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Abstract 

Motivation. Application of the Shane-Morelli method in practice for multiple reserve reviews revealed potential 
areas of refinement. 
Method. A theoretical examination of curves best used to develop workers’ compensation tail factors resulted in 
a proposed enhancement to this part of the original methodology.  Further, a melding of theoretical and practical 
considerations gave rise to an approach for gradual introduction of mortality to the curve for determination of a 
more realistic tail.  Finally, the determination of a process for updating the proposed model was developed for 
use by a practicing actuary. 
Results. The paper presents a new curve for tail fits, the gradual introduction of mortality into the tail calculation 
and a process for regularly updating the model. 
Conclusions.  The updated approach provides an enhanced way of incorporating mortality into traditional 
aggregate reserving methods in a manner that can be readily explained to business partners. 
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1. INTRODUCTION

1.1 Background 

Modeling of the tail development in worker compensation is well known for being challenging, 

but it is an important task and thus remains an active area of interest [1].  One approach is to fit a 

parametric curve to the loss development factors (i.e., LDFs or link ratios) and extrapolate the curve 

beyond the triangle in order to effectively achieve an extension of the chain ladder method.  The 

limitation with this method is that many parametric curves, such as the popular inverse power, do 

not converge, so the extrapolation must be truncated at some selected point in the future. 

Unfortunately, the choice of the truncation point often drives significant swings in the estimate of 

reserves and can be highly subjective when selected solely based on judgment. 

A recent paper by Shane and Morelli provides a practical solution to the truncation problem, 

hereafter referred to as the Shane-Fowle method [2].  Their method is based on the curve fit 

approach using the inverse power curve to fit the LDFs.  Their key contribution is the use of the life 
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expectancy of the actual claimants to determine the duration of development in each accident year 

so that the extrapolation of the curve can be truncated using relevant information rather than simple 

judgment.  The Shane-Fowle method is intuitive and can be applied readily.  As with any model, 

however, application to new problems reveals challenges and potential for improvement.  The 

purpose of this paper is to offer enhancements to the application of the Shane-Fowle method in the 

form of additional discussion around the selection of an appropriate curve, the gradual application 

of mortality to replace the truncation, and additional guidance around the updating of the underlying 

assumptions over time.   

1.2 Scope 

The analysis in this paper is limited to the development of workers’ compensation claims in the 

form of the familiar aggregate runoff triangles.  Both paid and incurred data are in scope for medical 

and indemnity, as are related defense and cost containment expenses.  Our model is concerned only 

with the development of “lifetime claims,” by which we mean claims expected to be paid regularly 

for the remainder of a claimant’s life.  Based on our experience, ten years is a reasonable threshold 

for the development age prior to which most shorter duration claims will have closed.  This means 

that our analysis and model are not intended to be used on the most recent ten accident years. 

1.3 Outline 

The remainder of the paper proceeds as follows. In Section 2, we propose enhancements to the 

Shane-Fowle method.  In particular, we first focus here on the selection of an appropriate curve, 

with discussion of the commonly known inverse power and exponential curves and the introduction 

of the gamma curve as a potential improvement.  We then move on to a discussion of a method to 

gradually apply the effect of mortality, which we believe is an improvement to the truncation 

described in the Shane-Fowle method.  In Section 3 we discuss business considerations, including 

the frequency of model and parameter updates, where we propose a “locked in” approach to the 

parameters for a pre-selected period of time to avoid overreactions to noise in the underlying data 

and a framework for understanding and explaining the changes in reserve estimates produced by the 

model.  Section 4 is the conclusion, followed by appendices to support the main body of the paper.  

 

2. ENHANCEMENTS TO THE SHANE-FOWLE METHOD 

In this section, we present two enhancements to the original Shane-Fowle method.  The first 
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enhancement involves providing guidance to the selection of the curve fit; the second enhancement 

offers a modification to the application of mortality.   

2.1 Notation 

The mathematical notation in this section closely follows the 2013 paper by the CAS Tail Factor 

Working Party [1]. 

 development age in years.  

  cumulative loss (paid or incurred) as of development age . 

 incremental loss from age 1 to . 

  age-to-age LDF (or link ratio) such that 1 . 

 “development portion” of the link ratio, such that 1 .  For brevity, this is 

referred to as the development ratio in this paper. 

 annual decay rate of incremental losses such that 1 / .   

 

2.2 Enhancement to the Curve Fit Selection 

Citing the analysis by Sherman [3], Shane-Fowle chose the inverse power curve for fitting the 

age-to-age LDFs, 

̂ , (2.1)

where ̂  denotes the fitted development ratio at age , and  and  are the fit parameters.  The 

inverse power curve is a widely accepted choice for fitting LDFs [1], but justification for using it 

appears to be based on the observation that it often provides a reasonably good fit rather than 

providing sufficient information to allow the user to make an informed selection of the appropriate 

curve for the data being fit.  Even if mortality is arguably the most important factor for a tail model, 

mortality doesn’t start to dominate until much later in the tail, at claimant age 70 or so based on a 

review of the current life tables.  Until then, the projection of loss is determined largely by the curve 

fit.  Thus we believe it makes sense to invest more analysis into the selection of the curve fit.   

2.2.1 Analysis of constant decay loss model 

To gain some insights that will help guide our selection of the curve fit, we first conduct a simple 

analysis of a theoretical loss development model.  This model will focus on only one accident year.  

We assume that the incremental loss  decays with age  at a constant rate of decay  such that 
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the sequence of incremental losses starting at 1 are 1 , 1 1 , 1 1 , and so 

on.  The decay rate  is restricted to the range [0, 1], which means that negative development and 

increasing incremental losses are not considered.  The latter omission might be concerning if we 

were working with severity data subject to inflation, for example, but the Shane-Fowle method is 

based on aggregate runoff triangles where losses are expected to decay over time, making the 

scenario where 0 unlikely.  This constant decay model was previously analyzed by McClenahan 

[4], but his effort was focused more on the formulation of the reserves.  In contrast, our purpose is 

to understand how this particular development pattern relates to the curve fit of the development 

ratio.  

Given a constant value of , the development ratio can be expressed as 

1
1 1

. 
(2.2)

The derivation of Equation 2.2 is provided in Appendix A.  We will next evaluate this expression for 

the scenarios of no decay ( 0) and significant decay ( → 1). 

No decay 

At 0, Equation 2.2 yields the indeterminate expression 0 0⁄ , so we use L’Hôpital’s rule to 

evaluate the limit, 

lim
→

lim
→

1 1
1

. 
(2.3)

This is the inverse power curve of Equation 2.1 with parameters 1 and 1.   

Significant decay 

At 1, Equation 2.2 collapses to the trivial solution of 0, which is not meaningful 

since it equates to no development.  So instead of evaluating at 1, we can see what happens as 

 approaches one.  Looking at the denominator of Equation 2.2, the unity term will dominate over 

the 1  term as  gets closer to one, and consequently Equation 2.2 will tend toward the 

expression 1 .  This is the familiar form of the geometric distribution, which is the 

discrete analogue of the exponential curve.   

To summarize, within the construct of the constant decay model, it is the decay rate that 

determines which curve fit is optimal.  At one extreme, where losses do not decay, the inverse power 
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curve provides the ideal fit.  At the other extreme of significant decay, the exponential curve is ideal.  

In between, the appropriate fit is some blend of the two forms, with a gradual transition from the 

inverse power to the exponential as  goes from 0 to 1.  Appendix B illustrates this transition with a 

hypothetical example.  As expected, the inverse power gives the perfect fit when there is no decay.  

As long as the decay is low ( 0.07), the inverse power fits better than the exponential.  But as   

increases, the exponential curve becomes superior, and by the time 0.2 the exponential is 

already practically an ideal fit with an R2 value of 1.000. 

2.2.2 Curve fit selection 

The insights from the constant decay loss model analysis can be used to guide the selection of an 

appropriate curve fit.  Below, we discuss the inverse power and exponential forms, finishing with a 

recommendation for the gamma form.   

Inverse power curve 

The inverse power curve is ideal when incremental losses have zero or very low decay with 

development age.  For aggregate triangles, this is most likely to happen when the claimant count and 

the loss run rate (i.e., dollar amount per claimant per year) both remain steady or decrease very 

slowly over time.  Slowly decreasing claimant count is certainly possible for lifetime claims beyond 

ten years of development and prior to very mature ages, where mortality takes over.  Steady run rates 

can be expected in indemnity paid data with fixed wage replacement payments and without cost of 

living adjustments.  Medical paid data could also exhibit level run rates if most claims are in a steady 

state of routine treatments and if medical inflation is unremarkable.  Finally, paid expense triangles 

often settle into regular increments in the lifetime development phase.  The conclusion here is that 

the inverse power curve should always be considered for paid data.   

Exponential curve 

Even paid triangles can exhibit fast decaying incremental losses if the claimant attrition rate is 

high, which would likely be true for an aged population.  Therefore, when the inverse power curve is 

clearly struggling to fit due to excessive decay, the exponential curve should be considered.  With 

incurred triangles, significant decay may be expected at early ages in cases where a sizable initial case 

reserve is followed by smaller reserve adjustments in subsequent years.  Decay could continue even 

into mature years to the extent that information about remaining liabilities generally improves over 

time and results in continually smaller reserve adjustments. In fact, it would be unusual for 

incremental incurred losses to have little or no decay so exponential curves may often be chosen 

over inverse power when it comes to incurred data. 
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Equation 2.2 

At first, Equation 2.2 seems like an appealing choice since it effectively represents both the 

inverse power and the exponential curves as well as the spectrum in between.  But there are two 

reasons against using it.  The first is that the premise of this formula is the assumption of a constant 

decay rate, which is unlikely to be observed in practice.  The second reason is that Equation 2.2 is a 

single parameter curve.  As any practitioner can attest, an attempt to fit data as nonlinear as workers’ 

compensation losses to any single parameter curve would likely be a futile exercise.  Real data is 

messy with decay rates and other trends that often change unpredictably over time.  For practical 

reasons, we would want a curve form with more than one parameter to be able to accommodate 

such data. 

Gamma curve 

A single curve that can fit both slow and fast decaying losses would be beneficial.  We therefore 

recommend the following form1: 

. (2.4)

This equation has the form of the gamma distribution.  It consists of three parameters: the scale 

parameter , the inverse power decay rate parameter , and the exponential decay parameter .  

This curve form has the following benefits and drawbacks: 

• It contains both the inverse power and the exponential forms, so it can fit both low and high 

decaying loss patterns.  The data itself will determine which curve form dominates, or the final 

form could be a blend of the two, but we do not have to manually choose one or the other. 

• It is versatile in that it can be forced to be purely inverse power by constraining  to be zero, or 

it can be forced to be purely exponential by constraining  to be zero. 

• It has three parameters, which allows for more flexibility than the inverse power or exponential 

alone, but also limits the number of parameters to avoid overfitting. 

• Unlike the exponential and the inverse power, curve fitting for the gamma curve is not readily 

available through standard plotting applications such as Excel.  While the choice of the curve 

fitting method is left to the readers’ discretion, one option is to use an iterative algorithm for 

                                                           
1 We credit Robert Ballmer, FCAS for suggesting this curve form. 



Enhancements to the Shane-Morelli Method 

Casualty Actuarial Society E-Forum, Winter 2019  7 

minimizing the sum of squared error using Excel’s Solver function. 

• The gamma curve is not commonly used for this purpose, and as a result, additional 

communication with business partners regarding the justification of its application may need to 

take place. 

 

2.3 Enhancement to the Application of Mortality 

The second enhancement to the Shane-Fowle method has to do with the application of mortality 

in the loss projection.  Shane and Fowle applied mortality by estimating the average remaining life 

expectancy of the underlying claimants and calculating a weighted average of life expectancy by 

accident year.  They additionally introduced a useful method of evaluating life expectancy at desired 

percentiles, which allows the practitioner to judgmentally use percentiles in lieu of the expected 

value.  The selected life expectancy for an accident year was then used to truncate the extrapolated 

curve fit to obtain the ultimate loss and the corresponding tail factor.  Their approach has several 

merits, including being intuitively appealing and having high practical value.  However, we see 

opportunities for improvement in view of the following considerations. 

• The average of the individual life expectancies in a cohort will underestimate the life 

expectancy of the cohort.  If we say that a cohort “dies” with its last remaining member, then 

the life expectancy of the cohort should exceed the average of the individual life expectancies.  

Consider the extreme example of a cohort of two people, one with a life expectancy of one 

year and the other with nineteen years.  The average of their life expectancies is ten years.  But 

the life expectancy of the cohort would be greater than ten years because the life expectancy of 

the youngest member is greater than ten years. 

• A cohort in runoff dies off gradually, so it follows that the loss development should also be 

affected gradually by the force of mortality.  Under Shane and Fowle’s method of truncation, 

mortality is introduced at a single point in time – the point considered to be the ultimate.  

Prior to then, losses are assumed to develop without contribution from mortality other than 

the mortality which is embedded in the observed triangle.  But mortality is nonlinear and 

observed mortality is a not a good predictor of future mortality. 
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2.3.1 Methodology for gradual application of mortality 

To address the above considerations, we propose a gradual application of mortality2.  This 

methodology requires the distribution of claimant ages as well as life tables for the claimant 

population.  If gender is to be considered, and we believe it should, separate life tables for males and 

females are required along with the gender of each claimant.  The number of years of projection is 

somewhat arbitrary as long as it is enough to cover the remaining life of all claimants.  For 

illustrative purposes, one hundred years is likely a reasonable selection.   

Prior to the projection, we assume that the link ratios have already been obtained using standard 

chain ladder methods and that a curve has already been fit to the development ratios.  The steps 

below are then used to project losses for an individual accident year.  For an illustration of the 

calculations for an example accident year, refer to Appendix C. 

1. Group the claimants for the accident year and compute the group’s current average age as well 

as its average age for every year of projection.  The projected average group age is estimated 

using life contingencies whereby the group age at a future year is a weighted average of the 

member ages with the weights being equal to the probability of survival. 

ageG
∑ age

∑
 

(2.5)

In Equation 2.5,  is the number of members in the accident year and  is a time variable 

representing the number of years into the projection.  ageG  is the group average age at time .  

age  is the age of member  at time , which is equal to member ’s current age plus .  

, the probability that member  will survive the next  years, can be calculated from the life 

tables.  For example, if hypothetical member  is a 60-year-old male, 3 , where 

 denotes the probability that a male at age  will survive to age 1.  Note that the group 

ages more slowly than an individual because the oldest members of the group are more likely to 

leave the group in the following year. 

2. Estimate the group mortality rate for each year of projection by using the group average age 

calculated in the previous step to look up the mortality rate from the selected life table.  If using 

gender-specific life tables, we can obtain a weighted average mortality rate using weights that 

reflect the gender split for the group. 

                                                           
2 We again credit Robert Ballmer, FCAS for his significant role in the development of this methodology. 
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3. Use the curve fit for the development ratios (Equation 2.4) to project annual incremental future 

losses.  First, cumulative losses can be projected year after year using 1 1

, starting with the current diagonal as the initial value.  Then the incremental losses can be 

obtained by  1 . 

4. Use the incremental projected losses to compute an implied loss decay rate for each projected 

year.   

5. The implied loss decay rate obtained in the previous step includes mortality observed in the 

triangle data.  We want to remove this observed mortality in order to avoid double counting 

when we apply mortality later in a separate step.  A precise evaluation of the observed mortality 

for each development age is impractically cumbersome, so we rely instead on the most recently 

observed mortality rate.  This observed mortality rate is subtracted from the implied loss decay 

rate at every projected year.  See Appendix C for additional detail. 

6. Next we add the group mortality rate estimated in Step 2 to the restated implied loss decay rate 

from Step 5.  This gives us the implied loss decay rate adjusted to include mortality.  The subtle 

assumption made in this step is that loss decay and life mortality rates are additive.  This 

assumption implies that the loss decay comes entirely from the loss of claimants and not from 

changes in the per claimant severity.  This is a reasonable assumption for lifetime paid indemnity 

since many claimants receive a fixed wage replacement amount.  Medical payments are also often 

steady due to routine treatments and medications although there is more variability here for a 

number of reasons, including the potential for medical technology and treatments to change 

over time, and the impact of claim handling practices around closed/reopened claims for routine 

infrequent treatments.  The use of aggregate data should help smooth this volatility to some 

degree.   

7. The final step is to apply the loss decay rate adjusted for mortality in Step 6 to estimate the 

future incremental losses.  The future losses are then summed to produce the unpaid for the 

accident year.   

2.3.2 Comparison of the gradual and truncated application of mortality 

Using the projected incremental losses from the example in Appendix C, we can compare the 

gradual application of mortality described above against a truncated application.  Figure 2.1 provides 

a visual representation to help understand the differences between the two methods.  In the 

Appendix C example, the average life expectancy of the accident year cohort was computed to be 26 

years, and that is where the truncated method stops projecting.  On the other hand, the gradual 
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application method projects incremental losses that taper down to zero over a period of 50 years.  

We can also see that losses from the gradual method decrease at a faster rate than losses from the 

truncation method due to the mortality adjustment applied every year.  Comparing the two loss 

patterns, the gradual method also probably provides a more realistic cash flow projection.  The total 

unpaid estimates for the gradual and truncated application are 1,047 and 964, respectively.  It is not 

surprising that the gradual produced a higher unpaid estimate since it projects a longer life 

expectancy for the group (though also recall that the original Shane-Fowle method would have used 

an inverse power which, in practice, would have yielded a higher unpaid estimate than shown here, 

so this is not a representation of the difference between the original method and our proposed 

enhancements).  In practice, the actuary may choose to use either or both of the methods due to any 

number of considerations.  For example, consider a scenario where the case reserves are presumed 

to be set adequately to cover all future payments at some point prior to the ultimate life expectancy 

of the cohort.  In this case, the actuary may opt to use the truncated method for the incurred 

development, while the gradual method may be appropriate for paid development. 

   

 
Figure 2.1:  Projected incremental losses using the gradual and truncated 
application of mortality.  Results are from the example presented in Appendix C.  
For clarity, curves are shown as continuous lines, but incremental losses are 
discrete for each projection year. 
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3. PRACTICAL CONSIDERATIONS RELATED TO APPLYING THE 
MODEL FOR SUBSEQUENT RESERVE REVIEW CYCLES 

3.1 UPDATING THE MODEL 

 Since the “tail” analysis may often be one of the most leveraged assumptions in the 

projection to ultimate on long tail lines, it can also drive some of the most significant financial 

impacts.  Subsequent utilizations of the model described above will likely generate ultimate 

indications that differ from prior model results.  This introduces the age-old debate around stability 

versus responsiveness.  To address this concern, we will explore the concept of “locking in” 

parameters for an extended period of time with contemporaneous reasonability checks of those 

parameters.3 

 

We propose that when the model is updated, two contemporaneous exercises take place: 

 Exercise 1: Updating the Data 

Underlying data is updated, incorporating a new diagonal, or several new diagonals, of 

paid and incurred information as well as updated information on the distribution of 

claimant ages and genders on open claim.  For this exercise, we lock down the parameters 

that generated the original loss development curve (specifically parameters a, b, and r, 

from equation 2.4 above).  We then run through each step of section 2.3.1. with updated 

claims data. The resulting indications will then be driven entirely by underlying data 

changes and not changes to the model’s parameters. 

 Exercise 2: Re-Fitting the Parameters 

In a separate analysis, after updating the underlying data per Exercise 1, we go through 

the entire process as outlined in Section 2, above, from selecting a curve to the 

application of mortality.  This should essentially be starting from scratch to determine the 

best model for the data without looking back at the prior results.  In this way, the 

practitioner will have the impacts from updating the underlying data as well as the impacts 

from updating the model parameters.   

For purposes of reducing bias, the practicing actuary should determine ahead of time how long 
                                                           
3 We credit Michael Shane, FCAS for this suggestion. 
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the parameter assumptions will be locked.  We believe a time period of three to five years is a 

reasonable starting point.  This locking of the parameters insulates against responding to the year-to-

year process noise introduced when the underlying data is updated and the curve fit parameters are 

refit.   

Of course, locking in parameters without monitoring changes in the underlying data would 

expose one to missing changes in underlying trends or material shifts in development patterns.  For 

this reason a determination should be made on a threshold to be used to measure whether or not 

parameters should be re-fit earlier than the predetermined timeframe. This threshold would be 

measured against the parameter refit impact, calculated as the total variance from Exercise 2, above, 

less the process variance from Exercise 1 above.   Suggested benchmarks might include a percentage 

of capital or surplus, or perhaps a percentage of the underlying reserves being modeled.  

Additionally, if the model has been used for multiple years, this parameter refit impact should be 

monitored over time, since consistent directional impacts might indicate the need for a refit sooner 

than anticipated.  In theory, one would expect these parameter refit impacts to oscillate around zero 

if no systemic change is taking place.  

Alternatively, one could use a goodness of fit test with the new data and the locked parameters.  

One other option may be to use a Bayesian framework to assess the new parameters; given a prior 

assumption, test whether the new information suggests that the prior is no longer valid.  The specific 

test to be used is left to the reader.  Again, the determination should be made beforehand around 

the tolerance around the results of this test and the level at which a decision needs to be made on 

whether or not to refit the parameters. When the decision is made to refit the parameters, the model 

fit guidelines presented in Section 2 should again be utilized.  The parameter locking process should 

also be essentially reset at the same time.   

The authors would like to clarify that this approach assumes a single and consistent mortality 

table.  In practice, there is likely more than one mortality table that may be used.  We leave it to the 

reader to select the most appropriate mortality table for the purposes of this model.  Discussion 

around which mortality table(s) to utilize are beyond scope of this paper.  Further, note that if the 

underlying mortality table that the practitioner had decided to use for the prior iteration of this 

model was updated or changed, the practitioner should consider utilizing the most up-to-date 

mortality table in the next iteration of this model.    
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3.2 DISCUSSION OF RESULTS WITH BUSINESS PARTNERS 

When the data is updated and new indications are generated, the discussion of results with 

business partners should be fairly intuitive.  In theory, the drivers of changes to indications should 

be directly related to changes in open claim attributes, such as the distribution of ages and genders, 

or changes to the run rate of payments (e.g., escalating medical severity).  This is one of the key 

benefits of the original Shane-Fowle model, since the resulting changes to indicated ultimates are 

often fairly obvious and reasonably easy to explain. 

 

When the data and the parameters are both updated, the discussions could be more difficult.  The 

completion of both Exercises 1 and 2, above, allow for the same insights as noted above that relate 

to changes in the open claims, leaving the actuary to explain the remaining changes as related to the 

updating of the parameters.  If the parameters were updated due to shifts in the underlying data 

leading to parameter refit variances greater than the selected threshold, it is likely that specific 

internal or external drivers could be identified that explain the need to refit the parameters and the 

directional change to indications.  These drivers might include: 

 Internal – changes to the claim settlement practices, changes to case reserving standards, 

new cost or expense mitigation efforts, etc. 

 External – changes to medical inflation, changes due to state specific reforms, changes to 

the legal environment due to court rulings, changes to life expectancies, etc. 

When parameters are updated due to the predetermined passage of time, such specific drivers may 

be more difficult to find, but the impact of the parameter update on the overall indications is also 

likely to be less significant in this case. 

4. CONCLUSIONS 

The Shane-Fowle model described an intuitive method for incorporating mortality assumptions 

into otherwise standard actuarial methods to improve the resulting reserve estimates and offer 

insights for discussion with management and other business partners.  This model extends and 

enhances the Shane-Fowle method in two ways.  We introduce the use of the gamma curve, which 

results in a tail that is fit based on the underlying data with less subjectivity than the more traditional 

inverse power or exponential curves.  Additionally, we propose a gradual application of mortality to 

the curve fit, which allows for the projection of incremental incurred or paid losses to converge to 
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zero as expected, which is not achieved by either a straight curve fit or the truncation method 

originally proposed. 

This paper has also included a proposal for the regular updating of the model that should 

facilitate discussion with business partners about the underlying cause of changes to estimates.  This 

recommended approach cautions against modifying parameters overly often, proposing instead that 

parameters are updated either at predetermined intervals or when there are truly significant changes 

to the data that suggest the previous model might no longer be appropriate. 
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Appendix A 

In this appendix we derive a closed form expression for , the development portion of the 

link ratio.  Link ratios for aggregate triangles are typically evaluated over multiple accident years, but 

this derivation will focus on the development in only a single accident year.  Our analysis will impose 

only one condition: the incremental losses will decay with development age at a constant rate, .  

We will derive the formula here on a discrete basis, but the continuous analogue is straightforward.   

We denote the cumulative loss as of age  as .  The incremental loss from age 1 to  is 

.  In equation form, 1 .  The link ratio, also known as the age-to-age 

loss development factor, is defined as 1 ⁄ .  We are interested in the 

development ratio , which is equal to 1.  It can be shown easily that 

1 ⁄  (A1)

Next we define the incremental loss decay rate  in equation form: 

	
1

1
1

 
(A2)

Recall that the decay rate is constant, which means that the incremental loss decreases by the same 

percentage of the previous incremental loss, regardless of the age.  Equation A2 can be rearranged 

to yield the following expression: 

1 1 1 1 , (A3)

where the last equality comes from a recursive relation made possible by the assumption that  is 

constant.  Next we recognize that  is simply the sum of ’s: 

1 1 1 , 
(A4)

where the last equality utilizes Equation A3.  The right side of Equation A4 is the geometric series 

with the well-known solution 

1
1 1

. 
(A5)

We next combine Equation A1 and A3 to get 
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1 1
, 

(A6)

and substituting Equation A5 for , 

1 1

1
1 1

. 
(A7)

Finally, cancelling the 1  terms and rearranging yields the formula 

1
1 1

. 
(A8)
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Appendix B 

In this appendix, we examine the inverse power and exponential curve fits for the development 

ratio of a loss pattern where the incremental losses are subject to a constant rate of decay.  We are 

specifically interested in how the quality of fit responds as the decay rate changes.  We conduct the 

analysis using a simple hypothetical loss development for a single accident year in which incremental 

losses start at 1,000 at age one and decrease annually by a decay rate of .  For example, a decay rate 

of 10% produces the following incremental and cumulative loss patterns.  Note that we are only 

looking at development past the first ten years in keeping with the lifetime scope as identified in 

Section 1.2.   

 

Development 
Age,  

Incremental 
Loss,  

Cumulative 
Loss,  

Development 
Ratio,  

10 387 6,513 0.054 
11 349 6,862 0.046 
12 314 7,176 0.039 
13 282 7,458 0.034 
14 254 7,712 0.030 
15 229 7,941 0.026 

Decay rate  = 0.1 

 

Next, the development ratio as a function of the development age was fit to the inverse power 

curve, 

̂ , (B1)

where  is the scale parameter. The more interesting parameter is , which governs the rate of decay 

of the inverse power curve.  The fitting was done by regression in log space using only data points 

for development years 10-29.  The same data was also fit to the exponential curve, 

̂ . (B2)

Parameter  controls the decay of the exponential curve.  The fits to the inverse power and 

exponential curve were conducted for a range of decay rates.  The quality of fit was measured with 

the R2 metric in log space, but it was also confirmed that measuring R2 in the original dimensions 

yields similar conclusions. The results are summarized below. 
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Decay Inverse Power Exponential 
Rate,    R2   R2 

0.00 1.000 -1.000 1.000 0.155 -0.054 0.980 
0.05 2.716 -1.537 0.997 0.157 -0.084 0.993 
0.07 4.519 -1.801 0.995 0.161 -0.099 0.995 
0.10 10.849 -2.248 0.991 0.170 -0.124 0.998 
0.15 60.884 -3.116 0.986 0.193 -0.172 0.999 
0.20 447.933 -4.119 0.983 0.226 -0.228 1.000 

 

At zero decay rate, the inverse power curve provides a perfect fit with 1.  The response to an 

increasing decay rate is that  becomes more negative in an attempt to keep up with the faster decay, 

but this comes at the cost of the goodness of fit, as indicated by the decreasing R2 value.  On the 

other side of the table, it can be seen that the exponential is an inferior fit to the inverse power at a 

decay rate of zero, judging by the R2 value.  But the exponential’s fit improves as the decay rate 

increases to the extent that above a decay rate of 7%, the exponential is better than the inverse 

power.   
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Appendix C 

This appendix illustrates the projection of future losses using the gradual application of mortality as 

described in Section 2.3.  This example uses hypothetical but realistic paid loss and claimant data.  

Suppose that we have the following information for an accident year: 

• Cumulative loss at latest diagonal is 10,000. 

• Development age at latest diagonal is 20 years. 

• The development ratio has been fit to the curve in Equation 2.4, and the parameters have been 

estimated to be: 0.4, 1.37, 0.00165.   

The table below shows the calculations for this accident year.  Note that some figures are rounded 

for display. 

Proj 
Year 

 

Avg 
Age 

ageG  
Mort 
Rate 

Dev 
Age 

 

Fitted 
LDF 

Cumul 
Loss Increm 

Loss 

Loss 
Decay 
Rate 

Adj 
Loss 

Decay 

Adj 
Increm 
Loss 

[A] [B] [C] [D] [E] [F] [G] [H] [K] [L] 
1 60.6 0.0056 20 1.0064 10,000 64   64 
2 61.5 0.0062 21 1.0060 10,064 60 0.060 0.061 60 
3 62.4 0.0068 22 1.0056 10,124 57 0.058 0.059 56 
4 63.4 0.0075 23 1.0052 10,180 53 0.055 0.057 53 
5 64.3 0.0082 24 1.0049 10,234 51 0.053 0.056 50 
6 65.2 0.0088 25 1.0047 10,284 48 0.051 0.055 48 
7 66.1 0.0094 26 1.0044 10,332 46 0.049 0.053 45 

          

45 94.0 0.1695 64 1.0012 11,275 14 0.022 0.186 2 
46 94.6 0.1872 65 1.0012 11,288 13 0.022 0.203 1 
47 95.3 0.2039 66 1.0012 11,302 13 0.021 0.219 1 
48 95.9 0.2039 67 1.0011 11,315 13 0.021 0.219 1 
49 96.5 0.2204 68 1.0011 11,328 13 0.021 0.235 1 
50 97.1 0.2394 69 1.0011 11,340 12 0.020 0.254 0 

 
[A] Projection period in years. 

[B] Projected average age of the group at the start of year , calculated with Equation 2.5.  This 
calculation requires a selected life table and the distribution of claimant ages. 

[C] Mortality rate looked up from the life table using the age from column [B].  This represents the 
probability that a person will die within the next year. 

[D] Development age at the start of year  in years, starting with age at the latest diagonal. 
[E] = 1 + 0.4[D]-1.37exp(-0.00165[D]) is the fitted link ratio using the given fit parameters with 

Equation 2.4. 
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[F] = [F previous]*[E previous] is the cumulative loss at the start of year , obtained from the curve 
fit.  First row is the latest diagonal. 

[G] = [F next] – [F] is the incremental loss predicted for projection year .   

[H] = 1 – [G]/[G previous] is the implied loss decay rate between year 1 and year .  Note that 
there will be discrepancies due to rounding in the table above. 

[K] = [H] + ([C] – 0.0056) is the implied loss decay rate adjusted for mortality.  The 0.0056 value is 
the latest observed mortality rate (first row of [C]), which is removed from the adjustment to 
avoid double counting mortality. 

[L] = [L previous]*(1 – [K]) is the adjusted incremental loss. 

The sum of column [L] is equal to 1,047.  This is the total unpaid estimate for the accident year.   
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 Appendix D 

This appendix provides a comparison of reserving estimates using three different techniques: the 

enhanced Shane-Fowle method presented in this paper, the original Shane-Fowle method and a 

traditional method.  The three methods were applied to example workers’ compensation medical 

paid data from industry sources.  All three methods utilized the same LDFs, which were five-year 

volume weighted averages excluding the first ten development years.  The modeling distinctions 

among the three methods are as follows. 

Enhanced Shane-Fowle:  the gamma curve (Equation 2.4) was fit to the LDFs, and mortality was 

gradually applied as described in Section 2.3. 

Original Shane-Fowle:  the inverse power curve was used to fit the LDFs, and the curve was 

truncated at the life expectancy according to the average age of the accident year cohort. 

Traditional: LDFs were used without curve fitting, and a tail factor was selected based on the 

incurred/paid ratio at the end of the triangle. 
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The table below shows the cumulative development factors (CDFs) and unpaid estimates using the 

three methods. 

 
  Enhanced Shane-Fowle Shane-Fowle Traditional 

Acc 
Year 

Cumul. 
Paid ($M) 

CDF 
Unpaid 

($M) 
CDF 

Unpaid 
($M) 

CDF 
Unpaid 

($M) 
1985 984 1.031 31 1.031 30 1.030 30 
1986 1,133 1.035 40 1.034 38 1.033 37 
1987 1,326 1.039 51 1.037 49 1.037 49 
1988 1,530 1.041 63 1.041 62 1.040 61 
1989 1,784 1.045 80 1.045 79 1.044 78 
1990 2,029 1.048 98 1.047 96 1.048 97 
1991 2,180 1.053 115 1.053 116 1.051 112 
1992 1,741 1.058 101 1.057 99 1.055 97 
1993 1,491 1.062 93 1.062 93 1.060 89 
1994 1,449 1.068 99 1.068 98 1.065 95 
1995 1,591 1.077 122 1.074 118 1.072 115 
1996 1,681 1.081 136 1.077 130 1.081 136 
1997 1,975 1.091 180 1.087 171 1.091 179 
1998 2,585 1.100 258 1.094 243 1.101 261 
1999 2,963 1.110 325 1.106 313 1.113 334 
2000 3,486 1.121 422 1.114 396 1.127 442 
2001 5,225 1.132 691 1.125 652 1.142 741 
2002 5,342 1.149 798 1.141 756 1.158 842 
2003 4,900 1.166 815 1.159 778 1.175 856 
2004 3,915 1.184 720 1.177 695 1.194 760 
2005 3,505 1.207 727 1.204 715 1.217 762 
Total   5,967  5,727  6,171 

 

In comparing the enhanced and the original Shane-Fowle estimates, it is interesting to recognize 

that the two enhancements made to the Shane-Fowle method had opposite effects on the unpaid 

estimate.  The first enhancement of using the gamma curve in lieu of the inverse power lowered the 

estimate of future development because the exponential component of the gamma made the tail 

thinner.  The second enhancement of the gradual application of mortality increased the estimate of 

development by projecting a longer life expectancy for the group.   

Here we see an example where the three methods produce results that are not materially different 

from each other. This will not always be the case.  For example if the gamma fit is very close to the 
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inverse power, the first enhancement would not have much impact.  If at the same time there is a 

wide distribution of claimant ages, the second enhancement would make a significant 

difference.  The combined effect would be an overall material difference.  

 

 
 


