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Communication of Technical Results to Senior
Management: The Art of Storytelling

Jonathan Charak, FCAS, MAAA, CPL

Motivation. This paper was written in response to a ‘Call for Papers’ on Communication of Technical Results to
Senior Management

Method. This essay relies on personal experience which has worked for me

Conclusions. Structured and brief communications are key to communicate with senior leadership as time may
be limited

Keywords. Communication, Structured Thinking

As we progress in our careers as actuaries, our first challenges are exams. After this
accomplishment, we may move into mentoring other actuaries, training them on actuarial principals,
and managing a team of actuaries is a potential. Eventually, some actuaries will find themselves in
front of the market-facing leaders and senior management of their company. Senior management
may have a different background than actuaries and haven't spent years agonizing over ELFs/ILFs,
tail factors, GLMs, and other ‘technical’ details that actuaries thrive in. Sharing actuarial insights is
crucial for an insurance company's success. Effective communication should impart knowledge,
nudge/influence decisions, and assist senior management come to the conclusion that betters the
company. In my opinion, the ability to do this differentiates a good actuary from a great actuary.

Communication to senior management can come in many forms. While the details of how a slide
deck, an email, or a document differs, they generally follow a similar format. There should be an
Executive Summary, Context/Background, Analysis of Finding, Recommendations, and
Next Steps. A slide deck provides the best format for communication with senior management. It
allows one to use visuals and bullets to create an effective communication both in person and when
senior management wants to view the information on their phone or tablet.

Structure Description

* First slide of a presentation
Executive summary * Use to clearly and concisely summarize the main takeaways for the audience
* Order of main points and bullets should match the flow of the rest of the document

* Ensure the audience knows what you are talking about and why you are discussing it

E:::e’:;dnd * Example items to include: The problem you are trying to solve, the facts that
a demonstrated there was an issue and the objectives of the analysis
Analysis and . Explain the keyl' 'f|r?d|ngs.'fr-:-m the analysis
findings Support each finding with facts
D)

* Deliver your recommendation {and rationale)
Recommendations

B—————

MNext steps

* Clearly articulate next steps, including due dates, owners and dependencies
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An executive summary should be able to summarize the entire communication into something
senior management can read in a minute or two and understand. This could be a couple of
paragraphs in a document, a three to five bullet email, or one slide in a slide deck (e.g. PowerPoint).
The executive summary should cover three points: Situation, Context, and Resolution. The
rationale to start with the situation is simple, senior management is busy. They may or may not recall
the history, why this is pertinent for them (and the company), and why they should dedicate time
from their busy calendar. Context provides an outline to why this is a problem and how the
company is currently dealing with the said issue. The resolution is the action that the communication
is putting forth. An email may only contain an executive summary with the details attached as a slide
deck or a document. While the executive summary is the first part of a communication and guides
the audience, you may choose to write this last.

Executive Summary

+ Actuaries generally present information in a technical manner, which may not™,
be the most effective way our audiences prefer to be communicated towards

+ Senior actuaries generally present to non-actuaries
& - MNon actuaries do not have the same background and training as actuaries

*  To become an effective partner, one should communicate in the language of the
audience

Actuaries can improve communication with senior management by adjusting
our communication methods and structure >‘9

«  Summary slides allow the main points to come across in an easy to read manner

« A well organized communication allows for smoother meetings and less need for
follow up meetings

+  Additional recommendations include

+  Put yourself in the audience’ shoes to understand how to position the
presentation

«  Keep communications clear, concise, and simple -
Improvement Description
0 Main points Clearly summarize the main 3-5 takeaways you want the audience to leave with
osuppomnghmprwlde ﬁmthatsumtammteea Ch mampomt
9 Flow of summary The order of executive summary matches the flow of the rest of document, which makes
it easier for the audience to follow along with the presenter

After the executive summary, the following sections include additional details. To ensure
engagement of senior management, there should be a mix of visuals and well-organized bullets.
Formatting content with call-out boxes, flow-charts, chevrons, and so forth will make a ‘wall of text’
much easier to comprehend. Further, when one creates visuals/graphs, be sure they are purpose-
built and not merely screenshots of already existing visuals; making effective communication to
senior management requires additional care. Keep principals of data visualization in mind, such as
clean graphics are better than overly complex ones. Creating organized text and bespoke graphs will
direct management’s attention and allow you to drive the conversation. Finally, the lead on a slide
should be an active lead. It assists in telling the story and guides the recipient of the communication.

The example below takes lots of information and structures it in a clear manner so senior
management can easily gain context, even if they’re not familiar to the details of the subject in
question. The active lead provides clear details of the takeaway message.
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L1
The key difference between Subguard and
Surety is the underwriting process

Subguard ——’/’4&_\\‘ Surety

Protection - ile i - ile i

provided Details in bullets Details in bullets

Underwriting || e . S
proceis Details in bullets Details in bullets 9
“profite. ||+ Details in bullets *  Details in bullets

Improvement
@) Provide background

Description

While the main focus of document could be anything, context ensures the reader
understands the intricacies of porifolio of interest & its differences from similar porifolios

o Structure the exhibit
9 Dotted box

By separating coverages vertically and differences horizontally, reader can easily follow

Ensures the audience will focus on the key difference between the two coverages

Senior leadership now has a base level of knowledge and is ready to proceed to the analysis and
findings. Generally, senior management’s interests are in the conclusions and the rationale behind
the conclusion rather than all the details of the analysis. When working with senior management, an
actuary may need to shift how they think about data and try to create visualizations to depict a
finding. Instead of a chart, visualizations could easily be cleaner and more descriptive. Below are a
couple of examples. The first one starts with a loss ratio triangle. A triangle is full of useful details,
however more than senior management needs. Also, the lead does not provide any explanation. By
creating a bespoke graphic, the conversation will naturally move toward the consistent favorable
development in each accident year’s loss ratios, which the lead corroborates.

Fake Portfolio AY LR Evaluation Trends We continually see favorable development year

over year

AccYr_2008.12 2009.12 2010.12 2011.12 2012.12 2013.12 2014.12 2015.12 2016.12 2017.12 2018.12

) Development of Booked Ultimate Loss Ratios for Fake Portfolio

2007 73%  67%  GA%  6A%  SB%  60%  S9%  60% 6%  S1%  S2% <
(Change in LR compared to year 1 evaluation, 1" year = 1)
2008 85% 67% 65% 67% S7% 57% 56% S1% 54% ar% 7% m
Prior accident year has developed
2000 87 7% 8% sa%  79% 82 7% 73 2% 0% unfavorable, data green
10
2010 98%  74% 6%  8s%  81%  80%  71%  68%  62%
2011 9%  B9%  90%  BA%  BI%  7I%  74% 2% o5
2012 106% 100% 9%  90%  81%  78%  7s%

2013 104%  110% 102%  97%  95%  87%

2014 99%  BA%  78%  7S%  66%

2015 91% 9% 76%  76%

2016 98%  91%  91% 06

10 additional accident years al show
favorable development

2007 sa% 89w

2018 7% 12m 24m  36m m 108m 120m 132m

P! P

@ Clear headline

While the "before” before was a pure descriptor of the data, the headline dleanly
summarizes the main takeaway of the visual

@ Clear, readable visual

€ Takeaway boxes

Visual is easy to understand and highlights key insights

Takeaway boxes further reinforce insight and call attention to important details
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In another example, the presentation of key financial metrics is in a chart. By creating a clear
visualization and a descriptive lead, one can direct senior management to see the changes proposed
in the portfolio. Follow up slides, perhaps in the appendix, will explain rate achievement and other
assumptions built into this projection.

Rate Change and underwriting actions will move
the portfolio to profitability over the next year
Value Loss Ratio Walk on Fake Portfolio, % pts
Loss Ratio 84% 84.0
o 80
Attritional Loss Ratio 50% 2.5 < Permissible
Cat ™ o o B 78.0 T Loss
Large Loss Ratio 25% o Ratio
Cat Loss Ratio 9%
. Large '25.0
Rate Change impact 4.5%
on loss ratio e —
Trend impact on loss 2.5% 25.0
ratio Attritional
Underwriting actions 4% - -
—| :m
Permissible Loss Ratio  80% Year 1 Rate Loss uw Year 2
Change Trend  Actions

Now that senior management understands what your analysis concludes the logical next question
is: “What do we do next?” The next slide or two outlines a set of recommendations. Senior
leadership wants to know that their actuaries reviewed all reasonable scenarios before they propose a
recommendation. As such, communication to senior management should demonstrate that you (and
your team) analyzed multiple options to make your proposal. All scenarios tested should include a
description, have a rationale for inclusion to explore, and provide a projected impact on financial
metrics.

Using the mnemonic SMART when creating your recommendations will ensure proposed
actions meet best practices. SMART was first coined by George Doran in a 1981 issue of Management
Review and it remains a useful tool. Recommended actions must be specific in activities and who is
participating, without any ambiguity. There must be a way to measure the expected impact (e.g.
GWP, NWP, loss ratio, operating profit...). The action must be achievable within the resource and
time constraints. Recommendations must be relevant to solve the problem. And the actions must
be time bound with a timeline on completion of the objective.

The example below shows four recommendations on a portfolio. Different scenarios test
potential actions on attachment points and limits; each scenario has a description, rationale, and
projected impact. This communication shows all scenarios and identifies the proposed go-forward
approach with a box to highlight. Details on the four scenarios are not in the main deck but in the
appendix.
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To mitigate future losses, the proposed
approach is to decrease limits
I' Proposed Approach |
,,,,,,,,,,, :
Dascription Rationale 0 Rur-Rate GWP Impact
ingreass atachment = inchude detsils of rationaie in 2.3 bullets
point sbove what is ‘ _—
curmently provided -
{list current amownt)
Redute Bmit from = Inglude details of rationale in 2-3 bullets !
A" 10 "B” (Net from ]
Radhice limitand | “C7 % “07) f
‘ s !
i attachment point !
1
]
______________________________________________ 1
Maintain limit Kesp current * Imehusde details of rationale in 2.3 bulles
and maintain attachment podnt 50
artachmeont point | and limit [l current <::>
bt drive rate amount)
Include description * Include details of rationale in 2-3 bullets
Non-renew
portfalio ‘ 52
Improvement Description
o Options Ensure the audience understands potential options and knows you considered alternatives
o Rationale Walk the audience through yourrationale to lead them to your proposed approach
9 Quantify impact Wherever possible, quantify your recommendation so the audience can understand the
magnitude of each option

Next, the communication discusses operationalizing the recommendation. The ‘next steps’
section will walk senior management through the actions needed to operationalize the proposed
recommendation. Instead of a series of bullets, a Gantt chart, per the example below, can show the
tactical steps needed to execute. Whatever method of communicating the next steps, one should
always include the activities, owners, and timelines.

Training will be conducted in waves during Q2
and Q3
[ 1 J—
Activity Apr May Jan Jul Aug Sep | Owmers  madium
Waws 1: Uit 1 :
Pilie 000K, h_ List owrar Face-to-fuce
Collect and address any feadback H
Trairall wmployess ! — Lint owreee: Fibce-to-tace
Rucdl sut o Unit 1 : - List s W&
Fallow up aisiimant : - Litt cmrad NAA,
Wave 2 Unit 2 :
Pl X000 ] List enroer Faee-to-ince
Cedlect and addoeis any feedhack : o
Teaie all ampheyuas 1 — List cwras Facetodace
1
Rl gt v Unit 2 1 — Lirt zrared MO
1
Follow up assenment i - List oaras NAAL
Wawe 3 Unit 3 ‘I
1
Piliot MOO00K: 1 I List ownar Face to-face
Codlen and sddnids bay feadbac 1
Tralnall employees : — List owrar Face do-face
Rl out to Unit 3 : d List ownar MIA,
Follow up assessment : it owner MR
4 A
Training plan finalized Training 9
complete
Improvement Description
@ owners State who is responsible for leading the activity
@) Timing Bars visualize when activities should start and end
9 Key dates Call out milestones or important meetings to align the audience on critical dates

Finally, one may need an appendix and other supporting files (such as a data visualization tool
like PowerBI, Tableau, or R Shiny). The appendix houses all the additional details, including some of
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the more technical actuarial work; generally, it includes work necessary to create the
recommendations to senior management. Details included here most likely isn’t what senior
management will dig into, though you should prepare to talk about the details if need be. After all,
this analytical work is why senior management hires actuaries. They value actuaries who can translate
the analysis and distill easily digestible actionable intelligence.

The visual below includes a quick guide of best practices when structuring your communications
to senior management. Following the structure described above and the best practices below will aid
you in creating effective communication.

Structure Best Practice
n + Identify the “key questions” you will need to answer
Pre-Work + Create ashell on a piece of paper, focusing on the storyline before doing design wark
m
|- ]

This is the “embodiment” of your narrative arc
Try not to go any smaller than 16 point font (14 if absolutely necessary)
Use bolding to identify key points (your bolded sentences should read clearly)

Executive summary

Ec ntext / * Try not to clump text together — use spacing and divider to break up the flow
ontex .
background Use callout boxes to hone in on key messages
Analvsis and * Wisuals should be clear, well labeled, and sourced
f_na_ymsa * Limit the insights/takeaway messages per slide, too many makes it difficult to focus
indings
EI
|

Recommendations should always be accompanied by a rationale and an impact
Recommendations within a certaintimeframe - in other words they should be SMART actions —
Specific, Measurable, Achievable, Relevant, and Time bound

B

Next steps

+ A next steps page should always be included, even if it is only a bullet-point list

Executive communication syndicates information and helps senior management to make strategic
decisions. Structuring a story as previously described, one shares the correct level of detail with a
healthy mix of visuals. The advice above will refine your communication to leadership. Content is
key and good structure alone won't make effective communication. Finally, if a communication is
effective in one hundred words, don't say it in five hundred as brevity will allow you to retain the
attention of senior management (or any business professional).
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Communicating in Crisis Situations

Rick Gorvett, FCAS, CERA, MAAA, FRM, ARM, Ph.D.
Chris Morse, Ph.D.
Julie Volkman, Ph.D.

Abstract: Communicating technical information, especially in a crisis situation and particularly when the
audience does not share the technical background, is a challenge that actuaries frequently face. This essay
describes the dynamics and issues involved in crisis communications and provides some recommendations for
actuaries confronting such a situation.

Keywords. Communication, crisis management, senior management

Actuaries, like practitioners in any profession that involves significant quantitative or technical
expertise, have a reputation for sometimes being substandard communicators. To the extent this is
true, it is probably less a matter of lacking basic communication skills, than it is the inherent
difficulty in communicating technical material to audiences that generally do not share that
background. Communicating in such an asymmetric environment presents a natural challenge.
When, on top of this, an actuary is attempting to communicate bad news or a potential crisis
situation, the task of communicating effectively is doubly difficult. We hope this essay will help

actuaries to better understand the dynamics and issues involved in crisis communications.

Potentially, actuaries may confront at least two types of crises. To the extent that actuaries are
executives and leaders in organizations, they may well have responsibilities in a high-profile crisis
situation such as a cyberattack or an incident that somehow threatens the company’s reputation.
More often, though, actuaries need to operate and communicate in crises of a more subtle, actuarial
nature. Many actuaries have had to deliver bad news or present and educate company executives

regarding threatening situations. Just a few of many possible examples include:

e Results of an actuarial analysis indicate that the organization is insolvent, or that its

financial condition is worse than had been anticipated.

e An emerging or ongoing natural catastrophe, unhedged financial risk, or other event is
about to play havoc with the company’s finances, operations, capital adequacy, liquidity,

etc.
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e A new type of risk has emerged, and the evolving litigatory environment surrounding
that risk suggests that the organization will very soon experience significant losses that

were previously unanticipated and were not contemplated in the ratemaking process.

Effectively communicating in a highly technical and quantitative environment, with an
asymmetry between the communicating partners regarding an understanding of and familiarity with
the analytics underlying the findings, is difficult enough. Where a particularly significant or crisis-
level indication is concerned, all the difficulties involved in communicating in a crisis are also piled
on. Indeed, post-mortem analysis of crisis situations often reveals that communications could have
been handled better. While there could be several reasons for poor communications in crisis
situations, we argue that a majority of miscommunication can be attributed to two main causes.
First, audiences in a crisis behave differently than they do normally, so adjustments must be made
[3]. Second, we as crisis communicators often overestimate our delivery ability, which can further
cause issues. In this essay, we attempt to highlight some of the major factors within these two areas,

as well as offer some advice for actuaries and other crisis communicators to overcome them.

The nature of a crisis impacts individuals’ abilities to process information, requiring them to
alter the ways that they cognitively operate in such a situation compared to their normal approach.
In these cases, crisis communicators who do not alter their messages will often encounter
problems, or at the very least fail to convey the importance of their information in a way that the
audience understands. The result can be a failure to take the crisis seriously, a lack of motivation to
act on the information, or an under-impression of the potential impact of the crisis on the company

or organization.

In terms of audience behavior, crisis communicators must be aware of three key issues.
First, in a crisis, individuals tend to find themselves in situations of high stress and are often being
presented with large amounts of information in a short period of time. In cases such as this,
research has suggested that individuals have trouble with message retention, oversimplify the
message content often missing key pieces, and misinterpret goals articulated by the crisis
communicator [4], [8]. Second, a crisis represents a situation in which uncertainty is created as an
individual’s understanding of the world is challenged or that person’s ability to predict what is going
to happen next is compromised. In cases such as this, individuals often find themselves clinging to
“what they know is true.” This means that people will often default to long-held beliefs about the

world and how it works, or “tried and true” ways of handling things instead of alternative plans or
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ideas [2]. Audience members will often reject “new” information in favor of what they have
normally encountered. In cases of crisis, this would suggest that crisis communicators who present
novel information or ideas, might be ignored by their audience in favor of “what has normally
happened,” or what has occurred in the past. Third, feelings of uncertainty will often result in
negative emotional states such as anxiety, fear, and anger [1]. Emotional states such as these have
been argued to create “action tendencies” or behavioral responses in individuals, that if left
unaccounted for may present additional problems with a crisis communicators message. Fear, for
example, has been linked with a tendency for “flight” responses while anger has often presented an
“attack” response [7]. In the context of crisis communication, this could translate into a tendency
for the audience to avoid a crisis message, either by ignoring it or discounting it, or they could
challenge the message, questioning its validity. In either case, heightened emotional states can cause
failure in the crisis communicator achieving her/his goal by having the audience be less receptive

than anticipated.

While the impact that a crisis has on an audience is problematic, so too is the way in which
crisis consultants convey the information. In many cases, people who are tasked with conveying
information make assumptions about both their message as well as who they are talking to, which
often causes confusion or reduced understanding. Unfortunately, in the case of a crisis, these
assumptions can have severely negative impacts. One particularly problematic issue — particularly
for actuaries — is a communicator’s use of jargon. Oftentimes in work specializations, individuals
develop and use terms that are not common vocabulary to those outside those specializations.
Unfortunately, given the often-siloed nature of the workforce, and individuals being in constant
contact with others who also speak with a similar vocabulary, people can often forget that these
terms are not commonplace, or at the least make erroneous assumptions that “everyone else gets
what I mean.” In fact, the use of jargon impedes one’s ability to effectively communicate with non-
experts [5]. When conveying information to others, especially in high stress situations, individuals
thus can overestimate the “simplicity” with which they are speaking. In cases where the audience is
already experiencing the issues mentioned above, this can result in a speaker believing that a
successful message was completed, while the audience member becomes lost or ignores what is

being said.

There is an additional issue that should be of concern to crisis communicators. Literature
involving primacy effects suggests that the first piece of information that people are presented with

will be used to interpret and compare all future information [6]. Therefore, the first message that an
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individual is presented with in a crisis tends to carry the most weight. This significantly increases
the importance of presenting not only correct information to an audience but of making sure that it
incorporates the issues stated above. If the message is designed without consideration of these
issues, then not only can the decision making of individuals be compromised, but how people view

the crisis will also be very hard to change from their initial erroneous impression.

Taken together, the above comments suggest that, when dealing with a crisis, the actuaries
and other individuals doing the communicating cannot approach the task as simply “conveying
information.” By its very nature, a crisis impacts an audience, altering the way that they process and
interpret information. Furthermore, some of the tendencies that speakers have, which might be
normally overcome in everyday conversation, can have negative impacts when exhibited in a crisis
conversation. It is important for individuals to remember that they must be simplistic and repetitive
in the conveying of their information. They must be prepared to deal with audiences wanting to
avoid what they are saying or challenging it. While the speaker may feel that they are speaking
“plainly” they must examine their use of jargon and appreciate the experience level of those they
are speaking to. Finally, while a speaker may believe that the solution being presented is logical and
practical, he/she must understand that if the proposed solution deviates too much from the
established norm, the audience may reject it as their uncertainty causes them to fall back on what

has been done before — or, at the very least, what is comfortable and safe.
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Setting the Scene for Communicating Technical Results
to Senior Management

Christopher Smerald, FCAS, FIA, MAAA

Abstract: In this essay, we look at enablers to effective technical communication with senior management.
Good planning and concise writing is essential, but in this essay, we argue that both analysist and recipient also
need to work collaboratively towards ensuring the analysis is tuned to the recipient’s needs. This is especially
true, because actuarial method is often very different from management decision-making approaches. The
actuary and, ideally, also management need to go the extra mile to ensure they understand the othet’s language
and work context. To help with this, simple rules of thumb (heuristics) are suggested as part of a good
communication process.

Keywords. communication, reports, culture, senior management, personal leadership

1. INTRODUCTION

Just imagine going to a play where the production spent most of its time writing the script
and only spent a little time, at the end, thinking about how they might connect with their
audience, making sure their set works, and preparing to speak their lines. It might just work
with a simple play (or if the audience is another scriptwriter who can fill in the abstract gaps

with their imagination), but to most it would seem incomplete or worse.

Transcribing the simple play for insurance, imagine two short actuarial studies required
for “Andy”, the CFO. One done by “Lucy” who worked alone to the last-minute preparing
exhibits but did not plan what to say to Andy. “Ken” did the other. However, he had a cup
of coffee with Andy to confirm what was needed before creating the exhibits, and he left

himself time to prep for Andy. Who was invited back for an encore project?

Perhaps Andy also backs plays and he is funding a professional show. He knows public
fashion demands lots of audience participation, thicker subplots, elaborate sets, and no
mistakes. Things are much more complicated. Without a good process, much is at risk. Andy
must understand how it all works and be more involved. His producer needs to understand
Andy’s and public needs better. Independent work with only a few short meetings is no

longer adequate.

Now imagine a more challenging insurance situation where CFO Andy and management
are under pressure for deeper / more agile business insights, improved risk management and

governance, and “ownership” of the numbers. A nice focused table and simple clear words
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may no longer be enough. The actuarial analysis may demand more thoroughness,
transparency and efficiency using new methods with more data (or more pressure on old
methods) and more controls, plus enhanced disclosures around selections, uncertainties and

drivers.

For this more complicated actuarial work, a highly collaborative and participatory process

is needed. We have broken the important aspects of this into four elements through the

o

1. Culture relates to the principles and customs underlying the relationship. In this case

acronym CUPS: Culture, Understanding, Practice, Suggestions.

a willingness to make things work and being collaborative in the relationship by

listening well and allowing time for informal communication as well as formal.

2. Understanding is about knowing context and goals. This includes other
participant’s: language and values, working and thinking process, and priorities and

pressures.

3. Practical relates to things which can be done to simplify communication by a rule of

thumb toolkit (heuristics) once culture and understanding are established.

4. Suggestions are just that. The more complicated things are, the harder it is to
manage or improve alone. Adjustments are made based on feedback that is

specifically requested.

These ideas will be discussed separately in more depth below, followed by a few end

comments.

Culture

According to The Barrett Values Centre, who help build values-driven organizations,
“The culture of a group of people is a reflection of the values and beliefs ... that are

embedded in the structures, policies, systems, procedutes and incentives of the group™

The sort of culture we are seeking includes a strong personal leadership element and is
founded on positive business and personal values. -Where each is committed to making the

relationship work to the best advantage of all concerned. This includes willingness and skills
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to work across boundaries, with curiosity and being open to challenge.

The needed culture and underlying values are likely already there and may need only a
little reflection to be lived more authentically and effectively, so that the forms followed in
engagement are aligned more closely with their function. The actual form will likely vary
considerably among organizations, so this section focuses more on the values which
underlay culture which can be universal. By thinking about values and how they are lived

through culture, we can connect and communicate better with others.

Here are seven good values examples from 6Q Blogger Heryati R*
1. Stewardship,
6. Integrity,

10. Diversity (the source gives a fuller description),

16. Quality

20. Good Citizenship,

41. Leadership: The courage to shape a better future,

87. Togetherness and enthusiasm.

Culture development starts with thinking about actions which would support these
values. For example, making time for informal conversations, which of course takes time,
but may increase efficiency in the longer run. This is because informal conversations can
carry wider bandwidth of meaning as opposed to emails, agenda packed meetings and video

conferences, where messages are more compressed.

This personal connection aspect is also echoed in a list by Miranda Anderson’ which

suggests additional procedures:
e Create a shared ritual like a cup of coffee informally

e Agree to your commitments eatly and often and help facilitate commitments of

other key stakeholders

e Be There When It’s Hardest. Pick up the phone (or text, if necessary) the minute
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there’s a whiff of something awry, and then to do whatever it takes to make the

situation right.

Understanding

Communication between actuaries and senior management is complex. Each focus on
different aspects of the business, has different goals and past experiences, and may internally
process things quite differently in language terms or units of thought. This may cause them
to assign different meanings to the same undetlying information*. So, understanding all this

context, especially when the messages and uses are complex is especially important.

It helps to consider how actuaries solve business problems using actuarial method. This
can be more of an iterative art than a science, especially if data is missing and simplifications
or extrapolations are needed. Tools may include any of the following: logic, statistics,
heuristics (rule of thumb methods and models), and professional judgement. The iterations
and uncertainties can leave an actuary feeling they have not really completed the analysis. So,
the actuary may be tempted to explain too much their steps and unresolved issues, and not

why the selections make sense and what the key issues are.

In contrast to this deductive work, senior management might be reflecting more on
similarities and differences in opinions from diverse experts while deciding on a course of
action. The more objective the opinions and the more they use a common language, the
easier it may be to decide. So, if the actuarial information is too abstract or tentative, they
may not be able to synthesize it with more objectively framed opinions from sources like
ERM, finance, investments, underwriting, etc. Thus, actuarial information is not always
something which stands alone. It may be used as part of a larger process, so actuaries need

to work to make it be more objective and comparable with other business information.

Working collaboratively and being able to see both sides of the of the situation is
particularly relevant here. The actuary needs to discover the manager’s objective and decision
context. The manager needs to understand actuarial method and actual workings better,
since not all of them can be translated efficiently into normal management language. This

may take time before it becomes natural to both, but it is worth it, and it does take two.

Clear lines of responsibility and accountability are also important to the process of
understanding. An actuary does not just produce “the answer” and a manager does not just

make decisions. Each are responsible for their share of ensuring good risk management and
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for contributing to governance and social protection’. These make communication mote
complicated. By recognizing these parallel and complementary roles and breaking up
communication along these lines (of decisions, risk management and governance), messages
can be simplified. This splitting out may also help find an optimal level of disclosures on

uncertainties, controls and caveats, because they have been untangled from other goals.

Finally, listening is a strong part of this understanding. To be a good listener, you need to
set aside your own reactions, ignore sparked tangential thoughts, and take good notes
generally. In order to pick up nuances (especially where a conversation is on unfamiliar
ground), it helps to research and plan what is likely to be said by you or others. This
preparation sets expectations, so surprises are captured well. This is a verbal version of
tracking actual vs. expected. Allow silences to happen. Silences => reflection =2
understanding. Reflective listening is also good. Say what you thought you heard or what you
understand they want. This builds trust that you are listening and shakes out

misunderstandings.

Practice

Practice is best approached in a principles-based way with ideas to try to fit the situation.
The below framework is based on work of The Good Actuarial Report Working Party which

the author has been leading.
The framework centers around truly understanding user needs and includes five parts®:

1. Prework. Communication may fail if user needs are not properly understood from
the outset. This is partly covered in the preceding section, but planning time is

needed:
a. Really understanding managements goals and expected uses.
b. Selecting / planning proportionality and priorities, and
c. Planning the scope of the work to be performed.

The proportionality heuristic is beyond the scope of this article, but just as actuaties have
methods to simplify complexity in problem solving, analogous simplification can help with

communication and work planning.

2. During Analysis. Complete the work focusing on what is important, having kept
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notes on what was opaque and what was clear. A good practice is to rank your
findings and interim assumptions by your level of belief. Was the fact pattern clear
enough that you have a firm recommendation? Is it more of a best guess, or was it

speculative where the model said “X”, but you cannot validate it?

3. Communication planning: Keeping user needs in mind, plan what is most important

to communicate in advance.

4. Writing/ Communicating: Ensure it is relevant to user needs, highlighting what is

important. Be Concise, less is more.

a. Instead of: “I took this data, applied these methods, and got these results”,
you could try: “Your business needs fixing / is doing gteat, as these results

show, and this is how you can see for yourself.”
b. Write for Flow, by writing with flow:

i. The flow for the reader who discovers what is important through

following clear logic.

i. Flow as a writing technique where you get a sprint of content down
and before overwriting the first sprint, write the next part, then the
next... Then, with first draft quickly finished, you can overwrite and
refine, reorder, fill in gaps, reduce, etc. Don’t start the iterations of

improvement too early as you may burn too much time.

c. Avoid Jargon — Use your authentic voice instead, avoid acronyms and

technical terms

5. Feedback. See the “Suggestions” section below.

Suggestions (and Feedback)

Suggestions and feedback are important for complex situations, because without them, it
is difficult to judge how to improve. The actuary needs to know what new thing worked,
what did not, and based on management’s experience what they might try next. Management
needs to know if their actions are outside of the actuary’s comfort zone, and what they might
need to do to understand things better. It is easy to see how they are part of a good culture.

Without listening and co-ownership of success it may not happen or be constructive.
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Conclusions

The idea for this essay came from attending a workshop where non-executive directors
and chief actuaries discussed successes and challenges in formal actuarial communication for
UK actuarial function reports. I was struck by the lengths to which either the actuary or
NED went to understand the other’s language, and by the importance they placed on good
lines of informal communication. -So that the actuary would not be socially constrained if
issues were to arise later. These cultural aspects helped cement all the communication
research I have been involved in. I encourage readers to look for their own examples of

good practice and to conscientiously copy them, as I have done, wherever it makes sense.

Thank you for reading this essay and I look forward to your suggestions.
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How to Present Technical Results to Managers without
Either Side Feeling Stupid

Jim Weiss, FCAS, MAAA, CSPA, CPCU

Abstract. The following essay is a response to the CAS Theory of Risk Committee call for essays on
the topic of Communications to Senior Management. The essay argues some of the prevailing thinking
regarding interactions between managers and technicians may reinforce counterproductive tendencies
and that a more critical but rarely discussed challenge is both parties’ fear of looking stupid. The essay
offers practical suggestions to acknowledge and overcome this fear both short and long term.

Keywords. Communications; Management; Fear of Looking Stupid (FOLS).

1. INTRODUCTION

Many discussions between technicians and managers go less than ideally. Some of the
structural elements contributing to this misery are self-evident or amply explored in
literature. For example, management’s congested schedules make it impractical to engage
them in nuances required to understand pros and cons of different techniques and
approaches; it is sometimes difficult to abstract how mathematical results translate into
actions with real world impact; and each cohort possesses different skills, experiences, and
peer groups and is not used to interacting with the other. All these factors are
straightforward enough that if any represented the true problem, then the Casualty Actuarial
Society Theory of Risk Committee would not sponsor an essay contest on communicating
results to senior management — and I would not submit an entry arguing the real issue both
managers and technicians must address is their mutual fear of looking stupid (FOLS)." Once
each party understands and plans for its own and the other’s FOLS, they can all begin to

experience more fruitful, less stressful interactions.

2. FOLS ... BY CHOOSING THE WRONG ANSWER

An inaccurate subtext to studies like the present one is that there exists some sort of
fundamental difference between managers and technicians, when in fact technicians can and

often do become highly effective leaders in their organizations. There is arguably much

! Possible origin of term FOLS is Torrence (2017).
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more that (horizontally) differentiates the frame of reference of, say, a medical or legal
professional from that of an insurance professional of any kind, than there is that (vertically)
differentiates an actuary’s or data scientist’s perspective from that of a chief underwriting or
chief financial officer at the same insurance company. The latter differences in outlook tend
to relate more to individual motivations and incentives rather than knowledge or

experiences.

Individuals do not (usually) consciously prioritize individual needs over those of their
organizations, but biases come into play at a subconscious level. The Peter Principle argues
that individuals receive promotions until their successes turn to failures.” Having a success
story to one’s name involves taking chances, because it is relatively rare to experience pure
and unearned good fortune. However, once an organization rewards successful risk taking
with a management opportunity, the individual’s incentives change. Salary and
accountability increase, and advancement opportunities become more elusive. Reputation
sometimes becomes as powerful an asset as skill or ability. There is greater individual
financial freedom to be patient for the perfect opportunity, and greater adverse
consequences for unsuccessful risk taking. Meanwhile, those whose initial risk taking does

not pay off have less to lose from further risk taking.

The circumstances in which technicians and managers typically find themselves
interacting exacerbates this subconscious conflict of interest. Technicians’ presence at the
table suggests that problems at hand are insufficiently addressable or understandable by
more qualitative, instinctive, or fundamental approaches, and that heavier artillery such as
math is required. Managers may prefer lighter artillery. This is exactly where overplayed
advice for technicians to “lighten up” their message misplaces focus. Digestion is prudent,
but it does not change the essential nature of most technical recommendations — which is to
exit the comfort zone. The best chance at breaking through to a manager on this front is by

illustrating that risks of inaction exceed the risks of potential actions implied by the analysis.

To illustrate, consider an insurance company whose goal is to break even. Their actuary’s
analysis suggests expected expenses exceed expected revenues by 25% for the upcoming
year. The chief underwriting officer receiving the analysis is likely less concerned with how

efficaciously the actuary derived the 25% than with risking his or her own reputation among

2 Wagner (2018) reviews recent academic research surrounding the reality of the Peter Principle.
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policyholders, producers, and regulators with intervention.” Providing a defense of the
analysis casts the conversation as a technical referendum rather than a comparison between
one approach implied by the analysis and another of doing nothing.* The actuary can avoid
this trap by volunteering probabilities of breaking even under either alternative — say, 60%
with the recommendations and 20% otherwise. In this way, the actuary assumes the burden
of defending not only the recommendations but also the CUO’s default position.” This, in
turn, aligns the actuary’s narrative with the CUO’s FOLS, by objectively presenting inertia as

a very risky alternative.

3. FOLS ... BY NOT UNDERSTANDING THE DETAILS

Aligning incentives is one way to protect managers and technicians from emotions
deriving from FOLS. However, numerous inadvertent slights still permeate most
interactions between managers and technicians, often because the former are terse and the
latter are verbose. For example, some managers reportedly spend over 20 hours per week in

meetings.’

As a result, they may not have time to send detailed e-mails when they wish to
obtain information from a technician, and may send a note that says, “We need to talk.”
The technician will likely then worry about what requires discussion and why the note could
not specify what it is. He or she will begin to analyze how to respond to several of the
endless possibilities, ultimately becoming exhausted and anxious by the time the manager
becomes free. The manager will then feel overwhelmed by the technician’s anxiety and
preparation advantage when discussion commences, which puts he or she too on the

defensive. A vicious cycle ensues.

The cycle is easily generalized. Per the previous section, little more separates how some
managers and technicians obtain their stations than the chance results of prior risk taking.
Yet both parties often identify with tropes that one “gets business” while the other “gets
numbers.” These tropes can be useful for identifying project roles, specifically who is

handling various tasks such as final decision-making — but they also leave all parties feeling

3 Warrell (2013) describes various fears triggered by the possibility of taking a risk.

* Of course, doing nothing is often the most reasonable strategy — see Taleb (2017).

5 Balani (2018) points to resource limitations as one reason why doing nothing is often a default position.
¢ Perlow et al (2017) suggests managers’ time spent in meetings has more than doubled since the 1960s.
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underestimated. For this reason, communications strategies that pander to tropes reinforce
negative emotion. For example, some dimly suggest that technical content must be
simplistic and catchy to engage “non-technical” audiences such as managers. Yet a natural
reaction to receiving information presented in this way may be, “s/he must think I'm
stupid!” This then leads managers to ask questions that illustrate technicians are equally
“stupid” when it comes to the business. Fach focuses more on perceived capability than

problems at hand.

In contrast, being yourself is easier than “selling” others, and all parties should focus on
presenting the truest versions of their work rather than altered versions of themselves.” For
technicians, sharing a report in advance of a face-to-face discussion shows confidence in a
manager’s ability to interpret it, and the latter probably will not have time to give it more
than a skim anyway. Rather than investing in a second career in digital marketing, the
technician should invest in simple format changes to ensure the skim properly orients the
manager to discuss further, not unlike how they might make the same changes to spruce up
the document for a technical peer. For example, a data scientist may accentuate calls to
action in decisive red, while banking valuable positive emotional capital by highlighting areas
of present strength in a more tranquil blue.® S/he can use white space as relaxing
intermezzos between key points. None of this is hard or requires altering the substance of a
report and maintains a technical vernacular to the report that in turn preserves the glory of

identifying a business solution for the manager.

Returning to our earlier example of an insurer whose projected expenses exceed its
revenues, it does not take an advanced mathematics degree to identify a basic inequality, nor
does it require extensive business acumen to know how to plug a revenue shortfall. Some
may argue that technical presentations to managers should cut to the chase and focus on
what findings mean for the business. This depends in part on the personalities involved, but
these behaviors mostly just reinforce the cycle. For example, the actuary may have used
gradient boosting (or any other mysterious-sounding algorithm of the reader’s choosing) to
isolate the shortfall to a specific segment of the book, and surrogate models to identify
variables that describe that segment. It may be as obvious to the actuary that a rate increase

or non-renewal strategy is necessary for the targeted cohort, as it is to the manager that the

7 Penarredonda (2018) describes the importance of psychological safety in the workplace.
8 Williams (2007) reviews examples of the moods ctreated by different colots.
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explanatory variables intuitively correlate with risk. The actuary can “lead a horse to water”
with prompts and visuals but should resist the temptation to make him or her drink. By
staying in their respective lanes, neither the manager nor the technician looks “stupid” by
having a perceived novice explain how to do their jobs. The manager looks smarter by
asking intelligent questions and extracting business insights from math, as does the
technician by anticipating questions and having answers ready. The unfortunate tropes

survive, but neither party overcorrects for them, minimizing their harm.

4. BEING SMART ... BY “GETTING STUPID”

Though well meaning, conversations like the one we are having do more to harm
dynamics between managers and technicians than they do to help. They create a mythos
that the two parties are fundamentally different, and they create unreasonably high
expectations for the interactions. Because they often focus on the technician’s role, they
absolve managers of responsibility to make such interactions positive. The absolution in
turn disempowers managers, as if they are incapable of doing anything to make life easier.
The conversation makes everyone fearful of looking stupid. To speak technically, it divides
us, multiplies hard feelings, and subtracts from self-worth. This essay adds one more

opinion to a pile of existing and conflicting literature referenced throughout the document.

So how do we solve the problem of the less than ideal interactions, aside from fewer
essays? Above I have outlined some simple steps technicians may consider in the short term
to better empathize with managers’ FOLS (and recognize their own FOLS) — by assuming
shared responsibility for managers’ risk aversion and unselfishly ceding opportunities to
draw logical conclusions.” In a literal sense, one is more work for the technician, the other
less. Longer term, all parties may consider a colorful slang expression called “getting
stupid,” which is defined as wild, unscripted dancing -- in other words, pure joy. The best
managers and technicians take incredible joy in using their strengths to solve problems and
celebrating their impact together."  “Geeking out” over a killer technical analysis and/or
business strategy may not be proper decorum, and some may call it a waste of time. This is

our FOLS talking. The more technicians start “getting stupid,” the more senior managers

9 72% of CEOs feel the state of empathy in their organizations needs to evolve (businessolver 2019).
10 Morgan (2011) points out that a presenter’s passion helps makes dry subject matter interesting.
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will follow their example, and the sooner waves of joy will overcome barriers of fear in their

businesses. We all will be smarter when that day arrives.
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A by Layer Approach Algorithm for Computing Increased Limits
Factors -- with Adjustments for Varying Policy Limits and Other
Common Concerns

Joseph A. Boor, FCAS, CERA, Ph.D.

Abstract: When computing increased limits for short or medium tail lines of business, it is common to begin
with loss data from a combination of policies with different policy limits. This has ramifications not only
for the computation of the increased limits factors based on the experience data, but also for computing
the credibility at different limits. The paper shows how analyzing the costs of the various layers
easily accommodates corrections for the varying policy limits underlying the data. It contains an
approach that replaces classical credibility with best estimate credibility. It also shows how Miccolis test
disparities in the credibility weighted data may be readily and objectively resolved by using
interpolation along a Pareto-based increased limit curve. Of note, large portions of this paper simply relate
current best practices, although the discussions using best estimate credibility and interpolation along
the curve are arguably new.

Keywords: increased limits factors, policy limits truncation, credibility, classical credibility, best estimate
credibility, interpolation along a curve

1. INTRODUCTION

Because large claims are fairly rare, when actuaries develop or revise increased limits factors
(hereafter “ILF”’s) they often find that they do not have enough internal data to reliably predict the
upper layers. However, it is important to effectively use the data thatis available. For short or medium
tail lines of business, ILFs may be developed directly from the claim-by-claim data from accident years
where all the claims are closed, rather than by curve fitting or other more complex processes. The
long lag until claims are closed complicates the process in long-tail lines, though. The data at the upper
limits is usually distorted" by the fact that the policies with lower limits do not cover claims at those
upper limits. Hence the data in the upper limits is “censored”. Also, external benchmark ILFs are
often used to supplement the experience data of the company using a credibility process. As will be
shown in the remainder of the paper, the best approach to deal with these issues involves looking at
loadings for each “layer” between one policy limit and the next limit above it. In effect, one would
look at the losses that exceed each lower limit but cap each loss in or above the next limit at the

difference or “length” between the two limits.

! Issues that might be mentioned, that fall outside the immediate scope of this model, arise when large deductibles
eliminate, say, the basic layer (suggesting that, for purposes of this analysis, they should be excluded from the analysis)

or when upper layer costs are effectively specified by an specific excess of loss reinsurance contract.
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Additional aspects of the algorithm are needed to resolve common issues. Hence, they are
covered as well. For example, if credibility is used, it is important to reflect all claims that contribute
to an ILF layer but only those claims that contribute to an ILF layer. Further, since the ILFs arising
from a credibility process may be inconsistent, a process to correct the inconsistencies is sometimes
needed. Similarly, an approach for best estimate credibility rather than classical credibility is needed

to provide a full algorithm to deal with most increased limits ratemaking situations.

The organization of this paper is as follows: first, the key features of the algorithm will be listed,
then the reasoning behind each feature will be presented, with a comprehensive example showing how

each works in practice.

2. THE KEY FEATURES OF THE ALGORITHM
2.1 ALIST OF THE KEY FEATURES
There are six major aspects of the scheme that are discussed within the paper:

1) Rather than computing the ILFs directly from data capped at the various limits,
compute the layers separately, and combine them to create the ILFs.

2) Offset policy limit truncation by applying adjustments for the ratio of the policies that
cover each layer to all the policies sold;

3) Credibility weight the layer factors (layer relativities to the basic limit), not the ground-
up ILFs;

4) When you count the claims for credibility, count all the claims that pass into or through
each layer, not just those that have a final value in the layer;

5) Replace inconsistent values (that fail the “Miccolis test’) in the higher layers with
interpolated or extrapolated values computed by interpolation/extrapolation along a
Pareto severity curve’; and

6) To improve the accuracy, consider using a best estimate credibility process.

When circumstances suggest it, some issues may be combined in some sections. The specific items
covered in each section are included in the title.

Sample calculations accompany the exposition. The data in Table 1 will be used. It is itself an
example of the type of raw data summary that should be reasonably possible to produce from an
insurer’s statistical system.

% Per Robert Miccolis’ 1977 papet.
? Using the procedure in Boor 2014.
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Note that the rationale or formula for each item is shown below each column number, although in

this case everything is input data. Note also that items of a given type are grouped by vertical lines.
Those conventions will continue throughout this article.

Table 1: Raw Data

Experience Data Other Data
(1) (2) (3) (4) (5) (6)
Data Data Data Data Data Data
Number of Claims Aggregate
Insureds (Exposures) in Layer Ground-Up
(or Premium) Ending Cost of Those | Current Benchmark
Limit at This Limit at Limit Claims ILF ILF
$250,000 100 200 $40,000,000 1.00 1.00
500,000 200 40 15,000,000 1.60 1.90
1,000,000 300 15 10,500,000 2.50 3.60
2,000,000 100 3 4,200,000 3.50 4.00
5,000,000 50 2 7,000,000 4.00 5.00
Total 750 260 $76,700,000

2.2 COMPUTING THE LOSSES BY LAYER (Items 1 and 2 above)

As mentioned earlier, when the policies in a dataset have different limits of liability, the losses in
the upper layers are not directly comparable to the losses in the lower layers. For example, if only
half the policies have limits above $250,000, then the losses excess of $250,000 should be half * (or
less for higher limits) what the cost would be if policy limits were not an issue. If only two thirds of
those with policy limits of $250,000 or more have policy limits over $500,000, then of course the
losses above $500,000 come from two thirds as many policies as those in the $250,000 to $500,000
layer. Taking it one step further, they would be two thirds of one half (one third---or less) what they
would be if they were not “truncated” by lower policy limits of either $250,000 or $500,000 on many
policies. Thus, there are strong reasons not to begin by capping the unadjusted losses.

The key is to look at the losses by layers, and correct for the different levels of policies (or other
exposure units) by layer. So, one would have sets of losses that are adjusted so that they reflect the
losses one would observe if the limit had the same number of policies, etc. as the lowest limit.

The first step is to compute the losses in each layer. For example, if a product offers liability
limits with increasing values of $A, $B, $C, or $D, then

* As it turns out maybe less in dollars, considering the truncation in the succeeding layers.
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e The first layer “$A” is covered by all the policies, so all the losses from all the policies
that amount to $A or less are included. All the claims, whether their size is $A or above
are included. However, the amount of each is of course capped at $A.

e The second layer from $A to $B, is an intermediate layer. Only claims from policies with
limits of $B, $C, or $D potentially fall into this layer. The sizes of each of the claims
must be at least $A, or they would not be in this layer. So, to isolate the portion that is in
this layer, one would subtract $A from each claim size. Lastly, the excess amounts that
result would be capped at $B-$A to reflect the “length” of the layer, and the results
aggregated to produce the total losses in the band from $A to $B.

¢ Only claims from policies with limits of $C or $D fall into the next intermediate layer
(from $C to $D). A similar process is employed here.

e 3D is the topmost limit layer. For each claim over $C in size, one would subtract $C
from the loss, to place it in the layer, and the results would be aggregated. Presumably’
no loss is larger than the limit §D.

Once the aggregate loss dollars in each layer are computed, one must recognize that large claims
(above the policy limit) on policies with lower policy limits are truncated below the limit---at their
lower policy limit. Per the policy conditions, the losses in each layer must come from policies with
limits equal to the top of the layer or higher. Any court judgments against the insured that are high
enough to reach to the next higher layer are “censored” (essentially eliminated from the data) unless
the policy has coverage for the higher limit.

That creates inconsistent exposures among the various limits. Logically, if half the policies (or
premiums or some other exposure units) are written at a limit of $A, then the losses in the layer
between $A and $B were generated by only half the exposures as those capped at $A. Therefore, to
make the losses in the layer between $A and $B comparable to the base layer, one must multiply the
computed losses in the layer by the ratio of the exposure passing in or through the base layer (§A) to
the exposure passing in or through this second layer (limits of $B, $§C, or §D). Of course, since all
policies have a limit of at least $A, one should multiply the computed loss in the second layer by a
“basic limits equivalence factor” or “BLEF”. That factor would be computed by dividing the total
exposures in the data (limits of $A or higher) to the exposures with limits of $B or higher. Similarly,
one would multiply the losses computed for the layer from $B to $C by the ratio of the total
exposure units to those with limits of $C or $D. and for the layer between $C and $D, one would
use a similar ratio with the number of exposure units with a limit of $D in the denominator. In this
paper, policy counts are used for simplicity. However, something such as earned premiums at the
present rate level might create more accurate results. Table 2A illustrates the computation of the
BLEFs.

Before the BLEF can actually be applied, though, one must compute the losses by layer present in
the unadjusted data. To facilitate the explanation of the process, it is helpful to define a couple of
terms. First, one may call the groupings of ground-up losses (for example, all individual claims in

> In practice so called “extra-contractual obligations” may result in losses beyond policy limits, but those are beyond the
scope of this discussion’

6 The author recognizes that the basic limit is not always the lowest limit in the data. If it preferred, one may think of
this as the “lowest limit equivalence factor”. The case where the basic limit is not the lowest limit receives little focus in

this paper because, although the same principles hold, it distracts from the key issues in the paper.
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the data costing between $250,000 and $500,000) “size groups”. Then the portions of individual
claims, of whatever size group, that enter or exceed a given range are said to fall in that “layer”. For
example, on a $510,000 claim and $400,000 claim the portions in the $250,000 excess of $250,000
layer (the layer between $250,000 and $500,000) are $250,000 and $150,000, respectively. The total
losses in the layer are the sum of all those claim-by-claim amounts in the layer. Because each size
group includes “ground up” claims costs (including those in all the lower layers), the costs in each
layer will not equal the costs in the corresponding size group. Generally, the costs will be shifted to
the lower layers, as is proper.

Table 2A: Calculation of Basic Limits Adjustment Factors

(1) (2) (3) (4)
Table 1 c.2 Tablelc.2 Sum (2) [Total (2)]/(3)
+[All (2) Following]
Number of Number of
Insureds at This Limit Correction for
(Exposures) at This or Limits Truncation
Limit at This Limit Higher Limit “BLEF”
$250,000 100 750 1.00
500,000 200 650 1.15
1,000,000 300 450 1.67
2,000,000 100 150 5.00
5,000,000 50 50 15.00
Total 750

An example involving multiple layers starts with a total amount of $813,000. So, it is within the
$500,000 to $1,000,000 size group. Then it generates the full $250,000 in the basic limit layer; a full
$250,000 second layer ($250,000 excess $250,000, or from $250,000 to $500,000) loss; and $313,000
within the $500,000 excess $500,000 layer. The claims costs reach their total there, where the claim’s
cost ends. Further, since this loss falls in the band ending in $1,000,000, it is the equivalent of 1.67
losses per the BLEF.

The procedure for estimating the costs in each layer in Table 2B begins with total number of claims
ending within each size group, and the total cost of those claims. For each layer below the size
group, all the claims in the size group will exhaust the entire length of the layer. So, in each layer
below the size group, one computes the aggregate cost of the layer by multiplying the number of
claims in the size group by the length of the layer. That propetly assigns each group’s costs to the
lower layers.

However, that does not cover the portion of the size group’s claims that fall in the layer matching
the size group. Since those claims do not fill their entire layer, their cost in the layer will not equal
the full size of the layer, and the cost in the layer will likely vary from claim to claim. Thankfully a
fairly simple process is available to compute the cost within that layer. The total aggregate cost for
all the claims in this size group in all the layers must still equal the total cost of the claims in the size
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group. So, one may simply subtract all the lower layer costs associated with this size group from the
overall total for the size group to obtain the costs in the last, highest layer.

Now, all the losses in each layer must be added together to get the total unadjusted losses by layer.
As mentioned previously, though, these are affected by policy limits truncation. As a last step, the
BLEF is multiplied by the losses in each layer to obtain the final BLEF-adjusted losses. These are
the layer losses that will be used in computing the layer factors and consequently computing the
ILFs.

Now that the basic information is prepared, the next step is to complete the calculation of the
experience-based ILFs using the layer costs in Table 2C. To relate the costs of the various layers to
those of the basic limit, and produce the layer factors, one need only divide the total losses in the
gray band at the bottom of Table 2B by the corresponding losses at the basic limit’. However, these
are merely the costs of the individual layers. To provide ILFs, representing all the losses up to a
limit, one must sum all the factors up to and including the layer at the top limit (as is done in column
(6) below). This chart also includes a basic Miccolis test, as mentioned earlier. Column (5) shows a
rate on line (per limit of coverage) for just the losses in each layer. The rates/relative costs must
always decrease from lower limit to higher limit. Since this is constructed from actual loss data, it is
inevitable that the results pass the test.

" If there are limits below the basic limit, one need only tentatively treat the lowest limit as the basic limit. Then, one
would divide each tentative ILF by the tentative ILF of the basic limit so as to rebalance the factors. Then, the final

basic limit ILF will be unity (1.00) and the ILFs proportional to that.
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. Table 2B: Computation of Loss by Layer and Correction for Policy Limits Truncation

Part 1- Inputs

(1)

(2)

(3)

(4)

(5)

(1) (1) Table 1c.3 Table 2A c.4 Table 0c.4
-[previous(1)]
Claims Ground-up
in Layer Cost of Claims
Upper Layer Ending Ending in
Limit Length at Limit BLEF Layer
$250,000 $250,000 200 1.00 $40,000,000
500,000 250,000 40 1.15 15,000,000
1,000,000 500,000 15 1.67 10,500,000
2,000,000 1,000,000 3 5.00 4,200,000
5,000,000 3,000,000 2 15.00 7,000,000
Total 260 $76,700,000
Part 2 - Determination of Truncation-Correction Loses Passing into Each Layer
(6) (7) (8) (9) (10) (11)
(1) $250K*(3) $250K*(3) $500K*(3) $1M*(3) $3M*(3)
Basic Limit Basic Limit Basic Limit Basic Limit Basic Limit
Equivalent Cost Equivalent Cost Equivalent Cost Equivalent Cost Equivalent Cost
Upper of 250 X0 Layer  of 250 X250 Layer  of 500 X500 Layer  of 1000 X1000 Layer  of 3000 X2000 Layer
Limit Claims * Claims* Claims* Claims * Claims*
$250,000 $40,000,000 SO S0 SO SO
500,000 10,000,000 5,000,000 0 0 0
1,000,000 3,750,000 3,750,000 3,000,000 0 0
2,000,000 750,000 750,000 1,500,000 1,200,000 0
5,000,000 500,000 500,000 1,000,000 2,000,000 3,000,000
Total
Pre-Adjust $55,000,000 $10,000,000 $5,500,000 $3,200,000 $3,000,000
BLEF 1.00 1.15 1.67 5.00 15.00
BLEF Adjusted Losses by Layer
Total $55,000,000 $11,538,462 $9,166,667 $16,000,000 $45,000,000

* The diagonal elements in (7)-(11) were computed as the adjusted (multiplied by item (4)) losses in
column (5), minus the sum of the losses in the in the columns to the left within each row.

As one may see, this concludes with the final experience-based ILFs. The next steps involve

applying credibility and trending to the results of the above process.
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Table 2C: Final Computation of Experience-Based ILFs (with Miccolis Test)

(1) (2) (3) (4) (5) (6)
Table 1c.2 Table 2Bc. 2 Totals at (3)/ 1M *(4)/(2) Cumulative
Bottom of [(3) for 250K] Sum of (4)
Table 2B
c.(7),(8),(9),(10),(11) Experience
Based
Basic Limit Experience (Miccolis) Increased
Upper Layer Equivalent Cost Based Relative Cost Limits Factors
Limit Length Total Loss Layer Factors per Layer Size (ILFs)
$250,000 $250,000 $55,000,000 1.00 4.000 1.00
500,000 250,000 11,538,462 0.21 0.839 1.21
1,000,000 500,000 9,166,667 0.17 0.333 1.38
2,000,000 1,000,000 16,000,000 0.29 0.291 1.67
5,000,000 3,000,000 45,000,000 0.82 0.273 2.49
(pass)
Total $136,705,128

2.3 CLASSICAL CREDIBILITY BY LAYER (Items 3 and 4 above)

There are two key concerns when classical credibility is used in increased limits ratemaking. As
stated earlier, the credibility process should apply to the layer factors, not the ILFs. Also, since
classical credibility revolves around claim counts, one should take care to count the number of
claims correctly.

The composition of the ILFs, as a mixture of the basic layer costs, the first excess layer costs, the
second excess layer costs, etc. is what necessitates credibility weighting layers. Say, for example, that
the $500,000 experience-based ILF had a credibility of 60%. Then, in recognition of the lesser
claims above $500,000, the $1,000,000 experience-based ILF was assigned a credibility of 40%.
While that may superficially seem proper, note that the losses up to $500,000 limit are also part of
the data used to compute the $1,000,000 limit. In one situation, they have 60% credibility, but in the
second they only have 40%. This logical inconsistency requires a solution. The most
straightforward way is to credibility weight the individual layer factors rather than the ILFs. That
way, each subject of credibility is treated separately from the others.

The other aspect of credibility is the calculation of the actual credibility values. Due to potential
technical complexity, this paper will not deal with how to set a full credibility standard or determine
the expected number of claim counts in each layer. Rather it will assume some full credibility
standard and will use the actual claim counts rather than expected numbers of claims. That means
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that the credibility of each experience-based layer factor, using classical credibility, will be the square
root of the result of dividing the number of claims used to compute the factor by the full credibility
standard. So, the next step is determining exactly how many claims are present in the data used to
compute each layer.

It is tempting to simply use the number of claims in the corresponding size group. But that would
ignore the number of claims that simply pass through the layer, contributing cost information as
they do. In fact, all the claims from higher layers should be included in the claim counts of the
layers below them. For example, consider the $250,000 excess of $250,000 layer. The claims in the
$500,000 size group are part of it. But, the claims in the $1,000,000 size group also pass through
that lower layer (at $250,000 per claim of loss). Similarly, the claims in the $2,000,000 size group,
and all higher size bands, need to have their claims included in the claim count for the $250,000
excess $250,000 layer. As a general principle, the number of claims for credibility of a layer should
count those in the matching size group plus all those in higher size groups.

Several tables are needed to illustrate the classical credibility process for layer factors. Since the
credibility weighting is performed by layer, the benchmark layer factors used as input are computed

in Table 3A.

Table 3A: Calculation of Benchmark Layer Factors -With Miccolis Test

(1) (2) (3) (4) (5)
Table1lc.1 Table1c.1 Table1c.6 (3)-[previous (3)] 1M*(4)/((2)-(1))
(Offset)
(Miccolis)
Benchmark Relative Cost
Bottom Top of Benchmark Layer per Layer Size
of Layer Layer ILF Factors in Benchmark
S0 $250,000 1.00 1.00 4.00
250,000 500,000 1.90 0.90 3.60
500,000 1,000,000 3.60 1.70 3.40
1,000,000 2,000,000 4.00 0.40 0.40
2,000,000 5,000,000 5.00 1.00 0.33
(pass)

Now that the values for the complement are determined, the counts are summed from above in
Table 3B to obtain the counts used in computing the credibilities.
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Table 3B: Counts Used in Computing Layer Factors for Classical Credibility

(1) (2) (3) (4)
Table1c.1 Table1c.1 Table 1c.3 (3)+[(3) Above]
(Offset)
Claims Number of
in Layer Claims at or Above
Bottom Top of Ending Size Layer
of Layer Layer at Limit for Credibility
S0 $250,000 200 260
250,000 500,000 40 60
500,000 1,000,000 15 20
1,000,000 2,000,000 3
2,000,000 5,000,000

At this point, all the input needed to perform the classical credibility process is available. The next
step is to simply execute the classical credibility procedure. In this case, a full credibility standard® of
683 claims is used. One may follow the calculations in Table 3C, which uses the number of claims
used in pricing each layer from Table 3B, the experience-based layer factors from Table 2C, and the
benchmark layer factors from Table 3A.

8 That is not expressed to be optimal or more proper than any other standard. The purpose here is just to illustrate

how the calculations flow.
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Table 3C: Credibility Weighted ILFs from Classical Credibility

Part 1-Credibility Calculation and Input Data

(1)

(2)

(3)

(4)

(5)

(6)

Tablelc.l Tablelc.l Table 3B c.4 ((3)/683)7.5 Table 2Cc.4 Table 3A c.4
(Offset)
Classical Experience Benchmark
Bottom Top of Claims Passing Credibility Based Layer
of Layer Layer Into This Layer for Layer Layer Factors Factors
) $250,000 260 62% 1.00 1.00
250,000 500,000 60 30% 0.21 0.90
500,000 1,000,000 20 17% 0.17 1.70
1,000,000 2,000,000 5 9% 0.29 0.40
2,000,000 5,000,000 2 5% 0.82 1.00
Part 2 - Result of Classical Credibility and Miccolis Test
(7) (8) (9) (10) (11)
Table0c.1 TableOc.1 (4)*(5) 1M*(9) Sum from top of
(Offset) +[1.0-(4)]*(6) /((2)-(1)) (9)
Credibility Wtd (Miccolis) Credibility
Bottom Top of Layer Relative Cost Adjusted
of Layer Layer Factor per Layer Size ILF
S0 $250,000 1.00 4.00 1.00
250,000 500,000 0.70 2.78 1.70
500,000 1,000,000 1.44 2.88 3.13
1,000,000 2,000,000 0.39 0.39 3.52
2,000,000 5,000,000 0.99 0.33 4.51
(fail)-in gray

Unfortunately, even when the input is two sets of ILFs that pass the Miccolis test, their credibility
weighted combination may not pass it. The area in gray in Table 3C illustrates how that can happen.
Nevertheless, this example does illustrate the proper application of classical credibility in the ILF
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estimation process. A separate process, shown in the next section, is needed to resolve any Miccolis
test discrepancies’ that arise.

2.4 FIXING INCONSISTENCIES BY USING INTERPOLATION ALONG A CURVE
(Item 5 above)

As the previous example shows, otherwise actuarially proper calculations of ILFs sometimes give
rise to Miccolis test inconsistencies. Therefore, having a method ready to resolve such problems can
be helpful. Interpolation along a curve (from Boor 2014) is the core of such a method. A curve can
be fit to all the ILFs (not layer factors, the fit to the ILFs is more straightforward) except the
problem factors that need to be replaced. Then, that curve is the basis for replacement for the
problem point, using interpolation along the curve. Of course, the curve usually will not match all
the data points (ILFs) exactly. However, interpolation along the curve'” alters the curve so that it
matches the data points exactly. So, if the value on the curve f at a point ¢ between a and b is f(c)=
t(a) + x%]|f(b)-f(a)], or f(c) is x% of the way from f(a) to f(b); then the ILF estimate at ¢ would be
ILF(a)+x%[ILF(b)-ILF(a)]. The table on the next page shows the approach in practice, starting
from the results of Table 3C.

The process involves two stages. First, the increased limits curve produced by a Pareto distribution
is fit to all the ILFs but the one associated with the layer factor that failed the Miccolis test. The
curve formula is shown, but of course the two parameters of the curve must be chosen. To that
end, a least squares error method is used. The squared differences between the values from the
curve and the actual values are computed in column (5) of Table 4A, with the total of the column in
dark gray. Then, the solver routine in the spreadsheet software identifies the alpha and truncation
point'' that generate the least squared error between the actual and fitted values. Once the cutve is
fit, both the curve values and the actual ILFs for the layers ending at $500,000 and $2,000,000, with
the problem $1,000,000 limit in between are all available. The fitted curve provides a value of 2.407
for the $1,000,000 limit. Since the fit is not exact, using the fitted value can sometimes still create a
failure of the Miccolis test or other inconsistency, so interpolation along the curve is used. Following
the formula shown at the bottom of the table, the Pareto-based curve values at $500,000, $1,000,000
and $2,000,000 are used in conjunction with the actual values at $500,000 and $2,000,000 to estimate
a value at the $1,000,000 limit (2.54) that is consistent with the values around it.

? To explicitly discuss the issue, although the calculation of classical credibility using layers may produce results that fail a

Miccolis test, it would be expected to do so less often than when credibility is applied to the entire ILF.
10 An extensive explanation of interpolation along the curve is not included here. For a more detailed discussion ©7¢

may review the article.

' Tn this case, it was necessary to cap the truncation point at $200,000 to keep it reasonably below the lowest limit
($250,000).
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Table 4A: Extrapolation to Replace Inconsistent ILFs from Classical Credibility Analysis

Solver
Setup
Alpha 0.7787 Lt Gray Values Solved
Truncation Pt. 200,000 to Minimize Dark Gray
$200K is upper restriction]
(1) (2) (3) (4) (5) (6)
Tablelc.l Tablelc.d Table 3Cc.11 Hokk ((3)-(4))~2 (3) and
(Offset) see note
* % % %
Classical below
Credibility
Bottom Top of Weighted Fitted Squared Revised
of Layer Layer ILFs Pareto Fit Error ILFs
SO $250,000 1.00 1.00
250,000 500,000 1.70 1.641 0.00301 1.70
500,000 1,000,000 2.387 2.54
1,000,000 2,000,000 3.52 3.258 0.07072 3.52
2,000,000 5,000,000 4,51 4.634 0.01440 4.51
Total Squared Error 0.08813
$500,000  $1,000,000 *Ex%).54 2.387
Notes: *** Fitted Pareto values are

{Alpha - [(Truncation/[Column (2)])*(Alpha-1.0)]} / {Alpha - [(Truncation/250,000)*(Alpha-1.0)]}
"**** Value per Interpolation Along the Curve is
1.70 + (3.52-1.70)*(2.387-1.641)/(3.258-1.641)
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The interpolated value appears to be reasonable. But, it makes sense to recheck the Miccolis test,
per Table 4B following.

Table 4B: Miccolis Test After Problem ILF Corrected by Interpolation

(1) (2) (3) (4) (5)
Tablelc.l  Tablelc.2 | Table 4Ac.6 (3) S1IM*(4)/((2)-(2))
(Offset) -[previous(3)]
Layer (Miccolis)
Bottom Top of Revised Factors Relative Cost
of Layer Layer ILFs in ILFs per Layer Size
S0 $250,000 1.00 1.00 4.00
250,000 500,000 1.70 0.70 2.78
500,000 1,000,000 2.54 0.84 1.69
1,000,000 2,000,000 3.52 0.98 0.98
2,000,000 5,000,000 4.51 0.99 0.33
(pass)

As one may see, the correction using interpolation along the curve eliminates the Miccolis test
inconsistency. One may also note that, although when very disparate sets of ILFs are used in
classical credibility, there is a tendency to create Miccolis test failures, Miccolis test failures may
occur in many other contexts.

2.5 BEST ESTIMATE CREDIBILITY FOR INCREASED LIMITS (BY LAYER) (Item
6 above)

Along with the presentation of classical credibility for ILFs, it makes sense to introduce an
approach to best estimate credibility for the layer factors. So, in addition to often-stable ILF
estimates produced by classical credibility, there will be an option for creating estimates that come as
close as practicable to the true underlying loss costs in the excess layers.

The basic concept is not very complicated. Per Boor 1992, one need only estimate the expected
squared prediction error that each statistic (the empirical layer factor and the benchmark layer factor)
makes when estimating the true cost of the layer. Then, per Boor, the credibility of each statistic
equals the squared error of the other statistic, divided by the sum of the two squared errors.
Therefore, the credibility of each piece of data is proportional to how poorly the other item predicts
the losses.

Estimating the expected squared error the benchmark factors make when predicting the layer
costs involves a fairly simple calculation. Of course, the benchmark layer factors are not random,
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but the true, unknown, layer costs are. Further, this is a process of approximation, given the
information that is available. So, the empirical layer factors may be used as a proxy for the true
underlying layer factors. So, the squared differences between the benchmark layer factors and
empirical factors are used to estimate the expected squared estimation errors made the benchmark
layer factors. For another estimate of the estimation errors made by the benchmark layer factors one
may also compare the benchmark layer factors to the layer factors that are currently being used'”.
Since the new empirical data may sometimes be very thin in the upper layers, this will yield a more
reliable result in some cases, especially where the empirical data is thin.

The calculations are shown in Table 5A. Recognizing that the experience data in the upper layers
may be limited, the most logical estimate of the benchmark squared prediction error for this class of
data is made using both those indicators.

The expected squared error of the experience-based layer factors requires more work. The key
involves the so-called “collective risk” model. As noted in Dean and Mahler 2001, when one draws a
random number (N) of independent losses( §;’s) from a single severity distribution, the variance of
that aggregate distribution is Mean(n) X Variance(S)+Vatiance(n) XMean?(S). Then, in the absence
of any other evidence, it is usually logical to assume that all the loss occurrences are completely
independent. Thus, the counts would follow a Poisson distribution with expected value of, say ‘N’.
Under those assumptions, the variance of the aggregate distribution is NE[S?]. That formula will
be the basis for determining the process variance of the empirical layer factors.

Just as with the prediction error made by the benchmark, a workable “basic arithmetic” estimate
is presented rather than a more complex calculation. The first step is to calculate this “process
variance” for each layer when the BLEF correction is excluded from the analysis.

Then, to define a couple of values for a given layer, n will be the number of claims that passed
through or stopped in the layer, and k the number of those that passed all the way through
(exceeded the limit of the layer). Of course, one must calculate those two values. In the pre-BLEF
context of the calculations, the values are computed using the actual, unadjusted by BLEF, counts of
the number of claims that passed all the way through the layer, and the count of those that stopped
within the layer. Once those are determined, one must compute the average squared loss (within the
layer) for each type. It should be clear that every claim that passes all the way through the layer
generates a cost in the layer equal to the full length of the layer. Hence, §2 will be the square of the
layer length for those claims. In the spirit of estimation, each claim that stopped or ended within the
layer may be assumed to be half the layer length. So, for the claims that end in the layer, $2 will be
one-fourth the square of the layer length. Thus, for the m historic claims that passed all the way
through the layer, and the k claims whose total cost ended in the layer, the vatiance of the aggregate

costs in the layer is estimated by (1 + %)X (the square of the layer length). Per the collective risk

model, that estimates the process variance associated with the actual claims, as an estimate of the
pre-BLEF layer cost.

12 For a related analysis, one may review Marcus 2010.
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Table 5A: Estimation of Squared Errors from Benchmark Layer Factors

Part 1 - Experience, Current and Benchmark Layer Factors
(1) (2) (3) (4) (5) (6)
Tablelc.l Tablelc.l | Table2Cc.4 Table 1 c.5 (4) Table 3A c.4
(Offset) -[previous(4)]
Experience Current Benchmark
Bottom Top of Based Current Layer Layer
of Layer Layer Layer Factors ILF Factors Factors
S0 $250,000 1.00 1.00 1.00 1.00
250,000 500,000 0.21 1.60 0.60 0.90
500,000 1,000,000 0.17 2.50 0.90 1.70
1,000,000 2,000,000 0.29 3.50 1.00 0.40
2,000,000 5,000,000 0.82 4.00 0.50 1.00
Part 2 -Estimation of Squared Error of Benchmark
(7) (8) (9) (10) (11)
Tablelc.l Tablelc.l [(3)-(6)]"2 [(5)-(6)]*2 (9),(10)
(Offset) selection
Squared Squared
Benchmark Benchmark Selected
Errors vs. Errors vs. Benchmark
Bottom Top of Experience Current Error
of Layer Layer Factors Factors Parameter
S0 $250,000 - - -
250,000 500,000 0.476 0.090 0.100
500,000 1,000,000 2.351 0.640 0.800
1,000,000 2,000,000 0.012 0.360 0.200
2,000,000 5,000,000 0.033 0.250 0.200

The first step is to compute the number of historical claims that passed all the way through or
“exceeded” each layer, and the number of actual claims that ended up (or whose total cost lay) in
each layer. Both are done in Table 5C. Of course, the number of claims ending in the layer is simply
the counts from Table 1.
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. . . k
The next step is to compute the process variance of the actual data using the formula (k + Z)X

(the square of the layer length). Those calculations are performed in Table 5B. As a final step, the
impact of the BLEF that was part of the experience-based layer factor calculation in Table 2B, but
has not been considered so far, is applied. One may recall that because of policy limits truncation,
the raw claim counts that underlie the calculation differ from the BLEF-adjusted counts used in the
final computation of each layer factor. However, since the BLEF is simply a multiplier that applies
to the layer", one need only multiply the process vatiance of the actual data discussed above by the
BLEF?, per the standard variance formula involving a constant multiplier to a random variable.
That produces an estimate of the process variance of the full, inclusive of the BLEF, experience-
based estimates of the layer factors. The column 11 in Table 5B shows the final resulting process
variance values associated with the experience-based layer factors.

13 Recall that this calculation is done in the spirit of approximation. A possibly more exact estimate of the mix
between losses exceeding and ending up in various layers might be obtained with a different calculation. However in

this case the variance calculation seems to flow somewhat smoothly with the BLEF correction as the last step.
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Table 5B: Estimation of Process Variance in Experience-Based Layer Factors

Part 1 - Inputs for Poisson Collective Risk Model

(1)

(2)

(3)

(4)

(5)

(6)

Tablelc.l Tablelc.l Table 1¢.3 Sum of (3) [(2)-(2)172 {[(2)-(1)172}
(Offset) Above Limit /(4)
Actual Actual
Claims Claims
Bottom Top of Ending Exceeding Squared Squared
of Layer Layer In Layer Layer Layer Length Half-Length
S0 $250,000 200 60 6.25E+10 1.56E+10
250,000 500,000 40 20 6.25E+10 1.56E+10
500,000 1,000,000 15 5 2.50E+11 6.25E+10
1,000,000 2,000,000 3 2 1.00E+12 2.50E+11
2,000,000 5,000,000 2 9.00E+12 2.25E+12
Part 2 - Final Process Variance Estimate with All Corrections
(7) (8) (9) (10) (11)
Tablelc.l Tablelc.l (3)*(5) (9)*BLEFA~2 (10)/[(Basic
(Offset) +(4)*(6) {from Table 2A c.4} Limits Loss)*2]
{from Table 2C c.3}
Raw Data Process Variance Process
Process Variance of Total Losses Variance
Bottom Top of Estimate per in Experience of Layer Factor
of Layer Layer Collective Risk Layer Estimate
S0 $250,000 6.88E+12 6.88E+12 0.002
250,000 500,000 1.88E+12 2.50E+12 0.001
500,000 1,000,000 2.19E+12 6.08E+12 0.002
1,000,000 2,000,000 2.75E+12 6.88E+13 0.023
2,000,000 5,000,000 4.50E+12 1.01E+15 0.335

Now, the process variance and the expected squared error of the benchmark are available. Per the

Boor paper the best estimate credibility of the experience data will be the squared error of the

benchmark divided by the sum of the squared benchmark error and the process variance. The results

and the corresponding layer factors are shown in Table 5C. A Miccolis test is included as well.
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Table 5C: ILFs per Best Estimate Credibility

Part 1 - Credibilities and Inputs

(1)

(2)

(3)

(4)

(5)

(6)

(very slight fail)

Table1c.1 Table 1c.1 Table 2Cc.4 Table 5A c.11/ Table 3Ac.4 1.0-(4)
(Offset) [Table 5A c.11+
Table 5B c.11]
Experience Benchmark
Bottom Top of Based Credibility of Layer Complement
of Layer Layer Layer Factors Experience Factors of Credibility
S0 $250,000 1.00 100% 1.00 0%

250,000 500,000 0.21 99% 0.90 1%

500,000 1,000,000 0.17 100% 1.70 0%
1,000,000 2,000,000 0.29 90% 0.40 10%
2,000,000 5,000,000 0.82 37% 1.00 63%

Part 2 - Final Credibility Weighted Best Estimates
(7) (8) (9) (10) (11)
Table1c.1 Table1c.1 (3)*(4) 1M*(9)/[(2)-(2)] [Cumulative Sum
(Offset) +(5)*(6) of (9)]
(Miccolis)
Best Relative Cost Best
Bottom Top of Estimate per Layer Size Estimate
of Layer Layer of Layer of Z-Wtd ILF ILFs
S0 $250,000 1.00 4.00 1.00

250,000 500,000 0.22 0.86 1.22

500,000 1,000,000 0.17 0.34 1.39
1,000,000 2,000,000 0.30 0.3020 1.69
2,000,000 5,000,000 0.93 0.3107 2.62

In this case, the benchmark does not get much weight, primarily because it is so different from both
the raw experience-based layer factors and the current layer factors. However, in the upper layers
where there are smaller numbers of claims, it has substantial credibility. One may notice that this
process avoids radical shifts in the layer factors when the benchmark is changed. So, as long as at
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least one of the current and experience-based layer factors may be thought of as fairly representative
of the undetlying severity distribution, this produces truly optimal "“estimates of the II.Fs.

Also note that in this case there was only a minor third decimal place inconsistency in the Miccolis
test, for which the correction " is not included here. By assigning less weight to benchmarks with
greatly different layer factors, this approach reduces, but may not eliminate, the possibility of a
Miccolis test failure. In general, this method has much to commend it.

3. SUMMARY

The previous sections show how a layer-by-layer approach to computing ILFs leads to much more
appropriate calculations, a more logical approach to classical credibility, and even a best estimate
approach to credibility for ILF calculations. The reader is encouraged to use this for more reliable,
logically consistent calculations.
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An Actuarial Approach to Behavioral Ratemaking:
How Fair Rates Will Encourage Safer (and Slower) Driving

Michael C. Dubin, FCAS, FSA, MAAA, FCA

Abstract: Many people regularly drive above the posted speed limit. This type of behavior is risky and the cause
of much loss, including loss of life.! The World Health Organization has identified speeding? as a global health
issue.? The insurance industry can reduce this loss by implementing a new approach to ratemaking, behavioral
ratemaking.* The use of current driving speed data (and other telematics® data) to adjust insurance pricing on a
real-time basis can be used to encourage safer driving behavior and a safer society. In other words, in this model
a driver would pay real time for how they drive as they drive. Hereinafter “behavioral ratemaking” is used to
denote insurance rates that change in real time. This article discusses what behavioral ratemaking is and how it
would operate in this context. It discusses how behavioral rates could be developed, the advantages they present
and the logistical, technological and regulatory obstacles preventing their implementation.

WHAT IS BEHAVIORAL RATEMAKING?

Anyone who has taught a child to drive knows that the most important way to reduce the chance of
an accident is through safe driving behavior. Since the insurance industry pays for the financial
consequences of accidents and other insured events, it would seem they would and should be a
promoter of safety as well. “Hazard reduction incentives” are a consideration in designing any
insurance risk classification system.® However, traditional auto insurance ratemaking uses classification
systems that strive to place drivers into classes with homogenous risks based on factors such as age,
sex and marital status that do not directly measure risk and do not utilize driving behavior. When
behavioral risk is considered in traditional ratemaking, such as in claims or violations history, past
rather than current behavior is measured. Walters states, “One of the reasons for classifying is the
impossibility of knowing the risks true expected loss or accident likelihood.”” This is no longer as clear

as it was in 1981 as recent technology rapidly advances the potentials of ratemaking. With the

! While fatal accidents do not represent the majority of auto insurance claim costs, it is assumed throughout this paper
that behaviors reducing fatal accidents also reduce other types of accidents.

2 Both excess speeding (exceeding posted speed limit) and inappropriate speeding (driving at a speed unsuitable for the
prevalhng road condltlons)

on road traffic injury protection, World Health Organization, 2004.

* In this paper, behavioral ratemaking is applied to auto insurance. It can also be applied to other lines of insurance
including life and health.

> According to Wikipedia, “Telematics" is an interdisciplinary field that encompasses telecommunications, vehicular
technologies, road transportation, road safety, electrical engineering (sensors, instrumentation, wireless communications,
etc.), and computer science (multimedia, Internet, etc.).

¢ American Academy of Actuaries Committee on Risk Classification. Risk Classification Statement of Principles. 2014

7 Walters, Michael, Risk Classification Standards, 1981
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introduction of telematics data on driving behaviors, actuaries can now, in a way that was impossible
previously, transform ratemaking to utilize information that directly impacts risk. Behavioral
ratemaking adjusts premium based on controllable driving behavior immediately. Behavioral
ratemaking recognizes behavioral influence on the accident likelithood, and the potential severity of
the accident, at each moment of actual driving. The overall number of claims would not change -

except for the significant impact this measurement should have on actual behavior.

There are many ways to implement these rate adjustments — each with practical issues to be resolved.
In any case, they would be based on behaviors in real time. This is not the same as using historical
behaviors of the driver to adjust the rate. Behavioral ratemaking provides the insured with immediate

premium savings for continuous behavioral improvements.

HOW IS TECHNOLOGY EXPECTED TO TRANSFORM INSURANCE?

With advances in technology, futurists project many industries to be disrupted by innovation.
Insurance is no different. Insurtech refers to the use of technology innovations designed to squeeze
out savings and efficiency from the current insurance industry model, including using new streams of
data from internet-enabled devices to dynamically price premiums according to observed behavior.®
It has been over a decade since the invention of a telematics device to provide real time input to
insurers.” Insurtech ideas potentially impacting ratemaking include: increased use of predictive
modelling, using telematics or internet data to create improved ways to classify drivers, and mileage
based insurance. When the Insurtech sector first developed, many in Insurtech with little insurance
expertise believed that new technologies would be able to quickly disrupt the industry and allow for

new companies to quickly begin taking significant market share from the established ones.

Such disruption in the insurance market has not transpired. Currently, experts in Insurtech generally
agree that there is no standout disruptive technology that will significantly impact market shares of
the largest insurers any time soon and many insurtech startups still require help from the major
insurers." Industry executives have proclaimed that there is no technology on the hotizon that will

cause major disruptions in insurance company market shares in the near term.

Behavioral Ratemaking using real time telematics data will change this though. With the increased use
of artificial intelligence, smart cars and driving algorithms, insurance ratemaking will need to keep up.

Despite the slow start, it is clear that as technology advances new ideas are needed to align insurance

8 https:/ /www.investopedia.com/terms/i/insuttech.asp
9 http://www.freepatentsonline.com/6931309.htmI?highlicht=6064970. United States Patent 6931309. Motor vehicle

operating data collection and analysis. 2004. Innosurance, Inc.
10 https:/ /www.investopedia.com/terms/i/insurtech.asp
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better with the future of transportation and regulation.

WHY IS BEHAVIORAL RATEMAKING BENEFICIAL?

Behavior ratemaking has many benefits. Benefits to customers include immediate financial rewards
for driving safer; provides proven methods to drive safer; and allows individuals and fleet managers

to better manage driving risk.

Benefits to insurers using behavioral ratemaking include improved ratemaking which ties premiums
charged to actual behavior and risk associated with that behavior. Higher identified risks are charged
more, thereby generating increased revenue for high risk behaviors. There will be reduced insurer
losses to the extent safer driving practices caused by the application of behavioral rating process are
implemented. This leads to more accurate pricing as customers pay an amount more closely aligned

to driving risk.

Behavioral ratemaking benefits to society include reduced accident frequency and severity to the extent
some drivers adopt safer behaviors. Data collected over time showing how compliance with the posted
speed limits impacts losses will have the potential to assist with better, safer programming of self-

driving cars.

HOW IS BEHAVIORAL RATEMAKING DIFFERENT FROM
PREDICTIVE MODELLING?

It is well known in statistics that correlation does not imply causation. It is preferable if rating variables
are based on characteristics that are causal in nature."' Predictive modelling relies on finding attributes
that are correlated with accidents to make predictions, while behavioral ratemaking relies on attributes
that have been shown to cause or increase severity of accidents. Many companies, old and new, use
predictive modelling to find better and more complex rating variables and classification systems that
improve actuarial soundness. Predictive modelling is similar to traditional ratemaking in that historical
information is relied upon to determine current rates. While this does lead to lower rates for safer
drivers, the process takes time to design new pricing mechanisms and prove they work better. With
predictive modelling safer insureds are asked to trust the insurer that they will eventually be charged

lower premium for their safer driving.

There is a necessary delay between when the insurer confirms the safe driving and can reduce premium
for the insured. Also, it is not necessarily intuitive which new rating variables or classification systems

correlate with lower future costs, so it would be too risky for an insurance company to implement

1 Modlin and Woerner. Basic Ratemaking, Fifth Edition. 2016, p. 157
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changes based on predictive modeling in conjunction with telematics data without adequate proof that
the new rates are better. Combined with a pre-existing distrust of insurance companies, this delay in
recognition of premium savings resulting from safer driving reduces the ability of predictive modelling
based safe driving incentives to take hold. These companies hope that safer drivers will have enough
confidence in the possibility of future lower safe driver rates to choose the company before the new

rates are fully implemented.

Also, without clear correlations, predictive modeling alone may not find opportunities to improve
ratemaking as quickly as with the addition of behavioral ratemaking. This can be shown in the
following simplified example with realistic assumptions. Let’s assume older drivers are more risky than
younger drivers and that older drivers tend to drive slower than younger drivers. In this example, slow
driving would be correlated with higher risk when we look at the population as a whole. However, if
we look at either subgroup individually, we will likely find that slower driving is actually correlated
with lower risk. And for any individual in either group, risk can be reduced by driving slower. This is
the most important aspect that represents behavioral ratemaking’s untapped potential to improve

fairness.

Behavioral ratemaking is different in that drivers see immediate financial rewards for safe driving
behavior, in addition to additional benefits for continued improvement in driving behavior. Behavioral
ratemaking uses telematics data to make intuitive adjustments to traditional ratemaking techniques.
Speeding is but one example of a behavioral characteristic which may impact safety. For example, a
company would implement a large discount for drivers who agree to abide by the speed limit. In
addition to driving speed, the company would rely on telematics mapping data for location of insured
vehicles and corresponding speed limit. A surcharge would be assessed on each mile driven at a certain
number of miles per hour over the posted speed limit. An additional discount can also be immediately
provided for driving within a certain range of the speed limit. Important assumptions are that safer
drivers will be drawn to a rating system that rewards them for safer driving and that they will drive
more safely when rewarded. Since the starting point is traditional rates and rating plans, the use of
new intuitive rating variables will improve upon overall actuarial soundness. Traditional ratemaking
techniques can then be used to adjust rates and adjustments as new data comes in for the population

as a whole.

WHY WILL BEHAVIORAL PRICING BE DISRUPTIVE?

Once behavioral pricing takes off (with even a subset of insurance companies) adverse selection may
create difficulties for the remaining more traditional insurance companies to co-exist without

behavioral pricing. The effect could be similar to the introduction of nonsmoker/smoker pricing in
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the life insurance market. Once nonsmoker discounts were introduced by one company, they,
practically, needed to be introduced by all for similar reasons. As safer drivers self-select discounts for
their own safer driving, insurers using traditional pricing exclusively will be left with less safe drivers,
and higher accident frequency and claims costs. Drivers who do not modify driving behavior will self-
select the increasing costs of traditional insurance. There is also less risk to insurance companies using
behavioral pricing because riskier driving behavior will result in immediate rate surcharges and

therefore, increased revenue.

Regulations have always required fair rates by disallowing unfair discrimination. Regulators rely upon
actuaries to certify that rates are not unfairly discriminatory. The rating systems that developed in the
twentieth century, based primarily on uncontrollable factors such as location, age, gender and marital
status, were the fairest possible at the time. Once regulators and actuaries become comfortable with
rating factors more directly linked with hazard, it will become apparent that traditional rating plans

alone unfairly discriminate against safe drivers.

It is important to note that the business of insurance requires cross-subsidies. No rating mechanism
can accurately predict the exact cost of each insured. Actuarially sound rating reduces cross-subsidies.
There may also be an ethical limit as to how much cross-subsidies can be reduced. For example, in

health insurance it is unacceptable to classify risks based on pre-existing conditions.

Changing driving behavior will be disruptive to more than just insurance. Americans spend billions of
hours per year driving. As safety becomes more prominent in the mindset when getting behind the
wheel, many other industries are potentially disrupted by this potential shift (such as automobile

manufacturing, advertising, infrastructure design, law enforcement, etc.)"?

HOW CAN BEHAVIORAL PRICING TAKE HOLD?

In order for ratemaking changes to take hold in the automobile insurance industry, there are three
requirements which need to be addressed. These have not been adequately addressed by Insurtech

thus far, which is the reason for the slow start to disruption.

1. From a customer perspective new changes need to be associated with an immediate monetary
incentive. In other words, it needs to be cheaper for atleast the safer half of drivers. Otherwise,
customers will not move to the new system in a large scale. Would Uber have been able to
overcome regulatory challenges if it weren’t cheaper than traditional taxis?

2. From an actuarial perspective, telematics confirmation will be needed for the assumption that
customers who do sign on will exhibit safer driving behavior. The safer behavior will be due

12 Sharpin, Banerjee, Adriazola and Welle. The Need for (Safe) Speed: 4 Surprising Ways Slower Driving Creates Better

Cities, May 09, 2017, https://www.wri.org/blog/2017/05/need-safe-speed-4-surprising-ways-slower-driving-creates-
better-cities

Casualty Actuarial Society E-Forum, Winter 2020 5


https://www.wri.org/blog/2017/05/need-safe-speed-4-surprising-ways-slower-driving-creates-better-cities
https://www.wri.org/blog/2017/05/need-safe-speed-4-surprising-ways-slower-driving-creates-better-cities

An Actuarial Approach to Behavioral Ratemaking: How Fair Rates Will Enconrage Safer (and Slower) Driving

to both attracting safer drivers to begin with, and all drivers driving more safely after they sign

up.
3. Investors in behavioral pricing need assurances that customers signing on will have lower loss
costs and that rate adjustments can be quickly implemented.

Insurance in the US is regulated on a state by state basis. While statutory guidelines for rates are similar
among states, each state is responsible for determining and enforcing what is acceptable for its own
residents. Behavioral pricing should lead to rates that are more actuarially sound than traditional rates.
In order for behavioral pricing to take hold, insurance companies wishing to spearhead
implementation would need to collaborate with individual state regulators. Three advantages to
behavioral pricing over traditional pricing that should be important to regulators are: the incentivizing

of safety, reduced likelihood of unfair discrimination, and more accurate rating.

IMPROVING SAFETY

One way to enable meeting all three of the aforementioned requirements is to identify, encourage and
reward safe behavior. Doing so will reduce rates for policyholders while maintaining or improving

profitability for insurance investors and actuarial soundness of rates.

Consideration of insured behavior with respect to safety is an important component of actuarial
fairness that has not been adequately addressed in actuarial literature. Although the insurance industry
has done much to improve safety in many lines of insurance, safety is not necessarily viewed as having
a good financial impact for the insurance industry, either as a whole or by large insurance companies.
"You want safer cars. Safer cars mean lower insurance. Safer driving means lower insurance costs”,
said Warren Buffet" making this counterintuitive point. Regulators require actuarial determination
that rates are actuarially sound. Actuarial soundness means that the rate is just enough to provide for
all costs in the aggregate. Therefore, safer driving should mean lower revenues for the insurance

industry as a whole.

Large insurance companies project revenue by considering their own shares of insurance market
segments. Therefore, a disruptive drop in revenue for the industry, whether due to safety or anything
else, represents a risk to a large insurance company’s revenue. Although safety reduces costs for
insurance companies, the actuarial soundness requirement for rates implies no long-lasting loss ratio
improvements due to decreases in losses. Many large insurance companies had their roots as small
insurance companies that were able address to an underserved and safer subset of the market. An
example in the life insurance industry is The Phoenix Companies, which began as American

Temperance Life Insurance in 1851 and insured only those who abstained in alcohol."* An example

13 in an interview with Yahoo Finance on May 2, 2018
4 From Wikipedia entry for The Phoenix Companies
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in the property casualty insurance industry is GuideOne, which began in 1951 as Preferred Risk Mutual
Insurance Company, with the idea that non-drinkers would be in fewer accidents than those that did
drink.” As in the past, the opportunity presents itself today for a startup or small insurer to focus on
safer than average individuals. By using behavioral ratemaking, this company would also create

incentives for insureds to become safer.

With respect to improved safety, the insurance industry currently seems to be primarily concerned
about the impact of driverless cars. However, there is little evidence that driverless cars will be safer
than human drivers in the near term.'® In addition, the focus on the safety of driverless cars removes

energy from how safety can be improved through safer human driving behavior.

THE DIFFICULTY OF RELEARNING SAFER DRIVING BEHAVIORS

It is very difficult for an individual to relearn safe behavior.'” We cannot let that individual difficulty
blind us to the safer possibilities for society as a whole. It may be easier to for some individuals to
overcome opioid addiction than for others to correct some unsafe driving habits. Even if that is the
case, society as a whole can improve safety. For example, cigarette smoking has decreased dramatically
over the last fifty years. While it is very difficult for an individual to quit smoking, it was possible for
smoking to be reduced in society overall. Similar driving specific examples of safety improvements
that are difficult for the individual but possible for society as a whole are the increase in seat belt usage

and the decrease in drunk driving over the past few decades.

Seat belt use is a safe driving behavior that reduces mortality and injury severity after an accident.
Therefore, seat belt usage reduces insurance losses. It has been widely observed that seat beat use has
greatly increased over thirty years. A widespread survey, taken in 19 cities in 1982, observed 11 percent
seat belt use for drivers and front-seat passengers.'’ In 2009, seat belt use averaged 88 percent in the
30 States with primary seat belt laws.” Though not exactly apples-to-apples, this represents an eight-
fold increase, showing that the vast majority of drivers were ready, willing and able to take on this
safer driving behavior. While driving behavior can be very difficult for an individual to change, this

example provides evidence that the driving public is able to adopt additional safe driving behaviors.

15 From Wikipedia entry for GuideOne Insurance

16 Gosch, Susanna. Connect Differently: The Evolution of Automobile Technology and the Impact to Insurance. NAMIC
presentation, 2018.

17 James, Leon. University of Hawaii Student Reports on Driving Personality Makeovers.

18 Cummins, Koval, Cantu, Spratt. 2011. Do seat belts and air bags reduce mortality and injury severity after car accidents?
https://www.ncbi.nlm.nih.gov/pubmed/21720604

19 Williams and Wells, 2004. UNC Highway Safety Research Center, 2011, p. 2-4

20 Chen, Y. Y. & Ye, T. J. (2010, May). Seat belt use in 2009 — use rates in the states and territories. Traffic Safety Facts.
(Report No. DOT HS 811 324). Washington DC: National Highway Traffic Safety Administration. Available at
http://wwwnrd.nhtsa.dot.gov/Pubs/811324.pdf.
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Despite the empirical evidence that human driving behavior can become safer as a whole, it may still
be difficult to envision improved safety on a wide scale due to improving human driving behavior
alone. We do know change for safety is possible, and although it may be unprofitable for large
insurance companies that maintain the status quo, it is profitable for a new model of insurance

company. Improved safety is good for society.

INSURANCE PRICING WOULD INFLUENCE DRIVING BEHAVIOR

The question is not whether driving behavior can be improved, but whether insurance pricing can
encourage safe behavior. In order for all the benefits of behavioral pricing to be realized, it must be
true that some drivers can and will change their driving behaviors in response to their insurance price.
In the past, common actuarial wisdom was that it was not possible for an insurance pricing system to
encourage safe behavior as noted by Michael Walters, “Few drivers wear seat belts despite the life-
saving evidence, so the prospect of saving a few dollars of insurance surcharge certainly will not induce
a modification of driving behavior.”* Coincidentally, not too long after that paper was written, most
drivers began to consistently use seat belts. According to a Canadian survey, the majority of drivers
believe doubling speeding fines would reduce speeding.”” Immediate insurance surcharges that are
directly attributable to speeding are very similar financially to fines. This supports that increasing

insurance costs for speeding could reduce speeding.

The advent of telematics has enabled insurance pricing to induce the driving public to drive more
safely. In 1981, there was no way to reliably determine whether drivers used seat belts or to monitor
other driving behaviors, such as speed. This lack of reliable determination virtually eliminated the
possibility of insurers reflecting driving behavior in pricing. Telematics data is now available so that
the insurance company can determine driving behavior with great accuracy. Because of the availability
of reliably correct telematics data, the behavioral price differences can be substantial. Behavioral
pricing combined with the availability of telematics data can now provide the driver with minute by
minute updates on insurance pricing as compared with the annual updates of the past. By providing
continuous behavioral feedback impacting premium, drivers are enabled to consider premium when

choosing a driving behavior.

In order for insurance pricing to influence driving behavior, the pricing difference needs to be
significant to the insured. While driving slower saves fuel costs, the resulting savings do not seem to

be great enough to significantly influence driving speeds.

21 Walters, Michael, Risk Classification Standards, 1981

22 EKOS Research Associates. Driver attitude to speed and speed management: a quantitative and qualitative study
final report. Transport Canada, Report No. TP 14756 E
(2005)https:/ /www.tc.gc.ca/media/documents/roadsafety/TP14756 E.pdf
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In order to show that insurance pricing can encourage safe behavior, it is noted that a large part of
driving risk is during the daily commute to work. For many people, there are many commuting cost
options, including fuel efficiency, parking and use of public transportation. A daily difference in
insurance cost would likely impact commuting cost benefit analysis and influence driving behavior to

recognize a reduced insurance cost each day.

REVIEW OF SPEED AND OTHER TELEMATICS ATTRIBUTES

“Newtonian relationships between the fourth power of small increases or reductions in speed and
large increases or reductions in deaths state the case for speed control.”” The best choice of driving
attribute to be used for behavioral ratemaking is speed. As opposed to other attributes, such as
cornering, braking and acceleration, speed has several advantages including that it relates to the hazard.
According to Walters, attributes “should reasonably relate to the potential fot, or hazard of, loss.”*
Compared to the other attributes: speed is more commonly a direct cause of accidents® and speed is
likely correlated with other aggressive and risky driving behaviors such as assuring safe following

distance.?

A slower driver would be less likely to be tempted into a risky maneuver to pass an even
slower moving vehicle. Regardless of the cause of the accident, virtually every accident would have a
reduced cost if the initial speed were reduced and a better (slower) speed score would always be
associated with reduced hazard. Similarly, a worse (faster) speed score would almost always be
associated with increased hazard. A better cornering score is not always correlated with decreased risk

as crossing a yellow line at an intersection could improve the score but increase accident potential.

Some attributes for which it may seem reasonable to adjust the rate based on historical behaviors
would not be feasible for behavioral ratemaking. While “hard braking” can be used as part of an overall
analysis of safe driving, it does not directly relate to cost of risk. If a driver frequently brakes hard, the
driver may be exhibiting unsafe behaviors prior to the hard-braking. While a hard-braking surcharge
may reduce some unsafe behaviors, the hard-braking attribute does not work for behavioral
ratemaking. The hard braking itself is used by the driver for the purpose of reducing hazard and it
doesn’t make sense to charge the driver for the hard braking in the seconds before an accident that
reduced the cost, or to discourage the driver from hard braking to avoid an accident. Compared with
good speeding scores, good braking scores are not as clearly associated with safe driving and can be
associated increased accident probability. For example, rolling through rather than completely

stopping at a stop sign could improve braking score while increasing the chance of an accident.

23 Speed, road injury, and public health. Richter ED, Berman T, Friedman L., Ben-David G. Annu Rev Public Health.
2006;27:125-52. https://www.ncbi.nlm.nih.ecov/pubmed /16533112

24 Walters, Michael, Risk Classification Standards, 1981

25 Quick Facts 2016, NHTSA, October 2017 (Updated February 2018)

26 https://www.nhtsa.gov/risky-driving/speeding
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Conversely, a bad braking score could be the result of successfully avoiding an accident or making a
complete stop for a pedestrian in a crosswalk. Using a hard-braking attribute could increase risk if the
braking surcharge discourages drivers from hard braking when necessary to avoid an accident. The
braking attribute just does not make intuitive sense when used on a real time telematics data since
hard braking may be the result of trying to avoid or reduce the cost of an accident. Also, it wouldn’t
make sense to charge a driver for braking hard one second before an accident. What would make
sense is charging the driver for going too fast before the hard braking that led to the need for the

hard-braking evasive action in the first place.

Speed meets another criteria better than other attributes such as braking or cornering: it is easier to
measure. The attribute “should be susceptible to measurement by actual experience data.””” Drivers
already understand that speed relates to risk and are trained to objectively measure speed. The other

attributes would require additional training to show drivers how behavior impacts their score.

Other groups concerned with safety, such as law enforcement and the medical community, have
determined that slower speeds are safer. There has been no such determination for cornering or
braking. The public already understands that speeding causes insurance losses. According to a
Canadian study, about ninety percent of drivers believe driving over the speed limit increases the
chance of accidents, injuries and getting killed.” While there are certainly other behavioral factors
which may impact accident risk, the insurance industry should focus on speed as the first attribute to

use with behavioral ratemaking.

Data shows that speed increases costs of risk

Since the beginning of the automotive age, it has been known that increasing speed increases the cost
of driving risks. According to NHTSA, “For more than two decades, speeding has been involved in
approximately one-third of all motor vehicle fatalities.”” According to the NHTSA and NTSB,
speeding causes as many deaths as drunk driving.” Considering this statistic only includes accidents
where speed was actually recorded as the cause, speeding fatalities may be understated. Other accidents
where the initial speed exceeded the speed limit are not included. There is no way to determine how

many fatalities in these accidents could have been avoided had the initial speed not been excessive.

27 Walters, Michael, Risk Classification Standards, 1981

28 EKOS Research Associates. Driver attitude to speed and speed management: a quantitative and qualitative study —
final report. Transport Canada, Report No. TP 14756 E
(2005)https:/ /www.tc.gc.ca/media/documents/roadsafety/TP14756E.pdf

2 https:/ /www.nhtsa.gov/risky-driving/speeding

30 “Speeding kills about as many people each vear as drunken driving, NTSB warns”, USA Today, July 25, 2017
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Slower speeds reduce accident probability

“At lower speeds, drivers have a wider field of vision and are more likely to notice other road-users.””!

Before an accident occurs, something unexpected must happen within the minimum distance (this
could be defined as the distance travelled in two seconds, for example) needed by the driver to make
normal driving adjustments in speed and direction. When this happens, the driver will undertake
evasive action to reduce the probability of the accident and potential severity of the accident. The
smaller this distance is, the less likely it is for an unexpected event to occur within that distance. If the
initial speed is reduced, the minimum distance is proportionally smaller, so it is less likely for an event
requiring evasive action to occur. Therefore, a decrease in initial speed decreases accident frequency

at least proportionally.

According to Nilsson, speed has a greater than proportional impact on accident frequency.

2
Vi

A, = A

2 1

V1 or, the number of injury accidents after the change in speed (A2) equals the

number of accidents before the change (A1) multiplied by the new average speed (v2) divided by the
former average speed (v1), raised to the square power.32

Slower speeds reduce accident severity

Since kinetic energy is proportional to the square of velocity, it can be hypothesized that the cost of
damage caused by an accident is proportional to the square of speed at impact. This hypothesis is
borne out by studies.” While ethical experimental confirmation of how bodily injury costs relate to
speed of impact is not possible, it can also be hypothesized that bodily injury costs are also

proportional to the square of the speed.

How reduced speed impacts expected cost of accidents

Since total costs are frequency times severity, an X% reduction in speed may cause approximately
2X% to 3X% reduction in accident costs. This calculation does not consider how other safe driving
behaviors are likely correlated with slower driving, so more analysis is needed to conclude this
relationship. While there is a range of driving speeds, it is not uncommon for the average speed on a
highway segment to be 20% greater than the speed limit. In these cases, for example, a 20% reduction

in speed could cause a 20% decrease in probability of an accident and a 36%* reduction in severity

31 Sharpin, Banerjee, Adriazola and Welle. The Need for (Safe) Speed: 4 Surprising Ways Slower Driving Creates Better

Cities, May 09, 2017, https://www.wri.org/blog/2017/05/need-safe-speed-4-surprising-ways-slower-driving-creates-
better-cities

32 Nilsson, G. (2004) Traffic safety dimensions and the power model to describe the effect of speed on safety. Bulletin
221, Lund Institute of Technology, Lund.
https://ec.europa.cu/transport/road safety/specialist/knowledge/speed/speed is a central issue in road safety/spe
ed and accident risk en

33 Richards. 2010. Relationship between Speed and Risk of Fatal Injury: Pedestrians and Car Occupants
34100% — 80% " 2
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yielding a 49%" reduction in costs.

DRIVING ALGORITHMS: PROGRAMMING HUMANS VERSUS CARS

Programmers will need assistance from the actuarial profession to consider safety within the
automated driving algorithm. It would be a mistake to assume that automated driving algorithms will
reduce losses so significantly that actuarial pricing would not be needed. As with any new insurance
product, actuaries need to understand it to price and underwrite the insurance accurately. Accurate
insurance pricing will encourage safety in the design. Perhaps actuarial pricing programs can be written
to apply self-driving algorithms in model driving situations to assess how well adapted it is to avoid
and reduce severity of accidents.

“In the future, the actuary will be in the car.”*

With respect to driverless cars, programmers strive to
create driving algorithms that are at least as safe as a human driver. Automated algorithms will certainly
reduce some types of accidents such as distracted driving. As long as the driverless car is at least as
safe as a human driver, implementation will improve safety. Currently, incentive and responsibility to
significantly improve safety beyond human driving is lacking. There may be minimum requirements
to obtain and possess an “automated” driving license, but the best incentive for programmers to
produce safer algorithms would be to reduce insurance costs through behavioral ratemaking. With the

incentive of saving on the costs of insurance risk it would be possible to experiment with possible

behaviors to improve telematics attributes and safety.

Human drivers, too, are not primarily concerned with safety when deciding how they wish to drive.
As with any automation, programmers should be expected to program automated vehicles to drive
the way a human driver would drive. This is similar to an individual having the responsibility to decide
how to drive. In either case, it is the responsibility of the insurance industry to determine how much
to charge for insurance using the chosen driving behavior as an input. The difference with an

automated driving algorithm is that there are explicit decisions with respect to risk and safety.

There are clearly cases where humans are better than automation. Humans appear to be better at
determining where in the lane to drive®” and better at driving in bad weather.?® Futurists believe that
the insurance rating formula should be determinable based on the algorithm and placed within the

program to determine the insurance charges based on the algorithm and other factors such as time,

35100% - (100% — 20%) x (100% — 36%)

36 Quote from a programmer on the topic of how autonomous driving will impact insurance pricing at the second annual
smart driving car summit in Princeton, NJ in May of 2018.

37 Based on research by Insurance Institute for Highway Safety on vehicles with lane departure warning presented at CAS
Crash Course in Vehicle Technology and Driverless Cars. JULY 19, 2018

38 Bloomberg Business Week. Self-Driving Cars Can Handle Neither Rain nor Sleet nor Snow. September 17, 2018.
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location and mileage of operation. In order to encourage safer and less risky driving algorithms, the
insurance rating formula should consider driving behaviors of the algorithm. The programmers can

then consider adjustments to the driving algorithm in consideration of the insurance costs.

Individual human drivers also have driving algorithms. Their driving behaviors could theoretically be
reduced to a set of procedures to apply in all situations. Unlike automated driving algorithms, human
driving algorithms are unknowable. While human driving algorithms may be able to be closely
approximated based on observed driving behaviors in a great number (probably billions of miles
would be needed) of situations, they cannot be used directly to determine insurance costs. Due to this
complexity, the actuarial field may be a long way off from being able to create an insurance pricing
formula based on an automated driving algorithm, but in the meantime behavioral ratemaking is the
bridge to getting to that point. In addition to using behavioral ratemaking for human drivers, it can
also be used for automated vehicles as they become more mainstream. Either way, behavioral
ratemaking differentiates among various driving behaviors and safety characteristics. Actuarial

expertise is needed now to connect driving behaviors with risk and in even more so in the future.

While many seem to have an initial expectation that automated driving may reduce insurance losses
to near zero, automated driving will have losses for the foreseeable future. It may be many decades
before fully automated vehicles are on the road.”” In the meantime, there needs to be responsibility
for understanding the risk consequences. Actuaries are the best profession to ensure that the

automated driving algorithms of the future adequately consider insurance risks.

INFLUENCE ON TRAFFIC SAFETY AND LAW ENFORCEMENT

Since the beginning of the automotive age, society has created rules for the purpose of safety to reduce
the risks of driving. These rules include obeying traffic signals, speed limits, stop signs, and lane
markings. It is common knowledge that following driving rules reduces driving hazards. Traditionally,
traffic enforcement has been an important means of improving traffic safety. Many studies have
provided evidence of connections between the level of police enforcement and both driving behavior
and the number of traffic accidents.” Since insurance companies are largely impacted by these
financial costs, history shows insurers as being strong advocates of safe driving. Historically, insurance
companies had no way to determine how well drivers mind driving rules. Other than consideration of
traffic citations, there was no way to factor rule-following into the rating process. Most breaking of

driving rules does not result in a traffic citation. Reliable determination of rule breaking is now possible

3 https://www.nhtsa.gov/automated-vehicles/vision-safety. lynn.greenbauet.ctt@dot.gov (11 September 2017). "A
Vision for Safety: Advancing Automation for Safer Roads ". NHTSA

40 Stanojevic P, Jovanovic D, Lajunen T. Influence of traffic enforcement on the attitudes and behavior of drivers Accident;
analysis and prevention. 2013. Mar;52:29-38.
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with telematics data.

The general public has all seen drivers use devices to elude traffic cops such as radar detectors. In our
society, many view traffic cops as bad and that speeding should be accepted and tolerated. An
important role of government is to enable safe travel. The government sets driving rules such as speed
limits and should enforce those rules. It is possible that behavioral ratemaking will be better at
encouraging safe driving than traditional public services messages and law enforcement. Traffic
regulators may need to work with actuaries and other experts in insurance risk to determine the best

way to moderate insurance risk.

There are hundreds of thousands of traffic officers and other individuals dedicated to improving safety
through speed limit enforcement in this country. There are hundreds of millions of drivers who seem
to be more concerned about evading law enforcement than safety. There are only a few thousand
actuaries who can determine how driving behaviors should be considered when addressing actuarial

fairness to regulators.

HOW WILL BEHAVIORAL RATEMAKING ENABLE COMPANIES TO
IMPROVE FLEET SAFETY?

Businesses that use highways have exposure to driving risks that need to be carefully managed. OSHA
has published guidelines to help employers manage these risks.*' According to the Royal Society for
the Prevention of Accidents, “One of the most significant risks . . . is driving or riding at inappropriate
speeds on work-related journeys.”* Because driving behavior is difficult to change for any driver,
attempting to manage another driver’s behavior is difficult and could be offensive. We may have no
choice but to trust the driver to be safe. As an example, plan to politely ask your next cab driver to
drive within the speed limit. While this would be a perfectly reasonable request to manage our own
risk of bodily harm, you may find it to be a difficult discussion. Commercial vehicles taking various
levels of risk can be frequently observed. This risk directly translates to financial risk of the drivers’
employers. In the past, many employers had limited ability to address this risk until the driver was
involved in an accident and then, the only recourse may have been termination of the driver. Drivers
spent their workday out of sight of their employer, and, for example, there may be a temptation to

attend to non-work-related matters and to catch up on their deliveries by speeding.

Telematics is now increasing the ability of fleets to manage driving behavior. As there are many

business reasons other than insurance cost (better service to customers, risk to reputation, etc.) to

41 https:/ /www.osha.gov/Publications/motor vehicle guide.html
42 Driving  for  Work:  Safer  Speeds.  https://www.rospa.com/rospaweb/docs/advice-services/road-
safety/employers/work-safer-speed.pdf
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reduce driving hazards, companies can use telematics to better manage driving risk. In addition, large

self-insured companies can reduce insurance costs by making sure their drivers are driving safely.

For companies too small to self-insure, monetization of driving behavior improvement is extremely
uncertain in timing and amount. Behavioral ratemaking can create immediate savings for smaller fleet

managers if they encourage safe driving.

There is also the possibility that fleets that are successful in improving safety can bring other

companies drivers or even individual drivers into their program to pass on insurance savings.

POSSIBLE METHODS TO INSTANTANEOUSLY ADJUST RATES

Throughout this paper we talk about instantaneously adjusting insurance rates. However, it is not
entirely intuitive how this might take place since it has never been attempted with respect to US auto
insurance which is highly regulated. There may be current laws or regulations in some states that would
prohibit behavioral ratemaking, requiring changes to enable it. In other states, the introduction of a
behavioral ratemaking might stimulate new laws and regulations to better control and regulate it.
Similar with other uses of telematics data, may be privacy concerns.” This concern is reduced for
behavioral ratemaking because many states already allow the use of telematics data for insurance
pricing. Depending mainly on acceptability to regulators, and how to guarantee payment of surcharges,
some possibilities include:

e Include surcharges as part of a normal rate filing. As a somewhat simplistic example, certain

policies could have a $0.10 surcharge for every mile driven between 10 and 14 mph greater
than the speed limit.

e For assessable mutual insurance policies, include surcharges as assessments.

e Create a relationship between the insured and a non-insurance company risk bearing entity
that could change surcharges and take some financial responsibility for encourage safe driving
behaviors. This concept would not be dissimilar to professional employer organizations taking
some of the risk of their clients’ workers compensation and employee health insurance
benefits.

CONCLUSION

Speed has long been known to be one of the very most important driving safety factors and may be
the best behavioral ratemaking risk factor. An insurance scheme with increased rewards for driving
slower and more safely, that encourages implementation of safer driving practices, would be both

beneficial and disruptive.

In the last few years, Insurtech has spawned many ideas to transform insurance. Although there are

# Insurance Journal. April 10, 2017. Driver Privacy at Risk when Telematics Data Stored in the Cloud: Researchers
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many Insurtech initiatives to transform the auto insurance industry, most do not appear to be
disruptive any time soon. This new approach to ratemaking, Behavioral ratemaking, is different and
would be expected to cause disruption in the near term. The disruptions would be to not only the auto
insurance industry, but the impact would also affect traffic enforcement policies, road infrastructure
and car programming. Behavioral ratemaking will encourage safer driving and ultimately lead to safer

roads.

Behavioral ratemaking is intended to put the driving population on the path to continuous and
conscious relearning of safer driving skills. Complete transformation could be a long and difficult
process, but significant benefits would be expected almost immediately. Regardless of whether
transformation of driving occurs, behavioral ratemaking is an opportunity to create a successful
insurance enterprise built upon safety conscious drivers. Behavioral ratemaking will also assist fleet

management.

To move ahead with implementation, the industry needs to understand what is needed for an
Insurtech idea to transform ratemaking and how safety can be aligned with insurance company
financial goals. When insureds are encouraged to behave more safely, with improved behavior
confirmed through telematics data, this transformation will benefit society. Examples show that
insurance pricing can impact behavior. Actuarial ratemaking needs to be considered as part of

automated driving algorithm creation processes.

In order to implement behavioral ratemaking, a new method to modify insurance premium
instantaneously for driving behaviors must receive regulatory acceptance. Many insurance
professionals witness the gory details of death and serious injury every day. Although their witness
may only be through insurance claim files, it is otherwise similar to first responders and medical

personnel. Spirits speak from the grave to focus on safety to give meaning to unnecessary deaths.
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Applying Maximum Entropy Distributions To Determine
Actuarial Models

Jonathan Evans

Abstract

Maximum information entropy distributions are a powerful and versatile tool for determining actuarial models
from limited information, not necessarily from sample data, while not introducing unnecessary assumptions. These
distributions, and potential applications, were presented in a 1967 paper in the Proceedings of the Casualty
Actuarial Society, with a discussion following in 1968, but afterward effectively forgotten by the CAS community.
The abandonment was likely primarily due to limited computational resources at the time. A relationship between
maximum entropy and maximum likelihood is explained, along with an invariance property of the maximum
entropy distributions under certain coordinate transforms of random variables. Applications of maximum entropy
distributions to determine actuarial models for several practical problems are demonstrated. Some examples
demonstrated include determining distributions consistent with the California Workers Compensation Rating
Bureau’s Tables M and L, and LER tables, determining distributional information sufficient for Bayesian or
Credibility calculations, multivariate predictive models naturally adapted to special constraints and automatically
including credibility adjustments that are difficult to incorporate in GLMs.

Keywords: Bayesian Models, Credibility, Information Entropy, Loss Models, Maximum Entropy Distributions,
Maximum Likelihood Estimation, Predictive Models, Generalized Linear Models

1. BACKGROUND INTRODUCTION

Information entropy, a central part of Information Theory introduced in 1948 by Claude Shannon
([16]), is a scalar measure of the uncertainty, or lack of information, in a probability distribution. The
entropy of a Uniform Distribution on a finite set of points increases with the number of points. A
deterministic 100% probability for a single point has the lowest entropy of any distribution on any
discrete set of points, finite or infinite. It also happens to be that the entropy of a Normal Distribution

increases with its standard deviation and is independent of its mean.

Maximum information entropy distributions are a powerful and versatile tool for determining
actuarial models, particularly with respect to the objective of parsimony, when information is limited.
In cases where the specified constraints, implied by what information is available, are not sufficient to
uniquely determine a probability distribution, entropy maximization can often be used to determine a
distribution that satisfies the constraints, but otherwise assumes the least additional information. It is
important to bear in mind that these constraints do not have to derive from a sample of data
observations. They may come from any source of information, such as expert opinion, knowledge
about the underlying data generating mechanism, generic assumptions, etc. Even if the constraints
are derived from a data sample, they are sufficient statistics for a maximum entropy distribution, and

it is not necessary to have the details of the sample itself. It is also not necessary to specify any
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underlying statistical framework, Frequentist or Bayesian, of hypothesized models. Maximum entropy
distributions may have significant predictive value, but there is no intrinsic need for prediction

performance fitting or testing procedure.

Example 1.1 Selecting The Highest Entropy Model That Satisfies A Basic Constraint

Losses are known to be non-negative with mean 10,000 but no other information is known about the
distribution of losses and no sample data is given. There are many distributions satistying these

constraints, including:

Some
Distributions ) ) Information
) Density Function
Meeting Entropy
Constraints
Wide Unif 1 € [0,20000 9.90349
ide Uniform 20000 x € [0, ] .
Narrow ! € [9000, 11000] 7.6009
— x , )
Uniform 2000
Lognormal 1\ /1 2
exp <— (E) (7 —1log(10000) + log (x)) > 101293

(c=1) x\2m

Exponential 0.0001 exp(—0.0001 x) 10.2103
Pareto 2/99
10000 x 10
39 x~199/99 6.58512

(min loss =100)

It makes sense to use the distribution with the highest entropy, in this case the Exponential

Distribution, to minimize unnecessary implicit assumptions. In fact, the Exponential Distribution has
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the maximum entropy of any distribution that fits the given constraints. Note, maximum entropy as
used here for model selection is distinct from information criteria such as AIC, BIC, etc. (see Appendix

B), which could not be used in this situation because no sample data is given.

Maximum information entropy distributions, and potential applications, were presented in a 1967
paper, with the very appropriate name “A Discipline for the Avoidance of Unnecessary Assumptions,”
in the Proceedings of the Casualty Actuarial Society (PCAS), (Roberts [14] with a discussion following
in 1968 by Hurley [9]). The Roberts [14] and Hutley [9] papers are excellent references, and readers
are strongly encouraged to become familiar with these papers as background for understanding this
paper, including a more thorough treatment of the meaning of entropy. At the time of this writing,
the Wikipedia article “Maximum Entropy Probability Distribution,” (see [16]) is also a very useful
additional source of information. In this paper we focus on areas of actuarial application, with many

examples, along with some important general properties of maximum entropy distributions.

In the half century following [14] and [9], knowledge of maximum entropy distributions was
effectively forgotten by the CAS community. Some of the very rare exceptions with some mention
of information entropy were: the use of entropy for constructing automobile rating territories (see
Conger [7]) in 1987, a proposed unified approach to pricing risk (see Kull [10]) in 2003, an application
to jump diffusion processes in 2013 (see McKean [13]), and cross entropy applied with machine
learning (see Chalk and McMurtrie [0]) in 2016. An interesting non-actuarial application of maximum
entropy to financial risk management in 2015 is Geman, Geman, and Taleb [8], showing what effect
that constraints on the probability of ruin and the expected shortfall conditional on ruin will have on

the returns of an investment portfolio.

The general abandonment of maximum entropy applications by the CAS was most likely a
consequence of limitations in computing power available to actuaries in the 1960s when [14] and [9]
appeared in the PCAS and in subsequent decades. A secondary reason may have been the focus on
directly data driven and less computationally intense statistical methods, such as Generalized Linear
Models (GLMs) and Credibility Models. Even in the absence of computing power, it is unfortunate
that CAS actuaries have not been generally aware of the maximum entropy derivation of common
distributional forms. Most of these common forms (Exponential, Normal, Lognormal, Gamma, etc.)
correspond to maximum entropy distributions given certain constraints (see table of common
distributions by maximum entropy constraints in [17]). This knowledge can be useful in selecting
which common forms to apply in a given application. For example, if the constraints in Example 1.1

had been stated in terms of the first two moments of the logarithm of the loss, instead of the first
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moment of the loss itself, a fitted Lognormal Distribution would have had the highest entropy.

This paper demonstrates the application of maximum entropy distributions to determine actuarial
models in types of problems that often occur in actuarial practice. Section 2 is a basic introduction to
the mathematical definition of information entropy. Section 3 covers the general format for the
distributional density and generalized moment constraint equations that can be solved to determine a
maximum entropy distribution given a particular limited amount of information. Section 4
demonstrates that fitting maximum entropy distributions in the format shown in Section 3 is
equivalent to solving for maximum likelihood, for the special case when a sample of observations is
given whose sample generalized moments have the same values as those specified in the constraints
from the Section 3 format. Section 5 shows that maximizing entropy before or after certain coordinate
transformations of a random variable are applied, as long as the constraint equations are consistently
transformed. Note, the material in Sections 4 and 5 is well known outside of the actuarial community.
It is presented here for the benefit of the actuarial readership and not claimed as original results.
Section 6 consists of further useful examples for problems that are common in actuarial practice.
Section 7 introduces a general framework for applying maximum entropy distributions to determine
multivariate predictive models that can also naturally include special constraints and/or
Bayesian/Credibility type adjustments that ate difficulty to include in Generalized Linear Models
(GLMs). Appendix A contains a brief discussion of computational and software coding challenges.
Appendix B clarifies of some confusion reviewers of an earlier draft of this paper had, identifying
maximum entropy distributions with several other very different things. Importantly, applying
maximum entropy distributions is quite distinct from applying the information criteria (AIC, BIC, etc.)
that were first introduced in the 1970s (see [1], [2], [3], [4], and [15]) for selection between different
hypothesized models given sample data. It is also distinct from the ordinary technique of matching
moments or statistical techniques where use of the exponential family of distributions is central, such
as Generalized Linear Models (GLMs) and exact credibility.

2. INFORMATION ENTROPY

The znformation entropy of a probability distribution is a measure of the extent of lack of information.

For probabilities p; on a finite set of points {xy, ..., X, } the information entropy is defined as:
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S = —Z p;i log(p;) )
=1

with the convention that if p; = 0, then p; log(p;) = plll‘([)l+ plog(p) = 0.

The maximum possible entropy for n points is log(n) for the uniform distribution p; = % , and
the minimum possible entropy is 0 for a single point mass distribution pg = 1, Pz = 0.
Information gain is equivalent to the loss of entropy. A realized outcome in this example lowers the
entropy (increases information) by log(n). Changing from natural logarithmic base e to another
logarithmic base b > 1 would only have the effect of multiplying S by log (b) > 0 , which would
not change the relative order of different distributions as ranked by §. This definition for information
entropy can easily be generalized, with some care to measure theoretic issues, to infinite discrete sets

and continuous probability distributions, with the integral expression for S in the continuous setting:

S = —fp(x) log (p(x)) dx o

For continuous distributions the entropy S can be negative. Thus, entropy for continuous
distributions, though serving the same purpose and generally having the same properties, is not directly
comparable to entropy for discrete distributions. Sometimes entropy for continuous distributions is
referred to by a term other than “Information Entropy,” such as “Differential Entropy.” We will
mostly focus on continuous distributions and the integral expression (2), but results will typically also

be valid in the discrete setting.
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Example 2.1 Entropy of A Normal Distribution Is An Unbounded Increasing Function Of
Standard Deviation Independent Of Mean

For a Normal Distribution the information entropy will only depend on the standard deviation

parameter 0 since S as defined in (2) is invariant under translation of x by an additive constant. The

entropy is S = %log (2me) +log (o) an increasing function of o, such that ling)S = —oo and
g—

lim § = +oo0.

g—>00

Example 2.2 Incomparability of Discrete And Continuous Entropy

A discrete single point mass at x = 1 has entropy 0, but a continuous uniform distribution for x €
[0.9, 1.1] has a lower entropy of -1.60944, although it cleatly contains less information than the point

mass.

Information entropy is not necessarily correlative with typical concepts or measures of quantitative
risk. It is sensitive to the distribution of probability among different possible outcomes, but it is

insensitive to the relative magnitudes of these outcomes.

Example 2.3 Incommensurability Of Information Entropy And Quantitative Risk

A discrete uniform distribution on two possible outcomes has the same information entropy, log (2),
whether the possible outcome set is {1,2} or {1,10°}. Similarly, the information entropy for a
uniform continuous distribution on the interval [0, 1] is the same value 0 as for a continuous uniform

distribution on the union [0, 0.5] U [10%,10° 4+ 0.5] of two far apart intervals.
Although we will mostly present examples and properties for a scalar random variable, it is usually

possible to extend the examples and properties that follow to vector, or multi-variate, random

variables. Section 7 will focus on the multivariate context.
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3. MAXIMUM ENTROPY PROBABILITY DISTRIBUTIONS

Suppose the following form for the density function, whether the random variable X is discrete or
continuous, for measurable functions {g(X), ..., gm (%)}, which will be called generalized moment

functions:
p(x) = exp(—a; — a,9:(x) = ... — amgm(x)) 3)

Define m generalized moments of this distribution as:
Elg;(X)] = f gi(x) exp(—ag — a;9:(x) = ... — Amgm(®)) dx = @

It can be shown though Lagrange Multipliers (see [14] and further references listed there to papers
by Jaynes and Tribus) that p(x) has the highest entropy of any distribution having these specific values
¢; for these m generalized moments. Often the given constraints on a probability distribution, in a
specific application problem, can be expressed in the form equations E[g;(X)] = ¢; together with
the formal normalization constraint E[1] = 1, for a set of functions g;(x) and a set of constants
¢;. Therefore, if it is possible to solve for the patameter values {ag, aq, ..., @y} so that these
constraints equations are satisfied by p(x), then p(x) has the highest entropy of any distribution

satisfying these constraints.

Equation (3) is a very general form in that an arbitrary density may be stated in many ways that fit
this form, although some or all of the parameters of the original density may be embedded in the

functions g;(x) rather than corresponding to {ag, @y, ..., @ }. A trivial form for any density is:
p(x) = exp(—ay, — a;log (p(x)) a,=0 a, =1 o)

For convenience g can be stated in terms of the normalization formula (6), leaving only the m
other constraint equations that need to be solved such that (6) has a finite value so that the

normalization constraint is automatically satisfied.
ao(ay, ..., ) = Log <f exp(—algl(x) - e T amgm(x)) dx) ©)

Then the generalized moments can be expressed as:
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d
Elgi(0)] = -2 .

The following formula for the variance of the moment functions is also potentially useful:

0%a,
da;? (®)

Var(g;(x)] =

Example 3.1 Maximum Entropy Distribution Determined with Very Limited Information

About Losses

A reinsurer has only the following very limited information about the losses for individual claims but

needs to completely determine the per claim loss distribution to price excess layers.

o 90% of claims are under 100,000

e The mean of the unlimited layer excess of 10 million is 1 million

Let the moment functions be:

g1(x) =1 if x €[0,10%)
=0 if x € [105, +o0)

g,(x) = Max(0,x — 107)

Then the maximum entropy density form is:
p(x) = exp(—a, — a;) ifx € [0,10%]
= exp(—a,) if x € (10°,107)
= exp(—ay — a,(x — 107)) ifx € (107, +)

The normalization parameter is:

1
a, = log <1056xp(—a1) + (107 — 10°) + a_>
2
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The constraint equations are:

10°exp(—a,)

= 0.9

10°exp(—ay) + (107 — 10°) + —~

2

1/a,)?

(1/a) 1

105exp(—a,) + (107 — 105) + o

2

Numerical rooting finding leads to:
a, = 19.3776 a, = —7.75927 a, = 6.19750 x 10°8

Using p(x), the ground up loss has mean 1.86 million and standard deviation 7.5 million, for a

404% coefficient of variation. The expected losses for excess layers of interest can be calculated:

Table 3.1 Some Layer Calculations For Maximum Entropy Solution In Example 3.1

Probability a Loss

Attachment Limit Expected Loss Hits Layer
0 100,000 55,000 100.0%

100,000 400,000 39,693 10.0%
500,000 500,000 48,752 9.8%
1,000,000 4,000,000 355,446 9.7%
5,000,000 5,000,000 357,887 8.1%
10,000,000 10,000,000 461,922 6.2%
20,000,000 30,000,000 454,253 3.3%
50,000,000 50,000,000 80,046 0.5%
100,000,000 Infinity 3,781 0.02%
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Figure 3.1 Density Of Maximum Entropy Solution In Example 3.1
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However, often even for mathematically consistent constraints there is no maximum entropy

distribution.

Example 3.2 Some Constraints Where No Maximum Entropy Distribution Exists

A non-negative random variable has 90% probability of being less than 1000. These constraints are

satisfied by the family of densities:
p(x) = 0.0009 if x €[0,1000)
0.1 .
= T if x€[1000,1000+ L)

= 0 if x=1000+L

A maximum entropy distribution cannot exist, because the entropy of a member of this family is an

increasing function of I with no upper bound:

S(L) = —0.910g(0.0009) + 0.1 log (10 L)

Example 3.3 Maximum Entropy Distribution for A Bounded Number Of Claim Counts

A certain type of insurance policy is limited to a maximum of 5 claims per year, and historically these

policies have averaged 0.7 claims per year. The maximum entropy distribution for the annual number

of claims can be found as:

5
a, = log (Z exp (— alk)>

k=0

day, Yr-okexp (- a;k) _
da, Yo oexp (—ak)

ao = 0.545133 a; = 0.859003

0.7
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Table 3.2 Density Of Maximum Entropy Solution In Example 3.3

Number of Claims Probability

0 58.0%
24.6%
10.4%
4.4%
1.9%
0.8%
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Figure 3.2 Density of Maximum Entropy Solution In Example 3.3
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4. A RELATIONSHIP BETWEEN MAXIMUM ENTROPY AND
MAXIMUM LIKELIHOOD

The maximum entropy form (3) may be determined for the given constraints, without any sample

of data. However, there is a general relationship between maximum likelihood estimation (MLE) for

a density of the form (3) on a sample of obsetvations {X, ..., X, } and maximizing entropy such that
the generalized moments (4) of the density are equal to the sample values %Z j=1,.n i (xj). This

makes sense as form (3) is a subset of the exponential family with the generalized moment functions
{91(%), ..., gm(x)} fitting in the position of the sufficient statistics functions. For a fixed parametric
distributional form, such as form (3), the sufficient statistics, that is sample averages for these functions,
include all information about determining the parameters that can be obtained from a given sample.
Put another way, often an MLE fit is — even if unknowingly to the practitioner - a maximum entropy
distribution for constraints based on sufficient statistics implicit in a distribution from the exponential

family and their values when applied to the sample data.

Given a sample of observations {Xy, ..., X, } and specific moment functions {g; (x), ..., gm (%)}
the log-likelihood function for the distributional form given in (3) is:

log (L(ay, ..., am)) = Z (—ao(al, vy Q) — algl(xj) - e = amgm(xj))

j=1,.n

©)

If (ay, ..., ay)" is a maximum likelihood solution for (9) then:

dlog (L(a4, ..., am))
. - z gi(x;) =0 (10)

ada;
i @am) 5

dag
aai

= -n
(al'---'am)*

Consequently:
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da 1
E[g:;(X)] :_aa(.) ) Z 9:(x)
L ay,mam)* j=1,.n

(1)

So, in addition to (@, ..., )" maximizing likelihood for the distributional form (3) given the
sample observations, the resulting distribution is also the maximum entropy distribution constrained

to have the same values for generalized moments E[g;(x)] as the sample averages for these
generalized moments %Z j=1,.n gi(xj). That is to say that maximizing the likelihood for a

distributional form like (3) on a sample, is the same as finding the maximum entropy distribution
whose generalized moments corresponding to the functions {gq(x), ..., gm(x)} are matched to the

sample averages of the functions.

Alternately, if (a4, ..., ;)" satisfies (11), and hence (3) will be the density of the maximum entropy
distribution for the constraints (11), then (ay, ..., Q)" will automatically be a critical point of the
loglikelihood function in (9). The elements of the Hessian matrix of the loglikelihood in (9) can be
shown to be:

0%a,

H. P
2 aaiaaj

= _E[gi(X)gj(X)] + E[gi(X)]E[gj(X)] = —COU[gi(X)gj(X)] (12)

The determinant of the covariance matrix of a set of linearly independent random variables (none
of which is a trivial point mass) will be positive since it is similar to the diagonal matrix of the variances.
Consequently, the determinant of this Hessian must be negative for all points (ay, ..., @y,) that

correspond to a legitimate density. So, the critical point is also a global maximum. (Note: If the
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random vatiables g;(X) are linearly dependent then the original set of generalized moment functions
gi(x), and their corresponding constraint equations, can be reduced through a linear transformation
into a smaller linear independent set. If any of the g;(X) are point masses, these can be split out with
their constraint equations automatically yielding point mass probabilities. Therefore, the original
maximum entropy form and constraint equations can be restated to eliminate any linearly dependent

and/or point mass generalized moments.)

Example 4.1 Maximizing Likelihood for a Normal Distribution Is Equivalent to Maximizing

Entropy Given the Mean and Standard Deviation

A Normal Distribution with mean p and standard deviation ¢ has density:

_G=w? .u_z log(oV2r
= U)o (A, ) ()

This is clearly the maximum entropy form for g; (x) = x and g, (x) = x? with moments
E[91(x)] = ¢ and E[g,(x)] = 02 4+ u? . The maximum likelihood estimators for a sample

: . ! ~ 1 .
{x1, ..., xp} are given by the familiar formulas: [ = ;Zi:l,...,n x; and 6% = (; Yi=1..n xiz) — [

When these estimators are used for the parameters, the moments of the distribution are set equal to
1 1 :
the sample moments:  E[g,(x)] = ;21-:1,__,” x; and E[g,(x)] = ;Ziﬂ,_._,n x;2 and this

maximum likelihood solution for the Normal Distribution is also the maximum entropy distribution

for a real valued random variable with these specified moments.
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5. AN INVARIANCE PROPERTY OF MAXIMUM ENTROPY
DISTRIBUTIONS UNDER CERTAIN COORDINATE
TRANSFORMATIONS

Some coordinate transformations, that is certain smooth invertible functions of a continuous
variable X, along with the correspondingly transformed generalized moment functions will result in
the same maximum entropy distribution as if the maximum entropy distribution is determined before
the coordinate transformation and then transformed. Note however, the value of the information

entropy itself may change under these coordinate transformations.

Suppose X = f(Y), where f(Y) is differentiable and invertible. Then the equivalent transformed

density of the maximum entropy form of p(x) from (3) is:
q) = exp(=ao — a1 g1 (F) — - — amgm(FON)IF' O (13)
The transformed generalized moment equations (4) will be:

Elh(N]=¢ ) =g.({) (14)

These equations will still be satisfied because:

f 9:(x) exp(—ag — a;91(x) — .. — Apgm(x)) dx =
= f gi(fF ) exp(—ao — a1g:(fF ) = . = amgm(FO))) If )| dy (15)
= [ ) exp(ay — @) = . = anhn()) 17O dy

Furthermore, if |f'(y)| can be expressed in the form:

f' Ol = exp(=bo = bihs(¥) = = byl () 16

then:
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q(y) = exp(—(ap + by) = (a + b)) (y) = .. — (@m+bp)hm()) (17)

is the maximum entropy distribution for the transformed constraints E[h;(y)] = E[g;(f (x))] = ¢;.
Therefore, as long as the generalized moment functions are consistently transformed, and |f'(y)] can
also be expressed in the standard maximum entropy form in the transformed space, it does not matter

if the maximum entropy distribution is solved before or after the coordinate transform.

Example 5.1 Maximum Entropy Equivalence Between Normal Distribution And Lognormal

Distribution

Suppose X = log (Y), the support of X is (—00, +00), the support of Y is (0, +00), and the given
constraints are E[X] = 0 and E[X?] = 1, then the maximum entropy distribution is the Normal

Distribution with density:

exp (=log(y)?/2)

__exp (—x?/2)
p(x) = y\2r

N , which would transform to q(y) =

, the density of a Lognormal

Distribution that is the maximum entropy distribution for the constraints E[log(Y)] = 0 and

El[log(Y)?] = 1.

Example 5.2 Counterexample - Maximum Entropy Non-Equivalence Under

Transformation

If we repeat Example 5.1 using only the second constraint, E[X 2] = 1 then the maximum entropy

distribution is still the Normal Distribution with density:

exp (—log(y)?/2)

__exp (—x2/2)
p(x) = ——=— o

N , which would also still transform to q(y) =

, the density of a

Lognormal Distribution that is the maximum entropy distribution for the constraints E[log(Y)] = 0

and E[log(Y)?] =1. However, the maximum entropy distribution under only the relevant
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transformed constraint E[log(Y)?] = 1 would be r(y) = \/%exp (—a log(y)? — a/4) witha =

i(l + \/g) = 0.8090169943749475 .... The first transformed restraint, which we discarded, is

not met by 7(y), since under r(y), E[log(Y)] = 0.714863 # 0. Also, r(y) has entropy 1.79637,

which is higher than the entropy 1.41894 of q(y).

6. FURTHER EXAMPLES

6.1 Determining A Distribution Consistent With Excess Ratios In Tables M
And L

The California Workers Compensation Insurance Rating Bureau (WCIRB) produces tables of per
risk expected loss excess ratios (“insurance charges” in this context) by entry ratio (loss amount/mean
loss), (see [5]). These tables are organized in columns corresponding to Expected Loss Groups
(ELGs) that are ranges of expected loss per risk. The Table L varieties include adjustment for various

per accident limits and Table M is unlimited.

Example 6.1.1 Excerpt from WCIRB’s 2019 Table L

Below is an excerpt of values from WCIRB’s 2019 Table L for loss limit $100,000 for ELG 50,
corresponding to expected per risk loss in the range from $165,605 through $181,201. The Excel
spreadsheet available online at [5] has many digits of precision, but often only 4-digit precision

numbers are available in printed material.

Table 6.1.1 Sample from WCIRB’s 2019 Table L for loss limit $100,000 for ELG 50

Entry Ratio Rounded Excess Ratio Unrounded Excess Ratio
0.00 1.0000 1.000000000000000
0.50 0.6719 0.671935231318322
1.00 0.5000 0.500000000000000
2.00 0.3938 0.393813297572041
5.00 0.3734 0.373364646661730
10.00 0.3695 0.369524681712078
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A common actuarial problem is to determine the probability distribution underlying these tables
for various practical applications. It can be very challenging to fit a typical functional form probability
distribution, or even a mixture of typical forms, and such a fit may make unnecessary implicit
assumptions. An alternative approach is to take the negative finite differences of the excess ratios to
approximate the cumulative probability distribution, but this approach is very sensitive to numerical
rounding errors and other aspects of discrete tabular representation. It often produces inconsistencies
where the cumulative distribution decreases or remains unchanged as the entry ratio increases.

However, there is a straightforward maximum entropy distribution for this situation.

Example 6.1.2 Maximum Entropy Distribution for WCIRB’s 2019 Table L for loss limit
$100,000 for ELG 50

From the Table L. column underlying Example 6.1.1, we select for fitting purposes the following
sample values, spaced out in terms of sequential differences in excess ratios, but including the highest

available entry ratio of 10.00:

Table 6.1.2 Selected Values For Fitting From WCIRB’s 2019 Table L For Loss Limit
$100,000 For ELG 50

Entry Ratio Excess Ratio
0.00 1.000000000
0.03 0.973293029
0.07 0.940656486
0.11 0.909512502
0.15 0.879861331
0.20 0.844934352
0.24 0.818432243
0.29 0.786763533
0.35 0.751193714
0.40 0.723319956
0.46 0.691745050
0.53 0.657705024
0.60 0.626617188
0.67 0.598501845
0.76 0.566402702
0.86 0.535579836
0.99 0.502275425
1.14 0.471953286
1.35 0.441000272
1.69 0.409781057
2.66 0.378248119
10.00 0.369524682
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The generalized moment functions can be defined as:

9i(x) = Max(0,x — x;), x; =0.00, x, =0.03, .., x,, =10.00
with density function:
p(x) = exp(—ay — a;x — a, Max(0,x — 0.03) — -+ — a,,Max(0,x — 10.00))
and 23 constraint equations, including normalization, in integral form:
fooo p(x)dx =1

fooox p(x)dx =1

Jy  Max(0,x — 0.03) p(x) dx = 0.973293029

Jy  Max(0,x — 10.00) p(x) dx = 0369524682

The integrals can be broken down into piecewise calculations of means of exponential distributions
over a sequence of intervals and simplified, although into very lengthy expressions in terms of

exponential functions and algebraic operations. For example:

o]

f x p(x) dx = exp (—agp) (

0

—a,0.03 exp(—a;0.03) — exp(—a;0.03) + 1 N )
a,?
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After a significant amount of calculus, numerical root finding can be applied to solve for the
parameters. In practice, the author found it was necessary to do so sequentially. {ag, a;} was solved
first, while zeroing out {a,, ..., @y, } and ignoring the equations for {g,(x), ..., g22(x)}. Then, this
solution was used as an initial search point to solve for {ay, a1, a;} while zeroing out {as, ..., a5}

and ignoring the constraint equations for {gz(x), ..., g22(x)}. Continuing in the same manner

eventually a solution for {ay, ..., @5} under all the constraint equations was found:
ag = -2.64110659609105 a1, = -2.03880133396856
a, = 78.84798657065390 aq3 = 2.19601290431692
a, = -67.84628757037710 aq4 = -0.28563054188110
az = -13.53961416054840 a5 = -0.03229457248671
a, = 1.05093302568349 a6 = 0.19073261292819
as = 5.85233052253736 a7 = 0.10266905342995
ag = 3.77603379643773 aqg = 0.53399856270167
a, = -14.91579228797020 a9 = -0.16195956428452
ag = 11.13262310317780 a5 = 0.02984942588180
Qg = -1.31419292343747 a,; = -0.08113782038222
aq19 = -6.01333535467965 Ay, = -1.68856945802222

a1 = 4.20493185505049

Here are some excess ratios and cumulative distribution values for the fitted entry ratios, the entry

ratios from the original excerpt from Example 6.1.1, and some extrapolated entry ratios.

Casualty Actuarial Society E-Forum, Winter 2020 21



Applying Maxcimum Entropy Distributions to Determine Actuarial Models

Table 6.1.3 Some Excess Ratios And Cumulative Distribution Values From The Maximum

Entropy Solution In Example 6.1.2

Actual — Fit Fit Cumulative
Entry Ratio Actual Excess Fit Excess Excess Probability
0.00 1.000000000 1.000000000 0.000000000 0.00000%
0.03 0.973293029 0.973293029 0.000000000 16.12129%
0.07 0.940656486 0.940656486 0.000000000 20.38433%
0.11 0.909512502 0.909512502 0.000000000 23.95617%
0.15 0.879861331 0.879861331 0.000000000 27.82634%
0.20 0.844934352 0.844934352 0.000000000 32.30302%
0.24 0.818432243 0.818432243 0.000000000 35.03824%
0.29 0.786763533 0.786763533 0.000000000 38.48090%
0.35 0.751193714 0.751193714 0.000000000 42.76647%
0.40 0.723319956 0.723319956 0.000000000 45.66500%
0.46 0.691745050 0.691745050 0.000000000 49.18993%
0.50 0.671935231 0.671925770 0.0000094061 51.69306%
0.53 0.657705024 0.657705024 0.000000000 53.49086%
0.60 0.626617188 0.626617188 0.000000000 57.72643%
0.67 0.598501845 0.598501845 0.000000000 61.87659%
0.76 0.566402702 0.566402702 0.000000000 66.71170%
0.86 0.535579836 0.535579836 0.000000000 71.55581%
0.99 0.502275425 0.502275425 0.000000000 77.05588%
1.00 0.500000000 0.500000386 (0.000000386) 77.44246%
1.14 0.471953286 0.471953286 0.000000000 82.33417%
1.35 0.441000272 0.441000272 0.000000000 87.82233%
1.69 0.409781057 0.409781057 0.000000000 93.27846%
2.00 0.393813298 0.393690968 0.000122330 96.08540%
2.66 0.378248119 0.378248119 0.000000000 98.73112%
5.00 0.373364647 0.370564313 0.002800334 99.95802%
10.00 0.369524682 0.369524682 0.000000000 99.98205%
50.00 NA 0.362412747 NA 99.98239%
100.00 NA 0.353715001 NA 99.98281%
1,000.00 NA 0.228430321 NA 99.98890%
10,000.00 NA 0.002882415 NA 99.99986%
100,000.00 NA 0.000000000 NA 100.00000%
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Figure 6.1.1 Density Of Maximum Entropy Solution In Example 6.1.2
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reasonable extrapolation for an empirical model given extra information about the tail, it is a

reasonable extrapolation given the pattern in the Table L values available.

6.2 Determining A Distribution Consistent with Excess Ratios in Loss
Elimination Ratio Tables

The WCIRB also produces tables of Loss Elimination ratios (LERs), that are excess ratios on a per
accident basis in terms of the dollar amount of the limit (see [13]). Although the WCIRB releases
some details of the underlying probability distribution, which is fairly complicated, recovering a
maximum entropy distribution from the table of LERs illustrates a different approach from the Tables

M and L. example in the previous section, since in that case the overall mean was known to be 1.00
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due to the normalization to produce entry ratios. Additionally, the final tables of LERs contain excess

ratios rounded to only 3 digits, contributing to the difficulty of recovering the underlying distribution.

Example 6.2.1 Maximum Entropy Distribution for WCIRB’s 2019 Overall LERs

Below is WCIRB’s 2019 table of overall (all Hazard Groups combined) LERs. The Excel spreadsheet
available online has only 3 digits of precision. The values in Bold have been selected for the specified

constraints to fit.

Table 6.2.1 Selected Values For Fitting From WCIRB’s 2019 Loss Elimination Ratios
(Overall, All Hazard Groups)

Limit Excess Ratio Constraint Index
0 1.000 1
25,000 0.689 2
35,000 0.617
50,000 0.533 3
75,000 0.434
100,000 0.368 4
150,000 0.290
200,000 0.247
250,000 0.219 5
300,000 0.199
400,000 0.172
500,000 0.154 6
600,000 0.141
700,000 0.131
800,000 0.122
900,000 0.115
1,000,000 0.109 7
2,000,000 0.072 8
3,000,000 0.053
4,000,000 0.040
5,000,000 0.031 9
6,000,000 0.024
7,000,000 0.019
8,000,000 0.015
9,000,000 0.012
10,000,000 0.010 10
15,000,000 0.004 11
20,000,000 0.001 12

Casualty Actuarial Society E-Forum, Winter 2020 24



Applying Maxcimum Entropy Distributions to Determine Actuarial Models

The generalized moment functions, corresponding to constraint indexed rows in the prior table, can

be defined as:

gi(x) = LER;x — Max(0,x — x;), i=1,..
Note, g1 (x) = 0 for all x, so we can set @; = 0 and eliminate g; (x) from the density function:

p(x) = exp(—a, — a, (0.689x — Max(0,x — 25,000)) —--

12

— Max(0,x — 20,000,000)))

- a12 (0.001x

and 12 relevant constraint equations, including normalization, in integral form are:

fooop(x) dx =1

J, (0.689x — Max(0,x — 25,000))p(x) dx = 0

f(0.0le — Max(0,x —20,000,000) )p(x)dx =0
0

Some calculus and numerical root finding, similar to what was done for Table L. in Example 6.1.2, is

required. This includes sequentially solving for small subsets of the parameters and constraints, to be

used as initial search points for the next larger subsets, as described before. This process leads to:

11.864788254009900000000
-0.000125730464385769000
0.000058923444849539900
-0.000004271540735520050
0.000010447441490470400
0.000002998956261260340
0.000002383315118547030
0.000000899163635770769
0.000000396715370202262
-0.000000178908277119939
0.000000541076550263008
-0.000000464839849564974
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The mean of the fitted maximum entropy distribution is $68,730 with standard deviation $272,939,

and corresponding coefficient of variation 397%. Below are the actual and fitted LERs, including

some extrapolated limits.

Table 6.2.2 Some Excess Ratios And Cumulative Distribution Values From The Solution In

Example 6.2.1

Actual Fit Actual — Fit Fit Cumulative
Limit LER LER LER Probability
0 1.000 1.0000000000000 0.0000000000000 0.000000%
25,000 0.689 0.6890000000001 -0.0000000000001 37.053989%
35,000 0.617 0.6130435581319 0.0039564418681 56.252159%
50,000 0.533 0.5330000000001 -0.0000000000001 68.272954%
75,000 0.434 0.4357874659584 -0.0017874659584 77.759218%
100,000 0.368 0.3680000000002 -0.0000000000002 84.596264%
150,000 0.290 0.2880494554155 0.0019505445845 92.319659%
200,000 0.247 0.2456477754649 0.0013522245351 95.560066%
250,000 0.219 0.2190000000002 -0.0000000000002 96.919603%
300,000 0.199 0.1993658363524 -0.0003658363524 97.641066%
400,000 0.172 0.1721086529617 -0.0001086529617 98.512431%
500,000 0.154 0.1540000000002 -0.0000000000002 98.948454%
600,000 0.141 0.1406382524283 0.0003617475717 99.198536%
700,000 0.131 0.1302860472939 0.0007139527061 99.367439%
800,000 0.122 0.1219664467532 0.0000335532468 99.481514%
900,000 0.115 0.1150196400910 -0.0000196400910 99.558558%
1,000,000 0.109 0.1090000000002 -0.0000000000002 99.610593%
2,000,000 0.072 0.0720000000002 -0.0000000000002 99.827239%
3,000,000 0.053 0.0522656417306 0.0007343582694 99.894359%
4,000,000 0.040 0.0397372191010 0.0002627808990 99.929672%
5,000,000 0.031 0.0310000000002 -0.0000000000002 99.948252%
6,000,000 0.024 0.0243601864887 -0.0003601864887 99.959998%
7,000,000 0.019 0.0192358385274 -0.0002358385274 99.969187%
8,000,000 0.015 0.0152970520606 -0.0002970520606 99.976376%
9,000,000 0.012 0.0122857403603 -0.0002857403603 99.982000%
10,000,000 0.010 0.0100000000002 -0.0000000000002 99.986400%
15,000,000 0.004 0.0040000000001 -0.0000000000001 99.994451%
20,000,000 0.001 0.0010000000001 -0.0000000000001 99.997607%
25,000,000 NA 0.0001753644633 NA 99.999580%
50,000,000 NA 0.0000000290837 NA ~100%
100,000,000 NA 0.0000000000000 NA ~100%
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Figure 6.2.1 Density Of Maximum Entropy Solution In Example 6.2.1
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6.3 Fitting a Distribution to Match Higher Moments

The maximum entropy distribution to match a specified set of m positive integer moments

{E[X*1], ..., E[X"m]}, if it exists, has a very straight forward form:

p(x) = exp(—ay — a;x¥1 — ... —a,,xkm) (18)

There is a closed form solution for the density of the maximum entropy distribution, if it exists,

for a non-negative random variable with a single higher positive integer moment specified.

Example 6.3.1 Maximum Entropy Distribution For A Single Higher Moment

A non-negative random variable is known to have a mathematically consistent k moment equal b.
g y q

) 1 1
a, = log (j exp(—a,x*) dx) = log (F (1 + E) al_F>
0

= log <F (1 + %)) - %log(al)

da,

1 1
da, ka,

=bh= al:kb

p(x) =

Multiple higher moments can be a challenge to numerically solve. (For a treatment of this general
problem aimed at applications in physics see [12].) As of this writing, the author has not yet found a
generally effective and satisfactory way, even using the sequential parameter/constraint subset process
that worked very well for the excess ratio problems described in Examples 6.1.2 and 6.2.1, to reliably
solve for a significant set (4, 5, or more) of the higher moments. A practical way of doing this would

be particularly useful in many applications.
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Figure 6.3.1 Density Of Maximum Entropy Solution In Example 6.3.1
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Example 6.3.2 Maximum Entropy Distribution For 1* And 3" Moment
A non-negative random variable is known to have mean 15 and 3 moment 5,000.
g1(x) =x
g2(x) = x*
p(x) = exp (—ag — a;x — ax*)
a, = log f exp (—a;x — a,x3) dx
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da, fooo x exp(—a;x — a,x3) dx

da, fooo exp(—a;x — ax3) dx

da *x3 exp(—ax — a,x3) dx
_ 94y _ fo - p(—a, 2X°) — 5,000
da, J, exp(—a;x — apx®)dx

A numerical search leads to:

ap = 4.98497 a; = —0.211337 a, = 0.000278004

Figure 6.3.2 Density Of Maximum Entropy Solution In Example 6.3.2
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6.4 Implicit Aggregate Loss Models

In practice, sometimes only limited information is available about the distribution of aggregate
losses for a portfolio of risks, but a maximum entropy distribution can be determined.
Example 6.4.1 Maximum Entropy Distribution for TVAR And Mean

A primary insurance company estimates the 99% Tail Value at Risk (TVAR) of its aggregate losses is
$1 billion and has a current booked ultimate aggregate loss of $100 million. If we interpret the booked
ultimate as an expected value and let the 99" percentile be an unknown value L, generalized moment

functions may be set up as follows:
g1(x) =x
g,(x) =0ifx<L
= 100xif x =L
g3(x)=0ifx<L

=1ifx=>L

Then the constraint equations, though quite complicated, may be set up as:

[ee)

a, = log f exp (—a;x — a,g,(x)—azgs(x)) dx
0
(exp(—alL) -1 —exp(—az+ (—a; — 100 aZ)L)>
= log +

—a1 _a1 - 100 a2

da,

Jda,

_exp(—az —(a; +100ay)L) 1 —exp(—a,L) + L exp(—a,L) Lexp(—az— (a; +100ay)L)

(a; + 100a,)? a,? a; a, +100a,
a exp (—a; — ( a; + 100a,)L) L1= exp(—a, L)
a; + 100a, aq
= $100,000,000
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_ 100 exp (—az — ((a; +100a,)L) 100 L exp (—az — (a; +100a,)L)

_Oag (a; +100a,)? a; +100a,
da, exp (—a3 — (@, +100a,)L) | 1—exp(=a,L)
a; +100a, a,

= $1,000,000,000

da, —exp (—a; — ( a; +100a;)L)
Cda, exp (—as — ( a; + 100a,)L) 1 —exp(—a4L
3 (a, + 100a,) ( p( 3a1 _*(_ 1(1)0a2 2)L) + Zl( 1 ))

= 0.01

A numerical root finding search found plausible solutions for L from around $92 million through
around $980 million, with the entropy seeming to peak around L = $566 million. Here are some

properties of the solution at L = $566 million:

ap = 18.3466 a, = 1.08546 x 1078 a, = —8.55045 x 1071 az = 4.843
The standard deviation is $133.4 million, for a coefficient of variation of 133.4%. Some interesting
percentiles and corresponding unlimited expected excess loss amounts are:

Table 6.4.1 Some Expected Excess Losses And Cumulative Distribution Values From The
Solution In Example 6.4.1

Attachment Percentile Unlimited Expected Excess
$0 0% $100 million

$10 million 10.2% $90.5 million
$50 million 41.6% $61.3 million
$100 million 65.7% $38.7 million
$200 million 87.9% $17.5 million
$500 million 98.8% $5.1 million
$1 billion >99.6% $1.6 million
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Figure 6.4.1 Density Of Maximum Entropy Solution In Example 6.4.1
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Example 6.4.1 is structurally similar to “4.7. Case A: Constraining the Global Mean” from [8], except
that in latter the risk-taker’s wealth, analogous to L in Example 6.4.1, is specified rather than solved

as part of maximizing entropy given the other constraints.
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6.5 Bayesian or Credibility Estimation

Bayesian estimation generally requires model assumptions that completely specify both the prior
distribution of parameters and the conditional density, or likelihood, of observations. Credibility
estimation generally does not require complete distributional specifications but does require model
assumptions that specify certain distributional variances. Maximum entropy distributions can be
utilized in many cases to formulate these model assumptions where the available information would
not otherwise completely specify them. Examples 6.5.1 and 6.5.2 apply maximum entropy
distributions to conventional Bayesian and Credibility approaches. In Section 7 we will present a
much more general multivariate maximum entropy framework that can automatically implement an

implicit Bayesian/Credibility type adjustment for multivatiate predictive models.

Example 6.5.1 Maximum Entropy Distributions For Bayesian Prior And Likelihood

Detailed data in not available, but it is known that in prior experience individual drivers have averaged
0.1 claims per year. What is the posterior distribution for expected number of claims after an

individual driver has experienced k € {0, 1,2 ...} claims in a single year?

Since the average number of claims is non-negative and we only know the mean is 0.1, the maximum
entropy prior is simply a continuous Exponential Distribution with density function q(m) =
10 exp (=10 m). The maximum entropy density on the discrete numbers {0,1,2 ...} given the

conditional mean is also of the Exponential form p(k|m) = exp (—ay(m) — a,(m) k), where the

m+1

parameters solve to ag(m) = Log(m + 1) and a,(m) = Log (T) Therefore p(k|m) =

10 exp(—=10 m) m¥(m+1)~k-1
fooo 10 exp(—10 m) mk(m+1)~k-1dm

mk(m + 1)7%"1 and the posterior density is g(m|k) = . So, the

numerical results for several values of k are (up through k = 5):
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Table 6.5.1 Bayesian Posterior Results from Maximum Entropy Solution in Example 6.5.1

k Posterior Density g(m|k) Posterior T = E[m|k]
. 10.921 exp (—10m) 0.09214
m+1
138.95 —10
1 (m Tri)(z m) 0.17230
m
2 _
, 1003.3(m -T-le)g 10m) 0.24409
m
3 —
X 5383.1En ixf)g 10m) 0.30962
m
4 _
) 23823 Zn ixlla)g 10m) 0.37026
m
5 _
. 91815 m5 exp (—10m) 0.42695

(m+1)°

Example 6.5.2 Maximum Entropy Distributions to Determine Process and Parameter

Variances for Credibility

What would the credibility estimates be for Example 6.4.17
The Variance of the Hypothetical Means (VHM) = 0.01, that is the variance of the continuous

Exponential Distribution with 0.1 mean. The process variance for the conditional density p(k|m) =

mk(m+1)"%1 s m(m+1). So, the Expected value of the Process Variance (EPV)

:fooo m(m 4+ 1) 10 exp(—10 m) dm = 0.12. Consequently, the credibility constant is K = % =
12 and since we only have one observation Z = ==,
14K 13
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Table 6.5.2 Credibility Results From Maximum Entropy Solution In Example 6.5.2

Credibility 1 = () k + (1) 0.1

0.09231
0.16923
0.24615
0.32308
0.40000
0.47692

U WD - O &

7. MAXIMUM ENTROPY PREDICTIVE OR EXPLANATORY MODELS

Actuarial models often involve predicting or explaining the distribution, or at least the expected
value, of one random response variable Y, scalar or vector, given the outcome of another random
variable X, scalar or vector. For example, Generalized Linear Models (GLMs), though usually from a
fixed effects standpoint, are commonly used for this purpose. This can be described in a very general
framework in terms of a single vector valued random vatiable X = {Y, ..., V;, X4, ..., X;,} consisting
of both response components Xpesp ={Y,..,Y;n} and explanatory components Xeyp =
{X1, ..., X,,}. Fixed effects can also be included in the generalized moment functions g;(x) and/or
the specified generalized moments ¢;. If the complete joint density p(Vq, ) Yy X1, -, Xp) is known
then the density of the response components Xygg, = {1, .., ¥m} conditioned on the realized values
of the conditioned on the realized values of the explanatory components Xeyp; = {X1, ..., Xn } through

the Bayesian calculation:

p(y V, |x X ) — p()’p v Ymo X1, ...,xn)
12y )Vm 1) =2 An f ___fp(yl,...,ym,xl,...,xn) dyl ---dym (19)

Example 7.1 Correlated Bivariate Maximum Entropy Distribution

Suppose the random vatiable X ={Y;, X1} is known to have the following properties:

e Y, has mean 2,000 and standard deviation 2,000
e X, has mean 3,000 and standard deviation 3,000
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e Y, and X have a correlation coefficient of 30%
The basic linear regression model is:

Yi=mX;+b+¢(0,0)

2,000
3,000

m = 30% ( ) =02 b = 2,000 — 0.2(3,000) = 1,400

£(0, 0) is a normally distributed random variable, independent of ¥; and X7, with mean 0 and standard

deviation ¢ =/(2,000)2 — (0.2 X 3,000)2 = 1,908.

The same result can be obtained by solving for the maximum entropy distribution for ¥; and X, both

assumed to be real values, with the following generalized moment constraints:

g X) =Y, E[g.(X)] = 2,000 g.(X) =Y,* E[g,(X)] = 8,000,000
gs(X) =X, E[gs(X)] = 3,000 9.(X) = X,* E[g,(X)] = 18,000,000
gs(X) =YX, E[gs(X)] = 7,800,000

The maximum entropy distribution would be the same as the Bivariate Normal Distribution, since it
can match the given constraints and can be stated in the standard form in (3). The Bayesian calculation

in (16) would then result in the same linear regression model.

However, suppose we also know that ¥; = 0. Now, the normality assumption for ¥; underlying the
linear regression model cleatly is a poor choice. However, the maximum entropy distribution can still
be numerically solved with this extra piece of information by setting up the same moment constraints

equations above, but changing the region of integration for calculating the underlying integrals:
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+00 400

ay = log f f exp (—aiy1 — Apy1? — A3Xy — ayX,? — agy;x;) dxidy,
0 —oo

+00 +00
_ dag _ fo f_oo gi(x1) exp (—azy, — a23’12 —azXy — a4x12 — asy1%;) dx;dy,

| +00 400
; - _ 2 _ _ 2 _
da fo f_oo exp (—a1Xy1 — Ax¥1” — 3X1 — AgX1% — asy1X;) dx;dy,

Numerical root finding leads to:
ap = 16.748 a, = 0.000615231 a, = 1.23815x 1078 az; = —0.000256411

a, = 6.105x 1078 as = —5.49445 x 1078

Figure 7.1 Expected Value of Response Variable Conditional On Explanatory Variable In

Example 7.1
10,000
—Maximum
5,000 Entropy Model
6,000 ---Linear
Regression
4,000 Model ="
E[Y;|x, ] -
’f””’ O
-10,000 -5,000 0 5,000 10,000 15,000
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Figure 7.1 shows how the values for E[Y;|x;], for the two different models, diverge in both the left
and right tails of X;. The maximum entropy model naturally captures effects of the restriction ¥; > 0
but the linear regression model does not. Figure 7.2 shows that for the conditional density
p(y1|x; = —7,000) in the left tail of X; the linear regression model incorrectly shows that Y; is
equally likely to be positive or negative. Figure 7.3 shows that for the conditional density p(yq|x; =
12,000) in the right tail of X; the linear regression model gives almost no probability that ¥; >
10,000, but the maximum entropy model gives 16% probability that ¥; € [10,000 , 20,000].

Figure 7.2 Density Of Response Variable Conditioned On Explanatory Variable = -7,000 In

Example 7.1
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Figure 7.3 Density of Response Variable Conditioned on Explanatory Variable = 12,000 in
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Example 7.1
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GLMs require the specification of a design matrix for the explanatory variables, a link function that
connects them to the expected value for the response variables, and a conditional distribution for the

response variables. When GLMs are fit for maximum likelihood they can be very vulnerable to low

volume erratic observations in levels for certain factors, and incorporating credibility adjustments into
GLMs (random effects, Gibbs sampling, etc.) can be a very awkward and difficult process.

In contrast it can be very straightforward to simultaneously fit a multi-factor model and incorporate
credibility type adjustments when fitting a maximum entropy distribution.
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Example 7.2 Maximum Entropy Multivariate Model With Automatic Bayesian/Credibility
Adjustment

Suppose the following pure loss ratio experience is available for workers compensation insurance:

Experience
Setting Business Type Pure Loss Ratio Volume of Experience
Urban Manufacturing 500% ?
Urban Service 60% ?
Rural Service 0% ?

Although the volume of experience is not known, the following information is given:

e There is thought to be no aggregate off balance, so that the overall expected pure loss ratio is
100%.
e Broader longtime experience has shown that the mean squared error between actual loss ratios

for categories like these and a very good relativity estimate is 1.

A log-Poisson GLM, which has a conditional variance of 1 when the conditional expected value of

the response variable is 1, fairly consistent with the bullets above, produces multiplicative relativity

indications:
GLM Relativity GLM Relativity
Setting Indication Business Type Indication
Urban 2.000 Manufacturing 1.786
Rural 0.000 Service 0.214

This GLM has likely been fooled by randomness, as these values do not seem very realistic. Hopefully,

when final full premium rates are implemented Rural policies will be charged more than $0.

Alternatively, this situation can be approached as a maximum entropy problem as follows. Let ¥; be
the actual outcome losses, X; and X, be random effects corresponding to good estimates for

multiplicative relativities for Setting and Business Type, respectively.

The constraints will be:

gX)=Y, E[lgi(X)]=1 9.X) =X, Elg.(X)] =1
gs(X) =X, Elg:(X)] =1 94(X) = (Y1 — X1 X;)° Elg.(X)] =1
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Setting up these equations involves integration in 3 dimensions:

+00 +00 +00

a, = log f f f exp (—ay1 — X — azxp — Ay (y1 — x1%3)? ) dy dx; dx;
0 0 0

A numerical solution is:

a, = 0.235246 a, = 0.717116 a, = 0.856358 a; = 0.856358

a, = 0.213261

P(Y1, %1, %2) = exp (—ag — a1y; — AxX; — A3X; — aq(Y; — x1x2)2)

So, this gives the joint density of the observed loss ratio ¥; and good estimates for the relativities X;
and X,. In the data table we need to estimate 4 relativities {X;y, X1r, Xom, X25} based on 3

observations. The posterior joint density of these relativities conditioned on the observations is:

q(X1y, X1, X2m» X25) =

p(5, %1y, x21) P(0.6, X1y, X25)P(0, X1, X25)

= TF% 1t ot to
fo fg fo fo P (5, X1y, X2m) P(0.6, X1y, X25)P (0, X1, X25) dX1y dx1g dXopy dXog

The overall mean values for the relativities using this joint density demonstrate a Bayesian/Credibility

type of shrinkage in the relativity indications, and are clearly more realistic:

Max Entropy Max Entropy
Setting Relativity Indication Business Type Relativity Indication
Urban 1.261 Manufacturing 2.644
Rural 0.996 Service 0.438
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The GLM relativities predict a 0% pure loss ratio for Rural Service policies.

Pure Loss Ratio

Setting Business Type | Experience GLM Max Entropy |
Urban Manufacturing 500% 357% 333%
Urban Service 60% 43% 55%
Rural Manufacturing NA 0% 263%
Rural Service 0% 0% 44%

Although this example did not include any volume of experience, that could be used for weights, the
GLM would have still given a 0.000 relativity indication if weights had been available and included in
the GLM run. Some sort of credibility adjustment could have been implemented with the GLM, but
it would have been somewhat awkward and ambiguous to set up given the limited amount of data. In
contrast the Maximum Entropy model was very natural and unambiguous to set up with a built in

Bayesian/Credibility type adjustment.

Figures 7.4 and 7.5 show the marginal densities for the Setting and Business Type relativities,

respectively. The maximum entropy distribution naturally yields the parameter uncertainty of the fit.
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Example 7.2

Figure 7.4 Marginal Densities Of Setting Relativities From Maximum Entropy Approach In
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Figure 7.5 Marginal Densities Of Business Type Relativities From Maximum Entropy
Approach In Example 7.2
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Appendix A - Computational and Software Coding Challenges

Although much more can be done with modern computing power than was possible in the past,
fitting maximum entropy models is still often very challenging because it usually entails solving a set
of highly nonlinear equations. These non-linear equations sometimes contain very lengthy expressions
and usually require integration (or summation) and sometimes differentiation to set up. Numerical
root finders are readily available in many software environments, such as Excel (Solver), R, Python,
MATLAB, etc. Some numerical optimizers, like Google’s Tensorflow, are designed to utilize powerful
Graphics Processing Unit (GPU) hardware. Additionally, symbolic manipulation of complex
expressions, including integration and differentiation, is available in software environments such as
MATHEMATICA and Maple.

Even with modern software and hardware resources, converging on a numerical solution is often
an arduous process involving restatement of the coding of the problem and reselecting initial search
points, even when the problem has a similar form to a previous problem.  Relying on symbolic
manipulation is also undesirable for practical applications. Unfortunately, much of the coding
involved for the examples in this paper is rather messy, complicated and not really standardized to
general classes of problems. So, at present, no code samples are provided with this paper.
Nevertheless, developing software code, preferably for commonly available environments such as
Excel and R, that reliably solves broad classes of maximum entropy problems would provide a very
valuable resource for practicing actuaries. Hopefully, this paper will encourage others to do so and
the author may also pursue developing such standardized software tools.

Nevertheless, here are some tips that were useful in solving for the numerical examples in this
papet.
It is often helpful to solve for the parameters {ag, 4, ..., Ay, } sequentially stepwise. {ag, a;} can
e solve irst, while zeroing out {a,,...,a and ignoring the constraint equations for
b lved fi hil g 2 m d ig g th q f
{g2(x), ..., gm(x)}. Then, this solution can be used as an initial search point to solve for {ay, a,, a;}

while zeroing out {as, ..., @, } and ignoring the constraint equations for {gs(x), ..., gm (%)}, and so
on.

One potentially problematic issue is that numerical root finding software typically uses inaccurate
finite differencing approximations for derivatives, as part of a Newton-Raphson iteration. It is
possible to replace these finite difference calculations with more accurate numerical integrations. We
can restate the problem of solving for the maximum entropy distribution in vector form.

Given:

C=00,c1,. ,ep)and G(x) = (1,91 (%), .. , gGm(x))

Find:

A= (ag, ay, ... ,ay) suchthat [ G(x) exp (—A-G(x)) dx =C.
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This is equivalent to finding a root A for the vector valued function:
V(A) = [G(x)exp(—A-G(x)) dx —C

Newton-Raphson Iteration can be done by first picking a starting point Ay and then iterating
~ ~ -1 ~
Apii =4, — (VA V(A)| gn) V(An). The practical problem comes in when root finding

software attempts to approximate V4 V(4)|z, through small numerical differences.

However, a more accurate approach is to note that:

(V4 V(A))i'j = 0, (j gi(x) exp(—4-G(x)) dx — C)

By differentiating under the integral sign:

= —fgi(x) gj(x)exp(—A . G(x)) dx

It is generally much easier and more accurate to numerically estimate these integrals. If the
limits of integration are unbounded there may be problems with these integrals numerically

diverging for some values of 4, even if a solution exists. So, it may be useful to either limit the
bounds of integration (that is the domain of possible outcomes for the random variable) or limit x
to a finite number of values so that the integral may be replaced with a finite sum.

In some cases, it may be helpful to perform a transformation on A. For example, if G(x) =
(1,x,.. ,x™) and x € (0,+00) then substituting a,,, = exp (b) and solving in terms of B =
(ag,aq, ... ,am—1,b) willkeep the integrals above from diverging. Note that after a substitution
like this, due to the chain rule, the integrals corresponding to differentiation with respect to b will
need to be multiplied by exp (b), specifically:

+o00

(V V@), = —exp () | i) gmCIexp(4- 6() dx
0
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Appendix B — Clarification of Some Confusions of the Maximum Entropy Distribution

Technique With Several Other Distinct Things

Some reviewers of an earlier draft of this paper confused maximum entropy distributions with several
other very different things that actuaries have remained conscious of, and utilized, over the decades
following the 1960s. We will clarify the differences below. It is worth noting that in practice these
other things generally required much lower computational burdens than maximum entropy
distributions, and hence were more practically tractable during this time.

Ordinary Method of Matching Moments

An ordinary method of moments fit of a distribution is not necessarily a maximum entropy
distribution because the selected parametric form to be fit may not be the appropriate maximum
entropy form.

Example B.1

Matching a first moment of 10,000 with the family of Uniform Distributions of with density 1/a for
x €[0,a] and O, results in a = 20,000 and entropy 9.90349, as was shown in Example 1.1
However, the maximum entropy distribution for a non-negative random variable with first moment
of 10,000 is an exponential distribution and has entropy 10.2103

Furthermore, a maximum entropy distribution is not necessarily an example of ordinary matching
moments since the generalized moment functions g; (x) ate in fact very general functions, and
certainly not constrained to be of the form x* for some integer k. More general moment functions
appear in many examples throughout this paper, such as Example 3.1

Exponential Families

It is noted in Section 4 that the maximum entropy form (3) presented in Section 3 is a subset of the
exponential family and the generalized moment functions g; (x) play the role of sufficient statistics
for form (3) when sample data is given. However, the constraints for maximum entropy distributions
may come from any source, such as expert opinion, a priori hypothesis, etc.; not necessarily sample
data.

Many actuaries have encountered the exponential family in the context of Generalized Linear Models
(GLMs) or Exact Credibility, where the greatest accuracy credibility estimate equals the Bayesian
posterior estimate. These contexts all require sample data and parametric family assumptions about
underlying data generating processes, neither of which are required by maximum entropy distributions.
It is also worth noting that the use of exponential families for GLLMs and Exact Credibility, starting in
the 1970s, was highly motivated by reduction of computational burdens in both cases. However, there
was no apparent comparable technique to reduce the computational burdens of maximum entropy
distributions to tractability at that time.
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Model Selection Through Information Criteria

In 1974 the Akaike Information Criterion (AIC) was introduced as an estimator of relative quality
among statistical models fit to sample data ([2]). There is also an important small sample adjusted
version (AICc) ([3]) In 1978 a similar criterion, the Bayesian Information Criterion (BIC) was
introduced ([15]). These criteria are useful for selecting among competing models hypothesized to
underly sample data. We will first recount the definitions of these criteria. Then we will demonstrate
how they differ from maximum entropy distributions with an explicit example. Finally, we will briefly
discuss how the foundations behind how these information criteria were derived differs from
maximum entropy distributions. The derivations of these criteria are very mathematically and
statistically sophisticated. Consequently, we will not attempt to even approach the detail presented in
the original references but will attempt to convey a meaningful general concept of what is going on.

Suppose a sample of data observations {X4, ..., X, } is given, as usual assumed to be independent and
arising from the same underly model. Also, {My, ..., My} is a set of parametric probability distribution
models hypothesized to potentially be the true model M underly the data with {ky, ..., k4 } number of
parameters, respectively. Let {Lq, .., lA,q} be the likelihood function values for the maximum
likelihood estimates of the respective {Ky, ..., k4} parameters of each of the models {My, ..., Mg} fit
to {X1, ..., xp}. The definitions of the information critetia mentioned previously are:

AIC; = 2 k; — 2 Log(L;)

o 2k + 2k,
AlCc; =2k; — 2 Log(Ll-) +m
i

BIC; = Log(n) k; — 2 Log (L)
For each of these criteria the lower the value the better the hypothesized model.
Example B.2

In Example 1.1 no sample data was given, and the competing hypothesized models were fit using
moment matching (1* moment only) with no sample data available. We will now revisit this example
for two different data samples, each having the target moment of mean 10,000. Samples 1 and 2 were
simulated from Wide Uniform Distribution and the Lognormal Distribution, respectively, as given in
Example 1.1 and then each renormalized to have sample mean 10,000. In Table B.1 the distributional
forms from Example 1.1, aside from the Narrow Uniform, are shown with new MLE parameters for
Sample 1 and 2, respectively.
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Sample 1
2593 8679 14482 6228 18704 8007 7201 15804 19077 16323
13049 2496 10996 14183 11122 4822 7586 1190 14617 13185
11883 12326 10106 5147 10931 2028 6930 10831 19905 14175
3183 13533 18013 7577 7260 122 6944 13917 12260 12801
10785 10353 303 15271 7110 5782 20793 13601 15338 2310
13442 10969 2098 19147 13876 10363 19360 3819 4039 17333
3443 5289 13781 941 2447 1463 6538 5956 12488 3688
9485 7195 14626 5589 508 4992 3669 8560 13621 18331
14716 14085 8156 7254 15493 18884 4151 18093 19492 10101
4044 5861 18749 4795 13242 19799 6638 8207 16208 3114
Sample 2

8680 8738 9252 31428 130529 27498 3911 4505 27851 3821
5649 3606 8210 35463 1913 4739 1510 2091 3730 990
4952 21982 1287 8385 2894 3199 20020 11880 39584 481
454 6146 2297 2992 327 4872 34422 6901 8257 9864
3019 4126 3078 2017 3026 9434 6625 10319 2991 1592
1420 5975 5445 9908 2454 2006 615 15717 5517 49731
31062 11831 16390 15383 3006 2328 50596 10474 10083 17470
16103 969 1688 3765 1224 2892 15511 9384 6455 2592
952 727 9276 3108 20191 4123 1081 8776 4138 1003
17033 1286 6546 4754 10562 2868 4123 4625 3580 1717

Table B.1 Distributional Forms from Example 1.1 With Parameters Refit to Samples 1 and 2

ME MLE1 MLE2
Density Density Function Density Function Density Function
Form ’ ’
(Mean = 10,000) (MLE on Sample 1) (MLE on Sample 2)
Wide ! € [0,20000 ! €[0,20793 ! €[0,130529
Uniform 20000 *€M° I 20793 €0 ! 130520 €10 ]
Lognormal
1y (1 2
(forME | &P (— () (7 —10g(10000) + log (x)) > 0.43666 exp(—0.599013 (—8.94021 + log (x))2)| 0.0.348916 exp(—0.382465 (—8.54211 + log (x))?)
V21 * *
c=1)
Exponential 0.0001 exp(—0.0001 x) 0.0001 exp(—0.0001 x) 0.0001 exp(—0.0001 x)
Pareto 2/99
10000 x 107 _199/09 0.772353 x~124177 2.97849 136335
99
(for ME
min loss Min=100 Min = 122 Min = 327
=100)
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Table B.2 Information Entropy of Distributions from Table B.1

Information Entropy Information Entropy Rank
Density Form ME MLE1 MLE2 ME MLE1 MLE2
Wide Uniform 9.90349 | 9.94237 | 11.7794 3 4 1
Lognormal 10.1293 | 10.2688 | 10.095 2 2 4
Exponential 10.2103 | 10.2103 | 10.2103 1 3 3
Pareto 0.58512 | 11.3600 | 10.5545 4 1 2

The Wide Uniform and Exponential each have one parameter to fit. The Lognormal and Pareto each
have two parameters to fit. Table B.2 shows that refitting parameters with MLE results in the form
closest to the underlying data process, the Wide Uniform for MLE1 (Sample 1) and the Lognormal
for MLE2 (Sample 2), having the lowest entropy, or the most information. This makes sense for this
context of fitting to sample data, where the objective is to gain as much information from the data as
possible. However, it stands in stark contrast with the criterion of maximum entropy when the
objective is to simply match to certain generalized moment constraints.

Table B.3 shows AIC, AICc, and BIC calculated and ranked (lowest to highest) for the original and
refit parameter estimates on each data sample. Not surprisingly, all three of the information criteria
produce the same rankings in for each combination of sample data and parameter fits. Here again for
MLE1 (Sample 1) and MLE2 (Sample 2) the forms closest to the underlying data process always rank
1. However, it is worth noting that among the ME fits, simply to mean 10,000 without any sample
data, the maximum entropy distribution, the Exponential Distribution, ranks 1* for Sample 1 and 2™
for Sample 2. Furthermore, when the sample is mismatched with the MLE fit, as with MLE1 (Sample
2) and MLE1 (Sample 1) the Exponential, which still has the same parameter value being the maximum
entropy distribution for the sample mean, ranks 1st. When the MLE is matched to its sample, MLE1
(Sample 1) and MLE 2 (Sample 2), the Exponential ranks 2.
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Table B.3 Information Criterion Calculated For Distributions From Table B.1 On Samples 1

and 2
Sample 1 AIC AIC Rank
Density Form ME MLE1 MLE2 ME MLE1 MLE2
Wide Uniform Infinity 996.2 1179.9 4 1 3
Lognormal 1034.3 1030.9 1041.3 2 3 2
Exponential 1023.0 1023.0 1023.0 1 2 1
Pareto 1334.9 1140.0 | Infinity 3 4 4
Sample 1 AlCc AICc Rank
Density Form ME MLE1 MLE2 ME MLE1 MLE2
Wide Uniform Infinity 996.3 1180.0 4 1 3
Lognormal 1034.4 1031.0 1041.4 2 3 2
Exponential 1023.1 1023.1 1023.1 1 2 1
Pareto 1335.0 1140.1 Infinity 3 4 4
Sample 1 BIC BIC Rank
Density Form ME MLE1 MLE2 ME MLE1 MLE2
Wide Uniform Infinity 998.8 1182.5 4 1 3
Lognormal 1039.5 1036.1 1046.5 2 3 2
Exponential 1025.6 1025.6 1025.6 1 2 1
Pareto 1340.1 11452 | Infinity 3 4 4
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Table B.3 Information Criterion Calculated For Distributions From Table B.1 On Samples 1

and 2 (continued)

Sample 2 AIC AIC Rank
Density Form ME MLE1 MLE2 ME MLE1 MLE2
Wide Uniform Infinity | Infinity 1179.9 4 4 4
Lognormal 1016.9 1028.9 1013.5 1 2 1
Exponential 1023.0 1023.0 1023.0 2 1 2
Pareto 1254.9 1090.6 1059.4 3 3 3
Sample 2 AlCc AICc Rank
Density Form ME MLE1 MLE2 ME MLE1 MLE2
Wide Uniform Infinity | Infinity 1180.0 4 4 4
Lognormal 1017.0 1029.0 1013.6 1 2 1
Exponential 1023.1 1023.1 1023.1 2 1 2
Pareto 1255.0 1090.7 1059.6 3 3 3
Sample 2 BIC BIC Rank
Density Form ME MLE1 MLE2 ME MLE1 MLE2
Wide Uniform Infinity | Infinity 1182.5 4 4 4
Lognormal 1022.1 1034.1 1018.7 1 2 1
Exponential 1025.6 1025.6 1025.6 2 1 2
Pareto 1260.1 1095.8 1064.7 3 3 3
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Example B.2 illustrates the difference between selecting generalized moment constraints, even if
sample data is available, and determining the maximum entropy distribution, versus postulating several
different parametric forms, MLE fitting the parameters, and then ranking them according to
information criteria. Interestingly, the maximum entropy distribution fit, independent of any sample
data, to a mean of 10,000 actually ranked very well on these two samples, both having mean 10,000
but otherwise being very different.

AIC, introduced in 1974 ([2]), derives from a Frequentist philosophy utilizing Information Theory.
Specifically, AIC derives from an asymptotic (as n — ) estimate of the Kullback—Leibler (K-L)
divergence (also called relative entropy), between the true underlying distribution for sample data and
a hypothesized parametric model. The K-L divergence was introduced in 1951 ([11]) as a type of
generalization of information entropy. Akaike had earlier pointed out a relationship between
Maximum Likelihood Estimation (MLE) and the K-L divergence ([1]). Among competing
hypothesized models, the lower the K-L divergence the better, as it indicates a likely lower information
difference between a hypothesized model and the true distribution. AICc is based on the same
foundational reasoning, with the addition of a correction term to improve accuracy for small data
samples. For a true underlying distribution model P with density p(x) and a hypothesized distribution
model P with density q(x), the K-L divergences is defined as:

DKL(PHQ) :H(P,Q)_H(P’P)

where H(P, Q) is the cross entropy, defined as:

HP,Q) = — f Log(4(0)) p(x) dx

For the special case when the distributions P and Q ate equal, the cross entropy H(P,P) is the
information entropy of a distribution, as used throughout this paper. Akaike derived the asymptotic
estimate:

D, (M|IM;) = k; — Log(L;) + Constant
Dropping the constant and multiplying by two, an arbitrary convention, leads to:

AIC; = 2 k; — 2 Log(L;)

BIC was introduced by Schwarz in 1978 ([15]), deriving from a Bayesian framework without utilizing
Information Theory. In this framework a number of competing models are assumed to have the same
probability, prior to any observed data. BIC is asymptotically related to the logarithm of the Bayes
formula updated probabilities for each model M;, posterior to data being observed, is derived.
Schwarz derived the asymptotic estimate:
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- k;
Log(Probability[M;|data]) = Log(L;) — ELLog(n) + Bounded Term

Dropping the bounded term and multiplying by -2 leads to the BIC criterion that can be used in the
same way as AIC or AICc, as previously given:

BIC; = Log(n) k; — 2 Log(L;)

So, although rooted in a Bayesian framework, BIC is also used to select among competing models in
a Frequentist framework. It has also been noted that AIC can be derived in a similar fashion starting
with a different prior distribution on the competing models ([4]). Alternatively, competing models
could be weighted together in a Bayesian framework, based on posterior probabilities derived from
prior probabilities related either to AIC or BIC.

Whereas maximum entropy distributions do not even require sample data or hypothesized parametric
models, these information criteria require both. When both sample data and hypothesized parametric
models are given, the maximum entropy distribution selected to match the sample value of a selected
generalized moment function may be different from the model selected by these information criteria.
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Evolving Estimation Methodology

Charles Stein startled the statistical world with his 1956 paper “Inadmissibility of the usual
estimator for the mean of a multivariate distribution.” (Stein (1956)) He showed that when
you are estimating more than two elements, shrinking their estimates towards the overall
mean always reduces estimation error compared to MLE. The resulting James-Stein estimator
is the same as the least-squares credibility estimator. The 1979 Morris and van Slyke CAS
paper — also at Morris and Van Slyke (1978) — discussed the connection. A famous example

is estimating seasonal batting averages for a number of batters from their July 4 averages.

Any kind of regression or linear model is estimating means for a vector of observations, but it
was not so clear how to apply James-Stein/credibility shrinkage without having the variances
of the observations — the process variance. Several years later, a form of shrinkage called
ridge regression was developed. Instead of minimizing the negative loglikelihood (NLL) it
minimized NLL +XY 3%, where the §3; are the coefficients. Hoer]l and Kennard (1970) proved
that there is always some A > 0 that makes the estimation error for this less than for straight
MLE. This starts with linear transforms of the independent variables to make them each
mean zero, variance one, which makes the parameter sizes comparable across the variables.
The constant term (which is not included in the parameters being shrunk) and the coefficients
adjust to compensate for the linear transforms. Each fitted value is the constant plus a linear
combination of mean zero variables, so the constant is the overall mean, and the fitted values

are shrunk towards that.

Demoment (1989) introduced lasso, which minimizes NLL +A 3" |5;|. This makes some of
the coefficients exactly zero (all of them if A is high enough), so is also a means of variable
selection. This makes it popular, and it is largely replacing MLE for linear modeling. The
problem is how to pick A. The preferred method has become cross validation, which comes
down to dividing the data into subsets which are left out one at a time and the NLL measured
on the model estimated on the remaining points in turn. Adding up these left-out NLL pieces
gives a penalized NLL which is used to find the best .

These methods are forms of regularization, which is a more general mathematical approach
for reducing errors in difficult estimation problems, from Tikhonov (1943). (The rather
uninformative name for this was an approximate translation from his original Russian.) Ridge
regression started as a method for correlated data, which has some difficulties of its own.

There was actually something resembling a ridge of artificial data used in that.

Bayesian shrinkage produces similar results. It starts with giving each parameter a shrinkage

prior, which is a mean-zero, mode-zero prior like the standard normal. These pull the posterior
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estimates towards zero, just like A does in lasso and ridge regression. The Bayesian approach
has a big advantage in that there are applicable goodness-of-fit measures like loo and WAIC,
discussed below. Measures like AIC, etc. don’t work because the shrunk parameters don’t

act as whole parameters, but what fraction to count is not apparent.

Random Effects Ties It All Together

The literature on random effects can be confusing and sometimes inconsistent. I take off from
the setup in Klinker (2011). Bayesian and classical shrinkage have a lot in common, but they
have a philosophical difference in that in classical statistics parameters are constants, but for
Bayesians they have distributions. A link is provided by frequentist random effects. There
you have a collection of statistical effects across a population — such as differences in accident
frequency from the state mean by territory — that are assumed to average to zero. These
look like parameters to Bayesians, but frequentists allow effects, but not parameters, to have
distributions. With mean zero, their distribution across the population could be described by
a single dispersion parameter, like the normal o. Forms of this reproduce ridge regression and
lasso estimates. (Most papers assume the effects to be normally distributed, but this is not a
conceptual limitation.) Random-effects estimation and Bayesian shrinkage do not require all

effects to have the same distribution, or to be independent, but I assume those here.

To see how this works, assume that the effects are double exponential (Laplace) distributed
in A. This is a distribution that looks like an exponential for positive values, and its mirror

image over the y-axis for negative values. The density for an effect § is
F(BIA) = 0.5xe= N7

This has variance = 2/A? and kurtosis = 6. Say there are k random effects ;, plus perhaps
other parameters, including A. One way to simultaneously estimate the parameters and
project the effects is to maximize the joint likelihood, which is the likelihood of the data,
given the parameters and the random effects, times I1f(3;|\), the probability of the effects.
The negative of the log of f(5;|A) is just log(2) — log(X) + A|B;|. Then maximizing the joint

likelihood becomes minimizing
NLL+ X)) |8;] — log(A\)k

For a fixed value of A, the last term does not affect the minimization. The result is the lasso
minimization formula, here used for the projection of the random effects. The value of A
produced by the minimization including the —log(A)k term gives the random-effects estimate

of )\ as well.
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This connects with the Bayesian approach. For data X and parameters (3, Bayes Theorem is:

p(X[8)p(5)

p(B1X) = (X)

The left side is the posterior distribution of the parameters given the data, and the numerator
of the right side is the likelihood times the prior. Here the ( are parameters, but this
numerator is the same mathematical formula as the joint likelihood in the random effects
case, where the (3 are effects, not parameters. The denominator p(X) is a constant for a
given dataset, so maximizing the numerator maximizes the posterior. Thus the random
effects solution gives the Bayesian posterior mode, and if the Laplace prior is used for the
parameters, it gives classical lasso. This is why the use of the Laplace prior is called Bayesian

lasso. A normal distribution for the random effects gives ridge regression.

Bayesian Markov Chain Monte Carlo (MCMC) estimation simulates a numerical sample
from the posterior distribution of parameters by sampling from the joint likelihood — the
numerator of Bayes Theorem — using sampling methods like the Hastings-Metropolis sampler
or the Gibbs sampler. These are efficiency improvements over the original MCMC sampler
that generates a sample from the previous sample. It has a candidate generator, and if the
candidate sample improves the joint likelihood, it is retained. If not, a test on a random
draw is done to keep it or not. It has been proved that after a burn-in period the sample is

representative of the posterior distribution.

One detail here is that in the Bayesian case the optimization works as discussed above for
a fixed value of . If \ is to be estimated as well, it also must be given a prior. If it has a
uniform prior = U over some interval, then a term = —log(U) is included in the log of the
prior. But since that is a constant, it does not affect the minimization, and so the posterior
mode is still at the minimum of NLL 4+ A Y |5;| — log(A)k from random effects. Other priors
might give better estimates of A\, however. Note that as A\ increases, the parameters are
pushed more towards zero to compensate, but that makes the NLL get higher. At the same

time, —log(A)k is decreasing. Thus at some point they all balance at a minimum.

An increasingly popular shrinkage prior is the Cauchy distribution, with 1/p(3) = 7(A\2+3%)/)
and —log(p(B)) = —log\ + logm + log(\* + 3?). For a fixed A, the posterior mode minimizes
NLL+ 3 log(\* + 5]2) This is an alternative to both lasso and ridge regression. The Cauchy
prior often yields more parsimonious models than the normal or Laplace priors do. It can have
a bit better or bit worse penalized likelihood (see discussion below), but even if slightly worse,
the greater parsimony makes it worth considering. It has more weight near zero but is also

heavier tailed, which pushes parameter more towards zero, but allows a few larger parameters
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when they are called for. It also seems to produce tighter distributions of parameters.

The frequentist approaches (random effects, ridge regression, lasso) are all calculations of the
posterior mode, which is a drawback, as there are some advantages of the posterior mean over
the posterior mode. The parameters that maximize the posterior probability could be doing
so by over-fitting the particular sample. This is sometimes described as fitting the sample
vs. fitting the population. Too good a fit for the sample might be responding to particular

features of that sample that would not hold for future samples.

The posterior mean averages all parameter sets that provide a plausible explanation of the
data. The posterior mean does not optimize a comparison of actual vs. fitted values — in fact
any such measure runs the risk of sample bias. It does minimize the squared difference of
actual vs. estimated parameters. The posterior mode optimizes what could be called the
lottery number measure for parameter error: all deviations from the exactly right parameter
set are equally bad. But for parameters, even though not for the lottery, getting closer to the
right answer is advantageous, so the mode is less appealing. Below I use the posterior mean,
not the posterior mode, for the parameter estimation, so this does not agree exactly with

classical lasso, etc. I do test different priors and different approaches for estimating .

All in all, random effects gives frequentists the ability to use a Bayesian-like framework without
having to recognize parameter distributions. They start with a postulated unconditional
distribution of effects, and project the effects from the data. There does not seem to be any
reason that they could not also use MCMC to sample from the conditional distribution of the
effects given the data, which would let them use the posterior mean instead of the posterior

mode, but I haven’t seen them actually do that.

Choosing )\ and Goodness of Fit

How much shrinkage to do is usually selected using cross-validation: you divide up the data
into subsets, fit using all but one subset, compute the NLL on the left out subset, repeat for
each subset, and add up the NLLs. If resources are available, the limiting case of making each

observation a subset seems to be preferred. This is called leave-one-out (loo) cross validation.

The sum of the individual NLLs from loo is known to be a good way to correct the NLL for
sample bias — which is what penalized likelihood measures like AIC, BIC, etc. are trying to do
as well. They are trying to estimate what the NLL would be for a new sample from the same
population. But penalizing based on parameter counts doesn’t work with shrinkage. If the
estimation is overfitting, shrinking the parameters will reduce the overfitting but will increase
the NLL as well. AIC etc. will not change the penalty in response to the shrinkage, but loo

will. Thus it is a goodness-of-fit measure that still works fine with parameter shrinkage. It
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stops improving when too much shrinkage deteriorates the NLL on the omitted points. Thus
it provides a way to determine how much to shrink. (There is another goodness-of-fit measure
called WAIC that also uses MCMC output. The loo measure has some minor technical

advantages for some models, but the two measures generally rank models the same.)

The R lasso package glmnet is very fast and might make a grind-out calculation of loo
feasible computationally for lasso. For MCMC, Gelfand (1996) developed an approximation
for an omitted point’s likelihood from an estimation for all the points, using the numerical
integration technique importance sampling. This estimates a point’s left-out likelihood by a
weighted average likelihood across all the samples, with the weight for a sample proportional
to the reciprocal of the point’s likelihood under that sample. That gives greater weight to the
samples that fit that point poorly, and is a good estimate of the likelihood the point would
have if it had been left out of the estimation. This estimate turns out to be the harmonic
mean over the samples of the point’s probability in each sample. Then the MCMC sample of

the posterior distribution is enough to calculate the loo goodness-of-fit measure.

This gives good but volatile estimates of the loo loglikelihood. Vehtari, Gelman, and Gabry
(2017) addressed that by a method similar to extreme value theory — they fit a Pareto to
the probability reciprocals and use the Pareto values instead of the actuals for the largest
20% of the reciprocals. This “Pareto-smoothed importance sampling” has been extensively
tested and is becoming widely adopted. Their penalized likelihood measure is labeled e@a\dloo,
standing for “expected log pointwise predictive density.” Here I call —efﬁdloo simply loo.

There is an R package called loo that does this calculation quickly on MCMC output.

The fact that this is a good estimate of the NLL without sample bias comes with a caveat.
The derivation of that assumes that the sample comes from the modeled process. That is a
standard assumption but in financial areas, models are often viewed as approximations of
more complex processes. Thus a new sample might not come from the process as modeled.
Practitioners sometimes respond to this by using slightly under-fit models — that is more
parsimonious models with a bit worse fit than the measure finds optimal. BIC was designed

for this kind of situations as well, and it also leads to more parsimonious models.

Some analysts choose the variance of the shrinkage prior — like the double exponential prior —
by maximizing loo under various degrees of shrinkage. But statisticians are coming to view
this too as exposed to overfitting — the optimization is still responding to the particular
sample. The fully Bayesian solution is to use the posterior mean with another prior placed
on A itself. This usually gives a value of loo close to that from direct optimization, but is felt

to provide a more reliable result. This is the method used below.
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In summary, the advantages of the Bayesian approach are:
o It facilitates calculation of a penalized likelihood measure based on cross validation.

o MLE has Fisher information for parameter uncertainty, but this is not convenient with

shrinkage. MCMC automatically generates parameter distribution samples.

« The Bayesian approach can also incorporate a prior for A, which both estimates A and

samples from a range of A values instead of just a single .

o The frequentist methods end up with the posterior mode, which runs more risk of

overfitting. The posterior mean is available from MCMC.

o« MCMC packages facilitate using residual distributions inside or outside of the exponen-
tial family and can also estimate more complex model formulations — like a combination

of additive and multiplicative models.

Moving from GLMM to MCMC

Venter, Gutkovich, and Gao (2017) is a discussion and attempt at using GLMM in standard
software packages. It is by a group from the model validation area of AIG who were validating
a reserving package by Spencer Gluck that extends his well-known generalized Cape Cod
model to include diagonal effects, with the smoothing done by random effects. (Actually it
was an anonymous referee from the Committee on Review of Papers who noticed that what

Spencer was doing was essentially random effects — actually with correlated effects.)

We started using random effects programs with the default assumption that every random
effect has its own variance. We found by an extensive fitting approach similar to classical
loo that all these variances act as real parameters that pulled the data strongly towards the
sample values. This prevented much actual parameter reduction — but it looked like there
was a lot if you just looked at the non-variance parameters. We also found that including the
many variances created an estimation problem when parameters got near zero — the likelihood
gets very large if the projection and its variance both go to zero. The packages deal with this
in ad hoc ways, apparently dropping such parameters by unstated rules. We decided to just
use a single variance for all the effects, which we then found out came down to lasso and ridge

regression. This led us to Bayesian implementation later on, as we discovered its advantages.

Fitting Plan

The data for the class ratemaking examples comes from Fu and Wu (2007). It is for auto
collision, and has total losses and exposures for 8 age classes, 4 use classes, and 4 credit score
ranges. It also has a different data set with average severity by these classes but with no

credit scores. The modeling is in a few stages.
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t with 6 dof vs Laplace with Matching Variance and Kurtosis
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Figure 1: Scaled t with » = 6 and Double Exponential with Moments Matched

0 Preliminaries

Lasso, MLE regression, and Bayesian lasso are compared using a simplified model.

1 Warmup Model

This uses the less-detailed data to model severity with both an additive and a multiplicative
model. The design matrix starts out having a constant plus a parameter for all but one
level for each variable. Some variables might be eliminated in the estimation. Cauchy and
double-exponential priors are used. The Cauchy is just a t distribution with 1 degree of
freedom. The double-exponential has the same kurtosis as the t with 6 degrees of freedom,
so is lighter tailed. The variance of this t and the double exponential can be matched using
the scale parameters, and the odd moments are 0, so the existing moments of this t are all

the same as the double exponential. The densities are graphed on a log scale in Figure 1.

Severity

You can’t expect a good estimate for a severity distribution from just the sample mean. All
you have on the dispersion of the losses is the degree to which the cell sample means differ
from the fitted means. Still you can see the impact of the classification variables on average
severity. Also there are some distributions for which the total losses and number of claims
will give some information about the distribution. Consider the gamma distribution with
mean = ab and variance = ab®. Assume cell; severity is distributed Gammala;, b;]. Given n;

claims, the sum of the claims is then distributed Gammaln;a;, b;]. For the gamma, b is a
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scale parameter, so dividing the variable by a constant gives the distribution with b divided
by that constant. Dividing the sum of claims by n; gives the sample mean severity, and this
is thus Gammal[n;a;, b;/n;]. It has mean a;b; and variance a;b7/n;. Thus if you only have
the claim counts and sample means for each cell, and fit a Gammala;, b;] distribution for
cell;’s sample mean, the severity distribution for the cell is Gammala;/n;, bjn,], so you have

estimated that as well. The normal and inverse Gaussian distributions work similarly.

A simplifying assumption for estimating the severity mean parameters by cell is to assume
that either the a or the b parameter is constant across the cells. For severity, a constant a is
more likely to give a better fit of the model to the data, as then the variance is proportional
to the square of the mean. The a parameter will not be shrunk, so its prior will be uniform
in its log. The severity mean will be the fitted shrunk independent variable parameters times

the row of the design matrix for that cell.

The normal can also be parameterized to have the variance proportional to the mean-squared,
just by using another unshrunk parameter s, and replacing o everywhere with su. This is
a typical sort of heteroscedasticity adjustment. This will have similar severity mean and
variance to the gamma distribution, but with zero skewness. The observed sample mean from

n; claims is now normal in [u;, mu; \ﬂnjs)]. Its fit can be compared to the gamma’s by loo.

The inverse-Gaussian distribution usually is parameterized with mean p and variance p3/¢. T
prefer a slightly altered version with 1 = ab and ¢ = a?b. This gives variance ab? just like the
gamma. Its big advantage is that the sum of claims has parameters [n;a;, b;], just like the
gamma. [t has skewness 3CV, compared to 2CV for the gamma. Thus it is just a bit more
skewed gamma. This is a GGLMM distribution but not a GLMM distribution. It might
be too skewed for collision data, but at the end of the severity-distribution example for the
smaller dataset it is compared to the other distributions using loo, again assuming variance

is proportional to mean-squared, so a is fixed across the cells.

2 Full Model

This data includes credit scores, and has total losses and exposures by cell. Multiplicative
and additive models are fit to this, with a constant and a parameter for each level of each
variable — leaving out one level of each variable for identifiability. The mean is the base
pure premium for one unit of exposure for each cell. The data gives the exposure by cell, so
multiplying this by the base pure premium gives the mean for the aggregate losses for the

cell.

2a Residual Distributions

The starting point for the distribution of residuals for aggregate losses is the gamma, now
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with b fixed across the cells. This has variance proportional to the mean, like the ODP
has, and usually works reasonably well for aggregate losses. (Fixing a is usually better for
severity, as then variance is proportional to mean squared.) Then a few residual distributions
are compared. GLM uses a variance function that expresses the variance as a function of
the mean. It can further adjust the cell means by an exposure measure. In his review of
the Fu-Wu paper that this data comes from, Mildenhall suggests making the cell variance
V; =V (u;)/e}, where V is the variance function, e; is the cell exposure, and k is a selected

adjustment power. Here we can try estimating k as a parameter.

In GGLMM you can parameterize some of this. I try setting V(p;) = s,u;i“ and estimating
s, k as unshrunk parameters with log uniform priors on the reals. This can be used for any
distribution. For a gamma or inverse Gaussian with mean = ab and variance = ab?, Stan can
be set up to solve for a, b for a cell by taking b; = V;/p; and a; = p5/V;. With this done, the
variance and mean are specified by the linear model before the making choice of distribution.
The distribution can then be selected based on other shape characteristics, such as skewness,
using loo to indicate the best fit. This is more flexible than with GLM, where the variance

function determines which distribution to use.

To start with I use the Gaussian, gamma, and inverse Gaussian distributions. A combination
of the Gaussian and inverse Gaussian distributions — just a weighted sum of the two — can
provide a lot of flexibility in the skewness, ranging from 0 to 3CV. Depending on where the
skewness seems to be, weighting the gamma with either the normal or the inverse Gaussian

is another alternative.

The Weibull is interesting as its skewness can be fairly high or even negative, depending on
the mean and variance by cell. Unfortunately you cannot solve for its parameters from the
moments in closed form, although it only takes solving a single non-linear equation to match
mean and variance. Stan has some built-in functionality for solving specified equations, which

I try for the Weibull.

The moments are simplified by using the Weibull parameterization
F(x) =1~ exp[—(z/)""]

Then using the notation n! = T'(1 + n) even for real n, EX = alb, 1 + CV? = (2a)!/a!?, and
skew x CV?3 = (3a)!/a!® — 3CV? — 1. The skewness can really blow up for big CV — think of
a = 10. Then (3a)! is the product of 1...30, while a!® is the product of 1...10 3 times. Also
the skewness is negative for low CV — but never seems to get as low as —1.2. Figure 2 graphs

the skewness as a function of the CV, and compares to the gamma skewness, which is 2CV.
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Gamma and Weibull Skewness as Function of CV
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Figure 2: Weibull and Gamma Skewness

The Weibull is fairly different, which is sometimes better and sometimes not.

3 Extensions

This step includes some alternatives and extensions.

3a Interaction Terms

Add interaction terms between age and use. Give each combination its own dummy variable,
just leaving out enough to prevent a singular design matrix. Many of these parameters would
be expected to shrink to zero. An efficient way to eliminate some of them is classical lasso.
This is easiest if run with normal distributions, so as a quick estimate it will be run on the
logs of the class losses (leaving out zeros). It does the estimation for about 100 values of A of
its choosing — in a wider range than would be selected in the end. As a starting point, take a
A that is fairly low, so it does not eliminate all of the interaction variables, and use whatever
interactions that remain and put them in Stan for Bayesian estimation. Then eliminate any
of those that have parameter means near zero with a wide range around that. Compare to

the loo of the previous model.
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3b Smoothing the Factors

Keep the interaction terms if they improve the fit. Then try fitting a piecewise-linear curve
to the parameters (logs of the factors) by type — age, use, or credit. That can be done by
making the fundamental parameters the slope changes of the piecewise-linear curves through
the original parameters. The slope changes accumulate to the slopes, which accumulate to
the original parameters. Dummy variables for the slope changes thus count how many times

that slope change gets added up for a particular cell. More detail will be in the report.
If this improves loo, keep that model.

3c Incorporate an Additive Component

Estimate an additive adjustment to the factor model for every rating variable that has a factor.
This can be done by duplicating the design matrix and adding columns to the design matrix
for each new parameter. The factors and additive terms would be estimated simultaneously.

Many of them would likely shrink to zero and thus could be eliminated.

Preliminary Fitting — Simple Severity Fit Methods Comparison

For some perspective on the estimation methods, first we can look at fitting a normal
distribution severity model to the simpler data set, which has 8 age groups and 4 use
categories — business, long commute, short commute, and pleasure only. Regression, lasso,

and Bayesian lasso estimation are compared.

Regression starts by putting all the observed data points to be fit into a column vector, and
then making a design matrix with a column for each explanatory variable. Here the variables
were every age group except 17-20, which is the base, and the uses except for Pleasure. There
is a constant term in the models but the design matrix does not need a column for that in
the packages used here. For now each variable is treated as categorical, not numerical, so the
columns are just (0,1) dummy variables. For instance, the third age group would have a 1 for

every observation in that group, and a 0 everywhere else.

The code for these fits is in Appendix 1. The read excel function helps read Excel files. The
data vector is a column in a file called z_small.xIsx, and the design matrix is in x_small.xIsx.
These are put into a vector variable y and a matrix x. But the regression package Im needs
x to be a data frame, where the lasso package glmnet and the Bayesian package stan are
looking for x to be a matrix. So it has to be read in twice, depending on what you are going
to do with it.

Variable selection for straight regression involves taking out insignificant variables, usually
with reference to the t-statistic, which is the ratio of the variable’s estimate to the standard

deviation of the estimate. Usually t > 2 is regarded as good, but many practitioners doing
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Table 1: Regression and Lasso Output
Variable regr full t lasso min lam=2.2
(Intercept)  328.16  6.949 249.17983
a2 -98.50 -1.729
a3 -107.00 -1.879
a4 -112.00 -1.966 .
ab -179.25 -3.147 -64.71981

a6 -141.75 -2.489 -27.22082
a7 -140.75 -2.471 -26.22118
a8 -144.00 -2.528 -29.47190
u2 18.38  0.456 .
u3 52.00 1.291 25.23618
u4 182.00 4.519 155.23635

actual work, as opposed to publishing, will accept a smaller t, maybe down to 1.5. Starting
from this perspective, Table 1 gives the regression results for the full regression and some
lasso output discussed below. All the age variables had reasonably high t-statistics, but both

drive-to-work use classes had pretty low t’s. The regression was re-run leaving these out.

Lasso for a normal distribution is the default setting of the glmnet package. This does the
estimation for a selection it makes of up to 100 A\ values. It produces a plot of the coefficient
values for these As — see Figure 3. As A\ decreases, the number of parameters in the model
increases (top axis), as does the L1 norm — the sum of the absolute values of the coefficients
(bottom axis). Here the base use is Pleasure, so the use parameters are all positive, where

the base age is the youngest, and the age parameters are all negative.

The cv.glmnet function does cross validation. It divides the dataset up into subsets — maybe
10 of them — and leaves these out one at a time and looks at how well they are then predicted
by the model fit without them. The only output I am using from this is lambda.min, which
is the smallest value of A, giving the most variables in the model, deemed worth using based
on their default option for k-fold cross validation. The coefficients for this value (A = 2.2
here) are in Table 1. These are a lot smaller than the regression gives, which is due to the
parameter shrinkage. All of the age groups with t<2 in the regression were left out, but the

drive-long class was retained, even though the t for this was low.

Appendix 2 has the Stan code for this regression example. The data section at the top reads
in variables that have been defined in the R session. Much of the code is just defining the
variables, which has to be done for Stan to compile the model into C code. The prior for
every parameter is assumed to be uniform over its defined range, unless otherwise specified

in the model section. The log of the constant term here is uniform on [-10, 10]. The log of
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Figure 3: Lasso Shrinkage Graph
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the shrinkage parameter s = 1/ is made to be positive just because there were convergence

problems otherwise. For other applications this parameter has been lower.

For positive parameters, I prefer to start with a distribution proportional to 1/x. This
diverges both as x gets small and as it gets large, so it gives balancing strong pulls up and
down, whereas a positive uniform distribution diverges upwardly only. As an example where
the integral is known, consider a distribution for the mean 3 of a Poisson distribution with
probability function proportional to e=?$*. With a uniform distribution for 3, which is
proportional to 1, the conditional distribution of g given an observation k is also proportional
to e ?$*, which makes it a gammma in k+1 and 1, with mean &+ 1. But if the distribution of
3 is assumed proportional to 1/f3, the conditional is proportional to e=? 351 which makes it
a gamma in k, 1, with mean k. Thus the 1/ unconditional distribution takes the data at face
value, whereas the uniform pushes it upwards. Numerical examples with other distributions
find similar results. In practice, giving the log of a variable a uniform prior gets the same

result but is slightly easier to implement.

A big advantage of Stan, and MCMC in general, over lasso is that it comes with a penalized-
likelihood goodness-of-fit measure, loo. This is a cross-validation measure. It calculates the
NLL for every point given a fit that used all other data points but not that one. This gives a
good estimate of what the NLL would be on an entirely new sample — the population NLL

as opposed to the sample NLL. This is a measure of the predictive power of the model.

Although MCMC does not eliminate parameters the way lasso does, it outputs range estimates
for every parameter. If a parameter mean is close to zero, with a wide range, it is a candidate
for removal from the model. I first try leaving these parameters out then seeing the effect
on the loo measure. If it is better, or at least not worse, I leave them out. Eliminating the
parameters with means near zero does not usually improve loo very much, but it does simplify
and clarify the model. The main point is not to eliminate parameters that are improving the
predictive accuracy. This exercise eliminated all but three variables — driver age 35-39, long

drive to work, and business use.

This was fewer than lasso had, but not really that different. Lasso also had a small effect for
ages above 39. Still neither had much age impacts except for 35-39. The predictive value of
the other ages was found to be low by these approaches. This data is for physical damage
severity, which might not vary by age as much as frequency does. Also value of the vehicle is
not controlled for, and the ages with better drivers could also be those with more expensive

cars. Vehicle value could also be a factor in the higher severity for business use.

Figure 4 shows the actual and fitted values for each age-use cell, on a log scale. There is a
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Figure 4: Severity Fits by Age and Use

line for each use class — with dotted lines for the actual data, and the age groups are on the
x-axis. Each estimation method gets its own panel. One sort of outlier point is key to watch —
business use for ages 17-20. This had average severity of almost 800 on 5 claims. The next
highest average severity was 367 for business use for ages 30-34, with 169 claims. In later
models, the number of claims will be used as input for the variance of the severity numbers,
but that is not part of this model. So it is interesting to see how the different estimation

methods are influenced by this cell.

The regression estimate combines the other three use classes. It gives the 17-20 group a
higher severity overall, even though this does not show up in the other uses. The lasso and
Stan estimates combine pleasure and short drive uses, but keep the long drive class higher.
Neither makes the age 17-20 age higher than those near it. Apparently there is no predictive
value for omitted observations in doing so. All the estimates make the age 30-34 group lower.
You can see that the lasso estimates are a bit lower for the older ages, while Stan is not. The
lasso A was not really optimized — there is no real way of doing this — so it is hard to evaluate

what it is doing. The regression estimates get lower in general for older ages.

Once the variables that improve predictive accuracy have been identified by loo, it is usually
possible to find a model with just those variables by regression or lasso. For regression, this
just requires using those variables. For lasso, the coef function shown in the code gives the
implied coefficients for any value of A input. Lasso and Stan often rank coefficients the same,
so that some value of A in lasso will give the same variables as the method outlined for

Stan. The lowest value that chooses the same variables in this case is 4.3. This has the least
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Table 2: Stan Regression, and Lasso Coefficients for Three Variable Model
Stan Regression Lasso

Constant 236.2 231.6 243.3
ab -50.3 -73.1  -33.7
ud  28.0 42.8 8.4
u4 151.0 172.7 138.4

shrinkage among the As giving those variables. This has more shrinkage than the Stan model,
whereas the regression has less shrinkage. Table 2 shows the coefficients for each model. The
coefficients here tend to be positive, so the more shrinkage the coefficients get, the higher the

constant is.

The mean s parameter in the Stan fit is 121, which does not give a lot of shrinkage. It might
be equivalent to 0.8 for glmfit, where lambda.min was 2.2. But the variables were selected
by cross validation with loo by taking out any variables that did not make loo worse. The
remaining variables thus all improve the predictive value of the model. Then the shrinkage
was determined by the Bayes estimate for s in the model with those variables. The shrinkage
actually was less once more variables were eliminated. Still it shows some shrinkage compared
to the regression. Lasso, on the other hand, needed more shrinkage to get down to those

specific variables, and this is reflected in the lasso coefficients.

A couple of take aways from this are first, that the t-statistic in regression does not select
variables that stand up under cross validation. Both Stan and lasso, with different cross-
validation methods, eliminated a4, which has a t of -2.0, and they both kept u3, with a t
of 1.3. Second, while lasso both shrinks coefficients and selects variables, these two tasks
are not as compatible as they might seem. Stan with loo uses cross validation to show the
useful variables, and then shrinks by the posterior of the shrinkage level s. Lasso determines
both variable selection and shrinkage by A alone, which does not allow this flexibility — and

without a clear way to determine X in the first place.

From here on I will use Stan for the fitting. Recall that this is a kind of credibility approach —
estimates are shrunk towards the overall mean. Here that is based on predictive accuracy as

opposed to the variance components that credibility uses, but the results are similar.

Distribution Choices

Stan is also quite flexible on distributions. As an example, I fit a gamma instead of normal
to this same severity data. The gamma in a,b with mean ab and variance ab? can start with
a b; parameter for every cell with a fixed, which makes the variance proportional to the mean

squared, or with an a; for every cell and b fixed, which makes the variance proportional to
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the mean. With the same variables as above, the b form had a loo of -185.8, and with a fixed
it was -180.5. These are both considerably better than the value of -197.8 for the normal.
The a form with variance proportional to mean is the better of the two. The fitted values

did not change a lot — the main effect was getting a better distribution around the mean.

It is not necessary to fix either a or b across the cells. For instance, instead of fixing one of
these parameters, use two parameters h, k to model variance = h*mean”. Use the model to
fit the mean for the cell and to estimate h, k, and use these to compute the variance for each
cell. Moment matching for the gamma gives b = variance / mean, and a = mean? / variance,
which give the resulting gamma parameters for each cell. Trying this gave k = 3.6 and a loo
value of 176.6. This is a high value for £ and may be arising from trying to get a higher
probability for the one outlier cell, which had a high mean but still a large difference from
the data. The model is not right in that the variance of the severity mean for a cell is related

to the number of claims, and this is not in the model. I will include that in the next section.

Warmup — Severity Distributions on Age-Use Data

Now we will look at adding in claim counts by cell. This model will fit the severity distribution.
This gives more than parameter ranges — it could be used for pricing deductibles, for instance.
If 1, 0% are the severity mean and variance, and there are N claims, the sum of those claims
has mean = Ny and variance = No?. The sum divided by N has mean m = u and variance
s> = 02 /N. These ratios are the data given for each cell. If the claim severity is normally
distributed, m, s are the mean and variance of the normal distribution for that data. If the
severity is from a gamma distribution in a, b, the sample mean is also gamma distributed, in
a = Na, =b/N. Either way, the collection of sample means can provide an estimate of the

severity distribution parameters. The inverse Gaussian distribution has similar formulas.

The two main things the Stan code requires are the prior distributions of the parameters and
the conditional distribution of the observations given the parameters, which is actually the
likelihood. The parameters for the age and use classes will have shrinkage priors. We used
the double exponential prior in s for this before, with non-shrinkage priors on s, the constant
term, and the distribution parameters a, b, o, h, k,.... The Cauchy shrinkage prior is often
a bit more efficient than the double exponential, so it will also be used here. It is just the
Students-t distribution with one degree of freedom. It has more weight concentrated around
zero, but also heavier tails, and this can sometimes more readily distinguish the important

contributing variables.

The conditional distributions here are the normal or gamma for the sample mean, although

the parameters will be those for the severity, with the claim count as additional information.
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The way Stan works is that you have to give it the parameters for every observation. You
can do transforms on the severity parameters to get the distributions for the observed sample
means. One of the parameters is calculated by cell as the constant plus the design matrix
times the parameter vector. In formulas, this is mu = x*v+cn. You can then transform
mu by cell to give the parameters for the sample mean. Consider the gamma model with
0? = hy for instance. Solve for cell j to get: a; = p? /o7, and b; = 02 /p;. Then a; = Nja,
and f; = b;/N; are the gamma parameters for the observed sample mean. The code does
these assignments for every cell, then in the distribution statement uses the vector form, like
y ~ gamma(alf, bet). (Stan actually defines the gamma distribution with b as what is 1/b
here, and o, not 02, as the normal parameter, but that will be an adjustment in the code.

The text will continue to use the more conventional forms.)

All the variables now are retained in the model, except for the short drive use class. Leaving
that variable out combines short drive and pleasure uses. Getting a better model for the cell
variances seems to have made the age variables more predictive. The power k came out 2.4,
suggesting the variance is proportional to the mean raised to the 2.4 power. This is between
2, which the gamma with fixed a gives, and 3 for the inverse Gaussian. I tried just using a
straight gamma for comparison. This eliminates k£ as a parameter, and loo came out a little
better that way, so this model was selected. Still, the selection of the gamma is in part a
parameter selection, and that implied parameter is not counted, so keeping k£ = 2.4 might
really be just as good. However taking the variance proportional to mean squared is a pretty
standard assumption for severity distributions anyway. It makes b a scale parameter, for

instance.

The loo measure was -155.7 with the double exponential prior and -156.2 with the Cauchy —
both considerably better than in the model without counts. The double-exponential is used
below. Figure 5 shows the actual and fitted severity sample means using the gamma fit. The
business use class for drivers under 21 did not seem to influence the fit much. With the low
claim count for this cell, the variance of the observed sample mean came out high, so the
likelihood was better at that point even with a low fit mean. In fact it was 5000 times as

high as it was in some of the earlier models.

This was for an additive model. It is easy enough to do a multiplicative model from the
same code — just exponentiate the severity mean and make that the severity mean of the
gamma, then adjust to make it the sample mean. This starts by fitting an additive model
for the log of the losses. Doing this gave virtually the same loo as the additive model. All
the parameters, including shrinkage parameter s come out with a lot smaller absolute values.

For s — its mean here is 0.17.
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Figure 5: Gamma Severity Using Counts

I also tried the normal distribution but forcing the variance to be proportional to the mean
squared. I just made the standard deviation a multiple of the mean to do this. Loo for this
model came out -166.6, which is much better than previous normal fits, but not as good as
the gamma. The s.e. for comparing this to the gamma is 4.6 by the loo compare function,
so the gamma is more than two standard deviations better. A bit of skewness is apparently
needed for this data. One way to test for convergence of a model fit is with a measure called
Rhat that shows in the print function. It is a ratio of total to within variances among the
chains for each parameter. It should be close to 1.0 for a model that converges. It was
around 3 for most of the variables in this model in a preliminary run. Forcing the log of the

s parameter to be positive restricted the model enough to get convergence.

Inverse Gaussian Distribution

The usual parameterization of the inverse Gaussian is designed for quasi-likelihood estimation,
but it is awkward in applications. A more natural parameterization uses parameters a, b
with mean ab and variance ab?, like for the gamma. It then has some other properties of the
gamma: the sum of a sample of N claims is IG in Na, b and multiplying by a constant ¢ gives
an IG in a,bc. The skewness is 3CV, where CV is the coefficient of variation = standard
deviation / mean. The gamma skewness is 2CV, so the IG is more or less a slightly more
skewed gamma. Its shape can be a bit different, however. For a < 1, the gamma density goes

to infinity at x = 0, but the IG density is 0 at x = 0 — and in fact the density at zero has
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slope 0 as well, so grows slowly at first. The density is:

| a? —(z — ab)?
Flala.b) = [ soteap — )

Stan does not have this distribution, but it has a provision for adding user-defined functions.

This goes in the function block at the start of the program. Here is one I did for the IG:

functions{
real ig_lpdf(real y, real a, real b){
return log(a/b)-0.5*log(2*pi())-1.5%log(y/b)-b*(y/b-a)~2/2/y; } 1}

It runs reasonably fast. It gave loo of -157.7, the same as for the gamma. Possibly the best

skewness is in between the IG and gamma.

Larger Data Set — with Credit Variables

The larger data set includes four levels of credit scores, with 4 being the best. There are eight
age groups and four use classes. The data for each cell is exposure, pure premium, and their
product — losses. The model is for pure premium, as a product or sum of a constant and the
age, use and credit parameters. The dependent variable is taken as losses, so the modeled
pure premium is multiplied by the known exposure by cell to give the expected value of the

cell losses.

The initial model assumes losses are gamma distributed with fixed b, so with variance
proportional to mean. I tried this for additive and multiplicative versions, and in this case the
multiplicative had a clearly larger loo fit measure. The Cauchy and double-exponential priors
gave virtually identical fits. I also tried a gamma with fixed a, which makes the variance
proportional to the mean squared. This was slightly worse. Then I used a gamma with
variance = sxmean”. The k came out at 1.3, with the loo just about the same as the fixed b

version. The better power was not quite worth the extra parameter.

I also tried normal, inverse Gaussian, and Weibull residuals. The Weibull, using variance
= sxmean”, had a loo of -1374.5, which was slightly better than the gamma’s -1375.9. The

others were all worse fitting. The extensions below use the gamma, as it is faster to estimate.

This form of the Weibull requires a non-linear solver to match the moments. Once the mean
and variance have been fit for a cell, the parameters a,b can be fit by solving EX = alb,
1+ CV?% = (2a)!/a!*. The non-linear part is solving for a from the CV. Stan has a facility
for solving a system of linear equations with something called the algebraic solver, but the

format is picky. For this, you first set up a function. This is what I used:
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Age Factors Use Factors Credit Factors
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Figure 6: Class Rating Factors

functions { vector system(vector alpha, vector Q, reall] x_r, int[] x_i){
vector[118] z;
z = lgamma(1+2*alpha) - 2*1lgamma(l+alpha) - Q;

return z; } }

Q gets log(1 4+ CV?). The variables x_r and x_ i are zero dimensional arrays that don’t seem
to have any role, but are required. When it solves for z = 0, alpha is the a that matches this
CV. There are 118 data points. To call it, I used:

alpha = algebra_solver(system, start, Q, x_r, x i );
for (j in 1:N) { 1lam[j] = muljl/tgamma(l+alphalj]l);
alphalj] = 1/alphalj]l; }

This solves for the vector of a values for all the observations. Stan’s Weibull function uses

1/a instead of the a in the above distribution function.

Ten cells with small exposure and zero losses were omitted from the fitting. These distributions
are not defined at zero. There were still some cells with small exposure and volatile loss
numbers. Mildenhall suggests reducing a cell’s assumed variance by dividing it by exposure”
for some k£ > 0. This would allow for smaller exposure cells to be more volatile. For some
reason, the estimated £ for this data set came out as -0.1, so variance would increase slightly
for the larger cells. This gave the same loo as without this adjustment, and it doesn’t make

much sense, so it was omitted.

Figure 6 shows the factors for each of the rating variables in the gamma model. The use
classes are Business, Drive Long, Drive Short, and Pleasure. Figure 7 shows actual vs. fitted

averages for use and credit groups by age for this and the combined additive-multiplicative
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Figure 8: Actual and Fitted Use Class Averages by Credit Group
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model discussed below. Figure 8 shows use and credit cell actual and fitted averages over the

age groups for these two models. The omitted zero losses show as gaps in some of the graphs.

Use 1, Business, has the smallest volume and is most volatile. This shows up in both the use
by age and use by credit graphs. The fitted values do not appear over-responsive to these
fluctuations. The Bayesian shrinkage looks like it is doing a lot what credibility would do in
giving low weight to those points. The drive long class and the good credit group 1 have

poor fits at a few points.

Extensions

Multiplicative- Additive Model

The possible issue with multiplicative models is that cells that have high or low factors in
two directions might be over or under estimated by the product of the factors. Here that
does not seem to be a problem, in that the estimated values look to be less extreme than the
data points. But as an example, I try a model that starts with all the variables used as both
factors and additive adjustments. Then variables whose parameters are shrunk close to zero

are omitted and the model refit, iteratively, until the best combination is found.

The fitted value for a cell is the constant times the rating factors for the cell plus the additive
levels for the same age, use, and credit variables. To estimate it, there are two coefficient
vectors, say v and w, and the design matrix is used twice. Call the two instances x and xa.
Then the mean for all the cells is the vector mu = exp(xv+cn)+zaw. Different variables
probably will be eliminated from x and xa based on parameters being shrunk towards zero.
The shrinkage parameter s was set somewhat arbitrarily as 100 times greater for the additive
parameters, as it came out in this ballpark in previous fitting. It might be better to have

separate priors for these two shrinkage parameters.

Doing this eliminated the factors for age group 2 and credit group 2. Additive levels were fit
for all but ages 3 and 8 and use 3, which is drive short. There were thus 21 rating variables
in this model, compared to 13 for the multiplicative model. The loo penalized likelihood
measure was -1374.2, which is an improvement over -1375.9 for the multiplicative model. The
difference of 1.7 is usually considered worthwhile for penalized likelihood. The parameter
penalty was 23.1 here, compared to 16.8 for the multiplicative model. This is 7.3 higher for 8
more variables, so less than 1 per variable. This is due in part to shrinkage, but formally
due to better predictive accuracy of the larger model. The likelihood was thus higher by 9.0
for the combined model, which is a better fit to the data, but the penalized likelihood is the

proper comparison.

Figure 9 shows the factors and additive levels for the variables. They offset each other to
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Figure 9: Class Rating Factors and Additive Levels

a degree, as some variables seem to work better additively, and some multiplicatively. The
fitted values have small but observable changes. In Figure 7, use groups long and short
appear to have slightly better fits across the ages, as do credit groups 2 and 4. In Figure 8,

use groups 2 and 4 (long and pleasure), fit a bit better across the credit groups.
This model is pretty intuitive and is easy to fit with MCMC.

Interaction Terms

There may be some combinations of rating elements that interact differently than the overall
model. Suppose age 2 and credit 3 is such a combination. Then adding a variable for that
combination could pick up the interaction. Since the variables are all (0,1) dummies, the
interaction variable would just be the product of the individual variables. There are four
observations with that combination — one for each use class. If the variable improved the fit

for all four, that would suggest the variable is significant.

Random effects is well set up for estimating this kind of thing, and that is one of its prime
uses. You could put in all combinations of two-way interactions, and many of the coefficients
would go to zero. If all the variances are the same, this would give lasso or ridge regression,
depending on the distribution assumed. Bayesian shrinkage can do that too. Lasso is a good

starting point, as it completely eliminates a lot of variables.

I tried interaction focusing on use classes. Each combination of the use variables with age
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Table 3: Interaction Factors Age(a), Use(u) and Credit(c)
u2,a2 u2,a7 uda2 uld,ad ud,ad udad cda2 cdad cdad cd,ab cdar
125 084 084 072 065 077 082 115 089 092 084

and credit was given a variable, which was a product of the individual variables. The glmnet
package is easiest to apply to a normal regression, so I made the dependent variable the log
of the cell pure premium, so the regression would give a multiplicative model with lognormal
residuals. The least suggested shrinkage, given by cvfit.lambda.min, was for A about 0.0035.
I used that and A = 0.005 to review the eliminated variables. Selecting all but those with
very small coefficients gave ten combinations. This reduced the interaction variables from 30
to 10.

I put those in the gamma regression in Stan for the multiplicative model and eliminated
the ones with small coefficients as long as so doing did not make loo worse. That left six
interaction variables, and this resulted in a loo of -1367.0, which is the best result so far,
and a fairly big improvement. I also looked at the credit-age interactions, and it looked like
credit group 4 (best credit) had the most issues with age interactions. So I added in all
seven of those interaction variables, ran Stan, and then again eliminated the non-contributing
variables. That left five of those, so eleven interaction terms altogether. This brought the loo

measure down to -1366.2, so the credit interaction helped a little, but not much.

Table 3 shows the adjustment factors for these interactions. Figure 10 graphs the resulting
use by age and credit by age fits. The biggest improvement seems to come for use 2, drive
long, particularly at ages 2, 7, and 8. Credit group 4 looks better than the multiplicative
model, but about the same as the additive-multiplicative model. Pleasure use has a strange

worsening of the fit at age group 4.

Fitting Curves to Factors

The factors all change fairly gradually across a rating class, so it might be possible to save
on parameters by fitting curves to them. A flexible and easy way to do this with parameter
shrinkage is to fit piecewise-linear curves to the factors. With no shrinkage, this would
replicate the exact parameters. If you do shrinkage on the slope changes between segments,
you smooth out the curves, with the degree of smoothing determined by the shrinkage

methodology.

I try this for the three curves in the multiplicative model, as in Figure 6, but fitting the
curves on the logs of the factors. Starting with zeros for each rating class, the slope changes

add up cumulatively to the slopes, which in turn add up to the rating factor logs. This is all

Casnalty Actnarial Society E-Forum, Winter 2020 27



Bayesian Regularization for Class Rates

Use by Age Interaction Credit by Age Interaction

o
560 ;
‘8
k 280
280
140
140
70 70
1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8
»++@++ Business -+ +®--- DriveLong ==+®-+- DriveShort Pleasure we @ Credit 1 @+ Credit2 === @« Credit 3 Credit 4
FitB Fit L FitS —g— Fit P Fitl Fit2 Fit3 Fit4

Figure 10: Actual and Fitted Class Group Averages
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linear, so can be accomplished with a design matrix. For a cell in class number ¢ in one of the
directions, the dummy variable for class u in that direction gets the value max(0,1 + i — u).
The fitted means are still the vector mu = exp(x*v+cn), but now v is the vector of slope

change coefficients.

The ages 3, 6, and 8, and credit 4, all got zeros and so were eliminated from the model. A
zero slope change just continues the previous line segment. It does not make the log factor
zero. The factors all came out very similar to before, but a little smoother. The loo was
-1373.3, which is a fair bit better than the -1375.9 for the straight multiplicative model. The
main improvement was in the parameter penalty of 12.9, compared to 16.8. The slope-change
model is apparently more parsimonious. Figure 11 shows the credit-by-age and use-by-age
fits. Some points fit better and some worse than previous models, but the fitted values are
on straighter lines, which is related to the model being more parsimonious. Some lines are

not parallel, due to differences in mix.

FEtc.
The three model enhancements here - additive-multiplicative, interaction terms, fitting curves

- can be combined, but methodologically would just repeat what’s above.

Summary

Bayesian shrinkage is an improved alternative to maximum likelihood. It has lower estimation
and prediction errors, and unlike frequentist shrinkage it comes with a goodness-of-fit measure.
It also can use the posterior mean. MCMC software, like Stan, also makes it easy to fit more

generalized distributions.

I first used this to fit severity data by class. A few distributions like the normal, gamma,
and inverse Gaussian have a known connection between the distributions of the claims and
of the sample means, and this allows estimating the severity distributions from the sample
means. Then I tried it on a bigger data set with more classes on aggregate losses and pure
premium. This produced class factors. Extensions were a combined additive-multiplicative

model, interaction terms, and fitting curves to the factors. All of these improved the fits.
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Figure 11: Actual vs. Fitted for Curve-Fit Model
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Appendix

1 R code for regression, lasso packages and to feed Stan

setwd("~/0OneDrive/R/Ratemaking Stan/Severity regression")
library(rstan)

rstan_options(auto_write = TRUE)

options(mc.cores = parallel::detectCores())
library("loo")

library(readxl)

library(glmnet)

as.vector(as.matrix(read_excel("z small.xlsx")[,5]))

= as.matrix(read_excel("x_small.xlsx")) #do this or the next line

= read_excel("x_small.xlsx") #regression function needs = a data frame

y

b

b

U = ncol(x)
N = length(y)
c

mod <- 1m(y ~ ., data = x)  #full regression

mod <- Im(y ~ ., data = x[c(1:7,10)]) #regression leaving out two uses

summary(mod) #gives output

fitl = glmnet(x, y, standardize = FALSE) #lasso fit
plot(fitl, label=TRUE)
cvfit = cv.glmnet(x, y, standardize = FALSE) #lasso cross validation

cvfit$lambda.min  #lowest lambda suggested by cross wvalidation

coef (cvfit, s = "lambda.min") #shows parameters for that lambda
x_full = x

x = as.matrix(x_fulll[,c(4,9,10)]) #just using selected columns
U = ncol(x)

U

fitsev = stan(file 'sevregr.stan', verbose = FALSE, chains =7,

7000, warmup = 2000)

iter

log LL <- extract_log_lik(fitsev)
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loo_LLsev <- loo(log_LL)

loo_LLsev

print(fitsev, pars=c("cn", "v", "s"), probs=c(.05, 0.2, 0.5, 0.8, 0.95),
digits_summary = 3)

plot(fitsev, pars = c("v", "s"))

out <- get_posterior_mean(fitsev)

write.csv(out, file="out_sregr.csv")

2 Stan code for normal regression

data {
int N; //number of observations
int U; //number of variables
vector [N] vy; //the dollar losses in a column

matrix[N,U] x; //design matrix with U columns

}

parameters { // all except v will get uniform prior, which is default
real<lower=-10, upper=10> logcn; //log constant term
vector [U] v; //the parameters
real<lower=0, upper=10> logs; //log of s, related to lambda
real logsig; //log of sigma parameter

}

transformed parameters {

real cn;

real sig;

real s; //shrinkage parameter, like lambda
vector [N] mu; //fitted means

vector [N] sigma;

cn = exp(logecn); //for positive parameter, uniform on log is like 1/X

sig = exp(logsig); //for positive parameter, uniform on log is like 1/X

s = exp(logs); // Gives more weight to lower values; good if X not big
mu = x*v+cn; //vector of mu parameters

for (j in 1:N) sigmaljl=sig; //Stan normal has sigma not squared

b
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model { // gives priors for those not assumed uniform. This one for lasso.
for (i in 1:U) v[i] ~ double_exponential(0, s);
y ~ normal (mu, sigma);
//for (j in 1:N) y[j]l ~ normal(muljl, sigmaljl);
}
generated quantities { //outputs log likelihood for looic
vector [N] log lik;
for (j in 1:N) log lik[j] = normal_lpdf(y[j] | muljl, sigmaljl);
}

3 Stan code for gamma-alpha regression

data {
int N; //number of observations
int U; //number of variables
vector [N] y; //the dollar losses in a column

matrix[N,U] x; //design matrix with U columns

}

parameters { // all except v will get uniform prior, which is default
real<lower=-10, upper=10> logcn; //log constant term

vector [U] v; //the parameters

real<lower=0, upper=10> logs; //log of s, related to lambda, not too high

real logalpha; //log of beta parameter
}

transformed parameters {

real cn;

real alpha;

real s; //shrinkage parameter, like lambda
vector [N] alf; //fitted means

vector [N] beta;

cn = exp(logecn); //for positive parameter, uniform on log is like 1/X

alpha = exp(logalpha); //for positive parameter, uniform on log is like 1/X
s = exp(logs); // Gives more weight to lower values; good if X not big

for (j in 1:N) alf[jl=alpha; //Stan gamma mean = alpha/beta

beta = alf ./ (x*v+cn); //vector of beta parameters

3

model { // gives priors for those not assumed uniform. This one for lasso.
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for (i in 1:U) v[i] ~ double_exponential(0, s);
y ~ gamma(alf, beta);
by
generated quantities { //outputs log likelihood for looic
vector [N] log_lik;
for (j in 1:N) log_lik[j] = gamma_lpdf(y[j] | alf[jl, betaljl);
+

4 Stan code for gamma-k regression

data {
int N; //number of observations
int U; //number of variables
vector[N] y; //the dollar losses in a column

matrix[N,U] x; //design matrix with U columns

b

parameters { // all except v will get uniform prior, which is default
real<lower=-10, upper=10> logcn; //log constant term

vector [U] v; //the parameters

real<lower=0, upper=10> logs; //log of s, related to lambda, not too high

real<lower=1.0, upper=6> k;
real logh; //log of h parameter
}

transformed parameters {

real cn;

real h;

real s; //shrinkage parameter, like lambda
vector [N] m; //fitted means

vector [N] V;
vector[N] alf;
vector [N] bet;

cn = exp(logecn); //for positive parameter, uniform on log is like 1/X

h = exp(logh);
s = exp(logs); // Gives more weight to lower values, which is good if X not big
m = x*v+cn; //vector of means

for (j in 1:N) { V[jl = h*m[j]lk;
alf[jl= m(jl~2/V[j];
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bet[jl= m[j1/V[j];}

model {
// gives priors for those not assumed uniform. Choose this one for lasso.
for (i in 1:U) wv[i] ~ double_exponential(0, s);
y ~ gamma(alf, bet);
}
generated quantities { //outputs log likelihood for looic
vector [N] log lik;
for (j in 1:N) log_lik[j] = gamma_lpdf(y[j] | alf(j], bet[jl);
}
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	Communicating in Crisis Situations
	Rick Gorvett, FCAS, CERA, MAAA, FRM, ARM, PhD
	Chris Morse, PhD
	Julie Volkman, PhD
	____________________________________________________________________________
	Abstract:  Communicating technical information, especially in a crisis situation and particularly when the audience does not share the technical background, is a challenge that actuaries frequently face.  This essay describes the dynamics and issues involved in crisis communications and provides some recommendations for actuaries confronting such a situation.
	Keywords. Communication, crisis management, senior management
	            ____
	Actuaries, like practitioners in any profession that involves significant quantitative or technical expertise, have a reputation for sometimes being substandard communicators.  To the extent this is true, it is probably less a matter of lacking basic communication skills, than it is the inherent difficulty in communicating technical material to audiences that generally do not share that background.  Communicating in such an asymmetric environment presents a natural challenge.  When, on top of this, an actuary is attempting to communicate bad news or a potential crisis situation, the task of communicating effectively is doubly difficult.  We hope this essay will help actuaries to better understand the dynamics and issues involved in crisis communications.
	Potentially, actuaries may confront at least two types of crises.  To the extent that actuaries are executives and leaders in organizations, they may well have responsibilities in a high-profile crisis situation such as a cyberattack or an incident that somehow threatens the company’s reputation.  More often, though, actuaries need to operate and communicate in crises of a more subtle, actuarial nature.  Many actuaries have had to deliver bad news or present and educate company executives regarding threatening situations.  Just a few of many possible examples include:
	 Results of an actuarial analysis indicate that the organization is insolvent, or that its financial condition is worse than had been anticipated.
	 An emerging or ongoing natural catastrophe, unhedged financial risk, or other event is about to play havoc with the company’s finances, operations, capital adequacy, liquidity, etc.
	 A new type of risk has emerged, and the evolving litigatory environment surrounding that risk suggests that the organization will very soon experience significant losses that were previously unanticipated and were not contemplated in the ratemaking process.
	Effectively communicating in a highly technical and quantitative environment, with an asymmetry between the communicating partners regarding an understanding of and familiarity with the analytics underlying the findings, is difficult enough.  Where a particularly significant or crisis-level indication is concerned, all the difficulties involved in communicating in a crisis are also piled on.  Indeed, post-mortem analysis of crisis situations often reveals that communications could have been handled better.  While there could be several reasons for poor communications in crisis situations, we argue that a majority of miscommunication can be attributed to two main causes. First, audiences in a crisis behave differently than they do normally, so adjustments must be made [3]. Second, we as crisis communicators often overestimate our delivery ability, which can further cause issues. In this essay, we attempt to highlight some of the major factors within these two areas, as well as offer some advice for actuaries and other crisis communicators to overcome them. 
	 The nature of a crisis impacts individuals’ abilities to process information, requiring them to alter the ways that they cognitively operate in such a situation compared to their normal approach. In these cases, crisis communicators who do not alter their messages will often encounter problems, or at the very least fail to convey the importance of their information in a way that the audience understands. The result can be a failure to take the crisis seriously, a lack of motivation to act on the information, or an under-impression of the potential impact of the crisis on the company or organization. 
	 In terms of audience behavior, crisis communicators must be aware of three key issues. First, in a crisis, individuals tend to find themselves in situations of high stress and are often being presented with large amounts of information in a short period of time. In cases such as this, research has suggested that individuals have trouble with message retention, oversimplify the message content often missing key pieces, and misinterpret goals articulated by the crisis communicator [4], [8]. Second, a crisis represents a situation in which uncertainty is created as an individual’s understanding of the world is challenged or that person’s ability to predict what is going to happen next is compromised. In cases such as this, individuals often find themselves clinging to “what they know is true.” This means that people will often default to long-held beliefs about the world and how it works, or “tried and true” ways of handling things instead of alternative plans or ideas [2]. Audience members will often reject “new” information in favor of what they have normally encountered. In cases of crisis, this would suggest that crisis communicators who present novel information or ideas, might be ignored by their audience in favor of “what has normally happened,” or what has occurred in the past.  Third, feelings of uncertainty will often result in negative emotional states such as anxiety, fear, and anger [1]. Emotional states such as these have been argued to create “action tendencies” or behavioral responses in individuals, that if left unaccounted for may present additional problems with a crisis communicators message. Fear, for example, has been linked with a tendency for “flight” responses while anger has often presented an “attack” response [7]. In the context of crisis communication, this could translate into a tendency for the audience to avoid a crisis message, either by ignoring it or discounting it, or they could challenge the message, questioning its validity. In either case, heightened emotional states can cause failure in the crisis communicator achieving her/his goal by having the audience be less receptive than anticipated. 
	 While the impact that a crisis has on an audience is problematic, so too is the way in which crisis consultants convey the information. In many cases, people who are tasked with conveying information make assumptions about both their message as well as who they are talking to, which often causes confusion or reduced understanding. Unfortunately, in the case of a crisis, these assumptions can have severely negative impacts. One particularly problematic issue – particularly for actuaries – is a communicator’s use of jargon. Oftentimes in work specializations, individuals develop and use terms that are not common vocabulary to those outside those specializations. Unfortunately, given the often-siloed nature of the workforce, and individuals being in constant contact with others who also speak with a similar vocabulary, people can often forget that these terms are not commonplace, or at the least make erroneous assumptions that “everyone else gets what I mean.” In fact, the use of jargon impedes one’s ability to effectively communicate with non-experts [5]. When conveying information to others, especially in high stress situations, individuals thus can overestimate the “simplicity” with which they are speaking. In cases where the audience is already experiencing the issues mentioned above, this can result in a speaker believing that a successful message was completed, while the audience member becomes lost or ignores what is being said. 
	There is an additional issue that should be of concern to crisis communicators. Literature involving primacy effects suggests that the first piece of information that people are presented with will be used to interpret and compare all future information [6]. Therefore, the first message that an individual is presented with in a crisis tends to carry the most weight. This significantly increases the importance of presenting not only correct information to an audience but of making sure that it incorporates the issues stated above. If the message is designed without consideration of these issues, then not only can the decision making of individuals be compromised, but how people view the crisis will also be very hard to change from their initial erroneous impression.  
	 Taken together, the above comments suggest that, when dealing with a crisis, the actuaries and other individuals doing the communicating cannot approach the task as simply “conveying information.” By its very nature, a crisis impacts an audience, altering the way that they process and interpret information. Furthermore, some of the tendencies that speakers have, which might be normally overcome in everyday conversation, can have negative impacts when exhibited in a crisis conversation. It is important for individuals to remember that they must be simplistic and repetitive in the conveying of their information. They must be prepared to deal with audiences wanting to avoid what they are saying or challenging it. While the speaker may feel that they are speaking “plainly” they must examine their use of jargon and appreciate the experience level of those they are speaking to. Finally, while a speaker may believe that the solution being presented is logical and practical, he/she must understand that if the proposed solution deviates too much from the established norm, the audience may reject it as their uncertainty causes them to fall back on what has been done before – or, at the very least, what is comfortable and safe. 
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	Setting the Scene for Communicating Technical Results to Senior Management
	Christopher Smerald, FCAS, FIA, MAAA
	________________________________________________________________________
	Abstract: In this essay, we look at enablers to effective technical communication with senior management. Good planning and concise writing is essential, but in this essay, we argue that both analysist and recipient also need to work collaboratively towards ensuring the analysis is tuned to the recipient’s needs. This is especially true, because actuarial method is often very different from management decision-making approaches. The actuary and, ideally, also management need to go the extra mile to ensure they understand the other’s language and work context. To help with this, simple rules of thumb (heuristics) are suggested as part of a good communication process.
	Keywords. communication, reports, culture, senior management, personal leadership
	1. INTRODUCTION
	Just imagine going to a play where the production spent most of its time writing the script and only spent a little time, at the end, thinking about how they might connect with their audience, making sure their set works, and preparing to speak their lines. It might just work with a simple play (or if the audience is another scriptwriter who can fill in the abstract gaps with their imagination), but to most it would seem incomplete or worse. 
	Transcribing the simple play for insurance, imagine two short actuarial studies required for “Andy”, the CFO. One done by “Lucy” who worked alone to the last-minute preparing exhibits but did not plan what to say to Andy. “Ken” did the other. However, he had a cup of coffee with Andy to confirm what was needed before creating the exhibits, and he left himself time to prep for Andy. Who was invited back for an encore project?
	Perhaps Andy also backs plays and he is funding a professional show. He knows public fashion demands lots of audience participation, thicker subplots, elaborate sets, and no mistakes. Things are much more complicated. Without a good process, much is at risk. Andy must understand how it all works and be more involved. His producer needs to understand Andy’s and public needs better. Independent work with only a few short meetings is no longer adequate.
	Now imagine a more challenging insurance situation where CFO Andy and management are under pressure for deeper / more agile business insights, improved risk management and governance, and “ownership” of the numbers. A nice focused table and simple clear words may no longer be enough. The actuarial analysis may demand more thoroughness, transparency and efficiency using new methods with more data (or more pressure on old methods) and more controls, plus enhanced disclosures around selections, uncertainties and drivers. 
	For this more complicated actuarial work, a highly collaborative and participatory process is needed. We have broken the important aspects of this into four elements through the acronym CUPS: Culture, Understanding, Practice, Suggestions. 
	1. Culture relates to the principles and customs underlying the relationship. In this case a willingness to make things work and being collaborative in the relationship by listening well and allowing time for informal communication as well as formal. 
	2. Understanding is about knowing context and goals. This includes other participant’s: language and values, working and thinking process, and priorities and pressures.
	3. Practical relates to things which can be done to simplify communication by a rule of thumb toolkit (heuristics) once culture and understanding are established.
	4. Suggestions are just that. The more complicated things are, the harder it is to manage or improve alone. Adjustments are made based on feedback that is specifically requested. 
	These ideas will be discussed separately in more depth below, followed by a few end comments.
	Culture

	According to The Barrett Values Centre, who help build values-driven organizations, “The culture of a group of people is a reflection of the values and beliefs … that are embedded in the structures, policies, systems, procedures and incentives of the group”1
	 The sort of culture we are seeking includes a strong personal leadership element and is founded on positive business and personal values. -Where each is committed to making the relationship work to the best advantage of all concerned. This includes willingness and skills to work across boundaries, with curiosity and being open to challenge.
	The needed culture and underlying values are likely already there and may need only a little reflection to be lived more authentically and effectively, so that the forms followed in engagement are aligned more closely with their function. The actual form will likely vary considerably among organizations, so this section focuses more on the values which underlay culture which can be universal. By thinking about values and how they are lived through culture, we can connect and communicate better with others. 
	Here are seven good values examples from 6Q Blogger Heryati R2
	  1. Stewardship, 
	  6. Integrity, 
	10. Diversity (the source gives a fuller description), 
	16. Quality
	20. Good Citizenship, 
	41. Leadership: The courage to shape a better future, 
	87. Togetherness and enthusiasm. 
	Culture development starts with thinking about actions which would support these values. For example, making time for informal conversations, which of course takes time, but may increase efficiency in the longer run. This is because informal conversations can carry wider bandwidth of meaning as opposed to emails, agenda packed meetings and video conferences, where messages are more compressed. 
	This personal connection aspect is also echoed in a list by Miranda Anderson3 which suggests additional procedures:
	 Create a shared ritual like a cup of coffee informally
	 Agree to your commitments early and often and help facilitate commitments of other key stakeholders
	 Be There When It’s Hardest. Pick up the phone (or text, if necessary) the minute there’s a whiff of something awry, and then to do whatever it takes to make the situation right.
	Understanding

	Communication between actuaries and senior management is complex. Each focus on different aspects of the business, has different goals and past experiences, and may internally process things quite differently in language terms or units of thought. This may cause them to assign different meanings to the same underlying information4. So, understanding all this context, especially when the messages and uses are complex is especially important.
	It helps to consider how actuaries solve business problems using actuarial method. This can be more of an iterative art than a science, especially if data is missing and simplifications or extrapolations are needed. Tools may include any of the following: logic, statistics, heuristics (rule of thumb methods and models), and professional judgement. The iterations and uncertainties can leave an actuary feeling they have not really completed the analysis. So, the actuary may be tempted to explain too much their steps and unresolved issues, and not why the selections make sense and what the key issues are.
	In contrast to this deductive work, senior management might be reflecting more on similarities and differences in opinions from diverse experts while deciding on a course of action. The more objective the opinions and the more they use a common language, the easier it may be to decide. So, if the actuarial information is too abstract or tentative, they may not be able to synthesize it with more objectively framed opinions from sources like ERM, finance, investments, underwriting, etc. Thus, actuarial information is not always something which stands alone. It may be used as part of a larger process, so actuaries need to work to make it be more objective and comparable with other business information.
	Working collaboratively and being able to see both sides of the of the situation is particularly relevant here. The actuary needs to discover the manager’s objective and decision context. The manager needs to understand actuarial method and actual workings better, since not all of them can be translated efficiently into normal management language. This may take time before it becomes natural to both, but it is worth it, and it does take two. 
	Clear lines of responsibility and accountability are also important to the process of understanding. An actuary does not just produce “the answer” and a manager does not just make decisions. Each are responsible for their share of ensuring good risk management and for contributing to governance and social protection5. These make communication more complicated. By recognizing these parallel and complementary roles and breaking up communication along these lines (of decisions, risk management and governance), messages can be simplified. This splitting out may also help find an optimal level of disclosures on uncertainties, controls and caveats, because they have been untangled from other goals. 
	Finally, listening is a strong part of this understanding. To be a good listener, you need to set aside your own reactions, ignore sparked tangential thoughts, and take good notes generally. In order to pick up nuances (especially where a conversation is on unfamiliar ground), it helps to research and plan what is likely to be said by you or others. This preparation sets expectations, so surprises are captured well. This is a verbal version of tracking actual vs. expected. Allow silences to happen. Silences ( reflection ( understanding. Reflective listening is also good. Say what you thought you heard or what you understand they want. This builds trust that you are listening and shakes out misunderstandings.
	Practice

	Practice is best approached in a principles-based way with ideas to try to fit the situation. The below framework is based on work of The Good Actuarial Report Working Party which the author has been leading.
	The framework centers around truly understanding user needs and includes five parts6: 
	1. Prework. Communication may fail if user needs are not properly understood from the outset. This is partly covered in the preceding section, but planning time is needed: 
	a. Really understanding managements goals and expected uses. 
	b. Selecting / planning proportionality and priorities, and 
	c. Planning the scope of the work to be performed. 
	The proportionality heuristic7 is beyond the scope of this article, but just as actuaries have methods to simplify complexity in problem solving, analogous simplification can help with communication and work planning.
	2. During Analysis. Complete the work focusing on what is important, having kept notes on what was opaque and what was clear. A good practice is to rank your findings and interim assumptions by your level of belief. Was the fact pattern clear enough that you have a firm recommendation? Is it more of a best guess, or was it speculative where the model said “X”, but you cannot validate it?
	3. Communication planning: Keeping user needs in mind, plan what is most important to communicate in advance. 
	4. Writing/Communicating: Ensure it is relevant to user needs, highlighting what is important. Be Concise, less is more. 
	a. Instead of: “I took this data, applied these methods, and got these results”, you could try: “Your business needs fixing / is doing great, as these results show, and this is how you can see for yourself.”
	b. Write for Flow, by writing with flow: 
	i. The flow for the reader who discovers what is important through following clear logic. 
	ii. Flow as a writing technique where you get a sprint of content down and before overwriting the first sprint, write the next part, then the next... Then, with first draft quickly finished, you can overwrite and refine, reorder, fill in gaps, reduce, etc. Don’t start the iterations of improvement too early as you may burn too much time.
	c. Avoid Jargon – Use your authentic voice instead, avoid acronyms and technical terms
	5. Feedback. See the “Suggestions” section below.
	Suggestions (and Feedback)

	Suggestions and feedback are important for complex situations, because without them, it is difficult to judge how to improve. The actuary needs to know what new thing worked, what did not, and based on management’s experience what they might try next. Management needs to know if their actions are outside of the actuary’s comfort zone, and what they might need to do to understand things better. It is easy to see how they are part of a good culture. Without listening and co-ownership of success it may not happen or be constructive. 
	Conclusions

	The idea for this essay came from attending a workshop where non-executive directors and chief actuaries discussed successes and challenges in formal actuarial communication for UK actuarial function reports. I was struck by the lengths to which either the actuary or NED went to understand the other’s language, and by the importance they placed on good lines of informal communication. -So that the actuary would not be socially constrained if issues were to arise later. These cultural aspects helped cement all the communication research I have been involved in. I encourage readers to look for their own examples of good practice and to conscientiously copy them, as I have done, wherever it makes sense. 
	Thank you for reading this essay and I look forward to your suggestions.
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	How to Present Technical Results to Managers without Either Side Feeling Stupid
	Jim Weiss, FCAS, MAAA, CSPA, CPCU
	________________________________________________________________________
	Abstract. The following essay is a response to the CAS Theory of Risk Committee call for essays on the topic of Communications to Senior Management.  The essay argues some of the prevailing thinking regarding interactions between managers and technicians may reinforce counterproductive tendencies and that a more critical but rarely discussed challenge is both parties’ fear of looking stupid.  The essay offers practical suggestions to acknowledge and overcome this fear both short and long term.
	Keywords. Communications; Management; Fear of Looking Stupid (FOLS).
	1. INTRODUCTION
	Many discussions between technicians and managers go less than ideally.  Some of the structural elements contributing to this misery are self-evident or amply explored in literature.  For example, management’s congested schedules make it impractical to engage them in nuances required to understand pros and cons of different techniques and approaches; it is sometimes difficult to abstract how mathematical results translate into actions with real world impact; and each cohort possesses different skills, experiences, and peer groups and is not used to interacting with the other.  All these factors are straightforward enough that if any represented the true problem, then the Casualty Actuarial Society Theory of Risk Committee would not sponsor an essay contest on communicating results to senior management – and I would not submit an entry arguing the real issue both managers and technicians must address is their mutual fear of looking stupid (FOLS).  Once each party understands and plans for its own and the other’s FOLS, they can all begin to experience more fruitful, less stressful interactions.
	2. FOLS … BY CHOOSING THE WRONG ANSWER
	An inaccurate subtext to studies like the present one is that there exists some sort of fundamental difference between managers and technicians, when in fact technicians can and often do become highly effective leaders in their organizations.  There is arguably much more that (horizontally) differentiates the frame of reference of, say, a medical or legal professional from that of an insurance professional of any kind, than there is that (vertically) differentiates an actuary’s or data scientist’s perspective from that of a chief underwriting or chief financial officer at the same insurance company.  The latter differences in outlook tend to relate more to individual motivations and incentives rather than knowledge or experiences.
	Individuals do not (usually) consciously prioritize individual needs over those of their organizations, but biases come into play at a subconscious level.  The Peter Principle argues that individuals receive promotions until their successes turn to failures.  Having a success story to one’s name involves taking chances, because it is relatively rare to experience pure and unearned good fortune.  However, once an organization rewards successful risk taking with a management opportunity, the individual’s incentives change.   Salary and accountability increase, and advancement opportunities become more elusive.  Reputation sometimes becomes as powerful an asset as skill or ability.  There is greater individual financial freedom to be patient for the perfect opportunity, and greater adverse consequences for unsuccessful risk taking.  Meanwhile, those whose initial risk taking does not pay off have less to lose from further risk taking.
	The circumstances in which technicians and managers typically find themselves interacting exacerbates this subconscious conflict of interest.  Technicians’ presence at the table suggests that problems at hand are insufficiently addressable or understandable by more qualitative, instinctive, or fundamental approaches, and that heavier artillery such as math is required.   Managers may prefer lighter artillery.  This is exactly where overplayed advice for technicians to “lighten up” their message misplaces focus.  Digestion is prudent, but it does not change the essential nature of most technical recommendations – which is to exit the comfort zone.  The best chance at breaking through to a manager on this front is by illustrating that risks of inaction exceed the risks of potential actions implied by the analysis. 
	To illustrate, consider an insurance company whose goal is to break even.  Their actuary’s analysis suggests expected expenses exceed expected revenues by 25% for the upcoming year.  The chief underwriting officer receiving the analysis is likely less concerned with how efficaciously the actuary derived the 25% than with risking his or her own reputation among policyholders, producers, and regulators with intervention.  Providing a defense of the analysis casts the conversation as a technical referendum rather than a comparison between one approach implied by the analysis and another of doing nothing.  The actuary can avoid this trap by volunteering probabilities of breaking even under either alternative – say, 60% with the recommendations and 20% otherwise.  In this way, the actuary assumes the burden of defending not only the recommendations but also the CUO’s default position.  This, in turn, aligns the actuary’s narrative with the CUO’s FOLS, by objectively presenting inertia as a very risky alternative.
	3. FOLS … BY NOT UNDERSTANDING THE DETAILS
	Aligning incentives is one way to protect managers and technicians from emotions deriving from FOLS.  However, numerous inadvertent slights still permeate most interactions between managers and technicians, often because the former are terse and the latter are verbose.  For example, some managers reportedly spend over 20 hours per week in meetings.  As a result, they may not have time to send detailed e-mails when they wish to obtain information from a technician, and may send a note that says, “We need to talk.”  The technician will likely then worry about what requires discussion and why the note could not specify what it is.  He or she will begin to analyze how to respond to several of the endless possibilities, ultimately becoming exhausted and anxious by the time the manager becomes free.  The manager will then feel overwhelmed by the technician’s anxiety and preparation advantage when discussion commences, which puts he or she too on the defensive.  A vicious cycle ensues.
	The cycle is easily generalized.  Per the previous section, little more separates how some managers and technicians obtain their stations than the chance results of prior risk taking.  Yet both parties often identify with tropes that one “gets business” while the other “gets numbers.”  These tropes can be useful for identifying project roles, specifically who is handling various tasks such as final decision-making – but they also leave all parties feeling underestimated.  For this reason, communications strategies that pander to tropes reinforce negative emotion.  For example, some dimly suggest that technical content must be simplistic and catchy to engage “non-technical” audiences such as managers.  Yet a natural reaction to receiving information presented in this way may be, “s/he must think I’m stupid!”  This then leads managers to ask questions that illustrate technicians are equally “stupid” when it comes to the business.  Each focuses more on perceived capability than problems at hand.
	In contrast, being yourself is easier than “selling” others, and all parties should focus on presenting the truest versions of their work rather than altered versions of themselves.  For technicians, sharing a report in advance of a face-to-face discussion shows confidence in a manager’s ability to interpret it, and the latter probably will not have time to give it more than a skim anyway.  Rather than investing in a second career in digital marketing, the technician should invest in simple format changes to ensure the skim properly orients the manager to discuss further, not unlike how they might make the same changes to spruce up the document for a technical peer.  For example, a data scientist may accentuate calls to action in decisive red, while banking valuable positive emotional capital by highlighting areas of present strength in a more tranquil blue.  S/he can use white space as relaxing intermezzos between key points.  None of this is hard or requires altering the substance of a report and maintains a technical vernacular to the report that in turn preserves the glory of identifying a business solution for the manager.
	Returning to our earlier example of an insurer whose projected expenses exceed its revenues, it does not take an advanced mathematics degree to identify a basic inequality, nor does it require extensive business acumen to know how to plug a revenue shortfall.  Some may argue that technical presentations to managers should cut to the chase and focus on what findings mean for the business.  This depends in part on the personalities involved, but these behaviors mostly just reinforce the cycle.  For example, the actuary may have used gradient boosting (or any other mysterious-sounding algorithm of the reader’s choosing) to isolate the shortfall to a specific segment of the book, and surrogate models to identify variables that describe that segment.  It may be as obvious to the actuary that a rate increase or non-renewal strategy is necessary for the targeted cohort, as it is to the manager that the explanatory variables intuitively correlate with risk.  The actuary can “lead a horse to water” with prompts and visuals but should resist the temptation to make him or her drink. By staying in their respective lanes, neither the manager nor the technician looks “stupid” by having a perceived novice explain how to do their jobs.  The manager looks smarter by asking intelligent questions and extracting business insights from math, as does the technician by anticipating questions and having answers ready.   The unfortunate tropes survive, but neither party overcorrects for them, minimizing their harm.
	4. BEING SMART … BY “GETTING STUPID”
	Though well meaning, conversations like the one we are having do more to harm dynamics between managers and technicians than they do to help.  They create a mythos that the two parties are fundamentally different, and they create unreasonably high expectations for the interactions.  Because they often focus on the technician’s role, they absolve managers of responsibility to make such interactions positive.  The absolution in turn disempowers managers, as if they are incapable of doing anything to make life easier.  The conversation makes everyone fearful of looking stupid.  To speak technically, it divides us, multiplies hard feelings, and subtracts from self-worth.  This essay adds one more opinion to a pile of existing and conflicting literature referenced throughout the document.
	So how do we solve the problem of the less than ideal interactions, aside from fewer essays?  Above I have outlined some simple steps technicians may consider in the short term to better empathize with managers’ FOLS (and recognize their own FOLS) – by assuming shared responsibility for managers’ risk aversion and unselfishly ceding opportunities to draw logical conclusions.  In a literal sense, one is more work for the technician, the other less.  Longer term, all parties may consider a colorful slang expression called “getting stupid,” which is defined as wild, unscripted dancing -- in other words, pure joy.   The best managers and technicians take incredible joy in using their strengths to solve problems and celebrating their impact together.  “Geeking out” over a killer technical analysis and/or business strategy may not be proper decorum, and some may call it a waste of time.  This is our FOLS talking.  The more technicians start “getting stupid,” the more senior managers will follow their example, and the sooner waves of joy will overcome barriers of fear in their businesses.  We all will be smarter when that day arrives.
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	An Actuarial Approach to Behavioral Ratemaking:
	How Fair Rates Will Encourage Safer (and Slower) Driving
	Michael C. Dubin, FCAS, FSA, MAAA, FCA
	Abstract: Many people regularly drive above the posted speed limit. This type of behavior is risky and the cause of much loss, including loss of life. The World Health Organization has identified speeding as a global health issue. The insurance industry can reduce this loss by implementing a new approach to ratemaking, behavioral ratemaking. The use of current driving speed data (and other telematics data) to adjust insurance pricing on a real-time basis can be used to encourage safer driving behavior and a safer society. In other words, in this model a driver would pay real time for how they drive as they drive. Hereinafter “behavioral ratemaking” is used to denote insurance rates that change in real time. This article discusses what behavioral ratemaking is and how it would operate in this context. It discusses how behavioral rates could be developed, the advantages they present and the logistical, technological and regulatory obstacles preventing their implementation.
	What is behavioral ratemaking?
	Anyone who has taught a child to drive knows that the most important way to reduce the chance of an accident is through safe driving behavior. Since the insurance industry pays for the financial consequences of accidents and other insured events, it would seem they would and should be a promoter of safety as well. “Hazard reduction incentives” are a consideration in designing any insurance risk classification system. However, traditional auto insurance ratemaking uses classification systems that strive to place drivers into classes with homogenous risks based on factors such as age, sex and marital status that do not directly measure risk and do not utilize driving behavior. When behavioral risk is considered in traditional ratemaking, such as in claims or violations history, past rather than current behavior is measured. Walters states, “One of the reasons for classifying is the impossibility of knowing the risks true expected loss or accident likelihood.” This is no longer as clear as it was in 1981 as recent technology rapidly advances the potentials of ratemaking. With the introduction of telematics data on driving behaviors, actuaries can now, in a way that was impossible previously, transform ratemaking to utilize information that directly impacts risk. Behavioral ratemaking adjusts premium based on controllable driving behavior immediately. Behavioral ratemaking recognizes behavioral influence on the accident likelihood, and the potential severity of the accident, at each moment of actual driving. The overall number of claims would not change - except for the significant impact this measurement should have on actual behavior.
	There are many ways to implement these rate adjustments – each with practical issues to be resolved. In any case, they would be based on behaviors in real time. This is not the same as using historical behaviors of the driver to adjust the rate. Behavioral ratemaking provides the insured with immediate premium savings for continuous behavioral improvements. 
	How is technology expected to transform insurance?
	With advances in technology, futurists project many industries to be disrupted by innovation. Insurance is no different. Insurtech refers to the use of technology innovations designed to squeeze out savings and efficiency from the current insurance industry model, including using new streams of data from internet-enabled devices to dynamically price premiums according to observed behavior. It has been over a decade since the invention of a telematics device to provide real time input to insurers. Insurtech ideas potentially impacting ratemaking include: increased use of predictive modelling, using telematics or internet data to create improved ways to classify drivers, and mileage based insurance. When the Insurtech sector first developed, many in Insurtech with little insurance expertise believed that new technologies would be able to quickly disrupt the industry and allow for new companies to quickly begin taking significant market share from the established ones. 
	Such disruption in the insurance market has not transpired. Currently, experts in Insurtech generally agree that there is no standout disruptive technology that will significantly impact market shares of the largest insurers any time soon and many insurtech startups still require help from the major insurers. Industry executives have proclaimed that there is no technology on the horizon that will cause major disruptions in insurance company market shares in the near term. 
	Behavioral Ratemaking using real time telematics data will change this though. With the increased use of artificial intelligence, smart cars and driving algorithms, insurance ratemaking will need to keep up. Despite the slow start, it is clear that as technology advances new ideas are needed to align insurance better with the future of transportation and regulation.
	Why is behavioral ratemaking beneficial?
	Behavior ratemaking has many benefits. Benefits to customers include immediate financial rewards for driving safer; provides proven methods to drive safer; and allows individuals and fleet managers to better manage driving risk.
	Benefits to insurers using behavioral ratemaking include improved ratemaking which ties premiums charged to actual behavior and risk associated with that behavior. Higher identified risks are charged more, thereby generating increased revenue for high risk behaviors. There will be reduced insurer losses to the extent safer driving practices caused by the application of behavioral rating process are implemented. This leads to more accurate pricing as customers pay an amount more closely aligned to driving risk. 
	Behavioral ratemaking benefits to society include reduced accident frequency and severity to the extent some drivers adopt safer behaviors. Data collected over time showing how compliance with the posted speed limits impacts losses will have the potential to assist with better, safer programming of self-driving cars.
	How is behavioral ratemaking different from predictive modelling?
	It is well known in statistics that correlation does not imply causation. It is preferable if rating variables are based on characteristics that are causal in nature. Predictive modelling relies on finding attributes that are correlated with accidents to make predictions, while behavioral ratemaking relies on attributes that have been shown to cause or increase severity of accidents. Many companies, old and new, use predictive modelling to find better and more complex rating variables and classification systems that improve actuarial soundness. Predictive modelling is similar to traditional ratemaking in that historical information is relied upon to determine current rates. While this does lead to lower rates for safer drivers, the process takes time to design new pricing mechanisms and prove they work better. With predictive modelling safer insureds are asked to trust the insurer that they will eventually be charged lower premium for their safer driving. 
	There is a necessary delay between when the insurer confirms the safe driving and can reduce premium for the insured. Also, it is not necessarily intuitive which new rating variables or classification systems correlate with lower future costs, so it would be too risky for an insurance company to implement changes based on predictive modeling in conjunction with telematics data without adequate proof that the new rates are better. Combined with a pre-existing distrust of insurance companies, this delay in recognition of premium savings resulting from safer driving reduces the ability of predictive modelling based safe driving incentives to take hold. These companies hope that safer drivers will have enough confidence in the possibility of future lower safe driver rates to choose the company before the new rates are fully implemented.
	Also, without clear correlations, predictive modeling alone may not find opportunities to improve ratemaking as quickly as with the addition of behavioral ratemaking. This can be shown in the following simplified example with realistic assumptions. Let’s assume older drivers are more risky than younger drivers and that older drivers tend to drive slower than younger drivers. In this example, slow driving would be correlated with higher risk when we look at the population as a whole. However, if we look at either subgroup individually, we will likely find that slower driving is actually correlated with lower risk. And for any individual in either group, risk can be reduced by driving slower. This is the most important aspect that represents behavioral ratemaking’s untapped potential to improve fairness.
	Behavioral ratemaking is different in that drivers see immediate financial rewards for safe driving behavior, in addition to additional benefits for continued improvement in driving behavior. Behavioral ratemaking uses telematics data to make intuitive adjustments to traditional ratemaking techniques. Speeding is but one example of a behavioral characteristic which may impact safety. For example, a company would implement a large discount for drivers who agree to abide by the speed limit. In addition to driving speed, the company would rely on telematics mapping data for location of insured vehicles and corresponding speed limit. A surcharge would be assessed on each mile driven at a certain number of miles per hour over the posted speed limit. An additional discount can also be immediately provided for driving within a certain range of the speed limit. Important assumptions are that safer drivers will be drawn to a rating system that rewards them for safer driving and that they will drive more safely when rewarded. Since the starting point is traditional rates and rating plans, the use of new intuitive rating variables will improve upon overall actuarial soundness. Traditional ratemaking techniques can then be used to adjust rates and adjustments as new data comes in for the population as a whole.
	Why will behavioral pricing be disruptive?
	Once behavioral pricing takes off (with even a subset of insurance companies) adverse selection may create difficulties for the remaining more traditional insurance companies to co-exist without behavioral pricing. The effect could be similar to the introduction of nonsmoker/smoker pricing in the life insurance market. Once nonsmoker discounts were introduced by one company, they, practically, needed to be introduced by all for similar reasons. As safer drivers self-select discounts for their own safer driving, insurers using traditional pricing exclusively will be left with less safe drivers, and higher accident frequency and claims costs. Drivers who do not modify driving behavior will self-select the increasing costs of traditional insurance. There is also less risk to insurance companies using behavioral pricing because riskier driving behavior will result in immediate rate surcharges and therefore, increased revenue.
	Regulations have always required fair rates by disallowing unfair discrimination. Regulators rely upon actuaries to certify that rates are not unfairly discriminatory. The rating systems that developed in the twentieth century, based primarily on uncontrollable factors such as location, age, gender and marital status, were the fairest possible at the time. Once regulators and actuaries become comfortable with rating factors more directly linked with hazard, it will become apparent that traditional rating plans alone unfairly discriminate against safe drivers.
	It is important to note that the business of insurance requires cross-subsidies. No rating mechanism can accurately predict the exact cost of each insured. Actuarially sound rating reduces cross-subsidies. There may also be an ethical limit as to how much cross-subsidies can be reduced. For example, in health insurance it is unacceptable to classify risks based on pre-existing conditions.  
	Changing driving behavior will be disruptive to more than just insurance. Americans spend billions of hours per year driving. As safety becomes more prominent in the mindset when getting behind the wheel, many other industries are potentially disrupted by this potential shift (such as automobile manufacturing, advertising, infrastructure design, law enforcement, etc.)
	How can behavioral pricing take hold?
	In order for ratemaking changes to take hold in the automobile insurance industry, there are three requirements which need to be addressed. These have not been adequately addressed by Insurtech thus far, which is the reason for the slow start to disruption.
	1. From a customer perspective new changes need to be associated with an immediate monetary incentive. In other words, it needs to be cheaper for at least the safer half of drivers. Otherwise, customers will not move to the new system in a large scale. Would Uber have been able to overcome regulatory challenges if it weren’t cheaper than traditional taxis?
	2. From an actuarial perspective, telematics confirmation will be needed for the assumption that customers who do sign on will exhibit safer driving behavior. The safer behavior will be due to both attracting safer drivers to begin with, and all drivers driving more safely after they sign up.
	3. Investors in behavioral pricing need assurances that customers signing on will have lower loss costs and that rate adjustments can be quickly implemented.
	Insurance in the US is regulated on a state by state basis. While statutory guidelines for rates are similar among states, each state is responsible for determining and enforcing what is acceptable for its own residents. Behavioral pricing should lead to rates that are more actuarially sound than traditional rates. In order for behavioral pricing to take hold, insurance companies wishing to spearhead implementation would need to collaborate with individual state regulators. Three advantages to behavioral pricing over traditional pricing that should be important to regulators are: the incentivizing of safety, reduced likelihood of unfair discrimination, and more accurate rating.
	Improving safety
	One way to enable meeting all three of the aforementioned requirements is to identify, encourage and reward safe behavior. Doing so will reduce rates for policyholders while maintaining or improving profitability for insurance investors and actuarial soundness of rates.
	Consideration of insured behavior with respect to safety is an important component of actuarial fairness that has not been adequately addressed in actuarial literature. Although the insurance industry has done much to improve safety in many lines of insurance, safety is not necessarily viewed as having a good financial impact for the insurance industry, either as a whole or by large insurance companies. "You want safer cars. Safer cars mean lower insurance. Safer driving means lower insurance costs”, said Warren Buffet making this counterintuitive point. Regulators require actuarial determination that rates are actuarially sound. Actuarial soundness means that the rate is just enough to provide for all costs in the aggregate. Therefore, safer driving should mean lower revenues for the insurance industry as a whole. 
	Large insurance companies project revenue by considering their own shares of insurance market segments. Therefore, a disruptive drop in revenue for the industry, whether due to safety or anything else, represents a risk to a large insurance company’s revenue. Although safety reduces costs for insurance companies, the actuarial soundness requirement for rates implies no long-lasting loss ratio improvements due to decreases in losses. Many large insurance companies had their roots as small insurance companies that were able address to an underserved and safer subset of the market. An example in the life insurance industry is The Phoenix Companies, which began as American Temperance Life Insurance in 1851 and insured only those who abstained in alcohol. An example in the property casualty insurance industry is GuideOne, which began in 1951 as Preferred Risk Mutual Insurance Company, with the idea that non-drinkers would be in fewer accidents than those that did drink. As in the past, the opportunity presents itself today for a startup or small insurer to focus on safer than average individuals. By using behavioral ratemaking, this company would also create incentives for insureds to become safer.
	With respect to improved safety, the insurance industry currently seems to be primarily concerned about the impact of driverless cars. However, there is little evidence that driverless cars will be safer than human drivers in the near term. In addition, the focus on the safety of driverless cars removes energy from how safety can be improved through safer human driving behavior. 
	The difficulty of relearning safer driving behaviors
	It is very difficult for an individual to relearn safe behavior. We cannot let that individual difficulty blind us to the safer possibilities for society as a whole. It may be easier to for some individuals to overcome opioid addiction than for others to correct some unsafe driving habits. Even if that is the case, society as a whole can improve safety. For example, cigarette smoking has decreased dramatically over the last fifty years. While it is very difficult for an individual to quit smoking, it was possible for smoking to be reduced in society overall. Similar driving specific examples of safety improvements that are difficult for the individual but possible for society as a whole are the increase in seat belt usage and the decrease in drunk driving over the past few decades. 
	Seat belt use is a safe driving behavior that reduces mortality and injury severity after an accident. Therefore, seat belt usage reduces insurance losses. It has been widely observed that seat beat use has greatly increased over thirty years. A widespread survey, taken in 19 cities in 1982, observed 11 percent seat belt use for drivers and front-seat passengers. In 2009, seat belt use averaged 88 percent in the 30 States with primary seat belt laws. Though not exactly apples-to-apples, this represents an eight-fold increase, showing that the vast majority of drivers were ready, willing and able to take on this safer driving behavior. While driving behavior can be very difficult for an individual to change, this example provides evidence that the driving public is able to adopt additional safe driving behaviors.
	Despite the empirical evidence that human driving behavior can become safer as a whole, it may still be difficult to envision improved safety on a wide scale due to improving human driving behavior alone. We do know change for safety is possible, and although it may be unprofitable for large insurance companies that maintain the status quo, it is profitable for a new model of insurance company. Improved safety is good for society. 
	Insurance pricing would influence driving behavior
	The question is not whether driving behavior can be improved, but whether insurance pricing can encourage safe behavior. In order for all the benefits of behavioral pricing to be realized, it must be true that some drivers can and will change their driving behaviors in response to their insurance price. In the past, common actuarial wisdom was that it was not possible for an insurance pricing system to encourage safe behavior as noted by Michael Walters, “Few drivers wear seat belts despite the life-saving evidence, so the prospect of saving a few dollars of insurance surcharge certainly will not induce a modification of driving behavior.” Coincidentally, not too long after that paper was written, most drivers began to consistently use seat belts. According to a Canadian survey, the majority of drivers believe doubling speeding fines would reduce speeding. Immediate insurance surcharges that are directly attributable to speeding are very similar financially to fines. This supports that increasing insurance costs for speeding could reduce speeding. 
	The advent of telematics has enabled insurance pricing to induce the driving public to drive more safely. In 1981, there was no way to reliably determine whether drivers used seat belts or to monitor other driving behaviors, such as speed. This lack of reliable determination virtually eliminated the possibility of insurers reflecting driving behavior in pricing. Telematics data is now available so that the insurance company can determine driving behavior with great accuracy. Because of the availability of reliably correct telematics data, the behavioral price differences can be substantial. Behavioral pricing combined with the availability of telematics data can now provide the driver with minute by minute updates on insurance pricing as compared with the annual updates of the past. By providing continuous behavioral feedback impacting premium, drivers are enabled to consider premium when choosing a driving behavior.
	In order for insurance pricing to influence driving behavior, the pricing difference needs to be significant to the insured. While driving slower saves fuel costs, the resulting savings do not seem to be great enough to significantly influence driving speeds.
	In order to show that insurance pricing can encourage safe behavior, it is noted that a large part of driving risk is during the daily commute to work. For many people, there are many commuting cost options, including fuel efficiency, parking and use of public transportation. A daily difference in insurance cost would likely impact commuting cost benefit analysis and influence driving behavior to recognize a reduced insurance cost each day.
	Review of speed and other telematics attributes
	Data shows that speed increases costs of risk
	Slower speeds reduce accident probability
	Slower speeds reduce accident severity
	How reduced speed impacts expected cost of accidents

	“Newtonian relationships between the fourth power of small increases or reductions in speed and large increases or reductions in deaths state the case for speed control.” The best choice of driving attribute to be used for behavioral ratemaking is speed. As opposed to other attributes, such as cornering, braking and acceleration, speed has several advantages including that it relates to the hazard. According to Walters, attributes “should reasonably relate to the potential for, or hazard of, loss.” Compared to the other attributes: speed is more commonly a direct cause of accidents and speed is likely correlated with other aggressive and risky driving behaviors such as assuring safe following distance. A slower driver would be less likely to be tempted into a risky maneuver to pass an even slower moving vehicle. Regardless of the cause of the accident, virtually every accident would have a reduced cost if the initial speed were reduced and a better (slower) speed score would always be associated with reduced hazard. Similarly, a worse (faster) speed score would almost always be associated with increased hazard. A better cornering score is not always correlated with decreased risk as crossing a yellow line at an intersection could improve the score but increase accident potential.
	Some attributes for which it may seem reasonable to adjust the rate based on historical behaviors would not be feasible for behavioral ratemaking. While “hard braking” can be used as part of an overall analysis of safe driving, it does not directly relate to cost of risk. If a driver frequently brakes hard, the driver may be exhibiting unsafe behaviors prior to the hard-braking. While a hard-braking surcharge may reduce some unsafe behaviors, the hard-braking attribute does not work for behavioral ratemaking. The hard braking itself is used by the driver for the purpose of reducing hazard and it doesn’t make sense to charge the driver for the hard braking in the seconds before an accident that reduced the cost, or to discourage the driver from hard braking to avoid an accident. Compared with good speeding scores, good braking scores are not as clearly associated with safe driving and can be associated increased accident probability. For example, rolling through rather than completely stopping at a stop sign could improve braking score while increasing the chance of an accident. Conversely, a bad braking score could be the result of successfully avoiding an accident or making a complete stop for a pedestrian in a crosswalk. Using a hard-braking attribute could increase risk if the braking surcharge discourages drivers from hard braking when necessary to avoid an accident. The braking attribute just does not make intuitive sense when used on a real time telematics data since hard braking may be the result of trying to avoid or reduce the cost of an accident. Also, it wouldn’t make sense to charge a driver for braking hard one second before an accident. What would make sense is charging the driver for going too fast before the hard braking that led to the need for the hard-braking evasive action in the first place.
	Speed meets another criteria better than other attributes such as braking or cornering: it is easier to measure. The attribute “should be susceptible to measurement by actual experience data.” Drivers already understand that speed relates to risk and are trained to objectively measure speed. The other attributes would require additional training to show drivers how behavior impacts their score.
	Other groups concerned with safety, such as law enforcement and the medical community, have determined that slower speeds are safer. There has been no such determination for cornering or braking. The public already understands that speeding causes insurance losses. According to a Canadian study, about ninety percent of drivers believe driving over the speed limit increases the chance of accidents, injuries and getting killed. While there are certainly other behavioral factors which may impact accident risk, the insurance industry should focus on speed as the first attribute to use with behavioral ratemaking. 
	Since the beginning of the automotive age, it has been known that increasing speed increases the cost of driving risks. According to NHTSA, “For more than two decades, speeding has been involved in approximately one-third of all motor vehicle fatalities.” According to the NHTSA and NTSB, speeding causes as many deaths as drunk driving. Considering this statistic only includes accidents where speed was actually recorded as the cause, speeding fatalities may be understated. Other accidents where the initial speed exceeded the speed limit are not included. There is no way to determine how many fatalities in these accidents could have been avoided had the initial speed not been excessive.
	“At lower speeds, drivers have a wider field of vision and are more likely to notice other road-users.” Before an accident occurs, something unexpected must happen within the minimum distance (this could be defined as the distance travelled in two seconds, for example) needed by the driver to make normal driving adjustments in speed and direction. When this happens, the driver will undertake evasive action to reduce the probability of the accident and potential severity of the accident. The smaller this distance is, the less likely it is for an unexpected event to occur within that distance. If the initial speed is reduced, the minimum distance is proportionally smaller, so it is less likely for an event requiring evasive action to occur. Therefore, a decrease in initial speed decreases accident frequency at least proportionally. 
	Since kinetic energy is proportional to the square of velocity, it can be hypothesized that the cost of damage caused by an accident is proportional to the square of speed at impact. This hypothesis is borne out by studies. While ethical experimental confirmation of how bodily injury costs relate to speed of impact is not possible, it can also be hypothesized that bodily injury costs are also proportional to the square of the speed. 
	Since total costs are frequency times severity, an X% reduction in speed may cause approximately 2X% to 3X% reduction in accident costs. This calculation does not consider how other safe driving behaviors are likely correlated with slower driving, so more analysis is needed to conclude this relationship. While there is a range of driving speeds, it is not uncommon for the average speed on a highway segment to be 20% greater than the speed limit. In these cases, for example, a 20% reduction in speed could cause a 20% decrease in probability of an accident and a 36% reduction in severity yielding a 49% reduction in costs.
	Driving algorithms: programming humans versus cars
	Programmers will need assistance from the actuarial profession to consider safety within the automated driving algorithm. It would be a mistake to assume that automated driving algorithms will reduce losses so significantly that actuarial pricing would not be needed. As with any new insurance product, actuaries need to understand it to price and underwrite the insurance accurately. Accurate insurance pricing will encourage safety in the design. Perhaps actuarial pricing programs can be written to apply self-driving algorithms in model driving situations to assess how well adapted it is to avoid and reduce severity of accidents.
	“In the future, the actuary will be in the car.” With respect to driverless cars, programmers strive to create driving algorithms that are at least as safe as a human driver. Automated algorithms will certainly reduce some types of accidents such as distracted driving. As long as the driverless car is at least as safe as a human driver, implementation will improve safety. Currently, incentive and responsibility to significantly improve safety beyond human driving is lacking. There may be minimum requirements to obtain and possess an “automated” driving license, but the best incentive for programmers to produce safer algorithms would be to reduce insurance costs through behavioral ratemaking. With the incentive of saving on the costs of insurance risk it would be possible to experiment with possible behaviors to improve telematics attributes and safety.
	Human drivers, too, are not primarily concerned with safety when deciding how they wish to drive. As with any automation, programmers should be expected to program automated vehicles to drive the way a human driver would drive. This is similar to an individual having the responsibility to decide how to drive. In either case, it is the responsibility of the insurance industry to determine how much to charge for insurance using the chosen driving behavior as an input. The difference with an automated driving algorithm is that there are explicit decisions with respect to risk and safety. 
	There are clearly cases where humans are better than automation. Humans appear to be better at determining where in the lane to drive and better at driving in bad weather. Futurists believe that the insurance rating formula should be determinable based on the algorithm and placed within the program to determine the insurance charges based on the algorithm and other factors such as time, location and mileage of operation. In order to encourage safer and less risky driving algorithms, the insurance rating formula should consider driving behaviors of the algorithm. The programmers can then consider adjustments to the driving algorithm in consideration of the insurance costs. 
	Individual human drivers also have driving algorithms. Their driving behaviors could theoretically be reduced to a set of procedures to apply in all situations. Unlike automated driving algorithms, human driving algorithms are unknowable. While human driving algorithms may be able to be closely approximated based on observed driving behaviors in a great number (probably billions of miles would be needed) of situations, they cannot be used directly to determine insurance costs. Due to this complexity, the actuarial field may be a long way off from being able to create an insurance pricing formula based on an automated driving algorithm, but in the meantime behavioral ratemaking is the bridge to getting to that point. In addition to using behavioral ratemaking for human drivers, it can also be used for automated vehicles as they become more mainstream. Either way, behavioral ratemaking differentiates among various driving behaviors and safety characteristics. Actuarial expertise is needed now to connect driving behaviors with risk and in even more so in the future. 
	While many seem to have an initial expectation that automated driving may reduce insurance losses to near zero, automated driving will have losses for the foreseeable future. It may be many decades before fully automated vehicles are on the road. In the meantime, there needs to be responsibility for understanding the risk consequences. Actuaries are the best profession to ensure that the automated driving algorithms of the future adequately consider insurance risks.
	Influence on traffic safety and law enforcement
	Since the beginning of the automotive age, society has created rules for the purpose of safety to reduce the risks of driving. These rules include obeying traffic signals, speed limits, stop signs, and lane markings. It is common knowledge that following driving rules reduces driving hazards. Traditionally, traffic enforcement has been an important means of improving traffic safety. Many studies have provided evidence of connections between the level of police enforcement and both driving behavior and the number of traffic accidents. Since insurance companies are largely impacted by these financial costs, history shows insurers as being strong advocates of safe driving. Historically, insurance companies had no way to determine how well drivers mind driving rules. Other than consideration of traffic citations, there was no way to factor rule-following into the rating process. Most breaking of driving rules does not result in a traffic citation. Reliable determination of rule breaking is now possible with telematics data.
	The general public has all seen drivers use devices to elude traffic cops such as radar detectors. In our society, many view traffic cops as bad and that speeding should be accepted and tolerated. An important role of government is to enable safe travel. The government sets driving rules such as speed limits and should enforce those rules. It is possible that behavioral ratemaking will be better at encouraging safe driving than traditional public services messages and law enforcement. Traffic regulators may need to work with actuaries and other experts in insurance risk to determine the best way to moderate insurance risk.
	There are hundreds of thousands of traffic officers and other individuals dedicated to improving safety through speed limit enforcement in this country. There are hundreds of millions of drivers who seem to be more concerned about evading law enforcement than safety. There are only a few thousand actuaries who can determine how driving behaviors should be considered when addressing actuarial fairness to regulators. 
	How will behavioral ratemaking enable companies to improve fleet safety?
	Businesses that use highways have exposure to driving risks that need to be carefully managed. OSHA has published guidelines to help employers manage these risks. According to the Royal Society for the Prevention of Accidents, “One of the most significant risks . . .  is driving or riding at inappropriate speeds on work-related journeys.” Because driving behavior is difficult to change for any driver, attempting to manage another driver’s behavior is difficult and could be offensive. We may have no choice but to trust the driver to be safe. As an example, plan to politely ask your next cab driver to drive within the speed limit. While this would be a perfectly reasonable request to manage our own risk of bodily harm, you may find it to be a difficult discussion. Commercial vehicles taking various levels of risk can be frequently observed. This risk directly translates to financial risk of the drivers’ employers. In the past, many employers had limited ability to address this risk until the driver was involved in an accident and then, the only recourse may have been termination of the driver. Drivers spent their workday out of sight of their employer, and, for example, there may be a temptation to attend to non-work-related matters and to catch up on their deliveries by speeding.
	Telematics is now increasing the ability of fleets to manage driving behavior. As there are many business reasons other than insurance cost (better service to customers, risk to reputation, etc.) to reduce driving hazards, companies can use telematics to better manage driving risk. In addition, large self-insured companies can reduce insurance costs by making sure their drivers are driving safely.
	For companies too small to self-insure, monetization of driving behavior improvement is extremely uncertain in timing and amount. Behavioral ratemaking can create immediate savings for smaller fleet managers if they encourage safe driving.
	There is also the possibility that fleets that are successful in improving safety can bring other companies drivers or even individual drivers into their program to pass on insurance savings.
	Possible methods to instantaneously adjust rates
	Throughout this paper we talk about instantaneously adjusting insurance rates. However, it is not entirely intuitive how this might take place since it has never been attempted with respect to US auto insurance which is highly regulated. There may be current laws or regulations in some states that would prohibit behavioral ratemaking, requiring changes to enable it. In other states, the introduction of a behavioral ratemaking might stimulate new laws and regulations to better control and regulate it. Similar with other uses of telematics data, may be privacy concerns. This concern is reduced for behavioral ratemaking because many states already allow the use of telematics data for insurance pricing. Depending mainly on acceptability to regulators, and how to guarantee payment of surcharges, some possibilities include:
	 Include surcharges as part of a normal rate filing. As a somewhat simplistic example, certain policies could have a $0.10 surcharge for every mile driven between 10 and 14 mph greater than the speed limit. 
	 For assessable mutual insurance policies, include surcharges as assessments. 
	 Create a relationship between the insured and a non-insurance company risk bearing entity that could change surcharges and take some financial responsibility for encourage safe driving behaviors. This concept would not be dissimilar to professional employer organizations taking some of the risk of their clients’ workers compensation and employee health insurance benefits.
	Conclusion
	Speed has long been known to be one of the very most important driving safety factors and may be the best behavioral ratemaking risk factor. An insurance scheme with increased rewards for driving slower and more safely, that encourages implementation of safer driving practices, would be both beneficial and disruptive. 
	In the last few years, Insurtech has spawned many ideas to transform insurance. Although there are many Insurtech initiatives to transform the auto insurance industry, most do not appear to be disruptive any time soon. This new approach to ratemaking, Behavioral ratemaking, is different and would be expected to cause disruption in the near term. The disruptions would be to not only the auto insurance industry, but the impact would also affect traffic enforcement policies, road infrastructure and car programming. Behavioral ratemaking will encourage safer driving and ultimately lead to safer roads. 
	Behavioral ratemaking is intended to put the driving population on the path to continuous and conscious relearning of safer driving skills. Complete transformation could be a long and difficult process, but significant benefits would be expected almost immediately. Regardless of whether transformation of driving occurs, behavioral ratemaking is an opportunity to create a successful insurance enterprise built upon safety conscious drivers. Behavioral ratemaking will also assist fleet management.
	To move ahead with implementation, the industry needs to understand what is needed for an Insurtech idea to transform ratemaking and how safety can be aligned with insurance company financial goals. When insureds are encouraged to behave more safely, with improved behavior confirmed through telematics data, this transformation will benefit society. Examples show that insurance pricing can impact behavior. Actuarial ratemaking needs to be considered as part of automated driving algorithm creation processes.
	In order to implement behavioral ratemaking, a new method to modify insurance premium instantaneously for driving behaviors must receive regulatory acceptance. Many insurance professionals witness the gory details of death and serious injury every day. Although their witness may only be through insurance claim files, it is otherwise similar to first responders and medical personnel. Spirits speak from the grave to focus on safety to give meaning to unnecessary deaths.  
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	Abstract 
	Maximum information entropy distributions are a powerful and versatile tool for determining actuarial models from limited information, not necessarily from sample data, while not introducing unnecessary assumptions. These distributions, and potential applications, were presented in a 1967 paper in the Proceedings of the Casualty Actuarial Society, with a discussion following in 1968, but afterward effectively forgotten by the CAS community.   The abandonment was likely primarily due to limited computational resources at the time.  A relationship between maximum entropy and maximum likelihood is explained, along with an invariance property of the maximum entropy distributions under certain coordinate transforms of random variables.  Applications of maximum entropy distributions to determine actuarial models for several practical problems are demonstrated.  Some examples demonstrated include determining distributions consistent with the California Workers Compensation Rating Bureau’s Tables M and L, and LER tables, determining distributional information sufficient for Bayesian or Credibility calculations, multivariate predictive models naturally adapted to special constraints and automatically including credibility adjustments that are difficult to incorporate in GLMs.
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	1. BACKGROUND INTRODUCTION
	Information entropy, a central part of Information Theory introduced in 1948 by Claude Shannon ([16]), is a scalar measure of the uncertainty, or lack of information, in a probability distribution.  The entropy of a Uniform Distribution on a finite set of points increases with the number of points. A deterministic 100% probability for a single point has the lowest entropy of any distribution on any discrete set of points, finite or infinite.  It also happens to be that the entropy of a Normal Distribution increases with its standard deviation and is independent of its mean.
	 Maximum information entropy distributions are a powerful and versatile tool for determining actuarial models, particularly with respect to the objective of parsimony, when information is limited.  In cases where the specified constraints, implied by what information is available, are not sufficient to uniquely determine a probability distribution, entropy maximization can often be used to determine a distribution that satisfies the constraints, but otherwise assumes the least additional information.  It is important to bear in mind that these constraints do not have to derive from a sample of data observations.  They may come from any source of information, such as expert opinion, knowledge about the underlying data generating mechanism, generic assumptions, etc.  Even if the constraints are derived from a data sample, they are sufficient statistics for a maximum entropy distribution, and it is not necessary to have the details of the sample itself.   It is also not necessary to specify any underlying statistical framework, Frequentist or Bayesian, of hypothesized models.  Maximum entropy distributions may have significant predictive value, but there is no intrinsic need for prediction performance fitting or testing procedure.
	Example 1.1 Selecting The Highest Entropy Model That Satisfies A Basic Constraint

	Losses are known to be non-negative with mean 10,000 but no other information is known about the distribution of losses and no sample data is given.  There are many distributions satisfying these constraints, including:
	It makes sense to use the distribution with the highest entropy, in this case the Exponential Distribution, to minimize unnecessary implicit assumptions.  In fact, the Exponential Distribution has the maximum entropy of any distribution that fits the given constraints.  Note, maximum entropy as used here for model selection is distinct from information criteria such as AIC, BIC, etc. (see Appendix B), which could not be used in this situation because no sample data is given.
	Maximum information entropy distributions, and potential applications, were presented in a 1967 paper, with the very appropriate name “A Discipline for the Avoidance of Unnecessary Assumptions,” in the Proceedings of the Casualty Actuarial Society (PCAS), (Roberts [14] with a discussion following in 1968 by Hurley [9]).  The Roberts [14] and Hurley [9] papers are excellent references, and readers are strongly encouraged to become familiar with these papers as background for understanding this paper, including a more thorough treatment of the meaning of entropy.  At the time of this writing, the Wikipedia article “Maximum Entropy Probability Distribution,” (see [16]) is also a very useful additional source of information.  In this paper we focus on areas of actuarial application, with many examples, along with some important general properties of maximum entropy distributions.
	In the half century following [14] and [9], knowledge of maximum entropy distributions was effectively forgotten by the CAS community.   Some of the very rare exceptions with some mention of information entropy were: the use of entropy for constructing automobile rating territories (see Conger [7]) in 1987, a proposed unified approach to pricing risk (see Kull [10]) in 2003, an application to jump diffusion processes in 2013 (see McKean [13]), and cross entropy applied with machine learning (see Chalk and McMurtrie [6]) in 2016.  An interesting non-actuarial application of maximum entropy to financial risk management in 2015 is Geman, Geman, and Taleb [8], showing what effect that constraints on the probability of ruin and the expected shortfall conditional on ruin will have on the returns of an investment portfolio.
	The general abandonment of maximum entropy applications by the CAS was most likely a consequence of limitations in computing power available to actuaries in the 1960s when [14] and [9] appeared in the PCAS and in subsequent decades.  A secondary reason may have been the focus on directly data driven and less computationally intense statistical methods, such as Generalized Linear Models (GLMs) and Credibility Models.  Even in the absence of computing power, it is unfortunate that CAS actuaries have not been generally aware of the maximum entropy derivation of common distributional forms.  Most of these common forms (Exponential, Normal, Lognormal, Gamma, etc.)  correspond to maximum entropy distributions given certain constraints (see table of common distributions by maximum entropy constraints in [17]).  This knowledge can be useful in selecting which common forms to apply in a given application.  For example, if the constraints in Example 1.1 had been stated in terms of the first two moments of the logarithm of the loss, instead of the first moment of the loss itself, a fitted Lognormal Distribution would have had the highest entropy.
	This paper demonstrates the application of maximum entropy distributions to determine actuarial models in types of problems that often occur in actuarial practice.  Section 2 is a basic introduction to the mathematical definition of information entropy.  Section 3 covers the general format for the distributional density and generalized moment constraint equations that can be solved to determine a maximum entropy distribution given a particular limited amount of information.  Section 4 demonstrates that fitting maximum entropy distributions in the format shown in Section 3 is equivalent to solving for maximum likelihood, for the special case when a sample of observations is given whose sample generalized moments have the same values as those specified in the constraints from the Section 3 format.  Section 5 shows that maximizing entropy before or after certain coordinate transformations of a random variable are applied, as long as the constraint equations are consistently transformed. Note, the material in Sections 4 and 5 is well known outside of the actuarial community.   It is presented here for the benefit of the actuarial readership and not claimed as original results.  Section 6 consists of further useful examples for problems that are common in actuarial practice.  Section 7 introduces a general framework for applying maximum entropy distributions to determine multivariate predictive models that can also naturally include special constraints and/or Bayesian/Credibility type adjustments that are difficulty to include in Generalized Linear Models (GLMs). Appendix A contains a brief discussion of computational and software coding challenges.  Appendix B clarifies of some confusion reviewers of an earlier draft of this paper had, identifying maximum entropy distributions with several other very different things.  Importantly, applying maximum entropy distributions is quite distinct from applying the information criteria (AIC, BIC, etc.) that were first introduced in the 1970s (see [1], [2], [3], [4], and [15]) for selection between different hypothesized models given sample data.  It is also distinct from the ordinary technique of matching moments or statistical techniques where use of the exponential family of distributions is central, such as Generalized Linear Models (GLMs) and exact credibility. 
	2.  INFORMATION ENTROPY
	The information entropy of a probability distribution is a measure of the extent of lack of information.  For probabilities 𝑝𝑖 on a finite set of points 𝑥1,…,𝑥𝑛 the information entropy is defined as:
	with the convention that if    𝑝𝑖=0, then  𝑝𝑖 𝑙𝑜𝑔𝑝𝑖=lim𝑝→0+𝑝log𝑝=0.
	The maximum possible entropy for 𝑛 points is 𝑙𝑜𝑔𝑛 for the uniform distribution 𝑝𝑖=1𝑛 , and the minimum possible entropy is 0 for a single point mass distribution 𝑝𝑘=1,  𝑝𝑖≠𝑘=0 .  Information gain is equivalent to the loss of entropy.  A realized outcome in this example lowers the entropy (increases information) by 𝑙𝑜𝑔𝑛.  Changing from natural logarithmic base 𝑒 to another logarithmic base  𝑏>1 would only have the effect of multiplying 𝑆 by log⁡(𝑏)>0 , which would not change the relative order of different distributions as ranked by 𝑆.   This definition for information entropy can easily be generalized, with some care to measure theoretic issues, to infinite discrete sets and continuous probability distributions, with the integral expression for 𝑆 in the continuous setting:
	For continuous distributions the entropy S can be negative.  Thus, entropy for continuous distributions, though serving the same purpose and generally having the same properties, is not directly comparable to entropy for discrete distributions.  Sometimes entropy for continuous distributions is referred to by a term other than “Information Entropy,” such as “Differential Entropy.”  We will mostly focus on continuous distributions and the integral expression (2), but results will typically also be valid in the discrete setting.
	Example 2.1 Entropy of A Normal Distribution Is An Unbounded Increasing Function Of Standard Deviation Independent Of Mean

	For a Normal Distribution the information entropy will only depend on the standard deviation parameter 𝜎 since 𝑆 as defined in (2) is invariant under translation of x by an additive constant.  The entropy is 𝑆= 12log⁡(2𝜋𝑒)+log⁡(𝜎) an increasing function of 𝜎, such that lim𝜎→0𝑆=−∞ and lim𝜎→∞𝑆=+∞ .
	Example 2.2 Incomparability of Discrete And Continuous Entropy

	A discrete single point mass at 𝑥=1 has entropy 0, but a continuous uniform distribution for 𝑥∈[0.9, 1.1] has a lower entropy of -1.60944, although it clearly contains less information than the point mass.
	Information entropy is not necessarily correlative with typical concepts or measures of quantitative risk.  It is sensitive to the distribution of probability among different possible outcomes, but it is insensitive to the relative magnitudes of these outcomes.
	Example 2.3 Incommensurability Of Information Entropy And Quantitative Risk

	A discrete uniform distribution on two possible outcomes has the same information entropy, log⁡(2), whether the possible outcome set is {1, 2} or  {1, 109}.  Similarly, the information entropy for a uniform continuous distribution on the interval [0, 1] is the same value 0 as for a continuous uniform distribution on the union 0, 0.5∪109,109+ 0.5 of two far apart intervals.
	Although we will mostly present examples and properties for a scalar random variable, it is usually possible to extend the examples and properties that follow to vector, or multi-variate, random variables.  Section 7 will focus on the multivariate context.
	3.  MAXIMUM ENTROPY PROBABILITY DISTRIBUTIONS
	Suppose the following form for the density function, whether the random variable 𝑋 is discrete or continuous, for measurable functions {𝑔1(𝑥),…,𝑔𝑚(𝑥)}, which will be called generalized moment functions:
	Define 𝑚 generalized moments of this distribution as:
	It can be shown though Lagrange Multipliers (see [14] and further references listed there to papers by Jaynes and Tribus) that 𝑝(𝑥) has the highest entropy of any distribution having these specific values 𝑐𝑖 for these 𝑚 generalized moments.  Often the given constraints on a probability distribution, in a specific application problem, can be expressed in the form equations 𝐸𝑔𝑖𝑋=𝑐𝑖  together with the formal normalization constraint 𝐸1=1,   for a set of functions 𝑔𝑖𝑥  and a set of constants 𝑐𝑖.  Therefore, if it is possible to solve for the parameter values {𝑎0,𝑎1,…,𝑎𝑚} so that these constraints equations are satisfied by 𝑝(𝑥), then 𝑝𝑥 has the highest entropy of any distribution satisfying these constraints. 
	Equation (3) is a very general form in that an arbitrary density may be stated in many ways that fit this form, although some or all of the parameters of the original density may be embedded in the functions 𝑔𝑖𝑥 rather than corresponding to {𝑎0,𝑎1,…,𝑎𝑚}.  A trivial form for any density is:
	For convenience 𝑎0 can be stated in terms of the normalization formula (6), leaving only the 𝑚 other constraint equations that need to be solved such that (6) has a finite value so that the normalization constraint is automatically satisfied.
	Then the generalized moments can be expressed as:
	The following formula for the variance of the moment functions is also potentially useful:
	Example 3.1 Maximum Entropy Distribution Determined with Very Limited Information About Losses

	A reinsurer has only the following very limited information about the losses for individual claims but needs to completely determine the per claim loss distribution to price excess layers.
	 90% of claims are under 100,000
	 The mean of the unlimited layer excess of 10 million is 1 million
	Let the moment functions be:
	𝑔1𝑥=1   𝑖𝑓 𝑥∈[0, 105)  
	=0  𝑖𝑓 𝑥∈[105, +∞)
	𝑔2𝑥=𝑀𝑎𝑥(0, 𝑥−107)
	Then the maximum entropy density form is:
	The normalization parameter is:
	𝑎0=𝑙𝑜𝑔105𝑒𝑥𝑝−𝑎1+107−105+1𝑎2
	The constraint equations are:
	105𝑒𝑥𝑝−𝑎1105𝑒𝑥𝑝−𝑎1+107−105+1𝑎2=0.9
	(1/𝑎2)2105𝑒𝑥𝑝−𝑎1+107−105+1𝑎2=106
	Numerical rooting finding leads to:
	𝑎0=19.3776  𝑎1=−7.75927 𝑎2=6.19750 ×10−8
	Using 𝑝𝑥, the ground up loss has mean 1.86 million and standard deviation 7.5 million, for a 404% coefficient of variation.  The expected losses for excess layers of interest can be calculated:
	Table 3.1 Some Layer Calculations For Maximum Entropy Solution In Example 3.1
	Figure 3.1 Density Of Maximum Entropy Solution In Example 3.1

	However, often even for mathematically consistent constraints there is no maximum entropy distribution.
	Example 3.2 Some Constraints Where No Maximum Entropy Distribution Exists

	A non-negative random variable has 90% probability of being less than 1000.  These constraints are satisfied by the family of densities:
	𝑝𝑥=0.0009  𝑖𝑓  𝑥∈[0, 1000)
	=  0.1𝐿  𝑖𝑓  𝑥∈1000, 1000+𝐿
	=  0  𝑖𝑓  𝑥≥1000+𝐿
	A maximum entropy distribution cannot exist, because the entropy of a member of this family is an increasing function of L with no upper bound:
	𝑆𝐿= −0.9log0.0009+0.1 log⁡(10 𝐿)
	Example 3.3 Maximum Entropy Distribution for A Bounded Number Of Claim Counts

	A certain type of insurance policy is limited to a maximum of 5 claims per year, and historically these policies have averaged 0.7 claims per year.  The maximum entropy distribution for the annual number of claims can be found as: 
	𝑎0=𝑙𝑜𝑔𝑘=05exp⁡(−𝑎1𝑘)
	−𝜕𝑎0𝜕𝑎1 =𝑘=05k exp⁡(−𝑎1𝑘)𝑘=05exp⁡(−𝑎1𝑘)=0.7
	𝑎0=0.545133  𝑎1=0.859003
	Table 3.2 Density Of Maximum Entropy Solution In Example 3.3
	Figure 3.2 Density of Maximum Entropy Solution In Example 3.3

	4. A RELATIONSHIP BETWEEN MAXIMUM ENTROPY AND MAXIMUM LIKELIHOOD
	The maximum entropy form (3) may be determined for the given constraints, without any sample of data.  However, there is a general relationship between maximum likelihood estimation (MLE) for a density of the form (3) on a sample of observations {𝑥1,…,𝑥𝑛} and maximizing entropy such that the generalized moments (4) of the density are equal to the sample values  1𝑛𝑗=1,..,𝑛𝑔𝑖𝑥𝑗.  This makes sense as form (3) is a subset of the exponential family with the generalized moment functions {𝑔1(𝑥),…,𝑔𝑚(𝑥)}  fitting in the position of the sufficient statistics functions.  For a fixed parametric distributional form, such as form (3), the sufficient statistics, that is sample averages for these functions, include all information about determining the parameters that can be obtained from a given sample. Put another way, often an MLE fit is – even if unknowingly to the practitioner - a maximum entropy distribution for constraints based on sufficient statistics implicit in a distribution from the exponential family and their values when applied to the sample data.
	Given a sample of observations {𝑥1,…,𝑥𝑛} and specific moment functions {𝑔1(𝑥),…,𝑔𝑚(𝑥)}
	the log-likelihood function for the distributional form given in (3) is:
	If  (𝑎1,…,𝑎𝑚)∗ is a maximum likelihood solution for (9) then:
	Consequently:
	So, in addition to (𝑎1,…,𝑎𝑚)∗ maximizing likelihood for the distributional form (3) given the sample observations, the resulting distribution is also the maximum entropy distribution constrained to have the same values for generalized moments 𝐸𝑔𝑖𝑥 as the sample averages for these generalized moments  1𝑛𝑗=1,..,𝑛𝑔𝑖𝑥𝑗.  That is to say that maximizing the likelihood for a distributional form like (3) on a sample, is the same as finding the maximum entropy distribution whose generalized moments corresponding to the functions {𝑔1(𝑥),…,𝑔𝑚(𝑥)}  are matched to the sample averages of the functions. 
	Alternately, if (𝑎1,…,𝑎𝑚)∗ satisfies (11), and hence (3) will be the density of the maximum entropy distribution for the constraints (11), then  (𝑎1,…,𝑎𝑚)∗ will automatically be a critical point of the loglikelihood function in (9).  The elements of the Hessian matrix of the loglikelihood in (9) can be shown to be: 
	The determinant of the covariance matrix of a set of linearly independent random variables (none of which is a trivial point mass) will be positive since it is similar to the diagonal matrix of the variances. Consequently, the determinant of this Hessian must be negative for all points 𝑎1,…,𝑎𝑚 that correspond to a legitimate density.  So, the critical point is also a global maximum.  (Note:  If the random variables 𝑔𝑖𝑋 are linearly dependent then the original set of generalized moment functions 𝑔𝑖𝑥, and their corresponding constraint equations, can be reduced through a linear transformation into a smaller linear independent set.  If any of the 𝑔𝑖𝑋 are point masses, these can be split out with their constraint equations automatically yielding point mass probabilities.  Therefore, the original maximum entropy form and constraint equations can be restated to eliminate any linearly dependent and/or point mass generalized moments.)
	Example 4.1 Maximizing Likelihood for a Normal Distribution Is Equivalent to Maximizing Entropy Given the Mean and Standard Deviation

	A Normal Distribution with mean 𝜇 and standard deviation 𝜎 has density:
	𝑝𝑥=𝑒𝑥𝑝−(𝑥−𝜇)22 𝜎2𝜎2𝜋=𝑒𝑥𝑝−𝜇2𝜎2+log𝜎2𝜋2+𝜇 𝜎2𝑥−1 2𝜎2𝑥2
	This is clearly the maximum entropy form for 𝑔1𝑥=𝑥 and 𝑔2𝑥=𝑥2 with moments
	 𝐸[𝑔1𝑥]=𝜇  and 𝐸[𝑔2𝑥]=𝜎2+𝜇2 .  The maximum likelihood estimators for a sample 
	𝑥1,…,𝑥𝑛 are given by the familiar formulas:   𝜇=1𝑛𝑖=1,…,𝑛𝑥𝑖  and  𝜎2=1𝑛𝑖=1,…,𝑛𝑥𝑖2−𝜇2 
	When these estimators are used for the parameters, the moments of the distribution are set equal to the sample moments:   𝐸[𝑔1𝑥]=1𝑛𝑖=1,…,𝑛𝑥𝑖   and   𝐸[𝑔2𝑥]=1𝑛𝑖=1,…,𝑛𝑥𝑖2  and this maximum likelihood solution for the Normal Distribution is also the maximum entropy distribution for a real valued random variable with these specified moments.
	5. AN INVARIANCE PROPERTY OF MAXIMUM ENTROPY DISTRIBUTIONS UNDER CERTAIN COORDINATE TRANSFORMATIONS
	Some coordinate transformations, that is certain smooth invertible functions of a continuous variable X, along with the correspondingly transformed generalized moment functions will result in the same maximum entropy distribution as if the maximum entropy distribution is determined before the coordinate transformation and then transformed.  Note however, the value of the information entropy itself may change under these coordinate transformations.
	Suppose  𝑋=𝑓(𝑌) , where 𝑓(𝑌) is differentiable and invertible.  Then the equivalent transformed density of the maximum entropy form of 𝑝𝑥 from (3) is:
	The transformed generalized moment equations (4) will be:
	These equations will still be satisfied because:
	Furthermore, if 𝑓′(𝑦) can be expressed in the form:
	then:
	is the maximum entropy distribution for the transformed constraints 𝐸ℎ𝑖𝑦= 𝐸𝑔𝑖𝑓(𝑥)=𝑐𝑖.  Therefore, as long as the generalized moment functions are consistently transformed, and 𝑓′(𝑦) can also be expressed in the standard maximum entropy form in the transformed space, it does not matter if the maximum entropy distribution is solved before or after the coordinate transform.
	Example 5.1 Maximum Entropy Equivalence Between Normal Distribution And Lognormal Distribution

	Suppose 𝑋=log⁡(𝑌), the support of X is (−∞,+∞), the support of Y is (0,+∞), and the given constraints are 𝐸𝑋=0 and 𝐸𝑋2=1, then the maximum entropy distribution is the Normal Distribution with density:
	𝑝𝑥=exp⁡(−𝑥2/2)2𝜋  , which would transform to 𝑞𝑦=exp⁡(−𝑙𝑜𝑔(𝑦)2/2)𝑦 2𝜋 , the density of a Lognormal Distribution that is the maximum entropy distribution for the constraints 𝐸𝑙𝑜𝑔(𝑌)=0 and 𝐸𝑙𝑜𝑔(𝑌)2=1.
	Example 5.2 Counterexample - Maximum Entropy Non-Equivalence Under Transformation 

	If we repeat Example 5.1 using only the second constraint, 𝐸𝑋2=1 then the maximum entropy distribution is still the Normal Distribution with density:
	𝑝𝑥=exp⁡(−𝑥2/2)2𝜋  , which would also still transform to 𝑞𝑦=exp⁡(−𝑙𝑜𝑔(𝑦)2/2)𝑦 2𝜋 , the density of a Lognormal Distribution that is the maximum entropy distribution for the constraints 𝐸𝑙𝑜𝑔(𝑌)=0 and 𝐸𝑙𝑜𝑔(𝑌)2=1.  However, the maximum entropy distribution under only the relevant transformed constraint 𝐸𝑙𝑜𝑔(𝑌)2=1 would be 𝑟𝑦=𝑎𝜋exp⁡(−𝑎 log𝑦2−𝑎/4)  with 𝑎=141+5=0.8090169943749475… .  The first transformed restraint, which we discarded, is not met by 𝑟𝑦, since under 𝑟𝑦, 𝐸𝑙𝑜𝑔(𝑌)=0.714863≠0.   Also, 𝑟𝑦 has entropy 1.79637, which is higher than the entropy 1.41894 of 𝑞𝑦.
	6. FURTHER EXAMPLES
	6.1   Determining A Distribution Consistent With Excess Ratios In Tables M And L

	The California Workers Compensation Insurance Rating Bureau (WCIRB) produces tables of per risk expected loss excess ratios (“insurance charges” in this context) by entry ratio (loss amount/mean loss), (see [5]).  These tables are organized in columns corresponding to Expected Loss Groups (ELGs) that are ranges of expected loss per risk.  The Table L varieties include adjustment for various per accident limits and Table M is unlimited.  
	Example 6.1.1 Excerpt from WCIRB’s 2019 Table L 

	Below is an excerpt of values from WCIRB’s 2019 Table L for loss limit $100,000 for ELG 50, corresponding to expected per risk loss in the range from $165,605 through $181,201.  The Excel spreadsheet available online at [5] has many digits of precision, but often only 4-digit precision numbers are available in printed material.
	Table 6.1.1 Sample from WCIRB’s  2019 Table L for loss limit $100,000 for ELG 50

	A common actuarial problem is to determine the probability distribution underlying these tables for various practical applications.  It can be very challenging to fit a typical functional form probability distribution, or even a mixture of typical forms, and such a fit may make unnecessary implicit assumptions.  An alternative approach is to take the negative finite differences of the excess ratios to approximate the cumulative probability distribution, but this approach is very sensitive to numerical rounding errors and other aspects of discrete tabular representation.  It often produces inconsistencies where the cumulative distribution decreases or remains unchanged as the entry ratio increases. However, there is a straightforward maximum entropy distribution for this situation.  
	Example 6.1.2 Maximum Entropy Distribution for WCIRB’s  2019 Table L for loss limit $100,000 for ELG 50

	From the Table L column underlying Example 6.1.1, we select for fitting purposes the following sample values, spaced out in terms of sequential differences in excess ratios, but including the highest available entry ratio of 10.00:
	Table 6.1.2 Selected Values For Fitting From WCIRB’s  2019 Table L For Loss Limit $100,000 For ELG 50

	The generalized moment functions can be defined as:
	𝑔𝑖𝑥=𝑀𝑎𝑥0, 𝑥−𝑥𝑖,     𝑥1=0.00,   𝑥2=0.03,   …,    𝑥22=10.00
	with density function:
	𝑝(𝑥)=𝑒𝑥𝑝−𝑎0−𝑎1𝑥− 𝑎2 𝑀𝑎𝑥0,𝑥−0.03−…  −𝑎22𝑀𝑎𝑥(0,𝑥−10.00)
	and 23 constraint equations, including normalization, in integral form:
	0∞𝑝𝑥 𝑑𝑥=1 
	0∞𝑥 𝑝𝑥 𝑑𝑥=1 
	0∞𝑀𝑎𝑥0,𝑥−0.03 𝑝𝑥 𝑑𝑥=0.973293029 
	……
	0∞𝑀𝑎𝑥0,𝑥−10.00 𝑝𝑥 𝑑𝑥=0.369524682 
	The integrals can be broken down into piecewise calculations of means of exponential distributions over a sequence of intervals and simplified, although into very lengthy expressions in terms of exponential functions and algebraic operations.  For example:
	0∞𝑥 𝑝𝑥 𝑑𝑥=exp⁡(−𝑎0)−𝑎10.03 exp−𝑎10.03− exp−𝑎10.03+1𝑎12+…
	After a significant amount of calculus, numerical root finding can be applied to solve for the parameters.  In practice, the author found it was necessary to do so sequentially.  {𝑎0,𝑎1} was solved first, while zeroing out {𝑎2,…,𝑎22} and ignoring the equations for {𝑔2(𝑥),…,𝑔22(𝑥)}.  Then, this solution was used as an initial search point to solve for {𝑎0,𝑎1,𝑎1} while zeroing out {𝑎3,…,𝑎22}  and ignoring the constraint equations for {𝑔3(𝑥),…,𝑔22(𝑥)}.  Continuing in the same manner eventually a solution for {𝑎0,…,𝑎22} under all the constraint equations was found:
	Here are some excess ratios and cumulative distribution values for the fitted entry ratios, the entry ratios from the original excerpt from Example 6.1.1, and some extrapolated entry ratios.
	Table 6.1.3 Some Excess Ratios And Cumulative Distribution Values From The Maximum Entropy Solution In Example 6.1.2
	Figure 6.1.1 Density Of Maximum Entropy Solution In Example 6.1.2

	Note, there is an effectively very long tail extrapolated past the highest Table L entry ratio of 10.  This is caused by the very slow decline, nearly a flattening, in the excess ratio that begins at least by entry ratio 5.  Remarkably, the fitted coefficient of variation is 3,909%!  Whether or not this would be a reasonable extrapolation for an empirical model given extra information about the tail, it is a reasonable extrapolation given the pattern in the Table L values available.
	6.2   Determining A Distribution Consistent with Excess Ratios in Loss Elimination Ratio Tables

	The WCIRB also produces tables of Loss Elimination ratios (LERs), that are excess ratios on a per accident basis in terms of the dollar amount of the limit (see [13]).  Although the WCIRB releases some details of the underlying probability distribution, which is fairly complicated, recovering a maximum entropy distribution from the table of LERs illustrates a different approach from the Tables M and L example in the previous section, since in that case the overall mean was known to be 1.00 due to the normalization to produce entry ratios.  Additionally, the final tables of LERs contain excess ratios rounded to only 3 digits, contributing to the difficulty of recovering the underlying distribution.
	Example 6.2.1 Maximum Entropy Distribution for WCIRB’s  2019 Overall LERs

	Below is WCIRB’s 2019 table of overall (all Hazard Groups combined) LERs.  The Excel spreadsheet available online has only 3 digits of precision.  The values in Bold have been selected for the specified constraints to fit.
	Table 6.2.1 Selected Values For Fitting From WCIRB’s  2019 Loss Elimination Ratios (Overall, All Hazard Groups)

	The generalized moment functions, corresponding to constraint indexed rows in the prior table, can be defined as:
	𝑔𝑖𝑥=𝐿𝐸𝑅𝑖𝑥−𝑀𝑎𝑥0, 𝑥−𝑥𝑖,     𝑖=1,…,12
	Note, 𝑔1𝑥=0 for all x, so we can set 𝑎1=0 and eliminate 𝑔1𝑥 from the density function:
	𝑝(𝑥)=𝑒𝑥𝑝−𝑎0− 𝑎2 (0.689𝑥−𝑀𝑎𝑥0, 𝑥−25,000)     −…  −𝑎12 (0.001𝑥−𝑀𝑎𝑥0, 𝑥−20,000,000)
	and 12 relevant constraint equations, including normalization, in integral form are:
	0∞𝑝𝑥 𝑑𝑥=1  
	0∞(0.689𝑥−𝑀𝑎𝑥0, 𝑥−25,000)𝑝𝑥 𝑑𝑥=0 
	……
	0∞(0.001𝑥− 𝑀𝑎𝑥0,𝑥−20,000,000 )𝑝𝑥 𝑑𝑥=0
	Some calculus and numerical root finding, similar to what was done for Table L in Example 6.1.2, is required.  This includes sequentially solving for small subsets of the parameters and constraints, to be used as initial search points for the next larger subsets, as described before.  This process leads to:
	𝑎0=   11.864788254009900000000
	𝑎2=    -0.000125730464385769000
	𝑎3=     0.000058923444849539900
	𝑎4=    -0.000004271540735520050
	𝑎5=     0.000010447441490470400
	𝑎6=     0.000002998956261260340
	𝑎7=     0.000002383315118547030
	𝑎8=     0.000000899163635770769
	𝑎9=     0.000000396715370202262
	𝑎10=    -0.000000178908277119939
	𝑎11=     0.000000541076550263008
	𝑎12=    -0.000000464839849564974
	The mean of the fitted maximum entropy distribution is $68,730 with standard deviation $272,939, and corresponding coefficient of variation 397%.  Below are the actual and fitted LERs, including some extrapolated limits.
	Table 6.2.2 Some Excess Ratios And Cumulative Distribution Values From The Solution In Example 6.2.1
	Figure 6.2.1 Density Of Maximum Entropy Solution In Example 6.2.1
	6.3   Fitting a Distribution to Match Higher Moments

	The maximum entropy distribution to match a specified set of 𝑚 positive integer moments 𝐸[𝑋𝑘1],…,𝐸[𝑋𝑘𝑚], if it exists, has a very straight forward form:
	There is a closed form solution for the density of the maximum entropy distribution, if it exists, for a non-negative random variable with a single higher positive integer moment specified.
	Example 6.3.1 Maximum Entropy Distribution For A Single Higher Moment

	A non-negative random variable is known to have a mathematically consistent kth moment equal b.  
	𝑎0=𝑙𝑜𝑔0∞𝑒𝑥𝑝−𝑎1𝑥𝑘 𝑑𝑥=log𝛤1+1𝑘𝑎1−1𝑘⁡
	=𝑙𝑜𝑔𝛤1+1𝑘−1𝑘log𝑎1
	−𝜕𝑎0𝜕𝑎1=1𝑘 𝑎1=𝑏⟹  𝑎1=1𝑘 𝑏
	𝑝𝑥=𝑒𝑥𝑝−1𝑘 𝑏𝑥𝑘𝛤1+1𝑘𝑘 𝑏1/𝑘
	Multiple higher moments can be a challenge to numerically solve.  (For a treatment of this general problem aimed at applications in physics see [12].)  As of this writing, the author has not yet found a generally effective and satisfactory way, even using the sequential parameter/constraint subset process that worked very well for the excess ratio problems described in Examples 6.1.2 and 6.2.1, to reliably solve for a significant set (4, 5, or more) of the higher moments.  A practical way of doing this would be particularly useful in many applications.
	Figure 6.3.1 Density Of Maximum Entropy Solution In Example 6.3.1
	Example 6.3.2 Maximum Entropy Distribution For 1st And 3rd Moment

	A non-negative random variable is known to have mean 15 and 3rd moment 5,000.  
	𝑔1𝑥=𝑥    
	𝑔2𝑥=𝑥3 
	px=exp⁡(−𝑎0−𝑎1𝑥−𝑎2𝑥3 )
	𝑎0=𝑙𝑜𝑔0∞exp⁡(−𝑎1𝑥−𝑎2𝑥3 ) 𝑑𝑥
	−𝜕𝑎0𝜕𝑎1=0∞𝑥exp−𝑎1𝑥−𝑎2𝑥3 𝑑𝑥0∞exp−𝑎1𝑥−𝑎2𝑥3 𝑑𝑥=15
	−𝜕𝑎0𝜕𝑎2=0∞𝑥3exp−𝑎1𝑥−𝑎2𝑥3 𝑑𝑥0∞exp−𝑎1𝑥−𝑎2𝑥3 𝑑𝑥=5,000
	A numerical search leads to:
	𝑎0=4.98497  𝑎1=−0.211337 𝑎2=0.000278004
	Figure 6.3.2 Density Of Maximum Entropy Solution In Example 6.3.2
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	6.4   Implicit Aggregate Loss Models

	In practice, sometimes only limited information is available about the distribution of aggregate losses for a portfolio of risks, but a maximum entropy distribution can be determined.
	Example 6.4.1 Maximum Entropy Distribution for TVAR And Mean

	A primary insurance company estimates the 99% Tail Value at Risk (TVAR) of its aggregate losses is $1 billion and has a current booked ultimate aggregate loss of $100 million.  If we interpret the booked ultimate as an expected value and let the 99th percentile be an unknown value 𝐿, generalized moment functions may be set up as follows:
	𝑔1𝑥=𝑥    
	𝑔2𝑥=0 𝑖𝑓 𝑥<𝐿 
	= 100𝑥 𝑖𝑓 𝑥≥𝐿
	𝑔3𝑥=0 𝑖𝑓 𝑥<𝐿 
	= 1  𝑖𝑓 𝑥≥𝐿
	Then the constraint equations, though quite complicated, may be set up as:
	𝑎0=𝑙𝑜𝑔0∞exp⁡(−𝑎1𝑥−𝑎2𝑔2𝑥−𝑎3𝑔3𝑥) 𝑑𝑥=𝑙𝑜𝑔exp−𝑎1𝐿−1−𝑎1+−exp−𝑎3+(−𝑎1−100 𝑎2)𝐿−𝑎1−100 𝑎2
	−𝜕𝑎0𝜕𝑎1
	=−−exp⁡(−𝑎3−(  𝑎1+100𝑎2)𝐿)𝑎1+100𝑎22−1−𝑒𝑥𝑝−𝑎1𝐿𝑎12+𝐿 𝑒𝑥𝑝−𝑎1𝐿𝑎1−𝐿 exp⁡(−𝑎3−(  𝑎1+100𝑎2)𝐿)𝑎1+100𝑎2exp⁡(−𝑎3−(  𝑎1+100𝑎2)𝐿)𝑎1+100𝑎2+1−exp−𝑎1𝐿𝑎1=$100,000,000
	−𝜕𝑎0𝜕𝑎2=−−100 exp⁡(−𝑎3−(  𝑎1+100𝑎2)𝐿)𝑎1+100𝑎22−100 𝐿 exp⁡(−𝑎3−(  𝑎1+100𝑎2)𝐿)𝑎1+100𝑎2exp⁡(−𝑎3−(  𝑎1+100𝑎2)𝐿)𝑎1+100𝑎2+1−𝑒𝑥𝑝−𝑎1𝐿𝑎1
	=$1,000,000,000
	−𝜕𝑎0𝜕𝑎3=−−exp⁡(−𝑎3−(  𝑎1+100𝑎2)𝐿)(𝑎1+100𝑎2)exp⁡(−𝑎3−(  𝑎1+100𝑎2)𝐿)𝑎1+100𝑎2+1−𝑒𝑥𝑝−𝑎1𝐿𝑎1
	=0.01
	A numerical root finding search found plausible solutions for 𝐿 from around $92 million through around $980 million, with the entropy seeming to peak around 𝐿 = $566 million.  Here are some properties of the solution at 𝐿 = $566 million:
	𝑎0=18.3466  𝑎1=1.08546×10−8 𝑎2=−8.55045×10−11 𝑎3=4.843
	The standard deviation is $133.4 million, for a coefficient of variation of 133.4%.  Some interesting percentiles and corresponding unlimited expected excess loss amounts are:
	Table 6.4.1 Some Expected Excess Losses And Cumulative Distribution Values From The Solution In Example 6.4.1
	Figure 6.4.1 Density Of Maximum Entropy Solution In Example 6.4.1
	/

	 Example 6.4.1 is structurally similar to “4.1. Case A: Constraining the Global Mean” from [8], except that in latter the risk-taker’s wealth, analogous to 𝐿 in Example 6.4.1, is specified rather than solved as part of maximizing entropy given the other constraints.
	6.5 Bayesian or Credibility Estimation

	Bayesian estimation generally requires model assumptions that completely specify both the prior distribution of parameters and the conditional density, or likelihood, of observations.  Credibility estimation generally does not require complete distributional specifications but does require model assumptions that specify certain distributional variances.  Maximum entropy distributions can be utilized in many cases to formulate these model assumptions where the available information would not otherwise completely specify them.  Examples 6.5.1 and 6.5.2 apply maximum entropy distributions to conventional Bayesian and Credibility approaches.  In Section 7 we will present a much more general multivariate maximum entropy framework that can automatically implement an implicit Bayesian/Credibility type adjustment for multivariate predictive models.
	Example 6.5.1 Maximum Entropy Distributions For Bayesian Prior And Likelihood

	Detailed data in not available, but it is known that in prior experience individual drivers have averaged 0.1 claims per year.  What is the posterior distribution for expected number of claims after an individual driver has experienced 𝑘∈{0, 1, 2…} claims in a single year? 
	Since the average number of claims is non-negative and we only know the mean is 0.1, the maximum entropy prior is simply a continuous Exponential Distribution with density function 𝑞𝑚=10 exp⁡(−10 𝑚).  The maximum entropy density on the discrete numbers {0, 1, 2…} given the conditional mean is also of the Exponential form 𝑝𝑘|𝑚=  exp⁡(−𝑎0𝑚−𝑎1𝑚 𝑘), where the parameters solve to 𝑎0𝑚=𝐿𝑜𝑔(𝑚+1) and 𝑎1𝑚=𝐿𝑜𝑔𝑚+1𝑚.  Therefore 𝑝𝑘|𝑚=  𝑚𝑘(𝑚+1)−𝑘−1 and the posterior density is 𝑞(𝑚|𝑘)=10exp−10 𝑚 𝑚𝑘(𝑚+1)−𝑘−1 0∞10exp−10 𝑚 𝑚𝑘(𝑚+1)−𝑘−1 𝑑𝑚 .  So, the numerical results for several values of k are (up through 𝑘=5):
	Table 6.5.1 Bayesian Posterior Results from Maximum Entropy Solution in Example 6.5.1
	Example 6.5.2 Maximum Entropy Distributions to Determine Process and Parameter Variances for Credibility

	What would the credibility estimates be for Example 6.4.1?
	The Variance of the Hypothetical Means (VHM) = 0.01, that is the variance of the continuous Exponential Distribution with 0.1 mean.  The process variance for the conditional density 𝑝𝑘|𝑚=  𝑚𝑘(𝑚+1)−𝑘−1  is 𝑚(𝑚+1).  So, the Expected value of the Process Variance (EPV) =0∞𝑚𝑚+1 10exp−10 𝑚𝑑𝑚 = 0.12. Consequently, the credibility constant is 𝐾=𝐸𝑃𝑉𝑉𝐻𝑀=12 and since we only have one observation 𝑍=11+𝐾=113 .
	Table 6.5.2 Credibility Results From Maximum Entropy Solution In Example 6.5.2

	7. MAXIMUM ENTROPY PREDICTIVE OR EXPLANATORY MODELS
	Actuarial models often involve predicting or explaining the distribution, or at least the expected value, of one random response variable 𝑌, scalar or vector, given the outcome of another random variable 𝑋, scalar or vector.  For example, Generalized Linear Models (GLMs), though usually from a fixed effects standpoint, are commonly used for this purpose.  This can be described in a very general framework in terms of a single vector valued random variable 𝑋={𝑌1,…,𝑌𝑚,𝑋1,…,𝑋𝑛} consisting of both response components 𝑋𝑟𝑒𝑠𝑝={𝑌1,…,𝑌𝑚} and explanatory components 𝑋𝑒𝑥𝑝𝑙={𝑋1,…,𝑋𝑛}.  Fixed effects can also be included in the generalized moment functions 𝑔𝑖𝑥  and/or the specified generalized moments 𝑐𝑖.  If the complete joint density  𝑝(𝑦1,…,𝑦𝑚,𝑥1,…,𝑥𝑛) is known then the density of the response components 𝑥𝑟𝑒𝑠𝑝={𝑦1,…,𝑦𝑚}  conditioned on the realized values of the conditioned on the realized values of the explanatory components 𝑥𝑒𝑥𝑝𝑙={𝑥1,…,𝑥𝑛} through the Bayesian calculation:
	Example 7.1 Correlated Bivariate Maximum Entropy Distribution 

	Suppose the random variable 𝑋 ={𝑌1,𝑋1} is known to have the following properties:
	 𝑌1 has mean 2,000 and standard deviation 2,000
	 𝑋1 has mean 3,000 and standard deviation 3,000
	 𝑌1 and 𝑋1 have a correlation coefficient of 30%
	The basic linear regression model is:
	𝑌1=𝑚 𝑋1+𝑏+𝜀(0,𝜎)
	𝑚=30% 2,0003,000=0.2  𝑏=2,000−0.23,000=1,400  
	𝜀(0,𝜎) is a normally distributed random variable, independent of 𝑌1 and 𝑋1, with mean 0 and standard deviation   𝜎=(2,000)2−0.2×3,0002=1,908.
	The same result can be obtained by solving for the maximum entropy distribution for 𝑌1 and 𝑋1, both assumed to be real values, with the following generalized moment constraints:
	𝑔1𝑋=𝑌1 𝐸𝑔1𝑋=2,000  𝑔2𝑋=𝑌12 𝐸𝑔2𝑋=8,000,000
	𝑔3𝑋=𝑋1 𝐸𝑔3𝑋=3,000  𝑔4𝑋=𝑋12 𝐸𝑔4𝑋=18,000,000
	𝑔5𝑋=𝑌1𝑋1  𝐸𝑔5𝑋=7,800,000
	The maximum entropy distribution would be the same as the Bivariate Normal Distribution, since it can match the given constraints and can be stated in the standard form in (3).  The Bayesian calculation in (16) would then result in the same linear regression model.  
	However, suppose we also know that 𝑌1≥0 .   Now, the normality assumption for 𝑌1 underlying the linear regression model clearly is a poor choice.  However, the maximum entropy distribution can still be numerically solved with this extra piece of information by setting up the same moment constraints equations above, but changing the region of integration for calculating the underlying integrals:
	𝑎0=𝑙𝑜𝑔0+∞−∞+∞exp⁡( −𝑎1𝑦1−𝑎2𝑦12−𝑎3𝑥1−𝑎4𝑥12−𝑎5𝑦1𝑥1) 𝑑𝑥1𝑑𝑦1
	𝑎𝑖=−𝜕𝑎0𝜕𝑎𝑖=0+∞−∞+∞𝑔𝑖(𝑥1) exp⁡( −𝑎1𝑦1−𝑎2𝑦12−𝑎3𝑥1−𝑎4𝑥12−𝑎5𝑦1𝑥1) 𝑑𝑥1𝑑𝑦10+∞−∞+∞exp⁡( −𝑎1𝑥𝑦1−𝑎2𝑦12−𝑎3𝑥1−𝑎4𝑥12−𝑎5𝑦1𝑥1) 𝑑𝑥1𝑑𝑦1
	Numerical root finding leads to:
	𝑎0=16.748  𝑎1=0.000615231 𝑎2=1.23815×10−8 𝑎3=−0.000256411
	 𝑎4=6.105×10−8   𝑎5=−5.49445×10−8
	Figure 7.1 Expected Value of Response Variable Conditional On Explanatory Variable In Example 7.1

	/
	Figure 7.1 shows how the values for E[𝑌1|𝑥1] , for the two different models, diverge in both the left and right tails of 𝑋1.  The maximum entropy model naturally captures effects of the restriction 𝑌1>0 but the linear regression model does not.  Figure 7.2 shows that for the conditional density    p(y1|x1=−7,000) in the left tail of 𝑋1 the linear regression model incorrectly shows that 𝑌1 is equally likely to be positive or negative.  Figure 7.3 shows that for the conditional density p(𝑦1|𝑥1=12,000) in the right tail of 𝑋1 the linear regression model gives almost no probability that 𝑌1≥10,000,  but the maximum entropy model gives 16% probability that 𝑌1∈[10,000  ,  20,000].
	Figure 7.2 Density Of Response Variable Conditioned On Explanatory Variable = -7,000 In Example 7.1
	Figure 7.3 Density of Response Variable Conditioned on Explanatory Variable = 12,000 in Example 7.1

	/
	GLMs require the specification of a design matrix for the explanatory variables, a link function that connects them to the expected value for the response variables, and a conditional distribution for the response variables.  When GLMs are fit for maximum likelihood they can be very vulnerable to low volume erratic observations in levels for certain factors, and incorporating credibility adjustments into GLMs (random effects, Gibbs sampling, etc.) can be a very awkward and difficult process.
	In contrast it can be very straightforward to simultaneously fit a multi-factor model and incorporate credibility type adjustments when fitting a maximum entropy distribution.
	Example 7.2 Maximum Entropy Multivariate Model With Automatic Bayesian/Credibility Adjustment

	Suppose the following pure loss ratio experience is available for workers compensation insurance:
	Although the volume of experience is not known, the following information is given:
	 There is thought to be no aggregate off balance, so that the overall expected pure loss ratio is 100%.
	 Broader longtime experience has shown that the mean squared error between actual loss ratios for categories like these and a very good relativity estimate is 1.
	A log-Poisson GLM, which has a conditional variance of 1 when the conditional expected value of the response variable is 1, fairly consistent with the bullets above, produces multiplicative relativity indications:
	This GLM has likely been fooled by randomness, as these values do not seem very realistic.  Hopefully, when final full premium rates are implemented Rural policies will be charged more than $0.  
	Alternatively, this situation can be approached as a maximum entropy problem as follows.  Let 𝑌1 be the actual outcome losses, 𝑋1 and 𝑋2 be random effects corresponding to good estimates for multiplicative relativities for Setting and Business Type, respectively.  
	The constraints will be:
	𝑔1𝑋=𝑌1 𝐸𝑔1𝑋=1  𝑔2𝑋=𝑋1 𝐸𝑔2𝑋=1
	𝑔3𝑋=𝑋2 𝐸𝑔3𝑋=1  𝑔4𝑋=(𝑌1−𝑋1𝑋2)2 𝐸𝑔4𝑋=1
	Setting up these equations involves integration in 3 dimensions:
	𝑎0=𝑙𝑜𝑔0+∞0+∞0+∞exp⁡( −𝑎1𝑦1−𝑎2𝑥1−𝑎3𝑥2−𝑎4𝑦1−𝑥1𝑥22 ) 𝑑𝑦1𝑑𝑥1𝑑𝑥2
	A numerical solution is:
	𝑎0=0.235246  𝑎1=0.717116 𝑎2=0.856358 𝑎3=0.856358 
	 𝑎4=0.213261  
	𝑝𝑦1,𝑥1,𝑥2=𝑒𝑥𝑝⁡(−𝑎0−𝑎1𝑦1−𝑎2𝑥1−𝑎3𝑥2−𝑎4𝑦1−𝑥1𝑥22)
	So, this gives the joint density of the observed loss ratio 𝑌1 and good estimates for the relativities 𝑋1 and 𝑋2.  In the data table we need to estimate 4 relativities {𝑋1𝑈,𝑋1𝑅,𝑋2𝑀,𝑋2𝑆} based on 3 observations.  The posterior joint density of these relativities conditioned on the observations is: 
	𝑞𝑥1𝑈,𝑥1𝑅,𝑥2𝑀,𝑥2𝑆==𝑝5,𝑥1𝑈,𝑥2𝑀 𝑝0.6,𝑥1𝑈,𝑥2𝑆𝑝0,𝑥1𝑅,𝑥2𝑆0+∞0+∞0+∞0+∞𝑝5,𝑥1𝑈,𝑥2𝑀 𝑝0.6,𝑥1𝑈,𝑥2𝑆𝑝0,𝑥1𝑅,𝑥2𝑆𝑑𝑥1𝑈 𝑑𝑥1𝑅 𝑑𝑥2𝑀 𝑑𝑥2𝑆
	The overall mean values for the relativities using this joint density demonstrate a Bayesian/Credibility type of shrinkage in the relativity indications, and are clearly more realistic: 
	The GLM relativities predict a 0% pure loss ratio for Rural Service policies.
	Although this example did not include any volume of experience, that could be used for weights, the GLM would have still given a 0.000 relativity indication if weights had been available and included in the GLM run.  Some sort of credibility adjustment could have been implemented with the GLM, but it would have been somewhat awkward and ambiguous to set up given the limited amount of data.  In contrast the Maximum Entropy model was very natural and unambiguous to set up with a built in Bayesian/Credibility type adjustment.
	Figures 7.4 and 7.5 show the marginal densities for the Setting and Business Type relativities, respectively.  The maximum entropy distribution naturally yields the parameter uncertainty of the fit.
	Figure 7.4 Marginal Densities Of Setting Relativities From Maximum Entropy Approach In Example 7.2

	/
	Figure 7.5 Marginal Densities Of Business Type Relativities From Maximum Entropy Approach In Example 7.2
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	Appendix A - Computational and Software Coding Challenges

	Although much more can be done with modern computing power than was possible in the past, fitting maximum entropy models is still often very challenging because it usually entails solving a set of highly nonlinear equations.  These non-linear equations sometimes contain very lengthy expressions and usually require integration (or summation) and sometimes differentiation to set up.  Numerical root finders are readily available in many software environments, such as Excel (Solver), R, Python, MATLAB, etc.  Some numerical optimizers, like Google’s Tensorflow, are designed to utilize powerful Graphics Processing Unit (GPU) hardware.  Additionally, symbolic manipulation of complex expressions, including integration and differentiation, is available in software environments such as MATHEMATICA and Maple. 
	Even with modern software and hardware resources, converging on a numerical solution is often an arduous process involving restatement of the coding of the problem and reselecting initial search points, even when the problem has a similar form to a previous problem.    Relying on symbolic manipulation is also undesirable for practical applications.  Unfortunately, much of the coding involved for the examples in this paper is rather messy, complicated and not really standardized to general classes of problems.  So, at present, no code samples are provided with this paper.  Nevertheless, developing software code, preferably for commonly available environments such as Excel and R, that reliably solves broad classes of maximum entropy problems would provide a very valuable resource for practicing actuaries.  Hopefully, this paper will encourage others to do so and the author may also pursue developing such standardized software tools.  
	Nevertheless, here are some tips that were useful in solving for the numerical examples in this paper. 
	It is often helpful to solve for the parameters {𝑎0,𝑎1,…,𝑎𝑚} sequentially stepwise.  {𝑎0,𝑎1} can be solved first, while zeroing out {𝑎2,…,𝑎𝑚} and ignoring the constraint equations for {𝑔2(𝑥),…,𝑔𝑚(𝑥)}.  Then, this solution can be used as an initial search point to solve for {𝑎0,𝑎1,𝑎1} while zeroing out {𝑎3,…,𝑎𝑚}  and ignoring the constraint equations for {𝑔3(𝑥),…,𝑔𝑚(𝑥)}, and so on.  
	One potentially problematic issue is that numerical root finding software typically uses inaccurate finite differencing approximations for derivatives, as part of a Newton-Raphson iteration.  It is possible to replace these finite difference calculations with more accurate numerical integrations.  We can restate the problem of solving for the maximum entropy distribution in vector form.
	Given:
	 𝐶=(1,𝑐1, …  ,𝑐𝑚) and 𝐺(𝑥)=(1,𝑔1 (𝑥), …  ,𝑔𝑚(𝑥)) 
	Find:
	𝐴=(𝑎0,𝑎1, …  ,𝑎𝑚 )   such that 𝐺(𝑥)  exp⁡(−𝐴∙𝐺(𝑥))  𝑑𝑥 =𝐶.  
	This is equivalent to finding a root 𝐴 for the vector valued function:
	 𝑉(𝐴)=𝐺𝑥exp−𝐴∙𝐺𝑥 𝑑𝑥 −𝐶
	Newton-Raphson Iteration can be done by first picking a starting point 𝐴0 and then iterating 𝐴𝑛+1=𝐴𝑛−∇𝐴 𝑉𝐴𝐴𝑛−1𝑉𝐴𝑛.  The practical problem comes in when root finding software attempts to approximate ∇𝐴 𝑉𝐴𝐴𝑛 through small numerical differences.  
	However, a more accurate approach is to note that:
	∇𝐴 𝑉𝐴𝑖,𝑗=𝜕𝑎𝑗𝑔𝑖𝑥exp−𝐴∙𝐺𝑥 𝑑𝑥 −𝐶
	By differentiating under the integral sign:
	=−𝑔𝑖𝑥𝑔𝑗𝑥exp−𝐴∙𝐺𝑥 𝑑𝑥 
	It is generally much easier and more accurate to numerically estimate these integrals.  If the limits of integration are unbounded there may be problems with these integrals numerically diverging for some values of 𝐴𝑛 even if a solution exists.  So, it may be useful to either limit the bounds of integration (that is the domain of possible outcomes for the random variable) or limit x to a finite number of values so that the integral may be replaced with a finite sum.  
	In some cases, it may be helpful to perform a transformation on 𝐴.  For example, if 𝐺(𝑥)=(1,𝑥, …  ,𝑥𝑚)  and 𝑥∈(0,+∞) then substituting 𝑎𝑚=exp⁡(𝑏) and solving in terms of 𝐵=(𝑎0,𝑎1, …  ,𝑎𝑚−1, 𝑏 )   will keep the integrals above from diverging.  Note that after a substitution like this, due to the chain rule, the integrals corresponding to differentiation with respect to 𝑏 will need to be multiplied by exp⁡(𝑏), specifically:
	∇𝐵 𝑉𝐵𝑖,𝑚=−exp⁡(𝑏)0+∞𝑔𝑖𝑥𝑔𝑚𝑥exp𝐴∙𝐺𝑥 𝑑𝑥
	Appendix B – Clarification of Some Confusions of the Maximum Entropy Distribution Technique With Several Other Distinct Things

	Some reviewers of an earlier draft of this paper confused maximum entropy distributions with several other very different things that actuaries have remained conscious of, and utilized, over the decades following the 1960s.  We will clarify the differences below.  It is worth noting that in practice these other things generally required much lower computational burdens than maximum entropy distributions, and hence were more practically tractable during this time.
	Ordinary Method of Matching Moments
	An ordinary method of moments fit of a distribution is not necessarily a maximum entropy distribution because the selected parametric form to be fit may not be the appropriate maximum entropy form.  
	Example B.1
	Matching a first moment of 10,000 with the family of Uniform Distributions of with density 1/𝑎 for 𝑥∈[0,𝑎]  and 0, results in 𝑎=20,000 and entropy 9.90349, as was shown in Example 1.1   However, the maximum entropy distribution for a non-negative random variable with first moment of 10,000 is an exponential distribution and has entropy 10.2103
	Furthermore, a maximum entropy distribution is not necessarily an example of ordinary matching moments since the generalized moment functions 𝑔𝑖 𝑥  are in fact very general functions, and certainly not constrained to be of the form 𝑥𝑘 for some integer 𝑘.  More general moment functions appear in many examples throughout this paper, such as Example 3.1
	Exponential Families
	It is noted in Section 4 that the maximum entropy form (3) presented in Section 3 is a subset of the exponential family and the generalized moment functions 𝑔𝑖 𝑥  play the role of sufficient statistics for form (3) when sample data is given.  However, the constraints for maximum entropy distributions may come from any source, such as expert opinion, a priori hypothesis, etc.; not necessarily sample data. 
	Many actuaries have encountered the exponential family in the context of Generalized Linear Models (GLMs) or Exact Credibility, where the greatest accuracy credibility estimate equals the Bayesian posterior estimate.  These contexts all require sample data and parametric family assumptions about underlying data generating processes, neither of which are required by maximum entropy distributions.   It is also worth noting that the use of exponential families for GLMs and Exact Credibility, starting in the 1970s, was highly motivated by reduction of computational burdens in both cases.  However, there was no apparent comparable technique to reduce the computational burdens of maximum entropy distributions to tractability at that time. 
	Model Selection Through Information Criteria
	In 1974 the Akaike Information Criterion (AIC) was introduced as an estimator of relative quality among statistical models fit to sample data ([2]).  There is also an important small sample adjusted version (AICc) ([3])  In 1978 a similar criterion, the Bayesian Information Criterion (BIC) was introduced ([15]).  These criteria are useful for selecting among competing models hypothesized to underly sample data.  We will first recount the definitions of these criteria.  Then we will demonstrate how they differ from maximum entropy distributions with an explicit example.  Finally, we will briefly discuss how the foundations behind how these information criteria were derived differs from maximum entropy distributions.  The derivations of these criteria are very mathematically and statistically sophisticated.  Consequently, we will not attempt to even approach the detail presented in the original references but will attempt to convey a meaningful general concept of what is going on.
	Suppose a sample of data observations {𝑥1,…,𝑥𝑛} is given, as usual assumed to be independent and arising from the same underly model.  Also,  {𝑀1,…,𝑀𝑞} is a set of parametric probability distribution models hypothesized to potentially be the true model 𝑀 underly the data with {𝑘1,…,𝑘𝑞} number of parameters, respectively.  Let {𝐿1,…,𝐿𝑞} be the likelihood function values for the maximum likelihood estimates of the respective {𝑘1,…,𝑘𝑞} parameters of each of the models {𝑀1,…,𝑀𝑞} fit to {𝑥1,…,𝑥𝑛}.  The definitions of the information criteria mentioned previously are:
	𝐴𝐼𝐶𝑖=2 𝑘𝑖−2 𝐿𝑜𝑔(𝐿𝑖)
	𝐴𝐼𝐶𝑐𝑖=2 𝑘𝑖−2 𝐿𝑜𝑔𝐿𝑖+2𝑘𝑖2+2𝑘𝑖𝑛−𝑘𝑖−1
	𝐵𝐼𝐶𝑖=𝐿𝑜𝑔(𝑛) 𝑘𝑖−2 𝐿𝑜𝑔(𝐿𝑖)
	For each of these criteria the lower the value the better the hypothesized model.
	Example B.2
	In Example 1.1 no sample data was given, and the competing hypothesized models were fit using moment matching (1st moment only) with no sample data available.  We will now revisit this example for two different data samples, each having the target moment of mean 10,000.  Samples 1 and 2 were simulated from Wide Uniform Distribution and the Lognormal Distribution, respectively, as given in Example 1.1 and then each renormalized to have sample mean 10,000.  In Table B.1 the distributional forms from Example 1.1, aside from the Narrow Uniform, are shown with new MLE  parameters for Sample 1 and 2, respectively.
	Sample 1
	Sample 2
	Table B.1 Distributional Forms from Example 1.1 With Parameters Refit to Samples 1 and 2
	Table B.2 Information Entropy of Distributions from Table B.1
	The Wide Uniform and Exponential each have one parameter to fit.  The Lognormal and Pareto each have two parameters to fit.  Table B.2 shows that refitting parameters with MLE results in the form closest to the underlying data process, the Wide Uniform for MLE1 (Sample 1) and the Lognormal for MLE2 (Sample 2), having the lowest entropy, or the most information.  This makes sense for this context of fitting to sample data, where the objective is to gain as much information from the data as possible.   However, it stands in stark contrast with the criterion of maximum entropy when the objective is to simply match to certain generalized moment constraints.
	Table B.3 shows AIC, AICc, and BIC calculated and ranked (lowest to highest) for the original and refit parameter estimates on each data sample. Not surprisingly, all three of the information criteria produce the same rankings in for each combination of sample data and parameter fits.  Here again for MLE1 (Sample 1) and MLE2 (Sample 2) the forms closest to the underlying data process always rank 1st.  However, it is worth noting that among the ME fits, simply to mean 10,000 without any sample data, the maximum entropy distribution, the Exponential Distribution, ranks 1st for Sample 1 and 2nd for Sample 2.   Furthermore, when the sample is mismatched with the MLE fit, as with MLE1 (Sample 2) and MLE1 (Sample 1) the Exponential, which still has the same parameter value being the maximum entropy distribution for the sample mean, ranks 1st.  When the MLE is matched to its sample, MLE1 (Sample 1) and MLE 2 (Sample 2), the Exponential ranks 2nd.
	Table B.3  Information Criterion Calculated For Distributions From Table B.1 On Samples 1 and 2
	Table B.3  Information Criterion Calculated For Distributions From Table B.1 On Samples 1 and 2 (continued)
	Example B.2 illustrates the difference between selecting generalized moment constraints, even if sample data is available, and determining the maximum entropy distribution, versus postulating several different parametric forms, MLE fitting the parameters, and then ranking them according to information criteria.  Interestingly, the maximum entropy distribution fit, independent of any sample data, to a mean of 10,000 actually ranked very well on these two samples, both having mean 10,000 but otherwise being very different.   
	AIC, introduced in 1974 ([2]), derives from a Frequentist philosophy utilizing Information Theory.  Specifically, AIC derives from an asymptotic (as 𝑛→∞) estimate of the Kullback–Leibler (K-L) divergence (also called relative entropy), between the true underlying distribution for sample data and a hypothesized parametric model.  The K-L divergence was introduced in 1951 ([11]) as a type of generalization of information entropy.  Akaike had earlier pointed out a relationship between Maximum Likelihood Estimation (MLE) and the K-L divergence ([1]).  Among competing hypothesized models, the lower the K-L divergence the better, as it indicates a likely lower information difference between a hypothesized model and the true distribution.  AICc is based on the same foundational reasoning, with the addition of a correction term to improve accuracy for small data samples.  For a true underlying distribution model 𝑃 with density 𝑝(𝑥) and a hypothesized distribution model 𝑃  with density 𝑞(𝑥), the K-L divergences is defined as:
	𝐷𝐾𝐿(𝑃|𝑄=𝐻𝑃,𝑄−𝐻(𝑃,𝑃)
	where 𝐻𝑃,𝑄 is the cross entropy, defined as:
	𝐻𝑃,𝑄=−𝐿𝑜𝑔𝑞𝑥 𝑝𝑥 𝑑𝑥
	For the special case when the distributions 𝑃 and 𝑄 are equal, the cross entropy 𝐻(𝑃,𝑃) is the information entropy of a distribution, as used throughout this paper.  Akaike derived the asymptotic estimate: 
	𝐷𝐾𝐿(𝑀|𝑀𝑖= 𝑘𝑖− 𝐿𝑜𝑔𝐿𝑖+𝐶𝑜𝑛𝑠𝑡𝑎𝑛𝑡
	Dropping the constant and multiplying by two, an arbitrary convention, leads to:
	𝐴𝐼𝐶𝑖=2 𝑘𝑖−2 𝐿𝑜𝑔(𝐿𝑖)
	BIC was introduced by Schwarz in 1978 ([15]), deriving from a Bayesian framework without utilizing Information Theory.  In this framework a number of competing models are assumed to have the same probability, prior to any observed data.  BIC is asymptotically related to the logarithm of the Bayes formula updated probabilities for each model 𝑀𝑖, posterior to data being observed, is derived.  Schwarz derived the asymptotic estimate:
	𝐿𝑜𝑔𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦𝑀𝑖𝑑𝑎𝑡𝑎= 𝐿𝑜𝑔𝐿𝑖−𝑘𝑖2𝐿𝑜𝑔𝑛+𝐵𝑜𝑢𝑛𝑑𝑒𝑑 𝑇𝑒𝑟𝑚
	Dropping the bounded term and multiplying by -2  leads to the BIC criterion that can be used in the same way as AIC or AICc, as previously given:
	 𝐵𝐼𝐶𝑖=𝐿𝑜𝑔(𝑛) 𝑘𝑖−2 𝐿𝑜𝑔(𝐿𝑖)
	So, although rooted in a Bayesian framework, BIC is also used to select among competing models in a Frequentist framework.  It has also been noted that AIC can be derived in a similar fashion starting with a different prior distribution on the competing models ([4]).  Alternatively, competing models could be weighted together in a Bayesian framework, based on posterior probabilities derived from prior probabilities related either to AIC or BIC.
	Whereas maximum entropy distributions do not even require sample data or hypothesized parametric models, these information criteria require both.  When both sample data and hypothesized parametric models are given, the maximum entropy distribution selected to match the sample value of a selected generalized moment function may be different from the model selected by these information criteria.
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