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Risk-Based Capital Line of Business Diversification: 
Current RBC Approach vs. Correlation Matrix Approach 

Report 13 of the CAS Risk-Based Capital (RBC) Research Working Parties 
Issued by the RBC Dependencies and Calibration Working Party (DCWP) 

 

Abstract:  The NAIC RBC Formula treatment of line of business (LOB) diversification (referred to in this 

paper as the CoMaxLine% Approach) is very different from the Solvency II Standard Formula treatment. In this 

paper we show that, notwithstanding the differences, the NAIC RBC Formula, the correlation matrix approach 

used in Solvency II1 and the Herfindahl-Hirschman Index (HHI), widely used in economics, all produce similar 

risk-based capital underwriting risk values, for most companies.  

To the extent that there are differences between the CoMaxLine% and correlation matrix approaches, the 

differences are due, in part, to the fact that CoMaxLine% calculates diversification based on premium or reserve 

volume while the correlation matrix approach calculates diversification based on premium risk or reserve risk. 

To examine this feature of the RBC Formula, we also apply the CoMaxLine% idea to risk by LOB rather than 

volume by LOB. We refer to that as CoMaxLine%-Risk. The differences between CoMaxLine%-Risk and the 

correlation matrix approach are smaller than the differences to the RBC CoMaxLine% Approach. 

This is one of several papers being issued by the Risk-Based Capital (RBC) Dependencies and Calibration 

Working Party. 

Keywords:  Risk-Based Capital, Capital Requirements, Analyzing/Quantifying Risks, Assessing/Prioritizing 

Risks, Integrating Risks, dependency, correlation. 

1. INTRODUCTON 
The Property & Casualty NAIC RBC Formula (“RBC Formula”) has six main risk 

categories, R0 – R5. Underwriting (UW) risk is represented in two of these categories, R4
2 and 

R5, reserve risk and premium risk, respectively.  In this work, we focus on the UW risk 
elements, R4 and R5. Following the RBC Formula, we calculate the UW portion of the 

                                                 
1 Using a limited number of correlation matrix values, e.g., only 25% and 50% in the Solvency II Standard 
Formula and 25%, 50%, 75% and 100% in our RBC equivalent matrix. 
2 When applied, the pure reserve risk component is combined with a portion of the reinsurance credit risk 
component.  This paper deals with the pure reserve risk component of R4. 
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Company Action Level RBC Value3,4 as the square root of R4 squared plus R5 squared5 and 
refer to the resulting quantity as the RBC UW Risk Value.6  

R4 and R5 are first calculated by line of business (LOB). The all-lines R4, the reserve risk 
charge, is the sum of the R4 risk charges by LOB, multiplied by a Loss Concentration Factor 
(LCF). The all-lines R5, the premium risk charge, is the sum of the R5 risk charges by LOB, 
multiplied by a Premium Concentration Factor (PCF).7  

For each company, the LCF calculation uses the ratio of (a) the largest of the 19 LOB8 
reserves, to (b) the total all-lines reserves.9 Similarly, for each company, the PCF calculation 
uses the ratio of (a) the largest of the 19 LOB written premiums, to (b) the total all-lines written 
premium.10 The LCF and PCF are values between 0.0 and 1.0 that represent the degree of 
concentration across LOBs, within R4 and R5, respectively. A company with greater 
diversification across its LOBs will have smaller LCF and PCF values than a less diversified 
company.  

We refer to this method of measuring concentration as the Company Maximum Line 
Percentage of Business or the “CoMaxLine% Approach.” We refer to the ratios computed as 
the CoMaxLine%PREMIUM and the CoMaxLine%RESERVES, or CoMaxLine% generically for either.   

The CoMaxLine% Approach in the NAIC RBC Formula is very different in concept from 
the Solvency II Standard Formula correlation matrix approach. In this paper we show that, 

                                                 
3 That is the Company Action Level RBC as if the R0-R3 and R3-Reinsurance Credit Risk RBC values were 
zero. 
4 In all cases in the paper, when we refer to “RBC UW Risk Value” we refer to the Company Action Level 
RBC. The RBC value in the Annual Statement is the Authorized Control Level, equal to 50% of the Company 
Action Level.  
5 Note that we compare diversification formulas using the UW portion of RBC rather than the total RBC value. 
Had we compared using the total RBC value, the percentage differences between companies would have 
appeared smaller than the differences displayed in Tables 3-1, 3-2, and 3-3 below.  
6 The RBC Formula treats premium risk and reserve risk as independent risks. We are not testing alternatives to 
the way that the RBC Formula combines premium risk and reserve risk. 
7 The LCF and PCF are applied to the sum of the LOB RBC amounts, where those RBC amounts reflect the 
investment income offset, the own-company experience adjustment, and the loss sensitive contract adjustment.  
8 There are 22 LOBs in the Annual Statement Schedule P. In the RBC forms, those are consolidated into 19 
LOBs.  Other Liability Occurrence and Other Liability Claims-Made LOBs are combined and treated as one 
LOB. Products Occurrence and Products Claims-Made are combined and treated as one LOB. Reinsurance: 
nonproportional assumed property and reinsurance: nonproportional assumed financial LOBs are combined and 
treated as one LOB. NAIC, 2010, “Property and Casualty Risk-Based Capital Forecasting & Instructions.” page 
19. 
9 The reserves used to compute the ratio are the reserves for unpaid claims and claim expenses, net of reinsurance, 
as of the most recent year-end including both adjusting and other expenses and defense and cost containment 
expenses. 
10 The premiums used in this calculation are the most recent year’s written premiums net of reinsurance. 
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notwithstanding the conceptual differences, the NAIC RBC Formula, the correlation matrix 
approach used in Solvency II and the Herfindahl-Hirschman Index (HHI), widely used in 
economics to measure concentration, produce similar RBC UW Risk Values, for most 
companies. 

This paper is focused solely on a comparison of the RBC UW Risk Values produced by 
several methods of reflecting diversification among lines of business. In this paper we do not 
evaluate the CoMaxLine% parameters or the parameters for other methods of measuring 
concentration.11  

In Section 2. we describe the alternative diversification approaches. In Section 3, we 
compare the UW Risk RBC Values, by company, that result from the different approaches. 

1.1 Terminology, Assumed Reader Background and Disclaimer 
This paper assumes the reader is generally familiar with the property/casualty RBC 

Formula.12 
In this paper we use the term “diversification” rather than its complement13 “concentration” 

unless the context makes the alternative clearer. 
Although the term “multi-line insurance company” is commonly used to refer to an insurer 

that is well-diversified across LOBs, in this paper we will use the term more broadly to refer 
to any company for which the diversification credit is greater than zero. 

References to “we” and “our” mean the principal authors of this paper.  
The “working party” and “DCWP” refer to the CAS RBC Dependencies and Calibration 

Working Party. 
The analysis and opinions expressed in this report are solely those of the principal authors, 

and are not those of the authors’ employers, the Casualty Actuarial Society, or the American 
Academy of Actuaries. 

Nether the authors nor DCWP make recommendations to the NAIC or any other body.  
This material is for the information of CAS members, policy makers, actuaries and others who 
might make recommendations regarding the future of the P&C RBC Formula.  In particular, 

                                                 
11 In DCWP Report 14 we evaluate the CoMaxLine% parameters. 
12  For a detailed description of the formula and its basis, see Feldblum, Sholom, NAIC 
Property/Casualty Insurance Company Risk-Based Capital Requirements, Proceedings of the Casualty 
Actuarial Society, 1996 and NAIC, Risk-Based Capital Forecasting & Instructions, Property Casualty, 
2010. 
13 A company with a concentration ratio of 80% can equivalently be described as a having a diversification ratio 
of 20%, 100%-80%.  
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we expect that the material will be used by the American Academy of Actuaries. 
This paper is one of a series of articles prepared under the direction of the DCWP. 

2. Alternative Diversification Formulas 
RBC Diversification Approach 

The RBC Formula uses the CoMaxLine% Approach and a maximum diversification credit 
(MDC) of 30% to calculate PCFs and LCFs as follows: 

PCFCOMPANY = 0.7 + 0.3 * CoMaxLine%PREMIUM, COMPANY 
LCFCOMPANY = 0.7 + 0.3 * CoMaxLine%RESERVES, COMPANY 

These can also be written as: 
PCFCOMPANY = 1.0 - 0.3 * (1.0 - CoMaxLine%PREMIUM, COMPANY)  
LCFCOMPANY = 1.0 - 0.3 * (1.0 - CoMaxLine%RESERVES, COMPANY) 

Thus, the company diversification credit is 0.3 * (1 - CoMaxLine%).  
For mono-line companies, CoMaxLine% and the PCF/LCF are 1.00. The maximum credit 

of 30% would be achievable only if there were an infinite number of LOBs. Since there are 19 
statutory lines of business used in the RBC Formula the smallest value of CoMaxLine% is 
1/19 = 5.3%, the smallest value of PCF or LCF is 71.6% (0.7 + 0.3 * 5.3%), and the maximum 
achievable diversification credit is 28.4%, (100% - 71.6%). 

Alternatives to the CoMaxLine% Approach 
Looking at the treatment of diversification in regulatory capital formulas developed in other 

regulatory regimes, the UK Individual Capital Adequacy Standard (UK ICAS) can be thought 
of as the simplest. In UK ICAS there is no premium or reserve risk diversification adjustment. 
Instead, LOB risk factors were selected to represent the LOB risk when combined with a 
typical LOB distribution.14 

The CoMaxLine% Approach can be viewed as one step more complex than the UK ICAS 
in that it recognizes different levels of diversification. 

From the risk theory perspective, the natural approach to diversification is to combine risk 

                                                 
14 Solvency – Models, Assessment and Regulation, Arne Sandström, 2006, Taylor & Francis Group, LLC, p 
161-164, http://docslide.us/documents/solvency-models-assessment-and-regulation.html;  
Also at NAIC, SMI, Country Comparisons, UK, 
http://www.naic.org/documents/committees_smi_int_solvency_uk.pdf 

http://docslide.us/documents/solvency-models-assessment-and-regulation.html
http://www.naic.org/documents/committees_smi_int_solvency_uk.pdf
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charges by LOB using correlation15 factors between each pair of LOBs. Individual company 
economic capital models (called ‘internal models’ in Solvency II) often use this pairwise 
correlation matrix approach. The Solvency II Standard Formula uses the pairwise correlation 
matrix approach. The correlation matrix approach, if applied in the RBC Formula, would 
require 171 parameters since 19 LOBs are used. In contrast to the correlation matrix approach, 
the RBC Formula CoMaxLine% Approach might be described as simple, perhaps too simple, 
and ad hoc.  

One difference between the CoMaxLine% Approach and the correlation matrix approach, 
as normally applied, is that the degree of diversification in the correlation matrix approach is 
based on risk by LOB while the degree of diversification in the CoMaxLine% Approach is 
based on volume (premium amount or reserve amount) by LOB. Therefore, as another 
alternative to CoMaxLine% and correlation matrix approaches, we also consider a 
CoMaxLine%-Risk Approach, in which we apply the CoMaxLine% Approach to LOB risk 
rather than LOB volume, when calculating the LCF and PCF for a company.16 

Finally, the Herfindahl-Hirschman Index (HHI) is widely used by economists to measure 
concentration. HHI considers the relative proportions of all LOBs, the largest, second largest, 
third largest, and so on.17 HHI is more complex than the CoMaxLine% Approach in that it 
recognizes the extent of diversification for the 2nd, 3rd, 4th, etc. largest LOBs.18 HHI is simpler 
than the correlation matrix approach in that HHI does not recognize differences in the extent 
of the diversification between different pairs of LOBs.19 

                                                 
15 We use the term correlation matrix approach to describe a factor method or copula method for computing 
total risk by combining several individual risks. In using the term, we do not intend to imply that the assumptions 
related to linear correlation are appropriate. 
16 For CoMaxLine%-Risk, as for CoMaxLine%, the risk charge after diversification equals the sum of the risk 
charges over all LOBs times the PCF and LCF determined using the risk version of CoMaxLine% for premium 
risk and reserve risk, respectively. 
17 HHI equals the sum of the squares of the LOB shares of total. For example, if there is only one LOB, HHI is 
1.0, as is the case for the CoMaxLine%. With two lines split 25% and 75% HHI is 0.25^2 plus 0.75^2 or 0.625 
compared to the CoMaxLine% of 0.750, i.e., HHI shows more diversification. With three lines split 50%, 25% 
and 25% HHI is 0.50^2 plus 0.25^2 plus 0.25^2 or 0.375, more diversification than the CoMaxLine% of 0.5. 
With two lines split 50% and 50% HHI and the CoMaxLine% are both 0.5. 
18 The HHI is sometimes applied to only the n-th largest segments, e.g., the degree of diversification among the 
top ten LOBs. The HHI index applied to the single largest segment would be very similar to the CoMaxLine%. 
HHI can be written as p1^2+p2^2+p3^2…+pn^2. The truncated HHI limited to one element would be p1^2. 
CoMaxLine% is p1. HHI is always less than or equal to CoMaxLine%. 
19 For HHI, as for CoMaxLine%, the risk charge after diversification equals the sum of the risk charges over all 
LOBs times the PCF and LCF determined using the HHI formula, separately for premium risk and reserve 
risk. 
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3. Effect of Alternative Diversification Formulas 
We now look at the extent to which the different methods of measuring diversification for 

R4 and R5 produce different RBC UW Risk Values. For each company that filed a 2010 Annual 
Statement, we calculate the all-lines value for R4 and for R5 before diversification using the 
2010 RBC Formula.20 We then use each of the following approaches to calculate the effect of 
diversification across LOBs, arriving at R4 and R5, after diversification, for each company: 

a. CoMaxLine% based on volume (as applied in the NAIC RBC Formula) 
b. CoMaxLine%-Risk 
c. Correlation matrix  
d. HHI 

Using the values of R4 and R5, after diversification, for each company, for each of the four 
approaches, we calculate the RBC UW Risk Value. 21  Appendix 1 provides more details 
regarding the data used and the simplifying steps taken in applying the RBC Formula with 
each of the four diversification approaches. 

3.1 Correlation vs. CoMaxLine% 
In this section, we compare the results of using the CoMaxLine% Approach (based on 

volume) to the results of using the correlation matrix approach.  
To apply the correlation matrix approach, we construct a set of pairwise correlation factors, 

called a correlation matrix. Following the Solvency II approach, we use values of 25% or 50% 
for most of the 171 LOB-pairs. 22  For several LOB-pairs that we consider very highly 
correlated we select correlation factors of 75% or 100%.23  

Appendix 1/Exhibit 1 shows our correlation matrix. Appendix 1/Exhibit 2 shows the 
Solvency II Standard Formula LOB correlation matrix, for comparison.  

For each company with a 2010 Annual Statement,  we apply both the CoMaxLine% 
Approach and the correlation matrix approach to produce the two alternative RBC UW Risk 
Values. The company-by-company differences between the two diversification approaches 

                                                 
20 We calculate the Company Action Level of RBC. 
21 We are not testing alternatives to the way that the RBC Formula combines premium risk and reserve risk. 
22  “Advice for Band 2 Implementing Measures on Solvency II: SCR Standard Formula Article 111(d) 
Correlations,” (former Consultation Paper 74), January 2010, pp 39-44. See Appendix 1 for further discussion of 
the origin of the Solvency II correlation matrix. 
23 We select pairwise correlations of 100% for claims-made and occurrence medical malpractice and for general 
liability, special liability and products liability.  We select pairwise correlations of 75% between special property 
and homeowners, between private passenger automobile liability and automobile physical damage and between 
commercial automobile liability and automobile physical damage. 
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have two parts:  
• the overall industry-wide difference, and  
• the remaining difference for each individual company after normalizing to remove 

the industry-wide difference.  
We measure the first part by computing the total US industry-wide RBC UW Risk Value 

that each approach produces, using the 30% MDC in the CoMaxLine% Approach and using 
the parameters specified in Appendix 1 / Exhibit 1 in the correlation matrix approach. We 
find that the industry-total RBC UW Risk Value is $106.2 billion with the CoMaxLine% 
Approach and $100.6 billion with the correlation matrix approach. We find that increasing the 
30% MDC to 39.1% in the CoMaxLine% Approach decreases the RBC UW Risk Value to 
$100.6 billion, equal to the correlation matrix-based RBC UW Risk Value.24   

In this analysis, we are more interested in the second part, the differences in diversification 
credit by company that remain after controlling for the overall effect on the total industry-
wide RBC UW Risk Value. Therefore, we look at the company-by-company differences 
between the CoMaxLine% Approach with a MDC of 39.1%, and the correlation matrix 
approach using the parameters specified in Appendix 1 / Exhibit 1. 

Looking at the differences, we observe a sizable number of cases where the UW risk values 
are the same regardless of the diversification structure. These zero differences arise for 
companies that have zero UW risk (i.e. due to having zero premium and reserves in all lines) 
and for mono-line companies.25,26 We focus on multi-line companies, where the choice of 
diversification formula can affect the RBC UW Risk Value. The histogram in Table 3-1 below 
includes multi-line companies only and shows the distribution of percentage differences in 
RBC UW Risk Values by company. 

 

                                                 
24 The CoMaxLine% Approach with a 30% MDC produces approximately the same total RBC as a correlation 
matrix with all pairwise correlations of 50%. Our selected correlation matrix has correlations at, generally, 50% 
or 25%. Thus, the average correlation in the matrix is lower than 50%. The resulting diversification is higher than 
the CoMaxLine% Approach with 30%. Therefore, an equivalent CoMaxLine% formula would need a MDC 
greater than 30%, as is the case.   
25 Including some companies that are so close to mono-line that the effect rounds to zero within $1k. 
26 We also remove some companies with significant negative premiums/reserves that would distort the 
comparisons among diversification methods. 
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Table 3-1 
2010 RBC UW Risk Value Differences by Company27 

Distribution of Number of Companies  
Correlation matrix approach versus CoMaxLine% Approach (39.1% MDC)  

(Multi-line Companies) 

 
X-axis = Percentage difference between RBC UW Risk Values based on 
CoMaxLine% Approach and RBC UW Risk Values based on correlation 
matrix approach.  
Y-axis = Number of companies, in buckets of 1% difference in RBC UW 
Risk Value. 

We find that: 
• For 33% of companies, with 3% of total industry-wide RBC UW Risk Value, the 

difference between diversification approaches is zero because they have zero UW 
risk (14.8%) or because they are mono-line (18.6%). These companies are excluded 
from the histogram. 

• For 20% of the multi-line companies, with 18% of the industry-wide multi-line 
RBC UW Risk Value, the differences are less than ±1%.  

• For 69% of the multi-line companies, with 80% of the industry-wide multi-line 
RBC UW Risk Value, the differences are less than ±5%.  

• The differences are greater than 10% for only 10% of the multi-line companies 
constituting about 9% of the industry-wide multi-line RBC UW Risk Value. 

                                                 
27 Positive differences represent companies for which the correlation matrix approach produces a higher RBC 
UW Risk Value than the CoMaxLine% Approach. 

20% of multi-line companies (including 18% 
of total multi-line RBC Value) have UW 
RBC values within ±1%. 

69% of multi-line companies (including 80% of 
multi-line RBC Value) have UW RBC values 
within ±5%. 
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• Considering all companies, even those companies which are mono-line, or which 
have zero premium and reserves, we find that for 46% of all companies, with 20% 
of the total RBC UW Risk Value, the differences are less than ±1%. For 79% of all 
companies, with 79% of the total RBC UW Risk Value, the differences are less than 
±5%. 

Differences of 5% might be considered small as a practical matter. In addition, we consider 
the differences to be small for several statistical reasons. First, the differences are not large 
compared to the inherent accuracy of the risk factors which are used to calculate R4 and R5 for 
each individual LOB. Moreover, the systematic variation in LOB risk factors due to LOB-size, 
LOB-age, and other factors discussed in DCWP Reports 6-9 is larger than the variation shown 
here from using a different diversification approach. Finally, correlation matrix values have 
inherent uncertainty, particularly in that the values are largely calibrated by expert judgment 
with only limited data. 

3.2 Correlation Matrix versus CoMaxLine%-Risk  
The difference between the correlation matrix approach and the CoMaxLine% Approach 

is due, in part, to the fact that the degree of diversification in the correlation matrix approach 
is based on risk by LOB while the degree of diversification in the CoMaxLine% Approach is 
based on volume (premium amount or reserve amount) by LOB.  

In this section we evaluate the effect of that difference by comparing CoMaxLine%-Risk 
to the correlation matrix approach, company-by-company.  

First, to calibrate the CoMaxLine%-Risk approach, we determine that with a MDC of 
44.4% the industry-wide RBC UW Risk Value produced by CoMaxLine%-Risk is the same as 
the total industry-wide RBC UW Risk value from the correlation matrix approach ($100.6 
billion). Then, as we did with the NAIC CoMaxLine% Approach, we examine the company-
by-company differences between CoMaxLine%-Risk and the correlation matrix approach that 
remain when both produce the same total industry-wide RBC UW Risk Value. 

The histogram in Table 3-2, below, shows the distribution of differences, company-by-
company, in the same format as Table 3-1. As was the case in Table 3-1, Table 3-2 excludes 
mono-line companies and companies with zero RBC UW Risk Values. 
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Table 3-2 
2010 RBC UW Risk Value Differences by Company28 

Distribution of Number of Companies  
Correlation matrix approach versus CoMaxLine%-Risk Approach (44.4% MDC)  

(Multi-line Companies)  

 
X-axis = Percentage difference between RBC UW Risk Values based on 
CoMaxLine%-Risk Approach and RBC UW Risk Values based on 
correlation matrix approach.  
Y-axis = Number of companies, in buckets of 1% difference in RBC UW 
Risk Value. 

 

Comparing Table 3-1 and Table 3-2 we see that the percentage of multi-line companies 
with CoMaxLine%-Risk within 5% of the correlation matrix approach is 76%, 7 percentage 
points more than with the CoMaxLine% Approach. Also, the percentage of RBC UW Risk 
Value of multi-line companies with CoMaxLine%-Risk within 10% of the correlation matrix 
approach is 93%, 3 percentage points more than with the CoMaxline% approach. 

3.3 HHI vs. CoMaxLine% 
In this section, we compare the results of using the CoMaxLine% Approach to the results 

of using the HHI approach. In Appendix 1, we describe how we calculate the RBC UW Risk 
Values using the HHI approach. 

                                                 
28 Positive differences represent companies for which the correlation matrix approach produces a higher RBC 
UW Risk Value than the CoMaxLine%-Risk Approach. 

76% of multi-line companies (including 91% of 
multi-line RBC Value) within ±5%. 

25% of multi-line companies (including 28% 
of total multi-line RBC Value) within ±1%. 
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For each company with a 2010 Annual Statement, we apply both the CoMaxLine% 
Approach and the HHI approach to produce the RBC UW Risk Values by company. Similar 
to the discussion in Section 3.1, the differences company-by-company between the two 
diversification approaches have two parts, and we are interested in the differences that remain 
after controlling for the overall difference in the industry-wide RBC UW Risk Values. We 
again focus on the companies with non-zero differences in RBC UW Risk Values. 

The industry-wide RBC UW Risk Value produced by the HHI approach, with a MDC of 
30%, is $101.5 billion. The industry-wide RBC UW Risk Value produced by the CoMaxLine% 
Approach would be $101.5 billion if the MDC were increased from 30% to 37.7%.   

The histogram in Table 3-3, below, shows the distribution of differences, company-by-
company, in the same format as Tables 3-1 and 3-2. As was the case in those tables, Table 3-3 
excludes mono-line companies and companies with zero RBC UW Risk Values. 

Table 3-3 
2010 RBC UW Risk Value Differences by Company 

Distribution of Number of Companies 
HHI approach versus CoMaxLine% Approach (37.7% MDC) 

(Multi-Line companies) 

 
X-axis = Percentage difference between RBC UW Risk Values based on 
CoMaxLine% Approach and RBC UW Risk Values based on HHI 
approach. 
Y-axis = Number of companies, in buckets of 1% difference in RBC UW 
Risk Value. 

28% of multi-line companies (including 21% 
of multi-line RBC UW Risk Value) within 
±1%. 

97% of multi-line companies (including 
99% of multi-line RBC UW Risk Value) 
within ±5%. 
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We find that: 
• 33% of all companies are excluded from the histogram because they are not multi-

line. 
• For 28% of the multi-line companies, with 21% of the industry-wide multi-line 

RBC UW Risk Value, the differences are less than ±1%.  
• For 97% of the multi-line companies, with 99% of the industry-wide RBC UW Risk 

Value, the differences are less than ±5%.  
• There are no companies where the differences are greater than 10%.  
• Considering all companies, even those companies which are mono-line, or which 

have zero premium and reserves, we find that for 52% of all companies, with 23% 
of the total RBC UW Risk Value, the differences are less than ±1%. For 97% of all 
companies, with 99% of the total RBC UW Risk Value, the differences are less than 
±5%. 

3.4 Further Observations 
An analysis of why the three methods discussed in this report produce similar results is 

beyond the scope of this paper. However, in this section we discuss some of the factors that 
contribute to that result. 

First, the diversification credits are zero for mono-line companies, regardless of method.  
Second, the correlation matrix values for LOB-pairs are not highly varied. It is possible that 

the differences would be wider if the correlation matrix values were more varied, but we have 
not explored that possibility. 

Third, the diversification element is only one part of the RBC UW Risk Value. The dollar 
weighted average diversification credit for all multi-line companies is 20%.29 Differences in 
diversification credit are thus “diluted” in the total calculation.  For multi-line companies with 
little diversification credit, even large percentage differences in diversification credit have a 
small effect on total RBC UW Risk Value.  

Finally, the diversification formula has the greatest effect on the most diversified companies, 
and we find that the differences between the CoMaxLine% Approach and the correlation 
matrix approach decrease as company diversification increases.30 

Appendix 2, Exhibit 3, Box A, shows the RBC UW Risk Value, the dollars of diversification 

                                                 
29 Appendix 2/Exhibit 3/Box A/Column “All”. 
30 Appendix 2/Exhibit 4/Box D/trend in columns from least diversified to most diversified/in rows -5 to +5, -
10 to +10 and -25 to +25. 
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credit and the average diversification credit for all companies combined and for companies 
within each company diversification band. Box B shows the same information by RBC UW 
Risk Value. Boxes C and D show the corresponding information based on the 
CoMaxLine%-Risk measure of diversification. 

In Appendix 2, Exhibit 4 we show the proportions of companies where UW Risk RBC 
Values varies by 5% or less, 10% or less and 25% or less, for the CoMaxLine% Approach 
versus the correlation matrix approach, by company size band (measured by RBC UW Risk 
Value) and by company diversification band. In Appendix 2, Exhibit 4 we also show the 
proportion of companies where the dollar diversification amount varies by 5% or less, 10% 
or less and 25% or less, for the CoMaxLine% Approach versus correlation matrix approach, 
by company size band (measured by RBC UW Risk Value) and by diversification band. 

We say the CoMaxLine% Approach is closer to the correlation matrix approach for 
size/diversification cells where the proportion of companies within the 5% variation, 10% 
variation and 25% variation bands is higher. We see that RBC UW Risk Value from the 
CoMaxLine% Approach is closer to the correlation matrix approach for the larger companies 
(Box C) and for the more diversified companies (Box D).  

In Appendix 2, Exhibit 5 we show the data for CoMaxLine%-Risk versus the correlation 
matrix approach as we did in Exhibit 4 for CoMaxLine% versus the correlation matrix 
approach. We see that CoMaxLine%-Risk is generally closer to the correlation matrix 
approach than was the case for the CoMaxLine% Approach. 
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4. GLOSSARY 
Annual Statement US NAIC Annual Statement 
CoMaxLine% The NAIC measure of concentration, the percentage of a company’s 

total premium or reserves from its single largest LOB. 
CoMaxLine% 
Approach 

The NAIC method of determining diversification credit across LOBs.  It 
is (1.0 – CoMaxLine%) times 30%. 

CoMaxLine%-Risk 
Approach 

CoMaxLine% Approach based on risk charge size by LOB rather than 
premium or reserve volume by LOB. 

Correlation We use that term to characterize methods of combining LOB risk charges 
to produce an all-lines risk charge or combining premium risk and reserve 
risk to produce total risk using ‘correlation factors.’ 
The use of the term does not imply that the assumptions underlying 
individual and joint distributions of the parameters are satisfied. 

Correlation Factor A factor used to express the relationship between individual risks to 
produce the risk parameter of interest for the combined risk. 
The use of the term does not imply that the assumptions underlying 
individual and joint distributions of the parameters are satisfied. 

Correlation Matrix A matrix of correlation factors, typically one factor for each pair of LOBs. 
DCWP Risk-Based Capital Dependency and Calibration Working Party of the 

Casualty Actuarial Society 
LCF Loss Concentration Factor, as calculated in the 2010 RBC Formula, 

applicable to reserve risk. 
Based on the CoMaxLine% Approach. 

LOB Schedule P Lines of Business used in the RBC Formula. Note that three 
pairs of Schedule P LOBs are combined; occurrence and claims Other 
Liability (Line H), occurrence and claims-made Products Liability (Line 
R), and Reinsurance: nonproportional property and Reinsurance: 
nonproportional financial (Lines P and N, respectively).  

Loss sensitive 
business adjustment 

An element of the RBC Formula that reduces the risk charge if 
unfavorable experience can be offset by increases in income on loss 
sensitive business. 

MDC Maximum Diversification Credit, 30% in the 2010 RBC Formula 
NAIC National Association of Insurance Commissioners 
Own company 
adjustment, or 
50/50 rule 
 

For each company and LOB, premium risk and reserve risk are based 50% 
on factors calibrated on industry data and 50% on industry data adjusted 
by the ratio of company experience to industry experience for the most 
recent 10 years (if 10 years of company data is available, otherwise, there 
is no adjustment). 

PCF Premium Concentration Factor as calculated in the 2010 RBC Formula. 
Based on the CoMaxLine% Approach. 

R0 Asset Risk – Insurance affiliate investment and (non-derivative) off-
balance sheet risk. 

R1 Asset Risk – Fixed Income Investments 
R2 Asset Risk – Equity 
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R3  Credit risk (non-reinsurance plus one half of Reinsurance Credit Risk)  
R3-Reinsurance 
Credit Risk 

See Reinsurance Credit Risk 

R4 UW – Reserve risk plus one half of reinsurance credit risk,31 including 
growth risk. 
This paper uses R4 without the reinsurance credit risk adjustment and 
without growth risk. 

R5 UW – Premium risk, including growth risk. 
This paper uses R5 without growth risk. 

RBC Risk-Based Capital 
RBC Formula or 
Formula 

The 2010 NAIC Property-Casualty RBC Formula  

RBC Value The Company Action Level amount calculated from the RBC Formula. 
RBC UW Risk Value The Company Action Level amount calculated for the UW risk 

components of the RBC Formula. 
Reinsurance Credit 
Risk 

An element of R3, representing both credit risks related to reinsurance 
financial capacity and the difference in premium and reserve risk between 
companies with varying levels of ceded reinsurance.  

Solvency II EU regulation and related implementing measures. 
Standard Formula A formula determining capital requirements under Solvency II, RBC or 

other regulatory capital systems. 
UW Underwriting 
UW risk Underwriting risk – the combination of premium risk and reserve risk. 

 
 
  

                                                 
31 The ‘transfer’ from credit risk to reserve risk applies only if the pure reserve risk component is larger than the 
reinsurance credit risk, as is the case for most companies. 
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https://eiopa.europa.eu/consultations/qis/quantitative-impact-study-5/spreadsheets-and-it-tools/index.html
https://eiopa.europa.eu/Publications/Reports/QIS5_Annexes_Final.pdf


DCWP Report 13 – Line of Business Diversification – Current RBC Approach vs. Correlation Matrix Approach 

Casualty Actuarial Society E-Forum, Winter 2019 20 

[45.] EIOPA, “Calibration of the Premium and Reserve Risk Factors in the Standard Formula of 
Solvency II, Report of the Joint Working Group on Non-Life and Health Non-Similar to Life 
Techniques (NSLT) Calibration,” EIOPA, December 2011, 1-77. 
https://eiopa.europa.eu/Publications/Reports/EIOPA-11-163-A-
Report_JWG_on_NL_and_Health_non-SLT_Calibration.pdf. 

[46.] EIOPA, “Calibration of the Premium and Reserve Risk Factors in the Standard Formula of 
Solvency II, Report of the Joint Working Group on Non-Life and Health Non-Similar to Life 
Techniques (NSLT) Calibration: Annex 6_2: Averaging and Combined Approach,” EIOPA, 
December 2011, 1-14. https://eiopa.europa.eu/Publications/Reports/EIOPA-11-163-C-
Annex_6_2_Report_JWG_on_NL_and_Health_non-SLT_Calibration.pdf. 
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Appendix 1 - Calculation of 2010 RBC UW Risk Values by Company 
In Section 3, we compare the RBC UW Risk Values from the RBC Formula with the RBC 

UW Risk Values from alternative formulas in which we replace the CoMaxLine% calculation 
with correlation matrix, CoMaxLine%-Risk and HHI calculations. We use 2010 Annual 
Statement data by company32 to determine the company-by-company RBC UW Risk Values 
as described below. 

For each LOB individually: 
• We obtain 2010 net written premium and net loss and loss adjustment expense 

reserves by LOB from the Annual Statement. 
• We use Schedule P Part 2 reserve runoff to calculate the own-company adjustment 

factors for reserve risk. 
• We use Schedule P Part 1 LRs to calculate the own-company adjustment factors 

for premium risk. 
• We use Schedule P Parts 7A and 7B to calculate the loss-sensitive contract 

adjustment for premium risk. 
• For each LOB, we apply the premium risk factor, the reserve risk factor, the 

premium and reserve investment income offsets, the own company adjustments, 
and loss sensitive contract adjustment, in accordance with the 2010 RBC Formula. 

                                                 
32 For this purpose, we considered individual company legal entities. We do not use the NAIC groups or DCWP-
pooled companies. 

https://eiopa.europa.eu/Publications/Reports/EIOPA-11-163-A-Report_JWG_on_NL_and_Health_non-SLT_Calibration.pdf
https://eiopa.europa.eu/Publications/Reports/EIOPA-11-163-A-Report_JWG_on_NL_and_Health_non-SLT_Calibration.pdf
https://eiopa.europa.eu/Publications/Reports/EIOPA-11-163-C-Annex_6_2_Report_JWG_on_NL_and_Health_non-SLT_Calibration.pdf
https://eiopa.europa.eu/Publications/Reports/EIOPA-11-163-C-Annex_6_2_Report_JWG_on_NL_and_Health_non-SLT_Calibration.pdf
https://eiopa.europa.eu/Publications/Reports/QIS5_Report_Final.pdf
http://www.naic.org/documents/eu_us_dialogue_report_121220.pdf
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• The premium calculation includes extra steps in that premium risk factors by LOB 
are converted to the premium risk charge by LOB using the all-lines company 
expense ratio. 

All LOBs combined 
• We determine the all-lines combined risk values for premium and reserves using 

the PCFs and LCFs by company, respectively.  
As explained in Section 2, for each company, the PCFs and LCFs will be values 
between 71.6% and 100.0% using the CoMaxLine% Approach.  

Simplifications 
• We do not apply the growth risk charge 
• We do not apply the own-company adjustment for 2-Year LOBs, as the necessary 

data is not in Schedule P. 
• The reserve risk component does not include the R3-Reinsurance Credit Risk 

amount that is transferred to R4. 
Correlation Matrix Approach 

To estimate the RBC UW Risk Values for the correlation matrix approach we first calculate 
the results by LOB as described above, using all-lines company expenses for each LOB.33 

We combine the LOB risk charges applying correlation matrix, Appendix 6A/Exhibit 6-
134 to the risk charges by LOB. 

CoMaxLine%-Risk Approach  
To estimate the RBC UW Risk Values for the CoMaxLine%-Risk Approach we first 

calculate the premium risk and reserve risk values by LOB in accordance with RBC Formula 
as described above for the correlation matrix approach.  

We calculate CoMaxLine%-Risk using the dollar amounts of premium risk and reserve risk, 
by LOB, rather than using the dollar amounts of premium and reserves. 

We calculate the PCFs/LCFs from the CoMaxLine%s-Risk. 
HHI Alternative 

To estimate the RBC UW Risk Values for the HHI approach we first calculate the results 
by LOB as described above.  
                                                 
33 When the RBC Formula was constructed it was decided to use company total expenses rather than LOB 
expenses in the premium UW risk calculation because the LOB expenses are not available in the Annual 
Statement. The expenses by LOB are produced one month later in the Insurance Expense Exhibit. 
34 In mathematical terms, we take the LOB risk charges as a 19x1 vector; multiply it by the 19x19 correlation 
matrix and multiple that by the LOB risk charges, in dollars, as a 1x19 vector. LCF and PCF factors are not used 
in the correlation matrix approach. 
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We calculate the PCFs/LCFs using the HHI values rather than CoMaxLine%. The HHI 
concentration value equals the sum of the squares of the LOB shares of total. For example, if 
there is only one LOB, HHI is 1.0, as is the case for CoMaxLine%. With two lines split 25% 
and 75% HHI is 0.25 ^2 plus 0.75^2 or 0.625 compared the CoMaxLine% of 0.750, i.e., it 
shows less concentration/more diversification. With three lines split 50%, 25% and 25% HHI 
is 0.50^2 plus 0.25^2 plus 0.25^2 or 0.375, less concentration/more diversification than the 
CoMaxLine% of 0.5. 

To combine the LOBs, we replace the CoMaxLine%s with the HHI values.
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• For each LOB, we apply the premium risk factor, the reserve risk factor, the 
premium and reserve investment income offsets, the own company adjustments, 
and loss sensitive contract adjustment, in accordance with the 2010 RBC Formula. 

Company Selection 
There are 2,434 companies with 2010 Annual Statements in our data set. Of those, 50 

companies have significantly negative premium or reserves for some LOBs. 35  The RBC 
Formula substitutes zero for negative values. For our work, we eliminate those 50 companies, 
leaving 2,384 companies in our analysis. Of those, 360 have zero UW Risk RBC and 402 have 
zero diversification credit in the CoMaxLine%, CoMaxLine%-Risk and HHI calculations. The 
remaining 1,622 companies provide information on how the diversification formulas affect 
RBC UW Risk Values. 

                                                 
35 Negative in total for all lines combined or with large enough negative values to potentially distort one or 
more of the diversification formulas we are testing. 
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Appendix 1/Exhibit 1 
Selected DCWP Correlation Matrix – Applied By the DCWP to US NAIC LOBs for this Study 

 
Note: Off diagonal values other than 25%, 50% are in bold. 

LOB Definitions 
LOB Abbreviation LOB Abbreviation LOB Abbreviation 
Homeowners/Farmowners HO Special Liab SL International Int’l 
Priv. Passenger Auto                          PPA Other Liab-Occ and CM OL Reinsurance-Fin and Prop Re Prop 
Commercial Auto CA Spec Property SP Reinsurance-Liab Re Liab 

Workers Compensation 
WC 

Auto Physical Damage 
Phy Products Liability-Occ and 

CM Prod 

Commercial Multi-peril 
CMP 

Fidelity & Surety 
Fid Financial/Mortgage 

Guarantee 
FG 

Medical Prof Liab - Occ M-Occ Other  Other Warranty Warranty 
Medical Prof Liab - CM M-CM     

LOB/LOB HO PPA CA WC CMP M-Occ M-CM SL OL SP Phy Fid Other Int'l Re Prop Re- Liab Prod FG Warranty
HO 100% 25% 25% 25% 50% 25% 25% 25% 25% 75% 50% 25% 25% 25% 25% 25% 25% 25% 25%
PPA 25% 100% 50% 25% 25% 25% 25% 25% 25% 25% 75% 25% 25% 25% 25% 25% 25% 25% 25%
CA 25% 50% 100% 50% 50% 25% 25% 50% 50% 25% 75% 25% 25% 25% 25% 25% 50% 25% 25%
WC 25% 25% 50% 100% 25% 25% 25% 25% 25% 25% 25% 25% 25% 25% 25% 25% 25% 25% 25%
CMP 50% 25% 50% 25% 100% 25% 25% 50% 50% 50% 25% 25% 25% 25% 25% 25% 50% 25% 25%
M-Occ 25% 25% 25% 25% 25% 100% 100% 50% 50% 25% 25% 25% 25% 25% 25% 25% 50% 25% 25%
M-CM 25% 25% 25% 25% 25% 100% 100% 50% 50% 25% 25% 25% 25% 25% 25% 25% 50% 25% 25%
SL 25% 25% 50% 25% 50% 50% 50% 100% 75% 25% 25% 25% 25% 25% 25% 50% 100% 25% 25%
OL 25% 25% 50% 25% 50% 50% 50% 75% 100% 25% 50% 50% 25% 50% 25% 50% 100% 25% 25%
SP 75% 25% 25% 25% 50% 25% 25% 25% 25% 100% 25% 25% 25% 25% 50% 25% 25% 25% 25%
Phy 50% 75% 75% 25% 25% 25% 25% 25% 50% 25% 100% 25% 25% 25% 25% 25% 25% 25% 25%
Fid 25% 25% 25% 25% 25% 25% 25% 25% 50% 25% 25% 100% 25% 25% 25% 50% 25% 25% 25%
Other 25% 25% 25% 25% 25% 25% 25% 25% 25% 25% 25% 25% 100% 25% 25% 25% 25% 25% 25%
Int'l 25% 25% 25% 25% 25% 25% 25% 25% 50% 25% 25% 25% 25% 100% 25% 25% 25% 25% 25%
Re Prop 25% 25% 25% 25% 25% 25% 25% 25% 25% 50% 25% 25% 25% 25% 100% 25% 25% 25% 25%
Re- Liab 25% 25% 25% 25% 25% 25% 25% 50% 50% 25% 25% 50% 25% 25% 25% 100% 50% 25% 25%
Prod 25% 25% 50% 25% 50% 50% 50% 100% 100% 25% 25% 25% 25% 25% 25% 50% 100% 25% 25%
FG 25% 25% 25% 25% 25% 25% 25% 25% 25% 25% 25% 25% 25% 25% 25% 25% 25% 100% 25%
Warranty 25% 25% 25% 25% 25% 25% 25% 25% 25% 25% 25% 25% 25% 25% 25% 25% 25% 25% 100%
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Solvency II Correlation Matrix 
The Solvency II Standard Formula uses a correlation matrix to specify LOB diversification. 

Appendix 1/Exhibit 2A lists the Solvency II 12 non-life LOBs  
 

Appendix 1/Exhibit 2A Solvency II LOBs36 

  
Direct LOBs include proportional reinsurance of the same type. 
NP = Non-proportional 

 
Appendix 1/Exhibit 2B below shows the Solvency II Standard Formula LOB correlation matrix 

for those 12 LOBs.37 
Appendix 1/Exhibit 2B 

Solvency II Standard Formula Correlation Matrix for Premium and Reserves 

 
The factors equal to 1.0, along the diagonal, represent the correlation between the LOB and itself. 

In the Solvency II 3rd Quantitative Impact Analysis (QIS3), the factors were calibrated with data from 
one country, supplemented by expert judgment.  The factors appear to primarily represent an expert 
judgment on whether the LOB pairwise correlation is lower (0.25) or higher (0.50).  

In the Solvency II 4th Quantitative Impact Analysis (QIS4) analysis, the factors were sensitivity 

                                                 
36 
http://www.lloyds.com/~/media/files/the%20market/operating%20at%20lloyds/solvency%20ii/2016%20guidance/2
015_yesf_synd_v62.xlsx. “ Non-Life & NSLT Health P&R” 
37 Ibid. Tab “Non-Life and Health UW Risk” 

1 Motor vehicle liability 7 Legal expenses
2 Other motor 8 Assistance
3 Marine, aviation and 

transport
9 Miscellaneous financial loss

4 Fire and other damage to 
property

10 NP casualty reinsurance

5 General liability 11 NP marine, aviation and 
transport reinsurance

6 Credit and suretyship 12 NP property reinsurance

LOB/LOB 1 2 3 4 5 6 7 8 9 10 11 12
1 100% 50% 50% 25% 50% 25% 50% 25% 50% 25% 25% 25%
2 50% 100% 25% 25% 25% 25% 50% 50% 50% 25% 25% 25%
3 50% 25% 100% 25% 25% 25% 25% 50% 50% 25% 50% 25%
4 25% 25% 25% 100% 25% 25% 25% 50% 50% 25% 50% 50%
5 50% 25% 25% 25% 100% 50% 50% 25% 50% 50% 25% 25%
6 25% 25% 25% 25% 50% 100% 50% 25% 50% 50% 25% 25%
7 50% 50% 25% 25% 50% 50% 100% 25% 50% 50% 25% 25%
8 25% 50% 50% 50% 25% 25% 25% 100% 50% 25% 25% 50%
9 50% 50% 50% 50% 50% 50% 50% 50% 100% 25% 50% 25%

10 25% 25% 25% 25% 50% 50% 50% 25% 25% 100% 25% 25%
11 25% 25% 50% 50% 25% 25% 25% 25% 50% 25% 100% 25%
12 25% 25% 25% 50% 25% 25% 25% 50% 25% 25% 25% 100%

http://www.lloyds.com/%7E/media/files/the%20market/operating%20at%20lloyds/solvency%20ii/2016%20guidance/2015_yesf_synd_v62.xlsx
http://www.lloyds.com/%7E/media/files/the%20market/operating%20at%20lloyds/solvency%20ii/2016%20guidance/2015_yesf_synd_v62.xlsx
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tested with additional analysis assuming a minus or plus 25 percentage points adjustment to each 
“non-diagonal” value. These changes resulted in capital requirements that were 25% lower and 21% 
higher (respectively) than the proposed QIS4 factors.38 After this sensitivity analysis was completed, 
the selected factors were maintained at the QIS3 level “translating the broad support there is around these 
parameters and the lack of more evidence for changing the correlations”.39 Thus, the overall level appears to rely 
heavily on expert judgment much like the 30% MDC in the RBC Formula. 

 
  

                                                 
38 CEIOPS-DOC-70/10, Annex B, pages 38-44 
39 CEIOPS-DOC-70/10 (Page 44, paragraph B.31) 
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Appendix 2 – Comparisons between CoMaxLine%, CoMaxLine%- Risk, 
and Correlation Matrix Approaches 

Appendix 2/Exhibit 3  
Appendix 2/Exhibit 3, below, shows the dollar amount of RBC UW Risk Value, the dollar amount 

of diversification credit, and the average diversification credit by company-size and by company-
diversification band, separately for the CoMaxLine% Approach and the CoMaxLine%-Risk Approach. 
We define the size and diversification bands below. 

RBC UW Risk Value Size Bands 
We show the data, in seven company-size bands. The bands A through E divide the 1,622 multi-

line companies into five groups with approximately 325 companies in each band. Band A has the 
smallest 20% of multi-line companies.  Band E has the largest 20% of multi-line companies. In 
addition, we show two other informational bands. “Tiny” is for the 75 smallest multi-line companies. 
This column is for information only, as we include the 75 in band A. “Jumbo” is for the 75 largest 
multi-line companies. This column is for information, as we include the 75 in band E.  

Columns: %Diversification Size Bands  
We show the data, in seven company-diversification bands. The bands A through E divide the 

1,622 multi-line companies into five groups with approximate 325 multi-line companies in each band. 
Band A has the least diversified multi-line companies, those with the lowest percentage diversification 
credits. Band E has the most diversified 20% of multi-line companies, those with the highest 
percentage diversification credits. In addition, we show two other bands.  The column “75 Least 
Diversified” is for the 75 multi-line companies with the lowest, non-zero, diversification percentages. 
This column is for information as we include the 75 in band A. The column “75 Most Diversified” is 
for the 75 multi-line companies with the largest diversification credit %. This column is also for 
information, as we include the 75 in band E. 

Distribution of RBC UW Risk Value and Diversification Amount  
Appendix 2/Exhibit 3, has four “boxes,” labeled A, B, C and D. Within each box we show the 

dollar amount of RBC UW Risk Value, the percentage of RBC UW Risk Value by size band or 
diversification band, the dollar amount of diversification credit and the average diversification credit.  

Boxes A and C show the data in company-diversification bands, for CoMaxLine% and 
CoMaxLine%-Risk approaches, respectively.  Boxes B and D show the data in RBC UW Risk Size 
bands, for CoMaxLine% and CoMaxLine%-Risk approaches, respectively.   

Some key features of the summary are the following: 
• The weighted average percentage diversification across all multi-line companies is 20%, for 

both the CoMaxLine% Approach and the CoMaxLine%-Risk Approach (the same value 
appears in boxes A, B, C, and D in the “All” column). 
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• For the 75 most diversified multi-line companies, the average diversification percentage is 
30% for CoMaxline% (Box A), and 32% for CoMaxLine%-Risk (Box C). 

• For CoMaxLine%, the total RBC UW Risk Value is $97,975 million, excluding mono-line 
companies. Of that amount, $64,659 million, or 66%, relates to the 75 largest multi-line 
companies. $87,567 million of that amount, or 89%, relates to the largest 20% of multi-line 
companies (Box B. RBC UW Risk Size Bands/Column E). 

• For CoMaxLine%, the total RBC UW Risk Value is essentially the same as for 
CoMaxLine%-Risk because we calibrated the CoMaxLine% MDC to achieve that result. 
The distribution by RBC UW Value size bands for CoMaxLine%-Risk is similar to the 
distribution for CoMaxLine%. 

• For CoMaxLine%, nearly all of the diversification credit, $22 million of $24 million, arises 
from size band E, the 20% largest companies by RBC UW Risk Value (Box B/Column E). 

Appendix 2/Exhibit 4 – CoMaxline% and Correlation Matrix by Size and 
Diversification Bands 

In Appendix 2/Exhibit 4, we compare RBC UW Risk Value and dollar diversification credit 
amounts for the CoMaxLine% Approach to the corresponding values for the correlation matrix 
approach. We show the information for all companies, and separately in size and diversification bands, 
defined above. 

In each column, we show the percentage of multi-line companies with percentage difference in 
RBC UW Risk Value (Boxes A and B) and percentage difference in dollar diversification credit (Boxes 
C and D) in bands ±5%, ±10%, and ±25%, for CoMaxline% versus correlation matrix approaches. 
Boxes A and C show the information by RBC WW Risk Value Size Band. Boxes B and D show the 
information by % Diversification Band. 

Appendix 2/Exhibit 4/Box A/Column “All” shows that the RBC UW Risk Values differ from the 
corresponding correlation matrix values by more than 5% for only 31% of all multi-line companies 
and for 26%, of the largest 20% of multi-line companies (Box A/column E). The values differ by 
more than 10% for 10% of multi-line companies overall and for 9% of the largest 20% of multi-line 
companies. (Box A, columns “All” and “E”). 

The percentage differences in diversification will be larger than the percentage difference in RBC 
UW Risk Value. Therefore, the differences in diversification amount will be higher than the differences 
in RBC UW Risk Values. In fact, the percentage difference in diversification amount is more than 5% 
for 86% of multi-line companies, more than 10% for 71% of multi-line companies and more than 
25% for 48% of multi-line companies (Box C or D/column “All”). 

For the most diversified multi-line companies, band E, that are potentially the most affected by 
differences in the diversification formula, the percentage change in dollars of diversification is more 
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than 5% for 66% of multi-line companies, but more than 10% for only 28% of multi-line companies 
and more than 25% for only 6% of multi-line companies; much fewer than for all multi-line companies 
combined.  For the least diversified multi-line companies, band A, the difference in dollars of 
diversification is greater than 25% for 83% of multi-line companies (Box D), but in that case, the 
average diversification percentage is only 3% (Exhibit 3/Box A). 

Appendix 2/Exhibit 5- CoMaxline%-Risk and Correlation Matrix by Size 
and Diversification Bands 

Appendix 2/Exhibit 5 compares CoMaxLine%-Risk to the correlation matrix approach, showing 
the same information as Exhibit 4. 

In many respects, the patterns in Exhibit 5 are similar to the patterns in Exhibit 4, but the 
CoMaxLine%-Risk and correlation matrix approaches are closer than is the case for the CoMaxLine% 
Approach versus the correlation matrix approach. 
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Appendix 2/Exhibit 3 

CoMaxLine% and CoMaxLine%-Risk  
RBC UW Risk Values and Diversification Amounts 

 
  
  

Item All
75 Least 

Diversified 
(memo)

A B C D E
75 Most 

Diversified 
(memo)

RBC UW Risk Value 97,975 956 5,249 15,939 19,364 30,805 26,617 4,274
% of RBC UW Risk Value 100% 1% 5% 16% 20% 31% 27% 4%
$ of Diversification 23,901 3 141 1,747 3,702 8,618 9,693 1,819
Avg % Diversification 20% 0% 3% 10% 16% 22% 27% 30%

Item
All

Tiny 
(memo)

A B C D E
Jumbo 

(memo)
RBC UW Risk Value 97,975 8 218 928 2,523 6,739 87,567 64,659
% of RBC UW Risk Value 100% 0% 0% 1% 3% 7% 89% 66.0%
$ of Diversification 23,901 1 33 163 480 1,364 21,861 16,354
Avg % Diversification 20% 12% 13% 15% 16% 17% 20% 20%

Item All
75 Least 

Diversified 
(memo)

A B C D E
75 Most 

Diversified 
(memo)

RBC UW Risk Value 97,990 691 7,297 17,477 26,467 21,652 25,097 4,864
% of RBC UW Risk Value 100% 1% 7% 18% 27% 22% 26% 5%
$ of Diversification 23,886 2 243 1,907 4,798 6,405 10,533 2,296
Avg % Diversification 20% 0% 3% 10% 15% 23% 30% 32%

Item
All

Tiny 
(memo)

A B C D E
Jumbo 

(memo)
RBC UW Risk Value 97,990 8 215 921 2,490 6,661 87,703 65,120
% of RBC UW Risk Value 100% 0% 0% 1% 3% 7% 90% 66%
$ of Diversification 23,886 1 37 168 522 1,455 21,703 15,794
Avg % Diversification 20% 13% 15% 15% 17% 18% 20% 20%

CoMaxLine% 

C. Percentage Diversification Bands

D. RBC UW Risk Size Bands

A. Percentage Diversification Bands

B. RBC UW Risk Size Bands

CoMaxLine% - Risk
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Appendix 2/Exhibit 4 
% Difference from CoMaxLine% Approach to Correlation Matrix Approach 

 

All
Tiny 

(memo)
A B C D E

Jumbo 
(memo)

-5 to +5 69% 51% 64% 64% 67% 77% 74% 81%
-10 to +10 90% 89% 88% 88% 89% 95% 91% 91%
-25 to +25 100% 100% 100% 100% 100% 100% 100% 100%

Greater than ±5% 31% 49% 36% 36% 33% 23% 26% 19%
Greater than ±10% 10% 11% 12% 12% 11% 5% 9% 9%
Greater than ±25% 0% 0% 0% 0% 0% 0% 0% 0%

All
75 Least 

Diversified 
(memo)

A B C D E
75 Most 

Diversified 
(memo)

-5 to +5 69% 99% 96% 59% 53% 60% 78% 84%
-10 to +10 90% 99% 98% 94% 82% 79% 97% 93%
-25 to +25 100% 100% 100% 100% 100% 100% 100% 100%

Greater than ±5% 31% 1% 4% 41% 47% 40% 22% 16%
Greater than ±10% 10% 1% 2% 6% 18% 21% 3% 7%
Greater than ±25% 0% 0% 0% 0% 0% 0% 0% 0%

All
Tiny 

(memo)
A B C D E

Jumbo 
(memo)

-5 to +5 14% 4% 7% 12% 15% 19% 18% 20%
-10 to +10 29% 9% 16% 20% 26% 38% 45% 53%
-25 to +25 52% 25% 35% 47% 48% 63% 69% 80%

Greater than ±5% 86% 96% 93% 88% 85% 81% 82% 80%
Greater than ±10% 71% 91% 84% 80% 74% 62% 55% 47%
Greater than ±25% 48% 75% 65% 53% 52% 37% 31% 20%

All
75 Least 

Diversified 
(memo)

A B C D E
75 Most 

Diversified 
(memo)

-5 to +5 14% 1% 3% 7% 10% 16% 34% 57%
-10 to +10 29% 5% 10% 13% 17% 34% 72% 83%
-25 to +25 52% 17% 19% 33% 48% 68% 94% 93%

Greater than ±5% 86% 99% 97% 93% 90% 84% 66% 43%
Greater than ±10% 71% 95% 90% 87% 83% 66% 28% 17%
Greater than ±25% 48% 83% 81% 67% 52% 32% 6% 7%

D. Change in $ Diversification by % Diversification Band

 % Change in
Div $ 

Percentage Diversification Bands

 % Change in
RBC UW Risk Value 

Percentage Diversification Bands

C. Change in $ Diversification by RBC UW Risk Value Size Band

 % Change in
Div $ 

RBC UW Risk Size Bands

A. Change in RBC UW Risk Value by RBC UW Risk Value Size Band

% Change in
RBC UW Risk Value

RBC UW Risk Size Bands

B. Change in RBC UW Risk Value by % Diversification Band
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Appendix 2/Exhibit 5 
% Difference from CoMaxLine% - Risk Approach to Correlation Matrix Approach 

 

All
Tiny 

(memo)
A B C D E

Jumbo 
(memo)

-5 to +5 76% 55% 68% 72% 73% 82% 85% 91%
-10 to +10 93% 91% 89% 89% 94% 96% 97% 97%
-25 to +25 100% 100% 100% 100% 100% 100% 100% 100%

Greater than ±5% 24% 45% 32% 28% 27% 18% 15% 9%
Greater than ±10% 7% 9% 11% 11% 6% 4% 3% 3%
Greater than ±25% 0% 0% 0% 0% 0% 0% 0% 0%

All
75 Least 

Diversified 
(memo)

A B C D E
75 Most 

Diversified 
(memo)

-5 to +5 76% 100% 98% 67% 61% 69% 84% 93%
-10 to +10 93% 100% 100% 96% 83% 87% 98% 100%
-25 to +25 100% 100% 100% 100% 100% 99% 100% 100%

Greater than ±5% 24% 0% 2% 33% 39% 31% 16% 7%
Greater than ±10% 7% 0% 0% 4% 17% 13% 2% 0%
Greater than ±25% 0% 0% 0% 0% 0% 1% 0% 0%

All
Tiny 

(memo)
A B C D E

Jumbo 
(memo)

-5 to +5 21% 11% 13% 15% 19% 26% 31% 32%
-10 to +10 35% 13% 21% 29% 31% 42% 50% 51%
-25 to +25 58% 28% 43% 52% 58% 64% 74% 76%

Greater than ±5% 79% 89% 87% 85% 81% 74% 69% 68%
Greater than ±10% 65% 87% 79% 71% 69% 58% 50% 49%
Greater than ±25% 42% 72% 57% 48% 42% 36% 26% 24%

All
75 Least 

Diversified 
(memo)

A B C D E
75 Most 

Diversified 
(memo)

-5 to +5 21% 0% 4% 8% 10% 31% 51% 60%
-10 to +10 35% 5% 16% 15% 16% 47% 79% 91%
-25 to +25 58% 16% 26% 30% 56% 81% 98% 100%

Greater than ±5% 79% 100% 96% 92% 90% 69% 49% 40%
Greater than ±10% 65% 95% 84% 85% 84% 53% 21% 9%
Greater than ±25% 42% 84% 74% 70% 44% 19% 2% 0%

Percentage Diversification Bands

 % Change in
Div $ 

A. Change in RBC UW Risk Value by RBC UW Risk Value Size Band

B. Change in RBC UW Risk Value by % Diversification Band

C. Change in $ Diversification by RBC UW Risk Value Size Band

D. Change in $ Diversification by % Diversification Band

RBC UW Risk Size Bands% Change in
RBC UW Risk Value

Percentage Diversification Bands

 % Change in
RBC UW Risk Value 

RBC UW Risk Size Bands % Change in
Div $ 



Abstract

We propose a novel approach for loss reserving based on deep neural networks. The
approach allows for joint modeling of paid losses and claims outstanding, and incorporation
of heterogeneous inputs. We validate the models on loss reserving data across lines of
business, and show that they improve on the predictive accuracy of existing stochastic
methods. The models require minimal feature engineering and expert input, and can be
automated to produce forecasts more frequently than manual workflows.

Keywords: loss reserving, machine learning, neural networks
JEL: G22

1. Introduction

In the loss reserving exercise for property and casualty insurers, actuaries are concerned
with forecasting future payments due to claims. Accurately estimating these payments
is important from the perspectives of various stakeholders in the insurance industry.
For the management of the insurer, the estimates of unpaid claims inform decisions in
underwriting, pricing, and strategy. For the investors, loss reserves, and transactions
related to them, are essential components in the balance sheet and income statement of
the insurer. And, for the regulators, accurate loss reserves are needed to appropriately
understand the financial soundness of the insurer.

There can be time lags both for reporting of claims, where the insurer is not notified
of a loss until long after it has occurred, and for final development of claims, where
payments continue long after the loss has been reported. Also, the amounts of claims
are uncertain before they have fully developed. These factors contribute to the difficulty
of the loss reserving problem, for which extensive literature exists and active research
is being done. We refer the reader to England and Verrall (2002) for a survey of the
problem and existing techniques.

Deep learning has garnered increasing interest in recent years due to successful
applications in many fields (LeCun, Bengio, and Hinton 2015) and has recently made
its way into the loss reserving literature. Wüthrich (2018b) augments the traditional
chain ladder method with neural networks to incorporate claims features, and Gabrielli,
Richman, and Wuthrich (2018) embeds the over-dispersed Poisson (ODP) model into a
neural network.
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Preprint submitted to CAS E-Forum March 5, 2019

DeepTriangle: A Deep Learning Approach to Loss Reserving

Kevin Kuoa

aRStudio, 250 Northern Ave, Boston, MA 02210, United States

Casualty Actuarial Society E-Forum, Winter 2019 1



Figure 1: Feedforward neural network.

In developing our framework, which we call DeepTriangle, we also draw inspiration
from the existing stochastic reserving literature: Quarg and Mack (2004) utilize incurred
loss along with paid loss data, Miranda, Nielsen, and Verrall (2012) incorporate claim
count information in addition to paid losses, and Avanzi et al. (2016) consider the
dependence between lines of business within an insurer’s portfolio.

The approach that we develop differs from existing works in many ways, and has the
following advantages. First, it enables joint modeling of paid losses and claims outstanding
for multiple companies simultaneously in a single model. In fact, the architecture can
also accommodate arbitrary additional inputs, such as claim count data and economic
indicators, should they be available to the modeler. Second, it requires no manual input
during model updates or forecasting, which means that predictions can be generated
more frequently than traditional processes, and, in turn, allows management to react to
changes in the portfolio sooner.

2. Neural network preliminaries

For comprehensive treatments of neural network mechanics and implementation, we
refer the reader to Goodfellow, Bengio, and Courville (2016) and Chollet and Allaire
(2018). In order to establish common terminology used in this paper, we present a brief
overview in this section.

We motivate the discussion by considering an example feedforward network with fully
connected layers represented in Figure 1, where the goal is to predict an output y from
input x = (x1, x2, . . . , xnx

), where nx is the number of elements of x. The intermediate
values, h[l]

j , known as hidden units, are organized into layers, which try to transform the
input data into representations that successively become more useful at predicting the
output. The nodes in the figure are computed, for each layer l = 1, . . . , L, as

h
[l]
j = g[l](z[l]

j ), (1)

where
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z
[l]
j =

∑
k

w
[l]
jkh

[l−1]
k + b

[l]
j . (2)

Here, the index j spans {1, . . . , n[l]}, where n[l] denotes the number of units in layer l.
The functions g[l] are called activation functions, whose values h[l]

j are known as activations.
The w[l] values come from matrices W [l], with dimensions n[l] × n[l−1]. Together with the
biases b[l]

j , they represent the weights, which are learned during training, for layer l.
For l = 1, we define the previous layer activations as the input, so that n[0] = nx.

Hence, the calculation for the first hidden layer becomes

h
[1]
j = g[1]

∑
k

w
[1]
jkxk + b

[1]
j

)
. (3)

Also, for the output layer l = L, we compute the prediction

ŷ = h
[L]
j = g[L]

∑
k

w
[L]
jk h

[L−1]
k + b

[L]
j

)
. (4)

We can then think of a neural network as a sequence of function compositions
f = fL ◦ fL−1 ◦ · · · ◦ f1 parameterized as f(x;W [1], b[1], . . . ,W [L], b[L]).

Each neural network model is specified with a specific loss function, which is used to
measure how close the model predictions are to the actual values. During model training,
the parameters discussed above are iteratively updated in order to minimize the loss
function. Each update of the parameters typically involves only a subset, or mini-batch,
of the training data, and one complete pass through the training data, which includes
many updates, is known as an epoch. Training a neural network often requires many
passes through the data.

3. Neural architecture for loss reserving

As shown in Figure 2, DeepTriangle is a multi-task network with two prediction goals:
claims outstanding and paid loss. We construct one model for each line of business and
each model is trained on data from multiple companies.

3.1. Training Data
Let indices 1 ≤ i ≤ I denote accident years and 1 ≤ j ≤ J denote development years

under consideration. Also, let {Pij} and {OSij} denote the incremental paid losses and
the total claims outstanding, respectively.

Then, at the end of calendar year I, we have access to the observed data

{Pij : i = 1, . . . , I; j = 1, . . . , I − i+ 1} (5)

and

{OSij : i = 1, . . . , I; j = 1, . . . , I − i+ 1}. (6)

DeepTriangle: A Deep Learning Approach to Loss Reserving
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Figure 2: DeepTriangle architecture. Embed denotes embedding layer, GRU denotes gated recurrent
unit, FC denotes fully connected layer.

Assume that we are interested in development through the Ith development year; in
other words, we only forecast through the eldest maturity in the available data. The goal
then is to obtain predictions for future values {P̂ij : i = 2, . . . , I; j = i + 1, . . . , I} and
{ÔSij : i = 2, . . . , I; j = i + 1, . . . , I}. We can then determine ultimate losses for each
accident year i ∈ 1, . . . , I by calculating

ÛLi =

I−i+1∑
j=1

Pij

+

 I∑
j=I−i+2

P̂ij

 . (7)

3.2. Response and predictor variables
In DeepTriangle, each training sample is associated with an accident year-development

year pair, which we refer to thereinafter as a cell. The response for the sample associated
with accident year i and development year j is the sequence

(Yi,j , Yi,j+1, . . . , Yi,I−i+1), (8)

where each Yij = (Pij , OSij)/NPEi, where NPEi denotes the net earned premium for
accident year i. Working with loss ratios makes training more tractable by normalizing
values into a similar scale.

The predictor for the sample contains two components. The first component is the
observed history as of the end of the calendar year associated with the cell:

(Yi,1, Yi,2, . . . , Yi,j−1). (9)

In other words, for each accident year and at each evaluation date for which we have
data, we attempt to predict future development of the accident year’s paid losses and
claims outstanding based on the observed history as of that date. While we are ultimately
interested in Pij , the paid losses, we include claims outstanding as an auxiliary output of
the model. Since the two quantities are related, we expect to obtain better performance
by jointly training than predicting each quantity independently (Collobert and Weston
2008).

The second component of the predictor is the company identifier associated with the
experience. Because we include experience from multiple companies in each training

DeepTriangle: A Deep Learning Approach to Loss Reserving
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iteration, we need a way to differentiate the data from different companies. We discuss
handling of the company identifier in more detail in the next section.

3.3. Model Architecture
DeepTriangle utilizes a sequence-to-sequence architecture inspired by Sutskever,

Vinyals, and Le (2014) and Srivastava, Mansimov, and Salakhutdinov (2015).
We utilize gated recurrent units (GRU) (Chung et al. 2014), which is a type of

recurrent neural network (RNN) building block that is appropriate for sequential data. A
graphical representation of a GRU is shown in Figure 3, and the associated equations are
as follows:

h̃<t> = tanh(Wh[Γrh
<t−1>, x<t>] + bh) (10)

Γ<t>
r = σ(Wr[h<t−1>, x<t>] + br) (11)

Γ<t>
u = σ(Wu[h<t−1>, x<t>] + bu) (12)

h<t> = Γ<t>
u h̃<t> + (1− Γ<t>

u )h<t−1>. (13)
Here, h<t> and x<t> represent the activation and input values, respectively, at time

t, and σ denotes the logistic sigmoid function defined as

σ(x) = 1
1 + exp(−x) . (14)

Wh, Wr, Wu, bh, br, and bu are the appropriately sized weight matrices and biases to be
learned.

We first encode the sequential predictor with a GRU to obtain a summary of the
historical values. We then repeat the output I − 1 times before passing them to a decoder
GRU. The factor I − 1 is chosen here because for the Ith accident year, we need to
forecast I − 1 timesteps into the future. Each timestep of the decoded sequence is then
concatenated with the company embedding before being passed to two subnetworks,
corresponding to the two prediction outputs, of fully connected layers, each of which
shares weights across the timesteps.

The company code input is first passed to an embedding layer. In this process, each
company is mapped to a fixed length vector in Rk, where k is a hyperparameter. The
mapping is learned during the training of the entire network instead of a separate data
preprocessing step. Companies that are similar in the context of our claims forecasting
problem are mapped to vectors that are close to each other in terms of Euclidean distance.
Intuitively, one can think of this representation as a proxy for characteristics of the
companies, such as size of book and case reserving philosophy. Categorical embedding is a
common technique in deep learning that has been successfully applied to recommendation
systems (Cheng et al. 2016) and retail sales prediction (Guo and Berkhahn 2016). In the
actuarial science literature, Richman and Wuthrich (2018) utilize embedding layers to
capture characteristics of regions in mortality forecasting, while Gabrielli, Richman, and
Wuthrich (2018) apply them to lines of business factors in loss reserving.

Rectified linear unit (ReLU) (Nair and Hinton 2010), defined as

x 7→ max(0, x), (15)
is used as the activation function for the fully connected layers, including both of the

output layers.

DeepTriangle: A Deep Learning Approach to Loss Reserving
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Figure 3: Gated recurrent unit.

3.4. Deployment considerations
While one may not have access to the latest experience data of competitors, the

company code predictor can be utilized to incorporate data from companies within a
group insurer. During training, the relationships among the companies are inferred based
on historical development behavior. This approach provides an automated and objective
alternative to manually aggregating, or clustering, the data based on knowledge of the
degree of homogeneity among the companies.

If new companies join the portfolio, or if the companies and associated claims are
reorganized, one would modify the embedding input size to accommodate the new codes,
leaving the rest of the architecture unchanged, then refit the model. The network would
then assign embedding vectors to the new companies.

Since the model outputs predictions for each triangle cell, one can calculate the
traditional age-to-age, or loss development, factors (LDF) using the model forecasts.
Having a familiar output may enable easier integration of DeepTriangle into existing
actuarial workflows.

Insurers often have access to richer information than is available in regulatory filings,
which underlies the experiments in this paper. For example, in addition to paid and
incurred losses, one may include claim count triangles so that the model can also learn
from, and predict, frequency information.

4. Experiments

4.1. Data
We validate the modeling approach on data from National Association of Insurance

Commissioners (NAIC) Schedule P triangles (Meyers and Shi 2011). The dataset corre-
sponds to claims from accident years 1988-1997, with development experience of 10 years
for each accident year.

Following Meyers (2015), we restrict ourselves to a subset of the data which covers
four lines of business (commercial auto, private personal auto, workers’ compensation,
and other liability) and 50 companies in each line of business. This is done to facilitate
comparison to existing results.

DeepTriangle: A Deep Learning Approach to Loss Reserving
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We use the following variables from the dataset in our study: line of business, company
code, accident year, development lag, incurred loss, cumulative paid loss, and net earned
premium. Claims outstanding, for the purpose of this study, is derived as incurred loss
less cumulative paid loss.

We use data as of year end 1997 for training, and evaluate predictive performance on
the development year 10 ultimates.

4.2. Evaluation metrics
We aim to produce scalar metrics to evaluate the performance of the model on each

line of business. To this end, for each company and each line of business, we calculate
the actual and predicted ultimate losses as of development year 10, for all accident years
combined, then compute the root mean squared percentage error (RMSPE) and mean
absolute percentage error (MAPE) over companies in each line of business. Percentage
errors are used in order to have unit-free measures for comparing across companies with
vastly different sizes of portfolios. Formally, if Cl is the set of companies in line of business
l,

MAPEl = 1
|Cl|

∑
C∈Cl

∣∣∣∣∣ ÛLC − ULC

ULC

∣∣∣∣∣ , (16)

and

RMSPEl =

√√√√ 1
|Cl|

∑
C∈Cl

(
ÛLC − ULC)

ULC

)2

(17)

where ÛLC and ULC are the predicted and actual cumulative ultimate losses, respec-
tively, for company C.

An alternative approach for evaluation could involve weighting the company results by
the associated earned premium or using dollar amounts. However, due to the distribution
of company sizes in the dataset, the weights would concentrate on a handful of companies.
Hence, to obtain a more balanced evaluation, we choose to report the unweighted
percentage-based measures outlined above.

4.3. Implementation and training
The loss function for the each output is computed as the average over the forecasted

time steps of the mean squared error of the predictions. The losses for the outputs are
then averaged to obtain the network loss. Formally, for the sample associated with cell
(i, j), we can write the per-sample loss as

1
I − i+ 1− (j − 1)

I−i+1∑
k=j

(P̂ik − Pik)2 + (ÔSik −OSik)2

2 . (18)

For optimization, we use the AMSGrad (Reddi, Kale, and Kumar 2018) variant of
adam with a learning rate of 0.0005. We train each neural network for a maximum of
1000 epochs with the following early stopping scheme: if the loss on the validation set
does not improve over a 200-epoch window, we terminate training and revert back to the

DeepTriangle: A Deep Learning Approach to Loss Reserving
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Table 1: Performance comparison of various models. DeepTriangle and AutoML are abbreviated do DT
and ML, respectively.

Line of Business Mack ODP CIT LIT ML DT
MAPE
Commercial Auto 0.060 0.217 0.052 0.052 0.068 0.043
Other Liability 0.134 0.223 0.165 0.152 0.142 0.109
Private Passenger Auto 0.038 0.039 0.038 0.040 0.036 0.025
Workers’ Compensation 0.053 0.105 0.054 0.054 0.067 0.046

RMSPE
Commercial Auto 0.080 0.822 0.076 0.074 0.096 0.057
Other Liability 0.202 0.477 0.220 0.209 0.181 0.150
Private Passenger Auto 0.061 0.063 0.057 0.060 0.059 0.039
Workers’ Compensation 0.079 0.368 0.080 0.080 0.099 0.067

weights on the epoch with the lowest validation loss. The validation set used in the early
stopping criterion is defined to be the subset of the training data that becomes available
after calendar year 1995. For each line of business, we create an ensemble of 100 models,
each trained with the same architecture but different random weight initialization. This is
done to reduce the variance inherent in the randomness associated with neural networks.

We implement DeepTriangle using the keras R package (Chollet, Allaire, and others
2017) with the TensorFlow (Abadi et al. 2015) backend. Code for producing the
experiment results is available online.1

4.4. Results and discussion
In Table 1 we tabulate the out-of-time performance of DeepTriangle against other

models: the Mack chain-ladder model (Mack 1993), the bootstrap ODP model (England
and Verrall 2002), an AutoML model, and a selection of Bayesian Markov chain Monte
Carlo (MCMC) models from Meyers (2015) including the correlated incremental trend
(CIT) and leveled incremental trend (LIT) models. For the stochastic models, we use
the means of the predictive distributions as the point estimates to which we compare
the actual outcomes. For DeepTriangle, we report the averaged predictions from the
ensembles.

The AutoML model is developed by automatically searching over a set of common
machine learning techniques. In the implementation we use, it trains and cross-validates
a random forest, an extremely-randomized forest, a random grid of gradient boosting
machines, a random grid of deep feedforward neural networks, and stacked ensembles
thereof (The H2O.ai team 2018). Details of these algorithms can be found in Friedman,
Hastie, and Tibshirani (2001). Because the machine learning techniques produce scalar
outputs, we use an iterative forecasting scheme where the prediction for a timestep is
used in the predictor for the next timestep.

We see that DeepTriangle improves on the performance of the popular chain ladder
and ODP models, common machine learning models, and Bayesian stochastic models.

1https://github.com/kevinykuo/deeptriangle
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Figure 4: Development by accident year for Company 1767, commercial auto.

In addition to aggregated results for all companies, we also investigate qualitatively the
ability of DeepTriangle to learn development patterns of individual companies. Figures
4 and 5 show the paid loss development and claims outstanding development for the
commercial auto line of Company 1767 and the workers’ compensation line of Company
337, respectively. We see that the model captures the development patterns for Company
1767 reasonably well. However, it is unsuccessful in forecasting the deteriorating loss
ratios for Company 337’s workers’ compensation book.

We do not study uncertainty estimates in this paper nor interpret the forecasts as
posterior predictive distributions; rather, they are included to reflect the stochastic
nature of optimizing neural networks. We note that others have exploited randomness in
weight initialization in producing predictive distributions (Lakshminarayanan, Pritzel,
and Blundell 2017), and further research could study the applicability of these techniques
to reserve variability.

5. Conclusion

We introduce DeepTriangle, a deep learning framework for forecasting paid losses.
Our models are able to attain performance comparable, by our metrics, to modern
stochastic reserving techniques without expert input. By utilizing neural networks, we can
incorporate multiple heterogeneous inputs and train on multiple objectives simultaneously,
and also allow customization of models based on available data.
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Figure 5: Development by accident year for Company 337, workers’ compensation.

We analyze an aggregated dataset with limited features in this paper because it is
publicly available and well studied, but one can extend DeepTriangle to incorporate
additional data, such as claim counts.

Deep neural networks can be designed to extend recent efforts, such as Wüthrich
(2018a), on applying machine learning to claims level reserving. They can also be designed
to incorporate additional features that are not handled well by traditional machine
learning algorithms, such as claims adjusters’ notes from free text fields and images.

While this study focuses on prediction of point estimates, future extensions may
include outputting distributions in order to address reserve variability.
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Back-Testing the ODP Bootstrap & Mack Bootstrap 
Models 

Mark R. Shapland, FCAS, FSA, FIAI, MAAA 
 
________________________________________________________________________ 
Abstract 

Motivation. Distributions of unpaid claims are gaining importance within the actuarial community as 
management, regulators, and others look to the actuarial profession for a quantitative approach to 
evaluating risk. Actuaries have historically applied their judgment to determine if a best estimate is 
reasonable, but how do we know if the models used to produce distributions are reasonable? 
Determining if a distribution is reasonable is a much more complex task than for a point estimate. Is the 
model producing a reasonable estimate at the 95th percentile? Is it producing reasonable distribution 
shapes? In effect, actuarial judgment shifts focus from a single point estimate to the entire distribution 
and we must rely, at least in part, on the proposition that “if the theory is acceptable then the 
distribution is acceptable.” Therefore, the purpose of this paper is to determine if the theory really holds 
up in practice. 
There are five objectives of this research. First, by greatly expanding the database used to back-test 
models the testing can provide more evidence to validate (or not) prior research and address any 
weaknesses in the prior research. Second, all of the prior research focused only on the estimate of a 
single outcome (i.e., the ultimate for the current accident year), so this research expands the testing for 
every possible estimate, e.g., each accident period, each calendar period, each incremental cell, etc. 
Third, more models were tested and some of the model assumptions were tested in order to expand our 
understanding of the predictive value of different models. Fourth, recent proposals to address model 
weaknesses were examined to assess their viability. Fifth, a new proposal for using this research to 
benchmark unpaid claim estimates will be put forth. 
Method. The estimated distribution of possible outcomes for various models based on the ODP 
Bootstrap model and the Mack Bootstrap model are saved and compared to the actual outcome up to 9 
years later – i.e., a single back-test. While the result from a single data set is not indicative of the quality 
of the original estimate, comparing results for a large number of data sets does provide an indication of 
the quality of the model. 
Results. Based on the back-testing, all tested models appear to underestimate the width of the “true” 
distribution but some of the models tested appeared to get closer to the “true” distribution than others 
and the tested adjustments to the model assumptions seem to improve the results, which is a desirable 
quality. Another key result is to show how the insurance underwriting cycle also impacts the results of 
the back testing. 
Conclusions. The major results from prior similar research is confirmed, but the volume of this 
research has led to a new approach to benchmarking both deterministic and stochastic unpaid claim 
estimates in practice. 
 
Keywords. Back-test, benchmark, bootstrap, chain ladder, Mack model, over-dispersed Poisson, 
reserve variability, systemic risk, underwriting cycle. 

________________________________________________________________________ 

1. INTRODUCTION 

Enterprise Risk Management has been at the leading edge of effectively managing 
insurance and other risk bearing operations for many years. Its use is expected to grow, and 
perhaps accelerate, into the foreseeable future as regulators and rating agencies focus on risk 
based approaches. One of the key metrics in any risk model used for ERM is the variability 
of unpaid claims as these are normally the largest liability in the balance sheet. While many 
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stochastic models provide the diagnostic tools for calibrating the assumptions of the model, 
there are no tools for gauging the quality of unpaid claim variability estimates. After vetting 
the theory underlying a model, the only way to gain valuable insights into the quality of the 
model is to back-test the results to see how well the models predicted the actual outcomes. 

To calculate a distribution of possible outcomes and select unpaid claim estimates at a 
confidence level of say 75%, or to demonstrate that reserves are at such a level, is not a 
straight-forward process. Indeed, it is not a process that can be performed exactly or by 
using purely statistical approaches. Reasons for this include, but are not limited to, the 
following: 

 Uncertainty in reserving can be attributable to three types of risk: process risk, parameter 
risk and model risk. Of these, process risk, and to a lesser extent parameter risk, can be 
assessed statistically and then only to the extent permitted by the volume and quality of 
available data. Model risk does not, in general, follow clear statistical patterns. 

 Where process or parameter risk can be assessed statistically, the available historical data 
will not show the full breadth of the possible outcomes (i.e., variability). The resulting 
uncertainty in any outcomes will increase the further one moves away from the mean. 

 New lines of business will have little or no data on which to assess variability due to 
process or parameter risk. The statistical credibility of the data for small volumes of 
business will also be limited. 

 The assessment of process or parameter risk can be distorted by historic data including 
the effect of systemic risks, e.g., changes in case law that affect claim settlement 
amounts. 

Therefore, any assessment of reserves at a particular confidence level will require the 
reserving actuary to exercise judgment to a significant degree. This is similar to how actuaries 
currently assess deterministic unpaid claim estimates, where actuaries use tools (such as the 
Chain Ladder (“CL”) and the Bornhuetter-Ferguson (“BF”) methods) to calculate a central 
estimate of the claims liabilities. Based in part on their knowledge of the strengths and 
weaknesses of the methods, they exercise considerable judgment in selecting factors and 
parameters, in adjusting for trends and for known or expected distortions, and in selecting 
the amounts to be booked. 

For stochastic models, with sufficient data the process and parameter risk would usually 
be evaluated using stochastic tools applied to the historic data. Different data (e.g., paid data 
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and incurred data) and different models would generate different results and different 
Coefficients of Variation (“CoVs”). Judgment is needed in deciding which CoVs would be 
appropriate to address model risk in addition to process and parameter risk. 

Given that prior research has shown that the ODP Bootstrap and other models tend to 
underestimate the “true” variability, the actuary will need support for helping to inform their 
judgments about estimates of possible outcomes. Similar to benchmarks for deterministic 
assumptions, benchmark CoVs would be a very useful addition to the actuary’s toolkit as a 
means of sense checking the estimated distributions. Thus, a primary use of this research is 
to provide benchmarks for distributions of possible outcomes for insurance data. 

Even with benchmarks of CoVs by line of business, the actuary would need to combine 
these across all business lines. By definition, process risk should be independent of other risk 
factors (and across lines of business) but there may well be some degree of contagion (i.e., 
large losses that affect multiple lines of business) and/or correlation between the other 
factors. In order to combine the CoVs, correlation matrices will be required. Again, 
judgment is required, but another key benchmark from this research is estimated correlations 
based on industry data. 

1.1 Research Context 
Because it is such a critical part of effective actuarial practice, it seems likely that 

understanding the effectiveness of a method has been part of the research from the early 
days of actuarial science. For deterministic reserving methods, one of the earlier papers on 
the effectiveness of methods is Skurnick [18] and more recent examples include Forray [6] 
and Jing, Lebens, and Lowe [9]. For deterministic methods it is often enough to focus on the 
theory to understand the strengths and weaknesses of a method. For example, all actuaries 
learn early in their career that the chain ladder method will tend to underestimate the current 
period when the initial development period outcome is lower than average, and tend to 
overestimate the current period when the initial development period outcome is higher than 
average. 

If we consider a triangle of data as illustrated in Graph 1.1, the goal of estimating unpaid 
claims is to estimate the unpaid amounts, u(w,d), by projecting the cumulative amounts, 
c(w,d).1 The total reserve for an accident period, R(w), can be estimated directly or indirectly 

                                                           
1 For ease of exposition, the notation c(w,d) and u(w,d) does not specify cumulative or incremental values. The 

reader can infer cumulative or incremental values depending on their use. 
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as a sum of the incremental unpaid amounts. For the chain ladder method, the estimation of 
R(10) is done using a factor times c(10,1), so it is easy to visualize how dependent this 
calculation is to the relative size of c(10,1). 

Graph 1.1. Triangle of Data with Estimated Unpaid 
 1 2 3 4 5 6 7 8 9 10 Total 
1 c(1,1) c(1,2) c(1,3) c(1,4) c(1,5) c(1,6) c(1,7) c(1,8) c(1,9) c(1,10)  
2 c(2,1) c(2,2) c(2,3) c(2,4) c(2,5) c(2,6) c(2,7) c(2,8) c(2,9) u(2,10) R(2) 
3 c(3,1) c(3,2) c(3,3) c(3,4) c(3,5) c(3,6) c(3,7) c(3,8) u(3,9) u(3,10) R(3) 
4 c(4,1) c(4,2) c(4,3) c(4,4) c(4,5) c(4,6) c(4,7) u(4,8) u(4,9) u(4,10) R(4) 
5 c(5,1) c(5,2) c(5,3) c(5,4) c(5,5) c(5,6) u(5,7) u(5,8) u(5,9) u(5,10) R(5) 
6 c(6,1) c(6,2) c(6,3) c(6,4) c(6,5) u(6,6) u(6,7) u(6,8) u(6,9) u(6,10) R(6) 
7 c(7,1) c(7,2) c(7,3) c(7,4) u(7,5) u(7,6) u(7,7) u(7,8) u(7,9) u(7,10) R(7) 
8 c(8,1) c(8,2) c(8,3) u(8,4) u(8,5) u(8,6) u(8,7) u(8,8) u(8,9) u(8,10) R(8) 
9 c(9,1) c(9,2) u(9,3) u(9,4) u(9,5) u(9,6) u(9,7) u(9,8) u(9,9) u(9,10) R(9) 
10 c(10,1) u(10,2) u(10,3) u(10,4) u(10,5) u(10,6) u(10,7) u(10,8) u(10,9) u(10,10) R(10) 

Total           R(T) 

This understanding of deterministic methods is largely possible because the focus of the 
method is a central estimate. For stochastic models, whose focus is the entire distribution, 
the same principles for the central estimate still apply, but understanding the entire 
distribution is impossible with a single observation. For example, it is common for a 
stochastic model to be used to simulate 10,000 possible outcomes for R(10), but what if we 
later determine that the actual outcome was at the 74.3 percentile, as illustrated in Graph 1.2. 

Graph 1.2. Back-Test of Estimated Distribution of Possible Outcomes 

 

 

 

 

 

 

What does that tell us about the model? Did we get the mean wrong? What about the 
width of the distribution? We have no way to know with only one observation compared to 
our estimated distribution. Therefore, back-testing a large number of observations is 
essential to see if all parts of the distribution are represented in the outcomes. Another point 
to keep in mind is that when back-testing a model the mean of the estimated distribution is 
assumed to be the booked reserve even if the available data contains the actual booked 
reserve in order to test the efficacy of the model and not the judgment of the actuary 
selecting the reserve. 
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Testing all parts of a distribution can be illustrated graphically. For example, with 1,000 
data sets, if the “true” distribution of the possible outcomes is fairly represented by the 
model then each decile group of the actual outcomes in a histogram should ideally contain 
100 observations, as illustrated in Graph 1.3. For example, if the outcome from Graph 1.2 is 
included as one of the 1,000 datasets, then it would be one of the 100 in the bar labeled 80% 
(representing all outcomes greater than 70% and less than or equal to 80%) in Graph 1.3. 

Graph 1.3. Ideal Histogram  

 

 

 

 

 

 

 

 

In Graph 1.3, like most of the similar graphs in the remainder of the paper, the 
percentiles along the X-axis are the decile groups for the percentile of the actual outcome 
compared to the estimated distribution. The Y-axis shows the number of companies or 
datasets in the bars, with the percent of the total number of companies or datasets as the bar 
labels. 

If the model being back-tested is under predicting the “true” distribution then the 
histogram would show a higher than average number of observations at the extremes, say 
below the 20th percentile and above the 80th percentile, and it would show a lower than 
average number of observations in the middle percentiles. If the model being back-tested is 
over predicting the “true” distribution the histogram would show a lower than average 
number of observations at the extremes and higher than average observations in the middle 
percentiles. These two types of results are illustrated in Graph 1.4. 

Of course, when back-testing real (or simulated) data the actual histograms will include 
random noise which could mask or partially mask the results, but typically the shape of the 
histogram will be indicative of the result even if random noise makes conclusions about a 
specific percentile problematic. The impact of random noise on the histogram can at least be 
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partially minimized by increasing the sample size to take advantage of the law of large 
numbers. This approach to understanding the effectiveness of stochastic models has been 
used by a number of researchers, but only a few key papers will be highlighted in Section 2.  

Graph 1.4. Under & Over Prediction Histograms 

 

 

 

 

 

 

 

1.2 Objectives 
There are five objectives of this research. First, by expanding the database used to back-

test models the testing can provide more evidence to validate (or not) prior research and 
address any weaknesses in the prior research. Second, all of the prior research focused only 
on the estimate of a single outcome, specifically the estimate of R(10) from Graph 1.1. For 
this research the outcomes for all possible estimates from Graph 1.1., e.g., each accident 
period, each calendar period, each incremental cell, etc., were included in the testing to see if 
any other insights can be gained by expanding the testing. Third, more models were tested 
and some of the model assumptions were tested in order to expand our understanding the 
predictive value of different models. Fourth, recent proposals to address model weaknesses 
were examined to assess their viability. Fifth, a new proposal for using this research to 
benchmark unpaid claim estimates will be put forth. 

1.3 Outline 
The remainder of the paper proceeds as follows. Section 2 will provide an overview of 

the prior research and proposed solutions. In Section 3, the data and the process used to 
validate it for the back-testing are described. Next, Section 4 will focus on the testing 
process. Then, in Section 5 the results of the back-testing are summarized, with additional 
details included as Appendix A. Finally, in Section 6 a process for using this research to 
benchmark unpaid claim estimates will be described. 
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2. OVERVIEW OF PRIOR TESTING 

Other researchers have used back-testing to evaluate the quality of stochastic models, but 
providing an in depth review of prior work is beyond the scope of this paper. Since one of 
the objectives of this paper is to validate (or not) the prior research, some of the prior 
research is included in the References section for the interested reader and some highlights 
are included here. Note however, that the highlights discussed here are not intended to give 
a complete overview of these papers and other valuable insights could be gained by reading 
the original research papers. 

Two early examples of back-testing stochastic models are the product of GIRO Working 
Parties [15, 16] in the U.K. in 2007 and 2008. The 2007 Working Party reviewed a number of 
models with a few real datasets, but also created simulated data (designed to meet all of the 
conditions/assumptions of the respective model) to more thoroughly test the ODP 
Bootstrap and Mack models. The 2008 Working Party expanded the simulation testing of 
the 2007 Working Party by creating a wider variety of simulated datasets (e.g., different 
triangle sizes). The back-testing was based on 10,000 samples of each simulated dataset for 
the ODP Bootstrap (paid chain ladder only) and closed form Mack models. 

In theory at least, this testing was designed to see how well the model predicted outcomes 
for “perfect” data. The Working Parties also noted that simulated data was a good first step 
as it allows for controlled testing, but they also recognized that real data can include shocks 
and other anomalies which is likely to cause predicted results to be more inaccurate than 
simulated data. Interestingly, even with the “perfect” datasets the Working Parties concluded 
that: 

 The results for the Mack model exceeded the predicted 99th percentile 8.4% of the 
time for a 10 x 10 triangle, indicating the Mack model significantly under predicted 
the extreme outcomes. As the triangle size was increased to 100 x 100, the under 
prediction of the extreme outcomes reduced to 2.1% for the Mack model. 

 The results for the ODP Bootstrap model exceeded the predicted 99th percentile 
2.6% of the time, which also indicated an under prediction. As the triangle size 
increased for the ODP Bootstrap model the error rate stayed consistent. 

In Meyers & Shi [12], the authors based their back-testing of the ODP Bootstrap model2 
on a database of 1997 Schedule P paid data from 50 companies. While the size of the 

                                                           
2 The authors also proposed and tested a Bayesian Autoregressive Tweedie (BAT) model. 
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database was not sufficient to arrive at definitive conclusions, the authors recommended 
further testing and noted that their study “suggests that there might be environmental 
changes that no single model can identify” and “the actuarial profession cannot rely solely 
on stochastic loss reserve models to manage its reserve risk.” To summarize the back-testing 
results, the authors included Graph 2.1, which show results for their tests of the Bootstrap 
Chain Ladder (BCL) model and the Bayesian Autoregressive Tweedie (BAT) model. Similar 
to the description above for Graph 1.3, the “frequency” label for the Y-axis represents the 
number of companies in each 20% group bar of the histograms. For the data as of 31 
December 1997, only the current accident year was tested. 

Graph 2.1. Percentile Results for Meyers & Shi 

 

 

 

 

 

In Gremillet, Miehe & Zanón [7], the authors based their back-testing of the ODP 
Bootstrap3 model on 296 triangles from four lines of business in the database created for the 
CAS by Meyers & Shi using 1997 Schedule P paid data. The authors concluded “it is core to 
have adjustments by actuaries prior to running the stochastic methods ‘automatically’” and 
that “it seems that the ‘actuary in the box’ dream for stochastic reserves valuation is not yet 
happening…” To summarize the back-testing results, the authors included Graph 2.2, which 
show the results for the three models they tested. Similar to Meyers & Shi, only the current 
accident year was tested for the 1997 data. 

Graph 2.2. Percentile Results for Gremillet, Miehe & Zanón 

 

 

 

 

 

                                                           
3 The authors also tested the Reversible Jump Markov Chain Monte Carlo model and the Mack model. 
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In Leong, Wang & Chen [11], the authors based their back-testing of the ODP Bootstrap 
model on seven lines of business4 for approximately 4,850 triangle datasets5 from a database 
of Schedule P data from 1989 to 2002. The authors concluded “the popular ODP Bootstrap 
of the paid chain-ladder method is underestimating reserve risk” and that “it is because the 
bootstrap model does not consider systemic risk, or, to put it another way, the risk that 
future trends in the claims environment—such as inflation, trends in tort reform, legislative 
changes, etc.—may deviate from what we saw in the past”. To summarize the back-testing 
results, the authors included Graph 2.3 showing the results for Homeowners and similar 
graphs for the other lines of business. 

Graph 2.3. Results for Leong, Wang & Chen (HO – Paid CL – All Years) 

 

 

 

 

 

Graph 2.4. Results for Leong, Wang & Chen (WC – Incurred CL – All Years) 

 

 

 

 

 

In Leong, Wang & Chen [11], the authors then expanded their back-testing of the ODP 
Bootstrap to see if using the model for incurred data improved the models predictive power. 
The authors concluded “it appears that the incurred bootstrap model is also underestimating 
the risk of falling in these extreme percentiles” as illustrated in Graph 2.4 for Workers’ 

                                                           
4 For some years, data for Medical Professional Liability and Other Liability is split between Claims Made and 

Occurrence policies. In order to use this data consistently over all years, the parts are combined into one line 
of business. Thus, technically nine lines of business were included, but for four of the lines the splits were 
grouped to include both Claims Made and Occurrence. 

5 The authors do not state the actual number of datasets, but they do note that the line of business with the 
most data came from 78 companies and the line of business with the least data came from 21 companies. To 
estimate the total number of datasets, if we assume an average of 49.5 companies per line of business, 7 lines 
of business and 14 years, then 49.5 x 7 x 14 = 4,851. 
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Compensation. 

An additional insight from the Leong, Wang & Chen [11] research was possible due to 
their use of multiple years to show that the reserving cycle has an impact on the results. The 
results in Graphs 2.3 and 2.4 are for all years combined, but results by year were also 
included by the authors such as Homeowners for 1996 and 2000 in Graph 2.5. 

Graph 2.5. Results for Leong, Wang & Chen (HO – Paid CL – 1996 & 2000) 

  

 

 

 

 

The authors also illustrated the reserving cycle for the industry in Graph 2.6 which shows 
that in 1996 the overall reserve level for the industry was too high and in 2000 it was too 
low. The left side histogram in Graph 2.5 corresponds to when the industry was over 
reserved and the back-testing resulted in a disproportionate number of outcomes less than 
10%, which makes sense.6 The right side histogram in Graph 2.5 also makes sense as the 
industry was under reserved in 2000, which leads to a disproportionate number of outcomes 
above 90%.7 

This insight led the authors to conclude that the ODP Bootstrap model only measures 
independent risk (arising from the randomness inherent in the insurance process) and not 
systemic risk (arising from the whole system). While there is a certain appeal to this 
conclusion, it seems the definition of systemic risk could be split into “internal systemic” risk 
(arising from within the modeling framework) and “external systemic” risk (arising from the 
outside the modeling framework). By using a broad definition of systemic risk the authors 
ignored weaknesses of the ODP Bootstrap model that contribute to this result. Their focus 
                                                           
6 In Graph 2.6, the initial reserves at 12 months are the solid line for 1.00. For 1996, as the accident year 

matures the ultimate value gets lower and lower and at 120 months is a little over 90% of the ultimate at 12 
months, i.e., the initial reserves were too high. In this case, if the initial mean of the simulated distributions 
was too high, say at 100, then when the final outcome is known if the mean should have been lower, say 90, 
then the odds that the actual random outcome is below 10% is increased, all else being equal. 

7 For 2000, as the accident year matures the ultimate value gets higher and higher and at 120 months is about 
112% of the ultimate at 12 months, i.e., the initial reserves were too low. In this case, if the initial mean of 
the simulated distributions was too low, say at 100, then when the final outcome is known if the mean should 
have been higher, say 112, then the odds that the actual random outcome is above 90% is increased, all else 
being equal. 
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on systemic risk resulted in two methods to adjust for systemic risk in the ODP Bootstrap 
model, the systemic risk distribution method8 and the Wang transform adjustment,9 which 
allows the authors to show how the combination of both of these methods “fixed” the back-
testing results. 

Graph 2.6. Reserving Cycle in Leong, Wang & Chen 

  

 

 

 

 

 

Digging deeper into the methods proposed by Leong, Wang & Chen [11] it seems that 
while their results do “correct” the back-testing results, the methods ignore a weakness of 
the ODP Bootstrap model, are backward looking only, and therefore should be used 
cautiously as a tool to adjust current ODP Bootstrap results. Starting with the variance 
adjustments, Graph 2.7 illustrates how when the ultimate loss ratio is less than the initial loss 
ratio (as in 1996) the variance is increased by Lambda, but this is not logical. 

Graph 2.7. Comparison of Lambda and ULR in Leong, Wang & Chen 

 

 

 

 

 

 

If the initial ultimate estimate is too high, a typical chain ladder method is likely to be 

                                                           
8 The authors conclude that the ODP Bootstrap model only measures independent risk and not systemic risk. 

For the systemic risk distribution method a benchmark systemic risk distribution is estimated and combined 
with the independent risk distribution from the ODP Bootstrap model to obtain the total risk distribution. 

9 For the Wang transform adjustment, the authors note that the ODP Bootstrap estimate is biased (in their 
words “it is not assumed to be unbiased”) so the adjustment tries to estimate the systemic bias over the 
course of the reserving cycle. 
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overestimating the central estimate due to a larger than average initial cumulative value in the 
current accident year. Extending this to the ODP Bootstrap, this overestimation from the 
chain ladder elements of the model also causes the variability of the future incremental 
values to be overestimated.10 Logically, when the initial ultimate is overestimated the Lambda 
value should decrease the variance and vice versa. Thus, the Lambda proposed by the 
authors is above one when it should be below one and vice versa.11 

Moving to the mean adjustments, the authors note that the Wang transform shifts the 
distribution to account for the estimation error. This implies that when the initial ultimate 
losses are overestimated (as in 1996) the shifting will reduce the mean of the distribution. 
Looking back at Graph 2.5 for 1996, the initial overestimation of the mean is a major 
contributor to why so many of the outcomes ended up in the lowest decile. Based on the 
combination of these two adjustments it makes sense that they “corrected” the historical 
biases in the model results. However, in order for this to have practical value looking 
forward the actuary would be required to guess at which part of the reserving cycle they are 
currently in and then select a Lambda which is opposite of what is indicated by the proposed 
formulas. 

As noted above, this review of the Leong, Wang & Chen [11] paper indicates that their 
formulas should be used with caution when adjusting an estimated distribution from the 
ODP Bootstrap model, but this realization led to an alternative approach.12 In summary, 
Leong, Wang & Chen [11] use a formula based approach for a single model to adjust an 
estimated distribution based solely on the data used for the estimated distribution. 
Alternatively, by using a very large database of outcomes from multiple models it becomes 
possible to create customizable benchmarks of unpaid claim distributions which can be used 
as a guide regardless of the model(s) being used by the actuary. Because of the cyclical bias in 
the mean noted above, another advantage of using benchmarks is that this approach 
assumes the actuary will address the bias in the mean and the benchmark can adjust for the 
remaining biases. 

                                                           
10 To add process variance to the simulated outcomes, each future incremental value is assumed to be the mean 

and the variance is the mean times the Scale Parameter. Thus, if the future incremental values tend to be 
“too large” due to the chain ladder extrapolation of the first cell, then the variance of the sampled values will 
also tend to be “too large.” 

11 The authors comment on the significant negative correlation between Lambda and the ultimate loss ratio at 
the end of Section 7.2.2. 

12 Of course the authors may refute this conclusion or perhaps use this review to revise their formulas to better 
address the issues driven by the reserve cycle. 
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3. DATA USED IN TESTING 

The data used in this research includes net loss and ALAE data from nearly 31,000 real 
data sets (i.e., paid claim triangles, incurred claim triangles, earned premiums, etc.) for all 16 
Schedule P lines of business, spanning 9 years from 1996 to 2004.13 For each of these data 
sets, the actual results over the next nine years was also captured in the database used to 
back-test the efficacy of each model. 

More specifically, data from 4,798 companies was downloaded from SNL for years 
spanning 1996 to 2013, but not all companies have data for all years as companies come and 
go over time. The data for all these companies was converted into 59,890 individual 
Company Files (i.e., CSV files by company by year), with each file containing Schedule P 
data triangles for all LOBs.14 Processing all of this raw data to arrive at the data used for 
back-testing included several steps. 

1. Data Quality Tests – In this step, each Company File was checked to determine which 
LOBs have complete data triangles for years spanning 1996 to 2004. For all key triangles, 
data quality tests include, but is not limited to, making sure there is non-zero data for 
each year and minimum data requirements of all models being tested are satisfied. Of the 
original 4,798 companies, only 2,716 had at least one LOB that passed this test in at least 
one of the years. For these 2,716 companies there were 79,573 “Data Quality” triangle 
sets, with the totals by LOB shown in Table 3.1. 

2. Data Validation Tests – For each of the Data Quality triangle sets, additional tests 
were conducted to check the next 9 years to make sure none of the data in the original 
triangles changed over the next 9 years (i.e., to make sure pooling arrangements or other 
issues don’t exist which would cause data to be invalid for testing purposes). The 
validation process reduced the total company count to 1,679 and for these remaining 
companies there were 30,707 “Valid Data” triangle sets, with the totals by LOB shown 
in Table 3.1. 

3. Create Complete Data – For each of the Valid Data triangle sets, the data for the next 
9 years was added to a new data file to speed up testing. Of course during simulation 
testing only the original triangles were used to parameterize the models, but having the 

                                                           
13 The U.S. Annual Statement includes 22 lines of business in Schedule P, but there are only 16 lines of 

business containing 10 accident years of data. The remaining short tail lines are excluded from the research. 
14 If all 4,798 companies had data in all years there would be 86,364 (= 4,798 x 18) files, so there was no data at 

all about 30% of the time. 
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actual outcome speeds up the testing process. 

4. Save Diagnostics – For each of the Valid Data triangle sets, the “optimal” hetero 
groups were found and diagnostics for all models were calculated and saved.  These 
diagnostic tests were saved so that back-testing can include tests to determine the 
effectiveness of different diagnostics on assessing model parameters.15 

Table 3.1. Summary of Datasets by LOB 

 

 

 

 

 

 

 

 

For the 1,679 companies with at least one Valid Data triangle set, 1,182 of these 
companies had at least 2 LOBs with Valid Data for at least one year. For each company (and 
year) with 2 or more LOBs, the correlation between the residuals was also calculated and 
saved, both before and after the hetero group factor adjustments, for both paid and incurred 
data. This resulted in 195,228 pairs of LOBs with correlation values that were captured along 
with the P-Values and the Degrees of Freedom for all pairs for each company and year set of 
LOBs. A high level comparison of the data used in this research compared to prior research 
is shown in Table 3.2. 

Table 3.2. Summary of Data by Author 

 

 

 

 

                                                           
15 Only limited back-testing related to the diagnostics has been completed to date. Future research will provide 

for more insights on the value of different diagnostic tests. 

Item
Meyers & 

Shi
Gremillet & 

Miehe
Leong, Wang 

& Chen Shapland
Evaluation Periods 1 5 11 9
Models Tested 2 3 2 8
Lines of Business 1 4 9 16
Triangle Sets 50 296 ~4,850 30,707

Schedule P Line of Business Quality Valid Ratio
Commercial Auto Liability 9,555             3,821             40.0%
Commercial Multi-Peril 9,955             4,130             41.5%
Homeowners & Farmowners 10,880           4,724             43.4%
International 317                123                38.8%
Medical Professional Liability - Claims Made 1,878             563                30.0%
Medical Professional Liability - Occurrence 1,465             481                32.8%
Other Liability - Claims Made 4,091             1,482             36.2%
Other Liability - Occurrence 10,923           4,160             38.1%
Products Liability - Claims Made 761                199                26.1%
Products Liability - Occurrence 3,996             1,220             30.5%
Private Passenger Auto Liability 10,075           3,962             39.3%
Reinsurance - Non-Proportional Assumed Financial 397                163                41.1%
Reinsurance - Non-Proportional Assumed Liability 1,758             611                34.8%
Reinsurance - Non-Proportional Assumed Property 2,123             989                46.6%
Special Lines 3,871             1,349             34.8%
Workers' Compensation 7,528             2,730             36.3%
Total All Lines 79,573          30,707          38.6%
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4. TESTING METHODOLOGY 

Using each of the Valid Data triangle sets, the back-testing process starts by calculating 
the parameters for the six different ODP Bootstrap models16 described in the Shapland [17] 
monograph and the Mack Bootstrap model as described in England & Verrall [5]. For all 
models, the residuals are based on the all year volume weighted average loss development 
factors, no tail factors were included, and no adjustments to the standard models were 
included. Because of the sheer volume of the test data, other than assumptions based on 
diagnostic tests it is nearly impossible to create assumptions tailored to the data in each data 
set. However, it is possible to use broad sets of assumptions that should be representative of 
what an analyst might select in practice in order to test how different broad sets of 
assumptions affects the results.17 

For the Bornhuetter-Ferguson ODP Bootstrap models, the a priori loss ratios were based 
on the most recent ultimate loss ratios by year from Schedule P. While this does allow these 
models to benefit a bit from hindsight, one of the goals for these models was to remove as 
much of the cyclical bias as possible to see if this improved the accuracy of the models. As a 
counter to the foresight in the a priori loss ratios, the standard deviations were all set to zero 
for the preliminary tests. 

For the Cape Cod ODP Bootstrap models, it is not possible to include rate level 
adjustment factors and trend factors based on the data are problematic without the ability to 
judgmentally review each factor or to set narrow ranges for the trend factors. Thus, all rate 
level factors were set to 1.0 and all trend factors were set to 2.5% per year.18 For all tests a 
decay ratio of 90% was used and each accident year is given 100% weight so nothing is 
excluded. These assumptions for the Cape Cod models are not intended to be ideal in 
practice, but rather a reasonable baseline for which other broad sets of assumptions can be 
compared in future testing. 

For the ODP Bootstrap family of models weighted results were also tested. For the 
weights by accident year, for the 7 oldest accident years the paid and incurred chain ladder 
                                                           
16 As a technical note, the ODP Bootstrap modeling framework tested during all of the research described in 

Section 2 is from the original England & Verrall [3] paper that does not include various model enhancements 
introduced in subsequent papers. In addition, the incurred ODP Bootstrap tested in Leong, Wang & Chen 
[11] is essentially the paid ODP Bootstrap from England & Verrall [3] using incurred data and does not 
include the incurred to total unpaid steps described in Section 3.3.1 of Shapland [17]. 

17 Only limited back-testing related to the broad sets of assumptions has been completed to date. Future 
research will provide for more insights on the value of different broad sets of assumptions. 

18 In other words, these assumptions assume there were no rate changes over the 10 years of history and all loss 
cost inflation is constant at 2.5%. 
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models were given equal weight. For the 3rd prior year, the paid and incurred chain ladder 
and Bornhuetter-Ferguson models were given equal weight. For the most recent 2 years, the 
paid and incurred Bornhuetter-Ferguson and Cape Cod models were given equal weight. 
While different weighting schemes by LOB would typically be used in practice, this 
weighting scheme was selected as being representative of a typical weighting scheme. 

As a side note, it is also possible to test Aggregate results for each company with at least 2 
LOBs of Valid Data, but the results from many different combinations of LOBs would not 
provide meaningful results without also segregating into groups with all the same LOBs. 
Instead of just testing the most recent accident year, i.e., only R(10) from Graph 1.1, the 
simulation output of these model tests was captured in great detail, i.e., by accident year, 
calendar year, calendar year runoff, loss ratios, and each incremental cell in Graph 1.1. Using 
all of the 10,000 iterations of simulated data, the final step is to compare the actual outcomes 
to the complete simulated distribution of possible outcomes to determine the percentile of 
actual outcome for each cell and combination of cells in Graph 1.1. 

The companion files for the Shapland [17] monograph could be used to run all of the 
simulation tests, but those files are designed for educational purposes and not speed.19 By 
way of comparison, the Excel model for just one ODP Bootstrap model takes about 15 
minutes to run 10,000 iterations so even after completely automating the process it would 
take one computer over 7 years of continuous processing to finish all of the testing for all 8 
models – i.e., the 6 ODP Bootstrap models, the weighted ODP Bootstrap and the Mack 
Bootstrap with paid data only. 

In order to speed up this process commercial software was used, which reduced the total 
time for one computer from over 7 years to less than 43 days, much faster but still a long 
process. To reduce the elapsed time even further, the simulation tests were spread over 16 
computers, which allowed the overall process to be effectively managed and cut the elapsed 
time to less than a week.20 

The simulation back-tests with all of the standard assumptions noted above were 
considered the “Baseline” tests. Reviewing the baseline tests we found a significant number 
of simulations with extremely wide distributions. These extreme distributions are a 
                                                           
19 The companion Excel files can be used to run each of the 6 ODP Bootstrap models and the weighted results 

but they do not include the Mack Bootstrap model. However, a similar Excel file could be created for the 
Mack Bootstrap model. 

20 In theory the total elapsed time is less than a week, but in actuality stopping each computer periodically to 
save results in case of a crash, freeze or other operating system issue and retesting after a data quality review 
of the output extended the total time to about 2-3 weeks. 
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somewhat common occurrence in practice and typically result from “small” sample values in 
the first column that lead to extreme 12-24 month ATA factors (both positive and negative), 
which in turn lead to some extreme iterations (i.e., a more extreme version of the chain 
ladder weakness noted above). To address these extreme distributions, a second round of 
testing included adding constraints to limit the sample outcomes to zero (i.e., to remove 
negative incremental values) for selected triangle sets (referred to as the “Baseline with 
Limits” tests).21 The process used to select triangle sets for adding this limit constraint were 
based on whether the width of the distributions exceeded a threshold to approximate when 
an actuary might use these constraints in practice, rather than simply adding this constraint 
to all triangle sets. 

A third round of back-testing was done using all of the “Baseline with Limits” 
assumptions plus for all of the ODP Bootstrap models the optimal hetero group factors 
were applied to the modeling framework to test the impact of this common modeling 
option. This third set of tests are referred to as “Baseline Limits & Hetero”. 

5. TESTING RESULTS 

Starting with the “Baseline” tests, the results for the ODP Bootstrap paid chain ladder for 
the current accident year (i.e., R(10) in Graph 1.1), for all lines of business, and all evaluation 
periods combined22 are illustrated in Graph 5.1. 

From Graph 5.1 it is clear that the results using significantly more data are still consistent 
with prior research. Two additional elements of this, and later, graphs are the red “bars” in 
the lowest and highest decile groups and the average percentile. The red “bars” represent the 
portion of their respective groups that exceeded the smallest or largest simulated possible 
outcome, respectively. For example, for the 10% bar the red portion represents the number 
of tests where the percentile for the actual outcome was less than 0% (i.e., less than the 
smallest simulated possible outcome). The average percentile is the average over all samples23 
and helps give a sense of how close the simulated means were to the “true” mean on 
average. 

                                                           
21 This constraint on the simulation process is the third option described in section 4.1.1 of Shapland [17]. 
22 For each evaluation period (e.g., 1996) the current accident year is always as of 12 months of development. 

Thus, while there are multiple evaluation dates the results for the current accident year for each evaluation 
date can be combined. 

23 For the samples below the minimum or above the maximum (i.e., represented by the red bars) the value used 
in the overall average percentile is 0% or 100%, respectively. 
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Graph 5.1. ODP Bootstrap Paid Chain Ladder – “Baseline” 

 

 

 

 

 

 

 

 

Moving to the “Baseline with Limits” tests the results for the ODP Bootstrap paid chain 
ladder for the current accident year, for all lines of business, and all evaluation periods 
combined are illustrated in Graph 5.2. Comparing Graph 5.2 with Graph 5.1 it makes sense 
that the “goal posts” at the extremes got higher, meaning the models further underestimated 
the “true” distributions, since the widest of the distributions in the “Baseline” tests were 
“narrowed” in the “Baseline with Limits” testing. 

Graph 5.2. ODP Bootstrap Paid Chain Ladder – “Baseline with Limits” 
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Graph 5.3. ODP Bootstrap Paid Chain Ladder – “Baseline Limits & Hetero” 

 

 

 

 

 

 

 

 

At a high level the “Baseline Limits & Hetero” results for the ODP Bootstrap paid chain 
ladder for the current accident year, for all lines of business, and all evaluation periods 
combined are illustrated in Graph 5.3. The differences between Graph 5.3 and 5.2 are more 
subtle but a close inspection shows a slight improvement, which supports the use of 
heteroscedasticity adjustment factors in the ODP Bootstrap models. Admittedly, this 
support for using hetero factors is not strong but it is an improvement and rules out a 
negative conclusion (i.e., that hetero factors don’t help). All of the results in the remainder of 
this paper are for the “Baseline Limits & Hetero” testing, but for simplicity this label is not 
included in any more graphs. 

Graph 5.4. ODP Bootstrap Paid Chain Ladder – All Years Combined 

 

 

 

 

 

 

 

 

As we dig deeper into the back-testing results, a logical first dive would be to review 
results for prior accident years (i.e., R(9) to R(2) in Graph 1.1) to see if the estimation 
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improves as the relative maturity of the accident year increases. The results by accident year 
are shown in Appendix A, but interestingly there is no improvement as the models predict 
fewer future periods. Similarly, combining all accident years (i.e., R(T) in Graph 1.1), as 
shown in Graph 5.4, does not improve the model predictions. 

One of the insights from the Leong, Wang & Chen [11] paper was how the results were 
impacted by the reserving cycle. This impact was confirmed using this expanded database 
with the results by evaluation year shown in Appendix B. Consistent with the Leong, Wang 
& Chen results, the results by year show that the size of the “goal post” is predominantly in 
the lowest decile when the mean is being underestimated (e.g., in 1996) and shifts to being 
predominantly in the highest decile as the mean is overestimated. In addition, the average 
percentile shifts over the reserving cycle, which indicates how the estimates of the “true” 
mean change during the cycle. 

Graph 5.5. ODP Bootstrap Paid Chain Ladder – First Calendar Year 

 

 

 

 

 

 

 

 

Graph 5.6. ODP Bootstrap Paid Chain Ladder – Calendar Year Runoff After 1 Year 
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In addition to looking at the predictions for the accident years, it was also possible to 
look at the calendar years (i.e., the sum of the diagonals in Graph 1.1), the calendar year 
runoff (i.e., the sum of all remaining diagonals as each diagonal is removed in Graph 1.1), 
and the time zero to ultimate loss ratios (i.e., the sum of an entire row in Graph 1.1). As 
might be expected after reviewing the accident year results, the calendar year results in 
Graph 5.5 and calendar year runoff results in Graph 5.6 are quite similar to the accident year 
results.24 

For the time zero to ultimate loss ratio estimates by accident year shown in Graph 5.7 the 
predictions are much closer to the ideal histogram in Graph 1.3. This is an interesting result 
in the sense that the ODP Bootstrap predictions of the time zero to ultimate loss ratios 
appear to be more accurate than the predictions of the unpaid claims. To understand this we 
need to dig deeper into the results by incremental cell, which are shown in Appendix C. 
Interestingly, the results for the incremental cells reveals that the sampling of the incremental 
cells to create sample triangles for each iteration seems to produce more variability than 
observed in the data. On the other hand, since the model parameters are fit to the actual 
outcomes in the triangle perhaps seeing considerably more results in the middle decile 
groups is the expected result. 

Graph 5.7. ODP Bootstrap Paid Chain Ladder – Ultimate Loss Ratio Current Year 

 

 

 

 

 

 

 

 

Now that we have dissected the ODP Bootstrap paid chain ladder model, we can 
compare this to the other models in the back-testing research. First, the results for the Mack 
Bootstrap paid chain ladder model are shown in Graph 5.8. Comparing Graph 5.8 with 

                                                           
24 Since Graph 5.5 is the first diagonal and Graph 5.6 is the sum of the remaining diagonals, the combination of 

these two graphs is the same as Graph 5.4. 



Back-Testing the ODP Bootstrap & Mack Bootstrap Models 
 

Casualty Actuarial Society E-Forum, Winter 2019 22 

Graph 5.3 shows that the Mack Bootstrap was a worse than the ODP Bootstrap, which is 
consistent with the findings of the GIRO Working Parties [15, 16]. 

Graph 5.8. Mack Bootstrap Paid Chain Ladder – Current Accident Year 

 

 

 

 

 

 

 

 

Graph 5.9. ODP Bootstrap Incurred Chain Ladder – Current Accident Year 

 

 

 

 

 

 

 

 

Next, the results for the ODP Bootstrap Incurred Chain Ladder model are shown in 
Graph 5.9. Comparing Graph 5.9 to Graph 5.3 there is a clear improvement in the predictive 
power of the incurred versus paid chain ladder versions of the ODP Bootstrap model.25 
Thinking about the mechanics of the ODP Bootstrap Incurred Chain Ladder model in 
Shapland [17] it seems fair to conclude that combining the variability of the paid and 
incurred data increases the relative variance of the unpaid estimates to come much closer to 
the ideal histogram in Graph 1.3. It is quite possible that the remaining “goal post” effect is 
                                                           
25 This is inconsistent with the findings in Leong, Wang & Chen [11]. However, as mentioned in footnote 11, 

the algorithm being tested in this research is different. 
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largely due to the mis-estimation of the mean during the reserving cycle. 

Next, the results for the ODP Bootstrap Paid and Incurred Bornhuetter-Ferguson 
models are shown in Graph 5.10 and Graph 5.11, respectively. Comparing Graph 5.10 with 
Graph 5.3 and Graph 5.11 with Graph 5.9, respectively, it appears as though the 
Bornhuetter-Ferguson models are less predictive than their chain ladder counterparts are. 
This is inconclusive, however, since the variance assumption was set to zero during the 
current back-testing and it is easy to show that using a zero variance assumption will reduce 
the variability of the estimated unpaid claim distribution. Thus, conclusions about the 
predictive power of the ODP Bootstrap Bornhuetter-Ferguson models will need to wait 
until more testing can be completed. 

Graph 5.10. ODP Bootstrap Paid Bornhuetter-Ferguson – Current Accident Year 

 

 

 

 

 

 

 

 

Graph 5.11. ODP Bootstrap Incurred Bornhuetter-Ferguson – Current Accident Year 

 

 

 

 

 

 

 

 

Next, the results for the ODP Bootstrap Paid and Incurred Cape Cod models are shown 
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in Graph 5.12 and Graph 5.13, respectively. Comparing Graph 5.12 with Graph 5.3 and 
Graph 5.13 with Graph 5.9, respectively, it appears as though the Cape Cod models are less 
predictive than their chain ladder counterparts are. This may also be inconclusive, however, 
since only one set of parameters has been tested so far. Thus, conclusions about the 
predictive power of the ODP Bootstrap Cape Cod models will need to wait until more 
testing can be completed. 

Graph 5.12. ODP Bootstrap Paid Cape Cod – Current Accident Year 

 

 

 

 

 

 

 

 

Graph 5.13. ODP Bootstrap Incurred Cape Cod – Current Accident Year 

 

 

 

 

 

 

 

 

Finally, the results for the weighted combination of all six ODP Bootstrap models are 
shown in Graph 5.14. Comparing Graph 5.14 with Graphs 5.3, 5.9, 5.10, 5.11, 5.12, and 
5.13, you can visualize how Graph 5.14 results from a combination of the other models. 
This seems promising as even with the deficiencies noted for each model individually the 
weighted results look like they are better that the sum of the parts. More importantly, this 
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demonstrates how weighting multiple models, to at least partially address model risk, can 
improve the results compared to a single model. As other assumptions for the Bornhuetter-
Ferguson and Cape Cod models are tested, another avenue for future research will be 
considerations on how to apply Bayesian analysis to selecting the model weights. 

Graph 5.14. ODP Bootstrap Weighted Models – Current Accident Year 

 

 

 

 

 

 

 

 

All of the results presented in this Section and Appendices A, B, and C are for all lines of 
business combined. To show that the results are similar by line of business, the results by 
line of business for the ODP Bootstrap Paid Chain Ladder and Incurred Chain Ladder 
models are in Appendix D. It is possible to show many more details and combinations for all 
of these results, but this massive increase will be accompanied by an increase in random 
noise and will likely add little value beyond what we can already see at the higher level. 

6. BENCHMARKS BASED ON TEST RESULTS 

Even with the expansion of the research database, this research has confirmed the 
findings of prior authors. Thinking about the impact of the reserving cycle, it appears as 
though the results are strongly influenced by the internal systemic risks of the ODP 
Bootstrap modeling framework which, like the deterministic chain ladder, leads to the cycle 
of under and over estimation of the mean and in synch with this a lower and higher 
estimation of the variance. Even after potential corrections for the internal systemic risks, 
the ODP Bootstrap model is generally not accounting for the external systemic risks. On the 
other hand, it appears that some of the variations on the ODP Bootstrap framework may be 
significantly better at addressing the internal systemic risks. 
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In order to use this information in practice, one approach might be to consider how the 
formulas proposed by Leong, Wang & Chen [11] could be improved to separately address 
internal and external systemic risks. However, even with formula improvements, on a 
forward-looking basis the actuary is still faced with trying to understand which part of the 
reserving cycle they are currently in. Of course, knowing were one is in the reserving cycle is 
an issue no matter what the approach, but with a significantly larger database another way 
forward is possible. 

6.1. Unpaid Claim Benchmarks 
Rather than try to create a precise formula for giving the “correct” distribution, we can 

take a page out of the deterministic reserving playbook and create benchmarks to help guide 
the judgment of the opining actuary. For example, consider Graphs 6.1 and 6.2, which 
illustrate the range of mean and standard deviation estimates from the ODP Bootstrap paid 
chain ladder model over the entire database for the most recent accident year. For Graph 
6.1, it is not surprising that the mean unpaid is closely in line with the premium, with the 
deviations along the slope of the trend line representing differences in loss ratio by company. 

Graph 6.1. ODP Bootstrap Means – Current Accident Year 

  

 

 

 

 

 

Graph 6.2. ODP Bootstrap Standard Deviations – Current Accident Year 
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In Graph 6.2, it is not surprising that the standard deviations also increase in line with the 
premium, but the deviations around the trend line are more pronounced, which is likely due 
to the mixture of all lines of business, but at least to some degree a few of these could be 
considered outliers. A more important ingredient of Graph 6.2 is that the slope of the trend 
line is much lower, which confirms that the Coefficient of Variation is consistent with 
statistical principles, meaning for smaller companies the standard deviation is a larger 
percentage of the mean compared to larger companies. 

The results shown in Graphs 6.1 and 6.2 are consistent for all other views of the data 
discussed in Section 5 (i.e., for each accident year, each calendar year, all years combined, 
etc.). In addition, similar graphs by line of business are also consistent with Graphs 6.1 and 
6.2, except that they are more specific to the data for each line of business. This new insight 
lead to the idea of combining regression results (based on pure premiums instead of 
premiums) by line of business to create a benchmark algorithm for the means and related 
standard deviations by accident year, calendar year, etc., which at a minimum reflects the 
independent risks in the data. 

As these regression results are based on the original simulation results, without any 
further adjustment the benchmarks would also reflect the biases shown in the back-testing 
results. In order to adjust for this bias an optimal variance correction factor was included 
similar to the factors proposed by Leong, Wang & Chen [11], except that the factor does not 
change each year during the reserving cycle. As an example, consider Graph 6.3 for all 
accident years and all lines of business combined. 

Graph 6.3. ODP Bootstrap Bias Adjustment – All Accident Years Combined 

 

 

 

 

 

 

 

 

For the fitted results in Graph 6.3 the optimal adjustment factor is 1.755, meaning the 
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benchmark standard deviations would be increased by 75.5%. There are variations in the 
optimal factor when looking at individual accident years, but they are reasonably consistent 
so only one factor based on the total of all years combined is used for the unpaid claims 
benchmarks. As noted for Graph 5.7, the results for the time zero to ultimate loss ratios are 
much closer to the ideal histogram so a lower adjustment factor is appropriate for the loss 
ratio benchmarks. 

Because of the cyclical bias it is not possible to increase the factor to the point where the 
ideal histogram is achieved. However, this does seem to address the variance mis-estimation 
component of the internal systemic risk and external systemic risk to the extent that external 
systemic risks have influenced the outcomes in this research database. Assuming this is 
correct, the remaining “goal post” shape of the fitted histogram in Graph 6.3 is due to the 
mis-estimation of the mean during the reserving cycle that can be addressed by the actuary as 
part of the selection of the booked reserves. 

It is possible that future research could help the actuary further understand the timing of 
the reserving cycles, but assuming the actuary can use caution to ensure their modeling 
assumptions are not being biased by the reserving cycle, the unpaid claim distribution 
benchmarks can be used as a guide to assess an estimated distribution from any stochastic 
model. For example, consider the results in Table 6.1 which compare standard results for the 
ODP Bootstrap paid and incurred chain ladder models with the corresponding benchmarks 
using commercial auto data from a randomly selected company in the research database. 

Table 6.1. Comparison of ODP Bootstrap with Benchmark Unpaid 

 

 

 

 

 

The benchmark algorithm is based on 10 years of data so the earned premium and a 
priori loss ratios are used to enter pure premiums by year into the algorithm. The ODP 
Bootstrap results in Table 6.1 do include using the optimal hetero groups and a few other 
model options to replicate what an actuary could easily produce as a first draft of the unpaid 
claim distribution. Not surprisingly, the benchmark results indicate that the CoV should be 
higher compared to either of the ODP Bootstrap models. 

ODP Bootstrap Paid Chain Ladder ODP Bootstrap Incurred Chain Ladder Unpaid Claim Benchmark
Accident 

Year
Earned 

Premium
A priori 

Loss Ratio Mean
Standard 

Error CoV Mean
Standard 

Error CoV Mean
Standard 

Error CoV
2008 83,943           55.0% 125                194                154.9 % 135                216                160.7 %
2009 94,343           55.0% 225                267                118.5 % 234                293                125.3 % 669                1,325             198.1 %
2010 115,098        55.0% 568                453                79.8 % 593                503                84.9 % 1,184             1,540             130.0 %
2011 126,714        55.0% 975                639                65.5 % 1,010             717                71.0 % 1,960             2,055             104.8 %
2012 138,148        55.0% 2,564             978                38.1 % 2,618             1,206             46.1 % 3,632             2,689             74.0 %
2013 156,046        55.0% 6,222             1,648             26.5 % 6,404             2,455             38.3 % 7,301             4,475             61.3 %
2014 173,621        55.0% 13,146           2,529             19.2 % 14,781           4,841             32.7 % 15,027           7,609             50.6 %
2015 181,416        55.0% 27,524           3,888             14.1 % 32,868           9,345             28.4 % 28,179           11,947           42.4 %
2016 184,422        55.0% 45,759           5,518             12.1 % 49,668           15,204           30.6 % 48,125           18,504           38.4 %
2017 186,444        55.0% 66,947           9,017             13.5 % 80,709           24,784           30.7 % 75,007           27,104           36.1 %

Totals 1,440,195    164,055        12,928          7.9 % 189,019        31,310          16.6 % 181,085        38,898          21.5 %
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Reviewing Table 6.1, three more observations can be made. First, the benchmark does 
not include the 9th prior accident year (i.e., 2008). This is due to tail factors being excluded 
from the back-testing to date, but future back-testing can include tail factors which will allow 
the benchmark algorithm to be expanded to include the 9th prior accident year (and an 
additional calendar year). Second, even though the data used in the back-testing was from 
1996-2004, the algorithm is independent of the year and based on fitting to distributions by 
size of exposure (e.g., pure premiums) so using the algorithm to create a benchmark for 2017 
makes sense as long as the a priori loss ratios are reasonable given the reserving cycle. 

The third observation from Table 6.1 is that the benchmarks are essentially based on the 
average loss development pattern from the industry data. Thus, it would be a reasonable 
critique to note that the loss development pattern for the company under review does not 
clearly match with a Schedule P line of business. Because this is such a common issue, the 
algorithm also includes an option to adjust benchmarks based on the loss development 
pattern assumption used by the actuary. In Table 6.2 the benchmark has been updated for 
the loss development pattern for the data being used in the example. Comparing Table 6.2 
with Table 6.1, note that while the mean and standard deviations both decreased a bit the 
CoV essentially stayed the same or even increased a bit, which makes sense given the 
increased uncertainty. Also keep in mind that all benchmarks are only intended to serve as a 
guideline for the actuary and a perfect match is not a goal. 

Table 6.2. Comparison of ODP Bootstrap with Benchmark Unpaid & Custom LDF Pattern 

 

 

 

 

 

In order to illustrate how the benchmark algorithm responds to different input 
assumptions, Table 6.3 includes a comparison of the benchmarks from Table 6.2 with 
benchmarks based on only 10% of the original premiums (i.e., all other assumptions are the 
same). This shows how the benchmarks for a smaller company would compare to those for 
a larger company. Following statistical principles, and the regressions illustrated in Graph 6.1 
and 6.2, with only 10% of the premium the mean is reduced by 90% but CoV increases to 
reflect the additional uncertainty. 

ODP Bootstrap Paid Chain Ladder ODP Bootstrap Incurred Chain Ladder Unpaid Claim Benchmark
Accident 

Year
Earned 

Premium
A priori 

Loss Ratio Mean
Standard 

Error CoV Mean
Standard 

Error CoV Mean
Standard 

Error CoV
2008 83,943           55.0% 125                194                154.9 % 135                216                160.7 %
2009 94,343           55.0% 225                267                118.5 % 234                293                125.3 % 93                  211                225.4 %
2010 115,098        55.0% 568                453                79.8 % 593                503                84.9 % 260                384                148.0 %
2011 126,714        55.0% 975                639                65.5 % 1,010             717                71.0 % 641                745                116.1 %
2012 138,148        55.0% 2,564             978                38.1 % 2,618             1,206             46.1 % 1,778             1,404             79.0 %
2013 156,046        55.0% 6,222             1,648             26.5 % 6,404             2,455             38.3 % 4,643             2,942             63.4 %
2014 173,621        55.0% 13,146           2,529             19.2 % 14,781           4,841             32.7 % 11,306           5,809             51.4 %
2015 181,416        55.0% 27,524           3,888             14.1 % 32,868           9,345             28.4 % 24,133           10,287           42.6 %
2016 184,422        55.0% 45,759           5,518             12.1 % 49,668           15,204           30.6 % 44,007           16,974           38.6 %
2017 186,444        55.0% 66,947           9,017             13.5 % 80,709           24,784           30.7 % 72,694           26,296           36.2 %

Totals 1,440,195    164,055        12,928          7.9 % 189,019        31,310          16.6 % 159,555        34,460          21.6 %
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Table 6.3. Comparison of Benchmarks by Size of Company 

 

 

 

 

 

As noted earlier, the benchmark algorithm includes more than the accident year unpaid 
claims, so Table 6.4 illustrates the cash flow and unpaid claim runoff benchmarks which 
would be comparable to the unpaid claim benchmarks in Table 6.2. The benchmark 
algorithm also includes time zero to ultimate loss ratios, but these are not illustrated in any of 
the Tables. 

Table 6.4. Comparison of Unpaid, Cash Flow and Runoff Benchmarks 

 

 

 

 

 

6.2. Correlation Benchmarks 
As noted at the end of Section 3, the data from 1,182 of the companies had at least 2 

LOBs with Valid Data for at least one year. For each company (and year) with 2 or more 
LOBs, the correlation between the residuals was also calculated and saved, including the P-
Values and the Degrees of Freedom, both before and after the hetero group factor 
adjustments, for both paid and incurred data. This database of 195,228 pairs of LOBs with 
correlation values were used to create separate benchmarks of correlation between Schedule 
P lines of business. 

The correlation benchmarks include each year separately and all years combined, but only 
a sample from 1996 is illustrated in Table 6.5. In addition to calculating the sample average 
and standard deviations by pair, the number of pairs are also shown. 

Unpaid Claim Benchmarks Unpaid Claim Benchmarks
Accident 

Year
Earned 

Premium
A priori 

Loss Ratio Mean
Standard 

Error CoV
Accident 

Year
Earned 

Premium
A priori 

Loss Ratio Mean
Standard 

Error CoV
2008 83,943           55.0% 2008 8,394             55.0%
2009 94,343           55.0% 95                  214                224.8 % 2009 9,434             55.0% 10                  47                  495.6 %
2010 115,098        55.0% 262                387                147.8 % 2010 11,510           55.0% 26                  91                  346.5 %
2011 126,714        55.0% 616                719                116.8 % 2011 12,671           55.0% 62                  166                269.1 %
2012 138,148        55.0% 1,735             1,374             79.2 % 2012 13,815           55.0% 173                289                166.8 %
2013 156,046        55.0% 4,525             2,874             63.5 % 2013 15,605           55.0% 452                523                115.6 %
2014 173,621        55.0% 11,154           5,736             51.4 % 2014 17,362           55.0% 1,115             877                78.6 %
2015 181,416        55.0% 23,905           10,194           42.6 % 2015 18,142           55.0% 2,390             1,369             57.3 %
2016 184,422        55.0% 43,759           16,882           38.6 % 2016 18,442           55.0% 4,376             2,253             51.5 %
2017 186,444        55.0% 72,465           26,216           36.2 % 2017 18,644           55.0% 7,246             3,436             47.4 %

Totals 1,440,195    158,515        34,245          21.6 % 144,020        15,851          4,835            30.5 %

Unpaid Claim Benchmarks Cash Flow Benchmarks Unpaid Claim Runoff Benchmarks
Accident 

Year Mean
Standard 

Error CoV
Calendar 

Year Mean
Standard 

Error CoV
Calendar 

Year Mean
Standard 

Error CoV
2008 2017 158,515        34,245           21.6 %
2009 95                  214            224.8 % 2018 61,896        16,101           26.0 % 2018 96,619           23,882           24.7 %
2010 262                387            147.8 % 2019 40,956        12,296           30.0 % 2019 55,663           16,877           30.3 %
2011 616                719            116.8 % 2020 24,529        9,031             36.8 % 2020 31,133           12,234           39.3 %
2012 1,735             1,374        79.2 % 2021 13,581        6,286             46.3 % 2021 17,552           8,841             50.4 %
2013 4,525             2,874        63.5 % 2022 7,252           4,308             59.4 % 2022 10,301           6,585             63.9 %
2014 11,154           5,736        51.4 % 2023 4,067           3,349             82.4 % 2023 6,234             5,381             86.3 %
2015 23,905           10,194      42.6 % 2024 2,437           2,827             116.0 % 2024 3,797             4,346             114.5 %
2016 43,759           16,882      38.6 % 2025 1,698           2,268             133.6 % 2025 2,099             4,164             198.3 %
2017 72,465           26,216      36.2 % 2026 2,099           4,164             198.3 %

Totals 158,515        34,245     21.6 % 158,515     34,245          21.6 %
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Table 6.5. Sample Correlation Benchmarks for 1996 – Paid After Hetero Adjustment – Raw Data 

 

 

 

The P-Values are a measure of how significantly different from zero the correlation value 
is for each calculated pair. The lower the P-Value the more significantly different from zero 
the correlation. Thus, a second set of correlation benchmarks, using one minus the P-Value 
as the weights, were calculated for weighted means and weighted standard deviations. For 
comparison, the weighted benchmarks for the same sample are included in Table 6.6. 

Table 6.6. Sample Correlation Benchmarks for 1996 – Paid After Hetero Adjustment – Weighted 

 

 

 

While it was noted in Section 4 that aggregate simulations were not captured, and thus 
not available for additional benchmarks, it is quite straightforward to use the correlation 
benchmarks in conjunction with the unpaid benchmarks to create a customized aggregate 
unpaid benchmark. Finally, as noted above the Degrees of Freedom was also captured and 
could have been included as part of Tables 6.5 and 6.6. In practice, this would be a valuable 
benchmark for copulas used for aggregation as they are intended to strengthen the tail of the 
aggregate distribution given a selected correlation. 

6.3. LDF Pattern Benchmarks 
In addition to all of the simulation results, for each dataset the all year volume weighted 

average loss development pattern from the original paid triangle (actual), along with the 
implied pattern from the average of all the simulated sample paid triangles (simulated), were 
captured. Using all of the paid patterns by line of business, the mean and percentiles of these 
patterns can be used as LDF pattern benchmarks. For example, the development patterns 
for Commercial Auto sample used in the Tables in Section 6 are included in Table 6.7. 

Table 6.7. Sample LDF Pattern Benchmarks – Commercial Auto 

 

 

Mean Values Standard Deviations Count of Pairs
MPL-O HO WC CA PPA MPL-O HO WC CA PPA MPL-O HO WC CA PPA

MPL-O 100.0% -0.5% -10.9% 2.8% -1.9% MPL-O 0.0% 11.1% 14.0% 16.1% 16.7% MPL-O -        57         62         59         48         
HO -0.5% 100.0% 4.0% 5.9% 11.8% HO 11.1% 0.0% 20.0% 18.9% 20.8% HO 57         -        618       757       851       
WC -10.9% 4.0% 100.0% 11.9% 13.9% WC 14.0% 20.0% 0.0% 23.5% 23.7% WC 62         618       -        688       570       
CA 2.8% 5.9% 11.9% 100.0% 13.3% CA 16.1% 18.9% 23.5% 0.0% 24.3% CA 59         757       688       -        784       
PPA -1.9% 11.8% 13.9% 13.3% 100.0% PPA 16.7% 20.8% 23.7% 24.3% 0.0% PPA 48         851       570       784       -        

Mean Values Standard Deviations Count of Pairs
MPL-O HO WC CA PPA MPL-O HO WC CA PPA MPL-O HO WC CA PPA

MPL-O 100.0% 0.0% -16.2% 5.9% -1.7% MPL-O 0.0% 14.0% 14.6% 18.8% 18.6% MPL-O -        57         62         59         48         
HO 0.0% 100.0% 5.4% 9.5% 16.7% HO 14.0% 0.0% 23.6% 22.9% 22.9% HO 57         -        618       757       851       
WC -16.2% 5.4% 100.0% 17.1% 18.9% WC 14.6% 23.6% 0.0% 26.6% 26.0% WC 62         618       -        688       570       
CA 5.9% 9.5% 17.1% 100.0% 19.3% CA 18.8% 22.9% 26.6% 0.0% 27.1% CA 59         757       688       -        784       
PPA -1.7% 16.7% 18.9% 19.3% 100.0% PPA 18.6% 22.9% 26.0% 27.1% 0.0% PPA 48         851       570       784       -        

Development Periods: 12-24 24-36 36-48 48-60 60-72 72-84 84-96 96-108 108-120 120+
Actual LDF Pattern: 30.4% 76.4% 87.2% 91.9% 94.6% 97.0% 99.0% 99.5% 99.7% 99.9%
Average LDF Pattern: 26.9% 52.6% 71.8% 84.3% 91.5% 95.2% 97.2% 98.1% 98.7% 99.1%
65% LDF Pattern: 29.3% 56.9% 76.1% 88.3% 94.8% 97.7% 99.1% 99.6% 99.8% 99.9%
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The actual LDF pattern was calculated using the all year volume weighted average LDF 
factors from the sample dataset. The average and 65% LDF patterns are the average and 65th 
percentile from all of the simulated patterns in the database, respectively. By systematic 
testing and a little trial and error, the 65th percentile was found to be the best fit to the actual 
pattern. The patterns from Table 6.7 are illustrated in Graph 6.4, since one of the uses of 
LDF pattern benchmarks could be to help smooth the selection of age-to-age factors.  

Graph 6.4. Comparison of Actual with Benchmark LDF Patterns 

 

 

 

 

 

 

Once the actual LDF pattern has been smoothed, or a suitable percentile pattern has 
been selected, another use of the LDF pattern benchmarks is to help create a range of 
deterministic central estimates. For example, assuming the 65th percentile pattern is selected, 
the actuary could then base a deterministic range on the patterns which are 25 points above 
and below the 65th percentile as illustrated in Table 6.8 and Graph 6.5. 

Table 6.8. Sample LDF Pattern Range – Commercial Auto 

 

 

Graph 6.5. Range of Benchmark LDF Patterns 

 

 

 

 

 

 

Development Periods: 12-24 24-36 36-48 48-60 60-72 72-84 84-96 96-108 108-120 120+
40% LDF Pattern: 23.6% 49.1% 69.6% 83.6% 91.4% 95.5% 97.7% 98.8% 99.3% 99.5%
65% LDF Pattern: 26.9% 52.6% 71.8% 84.3% 91.5% 95.2% 97.2% 98.1% 98.7% 99.1%
90% LDF Pattern: 39.3% 68.5% 86.1% 94.3% 98.2% 99.7% 100.0% 100.0% 100.0% 100.0%
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7. CONCLUSIONS 

Using an extensive database pulled from historical Schedule P data, the results from back-
testing various ODP Bootstrap models and the Mack Bootstrap model has confirmed similar 
prior research on how effective these models predict the distribution of possible outcomes. 
For the versions of the ODP Bootstrap model not previously tested, the back-testing results 
are both encouraging and inconclusive. In particular, for the ODP Bootstrap incurred chain 
ladder model, as described in Shapland [17], using both the paid and incurred data 
significantly improves the results. For the ODP Bootstrap Bornhuetter-Ferguson and Cape 
Cod models the results were inconclusive due to the need to test more model parameters. 
However, even with inconclusive results for four of the six ODP Bootstrap models, testing 
of weighted results demonstrated that weighing multiple models, to at least partially address 
model risk, is a significant improvement over using a single model. 

Due to the size of the database used in the back-testing, the data allows us to use 
benchmarking algorithms as a guide when evaluating the estimated distribution of possible 
outcomes from any stochastic model. These benchmarking algorithms are quite 
sophisticated in the sense that they address the statistical properties of real data sets (e.g., 
more relative variance for smaller exposures) and can be customized to more closely 
approximate the data being analyzed (e.g., using selected ATA factors). Additional uses from 
the data include correlation benchmarks and LDF pattern benchmarks. 
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Appendix A – Back-Testing Results by Accident Year 
The back-testing results for the current accident year are shown in Graphs 5.3 and 5.9 for 

the ODP Bootstrap paid chain ladder and incurred chain ladder, respectively, and for 
completeness are repeated here in Graphs A.1 and A.10. All of the Graphs in Appendix A 
show results for the ODP Bootstrap paid chain ladder and incurred chain ladder models 
using the “Baseline Limits & Hetero” assumptions for all lines of business and all evaluation 
periods combined. 

 
ODP Paid Chain Ladder: 

Graph A.1. Current Accident Year 

 
 
 
 
 
 
 
 
 
 

Graph A.3. 2nd Prior Accident Year 
 
 
 
 
 
 
 
 
 
 
 

Graph A.5. 4th Prior Accident Year 

 
 
 
 
 
 
 
 
 
 

Graph A.2. 1st Prior Accident Year 

 
 
 
 
 
 
 
 
 
 

Graph A.4. 3rd Prior Accident Year 
 
 
 
 
 
 
 
 
 
 
 

Graph A.6. 5th Prior Accident Year 
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Graph A.7. 6th Prior Accident Year 

 
 
 
 
 
 
 
 
 
 

Graph A.9. 8th Prior Accident Year 
 
 
 
 
 
 
 
 
 
 
 

Graph A.8. 7th Prior Accident Year 

 
 
 
 
 
 
 
 
 
 
 

 
 
ODP Incurred Chain Ladder: 
Graph A.10. Current Accident Year 

  

Graph A.11. 1st Prior Accident Year 
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Graph A.12. 2nd Prior Accident Year 

Graph A.14. 4th Prior Accident Year 

Graph A.16. 6th Prior Accident Year 

Graph A.18. 8th Prior Accident Year 

Graph A.13. 3rd Prior Accident Year 

Graph A.15. 5th Prior Accident Year 

Graph A.17. 7th Prior Accident Year 
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Appendix B – Back-Testing Results by Evaluation Year 
The back-testing results for the current accident year in Graphs 5.3 and 5.9, for the ODP 

Bootstrap paid chain ladder and incurred chain ladder, respectively, is for all evaluation years 
combined. All of the Graphs in Appendix B show results for the current accident year for 
the ODP Bootstrap paid chain ladder and incurred chain ladder models using the “Baseline 
Limits & Hetero” assumptions for all lines of business by evaluation periods. 
 
ODP Paid Chain Ladder: 
Graph B.1. Evaluation Year 1996 

 
 
 
 
 
 
 
 
 
 

Graph B.3. Evaluation Year 1998 
 
 
 
 
 
 
 
 
 
 
 

Graph B.5. Evaluation Year 2000 

 
 
 
 
 
 
 
 
 
 

Graph B.2. Evaluation Year 1997 

 
 
 
 
 
 
 
 
 
 

Graph B.4. Evaluation Year 1999 
 
 
 
 
 
 
 
 
 
 
 

Graph B.6. Evaluation Year 2001 
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Graph B.7. Evaluation Year 2002 

 
 
 
 
 
 
 
 
 
 

Graph B.9. Evaluation Year 2004 
 
 
 
 
 
 
 
 
 

Graph B.8. Evaluation Year 2003 

 
 
 
 
 
 
 
 
 
 
 

 
 
 
ODP Incurred Chain Ladder: 
Graph B.10. Evaluation Year 1996 

 

Graph B.11. Evaluation Year 1997 
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Graph B.12. Evaluation Year 1998 

Graph B.14. Evaluation Year 2000 

Graph B.16. Evaluation Year 2002 

Graph B.18. Evaluation Year 2004 

Graph B.13. Evaluation Year 1999 

Graph B.15. Evaluation Year 2001 

Graph B.17. Evaluation Year 2003 
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Appendix C – Back-Testing Results by Incremental Cell 
The back-testing results in Appendix C show results for the ODP Bootstrap paid chain 

ladder and incurred chain ladder models using the “Baseline Limits & Hetero” assumptions 
for all lines of business and all evaluation periods combined. 
Graph C.1. ODP Bootstrap Paid Chain Ladder by Incremental Cell 
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Graph C.2. ODP Bootstrap Incurred Chain Ladder by Incremental Cell 
Total All Lines

All Evaluation Periods Combined
ODP Incurred Chain Ladder
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Appendix D – Back-Testing Results by Line of Business 
The back-testing results for the current accident year for all lines of business is included 

as Graphs 5.3 and 5.9 for the ODP Bootstrap paid chain ladder and incurred chain ladder, 
respectively. All of the Graphs in Appendix D show results for the ODP Bootstrap paid 
chain ladder and incurred chain ladder models using the “Baseline Limits & Hetero” 
assumptions for all evaluation periods combined, separately for each Schedule P line of 
business. 
 
ODP Paid Chain Ladder: 
Graph D.1. Commercial Auto Liability 

 
 
 
 
 
 
 
 
 
 

Graph D.3. Homeowners & Farmowners 
 
 
 
 
 
 
 
 
 
 

Graph D.5. Med. Prof. Liab. - Claims Made 

 
 
 
 
 
 
 
 
 
 

Graph D.2. Commercial Multiple Peril 

 
 
 
 
 
 
 
 
 
 

Graph D.4. International 
 
 
 
 
 
 
 
 
 
 

Graph D.6. Med. Prof. Liab. - Occurrence 
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Graph D.7. Other Liability - Claims Made 

 
 
 
 
 
 
 
 
 
 

Graph D.9. Product Liability - Claims Made 
 
 
 
 
 
 
 
 
 
 

Graph D.11. Private Passenger Auto Liability 

 
 
 
 
 
 
 
 
 
 

Graph D.13. Reins. – NP Assumed Liability 
 
 
 
 
 
 
 
 
 
 

Graph D.8. Other Liability - Occurrence 

 
 
 
 
 
 
 
 
 
 

Graph D.10. Product Liability - Occurrence 
 
 
 
 
 
 
 
 
 
 

Graph D.12. Reins. – NP Assumed Financial 

 
 
 
 
 
 
 
 
 
 

Graph D.14. Reins. – NP Assumed Property 
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Graph D.15. Special Liability 

 
 
 
 
 
 
 
 
 
 

Graph D.16. Workers' Compensation 

 
 
 
 
 
 
 
 
 
 
 

 
ODP Incurred Chain Ladder: 
Graph D.17. Commercial Auto Liability 

Graph D.19. Homeowners & Farmowners 

  

Graph D.18. Commercial Multiple Peril 

Graph D.20. International 

  



Back-Testing the ODP Bootstrap & Mack Bootstrap Models 
 

Casualty Actuarial Society E-Forum, Winter 2019 47 

Graph D.21. Med. Prof. Liab. - Claims Made 

Graph D.23. Other Liability - Claims Made 

Graph D.25. Product Liability - Claims Made 

Graph D.27. Private Passenger Auto Liability 

 

 

 

 
 
 
 
 

Graph D.22. Med. Prof. Liab. - Occurrence 

Graph D.24. Other Liability - Occurrence 

Graph D.26. Product Liability - Occurrence 

Graph D.28. Reins. – NP Assumed Financial 
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Graph D.29. Reins. – NP Assumed Liability 

Graph D.31. Special Liability 

 

Graph D.30. Reins. – NP Assumed Property 

Graph D.32. Workers' Compensation 
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Abstract 

Motivation. Application of the Shane-Morelli method in practice for multiple reserve reviews revealed potential 
areas of refinement. 
Method. A theoretical examination of curves best used to develop workers’ compensation tail factors resulted in 
a proposed enhancement to this part of the original methodology.  Further, a melding of theoretical and practical 
considerations gave rise to an approach for gradual introduction of mortality to the curve for determination of a 
more realistic tail.  Finally, the determination of a process for updating the proposed model was developed for use 
by a practicing actuary. 
Results. The paper presents a new curve for tail fits, the gradual introduction of mortality into the tail calculation 
and a process for regularly updating the model. 
Conclusions.  The updated approach provides an enhanced way of incorporating mortality into traditional 
aggregate reserving methods in a manner that can be readily explained to business partners. 

Keywords. Workers’ Compensation; Reserving Methods; Tail; Mortality; Gamma Curve; Shane-Morelli 

1. INTRODUCTION

1.1 Background
Modeling of the tail development in worker compensation is well known for being challenging, but 

it is an important task and thus remains an active area of interest [1].  One approach is to fit a 
parametric curve to the loss development factors (i.e., LDFs or link ratios) and extrapolate the curve 
beyond the triangle in order to effectively achieve an extension of the chain ladder method.  The 
limitation with this method is that many parametric curves, such as the popular inverse power, do not 
converge, so the extrapolation must be truncated at some selected point in the future.  Unfortunately, 
the choice of the truncation point often drives significant swings in the estimate of reserves and can 
be highly subjective when selected solely based on judgment. 

A recent paper by Shane and Morelli provides a practical solution to the truncation problem, 
hereafter referred to as the Shane-Fowle method [2].  Their method is based on the curve fit approach 
using the inverse power curve to fit the LDFs.  Their key contribution is the use of the life expectancy 
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of the actual claimants to determine the duration of development in each accident year so that the 
extrapolation of the curve can be truncated using relevant information rather than simple judgment.  
The Shane-Fowle method is intuitive and can be applied readily.  As with any model, however, 
application to new problems reveals challenges and potential for improvement.  The purpose of this 
paper is to offer enhancements to the application of the Shane-Fowle method in the form of additional 
discussion around the selection of an appropriate curve, the gradual application of mortality to replace 
the truncation, and additional guidance around the updating of the underlying assumptions over time. 

1.2 Scope 
The analysis in this paper is limited to the development of workers’ compensation claims in the 

form of the familiar aggregate runoff triangles.  Both paid and incurred data are in scope for medical 
and indemnity, as are related defense and cost containment expenses.  Our model is concerned only 
with the development of “lifetime claims,” by which we mean claims expected to be paid regularly for 
the remainder of a claimant’s life.  Based on our experience, ten years is a reasonable threshold for the 
development age prior to which most shorter duration claims will have closed.  This means that our 
analysis and model are not intended to be used on the most recent ten accident years. 

1.3 Outline 
The remainder of the paper proceeds as follows. In Section 2, we propose enhancements to the 

Shane-Fowle method.  In particular, we first focus here on the selection of an appropriate curve, with 
discussion of the commonly known inverse power and exponential curves and the introduction of the 
gamma curve as a potential improvement.  We then move on to a discussion of a method to gradually 
apply the effect of mortality, which we believe is an improvement to the truncation described in the 
Shane-Fowle method.  In Section 3 we discuss business considerations, including the frequency of 
model and parameter updates, where we propose a “locked in” approach to the parameters for a pre-
selected period of time to avoid overreactions to noise in the underlying data and a framework for 
understanding and explaining the changes in reserve estimates produced by the model.  Section 4 is 
the conclusion, followed by appendices to support the main body of the paper.  

2. ENHANCEMENTS TO THE SHANE-FOWLE METHOD

In this section, we present two enhancements to the original Shane-Fowle method.  The first 
enhancement involves providing guidance to the selection of the curve fit; the second enhancement 
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offers a modification to the application of mortality.   

2.1 Notation 
The mathematical notation in this section closely follows the 2013 paper by the CAS Tail Factor 

Working Party [1]. 

 development age in years.   ( )  cumulative loss (paid or incurred) as of development age  .  ( ) incremental loss from age  − 1 to  .  ( )  age-to-age LDF (or link ratio) such that  ( + 1) =  ( ) ( ).  ( ) “development portion” of the link ratio, such that  ( ) = 1 +  ( ).  For brevity, this is 
referred to as the development ratio in this paper. 

 annual decay rate of incremental losses such that  = [ ( ) −  ( + 1)]/ ( ). 

2.2 Enhancement to the Curve Fit Selection 
Citing the analysis by Sherman [3], Shane-Fowle chose the inverse power curve for fitting the age-

to-age LDFs,  ̂( ) = , (2.1) 

where  ̂( ) denotes the fitted development ratio at age  , and   and   are the fit parameters.  The 
inverse power curve is a widely accepted choice for fitting LDFs [1], but justification for using it 
appears to be based on the observation that it often provides a reasonably good fit rather than 
providing sufficient information to allow the user to make an informed selection of the appropriate 
curve for the data being fit.  Even if mortality is arguably the most important factor for a tail model, 
mortality doesn’t start to dominate until much later in the tail, at claimant age 70 or so based on a 
review of the current life tables.  Until then, the projection of loss is determined largely by the curve 
fit.  Thus we believe it makes sense to invest more analysis into the selection of the curve fit.   

2.2.1 Analysis of constant decay loss model 
To gain some insights that will help guide our selection of the curve fit, we first conduct a simple 

analysis of a theoretical loss development model.  This model will focus on only one accident year.  
We assume that the incremental loss  ( ) decays with age   at a constant rate of decay   such that 
the sequence of incremental losses starting at  = 1 are  (1),  (1)(1−  ),  (1)(1 −  ) , and so 
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on.  The decay rate   is restricted to the range [0, 1], which means that negative development and 
increasing incremental losses are not considered.  The latter omission might be concerning if we were 
working with severity data subject to inflation, for example, but the Shane-Fowle method is based on 
aggregate runoff triangles where losses are expected to decay over time, making the scenario where  < 0 unlikely.  This constant decay model was previously analyzed by McClenahan [4], but his effort 
was focused more on the formulation of the reserves.  In contrast, our purpose is to understand how 
this particular development pattern relates to the curve fit of the development ratio.  

Given a constant value of  , the development ratio can be expressed as 

 ( ) =  (1 −  )1 − (1 −  )  . (2.2) 

The derivation of Equation 2.2 is provided in Appendix A.  We will next evaluate this expression for 
the scenarios of no decay ( = 0) and significant decay ( → 1). 

No decay 

At  = 0, Equation 2.2 yields the indeterminate expression 0 0⁄ , so we use L’Hôpital’s rule to 
evaluate the limit, 

lim →  ( ) = lim → − (1 −  )   + (1 −  ) (1 −  ) =  . (2.3) 

This is the inverse power curve of Equation 2.1 with parameters  = 1 and  = −1.   

Significant decay 

At  = 1, Equation 2.2 collapses to the trivial solution of  ( ) = 0, which is not meaningful since 
it equates to no development.  So instead of evaluating at  = 1, we can see what happens as   
approaches one.  Looking at the denominator of Equation 2.2, the unity term will dominate over the (1 −  )  term as   gets closer to one, and consequently Equation 2.2 will tend toward the expression  ( ) =  (1 −  ) .  This is the familiar form of the geometric distribution, which is the discrete 
analogue of the exponential curve.   

To summarize, within the construct of the constant decay model, it is the decay rate that determines 
which curve fit is optimal.  At one extreme, where losses do not decay, the inverse power curve 
provides the ideal fit.  At the other extreme of significant decay, the exponential curve is ideal.  In 
between, the appropriate fit is some blend of the two forms, with a gradual transition from the inverse 
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power to the exponential as   goes from 0 to 1.  Appendix B illustrates this transition with a 
hypothetical example.  As expected, the inverse power gives the perfect fit when there is no decay.  As 
long as the decay is low ( < 0.07), the inverse power fits better than the exponential.  But as    
increases, the exponential curve becomes superior, and by the time  = 0.2 the exponential is already 
practically an ideal fit with an R2 value of 1.000. 

2.2.2 Curve fit selection 

The insights from the constant decay loss model analysis can be used to guide the selection of an 
appropriate curve fit.  Below, we discuss the inverse power and exponential forms, finishing with a 
recommendation for the gamma form.   

Inverse power curve 

The inverse power curve is ideal when incremental losses have zero or very low decay with 
development age.  For aggregate triangles, this is most likely to happen when the claimant count and 
the loss run rate (i.e., dollar amount per claimant per year) both remain steady or decrease very slowly 
over time.  Slowly decreasing claimant count is certainly possible for lifetime claims beyond ten years 
of development and prior to very mature ages, where mortality takes over.  Steady run rates can be 
expected in indemnity paid data with fixed wage replacement payments and without cost of living 
adjustments.  Medical paid data could also exhibit level run rates if most claims are in a steady state of 
routine treatments and if medical inflation is unremarkable.  Finally, paid expense triangles often settle 
into regular increments in the lifetime development phase.  The conclusion here is that the inverse 
power curve should always be considered for paid data.   

Exponential curve 

Even paid triangles can exhibit fast decaying incremental losses if the claimant attrition rate is high, 
which would likely be true for an aged population.  Therefore, when the inverse power curve is clearly 
struggling to fit due to excessive decay, the exponential curve should be considered.  With incurred 
triangles, significant decay may be expected at early ages in cases where a sizable initial case reserve is 
followed by smaller reserve adjustments in subsequent years.  Decay could continue even into mature 
years to the extent that information about remaining liabilities generally improves over time and results 
in continually smaller reserve adjustments. In fact, it would be unusual for incremental incurred losses 
to have little or no decay so exponential curves may often be chosen over inverse power when it 
comes to incurred data. 
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Equation 2.2 

At first, Equation 2.2 seems like an appealing choice since it effectively represents both the inverse 
power and the exponential curves as well as the spectrum in between.  But there are two reasons 
against using it.  The first is that the premise of this formula is the assumption of a constant decay 
rate, which is unlikely to be observed in practice.  The second reason is that Equation 2.2 is a single 
parameter curve.  As any practitioner can attest, an attempt to fit data as nonlinear as workers’ 
compensation losses to any single parameter curve would likely be a futile exercise.  Real data is messy 
with decay rates and other trends that often change unpredictably over time.  For practical reasons, 
we would want a curve form with more than one parameter to be able to accommodate such data. 

Gamma curve 

A single curve that can fit both slow and fast decaying losses would be beneficial.  We therefore 
recommend the following form1:  ( ) =  . (2.4) 

This equation has the form of the gamma distribution.  It consists of three parameters: the scale 
parameter  , the inverse power decay rate parameter  , and the exponential decay parameter  .  This 
curve form has the following benefits and drawbacks: 

• It contains both the inverse power and the exponential forms, so it can fit both low and high
decaying loss patterns.  The data itself will determine which curve form dominates, or the final
form could be a blend of the two, but we do not have to manually choose one or the other.

• It is versatile in that it can be forced to be purely inverse power by constraining   to be zero, or
it can be forced to be purely exponential by constraining   to be zero.

• It has three parameters, which allows for more flexibility than the inverse power or exponential
alone, but also limits the number of parameters to avoid overfitting.

• Unlike the exponential and the inverse power, curve fitting for the gamma curve is not readily
available through standard plotting applications such as Excel.  While the choice of the curve
fitting method is left to the readers’ discretion, one option is to use an iterative algorithm for
minimizing the sum of squared error using Excel’s Solver function.

• The gamma curve is not commonly used for this purpose, and as a result, additional

1 We credit Robert Ballmer, FCAS for suggesting this curve form. 
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communication with business partners regarding the justification of its application may need to 
take place. 

2.3 Enhancement to the Application of Mortality 
The second enhancement to the Shane-Fowle method has to do with the application of mortality 

in the loss projection.  Shane and Fowle applied mortality by estimating the average remaining life 
expectancy of the underlying claimants and calculating a weighted average of life expectancy by 
accident year.  They additionally introduced a useful method of evaluating life expectancy at desired 
percentiles, which allows the practitioner to judgmentally use percentiles in lieu of the expected value.  
The selected life expectancy for an accident year was then used to truncate the extrapolated curve fit 
to obtain the ultimate loss and the corresponding tail factor.  Their approach has several merits, 
including being intuitively appealing and having high practical value.  However, we see opportunities 
for improvement in view of the following considerations. 

• The average of the individual life expectancies in a cohort will underestimate the life expectancy
of the cohort.  If we say that a cohort “dies” with its last remaining member, then the life
expectancy of the cohort should exceed the average of the individual life expectancies.  Consider
the extreme example of a cohort of two people, one with a life expectancy of one year and the
other with nineteen years.  The average of their life expectancies is ten years.  But the life
expectancy of the cohort would be greater than ten years because the life expectancy of the
youngest member is greater than ten years.

• A cohort in runoff dies off gradually, so it follows that the loss development should also be
affected gradually by the force of mortality.  Under Shane and Fowle’s method of truncation,
mortality is introduced at a single point in time – the point considered to be the ultimate.  Prior
to then, losses are assumed to develop without contribution from mortality other than the
mortality which is embedded in the observed triangle.  But mortality is nonlinear and observed
mortality is a not a good predictor of future mortality.

2.3.1 Methodology for gradual application of mortality 

To address the above considerations, we propose a gradual application of mortality2.  This 
methodology requires the distribution of claimant ages as well as life tables for the claimant population.  
If gender is to be considered, and we believe it should, separate life tables for males and females are 

2 We again credit Robert Ballmer, FCAS for his significant role in the development of this methodology. 
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required along with the gender of each claimant.  The number of years of projection is somewhat 
arbitrary as long as it is enough to cover the remaining life of all claimants.  For illustrative purposes, 
one hundred years is likely a reasonable selection.   

Prior to the projection, we assume that the link ratios have already been obtained using standard 
chain ladder methods and that a curve has already been fit to the development ratios.  The steps below 
are then used to project losses for an individual accident year.  For an illustration of the calculations 
for an example accident year, refer to Appendix C. 

1. Group the claimants for the accident year and compute the group’s current average age as well as
its average age for every year of projection.  The projected average group age is estimated using
life contingencies whereby the group age at a future year is a weighted average of the member ages
with the weights being equal to the probability of survival.

ageG( ) = ∑ age ( )  ( )∑ ( ) (2.5) 

In Equation 2.5,   is the number of members in the accident year and   is a time variable 
representing the number of years into the projection.  ageG( ) is the group average age at time  .  age ( ) is the age of member   at time  , which is equal to member  ’s current age plus  .    ( ), 
the probability that member   will survive the next   years, can be calculated from the life tables.  
For example, if hypothetical member   is a 60-year-old male,   (3) =          , where   
denotes the probability that a male at age   will survive to age  + 1.  Note that the group ages 
more slowly than an individual because the oldest members of the group are more likely to leave 
the group in the following year. 

2. Estimate the group mortality rate for each year of projection by using the group average age
calculated in the previous step to look up the mortality rate from the selected life table.  If using
gender-specific life tables, we can obtain a weighted average mortality rate using weights that
reflect the gender split for the group.

3. Use the curve fit for the development ratios (Equation 2.4) to project annual incremental future
losses.  First, cumulative losses can be projected year after year using  ( + 1) = ( )(1 +  ( )), starting with the current diagonal as the initial value.  Then the incremental 
losses can be obtained by   ( ) =  ( ) −  ( − 1). 

4. Use the incremental projected losses to compute an implied loss decay rate for each projected
year.
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5. The implied loss decay rate obtained in the previous step includes mortality observed in the

triangle data.  We want to remove this observed mortality in order to avoid double counting when
we apply mortality later in a separate step.  A precise evaluation of the observed mortality for each
development age is impractically cumbersome, so we rely instead on the most recently observed
mortality rate.  This observed mortality rate is subtracted from the implied loss decay rate at every
projected year.  See Appendix C for additional detail.

6. Next we add the group mortality rate estimated in Step 2 to the restated implied loss decay rate
from Step 5.  This gives us the implied loss decay rate adjusted to include mortality.  The subtle
assumption made in this step is that loss decay and life mortality rates are additive.  This
assumption implies that the loss decay comes entirely from the loss of claimants and not from
changes in the per claimant severity.  This is a reasonable assumption for lifetime paid indemnity
since many claimants receive a fixed wage replacement amount.  Medical payments are also often
steady due to routine treatments and medications although there is more variability here for a
number of reasons, including the potential for medical technology and treatments to change over
time, and the impact of claim handling practices around closed/reopened claims for routine
infrequent treatments.  The use of aggregate data should help smooth this volatility to some
degree.

7. The final step is to apply the loss decay rate adjusted for mortality in Step 6 to estimate the future
incremental losses.  The future losses are then summed to produce the unpaid for the accident
year.

2.3.2 Comparison of the gradual and truncated application of mortality 
Using the projected incremental losses from the example in Appendix C, we can compare the 

gradual application of mortality described above against a truncated application.  Figure 2.1 provides 
a visual representation to help understand the differences between the two methods.  In the Appendix 
C example, the average life expectancy of the accident year cohort was computed to be 26 years, and 
that is where the truncated method stops projecting.  On the other hand, the gradual application 
method projects incremental losses that taper down to zero over a period of 50 years.  We can also 
see that losses from the gradual method decrease at a faster rate than losses from the truncation 
method due to the mortality adjustment applied every year.  Comparing the two loss patterns, the 
gradual method also probably provides a more realistic cash flow projection.  The total unpaid 
estimates for the gradual and truncated application are 1,047 and 964, respectively.  It is not surprising 
that the gradual produced a higher unpaid estimate since it projects a longer life expectancy for the 
group (though also recall that the original Shane-Fowle method would have used an inverse power 

Casualty Actuarial Society E-Forum, Winter 2019 9



Enhancements to the Shane-Morelli Method 

which, in practice, would have yielded a higher unpaid estimate than shown here, so this is not a 
representation of the difference between the original method and our proposed enhancements).  In 
practice, the actuary may choose to use either or both of the methods due to any number of 
considerations.  For example, consider a scenario where the case reserves are presumed to be set 
adequately to cover all future payments at some point prior to the ultimate life expectancy of the 
cohort.  In this case, the actuary may opt to use the truncated method for the incurred development, 
while the gradual method may be appropriate for paid development. 

Figure 2.1:  Projected incremental losses using the gradual and truncated 
application of mortality.  Results are from the example presented in Appendix C.  
For clarity, curves are shown as continuous lines, but incremental losses are 
discrete for each projection year. 

3. PRACTICAL CONSIDERATIONS RELATED TO APPLYING THE
MODEL FOR SUBSEQUENT RESERVE REVIEW CYCLES

3.1 UPDATING THE MODEL 

 Since the “tail” analysis may often be one of the most leveraged assumptions in the projection 
to ultimate on long tail lines, it can also drive some of the most significant financial impacts.  
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Subsequent utilizations of the model described above will likely generate ultimate indications that 
differ from prior model results.  This introduces the age-old debate around stability versus 
responsiveness.  To address this concern, we will explore the concept of “locking in” parameters for 
an extended period of time with contemporaneous reasonability checks of those parameters.3 

We propose that when the model is updated, two contemporaneous exercises take place: 

• Exercise 1: Updating the Data

Underlying data is updated, incorporating a new diagonal, or several new diagonals, of paid 
and incurred information as well as updated information on the distribution of claimant 
ages and genders on open claim.  For this exercise, we lock down the parameters that 
generated the original loss development curve (specifically parameters a, b, and r, from 
equation 2.4 above).  We then run through each step of section 2.3.1. with updated claims 
data. The resulting indications will then be driven entirely by underlying data changes and 
not changes to the model’s parameters. 

• Exercise 2: Re-Fitting the Parameters

In a separate analysis, after updating the underlying data per Exercise 1, we go through the 
entire process as outlined in Section 2, above, from selecting a curve to the application of 
mortality.  This should essentially be starting from scratch to determine the best model for 
the data without looking back at the prior results.  In this way, the practitioner will have the 
impacts from updating the underlying data as well as the impacts from updating the model 
parameters.   

For purposes of reducing bias, the practicing actuary should determine ahead of time how long the 
parameter assumptions will be locked.  We believe a time period of three to five years is a reasonable 
starting point.  This locking of the parameters insulates against responding to the year-to-year process 
noise introduced when the underlying data is updated and the curve fit parameters are refit.   

Of course, locking in parameters without monitoring changes in the underlying data would expose 
one to missing changes in underlying trends or material shifts in development patterns.  For this reason 
a determination should be made on a threshold to be used to measure whether or not parameters 
should be re-fit earlier than the predetermined timeframe. This threshold would be measured against 

3 We credit Michael Shane, FCAS for this suggestion. 
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the parameter refit impact, calculated as the total variance from Exercise 2, above, less the process 
variance from Exercise 1 above.   Suggested benchmarks might include a percentage of capital or 
surplus, or perhaps a percentage of the underlying reserves being modeled.  Additionally, if the model 
has been used for multiple years, this parameter refit impact should be monitored over time, since 
consistent directional impacts might indicate the need for a refit sooner than anticipated.  In theory, 
one would expect these parameter refit impacts to oscillate around zero if no systemic change is taking 
place.  

Alternatively, one could use a goodness of fit test with the new data and the locked parameters.  
One other option may be to use a Bayesian framework to assess the new parameters; given a prior 
assumption, test whether the new information suggests that the prior is no longer valid.  The specific 
test to be used is left to the reader.  Again, the determination should be made beforehand around the 
tolerance around the results of this test and the level at which a decision needs to be made on whether 
or not to refit the parameters. When the decision is made to refit the parameters, the model fit 
guidelines presented in Section 2 should again be utilized.  The parameter locking process should also 
be essentially reset at the same time.   

The authors would like to clarify that this approach assumes a single and consistent mortality table.  
In practice, there is likely more than one mortality table that may be used.  We leave it to the reader 
to select the most appropriate mortality table for the purposes of this model.  Discussion around 
which mortality table(s) to utilize are beyond scope of this paper.  Further, note that if the underlying 
mortality table that the practitioner had decided to use for the prior iteration of this model was updated 
or changed, the practitioner should consider utilizing the most up-to-date mortality table in the next 
iteration of this model.    

3.2 DISCUSSION OF RESULTS WITH BUSINESS PARTNERS 

When the data is updated and new indications are generated, the discussion of results with business 
partners should be fairly intuitive.  In theory, the drivers of changes to indications should be directly 
related to changes in open claim attributes, such as the distribution of ages and genders, or changes 
to the run rate of payments (e.g., escalating medical severity).  This is one of the key benefits of the 
original Shane-Fowle model, since the resulting changes to indicated ultimates are often fairly obvious 
and reasonably easy to explain. 
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When the data and the parameters are both updated, the discussions could be more difficult.  The 

completion of both Exercises 1 and 2, above, allow for the same insights as noted above that relate to 
changes in the open claims, leaving the actuary to explain the remaining changes as related to the 
updating of the parameters.  If the parameters were updated due to shifts in the underlying data leading 
to parameter refit variances greater than the selected threshold, it is likely that specific internal or 
external drivers could be identified that explain the need to refit the parameters and the directional 
change to indications.  These drivers might include: 

• Internal – changes to the claim settlement practices, changes to case reserving standards,
new cost or expense mitigation efforts, etc.

• External – changes to medical inflation, changes due to state specific reforms, changes to
the legal environment due to court rulings, changes to life expectancies, etc.

When parameters are updated due to the predetermined passage of time, such specific drivers may be 
more difficult to find, but the impact of the parameter update on the overall indications is also likely 
to be less significant in this case. 

4. CONCLUSIONS

The Shane-Fowle model described an intuitive method for incorporating mortality assumptions
into otherwise standard actuarial methods to improve the resulting reserve estimates and offer insights 
for discussion with management and other business partners.  This model extends and enhances the 
Shane-Fowle method in two ways.  We introduce the use of the gamma curve, which results in a tail 
that is fit based on the underlying data with less subjectivity than the more traditional inverse power 
or exponential curves.  Additionally, we propose a gradual application of mortality to the curve fit, 
which allows for the projection of incremental incurred or paid losses to converge to zero as expected, 
which is not achieved by either a straight curve fit or the truncation method originally proposed. 

This paper has also included a proposal for the regular updating of the model that should facilitate 
discussion with business partners about the underlying cause of changes to estimates.  This 
recommended approach cautions against modifying parameters overly often, proposing instead that 
parameters are updated either at predetermined intervals or when there are truly significant changes 
to the data that suggest the previous model might no longer be appropriate. 
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Supplementary Material 
Included with this paper is a supplemental Excel tool titled WC Tail Model Template. 
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Appendix A 

In this appendix we derive a closed form expression for  ( ), the development portion of the link 
ratio.  Link ratios for aggregate triangles are typically evaluated over multiple accident years, but this 
derivation will focus on the development in only a single accident year.  Our analysis will impose only 
one condition: the incremental losses will decay with development age at a constant rate,  .  We will 
derive the formula here on a discrete basis, but the continuous analogue is straightforward.   

We denote the cumulative loss as of age   as  ( ).  The incremental loss from age  − 1 to   is  ( ).  In equation form,  ( ) =  ( ) −  ( − 1).  The link ratio, also known as the age-to-age loss 
development factor, is defined as  ( ) =  ( + 1)  ( )⁄ .  We are interested in the development 
ratio  ( ), which is equal to  ( ) − 1.  It can be shown easily that  ( ) =  ( + 1)  ( )⁄  (A1) 

Next we define the incremental loss decay rate   in equation form: 

=   ( ) −  ( + 1) ( ) = 1 − ( + 1) ( ) (A2) 

Recall that the decay rate is constant, which means that the incremental loss decreases by the same 
percentage of the previous incremental loss, regardless of the age.  Equation A2 can be rearranged to 
yield the following expression: ( + 1) = (1 −  ) ( ) = (1 −  )  (1), (A3) 

where the last equality comes from a recursive relation made possible by the assumption that   is 
constant.  Next we recognize that  ( ) is simply the sum of  ’s: 

 ( ) =  ( ) = ( + 1) =  (1 −  )  (1), (A4) 

where the last equality utilizes Equation A3.  The right side of Equation A4 is the geometric series 
with the well-known solution 

 ( ) =  (1)  1 − (1 −  )  . (A5) 

We next combine Equation A1 and A3 to get 
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 ( ) = (1 −  ) (1) ( )  , (A6) 

and substituting Equation A5 for  ( ), 

 ( ) = (1 −  ) (1)(1) 1 − (1 −  )    . (A7) 

Finally, cancelling the  (1) terms and rearranging yields the formula 

 ( ) =  (1 −  )1 − (1 −  )  . (A8) 
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Appendix B 

In this appendix, we examine the inverse power and exponential curve fits for the development 
ratio of a loss pattern where the incremental losses are subject to a constant rate of decay.  We are 
specifically interested in how the quality of fit responds as the decay rate changes.  We conduct the 
analysis using a simple hypothetical loss development for a single accident year in which incremental 
losses start at 1,000 at age one and decrease annually by a decay rate of  .  For example, a decay rate 
of 10% produces the following incremental and cumulative loss patterns.  Note that we are only 
looking at development past the first ten years in keeping with the lifetime scope as identified in 
Section 1.2.   

Development 
Age, 

Incremental 
Loss,  ( ) 

Cumulative 
Loss,  ( ) 

Development 
Ratio,  ( ) 

10 387 6,513 0.054 
11 349 6,862 0.046 
12 314 7,176 0.039 
13 282 7,458 0.034 
14 254 7,712 0.030 
15 229 7,941 0.026 

Decay rate   = 0.1 

Next, the development ratio as a function of the development age was fit to the inverse power curve,  ̂( ) =    , (B1) 

where   is the scale parameter. The more interesting parameter is  , which governs the rate of decay 
of the inverse power curve.  The fitting was done by regression in log space using only data points for 
development years 10-29.  The same data was also fit to the exponential curve,  ̂( ) = . (B2) 

Parameter   controls the decay of the exponential curve.  The fits to the inverse power and exponential 
curve were conducted for a range of decay rates.  The quality of fit was measured with the R2 metric 
in log space, but it was also confirmed that measuring R2 in the original dimensions yields similar 
conclusions. The results are summarized below. 
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Decay Inverse Power Exponential 
Rate, R2 R2 

0.00 1.000 -1.000 1.000 0.155 -0.054 0.980 
0.05 2.716 -1.537 0.997 0.157 -0.084 0.993 
0.07 4.519 -1.801 0.995 0.161 -0.099 0.995 
0.10 10.849 -2.248 0.991 0.170 -0.124 0.998 
0.15 60.884 -3.116 0.986 0.193 -0.172 0.999 
0.20 447.933 -4.119 0.983 0.226 -0.228 1.000 

At zero decay rate, the inverse power curve provides a perfect fit with  = −1.  The response to an 
increasing decay rate is that  becomes more negative in an attempt to keep up with the faster decay, 
but this comes at the cost of the goodness of fit, as indicated by the decreasing R2 value.  On the other 
side of the table, it can be seen that the exponential is an inferior fit to the inverse power at a decay 
rate of zero, judging by the R2 value.  But the exponential’s fit improves as the decay rate increases to 
the extent that above a decay rate of 7%, the exponential is better than the inverse power.   
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Appendix C 

This appendix illustrates the projection of future losses using the gradual application of mortality as 
described in Section 2.3.  This example uses hypothetical but realistic paid loss and claimant data.  
Suppose that we have the following information for an accident year: 

• Cumulative loss at latest diagonal is 10,000.
• Development age at latest diagonal is 20 years.
• The development ratio has been fit to the curve in Equation 2.4, and the parameters have been

estimated to be: = 0.4, = −1.37,  = −0.00165.   

The table below shows the calculations for this accident year.  Note that some figures are rounded for 
display. 

Proj 
Year 

Avg 
Age ageG( ) 

Mort 
Rate 

Dev 
Age 

Fitted 
LDF   ( ) 

Cumul 
Loss  ( ) 

Increm 
Loss 

Loss 
Decay 
Rate 

Adj 
Loss 

Decay 

Adj 
Increm 
Loss 

[A] [B] [C] [D] [E] [F] [G] [H] [K] [L]
1 60.6 0.0056 20 1.0064 10,000 64 64 
2 61.5 0.0062 21 1.0060 10,064 60 0.060 0.061 60 
3 62.4 0.0068 22 1.0056 10,124 57 0.058 0.059 56 
4 63.4 0.0075 23 1.0052 10,180 53 0.055 0.057 53 
5 64.3 0.0082 24 1.0049 10,234 51 0.053 0.056 50 
6 65.2 0.0088 25 1.0047 10,284 48 0.051 0.055 48 
7 66.1 0.0094 26 1.0044 10,332 46 0.049 0.053 45 

45 94.0 0.1695 64 1.0012 11,275 14 0.022 0.186 2 
46 94.6 0.1872 65 1.0012 11,288 13 0.022 0.203 1 
47 95.3 0.2039 66 1.0012 11,302 13 0.021 0.219 1 
48 95.9 0.2039 67 1.0011 11,315 13 0.021 0.219 1 
49 96.5 0.2204 68 1.0011 11,328 13 0.021 0.235 1 
50 97.1 0.2394 69 1.0011 11,340 12 0.020 0.254 0 

[A] Projection period in years.
[B] Projected average age of the group at the start of year  , calculated with Equation 2.5.  This

calculation requires a selected life table and the distribution of claimant ages.
[C] Mortality rate looked up from the life table using the age from column [B].  This represents the

probability that a person will die within the next year.
[D] Development age at the start of year   in years, starting with age at the latest diagonal.
[E] = 1 + 0.4[D]-1.37exp(-0.00165[D]) is the fitted link ratio using the given fit parameters with

Equation 2.4.
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[F] = [F previous]*[E previous] is the cumulative loss at the start of year  , obtained from the curve
fit.  First row is the latest diagonal.

[G] = [F next] – [F] is the incremental loss predicted for projection year  .
[H] = 1 – [G]/[G previous] is the implied loss decay rate between year  − 1 and year  .  Note that

there will be discrepancies due to rounding in the table above.
[K] = [H] + ([C] – 0.0056) is the implied loss decay rate adjusted for mortality.  The 0.0056 value is

the latest observed mortality rate (first row of [C]), which is removed from the adjustment to
avoid double counting mortality.

[L] = [L previous]*(1 – [K]) is the adjusted incremental loss.

The sum of column [L] is equal to 1,047.  This is the total unpaid estimate for the accident year.
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 Appendix D 

This appendix provides a comparison of reserving estimates using three different techniques: the 
enhanced Shane-Fowle method presented in this paper, the original Shane-Fowle method and a 
traditional method.  The three methods were applied to example workers’ compensation medical paid 
data from industry sources.  All three methods utilized the same LDFs, which were five-year volume 
weighted averages excluding the first ten development years.  The modeling distinctions among the 
three methods are as follows. 

Enhanced Shane-Fowle:  the gamma curve (Equation 2.4) was fit to the LDFs, and mortality was 
gradually applied as described in Section 2.3. 

Original Shane-Fowle:  the inverse power curve was used to fit the LDFs, and the curve was truncated 
at the life expectancy according to the average age of the accident year cohort. 

Traditional: LDFs were used without curve fitting, and a tail factor was selected based on the 
incurred/paid ratio at the end of the triangle. 
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The table below shows the cumulative development factors (CDFs) and unpaid estimates using the 
three methods. 

Enhanced Shane-Fowle Shane-Fowle Traditional 
Acc 
Year 

Cumul. 
Paid ($M) CDF Unpaid 

($M) CDF Unpaid 
($M) CDF Unpaid 

($M) 
1985 984 1.031 31 1.031 30 1.030 30 
1986 1,133 1.035 40 1.034 38 1.033 37 
1987 1,326 1.039 51 1.037 49 1.037 49 
1988 1,530 1.041 63 1.041 62 1.040 61 
1989 1,784 1.045 80 1.045 79 1.044 78 
1990 2,029 1.048 98 1.047 96 1.048 97 
1991 2,180 1.053 115 1.053 116 1.051 112 
1992 1,741 1.058 101 1.057 99 1.055 97 
1993 1,491 1.062 93 1.062 93 1.060 89 
1994 1,449 1.068 99 1.068 98 1.065 95 
1995 1,591 1.077 122 1.074 118 1.072 115 
1996 1,681 1.081 136 1.077 130 1.081 136 
1997 1,975 1.091 180 1.087 171 1.091 179 
1998 2,585 1.100 258 1.094 243 1.101 261 
1999 2,963 1.110 325 1.106 313 1.113 334 
2000 3,486 1.121 422 1.114 396 1.127 442 
2001 5,225 1.132 691 1.125 652 1.142 741 
2002 5,342 1.149 798 1.141 756 1.158 842 
2003 4,900 1.166 815 1.159 778 1.175 856 
2004 3,915 1.184 720 1.177 695 1.194 760 
2005 3,505 1.207 727 1.204 715 1.217 762 
Total 5,967 5,727 6,171 

In comparing the enhanced and the original Shane-Fowle estimates, it is interesting to recognize 
that the two enhancements made to the Shane-Fowle method had opposite effects on the unpaid 
estimate.  The first enhancement of using the gamma curve in lieu of the inverse power lowered the 
estimate of future development because the exponential component of the gamma made the tail 
thinner.  The second enhancement of the gradual application of mortality increased the estimate of 
development by projecting a longer life expectancy for the group.   
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Here we see an example where the three methods produce results that are not materially different 

from each other. This will not always be the case.  For example if the gamma fit is very close to the 
inverse power, the first enhancement would not have much impact.  If at the same time there is a wide 
distribution of claimant ages, the second enhancement would make a significant difference.  The 
combined effect would be an overall material difference.  
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	Risk-Based Capital Line of Business Diversification:
	Current RBC Approach vs. Correlation Matrix Approach
	Report 13 of the CAS Risk-Based Capital (RBC) Research Working Parties
	Issued by the RBC Dependencies and Calibration Working Party (DCWP)
	Abstract:  The NAIC RBC Formula treatment of line of business (LOB) diversification (referred to in this paper as the CoMaxLine% Approach) is very different from the Solvency II Standard Formula treatment. In this paper we show that, notwithstanding the differences, the NAIC RBC Formula, the correlation matrix approach used in Solvency II and the Herfindahl-Hirschman Index (HHI), widely used in economics, all produce similar risk-based capital underwriting risk values, for most companies. 
	To the extent that there are differences between the CoMaxLine% and correlation matrix approaches, the differences are due, in part, to the fact that CoMaxLine% calculates diversification based on premium or reserve volume while the correlation matrix approach calculates diversification based on premium risk or reserve risk. To examine this feature of the RBC Formula, we also apply the CoMaxLine% idea to risk by LOB rather than volume by LOB. We refer to that as CoMaxLine%-Risk. The differences between CoMaxLine%-Risk and the correlation matrix approach are smaller than the differences to the RBC CoMaxLine% Approach.
	This is one of several papers being issued by the Risk-Based Capital (RBC) Dependencies and Calibration Working Party.
	Keywords:  Risk-Based Capital, Capital Requirements, Analyzing/Quantifying Risks, Assessing/Prioritizing Risks, Integrating Risks, dependency, correlation.
	1. INTRODUCTON
	1.1 Terminology, Assumed Reader Background and Disclaimer

	The Property & Casualty NAIC RBC Formula (“RBC Formula”) has six main risk categories, R0 – R5. Underwriting (UW) risk is represented in two of these categories, R4 and R5, reserve risk and premium risk, respectively.  In this work, we focus on the UW risk elements, R4 and R5. Following the RBC Formula, we calculate the UW portion of the Company Action Level RBC Value, as the square root of R4 squared plus R5 squared and refer to the resulting quantity as the RBC UW Risk Value. 
	R4 and R5 are first calculated by line of business (LOB). The all-lines R4, the reserve risk charge, is the sum of the R4 risk charges by LOB, multiplied by a Loss Concentration Factor (LCF). The all-lines R5, the premium risk charge, is the sum of the R5 risk charges by LOB, multiplied by a Premium Concentration Factor (PCF). 
	For each company, the LCF calculation uses the ratio of (a) the largest of the 19 LOB reserves, to (b) the total all-lines reserves. Similarly, for each company, the PCF calculation uses the ratio of (a) the largest of the 19 LOB written premiums, to (b) the total all-lines written premium. The LCF and PCF are values between 0.0 and 1.0 that represent the degree of concentration across LOBs, within R4 and R5, respectively. A company with greater diversification across its LOBs will have smaller LCF and PCF values than a less diversified company. 
	We refer to this method of measuring concentration as the Company Maximum Line Percentage of Business or the “CoMaxLine% Approach.” We refer to the ratios computed as the CoMaxLine%PREMIUM and the CoMaxLine%RESERVES, or CoMaxLine% generically for either.  
	The CoMaxLine% Approach in the NAIC RBC Formula is very different in concept from the Solvency II Standard Formula correlation matrix approach. In this paper we show that, notwithstanding the conceptual differences, the NAIC RBC Formula, the correlation matrix approach used in Solvency II and the Herfindahl-Hirschman Index (HHI), widely used in economics to measure concentration, produce similar RBC UW Risk Values, for most companies.
	This paper is focused solely on a comparison of the RBC UW Risk Values produced by several methods of reflecting diversification among lines of business. In this paper we do not evaluate the CoMaxLine% parameters or the parameters for other methods of measuring concentration. 
	In Section 2. we describe the alternative diversification approaches. In Section 3, we compare the UW Risk RBC Values, by company, that result from the different approaches.
	This paper assumes the reader is generally familiar with the property/casualty RBC Formula.
	In this paper we use the term “diversification” rather than its complement “concentration” unless the context makes the alternative clearer.
	Although the term “multi-line insurance company” is commonly used to refer to an insurer that is well-diversified across LOBs, in this paper we will use the term more broadly to refer to any company for which the diversification credit is greater than zero.
	References to “we” and “our” mean the principal authors of this paper. 
	The “working party” and “DCWP” refer to the CAS RBC Dependencies and Calibration Working Party.
	The analysis and opinions expressed in this report are solely those of the principal authors, and are not those of the authors’ employers, the Casualty Actuarial Society, or the American Academy of Actuaries.
	Nether the authors nor DCWP make recommendations to the NAIC or any other body.  This material is for the information of CAS members, policy makers, actuaries and others who might make recommendations regarding the future of the P&C RBC Formula.  In particular, we expect that the material will be used by the American Academy of Actuaries.
	This paper is one of a series of articles prepared under the direction of the DCWP.
	2. Alternative Diversification Formulas
	RBC Diversification Approach
	The RBC Formula uses the CoMaxLine% Approach and a maximum diversification credit (MDC) of 30% to calculate PCFs and LCFs as follows:
	PCFCOMPANY = 0.7 + 0.3 * CoMaxLine%PREMIUM, COMPANY
	LCFCOMPANY = 0.7 + 0.3 * CoMaxLine%RESERVES, COMPANY
	These can also be written as:
	PCFCOMPANY = 1.0 - 0.3 * (1.0 - CoMaxLine%PREMIUM, COMPANY) 
	LCFCOMPANY = 1.0 - 0.3 * (1.0 - CoMaxLine%RESERVES, COMPANY)
	Thus, the company diversification credit is 0.3 * (1 - CoMaxLine%). 
	For mono-line companies, CoMaxLine% and the PCF/LCF are 1.00. The maximum credit of 30% would be achievable only if there were an infinite number of LOBs. Since there are 19 statutory lines of business used in the RBC Formula the smallest value of CoMaxLine% is 1/19 = 5.3%, the smallest value of PCF or LCF is 71.6% (0.7 + 0.3 * 5.3%), and the maximum achievable diversification credit is 28.4%, (100% - 71.6%).
	Alternatives to the CoMaxLine% Approach
	Looking at the treatment of diversification in regulatory capital formulas developed in other regulatory regimes, the UK Individual Capital Adequacy Standard (UK ICAS) can be thought of as the simplest. In UK ICAS there is no premium or reserve risk diversification adjustment. Instead, LOB risk factors were selected to represent the LOB risk when combined with a typical LOB distribution.
	The CoMaxLine% Approach can be viewed as one step more complex than the UK ICAS in that it recognizes different levels of diversification.
	From the risk theory perspective, the natural approach to diversification is to combine risk charges by LOB using correlation factors between each pair of LOBs. Individual company economic capital models (called ‘internal models’ in Solvency II) often use this pairwise correlation matrix approach. The Solvency II Standard Formula uses the pairwise correlation matrix approach. The correlation matrix approach, if applied in the RBC Formula, would require 171 parameters since 19 LOBs are used. In contrast to the correlation matrix approach, the RBC Formula CoMaxLine% Approach might be described as simple, perhaps too simple, and ad hoc. 
	One difference between the CoMaxLine% Approach and the correlation matrix approach, as normally applied, is that the degree of diversification in the correlation matrix approach is based on risk by LOB while the degree of diversification in the CoMaxLine% Approach is based on volume (premium amount or reserve amount) by LOB. Therefore, as another alternative to CoMaxLine% and correlation matrix approaches, we also consider a CoMaxLine%-Risk Approach, in which we apply the CoMaxLine% Approach to LOB risk rather than LOB volume, when calculating the LCF and PCF for a company.
	Finally, the Herfindahl-Hirschman Index (HHI) is widely used by economists to measure concentration. HHI considers the relative proportions of all LOBs, the largest, second largest, third largest, and so on. HHI is more complex than the CoMaxLine% Approach in that it recognizes the extent of diversification for the 2nd, 3rd, 4th, etc. largest LOBs. HHI is simpler than the correlation matrix approach in that HHI does not recognize differences in the extent of the diversification between different pairs of LOBs.
	3. Effect of Alternative Diversification Formulas
	3.1 Correlation vs. CoMaxLine%
	3.2 Correlation Matrix versus CoMaxLine%-Risk
	3.3 HHI vs. CoMaxLine%
	3.4 Further Observations

	We now look at the extent to which the different methods of measuring diversification for R4 and R5 produce different RBC UW Risk Values. For each company that filed a 2010 Annual Statement, we calculate the all-lines value for R4 and for R5 before diversification using the 2010 RBC Formula. We then use each of the following approaches to calculate the effect of diversification across LOBs, arriving at R4 and R5, after diversification, for each company:
	a. CoMaxLine% based on volume (as applied in the NAIC RBC Formula)
	b. CoMaxLine%-Risk
	c. Correlation matrix 
	d. HHI
	Using the values of R4 and R5, after diversification, for each company, for each of the four approaches, we calculate the RBC UW Risk Value. Appendix 1 provides more details regarding the data used and the simplifying steps taken in applying the RBC Formula with each of the four diversification approaches.
	In this section, we compare the results of using the CoMaxLine% Approach (based on volume) to the results of using the correlation matrix approach. 
	To apply the correlation matrix approach, we construct a set of pairwise correlation factors, called a correlation matrix. Following the Solvency II approach, we use values of 25% or 50% for most of the 171 LOB-pairs. For several LOB-pairs that we consider very highly correlated we select correlation factors of 75% or 100%. 
	Appendix 1/Exhibit 1 shows our correlation matrix. Appendix 1/Exhibit 2 shows the Solvency II Standard Formula LOB correlation matrix, for comparison. 
	For each company with a 2010 Annual Statement,  we apply both the CoMaxLine% Approach and the correlation matrix approach to produce the two alternative RBC UW Risk Values. The company-by-company differences between the two diversification approaches have two parts: 
	 the overall industry-wide difference, and 
	 the remaining difference for each individual company after normalizing to remove the industry-wide difference. 
	We measure the first part by computing the total US industry-wide RBC UW Risk Value that each approach produces, using the 30% MDC in the CoMaxLine% Approach and using the parameters specified in Appendix 1 / Exhibit 1 in the correlation matrix approach. We find that the industry-total RBC UW Risk Value is $106.2 billion with the CoMaxLine% Approach and $100.6 billion with the correlation matrix approach. We find that increasing the 30% MDC to 39.1% in the CoMaxLine% Approach decreases the RBC UW Risk Value to $100.6 billion, equal to the correlation matrix-based RBC UW Risk Value.  
	In this analysis, we are more interested in the second part, the differences in diversification credit by company that remain after controlling for the overall effect on the total industry-wide RBC UW Risk Value. Therefore, we look at the company-by-company differences between the CoMaxLine% Approach with a MDC of 39.1%, and the correlation matrix approach using the parameters specified in Appendix 1 / Exhibit 1.
	Looking at the differences, we observe a sizable number of cases where the UW risk values are the same regardless of the diversification structure. These zero differences arise for companies that have zero UW risk (i.e. due to having zero premium and reserves in all lines) and for mono-line companies., We focus on multi-line companies, where the choice of diversification formula can affect the RBC UW Risk Value. The histogram in Table 3-1 below includes multi-line companies only and shows the distribution of percentage differences in RBC UW Risk Values by company.
	Table 3-1
	2010 RBC UW Risk Value Differences by Company
	Distribution of Number of Companies 
	Correlation matrix approach versus CoMaxLine% Approach (39.1% MDC) 
	(Multi-line Companies)
	/
	X-axis = Percentage difference between RBC UW Risk Values based on CoMaxLine% Approach and RBC UW Risk Values based on correlation matrix approach. 
	Y-axis = Number of companies, in buckets of 1% difference in RBC UW Risk Value.
	We find that:
	 For 33% of companies, with 3% of total industry-wide RBC UW Risk Value, the difference between diversification approaches is zero because they have zero UW risk (14.8%) or because they are mono-line (18.6%). These companies are excluded from the histogram.
	 For 20% of the multi-line companies, with 18% of the industry-wide multi-line RBC UW Risk Value, the differences are less than ±1%. 
	 For 69% of the multi-line companies, with 80% of the industry-wide multi-line RBC UW Risk Value, the differences are less than ±5%. 
	 The differences are greater than 10% for only 10% of the multi-line companies constituting about 9% of the industry-wide multi-line RBC UW Risk Value.
	 Considering all companies, even those companies which are mono-line, or which have zero premium and reserves, we find that for 46% of all companies, with 20% of the total RBC UW Risk Value, the differences are less than ±1%. For 79% of all companies, with 79% of the total RBC UW Risk Value, the differences are less than ±5%.
	Differences of 5% might be considered small as a practical matter. In addition, we consider the differences to be small for several statistical reasons. First, the differences are not large compared to the inherent accuracy of the risk factors which are used to calculate R4 and R5 for each individual LOB. Moreover, the systematic variation in LOB risk factors due to LOB-size, LOB-age, and other factors discussed in DCWP Reports 6-9 is larger than the variation shown here from using a different diversification approach. Finally, correlation matrix values have inherent uncertainty, particularly in that the values are largely calibrated by expert judgment with only limited data.
	The difference between the correlation matrix approach and the CoMaxLine% Approach is due, in part, to the fact that the degree of diversification in the correlation matrix approach is based on risk by LOB while the degree of diversification in the CoMaxLine% Approach is based on volume (premium amount or reserve amount) by LOB. 
	In this section we evaluate the effect of that difference by comparing CoMaxLine%-Risk to the correlation matrix approach, company-by-company. 
	First, to calibrate the CoMaxLine%-Risk approach, we determine that with a MDC of 44.4% the industry-wide RBC UW Risk Value produced by CoMaxLine%-Risk is the same as the total industry-wide RBC UW Risk value from the correlation matrix approach ($100.6 billion). Then, as we did with the NAIC CoMaxLine% Approach, we examine the company-by-company differences between CoMaxLine%-Risk and the correlation matrix approach that remain when both produce the same total industry-wide RBC UW Risk Value.
	The histogram in Table 3-2, below, shows the distribution of differences, company-by-company, in the same format as Table 3-1. As was the case in Table 3-1, Table 3-2 excludes mono-line companies and companies with zero RBC UW Risk Values.
	Table 3-2
	2010 RBC UW Risk Value Differences by Company
	Distribution of Number of Companies 
	Correlation matrix approach versus CoMaxLine%-Risk Approach (44.4% MDC) 
	(Multi-line Companies) 
	/
	X-axis = Percentage difference between RBC UW Risk Values based on CoMaxLine%-Risk Approach and RBC UW Risk Values based on correlation matrix approach. 
	Y-axis = Number of companies, in buckets of 1% difference in RBC UW Risk Value.
	Comparing Table 3-1 and Table 3-2 we see that the percentage of multi-line companies with CoMaxLine%-Risk within 5% of the correlation matrix approach is 76%, 7 percentage points more than with the CoMaxLine% Approach. Also, the percentage of RBC UW Risk Value of multi-line companies with CoMaxLine%-Risk within 10% of the correlation matrix approach is 93%, 3 percentage points more than with the CoMaxline% approach.
	In this section, we compare the results of using the CoMaxLine% Approach to the results of using the HHI approach. In Appendix 1, we describe how we calculate the RBC UW Risk Values using the HHI approach.
	For each company with a 2010 Annual Statement, we apply both the CoMaxLine% Approach and the HHI approach to produce the RBC UW Risk Values by company. Similar to the discussion in Section 3.1, the differences company-by-company between the two diversification approaches have two parts, and we are interested in the differences that remain after controlling for the overall difference in the industry-wide RBC UW Risk Values. We again focus on the companies with non-zero differences in RBC UW Risk Values.
	The industry-wide RBC UW Risk Value produced by the HHI approach, with a MDC of 30%, is $101.5 billion. The industry-wide RBC UW Risk Value produced by the CoMaxLine% Approach would be $101.5 billion if the MDC were increased from 30% to 37.7%.  
	The histogram in Table 3-3, below, shows the distribution of differences, company-by-company, in the same format as Tables 3-1 and 3-2. As was the case in those tables, Table 33 excludes mono-line companies and companies with zero RBC UW Risk Values.
	Table 3-3
	2010 RBC UW Risk Value Differences by Company
	Distribution of Number of Companies
	HHI approach versus CoMaxLine% Approach (37.7% MDC)
	(Multi-Line companies)
	/
	X-axis = Percentage difference between RBC UW Risk Values based on CoMaxLine% Approach and RBC UW Risk Values based on HHI approach.
	Y-axis = Number of companies, in buckets of 1% difference in RBC UW Risk Value.
	We find that:
	 33% of all companies are excluded from the histogram because they are not multi-line.
	 For 28% of the multi-line companies, with 21% of the industry-wide multi-line RBC UW Risk Value, the differences are less than ±1%. 
	 For 97% of the multi-line companies, with 99% of the industry-wide RBC UW Risk Value, the differences are less than ±5%. 
	 There are no companies where the differences are greater than 10%. 
	 Considering all companies, even those companies which are mono-line, or which have zero premium and reserves, we find that for 52% of all companies, with 23% of the total RBC UW Risk Value, the differences are less than ±1%. For 97% of all companies, with 99% of the total RBC UW Risk Value, the differences are less than ±5%.
	An analysis of why the three methods discussed in this report produce similar results is beyond the scope of this paper. However, in this section we discuss some of the factors that contribute to that result.
	First, the diversification credits are zero for mono-line companies, regardless of method. 
	Second, the correlation matrix values for LOB-pairs are not highly varied. It is possible that the differences would be wider if the correlation matrix values were more varied, but we have not explored that possibility.
	Third, the diversification element is only one part of the RBC UW Risk Value. The dollar weighted average diversification credit for all multi-line companies is 20%. Differences in diversification credit are thus “diluted” in the total calculation.  For multi-line companies with little diversification credit, even large percentage differences in diversification credit have a small effect on total RBC UW Risk Value. 
	Finally, the diversification formula has the greatest effect on the most diversified companies, and we find that the differences between the CoMaxLine% Approach and the correlation matrix approach decrease as company diversification increases.
	Appendix 2, Exhibit 3, Box A, shows the RBC UW Risk Value, the dollars of diversification credit and the average diversification credit for all companies combined and for companies within each company diversification band. Box B shows the same information by RBC UW Risk Value. Boxes C and D show the corresponding information based on the CoMaxLine%Risk measure of diversification.
	In Appendix 2, Exhibit 4 we show the proportions of companies where UW Risk RBC Values varies by 5% or less, 10% or less and 25% or less, for the CoMaxLine% Approach versus the correlation matrix approach, by company size band (measured by RBC UW Risk Value) and by company diversification band. In Appendix 2, Exhibit 4 we also show the proportion of companies where the dollar diversification amount varies by 5% or less, 10% or less and 25% or less, for the CoMaxLine% Approach versus correlation matrix approach, by company size band (measured by RBC UW Risk Value) and by diversification band.
	We say the CoMaxLine% Approach is closer to the correlation matrix approach for size/diversification cells where the proportion of companies within the 5% variation, 10% variation and 25% variation bands is higher. We see that RBC UW Risk Value from the CoMaxLine% Approach is closer to the correlation matrix approach for the larger companies (Box C) and for the more diversified companies (Box D). 
	In Appendix 2, Exhibit 5 we show the data for CoMaxLine%-Risk versus the correlation matrix approach as we did in Exhibit 4 for CoMaxLine% versus the correlation matrix approach. We see that CoMaxLine%-Risk is generally closer to the correlation matrix approach than was the case for the CoMaxLine% Approach.
	4. GLOSSARY
	US NAIC Annual Statement
	Annual Statement
	The NAIC measure of concentration, the percentage of a company’s total premium or reserves from its single largest LOB.
	CoMaxLine%
	The NAIC method of determining diversification credit across LOBs.  It is (1.0 – CoMaxLine%) times 30%.
	CoMaxLine% Approach
	CoMaxLine% Approach based on risk charge size by LOB rather than premium or reserve volume by LOB.
	CoMaxLine%-Risk Approach
	Correlation
	We use that term to characterize methods of combining LOB risk charges to produce an all-lines risk charge or combining premium risk and reserve risk to produce total risk using ‘correlation factors.’
	Correlation Factor
	A factor used to express the relationship between individual risks to produce the risk parameter of interest for the combined risk.
	A matrix of correlation factors, typically one factor for each pair of LOBs.
	Correlation Matrix
	Risk-Based Capital Dependency and Calibration Working Party of the Casualty Actuarial Society
	DCWP
	LCF
	Loss Concentration Factor, as calculated in the 2010 RBC Formula, applicable to reserve risk.
	Schedule P Lines of Business used in the RBC Formula. Note that three pairs of Schedule P LOBs are combined; occurrence and claims Other Liability (Line H), occurrence and claims-made Products Liability (Line R), and Reinsurance: nonproportional property and Reinsurance: nonproportional financial (Lines P and N, respectively). 
	LOB
	An element of the RBC Formula that reduces the risk charge if unfavorable experience can be offset by increases in income on loss sensitive business.
	Loss sensitive business adjustment
	Maximum Diversification Credit, 30% in the 2010 RBC Formula
	MDC
	National Association of Insurance Commissioners
	NAIC
	For each company and LOB, premium risk and reserve risk are based 50% on factors calibrated on industry data and 50% on industry data adjusted by the ratio of company experience to industry experience for the most recent 10 years (if 10 years of company data is available, otherwise, there is no adjustment).
	Own company adjustment, or
	50/50 rule
	PCF
	Premium Concentration Factor as calculated in the 2010 RBC Formula.
	Asset Risk – Insurance affiliate investment and (non-derivative) off-balance sheet risk.
	R0
	Asset Risk – Fixed Income Investments
	R1
	Asset Risk – Equity
	R2
	Credit risk (non-reinsurance plus one half of Reinsurance Credit Risk) 
	R3 
	See Reinsurance Credit Risk
	R3-Reinsurance Credit Risk
	R4
	UW – Reserve risk plus one half of reinsurance credit risk, including growth risk.
	R5
	UW – Premium risk, including growth risk.
	Risk-Based Capital
	RBC
	The 2010 NAIC Property-Casualty RBC Formula 
	RBC Formula or Formula
	The Company Action Level amount calculated from the RBC Formula.
	RBC Value
	The Company Action Level amount calculated for the UW risk components of the RBC Formula.
	RBC UW Risk Value
	An element of R3, representing both credit risks related to reinsurance financial capacity and the difference in premium and reserve risk between companies with varying levels of ceded reinsurance. 
	Reinsurance Credit Risk
	EU regulation and related implementing measures.
	Solvency II
	A formula determining capital requirements under Solvency II, RBC or other regulatory capital systems.
	Standard Formula
	Underwriting
	UW
	Underwriting risk – the combination of premium risk and reserve risk.
	UW risk
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	Appendix 1 - Calculation of 2010 RBC UW Risk Values by Company
	In Section 3, we compare the RBC UW Risk Values from the RBC Formula with the RBC UW Risk Values from alternative formulas in which we replace the CoMaxLine% calculation with correlation matrix, CoMaxLine%-Risk and HHI calculations. We use 2010 Annual Statement data by company to determine the company-by-company RBC UW Risk Values as described below.
	For each LOB individually:
	 We obtain 2010 net written premium and net loss and loss adjustment expense reserves by LOB from the Annual Statement.
	 We use Schedule P Part 2 reserve runoff to calculate the own-company adjustment factors for reserve risk.
	 We use Schedule P Part 1 LRs to calculate the own-company adjustment factors for premium risk.
	 We use Schedule P Parts 7A and 7B to calculate the loss-sensitive contract adjustment for premium risk.
	 For each LOB, we apply the premium risk factor, the reserve risk factor, the premium and reserve investment income offsets, the own company adjustments, and loss sensitive contract adjustment, in accordance with the 2010 RBC Formula.
	 The premium calculation includes extra steps in that premium risk factors by LOB are converted to the premium risk charge by LOB using the all-lines company expense ratio.
	All LOBs combined
	 We determine the all-lines combined risk values for premium and reserves using the PCFs and LCFs by company, respectively. 
	As explained in Section 2, for each company, the PCFs and LCFs will be values between 71.6% and 100.0% using the CoMaxLine% Approach. 
	Simplifications
	 We do not apply the growth risk charge
	 We do not apply the own-company adjustment for 2-Year LOBs, as the necessary data is not in Schedule P.
	 The reserve risk component does not include the R3-Reinsurance Credit Risk amount that is transferred to R4.
	Correlation Matrix Approach
	To estimate the RBC UW Risk Values for the correlation matrix approach we first calculate the results by LOB as described above, using all-lines company expenses for each LOB.
	We combine the LOB risk charges applying correlation matrix, Appendix 6A/Exhibit 6-1 to the risk charges by LOB.
	CoMaxLine%-Risk Approach 
	To estimate the RBC UW Risk Values for the CoMaxLine%-Risk Approach we first calculate the premium risk and reserve risk values by LOB in accordance with RBC Formula as described above for the correlation matrix approach. 
	We calculate CoMaxLine%-Risk using the dollar amounts of premium risk and reserve risk, by LOB, rather than using the dollar amounts of premium and reserves.
	We calculate the PCFs/LCFs from the CoMaxLine%s-Risk.
	HHI Alternative
	To estimate the RBC UW Risk Values for the HHI approach we first calculate the results by LOB as described above. 
	We calculate the PCFs/LCFs using the HHI values rather than CoMaxLine%. The HHI concentration value equals the sum of the squares of the LOB shares of total. For example, if there is only one LOB, HHI is 1.0, as is the case for CoMaxLine%. With two lines split 25% and 75% HHI is 0.25 ^2 plus 0.75^2 or 0.625 compared the CoMaxLine% of 0.750, i.e., it shows less concentration/more diversification. With three lines split 50%, 25% and 25% HHI is 0.50^2 plus 0.25^2 plus 0.25^2 or 0.375, less concentration/more diversification than the CoMaxLine% of 0.5.
	To combine the LOBs, we replace the CoMaxLine%s with the HHI values.
	 For each LOB, we apply the premium risk factor, the reserve risk factor, the premium and reserve investment income offsets, the own company adjustments, and loss sensitive contract adjustment, in accordance with the 2010 RBC Formula.
	Company Selection
	There are 2,434 companies with 2010 Annual Statements in our data set. Of those, 50 companies have significantly negative premium or reserves for some LOBs. The RBC Formula substitutes zero for negative values. For our work, we eliminate those 50 companies, leaving 2,384 companies in our analysis. Of those, 360 have zero UW Risk RBC and 402 have zero diversification credit in the CoMaxLine%, CoMaxLine%-Risk and HHI calculations. The remaining 1,622 companies provide information on how the diversification formulas affect RBC UW Risk Values.
	Appendix 1/Exhibit 1
	Selected DCWP Correlation Matrix – Applied By the DCWP to US NAIC LOBs for this Study
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	Note: Off diagonal values other than 25%, 50% are in bold.
	LOB Definitions
	Abbreviation
	LOB
	Abbreviation
	LOB
	Abbreviation
	LOB
	Int’l
	International
	SL
	Special Liab
	HO
	Homeowners/Farmowners
	Re Prop
	Reinsurance-Fin and Prop
	OL
	Other Liab-Occ and CM
	PPA
	Priv. Passenger Auto                         
	Re Liab
	Reinsurance-Liab
	SP
	Spec Property
	CA
	Commercial Auto
	Products Liability-Occ and CM
	Phy
	WC
	Prod
	Auto Physical Damage
	Workers Compensation
	FG
	Financial/Mortgage Guarantee
	Fid
	CMP
	Fidelity & Surety
	Commercial Multi-peril
	Warranty
	Warranty
	Other
	Other 
	M-Occ
	Medical Prof Liab - Occ
	M-CM
	Medical Prof Liab - CM
	Solvency II Correlation Matrix
	The Solvency II Standard Formula uses a correlation matrix to specify LOB diversification. Appendix 1/Exhibit 2A lists the Solvency II 12 non-life LOBs 
	Appendix 1/Exhibit 2A Solvency II LOBs
	 /
	Direct LOBs include proportional reinsurance of the same type.
	NP = Non-proportional
	Appendix 1/Exhibit 2B below shows the Solvency II Standard Formula LOB correlation matrix for those 12 LOBs.
	Appendix 1/Exhibit 2B
	Solvency II Standard Formula Correlation Matrix for Premium and Reserves
	/
	The factors equal to 1.0, along the diagonal, represent the correlation between the LOB and itself. In the Solvency II 3rd Quantitative Impact Analysis (QIS3), the factors were calibrated with data from one country, supplemented by expert judgment.  The factors appear to primarily represent an expert judgment on whether the LOB pairwise correlation is lower (0.25) or higher (0.50). 
	In the Solvency II 4th Quantitative Impact Analysis (QIS4) analysis, the factors were sensitivity tested with additional analysis assuming a minus or plus 25 percentage points adjustment to each “non-diagonal” value. These changes resulted in capital requirements that were 25% lower and 21% higher (respectively) than the proposed QIS4 factors. After this sensitivity analysis was completed, the selected factors were maintained at the QIS3 level “translating the broad support there is around these parameters and the lack of more evidence for changing the correlations”. Thus, the overall level appears to rely heavily on expert judgment much like the 30% MDC in the RBC Formula.
	Appendix 2 – Comparisons between CoMaxLine%, CoMaxLine%- Risk, and Correlation Matrix Approaches
	Appendix 2/Exhibit 3
	Appendix 2/Exhibit 4 – CoMaxline% and Correlation Matrix by Size and Diversification Bands
	Appendix 2/Exhibit 5- CoMaxline%-Risk and Correlation Matrix by Size and Diversification Bands

	Appendix 2/Exhibit 3, below, shows the dollar amount of RBC UW Risk Value, the dollar amount of diversification credit, and the average diversification credit by company-size and by company-diversification band, separately for the CoMaxLine% Approach and the CoMaxLine%-Risk Approach. We define the size and diversification bands below.
	RBC UW Risk Value Size Bands
	We show the data, in seven company-size bands. The bands A through E divide the 1,622 multi-line companies into five groups with approximately 325 companies in each band. Band A has the smallest 20% of multi-line companies.  Band E has the largest 20% of multi-line companies. In addition, we show two other informational bands. “Tiny” is for the 75 smallest multi-line companies. This column is for information only, as we include the 75 in band A. “Jumbo” is for the 75 largest multi-line companies. This column is for information, as we include the 75 in band E. 
	Columns: %Diversification Size Bands 
	We show the data, in seven company-diversification bands. The bands A through E divide the 1,622 multi-line companies into five groups with approximate 325 multi-line companies in each band. Band A has the least diversified multi-line companies, those with the lowest percentage diversification credits. Band E has the most diversified 20% of multi-line companies, those with the highest percentage diversification credits. In addition, we show two other bands.  The column “75 Least Diversified” is for the 75 multi-line companies with the lowest, non-zero, diversification percentages. This column is for information as we include the 75 in band A. The column “75 Most Diversified” is for the 75 multi-line companies with the largest diversification credit %. This column is also for information, as we include the 75 in band E.
	Distribution of RBC UW Risk Value and Diversification Amount 
	Appendix 2/Exhibit 3, has four “boxes,” labeled A, B, C and D. Within each box we show the dollar amount of RBC UW Risk Value, the percentage of RBC UW Risk Value by size band or diversification band, the dollar amount of diversification credit and the average diversification credit. 
	Boxes A and C show the data in company-diversification bands, for CoMaxLine% and CoMaxLine%-Risk approaches, respectively.  Boxes B and D show the data in RBC UW Risk Size bands, for CoMaxLine% and CoMaxLine%-Risk approaches, respectively.  
	Some key features of the summary are the following:
	 The weighted average percentage diversification across all multi-line companies is 20%, for both the CoMaxLine% Approach and the CoMaxLine%-Risk Approach (the same value appears in boxes A, B, C, and D in the “All” column).
	 For the 75 most diversified multi-line companies, the average diversification percentage is 30% for CoMaxline% (Box A), and 32% for CoMaxLine%-Risk (Box C).
	 For CoMaxLine%, the total RBC UW Risk Value is $97,975 million, excluding mono-line companies. Of that amount, $64,659 million, or 66%, relates to the 75 largest multi-line companies. $87,567 million of that amount, or 89%, relates to the largest 20% of multi-line companies (Box B. RBC UW Risk Size Bands/Column E).
	 For CoMaxLine%, the total RBC UW Risk Value is essentially the same as for CoMaxLine%-Risk because we calibrated the CoMaxLine% MDC to achieve that result. The distribution by RBC UW Value size bands for CoMaxLine%-Risk is similar to the distribution for CoMaxLine%.
	 For CoMaxLine%, nearly all of the diversification credit, $22 million of $24 million, arises from size band E, the 20% largest companies by RBC UW Risk Value (Box B/Column E).
	In Appendix 2/Exhibit 4, we compare RBC UW Risk Value and dollar diversification credit amounts for the CoMaxLine% Approach to the corresponding values for the correlation matrix approach. We show the information for all companies, and separately in size and diversification bands, defined above.
	In each column, we show the percentage of multi-line companies with percentage difference in RBC UW Risk Value (Boxes A and B) and percentage difference in dollar diversification credit (Boxes C and D) in bands ±5%, ±10%, and ±25%, for CoMaxline% versus correlation matrix approaches. Boxes A and C show the information by RBC WW Risk Value Size Band. Boxes B and D show the information by % Diversification Band.
	Appendix 2/Exhibit 4/Box A/Column “All” shows that the RBC UW Risk Values differ from the corresponding correlation matrix values by more than 5% for only 31% of all multi-line companies and for 26%, of the largest 20% of multi-line companies (Box A/column E). The values differ by more than 10% for 10% of multi-line companies overall and for 9% of the largest 20% of multi-line companies. (Box A, columns “All” and “E”).
	The percentage differences in diversification will be larger than the percentage difference in RBC UW Risk Value. Therefore, the differences in diversification amount will be higher than the differences in RBC UW Risk Values. In fact, the percentage difference in diversification amount is more than 5% for 86% of multi-line companies, more than 10% for 71% of multi-line companies and more than 25% for 48% of multi-line companies (Box C or D/column “All”).
	For the most diversified multi-line companies, band E, that are potentially the most affected by differences in the diversification formula, the percentage change in dollars of diversification is more than 5% for 66% of multi-line companies, but more than 10% for only 28% of multi-line companies and more than 25% for only 6% of multi-line companies; much fewer than for all multi-line companies combined.  For the least diversified multi-line companies, band A, the difference in dollars of diversification is greater than 25% for 83% of multi-line companies (Box D), but in that case, the average diversification percentage is only 3% (Exhibit 3/Box A).
	Appendix 2/Exhibit 5 compares CoMaxLine%-Risk to the correlation matrix approach, showing the same information as Exhibit 4.
	In many respects, the patterns in Exhibit 5 are similar to the patterns in Exhibit 4, but the CoMaxLine%-Risk and correlation matrix approaches are closer than is the case for the CoMaxLine% Approach versus the correlation matrix approach.
	Appendix 2/Exhibit 3
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	RBC UW Risk Values and Diversification Amounts /
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	/
	Appendix 2/Exhibit 5
	% Difference from CoMaxLine% - Risk Approach to Correlation Matrix Approach
	/

	02_Kuo_DeepTriangle
	Introduction
	Neural network preliminaries
	Neural architecture for loss reserving
	Training Data
	Response and predictor variables
	Model Architecture
	Deployment considerations

	Experiments
	Data
	Evaluation metrics
	Implementation and training
	Results and discussion

	Conclusion
	References

	03_Shapland_ Backtesting
	Back-Testing the ODP Bootstrap & Mack Bootstrap Models
	Mark R. Shapland, FCAS, FSA, FIAI, MAAA
	________________________________________________________________________
	Abstract
	Motivation. Distributions of unpaid claims are gaining importance within the actuarial community as management, regulators, and others look to the actuarial profession for a quantitative approach to evaluating risk. Actuaries have historically applied their judgment to determine if a best estimate is reasonable, but how do we know if the models used to produce distributions are reasonable? Determining if a distribution is reasonable is a much more complex task than for a point estimate. Is the model producing a reasonable estimate at the 95th percentile? Is it producing reasonable distribution shapes? In effect, actuarial judgment shifts focus from a single point estimate to the entire distribution and we must rely, at least in part, on the proposition that “if the theory is acceptable then the distribution is acceptable.” Therefore, the purpose of this paper is to determine if the theory really holds up in practice.
	There are five objectives of this research. First, by greatly expanding the database used to back-test models the testing can provide more evidence to validate (or not) prior research and address any weaknesses in the prior research. Second, all of the prior research focused only on the estimate of a single outcome (i.e., the ultimate for the current accident year), so this research expands the testing for every possible estimate, e.g., each accident period, each calendar period, each incremental cell, etc. Third, more models were tested and some of the model assumptions were tested in order to expand our understanding of the predictive value of different models. Fourth, recent proposals to address model weaknesses were examined to assess their viability. Fifth, a new proposal for using this research to benchmark unpaid claim estimates will be put forth.
	Method. The estimated distribution of possible outcomes for various models based on the ODP Bootstrap model and the Mack Bootstrap model are saved and compared to the actual outcome up to 9 years later – i.e., a single back-test. While the result from a single data set is not indicative of the quality of the original estimate, comparing results for a large number of data sets does provide an indication of the quality of the model.
	Results. Based on the back-testing, all tested models appear to underestimate the width of the “true” distribution but some of the models tested appeared to get closer to the “true” distribution than others and the tested adjustments to the model assumptions seem to improve the results, which is a desirable quality. Another key result is to show how the insurance underwriting cycle also impacts the results of the back testing.
	Conclusions. The major results from prior similar research is confirmed, but the volume of this research has led to a new approach to benchmarking both deterministic and stochastic unpaid claim estimates in practice.
	Keywords. Back-test, benchmark, bootstrap, chain ladder, Mack model, over-dispersed Poisson, reserve variability, systemic risk, underwriting cycle.
	________________________________________________________________________
	1. INTRODUCTION
	Enterprise Risk Management has been at the leading edge of effectively managing insurance and other risk bearing operations for many years. Its use is expected to grow, and perhaps accelerate, into the foreseeable future as regulators and rating agencies focus on risk based approaches. One of the key metrics in any risk model used for ERM is the variability of unpaid claims as these are normally the largest liability in the balance sheet. While many stochastic models provide the diagnostic tools for calibrating the assumptions of the model, there are no tools for gauging the quality of unpaid claim variability estimates. After vetting the theory underlying a model, the only way to gain valuable insights into the quality of the model is to back-test the results to see how well the models predicted the actual outcomes.
	To calculate a distribution of possible outcomes and select unpaid claim estimates at a confidence level of say 75%, or to demonstrate that reserves are at such a level, is not a straight-forward process. Indeed, it is not a process that can be performed exactly or by using purely statistical approaches. Reasons for this include, but are not limited to, the following:
	 Uncertainty in reserving can be attributable to three types of risk: process risk, parameter risk and model risk. Of these, process risk, and to a lesser extent parameter risk, can be assessed statistically and then only to the extent permitted by the volume and quality of available data. Model risk does not, in general, follow clear statistical patterns.
	 Where process or parameter risk can be assessed statistically, the available historical data will not show the full breadth of the possible outcomes (i.e., variability). The resulting uncertainty in any outcomes will increase the further one moves away from the mean.
	 New lines of business will have little or no data on which to assess variability due to process or parameter risk. The statistical credibility of the data for small volumes of business will also be limited.
	 The assessment of process or parameter risk can be distorted by historic data including the effect of systemic risks, e.g., changes in case law that affect claim settlement amounts.
	Therefore, any assessment of reserves at a particular confidence level will require the reserving actuary to exercise judgment to a significant degree. This is similar to how actuaries currently assess deterministic unpaid claim estimates, where actuaries use tools (such as the Chain Ladder (“CL”) and the Bornhuetter-Ferguson (“BF”) methods) to calculate a central estimate of the claims liabilities. Based in part on their knowledge of the strengths and weaknesses of the methods, they exercise considerable judgment in selecting factors and parameters, in adjusting for trends and for known or expected distortions, and in selecting the amounts to be booked.
	For stochastic models, with sufficient data the process and parameter risk would usually be evaluated using stochastic tools applied to the historic data. Different data (e.g., paid data and incurred data) and different models would generate different results and different Coefficients of Variation (“CoVs”). Judgment is needed in deciding which CoVs would be appropriate to address model risk in addition to process and parameter risk.
	Given that prior research has shown that the ODP Bootstrap and other models tend to underestimate the “true” variability, the actuary will need support for helping to inform their judgments about estimates of possible outcomes. Similar to benchmarks for deterministic assumptions, benchmark CoVs would be a very useful addition to the actuary’s toolkit as a means of sense checking the estimated distributions. Thus, a primary use of this research is to provide benchmarks for distributions of possible outcomes for insurance data.
	Even with benchmarks of CoVs by line of business, the actuary would need to combine these across all business lines. By definition, process risk should be independent of other risk factors (and across lines of business) but there may well be some degree of contagion (i.e., large losses that affect multiple lines of business) and/or correlation between the other factors. In order to combine the CoVs, correlation matrices will be required. Again, judgment is required, but another key benchmark from this research is estimated correlations based on industry data.
	1.1 Research Context

	Because it is such a critical part of effective actuarial practice, it seems likely that understanding the effectiveness of a method has been part of the research from the early days of actuarial science. For deterministic reserving methods, one of the earlier papers on the effectiveness of methods is Skurnick [18] and more recent examples include Forray [6] and Jing, Lebens, and Lowe [9]. For deterministic methods it is often enough to focus on the theory to understand the strengths and weaknesses of a method. For example, all actuaries learn early in their career that the chain ladder method will tend to underestimate the current period when the initial development period outcome is lower than average, and tend to overestimate the current period when the initial development period outcome is higher than average.
	If we consider a triangle of data as illustrated in Graph 1.1, the goal of estimating unpaid claims is to estimate the unpaid amounts, u(w,d), by projecting the cumulative amounts, c(w,d). The total reserve for an accident period, R(w), can be estimated directly or indirectly as a sum of the incremental unpaid amounts. For the chain ladder method, the estimation of R(10) is done using a factor times c(10,1), so it is easy to visualize how dependent this calculation is to the relative size of c(10,1).
	Graph 1.1. Triangle of Data with Estimated Unpaid
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	This understanding of deterministic methods is largely possible because the focus of the method is a central estimate. For stochastic models, whose focus is the entire distribution, the same principles for the central estimate still apply, but understanding the entire distribution is impossible with a single observation. For example, it is common for a stochastic model to be used to simulate 10,000 possible outcomes for R(10), but what if we later determine that the actual outcome was at the 74.3 percentile, as illustrated in Graph 1.2.
	Graph 1.2. Back-Test of Estimated Distribution of Possible Outcomes

	What does that tell us about the model? Did we get the mean wrong? What about the width of the distribution? We have no way to know with only one observation compared to our estimated distribution. Therefore, back-testing a large number of observations is essential to see if all parts of the distribution are represented in the outcomes. Another point to keep in mind is that when back-testing a model the mean of the estimated distribution is assumed to be the booked reserve even if the available data contains the actual booked reserve in order to test the efficacy of the model and not the judgment of the actuary selecting the reserve.
	Testing all parts of a distribution can be illustrated graphically. For example, with 1,000 data sets, if the “true” distribution of the possible outcomes is fairly represented by the model then each decile group of the actual outcomes in a histogram should ideally contain 100 observations, as illustrated in Graph 1.3. For example, if the outcome from Graph 1.2 is included as one of the 1,000 datasets, then it would be one of the 100 in the bar labeled 80% (representing all outcomes greater than 70% and less than or equal to 80%) in Graph 1.3.
	Graph 1.3. Ideal Histogram 

	In Graph 1.3, like most of the similar graphs in the remainder of the paper, the percentiles along the X-axis are the decile groups for the percentile of the actual outcome compared to the estimated distribution. The Y-axis shows the number of companies or datasets in the bars, with the percent of the total number of companies or datasets as the bar labels.
	If the model being back-tested is under predicting the “true” distribution then the histogram would show a higher than average number of observations at the extremes, say below the 20th percentile and above the 80th percentile, and it would show a lower than average number of observations in the middle percentiles. If the model being back-tested is over predicting the “true” distribution the histogram would show a lower than average number of observations at the extremes and higher than average observations in the middle percentiles. These two types of results are illustrated in Graph 1.4.
	Of course, when back-testing real (or simulated) data the actual histograms will include random noise which could mask or partially mask the results, but typically the shape of the histogram will be indicative of the result even if random noise makes conclusions about a specific percentile problematic. The impact of random noise on the histogram can at least be partially minimized by increasing the sample size to take advantage of the law of large numbers. This approach to understanding the effectiveness of stochastic models has been used by a number of researchers, but only a few key papers will be highlighted in Section 2. 
	Graph 1.4. Under & Over Prediction Histograms
	1.2 Objectives

	There are five objectives of this research. First, by expanding the database used to back-test models the testing can provide more evidence to validate (or not) prior research and address any weaknesses in the prior research. Second, all of the prior research focused only on the estimate of a single outcome, specifically the estimate of R(10) from Graph 1.1. For this research the outcomes for all possible estimates from Graph 1.1., e.g., each accident period, each calendar period, each incremental cell, etc., were included in the testing to see if any other insights can be gained by expanding the testing. Third, more models were tested and some of the model assumptions were tested in order to expand our understanding the predictive value of different models. Fourth, recent proposals to address model weaknesses were examined to assess their viability. Fifth, a new proposal for using this research to benchmark unpaid claim estimates will be put forth.
	1.3 Outline

	The remainder of the paper proceeds as follows. Section 2 will provide an overview of the prior research and proposed solutions. In Section 3, the data and the process used to validate it for the back-testing are described. Next, Section 4 will focus on the testing process. Then, in Section 5 the results of the back-testing are summarized, with additional details included as Appendix A. Finally, in Section 6 a process for using this research to benchmark unpaid claim estimates will be described.
	2. OVERVIEW OF PRIOR TESTING
	Other researchers have used back-testing to evaluate the quality of stochastic models, but providing an in depth review of prior work is beyond the scope of this paper. Since one of the objectives of this paper is to validate (or not) the prior research, some of the prior research is included in the References section for the interested reader and some highlights are included here. Note however, that the highlights discussed here are not intended to give a complete overview of these papers and other valuable insights could be gained by reading the original research papers.
	Two early examples of back-testing stochastic models are the product of GIRO Working Parties [15, 16] in the U.K. in 2007 and 2008. The 2007 Working Party reviewed a number of models with a few real datasets, but also created simulated data (designed to meet all of the conditions/assumptions of the respective model) to more thoroughly test the ODP Bootstrap and Mack models. The 2008 Working Party expanded the simulation testing of the 2007 Working Party by creating a wider variety of simulated datasets (e.g., different triangle sizes). The back-testing was based on 10,000 samples of each simulated dataset for the ODP Bootstrap (paid chain ladder only) and closed form Mack models.
	In theory at least, this testing was designed to see how well the model predicted outcomes for “perfect” data. The Working Parties also noted that simulated data was a good first step as it allows for controlled testing, but they also recognized that real data can include shocks and other anomalies which is likely to cause predicted results to be more inaccurate than simulated data. Interestingly, even with the “perfect” datasets the Working Parties concluded that:
	 The results for the Mack model exceeded the predicted 99th percentile 8.4% of the time for a 10 x 10 triangle, indicating the Mack model significantly under predicted the extreme outcomes. As the triangle size was increased to 100 x 100, the under prediction of the extreme outcomes reduced to 2.1% for the Mack model.
	 The results for the ODP Bootstrap model exceeded the predicted 99th percentile 2.6% of the time, which also indicated an under prediction. As the triangle size increased for the ODP Bootstrap model the error rate stayed consistent.
	In Meyers & Shi [12], the authors based their back-testing of the ODP Bootstrap model on a database of 1997 Schedule P paid data from 50 companies. While the size of the database was not sufficient to arrive at definitive conclusions, the authors recommended further testing and noted that their study “suggests that there might be environmental changes that no single model can identify” and “the actuarial profession cannot rely solely on stochastic loss reserve models to manage its reserve risk.” To summarize the back-testing results, the authors included Graph 2.1, which show results for their tests of the Bootstrap Chain Ladder (BCL) model and the Bayesian Autoregressive Tweedie (BAT) model. Similar to the description above for Graph 1.3, the “frequency” label for the Y-axis represents the number of companies in each 20% group bar of the histograms. For the data as of 31 December 1997, only the current accident year was tested.
	Graph 2.1. Percentile Results for Meyers & Shi

	In Gremillet, Miehe & Zanón [7], the authors based their back-testing of the ODP Bootstrap model on 296 triangles from four lines of business in the database created for the CAS by Meyers & Shi using 1997 Schedule P paid data. The authors concluded “it is core to have adjustments by actuaries prior to running the stochastic methods ‘automatically’” and that “it seems that the ‘actuary in the box’ dream for stochastic reserves valuation is not yet happening…” To summarize the back-testing results, the authors included Graph 2.2, which show the results for the three models they tested. Similar to Meyers & Shi, only the current accident year was tested for the 1997 data.
	Graph 2.2. Percentile Results for Gremillet, Miehe & Zanón

	In Leong, Wang & Chen [11], the authors based their back-testing of the ODP Bootstrap model on seven lines of business for approximately 4,850 triangle datasets from a database of Schedule P data from 1989 to 2002. The authors concluded “the popular ODP Bootstrap of the paid chain-ladder method is underestimating reserve risk” and that “it is because the bootstrap model does not consider systemic risk, or, to put it another way, the risk that future trends in the claims environment—such as inflation, trends in tort reform, legislative changes, etc.—may deviate from what we saw in the past”. To summarize the back-testing results, the authors included Graph 2.3 showing the results for Homeowners and similar graphs for the other lines of business.
	Graph 2.3. Results for Leong, Wang & Chen (HO – Paid CL – All Years)
	Graph 2.4. Results for Leong, Wang & Chen (WC – Incurred CL – All Years)

	In Leong, Wang & Chen [11], the authors then expanded their back-testing of the ODP Bootstrap to see if using the model for incurred data improved the models predictive power. The authors concluded “it appears that the incurred bootstrap model is also underestimating the risk of falling in these extreme percentiles” as illustrated in Graph 2.4 for Workers’ Compensation.
	An additional insight from the Leong, Wang & Chen [11] research was possible due to their use of multiple years to show that the reserving cycle has an impact on the results. The results in Graphs 2.3 and 2.4 are for all years combined, but results by year were also included by the authors such as Homeowners for 1996 and 2000 in Graph 2.5.
	Graph 2.5. Results for Leong, Wang & Chen (HO – Paid CL – 1996 & 2000)

	The authors also illustrated the reserving cycle for the industry in Graph 2.6 which shows that in 1996 the overall reserve level for the industry was too high and in 2000 it was too low. The left side histogram in Graph 2.5 corresponds to when the industry was over reserved and the back-testing resulted in a disproportionate number of outcomes less than 10%, which makes sense. The right side histogram in Graph 2.5 also makes sense as the industry was under reserved in 2000, which leads to a disproportionate number of outcomes above 90%.
	This insight led the authors to conclude that the ODP Bootstrap model only measures independent risk (arising from the randomness inherent in the insurance process) and not systemic risk (arising from the whole system). While there is a certain appeal to this conclusion, it seems the definition of systemic risk could be split into “internal systemic” risk (arising from within the modeling framework) and “external systemic” risk (arising from the outside the modeling framework). By using a broad definition of systemic risk the authors ignored weaknesses of the ODP Bootstrap model that contribute to this result. Their focus on systemic risk resulted in two methods to adjust for systemic risk in the ODP Bootstrap model, the systemic risk distribution method and the Wang transform adjustment, which allows the authors to show how the combination of both of these methods “fixed” the back-testing results.
	Graph 2.6. Reserving Cycle in Leong, Wang & Chen

	Digging deeper into the methods proposed by Leong, Wang & Chen [11] it seems that while their results do “correct” the back-testing results, the methods ignore a weakness of the ODP Bootstrap model, are backward looking only, and therefore should be used cautiously as a tool to adjust current ODP Bootstrap results. Starting with the variance adjustments, Graph 2.7 illustrates how when the ultimate loss ratio is less than the initial loss ratio (as in 1996) the variance is increased by Lambda, but this is not logical.
	Graph 2.7. Comparison of Lambda and ULR in Leong, Wang & Chen

	If the initial ultimate estimate is too high, a typical chain ladder method is likely to be overestimating the central estimate due to a larger than average initial cumulative value in the current accident year. Extending this to the ODP Bootstrap, this overestimation from the chain ladder elements of the model also causes the variability of the future incremental values to be overestimated. Logically, when the initial ultimate is overestimated the Lambda value should decrease the variance and vice versa. Thus, the Lambda proposed by the authors is above one when it should be below one and vice versa.
	Moving to the mean adjustments, the authors note that the Wang transform shifts the distribution to account for the estimation error. This implies that when the initial ultimate losses are overestimated (as in 1996) the shifting will reduce the mean of the distribution. Looking back at Graph 2.5 for 1996, the initial overestimation of the mean is a major contributor to why so many of the outcomes ended up in the lowest decile. Based on the combination of these two adjustments it makes sense that they “corrected” the historical biases in the model results. However, in order for this to have practical value looking forward the actuary would be required to guess at which part of the reserving cycle they are currently in and then select a Lambda which is opposite of what is indicated by the proposed formulas.
	As noted above, this review of the Leong, Wang & Chen [11] paper indicates that their formulas should be used with caution when adjusting an estimated distribution from the ODP Bootstrap model, but this realization led to an alternative approach. In summary, Leong, Wang & Chen [11] use a formula based approach for a single model to adjust an estimated distribution based solely on the data used for the estimated distribution. Alternatively, by using a very large database of outcomes from multiple models it becomes possible to create customizable benchmarks of unpaid claim distributions which can be used as a guide regardless of the model(s) being used by the actuary. Because of the cyclical bias in the mean noted above, another advantage of using benchmarks is that this approach assumes the actuary will address the bias in the mean and the benchmark can adjust for the remaining biases.
	3. DATA USED IN TESTING
	The data used in this research includes net loss and ALAE data from nearly 31,000 real data sets (i.e., paid claim triangles, incurred claim triangles, earned premiums, etc.) for all 16 Schedule P lines of business, spanning 9 years from 1996 to 2004. For each of these data sets, the actual results over the next nine years was also captured in the database used to back-test the efficacy of each model.
	More specifically, data from 4,798 companies was downloaded from SNL for years spanning 1996 to 2013, but not all companies have data for all years as companies come and go over time. The data for all these companies was converted into 59,890 individual Company Files (i.e., CSV files by company by year), with each file containing Schedule P data triangles for all LOBs. Processing all of this raw data to arrive at the data used for back-testing included several steps.
	1. Data Quality Tests – In this step, each Company File was checked to determine which LOBs have complete data triangles for years spanning 1996 to 2004. For all key triangles, data quality tests include, but is not limited to, making sure there is non-zero data for each year and minimum data requirements of all models being tested are satisfied. Of the original 4,798 companies, only 2,716 had at least one LOB that passed this test in at least one of the years. For these 2,716 companies there were 79,573 “Data Quality” triangle sets, with the totals by LOB shown in Table 3.1.
	2. Data Validation Tests – For each of the Data Quality triangle sets, additional tests were conducted to check the next 9 years to make sure none of the data in the original triangles changed over the next 9 years (i.e., to make sure pooling arrangements or other issues don’t exist which would cause data to be invalid for testing purposes). The validation process reduced the total company count to 1,679 and for these remaining companies there were 30,707 “Valid Data” triangle sets, with the totals by LOB shown in Table 3.1.
	3. Create Complete Data – For each of the Valid Data triangle sets, the data for the next 9 years was added to a new data file to speed up testing. Of course during simulation testing only the original triangles were used to parameterize the models, but having the actual outcome speeds up the testing process.
	4. Save Diagnostics – For each of the Valid Data triangle sets, the “optimal” hetero groups were found and diagnostics for all models were calculated and saved.  These diagnostic tests were saved so that back-testing can include tests to determine the effectiveness of different diagnostics on assessing model parameters.
	Table 3.1. Summary of Datasets by LOB

	For the 1,679 companies with at least one Valid Data triangle set, 1,182 of these companies had at least 2 LOBs with Valid Data for at least one year. For each company (and year) with 2 or more LOBs, the correlation between the residuals was also calculated and saved, both before and after the hetero group factor adjustments, for both paid and incurred data. This resulted in 195,228 pairs of LOBs with correlation values that were captured along with the P-Values and the Degrees of Freedom for all pairs for each company and year set of LOBs. A high level comparison of the data used in this research compared to prior research is shown in Table 3.2.
	Table 3.2. Summary of Data by Author

	4. TESTING METHODOLOGY
	Using each of the Valid Data triangle sets, the back-testing process starts by calculating the parameters for the six different ODP Bootstrap models described in the Shapland [17] monograph and the Mack Bootstrap model as described in England & Verrall [5]. For all models, the residuals are based on the all year volume weighted average loss development factors, no tail factors were included, and no adjustments to the standard models were included. Because of the sheer volume of the test data, other than assumptions based on diagnostic tests it is nearly impossible to create assumptions tailored to the data in each data set. However, it is possible to use broad sets of assumptions that should be representative of what an analyst might select in practice in order to test how different broad sets of assumptions affects the results.
	For the Bornhuetter-Ferguson ODP Bootstrap models, the a priori loss ratios were based on the most recent ultimate loss ratios by year from Schedule P. While this does allow these models to benefit a bit from hindsight, one of the goals for these models was to remove as much of the cyclical bias as possible to see if this improved the accuracy of the models. As a counter to the foresight in the a priori loss ratios, the standard deviations were all set to zero for the preliminary tests.
	For the Cape Cod ODP Bootstrap models, it is not possible to include rate level adjustment factors and trend factors based on the data are problematic without the ability to judgmentally review each factor or to set narrow ranges for the trend factors. Thus, all rate level factors were set to 1.0 and all trend factors were set to 2.5% per year. For all tests a decay ratio of 90% was used and each accident year is given 100% weight so nothing is excluded. These assumptions for the Cape Cod models are not intended to be ideal in practice, but rather a reasonable baseline for which other broad sets of assumptions can be compared in future testing.
	For the ODP Bootstrap family of models weighted results were also tested. For the weights by accident year, for the 7 oldest accident years the paid and incurred chain ladder models were given equal weight. For the 3rd prior year, the paid and incurred chain ladder and Bornhuetter-Ferguson models were given equal weight. For the most recent 2 years, the paid and incurred Bornhuetter-Ferguson and Cape Cod models were given equal weight. While different weighting schemes by LOB would typically be used in practice, this weighting scheme was selected as being representative of a typical weighting scheme.
	As a side note, it is also possible to test Aggregate results for each company with at least 2 LOBs of Valid Data, but the results from many different combinations of LOBs would not provide meaningful results without also segregating into groups with all the same LOBs. Instead of just testing the most recent accident year, i.e., only R(10) from Graph 1.1, the simulation output of these model tests was captured in great detail, i.e., by accident year, calendar year, calendar year runoff, loss ratios, and each incremental cell in Graph 1.1. Using all of the 10,000 iterations of simulated data, the final step is to compare the actual outcomes to the complete simulated distribution of possible outcomes to determine the percentile of actual outcome for each cell and combination of cells in Graph 1.1.
	The companion files for the Shapland [17] monograph could be used to run all of the simulation tests, but those files are designed for educational purposes and not speed. By way of comparison, the Excel model for just one ODP Bootstrap model takes about 15 minutes to run 10,000 iterations so even after completely automating the process it would take one computer over 7 years of continuous processing to finish all of the testing for all 8 models – i.e., the 6 ODP Bootstrap models, the weighted ODP Bootstrap and the Mack Bootstrap with paid data only.
	In order to speed up this process commercial software was used, which reduced the total time for one computer from over 7 years to less than 43 days, much faster but still a long process. To reduce the elapsed time even further, the simulation tests were spread over 16 computers, which allowed the overall process to be effectively managed and cut the elapsed time to less than a week.
	The simulation back-tests with all of the standard assumptions noted above were considered the “Baseline” tests. Reviewing the baseline tests we found a significant number of simulations with extremely wide distributions. These extreme distributions are a somewhat common occurrence in practice and typically result from “small” sample values in the first column that lead to extreme 12-24 month ATA factors (both positive and negative), which in turn lead to some extreme iterations (i.e., a more extreme version of the chain ladder weakness noted above). To address these extreme distributions, a second round of testing included adding constraints to limit the sample outcomes to zero (i.e., to remove negative incremental values) for selected triangle sets (referred to as the “Baseline with Limits” tests). The process used to select triangle sets for adding this limit constraint were based on whether the width of the distributions exceeded a threshold to approximate when an actuary might use these constraints in practice, rather than simply adding this constraint to all triangle sets.
	A third round of back-testing was done using all of the “Baseline with Limits” assumptions plus for all of the ODP Bootstrap models the optimal hetero group factors were applied to the modeling framework to test the impact of this common modeling option. This third set of tests are referred to as “Baseline Limits & Hetero”.
	5. TESTING RESULTS
	Starting with the “Baseline” tests, the results for the ODP Bootstrap paid chain ladder for the current accident year (i.e., R(10) in Graph 1.1), for all lines of business, and all evaluation periods combined are illustrated in Graph 5.1.
	From Graph 5.1 it is clear that the results using significantly more data are still consistent with prior research. Two additional elements of this, and later, graphs are the red “bars” in the lowest and highest decile groups and the average percentile. The red “bars” represent the portion of their respective groups that exceeded the smallest or largest simulated possible outcome, respectively. For example, for the 10% bar the red portion represents the number of tests where the percentile for the actual outcome was less than 0% (i.e., less than the smallest simulated possible outcome). The average percentile is the average over all samples and helps give a sense of how close the simulated means were to the “true” mean on average.
	Graph 5.1. ODP Bootstrap Paid Chain Ladder – “Baseline”

	Moving to the “Baseline with Limits” tests the results for the ODP Bootstrap paid chain ladder for the current accident year, for all lines of business, and all evaluation periods combined are illustrated in Graph 5.2. Comparing Graph 5.2 with Graph 5.1 it makes sense that the “goal posts” at the extremes got higher, meaning the models further underestimated the “true” distributions, since the widest of the distributions in the “Baseline” tests were “narrowed” in the “Baseline with Limits” testing.
	Graph 5.2. ODP Bootstrap Paid Chain Ladder – “Baseline with Limits”
	Graph 5.3. ODP Bootstrap Paid Chain Ladder – “Baseline Limits & Hetero”

	At a high level the “Baseline Limits & Hetero” results for the ODP Bootstrap paid chain ladder for the current accident year, for all lines of business, and all evaluation periods combined are illustrated in Graph 5.3. The differences between Graph 5.3 and 5.2 are more subtle but a close inspection shows a slight improvement, which supports the use of heteroscedasticity adjustment factors in the ODP Bootstrap models. Admittedly, this support for using hetero factors is not strong but it is an improvement and rules out a negative conclusion (i.e., that hetero factors don’t help). All of the results in the remainder of this paper are for the “Baseline Limits & Hetero” testing, but for simplicity this label is not included in any more graphs.
	Graph 5.4. ODP Bootstrap Paid Chain Ladder – All Years Combined

	As we dig deeper into the back-testing results, a logical first dive would be to review results for prior accident years (i.e., R(9) to R(2) in Graph 1.1) to see if the estimation improves as the relative maturity of the accident year increases. The results by accident year are shown in Appendix A, but interestingly there is no improvement as the models predict fewer future periods. Similarly, combining all accident years (i.e., R(T) in Graph 1.1), as shown in Graph 5.4, does not improve the model predictions.
	One of the insights from the Leong, Wang & Chen [11] paper was how the results were impacted by the reserving cycle. This impact was confirmed using this expanded database with the results by evaluation year shown in Appendix B. Consistent with the Leong, Wang & Chen results, the results by year show that the size of the “goal post” is predominantly in the lowest decile when the mean is being underestimated (e.g., in 1996) and shifts to being predominantly in the highest decile as the mean is overestimated. In addition, the average percentile shifts over the reserving cycle, which indicates how the estimates of the “true” mean change during the cycle.
	Graph 5.5. ODP Bootstrap Paid Chain Ladder – First Calendar Year
	Graph 5.6. ODP Bootstrap Paid Chain Ladder – Calendar Year Runoff After 1 Year

	In addition to looking at the predictions for the accident years, it was also possible to look at the calendar years (i.e., the sum of the diagonals in Graph 1.1), the calendar year runoff (i.e., the sum of all remaining diagonals as each diagonal is removed in Graph 1.1), and the time zero to ultimate loss ratios (i.e., the sum of an entire row in Graph 1.1). As might be expected after reviewing the accident year results, the calendar year results in Graph 5.5 and calendar year runoff results in Graph 5.6 are quite similar to the accident year results.
	For the time zero to ultimate loss ratio estimates by accident year shown in Graph 5.7 the predictions are much closer to the ideal histogram in Graph 1.3. This is an interesting result in the sense that the ODP Bootstrap predictions of the time zero to ultimate loss ratios appear to be more accurate than the predictions of the unpaid claims. To understand this we need to dig deeper into the results by incremental cell, which are shown in Appendix C. Interestingly, the results for the incremental cells reveals that the sampling of the incremental cells to create sample triangles for each iteration seems to produce more variability than observed in the data. On the other hand, since the model parameters are fit to the actual outcomes in the triangle perhaps seeing considerably more results in the middle decile groups is the expected result.
	Graph 5.7. ODP Bootstrap Paid Chain Ladder – Ultimate Loss Ratio Current Year

	Now that we have dissected the ODP Bootstrap paid chain ladder model, we can compare this to the other models in the back-testing research. First, the results for the Mack Bootstrap paid chain ladder model are shown in Graph 5.8. Comparing Graph 5.8 with Graph 5.3 shows that the Mack Bootstrap was a worse than the ODP Bootstrap, which is consistent with the findings of the GIRO Working Parties [15, 16].
	Graph 5.8. Mack Bootstrap Paid Chain Ladder – Current Accident Year
	Graph 5.9. ODP Bootstrap Incurred Chain Ladder – Current Accident Year

	Next, the results for the ODP Bootstrap Incurred Chain Ladder model are shown in Graph 5.9. Comparing Graph 5.9 to Graph 5.3 there is a clear improvement in the predictive power of the incurred versus paid chain ladder versions of the ODP Bootstrap model. Thinking about the mechanics of the ODP Bootstrap Incurred Chain Ladder model in Shapland [17] it seems fair to conclude that combining the variability of the paid and incurred data increases the relative variance of the unpaid estimates to come much closer to the ideal histogram in Graph 1.3. It is quite possible that the remaining “goal post” effect is largely due to the mis-estimation of the mean during the reserving cycle.
	Next, the results for the ODP Bootstrap Paid and Incurred Bornhuetter-Ferguson models are shown in Graph 5.10 and Graph 5.11, respectively. Comparing Graph 5.10 with Graph 5.3 and Graph 5.11 with Graph 5.9, respectively, it appears as though the Bornhuetter-Ferguson models are less predictive than their chain ladder counterparts are. This is inconclusive, however, since the variance assumption was set to zero during the current back-testing and it is easy to show that using a zero variance assumption will reduce the variability of the estimated unpaid claim distribution. Thus, conclusions about the predictive power of the ODP Bootstrap Bornhuetter-Ferguson models will need to wait until more testing can be completed.
	Graph 5.10. ODP Bootstrap Paid Bornhuetter-Ferguson – Current Accident Year
	Graph 5.11. ODP Bootstrap Incurred Bornhuetter-Ferguson – Current Accident Year

	Next, the results for the ODP Bootstrap Paid and Incurred Cape Cod models are shown in Graph 5.12 and Graph 5.13, respectively. Comparing Graph 5.12 with Graph 5.3 and Graph 5.13 with Graph 5.9, respectively, it appears as though the Cape Cod models are less predictive than their chain ladder counterparts are. This may also be inconclusive, however, since only one set of parameters has been tested so far. Thus, conclusions about the predictive power of the ODP Bootstrap Cape Cod models will need to wait until more testing can be completed.
	Graph 5.12. ODP Bootstrap Paid Cape Cod – Current Accident Year
	Graph 5.13. ODP Bootstrap Incurred Cape Cod – Current Accident Year

	Finally, the results for the weighted combination of all six ODP Bootstrap models are shown in Graph 5.14. Comparing Graph 5.14 with Graphs 5.3, 5.9, 5.10, 5.11, 5.12, and 5.13, you can visualize how Graph 5.14 results from a combination of the other models. This seems promising as even with the deficiencies noted for each model individually the weighted results look like they are better that the sum of the parts. More importantly, this demonstrates how weighting multiple models, to at least partially address model risk, can improve the results compared to a single model. As other assumptions for the Bornhuetter-Ferguson and Cape Cod models are tested, another avenue for future research will be considerations on how to apply Bayesian analysis to selecting the model weights.
	Graph 5.14. ODP Bootstrap Weighted Models – Current Accident Year

	All of the results presented in this Section and Appendices A, B, and C are for all lines of business combined. To show that the results are similar by line of business, the results by line of business for the ODP Bootstrap Paid Chain Ladder and Incurred Chain Ladder models are in Appendix D. It is possible to show many more details and combinations for all of these results, but this massive increase will be accompanied by an increase in random noise and will likely add little value beyond what we can already see at the higher level.
	6. BENCHMARKS BASED ON TEST RESULTS
	Even with the expansion of the research database, this research has confirmed the findings of prior authors. Thinking about the impact of the reserving cycle, it appears as though the results are strongly influenced by the internal systemic risks of the ODP Bootstrap modeling framework which, like the deterministic chain ladder, leads to the cycle of under and over estimation of the mean and in synch with this a lower and higher estimation of the variance. Even after potential corrections for the internal systemic risks, the ODP Bootstrap model is generally not accounting for the external systemic risks. On the other hand, it appears that some of the variations on the ODP Bootstrap framework may be significantly better at addressing the internal systemic risks.
	In order to use this information in practice, one approach might be to consider how the formulas proposed by Leong, Wang & Chen [11] could be improved to separately address internal and external systemic risks. However, even with formula improvements, on a forward-looking basis the actuary is still faced with trying to understand which part of the reserving cycle they are currently in. Of course, knowing were one is in the reserving cycle is an issue no matter what the approach, but with a significantly larger database another way forward is possible.
	6.1. Unpaid Claim Benchmarks

	Rather than try to create a precise formula for giving the “correct” distribution, we can take a page out of the deterministic reserving playbook and create benchmarks to help guide the judgment of the opining actuary. For example, consider Graphs 6.1 and 6.2, which illustrate the range of mean and standard deviation estimates from the ODP Bootstrap paid chain ladder model over the entire database for the most recent accident year. For Graph 6.1, it is not surprising that the mean unpaid is closely in line with the premium, with the deviations along the slope of the trend line representing differences in loss ratio by company.
	Graph 6.1. ODP Bootstrap Means – Current Accident Year
	Graph 6.2. ODP Bootstrap Standard Deviations – Current Accident Year

	In Graph 6.2, it is not surprising that the standard deviations also increase in line with the premium, but the deviations around the trend line are more pronounced, which is likely due to the mixture of all lines of business, but at least to some degree a few of these could be considered outliers. A more important ingredient of Graph 6.2 is that the slope of the trend line is much lower, which confirms that the Coefficient of Variation is consistent with statistical principles, meaning for smaller companies the standard deviation is a larger percentage of the mean compared to larger companies.
	The results shown in Graphs 6.1 and 6.2 are consistent for all other views of the data discussed in Section 5 (i.e., for each accident year, each calendar year, all years combined, etc.). In addition, similar graphs by line of business are also consistent with Graphs 6.1 and 6.2, except that they are more specific to the data for each line of business. This new insight lead to the idea of combining regression results (based on pure premiums instead of premiums) by line of business to create a benchmark algorithm for the means and related standard deviations by accident year, calendar year, etc., which at a minimum reflects the independent risks in the data.
	As these regression results are based on the original simulation results, without any further adjustment the benchmarks would also reflect the biases shown in the back-testing results. In order to adjust for this bias an optimal variance correction factor was included similar to the factors proposed by Leong, Wang & Chen [11], except that the factor does not change each year during the reserving cycle. As an example, consider Graph 6.3 for all accident years and all lines of business combined.
	Graph 6.3. ODP Bootstrap Bias Adjustment – All Accident Years Combined

	For the fitted results in Graph 6.3 the optimal adjustment factor is 1.755, meaning the benchmark standard deviations would be increased by 75.5%. There are variations in the optimal factor when looking at individual accident years, but they are reasonably consistent so only one factor based on the total of all years combined is used for the unpaid claims benchmarks. As noted for Graph 5.7, the results for the time zero to ultimate loss ratios are much closer to the ideal histogram so a lower adjustment factor is appropriate for the loss ratio benchmarks.
	Because of the cyclical bias it is not possible to increase the factor to the point where the ideal histogram is achieved. However, this does seem to address the variance mis-estimation component of the internal systemic risk and external systemic risk to the extent that external systemic risks have influenced the outcomes in this research database. Assuming this is correct, the remaining “goal post” shape of the fitted histogram in Graph 6.3 is due to the mis-estimation of the mean during the reserving cycle that can be addressed by the actuary as part of the selection of the booked reserves.
	It is possible that future research could help the actuary further understand the timing of the reserving cycles, but assuming the actuary can use caution to ensure their modeling assumptions are not being biased by the reserving cycle, the unpaid claim distribution benchmarks can be used as a guide to assess an estimated distribution from any stochastic model. For example, consider the results in Table 6.1 which compare standard results for the ODP Bootstrap paid and incurred chain ladder models with the corresponding benchmarks using commercial auto data from a randomly selected company in the research database.
	Table 6.1. Comparison of ODP Bootstrap with Benchmark Unpaid

	The benchmark algorithm is based on 10 years of data so the earned premium and a priori loss ratios are used to enter pure premiums by year into the algorithm. The ODP Bootstrap results in Table 6.1 do include using the optimal hetero groups and a few other model options to replicate what an actuary could easily produce as a first draft of the unpaid claim distribution. Not surprisingly, the benchmark results indicate that the CoV should be higher compared to either of the ODP Bootstrap models.
	Reviewing Table 6.1, three more observations can be made. First, the benchmark does not include the 9th prior accident year (i.e., 2008). This is due to tail factors being excluded from the back-testing to date, but future back-testing can include tail factors which will allow the benchmark algorithm to be expanded to include the 9th prior accident year (and an additional calendar year). Second, even though the data used in the back-testing was from 1996-2004, the algorithm is independent of the year and based on fitting to distributions by size of exposure (e.g., pure premiums) so using the algorithm to create a benchmark for 2017 makes sense as long as the a priori loss ratios are reasonable given the reserving cycle.
	The third observation from Table 6.1 is that the benchmarks are essentially based on the average loss development pattern from the industry data. Thus, it would be a reasonable critique to note that the loss development pattern for the company under review does not clearly match with a Schedule P line of business. Because this is such a common issue, the algorithm also includes an option to adjust benchmarks based on the loss development pattern assumption used by the actuary. In Table 6.2 the benchmark has been updated for the loss development pattern for the data being used in the example. Comparing Table 6.2 with Table 6.1, note that while the mean and standard deviations both decreased a bit the CoV essentially stayed the same or even increased a bit, which makes sense given the increased uncertainty. Also keep in mind that all benchmarks are only intended to serve as a guideline for the actuary and a perfect match is not a goal.
	Table 6.2. Comparison of ODP Bootstrap with Benchmark Unpaid & Custom LDF Pattern

	In order to illustrate how the benchmark algorithm responds to different input assumptions, Table 6.3 includes a comparison of the benchmarks from Table 6.2 with benchmarks based on only 10% of the original premiums (i.e., all other assumptions are the same). This shows how the benchmarks for a smaller company would compare to those for a larger company. Following statistical principles, and the regressions illustrated in Graph 6.1 and 6.2, with only 10% of the premium the mean is reduced by 90% but CoV increases to reflect the additional uncertainty.
	Table 6.3. Comparison of Benchmarks by Size of Company

	As noted earlier, the benchmark algorithm includes more than the accident year unpaid claims, so Table 6.4 illustrates the cash flow and unpaid claim runoff benchmarks which would be comparable to the unpaid claim benchmarks in Table 6.2. The benchmark algorithm also includes time zero to ultimate loss ratios, but these are not illustrated in any of the Tables.
	Table 6.4. Comparison of Unpaid, Cash Flow and Runoff Benchmarks
	6.2. Correlation Benchmarks

	As noted at the end of Section 3, the data from 1,182 of the companies had at least 2 LOBs with Valid Data for at least one year. For each company (and year) with 2 or more LOBs, the correlation between the residuals was also calculated and saved, including the P-Values and the Degrees of Freedom, both before and after the hetero group factor adjustments, for both paid and incurred data. This database of 195,228 pairs of LOBs with correlation values were used to create separate benchmarks of correlation between Schedule P lines of business.
	The correlation benchmarks include each year separately and all years combined, but only a sample from 1996 is illustrated in Table 6.5. In addition to calculating the sample average and standard deviations by pair, the number of pairs are also shown.
	Table 6.5. Sample Correlation Benchmarks for 1996 – Paid After Hetero Adjustment – Raw Data

	The P-Values are a measure of how significantly different from zero the correlation value is for each calculated pair. The lower the P-Value the more significantly different from zero the correlation. Thus, a second set of correlation benchmarks, using one minus the P-Value as the weights, were calculated for weighted means and weighted standard deviations. For comparison, the weighted benchmarks for the same sample are included in Table 6.6.
	Table 6.6. Sample Correlation Benchmarks for 1996 – Paid After Hetero Adjustment – Weighted

	While it was noted in Section 4 that aggregate simulations were not captured, and thus not available for additional benchmarks, it is quite straightforward to use the correlation benchmarks in conjunction with the unpaid benchmarks to create a customized aggregate unpaid benchmark. Finally, as noted above the Degrees of Freedom was also captured and could have been included as part of Tables 6.5 and 6.6. In practice, this would be a valuable benchmark for copulas used for aggregation as they are intended to strengthen the tail of the aggregate distribution given a selected correlation.
	6.3. LDF Pattern Benchmarks

	In addition to all of the simulation results, for each dataset the all year volume weighted average loss development pattern from the original paid triangle (actual), along with the implied pattern from the average of all the simulated sample paid triangles (simulated), were captured. Using all of the paid patterns by line of business, the mean and percentiles of these patterns can be used as LDF pattern benchmarks. For example, the development patterns for Commercial Auto sample used in the Tables in Section 6 are included in Table 6.7.
	Table 6.7. Sample LDF Pattern Benchmarks – Commercial Auto

	The actual LDF pattern was calculated using the all year volume weighted average LDF factors from the sample dataset. The average and 65% LDF patterns are the average and 65th percentile from all of the simulated patterns in the database, respectively. By systematic testing and a little trial and error, the 65th percentile was found to be the best fit to the actual pattern. The patterns from Table 6.7 are illustrated in Graph 6.4, since one of the uses of LDF pattern benchmarks could be to help smooth the selection of age-to-age factors. 
	Graph 6.4. Comparison of Actual with Benchmark LDF Patterns

	Once the actual LDF pattern has been smoothed, or a suitable percentile pattern has been selected, another use of the LDF pattern benchmarks is to help create a range of deterministic central estimates. For example, assuming the 65th percentile pattern is selected, the actuary could then base a deterministic range on the patterns which are 25 points above and below the 65th percentile as illustrated in Table 6.8 and Graph 6.5.
	Table 6.8. Sample LDF Pattern Range – Commercial Auto
	Graph 6.5. Range of Benchmark LDF Patterns

	7. CONCLUSIONS
	Using an extensive database pulled from historical Schedule P data, the results from back-testing various ODP Bootstrap models and the Mack Bootstrap model has confirmed similar prior research on how effective these models predict the distribution of possible outcomes. For the versions of the ODP Bootstrap model not previously tested, the back-testing results are both encouraging and inconclusive. In particular, for the ODP Bootstrap incurred chain ladder model, as described in Shapland [17], using both the paid and incurred data significantly improves the results. For the ODP Bootstrap Bornhuetter-Ferguson and Cape Cod models the results were inconclusive due to the need to test more model parameters. However, even with inconclusive results for four of the six ODP Bootstrap models, testing of weighted results demonstrated that weighing multiple models, to at least partially address model risk, is a significant improvement over using a single model.
	Due to the size of the database used in the back-testing, the data allows us to use benchmarking algorithms as a guide when evaluating the estimated distribution of possible outcomes from any stochastic model. These benchmarking algorithms are quite sophisticated in the sense that they address the statistical properties of real data sets (e.g., more relative variance for smaller exposures) and can be customized to more closely approximate the data being analyzed (e.g., using selected ATA factors). Additional uses from the data include correlation benchmarks and LDF pattern benchmarks.
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	Given the vast size of the database used in this research and the proprietary nature of the results, no supplementary materials can be provided. However, the interested reader can contact the author to learn more about the proprietary benchmarks.
	Appendix A – Back-Testing Results by Accident Year

	The back-testing results for the current accident year are shown in Graphs 5.3 and 5.9 for the ODP Bootstrap paid chain ladder and incurred chain ladder, respectively, and for completeness are repeated here in Graphs A.1 and A.10. All of the Graphs in Appendix A show results for the ODP Bootstrap paid chain ladder and incurred chain ladder models using the “Baseline Limits & Hetero” assumptions for all lines of business and all evaluation periods combined.
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	Appendix B – Back-Testing Results by Evaluation Year


	The back-testing results for the current accident year in Graphs 5.3 and 5.9, for the ODP Bootstrap paid chain ladder and incurred chain ladder, respectively, is for all evaluation years combined. All of the Graphs in Appendix B show results for the current accident year for the ODP Bootstrap paid chain ladder and incurred chain ladder models using the “Baseline Limits & Hetero” assumptions for all lines of business by evaluation periods.
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	The back-testing results in Appendix C show results for the ODP Bootstrap paid chain ladder and incurred chain ladder models using the “Baseline Limits & Hetero” assumptions for all lines of business and all evaluation periods combined.
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	The back-testing results for the current accident year for all lines of business is included as Graphs 5.3 and 5.9 for the ODP Bootstrap paid chain ladder and incurred chain ladder, respectively. All of the Graphs in Appendix D show results for the ODP Bootstrap paid chain ladder and incurred chain ladder models using the “Baseline Limits & Hetero” assumptions for all evaluation periods combined, separately for each Schedule P line of business.
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