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Communication of Technical Results to Senior 
Management: The Art of Storytelling 

Jonathan Charak, FCAS, MAAA, CPL 

________________________________________________________________________ 

Motivation. This paper was written in response to a ‘Call for Papers’ on Communication of Technical Results to 
Senior Management 
Method. This essay relies on personal experience which has worked for me 
Conclusions. Structured and brief communications are key to communicate with senior leadership as time may 
be limited 

Keywords. Communication, Structured Thinking 

As we progress in our careers as actuaries, our first challenges are exams. After this 
accomplishment, we may move into mentoring other actuaries, training them on actuarial principals, 
and managing a team of actuaries is a potential. Eventually, some actuaries will find themselves in 
front of the market-facing leaders and senior management of their company. Senior management 
may have a different background than actuaries and haven't spent years agonizing over ELFs/ILFs, 
tail factors, GLMs, and other ‘technical’ details that actuaries thrive in. Sharing actuarial insights is 
crucial for an insurance company's success. Effective communication should impart knowledge, 
nudge/influence decisions, and assist senior management come to the conclusion that betters the 
company. In my opinion, the ability to do this differentiates a good actuary from a great actuary. 

Communication to senior management can come in many forms. While the details of how a slide 
deck, an email, or a document differs, they generally follow a similar format. There should be an 
Executive Summary, Context/Background, Analysis of Finding, Recommendations, and 
Next Steps. A slide deck provides the best format for communication with senior management. It 
allows one to use visuals and bullets to create an effective communication both in person and when 
senior management wants to view the information on their phone or tablet. 
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An executive summary should be able to summarize the entire communication into something 
senior management can read in a minute or two and understand. This could be a couple of 
paragraphs in a document, a three to five bullet email, or one slide in a slide deck (e.g. PowerPoint). 
The executive summary should cover three points: Situation, Context, and Resolution. The 
rationale to start with the situation is simple, senior management is busy. They may or may not recall 
the history, why this is pertinent for them (and the company), and why they should dedicate time 
from their busy calendar. Context provides an outline to why this is a problem and how the 
company is currently dealing with the said issue. The resolution is the action that the communication 
is putting forth. An email may only contain an executive summary with the details attached as a slide 
deck or a document. While the executive summary is the first part of a communication and guides 
the audience, you may choose to write this last. 

After the executive summary, the following sections include additional details. To ensure 
engagement of senior management, there should be a mix of visuals and well-organized bullets. 
Formatting content with call-out boxes, flow-charts, chevrons, and so forth will make a ‘wall of text’ 
much easier to comprehend. Further, when one creates visuals/graphs, be sure they are purpose-
built and not merely screenshots of already existing visuals; making effective communication to 
senior management requires additional care. Keep principals of data visualization in mind, such as 
clean graphics are better than overly complex ones. Creating organized text and bespoke graphs will 
direct management’s attention and allow you to drive the conversation. Finally, the lead on a slide 
should be an active lead. It assists in telling the story and guides the recipient of the communication. 

The example below takes lots of information and structures it in a clear manner so senior 
management can easily gain context, even if they’re not familiar to the details of the subject in 
question. The active lead provides clear details of the takeaway message. 
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Senior leadership now has a base level of knowledge and is ready to proceed to the analysis and 
findings. Generally, senior management’s interests are in the conclusions and the rationale behind 
the conclusion rather than all the details of the analysis. When working with senior management, an 
actuary may need to shift how they think about data and try to create visualizations to depict a 
finding. Instead of a chart, visualizations could easily be cleaner and more descriptive. Below are a 
couple of examples. The first one starts with a loss ratio triangle. A triangle is full of useful details, 
however more than senior management needs. Also, the lead does not provide any explanation. By 
creating a bespoke graphic, the conversation will naturally move toward the consistent favorable 
development in each accident year’s loss ratios, which the lead corroborates. 
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In another example, the presentation of key financial metrics is in a chart. By creating a clear 
visualization and a descriptive lead, one can direct senior management to see the changes proposed 
in the portfolio. Follow up slides, perhaps in the appendix, will explain rate achievement and other 
assumptions built into this projection.  

Now that senior management understands what your analysis concludes the logical next question 
is: “What do we do next?” The next slide or two outlines a set of recommendations. Senior 
leadership wants to know that their actuaries reviewed all reasonable scenarios before they propose a 
recommendation. As such, communication to senior management should demonstrate that you (and 
your team) analyzed multiple options to make your proposal. All scenarios tested should include a 
description, have a rationale for inclusion to explore, and provide a projected impact on financial 
metrics.  

Using the mnemonic SMART when creating your recommendations will ensure proposed 
actions meet best practices. SMART was first coined by George Doran in a 1981 issue of Management 
Review and it remains a useful tool. Recommended actions must be specific in activities and who is 
participating, without any ambiguity. There must be a way to measure the expected impact (e.g. 
GWP, NWP, loss ratio, operating profit…). The action must be achievable within the resource and 
time constraints. Recommendations must be relevant to solve the problem. And the actions must 
be time bound with a timeline on completion of the objective. 

The example below shows four recommendations on a portfolio. Different scenarios test 
potential actions on attachment points and limits; each scenario has a description, rationale, and 
projected impact. This communication shows all scenarios and identifies the proposed go-forward 
approach with a box to highlight. Details on the four scenarios are not in the main deck but in the 
appendix. 
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Next, the communication discusses operationalizing the recommendation. The ‘next steps’ 
section will walk senior management through the actions needed to operationalize the proposed 
recommendation. Instead of a series of bullets, a Gantt chart, per the example below, can show the 
tactical steps needed to execute. Whatever method of communicating the next steps, one should 
always include the activities, owners, and timelines.  

Finally, one may need an appendix and other supporting files (such as a data visualization tool 
like PowerBI, Tableau, or R Shiny). The appendix houses all the additional details, including some of 
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the more technical actuarial work; generally, it includes work necessary to create the 
recommendations to senior management. Details included here most likely isn’t what senior 
management will dig into, though you should prepare to talk about the details if need be. After all, 
this analytical work is why senior management hires actuaries. They value actuaries who can translate 
the analysis and distill easily digestible actionable intelligence. 

The visual below includes a quick guide of best practices when structuring your communications 
to senior management. Following the structure described above and the best practices below will aid 
you in creating effective communication. 

Executive communication syndicates information and helps senior management to make strategic 
decisions. Structuring a story as previously described, one shares the correct level of detail with a 
healthy mix of visuals. The advice above will refine your communication to leadership. Content is 
key and good structure alone won't make effective communication. Finally, if a communication is 
effective in one hundred words, don't say it in five hundred as brevity will allow you to retain the 
attention of senior management (or any business professional). 
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Communicating in Crisis Situations 

Rick Gorvett, FCAS, CERA, MAAA, FRM, ARM, Ph.D. 
Chris Morse, Ph.D. 

Julie Volkman, Ph.D. 

____________________________________________________________________________ 
Abstract:  Communicating technical information, especially in a crisis situation and particularly when the 
audience does not share the technical background, is a challenge that actuaries frequently face.  This essay 
describes the dynamics and issues involved in crisis communications and provides some recommendations for 
actuaries confronting such a situation. 

Keywords. Communication, crisis management, senior management 
____ 

Actuaries, like practitioners in any profession that involves significant quantitative or technical 
expertise, have a reputation for sometimes being substandard communicators.  To the extent this is 
true, it is probably less a matter of lacking basic communication skills, than it is the inherent 
difficulty in communicating technical material to audiences that generally do not share that 
background.  Communicating in such an asymmetric environment presents a natural challenge. 
When, on top of this, an actuary is attempting to communicate bad news or a potential crisis 
situation, the task of communicating effectively is doubly difficult.  We hope this essay will help 
actuaries to better understand the dynamics and issues involved in crisis communications. 

Potentially, actuaries may confront at least two types of crises.  To the extent that actuaries are 
executives and leaders in organizations, they may well have responsibilities in a high-profile crisis 
situation such as a cyberattack or an incident that somehow threatens the company’s reputation. 
More often, though, actuaries need to operate and communicate in crises of a more subtle, actuarial 
nature.  Many actuaries have had to deliver bad news or present and educate company executives 
regarding threatening situations.  Just a few of many possible examples include: 

• Results of an actuarial analysis indicate that the organization is insolvent, or that its
financial condition is worse than had been anticipated.

• An emerging or ongoing natural catastrophe, unhedged financial risk, or other event is
about to play havoc with the company’s finances, operations, capital adequacy, liquidity,
etc.
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• A new type of risk has emerged, and the evolving litigatory environment surrounding 
that risk suggests that the organization will very soon experience significant losses that 
were previously unanticipated and were not contemplated in the ratemaking process. 

 

Effectively communicating in a highly technical and quantitative environment, with an 
asymmetry between the communicating partners regarding an understanding of and familiarity with 
the analytics underlying the findings, is difficult enough.  Where a particularly significant or crisis-
level indication is concerned, all the difficulties involved in communicating in a crisis are also piled 
on.  Indeed, post-mortem analysis of crisis situations often reveals that communications could have 
been handled better.  While there could be several reasons for poor communications in crisis 
situations, we argue that a majority of miscommunication can be attributed to two main causes. 
First, audiences in a crisis behave differently than they do normally, so adjustments must be made 
[3]. Second, we as crisis communicators often overestimate our delivery ability, which can further 
cause issues. In this essay, we attempt to highlight some of the major factors within these two areas, 
as well as offer some advice for actuaries and other crisis communicators to overcome them.  

 The nature of a crisis impacts individuals’ abilities to process information, requiring them to 
alter the ways that they cognitively operate in such a situation compared to their normal approach. 
In these cases, crisis communicators who do not alter their messages will often encounter 
problems, or at the very least fail to convey the importance of their information in a way that the 
audience understands. The result can be a failure to take the crisis seriously, a lack of motivation to 
act on the information, or an under-impression of the potential impact of the crisis on the company 
or organization.  

 In terms of audience behavior, crisis communicators must be aware of three key issues. 
First, in a crisis, individuals tend to find themselves in situations of high stress and are often being 
presented with large amounts of information in a short period of time. In cases such as this, 
research has suggested that individuals have trouble with message retention, oversimplify the 
message content often missing key pieces, and misinterpret goals articulated by the crisis 
communicator [4], [8]. Second, a crisis represents a situation in which uncertainty is created as an 
individual’s understanding of the world is challenged or that person’s ability to predict what is going 
to happen next is compromised. In cases such as this, individuals often find themselves clinging to 
“what they know is true.” This means that people will often default to long-held beliefs about the 
world and how it works, or “tried and true” ways of handling things instead of alternative plans or 
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ideas [2]. Audience members will often reject “new” information in favor of what they have 
normally encountered. In cases of crisis, this would suggest that crisis communicators who present 
novel information or ideas, might be ignored by their audience in favor of “what has normally 
happened,” or what has occurred in the past.  Third, feelings of uncertainty will often result in 
negative emotional states such as anxiety, fear, and anger [1]. Emotional states such as these have 
been argued to create “action tendencies” or behavioral responses in individuals, that if left 
unaccounted for may present additional problems with a crisis communicators message. Fear, for 
example, has been linked with a tendency for “flight” responses while anger has often presented an 
“attack” response [7]. In the context of crisis communication, this could translate into a tendency 
for the audience to avoid a crisis message, either by ignoring it or discounting it, or they could 
challenge the message, questioning its validity. In either case, heightened emotional states can cause 
failure in the crisis communicator achieving her/his goal by having the audience be less receptive 
than anticipated.  

 While the impact that a crisis has on an audience is problematic, so too is the way in which 
crisis consultants convey the information. In many cases, people who are tasked with conveying 
information make assumptions about both their message as well as who they are talking to, which 
often causes confusion or reduced understanding. Unfortunately, in the case of a crisis, these 
assumptions can have severely negative impacts. One particularly problematic issue – particularly 
for actuaries – is a communicator’s use of jargon. Oftentimes in work specializations, individuals 
develop and use terms that are not common vocabulary to those outside those specializations. 
Unfortunately, given the often-siloed nature of the workforce, and individuals being in constant 
contact with others who also speak with a similar vocabulary, people can often forget that these 
terms are not commonplace, or at the least make erroneous assumptions that “everyone else gets 
what I mean.” In fact, the use of jargon impedes one’s ability to effectively communicate with non-
experts [5]. When conveying information to others, especially in high stress situations, individuals 
thus can overestimate the “simplicity” with which they are speaking. In cases where the audience is 
already experiencing the issues mentioned above, this can result in a speaker believing that a 
successful message was completed, while the audience member becomes lost or ignores what is 
being said.  

There is an additional issue that should be of concern to crisis communicators. Literature 
involving primacy effects suggests that the first piece of information that people are presented with 
will be used to interpret and compare all future information [6]. Therefore, the first message that an 
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individual is presented with in a crisis tends to carry the most weight. This significantly increases 
the importance of presenting not only correct information to an audience but of making sure that it 
incorporates the issues stated above. If the message is designed without consideration of these 
issues, then not only can the decision making of individuals be compromised, but how people view 
the crisis will also be very hard to change from their initial erroneous impression.   

 Taken together, the above comments suggest that, when dealing with a crisis, the actuaries 
and other individuals doing the communicating cannot approach the task as simply “conveying 
information.” By its very nature, a crisis impacts an audience, altering the way that they process and 
interpret information. Furthermore, some of the tendencies that speakers have, which might be 
normally overcome in everyday conversation, can have negative impacts when exhibited in a crisis 
conversation. It is important for individuals to remember that they must be simplistic and repetitive 
in the conveying of their information. They must be prepared to deal with audiences wanting to 
avoid what they are saying or challenging it. While the speaker may feel that they are speaking 
“plainly” they must examine their use of jargon and appreciate the experience level of those they 
are speaking to. Finally, while a speaker may believe that the solution being presented is logical and 
practical, he/she must understand that if the proposed solution deviates too much from the 
established norm, the audience may reject it as their uncertainty causes them to fall back on what 
has been done before – or, at the very least, what is comfortable and safe.  
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Setting the Scene for Communicating Technical Results 
to Senior Management 

Christopher Smerald, FCAS, FIA, MAAA 
 
________________________________________________________________________ 
Abstract: In this essay, we look at enablers to effective technical communication with senior management. 
Good planning and concise writing is essential, but in this essay, we argue that both analysist and recipient also 
need to work collaboratively towards ensuring the analysis is tuned to the recipient’s needs. This is especially 
true, because actuarial method is often very different from management decision-making approaches. The 
actuary and, ideally, also management need to go the extra mile to ensure they understand the other’s language 
and work context. To help with this, simple rules of thumb (heuristics) are suggested as part of a good 
communication process. 

 
Keywords. communication, reports, culture, senior management, personal leadership 

             

1. INTRODUCTION 

Just imagine going to a play where the production spent most of its time writing the script 
and only spent a little time, at the end, thinking about how they might connect with their 
audience, making sure their set works, and preparing to speak their lines. It might just work 
with a simple play (or if the audience is another scriptwriter who can fill in the abstract gaps 
with their imagination), but to most it would seem incomplete or worse.  

Transcribing the simple play for insurance, imagine two short actuarial studies required 
for “Andy”, the CFO. One done by “Lucy” who worked alone to the last-minute preparing 
exhibits but did not plan what to say to Andy. “Ken” did the other. However, he had a cup 
of coffee with Andy to confirm what was needed before creating the exhibits, and he left 
himself time to prep for Andy. Who was invited back for an encore project? 

Perhaps Andy also backs plays and he is funding a professional show. He knows public 
fashion demands lots of audience participation, thicker subplots, elaborate sets, and no 
mistakes. Things are much more complicated. Without a good process, much is at risk. Andy 
must understand how it all works and be more involved. His producer needs to understand 
Andy’s and public needs better. Independent work with only a few short meetings is no 
longer adequate. 

Now imagine a more challenging insurance situation where CFO Andy and management 
are under pressure for deeper / more agile business insights, improved risk management and 
governance, and “ownership” of the numbers. A nice focused table and simple clear words 
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may no longer be enough. The actuarial analysis may demand more thoroughness, 
transparency and efficiency using new methods with more data (or more pressure on old 
methods) and more controls, plus enhanced disclosures around selections, uncertainties and 
drivers.  

For this more complicated actuarial work, a highly collaborative and participatory process 
is needed. We have broken the important aspects of this into four elements through the 
acronym CUPS: Culture, Understanding, Practice, Suggestions.  

 

 

1. Culture relates to the principles and customs underlying the relationship. In this case 
a willingness to make things work and being collaborative in the relationship by 
listening well and allowing time for informal communication as well as formal.  

2. Understanding is about knowing context and goals. This includes other 
participant’s: language and values, working and thinking process, and priorities and 
pressures. 

3. Practical relates to things which can be done to simplify communication by a rule of 
thumb toolkit (heuristics) once culture and understanding are established. 

4. Suggestions are just that. The more complicated things are, the harder it is to 
manage or improve alone. Adjustments are made based on feedback that is 
specifically requested.  

These ideas will be discussed separately in more depth below, followed by a few end 
comments. 

Culture 
According to The Barrett Values Centre, who help build values-driven organizations, 

“The culture of a group of people is a reflection of the values and beliefs … that are 
embedded in the structures, policies, systems, procedures and incentives of the group”1

 The sort of culture we are seeking includes a strong personal leadership element and is 
founded on positive business and personal values. -Where each is committed to making the 
relationship work to the best advantage of all concerned. This includes willingness and skills 
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to work across boundaries, with curiosity and being open to challenge. 

The needed culture and underlying values are likely already there and may need only a 
little reflection to be lived more authentically and effectively, so that the forms followed in 
engagement are aligned more closely with their function. The actual form will likely vary 
considerably among organizations, so this section focuses more on the values which 
underlay culture which can be universal. By thinking about values and how they are lived 
through culture, we can connect and communicate better with others.  

 

Here are seven good values examples from 6Q Blogger Heryati R2 

  1. Stewardship,  

  6. Integrity,  

10. Diversity (the source gives a fuller description),  

16. Quality 

20. Good Citizenship,  

41. Leadership: The courage to shape a better future,  

87. Togetherness and enthusiasm.  

 

Culture development starts with thinking about actions which would support these 
values. For example, making time for informal conversations, which of course takes time, 
but may increase efficiency in the longer run. This is because informal conversations can 
carry wider bandwidth of meaning as opposed to emails, agenda packed meetings and video 
conferences, where messages are more compressed.  

This personal connection aspect is also echoed in a list by Miranda Anderson3 which 
suggests additional procedures: 

• Create a shared ritual like a cup of coffee informally 

• Agree to your commitments early and often and help facilitate commitments of 
other key stakeholders 

• Be There When It’s Hardest. Pick up the phone (or text, if necessary) the minute 



Setting the Scene for Communicating Technical Results to Senior Management 
 

Casualty Actuarial Society E-Forum, Winter 2020  4 

there’s a whiff of something awry, and then to do whatever it takes to make the 
situation right. 

Understanding 
Communication between actuaries and senior management is complex. Each focus on 

different aspects of the business, has different goals and past experiences, and may internally 
process things quite differently in language terms or units of thought. This may cause them 
to assign different meanings to the same underlying information4. So, understanding all this 
context, especially when the messages and uses are complex is especially important. 

It helps to consider how actuaries solve business problems using actuarial method. This 
can be more of an iterative art than a science, especially if data is missing and simplifications 
or extrapolations are needed. Tools may include any of the following: logic, statistics, 
heuristics (rule of thumb methods and models), and professional judgement. The iterations 
and uncertainties can leave an actuary feeling they have not really completed the analysis. So, 
the actuary may be tempted to explain too much their steps and unresolved issues, and not 
why the selections make sense and what the key issues are. 

In contrast to this deductive work, senior management might be reflecting more on 
similarities and differences in opinions from diverse experts while deciding on a course of 
action. The more objective the opinions and the more they use a common language, the 
easier it may be to decide. So, if the actuarial information is too abstract or tentative, they 
may not be able to synthesize it with more objectively framed opinions from sources like 
ERM, finance, investments, underwriting, etc. Thus, actuarial information is not always 
something which stands alone. It may be used as part of a larger process, so actuaries need 
to work to make it be more objective and comparable with other business information. 

Working collaboratively and being able to see both sides of the of the situation is 
particularly relevant here. The actuary needs to discover the manager’s objective and decision 
context. The manager needs to understand actuarial method and actual workings better, 
since not all of them can be translated efficiently into normal management language. This 
may take time before it becomes natural to both, but it is worth it, and it does take two.  

Clear lines of responsibility and accountability are also important to the process of 
understanding. An actuary does not just produce “the answer” and a manager does not just 
make decisions. Each are responsible for their share of ensuring good risk management and 
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for contributing to governance and social protection5. These make communication more 
complicated. By recognizing these parallel and complementary roles and breaking up 
communication along these lines (of decisions, risk management and governance), messages 
can be simplified. This splitting out may also help find an optimal level of disclosures on 
uncertainties, controls and caveats, because they have been untangled from other goals.  

Finally, listening is a strong part of this understanding. To be a good listener, you need to 
set aside your own reactions, ignore sparked tangential thoughts, and take good notes 
generally. In order to pick up nuances (especially where a conversation is on unfamiliar 
ground), it helps to research and plan what is likely to be said by you or others. This 
preparation sets expectations, so surprises are captured well. This is a verbal version of 
tracking actual vs. expected. Allow silences to happen. Silences  reflection  
understanding. Reflective listening is also good. Say what you thought you heard or what you 
understand they want. This builds trust that you are listening and shakes out 
misunderstandings. 

Practice 
Practice is best approached in a principles-based way with ideas to try to fit the situation. 

The below framework is based on work of The Good Actuarial Report Working Party which 
the author has been leading. 

The framework centers around truly understanding user needs and includes five parts6:  

1. Prework. Communication may fail if user needs are not properly understood from 
the outset. This is partly covered in the preceding section, but planning time is 
needed:  

a. Really understanding managements goals and expected uses.  

b. Selecting / planning proportionality and priorities, and  

c. Planning the scope of the work to be performed.  

The proportionality heuristic7 is beyond the scope of this article, but just as actuaries have 
methods to simplify complexity in problem solving, analogous simplification can help with 
communication and work planning. 

2. During Analysis. Complete the work focusing on what is important, having kept 
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notes on what was opaque and what was clear. A good practice is to rank your 
findings and interim assumptions by your level of belief. Was the fact pattern clear 
enough that you have a firm recommendation? Is it more of a best guess, or was it 
speculative where the model said “X”, but you cannot validate it? 

3. Communication planning: Keeping user needs in mind, plan what is most important 
to communicate in advance.  

4. Writing/Communicating: Ensure it is relevant to user needs, highlighting what is 
important. Be Concise, less is more.  

a. Instead of: “I took this data, applied these methods, and got these results”, 
you could try: “Your business needs fixing / is doing great, as these results 
show, and this is how you can see for yourself.” 

b. Write for Flow, by writing with flow:  

i. The flow for the reader who discovers what is important through 
following clear logic.  

ii. Flow as a writing technique where you get a sprint of content down 
and before overwriting the first sprint, write the next part, then the 
next... Then, with first draft quickly finished, you can overwrite and 
refine, reorder, fill in gaps, reduce, etc. Don’t start the iterations of 
improvement too early as you may burn too much time. 

c. Avoid Jargon – Use your authentic voice instead, avoid acronyms and 
technical terms 

5. Feedback. See the “Suggestions” section below. 

Suggestions (and Feedback) 
Suggestions and feedback are important for complex situations, because without them, it 

is difficult to judge how to improve. The actuary needs to know what new thing worked, 
what did not, and based on management’s experience what they might try next. Management 
needs to know if their actions are outside of the actuary’s comfort zone, and what they might 
need to do to understand things better. It is easy to see how they are part of a good culture. 
Without listening and co-ownership of success it may not happen or be constructive.  
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Conclusions 
The idea for this essay came from attending a workshop where non-executive directors 

and chief actuaries discussed successes and challenges in formal actuarial communication for 
UK actuarial function reports. I was struck by the lengths to which either the actuary or 
NED went to understand the other’s language, and by the importance they placed on good 
lines of informal communication. -So that the actuary would not be socially constrained if 
issues were to arise later. These cultural aspects helped cement all the communication 
research I have been involved in. I encourage readers to look for their own examples of 
good practice and to conscientiously copy them, as I have done, wherever it makes sense.  

Thank you for reading this essay and I look forward to your suggestions. 
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Abstract. The following essay is a response to the CAS Theory of Risk Committee call for essays on 
the topic of Communications to Senior Management.  The essay argues some of the prevailing thinking 
regarding interactions between managers and technicians may reinforce counterproductive tendencies 
and that a more critical but rarely discussed challenge is both parties’ fear of looking stupid.  The essay 
offers practical suggestions to acknowledge and overcome this fear both short and long term. 
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1. INTRODUCTION 

Many discussions between technicians and managers go less than ideally.  Some of the 
structural elements contributing to this misery are self-evident or amply explored in 
literature.  For example, management’s congested schedules make it impractical to engage 
them in nuances required to understand pros and cons of different techniques and 
approaches; it is sometimes difficult to abstract how mathematical results translate into 
actions with real world impact; and each cohort possesses different skills, experiences, and 
peer groups and is not used to interacting with the other.  All these factors are 
straightforward enough that if any represented the true problem, then the Casualty Actuarial 
Society Theory of Risk Committee would not sponsor an essay contest on communicating 
results to senior management – and I would not submit an entry arguing the real issue both 
managers and technicians must address is their mutual fear of looking stupid (FOLS).1  Once 
each party understands and plans for its own and the other’s FOLS, they can all begin to 
experience more fruitful, less stressful interactions. 

2. FOLS … BY CHOOSING THE WRONG ANSWER 

An inaccurate subtext to studies like the present one is that there exists some sort of 
fundamental difference between managers and technicians, when in fact technicians can and 
often do become highly effective leaders in their organizations.  There is arguably much 

 
1 Possible origin of term FOLS is Torrence (2017). 
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more that (horizontally) differentiates the frame of reference of, say, a medical or legal 
professional from that of an insurance professional of any kind, than there is that (vertically) 
differentiates an actuary’s or data scientist’s perspective from that of a chief underwriting or 
chief financial officer at the same insurance company.  The latter differences in outlook tend 
to relate more to individual motivations and incentives rather than knowledge or 
experiences. 

Individuals do not (usually) consciously prioritize individual needs over those of their 
organizations, but biases come into play at a subconscious level.  The Peter Principle argues 
that individuals receive promotions until their successes turn to failures.2  Having a success 
story to one’s name involves taking chances, because it is relatively rare to experience pure 
and unearned good fortune.  However, once an organization rewards successful risk taking 
with a management opportunity, the individual’s incentives change.   Salary and 
accountability increase, and advancement opportunities become more elusive.  Reputation 
sometimes becomes as powerful an asset as skill or ability.  There is greater individual 
financial freedom to be patient for the perfect opportunity, and greater adverse 
consequences for unsuccessful risk taking.  Meanwhile, those whose initial risk taking does 
not pay off have less to lose from further risk taking. 

The circumstances in which technicians and managers typically find themselves 
interacting exacerbates this subconscious conflict of interest.  Technicians’ presence at the 
table suggests that problems at hand are insufficiently addressable or understandable by 
more qualitative, instinctive, or fundamental approaches, and that heavier artillery such as 
math is required.   Managers may prefer lighter artillery.  This is exactly where overplayed 
advice for technicians to “lighten up” their message misplaces focus.  Digestion is prudent, 
but it does not change the essential nature of most technical recommendations – which is to 
exit the comfort zone.  The best chance at breaking through to a manager on this front is by 
illustrating that risks of inaction exceed the risks of potential actions implied by the analysis.  

To illustrate, consider an insurance company whose goal is to break even.  Their actuary’s 
analysis suggests expected expenses exceed expected revenues by 25% for the upcoming 
year.  The chief underwriting officer receiving the analysis is likely less concerned with how 
efficaciously the actuary derived the 25% than with risking his or her own reputation among 

 
2 Wagner (2018) reviews recent academic research surrounding the reality of the Peter Principle. 
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policyholders, producers, and regulators with intervention.3  Providing a defense of the 
analysis casts the conversation as a technical referendum rather than a comparison between 
one approach implied by the analysis and another of doing nothing.4  The actuary can avoid 
this trap by volunteering probabilities of breaking even under either alternative – say, 60% 
with the recommendations and 20% otherwise.  In this way, the actuary assumes the burden 
of defending not only the recommendations but also the CUO’s default position.5  This, in 
turn, aligns the actuary’s narrative with the CUO’s FOLS, by objectively presenting inertia as 
a very risky alternative. 

  

3. FOLS … BY NOT UNDERSTANDING THE DETAILS 

Aligning incentives is one way to protect managers and technicians from emotions 
deriving from FOLS.  However, numerous inadvertent slights still permeate most 
interactions between managers and technicians, often because the former are terse and the 
latter are verbose.  For example, some managers reportedly spend over 20 hours per week in 
meetings.6  As a result, they may not have time to send detailed e-mails when they wish to 
obtain information from a technician, and may send a note that says, “We need to talk.”  
The technician will likely then worry about what requires discussion and why the note could 
not specify what it is.  He or she will begin to analyze how to respond to several of the 
endless possibilities, ultimately becoming exhausted and anxious by the time the manager 
becomes free.  The manager will then feel overwhelmed by the technician’s anxiety and 
preparation advantage when discussion commences, which puts he or she too on the 
defensive.  A vicious cycle ensues. 

The cycle is easily generalized.  Per the previous section, little more separates how some 
managers and technicians obtain their stations than the chance results of prior risk taking.  
Yet both parties often identify with tropes that one “gets business” while the other “gets 
numbers.”  These tropes can be useful for identifying project roles, specifically who is 
handling various tasks such as final decision-making – but they also leave all parties feeling 

 
3 Warrell (2013) describes various fears triggered by the possibility of taking a risk. 
4 Of course, doing nothing is often the most reasonable strategy – see Taleb (2017). 
5 Balani (2018) points to resource limitations as one reason why doing nothing is often a default position. 
6 Perlow et al (2017) suggests managers’ time spent in meetings has more than doubled since the 1960s.  
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underestimated.  For this reason, communications strategies that pander to tropes reinforce 
negative emotion.  For example, some dimly suggest that technical content must be 
simplistic and catchy to engage “non-technical” audiences such as managers.  Yet a natural 
reaction to receiving information presented in this way may be, “s/he must think I’m 
stupid!”  This then leads managers to ask questions that illustrate technicians are equally 
“stupid” when it comes to the business.  Each focuses more on perceived capability than 
problems at hand. 

In contrast, being yourself is easier than “selling” others, and all parties should focus on 
presenting the truest versions of their work rather than altered versions of themselves.7  For 
technicians, sharing a report in advance of a face-to-face discussion shows confidence in a 
manager’s ability to interpret it, and the latter probably will not have time to give it more 
than a skim anyway.  Rather than investing in a second career in digital marketing, the 
technician should invest in simple format changes to ensure the skim properly orients the 
manager to discuss further, not unlike how they might make the same changes to spruce up 
the document for a technical peer.  For example, a data scientist may accentuate calls to 
action in decisive red, while banking valuable positive emotional capital by highlighting areas 
of present strength in a more tranquil blue.8  S/he can use white space as relaxing 
intermezzos between key points.  None of this is hard or requires altering the substance of a 
report and maintains a technical vernacular to the report that in turn preserves the glory of 
identifying a business solution for the manager. 

Returning to our earlier example of an insurer whose projected expenses exceed its 
revenues, it does not take an advanced mathematics degree to identify a basic inequality, nor 
does it require extensive business acumen to know how to plug a revenue shortfall.  Some 
may argue that technical presentations to managers should cut to the chase and focus on 
what findings mean for the business.  This depends in part on the personalities involved, but 
these behaviors mostly just reinforce the cycle.  For example, the actuary may have used 
gradient boosting (or any other mysterious-sounding algorithm of the reader’s choosing) to 
isolate the shortfall to a specific segment of the book, and surrogate models to identify 
variables that describe that segment.  It may be as obvious to the actuary that a rate increase 
or non-renewal strategy is necessary for the targeted cohort, as it is to the manager that the 

 
7 Peñarredonda (2018) describes the importance of psychological safety in the workplace. 
8 Williams (2007) reviews examples of the moods created by different colors. 
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explanatory variables intuitively correlate with risk.  The actuary can “lead a horse to water” 
with prompts and visuals but should resist the temptation to make him or her drink. By 
staying in their respective lanes, neither the manager nor the technician looks “stupid” by 
having a perceived novice explain how to do their jobs.  The manager looks smarter by 
asking intelligent questions and extracting business insights from math, as does the 
technician by anticipating questions and having answers ready.   The unfortunate tropes 
survive, but neither party overcorrects for them, minimizing their harm. 

4. BEING SMART … BY “GETTING STUPID” 

Though well meaning, conversations like the one we are having do more to harm 
dynamics between managers and technicians than they do to help.  They create a mythos 
that the two parties are fundamentally different, and they create unreasonably high 
expectations for the interactions.  Because they often focus on the technician’s role, they 
absolve managers of responsibility to make such interactions positive.  The absolution in 
turn disempowers managers, as if they are incapable of doing anything to make life easier.  
The conversation makes everyone fearful of looking stupid.  To speak technically, it divides 
us, multiplies hard feelings, and subtracts from self-worth.  This essay adds one more 
opinion to a pile of existing and conflicting literature referenced throughout the document. 

So how do we solve the problem of the less than ideal interactions, aside from fewer 
essays?  Above I have outlined some simple steps technicians may consider in the short term 
to better empathize with managers’ FOLS (and recognize their own FOLS) – by assuming 
shared responsibility for managers’ risk aversion and unselfishly ceding opportunities to 
draw logical conclusions.9  In a literal sense, one is more work for the technician, the other 
less.  Longer term, all parties may consider a colorful slang expression called “getting 
stupid,” which is defined as wild, unscripted dancing -- in other words, pure joy.   The best 
managers and technicians take incredible joy in using their strengths to solve problems and 
celebrating their impact together.10  “Geeking out” over a killer technical analysis and/or 
business strategy may not be proper decorum, and some may call it a waste of time.  This is 
our FOLS talking.  The more technicians start “getting stupid,” the more senior managers 

 
9 72% of CEOs feel the state of empathy in their organizations needs to evolve (businessolver 2019). 
10 Morgan (2011) points out that a presenter’s passion helps makes dry subject matter interesting. 
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will follow their example, and the sooner waves of joy will overcome barriers of fear in their 
businesses.  We all will be smarter when that day arrives. 
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1. INTRODUCTION

Because large claims are fairly rare, when actuaries develop or revise increased limits factors

(hereafter “ILF”s) they often find that they do not have enough internal data to reliably predict the 

upper layers.  However, it is important to effectively use the data that is available.  For short or medium 

tail lines of business, ILFs may be developed directly from the claim-by-claim data from accident years 

where all the claims are closed, rather than by curve fitting or other more complex processes. The 

long lag until claims are closed complicates the process in long-tail lines, though. The data at the upper 

limits is usually distorted1 by the fact that the policies with lower limits do not cover claims at those 

upper limits. Hence the data in the upper limits is “censored”.  Also, external benchmark ILFs are 

often used to supplement the experience data of the company using a credibility process.  As will be 

shown in the remainder of the paper, the best approach to deal with these issues involves looking at 

loadings for each “layer” between one policy limit and the next limit above it.  In effect, one would 

look at the losses that exceed each lower limit but cap each loss in or above the next limit at the 

difference or “length” between the two limits. 

1 Issues that might be mentioned, that fall outside the immediate scope of this model, arise when large deductibles 
eliminate, say, the basic layer (suggesting that, for purposes of this analysis, they should  be excluded from the analysis) 
or when upper layer costs are effectively specified by an specific excess of loss reinsurance contract. 

A by Layer Approach Algorithm for Computing Increased Limits 
Factors -- with Adjustments for Varying Policy Limits and Other 

Common Concerns 

_____________________________________________________________ 
Abstract: When computing increased limits for short or medium tail lines of business, it is common to begin 
with loss data from a combination of policies with different policy limits.  This has ramifications not only 
for the computation of the increased limits factors based on the experience data, but also for computing 
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  Additional aspects of the algorithm are needed to resolve common issues.  Hence, they are 

covered as well.  For example, if credibility is used, it is important to reflect all claims that contribute 

to an ILF layer but only those claims that contribute to an ILF layer.  Further, since the ILFs arising 

from a credibility process may be inconsistent, a process to correct the inconsistencies is sometimes 

needed.  Similarly, an approach for best estimate credibility rather than classical credibility is needed 

to provide a full algorithm to deal with most increased limits ratemaking situations. 

The organization of this paper is as follows: first, the key features of the algorithm will be listed, 

then the reasoning behind each feature will be presented, with a comprehensive example showing how 

each works in practice. 

2. THE KEY FEATURES OF THE ALGORITHM

2.1 A LIST OF THE KEY FEATURES

There are six major aspects of the scheme that are discussed within the paper:

1) Rather than computing the ILFs directly from data capped at the various limits,
compute the layers separately, and combine them to create the ILFs.

2) Offset policy limit truncation by applying adjustments for the ratio of the policies that
cover each layer to all the policies sold;

3) Credibility weight the layer factors (layer relativities to the basic limit), not the ground-
up ILFs;

4) When you count the claims for credibility, count all the claims that pass into or through
each layer, not just those that have a final value in the layer;

5) Replace inconsistent values (that fail the “Miccolis test”2) in the higher layers with
interpolated or extrapolated values computed by interpolation/extrapolation along a
Pareto severity curve3; and

6) To improve the accuracy, consider using a best estimate credibility process.

When circumstances suggest it, some issues may be combined in some sections.  The specific items 
covered in each section are included in the title.   

Sample calculations accompany the exposition. The data in Table 1 will be used.  It is itself an 
example of the type of raw data summary that should be reasonably possible to produce from an 
insurer’s statistical system. 

2 Per Robert Miccolis’ 1977 paper. 
3 Using the procedure in Boor 2014. 
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Note that the rationale or formula for each item is shown below each column number, although in 
this case everything is input data.  Note also that items of a given type are grouped by vertical lines. 
Those conventions will continue throughout this article. 

Table 1: Raw Data 

Experience Data  Other Data 

(1)  (2) (3) (4)  (5) (6)

Data  Data  Data  Data  Data  Data 

Number of  Claims  Aggregate 
 Insureds (Exposures)  in Layer  Ground‐Up 

(or Premium)   Ending   Cost of Those  Current  Benchmark 
Limit at This Limit  at Limit  Claims  ILF  ILF 

$250,000                    100 200 $40,000,000  1.00 1.00
500,000 200 40          15,000,000  1.60 1.90

1,000,000 300 15          10,500,000  2.50 3.60
2,000,000 100 3            4,200,000  3.50 4.00
5,000,000 50 2            7,000,000  4.00 5.00

Total 750 260 $76,700,000   

2.2 COMPUTING THE LOSSES BY LAYER (Items 1 and 2 above) 

As mentioned earlier, when the policies in a dataset have different limits of liability, the losses in 
the upper layers are not directly comparable to the losses in the lower layers.  For example, if only 
half the policies have limits above $250,000, then the losses excess of $250,000 should be half 4 (or 
less for higher limits) what the cost would be if policy limits were not an issue.  If only two thirds of 
those with policy limits of $250,000 or more have policy limits over $500,000, then of course the 
losses above $500,000 come from two thirds as many policies as those in the $250,000 to $500,000 
layer. Taking it one step further, they would be two thirds of one half (one third---or less) what they 
would be if they were not “truncated” by lower policy limits of either $250,000 or $500,000 on many 
policies.  Thus, there are strong reasons not to begin by capping the unadjusted losses. 

The key is to look at the losses by layers, and correct for the different levels of policies (or other 
exposure units) by layer. So, one would have sets of losses that are adjusted so that they reflect the 
losses one would observe if the limit had the same number of policies, etc. as the lowest limit.   

The first step is to compute the losses in each layer. For example, if a product offers liability 
limits with increasing values of $A, $B, $C, or $D, then 

4 As it turns out maybe less in dollars, considering the truncation in the succeeding layers. 
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 The first layer “$A” is covered by all the policies, so all the losses from all the policies
that amount to $A or less are included.  All the claims, whether their size is $A or above
are included.  However, the amount of each is of course capped at $A.

 The second layer from $A to $B, is an intermediate layer.  Only claims from policies with
limits of $B, $C, or $D potentially fall into this layer.  The sizes of each of the claims
must be at least $A, or they would not be in this layer. So, to isolate the portion that is in
this layer, one would subtract $A from each claim size. Lastly, the excess amounts that
result would be capped at $B-$A to reflect the “length” of the layer, and the results
aggregated to produce the total losses in the band from $A to $B.

 Only claims from policies with limits of $C or $D fall into the next intermediate layer
(from $C to $D).  A similar process is employed here.

 $D is the topmost limit layer.  For each claim over $C in size, one would subtract $C
from the loss, to place it in the layer, and the results would be aggregated.  Presumably5

no loss is larger than the limit $D.

Once the aggregate loss dollars in each layer are computed, one must recognize that large claims 
(above the policy limit) on policies with lower policy limits are truncated below the limit---at their 
lower policy limit. Per the policy conditions, the losses in each layer must come from policies with 
limits equal to the top of the layer or higher. Any court judgments against the insured that are high 
enough to reach to the next higher layer are “censored” (essentially eliminated from the data) unless 
the policy has coverage for the higher limit.  

That creates inconsistent exposures among the various limits. Logically, if half the policies (or 
premiums or some other exposure units) are written at a limit of $A, then the losses in the layer 
between $A and $B were generated by only half the exposures as those capped at $A.  Therefore, to 
make the losses in the layer between $A and $B comparable to the base layer, one must multiply the 
computed losses in the layer by the ratio of the exposure passing in or through the base layer ($A) to 
the exposure passing in or through this second layer (limits of $B, $C, or $D).   Of course, since all 
policies have a limit of at least $A, one should multiply the computed loss in the second layer by a 
“basic limits equivalence factor”6 or “BLEF”.  That factor would be computed by dividing the total 
exposures in the data (limits of $A or higher) to the exposures with limits of $B or higher. Similarly, 
one would multiply the losses computed for the layer from $B to $C by the ratio of the total 
exposure units to those with limits of $C or $D. and for the layer between $C and $D, one would 
use a similar ratio with the number of exposure units with a limit of $D in the denominator.  In this 
paper, policy counts are used for simplicity.  However, something such as earned premiums at the 
present rate level might create more accurate results. Table 2A illustrates the computation of the 
BLEFs. 

Before the BLEF can actually be applied, though, one must compute the losses by layer present in 
the unadjusted data. To facilitate the explanation of the process, it is helpful to define a couple of 
terms.  First, one may call the groupings of ground-up losses (for example, all individual claims in 

5 In practice so called “extra-contractual obligations” may result in losses beyond policy limits, but those are beyond the 
scope of this discussion. 
6 The author recognizes that the basic limit is not always the lowest limit in the data.  If it preferred, one may think of 
this as the “lowest limit equivalence factor”.  The case where the basic limit is not the lowest limit receives little focus in 
this paper because, although the same principles hold, it distracts from the key issues in the paper. 
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the data costing between $250,000 and $500,000) “size groups”.  Then the portions of individual 
claims, of whatever size group, that enter or exceed a given range are said to fall in that “layer”.  For 
example, on a $510,000 claim and $400,000 claim the portions in the $250,000 excess of $250,000 
layer (the layer between $250,000 and $500,000) are $250,000 and $150,000, respectively.  The total 
losses in the layer are the sum of all those claim-by-claim amounts in the layer. Because each size 
group includes “ground up” claims costs (including those in all the lower layers), the costs in each 
layer will not equal the costs in the corresponding size group.  Generally, the costs will be shifted to 
the lower layers, as is proper.  

Table 2A: Calculation of Basic Limits Adjustment Factors 

(1)  (2)  (3) (4)

Table 1 c.2  Table 1 c. 2  Sum (2)  [Total (2)]/(3) 
+[All (2) Following] 

Number of  Number of 
 Insureds  at This Limit  Correction for  

 (Exposures)  at This or  Limits Truncation 
Limit  at This Limit  Higher Limit  “BLEF” 

$250,000                   100 750  1.00 
500,000 200 650 1.15 

1,000,000 300 450 1.67 
2,000,000 100 150 5.00 
5,000,000 50 50  15.00 

Total 750

An example involving multiple layers starts with a total amount of $813,000. So, it is within the 
$500,000 to $1,000,000 size group. Then it generates the full $250,000 in the basic limit layer; a full 
$250,000 second layer ($250,000 excess $250,000, or from $250,000 to $500,000) loss; and $313,000 
within the $500,000 excess $500,000 layer.  The claims costs reach their total there, where the claim’s 
cost ends. Further, since this loss falls in the band ending in $1,000,000, it is the equivalent of 1.67 
losses per the BLEF. 

The procedure for estimating the costs in each layer in Table 2B begins with total number of claims 
ending within each size group, and the total cost of those claims.  For each layer below the size 
group, all the claims in the size group will exhaust the entire length of the layer.  So, in each layer 
below the size group, one computes the aggregate cost of the layer by multiplying the number of 
claims in the size group by the length of the layer. That properly assigns each group’s costs to the 
lower layers.   

However, that does not cover the portion of the size group’s claims that fall in the layer matching 
the size group. Since those claims do not fill their entire layer, their cost in the layer will not equal 
the full size of the layer, and the cost in the layer will likely vary from claim to claim. Thankfully a 
fairly simple process is available to compute the cost within that layer.  The total aggregate cost for 
all the claims in this size group in all the layers must still equal the total cost of the claims in the size 
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group. So, one may simply subtract all the lower layer costs associated with this size group from the 
overall total for the size group to obtain the costs in the last, highest layer.   

Now, all the losses in each layer must be added together to get the total unadjusted losses by layer.  
As mentioned previously, though, these are affected by policy limits truncation. As a last step, the 
BLEF is multiplied by the losses in each layer to obtain the final BLEF-adjusted losses.  These are 
the layer losses that will be used in computing the layer factors and consequently computing the 
ILFs. 

Now that the basic information is prepared, the next step is to complete the calculation of the 
experience-based ILFs using the layer costs in Table 2C. To relate the costs of the various layers to 
those of the basic limit, and produce the layer factors,  one need only divide the total losses in the 
gray band at the bottom of Table 2B by the corresponding losses at the basic limit7.  However, these 
are merely the costs of the individual layers.  To provide ILFs, representing all the losses up to a 
limit, one must sum all the factors up to and including the layer at the top limit (as is done in column 
(6) below).  This chart also includes a basic Miccolis test, as mentioned earlier.  Column (5) shows a
rate on line (per limit of coverage) for just the losses in each layer.  The rates/relative costs must
always decrease from lower limit to higher limit.  Since this is constructed from actual loss data, it is
inevitable that the results pass the test.

7 If there are limits below the basic limit, one need only tentatively treat the lowest limit as the basic limit.  Then, one 

would divide each tentative ILF by the tentative ILF of the basic limit so as to rebalance the factors.  Then, the final 
basic limit ILF will be unity (1.00) and the ILFs proportional to that. 
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. Table 2B: Computation of Loss by Layer and Correction for Policy Limits Truncation 

Part 1‐ Inputs 

(1) (2) (3) (4) (5) 

(1) (1) Table 1 c.3  Table 2A c.4  Table 0 c.4 

‐[previous(1)]

Claims  Ground‐up 

in Layer  Cost of Claims 

Upper  Layer  Ending  Ending in 

Limit  Length  at Limit  BLEF  Layer 

$250,000  $250,000   200   1.00  $40,000,000 

500,000  250,000     40     1.15      15,000,000 

1,000,000  500,000               15      1.67      10,500,000 

2,000,000  1,000,000                  3      5.00   4,200,000 

5,000,000  3,000,000                  2     15.00  7,000,000 

Total  260  $76,700,000 

Part 2 ‐ Determination of Truncation‐Correction Loses Passing into Each Layer 

(6)  (7) (8) (9) (10) (11) 

(1)  $250K*(3)  $250K*(3)  $500K*(3)  $1M*(3)  $3M*(3) 

Basic Limit  Basic Limit  Basic Limit  Basic Limit  Basic Limit 

Equivalent Cost  Equivalent Cost  Equivalent Cost  Equivalent Cost  Equivalent Cost 

Upper  of 250 X0 Layer  of 250 X250 Layer  of 500 X500 Layer  of 1000 X1000 Layer  of 3000 X2000 Layer 

Limit  Claims *  Claims*  Claims*  Claims *  Claims* 

$250,000  $40,000,000  $0  $0  $0  $0 

500,000  10,000,000  5,000,000  0  0  0 

1,000,000  3,750,000   3,750,000   3,000,000   0  0  

2,000,000  750,000  750,000   1,500,000   1,200,000   0 

5,000,000  500,000  500,000   1,000,000   2,000,000   3,000,000  

Total 

Pre‐Adjust  $55,000,000  $10,000,000  $5,500,000  $3,200,000  $3,000,000 

BLEF    1.00     1.15     1.67   5.00     15.00 

BLEF Adjusted Losses by Layer 

Total  $55,000,000   $11,538,462  $9,166,667  $16,000,000  $45,000,000 

* The diagonal elements in (7)-(11) were computed as the adjusted (multiplied by item (4)) losses in
column (5), minus the sum of the losses in the in the columns to the left within each row.

As one may see, this concludes with the final experience-based ILFs.  The next steps involve 
applying credibility and trending to the results of the above process. 
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Table 2C: Final Computation of Experience-Based ILFs (with Miccolis Test) 

(1) (2) (3) (4) (5)  (6) 

Table 1 c.2  Table 2B c. 2  Totals at  (3)/  1M *(4)/(2)  Cumulative 

Bottom of  [(3) for 250K]  Sum of (4) 

Table 2B 

c.(7),(8),(9),(10),(11)  Experience 

Based 

Basic Limit  Experience  (Miccolis)  Increased 

Upper   Layer  Equivalent Cost  Based  Relative Cost  Limits Factors 

Limit   Length  Total Loss  Layer Factors  per Layer Size  (ILFs) 

$250,000  $250,000  $55,000,000             1.00    4.000  1.00 

500,000  250,000  11,538,462             0.21         0.839   1.21 

1,000,000  500,000  9,166,667               0.17     0.333   1.38 

2,000,000  1,000,000  16,000,000      0.29     0.291   1.67 

5,000,000  3,000,000  45,000,000      0.82     0.273   2.49 

(pass) 

Total  $136,705,128 

2.3 CLASSICAL CREDIBILITY BY LAYER (Items 3 and 4 above) 

There are two key concerns when classical credibility is used in increased limits ratemaking.  As 
stated earlier, the credibility process should apply to the layer factors, not the ILFs.  Also, since 
classical credibility revolves around claim counts, one should take care to count the number of 
claims correctly. 

The composition of the ILFs, as a mixture of the basic layer costs, the first excess layer costs, the 
second excess layer costs, etc. is what necessitates credibility weighting layers.  Say, for example, that 
the $500,000 experience-based ILF had a credibility of 60%.  Then, in recognition of the lesser 
claims above $500,000, the $1,000,000 experience-based ILF was assigned a credibility of 40%.  
While that may superficially seem proper, note that the losses up to $500,000 limit are also part of 
the data used to compute the $1,000,000 limit.  In one situation, they have 60% credibility, but in the 
second they only have 40%.  This logical inconsistency requires a solution.  The most 
straightforward way is to credibility weight the individual layer factors rather than the ILFs.  That 
way, each subject of credibility is treated separately from the others. 

The other aspect of credibility is the calculation of the actual credibility values.  Due to potential 
technical complexity, this paper will not deal with how to set a full credibility standard or determine 
the expected number of claim counts in each layer.  Rather it will assume some full credibility 
standard and will use the actual claim counts rather than expected numbers of claims.  That means 
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that the credibility of each experience-based layer factor, using classical credibility, will be the square 
root of the result of dividing the number of claims used to compute the factor by the full credibility 
standard. So, the next step is determining exactly how many claims are present in the data used to 
compute each layer.   

It is tempting to simply use the number of claims in the corresponding size group. But that would 
ignore the number of claims that simply pass through the layer, contributing cost information as 
they do.  In fact, all the claims from higher layers should be included in the claim counts of the 
layers below them.  For example, consider the $250,000 excess of $250,000 layer.  The claims in the 
$500,000 size group are part of it.  But, the claims in the $1,000,000 size group also pass through 
that lower layer (at $250,000 per claim of loss).  Similarly, the claims in the $2,000,000 size group, 
and all higher size bands, need to have their claims included in the claim count for the $250,000 
excess $250,000 layer.  As a general principle, the number of claims for credibility of a layer should 
count those in the matching size group plus all those in higher size groups. 

Several tables are needed to illustrate the classical credibility process for layer factors. Since the 
credibility weighting is performed by layer, the benchmark layer factors used as input are computed 
in Table 3A. 

Table 3A: Calculation of Benchmark Layer Factors -With Miccolis Test 

(1) (2) (3) (4) (5) 

Table 1 c.1  Table 1 c.1  Table 1 c.6  (3)‐[previous (3)]  1M*(4)/((2)‐(1)) 

(Offset) 

(Miccolis) 

Benchmark  Relative Cost 

Bottom  Top of  Benchmark   Layer  per Layer  Size 

of Layer   Layer  ILF  Factors  in Benchmark 

$0  $250,000         1.00    1.00       4.00  

250,000  500,000             1.90    0.90       3.60  

500,000  1,000,000  3.60    1.70       3.40  

1,000,000  2,000,000       4.00    0.40       0.40  

2,000,000  5,000,000       5.00    1.00       0.33  

(pass)

Now that the values for the complement are determined, the counts are summed from above in 
Table 3B to obtain the counts used in computing the credibilities.   
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Table 3B: Counts Used in Computing Layer Factors for Classical Credibility 

(1) (2) (3) (4)

Table 1 c.1  Table 1 c.1  Table 1 c.3  (3)+[(3) Above] 

(Offset) 

Claims  Number of 

in Layer  Claims at or Above 

Bottom  Top of  Ending  Size Layer 

of Layer   Layer  at Limit  for Credibility 

$0  $250,000  200  260 

250,000  500,000  40  60 

500,000  1,000,000  15  20 

1,000,000  2,000,000  3  5 

2,000,000  5,000,000  2  2 

At this point, all the input needed to perform the classical credibility process is available. The next 
step is to simply execute the classical credibility procedure.  In this case, a full credibility standard8 of 
683 claims is used.  One may follow the calculations in Table 3C, which uses the number of claims 
used in pricing each layer from Table 3B, the experience-based layer factors from Table 2C, and the 
benchmark layer factors from Table 3A. 

8 That is not expressed to be optimal or more proper than any other standard.  The purpose here is just to illustrate 
how the calculations flow.   
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Table 3C: Credibility Weighted ILFs from Classical Credibility 

Part 1‐Credibility Calculation and Input Data 

(1) (2) (3) (4) (5) (6)

Table 1 c.1  Table 1 c.1  Table 3B c.4  ((3)/683)^.5  Table 2C c.4  Table 3A c.4 

(Offset) 

Classical  Experience  Benchmark 

Bottom  Top of  Claims Passing  Credibility  Based  Layer 

of Layer   Layer  Into This Layer  for Layer  Layer Factors  Factors 

$0  $250,000        260   62%   1.00     1.00 

250,000  500,000            60   30%   0.21     0.90 

500,000  1,000,000   20   17%   0.17     1.70 

1,000,000  2,000,000       5   9%   0.29     0.40 

2,000,000  5,000,000       2   5%   0.82     1.00 

Part 2 ‐ Result of Classical Credibility and Miccolis Test 
(7) (8) (9)  (10)  (11) 

Table 0 c.1  Table 0 c.1  (4)*(5)  1M*(9)  Sum from top of 

(Offset)  +[1.0‐(4)]*(6)  /((2)‐(1))  (9) 

Credibility Wtd  (Miccolis)  Credibility 

Bottom  Top of  Layer  Relative Cost  Adjusted 

of Layer   Layer  Factor  per Layer  Size  ILF 

$0  $250,000                  1.00   4.00   1.00  

250,000  500,000      0.70   2.78   1.70  

500,000  1,000,000      1.44   2.88   3.13  

1,000,000  2,000,000                0.39   0.39   3.52  

2,000,000  5,000,000                0.99   0.33   4.51  

(fail)‐in gray 

Unfortunately, even when the input is two sets of ILFs that pass the Miccolis test, their credibility 
weighted combination may not pass it.  The area in gray in Table 3C illustrates how that can happen.  
Nevertheless, this example does illustrate the proper application of classical credibility in the ILF 
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estimation process.  A separate process, shown in the next section, is needed to resolve any Miccolis 
test discrepancies9 that arise. 

2.4 FIXING INCONSISTENCIES BY USING INTERPOLATION ALONG A CURVE 
(Item 5 above) 

As the previous example shows, otherwise actuarially proper calculations of ILFs sometimes give 
rise to Miccolis test inconsistencies.  Therefore, having a method ready to resolve such problems can 
be helpful.  Interpolation along a curve (from Boor 2014) is the core of such a method.  A curve can 
be fit to all the ILFs (not layer factors, the fit to the ILFs is more straightforward) except the 
problem factors that need to be replaced.  Then, that curve is the basis for replacement for the 
problem point, using interpolation along the curve. Of course, the curve usually will not match all 
the data points (ILFs) exactly.  However, interpolation along the curve10 alters the curve so that it 
matches the data points exactly.  So, if the value on the curve f at a point c between a and b is f(c)= 
f(a) + x%[f(b)-f(a)], or f(c) is x% of the way from f(a) to f(b); then the ILF estimate at c would be 
ILF(a)+x%[ILF(b)-ILF(a)].  The table on the next page shows the approach in practice, starting 
from the results of Table 3C.    

The process involves two stages.  First, the increased limits curve produced by a Pareto distribution 
is fit to all the ILFs but the one associated with the layer factor that failed the Miccolis test.  The 
curve formula is shown, but of course the two parameters of the curve must be chosen.  To that 
end, a least squares error method is used. The squared differences between the values from the 
curve and the actual values are computed in column (5) of Table 4A, with the total of the column in 
dark gray.  Then, the solver routine in the spreadsheet software identifies the alpha and truncation 
point11 that generate the least squared error between the actual and fitted values.  Once the curve is 
fit, both the curve values and the actual ILFs for the layers ending at $500,000 and $2,000,000, with 
the problem $1,000,000 limit in between are all available.  The fitted curve provides a value of 2.407 
for the $1,000,000 limit.  Since the fit is not exact, using the fitted value can sometimes still create a 
failure of the Miccolis test or other inconsistency, so interpolation along the curve is used. Following 
the formula shown at the bottom of the table, the Pareto-based curve values at $500,000, $1,000,000 
and $2,000,000 are used in conjunction with the actual values at $500,000 and $2,000,000 to estimate 
a value at the $1,000,000 limit (2.54) that is consistent with the values around it. 

9 To explicitly discuss the issue, although the calculation of classical credibility using layers may produce results that fail a 
Miccolis test, it would be expected to do so less often than when credibility is applied to the entire ILF. 
10 An extensive explanation of interpolation along the curve is not included here. For a more detailed discussion one 
may review the article. 
11 In this case, it was necessary to cap the truncation point at $200,000 to keep it reasonably below the lowest limit 
($250,000). 
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Table 4A: Extrapolation to Replace Inconsistent ILFs from Classical Credibility Analysis 

Solver 
Setup 

Alpha  0.7787  Lt Gray Values Solved 

Truncation Pt.  200,000    to Minimize Dark Gray 

$200K is upper restriction] 

(1) (2) (3) (4) (5) (6)

Table 1 c.1  Table 1 c.1  Table 3C c.11  ***  ((3)‐(4))^2  (3) and

(Offset)  see note

**** 

Classical  below 

Credibility 

Bottom  Top of  Weighted  Fitted   Squared  Revised 

of Layer   Layer  ILFs  Pareto  Fit Error  ILFs 

$0  $250,000  1.00  1.00 

250,000  500,000  1.70  1.641  0.00301  1.70 

500,000  1,000,000  2.387  2.54 

1,000,000  2,000,000  3.52  3.258  0.07072  3.52 

2,000,000  5,000,000  4.51  4.634  0.01440  4.51 

 Total Squared Error   0.08813 

$500,000   $1,000,000  ****2.54  2.387 

Notes:  *** Fitted Pareto values are 

      {Alpha ‐ [(Truncation/[Column (2)])^(Alpha‐1.0)]} / {Alpha ‐ [(Truncation/250,000)^(Alpha‐1.0)]} 

"**** Value per Interpolation Along the Curve is  

     1.70 + (3.52‐1.70)*(2.387‐1.641)/(3.258‐1.641) 
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The interpolated value appears to be reasonable.  But, it makes sense to recheck the Miccolis test, 
per Table 4B following. 

Table 4B: Miccolis Test After Problem ILF Corrected by Interpolation 

(1) (2) (3) (4) (5) 

Table 1 c.1  Table 1 c.2  Table 4A c.6  (3)  $1M*(4)/((2)‐(1)) 

(Offset)  ‐[previous(3)] 

Layer  (Miccolis) 

Bottom  Top of  Revised  Factors   Relative Cost 

of Layer   Layer  ILFs  in ILFs  per Layer  Size 

$0  $250,000  1.00  1.00  4.00 

250,000  500,000  1.70  0.70  2.78 

500,000  1,000,000  2.54  0.84  1.69 

1,000,000  2,000,000  3.52  0.98  0.98 

2,000,000  5,000,000  4.51  0.99  0.33 

(pass) 

As one may see, the correction using interpolation along the curve eliminates the Miccolis test 
inconsistency.  One may also note that, although when very disparate sets of ILFs are used in 
classical credibility, there is a tendency to create Miccolis test failures, Miccolis test failures may 
occur in many other contexts. 

2.5 BEST ESTIMATE CREDIBILITY FOR INCREASED LIMITS (BY LAYER) (Item 
6 above) 

Along with the presentation of classical credibility for ILFs, it makes sense to introduce an 
approach to best estimate credibility for the layer factors.  So, in addition to often-stable ILF 
estimates produced by classical credibility, there will be an option for creating estimates that come as 
close as practicable to the true underlying loss costs in the excess layers.  

The basic concept is not very complicated.  Per Boor 1992, one need only estimate the expected 
squared prediction error that each statistic (the empirical layer factor and the benchmark layer factor) 
makes when estimating the true cost of the layer.  Then, per Boor, the credibility of each statistic 
equals the squared error of the other statistic, divided by the sum of the two squared errors. 
Therefore, the credibility of each piece of data is proportional to how poorly the other item predicts 
the losses.  

Estimating the expected squared error the benchmark factors make when predicting the layer 
costs involves a fairly simple calculation.  Of course, the benchmark layer factors are not random, 
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but the true, unknown, layer costs are.  Further, this is a process of approximation, given the 
information that is available. So, the empirical layer factors may be used as a proxy for the true 
underlying layer factors. So, the squared differences between the benchmark layer factors and 
empirical factors are used to estimate the expected squared estimation errors made the benchmark 
layer factors. For another estimate of the estimation errors made by the benchmark layer factors one 
may also compare the benchmark layer factors to the layer factors that are currently being used12. 
Since the new empirical data may sometimes be very thin in the upper layers, this will yield a more 
reliable result in some cases, especially where the empirical data is thin.   

The calculations are shown in Table 5A.  Recognizing that the experience data in the upper layers 
may be limited, the most logical estimate of the benchmark squared prediction error for this class of 
data is made using both those indicators. 

The expected squared error of the experience-based layer factors requires more work.  The key 
involves the so-called “collective risk” model. As noted in Dean and Mahler 2001, when one draws a 
random number (𝒏) of independent losses( 𝑺𝒊’s) from a single severity distribution, the variance of 
that aggregate distribution is Mean(𝒏ሻ ൈVariance(𝑺)+Variance(𝒏ሻ ൈMean²(𝑺).  Then, in the absence 
of any other evidence, it is usually logical to assume that all the loss occurrences are completely 
independent.  Thus, the counts would follow a Poisson distribution with expected value of, say ‘𝑵’.  
Under those assumptions, the variance of the aggregate distribution is 𝑵𝑬ሾ𝑺𝟐ሿ.  That formula will 
be the basis for determining the process variance of the empirical layer factors.   

Just as with the prediction error made by the benchmark, a workable “basic arithmetic” estimate 
is presented rather than a more complex calculation.  The first step is to calculate this “process 
variance” for each layer when the BLEF correction is excluded from the analysis. 

Then, to define a couple of values for a given layer, 𝒏 will be the number of claims that passed 
through or stopped in the layer, and 𝒌 the number of those that passed all the way through 
(exceeded the limit of the layer). Of course, one must calculate those two values. In the pre-BLEF 
context of the calculations, the values are computed using the actual, unadjusted by BLEF, counts of 
the number of claims that passed all the way through the layer, and the count of those that stopped 
within the layer. Once those are determined, one must compute the average squared loss (within the 
layer) for each type.  It should be clear that every claim that passes all the way through the layer 
generates a cost in the layer equal to the full length of the layer. Hence, 𝑺𝟐 will be the square of the 
layer length for those claims.  In the spirit of estimation, each claim that stopped or ended within the 
layer may be assumed to be half the layer length.  So, for the claims that end in the layer, 𝑺𝟐 will be 
one-fourth the square of the layer length.  Thus, for the 𝒏 historic claims that passed all the way 
through the layer, and the 𝒌 claims whose total cost ended in the layer, the variance of the aggregate 

costs in the layer is estimated by ሺ𝒏  𝒌

𝟒
)× (the square of the layer length). Per the collective risk

model, that estimates the process variance associated with the actual claims, as an estimate of the 
pre-BLEF layer cost. 

12 For a related analysis, one may review Marcus 2010. 
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Table 5A: Estimation of Squared Errors from Benchmark Layer Factors 

Part 1 ‐ Experience, Current and Benchmark Layer Factors  

(1) (2) (3) (4) (5) (6)

Table 1 c.1  Table 1 c.1  Table 2C c.4  Table 1 c.5  (4) Table 3A c.4

(Offset)  ‐[previous(4)] 

Experience  Current  Benchmark 

Bottom  Top of  Based  Current  Layer  Layer 

of Layer   Layer  Layer Factors  ILF  Factors  Factors 

$0  $250,000                  1.00        1.00   1.00   1.00 
250,000  500,000           0.21               1.60    0.60   0.90 
500,000  1,000,000                  0.17          2.50   0.90   1.70 

1,000,000  2,000,000    0.29             3.50    1.00   0.40 

2,000,000  5,000,000    0.82             4.00    0.50   1.00 

Part 2 ‐Estimation of Squared Error of Benchmark 
(7) (8) (9) (10) (11) 

Table 1 c.1  Table 1 c.1  [(3)‐(6)]^2  [(5)‐(6)]^2  (9),(10) 

(Offset)  selection 

Squared  Squared 

Benchmark  Benchmark  Selected 

Errors vs.  Errors vs.  Benchmark 

Bottom  Top of  Experience  Current  Error 

of Layer   Layer  Factors  Factors  Parameter 

$0  $250,000          ‐                    ‐      ‐  

250,000  500,000                0.476    0.090      0.100  

500,000  1,000,000                2.351      0.640         0.800  

1,000,000  2,000,000                0.012        0.360             0.200  

2,000,000  5,000,000                0.033        0.250             0.200  

The first step is to compute the number of historical claims that passed all the way through or 
“exceeded” each layer, and the number of actual claims that ended up (or whose total cost lay) in 
each layer.  Both are done in Table 5C. Of course, the number of claims ending in the layer is simply 
the  counts from Table 1. 
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The next step is to compute the process variance of the actual data using the formula ሺ𝒌  𝒌

𝟒
)×

(the square of the layer length).  Those calculations are performed in Table 5B. As a final step, the 
impact of the BLEF that was part of the experience-based layer factor calculation in Table 2B, but 
has not been considered so far, is applied.  One may recall that because of policy limits truncation, 
the raw claim counts that underlie the calculation differ from the BLEF-adjusted counts used in the 
final computation of each layer factor.  However, since the BLEF is simply a multiplier that applies 
to the layer13, one need only multiply the process variance of the actual data discussed above by the 
BLEF², per the standard variance formula involving a constant multiplier to a random variable.  
That produces an estimate of the process variance of the full, inclusive of the BLEF, experience-
based estimates of the layer factors.  The column 11 in Table 5B shows the final resulting process 
variance values associated with the experience-based layer factors.  

13 Recall that this calculation is done in the spirit of approximation.  A possibly more exact estimate of the mix 

between losses exceeding and ending up in various layers might be obtained with a different calculation.  However in 
this case the variance calculation seems to flow somewhat smoothly with the BLEF correction as the last step. 
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Table 5B: Estimation of Process Variance in Experience-Based Layer Factors  

Part 1 ‐ Inputs for Poisson Collective Risk Model  

(1) (2) (3) (4) (5)  (6) 

Table 1 c.1  Table 1 c.1  Table 1 c.3  Sum of (3)  [(2)‐(1)]^2  {[(2)‐(1)]^2} 

(Offset)   Above Limit  /(4)  

Actual  Actual 

Claims  Claims 

Bottom  Top of  Ending  Exceeding  Squared  Squared 

of Layer   Layer  In Layer  Layer  Layer Length  Half‐Length 

$0  $250,000  200                60  6.25E+10  1.56E+10 

250,000  500,000         40         20  6.25E+10  1.56E+10 

500,000  1,000,000     15    5  2.50E+11  6.25E+10 

1,000,000  2,000,000   3   2  1.00E+12  2.50E+11 

2,000,000  5,000,000   2   9.00E+12  2.25E+12 

Part 2 ‐ Final Process Variance Estimate with All Corrections 
(7) (8) (9) (10) (11) 

Table 1 c.1  Table 1 c.1  (3)*(5)  (9)*BLEF^2  (10)/[(Basic  

(Offset)  +(4)*(6)  {from Table 2A c.4}  Limits Loss)^2] 

{from Table 2C c.3} 

Raw Data  Process Variance  Process 

Process Variance  of Total Losses  Variance 

Bottom  Top of  Estimate per  in Experience  of Layer Factor 

of Layer   Layer  Collective Risk  Layer   Estimate 

$0  $250,000  6.88E+12  6.88E+12               0.002  

250,000  500,000  1.88E+12  2.50E+12   0.001  

500,000  1,000,000  2.19E+12  6.08E+12     0.002  

1,000,000  2,000,000  2.75E+12  6.88E+13       0.023  

2,000,000  5,000,000  4.50E+12  1.01E+15       0.335  

Now, the process variance and the expected squared error of the benchmark are available.  Per the 
Boor paper the best estimate credibility of the experience data will be the squared error of the 
benchmark divided by the sum of the squared benchmark error and the process variance. The results 
and the corresponding layer factors are shown in Table 5C. A Miccolis test is included as well. 
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Table 5C: ILFs per Best Estimate Credibility 

Part 1 ‐ Credibilities and Inputs 
(1) (2) (3) (4) (5) (6)

Table 1 c.1  Table 1 c.1  Table 2C c.4  Table  5A c.11/   Table 3A c.4  1.0‐(4) 

(Offset)  [Table 5A c.11+ 

Table 5B c.11] 

Experience  Benchmark 

Bottom  Top of  Based  Credibility of   Layer  Complement 

of Layer   Layer  Layer Factors  Experience  Factors  of Credibility 

$0  $250,000         1.00   100%    1.00  0% 

250,000  500,000              0.21   99%   0.90   1% 
500,000  1,000,000                0.17   100%    1.70  0% 

1,000,000  2,000,000     0.29   90%    0.40  10% 

2,000,000  5,000,000     0.82   37%    1.00  63% 

Part 2 ‐ Final Credibility Weighted Best Estimates 
(7) (8) (9)  (10)  (11) 

Table 1 c.1  Table 1 c.1  (3)*(4)  1M*(9)/[(2)‐(1)]  [Cumulative Sum 

(Offset)  +(5)*(6)  of (9)] 

(Miccolis) 

Best  Relative Cost  Best 

Bottom  Top of  Estimate  per Layer  Size  Estimate  

of Layer   Layer  of Layer  of Z‐Wtd ILF   ILFs 

$0  $250,000         1.00   4.00    1.00 

250,000  500,000              0.22   0.86    1.22 

500,000  1,000,000                0.17   0.34    1.39 

1,000,000  2,000,000                0.30   0.3020            1.69  

2,000,000  5,000,000                0.93   0.3107            2.62  

(very slight fail) 

In this case, the benchmark does not get much weight, primarily because it is so different from both 
the raw experience-based layer factors and the current layer factors.  However, in the upper layers 
where there are smaller numbers of claims, it has substantial credibility. One may notice that this 
process avoids radical shifts in the layer factors when the benchmark is changed.  So, as long as at 
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least one of the current and experience-based layer factors may be thought of as fairly representative 
of the underlying severity distribution, this produces truly optimal 14estimates of the ILFs. 

Also note that in this case there was only a minor third decimal place inconsistency in the Miccolis 
test, for which the correction 15 is not included here.  By assigning less weight to benchmarks with 
greatly different layer factors, this approach reduces, but may not eliminate, the possibility of a 
Miccolis test failure.  In general, this method has much to commend it. 

3. SUMMARY

The previous sections show how a layer-by-layer approach to computing ILFs leads to much more 
appropriate calculations, a more logical approach to classical credibility, and even a best estimate 
approach to credibility for ILF calculations.  The reader is encouraged to use this for more reliable, 
logically consistent calculations. 
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An Actuarial Approach to Behavioral Ratemaking: 

How Fair Rates Will Encourage Safer (and Slower) Driving 

Michael C. Dubin, FCAS, FSA, MAAA, FCA 
______________________________________________________________________________ 

Abstract: Many people regularly drive above the posted speed limit. This type of behavior is risky and the cause 
of much loss, including loss of life.1 The World Health Organization has identified speeding2 as a global health 
issue.3 The insurance industry can reduce this loss by implementing a new approach to ratemaking, behavioral 
ratemaking.4 The use of current driving speed data (and other telematics5 data) to adjust insurance pricing on a 
real-time basis can be used to encourage safer driving behavior and a safer society. In other words, in this model 
a driver would pay real time for how they drive as they drive. Hereinafter “behavioral ratemaking” is used to 
denote insurance rates that change in real time. This article discusses what behavioral ratemaking is and how it 
would operate in this context. It discusses how behavioral rates could be developed, the advantages they present 
and the logistical, technological and regulatory obstacles preventing their implementation. 

______________________________________________________________________________ 

WHAT IS BEHAVIORAL RATEMAKING? 

Anyone who has taught a child to drive knows that the most important way to reduce the chance of 
an accident is through safe driving behavior. Since the insurance industry pays for the financial 
consequences of accidents and other insured events, it would seem they would and should be a 
promoter of safety as well. “Hazard reduction incentives” are a consideration in designing any 
insurance risk classification system.6 However, traditional auto insurance ratemaking uses classification 
systems that strive to place drivers into classes with homogenous risks based on factors such as age, 
sex and marital status that do not directly measure risk and do not utilize driving behavior. When 
behavioral risk is considered in traditional ratemaking, such as in claims or violations history, past 
rather than current behavior is measured. Walters states, “One of the reasons for classifying is the 
impossibility of knowing the risks true expected loss or accident likelihood.”7 This is no longer as clear 
as it was in 1981 as recent technology rapidly advances the potentials of ratemaking. With the 

 
1 While fatal accidents do not represent the majority of auto insurance claim costs, it is assumed throughout this paper 
that behaviors reducing fatal accidents also reduce other types of accidents. 
2 Both excess speeding (exceeding posted speed limit) and inappropriate speeding (driving at a speed unsuitable for the 
prevailing road conditions). 
3 http://www.who.int/violence_injury_prevention/publications/road_traffic/world_report/speed_en.pdf. World report 
on road traffic injury protection, World Health Organization, 2004. 
4 In this paper, behavioral ratemaking is applied to auto insurance. It can also be applied to other lines of insurance 
including life and health. 
5 According to Wikipedia, “Telematics" is an interdisciplinary field that encompasses telecommunications, vehicular 
technologies, road transportation, road safety, electrical engineering (sensors, instrumentation, wireless communications, 
etc.), and computer science (multimedia, Internet, etc.). 
6 American Academy of Actuaries Committee on Risk Classification. Risk Classification Statement of Principles. 2014 
7 Walters, Michael, Risk Classification Standards, 1981 

http://www.who.int/violence_injury_prevention/publications/road_traffic/world_report/speed_en.pdf
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introduction of telematics data on driving behaviors, actuaries can now, in a way that was impossible 
previously, transform ratemaking to utilize information that directly impacts risk. Behavioral 
ratemaking adjusts premium based on controllable driving behavior immediately. Behavioral 
ratemaking recognizes behavioral influence on the accident likelihood, and the potential severity of 
the accident, at each moment of actual driving. The overall number of claims would not change - 
except for the significant impact this measurement should have on actual behavior. 

There are many ways to implement these rate adjustments – each with practical issues to be resolved. 
In any case, they would be based on behaviors in real time. This is not the same as using historical 
behaviors of the driver to adjust the rate. Behavioral ratemaking provides the insured with immediate 
premium savings for continuous behavioral improvements.  

HOW IS TECHNOLOGY EXPECTED TO TRANSFORM INSURANCE? 

With advances in technology, futurists project many industries to be disrupted by innovation. 
Insurance is no different. Insurtech refers to the use of technology innovations designed to squeeze 
out savings and efficiency from the current insurance industry model, including using new streams of 
data from internet-enabled devices to dynamically price premiums according to observed behavior.8 
It has been over a decade since the invention of a telematics device to provide real time input to 
insurers.9 Insurtech ideas potentially impacting ratemaking include: increased use of predictive 
modelling, using telematics or internet data to create improved ways to classify drivers, and mileage 
based insurance. When the Insurtech sector first developed, many in Insurtech with little insurance 
expertise believed that new technologies would be able to quickly disrupt the industry and allow for 
new companies to quickly begin taking significant market share from the established ones.  

Such disruption in the insurance market has not transpired. Currently, experts in Insurtech generally 
agree that there is no standout disruptive technology that will significantly impact market shares of 
the largest insurers any time soon and many insurtech startups still require help from the major 
insurers.10 Industry executives have proclaimed that there is no technology on the horizon that will 
cause major disruptions in insurance company market shares in the near term.  

Behavioral Ratemaking using real time telematics data will change this though. With the increased use 
of artificial intelligence, smart cars and driving algorithms, insurance ratemaking will need to keep up. 
Despite the slow start, it is clear that as technology advances new ideas are needed to align insurance 

 
8 https://www.investopedia.com/terms/i/insurtech.asp 
9 http://www.freepatentsonline.com/6931309.html?highlight=6064970. United States Patent 6931309. Motor vehicle 
operating data collection and analysis. 2004. Innosurance, Inc. 
10 https://www.investopedia.com/terms/i/insurtech.asp 

http://www.freepatentsonline.com/6931309.html?highlight=6064970
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better with the future of transportation and regulation. 

WHY IS BEHAVIORAL RATEMAKING BENEFICIAL? 

Behavior ratemaking has many benefits. Benefits to customers include immediate financial rewards 
for driving safer; provides proven methods to drive safer; and allows individuals and fleet managers 
to better manage driving risk. 

Benefits to insurers using behavioral ratemaking include improved ratemaking which ties premiums 
charged to actual behavior and risk associated with that behavior. Higher identified risks are charged 
more, thereby generating increased revenue for high risk behaviors. There will be reduced insurer 
losses to the extent safer driving practices caused by the application of behavioral rating process are 
implemented. This leads to more accurate pricing as customers pay an amount more closely aligned 
to driving risk.  

Behavioral ratemaking benefits to society include reduced accident frequency and severity to the extent 
some drivers adopt safer behaviors. Data collected over time showing how compliance with the posted 
speed limits impacts losses will have the potential to assist with better, safer programming of self-
driving cars. 

HOW IS BEHAVIORAL RATEMAKING DIFFERENT FROM 
PREDICTIVE MODELLING? 

It is well known in statistics that correlation does not imply causation. It is preferable if rating variables 
are based on characteristics that are causal in nature.11 Predictive modelling relies on finding attributes 
that are correlated with accidents to make predictions, while behavioral ratemaking relies on attributes 
that have been shown to cause or increase severity of accidents. Many companies, old and new, use 
predictive modelling to find better and more complex rating variables and classification systems that 
improve actuarial soundness. Predictive modelling is similar to traditional ratemaking in that historical 
information is relied upon to determine current rates. While this does lead to lower rates for safer 
drivers, the process takes time to design new pricing mechanisms and prove they work better. With 
predictive modelling safer insureds are asked to trust the insurer that they will eventually be charged 
lower premium for their safer driving.  

There is a necessary delay between when the insurer confirms the safe driving and can reduce premium 
for the insured. Also, it is not necessarily intuitive which new rating variables or classification systems 
correlate with lower future costs, so it would be too risky for an insurance company to implement 

 
11 Modlin and Woerner. Basic Ratemaking, Fifth Edition. 2016, p. 157 
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changes based on predictive modeling in conjunction with telematics data without adequate proof that 
the new rates are better. Combined with a pre-existing distrust of insurance companies, this delay in 
recognition of premium savings resulting from safer driving reduces the ability of predictive modelling 
based safe driving incentives to take hold. These companies hope that safer drivers will have enough 
confidence in the possibility of future lower safe driver rates to choose the company before the new 
rates are fully implemented. 

Also, without clear correlations, predictive modeling alone may not find opportunities to improve 
ratemaking as quickly as with the addition of behavioral ratemaking. This can be shown in the 
following simplified example with realistic assumptions. Let’s assume older drivers are more risky than 
younger drivers and that older drivers tend to drive slower than younger drivers. In this example, slow 
driving would be correlated with higher risk when we look at the population as a whole. However, if 
we look at either subgroup individually, we will likely find that slower driving is actually correlated 
with lower risk. And for any individual in either group, risk can be reduced by driving slower. This is 
the most important aspect that represents behavioral ratemaking’s untapped potential to improve 
fairness. 

Behavioral ratemaking is different in that drivers see immediate financial rewards for safe driving 
behavior, in addition to additional benefits for continued improvement in driving behavior. Behavioral 
ratemaking uses telematics data to make intuitive adjustments to traditional ratemaking techniques. 
Speeding is but one example of a behavioral characteristic which may impact safety. For example, a 
company would implement a large discount for drivers who agree to abide by the speed limit. In 
addition to driving speed, the company would rely on telematics mapping data for location of insured 
vehicles and corresponding speed limit. A surcharge would be assessed on each mile driven at a certain 
number of miles per hour over the posted speed limit. An additional discount can also be immediately 
provided for driving within a certain range of the speed limit. Important assumptions are that safer 
drivers will be drawn to a rating system that rewards them for safer driving and that they will drive 
more safely when rewarded. Since the starting point is traditional rates and rating plans, the use of 
new intuitive rating variables will improve upon overall actuarial soundness. Traditional ratemaking 
techniques can then be used to adjust rates and adjustments as new data comes in for the population 
as a whole. 

WHY WILL BEHAVIORAL PRICING BE DISRUPTIVE? 

Once behavioral pricing takes off (with even a subset of insurance companies) adverse selection may 
create difficulties for the remaining more traditional insurance companies to co-exist without 
behavioral pricing. The effect could be similar to the introduction of nonsmoker/smoker pricing in 
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the life insurance market. Once nonsmoker discounts were introduced by one company, they, 
practically, needed to be introduced by all for similar reasons. As safer drivers self-select discounts for 
their own safer driving, insurers using traditional pricing exclusively will be left with less safe drivers, 
and higher accident frequency and claims costs. Drivers who do not modify driving behavior will self-
select the increasing costs of traditional insurance. There is also less risk to insurance companies using 
behavioral pricing because riskier driving behavior will result in immediate rate surcharges and 
therefore, increased revenue. 

Regulations have always required fair rates by disallowing unfair discrimination. Regulators rely upon 
actuaries to certify that rates are not unfairly discriminatory. The rating systems that developed in the 
twentieth century, based primarily on uncontrollable factors such as location, age, gender and marital 
status, were the fairest possible at the time. Once regulators and actuaries become comfortable with 
rating factors more directly linked with hazard, it will become apparent that traditional rating plans 
alone unfairly discriminate against safe drivers. 

It is important to note that the business of insurance requires cross-subsidies. No rating mechanism 
can accurately predict the exact cost of each insured. Actuarially sound rating reduces cross-subsidies. 
There may also be an ethical limit as to how much cross-subsidies can be reduced. For example, in 
health insurance it is unacceptable to classify risks based on pre-existing conditions.   

Changing driving behavior will be disruptive to more than just insurance. Americans spend billions of 
hours per year driving. As safety becomes more prominent in the mindset when getting behind the 
wheel, many other industries are potentially disrupted by this potential shift (such as automobile 
manufacturing, advertising, infrastructure design, law enforcement, etc.)12 

HOW CAN BEHAVIORAL PRICING TAKE HOLD? 

In order for ratemaking changes to take hold in the automobile insurance industry, there are three 
requirements which need to be addressed. These have not been adequately addressed by Insurtech 
thus far, which is the reason for the slow start to disruption. 

1. From a customer perspective new changes need to be associated with an immediate monetary 
incentive. In other words, it needs to be cheaper for at least the safer half of drivers. Otherwise, 
customers will not move to the new system in a large scale. Would Uber have been able to 
overcome regulatory challenges if it weren’t cheaper than traditional taxis? 

2. From an actuarial perspective, telematics confirmation will be needed for the assumption that 
customers who do sign on will exhibit safer driving behavior. The safer behavior will be due 

 
12 Sharpin, Banerjee, Adriazola and Welle. The Need for (Safe) Speed: 4 Surprising Ways Slower Driving Creates Better 
Cities, May 09, 2017, https://www.wri.org/blog/2017/05/need-safe-speed-4-surprising-ways-slower-driving-creates-
better-cities 

https://www.wri.org/blog/2017/05/need-safe-speed-4-surprising-ways-slower-driving-creates-better-cities
https://www.wri.org/blog/2017/05/need-safe-speed-4-surprising-ways-slower-driving-creates-better-cities
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to both attracting safer drivers to begin with, and all drivers driving more safely after they sign 
up. 

3. Investors in behavioral pricing need assurances that customers signing on will have lower loss 
costs and that rate adjustments can be quickly implemented. 

Insurance in the US is regulated on a state by state basis. While statutory guidelines for rates are similar 
among states, each state is responsible for determining and enforcing what is acceptable for its own 
residents. Behavioral pricing should lead to rates that are more actuarially sound than traditional rates. 
In order for behavioral pricing to take hold, insurance companies wishing to spearhead 
implementation would need to collaborate with individual state regulators. Three advantages to 
behavioral pricing over traditional pricing that should be important to regulators are: the incentivizing 
of safety, reduced likelihood of unfair discrimination, and more accurate rating. 

IMPROVING SAFETY 

One way to enable meeting all three of the aforementioned requirements is to identify, encourage and 
reward safe behavior. Doing so will reduce rates for policyholders while maintaining or improving 
profitability for insurance investors and actuarial soundness of rates. 

Consideration of insured behavior with respect to safety is an important component of actuarial 
fairness that has not been adequately addressed in actuarial literature. Although the insurance industry 
has done much to improve safety in many lines of insurance, safety is not necessarily viewed as having 
a good financial impact for the insurance industry, either as a whole or by large insurance companies. 
"You want safer cars. Safer cars mean lower insurance. Safer driving means lower insurance costs”, 
said Warren Buffet13 making this counterintuitive point. Regulators require actuarial determination 
that rates are actuarially sound. Actuarial soundness means that the rate is just enough to provide for 
all costs in the aggregate. Therefore, safer driving should mean lower revenues for the insurance 
industry as a whole.  

Large insurance companies project revenue by considering their own shares of insurance market 
segments. Therefore, a disruptive drop in revenue for the industry, whether due to safety or anything 
else, represents a risk to a large insurance company’s revenue. Although safety reduces costs for 
insurance companies, the actuarial soundness requirement for rates implies no long-lasting loss ratio 
improvements due to decreases in losses. Many large insurance companies had their roots as small 
insurance companies that were able address to an underserved and safer subset of the market. An 
example in the life insurance industry is The Phoenix Companies, which began as American 
Temperance Life Insurance in 1851 and insured only those who abstained in alcohol.14 An example 

 
13 in an interview with Yahoo Finance on May 2, 2018 
14 From Wikipedia entry for The Phoenix Companies 
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in the property casualty insurance industry is GuideOne, which began in 1951 as Preferred Risk Mutual 
Insurance Company, with the idea that non-drinkers would be in fewer accidents than those that did 
drink.15 As in the past, the opportunity presents itself today for a startup or small insurer to focus on 
safer than average individuals. By using behavioral ratemaking, this company would also create 
incentives for insureds to become safer. 

With respect to improved safety, the insurance industry currently seems to be primarily concerned 
about the impact of driverless cars. However, there is little evidence that driverless cars will be safer 
than human drivers in the near term.16 In addition, the focus on the safety of driverless cars removes 
energy from how safety can be improved through safer human driving behavior.  

THE DIFFICULTY OF RELEARNING SAFER DRIVING BEHAVIORS 

It is very difficult for an individual to relearn safe behavior.17 We cannot let that individual difficulty 
blind us to the safer possibilities for society as a whole. It may be easier to for some individuals to 
overcome opioid addiction than for others to correct some unsafe driving habits. Even if that is the 
case, society as a whole can improve safety. For example, cigarette smoking has decreased dramatically 
over the last fifty years. While it is very difficult for an individual to quit smoking, it was possible for 
smoking to be reduced in society overall. Similar driving specific examples of safety improvements 
that are difficult for the individual but possible for society as a whole are the increase in seat belt usage 
and the decrease in drunk driving over the past few decades.  

Seat belt use is a safe driving behavior that reduces mortality and injury severity after an accident.18 
Therefore, seat belt usage reduces insurance losses. It has been widely observed that seat beat use has 
greatly increased over thirty years. A widespread survey, taken in 19 cities in 1982, observed 11 percent 
seat belt use for drivers and front-seat passengers.19 In 2009, seat belt use averaged 88 percent in the 
30 States with primary seat belt laws.20 Though not exactly apples-to-apples, this represents an eight-
fold increase, showing that the vast majority of drivers were ready, willing and able to take on this 
safer driving behavior. While driving behavior can be very difficult for an individual to change, this 
example provides evidence that the driving public is able to adopt additional safe driving behaviors. 

 
15 From Wikipedia entry for GuideOne Insurance 
16 Gosch, Susanna. Connect Differently: The Evolution of Automobile Technology and the Impact to Insurance. NAMIC 
presentation, 2018. 
17 James, Leon. University of Hawaii Student Reports on Driving Personality Makeovers. 
18 Cummins, Koval, Cantu, Spratt. 2011. Do seat belts and air bags reduce mortality and injury severity after car accidents? 
https://www.ncbi.nlm.nih.gov/pubmed/21720604 
19 Williams and Wells, 2004. UNC Highway Safety Research Center, 2011, p. 2-4 
20 Chen, Y. Y. & Ye, T. J. (2010, May). Seat belt use in 2009 – use rates in the states and territories. Traffic Safety Facts. 
(Report No. DOT HS 811 324). Washington DC: National Highway Traffic Safety Administration. Available at 
http://wwwnrd.nhtsa.dot.gov/Pubs/811324.pdf. 

https://www.ncbi.nlm.nih.gov/pubmed/21720604
http://wwwnrd.nhtsa.dot.gov/Pubs/811324.pdf
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Despite the empirical evidence that human driving behavior can become safer as a whole, it may still 
be difficult to envision improved safety on a wide scale due to improving human driving behavior 
alone. We do know change for safety is possible, and although it may be unprofitable for large 
insurance companies that maintain the status quo, it is profitable for a new model of insurance 
company. Improved safety is good for society.  

INSURANCE PRICING WOULD INFLUENCE DRIVING BEHAVIOR 

The question is not whether driving behavior can be improved, but whether insurance pricing can 
encourage safe behavior. In order for all the benefits of behavioral pricing to be realized, it must be 
true that some drivers can and will change their driving behaviors in response to their insurance price. 
In the past, common actuarial wisdom was that it was not possible for an insurance pricing system to 
encourage safe behavior as noted by Michael Walters, “Few drivers wear seat belts despite the life-
saving evidence, so the prospect of saving a few dollars of insurance surcharge certainly will not induce 
a modification of driving behavior.”21 Coincidentally, not too long after that paper was written, most 
drivers began to consistently use seat belts. According to a Canadian survey, the majority of drivers 
believe doubling speeding fines would reduce speeding.22 Immediate insurance surcharges that are 
directly attributable to speeding are very similar financially to fines. This supports that increasing 
insurance costs for speeding could reduce speeding.  

The advent of telematics has enabled insurance pricing to induce the driving public to drive more 
safely. In 1981, there was no way to reliably determine whether drivers used seat belts or to monitor 
other driving behaviors, such as speed. This lack of reliable determination virtually eliminated the 
possibility of insurers reflecting driving behavior in pricing. Telematics data is now available so that 
the insurance company can determine driving behavior with great accuracy. Because of the availability 
of reliably correct telematics data, the behavioral price differences can be substantial. Behavioral 
pricing combined with the availability of telematics data can now provide the driver with minute by 
minute updates on insurance pricing as compared with the annual updates of the past. By providing 
continuous behavioral feedback impacting premium, drivers are enabled to consider premium when 
choosing a driving behavior. 

In order for insurance pricing to influence driving behavior, the pricing difference needs to be 
significant to the insured. While driving slower saves fuel costs, the resulting savings do not seem to 
be great enough to significantly influence driving speeds. 

 
21 Walters, Michael, Risk Classification Standards, 1981 
22 EKOS Research Associates. Driver attitude to speed and speed management: a quantitative and qualitative study — 
final report. Transport Canada, Report No. TP 14756 E 
(2005)https://www.tc.gc.ca/media/documents/roadsafety/TP14756E.pdf 

https://www.tc.gc.ca/media/documents/roadsafety/TP14756E.pdf
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In order to show that insurance pricing can encourage safe behavior, it is noted that a large part of 
driving risk is during the daily commute to work. For many people, there are many commuting cost 
options, including fuel efficiency, parking and use of public transportation. A daily difference in 
insurance cost would likely impact commuting cost benefit analysis and influence driving behavior to 
recognize a reduced insurance cost each day. 

REVIEW OF SPEED AND OTHER TELEMATICS ATTRIBUTES 

“Newtonian relationships between the fourth power of small increases or reductions in speed and 
large increases or reductions in deaths state the case for speed control.”23 The best choice of driving 
attribute to be used for behavioral ratemaking is speed. As opposed to other attributes, such as 
cornering, braking and acceleration, speed has several advantages including that it relates to the hazard. 
According to Walters, attributes “should reasonably relate to the potential for, or hazard of, loss.”24 
Compared to the other attributes: speed is more commonly a direct cause of accidents25 and speed is 
likely correlated with other aggressive and risky driving behaviors such as assuring safe following 
distance.26 A slower driver would be less likely to be tempted into a risky maneuver to pass an even 
slower moving vehicle. Regardless of the cause of the accident, virtually every accident would have a 
reduced cost if the initial speed were reduced and a better (slower) speed score would always be 
associated with reduced hazard. Similarly, a worse (faster) speed score would almost always be 
associated with increased hazard. A better cornering score is not always correlated with decreased risk 
as crossing a yellow line at an intersection could improve the score but increase accident potential. 

Some attributes for which it may seem reasonable to adjust the rate based on historical behaviors 
would not be feasible for behavioral ratemaking. While “hard braking” can be used as part of an overall 
analysis of safe driving, it does not directly relate to cost of risk. If a driver frequently brakes hard, the 
driver may be exhibiting unsafe behaviors prior to the hard-braking. While a hard-braking surcharge 
may reduce some unsafe behaviors, the hard-braking attribute does not work for behavioral 
ratemaking. The hard braking itself is used by the driver for the purpose of reducing hazard and it 
doesn’t make sense to charge the driver for the hard braking in the seconds before an accident that 
reduced the cost, or to discourage the driver from hard braking to avoid an accident. Compared with 
good speeding scores, good braking scores are not as clearly associated with safe driving and can be 
associated increased accident probability. For example, rolling through rather than completely 
stopping at a stop sign could improve braking score while increasing the chance of an accident. 

 
23 Speed, road injury, and public health. Richter ED, Berman T, Friedman L, Ben-David G. Annu Rev Public Health. 
2006;27:125-52. https://www.ncbi.nlm.nih.gov/pubmed/16533112 
24 Walters, Michael, Risk Classification Standards, 1981  
25 Quick Facts 2016, NHTSA, October 2017 (Updated February 2018) 
26 https://www.nhtsa.gov/risky-driving/speeding 

https://www.ncbi.nlm.nih.gov/pubmed/16533112
https://www.nhtsa.gov/risky-driving/speeding
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Conversely, a bad braking score could be the result of successfully avoiding an accident or making a 
complete stop for a pedestrian in a crosswalk. Using a hard-braking attribute could increase risk if the 
braking surcharge discourages drivers from hard braking when necessary to avoid an accident. The 
braking attribute just does not make intuitive sense when used on a real time telematics data since 
hard braking may be the result of trying to avoid or reduce the cost of an accident. Also, it wouldn’t 
make sense to charge a driver for braking hard one second before an accident. What would make 
sense is charging the driver for going too fast before the hard braking that led to the need for the 
hard-braking evasive action in the first place. 

Speed meets another criteria better than other attributes such as braking or cornering: it is easier to 
measure. The attribute “should be susceptible to measurement by actual experience data.”27 Drivers 
already understand that speed relates to risk and are trained to objectively measure speed. The other 
attributes would require additional training to show drivers how behavior impacts their score. 

Other groups concerned with safety, such as law enforcement and the medical community, have 
determined that slower speeds are safer. There has been no such determination for cornering or 
braking. The public already understands that speeding causes insurance losses. According to a 
Canadian study, about ninety percent of drivers believe driving over the speed limit increases the 
chance of accidents, injuries and getting killed.28 While there are certainly other behavioral factors 
which may impact accident risk, the insurance industry should focus on speed as the first attribute to 
use with behavioral ratemaking.  

Data shows that speed increases costs of risk 
Since the beginning of the automotive age, it has been known that increasing speed increases the cost 
of driving risks. According to NHTSA, “For more than two decades, speeding has been involved in 
approximately one-third of all motor vehicle fatalities.”29 According to the NHTSA and NTSB, 
speeding causes as many deaths as drunk driving.30 Considering this statistic only includes accidents 
where speed was actually recorded as the cause, speeding fatalities may be understated. Other accidents 
where the initial speed exceeded the speed limit are not included. There is no way to determine how 
many fatalities in these accidents could have been avoided had the initial speed not been excessive. 

 
27 Walters, Michael, Risk Classification Standards, 1981 
28 EKOS Research Associates. Driver attitude to speed and speed management: a quantitative and qualitative study — 
final report. Transport Canada, Report No. TP 14756 E 
(2005)https://www.tc.gc.ca/media/documents/roadsafety/TP14756E.pdf 
29 https://www.nhtsa.gov/risky-driving/speeding 
30 “Speeding kills about as many people each year as drunken driving, NTSB warns”, USA Today, July 25, 2017 

https://www.tc.gc.ca/media/documents/roadsafety/TP14756E.pdf
https://www.nhtsa.gov/risky-driving/speeding
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Slower speeds reduce accident probability 
“At lower speeds, drivers have a wider field of vision and are more likely to notice other road-users.”31 
Before an accident occurs, something unexpected must happen within the minimum distance (this 
could be defined as the distance travelled in two seconds, for example) needed by the driver to make 
normal driving adjustments in speed and direction. When this happens, the driver will undertake 
evasive action to reduce the probability of the accident and potential severity of the accident. The 
smaller this distance is, the less likely it is for an unexpected event to occur within that distance. If the 
initial speed is reduced, the minimum distance is proportionally smaller, so it is less likely for an event 
requiring evasive action to occur. Therefore, a decrease in initial speed decreases accident frequency 
at least proportionally.  

According to Nilsson, speed has a greater than proportional impact on accident frequency. 

or, the number of injury accidents after the change in speed (A2) equals the 
number of accidents before the change (A1) multiplied by the new average speed (v2) divided by the 
former average speed (v1), raised to the square power.32 

Slower speeds reduce accident severity 
Since kinetic energy is proportional to the square of velocity, it can be hypothesized that the cost of 
damage caused by an accident is proportional to the square of speed at impact. This hypothesis is 
borne out by studies.33 While ethical experimental confirmation of how bodily injury costs relate to 
speed of impact is not possible, it can also be hypothesized that bodily injury costs are also 
proportional to the square of the speed.  

How reduced speed impacts expected cost of accidents 
Since total costs are frequency times severity, an X% reduction in speed may cause approximately 
2X% to 3X% reduction in accident costs. This calculation does not consider how other safe driving 
behaviors are likely correlated with slower driving, so more analysis is needed to conclude this 
relationship. While there is a range of driving speeds, it is not uncommon for the average speed on a 
highway segment to be 20% greater than the speed limit. In these cases, for example, a 20% reduction 
in speed could cause a 20% decrease in probability of an accident and a 36%34 reduction in severity 

 
31 Sharpin, Banerjee, Adriazola and Welle. The Need for (Safe) Speed: 4 Surprising Ways Slower Driving Creates Better 
Cities, May 09, 2017, https://www.wri.org/blog/2017/05/need-safe-speed-4-surprising-ways-slower-driving-creates-
better-cities 
32 Nilsson, G. (2004) Traffic safety dimensions and the power model to describe the effect of speed on safety. Bulletin 
221, Lund Institute of Technology, Lund. 
https://ec.europa.eu/transport/road_safety/specialist/knowledge/speed/speed_is_a_central_issue_in_road_safety/spe
ed_and_accident_risk_en 
33 Richards. 2010. Relationship between Speed and Risk of Fatal Injury: Pedestrians and Car Occupants 
34 100% – 80% ^ 2 

https://www.wri.org/blog/2017/05/need-safe-speed-4-surprising-ways-slower-driving-creates-better-cities
https://www.wri.org/blog/2017/05/need-safe-speed-4-surprising-ways-slower-driving-creates-better-cities
https://ec.europa.eu/transport/road_safety/specialist/knowledge/speed/speed_is_a_central_issue_in_road_safety/speed_and_accident_risk_en
https://ec.europa.eu/transport/road_safety/specialist/knowledge/speed/speed_is_a_central_issue_in_road_safety/speed_and_accident_risk_en
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yielding a 49%35 reduction in costs. 

DRIVING ALGORITHMS: PROGRAMMING HUMANS VERSUS CARS 

Programmers will need assistance from the actuarial profession to consider safety within the 
automated driving algorithm. It would be a mistake to assume that automated driving algorithms will 
reduce losses so significantly that actuarial pricing would not be needed. As with any new insurance 
product, actuaries need to understand it to price and underwrite the insurance accurately. Accurate 
insurance pricing will encourage safety in the design. Perhaps actuarial pricing programs can be written 
to apply self-driving algorithms in model driving situations to assess how well adapted it is to avoid 
and reduce severity of accidents. 

“In the future, the actuary will be in the car.”36 With respect to driverless cars, programmers strive to 
create driving algorithms that are at least as safe as a human driver. Automated algorithms will certainly 
reduce some types of accidents such as distracted driving. As long as the driverless car is at least as 
safe as a human driver, implementation will improve safety. Currently, incentive and responsibility to 
significantly improve safety beyond human driving is lacking. There may be minimum requirements 
to obtain and possess an “automated” driving license, but the best incentive for programmers to 
produce safer algorithms would be to reduce insurance costs through behavioral ratemaking. With the 
incentive of saving on the costs of insurance risk it would be possible to experiment with possible 
behaviors to improve telematics attributes and safety. 

Human drivers, too, are not primarily concerned with safety when deciding how they wish to drive. 
As with any automation, programmers should be expected to program automated vehicles to drive 
the way a human driver would drive. This is similar to an individual having the responsibility to decide 
how to drive. In either case, it is the responsibility of the insurance industry to determine how much 
to charge for insurance using the chosen driving behavior as an input. The difference with an 
automated driving algorithm is that there are explicit decisions with respect to risk and safety.  

There are clearly cases where humans are better than automation. Humans appear to be better at 
determining where in the lane to drive37 and better at driving in bad weather.38 Futurists believe that 
the insurance rating formula should be determinable based on the algorithm and placed within the 
program to determine the insurance charges based on the algorithm and other factors such as time, 

 
35 100% - (100% – 20%) x (100% – 36%) 
36 Quote from a programmer on the topic of how autonomous driving will impact insurance pricing at the second annual 
smart driving car summit in Princeton, NJ in May of 2018. 
37 Based on research by Insurance Institute for Highway Safety on vehicles with lane departure warning presented at CAS 
Crash Course in Vehicle Technology and Driverless Cars. JULY 19, 2018 
38 Bloomberg Business Week. Self-Driving Cars Can Handle Neither Rain nor Sleet nor Snow. September 17, 2018. 
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location and mileage of operation. In order to encourage safer and less risky driving algorithms, the 
insurance rating formula should consider driving behaviors of the algorithm. The programmers can 
then consider adjustments to the driving algorithm in consideration of the insurance costs.  

Individual human drivers also have driving algorithms. Their driving behaviors could theoretically be 
reduced to a set of procedures to apply in all situations. Unlike automated driving algorithms, human 
driving algorithms are unknowable. While human driving algorithms may be able to be closely 
approximated based on observed driving behaviors in a great number (probably billions of miles 
would be needed) of situations, they cannot be used directly to determine insurance costs. Due to this 
complexity, the actuarial field may be a long way off from being able to create an insurance pricing 
formula based on an automated driving algorithm, but in the meantime behavioral ratemaking is the 
bridge to getting to that point. In addition to using behavioral ratemaking for human drivers, it can 
also be used for automated vehicles as they become more mainstream. Either way, behavioral 
ratemaking differentiates among various driving behaviors and safety characteristics. Actuarial 
expertise is needed now to connect driving behaviors with risk and in even more so in the future.  

While many seem to have an initial expectation that automated driving may reduce insurance losses 
to near zero, automated driving will have losses for the foreseeable future. It may be many decades 
before fully automated vehicles are on the road.39 In the meantime, there needs to be responsibility 
for understanding the risk consequences. Actuaries are the best profession to ensure that the 
automated driving algorithms of the future adequately consider insurance risks. 

INFLUENCE ON TRAFFIC SAFETY AND LAW ENFORCEMENT 

Since the beginning of the automotive age, society has created rules for the purpose of safety to reduce 
the risks of driving. These rules include obeying traffic signals, speed limits, stop signs, and lane 
markings. It is common knowledge that following driving rules reduces driving hazards. Traditionally, 
traffic enforcement has been an important means of improving traffic safety. Many studies have 
provided evidence of connections between the level of police enforcement and both driving behavior 
and the number of traffic accidents.40 Since insurance companies are largely impacted by these 
financial costs, history shows insurers as being strong advocates of safe driving. Historically, insurance 
companies had no way to determine how well drivers mind driving rules. Other than consideration of 
traffic citations, there was no way to factor rule-following into the rating process. Most breaking of 
driving rules does not result in a traffic citation. Reliable determination of rule breaking is now possible 

 
39 https://www.nhtsa.gov/automated-vehicles/vision-safety. lynn.greenbauer.ctr@dot.gov (11 September 2017). "A 
Vision for Safety: Advancing Automation for Safer Roads ". NHTSA 
40 Stanojevic P, Jovanovic D, Lajunen T. Influence of traffic enforcement on the attitudes and behavior of drivers Accident; 
analysis and prevention. 2013. Mar;52:29–38. 
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with telematics data. 

The general public has all seen drivers use devices to elude traffic cops such as radar detectors. In our 
society, many view traffic cops as bad and that speeding should be accepted and tolerated. An 
important role of government is to enable safe travel. The government sets driving rules such as speed 
limits and should enforce those rules. It is possible that behavioral ratemaking will be better at 
encouraging safe driving than traditional public services messages and law enforcement. Traffic 
regulators may need to work with actuaries and other experts in insurance risk to determine the best 
way to moderate insurance risk. 

There are hundreds of thousands of traffic officers and other individuals dedicated to improving safety 
through speed limit enforcement in this country. There are hundreds of millions of drivers who seem 
to be more concerned about evading law enforcement than safety. There are only a few thousand 
actuaries who can determine how driving behaviors should be considered when addressing actuarial 
fairness to regulators.  

HOW WILL BEHAVIORAL RATEMAKING ENABLE COMPANIES TO 
IMPROVE FLEET SAFETY? 

Businesses that use highways have exposure to driving risks that need to be carefully managed. OSHA 
has published guidelines to help employers manage these risks.41 According to the Royal Society for 
the Prevention of Accidents, “One of the most significant risks . . .  is driving or riding at inappropriate 
speeds on work-related journeys.”42 Because driving behavior is difficult to change for any driver, 
attempting to manage another driver’s behavior is difficult and could be offensive. We may have no 
choice but to trust the driver to be safe. As an example, plan to politely ask your next cab driver to 
drive within the speed limit. While this would be a perfectly reasonable request to manage our own 
risk of bodily harm, you may find it to be a difficult discussion. Commercial vehicles taking various 
levels of risk can be frequently observed. This risk directly translates to financial risk of the drivers’ 
employers. In the past, many employers had limited ability to address this risk until the driver was 
involved in an accident and then, the only recourse may have been termination of the driver. Drivers 
spent their workday out of sight of their employer, and, for example, there may be a temptation to 
attend to non-work-related matters and to catch up on their deliveries by speeding. 

Telematics is now increasing the ability of fleets to manage driving behavior. As there are many 
business reasons other than insurance cost (better service to customers, risk to reputation, etc.) to 

 
41 https://www.osha.gov/Publications/motor_vehicle_guide.html 
42 Driving for Work: Safer Speeds. https://www.rospa.com/rospaweb/docs/advice-services/road-
safety/employers/work-safer-speed.pdf 

https://www.osha.gov/Publications/motor_vehicle_guide.html
https://www.rospa.com/rospaweb/docs/advice-services/road-safety/employers/work-safer-speed.pdf
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reduce driving hazards, companies can use telematics to better manage driving risk. In addition, large 
self-insured companies can reduce insurance costs by making sure their drivers are driving safely. 

For companies too small to self-insure, monetization of driving behavior improvement is extremely 
uncertain in timing and amount. Behavioral ratemaking can create immediate savings for smaller fleet 
managers if they encourage safe driving. 

There is also the possibility that fleets that are successful in improving safety can bring other 
companies drivers or even individual drivers into their program to pass on insurance savings. 

POSSIBLE METHODS TO INSTANTANEOUSLY ADJUST RATES 

Throughout this paper we talk about instantaneously adjusting insurance rates. However, it is not 
entirely intuitive how this might take place since it has never been attempted with respect to US auto 
insurance which is highly regulated. There may be current laws or regulations in some states that would 
prohibit behavioral ratemaking, requiring changes to enable it. In other states, the introduction of a 
behavioral ratemaking might stimulate new laws and regulations to better control and regulate it. 
Similar with other uses of telematics data, may be privacy concerns.43 This concern is reduced for 
behavioral ratemaking because many states already allow the use of telematics data for insurance 
pricing. Depending mainly on acceptability to regulators, and how to guarantee payment of surcharges, 
some possibilities include: 

• Include surcharges as part of a normal rate filing. As a somewhat simplistic example, certain 
policies could have a $0.10 surcharge for every mile driven between 10 and 14 mph greater 
than the speed limit.  

• For assessable mutual insurance policies, include surcharges as assessments.  
• Create a relationship between the insured and a non-insurance company risk bearing entity 

that could change surcharges and take some financial responsibility for encourage safe driving 
behaviors. This concept would not be dissimilar to professional employer organizations taking 
some of the risk of their clients’ workers compensation and employee health insurance 
benefits. 

CONCLUSION 

Speed has long been known to be one of the very most important driving safety factors and may be 
the best behavioral ratemaking risk factor. An insurance scheme with increased rewards for driving 
slower and more safely, that encourages implementation of safer driving practices, would be both 
beneficial and disruptive.  

In the last few years, Insurtech has spawned many ideas to transform insurance. Although there are 
 

43 Insurance Journal. April 10, 2017. Driver Privacy at Risk when Telematics Data Stored in the Cloud: Researchers 
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many Insurtech initiatives to transform the auto insurance industry, most do not appear to be 
disruptive any time soon. This new approach to ratemaking, Behavioral ratemaking, is different and 
would be expected to cause disruption in the near term. The disruptions would be to not only the auto 
insurance industry, but the impact would also affect traffic enforcement policies, road infrastructure 
and car programming. Behavioral ratemaking will encourage safer driving and ultimately lead to safer 
roads.  

Behavioral ratemaking is intended to put the driving population on the path to continuous and 
conscious relearning of safer driving skills. Complete transformation could be a long and difficult 
process, but significant benefits would be expected almost immediately. Regardless of whether 
transformation of driving occurs, behavioral ratemaking is an opportunity to create a successful 
insurance enterprise built upon safety conscious drivers. Behavioral ratemaking will also assist fleet 
management. 

To move ahead with implementation, the industry needs to understand what is needed for an 
Insurtech idea to transform ratemaking and how safety can be aligned with insurance company 
financial goals. When insureds are encouraged to behave more safely, with improved behavior 
confirmed through telematics data, this transformation will benefit society. Examples show that 
insurance pricing can impact behavior. Actuarial ratemaking needs to be considered as part of 
automated driving algorithm creation processes. 

In order to implement behavioral ratemaking, a new method to modify insurance premium 
instantaneously for driving behaviors must receive regulatory acceptance. Many insurance 
professionals witness the gory details of death and serious injury every day. Although their witness 
may only be through insurance claim files, it is otherwise similar to first responders and medical 
personnel. Spirits speak from the grave to focus on safety to give meaning to unnecessary deaths.   
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Applying Maximum Entropy Distributions To Determine 
Actuarial Models 

Jonathan Evans 
 
________________________________________________________________________ 
Abstract  

Maximum information entropy distributions are a powerful and versatile tool for determining actuarial models 
from limited information, not necessarily from sample data, while not introducing unnecessary assumptions. These 
distributions, and potential applications, were presented in a 1967 paper in the Proceedings of the Casualty 
Actuarial Society, with a discussion following in 1968, but afterward effectively forgotten by the CAS community.   
The abandonment was likely primarily due to limited computational resources at the time.  A relationship between 
maximum entropy and maximum likelihood is explained, along with an invariance property of the maximum 
entropy distributions under certain coordinate transforms of random variables.  Applications of maximum entropy 
distributions to determine actuarial models for several practical problems are demonstrated.  Some examples 
demonstrated include determining distributions consistent with the California Workers Compensation Rating 
Bureau’s Tables M and L, and LER tables, determining distributional information sufficient for Bayesian or 
Credibility calculations, multivariate predictive models naturally adapted to special constraints and automatically 
including credibility adjustments that are difficult to incorporate in GLMs. 
 
Keywords: Bayesian Models, Credibility, Information Entropy, Loss Models, Maximum Entropy Distributions, 
Maximum Likelihood Estimation, Predictive Models, Generalized Linear Models 

             

1. BACKGROUND INTRODUCTION 

Information entropy, a central part of Information Theory introduced in 1948 by Claude Shannon 
([16]), is a scalar measure of the uncertainty, or lack of information, in a probability distribution.  The 
entropy of a Uniform Distribution on a finite set of points increases with the number of points. A 
deterministic 100% probability for a single point has the lowest entropy of any distribution on any 
discrete set of points, finite or infinite.  It also happens to be that the entropy of a Normal Distribution 
increases with its standard deviation and is independent of its mean. 

 Maximum information entropy distributions are a powerful and versatile tool for determining 
actuarial models, particularly with respect to the objective of parsimony, when information is limited.  
In cases where the specified constraints, implied by what information is available, are not sufficient to 
uniquely determine a probability distribution, entropy maximization can often be used to determine a 
distribution that satisfies the constraints, but otherwise assumes the least additional information.  It is 
important to bear in mind that these constraints do not have to derive from a sample of data 
observations.  They may come from any source of information, such as expert opinion, knowledge 
about the underlying data generating mechanism, generic assumptions, etc.  Even if the constraints 
are derived from a data sample, they are sufficient statistics for a maximum entropy distribution, and 
it is not necessary to have the details of the sample itself.   It is also not necessary to specify any 
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underlying statistical framework, Frequentist or Bayesian, of hypothesized models.  Maximum entropy 
distributions may have significant predictive value, but there is no intrinsic need for prediction 
performance fitting or testing procedure. 

Example 1.1 Selecting The Highest Entropy Model That Satisfies A Basic Constraint 

Losses are known to be non-negative with mean 10,000 but no other information is known about the 
distribution of losses and no sample data is given.  There are many distributions satisfying these 
constraints, including: 

Some 
Distributions 

Meeting 
Constraints 

Density Function 
Information 

Entropy 

Wide Uniform 
1

20000
        𝑥𝑥 ∈ [0, 20000] 9.90349 

Narrow 
Uniform 

1
2000

        𝑥𝑥 ∈ [9000, 11000] 7.6009 

Lognormal 

 (𝜎𝜎 = 1) 

𝑒𝑒𝑥𝑥𝑒𝑒 �−�1
2�  �1

2 − 𝑙𝑙𝑙𝑙𝑙𝑙(10000) + log (𝑥𝑥)�
2
�

𝑥𝑥√2𝜋𝜋
 

10.1293 

Exponential 0.0001 𝑒𝑒𝑥𝑥𝑒𝑒(−0.0001 𝑥𝑥) 10.2103 

Pareto 

(min loss =100) 

10000 × 102/99

99
𝑥𝑥−199/99 6.58512 

It makes sense to use the distribution with the highest entropy, in this case the Exponential 
Distribution, to minimize unnecessary implicit assumptions.  In fact, the Exponential Distribution has 
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the maximum entropy of any distribution that fits the given constraints.  Note, maximum entropy as 
used here for model selection is distinct from information criteria such as AIC, BIC, etc. (see Appendix 
B), which could not be used in this situation because no sample data is given. 

Maximum information entropy distributions, and potential applications, were presented in a 1967 
paper, with the very appropriate name “A Discipline for the Avoidance of Unnecessary Assumptions,” 
in the Proceedings of the Casualty Actuarial Society (PCAS), (Roberts [14] with a discussion following 
in 1968 by Hurley [9]).  The Roberts [14] and Hurley [9] papers are excellent references, and readers 
are strongly encouraged to become familiar with these papers as background for understanding this 
paper, including a more thorough treatment of the meaning of entropy.  At the time of this writing, 
the Wikipedia article “Maximum Entropy Probability Distribution,” (see [16]) is also a very useful 
additional source of information.  In this paper we focus on areas of actuarial application, with many 
examples, along with some important general properties of maximum entropy distributions. 

In the half century following [14] and [9], knowledge of maximum entropy distributions was 
effectively forgotten by the CAS community.   Some of the very rare exceptions with some mention 
of information entropy were: the use of entropy for constructing automobile rating territories (see 
Conger [7]) in 1987, a proposed unified approach to pricing risk (see Kull [10]) in 2003, an application 
to jump diffusion processes in 2013 (see McKean [13]), and cross entropy applied with machine 
learning (see Chalk and McMurtrie [6]) in 2016.  An interesting non-actuarial application of maximum 
entropy to financial risk management in 2015 is Geman, Geman, and Taleb [8], showing what effect 
that constraints on the probability of ruin and the expected shortfall conditional on ruin will have on 
the returns of an investment portfolio. 

The general abandonment of maximum entropy applications by the CAS was most likely a 
consequence of limitations in computing power available to actuaries in the 1960s when [14] and [9] 
appeared in the PCAS and in subsequent decades.  A secondary reason may have been the focus on 
directly data driven and less computationally intense statistical methods, such as Generalized Linear 
Models (GLMs) and Credibility Models.  Even in the absence of computing power, it is unfortunate 
that CAS actuaries have not been generally aware of the maximum entropy derivation of common 
distributional forms.  Most of these common forms (Exponential, Normal, Lognormal, Gamma, etc.)  
correspond to maximum entropy distributions given certain constraints (see table of common 
distributions by maximum entropy constraints in [17]).  This knowledge can be useful in selecting 
which common forms to apply in a given application.  For example, if the constraints in Example 1.1 
had been stated in terms of the first two moments of the logarithm of the loss, instead of the first 
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moment of the loss itself, a fitted Lognormal Distribution would have had the highest entropy. 

This paper demonstrates the application of maximum entropy distributions to determine actuarial 
models in types of problems that often occur in actuarial practice.  Section 2 is a basic introduction to 
the mathematical definition of information entropy.  Section 3 covers the general format for the 
distributional density and generalized moment constraint equations that can be solved to determine a 
maximum entropy distribution given a particular limited amount of information.  Section 4 
demonstrates that fitting maximum entropy distributions in the format shown in Section 3 is 
equivalent to solving for maximum likelihood, for the special case when a sample of observations is 
given whose sample generalized moments have the same values as those specified in the constraints 
from the Section 3 format.  Section 5 shows that maximizing entropy before or after certain coordinate 
transformations of a random variable are applied, as long as the constraint equations are consistently 
transformed. Note, the material in Sections 4 and 5 is well known outside of the actuarial community.   
It is presented here for the benefit of the actuarial readership and not claimed as original results.  
Section 6 consists of further useful examples for problems that are common in actuarial practice.  
Section 7 introduces a general framework for applying maximum entropy distributions to determine 
multivariate predictive models that can also naturally include special constraints and/or 
Bayesian/Credibility type adjustments that are difficulty to include in Generalized Linear Models 
(GLMs). Appendix A contains a brief discussion of computational and software coding challenges.  
Appendix B clarifies of some confusion reviewers of an earlier draft of this paper had, identifying 
maximum entropy distributions with several other very different things.  Importantly, applying 
maximum entropy distributions is quite distinct from applying the information criteria (AIC, BIC, etc.) 
that were first introduced in the 1970s (see [1], [2], [3], [4], and [15]) for selection between different 
hypothesized models given sample data.  It is also distinct from the ordinary technique of matching 
moments or statistical techniques where use of the exponential family of distributions is central, such 
as Generalized Linear Models (GLMs) and exact credibility.  

 

2.  INFORMATION ENTROPY 

The information entropy of a probability distribution is a measure of the extent of lack of information.  
For probabilities 𝑒𝑒𝑖𝑖 on a finite set of points {𝑥𝑥1, … , 𝑥𝑥𝑛𝑛} the information entropy is defined as: 
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𝑆𝑆 = −�𝑒𝑒𝑖𝑖 𝑙𝑙𝑙𝑙𝑙𝑙(𝑒𝑒𝑖𝑖)
𝑛𝑛

𝑖𝑖=1

 
(1) 

with the convention that if    𝑒𝑒𝑖𝑖 = 0, then  𝑒𝑒𝑖𝑖 𝑙𝑙𝑙𝑙𝑙𝑙(𝑒𝑒𝑖𝑖) = lim
𝑝𝑝→0+

𝑒𝑒 log(𝑒𝑒) = 0. 

The maximum possible entropy for 𝑛𝑛 points is 𝑙𝑙𝑙𝑙𝑙𝑙(𝑛𝑛) for the uniform distribution 𝑒𝑒𝑖𝑖 = 1
𝑛𝑛
 , and 

the minimum possible entropy is 0 for a single point mass distribution 𝑒𝑒𝑘𝑘 = 1, 𝑒𝑒𝑖𝑖≠𝑘𝑘 = 0 .  

Information gain is equivalent to the loss of entropy.  A realized outcome in this example lowers the 

entropy (increases information) by 𝑙𝑙𝑙𝑙𝑙𝑙(𝑛𝑛).  Changing from natural logarithmic base 𝑒𝑒 to another 

logarithmic base  𝑏𝑏 > 1 would only have the effect of multiplying 𝑆𝑆 by log (𝑏𝑏) > 0 , which would 

not change the relative order of different distributions as ranked by 𝑆𝑆.   This definition for information 

entropy can easily be generalized, with some care to measure theoretic issues, to infinite discrete sets 

and continuous probability distributions, with the integral expression for 𝑆𝑆 in the continuous setting: 

𝑆𝑆 = −�𝑒𝑒(𝑥𝑥) 𝑙𝑙𝑙𝑙𝑙𝑙 �𝑒𝑒(𝑥𝑥)� 𝑑𝑑𝑥𝑥 
(2) 

For continuous distributions the entropy S can be negative.  Thus, entropy for continuous 

distributions, though serving the same purpose and generally having the same properties, is not directly 

comparable to entropy for discrete distributions.  Sometimes entropy for continuous distributions is 

referred to by a term other than “Information Entropy,” such as “Differential Entropy.”  We will 

mostly focus on continuous distributions and the integral expression (2), but results will typically also 

be valid in the discrete setting. 
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Example 2.1 Entropy of A Normal Distribution Is An Unbounded Increasing Function Of 
Standard Deviation Independent Of Mean 

 

For a Normal Distribution the information entropy will only depend on the standard deviation 

parameter 𝜎𝜎 since 𝑆𝑆 as defined in (2) is invariant under translation of x by an additive constant.  The 

entropy is 𝑆𝑆 =  1
2

log (2𝜋𝜋𝑒𝑒) + log (𝜎𝜎) an increasing function of 𝜎𝜎, such that lim
𝜎𝜎→0

𝑆𝑆 = −∞ and 

lim
𝜎𝜎→∞

𝑆𝑆 = +∞ . 

Example 2.2 Incomparability of Discrete And Continuous Entropy 

A discrete single point mass at 𝑥𝑥 = 1 has entropy 0, but a continuous uniform distribution for 𝑥𝑥 ∈
[0.9, 1.1] has a lower entropy of -1.60944, although it clearly contains less information than the point 
mass. 

 
Information entropy is not necessarily correlative with typical concepts or measures of quantitative 

risk.  It is sensitive to the distribution of probability among different possible outcomes, but it is 
insensitive to the relative magnitudes of these outcomes. 

Example 2.3 Incommensurability Of Information Entropy And Quantitative Risk 

A discrete uniform distribution on two possible outcomes has the same information entropy, log (2), 
whether the possible outcome set is {1, 2} or  {1, 109}.  Similarly, the information entropy for a 
uniform continuous distribution on the interval [0, 1] is the same value 0 as for a continuous uniform 
distribution on the union [0, 0.5] ∪ [109, 109 +  0.5] of two far apart intervals. 

 
Although we will mostly present examples and properties for a scalar random variable, it is usually 

possible to extend the examples and properties that follow to vector, or multi-variate, random 
variables.  Section 7 will focus on the multivariate context. 
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3.  MAXIMUM ENTROPY PROBABILITY DISTRIBUTIONS 

Suppose the following form for the density function, whether the random variable 𝑋𝑋 is discrete or 
continuous, for measurable functions {𝑙𝑙1(𝑥𝑥), … ,𝑙𝑙𝑚𝑚(𝑥𝑥)}, which will be called generalized moment 
functions: 

𝑒𝑒(𝑥𝑥) = 𝑒𝑒𝑥𝑥𝑒𝑒�−𝑎𝑎0 − 𝑎𝑎1𝑙𝑙1(𝑥𝑥) −   …  − 𝑎𝑎𝑚𝑚𝑙𝑙𝑚𝑚(𝑥𝑥)� (3) 

Define 𝑚𝑚 generalized moments of this distribution as: 

𝐸𝐸[𝑙𝑙𝑖𝑖(𝑋𝑋)] = �𝑙𝑙𝑖𝑖(𝑥𝑥) 𝑒𝑒𝑥𝑥𝑒𝑒�−𝑎𝑎0 − 𝑎𝑎1𝑙𝑙1(𝑥𝑥) −   …  − 𝑎𝑎𝑚𝑚𝑙𝑙𝑚𝑚(𝑥𝑥)� 𝑑𝑑𝑥𝑥 = 𝑐𝑐𝑖𝑖 (4) 

It can be shown though Lagrange Multipliers (see [14] and further references listed there to papers 
by Jaynes and Tribus) that 𝑒𝑒(𝑥𝑥) has the highest entropy of any distribution having these specific values 
𝑐𝑐𝑖𝑖 for these 𝑚𝑚 generalized moments.  Often the given constraints on a probability distribution, in a 
specific application problem, can be expressed in the form equations 𝐸𝐸[𝑙𝑙𝑖𝑖(𝑋𝑋)] = 𝑐𝑐𝑖𝑖  together with 
the formal normalization constraint 𝐸𝐸[1] = 1,   for a set of functions 𝑙𝑙𝑖𝑖(𝑥𝑥)  and a set of constants 
𝑐𝑐𝑖𝑖 .  Therefore, if it is possible to solve for the parameter values {𝑎𝑎0,𝑎𝑎1, … , 𝑎𝑎𝑚𝑚} so that these 
constraints equations are satisfied by 𝑒𝑒(𝑥𝑥), then 𝑒𝑒(𝑥𝑥) has the highest entropy of any distribution 
satisfying these constraints.  

Equation (3) is a very general form in that an arbitrary density may be stated in many ways that fit 
this form, although some or all of the parameters of the original density may be embedded in the 
functions 𝑙𝑙𝑖𝑖(𝑥𝑥) rather than corresponding to {𝑎𝑎0,𝑎𝑎1, … , 𝑎𝑎𝑚𝑚}.  A trivial form for any density is: 

𝑒𝑒(𝑥𝑥) = 𝑒𝑒𝑥𝑥𝑒𝑒(−𝑎𝑎0 − 𝑎𝑎1log (𝑒𝑒(𝑥𝑥))          𝑎𝑎0 = 0       𝑎𝑎1 = 1    (5) 

For convenience 𝑎𝑎0 can be stated in terms of the normalization formula (6), leaving only the 𝑚𝑚 
other constraint equations that need to be solved such that (6) has a finite value so that the 
normalization constraint is automatically satisfied. 

𝑎𝑎0(𝑎𝑎1, … ,𝑎𝑎𝑚𝑚) = 𝐿𝐿𝑙𝑙𝑙𝑙 ��𝑒𝑒𝑥𝑥𝑒𝑒�−𝑎𝑎1𝑙𝑙1(𝑥𝑥) −   …  − 𝑎𝑎𝑚𝑚𝑙𝑙𝑚𝑚(𝑥𝑥)� 𝑑𝑑𝑥𝑥� (6) 

Then the generalized moments can be expressed as: 
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𝐸𝐸[𝑙𝑙𝑖𝑖(𝑥𝑥)] = −
𝜕𝜕𝑎𝑎0
𝜕𝜕𝑎𝑎𝑖𝑖

 (7) 

The following formula for the variance of the moment functions is also potentially useful: 

𝑉𝑉𝑎𝑎𝑉𝑉[𝑙𝑙𝑖𝑖(𝑥𝑥)] =
𝜕𝜕2𝑎𝑎0
𝜕𝜕𝑎𝑎𝑖𝑖2

 (8) 

Example 3.1 Maximum Entropy Distribution Determined with Very Limited Information 
About Losses 

 
A reinsurer has only the following very limited information about the losses for individual claims but 
needs to completely determine the per claim loss distribution to price excess layers. 

• 90% of claims are under 100,000 
• The mean of the unlimited layer excess of 10 million is 1 million 

Let the moment functions be: 

𝑙𝑙1(𝑥𝑥) = 1   𝑖𝑖𝑖𝑖 𝑥𝑥 ∈ [0, 105)   
 

= 0  𝑖𝑖𝑖𝑖 𝑥𝑥 ∈ [105, +∞) 
 

𝑙𝑙2(𝑥𝑥) = 𝑀𝑀𝑎𝑎𝑥𝑥(0, 𝑥𝑥 − 107) 
 

Then the maximum entropy density form is: 

 

𝑒𝑒(𝑥𝑥) = 𝑒𝑒𝑥𝑥𝑒𝑒(−𝑎𝑎0 − 𝑎𝑎1)  𝑖𝑖𝑖𝑖𝑥𝑥 ∈ [0, 105] 

=   𝑒𝑒𝑥𝑥𝑒𝑒(−𝑎𝑎0)  𝑖𝑖𝑖𝑖  𝑥𝑥 ∈ (105, 107) 

= 𝑒𝑒𝑥𝑥𝑒𝑒(−𝑎𝑎0 − 𝑎𝑎2(𝑥𝑥 − 107))  𝑖𝑖𝑖𝑖𝑥𝑥 ∈ (107, +∞) 

 

The normalization parameter is: 

 

𝑎𝑎0 = 𝑙𝑙𝑙𝑙𝑙𝑙 �105𝑒𝑒𝑥𝑥𝑒𝑒(−𝑎𝑎1) + (107 − 105) +
1
𝑎𝑎2
� 
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The constraint equations are: 

 
105𝑒𝑒𝑥𝑥𝑒𝑒(−𝑎𝑎1)

105𝑒𝑒𝑥𝑥𝑒𝑒(−𝑎𝑎1) + (107 − 105) + 1
𝑎𝑎2

= 0.9 

 
 

(1/𝑎𝑎2)2

105𝑒𝑒𝑥𝑥𝑒𝑒(−𝑎𝑎1) + (107 − 105) + 1
𝑎𝑎2

= 106 

 
Numerical rooting finding leads to: 

 
𝑎𝑎0 = 19.3776  𝑎𝑎1 = −7.75927 𝑎𝑎2 = 6.19750 × 10−8 

 
Using 𝑒𝑒(𝑥𝑥), the ground up loss has mean 1.86 million and standard deviation 7.5 million, for a 
404% coefficient of variation.  The expected losses for excess layers of interest can be calculated: 

Table 3.1 Some Layer Calculations For Maximum Entropy Solution In Example 3.1 

 

Attachment Limit Expected Loss 
Probability a Loss 

Hits Layer 
0 100,000  55,000  100.0% 

100,000 400,000  39,693  10.0% 
500,000 500,000  48,752  9.8% 

1,000,000 4,000,000  355,446  9.7% 
5,000,000 5,000,000  357,887  8.1% 

10,000,000 10,000,000  461,922  6.2% 
20,000,000 30,000,000  454,253  3.3% 
50,000,000 50,000,000  80,046  0.5% 

100,000,000 Infinity  3,781  0.02% 
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Figure 3.1 Density Of Maximum Entropy Solution In Example 3.1 

  

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

De
ns

ity
 (a

dj
us

te
d 

to
 lo

g 
sc

al
e)

Loss (log scale)



Applying Maximum Entropy Distributions to Determine Actuarial Models 
 

Casualty Actuarial Society E-Forum, Winter 2020 11 

However, often even for mathematically consistent constraints there is no maximum entropy 
distribution. 

Example 3.2 Some Constraints Where No Maximum Entropy Distribution Exists 

 
A non-negative random variable has 90% probability of being less than 1000.  These constraints are 
satisfied by the family of densities: 

 

𝑒𝑒(𝑥𝑥) = 0.0009  𝑖𝑖𝑖𝑖  𝑥𝑥 ∈ [0, 1000) 

=   
0.1
𝐿𝐿

  𝑖𝑖𝑖𝑖  𝑥𝑥 ∈ [1000, 1000 + 𝐿𝐿) 

=   0  𝑖𝑖𝑖𝑖  𝑥𝑥 ≥ 1000 + 𝐿𝐿 

A maximum entropy distribution cannot exist, because the entropy of a member of this family is an 

increasing function of L with no upper bound: 

𝑆𝑆(𝐿𝐿) =  −0.9 log(0.0009) + 0.1 log (10 𝐿𝐿) 

Example 3.3 Maximum Entropy Distribution for A Bounded Number Of Claim Counts 

 
A certain type of insurance policy is limited to a maximum of 5 claims per year, and historically these 
policies have averaged 0.7 claims per year.  The maximum entropy distribution for the annual number 
of claims can be found as:  

 

𝑎𝑎0 = 𝑙𝑙𝑙𝑙𝑙𝑙 �� exp (
5

𝑘𝑘=0

− 𝑎𝑎1𝑘𝑘)� 

 

−
𝜕𝜕𝑎𝑎0
𝜕𝜕𝑎𝑎1

 =
∑ k exp (5
𝑘𝑘=0 − 𝑎𝑎1𝑘𝑘)
∑ exp (5
𝑘𝑘=0 − 𝑎𝑎1𝑘𝑘)

= 0.7 

 
𝑎𝑎0 = 0.545133  𝑎𝑎1 = 0.859003 
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Table 3.2 Density Of Maximum Entropy Solution In Example 3.3 

 
Number of Claims Probability 

0 58.0% 
1 24.6% 
2 10.4% 
3 4.4% 
4 1.9% 
5 0.8% 

Figure 3.2 Density of Maximum Entropy Solution In Example 3.3 
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4. A RELATIONSHIP BETWEEN MAXIMUM ENTROPY AND 
MAXIMUM LIKELIHOOD 

The maximum entropy form (3) may be determined for the given constraints, without any sample 

of data.  However, there is a general relationship between maximum likelihood estimation (MLE) for 

a density of the form (3) on a sample of observations {𝑥𝑥1, … , 𝑥𝑥𝑛𝑛} and maximizing entropy such that 

the generalized moments (4) of the density are equal to the sample values  1
𝑛𝑛
∑ 𝑙𝑙𝑖𝑖�𝑥𝑥𝑗𝑗�𝑗𝑗=1,..,𝑛𝑛 .  This 

makes sense as form (3) is a subset of the exponential family with the generalized moment functions 

{𝑙𝑙1(𝑥𝑥), … ,𝑙𝑙𝑚𝑚(𝑥𝑥)}  fitting in the position of the sufficient statistics functions.  For a fixed parametric 

distributional form, such as form (3), the sufficient statistics, that is sample averages for these functions, 

include all information about determining the parameters that can be obtained from a given sample. 

Put another way, often an MLE fit is – even if unknowingly to the practitioner - a maximum entropy 

distribution for constraints based on sufficient statistics implicit in a distribution from the exponential 

family and their values when applied to the sample data. 

Given a sample of observations {𝑥𝑥1, … , 𝑥𝑥𝑛𝑛} and specific moment functions {𝑙𝑙1(𝑥𝑥), … ,𝑙𝑙𝑚𝑚(𝑥𝑥)} 

the log-likelihood function for the distributional form given in (3) is: 

log (𝐿𝐿(𝑎𝑎1, … ,𝑎𝑎𝑚𝑚)) = � �−𝑎𝑎0(𝑎𝑎1, … ,𝑎𝑎𝑚𝑚) − 𝑎𝑎1𝑙𝑙1�𝑥𝑥𝑗𝑗� −   …  − 𝑎𝑎𝑚𝑚𝑙𝑙𝑚𝑚�𝑥𝑥𝑗𝑗��
𝑗𝑗=1,..,𝑛𝑛

 
(9) 

If  (𝑎𝑎1, … , 𝑎𝑎𝑚𝑚)∗ is a maximum likelihood solution for (9) then: 

𝜕𝜕log (𝐿𝐿(𝑎𝑎1, … ,𝑎𝑎𝑚𝑚))
𝜕𝜕𝑎𝑎𝑖𝑖

�
(𝑎𝑎1,…,𝑎𝑎𝑚𝑚)∗

=  −𝑛𝑛 
𝜕𝜕𝑎𝑎0
𝜕𝜕𝑎𝑎𝑖𝑖

�
(𝑎𝑎1,…,𝑎𝑎𝑚𝑚)∗

−  � 𝑙𝑙𝑖𝑖�𝑥𝑥𝑗𝑗�
𝑗𝑗=1,..,𝑛𝑛

= 0 
(10) 

Consequently: 
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𝐸𝐸[𝑙𝑙𝑖𝑖(𝑋𝑋)]  = −
𝜕𝜕𝑎𝑎0
𝜕𝜕𝑎𝑎𝑖𝑖

�
(𝑎𝑎1,…,𝑎𝑎𝑚𝑚)∗

 =  
1
𝑛𝑛

� 𝑙𝑙𝑖𝑖�𝑥𝑥𝑗𝑗�
𝑗𝑗=1,..,𝑛𝑛

 
(11) 

 

So, in addition to (𝑎𝑎1, … , 𝑎𝑎𝑚𝑚)∗ maximizing likelihood for the distributional form (3) given the 

sample observations, the resulting distribution is also the maximum entropy distribution constrained 

to have the same values for generalized moments 𝐸𝐸[𝑙𝑙𝑖𝑖(𝑥𝑥)] as the sample averages for these 

generalized moments  1
𝑛𝑛
∑ 𝑙𝑙𝑖𝑖�𝑥𝑥𝑗𝑗�𝑗𝑗=1,..,𝑛𝑛 .  That is to say that maximizing the likelihood for a 

distributional form like (3) on a sample, is the same as finding the maximum entropy distribution 

whose generalized moments corresponding to the functions {𝑙𝑙1(𝑥𝑥), … ,𝑙𝑙𝑚𝑚(𝑥𝑥)}  are matched to the 

sample averages of the functions.  

Alternately, if (𝑎𝑎1, … ,𝑎𝑎𝑚𝑚)∗ satisfies (11), and hence (3) will be the density of the maximum entropy 

distribution for the constraints (11), then  (𝑎𝑎1, … , 𝑎𝑎𝑚𝑚)∗ will automatically be a critical point of the 

loglikelihood function in (9).  The elements of the Hessian matrix of the loglikelihood in (9) can be 

shown to be:  

𝐻𝐻𝑖𝑖,𝑗𝑗 = −
𝜕𝜕2𝑎𝑎0
𝜕𝜕𝑎𝑎𝑖𝑖𝜕𝜕𝑎𝑎𝑗𝑗

= −𝐸𝐸�𝑙𝑙𝑖𝑖(𝑋𝑋)𝑙𝑙𝑗𝑗(𝑋𝑋)� + 𝐸𝐸[𝑙𝑙𝑖𝑖(𝑋𝑋)]𝐸𝐸[𝑙𝑙𝑗𝑗(𝑋𝑋)] = −𝐶𝐶𝑙𝑙𝐶𝐶[𝑙𝑙𝑖𝑖(𝑋𝑋)𝑙𝑙𝑗𝑗(𝑋𝑋)] (12) 

 

The determinant of the covariance matrix of a set of linearly independent random variables (none 

of which is a trivial point mass) will be positive since it is similar to the diagonal matrix of the variances. 

Consequently, the determinant of this Hessian must be negative for all points (𝑎𝑎1, … , 𝑎𝑎𝑚𝑚) that 

correspond to a legitimate density.  So, the critical point is also a global maximum.  (Note:  If the 
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random variables 𝑙𝑙𝑖𝑖(𝑋𝑋) are linearly dependent then the original set of generalized moment functions 

𝑙𝑙𝑖𝑖(𝑥𝑥), and their corresponding constraint equations, can be reduced through a linear transformation 

into a smaller linear independent set.  If any of the 𝑙𝑙𝑖𝑖(𝑋𝑋) are point masses, these can be split out with 

their constraint equations automatically yielding point mass probabilities.  Therefore, the original 

maximum entropy form and constraint equations can be restated to eliminate any linearly dependent 

and/or point mass generalized moments.) 

Example 4.1 Maximizing Likelihood for a Normal Distribution Is Equivalent to Maximizing 
Entropy Given the Mean and Standard Deviation 

 
A Normal Distribution with mean 𝜇𝜇 and standard deviation 𝜎𝜎 has density: 
 

𝑒𝑒(𝑥𝑥) =
𝑒𝑒𝑥𝑥𝑒𝑒 �− (𝑥𝑥 − 𝜇𝜇)2

2 𝜎𝜎2 �

𝜎𝜎√2𝜋𝜋
= 𝑒𝑒𝑥𝑥𝑒𝑒�−�

𝜇𝜇2
𝜎𝜎2 + log�𝜎𝜎√2𝜋𝜋�

2 � + �
𝜇𝜇 
𝜎𝜎2
� 𝑥𝑥 − �

1 
2𝜎𝜎2�

𝑥𝑥2� 

 
This is clearly the maximum entropy form for 𝑙𝑙1(𝑥𝑥) = 𝑥𝑥 and 𝑙𝑙2(𝑥𝑥) = 𝑥𝑥2 with moments 

 𝐸𝐸[𝑙𝑙1(𝑥𝑥)] = 𝜇𝜇  and 𝐸𝐸[𝑙𝑙2(𝑥𝑥)] = 𝜎𝜎2 + 𝜇𝜇2 .  The maximum likelihood estimators for a sample  

{𝑥𝑥1, … , 𝑥𝑥𝑛𝑛} are given by the familiar formulas:   �̂�𝜇 = 1
𝑛𝑛
∑ 𝑥𝑥𝑖𝑖𝑖𝑖=1,…,𝑛𝑛   and  𝜎𝜎�2 = �1

𝑛𝑛
∑ 𝑥𝑥𝑖𝑖2𝑖𝑖=1,…,𝑛𝑛 � − �̂�𝜇2  

When these estimators are used for the parameters, the moments of the distribution are set equal to 

the sample moments:   𝐸𝐸[𝑙𝑙1(𝑥𝑥)] = 1
𝑛𝑛
∑ 𝑥𝑥𝑖𝑖𝑖𝑖=1,…,𝑛𝑛    and   𝐸𝐸[𝑙𝑙2(𝑥𝑥)] = 1

𝑛𝑛
∑ 𝑥𝑥𝑖𝑖2𝑖𝑖=1,…,𝑛𝑛   and this 

maximum likelihood solution for the Normal Distribution is also the maximum entropy distribution 

for a real valued random variable with these specified moments. 



Applying Maximum Entropy Distributions to Determine Actuarial Models 
 

Casualty Actuarial Society E-Forum, Winter 2020 16 

5. AN INVARIANCE PROPERTY OF MAXIMUM ENTROPY 
DISTRIBUTIONS UNDER CERTAIN COORDINATE 
TRANSFORMATIONS 

Some coordinate transformations, that is certain smooth invertible functions of a continuous 
variable X, along with the correspondingly transformed generalized moment functions will result in 
the same maximum entropy distribution as if the maximum entropy distribution is determined before 
the coordinate transformation and then transformed.  Note however, the value of the information 
entropy itself may change under these coordinate transformations. 

Suppose  𝑋𝑋 = 𝑖𝑖(𝑌𝑌) , where 𝑖𝑖(𝑌𝑌) is differentiable and invertible.  Then the equivalent transformed 
density of the maximum entropy form of 𝑒𝑒(𝑥𝑥) from (3) is: 

𝑞𝑞(𝑦𝑦) = 𝑒𝑒𝑥𝑥𝑒𝑒�−𝑎𝑎0 − 𝑎𝑎1𝑙𝑙1(𝑖𝑖(𝑦𝑦)) −   …  − 𝑎𝑎𝑚𝑚𝑙𝑙𝑚𝑚(𝑖𝑖(𝑦𝑦))�|𝑖𝑖′(𝑦𝑦)| (13) 

The transformed generalized moment equations (4) will be: 

𝐸𝐸[ℎ𝑖𝑖(𝑌𝑌)] = 𝑐𝑐𝑖𝑖        ℎ𝑖𝑖(𝑌𝑌) = 𝑙𝑙𝑖𝑖(𝑖𝑖(𝑌𝑌)) (14) 

These equations will still be satisfied because: 

�𝑙𝑙𝑖𝑖(𝑥𝑥) 𝑒𝑒𝑥𝑥𝑒𝑒�−𝑎𝑎0 − 𝑎𝑎1𝑙𝑙1(𝑥𝑥) −   …  − 𝑎𝑎𝑚𝑚𝑙𝑙𝑚𝑚(𝑥𝑥)� 𝑑𝑑𝑥𝑥 =  

= �𝑙𝑙𝑖𝑖(𝑖𝑖(𝑦𝑦)) 𝑒𝑒𝑥𝑥𝑒𝑒�−𝑎𝑎0 − 𝑎𝑎1𝑙𝑙1(𝑖𝑖(𝑦𝑦)) −   …  − 𝑎𝑎𝑚𝑚𝑙𝑙𝑚𝑚(𝑖𝑖(𝑦𝑦))�  |𝑖𝑖′(𝑦𝑦)| 𝑑𝑑𝑦𝑦 

= �ℎ𝑖𝑖(𝑦𝑦) 𝑒𝑒𝑥𝑥𝑒𝑒�−𝑎𝑎0 − 𝑎𝑎1ℎ1(𝑦𝑦) −   …  − 𝑎𝑎𝑚𝑚ℎ𝑚𝑚(𝑦𝑦)� |𝑖𝑖′(𝑦𝑦)| 𝑑𝑑𝑦𝑦  

(15) 

Furthermore, if |𝑖𝑖′(𝑦𝑦)| can be expressed in the form: 

 

|𝑖𝑖′(𝑦𝑦)| = 𝑒𝑒𝑥𝑥𝑒𝑒�−𝑏𝑏0 − 𝑏𝑏1ℎ1(𝑦𝑦) −   …  − 𝑏𝑏𝑚𝑚ℎ𝑚𝑚(𝑦𝑦)� (16) 

then: 
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𝑞𝑞(𝑦𝑦) = 𝑒𝑒𝑥𝑥𝑒𝑒�−(𝑎𝑎0 + 𝑏𝑏0) − (𝑎𝑎1 + 𝑏𝑏1)ℎ1(𝑦𝑦) −   …  − (𝑎𝑎𝑚𝑚+𝑏𝑏𝑚𝑚)ℎ𝑚𝑚(𝑦𝑦)�  (17) 

 

is the maximum entropy distribution for the transformed constraints 𝐸𝐸[ℎ𝑖𝑖(𝑦𝑦)] = 𝐸𝐸[𝑙𝑙𝑖𝑖(𝑖𝑖(𝑥𝑥))] = 𝑐𝑐𝑖𝑖 .  
Therefore, as long as the generalized moment functions are consistently transformed, and |𝑖𝑖′(𝑦𝑦)| can 
also be expressed in the standard maximum entropy form in the transformed space, it does not matter 
if the maximum entropy distribution is solved before or after the coordinate transform. 

Example 5.1 Maximum Entropy Equivalence Between Normal Distribution And Lognormal 
Distribution 

 
Suppose 𝑋𝑋 = log (𝑌𝑌), the support of X is (−∞, +∞), the support of Y is (0, +∞), and the given 

constraints are 𝐸𝐸[𝑋𝑋] = 0 and 𝐸𝐸[𝑋𝑋2] = 1, then the maximum entropy distribution is the Normal 

Distribution with density: 

𝑒𝑒(𝑥𝑥) = exp (−𝑥𝑥2/2)
√2𝜋𝜋

  , which would transform to 𝑞𝑞(𝑦𝑦) = exp (−𝑙𝑙𝑙𝑙𝑙𝑙(𝑦𝑦)2/2)
𝑦𝑦 √2𝜋𝜋

 , the density of a Lognormal 

Distribution that is the maximum entropy distribution for the constraints 𝐸𝐸[𝑙𝑙𝑙𝑙𝑙𝑙(𝑌𝑌)] = 0 and 

𝐸𝐸[𝑙𝑙𝑙𝑙𝑙𝑙(𝑌𝑌)2] = 1. 

Example 5.2 Counterexample - Maximum Entropy Non-Equivalence Under 
Transformation  

If we repeat Example 5.1 using only the second constraint, 𝐸𝐸[𝑋𝑋2] = 1 then the maximum entropy 

distribution is still the Normal Distribution with density: 

𝑒𝑒(𝑥𝑥) = exp (−𝑥𝑥2/2)
√2𝜋𝜋

  , which would also still transform to 𝑞𝑞(𝑦𝑦) = exp (−𝑙𝑙𝑙𝑙𝑙𝑙(𝑦𝑦)2/2)
𝑦𝑦 √2𝜋𝜋

 , the density of a 

Lognormal Distribution that is the maximum entropy distribution for the constraints 𝐸𝐸[𝑙𝑙𝑙𝑙𝑙𝑙(𝑌𝑌)] = 0 

and 𝐸𝐸[𝑙𝑙𝑙𝑙𝑙𝑙(𝑌𝑌)2] = 1.  However, the maximum entropy distribution under only the relevant 
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transformed constraint 𝐸𝐸[𝑙𝑙𝑙𝑙𝑙𝑙(𝑌𝑌)2] = 1 would be 𝑉𝑉(𝑦𝑦) = �𝑎𝑎
𝜋𝜋

exp (−𝑎𝑎 log(𝑦𝑦)2 − 𝑎𝑎/4)  with 𝑎𝑎 =

1
4
�1 + √5� = 0.8090169943749475 … .  The first transformed restraint, which we discarded, is 

not met by 𝑉𝑉(𝑦𝑦), since under 𝑉𝑉(𝑦𝑦), 𝐸𝐸[𝑙𝑙𝑙𝑙𝑙𝑙(𝑌𝑌)] = 0.714863 ≠ 0.   Also, 𝑉𝑉(𝑦𝑦) has entropy 1.79637, 

which is higher than the entropy 1.41894 of 𝑞𝑞(𝑦𝑦). 

6. FURTHER EXAMPLES 

6.1   Determining A Distribution Consistent With Excess Ratios In Tables M 
And L 

The California Workers Compensation Insurance Rating Bureau (WCIRB) produces tables of per 
risk expected loss excess ratios (“insurance charges” in this context) by entry ratio (loss amount/mean 
loss), (see [5]).  These tables are organized in columns corresponding to Expected Loss Groups 
(ELGs) that are ranges of expected loss per risk.  The Table L varieties include adjustment for various 
per accident limits and Table M is unlimited.   

Example 6.1.1 Excerpt from WCIRB’s 2019 Table L  

Below is an excerpt of values from WCIRB’s 2019 Table L for loss limit $100,000 for ELG 50, 
corresponding to expected per risk loss in the range from $165,605 through $181,201.  The Excel 
spreadsheet available online at [5] has many digits of precision, but often only 4-digit precision 
numbers are available in printed material. 

Table 6.1.1 Sample from WCIRB’s  2019 Table L for loss limit $100,000 for ELG 50 

 

Entry Ratio Rounded Excess Ratio Unrounded Excess Ratio 
0.00 1.0000 1.000000000000000 
0.50 0.6719 0.671935231318322 
1.00 0.5000 0.500000000000000 
2.00 0.3938 0.393813297572041 
5.00 0.3734 0.373364646661730 
10.00 0.3695 0.369524681712078 
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A common actuarial problem is to determine the probability distribution underlying these tables 
for various practical applications.  It can be very challenging to fit a typical functional form probability 
distribution, or even a mixture of typical forms, and such a fit may make unnecessary implicit 
assumptions.  An alternative approach is to take the negative finite differences of the excess ratios to 
approximate the cumulative probability distribution, but this approach is very sensitive to numerical 
rounding errors and other aspects of discrete tabular representation.  It often produces inconsistencies 
where the cumulative distribution decreases or remains unchanged as the entry ratio increases. 
However, there is a straightforward maximum entropy distribution for this situation.   

Example 6.1.2 Maximum Entropy Distribution for WCIRB’s  2019 Table L for loss limit 
$100,000 for ELG 50 

From the Table L column underlying Example 6.1.1, we select for fitting purposes the following 
sample values, spaced out in terms of sequential differences in excess ratios, but including the highest 
available entry ratio of 10.00: 

Table 6.1.2 Selected Values For Fitting From WCIRB’s  2019 Table L For Loss Limit 
$100,000 For ELG 50 

Entry Ratio Excess Ratio 
0.00 1.000000000 
0.03 0.973293029 
0.07 0.940656486 
0.11 0.909512502 
0.15 0.879861331 
0.20 0.844934352 
0.24 0.818432243 
0.29 0.786763533 
0.35 0.751193714 
0.40 0.723319956 
0.46 0.691745050 
0.53 0.657705024 
0.60 0.626617188 
0.67 0.598501845 
0.76 0.566402702 
0.86 0.535579836 
0.99 0.502275425 
1.14 0.471953286 
1.35 0.441000272 
1.69 0.409781057 
2.66 0.378248119 
10.00 0.369524682 
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The generalized moment functions can be defined as: 

 

𝑙𝑙𝑖𝑖(𝑥𝑥) = 𝑀𝑀𝑎𝑎𝑥𝑥(0, 𝑥𝑥 − 𝑥𝑥𝑖𝑖),     𝑥𝑥1 = 0.00,   𝑥𝑥2 = 0.03,   … ,    𝑥𝑥22 = 10.00 

 

with density function: 

 

𝑒𝑒(𝑥𝑥) = 𝑒𝑒𝑥𝑥𝑒𝑒(−𝑎𝑎0 − 𝑎𝑎1𝑥𝑥 −  𝑎𝑎2 𝑀𝑀𝑎𝑎𝑥𝑥(0, 𝑥𝑥 − 0.03) −⋯   − 𝑎𝑎22𝑀𝑀𝑎𝑎𝑥𝑥(0, 𝑥𝑥 − 10.00)) 

 

and 23 constraint equations, including normalization, in integral form: 

 

∫ 𝑒𝑒(𝑥𝑥) 𝑑𝑑𝑥𝑥 = 1∞
0   

 
∫ 𝑥𝑥 𝑒𝑒(𝑥𝑥) 𝑑𝑑𝑥𝑥 = 1∞
0   

 
∫ 𝑀𝑀𝑎𝑎𝑥𝑥(0, 𝑥𝑥 − 0.03) 𝑒𝑒(𝑥𝑥) 𝑑𝑑𝑥𝑥 = 0.973293029∞
0   

…… 

∫ 𝑀𝑀𝑎𝑎𝑥𝑥(0, 𝑥𝑥 − 10.00) 𝑒𝑒(𝑥𝑥) 𝑑𝑑𝑥𝑥 = 0.369524682∞
0   

 

The integrals can be broken down into piecewise calculations of means of exponential distributions 
over a sequence of intervals and simplified, although into very lengthy expressions in terms of 
exponential functions and algebraic operations.  For example: 

 

� 𝑥𝑥 𝑒𝑒(𝑥𝑥) 𝑑𝑑𝑥𝑥
∞

0

= exp (−𝑎𝑎0)�
−𝑎𝑎10.03 exp(−𝑎𝑎10.03)− exp(−𝑎𝑎10.03) + 1

𝑎𝑎12
+ ⋯� 
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After a significant amount of calculus, numerical root finding can be applied to solve for the 
parameters.  In practice, the author found it was necessary to do so sequentially.  {𝑎𝑎0,𝑎𝑎1} was solved 
first, while zeroing out {𝑎𝑎2, … ,𝑎𝑎22} and ignoring the equations for {𝑙𝑙2(𝑥𝑥), … ,𝑙𝑙22(𝑥𝑥)}.  Then, this 
solution was used as an initial search point to solve for {𝑎𝑎0, 𝑎𝑎1,𝑎𝑎1} while zeroing out {𝑎𝑎3, … ,𝑎𝑎22}  
and ignoring the constraint equations for {𝑙𝑙3(𝑥𝑥), … ,𝑙𝑙22(𝑥𝑥)}.  Continuing in the same manner 
eventually a solution for {𝑎𝑎0, … ,𝑎𝑎22} under all the constraint equations was found: 

 

𝑎𝑎0 = -2.64110659609105 𝑎𝑎12 = -2.03880133396856 
𝑎𝑎1 = 78.84798657065390 𝑎𝑎13 = 2.19601290431692 
𝑎𝑎2 = -67.84628757037710 𝑎𝑎14 = -0.28563054188110 
𝑎𝑎3 = -13.53961416054840 𝑎𝑎15 = -0.03229457248671 
𝑎𝑎4 = 1.05093302568349 𝑎𝑎16 = 0.19073261292819 
𝑎𝑎5 = 5.85233052253736 𝑎𝑎17 = 0.10266905342995 
𝑎𝑎6 = 3.77603379643773 𝑎𝑎18 = 0.53399856270167 
𝑎𝑎7 = -14.91579228797020 𝑎𝑎19 = -0.16195956428452 
𝑎𝑎8 = 11.13262310317780 𝑎𝑎20 = 0.02984942588180 
𝑎𝑎9 = -1.31419292343747 𝑎𝑎21 = -0.08113782038222 
𝑎𝑎10 = -6.01333535467965 𝑎𝑎22 = -1.68856945802222 
𝑎𝑎11 = 4.20493185505049  

 

Here are some excess ratios and cumulative distribution values for the fitted entry ratios, the entry 
ratios from the original excerpt from Example 6.1.1, and some extrapolated entry ratios. 
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Table 6.1.3 Some Excess Ratios And Cumulative Distribution Values From The Maximum 
Entropy Solution In Example 6.1.2 

Entry Ratio Actual Excess Fit Excess 
Actual – Fit  

Excess 
Fit Cumulative 

Probability 
0.00 1.000000000 1.000000000 0.000000000 0.00000% 
0.03 0.973293029 0.973293029 0.000000000 16.12129% 
0.07 0.940656486 0.940656486 0.000000000 20.38433% 
0.11 0.909512502 0.909512502 0.000000000 23.95617% 
0.15 0.879861331 0.879861331 0.000000000 27.82634% 
0.20 0.844934352 0.844934352 0.000000000 32.30302% 
0.24 0.818432243 0.818432243 0.000000000 35.03824% 
0.29 0.786763533 0.786763533 0.000000000 38.48090% 
0.35 0.751193714 0.751193714 0.000000000 42.76647% 
0.40 0.723319956 0.723319956 0.000000000 45.66500% 
0.46 0.691745050 0.691745050 0.000000000 49.18993% 
0.50 0.671935231 0.671925770 0.000009461 51.69306% 
0.53 0.657705024 0.657705024 0.000000000 53.49086% 
0.60 0.626617188 0.626617188 0.000000000 57.72643% 
0.67 0.598501845 0.598501845 0.000000000 61.87659% 
0.76 0.566402702 0.566402702 0.000000000 66.71170% 
0.86 0.535579836 0.535579836 0.000000000 71.55581% 
0.99 0.502275425 0.502275425 0.000000000 77.05588% 
1.00 0.500000000 0.500000386 (0.000000386) 77.44246% 
1.14 0.471953286 0.471953286 0.000000000 82.33417% 
1.35 0.441000272 0.441000272 0.000000000 87.82233% 
1.69 0.409781057 0.409781057 0.000000000 93.27846% 
2.00 0.393813298 0.393690968 0.000122330 96.08540% 
2.66 0.378248119 0.378248119 0.000000000 98.73112% 
5.00 0.373364647 0.370564313 0.002800334 99.95802% 
10.00 0.369524682 0.369524682 0.000000000 99.98205% 
50.00 NA 0.362412747 NA 99.98239% 
100.00 NA 0.353715001 NA 99.98281% 

1,000.00 NA 0.228430321 NA 99.98890% 
10,000.00 NA 0.002882415 NA 99.99986% 
100,000.00 NA 0.000000000 NA 100.00000% 
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Figure 6.1.1 Density Of Maximum Entropy Solution In Example 6.1.2 
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due to the normalization to produce entry ratios.  Additionally, the final tables of LERs contain excess 
ratios rounded to only 3 digits, contributing to the difficulty of recovering the underlying distribution. 

Example 6.2.1 Maximum Entropy Distribution for WCIRB’s  2019 Overall LERs 

 
Below is WCIRB’s 2019 table of overall (all Hazard Groups combined) LERs.  The Excel spreadsheet 
available online has only 3 digits of precision.  The values in Bold have been selected for the specified 
constraints to fit. 

Table 6.2.1 Selected Values For Fitting From WCIRB’s  2019 Loss Elimination Ratios 
(Overall, All Hazard Groups) 

 
Limit Excess Ratio Constraint Index 

0 1.000 1 
25,000 0.689 2 
35,000 0.617  
50,000 0.533 3 
75,000 0.434  

100,000 0.368 4 
150,000 0.290  
200,000 0.247  
250,000 0.219 5 
300,000 0.199  
400,000 0.172  
500,000 0.154 6 
600,000 0.141  
700,000 0.131  
800,000 0.122  
900,000 0.115  

1,000,000 0.109 7 
2,000,000 0.072 8 
3,000,000 0.053  
4,000,000 0.040  
5,000,000 0.031 9 
6,000,000 0.024  
7,000,000 0.019  
8,000,000 0.015  
9,000,000 0.012  

10,000,000 0.010 10 
15,000,000 0.004 11 
20,000,000 0.001 12 
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The generalized moment functions, corresponding to constraint indexed rows in the prior table, can 
be defined as: 

 
𝑙𝑙𝑖𝑖(𝑥𝑥) = 𝐿𝐿𝐸𝐸𝐿𝐿𝑖𝑖𝑥𝑥 − 𝑀𝑀𝑎𝑎𝑥𝑥(0, 𝑥𝑥 − 𝑥𝑥𝑖𝑖),     𝑖𝑖 = 1, …,12 
 
Note, 𝑙𝑙1(𝑥𝑥) = 0 for all x, so we can set 𝑎𝑎1 = 0 and eliminate 𝑙𝑙1(𝑥𝑥) from the density function: 
 

𝑒𝑒(𝑥𝑥) = 𝑒𝑒𝑥𝑥𝑒𝑒(−𝑎𝑎0 −  𝑎𝑎2 (0.689𝑥𝑥 −𝑀𝑀𝑎𝑎𝑥𝑥(0, 𝑥𝑥 − 25,000))      −⋯   − 𝑎𝑎12 (0.001𝑥𝑥
−𝑀𝑀𝑎𝑎𝑥𝑥(0, 𝑥𝑥 − 20,000,000))) 

 
and 12 relevant constraint equations, including normalization, in integral form are: 
 
∫ 𝑒𝑒(𝑥𝑥) 𝑑𝑑𝑥𝑥 = 1∞
0    

 
∫ (0.689𝑥𝑥 −𝑀𝑀𝑎𝑎𝑥𝑥(0, 𝑥𝑥 − 25,000))𝑒𝑒(𝑥𝑥) 𝑑𝑑𝑥𝑥 = 0∞
0   

…… 

�(0.001𝑥𝑥 −  𝑀𝑀𝑎𝑎𝑥𝑥(0, 𝑥𝑥 − 20,000,000) )𝑒𝑒(𝑥𝑥) 𝑑𝑑𝑥𝑥 = 0

∞

0

 

 
Some calculus and numerical root finding, similar to what was done for Table L in Example 6.1.2, is 
required.  This includes sequentially solving for small subsets of the parameters and constraints, to be 
used as initial search points for the next larger subsets, as described before.  This process leads to: 

 
𝑎𝑎0 =   11.864788254009900000000 
𝑎𝑎2 =    -0.000125730464385769000 
𝑎𝑎3 =     0.000058923444849539900 
𝑎𝑎4 =    -0.000004271540735520050 
𝑎𝑎5 =     0.000010447441490470400 
𝑎𝑎6 =     0.000002998956261260340 
𝑎𝑎7 =     0.000002383315118547030 
𝑎𝑎8 =     0.000000899163635770769 
𝑎𝑎9 =     0.000000396715370202262 
𝑎𝑎10 =    -0.000000178908277119939 
𝑎𝑎11 =     0.000000541076550263008 
𝑎𝑎12 =    -0.000000464839849564974 

 



Applying Maximum Entropy Distributions to Determine Actuarial Models 
 

Casualty Actuarial Society E-Forum, Winter 2020 26 

The mean of the fitted maximum entropy distribution is $68,730 with standard deviation $272,939, 
and corresponding coefficient of variation 397%.  Below are the actual and fitted LERs, including 
some extrapolated limits. 

Table 6.2.2 Some Excess Ratios And Cumulative Distribution Values From The Solution In 
Example 6.2.1 

 
 

Limit 
Actual 

LER 
Fit  

LER 
Actual – Fit 

LER 
Fit Cumulative 

Probability 
0 1.000 1.0000000000000 0.0000000000000 0.000000% 

25,000 0.689 0.6890000000001 -0.0000000000001 37.053989% 
35,000 0.617 0.6130435581319 0.0039564418681 56.252159% 
50,000 0.533 0.5330000000001 -0.0000000000001 68.272954% 
75,000 0.434 0.4357874659584 -0.0017874659584 77.759218% 

100,000 0.368 0.3680000000002 -0.0000000000002 84.596264% 
150,000 0.290 0.2880494554155 0.0019505445845 92.319659% 
200,000 0.247 0.2456477754649 0.0013522245351 95.560066% 
250,000 0.219 0.2190000000002 -0.0000000000002 96.919603% 
300,000 0.199 0.1993658363524 -0.0003658363524 97.641066% 
400,000 0.172 0.1721086529617 -0.0001086529617 98.512431% 
500,000 0.154 0.1540000000002 -0.0000000000002 98.948454% 
600,000 0.141 0.1406382524283 0.0003617475717 99.198536% 
700,000 0.131 0.1302860472939 0.0007139527061 99.367439% 
800,000 0.122 0.1219664467532 0.0000335532468 99.481514% 
900,000 0.115 0.1150196400910 -0.0000196400910 99.558558% 

1,000,000 0.109 0.1090000000002 -0.0000000000002 99.610593% 
2,000,000 0.072 0.0720000000002 -0.0000000000002 99.827239% 
3,000,000 0.053 0.0522656417306 0.0007343582694 99.894359% 
4,000,000 0.040 0.0397372191010 0.0002627808990 99.929672% 
5,000,000 0.031 0.0310000000002 -0.0000000000002 99.948252% 
6,000,000 0.024 0.0243601864887 -0.0003601864887 99.959998% 
7,000,000 0.019 0.0192358385274 -0.0002358385274 99.969187% 
8,000,000 0.015 0.0152970520606 -0.0002970520606 99.976376% 
9,000,000 0.012 0.0122857403603 -0.0002857403603 99.982000% 

10,000,000 0.010 0.0100000000002 -0.0000000000002 99.986400% 
15,000,000 0.004 0.0040000000001 -0.0000000000001 99.994451% 
20,000,000 0.001 0.0010000000001 -0.0000000000001 99.997607% 
25,000,000 NA 0.0001753644633 NA 99.999580% 
50,000,000 NA 0.0000000290837 NA ~100% 

100,000,000 NA 0.0000000000000 NA ~100% 
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Figure 6.2.1 Density Of Maximum Entropy Solution In Example 6.2.1 
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6.3   Fitting a Distribution to Match Higher Moments 
 

The maximum entropy distribution to match a specified set of 𝑚𝑚 positive integer moments 
{𝐸𝐸[𝑋𝑋𝑘𝑘1], … ,𝐸𝐸[𝑋𝑋𝑘𝑘𝑚𝑚]}, if it exists, has a very straight forward form: 

𝑒𝑒(𝑥𝑥) = 𝑒𝑒𝑥𝑥𝑒𝑒(−𝑎𝑎0 − 𝑎𝑎1𝑥𝑥𝑘𝑘1 −   …  − 𝑎𝑎𝑚𝑚𝑥𝑥𝑘𝑘𝑚𝑚) (18) 

 

There is a closed form solution for the density of the maximum entropy distribution, if it exists, 
for a non-negative random variable with a single higher positive integer moment specified. 

Example 6.3.1 Maximum Entropy Distribution For A Single Higher Moment 

A non-negative random variable is known to have a mathematically consistent kth moment equal b.   

𝑎𝑎0 = 𝑙𝑙𝑙𝑙𝑙𝑙 �� 𝑒𝑒𝑥𝑥𝑒𝑒(−𝑎𝑎1𝑥𝑥𝑘𝑘) 𝑑𝑑𝑥𝑥
∞

0
� = log �𝛤𝛤 �1 +

1
𝑘𝑘�
𝑎𝑎1

−1𝑘𝑘�   

= 𝑙𝑙𝑙𝑙𝑙𝑙 �𝛤𝛤 �1 +
1
𝑘𝑘�
� −

1
𝑘𝑘

log(𝑎𝑎1) 

−
𝜕𝜕𝑎𝑎0
𝜕𝜕𝑎𝑎1

=
1
𝑘𝑘 𝑎𝑎1

= 𝑏𝑏 ⟹   𝑎𝑎1 =
1
𝑘𝑘 𝑏𝑏

 

𝑒𝑒(𝑥𝑥) =
𝑒𝑒𝑥𝑥𝑒𝑒 �− 1

𝑘𝑘 𝑏𝑏 𝑥𝑥
𝑘𝑘�

𝛤𝛤 �1 + 1
𝑘𝑘� (𝑘𝑘 𝑏𝑏)1/𝑘𝑘

 

Multiple higher moments can be a challenge to numerically solve.  (For a treatment of this general 
problem aimed at applications in physics see [12].)  As of this writing, the author has not yet found a 
generally effective and satisfactory way, even using the sequential parameter/constraint subset process 
that worked very well for the excess ratio problems described in Examples 6.1.2 and 6.2.1, to reliably 
solve for a significant set (4, 5, or more) of the higher moments.  A practical way of doing this would 
be particularly useful in many applications. 
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Figure 6.3.1 Density Of Maximum Entropy Solution In Example 6.3.1 

 

 

 

 

 

 

 

 

 

 

 

 

Example 6.3.2 Maximum Entropy Distribution For 1st And 3rd Moment 

A non-negative random variable is known to have mean 15 and 3rd moment 5,000.   
 

𝑙𝑙1(𝑥𝑥) = 𝑥𝑥     
 

𝑙𝑙2(𝑥𝑥) = 𝑥𝑥3  
 

p(x) = exp (−𝑎𝑎0 − 𝑎𝑎1𝑥𝑥 − 𝑎𝑎2𝑥𝑥3 ) 
 

𝑎𝑎0 = 𝑙𝑙𝑙𝑙𝑙𝑙 �� exp (−𝑎𝑎1𝑥𝑥 − 𝑎𝑎2𝑥𝑥3 ) 𝑑𝑑𝑥𝑥
∞
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−
𝜕𝜕𝑎𝑎0
𝜕𝜕𝑎𝑎1

=
∫ 𝑥𝑥 exp(−𝑎𝑎1𝑥𝑥 − 𝑎𝑎2𝑥𝑥3 )𝑑𝑑𝑥𝑥∞
0

∫ exp(−𝑎𝑎1𝑥𝑥 − 𝑎𝑎2𝑥𝑥3 )𝑑𝑑𝑥𝑥∞
0

= 15 

 

−
𝜕𝜕𝑎𝑎0
𝜕𝜕𝑎𝑎2

=
∫ 𝑥𝑥3 exp(−𝑎𝑎1𝑥𝑥 − 𝑎𝑎2𝑥𝑥3 )𝑑𝑑𝑥𝑥∞
0

∫ exp(−𝑎𝑎1𝑥𝑥 − 𝑎𝑎2𝑥𝑥3 )𝑑𝑑𝑥𝑥∞
0

= 5,000 

 
A numerical search leads to: 
 

𝑎𝑎0 = 4.98497  𝑎𝑎1 = −0.211337 𝑎𝑎2 = 0.000278004 

 

Figure 6.3.2 Density Of Maximum Entropy Solution In Example 6.3.2 
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6.4   Implicit Aggregate Loss Models 
 

In practice, sometimes only limited information is available about the distribution of aggregate 
losses for a portfolio of risks, but a maximum entropy distribution can be determined. 

Example 6.4.1 Maximum Entropy Distribution for TVAR And Mean 

A primary insurance company estimates the 99% Tail Value at Risk (TVAR) of its aggregate losses is 
$1 billion and has a current booked ultimate aggregate loss of $100 million.  If we interpret the booked 
ultimate as an expected value and let the 99th percentile be an unknown value 𝐿𝐿, generalized moment 
functions may be set up as follows: 

𝑙𝑙1(𝑥𝑥) = 𝑥𝑥     
 

𝑙𝑙2(𝑥𝑥) = 0 𝑖𝑖𝑖𝑖 𝑥𝑥 < 𝐿𝐿  
 

=  100𝑥𝑥 𝑖𝑖𝑖𝑖 𝑥𝑥 ≥ 𝐿𝐿 
 

𝑙𝑙3(𝑥𝑥) = 0 𝑖𝑖𝑖𝑖 𝑥𝑥 < 𝐿𝐿  
 

=  1  𝑖𝑖𝑖𝑖 𝑥𝑥 ≥ 𝐿𝐿 
 
 

Then the constraint equations, though quite complicated, may be set up as: 
 

𝑎𝑎0 = 𝑙𝑙𝑙𝑙𝑙𝑙 �� exp (−𝑎𝑎1𝑥𝑥 − 𝑎𝑎2𝑙𝑙2(𝑥𝑥)−𝑎𝑎3𝑙𝑙3(𝑥𝑥)) 𝑑𝑑𝑥𝑥
∞

0

�

= 𝑙𝑙𝑙𝑙𝑙𝑙 �
exp(−𝑎𝑎1𝐿𝐿) − 1

−𝑎𝑎1
+
− exp(−𝑎𝑎3 + (−𝑎𝑎1 − 100 𝑎𝑎2)𝐿𝐿)

−𝑎𝑎1 − 100 𝑎𝑎2
� 

 

−
𝜕𝜕𝑎𝑎0
𝜕𝜕𝑎𝑎1

 

 

= −
− exp (−𝑎𝑎3 − (  𝑎𝑎1 + 100𝑎𝑎2)𝐿𝐿)

(𝑎𝑎1 + 100𝑎𝑎2)2 − 1 − 𝑒𝑒𝑥𝑥𝑒𝑒(−𝑎𝑎1𝐿𝐿)
𝑎𝑎12

+ 𝐿𝐿 𝑒𝑒𝑥𝑥𝑒𝑒(−𝑎𝑎1𝐿𝐿)
𝑎𝑎1

− 𝐿𝐿 exp (−𝑎𝑎3 − (  𝑎𝑎1 + 100𝑎𝑎2)𝐿𝐿)
𝑎𝑎1 + 100𝑎𝑎2

exp (−𝑎𝑎3 − (  𝑎𝑎1 + 100𝑎𝑎2)𝐿𝐿)
𝑎𝑎1 + 100𝑎𝑎2

+ 1 − exp(−𝑎𝑎1𝐿𝐿)
𝑎𝑎1

= $100,000,000 
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−
𝜕𝜕𝑎𝑎0
𝜕𝜕𝑎𝑎2

= −
− 100 exp (−𝑎𝑎3 − (  𝑎𝑎1 + 100𝑎𝑎2)𝐿𝐿)

(𝑎𝑎1 + 100𝑎𝑎2)2 − 100 𝐿𝐿 exp (−𝑎𝑎3 − (  𝑎𝑎1 + 100𝑎𝑎2)𝐿𝐿)
𝑎𝑎1 + 100𝑎𝑎2

exp (−𝑎𝑎3 − (  𝑎𝑎1 + 100𝑎𝑎2)𝐿𝐿)
𝑎𝑎1 + 100𝑎𝑎2

+ 1 − 𝑒𝑒𝑥𝑥𝑒𝑒(−𝑎𝑎1𝐿𝐿)
𝑎𝑎1

 

 
= $1,000,000,000 

 

−
𝜕𝜕𝑎𝑎0
𝜕𝜕𝑎𝑎3

= −
−exp (−𝑎𝑎3 − (  𝑎𝑎1 + 100𝑎𝑎2)𝐿𝐿)

(𝑎𝑎1 + 100𝑎𝑎2) �exp (−𝑎𝑎3 − (  𝑎𝑎1 + 100𝑎𝑎2)𝐿𝐿)
𝑎𝑎1 + 100𝑎𝑎2

+ 1 − 𝑒𝑒𝑥𝑥𝑒𝑒(−𝑎𝑎1𝐿𝐿)
𝑎𝑎1

�
 

 
= 0.01 

 

A numerical root finding search found plausible solutions for 𝐿𝐿 from around $92 million through 
around $980 million, with the entropy seeming to peak around 𝐿𝐿 = $566 million.  Here are some 
properties of the solution at 𝐿𝐿 = $566 million: 

 

𝑎𝑎0 = 18.3466  𝑎𝑎1 = 1.08546 × 10−8 𝑎𝑎2 = −8.55045 × 10−11 𝑎𝑎3 = 4.843 
 

The standard deviation is $133.4 million, for a coefficient of variation of 133.4%.  Some interesting 
percentiles and corresponding unlimited expected excess loss amounts are: 

Table 6.4.1 Some Expected Excess Losses And Cumulative Distribution Values From The 
Solution In Example 6.4.1 

 

Attachment Percentile Unlimited Expected Excess 
$0 0% $100 million 

$10 million 10.2% $90.5 million 
$50 million 41.6% $61.3 million 

$100 million 65.7% $38.7 million 
$200 million 87.9% $17.5 million 
$500 million 98.8% $5.1 million 

$1 billion >99.6% $1.6 million 
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Figure 6.4.1 Density Of Maximum Entropy Solution In Example 6.4.1 

 

 

 
 Example 6.4.1 is structurally similar to “4.1. Case A: Constraining the Global Mean” from [8], except 

that in latter the risk-taker’s wealth, analogous to 𝐿𝐿 in Example 6.4.1, is specified rather than solved 
as part of maximizing entropy given the other constraints.  
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6.5 Bayesian or Credibility Estimation 
 

Bayesian estimation generally requires model assumptions that completely specify both the prior 
distribution of parameters and the conditional density, or likelihood, of observations.  Credibility 
estimation generally does not require complete distributional specifications but does require model 
assumptions that specify certain distributional variances.  Maximum entropy distributions can be 
utilized in many cases to formulate these model assumptions where the available information would 
not otherwise completely specify them.  Examples 6.5.1 and 6.5.2 apply maximum entropy 
distributions to conventional Bayesian and Credibility approaches.  In Section 7 we will present a 
much more general multivariate maximum entropy framework that can automatically implement an 
implicit Bayesian/Credibility type adjustment for multivariate predictive models. 

Example 6.5.1 Maximum Entropy Distributions For Bayesian Prior And Likelihood 

Detailed data in not available, but it is known that in prior experience individual drivers have averaged 
0.1 claims per year.  What is the posterior distribution for expected number of claims after an 
individual driver has experienced 𝑘𝑘 ∈ {0, 1, 2 … } claims in a single year?  

Since the average number of claims is non-negative and we only know the mean is 0.1, the maximum 

entropy prior is simply a continuous Exponential Distribution with density function 𝑞𝑞(𝑚𝑚) =

10 exp (−10 𝑚𝑚).  The maximum entropy density on the discrete numbers {0, 1, 2 … } given the 

conditional mean is also of the Exponential form 𝑒𝑒(𝑘𝑘|𝑚𝑚) =  exp (−𝑎𝑎0(𝑚𝑚) − 𝑎𝑎1(𝑚𝑚) 𝑘𝑘), where the 

parameters solve to 𝑎𝑎0(𝑚𝑚) = 𝐿𝐿𝑙𝑙𝑙𝑙(𝑚𝑚 + 1) and 𝑎𝑎1(𝑚𝑚) = 𝐿𝐿𝑙𝑙𝑙𝑙 �𝑚𝑚+1
𝑚𝑚
�.  Therefore 𝑒𝑒(𝑘𝑘|𝑚𝑚) = 

 𝑚𝑚𝑘𝑘(𝑚𝑚 + 1)−𝑘𝑘−1 and the posterior density is 𝑞𝑞(𝑚𝑚|𝑘𝑘) = 10exp(−10 𝑚𝑚) 𝑚𝑚𝑘𝑘(𝑚𝑚+1)−𝑘𝑘−1 
∫ 10exp(−10 𝑚𝑚) 𝑚𝑚𝑘𝑘(𝑚𝑚+1)−𝑘𝑘−1 𝑑𝑑𝑚𝑚∞
0

 .  So, the 

numerical results for several values of k are (up through 𝑘𝑘 = 5): 
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Table 6.5.1 Bayesian Posterior Results from Maximum Entropy Solution in Example 6.5.1 

 

𝑘𝑘 Posterior Density 𝑞𝑞(𝑚𝑚|𝑘𝑘) Posterior  𝑚𝑚� = 𝐸𝐸[𝑚𝑚|𝑘𝑘] 

0 10.921 exp (−10𝑚𝑚)
𝑚𝑚 + 1

 0.09214 

1 
138.95 𝑚𝑚 exp (−10𝑚𝑚)

(𝑚𝑚 + 1)2
 0.17230 

2 
1003.3 𝑚𝑚2 exp (−10𝑚𝑚)

(𝑚𝑚 + 1)3
 0.24409 

3 
5383.1 𝑚𝑚3 exp (−10𝑚𝑚)

(𝑚𝑚 + 1)4
 0.30962 

4 
23823 𝑚𝑚4 exp (−10𝑚𝑚)

(𝑚𝑚 + 1)5
 0.37026 

5 
91815 𝑚𝑚5 exp (−10𝑚𝑚)

(𝑚𝑚 + 1)6
 0.42695 

 

Example 6.5.2 Maximum Entropy Distributions to Determine Process and Parameter 
Variances for Credibility 

What would the credibility estimates be for Example 6.4.1? 

The Variance of the Hypothetical Means (VHM) = 0.01, that is the variance of the continuous 

Exponential Distribution with 0.1 mean.  The process variance for the conditional density 𝑒𝑒(𝑘𝑘|𝑚𝑚) = 

 𝑚𝑚𝑘𝑘(𝑚𝑚 + 1)−𝑘𝑘−1  is 𝑚𝑚(𝑚𝑚 + 1).  So, the Expected value of the Process Variance (EPV) 

=∫ 𝑚𝑚(𝑚𝑚 + 1) 10 exp(−10 𝑚𝑚)𝑑𝑑𝑚𝑚∞
0  = 0.12. Consequently, the credibility constant is 𝐾𝐾 = 𝐸𝐸𝐸𝐸𝐸𝐸

𝐸𝐸𝑉𝑉𝑉𝑉
=

12 and since we only have one observation 𝑍𝑍 = 1
1+𝐾𝐾

= 1
13

 . 
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Table 6.5.2 Credibility Results From Maximum Entropy Solution In Example 6.5.2 

 

𝑘𝑘 Credibility 𝑚𝑚� = � 1
13
� 𝑘𝑘 + �12

13
� 0.1 

0 0.09231 
1 0.16923 
2 0.24615 
3 0.32308 
4 0.40000 
5 0.47692 

 

7. MAXIMUM ENTROPY PREDICTIVE OR EXPLANATORY MODELS 

Actuarial models often involve predicting or explaining the distribution, or at least the expected 
value, of one random response variable 𝑌𝑌, scalar or vector, given the outcome of another random 
variable 𝑋𝑋, scalar or vector.  For example, Generalized Linear Models (GLMs), though usually from a 
fixed effects standpoint, are commonly used for this purpose.  This can be described in a very general 
framework in terms of a single vector valued random variable 𝑋𝑋 = {𝑌𝑌1, … ,𝑌𝑌𝑚𝑚,𝑋𝑋1, … ,𝑋𝑋𝑛𝑛} consisting 
of both response components 𝑋𝑋𝑟𝑟𝑟𝑟𝑟𝑟𝑝𝑝 = {𝑌𝑌1, … ,𝑌𝑌𝑚𝑚} and explanatory components 𝑋𝑋𝑟𝑟𝑥𝑥𝑝𝑝𝑙𝑙 =
{𝑋𝑋1, … ,𝑋𝑋𝑛𝑛}.  Fixed effects can also be included in the generalized moment functions 𝑙𝑙𝑖𝑖(𝑥𝑥)  and/or 
the specified generalized moments 𝑐𝑐𝑖𝑖 .  If the complete joint density  𝑒𝑒(𝑦𝑦1, … ,𝑦𝑦𝑚𝑚, 𝑥𝑥1, … , 𝑥𝑥𝑛𝑛) is known 
then the density of the response components 𝑥𝑥𝑟𝑟𝑟𝑟𝑟𝑟𝑝𝑝 = {𝑦𝑦1, … ,𝑦𝑦𝑚𝑚}  conditioned on the realized values 
of the conditioned on the realized values of the explanatory components 𝑥𝑥𝑟𝑟𝑥𝑥𝑝𝑝𝑙𝑙 = {𝑥𝑥1, … , 𝑥𝑥𝑛𝑛} through 
the Bayesian calculation: 

 

𝑒𝑒(𝑦𝑦1, … ,𝑦𝑦𝑚𝑚|𝑥𝑥1, … , 𝑥𝑥𝑛𝑛) =
𝑒𝑒(𝑦𝑦1, … ,𝑦𝑦𝑚𝑚, 𝑥𝑥1, … , 𝑥𝑥𝑛𝑛)

∫…∫𝑒𝑒(𝑦𝑦1, … ,𝑦𝑦𝑚𝑚, 𝑥𝑥1, … , 𝑥𝑥𝑛𝑛) 𝑑𝑑𝑦𝑦1 …𝑑𝑑𝑦𝑦𝑚𝑚
 (19) 

Example 7.1 Correlated Bivariate Maximum Entropy Distribution  

Suppose the random variable 𝑋𝑋 ={𝑌𝑌1,𝑋𝑋1} is known to have the following properties: 
 
• 𝑌𝑌1 has mean 2,000 and standard deviation 2,000 
• 𝑋𝑋1 has mean 3,000 and standard deviation 3,000 
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• 𝑌𝑌1 and 𝑋𝑋1 have a correlation coefficient of 30% 
 
The basic linear regression model is: 
 

𝑌𝑌1 = 𝑚𝑚 𝑋𝑋1 + 𝑏𝑏 + 𝜀𝜀(0,𝜎𝜎) 
 
𝑚𝑚 = 30% �2,000

3,000
� = 0.2  𝑏𝑏 = 2,000 − 0.2(3,000) = 1,400   

 

𝜀𝜀(0,𝜎𝜎) is a normally distributed random variable, independent of 𝑌𝑌1 and 𝑋𝑋1, with mean 0 and standard 

deviation   𝜎𝜎 = �(2,000)2 − (0.2 × 3,000)2 = 1,908. 

The same result can be obtained by solving for the maximum entropy distribution for 𝑌𝑌1 and 𝑋𝑋1, both 

assumed to be real values, with the following generalized moment constraints: 

𝑙𝑙1(𝑋𝑋) = 𝑌𝑌1 𝐸𝐸[𝑙𝑙1(𝑋𝑋)] = 2,000  𝑙𝑙2(𝑋𝑋) = 𝑌𝑌12 𝐸𝐸[𝑙𝑙2(𝑋𝑋)] = 8,000,000 

𝑙𝑙3(𝑋𝑋) = 𝑋𝑋1 𝐸𝐸[𝑙𝑙3(𝑋𝑋)] = 3,000  𝑙𝑙4(𝑋𝑋) = 𝑋𝑋12 𝐸𝐸[𝑙𝑙4(𝑋𝑋)] = 18,000,000 

𝑙𝑙5(𝑋𝑋) = 𝑌𝑌1𝑋𝑋1  𝐸𝐸[𝑙𝑙5(𝑋𝑋)] = 7,800,000 

The maximum entropy distribution would be the same as the Bivariate Normal Distribution, since it 

can match the given constraints and can be stated in the standard form in (3).  The Bayesian calculation 

in (16) would then result in the same linear regression model.   

However, suppose we also know that 𝑌𝑌1 ≥ 0 .   Now, the normality assumption for 𝑌𝑌1 underlying the 

linear regression model clearly is a poor choice.  However, the maximum entropy distribution can still 

be numerically solved with this extra piece of information by setting up the same moment constraints 

equations above, but changing the region of integration for calculating the underlying integrals: 
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𝑎𝑎0 = 𝑙𝑙𝑙𝑙𝑙𝑙 �� � exp ( −𝑎𝑎1𝑦𝑦1

+∞

−∞

+∞

0

− 𝑎𝑎2𝑦𝑦12 − 𝑎𝑎3𝑥𝑥1 − 𝑎𝑎4𝑥𝑥12 − 𝑎𝑎5𝑦𝑦1𝑥𝑥1) 𝑑𝑑𝑥𝑥1𝑑𝑑𝑦𝑦1� 

𝑎𝑎𝑖𝑖 = −
𝜕𝜕𝑎𝑎0
𝜕𝜕𝑎𝑎𝑖𝑖

=
∫ ∫ 𝑙𝑙𝑖𝑖(𝑥𝑥1) exp ( −𝑎𝑎1𝑦𝑦1

+∞
−∞

+∞
0 − 𝑎𝑎2𝑦𝑦12 − 𝑎𝑎3𝑥𝑥1 − 𝑎𝑎4𝑥𝑥12 − 𝑎𝑎5𝑦𝑦1𝑥𝑥1) 𝑑𝑑𝑥𝑥1𝑑𝑑𝑦𝑦1
∫ ∫ exp ( −𝑎𝑎1𝑥𝑥𝑦𝑦1

+∞
−∞

+∞
0 − 𝑎𝑎2𝑦𝑦12 − 𝑎𝑎3𝑥𝑥1 − 𝑎𝑎4𝑥𝑥12 − 𝑎𝑎5𝑦𝑦1𝑥𝑥1) 𝑑𝑑𝑥𝑥1𝑑𝑑𝑦𝑦1

 

Numerical root finding leads to: 
 

𝑎𝑎0 = 16.748  𝑎𝑎1 = 0.000615231 𝑎𝑎2 = 1.23815 × 10−8 𝑎𝑎3 = −0.000256411 
 

 𝑎𝑎4 = 6.105 × 10−8   𝑎𝑎5 = −5.49445 × 10−8 

Figure 7.1 Expected Value of Response Variable Conditional On Explanatory Variable In 
Example 7.1 
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Figure 7.1 shows how the values for E[𝑌𝑌1|𝑥𝑥1] , for the two different models, diverge in both the left 
and right tails of 𝑋𝑋1.  The maximum entropy model naturally captures effects of the restriction 𝑌𝑌1 > 0 
but the linear regression model does not.  Figure 7.2 shows that for the conditional density 
   p(y1|x1 = −7,000) in the left tail of 𝑋𝑋1 the linear regression model incorrectly shows that 𝑌𝑌1 is 
equally likely to be positive or negative.  Figure 7.3 shows that for the conditional density p(𝑦𝑦1|𝑥𝑥1 =
12,000) in the right tail of 𝑋𝑋1 the linear regression model gives almost no probability that 𝑌𝑌1 ≥
10,000,  but the maximum entropy model gives 16% probability that 𝑌𝑌1 ∈ [10,000  , 20,000]. 

 

Figure 7.2 Density Of Response Variable Conditioned On Explanatory Variable = -7,000 In 
Example 7.1 
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Figure 7.3 Density of Response Variable Conditioned on Explanatory Variable = 12,000 in 
Example 7.1 
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connects them to the expected value for the response variables, and a conditional distribution for the 
response variables.  When GLMs are fit for maximum likelihood they can be very vulnerable to low 
volume erratic observations in levels for certain factors, and incorporating credibility adjustments into 
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In contrast it can be very straightforward to simultaneously fit a multi-factor model and incorporate 
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Example 7.2 Maximum Entropy Multivariate Model With Automatic Bayesian/Credibility 
Adjustment 

Suppose the following pure loss ratio experience is available for workers compensation insurance: 
 

Setting Business Type 
Experience  

Pure Loss Ratio Volume of Experience 
Urban Manufacturing 500% ? 
Urban Service 60% ? 
Rural Service 0% ? 

 
Although the volume of experience is not known, the following information is given: 

• There is thought to be no aggregate off balance, so that the overall expected pure loss ratio is 
100%. 

• Broader longtime experience has shown that the mean squared error between actual loss ratios 
for categories like these and a very good relativity estimate is 1. 

A log-Poisson GLM, which has a conditional variance of 1 when the conditional expected value of 
the response variable is 1, fairly consistent with the bullets above, produces multiplicative relativity 
indications: 

 

Setting 
GLM Relativity 

Indication Business Type 
GLM Relativity 

Indication 
Urban 2.000 Manufacturing 1.786 
Rural 0.000 Service 0.214 

 

This GLM has likely been fooled by randomness, as these values do not seem very realistic.  Hopefully, 
when final full premium rates are implemented Rural policies will be charged more than $0.   

Alternatively, this situation can be approached as a maximum entropy problem as follows.  Let 𝑌𝑌1 be 
the actual outcome losses, 𝑋𝑋1 and 𝑋𝑋2 be random effects corresponding to good estimates for 
multiplicative relativities for Setting and Business Type, respectively.   

The constraints will be: 

 

𝑙𝑙1(𝑋𝑋) = 𝑌𝑌1 𝐸𝐸[𝑙𝑙1(𝑋𝑋)] = 1  𝑙𝑙2(𝑋𝑋) = 𝑋𝑋1 𝐸𝐸[𝑙𝑙2(𝑋𝑋)] = 1 

𝑙𝑙3(𝑋𝑋) = 𝑋𝑋2 𝐸𝐸[𝑙𝑙3(𝑋𝑋)] = 1  𝑙𝑙4(𝑋𝑋) = (𝑌𝑌1 − 𝑋𝑋1𝑋𝑋2)2 𝐸𝐸[𝑙𝑙4(𝑋𝑋)] = 1 
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Setting up these equations involves integration in 3 dimensions: 

 

𝑎𝑎0 = 𝑙𝑙𝑙𝑙𝑙𝑙 �� � � exp ( −𝑎𝑎1𝑦𝑦1

+∞

0

+∞

0

− 𝑎𝑎2𝑥𝑥1 − 𝑎𝑎3𝑥𝑥2 − 𝑎𝑎4(𝑦𝑦1 − 𝑥𝑥1𝑥𝑥2)2 ) 𝑑𝑑𝑦𝑦1𝑑𝑑𝑥𝑥1

+∞

0

𝑑𝑑𝑥𝑥2� 

A numerical solution is: 

 

𝑎𝑎0 = 0.235246  𝑎𝑎1 = 0.717116 𝑎𝑎2 = 0.856358 𝑎𝑎3 = 0.856358  
 

 𝑎𝑎4 = 0.213261   

𝑒𝑒(𝑦𝑦1, 𝑥𝑥1, 𝑥𝑥2) = 𝑒𝑒𝑥𝑥𝑒𝑒 (−𝑎𝑎0 − 𝑎𝑎1𝑦𝑦1 − 𝑎𝑎2𝑥𝑥1 − 𝑎𝑎3𝑥𝑥2 − 𝑎𝑎4(𝑦𝑦1 − 𝑥𝑥1𝑥𝑥2)2) 

 

So, this gives the joint density of the observed loss ratio 𝑌𝑌1 and good estimates for the relativities 𝑋𝑋1 
and 𝑋𝑋2.  In the data table we need to estimate 4 relativities {𝑋𝑋1𝑈𝑈 ,𝑋𝑋1𝑅𝑅 ,𝑋𝑋2𝑉𝑉,𝑋𝑋2𝑆𝑆} based on 3 
observations.  The posterior joint density of these relativities conditioned on the observations is:  

 

𝑞𝑞(𝑥𝑥1𝑈𝑈 , 𝑥𝑥1𝑅𝑅 , 𝑥𝑥2𝑉𝑉, 𝑥𝑥2𝑆𝑆) =

=
𝑒𝑒(5, 𝑥𝑥1𝑈𝑈 , 𝑥𝑥2𝑉𝑉) 𝑒𝑒(0.6, 𝑥𝑥1𝑈𝑈 , 𝑥𝑥2𝑆𝑆)𝑒𝑒(0, 𝑥𝑥1𝑅𝑅 , 𝑥𝑥2𝑆𝑆)

∫ ∫ ∫ ∫ 𝑒𝑒(5, 𝑥𝑥1𝑈𝑈 , 𝑥𝑥2𝑉𝑉) 𝑒𝑒(0.6, 𝑥𝑥1𝑈𝑈 , 𝑥𝑥2𝑆𝑆)𝑒𝑒(0, 𝑥𝑥1𝑅𝑅 , 𝑥𝑥2𝑆𝑆)+∞
0

+∞
0 𝑑𝑑𝑥𝑥1𝑈𝑈  𝑑𝑑𝑥𝑥1𝑅𝑅 𝑑𝑑𝑥𝑥2𝑉𝑉 𝑑𝑑𝑥𝑥2𝑆𝑆

+∞
0

+∞
0

 

The overall mean values for the relativities using this joint density demonstrate a Bayesian/Credibility 
type of shrinkage in the relativity indications, and are clearly more realistic:  

 

Setting 
Max Entropy 

Relativity Indication Business Type 
Max Entropy 

Relativity Indication 
Urban 1.261 Manufacturing 2.644 
Rural 0.996 Service 0.438 
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The GLM relativities predict a 0% pure loss ratio for Rural Service policies. 

 

  Pure Loss Ratio 
Setting Business Type Experience GLM Max Entropy 
Urban Manufacturing 500% 357% 333% 
Urban Service 60% 43% 55% 
Rural Manufacturing NA 0% 263% 
Rural Service 0% 0% 44% 

 

Although this example did not include any volume of experience, that could be used for weights, the 
GLM would have still given a 0.000 relativity indication if weights had been available and included in 
the GLM run.  Some sort of credibility adjustment could have been implemented with the GLM, but 
it would have been somewhat awkward and ambiguous to set up given the limited amount of data.  In 
contrast the Maximum Entropy model was very natural and unambiguous to set up with a built in 
Bayesian/Credibility type adjustment. 

Figures 7.4 and 7.5 show the marginal densities for the Setting and Business Type relativities, 
respectively.  The maximum entropy distribution naturally yields the parameter uncertainty of the fit. 
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Figure 7.4 Marginal Densities Of Setting Relativities From Maximum Entropy Approach In 
Example 7.2 
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Figure 7.5 Marginal Densities Of Business Type Relativities From Maximum Entropy 
Approach In Example 7.2 
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Appendix A - Computational and Software Coding Challenges 

Although much more can be done with modern computing power than was possible in the past, 
fitting maximum entropy models is still often very challenging because it usually entails solving a set 
of highly nonlinear equations.  These non-linear equations sometimes contain very lengthy expressions 
and usually require integration (or summation) and sometimes differentiation to set up.  Numerical 
root finders are readily available in many software environments, such as Excel (Solver), R, Python, 
MATLAB, etc.  Some numerical optimizers, like Google’s Tensorflow, are designed to utilize powerful 
Graphics Processing Unit (GPU) hardware.  Additionally, symbolic manipulation of complex 
expressions, including integration and differentiation, is available in software environments such as 
MATHEMATICA and Maple.  

Even with modern software and hardware resources, converging on a numerical solution is often 
an arduous process involving restatement of the coding of the problem and reselecting initial search 
points, even when the problem has a similar form to a previous problem.    Relying on symbolic 
manipulation is also undesirable for practical applications.  Unfortunately, much of the coding 
involved for the examples in this paper is rather messy, complicated and not really standardized to 
general classes of problems.  So, at present, no code samples are provided with this paper.  
Nevertheless, developing software code, preferably for commonly available environments such as 
Excel and R, that reliably solves broad classes of maximum entropy problems would provide a very 
valuable resource for practicing actuaries.  Hopefully, this paper will encourage others to do so and 
the author may also pursue developing such standardized software tools.   

Nevertheless, here are some tips that were useful in solving for the numerical examples in this 
paper.  

It is often helpful to solve for the parameters {𝑎𝑎0,𝑎𝑎1, … ,𝑎𝑎𝑚𝑚} sequentially stepwise.  {𝑎𝑎0,𝑎𝑎1} can 
be solved first, while zeroing out {𝑎𝑎2, … ,𝑎𝑎𝑚𝑚} and ignoring the constraint equations for 
{𝑙𝑙2(𝑥𝑥), … ,𝑙𝑙𝑚𝑚(𝑥𝑥)}.  Then, this solution can be used as an initial search point to solve for {𝑎𝑎0,𝑎𝑎1, 𝑎𝑎1} 
while zeroing out {𝑎𝑎3, … ,𝑎𝑎𝑚𝑚}  and ignoring the constraint equations for {𝑙𝑙3(𝑥𝑥), … ,𝑙𝑙𝑚𝑚(𝑥𝑥)}, and so 
on.   

One potentially problematic issue is that numerical root finding software typically uses inaccurate 
finite differencing approximations for derivatives, as part of a Newton-Raphson iteration.  It is 
possible to replace these finite difference calculations with more accurate numerical integrations.  We 
can restate the problem of solving for the maximum entropy distribution in vector form. 

Given: 

 

 𝐶𝐶 = (1, 𝑐𝑐1, …  , 𝑐𝑐𝑚𝑚) and 𝐺𝐺(𝑥𝑥) = (1,𝑙𝑙1 (𝑥𝑥), …  ,𝑙𝑙𝑚𝑚(𝑥𝑥))  

 

Find: 

 

𝐴𝐴 = (𝑎𝑎0,𝑎𝑎1, …  , 𝑎𝑎𝑚𝑚 )   such that ∫𝐺𝐺(𝑥𝑥)  exp (−𝐴𝐴 ∙ 𝐺𝐺(𝑥𝑥))  𝑑𝑑𝑥𝑥 = 𝐶𝐶.   
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This is equivalent to finding a root �̂�𝐴 for the vector valued function: 

 

 𝑉𝑉(𝐴𝐴) = ∫𝐺𝐺(𝑥𝑥) exp�−𝐴𝐴 ∙ 𝐺𝐺(𝑥𝑥)�  𝑑𝑑𝑥𝑥 − 𝐶𝐶 

 

Newton-Raphson Iteration can be done by first picking a starting point �̂�𝐴0 and then iterating 
�̂�𝐴𝑛𝑛+1 = �̂�𝐴𝑛𝑛 − �∇𝐴𝐴 𝑉𝑉(𝐴𝐴)|𝐴𝐴�𝑛𝑛�

−1𝑉𝑉��̂�𝐴𝑛𝑛�.  The practical problem comes in when root finding 
software attempts to approximate ∇𝐴𝐴 𝑉𝑉(𝐴𝐴)|𝐴𝐴�𝑛𝑛 through small numerical differences.   

However, a more accurate approach is to note that: 

�∇𝐴𝐴 𝑉𝑉(𝐴𝐴)�
𝑖𝑖,𝑗𝑗

= 𝜕𝜕𝑎𝑎𝑗𝑗 ��𝑙𝑙𝑖𝑖(𝑥𝑥) exp�−𝐴𝐴 ∙ 𝐺𝐺(𝑥𝑥)�  𝑑𝑑𝑥𝑥 − 𝐶𝐶� 

By differentiating under the integral sign: 

= −�𝑙𝑙𝑖𝑖(𝑥𝑥)𝑙𝑙𝑗𝑗(𝑥𝑥)exp�−𝐴𝐴 ∙ 𝐺𝐺(𝑥𝑥)�  𝑑𝑑𝑥𝑥  

It is generally much easier and more accurate to numerically estimate these integrals.  If the 
limits of integration are unbounded there may be problems with these integrals numerically 
diverging for some values of �̂�𝐴𝑛𝑛 even if a solution exists.  So, it may be useful to either limit the 
bounds of integration (that is the domain of possible outcomes for the random variable) or limit x 
to a finite number of values so that the integral may be replaced with a finite sum.   

In some cases, it may be helpful to perform a transformation on 𝐴𝐴.  For example, if 𝐺𝐺(𝑥𝑥) =
(1, 𝑥𝑥, …  , 𝑥𝑥𝑚𝑚)  and 𝑥𝑥 ∈ (0, +∞) then substituting 𝑎𝑎𝑚𝑚 = exp (𝑏𝑏) and solving in terms of 𝐵𝐵 =
(𝑎𝑎0,𝑎𝑎1, …  , 𝑎𝑎𝑚𝑚−1, 𝑏𝑏 )   will keep the integrals above from diverging.  Note that after a substitution 
like this, due to the chain rule, the integrals corresponding to differentiation with respect to 𝑏𝑏 will 
need to be multiplied by exp (𝑏𝑏), specifically: 

 

�∇𝐵𝐵 𝑉𝑉(𝐵𝐵)�
𝑖𝑖,𝑚𝑚

= −exp (𝑏𝑏)� 𝑙𝑙𝑖𝑖(𝑥𝑥)𝑙𝑙𝑚𝑚(𝑥𝑥)exp�𝐴𝐴 ∙ 𝐺𝐺(𝑥𝑥)�  𝑑𝑑𝑥𝑥
+∞

0
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Appendix B – Clarification of Some Confusions of the Maximum Entropy Distribution 
Technique With Several Other Distinct Things 

 
Some reviewers of an earlier draft of this paper confused maximum entropy distributions with several 
other very different things that actuaries have remained conscious of, and utilized, over the decades 
following the 1960s.  We will clarify the differences below.  It is worth noting that in practice these 
other things generally required much lower computational burdens than maximum entropy 
distributions, and hence were more practically tractable during this time. 
 
Ordinary Method of Matching Moments 
 
An ordinary method of moments fit of a distribution is not necessarily a maximum entropy 
distribution because the selected parametric form to be fit may not be the appropriate maximum 
entropy form.   
 
Example B.1 
 
Matching a first moment of 10,000 with the family of Uniform Distributions of with density 1/𝑎𝑎 for 
𝑥𝑥 ∈ [0,𝑎𝑎]  and 0, results in 𝑎𝑎 = 20,000 and entropy 9.90349, as was shown in Example 1.1   
However, the maximum entropy distribution for a non-negative random variable with first moment 
of 10,000 is an exponential distribution and has entropy 10.2103 
 
Furthermore, a maximum entropy distribution is not necessarily an example of ordinary matching 
moments since the generalized moment functions 𝑙𝑙𝑖𝑖 (𝑥𝑥)  are in fact very general functions, and 
certainly not constrained to be of the form 𝑥𝑥𝑘𝑘 for some integer 𝑘𝑘.  More general moment functions 
appear in many examples throughout this paper, such as Example 3.1 
 
Exponential Families 
 
It is noted in Section 4 that the maximum entropy form (3) presented in Section 3 is a subset of the 
exponential family and the generalized moment functions 𝑙𝑙𝑖𝑖 (𝑥𝑥)  play the role of sufficient statistics 
for form (3) when sample data is given.  However, the constraints for maximum entropy distributions 
may come from any source, such as expert opinion, a priori hypothesis, etc.; not necessarily sample 
data.  
 
Many actuaries have encountered the exponential family in the context of Generalized Linear Models 
(GLMs) or Exact Credibility, where the greatest accuracy credibility estimate equals the Bayesian 
posterior estimate.  These contexts all require sample data and parametric family assumptions about 
underlying data generating processes, neither of which are required by maximum entropy distributions.   
It is also worth noting that the use of exponential families for GLMs and Exact Credibility, starting in 
the 1970s, was highly motivated by reduction of computational burdens in both cases.  However, there 
was no apparent comparable technique to reduce the computational burdens of maximum entropy 
distributions to tractability at that time.  
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Model Selection Through Information Criteria 
 
In 1974 the Akaike Information Criterion (AIC) was introduced as an estimator of relative quality 
among statistical models fit to sample data ([2]).  There is also an important small sample adjusted 
version (AICc) ([3])  In 1978 a similar criterion, the Bayesian Information Criterion (BIC) was 
introduced ([15]).  These criteria are useful for selecting among competing models hypothesized to 
underly sample data.  We will first recount the definitions of these criteria.  Then we will demonstrate 
how they differ from maximum entropy distributions with an explicit example.  Finally, we will briefly 
discuss how the foundations behind how these information criteria were derived differs from 
maximum entropy distributions.  The derivations of these criteria are very mathematically and 
statistically sophisticated.  Consequently, we will not attempt to even approach the detail presented in 
the original references but will attempt to convey a meaningful general concept of what is going on. 
 
Suppose a sample of data observations {𝑥𝑥1, … , 𝑥𝑥𝑛𝑛} is given, as usual assumed to be independent and 
arising from the same underly model.  Also,  {𝑀𝑀1, … ,𝑀𝑀𝑞𝑞} is a set of parametric probability distribution 
models hypothesized to potentially be the true model 𝑀𝑀 underly the data with {𝑘𝑘1, … ,𝑘𝑘𝑞𝑞} number of 
parameters, respectively.  Let {𝐿𝐿�1, … , 𝐿𝐿�𝑞𝑞} be the likelihood function values for the maximum 
likelihood estimates of the respective {𝑘𝑘1, … , 𝑘𝑘𝑞𝑞} parameters of each of the models {𝑀𝑀1, … ,𝑀𝑀𝑞𝑞} fit 
to {𝑥𝑥1, … , 𝑥𝑥𝑛𝑛}.  The definitions of the information criteria mentioned previously are: 
 

𝐴𝐴𝐴𝐴𝐶𝐶𝑖𝑖 = 2 𝑘𝑘𝑖𝑖 − 2 𝐿𝐿𝑙𝑙𝑙𝑙(𝐿𝐿�𝑖𝑖) 
 

𝐴𝐴𝐴𝐴𝐶𝐶𝑐𝑐𝑖𝑖 = 2 𝑘𝑘𝑖𝑖 − 2 𝐿𝐿𝑙𝑙𝑙𝑙�𝐿𝐿�𝑖𝑖� +
2𝑘𝑘𝑖𝑖

2 + 2𝑘𝑘𝑖𝑖
𝑛𝑛 − 𝑘𝑘𝑖𝑖 − 1

 

 
𝐵𝐵𝐴𝐴𝐶𝐶𝑖𝑖 = 𝐿𝐿𝑙𝑙𝑙𝑙(𝑛𝑛) 𝑘𝑘𝑖𝑖 − 2 𝐿𝐿𝑙𝑙𝑙𝑙(𝐿𝐿�𝑖𝑖) 

 
For each of these criteria the lower the value the better the hypothesized model. 
 
Example B.2 
 
In Example 1.1 no sample data was given, and the competing hypothesized models were fit using 
moment matching (1st moment only) with no sample data available.  We will now revisit this example 
for two different data samples, each having the target moment of mean 10,000.  Samples 1 and 2 were 
simulated from Wide Uniform Distribution and the Lognormal Distribution, respectively, as given in 
Example 1.1 and then each renormalized to have sample mean 10,000.  In Table B.1 the distributional 
forms from Example 1.1, aside from the Narrow Uniform, are shown with new MLE  parameters for 
Sample 1 and 2, respectively. 
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Sample 1 
 

2593 8679 14482 6228 18704 8007 7201 15804 19077 16323 
13049 2496 10996 14183 11122 4822 7586 1190 14617 13185 
11883 12326 10106 5147 10931 2028 6930 10831 19905 14175 
3183 13533 18013 7577 7260 122 6944 13917 12260 12801 

10785 10353 303 15271 7110 5782 20793 13601 15338 2310 
13442 10969 2098 19147 13876 10363 19360 3819 4039 17333 
3443 5289 13781 941 2447 1463 6538 5956 12488 3688 
9485 7195 14626 5589 508 4992 3669 8560 13621 18331 

14716 14085 8156 7254 15493 18884 4151 18093 19492 10101 
4044 5861 18749 4795 13242 19799 6638 8207 16208 3114 

 
Sample 2 
 

8680 8738 9252 31428 130529 27498 3911 4505 27851 3821 
5649 3606 8210 35463 1913 4739 1510 2091 3730 990 
4952 21982 1287 8385 2894 3199 20020 11880 39584 481 
454 6146 2297 2992 327 4872 34422 6901 8257 9864 

3019 4126 3078 2017 3026 9434 6625 10319 2991 1592 
1420 5975 5445 9908 2454 2006 615 15717 5517 49731 

31062 11831 16390 15383 3006 2328 50596 10474 10083 17470 
16103 969 1688 3765 1224 2892 15511 9384 6455 2592 

952 727 9276 3108 20191 4123 1081 8776 4138 1003 
17033 1286 6546 4754 10562 2868 4123 4625 3580 1717 

          
 
Table B.1 Distributional Forms from Example 1.1 With Parameters Refit to Samples 1 and 2 

Density 
Form 

ME 

Density Function 

(Mean = 10,000) 

MLE1 

Density Function 

(MLE on Sample 1) 

MLE2 

Density Function 

(MLE on Sample 2) 

Wide 
Uniform 

1
20000         𝑥𝑥 ∈ [0, 20000] 

1
20793         𝑥𝑥 ∈ [0, 20793] 

1
130529         𝑥𝑥 ∈ [0, 130529] 

Lognormal 

(for ME 

 𝜎𝜎 = 1) 

𝑒𝑒𝑥𝑥𝑒𝑒 �−�1
2�  �1

2 − 𝑙𝑙𝑙𝑙𝑙𝑙(10000) + log (𝑥𝑥)�
2
�

𝑥𝑥√2𝜋𝜋
 

0.43666 𝑒𝑒𝑥𝑥𝑒𝑒(−0.599013 (−8.94021 + log (𝑥𝑥))2)
𝑥𝑥

 
0.0.348916 𝑒𝑒𝑥𝑥𝑒𝑒(−0.382465 (−8.54211 + log (𝑥𝑥))2)

𝑥𝑥
 

Exponential 0.0001 𝑒𝑒𝑥𝑥𝑒𝑒(−0.0001 𝑥𝑥) 0.0001 𝑒𝑒𝑥𝑥𝑒𝑒(−0.0001 𝑥𝑥) 0.0001 𝑒𝑒𝑥𝑥𝑒𝑒(−0.0001 𝑥𝑥) 

Pareto 

(for ME 
min loss 
=100) 

10000 × 102/99

99 𝑥𝑥−199/99 

Min=100 

0.772353 𝑥𝑥−1.24177 

Min = 122 

2.97849 𝑥𝑥−1.36335 

Min = 327 
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Table B.2 Information Entropy of Distributions from Table B.1 

 Information Entropy Information Entropy Rank 

Density Form ME MLE1 MLE2 ME MLE1 MLE2 

Wide Uniform 9.90349 9.94237 11.7794 3 4 1 

Lognormal 10.1293 10.2688 10.095 2 2 4 

Exponential 10.2103 10.2103 10.2103 1 3 3 

Pareto 6.58512 11.3600 10.5545 4 1 2 

 
The Wide Uniform and Exponential each have one parameter to fit.  The Lognormal and Pareto each 
have two parameters to fit.  Table B.2 shows that refitting parameters with MLE results in the form 
closest to the underlying data process, the Wide Uniform for MLE1 (Sample 1) and the Lognormal 
for MLE2 (Sample 2), having the lowest entropy, or the most information.  This makes sense for this 
context of fitting to sample data, where the objective is to gain as much information from the data as 
possible.   However, it stands in stark contrast with the criterion of maximum entropy when the 
objective is to simply match to certain generalized moment constraints. 
 
Table B.3 shows AIC, AICc, and BIC calculated and ranked (lowest to highest) for the original and 
refit parameter estimates on each data sample. Not surprisingly, all three of the information criteria 
produce the same rankings in for each combination of sample data and parameter fits.  Here again for 
MLE1 (Sample 1) and MLE2 (Sample 2) the forms closest to the underlying data process always rank 
1st.  However, it is worth noting that among the ME fits, simply to mean 10,000 without any sample 
data, the maximum entropy distribution, the Exponential Distribution, ranks 1st for Sample 1 and 2nd 
for Sample 2.   Furthermore, when the sample is mismatched with the MLE fit, as with MLE1 (Sample 
2) and MLE1 (Sample 1) the Exponential, which still has the same parameter value being the maximum 
entropy distribution for the sample mean, ranks 1st.  When the MLE is matched to its sample, MLE1 
(Sample 1) and MLE 2 (Sample 2), the Exponential ranks 2nd. 
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Table B.3  Information Criterion Calculated For Distributions From Table B.1 On Samples 1 
and 2 
 

Sample 1 AIC AIC Rank 

Density Form ME MLE1 MLE2 ME MLE1 MLE2 

Wide Uniform Infinity 996.2 1179.9 4 1 3 

Lognormal 1034.3 1030.9 1041.3 2 3 2 

Exponential 1023.0 1023.0 1023.0 1 2 1 

Pareto 1334.9 1140.0 Infinity 3 4 4 

 

Sample 1 AICc AICc Rank 

Density Form ME MLE1 MLE2 ME MLE1 MLE2 

Wide Uniform Infinity 996.3 1180.0 4 1 3 

Lognormal 1034.4 1031.0 1041.4 2 3 2 

Exponential 1023.1 1023.1 1023.1 1 2 1 

Pareto 1335.0 1140.1 Infinity 3 4 4 

 

Sample 1 BIC BIC Rank 

Density Form ME MLE1 MLE2 ME MLE1 MLE2 

Wide Uniform Infinity 998.8 1182.5 4 1 3 

Lognormal 1039.5 1036.1 1046.5 2 3 2 

Exponential 1025.6 1025.6 1025.6 1 2 1 

Pareto 1340.1 1145.2 Infinity 3 4 4 
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Table B.3  Information Criterion Calculated For Distributions From Table B.1 On Samples 1 
and 2 (continued) 

Sample 2 AIC AIC Rank 

Density Form ME MLE1 MLE2 ME MLE1 MLE2 

Wide Uniform Infinity Infinity 1179.9 4 4 4 

Lognormal 1016.9 1028.9 1013.5 1 2 1 

Exponential 1023.0 1023.0 1023.0 2 1 2 

Pareto 1254.9 1090.6 1059.4 3 3 3 

 

Sample 2 AICc AICc Rank 

Density Form ME MLE1 MLE2 ME MLE1 MLE2 

Wide Uniform Infinity Infinity 1180.0 4 4 4 

Lognormal 1017.0 1029.0 1013.6 1 2 1 

Exponential 1023.1 1023.1 1023.1 2 1 2 

Pareto 1255.0 1090.7 1059.6 3 3 3 

 

Sample 2 BIC BIC Rank 

Density Form ME MLE1 MLE2 ME MLE1 MLE2 

Wide Uniform Infinity Infinity 1182.5 4 4 4 

Lognormal 1022.1 1034.1 1018.7 1 2 1 

Exponential 1025.6 1025.6 1025.6 2 1 2 

Pareto 1260.1 1095.8 1064.7 3 3 3 
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Example B.2 illustrates the difference between selecting generalized moment constraints, even if 
sample data is available, and determining the maximum entropy distribution, versus postulating several 
different parametric forms, MLE fitting the parameters, and then ranking them according to 
information criteria.  Interestingly, the maximum entropy distribution fit, independent of any sample 
data, to a mean of 10,000 actually ranked very well on these two samples, both having mean 10,000 
but otherwise being very different.    
 
AIC, introduced in 1974 ([2]), derives from a Frequentist philosophy utilizing Information Theory.  
Specifically, AIC derives from an asymptotic (as 𝑛𝑛 → ∞) estimate of the Kullback–Leibler (K-L) 
divergence (also called relative entropy), between the true underlying distribution for sample data and 
a hypothesized parametric model.  The K-L divergence was introduced in 1951 ([11]) as a type of 
generalization of information entropy.  Akaike had earlier pointed out a relationship between 
Maximum Likelihood Estimation (MLE) and the K-L divergence ([1]).  Among competing 
hypothesized models, the lower the K-L divergence the better, as it indicates a likely lower information 
difference between a hypothesized model and the true distribution.  AICc is based on the same 
foundational reasoning, with the addition of a correction term to improve accuracy for small data 
samples.  For a true underlying distribution model 𝑃𝑃 with density 𝑒𝑒(𝑥𝑥) and a hypothesized distribution 
model 𝑃𝑃  with density 𝑞𝑞(𝑥𝑥), the K-L divergences is defined as: 
 

𝐷𝐷𝐾𝐾𝐾𝐾(𝑃𝑃||𝑄𝑄) = 𝐻𝐻(𝑃𝑃,𝑄𝑄) − 𝐻𝐻(𝑃𝑃,𝑃𝑃) 
 
where 𝐻𝐻(𝑃𝑃,𝑄𝑄) is the cross entropy, defined as: 
 

𝐻𝐻(𝑃𝑃,𝑄𝑄) = −�𝐿𝐿𝑙𝑙𝑙𝑙�𝑞𝑞(𝑥𝑥)� 𝑒𝑒(𝑥𝑥) 𝑑𝑑𝑥𝑥 

 
For the special case when the distributions 𝑃𝑃 and 𝑄𝑄 are equal, the cross entropy 𝐻𝐻(𝑃𝑃,𝑃𝑃) is the 
information entropy of a distribution, as used throughout this paper.  Akaike derived the asymptotic 
estimate:  
 

𝐷𝐷𝐾𝐾𝐾𝐾(𝑀𝑀||𝑀𝑀𝑖𝑖) =  𝑘𝑘𝑖𝑖 −  𝐿𝐿𝑙𝑙𝑙𝑙�𝐿𝐿�𝑖𝑖� + 𝐶𝐶𝑙𝑙𝑛𝑛𝐶𝐶𝐶𝐶𝑎𝑎𝑛𝑛𝐶𝐶 
 
Dropping the constant and multiplying by two, an arbitrary convention, leads to: 
 

𝐴𝐴𝐴𝐴𝐶𝐶𝑖𝑖 = 2 𝑘𝑘𝑖𝑖 − 2 𝐿𝐿𝑙𝑙𝑙𝑙(𝐿𝐿�𝑖𝑖) 
 
 
BIC was introduced by Schwarz in 1978 ([15]), deriving from a Bayesian framework without utilizing 
Information Theory.  In this framework a number of competing models are assumed to have the same 
probability, prior to any observed data.  BIC is asymptotically related to the logarithm of the Bayes 
formula updated probabilities for each model 𝑀𝑀𝑖𝑖 , posterior to data being observed, is derived.  
Schwarz derived the asymptotic estimate: 
 



Applying Maximum Entropy Distributions to Determine Actuarial Models 
 

Casualty Actuarial Society E-Forum, Winter 2020 55 

𝐿𝐿𝑙𝑙𝑙𝑙(𝑃𝑃𝑉𝑉𝑙𝑙𝑏𝑏𝑎𝑎𝑏𝑏𝑖𝑖𝑙𝑙𝑖𝑖𝐶𝐶𝑦𝑦[𝑀𝑀𝑖𝑖|𝑑𝑑𝑎𝑎𝐶𝐶𝑎𝑎]) =  𝐿𝐿𝑙𝑙𝑙𝑙�𝐿𝐿�𝑖𝑖� −
𝑘𝑘𝑖𝑖
2
𝐿𝐿𝑙𝑙𝑙𝑙(𝑛𝑛) + 𝐵𝐵𝑙𝑙𝐵𝐵𝑛𝑛𝑑𝑑𝑒𝑒𝑑𝑑 𝑇𝑇𝑒𝑒𝑉𝑉𝑚𝑚 

 
 
Dropping the bounded term and multiplying by -2  leads to the BIC criterion that can be used in the 
same way as AIC or AICc, as previously given: 
 

 𝐵𝐵𝐴𝐴𝐶𝐶𝑖𝑖 = 𝐿𝐿𝑙𝑙𝑙𝑙(𝑛𝑛) 𝑘𝑘𝑖𝑖 − 2 𝐿𝐿𝑙𝑙𝑙𝑙(𝐿𝐿�𝑖𝑖) 
 
So, although rooted in a Bayesian framework, BIC is also used to select among competing models in 
a Frequentist framework.  It has also been noted that AIC can be derived in a similar fashion starting 
with a different prior distribution on the competing models ([4]).  Alternatively, competing models 
could be weighted together in a Bayesian framework, based on posterior probabilities derived from 
prior probabilities related either to AIC or BIC. 
 
Whereas maximum entropy distributions do not even require sample data or hypothesized parametric 
models, these information criteria require both.  When both sample data and hypothesized parametric 
models are given, the maximum entropy distribution selected to match the sample value of a selected 
generalized moment function may be different from the model selected by these information criteria. 
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Evolving Estimation Methodology
Charles Stein startled the statistical world with his 1956 paper “Inadmissibility of the usual
estimator for the mean of a multivariate distribution.” (Stein (1956)) He showed that when
you are estimating more than two elements, shrinking their estimates towards the overall
mean always reduces estimation error compared to MLE. The resulting James-Stein estimator
is the same as the least-squares credibility estimator. The 1979 Morris and van Slyke CAS
paper – also at Morris and Van Slyke (1978) – discussed the connection. A famous example
is estimating seasonal batting averages for a number of batters from their July 4 averages.

Any kind of regression or linear model is estimating means for a vector of observations, but it
was not so clear how to apply James-Stein/credibility shrinkage without having the variances
of the observations – the process variance. Several years later, a form of shrinkage called
ridge regression was developed. Instead of minimizing the negative loglikelihood (NLL) it
minimized NLL +λ∑ β2

j , where the βj are the coefficients. Hoerl and Kennard (1970) proved
that there is always some λ > 0 that makes the estimation error for this less than for straight
MLE. This starts with linear transforms of the independent variables to make them each
mean zero, variance one, which makes the parameter sizes comparable across the variables.
The constant term (which is not included in the parameters being shrunk) and the coefficients
adjust to compensate for the linear transforms. Each fitted value is the constant plus a linear
combination of mean zero variables, so the constant is the overall mean, and the fitted values
are shrunk towards that.

Demoment (1989) introduced lasso, which minimizes NLL +λ∑ |βj|. This makes some of
the coefficients exactly zero (all of them if λ is high enough), so is also a means of variable
selection. This makes it popular, and it is largely replacing MLE for linear modeling. The
problem is how to pick λ. The preferred method has become cross validation, which comes
down to dividing the data into subsets which are left out one at a time and the NLL measured
on the model estimated on the remaining points in turn. Adding up these left-out NLL pieces
gives a penalized NLL which is used to find the best λ.

These methods are forms of regularization, which is a more general mathematical approach
for reducing errors in difficult estimation problems, from Tikhonov (1943). (The rather
uninformative name for this was an approximate translation from his original Russian.) Ridge
regression started as a method for correlated data, which has some difficulties of its own.
There was actually something resembling a ridge of artificial data used in that.

Bayesian shrinkage produces similar results. It starts with giving each parameter a shrinkage
prior, which is a mean-zero, mode-zero prior like the standard normal. These pull the posterior
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estimates towards zero, just like λ does in lasso and ridge regression. The Bayesian approach
has a big advantage in that there are applicable goodness-of-fit measures like loo and WAIC,
discussed below. Measures like AIC, etc. don’t work because the shrunk parameters don’t
act as whole parameters, but what fraction to count is not apparent.

Random Effects Ties It All Together
The literature on random effects can be confusing and sometimes inconsistent. I take off from
the setup in Klinker (2011). Bayesian and classical shrinkage have a lot in common, but they
have a philosophical difference in that in classical statistics parameters are constants, but for
Bayesians they have distributions. A link is provided by frequentist random effects. There
you have a collection of statistical effects across a population – such as differences in accident
frequency from the state mean by territory – that are assumed to average to zero. These
look like parameters to Bayesians, but frequentists allow effects, but not parameters, to have
distributions. With mean zero, their distribution across the population could be described by
a single dispersion parameter, like the normal σ. Forms of this reproduce ridge regression and
lasso estimates. (Most papers assume the effects to be normally distributed, but this is not a
conceptual limitation.) Random-effects estimation and Bayesian shrinkage do not require all
effects to have the same distribution, or to be independent, but I assume those here.

To see how this works, assume that the effects are double exponential (Laplace) distributed
in λ. This is a distribution that looks like an exponential for positive values, and its mirror
image over the y-axis for negative values. The density for an effect β is

f(β|λ) = 0.5λe−λ|β|

This has variance = 2/λ2 and kurtosis = 6. Say there are k random effects βj, plus perhaps
other parameters, including λ. One way to simultaneously estimate the parameters and
project the effects is to maximize the joint likelihood, which is the likelihood of the data,
given the parameters and the random effects, times Πf(βj|λ), the probability of the effects.
The negative of the log of f(βj|λ) is just log(2)− log(λ) + λ|βj|. Then maximizing the joint
likelihood becomes minimizing

NLL+ λ
∑
|βj| − log(λ)k

For a fixed value of λ, the last term does not affect the minimization. The result is the lasso
minimization formula, here used for the projection of the random effects. The value of λ
produced by the minimization including the −log(λ)k term gives the random-effects estimate
of λ as well.
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This connects with the Bayesian approach. For data X and parameters β, Bayes Theorem is:

p(β|X) = p(X|β)p(β)
p(X)

The left side is the posterior distribution of the parameters given the data, and the numerator
of the right side is the likelihood times the prior. Here the β are parameters, but this
numerator is the same mathematical formula as the joint likelihood in the random effects
case, where the β are effects, not parameters. The denominator p(X) is a constant for a
given dataset, so maximizing the numerator maximizes the posterior. Thus the random
effects solution gives the Bayesian posterior mode, and if the Laplace prior is used for the
parameters, it gives classical lasso. This is why the use of the Laplace prior is called Bayesian
lasso. A normal distribution for the random effects gives ridge regression.

Bayesian Markov Chain Monte Carlo (MCMC) estimation simulates a numerical sample
from the posterior distribution of parameters by sampling from the joint likelihood – the
numerator of Bayes Theorem – using sampling methods like the Hastings-Metropolis sampler
or the Gibbs sampler. These are efficiency improvements over the original MCMC sampler
that generates a sample from the previous sample. It has a candidate generator, and if the
candidate sample improves the joint likelihood, it is retained. If not, a test on a random
draw is done to keep it or not. It has been proved that after a burn-in period the sample is
representative of the posterior distribution.

One detail here is that in the Bayesian case the optimization works as discussed above for
a fixed value of λ. If λ is to be estimated as well, it also must be given a prior. If it has a
uniform prior = U over some interval, then a term = −log(U) is included in the log of the
prior. But since that is a constant, it does not affect the minimization, and so the posterior
mode is still at the minimum of NLL+ λ

∑ |βj| − log(λ)k from random effects. Other priors
might give better estimates of λ, however. Note that as λ increases, the parameters are
pushed more towards zero to compensate, but that makes the NLL get higher. At the same
time, −log(λ)k is decreasing. Thus at some point they all balance at a minimum.

An increasingly popular shrinkage prior is the Cauchy distribution, with 1/p(β) = π(λ2+β2)/λ
and −log(p(β)) = −logλ+ logπ + log(λ2 + β2). For a fixed λ, the posterior mode minimizes
NLL+∑

log(λ2 + β2
j ). This is an alternative to both lasso and ridge regression. The Cauchy

prior often yields more parsimonious models than the normal or Laplace priors do. It can have
a bit better or bit worse penalized likelihood (see discussion below), but even if slightly worse,
the greater parsimony makes it worth considering. It has more weight near zero but is also
heavier tailed, which pushes parameter more towards zero, but allows a few larger parameters
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when they are called for. It also seems to produce tighter distributions of parameters.

The frequentist approaches (random effects, ridge regression, lasso) are all calculations of the
posterior mode, which is a drawback, as there are some advantages of the posterior mean over
the posterior mode. The parameters that maximize the posterior probability could be doing
so by over-fitting the particular sample. This is sometimes described as fitting the sample
vs. fitting the population. Too good a fit for the sample might be responding to particular
features of that sample that would not hold for future samples.

The posterior mean averages all parameter sets that provide a plausible explanation of the
data. The posterior mean does not optimize a comparison of actual vs. fitted values – in fact
any such measure runs the risk of sample bias. It does minimize the squared difference of
actual vs. estimated parameters. The posterior mode optimizes what could be called the
lottery number measure for parameter error: all deviations from the exactly right parameter
set are equally bad. But for parameters, even though not for the lottery, getting closer to the
right answer is advantageous, so the mode is less appealing. Below I use the posterior mean,
not the posterior mode, for the parameter estimation, so this does not agree exactly with
classical lasso, etc. I do test different priors and different approaches for estimating λ.

All in all, random effects gives frequentists the ability to use a Bayesian-like framework without
having to recognize parameter distributions. They start with a postulated unconditional
distribution of effects, and project the effects from the data. There does not seem to be any
reason that they could not also use MCMC to sample from the conditional distribution of the
effects given the data, which would let them use the posterior mean instead of the posterior
mode, but I haven’t seen them actually do that.

Choosing λ and Goodness of Fit
How much shrinkage to do is usually selected using cross-validation: you divide up the data
into subsets, fit using all but one subset, compute the NLL on the left out subset, repeat for
each subset, and add up the NLLs. If resources are available, the limiting case of making each
observation a subset seems to be preferred. This is called leave-one-out (loo) cross validation.

The sum of the individual NLLs from loo is known to be a good way to correct the NLL for
sample bias – which is what penalized likelihood measures like AIC, BIC, etc. are trying to do
as well. They are trying to estimate what the NLL would be for a new sample from the same
population. But penalizing based on parameter counts doesn’t work with shrinkage. If the
estimation is overfitting, shrinking the parameters will reduce the overfitting but will increase
the NLL as well. AIC etc. will not change the penalty in response to the shrinkage, but loo
will. Thus it is a goodness-of-fit measure that still works fine with parameter shrinkage. It
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stops improving when too much shrinkage deteriorates the NLL on the omitted points. Thus
it provides a way to determine how much to shrink. (There is another goodness-of-fit measure
called WAIC that also uses MCMC output. The loo measure has some minor technical
advantages for some models, but the two measures generally rank models the same.)

The R lasso package glmnet is very fast and might make a grind-out calculation of loo
feasible computationally for lasso. For MCMC, Gelfand (1996) developed an approximation
for an omitted point’s likelihood from an estimation for all the points, using the numerical
integration technique importance sampling. This estimates a point’s left-out likelihood by a
weighted average likelihood across all the samples, with the weight for a sample proportional
to the reciprocal of the point’s likelihood under that sample. That gives greater weight to the
samples that fit that point poorly, and is a good estimate of the likelihood the point would
have if it had been left out of the estimation. This estimate turns out to be the harmonic
mean over the samples of the point’s probability in each sample. Then the MCMC sample of
the posterior distribution is enough to calculate the loo goodness-of-fit measure.

This gives good but volatile estimates of the loo loglikelihood. Vehtari, Gelman, and Gabry
(2017) addressed that by a method similar to extreme value theory – they fit a Pareto to
the probability reciprocals and use the Pareto values instead of the actuals for the largest
20% of the reciprocals. This “Pareto-smoothed importance sampling” has been extensively
tested and is becoming widely adopted. Their penalized likelihood measure is labeled êlpdloo,
standing for “expected log pointwise predictive density.” Here I call −êlpdloo simply loo.
There is an R package called loo that does this calculation quickly on MCMC output.

The fact that this is a good estimate of the NLL without sample bias comes with a caveat.
The derivation of that assumes that the sample comes from the modeled process. That is a
standard assumption but in financial areas, models are often viewed as approximations of
more complex processes. Thus a new sample might not come from the process as modeled.
Practitioners sometimes respond to this by using slightly under-fit models – that is more
parsimonious models with a bit worse fit than the measure finds optimal. BIC was designed
for this kind of situations as well, and it also leads to more parsimonious models.

Some analysts choose the variance of the shrinkage prior – like the double exponential prior –
by maximizing loo under various degrees of shrinkage. But statisticians are coming to view
this too as exposed to overfitting – the optimization is still responding to the particular
sample. The fully Bayesian solution is to use the posterior mean with another prior placed
on λ itself. This usually gives a value of loo close to that from direct optimization, but is felt
to provide a more reliable result. This is the method used below.
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In summary, the advantages of the Bayesian approach are:

• It facilitates calculation of a penalized likelihood measure based on cross validation.

• MLE has Fisher information for parameter uncertainty, but this is not convenient with
shrinkage. MCMC automatically generates parameter distribution samples.

• The Bayesian approach can also incorporate a prior for λ, which both estimates λ and
samples from a range of λ values instead of just a single λ.

• The frequentist methods end up with the posterior mode, which runs more risk of
overfitting. The posterior mean is available from MCMC.

• MCMC packages facilitate using residual distributions inside or outside of the exponen-
tial family and can also estimate more complex model formulations – like a combination
of additive and multiplicative models.

Moving from GLMM to MCMC
Venter, Gutkovich, and Gao (2017) is a discussion and attempt at using GLMM in standard
software packages. It is by a group from the model validation area of AIG who were validating
a reserving package by Spencer Gluck that extends his well-known generalized Cape Cod
model to include diagonal effects, with the smoothing done by random effects. (Actually it
was an anonymous referee from the Committee on Review of Papers who noticed that what
Spencer was doing was essentially random effects – actually with correlated effects.)

We started using random effects programs with the default assumption that every random
effect has its own variance. We found by an extensive fitting approach similar to classical
loo that all these variances act as real parameters that pulled the data strongly towards the
sample values. This prevented much actual parameter reduction – but it looked like there
was a lot if you just looked at the non-variance parameters. We also found that including the
many variances created an estimation problem when parameters got near zero – the likelihood
gets very large if the projection and its variance both go to zero. The packages deal with this
in ad hoc ways, apparently dropping such parameters by unstated rules. We decided to just
use a single variance for all the effects, which we then found out came down to lasso and ridge
regression. This led us to Bayesian implementation later on, as we discovered its advantages.

Fitting Plan
The data for the class ratemaking examples comes from Fu and Wu (2007). It is for auto
collision, and has total losses and exposures for 8 age classes, 4 use classes, and 4 credit score
ranges. It also has a different data set with average severity by these classes but with no
credit scores. The modeling is in a few stages.
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Figure 1: Scaled t with ν = 6 and Double Exponential with Moments Matched

0 Preliminaries
Lasso, MLE regression, and Bayesian lasso are compared using a simplified model.

1 Warmup Model
This uses the less-detailed data to model severity with both an additive and a multiplicative
model. The design matrix starts out having a constant plus a parameter for all but one
level for each variable. Some variables might be eliminated in the estimation. Cauchy and
double-exponential priors are used. The Cauchy is just a t distribution with 1 degree of
freedom. The double-exponential has the same kurtosis as the t with 6 degrees of freedom,
so is lighter tailed. The variance of this t and the double exponential can be matched using
the scale parameters, and the odd moments are 0, so the existing moments of this t are all
the same as the double exponential. The densities are graphed on a log scale in Figure 1.

Severity
You can’t expect a good estimate for a severity distribution from just the sample mean. All
you have on the dispersion of the losses is the degree to which the cell sample means differ
from the fitted means. Still you can see the impact of the classification variables on average
severity. Also there are some distributions for which the total losses and number of claims
will give some information about the distribution. Consider the gamma distribution with
mean = ab and variance = ab2. Assume cellj severity is distributed Gamma[aj, bj]. Given nj
claims, the sum of the claims is then distributed Gamma[njaj, bj]. For the gamma, b is a
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scale parameter, so dividing the variable by a constant gives the distribution with b divided
by that constant. Dividing the sum of claims by nj gives the sample mean severity, and this
is thus Gamma[njaj, bj/nj]. It has mean ajbj and variance ajb2

j/nj. Thus if you only have
the claim counts and sample means for each cell, and fit a Gamma[aj, bj] distribution for
cellj’s sample mean, the severity distribution for the cell is Gamma[aj/nj, bjnj], so you have
estimated that as well. The normal and inverse Gaussian distributions work similarly.

A simplifying assumption for estimating the severity mean parameters by cell is to assume
that either the a or the b parameter is constant across the cells. For severity, a constant a is
more likely to give a better fit of the model to the data, as then the variance is proportional
to the square of the mean. The a parameter will not be shrunk, so its prior will be uniform
in its log. The severity mean will be the fitted shrunk independent variable parameters times
the row of the design matrix for that cell.

The normal can also be parameterized to have the variance proportional to the mean-squared,
just by using another unshrunk parameter s, and replacing σ everywhere with sµ. This is
a typical sort of heteroscedasticity adjustment. This will have similar severity mean and
variance to the gamma distribution, but with zero skewness. The observed sample mean from
nj claims is now normal in [µj,muj

√
(njs)]. Its fit can be compared to the gamma’s by loo.

The inverse-Gaussian distribution usually is parameterized with mean µ and variance µ3/φ. I
prefer a slightly altered version with µ = ab and φ = a2b. This gives variance ab2 just like the
gamma. Its big advantage is that the sum of claims has parameters [njaj, bj], just like the
gamma. It has skewness 3CV, compared to 2CV for the gamma. Thus it is just a bit more
skewed gamma. This is a GGLMM distribution but not a GLMM distribution. It might
be too skewed for collision data, but at the end of the severity-distribution example for the
smaller dataset it is compared to the other distributions using loo, again assuming variance
is proportional to mean-squared, so a is fixed across the cells.

2 Full Model
This data includes credit scores, and has total losses and exposures by cell. Multiplicative
and additive models are fit to this, with a constant and a parameter for each level of each
variable – leaving out one level of each variable for identifiability. The mean is the base
pure premium for one unit of exposure for each cell. The data gives the exposure by cell, so
multiplying this by the base pure premium gives the mean for the aggregate losses for the
cell.

2a Residual Distributions
The starting point for the distribution of residuals for aggregate losses is the gamma, now
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with b fixed across the cells. This has variance proportional to the mean, like the ODP
has, and usually works reasonably well for aggregate losses. (Fixing a is usually better for
severity, as then variance is proportional to mean squared.) Then a few residual distributions
are compared. GLM uses a variance function that expresses the variance as a function of
the mean. It can further adjust the cell means by an exposure measure. In his review of
the Fu-Wu paper that this data comes from, Mildenhall suggests making the cell variance
Vj = V (µj)/ekj , where V is the variance function, ej is the cell exposure, and k is a selected
adjustment power. Here we can try estimating k as a parameter.

In GGLMM you can parameterize some of this. I try setting V (µj) = sµkj and estimating
s, k as unshrunk parameters with log uniform priors on the reals. This can be used for any
distribution. For a gamma or inverse Gaussian with mean = ab and variance = ab2, Stan can
be set up to solve for a, b for a cell by taking bj = Vj/µj and aj = µ2

j/Vj . With this done, the
variance and mean are specified by the linear model before the making choice of distribution.
The distribution can then be selected based on other shape characteristics, such as skewness,
using loo to indicate the best fit. This is more flexible than with GLM, where the variance
function determines which distribution to use.

To start with I use the Gaussian, gamma, and inverse Gaussian distributions. A combination
of the Gaussian and inverse Gaussian distributions – just a weighted sum of the two – can
provide a lot of flexibility in the skewness, ranging from 0 to 3CV. Depending on where the
skewness seems to be, weighting the gamma with either the normal or the inverse Gaussian
is another alternative.

The Weibull is interesting as its skewness can be fairly high or even negative, depending on
the mean and variance by cell. Unfortunately you cannot solve for its parameters from the
moments in closed form, although it only takes solving a single non-linear equation to match
mean and variance. Stan has some built-in functionality for solving specified equations, which
I try for the Weibull.

The moments are simplified by using the Weibull parameterization

F (x) = 1− exp[−(x/b)1/a]

Then using the notation n! = Γ(1 + n) even for real n, EX = a!b, 1 + CV 2 = (2a)!/a!2, and
skew×CV 3 = (3a)!/a!3 − 3CV 2 − 1. The skewness can really blow up for big CV – think of
a = 10. Then (3a)! is the product of 1. . . 30, while a!3 is the product of 1. . . 10 3 times. Also
the skewness is negative for low CV – but never seems to get as low as −1.2. Figure 2 graphs
the skewness as a function of the CV, and compares to the gamma skewness, which is 2CV.
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Figure 2: Weibull and Gamma Skewness

The Weibull is fairly different, which is sometimes better and sometimes not.

3 Extensions
This step includes some alternatives and extensions.

3a Interaction Terms
Add interaction terms between age and use. Give each combination its own dummy variable,
just leaving out enough to prevent a singular design matrix. Many of these parameters would
be expected to shrink to zero. An efficient way to eliminate some of them is classical lasso.
This is easiest if run with normal distributions, so as a quick estimate it will be run on the
logs of the class losses (leaving out zeros). It does the estimation for about 100 values of λ of
its choosing – in a wider range than would be selected in the end. As a starting point, take a
λ that is fairly low, so it does not eliminate all of the interaction variables, and use whatever
interactions that remain and put them in Stan for Bayesian estimation. Then eliminate any
of those that have parameter means near zero with a wide range around that. Compare to
the loo of the previous model.
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3b Smoothing the Factors
Keep the interaction terms if they improve the fit. Then try fitting a piecewise-linear curve
to the parameters (logs of the factors) by type – age, use, or credit. That can be done by
making the fundamental parameters the slope changes of the piecewise-linear curves through
the original parameters. The slope changes accumulate to the slopes, which accumulate to
the original parameters. Dummy variables for the slope changes thus count how many times
that slope change gets added up for a particular cell. More detail will be in the report.

If this improves loo, keep that model.

3c Incorporate an Additive Component
Estimate an additive adjustment to the factor model for every rating variable that has a factor.
This can be done by duplicating the design matrix and adding columns to the design matrix
for each new parameter. The factors and additive terms would be estimated simultaneously.
Many of them would likely shrink to zero and thus could be eliminated.

Preliminary Fitting – Simple Severity Fit Methods Comparison
For some perspective on the estimation methods, first we can look at fitting a normal
distribution severity model to the simpler data set, which has 8 age groups and 4 use
categories – business, long commute, short commute, and pleasure only. Regression, lasso,
and Bayesian lasso estimation are compared.

Regression starts by putting all the observed data points to be fit into a column vector, and
then making a design matrix with a column for each explanatory variable. Here the variables
were every age group except 17-20, which is the base, and the uses except for Pleasure. There
is a constant term in the models but the design matrix does not need a column for that in
the packages used here. For now each variable is treated as categorical, not numerical, so the
columns are just (0,1) dummy variables. For instance, the third age group would have a 1 for
every observation in that group, and a 0 everywhere else.

The code for these fits is in Appendix 1. The read_excel function helps read Excel files. The
data vector is a column in a file called z_small.xlsx, and the design matrix is in x_small.xlsx.
These are put into a vector variable y and a matrix x. But the regression package lm needs
x to be a data frame, where the lasso package glmnet and the Bayesian package stan are
looking for x to be a matrix. So it has to be read in twice, depending on what you are going
to do with it.

Variable selection for straight regression involves taking out insignificant variables, usually
with reference to the t-statistic, which is the ratio of the variable’s estimate to the standard
deviation of the estimate. Usually t > 2 is regarded as good, but many practitioners doing
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Table 1: Regression and Lasso Output
Variable regr full t lasso min lam=2.2

(Intercept) 328.16 6.949 249.17983
a2 -98.50 -1.729 .
a3 -107.00 -1.879 .
a4 -112.00 -1.966 .
a5 -179.25 -3.147 -64.71981
a6 -141.75 -2.489 -27.22082
a7 -140.75 -2.471 -26.22118
a8 -144.00 -2.528 -29.47190
u2 18.38 0.456 .
u3 52.00 1.291 25.23618
u4 182.00 4.519 155.23635

actual work, as opposed to publishing, will accept a smaller t, maybe down to 1.5. Starting
from this perspective, Table 1 gives the regression results for the full regression and some
lasso output discussed below. All the age variables had reasonably high t-statistics, but both
drive-to-work use classes had pretty low t’s. The regression was re-run leaving these out.

Lasso for a normal distribution is the default setting of the glmnet package. This does the
estimation for a selection it makes of up to 100 λ values. It produces a plot of the coefficient
values for these λs – see Figure 3. As λ decreases, the number of parameters in the model
increases (top axis), as does the L1 norm – the sum of the absolute values of the coefficients
(bottom axis). Here the base use is Pleasure, so the use parameters are all positive, where
the base age is the youngest, and the age parameters are all negative.

The cv.glmnet function does cross validation. It divides the dataset up into subsets – maybe
10 of them – and leaves these out one at a time and looks at how well they are then predicted
by the model fit without them. The only output I am using from this is lambda.min, which
is the smallest value of λ, giving the most variables in the model, deemed worth using based
on their default option for k-fold cross validation. The coefficients for this value (λ = 2.2
here) are in Table 1. These are a lot smaller than the regression gives, which is due to the
parameter shrinkage. All of the age groups with t<2 in the regression were left out, but the
drive-long class was retained, even though the t for this was low.

Appendix 2 has the Stan code for this regression example. The data section at the top reads
in variables that have been defined in the R session. Much of the code is just defining the
variables, which has to be done for Stan to compile the model into C code. The prior for
every parameter is assumed to be uniform over its defined range, unless otherwise specified
in the model section. The log of the constant term here is uniform on [-10, 10]. The log of
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Figure 3: Lasso Shrinkage Graph
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the shrinkage parameter s = 1/λ is made to be positive just because there were convergence
problems otherwise. For other applications this parameter has been lower.

For positive parameters, I prefer to start with a distribution proportional to 1/x. This
diverges both as x gets small and as it gets large, so it gives balancing strong pulls up and
down, whereas a positive uniform distribution diverges upwardly only. As an example where
the integral is known, consider a distribution for the mean β of a Poisson distribution with
probability function proportional to e−ββk. With a uniform distribution for β, which is
proportional to 1, the conditional distribution of β given an observation k is also proportional
to e−ββk, which makes it a gammma in k+1 and 1, with mean k+1. But if the distribution of
β is assumed proportional to 1/β, the conditional is proportional to e−ββk−1, which makes it
a gamma in k, 1, with mean k. Thus the 1/β unconditional distribution takes the data at face
value, whereas the uniform pushes it upwards. Numerical examples with other distributions
find similar results. In practice, giving the log of a variable a uniform prior gets the same
result but is slightly easier to implement.

A big advantage of Stan, and MCMC in general, over lasso is that it comes with a penalized-
likelihood goodness-of-fit measure, loo. This is a cross-validation measure. It calculates the
NLL for every point given a fit that used all other data points but not that one. This gives a
good estimate of what the NLL would be on an entirely new sample – the population NLL
as opposed to the sample NLL. This is a measure of the predictive power of the model.

Although MCMC does not eliminate parameters the way lasso does, it outputs range estimates
for every parameter. If a parameter mean is close to zero, with a wide range, it is a candidate
for removal from the model. I first try leaving these parameters out then seeing the effect
on the loo measure. If it is better, or at least not worse, I leave them out. Eliminating the
parameters with means near zero does not usually improve loo very much, but it does simplify
and clarify the model. The main point is not to eliminate parameters that are improving the
predictive accuracy. This exercise eliminated all but three variables – driver age 35-39, long
drive to work, and business use.

This was fewer than lasso had, but not really that different. Lasso also had a small effect for
ages above 39. Still neither had much age impacts except for 35-39. The predictive value of
the other ages was found to be low by these approaches. This data is for physical damage
severity, which might not vary by age as much as frequency does. Also value of the vehicle is
not controlled for, and the ages with better drivers could also be those with more expensive
cars. Vehicle value could also be a factor in the higher severity for business use.

Figure 4 shows the actual and fitted values for each age-use cell, on a log scale. There is a
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Figure 4: Severity Fits by Age and Use

line for each use class – with dotted lines for the actual data, and the age groups are on the
x-axis. Each estimation method gets its own panel. One sort of outlier point is key to watch –
business use for ages 17-20. This had average severity of almost 800 on 5 claims. The next
highest average severity was 367 for business use for ages 30-34, with 169 claims. In later
models, the number of claims will be used as input for the variance of the severity numbers,
but that is not part of this model. So it is interesting to see how the different estimation
methods are influenced by this cell.

The regression estimate combines the other three use classes. It gives the 17-20 group a
higher severity overall, even though this does not show up in the other uses. The lasso and
Stan estimates combine pleasure and short drive uses, but keep the long drive class higher.
Neither makes the age 17-20 age higher than those near it. Apparently there is no predictive
value for omitted observations in doing so. All the estimates make the age 30-34 group lower.
You can see that the lasso estimates are a bit lower for the older ages, while Stan is not. The
lasso λ was not really optimized – there is no real way of doing this – so it is hard to evaluate
what it is doing. The regression estimates get lower in general for older ages.

Once the variables that improve predictive accuracy have been identified by loo, it is usually
possible to find a model with just those variables by regression or lasso. For regression, this
just requires using those variables. For lasso, the coef function shown in the code gives the
implied coefficients for any value of λ input. Lasso and Stan often rank coefficients the same,
so that some value of λ in lasso will give the same variables as the method outlined for
Stan. The lowest value that chooses the same variables in this case is 4.3. This has the least
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Table 2: Stan Regression, and Lasso Coefficients for Three Variable Model
Stan Regression Lasso

Constant 236.2 231.6 243.3
a5 -50.3 -73.1 -33.7
u3 28.0 42.8 8.4
u4 151.0 172.7 138.4

shrinkage among the λs giving those variables. This has more shrinkage than the Stan model,
whereas the regression has less shrinkage. Table 2 shows the coefficients for each model. The
coefficients here tend to be positive, so the more shrinkage the coefficients get, the higher the
constant is.

The mean s parameter in the Stan fit is 121, which does not give a lot of shrinkage. It might
be equivalent to 0.8 for glmfit, where lambda.min was 2.2. But the variables were selected
by cross validation with loo by taking out any variables that did not make loo worse. The
remaining variables thus all improve the predictive value of the model. Then the shrinkage
was determined by the Bayes estimate for s in the model with those variables. The shrinkage
actually was less once more variables were eliminated. Still it shows some shrinkage compared
to the regression. Lasso, on the other hand, needed more shrinkage to get down to those
specific variables, and this is reflected in the lasso coefficients.

A couple of take aways from this are first, that the t-statistic in regression does not select
variables that stand up under cross validation. Both Stan and lasso, with different cross-
validation methods, eliminated a4, which has a t of -2.0, and they both kept u3, with a t
of 1.3. Second, while lasso both shrinks coefficients and selects variables, these two tasks
are not as compatible as they might seem. Stan with loo uses cross validation to show the
useful variables, and then shrinks by the posterior of the shrinkage level s. Lasso determines
both variable selection and shrinkage by λ alone, which does not allow this flexibility – and
without a clear way to determine λ in the first place.

From here on I will use Stan for the fitting. Recall that this is a kind of credibility approach –
estimates are shrunk towards the overall mean. Here that is based on predictive accuracy as
opposed to the variance components that credibility uses, but the results are similar.

Distribution Choices
Stan is also quite flexible on distributions. As an example, I fit a gamma instead of normal
to this same severity data. The gamma in a, b with mean ab and variance ab2 can start with
a bj parameter for every cell with a fixed, which makes the variance proportional to the mean
squared, or with an aj for every cell and b fixed, which makes the variance proportional to
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the mean. With the same variables as above, the b form had a loo of -185.8, and with a fixed
it was -180.5. These are both considerably better than the value of -197.8 for the normal.
The a form with variance proportional to mean is the better of the two. The fitted values
did not change a lot – the main effect was getting a better distribution around the mean.

It is not necessary to fix either a or b across the cells. For instance, instead of fixing one of
these parameters, use two parameters h, k to model variance = h*meank. Use the model to
fit the mean for the cell and to estimate h, k, and use these to compute the variance for each
cell. Moment matching for the gamma gives b = variance / mean, and a = mean2 / variance,
which give the resulting gamma parameters for each cell. Trying this gave k = 3.6 and a loo
value of 176.6. This is a high value for k and may be arising from trying to get a higher
probability for the one outlier cell, which had a high mean but still a large difference from
the data. The model is not right in that the variance of the severity mean for a cell is related
to the number of claims, and this is not in the model. I will include that in the next section.

Warmup – Severity Distributions on Age-Use Data
Now we will look at adding in claim counts by cell. This model will fit the severity distribution.
This gives more than parameter ranges – it could be used for pricing deductibles, for instance.
If µ, σ2 are the severity mean and variance, and there are N claims, the sum of those claims
has mean = Nµ and variance = Nσ2. The sum divided by N has mean m = µ and variance
s2 = σ2/N . These ratios are the data given for each cell. If the claim severity is normally
distributed, m, s2 are the mean and variance of the normal distribution for that data. If the
severity is from a gamma distribution in a, b, the sample mean is also gamma distributed, in
α = Na, β = b/N . Either way, the collection of sample means can provide an estimate of the
severity distribution parameters. The inverse Gaussian distribution has similar formulas.

The two main things the Stan code requires are the prior distributions of the parameters and
the conditional distribution of the observations given the parameters, which is actually the
likelihood. The parameters for the age and use classes will have shrinkage priors. We used
the double exponential prior in s for this before, with non-shrinkage priors on s, the constant
term, and the distribution parameters a, b, σ, h, k, .... The Cauchy shrinkage prior is often
a bit more efficient than the double exponential, so it will also be used here. It is just the
Students-t distribution with one degree of freedom. It has more weight concentrated around
zero, but also heavier tails, and this can sometimes more readily distinguish the important
contributing variables.

The conditional distributions here are the normal or gamma for the sample mean, although
the parameters will be those for the severity, with the claim count as additional information.
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The way Stan works is that you have to give it the parameters for every observation. You
can do transforms on the severity parameters to get the distributions for the observed sample
means. One of the parameters is calculated by cell as the constant plus the design matrix
times the parameter vector. In formulas, this is mu = x*v+cn. You can then transform
mu by cell to give the parameters for the sample mean. Consider the gamma model with
σ2 = hµk for instance. Solve for cell j to get: aj = µ2

j/σ
2
j , and bj = σ2

j/µj. Then αj = Njaj

and βj = bj/Nj are the gamma parameters for the observed sample mean. The code does
these assignments for every cell, then in the distribution statement uses the vector form, like
y ~ gamma(alf, bet). (Stan actually defines the gamma distribution with b as what is 1/b
here, and σ, not σ2, as the normal parameter, but that will be an adjustment in the code.
The text will continue to use the more conventional forms.)

All the variables now are retained in the model, except for the short drive use class. Leaving
that variable out combines short drive and pleasure uses. Getting a better model for the cell
variances seems to have made the age variables more predictive. The power k came out 2.4,
suggesting the variance is proportional to the mean raised to the 2.4 power. This is between
2, which the gamma with fixed a gives, and 3 for the inverse Gaussian. I tried just using a
straight gamma for comparison. This eliminates k as a parameter, and loo came out a little
better that way, so this model was selected. Still, the selection of the gamma is in part a
parameter selection, and that implied parameter is not counted, so keeping k = 2.4 might
really be just as good. However taking the variance proportional to mean squared is a pretty
standard assumption for severity distributions anyway. It makes b a scale parameter, for
instance.

The loo measure was -155.7 with the double exponential prior and -156.2 with the Cauchy –
both considerably better than in the model without counts. The double-exponential is used
below. Figure 5 shows the actual and fitted severity sample means using the gamma fit. The
business use class for drivers under 21 did not seem to influence the fit much. With the low
claim count for this cell, the variance of the observed sample mean came out high, so the
likelihood was better at that point even with a low fit mean. In fact it was 5000 times as
high as it was in some of the earlier models.

This was for an additive model. It is easy enough to do a multiplicative model from the
same code – just exponentiate the severity mean and make that the severity mean of the
gamma, then adjust to make it the sample mean. This starts by fitting an additive model
for the log of the losses. Doing this gave virtually the same loo as the additive model. All
the parameters, including shrinkage parameter s come out with a lot smaller absolute values.
For s – its mean here is 0.17.
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Figure 5: Gamma Severity Using Counts

I also tried the normal distribution but forcing the variance to be proportional to the mean
squared. I just made the standard deviation a multiple of the mean to do this. Loo for this
model came out -166.6, which is much better than previous normal fits, but not as good as
the gamma. The s.e. for comparing this to the gamma is 4.6 by the loo compare function,
so the gamma is more than two standard deviations better. A bit of skewness is apparently
needed for this data. One way to test for convergence of a model fit is with a measure called
Rhat that shows in the print function. It is a ratio of total to within variances among the
chains for each parameter. It should be close to 1.0 for a model that converges. It was
around 3 for most of the variables in this model in a preliminary run. Forcing the log of the
s parameter to be positive restricted the model enough to get convergence.

Inverse Gaussian Distribution
The usual parameterization of the inverse Gaussian is designed for quasi-likelihood estimation,
but it is awkward in applications. A more natural parameterization uses parameters a, b
with mean ab and variance ab2, like for the gamma. It then has some other properties of the
gamma: the sum of a sample of N claims is IG in Na, b and multiplying by a constant c gives
an IG in a, bc. The skewness is 3CV, where CV is the coefficient of variation = standard
deviation / mean. The gamma skewness is 2CV, so the IG is more or less a slightly more
skewed gamma. Its shape can be a bit different, however. For a < 1, the gamma density goes
to infinity at x = 0, but the IG density is 0 at x = 0 – and in fact the density at zero has
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slope 0 as well, so grows slowly at first. The density is:

f(x|a, b) =
√

a2b

2πx3 exp
−(x− ab)2

2bx

)

Stan does not have this distribution, but it has a provision for adding user-defined functions.
This goes in the function block at the start of the program. Here is one I did for the IG:

functions{
real ig_lpdf(real y, real a, real b){

return log(a/b)-0.5*log(2*pi())-1.5*log(y/b)-b*(y/b-a)^2/2/y; } }

It runs reasonably fast. It gave loo of -157.7, the same as for the gamma. Possibly the best
skewness is in between the IG and gamma.

Larger Data Set – with Credit Variables
The larger data set includes four levels of credit scores, with 4 being the best. There are eight
age groups and four use classes. The data for each cell is exposure, pure premium, and their
product – losses. The model is for pure premium, as a product or sum of a constant and the
age, use and credit parameters. The dependent variable is taken as losses, so the modeled
pure premium is multiplied by the known exposure by cell to give the expected value of the
cell losses.

The initial model assumes losses are gamma distributed with fixed b, so with variance
proportional to mean. I tried this for additive and multiplicative versions, and in this case the
multiplicative had a clearly larger loo fit measure. The Cauchy and double-exponential priors
gave virtually identical fits. I also tried a gamma with fixed a, which makes the variance
proportional to the mean squared. This was slightly worse. Then I used a gamma with
variance = s∗meank. The k came out at 1.3, with the loo just about the same as the fixed b
version. The better power was not quite worth the extra parameter.

I also tried normal, inverse Gaussian, and Weibull residuals. The Weibull, using variance
= s∗meank, had a loo of -1374.5, which was slightly better than the gamma’s -1375.9. The
others were all worse fitting. The extensions below use the gamma, as it is faster to estimate.

This form of the Weibull requires a non-linear solver to match the moments. Once the mean
and variance have been fit for a cell, the parameters a, b can be fit by solving EX = a!b,
1 + CV 2 = (2a)!/a!2. The non-linear part is solving for a from the CV. Stan has a facility
for solving a system of linear equations with something called the algebraic solver, but the
format is picky. For this, you first set up a function. This is what I used:
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Figure 6: Class Rating Factors

functions { vector system(vector alpha, vector Q, real[] x_r, int[] x_i){
vector[118] z;

z = lgamma(1+2*alpha) - 2*lgamma(1+alpha) - Q;
return z; } }

Q gets log(1 +CV 2). The variables x_r and x_i are zero dimensional arrays that don’t seem
to have any role, but are required. When it solves for z = 0, alpha is the a that matches this
CV. There are 118 data points. To call it, I used:

alpha = algebra_solver(system, start, Q, x_r, x_i );
for (j in 1:N) { lam[j] = mu[j]/tgamma(1+alpha[j]);

alpha[j] = 1/alpha[j]; }

This solves for the vector of a values for all the observations. Stan’s Weibull function uses
1/a instead of the a in the above distribution function.

Ten cells with small exposure and zero losses were omitted from the fitting. These distributions
are not defined at zero. There were still some cells with small exposure and volatile loss
numbers. Mildenhall suggests reducing a cell’s assumed variance by dividing it by exposurek

for some k > 0. This would allow for smaller exposure cells to be more volatile. For some
reason, the estimated k for this data set came out as -0.1, so variance would increase slightly
for the larger cells. This gave the same loo as without this adjustment, and it doesn’t make
much sense, so it was omitted.

Figure 6 shows the factors for each of the rating variables in the gamma model. The use
classes are Business, Drive Long, Drive Short, and Pleasure. Figure 7 shows actual vs. fitted
averages for use and credit groups by age for this and the combined additive-multiplicative
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Figure 7: Actual and Fitted     Class Group Averages

Bayesian Regularization for Class Rates

Casualty Actuarial Society E-Forum, Winter 2020 23



Figure 8: Actual and Fitted Use Class Averages by Credit Group

Bayesian Regularization for Class Rates

Casualty Actuarial Society E-Forum, Winter 2020 24



model discussed below. Figure 8 shows use and credit cell actual and fitted averages over the
age groups for these two models. The omitted zero losses show as gaps in some of the graphs.

Use 1, Business, has the smallest volume and is most volatile. This shows up in both the use
by age and use by credit graphs. The fitted values do not appear over-responsive to these
fluctuations. The Bayesian shrinkage looks like it is doing a lot what credibility would do in
giving low weight to those points. The drive long class and the good credit group 1 have
poor fits at a few points.

Extensions
Multiplicative-Additive Model
The possible issue with multiplicative models is that cells that have high or low factors in
two directions might be over or under estimated by the product of the factors. Here that
does not seem to be a problem, in that the estimated values look to be less extreme than the
data points. But as an example, I try a model that starts with all the variables used as both
factors and additive adjustments. Then variables whose parameters are shrunk close to zero
are omitted and the model refit, iteratively, until the best combination is found.

The fitted value for a cell is the constant times the rating factors for the cell plus the additive
levels for the same age, use, and credit variables. To estimate it, there are two coefficient
vectors, say v and w, and the design matrix is used twice. Call the two instances x and xa.
Then the mean for all the cells is the vector mu = exp(xv+cn)+xaw. Different variables
probably will be eliminated from x and xa based on parameters being shrunk towards zero.
The shrinkage parameter s was set somewhat arbitrarily as 100 times greater for the additive
parameters, as it came out in this ballpark in previous fitting. It might be better to have
separate priors for these two shrinkage parameters.

Doing this eliminated the factors for age group 2 and credit group 2. Additive levels were fit
for all but ages 3 and 8 and use 3, which is drive short. There were thus 21 rating variables
in this model, compared to 13 for the multiplicative model. The loo penalized likelihood
measure was -1374.2, which is an improvement over -1375.9 for the multiplicative model. The
difference of 1.7 is usually considered worthwhile for penalized likelihood. The parameter
penalty was 23.1 here, compared to 16.8 for the multiplicative model. This is 7.3 higher for 8
more variables, so less than 1 per variable. This is due in part to shrinkage, but formally
due to better predictive accuracy of the larger model. The likelihood was thus higher by 9.0
for the combined model, which is a better fit to the data, but the penalized likelihood is the
proper comparison.

Figure 9 shows the factors and additive levels for the variables. They offset each other to
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Figure 9: Class Rating Factors and Additive Levels

a degree, as some variables seem to work better additively, and some multiplicatively. The
fitted values have small but observable changes. In Figure 7, use groups long and short
appear to have slightly better fits across the ages, as do credit groups 2 and 4. In Figure 8,
use groups 2 and 4 (long and pleasure), fit a bit better across the credit groups.

This model is pretty intuitive and is easy to fit with MCMC.

Interaction Terms
There may be some combinations of rating elements that interact differently than the overall
model. Suppose age 2 and credit 3 is such a combination. Then adding a variable for that
combination could pick up the interaction. Since the variables are all (0,1) dummies, the
interaction variable would just be the product of the individual variables. There are four
observations with that combination – one for each use class. If the variable improved the fit
for all four, that would suggest the variable is significant.

Random effects is well set up for estimating this kind of thing, and that is one of its prime
uses. You could put in all combinations of two-way interactions, and many of the coefficients
would go to zero. If all the variances are the same, this would give lasso or ridge regression,
depending on the distribution assumed. Bayesian shrinkage can do that too. Lasso is a good
starting point, as it completely eliminates a lot of variables.

I tried interaction focusing on use classes. Each combination of the use variables with age
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Table 3: Interaction Factors Age(a), Use(u) and Credit(c)
u2,a2 u2,a7 u3,a2 u3,a3 u4,a3 u4,a4 c4,a2 c4,a4 c4,a5 c4,a6 c4,a7
1.25 0.84 0.84 0.72 0.65 0.77 0.82 1.15 0.89 0.92 0.84

and credit was given a variable, which was a product of the individual variables. The glmnet
package is easiest to apply to a normal regression, so I made the dependent variable the log
of the cell pure premium, so the regression would give a multiplicative model with lognormal
residuals. The least suggested shrinkage, given by cvfit.lambda.min, was for λ about 0.0035.
I used that and λ = 0.005 to review the eliminated variables. Selecting all but those with
very small coefficients gave ten combinations. This reduced the interaction variables from 30
to 10.

I put those in the gamma regression in Stan for the multiplicative model and eliminated
the ones with small coefficients as long as so doing did not make loo worse. That left six
interaction variables, and this resulted in a loo of -1367.0, which is the best result so far,
and a fairly big improvement. I also looked at the credit-age interactions, and it looked like
credit group 4 (best credit) had the most issues with age interactions. So I added in all
seven of those interaction variables, ran Stan, and then again eliminated the non-contributing
variables. That left five of those, so eleven interaction terms altogether. This brought the loo
measure down to -1366.2, so the credit interaction helped a little, but not much.

Table 3 shows the adjustment factors for these interactions. Figure 10 graphs the resulting
use by age and credit by age fits. The biggest improvement seems to come for use 2, drive
long, particularly at ages 2, 7, and 8. Credit group 4 looks better than the multiplicative
model, but about the same as the additive-multiplicative model. Pleasure use has a strange
worsening of the fit at age group 4.

Fitting Curves to Factors
The factors all change fairly gradually across a rating class, so it might be possible to save
on parameters by fitting curves to them. A flexible and easy way to do this with parameter
shrinkage is to fit piecewise-linear curves to the factors. With no shrinkage, this would
replicate the exact parameters. If you do shrinkage on the slope changes between segments,
you smooth out the curves, with the degree of smoothing determined by the shrinkage
methodology.

I try this for the three curves in the multiplicative model, as in Figure 6, but fitting the
curves on the logs of the factors. Starting with zeros for each rating class, the slope changes
add up cumulatively to the slopes, which in turn add up to the rating factor logs. This is all
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Figure 10: Actual and Fitted Class Group Averages
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linear, so can be accomplished with a design matrix. For a cell in class number i in one of the
directions, the dummy variable for class u in that direction gets the value max(0, 1 + i− u).
The fitted means are still the vector mu = exp(x*v+cn), but now v is the vector of slope
change coefficients.

The ages 3, 6, and 8, and credit 4, all got zeros and so were eliminated from the model. A
zero slope change just continues the previous line segment. It does not make the log factor
zero. The factors all came out very similar to before, but a little smoother. The loo was
-1373.3, which is a fair bit better than the -1375.9 for the straight multiplicative model. The
main improvement was in the parameter penalty of 12.9, compared to 16.8. The slope-change
model is apparently more parsimonious. Figure 11 shows the credit-by-age and use-by-age
fits. Some points fit better and some worse than previous models, but the fitted values are
on straighter lines, which is related to the model being more parsimonious. Some lines are
not parallel, due to differences in mix.

Etc.
The three model enhancements here - additive-multiplicative, interaction terms, fitting curves
- can be combined, but methodologically would just repeat what’s above.

Summary
Bayesian shrinkage is an improved alternative to maximum likelihood. It has lower estimation
and prediction errors, and unlike frequentist shrinkage it comes with a goodness-of-fit measure.
It also can use the posterior mean. MCMC software, like Stan, also makes it easy to fit more
generalized distributions.

I first used this to fit severity data by class. A few distributions like the normal, gamma,
and inverse Gaussian have a known connection between the distributions of the claims and
of the sample means, and this allows estimating the severity distributions from the sample
means. Then I tried it on a bigger data set with more classes on aggregate losses and pure
premium. This produced class factors. Extensions were a combined additive-multiplicative
model, interaction terms, and fitting curves to the factors. All of these improved the fits.
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Figure 11: Actual vs. Fitted for Curve-Fit Model
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Appendix
1 R code for regression, lasso packages and to feed Stan

setwd("~/OneDrive/R/Ratemaking Stan/Severity regression")
library(rstan)
rstan_options(auto_write = TRUE)
options(mc.cores = parallel::detectCores())
library("loo")
library(readxl)
library(glmnet)

y = as.vector(as.matrix(read_excel("z_small.xlsx")[,5]))
x = as.matrix(read_excel("x_small.xlsx")) #do this or the next line

x = read_excel("x_small.xlsx") #regression function needs x a data frame

U = ncol(x)
N = length(y)
c(N,U)

mod <- lm(y ~ ., data = x) #full regression

mod <- lm(y ~ ., data = x[c(1:7,10)]) #regression leaving out two uses

summary(mod) #gives output

fit1 = glmnet(x, y, standardize = FALSE) #lasso fit

plot(fit1, label=TRUE)
cvfit = cv.glmnet(x, y, standardize = FALSE) #lasso cross validation

cvfit$lambda.min #lowest lambda suggested by cross validation

coef(cvfit, s = "lambda.min") #shows parameters for that lambda

x_full = x
x = as.matrix(x_full[,c(4,9,10)]) #just using selected columns

U = ncol(x)
U

fitsev = stan(file = 'sevregr.stan', verbose = FALSE, chains = 7,
iter = 7000, warmup = 2000)

log_LL <- extract_log_lik(fitsev)
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loo_LLsev <- loo(log_LL)
loo_LLsev

print(fitsev, pars=c("cn", "v", "s"), probs=c(.05, 0.2, 0.5, 0.8, 0.95),
digits_summary = 3)

plot(fitsev, pars = c("v", "s"))

out <- get_posterior_mean(fitsev)
write.csv(out, file="out_sregr.csv")

2 Stan code for normal regression

data {
int N; //number of observations
int U; //number of variables
vector[N] y; //the dollar losses in a column
matrix[N,U] x; //design matrix with U columns

}
parameters { // all except v will get uniform prior, which is default
real<lower=-10, upper=10> logcn; //log constant term
vector[U] v; //the parameters
real<lower=0, upper=10> logs; //log of s, related to lambda
real logsig; //log of sigma parameter

}
transformed parameters {
real cn;
real sig;
real s; //shrinkage parameter, like lambda
vector[N] mu; //fitted means
vector[N] sigma;
cn = exp(logcn); //for positive parameter, uniform on log is like 1/X
sig = exp(logsig); //for positive parameter, uniform on log is like 1/X
s = exp(logs); // Gives more weight to lower values; good if X not big
mu = x*v+cn; //vector of mu parameters
for (j in 1:N) sigma[j]=sig; //Stan normal has sigma not squared

}
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model { // gives priors for those not assumed uniform. This one for lasso.
for (i in 1:U) v[i] ~ double_exponential(0, s);
y ~ normal(mu, sigma);

//for (j in 1:N) y[j] ~ normal(mu[j], sigma[j]);
}
generated quantities { //outputs log likelihood for looic

vector[N] log_lik;
for (j in 1:N) log_lik[j] = normal_lpdf(y[j] | mu[j], sigma[j]);
}

3 Stan code for gamma-alpha regression

data {
int N; //number of observations
int U; //number of variables
vector[N] y; //the dollar losses in a column
matrix[N,U] x; //design matrix with U columns

}
parameters { // all except v will get uniform prior, which is default
real<lower=-10, upper=10> logcn; //log constant term
vector[U] v; //the parameters
real<lower=0, upper=10> logs; //log of s, related to lambda, not too high
real logalpha; //log of beta parameter

}
transformed parameters {
real cn;
real alpha;
real s; //shrinkage parameter, like lambda
vector[N] alf; //fitted means
vector[N] beta;
cn = exp(logcn); //for positive parameter, uniform on log is like 1/X
alpha = exp(logalpha); //for positive parameter, uniform on log is like 1/X
s = exp(logs); // Gives more weight to lower values; good if X not big
for (j in 1:N) alf[j]=alpha; //Stan gamma mean = alpha/beta
beta = alf ./ (x*v+cn); //vector of beta parameters

}
model { // gives priors for those not assumed uniform. This one for lasso.
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for (i in 1:U) v[i] ~ double_exponential(0, s);
y ~ gamma(alf, beta);

}
generated quantities { //outputs log likelihood for looic

vector[N] log_lik;
for (j in 1:N) log_lik[j] = gamma_lpdf(y[j] | alf[j], beta[j]);
}

4 Stan code for gamma-k regression

data {
int N; //number of observations
int U; //number of variables
vector[N] y; //the dollar losses in a column
matrix[N,U] x; //design matrix with U columns

}
parameters { // all except v will get uniform prior, which is default
real<lower=-10, upper=10> logcn; //log constant term
vector[U] v; //the parameters
real<lower=0, upper=10> logs; //log of s, related to lambda, not too high
real<lower=1.0, upper=6> k;
real logh; //log of h parameter

}
transformed parameters {
real cn;
real h;
real s; //shrinkage parameter, like lambda
vector[N] m; //fitted means
vector[N] V;
vector[N] alf;
vector[N] bet;
cn = exp(logcn); //for positive parameter, uniform on log is like 1/X
h = exp(logh);
s = exp(logs); // Gives more weight to lower values, which is good if X not big
m = x*v+cn; //vector of means
for (j in 1:N) { V[j] = h*m[j]^k;
alf[j]= m[j]^2/V[j];
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bet[j]= m[j]/V[j];}
}

model {
// gives priors for those not assumed uniform. Choose this one for lasso.

for (i in 1:U) v[i] ~ double_exponential(0, s);
y ~ gamma(alf, bet);

}
generated quantities { //outputs log likelihood for looic

vector[N] log_lik;
for (j in 1:N) log_lik[j] = gamma_lpdf(y[j] | alf[j], bet[j]);
}
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	Communicating in Crisis Situations
	Rick Gorvett, FCAS, CERA, MAAA, FRM, ARM, PhD
	Chris Morse, PhD
	Julie Volkman, PhD
	____________________________________________________________________________
	Abstract:  Communicating technical information, especially in a crisis situation and particularly when the audience does not share the technical background, is a challenge that actuaries frequently face.  This essay describes the dynamics and issues involved in crisis communications and provides some recommendations for actuaries confronting such a situation.
	Keywords. Communication, crisis management, senior management
	            ____
	Actuaries, like practitioners in any profession that involves significant quantitative or technical expertise, have a reputation for sometimes being substandard communicators.  To the extent this is true, it is probably less a matter of lacking basic communication skills, than it is the inherent difficulty in communicating technical material to audiences that generally do not share that background.  Communicating in such an asymmetric environment presents a natural challenge.  When, on top of this, an actuary is attempting to communicate bad news or a potential crisis situation, the task of communicating effectively is doubly difficult.  We hope this essay will help actuaries to better understand the dynamics and issues involved in crisis communications.
	Potentially, actuaries may confront at least two types of crises.  To the extent that actuaries are executives and leaders in organizations, they may well have responsibilities in a high-profile crisis situation such as a cyberattack or an incident that somehow threatens the company’s reputation.  More often, though, actuaries need to operate and communicate in crises of a more subtle, actuarial nature.  Many actuaries have had to deliver bad news or present and educate company executives regarding threatening situations.  Just a few of many possible examples include:
	 Results of an actuarial analysis indicate that the organization is insolvent, or that its financial condition is worse than had been anticipated.
	 An emerging or ongoing natural catastrophe, unhedged financial risk, or other event is about to play havoc with the company’s finances, operations, capital adequacy, liquidity, etc.
	 A new type of risk has emerged, and the evolving litigatory environment surrounding that risk suggests that the organization will very soon experience significant losses that were previously unanticipated and were not contemplated in the ratemaking process.
	Effectively communicating in a highly technical and quantitative environment, with an asymmetry between the communicating partners regarding an understanding of and familiarity with the analytics underlying the findings, is difficult enough.  Where a particularly significant or crisis-level indication is concerned, all the difficulties involved in communicating in a crisis are also piled on.  Indeed, post-mortem analysis of crisis situations often reveals that communications could have been handled better.  While there could be several reasons for poor communications in crisis situations, we argue that a majority of miscommunication can be attributed to two main causes. First, audiences in a crisis behave differently than they do normally, so adjustments must be made [3]. Second, we as crisis communicators often overestimate our delivery ability, which can further cause issues. In this essay, we attempt to highlight some of the major factors within these two areas, as well as offer some advice for actuaries and other crisis communicators to overcome them. 
	 The nature of a crisis impacts individuals’ abilities to process information, requiring them to alter the ways that they cognitively operate in such a situation compared to their normal approach. In these cases, crisis communicators who do not alter their messages will often encounter problems, or at the very least fail to convey the importance of their information in a way that the audience understands. The result can be a failure to take the crisis seriously, a lack of motivation to act on the information, or an under-impression of the potential impact of the crisis on the company or organization. 
	 In terms of audience behavior, crisis communicators must be aware of three key issues. First, in a crisis, individuals tend to find themselves in situations of high stress and are often being presented with large amounts of information in a short period of time. In cases such as this, research has suggested that individuals have trouble with message retention, oversimplify the message content often missing key pieces, and misinterpret goals articulated by the crisis communicator [4], [8]. Second, a crisis represents a situation in which uncertainty is created as an individual’s understanding of the world is challenged or that person’s ability to predict what is going to happen next is compromised. In cases such as this, individuals often find themselves clinging to “what they know is true.” This means that people will often default to long-held beliefs about the world and how it works, or “tried and true” ways of handling things instead of alternative plans or ideas [2]. Audience members will often reject “new” information in favor of what they have normally encountered. In cases of crisis, this would suggest that crisis communicators who present novel information or ideas, might be ignored by their audience in favor of “what has normally happened,” or what has occurred in the past.  Third, feelings of uncertainty will often result in negative emotional states such as anxiety, fear, and anger [1]. Emotional states such as these have been argued to create “action tendencies” or behavioral responses in individuals, that if left unaccounted for may present additional problems with a crisis communicators message. Fear, for example, has been linked with a tendency for “flight” responses while anger has often presented an “attack” response [7]. In the context of crisis communication, this could translate into a tendency for the audience to avoid a crisis message, either by ignoring it or discounting it, or they could challenge the message, questioning its validity. In either case, heightened emotional states can cause failure in the crisis communicator achieving her/his goal by having the audience be less receptive than anticipated. 
	 While the impact that a crisis has on an audience is problematic, so too is the way in which crisis consultants convey the information. In many cases, people who are tasked with conveying information make assumptions about both their message as well as who they are talking to, which often causes confusion or reduced understanding. Unfortunately, in the case of a crisis, these assumptions can have severely negative impacts. One particularly problematic issue – particularly for actuaries – is a communicator’s use of jargon. Oftentimes in work specializations, individuals develop and use terms that are not common vocabulary to those outside those specializations. Unfortunately, given the often-siloed nature of the workforce, and individuals being in constant contact with others who also speak with a similar vocabulary, people can often forget that these terms are not commonplace, or at the least make erroneous assumptions that “everyone else gets what I mean.” In fact, the use of jargon impedes one’s ability to effectively communicate with non-experts [5]. When conveying information to others, especially in high stress situations, individuals thus can overestimate the “simplicity” with which they are speaking. In cases where the audience is already experiencing the issues mentioned above, this can result in a speaker believing that a successful message was completed, while the audience member becomes lost or ignores what is being said. 
	There is an additional issue that should be of concern to crisis communicators. Literature involving primacy effects suggests that the first piece of information that people are presented with will be used to interpret and compare all future information [6]. Therefore, the first message that an individual is presented with in a crisis tends to carry the most weight. This significantly increases the importance of presenting not only correct information to an audience but of making sure that it incorporates the issues stated above. If the message is designed without consideration of these issues, then not only can the decision making of individuals be compromised, but how people view the crisis will also be very hard to change from their initial erroneous impression.  
	 Taken together, the above comments suggest that, when dealing with a crisis, the actuaries and other individuals doing the communicating cannot approach the task as simply “conveying information.” By its very nature, a crisis impacts an audience, altering the way that they process and interpret information. Furthermore, some of the tendencies that speakers have, which might be normally overcome in everyday conversation, can have negative impacts when exhibited in a crisis conversation. It is important for individuals to remember that they must be simplistic and repetitive in the conveying of their information. They must be prepared to deal with audiences wanting to avoid what they are saying or challenging it. While the speaker may feel that they are speaking “plainly” they must examine their use of jargon and appreciate the experience level of those they are speaking to. Finally, while a speaker may believe that the solution being presented is logical and practical, he/she must understand that if the proposed solution deviates too much from the established norm, the audience may reject it as their uncertainty causes them to fall back on what has been done before – or, at the very least, what is comfortable and safe. 
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	Setting the Scene for Communicating Technical Results to Senior Management
	Christopher Smerald, FCAS, FIA, MAAA
	________________________________________________________________________
	Abstract: In this essay, we look at enablers to effective technical communication with senior management. Good planning and concise writing is essential, but in this essay, we argue that both analysist and recipient also need to work collaboratively towards ensuring the analysis is tuned to the recipient’s needs. This is especially true, because actuarial method is often very different from management decision-making approaches. The actuary and, ideally, also management need to go the extra mile to ensure they understand the other’s language and work context. To help with this, simple rules of thumb (heuristics) are suggested as part of a good communication process.
	Keywords. communication, reports, culture, senior management, personal leadership
	1. INTRODUCTION
	Just imagine going to a play where the production spent most of its time writing the script and only spent a little time, at the end, thinking about how they might connect with their audience, making sure their set works, and preparing to speak their lines. It might just work with a simple play (or if the audience is another scriptwriter who can fill in the abstract gaps with their imagination), but to most it would seem incomplete or worse. 
	Transcribing the simple play for insurance, imagine two short actuarial studies required for “Andy”, the CFO. One done by “Lucy” who worked alone to the last-minute preparing exhibits but did not plan what to say to Andy. “Ken” did the other. However, he had a cup of coffee with Andy to confirm what was needed before creating the exhibits, and he left himself time to prep for Andy. Who was invited back for an encore project?
	Perhaps Andy also backs plays and he is funding a professional show. He knows public fashion demands lots of audience participation, thicker subplots, elaborate sets, and no mistakes. Things are much more complicated. Without a good process, much is at risk. Andy must understand how it all works and be more involved. His producer needs to understand Andy’s and public needs better. Independent work with only a few short meetings is no longer adequate.
	Now imagine a more challenging insurance situation where CFO Andy and management are under pressure for deeper / more agile business insights, improved risk management and governance, and “ownership” of the numbers. A nice focused table and simple clear words may no longer be enough. The actuarial analysis may demand more thoroughness, transparency and efficiency using new methods with more data (or more pressure on old methods) and more controls, plus enhanced disclosures around selections, uncertainties and drivers. 
	For this more complicated actuarial work, a highly collaborative and participatory process is needed. We have broken the important aspects of this into four elements through the acronym CUPS: Culture, Understanding, Practice, Suggestions. 
	1. Culture relates to the principles and customs underlying the relationship. In this case a willingness to make things work and being collaborative in the relationship by listening well and allowing time for informal communication as well as formal. 
	2. Understanding is about knowing context and goals. This includes other participant’s: language and values, working and thinking process, and priorities and pressures.
	3. Practical relates to things which can be done to simplify communication by a rule of thumb toolkit (heuristics) once culture and understanding are established.
	4. Suggestions are just that. The more complicated things are, the harder it is to manage or improve alone. Adjustments are made based on feedback that is specifically requested. 
	These ideas will be discussed separately in more depth below, followed by a few end comments.
	Culture

	According to The Barrett Values Centre, who help build values-driven organizations, “The culture of a group of people is a reflection of the values and beliefs … that are embedded in the structures, policies, systems, procedures and incentives of the group”1
	 The sort of culture we are seeking includes a strong personal leadership element and is founded on positive business and personal values. -Where each is committed to making the relationship work to the best advantage of all concerned. This includes willingness and skills to work across boundaries, with curiosity and being open to challenge.
	The needed culture and underlying values are likely already there and may need only a little reflection to be lived more authentically and effectively, so that the forms followed in engagement are aligned more closely with their function. The actual form will likely vary considerably among organizations, so this section focuses more on the values which underlay culture which can be universal. By thinking about values and how they are lived through culture, we can connect and communicate better with others. 
	Here are seven good values examples from 6Q Blogger Heryati R2
	  1. Stewardship, 
	  6. Integrity, 
	10. Diversity (the source gives a fuller description), 
	16. Quality
	20. Good Citizenship, 
	41. Leadership: The courage to shape a better future, 
	87. Togetherness and enthusiasm. 
	Culture development starts with thinking about actions which would support these values. For example, making time for informal conversations, which of course takes time, but may increase efficiency in the longer run. This is because informal conversations can carry wider bandwidth of meaning as opposed to emails, agenda packed meetings and video conferences, where messages are more compressed. 
	This personal connection aspect is also echoed in a list by Miranda Anderson3 which suggests additional procedures:
	 Create a shared ritual like a cup of coffee informally
	 Agree to your commitments early and often and help facilitate commitments of other key stakeholders
	 Be There When It’s Hardest. Pick up the phone (or text, if necessary) the minute there’s a whiff of something awry, and then to do whatever it takes to make the situation right.
	Understanding

	Communication between actuaries and senior management is complex. Each focus on different aspects of the business, has different goals and past experiences, and may internally process things quite differently in language terms or units of thought. This may cause them to assign different meanings to the same underlying information4. So, understanding all this context, especially when the messages and uses are complex is especially important.
	It helps to consider how actuaries solve business problems using actuarial method. This can be more of an iterative art than a science, especially if data is missing and simplifications or extrapolations are needed. Tools may include any of the following: logic, statistics, heuristics (rule of thumb methods and models), and professional judgement. The iterations and uncertainties can leave an actuary feeling they have not really completed the analysis. So, the actuary may be tempted to explain too much their steps and unresolved issues, and not why the selections make sense and what the key issues are.
	In contrast to this deductive work, senior management might be reflecting more on similarities and differences in opinions from diverse experts while deciding on a course of action. The more objective the opinions and the more they use a common language, the easier it may be to decide. So, if the actuarial information is too abstract or tentative, they may not be able to synthesize it with more objectively framed opinions from sources like ERM, finance, investments, underwriting, etc. Thus, actuarial information is not always something which stands alone. It may be used as part of a larger process, so actuaries need to work to make it be more objective and comparable with other business information.
	Working collaboratively and being able to see both sides of the of the situation is particularly relevant here. The actuary needs to discover the manager’s objective and decision context. The manager needs to understand actuarial method and actual workings better, since not all of them can be translated efficiently into normal management language. This may take time before it becomes natural to both, but it is worth it, and it does take two. 
	Clear lines of responsibility and accountability are also important to the process of understanding. An actuary does not just produce “the answer” and a manager does not just make decisions. Each are responsible for their share of ensuring good risk management and for contributing to governance and social protection5. These make communication more complicated. By recognizing these parallel and complementary roles and breaking up communication along these lines (of decisions, risk management and governance), messages can be simplified. This splitting out may also help find an optimal level of disclosures on uncertainties, controls and caveats, because they have been untangled from other goals. 
	Finally, listening is a strong part of this understanding. To be a good listener, you need to set aside your own reactions, ignore sparked tangential thoughts, and take good notes generally. In order to pick up nuances (especially where a conversation is on unfamiliar ground), it helps to research and plan what is likely to be said by you or others. This preparation sets expectations, so surprises are captured well. This is a verbal version of tracking actual vs. expected. Allow silences to happen. Silences ( reflection ( understanding. Reflective listening is also good. Say what you thought you heard or what you understand they want. This builds trust that you are listening and shakes out misunderstandings.
	Practice

	Practice is best approached in a principles-based way with ideas to try to fit the situation. The below framework is based on work of The Good Actuarial Report Working Party which the author has been leading.
	The framework centers around truly understanding user needs and includes five parts6: 
	1. Prework. Communication may fail if user needs are not properly understood from the outset. This is partly covered in the preceding section, but planning time is needed: 
	a. Really understanding managements goals and expected uses. 
	b. Selecting / planning proportionality and priorities, and 
	c. Planning the scope of the work to be performed. 
	The proportionality heuristic7 is beyond the scope of this article, but just as actuaries have methods to simplify complexity in problem solving, analogous simplification can help with communication and work planning.
	2. During Analysis. Complete the work focusing on what is important, having kept notes on what was opaque and what was clear. A good practice is to rank your findings and interim assumptions by your level of belief. Was the fact pattern clear enough that you have a firm recommendation? Is it more of a best guess, or was it speculative where the model said “X”, but you cannot validate it?
	3. Communication planning: Keeping user needs in mind, plan what is most important to communicate in advance. 
	4. Writing/Communicating: Ensure it is relevant to user needs, highlighting what is important. Be Concise, less is more. 
	a. Instead of: “I took this data, applied these methods, and got these results”, you could try: “Your business needs fixing / is doing great, as these results show, and this is how you can see for yourself.”
	b. Write for Flow, by writing with flow: 
	i. The flow for the reader who discovers what is important through following clear logic. 
	ii. Flow as a writing technique where you get a sprint of content down and before overwriting the first sprint, write the next part, then the next... Then, with first draft quickly finished, you can overwrite and refine, reorder, fill in gaps, reduce, etc. Don’t start the iterations of improvement too early as you may burn too much time.
	c. Avoid Jargon – Use your authentic voice instead, avoid acronyms and technical terms
	5. Feedback. See the “Suggestions” section below.
	Suggestions (and Feedback)

	Suggestions and feedback are important for complex situations, because without them, it is difficult to judge how to improve. The actuary needs to know what new thing worked, what did not, and based on management’s experience what they might try next. Management needs to know if their actions are outside of the actuary’s comfort zone, and what they might need to do to understand things better. It is easy to see how they are part of a good culture. Without listening and co-ownership of success it may not happen or be constructive. 
	Conclusions

	The idea for this essay came from attending a workshop where non-executive directors and chief actuaries discussed successes and challenges in formal actuarial communication for UK actuarial function reports. I was struck by the lengths to which either the actuary or NED went to understand the other’s language, and by the importance they placed on good lines of informal communication. -So that the actuary would not be socially constrained if issues were to arise later. These cultural aspects helped cement all the communication research I have been involved in. I encourage readers to look for their own examples of good practice and to conscientiously copy them, as I have done, wherever it makes sense. 
	Thank you for reading this essay and I look forward to your suggestions.
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	How to Present Technical Results to Managers without Either Side Feeling Stupid
	Jim Weiss, FCAS, MAAA, CSPA, CPCU
	________________________________________________________________________
	Abstract. The following essay is a response to the CAS Theory of Risk Committee call for essays on the topic of Communications to Senior Management.  The essay argues some of the prevailing thinking regarding interactions between managers and technicians may reinforce counterproductive tendencies and that a more critical but rarely discussed challenge is both parties’ fear of looking stupid.  The essay offers practical suggestions to acknowledge and overcome this fear both short and long term.
	Keywords. Communications; Management; Fear of Looking Stupid (FOLS).
	1. INTRODUCTION
	Many discussions between technicians and managers go less than ideally.  Some of the structural elements contributing to this misery are self-evident or amply explored in literature.  For example, management’s congested schedules make it impractical to engage them in nuances required to understand pros and cons of different techniques and approaches; it is sometimes difficult to abstract how mathematical results translate into actions with real world impact; and each cohort possesses different skills, experiences, and peer groups and is not used to interacting with the other.  All these factors are straightforward enough that if any represented the true problem, then the Casualty Actuarial Society Theory of Risk Committee would not sponsor an essay contest on communicating results to senior management – and I would not submit an entry arguing the real issue both managers and technicians must address is their mutual fear of looking stupid (FOLS).  Once each party understands and plans for its own and the other’s FOLS, they can all begin to experience more fruitful, less stressful interactions.
	2. FOLS … BY CHOOSING THE WRONG ANSWER
	An inaccurate subtext to studies like the present one is that there exists some sort of fundamental difference between managers and technicians, when in fact technicians can and often do become highly effective leaders in their organizations.  There is arguably much more that (horizontally) differentiates the frame of reference of, say, a medical or legal professional from that of an insurance professional of any kind, than there is that (vertically) differentiates an actuary’s or data scientist’s perspective from that of a chief underwriting or chief financial officer at the same insurance company.  The latter differences in outlook tend to relate more to individual motivations and incentives rather than knowledge or experiences.
	Individuals do not (usually) consciously prioritize individual needs over those of their organizations, but biases come into play at a subconscious level.  The Peter Principle argues that individuals receive promotions until their successes turn to failures.  Having a success story to one’s name involves taking chances, because it is relatively rare to experience pure and unearned good fortune.  However, once an organization rewards successful risk taking with a management opportunity, the individual’s incentives change.   Salary and accountability increase, and advancement opportunities become more elusive.  Reputation sometimes becomes as powerful an asset as skill or ability.  There is greater individual financial freedom to be patient for the perfect opportunity, and greater adverse consequences for unsuccessful risk taking.  Meanwhile, those whose initial risk taking does not pay off have less to lose from further risk taking.
	The circumstances in which technicians and managers typically find themselves interacting exacerbates this subconscious conflict of interest.  Technicians’ presence at the table suggests that problems at hand are insufficiently addressable or understandable by more qualitative, instinctive, or fundamental approaches, and that heavier artillery such as math is required.   Managers may prefer lighter artillery.  This is exactly where overplayed advice for technicians to “lighten up” their message misplaces focus.  Digestion is prudent, but it does not change the essential nature of most technical recommendations – which is to exit the comfort zone.  The best chance at breaking through to a manager on this front is by illustrating that risks of inaction exceed the risks of potential actions implied by the analysis. 
	To illustrate, consider an insurance company whose goal is to break even.  Their actuary’s analysis suggests expected expenses exceed expected revenues by 25% for the upcoming year.  The chief underwriting officer receiving the analysis is likely less concerned with how efficaciously the actuary derived the 25% than with risking his or her own reputation among policyholders, producers, and regulators with intervention.  Providing a defense of the analysis casts the conversation as a technical referendum rather than a comparison between one approach implied by the analysis and another of doing nothing.  The actuary can avoid this trap by volunteering probabilities of breaking even under either alternative – say, 60% with the recommendations and 20% otherwise.  In this way, the actuary assumes the burden of defending not only the recommendations but also the CUO’s default position.  This, in turn, aligns the actuary’s narrative with the CUO’s FOLS, by objectively presenting inertia as a very risky alternative.
	3. FOLS … BY NOT UNDERSTANDING THE DETAILS
	Aligning incentives is one way to protect managers and technicians from emotions deriving from FOLS.  However, numerous inadvertent slights still permeate most interactions between managers and technicians, often because the former are terse and the latter are verbose.  For example, some managers reportedly spend over 20 hours per week in meetings.  As a result, they may not have time to send detailed e-mails when they wish to obtain information from a technician, and may send a note that says, “We need to talk.”  The technician will likely then worry about what requires discussion and why the note could not specify what it is.  He or she will begin to analyze how to respond to several of the endless possibilities, ultimately becoming exhausted and anxious by the time the manager becomes free.  The manager will then feel overwhelmed by the technician’s anxiety and preparation advantage when discussion commences, which puts he or she too on the defensive.  A vicious cycle ensues.
	The cycle is easily generalized.  Per the previous section, little more separates how some managers and technicians obtain their stations than the chance results of prior risk taking.  Yet both parties often identify with tropes that one “gets business” while the other “gets numbers.”  These tropes can be useful for identifying project roles, specifically who is handling various tasks such as final decision-making – but they also leave all parties feeling underestimated.  For this reason, communications strategies that pander to tropes reinforce negative emotion.  For example, some dimly suggest that technical content must be simplistic and catchy to engage “non-technical” audiences such as managers.  Yet a natural reaction to receiving information presented in this way may be, “s/he must think I’m stupid!”  This then leads managers to ask questions that illustrate technicians are equally “stupid” when it comes to the business.  Each focuses more on perceived capability than problems at hand.
	In contrast, being yourself is easier than “selling” others, and all parties should focus on presenting the truest versions of their work rather than altered versions of themselves.  For technicians, sharing a report in advance of a face-to-face discussion shows confidence in a manager’s ability to interpret it, and the latter probably will not have time to give it more than a skim anyway.  Rather than investing in a second career in digital marketing, the technician should invest in simple format changes to ensure the skim properly orients the manager to discuss further, not unlike how they might make the same changes to spruce up the document for a technical peer.  For example, a data scientist may accentuate calls to action in decisive red, while banking valuable positive emotional capital by highlighting areas of present strength in a more tranquil blue.  S/he can use white space as relaxing intermezzos between key points.  None of this is hard or requires altering the substance of a report and maintains a technical vernacular to the report that in turn preserves the glory of identifying a business solution for the manager.
	Returning to our earlier example of an insurer whose projected expenses exceed its revenues, it does not take an advanced mathematics degree to identify a basic inequality, nor does it require extensive business acumen to know how to plug a revenue shortfall.  Some may argue that technical presentations to managers should cut to the chase and focus on what findings mean for the business.  This depends in part on the personalities involved, but these behaviors mostly just reinforce the cycle.  For example, the actuary may have used gradient boosting (or any other mysterious-sounding algorithm of the reader’s choosing) to isolate the shortfall to a specific segment of the book, and surrogate models to identify variables that describe that segment.  It may be as obvious to the actuary that a rate increase or non-renewal strategy is necessary for the targeted cohort, as it is to the manager that the explanatory variables intuitively correlate with risk.  The actuary can “lead a horse to water” with prompts and visuals but should resist the temptation to make him or her drink. By staying in their respective lanes, neither the manager nor the technician looks “stupid” by having a perceived novice explain how to do their jobs.  The manager looks smarter by asking intelligent questions and extracting business insights from math, as does the technician by anticipating questions and having answers ready.   The unfortunate tropes survive, but neither party overcorrects for them, minimizing their harm.
	4. BEING SMART … BY “GETTING STUPID”
	Though well meaning, conversations like the one we are having do more to harm dynamics between managers and technicians than they do to help.  They create a mythos that the two parties are fundamentally different, and they create unreasonably high expectations for the interactions.  Because they often focus on the technician’s role, they absolve managers of responsibility to make such interactions positive.  The absolution in turn disempowers managers, as if they are incapable of doing anything to make life easier.  The conversation makes everyone fearful of looking stupid.  To speak technically, it divides us, multiplies hard feelings, and subtracts from self-worth.  This essay adds one more opinion to a pile of existing and conflicting literature referenced throughout the document.
	So how do we solve the problem of the less than ideal interactions, aside from fewer essays?  Above I have outlined some simple steps technicians may consider in the short term to better empathize with managers’ FOLS (and recognize their own FOLS) – by assuming shared responsibility for managers’ risk aversion and unselfishly ceding opportunities to draw logical conclusions.  In a literal sense, one is more work for the technician, the other less.  Longer term, all parties may consider a colorful slang expression called “getting stupid,” which is defined as wild, unscripted dancing -- in other words, pure joy.   The best managers and technicians take incredible joy in using their strengths to solve problems and celebrating their impact together.  “Geeking out” over a killer technical analysis and/or business strategy may not be proper decorum, and some may call it a waste of time.  This is our FOLS talking.  The more technicians start “getting stupid,” the more senior managers will follow their example, and the sooner waves of joy will overcome barriers of fear in their businesses.  We all will be smarter when that day arrives.
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	An Actuarial Approach to Behavioral Ratemaking:
	How Fair Rates Will Encourage Safer (and Slower) Driving
	Michael C. Dubin, FCAS, FSA, MAAA, FCA
	Abstract: Many people regularly drive above the posted speed limit. This type of behavior is risky and the cause of much loss, including loss of life. The World Health Organization has identified speeding as a global health issue. The insurance industry can reduce this loss by implementing a new approach to ratemaking, behavioral ratemaking. The use of current driving speed data (and other telematics data) to adjust insurance pricing on a real-time basis can be used to encourage safer driving behavior and a safer society. In other words, in this model a driver would pay real time for how they drive as they drive. Hereinafter “behavioral ratemaking” is used to denote insurance rates that change in real time. This article discusses what behavioral ratemaking is and how it would operate in this context. It discusses how behavioral rates could be developed, the advantages they present and the logistical, technological and regulatory obstacles preventing their implementation.
	What is behavioral ratemaking?
	Anyone who has taught a child to drive knows that the most important way to reduce the chance of an accident is through safe driving behavior. Since the insurance industry pays for the financial consequences of accidents and other insured events, it would seem they would and should be a promoter of safety as well. “Hazard reduction incentives” are a consideration in designing any insurance risk classification system. However, traditional auto insurance ratemaking uses classification systems that strive to place drivers into classes with homogenous risks based on factors such as age, sex and marital status that do not directly measure risk and do not utilize driving behavior. When behavioral risk is considered in traditional ratemaking, such as in claims or violations history, past rather than current behavior is measured. Walters states, “One of the reasons for classifying is the impossibility of knowing the risks true expected loss or accident likelihood.” This is no longer as clear as it was in 1981 as recent technology rapidly advances the potentials of ratemaking. With the introduction of telematics data on driving behaviors, actuaries can now, in a way that was impossible previously, transform ratemaking to utilize information that directly impacts risk. Behavioral ratemaking adjusts premium based on controllable driving behavior immediately. Behavioral ratemaking recognizes behavioral influence on the accident likelihood, and the potential severity of the accident, at each moment of actual driving. The overall number of claims would not change - except for the significant impact this measurement should have on actual behavior.
	There are many ways to implement these rate adjustments – each with practical issues to be resolved. In any case, they would be based on behaviors in real time. This is not the same as using historical behaviors of the driver to adjust the rate. Behavioral ratemaking provides the insured with immediate premium savings for continuous behavioral improvements. 
	How is technology expected to transform insurance?
	With advances in technology, futurists project many industries to be disrupted by innovation. Insurance is no different. Insurtech refers to the use of technology innovations designed to squeeze out savings and efficiency from the current insurance industry model, including using new streams of data from internet-enabled devices to dynamically price premiums according to observed behavior. It has been over a decade since the invention of a telematics device to provide real time input to insurers. Insurtech ideas potentially impacting ratemaking include: increased use of predictive modelling, using telematics or internet data to create improved ways to classify drivers, and mileage based insurance. When the Insurtech sector first developed, many in Insurtech with little insurance expertise believed that new technologies would be able to quickly disrupt the industry and allow for new companies to quickly begin taking significant market share from the established ones. 
	Such disruption in the insurance market has not transpired. Currently, experts in Insurtech generally agree that there is no standout disruptive technology that will significantly impact market shares of the largest insurers any time soon and many insurtech startups still require help from the major insurers. Industry executives have proclaimed that there is no technology on the horizon that will cause major disruptions in insurance company market shares in the near term. 
	Behavioral Ratemaking using real time telematics data will change this though. With the increased use of artificial intelligence, smart cars and driving algorithms, insurance ratemaking will need to keep up. Despite the slow start, it is clear that as technology advances new ideas are needed to align insurance better with the future of transportation and regulation.
	Why is behavioral ratemaking beneficial?
	Behavior ratemaking has many benefits. Benefits to customers include immediate financial rewards for driving safer; provides proven methods to drive safer; and allows individuals and fleet managers to better manage driving risk.
	Benefits to insurers using behavioral ratemaking include improved ratemaking which ties premiums charged to actual behavior and risk associated with that behavior. Higher identified risks are charged more, thereby generating increased revenue for high risk behaviors. There will be reduced insurer losses to the extent safer driving practices caused by the application of behavioral rating process are implemented. This leads to more accurate pricing as customers pay an amount more closely aligned to driving risk. 
	Behavioral ratemaking benefits to society include reduced accident frequency and severity to the extent some drivers adopt safer behaviors. Data collected over time showing how compliance with the posted speed limits impacts losses will have the potential to assist with better, safer programming of self-driving cars.
	How is behavioral ratemaking different from predictive modelling?
	It is well known in statistics that correlation does not imply causation. It is preferable if rating variables are based on characteristics that are causal in nature. Predictive modelling relies on finding attributes that are correlated with accidents to make predictions, while behavioral ratemaking relies on attributes that have been shown to cause or increase severity of accidents. Many companies, old and new, use predictive modelling to find better and more complex rating variables and classification systems that improve actuarial soundness. Predictive modelling is similar to traditional ratemaking in that historical information is relied upon to determine current rates. While this does lead to lower rates for safer drivers, the process takes time to design new pricing mechanisms and prove they work better. With predictive modelling safer insureds are asked to trust the insurer that they will eventually be charged lower premium for their safer driving. 
	There is a necessary delay between when the insurer confirms the safe driving and can reduce premium for the insured. Also, it is not necessarily intuitive which new rating variables or classification systems correlate with lower future costs, so it would be too risky for an insurance company to implement changes based on predictive modeling in conjunction with telematics data without adequate proof that the new rates are better. Combined with a pre-existing distrust of insurance companies, this delay in recognition of premium savings resulting from safer driving reduces the ability of predictive modelling based safe driving incentives to take hold. These companies hope that safer drivers will have enough confidence in the possibility of future lower safe driver rates to choose the company before the new rates are fully implemented.
	Also, without clear correlations, predictive modeling alone may not find opportunities to improve ratemaking as quickly as with the addition of behavioral ratemaking. This can be shown in the following simplified example with realistic assumptions. Let’s assume older drivers are more risky than younger drivers and that older drivers tend to drive slower than younger drivers. In this example, slow driving would be correlated with higher risk when we look at the population as a whole. However, if we look at either subgroup individually, we will likely find that slower driving is actually correlated with lower risk. And for any individual in either group, risk can be reduced by driving slower. This is the most important aspect that represents behavioral ratemaking’s untapped potential to improve fairness.
	Behavioral ratemaking is different in that drivers see immediate financial rewards for safe driving behavior, in addition to additional benefits for continued improvement in driving behavior. Behavioral ratemaking uses telematics data to make intuitive adjustments to traditional ratemaking techniques. Speeding is but one example of a behavioral characteristic which may impact safety. For example, a company would implement a large discount for drivers who agree to abide by the speed limit. In addition to driving speed, the company would rely on telematics mapping data for location of insured vehicles and corresponding speed limit. A surcharge would be assessed on each mile driven at a certain number of miles per hour over the posted speed limit. An additional discount can also be immediately provided for driving within a certain range of the speed limit. Important assumptions are that safer drivers will be drawn to a rating system that rewards them for safer driving and that they will drive more safely when rewarded. Since the starting point is traditional rates and rating plans, the use of new intuitive rating variables will improve upon overall actuarial soundness. Traditional ratemaking techniques can then be used to adjust rates and adjustments as new data comes in for the population as a whole.
	Why will behavioral pricing be disruptive?
	Once behavioral pricing takes off (with even a subset of insurance companies) adverse selection may create difficulties for the remaining more traditional insurance companies to co-exist without behavioral pricing. The effect could be similar to the introduction of nonsmoker/smoker pricing in the life insurance market. Once nonsmoker discounts were introduced by one company, they, practically, needed to be introduced by all for similar reasons. As safer drivers self-select discounts for their own safer driving, insurers using traditional pricing exclusively will be left with less safe drivers, and higher accident frequency and claims costs. Drivers who do not modify driving behavior will self-select the increasing costs of traditional insurance. There is also less risk to insurance companies using behavioral pricing because riskier driving behavior will result in immediate rate surcharges and therefore, increased revenue.
	Regulations have always required fair rates by disallowing unfair discrimination. Regulators rely upon actuaries to certify that rates are not unfairly discriminatory. The rating systems that developed in the twentieth century, based primarily on uncontrollable factors such as location, age, gender and marital status, were the fairest possible at the time. Once regulators and actuaries become comfortable with rating factors more directly linked with hazard, it will become apparent that traditional rating plans alone unfairly discriminate against safe drivers.
	It is important to note that the business of insurance requires cross-subsidies. No rating mechanism can accurately predict the exact cost of each insured. Actuarially sound rating reduces cross-subsidies. There may also be an ethical limit as to how much cross-subsidies can be reduced. For example, in health insurance it is unacceptable to classify risks based on pre-existing conditions.  
	Changing driving behavior will be disruptive to more than just insurance. Americans spend billions of hours per year driving. As safety becomes more prominent in the mindset when getting behind the wheel, many other industries are potentially disrupted by this potential shift (such as automobile manufacturing, advertising, infrastructure design, law enforcement, etc.)
	How can behavioral pricing take hold?
	In order for ratemaking changes to take hold in the automobile insurance industry, there are three requirements which need to be addressed. These have not been adequately addressed by Insurtech thus far, which is the reason for the slow start to disruption.
	1. From a customer perspective new changes need to be associated with an immediate monetary incentive. In other words, it needs to be cheaper for at least the safer half of drivers. Otherwise, customers will not move to the new system in a large scale. Would Uber have been able to overcome regulatory challenges if it weren’t cheaper than traditional taxis?
	2. From an actuarial perspective, telematics confirmation will be needed for the assumption that customers who do sign on will exhibit safer driving behavior. The safer behavior will be due to both attracting safer drivers to begin with, and all drivers driving more safely after they sign up.
	3. Investors in behavioral pricing need assurances that customers signing on will have lower loss costs and that rate adjustments can be quickly implemented.
	Insurance in the US is regulated on a state by state basis. While statutory guidelines for rates are similar among states, each state is responsible for determining and enforcing what is acceptable for its own residents. Behavioral pricing should lead to rates that are more actuarially sound than traditional rates. In order for behavioral pricing to take hold, insurance companies wishing to spearhead implementation would need to collaborate with individual state regulators. Three advantages to behavioral pricing over traditional pricing that should be important to regulators are: the incentivizing of safety, reduced likelihood of unfair discrimination, and more accurate rating.
	Improving safety
	One way to enable meeting all three of the aforementioned requirements is to identify, encourage and reward safe behavior. Doing so will reduce rates for policyholders while maintaining or improving profitability for insurance investors and actuarial soundness of rates.
	Consideration of insured behavior with respect to safety is an important component of actuarial fairness that has not been adequately addressed in actuarial literature. Although the insurance industry has done much to improve safety in many lines of insurance, safety is not necessarily viewed as having a good financial impact for the insurance industry, either as a whole or by large insurance companies. "You want safer cars. Safer cars mean lower insurance. Safer driving means lower insurance costs”, said Warren Buffet making this counterintuitive point. Regulators require actuarial determination that rates are actuarially sound. Actuarial soundness means that the rate is just enough to provide for all costs in the aggregate. Therefore, safer driving should mean lower revenues for the insurance industry as a whole. 
	Large insurance companies project revenue by considering their own shares of insurance market segments. Therefore, a disruptive drop in revenue for the industry, whether due to safety or anything else, represents a risk to a large insurance company’s revenue. Although safety reduces costs for insurance companies, the actuarial soundness requirement for rates implies no long-lasting loss ratio improvements due to decreases in losses. Many large insurance companies had their roots as small insurance companies that were able address to an underserved and safer subset of the market. An example in the life insurance industry is The Phoenix Companies, which began as American Temperance Life Insurance in 1851 and insured only those who abstained in alcohol. An example in the property casualty insurance industry is GuideOne, which began in 1951 as Preferred Risk Mutual Insurance Company, with the idea that non-drinkers would be in fewer accidents than those that did drink. As in the past, the opportunity presents itself today for a startup or small insurer to focus on safer than average individuals. By using behavioral ratemaking, this company would also create incentives for insureds to become safer.
	With respect to improved safety, the insurance industry currently seems to be primarily concerned about the impact of driverless cars. However, there is little evidence that driverless cars will be safer than human drivers in the near term. In addition, the focus on the safety of driverless cars removes energy from how safety can be improved through safer human driving behavior. 
	The difficulty of relearning safer driving behaviors
	It is very difficult for an individual to relearn safe behavior. We cannot let that individual difficulty blind us to the safer possibilities for society as a whole. It may be easier to for some individuals to overcome opioid addiction than for others to correct some unsafe driving habits. Even if that is the case, society as a whole can improve safety. For example, cigarette smoking has decreased dramatically over the last fifty years. While it is very difficult for an individual to quit smoking, it was possible for smoking to be reduced in society overall. Similar driving specific examples of safety improvements that are difficult for the individual but possible for society as a whole are the increase in seat belt usage and the decrease in drunk driving over the past few decades. 
	Seat belt use is a safe driving behavior that reduces mortality and injury severity after an accident. Therefore, seat belt usage reduces insurance losses. It has been widely observed that seat beat use has greatly increased over thirty years. A widespread survey, taken in 19 cities in 1982, observed 11 percent seat belt use for drivers and front-seat passengers. In 2009, seat belt use averaged 88 percent in the 30 States with primary seat belt laws. Though not exactly apples-to-apples, this represents an eight-fold increase, showing that the vast majority of drivers were ready, willing and able to take on this safer driving behavior. While driving behavior can be very difficult for an individual to change, this example provides evidence that the driving public is able to adopt additional safe driving behaviors.
	Despite the empirical evidence that human driving behavior can become safer as a whole, it may still be difficult to envision improved safety on a wide scale due to improving human driving behavior alone. We do know change for safety is possible, and although it may be unprofitable for large insurance companies that maintain the status quo, it is profitable for a new model of insurance company. Improved safety is good for society. 
	Insurance pricing would influence driving behavior
	The question is not whether driving behavior can be improved, but whether insurance pricing can encourage safe behavior. In order for all the benefits of behavioral pricing to be realized, it must be true that some drivers can and will change their driving behaviors in response to their insurance price. In the past, common actuarial wisdom was that it was not possible for an insurance pricing system to encourage safe behavior as noted by Michael Walters, “Few drivers wear seat belts despite the life-saving evidence, so the prospect of saving a few dollars of insurance surcharge certainly will not induce a modification of driving behavior.” Coincidentally, not too long after that paper was written, most drivers began to consistently use seat belts. According to a Canadian survey, the majority of drivers believe doubling speeding fines would reduce speeding. Immediate insurance surcharges that are directly attributable to speeding are very similar financially to fines. This supports that increasing insurance costs for speeding could reduce speeding. 
	The advent of telematics has enabled insurance pricing to induce the driving public to drive more safely. In 1981, there was no way to reliably determine whether drivers used seat belts or to monitor other driving behaviors, such as speed. This lack of reliable determination virtually eliminated the possibility of insurers reflecting driving behavior in pricing. Telematics data is now available so that the insurance company can determine driving behavior with great accuracy. Because of the availability of reliably correct telematics data, the behavioral price differences can be substantial. Behavioral pricing combined with the availability of telematics data can now provide the driver with minute by minute updates on insurance pricing as compared with the annual updates of the past. By providing continuous behavioral feedback impacting premium, drivers are enabled to consider premium when choosing a driving behavior.
	In order for insurance pricing to influence driving behavior, the pricing difference needs to be significant to the insured. While driving slower saves fuel costs, the resulting savings do not seem to be great enough to significantly influence driving speeds.
	In order to show that insurance pricing can encourage safe behavior, it is noted that a large part of driving risk is during the daily commute to work. For many people, there are many commuting cost options, including fuel efficiency, parking and use of public transportation. A daily difference in insurance cost would likely impact commuting cost benefit analysis and influence driving behavior to recognize a reduced insurance cost each day.
	Review of speed and other telematics attributes
	Data shows that speed increases costs of risk
	Slower speeds reduce accident probability
	Slower speeds reduce accident severity
	How reduced speed impacts expected cost of accidents

	“Newtonian relationships between the fourth power of small increases or reductions in speed and large increases or reductions in deaths state the case for speed control.” The best choice of driving attribute to be used for behavioral ratemaking is speed. As opposed to other attributes, such as cornering, braking and acceleration, speed has several advantages including that it relates to the hazard. According to Walters, attributes “should reasonably relate to the potential for, or hazard of, loss.” Compared to the other attributes: speed is more commonly a direct cause of accidents and speed is likely correlated with other aggressive and risky driving behaviors such as assuring safe following distance. A slower driver would be less likely to be tempted into a risky maneuver to pass an even slower moving vehicle. Regardless of the cause of the accident, virtually every accident would have a reduced cost if the initial speed were reduced and a better (slower) speed score would always be associated with reduced hazard. Similarly, a worse (faster) speed score would almost always be associated with increased hazard. A better cornering score is not always correlated with decreased risk as crossing a yellow line at an intersection could improve the score but increase accident potential.
	Some attributes for which it may seem reasonable to adjust the rate based on historical behaviors would not be feasible for behavioral ratemaking. While “hard braking” can be used as part of an overall analysis of safe driving, it does not directly relate to cost of risk. If a driver frequently brakes hard, the driver may be exhibiting unsafe behaviors prior to the hard-braking. While a hard-braking surcharge may reduce some unsafe behaviors, the hard-braking attribute does not work for behavioral ratemaking. The hard braking itself is used by the driver for the purpose of reducing hazard and it doesn’t make sense to charge the driver for the hard braking in the seconds before an accident that reduced the cost, or to discourage the driver from hard braking to avoid an accident. Compared with good speeding scores, good braking scores are not as clearly associated with safe driving and can be associated increased accident probability. For example, rolling through rather than completely stopping at a stop sign could improve braking score while increasing the chance of an accident. Conversely, a bad braking score could be the result of successfully avoiding an accident or making a complete stop for a pedestrian in a crosswalk. Using a hard-braking attribute could increase risk if the braking surcharge discourages drivers from hard braking when necessary to avoid an accident. The braking attribute just does not make intuitive sense when used on a real time telematics data since hard braking may be the result of trying to avoid or reduce the cost of an accident. Also, it wouldn’t make sense to charge a driver for braking hard one second before an accident. What would make sense is charging the driver for going too fast before the hard braking that led to the need for the hard-braking evasive action in the first place.
	Speed meets another criteria better than other attributes such as braking or cornering: it is easier to measure. The attribute “should be susceptible to measurement by actual experience data.” Drivers already understand that speed relates to risk and are trained to objectively measure speed. The other attributes would require additional training to show drivers how behavior impacts their score.
	Other groups concerned with safety, such as law enforcement and the medical community, have determined that slower speeds are safer. There has been no such determination for cornering or braking. The public already understands that speeding causes insurance losses. According to a Canadian study, about ninety percent of drivers believe driving over the speed limit increases the chance of accidents, injuries and getting killed. While there are certainly other behavioral factors which may impact accident risk, the insurance industry should focus on speed as the first attribute to use with behavioral ratemaking. 
	Since the beginning of the automotive age, it has been known that increasing speed increases the cost of driving risks. According to NHTSA, “For more than two decades, speeding has been involved in approximately one-third of all motor vehicle fatalities.” According to the NHTSA and NTSB, speeding causes as many deaths as drunk driving. Considering this statistic only includes accidents where speed was actually recorded as the cause, speeding fatalities may be understated. Other accidents where the initial speed exceeded the speed limit are not included. There is no way to determine how many fatalities in these accidents could have been avoided had the initial speed not been excessive.
	“At lower speeds, drivers have a wider field of vision and are more likely to notice other road-users.” Before an accident occurs, something unexpected must happen within the minimum distance (this could be defined as the distance travelled in two seconds, for example) needed by the driver to make normal driving adjustments in speed and direction. When this happens, the driver will undertake evasive action to reduce the probability of the accident and potential severity of the accident. The smaller this distance is, the less likely it is for an unexpected event to occur within that distance. If the initial speed is reduced, the minimum distance is proportionally smaller, so it is less likely for an event requiring evasive action to occur. Therefore, a decrease in initial speed decreases accident frequency at least proportionally. 
	Since kinetic energy is proportional to the square of velocity, it can be hypothesized that the cost of damage caused by an accident is proportional to the square of speed at impact. This hypothesis is borne out by studies. While ethical experimental confirmation of how bodily injury costs relate to speed of impact is not possible, it can also be hypothesized that bodily injury costs are also proportional to the square of the speed. 
	Since total costs are frequency times severity, an X% reduction in speed may cause approximately 2X% to 3X% reduction in accident costs. This calculation does not consider how other safe driving behaviors are likely correlated with slower driving, so more analysis is needed to conclude this relationship. While there is a range of driving speeds, it is not uncommon for the average speed on a highway segment to be 20% greater than the speed limit. In these cases, for example, a 20% reduction in speed could cause a 20% decrease in probability of an accident and a 36% reduction in severity yielding a 49% reduction in costs.
	Driving algorithms: programming humans versus cars
	Programmers will need assistance from the actuarial profession to consider safety within the automated driving algorithm. It would be a mistake to assume that automated driving algorithms will reduce losses so significantly that actuarial pricing would not be needed. As with any new insurance product, actuaries need to understand it to price and underwrite the insurance accurately. Accurate insurance pricing will encourage safety in the design. Perhaps actuarial pricing programs can be written to apply self-driving algorithms in model driving situations to assess how well adapted it is to avoid and reduce severity of accidents.
	“In the future, the actuary will be in the car.” With respect to driverless cars, programmers strive to create driving algorithms that are at least as safe as a human driver. Automated algorithms will certainly reduce some types of accidents such as distracted driving. As long as the driverless car is at least as safe as a human driver, implementation will improve safety. Currently, incentive and responsibility to significantly improve safety beyond human driving is lacking. There may be minimum requirements to obtain and possess an “automated” driving license, but the best incentive for programmers to produce safer algorithms would be to reduce insurance costs through behavioral ratemaking. With the incentive of saving on the costs of insurance risk it would be possible to experiment with possible behaviors to improve telematics attributes and safety.
	Human drivers, too, are not primarily concerned with safety when deciding how they wish to drive. As with any automation, programmers should be expected to program automated vehicles to drive the way a human driver would drive. This is similar to an individual having the responsibility to decide how to drive. In either case, it is the responsibility of the insurance industry to determine how much to charge for insurance using the chosen driving behavior as an input. The difference with an automated driving algorithm is that there are explicit decisions with respect to risk and safety. 
	There are clearly cases where humans are better than automation. Humans appear to be better at determining where in the lane to drive and better at driving in bad weather. Futurists believe that the insurance rating formula should be determinable based on the algorithm and placed within the program to determine the insurance charges based on the algorithm and other factors such as time, location and mileage of operation. In order to encourage safer and less risky driving algorithms, the insurance rating formula should consider driving behaviors of the algorithm. The programmers can then consider adjustments to the driving algorithm in consideration of the insurance costs. 
	Individual human drivers also have driving algorithms. Their driving behaviors could theoretically be reduced to a set of procedures to apply in all situations. Unlike automated driving algorithms, human driving algorithms are unknowable. While human driving algorithms may be able to be closely approximated based on observed driving behaviors in a great number (probably billions of miles would be needed) of situations, they cannot be used directly to determine insurance costs. Due to this complexity, the actuarial field may be a long way off from being able to create an insurance pricing formula based on an automated driving algorithm, but in the meantime behavioral ratemaking is the bridge to getting to that point. In addition to using behavioral ratemaking for human drivers, it can also be used for automated vehicles as they become more mainstream. Either way, behavioral ratemaking differentiates among various driving behaviors and safety characteristics. Actuarial expertise is needed now to connect driving behaviors with risk and in even more so in the future. 
	While many seem to have an initial expectation that automated driving may reduce insurance losses to near zero, automated driving will have losses for the foreseeable future. It may be many decades before fully automated vehicles are on the road. In the meantime, there needs to be responsibility for understanding the risk consequences. Actuaries are the best profession to ensure that the automated driving algorithms of the future adequately consider insurance risks.
	Influence on traffic safety and law enforcement
	Since the beginning of the automotive age, society has created rules for the purpose of safety to reduce the risks of driving. These rules include obeying traffic signals, speed limits, stop signs, and lane markings. It is common knowledge that following driving rules reduces driving hazards. Traditionally, traffic enforcement has been an important means of improving traffic safety. Many studies have provided evidence of connections between the level of police enforcement and both driving behavior and the number of traffic accidents. Since insurance companies are largely impacted by these financial costs, history shows insurers as being strong advocates of safe driving. Historically, insurance companies had no way to determine how well drivers mind driving rules. Other than consideration of traffic citations, there was no way to factor rule-following into the rating process. Most breaking of driving rules does not result in a traffic citation. Reliable determination of rule breaking is now possible with telematics data.
	The general public has all seen drivers use devices to elude traffic cops such as radar detectors. In our society, many view traffic cops as bad and that speeding should be accepted and tolerated. An important role of government is to enable safe travel. The government sets driving rules such as speed limits and should enforce those rules. It is possible that behavioral ratemaking will be better at encouraging safe driving than traditional public services messages and law enforcement. Traffic regulators may need to work with actuaries and other experts in insurance risk to determine the best way to moderate insurance risk.
	There are hundreds of thousands of traffic officers and other individuals dedicated to improving safety through speed limit enforcement in this country. There are hundreds of millions of drivers who seem to be more concerned about evading law enforcement than safety. There are only a few thousand actuaries who can determine how driving behaviors should be considered when addressing actuarial fairness to regulators. 
	How will behavioral ratemaking enable companies to improve fleet safety?
	Businesses that use highways have exposure to driving risks that need to be carefully managed. OSHA has published guidelines to help employers manage these risks. According to the Royal Society for the Prevention of Accidents, “One of the most significant risks . . .  is driving or riding at inappropriate speeds on work-related journeys.” Because driving behavior is difficult to change for any driver, attempting to manage another driver’s behavior is difficult and could be offensive. We may have no choice but to trust the driver to be safe. As an example, plan to politely ask your next cab driver to drive within the speed limit. While this would be a perfectly reasonable request to manage our own risk of bodily harm, you may find it to be a difficult discussion. Commercial vehicles taking various levels of risk can be frequently observed. This risk directly translates to financial risk of the drivers’ employers. In the past, many employers had limited ability to address this risk until the driver was involved in an accident and then, the only recourse may have been termination of the driver. Drivers spent their workday out of sight of their employer, and, for example, there may be a temptation to attend to non-work-related matters and to catch up on their deliveries by speeding.
	Telematics is now increasing the ability of fleets to manage driving behavior. As there are many business reasons other than insurance cost (better service to customers, risk to reputation, etc.) to reduce driving hazards, companies can use telematics to better manage driving risk. In addition, large self-insured companies can reduce insurance costs by making sure their drivers are driving safely.
	For companies too small to self-insure, monetization of driving behavior improvement is extremely uncertain in timing and amount. Behavioral ratemaking can create immediate savings for smaller fleet managers if they encourage safe driving.
	There is also the possibility that fleets that are successful in improving safety can bring other companies drivers or even individual drivers into their program to pass on insurance savings.
	Possible methods to instantaneously adjust rates
	Throughout this paper we talk about instantaneously adjusting insurance rates. However, it is not entirely intuitive how this might take place since it has never been attempted with respect to US auto insurance which is highly regulated. There may be current laws or regulations in some states that would prohibit behavioral ratemaking, requiring changes to enable it. In other states, the introduction of a behavioral ratemaking might stimulate new laws and regulations to better control and regulate it. Similar with other uses of telematics data, may be privacy concerns. This concern is reduced for behavioral ratemaking because many states already allow the use of telematics data for insurance pricing. Depending mainly on acceptability to regulators, and how to guarantee payment of surcharges, some possibilities include:
	 Include surcharges as part of a normal rate filing. As a somewhat simplistic example, certain policies could have a $0.10 surcharge for every mile driven between 10 and 14 mph greater than the speed limit. 
	 For assessable mutual insurance policies, include surcharges as assessments. 
	 Create a relationship between the insured and a non-insurance company risk bearing entity that could change surcharges and take some financial responsibility for encourage safe driving behaviors. This concept would not be dissimilar to professional employer organizations taking some of the risk of their clients’ workers compensation and employee health insurance benefits.
	Conclusion
	Speed has long been known to be one of the very most important driving safety factors and may be the best behavioral ratemaking risk factor. An insurance scheme with increased rewards for driving slower and more safely, that encourages implementation of safer driving practices, would be both beneficial and disruptive. 
	In the last few years, Insurtech has spawned many ideas to transform insurance. Although there are many Insurtech initiatives to transform the auto insurance industry, most do not appear to be disruptive any time soon. This new approach to ratemaking, Behavioral ratemaking, is different and would be expected to cause disruption in the near term. The disruptions would be to not only the auto insurance industry, but the impact would also affect traffic enforcement policies, road infrastructure and car programming. Behavioral ratemaking will encourage safer driving and ultimately lead to safer roads. 
	Behavioral ratemaking is intended to put the driving population on the path to continuous and conscious relearning of safer driving skills. Complete transformation could be a long and difficult process, but significant benefits would be expected almost immediately. Regardless of whether transformation of driving occurs, behavioral ratemaking is an opportunity to create a successful insurance enterprise built upon safety conscious drivers. Behavioral ratemaking will also assist fleet management.
	To move ahead with implementation, the industry needs to understand what is needed for an Insurtech idea to transform ratemaking and how safety can be aligned with insurance company financial goals. When insureds are encouraged to behave more safely, with improved behavior confirmed through telematics data, this transformation will benefit society. Examples show that insurance pricing can impact behavior. Actuarial ratemaking needs to be considered as part of automated driving algorithm creation processes.
	In order to implement behavioral ratemaking, a new method to modify insurance premium instantaneously for driving behaviors must receive regulatory acceptance. Many insurance professionals witness the gory details of death and serious injury every day. Although their witness may only be through insurance claim files, it is otherwise similar to first responders and medical personnel. Spirits speak from the grave to focus on safety to give meaning to unnecessary deaths.  
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	Abstract 
	Maximum information entropy distributions are a powerful and versatile tool for determining actuarial models from limited information, not necessarily from sample data, while not introducing unnecessary assumptions. These distributions, and potential applications, were presented in a 1967 paper in the Proceedings of the Casualty Actuarial Society, with a discussion following in 1968, but afterward effectively forgotten by the CAS community.   The abandonment was likely primarily due to limited computational resources at the time.  A relationship between maximum entropy and maximum likelihood is explained, along with an invariance property of the maximum entropy distributions under certain coordinate transforms of random variables.  Applications of maximum entropy distributions to determine actuarial models for several practical problems are demonstrated.  Some examples demonstrated include determining distributions consistent with the California Workers Compensation Rating Bureau’s Tables M and L, and LER tables, determining distributional information sufficient for Bayesian or Credibility calculations, multivariate predictive models naturally adapted to special constraints and automatically including credibility adjustments that are difficult to incorporate in GLMs.
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	1. BACKGROUND INTRODUCTION
	Information entropy, a central part of Information Theory introduced in 1948 by Claude Shannon ([16]), is a scalar measure of the uncertainty, or lack of information, in a probability distribution.  The entropy of a Uniform Distribution on a finite set of points increases with the number of points. A deterministic 100% probability for a single point has the lowest entropy of any distribution on any discrete set of points, finite or infinite.  It also happens to be that the entropy of a Normal Distribution increases with its standard deviation and is independent of its mean.
	 Maximum information entropy distributions are a powerful and versatile tool for determining actuarial models, particularly with respect to the objective of parsimony, when information is limited.  In cases where the specified constraints, implied by what information is available, are not sufficient to uniquely determine a probability distribution, entropy maximization can often be used to determine a distribution that satisfies the constraints, but otherwise assumes the least additional information.  It is important to bear in mind that these constraints do not have to derive from a sample of data observations.  They may come from any source of information, such as expert opinion, knowledge about the underlying data generating mechanism, generic assumptions, etc.  Even if the constraints are derived from a data sample, they are sufficient statistics for a maximum entropy distribution, and it is not necessary to have the details of the sample itself.   It is also not necessary to specify any underlying statistical framework, Frequentist or Bayesian, of hypothesized models.  Maximum entropy distributions may have significant predictive value, but there is no intrinsic need for prediction performance fitting or testing procedure.
	Example 1.1 Selecting The Highest Entropy Model That Satisfies A Basic Constraint

	Losses are known to be non-negative with mean 10,000 but no other information is known about the distribution of losses and no sample data is given.  There are many distributions satisfying these constraints, including:
	It makes sense to use the distribution with the highest entropy, in this case the Exponential Distribution, to minimize unnecessary implicit assumptions.  In fact, the Exponential Distribution has the maximum entropy of any distribution that fits the given constraints.  Note, maximum entropy as used here for model selection is distinct from information criteria such as AIC, BIC, etc. (see Appendix B), which could not be used in this situation because no sample data is given.
	Maximum information entropy distributions, and potential applications, were presented in a 1967 paper, with the very appropriate name “A Discipline for the Avoidance of Unnecessary Assumptions,” in the Proceedings of the Casualty Actuarial Society (PCAS), (Roberts [14] with a discussion following in 1968 by Hurley [9]).  The Roberts [14] and Hurley [9] papers are excellent references, and readers are strongly encouraged to become familiar with these papers as background for understanding this paper, including a more thorough treatment of the meaning of entropy.  At the time of this writing, the Wikipedia article “Maximum Entropy Probability Distribution,” (see [16]) is also a very useful additional source of information.  In this paper we focus on areas of actuarial application, with many examples, along with some important general properties of maximum entropy distributions.
	In the half century following [14] and [9], knowledge of maximum entropy distributions was effectively forgotten by the CAS community.   Some of the very rare exceptions with some mention of information entropy were: the use of entropy for constructing automobile rating territories (see Conger [7]) in 1987, a proposed unified approach to pricing risk (see Kull [10]) in 2003, an application to jump diffusion processes in 2013 (see McKean [13]), and cross entropy applied with machine learning (see Chalk and McMurtrie [6]) in 2016.  An interesting non-actuarial application of maximum entropy to financial risk management in 2015 is Geman, Geman, and Taleb [8], showing what effect that constraints on the probability of ruin and the expected shortfall conditional on ruin will have on the returns of an investment portfolio.
	The general abandonment of maximum entropy applications by the CAS was most likely a consequence of limitations in computing power available to actuaries in the 1960s when [14] and [9] appeared in the PCAS and in subsequent decades.  A secondary reason may have been the focus on directly data driven and less computationally intense statistical methods, such as Generalized Linear Models (GLMs) and Credibility Models.  Even in the absence of computing power, it is unfortunate that CAS actuaries have not been generally aware of the maximum entropy derivation of common distributional forms.  Most of these common forms (Exponential, Normal, Lognormal, Gamma, etc.)  correspond to maximum entropy distributions given certain constraints (see table of common distributions by maximum entropy constraints in [17]).  This knowledge can be useful in selecting which common forms to apply in a given application.  For example, if the constraints in Example 1.1 had been stated in terms of the first two moments of the logarithm of the loss, instead of the first moment of the loss itself, a fitted Lognormal Distribution would have had the highest entropy.
	This paper demonstrates the application of maximum entropy distributions to determine actuarial models in types of problems that often occur in actuarial practice.  Section 2 is a basic introduction to the mathematical definition of information entropy.  Section 3 covers the general format for the distributional density and generalized moment constraint equations that can be solved to determine a maximum entropy distribution given a particular limited amount of information.  Section 4 demonstrates that fitting maximum entropy distributions in the format shown in Section 3 is equivalent to solving for maximum likelihood, for the special case when a sample of observations is given whose sample generalized moments have the same values as those specified in the constraints from the Section 3 format.  Section 5 shows that maximizing entropy before or after certain coordinate transformations of a random variable are applied, as long as the constraint equations are consistently transformed. Note, the material in Sections 4 and 5 is well known outside of the actuarial community.   It is presented here for the benefit of the actuarial readership and not claimed as original results.  Section 6 consists of further useful examples for problems that are common in actuarial practice.  Section 7 introduces a general framework for applying maximum entropy distributions to determine multivariate predictive models that can also naturally include special constraints and/or Bayesian/Credibility type adjustments that are difficulty to include in Generalized Linear Models (GLMs). Appendix A contains a brief discussion of computational and software coding challenges.  Appendix B clarifies of some confusion reviewers of an earlier draft of this paper had, identifying maximum entropy distributions with several other very different things.  Importantly, applying maximum entropy distributions is quite distinct from applying the information criteria (AIC, BIC, etc.) that were first introduced in the 1970s (see [1], [2], [3], [4], and [15]) for selection between different hypothesized models given sample data.  It is also distinct from the ordinary technique of matching moments or statistical techniques where use of the exponential family of distributions is central, such as Generalized Linear Models (GLMs) and exact credibility. 
	2.  INFORMATION ENTROPY
	The information entropy of a probability distribution is a measure of the extent of lack of information.  For probabilities 𝑝𝑖 on a finite set of points 𝑥1,…,𝑥𝑛 the information entropy is defined as:
	with the convention that if    𝑝𝑖=0, then  𝑝𝑖 𝑙𝑜𝑔𝑝𝑖=lim𝑝→0+𝑝log𝑝=0.
	The maximum possible entropy for 𝑛 points is 𝑙𝑜𝑔𝑛 for the uniform distribution 𝑝𝑖=1𝑛 , and the minimum possible entropy is 0 for a single point mass distribution 𝑝𝑘=1,  𝑝𝑖≠𝑘=0 .  Information gain is equivalent to the loss of entropy.  A realized outcome in this example lowers the entropy (increases information) by 𝑙𝑜𝑔𝑛.  Changing from natural logarithmic base 𝑒 to another logarithmic base  𝑏>1 would only have the effect of multiplying 𝑆 by log(𝑏)>0 , which would not change the relative order of different distributions as ranked by 𝑆.   This definition for information entropy can easily be generalized, with some care to measure theoretic issues, to infinite discrete sets and continuous probability distributions, with the integral expression for 𝑆 in the continuous setting:
	For continuous distributions the entropy S can be negative.  Thus, entropy for continuous distributions, though serving the same purpose and generally having the same properties, is not directly comparable to entropy for discrete distributions.  Sometimes entropy for continuous distributions is referred to by a term other than “Information Entropy,” such as “Differential Entropy.”  We will mostly focus on continuous distributions and the integral expression (2), but results will typically also be valid in the discrete setting.
	Example 2.1 Entropy of A Normal Distribution Is An Unbounded Increasing Function Of Standard Deviation Independent Of Mean

	For a Normal Distribution the information entropy will only depend on the standard deviation parameter 𝜎 since 𝑆 as defined in (2) is invariant under translation of x by an additive constant.  The entropy is 𝑆= 12log(2𝜋𝑒)+log(𝜎) an increasing function of 𝜎, such that lim𝜎→0𝑆=−∞ and lim𝜎→∞𝑆=+∞ .
	Example 2.2 Incomparability of Discrete And Continuous Entropy

	A discrete single point mass at 𝑥=1 has entropy 0, but a continuous uniform distribution for 𝑥∈[0.9, 1.1] has a lower entropy of -1.60944, although it clearly contains less information than the point mass.
	Information entropy is not necessarily correlative with typical concepts or measures of quantitative risk.  It is sensitive to the distribution of probability among different possible outcomes, but it is insensitive to the relative magnitudes of these outcomes.
	Example 2.3 Incommensurability Of Information Entropy And Quantitative Risk

	A discrete uniform distribution on two possible outcomes has the same information entropy, log(2), whether the possible outcome set is {1, 2} or  {1, 109}.  Similarly, the information entropy for a uniform continuous distribution on the interval [0, 1] is the same value 0 as for a continuous uniform distribution on the union 0, 0.5∪109,109+ 0.5 of two far apart intervals.
	Although we will mostly present examples and properties for a scalar random variable, it is usually possible to extend the examples and properties that follow to vector, or multi-variate, random variables.  Section 7 will focus on the multivariate context.
	3.  MAXIMUM ENTROPY PROBABILITY DISTRIBUTIONS
	Suppose the following form for the density function, whether the random variable 𝑋 is discrete or continuous, for measurable functions {𝑔1(𝑥),…,𝑔𝑚(𝑥)}, which will be called generalized moment functions:
	Define 𝑚 generalized moments of this distribution as:
	It can be shown though Lagrange Multipliers (see [14] and further references listed there to papers by Jaynes and Tribus) that 𝑝(𝑥) has the highest entropy of any distribution having these specific values 𝑐𝑖 for these 𝑚 generalized moments.  Often the given constraints on a probability distribution, in a specific application problem, can be expressed in the form equations 𝐸𝑔𝑖𝑋=𝑐𝑖  together with the formal normalization constraint 𝐸1=1,   for a set of functions 𝑔𝑖𝑥  and a set of constants 𝑐𝑖.  Therefore, if it is possible to solve for the parameter values {𝑎0,𝑎1,…,𝑎𝑚} so that these constraints equations are satisfied by 𝑝(𝑥), then 𝑝𝑥 has the highest entropy of any distribution satisfying these constraints. 
	Equation (3) is a very general form in that an arbitrary density may be stated in many ways that fit this form, although some or all of the parameters of the original density may be embedded in the functions 𝑔𝑖𝑥 rather than corresponding to {𝑎0,𝑎1,…,𝑎𝑚}.  A trivial form for any density is:
	For convenience 𝑎0 can be stated in terms of the normalization formula (6), leaving only the 𝑚 other constraint equations that need to be solved such that (6) has a finite value so that the normalization constraint is automatically satisfied.
	Then the generalized moments can be expressed as:
	The following formula for the variance of the moment functions is also potentially useful:
	Example 3.1 Maximum Entropy Distribution Determined with Very Limited Information About Losses

	A reinsurer has only the following very limited information about the losses for individual claims but needs to completely determine the per claim loss distribution to price excess layers.
	 90% of claims are under 100,000
	 The mean of the unlimited layer excess of 10 million is 1 million
	Let the moment functions be:
	𝑔1𝑥=1   𝑖𝑓 𝑥∈[0, 105)  
	=0  𝑖𝑓 𝑥∈[105, +∞)
	𝑔2𝑥=𝑀𝑎𝑥(0, 𝑥−107)
	Then the maximum entropy density form is:
	The normalization parameter is:
	𝑎0=𝑙𝑜𝑔105𝑒𝑥𝑝−𝑎1+107−105+1𝑎2
	The constraint equations are:
	105𝑒𝑥𝑝−𝑎1105𝑒𝑥𝑝−𝑎1+107−105+1𝑎2=0.9
	(1/𝑎2)2105𝑒𝑥𝑝−𝑎1+107−105+1𝑎2=106
	Numerical rooting finding leads to:
	𝑎0=19.3776  𝑎1=−7.75927 𝑎2=6.19750 ×10−8
	Using 𝑝𝑥, the ground up loss has mean 1.86 million and standard deviation 7.5 million, for a 404% coefficient of variation.  The expected losses for excess layers of interest can be calculated:
	Table 3.1 Some Layer Calculations For Maximum Entropy Solution In Example 3.1
	Figure 3.1 Density Of Maximum Entropy Solution In Example 3.1

	However, often even for mathematically consistent constraints there is no maximum entropy distribution.
	Example 3.2 Some Constraints Where No Maximum Entropy Distribution Exists

	A non-negative random variable has 90% probability of being less than 1000.  These constraints are satisfied by the family of densities:
	𝑝𝑥=0.0009  𝑖𝑓  𝑥∈[0, 1000)
	=  0.1𝐿  𝑖𝑓  𝑥∈1000, 1000+𝐿
	=  0  𝑖𝑓  𝑥≥1000+𝐿
	A maximum entropy distribution cannot exist, because the entropy of a member of this family is an increasing function of L with no upper bound:
	𝑆𝐿= −0.9log0.0009+0.1 log(10 𝐿)
	Example 3.3 Maximum Entropy Distribution for A Bounded Number Of Claim Counts

	A certain type of insurance policy is limited to a maximum of 5 claims per year, and historically these policies have averaged 0.7 claims per year.  The maximum entropy distribution for the annual number of claims can be found as: 
	𝑎0=𝑙𝑜𝑔𝑘=05exp(−𝑎1𝑘)
	−𝜕𝑎0𝜕𝑎1 =𝑘=05k exp(−𝑎1𝑘)𝑘=05exp(−𝑎1𝑘)=0.7
	𝑎0=0.545133  𝑎1=0.859003
	Table 3.2 Density Of Maximum Entropy Solution In Example 3.3
	Figure 3.2 Density of Maximum Entropy Solution In Example 3.3

	4. A RELATIONSHIP BETWEEN MAXIMUM ENTROPY AND MAXIMUM LIKELIHOOD
	The maximum entropy form (3) may be determined for the given constraints, without any sample of data.  However, there is a general relationship between maximum likelihood estimation (MLE) for a density of the form (3) on a sample of observations {𝑥1,…,𝑥𝑛} and maximizing entropy such that the generalized moments (4) of the density are equal to the sample values  1𝑛𝑗=1,..,𝑛𝑔𝑖𝑥𝑗.  This makes sense as form (3) is a subset of the exponential family with the generalized moment functions {𝑔1(𝑥),…,𝑔𝑚(𝑥)}  fitting in the position of the sufficient statistics functions.  For a fixed parametric distributional form, such as form (3), the sufficient statistics, that is sample averages for these functions, include all information about determining the parameters that can be obtained from a given sample. Put another way, often an MLE fit is – even if unknowingly to the practitioner - a maximum entropy distribution for constraints based on sufficient statistics implicit in a distribution from the exponential family and their values when applied to the sample data.
	Given a sample of observations {𝑥1,…,𝑥𝑛} and specific moment functions {𝑔1(𝑥),…,𝑔𝑚(𝑥)}
	the log-likelihood function for the distributional form given in (3) is:
	If  (𝑎1,…,𝑎𝑚)∗ is a maximum likelihood solution for (9) then:
	Consequently:
	So, in addition to (𝑎1,…,𝑎𝑚)∗ maximizing likelihood for the distributional form (3) given the sample observations, the resulting distribution is also the maximum entropy distribution constrained to have the same values for generalized moments 𝐸𝑔𝑖𝑥 as the sample averages for these generalized moments  1𝑛𝑗=1,..,𝑛𝑔𝑖𝑥𝑗.  That is to say that maximizing the likelihood for a distributional form like (3) on a sample, is the same as finding the maximum entropy distribution whose generalized moments corresponding to the functions {𝑔1(𝑥),…,𝑔𝑚(𝑥)}  are matched to the sample averages of the functions. 
	Alternately, if (𝑎1,…,𝑎𝑚)∗ satisfies (11), and hence (3) will be the density of the maximum entropy distribution for the constraints (11), then  (𝑎1,…,𝑎𝑚)∗ will automatically be a critical point of the loglikelihood function in (9).  The elements of the Hessian matrix of the loglikelihood in (9) can be shown to be: 
	The determinant of the covariance matrix of a set of linearly independent random variables (none of which is a trivial point mass) will be positive since it is similar to the diagonal matrix of the variances. Consequently, the determinant of this Hessian must be negative for all points 𝑎1,…,𝑎𝑚 that correspond to a legitimate density.  So, the critical point is also a global maximum.  (Note:  If the random variables 𝑔𝑖𝑋 are linearly dependent then the original set of generalized moment functions 𝑔𝑖𝑥, and their corresponding constraint equations, can be reduced through a linear transformation into a smaller linear independent set.  If any of the 𝑔𝑖𝑋 are point masses, these can be split out with their constraint equations automatically yielding point mass probabilities.  Therefore, the original maximum entropy form and constraint equations can be restated to eliminate any linearly dependent and/or point mass generalized moments.)
	Example 4.1 Maximizing Likelihood for a Normal Distribution Is Equivalent to Maximizing Entropy Given the Mean and Standard Deviation

	A Normal Distribution with mean 𝜇 and standard deviation 𝜎 has density:
	𝑝𝑥=𝑒𝑥𝑝−(𝑥−𝜇)22 𝜎2𝜎2𝜋=𝑒𝑥𝑝−𝜇2𝜎2+log𝜎2𝜋2+𝜇 𝜎2𝑥−1 2𝜎2𝑥2
	This is clearly the maximum entropy form for 𝑔1𝑥=𝑥 and 𝑔2𝑥=𝑥2 with moments
	 𝐸[𝑔1𝑥]=𝜇  and 𝐸[𝑔2𝑥]=𝜎2+𝜇2 .  The maximum likelihood estimators for a sample 
	𝑥1,…,𝑥𝑛 are given by the familiar formulas:   𝜇=1𝑛𝑖=1,…,𝑛𝑥𝑖  and  𝜎2=1𝑛𝑖=1,…,𝑛𝑥𝑖2−𝜇2 
	When these estimators are used for the parameters, the moments of the distribution are set equal to the sample moments:   𝐸[𝑔1𝑥]=1𝑛𝑖=1,…,𝑛𝑥𝑖   and   𝐸[𝑔2𝑥]=1𝑛𝑖=1,…,𝑛𝑥𝑖2  and this maximum likelihood solution for the Normal Distribution is also the maximum entropy distribution for a real valued random variable with these specified moments.
	5. AN INVARIANCE PROPERTY OF MAXIMUM ENTROPY DISTRIBUTIONS UNDER CERTAIN COORDINATE TRANSFORMATIONS
	Some coordinate transformations, that is certain smooth invertible functions of a continuous variable X, along with the correspondingly transformed generalized moment functions will result in the same maximum entropy distribution as if the maximum entropy distribution is determined before the coordinate transformation and then transformed.  Note however, the value of the information entropy itself may change under these coordinate transformations.
	Suppose  𝑋=𝑓(𝑌) , where 𝑓(𝑌) is differentiable and invertible.  Then the equivalent transformed density of the maximum entropy form of 𝑝𝑥 from (3) is:
	The transformed generalized moment equations (4) will be:
	These equations will still be satisfied because:
	Furthermore, if 𝑓′(𝑦) can be expressed in the form:
	then:
	is the maximum entropy distribution for the transformed constraints 𝐸ℎ𝑖𝑦= 𝐸𝑔𝑖𝑓(𝑥)=𝑐𝑖.  Therefore, as long as the generalized moment functions are consistently transformed, and 𝑓′(𝑦) can also be expressed in the standard maximum entropy form in the transformed space, it does not matter if the maximum entropy distribution is solved before or after the coordinate transform.
	Example 5.1 Maximum Entropy Equivalence Between Normal Distribution And Lognormal Distribution

	Suppose 𝑋=log(𝑌), the support of X is (−∞,+∞), the support of Y is (0,+∞), and the given constraints are 𝐸𝑋=0 and 𝐸𝑋2=1, then the maximum entropy distribution is the Normal Distribution with density:
	𝑝𝑥=exp(−𝑥2/2)2𝜋  , which would transform to 𝑞𝑦=exp(−𝑙𝑜𝑔(𝑦)2/2)𝑦 2𝜋 , the density of a Lognormal Distribution that is the maximum entropy distribution for the constraints 𝐸𝑙𝑜𝑔(𝑌)=0 and 𝐸𝑙𝑜𝑔(𝑌)2=1.
	Example 5.2 Counterexample - Maximum Entropy Non-Equivalence Under Transformation 

	If we repeat Example 5.1 using only the second constraint, 𝐸𝑋2=1 then the maximum entropy distribution is still the Normal Distribution with density:
	𝑝𝑥=exp(−𝑥2/2)2𝜋  , which would also still transform to 𝑞𝑦=exp(−𝑙𝑜𝑔(𝑦)2/2)𝑦 2𝜋 , the density of a Lognormal Distribution that is the maximum entropy distribution for the constraints 𝐸𝑙𝑜𝑔(𝑌)=0 and 𝐸𝑙𝑜𝑔(𝑌)2=1.  However, the maximum entropy distribution under only the relevant transformed constraint 𝐸𝑙𝑜𝑔(𝑌)2=1 would be 𝑟𝑦=𝑎𝜋exp(−𝑎 log𝑦2−𝑎/4)  with 𝑎=141+5=0.8090169943749475… .  The first transformed restraint, which we discarded, is not met by 𝑟𝑦, since under 𝑟𝑦, 𝐸𝑙𝑜𝑔(𝑌)=0.714863≠0.   Also, 𝑟𝑦 has entropy 1.79637, which is higher than the entropy 1.41894 of 𝑞𝑦.
	6. FURTHER EXAMPLES
	6.1   Determining A Distribution Consistent With Excess Ratios In Tables M And L

	The California Workers Compensation Insurance Rating Bureau (WCIRB) produces tables of per risk expected loss excess ratios (“insurance charges” in this context) by entry ratio (loss amount/mean loss), (see [5]).  These tables are organized in columns corresponding to Expected Loss Groups (ELGs) that are ranges of expected loss per risk.  The Table L varieties include adjustment for various per accident limits and Table M is unlimited.  
	Example 6.1.1 Excerpt from WCIRB’s 2019 Table L 

	Below is an excerpt of values from WCIRB’s 2019 Table L for loss limit $100,000 for ELG 50, corresponding to expected per risk loss in the range from $165,605 through $181,201.  The Excel spreadsheet available online at [5] has many digits of precision, but often only 4-digit precision numbers are available in printed material.
	Table 6.1.1 Sample from WCIRB’s  2019 Table L for loss limit $100,000 for ELG 50

	A common actuarial problem is to determine the probability distribution underlying these tables for various practical applications.  It can be very challenging to fit a typical functional form probability distribution, or even a mixture of typical forms, and such a fit may make unnecessary implicit assumptions.  An alternative approach is to take the negative finite differences of the excess ratios to approximate the cumulative probability distribution, but this approach is very sensitive to numerical rounding errors and other aspects of discrete tabular representation.  It often produces inconsistencies where the cumulative distribution decreases or remains unchanged as the entry ratio increases. However, there is a straightforward maximum entropy distribution for this situation.  
	Example 6.1.2 Maximum Entropy Distribution for WCIRB’s  2019 Table L for loss limit $100,000 for ELG 50

	From the Table L column underlying Example 6.1.1, we select for fitting purposes the following sample values, spaced out in terms of sequential differences in excess ratios, but including the highest available entry ratio of 10.00:
	Table 6.1.2 Selected Values For Fitting From WCIRB’s  2019 Table L For Loss Limit $100,000 For ELG 50

	The generalized moment functions can be defined as:
	𝑔𝑖𝑥=𝑀𝑎𝑥0, 𝑥−𝑥𝑖,     𝑥1=0.00,   𝑥2=0.03,   …,    𝑥22=10.00
	with density function:
	𝑝(𝑥)=𝑒𝑥𝑝−𝑎0−𝑎1𝑥− 𝑎2 𝑀𝑎𝑥0,𝑥−0.03−…  −𝑎22𝑀𝑎𝑥(0,𝑥−10.00)
	and 23 constraint equations, including normalization, in integral form:
	0∞𝑝𝑥 𝑑𝑥=1 
	0∞𝑥 𝑝𝑥 𝑑𝑥=1 
	0∞𝑀𝑎𝑥0,𝑥−0.03 𝑝𝑥 𝑑𝑥=0.973293029 
	……
	0∞𝑀𝑎𝑥0,𝑥−10.00 𝑝𝑥 𝑑𝑥=0.369524682 
	The integrals can be broken down into piecewise calculations of means of exponential distributions over a sequence of intervals and simplified, although into very lengthy expressions in terms of exponential functions and algebraic operations.  For example:
	0∞𝑥 𝑝𝑥 𝑑𝑥=exp(−𝑎0)−𝑎10.03 exp−𝑎10.03− exp−𝑎10.03+1𝑎12+…
	After a significant amount of calculus, numerical root finding can be applied to solve for the parameters.  In practice, the author found it was necessary to do so sequentially.  {𝑎0,𝑎1} was solved first, while zeroing out {𝑎2,…,𝑎22} and ignoring the equations for {𝑔2(𝑥),…,𝑔22(𝑥)}.  Then, this solution was used as an initial search point to solve for {𝑎0,𝑎1,𝑎1} while zeroing out {𝑎3,…,𝑎22}  and ignoring the constraint equations for {𝑔3(𝑥),…,𝑔22(𝑥)}.  Continuing in the same manner eventually a solution for {𝑎0,…,𝑎22} under all the constraint equations was found:
	Here are some excess ratios and cumulative distribution values for the fitted entry ratios, the entry ratios from the original excerpt from Example 6.1.1, and some extrapolated entry ratios.
	Table 6.1.3 Some Excess Ratios And Cumulative Distribution Values From The Maximum Entropy Solution In Example 6.1.2
	Figure 6.1.1 Density Of Maximum Entropy Solution In Example 6.1.2

	Note, there is an effectively very long tail extrapolated past the highest Table L entry ratio of 10.  This is caused by the very slow decline, nearly a flattening, in the excess ratio that begins at least by entry ratio 5.  Remarkably, the fitted coefficient of variation is 3,909%!  Whether or not this would be a reasonable extrapolation for an empirical model given extra information about the tail, it is a reasonable extrapolation given the pattern in the Table L values available.
	6.2   Determining A Distribution Consistent with Excess Ratios in Loss Elimination Ratio Tables

	The WCIRB also produces tables of Loss Elimination ratios (LERs), that are excess ratios on a per accident basis in terms of the dollar amount of the limit (see [13]).  Although the WCIRB releases some details of the underlying probability distribution, which is fairly complicated, recovering a maximum entropy distribution from the table of LERs illustrates a different approach from the Tables M and L example in the previous section, since in that case the overall mean was known to be 1.00 due to the normalization to produce entry ratios.  Additionally, the final tables of LERs contain excess ratios rounded to only 3 digits, contributing to the difficulty of recovering the underlying distribution.
	Example 6.2.1 Maximum Entropy Distribution for WCIRB’s  2019 Overall LERs

	Below is WCIRB’s 2019 table of overall (all Hazard Groups combined) LERs.  The Excel spreadsheet available online has only 3 digits of precision.  The values in Bold have been selected for the specified constraints to fit.
	Table 6.2.1 Selected Values For Fitting From WCIRB’s  2019 Loss Elimination Ratios (Overall, All Hazard Groups)

	The generalized moment functions, corresponding to constraint indexed rows in the prior table, can be defined as:
	𝑔𝑖𝑥=𝐿𝐸𝑅𝑖𝑥−𝑀𝑎𝑥0, 𝑥−𝑥𝑖,     𝑖=1,…,12
	Note, 𝑔1𝑥=0 for all x, so we can set 𝑎1=0 and eliminate 𝑔1𝑥 from the density function:
	𝑝(𝑥)=𝑒𝑥𝑝−𝑎0− 𝑎2 (0.689𝑥−𝑀𝑎𝑥0, 𝑥−25,000)     −…  −𝑎12 (0.001𝑥−𝑀𝑎𝑥0, 𝑥−20,000,000)
	and 12 relevant constraint equations, including normalization, in integral form are:
	0∞𝑝𝑥 𝑑𝑥=1  
	0∞(0.689𝑥−𝑀𝑎𝑥0, 𝑥−25,000)𝑝𝑥 𝑑𝑥=0 
	……
	0∞(0.001𝑥− 𝑀𝑎𝑥0,𝑥−20,000,000 )𝑝𝑥 𝑑𝑥=0
	Some calculus and numerical root finding, similar to what was done for Table L in Example 6.1.2, is required.  This includes sequentially solving for small subsets of the parameters and constraints, to be used as initial search points for the next larger subsets, as described before.  This process leads to:
	𝑎0=   11.864788254009900000000
	𝑎2=    -0.000125730464385769000
	𝑎3=     0.000058923444849539900
	𝑎4=    -0.000004271540735520050
	𝑎5=     0.000010447441490470400
	𝑎6=     0.000002998956261260340
	𝑎7=     0.000002383315118547030
	𝑎8=     0.000000899163635770769
	𝑎9=     0.000000396715370202262
	𝑎10=    -0.000000178908277119939
	𝑎11=     0.000000541076550263008
	𝑎12=    -0.000000464839849564974
	The mean of the fitted maximum entropy distribution is $68,730 with standard deviation $272,939, and corresponding coefficient of variation 397%.  Below are the actual and fitted LERs, including some extrapolated limits.
	Table 6.2.2 Some Excess Ratios And Cumulative Distribution Values From The Solution In Example 6.2.1
	Figure 6.2.1 Density Of Maximum Entropy Solution In Example 6.2.1
	6.3   Fitting a Distribution to Match Higher Moments

	The maximum entropy distribution to match a specified set of 𝑚 positive integer moments 𝐸[𝑋𝑘1],…,𝐸[𝑋𝑘𝑚], if it exists, has a very straight forward form:
	There is a closed form solution for the density of the maximum entropy distribution, if it exists, for a non-negative random variable with a single higher positive integer moment specified.
	Example 6.3.1 Maximum Entropy Distribution For A Single Higher Moment

	A non-negative random variable is known to have a mathematically consistent kth moment equal b.  
	𝑎0=𝑙𝑜𝑔0∞𝑒𝑥𝑝−𝑎1𝑥𝑘 𝑑𝑥=log𝛤1+1𝑘𝑎1−1𝑘
	=𝑙𝑜𝑔𝛤1+1𝑘−1𝑘log𝑎1
	−𝜕𝑎0𝜕𝑎1=1𝑘 𝑎1=𝑏⟹  𝑎1=1𝑘 𝑏
	𝑝𝑥=𝑒𝑥𝑝−1𝑘 𝑏𝑥𝑘𝛤1+1𝑘𝑘 𝑏1/𝑘
	Multiple higher moments can be a challenge to numerically solve.  (For a treatment of this general problem aimed at applications in physics see [12].)  As of this writing, the author has not yet found a generally effective and satisfactory way, even using the sequential parameter/constraint subset process that worked very well for the excess ratio problems described in Examples 6.1.2 and 6.2.1, to reliably solve for a significant set (4, 5, or more) of the higher moments.  A practical way of doing this would be particularly useful in many applications.
	Figure 6.3.1 Density Of Maximum Entropy Solution In Example 6.3.1
	Example 6.3.2 Maximum Entropy Distribution For 1st And 3rd Moment

	A non-negative random variable is known to have mean 15 and 3rd moment 5,000.  
	𝑔1𝑥=𝑥    
	𝑔2𝑥=𝑥3 
	px=exp(−𝑎0−𝑎1𝑥−𝑎2𝑥3 )
	𝑎0=𝑙𝑜𝑔0∞exp(−𝑎1𝑥−𝑎2𝑥3 ) 𝑑𝑥
	−𝜕𝑎0𝜕𝑎1=0∞𝑥exp−𝑎1𝑥−𝑎2𝑥3 𝑑𝑥0∞exp−𝑎1𝑥−𝑎2𝑥3 𝑑𝑥=15
	−𝜕𝑎0𝜕𝑎2=0∞𝑥3exp−𝑎1𝑥−𝑎2𝑥3 𝑑𝑥0∞exp−𝑎1𝑥−𝑎2𝑥3 𝑑𝑥=5,000
	A numerical search leads to:
	𝑎0=4.98497  𝑎1=−0.211337 𝑎2=0.000278004
	Figure 6.3.2 Density Of Maximum Entropy Solution In Example 6.3.2
	/
	6.4   Implicit Aggregate Loss Models

	In practice, sometimes only limited information is available about the distribution of aggregate losses for a portfolio of risks, but a maximum entropy distribution can be determined.
	Example 6.4.1 Maximum Entropy Distribution for TVAR And Mean

	A primary insurance company estimates the 99% Tail Value at Risk (TVAR) of its aggregate losses is $1 billion and has a current booked ultimate aggregate loss of $100 million.  If we interpret the booked ultimate as an expected value and let the 99th percentile be an unknown value 𝐿, generalized moment functions may be set up as follows:
	𝑔1𝑥=𝑥    
	𝑔2𝑥=0 𝑖𝑓 𝑥<𝐿 
	= 100𝑥 𝑖𝑓 𝑥≥𝐿
	𝑔3𝑥=0 𝑖𝑓 𝑥<𝐿 
	= 1  𝑖𝑓 𝑥≥𝐿
	Then the constraint equations, though quite complicated, may be set up as:
	𝑎0=𝑙𝑜𝑔0∞exp(−𝑎1𝑥−𝑎2𝑔2𝑥−𝑎3𝑔3𝑥) 𝑑𝑥=𝑙𝑜𝑔exp−𝑎1𝐿−1−𝑎1+−exp−𝑎3+(−𝑎1−100 𝑎2)𝐿−𝑎1−100 𝑎2
	−𝜕𝑎0𝜕𝑎1
	=−−exp(−𝑎3−(  𝑎1+100𝑎2)𝐿)𝑎1+100𝑎22−1−𝑒𝑥𝑝−𝑎1𝐿𝑎12+𝐿 𝑒𝑥𝑝−𝑎1𝐿𝑎1−𝐿 exp(−𝑎3−(  𝑎1+100𝑎2)𝐿)𝑎1+100𝑎2exp(−𝑎3−(  𝑎1+100𝑎2)𝐿)𝑎1+100𝑎2+1−exp−𝑎1𝐿𝑎1=$100,000,000
	−𝜕𝑎0𝜕𝑎2=−−100 exp(−𝑎3−(  𝑎1+100𝑎2)𝐿)𝑎1+100𝑎22−100 𝐿 exp(−𝑎3−(  𝑎1+100𝑎2)𝐿)𝑎1+100𝑎2exp(−𝑎3−(  𝑎1+100𝑎2)𝐿)𝑎1+100𝑎2+1−𝑒𝑥𝑝−𝑎1𝐿𝑎1
	=$1,000,000,000
	−𝜕𝑎0𝜕𝑎3=−−exp(−𝑎3−(  𝑎1+100𝑎2)𝐿)(𝑎1+100𝑎2)exp(−𝑎3−(  𝑎1+100𝑎2)𝐿)𝑎1+100𝑎2+1−𝑒𝑥𝑝−𝑎1𝐿𝑎1
	=0.01
	A numerical root finding search found plausible solutions for 𝐿 from around $92 million through around $980 million, with the entropy seeming to peak around 𝐿 = $566 million.  Here are some properties of the solution at 𝐿 = $566 million:
	𝑎0=18.3466  𝑎1=1.08546×10−8 𝑎2=−8.55045×10−11 𝑎3=4.843
	The standard deviation is $133.4 million, for a coefficient of variation of 133.4%.  Some interesting percentiles and corresponding unlimited expected excess loss amounts are:
	Table 6.4.1 Some Expected Excess Losses And Cumulative Distribution Values From The Solution In Example 6.4.1
	Figure 6.4.1 Density Of Maximum Entropy Solution In Example 6.4.1
	/

	 Example 6.4.1 is structurally similar to “4.1. Case A: Constraining the Global Mean” from [8], except that in latter the risk-taker’s wealth, analogous to 𝐿 in Example 6.4.1, is specified rather than solved as part of maximizing entropy given the other constraints.
	6.5 Bayesian or Credibility Estimation

	Bayesian estimation generally requires model assumptions that completely specify both the prior distribution of parameters and the conditional density, or likelihood, of observations.  Credibility estimation generally does not require complete distributional specifications but does require model assumptions that specify certain distributional variances.  Maximum entropy distributions can be utilized in many cases to formulate these model assumptions where the available information would not otherwise completely specify them.  Examples 6.5.1 and 6.5.2 apply maximum entropy distributions to conventional Bayesian and Credibility approaches.  In Section 7 we will present a much more general multivariate maximum entropy framework that can automatically implement an implicit Bayesian/Credibility type adjustment for multivariate predictive models.
	Example 6.5.1 Maximum Entropy Distributions For Bayesian Prior And Likelihood

	Detailed data in not available, but it is known that in prior experience individual drivers have averaged 0.1 claims per year.  What is the posterior distribution for expected number of claims after an individual driver has experienced 𝑘∈{0, 1, 2…} claims in a single year? 
	Since the average number of claims is non-negative and we only know the mean is 0.1, the maximum entropy prior is simply a continuous Exponential Distribution with density function 𝑞𝑚=10 exp(−10 𝑚).  The maximum entropy density on the discrete numbers {0, 1, 2…} given the conditional mean is also of the Exponential form 𝑝𝑘|𝑚=  exp(−𝑎0𝑚−𝑎1𝑚 𝑘), where the parameters solve to 𝑎0𝑚=𝐿𝑜𝑔(𝑚+1) and 𝑎1𝑚=𝐿𝑜𝑔𝑚+1𝑚.  Therefore 𝑝𝑘|𝑚=  𝑚𝑘(𝑚+1)−𝑘−1 and the posterior density is 𝑞(𝑚|𝑘)=10exp−10 𝑚 𝑚𝑘(𝑚+1)−𝑘−1 0∞10exp−10 𝑚 𝑚𝑘(𝑚+1)−𝑘−1 𝑑𝑚 .  So, the numerical results for several values of k are (up through 𝑘=5):
	Table 6.5.1 Bayesian Posterior Results from Maximum Entropy Solution in Example 6.5.1
	Example 6.5.2 Maximum Entropy Distributions to Determine Process and Parameter Variances for Credibility

	What would the credibility estimates be for Example 6.4.1?
	The Variance of the Hypothetical Means (VHM) = 0.01, that is the variance of the continuous Exponential Distribution with 0.1 mean.  The process variance for the conditional density 𝑝𝑘|𝑚=  𝑚𝑘(𝑚+1)−𝑘−1  is 𝑚(𝑚+1).  So, the Expected value of the Process Variance (EPV) =0∞𝑚𝑚+1 10exp−10 𝑚𝑑𝑚 = 0.12. Consequently, the credibility constant is 𝐾=𝐸𝑃𝑉𝑉𝐻𝑀=12 and since we only have one observation 𝑍=11+𝐾=113 .
	Table 6.5.2 Credibility Results From Maximum Entropy Solution In Example 6.5.2

	7. MAXIMUM ENTROPY PREDICTIVE OR EXPLANATORY MODELS
	Actuarial models often involve predicting or explaining the distribution, or at least the expected value, of one random response variable 𝑌, scalar or vector, given the outcome of another random variable 𝑋, scalar or vector.  For example, Generalized Linear Models (GLMs), though usually from a fixed effects standpoint, are commonly used for this purpose.  This can be described in a very general framework in terms of a single vector valued random variable 𝑋={𝑌1,…,𝑌𝑚,𝑋1,…,𝑋𝑛} consisting of both response components 𝑋𝑟𝑒𝑠𝑝={𝑌1,…,𝑌𝑚} and explanatory components 𝑋𝑒𝑥𝑝𝑙={𝑋1,…,𝑋𝑛}.  Fixed effects can also be included in the generalized moment functions 𝑔𝑖𝑥  and/or the specified generalized moments 𝑐𝑖.  If the complete joint density  𝑝(𝑦1,…,𝑦𝑚,𝑥1,…,𝑥𝑛) is known then the density of the response components 𝑥𝑟𝑒𝑠𝑝={𝑦1,…,𝑦𝑚}  conditioned on the realized values of the conditioned on the realized values of the explanatory components 𝑥𝑒𝑥𝑝𝑙={𝑥1,…,𝑥𝑛} through the Bayesian calculation:
	Example 7.1 Correlated Bivariate Maximum Entropy Distribution 

	Suppose the random variable 𝑋 ={𝑌1,𝑋1} is known to have the following properties:
	 𝑌1 has mean 2,000 and standard deviation 2,000
	 𝑋1 has mean 3,000 and standard deviation 3,000
	 𝑌1 and 𝑋1 have a correlation coefficient of 30%
	The basic linear regression model is:
	𝑌1=𝑚 𝑋1+𝑏+𝜀(0,𝜎)
	𝑚=30% 2,0003,000=0.2  𝑏=2,000−0.23,000=1,400  
	𝜀(0,𝜎) is a normally distributed random variable, independent of 𝑌1 and 𝑋1, with mean 0 and standard deviation   𝜎=(2,000)2−0.2×3,0002=1,908.
	The same result can be obtained by solving for the maximum entropy distribution for 𝑌1 and 𝑋1, both assumed to be real values, with the following generalized moment constraints:
	𝑔1𝑋=𝑌1 𝐸𝑔1𝑋=2,000  𝑔2𝑋=𝑌12 𝐸𝑔2𝑋=8,000,000
	𝑔3𝑋=𝑋1 𝐸𝑔3𝑋=3,000  𝑔4𝑋=𝑋12 𝐸𝑔4𝑋=18,000,000
	𝑔5𝑋=𝑌1𝑋1  𝐸𝑔5𝑋=7,800,000
	The maximum entropy distribution would be the same as the Bivariate Normal Distribution, since it can match the given constraints and can be stated in the standard form in (3).  The Bayesian calculation in (16) would then result in the same linear regression model.  
	However, suppose we also know that 𝑌1≥0 .   Now, the normality assumption for 𝑌1 underlying the linear regression model clearly is a poor choice.  However, the maximum entropy distribution can still be numerically solved with this extra piece of information by setting up the same moment constraints equations above, but changing the region of integration for calculating the underlying integrals:
	𝑎0=𝑙𝑜𝑔0+∞−∞+∞exp( −𝑎1𝑦1−𝑎2𝑦12−𝑎3𝑥1−𝑎4𝑥12−𝑎5𝑦1𝑥1) 𝑑𝑥1𝑑𝑦1
	𝑎𝑖=−𝜕𝑎0𝜕𝑎𝑖=0+∞−∞+∞𝑔𝑖(𝑥1) exp( −𝑎1𝑦1−𝑎2𝑦12−𝑎3𝑥1−𝑎4𝑥12−𝑎5𝑦1𝑥1) 𝑑𝑥1𝑑𝑦10+∞−∞+∞exp( −𝑎1𝑥𝑦1−𝑎2𝑦12−𝑎3𝑥1−𝑎4𝑥12−𝑎5𝑦1𝑥1) 𝑑𝑥1𝑑𝑦1
	Numerical root finding leads to:
	𝑎0=16.748  𝑎1=0.000615231 𝑎2=1.23815×10−8 𝑎3=−0.000256411
	 𝑎4=6.105×10−8   𝑎5=−5.49445×10−8
	Figure 7.1 Expected Value of Response Variable Conditional On Explanatory Variable In Example 7.1

	/
	Figure 7.1 shows how the values for E[𝑌1|𝑥1] , for the two different models, diverge in both the left and right tails of 𝑋1.  The maximum entropy model naturally captures effects of the restriction 𝑌1>0 but the linear regression model does not.  Figure 7.2 shows that for the conditional density    p(y1|x1=−7,000) in the left tail of 𝑋1 the linear regression model incorrectly shows that 𝑌1 is equally likely to be positive or negative.  Figure 7.3 shows that for the conditional density p(𝑦1|𝑥1=12,000) in the right tail of 𝑋1 the linear regression model gives almost no probability that 𝑌1≥10,000,  but the maximum entropy model gives 16% probability that 𝑌1∈[10,000  ,  20,000].
	Figure 7.2 Density Of Response Variable Conditioned On Explanatory Variable = -7,000 In Example 7.1
	Figure 7.3 Density of Response Variable Conditioned on Explanatory Variable = 12,000 in Example 7.1

	/
	GLMs require the specification of a design matrix for the explanatory variables, a link function that connects them to the expected value for the response variables, and a conditional distribution for the response variables.  When GLMs are fit for maximum likelihood they can be very vulnerable to low volume erratic observations in levels for certain factors, and incorporating credibility adjustments into GLMs (random effects, Gibbs sampling, etc.) can be a very awkward and difficult process.
	In contrast it can be very straightforward to simultaneously fit a multi-factor model and incorporate credibility type adjustments when fitting a maximum entropy distribution.
	Example 7.2 Maximum Entropy Multivariate Model With Automatic Bayesian/Credibility Adjustment

	Suppose the following pure loss ratio experience is available for workers compensation insurance:
	Although the volume of experience is not known, the following information is given:
	 There is thought to be no aggregate off balance, so that the overall expected pure loss ratio is 100%.
	 Broader longtime experience has shown that the mean squared error between actual loss ratios for categories like these and a very good relativity estimate is 1.
	A log-Poisson GLM, which has a conditional variance of 1 when the conditional expected value of the response variable is 1, fairly consistent with the bullets above, produces multiplicative relativity indications:
	This GLM has likely been fooled by randomness, as these values do not seem very realistic.  Hopefully, when final full premium rates are implemented Rural policies will be charged more than $0.  
	Alternatively, this situation can be approached as a maximum entropy problem as follows.  Let 𝑌1 be the actual outcome losses, 𝑋1 and 𝑋2 be random effects corresponding to good estimates for multiplicative relativities for Setting and Business Type, respectively.  
	The constraints will be:
	𝑔1𝑋=𝑌1 𝐸𝑔1𝑋=1  𝑔2𝑋=𝑋1 𝐸𝑔2𝑋=1
	𝑔3𝑋=𝑋2 𝐸𝑔3𝑋=1  𝑔4𝑋=(𝑌1−𝑋1𝑋2)2 𝐸𝑔4𝑋=1
	Setting up these equations involves integration in 3 dimensions:
	𝑎0=𝑙𝑜𝑔0+∞0+∞0+∞exp( −𝑎1𝑦1−𝑎2𝑥1−𝑎3𝑥2−𝑎4𝑦1−𝑥1𝑥22 ) 𝑑𝑦1𝑑𝑥1𝑑𝑥2
	A numerical solution is:
	𝑎0=0.235246  𝑎1=0.717116 𝑎2=0.856358 𝑎3=0.856358 
	 𝑎4=0.213261  
	𝑝𝑦1,𝑥1,𝑥2=𝑒𝑥𝑝(−𝑎0−𝑎1𝑦1−𝑎2𝑥1−𝑎3𝑥2−𝑎4𝑦1−𝑥1𝑥22)
	So, this gives the joint density of the observed loss ratio 𝑌1 and good estimates for the relativities 𝑋1 and 𝑋2.  In the data table we need to estimate 4 relativities {𝑋1𝑈,𝑋1𝑅,𝑋2𝑀,𝑋2𝑆} based on 3 observations.  The posterior joint density of these relativities conditioned on the observations is: 
	𝑞𝑥1𝑈,𝑥1𝑅,𝑥2𝑀,𝑥2𝑆==𝑝5,𝑥1𝑈,𝑥2𝑀 𝑝0.6,𝑥1𝑈,𝑥2𝑆𝑝0,𝑥1𝑅,𝑥2𝑆0+∞0+∞0+∞0+∞𝑝5,𝑥1𝑈,𝑥2𝑀 𝑝0.6,𝑥1𝑈,𝑥2𝑆𝑝0,𝑥1𝑅,𝑥2𝑆𝑑𝑥1𝑈 𝑑𝑥1𝑅 𝑑𝑥2𝑀 𝑑𝑥2𝑆
	The overall mean values for the relativities using this joint density demonstrate a Bayesian/Credibility type of shrinkage in the relativity indications, and are clearly more realistic: 
	The GLM relativities predict a 0% pure loss ratio for Rural Service policies.
	Although this example did not include any volume of experience, that could be used for weights, the GLM would have still given a 0.000 relativity indication if weights had been available and included in the GLM run.  Some sort of credibility adjustment could have been implemented with the GLM, but it would have been somewhat awkward and ambiguous to set up given the limited amount of data.  In contrast the Maximum Entropy model was very natural and unambiguous to set up with a built in Bayesian/Credibility type adjustment.
	Figures 7.4 and 7.5 show the marginal densities for the Setting and Business Type relativities, respectively.  The maximum entropy distribution naturally yields the parameter uncertainty of the fit.
	Figure 7.4 Marginal Densities Of Setting Relativities From Maximum Entropy Approach In Example 7.2

	/
	Figure 7.5 Marginal Densities Of Business Type Relativities From Maximum Entropy Approach In Example 7.2
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	Appendix A - Computational and Software Coding Challenges

	Although much more can be done with modern computing power than was possible in the past, fitting maximum entropy models is still often very challenging because it usually entails solving a set of highly nonlinear equations.  These non-linear equations sometimes contain very lengthy expressions and usually require integration (or summation) and sometimes differentiation to set up.  Numerical root finders are readily available in many software environments, such as Excel (Solver), R, Python, MATLAB, etc.  Some numerical optimizers, like Google’s Tensorflow, are designed to utilize powerful Graphics Processing Unit (GPU) hardware.  Additionally, symbolic manipulation of complex expressions, including integration and differentiation, is available in software environments such as MATHEMATICA and Maple. 
	Even with modern software and hardware resources, converging on a numerical solution is often an arduous process involving restatement of the coding of the problem and reselecting initial search points, even when the problem has a similar form to a previous problem.    Relying on symbolic manipulation is also undesirable for practical applications.  Unfortunately, much of the coding involved for the examples in this paper is rather messy, complicated and not really standardized to general classes of problems.  So, at present, no code samples are provided with this paper.  Nevertheless, developing software code, preferably for commonly available environments such as Excel and R, that reliably solves broad classes of maximum entropy problems would provide a very valuable resource for practicing actuaries.  Hopefully, this paper will encourage others to do so and the author may also pursue developing such standardized software tools.  
	Nevertheless, here are some tips that were useful in solving for the numerical examples in this paper. 
	It is often helpful to solve for the parameters {𝑎0,𝑎1,…,𝑎𝑚} sequentially stepwise.  {𝑎0,𝑎1} can be solved first, while zeroing out {𝑎2,…,𝑎𝑚} and ignoring the constraint equations for {𝑔2(𝑥),…,𝑔𝑚(𝑥)}.  Then, this solution can be used as an initial search point to solve for {𝑎0,𝑎1,𝑎1} while zeroing out {𝑎3,…,𝑎𝑚}  and ignoring the constraint equations for {𝑔3(𝑥),…,𝑔𝑚(𝑥)}, and so on.  
	One potentially problematic issue is that numerical root finding software typically uses inaccurate finite differencing approximations for derivatives, as part of a Newton-Raphson iteration.  It is possible to replace these finite difference calculations with more accurate numerical integrations.  We can restate the problem of solving for the maximum entropy distribution in vector form.
	Given:
	 𝐶=(1,𝑐1, …  ,𝑐𝑚) and 𝐺(𝑥)=(1,𝑔1 (𝑥), …  ,𝑔𝑚(𝑥)) 
	Find:
	𝐴=(𝑎0,𝑎1, …  ,𝑎𝑚 )   such that 𝐺(𝑥)  exp(−𝐴∙𝐺(𝑥))  𝑑𝑥 =𝐶.  
	This is equivalent to finding a root 𝐴 for the vector valued function:
	 𝑉(𝐴)=𝐺𝑥exp−𝐴∙𝐺𝑥 𝑑𝑥 −𝐶
	Newton-Raphson Iteration can be done by first picking a starting point 𝐴0 and then iterating 𝐴𝑛+1=𝐴𝑛−∇𝐴 𝑉𝐴𝐴𝑛−1𝑉𝐴𝑛.  The practical problem comes in when root finding software attempts to approximate ∇𝐴 𝑉𝐴𝐴𝑛 through small numerical differences.  
	However, a more accurate approach is to note that:
	∇𝐴 𝑉𝐴𝑖,𝑗=𝜕𝑎𝑗𝑔𝑖𝑥exp−𝐴∙𝐺𝑥 𝑑𝑥 −𝐶
	By differentiating under the integral sign:
	=−𝑔𝑖𝑥𝑔𝑗𝑥exp−𝐴∙𝐺𝑥 𝑑𝑥 
	It is generally much easier and more accurate to numerically estimate these integrals.  If the limits of integration are unbounded there may be problems with these integrals numerically diverging for some values of 𝐴𝑛 even if a solution exists.  So, it may be useful to either limit the bounds of integration (that is the domain of possible outcomes for the random variable) or limit x to a finite number of values so that the integral may be replaced with a finite sum.  
	In some cases, it may be helpful to perform a transformation on 𝐴.  For example, if 𝐺(𝑥)=(1,𝑥, …  ,𝑥𝑚)  and 𝑥∈(0,+∞) then substituting 𝑎𝑚=exp(𝑏) and solving in terms of 𝐵=(𝑎0,𝑎1, …  ,𝑎𝑚−1, 𝑏 )   will keep the integrals above from diverging.  Note that after a substitution like this, due to the chain rule, the integrals corresponding to differentiation with respect to 𝑏 will need to be multiplied by exp(𝑏), specifically:
	∇𝐵 𝑉𝐵𝑖,𝑚=−exp(𝑏)0+∞𝑔𝑖𝑥𝑔𝑚𝑥exp𝐴∙𝐺𝑥 𝑑𝑥
	Appendix B – Clarification of Some Confusions of the Maximum Entropy Distribution Technique With Several Other Distinct Things

	Some reviewers of an earlier draft of this paper confused maximum entropy distributions with several other very different things that actuaries have remained conscious of, and utilized, over the decades following the 1960s.  We will clarify the differences below.  It is worth noting that in practice these other things generally required much lower computational burdens than maximum entropy distributions, and hence were more practically tractable during this time.
	Ordinary Method of Matching Moments
	An ordinary method of moments fit of a distribution is not necessarily a maximum entropy distribution because the selected parametric form to be fit may not be the appropriate maximum entropy form.  
	Example B.1
	Matching a first moment of 10,000 with the family of Uniform Distributions of with density 1/𝑎 for 𝑥∈[0,𝑎]  and 0, results in 𝑎=20,000 and entropy 9.90349, as was shown in Example 1.1   However, the maximum entropy distribution for a non-negative random variable with first moment of 10,000 is an exponential distribution and has entropy 10.2103
	Furthermore, a maximum entropy distribution is not necessarily an example of ordinary matching moments since the generalized moment functions 𝑔𝑖 𝑥  are in fact very general functions, and certainly not constrained to be of the form 𝑥𝑘 for some integer 𝑘.  More general moment functions appear in many examples throughout this paper, such as Example 3.1
	Exponential Families
	It is noted in Section 4 that the maximum entropy form (3) presented in Section 3 is a subset of the exponential family and the generalized moment functions 𝑔𝑖 𝑥  play the role of sufficient statistics for form (3) when sample data is given.  However, the constraints for maximum entropy distributions may come from any source, such as expert opinion, a priori hypothesis, etc.; not necessarily sample data. 
	Many actuaries have encountered the exponential family in the context of Generalized Linear Models (GLMs) or Exact Credibility, where the greatest accuracy credibility estimate equals the Bayesian posterior estimate.  These contexts all require sample data and parametric family assumptions about underlying data generating processes, neither of which are required by maximum entropy distributions.   It is also worth noting that the use of exponential families for GLMs and Exact Credibility, starting in the 1970s, was highly motivated by reduction of computational burdens in both cases.  However, there was no apparent comparable technique to reduce the computational burdens of maximum entropy distributions to tractability at that time. 
	Model Selection Through Information Criteria
	In 1974 the Akaike Information Criterion (AIC) was introduced as an estimator of relative quality among statistical models fit to sample data ([2]).  There is also an important small sample adjusted version (AICc) ([3])  In 1978 a similar criterion, the Bayesian Information Criterion (BIC) was introduced ([15]).  These criteria are useful for selecting among competing models hypothesized to underly sample data.  We will first recount the definitions of these criteria.  Then we will demonstrate how they differ from maximum entropy distributions with an explicit example.  Finally, we will briefly discuss how the foundations behind how these information criteria were derived differs from maximum entropy distributions.  The derivations of these criteria are very mathematically and statistically sophisticated.  Consequently, we will not attempt to even approach the detail presented in the original references but will attempt to convey a meaningful general concept of what is going on.
	Suppose a sample of data observations {𝑥1,…,𝑥𝑛} is given, as usual assumed to be independent and arising from the same underly model.  Also,  {𝑀1,…,𝑀𝑞} is a set of parametric probability distribution models hypothesized to potentially be the true model 𝑀 underly the data with {𝑘1,…,𝑘𝑞} number of parameters, respectively.  Let {𝐿1,…,𝐿𝑞} be the likelihood function values for the maximum likelihood estimates of the respective {𝑘1,…,𝑘𝑞} parameters of each of the models {𝑀1,…,𝑀𝑞} fit to {𝑥1,…,𝑥𝑛}.  The definitions of the information criteria mentioned previously are:
	𝐴𝐼𝐶𝑖=2 𝑘𝑖−2 𝐿𝑜𝑔(𝐿𝑖)
	𝐴𝐼𝐶𝑐𝑖=2 𝑘𝑖−2 𝐿𝑜𝑔𝐿𝑖+2𝑘𝑖2+2𝑘𝑖𝑛−𝑘𝑖−1
	𝐵𝐼𝐶𝑖=𝐿𝑜𝑔(𝑛) 𝑘𝑖−2 𝐿𝑜𝑔(𝐿𝑖)
	For each of these criteria the lower the value the better the hypothesized model.
	Example B.2
	In Example 1.1 no sample data was given, and the competing hypothesized models were fit using moment matching (1st moment only) with no sample data available.  We will now revisit this example for two different data samples, each having the target moment of mean 10,000.  Samples 1 and 2 were simulated from Wide Uniform Distribution and the Lognormal Distribution, respectively, as given in Example 1.1 and then each renormalized to have sample mean 10,000.  In Table B.1 the distributional forms from Example 1.1, aside from the Narrow Uniform, are shown with new MLE  parameters for Sample 1 and 2, respectively.
	Sample 1
	Sample 2
	Table B.1 Distributional Forms from Example 1.1 With Parameters Refit to Samples 1 and 2
	Table B.2 Information Entropy of Distributions from Table B.1
	The Wide Uniform and Exponential each have one parameter to fit.  The Lognormal and Pareto each have two parameters to fit.  Table B.2 shows that refitting parameters with MLE results in the form closest to the underlying data process, the Wide Uniform for MLE1 (Sample 1) and the Lognormal for MLE2 (Sample 2), having the lowest entropy, or the most information.  This makes sense for this context of fitting to sample data, where the objective is to gain as much information from the data as possible.   However, it stands in stark contrast with the criterion of maximum entropy when the objective is to simply match to certain generalized moment constraints.
	Table B.3 shows AIC, AICc, and BIC calculated and ranked (lowest to highest) for the original and refit parameter estimates on each data sample. Not surprisingly, all three of the information criteria produce the same rankings in for each combination of sample data and parameter fits.  Here again for MLE1 (Sample 1) and MLE2 (Sample 2) the forms closest to the underlying data process always rank 1st.  However, it is worth noting that among the ME fits, simply to mean 10,000 without any sample data, the maximum entropy distribution, the Exponential Distribution, ranks 1st for Sample 1 and 2nd for Sample 2.   Furthermore, when the sample is mismatched with the MLE fit, as with MLE1 (Sample 2) and MLE1 (Sample 1) the Exponential, which still has the same parameter value being the maximum entropy distribution for the sample mean, ranks 1st.  When the MLE is matched to its sample, MLE1 (Sample 1) and MLE 2 (Sample 2), the Exponential ranks 2nd.
	Table B.3  Information Criterion Calculated For Distributions From Table B.1 On Samples 1 and 2
	Table B.3  Information Criterion Calculated For Distributions From Table B.1 On Samples 1 and 2 (continued)
	Example B.2 illustrates the difference between selecting generalized moment constraints, even if sample data is available, and determining the maximum entropy distribution, versus postulating several different parametric forms, MLE fitting the parameters, and then ranking them according to information criteria.  Interestingly, the maximum entropy distribution fit, independent of any sample data, to a mean of 10,000 actually ranked very well on these two samples, both having mean 10,000 but otherwise being very different.   
	AIC, introduced in 1974 ([2]), derives from a Frequentist philosophy utilizing Information Theory.  Specifically, AIC derives from an asymptotic (as 𝑛→∞) estimate of the Kullback–Leibler (K-L) divergence (also called relative entropy), between the true underlying distribution for sample data and a hypothesized parametric model.  The K-L divergence was introduced in 1951 ([11]) as a type of generalization of information entropy.  Akaike had earlier pointed out a relationship between Maximum Likelihood Estimation (MLE) and the K-L divergence ([1]).  Among competing hypothesized models, the lower the K-L divergence the better, as it indicates a likely lower information difference between a hypothesized model and the true distribution.  AICc is based on the same foundational reasoning, with the addition of a correction term to improve accuracy for small data samples.  For a true underlying distribution model 𝑃 with density 𝑝(𝑥) and a hypothesized distribution model 𝑃  with density 𝑞(𝑥), the K-L divergences is defined as:
	𝐷𝐾𝐿(𝑃|𝑄=𝐻𝑃,𝑄−𝐻(𝑃,𝑃)
	where 𝐻𝑃,𝑄 is the cross entropy, defined as:
	𝐻𝑃,𝑄=−𝐿𝑜𝑔𝑞𝑥 𝑝𝑥 𝑑𝑥
	For the special case when the distributions 𝑃 and 𝑄 are equal, the cross entropy 𝐻(𝑃,𝑃) is the information entropy of a distribution, as used throughout this paper.  Akaike derived the asymptotic estimate: 
	𝐷𝐾𝐿(𝑀|𝑀𝑖= 𝑘𝑖− 𝐿𝑜𝑔𝐿𝑖+𝐶𝑜𝑛𝑠𝑡𝑎𝑛𝑡
	Dropping the constant and multiplying by two, an arbitrary convention, leads to:
	𝐴𝐼𝐶𝑖=2 𝑘𝑖−2 𝐿𝑜𝑔(𝐿𝑖)
	BIC was introduced by Schwarz in 1978 ([15]), deriving from a Bayesian framework without utilizing Information Theory.  In this framework a number of competing models are assumed to have the same probability, prior to any observed data.  BIC is asymptotically related to the logarithm of the Bayes formula updated probabilities for each model 𝑀𝑖, posterior to data being observed, is derived.  Schwarz derived the asymptotic estimate:
	𝐿𝑜𝑔𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦𝑀𝑖𝑑𝑎𝑡𝑎= 𝐿𝑜𝑔𝐿𝑖−𝑘𝑖2𝐿𝑜𝑔𝑛+𝐵𝑜𝑢𝑛𝑑𝑒𝑑 𝑇𝑒𝑟𝑚
	Dropping the bounded term and multiplying by -2  leads to the BIC criterion that can be used in the same way as AIC or AICc, as previously given:
	 𝐵𝐼𝐶𝑖=𝐿𝑜𝑔(𝑛) 𝑘𝑖−2 𝐿𝑜𝑔(𝐿𝑖)
	So, although rooted in a Bayesian framework, BIC is also used to select among competing models in a Frequentist framework.  It has also been noted that AIC can be derived in a similar fashion starting with a different prior distribution on the competing models ([4]).  Alternatively, competing models could be weighted together in a Bayesian framework, based on posterior probabilities derived from prior probabilities related either to AIC or BIC.
	Whereas maximum entropy distributions do not even require sample data or hypothesized parametric models, these information criteria require both.  When both sample data and hypothesized parametric models are given, the maximum entropy distribution selected to match the sample value of a selected generalized moment function may be different from the model selected by these information criteria.
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