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Abstract 

Merit rating is the use of the insured's actual claim experience to 

predict future claim experience. This paper discusses merit rating 

for professional liability insurance for both individual doctors 

and group practices. The paper presents several different 

theoretical formulations for merit rating. Credibilities are 

stated in terms of the parameters of the risk process. The paper 

discusses several methods of estimating the key parameters, along 

with sample data. Finally, the paper discusses several practical 

considerations in the design of a merit rating formula. 

1. INTRODUCTION 

The use of an insured's past claim experience for prospective 

premium determination can variously be called experience rating or 

merit rating. Merit rating is common for workers' compensation and 

commercial liability coverages. Merit rating for individual 

insureds is less common, although "claim-free discounts" or 

accident surcharges for personal automobile insurance are widely 

used. Several insurers now use merit rating for doctor 



professional liability insurance. 

After describing the general problem, this paper will restate the 

theoretical basis for merit rating. It then will present 

alternative merit rating formulations in terms of the parameters of 

the risk process. It then turns to methods for estimating the 

required parameters. It will apply these methods to actual data. 

Finally, itwilldiscuss various practical problems in implementing 

a merit rating program. The paper will deal with two related 

situations: claim-free discounts and surcharges for individual 

doctors and merit rating for group practices. 

2. GENERAL STATEKENT OF THE PROBLEM 

We assume that there is some classification plan that will 

determine a premium for a given doctor (or group). The 

classification variables may include medical specialty, types of 

procedures, geography, and teaching or part-time status. For 

groups, there may also be schedule rating credits. 

Why do we also need merit rating? Generally speaking, because the 

insured's own claim experience provides additional information that 

can rate the insured more accurately. We give some reasons for 

additional cost variations below. In a competitive environment, 

more accurate rates will generate greater profitability for the 

insurer. From the insured's point of view, more accurate rates are 



also fairer. Better doctors will pay less and poorer doctors will 

pay more. From society's point of view, merit rating (and more 

accurate rating, generally) will provide an incentive for loss 

prevention. 

Merit rating must be considered in connection with the 

classification plan (i.e., other rating variables). The more 

accurate the class plan, the less meaningful individual claim 

experience will be, and vice versa. Assume, for example, that the 

presence of a particular factor makes an insured 10% more 

expensive. If that variable is used in the classification plan, 

every insured with that factor will pay 10% more. If that variable 

is omitted, insureds with that factor who are merit rated will pay 

somewhat more than those without the factor, but most likely they 

will not pay 10% more. This follows from the concept that most 

insureds will receive less than 100% credibility. 

Why do individual costs differ? 

Why would we expect doctors to have different loss costs? It is 

well recognized that different specialties have widely differing 

costs. This probably results from a variety of reasons. Certain 

specialties, such as surgeons, perform a higher percentage of 

procedures that can have devastating results, if done improperly. 

For certain specialties, such as psychiatrists, it may be very 

difficult to prove the causal connection between negligent practice 

and adverse results for the patient. For certain specialties, such 



as physicians versus surgeons, the average patient is much 

healthier and any negligence is less likely to do damage. Thus, 

most insurers classify doctors by specialty. For physicians, most 

insurers also classify by the type or amount of surgery performed. 

This classification plan does not cover all possible variations in 

costs among doctors in the same specialty. Costs may also vary for 

three general reasons: (1) limitations in the class plan; (2) 

exposure ; and (3) competence. Each will be discussed below. 

Most class plans group specialties into about 10 different rate 

groups. In addition to specialty, the grouping may depend upon 

whether a doctor performs various procedures. The reason for this 

grouping is a lack of credibility for many specialties and 

procedures. That is, the number of insured doctors and the number 

of claims for many specialties and procedures is low. The 

volatility of claim experience for these low-volume categories 

makes it difficult to determine their cost. It is also difficult 

to know how many of a certain type of procedure was performed 

during a given year. Doctors are usually classified by whether or 

not they perform a procedure, not on the number of procedures. 

This classification scheme can result in significant cost variation 

within a given rate group. For example, group 0 may have a rate 

relativity of 70%; qroup 1, lOO%, and group 2, 150%. Within group 

0, there may be specialties that have relativities of 50%, 60%, 

70%, and 80%. Within group 1, there may be specialties with 



relativities of 90%, lOO%, llO%, and 125%. In addition, the 

exposure to certain procedures may vary significantly. For 

example, the performance of procedure A may shift a doctor's 

classification from group 1 to group 2. Some doctors may perform 

10 A's a year and some may perform 50 A's a year. A more exact 

classification plan might base the premium on the number of A 

procedures during the year. 

The classification plan also may not consider other cost 

variations. Costs vary significantly from state to state. Some of 

this is due to differences in statutory or case law. Some of the 

difference may also be due to differences in the liberality of 

juries, the quality of the plaintiff's bar, and the claims 

consciousness of patients. These latter differences may exist 

within a state. In particular, there may be differences between 

urban, suburban, and rural areas. 

There may also be cost differences among doctors related to 

differences in exposure. For example, some doctors may treat more 

patients or may engage in more high-risk procedures. In addition, 

the type of patient may be different. Some doctors may have richer 

or poorer clients, who may have higher or lower damages, should 

negligence occur. Some doctors may also undertake higher-risk 

patients, which could affect both the frequency and severity of 

loss costs. 

Finally, doctors undoubtedly differ in competence, which has many 



aspects. Training and experience differ. Doctors vary in their 

adherence to continuing education and changing practice standards. 

Doctors vary in their dexterity, judgment, attention to detail, 

bedside manner, and supervisory skills. The style of practice 

(e.g., number of patients, number of prescribed tests) may vary. 

Some doctors may have alcohol, drug, or other psychological 

problems. 

Generalized Mathematical Structure 

Now that we recognize that costs can vary significantly within the 

classification plan, how do we structure the merit rating plan? 

Virtually all merit rating plans use an adjustment to the class 

rate. In many lines, this is called a "modification factor." The 

adjustment could also be a credit or surcharge, which is expressed 

as a percentage of the class rate. 

Virtually all merit rating plans calculate the modification factor 

according to the following generalized formula: 

&f=zA Cl -2 
E 

where: X is the modification factor, which is multiplied against 

the class rate; Z is the credibility factor; A is the insured's 

actual claim experience; and E is the average claim experience for 

the class. In practice, virtually always the credibility is 



limited to values between and including 0 and 1. Thus M is a 

weighted average of the insured's relative experience (to the class 

average) and the class rate. (We could have written the right-hand 

term as (1-Z) x 1.) 

We can express the same concept in terms of a discount or 

surcharge, as a percentage of the class rate. The adjustment to 

the class rate, as a factor of the class rate, can be calculated by 

subtracting 1 from M: 

Adjustment = M-l = yz 

When M is less than 1, the adjustment will be negative, or a 

discount from the class rate. When A=O, the insured has no claims. 

The q'claim-freet' discount is thus 2, the credibility. Indeed, this 

may often be the easiest way to measure credibility. If we have 

claim data for two experience periods, with a substantial number of 

claim-free insureds in the first period, the relative cost of these 

insureds in the second period, to the average cost for all insureds 

in the second period, is the empirical claim-free discount and the 

empirical credibility. 

The formula for M is a linear function of the insured's actual 

claim experience. It would be theoretically possible for i to be 

some other type of function. Other functions do not seem to have 

been used in actual practice. Perhaps the linear function is the 



most intuitively reasonable function. In addition, where a linear 

function might not be useful, the definition of A is modified. For 

example, it seems unreasonable in some cases to charge the entire 

amount of a large claim; very often, the maximum chargeable claim 

size is limited in some manner. An advantage of the linear 

formulation comes in the estimation and interpretation of Z. 

Merit rating plans differ in defining A, in calculating E, and in 

determining Z. The usual process is to first define A, or what 

data is to be used for the insured's claim experience. Once this 

is done, E usually can be handled in a straightforward manner; it 

represents the class average claim experience for the given 

definition of A. 

The specification of Z can be done in at least three ways. First, 

it can be established on an ad hoc basis. For example, we could 

decide that 100 expected claims was VVfulllq or 100% credibility, and 

partial credibility was the square root of the expected count to 

100. We might inject some actuarial or statistical theory into the 

selection of the full credibility standard. (See, e.g., Longley- 

Cook [S] or Venter [14]). 

Second, Z can be developed from risk theory. We can use the famous 

credibility formula: 



Z=P 
P+K 

(1) 

where P is a measure of exposure and K can be determined from the 

following equation: 

(2) 

where 01 is defined as the VVprocess variance" and T' is defined as 

the "variance of the hypothetical means." The process variance is 

the variance we would expect for the class average insured's 

experience, given P units of exposure. The variance of the 

hypothetical means is the inherent variability of mean claim costs 

for the insureds within the given class, adjusted for P units of 

exposure. Depending on our definition for A, it may be possible to 

determine numerical equivalents for the process variance and the 

variance of the hypothetical means. 

Third, we can estimate z statistically from actual data. Although 

potentially we could use any statistical estimation procedure, the 

use of linear regression results in the same credibility formula 

and parameter explanation as the risk theory approach. 

Although the risk theory and regression approaches are very 

similar, it should be realized that actual results may differ. The 

real world may differ from our theory or our theory may only 



approximate the real world. The theoretical approach allows us to 

apply knowledge from one context to another context. For example, 

measurement of the variance of the hypothetical means for one 

company, state, or line of business, may be a useful input to 

another company, state, or line of business. The theoretical 

approach also allows us to generalize actual findings. For 

example, we may extrapolate three-year data to a four-year 

experience period. We should remember, however, that the real test 

of merit rating is how accurately it prices insureds in practice. 

Alternative Forms for Modification Factor 

There are several general considerations in the design of a merit 

rating plan. (See, e.g., Tiller [ll].) First, it should be 

readily understood by insureds, agents, and company personnel. 

Second, it should be reasonably simple to administer. Third, it 

should not allow for manipulation by insureds. Finally, it should 

strike a balance between stability and responsiveness. On the last 

point, any formula can be adjusted to give greater or lesser weight 

(i.e., credibility) to the insured's own experience. If too much 

weight is given, rates may fluctuate too much from year to year. 

If too little weight is given, the pricing system may not be as 

accurate as possible and loss prevention incentives are reduced. 

The main decision in formulating a merit rating formula is the 

definition of A, the insured's actual claim experience. Choices 

involve the "length" of the experience period and whether to use 



counts or amounts. The "length" may be thought of as the number of 

years of experience, but could also include exposure from multiple 

locations or states. If the actual claim count is used, it could 

be defined as the reported count, the closed-paid count, or some 

definition of a non-nuisance claim. For example, a non-nuisance 

claim could be a settlement for more than $5,000 ("CP5"). If 

amounts are used, there may be some limitation on the maximum 

chargeable claim; there is also an option of including or 

excluding allocated loss adjustment expense, loss development, and 

incurred but not reported ("IBNR") claims. 

In the National Council on Compensation Insurance ("NCCI") Revised 

Experience Rating Plan, A is defined in terms of loss amounts, 

usually for three policy years. A is divided into "primary" and 

*'excessBB losses, with the first $5,000 of each loss being primary 

and the remainder, excess. There is also a per claim limit of 2.5 

times the average cost per "serious" claim, a per occurrence limit 

of twice the per claim limit, and a limit on the total cost of 

diseases. Experience generally is pooled for all NCCI states and 

all entities with at least 50% common ownership. E, the expected 

losses, is divided into primary and excess portions. E must also 

be adjusted for loss development and the loss limitations. 

The Insurance Services Office ('lISO") has similar experience.rating 

plans for general and automobile liability. A is limited to basic 

limits loss amounts. There is an additional limitation on the 

maximum claim size, based on premium size. A provision for IBM, 



based on exposure, is added to A. E is adjusted for the loss 

limits and loss development. 

Several insurers use merit rating for doctors. The typical plan 

offers an individual doctor a certain percentage discount for each 

claim-free year. Chargeable claims usually are limited to non- 

nuisance settlements (e.g., claim closed for more than $5,000). 

There is usually a maximum discount, which applies after five or 

six claim-free years. One insurer offers lower discounts for 

physicians than surgeons. A doctor loses the entire discount when 

a claim is charged; the discounts accumulate thereafter for each 

new claim-free year. Rules may differ according to the insurer of 

the claim. For example, some insurers give credit for claim-free 

experience with other insurers. The experience period may be 

actual policy experience or it may be any settlements during a 

given period, regardless of the occurrence or reporting date. 

Several insurers offer merit rating discounts to groups of doctors, 

based on the following generalized formula: 

Adjustment=M-1-s 
JE+K 

where E is the expected claim count, A is the actual claim count, 

J is a constant (e.g., 2), and K is a constant (e.g., 1). E is 

calculated from the number of insureds by rating class for the 

grow; there is a separate claim frequency factor for each rating 

iOH 



class. 

Some Truisms 

In workers' compensation there is the concept of the "off-balance" 

in the merit rating plan. That is, the average modification factor 

is not necessarily 1.0. The average collectible rate for a class 

will not necessarily be the same as the class manual rate. Thus 

the manual rate must be adjusted for off-balance. This concept is 

important for doctor professional liability insurance, particularly 

if we adopt a claim-free discount only approach. With only 

discounts and no surcharges, the average collectible rate will be 

less than the manual rate. 

Taking another perspective, it is necessary for those who do not 

receive the discounts to pay for the discounts. If some insureds 

pay less than the average cost, some must pay more. Even if we do 

not call it a surcharge, the difference between the claim-free 

discount and the manual rate is the cost of not qualifying for the 

claim-free discount. For example, the claim-free discount might be 

25%. A doctor who loses the discount will pay an additional 33%. 

Whether we call this a surcharge or the manual rate, the cost of a 

claim is still 33%. 

Although we will estimate credibilities in a later section of the 

paper, it is worthwhile to consider the tradeoffs between discounts 

of various sizes. Exhibit I shows the required manual rate 



increase, given discounts of various sizes (lo%, 20%, 30%, 40% and 

50%). The manual rate increase is dependent upon the percentage of 

insureds receiving the discounts. For example, if 90% of insureds 

receive a discount of lO%, the manual rate must be increased 9.9%. 

In other words, 10% of insureds pay 109.9% of the average and 90% 

pay 98.9% of the average. We give a discount of 1.1% to the 90% 

that are claim-free and require the other 10% to pay an additional 

9.9%. 

3. ACTUARIAL THEORY 

As we have seen, the first step in formulating a merit rating plan 

is to define A, the insured's actual claim experience. Once that 

is done, usually it is straightforward to determine E, the average 

claim experience for the insured's class. The most complicated and 

difficult part is to determine 2, the credibility to attach to the 

insured's experience. This section discusses various risk theory 

formulations for credibility. Although these formulations may not 

replicate the real world, they are useful in several ways. First, 

they provide a conceptual basis for understanding the statistical 

validity (i.e., credibility) of claim experience. Second, they 

provide a means to formulate credibilities when directly relevant 

claim experience is not available. Finally, they provide insight 

into the process of estimating credibilities. 

In developing the following formulas, we will want to consider both 



claim counts and claim amounts. We also will want formulas for a 

single exposure period as well as multiple periods. There is no 

limit to the number and sophistication of formulas that can be 

developed; even so, we probably have included formulas that may be 

too difficult to test in practice. 

The Basic Risk Process 

We begin with a simple risk process and add various layers of 

complexity. We will develop formulas for variances. With few 

exceptions, the means are obvious and therefore omitted. 

Assume that we have one doctor insured for one exposure unit (of 

time). We define N as a random variable for the number of claims 

for the period. We assume that N has a mean of X. We assume that 

each claim has a claim size distribution 8, with mean fi and 

coefficient of variation squared a. We also define T as the sum of 

individual claim amounts, or the total losses for that doctor for 

that exposure unit. If we assume that N and S are independent, we 

can calculate the variance of T from the moments of N and S. 

var(T)=E[MVar(S)+Vas(N)E*tSl 

We use the notation I'E xl" [ as the expected value of x'. We 

previously defined a as Var(S)/lF[Sj. If we make the additional 

assumption that N is Poisson distributed, then Var(N) = E[N] = A. 



Thus we have a fundamental risk theory formula: 

var (27 =Xp* (l+a) (3) 

We can extend this formula to P exposure units. We assume that the 

same parameters apply to each exposure unit. Generally speaking, 

we can replace x by PA, if we assume that N is Poisson. Thus for 

P exposures, we have: 

There are two important assumptions in this formulation: that the 

count and amount distributions are independent and that the count 

distribution is Poisson. To the extent these are not true in 

practice, our use and interpretation of these formulas may be 

faulty. If we do not assume independence, we can still calculate 

the variances using covariance terms. This will be complicated, 

particularly when we make the formulas more complex. It seems 

reasonable in practice to assume independence, as long as we remove 

nuisance or closed-without-payment claims. 

The Poisson assumption is very significant, particularly for the 

property that its mean equals its variance. The Poisson 

distribution arises from a process that satisfies three conditions: 

(1) events in two different time intervals are independent; (2) the 

number of events in an interval is dependent only on the length of 



the interval; and (3) the probability of more than one event 

occurring at the same time is zero. (See Beard [l], chapter 2). 

In practice, these conditions might be violated if there were some 

catastrophe (or contagion) or if an individual's claim frequency 

depended on its past history. As an example of the first case, we 

might have suits for breast implants or for the transmission of 

AIDS. As an example of the second case, we might have a 

plaintiff's attorney developing a series of suits against a 

practitioner, related to multiple incidents of unnecessary surgery 

or sexual misconduct with patients. For the most part, the Poisson 

assumption seems reasonable in practice, but we must be aware when 

it does not apply. 

It would be possible to assume that N followed some other 

distribution, with two parameters. The practical consequence of 

this, however, would be to add one more parameter that we would 

need to estimate. The interpretation of this parameter likely 

would overlap with the interpretation of other parameters, to be 

explained below. In addition, the estimation of this parameter 

might require data from an additional time period, which might be 

difficult to obtain. 

Heterogeneity in the Insured Population 

The above formulations assumed that we knew the parameters for the 

given doctor. We have calculated the "process variance." By the 

nature of merit rating, we assume that doctors will vary in their 



inherent claim costs. Thus we need to expand the above formulation 

to add this heterogeneity. Conceivably, any of the above 

parameters could vary among the doctor population. We will assume 

that only the mean claim frequency varies among doctors; this 

should add sufficient complexity for practical purposes. We define 

a new random variable, r, to have a mean of 1 and a variance of 8. 

We will refer to fi as the "structure variance." It is the (weighted 

average) variance of the insured population means (relative to the 

overall population mean.) For any given doctor, the mean claim 

frequency is assumed to be Xx. We can incorporate these 

assumptions into our formulation by using a fundamental property of 

conditional probabilities: 

var (NJ =Ex [Var(NIX) I +vazx (E[NIXl ) 

If we assume a Poisson process, we have Var(NIx) = xx. We can 

rewrite the last equation as: 

Var (N) =Ex 11x1 +Var, (1X) 

With the expectations taken over the variable x, x is a constant 

and can be taken outside of the operator. The variance of a scalar 

times a random variable is the scalar squared times the variance of 

the random variable. We previously defined E[x]=l and Var(x)=fl. 

Thus we can rewrite the previous equation as: 

.i I -l 



Var(N) =L+pXa 

For P exposure units, with the same parameters, we have: 

For the total amount, T, for a single exposure unit, we have: 

This can be written as: 

Var(T)=E,[Lxp2(1+a) 1 +Var,(Axp) 

For P exposure units with the same parameters, we have: 

(4) 

Although we used the same notation, 8, for the population 

heterogeneity for both counts and amounts, in reality there may be 

a different value in the two different contexts. For example, 



there may be differences in the average claim size as well as in 

claim frequency. 

For equation (4) above, we note that the first quantity is the 

'I recess P variance I@ or the variance given one exposure unit and , 

known parameters, from equation (3). The second quantity is the 

product of fi, the variability in the insured population (given a 

mean of l), and the square of XP, which is the mean. This second 

quantity is the "variance of the hypothetical means." The hp term 

is a scalar that results from the variance calculation. Indeed, we 

can rewrite the first term, eliminating the square of the scalar, 

as: 

This quantity represents the process variance relative to the mean, 

just as p is the structure variance, relative to the mean. We will 

use the term "relative variance o to be the ratio of a variance to 

the square of the mean. It is the coefficient of variation 

squared. 

The Basic Credibility Formula 

Using the fundamental formula for conditional probabilities, we can 

write Var (T) as: 



Var(T)=E,[Var(T[X) 1 +Var,(E[TIxl) 

This is the same form as: 

Var(T) =az+T2 

Here aa is the average process variance and 71 is the variance of 

the means of the insured population. If we define 72 and da in 

terms of one exposure unit, our credibility formula (1) becomes: 

(5) 

It is important to note that the denominator of the credibility 

formula is the total variance for the insured experience. Thus we 

have a general formula for credibility that conforms to our risk 

theory model of the claim process. For claim counts, we have az=x, 

and 7==flXa. Dividing through by x we have: 

(6) 

If we divide through by ,9X, we get the generalized formula, 

l/(l+K), with: 



For P exposure units, we substitute PA for h above. This gives us 

an extra P in the 71 terms. By the same operations, we arrive at 

the generalized formula for 2 = P/(P+K), with the same K as above. 

It will be useful to write the credibility in terms of the expected 

claim count, E=PX. Thus we have: 

E z=- 
E+K’ 

(7) 

where K’=l/B. 

If A is defined in terms of amounts, then o*=Xp'(l+a) and 

7’=8(Ap)‘. Dividing through the general formula for Z by hga 

yields: 

Dividing this through by flh leads to the formula for K: 



We can also see that the scalar term for the mean will appear, 

squared, in both the u' and 7’ terms. These items will Cancel in 

the credibility formula. We will be left with a formula for K that 

is the following ratio: 

KI (Relative) Process Variance 
(Relative) Structure Variance 

For counts, the numerator is I/A and the denominator is 0. For 

amounts, the numerator is (l+a)/A and the denominator, again, is fi, 

although the numerical value 6 may be different for counts and 

amounts. 

It also will be useful to analyze the total relative variance. We 

remember that the total variance is al+7~ and the relative variance 

is calculated by dividing the variance by the square of the mean. 

For the above credibility formulation, for counts, we have the 

following formula: 

Total Relative Variance=++p 

We know that the Poisson relative variance is l/A. Thus the excess 

relative variance, for this formulation, is 8. 



Risk Shifting 

One of the limitations mentioned in connection with the Poisson 

assumption was the changing of an individual's mean costs over 

time. This can be handled formally, by an adjustment to the 

credibility formula. This phenomenon has been called by various 

names, such as "parameter uncertainty" (see Meyers [lo]) or "risk 

shifting" (see Mahler [6], [7] and Venezian [13].) An interesting 

application is presented by Meyers [lo], concerning the merit 

rating of Canadian automobile insurance. 

In effect, the basic risk theory formulation breaks down when 

exposure is added for a given insured. Instead of credibility 

increasing approximately in proportion to P, in the general 

credibility formula, the increase is significantly less. There is 

an intuitive explanation. since the insured's mean costs may 

change over time, there is uncertainty that its historical mean may 

be the same as its future mean. 

This phenomenon can be modeled in the same manner that we modeled 

heterogeneity among different insureds. The heterogeneity 

parameter, of course, should be different. Instead of reflecting 

the differences among the insured population, it reflects the 

differences for a given individual over time. 

We define 6 as the variance of the individual insured's mean costs 

over time. We should note that it may be difficult to 



differentiate between fi and 6. Both parameters reflect the 

differences in individual insured experience; fl reflects those 

differences between individuals in the same period and 6 reflects 

differences between the same individuals in different periods. 

Since we do not have the opportunity to observe different 

experience for the same individual in the same period, there may be 

some ambiguity in the measurement process. 

The main difference in the mathematics from the previous 

formulation is that the process variance is different. Instead of 

being A for counts, it now becomes: 

For amounts, the process variance is: 

The formula for credibility, 7*/(~~+7~), for counts, becomes: 

The total relative variance is lfA+s+fl. The excess relative 

variance is 6+fl. 3ividing through by @A, we can rewrite the last 



equation as: 

(8) 

If we let K=l/j% and we define 5=1+6/p, then we have a general 

credibility formula, Z=l/(l*J + X). For P exposure units, we can 

derive the equation: 

P z=- 
PJ+K 

We can also state the credibility in terms of E, the expected claim 

count: 

where J has the same definition as above and X'=l/fi, as before in 

the basic credibility formulation, (7). 

For amounts, we derive the credibility formula: 



This has the same 3 as for counts, above, and the same K as for 

amounts in the basic credibility formulation. 

We have the following changes from the basic formulation. The 

process variance is now larger, since there will be more 

variability in the individual insured's experience. The excess 

relative variance is the sum of 6 and 8. When we estimate fi, we 

will have a smaller structure variance. Thus a2 is now larger and 

ra is now smaller. The credibility will be reduced. 

We should note that the maximum credibility is l/J. In effect, we 

are saying that since the individual's mean cost may be different 

in the future than it was in the past, we may not be insuring the 

same risk and, hence, we will always give some credibility to the 

class average. 

Heterogeneity within the Insured 

The rationale for the next generalization in the credibility 

formula does not apply to individual doctor experience. It may be 

useful, however, in developing formulas for group experience. This 

generalization has been used by the NCCI. As with risk shifting, 

we have a situation where adding exposures does not yield as much 

credibility as if all exposures had had the same underlying risk 

parameters. 

In the first credibility formulation, we developed a parameter 8, 



which described the variance in the insured population. We now 

want to develop credibility for groups. If all of the doctors in 

the group were equally good or equally bad, we could apply the 

first credibility formulation, using P to represent the exposure 

for the number of doctors in the group. In all likelihood, 

however, the group will have some better doctors and some poorer 

doctors. Some of the underlying risk factors, such as geography, 

might apply to the entire group; other risk factors, such as 

training and experience, would be different for different members. 

If the composition of the group was entirely random, with respect 

to the insured population, we could rate each doctor individually; 

there would be no additional statistical validity to the group 

experience, apart from the individual doctor experience. 

We define y as the variance of mean costs (adjusted by class) 

within a given group or insured. We expect that 0 c y < fi. In 

other words, the variability within the group is not as large as 

the insured population, but it is not zero. 

The variance of the insured population means is different than 

before. Here the "insured population" is groups with a degree of 

heterogeneity. Some part of the variance will be proportional to 

the number of exposures (i.e., each exposure has the same 

parameters, for which the variances are additive) and some part 

will be proportional to the square of the number of exposures. We 

can write this as: 



rZ=ly+(P-y) I2 

We know from the previous development that, for counts: 

We also know that the total variance, ignoring the possibility of 

h>O, is h+fiX=. Fran this we can solve for E=y(X-1)/h. Thus we 

have: 

u2=l+y(l-1)l 

Using the general formula for credibility and dividing by fiA2, we 

have: 

Z= 
(1-Y) ++ 

1+& 

For P exposure units, we have: 



In terms of the expected count, E, we have: 

(1-Y) E+y 
Z= 

E+f 
B 

(9) 

We can write this in a more general form: 

(10) 

where I=y/B and K' has the same form as the previous formulations 

for E. 

The interpretation of this formula depends on the specific values 

for the given parameters. As we will see below, this formula may 

produce higher credibilities than the previous two formulations, 

when the expected claim count is low. Excepting this situation, 

however, we can relate this formula to the previous formulations. 

We see that the (1-I) term reduces the effectiveness of additional 

exposures. Since the exposures within a group are heterogeneous, 

we would not expect to generate as much credibility per additional 

exposure, compared to the situation where all exposures had the 



same parameters. We can also see that rz is generally lower than 

it is in the other formulations, because we have incorporated some 

of the population heterogeneity into the process variance for the 

insured. 

The NCCI credibility formulation includes both risk shifting and 

insured heterogeneity. The credibility may be developed from the 

formulations for 03 and 7’. As a practical matter, the sample data 

we used for this paper is not sufficient to separately estimate all 

of the required parameters. 

4. PARAMETER ESTIMATION 

There are several different approaches that we can take to estimate 

the appropriate credibility. We may estimate the credibility 

directly, by using claim-free discount data or a regression 

approach. This approach basically requires that we have data for 

the same insureds during at least two different experience periods. 

This is probably the best approach to estimating credibility, 

because our theoretical models may not always apply to the real 

world. We may also estimate credibility by estimating the 

parameters in the formulas that we developed above. This may be 

our only alternative if we do not have sufficient data. Even' if we 

estimate credibilities directly, we may want to estimate the 

theoretical parameters, in order to gain more insight into the 

process. 



Direct Estimation of Credibilities 

We will define some generalized notation to simplify the estimation 

equations. Assume that we can measure the experience of Q insureds 

over two different experience periods. For each insured, i, we 

define q, the relative cost ratio for the first period. For 

example, if we have 10 claims for 100 insureds, the average claim 

frequency is 10%. For an insured with one claim, x=10. For an 

insured with no claims, x=0. We define y, as the relative cost 

ratio for the second period. We also define w, as the weight that 

we will apply during the estimation process. We can think of wi as 

being the relative exposure of that insured to the total group of 

insureds. Some of the following equations will have a special 

meaning where the sum of the wits is 1.0. 

Our preference is that the xi be defined in the same manner as A, 

the actual claim experience, that we are using in the modification 

factor formula. We want to test the predictability of the actual 

experience. It is possible that different definitions of q will 

give the same credibility parameters, such as p. For example, 

rating based on reported counts might produce the same fl as rating 

based on CP5 counts. We would expect the level of credibility to 

be different, however, since the reported count frequency will be 

much higher than the CPS frequency. 

We can use any y, data to test the validity of the modification 

factor. Since, ideally, we want to test the actual cost of insured 



experience, our preference might be to use insured amounts for yi. 

As we saw above, however, the variability in results likely will be 

much higher using amounts than counts. Thus using amounts may give 

too much weight to outliers and render the estimation process 

ineffective. Thus, normally we want the 3 to reflect the 

definition of A and the yito reflect the actual costs of insurance. 

We can make substitutions, if we understand the limitations that 

this might produce. 

The simplest estimate for 2 is the claim-free discount. Our 

notation can be made simpler by grouping all insureds by their 

claim experience in the first period. x, would be the relative cost 

in the first period for insureds with no claims. xl would be the 

relative cost for insureds with one claim, etc. y,, would be the 

second period relative cost for insureds with no claims in the 

first period. Similar definitions would follow for yl, etc. The 

weights would represent the percentage of insureds with no claims, 

etc. in the first period. 

The empirical claim-free discount is 1 - yo. This is the 

credibility that applies to this group of insureds. 

We have assumed that the credibility is the same for all insureds 

in the group. The stability of our estimate will depend upon how 

many insureds were claim-free in the first period, as well as how 

volatile the claim experience is in the second period. Note that 

there is no particular requirement for measuring y, in the same 



manner as 2q. We could try several measures of y,, such as pure 

premium and different count definitions. 

This formulation is somewhat limiting, however, in that we do not 

use the experience of non-claim-free insureds. We could expect to 

get a better estimate by using more information. 

Least Squares Regression Formulation 

A more generalized formulation uses the modification factor, &, to 

estimate the second period experience: 

pi=zxi+ (1-Z) 

In effect, we want the most appropriate credibility, Z, to convert 

the insured's first period experience into a prospective rate for 

the second period. We can derive a mathematically appropriate 2 by 

selecting some criteria to minimize the differences between the 

predicted experience (MJ and the actual experience (yi). Although 

it is not the only possible criterion, least squares minimization 

is commonly used to determine Z. Thus we have the following 

formulation: 



C=Ci Wi (ZXi+l-Z-Y,) * 

We can solve for Z by taking the partial derivative of C with 

respect to Z and setting the result equal to 0. 

ace 
x- )-, 2wi(z(x,-l)+l-Y,) (x1-1) 

We can separate out the terms that have Z and those that do not. 

g=2ci wi2(x,-1)*+w,(1-yi) (xi-l) 

When we set this equal to zero, the 2 drops out. We can put all 

the Z terms on one side of the equation and the non-Z terms on the 

other side. Since Z is a constant, we wind up with a ratio for Z: 

z= C, WI (Xi-l) (Vi-') 
C, Wi (Xi-l) * 

If the sum of the wi is 1.0, the denominator is the total relative 

variance and the numerator is the relative variance of the means of 
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the insured population, the structure variance. If the wi are the 

exposures for both q and y,, and the sum of the wi is 1.0, then the 

formula simplifies to: 

z= CC, wixiYi) -I 

(Ci wrxj2) -1 

We can also use this formula for grouped rather than individual 

insured data, but we must define the groups by the first period 

experience. For example, we might divide the data into ten groups, 

the first having the lowest loss ratios in the first period, etc. 

This approach can remove the undue impact of outliers. Strictly 

speaking, Z will be optimal for the selected group means, not for 

every insured. 

Exhibit II graphically depicts the regression process. It shows 

the prior relative frequencies (a s the subsequent relative 

frequencies (yi), and the modification factors (M,), which are the 

fit of the regression line between the prior and subsequent 

experiences. The estimate based on the claim-free discount is 

almost the same as the regression estimate; it can be different 

because the regression takes into account the experience of all of 

the insureds. 

In certain cases, we may wish to pool data together for which we 

know that the credibility is different for different insureds. 



This formulation would be: 

9=z,xi+1 -z, 

Since the Zi vary for each insured, we cannot solve for a single 

value of Z. If we can formulate a reasonable function for Zi, 

however, we can use the least squares approach to solve for the 

parameters of our Zi function. Reasonable candidates for the 

credibility function can be developed from risk theory, as we 

showed in an earlier section. Given two periods of data, we would 

be limited to estimating one parameter. For example, we may assume 

that the appropriate credibility function is: 

(11) 

where xi is the expected (mean) frequency for class i. We may use 

the regression approach to solve for fi. In effect, we are 

determining the optimal ,9, if credibility does indeed follow the 

postulated function. If the selected function is not appropriate, 

we may not get a reasonable estimate for 8. If the credibility 

function is complicated, we may not be able to calculate the 

optimal parameter from a simple equation. We might have to resort 

to numerical methods. 



Estimation of Credibility Parameters 

The parameters A, a, and p can be estimated from single-period 

experience. In fact, we do not even need individual insured 

experience to estimate them. (We do need individual claim 

experience to estimate a, but X and /J may be readily available from 

aggregate data or other projections.) If we can somehow obtain 

estimates for fl, 6, or y, and we also have confidence in the 

correct form for the credibility function, we do not need to obtain 

ibi two periods of individual risk data to test the cred lit ies. 

Estimates for the Structure Variance, fl 

The simplest estimate for the structure variance comes from the 

basic properties of the Poisson distribution. Since we know that 

the mean and variance of the Poisson are the same, any "excessU8 

variance in the data can be thought of as being the structure 

variance. 

Var(N -I 
p= 12 

Exhibit III displays an example. It shows the actual number of 

doctors with a given number of claims. It also shows the 

theoretical number of doctors who would have had that many claims, 

had the distribution been Poisson. Under some generalized 

assumptions, incorporating the excess variance yields a negative 



binomial distribution, which is also shown. We see that the actual 

distribution is more dispersed than the Poisson assumption. There 

are far more doctors with no claims, and more doctors with only one 

claim, than the Poisson assumption would indicate. Of course, to 

balance out, there are also more doctors with large numbers of 

claims than the Poisson assumption would indicate. The negative 

binomial provides a reasonably good fit to the data. It should be 

noted, however, that the excess variance method is greatly affected 

by the small number of insureds that will have very unusual 

experience. If we have a relatively limited sample, we would 

expect the excess variance estimates to be volatile. 

Unfortunately, the structure variance may not be the only component 

of the excess variance. Other credibility formulations, such as 

risk shifting and within-insured heterogeneity, also affect the 

excess variance. We can think of the excess variance as being a 

combination of all of these effects. Given a reliable estimate, 

the excess variance is probably an upper bound an the structure 

variance. 

We obtained another estimate for the structure variance from the 

numerator in the regression approach, where the sum of the wi is 

1.0: 

fl =Ci Wi (Xi-l) (Yi-l) 



If the wi are the exposures, the formula simplifies to: 

8= (Xi WiXiYi) -1 

This regression formulation probably is more reliable than the 

excess variance approach, because it is based on the predictability 

of actual data. This formula can be found in Woll [15] and can 

apply to any claim data (i.e., counts or amounts). We can also 

apply this formula to grouped data, although we must group by the 

loss experience in the first period. We also would expect the 

grouping process to bias the estimate on the low side, since we are 

taking differences of group means. We could correct for this bias 

by multiplying by the ratio of the total relative variance for the 

individual insureds to the total relative variance of the groups. 

Another estimator for the structure variance is: 

var ( T) p=z - 
E2 [Tl 

This can be used with a variety of inputs. The estimate for 2 can 

come from claim-free discount data. The ratio on the right is the 

total relative variance. This can be calculated from one-period 

data. We can adjust the claim experience for all insureds by the 



mean experience and then calculate the variance over all insureds. 

This estimator is based on the general credibility formula, 

z=r=/ (u2+72). It can be used for either count or amount data. 

Another estimator is taken from Woll [15]. This was developed for 

count data where the structure function (x) has a gamma 

distribution. 

Numerical Examples 

We will present various numerical calculations, based on actual 

data. The data was developed from the experience of one insurer in 

one state, for insureds that were continuously insured for seven 

years on an occurrence form. The "prior" period consisted of the 

first five years and the "subseguent" period consisted of the last 

two years. The evaluation date was about four years after the 

inception of the last policy year. For this insurer, most claims 

have been reported for the subsequent period, but many of these 

remain open. The large majority of claims from the UVpriorl' period 

are closed. Data was available for the reported count, the closed- 

paid count, the CP5 count, and the basic limits amount, for both 

periods. Data was segregated for nine different class groups, 

based on the current classification plan by specialty. There are 



some rating variables that are not reflected in the class 

groupings. 

Exhibit IV shows numerical calculations for a number of the methods 

described above. This data includes the experience of 153 doctors 

in a particular rating group. For this exhibit, we have defined 

"A" I the actual claim experience, to be the number of CPS claims in 

the five-year experience period. 91 of the doctors (59.5%) had no 

CP5 claims in the first period. These doctors had 13 CP5 claims in 

the second period, for a frequency of 14.3%. The entire class had 

29 claims in the second period, for a class frequency of 19.0%. 

The relative frequency for the claim-free doctors is 75.4%. Thus 

the claim-free discount, based on CPS count, is 24.6%. (A claim- 

free discount can also be calculated for the other data items, such 

as reported count and pure premium.) 

The CP5 frequency for the group is -660 and the CP5 variance is 

.969. The variance for a Poisson process would be .660, thus the 

excess variance is .309. All of these numbers reflect the 

frequency of the actual data. For analysis purposes, it is easier 

to work with the "relative" variances, which are the actual 

variances divided by the square of the frequency. The total 

relative variance is 2.225. The Poisson relative variance is 1.515 

(the reciprocal of the frequency). Thus, the excess relative 

variance is -710. We could also calculate the excess relative 

variance as the actual excess variance (.309) divided by the 

frequency squared (-660 l .660). 



If we use the basic credibility formulation, fl is the excess 

relative variance, or .710. This would imply a credibility of 

.319, from the formula: Z=PX/(l+fih). If we use the risk-shifting 

credibility formulation, the excess relative variance is the sum of 

fi and 6. 

The regression method produces a credibility of .208. This 

estimate can be interpreted as the ratio of an estimate of fl and 

the total relative variance, which is 2.225, as above. Based on 

the regression method, the estimate of fl is thus .463. This might 

indicate that either: (1) 6 is . 247 or (2) the data is relatively 

unstable. 

The claim-free discount data indicates a credibility of .246. This 

may imply a fi of .548 (= 2.225 * .246). We can also derive another 

estimate of fl from the relative costs of claim-free and one-claim 

insureds in the second period. This estimate is .556, as shown. 

As can be seen, the results for this class are relatively similar 

among the different above methods. We also used first period 

reported count experience. We would expect the numerical amount of 

the credibilities to be different (because the frequency was 

different). The fl estimates could be similar or different, 

depending upon whether the use of reported counts has the same 

predictability as the use of CPS counts. For this data set, the fi 

estimates were quite similar for both reported counts and CP5 

counts. We also used claim-free discount data based on reported 



counts and pure premiums. As we might expect from risk theory 

concepts, the pure premium data was more volatile. 

For some of the classes, the number of insureds was small or the 

actual claim experience was erratic. This raised dual questions: 

(1) how do we determine ,8 for the smaller classes? and (2) does B 

vary by class? 

Exhibit V shows the calculation of the excess relative variance by 

class for reported counts. Several classes have p's of about .6 or 

.7 and several are in the .2 to .3S range. This might indicate 

that the p's vary by class. Class 6, however, has the lowest 

excess relative variance of . 215 for reported counts. we saw in 

Exhibit IV that its fl for the CP5 count was about .5. We can also 

estimate the B's by the other methods. 

Exhibit VI estimates p using the claim-free discount method. For 

two classes, the subsequent claim experience for claim-free 

insureds was actually vorse than the average. This would imply a 

negative value for 0. We also note from Exhibit VI that the claim- 

free discount based on CP5 counts is significantly different from 

the claim-free discount based on pure premiums, for several of the 

classes. Part of this probably is explained by the greater 

volatility of pure premium data. We also obtained varying j3 

estimates by class from the regression approach. 

In reviewing the individual calculations, it appears that much of 



the volatility is caused by the relatively low number of insureds 

and claims; and by the undue impact of an occasional outlier. 

There may be a difference in B from class to class, but it does not 

appear to be statistically significant. 

We also pooled all of the data, for the regression and claim-free 

discount methods. We assumed that the credibility function was the 

same as equation (ll), with Xi being the expected claim frequency 

for the class. For the claim-free data, for insureds grouped by 

CPS in the first period, the estimate of j3 was .54, based on CP5 

counts in the second period, and . 59, based on pure premiums in the 

second period. For insureds grouped by reported count in the first 

period, the estimate was -54, based on CP5 counts in the second 

period, and . 36, based on pure premiums. 

For the regression approach, for insureds grouped by CP5 in the 

first period, the estimate of fl was .51. When insureds were 

grouped by the reported count in the first period, the estimate was 

.50. 

Estimates for 6 and y 

We have mentioned that all three parameters, fi, 6, and y, arise in 

a similar manner, to explain additional variance beyond a Poisson 

process. The basic formulation for 6 is a shifting of parameters 

over time. With more years of data, it might be possible to 

estimate this parameter. The basic formulation for y is 



heterogeneity among different doctors within the same insured 

group. We could estimate this parameter if we had credible data 

for at least several different size groups, and we assumed that the 

same heterogeneity applied to all size groups. In fact, the NCCI 

has used a similar approach to calibrate all of its credibility 

parameters. It divided risks into various size groups; it 

estimated optimal credibilities for the different groups; and it 

fitted these optimal credibilities to a credibility function. 

We can use the above numerical example to see whether 6 might be 

significant. If the risk-shifting formulation is correct, the 

total variance will include a provision for B and 6, as well as the 

usual Poisson variance. The excess variance estimate should be the 

sum of fl and 6. The numerator of the regression credibility 

estimate, however, should only include fl. Thus we can compare the 

two estimates to see if the excess variance estimate is 

significantly larger. Exhibit VII shows this comparison for the 

classes for which the individual estimates were satisfactory. In 

some cases the excess variance estimate is higher and in some cases 

it is lower! It does not appear that the excess variance estimate 

is consistently higher. In practical terms, this might imply that 

a doctor's inherent risk does not change appreciably over time. 

Other Published Data 

TWO published papers, Ellis [2] and Venezian [12], give some 

estimates of credibility parameters. The Ellis data included the 



number of closed-paid claims against doctors in various 

specialties, for four years, 1980 through 1983, in New York State. 

It is not clear what the authors used for exposure, but it would 

appear to be licensed doctors. The authors published theoretical 

prospective mean frequencies for doctors, in a given specialty, 

that had various numbers of closed-paid claims within a five year 

experience period. Comparing the prospective frequencies for (1) 

doctors with no claims and (2) all doctors, yields the 5-year 

claim-free discount, or credibility, for the 5-year experience. 

Except for some minor differences, probably caused by slightly 

different methods of estimation, we can generate the same 

credibilities using the procedures outlined above. The Ellis 

method is equivalent to a credibility formula of flx/(l+px), where 

B is the excess relative variance and A is the S-year mean 

frequency. We have estimated the excess relative variance from the 

claim count distribution given in the paper. The results are shown 

in Exhibit VIII. 

For most of the specialties, the excess relative variances are much 

higher than those estimated from the above data set. There are 

several reasons for this. First, it is not clear what exposure was 

used. If it was licensed doctors, which includes retired, part- 

time, and government-employed doctors, a substantial number of the 

doctors would have virtually no claim exposure; we would e.xpect 

the excess variance to be higher than that for full-time doctors in 

private practice. Second, the exposure does not differentiate 

among other class variables. An insurer's premiums could vary 
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significantly within a given specialty, due to class relativities, 

geographical relativities, and other rating variables. It is 

interesting to note that the specialties that are more likely to be 

grouped into one insurance class, such as anesthesiology, general 

surgery, neurosurgery, obstetrics, and urology, have much lower 

excess variances. Third, New York State could have more 

geographical variation in costs than the state our data was taken 

from. Fourth, some doctors are not insured voluntarily. These 

doctors may have an extreme number of claims, which would produce 

a much higher excess variance than an insured population. In any 

case, we might use this data as an upper bound on ,6. 

The Venezian data was taken from the Pennsylvania Medical 

Professional Liability Catastrophe Loss Fund, which covers both 

excess losses (attachment points have varied over time) and late 

reported claims (over four years). Although this data came from 

insured doctors, the exposures were estimated by the authors. The 

excess relative variance was estimated from the data in the paper 

and is shown by specialty in Exhibit VIII. With one exception, the 

excess variances are smaller than in Ellis. Most of the above 

comments apply to these estimates, as well. 

5. PRACTICAL CONSIDERATIONS 

This section will consider several practical considerations in the 

design of a merit rating plan. Is it better to use counts or 



amounts? Is it better to use the reported count or the CP5 count? 

What is the best length of the experience period? Is the 

credibility different if we offer only discounts and have no 

surcharges? How do we calibrate the expected costs? What if we 

use non-optimal credibilities? HOW do we establish a formula for 

insured groups? 

Counts or Amounts? 

The NCCI and IS0 use amounts, rather than counts, in their merit 

rating plans. The situation for doctor professional liability 

insurance, however, may be different. We can analyze the situation 

by reference to the formula for K, in the basic credibility 

formulation: 

The K for counts is similar, but a 1 replaces the (l+a) in the 

numerator. 

For amounts, the K will be (l+a)-times larger, if the fl is the 

same. For one exposure unit, the credibility of claim amount 

experience will be only about l/(l+a) times as much. To the extent 

an individual's experience is relatively better or worse than the 

average, it will only receive credit for about l/(l+a) of that 

difference. The claim-free discount also will be only about 



l/(l+a) as much. 

It is likely that claim severity varies among insureds within the 

same class. If so, we would expect the fi to be larger for amounts 

than for counts. Most likely, however, the fl will not increase by 

as much as (l+a). For doctors, for basic limits of $100,000, (l+a) 

may be about 2 and for basic limits of $200,000, (l+a) may be about 

2.5. We would expect that fi for amounts would only be marginally 

higher than 0 for counts. Thus using amounts rather than counts 

would cut the credibility and the claim-free discounts about in 

half. 

Which Count? 

There are several choices for claim counts. We could use reported 

claims, closed-paid claims, or possibly some non-nuisance claim 

definition, such as CP5. We can analyze this situation by 

reference to the basic credibility formula, defined in terms of the 

expected count, 5: 

E z=- 
E+K 

where K=l/fl. We note that credibilities generally will be higher 

for higher expected counts. We saw above that the fi's for reported 

counts and CP5 counts tended to be about the same. This result 

might not be universa 11~ am licable, but we might conclude that the 



B's would not increase in the same proportion. Thus reported 

counts would generate more credibility and higher claim-free 

discounts. If the B's happened to be the same, the credibility for 

reported count experience might be three to five times higher, 

depending on the claim frequency for the class and the length of 

the experience period. 

Using reported counts, however, may cause consumer relations 

problems. It is common for every surgeon in the operating theater 

to be named in a suit, even if only one is likely to be 

responsible. Most claims will be closed without a payment or for 

a nuisance-value payment. Even if more costly doctors are sued 

more often (which is the logical consequence of the ,L?'s being the 

same), it may be difficult to charge an individual doctor more, 

just for being named in a suit. 

On occurrence policies, in particiilar, charging for reported claims 

may also deter or delay the reporting of claims. This could have 

adverse consequences for both the claim settlement process and the 

ratemaking process. 

Prom a pricing perspective, using reported counts probably is 

preferred. Practical considerations, however, may favor a CP5 

program. 



What Should be the Length of the Experience Period? 

Both the NCCI and IS0 use a three-year experience period as a 

standard. Claim frequency for doctors, however, is quite low, 

particularly when using CP5 counts. Current doctor merit rating 

programs typically give a certain discount for each year of claim- 

free experience. This is a reasonable approach, although the 

discount percentages should vary by specialty. Recall that the 

basic credibility formula is: 

for counts, for P exposure units. For each additional year of 

claim-free experience, the credibility will increase about PA. 

Assuming p=.5 and x=.02 (for one year), the claim-free discount 

would be about 1% per year. After 10 years, the discount would be 

9.1%. For a higher-rated specialty, where X=.1, the first year 

discount would be about 4.8%, the second year, an additional 4.3%, 

the third, 3.9%, the fourth, 3.7%, and the fifth, 3.3%, for a total 

of 20%. 

The above credibility formulation assumes that the doctor's 

relative cost remains the same over time; i.e., there is no risk 

shifting. If there is risk shifting, and the 6 parameter is 

relatively high compared to 8, the additional discounts for 

additional claim-free years will decline quickly. 



Discount Only Plans 

Current merit rating plans for individual doctors have claim-free 

discounts, but no surcharges. What should the credibilities be for 

this type of program? 

We can use the same regression formulation to select an optimal 

credibility. Let w, be the percentage of doctors with no claims in 

the first period and w, be the remaining doctors. The modification 

factors are 1-Z and 1, respectively. Using these modification 

factors, however, will lead to an "off-balance." That is, the 

collectible premium will be less than the manual premium. The 

amount of the off-balance will be wOZ. The manual rates will be: 

p= 1-z 
o i=q 

j?p-L 
1-w,z 

We can write the optimization function as: 

"p c=JTi wi (pi-yi) 7 

Taking the partial derivative with respect to 2 and setting it 

equal to zero, we obtain the optimal Z=(l-y,)/(l-y,w,,). This result 

can also be obtained in another manner. Since yOwO + y,w, = 1, it 

follows that y, = (1 - yOwO)/(l-w,). The above formula for Z makes 



the prospective rates proportional to the ratio of the actual 

second period experience, yO/y,. 

The given credibility is optimal for the postulated pricing policy. 

It would be more accurate, however, to charge a higher premium for 

every additional claim in the experience period. The above pricing 

policy produces a single rate for all insureds with one or more 

claims. This rate will be relatively too high for the l-claim 

doctors and relatively too low for the more-than-l-claim doctors. 

This can be demonstrated from another perspective. When there are 

only discounts, and no surcharges, the loss of the claim-free 

discount is essentially the surcharge for one or more claims. 

Recalling the general modification factor formula, and assuming 

that the average experience period frequency for the given class is 

A, the appropriate amount to surcharge for each claim is: 

Surcharge=$ 

Given the basic credibility formula, with Z = BA/(l+fih), the 

surcharge becomes B/(1+/3x). If X is relatively small, the 

surcharge will be approximately equal to /?. 

Calibrating the Expected Costs 

Once we have defined the actual claim experience, A, we determine 

E, the expected claim experience, as the corresponding class 



average experience. If E is not calibrated to the class average, 

we will generate an off-balance. We briefly discuss some issues 

with respect to reported counts and CP5 counts. 

First assume that A is defined as the reported count, for claims- 

made coverage, and that the insurer offers a certain fixed discount 

for each claim-free year. If claim frequency has changed over 

time, the optimal discount may be different for each year of 

experience. We may want to select an average frequency for the 

maximum number of years that credits are offered. We also may want 

to add an adjustment for the step of the insured policy, if we use 

the experience on non-mature years. 

We may not have class frequencies or we may want to use our rate 

relativities. In this case, we should remove that part of the 

relativity that reflects differences in severities by class. We 

should also reflect other rating variables in the discounts. For 

example, if we give teaching doctors a 25% discount, logically 

their claim frequency should be about 75% of the class average and 

their credits should be 75% of regular doctors. The same 

adjustment would apply for territorial rate relativities. 

We also may want to apply claim-free discounts to occurrence 

coverage. In this case, we should adjust for the reporting pattern 

of claims. Assume, for example, that 10% of claims are reported in 

the first year, 40% in the next year, 20% in the next year, and 10% 

in the fourth and fi.fth years. Thus the cumulative percentage of 



claims reported would be lo%, 50%, 70%, 80%, and 90%. we also 

assume that the average doctor in this class has an annual 

occurrence claim frequency, X=.20, that has remained relatively 

constant for the past five years. The average doctor would have a 

reported claim frequency of . 18 for the fifth prior year, .16 for 

the fourth prior year, and -14, .lO, and .02, respectively. For 

the five-year experience period, the expected frequency is .60. If 

fi=.5 and we use the basic credibility formulation, 2=23-l% for the 

five years of experience. If we round off and simplify, we could 

give a 5% discount for each claim-free year. We should note, 

however, that after the first year, the expected claim frequency is 

only . 01 and the appropriate claim-free discount is only 1%. (The 

appropriate discounts for each successive year of claim-free 

experience would be 4.7%, 5.89, 5.9%, and 5.7%). 

If we define the actual claim experience, A, in terms of non- 

nuisance claims, such as CP5, there is an additional problem in 

trying to match claim experience to exposure. Even on claims-made 

forms, the average claim may take three years or so to be settled. 

On occurrence forms, the average claim may take six years to be 

settled. One solution is to define A as being any CP5 claim closed 

within the last 5 years, regardless of policy period or occurrence 

date. This approach would be biased in favor of newer doctors, who 

would not have had as much chance to have had closed claims. 



Non-optimal Credibilities 

For various reasons, we may design a plan that has non-optimal 

credibilities. For example, we may have the same discount per year 

for every class, even though we know that classes with higher 

frequencies should receive larger discounts (if their ,6's are the 

same). We may also use a discount only program. 

With non-optimal credibilities, most likely there will be an off- 

balance. An off-balance can also arise if the book of business 

changes over time. (For example, those insureds that would have 

received stiff surcharges may move to a residual market program or 

another insurer.) A negative off-balance causes the class rate to 

be higher than the average class cost. This may cause problems in 

ratemaking and in analyzing claim experience. If off-balances are 

different by class, the ratemaking procedure for class relativities 

should adjust for these off-balances. Profitability analysis 

should focus on collectible premiums, rather than manual premiums. 

Non-optimal credibilities imply an inaccuracy in pricing. This may 

place the insurer at a competitive disadvantage to an insurer that 

has more accurate pricing. An example may help to clarify this 

point. 

Assume that the optimal credibility for claim-free insureds is lO%, 

that the insurer gives a 25% discount and no surcharges, that 

claim-free insureds comprise 80% of the class, that insureds with 



one claim comprise the other 20% of the class, and that all 

insureds have the same experience period. The insurer's off- 

balance would be 20% (80% of insureds receive a 25% discount), 

implying a manual rate of 125% (l/(1-.2)) of the average cost. The 

claim-free insureds would pay 93.75% (.75 x 1.25) of the average 

cost and the non-claim-free insureds would pay 125%. 

The most accurate cost estimate for a claim-free doctor would be 

90% of the manual rate. The off-balance would be 8% (80% times 

10%) and the manual rate would be 108.7% (l/(1-.08)) of the average 

cost. The claim-free doctor would pay 97.8% of the average cost 

(.9 x 108.7%) and others would pay 108.7%. The optimal competitor 

could insure all the l-claim doctors at a profit, while the given 

insurer would be left with all of the claim-free doctors, at a 

loss. 

As a general rule, if claim-free discounts are higher than the 

optimal credibility, claim-free doctors will be under-priced and 

the non-claim-free insureds will be over-priced. The insurer will 

be vulnerable to price competition for the non-claim-free doctors. 

Another way of looking at this is as follows. When a doctor has a 

claim, it loses its claim-free discount and its premium increases. 

The additional premium is more than the insurer needs to profitably 

insure that doctor. 



Group Formulations 

Finally, we consider merit rating formulas for groups of doctors. 

To a large extent, the practical problems discussed above will also 

apply to groups. Given that the claim frequency may be much larger 

for groups, we may prefer a plan that looks more like the NCCI or 

IS0 plans. We discuss the components of the merit rating formula, 

A, E, and Z, in turn. 

The choices for the actual claim experience, A, include all of the 

possible choices for individual doctors, plus several more. Since 

groups are likely to have several experience period claims, the 

claim-free discount approach may not be practical. Most likely we 

will use a fixed experience period, of three, five, or more years. 

The credibility we can assign to the group's experience will 

increase for each additional year of experience. The amount of the 

increase will depend upon several factors, such as: whether there 

is risk-shifting among individual insureds over time, whether the 

composition of the group changes over time, and the extent to which 

there is heterogeneity within the group. 

If we use claim counts for A, we may want to define them in terms 

of occurrences. That is, more than one member of a group may be 

sued for a given incident; the statistical validity of this 

multiple-claim single incident is probably not much different than 

that for a single-claim single incident. 



We may want to consider using loss amounts. The reduction in 

credibility that we saw above, for the variability in the claim 

size distribution, should be more than offset by the increased 

number of doctors within the average group. If we use loss 

amounts, we might want to consider a limit on the amount of a 

chargeable claim, as is done in the IS0 plans. The limit could be 

determined so that the increase in the modification factor for a 

maximum claim might be a given percentage (e.g., 25%). Logically, 

this would reduce the credibility that could be given for the 

group's experience, since a would be lower for lower claim limits. 

An adjustment also would need to be made to the expected losses, E. 

Both of these adjustments could be determined from claim size 

distribution data. 

The calibration of E depends upon the definition of A. If we use 

reported counts for occurrence policies for a 5-year experience 

period, for example, we would need to adjust for the reporting 

pattern. The expected frequency might be calculated as the annual 

occurrence frequency times the number of years in the experience 

period times an adjustment for the reporting pattern (e.g., 60% in 

the above example.) If A is defined in terms of loss amounts, we 

need to consider loss development and IBNR. 

The determination of 2 is more difficult, unless we have two-period 

claim experience for large numbers of groups of varying sizes. 

There are several approaches that can be taken. First, we could 

use the same K that we used for individual doctors. Most likely, 



this is not appropriate because all of the doctors within the group 

will not have the same relative cost. This approach would 

overstate credibilities, because the heterogeneity among groups is 

less than the heterogeneity among individuals. (Mathematically, 

the r2 for groups is lower than the 7' for individuals). 

Second, we could use the basic credibility formulation (e.g., (6)) 

and estimate the t3 from group experience. Since the groups (j) for 

which we have data most likely will have different claim 

frequencies ( kj) , we must use a generalized formula for 2, such as, 

zj= (Bxj) / C1+Bxj) * This approach has a few problems. If there is 

risk-shifting among individuals or a change in the group's 

composition over time, the appropriate credibility formula would 

have an additional term in the denominator, e.g., bkj. Thus OUJC 

estimate for fl may not be entirely accurate. In addition, to the 

extent there is risk shifting, the credibilities for very large 

groups should be less than those given by the basic credibility 

formulation. If we do not insure very many large groups and if 

there is reasonable homogeneity among the group, this approach may 

be a reasonable approximation to optimality. 

Third, we could build in risk-shifting and insured heterogeneity. 

In order to measure the appropriate parameters, however, we will 

need additional data. This could be additional years of data for 

the same groups or a segmentation of group data by size. If we do 

not have the necessary data, we may make some educated guesses 

about the value of 6 and y. 
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We can compare the results we get with the three different 

credibility formulations, formulas (7), (9), and (11). We assumed 

that the excess variance was .f. For the first and third 

formulations, /3=.5. For the second formulation, 8+6=.5. We think 

there is a conceptual similarity between the 6 parameter in the 

risk shifting formulation and the y parameter in the insured 

heterogeneity formulation. We think of risk shifting as how 

different subsequent years of exposure are to each other. We think 

of insured heterogeneity as how different sub-exposures within the 

same experience are to each other. 

We have prepared two graphs, Exhibits IX and X. The first shows 

the case where b=.l, or relatively small compared to 8. This would 

occur for groups that are relatively homogeneous. The second graph 

shows the case where 6=.167, or the group is less homogeneous. We 

see that the credibility is always lower for the risk-shifting 

formulation. For less homogeneous groups, the credibility will be 

lower. We also see that the risk heterogeneity formulation 

generally produces lower, though similar, credibility to the risk- 

shifting formulation. For very low expected counts, the risk 

heterogeneity formulation may produce higher credibility than the 

simple formulation. Exhibit XI gives the numerical credibilities 

for these two cases. 



6. CONCLUSION 

Merit rating is the use of the insured's actual claim experience to 

predict future losses. Merit rating modifies the otherwise 

applicable class rate. The modification depends on two factors: 

(1) how much better or worse the insured's experience is relative 

to the class average and (2) how credible (i.e., statistically 

significant) the insured's experience is. Merit rating formulas 

can differ in what claim experience is used. Variations include 

counts or amounts and different lengths of insured experience. 

There are several generic theoretical formulations for credibility, 

that have been used in insurance pricing. Given sufficient actual 

data, the appropriate credibility can be estimated. 

Merit rating is an adjunct to rating plan. It will pick up 

statistically valid information that is not already reflected in 

other rating variables. The rest of the rating structure must be 

considered in calibrating and applying the merit rating plan. If 

the merit rating system creates a collectible premium "off- 

balance," class rates must be adjusted. If merit rating produces 

non-optimal discounts or surcharges, there will be inaccurate 

pricing. If claim-free discounts are too high, for example, those 

receiving the discounts will be relatively under-priced and those 

not receiving the discounts will be relatively over-priced. 

The statistical validity of an insured's claim experience can be 

quantified by "credibility" and used in a merit rating formula. 



Many formulations for credibility are available. Under virtually 

all formulations, credibility will increase with: (1) the 

increasing expected claim frequency of the insured's actual 

experience (xi) and (2) the heterogeneity of the insured population, 

or structure variance, fl, remaining after the application of all of 

the other rating variables. Credibility will decrease with: (1) 

increasing variability in the claim size distribution, a, (2) 

changes in the insured's mean costs over time, or risk-shifting, 6, 

and (3) heterogeneity within the insured (e.g., with group 

practices), y. 

In practice, it is relatively easy to determine the expected claim 

frequency and the variability in the claim size distribution. The 

structure variance can be determined from single-period data (i.e., 

from the excess variance), but this requires the assumption that 

risk shifting and within-insured heterogeneity are not significant. 

It is better to estimate the structure variance from two-period 

data. That is, we must know the relative costs of insureds, within 

the same rating class, in two different time periods. We would 

expect the structure variance to be different for different 

insurers (because they have different underwriting standards), for 

different states, and for different classes. 

Risk shifting and within-insured heterogeneity are important with 

respect to the merit rating of group practices. Since all doctors 

within the group will not be equally good or equally bad, 

credibility may not increase with additional exposure as it would 



for an individual doctor. For example, the credibility for one 

doctor's five-year experience is probably higher than the 

credibility of five different doctor's combined one-year 

experience. To measure these factors we need two-period or multi- 

period data for insured groups of several different 

sizes. 

There are several practical conclusions that can be based on the 

general theoretical developments and the actual data presented 

above. Using claim count data will generate more credibility and, 

hence, larger discounts or surcharges, than claim amounts. Using 

reported count data will generate more credibility than closed-paid 

count data, but this may cause consumer relations and other 

problems. Claim-free discounts seem to be a reasonable merit 

rating plan for individual doctors, subject to two limitations. 

The amount of the discount should vary with the class expected 

claim frequency and, generally, the amount should decline for each 

successive claim-free year. 
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Percentage 
Claim-he 

PS 
10% 
20% 
30% 
40% 
50% 
60% 
70% 
80% 
90% 

EXHIBIT1 

REQUIRED MANUAL RATE INCREASES 
FOR GIVEN CLAIM-FREE DISCOUNTS 

10% 

l.Q% 
2.0% 
3.1% 
42% 
53% 
6.4% 
7.5% 
8.7% 
9.9% 

Discounts 
20% 30% 

2.0% 3.1% 
4.2% 6.4% 
6.4% 9.9% 
8.7% 13.6% 

11.1% 17.6% 
13.6% 22.0% 
16.3% 26.6% 
19.0% 31.6% 
22.0% 37.0% 

40% 

4.2% 
8.7% 

13.6% 
19.0% 
25.0% 
31.6% 
38.9% 
47.1% 
563% 

50% 

53% 
11.1% 
17.6% 
25.0% 
33.3% 
42.9% 
53.8% 
66.7% 
81.8% 



EXHIBIT II 

RELATIVE CLAIM FREQUENCY 

0 1 4 

Claims in Prior Period 
m Prior Freq. (x) @!$! Subseq. Freq. (y)+ Regression 



EXHIBIT III 

FREQUENCY DISTRIBUTIONS 
Reported Claim Count 

0 
0 1 2 NLrnbk 

of 
sRepo6rted’Clai~s 9 10 11 

m Actual mp oisson + Negative Binomial 



EXHIBIT IV 

PARAMETER ESTIMATION EXAMPLE 

Prior Period 
Relative Relative 

Subsequent Period 
Relative Percentage 

m Docrors of Doctors Claims Extension Frequency Variance Ciaims Frequency 
N P w NP wNN x WXX 9 qfp 

0 
1 
2 
3 
4 
5 

Total 

Frequency 

91 
36 
17 
6 
2 
1 

153 
(a) 

59.5% 0 0.000 
23.5% 36 0.235 
11.1% 34 0.444 
3.9% 18 0.353 
1.3% 8 0.209 
0.7% 5 0.163 

100.0% 101 1.405 
(b) (c) 

0.660 
(l)=(b)@) 

Nominal Relative IO Mean 
Source m Source m 

(3) Frequency (1) 0.660 
(4) Total Variance (c)-(l)(l) 0.969 
(5) Poisson Variance =(3) 0.660 
(6) Excess Variance (4)-M 0.309 

parameter Eslimalcs 
Regression: 

CredibilFet [(f)- l]/(8) 0.208 
(O-1 0.463 

Other: 

0.000 0.000 
1.515 0.540 
3.030 1.020 
4.545 0.810 
6.059 0.480 
7.574 0.375 

NW) 
3.225 

(4 

I3 
8 
6 
1 
0 

R 
0.190 

(2)=W@) 

By DePn l.ooO 
w- 1 2.225 

11(l) 1.515 
W-C’) 0.710 

0.143 
0.222 
0.353 
0.167 
O.C@J 
l.ooO 

Frequency 

0.754 
1.172 
1.862 
0.879 
0.000 
5.276 

q4Wl 

Extension 
wxy 

O.WO 
0.418 
0.627 
0.157 
OSKKI 
0.261 

1.463 
(0 

(11) Cl-FreeD, Z 0.246 
Beta 0.548 
Bela (Y~-$W 0.556 



EXHIBIT V 

8 

EXCESS VARLANCE hfETHOD 

No. of 
Doctors 

(1) 

No. of Total 
Rep-ted Relative 

w Fre.quency Variance 
(2) (3)= (4) 

PM 1) 

98 64 0.653 
725 674 0.9330 
208 187 0.899 
291 413 1391 
198 236 1.192 
170 386 2271 
153 485 3.170 
41 145 3.537 
28 85 3.036 

2.206 
1.429 
1.837 
1352 
1.161 
0.903 
0530 
0.605 
0.670 

Poisson EocesS 
Relative Relative 

Variance Variance ~ ~ 
VI= (6) = 
l/(3) (4) -C? 

1.531 0.675 
1.076 0.353 
1.112 0.725 
0.719 0.633 
0.839 0322 
0.4dU 0.463 
0315 0.215 
0.283 0322 
0.329 0.341 



EXHIBIT VI 

Doctors Claim-free Frequency CP5 Counl Variance 
(1) (2) (3) (4) (5) 

0 
1 
2 
3 
4 
5 

g 6 % 
7 
8 

98 88 0.102 - 11.4% 8.800 -1.003 -11.0% -0.968 
125 624 0.154 3.7% 6.8&l 0.254 3.5% 0.240 
208 172 0.183 12.1% 5.050 0.611 3.7% 0.187 
291 233 0.285 4.1% 5.971 0.245 44.4% 2.651 
198 155 0.261 -1.4% 4.004 -0.056 -2.1% -0.084 
170 105 0.547 30.6% 2.322 0.711 31.3% 0.727 
153 91 0.660 24.6% 2.225 0.547 16.1% 0.358 
41 22 0.829 33.4% 1.696 0.566 20.6% 0.349 
28 17 0.464 58.8% 1.817 1.068 52.0% 0.945 

Total 1918 1507 

CLAIM- FREE DISCOUNT MEIl3OD 

No. of No. 
Class Claim-free Total 
CP5 Discount Relative Bela 

Eslimale 
lb)= 

(4)(5) 

Claim-free 
Discount 

Pure Premium 
(7) 

Beta 
Eslimale 

@I= 
(7)(5) 

Notes: 1. (5)=(4)*Total Relative Variance 
2. Bad on CPS count. 



EXHJXTW 

IS THERE RISK SHIFlTNG? 

Relative 
w Variance 

1 0.353 
2 0.725 
3 0.633 
4 0322 
5 0.463 
6 0215 

Sum 2.711 

Note: Based on reported counts. 

Regression 
Estimate 
for Beta Difference 

0318 0.035 
0570 0.155 
0.843 -0.235 
0371 -0.049 
0370 0.093 
0.228 -0.013 

2.725 -0.014 

Percentage 
Difference 

9.9% 
21.4% 

-37.1% 
-152% 

20.1% 
-6.0% 

-05% 



EXHIBIT Vi11 

OTHER DOCTOR EXPERIENCE 

I. Ellis, Gallup & McGuire 

Anesthesiology 
Dermatology 

Family Practice 
General Surgery 

Internal Medicine 
Neurosurgery 

Obstetrics/Gynecology 
Ophtbaimology 

Orthopedic Surgery 
Otolaryagology 

Pediatrics 
Plastic Surgery 

Psychiatry 
Radiology 

Urology 
All Other 

II. Venetian. Nye & Hoffiander 

j-Year 
Claim-free 

Discount 

3.4% 0.20 
28.4% 4.04 
17.6% 2.88 
20.2% 0.90 
24.1% 3.87 
30.5% 1.07 
29.4% 1.08 
37.0% 3.46 
52.6% 4.22 
38.2% 2.64 
23.6% 4.65 
59.6% 6.78 
24.2% 22.89 
21.0% 2.92 
19.2% 1.22 
10.0% 5.22 

Soecialty 
Mean Relative 

Fresuency Variance 

Anesthesiology 
General Surgery 

Internal Medicine 
Neurmurgery 

Obstetrics/Gynecology 
Ophthalmic Surgery 
Orthopedic Surgery 

7.5% 0.46 
14.4% 1.10 
3.6% 0.19 

50.0% 0.72 
18.7% 0.62 
3.0% 5.34 

25.7% 1.37 

Excess 
Relative 

Variance 

S-Year 
Mean 

Frequency 

16.3% 
9.2% 
7.1% 

35.2% 
8.3% 

42.8% 
39.9% 
15.2% 
26.0% 
24.5% 
7.0% 

34.2% 
1.7% 
9.1% 

15.9% 
2.5% 



GROUP CREDIBILITIES FOR VARIOUS FORMULATIONS 
Group More Homogeneous o,9 , 

1: L-L.m, .-.--I # # 
0.5 1 1.5 2 2.5 3 

t 1 , , I , 
3.5 4 

, 
4.5 

, Expeited ‘6oun6t 6.5 1 1.5 8 

-.- Basic 
Fktr - .4, Della = .I, osmma = ,125. 

+ Risk Shifting -+ Heterogeneity 

, , 
8.5 \ 9 9.5 IO 



GROUP CREDIBILITIES FOR VARIOUS FORMULATIONS 

0.9 
Group Less Homogeneous 

0.8 

0.7 

0.3 

0.2 

0.1 

Ikla = 

, , , , , , , , ( , , ( , , , ( 

0.5 I 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 I 7.5 a a.5 9 9.5 10 

Expected Count 

-m- Basic --e Risk Shifting +- Heterogeneity 
,333, Della = ,167, Gamma = .25. 



Expected 
Counl Basic 

(1) 
Risk Shihing Heteroeeneicy 

(2) (3) 

Expecled 
&Jg m Risk ShiAing Heterogeneity 

(1) (2) (3) 

0.5 20.0% 16.0% 20.8% 0.5 20.0% 13.3% 
1 33.3% 26.7% 28.6% 1 33.3% 22.2% 

1.5 42.9% 34.3% 34.4% 1.5 42.9% 28.5% 
2 50.0% 40.0% 38.9% 2 50.0% 33.3% 

2.5 55.6% 44.4% 42.5% 2.5 55.6% 37.0% 
3 60.0% 48.0% 45.5% 3 60.0% 40.0% 

3.5 63.6% 50.9% 47.9% 3.5 63.6% 42.4% 
4 66.7% 53.3% 50.0% 4 64.7% 44.4% 

4.5 69.2% 55.4% 51.8% 4.5 69.2% 46.1% 
5 71.4% 57.1% 53.3% 5 71.4% 47.6% 

5.5 73.3% 58.7% 54.7% 5.5 73.3% 48.8% 
6 75.0% 60.0% 55.9% 6 75.0% 50.0% 

6.5 76.5% 61.2% 56.9% 6.5 76.5% 50.9% 
7 77.8% 62.2% 51.9% 7 77.8% 51.8% 

7.5 78.9% 63.2% 58.8% 7.5 78.9% 52.6% 
8 80.0% 64.0% 59.5% 8 80.0% 53.3% 

8.5 81.0% 64.8% 60.2% 8.5 81.0% 53.9% 
9 S1.8% 65.5% 60.9% 9 81.8% 54.5% 

9.5 82.6% 66.1% 61.5% 9.5 82.6% 55.0% 
10 83.3% 66.7% 62.0% 10 83.3% 55.5% 

EXHIBIT XI 

COMPARISON OF DIPPERENT GROUP CREDIBILITY FORMULAE 

GROUP MORE HOMOGENEOUS GROUP LESS HOMOGENEOUS 

Beta = 
Delta = 

Gamma = 

0.400 
0.100 
0.125 

Notes: (1) Z = E/(E + 2). Notes: (I) Z = E I (E + 2). 
(2) Z = E/ (1.25 E + 2.5). (2) Z = E/(1.5 E + 3). 
(3) Z = ( .75 E + .25 ) I ( E + 2). (3) 2 = ( .5 E + 3 ) / ( E + 2). 

Bela = 0.333 
Delta = 0.167 

Gamma = 0.250 

30.0% 
33.3% 
35.7% 
37.5% 
38.9% 
40.0% 
40.9% 
41.7% 
42.3% 
42.9% 
43.3% 
43.8% 
44.1% 
44.4% 
44.7% 
45.0% 
45.2% 
45.5% 
45.7% 
45.8% 




