MEASURING THE ADJUSTABLE FEATURES OF TREATIES (CAS SEMINAR ON RATEMAKING, MARCH, 1991

Robert A. Bear, Jeffrey A. Englander, and Todd J. Hess

MEASURING THB ADJUSTABLE EEATIRRS OF TREATIES

CAS SEMINAR ON RATEITARING
MARCH 14-15, 1991

Appendices A and B present practical approaches to pricing the expected impact of adjustable features and loss sharing provisions of reinsurance treaties. A simple quota share example is used to illustrate methods of estimating the impact of aggregate deductibles, loss ratio caps and loss corridor provisions. This example is then used to evaluate profit and sliding scale commission plans and a retrospective rating plan. Appendix C presents models used to assess the cash flow implications of alternative adjustable features under consideration in an excess-of-loss example.

Panel: Robert A. Bear

North Star Reinsurance Corporation
Appendix A: Measuring the Expected Impact via Lognormal and Collective Risk Models

Jeffrey A. Englander
Trenwick America Reinsurance Corporation
Appendix B: Measuring the Expected Impact via Simulation
Todd J. Hess
Underwriters Reinsurance Company
Appendix C: Considering the Cash Flow

```
    SUBJECT: ADJUSTABLE FEATURES AND LOSS SHARING PROVISIONS
    OF REINSURANCE TREATIES.
    GOAL: BROADER UNDERSTANDING OF AVAILABLE APPROACHES
        TO ESTIMATE IMPACT OF THESE IMPORTANT TERMS.
~ PLAN: USE SIMPLE EXAMPLE TO ILLUSTRATE METHODS,
        WITH EMPHASIS ON CONCEPTS.
BENEFITS: (1) IMPROVED UNDERSTANDING EETWEEN ACTUARIES
    AND NON-ACTUARIES AND BETWEEN PRIMARY COMPANIES
    AND REINSURERS.
    (2) GREATER PRICING ACCURACY.
```


ADJUSTABLE PREMIUM AND COMMISSION FEATURES

PREMIUM AND COMMISSION ADJUSTMENT PLANS WHOSE RESULTS DEPEND UPON ACTUAL TREATY LOSS EXPERIENCE OVER A PARTICULAR PERIOD.

```
EXAMPLES: RETROSPECTIVE RATING PLANS
    PROFIT COMMISSION AND PROFIT-SHARING PLANS
    SLIDING SCALE COMMISSION PLANS
GOAL: DETERMINE EXPECTED ADJUSTED PREMIUM RATE
    OR COMMISSION RATIO FOR TREATY.
```

```
        LOSS SHARING PROVISIONS (NONPROPORTIONAR COINSURANCE)
        CEDING COMPANY PAYS NONPROPORTIONAL SHARE OF LOSSES.
        DOES NOT RECEIVE SHARE OF REINSURANCE PREMIUM.
    EXAMPLES: AGGREGATE DEDUCTIBLES
        AGGREGATE LIMITS
N
    LOSS RATIO CAPS AND LIMITED REINSTATEMENTS LOSS CORRIDOR PROVISIONS
GOAL: ESTIMATE PROPORTION OF LOSSES OTHERWISE SUBJECT TO TREATY WHICH ARE RETAINED BY CEDANT.
THIS PERMITS ESTIMATION OF EXPECTED REINSURANCE LOSSES AFTER LOSS SHARING PROVISION.
```


REFERENCES

(1) "PRICING THE IMPACT OF ADJUSTABLE FEATURES AND LOSS SHARING PROVISIONS OF REINSURANCE TREATIES," R.A. BEAR AND K.J. NEMLICK, 1990 PCAS. (PRELIMINARY VERSIONS WERE PRESENTED AT 1 OQO DISCUSSION PAPER PROGRAM AND AT CAS CONVENTION.)
"THE CALCULATION OF AGGREGATE LOSS DISTRIBUTIONS FROM CLAIM SEVERITY AND CLAIM COUNT DISTRIBUTIONS," P.E. HECKMAN AND G.G. MEYERS, 1983 PCAS.
(3) "PRICING EXCESS-OF-LOSS CASUALTY WORKING COVER REINSURANCE TREATIES," G.S. PATRIK AND R.T. JOHN, 1980 CAS DISCUSSION PAPER.
(4) "ESTIMATING PURE PREMIUMS BY LAYER," R.J. FINGER, 1976 PCAS.

BACKGROUND

```
    1) CONCENTRATION OF W.C. EXPOSURE IN HOMOGENEOUS CLASS.
    2) INSURER HAS EXCESS OF LOSS COVER ABOVE $250,000;
        alae part of loss.
    3) NET SUBJECT MATTER PREMIUM = $9,000,000 IN THIS W.C. CLASS.
    4) SEEKS ADDITIONAL QUOTA SHARE COVERAGE
        FOR 1991 UNDERWRITING YEAR.
```


ACTUARIAL ASSUMPTIONS

(1) EXPECTED CLAIM FREQUENCY $=85$ CLAIMS / \$1M.
(2) CLAIM SEVERITY (INDEMNITY + ALAE) IS MODELED

BY WEIBULL WITH SHAPE $=.2$ AND SCALE $=171$.
$F(X)=1-E$
WHERE $T=\left(\frac{x}{171}\right)^{-2}$
UNLIMITED MEAN SEVERITY $=\$ 20,520$
MEAN LIMITED SEVERITY $(\$ 250,000)=\$ 8,796$
(1) AND (2) IMPLY EXPECTED LOSS \& ALAE RATIO $=75 \%$.

ACTUARIAL ASSUMPTIONS - CONTINUED

(3) CLASS IS HAZARD GROUP II; COUNTRYWIDE NCCI TABLE M IS EFFECTIVE WITH 1990 TABLE OF EXPECTED LOSS RANGES.
(4) ALAE IS ONLY 5\% OF INDEMNITY AND A SMALL PORTION OF CLAIMS EXCEED \$250,000. HENCE, TABLE M PROVIDES A ROUGH APPROXIMATION OF EMPIRICAL INSURANCE CHARGES.
(3) AND (4) MAY BE USED OR IGNORED BY PANELISTS.
(5) PARAMETER UNCERTAINTY IS SIGNIFICANT. PANELISTS ARE ENCOURAGED TO CONSIDER AND REFLECT IT IN THEIR ANALYSES.

NON-PROPORTIONAL COINSURANCE ALTERNATIVES

CEDANT IS CONSIDERING THREE LOSS SHARING PROVISIONS. FOR EACH, ESTIMATE EXPECTED LOSS AND ALAE RATIO TO REINSURER.
(1) AGGREGATE DEDUCTIBLE $=\$ 5,400,000$ (EO\% OF EXPECTED LOSS A ALAE).
(2) 00% LOSS AND ALAE RATIO CAP.
(3) CEDING COMPANY WILL PAY ALL LOSSES AND ALAE BETWEEN 75% AND 112.5% OF SUBJECT PREMIUM (LOSS CORRIDOR).

ADJUSTABLE FEATURES ALTERNATIVES

NO COINSURANCE APPLIES, SO EXPECTED LOSS AND ALAE RATIO IS 75%.
$\vec{\rightharpoonup}$
EACH OF THREE PLANS WILL BE EVALUATED BASED SOLELY ON 1991 UNDERWRITING YEAR EXPERIENCE.
(1) 50% PROFIT COMMISSION TO CEDANT AFTER 25% FOR REINSURER'S OVERHEAD AND PROFIT. WHAT IS EXPECTED PROFIT COMMISSION ?

ADJUSTABLE FEATURES - CONTINUED

ADJUSTABLE FEATURES - CONTINUED

```
RETROSPECTIVE RATING PLAN:
    QUOTA SHARE CESSION TREATED AS PROVISIONAL PREMIUM.
    CEDENT WILLING TO PAY 30% MORE OR LESS BASED ON TREATY EXPERIENCE.
    FORMULA:
    REINSURANCE RATE = (LOSS & ALAE RATIO) + (26% MARGIN)
    70% < REINSURANCE RATE < 130%
RETROSPECTIVE PREMIUM = (REINSURANCE RATE) x (PROVISIONAL PREMIUM)
NO DOWNWARD ADJUSTMENTS FOR 5 YEARS.
ANY PROVISIONAL COMMISSION PAID OUT OF FLAT MARGIN.
WHAT IS ULTIMATE EXPECTED REINSURANCE RATE ?
```

TECHNICAL REQUIREMENT:

DISTRIBUTION OF AGGREGATE TREATY LOSSES

APPROACHES:
(1) COLLECTIVE RISK MODEL
(2) LOGNORMAL MODEL
(3) TABLE M

COLLECTIVE RISK MODEL
(THE HECKMAN-MEYERS ALGORITHM)
(1) EFFICIENTLY SIMULATES AGGREGATE LOSS DISTRIBUTION BASED ON CLAIM FREQUENCY AND SEVERITY DISTRIBUTIONS.
(2) REFLECTS UNCERTAINTY IN EXPECTED CLAIM FREQUENCY THROUGH CONTAGION PARAMETER c.

$$
\begin{aligned}
c=0 & =\text { NO PARAMETER UNCERTAINTY. } \\
c=.05-.10 & : \text { MODERATE PARAMETER UNCERTAINTY. } \\
c=.25 & : \text { HIGH PARAMETER UNCERTAINTY. }
\end{aligned}
$$

(3) REFLECTS UNCERTAINTY IN AVERAGE CLAIM SEVERITY THROUGH MIXING PARAMETER b.
$b=0$: NO PARAMETER UNCERTAINTY.
$b=.05-.10$: MODERATE PARAMETER UNCERTAINTY.
$b=.25$: HIGH PARAMETER UNCERTAINTY.

THE LOGNORMAL MODEL

ASSUMPTION: AGGREGATE LOSS IS PRODUCT OF LARGE NUMBER OF INDEPENDENT, IDENTICALLY* DISTRIBUTED VARIABLES.

CONCLUSION: THE LOGARITHM IS APPROXIMATELY NORMALLY DISTRIBUTED (CENTRAL LIMIT THEOREM).

IMPLICATION: AGGREGATE LOSS IS LOGNORMALLY DISTRIBUTED.

* THE STRINGENT CONDITION THAT THE FACTORS BE IDENTICALLY DISTRIBUTED MAY BE RELAXED.

REQUIREMENT OF LOGNORMAL MODEL:

COEFFICIENT OF VARIATION
= STANDARD DEVIATION
芯
MEAN
$=\sqrt{\text { VARIANCE OF AGGREGATE LOSSES }}$ EXPECTED AGGREGATE LOSS

COMPONENTS COMPUTED BASED ON FREQUENCY AND SEVERITY DISTRIBUTIONS.

DEFINITIONS:
(1) EXCESS PURE PREMIUM:

EXPECTED AGGREGATE LOSSES EXCESS OF ATTACHMENT.

THE ATTACHMENT COULD BE AGGREGATE DEDUCTIBLE VALUE OR AGGREGATE LIMIT UNDER CONSIDERATION.
(2) EXCESS PURE PREMIUM RATIO:

RATIO OF EXCESS PURE PREMIUM TO EXPECTED AGGREGATE LOSS.
(3) ENTRY RATIO:

RATIO OF ATTACHMENT TO EXPECTED AGGREGATE LOSS.

IMPORTANT RESULT:

IF AGGREGATE LOSS DISTRIBUTION IS LOGNORMAL, A SIMPLE FORMULA EXISTS TO COMPUTE THE EXCESS PURE PREMIUM RATIO FOR ANY ATTACHMENT.

YOU NEED TO KNOW THE EXPECTED AGGREGATE LOSS AND THE COEFFICIENT OF VARIATION OF THE AGGREGATE LOSS DISTRIBUTION.

THE BEAR-NEMLICK PAPER SUMMARIZES TECHNICAL DETAILS AND PROVIDES TABLES OF EXCESS PURE PREMIUM RATIOS FOR COEFFICIENTS OF VARIATION BETWEEN . 1 AND 5.
EXCESS PURE PREMIUM FOR PARTICULAR ATTACHMENT
$=$ EXPECTED AGGREGATE LOSS X EXCESS PURE PREMIUM RATIO
(2) WITH PARAMETER UNCERTAINTY
(a) ESTIMATE EXCESS PURE PREMIUMS BASED ON ALTERNATIVE FREQUENCY AND SEVERITY ASSUMPTIONS.
(b) ASSIGN SUBJECTIVE PROBABILITIES TO EACH SCENARIO IN (a).
(c) THE UNCONDITIONAL EXCESS PURE PREMIUM IS THE WEIGHTED AVERAGE OF THE CONDITIONAL EXCESS PURE PREMIUMS IN (a), BASED ON THE WEIGHTS IN (b).

TABLE M: TABLE OF INSURANCE CHARGES (EXCESS PURE PREMIUM RATIOS AND CORRESPONDING SAVINGS)

INSURED IS ASSIGNED TO EXPECTED LOSS GROUP BASED UPON ANNUAL EXPECTED LOSSES. ASSIGNMENTS ADJUSTED ANNUALLY.

INSURANCE CHARGES AND SAVINGS ARE GIVEN IN TABLES AS A FUNCTION OF THE EXPECTED LOSS GROUP AND ENTRY RATIO.

TABLE M IS BASED ON NCCI STUDY OF EMPIRICAL WORKER'S COMPENSATION INDIVIDUAL RISK AGGREGATE LOSS DATA.

TABLE M IS USED TO ESTIMATE NET INSURANCE CHARGES OF RETROSPECTIVE RATING PLANS.

PARAMETERS OF ALTERNATIVE APPROACHES
PRIOR TO ADJUSTABLE FEATURES AND LOSS SHARING PROVISIONS
(1) COLLECTIVE RISK MODEL
(a) EXPECTED CLAIMS $=765$
(b) AVERAGE CLAIM COST = 8831 (FROM PIECEWISE LINEAR FIT TO WEIBULL CENSORED AT \$250,000)
(c) CONTAGION PARAMETER $c=.10$
(d) MIXING PARAMETER $b=.05$
(2) LOGNOPMAL MODEL
(a) EXPECTED AGGREGATE LOSS $=.75 \times \$ 9,000,000=\$ 6,750,000$
(b) COEFICIENT OF VARIATION $=.423$ (FROM COLLECTIVE RISK MODEL)
(3) TABLE M

EXPECTED LOSS GROUP $=16$

AgGregate deductibles

REINSURER PAYS NOTHING UNTIL TREATY LOSSES EXCEED SPECIFIED AMOUNT ($\$ 5,400,000$ IN EXAMPLE).
the reinsurer then pays all losses subject to treaty.

EXPECTED TREATY LOSSES AFTER AGGREGATE DEDUCTIBLE = EXPECTED LOSSES x [100\% - LOSS ELIMINATION RATIO]

WHERE LOSS ELIMINATION RATIO $=100 \%$ - XSPPR(D)
AND XSPPR(D) = EXCESS PURE PREMIUM RATIO CORRESPONDING to AGGREGATE DEDUCTIBLE.

EXPECTED TREATY LOSSES AFTER AGGREGATE DEDUCTIBLE
$=$ EXPECTED LOSSES \times XSPPR(D).

CALCULATING THE IMPACT OF THE AGGREGATE DEDUCTIBLE - EXAMPLE
(1) AGGREGATE DEDUCTIBLE IN dollars $=\$ 5,400,000$
(2) EXPECTED TREATY LOSSES AND ALAE BEFORE COINSURANCE $=\$ 8,750,000$
(3) ENTRY RATIO CORRESPONDING TO AGGREGATE DEDUCTIBLE $=\frac{\$ 5,400,000}{\$ 8,750,000}=$. e

	RISK MODEL	LOGNORMAL	TAble M
(4) EXCESS PURE PREMIUM RATIO:	27.0×	28.6\%	26.2\%
(5) Portion of treaty losses eliminated:	: 73.0\%	73.4\%	73.8\%
(8) EXPECTED TREATY LOSS RATIO AFTER aggregate deductible:	20.3\%	19.9\%	19.7\%

LOSS RATIO CAP

```
REINSURER PAYS FOR ALL TREATY LOSSES UP TO LOSS
RATIO CAP (90% IN EXAMPLE).
仙 EXPECTED TREATY LOSSES AFTER LOSS RATIO CAP
= EXPECTED LOSSES x [100% - LOSS ELIMINATION RATIO]
WHERE LOSS ELIMINATION RATIO = KSPPR(C)
= EXCESS PURE PREMIUM RATIO
    AT LOSS RATIO CAP C
```


LOSS CORRIDORS

REINSURER PAYS FOR TREATY LOSSES UNTIL FIXED AMOUNT LB IS REACHED.

参 REINSURER STOPS PAYING LOSSES UNTIL TOTAL REACHES SECOND FIXED AMOUNT, UB.

REINSURER RESUMES PAYING LOSSES WHEN TOTAL EXCEEDS UB.

LOSS CORRIDOR = INTERVAL BETWEEN LB AND UB.

CALCULATING THE IMPACT OF THE LOSS CORRIDOR PROVISION EXPECTED TREATY LOSSES AND ALAE AFTER LOSS CORRIDOR PROVISION = EXPECTED LOSSES AND ALAE x [100\%-LOSS ELIMINATION RATIO]

出 WHERE LOSS ELIMINATION RATIO $=$ XSPPR(LB) $-x$ XPPR(UB)
AND XSPPR(LB) = EXCESS PURE PREMIUM RATIO AT LB (75\% OF SUBJECT PREMIUM IN EXAMPLE)

XSPPR(UB) = EXCESS PURE PREMIUM RATIO AT UB (112.5\% OF SUBJECT PREMIUM IN EXAMPLE)

$\stackrel{\pi}{a}$

（1）E：CCES：T BUITE PIIERIIUM RITIAS：
LOMETHNUHD HPIVEIT HOLNE

7）LOASS EL．MINATTIDM FAT＊O
（3）E：CPECIEN IRIEAIY LOSS IMAIIC AFTER LiNS：こOITRIDITR

R1．3F：110EE 113.2
（3．$\%$
12.4%
1：2．1）
-11.12%
135.7%
8．03
36．8：

PROFIT COMMISSIONS

```
PROFIT COMMISSION RATIO = P x [100% - LR - EXP]
WHERE P = PROPORTION OF PROFITS TO BE PAID TO CEDANT
                                    (50% IN EXAMPLE)
        lr = actual treaty loss matio
    EXP = REINSURER'S OVERHEAD PROVISION
    (25% OF TREATY PREMIUM IN EXAMPLE)
the PROFIT COMMISSION RATIO CANNOT BE NEGATIVE.
LOSS RATIOS ENTERING THE PROFIT COMMISSION FORMULA
ARE CAPPED AT BREAKEVEN LOSS RATIO.
    BLR = 100% - EXP
GOAL: TO DETERMINE THE EXPECTED PROFIT COMMISSION TO BE PAID.
METHOD: DETERMINE EFFECT THAT LIMITING ACTUAL LOSS RATIOS TO
    THE BREAKEVEN RATIO HAS ON THE EXPECTED TREATY LOSS
    RATIO USED IN PROFIT COMMISSION RATIO CALCULATION.
```

CALCULATING THE EXPECTED PROFIT COMMISSION RATIO

```
FELR = EXPECTED TREATY LOSS RATIO USED IN PROFIT COMMISSION FORMULA
    = EXPECTED LOSS RATIO X [100% - LOSS ELIMINATION RATIO]
```

$\underset{\infty}{\ddot{\infty}}$ LOSS ELIMINATION RATIO $=$ XSPPR(BLR)
= EXCESS PURE PREMIUM RATIO AT BREAKEVEN LOSS RATIO

ECR = EXPECTED PROFIT COMMISSION RATIO $=\mathbf{P} \times 100 \%$ - FELR - EXP]
THE EXPECTED PROFIT COMMISSION RATIO WILL ALWAYS EXCEED THAT OBTAINED BY SIMPLY PLUGGING THE EXPECTED LOSS RATIO INTO THE PROFIT COMMISSION FORMULA.

SLIDING SCALE COMMISSIONS


```
        CALCULATION OF THE EXPECTED SLIDING SCALE COMMISSION
            EXPECTED COMNISSION RATIO
            =Cmax - EXPECTED COMMISSION REDUCTIONS
                            OVER ALL LOSS RATIO INTERVALS
=Cmax - < mi=1 m [EXPECTED LOSS RATIO POINTS IN i-th INTERVAL]
        WHERE BI = COMMISSION SLIDE ON I-th LOSS RATIO INTERVAL
    (% INCREASE IN COMMISSION RATIO PER I% DECLINE IN LOSS RATIO)
            AND Cmmx = MAXIMUM COMMISSION RATIO
```

玉

CALCULATION OF THE EXPECTED SLIDING SCALE COMMISSION - CONTINUED

THE EXPECTED SLIDING SCALE COMMISSION RATIO EOUALS THE MAXIMUM COMMISSION RATIO LESS THE EXPECTED POINTS OF COMMISSION LOST OVER THE ENTIRE RANGE OF POSSIBLE LOSS RATIOS.
f EXPECTED LOSS RATIO POINTS IN i-Ih INTERVAL

```
= ELR x [XSPPR(LBi) - XSPPR(UBi)]
```

WHERE XSPPR(EBI) AND XSPPR(UBi) ARE EXCESS PURE PREMIUM RATIOS CORRESPONDING TO THE LOWER AND UPPER ENDPOINTS OF i-th LOSS RATIO INTERVAL.

```
        CALCULATION OF SLIDING SCALE COMMISSION - EXAMPLE
        (1) EXPECTED LOSS AND ALAE RATIO = 75%
        (2) MAXIMUM COMMISSION RATIO = 57.75%
F
(3) EXPECTED COMMISSION REDUCTIONS
(4) EXPECTED COMMISSION RATIO
(5) SIMPLISTIC SLIDING SCALE
COMMISSION (PLUG ELR INTO FORMULA)
```


RETROSPECTIVE RATING PLAN

FORMULA:

```
        REINSURANCE RATE -- (LOSS A ALAE RATIO) + (25% MARGIN)
```

 RMIN \(=70 \%<\) REINSURANCE RATE \(<130 \%=\) RMAX
 RETROSPECTIVE PREMIUM $=$ (REINSURANCE RATE) \times (PROVISIONAL PREMIUM)

CONSTRAINT ON LOSS AND ALAE RATIO (LR) USED IN RATE CALCULATION:

```
RMIN < LR + MARGIN < RMAX
```

CALCULATING THE LOSS RATIOS

CORRESPONDING TO MINIMUM AND MAXIMUM RATES CORRESPONDING TO RMIN AND RMAX ARE

MINIMUM AND MAXIMUM LOSS RATIOS, LMIN AND LMAX.

```
    GMIN = RMIN - MARGIN = 70% - 25% = 45%
LMAX = RMAX - MARGIN = 130% - 25% = 105%
```


INSURANCE CHARGES AND SAVINGS

IF LR < LMIN, REINSURANCE COMPANY CHARGES FOR LMIN AND REALIZES SAVINGS DUE TO FAVORABLE LOSS EXPERIENCE.

IF LR > LMAX, REINSURANCE COMPANY CHARGES FOR LMAX AND INCURS A LOSS DUE TO ADVERSE LOSS EXPERIENCE.

WE NEED TO DETERMINE EFFECT THAT LIMITING LR BETWEEN
LMIN AND LMAX HAS ON THE EXPECTED LOSS RATIO USED IN THE RETROSPECTIVE RATING FORMULA.

```
NET INSURANCE CHARGE (NIC) = XSPPR(LMAX) - SAVE(LMIN)
    WHERE XSPPR(LMAX) = INSURANCE CHARGE AT MAXIMUM LOSS RATIO
    AND SAVE(LMIN) = INSURANCE SAVINGS AT MINIMUM LOSS RATIO
    NOTE: SAVE(LMIN) = XSPPR(LMIN) + ER(LMIN) - 100%
        WHERE ER(LMIN) = ENTRY RATIO AT MINIMUM LOSS RATIO
```

玉

CALCULATING THE EXPECTED REINSURANCE RATE

LET AELR = ADJUSTED EXPECTED LOSS RATIO
aElr is the expected loss ratio subject to the minimum

```
AELR = ELR x [100% - NIC]
```

nic is the loss elimination ratio which arises due to lmin and lmax.

EXPECTED REINSURANCE RATE = AELR + MARGIN

CALCULATING THE EXPECTED REINSURANCE RATE - EXAMPLE
(1) EXPECTED LOSS AND ALAE RATIO (ELR) = 75\%
(2) REINSURER'S PROVISIONAL MARGIN
$=25 \%$

苦
(3) MINIMUM LOSS RATIO (LMIN)
$=45 \%$
(4) ENTRY RATIO CORRESPONDING TO LMIN
$=.6$
(5) MAXIMUM LOSS RAtio (LmaX)
(6) ENTRY RATIO CORRESPONDING TO LMAX $=1.4$

CALCULATING THE EXPECTED REINSURANCE RATE - CONTINUED

RISK MODEL LOGNORMAL TABLE M

(7)	INSURANCE	CHARGE	AT LMA		5.2\%	5.4\%	6.1%
(8)	INSURANCE	SAVINGS	AT LM		1.9%	1.5\%	1.3\%
(9)	NET INSURA	ANCE CHAP	RGE (N	C)	3.3\%	3.9\%	4.8\%
(10)	ADJUSTED E	EXPECTED	LOSS	RATIO	72.5\%	72.1\%	71.4%
AELR $=$ ELR $\times[100 \%-$ NIC $]$							
(11)	EXPECTED P	REINSURAN	NCE RA	TE	97.5\%	97.1\%	88.4\%
AELR - MARGIN							
(12)	EXPECTED	ULTIMATE	MARG!		22.5\%	22.1\%	21.4\%

EVEN IF DONE SUBJECTIVELY

THREE APPROACHES GAVE SIMILAR INDICATIONS

FOR ALL COINSURANCE AND ADJUSTABLE FEATURES ALTERNATIVES STUDIED

SIGNIFICANT PARAMETER RISK WAS REFLECTED IN COLLECTIVE RISK MODEL.

THIS WAS SIMILARLY REFLECTED IN LOGNORMAL MODEL THROUGH

```
SELECTION OF COEFFICIENT OF VARIATION.
```

```
IMPORTANCE OF MODELLING PARAMETER UNCERTAINTY - CONTINUED
            ALTERNATIVELY, ONE COULD HAVE USED METHOD OF
    WEIGHTING SCENARIOS TO REFLECT PARAMETER UNCERTAINTY.
EMPIRICAL TABLE M APPROACH HAS THEORETICAL SHORTCOMINGS
BUT PROVIDES REASONABILITY CHECK ON THEORETICAL METHODS.
```


ADDITIONAL ISSUES

USED SIMPLE EXAMPLE TO ILLUSTRATE CONCEPTS

REFER TO BEAR-NEMLICK PAPER
FOR DISCUSSION OF FOLLOWING COMPLEXITIES:
(1) VARIATION OF LAYER RETENTIONS AND LIMITS BY LINE OF BUSINESS OR OVER MULTI-YEAR RATING BLOCK.
(2) HANDLING OF ALAE.
(3) TREATIES WITH BOTH COINSURANCE PROVISIONS AND ADJUSTABLE FEATURES.
(4) TREATIES WITH SIGNIFICANT PROBABILITY OF LOSS-FREE YEAR (EG, HIGH LAYERS).
(5) CASH FLOW MODELLING.

THE PROBLEM

* Primary workers compensation quota share reinsurance cover (\$250,000 limit)
* Allocated loss adjustment expenses included with losses
* Subject premium $=\$ 9,000,000$
- Based upon other analysis, expected claim frequency is 85 claims per $\$ 1,000,000$ subject premium, or 765 claims
- Based upon other analysis, unlimited severity distribution can be assumed to be Weibull with parameters 1/171 and .2

$$
F(x)=1-\exp \left(-\left((x / 171)^{\wedge} .2\right)\right)
$$

GOAL: Calculate the expected outcome to the reinsurer under several different structures involving adjustable features

ALTERNATIVE STRUCTURES

Non-Proportional Coinsurance Features:
(1) Aggregate deductible of $\$ 5,400,000$
(2) 90% loss and ALAE ratio cap to reinsurer
(3) Loss corridor retained by ceding company between 75\% and 112.5% loss and ALAE ratio

Retrospectively Adjustable Features:
(4) 50% profit commission after 25% reinsurer's expense allowance
(5) Contingent sliding scale commission, depending on loss \& ALAE ratio:

Interval
>75\%
60\%-75\%
45\%-60\%
$30 \%-45 \%$
<30\%

Commission
0.0\%
$.5 \times(75 \%-L R)$
$.6 \times(60 \%-L R)+7.50 \%$
$.75 \times(45 \%-$ LR $)+16.50 \%$
(30%-LR) $+27.75 \%$
(6) \quad Retrospective premium adjustment $=L R+25 \%$ subject to \min of 70% and max of 130%

KEY TO THE SOLUTION

Nesd to estimate the aggregate loss distribution to determine the effect of adjustable features on expected results.

It is insufficient to apply the adjustable features to the expected outcomes before adjustment, due to the effect the adjustments have on the distribution of outcomes.

SEVERAL APPROACHES

* Use an empirical aggregate loss distribution deemed to be appropriate (eg., NCCI Table M)
* Assume some form of the distribution of aggregate losses (eg., lognormal), then estimate the parameters from empirical data
- Collective Risk Model - estimate the aggregate loss distribution from the underlying claim frequency and severity distributions, using one following methods:
- Assume some form of the distribution of aggregate losses, then estimate the moments from the moments of the frequency and severity distributions
- Monte Carlo simulation
- Other methods

1. Inversion of the characteristic function of the aggregate loss distribution (Heckman-Myers)
2. Inversion of the Laplace transform of the aggregate loss distribution (recursive method, Panjer)

MONTE CARLO SIMULATION OVERYIEW

Basic steps:
(1) Specify underlying claim frequency and severity distributions.
(2) Randomly generate a number of claims for a sample year from the assumed claim count distribution.
(3) For each claim drawn in step (2), randomly generate a claim size from the assumed claim size distribution, applying any per claim limit, If applicable.
(4) Accumulate each claim's results to get the year's total losses; use the accumulated results to determine effects of adjustable features for that year.
(5) Repeat the simulation for a large number of years, accumulating the results of each year to use in calculating overall expected effects of adjustable features.

CLAIM FREQUENCY DISTRIBUTION

Normal choices are:

- Poisson
$f(n \mid r)=r^{\wedge} n * \exp (r) / n!$
where r is the expected number of claims
mean $=r$, variance $=r$
- Negative Binomial

$$
\begin{aligned}
& f(n \mid m, k)=(k /(k+m))^{\wedge} k^{*}(m /(k+m))^{\wedge} n^{*} k(k+1) \ldots(k+n-1) / n! \\
& \text { mean }=m, \text { variance }=m+m^{\wedge} 2 / k
\end{aligned}
$$

CLAIM FREQUENCY DISTRIBUTION (Continued)

The Poisson distribution is usually thought of as a reasonable starting point for the claim process.

However, if we want to reflect parameter risk (ie., the fact that there is uncertainty in our estimate of the expected number claims), the Negative Binomial has been found to be a better model, with the parameter k used to reflect the level of parameter risk desired in the Poisson process.

While there are mathematical ways to estimate the correct k, we prefer a more intuitive approach:

Split the simulation runs into 5 equal parts. Vary the expected number of claims for each part in such a way that the average over the five parts is the desired expected number of claims. In our example, with a given expected number of claims of 765, we would reflect parameter uncertainty in the claim count distribution by using the following expected counts in each part:

765	\mathbf{x}	0.50	$=$	382.50
765	x	0.75	$=$	573.75
765	x	1.00	$=$	765.00
765	x	1.25	$=$	956.25
765	x	1.50	$=$	1147.50

The spread used (.5,.75, $1,1.25,1.5$) is based upon a "comfort level" with repect to the underlying pricing analysis.

CLAIM FREQUENCY DISTRIBUTION (Continued)

A Negative Binomial Equivalent:
It is easy to show that the variance in the claim count distribution for all 5 parts combined is equal to the "between-group" variance plus the "within-group" variance, or:

Within-group variance
$=\quad 765.000$
Between-group variance
$=\quad 73,153.125$
Total variance
$=\quad 73,918.125$
$=765+765^{\wedge} 2 / \mathrm{k}$ for a negative binomial equivalent
so that $\mathrm{k}=8$.
Alternatively, if we consider the variance of the spread $(.5,75,1,1.25,1.5)$, which is .125 , we again have $k=1 / .125=8$

This leads to the more general statement that:

$$
k=1 / \text { variance of spread } .
$$

CLAM SEVERITY DISTRIBUIION

Given: Uncapped severities can be expected to follow a Weibull distribution, with shape parameter of .2 and scale parameter of 171.

- After drawing severities from specified distribution, apply $\$ 250,000$ per occurrence limit
- Parameter uncertainty ignored in the severity distribution
* Variance of outcomes seems more sensitive to frequency
* A little tougher to model in the severity distribution, given the curve we're using

BASE CASE

Assumotions:

1) Subject premium
2) Expected \# of claims
3) Limit
4) Expected average unlimited severity

4a) Expected unlimited losses
5) Expected average limited severity

5a) Expected limited losses
6) Expected loss ratio

Simulation Results:

Iterations
Simulated average \# of claims
Percent difference from expected
Simulated average unlimited severity
Percent difference from expected
Simulated average limited severity
Percent difference from expected
Simulated average unlimited losses
Percent difference from expected
Simulated average limited losses
Percent difference from expected
Variance-to-avg of simulated losses
Average loss ratio
\$9,000,000 765
\$250,000

$$
\$ 20,520
$$

$$
\$ 15,697,800=2 \times 4
$$

$$
\$ 8,796
$$

$$
\$ 6,728,940=2 \times 5
$$

$$
74.77 \%=5 a / 1
$$

With Parameter Risk	Without Parameter Risk
10,000	10,000

$764.8 \quad 764.7$
$-0.03 \% \quad-0.03 \%$
\$20,468 \$20,562
-0.26\% 0.21\%
\$8,807 \$8,812
0.12\% 0.18\%
\$15,653,662 \$15,724,844
-0.28\%
0.17\%
$\$ 6,735,421 \quad \$ 6,738,819$
0.10\%
0.15\%

994,664 157,117
74.84\% 74.88\%

OPTOON 1 - INNER AGGREGATE DEDUCTBLE

Assumptions:

Ceding company retains first $\$ 5,400,000$ of reinsured losses
Reinsured losses $=\max ($ simulated losses $-5,400,000,0)$

Simulation Results:

Average reinsured losses
Variance-to-avg of reinsured losses
Average losses eliminated by deductible Loss eilimination ratlo

ELR to reinsurers (without credit)
ELR by subgroup of 2000 iterations:

I	20.7%	15.6%
II	20.6%	15.4%
III	20.6%	15.3%
IV	21.1%	15.4%
V	20.4%	15.0%

OPTION 2-LOSS RATIO CAP

Assumptions:

Ceding company retains all losses greater than 90% of subject premium
Reinsured losses $=\min ($ simulated losses, $.9 \times$ subject premium)

Simulation Results:

Average reinsured losses
Variance-to-avg of reinsured losses
Average losses eliminated by cap Loss elimination ratio

ELR to reinsurers (without credit)
ELR by subgroup of 2000 iterations:

I	68.5%	74.5%
II	68.8%	74.4%
III	68.8%	74.3%
IV	69.2%	74.4%
V	68.9%	74.1%

OPIION 3-LOSS RATIO CORRIDOR

Assumptions:

Ceding company retains all losses between 75% and 112.5% of subject premium

Reinsured losses $=$ min(simulated losses, $.75 \times$ subj prem) + max(simulated losses $-1.125 \times$ subj prem, 0)

Simulation Results:

Average reinsured losses
Variance-to-avg of reinsured losses
Average losses eliminated by corridor Loss ellmination ratio

ELR to reinsurers (without credit)
ELR by subgroup of 2000 iterations:

I	63.6%	70.4%
II	63.8%	70.5%
III	63.8%	70.3%
IV	64.1%	70.5%
V	63.8%	70.2%

OPTION 4 - PROFIT COMMISSION

Assumptions:

Ceding company will be paid 50\% profit commission atter 25\% expense allowance for reinsurer

Profit commission $=\max (.5 \times$ subj prem $\times(1-$ (loss ratio $+25 \%)), 0)$

Simulation Results:

Average profit commission

With Parameter	Without Parameter
Risk	Risk
$\$ 554,167$	$\$ 208,331$

Profit comm \% by subgroup of 2000 iterations:

I	6.32%	2.31%
II	6.16%	2.27%
III	6.15%	2.33%
IV	6.03%	2.27%
V	6.12%	2.40%

OPTION 5 - CONTINGENT CEDING COMMISSION

Assumptions:

Ceding company will be paid a contingent sliding scale ceding commission, depending on the loss ratio result.

Ceding commission calculated from the following table:

LR	
Interval	
$>75 \%$	Commission
$60 \%-75 \%$	0.0%
$45 \%-60 \%$	$.5 \times(75 \%-$ LR $)$
$30 \%-45 \%$	$.6 \times(60 \%-$ LR $)+7.50 \%$
$<30 \%$	$.75 \times(45 \%-$ LR $)+16.50 \%$
	$(30 \%-$ LR $)+27.75 \%$

SImulation Results:

Average contingent ceding commission

With Parameter Risk	Without Parameter Risk
$\$ 634,598$	$\$ 212,420$

7.05\% 2.36%

Ceding comm \% by subgroup of 2000 iterations:

I	7.03%	2.44%
II	7.24%	2.36%
III	7.05%	2.31%
IV	7.05%	2.37%
V	6.88%	2.32%

OPTION 6 - REIROSPECTIVE RATING

Assumptions:

Ceding company's final premium will be determined retrospectively, based on ultimate losses under the coverage.

Retro adjustment $=\min ($ max (loss ratio $+.25, .70), 1.30)$

Simulation Results:

Average retro premium
Average retro adjustment

With Parameter Risk	Without Parameter Risk
$\$ 8,946,433$	$\$ 8,987,088$

Retro adjustment by subgroup of 2000 iterations:

I	99.26%	99.58%
II	99.23%	100.09%
III	99.42%	99.93%
IV	99.36%	99.82%
V	99.75%	99.86%

OTHER CONSIDERATIONS

- Cash flow
* Risk load
* Expenses
- Market conditions

```
Appendix C
```

Page 1

An aggregate loss model is a very important tool in analyzing adjustable features of treaties. The Lognormal and Simulation techniques presented by Bob and Jeff work well and usually provide sufficient information to make good pricing judgements. There are situations, however, where consideration of cash flow would change one's attitude towards comparable treaties. The following exhibits outline steps in helping to decide if cash flow is important.

The examples use reinsurance coverage where the cash flow will likely throw off enough investment income that it may determine the ultimate profitability or loss of the treaty. The main use of an aggregate distribution is to enable one to adjust expected loss estimates for contract terms. Based on these adjusted loss estimates, it is straightforward to compare the underwriting profitability of competing deals.

Graphing the cash flows of comparable deals may reveal whether the payment streams are different enough to compensate for expected loss differences. It is usually the case that the graphs of cash flows are sufficiently similar within a given group of terms (e.g., comparing one swing to another swing, or one profit commission plan to another profit commission plan) to make it clear that investment income differences won't affect a pricing decision.

In cases where the graph provides inconclusive evidence, two methods to reflect cash flow in an aggregate loss model may be used. The Panjer aggregate loss algorithm can be easily adjusted to reflect a payment pattern. By transforming the frequency parameter, one can get an aggregate loss distribution as of any given point in time. Investment income estimates for each year follow from each annual aggregate distribution. An alternative that is perhaps more intuitive is to reflect the payment pattern directly by simulating a payment lag for each loss as an extension to an aggregate loss simulation model.

In the end, considering cash flow seems to matter most when comparing different contract types and in measuring the value of contract terms compared with flat rating. It is not generally worth the effort when comparing similar contract types (except aggregate deductibles) or in calculating the credit for a high loss ratio cap.

Examples \& Assumptions

Subject Premium:	$\$ 10$ million
Expected Loss:	$\$ 1.5$ million
Layer:	$\$ 500,000 \times 5 \$ 500,000$
Severity:	Singie Parameter Pareto, $\mathrm{Q}=1.5$
Frequency:	Negative Binomial, $\mathrm{V} / \mathrm{E}=2.0$
Interest:	Flat 8.0% a year
Auto example:	
Long-Haul Trucking	

Reporting Pattern is Exponential with 25-month average lag Payment Pattern is Exponential with 35 -month average lag

GL example:
Appliance Manufacturer
Reporting Pattern is Exponential with 45-month average lag Payment Pattern is Exponential with 65 -month average lag

Notation and Definitions of Random Variables

N - Number of Excess Loss
R_{t} - Reinsurance Premium net of brokerage at time t
$P_{t} \quad$ - Aggregate Paid Losses at time t
PC t - Profit Commission at time t
Ct - Cumulative Cash Flow for the Reinsurance contract at time t

$$
C_{t}=R_{t}-P_{t}-P C_{t}
$$

i - interest rate
V - Present Value of the net cash flow

$$
v=\sum_{t=1}^{n}\left(c_{t}-c_{t-1}\right)(1+i)^{1-t}
$$

Rates Used with Graphs

Plan	Rate	Other
Flat	15.80\%	
Agg Ded A	10.95\%	Ded $=5.0 \%$
Agg Ded B	7.03\%	Ded $=10.0 \%$
LR Cap A	14.74\%	LR Cap $=26.0 \%$
LR Cap B	15.62\%	LR Cap $=39.0 \%$
Prof Cmsn		
A1	16.80\%	before PC, 1 st 3 yrs.
A2	16.80\%	with $P C$, yr. $4 \&$ subs. (30% PC atter 15% RI margin)
B1	17.30\%	before PC, 1st 3 yrs.
B2	17.30\%	with $P C$, yr. $4 \&$ subs. (50\% PC after 25\% RI margin)
C1	15.80\%	before PC, 1st 3 yrs.
C 2	15.80\%	with PC, yr, $4 \&$ subs. (30% PC atter 15% RI margin)
D1	15.80\%	before PC, 1 st 3 yrs.
02	15.80\%	with PC, yr. $4 \&$ subs. (50\% PC after 25\% Rl margin)
Swing A	7.5\%min/21.0\% max	Loss Load 100/75ths
Swing B	3.5\%min/22.0\% max	No Load
Swing C	7.5\%min/22.0\% max	Loss Load 100/80ths

Cash Flow of Aggregate Deductibles

\square Agg Ded A $\quad \therefore$ Agg Ded B \triangle Flot Roted

Cash Flow of Loss Ratio Caps
Cost Flow as a function Paid loss

Appendix C
Page 8

Distribution of V

Aggregate Distribution for Excess Claims:

$$
G(x)=\sum_{n=0}^{\infty} \operatorname{Prob}[N=n] F(x)^{* n}
$$

$F(x)$ - Single Parameter Pareto
$\operatorname{Prob}[\mathrm{N}=\mathrm{n}]$ - Negative Binomial
Assumption: Individual claim reporting and payment patterns are independent of size of loss.

Observation: If M , the number of ground-up claims is Negative Binomial (α, p), then N, the number of claims excess of retention r, is also Negative Binomial with parameters ($\propto^{\prime}, p^{\prime}$) where

$$
\alpha^{\prime}=\alpha
$$

$$
\mathrm{p}
$$

and

$$
p^{\prime}=\frac{}{F(t)+p(1-F(t))}
$$

Distribution of V : Simulation

1. $\quad \mathrm{N}$ is drawn from a negative binomial $\mathrm{NB}\left(\alpha^{\prime}, p^{\prime}\right)$.
2. For each of the N claims, a paid loss amount is drawn from SPP and a payment lag is drawn from the exponential. It was assumed that claims occur mid-year and premium and loss transactions are made at mid-year.
3. The P_{t} values are calculated by summing total payments in the appropriate time periods using the simulated lags.
4. The reinsurance contract terms were applied to the P_{t} 's to obtain the C_{t} 's.
5. $\quad V$ is calculated $=\sum_{t=1}^{n}\left(C_{t}-C_{t-1}\right)(1+i)^{1-t}$, then V is stored.

The above was repeated for 20,000 iterations, then E[V], Variance [V] and Probability [$\mathrm{V}>0$] are calculated.

Appendix C
Page 12

Distribution of V: Panjer's Method

Just as the number of Excess Claims is Negative Binomially distributed, so is the number of Excess Claims as of time t.

The transformation needed, is

$$
\begin{aligned}
\alpha_{t}^{\prime} & =\alpha^{\prime} \\
p_{t}^{\prime} & =\frac{p^{\prime}}{w(t)+p^{\prime}(1-w(t))}
\end{aligned}
$$

Where $w(t)$ is the percent paid or reported as of time t.
One uses a discretized form of the severity distribution
and the transformed Negative Binomial in Panjer's formula:

$$
\begin{aligned}
& g_{0}=p(0) \\
& g_{i}=\sum_{j=1}^{i}(a+b j / i) f_{j} g_{i-j} \quad i=1,2,3, \ldots
\end{aligned}
$$

Using the aggregate distribution, the C_{t} 's can be computed easily.

Aggregate Deductible

AL GL Deductible Rate ELR NPV NPV

0	15.8	95	353	517
5	10.95	95	290	426
10	7.03	95	211	310

Appendix C
Page 14

Loss Ratio Cap

Cap	Rate	ELR	NPV	NPV
Infinite	15.8	95	353	517
250%	15.62	95	345	507
175%	14.74	95	317	462

Appendix C
Page 15

Swing Rated

Swing Rate	ELR	Loss Load	$\begin{array}{r} \mathrm{AL} \\ \mathrm{NPV} \end{array}$	$\begin{array}{r} \mathrm{GL} \\ \mathrm{NPV} \end{array}$
15.8 Flat	95	none	353	517
7.5/12/21	95	100/75	231	320
7.5/12/22	95	100/80	222	309
3.5/12/22	95	$\begin{aligned} & 100 \\ & +\mathrm{Min} \end{aligned}$	212	284

Profit Commission

Years						
Profit	No			Eff	AL	GL
Commission	Down	Rate	ELR	ILR	NPV	NPV
0		15.8	95	95	353	517
50 after 25	4	17.3	87	95	380	528
30 after 15	4	16.8	89	95	363	516
30 after 15	4	15.8	95	101	273	428
50 after 25	4	15.8	95	103	251	402

This presentation was based on:
EVALUATING THE EFFECT OF REINSURANCE CONTRACT TERMS by James N. Stanard and Russell T. John
soon to be published in PCAS. The following references are cited in that paper:
[1] H. Buhlman and W. S. Jewell, "Optimal Risk Exchanges," ASTIN Bulletin, Vol. 10, Part 3, 1979.
[2] H. V. Gerber, An Introduction to Mathematical Risk Theory, Huebner Foundation Monograph 8, Richard D. Irwin, 1979.
[3] R. T. John, "Report Lag Distributions and IBNR," Casualty Loss Reserve Seminar Transcript, 1982, p. 124.
[4] Y.-S. Lee, "The Mathematics of Excess of Loss Coverages and Retrospective Rating - A Graphical Approach," PCAS LXXV, 1988, p. 49.
[5] J. Lemaire and J.-P. Quairiere, "Chains of Reinsurance Revisited," ASTIN Bulletin, Vol. 16, Part 2, 1986.
[6] G. Meyers, "The Cash Flow of a Retrospective Rating Plan," PCAS LXXIII, 1986, p. 113.
[7] G. S. Patrik and R. T. John, "Pricing Excess-of-Loss Casualty Working Cover Reinsurance Treaties," 1980 CAS Discussion Paper Program, p. 399.
[8] H. H. Panjer, "Recursive Evaluation of a Family of Compound Distributions," ASTIN Bulletin, Vol. 12, 1981, p. 22.
[9] S. W. Philbrick, "A Practical Guide to the Single Parameter Pareto Distribution," PCAS LXXII, 1985, p. 44.
[10] R. C.. Reinarz, Property and Liability Reinsurance, Mission Publishing Company, 1969.
[11] B. Stundt and W. S. Jewell, "Further Results on Recursive Evaluation of Compound Distributions," ASTIN Bulletin 12.
[12] E. W. Weissner, "Estimation of the Distribution of Report Lags by the Method of Maximum Likelihood," PCAS LXV, 1978, p. 1.

