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Daniel Gogo 
ABSTRACT 

Forty-one years of catastrophe loss data by state are used in 

this study to produce a model for rating catastrophe covers for 

insurers in any region of the Continental United States. Smooth 

surfaces are fitted to the data by region, and experience rating is 

applied in an attempt to give appropriate weight to regional 

departures from the smoothed results. Severity distributions and 

frequencies are estimated for each region and a method for applying 

them in pricing catastrophe covers is discussed. A method for 

using the experience of an insurer to produce an experience 

modification is also presented. 



I. INTRODUCTION 

United States catastrophe cover rating is an interesting 

problem from both practical and theoretical points of view. 

On the practical side, it is an important untreated problem. 

No systematic attempt at using insurance loss data to produce 

catastrophe cover rates can be found in insurance literature, 

(Discussions of methods involving weather data are in Clark [4] and 

Friedman [6].) Catastrophe rates fluctuate greatly in the various 

regions of the country depending on the supply of capacity and on 

whether there has been a large catastrophe in the area recently. 

Pricing practices were not much different two decades ago when 

Ingrey [9] stated: 

The general yardstick is the "payback period," or, in how 
many years will a total loss be amortized in advance. 
Payback periods depend upon location, type of business 
written and past experience in addition to the basic 
ingredients of amount of capacity required, subject 
premium and rate. The adequacy of the initial retention 
is largely overlooked as are the incremental functions of 
exposure types, to wit, a company writing mobile homes has 
a much greater incremental exposure function than another 
insurer writing private dwellings. 

Catastrophe rating is also a challenging theoretical problem. 

The number of large catastrophes in any region is small, so it is 

important to use the experience of surrounding areas as well. 

It is useful to examine the relationship between catastrophe 
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experience and the longitude, latitude, and distance from the coast 

of a region. Also, the size of a region affects the probability 

of a catastrophe destroying more than a given percentage of 

property value. 

By fitting a smooth surface that is a function of these 

variables to catastrophe loss data, it is possible to base 

estimates of expected losses for each region on more than just its 

own experience. Expected losses by region clearly have a smoother 

pattern than the sparse data. 

An attempt can be made to estimate the appropriate 

credibility to be given to the actual experience of a region, as 

opposed to the weight given to the expected losses indicated by a 

fitted smooth surface. If the indications of smoothed surfaces and 

the actual experience of a region are credibility weighted to 

estimate the expected number of catastrophes for the region in 

various loss size intervals, a loss distribution may be fitted to 

the estimates in order to smooth them in a reasonable way and also 

to estimate tail probabilities. 

II. THE MODEL 

A. Data 

To compare the relative destructive power of two natural 

catastrophes, such as windstorms, hitting different states, it is 

useful to consider the amount of property insurance premium in each 

state, as well as the amount of insured property damage in each 



state. The insured loss in each state will depend not only on the 

intensity and size of the catastrophe but also on the insured 

property in the area. 

"Catastrophe premium," defined below, will be used as the 

exposure base to which loss data is related. The definition is 

based on Ingrey [9]. It is intended that the catastrophe premiums 

derived from each line of business be in roughly the same 

proportion to expected catastrophe losses for the line. Ingrey 

does not present data to support the percentages used in the 

formula but indicates that they were developed with the cooperation 

of Allen Hinkelman, Excess and Casualty Reinsurance Association; 

Daniel Holland, Inland Marine Insurance Bureau; Donald Kifer, New 

York Fire Insurance Rating Organization; and Allen Royer, Multi- 

Line Insurance Rating Board. Data on catastrophe losses by line 

will be discussed in section III. 

Catastrophe premium = (10% of inland marine premium) + (10% of 

commercial multiple peril) + (80% of allied lines) + (10% of auto 

physical damage) + (20% of farmowners) + (100% of earthquake) + 

(20% of homeowners) + (15% of ocean marine) (1) 

An estimate, for example, that the proportion of homeowners 

losses caused by catastrophes is twice as high as the proportion of 

auto physical damage losses is implicit in the formula, since the 

corresponding percentages of premium are 20% and 10%. 

Actually, Ingrey's formula also includes 60% of mobile homes 

premium and 80% of difference in conditions premium, but these 



premiums are small and they were omitted. 

Some formula for catastrophe premium is often used by 

underwriters in evaluating a company's catastrophe exposure. 

Additional insight is given by expressing the loss layer to be 

reinsured in terms of percentages of the catastrophe premium, for 

example 200% xs 20%. In this paper, layers expressed as 

percentages of state or regional catastrophe premium are studied. 

Methods of applying the study to individual company catastrophe 

cover rating will be discussed later. 

Catastrophe covers are generally for a high enough layer so 

that an event must cause losses to several of a company's risks in 

order to produce a loss to the cover. Windstorms are the most 

frequent causes of losses to these covers. Other frequent causes 

are winter freezes, hail, and flooding. Fire is a less frequent 

cause. 

The loss data used [ll] in this study was produced by Property 

Claim Services (PCS) in Rahway, New Jersey and includes estimated 

insured loss for each United States catastrophe having an estimate 

of $1 million or more from 1949 through 1981 and $5 million or more 

from 1982 through 1989. (Note that the worst catastrophe loss year 

in recent history, 1989, is included in the data.) In order to be 

included, a loss must affect many insureds, although the exact 

number of insureds that must be affected has not been defined. (It 

is generally at least 1,000.) For each catastrophe, the estimated 

insured loss in each state is given. The PCS estimates are based 

on an extrapolation of estimates made by a set of insurers writing 



most of the property premium in the region of the catastrophe. 

Although PCS insured loss estimates are used in the study, a 

loss development factor will be applied in section III, which 

describes the method of rating catastrophe covers. 

For each of 28 overlapping regions of the continental 

United States, catastrophe premium was estimated for 1949-89. 

Gross written premium data by state from Best's Executive Data 

Service, and for older years from The Spectator, which is no longer 

published, was used to compute catastrophe premiums by state for 

approximately every fifth year. Exponential interpolation was used 

for other years, based on the computed catastrophe premiums. 

For each of the 28 regions mentioned above, the estimated 

insured loss to the region from each catastrophe from 1949-89 was 

divided by the region's catastrophe premium for the year of the 

loss. The ratios R of individual losses to corresponding 

catastrophe premiums were then grouped into the somewhat arbitarily 

chosen intervals 8%<Rjl6%, 16%<Rj32%, 32%<R<64%, and R>64%. 

The number of ratios falling in each interval for each region 

is shown in Exhibit 1. Exhibit 2 may be helpful in connection with 

Exhibit 1 as well as later exhibits. 

There is a theory that hurricane frequency should increase due 

to global warming, but no evidence of this was found in the data so 

no trend factor was applied. The loss trend and the premium trend 

are assumed to approximately cancel each other out. 



EXHIBIT 1 

FREQUENCIES BY REGION 

Reaion 
Interval of Ratio R 

8%~ R 516% 16%r R 332% 32%C RS64% Rz64% 

1. CA 
2. AZ,NM,NV,UT,CO 
3. TX 
4. AL,MS,LA 
5. FL 
6. GA,SC,NC 
7. TN,AR,OK 
8. OR,WA, ID 
9. ND,SD,UY,MT 

10. uN,WI 
11. NE,KS 
12. IA,MO,IL 
13. MI,IN,OH 
14. KY,W,PA 
15. VA,NJ,DE,MD,DC 
16. m,m 
17. ME,NH,MA,RI,CT 
18. 1,2(above) 
19. 8,9 
20. 3,4 
21. 5,6,7 
22. 10,x,12 
23. 13,14 
24. 15,16,17 
25. 1,2,8,9 
26. 3,4,7,10,11,12 
27. 5,6,13,14,15,16,17 
28. Continental U.S. 

3 
10 
22 
14 

4 
8 

23 
4 
4 

13 
22 
11 

6 
6 
6 
2 
7 
3 
8 
8 

18 
14 

7 
1 
3 

11 
5 

9 
252 

1 2 
4 1 
1 4 
3 5 
5 2 
6 4 
8 1 
1 0 
5 1 
6 5 
9 4 
6 0 
2 1 
1 4 
2 1 
2 1 
5 0 
3 1 
3 0 
7 2 
4 3 
4 0 
3 1 
2 1 
1 2 
4 3 
2 3 

4 2 
104 54 

0 
1 
3 
5 
5 
2 
0 
1 
1 
1 
1 
0 
1 
0 
2 
0 
2 
0 
1 
6 
1 
0 
0 
2 
0 
1 
1 

0 
37 

211 





8. Smoothina the Data 

The expected values of frequencies in each interval vary more 

smoothly as a function of regions than the data in Exhibit 1, since 

the data includes random variation. 

Most catastrophes are windstorms, and their frequency and 

severity is related to a region's latitude, longitude, and distance 

from the coast (Clark [4] and Friedman [6]). The probability 

distribution of the ratios of catastrophe losses to catastrophe 

premium is also related to the size of a region. The above facts 

motivate the attempt to use multiple regression for each interval 

of R values to fit the frequencies in Exhibit 1 to functions of the 

latitude, longitude, distance from the coast, and area of the 28 

regions. 

Multiple regression was used to relate the above variables to 

frequency of catastrophes in each of the intervals 8%<R616%, 

16%<R$32%, 32%<R<64%, R>64%, R>32%, R>16%, and R>8%. The intervals 

are purposely chosen in an overlapping manner for a reason 

explained in section IID. 

The details of the regressions are in Appendix A. A 

comparison of actual to fitted freqencies for four of the intervals 

is in Exhibit 3. 

C. Exuerience Ratina the Reaions 

Weights will be selected for the actual and fitted frequencies 



EXHIBIT 3 

COMPARISON OF ACTUAL (A) TO FITTED (F) FREQUENCIES 

Interval of Ratio R 
8%dR=16% 16%,Rf32% 32%eRC64% 

73 c a c REGION A F L A L L 

R>64% 
A F 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 

3 5.71 
10 5.61 
22 17.60 
14 17.77 

4 7.23 
8 6.15 

23 16.11 
4 4.73 
4 4.59 

13 12.72 
22 14.46 
11 14.43 

6 5.14 
6 5.54 
6 5.60 
2 4.97 
7 4.92 
3 5.59 
8 4.62 
8 17.48 

18 6.21 
14 13.73 

7 5.27 
1 5.05 
3 5.10 

11 15.70 
5 5.53 

9 14.44 4 4 49 A 
252 252.00 104 103.98 

1 
4 
1 
3 
5 
6 
8 
1 
5 
6 
9 
6 
2 
1 
2 
2 
5 
3 
3 
7 
4 
4 
3 
2 
1 
4 
2 

2.91 2 
2.62 1 
5.31 4 
5.61 5 
3.24 2 
2.93 4 
5.53 1 
2.79 0 
2.69 1 
5.65 5 
5.53 4 
5.46 0 
2.95 1 
3.00 4 
3.20 1 
3.20 1 
3.24 0 
2.58 1 
2.60 0 
5.12 2 
2.71 3 
5.07 0 
2.79 1 
2.88 1 
2.47 2 
4.80 3 
2.61 3 

2 
54 

1.84 0 1.71 
1.84 1 0.74 
3.82 3 1.86 
3.82 5 3.25 
4.32 5 4.45 
2.44 2 1.65 
2.61 0 1.35 
0.90 1 0.73 
0.92 1 0.44 
1.01 1 0.68 
1.70 1 0.87 
1.70 0 0.85 
1.20 1 0.70 
1.59 0 0.88 
1.59 2 1.51 
0.99 0 1.07 
0.94 2 2.75 
1.84 0 0.82 
0.86 1 0.51 
3.82 6 1.95 
2.69 1 2.02 
1.48 0 0.79 
1.38 0 0.71 
1.14 2 1.13 
1.32 0 0.57 
2.61 1 1.22 
1.75 1 0.91 
1 97 A 0 0.89 

53.99 37 37.01 



in Exhibit 3 to produce estimates of expected frequencies by 

interval and region. The sum of the weights will be one. An 

explanation of the method of selecting them is as follows. 

'For each interval i of R values, and each region j, let the 

random variable X,,j be the frequency of catastrophes in a randomly 

selected 41 year period. The fitted values for interval i and 

region j in Exhibit 3 are estimates of the expected value of X,,,. 

If each fitted value is assumed to be the mean of a probability 

distribution of possible expected values of X,,,, then it can be 

seen that a more accurate estimate of the expected value can be 

produced by giving weight (credibility) to the actual frequency as 

well as to the fitted frequency. 

The partly judgemental basis for selecting the following 

experience rating formula is explained in Appendix B. The number 

of actual catastrophes in interval i and region j is given 

credibility C&./(QL,j +k;) where a,,, is the fitted frequency for 

interval i and region j and 

k, = 9 for i = 1,2,5,6 or 7, k, = 6 for i = 3 or 4 (2) 

where, for each interval, i is as in Table 3 of Appendix A. 

D. Nested Application of Experience Ratinq Svstem 

For each region, experience rating is applied to estimate 

expected values for the frequencies in each interval of R values. 

A nested process is used so that the estimates of expected 

frequencies for 8%<RCIb% and R116% are based not only on the 



separate experience for 8%<R=16% and R>16%, respectively, but also 

on the total experience for R>8%. 

By applying the experience rating formula for the interval 

R>8%, estimates A, of the frequency in this interval are produced 

for each region j. The estimates Bj and C, produced by applying the 

experience rating system to the intervals 8%<R<16% and R>16% are 

then multiplied by a constant D, such that A, = D,(B, + C,). The 

estimates D,B, and D,C, for the frequencies in region j for intervals 

8%<Ri_16% and R>16%, respectively, thus add up to the estimate for 

region j for the interval 8%<R and are each in the same proportion 

to the estimates B, and C,, respectively. It is intended that D,B, 

and D:C, approximate the expected values of the frequencies in 

region j for intervals 8%cR516% and R>16%, respectively, given that 

the total of the two expected values is A,, and that B: and C, are 

the estimates of the two expected values based on their separate 

data. 

The weighted frequencies by region produced by directly 

applying the experience rating formulas for the intervals 16%<R~32% 

and R>32% are then adjusted so that their sum equals the estimate 

for R>16%. The method is entirely similar to the method used above 

to adjust the estimates for 8%<R516% and R>16% so that their sum 

equaled the estimate for R>8%. 

This nested process is continued until estimates are produced 

for each of the seven intervals. The estimates for four of the 

intervals are in Exhibit 4. 



E. Loss Distributions by Reaion 

The estimates of expected frequency for each region produced 

by the above nested application of experience rating for 8%<R516%, 

16%<R<32%, 32%<R164%, and R>64% were divided by the estimate 

produced for R>8% and the resulting fractions f,, ft, f,, f, were 

fitted to a probability distribution. The probability distribution 

was then used to allocate the estimate of expected frequency for 

R>8% to the above four intervals. The selected yearly frequencies 

are the above frequencies divided by 41, since 41 years of data 

were used. The yearly frequencies for R>8% are in Table 1. 

The single parameter Pareto distribution was used for all 28 

regions. It generally was a good fit. A comparison of the 

estimates produced by the experience rating method in the previous 

section, and by the single parameter Pareto, is in Exhibit 4. The 

two parameter Pareto did not perform better, nor did the Burr or 

other distributions tested. (A study of distributions can be found 

in Hogg and Klugman [S].) 

The single parameter Pareto was used even in regions for which 

another distribution fit better. This was because the generally 

good fit of the single parameter Pareto led to the conclusion that 

it was a good model for the data, and small amounts of data in 

particular regions were not considered credible enough to 

counteract this conclusion. 

See Appendix C for a discussion of the method used to fit the 

single parameter Pareto. The parameters of the Pareto curves used 

are in Table 1. 
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EXHIBIT 4 

CONPARIBDN OF EXPERIENCE RATED FREQOENCIEE WITH FITTED PARETO FREQUENCIEE 

E RATED FREWIES 

1 
2 
1 
4 
5 
6 
7 
a 
9 

IO 
EJ 11 
% 12 

13 
14 
15 
16 
17 
Ia 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 

4.42 
7.79 

20.42 
15.03 

5.70 
7.32 

20.85 
4.40 
4.57 

13.23 
i9.a9 
II.78 

5.66 
5.91 
5.99 
3.76 
6.19 
4.36 
6.09 

lo.81 
12.48 
13.24 

6.15 
3.42 
4.09 

12.06 
5.36 

-lO&z_?z 
251.19 

1.91 
3.10 
3.51 
4.80 
3.44 
4.26 
6.63 
1.96 
3.57 
7.26 
a.52 
5.03 
2.62 
2.41 
2.75 
2.42 
4.24 
2.29 
2.67 
6.38 
3.36 
3.90 
2.71 
2.51 
1.82 
4.50 
2.46 

1.41 
1.94 
3.80 
4.28 
3.35 
3.81 
2.11 
0.61 
0.97 
1.89 
2.70 
1.13 
1.31 
2.39 
1.55 
0.84 
0.58 
1.42 
0.71 
3.59 
3.03 
o.e2 
1.35 
0.99 
1.16 
2.36 
2.09 

-lL!l 
51.64 

1.00 
0.91 
2.08 
3.86 
4.68 
2.27 
1.09 
0.59 
0.55 
0.85 
1.11 
0.63 
0.82 
O.BE 
1.70 
0.77 
1.78 
0.63 
0.52 
3.39 
1.92 
0.49 
0.65 
1.12 
0.42 
1.02 
0.94 

FI'N'ED PARETOPREQUENCIES 
01eR8162 /62-LR33a Ul-=R=64% 

4.40 2.18 1.08 
7.96 3.35 1.41 

19.35 6.79 2.39 
13.49 6.98 3.62 

5.84 3.85 2.54 
8.27 4.40 2.34 

20.70 6.74 2.19 
4.47 1.83 0.75 
5.68 2.34 0.96 

15.07 5.29 1.86 
21.27 7.26 2.48 
12.57 4.06 1.31 

5.a2 2.57 1.13 
6.40 2.86 1.28 
5.78 2.99 1.55 
4.13 1.94 0.91 
a.17 2.95 1.06 
4.86 2.14 0.96 
6.34 2.32 0.85 

11.40 6.03 3.18 
11.48 5.14 2.30 
13.37 3.68 1.01 

6.42 2.63 1.07 
3.78 2.00 1.06 
4.45 i.al 0.73 

12.28 4.72 1.81 
5.79 2.70 1.26 

-lcLH! 20 -1121 
260.23 105.15 44.29 

R764l 

1.07 
1.02 
1.29 
3.88 
4.93 
2.67 
1.06 
0.52 
0.67 
1.01 
1.29 
0.63 
0.90 
1.04 
1.66 
o.ai 
0.60 
0.75 
0.49 
3.57 
1.86 
0.39 
0.74 
1.18 
0.50 
1.13 
1.10 



1 Table 

Freauencies (F1 ) and Parameters (PI 
Reaion c g Reaion 2 p Reaion E! p Reaion 2 E 

1 .213 1.01 8 .184 1.29 15 .292 .95 22 .450 1.86 
2 .335 1.25 9 .235 1.28 16 .190 1.09 23 .265 1.29 
3 .727 1.51 10 .566 1.51 17 .312 1.47 24 .196 .92 
4 -682 .95 11 .788 1.55 18 212 

1244 
1.18 25 .183 1.30 

5 .419 .60 12 .453 1.63 19 1.45 26 .487 1.38 
6 431 

1749 
.91 13 .254 1.18 20 590 

:507 
.92 27 .265 1.10 

7 1.62 14 .282 1.16 21 1.16 28 .393 1.57 

A Pareto parameter of 1 or less implies infinite expected 

losses for unlimited layers. For O<P<l, the expected losses in the 

layer between a and b are (b'-P-a'-P) /(l-P) , which approaches 

infinity as b approaches infinity. In reality, catastrophe losses 

are limited by the total insured value, so the frequency 

distribution falls below a Pareto at some point. Although Pareto 

parameters of 1 or less were selected for some regions, they are 

only intended to be used in estimating expected losses for limited 

layers of sizes that are actually reinsured. The Pareto's 

overestimate of frequency far out in the tail does not have a great 

effect in estimating expected losses for these layers. The 

frequency of losses above x times the truncation point is x-' times 

the frequency above the truncation point. Since P>O, this fraction 

xWp approaches zero as x approaches infinity. 

III. RATING CATASTROPHE COVERS 

A. Usina the Model 

Rates for catastrophe covers include a risk charge, but the 

discussion here will be of expected losses rather than risk. 



A reinsurer evaluating a catastrophe cover often receives a 

breakdown of the ceding company's subject property premium by state 

and line. The commercial multiple peril, homeowners, farmowners 

and auto physical damage premiums which are considered to be 

subject to a catastrophe treaty are sometimes only a percentage 

(usually approximately 65%, 90%, 90%, and 35%, respectively) of 

the total premiums for those lines. It is necessary to adjust for 

this in order to apply the catastrophe premium formula in this 

paper to the cedant. 

If the cedant does not provide this information, estimates 

of catastrophe premium by state for a primary company can be made 

by using the company's major direct premium writings by state, and 

its net written premiums by line, from Best's Insurance Reports. 

Based on the above type of information, and on Table 2, one of 

the 28 regions may be selected judgmentally as being approximately 

representative of the region in which the company writes. 

1988 
Reaion Premium 

2 Table 

CataStrODhe Premiums bv Resion (in OOO1s) 
Resion Reaion premium Premium Reoion Premium 

1 1,757,793 8 365,904 15 890,083 22 1,484,958 
2 473,889 9 180,551 16 973,760 23 1,793,682 
3 881,629 10 238,494 17 789,209 24 2,653,051 
4 521,551 11 273,418 18 2,231,681 25 2,778,136 
5 668,967 12 973,046 19 546,455 26 3,366,938 
6 700,932 13 1,110,098 20 1,403,180 27 5,816,632 
7 478,800 14 683,584 21 1,848,699 28 11,961,706 

For any region selected as representative of the company, the 

selected yearly frequency for catastrophe losses greater than 8% of 



catastrophe premium, and the selected Pareto distribution, may be 

found in Table 1. They may be used to compute an estimate of 

expected losses for any layer of a catastrophe cover by expressing 

the layer in terms of percentages of the company's total 

catastrophe premium. An example of the rating method will be given 

at the end of this section, but several related points will be 

discussed first. 

The method to be used in the example is based on historical 

data, but due to the potential for an enormously damaging 

earthquake in California, and the small number of earthquakes in 

the historical data used, expected losses from catastrophes in 

California are widely believed to be greater than the estimate that 

would be based on historical data. 

The model in this paper used gross losses, while catastrophe 

reinsurance covers losses net of excess reinsurance. It is assumed 

implicitly in the rating method presented that gross catastrophe 

losses are approximately the same percentage of gross premium that 

net catastrophe losses are of net premiums. 

An adjustment will be made in the rating method for 

catastrophe covers to reflect the fact that the model in this paper 

is based on data for regions rather than for individual reinsurers. 

By the use of certain definitions and reasonable assumptions, the 

following statement could be made more precise and proven 

mathematically. On average, for catastrophe losses as defined by 

721 



PCS, the probability distribution of ratios of catastrophe losses 

to catastrophe premiums has the same mean for an insurer within a 

region as for the region, but greater variance. 

The rating method which will be applied to individual insurers 

uses . 9 times the Pareto parameter in Table 1 for the region 

selected as representative of the insurer. This is to reflect the 

fact that the distributions for individual insurers have greater 

variance, on the average, than the distribution for the region. 

The expected frequencies from Table 1 will be used unadjusted 

for individual insurers. The expected frequency of catastrophe 

losses, as defined by PCS, is less for an individual insurer than 

for the surrounding region. However, the assumption of a smaller 

Pareto parameter for individual insurers implies that for some 

percentage P, the expected frequency for RBP% is the same for the 

individual insurer as for the region. The estimate that P equals 

8% is implicit in the use of the expected frequencies from Table 1 

for individual insurers. 

The estimate that ultimate insured losses for catastrophes, on 

the average, are 1.15 times as great as the PCS estimates will be 

used in estimating expected losses for catastrophe covers. Since 

the PCS estimate is made within a few days of the catastrophe, it 

is natural to.expect development. Also, the PCS estimate excludes 

all ocean marine and crop losses, and some inland marine and 

business interruption losses. 
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The . 9 factor for Pareto parameters and the 1.15 factor for 

losses have the combined effect of significantly raising estimated 

expected losses for catastrophe covers. The resulting expected 

losses, as a percentage of actual premiums charged, have been found 

to be a reasonable match to actual loss ratios for the catastrophe 

cover premium of two reinsurers over a twenty year and a twelve 

year period respectively. This premium totaled almost $300 million 

and consisted of shares of a much greater amount of premium. 

The application of the model to estimating expected losses for 

catastrophe covers is as follows. 

Examule 

suppose that a primary insurer, in the latest year for which 

data is available, had writings for which region 23 is considered 

the best match. 

suppose that, using cp to represent the insurer's catastrophe 

premium, the layer to be reinsured can be expressed as (2.00 cp) 

excess of (.2Ocp). 

The selections in Table 1 for Region 23 were .265 catastrophe 

losses per year greater than 8% of catastrophe premium, and a 

Pareto parameter of 1.29. The loss development factor of 1.15 and 

the adjustment factor to the Pareto parameter of .9 which were 

discussed above are used. Therefore, .265 is the frequency for 

R>9.2%, and the Pareto parameter becomes 1.15. The expected losses 



in one year to the layer above therefore are as follows: 

.265(.092cp)(((.20/.092)-.'6 -(2.20/.092)-.")/(.16)) (3) 

(See Philbrick [S].) This equals 4.29% of catastrophe premium. 

If it is not clear which region is the best match for the 

primary insurer, the above method may be used for more than one 

region, and a final estimate may be judgementally selected. 

B. Underwritina Judaement 

Since the above estimate is based on data from the entire 

region, it may be useful to judgementally modify it if the ceding 

company is believed to be not typical of the region. For example, 

the ceding company may have a very high or low percentage of its 

insured property near the coast, where exposure to hurricanes is 

greatest. 

C. The CataStroDhe Premium Formula 

The estimated expected catastrophe losses for individual 

insurers were affected by the choice of percentages by line in the 

catastrophe premium formula defined in section II. 

If the percentages by line that were used in the formula are 

multiplied by the corresponding premiums in Table 4,. an 

approximation of the relative amounts of expected catastrophe 

losses by line can be derived. (Although fire premium is a portion 
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of the property premium in Table 4, it was not included in the 

catastrophe premium formula as it was considered to account for 

only a negligible portion of catastrophe losses.) 

Table 4 

Industry Premiums for Selected Lines - 1990 

Fire 
Allied Lines 
Farmowners Multiple Peril 
Homeowners Multiple Peril 
Commercial Multiple Peril 
Ocean Marine 
Inland Marine 
Earthquake 
Auto Physical Damage 

Premiums Earned (Millions)- 
4,494 
2,097 

968 
18,116 
17,626 

1,169 
4,441 

459 
35,185 

Some data suggests that for hurricanes a much lower percentage 

of losses come from auto physical damage than would be estimated 

based on the catastrophe premium formula. In [l], the All-Industry 

Research Advisory Council estimated the following percentages of 

losses by line for seven hurricanes in 1983-85: homeowners multiple 

peril 46.88, commercial multiple peril 22.2%, auto physical damage 

3.7%, all other 27.3%. 

The only other data on catastrophe losses by line that the 

author knows of was produced by IS0 for homeowners losses by 

individual catastrophe for 1970-78. It indicates that homeowners 

and dwelling extended coverage losses are 19.6% and 2.7%, 

respectively, of total catastrophe losses as estimated by PCS for 

the same catastrophes. (The IS0 estimates, like the PCS estimates, 



are an extrapolation of total insured losses based on data from a 

set of insurers in the region.) The percentage of total 

catastrophe losses produced by homeowners is much less in the IS0 

data for all catastrophes combined than in the AIRAC hurricane 

data. Therefore, the percentage of auto physical damage losses may 

well be much greater for all catastrophes combined than for 

hurricanes. 

Hurricanes produced $6.35 billion in catastrophe losses in 

1981-90 as compared to $9.7 billion from hail and tornadoes and 

$3.7 billion from winter storms, according to PCS. 

If so desired, the catastrophe cover rating method used in 

this paper can be applied with a catastrophe premium formula having 

different percentages by line from those used. Any alternative 

percentages used should be chosen so that, when multiplied by the 

premiums in Table 4, they produce the same catastrophe premium as 

the percentages in this paper's formula. If this is done, then 

Table 1 approximates the corresponding table that would have been 

created if the alternative catastrophe premium formula had been 

used in the study. Therefore, the rating method used in this paper 

still gives an estimate of expected losses from catastrophes if the 

alternative catastrophe premium formula is used. 

D. E XDerience Ratins a CatastroDhe Risk 

Suppose the amount of each catastrophe loss of the ceding 

company for a certain time period is known. The frequency of these 



REGION 

3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 

EXEIBIT 5 

REGIONAL FREQUENCIES BY TIME PERIOD 

Interval of Ratio R 
8%sR'16% 16%eRS32% 32%<RS64% Rs64% 

1949-69 1970-89 1949-69 1970-89 1949-69 Jg70-89 1949-69 1970-89 

1 2 
2 a 

10 12 
4 10 
2 2 
4 4 
9 14 
0 4 
2 2 
3 10 
9 13 
7 4 
4 2 
2 4 
3 3 
1 1 
1 6 
0 3 
3 5 
3 5 
7 11 
7 7 
4 3 
1 0 
1 2 
7 4 
2 3 
1 8 

1 
3 
0 
0 
1 
3 
4 
0 
3 
2 
3 
4 
2 
0 
2 
1 
4 
2 
2 
3 
3 
4 
3 
0 
1 
1 
1 
3 

0 
1 
1 
3 
4 
3 
4 
1 
2 
4 
6 
2 
0 
1 
0 
1 
1 
1 
1 
4 
1 
0 
0 
2 
0 
3 
1 
1 

1 
0 
1 
4 
1 
2 
0 
0 
1 
3 
3 
0 
1 
2 
0 
1 
0 
0 
0 
1 
3 
0 
0 
1 
1 
1 
2 
0 

1 
1 
3 
1 
1 
2 
1 
0 
0 
2 
1 
0 
0 
2 
1 
0 
0 
1 
0 
1 
0 
0 
1 
0 
1 
2 
1 
2 

0 
0 
1 
3 
5 
1 
0 
1 
1 
1 
I. 
0 
0 
0 
2 
0 
2 
0 
1 
3 
0 
0 
0 
2 
0 
1 
1 
0 

0 
1 
2 
2 
0 
1 
0 
0 
0 
0 
0 
0 
1 
0 
0 
0 
0 
0 
0 
3 
1 
0 
0 
0 
0 
0 
0 
0 



losses in intervals expressed in terms of ratios to the company's 

catastrophe premium can be compared to the experience of the region 

selected as being representative of the company. Exhibit 5, which 

shows experience for 1949-69 and 1970-89 separately, may be useful 

for this comparison. An example of a judgmental experience rating 

is given below. 

Examole 

Suppose that insurance company A had eight catastrophes 

greater than 9.2% (i.e. 8% times our selected development factor) 

of catastrophe premium in the period 1970-89 and that the region 

selected as corresponding to it had five catastrophes greater than 

9.2% of catastrophe premium in the same period. 

Suppose that the formula n/(n+Y), where n is the number of 

catastrophes in the region in 1970-89, is the credibility assigned 

to the experience of Company A. (This formula is similar to one 

used in this paper to assign credibility to the actual frequency of 

catastrophes in a region.) 

The credibility weighted frequency is then (5/(5+9))(8) + 

(g/(5+9))(5), which equals 6.07. The modifier produced by the 

experience rating is thus 6.0715, i.e. 1.21. This modifier is then 

applied to the expected losses for the reinsured layer that are 

estimated as in formula (3). 



IV. CONCLUSION 

A model which can be used to estimate expected losses to 

catastrophe covers based on insured loss data has been presented. 

An example of the application of the model to a specific cover was 

given. The obstacles to using actuarial methods in catastrophe 

rating are not so great as has sometimes been suggested. 

The application of actuarial science gives a very useful and 

much needed perspective in this area. 
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APPENDIX A 

DETAILS OF REGRESSIONS 

By the center of a region is meant the point such that half the 

area is to the north, half to the east, half to the west, and half 

to the south. For each of the 28 regions, the latitude and 

longitude of the center of the region were estimated and were 

considered to be the latitude and longitude of the region. By the 

distance to the coast of a region is meant the length of the 

shortest line from the center to any ocean. 

The independent variables used in the regression were xl, 

x2,x3, and x,, such that, for each region 

Xl = latitude of region 

X 2 = 0 if 92<(longitude of region)<99, 

X z = Ilongitude - 991 if 99<longitude<105, 

X z = 6 if longitude>lOS, 

X t = Ilongitude -921 if 86<longitude<92, 

X t = 6 if longitude586 

X 3 = ln(ln(area, in thousands of miles, of region)) 

X I = ln(ln(distance, in miles, from coast of region)) 

The values of xl, x2, x3, x,, for the 28 regions are given in 

Exhibit 6. For each of the seven intervals for R, the dependent 

variable used in the regression for the interval was ln(frequency 

of catastrophes). 



Reaion XL X7 

1 37 6 
2 37 6 
3 31.5 0 
4 31.5 0 
5 28 6 
6 34 6 
7 35.5 0 
a 44.5 6 
9 45.5 6 

10 45.5 0 
11 40 0 
12 40 0 
13 41.5 6 
14 38.5 6 
15 38.5 6 
16 43.5 6 
17 44 6 
18 37 6 
19 45 6 
20 31.5 0 
21 33 6 
22 41.5 0 
23 40 6 
24 42 6 
25 40.5 6 
26 35.5 0 
27 37.5 6 
28 38.5 0 

EXHIBIT 6 

VALUES OF INDBPBNDBNT VARIABLES 

X. 

1.612 
1.838 
1.715 
1.596 
1.381 
1.596 
1.626 
1.703 
1.787 
1.581 
1.626 
1.654 
1.581 
1.548 
1.405 
1.405 
1.381 
1.876 
1.862 
1.796 
1.767 
1.813 
1.703 
1.640 
1.970 
1.935 
1.854 
2.078 

1.535 
1.824 
1.708 
1.513 
1.303 
1.582 
1.790 
1.758 
1.924 
1.936 
1.903 
1.909 
1.818 
1.767 
1.582 
1.652 
1.303 
1.780 
1.868 
1.684 
1.504 
1.902 
1.817 
1.629 
1.868 
1.798 
1.740 
1.870 



In cases that frequency was zero, ln(l/3) was judgmentally 

used instead of the undefined In(O). 

For each interval I,, of R values, there is a corresponding 

set of frequencies by region (fL,$) j an integer from 1 to 28. 

Fitted values Y,,, were produced by regression and then the function 

g~'Yi,j) = leyp('~~~'~~~,~i,~7~.~~~~~(yl,j)) 

(4) 

was used to produce values ji<ylj)such thatch 3~Cyi~j~ ~.~C;,j ' 

The values 3ityi,j)l 
rather than 3' &A ) 

were used as fin;? fitted 

values for the frequencies f,,,. 

Tornadoes are more prevalent in the region between latitude 92 

and 99, which helps explain the motivation for the definition of 

the variable x2. 

The interval R>64% was the only one for which x1 was used. It 

appears that distance from the coast is a useful variable for large 

hurricanes, but not for smaller catastrophes such as tornadoes. 

The variable xI didn't work well for intervals for which R564%, 

possibly due to collinearity with the longitude variable. The 

coefficient came out only negligibly negative or even positive. 

Positive coefficients for any of the variables x,, x2, x3,x, 

were considered counter to the overall indications of the data and 

not appropriate for use in the study. For all intervals, all the 

variables xl, x2, and x3 were used unless one of them had a positive 

coefficient. In these cases, a regression was done without usinq 

that variable. 
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In order to use certain theorems concerning the accuracy of 

the regressions, it would have to be true that: 

1. A linear relationship exists between the independent 

variables used and the expected values of the dependent 

variables used. 

2. The probability distributions of the values of the 

dependent variable are uncorrelated, and possess a common 

variance. 

Neither condition is satisfied. Nothing can be done to 

satisfy the first condition unless a way is known to transform the 

variables so that they satisfy a linear relationship. Therefore, 

it was considered better to avoid the complication of transforming 

variables in an attempt to come closer to satisfying the second 

condition. The results of the rgression are considered to be 

simply a useful method of smoothing the data. 

The functions resulting from the regressions are shown in 

Table 3. 

Table 3 

Interval Function 

1. 8%<RQ6% - . 024x, - .167x, - .083x, + 3.694 

2. 16%<R<32% - .00005x, - .108x, - .461x, + 2.312 

3. 32%<Rt64% - . 095x, - . 035x, + 4.169 

4. R>64% - .030x, - .069x, - . 241x, - 2.719x, + 6.457 

5. R>32% - . 102x, - .002x, - .808x, + 6.150 

6. R>16% - . 047x, - .987x, - .720x, + 5.172 

7. R>8% - .035x, - .119x, - .596x, + 5.393 



APPENDIX B 

DERIVATION OF FORMULA (2) 

In order to approximate an experience rating formula, we assume 

1. Given that ~~~~~~~~ is the fitted value for interval i and 

region j in the smoothing method of this paper, the probability 

distribution of the expected value E* * 
*2 J 

of the frequency of 

catastrophes in interval i and region j has mean ~it3iJj I . 

2. For each i, the probability distribution of ,$j has the same 
J 

coefficient of variation C, for each j. 

It follows that, for each interval i and each region j, the 2 

such that 

Z(actua1 frequency in interval i and region j) t (I-Z)g,(y,,,) (4) 

is the best least squares estimate of the expected value of the 

frequency in interval i and region j is 

The proof is as follows. By Buhlmann's theorem (Buhlmann [3], 

Herzog [71), Z = H,,,/(H,,,+P,,,) where H,,J equals the variance of the 

probability distribution of the expected value of the frequency for 

interval i and region j, and P,,J equals the expected value of the 

variance of the frequency, given the above probability distribution 

for the expected value of the frequency. 

For each possible value x for the expected value of the 

frequency, the probability distribution of actual values is Poisson 

and has variance x. Therefore, P,,, = 41(y~.J) . 



The estimates of the numbers Ci' will now be discussed. 

The random variable X,,, represents the frequency in interval i 

and region j during a period of 41 years, such as the period used 

for the data. If assumptions 1 and 2 above are satisfied, then the 

expected value Of (g~Cy;,j) -y;,j)L equals the expected value of 

19:cYt,j) -F;,jfC14,j-xLbj7' sincetheprobabilitydistributions of 

9~ < Y~,j)- E;,j andE;,j-Xql are independent and therefore the 

variance of the sum equals the sum of the variances. 

The expected value ofF,<E;Jj-x;Jj12 equals Ei.,l since the 
j= I 1% 

frequencies are Poisson distributed. The expected value Of <E,,j 

The estimate of the expected value of~(gl(yL,J)-X,,,)Z will depend 
9 

partly on judgment and intuition, due to problems in estimating it 

purely mathematically. 

Assume for the sake of approximation that the following two 

conditions are satisfied. 



1. The values g,(yi,,) are the function values produced directly 

by a regression and a linear relationship with coefficients a,,, 

actually exists between the independent variables used and the 

expected values of the dependent variables. 

2. The differences between the dependent variables and their 

expected values have independent probability distributions with a 

common variance 6 . (7) 

Under these conditions, 

( ( j~,s;(Y;,jl- Ai~j~=) / (degrees of freedom) 1 (8) 
where A,,j-is the actual frequency in interval i and region j, is an 

unbiased estimate of 6. (Draper and Smith [3]). If the values 

g,(y,,,) are not the true expected values of the frequencies in 

interval i and region j, then the expected value ofzy(g,(y,,j) -X,,,);/~S 

is greater than 6. 

Assuming formula (8) is equal or less than the expected value of 

28, formula (7) gives the following lower bound 

(formula (8)) - 2,(%(Yi,J 1, p%YJ 

we now discuss an upper bound fort?: 

(9) 

It clearly appears that the expected value of 2 
j.1 

((%(Y,,,) - xi.,)* 

is less thnJ?{,(( %%(Y,.,)) 128) - Al,,)', where A,,; is the actual 
i¶! I 

frequency in interval i and region j. kS The value Ij,,9~(r;,js)/lSiS a 

mere average of the values gi(yL,J), so the individual estimates 

g,(y,,,) intuitively appear to be better estimators for the expected 



values of the variables X,,, than $,q;c y;,j'JJ/LB is- Therefore it 

follows, based on the above arguments and formula (7), that the 

following is an upper bound for C: - 

C$,(Cjq 3~cY~,j>)/Zg) - Ai,jIz- 2 g;~y<JjIJ~{"g~O;$ (lo) j=l J 

Thus we have (formula (9)) < C," c (formula (10)). Using the actual 

values of the expressions in formulas (9) and (10) for i = 1 

through 7, and averaging inequalities, gives 

. 049 ~(tC,2tCi+c~4~+~~)/~)~.IY6, and (11) 

I olo54m;+&/2)4,?I5 (12) 

The reason for considering C, and C1 separately from c,, C,, C,, 

C,, and C, is that the numbers gt(y,,,) for i = 3 and i = 4 were 

based on less data than for i = 1, 2, 5, 6, and 7 and thus the 

expectation is that they are less accurate. Therefore, it can be 
a 

seen from formula (5) that<; would be expected to be greater for 

those intervals. 

By formula (5), the choices of k, = 9 for i = 1, 2, 5, 6 or 7 

and k, = 6 for i = 3 or 4 in formula (2) imply choices of l/9 for 

each of C>) C1’, CT, C: and CT, and l/6 for Ct and C;. Thus 

the selected values for k, are towards the low end of the range of 

inequalities (11) and (12). Still,the numbers g,(y,,,) have a much 

greater effect than the numbers Ai,, on the tails of the loss 

distributions selected by region in section IIE. 
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APPENDIX C 

METIiOD OF FITTING PARETO 

Iteration was used to find the single parameter Pmcl 

distribution P that minimizes&-@$? where F, is as defined in 
i-1 

section IIE, and P, is the corresponding fraction for the Pareto 

distribution. 

The above method of fitting a Pareto to the numbers FI is 

different, for theoretical reasons, from methods that would be used 

to fit a Pareto to actual frequencies. in explanation of the 

method is as follows. 

Let the random variable X, equal the F, produced by performing 

the experiment of using the method of this paper on the data for a 

41 year period. Assume that there is some Pareto distribution P* 

such that each I* I as defined above, is the mean of X,. 

The Pareto which minimi2es;~~~-(i)/~~a, where 6 is the standard 

deviation of Xi, t is an estimate of P. 

Based on the definition of X, and the process used in computing 

the numbers F,, the numbers 6ia , for i = 1, 2, 3, 4, are 
judgementally estimated to be in the same proportions to each other 

* r.s 
as the corresponding numbers (Q, ) are to each other. Thus the 

Pareto P which minimizes s an estimate of the Pareto 

which minimizes 
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