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CREDIBILITY 

BY GARY VENTER 

Section 1 - Introduction and History 

Until recent years. classical statistics had focussed on estiaa- 

ting a quantity based only on directly relevant observations; 

peripherally relevant or seemingly unrelated series which may 

provide further information had been excluded. Since at least 

the early 1900’s, however, casualty actuarial practice has 

incorporated related information, sometimes In a fairly ad hoc 

manner, under the name of “credibility.” 

Classical statistical procedures estimate a value, such as the 

average age of a group, by taking a sample from the group and 

using the rnean value of that sample as the estimate. Credibility 

estimation makes use of the sample value, but may incorporate 

other information as well, such as the average age of similar 

groups. In ratemaking. for example, the experience of the latest 

period might be regarded as a sample from all possible time 

periods. Rather than using this by itself, even properly 

adjusted for premium and loss levels. to determine the new rate, 

other information might be incorporated, such as the old rate, or 

rates for related exposures. 

If the new rate is taken to be a weighted average between the 

indication from the data and the old rate or some other estimate, 

the weight applied to the data is called the credibility weight, 

or sontetimes, more loosely. the credlbllity of the data. The 
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latter terminology may be misl eading, however, in that it seems 

to imply that the credibility weight is an inherent property of 

the data. This will turn out to not be the case. In addition to 

any features of .the data itsel f. the context in which it will be 

used, including what it is to be weighted against, will expli- 

citly or implicitly influence the credibility to be assigned. 

Credibility theory incorporates the entire study of this weight- 

ing process, including development of the formulas for assigning 

the credibility weights, as well as estimation of the parameters 

or values that appear in these formulas. 

Although pragmatically motivated, credibility weighting now has 

both theoretical and practical justification. Credibility 

formulas can be derived from statistical assumptions, and they 

have proven useful in application. This chapter outlines the 

background and use of credibility theory. Being an overview, the 

results are in many cases given without proof, or the proofs are 

just outlined. Underlying assumptions are included, however. As 

with nany disciplines, the real world is often more complex than 

the initial assumptions, and more intricate models are often 

needed in order to be truly practical. The more practical models 

are presented in the later sections, but their exposition will 

benefit from the simpler paradigms covered first. 

To illustrate the type of related information that may be useful, 

imagine that an estimate is desired for the quantity of ice cream 
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a particular person will consume next year. The average consunp- 

tion for that individual for the last few years might be selected 

as the estimate. However this estimate could probably be 

improved by giving some degree of weight to the average consurp- 

tion of the population at large. 

Another example, examined in greater detail below, is to estimate 

a baseball player’s season batting average from the early season 

performance. In this case it has been shown that giving weight 

to the early season averages of other players can considerably 

improve the estimate. 

More typical insurance examples include estimation of claim 

frequency, severity, or total loss cost for an insured, a class, 

or a rating territory. Experience for other insureds, classes, 

states, insurers, etc. may be the auxiliary data incorporated. 

In all of the above cases the auxiliary Information comes from a 

wider, more stable population. There is, however. another type 

of credibility application; rather than incorporating a wider 

population. earlier observations of a single series may be used. 

For something like claim frequency countrywide, for example, the 

latest observation by itself could be regarded as sufficient; 

however if this is subject to significant randon fluctuations, 

some weight may be given to prior years, perhaps with the weights 

decreasing to zero after some time. Credibility formulas used in 
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this case are somewhat different Prom those incorporating a wider 

population. 

Limited Fluctuation vs. Greatest Accuracy 

By the mid 1920’s. two fairly different approaches to credibility 

had been established. The terminology noted was introduced by 

Arthur Bailey in his far reaching 1945 paper. Basically speak- 

ing, the limited fluctuation approach ains to limit the random 

component 0f an estimate; the greatest accuracy approach attempts 

to make the estimation error as small as possible. The exaaple 

below shows how each of these might be applied in a single series 

case. 

The series in question, Ni, could be anything of interest, e.g., 

state loss ratios, countrywide frequency, etc. To have a con- 

crete example, let Nt denote the number of doctor visits made by 

members of the U.S. Congress in year i. Cl will denote the cred- 

ibility estimate of Ni made based on the data through year i-l. 

In a single series situation, both the limited fluctuation and 

greatest accuracy approaches to credibility make use of a 

credibility weight Zi between 0 and 1 so that: 

Cl+1 = (I-Z,)Ci + ZiNi (1.1) 

This weight, however, has a different purpose and derivation in 

the two approaches. 
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The limited Pluctuation approach seeks to limit the fluctuation8 

in the series of estimate8 Cj, at least insofar as those fluctu- 

ations are due to the randomness inherent in the series of 

observations NJ. The greatest accuracy approach, on the other 

hand, seeks to minimize the estimation errors. To be aore 

precise. this approach specifies then seeks to minimize an error 

function. Usually the expected squared difference between the 

estimated and actual value is the function to be minimized. In 

the current example this would be denoted as E(Ci-Ni)2. With 

this error function, the greatest accuracy approach is rePerred 

to a3 “least squares” credibility. 

To illustrate the formulas for Zi that arise from these two 

approaches, a Pew additional assumptions will be introduced. Ni 

is hypothesized to be approximately normally distributed with 

mean Xi and constant variance v. (Constant in that it is the 

same for each year,) The mean Mi is hypothesized to change each 

year by the random arount Di, that is. Mi+I=Mi+Di. Di is a 

random variable with mean zero and variance d. The D’s are 

assumed to be independent of each other and of MI. Because of 

the mean zero, each Mj has the Same unconditional expected value. 

denoted by 81, i.e., E(Mi)=m. (Mi is treated as a random variable 

because its value is not known, which in part is due to the 

random term Di. ) Because the M’s change each year by the D 

the variance of W increases each year by d. E.g.. Var(Mi+I 

Var(Mi)+d. Thus Var(Mj)=w+(j-1)d. with w=Var(Ml). 

‘9. 

)= 
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The estimation process has to start somewhere, and so Cl is the 

estimate of N1 made before any of the observations NJ are 

available. This estimate could have been based on previous 

knowledge of similar processes, for example. C1 can also be 

considered as an estimate of Ml. The variance w can be inter- 

preted as an expression of the uncertainty about the value of Ml 

bel’ore N1 is observed: as such it may influence how willing we 

will be, when estimating N2, to give up on Cl in favor of Nl once 

it becomes available. 

Given these model assumptions. the calculation of the credibility 

factor Zi under the two approaches can be addressed. The limited 

fluctuation approach calculates Zi based on the conditional 

distribution of Ni given Ml. It seeks to limit the impact on the 

credibility estimator (1.1) of random deviations of the observa- 

tion Nl from its conditional expected value Ml. In other terms, 

it seeks to guarantee, at least to an acceptably high proba- 

bility, that the quantity: 

Zi(Ni-Mi) (1.2) 

stays within certain bounds. 

The criterion for limiting the deviation I3 established by first 

specifying a probability level p. e.g., p=.95, and then requir- 

ing. with a probability of at least p. that (1.2) be no greater 

than some prespecified maximum. In this case that maximum will 
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be taken to be km, where k is a selected small number, e.g., 

k=.05. Recall that m is the unconditional mean E(M1). In other 

words, Zi is sought 30 that Pr(Zi(Nl-Mi)Gkm)=p. 

To see the impact of this criterion, the credibility estinate 

(1.1) can be rewritten as Ci+l=(l-Z1)Ci+ZIMi+Z1(N1-Ml). These 

three terms can be regarded as representing stability, truth, and 

random noise. Since truth and noise cannot be observed separ- 

ately, the same factor Zi applies to both. The highest possible 

Pactor is sought, so that truth will be emphasized, as long as 

noise can be kept within acceptable bounds. Thus the value of Zi 

is sought that will keep Zi(Ni-Mi) below lOOk% of the expected 

value m with probability p. 

Since Ni has a symmetric distribution about its mean Ml, that Zi 

will also ensure that the absolute value of the random component 

is less than km with probability 2p-I. Limited fluctuation 

credibility as 30 formulated emphasizes the conditional distri- 

bution of Ni given kii, but the conditioning is not always noted 

explicitly. 

The value of Zi that meets the criterion is Zi= km/y+‘v, where y 

is the 1OOpth percentile of the standard normal distribution. To 

show this. by hypothesis, given Ml, (Ni-Mi)/tlV has the standard 

normal distribution, and so from the definition of y. we have 
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Pr[(NI-Mil/Jv < y] = p. Multiplying both sides of the inequality 

by ZiJv then gives (Pr[Zi(Ni-Mi)<km]=p. as desired. 

In most applications of this approach, Zi is regarded as a 

function of m, and the values of m that lead to different 

credibility levels are sought. The variance v is often taken to 

be proportional to m, e.g., v=cm. This yields Zi= (k/y)Jm/c. 

Zi is capped at 1. even though the formula value may be higher. 

For selected p and k, the value of m that yields Zi=l is referred 

to as the full credibility value, and is given by mF=c(y/k)‘. 

Then for mtmF, Zi can be conveniently computed by the square root 

rule: 

Zi = Jm/mF (1.3) 

which can be verified by substituting c(y/k)2 for mF in (1.3). 

The least squares approach for determining Zi does not start with 

formula (1.1). but derives it as the result of a more general 

estimation problem: Nicl is to be estimated as a linear com- 

bination of the previous observations Nl....Ni, with the expected 

squared error to be minimized. That is. coefficients b j are 

sought to minimize: 

E[Ni+l-(bo + ZJ,: bjNj)12 (1.4) 

It turns out, after much algebra. that the solution to this 

estimation problem can be expressed in the form (1.1). that is. 

as a credibility formula. 
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The Zi that do this are computed recursively by: 

21 = l/[l + K] (1.5a) 

Zi’l = l/[l + l/(J+Zi)I (1.5b) 

where K-v/w and J=d/v. The details of the derivation, including 

more general conditions under which (1.4) leads to (l.l), are 

found in Gerber and Jones (19’74). For the interested reader, a 

sketch of the proof is below. 

The minim ization of (1.4) is accomplished by first setting its 

partial derivatives with respect to the bj to zero. This 

produces i+l equations, one for each bj. For example the partial 

of (1.4) with respect to bl produces the equation: 

E[Nl(Ni+l-bO-C,~lbj”j)l=O. 

All these equations involve terms like E(KJ) and E(NjNh), which 

are then evaluated In order to solve for the bj’s. 

To illustrate this procedure, evaluating the E(NjNh) type term is 

outlined. Note that, given Mj, NJ and NJ+,., are independent, and 

the conditional expected value of each is Mj, i.e., E(NjIMj)‘Mj 

and E(Nj+hlMj)=Mj. This is because M j+h=Mj+Dj+...+Dj+h-l, and 

the Di ‘s have mean zero. Then it follows that E(NjNj+hlMj)= NJ*, 

and eventually that E(KjNj+h)= Var(Mj)+m2= w+(j-l)d+m*. After 

evaluating all such terms and combining them algebraically. (1.5) 

is produced. (End of sketch of proof). 
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A heuristic interpretation of (1.5) can be made. Note that Z1 is 

an increasing function of w and a decreasing function of v. The 

uncertainty about Ml is measured by w; thus the greater this 

uncertainty, the greater is the weight given to the observation 

Nl. But the uncertainty about Mi is not the only thing consi- 

dered, the stability of Nl is greater with lower v and this also 

leads to greater weight on N1. 

Zt+l is an increasing function of Zi and J. Greater stability 

(low v) continues to give greater credibility through a higher J: 

a higher d also increases the credibility which makes sense as 

follows: a high d indicates that the M’s are greatly subject to 

change, so the older estimates should be given less weight, with 

more to the current observation, i.e., higher ZJ’s. 

It might also be noted that if d happens to equal w*/(v+w), all 

the Z’s are the same. This can be verified by finding Z2 from 

(1.5); it seems an unlikely coincidence, however. 

The formulas above are fairly representative of what is produced 

by the least squares and limited fluctuation approaches to 

credibility. The limited fluctuation approach will always 

involve a full credibility value, representing the degree of 

random fluctuation deemed acceptable. The square root rule for 

partial credibility is also fairly typical of this approach. The 

only variance explicitly treated is v, which represents the 
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random fluctuation of a single observation around its own 

generally unknown mean. 

Formula (1.5a) is fairly typical of least squares credibility; 

often it is somewhat generalized to Z=P/[P+K], where P is a 

measure of the volume of data observed. Besides recognizing the 

random fluctuation measured by v, this formula also incorporates 

the relevancy of the previous estimate, which w quantifies. Also 

quantifying changes in the process over time, which d achieves, 

is a further step not always incorporated into least squares 

analysis. Thus (1.5b) is a less typical but more general example 

of a least squares credibility formula. 

It should be noted that while the limited fluctuation approach 

does not explicitly recognize the relevance of the previous 

estimate or the degree of likely process change over time, 

judgments about these issues may be incorporated into the selec- 

tion of the degree oP randon fluctuation deemed acceptable, as 

specified by the fluctuation k allowable with probability p. 

Historical Perspective 

Credibility as known today is generally traced to Mowbray (1914 

writing in volume I of the Proceedings of the Casualty Actuaria 

Society. Decidedly in the limited fluctuation camp, Mowbray’s 

article approximates an assumed binomial claim count process by 

the normal distribution to derive the full credibility standard 

1 I 

1 
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relative to p and k. The goal of the limited fluctuation 

approach as practiced today is suggested by the title of Mow- 

bray’s article: “How extensive a payroll exposure is necessary to 

give a dependable pure premium?” 

The greatest accuracy approach was introduced by Whitney (1918). 

writing i 

that the 

binomial1 

is normal 

n volume IV of the CAS Proceedings. Whitney assumed 

number of claims for an employer with P employees is 

y distributed with parameters (P.M). and that W itse 

ly distributed. The resulting credibility for that 

If 

employer’s experience can be expressed as Z=P/[P+K]. with K a 

function 

Z is appl 

by the cl 

employer 

of the binomial and normal variances. The complement l- 

ied to the experience of the entire class..as indicated 

ass rate. rather than to the previous experience of the 

Both Mowbray and Whitney were addressing Workers Compensation 

experience rating. An application of the limited fluctuation 

paradigm to automobile classification ratemaking can be found in 

Stellwegen (1925). Group life insurance experience rating using 

greatest accuracy credibility was explored by Keffer (1929), who 

assumed a Poisson claim count distribution with a gamma distri- 

bution on the Poisson parameter. Perryman (1932) addressed a 

number of then current issues, including an interpretation of the 

limited fluctuation square root rule similar to that discussed 

-92- 



above, i.e., a way to give the credibility estimate no larger a 

random component than a risk with full credibility would have. 

The least squares approach to greatest accuracy credibility was 

established in Bailey (1945). although the notation was cumber- 

some. Buhlmann and Straub (1970) formalized the derivation of 

Z=P/[P+K], K=v/w. from a least squares error criterion, showed 

that this was valid for all finite variance distributions, and 

discussed a method of estimating the variances v and w. 

Least squares credibility was recognized by Bailey (1950) to 

replicate the Bayesian posterior mean for the normal-normal and 

beta-binomial models. Keeper’s result essentially shows this for 

the gamma-Poisson case, and it is also known for the gamma-gamma 

pair. Essentially, the posterior mean is the best least squares 

estimator; credibility provides the best linear least squares 

estimator. Thus when the posterior mean is a linear function of 

the observations, the two estimators are the same. Ericson 

(1970) characterized a family of distributions for which this is 

the case. 

kfore recent research has emphasized generalizations and appli- 

cations of the original models. Topics include improved estina- 

tion of parameters, credibility for trend and regression models, 

credibility incorporating more than one type oP prior estimate, 

credibility weighting of the prior with a “hyperprior”. methods 
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of incorporating more complex relationships between firms of 

different sizes, methods of improving estimates for distributions 

with nonline&r posteriors, and treating parameters that may 

change over time. Many of these generalizations arise because 

the real world is more complicated than the original models 

assume : thus in addition to requiring more theory, they are more 

practical as well. 

Section 2 - Review of Statistical Concepts 

An understanding of some basic statistics will be presumed in 

this chapter. A few of the topics most germane to credibility 

theory will be briefly reviewed in this section, but reference to 

statistical texts may be required if some material has been 

unused recently. 

Two concepts that will be called upon frequently are covariance 

and conditional distributions. To review, for two random 

variables X and Y, the covariance of X and Y is defined as: 

Cov(X.Y) = E[(X-EX)(Y-EY)] (2.1) 

and often can be calculated more conveniently by: 

Cov(X.Y) = E(XY)-(EX)(EY) (2.2) 

Thus Cov(X.X)=Var(X). The covariance of X and Y divided by the 

product of their standard deviations yields the correlation 

coefficient. The covariance is zero when X and Y are indepen- 

dent, but not necessarily vice versa 
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Recall that if f(x,y) is the joint density for X and Y. then the 

marginal density for X is defined as: 

fx(x) = JP(x.y)dy (2.3) 

The integral is taken over the entire support of Y, and the 

resulting marginal density is basically the probability density 

function for X. The same thing can be done for Y. The condi- 

tional density of Y given X is defined by: 

f(ylx) = f(x.y)/eX(x) (2.4) 

This Is interpreted as the density function for Y given that X 

takes on the value x. 

Subst I tuting fy(Y)f(xlY) for f(x,y) in (2.3), and substituting 

the result of that for fX(x) in (2.4) yields Bayes’ rule: 

f(YlX) = fy(Y)e(xlY)/~fy(Y)f(xlY)dY (2.5) 

which is used to get from one conditional distribution to 

another. Once x is fixed, the denominator of (2.5) is the 

constant needed to make the entire right hand side a probability 

density, i.e., make it integrate to unity. In many applications 

this constant can be computed later, or not at all, and so Bayes’ 

rule can be written: 

f(YlX) a f(XlY)f(Y) I2.6) 

where “=” is read “is proportional to”. In (2.6) and hereafter, 

the subscript on the marginal density is dropped unless it is 

needed to avoid confusion. 
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Conditional moments can be defined by using the conditional 

densities in the usual moment definitions. For instance: 

E(YIX=x) = /Yf(Y)x)dY 

Var(Yl.X=x) = J(v-E(YlX=x))2P(Ylx)dY 

Since EY = J/yf(x.y)dydx = IB(YIX=x)fX(x)dx. 

EY = EtE(YlX)I 

Similarly it can be shown that 

VarY = EVar(YIX) + VarE(YIX) 

Cov(Y.2) = ECov(Y,Z)X) + Cov(E(Y 

In applications of Bayes’ rule, some d 

[2.10a ) 

IX) sE(ZlX 1) (2.10b 

istributi ons are described 

as prior, conditional, posterior. or predictive. To introduce 

(2.7) 

(2.8) 

(2.9) 

and illustrate this terminology, an example using some well known 

distribution functions is given. 

Example 2.1 

A population of drivers is insured by XYZ insurance company, and 

each driver has a Poisson distribution for the number of physical 

damage claims to be submitted each year. For a given driver, let 

Ni denote the claim count random variable for year i. and y the 

driver’s Poisson parameter, which is assumed not to vary over 

time. Then the conditional density is f(nly)=e-yyn/n!, which has 

mean and variance both equal to y, and skewness of y-1/2, In 

this example it is supposed that y is not known, but it is a 

random variable having the gamma distribution with parameters b 

and c, which has the density f(y) = yc-le-Y’b/bc(c-l)!. Here and 

throughout the chapter a! will be used to denote r(a+l), as they 
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agree on integers and this can be used to def’ine al at other 

points. 

This distribution is considered the prior distribution for Y, 

which is now capitalized to signify that it is a random variable. 

The gamma distribution in b,c has mean bc and variance b2c, and 

in general, EYj=bjc(c+l).‘. (c+j-1) when j is a positive integer, 

and EYj=bj(c+j-I)!/(=-l)! for any real j>-c. The shape of the 

distribution is determined by c; b is referred to as the scale 

parameter. 

The unconditional or mixed distribution for N is its marginal 

distribution with density f,(n) = Jffn,y)dy=Je(n~y)e(y)dy. This 

is the distribution the insurer faces for the driver’s claim 

counts, as it combines the process distribution for N given Y 

with the parameter distribution for Y. It is sometimes referred 

to as the mixture of the process distribution by the parameter 

distribution. Doing the integration finds this to be a negative 

binomial distribution, with paraneters c and p=l/(l+b). The 

negative binomial density with parameters c and p is f(n)= 

(c+n-l)!pc(l-p)“/n!(c-l)!. This has mean c(l-p)/p, variance 

C(l-P)/P2, and skewness (2-p)(c-~p)-“~. 

From the mixed distribution it can be found that ENl=cb, since 

for p=l/(l+b), (1-p)/p=b. This could have been calculated using 

ENl=EE(NIIY), because E(Nl)Y)=Y, from the Poisson distribution, 

-97- 



and EY=bc from 

From (2.10) th 

2 cb+cb . These 

as referred to 

of hypothet 

considers E 

quantity. 

the gamma distribution . Similarly. VarN1=cb(b+l). 

is should equal EVar(NIIY)+VarE(NIIY)=EY+VarY= 

two components of the total variance are sometimes 

‘!expected value of process variance” and “variance 

cal means”, respectively. The latter terminology 

NlIY) as hypothetical, since Y is not a known 

The posterior distribution is the density for Y given N1, as 

calculated by Bayes’ rule. and can be used to update the prior 

distribution once an observation is available. By Bayes’ rule, 

f(yln)=f(nly)f(y). The proportionality means that any factors 

not involving y can be computed later, as the integral of 

f(yjn)dy must equal 1. Thus f(yln) = e-yynyc-le-y/b = 

yn+c-le -y(l+l/b) . But from the gamma density above,the gamma 

distribution in parameters b/(b+l) and (n+c) is proportional to 

this same quantity, so that must be the posterior distribution of 

Y. 

A measure of the dispersion of a random variable relative to its 

mean is the coefficient of variation, or CV, which is the ratio 

of the standard deviation to the mean. For the gamma in b.c this 

is given by l/Jc, and so reduces to l/Jn+c for the posterior 

gamma. 
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Finally, the predictive distribution is the marginal distribution 

of N2 resulting from the mixture of the Poisson model by the 

posterior gamma distribution for Y given N1. Since a Poisson 

mixed by a gamma in b,c gives a negative binomial in c.l/(b+I), 

the Poisson mixed by the posterior gamma in b/(b+l),n+c can be 

seen to give negative binomial parameters n+c.(b+l)/(2b+l). This 

is the distribution for N2 the insurer Paces for this driver 

after observing Nl=n. It has mean (n+c)b/(b+l), which can be 

written as Zn+(l-Z)bc. with Z=b/(b+l). This ,can be interpreted as 

a credibility weighting between the observation n and the 

previous mean bc. 

The usefulness of the predfctive distribution goes beyond 

estimating the subsequent expected value. It gives the probabil- 

ities for N2=j for all values of j, and thus quantifies the 

possible divergence of actual from expected results. 

Exercise 

a. Calculate EE(N21Y), where the outer expected value uses the 

posterior gamma above. 

b. Calculate Var N2: 

I. As EVar(N21Y) + VarE(N21Y). 

2. Directly from the predictive distribution. 

When, as in this example, the posterior distribution is of the 

same type as the prior, just with different parameters, the prior 
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and conditional distributions are said to be conjugate. Since 

the posterior of Nl becomes the prior of N2. etc.. conjugate 

distributions allow for continued updating of the parameters of a 

single distribution type as subsequent data becomes available. 

Thus the gamma-Poisson combination is a conjugate pair. Another 

is the inverse gamma-gamma pair. as the next example illustrates. 

Exaanle 2.2 

In this example, the total workers compensation losses Xi for a 

certain factory in year 1 are assumed to be gamma distributed 

with parameters y,c. Here, however the scale parameter y is not 

known, but is specified by the prior distribution 

f(y)=yer-le -b’ybr/(r-l)! (2.12) 

This is referred to as the inverse gamna distribution in b,r 

because Y-l is gamma distributed in b-l,,. The moments are given 

by E(Yj) = bj/(r-l)(r-2)... (r-j) for positive integers jtr and 

E(Yj) = bj(r-j-l)!/(r-l)! for any real number j<r. If jar, the 

jth moment does not exist. In particular E(Y) = b/(r-1) for r>l 

and VarY = b2/(r-1)2(r-2) for r>2. Note that this prior can be 

specified simply as f(y)=y-r-‘e-b’y, and the conditional by 

f(xly)- 
-x/y,c-ly-c 

The posterior can then be calculated as f(ylx) = f(xiy)f(y) 0: 

,-X/Yy -cy-r-1,-b/y ~ e-(x+b)/yy-c-r-l But this is the inverse 
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conjugate nature of the gamma in (x+b), (c+r). This shows the 

pair. 

The mixed distribution is f(x) = /f(xly)f(y)dy. and turns out to 

be f(x) = brxa-l(c+r-l)l/(b+x)C+r(c-l)!(r-l)! This is a general- 

ization of both the F-distribution and the shifted Pareto, and 

has been called different names. Here it ~111 be referred to as 

the Beta2 in b.c,r, following McDonald ( 1. The moments are 

given by: 

E(Xj) = bjc(c+l)... (c+j-l)/(r-l)(r-2)...(r-j) (2.lla) 

for positive integers jcr and 

E(Xj) = bj(c+j-l)!(r-j-l)!/(c-l)!(r-l)! (2.11b) 

for any real j. -c<j<r. 

In particular E(X1) = cb/(r-1) and Var(X1) = b2c(c+r-l)/(r-1). 

Exercise 

Calculate EX and VarX via (2.9) and (2.10). 

The predictive distribution for X2 given X1=x is the conditional 

gamma mixed by the posterior inverse gamma and is thus the Beta2 

in (x+b).c,(c+rf. For r>l, this has mean E(X21X1=x) = 

(x+b)c/(c+r-1). Letting 2 = c/(c+r-l), 1-Z = (r-l)/(c+r-1). and 

then the predictive mean can be expressed as E(X21Xl=x) = 2x + 

(l-Z)E(Xl). It is also possible to write 2 = l/(l+K), by letting 

K = (r-1)/c. Thus again a credibility formula arises for the 
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predictive mean. As will be seen below, this does not always 

happen. but it does for an important class of distributions. 
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Diffuse Priors 

In the above example the prior distribution could have come from 

information about the distribution of risks within the class. 

Lacking such information a prior can be developed by actuarial 

judgement. When information and judgement lack precision, it is 

often felt best to make the prior as nonspecific as possible. 

One method that has been developed to do this is to use so called 

diffuse priors. One class of diffuse priors for a positive 

parameter y is specified by f(y)=yp. There is no value of p for 

which the Integral of yp over the positive reals is finite: thus 

no constant can be calculated to make f(y) a proper density func- 

tion. Nonetheless, f(xiy)yp may have a finite integral, and if 

so. a posterior distribution can be calculated. A more detailed 

discussion of diffuse priors may be found in Berger ( ) . 

For instance, p=O specifies a uniform prior on the positive 

reals. For this p. the integral from 0 to M is finite, while 

that from M to infinity is not, for any number M, no matter how 

large. This may seem to give too much weight to large possible 

values of y. For example, the likelihood of y being between 1 

and 2 is the same as for it being between 1,000,000.000,001 and 

1.000,000,000,002. 

The infinite part of the integral of yp is from W to infinity for 

P>-1, and from 0 to & for ~(-1. In the latter case the weight is 

on values of y near zero. For p=-1 neither the interval 0 to e 
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nor the interval M to infinity has a finite integral. Thus for 

p=-I, even though the probability is concentrated in unlikely 

places (near zero and infinity), there is no clearcut pull by the 

prior to higher or lower values of y. 

Example 2.3 

In Example 2.2. suppose the prior had been specified as f(y)=yo. 

Then f(ylx)ae-x/yyp-c. As long as p<c-1 this is an inverse gamma 

posterior, with parameters x and c-p-l. The predictive distri- 

bution will thus be the Beta2. with parameters x, c. and c-p-l. 

Thus the predictive mean is cx/(c-p-2). For p=-2 this is equal 

to the observation x. which is an appealing result in that it 

takes the observation at face value. As mentioned above, p=-1 

seems to make more sense as a prior; for the predictive mean this 

increases the observation by a factor of c/(c-1). as long as c>l. 

This also has a logical interpretation, in that c/(c-1) is the 

ratio of the conditional mean to condltional mode. which is the 

most likely observation. For p=-1, the posterior inverse gamma 

has parameters x l.c and the predictive Beta2 is in xl.c.2c. 

Repeated application after n observations yields a predictive 

Beta2 in Ei!!lxi,c.nc. If C<l, this will eventually have a finite 

predictive mean when nc>l. 
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Example 2.4 

In Example 2.1, taking f(y)=yn yields the posterior f(yln) = 

e-Yyn+P. This is a gamma distribution in 1, n+p+l as long as 

p>-n-l. The predlctlve mean is n+p+l, which for n=-1 yields the 

observation II. 

Note that in both of these examples the posterior and conditional 

distributions are conjugate, and so can then be used to begin the 

Bayesian updating process as more observations become available. 

Apmregate Claims Distributions 

The application of credibility to insurance problems often 

involves a decomposition of the tots1 losses into frequency and 

severity components. This part of the statistical preliminaries 

will be the calculation of the moments and percentiles of 

aggregate claims from those for frequency and severity. 

The definition of the aggregate claims T for a given period is: 

T=X 1+’ “TX N (2.12) 

where N is the number of claims in the period and Xi is the 

amount of the ith claim. It is usually assumed that the Xi are 

independent of each other and of N. and that all the claims 

follow a common severity distribution. Thus, the subscripts can 

be dropped when referring to the severity random variable X. 
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The moments of T are given by: 

E(T)=E(N)E(X) 

Skw(T )=(Skw(X)CV3+3n2CV2+n3)/JE(N) (cv2+n2j3 

Here CV denotes the severity coefficient of variation, and 

ni=E(N-EN)i/EN. (2.13a) is proven from (2.91 by noting E(T)= 

EE(T)IN)=E(NE(X))=E(N)E(X). (2.13b) follows similarly from 

(2.13a) 

(2.13b) 

(2.13~) 

(2.10) since: 

Var(T)=EVar(TIN)+VarE( 

=E(NVar(X))+Var 

=E(N)Var(X)+E(X 

TIN) 

RE(X)) 

‘Var(N) 

This could alternatively be computed by evaluating E(TjJN) via 

(2.9) I which is what is used to derive (2.13~). 

One method of estimating the percentiles of T is to assume a 

particular distributional form, e.g., T is normal or gamma 

distributed. If the moments of X and N are given, the distri- 

bution for T can then be estimated from its moments, which are 

computed via (2.13). The normal distributional assumption incor- 

porates a skewness of zero. The gamma has a skewness of twice 

its coefficient of variation. This is probably more realistic 

for property-casualty lines, but neither distributional form is 

likely to be correct. 
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Several approaches to improved estimation of percentiles of 

aggregate claims have been developed. One is to incorporate a 

third parameter so that the first three moments can be matched. 

For instance for the normal distribution the so called normal 

power approximation (NP) incorporates a skewness correction as 

follows. Let oT denote the standard deviation of T. and tp the 

pth percentile. Then the normal approximation estimates tp by 

ET+oTyp, where yp is the pth percentile of the standard normal. 

The NP approximation for tp is: 

tp=ET+oTyp+oTSkwT(yp2-I)/6 (2.14 

This NP formula is derived using a power series expansion for tp 

Pentikainen ( ) recommends its accuracy only for SkwT<l, afte 

which the NP tends to exaggerate the difference between the 

percentiles tp and their normal approximation estimates. 

Another approximation for aggregate claims is offered by Seal 

(====) * who adds a third parameter to the gamma that shifts the 

origin to the left or right. The percentiles are calculated 

using a fairly simple modification to the gamma distribution 

function. Pentikainen ( ) finds the accuracy of this approxima- 

tion comparable to that of the NP. 

Another way of adding a third parameter to the gamma is to use a 

power transform, i.e., to assume Ta is gamma distributed for some 

real number a. If a=-1 this gives the inverse gamma distribution 
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used above. Applications of this method can be found in Venter 

(1984). 

It is also possible to compute the aggregate distribution 

function without making a distributional assumption for the 

aggregate claims. However this usually requires knowledge of the 

density functions for frequency and severity. not just their 

moments. One such method is simulation. A possible number of 

claims n is generated according to the frequency distribution, 

then n possible claim sizes are drawn from the severity distribu- 

tion. This gives one possible realization of T. This process 

can be repeated many thousands of times to estimate the distribu- 

tion function of T. While conceptually simple, this process is 

often expensive and time consuming. 

Another method is to build up the aggregate distribution function 

recursively, i.e., the probability that T<t is computed from the 

probabilities that T is less than t-l. t-2, etc. Panjer ( ) 

shows a fairly efficient way to do this for a discrete severity 

distribution and a Poisson, negative binomial, or binomial 

frequency. For the Poisson frequency, dePri1 ( ) finds an even 

more efficient algorithm for a piecewise linear distribution 

function. 

Finally, a method of calculating aggregate claim probabilities 

based characteristic functions is becoming widely used. The 



characterlstlc function Is a complex analog of the moment 

generating function. and can be computed for aggregate claims 

from the moment generatlng function of frequency and the charact- 

eristic function of severity. The distribution function for 

aggregate claims can be recovered from its characteristic 

function via numerical integratirn. The calculation is thus 

somewhat intricate. but once programmed It is fairly efficient. 

One difficulty is calculating the severity charact,eristic 

function, as It Is not usually of closed form. This method was 

pioneered by Mong ( 1. who used a gamma severity. Heckman and 

Meyers ( ) extended It to a step PunctIon probability density, 

and Venter ( 1 generalized this to a piecewise linear density. 

The latter two severity functions can be used to approximate 

other distributions. thus making this method of quite general 

application. 

Section 3 - Limited Fluctuation Credibility 

The llmlted fluctuation credibility estimator can be expressed 

as : 

C=(I-Z)M+ZT (3.1) 

where T is the observation and M is a previous estimate. # is 

generally supposed to be the estimate one would use if the 

observation T were not available. and it could come from previous 

experience and/or related data. Typically T will be the loss 

ratio, pure premium. frequency, or severity for a class, state. 
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or risk for a cer.taln time period, and C estimates its value for 

another, usually future, period. Here, to be specific, T wil’l, be 

the aggregate losses for a one year period, thus T=Xii”‘+XN as 

above, with the .usual independence assumptions. 

For limited fluctuation theory, (3.1) can be rewritten asl 

C=(l-Z)M+ZET+Z(T-ET) (3.2) 

only the last term 1s considered random, and the goal of the 

theory is to keep its contribution within specific bounds. In 

particular, k and p are selected and then Z is sought so that 

Pr(Z(T-ET)ckET)=p. For example. p=.95 and k=.05 are typlcal 

choices and result in requiring that the random component of 

(3.2) be less than 5% of the expected value ET with 95% proba- 

bility. 

Actually this requirement is only an upper bound on Z(T-ET). but 

In applications 

skewed to the r 

lY. 

guarantees that 

k=.O5, the cred 

assumed to be symmetric or slight 

t this upper bound requirement 

ItkET) > 1-2(1-p). Thus for p-.95 

irement provides that the random 

component has 90% probability of being less than 5% of ET in 

absolute value. 

T is always 

ight. so tha 

Pr((Z(T-ET) 

ibility requ 

The criterion can be restated as Pr(T<ET+kET/Z)=p, or tp=ET + 

kET/Z, where t p again is the pth percentile of T. To find Z. 

different methods of computing tp can be invoked. Under the 
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normal apprOXimatio?. tp=ET+ypJVarT. and so Z=kET/ypJVarT. In 

terms of frequency and severity. 

Z2=(k/yp)2(ENEX)2/ (ENVarX+(EX)2VarN) (3.3a 

=(k/yp)2(.EN)2/(ENCV2+VarN) (3.3b) 

=(k/yp)2EN/(CV2+n2) (3.3c) 

Where again CV is the severity coefflclent of variation and n2 is 

the frequency ratio of variance to mean. Z=l when EN = 

(CV2vn21(yp/k)2. This value of EN is called the full credibility 

value. denoted as nF. The value of EN that produces credibility 

Z. nz. can be seen to follow nZ=Z2nF. or Z=JnZ/nF. 

This “square root rule” holds only for the normal approxlmatlon. 

For the NP. 

tp=ET+JVarT(yp+SkwT(yp2-1)/6) (3.4) 

and so kET/Z= JVarT(yp+SkwT(yp2-1)/6. This can be solved for Z 

in term of frequency and sever 

Z=k/[ypJm2/EN+(m3/m2)(yp2- 

where m2v and m3 are aggregate c 

m2=n2+CV 2 

m3=CV3SkwX+3n2CV2+n3 

ty moments using (2.13) to yield: 

)/6EN] (3.5) 

aim shape descriptors defined by: 

The normal approximation formula (3.3~) can then be seen to be. 

the special case m3=0. i.e., SkwT=O. which the normal approxlma- 

tion assumes, but which Is unlikely In practice. The square root 

rule does not apply for the NP credibllities; rather they must be 
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calculated from (3.5) directly. It is possible to solve (3.5) 

for EN by considering it a quadratic in JEN. This produces a 

formula for nz. the value of EN needed for credibility Z: 

(3.6) 

Both (3.3) and (3.5) have an important invariance property: the 

calculation of Z from EN is affected neither by simple monetary 

inflation nor the addition of Independent ldentlcal distributed 

exposure units. In fact. without the latter invariance, Z could 

not really be regarded as a function of EN. The former allows 

credibility standards to remain constant until the shape of the 

severity dlstrlbution changes. 

The 

the S everity coefficient of variation and skewness do not depend 

nvariance under simple monetary inflation results because 

on scale. The latter invariance follows because the frequency 

mean, variance and third central moment are all additive func- 

tions: that is, the additional units will increase these moments 

all by the same factor. Thus n2 and n3 will not be affected 

(Anyone who thinks this is because these three moments are all 

cumulants is probably correct.) 
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An example may help clarify these concepts. 

Example 3.1 

Commercial fire losses for a state are assumed to have a Poisson 

frequency distribution and a lognormal severity, with CV=7. POP 

the Poisson, n2 and “3 both equal 1, and so with this CV, m2=50. 

The skewness of the lognormal is given by SkwX=CV3+3CV, and so 

for this example SkwX=343+21=364. Thus m3=364’343+3-49+1=125,000. 

The credibility requirements are specified by p=.95 and k=.05, 

which gives yp=1.645 from a normal table, 

The normal approximation nF is given by nF=m2(yp/k)2, and thus in 

this case is 50(1.645/.0512=54,120. For the NP. nP can be 

calculated via (3.6) to be 80,030. Thus considering skewness has 

a substantial impact in this case. basically because the severity 

distribution is highly skewed. The assumption of a CV of 7 for 

commercial fire is consistent with the findings of Simon (1969). 

The skewness of aggregate claims may be calculated as SkwT = 

m3/m2 1,5JE~, which in this case is 1.25. This is somewhat above 

Pentikainen’s recommendation for the boundary of the accuracy of 

the NP. and thus the NP nF estimate may be somewhat too high. 

Instead of the lognormal severity, it is interesting to consider 

a constant severity. This could arise, for example, in a group 

of life insurance policies all with the same benefit. In this 

case, cv=o, and m2=m3=l, For the normal approximation, nP then 

becomes 1082, which has been a widely used credibility standard. 
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For the NP approximation, nF is 1094, via (3.6). Thus for the 

Poisson alone, the skewness correction is not substantial. 

The negative binomial frequency could have been used instead of 

the Poisson. With parameters c and p, n2=l/p and n3=(2-p)/p2 

In a study of automobile claims, Dropkin (1959) found n2=1.184. 

This implies p=.8446, and so n3=1.620. For the constant severity 

case. m2=n2 and m3=n3: the normal approximation then yields 

nF=1282 and the Yip gives nF=1297. For the lognormal above, nF 

increases to 54,320 under the normal approximation, and to 80.150 

with the KP. Thus the negative binomial assumption with these 

parameters seems to have some impact in the frequency only case, 

but little when a highly skewed severity has already been 

included. 

Exercise 

Verify the calculations in the paragraph above 

Meyers and Schenker (1983) discuss the possibility that the 

negative binomial n2 may be substantially larger than 1 for 

individual large commercial risks. In their model. exposure 

units are not independent, so some of the above reasoning does 

not apply. However it is instructional to explore the implica- 

tions of a large “2. Thus suppose a negative binomial distri- 

bution is given with n2=51. Then p=1/51, and n3=5151. For the 
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above severity. m2:100, and m3=137.500. Then the normal and NP 

nP’s are 108,200 and 123,400 respectively. 

Exercise 

Verify these nP’s. What would they be for frequency only? How 

many claims would be neede for 50% credibility under the normal 

and NP approximations? 

The limited fluctuation Z depends only on the distribution of T, 

and treats the previous estimate M as a constant. Thus Z does 

not depend on how good this estimate may be or where it comes 

from. al though such matters could influence the selection of p 

and k. on which 2 depends. If T is the aggregate losses for a 

state, M could be the previous year’s estimate. If T represents 

only a single class or territory, M could be the statewide 

estimate for the same year. In general, M is supposed to be the 

best estimate available without the particular observation T. and 

in fact may be formed as a combination of other estimators. 

The nondependence of Z on the properties of the previous estima- 

tor Is both a strength and a weakness. It provides flexibility 

and a simple algorithm for routine application. and does not 

require the estimation of additional parameters. However it may 

ignore or only judgementally consider eIements that can be 

quantified with some additional research. The least squares 

methodology. to be reviewed next, takes such an approach. 
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Section 4 - Least Squares Credibility 

In the least squares theory, the previous estimator applied to 

the complement of credibility is specified much more explicitly. 

Consequently. more details of the estimation problem need to be 

model led. This requires some notat ion. To have a particular 

problem to work with, it will be supposed that the losses for N 

risks are observed for a period of n years. The pure premium for 

the ith risk in year u is denoted as Xi,,. Pure premium is loss 

divided by exposure: for now all risks are assumed to have the 

same number of exposure units, which is constant over time. In 

Section 6, application of credibility theory to risks of dif- 

ferent sizes will be made. 

The pure premium for a future time period, time 0. is to be 

estimated for the gth risk. This will end up being estimated as 

a credibility weighting of the average observed pure premium for 

risk g over the n years, denoted as Xg,. with the grand average 

of all the risks for those years. denoted as X In formulas. 

Xg,=~uXgu/n, and X, ,=,ZgXg./N. 

The credibility given to the risk experience will depend in part 

on the stability of that experience. as in limited fluctuation 

theory. but it will also depend on the relevance of the grand 

mean to the individual risk, which is quantified by the variance 

across risks of the individual risk means. The greater this 

variance, the more diverse are the risks, and thus the grand mean 
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provides less relevant information about an Individual risk. 

This will in turn lead to greater crediblllty assfgned to the 

risk’s own experience, and less to the grand mean. The explicit 

consideration of the relevancy of the estimator applied against 

the complement of credibility is one of the distinctive features 

of least squares credibility. 

The least squares credibility estimator could be dervied by 

finding the weight 2 that minimizes E[XgO-(~~g,+(~-~)~~,)]2, and 

this approach will in fact be followed in Section 7. However, 

the same estimator also arises as a result of a more general 

estimation problem as follows. xgo is estimated as m linear 

combination of all the observations Xi”. not just a weighted 

average of Xg. with X ’ with the expected squared error to be 

minimized. The general linear combination of the observations 

can be expressed as ao+zi “a. , lUXiU’ so the credibility criterion 

will be to find the weights (a’s) that minimize: 

E[XgO -tao’Zi ,uaiuXiu) I2 (4.11 

It will turn out that the resulting weights can be combined into 

a simple credibility formula, which gives further justification 

for such a formula. 

There are Nn+l weights aiu to find, and this is approached by 

setting the partials of (4.1) with respect to these variables to 

zero. Doing this, with some algebraic manipulation. produces the 

following system of Nn+l equations: 
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&XgO = a0 + xi.uaiuEXiu (4.2a) 

COV(XgOvXjv ) = Ci,uaiuCOV(XiusXjv) (4.2b) 

There are Nn equations expressed by (4.2b). one for each j,v 

combination. 

Exercise 

Derive (4.2). Hint: The partial with respect to a0 will give 

(4.2a). Set the partial with respect to ajv to zero and subtract 

(4.2a) multiplied by EXjv from this equation. 

In order to solve this system for the a’s, more model assumptions 

are needed, so that the covariances can be evaluated. As an 

example, a fairly simple model will be investigated first. It 

will be assumed that the risk i loss ratio for time u can be 

decomposed as follows: 

xiu = RI 7 Ri - Qiu (4.3) 

Here m is the overall average. Ri is a risk effect that does not 

vary over time. and Qiu is a random fluctuation. The R’s and Q’s 

are treated as random variables, as their values are not known. 

The average over all risks of the Ri’s is assumed zero, i.e., 

ERi=O. Also it is assumed that EQiu=O. and so EXiu=m. This is 

an overall expected value; E(XiuJRi)=m-Ri is the conditional 

expected value for the ith risk. Finally. it is assumed that 

different Q’s and R’s are independent random variables with 

VarRi=t2 and VarQiu=s2. 
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To compute Cov(Xi,,Xjv) under these assumptions, it will be 

convenient to introduce the following notation: sij=l if i=j: 

otherwise 6 ij=O, 

With this in hand, note that E(RiRj)=Grft2: since different R’s 

are independent, if i+j, ECRiRj)=ERiERj=O; also, ER12=VarRi+ 

(ERi)2=t2. Similarly, E(Q. Q 1” jvl'6ijsuvs2~ 

Now. by definition of covariance. 

COV(XjU,XjV)=E[(Xj,-EXi 

=E[(XiU-IA) 

=E[(RI+Qi, 

=E[RiRj] + 

And thus. 

,)(XjV-EXjV)l 

xjv-“Ii 

(Rj+Q )I JV 

E[QiuQjv] (by independence of R’s and Q’s) 

= silt2 + 6ij6,,S2 (4.4) 

The notation says this covariance is zero unless i=j. in which 

2 case it is t , unless also u=v. in which case it is t2-s 2 This 

means that VarXiu=s2+t2, which can also be expressed as VarXi,= 

EVar(Xi,lRi)+VarE(Xi”lRi) - the expected process variance plus 

the variance of the hypothetical means. 

Exercise 

Show that EVar(Xiu]Ri)=s2 and VarE(Xiu]Ri)=t2- 

Because so many of the covar lances are zero. plugging (4.4) back 
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into (4.2b) will make many terms drop out, and in Pact produces 

the equation: 

6 .t2 = zuajut2 + ajvs2 gJ (4.5) 

There is still one such equation for every j,v combination; for 

fixed j summing all the v-equations (n of them) produces: 

“dgj t 2 = nEuajut 2 
+ Cuajus 2 

and so, 

ruaju 
= nsgjt2/(s2ant2) 

Plugging this into (4.5) will yield, after some algebra: 

=jv = &gjt2/b2 +nt 21 

(4.61 

(4.7) 

(4.8) 

This says the weight is zero unless j=g, and then it is: 

agv = t2/(s2+nt2) (4.9) 

To find a0 

into (4.2a 

m( I-Zuagu 

substitute 

EXiu = m (4.10) 

to yeild m=aO~Ci,uaium. and so ao=m(l-Ci,uaiu)= 

=ms2/(s2+nt2). Finally, since the estimator of Xgo is 

aO+t:i,uaiuXiu* which simplifies to ao-CuaguXgur the credibility 

estimator can be written as: 

xgo = ms2/(s2+nt2) + CuXgut2/(s2 -nt2) (4.11) 

NOW xuXgu may be written as nXg,; defining Z=nt2/(s2 +nt 2, 

produces igo = (I-.Z)m + ZXg,; here a natural estimate for m 

would be X ’ and in fact this is the minimum variance unbiased 

estimate of m (see IS0 (1983)). Substituting this estimate 

gives: 

xgo = (I-Z)X,, + zxg. (4.12) 
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From the definition of 2 it can be seen that if t2 is higher. so 

is the credibility given to the risk experience. Since t2 

measures the dispersion of individual risk conditional means 

around the grand mean m, It can be seen that greater dispersion 

leads to greater credibility; the more different a risk is likely 

to be from the average, the greater credence will be placed on a 

risk’s own experience. On the other hand, Z reduces as s2 

increases; higher s2 means that the risks are less stable over 

time , and thus less reliance can be placed on their ind ividual 

resu Its. This was also seen in limited fluctuation credib ility. 

Thus the best linear estimate of Xgo turns out to be a credibil- 

Ity formula. This formula can alternatively be derived as the 

least squares linear estimate having an- -0 but constrained to be 

unbiased (see IS0 (1983)). 

By defining K=s2/t2, Z can be written as Z=n/(n+K). which is 

basically Whitney’s 1918 formula. 

The credibility formulas illustrated by this simple model will be 

found to hold in more general sltuations. In fact, if (4.4) and 

(4.10) are satisfied, the rest of the development will be the 

same, ending up with (4.12) with the same definition of Z. 

This example is typical in one respect, which is in the division 

of the uncertainty about Xiu into two components: a time invar- 
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iant risk specific component (here Ri), and a random fluctuation 

in each time period (91,). Some observers may feel that this 

distinction is somewhat artificial. because neither component is 

ever observed in isolation: however it is an intuitively reason- 

able distinction, and leads to a model that seems to have 

practical value. 

A More General Node1 

In the simple model above. each risk had one parameter Ri which 

described the risk. and then a random fluctuation. More gener- 

ally it is now assumed that each risk has a vector of parameters. 

denoted by Ri. that describe the risk, which still nonetheless is 

subject to random fluctuation. For example, a risk with a 

negative binomial frequency distribution and an inverse gamma 

severity would have four parameters describing these distribu- 

tions, and random fluctuation from year to year as provided by 

those distributions. Letting R denote the vector tRI.R2,....RN>. 

it is assumed that Xiu and X. Jv are conditionally independent 

given R. Each risk has its own conditional mean and variance, 

which may be denoted by E(Xiu(R)=E(Xiu)Ri)=mi and Var(XiulR)= 

Var(Xiu)Ri)=si2 

It is assumed that for different i the Ri are independent 

identically distributed random vectors with E(mi)=m. Varmi=t2. 

and Esi2=s2. This implies that EXiu=m and VarXiu=s2-t2 (why?). 
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Here again, s* is the expected process variance and t* is the 

variance of the hypothetical means. 

In order to apply (4.2). it is necessary to compute Cov(Xiu,Xjv) 

from these assumptions. By (2.10), 

Cov(XiU,Xj,)=ECov(XiU,Xj,/R)+Cov[E(X~~~R),E~Xj~~R)] (4.13) 

Now by the conditional independence of the X’s. the first term is 

zero unless i=j and u-v, in which case it is EVar(Xiu(R)=Esi2=s2, 

The second term is also COVIE(Xi,lRi),E(XjvlRj)l. which by the 

independence of Ri and Rj is zero unless i=j, in which case it is 

varrQ=t*. Thus : 

Cov(xi,s Xj,) = Glj6uvEVar(XiulR) + GijVarE(Xi,lR) (4.14) 

=6ij6nvs2+6ijt2, which is (4.4). Plugging this back into (4.2) 

will then yield (4.12) by the same reasoning used for the 

original simplified model above. 

Example 4.1 

Suppose severity is constant at one unit, frequency is Poisson in 

RI, and exposure is one. Then the pure premium Xiu is the number 

of claims for risk i in time u; by the Poisson hypothesis, mi=Ri, 

and si 2=Ri as well. If Ri is gamma distributed in b.c, then 

t2=Varmi=VarRi=b2c, and s*= Es.*=ER.=bc. 1 1 Thus K=s*it*=l/b. and 

Z=n/(n+K)=nb:(nb+l). For n=l this gives the predictive mean 

computed in Example 2.1. 

Example 4.2 

Xiu is assumed to be gamma distributed in Ri=<Yi,c>. Thus mi= 

yiCs and si2=Yi2c. Yi is assumed inverse gamma in b.r: so t2 

=Varmi=c2VarYi=c2b2/(r-l)*(r-2), and s2=Esi2=cEYi2= 
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cb*/(r-l)(r-2); then K=s2/t2=(r-1)/c, and Z=n/(n+K)= nc/(nc+r-1). 

Thus Xgo agrees with the predictive mean from Example 2.2. 

Section 5 - Estimation of K 

Up until now. s 2 and t2 were treated as known constants, but in 

practice they usually have to be estimated. One approach is to 

estimate s* based on observed deviations of risk annual results 

from risk means. and t2 from observed deviations of risk means 

from the grand mean. Sometimes it is more convenient to estimate 

the total variance VarXiu=s2+t2 from the deviations of individual 

risk observations from the grand mean. and then get s2 or t* by 

subtraction. This IS simplified when the conditional distribu- 

tion is Poisson, because then the conditional mean and variance 

are equal, so s2=EVar(XiulRi)=ERi=m, the grand mean. 

Example 5.1 

A group of 300 car owners in a high crime area submit the 

following number of theft claims in a one year period: 

Number of Claims: 0 1 -2 ..z . . . .~44.. J- 
Number of Owners: 123 97 49 21 8 2 

Each owner is assumed to have a Poisson distribution for Xii, the 

number of thefts, but the mean number may vary from one owner to 

another. A credibility estimate is desired for Xio, the number 

of claims for each driver for the next year. 

The average number of claims per driver can be calculated to be 

1.0. By the Poisson assumption. this is also s*. The average 

value of Xii 2 can be found to be 2.2. so s*-t2=VarXil can be 
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estimated to be 2.2-1.02=1.2. This implies t2=0.2. and so K=5, 

and 2=1/6. The credibility estimate for Xi9 is thus 5/6+Xil/6. 

In general, estimating s 2 and t2 separately can be approached by 

calculating the statistics Si=~u(Xiu-X,,)2/(n-1), S=ziSi/N, and 

T=CI(Xi,-X,.)2/(N-1). The expected value of these statistics can 

be calculated (laboriously1 from (4.4) and (4.10). As a hint of 

how that might proceed, multiplying out the squares in S and T 

result in a whole lot of terms of the form XiuXjv. whose expected 

values then need to be evaluated. This is done using (4.4) and 

(4.10). which together imply that E(XiuXjv)=m 2 +6i1(t2+6,,s2). 

The answers are: E(Si IRi)=si2; ESi=EE(Si IRi)=Esi2=s2; ES=s2; 

ET=t2+s2/n. 

The formula for Si looks like a fairly usual statistical result. 

T looks like it should be something like t*. but probably a 

little bit higher. because some extra fluctuation is added from 

the use of the estimated means rather than mi and m. Thus the 

formula for T looks about right also. From these formulas. S is 

a n unbiased estimator 2 of s , nT is a I1 unbiased estimator of 

s2 2 -nt . and T-Sin is an unbiased estimator of t2. Since 1-Z 

=S 2/(s2+nt2), it could be estimated by S/nT. as both numerator 

and denominator are unbiased. Such an approach may be satisfac- 

tory in many cases. and is supported by the independence of S and 

T. as shown by Klugman (1985). 
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Example 5.2 

Table 5.1 displays the pure premium experience for 9 risks, all 

with the same constant number of exposure units. for a 6 year 

period. xi. and Si are calculated from this experience, as 

shown, and X =.563. s=.357, and T=.066 can then be computed from 

the formulas above. These yield S/nT=.899. which can be used as 

the estimate of 1-Z. and so 2 is estimated to be ,101. 
Table 5.1 

Risk 
1 
2 
3 
4 
5 
6 
7 
8 
9 

Year 1 Year 2 Year 3 Year 4 
,430 ,375 2.341 ,175 

247 1.587 
661 ,237 
182 ,351 
311 ,664 
301 253 
219 1:186 
002 ,058 
796 ,260 

1 939 712 ,054 
063 250 ,602 
011 022 .019 
002 038 ,370 
044 109 2.105 
431 1 405 ,241 
235 018 ,713 
932 a51 ,129 

Year 5 -- XiL _I_ Year 6 Si 
1.016 ,466 ,801 ,649 

.261 800 615 
,700 419 072 
,252 139 021 

2.502 815 792 
,891 617 622 
,804 714 251 
.208 206 071 
,349 554 b 121 

,563 .357 

An important issue in credibility theory is the accuracy of this 

estimate of 2. For this example, Table 5.1 was generated by 

taking random draws from assumed gamma distributions for each 

risk. The parameters of these gamma distributions are shown 

below. along with the risk conditional means and variances 

Us& 
1 
2 
3 
4 
5 
6 
7 
8 
9 

b c Mean 
6159 1 .0476 .6452 
8001 
6098 
2391 
5206 
6768 
9575 

I1999 
.5083 

0.9063 
0.9654 
0.9219 
1 .0184 
1.0937 
1.1395 I 
1.0153 
0.9320 

.7251 

.5887 

.2204 

.5302 

.7402 
1.0911 

.2030 
4737 i 

.5797 

Variance --- 
.3974 
.5802 
.3590 
,0527 
.2760 
.5010 

1.0447 
.0406 

2408 
.3880 

Thus m=.5797, which is not too different from X ’ and s2=.388. 

which again is fairly close to S. The variance of the above 
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conditional means can be found to be t2=.0664. and thus t2+s2/n= 

.1311. which is fairly different from T. Thus the “population” 

value of 1-Z of s2/(s2+nt2 - l-.493 and 2=.507 is quite a bit 

different from that estimated by the data. 

This experiment was repeated twice more, that is, six years of 

data were simulated two more times, with the following results: 

Experiment s T 1-z z 
1 ,357 .066 ,899 ,101 
2 ,274 ,103 ,443 ,557 
3 ,219 .I72 ,211 ,789 

Xote:Calculations based on unrounded values 

Thus this method does not seem to be able to produce a close 

estimate of 2 with this quantity of data when the process is this 

unstable. However the average of the three estimates, .482, is 

just slightly below the underlying value of Z. .507. which gives 

hope that with just somewhat more data good estimates are 

possible. Estimating the variance of the estimated Z would help 

provide an understanding of the accuracy of the calculation, and 

this is discussed further in Section 7. 

Empirical Bayeslan Approaches - the [N-_LL/(X-3) Correction -- _I_ 

Estimating 1-Z by S/nT has a drawback in that while the numerator 

and denominator are both unbiased, 1-Z is not. This is a typical 

problem for quotients of unbiased estimators. In this case it 

arises because E(l/T)>l/ET (see exercise below). This implies 

that E(l/nT)>l/s2-nt , 2 and thus EfSinT) > s2/(s2-nt 21, i.e.. S/nT 

overstates 1-Z.. and thus understates Z, on the average. 
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Exercise 

Show that E(l/T))l/ET. Hint: Schwartz’ inequality says that 

[/g(t)h(t)dt]2</g(t)2/h(t)2. Take g2 and h2 to be tf(t) and 

f(t)/t. Equality occurs only in degenerate cases. 

The excess of E(l/T) over l/ET varies from one distribution to 

another, so it is not possible to find a general correction for 

the bias in Z. This excess is greater for heavy tailed distribu- 

by tions. however. so an approximate lower bound could be found 

computing its value in the normal distribution case. 

The calculation of 1-Z when both the conditional and pr 

distributions are normal has been the focus of a field known 

parametric Empirical Bayes statistics. A classic article in t 

ior 

as 

his 

field is Efron and Morris (====J. Following Morris (====), 

Klugman (1985) shows that S and T are independent random vari- 

ables, with S gamma distributed in 2s2/N(n-1). N(n-1)/2 and T 

gamma in 2(t2-s2/n)/(N-l), (N-1)/2. By the gamma moment formula, 

if Y is gamma in b. c then E(l/Y)=lib(c-I) as long as c>l. and is 

non-existent otherwise. This is greater than l/EY by a factor of 

c/cc-I). For T the value of c iS (N-1)/2. so ET-‘=ET(S-l)/(N-3). 

as long as N>3. Thus E(S(N-1)/(X-3)nT)=l-1. and so 

SIN-l)/(N-3)nT is an unbiased estimator of 1-Z. This is the 

above credibility estimator of 1-Z adjusted by the factor 

(N-l)/(N-3). For N<4. credibility weighting would not be 
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recommended by this school. as then E(S/nT) would not be finite, 

and so no correction factor could make S/nT unbiased. 

Evaluating the (N-l)/(N-3) Correction 

nor other conditional and prior distributions, the excess of 

E(t/T) over l/ET Is likely to be greater than for the normal. so 

the (N-l)/(N-3) correction factor is probably a lower bound. 

However, there is a potential problem with this correction factor 

which could cause it to actually overcorrect for bias. namely 

that it does not take into account the usual pratice of capping 

1-Z at 1. The true value of 1-Z. s*/(s*+nt*), must be in the 

range [O.l]. In practice. however, the calculated value of nT 

may be less than S. which would make S/nT>l. Typically 1-Z would 

be capped at 1 in this case, giving Z=O. However by this 

practice the estimator of 1-Z has effectively become min[l.S/nT]. 

which has a lower expected value than S/nT. That is. the capped 

estimator has lower bias than S/nT. and may even be unbiased or 

be blased in the other direction. 

Even knowing the distributions for S and T. as in the normal- 

norma case, Emin[l.S/nT] does not have a closed form expression. 

It can be calculated numerically by: 

Eminfl.S/nT] = J(FT(s/n) + (s/nJ,&t-lfT(t)dt)fS(s)ds 

A practical problem with this expression is that the distribution 

functions of S and T depend on s* and t2. and these cannot be 

brought out explicitly: however in one special case - when s* is 
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a known constant - Emin[l ,S/nT], the expected value of the 

uncorrected estimate Of l-Z, can be calculated as a function of 

1-z. Some results are shown in the table below: 

Eminll,S/nT] 

-x 1-z: .800 .500 * 

3 .799 ,673 ,426 

18 ,809 ,557 ,227 

Thus when 1-Z is large. the capped estimator does not seem to be 

upwardly biased, although this is not true for smaller factors. 

Even for X=3. the bias is finite, and thus credibility weighting 

is a useful possibility even in that case. 

Exercise 

A population of risks with Xiu gamma in bi, ci is determined by 

independent draws of the b’s from a uniform distribution on 

[O,ll. and the c’s from a uniform distribution on [.85,1.15]. 

What is K? (Hint: the uniform with width a has variance a/12; 

use E(b2)=Var(b)+(Ebj2 and independence of b and c to find 

E(b*c); compute Var(bc) via E(b2c2)-(EbEc)*.] 

Example 5.3 

The answer to the previous exercise is K-3.88. As a test of the 

correction factor in a non-normal distribution case, 100 risks 

were drawn from such a population, and the average values of bici 

and bi2ci were found to be ,500 and ,330. These compare to the 

expected values from the uniform distribution of ,500 and .333. 
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The variance of the bicils (hypothetical means) was .085. 

compared to a theoretical value of ,086. For each risk, 6 years 

of data were simulated, as in Example 5.2, and this process was 

repeated for five different experiments. For n=6. l-Z=.393 from 

the uniform prior, and l-Z=.392 from the b’s and c’s actually 

drawn, so this is the target value to which the estimate values 

of 1-Z can be compared. For the five experiments. 1-z was 

estimated using the (N-3)/(N-1) factor, as the iapact of the 

capping by 1 did not seem large. The following results occurred: 

Exneriment x.. -..A- T 1-z 
1 ,504 ,434 .164 ,432 
2 ,482 ,302 .I09 ,452 
3 .455 .303 ,122 ,406 
4 ,510 ,362 .141 ,419 
5 ,471 ,277 .102 ,443 

For comparison, the anticipated value of T is .086-.333/6=.142 

from the uniform prior, and .085+.330/6=.140 from the 100 risks 

The small but consistent overstatement of 1-Z actually selected. 

may be due to ET-l 

normal-normal (N-3 

methods discussed 

being 

)/(N-I 

below 

but they also provide e 

be addressed later. 

greater for these distributions than the 

correction contemplates. The Eayesian 

give slightly higher estimates of 1-z. 

&Esion Estimates of Z 

S timates of the potential error, as will 

In the normal-normal case, some work has been done on Bayesian 

estimates of s ’ and t2. This could be done to reflect some prior 

belief, however faint, in where s2 and t2 are likely to be: it 
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al so produces an entire posterior distribution for these para- 

meters, rather than just point estimates. 

Since S and T are both conditionally gamma distributed given s2 

and t*, inverse gamma priors, as discussed in Example 2.2. could 

be postulated. As an example. s2 will be taken to be inverse 

gamma distributed in p, 2, and the quantity t2+s2/n is given an 

independent inverse gamma in q. 2. While this approach ends up 

providing reasonable estimates, it does have a theoretical 

problem in that some possibility that t2 is negative is allowed. 

With the shape parameter 2, the inverse gamma is an infinite 

variance distribution with mean equal to the scale parameter. 

This approach then does not tie down the possible values of s2 

and t2+s2/n too precisely. but it does specify an expected value 

for each. 

Following Example 2.2, the posterior distributions are 

s2lS - Inverse Gamma in p+N(n-l)S/E. 2+N(n-I 

t2+s2/n(T . Inverse Gamma in q+(N-.l)T/2. (N+3)/2 

l/2 (5. la) 

(5.lb) 

Thus E(s*lS)=[2p-N(n-l)S]/[2+N(n-l)] and E[lt2-s2!n)-‘lT]= 

(N+3)/(2q+(N-lITI. from the inverse gamma moment formulas. Also, 

the prior expected value of (t2+s2/n)-l is 2/q. and so the prior 

expected value of 1-Z is 2p/nq. E(s2\Sl can be seen to be 

between the prior expectation p and the observation S. and much 

closer to the latter. Similarly, E[(t2+s2/n)-1\T) can be seen to 
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fall between the prior expectation 2/q and the observation l/T, 

and is probably somewhat closer to the latter. 

Setting the prior expected value of 1-Z to .5 gives q=4p/n, which 

is a way of picking q once p has been selected. Alternatively, 

p=nq/4 could be used to set p after q has been selected. Since S 

gets greater weight than T. the selected q probably has more 

bearing on the resulting 2 than does p. As an example, suppose 

q=.2 is selected for Example 5.2. This is in the general area of 

t2+s2 /n=.1311. but not particularly close. Since n is 6, p can 

be taken as .3. This gives posterior expected values of E(s21S)= 

(.6+455)/47 and E[(t2+s2/n)-1]= 12/(.4+8T). For the three 

experiments, the following values are then generated, and the 

process is repeated for p=.6. q=.4: 

Experiment UX21S) u2+s2/n)-11T] 1-z 
p=.3. q=.2 

1 .355 12.93 (=1/.077) .765 
2 ,275 9.80 
3 ,222 6.76 

~1.6, q=.4 
1 ,367 9.04 
2 .288 7.39 
3 .235 5.51 

f 
=1/.102) .449 
=1/.148) ,250 

=l/.lll) ,553 
=1/.135) ,355 
=1/.181) ,216 ( 

Either selection of priors seems to improve the estimation, but 

this test is somewhat unrepresentative. as the population 2 is 

close to .5. 

Diffuse priors could also be taken for s2 and t2*s2in. as in 

Example 2.3. With parameter p for this prior: 

s2lS - Inverse Gamma: N(n-l)S/Z. -P-l+N(n-1),,2 (5.2a) 
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t2+s2/n(T - Inverse Gamma: (N-1IT/2, -p-l+(N-1)/Z (5.2b) 

As discussed in Example 2.2. p=-1 makes the most sense for a 

diffuse prior. For comparison, p=-2 is also given below: 

E&21s) 1-z 
p=-1 N(n-l)S/(N(n-l)-2) 

EJ&2;;:/nI-1jT] 
S/nT[l-2/N(n-l)] 

p=-2 S (N+l)/(N-1)T S(N+l)/n(N-1)T 

Both are somewhat greater than S/nT. Note that if p=-2 for S and 

p=O for T. 1-Z is the unbiased estimator (N-3)S/n(N-1)T. Neither 

of these estimates take into account the possible capping of 1-Z. 

Regression Interpretation 

Least squares credibility can be thought of as a least squares 

regression estimate in which the dependent variable has not yet 

been observed. The credibility estimate (4.12) can be rewritten 

as iigo-X Since the expected squared error is . =Z(Xg,-x.,1. 

minimized by Z, this is similar to a no constant regression for 
M 
Xgo-X,.. with Xg,-X,, as the independent variable, where there is 

an observation for each risk g. The regression estimate of Z is 

computed by minimizing the sum of the actual square errors once 

Xgo is observed. A test of different methods of developing the 

credibility estimate then would be to compare Z to the regression 

estimate once the data is in. 

Example 5.4 

Efron and Morris (1975) computed the arcsin transforms of the 

batting averages for 18 players for their first 45 at bats in the 

1970 season, as shown below, and used credibility methods to 
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estimate the similar figure for the rest of the season. The 

reason for the arcsin transform is that it results in an approxi- 

mately normal distribution with s2=1. Thus only t2 need be 

estimated to get 2 

Player First 45 Rest of Season 
Alvarado -3.26 -4.15 
Alvis -5.10 -4.32 
Berry -2.60 -3.17 
Campaneris -4.32 -2.98 
Clemente -1.35 -2.10 
Howard -1.97 -3.11 
Johnstone -2.28 -3.96 
Xessinger -2.92 -3.32 
Munson -4.70 -2.53 
Petrocelli -3.95 -3.30 
Robinson -1.66 -2.79 
Rodriquez -3.95 -3.89 
Santa -3.60 -3.23 
Scott -3.95 -2.71 
Spencer -2.60 -3.20 
Swodoba -3.60 -3.83 
Unser -3.95 -3.30 
Williams -3.95 -3.43 

From the data, X =-3.317, and T=1.115. Since n=l, S/nT=.897. 

and as the (N-3)/(N-1) factor is 15/17, an unbiased estimate of 

1-Z is ,791, or 2=.209. The regression estimate of Z is ,186, 

which appears reasonably close. Relying on capping alone to 

correct S/nT would give z=.103. which is not as close in this 

case. The inverse gamma prior for t2+s2 /n with the prior Z of .5 

gives Z=.221. which again is not as close as the factor approach. 

Looking at just 3 batters at a time gives a different picture. 

Without considering capping. the unbiased estimate would be Z=l. 

For just 3 players, capping S/nT at 1 may in itself produce an 

unbiased estimate, however. Six different groups of 3 were 
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selected from the above table, namely first 3. second 3. etc 

For each of these 6 cases, the capped regresslon estimate of 2 is 

compared to the capped crediblity estimate and the Z from the 

inverse gamma pr.ior. 

Case: 1 2 3 4 5-s- 6 
T: 1.679 2.455 3.072 1.748 0.304 0.041 

I-Cap S/nT: ,404 .593 ,675 .‘428 0 0 
Inv Gamma: ,359 .535 ,576 ,478 

,351 0’ 
303 ,257 

Regression: .378 . 199 0 0 

It should be noted that the diffuse prior with p==l gives the 

capped estimate in this example. There is not an unambiguous 

winner between these two estimators of Z; it is not even clear 

whether the goal should be the regression Z from the 3 points, or 

the estimate of ,186 from the wider population. It is apparent. 

however, that the unbiased estimate which ignores capping, i.e., 

Z=l. is not as close as the others. 

Section 6 - Incorporating Risk Size 

Up to this point, the exposure was assumed to be the same by risk 

and over time. In many applications (e.g., territory or class 

ratemaking. commercial lines experience rating). this is not a 

viable assumption. and it is removed in this section. For 

instance, in experience rating the formulation Z=E/(E+K) is 

often used to assign credibility to risks of different sizes. 

where E is expected losses. Larger risks will receive greater 

credibility, as their pure premiums, loss ratios. etc. will have 

lower variances than for smaller risks. The E/(E+K) formula is 

based on a particular relationship between the variances of risks 
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of different sizes, namely Var(XluJRi)=s2/Elu. That is. the 

variance is inversely proportional to risk size. With this 

assumption, it can be shown that K=s2/t2, where again t2 is the 

variance of the hypothetical means. 

It will be shown below that the inverse relationship of variance 

to exposure is a reasonable assumption, but that in fact it does 

not appear to hold in practice. A few other relationships will 

be explored to see which best accord with observation. Each of 

these will lead to different credibility formulas. In order to 

arrive at these formulas. a general formula will be developed 

that will hold for any relationship of variance to risk size, 

then the particular relationship desired can be just plugged in. 

For the sake of concreteness. let Xiu be the pure premium for 

risk i time u. with Liu the losses, and Pit, the exposure. By 

changing the definitions of P and/or L. X could just as easily be 

frequency, severity, loss ratio, etc. E.g.. taking Pi,, as the 

expected losses Eiu gives the experience rating credibility 

formula above.The general credibility formula is: 
* 
xgo = (I-Zg)mg f Zgxg, 

zg = Pg,/(Pg.‘Kg) 

Kg = pg,/tg 2x -2 
usgu 

z&3J = fI-Zg)tg2/sgu2 

Here mg=EXgu. pg. =~uPgu xg 

sgu ‘=EVarfXgulR). 

(6.lal 

(&lb) 

(6.1~) 

f6. Id) 

zuzguxgu. tg2=VarElXgulRI I and 
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To use this general formula, expressions are needed for m g. tg2. 

and 2 sgu . These expressions will come from model assumptions. 

mainly assumptions about the relationship between variance and 

risk size. 

Relationship of Variance to Risk Size 

Since Xl” :Liu/Piu, the dependence of Var(XLu)R) on risk size will 

be approached by formulating the conditional variance of Liu 

under different assumptions. This condltional variance can then 

be divided by Plu2 to yield Var(XiuIR). 

Liu is assumed to be the sum of the losses from Pi” exposure 

units. Let Liau denote the losses from exposure unit a. If the 

exposure units are independent, then Var(LiuIR)=Z,Var(LL,,(R). 

If these units are conditionally identically distributed given 

Ri r Var(Lia,lR) does not depend on a or u. and so can be denoted 

as s(Ri)l. Then Var(LiuJR)=Piusi(R)2, Thus Var(XiuIR)=s(Ri)2/Piu. 

Letting S2=E~(Ri)2 gives EVar(XIu(R)=s2/Piu. Hence, assuming 

that the risk is a collection of independent identically distri- 

buted exposure units yields that the expected conditional 

variance for a risk decreases in proportion to the exposure. 

Hewitt (1967) showed that for a body of risks, the variance did 

not decrease this fast. The first two columns below derive from 

that paper. 

Average Estimated .172+ 1837 12,230+.133Prem 
Premium Variance 13,15O/Prem 9900/Prem Pren.773 254+Prem 
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296 26.3 44.4 33.6 
628 12.3 20.9 15.9 
869 10.4 15.1 11.6 

1,223 7.58 10.7 8.27 
1.924 5.35 6.83 5.32 
3,481 3.07 3.78 3.02 
6,050 2.18 2.17 1.81 
8,652 1.59 1.52 1.32 

12,265 1.15 1.07 ,980 
18,944 .749 694 
33,455 .610 :393 

.695 

.468 
68,758 .345 .191 .3X6 

220,786 ,163 ,060 ,217 

22.7 22.3 
12.7 14.0 
9.80 11.0 
7.58 8.39 
5.32 5.73 
3.36 3.40 
2.19 2.07 
1.66 1.50 
1.27 1.11 
,906 .769 
.585 .495 
.335 .310 
.136 .188 

The variance in this case was not of the pure premium, but of the 

entry ratio, which is the loss ratio normalized to average to 1. 

The dollars are at 1956 levels. The other columns are fits of 

the variance by various functions of premium. The first of these 

functions specifies that the variance decreases by the inverse of 

premium. It can be seen that the actual variances are lower than 

this model would predict for small risks, and higher for large 

risks. 

The difficulty for other functions of premium, however, is 

finding models that explain them. Such aodeis would have to 

incorporate exposure units that are not conditionally independent 

given the risk parameter Ri. 

One such model is provided by including the possibility that 

there are varying conditions that affect the risk, so that the 

loss probabilities are not the same in every year. For instance 

the risk parameters Ri could specify a distribution from which 

another parameter Hi,, is determined each year. If the exposure 
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units are conditionally independent given Hiu, then given only Ri 

they are not independent: they have some correlation due to the 

common parameter Hiu. By the above reasoning, Var(Xi,lHi,)- 

S(Hiu12/Piu. Then Var(Xi,]Ri) = EVar(Xiu]Hiu) + VarE(XiulHiu), 

which can be written as Var(Xi,]Ri) = s2(Ri)/Piu +y2(Ri). 

Thus with the inclusion of varying conditions, the conditional 

variance becomes a linear function of l/P. The constant term 

essentially measures how much variance there is over time. 

The second fit of the variance shown above uses this linear 

function. A much better fit to the risk variances is produced, 

al though the smallest and largest risks still do not fit very 

well. It could be that the large risks are qualitatively dif- 

ferent, and that linear functions could be used with different 

parameters for large and small risks. In a similar application 

of the linear model, Meyers and Schenker (====) do just that. 

The final two columns represent (1) Hewitt’s fit to this data 

based on Var = s2/Pc, and (2) the function Var = [y2+s2/P]/ 

[l+c/P]. 

Neither of these is based on a model decomposing Li,, into 

exposure units, but improved fits are provided. The latter 

formula approaches a linear function of l/P for large risks, but 

is below that line for the small risks. For all the curves, the 

parameters were selected to minimize squared errors in the log of 
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the variance, so that percentage errors in the variance would be 

as small as possible. 

To review, then, four formulas relating conditional variance to 

risk size have been considered. The first two are based on 

models of the risk process, and the second two are just curves 

fits. Since the conditional, or “process”, providing better 

variance of Xgu 

expected value of 

is a fuction of the exposure Pgu, then the 

this variance will be also. That is, sgu2= 

EVar(XgulR), the expected process variance for the gth risk at 

time u, is a function of Pgu. For the four curves these func- 

tions are as follows: 

1. sgu 2 = s2/Pgu 

2. sgu 2 = y2 + s2/Pgu 

3. 
sgu 

2 = s2/Pgu. 773 

4. sgu 2 = [Y2 + s2/Pgul/[l+C/Pgul 

Each of these can be put into (6.1) to produce a credibility 

formula. This is done below, after two examples of negative 

binomial claim frequency distributions corresponding to the first 

two models. 

Exaanle 6.1 

In this example, Lit, will be the number of claims, so that Xiu is 

claim frequency. The parameter Ri is the ordered pair <Vi ,Qi>. 

and Li,, is assumed to be negative binomially distributed with 
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parameters PiuVi and Qi. (The sum of the claims for Piu indepen- 

dent exposure units, each negative binomial in Vi, Qi is itself 

negative binomial in PluVi, pi.) These assumptions yield: 

E(LiulRi) = PiuVi(l-Qi)/Qi 

E(XiulRi) = V,(l-Qi)/Qi 

Var(Li,lRi) = PiuVi(l-Qi)/Qi2 

Var(Xi,lRi) = Vi(l-Qi)/PiuQi 2 

Thus the conditional variance of Xi,, is inversely proportional to 

the exposure Pi,,. 

Example 6.2 

The claims for each exposure unit are assumed to be Poisson with 

parameter Hiu, so that Liu is Poisson in Yiu=PiuHiu. Hi,, is in 

turn gamma distributed in Ri=<Bi,Ci>, and so Yiu is gamma in 

PiuBi. Cl. Thus from Example 2.1, Liu is negative binomial in 

ci* l/(l+PiuBi). Thus : 

E(LiuIRi) = piuBici 

E(Xiu(Ri) = BiCi 

Var(LiulR~) = PiuBiCi(l+PiuBi) 

Var(XiulRi) = BiCi/Piu + Bi2Ci 

This is then an example of the second variance formula, a linear 

function of l/P. 

Credibility Formulas Varying By Risk Size 

Once an expression relating the variance for different risk sizes 

has been selected, (6.1) can be used to produce a credibility 
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formula. If sgu 2 = s2/Pgu, as in the first model above, then 

~US&!U 
-2=pg./s2, and so Kg=s2/t2. Thus Kg is a constant. as in 

the constant exposure case, and Zg=Pg,/(Pg,+K). 

For the other models, Kg is more complex. However, a fairly 

simple expression is possible in the case of just one observed 

time period. In the second model, sguT2= Pgu/(Pguy2+s2) and 

Pgu’Pg. ’ so Kg= (Pg,y2+s2)/t2, which can be written Kg=Pg,A+B. 

i.e., a linearly increasing function of the exposure. In this 

case Zg=P g./((l+A)Pg.+B). 

If SglI 2,s2/pgu.773, in the case of one exposure period, s2 is 

given by sgu -2= 
Pgu. 7’3/s2, so Kg= Pg/227(s2/t2), or Kg= 

BPg.‘227, again an increasing function of Pg.. The formula for 2 

becomes Z=Pg,,773/(Pg-.773+B). 

Finally, if sgu 2=[y2+s2/Pgu]/[1+C/Pg,], and there is only one 

exposure period, tg2Sg” -2= [1+C/PgJ/[(yg2/tg2)+sg2/tg2Pgul, so 

Kg= [AP,. +BJ/[l+C/Pg.]. With this. z=Pg./(Pg,+Kg) yields, after 

some algebra, Zg=[Pg.+CJ/[Pg~(l+A)+B+CJ. By redefining the 

constants. this can also be written as Zg=[Pg,+C]/[APg.+8J. An 

interpretation of this formula based on heterogeneity of exposure 

units within a risk is given by Mahler (188’7). 

An important diPPerence between (4.12) and (6.la) is that the 

complement of credibility goes to x . in the former and in the 
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latter to m=EXg,,=EEJXgOIR). In (4.12) X.. is also the minimum 

variance unbiased linear estimate of II. 

In the unequal exposure case a weighted average of the Xi,, ‘s can 

be used to estimate m. However the usual exposure weighted 

average is not optimal. At least for the simplest model 

sgu 2=s2/Pgu, it turns out that the minimum variance unbiased 

linear estimator of m. which will again be denoted X . ’ iS 

X ,~=~iZiXi,/Z,, where Z.=ziZi (see IS0 (1983)). This is some- 

times referred to as the credibility weighted average of the 

Xi.‘S. Standard statistical practice advocates weighting 

observations in inverse proportion to their variances. In this 

case Var(Xi, ) = t2 + s2/Pi = t2/Zi., so the credibility is 

inversely proportional to the variance. 

Estimation of Z 

To estimate s2, y2, t2, etc., extensions of the methods used in 

the equal exposure case can be used. First, the model with 

‘iu 2=s2/Piu will be addressed. Let Si’~u~IPlu(Xiu-Xi )2/(n-l), 

where here Xi,= ~uPluXiu/Pi . ’ and let S=xyCSi/N. 

By repeated use of the formula c~~(X~~,X~~)R~)=~~~s~(Ri)/piu, 

enough algebra (Appendix 2) will show that E(SiIRi)= S2(Ri). 

Thus E(Si)=s2, and ES=s2 as well. S is a lower variance unbiased 

estimator of s 2 than is Si. 
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Buhlmann and Straub(====) propose the following to estimate t2. 

Let W=Ci,uPiu(Xiu-X)2/(Nn-l)1 where X is the usual exposure 

weighted average of the Xiu’s. It can be shown that EW=s2+qt2, 

where q=xgPg. (l-Pg./P ..)/(Nn-1). Thus (W-S)/q is an unbiased 

estimator of t2. As they point out, this can sometimes be 

negative. in which case they assign t2=0, and so Z=O. 

Klugnan (1985) gives an alternative approach. which appears to be 

more accurate. Let T=~i~IZi(Xi.-XJ2/(N-1). In Appendix 2 it 

is shown that, given the Zi, ET=t2. T cannot be considered an 

estimator of t2, because t2 1s needed to compute Zi in the 

formulas for X.. and T. However if Zi is initially set to 1. an 

iterative procedure can be used to compute X.. and T, estimate 

t2, compute new Zi’s, etc., until the estimate for t2 stabilizes 

(usually quickly). DeVylder (1981) uses the term pseudo-estima- 

tor for such a T. and suggests another one. 

Klugman (1986) details several Bayesian approaches. and shows 

that these can give dramatically improved credibilities. One of 

these generalizes the diffuse priors used in (5.2). by specifying 

that the joint prior density of s2 and t2 is proportional to 

s-2[rri(s2+Pi.t2)]-1’K. This particular prior is taken after Box 

and Tiao (19’73. p. 426). Introducing the variable r=t2/s2. and 

defining Wi’rPi,/(l+rPi.) and w=xwi. the posterior distribution 

for r given the observations Xiu turns out to be proportional to: 
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fl(r) = [rZi,uPi,(Xiu-Xi.) 2 + CiWi(Xi,-x,.)21- (N-l)/2 x 

rri[(l+Pi.r)-l’N(Wi/W)‘5J. 

This must be integrated numerically from zero to infinity to find 

the constant of proportionality. Dividing fl(r) by this constant 

gives the conditional density f(r). Then E(rlthe Xiu’s) = 

/rf(r)dr. which again is done numerically. This gives an 

estimate for r. and K can then be estimated by l/r. Alterna- 

tively, E(l/r) could be calculated directly by numerical integra- 

tion. 

To estimate K for the model sgu2=y2+s2/Pgu, some algebra will 

show E(Si)= s2+y2(Pi,2-~u”lPiu2)/(n-1)Pi,. Thus if a linear 

regression is done for Si against (Pi,*-CuPiu2)/(n-11Pi,, the 

slope and intercept can be used as estimators of s2 and y2, 

Estimation of t2 in this case could perhaps be done as follows. 

Let wi=Pi.t2/(Pi.t2+s2+y2zuPiu2/Pi,) and w=Ciwi. Define X = 

c iwiXi,/w and T=~,N,w,(Xi.-X,.)2/(N-1). where again Xi, is the 

exposure weighted average of the Xlu’s. In this case it can be 

shown that ET=t2, and so T is an unbiased pseudo-estimator of t2. 

However, for this and the more complex models, the Bailey-Simon 

method is often used instead, as discussed below. 
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Bailey and Simon (1959) presented the idea of estimating 2 by 

seeing which values of Z would have worked best in the past. In 

their example, each risk had one unit of exposure, namely a 

single private passenger car. For the risks with no claims. the 

credibility estimate of Xgo is just (I-Z)X . . This can be 

compared to the average experience for these risks in the next 

year to see what 2 should have been. Since only a fixed number 

of years (usually 1 to 5) are used in automobile experience 

rating, this value of Z can then be used in the future. 

Meyers (1985) uses a similar retrospective approach to estimate A 

and B in Zg=p g,/(APg,+B) in coamercial insurance experience 

rating. Rather than focusing on the zero loss risks, Meyers 

creates a test statistic for the overall performance of the plan, 

and optimizes the test statistic. NCCI adopted a similar 

procedure with a different test statistic to estimate A, B. and C 

in 2 g=(Pg.+C)/(APg.+B) for workers compensation experience 

rating. 

Section 7 - Bow Good Is Least Squares Credibility 

As discussed earlier, the function of the Xiu’s that optimizes 

the expected squared error in Xgo is the conditional expectation 

E(XgOlthe Xiu’s). The best linear function in this sense is the 

least squares credibility estimate. 
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