are in good shape.

Most importantly, Appendix D12.4 presents a test whether the lognormalised payments in 1977-1979 come from the forecasted distributions as at year end 1976 The squared correlation between normal scores and validated residuals is 0.959 with a P-value of 0.313.

By way of summary, there is very strong statistical evidence that the model at year end 1976 would have predicied accurately the distributions of 'payments' for 1977. 1979.

Let's now compare the forecasts, Appendix D13 (validation model) with Appendix D8.

Total outstanding beyond 1979, based on estimated model at year end 1976 is $12,620,833 \pm 1.072 .089$ compared with estimated model at year end 1979 of $12,948,473 \pm 1,030,808$. No difference.

So, we could have obtained the same answers three years ago (that is, without the last three years information). All other forecasts compare extremely favourably.

Note that in Appendix D13 the expected values corresponding to payment years 1977-1979 actually represent mean forecasts based on estimated model at year end 1976.

From Appendix D14 we see that had we reserved mean forecasts at year end 1976 (for years 1977-1979) we would have underforecast 1977 and 1978 by 13\% and 1% respectively, and overforecast 1979 by 5%.

Our findings using probabilistic models have shown that:

* calendar year trends are essentially stable, save the dip in the year 1974;
* the model used three years earlier would have predicted accurately the distributions of payments for the last three years;
and
* rough (irregular) age-to-age link ratios, especially in the early development years, give no indication of stability of trends.

The author has analysed numerous data sets with rough (or irregular) age-to-age link ratios for which the payment/calendar year trends are stable. Conversely, smooth age-to-age link ratios does not mean stability of trends.

We conclude this section by showing how to compute a prediction interval for the total outstanding payments, using the discussion of Section 11.2.

From Appendix D8, the mean outstanding is given by

$$
m=\text { mean }=12,948,473
$$

and the standard deviation (or standard error) by

We assume that the total reserve (or liability) L is a random variable with mean m and standard deviation sd and moreover the distribution of L is lognormal.

Put $y=\log L$, then y has a normal distribution with mean μ and standard deviation o, say.

Therefore,

$$
m=\exp \left[\mu+0.5 \sigma^{2}\right]
$$

and

$$
\text { sd }=m\left[\exp \left(\sigma^{2}\right)-1\right]^{05}
$$

Solving the last two equations for μ and σ we obtain,

$$
\mu=16.37332
$$

and

```
    \sigma = 0.079482
```

Employing Section 11.2 , a $100(1-\alpha) \%$ prediction interval for the random variable L is given by

```
exp [16.37648 \pm0.079482Z (\alpha/2)]
```

where $Z(\alpha / 2)$ is the $1-\alpha / 2$ percentage point of the standard unit normal distribution

The median of the distribution of L is $\exp [\mu]=12,907,636$ which is very close to the mean of $12.948,473$. Since σ^{2} is small the lognormal distribution is not terribly skewed, so that were we to assume that the distribution of L is normal (rather than lognormal), the prediction intervals would be almost the same.

14. EXTENSION OF THE DFF MODELLING FRAMEWORK

We observed that a frulful extension of the DFF modelling framework was the introduction of varying parameter (dynamic) models in Section 7.

Another important extension is related to the distributional assumption of normality Hitherto, we have assumed that the variances of the y values, denoted by o^{2}, are identical (constant)

The variance on a log scale can be interpreted as $\%$ variability. So constant o^{2} implies constant \% variability. For many loss development arrays this assumption is not valid. For some arrays, \% variability increases in the tail, for some others, \% variability is higher in the eariy development years. When σ^{2} is not constant and varies with development years we need to also model the σ^{2} ' s. That is, we introduce a secondary equation.

This is outside the scope of the present paper.

15. CONCLUSIONS

We have argued that the four components of interest regarding a loss development array are the trends in the three directions and the distributions (random fluctuations) about the trends

A MODELLING FRAMEWORK was introduced where each model contained therein possesses the four components of interest. The modelling approach offers the actuary a way of fitting (estimating) distributions to the cells in a loss development array and predicting (forecasting) distributions for future years that affords numerous advantages including:

- simplicity;
- clarity of assumptions:
- testing of assumptions;
- assessment of loss reserve variability:
- asset/liability matching;
- model maintenance and updating.

We showed how the identified optimal statistical model for the (incremental) payments conveys information about the loss experience to date. In applying the model to predicting distributions of future payments the actuary may (need to) adjust some of the parameters to reflect knowledge about the business and to incorporate his view of the future. View of the future may be based on analysis of other data types, especially if there are instabilities in the payments in the recent calendar years.

A prediction interval computed from the forecast distributions is conditional on the assumptions made about the future remaining true.

In passing we have debunked a number of pervasive loss reserving perceptions concerning data types, age-to-age link ratios, stability, forecasting and regression.

Methods based on age-to-age link ratios do not (and cannot) separate trends from
random fluctuations and moreover do not satisfy the basic fundamental property of additivity of trends.

REFERENCES

[1] Abraham, B. and Ledholter. J. (1983). Statistical Methods for Forecasting. John Wiley, New York.
[2] Bailey R.A., "Sampling theory in casualty insurance", PCAS, 1942. pp.29-50.
[3] Catterjee. S. and Price. B. (1977). Regression Analysis by Example. John Wiley, New York.
[4] Christofidies, S. (1980). "Regression models based on log-Incremental Payments". Institute of Actuaries Loss Reserving Manual, Volume 2., Chapter 2.
[5] Foundations of Casualty Actuarial Science. 1989, Casualty Actuarial Science, New York.
[6] Fisher, W.H. and Lange. J.T. (1973). "Loss reserve testing: a report year approach", PCAS, 60, pp.189-207.
[7] Friedman, M. (1953). "The methodology of positive ecomomics", in Essays in Positive Economics, University of Chicago Press, pp.3-43.
[8] Gauss, K.F. (1809). Theoria Motus corpurum coelstium, Werke 7, Hamburg.
[9] Harvey, A.C. (1990). Forecasting, structural time series models and ihe Kalman filter. Cambridge University Press. New York.
[10] Laurenzano, V. (1992). "Balancing capital with risks". Best's Review. June. 1992.
[11] Loss Reserving Manual, 1990. Institute of Actuaries, London.
[12] Muth, J.F. (1960). "Optimal properties of exponentially weighted forecasts". J. Amer, Statist. Assoc., 55, 299-306.
[13] Popper. K.F. (1959). The Logic of Scientific Discovery. Hutchinson.
[14] Zehnwirth, B. (1985). "Linear Filtering and Recursive Credibility Estimation", ASTIN Bulletin, Vol. 15, No. 1, 19-35,

```
Model ls \(p=\exp (\) alpha-.2d) with no arror or randomness
alpha \(=11.51293\)
```

Year/														
	0	1	2	3	4	5	6	7	8	9	10	11	12	13
1978	100000	81873	67032	54881	44933	36788	30119	24660	20190	16530	13534	11080	9072	7427
1979	100000	81873	67032	54881	44933	36788	30119	24660	20190	16530	13534	11080	9072	
1980	100000	81873	67032	54881	44933	36788	30119	24660	20190	16530	13534	11080		
1981	100000	81873	67032	54881	44933	36788	30119	24660	20190	16530	13534			
1982	100000	81873	67032	54881	44933	36788	30119	24660	20190	16530				
1983	100000	81873	67032	54881	44933	36788	30119	24660	20190					
1984	100000	81873	67032	54881	44933	36788	30119	24660						
1985	100000	81873	67032	54881	44933	36788	30119							
1986	100000	81873	67032	54881	44933	36788								
1987	100000	81873	67032	54881	44933									
1988	100000	81873	67032	54881										
1989	100000	81873	67032											
1990	100000	81873												
1991	100000													

$y=\log (p)$ plus $: 1$ inf. trom 1978-82, .3 inf. from 1982-83 and . 15 inf. from 1983-91

Yearidelay

		0	1	2	3	4	5	6	7	8	9	10	11	12	13
	1978	11.5129	11.4129	11.3129	11.2129	11.1129	11.2129	11.1629	11.1129	11.0629	11.0129	10.9629	10.9129	10.8629	10.8129
	1979	11.6129	11.5129	11.4129	11.3129	11.4129	11.3629	11.3129	11.2629	11.2129	11.1629	11.1129	11.0629	11.0129	
㐌	1980	11.7129	11.6129	11.5129	11.6129	11.5629	11.5129	11.4629	11.4129	11.3629	11.3129	11.2629	11.2129		
	1981	11.8129	11.7129	11.8129	11.7629	11.7129	11.6629	11.6129	11.5629	11.5129	11.4629	11.4129			
	1982	11.9129	12.0129	11.9629	11.9129	11.8629	11.8129	11.7629	11.7129	11.6629	11.6129				
	1983	12.2129	12.1629	12.1129	12.0629	12.0129	11.9629	11.9129	11.8629	11.8129					
	1984	12.3629	12.3129	12.2629	12.2129	12.1629	12.1129	12.0629	12.0129						
	1985	12.5129	12.4629	12.4129	12.3829	12.3129	12.2629	12.2129							
	1988	12.6629	12.6129	12.5829	12.5129	12.4629	12.4129								
	1987	12.8129	12.7629	12.7129	12.6629	12.6129									
	1988	12.9629	12.9129	12.8629	12.8129										
	1989	13.1129	13.0629	13.0129											
	1990	13.2629	13.2129												
	1991	13.4129													

Appendix A3

Cumulative data (on a \$ scale) dertved from Appendlx A2

	100000	190484	272357	346439	413471	487552	558021	625053	688816	749469	807164	862045	914250	963908
	110517	210517	301001	382874	473358	559428	641302	719182	793263	863732	930764	994527	055180	
	122140	232657	332657	443174	548302	648302	743425	833908	919979	001852	1079732	1153814		
	134986	257126	392112	520515	642655	758838	869355	974482	1074482	1169605	1260089			
n	149182	314055	470886	620068	761975	896961	1025363	1147504	1263687	1374204				
	201375	392929	575141	748467	913339	1070170	1219352	1361259	1496245					
	233965	456519	668219	869594	1061148	1243360	1416685	1581557						
	271828	530399	776359	1010324	1232878	1444578	1645954							
	315819	616236	902001	1173829	1432400	1678360								
	366930	715964	1047976	1363795	1664212									
	426311	831831	1217574	1584504										
	495303	966450	1414619											
	575460	1122855												
	668589													

Age-to-age link ratios of the cumulative losses of Appendix A3

11.904837	1.429816	1.272002	1.193488	1.179170	1.144535	1.120124	1.102011	1.088054	1.076981	1.067992	1.060558	1.054316
1.904837	1.429816	1.272002	1.236327	1.181830	1.146351	1.121440	1.103008	1.088834	1.077607	1.068505	1.060986	
1.904837	1.429816	1.332224	1.237213	1.182381	1.146726	1.121712	1.103213	1.088994	1.077736	1.068611		
1.904837	1.524979	1.327463	1.234652	1.180786	1.145639	1.120925	1.102618	1.088529	1.077362			
2.105170	1.499375	1.316812	1.228858	1.177152	1.143152	1.119119	1.101248	1.087456				
1.951229	1.463726	1.301361	1.220279	1.171712	1.139400	1.116378	1.099162					
1.951229	1.463726	1.301361	1.220279	1.171712	1.139400	1.116378						
1.951229	1.463726	1.301361	1.220279	1.171712	1.139400							
1.951229	1.463726	1.301361	1.220279	1.171712								
1.951229	1.463726	1.301361	1.220279									
1.951229	1.463726	1.301361										
1.951229	1.463726											
'1.951229												

Appendix AS

Aandom error random from Normal with mean 0

Appendix A6

Sum of data in Appendices A2 and A5 to produce trends + randomness

Yeandelay

		0	1	2	3	4	5	6	7	8	9	10	11	12	13
	1978	11.5959	11.4879	11.2369	11.1479	10.9249	11.0489	11.0619	11.1909	11.0839	11.0419	10.9679	10.9429	10.7899	10.5719
	1979	11.4999	11.4639	11.3269	11.1899	11.5609	11.4529	11.2529	11.1639	11.1809	11.2589	11.1409	11.1629	10.6819	
	1980	11.7989	11.6059	11.4759	11.7829	11.6339	11.3749	11.5099	11.4349	11.3989	11.3159	11.2669	11.2709		
	1981	11.7419	11.8599	11.8799	11.7349	11.5809	11.7119	11.6129	11.4459	11.4709	11.4889	11.3349			
幺	1982	11.9939	12.0719	12.0359	11.9609	118879	11.8419	11.7399	11.5799	11.6189	11.6789				
	1983	12.3299	12.2219	12.0959	11.9819	11.9619	11.9389	11.8649	11.9869	11.8459					
	1984	12.3389	12.2869	12.3969	12.4269	12.2339	12.3059	12.0409	12.0249						
	1985	12.5349	12.4779	12.4889	12.3349	12.3089	12.4179	12.2449							
	1986	12.6199	12.7939	12.7469	12.3209	12.3029	12.3649								
	1987	12.8829	12.8689	12.8569	12.6949	12.5109									
	1988	13.0189	12.7179	12.8949	12.8539										
	1989	13.2579	13.2499	12.8539											
	1990	13.2639	13.0599												
	1991	13.2709													

Appendix A7

Incremental palds derlved from Appendlx A6

	1978	108651	97529	75879	69418	55542	62875	63697	72468	65114	62436	57983	56551	48528	39023
	1979	98706	95216	83025	72396	104914	94174	77103	70538	71747	77567	68934	70467	43560	
	1980	133106	109743	96365	130993	112860	87108	99698	92494	89224	82117	78190	78504		
	1981	125731	141478	144336	124854	107034	122015	110514	93517	95885	97626	83692			
	1982	161765	174888	168704	156514	145495	138954	125480	106927	111179	118054				
\%	1983	226364	203191	179136	159835	156670	153108	142187	160637	139511					
N	1984	228411	216837	242050	249422	205644	220996	169549	166858						
	1985	277868	262472	265375	227499	221660	247187	207918							
	1986	302519	360015	343485	224336	220334	234427								
	1987	393525	388054	383425	326081	271278									
	1988	450855	333667	398276	382277										
	1989	572576	568013	382277											
	1990	576021	469724												
	1991	580068													

Appendix AB

```
1978 108651 206180 282059 351477 407019 4, 469894 533591 
```



```
1980 133106 242849 339214 470207 583067 670175 769873 862367 951591 1033708 1111898-11900402
1981
1982 161765 336653 505357 661871 807366 (1)
1983 226364 429555 608691 768526 925196 1078304 1220491 1381128 1520639
1984 228411 445248 687298 936720 1142364 1363360 1532909 1699767
1985 277868 540340 805715 1033214 1254874 15020611709979
1986 302519 662534 1006019 1230355 1450689 1685116
1987 393525 781579116500414910851762363
1988 450855 784522 1182798 1565075
1989 572576 1140589 1522866
1990 576021 1045745
1991580068
```


Appendix A9

Age-to-age factors (link rallos) of the cumulative payments

```
    1978 1.897635 1.368023 1.246111 1.158024 1.154476 1.135556 1.135811 1.1074381.093025 1.079038 1.071439 1.057216 1.043519
    1.964642 1.428136 1.261407 1.300318 1.207314 1.140588 1.112764 1.1030741.101022 1.081541 1.077070 1.044232
    1980 1.824478 1.396810 1.386166 1.240021 1.149396 1.148764 1.120141 1.1034641.086294 1.075640 1.070603
    1981 2.125243 1.540161 1.303378 1.199541 1.189631 1.144378 1.106759 1.098903 1.091636 1.071962
    1982 2.081123 1.501121 1.309709 1.219823 1.172107 1.132597 1.099763 1.0943211.091521
    1983 1.897629 1.417026 1.262588 1.203857 1.165487 1.131861 1.131616 1.101012
    1984 1.949328 1.543629 1.362902 1.219536 1.193454 1.124361 1.108850
    1985 1.944592 1.491125 1.282356 1.214534 1.196981 1.13842
    1986 2.190057 1.518441 1.222993 1.179081 1.161597
    1987 1.986097 1.490577 1.279896 1.181933
    1988 1.740076 1.507667 1.323197
    1989 1.992030 1.335157
    1990 1.815463
&
```


APPENDIXB1

Random Incremental paids trom (same) lognormal distribution
DELAY
$\begin{array}{llllllllll}0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & ؟\end{array}$
ACC. YEAR

1976	10266	3419	3724	9606	8152	8175	3958	3030	1733	351
1977	1767	2454	6580	2819	1957	2150	3677	4751	2832	
1978	6232	5143	2667	4278	2289	6215	6273	4905		
1979	4597	3591	5909	5156	4013	3557	1961			
1980	2483	3805	3995	6315	3480	3486				
1981	1643	2077	5101	1907	3274					
1982	3270	7230	1853	4158						
1983	3161	2065	5890							
1984	5305	6078								
1985	6127									

APPENDIX B2

Cumulative payments

	0	1	2	3	DELAY 4	5	6	7	8	9
ACC. YEAR										
1976	10266	13685	17409	27015	35167	43342	47300	50330	52063	55574
1977	1767	4221	10801	13620	15577	17727	21404	26155	28987	
1978	6232	11375	14042	18320	20609	26824	33097	38002		
1979	4597	8188	14097	19253	23266	26823	28784			
1980	4248	8053	12048	18363	21843	25329				
1981	1643	3720	8821	10728	14002					
1982	3270	10500	12353	16511						
1983	3161	5226	11116							
1984	5305	11383								
1985	6127									

APPENDIX B3

Age-to-Age Link Ratlos

	DELAY								
	$0 / 1$	1/2	2/3	3/4	4/5	5/6	6/7	7/8	8/9
ACC. YEAR									
1976	1.333041	1.272122	1.551783	1.301758	1.232462	1.091320	1.084059	1.034432	1.067437
1977	2.388794	2.558872	1.260994	1.143685	1.138024	1.207423	1.221987	1.108277	
1978	1.825256	1.234461	1.304657	1.124945	1.301567	1.233857	1.148200		
1979	1.781161	1.721665	1.365751	1.208435	1.152084	1.073108			
1980	1.895715	1.498088	1.524153	1.189511	1.159593				
1889	2.264150	2.371238	1.216188	1.305182					
1982	3.211009	1.178476	1.338598						
1983	1.653274	2.127057							
1984	2.145711								
1885									

APPENDIX B4

Incremental paids generated by SDF model with $\mathbf{2 0 \%}$ calendar year Irend

APPENDIX B5

Age-to-age link ratios

DELAY

		0/1	$1 / 2$	2/3	3/4	4/5	5/6	6/7	7/8	8/9	9/10	10/11	11/12
	1978	2.26	2.01	2.21	1.16	1.13	1.34	1.09	1.07	1.21	1.17	1.05	1.05
	1979	3.69	1.36	1.94	1.28	1.21	1.48	1.49	1.16	1.09	1.04	1.06	1.11
	1980	4.88	2.71	3.11	1.21	1.20	1.33	1.20	1.22	1.05	1.07	1.02	
	1981	2.42	2.39	1.98	1.61	1.25	1.23	1.24	1.12	1.05	1.05		
	1982	7.11	1.35	1.55	1.46	1.39	1.60	1.36	1.05	1.10			
	1983	16.26	1.46	1.30	1.38	1.36	1.17	1.22	1.06				
	1984	2.73	1.99	1.39	1.22	1.18	1.26	1.17					
	1985	14.10	1.98	1.95	1.34	1.21	1.48						
	1986	4.69	1.57	1.78	1.69	1.34							
\%	1987	2.41	2.09	1.81	1.55								
0	1988	2.44	6.13	1.64									
	1989	10.42	2.23										
	1990	2.70											
	1991												

APPENDIXCI

APPENDIX C2

Figure C3

APPENDIX C4 - (Stallstical Chain Laddar)

REGRESSIONTABLE
\qquad

PARAMETER ESTIMATES

DEV.		S.E.	T-RATIO	DIFFERENCE IN GAMMA	S.E.	T-RATIO
YEAR	GAMMA					
$\mathbf{1}$	0.2511	0.0370	6.79			
2	-0.3069	0.0385	-7.97	-0.5580	0.0650	-8.59
3	-0.3928	0.0406	-9.68	-0.0859	0.0682	-1.26
4	-0.3803	0.0432	-8.81	0.0124	0.0723	0.17
5	-0.3402	0.0464	-7.34	0.0401	0.0773	0.52
6	-0.3384	0.0505	-6.71	0.0018	0.0835	0.02
7	-0.2908	0.0559	-5.20	0.0476	0.0917	0.52
8	-0.2248	0.0637	-3.53	0.0880	0.1030	0.64
9	-0.2152	0.0763	-2.82	0.0095	0.1202	0.08
0	-0.1893	0.1030	-1.84	0.0259	0.1526	0.17

NOT ALL PARAMETERS ARE SIGNIFICANT

PARAMETER ESTIMATES
DIFFERENCE

ACCI	
YEAR	ALPHA
1977	11.0484
1978	11.1402
1979	11.3935
1980	11.5218
1981	11.8001
1982	11.7939
1983	11.7979
1984	11.9095
1985	12.0118
1986	12.0774
1987	12.1592

S.E.	T.RATIO
0.0380	290.75
0.0380	293.17
0.0385	295.97
0.0393	293.10
0.0405	286.71
0.0420	280.55
0.0442	266.67
0.0474	251.04
0.0524	229.08
0.0613	196.88
0.0827	147.00

IN ALPHA
S.E. T-RATIO

0.0918	0.0370	2.48
0.2533	0.0385	6.58
0.1283	0.0406	3.16
0.0783	0.0432	1.81
0.1938	0.0464	4.18
0.0040	0.0505	0.08
0.1115	0.0559	1.99
0.1022	0.0637	1.60
0.0657	0.0763	0.86
0.0818	0.1030	0.79

ALL PARAMETERS ARE SIGNIFICANT

APPENDIXC4

(REGRESSION OUTPUT CONTINUED)

```
S = 0.0827 S-SQUARED = 0.0068 S-SQUARED(SCI) =0.0449
S(B)=0.0827 S(B)\cdotSQUARED = 0.0068 DELTA = 0.0000
    R-SQUARED =99.5 PERCENT N=66 P}=21.
SSPE = 0.948 WSSPE = 0.948 AIC =-124.97 AIC(SCI) = -52.18
```


Figure C5.1

Figure C5.2

Figure C5.3

APPENDIX C6. Cape Cod

REGRESSION TABLE
 PARAMETER ESTIMATES

DEV.		DIFFERENCE YEAR				
GAMMA	S.E.	T-RATIO	IN GAMMA	S.E.	T.RATIO	
1	0.2029	0.1416				
2	-0.3567	0.1489	-2.40	-0.5596	0.2514	-2.23
3	-0.4468	0.1574	-2.84	-0.0901	0.2651	-0.34
4	-0.4352	0.1677	-2.59	0.0116	0.2814	0.04
5	-0.3947	0.1803	-2.19	0.0404	0.3010	0.13
6	-0.4139	0.1962	-2.11	-0.0192	0.3256	-0.06
7	-0.3556	0.2174	-1.64	0.0583	0.3574	0.16
8	-0.3067	0.2475	-1.24	.0 .0489	0.4012	0.12
9	-0.3150	0.2958	-1.06	-0.0083	0.4677	-0.02
10	-0.2352	0.3968	-0.59	0.0797	0.5916	0.13

NOT ALL PARAMETERS ARE SIGNIFICANT

PARAMETER ESTIMATES

ACCI						
YEAR	ALPHA	S.E.	T-RATIO	DIFFERENCE IN ALPHA	S.E.	T-RATIO
1977	11.6776	0.0977	119.53			
1978	11.6776	0.0977	119.53	0.0000	0.0000	0.00
1979	11.6776	0.0977	119.53	0.0000	0.0000	0.00
1980	11.6776	0.0977	119.53	0.0000	0.0000	0.00
1981	11.6776	0.0977	119.53	0.0000	0.0000	0.00
1982	11.6776	0.0977	119.53	0.0000	0.0000	0.00
1983	11.6778	0.0977	119.53	0.0000	0.0000	0.00
1984	11.8776	0.0977	119.53	0.0000	0.0000	0.00
1985	11.6776	0.0977	119.53	0.0000	0.0000	0.00
1986	11.6776	0.0977	119.53	0.0000	0.0000	0.00
1987	11.6776	0.0977	119.53	0.0000	0.0000	0.00

ALL PARAMETERS ARE SIGNIFICANT

APPENDIX C6

(REGRESSION OUTPUT CONTINUED)

S	0.3240	S-SQUARED	0.1050	S.SQUARED $(\mathrm{SCl})=0.0449$
$S(B)=$	0.3240	S(B)-SOUARED $=$	0.1050	DELTA $=0.0000$
	OUARED	91.1 PERCENT	$N=66$	$P=11.0$
SSPE	7.433	WSSPE $=7.433$	$\mathrm{AIC}=$	48.51 $\operatorname{AIC}(\mathrm{SCl})=-52.18$

Figure C_{7}

REGRESSIONTABLE
PARAMETER ESTIMATES
DIFFERENCE

DEV.		S.E.	T-RATIO	DIFFERENCE IN GAMMA	S.E.	-RATIO
YEAR	GAMMA					
1	0.1424	0.0439	3.24			
2	-0.4172	0.0462	-9.03	-0.5596	0.0779	-7.19
3	-0.5072	0.0488	-10.39	-0.0901	0.0821	-1.10
4	-0.4956	0.0520	-9.53	0.0116	0.0871	0.13
5	-0.4552	0.0559	-8.14	0.0404	0.0932	043
6	-0.4744	0.0608	-7.80	-0.0192	0.1008	-0.19
7	-0.4161	0.0674	-6.18	0.0583	0.1107	0.53
8	-0.3672	0.0767	-4.79	0.0489	0.1243	0.39
9	-0.3754	0.0917	-4.10	-0.0083	0.1449	-0.06
10	-0.2957	0.1230	-2.41	0.0797	0.1832	0.44

ALL PARAMETERS ARE SIGNIFICANT
PARAMETER ESTIMATES

ACCI		S.E.	T.RATIO	OIFFERENCE IN ALPHA	S.E.	T.RATIO
YEAR	ALPHA					
1977	11.0728	0.0403	275.09			
1978	11.0728	0.0403	275.09	0.0000	0.0000	0.00
1979	11.0728	0.0403	275.09	0.0000	0.0000	0.00
1980	11.0728	0.0403	275.09	0.0000	0.0000	0.00
1981	11.0728	0.0403	275.09	0.0000	0.0000	0.00
1982	11.0728	0.0403	275.09	0.0000	0.0000	0.00
1983	11.0728	0.0403	275.09	0.0000	0.0000	0.00
1984	11.0728	0.0403	275.09	0.0000	0.0000	0.00
1985	11.0728	0.0403	275.09	0.0000	0.0000	0.00
1986	11.0728	0.0403	275.09	0.000	0.0000	0.00
1987	11.0728	0.0403	275.09	0.0000	0.0000	0.00

ALL PARAMETERS ARE SIGNIFICANT
PARAMETER ESTIMATES

PMNT	IOTA	S.E.	T-RATIO	DIFFERENCE IN IOTA	S.E.	T-RATIO
YEAR						
1978	0.1210	0.0053	22.79			
1979	0.1210	0.0053	22.79	0.0000	0.0000	0.00
1980	0.1210	0.0053	22.79	0.0000	0.0000	0.00
1981	0.1210	0.0053	22.79	0.0000	0.0000	0.00
1982	0.1210	0.0053	22.79	0.0000	0.0000	0.00
1983	0.1210	0.0053	22.79	0.0000	0.0000	0.00
1984	0.1210	0.0053	22.79	0.0000	0.0000	0.00
1985	0.1210	0.0053	22.79	0.0000	0.0000	0.00
1986	0.1210	0.0053	22.79	0.0000	0.0000	0.00
1987	0.1210	0.0053	22.79	0.0000	0.0000	000

ALL PARAMETERS ARE SIGNIFICANT

APPENDIXC8

```
            (REGRESSION OUTPUT CONTINUED)
S = 0.1004 S-SOUARED = 0.0101 S.SQUARED(SCI) = 0.0449
S(B)=0.1004 S(B)-SQUARED = 0.0101 DELTA = 0.0000
    R-SQUARED = 99.2 PERCENT N=66 F=12.0
SSPE = 1.176 WSSPE = 1.176 AIC =-105.40 AIC(SCI) = -52.18
```


Figure C9
(1977-84, 1984-1985 and 1985-1987)
REGRESSION TABLE
PARAMETER ESTIMATES

DEV.	
YEAR	GAMMA
1	-0.1505
2	-0.4098
3	-0.5008
4	-0.4906
5	-0.4522
6	-0.4748
7	-0.4222
8	-0.3849
9	-0.4126
10	-0.3329

S.E. T-RATIO DIFFERENCE
S.E. T-RATIO

0.0371	4.05			
0.0390	-10.50	-0.5603	0.0657	-8.52
0.0413	-12.14	-0.0910	0.0693	-1.31
0.0439	-11.17	0.0102	0.0736	0.14
0.0472	-9.58	0.0384	0.0787	0.49
0.0514	-9.24	0.0225	0.0851	-0.26
0.0569	-7.41	0.0526	0.0935	0.56
0.0651	-5.91	0.0373	0.1050	0.36
0.0780	-5.29	-0.0277	0.1229	-0.23
0.1042	-3.19	0.0797	0.1547	0.52

ALL PARAMETERS ARE SIGNIFICANT
parameter estimates

ACCI	
YEAR	ALPHA
1977	11.1536
1978	11.1536
1979	11.1536
1980	11.1536
1981	11.1536
1982	11.1536
1983	11.1536
1984	11.1536
1985	11.1536
1986	11.1536
1987	11.1536

........................

S.E.	T.RATIO	OIFFERENCE IN ALPHA	S.E.	T-RATIO
0.0400	279.91			
0.0400	278.91	0.0000	0.0000	0.00
0.0400	278.91	0.0000	0.0000	0.00
0.0400	278.91	0.0000	0.0000	0.00
0.0400	278.91	0.0000	0.0000	0.00
0.0400	278.91	0.0000	0.0000	0.00
0.0400	278.91	0.0000	0.0000	0.00
0.0400	278.91	0.0000	0.0000	0.00
0.0400	278.91	0.0000	0.0000	0.00
0.0400	278.91	0.0000	0.0000	0.00
0.0400	278.91	0.0000	0.0000	0.00

ALL PARAMETERS ARE SIGNIFICANT
parameter estimates

PMNT	
YEAR	IOTA
1978	0.0985
1979	0.0985
1980	0.0985
1981	0.0985
1982	0.0985
1983	0.0985
1984	0.0985
1985	0.1174
1986	0.1952
1987	0.1952

S.E,	T-RATIO
0.0077	12.74
0.0077	12.74
0.0077	12.74
0.0077	12.74
0.0077	12.74
0.0077	12.74
0.0077	12.74
0.0343	3.42
0.0197	9.91
0.0197	9.91

DIFFERENCE
IN IOTA
S.E. T-RATIO

0.0000	0.0000	0.00
0.0000	0.0000	0.00
0.0000	0.0000	0.00
0.0000	0.0000	0.00
0.0000	0.0000	0.00
0.0000	0.0000	0.00
0.0189	0.0385	0.49
0.0778	0.0484	1.51
0.0000	0.0000	0.00

APPENDIX C10

(REGRESSION OIJTPUT CONTINUED)

```
S = 0.0847 S-SOUARED = 0.0072 S-SQUARED(SCI) = 0.0449
S(B)=0.0847 S(B).SQUARED = 0.0072 DELTA = 0.0000
    R-SQUARED =99.4 PERCENT N=66 P=14.0
SSPE = 1.000 WSSPE = 1.000 AIC =-126.26 AIC(SCI) =-52.18
```


Figure C11

INCREMENTAL PAID LOSSES

	DELAY									
	ACCI. YR	0	1	2	3	4	5	6	7	8
\%	1969	193013	1584331	1151882	778980	475203	143352	128612	70845	25077
	1970	376473.	1541950	1719509	1032570	289305	382508	270087	108354	23133
	1971	568891	1579158	1277822	734670	680369	217221	147800	57099	64829
	1972	428753	970640	955898	1095771	510072	491853	242995	299845	
	1973	458252	989072	1417606	953222	881133	278778	197156		
	1974	355229	948807	1292900	748003	547288	274367			
	1975	282419	688332	1158793	903450	629983				
	1976	267600	1044790	1216437	527644					
	1977	560307	940002	1185899						
	1978	360171	1011773							
	1979	445545								
					ACCI YR	EXPOSURES				
					1969	523.00				
					1970	643.00				
					1971	676.00				
					1972	673.00				
					1973	809.00				
					1974	669.00				
					1975	513.00				
					1976	543.00				
					1977	622.00				
					1978	703.00				
					1979	743.00				

Figure D2.1

Figure D2.2

APPENDIX D3

REGRESSIONTABLE

PARAMETER ESTIMATES

DEV.	
YEAR	GAMMA
1	1.1647
2	0.0000
3	-0.3769
4	-0.3769
5	-0.6226
6	-0.6226
7	-0.6226
8	-0.6226

S.E.	T-RATIO
0.1234	9.44
0.0000	0.00
0.0631	-5.98
0.0631	-5.98
0.0466	-13.35
0.0466	-13.35
0.0466	-13.35
0.0466	-13.35

DIFFERENCE In GAMMA S.E. T-RATIO

ALL PARAMETERS ARE SIGNIFICANT

PARAMETER ESTIMATES

ACCI YEAR	ALPHA
1969	6.3672
1970	6.3672
1971	6.3672
1972	6.3672
1973	6.3672
1974	6.3672
1975	6.3672
1976	6.3672
1977	6.3672
1978	6.3672
1979	6.3672

S.E.	T.RATIO	DIFFERENCE IN ALPHA	S.E.	T.RATIO
0.0997	63.84			
0.0997	63.84	0.0000	0.0000	0.00
0.0997	63.84	0.0000	0.0000	0.00
0.0997	63.84	0.0000	0.0000	0.00
0.0997	63.84	0.0000	0.0000	0.00
0.0997	63.84	0.0000	0.0000	0.00
0.0997	63.84	0.0000	0.0000	0.00
0.0997	63.84	0.0000	0.0000	0.00
0.0997	63.84	0.0000	0.0000	0.00
0.0997	63.84	0.0000	0.0000	0.00
0.0997	63.84	0.0000	0.0000	0.00

ALL PARAMETERS ARE SIGNIFICANT

PARAMETER ESTIMATES

PMNT YEAR	IOTA	S.E.	T-RATIO	DIFFERENCE IN IOTA	S.E.	T-RATIO
1970	0.0000	0.0000	0.00			
1971	0.0000	0.0000	0.00	0.0000	0.0000	0.00
1972	0.0000	0.0000	0.00	0.0000	0.0000	0.00
1973	0.0000	0.0000	0.00	0.0000	0.0000	0.00
1974	0.0000	0.0000	0.00	0.0000	0.0000	0.00
1975	0.0000	0.0000	0.00	0.0000	0.0000	0.00
1976	0.0000	0.0000	0.00	0.0000	0.0000	0.00
1977	0.0000	0.0000	0.00	0.0000	0.0000	0.00
1978	0.0000	0.0000	0.00	0.000	0.0000	0.00
1979	0.0000	0.0000	0.00	0.0000	0.0000	0.00

ALL PARAMETERS ARE SIGNIFICANT

Figure 04.1

Figure 04.2

Figure D4.3

REGRESSIONTABLE

PARAMETER ESTIMATES

| DEV.
 YEAR | GAMMA | S.E. | T-RATIO | DIFFERENCE
 IN GAMMA | S.E. | T-RATIO |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| | | | | | | |
| 1 | 1.1777 | 0.0993 | 11.86 | | | |
| 2 | 0.0000 | 0.0000 | 0.00 | -1.1777 | 0.0993 | -11.86 |
| 3 | -0.3478 | 0.0519 | -6.70 | -0.3478 | 0.0519 | -6.70 |
| 4 | -0.3478 | 0.0519 | -6.70 | 0.0000 | 0.0000 | 0.00 |
| 5 | -0.6749 | 0.0390 | -17.32 | -0.3270 | 0.0803 | -4.07 |
| 5 | -0.6749 | 0.0390 | -17.32 | 0.0000 | 0.0000 | 0.00 |
| 7 | -0.6749 | 0.0390 | -17.32 | 0.0000 | 0.0000 | 0.00 |
| 8 | -0.6749 | 0.0390 | -17.32 | 0.0000 | 0.0000 | 0.00 |

ALL PARAMETERS ARE SJGNIFICANT

PARAMETER ESTIMATES

ACCI						
YEAR	ALPHA	S.E.	T-RATIO	DIFFERENCE IN ALPHA	S.E.	T-RATIO
1969	6.4594	0.0927	69.68			
1970	6.4594	0.0927	69.68	0.0000	0.0000	0.00
1971	6.4594	0.0927	69.68	0.0000	0.0000	0.00
1972	6.4594	0.0927	69.68	0.0000	0.0000	0.00
1973	6.4594	0.0927	69.68	0.0000	0.0000	0.00
1974	6.4594	0.0927	69.68	0.0000	0.0000	0.00
1975	6.4594	0.0927	69.68	0.0000	0.0000	0.00
1975	6.4594	0.0927	69.68	0.0000	0.0000	0.00
1977	6.4594	0.0927	69.68	0.0000	0.0000	0.00
1973	6.4594	0.0927	69.68	0.0000	0.0000	0.00
1979	6.4594	0.0927	69.68	0.0000	0.0000	0.00

ALL PARAMETERS ARE SIGNIFICANT

PARAMETER ESTIMATES

PMNT
YEAR \quad IOTA 0
S.E.
0.0000
0.0000
0.0000
0.0000
0.1306
0.1182
0.0000
0.0000
0.0000
0.0000

DIFFERENCE
in IOTA
S.E. T-RATIO
0.00
0.00
0.00
0.00
.3 .67
3.15
0.00
0.00
0.00
0.00

0.0000	0.0000	0.00
0.0000	0.0000	0.00
0.0000	0.0000	0.00
-0.4792	0.1306	-3.67
0.8515	0.2330	3.65
.0 .3723	0.1182	-3.15
0.0000	0.0000	0.00
0.0000	0.0000	0.00
0.0000	0.0000	0.00

ALL PARAMETERS ARE SIGNIFICANT

APPENDIX D6
(REGRESSION OUTPUT CONTINUED)

```
S = 0.2654 S.SQUARED = 0.0704 S-SQUARED(SCI) = 0.5469
S(B)=0.2654 S(B)\cdotSQUARED = 0.0704 DELTA = 0.0000
    R-SQUARED =93.5 PERCENT N=62 P=6.0
SSPE = 7.360 WSSPE = 7.360 AIC = 17.13 AIC(SCI) = 43.81
```


FIgure D7.1

Figure 07.2

Figure 07.3

Figure D7. 4

FIgure D7.5

ASSUMED FUTURE INFLATION $=0.0000$
 STANDARD ERROR $=0.0000$

EXPECTED PAYMENTS/OBSERVED PAYMENTS

TABLE OF OBSERVED AND EXPECTED BY YEAR

APPENDIX D10

VALIDATION

REGRESSION TABLE
PARAMETER ESTIMATES

DEV. YEAR GAMMA	S.E.	T-RATIO	DIFFERENCE IN GAMMA	S.E.	T-RATIO	
$\mathbf{1}$	1.2468	0.1076	11.58			
2	0.0000	0.0000	0.00	-1.2468	0.1076	-11.58
3	-0.4024	0.0639	-6.29	-0.4024	0.0639	-6.29
4	-0.4024	0.0639	-6.29	0.0000	0.0000	0.00
5	-0.5544	0.0753	-7.37	-0.1520	0.1213	-1.25
6	-0.5544	0.0753	-7.37	0.0000	0.0000	0.00
7	-0.5544	0.0753	-7.37	0.0000	0.0000	0.00
8	-0.5544	0.0753	-7.37	0.0000	0.0000	0.00

ALL PARAMETERS ARE SIGNIFICANT

PARAMETER ESTIMATES

ACCI	
YEAR	ALPHA
1969	6.4278
1970	6.4278
1971	6.4278
1972	6.4278
1973	6.4278
1974	6.4278
1975	6.4278
1976	6.4278
1977	6.4278
1978	6.4278
1979	6.4278

S.E.
0.0922
0.0922 0.0922 0.0922 0.0922 0.0922 0.0922 0.0922 0.0922 0.0922 0.0922

DIFFERENCE
IN ALPHA
S.E.

T-RATIO
69.72

69.72	0.0000	0.0000	0.00
69.72	0.0000	0.0000	0.00
69.72	0.0000	0.0000	0.00
69.72	0.0000	0.0000	0.00
69.72	0.0000	0.0000	0.00
69.72	0.0000	0.0000	0.00
69.72	0.0000	0.0000	0.00
69.72	0.0000	0.0000	0.00
69.72	0.0000	0.0000	0.00
69.72	0.0000	0.0000	0.00

ALL PARAMETERS ARE SIGNIFICANT

PARAMETER ESTIMATES

PMNT	
YEAR	IOTA
1970	0.0000
1971	0.0000
1972	0.0000
1973	0.0000
1974	-0.4798
1975	0.3087
1976	0.0000
1977	0.0000
1978	0.0000
1979	0.0000

DIFFERENCE
S.E.

IN IOTA
S.E.

T-RATIO
$0.0000 \quad 0.00$
$0.0000 \quad 0.00$
$0.0000 \quad 0.00$
$0.0000 \quad 0.00$
0.1208
0.1203
0.0000
0.0000
0.0000
S.
T.RAT

Figure 011.1

Figure D11.2

Figure 011.3

Figure D11.4

Figure D12.1

Figure D12.2

Figure 012.3

Figure D12.4

IDATION MODEL
ASSUMED FUTURE INFLATION $=0.0000$
STANDARD ERROR $=0.0000$
1.1

EXPECTED PAYMENTS/OESERVED PAYMENTS

	ACC. YEAR	EXPECTED (PAY	OBSERVED MENTS IN \$1	DIFFERENCE 'S)	\%ER	PMNT YEAR	EXPECTED (PA	OBSERVED YMENTS IN	DIFFERENCE (1's)	\%ER
	69	4403160	4551295	148135	3	69	333078	193013	- 140065	-72
	70	7251043	5743889	492846	8	70	1566886	1960804	393918	20
	71	5289859	5327859	38000	0	71	3010843	3262723	251880	7
	72	4753347	4695982	- 57365	-1	72	4121587	4506400	384813	8
	73	5434107	5175219	-258888	-5	73	4972020	4214487	-757533	-17
	74	4477402	4166594	-310808	-7	74	3502693	3467526	-35167	- 1
	75	3260356	3662977	402621	10	75	4892575	4936092	43517	0
	76	2996847	3056471	59624	1	76	4655693	4270279	-385414	-9
	77	2657142	2686208	29066	1	77	4477648	5166110	688462	13
	78	1690586	1371944	-318642	-23	78	4493854	4569353	75499	1
\%	79	399511	445545	46034	10	79	4586481	4337196	-249285	-5

IBNR Reserve Under a Loglinear Location-Scale Regression Model

by Louis Doray

IBNR RESERVE UNDER A LOGLINEAR LOCATION-SCALE REGRESSION MODEL ${ }^{1}$

Abstract

In this paper, we develop models for known claims, when the data are grouped into the usual triangle and the goal is to predict IBNR claims. We assume that the payment for a certain accident and development year is composed of a deterministic part and a multiplicative random error. We use a loglinear location-scale regression model for the amount of claims. The parameters are estimated by maximum likelihood methods, so that their asymptotic properties are well known. The regression model presents many advantages over the chain ladder method: it has fewer parameters, and does not underestimate the reserve. Moreover, it will be possible with a simulation to establish a reserve with a certain level of confidence (for example 80%).

The logarithm of the error is assumed to follow certain known distributions (normal, extreme value, generalized loggamma, logistic and \log inverse gaussian). We derive certain theoretical properties of these distributions and prove that the MLE's of the regression and scale parameters exist and are unique, when the error has a log-concave density.

In conclusion, we advocate the use of regression models over the chain ladder method, since they take into account both the error involved in the estimation of the parameters and the statistical error inherent in the prediction of future claims, the fit of the model can be tested statistically and confidence intervals for the reserve can be derived.

Keywords: Chain-ladder method; Weibull-extreme value regression; maximum likelihood: prediction; generalized loggamma; logistic: inverse gaussian; consistency.

[^1]
1 Introduction

1.1 IBNR claims

All insurance companies registered to do business in Canada are required by the regulatory authorities to set up reserves for claims which have been incurred but have not yet been reported as of their financial statement date, usually December 31 . In determining the liabilities of the insurance company, the valuation actuary must also estimate the liabilities generated by claims incurred but not enough reserved (IBNER), (also called reported but not settled (RBNS)).

The distinction between these two parts of the loss reserve, the IBNR part and the IBNER part, is not always made in practice, especially when the data are aggregated. In this paper, by IBNR reserve, we will refer to both types of claims.

The primary purpose of those reserves is to ensure the protection of the policyholders: when the insurance company is notified of these claims, it will have the reserves, backed by sufficient assets, to pay those claims.

The delay in reporting the claim may depend on the type of claim (for example, asbestosis may take more than 10 years to manifest itself in a worker). The long delay observed in the settlement of certain claims is sometimes due to the fact that some of them are resisted by the insurance company, putting into motion a long judiciary process. In other cases, there will be a long delay before the ultimate cost of a claim can be determined exactly (in workers' compensation for example, the insurance company will have to wait
for an annuity to terminate).
The 1987 Loss Development Study, undertaken by the Reinsurance Association of America, compares the development of losses for various lines of business. Automobile liability was the line where the claims got developed the fastest, while Workers' Compensation was slower to develop. General liability, excluding asbestos claims, had a development pattern similar to Workers' Compensation, but a little bit slower initially. Medical malpractice experienced the slowest development among those lines of business.

Due to this long reporting and settlement lag, it will be extremely important for the valuation actuary to develop adequate statistical models to project known losses to ultimate losses.

1.2 The chain ladder method and its deficiencies

By grouping the claims by accident year (year in which the accident giving rise to the claim occurred) and development year (number of years elapsed since this accident year), the data can be presented in a trapezoidal array.

In this paper, to illustrate the various models proposed, we will use the data in table I (taken from CIA Proceedings, Volume 20 no 1, p.183), which represents the liability claims in thousands of dollars incurred by a Canadian insurance company over the ten-year period 1978-1987. We will do the analysis with the incremental claims (in table 2), obtained by differencing successive cumulative amounts.

The problem of estimating IBNR claims consists in predicting, for each accident year,

Table 1: Claims Incurred

Accident year	Development year						
	1	2	3	4	5	6	
1978	8489	9785	10709	11289	11535	11661	
1979	12970	14766	16201	17060	17714	17979	
1980	17522	20305	21774	22797	23220	23872	
1981	21754	24338	25501	26284	27171	27526	
1982	19208	21549	22769	23388	24229	24932	
1983	19604	22073	23296	24543	25155		
1984	21922	24233	25374	26882			
1985	25038	28401	30545				
1986	32532	37006					
1987	39862						

the ultimate amount of claims incurred. The amount paid by the insurance company for those claims is then subtracted, leaving the reserve the insurer should hold for future payments. To calculate the reserve, all methods or models usually assume that the pattern of cumulative or incremental claims incurred or paid is stable across the development years, for each accident year. Since for the last accident year, only one amount will be available, the reserve will be highly sensitive to this amount. Moreover, because of growth experienced by the company, it will be bigger than any other amount in the data set, hence the importance of verifying that the development pattern of the claims has not changed over the years.

One of the earliest methods, and now most commonly used in the actuarial profession, is the chain ladder method. Assuming that for each accident year, the development pattern remains stable, development factors are calculated by dividing cumulative paid or incurred

Table 2: Incremental claims incurred

Accident year	Development year						
	1	2	3	4	5	6	
1978	8489	1296	924	580	246	126	
1979	12970	1796	1435	859	654	265	
1980	17522	2783	1469	1023	423	652	
1981	21754	2584	1163	783	887	355	
1982	19208	2341	1220	619	841	703	
1983	19604	2469	1223	1247	612		
1984	21922	2311	1141	1508			
1985	25038	3363	2144				
1986	32532	4474					
1987	39862						

claims after j periods since incurral by the cumulative amount after $j-1$ periods. These factors can be weighted by the amount each year. The year-to-year development factors are then applied to the most recent amount for each accident year, i.e. the amounts on the right-most diagonal.

Using the weighted approach with the cumulative claims of table 1 , we obtain the development factors of table 3. Projecting the claims incurred to ultimate amounts with those development factors, we obtain a reserve estimate of 23,919 .

Table 3: Loss Development Factors

Year	Development factors
1.2	1.13079
2.3	1.06479
3.4	1.04545
$4-5$	1.02922
$5-6$	1.02023

Many variations have been presented for the basic chain ladder method just introduced; a linear trend or an exponential growth may be assumed to be present among the development factors. Instead of taking their weighted average, they would be extrapolated into the future. The chain ladder method can also be adjusted for inflation.

However, the chain ladder method suffers from the following deficiencies:

1. it implicitly assumes too many parameters (one for each column).
2. it does not give any idea of the variability of the reserve estimate, or a confidence interval for the reserve.
3. as will be shown in section 2, it is negatively biased, which could lead to serious underreserving, a threat to the insurer's solvency.

We will therefore develop a stochastic model, which involves only 5 parameters. With this model, we will be able to calculate an amount such that there is an 80% probability that the reserve will be sufficient to cover the liabilities generated by the current block of business.

1.3 The general model

In this paper, we will consider loglinear location-scale regression models of the form

$$
Z_{i}=\ln Y_{i}=X_{i} \beta+\sigma \epsilon_{i}, \quad Y_{i}>0
$$

where Y_{i} is the ith element of vector Y (the data), of dimension n,
X is the regression matrix, whose first column contains l's, and whose i th row is the vector denoted by X_{i} and (i, j) element is denoted $X_{i j}$,
β is the vector of unknown parameters to be estimated, of dimension p,
$X_{i} \beta$ is the location parameter for Z_{i},
$\sigma \quad$ is the scale parameter,
and $\quad \epsilon_{i} \quad$ is a random error with known density $f(\epsilon)$.

The loglinear location-scale model has been used extensively in reliability theory and in survival analysis (see for example, Kalbfleisch and Prentice (1980), Lawless (1982), Cohen and Whitten (1988), Bain and Engelhardt (1991)). It is easily shown that the random variable Z_{i} will have density

$$
\frac{1}{\sigma} f\left(\frac{z_{i}-X_{i} \beta}{\sigma}\right), \quad-\infty<z_{i}<\infty .
$$

As in Zenwirth (1990), for the location parameter, we will use $\alpha+\beta \ln j+\gamma j+\iota(i+j-2)$, where i is the accident year and j, the development year. Taylor (1986) cautions not to use cumulative claims amounts, but incremental claims in the analysis; otherwise, the estimates obtained would be biased, because of the non-independance of the cumulative amounts.

We will assume that $Y_{i}>0$. To model negative values of Y_{i}, Cohen and W hitten (1988)
use modified moment estimators and Cohen (1988), local maximum likelihood methods.

1.4 Outline of the paper

Section 2 considers the lognormal linear regression model and presents the results of a simulation study showing that the chain ladder estimate of the reserve is negatively biased. Other choices possible for the distribution of the random etror are the extreme value distribution, leading to the Weibull-extreme value regression model (section 3), the generalized loggamma (section 4), the logistic (section 5), and the log inverse gaussian distribution (section 6). We derive certain theoretical properties of these distributions, such as their moment generating function and moments. We show how the actuary can establish a reserve with a certain level of confidence (for example 80%), with a simulation.

In section 7 , we show that the MLE's of the regression and scale parameters exist and are unique when the error ϵ in the loglinear location-scale regression model has a logconcave density. Under misspecification of the error distribution in a linear location-scale model, the MLE's of the regression parameters are shown to be consistent (section 8), while we present a sufficient condition for the consistency of the MLE of the scale parameter, when the postulated model has lognormal errors. Finally, we present some remarks.

2 Lognormal linear regression model

When it is assumed that $\epsilon_{\text {; }}$ are independent and identically distributed $N(0,1)$ random variables, we obtain the lognormal linear regression model. Doray (1992) has studied

Table 4: Erequency distribution of the IBNR reserve under the normal error assumption

Amount	$M L E$	$C L E$	Amount	$M L E$	$C L E$
<13000	0	0	$30000-31000$	165	152
$13000-14000$	4	2	$31000-32000$	150	126
$14000-15000$	12	11	$32000-33000$	103	80
$15000-16000$	33	30	$33000-34000$	96	68
$16000-17000$	62	72	$34000-35000$	76	47
$17000-18000$	126	131	$35000-36000$	50	40
$18000-19000$	191	199	$36000-37000$	36	26
$19000-20000$	253	301	$37000-38000$	28	16
$20000-21000$	323	376	$38000-39000$	20	5
$21000-22000$	372	391	$39000-40000$	14	2
$22000-23000$	449	441	$40000-41000$	13	10
$23000-24000$	449	498	$41000-42000$	8	2
$24000-25000$	393	443	$42000-43000$	7	3
$25000-26000$	366	436	$43000-44000$	7	0
$26000-27000$	342	375	$44000-45000$	2	2
$27000-28000$	334	274	$45000-46000$	2	1
$28000-29000$	285	231	$46000-47000$	6	0
$29000-30000$	214	207	≥ 47000	9	2

extensively this model, taking into account the estimation error on the parameters and the statistical prediction error in the model. He has derived various estimators for the IBNR reserve, among them the maximum likelihood estimator and the uniformly minimum variance unbiased estimator (UMVUE), as well as an expression for the variance of the latter estimator. The variance of the IBNR reserve is also calculated. The joint distribution of the amounts in each cell of the lower triangle is shown to follow a multivariate lognormal (MLN) distribution.

To compare the traditional chain ladder estimator of the reserve with the MLE, a simulation was performed, assuming the model $\ln Y_{i j}=\alpha_{1}+\beta_{j}+\epsilon_{i j}$ is the true model.

Figure 1

IBNR reserve for log.normal regression

Five thousand sets of realizations of $Y_{i j}$ in the trapezium were randomly generated, where each $Y_{i j}$ is independent $L N\left(\dot{\alpha}_{i}+\dot{\beta}_{j}, \tilde{\sigma}^{2}\right)$, where the values of $\dot{\beta}$ and $\dot{\sigma}^{2}$ are the MLE's of the parameters. For each set, we calculated the chain ladder estimate (CLE) and the MLE of the predicted value of IBNR claims using the multivariate lognormal distribution (see appendix 10.1 for the algorithm used for the simulation). The results of the simulation are summarized in table 4 and figure 1 . We see from those results that the reserve has a distribution skewed to the right, which comes from the lognormal assumption. The reason why the chain ladder estimate, generally used by actuaries to determine insurance company reserves, underestimates the expected liability, is that it does not capture this long-tail behaviour, as is apparent from table 4.

The MLE of the reserve gives 25,262 , while the CLE gives 23,919 . The reserve for IBNR claims the insurance company will hold could be set at, for example, the 80 -th percentile of the predicted distribution of IBNR claims, that is at 29,019 in our example. The actuary could then state, that in his or her opinion, there is an 80% probability that the reserve will be sufficient to meet the liabilities of the current block of business.

Asymptotically (i.e. as the upper trapezium of data gets larger), the various variables to be predicted will become independent, and from that perspective, we can consider an asymptotic confidence interval for the reserve, using the central limit theorem. The lower bound for the 80% asymptotic confidence interval of the reserve is 29,514 , which can be compared with the amount of 29,019 obtained in the simulation.

A provision for adverse deviation could also be defined as equal to the 80 -th percentile
of the predicted distribution of IBNR claims minus the UMVUE of the reserve $(\mathbf{2 4 , 4 0 3)}$. This gives 4616 as the PAD for the claims of section 1.2.

3 Weibull-extreme value regression model

In this section, we examine the Weibull-extreme value regression model. Let us assume that ϵ follows a standard type I extreme value (or Gumbel) distribution with

probability density function (pdf)	$f(\epsilon)=\exp \left(\epsilon-e^{e}\right), \quad-\infty<\epsilon<\infty$,
cumulative distribution function (cdf)	$F(\epsilon)=1-\exp \left(-e^{\ell}\right)$,
moment generating function (mgf)	$M_{\ell}(t)=\Gamma(1+t), \quad t>-1$,
mean	$E(\epsilon)=-\gamma=-0.5772156649015329 \ldots$,
	where γ is Euler's constant
and variance	$\operatorname{Var}(\epsilon)=\pi^{2} / 6$.

The extreme value density is skewed to the left. The probability that a standard normal random variable take a value greater than 1.96 is 0.025 , while the corresponding probability for the standard extreme value is only 0.0008256. Lawless (1982, p. 17-19) and Johnson and Kotz (1970) discuss the properties of the extreme value distribution.

Under this assumption for the density of ϵ, Y_{i} has the pdf

$$
\frac{1}{\sigma e^{X, \theta}}\left(\frac{y_{i}}{e^{X, \beta}}\right)^{\frac{1}{\sigma}-1} \exp \left[-\left(\frac{y_{i}}{e^{X_{i} \beta}}\right)^{\frac{1}{\sigma}}\right], y_{i}>0
$$

which will be recognized as that of a Weibull random variable (Hogg and Klugman (1984)). -

Under this parametrization, the shape parameter is equal to $1 / \sigma$ and the scale parameter
to $e^{X, \beta}$. The hazard rate will be increasing if $\sigma<1$, decreasing if $\sigma>1$ and constant if $\sigma=1$, in which case the Weibull distribution reduces to the exponential distribution. The mean and variance of Y_{i} are:

$$
\begin{aligned}
E\left(Y_{i}\right) & =e^{X_{i} \rho} \Gamma(1+\sigma) \\
\operatorname{Var}\left(Y_{i}\right) & =e^{2 X_{1} \rho_{1}}\left[\Gamma(1+2 \sigma)-\Gamma(1+\sigma)^{2}\right] .
\end{aligned}
$$

A proof of those results is contained in Lawless (1982).
The likelihood function based on the data $z_{1}=\ln y_{i}$, is

$$
L(\beta, \sigma)=\prod_{i=1}^{n} \frac{1}{\sigma} \exp \left[\frac{z_{i}-X_{i} \beta}{\sigma}-\exp \left(\frac{z_{i}-X_{i} \beta}{\sigma}\right)\right],
$$

and the log likelihood is

$$
l(\beta, \sigma)=\sum_{i=1}^{n}\left[-\ln \sigma+\frac{z_{i}-X_{i} \beta}{\sigma}-\exp \left(\frac{z_{i}-X_{i} \beta}{\sigma}\right)\right] .
$$

Let us define $w_{i}=\left(z_{i}-X_{i} \beta\right) / \sigma$.
The first and second partial derivatives of l with respect to β_{j} and σ are

$$
\begin{aligned}
\frac{\partial l}{\partial \beta_{j}} & =-\frac{1}{\sigma} \sum_{i=1}^{n} X_{i j}+\frac{1}{\sigma} \sum_{i=1}^{n} X_{i j} e^{w_{i}}, j=1, \ldots, p . \\
\frac{\partial l}{\partial \sigma} & =-\frac{n}{\sigma}-\frac{1}{\sigma} \sum_{i=1}^{n} w_{i}+\frac{1}{\sigma} \sum_{i=1}^{n} w_{i} e^{w_{i}} . \\
\frac{\partial^{2} l}{\partial \beta_{j} \partial \beta_{k}} & =-\frac{1}{\sigma^{2}} \sum_{i=1}^{n} X_{i j} X_{i k} e^{w .}, j, k=1, \ldots, p . \\
\frac{\partial^{2} l}{\partial \sigma^{2}} & =\frac{n}{\sigma^{2}}+\frac{2}{\sigma^{2}} \sum_{i=1}^{n} w_{i}-\frac{2}{\sigma^{2}} \sum_{i=1}^{n} w_{i} e^{w_{i}}-\frac{1}{\sigma^{2}} \sum_{i=1}^{n} w_{i}^{2} e^{w_{i}} . \\
\frac{\partial^{2} l}{\partial \beta_{j} \partial \sigma} & =\frac{1}{\sigma^{2}} \sum_{i=1}^{n} X_{i j}-\frac{1}{\sigma^{2}} \sum_{i=1}^{n} X_{i j} e^{w_{i}}-\frac{1}{\sigma^{2}} \sum_{i=1}^{n} X_{i j} w_{i} e^{w_{i}}, \quad j=1, \ldots, p .
\end{aligned}
$$

In appendix 10.2, we have listed some asymptotic properties of MLE's. The terms in the observed information matrix can be simplified by using the fact that the MLE's for
β_{j} and σ satisfy the equations $\frac{\partial I}{\partial \partial}=\frac{\partial I}{\partial \sigma}=0$. The observed information matrix I_{0} then becomes

where $\dot{w}_{i}=\left(z_{i}-X_{i} \dot{\beta}\right) / \dot{\sigma}$.

The asymptotic variance-covariance matrix of the paraneters is equal to the inverse of I_{0}, and could be found using a symbolic computational language like MAPLE, or evaluated numerically. The expected information matrix can also easily be obtained (ref. Lawless (1982), p. 301-302).

Maximizing the log likelihood with the data of section 1.2 by using the Newton-Raphson algorithm or the SAS (1985) LIFEREG procedure, we find the MLE's, estimated standard errors and correlation matrix appearing in table 5. In section 7 , we show that for certain location-scale models, the MLE's exist and are unique; this is true in particular for the Weibull-extreme value regression model.

All parameters are highly significant (at the 0.0001 level). It should also be noticed that the scale parameter estimator $\dot{\sigma}$ is not independent of the location parameter estimator, as is the case in normal regression. This complicates somewhat the estimation of the IBNR reserve.

Table 5: Weibull-extreme value regression

parameter	MLE	std. error	correlation matrix				
α	9.02897	0.11505	1	0.429	-0.515	-0.461	-0.017
β	-3.26637	0.25407	0.429	1	.0 .972	0.214	0.0004
γ	0.40378	0.10372	-0.515	-0.972	1	-0.280	-0.006
ι	0.10811	0.01641	-0.461	0.214	-0.280	1	0.011
σ	0.02459	0.00642	-0.017	0.0004	-0.006	0.011	1

A Q-Q plot of the residuals appears in figure 2. It shows no evident departure from the extreme value distribution. It should be noted that the above standard errors and correlation matrix of the parameters are based on the joint asymptotic multivariate normal distribution of the MLE's. This approximation will be appropriate only when the number of cells in the trapezium of data is large enough (in our example, we have 45 cells).

How large is large enough? Bain and Engelhardt (1991) considered this problem for the Weibull distribution, but without covariates in the location parameter. They provide a table giving the bias of the MLE of the shape parameter of the Weibull distribution for different sample sizes. With a sample size of 40 , the $M L E$ overestimates the shape parameter by only 3.5%. If the sample size is only 10 , care should be taken, since the bias is then around 15%. Those factors were obtained by a simulation study. We will not correct for the bias in our analysis, but we should remember that this might be a good idea for small sample sizes.

To test for $\sigma=1$ (test of exponentiality of Y_{i}), we can use the asymptotic normality of the MLE's; unless the sample size is large, Lawless (1982) cautions that the normal approximation might not be very good. A likelihood ratio test can also be performed

Figure 2: Extreme value $Q-Q$ plot of residuals

using the test statistic

$$
\Lambda=-2 \log \frac{L(\bar{\beta}, 1)}{L(\dot{\beta}, \dot{\sigma})},
$$

where $\bar{\beta}$ is the MLE of β under $H_{0}: \sigma=1$; the likelihood ratio statistic Λ has an asymptotic $\chi_{(1)}^{2}$ distribution. Performing a simple normal test leads us to reject the hypothesis $H_{0}: \sigma=$ 1. A Weibull distribution is therefore more appropriate for the data than an exponential distribution.

We now turn our attention to the problem of predicting the IBNR reserve. In a loglinear location-scale model, the total error in the \log predicted amount $Z_{k l}$ is composed of two parts: an estimation error on the parameters and a statistical prediction error. We saw earlier that in the Weibull-extreme value regression model, the estimators of the parameters have an asymptotic multivariate normal distribution, while the process error has an independent extreme value distribution.

Let $Y_{k l}$ denote the random variable for the amount to be predicted in accident year k and development year l, and let us define $Z_{k l}=\ln Y_{k l}$. The random variable $Z_{k l}$ being equal to $Z_{k l}=\hat{a}+\hat{\beta} \ln k+\bar{\gamma} k+i(k+l-2)+\bar{\sigma} \iota$, we can appreciate the difficulty involved in trying to get its exact distribution. For this, we would need to find the distribution of the product of a normal and an extreme value random variable ($\hat{\sigma}$ and ϵ) and convolute this with a non-independent normal random variable. To get the distribution of $Y_{k 1}$, the distribution of $Z_{k l}$ is then exponentiated. It is highly doubtful that such a distribution would have a simple density. Instead of trying to accomplish this task, we will perform a simulation study to evaluate IBNR reserves. This will make it possible to find a confidence

interval for the reserve.

Table 6: Frequency distribution of the IBNR reserve under the extreme value error assumption

Amount	Frequency
<15000	0
$15000-16000$	1
$16000-17000$	12
$17000-18000$	54
$18000-19000$	144
$19000-20000$	357
$20000-21000$	664
$21000-22000$	904
$22000-23000$	982
$23000-24000$	791
$24000-25000$	605
$25000-26000$	285
$26000-27000$	142
$27000-28000$	46
$28000-29000$	8
$29000-30000$	4
$30000-31000$	1
>31000	0

In appendix 10.1, we show how to generate a multivariate normal distribution, using the Choleski decomposition method. To be able to simulate the random variable $Y_{k l}$, we just need to show how to generate a standard extreme value random variable ϵ, with cdf

$$
P\left[\epsilon \leq \epsilon_{0}\right]=1-\exp \left(-e^{\epsilon_{0}}\right),-\infty<\epsilon_{0}<\infty .
$$

This cdf is easily inverted, yielding

$$
\epsilon=\ln (-\ln (1-U)), \quad 0<U<1
$$

Figure 3: IBNR reserve for Weibull-extreme value regression

where U is a uniform random variable on the interval $[0,1]$. Note that $1-U$ is also uniform on $[0,1]$, simplifying the algorithm.

Table 6 and figure 3 contain the results of a simulation of 5000 values for the IBNR reserve. The mean of the IBNR claims is 22,402 and the standard deviation of this estimate is 2011 . The 80 -th percentile for the simulated distribution of the IBNR reserve is $\mathbf{2 3 , 9 8 0}$.

Comparison of the extreme value and the normal distributions shows that the former has a heavier left tail and a lighter right tail than the latter. The estimation error on the regression parameters is of the same order in both models, while the stochastic error is smaller in the extreme value case.

4 Generalized loggamma regression model

The regression model used in this section will be the following

$$
Z_{i}=\ln Y_{i}=X_{i} \beta+\sigma \epsilon_{i}
$$

where ϵ_{i} has a loggamma distribution with pdf

$$
f(\epsilon ; q)=\frac{|q|}{\Gamma\left(q^{-2}\right)} q^{-2 q-2} \exp \left[q^{-2}\left(q \epsilon-e^{q \tau}\right)\right],-\infty<\epsilon<\infty
$$

and the shape parameter q can take any non-zero value (ref. Lawless (1982), p. 322-328). Under this parametrization, as q tends to 0 , we obtain the normal distribution with pdf

$$
f(\epsilon)=\frac{1}{\sqrt{2 \pi}} \exp \left(-\epsilon^{2} / 2\right),-\infty<\epsilon<\infty .
$$

The following special cases for the random variable Y_{i} can be obtained for certain values of the parameters q and σ : Weibull $(q=1)$, exponential ($q=\sigma=1$), lognormal
$(q=0)$ and reciprocal Weibull $(q=-1)$. The density is negatively skewed for $q>0$, with absolute skewness and kurtosis increasing as q increases; it is positively skewed for $q>0$. A likelihood ratio test can be performed to test for the appropriateness of a certain member of the family.

Prentice (1974) and Farewell and Prentice (1977) have studied the properties of this generalized distribution. If we define the parameter $k=q^{\mathbf{- 2}}$, then it has moment generating function $\Gamma(k+t), t>-k$, mean $\psi(k)$ and variance $\psi^{\prime}(k)$, where $\psi(\cdot)$ and $\psi^{\prime}(\cdot)$ are respectively the digamma and trigamma functions, the first and second derivatives of the gamma function. The series expansion for these two functions are:

$$
\begin{aligned}
& \psi(n)=-\gamma+\sum_{k=1}^{n-1} \frac{1}{k}, \quad \text { for an integer } n \geq 2 \\
& \psi^{\prime}(z)=\sum_{k=0}^{\infty}(z+k)^{-2}, \quad z \neq 0,-1,-2 \ldots
\end{aligned}
$$

The \log likelihood function gives

$$
l(\beta, \sigma, q)=\sum_{i=1}^{n} \ln f\left(w_{i} ; q\right)-\ln \sigma
$$

where $w_{i}=\left(z_{i}-X_{i} \beta\right) / \sigma$ and

$$
\ln f\left(w_{i} ; q\right)=\ln |q|-2 q^{-2} \ln q-\ln \Gamma\left(q^{-2}\right)+q^{-2}\left(q w_{i}-e^{q w_{i}}\right)
$$

The first and second partial derivatives of l with respect to β and σ gives

$$
\begin{aligned}
\frac{\partial l}{\partial \beta_{j}} & =\sum_{i=1}^{n} \frac{X_{i j}}{q \sigma}\left[\exp \left(q w_{i}\right)-1\right], j=1, \ldots, p . \\
\frac{\partial l}{\partial \sigma} & =\sum_{i=1}^{n}\left\{\frac{w_{i}}{q \sigma}\left[\exp \left(q w_{i}\right)-1\right]-\frac{1}{\sigma}\right\}
\end{aligned}
$$

$$
\begin{aligned}
\frac{\partial^{2} l}{\partial \beta_{j} \partial \rho_{k}} & =\sum_{i=1}^{n} X_{i j} X_{i k}\left(\frac{-1}{\sigma^{2}}\right) \exp \left(q w_{i}\right) \\
\frac{\partial^{2} l}{\partial \sigma^{2}} & =\sum_{i=1}^{n} \frac{1}{\sigma^{2}}\left[1-w_{i}^{2} \exp \left(q w_{i}\right)\right]-\frac{2 w_{i}}{q \sigma^{2}}\left[\exp \left(q w_{i}\right)-1\right] \\
\frac{\partial^{2} l}{\partial \beta_{j} \partial \sigma} & =\sum_{i=1}^{n} X_{i j}\left(\frac{-1}{\sigma^{2}}\right)\left(w_{i} \exp \left(q w_{i}\right)+\frac{1}{q}\left(\exp \left(q w_{i}\right)-1\right] .\right.
\end{aligned}
$$

Again, using the fact that the MLE's satisfy $\frac{\partial I}{\partial \sigma}=\frac{\partial I}{\partial \beta_{,}}=0$, we can simplify the last two partial derivatives and obtain

$$
\left.\frac{\partial^{2} l}{\partial \sigma^{2}}\right|_{(\hat{\phi}, \Delta)}=-\frac{1}{\hat{\sigma}^{2}}\left[n+\sum \dot{w}_{i}^{2} \exp \left(q \dot{w}_{i}\right)\right]
$$

and

$$
\left.\frac{\partial^{2} l}{\partial \beta_{j} \partial \sigma}\right|_{(\dot{\beta}, \Delta)}=-\frac{1}{\hat{\sigma}^{2}} \sum X_{i j} \dot{w}_{i} \exp \left(q \dot{w}_{i}\right) .
$$

To find the MLE's of the parameters, we can use the approach suggested by Farewell and Prentice (1977). The parameter q is fixed at a value q_{0} and the profile log likelihood is maximized using the Newton-Raphson algorithm over the regression parameters β and the scale parameter σ. This gives the estimates ($\left.\dot{\beta}\left(q_{0}\right), \dot{\sigma}\left(q_{0}\right)\right)$. This procedure of maximizing the profile log likelihood is repeated for many values of q_{0}, until an overall maximum of the \log likelihood over q_{0} is attained. This value gives the MLE \dot{q}.

The SAS package fits generalized loggammaregression models. Using the SAS LIFEREG procedure for complete data, we find the results appearing in Table 7.

The default convergence criterion used by SAS is that a maximum is assumed to have occurred if the relative change in the parameters is less than 0.001 . However, as can be seen from table 8, the likelihood keeps increasing beyond this value of \dot{q}. The convergence criterion we used is that the score statistic with respect to each parameter should be of

Table 7: Generalized loggamma regression (SAS program)

parameter	MLE	std. error	correlation matrix					
α	9.32243	0.02789	1	0.469	-0.521	-0.160	-0.497	0.497
β	-3.12566	0.07028	0.469	1	-0.991	0.645	-0.150	0.150
γ	0.35670	0.02969	-0.521	-0.991	1	-0.626	0.124	-0.123
ι	0.10058	0.00357	-0.160	0.645	-0.626	1	-0.087	0.086
σ	0.04035	0.03187	-0.497	-0.150	0.124	-0.087	1	-0.981
q	9.99342	7.63421	0.497	0.150	-0.123	0.086	-0.981	1

the order of 10^{-6}. Past the value of $q_{0}=31.623$ (corresponding to $k=q_{0}^{-2}=0.001$), some elements of the information matrix become so large that it cannot be inverted and the standard Newton-Raphson algorithm fails.

Table 8: Generalized loggamma regression for various values of q_{0}

q_{0}	$\dot{\alpha}\left(q_{0}\right)$	$\dot{\beta}\left(q_{0}\right)$	$\hat{\gamma}\left(q_{0}\right)$	$\hat{i}\left(q_{0}\right)$	$\dot{\sigma}\left(q_{0}\right)$	$l\left(q_{0}\right)$
0	8.97986	-3.14641	0.30881	0.12298	0.31380	-11.70862
1	9.02897	-3.26637	0.40378	0.10811	0.24588	-8.66845
2	9.15105	-3.19165	0.38375	0.10369	0.17552	-7.82173
3	9.24020	-3.13178	0.35787	0.10264	0.12742	-7.23110
4	9.27974	-3.12132	0.35336	0.10188	0.09803	-6.64823
6	9.30818	-3.12572	0.35608	0.10088	0.06590	-5.68347
8	9.31835	-3.12611	0.35666	0.10061	0.04950	-5.03186
10	9.32308	-3.12419	0.35609	0.10063	0.03964	-4.62194
20	9.33019	-3.11565	0.35296	0.10088	0.01986	-3.87515
30	9.33340	-3.11023	0.35061	0.10092	0.01324	-3.68571

A few remarks should be made here.

1. the likelihood is so flat that it makes the standard error of \dot{q} (7.63421), calculated assuming asymptotic normality, totally unreliable. Bain and Engelhardt (1991, p. 393) report that the asymptotic normal distribution for \dot{k} will not be very accurate
unless the sample size is greater than 200 or 400 . Farewell and Prentice (1977) note that the skewness in the \dot{q} distribution is related to an asymptotic variance that increases rapidly as $|q|$ increases. To get a confidence interval for \dot{q}, a likelihood ratio test would be preferable. This interval for \dot{q} would include all the values q_{0} satisfying

$$
-2\left[\ln l\left(\dot{q_{1}}, \dot{\beta}, \dot{\sigma}\right)-\ln l\left(q_{0}, \bar{\beta}\left(q_{0}\right), \hat{\sigma}\left(q_{0}\right)\right) \leq 3.841\right.
$$

2. the correlation between \dot{o} and \dot{q} almost equal to -1 should be noted. From table 8 , we can see that as q_{0} increases, $\dot{\sigma}\left(q_{0}\right)$ decreases. Cox and Hinkley (1968) have shown that in the general regression model $Z=\alpha+X \beta+\sigma \epsilon(q),(\dot{\alpha}, \dot{\sigma}, \hat{q})$ are asymptotically independent of $\dot{\beta}$, if the columns of X add to zero.
3. The regression parameters $(\alpha, \beta, \gamma, \iota)$ for any fixed value of $q 0$ are very close to those obtained in the normal and extreme value regression, and so is their standard error and their correlation matrix.

It should be remembered however that, although the MLE \dot{q} cannot be found accurately, we know that it exists and is unique, because of the log-concavity of the loggamma distribution (see section 7).

If the exact value of \dot{q}, was available, this would make the estimation of E (IBNR claims) much more complicated than in the normal or extreme value cases, because of the non-independence of \dot{q} with $\hat{\beta}$ and $\hat{\sigma}$. In this model, $Y_{k l}$ is equal to

$$
Y_{k l}=e^{\delta+\dot{\phi} \ln k+4 k+i(k+1-2)+\partial e(\phi)},
$$

Figure 4: Loggamma (q=10) Q-Q plot of residuals

and we can see that the estimation error on the parameters is not independent of the process error $\epsilon(\dot{q})$, since $\dot{\beta}, \dot{\sigma}$ are estimated using the same set of past data which is used in estimating \hat{q}.

To assess the adequacy of the loggamma regression model, we fitted that model with a fixed q value, $q=10$. Figure 4 presents the corresponding $Q \cdot Q$ plot. Since the left tail of the distribution is too short, we will not simulate the IBNR reserve; however, Devroye (1986) presents many algorithms to generate gamma random variables.

5 Logistic regression model

The logistic linear model is

$$
Z_{i}=\ln Y_{i}=X_{i} \beta+\sigma \epsilon_{i}
$$

where ϵ has a standard logistic distribution with (see Lawless (1982), p. 46)
pdf $\quad f(\epsilon)=\frac{e^{2}}{\left(1+e^{2}\right)^{2}},-\infty<\epsilon<\infty$,
cdf $\quad F(\varepsilon)=1-\left(1+e^{e}\right)^{-1}$,
$\mathrm{mgf} \cdot \Gamma(1+t) \Gamma(1-t),|t|<1$,
mean $\quad E(\epsilon)=0$,
variance $\operatorname{Var}(\epsilon)=\pi^{2} / 3$.

The density of the logistic distribution somewhat looks like the standard normal density. The symmetry of the pdfaround $\epsilon=0$ implies that there is probability $1 / 2$ that the amount Y_{i} be understated or overstated. The probability that a standard logistic random variable
exceeds 1.96 is 0.12347 . The logistic distribution has thick tails, which behave like that of the exponential distribution. The loglogistic is a special case of the Burr distribution, with the parameter α equal to 1 (ref. Panjer and Willmot (1992), p. 120).

The random variable Z_{i} has density

$$
f_{Z_{i}}\left(z_{i}\right)=\frac{1}{\sigma} \frac{\exp \left[\frac{z_{i}-X_{1} \rho}{\sigma}\right]}{\left[1+\exp \left(\frac{z_{i}-X_{i} \rho}{\sigma}\right)\right]^{2}}, \quad-\infty<z_{i}<\infty
$$

and Y_{i} has the loglogistic density

$$
\begin{equation*}
\frac{1}{\sigma e^{X i \beta}}\left(\frac{y_{i}}{e^{X} X_{i} \beta}\right)^{\frac{1}{\sigma}-1}\left[1+\left(\frac{y_{i}}{e^{X_{i} \beta}}\right)^{\frac{1}{\sigma}}\right]^{-2}, y_{i}>0 \tag{5.1}
\end{equation*}
$$

where again $e^{x, \theta}$ is the scale parameter and $1 / \sigma$ the shape parameter. In proposition 5.1, we derive the moments of order k of a loglogistic random variable with density 5.1 and show that its moment generating function does not exist.

Proposition 5.1: If Y has density

$$
f_{Y}(y)=\frac{\delta^{1 / \sigma}}{\sigma} \frac{y^{1 / \sigma-1}}{\left[1+\delta^{1 / \sigma} y^{1 / \sigma}\right]^{2}}, \quad y>0
$$

then

$$
E\left(Y^{k}\right)=\delta^{\frac{1}{a}-(k+1)}[1-\sigma(k+1)] \pi \operatorname{cosec}[\pi \sigma(k+1)]
$$

for all k such that $\frac{2}{\sigma}-1<k<\frac{1}{\sigma}-1$, and the moment generating function of Y does not exist.

Proof: $E\left(Y^{k}\right)=\int_{0}^{\infty} y^{k} \frac{\delta^{1 / \sigma}}{\sigma} \frac{y^{1 / \sigma-1}}{\left[1+\delta^{1 / \sigma} y^{1 / \sigma}\right]^{2}} d y$.
By letting $y^{1 / \sigma}=v$, we obtain

$$
E\left(Y^{k}\right)=\delta^{1 / \sigma} \int_{0}^{\infty} \frac{v^{\sigma(k+1)-1}}{\left[1+\delta^{1 / \sigma} v\right]^{2}} d v
$$

Using the formula

$$
\int_{0}^{\infty} \frac{x^{\mu-1}}{(1+\beta x)^{2}} d x=\frac{1-\mu}{\beta^{\mu}} \pi \operatorname{cosec} \mu \pi
$$

the result is easily obtained. The integral will have a finite value iff

$$
-1<(k+1) \sigma-3<1
$$

or

$$
\frac{2}{\sigma}-1<k<\frac{4}{\sigma}-1
$$

The moments of all positive orders do not exist; therefore, the moment generating function of Y does not exist.

The likelihood function is

$$
L(\beta, \sigma)=\prod_{i=1}^{n} \frac{1}{\sigma} \frac{\exp \left(w_{i}\right)}{\left[1+\exp \left(w_{i}\right)\right]^{2}}, \quad-\infty<w_{i}<\infty
$$

where $w_{i}=\frac{2_{i}-X_{1} \beta}{\sigma}$, from which we get the log likelihood

$$
l(\beta, \sigma)=\sum_{i=1}^{n}\left[w_{i}-2 \ln \left(1+e^{\omega_{i}}\right)-\ln \sigma\right] .
$$

For first and second order partial derivatives with respect to the parameters, see Kalbfleisch and Prentice (1980; p. 54-57). The SAS procedure LIFEREG was used to fit a logistic regression model to the data of section 1.3. The MLE's of the parameters, their estimated standard error and the estimated correlation matrix appear in table 3.5.

A $Q \cdot Q$ plot of the residuals in figure 5 shows that the logistic distribution does not provide a very good fit for the right tail. We will therefore not attempt to predict the IBNR reserve, but just indicate how it could easily be done by simulation, if it was appropriate to do so.

Figure 5: Logistic Q-Q plot of residuals

Table 9: Logistic regression

parameter	MLE	std. error	correlation matrix				
α	8.94023	0.13799	1	0.437	-0.516	-0.540	0.039
β	-3.31681	0.30143	0.437	1	-0.964	0.078	0.072
γ	0.38904	0.12058	-0.516	-0.964	1	-0.169	-0.083
ι	0.11789	0.02004	-0.540	0.078	-0.169	1	0.025
σ	0.17957	0.02203	0.039	0.072	-0.083	0.025	1

The loglogistic model for $Y_{k l}$ is $Y_{k l}=e^{\delta+\dot{\delta} \ln k+i k+i(k+1-2)+\partial e}$. The joint asymptotic distribution for $(\bar{\beta}, \dot{\sigma})$ is multivariate normal with parameter estimates given in table 9 and can be easily simulated (see. Appendix 10.1). Inverting the cdf of the logistic random variable fyields

$$
\epsilon=\ln \left(\frac{1-U}{U}\right), \text { where } U \text { is uniform }[0,1] .
$$

The value of is then exponentiated to give $Y_{k l}$.

6 Log Inverse Gaussian regression model

The inverse gaussian regression model for Y_{1} is $Y_{i}=e^{X, \theta+e_{i}}$, where the multiplicative error e^{e} is assumed to have a standard inverse gaussian (IG), or Wald distribution, with density

$$
f_{v}(v)=\left(2 \pi \lambda v^{3}\right)^{-1 / 2} \exp \left\{-\frac{(v-1)^{2}}{2 \lambda v}\right\}, \quad v>0, \lambda>0
$$

This long-tail positively skewed distribution with exponential tails has a shape similar to that of the lognormal distribution (ref. Cohen and Whitten (1988), p. 77) and is located between the gamma and lognormal in Pearson's system of distributions, which
shows possible regions of variation of the skewness and kurtosis (Jorgensen (1982), p. 19). To learn more about the inverse gaussian distribution, see Chhikara and Folks (1989) and Jorgensen (1982). Here are some of its important properties. The mean equals 1 and the variance λ. It is unimodal and a member of the exponential family. If V is $I G(1, \lambda)$, and $a>0$ is a constant, $a V$ is $I G(a, a \lambda)$. The sum of n independent $I G(1, \lambda)$ is $I G(n, \lambda)$.

Taking the \log of Y_{i}, we obtain the loglinear model

$$
Z_{i}=\ln Y_{i}=X_{i} \beta+\epsilon_{i}
$$

where ϵ has a \log inverse gaussian (LIG) distribution. The pdf of ϵ is now derived.
Let $\varepsilon=\ln V$, where V is $I G(1, \lambda)$. Then $V=e^{e}$ and $d V / d \varepsilon=e^{e}$. It follows that

$$
\begin{align*}
f(\epsilon) & =e^{e}\left(2 \pi \lambda e^{3 \epsilon}\right)^{-1 / 2} \exp \left[-\frac{\left(e^{e}-1\right)^{2}}{2 \lambda e^{e}}\right] \\
& =\left(2 \pi \lambda e^{e}\right)^{-1 / 2} \exp \left[-\frac{\left(e^{e}-2+e^{-\epsilon}\right)}{2 \lambda}\right] \\
& =(2 \pi \lambda)^{-1 / 2} e^{-\epsilon / 2} e^{1 / \lambda} \exp \left[-\frac{1}{\lambda} \cosh \epsilon\right] \tag{6.1}
\end{align*}
$$

where $\cosh \epsilon=\left(e^{\imath}+e^{-\tau}\right) / 2$.
In the next two propositions, we derive the moment generating function and the mean of the LIG distribution.

Proposition 6.1: The mgf of the LIG distribution with pdf (6.1) is

$$
M_{i}(t)=(2 \pi \lambda)^{-1 / 2} e^{1 / \lambda} 2 K_{1 / 2-t}(1 / \lambda) .
$$

Proof: Let the constant $C=(2 \pi \lambda)^{-1 / 2} e^{1 / \lambda}$. Then

$$
\begin{aligned}
M_{\imath}(t) & =E\left(e^{t \tau}\right)=\int_{-\infty}^{\infty} e^{t \iota} f(\epsilon) d \epsilon \\
& =C \int_{-\infty}^{\infty} e^{\varepsilon(t-1 / 2)} \exp \left[-\frac{1}{\lambda} \cosh \epsilon\right] d .
\end{aligned}
$$

Using the formula

$$
\int_{-\infty}^{\infty} \exp \left[-\alpha x-\frac{1}{\lambda} \cosh x\right] d x=2 K_{a}(1 / \lambda)
$$

on page 309 of Gradshteyn and Ryzhik (1980), we get

$$
M_{\mathrm{e}}(t)=(2 \pi \lambda)^{-1 / 2} e^{1 / \lambda} 2 K_{1 / 2-t}(1 / \lambda)
$$

for $t \epsilon[-\infty, 1 / 2]$, where $K_{a}(\cdot)$ denotes the Bessel function of the third kind of order α.

Proposition 6.2

$$
E(\epsilon)=e^{2 / \lambda}\left\{-\gamma-\ln (2 / \lambda)-\sum_{n=1}^{\infty} \frac{(-1)^{n}(2 / \lambda)^{n}}{n \cdot n!}\right\}
$$

Proof: We know that $E(\epsilon)=\left.M_{\prime}^{\prime}(t)\right|_{t=0}$.
The reader will appreciate the difficulty involved in taking the derivative of $M_{e}(t)$ with respect to t, since we need to differentiate with respect to the order of the Bessel function. From Abramowitz and Stegun (1972), p. 445, we get

$$
\left.\frac{\partial}{\partial \alpha} K_{a}(x)\right|_{a=1 / 2}=-\sqrt{\frac{\pi}{2 x}} E_{i}(-2 x) e^{x}
$$

where $-E_{i}(-x)=E_{1}(x)=\int_{x}^{\infty} \frac{e^{-t}}{t} d t$. So

$$
\begin{aligned}
E(\epsilon) & =(2 \pi \lambda)^{-1 / 2} e^{1 / \lambda} \cdot 2 \sqrt{\pi \lambda / 2} E_{1}(2 / \lambda) e^{1 / \lambda} \\
& =e^{2 / \lambda} E_{1}(2 / \lambda)
\end{aligned}
$$

where the series expansion for $E_{1}(x)$ is

$$
E_{1}(x)=-\gamma-\ln x-\sum_{n=1}^{\infty} \frac{(-1)^{n} x^{n}}{n \cdot n!}
$$

Let us now consider the estimation of the parameters λ and $\beta . Y_{i}$ has an inverse gaussian distribution with parameters ($e^{X_{i} \beta}, \lambda e^{X, \beta}$). The likelihood function is

$$
L(\beta, \lambda)=\prod_{i=1}^{n} e^{x_{i} \beta}\left(2 \pi \lambda e^{x_{i} \beta} y_{i}^{3}\right)^{-1 / 2} \cdot \exp \left\{-\frac{\left(y_{i}-e^{x_{i} \beta}\right)^{2}}{2 \lambda e^{X_{i} \beta} y_{i}}\right\}
$$

and the \log likelihood is

$$
l(\beta, \lambda)=\sum_{i=1}^{n} X_{i} \beta-\frac{1}{2} \ln \lambda-X_{i} \beta / 2-\frac{3}{2} \ln y_{i}-\frac{\left(y_{i}-e^{X_{i} \beta}\right)^{2}}{2 \lambda e^{X_{i} \beta_{i}} y_{i}} .
$$

The partial derivatives are

$$
\frac{\partial l}{\partial \lambda}=\sum_{i=1}^{n} \frac{-1}{2 \lambda}+1 \quad \frac{\left.e^{X_{i} S}\right)^{2}}{\overline{X, O} y_{i}}
$$

so that $\dot{\lambda}=\sum \frac{\left(y_{i}-x^{x_{i}} \boldsymbol{\phi}\right)^{2}}{n e^{x_{i}} d_{i}}$.

$$
\begin{aligned}
\frac{\partial l}{\partial \beta_{j}} & =\sum_{i=1}^{n} \frac{X_{i j}}{2 \lambda}\left[\lambda+y_{i} e^{-x_{i} \beta}-e^{x_{i} \beta}\right] \\
\frac{\partial^{2} l}{\partial \lambda^{2}} & =\sum_{i=1}^{n} \frac{1}{2 \lambda^{2}}-\frac{\left(y_{i}-e^{X_{i} \beta}\right)^{2}}{\lambda^{3} e^{X} \beta_{i} y_{i}} \\
\frac{\partial^{2} l}{\partial \lambda \partial \beta_{j}} & =\sum_{i=1}^{n} \frac{-X_{i j}}{2 \lambda^{2}}\left[y_{i} e^{-X_{i} \beta}-e^{X_{i} \beta} / y_{i}\right] \\
\frac{\partial^{2} l}{\partial \beta, \partial \beta_{k}} & =\sum_{i=1}^{n} \frac{X_{i j} X_{i k}}{2 \lambda}\left[-y_{i} e^{-X_{i} \beta}-e^{X_{i} \beta} / y_{i}\right]
\end{aligned}
$$

To find the MLE's of β and λ, one could use the Newton-Raphson algorithm. The \log concavity of the LIG distribution will guarantee the existence of unique MLE's (see section 7).

The quantiles of this distribution could be obtained from the IG distribution, since

$$
P\left[\epsilon \leq \epsilon_{0}\right]=P\left[e^{c} \leq e^{c_{0}}\right]=P\left[Y \leq e^{c_{0}}\right]
$$

where $Y \sim I G$. Therefore the q quantile of the LIG distribution is equal to the log of the q quantile of the IG distribution. Those can be calculated or obtained from a table, e.g. Koziol (1989). If an inverse gaussian regression model was found to be appropriate, to simulate $Y_{k l}=e^{\dot{\alpha}+\hat{b} \ln k+i k+i(k+l-2)+e}$, we would need to simulate e^{e}, which is $I G(1, \lambda)$. Michael, Schucany and Has (1976) developed an algorithm to simulate such a distribution.

7 Existence and uniqueness of MLE's

In this section, we show that all the distributions used in this chapter for the error ϵ are log-concave. A consequence of this fact is that the MLE's will exist and be unique, although they need not be finite (ref. Burridge (1981)). When convergence is achieved in the Newton-Raphson algorithm, this implies that we found a global maximum, not just a local maximum.

Let us consider the loglinear location-scale model

$$
Z_{i}=\ln Y_{i}=X_{i} \beta+\sigma \epsilon_{i} .
$$

If we reparametrize to $\phi=1 / \sigma$, the log-likelihood of the data becomes

$$
l(\sigma, \beta)=n \ln \phi+\sum_{i=1}^{n} \ln f\left(w_{i}\right)
$$

where $w_{i}=\left(z_{i}-X_{i} \beta\right) \phi$ and $f(\cdot)$ is the density function of the error ϵ_{i}. Since w_{i} is a linear function of each of the parameters β and ϕ and is therefore concave, and the function In is concave, l will be concave provided $\ln f(\cdot)$ is concave (ref. Burride (1981)). We have therefore shown the remarkable property that, in a loglinear location-scale regression
model, the existence of the MLE's does not depend on the data but only on the logconcavity of the density of the error ϵ. We now show this is indeed the case for the five distributions used so far.

1. If $\epsilon \sim N(0,1), f(\epsilon)=\frac{1}{\sqrt{2 \pi}} \exp \left(-\epsilon^{2} / 2\right)$, and $\ln f(\epsilon)=K-\epsilon^{2} / 2$; so $\frac{\partial^{2}}{\partial \epsilon^{2}} \ln f(\epsilon)=-1<$ $0 \forall \epsilon$.
2. If $\epsilon \sim$ extreme value, $f(\epsilon)=\exp \left(\epsilon-e^{\iota}\right)$, and $\ln f(\epsilon)=\epsilon-e^{e} ;$ so $\frac{\partial^{2}}{\partial c^{2}} \ln f(\epsilon)=-e^{e}<$ $0 \forall \epsilon$.
3. If $\epsilon \sim$ generalized loggamma,

$$
f(\epsilon ; q)=\frac{|q|}{\Gamma\left(q^{-2}\right)} q^{-2 q^{-2}} \exp \left[q^{-2}\left(\epsilon q-e^{q e}\right)\right]
$$

and $\ln f(\epsilon ; q)=K+q^{-2}\left(\epsilon q-e^{q c}\right) ;$ then $\frac{\partial^{2}}{\partial c^{2}} \ln f(\epsilon ; q)=-e^{q \ell}<0, \forall \epsilon$.
4. If $\epsilon \sim \operatorname{logistic,~} f(\epsilon)=\frac{e^{f}}{\left(1+e^{f}\right)^{2}}$ then $\ln f(\epsilon)=\epsilon-2 \ln \left(1+e^{\varepsilon}\right)$ and $\frac{\partial^{2}}{\partial e^{2}} \ln f(\epsilon)=\frac{-2 e^{-\varepsilon}}{\left(1+e^{-9}\right)^{2}}<$ $0 \forall \epsilon$.
5. If $\epsilon \sim L I G, f(\epsilon)=\left(2 \pi \beta e^{e}\right)^{-\frac{1}{2}} \exp \left[\frac{-\left(\varepsilon^{e / 2}-e^{-c / 2}\right)^{2}}{2 \beta}\right]$; so $\ln f(\epsilon)=K-\frac{e}{2}-\frac{\left(e^{c / 2}-e^{-c / 2}\right)^{2}}{2 \beta}$,

$$
\frac{\partial \ln f(\epsilon)}{2 \epsilon}=-\frac{1}{2}-\frac{e^{\varepsilon}-e^{-\epsilon}}{2 \beta}
$$

and $\frac{\partial^{2}}{\partial e^{2}} \ln f(\epsilon)=-\left(\frac{e^{4}+e^{-\epsilon}}{2 \hat{\theta}}\right)<0 \forall \epsilon$.

An example of a distribution for ϵ which does not have the property of log-concavity for all ϵ is the Student's t distribution with n degrees of freedom, and density

$$
f(\epsilon)=\frac{\left(1+\epsilon^{2} / 2 n\right)^{-(n+1) / 2}}{\sqrt{n} \beta(1 / 2, n / 2)} .
$$

Then $\ln f(\epsilon)=K-\frac{1}{2}(n+1) \ln \left(1+\epsilon^{2} / n\right)$,

$$
\frac{\partial}{\partial \epsilon} \ln f(\epsilon)=-(n+1) \epsilon /\left(\epsilon^{2}+n\right)
$$

and $\frac{\partial}{\partial c^{2}} \ln f(\epsilon)=-(n+1) \frac{n-\epsilon^{2}}{\left(n+\epsilon^{2}\right)^{2}}$, which is positive for $\epsilon>\sqrt{n}$ or $\epsilon<-\sqrt{n}$.

8 Consistency of the parameters under error misspecificatic

Gould and Lawless (1988) investigated the consistency of the maximum likelihood estimators of the regression parameters under misspecification of the error distribution in a linear location-scale model.

The postulated model is

$$
\begin{equation*}
Z=\alpha+X \beta+\sigma \epsilon, \quad-\infty<\epsilon<\infty \tag{8.1}
\end{equation*}
$$

where σ is a scale parameter and ϵ has a specified distribution with density $f(\epsilon)$. They assume that the true unknown model is given by

$$
\begin{equation*}
Z=\mu_{0}+X \mu+\tau w, \quad-\infty<w<\infty \tag{8.2}
\end{equation*}
$$

where w has density $g(w)$. The location-scale structure of the postulated model has the correct form; only the error distribution is misspecified.

If the following three assumptions are satisfied,

1. the covariates are centered;
2. all the expectations below exist and
3. $n^{-1}\left(X^{\prime} X\right)$ is bounded as $n \rightarrow \infty$,

White (1982) proves that the MLE's of (α, β, σ) converge in probability to a unique limit ($\alpha^{*}, \beta^{*}, \sigma^{*}$). Gould and Lawless (1988) then show that $\dot{\beta}=\mu^{*}$ and $\dot{\beta}$ is therefore a consis. tent estimator of μ. In addition, for $\hat{\alpha}$ and $\hat{\sigma}$ to be consistent estimators of μ_{0} and r, they must satisfy the two equations

$$
E_{T}\left(\frac{\partial}{\partial W} \log W\right)=0
$$

and

$$
\begin{equation*}
E_{T}\left(W \cdot \frac{\partial}{\partial W} \log (W)+1\right)=0 \tag{8.3}
\end{equation*}
$$

where $W=\left(r w+\mu_{0}-\alpha^{*}\right) / \sigma^{*}$ and E_{T} indicates that the expectation is taken with respect to the true error distribution $g(w)$.

Gould and Lawless (1988) also analyze the asymptotic efficiency of the MLE based on the correct model. We will derive conditions that $g(\boldsymbol{w})$ must satisfy in order for $\dot{\alpha}$ and $\hat{\sigma}$ to be consistent estimators of μ_{0} and τ, when the error ϵ in the postulated model (8.1) has a normal $N(0,1)$ distribution.

Lemma 8.1: Under the assumption of standard normal errors in model (8.1), a sufficient condition for $\dot{\alpha}$ and $\dot{\sigma}$ to be consistent estimators of μ_{0} and τ is that $E(w)=0$ and $\operatorname{Var}(w)=1$.

Proof: If $f(\epsilon)=\frac{1}{\sqrt{2 \pi}} e^{-\epsilon^{2} / 2}$, then $\frac{\partial}{\partial \epsilon} \log f(\epsilon)=-\epsilon$, and the equations (8.3) become $E_{T}(W)=0$ and $E_{T}\left(W^{2}\right)=1$.

Since $W=\left(\tau w+\mu_{0}-\alpha^{*}\right) / \sigma^{*}$, the condition $E_{T}(W)=0$ implies that $\mu_{0}=\alpha^{*}$ i.e. $\dot{\alpha}$ is a consistent estimator of μ_{0}. If $E_{T}(W)=0$, then $E_{T}\left(W^{2}\right)=\operatorname{Var}(W)=\left(\tau / \sigma^{*}\right)^{2} \operatorname{Var}(w)=$

1. The condition $\operatorname{Var}(w)=1$ will imply that $\tau=\sigma^{*}$, i.e. that $\dot{\sigma}$ is a consistent estimator of r.

The consistency of $\dot{\alpha}$ and $\dot{\sigma}$ therefore depends only on the first two moments of the distribution of w, when the postulated model is lognormal linear.

We must point out here that one of the assumptions for the above development to be valid is that $n^{-1}\left(Y^{\prime}, Y\right)$ be bounded as $n \rightarrow \infty$. This condition is not verified in the model

$$
Y_{i j}=\alpha+\beta \ln j+\gamma j+\iota(i+j-2)+\epsilon_{i j}
$$

The covariate i would need to be removed from the model, for example by normalizing the amounts $Y_{i j}$, in order for $n^{-1}\left(X^{\prime} X\right)$ to be bounded as $n \rightarrow \infty$.

9 Conclusion

In this paper, we have presented an anthology of models differing between them only in the distribution assumed for the error ϵ. To discriminate between the normal, extreme value, logistic and loggamma distribution for ϵ, we can assume that ϵ belongs to the generalized $\log F$ distribution (Prentice (1974)), with pdf

$$
f(\epsilon)=\left(m_{1} / m_{2}\right)^{m_{1}} e^{w m_{1}}\left(1+m_{1} e^{w} / m_{2}\right)^{-\left(m_{1} / m_{2}\right)}
$$

After finding the MLE's ($\left.\dot{m}_{1}, \dot{m}_{2}\right)$, we can perform a likelihood ratio test for

$$
\begin{array}{ll}
\left(m_{1}, m_{2}\right)=(1,1): & \text { logistic distribution } \\
\left(m_{1}, m_{2}\right)=(1, \infty): & \text { extreme value distribution } \\
m_{2}=\infty: & \text { generalized loggamma distribution } \\
\left(m_{1}, m_{2}\right) \rightarrow(\infty, \infty): & \text { normal distribution }
\end{array}
$$

to select one particular member of the family. Gould (1986) did an extensive study of the location-scale model with the error ϵ following the $\log F$ distribution. Her conclusions are that if one tries to estimate two shape parameters as in the $\log F$ family, the precision of the estimates may be so low as to make them virtually uninformative. However, as we have also observed, the $M L E \dot{\beta}$ of the regression parameters is quite robust with respect to misspecification of the distribution of ϵ.

Numerous other researchers have in the past also encountered difficulty when trying to estimate the shape parameter of the generalized loggamma distribution. Lawless (1982, p. 237), observed that, even with sample sizes of 200 or 300 , it is not uncommon for the Newton-Raphson algorithm not to converge to the MLE's. Because in usual insurance situations, the trapezium of data contains a small number of cells (in our case, 45 observations with 5 parameters to estimate), the actuary might encounter problems with this distribution. According to Prentice (1974), two distributions in the loggamma family with very different values of the shape parameter k, will look very similar, creating estimation problems. The extreme value distribution $(q=1)$ is difficult to discriminate from the normal distribution ($q=0$), when the sample size is small.

In view of these facts, we therefore recommend that a simple distribution be assumed
for ϵ, like the extreme value or the normal. After comparing the log likelihood, fit can be assessed by a $Q \cdot Q$ plot. If a symmetric distribution is needed, the normal distribution should be assumed for ϵ, since it is the only symmetric member of the generalized loggamma family. Fitting the normal model is useful for finding initial parameter estimates for the extreme value model. The estimated IBNR reserve can then be easily calculated under both assumptions.

The assumption of a normal distribution for ϵ presents one advantage over that of the extreme value distribution. When reserves are to be discounted for interest, we can still find the distribution of the present value of the future payments. If the force of interest δ is constant over a year, it follows from a property of the lognormal distribution that the joint distribution of the discounted value of the future payments is also multivariate lognormal. Stochastic interest rates could also be built into the model and the reserve estimated by simulation.

In conclusion, regression models present many advantages over the chain ladder method: they have fewer parameters and do not underestimate the reserve; the properties of the estimators of the parameters have been well studied; they take into account both the error involved in the estimation of the parameters and the statistical error inherent in the prediction of future claims; the fit of the model can be tested statistically by a $Q-Q$ plot; and confidence intervals for the reserve can be calculated with a simulation. We therefore strongly advocate the use of regression models.

10 Appendices

10.1 Algorithm to generate a multinormal random variable

To simulate the distribution of the IBNR reserve, we need to generate a $M L N(\mu, \Sigma)$ random variable. The following algorithm was used.

1. Generate $Z \sim M N(0, I)$, using the Box-Muller transformation

$$
\begin{aligned}
& Z_{1}=\left(-2 \ln U_{1}\right) \cos \left(2 \pi U_{2}\right) \\
& Z_{2}=\left(-2 \ln U_{2}\right) \cos \left(2 \pi U_{2}\right)
\end{aligned}
$$

where U_{1} and U_{2} are i.i.d., uniform on (0,1).
2. Transform Z to Y, a $M N(\mu, \Sigma)$ distribution:

$$
Y=\mu+C Z
$$

where $\Sigma=C C^{\prime}$ and C is calculated from the Choleski factorization algorithm (ref. Kellison (1975)):

$$
\begin{aligned}
c_{11} & =\sqrt{\sigma_{11}} \\
c_{i j} & =\frac{1}{c_{j j}}\left(\sigma_{i j}-\sum_{k=1}^{j-1} c_{i k} c_{k j}\right) \\
c_{i i} & =\sqrt{\sigma_{i i}-\sum_{k=1}^{i-1} c_{i k}^{2}}
\end{aligned}
$$

3. Exponentiate each component of Y

$$
e^{\gamma}=\left(e^{\gamma_{k t}}\right) \sim M L N\left(\mu, \sum\right)
$$

10.2 Asymptotic properties of MLE's

If X_{1}, \ldots, X_{n} is a random sample of size n from the density $f(x ; \theta)$, where $\underline{\theta}=$ $\left(\theta_{1}, \ldots, \theta_{p+1}\right)$ contains the regression parameter vector β and the scale parameter σ, then under certain regularity conditions, the following results hold.

1. The MLE $\underline{\hat{\theta}}=\left(\dot{\theta}_{1}, \ldots, \dot{\theta}_{k}\right)$ exists.

2- It is a consistent estimator of θ.

3- $\dot{\theta}_{1}, \ldots, \dot{\theta}_{p+1}$ are asymptotically efficient,

$$
\text { i.e. } \lim _{n \rightarrow \infty} \frac{\operatorname{Var}\left(\hat{\theta}_{j}\right)}{C R L B\left(\dot{\theta}_{j}\right)}=1
$$

where $C R L B\left(\dot{\theta}_{j}\right)$ is the Cramér-Rao lower bound, obtained as $1 / n E\left[\frac{\partial \log \mathcal{L}}{\partial \theta_{j}}\right]^{2}$.

4- $\sqrt{n}(\dot{\theta}-\theta)$ has an asymptotically multivariate normal $M N\left(\underline{0}, I_{0}^{-1}\right)$ distribution where I_{0} is the observed information matrix, with element

$$
I_{i j}=-\left.\frac{\partial^{2}}{\partial \theta_{i} \partial \theta_{j}} \log L\left(\underline{\theta}_{i} x_{1}, \ldots, x_{n}\right)\right|_{\underline{\theta}=\underline{\theta}} .
$$

11 References

Abramowitz, M. and Stegun, I.A. (1972). Handbook of Mathematical Functions with Formulas, Graphs and Mathematical Tables, U.S. Department of Commerce, Washington.

Bain, L.J. and Engelhardt, M. (1991). Statistical Analysis of Reliability and Life-Testing Models, Theory and Methods, Marcel Dekker Inc., New York.

Burridge, J. (1981). A note on maximum likelihood estimation for regression models using grouped data. JRSS B, 43, 41-45.

Chhikara, R.S. and Folks, J.L. (1989). The Inverse Gaussian Distribution: Theory, Methodology and Applications. Marcel Dekker Inc., New York.

Cohen, C. (1988). Three-parameter estimation. In Lognormal Distributions, Theory and Applications, edited by Crow, E.L. and Shimizu, K., Marcel Dekker, Inc., New York.

Cohen, A.C. and Whitten, B.J. (1988). Parameter estimation in reliability and life span models. Marcel Dekker, Inc., New York.

Cox, D.R. and Hinkley, D.V. (1968). A note on the efficiency of least-squares estimates. JRSS B, 30, 284-289.

Devroye, L. (1986). Non-Uniform Random Variate Generation. Springer-Verlag, New York.

Doray, L.G. (1992). UMVUE of the IBNR in a Lognormal Linear Regression Model, submitted to Insurance: Mathernatics and Economics.

Farewell, V.T. and Prentice, R.L. (1977). A study of distribution shape in life testing. Technometrics, 19, 69.75.

Gould, A. (1986). Some issues in the regression analysis of survival data. Ph.D. thesis, University of Waterloo.

Gould, A. and Lawless, J.F. (1988). Consistency and efficiency of regression coefficient estimates in location-scale models. Biometrika, 75, 535-540.

Gradshteyn, I.S. and Ryzhik, I.M. (1980). Tables of Integrals, Series and Products. Academic Press, New York.

Hogg, R.V. and Klugman, S.A. (1984). Loss Distributions. John Wiley and Sons, Inc., New York.

Johnson, N.L. and Kotz, S. (1970). Distributions in Statistics: Continuous Univariate Distributions, Vol. 1 and 2, Houghton Miffin Company, Boston.

Jörgensen, B. (1982). Statistical Properties of the Generalized Inverse Gaussian Distribution. Springer-Verlag, New York.

Kalbfleisch, J.D. and Prentice, R.L. (1980). The Statistical Analysis of Failure Time Data. Wiley, New York.

Kellison, S.G. (1975). Fundamentals of Numerical Analysis. Richard D. Irwin, Inc., Illinois

Koziol, J.A. (1989). Handbook of Percentage Points of the Inverse Gaussian Distribution. CRC Press, Inc., Boca Raton, Florida.

Lawless, J.F. (1982). Statistical Models and Methods for Lifetime Data. Wiley, New York.

Michael, J.R., Schucany, W.R. and Haas, R.W. (1976). Generating random variates using transformations with multiple roots. The American Statistician, 30, 88-90.

Panjer, H.H. and Willmot G.E. (1992). Insurance risk models. Society of Actuaries, Schaumburg.

Prentice, R.L. (1974). A loggamma model and its maximum likelihood estimation. Biometrika, 61, 539-544.

Reinsurance Association of America (1987). Loss Development Study. In Proceedings of the XXIth Astin Colloquium, New York, 1989.

SAS (1985) User's Guide: Statistics, Version 5 Edition, SAS Insitute Inc. Cory, NC.

Taylor, G.C. (1986). Claim reserving in non-life insurance. North-Holland, Amsterdam.

White, H. (1982). Maximum likelihood estimation of misspecified models. Econometrica, 50, 1.25.

Zenwirth, B. (1990). Interactive Claims Reserving Forecasting System, Version 5.3, Manual Volume 1, Benhar Nominees Pty. Ltd., Australia.

A Generalized Framework for the Stochastic Loss Reserving

by Changseob Joe Kim

A GENERALIZED FRAMEWORK FOR THE STOCHASTIC LOSS RESERVING

The traditional actuarial methods like loss (paid and incurred) development methods, Bornheutter-Ferguson method, or Berquist-Sherman method have been served well as long as point estimates are concerned. Since they are not stochastic approaches, they do not provide confidence intervals which are getting more attention connected to the risk-based capital requirements, explicit discounting the future liabilities, etc. So far, most of the stochastic reserving models which are either in the developing stage or are being used by some companies or organizations, have been explanatory models. The Hoerl curve fitting is their basic formulation. These types of models are fundamentally deficient, because they fit the Hoerl curve to the loss history data. Hoerl curve fitting may be fine, as long as it fits a simple, one dimensional, small series of data to obtain a fitted curve without any statistical implications. If the Hoerl curve fitting method is used with some statistical perspectives in mind, it may produce inconsistent estimtates which may not make any sense. In this article, the author suggests a generalized framework which starts by understanding the unique data characteristics of the insurance data. By expanding a Box-Jenkins type time-series model, we developed a generalized framework for modelizing a stochastic process on the loss history data. It turned out that some lines require more complex specifications than the others. We may presume that some lines are more sensitive to the insurance business cycle than the others. Our contributions will be to provide a generalized framework to derive confidence intervals in which the business cycle was taken into account as well as to provide future estimates for the planning process. This paper is the first step to that direction.

Insurance data arranged to evaluate future liabilities takes a unique form which is different from ordinary non-insurance data. The ordinary non-insurance data usually takes a one-dimensional time-series form. For example, monthly unemployment figures for the period January 1948 - October 1977 was used to forecast November 1977 and onward monthly unemployment rate. On the while, the insurance data has to be arranged either by accident year, policy year or report year and development year in order to figure out the future liabilities of each of those years separately. Because of this, the typical insurance data takes an upper triangular form.

The traditional actuarial methods like loss (paid and incurred) development methods, Bornheutter-Ferguson method, or Berquist-Sherman method have been served well as long as point estimates are concerned. Since they are not stochastic approaches, they do not provide confidence intervals which are getting more attention connected to the risk-based capital requirements, explicit discounting the future liabilities, etc.

There have been hundreds of methods which were contended to provide confidence intervals. The fundamental problems of these methods are they are lacking in theoretical backgrounds because these methods are intended to apply to the one-dimensional data array. Minor adjustments are added to solve the problems. However, they have never been successful.

In this article, the author suggests a generalized framework which starts by understanding the unique data characteristics of the insurance data. In the next chapter, we provide the critics regarding the problems of those suggested stochastic methods. In chapter III, we articulate the characteristics of the insurance data. We also state how these characteristcs have been incorporated in the traditional actuarial methods. In chapter IV,
the theoretical framework will be provided. We will show some applicaitons in chapter V and conclude in chapter VI.

II. Critics on suggested stochastic models

Makridakis and Wheelwright (1985) suggested:
If the user wants to increase forecasting accuracy, a time series method should be used. If the objective is to understanding better the factors that influence forecasting (prediction) accuracy, then an explanatory model should be selected.

So far, most of the stochastic reserving models which are either in the developing stage or are being used by some companies or organizations, have been explanatory models. The Hoerl curve fitting is their basic formulation. First of all, the explanatory variables in their models are either the number of development years and its functional variations, the number of accident years, the number of calendar years or a combination of these. Because of these formulations, their explanatory variables do not explain the dependent variable quite well. For example, "increase one unit of log transformed development years will decrease 3 unit of total loss paid" does not provide any valuable information.

Secondly, normally it is assumed that the time series data consists of four parts of components. They are trend, seasonality, cycle and ramdom components. If we use time and its functional variation as only explanatory variables, we are ignoring the seasonal and cyclical components of data. If the annual data is used, we may ignore the seasonality, but not the cyclical component. Since some insurance business is sensitive to the business cycle, we may expect that the cyclical movement is a critical component of the data.

Thirdly, since one of the explanatory variables is a functional variation of the other, these two explanatory variables are highly correlated. This problem is called multicollinearity. If one of these two variables is deleted, there will be an autocorrelation problem because
the remaining explanatory variables will not fully explain the dependent variable. The consequences of these problems include: unstable estimates, spurious predictions, inconsistent estimation of standard errors and confidence intervals.

Some argue that as long as the autocorrelations between the two explanatory variables are lower than that bewteen the dependent and explanatory variables, we do not have to worry about this problem. This may be true if the two explanatory variables are independently created. This is why explanatory variables are sometimes called independent variables. They are supposed to be independent. However, as long as correlations between these explanatory variables are not high compared to correlations between dependent variable and explanatory variables, the problem may not be that serious. The issue here is whether we should use models which contain multicollinearity problems due to the model formulation (one of the explanatory variables is a functional variation of another).

The other problem of these types of explanatory models is what type of indicator we should use for the accident year trends. Some authors normalized all incremental payments based on some readily available index of inflation. We cannot simply divide incremental payments by some indices, because these indices are estimated with their own variances. Consequently, it requires to assume that these indices are deterministic. However, this assumption is hardly persuasive at all. Because of this problem, some authors divide the payments by some types of exposures. The problem of this approach is we need to find an alternative if there isn't any exposure data available, which is often the case. Still others introduce level parameters which are assigned same values to each accident years. Since the level parameters themselves have to be estimated, this automatically violate the assumption that explanatory variables are supposedly nonrandom variables which are the cases of the other two variables. Others create another explanatory variable using the sum of the accident year and the development year. They chose this as another explanatory variable because they could not use the number of accident years as their explanatory
variable due to the perfect linearity with the number of development years. This choice is as bad as choosing the number of development years as an explanatory variable.

Still another problem of this type of model is that they do not provide any method that deals with interrelationships between series of incremental payments and incremental claims reported. Other things being equal, we expect more incremental payments if there are more claims reported. Therefore, if claims reported data is available, we should utilize these data assuming that this is also a stochastic process. So far no method has been suggested to deal with this situation. Some authors apply traditional loss development approach in obtaining ultimate claims reported. They treat them as a determinstic variable to divide incremental payments by these estimated ultimate claims reported.

What if we need to analize quarterly data instead of annual data? Quite possibly that quarterly data may contain seasonal patterns. No methods have been suggested to deal with this seasonality problem.

These types of models are fundamentally deficient, because they fit the Hoerl curve to the loss history data. Hoerl curve fitting may be fine, as long as it fits a simple, one dimensional, small series of data to obtain a fitted curve without any statistical implications. If the Hoerl curve fitting method is used with some statistical perspectives in mind, it may produce inconsistent estimtates which may not make any sense.

III. Insurance Data as a Two-Dimensional Time-series

1. Data itself.

Insurance loss or claim history data can be considered as a two dimensional time series data. Loss or claim development, in which additional losses or claims are paid/reported in chronological order upon accidents occurred or claims reported is one dimension. A
chronogical order of claims grouped by date of occurence is another dimension. As a result, a typical insurance loss or claim history takes an upper triangle form. A prediction of future loss payments or claims reported corresponds to filling out the bottom lower triangle area assuming that the first accident or reported year losses or claims are fully developed.

There are at least two factors which cause loss history data as time-series through the accident years. The first factor is inflation. Ever increasing price levels (at least prior to the current recession) is called economic inflation. Increased tendency to file more claims helped by trial lawyers or increasing amount of jury awards is called social inflation. Some authors have tried to catch these inflations by either normalizing the incremental payments or by inserting a level parameter. The indices used were either general price indices or at most industry-specific indicator. Because of ever increasing tendencies of the loss payment and these general indices, you may obtain significant t-values for the estimated coefficient of these indices. These t-values are disguising. Even if you insert any series which is increasing, you may still obtain significant t-values. Instead of inserting or dividng by an extraneous series, we should use the data's own indices! We should look at every trend and/or cyclical pattern of incremental payment of each development year. Interestingly, there is an approach which utilizes these trends to estimate ulimate losses. The problem is it is not a stochastic approach. We cannot obtain confidence intervals based on this approach. We will present this approach later.

As more consumers or insureds are getting more information on their insurance policy provisions, and as more trial lawyers are eagerly recruiting their clients, we can expect more claims to be reported over the accident year horizon. As overall population grows, there will be more policies written. Other things being equal, consequently there will be more claims reported. These utilization increase and additional new polcies will be the main driving force for the consistent upward trend through the accident year horizon.

For the development horizon, since there is a fixed number of policies written during the policy effective period, there is a fixed number of occurrence of accidents for each accident year. There may be some incurred but not reported claims which are reported later. There may be some cumulative injury claims which take many years to be closed. Still every claim will be closed eventually. In a mathematical term, total cumulative loss payments or total reported claims will be converged to certain levels. Because of this characteristic, all incremental payments and all incremental reported claims will be automatically satisfied with the stability condition of the time-series analysis. This stability is a necessary condition in applying Box-Jenkins types time-series framework.

The traditional actuarial method called the "loss or claim development method", utilizes the development period dimension in a simple manner. The accident period dimension in this method is partially utilized by taking current cumulative payments as "given". Recently proposed regressional approaches are lacking in these two dimensional features. As in the traditional actuarial loss development (LD) method, these new methods reflect the loss development dimension by using "age" of loss development. However, the other dimension is either completely ignored or grouped together by assigning dummy variables or filled with a so-called level parameter. There is an inherent autocorrelation problem which may not be significant in some lines due to negligence of the time related features in the loss history data, especially for long tail lines in which regulators or company's executives are most interested.

In the traditional development approach, by multiplying the selected factors for each development year, some sort of time-series conception was used in a simple fashion. For instance, assuming that there are no additional payments after ten years of development, the ultimate factor for the 1982 accident year will be obtained by taking a ratio of the 10th year development to the 9th year of development. Notice that only the accident year 1981 and prior provides the information required to obtain a factor for the 9th to 10th
development. The ultimate factor for 1983 is derived through multiplying the selected factor from the 8 th to 9 th year of development by the selected factor from the 9 th to 10 th year of development. Again the selected factor for 8th to 9 th year of development is based on the factors which are available in 1982 and prior accident years. Although it is a simple fashion, without a consideration of cyclical patterns, the development method reflects time series characteristic through development years. In the accident year direction, the LD method simply takes most current actual payments as selected estimates. If these values are outliers, the LD method will generate biased estimates. Otherwise, the LD method will produce reasonable estimates. For the older accident years, the actual values are fairly close to the estimates which are supposed to be compared to its maturity because the payments have already been made quite a few times (approximately more than 3 or 4 years for short tail lines). The problem is most recent immature accident years. Bornheutter-Ferguson (B-F, 1978) and Berquist-Sherman (B-S, 1979) suggested a couple of methods to get over these problems.

2. Time-series Reflected in B-F Method.

In the adjusted development method suggested by Bornheutter and Ferguson, a twoyear average of total payment at a particular development adjusted by the increase or decrease in the second year's exposure relative to the two-year average exposure was replaced for total payment. The ultimate factors derived in the development method is then applied to these adjusted losses. This method will correct some irregularities of the data. However, the adjustments contain too short memory (one year backward). The probability of two data points being outliers is only half of the probability of one data point being an outlier. Consequently, this does not provide appropriate remedies to correct the problem in the development method. This may be the reason why this method is seldomly used in the ordinary actuarial analysis.

In the well-known B-F approach, the expected losses are first derived. Unpaid factors are then calculated from the ultimate development factors. The ultimate losses are estimated as the sum of total payment and indicated reserve, where indicated reserve is expected loss times the unpaid factor. Two methods are suggested to calculate the expected loss. The undiscounted loss provisions in the rates multiplied by the units of exposure is one, trending, or otherwise extrapolating, $\frac{\text { ultimate loas }}{\text { ultimate claim coant (or premiam) }}$ relationships of the prior accident years is the other. The author prefers the latter methods based on two reasons. First, it is very difficlut to obtain the undiscounted loss provision. One of the major reasons is the differences in line-breakdown between pricing and reserving. Second, by trending the past history, we can glean the time-series nature of the loss history data. You may notice that in LD method, only the time-series nature across the development years was recognized. By applying trending or extrapolating method to $\frac{\text { ultimate loss }}{\text { ultimate claim count }}$ across the accident years, we are able to utilize the time-series nature in another dimension at least partially (cosidering only trend factors).

This indicated (B-F) method is one of the most popular methods in the actuarial analysis because this method can be used to correct the estimated ultimate loss for the recent accident years produced by the development method.

Although these two methods are a little more advanced than loss development methods in terms of utilizing the time-series nature across the accident years, the method is not sophisticated and also performed partially (only trend factors are considered). Instead of trending a whole loss history across the accident years, only the indicated severity for each accident year was used. Since the indicated severity is also estimated, it may be contaminated with estimating errors. Berquist and Sherman suggested a few methods which utilize a whole loss history in a simple fashion.

3. Time-series Reflected in B-S Method.

Berquist and Sherman suggested six methods (Method I through VI) except for Method II which is exactly paid loss development method applying weighted average to loss development factors in order to obtain ultimate development factors, all methods assume that there are some trends to be utilized across the accident years. Method I applies a straight linear regression to the loss development factors for each development years as long as there are at least three factors. For columns with two factors, a straight average is taken for all future development factors. For columns which only one factor, that factor is used.

In Method III, the total payments per ultimate claim count ($C S_{i, j}$) by accident year (i) and by development year (j) are calculated. By applying a exponential fit to $C S_{i, j}$ for each j, a growth rate B; for each development year j is estimated. Then by multiplying $e^{B_{j}}$ by $D S_{i, j}$ where $D S_{i, j}$ is the incremental payment for the accident year i and development year j, we obtain a incremental payment on current cost level $I S_{i, j}$. After applying appropriate weights to these $I S_{i, j}$, the estimated incremental payments evaluated as of current date $W S_{i, m-i+1}$, where $i=m, m-1, \ldots, l$, the oldest accident year and m the latest accident year are calculated. By applying growth rate $e^{B_{j}}$ to $W S_{t, m-i+1}$, future incremental payment per claim is produced. After adding them up across the development years to obtain ultimate loss per claim, ultimate loss is derived by multiplying the ultimate claim count.

In Method IV, overall growth rate is calculated by weighting various column growth rates calculated in Method III, in proportion to the square of number of rows of that column. The adjusted column growth rate is then calculated by applying the formula $B_{j}^{\prime}=\frac{W_{j} R_{j}+\left(W_{1}-W_{j}\right) R}{W_{1}}$ where W_{j} is the weight for the particular column, W_{1} is that for the initial colmun (development year 1) and R_{j} is column growth rate. The same procedure with the Method III is then applied to produce the ultimate loss.

In Method V, the paid loss development factors minus unity are used instead of total
payment per claim in Method IV to derive growth factor for the development factors. After applying the same steps as in Method IV to derive future factors (minus one), adding one to each of the results and applying resulting factors to total payments, the ultimate losses are derived. In Method VI, the incremental payments per claim are used to estimate growth rate. The exact same steps as Method IV are then used.

Notice that in the various Berquist-Sherman methods except for Method II, more emphases are levied on the trends across the accident years. In Method I and Method III, the trend factors (growth rates) are estimated by development years. Each trend factor for a particular development year is independent of those of the other development years. On the while, in the Method IV, V, and VI, the overall trend factor was calculated by the weighted average of all the trends for each development years. The adjusted trend for individual development year was then calculated as a weighted average of its own trend and the overall trend. Since these methods are focused on the time-series nature of the loss history across the accident years ignoring possible cyclical patterns, by combining the ultimate loss based on these method and the ultimate loss based on the loss development method, we can produce relatively reasonable selected ultimate loss.

As we have seen in this chapter, even if the word of time-series has never been spelled out, one way or the other, every method tried to utilize the time-series concept. The trouble was that the concept was utilized partially. Except for Berquist-Sherman methods, more weights were given to the claim development process. Even in one direction, only the trend component of the time-series was reflected. A cyclical movement and seasonal pattern were completely ignored. In our approach, the two dimensions are explicitly taken into account. Today's loss payment is not only a function of losses paid in the past loss development periods, but also a function of losses paid in the past accident periods. The implication of various statistics in the time series method are also considered in a two dimensional perspective. Empirical results based on various lines of industry total are shown.

IV. A Framework of Two Dimensional Time Series Model

1. The Univariate Model.

1) Assumptions

In this univariate model, we assume that only the payment series is available. There is no reliable case reserve, exposure or reported claim information available. More often than not, actuaries, especially consulting actuaries, have to provide ultimate loss payment based on exclusively loss payment series.

We also assume that the available data is not separable to the individual claim level. In other words, we treat the incremental payment for a particular accident period and development period itself as a random variable. This is a realistic assumption because most loss history data takes an upper triangular form in which the incremental payment is a minimum unit of counting.

We assume that the tail of the loss payment development is known. This assumption may not be realistic. However, it is at least practical. Whenever we fit any distributional curve to the loss payment developments, the estimated curve converges to the ultimate level a lot more slowly than we ever expect in actual loss developments. Unless we assume a certain cut-off point, the estimated length of the development will be extremely long.

We assume that any payment in a certain point is affected only orthognally. For example, total or incremental payment in [accident year 83 - third development year] is a function of [accident year 83 - second deveopment year] and [accident year 82 - third development year]. This is a reasonable assumption to simplify the algorithms and also consistent with the average norm. We can expect the incremental payment at [accident year 83 - third development year] will be high if the incremental payment at [accident year 83 - first and second development years] due to either volume increase or frequency/severity
increase. Also we can expect the incremental payment at [accident year 83 - third development year] will be high if the incremental payments at [third development year - accident year 81 or 82] are high. The former tendency may be related to the inflation, exposure, and frequency/severity change. The latter may be related to the company's individual line characteristics - like a liability line develops more slowly than a property line.

Finally, we assume that the selected model is the true model. In others words, specification error is ignored. This error exits only in a hypothetical sense. Since in reality the true model is never known, you can never measure the direct error. This assumption is consistent with most econometric or time-series literatures. By assigning higher probability confidence intervals than what is necessary, we can eliminate the specifiaction error problem. For example, if the confidence intervals with 90% probability is required, then by raising the probability to the 95% level, we may take into consideration the specification error problem.

2) Model

Parzen suggested a very powerful time-series forecasting model. It extends the BoxJenkins methodology and provides a more practical alternative to the time-series forecasting model. Also the theoretical supports of "ARAMA" models are solid and their potential contribution to good forecasting is excellent.

Contrary to the Box-Jenkins methodology, Parzen's approach is not as concerned with parsimony. Parzen's model is willing to sacrifice the parsimony that would result from introducing the moving average terms, and simply includes more autoregressive terms. The $M A$ terms are available but used only for special cases when a scheme cannot be used to produce random residuals.

We utilize Parzen's view of Box-Jenkins time-series methodology. The main reason is the tractability without giving away any theoretical merits. In our application, the
stability may not be an important issue. In the development period horizon, because any open claim will be closed eventually, the convergence of the time-series is guranteed. In the accident period, due to the regulation constraint of premium-surplus ratio, there exists a limit of maximum expansion. Consequently, as long as there are enough data points, we expect the stability condition will be met in the average insurance data.

Across the accident year we restrictly use $A R$ terms. However, across the development year, we first take differencing on the total payments and then take log transformation if it is possible. After transforming long memory time series across the development years, the $A R$ terms are used to produce white noise errors.

It is a matter of semantic, whether you need a differencing operation or not across the development years. If you start with incremental payment data, there is no need of differencing. However, if you start with the total payment data, you do need differencing due to the conspicuous cumulative nature of the payment data.

In a general form we can express the model as:

$$
\begin{align*}
\left.F\left(I P_{i, j}\right)\right)= & \sum_{l, k} \phi_{l, k} F\left(I P_{i-l, j-k}\right)+e_{i, j} \quad l=0,1,2, \ldots, i-1 \\
& \text { and } \quad k=0,1,2, \ldots, j-1 \quad \text { excluding } \quad l=0 \quad \& \quad k=0 \tag{4-1}
\end{align*}
$$

where $F($.$) notates any functional form (most of the case log operator if it is possible,$ otherwise identity operator), IP denotes incremental payment for the accident year i development year j. Since we assumed any non-orthogonal lag variables can be ignored, equation 4.1 can take much simpler form as:

$$
\begin{align*}
F\left(I P_{i, j}\right)= & \sum_{i, k} \phi_{l, k} F\left(I P_{i-l, j-k}\right)+e_{i, j} \quad l=1,2, \ldots, i-1 \quad \& \quad k=0 \\
& \text { or } k=1,2, \ldots, j-1 \quad \& \quad l=0 \quad \text { excluding } \quad l=0 \quad \& \quad k=0 \tag{4-2}
\end{align*}
$$

Note that since no nonlinearity is invloved, we can use Ordinary Least Square Method to estimate $\phi_{l, k}$. This is a whole advantage expressing the model with $A R$ terms only. The most simple case will be:

$$
\begin{equation*}
I P_{i, j}=\phi_{1,0} I P_{i-1, j}+\phi_{0,1} I P_{i, j-1}+e_{i, j} \tag{4-3}
\end{equation*}
$$

where the incremental payment for the accident i-development j is explained the incremental payment of the one year previous accident year and the incremental payment of the one year previous development year.

For a better understanding, an example will be followed. Say you allow two lags in each direction as explanatory variables. Then there are eight possible explanatory variables. They are [No lag in accident year(AY) - 1 lag in development year(DY)], [No \log in $A Y-2 \log$ in $D Y],[1 \log$ in $A Y-1 \log$ in $D Y],[1 \log$ in $A Y-2 \operatorname{lag}],(2 \operatorname{lag}$ in $A Y-1$ lag in DY],[2 lag in AY - $2 \operatorname{lag}$ in DY], [1 lag in AY - no lag in DY], [2 lag in AY - no lag in DY]. Out of these eight combinations, the set of DY lag only is orthogonal to the set of AY lag only (four cases).

First of all, it does make sense modelizing the fact that the current incremental payments is explained by previous incremental payment series by accident and development year-wise because the current payment can be explained or can be a function of prior payments. Second, it does not have any multicollinearity problem because there is no functional relationship between the explanatory variables (note that accident year series are orthognal to the development series). Third, because it does not involve any nonlinearity, it is fairly easy to estimate parameters. Even we can use Lotus 1-2-3 to estimate these parameters. Fourth, most importantly, it provides a reasonable fit and also is also stable.
3) Interval Forecasts

Since the major contribution of the stochastic method in loss reserving is providing
the confidence intervals, the variance of the forecast errers should be well defined. In order to derive the variance of the forecast errors, we first express $A R(l, k)$ process in the errorshock form by successive substitution for $\sum \phi_{l, k} I P_{i-l, j-k}$. By doing this, we can write the model in terms of current and past errors only as:

$$
\begin{equation*}
I P_{i, j}=e_{i, j}+\xi_{0,1} e_{i, j-1}+\xi_{1,0} e_{i-1, j}+\xi_{1,1} e_{i-1, j-1}+\ldots \tag{4-4}
\end{equation*}
$$

The values of the parameters $\left(\xi_{0,1}, \xi_{1,0}, \xi_{1,1}, \ldots\right)$ depend upon the particular $A R(l, k)$ model and are called error learning coefficients.

The selected forecast $I P_{i, j}(g, h)$ can also be expressed using the equation 4-4 in terms of current and past errors:

$$
\begin{equation*}
I P_{i, j}(g, h)=\xi_{g, h} e_{i, j}+\xi_{g+1, h} e_{i-1, j}+\xi_{g, h+1} e_{i, j-1}+\ldots \tag{4-5}
\end{equation*}
$$

As a result, the (g, h) step ahead forecast error can be expressed as:

$$
\begin{equation*}
e_{i, j}(g, h)=I P_{i+g, j+h}-I P_{i, j}(g, h) \tag{4-6}
\end{equation*}
$$

Again the equation 4-6 can be written as:

$$
\begin{equation*}
e_{i, j}(g, h)=e_{i+g, j+h}+\xi_{1,0} e_{i+g-1, j+h}+\xi_{0,1} e_{i+g, j+h-1}+\xi_{1,1} e_{i+g-1, j+h-1}+\ldots \tag{4-7}
\end{equation*}
$$

Because the errors are independent, it follows from the equation $4-7$ that $e_{i, j}(g, h)$ is an $M A(g-1, h-1)$ process. From the equation 4-7, the forecast errors $e_{i, j}(g, h)$ have mean 0 and variance equal to

$$
\begin{equation*}
V\left[e_{i, j}(g, h)\right]=E\left[e_{i, j}^{2}(g, h)\right]=\sigma_{e}^{2} \sum_{p, q=0}^{g, h} \xi_{p, q}^{2} \quad \text { excluding } \quad(p, g)=(g, h) \tag{4-8}
\end{equation*}
$$

Based on the model, not only can the future development year forecast be performed, but also the accident year forecast. However, since our main objective is to obtain confidence intervals for the future liabilities, we can focus on the development year horizon only.

4) Some Examples

For example, the one year ahead forecast to the development period horizon of the $A R(1,1)$ model can be expressed using equation 4-3 as:

$$
\begin{equation*}
I P_{\mathrm{i}, j+1}=\phi_{1,0} I P_{\mathrm{i}-1, j+1}+\phi_{0,1} I P_{\mathrm{i}, j}+e_{\mathrm{i}, j+1} \tag{4-9}
\end{equation*}
$$

Then the equation 4-9 can be expressed as:

$$
\begin{align*}
I P_{i, j+1}= & \phi_{1,0}\left(\phi_{1,0} I P_{i-2, j+1}+\phi_{0,1} I P_{i-1, j}+e_{i-1, j+1}\right) \\
& \phi_{0,1}\left(\phi_{1,0} I P_{i-1, j}+\phi_{0,1} I P_{i, j-1}+e_{i, j}\right)+e_{i, j+1} \tag{4-10}
\end{align*}
$$

Since the only errors terms $e_{i-1, j+1}, \quad e_{i, j}$ and $e_{i, j+1}$ are unkown and their variances are σ_{e}^{2}, the variace of $I P_{i, j+1}$ can be expressed as:

$$
\begin{equation*}
V\left(I P_{i, j+1}\right)=\left(\phi_{1,0}^{2}+\phi_{0,1}^{2}+1\right) \sigma_{e}^{2} \tag{4-11}
\end{equation*}
$$

The two year ahead forecast to the development period will be:

$$
\begin{equation*}
I P_{i, j+2}=\phi_{1,0} I P_{i-1, j+2}+\phi_{0,1} I P_{i, j+1}+e_{i, j+2} \tag{4-12}
\end{equation*}
$$

Again, the equation 4-12 can be expressed as:

$$
\begin{align*}
I P_{i, j+2} & =\phi_{1,0}\left(\phi_{1,0} I P_{i-2, j+2}+\phi_{0,1} I P_{i-1, j+1}+e_{i-1, j+2}\right) \\
& =\phi_{0,1}\left(\phi_{1,0} I P_{i-1, j+1} \phi_{0,1} I P_{i, j}+e_{i, j+1}\right)+e_{i, j+2} \tag{4-13}
\end{align*}
$$

By applying the equation 4-10, we can obtain a two year ahead forecast variance to the development period as:

$$
\begin{equation*}
V\left(I P_{i, j+2}\right)=\left(\left(\phi_{1,0}^{2}\right)\left(\phi_{1,0}^{2}+\phi_{0,1}^{2}+1\right)+\left(\phi_{0,1}^{2}\right)\left(\phi_{1,0}^{2}+\phi_{0,1}^{2}+1\right)+1\right) \sigma_{e}^{2} \tag{4-14}
\end{equation*}
$$

Similarly we can obtain an n year ahead forecast variance to the development period by applying a inductive procedure as:

$$
\begin{equation*}
V\left(I P_{i, j+n}\right)=\left(\left(\phi_{1,0}^{2}\right)\left(\frac{V\left(I P_{i, j+n-1}\right)}{\sigma_{e}^{2}}\right)+\left(\phi_{0,1}^{2}\right)\left(\frac{V\left(I P_{i, j+n-1}\right)}{\sigma_{e}^{2}}\right)+1\right) \sigma_{e}^{2} \tag{4-15}
\end{equation*}
$$

We can also apply the same inductive process to the $A R(2,1)$ or $A R(3,1)$ model. For the $A R(2,1)$ model, one year head, two year ahead and n year ahead forecast variances are given as:

$$
\begin{align*}
V\left(I P_{i, j+1}\right)= & \left(\phi_{1,0}^{2}+\phi_{0,1}^{2}+1\right) \sigma_{e}^{2} \tag{4-16}\\
V\left(I P_{i, j+2}\right)= & \left(\left(\phi_{1,0}^{2}\right)\left(\phi_{1,0}^{2}+\phi_{0,1}^{2}+1\right)+\left(\phi_{0,1}^{2}\right)\left(\phi_{1,0}^{2}+\phi_{0,1}^{2}+1\right)+\phi_{0,2}^{2}+1\right) \sigma_{e}^{2} \tag{4-17}\\
V\left(I P_{i, j+n}\right)= & \left(\left(\phi_{1,0}^{2}\right)\left(\frac{V\left(I P_{i, j+n-1}\right)}{\sigma_{e}^{2}}\right)+\left(\phi_{0,1}^{2}\right)\left(\frac{V\left(I P_{i, j+n-1}\right)}{\sigma_{e}^{2}}\right)+\right. \\
& \left.\left(\phi_{0,2}^{2}\right)\left(\frac{V\left(I P_{i, j+n-2}\right)}{\sigma_{e}^{2}}\right)+1\right) \sigma_{e}^{2} \tag{4-18}
\end{align*}
$$

For the $A R(3,1)$ model, one year head, two year ahead, three year ahead and n year ahead forecast variances are given as:

$$
\begin{align*}
V\left(I P_{i, j+1}\right)= & \left(\phi_{1,0}^{2}+\phi_{0,1}^{2}+1\right) \sigma_{e}^{2} \tag{4-19}\\
V\left(I P_{i, j+2}\right)= & \left(\left(\phi_{1,0}^{2}\right)\left(\phi_{1,0}^{2}+\phi_{0,1}^{2}+1\right)+\left(\phi_{0,1}^{2}\right)\left(\phi_{1,0}^{2}+\phi_{0,1}^{2}+1\right)+\phi_{0,2}^{2}+1\right) \sigma_{e}^{2} \tag{4-20}\\
V\left(I P_{i, j+3}\right)= & \left(\left(\phi_{1,0}^{2}\right)\left(\frac{V\left(I P_{i, j+2}\right.}{\sigma_{e}^{2}}\right)\right)+\left(\phi_{0,1}^{2}\right)\left(\frac{V\left(I P_{i, j+2}\right.}{\sigma_{e}^{2}}\right)+ \\
& \left.\phi_{0,2}^{2}\left(\frac{V\left(I P_{i, j+1}\right.}{\sigma_{e}^{2}}\right)+\phi_{0,3}^{2}+1\right) \sigma_{e}^{2} \tag{4-21}\\
V\left(I P_{i, j+n}\right)= & \left(\left(\phi_{1,0}^{2}\right)\left(\frac{V\left(I P_{i, j+n-1}\right)}{\sigma_{e}^{2}}\right)+\left(\phi_{0,1}^{2}\right)\left(\frac{V\left(I P_{i, j+n-1}\right)}{\sigma_{e}^{2}}\right)+\right. \\
& \left.\left(\phi_{0,2}^{2}\right)\left(\frac{V\left(I P_{i, j+n-2}\right)}{\sigma_{e}^{2}}\right)\left(\phi_{0,3}^{2}\right)\left(\frac{V\left(I P_{i, j+n-3}\right)}{\sigma_{e}^{2}}\right)+1\right) \sigma_{e}^{2} \tag{4-22}
\end{align*}
$$

If we expect any seasonality either across the development horizon or across the accident horizon or both, by inserting $\phi_{0, m}$ or $\phi_{m, 0}$ or both lags, we can take care of seasonality, where m is the seasonality interval.

2. The Multivariate Model.

By applying either vector autoregressive model or transfer function model, we can expand the univariate model to the multivariate mode. Either closed counts development or reported counts development will be a good candidate for the right-hand side variable
because we can presume that the claim counts will have a impact on the loss development; not vice versa. It is theoretically possible to derive the formula for the variances. However, we decided to postpone further articulation of the model due to the time constraint.

V. Model Selection Process with Empirical Data

1. Statistics to be used.

In order to find a right (or reasonable) model, we need certain criteria to identify whether the estimated errors are not correlated. Since we are going to use the $A R(l, k)$ model, we need to estimate partial autocorrelations (PCAF) of the residuals. We also use Q-statistic to verify overall randomness of errors. Since these statistics are intended to serve for the one-dimensional data, we have to apply these statistics to each accident year and development year separately. Because of this, we may have to be a little lenient when we reject the null hypothesis.

1). Partial Autocorrelation.

In practice, we never know the population values of autocorrelations and partial autocorrelation of the underlying stochastic process. Consequently, in identifying a tentative model, we must use the estimated autocorrelation and estimated partial autocorrelation to see if they are similar to those of typical models for which the parameters are known. Notice that since we do not have any MA terms in our model, there is no need to calculate estimated autocorrelations. However, partial autocorrelations are calculated from a solution of the Yule-Walker equation system, expressing the partial autocorrelation as a function of the autocorrelation. We need to calculate estimated autocorrelation.

In any time series textbook, an estimate of autocorrelation $r(h)$ is defined as:

$$
\begin{equation*}
r_{A}=\frac{c_{h}}{c_{0}} \tag{5-1}
\end{equation*}
$$

where c_{h} defined as $c_{h}=1 / n \times \sum z_{t} z_{t+h} \quad h \geq 0$, and c_{h} is the estimate of the autocovariance. For our model we can redefine this estimated autocorrelation for the development year dimension of the accident year n as:

$$
\begin{equation*}
r_{n, k}=\frac{c_{n, k}}{c_{n, 0}} \tag{5-2}
\end{equation*}
$$

in which $c_{n, k}=1 / m \sum_{j=1}^{m} z_{n, j} z_{n, j+k} \quad k \geq 0$ where m is the number of development years. For the accident year dimension of the development year m, the estimated correlation can be defined as:

$$
\begin{equation*}
r_{1, m}=\frac{c_{1, m}}{c_{0}} \tag{5-3}
\end{equation*}
$$

where $c_{l, m}=1 / n \sum_{i=1}^{n} z_{i, m} z_{i+l, m} l \geq 0$. And n is the number of accident years.

The Yule-Walker equation is expressed as:

$$
\left(\begin{array}{cccccccc}
\rho_{1}= & \phi_{1} & + & \phi_{2} \rho_{1} & + & \cdots & + & \phi_{p} \rho_{\rho-1} \tag{5-4}\\
\rho_{2}= & \phi_{1} \rho_{1} & + & \phi_{2} & + & \cdots & + & \phi_{p} \rho_{p-2} \\
\vdots & \vdots & + & \vdots & + & \ddots & + & \cdots \\
\rho_{p} & & \phi_{1} \rho_{p-1} & + & \phi_{2} \rho_{p-2} & + & \cdots & + \\
\phi_{p}
\end{array}\right)
$$

The equation 5-4 can be written as:

$$
\left(\begin{array}{ccccc}
1 & \rho_{1} & \rho_{2} & \ldots & \rho_{k-1} \tag{5-5}\\
\rho_{1} & 1 & \rho_{1} & \cdots & \rho_{k-2} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
\rho_{k-1} & \rho_{k-2} & \rho_{k-3} & \cdots & 1
\end{array}\right)\left(\begin{array}{c}
\phi_{k 1} \\
\phi_{k 2} \\
\vdots \\
\phi_{k k}
\end{array}\right)=\left(\begin{array}{c}
\rho_{1} \\
\rho_{2} \\
\vdots \\
\rho_{k}
\end{array}\right)
$$

Hence, as soon as we calculate these autocorrelation, we can derive the estimated partial autocorrelations by applying Box and Jenkins's recursive method, which are due to Durbin(1960):

$$
\begin{gather*}
\hat{\phi}_{p+1, j}=\hat{\phi}_{p, j}-\hat{\phi}_{p+1, p+1} \hat{\phi}_{p, p-j+1} \quad j=1,2, \ldots, p \tag{5-6}\\
\hat{\phi}_{p+1, p+1}=\frac{r_{p+1}-\sum_{j=1}^{p} \dot{\phi}_{p, j} r_{p+1-j}}{1-\sum_{j=1}^{p} \hat{\phi}_{p, j} r_{j}} \tag{5-7}
\end{gather*}
$$

In order to identify the exact form of the model, we need to find out when population partial autocorrelations can be considered to be zero. We therefore need to evaluate the
standard error of the estimated partial autocollreations. Quenouille (1949) showed that the variance of the estimate of the partial autocorrelations is approximately equal to

$$
\begin{equation*}
V\left(\phi_{h h}\right) \approx 1 / n, \quad h>0 \tag{5-8}
\end{equation*}
$$

where n equals the number of observations after suitable differencing and transformation, and ϕ represents the partial autocorrelations that are assumed to be zero. Equation 5.8 provides a way, after identifying the tentative model, by calcuating $\phi_{h h}$ on the estimated residuals, to evaluate if all other estimated partial sutocorrelations are different from zero. We can also define the variance of the estimate of the partial autocorrelation for the development year dimension as:

$$
\begin{equation*}
V\left(\phi_{n, k z}\right) \approx 1 / m, \quad k>0 \tag{5-9}
\end{equation*}
$$

and for the accident year dimension as:

$$
\begin{equation*}
V\left(\phi_{l l, m}\right) \approx 1 / n, \quad l>0 \tag{5-10}
\end{equation*}
$$

2). Q-test.

Box and Pierce (1970) showed that for a purely random process, that is, a model with all $\rho_{k}=0$, the statistic called Q-statistc:

$$
\begin{equation*}
Q(K)=n(n+2) \sum_{k=1}^{K} \frac{1}{n-k} \hat{r}_{k}^{2} \approx \chi^{2}(K) \tag{5-11}
\end{equation*}
$$

where \dot{r}_{k} is defined as

$$
\begin{equation*}
\tilde{r}_{k}=\frac{\sum_{t=k+1}^{n} \hat{e}_{t} \hat{e}_{t+k}}{\sum_{1}^{n} \hat{e}_{t}^{2}} \tag{5-12}
\end{equation*}
$$

with \hat{e} is a fitted residual. It should be noted that the Q-test is not a very powerful test for detecting specific departures from white noise. However, it is useful to check how a series of autocorrelations (first order, second order and third order autocorrelations etc.) is white noise or not in an overall sense. Furthermore, the Q-test is also sensitive to the values of
K, the number of autocorrelations used to calculate Q -test. For economic data, $K=12$ and $K=24$ have proven to be useful. Since insurance data have fewer data points, $K=4$ may be sufficient. Since the Q-statistic was also designed to apply to the one dimensional data points, we performed the Q-test on each accident year and each developmemt year.

2. Creation of Auxiliary Observations.

We first calculate age-to-age factors for each dvelopment years. We then select age-to-age factor for each development years based on the last 5 years average method. We assume that payments of the Homeowner/Farmowners (HOMFAM), Private Passenger Automobile Liability/Medical (PRVAUT), Commercial Auto/Truck Liability/Medical (COMAUT), Commercial Multiple Peril (COMMUL), Workers' Compensation (WOKCOM), Medical Malpractice (MEDMAL), Special Liability (SPELIA), Other Liability (OTHLIA) and Product Liability (PROLIA) are paid off at 10th, 11th, 13th, 13th, 14th, 16th, 11th, 15th and 16 th years of development, respectively. With this tail-factor assumption we create future incremental payments based on the LD method. In other words, we fill out the lower part of triangles.

There are two purposes in creating these auxiliary observations. The first purpose is creating initial values of lag variables based on the backward forecasting. Since we started with small amount of data points, we cannot afford to lose any data elements by the intializing process. By running Oridnary Least Squares with logarithms of incremental payments as dependent variables and development years for each accident year as explanatory variables, we were able to create development year initial lag values. For the accident year initial lag values we ran OLS on accident years for each development years. The second purpose was to obtain tentative models. We did not attempt to use upper triangle angle only because the model utilize the whole data at once, this will put too much emphasis on the earlier years which contain more data points. This is a major disadvantage of any stochastic model which fits the entire data at once without filling up the lower triangle
portion. Even though the development method does not provide confidence intervals, it does provide at least an approximate estimate. It is also consistent with the NAIC model act for the liability discount which explicitly specifies the future payout patterns.

3. Model Selection.

We started with $A R(1,1)$ model for all nine lines we used for this analysis. Estimated coefficients are listed in Table 1. Estimated Q-test on the residuals by accident year and by development years are listed in Table 2. Due to small data points, we only estimated up to four years. Estimated partial autocorrelations on the residuals by accident year and development year are shown in Table 3. The thresholds with 95% confidence level for Q-tests are 7.81 with $K=3,9.49$ with $K=4,11.1$ with $K=5$ and 12.6 with $K=6,14.1$ with $K=7$. Most of the cases, Q-tests do not reject the Null Hypothesis that the errors are not white noise. Applying the $\frac{1}{n^{1 / 2}}$ formula, the thresholds with 95% confidence level for PCAF are 0.653 with $\mathrm{n}=9,0.693$ with $\mathrm{n}=8,0.741$ with $\mathrm{n}=7$ and 0.800 with $\mathrm{n}=6$. Except for few cases, there aren't any such cases that reject the whiteness of the errors.

Identifying a model as $A R(1,1)$ is equivalent to saying that the loss history can be explained as a combination of constant trends through accident period and development period. Since the coefficients of all lines are less than 1 , we can say that data satisfies the stability condition. This is a desirable condition, otherwise, the estimated variances will be blown up. You may also notice that in every case, the coefficents for the accident year are a lot higher than those of development years. This indicates that the trends through the accident periods are much more important than those through the development years.

You may want to stop here because all the PACF are satisfactory and because the parsimony dictates the fewer the coefficients are, the better the model is. However, since the model with more coefficients will provide more stable forecastings, we tried up to $A R(3,2)$. Except for COMMUL, since the coefficients for development years are already
small, we didn't bother to try more development lag coefficients except COMMUL. When we tried $A R(3,2)$ for COMMUL, the second development lag term became very close to the zero. Hence we selected the $A R(3,1)$ for COMMUL. The second lag term indicates that there are more than just straight trend. We may interpret this as a simple cycle. If we require a third lag term, this will indicate that the data contains a complicate cycle.

When we tried $A R(2,1)$ for HOMFAM, suprisingly the second lag term for the accident year became bigger than the first term. Consequently, we tried $A R(3,1)$. Even though the coefficient for the third lag term is still high, we decided to stop here due to the limitation of the data points. We also didn't want those artificially generated initial values to dominate the whole actual data.

For PRVAUT, we tried up to $A R(3,1)$. Since the third lag term of accident years wasn't big enough, we decided to go with $A R(2,1)$. The same was true for PROLIA. For COMAUT as soon as we tried $A R(2,1)$ the second lag became relatively small. Hence, we selected $A R(1,1)$ for COMAUT. The same was true for MEDMAL, SPELIA. For WOKCOM, as soon as we added one more lag term, the first lag term became bigger than 1.0 (which became unstable). Consequently, we chose $A R(1,1)$ for WOKCOM. Finally, for OTHLIA, we chose $A R(3,1)$ as a selected model as HOMFAM. Interestingly, the coefficent of the third lag term was highest. We showed estimated coefficients of the $A R(2,1)$ models, their Q-statistics and PCAFs on the residuals in Table 4, 5 and 6, respectively. Estimated coefficents of the $A R(3,1)$ models, their Q-statistics and PCAFs on the residuals are shown in Table 7, 8 and 9, respectively.

As you may noticed, the process of personal lines like HOMFAM and PRVAUT ar either more complicated or as complicated as comercial lines. Secondly, the longer tail lines like MEDMAL do not necessarily possess a more complicated process.

4. Point Estimates and Confidence Intervals.

After we selected each model based on the rectangular form of data, we eliminated auxiliary observations in the lower triangular area. We filled the lower triangle with forcast values. By adding up row-wise we obtained ultimate loss based on the selected model. Based on the variance formula mentioned on the prior chapter, we estimated each variance for the forecast value.

In Table 10, in the first column, the upper limit of the estimated ultimate loss with 95% probability (one-tail test) are shown. This indicates that if we repeatedly estimate the ultimate loss with different samples, but with same formula, and in each case we construct confidence intervals, then 95% of all the cases of the interval given will inclcude the true parameter. Thus, the probability statement is not about population parameter but estimated parameter.

The distance of the interval is determined by the size of the estimated variance for the error, the complexity of the model and the size of the tail. In the third column the relative distance of the confidence interval in terms of the ultimate loss are provided. In the fifth and seventh column, the upper limit of the estimated future expected liability and its relative distance of the confidence interval are shown, respectively.

If we look at the relative size of the confidence interval in terms of ultimate loss, personal lines' (HOMFAM and PRVAUT) sizes are a lot smaller than commercial lines'. Among the commercial lines, WOKCOM's relative size of the confidence interval is the smallest even though its tail is longer than either COMAUT, COMMUL or SPELIA. The WOKCOM's relative size of the confidence interval may be the smallest because its stability of the exposure growth as well as as its stable payment pattern. SPELIA's relative size of the confidence interval is bigger than either COMAUT or COMMUL or WOKCOM, even though its tail is the shortest among the commercial lines. As we expected, MEDMAL's relative size is biggest among all lines, despite of its simplicity of the model. HOMFAM and SPELIA's relative size of the confidence interval in terms of the future liability are
extremely high compared to their size in terms of ultimate loss due to their large estimated variance of the error terms. Other lines' relative size are consistent with their counterparts.

Except for the cases of COMMUL and SPELIA whose estimated constant coefficients' signs are negative, all point estimates based on the models are slightly smaller than those based on the loss development methods. This does not necesarily indicate that modelcreated estimates are understated. One of the evidences are shown column (9) through column (13). We reserved column (9) of actual paid loss as of $12 / 91$ for the comparison purpose. In column (10), we provided the estimated paid loss as of $12 / 91$ based on the models and in column (11) the projected paid loss as of $12 / 91$ are shown based on the development method. The performances of five lines out of nine lines were better with the models rather than the loss development methods. To the contrary of the ultimate loss comparison cases, where seven out of nine cases, the model estimates were bigger than the actuals. While five out nine cases, the estimates of loss development methods were bigger than the actuals.

One of the main advantages of our model is that it provide future estimates for the future accident years with confidence intervals. Neither ordinary regressional models nor loss development methods provide these estimates, which are valuable for planning purposes. The last rows of column (10) are future accident year estimates and their confidence intervals. Compared to the actual values in column (9), the estimates seem to be reasonable.

By looking at columns (1) through (4), you may notice that every case, the ultimate losses based on the development method has fallen inside of the confidence intervals. This is a small evidence showing that our estimated confidence intervals are reasonable. However, figures on lower rows of the columns (9) and (10) indicate that one out of nine cases, the actual payment located outside the confidence interval with a probability of 97.5%, and two out of nine cases the actual payments laying outside the confidence interval with the
probability of 95%. These appear to show that our confidence intervals for the accident year may be too narrow because the actual probabilities indicate that 77.8% and 88.9% instead of the theoretical values of 95% and 97.5%, respectively. This is not the case because the confidence interval with 95% probability means that there is a 95% chance that the interval includes the true parameter (true mean) not the actual value. Consequently, the 77.8% and 88.9% regarding the actual values are reasonable considering that the population possesses its own distribution. This is the main reason why the theoretical probability with the normality assumption was larger than the empirical one in Gardner (1988).

In Table 11, the actual cumulative payment triangles, age-to-age factors and ultimate losses based on the loss development methods are shown.

IV. Conclusion

By expanding a Box-Jenkins type time-series model, we developed a generalized framework for modelizing a stochastic process on the loss history data. It turned out that some lines require more complex specifications than the others. We may presume that some lines are more sensitive to the insurance business cycle than the others. Our contributions will be to provide a generalized framework to derive confidence intervals in which the business cycle was taken into account as well as to provide future estimates for the planning process. This paper is the first step to that direction.

We would like to incorporate claim count estimates into our framework by utilizing vector autoregressive model in the near future. We may also incorporate outstanding reserve which is also a valuable information.

BIBLIOGRAPHY

Berquist, J. R. and Sherman, R. E., "Loss Reserve Adequacy Testing: A Comprehensive, Systematic Approach," PCAS LXIV, 1977, p. 123.

Bornheutter, R. L. and Ferguson, R. E., "The Actuary and IBNR," PCAS LXI, 1972 p. 181.

Box, G. E. P. and Jenkins, G. M., Time Series Analysis: Forecasting and Control, 1976.
Box, G. E. P. and Pierce, D. A., "Distribution of Residual Autocorrelations in Autoregressive Integrated Moving Average Time Series Models" Journal of the American Statistical Association, 65 992, p. 1509.

Durbin, J., "The Fitting of Time Series Models," Review of the International Institute of Statistic, 28, S, p. 233.

Gardner, Jr., E. S., "A Simple Method of Computing Prediction Intervals fro Time Series Forecasts," Management Science, 94, 4, p. 541.

Maddala, G. S., Econometrics, 1977.
Makridakis, S. and Wheelwright, S. C., Forecasting Methods for Management (Fifth Edition), 1989.

Quenouille, M. H., "Approximate Tests of Correlation in Time Series," Journal of the Royal Statistical Society, Series B, 11, 1, p. 68.

Vandaele, W., Applied Time Series and Box-Jenkins Models, 1983.
fable i. ESTIMATED COEFFICEMTS FOR AR(1,1) MCDEL

IST YEAR	ISI YEAR	
AY LAG	OY LAG	COWST
0.85250	0.13496	0.11621
0.99250	0.00708	0.11526
0.98074	0.01818	0.09425
0.73432	0.27660	-0.21894
0.99844	0.00328	0.09810
0.85550	0.14628	-0.07682
0.97503	0.02445	0.11304
0.97018	0.02990	0.10406
0.97063	0.03365	0.06065

table 2. estimated o-staitistics of the residuals for ar(1,1) model

	ACCIDENT YEAR $=82$				
	K=3	K=6	K $\times 5$	K=6	K07
HONFNM	2.38778	2.88698	5.43216	6.40958	7.67962
prvaut	6.20165	7.63330	8.03333	9.57421	10.27192
comali	8.02664	9.08966	12.78114	22.70667	27.73446
copoul	15.59455	18.74024	21.77020	24.20166	26.17824
Worcom	17.29664	24.0299	24.85543	32.13053	34.81509
medmal	3.63636	6.52361	9.18822	13.88173	16.61208
OTHLIA	4.38933	6.13802	6.52584	6.80700	6.81674
SPELIA	2.00036	2.33159	3.48908	3.51597	3.51782
protia	10.63477	11.35506	11.47056	11.52169	11.52889

accident year $=83$
$x=3 \quad k=6 \quad k=5 \quad k=6$

HCNFAM $2.56875 \quad 2.76390 \quad 2.93312 \quad 3.76685$
$\begin{array}{llllll}\text { PRVAUY } & 3.19666 & 4.15370 & 4.68083 & 5.11533\end{array}$
$\begin{array}{llllll}\text { Conaut } & 5.96915 & 7.45070 & 7.67292 & 23.55856\end{array}$
covell 9.2812112 .0360916 .6146217 .97051
Hoxtom $7.81576 \quad 16.92529 \quad 16.12265 \quad 17.08352$ MEDMAL 20.2233525 .6572230 .6584639 .76625
OTMLIA $7.81660 \quad 7.94727 \quad 10.83099 \quad 10.87109$
SPELIA $1.58167 \quad 2.12018 \quad 3.564773 .96429$
PROLIA 9.954316 .9233118 .4162821 .73013

HONFAM 1.50912 1.84325 2.0957412 .4470714 .18820
PRVAUT 0.90452 1.73380 $3.31919 \quad 8.57997 \quad 8.92221$
comaut 11.8548318 .0280119 .3591023 .7515830 .68252
Corval 19.31421 19.80737 20.3133615 .6248517 .12087
woxcom $15.0040716 .4611916 .83647 \quad 5.96221 \quad 6.27586$
$\begin{array}{lllllll}\text { MEDMAL } & 1.52935 & 2.50451 & 13.09629 & 1.81445 & 2.17930\end{array}$
$\begin{array}{lllllllll}\text { OTMLIA } & 7.44905 & 0.13170 & 9.67102 & 12.64123 & 17.40440\end{array}$
SPELIA 8.21914 10.6399223 .363014 .133784 .18365
PROLIA $19.2310026 .0514733 .40982 \quad 9.7288611 .05814$
table 2. estimateo o-statistits of the resiouls for ar(i, i) model
development year - 1
$K=3 \quad k=6 \quad K=5 \quad K=6 \quad k=7$

HONFAM 20.8628327 .4354129 .9799539 .1603744 .28323 PRYAUT $16.6526326 .27383 \quad 31.3274736 .31636 \quad 38.33991$ CONNUT 10.1142614 .0820919 .9036635 .0981839 .43475 COMUL $17.3861026 .24465 \quad 29.2148332 .8572836 .79327$ u \quad KCON $13.6574721 .1048722 .18290 \quad 26.12949 \quad 24.29261$ MEDMAL 9.0725611 .4535712 .1665112 .4395112 .53369 OTHLIA $14.1322917 .98698 \quad 23.65365 \quad 26.57243 \quad 28.50565$ SPELIA $8.238628 .89819 \quad 9.6057110 .4063510 .46272$ PROLIA 10.28675 11.5235512 .6566516 .3626814 .92516

```
OEVELOPMENT YEAR = 2
```

K=3 K=4 K 5 K K 6

HOMFAM 15.8041617 .0243324 .9209234 .06265 PRVAUT 16.3626216 .6118319 .3708926 .11920 CONUT 9.5070311 .7565714 .5702722 .64170 COMALL 11.0003515 .5538316 .7886030 .58926 wexcon $10.0467018 .8985922 .83892 \quad 25.65263$ MEDMAL 17.3561122 .3585524 .5394026 .06088 OTMLIA 14.2031615 .7202216 .7206416 .99232 SPELIA $24.3633230 .12124 \quad 36.38168 \quad 38.53166$ PROLIA $9.3514413 .16147 \quad 13.46168 \quad 13.71009$
developmet year = 3 development year $=4$
$K=3 \quad K=6 \quad k=5 \quad k=6$
$\begin{array}{llllll}\text { HONFAM } & 12.66103 & 13.35973 & 13.69182 & 6.18686 & 7.02828\end{array}$ PRVAUT 11.4216913 .9288919 .6976813 .3564215 .11712 $\begin{array}{llllllll}\text { cомNт } & 10.18653 & 12.17216 & 17.63906 & 8.03854 & 10.13738\end{array}$ COWUL 16.08152 16.7040717 .9442710 .9555613 .88891 $\begin{array}{lllllll}10 \times \mathrm{com} & 6.13730 & 7.06503 & 7.34507 & 9.18672 & 9.82891\end{array}$ MEDHL $5.6653412 .2060214 .21007 \quad 5.38761 \quad 7.73356$ OTMLIA 14.2928822 .40355 27.73785 10.0627914 .94903 SPELIA $18.2553721 .9066927 .88511 \quad 6.281318 .59398$ PROLIA 15.0552917 .1787518 .728707 .207728 .26060
table 3. peaf of the estimated residuals for af(1,1) mooel

	nesidual partial autocorrelatiows for ay 82						resioual partial antocorrelayiows for ay bi					
	ist lag	201 Lag	3RD lag	4th lag	Sth lag	bin lag	ist lag	2ND lag	3RD lag	6th lag	STM lag	Gri lag
HOMFAM	-0.57076	-0.03665	-0.07018	0.00852	-0.17023	-0.25534	-0.28725	-0.44010	-2.88914	2.02737	0.63195	0.14616
PRVAUT	-0.34487	-0,0036	-0.00112	-0.00223	0.00111	0.00201	-0.37356	-0.01520	-0.00476	-0.0113	-0.00362	0.00860
comalt	-0.10285	0.00115	-0.00226	-0.00255	-0.00431	-0.00255	-0.30156	0.00355	0.00614	-0.01290	0.00372	-0.02474
compl	0.09514	-0.01340	-0.00179	-0.00324	-0.00126	-0.00043	-0.43576	0.00571	0.00843	-0.00719	-0.02689	-0.00648
nowcon	0.16051	0.00092	-0.00934	-0.00782	-0.00939	-0.00908	0.12489	0.00460	0.01047	-0.01656	-0.00316	-0.00483
medmal	-0.14126	-0.10140	-0.11312	-0.12456	0.02052	0.00782	0.15254	-0.27062	-0.19031	-0.04040	-0.09085	-0.08738
othlia	0.44427	-0.00306	-0.00352	-0.00171	0.00037	0.00209	0.10985	0.00077	0.00673	0.00701	-0.00103	-0.00195
SPELIA	-0.22390	-0.03193	-0.00833	-0.01076	-0.06616	-0.00522	-0.12508	-0.07599	-0.07512	0.11286	-0.28879	-0.27434
prolia	0.25349	-0.01981	-0.00540	0.00476	0.00136	-0.00018	0.03450	0.01090	0.01662	0.05356	0.00867	0.0046

	RESIDUAL PARTIAL AUTOCORRELATIONS FOR AY 84						RESIDUAL P		autocorrelatiows for ay 85			
	1st lag	2vd lac	3RD Lag	6TM lag	Sth lag	6th lag	ist lag	2nd lag	3RD LaG	git lag	5th lag	6th lag
HONP AM	-0.18333	-0.02987	-0.04104	-0.05068	0.08708	-0.17562	-0.17577	-0.12662	0.07677	0.01706	-0.0470	-0.02116
PRVAJT	-0.02935	0.00670	-0.00169	-0.00649	-0.00482	-0.01315	0.02938	-0.00062	-0.00216	0.00043	0.00000	-0.00000
corant	-0.47491	-0.00447	0.00382	-0.00309	-0.00181	0.00121	-0.46176	-0.00270	0.00132	-0.00348	0.00029	0.00101
comedl	0.25051	-0.01295	-0.01081	-0.00404	-0.00315	-0.00162	0.06822	0.00182	-0.00738	-0.00228	-0.00159	0.00008
vorcom	0.36364	-0.01617	-0.00188	-0.02261	-0.04645	-0.03271	-0.02170	-0.05033	-0.11816	-0.05752	0.21919	-0.03888
medual	-0.57419	0.01836	-0.03797	-0.03747	-0.01874	-0.0029	-0.20607	-0.00680	-0.00968	-0.01695	0.01045	0.00267
OTMLIA	0.30091	-0.00597	-0.00298	0.00018	0.00095	-0.00036	-0.44420	-0.00020	-0.00140	-0.00011	-0.00003	-0.00016
SPELIA	-0.18716	-0.01487	0.01288	-0.01212	-0.01795	0.00782	-0.46475	-0.01362	-0.00260	-0.00066	0.00161	0.00082
prolia	-0.70515	0.00668	-0.02618	-0.00267	-0.00430	-0.01450	0.02055	-0.00099	-0.02622	0.00490	-0.02459	0.00013

	Residual partial antocorrelariows for oy 1						RESIDUAL PARTIAL AUTOCORRELATIOWS FDR OY 2					
	1st lag	200 lag	3RD Lat	4TM LaG	Sth lag	6TH LAG	ist lag	2nd Lag	3RD LaG	4th lac	Sth lag	6TH Lat
HOMFA	-0.18377	-0.033\%	0.00009	0.01791	-0.00445	-0.01272	-0.57390	0.01386	-0.07021	-0.00814	-0.01905	0.04257
pryaut	-0.65166	-0.00008	-0.00018	0.00010	-0.00002	0.00003	0.25633	-0.00027	-0.00065	-0.00006	0.00105	-0.00061
comaj	-0.21997	-0.02530	-0.00589	0.01806	0.00802	-0.01858	-0.11465	0.01353	-0.0146	-0.00924	-0.01754	. 00189
coner	-0.10355	-0.03000	-0.00079	0.00855	-0.00565	-0.00335	-0.46323	-0.01815	-0.08067	0.01360	0.00891	.05630
voxco	-0.35143	-0.093	-0.37	-0.77809	-1.58962	2.35511	0.06069	-0.02385	-0.01581	-0.00568	-0.00437	22
medmal	-0.10960	-0.03	013	0.00318	0.02590	-0.003	-	3	-0.08582	0.03129	0.00811	0.01127
Dimlia	-0.13321	-0.01	-0.00083	0.00683	0.00	-0.00166	-0.03812	-0.00776	-0.0057	0.00938	-0.00156	-0.00708
spelia	-0.14748	-0.36557	0.02584	-0.05500	0.0\%18	0.0370	30293	-0.00657	0.00221	-0.00923	0.00570	0.00422
prolia	.0.46299	-0.22962	0.096	-0.015	-0.06378	0.00	20669	-0.00140	-0.06373	-0.03099	0.02172	0.00733
	REsIOUAL PARTIAL AUTOCORELATIONS FCR or 3						RESIDUAL PMRTIAL Autocorrelations for or 4					
	ist lag	2 mo LaC	38 D L	GTM lac	57M lac	6TH LAG	1st lag	2ND Lac	3RD LAG	4TM LaG	5th lag	6TK lag
HOMFA	-0.4926	-0.05105	0.03597	-0.	-0.0007	0.02678	-0.33917	5	-0.00676	6	- 0	159
PPVALT	0.12929	0.00019	-0.00200	-0.00348	-0.00112	-0.00004	0.31263	-0.00160	-0.00538	-0.00035	-0.00200	0.00086
comalt	-0.12691	-0.00915	-0.00679	-0.00327	0.00723	-0.02852	0.10055	0.00708	-0.02027	-0.00191	-0.02065	-0.00043
comell	-0.20871	-0.01654	-0.00689	0.00686	0.01078	-0.00357	-0.25202	-0.01538	-0.01829	0.00686	0.01590	-0.00160
5axcom	0.23198	-0.02239	-0.02952	-0.01093	0.00816	0.01704	0.24769	-0.0276	-0.01471	-0.02061	0.01033	-0.00126
meamal	0.10842	-0.01029	-0.0554	-0.02723	0.02407	-0.00287	0.03956	-0.04484	-0.02263	0.04137	-0.02612	-0.03618
Othlia	0.05596	-0.01500	0.00112	0.00798	-0.00592	-0.02065	0.12130	-0.01779	-0.00050	0.00182	0.00055	-0.01890
spelia	-0.30055	-0.01253	-0.00252	-0.01689	0.01012	0.00586	-0.20675	-0.03803	-0.01686	0.01032	0.00542	-0.00049
presia	-0.29643	-0.08523	0.03853	0.02532	-0.05277	0.00191	-0.05020	-0.12462	-0.04818	0.02097	0.01188	-0.00

table 4. Estimated coefficents foo ar (2,1) mooll

	151 year ay lag	zmo vear ay lag	ist year or lag	cowst
HONFAM	0.30030	0.63392	0.06093	0.13195
prvaut	0.55930	0.44051	-0.00025	0.17295
comaut	0.96540	0.01553	0.01800	0.09608
comelt	0.53940	0.20832	0.26344	0.19422
worcom	1.05840	-0.08517	0.02632	0.09982
medmal	0.94113	0.05838	0.00222	0.10651
othlia	0.52058	0.66175	0.01822	0.16178
Spelia	0.73300	0.13460	0.13627	-0.06073
prolia	0.76355	0.20860	0.03330	0.07

table 5. estimated o-statistics of the resiouals for ar(z,1) model
ACCIDENT YEAR $=82$

	K.3	$\mathrm{K}=6$	K=5	$k=6$	K=7
HOMFAM	1.98996	2.16336	3.36277	3.89974	3.99259
PGVAJT	5.67318	6.5237	6.88369	8.01349	8.49348
COMALT	8.26154	9.46501	13.10957	23.54066	28.98261
comeal	15.91527	19.07583	22.34244	24.80556	27.03102
worcom	17.42113	24.40334	25.35317	32.67001	35.49136
medmal	3.48411	4.34488	8.93030	13.57876	14.25841
Othlia	4.28978	5.97255	6.34765	6.62106	6.62712
Spelia	1.94598	2.24384	3.28078	3.30467	3.31805
prolia	10	11.42674	11.54250	11.6372	11.65731

aCCIOENT YEAR = 83
K=3 K=4 K=5 K=6
$\begin{array}{lllll}\text { HONFAN } & 2.76251 & 2.05360 & 3.21404 & 4.18011\end{array}$
$\begin{array}{llllll}\text { PrVaut } & 3.03098 & 4.00322 & 4.60045 & 4.81416\end{array}$
cонаит $5.976497 .44506 \quad 7.64307 \quad 23.31011$
corall $0.5422412 .3672716 .56810 \quad 17.93802$
$\begin{array}{llllll}\text { noxcan } & 7.98863 & 15.33981 & 16.52810 \quad 17.33435\end{array}$
MEDMAL 20.1396625 .5252930 .4772839 .19085
OTMLIA 8.114718 .2832311 .3678211 .42570
$\begin{array}{lllllll}\text { SPELIA } & 1.47005 & 1.97616 & 3.32353 & 3.71316\end{array}$
PROLIA 10.6785817 .3925219 .1544422 .12186

	$\begin{gathered} \text { ACCID } \\ K=3 \end{gathered}$	$\underset{\substack{\text { DEWI } \\ \mathrm{KE} \\ \hline}}{ }$	284 $8^{8} 5$	accident K=3	$\begin{gathered} \text { YEAR }=85 \\ K=6 \end{gathered}$
Homfan	2.05900	6.76590	7.66356	5.50849	5.96703
prvaut	2.83376	5.38396	7.92933	7.46222	8.4033
comaut	10.06888	16.1717	16.83867	24.26775	31.7993
comal	18.55787	19.17945	19.70305	15.43770	16.71569
W0xCOM	15.31477	16.47673	16.96448	6.42555	6.96612
MEDMLL	1.54353	2.58499	13.71380	1.85397	2.21131
OTHLIA	5.51735	6.19861	7.76043	11.90048	13.22891
SPELIA	8.60713	10.13824	23.01875	3.15066	3.23195
Prolia	18.54068	25.60754	36.80326	11.18560	13.16175

table 5. estimated d-statistics of the residuals for art 2,1) mooel

HGMFAM 14.63397 $19.6425520 .59734 \quad 23.40826 \quad 24.88186$ PRVAUT $11.9807915 .6623821 .1013324 .90560 \quad 27.26196$ COMAT 8.08051 $11.7290216 .2066231 .76165 \quad 36.63307$ comal 20.6317326 .8592630 .6358032 .9066337 .20689 Моксен 14.9372422 .4068323 .9236025 .8240825 .96615 MEDMAL 8.9603811 .6897112 .5796112 .9030913 .02912 OTHLIA $17.7333622 .70700 \quad 27.48617 \quad 29.51769 \quad 33.14230$ SPELIA $18.0251818 .93740 \quad 19.53605 \quad 20.26905 \quad 20.59256$ PROLIA 7.84671 9.18015 9.9827211 .6429311 .87074

DEVELCDMENT yEAR = 2
$\mathrm{K}=3 \quad \mathrm{~K}=6 \quad \mathrm{~K}=5 \quad \mathrm{~K}=6$

HOMFAM 12.6795615 .7267618 .3923232 .04126 PRVAUT $13.0926716 .42352 \quad 20.7457422 .55493$ conaut $7.63526 \quad 0.5012311 .6212018 .42212$ comat 10.8021014 .6095816 .6383727 .08606 LOKCOM 10.4559519 .0762723 .8903726 .13308 MEDMAL $16.61188 \quad 21.4513123 .27465 \quad 24.53169$ OTHLIA $16.8070918 .6062519 .60520 \quad 20.20313$ SPELIA 14.7129715 .8650818 .1873319 .24083 PROLIA 0.0356311 .8370412 .337712 .70747

DEVELOPNET YEAR : 3 DEVELOPMENT YEAR $=4$

MONFAN $12.5047613 .4152713 .83793 \quad 6.6667811 .21330$ PRVAUT $13.3096218 .26313 \quad 20.5835013 .253413 .34350$ сомит $11.9057214 .96067 \quad 20.75482 \quad 7.9580911 .02764$ CONal 14.9818218 .1460519 .30833 8.16434 10.32852
 MEDMAL $6.6593313 .8064216 .30530 \quad 6.246618 .74575$ OTMLIA $15.36807 \quad 26.11587 \quad 28.1877910 .0787016 .35889$ $\begin{array}{lllllll}\text { SPELIA } & 7.65181 & 9.61350 & 11.73637 & 6.15198 & 6.24645\end{array}$ $\begin{array}{lllllll}\text { proila } & 15.55548 & 98.15833 & 20.22100 & 6.75053 & 7.67302\end{array}$
table 6. pcaf of the estimated residuals for ar 2,1) mooel

	ISt lag	2ND Lag	JRO lag	bth lag	G	6TH LAG				TM LAG	StM LAG	6Th la
Wa	-0.29	-0.0302	-	-0.02566	-0.16819	-0.20061	- 0	6	-0.59748	26	1.94932	0.56558
PRVAUT	-0.35057	-0.00372		. 00169	0.00082	0.	-0.38088	-0.00887	-0.00269	-0.00790	0.00272	0.00633
W	-0.10371	0.001	0022	0.00254	-0.00430	-0.0025	-	0.00367	\%	-0.01270	360	-0.02637
comed	0.09390	-0.01	-0.0015	0.00268	-0.0015	-0.00065	0	0.00397	-0.00569	056	. 0222	-0.00574
Loreon	0.45	-0.003	-0.00362	. 0017	0.00035	. 002	663	0.00063	78	-0.00770	00093	0.0019
MED	0.16519	0.0091	-0.	0.00782	-0.0095	-0.00932	0.1123	0.00601	. 00926	0153	0.0027	0.00427
Othilia	-0.21331	-0.031	-0.000	0.01174	-0.04263	0.01222	-0.13467	-0.03399	04098	-0.06096	-0.16086	-0.12331
PPE	-0.12282	-0	-0.11554	-0.116	0.0234	0.00631	0.1522	-0.2270	. 155	. 02263	-0.05877	-0.0
RO	0.25			. 00	0.001	. 0002				. 06246	0.008	0.

RESIDUAL PARTIAL AUTOCDRELATIONS FOR AY BK RESIDUAL PAATIAL AUTOCORELATIONS FOR AY 85
 $\begin{array}{lllllllllllllll}\text { HONFAM } & -0.005058 & -0.006 & -0.01433 & -0.03493 & 0.014516 & -0.01944 & -0.11976 & -0.05905 & 0.040935 & 0.016009 & -0.0523 & -0.0090966\end{array}$ $\begin{array}{lllllllllllll}\text { PRVAUT } 0.0156667 & 0.003217 & -0.00109 & -0.00263 & -0.00098 & -0.00571 & 0.26675 & -0.00133 & -0.00292 & -0.00016 & 0.000178 & 2.210 E-06\end{array}$ $\begin{array}{llllllllllllllllll}\text { conuut } & -0.46568 & -0.00652 & 0.003665 & -0.00293 & -0.0018 & 0.001218 & -0.45725 & -0.00256 & 0.001196 & -0.00346 & 0.00032 & 0.0009861\end{array}$ $\begin{array}{llllllllllllllllllll}\text { corell } 0.2397261 & -0.00472 & -0.01996 & -0.00238 & -0.00305 & -0.00132 & 0.195629 & -0.00175 & -0.00777 & -0.00161 & -0.00073 & 0.000206\end{array}$ nokcon $0.2756712-0.00533-0.002560 .0003190 .000797-0.00036-0.53336-0.00065-0.00097-2.4 E-050.000086-0.0002153$
 OTHLJA $0.0061007-0.018460 .019313-0.01606-0.021190 .003093-0.61031-0.00536-0.00605-0.000850 .000995 \quad 0.0001095$ SPELIA $-0.4730810 .061368-0.07167-0.05588-0.03586-0.00869-0.17857-0.00338-0.01325-0.01010 .007809 \quad 0.0014826$

aesidual parital autdocarelayiows for or 9							RESIOUAL PNATIAL ANTOCORELATIOUS FOR OY 2					
	ist lag	2	3RD LaS	4TH Lag	Sth lag	6TH Lag	Lac	2ND Lac	380 la	4TM Lag	Sth lag	6Th lag
HEAFAM	0.10441	-0.05122	-0.00100	0.01980	. 0.01004	-0.00983	0.09371	-0.01559	-0.08582	0.01545	-0.00559	0.03722
prvaut	-0.12470	-0.00017	-0.00012	0.00008	-0.00002	0.00002	0.44546	-0.0010	-0.00089	-0.00055	-0.00123	-0.00032
comert	-0.21823	-0.02537	-0.00582	0.01807	0.00780	-0.018 1	-0.09615	0.01338	-0.01452	-0.00935	-0.01747	0.00200
comell	-0.01338	-0.0337	-0.00120	0.00760	-0.00828	-0.0023	-0.30425	-0.02329	-0.07606	0.01252	0.01284	0.04627
vorcon	-0.15666	-0.01164	0.00086	0.00692	-0.00051	-0.00156	-0.04033	-0.0073	-0.00833	0.00939	-0.00130	-0.00678
MEDML	-0.30151	-0.08300	0.37307	-0.68592	-0.04343	4.49305	0.06404	-0.02510	-0.01789	-0.00599	-0.00269	0.00850
Othlia	0.00015	-0.39626	0.05815	-0.11715	-0.05436	0.01327	-0.11265	-0.00791	-0.00253	-0.00697	0.00876	0.00234
SPELIA	-0.06512	-0.06156	-0.014 7	0.00651	0.02518	-0.00397	-0.01628	-0.04230	-0.08082	0.03488	0.00849	0.01003
procia	-0.38248	-0.18376	0.07692	-0.03374	-0.05593	0.01576	-0.00536	-0.00816	0.06963	-0.02398	0.01872	0.00306

Resioual phatial antocoraelatiows for or 3							Resioual partial antocorrelayiows for or 6					
	18t lag	20] Lac	3RD Lag	4TH Lag	5Th LuG	67\% Lag	ist lag	2ND Lag	3RD LAS	6th lag	3th lag	6TH LAG
Hemfan	-0.18553	-0.0604	0.00878	-0.03115	0.00606	0.02137	0.17352	-0.00906	-0.01119	-0.0096	-0.00037	0.00012
pavaut	0.44993	-0.00274	-0.00413	-0.00426	-0.00055	0.00079	0.53043	-0.00635	-0.00715	-0.00195	-0.00060	0.00190
comaut	-0.11606	-0.00928	-0.00675	-0.0035	0.00681	-0.02858	0.11468	0.00686	-0.02046	-0.00220	-0.02066	-0.00040
comar	-0.12782	0.01971	-0.00771	0.00885	0.01224	-0.00631	-0.11636	-0.01955	-0.02103	0.00670	0.01472	-0.00624
norcem	0.02123	-0.01555	0.0007	0.00846	-0.00461	. 0.02015	0.08589	-0.01737	-0.00009	0.00203	0.00214	-0.01867
wepmal	0.25400	-0.02553	-0.03058	-0.01050	0.00958	0.01747	0.26950	-0.03012	-0.01741	-0.01940	0.01161	-0.00188
OTMLIA	0.04945	-0.01640	-0.0112	-0.01399	0.01147	0.00525	0.04172	-0.05498	-0.01581	0.01260	0.00645	-0.00000
spelta	0.17 er	-0.01958	-0.06156	-0.02226	0.02685	0.00058	0.08795	-0.05177	-0.01969	0.04080	0.03065	-0.04013
prolia	-0.20953	-0.0737	0.03710	0.01521	-0.05075	-0.00047	0.05577	-0.13833	-0.04611	0.01823	0.00958	-0.00573

TABLE 7. ESTIMATED COEFFICENTS fOR AR(3,1) mCOEL

	1SI YEAR ay Lac	$\begin{gathered} \text { 2MD YEAR } \\ \text { AY LAG } \end{gathered}$	3RD year Ay lag	15 T YEAR or lag	COWST
HOEFAM	0.02596	0.67760	0.64232	0.05052	0.17460
Pryaut	0.52211	0.39606	0.88301	-0.00161	0.18837
comalt	0.96376	-0.03759	0.05602	0.01672	0.10371
coral	0.57237	-0.15216	0.35489	0.23526	-0.14156
Loxcom	1.06169	-0.72885	0.69056	-0.00487	0.23127
medmal	0.94271	0.06672	-0.01021	0.00256	0.10270
OTMLIA	0.32960	0.24380	0.41688	0.01021	0.24196
SPELIA	0.67767	-0.16442	0.39012	0.09871	-0.00733
prolia	0.69942	-0.20058	0.47181	0.03626	0.11847

tafle 8. estimated o-statistics of the residuals for aris,i) mooel

	accioemi year - 82				
	K=3	K=4	$\mathrm{K}=5$	K=6	[-7
homan	1.89961	2.04500	2.9736	3.43561	3.46336
prvaut	5.56150	6.32262	6.64456	7.64102	8.05060
comavi	8.16380	9.29051	12.72606	22.87711	28.23228
conell	16.53650	19.73038	23.49269	25.95561	28.53066
Hoxeon	19.11617	26.3989	25.27048	32.04011	33.54338
MEDMAL	3.69878	4.3607	8.94902	15.59271	14.28146
OTHLIA	4.18413	5.66641	6.06382	6.31699	6.32329
SPELIA	1.80286	2.09208	2.94262	3.02819	3.02980
Prolia	10.78073	11.56971	11.72503	11.82288	11,84372
		CIDENT Y	AR $=83$		
	K=3	K=4	$\times \mathrm{5}$	K=6	

$\begin{array}{lllll}\text { HOWFAM } & 3.00390 & 3.19140 & 3.47231 & 4.55810\end{array}$
$\begin{array}{llllll}\text { PRVAUT } & 3.02413 & 4.02696 & 4.63506 & 6.84792\end{array}$
Conuvt $6.02256 \quad 7.463737 .6684023 .16026$
COOPUL $7.7486610 .01261 \quad 13.87038 \quad 15.65627$
woxcom 8.2153115 .5475816 .7002916 .93862
MEDMAL 20.1442825 .5181230 .4837239 .23301
$\begin{array}{llllllllll}\text { OTHLIA } & 7.27898 & 7.38832 & 10.29606 & 10.34060\end{array}$
SPELIA $1.666651 .97280 \quad 3.36948 \quad 3.68359$
PROLIA $10.85263 \quad 17.7677 \boldsymbol{1 9 . 6 7 2 2 5} 22.63624$

$\begin{array}{llllll}\text { HONFAM } & 3.47006 & 11.40593 & 12.13779 & 2.39762 & 3.26036\end{array}$
$\begin{array}{llllllll}\text { PRVAUT } & 2.77706 & 5.20330 & 7.77981 & 7.33106 & 8.51191\end{array}$
$\begin{array}{llllllll}\text { conaut } & 9.32228 & 15.07253 & 15.79316 & 21.97061 & 30.34663\end{array}$
conell $18.3821918 .779719 .25388 \quad 9.0711710 .22135$
$\begin{array}{lllllll}\text { woxcon } & 7.16027 & 7.49055 & 7.90569 & 4.38527 & 5.29526\end{array}$
$\begin{array}{lllllll}\text { MEDML } & 1.54674 & 2.59282 & 13.76100 & 1.85422 & 2.21259\end{array}$
$\begin{array}{lllllllllll}\text { OTHLIA } & 7.29723 & 7.8746 & 9.76389 & 10.06132 & 10.63447\end{array}$
SPELIA $10.7865613 .38671 \quad 25.73312 \quad 6.81150 \quad 7.12185$
PROLIA $18.8793526 .4267034 .61267 \quad 6.16343 \quad 6.58304$

DEvELOPMENT YEAR = 1
$K=3 \quad K=6 \quad K=5 \quad K=6 \quad K$

HOMFM 17.8268721 .0461323 .0715824 .9839327 .15608 PRVAUT 11.0370116 .3988819 .6978023 .0758824 .94223 comant 6.572468 .7212613 .0338028 .0153935 .40280 CONUL 20.0335625 .7146931 .4685133 .4219630 .33703 Horcon $8.08916 \quad 9.10014 \quad 9.9358311 .5110311 .76611$ MEDML $8.74491 \quad 11.6840312 .3536112 .67248 \quad 12.79706$ OTMLIA $10.3893514 .33840 \quad 17.3166517 .8298818 .07093$ SPELIA $18.5209119 .44997 \quad 20.0365320 .46299 \quad 20.93029$ PROLIA 15.2719919 .9171821 .1859223 .3715226 .59059

DEVELOPMENT YEAR $=2$

HOMFAM $10.8849311 .9395312 .21178 \quad 20.84216$ PRVAUT $13.5287517 .5089521 .48084 \quad 23.50739$ comaut $7.08087 \quad 9.0503711 .0546717 .58706$ conar $11.9066315 .01756 \quad 16.33284 \quad 29.18758$ noxcon 8.2168616 .1053924 .6960428 .53668 MEDMAL $16.56766 \quad 21.43637 \quad 23.26015 \quad 24.55222$ OTHL1A 16.50626 15.88895 17.1268917 .76156 SPELIA 10.2215111 .5223914 .6999216 .72538 PROLIA $8.03733 \quad 9.6165910 .6351311 .23291$

HONFAN 9.6457910 .3697110 .5074211 .0466218 .18216 PRVAIJ $13.4295718 .21212 \quad 20.0077812 .4227612 .60368$ сочил $11.8026715 .1466321 .79389 \quad 6.329488 .06215$ CONALL $16.6933017,6687820.2020112 .3855715 .46746$ uохсом $12.1845619 .4655722 .84906 \quad 5.1006110 .99673$ MEDMAL $6.6506913 .7660316 .19655 \quad 6.2248686 .72807$ OTMLIA $15.3718626 .15346 \quad 26.06879 \quad 8.06626 \quad 10.23055$ SPELIA 14.85186 $18.3479623 .94580 \quad 4.27263 \quad 4.47297$ PROLIA $15.8702018 .0651919 .86379 \quad 5.08702 \quad 5.69904$

RESIDUAL PARTIAL autocorrelatiows for ay 82 residual partial autocorrelatiows for ay bs

HDMFAM

pquant

comat

comar

uorcon

mepral

othlia

SPELIA

 prolia| -0.26716 | 0.05608 | . 09823 | -0.03268 | -0.15005 | -0.19583 | -0.34105 | 883 | 8186 | 963 | 30 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| -0.35392 | -0.00376 | -0.00087 | -0.00155 | 0.00078 | 0.00171 | -0.37978 | -0.00362 | -0.00266 | -0.00779 | 0.00259 |
| -0.10556 | 0.00113 | -0.00222 | -0.00252 | -0.00424 | -0.00256 | -0.30055 | 0.00354 | -0.00412 | -0.01273 | 0.00370 |
| 0.0738 | -0.0094 | -0.00113 | -0.00155 | -0.00185 | -0.0001t | -0.63716 | 0.00220 | -0.00590 | -0.00654 | 0.02300 |
| 0.42938 | -0.00243 | -0.00288 | -0.00118 | 0.00076 | 0.00140 | 0.21136 | -0.00119 | -0.00924 | -0.00818 | 0.00126 |
| 0.16511 | 0.00910 | -0.00928 | -0.00781 | -0.00955 | -0.00930 | 0.11287 | 0.00406 | -0.00929 | -0.01561 | -0.00276 |
| -0.20786 | -0.03110 | -0.0104 | -0.01123 | -0.03803 | -0.01716 | -0.14054 | -0.02174 | -0.03029 | -0.04656 | -0.12731 |
| -0.06205 | -0.09686 | -0.12202 | -0.09324 | 0.03265 | 0.00158 | 0.14931 | 0.20989 | -0.13631 | -0.02612 | 0.06189 |
| 0.26115 | -0.01899 | -0.005s9 | 0.00428 | 0.00163 | 0.00018 | -0.02798 | -0.00369 | -0.01099 | 0.04032 | 0.00852 |

hesidual partial autocorrelatiows for ay 84 mesioual partial autocorrelations for ay bs

HOMFAN

prvalit
comut
cormul
varcon
MEDMAL
отhlia
spelia
prolia

bth lag

$$
0.03960
$$

$$
0.00051
$$

0.00811
0.06367
-0.0057t
0.00086
0.00018
-0.00151
0.00785
regiounl partial antocorrelatiows for oy 3 residual partial autocorrelatiows for oy a

номनан
PQYaut
comaut
comal
Loxcom
$0.19226-0.00518-0.01352-0.008750 .003370 .00103-0.01502-0.01277$ 0.00102-0.01046-0.00261
$\begin{array}{lllllllllllllllll}\text { OTKLIA } & -0.40906 & -0.00249 & 0.00018 & -0.00629 & 0.00166 & 0.00011 & -0.19610 & -0.00397 & -0.00276 & -0.01209 & 0.00510\end{array}$
$\begin{array}{llllllllllllllll}\text { SPELIA } & 0.20983 & -0.01629 & -0.01917 & -0.01090 & 0.01290 & 0.00292 & 0.01638 & -0.03931 & -0.0131 & 0.00531 & 0.00591 & 0.00015\end{array}$
$\begin{array}{llllllllllllllll}\text { PROLIA } & -0.42933 & -0.01915 & 0.01781 & -0.00325 & -0.01107 & -0.00225 & 0.21993 & -0.02346 & -0.04364 & -0.00565 & -0.01262 & 0.00146\end{array}$

	(1)	(2)	(3)	(4)	(5)	(b)	(7)	(8)	(9)	(10)	(11)	(12)	(13)
Ulitimate Loss Comparison						liability comparizon			Actual	Loss Dev			
Accident	$95 \times$	Point		Lose Dev	$95 \times$	point		LDF	Paid L	model	Methad	(10)-(9)	(11)-(9)
Year	Limit	Estimate	-2)/(2)	Method	Limit	Estimate	(5-6)/(6)	Method	212/91	212/91	212/91		
1982	8,227,483	8,222,584	0.06%	1,222,506	10,775	5,876	63.37\%	5,798	8,224,257	8,222,584	8,222,506	$(1,673)$	(1,751)
1983	8,894,303	8,803,211	0.122	8,884,462	28,618	17,526	63.29%	18, 77	8,883,252	8,877,052	8,878, 197	$(6,200)$	$(5,055)$
1984	9,223,736	9.198,101	$0.28 x$	9,195, 276	70,010	46,375	57.77x	61.548	9,183,429	9,178,76	9,175,860	$(6,665)$	(7,589)
1985	10,460,020	10,376,815	0.61\%	10,299,266	179,966	116,761	54.13x	39.210	10,314,312	10,344,095	10,252,727	29,783	(61,585)
1986	9,756,424	9,631,000	1.30%	9,597,963	354,433	229,009	54.77\%	195.972	9,497,598	9,515,095	9,477,972	17,497	$(19,626)$
1987	10,259,092	10,038,562	$2.20 x$	10,008,421	618,497	397.067	55.41x	367.826	9,789,919	9,427,809	0,804,060	37,890	14,149
1988	11,486,361	11,100,605	3.48X	11,098,960	1,076,049	690,293	55.88x	685,628	10,656,498	10,699,876	10,691,036	43,380	34,540
1989	14,651,685	13,968,085	4.85\%	14,190,606	1,906,785	1,223,182	55.89\%	1,456,703	13,254,760	13,272,218	13,318,598	17,458	63,838
1990	15,710,658	13,473,811	16.60 X	13,819,411	6,473,740	4,236,893	52.78\%	4,582,493	12,358,709	12,269,744	12,403,657	(108,965)	44,948
Total	98,649,765	94,892,774	3.968	95,325,847	10,718,873	6,981,882	53.977	7.394.955	92.162.732	92.187.239	92.226,603	24,507	61.871
1991									10,670,718	9,411,233			

Upper Linit with $97.5 \times$ Two-Tafl Test
Lower Limit with 97.5 x iwo-Tail fest
4.746,733

Upper Limit with $95 x$ Two-fall Test
16,075,732

Lower Limit with 95 \% Two-Tall Test

1991

Upper Limit with 97.5 \& Two-Tail Toet lower Limit with $97.5 \times$ two-fall tese

Upper Limit with $95 \times$ imorall teat Lover Limit with $95 \times$ Two-Tsil Teat

$13,360,80314,876,262$

16,270,389

13,482,096
15,996,073
13.758,411

Jable 10. comall comperian of estimetes

accident	(1)	(2)	(3)	(6)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)) (13)
	Ulitime loas comparison (S)					Lieblifty Comparison		actual			Loss Dey	(10)-(9)	$(11) \cdot(9)$
	95 x	Point		Losa dew	$85 \times$	Point		L0F	Paid 4	Mocel			
Year	Limit	Estinete (1-2)/(2)		Method	Lhat	Extimete	(5-6)/(8)	Method	212/91	212/91	212/91		
1982	5,437,308	5,422,012	0.278	5,417,230	85,087	70,601	20.52x	64,919	5,381,291	5,389,061	5,306,804	7,770	5,513
1983	6,354,958	6,321,652	$0.53 x$	6,316,186	193,896	160,580	20.74\%	155,102	6,206,690	6,234,573	6,240,475	27,883	33,785
1984	7,305,313	7,236,856	0.958	7,225,004	395.729	327,272	20.928	315,420	7,053,579	7,044,965	7,047,586	$(8,616)$	(5,995)
1985	7,999,620	7,064,431	1.72\%	7,852,537	777.351	642,162	$21.05 x$	610,260	7,492,393	7.479,635	7,490,595	(12,758)	(1,798)
1986	7,681,575	7,434,025	3.338	7,200,161	1,413,260	1,165,718	21.24x	931,856	6,660,465	6,681,956	6,659,164	21.511	(21,281)
1987	8,505,365	8,078,574	5.280	7,634,479	2,415,107	1,988,316	21.46 x	1,546,221	6,715,892	6,692,439	6,646,415	(23,653)	(69,477)
1988	9,909,739	0,220,743	7.477	8,610,542	3,866,267	3,173,271	21.708	2,574,070	6,914,450	6,854,622	6,876,073	(29,828)	(38,377)
1989	12,567,415	11,485,820	9.42 x	11,191,586	6,031,693	4,950,098	21.05%	4,655,864	7,763.973	7,800,080	7,849,421	36,107	85,448
1990	16,158,039	12,282,635	15.277	10,697,573	10,517,534	8,642,130	21.702	6,857,068	6,133,380	6,400,062	6,130,429	266.682	(2.951)
Total	79,919,422	75,347.647	6.077	71,936.279	25,693,930	21,122,155	21.868	17,708,787	60,322,093	60,607,392	60,305,960	285,299	(15, 133)
1991									3,906, 185	4,080,413			
Upper	Lialt with	97.5 \times Two	tafl tent							4,850,506			
Lower	Liait with	$97.5 \times$ Tmo	Tafl teet							3,300,321			
upper	Limit with	95x	it reat							4,676,277			
Lower	Lialt with	¢5 x two-T	11 reat							3,484,550			

	(1)	(2)	(3)	(6)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)) (13)
	Ultínate Loss Comparison					Liability Coomparison			Actual	Loss Dev			
Accident	$95 \times$	Point		Loss Dev	958	Point		LOF	Poid L	model	Merhod	(10)-(9)	(11)-(9)
Year	Limit	Eatime	2)/(2)	Method	Limit	Estinate	$(5-6) /(6)$	Method	212/91	212/91	212/91		
1982	9,213,514	9,146,789	0.73x	8,942,805	466,195	399.470	16.70x	195.486	8,893.778	8.940.043	8,847.496	55.265	(46,282)
1983	10,598,467	10,485,982	1.06 x	10,317,965	732.055	620,570	$17.96 x$	451.533	10.059,861	10.086,206	10,092,399	26, 365	32,558
1984	13,069,409	12,893,512	1.36%	12,879,912	1,110,585	934,688	18.82x	921,088	12,296,335	12,271,112	12,316,262	$(25,223)$	19.927
1985	16,643,669	16,365,071	1.96 x	16,650,883	1.728,692	1.650,096	19.21 x	1,535,906	13.439,155	13,426,764	13,417,469	(12,391)	(21.706)
1986	16,006,922	15,570,589	2.808	15,752,839	2,676,469	2,240,138	19.48 x	2,422,386	14,105,048	16,116,962	14,078,555	9,896	(26,493)
1987	18,214,288	17,527,814	3.924	18,033,056	4,191,669	3,505,195	19.58 x	4,010,437	15,266,336	15,278,500	15,260,031	12,166	$(6,303)$
1988	21,159,960	20,044,447	$5.57 x$	21,345,500	6,850,868	3,735,355	19.45 x	7.036.408	18,587,748	16,521,593	16,598,396	(68, 155)	10.658
1889	23,809,901	21,6\%,318	$8.76 \times$	23,020,266	11,928,420	10,016,837	19.11\%	11,938,785	16,069.736	16,124,360	15,966,068	54.624	(101.068)
1990	26,395,600	23,064,713	14.54x	26,455,565	21,085,488	17.746.541	18.88x	19,155,393	12,900,611	12,966,760	12,198,366	64.157	(702,245)
Total	153,111,789	146,976,235	5.618	149,998,771	50,780,440	42,644,886	19.08 x	47,667,422	119,618,586	119,737,287	118,777,022	118,701	(861,566)

5,488,406	6,046,709
	6,947,791
	5,145,628
	6.737,861
	5,355,558

Accident	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12) (13)	
		UItime	te lose cos	mparison		Liabilit	comperis		actual		Loss Dev		
	$95 \times$	Point		Loss Dev	$95 \times$	point		LOF	Paid L	model	Method	(10)-(9)	(11)-(9)
Year	Lieit	Estimate (1-2)/(2)		method	Limit	Estimate (5-6)/(6)		Method	212/91	212/91	012/91		
1982	1,129,276	1,126,763	0.22	1,124,766	1,876	5.363	$46.87 x$	2,766	1,124,673	1,124,848	1,123,243	175	(1,630)
1983	1,279,869	1,274,976	0.382	1,272,515	14,624	9.751	49.977	7.290	1,273,497	1,269,260	1,269,306	$(4,229)$	(4,113)
1984	1,370,003	1.358,845	0.82x	1,357,735	33,498	22,340	$69.95 x$	21,230	1,355,884	1,367,930	1,349,957	(7,954)	$(5,927)$
1985	1,382,886	1,357,925	1.84x	1,356,815	74,656	49.695	50.23x	6,585	1,327,123	1,332,671	1,533,631	5,548	6.508
1986	1,381,856	1,332,072	3.748	1,313,246	167,088	97,306	51.168	78,478	1,283,582	1,276,620	1,268,090	(6,962)	$(15,692)$
1987	1,580,592	1,490,415	$6.05 x$	1,469,009	262,730	172,553	52.268	151.227	1,393,829	1,383,098	1,381,298	(10,731)	$(12,531)$
1985	1,853,73	1,714,565	9.878	1,609,189	492,560	323,391	52.31x	308,015	1,535,560	1,522,202	1,524,276	(13,298)	(11,286)
1989	2,200,011	1,865,627	17.92x	1,821,966	976,618	646,234	51.90x	600,573	1,470,785	1,501,273	1,491,605	21,508	11.910
1990	2,521,771	1,030,600	$37.76 x$	1,530,000	2,034,350	1,343, 189	51.468	1,050,580	1,102,659	1,093,583	1,031,030	(4,076)	(71,62)
Total	34,729,978	13,351,788	10.32\%	12,950,722	4,046,000	2,687,019	51.688	2,266,753	11.878,592	11,856,573	11,772,604	(20,019)(103,988)
1991									576,235	541,668			
Upper	Limit with	$97.5 \times$ Tmo-	-Tafl Test							778, 117			
Lower	LIatt with	$97.5 \times$ Two-	Tofl test							305,219			
Upper	Limit with	$95 \times 8 \mathrm{mo}$-Ta	11 rest							718,209			
lower	Liait with	$95 \times$ Two-Ts	ll teat							365,067			


```
                Tebe 11.CumumivoLemend OLE Pmpment Thende
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline  & \multicolumn{6}{|c|}{PPIVATE PASSENCER AUTO LABILTYMEDICAL} & & \multirow[b]{2}{*}{d} & & \multirow[b]{2}{*}{10} & \\
\hline YEAR & 1 & 2 & , & & & 0 & 7 & & 0 & & 11 \\
\hline 100 & 8,757,145 & 10,773,84 & 13,072790 & 14.372.676 & 15.008, 154 & 15,48. 107 & 15,0e8.071 & 15,000.425 & 15.70.300 & 15.765.306 & 15.776.029 \\
\hline 180 & 0.349,149 & 12.108 .804 & 14,841,844 & 10.34206 & 17,147800 & 17,800,309 & 17.78:976 & 17.0878 .857 & 17,801.735 & 17,600,000 & 17,.pel, 001 \\
\hline 1004 & 7,124,946 & 13,7m, 714 & 10,005,354 & 10,74.239 & 19.781,063 & 20,27,374 & 20.478 .810 & 20,507.144 & 20.021331 & 20.858 .510 & 20,072,029 \\
\hline 180\% & 7.02 col 1 & 15,404.700 & 10,400,233 & 21,310,063 & 22,443,562 & 23,012.001 & 23,251,405 & 23,300.736 & 23,451,201 & 23.481 .524 & 23,560,711 \\
\hline 1008 & 8.70a 107 & 17.200 .158 & 21,503,704 & 20,851,700 & 25,231.200 & 23.060.004 & 23,160.758 & 20.204.307 & 20.301277 & 20,300,800 & 20,4 90.114 \\
\hline 100 & 0,7003:1 & 19,427,045 & 24,100,300 & 20,034,245 & 20,200,n3 & 20,000,200 & 20,200,670 & 20,300.428 & 20,40x,400 & 20,500.52 & 29.831. 112 \\
\hline 1000 & 10,800,08) & 21,770,000 & 27,007. 191 & 20,918,300 & 31,440.838 & 32,200,037 & \$2.000,877 & 32,75.112 & 32,068,975 & 32,001,040 & 32,0es, 117 \\
\hline 100 & 12,08,053 & 24.120.301 & 20931,130 & 33.104.000 & 34,800,305 & 35,72,444 & 30,144,220 & 30,310,854 & 30.417.117 & 30,470.403 & 30,400,000 \\
\hline 1000 & 13,59210 & 20,400,496 & 32,000,710 & 30,542,482 & 30,370,940 & 30.304.063 & 30,700,004 & 30,970,053 & 40,000.044 & 40,159,011 & 40,181,807 \\
\hline 1001 & 13,300,003 & 28,102,000 & 23,100,003 & 20,84050 & 23,280,801 & 25.0011052 & 20,3501319 & 20,002,034 & 17.001.737 & 15.7m,004 & \\
\hline & 1 rO 2 & 2103 & 3 TO 4 & 4 TOE & 5708 & - 107 & 7108 & -100 & - тоит & & \\
\hline 1008 & 1.8714 & 1215 & 1.0045 & 1.0400 & 1.0048 & 10127 & 1.004 & 1.0089 & & & \\
\hline 100 & 1.8073 & 12183 & 1.1035 & 1.048 & 1.024 & 1.000 & 1.0049 & & & & \\
\hline 1904 & 1.593 & 1234 & 1.100 & 1.058 & 1.085 & 1.0124 & & & & & \\
\hline 1000 & : 9.975 & 12403 & 1.145 & 1.0638 & 1.0054 & & & & & & \\
\hline 1800 & 1.8050 & 12475 & 1.110 & 1.056 & & & & & & & \\
\hline 180 & 2.0000 & 12446 & 1.1104 & & & & & & & & \\
\hline 1989 & 1.0027 & 12400 & & & & & & & & & \\
\hline 1000 & 2.0013 & & & & & & & & & & \\
\hline NST 5 AVa & 1.8011 & 12407 & 1.1078 & 1.511 & 1.0040 & 1.0117 & 1.0000 & 10008 & 1.0015 & 1.0008 & \\
\hline -TO-LT & 3.0110 & 1.5128 & 12191 & t.1008 & 1.040 & 1.0215 & 1.0008 & 1.005 & 10002 & 10001 & \\
\hline St last 1 & & 20,605,400 & 29.937.130 & 20.028,300 & 20,200,733 & 25.002.024 & 23201.405 & 20,560,144 & 17,804,735 & 15.705,305 & \\
\hline unt loss & & 40,181,807 & 30,400000 & 32.205,117 & 20,531,112 & 28,4r9,114 & 23,506.711 & 20,672,020 & 17,02001 & 15.70,020 & \\
\hline
\end{tabular}
```



```
Proes of:
```


MEA	speanl Lailuty				5	-	7	0	0	10	11
198	419.853	00973	00424	1002883	1,073m7	1,004,781	1,105001	1.117,728	1,121,400	1.128240	1,124,190
196	4eatra	007,517	1008708	1,141,067	1.197 .957	1238120	1254419	1206285	1,2093304	1,271.470	1,272815
1904	407,307	0×280	1,103440	1204004	1,202731	1,312,022 ${ }^{\circ}$	1,330508	1,300057	1,354,304	1,389,680	1,357,735
1005	471.803	ceaiso	1,001.405	1208008	1200407	1300230	1.382031	1,341,054	1,361,462	1,353,100	1,354,015
1808	447,374	032741	1 1,063s5	1,17230	1234,760	1,2m000	1202711	1,30972	1,310015	1,312100	1,313246
190	407.187	04,300	1,109111	1,317,800	1,381,208	1,414574	1,446, 117	1.40n,673	1,400,474	1.487868	1.4egose
1208	519204	1,154.015	1,301,174	1,82487	1,507,40	1,040782	1.872800	1.ce0458	1,005008	1,807,704	1,009,100
1000	645.437	1221,300	1,401,005	1,004415	1,712008	1,759310	1.7ea47	1,811,520	1817,489	1 1820,470	1821,000
1800	407.412	1,001.000	1,200204	1,074080	1.449091	1,488.110	1,513081	1,520, 109	1,534,210	1,539,737	1.539,000
189	57azs	1,108450	1.479785	1,536.500	1,302,80	1,289562	1,277,12	1,354,604	1,273497	1,124,673	
	1 TO2	2 TO 3	3704	4 TO 5	5 TOE	- 107	708	a rOQ	- tout		
108	10050	1208	1.0081	1.0408	1.0102	1.0180	1.0115	1000			
1008	1.55	1.1609	1.1000	1.0500	1.0830						
10 es	1.5001	12470	1.108	1.063							
1009	22097	12770	1.1008								
1000	2.109	12801									
1800	2.2300										
Last sava	2.1198	12213	1.008	1.0401	1.0870	$1.010 \times$	1.0109	1.0003	10010	100008	
maE-TO-LIT	3.1554	1.4817	1224	1.1140	1.0830	1.0058	1.0198	1.0088	1.008	1.0009	
EST LAST 4		${ }^{1,0010030}$	1,401,008	$1.624,270$ 1009180	$1,301,290$ 1,400009	1.284000	1,333631	$1,340.057$	1,200,304	1.121243	
ESTUTLOSS		1,534000	1021,0es	1809140	1,409,000	1.313246	$1.354,015$	1,357,735	1272515	4.124.100	

[^0]: 1 Footnote: LQ and UQ are actually the lower and upper hinges. They are only approximately the quartiles.

[^1]: ${ }^{1}$ The author gratefully acknowledges the financial support of the CAFIR research fund and of the Natural Sciences and Engineering Research Council of Canada.

