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PTBA - Risk Selection In Cyber Insurance Underwriting 
Ari Chatterjee, ACAS & Dr Raveem Ismail 

 

ABSTRACT 

Cyber is an emerging line of insurance, which has demonstrated tremendous growth potential over 
the next decade. Since it is also an anthropogenic peril, with evolving threat landscape and 
coverages, it is naturally challenging to underwrite. Here, we propose a new and simple measure, the 
PTBA (Propensity To Be Attacked). Its key advantages are that it is simple to calculate, and is driven 
by the interplay between attacker motivation and cybersecurity defence. It produces a single number 
as an output, and is therefore an ideal risk score, a familiar concept in the insurance world (e.g., the 
terrorism class), and pivotal to quick and practical relative risk appraisal required for underwriting 
decisions. 
 
Keywords: Cyber, Insurance, Reinsurance, Underwriting, Pricing, Risk, Modelling, Catastrophe. 
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1. RESEARCH CONTEXT & OBJECTIVE 

 Given the paucity of literature on cyber risk insurance, pricing and underwriting, this paper 
aims to outline a method to underwrite and select risks in a dynamic cyber threat landscape. The 
traditional methodology of risk classification fails to capture the dynamic nature of the threat 
landscape and very often, data collected by insurers is insufficient for constructing sophisticated risk 
classes. We believe the proposed will assist underwriters and actuaries in profitably underwriting 
cyber insurance. 

https://www.linkedin.com/in/ari-chatterjee-28518aa/
http://goo.gl/OwH7M
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2. DEFINING PROPENSITY TO BE ATTACKED (PTBA) 

The expected income to an attacker from a cyber-attack is the value of each record hacked, 
plus any other value that might be derived from the target. I.e., if I is the expected income, then: 

I = NPIICPII + NPHICPHI + O , 

where: 

• N is the number of records the attacker expects to exfiltrate from a target firm. 

• C is the expected price per record. 

• O is other gains expected by attacker from target (includes ransom, IP, possible trading insights, 
possibility of gaining access to larger targets, recognition, etc.). 

• PII is Personally Identifiable Information (as defined by NIST, e.g., name, date of birth, 
credit card information, email address, etc.). 

• PHI is Protected Health Information (as defined by HIPAA, e.g., names, medical 
records, biometric details, etc.). The estimated relative value of PHI to PII is 50:1 (World 
Privacy Forum1). 

Attackers also have (daily) costs in order to achieve their income - “profits” are the difference 
between costs and potential income: 

P = I – Kt , 

i.e., 

P = NPIICPII + NPHICPHI + O – Kt , 

where: 

• P is expected profit for attacker from target.  

• K is the daily cost of executing a cyber-attack (including reconnaissance, infrastructure, 
outsourcing, cost of hiring insiders, paying for credentials, cost of zero-day vulnerabilities, 
consequences of getting caught, etc.). 

• t is time required to breach the target.  

Then, for the attacker, the aim is to maximise the profit function P across all targets: 

Max( P ) = Max( NPIICPII + NPHICPHI + O – Kt ) . 

Therefore, for the attacker to ascertain target desirability simply means sorting targets in 
descending order by P. I.e., it will be preferable to attack firms with a higher P (profit function) first. 
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Each attacker will have their own, potentially unique, list in which a firm appears at a certain 
percentile rank R. NB: 

Absolute Rank = No 1   --->   Percentile Rank = 0% 
Absolute Rank = No [Last]   --->   Percentile Rank = 100%. 

Since any one firm will be a target for multiple attackers, with various different value of R in 
each attacker's desirability list, the sum of R , across all considered attackers n, for any one target firm, is a 
measure of the overall susceptibility of the target to attackers. We therefore define PTBA, the Propensity To 
Be Attacked, as: 

PTBA = ( Σn R ) / n . 

The higher this metric, the higher is the likelihood to be attacked (elevated risk). 

3. SOME OBSERVATIONS ON KEY PARAMETERS 

C (expected price per record): 
• Given the sensitive nature and value of healthcare information, it is no surprise that CPHI 

> CPII
1.  

O (other gains expected by attacker from target): 
• Is highly correlated to the target’s industry. E.g., investment banking, hedge funds2, law 

firms, accounting firms, etc., all have (motivating) gains, other than data exfiltration, for 
an attacker. E.g., ready funds to transfer, etc. 

• May be high for smaller vendors working for larger corporations: attackers can leverage 
such a relationship to attack the larger organisation. The Target breach was via a HVAC 
vendor3. 

• For hacktivists, terrorists and nation states, O is non-monetary. As with terrorism, their 
aim is often to maximise propaganda-of-the-deed than monetary profit (P). 

• The ransom demanded from ransomware victims is an example of O. Generally, the 
ransom is designed in a way that the victim is better off paying quickly without waiting 
long, thus ensuring that the cost of suffering (cost to recreate data + cost of unavailability 
of systems) is below the ransom amount. Globally, about 40% of victims pay4. 

K (daily cost of executing a cyber-attack): 

• Depends on the type of attacker. A sophisticated and well-resourced attacker capable of 
absorbing larger expense would generally have a better chance against larger targets. For 
less sophisticated adversaries, a different victim set or different attack type (with less 
technical complexity e.g. Ransomware, DDoS) may maximize profits5. 
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• Increases significantly6 if there are legal or financial consequences the attacker faces for its 
action and can be a powerful deterrent to attack.  

• To minimize K an attacker may try to re-use the same attack components on similar firms 
e.g., industry peers, or companies using similar technology. For example, Target and 
Home Depot hacks included variants of BlackPOS malware, the Sony hack used 
Destroyer which had code level similarities with Shamoon, used to attack Saudi Aramco7. 

• Attackers are opportunistic. They go after easiest targets first, not wasting time where 
quick results are not yielded. Attackers tend to quit when their target firm exhibits strong 
security12. 

• The time to deter the majority of attacks is less than two days. The longer an organisation 
can keep the attacker from executing, the more likely the attacker will move to the next 
target (a parallel from the terrorism space is target substitution). Higher IT maturity may 
therefore deter attackers from pursuit of the target firm12.  

• For calculating K: 

o 69% of the attackers are motivated by money. On average, attackers receive $28,744 
annually for every 704 hours spent on attacks12. This is dissimilar to terrorism, where 
ideology and propaganda-of-the-deed are key. 

o Attacker technology and availability is improving, enabling more attacks. Technically 
proficient attackers spend an average of $1,367 for specialized tools to execute 
attacks12. 

If we ignore the (possibly eventual) cost of extradition or legal costs to the attacker, we 
can calculate an average daily cost, the aforementioned K: 

K = ( $28,744 + $1,367 ) / 704 hours = $42.8 per hour. 

 

t (time required to breach target): 

• Depends on both the maturity of IT security employed by the victim and the 
sophistication of the attacker.  

PTBA (Propensity To Be Attacked): 

• Annual revenues are not an exact indicator for PTBA, since the target could be in 
business of managing third party data (e.g., payroll processors, accountants) which could 

https://en.wikipedia.org/wiki/BlackPOS_Malware
https://en.wikipedia.org/wiki/Shamoon
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be of a different value to what its own revenues might imply. 

• A bank might have a very high desirability and a large payoff. What prevents it having a 
high PTBA, is that its stringent countermeasures attenuate its profit function, hence it is 
by no means guaranteed that a bank would be first in the percentile ranking of profit 
function. 

• PTBA is dimensionless: regardless of how long the list of targets held/considered by each 
attacker, and regardless of how complete the attacker spectrum characterisation, it is a 
normalised score between zero and one. 

4. CALCULATING EXAMPLE PTBAS 

In principle, highly granular data on each individual attacker could be ascertained via the 
dark web and/or sinkholes. However, since representative (let alone exhaustive) compilation of 
these is not currently possible in practise, using attacker groups, a broader and more practical 
classification, covers all types of attacker. 

Using VCDB data, we can calculate the PTBA across a range of industry classes for a 
spectrum of attacker types, across a two-year period (2015-2016): 

Sector 
PTBA 

Crime Hacktivist Nation 
State 

Malicious 
Insider 

Accommodation 0.789 0.526 0 0.631 
Administrative 0.315 0 0 0.473 

Agriculture 0 0 0 0 
Construction 0 0 0 0.157 
Educational 0.684 0.526 0 0.842 

Entertainment 0.315 0 0 0.263 
Finance 0.894 0.842 0 0.894 

Healthcare 1 0.842 0 1 
Information 0.631 0.947 0.736 0.684 

Manufacturing 0 0 0 0.526 
Mining 0.315 0 0 0 

Other Services 0.578 0.789 0.736 0.578 
Professional 0.684 0.736 0.947 0.789 
Public Sector 0.947 1 0.947 0.947 
Real Estate 0 0 0 0.263 

Retail 0.842 0.526 0.736 0.736 
Trade 0.315 0.526 0 0.368 

Transportation 0 0 0 0.421 
Utilities 0.315 0 0.736 0.157 

 
  

http://vcdb.org/
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Since PTBA can be calculated for any granularity, we can also combine all attacker types to more 
simply look at how the threat landscape changes over time (2015-2016 to 2016-2017): 

Sector PTBA 
2015-16 2016-17 

Accommodation  0.4865 0.44425 
Administrative  0.197 0.111 

Agriculture  0 0 
Construction  0.03925 0.097 
Educational  0.513 0.5135 

Entertainment  0.1445 0.49975 
Finance  0.6575 0.666 

Healthcare  0.7105 0.6665 
Information  0.7495 0.72175 

Manufacturing 0.1315 0.13875 
Mining  0.07875 0.0555 

Other Services  0.67025 0.6385 
Professional  0.789 0.5275 
Public Sector 0.96025 0.87475 
Real Estate  0.06575 0 

Retail  0.71 0.722 
Trade  0.30225 0.208 

Transportation  0.10525 0.111 
Utilities  0.302 0.2775 

Hence, we infer that the public sector is the most hazardous industry class, while agriculture is the 
least, borne out empirically, and according to the PTBA measure which objectively quantifies such 
risk.  

5. CONCLUSION 

We have shown that using readily available historical data, or forecasts for future events15, 
that it is possible to calculate a single-number risk score: the PTBA (Propensity To Be Attacked). 
This metric takes into account both attacker motivations and cost, and defender cyber 
countermeasures. It varies correctly across time, industry, and attacker type. It is flexible and 
dimensionless: regardless of how long the list of targets held/considered by each attacker, and 
regardless of how complete the attacker spectrum characterisation, it is a normalised score between 
zero and one, making it ideal for underwriting both single risks and portfolios, for insurance and 
reinsurance. 
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APPENDIX: WALKTHROUGH FOR REPLICATING CALCULATIONS 

The PTBA formulation is agnostic to data used: here, we have used the VCDB database for 
its virtues of being open source and having good coverage (7,300 events at the time of writing). 

The reproducible steps and assumptions are: 
1. Group by attacker class (Malicious Insider, Nation State, Criminak, Hacktivist): 

• Malicious Insider: "actor.internal" = "TRUE". Accidental data releases do occur, but 
without capturing true motives, malicious intent can be assumed for conservatism. 

• Nation State: "actor.external.variety.Nation-state" or "actor.external.variety.State-
affiliated" = "TRUE". 

• Crime: "actor.external.variety.Organized crime" = "TRUE". 
• Hacktivist: "actor.external.variety.Activist" = "TRUE". 

2. Calculate the number of attacks by each actor category by year and industry class (simple 
pivot). We used victim.industry.name as the industry class, and timeline.incident.year as the 
year. 

3. In the absence of further data, we assume that the number of events (for a particular attacker 
type and industry) is the manifestation of ranking in target desirability. 

4. Calculate PTBA for a particular industry for a given year and an attacker category (our first 
table): PTBAindustry = PercentileRankindustry, where, in the absence of further data, the number 
of attackers is assumed the same for each attacker category.  

5. For PTBAs without breaking out attacker types (our second table), we simply sum PTBAs 
across attacker type (each row in our first table) and divide by 4, exhibiting the additive 
utility of the risk score. 
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It should be noted that the PTBA calculation is a framework for dealing with a heterogonous 
spectrum of data quality. The VCDB data are extremely basic, but we have shown how they 
would plug into the PTBA calculation – comprehensive data on unknowable or challenging to 
acquire information (such as desirability, number of attackers, etc.) would go straight into the 
PTBA calculation and improve it, but even in its absence, a useful metric can be produced. 
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Enhancing the Generalized Linear Modeling Approach with 
Machine Learning Technique  

Jie Dai, FCAS, CSPA 

 ____________________________________________________________________________________________  
Abstract 

With the development of the machine learning (ML) technique and broad successful application, machine learning 
is becoming more and more popular for data analytics in many industries. Insurance is no exception, and machine 
learning techniques are used to build predictive models in Claims (Fraud, subrogation models), Marketing 
(Segmentation, cross sell model, recommendation models), and Underwriting. However, for pricing models, 
Generalized Linear Models (GLM) still dominates given its easy interpretation and well-established frame work. 
Using a machine learning method to enhance the GLMs model is a challenge to the insurance industry especially 
for actuarial modeling. This paper will discuss some potential ways to enhance the GLMs model with tree based 
machine learning techniques and give a case study on territorial analysis, which would show significant 
improvement on the predictive nature of the GLM model. 

Keywords. Machine learning; territorial analysis; generalized linear modeling. 
 ____________________________________________________________________________________________  

1. INTRODUCTION

Machine Learning is a sub-set of artificial intelligence where computer algorithms are used to
autonomously learn from data. Machine learning (ML) is getting more and more attention and is 
becoming increasingly popular in many other industries.  Within the insurance industry, there is more 
application of ML regarding the claims and underwriting disciplines. There is little in actuarial literature 
on ML, and none is in pricing modeling. 

In the early 1970s, Nelder and Wedderburn coined the term generalized linear models (GLM) for 
an entire class of statistical learning methods that include both linear and logistic regression as special 
cases.  In the last two decades, GLMs have been widely in use in P&C insurance to classify risks and 
determine rate structures. However, standard GLMs do have several shortcomings, most notably [1]: 

• Predictions must be based on a linear function of the predictors;

• GLMs exhibit instability in the face of thin data or highly correlated predictors;

• Full credibility is given to the data for each coefficient, with no regard to the thinness on
which it is based;

• GLMs assume the random component of the outcome is uncorrelated among risks;

• The exponential family parameter ∅ must be held constant across risks;

• GLMs only can identify simple and global interactions, which are the interactions between
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all levels of two predictors. For identifying complex interactions with GLMs, the manual 
process would be non-trivial. 

    Also, another challenge of using GLMs includes the selection of predictors from large volume of 
variables candidates. 

In mid 1980s Breiman, Friedman, Olshen and Stone introduced classification and regression trees, 
which for the first time made fitting non-linear relationships computationally feasible. Since then there 
are more algorithms (like neural nets, random forests or gradient boosting) that have been developed 
and widely used in other industries or disciplines [2]. Those methods don’t have the shortcomings 
noted above, and therefore able to produce strong models that have the potential to yield more 
accurate predictions. However, using those methods directly would entail a huge loss of 
interpretability, which is critical for many actuarial applications.   

      This paper will present the ways to enhance the GLMs with ML technique in variable selection 
and feature engineering. In addition, we will look at an application in sewer backup modeling that 
shows significant improvement of the model results with the new features created through ML. 
However, for reasons of confidentiality, we are not able to share detailed data and quantitative results 
in this paper. 

1.1 Research Context 

With more and more data being available for pricing models, the challenge arises to reduce the 
number of predictors to improve the prediction accuracy and interpretability.  Stepwise selection 
(forward, backward and/or hybrid) are widely used in GLM modeling practice. Recently, shrinkage 
methods like Lasso (least absolute shrinkage and selection operator) have become more popular 
because it can be a more efficient method that produces more interpretable models that involve only 
a subset of the predictors. The third method to reduce variables or dimensions is to create predictors 
from the original raw predictors. Principal Components Analysis (PCA) is the most popular approach 
in deriving a low-dimensional set of features from a large set of variables. Insurance score is a major 
rating variable introduced to personal lines insurance [3] in the late 1980’s and 1990’s. This variable is 
derived from dozens of selected/created credit variables (from initially thousands raw variables) to 
predict insurance loss risk by using linear regression and/or ML. Another popular rating variable in 
auto insurance which is created from dozens of raw vehicle characteristic variables is auto symbol. 
Both variables are easier to interpret and reduce the dimension significantly compared to using the 
raw underlying variables.    

Interaction identification is a challenge in GLMs modeling in practice, especially for the interaction 
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among more than 3 variables. Some ML techniques naturally will include all the possible interactions 
between variables. Creating new features based on the ML techniques to replace the underlying raw 
variables would not only reduce the number of variables but also significantly improve the predictive 
power of the GLMs model.   

To do the territorial analysis for a sewer backup modeling, 14 geographic variables are studied 
which are not predictive in the model. A score variable was created from these 14 variables, and a 
territorial definition was created from census block group with the help of the 14 geographic variables. 
The score variable can be used in underwriting and pricing. Both new features would improve the 
predictiveness of the GLM model significantly. 

 

1.2 Objective 

Our objective is to use the feature created with ML from some underlying variables to improve the 
predictive power of the GLMs. Those new features should be like vehicle symbol or credit score which 
can be interpreted to a certain degree.  

1.3 Outline 

The reminder of the paper proceeds as follows. In Section (2.1), we discuss the sewer backup data 
and modeling. In section (2.2), we discuss the territorial analysis, and especially the challenge for sewer 
backup loss data. In section (2.3), we discuss the tree based supervised learning methods in ML. In 
section (2.4) we introduce the double lift curve for the model comparison. In section (3.1) we present 
the result that shows even if the raw variables are not good predictors, the score produced from them 
through ML can be very predictive. Finally, in section (3.2) we present the model comparison with 
and without the boundary, which shows the significant improvement with the boundary variable. The 
boundary variable is created by grouping census block group. 

2. BACKGROUND AND METHODS 

2.1 Sewer Backup Modeling 

The sewer backup loss modeling dataset included observations with sewer backup coverage 
endorsement. Since this loss is highly correlated with location, the territorial analysis should be 
important. To do the territorial analysis and create the boundary, we tested 14 geographic variables 
from US census data. The 14 geographic variables include Water Surface Elevation, Average Travel 
Time, Average Household Size, Average Number of Vehicle, Population Growth in 5 years, Average 
Age etc. Unfortunately, none of them showed predictive power. It also is difficult to create a territorial 
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boundary with a spatial smoothing method.  For this study, we only present the result for frequency 
models. 

2.2 Territorial Ratemaking and Boundary 

For territorial ratemaking, the first phase is to establish territorial boundaries [4]. Census block 
group (CBG) is selected as the basic geographic unit due to its small size and relative stasis over time. 
The current approach to create the boundaries include the following steps [4]: 

• Create geographic estimator on CBG with geographic indictors by building a GLM model 
using a variety of non-geographic and geographic explanatory variables; 

• Applies spatial smoothing techniques to the geographic residuals to see if there are any 
patterns in the residuals and those residuals can be used to adjust the geographic estimators 
to improve overall predictive power of the model. 

• Once the geographic estimators are calculated for each CBG, the CBG can be grouped into 
territories. 

Our proposed approach is to create the CBG estimator by building a GBM (gradient boosting 
machine) model on the residual of the GLM model by using the 14 geographic variables. The GLM 
model is created using non-geographic and geographic explanatory variables. With the help of smooth 
weight of evidence (SWOE) [5] we transferred the categorical variables (CBG) into an interval variable, 
and then created a boundary based on the decision tree, we grouped the census block group into 19 
levels. 

 

2.3 Tree-Based ML Techniques 

Tree based methods partition the feature space into a set of rectangles, and fit a simple model (like 
a constant) in each one [6]. Assume our data consists of p inputs and a response, for each of N 
observations: (𝑥𝑥𝑖𝑖,   𝑦𝑦𝑖𝑖,) for i=1,2,…N, with 𝑥𝑥𝑖𝑖 = (𝑥𝑥𝑖𝑖1,𝑥𝑥𝑖𝑖2,…,𝑥𝑥𝑖𝑖𝑖𝑖,). For regression tree, if we have a 
partition into M regions 𝑅𝑅1, 𝑅𝑅2… 𝑅𝑅𝑀𝑀, and we model the response as a constant  𝐶𝐶𝑚𝑚 in each region: 

𝑓𝑓(𝑥𝑥) = ∑ 𝑐𝑐𝑚𝑚𝑀𝑀
𝑚𝑚=1 𝐼𝐼(𝑥𝑥𝑥𝑥𝑅𝑅𝑚𝑚 )                                                             (2.1)  

It is easy to see that the best �̂�𝑐𝑚𝑚 is just the average of yi in region 𝑅𝑅𝑚𝑚 :  

 

�̂�𝑐𝑚𝑚 = 𝑎𝑎𝑎𝑎𝑎𝑎(𝑦𝑦𝑖𝑖,|𝑥𝑥𝑥𝑥𝑅𝑅𝑚𝑚).                                                                 (2.2)  
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The big advantage of a tree based ML technique is that it is easy to interpret, and easy to 
implement. It is still a great tool for identifying interaction or as a supplement analytic tool for 
other more advanced techniques. One major problem with trees is their high variance [6]. A small 
change in the data can result in a very different series of splits, making model chosen somewhat 
precarious. To reduce this variance, several tree based algorithms have been developed, which are 
more predictive and would reduce the possibility of over fitting the model.  Among them, the two 
most common of these techniques used are boosting and bagging.  

       A Gradient Boosting Machine (GBM) is a generalization of tree boosting that attempts to 
mitigate some problems with other boosting methods like speed, robustness and interpretability 
[6].  The generic algorithm for the GBM is listed here [6]: 

 

 

 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑎𝑎𝐼𝐼𝐼𝐼𝐼𝐼𝑎𝑎 𝑓𝑓0(𝑥𝑥) = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝐼𝐼𝐼𝐼𝛾𝛾 ∑ 𝐿𝐿(𝑦𝑦𝑖𝑖 , 𝛾𝛾)𝑁𝑁
𝑖𝑖=1        

   For m=1 to M:  

          For i=1,2,…N compute   𝑎𝑎𝑖𝑖𝑚𝑚 = − �𝜕𝜕𝜕𝜕(𝑦𝑦𝑖𝑖,𝑓𝑓(𝑥𝑥𝑖𝑖))
𝜕𝜕𝑓𝑓(𝑥𝑥𝑖𝑖)

�
𝑓𝑓=𝑓𝑓𝑚𝑚−1

                           

 

 

                   

          Fit a regression tree to the targets 𝑎𝑎𝑖𝑖𝑚𝑚 

          For i=1,2,… 𝐽𝐽𝑚𝑚 compute 𝛾𝛾𝑗𝑗𝑚𝑚 = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝐼𝐼𝐼𝐼𝛾𝛾 ∑ 𝐿𝐿(𝑦𝑦𝑖𝑖 ,𝑓𝑓𝑚𝑚−1(𝑥𝑥𝑖𝑖) + 𝛾𝛾)𝑥𝑥𝑖𝑖∈𝑅𝑅𝑗𝑗𝑚𝑚  

𝑓𝑓𝑚𝑚(𝑥𝑥) = 𝑓𝑓𝑚𝑚−1(𝑥𝑥) + 𝜈𝜈 ∑ 𝛾𝛾𝑗𝑗𝑚𝑚𝐼𝐼(𝑥𝑥 ∈ 𝑅𝑅𝑗𝑗𝑚𝑚)𝐽𝐽𝑚𝑚
𝑗𝑗=1                             (2.3) 

    Where 𝐿𝐿(𝑦𝑦𝑖𝑖 , 𝛾𝛾) is the loss function, and the parameter 𝜈𝜈 can be regarded as controlling the 
learning rate of  the boosting procedure. Both 𝜈𝜈 and M control prediction risk on the training dataset. 
Smaller values of   𝜈𝜈 lead to larger values of  M for the same training dataset, so that there is a tradeoff  
between them. When M is large, the computation becomes expensive and would take a long time to 
run. To our experience, 𝜈𝜈 may vary from 0.01 to 0.15 and M can be from 50 to hundreds depending 
on the dataset.  We run the model with SAS enterprise miner, other tools or package (R or Python) 
of  gradient boosting may choose different 𝜈𝜈 and M to get the best result. 
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     Random forest is a substantial modification of bagging that builds a large collection of de-
correlated trees, and then averages them. On many problems, the performance of random forests is 
very like boosting, and they are simpler to train and tune, and random forest is easier to parallelize and 
robust to overfitting.  That’s why random forest is also popular in ML application. However, in the 
author’s experience, we do see GBM outperform random forest in many insurance applications if it is 
well tuned.  

      The advantages of tree based models over GLM include but are not limited to: 

• No assumption of model structure which would be learnt from data; 
• Easy implementation of complex and/or multiple way interactions; 
• Easy to deal with missing values; 
• Built-in feature selection; 

2.4 Double Lift Curve 

For modeling comparison, a double lift curve is a simple method to directly compare the predictive 
accuracy of two models. Here we use EMBLEM’s model comparison function to compare two 
model’s performances. The X axis is the bucketed ratio of indications of the two models, and the 
graphs will show the two models’ average indications in those buckets and the average of actual 
observations in those buckets. The “winning” model would be the one that matches better the 
observed frequency in each bucket. In all the following models, we split the dataset into 80% and 20% 
randomly as training and validation dataset, and the double lift curves are created on the validation 
dataset using EMBLEM. 

3. RESULTS AND DISCUSSION 

3.1 Geographic Variable Score 

  To show the idea that the complicated interactions are important and are missed sometimes in 
the GLM modeling, we built two Frequency models: model1 is the model with all the current rating 
variables plus 14 geographic variables; model2 is the model with all the current rating variables plus a 
geographic variable score (geoonly14), which is created based on the 14 geographic variables with 
GBM.  

Fig 3.1 shows the double lift curves for model 1 and 2.  Based on these results, we see that model 
2 is significantly better in predictive accuracy.  This result shows a case where even when the individual 
variables are NOT predictive; the combination of the variables can be very predictive because of the 
complicated interactions between those underlying variables. Looking for interactions among 14 
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variables with many levels would be a non-trivial work and especially difficult because we generally 
have no prior knowledge regarding the potential interactions between geographic variables. And we 
are not able to identify/include interactions among 3 or more geographic variables in GLM with 
EMBLEM. 

  

 
                                                                                                                                                                                                                   

Fig 3.1 Double Lift Curve for the Model Comparison for Geo Variables and Score 

 

3.2 Sewer Backup Territorial Boundary 

For territorial analysis, the current method is to use geographic variables to create the indication 
for the census block group (CBG) with GLM modeling, and then use the classifier of EMBLEM to 
do the spatial smoothing and correction (if there is pattern in the residuals). However, it is very difficult 
to find the pattern in the residuals, and thus the correction is also subjective in practice. In theory, we 
can use CBG as the variable to create the indication for territorial rating. The hurdle would be how to 
group the more than ten thousand levels of CBG.  We use SWOE to recode the CBG and with the 
help of a decision tree model on the GBM model output, we can create the CBG group which could 
be used in the territorial rating directly. We produced the 19 CBG groups and incorporated it into the 
base model for our sewer backup classification GLM model. Fig 3.2 shows the comparison of the two 
models: Model 1: Base model (current rating plan) plus the geographic variables; Model 2: Base model 
plus the 19 CBG grouping variable (Territorial Boundary). Model 2 shows significant improvement 
over Model 1 in predictive accuracy.  
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Fig 3.2 Double Lift Curve for the Model Comparison for Geo Variables and Territorial Boundary 

 

4. CONCLUSIONS 

With the development of the advanced modeling techniques, there are more and more data and 
variables available for pricing.  It is a challenge to select variables and/or extract information from 
those raw variables to build a model which is more accurate in predictive power and still interpretable. 
To keep the GLM framework intact, the methods presented in this paper show the potential ways to 
incorporate advanced analytical techniques, especially machine learning, into the variable selection and 
dimension reduction procedure, which may significantly increase the predictive power of the model. 
This method can be applied to develop vehicle symbol, territorial boundary and other risk score 
variables.  
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Ratemaking for a New Territory: Enhancing GLM Pricing 
Model with a Bayesian Analysis 

Jing Zhang and Tatjana Miljkovic 
______________________________________________________________________________ 

Abstract 
Motivation. This paper offers a Bayesian approach in ratemaking for a new territory where a company considers 
starting a new business, or for a relatively new territory where the company has very limited claims experience. 
Method. A Bayesian Poisson regression model with power priors and weakly informative priors for the model 
parameters is proposed for modeling claims frequency. Bayesian analysis of claim severity considers a gamma 
regression and non-informative uniform priors for the regression coefficients.   
Results. After incorporating the external information from a similar book of business in a similar territory, 
Bayesian analysis with power priors improved the prediction reporting a small Means Squared Prediction Error 
(MSPE).  
Conclusions. Bayesian analysis with power priors can be used effectively in auto insurance ratemaking for pricing 
of a new business in a new territory, or improving pricing of a growing business in a new territory. 
Availability. The original SAS code will be available for distribution pending the acceptance of this paper. 
 
Keywords. Bayesian analysis, GLM, new territory, power priors, predictive modeling, ratemaking.  

______________________________________________________________________________ 

1. INTRODUCTION 

1.1 Research Context 

Ratemaking for a new line of business or a new territory is subject to a judgement under uncertainty.  

Actuaries in these situations often rely on the availability of external industry data or experience from 

a similar line of business, as both of these serve as heuristic benchmarks, but sometimes they lead to 

severe and systematic errors. If the volume of claims experience is subject to significant changes (e.g., 

due to catastrophic events or regulatory conditions), these estimates will be severely biased. The 

company may gauge some prior information about the prospective new business in a new territory by 

pooling this information from the existing business, assuming the new underwriting practices in a new 

territory will remain more or less similar to the existing underwriting practices to the territory from 

which this information is drawn. A new territory may also share some common demographic, 

geographic, or climate characteristics with one of the existing territories so that the information 

contained in the existing business can be utilized in the rating process of the new territory.  

According to Chen and Ibrahim (2006, pp. 551), “Power priors have emerged recently as useful 
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informative priors for the incorporation of historical data in a Bayesian analysis” and are well-received 

in statistical practice. These priors can be efficiently incorporated in Bayesian analysis with generalized 

linear models (GLM) and help incorporate useful prior information from existing territories in the 

context of analyzing limited information from the new territory of interest.  

Most of the insurance companies are moving away from the one-way premium calculation 

approach by employing GLMs with the original statistical framework discussed in the book by 

McCullagh and Nelder (1989). The GLM models are praised for two major advantages over ordinary 

linear models. First, the GLMs work with a number of discrete distributions and continuous 

distributions, which make them more flexible compared to the ordinary linear model that is 

constrained by the normal distribution only.  Second, the GLMs allow for some transformation of the 

mean as a linear function of the covariates, with additive and multiplicative models as special cases. 

For more extensive theory behind non-life insurance pricing using GLMs, we refer the reader to books 

by Kaas et al. (2008) and Ohlsson and Johansson (2010).  

A frequentist approach to predictive modeling based on GLM models has the capability to predict 

outcomes that best represent the company’s data with insufficient regard for prior probability. The 

probability distributions of the parameters considered in this type of modeling rely on the sampling 

distributions that are based on all possible random samples of experiences that could have occurred, 

but they are not conditional on the actual sample that did occur. A Bayesian point of view considers 

inferences based on the probabilities calculated from the posterior distribution, making them 

conditional on the sample that actually did occur.  The role of prior distributions in the Bayesian 

analysis is to capture “pre-data” information about the parameters, then use the prior experience that 

was collected to update the “pre-data” information about the parameters to “posterior” information 

about the parameters.  Thus, the Bayesian approach considers parameters as random variables.  

Recently, Bayesian methods have been actively discussed in the area of predictive modeling and 

ratemaking. Boucher et al. (2008) used Bayesian and frequentist models based on generalization of 

Poisson and negative binomial distributions to account for correlation between contracts of the same 

insureds.  The authors showed that the models based on time dependence covariates (e.g., past 

experience) cannot be used in modeling of reported claims. They recommended use of random effects 

models in computing the next year’s premium as these models show improved fit compared to other 

models. The same authors, Boucher et al. (2009), extended their study by considering the relationship 
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between number of accidents and number of claims using the generalization of the zero-inflated 

Poisson (ZIP) distribution. The authors proposed an approximation of the number of accidents 

distribution that can be used to provide insightful information about the behavior of insureds using 

panel count data. A Bayesian analysis was used in computation of the predictive distribution for the 

random effects.  

Bermúdez and Karlis (2011) examined Bayesian multivariate Poisson models and their zero-inflated 

extensions for improving current ratemaking procedures. Brown and Buckley (2015) used a Bayesian 

approach to determine the number of groups in an insurance portfolio. The claim count is assumed 

to follow a Poisson distribution.   

We consider the following scenario for pricing new business in a new territory, where there is no 

prior claims experience. First, we can identify a similar territory from our existing book of business 

for which the claim experience is established. These two territories may be neighbors that share similar 

climate, geography, and demographic characteristics. For pricing the new business during the first year 

with no data, we can borrow the information from the existing territory and set the new rates. After 

the first year, for pricing the business during the second year, we can borrow the experience from the 

similar existing territory in the analysis of the limited claim experience in the new territory. Then, we 

can run the proposed Bayesian model with power priors.  We repeat this process for several years until 

we accumulate the claims experience in the new territory to be able to use the standard pricing method.  

The flow chart of this process is outlined in Figure 1.  Our proposed Bayesian model with power 

priors would provide a new way of pricing the business for a new territory (framed part of Figure 1) 

and serves as the main contribution of this paper.  The example that we provided in the subsequent 

sections would help the practitioners in implementation of this proposed method.  
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Figure 1: Flow chart of the proposed Bayesian method for pricing in a new territory.  

1.2 Objective 

The objective of this paper is to introduce a Bayesian approach with power priors and weakly 

informative priors to be used in developing frequency distribution of claims for a new territory where 

the company has very limited experience. The historical information can be borrowed from an 

adjacent territory based on geographic and demographic profiles, for purpose of the Bayesian analysis. 

A Bayesian analysis with non-informative priors for modeling severity of claims is also illustrated in a 

new territory.  

 To our knowledge, the Bayesian GLM claim models with a Poisson distribution have not 

previously been considered, either with power priors or weakly informative priors. We would like to 

close this gap in the actuarial literature by proposing the Bayesian frequency models that use power 
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priors and weak informative priors of the regression coefficients.  This approach is especially appealing 

for determining the premium rates in a new territory that lacks claims experience.      

1.3 Outline 

The remainder of the paper proceeds as follows. Section 2 presents the Bayesian methodology for 

modeling frequency and severity of claims.  Section 3 describes the analysis of real data and the results. 

Section 4 provides the summary of the model validation. The conclusion is provided in Section 5. 

 

2. BACKGROUND AND METHODS 

In this section, we explore the models for claims frequency and claims severity.  For each model, 

we show frequentist and Bayesian approaches from a theoretical perspective.  

2.1 Models for Claims Frequency 
It is popular to assume that the number of claims follows a Poisson distribution and, hence, a 

generalized linear regression can be fitted to analyze the relationship between the number of claims 

and the relevant predictors.  

 

𝑌𝑌𝑖𝑖|𝜃𝜃𝑖𝑖  ~ 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑃𝑃𝑃𝑃𝑖𝑖𝑃𝑃𝑃𝑃𝑃𝑃𝑖𝑖(𝐸𝐸𝑖𝑖 𝜃𝜃𝑖𝑖 ) (2.1) 
 

log(𝜃𝜃𝑖𝑖 ) = 𝛽𝛽0 + 𝛽𝛽1𝑥𝑥1𝑖𝑖 + 𝛽𝛽2𝑥𝑥2𝑖𝑖 + ⋯+ 𝛽𝛽𝑝𝑝𝑥𝑥𝑝𝑝𝑖𝑖 , (2.2) 
 

  
where the vertical bar “|” describes the distribution of the quantity to the left of the “|”, given 

information to the right. Here 𝑌𝑌𝑖𝑖 denotes the number of claims filed by the ith policy holder. Here, the 

vector of predictors is defined as 𝑥𝑥𝑖𝑖 = �𝑥𝑥1𝑖𝑖 , … , 𝑥𝑥𝑝𝑝𝑖𝑖�′. The Poisson mean, 𝐸𝐸𝑖𝑖 𝜃𝜃𝑖𝑖 , is determined by the 

known length of insured time (𝐸𝐸𝑖𝑖 , also known as the offset) and rate of claims (𝜃𝜃𝑖𝑖 ). Here the rate of 

claims is modeled as a function of the relevant predictors (𝜃𝜃𝑖𝑖 ), including demographic information of 

drivers, descriptive information of cars and residential areas. The regression coefficients, 𝛽𝛽0, …., 𝛽𝛽𝑝𝑝, 

relate the rate of claims with these predictors.     



Rate Making for a New Territory: Enhancing GLM pricing Model with a Bayesian Analysis 
 

Casualty Actuarial Society E-Forum, Spring 2018-Volume 2 6 

In the frequentist approach, point estimation of model parameters can be implemented via 

Maximum Likelihood Estimation (MLE) or Restricted Maximum Likelihood (REML) approaches, 

and inferences can be made based on large sample distributions of the point estimators.  Other 

distributional assumptions of the claims frequency can be used, such as zero-inflated Poisson or 

negative binomial. Initially, we considered regression models assuming these distributions as well; 

however, the fit of Poisson regression turns out to be the best for the data analyzed. Since the main 

purpose of the present study is to illustrate the incorporation of prior information from an external 

existing territory via Bayesian modeling of claims frequency when sample size is limited, we decided 

to stay with the Poisson distributional assumption. 

The Bayesian analysis treats the parameters as unknown random variables. To implement the 

analysis, we need to propose a “prior distribution” for the model parameters.  Combining the data 

likelihood and prior distribution of parameters using Bayes theorem, we are able to update the 

knowledge about the distribution of model parameters, and the updated knowledge is called “posterior 

distribution.” The posterior distributions are then used for Bayesian inference. Here we begin the 

Bayesian analysis assuming independent normal prior distributions for the regression coefficients, i.e.,  

 

𝜋𝜋�𝛽𝛽𝑗𝑗|𝛽𝛽𝑗𝑗0,𝜎𝜎𝑗𝑗2� = 𝑁𝑁(𝛽𝛽𝑗𝑗0,𝜎𝜎𝑗𝑗2),  𝑗𝑗 = 0, 1, … , 𝑖𝑖. (2.3)     

 

Higher level priors are then assumed for prior mean 𝛽𝛽𝑗𝑗0 and prior variance 𝜎𝜎𝑗𝑗2 as follows: 

𝜋𝜋(𝛽𝛽00) = 𝑁𝑁(0,10) (2.4) 
 

𝜋𝜋�𝛽𝛽𝑗𝑗0� = 𝑁𝑁(0,4),  𝑗𝑗 = 1, … ,𝑖𝑖. (2.5) 

 

𝜋𝜋(𝜎𝜎0) = 𝑈𝑈𝑖𝑖𝑖𝑖𝑈𝑈𝑃𝑃𝑈𝑈𝑈𝑈(0,5), 𝜋𝜋�𝜎𝜎𝑗𝑗� = 𝑈𝑈𝑖𝑖𝑖𝑖𝑈𝑈𝑃𝑃𝑈𝑈𝑈𝑈(0,1), 𝑗𝑗 = 1, … ,𝑖𝑖. (2.6) 
 

The hyper-parameters are chosen to incorporate weak informative prior distributions on the 

parameters.  Besides the weakly informative priors, we also illustrate the incorporation of prior 

information from external data of similar region via power priors. The power priors have been 
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proposed in Ibrahim and Chen (2000), with applications in hierarchical modeling discussed in Chen 

and Ibrahim (2006) and well-received in statistical practice.  

The power prior of model parameters is constructed by raising the likelihood based on the external 

data to a suitable power and then multiplied by an initial prior (usually non-informative or weakly 

informative); therefore, power prior uses the external data with a discount relative to the data of 

interest, which allows a discrepancy between insurance policy holders in this similar region and the 

current region of interest. The power prior is a useful tool to borrow strength from external data in 

Bayesian analysis. In the present study, we considered a second Bayesian analysis that incorporates the 

external data using power prior with power of 0.5, which implies a 50% discount of external 

information in the log-likelihood function of the joint posterior density function of model parameters; 

the priors used in the first Bayesian analysis (i.e. Equations (2.4)-(2.6)) are used as initial priors in this 

analysis.   

2.2 Models for Severity 

Besides the modeling of frequency of claims, it is also of interest to study whether and how the 

amount of each claim (severity) is related to the relevant factors (e.g., driver’s age, gas type, etc.). Claim 

amounts are continuous measurements and can be analyzed with ordinary linear regression or 

generalized linear regression (e.g., log-normal regression or gamma regression). Note that the 

distributional assumptions that allow heavier right tails are usually a better fit to the loss data due to 

right-skewness of such data. When claim amounts are assumed to follow gamma distributions, 

𝑍𝑍𝑖𝑖|𝜇𝜇𝑖𝑖 , 𝜈𝜈𝑖𝑖~𝐺𝐺𝐺𝐺𝑈𝑈𝑈𝑈𝐺𝐺(𝜇𝜇𝑖𝑖 , 𝜈𝜈𝑖𝑖) (2.7)  
 

Or equivalently,  

                       𝑈𝑈(𝑍𝑍𝑖𝑖|𝜇𝜇𝑖𝑖 , 𝜈𝜈𝑖𝑖) = 1
Γ(𝜈𝜈𝑖𝑖)

�𝜈𝜈𝑖𝑖
𝜇𝜇𝑖𝑖
�
𝜈𝜈𝑖𝑖

(𝑧𝑧𝑖𝑖)𝜈𝜈𝑖𝑖−1exp (−𝜈𝜈𝑖𝑖𝑧𝑧𝑖𝑖
𝜇𝜇𝑖𝑖

) (2.8)  

 

where 𝜈𝜈𝑖𝑖 is the shape parameter of the gamma distribution, and 𝜇𝜇𝑖𝑖 is the  mean of the gamma variable 

and relates the covariates with the severity response. Using a log-link function, we have. 



Rate Making for a New Territory: Enhancing GLM pricing Model with a Bayesian Analysis 
 

Casualty Actuarial Society E-Forum, Spring 2018-Volume 2 8 

                    log(𝜇𝜇𝑖𝑖) = 𝛾𝛾0 + 𝛾𝛾1𝑥𝑥1𝑖𝑖 + 𝛾𝛾2𝑥𝑥2𝑖𝑖 + ⋯+ 𝛾𝛾𝑝𝑝𝑥𝑥𝑝𝑝𝑖𝑖  (2.9)    
 

 The regression coefficients, 𝛾𝛾0, …., 𝛾𝛾𝑝𝑝, relate the severity of claims with the set of predictors 

defined as 𝑥𝑥𝑖𝑖 = �𝑥𝑥1𝑖𝑖 , … , 𝑥𝑥𝑝𝑝𝑖𝑖�. Note that we assumed the same set of predictors are considered in the 

analysis of frequency and severity of claims in Equations (2) and (9), which can be modified in practice 

according to availability of data and prior beliefs. The two sets of covariates used in these two models 

are not necessarily the same.   

Frequentist approaches can be used to fit these generalized linear models described above to the 

severity data of the new territory, and likelihood-based inference would help us determine the 

relationship between severity and covariates. When expert knowledge or existing analysis results 

concerning this relationship from a similar territory are available, the Bayesian approach would help 

us incorporate the information through prior elicitation. However, we believe that one should be 

cautious of using power priors in the analysis of severity since the potential outliers or heavy right tail 

in the severity observations of the “external” data might introduce misleading information in the 

analysis and bias the conclusions.  In the present study, we used non-informative uniform priors for 

the regression coefficients:  

 

𝜋𝜋(𝛾𝛾𝑖𝑖) ∝ 1, 𝑖𝑖 = 0, 1, … ,𝑖𝑖.                    (2.10)      
 

The prior distribution of shape parameter is specified through the following parameterization. Let   

𝜅𝜅𝑖𝑖 = 𝜈𝜈𝑖𝑖
𝜇𝜇𝑖𝑖

 be the rate parameter, then we assume an inverse-gamma prior distribution for the rate 

parameter as follows, 

𝑘𝑘𝑖𝑖~ 𝐼𝐼𝑖𝑖𝐼𝐼𝑖𝑖𝑈𝑈𝑃𝑃𝑖𝑖𝐺𝐺𝐺𝐺𝑈𝑈𝑈𝑈𝐺𝐺(0.001, 0.001)                     (2.11)      
 

The specified prior distributions would then provide vague prior input for the analysis. 
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3. RESULTS AND DISCUSSION 

In this section, we illustrate the proposed methodology using the data from a French insurance 

company, related to 677,991 motor third-party liability policies. The data set includes exposure 

information as well as the loss information and can be found as part of the “CASdatasets” library in 

the R software (CASdatasets). The discussion about the datasets used in the book by Charpentier 

(2014) and the book itself, can be found in the book review by Miljkovic (2017).  Charpentier 

(2014) discussed the modeling of claims frequency and severity of this data based on a frequentist 

approach, using various GLM models. The rating factors include: region (R11, R23, R24, R25, R31, 

R53, R54, R72, R74), car age (0-100), density (2-27000), engine power (12 levels), brand (7 types), 

driver age (17-99), gas type (2 levels), and exposures in years (0.003-1.990).   

In order to illustrate our methodology, we randomly sampled 1000 policies from the region R24 

with density between 200-4500. This is the largest region in France that accounts for 39% of the 

business written.  Miljkovic and Fernández (2018) used the policies from the same region (R24) to 

illustrate how the unobserved heterogeneity can be modeled in an insurance portfolio using two 

different mixture-based clustering approaches. The histogram of the number of claims in this region 

as well as the severity of the claims are shown in Figure 2. The frequency of claims in this regions is: 

96.3% of zero claims, 3.5% of single claims, and 0.2% of two claims. Figure 2 also shows the density 

of the severity of claims in R24. Minimum claim amount in this region is 2 while maximum amount is 

2,036, 833 Euros. Skewness coefficient of the claim severity data is 75.12.  

 
Figure 2: Frequency of claims (left) and severity of claims (right) in R24. 

Our random stratified sample of 1000 policies maintains the same characteristics of R24 based on 
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the number of policies, gas type, density, and driver’s age.  Gas type has two levels, diesel and regular, 

with regular treated as a base level. Driver age is grouped at five levels: (17-20] (base level), (20-26], 

(26-42], (42-74], and 74+. Density is treated as a continuous predictor.  The same variables have been 

used by Joan-Philippe and Arthur Charpentier (Charpentier, 2014) when modeling the same data set 

using Poisson and Negative Binomial regression. In the analysis of frequency or severity, we 

standardized the density variable since it is fairly big in numerical values and results in a numerical 

problem in model fitting if we use the raw measurement. The new standardized density measurements 

are the raw density measurements subtracted by the mean density and then divided by the standard 

deviation of density measurements. We used “PROC STANDARD” in SAS to assist the 

standardization of this variable.   

Both the frequentist and Bayesian analysis are implemented with SAS with the SAS code included 

in Appendix B. The frequentist Poisson regression model fit was obtained via “PROC GENMOD,” 

while the Bayesian model fit of claims frequencies was obtained via “PROC MCMC.” In the analysis 

with the Bayesian Poisson regression model assuming weakly informative priors or power priors, 

20,000 samples of parameters are simulated from the posterior distributions using Markov Chain 

Monte Carlo (MCMC) algorithm, which are obtained from 650,000 MCMC iterations with the first 

150,000 cycles as burn-in iterations and a thinning rate of 10 (i.e., every 10th draw from the MCMC 

simulation is used to compute credible sets and medians of the posterior distribution).  

The frequentist and Bayesian gamma regression fit was obtained via “PROC GENMOD” while 

the Bayesian analysis utilized the “Bayes” statement provided in “PROC GENMOD.”  In the Bayesian 

analysis of claim severity, 10,000 posterior samples are obtained from 12,000 MCMC iterations with 

the first 2,000 cycles as burn-in iterations and a thinning rate of 1 (i.e., no thinning was used here). 

Convergence of the posterior simulation was evaluated using history plots and autocorrelation (ACF) 

plots of the posterior samples. Figures of the posterior sample of regression coefficients are shown in 

the Appendix A (Figures 4-6). All of the history plots show that the posterior simulation achieved 

convergence, while the ACF plots show that the (thinned) posterior samples do not have strong 

autocorrelation.   

Table-1 in the Appendix A shows the comparison of the results of the Poisson GLM regression 

model that has been run using a frequentist approach and a Bayesian hierarchical modeling approach 

with weakly informative priors and power priors. For each of these three methods we show the 
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coefficient estimates with their standard errors and the 95% confidence intervals.  In the Poisson 

model, all of the coefficient for driver age are negative relative to the base group (17, 20] with the 

largest coefficient reported for age group (26, 42].  Thus, this age group reports on average the 

lowest frequency of claims relative to age group (17, 20].  These results are in line with other studies 

showing that young drivers (17, 20] are most likely to get into car accidents.  The coefficient for 

regular gas type is negative relative to diesel gas type.  The coefficient for population density in R24 

is positive, indicating that an increase in population density results in additional claims reported.  

From Gamma regression model, we observe that the coefficients for age group (20, 26] and (26, 

42] are negative relative to the age group (17, 20] indicating that severity of claims for these groups is 

lower compared to group (17, 20].  The coefficients for age groups (42, 74] and (74+) are positive 

relative to age group (17, 20]. Also coefficient for density variable is positive indicating that the 

severity of the claims will increase on average as the population density increases.     

Since the power prior is expressed as a product of the weighted likelihood of parameters, 

conditional on the historical information and a prior distribution of the parameters before the data 

are observed, a scale or discounting parameter from 0 to 1 is used to control the weight assigned to 

historical data.  This parameter is usually controlled by user. Our Bayesian model with power priors 

assumes that 50% of external information is incorporated in the posterior distribution in the form of 

a prior input consisting of 50% of the log-likelihood of these external territory observations; thus, 

the scale parameter is 0.5.  

We observe that standard errors of the posterior estimates are smaller compared to those 

generated with the ordinary GLM. As a result, the 95% confidence intervals are narrower than those 

produced with ordinary GLM or the Bayesian GLM with non-informative priors.  Poisson 

regression results arrive at the same conclusion in terms of the risk associated with all age groups 

compared to age group 17-20. However, the smaller confidence intervals indicate the improvement 

in the estimation of the likelihood by using past information.  Power priors allow for a different 

percent of external information to be used, which allows an actuary to judgmentally incorporate this 

aspect of modeling into the analysis.  Another sample of 1000 losses was selected out of 16,181 
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policies that reported positive claim amounts.  Table 2 shows the comparison of the results of 

Bayesian gamma regression with non-informative priors to those produced using the frequentist 

approach. We can also observe that standard errors and the 95% confidence intervals related to the 

regression coefficients are smaller compared to those produced using the frequentist approach.    

4. MODEL VALIDATION 

Model validation is an important part of model building. When two competing models are 

evaluated, common techniques such as Receiver Operating Characteristic (ROC) Curves or Double 

Lift Charts can be used.  These techniques are appropriate, e.g logistic regression models, and 

require that a database of historical observations is augmented with the predictions from each of the 

competing models (Goldburd at al., 2016). Considering the nature of our application, the historical 

database is not available in a new territory where the company starts writing new business for the 

first time, or to an existing territory where the new business was recently introduced, so the claims 

experience is very limited.  In absence of the historical database, we borrowed the information from 

the “imaginary” adjacent territory that we assumed to be R24.     

Our validation is based on the “splitting data” approach and it is shown in the flowchart in 

Figure 3.  This approach assumes drawing three samples from R24:  

1) Training Set - used to perform the model building,  

2) Holdout Set (Test Set) - used to perform data validation, and  

3) The Bayesian “External Prior” Set - used to provide prior input information.    

Both the Training Set and the “External Prior” Set consist of 1000 observations, while the Test 

Set consists of 100 observations. The comparison was done to evaluate the impact of incorporating 

the information from existing external territories on the Bayesian analysis of the Training Set. Table 

3 in Appendix A summarizes the results of this validation. The Bayesian analysis with weakly 

information priors was applied to fit the Training Set and the predicted numbers of claims for the 

Test Set observations were obtained based on the corresponding posterior predictive distributions. 

Then we also fit the Bayesian analysis with power prior information from the External Prior Set to 

the Training Set and obtained the predicted number of claims for the Test Set using the new 

posterior prediction distributions.  The two sets of predicted number of claims are both compared 



Rate Making for a New Territory: Enhancing GLM pricing Model with a Bayesian Analysis 
 

Casualty Actuarial Society E-Forum, Spring 2018-Volume 2 13 

with the original observed frequencies for the Test Set and MSPEs were computed: 0.51 for the 

Bayesian analysis with weakly information priors and 0.49 for the Bayesian analysis with power 

priors.  The MSPE calculation includes three values based on frequency of claims shown in Figure 2.  

 

 
Figure 3: Flow chart of the validation process. 

 

We also fit frequentist Poisson regression on all three samples respectively to check the similarity 

of the training data, validation data, and external prior information. This validation analysis indicates 

better prediction performance when power priors are used. However, the strength of improvement 

when the power priors are used in the Bayesian, is subjected to two critical factors:  

(1) Sample size of the “current” data (i.e. Training Set in this validation analysis). When sample 

size is fairly high relative to the complexity of the model fit, the information borrowing through 

power priors would play a minor role in the model prediction performance.  
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(2) Similarity between the External Prior Set and “current” data. When the information borrowed 

through power priors are “misleading”, it is not favorable to incorporate those in the analysis.       

5. CONCLUSION 

Historical claims information is available to the actuary for the purpose of ratemaking in those 

territories where the company has been writing business for some period of time, even when no 

information is available in the case of a new territory where a company is entering business for the 

first time. The understanding of the “new territory” can almost always be augmented by existing 

information. Such borrowing of strength from historical data has long been encouraged in many 

scientific fields. These issues motivated us to investigate the feasibility of a Bayesian power prior 

approach in borrowing of strength for modeling auto rates in a new territory.  The goal of such an 

approach is to determine a practical amount of strength to borrow from the historical claims that 

strikes a balance between increased cost-efficiency and long-run statistical integrity. The methods for 

incorporating historical data should be robust to prior knowledge and consistent with the 

accumulating historical information. We aim to utilize historical information given strong evidence 

that this information would apply well in a territory that shares some common characteristics. A more 

attractive feature of such “information borrowing” is that the practitioners can pick multiple values 

of the scale or discounting parameter to compare the analysis outcomes reflecting different prior 

beliefs of the “similarity” between the historical data and current data.  

In this paper, we showed how the Bayesian analysis with power priors and non-informative priors 

can be used in modeling auto claims frequency for a new territory. By borrowing prior information 

from an existing territory that shares some similar characteristics such as climate, population 

demographics, or geography, we can develop a claim frequency model. Modeling claim severity with 

Bayesian GLM is also shown. We illustrated our approach on a small data set drawn from the motor 

third-party liability data set provided by a French insurance company.  An immediate future work we 

would like to pursue is the joint Bayesian analysis of frequency and severity of claims. The joint analysis 

would allow us to borrow information between the two numerical features of the “new territory” and, 

hence, improve the analysis with a limited amount of information. The validation of our approach was 

also provided. We believe that our attempt to introduce Bayesian analysis with power priors will 
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benefit many insurance companies as they enhance their current GLM pricing model and apply it in 

ratemaking of a new territory or an existing territory where the claims’ experience is limited.    
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Appendix A 

Table-1: Comparisons of the Regression Results for Poisson Model 

 

Table-2: Comparisons of the Regression Results for Gamma Model 

Method Frequentist Approach to Gamma Regression Bayesian Gamma Regression with 
Non-informative Priors 

Parameter Estimate SE 95% CI Estimate SE 95% CI 
Intercept 7.7746 0.1728 7.4359 8.1133 7.7869 0.1690 7.4650 8.1261 
GasRegular 0.1125 0.0819 -0.0481 0.2730 0.1109 0.0818 -0.0513 0.2651 
DriverAge(20,26] -0.6454 0.2328 -1.1017 -0.1892 -0.6423 0.2320 -1.1074 -0.2037 
DriverAge(26,42] -0.4135 0.1773 -0.7611 -0.0659 -0.4218 0.1751 -0.7695 -0.0900 
DriverAge(42,74] 0.2735 0.1727 -0.0650 0.6120 0.2652 0.1700 -0.0882 0.5741 
DriverAge(74,Inf] 0.2555 0.2302 -0.1957 0.7067 0.2587 0.2308 -0.1743 0.7226 
Density 0.0453 0.0426 -0.0382 0.1287 0.0474 0.0430 -0.0365 0.1327 

 

 
  

Method Frequentist Approach to Poisson Regression Bayesian Poisson Regression with Weakly 
Informative Priors 

Bayesian Poisson Regression with Power 
Priors 

Parameter Estimate SE 95% CI Estimate SE 95% CI Estimate SE 95% CI 

Intercept -0.4754 0.2468 -0.9590 0.0083 0.8330 0.2513 0.3292 1.3164 0.7670 0.2027 0.3531 1.1498 
GasRegular -0.2582 0.1038 -0.4617 -0.0547 -0.2588 0.1047 -0.4676 -0.0553 -0.2329 0.0839 -0.3954 -0.0661 
DriverAge(20, 26] -0.3149 0.2502 -0.8052 0.1754 -0.4907 0.2519 -0.9811 0.0053 -0.4339 0.2044 -0.8302 -0.0287 
DriverAge(26, 42] -1.0424 0.2070 -1.4481 -0.6368 -1.1942 0.2091 -1.5883 -0.7662 -1.1039 0.1711 -1.4212 -0.7554 
DriverAge(42, 74] -0.8483 0.1946 -1.2297 -0.4670 -1.0565 0.1964 -1.4231 -0.6553 -1.0441 0.1613 -1.3456 0.7111 
DriverAge(74, Inf] -0.6587 0.2609 -1.1701 -0.1473 -0.9487 0.2635 -1.4637 -0.4322 -0.9194 0.2125 -1.3389 -0.5038 
Density 0.1896 0.0393 0.1126 0.2667 0.1975 0.0392 0.1179 0.2718 0.1958 0.0328 0.1301 0.2579 
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Table-3: Validation analysis  

 

 

  

Sample Type Training Set Holdout Set External Prior Set 

Parameter Estimate SE 95% CI Estimate SE 95% CI Estimate SE 95% CI 

Intercept -0.4754 0.2468 -0.9590 0.0083 0.1793 0.8906 -1.5662 1.9248 -0.6566 0.2423 -1.1315 -0.1817 
GasRegular -0.2582 0.1038 -0.4617 -0.0547 -0.6379 0.3898 -1.4020 0.1261 -0.1784 0.1025 -0.3793 0.0225 
DriverAge(20, 26] -0.3149 0.2502 -0.8052 0.1754 -0.6266 0.8770 -2.3454 1.0923 -0.2215 0.2427 -0.6972 0.2542 
DriverAge(26, 42] -1.0424 0.2070 -1.4481 -0.6368 -1.2490 0.7849 -2.7875 0.2894 -0.8161 0.2024 -1.2129 -0.4193 
DriverAge(42, 74] -0.8483 0.1946 -1.2297 -0.4670 -0.8827 0.7406 -2.3343 0.5689 -0.8489 0.1955 -1.2321 -0.4658 
DriverAge(74, Inf] -0.6587 0.2609 -1.1701 -0.1473 -1.8648 1.2715 -4.3569 0.6272 -0.6206 0.2609 -1.1318 -0.1093 
Density 0.1896 0.0393 0.1126 0.2667 0.2220 0.1620 -0.0955 0.5395 0.1744 0.0422 0.0916 0.2571 
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Figure 4. History plots, ACF plots and density curves of the model parameters in the Bayesian 
Poisson regression model with weakly informative priors. 
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Figure 5. History plots, ACF plots and density curves of the model parameters in the Bayesian 
Poisson regression model with power priors. 
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Figure 6. History plots, ACF plots and density curves of the model parameters in the Bayesian 
gamma regression model. 
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Appendix B 

SAS code for the analysis.  
Part 1:  
/*Poisson regression with weakly-informative priors*/  
/*  
ClaimNb: response variable, number of claims occurred during a 
given time period in the region for a customer;  
logoffset: logarithm of the exposure (duration of the policy), 
offset variable we used in the Poisson regression; 
Gas: indicator variable, Gas=1 if the car insured uses regular 
gas; 
x2: indicator variable, x2=1 if the insured driver is older than 
22 but is 26 or younger; 
x3: indicator variable, x3=1 if the insured driver is older than 
26 but is 42 or younger; 
x4: indicator variable, x4=1 if the insured driver is older than 
42 but is 74 or younger; 
x5: indicator variable, x5=1 if the insured driver is older than 
74; 
Density: population density of the region; 
alpha: intercept; 
beta1-beta6: regression coefficients associated with Gas, X2-X5 
and Density; 
 
Priors used for alpha: alpha ~ N(mua,sda^2), with higher level 
priors mua~N(0, 10) and sda~Uniform(0,5). 
  
Priors used for alpha and all the betai's: N(mubi,sdbi), i=1,...,6, 
with higher level priors mubi~N(0,4) and sdbi~Uniform(0,1).  
*/ 
 
  
  
proc mcmc data=datasetname seed=1181 nmc=500000 nbi=150000 thin=10 
propcov=quanew monitor =(_parms_ ) outpost=out1000prior2; 
ods select Parameters PostSummaries PostIntervals tadpanel; 
parms alpha 0 beta1 0 beta2 0 beta3 0 beta4 0 beta5 0 beta6 0; 
parms mua 0 mub1 0 mub2 0 mub3 0 mub4 0 mub5 0 mub6 0; 
parms sda 0.5 sdb1 0.5 sdb2 0.5 sdb3 0.5 sdb4 0.5 sdb5 0.5 sdb6 0.5;  
prior alpha ~ normal(mua, var=sda**2); 
prior beta1 ~ normal(mub1, var=sdb1**2); 
prior beta2 ~ normal(mub2, var=sdb2**2); 
prior beta3 ~ normal(mub3, var=sdb3**2); 
prior beta4 ~ normal(mub4, var=sdb4**2); 
prior beta5 ~ normal(mub5, var=sdb5**2); 
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prior beta6 ~ normal(mub6, var=sdb6**2); 
prior mua ~ normal(0, var=10); 
prior mub: ~ normal(0, var=4); 
prior sda ~ uniform(0,5); 
prior sdb: ~ uniform(0,1); 
 
mu = exp(logoffset + alpha + beta1*Gas + 
beta2*x2+beta3*x3+beta4*x4+beta5*x5+beta6*Density); 
model ClaimNb ~ poisson(mu); 
run;  
  
Part 2:  
 
/*Poisson regression with Power prior, a0 fixed*/  
 
/* 
ClaimNb: response variable, number of claims occurred during a 
given time period in the region for a customer;  
logoffset: logarithm of the exposure (duration of the policy), 
offset variable we used in the Poisson regression; 
Gas: indicator variable, Gas=1 if the car insured uses regular 
gas; 
x2: indicator variable, x2=1 if the insured driver is older than 
22 but is 26 or younger; 
x3: indicator variable, x3=1 if the insured driver is older than 
26 but is 42 or younger; 
x4: indicator variable, x4=1 if the insured driver is older than 
42 but is 74 or younger; 
x5: indicator variable, x5=1 if the insured driver is older than 
74; 
Density: normalized population density of the region; 
 
alpha: intercept; 
beta1-beta6: regression coefficients associated with Gas, X2-X5 
and Density; 
 
Initial Priors used for alpha: alpha ~ N(mua,sda^2), with higher 
level priors mua~N(0, 10) and sda~Uniform(0,5). 
  
Initial Priors used for alpha and all the betai's: N(mubi,sdbi), 
i=1,...,6, with higher level priors mubi~N(0,4) and 
sdbi~Uniform(0,1).  
 
Power prior is used here with fixed power a0=0.5.  
*/ 
proc mcmc data=datasetname seed=1181 nmc=500000 nbi=150000 thin=10 
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propcov=quanew monitor =(_parms_ ) outpost=out1000power50; 
ods select Parameters PostSummaries PostIntervals tadpanel; 
parms alpha 0 beta1 0 beta2 0 beta3 0 beta4 0 beta5 0 beta6 0; 
parms mua 0 mub1 0 mub2 0 mub3 0 mub4 0 mub5 0 mub6 0; 
parms sda 0.5 sdb1 0.5 sdb2 0.5 sdb3 0.5 sdb4 0.5 sdb5 0.5 sdb6 0.5;  
prior alpha ~ normal(mua, var=sda**2); 
prior beta1 ~ normal(mub1, var=sdb1**2); 
prior beta2 ~ normal(mub2, var=sdb2**2); 
prior beta3 ~ normal(mub3, var=sdb3**2); 
prior beta4 ~ normal(mub4, var=sdb4**2); 
prior beta5 ~ normal(mub5, var=sdb5**2); 
prior beta6 ~ normal(mub6, var=sdb6**2); 
prior mua ~ normal(0, var=10); 
prior mub: ~ normal(0, var=4); 
prior sda ~ uniform(0,5); 
prior sdb: ~ uniform(0,1); 
begincnst; 
a0=0.5; 
endcnst; 
mu = exp(logoffset + alpha + beta1*Gas + 
beta2*x2+beta3*x3+beta4*x4+beta5*x5+beta6*Density); 
llike=logpdf('poisson',ClaimNb,mu); 
if (city='old') then llike=a0*llike; 
model general(llike); 
run;  
 
 Part 3:  
 
/*Gamma regression with noninformative prior for severity 
analysis*/  
 
/* 
AggClaimAmount: response variable, severity of claims;  
ClaimNb: number of claims occurred during a given time period in 
the region for a customer, used as the exponential family 
dispersion parameter weight for each observation;  
X1: indicator variable, Gas=1 if the car insured uses regular gas; 
x2: indicator variable, x2=1 if the insured driver is older than 
22 but is 26 or younger; 
x3: indicator variable, x3=1 if the insured driver is older than 
26 but is 42 or younger; 
x4: indicator variable, x4=1 if the insured driver is older than 
42 but is 74 or younger; 
x5: indicator variable, x5=1 if the insured driver is older than 
74; 
sdensity: normalized population density of the region; 
Default uniform priors are used for all regression coefficients; 
Default INV-Gamma(0.001, 0.001) used for the rate parameter (see 



Rate Making for a New Territory: Enhancing GLM pricing Model with a Bayesian Analysis 
 

Casualty Actuarial Society E-Forum, Spring 2018-Volume 2 32 

paper).   
*/ 
 
  
proc genmod data= datasetname; 
class Gas; 
Weight ClaimNb; 
model AggClaimAmount = x1 x2 x3 x4 x5 sdensity/ dist=gamma 
                             link=log; 
bayes seed=4 outpost=postgamma diagnostics=all summary=all; 
run;  
 

 



The intertwining threats of climate change and catastrophe challenge society’s ability to interpret 
shocks like recent hurricanes and wildfires.  New capabilities have arisen in the recently expanded 
power of home computers which can now process vast databases; and in shared tools, such as R 
programming which offers calculation tools in combination with palatable “visual analysis” through 
plots and maps. Utilizing these technologies, this paper serves as a reference guide to weather analysis 
as it pertains to climate, and as regional climates relate to loss.  A high level of detail in daily station 
records allows matching of specific weather measurements to losses in both time and location, lending 
ability to identify thresholds, durations, and combined forces leading to loss; further, changes in data or 
data quality can then be distinguished from shifts in climate.  Physical explanations provide essential 
directions to begin exploration, focusing on an example of the phases of El Niño Southern Oscillation 
(ENSO) by which climate varies throughout the globe naturally, not only in extremes.  The venture to 
discover climate’s effect on losses becomes less daunting through pre-written modifiable code, sources 
for ENSO indices and other meaningful inputs, and a useful collection of tables and visual references. 

Availability:  https://cran.r-project.org/ 
ftp://ftp.ncdc.noaa.gov/pub/data/ghcn/daily/ 

Keywords: Climate change, weather analysis, El Niño Southern Oscillation (ENSO), R programming, maps 

Abbreviations: 

ENSO El Niño Southern Oscillation 
GHCN-D Global Historical Climatology Network – Daily 

ftp://ftp.ncdc.noaa.gov/pub/data/ghcn/daily/readme.txt 

NOAA National Oceanic & Atmospheric Administration 
SST Sea Surface Temperature 

GHCN Weather Elements 

PRCP Precipitation        

SNOW Snowfall

SNWD Snow depth

TMAX Maximum temperature  

TMIN Minimum temperature  

WIND* elements are coded to include: 

AWND   Average daily wind speed 

WSF1   Fastest 1-minute wind speed 

WSF2   Fastest 2-minute wind speed 

WSF5   Fastest 5-second wind speed 

WSFG   Peak gust wind speed 

WSFI   Highest instantaneous wind speed 

WSFM   Fastest mile wind speed         

(* WIND is not an element abbreviation of GHCN-D.) 
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1. INTRODUCTION 

 Part One provided a basic backdrop of maps that can be instantly plotted in R language.  

Weather and one’s own loss values may now be added to these backdrops.  Part Two introduces 

daily meteorological data, publicly available through the Global Historical Climatology Network – 

Daily (GHCN-D).   These vast datasets offer the level of detail suited to matching with weather-

related losses in both time and location, easily accessed by R code with 8GB memory, a recent 

standard for most home computers.  These combined advancements – memory, language, and data 

– expand the potential for exploring not only weather events but overall shifts of climate.   This 

paper provides code, input sources and references, along with physical explanations of the weather 

phenomenon.  Climate cycles are illustrated through an example of the El Niño Southern 

Oscillation.  Many maps and plots in this paper are produced in R language from modifiable code 

provided in the appendix.   

 

1.1 Research Context  

 As extreme weather events devastate North America, continually breaking records of a recent past, 

concerns widen over what seem to be pronounced changes in climate: is the potential for change 

understood well enough to simply prepare for the next storm?  In absence of human industry, climate 

already changes naturally, with a myriad of interactions from diverse sources on multiple scales.  

Adding layers of complexity is the growing range of human activities that appear to impact climate 

systems, all while human skills and technologies advance in sync with nature’s destruction.  Portentous 

storms assert the need to utilize modern technologies to a timely advantage, to place state-of-the-art 

tools in reach to those with both common and uncommon skills.   

 

1.1.1 Record Storm Losses 

 The costliest storms in United States history, those producing damages of $1 billion or more, are 

plotted below chronologically in actual unadjusted costs.  A notable escalation of events occurred in 

the last three decades, disrupting the scale of catastrophic loss.  Hurricane Hugo took a destructive 

inland course in 1989, followed in 1992 by Andrew which more than doubled record cost in three 

short years.  Andrew led to insurer insolvencies, sending shock and a wake-up call through the 

industry.  Professional leaders then turned to catastrophe modeling for answers, simulating the 

physical process of hurricane activity within trade secret models. This move proved effective in 

preparing financially for the spate of mega storms to follow.   
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 By 2005, Katrina seemed to break the all the rules, striking levees and storm walls which had not 

been properly engineered to prevent vast flooding of the low-lying New Orleans area.  Failed planning, 

it seemed, had quadrupled the former record set by Andrew.   

 
 
Figure 1.  Costliest Atlantic Hurricanes - Katrina damages were a multiple of preceding “mega storms” 
due to failed engineering.  In absence of adjustments, more recent storms seem to rescale catastrophes since 
the post-Andrew era.  Inset - Andrew damages were unprecedented and took insurers by surprise.  (All 
storms exceeding U.S. $1B in actual, unadjusted damages.)   
 

 Yet in 2012, Sandy struck the most densely populated area of the United States, unusually far to 

the north and late in season, again destroying property at multiple times the scope of Andrew.  Five 

years later, the combined severity of three major land falling hurricanes in 2017 is unprecedented for 

a single season, with no poor engineering to blame.  It is clear from these pictures that the costliest 

storms in all of history are also the most recent – imagine the shape had the Gulf Coast been protected 

against Katrina.  These trends would appear to belie randomness and raise new questions surrounding 

severe weather and climate.  In response to public concern, the role and sources of climate change 

might now be approached across broader disciplines.   
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1.1.2 A New Kind of Global Warming  

 Actuaries, modelers, economists and scientists alike are inclined to bring the historical loss record 

in line with present day conditions.  Such adjustments include consideration for not only dollar 

inflation, but construction upgrades, migrations of population to coastlines, changes in levels of wealth 

near ocean fronts; and in the case of an insurance loss history, any changes in coverages or generosity 

of settlement.  These financial insights alter the picture entirely: by various estimates of ‘normalized’ 

storm damages spanning over a century, the outcome appears a random process.  Considering storms 

since 1900, the ICAT Damage Estimator [www.icatdamageestimator.com] ranks Katrina only as the 

fourth most damaging storm through 2012, and Sandy as eighth.     

 Hidden within the appearance of randomness is another process, recognized mainly in the scientific 

community, that might invite further refinements to views of weather-related losses.  Somewhere in 

between the view of escalating catastrophes and the view of random losses, lies the natural force of 

cyclical climate change.  The El Niño Southern Oscillation (ENSO) exerts major influence on the 

strength and timing of Atlantic hurricanes.  Such cycles exist in absence of any human contribution to 

the atmosphere, and are irregular, reflecting a certain randomness of nature occurring in phases.  These 

cycles may also be prone to change and may in themselves be subject to influences.  How should 

climate be regarded if natural cycles might differ in frequency, duration or amplitude over future 

decades compared to the past century?   

 The same weather patterns or phases that influence severe weather events can be discerned more 

plainly in common weather elements like rainfall and temperature.  These elements might attract less 

media attention than hurricanes, but will provide a far less volatile example of natural climate cycles.  

As a base illustration, Florida rainfall will be compared to ENSO indices in winter months, outside of 

the hurricane season.   

 The actuary, whose forté is prediction from limited data, might benefit from stepping into the 

shoes of the scientist, and might even tighten a few laces to fit a loss perspective.  The weather data 

history is fraught with missing records and changes of stations whose measurements depend on 

elevation and surrounding conditions.  If inflation, population, construction, wealth and coverage were 

not enough, changes in record keeping could also be mistaken for ‘climate change.’  The insurance 

industry may wish to weigh in on weather data collection now, to better account for climate shifts as 

they arrive.    

 A new trend in global warming may be in sight: a warming up to a cooperation in use of resources, 

from shared tools to shared understanding.  Perhaps this trend may lead from strong varied opinions 

toward the exploration of facts and figures reinforced by the science that explains the physical 

phenomenon of weather.    

Meteorology for Actuaries – Part 2  
Climate and the El Niño Southern Oscillation

Casualty Actuarial Society E-Forum, Spring 2018-Volume 2 4



1.2 Objective 

 Since research on weather and climate comes primarily from outside of the insurance sector, little 

focus is placed on loss estimates.  Within the insurance industry, most research on these topics remains 

proprietary, limiting the public’s grasp of the situation and limiting participation by those who might 

strengthen the climate conversation.  This paper seeks to remove limitations to analysis.  At most, the 

boundlessness of relationships to be explored might be recognized.  At least, a highly detailed resource 

of element measurements should illuminate the sparseness of record available by which to identify 

climate shifts.   

 This paper provides tools and references to accompany the vast daily station data of the Global 

Historical Climatology Network (GHCN), along with an understanding of the physical processes of 

weather as insight to the analysis of weather peril losses.  A framework is provided through code and 

useful references, with an example of the El Niño Southern Oscillation and Florida winter rainfall.  

Broad paths may be explored through this data set, whether the direction one wishes to pursue is 

global or focused within a unique region.     

 

1.3 Outline 

 Background and Methods, Section 2, suggests methods for matching daily weather data sets to 

losses, through focus on damageability thresholds, durations, and interactions of weather elements 

that lead to loss.  Beyond a programming method, a background in the physical phenomenon of 

weather guides interpretation of the data set and provides a basis for analysis.  The description 

begins with the source of weather: the heat of the equator.  Next, the motion of weather enters 

through the atmospheric circulation by which the heat is redistributed on earth.  This leads to the 

core phenomenon to be covered, the El Niño Southern Oscillation (ENSO), with its pronounced 

influence on weather patterns in parts the globe distant from its origination around the equatorial 

Pacific.  Sources are provided for indices that measure different oceanic regions of the ENSO phase 

by Sea Surface Temperature (SST), pressure, and other attributes.  The time scale of ‘climate’ is 

differentiated from that of ‘weather,’ and cycles are recognized as a climate determinant.  The short 

history of meteorological records gives insight into the sparseness of measurement available to 

compare climate over time, in spite of large data sets available today.  The actuary’s unique 

capabilities where data is lacking could be constructive contributors in the climate arena.   

 Results, Section 3, presents example findings from code output, including United States maps of 

station locations; and choropleths, anomalies color-coded by state.  Some summaries of missing 

records and data changes are given by year.  Florida winter rainfall is shown to correlate well to 

some ENSO indices and not to others.    
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 Code to process the GHCN-D data is provided in the appendix.  The code is intended for 

modification to the level desired.   

 

2. BACKGROUND AND METHODS 

 The relationship between weather perils and insurance losses may be explored by linking a history 

of loss and exposures to the meteorological data.  An approach is desired that would isolate the 

types of weather events leading to loss.  Some background in the physical process of weather 

provide necessary insights to the analysis, bringing awareness of the natural climate cycles of the El 

Niño Southern Oscillation.  Data quality and completeness require attention so that data changes 

not be mistaken for ‘climate change.’ 

 

2.1 Thresholds 

 A high level of detail in daily station records allows matching of specific weather measurements to 

losses in both time and location.  This detail lends the ability to establish thresholds at which losses 

are likely to occur.  Thresholds tend to represent physical phenomena, such as zero degrees Celsius at 

which water freezes, or wind speeds that topple trees.   

 Durations of extreme weather are also relevant, and can be tracked daily up to the time of loss, 

such as low levels of precipitation eventually leading to crop loss.  Combined forces may lead to 

damages, such as drought accompanied by high temperatures.  Damaging interaction of weather 

elements may be intertemporal, such as drought-inflicted regions becoming susceptible to fires or 

mudslides with higher temperatures or rainfall, respectively.  Thresholds should be expected to vary 

by region, for instance, Seattle with its immense drainage capacity may withstand multiples the rainfall 

of flood-prone Charleston.   

 Thresholds and durations cannot be extracted from monthly summaries, and loss events cannot 

be pinpointed in data sets that have been gridded in rectangular areas encompassing multiple stations.  

A maximum monthly temperature or average monthly temperature is not useful.  Summaries that 

count threshold values can be created from daily data while retaining the source detail.  Care must be 

taken to adjust for various changes to daily record keeping over time. 

 For the purpose of measuring climate change, standard deviation anomalies from a selected base 

period average serve as straightforward and meaningful measures.  The anomaly will usually be 

calculated for a summary period, such as a month or year, compared to some longer base of 30 

Januaries or 30 full years, for instance.  These figures give an intuitive sense of fluctuation across time 

with appropriate scaling for the selected region; a large anomaly of rainfall in the desert will represent 
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a small quantity in comparison to the same anomaly in the tropics.  In absence of climate change, 

anomalies will take values spread about zero according to the stable underlying distribution of the 

element.  Relative values like temperatures will be normally distributed while quantities like 

precipitation, bounded below by zero, will be skew. 

 Some regions suffer no loss from large deviation weather events while others regions hover at the 

edge of the climate extremes where disasters occur.  Anomalous weather events could impact loss if 

present climate extremes of a region are close to loss thresholds.  Attention should be given to cycles 

and shifts of climate in regions where loss thresholds have been crossed or where near-threshold 

weather patterns can be identified.  The distribution of the weather element could be tracked over 

time or compared against the base period.     

 One familiar threshold guide is the Saffir-Simpson scale, which assigns a level of damage to 

hurricane categories by wind speed.  The types of damages will vary by region and by the types of 

buildings in the region.  The same damageability scales would clearly not apply in a country with 

building standards inferior to those of the United States.   

 

Table 1. Saffir-Simpson Hurricane Wind Scale  

Category Sustained Winds Damages 

1 74-95 mph Very dangerous winds will produce some damage 

2 96-110 mph Extremely dangerous winds will cause extensive damage 

3 111-129 mph Devastating damage will occur 

4 130-156 mph Catastrophic damage will occur 

5 157+ mph Catastrophic damage will occur with increased severity 

 

 Station detail is especially critical for ascertaining data completeness and quality, a realization erased 

by most summaries and grids.  A common practice before 1982 was to assume missing daily quantity 

records were zero, a critical value for tracking drought.  Thresholds cannot be reliably identified on 

days where values are left blank or assumed zero, unless, of course, a method is employed to generate 

values providing better information than the entered records.   

 With some R code already written and ready to run, delving into the data should be straightforward.  

The analysis is perhaps only as complicated as the weather.   

  

2.2 The Source of Weather 

 A grasp of the concept of climate and its potential for change stems from understanding the 

physical source of weather: heat.  The basics of daily and seasonal weather, which derive from heat 
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and movement, explain the mechanisms of the El Niño Southern Oscillation, or “ENSO,” with its 

varying phases of impact on regional climates.   

 The intense heat from the sun’s rays near the equator seeks to equalize itself across the earth 

through winds and currents, all while the earth is engaged in two circular motions, rotating on a tilted 

axis while simultaneously orbiting the sun.  People speak often of the “sunrise” and “sunset,” and of 

changes in weather they feel which may be swift and drastic.  Yet holding constant is the imperceptive 

quality of the underlying phenomena of motion around both an axis and a “stationary” sun, a sun that 

neither rises nor sets.  While of little consequence to weather, the entire solar system including the sun 

and earth are actually moving through space around the Milky Way Galaxy in a third grander orbit.  

So the earth is in orbit, along with other planets, in a spiraling motion through space about a moving 

sun.  The solar system’s orbit might only impact the earth’s climate over tens of millions of years.  

What is more, the Milky Way Galaxy is itself in orbit with other galaxies.     

 While essentially “sitting still” at her desk, an analyst could make fairly precise calculations of the 

earth’s rotational motion based on latitude, all while feeling nothing of the earth beneath her speeding 

around and around at a staggering rate of over 800 miles per hour.  This figure would increase to over 

1,000 mph were she located near the equator.  Simultaneously, she is orbiting the sun at 66,700 miles 

per hour so that in one full turn of the seasons, the distance traveled amounts to 584 million miles.  

The earth makes one complete revolution, completing a “sidereal day,” in about four minutes short 

of 24 hours. Over four thousand miles of orbit completes each cycle of the “solar” day in an average 

of around four minutes – astounding speed!  Since the earth’s orbit it elliptical, the time and distance 

to complete a solar day varies with closeness to the sun.  By the earth’s dramatic motion in space, the 

state of heat inequality is driven by a rapid change of position.   

 With one half of the spheroid planet always illuminated, the surface of the earth travels thousands 

of miles in a single day’s rotation to distribute heat evenly around it like a chicken roasting on a spit, 

which translates into a seemingly trivial differentiation of temperatures: cooler in the morning and at 

night compared to afternoon.  The lag of several hours in respectively the warmest and coolest 

temperatures of the day following midday and midnight, comes from the magnificent ability of the 

earth’s surface and atmosphere to store and slowly release heat energy.  The hundreds of millions of miles 

in revolution through the solar system differentiates seasons – but only due to the slight tilt of the 

earth on its rotational axis.  In its elliptical orbit, the earth’s varying distance from the sun does not 

significantly influence temperatures.  Rather the angle of the sun’s rays decides intensity.  A common 

illustration is a flashlight directed straight at a wall: moving the distance of the beam’s source forward 

and away scarcely influences the light’s intensity compared to angling its direction to a slant – the angle 

diffuses the brightness.  Were the earth to spin straight up and down on a vertical axis while orbiting 

the sun, even hundreds of millions of miles could not produce a January distinguishable from June.  
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 The atmospheric circulation on earth – a large scale movement of air distributing thermal energy 

across the earth’s surface – can be described by the process of “convection.”  Convection is a circular 

motion of molecules within fluid, where fluids encompass both liquids and gases such as air.  With a 

difference in temperature, hotter material rises while the colder sinks with gravity.  In a room, hot air 

rises to the ceiling.  On earth, the convective process occurs within the troposphere both latitudinally, 

from the equator to the poles, and longitudinally across the equator.  From the equator to the poles, 

the decrease of solar intensity with latitude sets convective circulation patterns into motion.  Along 

the equator, a difference in temperature arises between land and ocean because of the substantial 

difference in the amount of heat these surfaces types absorb and emit.   

 
 

Figure 2.  This illustration shows “idealized” patterns of ocean currents and the six convective 
cells which wrap around the globe within the troposphere, the lowest level of the atmosphere, 
where weather occurs.  The rotation of the earth produces ocean currents flowing in opposite 
directions and breaks in the convective circulation loops at approximately 30° and 60° north 
and south.   

 

 

 Were the earth to stand still on its axis, cold winds would blow from the poles to the equator across 

its surface while hot air would rise at the equator in a convective circulation towards the poles.  

Rotation enters this equation with an elaborate influence, generating six segments of “idealized” wind 

directions that deviate from the theory, as all weather does, with changes in terrain and a profusion of 

random disturbances and interactions.  Nearest the equator are the easterly (i.e. “from the east”) trade 

winds which early merchant ships sailed, ranging from about 0° to 30° north and south.  In both 

hemispheres from around 30° to 60° are the westerlies (i.e. “from the west”) by which those ships 
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made their return voyages, and at roughly 60° to 90° the circulation again reverses to easterly polar 

winds.  Were it not for the complex circulation patterns arising from the earth’s rotation, 

intercontinental trade could not have taken place by sail and oar.  The force of the earth’s rotation is 

strongest at the poles and weakens towards the equator, where seafarers could become trapped in the 

calm of the “doldrums.”  The circulation pattern along the equator, where rotation produces no force 

of deflection, is known as the “Walker circulation.”   At the equator, easterly winds across the wide 

open Pacific, in concert with the Walker circulation, give rise to the El Niño Southern Oscillation.  

Around the 30° latitude lines, subsiding dry air of the convective cells generates the desert regions in 

bands across Africa and Australia.  From as far away as the farthest eastern end of the African deserts, 

dry subsiding air stirs winds that may continue to travel from east to west across the hot African land 

deriving strength to propel still further west across a warm Atlantic and morph into some of the most 

powerful hurricanes striking the eastern United States.  This storm pathway illustrates the weather 

system is truly massive.     

 

2.3 The Atmosphere 

 The atmosphere would be “paper thin” if the earth were scaled on the size of a basketball.  The 

phenomenon of weather occurs only within its very base layer, the troposphere.  Mount Everest, at 

just over 29,000 feet elevation (about five and a half miles), sits in the upper troposphere.  The final 

layer of atmosphere ends about 6,200 miles from the surface which would only be a twelve hour flight, 

could an airplane traverse the thinning air.    

 Cold temperatures compress molecules, so that colder air is denser with less movement of 

molecules.  Areas of high pressure – which essentially originate from coldness – move towards areas 

of low pressure – similarly defined by warmth – so the pressure differences from unequal heating near 

the earth’s surface give rise to winds.  The height of the troposphere varies with temperature and 

changes with seasons: at the equator it may extend as high as twelve miles while the winter poles may 

compress the layer to seven miles.   

 The earth’s atmosphere is naturally comprised of gases.  In dry air, without consideration of water 

vapor, the composition is roughly 78% nitrogen and 21% oxygen, gases which allow heat leaving the 

earth’s surface to pass through and escape into space.  The remaining roughly one percent of the 

mixture includes a very small proportion of “greenhouse gases” – gases typically measured in parts 

per million or billion which absorb heat released from the earth and trap them near the surface.  These 

gases include carbon dioxide, methane and nitrous oxide. Water vapor is another greenhouse gas 

present in varying proportions by region, making up nearly 4% of the troposphere’s gases in tropical 

regions near the equator, but closer to 1% near the poles.  The proportion also varies through the 
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natural cycles of cloud formation and precipitation.  Without naturally occurring greenhouse gases, 

scientists estimate the average temperature at the earth’s surface would drop from 59°F to 0°F.  The 

mixture is precise: with less than 16% oxygen content, ordinary fires would not burn; while high 

oxygen concentrations would aggravate combustibility.  Therefore these molecular elements are 

precious to life on earth, and no more detectable to us than the motion of the earth beneath our feet.  

Yet imagine in its entirety, only a few miles outside the range of sight and rotating along with us, this 

thin invisible atmosphere is enough to disguise the hurling high speeds of the earth’s rotation and 

orbit!  This illustrates that the climate system, while massive, is also meticulously detailed.     

 Scientists agree that adding greenhouse gases to the atmosphere will raise surface temperatures.   

The warming effect of recent history is best illustrated in the award-winning documentary “Chasing 

Ice” in which photographer James Balof chronicles the rapid melting of glaciers.  Charles Keeling 

began recording carbon dioxide levels in the atmosphere at Mauna Loa Observatory beginning in 

1958, noting seasonal variations of concentrations in the atmosphere; by 1961 he issued the first 

warnings of anthropogenic contributions to the greenhouse effect.  Roger Pielke Sr. stirred 

controversy in 2007 by claiming carbon dioxide accounts for only 28% of human-caused warming, 

stressing the remaining 72% is still human caused.  

 Large bodies of water absorb and release heat at a much slower rate than the atmosphere or ground 

terrain, requiring over a thousand times the energy to heat as the same volume of air.  The upper ocean 

near the surface can store approximately 30 times the heat as the atmosphere immediately above it. 

Interaction between water bodies and the atmosphere also creates sea breezes.  These phenomena 

lead climates near coasts and large lakes to be more temperate than areas inland.  The ocean is a 

gigantic sink for atmospheric warming, the effects of which may not be felt so well on land until the 

ocean has reached its full capacity for absorption.   

 Other human activities and natural forces can cause temperatures to rise, or fall, and climate change 

collectively refers to all types of changes to regional climates or long-term weather patterns and 

extremes, not only heating, but cooling or changes in precipitation or winds.  For instance, 

deforestation releases carbon to the atmosphere but further alters surface reflectivity from greener to 

drier while removing the valuable balancing process of photosynthesis by which carbon dioxide is 

converted with sunlight into oxygen.  Forests can suddenly be replaced by agriculture or housing 

tracts; water use, land use, and controlled burning can all immediately influence climate.  City streets 

of asphalt have induced the “urban heat island effect,” an effect that can be counteracted with the 

numerous benefits of roof gardens.  Nuclear power plants raise the water temperature of adjacent 

lakes that supply water to cooling towers.  Natural volcanic eruptions spew carbon and particulate 

matter into the atmosphere, typically cooling the earth for several years from the high reflectivity of 

particles.  Particulate matter from all types of pollution, even dust rising from cleared fields, assists 
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storm clouds to grow larger and form into more powerful storms.  While greenhouse effects are 

described as slow and gradual, many types of climate change are more immediate including the natural 

cycles of ENSO. 

 

2.4 El Niño Southern Oscillation 

 The Pacific is the largest body of water in the world, twice as large as the Atlantic and far deeper.  

Its expanse across the hot equatorial region wraps nearly half the earth’s circumference, spreading the 

canvas for the brush strokes of the El Niño Southern Oscillation, or simply ENSO.  Temperature and 

pressure will typically differ substantially from one end of the Pacific to the other.  The tropics of the 

western Pacific hold some of the hottest water in the world’s oceans: surface temperatures may warm 

to around 84°F covering an area the size of Australia.  At the Peruvian coast, temperatures may be as 

cold as 60°, uncharacteristically low for the tropics.  Yet the sun’s rays are of equal strength all across 

this equatorial region. 

 Motions and attributes of oceans are not separated from atmosphere; rather the two interact with 

“positive feedback loops” by which changes are amplified, pushing away from equilibrium to invite 

instability.  The atmosphere responds to disruptions quickly in time scales of days to weeks, while the 

ocean reacts more slowly, over months to years.  The El Niño Southern Oscillation is a single large-

scale coupled interaction of atmospheric pressure and ocean temperature across the Pacific Ocean, 

stretching from the coast of South America at Ecuador and Peru in the east to Indonesia and Australia 

in the west.  “Southern Oscillation” refers to the “seesaw” effect in atmospheric pressure between the 

eastern and western Pacific: when pressure at one end shifts to lower than normal the other end will 

become higher than normal.  “El Niño” refers to ocean warming across the Pacific equator which 

occurs together with the dominating shifts of pressure.  These shifts in the tropics can exert powerful 

influence on global weather.   

 Beneath an evenly intense sun, a striking contrast in surface temperatures arises at opposite ends 

of the central Pacific.  Five major contributors emanate primarily from the earth’s rotation: (1) heating 

by both sun and warm air as water is pushed westward along the equator by trade winds, (2) upwelling 

along the equator by the same motion of the trade winds, (3) cold upwelling at the coast of Peru, (4) 

warm downwelling at Indonesia, and (5) the change in the depth at which colder waters lie from the 

surface, across the equator.  The underlying mechanisms deserve elaboration before considering how 

a reversal takes place. 

 As winds blow across the surface of any body of water, the turning motion of the rotating earth 

will cause the water to spiral so that it moves overall perpendicularly to the wind direction.  In the 

southern hemisphere, water is deflected to the left of the wind direction; and in the northern to the 
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right.  Winds blowing towards the equator from both the north and the south turn towards the west.  

As water is displaced along the equator from either side, water from below the surface rushes in to 

replenish the space.  Winds blowing northward along the coast of Peru similarly produce an upwelling, 

where temperatures near the ocean’s surface are cold.  The opposite occurs at Indonesia and the other 

land barriers of the Maritime Continent, where westward winds produce a downwelling of warm 

surface waters according to the direction of the earth’s rotation.  Sinking warm waters push the colder 

basin waters below down to even further depths.  Note that the ocean is stratified: water near the 

surface is warm from various influences such as the sun’s heat, evaporation, and mixing winds; while 

deeper waters are still and cold.  The “thermocline” lies in between, a thin dividing layer in which 

temperatures drop quickly through a shallow depth.  The sinking of warm waters at the western Pacific 

encourage a downward slope to the thermocline from east to west.  The waters upwelled along the 

equator by “the trades” increase in warmth moving west as the cold lower layer slopes down further 

and further below surface.      

 

 
Source: NOAA Jetstream 

 
Figure 3. El Niño Southern Oscillation.  The ‘normal’ state of the Pacific Ocean is illustrated on the 
left; but when conditions are amplified the same pattern become a La Niña event.  An El Niño event is 
illustrated on the right.   

 

Warm surface water pushed westward by the trades eventually encounters barriers in the land 

masses of Australia and Indonesia, where it literally piles up.  Over time the western sea level may 

gain 20 inches elevation, forming a mound of water visible from space.  This view serves as an 

assessment of the ENSO phase.  The slope of the ocean’s surface, then, opposes the slope of the 

thermocline.  The heated water that reaches the Maritime Continent of Indonesia evaporates from 

the ocean, condenses into rain clouds, and pours out tropical rain storms, fueling upper level winds.  

Every year, over 100 quadrillion (1017) gallons of water evaporates from the ocean, mostly around 
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the tropical equator, with about 90% of the precipitation falling over the ocean.  Rising warm air 

travels through the troposphere eastward back across the equator and then settles in a convective 

loop, reinforcing the westward trade winds along the surface.    

Awareness of a reversal in the usual pattern originated in Peru.  Ordinarily, winds blow northward 

along the coast of Peru stirring up cold waters, replacing depleted surface waters by rich nutrients 

from deep basin waters – that feed vibrant fish populations – which in turn sustain bird populations 

– whose droppings provide fertilizer to the agricultural sector.  A seasonal transformation of an 

inconsistently warm current entering this coastal region was first identified by Peruvians at 

Christmastime as El Niño, the boy or the Christ child.  A strong El Niño event can devastate Peruvian 

fisheries, impair agriculture, and induce rain storms that flood the coastal regions.    

 When trade winds are brisk, coastal upwelling is strong along Peru, and the thermocline is steep, 

an amplified phase of colder eastern sea surface temperatures may be referred to as La Niña, or the 

girl.  The same conditions at a lesser strength are considered “neutral,” or the “normal” state of the 

Pacific – sometimes called La Nada, the nothing – a state which does not prompt severe weather.   

 An El Niño event always begins with pressure changes, namely, a lessening of the pressure gradient 

between the eastern and western Pacific.  Since winds blow from high to low pressure, this leveling of 

pressure weakens the trade winds that have driven water to pile up towards the west.  The heated 

water will then slosh back in a countercurrent that sends the excesses of warm water across the Pacific.  

The central and eastern regions of the Pacific waters warm near equal to the western temperatures, 

repositions the intense rainstorms away from Indonesia towards the central or eastern Pacific, and 

shifting large scale wind patterns in turn.  Pronounced phases of ENSO – El Niño and La Niña alike 

– are known for diverse consequences of extreme weather at near and distant regions of the globe, 

sometimes with opposite impacts to one another.  All of the effects together do not amount to true 

opposites considering some arise from a shift in the region of predominant precipitation, a location 

change which is not an opposite.   

 The term “El Niño” has come to signify an amplified cycle which typically occurs on intervals of 

three to five years, historically from two to seven years.  Variation is not only in frequency and strength 

but also duration which may span several months to a few years.  La Niña is especially well known for 

enhancing Atlantic basin hurricane activity.  Within the troposphere where weather occurs, various 

wind speeds and directions may occur for several miles above the ground known as “vertical wind 

shear” which when strong, can topple hurricanes or stifle their formation.  La Niña conditions foster 

an evenness along altitudes favorable to hurricane formation and survival, that is, a weakening of 

vertical wind shear.  Other consequences of El Niño and La Niña are shown in the maps following. 
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 What triggers the pressure gradient to lessen, unleashing an El Niño event, remains a scientific 

mystery.  There may not be one precise answer since weather is influenced by numerous factors 

characterized by random occurrences, and further by interactions and also feedbacks.  Ambient air 

pressure is constantly changing, and even while the pressure changes are measurable, the sources of 

change may not be discernible.  Random distortions to any number of usual weather patterns or 

combinations thereof could eventually lead to shifts of pressure at the equator: sudden bursts of 

opposing winds, sub-surface waves, changes in salinity from the sinking of salty waters along the 

equator, or distant elements such as mountain snowpack or glacier ice, could shape valid hypotheses.  

This mystery beneath recurring large-scale global weather patterns illustrates that the climate system, 

both massive and detailed, remains largely “over our heads.” 

 

Table 2. Summary of ENSO event characteristics – the phases of the El Niño Southern Oscillation 
may be summarized by a few characteristics.  When La Niña conditions are present but are mild, not 
amplified, the phase is neutral and global weather patterns are not influenced.   

 

La Niña   El Niño 

Strong upwelling of cold deep basin waters at coast 
of Peru 

Weaker upwelling along Peruvian coast, and 
upwelling of warmer waters 

Steep thermocline with cold water nearer to surface Less slanted thermocline 

Strong easterly trade winds  Weakening easterly trade winds 

Warm western Pacific and cooler eastern and 
central Pacific 

Central to eastern Pacific assume warmer 
temperature, nearer that of western Pacific 

Region of persistent precipitation is over warmest 
water near Indonesia 

Region of persistent precipitation is shifted, 
over warmest water near central Pacific 

High sea level pressure in eastern Pacific differs 
from low pressure in western Pacific – strong 
Walker circulation 

Sea level pressure in eastern Pacific lowers 
near to level of western Pacific – weakening 
Walker circulation  
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Figure 4. Regional Weather Impacts of El Niño Southern Oscillation – El Niño and La Niña – winter 
and summer seasons.  These four maps provided by the NOAA serve as excellent reference to the regional 
effects of natural climate cycles in weather data specific to the ENSO phenomenon, and may be consulted for 
planning climate phase analyses by location and time of year.  

 
(A) El Niño - winter season 
El Niño effects during December through February 

 
Source: NOAA Jetstream 

 
(B) El Niño - summer season 
El Niño effects during June through August 

 
Source: NOAA Jetstream 
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(C) La Niña - winter season 
La Niña effects during December through February 
 

 
Source: NOAA Jetstream 

 
(D) La Niña - summer season 
La Niña effects during June through August 

 
Source: NOAA Jetstream 
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2.5 ENSO Indices  

 The original indices tracking the phase of ENSO are named by the ship tracks that originally 

recorded sea surface temperatures (SST) across this equatorial region of the Pacific, beginning with 

Niño 1 and 2 near the coast of Peru where destructive forces of the ENSO phenomenon were first 

witnessed.  Niño 3 extends across an eastern equatorial band of the Pacific, reflecting the later 

realization of a farther reaching phenomenon.  Niño 4 covers the tropics to the west, and Niño 3.4 is 

measured in a midregion overlapping Niño 3 and 4.  The Niño indices are recorded most commonly 

as average monthly SST and are also given weekly, and further as anomalies from a base mean SST 

value.  The more extreme colder temperatures relate to La Niña events, the warmer to El Niño.   

 The Ocean Niño Index (ONI) is derived from the Niño 3.4 SST as rolling three month periods 

(Jan-Feb-Mar, Feb-Mar-Apr, etc.).  The Trans-Niño Index (TNI) is derived in a different manner 

combining Niño 1 and 2 with Niño 4.  The TNI considers that the difference in SST on opposite 

sides of the Pacific better reflects the phase for certain purposes, and takes the standardized Niño 1 

and 2 minus the Niño 4 with an additional standardizing adjustment; specifically, a five month running 

mean is applied and then standardized using the 1950-1979 period.  The regions of measurements for 

ENSO indices are shown in the map below. 

 

 
Figure 5. ENSO Regions – regions where the phase of ENSO is measured by SST or pressure are 
shown in a Pacific-centric map. The TNI is based on Niño 1+2 and Niño 4 while ‘BEST’ is based on 
Niño 3.4 and the SOI.    
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Table 3. ENSO Index Coordinates – the coordinates where ENSO indices are measured are given 
in Atlantic-centric coordinates (-180° to 180°) and Pacific-centric coordinates (0° to 360°) 

 
ENSO Index Atlantic Coordinates Pacific Coordinates 
 

Niño 1+2 / TNI (east) 0°-10°S,  90°W-80°W 0°-10°S, 270°E-280°E 
 

Niño 3  5°N-5°S, 150°W-90°W 5°N-5°S,  210°E-270°E 
 

Niño 3.4 / ONI / ‘BEST’(i) 5°N-5°S, 170°W-120°W 5°N-5°S,  190°E-240°E 
 

Niño 4 / TNI (west) 5°N-5°S, 160°E-150°W 5°N-5°S,  160°E-210°E 
 

EQSOI (west) 5°N-5°S, 220°W-270°W 5°N-5°S,  90°E-140°E 
EQSOI (east) 5°N-5°S, 80°W - 130°W 5°N-5°S,  230°E-280°E 
 

SOI / ‘BEST’(ii): 
Darwin, Australia    12.4634°S, 130.8456°E 
Tahiti     17.6509°S,  210.5740°E 

 

 Further indices exist to track the ENSO phase without SST measures.  The Southern Oscillation 

Index (SOI) records the large-scale fluctuations in pressure between the western and eastern Pacific, 

at the locations of Darwin, Australia versus Tahiti.  The pressure differential is associated with heat in 

the atmosphere as opposed to the surface water of the ocean, and the atmospheric pressure gradient 

is prone to change much more swiftly than ocean temperatures.  The SOI is more negative during an 

El Niño event, where pressure in the eastern Pacific lowers nearer to that of the western Pacific.  The 

Equatorial SOI is another measure based on pressure, but instead of relying on two distinct points 

observes averages across larger regions, over Indonesia and off the coast of Ecuador. 

 The Multivariate ENSO index (MEI) combines several characteristics into one index.  Its 

calculation  considers the six main observed variables over the tropical Pacific: sea-level pressure (P), 

zonal (U) and meridional (V) components of the surface wind, sea surface temperature (S), surface air 

temperature (A), and total cloudiness fraction of the sky (C); calculated in rolling bimonthly periods 

(Jan-Feb, Feb-Mar, etc.).  Various index measures track different characteristics of the ENSO phase, 

so they will serve as unequal indicators to climate effects in various regions of the globe.  Klaus Wolter 

of the NOAA describes the relevance of the MEI, in relation to other indices, as follows:     

 “Why do I believe that the MEI is better for monitoring ENSO than the SOI or various 
SST indices?  In brief, the MEI integrates more information than other indices, it reflects the 
nature of the coupled ocean-atmosphere system better than either component, and it is less 
vulnerable to occasional data glitches in the monthly update cycles. Now, if you are 
interested in ENSO impacts in a very specific part of the world, I would suggest that you 
obtain other ENSO indices as well and establish which one best fits your needs. For 
instance, in Australia, Darwin sea level pressure and/or the SOI may be more appropriate 
than the MEI. My claim here is that the MEI does a better job than other indices for the 
overall monitoring of the ENSO phenomenon, including, for instance, world-wide 
correlations with surface temperatures and rainfall.”    
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Figure 6.  Phases of the MEI.  Multivariate ENSO Index since 1950.   

 

Indices tracking ENSO phases are available online at these NOAA sites:   
 
 Website Address  Indices (format: Wide or Long)  from 
(I) www.cpc.ncep.noaa.gov/data/indices/   Niño, ONI (L); SOI, EQSOI (W)  1950’s 
   Niño Weekly (L)  1990’s 
(II) www.esrl.noaa.gov/psd/gcos_wgsp/Timeseries/   Niño (W); SOI (W) 1870’s 
(III) www.esrl.noaa.gov/psd/data/climateindices/list/  Niño, ONI SOI, TNI, BEST, MEI (W) 1950’s 
(IV) www.esrl.noaa.gov/psd/enso/mei/table.html MEI (W)   1950’s 
 

(I) NOAA National Weather Service – Climate Prediction Center – Monthly Atmospheric & SST Indices 

(II) Global Climate Observing System – Working Group on Surface Pressure 

NOAA– Earth System Research Library – Physical Sciences Division – Climate Indices – Monthly 
Atmospheric and Ocean Time Series 
(III) NOAA– Earth System Research Library – Physical Sciences Division – Multivariate ENSO Index 

 

2.6 Climate versus Weather 

 Weather typically describes short-term phenomena while climate describes the long-term weather 

conditions that predominate a specific region.  A “climatological normal” is an average of a weather 

element over 30 years, which serves as a base for comparison.  For scientific purposes, climate is 

usually defined by a 30-year period; for some purposes, the base climate period chosen might span 40 
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to 100 years.  The definition of climate includes not only the long-term averages and typical variations 

in the elements, but further places emphasis on the extremes experienced over the full range of the 

selected base period.  A “very hot day,” then, describes weather, while “the hottest day in London 

since 1976” designates a boundary for one major city’s climate.   

 The common 30-year scope implies that weather is expected to fluctuate to a certain extent, from 

one year to the next, and variations in this range would not constitute climate change.  The assumption 

that three decades would cover the irregular fluctuations of the El Niño Southern Oscillation might 

also be implied, since this is the major cyclical climate factor for some regions.  But because of the 

myriad of interactions among climate variables, not only is ENSO a source of natural climate 

variations, ENSO is itself susceptible to change.  A base climate period might be more closely 

examined for trends, cycles, and shocks.  Irregularities might be taken to another level of comparison 

and adjustment when considering future loss potential.   

 For the examples of this paper, the years 1961-1990 are selected as a base period for climate.  This 

period corresponds to the earliest 30-year term at which instruments are considered reliable and 

consistently gauged.  Care should certainly be taken in relying upon analyses which include decades 

prior to the 1960’s since old ship records or primitive instruments may reflect not a change in climate 

but rather a change in measurement capabilities or variations in techniques for capturing data.   

 Certain adjustments to daily data will remain essential since the 1960’s, due to inconsistencies in 

recording zero measurements, or the closing and opening of weather stations, for instance.  Changes 

in data quality have been especially drastic since 1982 as a range of improvements were implemented 

for achieving more complete, more consistent records.  Some of the prominent data changes are 

presented in summary in the ‘Results and Discussion’ section.       

 

2.7 Actuarial Analysis 

 Weather is no stranger to the insurance industry; policies insuring ships against storms and other 

causes of sinkage were first written Before Christ.  Modeling weather has become a standard only 

since Hurricane Andrew, and still catastrophe simulations are proprietary which limits discussion 

beyond what little the model designers and their clients wish to share.  The duration of property 

insurance policies rarely exceeds one year, so insurers can adjust premiums in response to gradual, 

long term climate mechanisms and may not need to discern source changes.  Primary consideration 

might be given to ENSO phases, which can be predicted sometimes six months in advance.  Other 

short-horizon climate disruptors may possibly receive some attention.  Yet, with growing concern 

over nature’s destructive forces, the role of weather and risk experts may need to be updated to 

include more than the offering of near-term insurance policies.   
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 Actuaries possess refined comprehension of the messages raveled inside vast sets of data.  The 

need to measure economic costs of calamities has given actuaries a uniquely precise viewpoint of risk 

assessment.  Actuarial science can bring advancements to climate analysis in such areas as credibility 

and outliers, treatment of sparse data, recognition of interactions, removal of double-counting, 

identification of noise signals, normalization, trending and pattern searching.  Actuaries have placed 

greater focus on mathematical aspects of storm losses and are far more rigorous in these numerical 

areas than the other sciences.  The treatment of catastrophic weather loss in models combines the 

skills of the actuary with the atmospheric scientist, together but separately, in a limited market.  

Techniques in weather and catastrophe may be progress to apply financial and actuarial expertise 

directly, along with the distinct qualities of physical sciences.    

 

3. RESULTS AND DISCUSSION  

 Results are given from output of the code provided in the appendix, and serve as examples of the 

much wider range of information the meteorological data sets can provide.   

 

3.1 Data Completeness 

 Stations open and close over time, with changes of location; differences in elevation and 

surroundings impact measurements.  While precipitation (PRCP) has been recorded at over 56,000 

stations in the United States and Canada since 1960, fewer than six percent of these stations contain 

data for 30 base years and the subsequent 27 years for comparison.  

 
 
Figure 7.  Precipitation (rainfall) records have been recorded at over 48,000 stations in the United States 
since 1960 (left figure).  Only 6.4% of these stations records include some data in all 57 years from 1961 to 
2017 (right figure); however, over 26% of the yearly precipitation data for these decades was recorded at these 
long-operating stations. 
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 The GHCN-D data is fraught with missing records.  Beginning in 1982, an existing notation 

became commonly utilized to indicate a blank that had been assumed zero, for quantity measures 

such as rainfall.  The number of identifiable missing records jumped in 1982, and new initiatives 

were taken so that record completion has improved since then.  The practice of assuming zero 

records was phased out by the end of 2010.   Prior to 1982, blanks that were assumed zero cannot 

be identified, so while the data appears more complete for older years, in reality, the zero records are 

unreliable.    

 The National Centers for Environmental Information (NCEI) of the NOAA also provides 

monthly GHCN data summaries of weather elements (GHCN-M), to which ‘homogeneity 

adjustments’ have been made [www.ncdc.noaa.gov/ghcnm].  The online data source includes 

reference materials describing adjustments that are called for by the raw daily data records.  

 

Table 4.  Change in assumed zeros.  In 1982, GHCN-D missing records appeared to increase only 
because blanks became identifiable by notation; subsequently completeness has improved.   
 

      Missing Records as a % of days of year   Zero observations* as a % of observations 

Year PRCP SNOW SNWD TMAX TMIN  Year PRCP SNOW SNWD TMAX TMIN 
1960 2.8% 4.0% 6.2% 2.6% 2.7%  1960 75% 96% 90% 9% 34% 
1961 3.2% 5.4% 8.5% 3.2% 3.3%  1961 73% 97% 92% 7% 33% 
1962 3.2% 5.5% 8.0% 3.3% 3.3%  1962 74% 97% 91% 8% 33% 
  …         …      

1979 5.7% 8.5% 11.2% 7.0% 6.8%  1979 73% 96% 90% 10% 35% 
1980 5.4% 8.8% 11.5% 6.8% 6.8%  1980 75% 97% 92% 8% 34% 

1981 4.1% 6.9% 8.6% 5.8% 5.8%  1981 74% 97% 94% 7% 33% 

1982 31.4% 82.6% 78.6% 4.7% 4.5%  1982 60% 78% 58% 9% 34% 

1983 31.3% 83.0% 78.9% 4.2% 4.1%  1983 60% 79% 62% 9% 33% 
1984 32.0% 83.5% 77.7% 4.6% 4.6%  1984 61% 80% 63% 8% 34% 
  …         …      

2015 21.1% 41.7% 44.6% 4.5% 4.6%  2015 68% 96% 79% 8% 31% 
2016 22.0% 39.5% 41.3% 4.7% 4.8%  2016 69% 96% 82% 8% 31% 

2017 19.4% 34.4% 32.7% 4.4% 4.4%  2017 68% 96% 82% 8% 32% 

* For temperatures, ‘zero observations’ are counts at or below zero degrees Celsius (freezing temperatures). 

 It might be expected that rainfall (snowfall) might not be recorded reliably during extremely dry 

(hot) weather.  For snowfall in Minnesota, missing records average 45% for summer months for which 

all records are zeros, but still over 25% of records are missing in snowy winter months.   
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Table 5.  United States Precipitation Records.  The percentage of daily records each year seems to be falling 
while actually data quality is improving.  Prior to 1982, blank records were assumed zero but most lacked 
identifying notation. 

    % days   
 % days % days  blank    blank   
  with record  assumed  % days  % records assumed  count of 
Year record missing   zero   zero   zero  zero  stations 
1961 95.1% 3.2%  0.1% 69.7% 73.3% 2,343  9,704  
1962 92.2% 3.2%  0.1% 68.7% 74.5% 2,291  9,757  
1963 94.6% 3.3%  0.1% 72.3% 76.4%  2,762  9,479  
... 
1979 92.7% 5.7%  0.1% 67.6% 72.9% 2,447  8,527 
1980 92.1% 5.4%  0.1% 69.2% 75.1% 2,477  8,650  
1981 94.2% 4.1%  0.1% 69.6% 73.9% 2,658  8,690  
1982 67.3% 31.4%  25.8% 40.2% 59.7% 817,610  8,673  
1983 67.7% 31.3%  26.4% 40.4% 59.7% 833,783  8,646  
1984 67.0% 32.0%  27.0% 40.9% 61.0% 851,171  8,608  
...          
2008 69.3% 20.0%  5.8% 47.5% 68.5% 428,242  20,058      
2009 70.6% 20.1%  3.9% 47.3% 67.0% 323,319  22,537  
2010 71.9% 21.1%  3.1% 50.1% 69.7% 268,530  23,497  
2011 71.8% 21.1%  0.0% 50.0% 69.6%     24,411  
2012 72.2% 20.4%  0.0% 51.9% 72.0%   25,516  
2013 71.9% 20.9%  0.0% 49.8% 69.3%   26,427  
2014 71.7% 21.4%  0.0% 49.3% 68.9%   26,366  
2015 72.7% 21.1%  0.0% 49.2% 67.6%   26,017  
2016 73.9% 22.0%  0.0% 51.1% 69.2%   24,381  
2017 72.5% 19.4%  0.0% 49.5% 68.3%   25,605  

 

 The change in missing records is explained Dr. Matt Menne, the creator of the GHCN-Daily 

meteorological databank at the NOAA’s National Centers for Environmental Information (NCEI):  

"Many volunteer observers, especially in the more historic past, have not consistently 
recorded zeros each day when no rain was observed and rather would often leave the day 
blank in such cases.  Because zeros have so often been left blank on reporting forms, 
NCEI used to more or less routinely assign a zero value to daily precipitation totals that 
were left blank.  These added zeros were intended to be accompanied by a flag noting 
that the value "was missing but presumed zero" so that they could be distinguished from 
days when the observer noted a zero.  However, the practice of assuming zeros for 
blanks was discontinued after 2010 when we moved to a new ingest and processing 
system for daily data, largely because the accuracy of assuming a zero for blanks could 
not be assessed very well.  In addition, volunteer observers were rapidly transitioning to 
electronic reporting around the same time and are now prompted somewhat by the new 
electric entry system as to whether a missing value was really meant to be reported as a 
zero."   
 
 

3.2 Choropleth Maps 

 Choropleth maps are color coded ranges that allow immediate visual interpretation.  R contains 

numerous packages that will produce a choropleth map, although most are designed for quantity 
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measures and lack flexibility for other purposes.  The example choropleths plot anomalies centered at 

zero, which is straightforward to code in the package ‘ggplot2’ but may be more cumbersome to 

produce with other packages.  The package ‘ggplot2’ has an advantage of being compatible with 

‘fiftystater’ that includes insets of Alaska and Hawaii.   

 The first choropleth example is created from scratch in package ‘maps’ and provides code that 

allows for a high degree of customization.   A drawback of this package is the lack of insets for Alaska 

and Hawaii, although these states can still be mapped separately.   

 The code allows for a year to be selected, which is compared against the base climate period (1961-

1990).  The base period average and standard deviation are calculated for each state separately.  The 

choropleth shows the number of deviations upward or downward from the base average.  

 

 
 

 
Figure 8.  Choropleth maps produced from scratch using package ‘maps’ for an El Niño 
event year 1982 (top) in contrast to a La Niña event year 2011 (bottom). 
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Figure 9. Choropleth map produced by package ‘ggplot2’ with package ‘fiftystater’ 
insets, using the base color scheme (top); and using a custom color scheme with a 
midpoint specified at zero anomaly (bottom).     
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3.3 Plots of Elements vs. Indices 

 Florida winter precipitation (PRCP) is chosen as an example region from the NOAA Jetstream 

maps, which indicate wet and cool conditions are expected during El Niño phases, dry and warm 

during La Niña.  Several ENSO indices and time periods are selected to plot against the average daily 

recorded rainfall.  Only stations have been included with some data in all 57 years (1961-2017); data 

completeness by month has not been checked.  No adjustment has been made for assumed zero 

entries prior to 1982 which lack notation as blank records.  The plots assign a shape to distinguish 

points in the two decades before 1982 which could adjust upwards due to an over prevalence of zeros.   

 For the Niño indices, there does not appear to be a strong relationship.  For the MEI, the 

correlation with Florida rainfall appears convincing from January to March, but not in December.  By 

this example, the choice of index would appear critical for identifying the specific characteristics of 

ENSO that impacts the region.  If a loss threshold has been established for Florida rainfall, then a 

relationship between the MEI and the threshold might cause an insurer to consider ENSO phases in 

its loss history and realign expectations for the future.   

 

 

 
Figure 10. Florida rainfall (PRCP) in December plotted against the Niño 4 Index does not reveal a distinct 
pattern.  
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Figure 11. Florida rainfall (PRCP) in January plotted against the Niño 4 Index does not reveal a strong phase 
relationship.   

 

 

 
Figure 12. Florida rainfall (PRCP) in January plotted against the Niño 1+2 Index might reveal a 
slight phase relationship.  
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Figure 13. Florida rainfall (PRCP) in December and January plotted against the Multivariate ENSO 
Index (MEI) appears random.  

 

 

 
 

Figure 14. Florida rainfall (PRCP) in January and February plotted against the Multivariate ENSO 
Index (MEI) reveals a positive correlation.   

 

 

Meteorology for Actuaries – Part 2  
Climate and the El Niño Southern Oscillation

Casualty Actuarial Society E-Forum, Spring 2018-Volume 2 29



 

 
Figure 15. Florida rainfall (PRCP) in February and March plotted against the Multivariate ENSO Index 
(MEI) reveals a positive correlation.  

 
 

4. CONCLUSION 
 

 With an uncertain future of weather extremes, one might only expect a deluge in climate stances.  

A detailed raw data source for weather records in GHNC-D can bring some tangibility, at least to the 

past, to establish a more concrete understanding of the elusive phenomenon of weather.  A revised 

viewpoint would neither presume upward trends in storm losses nor simply level losses to present 

conditions.  Instead the physical process of heat and motion in cycles and patterns, on many scales, 

might link weather to losses through thresholds.  A closer look at distributions and shifts in weather 

occurring near damageability thresholds might allow losses to definitively enter the climate formula.   

  If human activity drives any part of climate change, the next technological advancements might be 

designed to evaluate and financially prepare for the outcome.  The objective is to not only use the 

newest tools to the greatest advantage, but to continually expand our capabilities towards progress,  

which may include contributions toward an accurate, consistent bank of data with enough stability to 

distinguish amplitudes, durations and interactions inherent in natural cyclical ‘climate change.’     

 The growing attention to climate as it affects insurance loss may be a calling for actuaries to uncover 

the hidden message of the meteorological files.  The trends in technologies may finally bring the 

sophisticated topic of climate “down to earth.”   
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Code and Code Description 
(February 2018) 

 

 

5.0    Set up in R   
5.1 Code 1   Weather Daily Loop – Unzip Year by Year 
5.2 Code 2   Detailed Station Inventories 
5.3 Code 3   Initial Year-Month Summaries 
5.4 Code 4   Complete Year and Year-Month Summaries 
           Merged with Station Locations and Inventories 
5.5 Code 5   Missing Records by Year 
5.6 Code 6   Multiple Month Indices (MEI and ONI) 
5.7 Code 7   Weekly Niño Indices 
5.8 Code 8   State Summaries / Plot Selected Stations 
                 Visual Analysis with Choropleth Maps 
                  5.8.1 Package ‘maps’ – 48 mainland states 
                  5.8.2 Packages ‘ggplot2’ and ‘fiftystater’ – AK & HI insets 
5.9 Code 9   Combine Monthly Indices  
5.10 Code 10 Plot ENSO Index Time Series 
5.11 Code 11   Plot Element vs. Index by State 
5.12 Code 12   Map of ENSO Index Regions 
5.13 Code 13 Costliest Storms 
 
 

5.0 Set up in R      
 

 To begin, copy and paste the code into an *.R script file.  The code follows the descriptions.  If R 

GUI and R Studio have not yet been installed, instructional videos are available on youtube.  After 

copying code into the *.R script, single quotes may need to be replaced with properly formatted 

quotes (use <ctrl>-f to find and replace single quotes.)  Before running the code, directory paths 

must be specified and inputs copied into *.csv files. 

 

Directories and Inputs 

 The paths to three directories are to be specified in the code where R can locate the initial input 

files and write output files.  The input files for this example will be in *.csv (Comma Delimited) and 

need to be saved to the directory folders named in the code.  The files listed below with the 

directories are the files to be used in the code examples.  The code can be modified to run fewer or 

more years of zipped *.gz files or to read different base inputs.  If expanding years of input, be 

aware that daily data figures are unadjusted and years before 1960 will be subject to inconsistencies 

in measurements.  The files saved in the first two directories (I) dirzip and (II) dirbase provide the 

inputs to produce subsets and summaries, which are written out as more accessible *.csv files to (III) 
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diroutput.  The output files will be accessed again to run subsequent code much more efficiently 

than by unzipping cumbersome *.gz files.   

 The three directories and contents will be as follows:  

 
(I) dirzip <- "C:/…/WeatherZip" 

 1960.csv.gz 
 1961.csv.gz 
 … 
 2016.csv.gz 
 2017.csv.gz 

(II) dirbase <- "C:/…/WeatherBase" 
 BEST1mo.csv 
 CostlyStorms.csv 
 EQSOI.csv 
 ghcnd-inventory.csv  
 ghcnd-stations.csv  
 ghcnd-states.csv 
 MEI.csv 
 NinoMonthly.csv  
 NinoWeekly.csv 
 ONI.csv 
 SOI_Anom.csv 
 TNI.csv 

(III) diroutput <- "C:/…/WeatherData" 
 

 
 The first folder (I) dirzip contains the zipped files daily data, which are downloaded from the 

NOAA GHCN-Daily at this website address:  

 
ftp://ftp.ncdc.noaa.gov/pub/data/ghcn/daily/ 
 
 by_year/  folder of zipped files of daily data by year to download 
 readme.txt  detailed descriptions of variables and their values 
 ghcnd-stations.txt StationID, name, coordinates, elevation, state/province abbreviation  
 ghcnd-countries.txt two-character GHCN country and territory codes, and names   
 ghcnd-states.txt two-character US states and territories, Canadian provinces 
 ghcnd-inventory.txt StationID, coordinates, station start and end years by element 
 

 
 Although text files can be read by R, it is more reliable overall to copy and parse the data into 

excel and save as *.csv files. The example code runs data for the US and Canada ('CA').  The file 

ghcnd-countries.txt gives two-character country codes and country names that can be used as inputs 

to modify the example.  The file ghcnd-inventory.txt provides basic ranges of years during which 

stations have recorded data, by weather element; this inventory list is longer than ghcnd-stations.txt 

which lists each station once only.  The code will summarize greater station detail from the weather 

records to assist in selecting consistent data across years.  Note that the zip code field in ghcnd-

stations.txt is missing entries so it would not serve for mapping stations to counties.   

 The fields ‘Open’ and ‘Close’ in the ghcnd-inventory.txt file were included in the example code at 

a later time so as not to be shown in the sample outputs of this paper.   
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--------------------------------------------------------------------------------------------- 
Table 1.  Sample output from ghcnd-stations.txt saved as *.csv and read by R as a data table.   

 
  StationID lat lon elev St Name GSNFlag zip 
1: ACW00011604 17.1167 -61.7833 10.1 NA ST JOHNS COOLIDGE FLD NA NA 
2: ACW00011647 17.1333 -61.7833 19.2 NA ST JOHNS NA NA 
3: AE000041196 25.333 55.517 34 NA SHARJAH INTER. AIRP NA 41196 
4: AEM00041194 25.255 55.364 10.4 NA DUBAI INTL NA 41194 
5: AEM00041217 24.433 54.651 26.8 NA ABU DHABI INTL NA 41217 
---         
*: ZI000067969 -21.05 29.367 861 NA WEST NICHOLSON NA 67969 
*: ZI000067975 -20.067 30.867 1095 NA MASVINGO NA 67975 
*: ZI000067977 -21.017 31.583 430 NA BUFFALO RANGE NA 67977 
*: ZI000067983 -20.2 32.616 1132 NA CHIPINGE NA 67983 
*: ZI000067991 -22.217 30 457 NA BEITBRIDGE NA 67991 
 
*  column numbers not shown (104122 – 104126) 
--------------------------------------------------------------------------------------------- 
StationID station identification number 
lat latitude coordinate of station location 
lon longitude coordinate of station location 
elev elevation of station location 
St  state or province two-character abbreviation 
Name station name 
GSNFlag (see readme.txt for details) 
zip zip code of station location 
 
 
--------------------------------------------------------------------------------------------- 

Table 2.  Sample output from ghcnd-inventory.txt saved as *.csv and read by R as a data table. 

 
 StationID lat lon elem Open Close 
1: ACW00011604 17.1167 -61.7833 TMAX 1949 1949 
2: ACW00011604 17.1167 -61.7833 TMIN 1949 1949 
3: ACW00011604 17.1167 -61.7833 PRCP 1949 1949 
4: ACW00011604 17.1167 -61.7833 SNOW 1949 1949 
5: ACW00011604 17.1167 -61.7833 SNWD 1949 1949 
---       
596841: ZI000067983 -20.2 32.616 PRCP 1951 2017 
596842: ZI000067983 -20.2 32.616 TAVG 1962 2017 
596843: ZI000067991 -22.217 30 TMAX 1951 1990 
596844: ZI000067991 -22.217 30 TMIN 1951 1990 
596845: ZI000067991 -22.217 30 PRCP 1951 1990 

--------------------------------------------------------------------------------------------- 
Open first year the station recorded data for the weather element specified  
Close final year the station recorded data for the weather element specified 
 
 
--------------------------------------------------------------------------------------------- 
Table 3. Sample output from ghcnd-states.txt (left) and ghcnd-countries.txt (right) saved as 

*.csv files and read by R as data tables. 

 || 
 St Name ||  loc CountryName 
 1: AB ALBERTA || 1: AC Antigua and Barbuda 
 2: AK ALASKA || 2: AE United Arab Emirates 
 3: AL ALABAMA || 3: AF Afghanistan 
 4: AR ARKANSAS || 4: AG Algeria 
 5: AS AMERICAN SAMOA || 5: AJ Azerbaijan 
 ---   || ---   
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 70: WA WASHINGTON || 214: WI Western Sahara 
 71: WI WISCONSIN || 215: WQ Wake Island [United States] 
 72: WV WEST VIRGINIA || 216: WZ Swaziland 
 73: WY WYOMING || 217: ZA Zambia 
 74: YT YUKON TERRITORY || 218: ZI Zimbabwe 
--------------------------------------------------------------------------------------------- 
loc two-character abbreviation for country or territory 
 

 

 The file IndexMonthly.csv is created by code, combining various monthly indices that have been 

accessed separately from online sources and saved into *.csv files.  ENSO indices used in the sample 

code can be copied from these sources: 

 
Website Address  Indices (format: Wide or Long)  from 
(I) www.cpc.ncep.noaa.gov/data/indices/   Niño, ONI (L); SOI, EQSOI (W)  1950’s 
   Niño Weekly (L)  1990’s 
(II) www.esrl.noaa.gov/psd/gcos_wgsp/Timeseries/   Niño, SOI (W)  1870’s 
(III) www.esrl.noaa.gov/psd/data/climateindices/list/  Niño, ONI SOI, TNI, BEST, MEI (W) 1950’s 
(IV) www.esrl.noaa.gov/psd/enso/mei/table.html MEI (W)   1950’s 

 

 The first online resource (I) includes all of the monthly Niño indices and anomalies in one file, 

dating from the 1950’s (ERSST monthly).  Weekly Niño indices and anomalies are also available in 

one file, although only from the 1990’s (OISST weekly).  The ONI is given in a separate file (ERSST 

seasonal) also from the 1950’s.  These indices are given in a “long” format, indicated above as (L), 

where months are stacked in one column.  The SOI and EQSOI are each given in separate files 

from the 1950’s in a “wide” format (W) where each month is in a separate column.  In R code, the 

“wide” format can be converted to “long,” or vice versa, using package ‘tidyr’ functions (i.e. gather() 

and spread()).   

 The second online resource (II) provides a number of climate indices, including each of the Niño 

indices  given separately in “wide” format from 1870, and each anomaly separately also.  The SOI is 

similarly given in “wide” format monthly back to 1866.  The older years may be of limited value for 

comparison against inconsistent weather data.  The third online resource (III) also contains 

numerous climate indices, and is a source for the Trans-Niño Index (TNI) in wide format from the 

1950’s.  The fourth resource (IV) is the direct site for the Multivariate ENSO Index (MEI).   

 

Running Code 

 

 To run one or multiple lines of code, highlight the code and press <ctrl>-r.  To run one line of 

code, alternatively, place the cursor at the line and press <ctrl>-<enter>.  To run a ‘for loop’ 

highlight the entire loop from ‘for’ to the end bracket ‘}’ and press <ctrl>-r.   Comment lines begin 

with ‘#’ and will not run.   

 

Packages 
 
data.table   functions run faster than base R code  
   rbindlist() to combine years of weather data frames from a list 
   setnames() to update column headers 

Meteorology for Actuaries – Part 2  
Climate and the El Niño Southern Oscillation

Casualty Actuarial Society E-Forum, Spring 2018-Volume 2 36



 
 
tidyverse   a set of packages for organizing data 
   package 'readr' to unzip *.gz files  
   package 'dplyr' to calculate statistics 
   package 'ggplot2' to map choropleths 
  package 'tidyr' functions to convert formats between wide and long 
lubridate  functions to calculate number of days in month, leap years, etc.   
 
 

 Tutorials are available online for instruction on utilizing the data.table functions advantageously. 
 
 
Common Errors 
 
 Because the daily data is voluminous, errors encountered running code may involve space and 

memory.  “Error: cannot allocate vector of size _ Mb” may occur if many large data sets are stored 

in the environment.  The command ls() can be used to view current data sets, and rm() can be used 

to remove a data set specified within the parentheses.  To free memory, the computer can be 

completely shut down and restarted without opening programs other than R.  If a ‘for loop’ stops 

prior to completion, the command ls() can be used to identify the latest data set so the code can be 

continued from that point inside the brackets; a shorter loop can then be defined based on the 

remaining years or elements.    

 

5.1 Code 1:  Weather Daily Loop 
 
--------------------------------------------------------------------------------------------- 
Table 4. Code 1 Sample Output.  Weather Daily Loop.  Precipitation, US and Canada.   
 
  StationID date elem VAL MFlag QFlag SFlag Time loc year month monthday VAL_US 
1: CA001010720 19600101 PRCP 0 - - C - CA 1960 1 101 0 
2: CA001010720 19600102 PRCP 25 - - C - CA 1960 1 102 0.098425 
3: CA001010720 19600103 PRCP 0 T - C - CA 1960 1 103 0 
4: CA001010720 19600104 PRCP 41 - - C - CA 1960 1 104 0.161417 
5: CA001010720 19600105 PRCP 257 - - C - CA 1960 1 105 1.011811 
---              
* USW00094967 19601227 PRCP 0 T - 0 - US 1960 12 1227 0 
* USW00094967 19601228 PRCP 0 - - 0 - US 1960 12 1228 0 
* USW00094967 19601229 PRCP 0 T - 0 - US 1960 12 1229 0 
* USW00094967 19601230 PRCP 0 - - 0 - US 1960 12 1230 0 
* USW00094967 19601231 PRCP 5 - - 0 - US 1960 12 1231 0.019685 
--------------------------------------------------------------------------------------------- 
*  column numbers not shown (3982198 – 3982201) 

date  yyyymmdd format 
VAL  record in metric system units according to weather element, given in Table 5  
MFlag  includes notation ‘P’ for blank records assumed zero 
QFlag  (See readme.txt for details) 
SFlag  (See readme.txt for details) 
Time  (See readme.txt for details) 
year  field created from date 
month  field created from date 
monthday field created from date  
VAL_US  conversion of VAL field to US Imperial system units, given in Table 5 
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 Code 1 is a double loop that unzips the massive meteorological data files containing the daily 
station detail of weather element measurements.  Since unzipping requires the most run time, for 
each year unzipped the code loops through weather elements to write out to separate *.csv files by 
element.  Wind data is sparse so a few of the GHNC elements are combined in one output file as 
‘WIND’ as a collective term, not a GHNC element.  The number of *.csv files to be written out 
equals the number of years selected in the outer loop times the number of elements selected.   
 
--------------------------------------------------------------------------------------------- 
Table 5.  Weather elements included in sample code.     
 
FIVE CORE ELEMENTS  
 
 Abbr Element Unit of Measure          Converted (US)  
 PRCP Precipitation tenths of mm             inches 
 SNOW Snowfall mm                       inches 
 SNWD Snow depth mm                       inches 
 TMAX Maximum temperature tenths of degrees C      degrees Fahrenheit 
 TMIN Minimum temperature tenths of degrees C      degrees Fahrenheit 
 
 WIND    elements are coded to include: 
 
 Abbr Element Unit of Measure   US           
 AWND    Average daily wind speed          tenths of meters per second  mph 
 WSF1    Fastest 1-minute wind speed       tenths of meters per second  mph 
 WSF2    Fastest 2-minute wind speed       tenths of meters per second  mph 
 WSF5    Fastest 5-second wind speed       tenths of meters per second  mph 
 WSFG    Peak gust wind speed              tenths of meters per second  mph 
 WSFI    Highest instantaneous wind speed  tenths of meters per second  mph 
 WSFM    Fastest mile wind speed           tenths of meters per second  mph 
--------------------------------------------------------------------------------------------- 

 

 To preserve memory resources, time, and storage, few calculations are made while unzipping.  

Only five columns are added, the location (country/territory) for selection purposes, a few date 

fields (year, month, month-day), and the U.S. measurement conversion.  The sample countries 

selected are United States and Canada, which are manageable with 8GB memory.  Additional 

countries or territories may need to be selected separately to avoid errors from inadequate memory; 

while countries with extremely sparse data may needed to be selected in combination so the code 

will not stop.  Additional weather elements that may be selected are listed in the ‘readme.txt’ file at 

the GHCN-D site. The ‘readme.txt’ file provides descriptions for the fields in the data files 

represented by the data set column names.    

  The MFlag notation ‘P’ in the daily records is quite critical as it represents blank records 

assumed as zero.  This notation applies only to quantity elements like rainfall, and not to continuous 

measures such as temperature.  MFlag also has a notation ‘T’ that R can mistake for a logical 

(True/False) causing the ‘P’ notations to be deleted when writing out to a saved file.  The code 

converts empty cells to dashes which avoids losing data in an unintended format conversion.    

 Code 3 will adjust counts of zero and blank entries based on the MFLAG ‘P’ notation, but the 

notation was not widely used before 1982.  The data requires adjustments for unidentified blanks 

assumed zero prior to 1982, and for the improvement in completion of zero records since 1982.    
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5.2  Code 2: Detailed Station Inventories 
 
--------------------------------------------------------------------------------------------- 
Table 6.  Code 2 Sample Output. Detailed Station Inventories.  Precipitation, US and Canada.   
 
 StationID loc St lat lon elev elem mindate maxdate 
1: CA001010066 CA BC 48.867 -123.3 4 PRCP 19840701 19961129 
2: CA001010235 CA BC 48.4 -123.5 17 PRCP 19710601 19950430 
3: CA001010595 CA BC 48.583 -123.5 85 PRCP 19610208 19801128 
4: CA001010720 CA BC 48.5 -124 351 PRCP 19600101 19710831 
5: CA001010780 CA BC 48.333 -123.6 12 PRCP 19600101 19660430 
---          
56621: USW00094996 US NE 40.695 -96.85 NA PRCP 20020622 20171231 
56622: USW00096404 US AK 62.737 -141.2 NA PRCP 20110926 20171231 
56623: USW00096406 US AK 64.501 -154.1 NA PRCP 20140829 20171231 
56624: USW00096407 US AK 66.562 -159 NA PRCP 20150814 20171231 
56625: USW00096408 US AK 63.452 -150.9 NA PRCP 20150820 20171214 
 
 minyear minmo maxyear maxmo clsdmbeg clsdmend clsdinm clsdbef 
1: 1984 7 1996 11 0 1 1 182 
2: 1971 6 1995 4 0 0 0 151 
3: 1961 2 1980 11 7 2 9 31 
4: 1960 1 1971 8 0 0 0 0 
5: 1960 1 1966 4 0 0 0 0 
---         
56621: 2002 6 2017 12 21 0 21 151 
56622: 2011 9 2017 12 25 0 25 243 
56623: 2014 8 2017 12 28 0 28 212 
56624: 2015 8 2017 12 13 0 13 212 
56625: 2015 8 2017 12 19 17 36 212 
 
 clsdaft clsdfulm bsyrct rcyrct bryrct bsspan rcspan brspan 
1: 31 213 7 6 13 7 6 13 
2: 245 396 8 5 13 20 5 25 
3: 31 62 20 0 20 20 0 20 
4: 122 122 11 0 11 11 0 11 
5: 245 245 6 0 6 6 0 6 
---         
56621: 0 151 0 16 16 0 16 16 
56622: 0 243 0 7 7 0 7 7 
56623: 0 212 0 4 4 0 4 4 
56624: 0 212 0 3 3 0 3 3 
56625: 0 212 0 3 3 0 3 3 

--------------------------------------------------------------------------------------------- 
StationID  Station identification number from GHCN-D.    
loc  two-character country code, the first two digits of the StationID  
St  two-character state or province abbreviation where station is located 
lat  latitude coordinate of station location 
lon  longitude coordinate of station location 
elev  elevation of station location 
elem  weather element 
Open  (not shown) first year of station records from ghcnd-inventory.csv 
Close  (not shown) last year of station records from ghcnd-inventory.csv 
mindate  earliest date of station record, from years selected to summarize 
maxdate  latest date of station record, from years selected to summarize 
minyear  year of mindate 
minmo  month of mindate 
maxyear  year of maxdate 
maxmo  month of maxdate 
clsdmbeg count of days the station was not yet operating at beginning of partial month 
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clsdmend count of days the station was no longer operating at end of partial month 
clsdinm  total days station did not operate in partial months (clsdmbeg + clsdmend) 
clsdbef  count of days in year the station was not yet operating for full months 
clsdaft  count of days in year the station no longer was operating for full months  
clsdfulm count of days in year the station was closed for full months (clsdbef + clsdaft) 
bsyrct  count of years with observations in the selected base period  
rcyrct  count of years with observations in recent years following base period 
bryrct  count of years with observations in base and recent years  
bsspan  span of base years that fall within the mindate and the maxdate 
rcspan  span of years following the base period within the mindate and the maxdate 
brspan  span of base and recent years that fall within the mindate and the maxdate 

 

 

 Code 2 is an intermediate step to conserve memory.  Code 2 reads in the subsets of daily data 

from Code 1 and produces summaries of station inventories separately for each weather element, for 

all stations with at least one record in the years of data selected.  The focus of the summary is to 

calculate the minimum and maximum date of record.  These dates are compared against the station’s 

opening and closing years given in ghcnd-inventory.txt, to arrive at counts of days the station was 

not operating in partial months (also full months), for the month (also the year) the station opened 

or closed.  The summary counts years with records for the selected base years and recent years, and 

also calculates the span of time from the earliest to latest year of record without deducting empty 

data years.  The summary again merges, with data from ghcnd-stations.txt, to list each station’s 

location by coordinates and state.  All years from the daily files are combined into one file for each 

element, so the number of files output is equal to the number of elements selected.  If the ghnc-

station.txt list is incomplete, the two-character state abbreviation can be found in the StationID for 

more recent years; but the elevation and coordinates will be missing from final outputs.   

 

5.3 Code 3:   Initial Year-Month Summaries  

--------------------------------------------------------------------------------------------- 
Table 7.  Code 3 Sample output. Initial Year-Month Summary.  Precipitation, US and Canada.   
 
  StationID loc elem year month VALm VALm_US sumVALsqd_US 
1: CA001010720 CA PRCP 1960 1 3497 13.7677165 20.0084785 
2: CA001010720 CA PRCP 1960 2 4155 16.3582677 29.8169911 
3: CA001010720 CA PRCP 1960 3 3839 15.1141732 24.9078523 
4: CA001010720 CA PRCP 1960 4 3486 13.7244094 16.6643623 
5: CA001010720 CA PRCP 1960 5 2412 9.496063 6.6623473 
---         
9001954: USW00096408 US PRCP 2017 8 800 3.1496063 1.1848844 
9001955: USW00096408 US PRCP 2017 9 623 2.4527559 0.7029729 
9001956: USW00096408 US PRCP 2017 10 895 3.523622 1.6202957 
9001957: USW00096408 US PRCP 2017 11 598 2.3543307 0.6302003 
9001958: USW00096408 US PRCP 2017 12 211 0.8307087 0.1854269 

 
  VALsqm_US zerrec recs zblank zerobs obs daysinmo misclsd 
1: 189.5500186 10 31 0 10 31 31 0 
2: 267.5929227 12 29 0 12 29 29 0 
3: 228.4382324 11 31 0 11 31 31 0 
4: 188.3594147 9 30 0 9 30 30 0 
5: 90.1752124 6 31 0 6 31 31 0 
---         
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9001954: 9.9200198 9 30 0 9 30 31 1 
9001955: 6.0160115 15 30 0 15 30 30 0 
9001956: 12.4159123 15 31 0 15 31 31 0 
9001957: 5.5428731 17 30 0 17 30 30 0 
9001958: 0.6900769 9 14 0 9 14 31 17 

--------------------------------------------------------------------------------------------- 
VALm  monthly sum of daily VAL 
VALm_US  monthly sum of daily VAL_US, VAL converted to U.S. unit of measure. 
sumVALsqd_US sum of squared daily values in U.S. units, to compute daily variances 
VALsqm_US squared monthly values in U.S. units, to computer monthly variances 
zerrec  count of records with zero values (quantities); zero and below (temperature) 
recs  count of all records 
zblank  blank records assumed zero and recorded as zero (for quantity elements) 
zerobs  net (below) zero observations, after subtracting blanks assumed zero 
obs  net observations, after subtracting blanks assumed zero 
daysinmo count of days in calendar month, representing maximum possible records  
misclsd count of days in month with missing records, or days station not open 

 

 Code 3 is an intermediate step to conserve memory.  Code 3 reads in the subsets of daily data 

from Code 1 and summarizes monthly data.  It also provides important counts of records, for use in 

selecting stations with adequately complete data or for identifying areas in need of adjustments.   

 A critical threshold is calculated as variable ‘zerobs’ which for quantities like rainfall counts zero 

values relating to drought.  For temperatures, the critical threshold ‘zerobs’ represents freezing 

temperatures, zero degrees Celsius and below.   

 A critical data adjustment is made to quantity records through a code calculation, deducting blank 

records assumed zero (‘zblank’) from zero records (‘zerrec’) and records (‘recs’) to arrive at the 

adjusted count of observations (‘obs’) and zero observations (‘zerobs’).  This calculation does not 

hold for years before 1982 when the MFlag notation ‘P’ was rarely used to identify blanks assumed 

zeros.   

 No adjustment has been made to the raw daily data records either for blank records assumed 

zero, or to account for the continued improvement in record completion since 1982.  Therefore, the 

GHNC-D data is in need of adjustments for changes in record keeping over time.  No other 

adjustments are made by the example code, besides converting ‘zblank’ record counts from zero to 

blank.   

 A number of adjustments have been made in the monthly summary GHNC-M, available online 

[www.ncdc.noaa.gov/ghcnm] with references on the ‘homogeneity adjustment’ that could be 

considered when analysis necessitates consistency along with the detail of the raw daily data set.   
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5.4  Code 4: Complete Year and Year-Month Summaries 
             Merged with Station Locations and Inventories 
 
--------------------------------------------------------------------------------------------- 
Table 8.  Code 4 Sample output (I).  Complete Year-Month Summary.  Precipitation, US and 
Canada 
  
 StationID loc St lat lon elev mindate maxdate 
1: CA001010720 CA BC 48.5 -124 351 19600101 19710831 
2: CA001010720 CA BC 48.5 -124 351 19600101 19710831 
3: CA001010720 CA BC 48.5 -124 351 19600101 19710831 
4: CA001010720 CA BC 48.5 -124 351 19600101 19710831 
5: CA001010720 CA BC 48.5 -124 351 19600101 19710831 
6: CA001010720 CA BC 48.5 -124 351 19600101 19710831 
 
  elem year month VALm VALm_US sumVALsqd_US VALsqm_US  
1: PRCP 1960 1 3497 13.768 20.008 189.550019  
2: PRCP 1960 2 4155 16.358 29.817 267.592923  
3: PRCP 1960 3 3839 15.114 24.908 228.438232  
4: PRCP 1960 4 3486 13.724 16.664 188.359415  
5: PRCP 1960 5 2412 9.4961 6.6623 90.175212  
6: PRCP 1960 6 535 2.1063 0.7874 4.436496 
 
  zerrec recs zblank zerobs obs daysinmo misinm clsdinm 
1: 10 31 0 10 31 31 0 0 
2: 12 29 0 12 29 29 0 0 
3: 11 31 0 11 31 31 0 0 
4: 9 30 0 9 30 30 0 0 
5: 6 31 0 6 31 31 0 0 
6: 18 30 0 18 30 30 0 0 

--------------------------------------------------------------------------------------------- 
clsdinm  count of days station closed in partial month, sum (clsdmbeg + clsdmend) 
misinm count of missing records in partial month, the difference (misclsd - clsdinm) 
 
--------------------------------------------------------------------------------------------- 
Table 9.  Code 4 Sample output (II).  Complete Year Summary. Precipitation, US and Canada 
 
  StationID loc St lat lon elev mindate maxdate 
1: CA001010720 CA BC 48.5 -124 351 19600101 19710831 
2: CA001010780 CA BC 48.3333 -123.633 12 19600101 19660430 
3: CA001010965 CA BC 48.5667 -123.433 91 19600801 19700630 
4: CA001011500 CA BC 48.9333 -123.75 75 19600101 20171231 
5: CA001011920 CA BC 48.5333 -123.367 37 19600101 19700331 
6: CA001012010 CA BC 48.7167 -123.55 1 19600101 20010311 
 
  elem year VALy VALy_US sumVALsqd_US sumVALsqm_US VALsqy_US 
1: PRCP 1960 33091 130.27953 198.905868 1892.87716 16972.7553 
2: PRCP 1960 9473 37.29528 24.867707 170.58961 1390.9376 
3: PRCP 1960 3842 15.12598 8.665075 63.39429 228.7954 
4: PRCP 1960 11755 46.27953 39.69544 259.06651 2141.7947 
5: PRCP 1960 7778 30.62205 16.595573 107.77906 937.7098 
6: PRCP 1960 9984 39.30709 29.90204 184.49805 1545.0471 
 
  zerrec recs zblank zerobs obs daysum daysinyr monthct 
1: 167 366 0 167 366 366 366 12 
2: 208 366 0 208 366 366 366 12 
3: 82 148 0 82 148 153 366 5 
4: 210 366 0 210 366 366 366 12 
5: 223 364 0 223 364 366 366 12 
6: 208 366 0 208 366 366 366 12 
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  clsdinm clsdfulm clsdall misinm misfulm misall 
1: 0 0 0 0 0 0 
2: 0 0 0 0 0 0 
3: 0 213 213 5 0 5 
4: 0 0 0 0 0 0 
5: 0 0 0 2 0 2 
6: 0 0 0 0 0 0 

 
  bsyrct rcyrct bryrct bsspan rcspan brspan 
1: 11 0 11 11 0 11 
2: 6 0 6 6 0 6 
3: 10 0 10 10 0 10 
4: 17 27 44 30 27 57 
5: 10 0 10 10 0 10 
6: 28 11 39 30 11 41 

 

 Code 4 combines the output of Code 2 and 3, the detailed station inventory and the initial year-

month summary.  The code produces a year-month summary with station detail and similarly a 

detailed yearly summary.  The year-month summary gains a more complete record count from the 

station detail; a month where records are missing or stations are not operating is merged to match 

the partial month of the data summary.  The days in a month the station is not open are 

distinguished from the days the station is open but records are missing.  The yearly summary further 

includes day counts for full months in the year where all records are missing or the station is closed.      

 
5.5 Code 5:    Missing Records by Year 
 
--------------------------------------------------------------------------------------------- 
Table 10.  Code 5 Sample Output.  Missing Records by Year.  All sample weather elements, US 
and Canada.    

        
  loc elem year zerrec recs zblank zerobs obs 
1: US AWND 1982 0 243 0 0 243 
2: US AWND 1984 63 102531 0 63 102531 
3: US AWND 1985 111 101691 0 111 101691 
4: US AWND 1986 57 104826 0 57 104826 
5: US AWND 1987 46 116725 0 46 116725 
---         
881: CA WSFG 1969 0 364 0 0 364 
882: CA WSFG 1970 0 136 0 0 136 
883: CA WSFG 2015 70208 175879 0 70208 175879 
884: CA WSFG 2016 95246 235934 0 95246 235934 
885: CA WSFG 2017 74654 196613 0 74654 196613 
 
  stndays stndysinyr stnmos clsdinm clsdfulm clsdall misinm misfulm misall stnct 
1: 243 365 8 0 0 0 0 122 122 1 
2: 102968 105042 3376 16 640 656 421 1434 1855 287 
3: 102074 102930 3356 17 92 109 366 764 1130 282 
4: 105445 119355 3467 7 11421 11428 612 2489 3101 327 
5: 117619 118260 3867 1 579 580 893 62 955 324 
---           
881: 365 365 12 0 0 0 1 0 1 1 
882: 151 365 5 7 214 221 8 0 8 1 
883: 180861 247470 5919 536 64712 65248 4446 1897 6343 678 
884: 240462 247416 7884 379 3968 4347 4149 2986 7135 676 
885: 200453 239075 6597 779 36251 37030 3061 2371 5432 655 
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 stndays stndysinyr stnmos clsdinm clsdfulm clsdall misinm misfulm misall  
1: 243 365 8 0 0 0 0 122 122 
2: 102968 105042 3376 16 640 656 421 1434 1855 
3: 102074 102930 3356 17 92 109 366 764 1130 
4: 105445 119355 3467 7 11421 11428 612 2489 3101 
5: 117619 118260 3867 1 579 580 893 62 955 
---          
881: 365 365 12 0 0 0 1 0 1 
882: 151 365 5 7 214 221 8 0 8 
883: 180861 247470 5919 536 64712 65248 4446 1897 6343 
884: 240462 247416 7884 379 3968 4347 4149 2986 7135 
885: 200453 239075 6597 779 36251 37030 3061 2371 5432 
 
  stnct pctobsyr pctmisyr pctclsdyr pctzblkyr pctzeroyr pctzerobs 
1: 1 0.665753 0.334247 0 0 0 0 
2: 287 0.976095 0.01766 0.006245 0 0.0006 0.000614 
3: 282 0.987963 0.010978 0.001059 0 0.001078 0.001092 
4: 327 0.878271 0.025981 0.095748 0 0.000478 0.000544 
5: 324 0.98702 0.008075 0.004904 0 0.000389 0.000394 
---        
881: 1 0.99726 0.00274 0 0 0 0 
882: 1 0.372603 0.021918 0.605479 0 0 0 
883: 678 0.710708 0.025631 0.26366 0 0.283703 0.399184 
884: 676 0.953592 0.028838 0.01757 0 0.384963 0.403698 
885: 655 0.822391 0.022721 0.154889 0 0.312262 0.3797 

--------------------------------------------------------------------------------------------- 
 
 
 

5.6 Code 6:      Multiple Month Indices 
                                       
--------------------------------------------------------------------------------------------- 
Table 11.  Code 6 Sample output.  Multiple month indices (Bimonthly).  Precipitation, US and 
Canada.  
         
  StationID loc St lat lon elev mindate maxdate elem 
1: CA001010066 CA BC 48.8667 -123.283 4 19840701 19961129 PRCP 
2: CA001010066 CA BC 48.8667 -123.283 4 19840701 19961129 PRCP 
3: CA001010066 CA BC 48.8667 -123.283 4 19840701 19961129 PRCP 
4: CA001010066 CA BC 48.8667 -123.283 4 19840701 19961129 PRCP 
5: CA001010066 CA BC 48.8667 -123.283 4 19840701 19961129 PRCP 
---          
9184276: USW00096406 US AK 64.5014 -154.13 NA 20140829 20171231 PRCP 
9184277: USW00096407 US AK 66.562 -159.004 NA 20150814 20171231 PRCP 
9184278: USW00096407 US AK 66.562 -159.004 NA 20150814 20171231 PRCP 
9184279: USW00096408 US AK 63.4519 -150.875 NA 20150820 20171214 PRCP 
9184280: USW00096408 US AK 63.4519 -150.875 NA 20150820 20171214 PRCP 
 
  year ord bimo MEI VAL2m VAL2m_US sumVALsqd_US sumVALsqm_US 
1: 1985 1 JanFeb -0.595 60 0.2362 0.042904086 5.58E-02 
2: 1986 1 JanFeb -0.195 2822 11.11 9.504433009 6.45E+01 
3: 1987 1 JanFeb 1.205 1332 5.2441 1.477462955 1.57E+01 
4: 1988 1 JanFeb 0.706 870 3.4252 1.73507347 8.60E+00 
5: 1989 1 JanFeb -1.262 1254 4.937 1.710893422 1.40E+01 
---         
9184276: 2016 12 DecJan 2.227 5 0.0197 0.000387501 3.88E-04 
9184277: 2015 12 DecJan 0.42 33 0.1299 0.008137516 1.69E-02 
9184278: 2016 12 DecJan 2.227 111 0.437 0.034425569 9.56E-02 
9184279: 2015 12 DecJan 0.42 0 0 0 0.00E+00 
9184280: 2016 12 DecJan 2.227 470 1.8504 0.351695703 1.72E+00 
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  zerrec recs zblank zerobs obs daysum misinm clsdinm monthct 
1: 23 25 0 23 25 31 6 0 1 
2: 27 58 0 27 58 59 1 0 2 
3: 25 55 0 25 55 59 4 0 2 
4: 36 51 0 36 51 60 9 0 2 
5: 24 49 0 24 49 59 10 0 2 
---          
9184276: 0 1 0 0 1 31 30 0 1 
9184277: 19 23 0 19 23 62 39 0 2 
9184278: 16 24 0 16 24 62 38 0 2 
9184279: 1 1 0 1 1 31 30 0 1 
9184280: 39 60 0 39 60 62 2 0 2 

 
--------------------------------------------------------------------------------------------- 
ord sorting order for multiple month time period based on first month of period   
bimo  bimonthly time period for MEI (JanFeb, FebMar, …, NovDec)  
trimo (not shown) trimonthly time period for ONI (JFM, FMA, …, DJF) 
MEI bimonthly Multi-Variate ENSO Index   
ONI (not shown) trimonthly Ocean Niño Index 
misinm sum of missing records for combined months of bimo or trimo period 
clsdinm sum of days station closed for combined months of bimo or trimo period 
monthct count of months with records for bimo or trimo period 
 

  
 Some ENSO indices are based on multiple months of data.  Bimonthly sums are merged with the 

Multivariate ENSO Index (MEI) and trimonthly sums are merged with the Oceanic Niño Index 

(ONI).  A count of months is made to indicate at least one record was present in each month.  The 

detail of observations by month can be viewed in the year-month summary.  Stations may be 

selected having observations near to 60 (bimonthly) or 90 (trimonthly) or a minimum monthly 

observation can be established utilizing the year-month summary for station selection. 

 
 

5.7  Code 7:   Weekly Niño Indices 
 
--------------------------------------------------------------------------------------------- 
Table 12.  Code 7 Sample output.  Weekly Niño indices.  Precipitation, US and Canada. 
 
  StationID loc elem St lat lon elev weekno yrgrp ctrweek 
1: CA001010066 CA PRCP BC 48.8667 -123.283 4 1566 1991 1/2/1991 
2: CA001010960 CA PRCP BC 48.6 -123.467 38 1566 1991 1/2/1991 
3: CA001011467 CA PRCP BC 48.5833 -123.417 53 1566 1991 1/2/1991 
4: CA0010114F6 CA PRCP BC 48.5667 -123.4 38 1566 1991 1/2/1991 
5: CA001011743 CA PRCP BC 48.6833 -123.6 99 1566 1991 1/2/1991 
---           
544315: USW00094911 US PRCP SD 42.8783 -97.3633 NA 1617 1991 12/25/1991 
544316: USW00094918 US PRCP NE 41.3536 -96.0233 NA 1617 1991 12/25/1991 
544317: USW00094931 US PRCP MN 47.3864 -92.8389 NA 1617 1991 12/25/1991 
544318: USW00094957 US PRCP NE 40.0803 -95.5919 NA 1617 1991 12/25/1991 
544319: USW00094967 US PRCP MN 46.9006 -95.0678 NA 1617 1991 12/25/1991 

 
  VALw VALw_US sumVALsqd_US VALsqw_US zerrec recs zblank zerobs obs misclsd 
1: 0 0 0 0 6 6 0 6 6 8 
2: 85 0.3346457 0.04738359 0.07168764 4 7 0 4 7 7 
3: 140 0.5511811 0.13751628 0.2015004 4 7 0 4 7 7 
4: 96 0.3779528 0.06782814 0.08642817 4 7 0 4 7 7 
5: 54 0.2125984 0.02287805 0.02287805 4 6 0 4 6 8 
---           
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544315: 0 0 0 0 7 7 7 0 0 7 
544316: 145 0.5708661 0.31268213 0.32588815 5 7 0 5 7 0 
544317: 0 0 0 0 7 7 0 7 7 0 
544318: 117 0.4606299 0.2015779 0.21217992 5 7 0 5 7 0 
544319: 0 0 0 0 7 7 0 7 7 0 

 
  Nino12Ind Nino12Anom Nino3Ind Nino3Anom Nino34Ind Nino34Anom Nino4Ind Nino4Anom 
1: 23.2 0.5 25.3 0.1 26.9 0.4 28.9 0.5 
2: 23.2 0.5 25.3 0.1 26.9 0.4 28.9 0.5 
3: 23.2 0.5 25.3 0.1 26.9 0.4 28.9 0.5 
4: 23.2 0.5 25.3 0.1 26.9 0.4 28.9 0.5 
5: 23.2 0.5 25.3 0.1 26.9 0.4 28.9 0.5 
---         
544315: 23.6 0.3 26.7 1.4 28.5 1.9 29.6 1.2 
544316: 23.6 0.3 26.7 1.4 28.5 1.9 29.6 1.2 
544317: 23.6 0.3 26.7 1.4 28.5 1.9 29.6 1.2 
544318: 23.6 0.3 26.7 1.4 28.5 1.9 29.6 1.2 
544319: 23.6 0.3 26.7 1.4 28.5 1.9 29.6 1.2 

--------------------------------------------------------------------------------------------- 
VALw  weekly sum of daily VAL  
VALw_US weekly sum of VAL_US, VAL converted to U.S. unit of measure. 
sumVALsqd_US weekly sum of squared daily values in U.S. units, to compute daily variances 
  

 
 Niño indices are available monthly at least since 1950, and weekly since 1990.  The weekly indices 

give more specific information about the ENSO phase that might be relevant to the timing of losses.  

The code produces weekly summaries by element according to the weekly groupings of the Niño 

indices, which begin on 12/31/1989 and are always seven days in length.  The result of these 

divisions will be the same beginning on 1/1/1961.  As these weeks will shift through years, they will 

not provide comparison periods year by year.  An alternative numbering scheme is provided at the 

end of the code labels an eight day week at the end of each year and an eight day week with every 

leap day.  The eighth days weeks can be excluded from assignment if desired.  This alternative 

provides a comparative basis among years but does not match the weekly Niño indices time periods 

so the index values might be interpolated.  The code counts the number of observations by week so 

that the level of completeness can be determined and used in station selection.   

 
--------------------------------------------------------------------------------------------- 

Table 13.  Weekly Niño numbering scheme (Table 13-A, left) with seven days per week, and 
alternative scheme for comparisons among years (Table 13-B, right) with eight day weeks at the 
end of each year and with each leap day. 

       
   weekno date ctrweek yrgrp || weekno mdchar ctrweek 
 1  1 19610101 1961-01-04 1961 || 1 1 101 1961-01-04 
 2  1 19610102 1961-01-04 1961 || 2 1 102 1961-01-04 
 3  1 19610103 1961-01-04 1961 || 3 1 103 1961-01-04 
 4  1 19610104 1961-01-04 1961 || 4 1 104 1961-01-04 
 5  1 19610105 1961-01-04 1961 || 5 1 105 1961-01-04 
 6  1 19610106 1961-01-04 1961 || 6 1 106 1961-01-04 
 7  1 19610107 1961-01-04 1961 || 7 1 107 1961-01-04 
 8  2 19610108 1961-01-11 1961 || 8 2 108 1961-01-11 
 9  2 19610109 1961-01-11 1961 || 9 2 109 1961-01-11 
 1 0 2 19610110 1961-01-11 1961 || 10 2 110 1961-01-11 
 11 2 19610111 1961-01-11 1961 || 11 2 111 1961-01-11 
 12 2 19610112 1961-01-11 1961 || 12 2 112 1961-01-11 

--------------------------------------------------------------------------------------------- 
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 weekno (A) each week is given its own number; (B) weeks 1 – 52 each year 
 date (A) always 7 days in week, field to merge with element or loss records 
 ctrweek weeks are identified by central day of the week.  (A) matches Niño indices. 
 yrgrp indicates output *.csv file particularly for weeks overlapping two years 

mdchar (B) month-day will correspond to the same week number in every year.   
 
 

5.8  Code 8  State Summaries 
 Visual Analysis with Choropleth Maps 
 
--------------------------------------------------------------------------------------------- 
Table 14. Code 8 sample of summary by state, with anomalies to be plotted on choropleth maps. 
Precipitation, US by state. 
 
 loc St elem year VALy VALy_US obs stnct VALsqSt_US 
1: US AL PRCP 1960 487419 1918.9724 14162 39 3682455.2 
2: US AZ PRCP 1960 159360 627.4016 21350 60 393632.7 
3: US AR PRCP 1960 796665 3136.4764 24788 70 9837484.1 
4: US CA PRCP 1960 1083230 4264.685 75153 208 18187538.5 
5: US CO PRCP 1960 246999 972.437 26517 74 945633.7 
6: US CT PRCP 2016 74192 292.0945 2921 8 85319.19 

 
 bsstnobs bsstnyrs bsmean bsstdev rm.na anom  
1: 396676 1200 2239.84 319.3026 TRUE -1.0049014  
2: 544398 1800 1050.5949 1052.0216 TRUE -0.4022668  
3: 691713 2130 3467.5654 556.574 TRUE -0.5948697  
4: 1874258 6270 4607.6652 1421.5972 TRUE -0.241264  
5: 722090 2280 1122.9764 165.4945 TRUE -0.9096334  
6: 79998 240 366.5045 61.08135 TRUE -1.2182111 
  
      Name STDEVgrp colreg 
1: alabama neg1.5 wheat2 
2: arizona neg0.5 lightyellow1 
3: arkansas neg0.5 lightyellow1 
4: california pos0.50 lightcyan1 
5: colorado neg0.5 lightyellow1 
6: connecticut neg1.5 wheat2 

--------------------------------------------------------------------------------------------- 

 

 Code 8 summarizes by state, greatly reducing the data set size, and from the state data creates 

choropleth maps – maps that color code a region according to a selected data field.  Two different 

packages are used to create choropleth maps, maps that color code a selected data field by region.  

The packages are ‘maps’ and ‘ggplot2.’  In this case the regions are states, and the example data field 

is the anomalous rainfall in the year mapped as compared against the base climate period.  

Choropleths of anomalies centered at zero are not as immediately plotted in R because the 

choropleth packages are primarily designed for positive values such as census data.   

 Package ‘maps’ does not plot Alaska or Hawaii with the mainland United States, but the code is 

simple and straightforward to use for creating a choropleth, and individual states can still be plotted 

separately.  The example choropleth will be created ‘from scratch,’ meaning a column of colors will 

be defined in the data set corresponding to the anomaly for each state.  In this case, the positive 

anomalies will be assigned deepening shades of blue to indicate more rainfall at a glance, while the 

negative anomalies will be assigned deepening shades of tan and brown to indicate dryness.  Points 
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are easily plotted on the choropleth to show the location of each station selected for the data 

underlying the choropleth.  

 Package ‘ggplot2’ has an advantage over ‘maps’ in its compatibility with the package ‘fiftystater’ 

which plots insets for Alaska and Hawaii.  This package also allows a midpoint to be defined at zero, 

and will either assign automatic base colors or else will assign grades of colors based on selections 

made for the low, midpoint, and high values.  Selecting a midpoint color with contrast to the low 

and high value colors will produce a choropleth that is easily interpreted.   

 To avoid plot errors and formatting glitches, be sure to expand the plot region large enough for 

map to fit, and for the legend to fit to the side of the map. 

 The code uses package ‘dplyr’ to produce statistics for the base climate period, but also provides 

the formulas for calculating anomalies directly.  Note that if the package ‘plyr’ is loaded in R, then 

‘dplyr’ will not complete the calculations unless ‘plyr’ is detached.   

 

--------------------------------------------------------------------------------------------- 
Table 15.  Code 8 sample calculation of base year statistics, mean and standard deviation. 
Precipitation, US by state. 
 
 loc St elem bsstnobs bsstnyrs bsmean bsstdev rm.na 
 <chr> <chr> <chr> <int> <dbl> <dbl> <dbl> <lgl> 
1 US AK PRCP 348076 990 1354.76 118.8982 TRUE 
2 US AL PRCP 396676 1200 2239.84 319.3026 TRUE 
3 US AR PRCP 691713 2130 3467.565 556.574 TRUE 
4 US AZ PRCP 544398 1800 1050.595 1052.0216 TRUE 
5 US CA PRCP 1874258 6270 4607.665 1421.5972 TRUE 
6 US CO PRCP 722090 2280 1122.976 165.4945 TRUE 
--------------------------------------------------------------------------------------------- 
 

 
 

5.9   Code  9   Combine Monthly Indices  
 
--------------------------------------------------------------------------------------------- 
Table 16.  Code 9 Sample Output. Monthly ENSO indices combined into a single file 
‘IndexMonthly.csv’ with all indices converted to ‘long’ format.   
 

   year month Nino12 Anom12 Nino3 Anom3 Nino4 Anom4 Nino34 Anom34   SOI EQSOI  BEST    TNI 

  <int> <int>  <dbl>  <dbl> <dbl> <dbl> <dbl> <dbl>  <dbl>  <dbl> <dbl> <dbl> <dbl>  <dbl> 

1  1951     1  24.11  -0.44 24.79 -0.87 27.21 -1.02  25.24  -1.31   2.5   0.1 -1.13  1.315 
2  1951     2  25.19  -0.83 25.65 -0.76 27.09 -1.01  25.71  -1.03  -1.5  -1.4  0.64  0.168 

3  1951     3  25.74  -0.68 26.87 -0.28 27.74 -0.47  26.90  -0.33   0.5  -0.2  0.18 -0.027 

4  1951     4  25.29  -0.18 27.37 -0.11 28.21 -0.24  27.58  -0.13   1.1   0.2  0.00 -0.655 

5  1951     5  24.59   0.33 27.07 -0.09 29.18  0.43  27.92   0.11  -0.9  -0.2 -0.01  0.316 
--------------------------------------------------------------------------------------------- 

 
 This interim code combines various ENSO index files into one, for convenience, utilizing a 

common “long” format.  The Niño indices are promulgated in the “long” format while other indices 

are available formatted “wide.”  For ENSO indices, the “long” format includes two separate 

columns for year and month, and one column per index; while the “wide” format includes separate 

columns for each month of the year.  It is most practical to utilize the “long” format for all indices, 

in order to merge data by year and month, and to label each index as a column header.   
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5.10 Code 10 Plot ENSO Index Time Series 
 
--------------------------------------------------------------------------------------------- 
Table 17. Sample output of Multivariate ENSO Index (MEI) for plotting time series.   
 
 bimo Year MEI posM month 
273 JanFeb 1950 -1.163 FALSE 1 
205 FebMar 1950 -1.312 FALSE 2 
477 MarApr 1950 -1.098 FALSE 3 
1 AprMay 1950 -1.445 FALSE 4 
545 MayJun 1950 -1.376 FALSE 5 
 

--------------------------------------------------------------------------------------------- 
 

 

 This code produces time series bar plots of indices from MEI, ONI, and the monthly indices 

previously combined into one dataset by Code 9.  The column “positive” is added to discern index 

values above and below the x-axis, corresponding to positive and negative ENSO phases color 

coded in the bar graph.  The plots are formatted for anomalies and could be modified to present 

SST measures  

 For the monthly ENSO indices, a vector “IndexName” is defined by the column headings for 

the index values.  The ENSO index to be plotted is selected by its number position in the vector.  

The code replaces the column heading with “PlotIndex” which locates the data to plot.  After 

plotting the column heading is returned to the original ENSO index title.  If errors are encountered, 

reset the column headers to the original headers.   

 
--------------------------------------------------------------------------------------------------------------------------- 
Table 18.  Column headings for data set ‘indices’ given by names(indices), before 
selecting the index (top) and after, where SelIndex <- 4 (bottom).  
 
 [1] "year" "month" "Nino12" "Anom12" "Nino3" "Anom3" "Nino4"  
 [8] "Anom4" "Nino34" "Anom34" "SOI" "EQSOI" "BEST" "TNI" 
 
[1] "year" "month" "Nino12" "Anom12" "Nino3" "PlotIndex" "Nino4"     
 [8] "Anom4" "Nino34" "Anom34" "SOI" "EQSOI" "BEST" "TNI"       

--------------------------------------------------------------------------------------------------------------------------- 
 

 
 
5.11  Code 11     Plot Element vs. Index by State 
 
--------------------------------------------------------------------------------------------- 
Table 19.  Sample output of monthly data summarized by state/territory with corresponding 
monthly ENSO indices.  Precipitation, US and Canada. 
 
 St loc elem year month pre82 VALm VALm_US 
1: BC CA PRCP 1960 1 Y 40321 158.74409 
2: BC CA PRCP 1960 2 Y 32910 129.56693 
3: BC CA PRCP 1960 3 Y 30385 119.62598 
4: BC CA PRCP 1960 4 Y 27480 108.18898 
5: BC CA PRCP 1960 5 Y 26997 106.2874 
6: BC CA PRCP 1960 6 Y 11381 44.80709 
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 sumVALsqd_US VALsqm_US zerrec recs zblank zerobs obs daysinmo 
1: 192.12355 1613.4087 429 863 0 429 863 868 
2: 142.06836 1054.816 467 806 0 467 806 812 
3: 86.56722 882.4508 452 849 0 452 849 868 
4: 79.6731 826.5286 488 856 0 488 856 870 
5: 61.02212 601.5856 404 875 0 404 875 899 
6: 15.57885 109.3986 570 838 0 570 838 840 

 
 misinm clsdinm stns avgVALm_US Nino12 Anom12 Nino3 Anom3 
1: 5 0 28 0.18394449 24.23 -0.31 25.31 -0.35 
2: 6 0 28 0.16075301 25.68 -0.34 25.93 -0.47 
3: 19 0 28 0.14090222 26.24 -0.18 26.87 -0.29 
4: 8 6 29 0.12638899 24.43 -1.04 27.15 -0.33 
5: 24 0 29 0.12147132 23.33 -0.94 26.71 -0.45 
6: 2 0 28 0.05346908 21.71 -1.3 25.86 -0.64 

 
 Nino4 Anom4 Nino34 Anom34 SOI EQSOI BEST TNI 
1: 27.62 -0.62 26.27 -0.29 -1.5 -1.1 1.51 -0.945 
2: 27.44 -0.65 26.29 -0.45 -1.2 -0.7 0.74 -0.668 
3: 27.75 -0.45 26.98 -0.25 0.4 0.4 -0.07 -1.399 
4: 28.01 -0.44 27.49 -0.22 -0.2 -0.1 0.7 -1.911 
5: 28.42 -0.33 27.68 -0.13 0.4 0.7 -0.39 -0.373 
6: 28.33 -0.46 27.24 -0.35 2.9 0.3 -0.75 -1.149 

--------------------------------------------------------------------------------------------- 
 

 
 Code 11 summarizes by state, greatly reducing the data size.  This code is intended to be highly 

customizable.  The example given is a simplified illustration.  Yearly data is used to select stations 

with records in all 57 base and recent years, which adds consistency to the location of observations 

across time so that comparisons of yearly results are meaningful.  The detailed station inventories 

could be used to make this type of selection, but reading yearly data has the advantage including 

counts of observations by which to further refine selections.  Alternatively, the year-month summary 

could be used to set a minimum level of completeness for selected months based on monthly 

observation counts.  Many other criteria can be introduced.  As the weather element data will be 

summarized from a station level to a state level, it is important to consider the stations represented 

by the selections.  Strict selections may result in overly sparse records by state or sparseness in 

relevant regions.    

 The data to read in will be monthly, bimonthly or trimonthly, depending on the index selection.  

The MEI is bimonthly and ONI is trimonthly.  The vector “IndexName” is defined by the column 

headings for index values, the same as in Code 10.  A loop is coded so that all of the indices can be 

plotted at once; or the loop can be commented out.  If errors are encountered, remember to reset 

the column headers to the original headers.     

 The code identifies years prior to 1982 versus years from 1982 on, and base climate period years 

versus subsequent years.  The data is summed preserving the 1982 split but could be modified to 

retain the base period, or another split specified by a code modification.  Outliers labeled to identify 

the year of each point, can be revised at the left and right limits, according to the overall spread of 

the plot.  Some graph labels are also automated and may need to be refined.        

 For the example, no adjustment is made for the change in proportion of blank records assumed 

zero (‘zblank’) which has been drastic especially since 1982.  The plot is color-coded to show points 

before and after 1982.  Erroneous zero entries will be overstated prior to 1982, so that adjustments 
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for unidentified blanks assumed zero would shift points upward.  The adjustment should affect the 

final relationship displayed between the weather element and the ENSO index.  The effort to 

improve completion of records since 1982 will also cause zero records to increase since 1982, over 

which time zero entries have been somewhat understated. 

 
 
5.12  Code 12   Map of ENSO Index Regions 
 
 This code creates a map of the ENSO Index regions.  Details on mapping are covered in Part I.   

 
5.13 Code 13 Costliest Storms 
 
 The data on costliest storms was copied from Wikipedia in January 2018.  The table below can be 

copied into excel and saved as a *.csv file ‘CostlyStorms.csv’ in the base directory as input to this 

code.  The Wikipedia data is updated regularly, and if the input file is updated then the formatting of 

the bar graph will require updates to the code.  Some storm dates are provide which can be used for 

comparison against ENSO indices.    

 

Table 20.  List of Costliest Atlantic Hurricanes.  Storms exceeding U.S.  $1 Billion, in descending order.  

Storms that broke the historical record for damages, at the time of the storm’s dissipation, are highlighted, 

showing that the costliest storms have move up the list in large strides that may appear uncharacteristic of 

inflation or randomness by damages on an unadjusted actual cost level.  This table is intended for input to R. 

[ Source : Wikipedia ] 

  
  Peak Classification  Unadjusted   (> $1B)   
 Storm Hurricane Category Damages   Storm # Begin End 
 Name (0 = Tropical Storm) in U.S. $Billions Year  of Year Date Date  

 Katrina 5 125 2005 3 823 831 

 Harvey 4 125 2017 1 817 903 

 Maria 5 92 2017 3 916 1003 
 Sandy 3 68.7 2012 2 1022 1102 
 Irma 5 64.2 2017 2 830 916 
 Ike 4 38 2008 3 901 915 
 Wilma 5 27.4 2005 6 1016 1027 

 Andrew 5 27.3 1992 1 816 828 

 Ivan 5 26.1 2004 3 902 924 
 Rita 5 18.5 2005 4 918 926 
 Charley 4 16.9 2004 1 809 815 
 Matthew 5 15.1 2016 1 928 1010 
 Irene 3 14.2 2011 1 821 830 
 Frances 4 9.8 2004 2 824 910 

 Hugo 5 9.47 1989 1 910 925 

 Georges 4 9.37 1998 2 915 1001 
 Allison 0 8.5 2001 1 604 620 
 Gustav 4 8.31 2008 2 825 907 
 Jeanne 3 7.94 2004 4 913 929 
 Floyd 4 6.5 1999 1 907 919 
 Mitch 5 6.08 1998 3 1022 1109 
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 Isabel 5 5.5 2003 1 906 920 
 Fran 3 5 1996 1 823 910 
 Opal 4 4.7 1995 3 927 1006 
 Stan 1 3.96 2005 5 1001 1005 
 Karl 3 3.9 2010 2 914 918 
 Dennis 4 3.71 2005 1 704 718 

 Alicia 3 3 1983 1 815 821 

 Gilbert 5 2.98 1988 1 908 929 
 Luis 4 2.97 1995 1 828 912 
 Lee 0 2.8 2011 2 902 907 
 Isaac 1 2.8 2012 1 821 903 
 Michelle 4 2.35 2001 2 1029 1106 

 Agnes 1 2.1 1972 1 614 623 

 Marilyn 3 2.1 1995 2 912 930 
 Dean 5 1.95 2007 1   
 Alex 2 1.89 2010 1   
 Joan 4 1.87 1988 2   
 Fifi 2 1.8 1974 1   
 Frederic 4 1.71 1979 2   
 Dolly 2 1.6 2008 1   
 Allen 5 1.57 1980 1   
 David 5 1.54 1979 1   
 Bob 3 1.51 1991 1   
 Juan 1 1.5 1985 2   
 Roxanne 3 1.5 1995 4   
 Ingrid 1 1.5 2013 1   

 Betsy 4 1.43 1965 1   

 Camille 5 1.42 1969 1   
 Elena 3 1.3 1985 1   
 Isidore 3 1.28 2002 1   
 Lili 4 1.16 2002 2   
 Alberto 0 1.03 1994 1   
 Emily 5 1.01 2005 2   
 Beulah 5 1 1967 1   
 Bonnie 3 1 1998 1   
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Code 
 
 
# =================================================== # 
# ================= CODE CONTENTS =================== # 
# =================================================== # 
 
# 5.0     Set up in R      
# 5.1   Code 1   Weather Daily - Loop to Unzip Year by Year 
# 5.2   Code 2   Initial Detailed Station Inventories 
# 5.3   Code 3   Initial Year-Month Summaries 
# 5.4   Code 4   Complete Yearly and Year-Month Summaries 
#                   Merged with Station Locations and Inventories 
# 5.5   Code 5   Missing Records by Year 
# 5.6   Code 6   Multiple Month Indices (MEI and ONI) 
# 5.7   Code 7   Weekly Nino Indices 
# 5.8   Code 8   State Summaries / Plot Selected Stations 
#                  Visual Analysis with Choropleth Maps 
#                     5.8.1 Package 'maps' - 48 mainland states 
#                     5.8.2 Packages 'ggplot2' and 'fiftystater' - AK & HI insets 
# 5.9   Code 9   Combine Monthly Indices 
# 5.10  Code 10    Plot Index Time Series 
# 5.11  Code 11   Plot Element vs. Index by State 
# 5.12  Code 12   Map of ENSO Index Regions 
# 5.13  Code 13 Costliest Storms 
 
 
# Station/Element level:  1 (daily), 2, 3 (yr-mo), 4 (yr-mo & yr), 6 (2 mo & 3 mo), 7 (weekly) 
# Country/Element level:  5 
# State/Element level:    8, 10 
# 
# 1. Loop to unzip daily meteorological data year by year.  Long run time.   
# 2. Open daily files to detail station inventories, dates open/closed, missing records.  
# 3. Open daily files to summarize by year-month. 
# 4. Merge station detail into year-month summary; summarize by year  
# 5. Yearly summary of total and average counts of missing records, blanks assumed zero,  
#  observations, etc.  
# 6. Summarize monthly data into two- and three-month periods for comparison to MEI and ONI.    
# 7. Open daily files to summarize by seven day periods matching weekly Nino indices. 
# 8. Customizable station selections, summarize by state, plot stations and choropleth  
# 9. Convert wide formats to long; combine monthly ENSO indices into one .csv file for  
#  convenience. 
#  
# ENSO Indices - bimonthly (MEI), trimonthly (ONI), monthly (Nino, SOI, EQSOI, TNI, BEST),  
# and weekly (Nino) 
 
# Daily GHCNDex data - download files by year into a folder specified as the working directory 
# ftp://ftp.ncdc.noaa.gov/pub/data/ghcn/daily/ 
# ftp://ftp.ncdc.noaa.gov/pub/data/ghcn/daily/by_year/ 
 
# =================================================== # 
# ================= SET UP IN R ===================== # 
# =================================================== # 
 
 
######################################## 
#             BEGIN SETUP              #               
######################################## 
 
# Set Default Working Directory (Optional) 
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setwd("C:/…/Weather") 
getwd() 
 
# Remove list to free memory 
rm(list=ls()) 
ls() 
 
# Set directories for downloaded zipped files, base input files, and written output  
dirzip <- "C:/…/WeatherZip" 
dirbase <- "C:/…/WeatherBase" 
diroutput <- "C:/…/WeatherData" 
 
# Load packages data.table, tidyverse, lubridate 
library(data.table)   # data.table functions run faster than base R code.  
# rbindlist() combines years of weather dataframes in list;  
# setnames() updates column headers 
library(tidyverse)    # a set of packages for organizing data; package 'readr' to unzip. 
library(lubridate)    # days_in_month() gives expected number of records 
 
 
#................. FUNCTION REPEAT ROWS ...............  
rep.row <- function(x,n){ 
  matrix(rep(x,each=n),nrow=n) 
} 
#...................................................... 
 
 
Elements <- c('PRCP', 'SNOW', 'SNWD', 'TMAX', 'TMIN', 'WIND') 
 
#----------------- FIVE CORE ELEMENTS ---------------------------------------- 
# 
# SelElem Element            Unit of Measure        Converted (US) 
# 
# PRCP Precipitation        tenths of mm           inches 
# SNOW Snowfall            mm                     inches 
# SNWD Snow depth          mm                     inches 
# TMAX Maximum temperature  tenths of degrees C    degrees Fahrenheit 
# TMIN Minimum temperature  tenths of degrees C    degrees Fahrenheit 
# 
#----------------------------------------------------------------------------- 
# 
# WIND    elements are coded to include: 
# 
# AWND    Average daily wind speed         (tenths of meters per second) 
# WSF1    Fastest 1-minute wind speed      (tenths of meters per second) 
# WSF2    Fastest 2-minute wind speed      (tenths of meters per second) 
# WSF5    Fastest 5-second wind speed      (tenths of meters per second) 
# WSFG    Peak gust wind speed             (tenths of meters per second) 
# WSFI    Highest instantaneous wind speed (tenths of meters per second) 
# WSFM    Fastest mile wind speed          (tenths of meters per second) 
# 
#------------------------------------------------------------------------------ 
 
 
######################################## 
#             END SETUP                #               
######################################## 
 
# 
============================================================================================== 
# 
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# ===== CODE 1 ===== LOOP TO UNZIP DAILY METEOROLOGICAL FILES YEAR BY YEAR 
===================== # 
# 
============================================================================================== 
# 
 
# Elements                    # View list of elements 
# Elements <- Elements[1:2]   # Select subset of elements (option) 
 
# Set directory to file location of downloaded zipped files 
setwd(dirzip) 
# Put files in directory that will be unzipped and read 
gzfiles <- dir(pattern = "*.csv.gz") # creates the list of all the csv files in the directory 
gzfiles   # view files selected 
# gzfiles <- gzfiles[1:3]  # Select subset of files from the list (option) 
 
dataset <- list() # creates a list that will hold the meteorological data files 
 
######################################## 
#          BEGIN OUTER LOOP            #               
######################################## 
 
# OUTER LOOP : Selected years of zipped .GZ daily weather station data files 
 
for (k in 1:length(gzfiles)){ 
  setwd(dirzip) 
  dataset[[k]] <- read_csv(gzfiles[k], col_names = FALSE) 
  # Add column names 
  colnames(dataset[[k]]) <- c("StationID","date", "elem", "VAL", "MFlag",  
                              "QFlag", "SFlag", "Time" ) 
   
  # Create data table to save processing time - Subset elements from this table 
  dtbl <- as.data.table(dataset[[k]]) 
   
  # reduce the large data frame in the list to save memory in the loop 
  dataset[[k]] <- 0 
   
  # Create location field (country etc.) to be used to subset data 
  dtbl[, loc := substring(StationID, 1, 2)] 
  class(dtbl$elem) 
   
  ######################################## 
  #          BEGIN INNER LOOP            #               
  ######################################## 
   
  # Inner Loop : all Elements for the unzipped year 
   
  for (L in 1: length(Elements)){  
    # 'WIND' will subset several wind elements; otherwise use SelElem 
    ifelse(Elements[L] != 'WIND',  SelElem <- Elements[L],  
           SelElem <- c("AWND", "WSF1", "WSF2", "WSF5", "WSFG", "WSFI", "WSFM")) 
     
    # Subset US and Canadian data for selected element, so datasets are small enough to write 
    subdat <- dtbl[elem %in% SelElem & loc %in% c('US', 'CA')] 
    subdat[is.na(subdat)]<- "-" 
    # Replace line above to include US Territories 
    # subdat <- dtbl[elem %in% SelElem & loc %in% c('US', 'CA', 'AQ', 'CQ', 'GQ',  
    #'JQ', 'LQ', 'RQ', 'VQ', 'WQ')] 
 
# Add year and month fields 
subdat[, year := as.integer(substring(date, 1, 4))] 
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subdat[, month := as.integer(substring(date, 5, 6))] 
subdat[, monthday := as.character(substring(date, 5, 8))] 
# N.B. monthday 0122 appears in csv as 122. 1202 appears in csv as 1202. 
 
# Convert unit of measure specific to selected element.   
if(SelElem == 'PRCP'){ 
  subdat[,VAL_US := (VAL/254)] 
} 
if(SelElem == 'SNOW' | SelElem == 'SNWD'){ 
  subdat[,VAL_US := (VAL/25.4)] 
}  
if(SelElem == 'TMAX' | SelElem == 'TMIN'){ 
  subdat[,VAL_US := (VAL*0.18) +32] 
}  
if(Elements[L] == 'WIND'){ 
  subdat[,VAL_US := (VAL/10)*2.23694] 
} 
 
# Sort the files by location and StationID 
subdat <- subdat[order(subdat$elem, subdat$StationID), ]   
 
# Create file name according to year of data 
yrchar = as.character(subdat[2, 10]) 
 
# Name file where daily data will be written out to 
filenmday = paste0("USCANday", Elements[L], yrchar, ".csv") 
# Write DAILY subsets of data to csv files  
setwd(diroutput) 
write_csv(subdat, filenmday, col_names=TRUE) 
 
# Remove datasets and unused values to save memory 
rm(filenmday, yrchar, subdat) 
 
gc()  # call for garbage can saves memory 
  } 
   
  ######################################## 
  #      END INNER LOOP (Elements)       #               
  ######################################## 
   
  rm(dtbl) 
   
} 
 
######################################## 
#        END OUTER LOOP (Years)        #               
######################################## 
 
rm(dataset, gzfiles, k, L, SelElem) 
 
# END PROGRAM CODE 
 
#  
 
# ========================================================================================== # 
# ===== CODE 2 ================ INITIAL STATION INVENTORY ================================== # 
# ========================================================================================== # 
 
# Go back to repeat SETUP at top if R has been closed. 
 
# Select subset of elements (option) 
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Elements <- c('PRCP', 'SNOW', 'SNWD', 'TMAX', 'TMIN', 'WIND') 
# Elements <- Elements[1:2] 
 
# Select base years (eg. 1961 - 1990) for climatology, typically 30 past years 
BegBsYr <- 1961 
EndBsYr <- 1990 
 
setwd(dirbase) 
 
stnlist <- read_csv('ghcnd-stations.csv', col_names = FALSE) 
colnames(stnlist) <- c("StationID","lat", "lon", "elev", "St", "Name", "GSNFlag", "zip" ) 
stnlist$loc <- as.character(substring(stnlist$StationID, 1,2)) 
stnlist <- as.data.table(stnlist) 
stnsub <- stnlist[, c('StationID', 'loc', 'St', 'lat', 'lon', 'elev')]  #(*Change columns*) 
USCANstn <- subset(stnsub, stnsub$loc %in% c('US', 'CA')) 
head(USCANstn) 
 
 
stninv <- read_csv('ghcnd-inventory.csv', col_names = FALSE) 
colnames(stninv) <- c("StationID","lat", "lon", "elem", "Open", "Close") 
stninv$loc <- as.character(substring(stninv$StationID, 1,2)) 
stninv <-as.data.table(stninv) 
#(*Change columns*) 
stninv0 <- stninv[, c('StationID', 'loc','lat', 'lon', 'elem', 'Open', 'Close')]   
USCANinv0 <- stninv0[loc %in% c("US", "CA")] 
rm(stnlist, stnsub, stninv, stninv0) 
 
# Set working directory to access output of daily csv files 
setwd(diroutput) 
######################################## 
#         BEGIN OUTER LOOP             #               
######################################## 
for (w in 1:length(Elements)){ 
  SelElem <- Elements[w] 
  # Select station inventory by element, merge with station list 
  USCANinv <- USCANinv0[elem == SelElem] 
  stnloc <- as.data.table(full_join(USCANstn, USCANinv[, c('StationID', 'Open', 'Close')],  
                                    by = 'StationID')) 
 
  # creates the list of all the csv files in the directory 
  csvfiles <- dir(pattern = paste0("USCANday",  SelElem, "*"))    
  csvfiles 
   
  # Define list for loop 
  daily <- list() 
   
  ######################################## 
  #         BEGIN INNER LOOP             #               
  ######################################## 
   
  ##### LOOP: for selected element, loop through all years of daily records 
   
  for (q in 1:length(csvfiles)){ 
     
    daily[[q]] <- read_csv(csvfiles[[q]], col_names = TRUE) 
    subdat <- as.data.table(daily[[q]]) 
    daily[[q]] <- 0 
     
    # Summarize by Station the minimum and maximum operation dates 
    stnmindt <- subdat[, lapply(.SD, min, na.rm=TRUE), .SDcols='date',  
                       by=list(StationID, loc, elem, year)] 
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    stnmaxdt <- subdat[, lapply(.SD, max, na.rm=TRUE), .SDcols='date',  
                       by=list(StationID, loc, elem, year)] 
    setnames(stnmindt, 'date', 'mindate') 
    setnames(stnmaxdt, 'date', 'maxdate') 
    stndates <- as.data.table(full_join(stnmindt, stnmaxdt,  
                                        by = c('StationID', 'loc', 'elem', 'year'))) 
     
    rm(subdat, stnmindt, stnmaxdt) 
     
    # Collect years into one data frame 
    if(q==1){ 
     stndtall <- stndates 
    } 
    if(q>1){ 
      stndtall <- rbind(stndtall, stndates) 
    } 
     
    # Remove files to save memory 
    rm(stndates) 
     
    # Call garbage can gc() to save memory 
    gc() 
  }  
   
  ######################################## 
  #       END INNER LOOP (Years)         #               
  ######################################## 
   
  rm(csvfiles, daily, w, q) 
   
  # Continue through code to end 
   
  # Sort the records by location, element (for WIND), year and StationID 
  stndtall <- stndtall[order(loc, elem, StationID, year),] 
   
  # Summarize minimum and maximum station operation dates for all combined years 
  stnminall <- stndtall[, lapply(.SD, min, na.rm=TRUE), .SDcols='mindate',  
                        by=list(StationID, loc, elem)] 
  stnmaxall <- stndtall[, lapply(.SD, max, na.rm=TRUE), .SDcols='maxdate',  
                        by=list(StationID, loc, elem)] 
  stndtsum <- as.data.table(full_join(stnminall, stnmaxall,  
                        by = c('StationID', 'loc', 'elem'))) 
   
  rm(stnminall, stnmaxall) 
   
  # -------- create additional date fields ----------- 
  stndtsum[,minyear := as.integer(substring(mindate,1,4))] 
  stndtsum[,minmo := as.integer(substring(mindate,5,6))] 
  stndtsum[,maxyear := as.integer(substring(maxdate,1,4))] 
  stndtsum[,maxmo := as.integer(substring(maxdate,5,6))] 
   
  stndtinv <- as.data.table(right_join(stnloc, stndtsum,  
                                       by = c('StationID', 'loc'))) 
   
  # ---------- partial month adjustments ---------------- 
  stndtinv[, daysmaxmo := days_in_month(as.Date(paste(maxyear, maxmo, 15, sep ="-")))] 
  stndtinv[, begminmo := as.integer(paste0(minyear, ifelse(minmo < 10, "0", ""),  
                                           minmo, '01'))] 
  stndtinv[, endmaxmo := as.integer(paste0(maxyear, ifelse(maxmo < 10, "0", ""),  
                                           maxmo, daysmaxmo))] 
  stndtinv[, clsdmbeg := (mindate - begminmo)] 
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  stndtinv[, clsdmend := (endmaxmo - maxdate)] 
  # eliminate calculation fields 
  stndtinv[ ,':='(daysmaxmo = NULL, begminmo = NULL, endmaxmo = NULL)]   
  # Compare minimum date with ghcnd-inventory station open year 
  stndtinv[, clsdmbeg := ifelse(Open < minyear, 0, clsdmbeg)] 
  stndtinv[, clsdmend := ifelse(Close > maxyear, 0, clsdmend)] 
  stndtinv[, clsdinm := (clsdmbeg + clsdmend)] 
   
  # ---------- full month adjustments ---------------- 
  # ....... Set up count of days in full months before and after station in operation ..... 
  # start with days in months for 'regular' year (non leap year) - then add leap year adj 
  dys <- days_in_month(as.Date(paste(1961, seq(1:12), 15, sep ="-"))) 
  dysleap <- c(dys, 1) 
  repdys <- rep.row(dysleap, nrow(stndtinv)) 
  repmos <- rep.row(seq(1:12), nrow(stndtinv)) 
  # ...................................................................................... 
  # Count mins  
  output <- matrix(0, nrow(stndtinv), 13) 
  for(i in 1:nrow(stndtinv)){ 
    output[i,1:12] <- (repmos[i,1:12] < stndtinv$minmo[i]) 
  } 
  # Adjust days in February for leap years: output[,2] is 0 or 1 for second month February 
  output[,13] <- leap_year(stndtinv$minyear)*(output[,2])  
  daysout <- repdys*output 
  stndtinv$clsdbef <- apply(daysout, 1, sum) 
  # Count maxs 
  output <- matrix(0, nrow(stndtinv), 13) 
  for(i in 1:nrow(stndtinv)){ 
    output[i,1:12] <- (repmos[i,1:12] > stndtinv$maxmo[i]) 
  } 
  # Adjust days in February for leap years: output[,2] is 0 or 1 for second month February 
  output[,13] <- leap_year(stndtinv$maxyear)*(output[,2])  
  daysout <- repdys*output 
  stndtinv$clsdaft <- apply(daysout, 1, sum) 
  # Compare minimum date with ghcnd-inventory station open year 
  stndtinv[, clsdbef := ifelse(Open < minyear, 0, clsdbef)] 
  stndtinv[, clsdaft := ifelse(Close > maxyear, 0, clsdaft)] 
  stndtinv[, clsdfulm := (clsdbef + clsdaft)] 
   
  # ------- count base and recent years ------------- 
  stndtall[, bsyrct:= ifelse(year >= BegBsYr & year <= EndBsYr, 1, 0)] 
  stndtall[, rcyrct:= ifelse(year > EndBsYr, 1, 0)] 
  stnyrct <- stndtall[, lapply(.SD, sum, na.rm=TRUE), .SDcols=c('bsyrct', 'rcyrct'),  
                      by=list(StationID, loc, elem)] 
  stnyrct[ ,bryrct := (bsyrct + rcyrct)] 
  stndtfin <- as.data.table(full_join(stndtinv, stnyrct,  
                       by = c('StationID', 'loc', 'elem'))) 
   
  rm(stndtall, stndtsum, stndtinv, stnyrct) 
  rm(dys, dysleap, daysout, repdys, repmos, output, i) 
   
  # Sort the records by location, element (for WIND) and StationID 
  stndtfin <- stndtfin[order(loc, elem, StationID),] 
   
   
  # Fill in missing State (St) from StationID - valid for recent years ID naming convention 
  stndtfin$St <- ifelse(is.na(stndtfin$St), as.character(substring(stndtfin$StationID, 4, 5)), 
                        as.character(stndtfin$St)) 
  # If State (St) filled in from StationID, still missing lat, lon, and elev (1998-2016) 
   
  attach(stndtfin) 
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  stndtfin$begbs <- ifelse(minyear<=BegBsYr & maxyear>=BegBsYr, BegBsYr,  
                           ifelse(maxyear<BegBsYr, 0, ifelse(minyear>EndBsYr, 0, minyear))) 
  stndtfin$endbs <- ifelse(minyear<=EndBsYr & maxyear>=EndBsYr, EndBsYr, 
                           ifelse(minyear>EndBsYr, 0, ifelse(maxyear<BegBsYr, 0, maxyear))) 
  stndtfin$begrc <- ifelse(maxyear<=EndBsYr, 0, ifelse(minyear <=EndBsYr+1,  
                                                       EndBsYr+1, minyear)) 
  stndtfin$endrc <- ifelse(maxyear<=EndBsYr, 0, maxyear) 
  attach(stndtfin) 
  stndtfin$bsspan <- ifelse((begbs == 0 | endbs == 0), 0, endbs - begbs + 1) 
  stndtfin$rcspan <- ifelse((begrc == 0 | endrc == 0), 0, endrc - begrc + 1) 
  stndtfin$brspan <- stndtfin$bsspan + stndtfin$rcspan 
  # stndtfin$spanyrs <- maxyear - minyear + 1 
  # eliminate calculation fields 
  stndtfin[ ,':='(begbs = NULL, endbs = NULL, begrc = NULL, endrc = NULL)]  
  # Name files to write station inventories 
  filenmstns <- paste0("_USCANstndt", SelElem, "df.csv") 
  # Write station inventories to csv files  
  setwd(diroutput) 
  write_csv(stndtfin, filenmstns, col_names=TRUE) 
   
  rm(stndtsum, stndtfin, stndtinv, stndtall) 
  rm(filenmstns, csvfiles) 
   
  gc()  # Call garbage can to spare memory 
   
} 
######################################## 
#     END OUTER LOOP (Elements)        #               
######################################## 
rm(USCANstn, USCANinv0, USCANinv, stninv, stnloc) 
# rm(BegBsYr, EndBsYr) 
 
 
##### END Program Code 
 
 
# ========================================================================================== # 
# ===== CODE 3 ========= INITIAL YEAR MONTH SUMMARY (from Daily files) ===================== # 
# ========================================================================================== # 
 
# Go back to repeat SETUP at top if R has been closed. 
 
# # Set working directory to access output of daily csv files 
setwd(diroutput) 
 
Elements <- c('PRCP', 'SNOW', 'SNWD', 'TMAX', 'TMIN', 'WIND') 
 
######################################## 
#         BEGIN OUTER LOOP             #               
######################################## 
 
# OUTER LOOP: Loop through list of selected weather elements 
 
for (z in 1:length(Elements)){ 
   
  SelElem <- Elements[z] 
  # creates the list of all the csv files in the directory 
  csvfiles <- dir(pattern = paste0("USCANday",  SelElem, "*"))    
  csvfiles   # View list of selected file names 
  #csvfiles <- csvfiles[58]  # Select years 
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  # Define list for inner loop 
  daily <- list() 
  ######################################## 
  #         BEGIN INNER LOOP             #               
  ######################################## 
   
  # INNER LOOP: for a given element, loop through all years of daily records 
   
  for (q in 1:length(csvfiles)){ 
     
    daily[[q]] <- read_csv(csvfiles[[q]], col_names = TRUE) 
    subdat <- as.data.table(daily[[q]]) 
    daily[[q]] <- 0 
     
    # Create additional field columns  
    subdat[, VALsqd_US := (VAL_US)^2] 
    subdat[, zerrec := (VAL <= 0) + 0]   
    subdat[, recs := 1] 
    subdat[, zblank := ifelse(MFlag == 'P', 1, 0)] 
    subdat[, zerobs := (zerrec - zblank)]   
    subdat[, obs := (recs - zblank)] 
     
    # Select columns to summarize based on SelElem (*Change columns*) 
    yrmocol <- c('VAL', 'VAL_US', 'VALsqd_US', 'zerrec', 'recs', 'zblank',   'zerobs', 'obs') 
     
     
    # Aggregate data into monthly summaries  
    yrmosum <- subdat[, lapply(.SD, sum, na.rm=TRUE), .SDcols=yrmocol,  
                      by=list(StationID, loc, elem, year, month)] 
    setnames(yrmosum, "VAL", "VALm") 
    setnames(yrmosum, "VAL_US", "VALm_US") 
    setnames(yrmosum, "VALsqd_US", "sumVALsqd_US") 
    # Add fields and reorganize columns 
    firstcols <- yrmosum[, StationID:sumVALsqd_US]  # reorganize columns 
    firstcols[,VALsqm_US := (VALm_US)^2] 
    lastcols <- yrmosum[,zerrec:obs]                # reorganize columns 
    yrmosum <- cbind(firstcols, lastcols) 
    yrmosum[,daysinmo := days_in_month(as.Date(paste(yrmosum$year,  
                                               yrmosum$month, 15, sep ="-")))] 
    yrmosum[,misclsd := (daysinmo - obs)] 
    rm(firstcols, lastcols) 
     
    #yrmosum[,MEANd_US:= VALm_US/obs] 
    rm(subdat) 
     
    rm(yrmocol) 
     
    # Collect years into one data frame 
    if(q==1){ 
      yrmoall <- yrmosum 
    } 
    if(q>1){ 
      yrmoall <- rbind(yrmoall, yrmosum) 
    } 
     
    # Remove files to save memory 
    rm(yrmosum) 
     
    # Call garbage can gc() to save memory 
    gc() 
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  } 
  ######################################## 
  #       END INNER LOOP (Years)         #               
  ######################################## 
   
  # Sort the files by location and StationID 
  yrmoall <- yrmoall[order(elem, year, StationID), ]  
   
  # Name files to write all years of monthly summarized data out to 
  filenmyrmo <- paste0("_USCANyrmo0", SelElem, "df.csv") 
  # Write MONTHLY subsets of data to csv files  
  write_csv(yrmoall, filenmyrmo, col_names=TRUE) 
   
  rm(yrmoall) 
  rm(filenmyrmo) 
  rm(csvfiles) 
   
} 
 
######################################## 
#     END OUTER LOOP (Elements)        #               
######################################## 
 
# Clear variables to move on to next code 
rm(daily, q, z, SelElem) 
 
#### End program code 
 
 
# ========================================================================================= # 
# ===== CODE 4 ====== MERGE STATION INVENTORIES/LOCATIONS TO YEAR MONTH SUMMARY =========== # 
# ========================================================================================= # 
# ================================== SUMMARIZE BY YEAR ==================================== # 
# ========================================================================================= # 
 
# Go back to repeat SETUP at top if R has been closed. 
 
# Set working directory to access output of initial year-month summary and station inventory 
setwd(diroutput) 
 
Elements <- c('PRCP', 'SNOW', 'SNWD', 'TMAX', 'TMIN', 'WIND') 
# Elements <- Elements[1:2] # Select elements (option) 
 
######################################## 
#         BEGIN SINGLE LOOP            #               
######################################## 
 
# Loop through list of selected weather elements 
 
for (j in 1:length(Elements)) 
{ 
  SelElem <- Elements[j] 
   
  # Find file name to read in - year month data summary 
  fileyrmo <- paste0("_USCANyrmo0", SelElem, "*") 
  yrmofiles <- dir(pattern = fileyrmo) # creates the list of the files in the directory 
  yrmofiles   # view files selected 
   
  # Find file name to read in - station dates of operation and inventories 
  filenmstn <- paste0("_USCANstndt", SelElem, "*") 
  stnfiles <- dir(pattern = filenmstn) # creates the list of the files in the directory 
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  stnfiles   # view files selected 
   
  # Read in Data Files - yearly station data, station dates of operation, station locations 
  yrmodat <- read_csv(yrmofiles[1], col_names = TRUE) 
  stndates <- read_csv(stnfiles[1], col_names = TRUE) 
   
  # Remove variables to clean up environment 
  rm(fileyrmo, filenmstn, yrmofiles, stnfiles) 
   
  # Create data tables to process faster 
  yrmodat <- as.data.table(yrmodat) 
  stndates <- as.data.table(stndates) 
   
  # ---------- merge partial month adj to 'Year Month' data ---------------- 
  stnmins <- stndates[, .(StationID, elem, minyear, minmo, clsdmbeg)]  #(*Change columns*) 
  stnmins <- stnmins[clsdmbeg > 0] 
  setnames(stnmins, 'minyear', 'year') 
  setnames(stnmins, 'minmo', 'month') 
   
  stnmaxs <- stndates[, .(StationID, elem, maxyear, maxmo, clsdmend)] #(*Change columns*) 
  stnmaxs <- stnmaxs[clsdmend > 0] 
  setnames(stnmaxs, 'maxyear', 'year') 
  setnames(stnmaxs, 'maxmo', 'month') 
   
  yrmomin <- as.data.table(left_join(yrmodat, stnmins,  
                           by = c('StationID', 'elem', 'year', 'month'))) 
  yrmofin <- as.data.table(left_join(yrmomin, stnmaxs,  
                           by = c('StationID', 'elem', 'year', 'month'))) 
  yrmofin[is.na(yrmofin)]<- 0   
  rm(stnmins, stnmaxs, yrmomin)  
  rm(yrmodat) 
   
  # _______ MERGE STATES / PROVINCES / COORDINATES / STATION MIN/MAX DATES __________________ 
   
  # Add state, coordinates, range of station operation dates (min and max) 
  yrmodet <-  as.data.table(right_join(stndates[, StationID:maxdate], yrmofin,  
                            by = c('StationID', 'loc', 'elem')))  #(*Change Columns*) 
  # keep yrmofin for yearly summary 
  # yrmosumdet <- yrmodet[,c(1:2, 21:26, 3:20)]  #(*Change Columns*) 
 # yrmosumdet <- cbind(yrmodet[,StationID:loc], yrmodet[,St:maxdate],  
 #                    yrmodet[,elem:clsdmend]) #misinm]) #(*Change Columns*) 
  yrmodet$clsdmend <- as.integer(yrmodet$clsdmend) 
  yrmodet$clsdmbeg <- as.integer(yrmodet$clsdmbeg) 
  yrmodet[, misinm := misclsd - (clsdmbeg + clsdmend)] 
  yrmodet[, clsdinm := (clsdmbeg + clsdmend)] 
  # Remove columns 
  yrmodet[ ,':=' (clsdmbeg = NULL, clsdmend = NULL, misclsd = NULL)]  
  
  # Name file to write data out to 
  fileyrmoinv <- paste0("_USCANyrmoinv", SelElem, "df.csv")  
  # Write YEAR MONTH inventories of data to csv files  
  write_csv(yrmodet, fileyrmoinv, col_names=TRUE) 
  rm(yrmodet, fileyrmoinv) 
   
  # Continue to sum by year, using year-month data prior to station location merge 
  # Add count field for months 
  yrmofin[, count := 1] 
  yrmofin$clsdmbeg <- as.integer(yrmofin$clsdmbeg) 
  yrmofin$clsdmend <- as.integer(yrmofin$clsdmend) 
  # Select data columns to summarize yearly based on SelElem. Eliminate month field 
  yrcol <- names(yrmofin)[c(6:19)]   #(*Change columns)   

Meteorology for Actuaries – Part 2  
Climate and the El Niño Southern Oscillation

Casualty Actuarial Society E-Forum, Spring 2018-Volume 2 63



  yrsum <- yrmofin[, lapply(.SD, sum, na.rm=TRUE), .SDcols=yrcol,  
                   by=list(StationID, loc, elem, year)] 
  setnames(yrsum, "VALm", "VALy") 
  setnames(yrsum, "VALm_US", "VALy_US") 
  setnames(yrsum, "VALsqm_US", "sumVALsqm_US") 
  setnames(yrsum, "daysinmo", "daysum") 
  setnames(yrsum, 'count', 'monthct') 
   
  # Rearrange column order and insert new field columns 
  firstcols <- yrsum[,StationID:sumVALsqm_US] 
  firstcols[,VALsqy_US := VALy_US^2] 
  midcols <- yrsum[,zerrec:daysum] 
  midcols[,daysinyr := 365+leap_year(yrsum$year)*1] 
  yrsum <- cbind(firstcols, midcols, yrsum[,misclsd:monthct]) 
  # Sort data 
  yrsum <- yrsum[order(StationID, elem, year),] 
  # Remove data sets to free space 
  rm(firstcols, midcols, yrcol) 
  # Keep yrmofin to spread monthly observations to a yearly format 
   
  # ------ merge full month adjustments to 'Year' data ---------------- 
  stnyrmins <- stndates[, c("StationID", "elem", "minyear", "clsdbef")]    #(*Change Columns*) 
  stnyrmins <- stnyrmins[clsdbef > 0] 
  setnames(stnyrmins, 'minyear', 'year') 
   
  stnyrmaxs <- stndates[, c("StationID", "elem", "maxyear", "clsdaft")]    #(*Change Columns*) 
  stnyrmaxs <- stnyrmaxs[clsdaft > 0] 
  setnames(stnyrmaxs, 'maxyear', 'year') 
   
  yrmin <- as.data.table(left_join(yrsum, stnyrmins,  
                          by = c('StationID', 'elem', 'year'))) 
  yrfin <- as.data.table(left_join(yrmin, stnyrmaxs,  
                          by = c('StationID', 'elem', 'year'))) 
  rm(stnyrmins, stnyrmaxs, yrmin) 
  rm(yrsum) 
  yrfin[is.na(yrfin)]<- 0  
   
  yrfin[, clsdinm := (clsdmbeg + clsdmend)] 
  yrfin[, clsdfulm := (clsdbef + clsdaft)] 
  yrfin[, clsdall := clsdinm + clsdfulm] 
   
  yrfin[, misinm := (misclsd - clsdinm)] 
  yrfin[, misfulm := (daysinyr - daysum - clsdfulm)] 
  yrfin[, misall := (misinm + misfulm)] 
   
  # Reduce columns 
  yrfin[ ,':=' (clsdmbeg = NULL, clsdmend = NULL)]  
  yrfin[ ,':=' (clsdbef = NULL, clsdaft = NULL)]   
  yrfin[ , misclsd := NULL] 
   
  # Spread monthly observations in a 12 column grid for each station - year 
  # yrmoobs <- yrmofin[, .(StationID, elem, year, month, obs)] 
  # yrmogrid <- spread(yrmoobs, month, obs)  
  # yrmogrid[is.na(yrmogrid)] <- 0 
  # rm(yrmoobs) 
  # colnames(yrmogrid) <- c('StationID', 'elem', 'year',  'mo01',  'mo02', 'mo03', 'mo04',  
  # 'mo05', 'mo06', 'mo07', 'mo08', 'mo09', 'mo10', 'mo11',  'mo12') 
  # Compare to 'obs' data check 
  # yrmogrid[, yrobs := mo01+mo02+mo03+mo04+mo05+mo06+mo07+mo08+mo09+mo10+mo11+mo12]  
  # yrmogrid <- yrmogrid[order(StationID, elem, year),] 
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  #yrsumgrid <- as.data.table(left_join(yrfin, yrmogrid, by = c('StationID', 'elem', 'year'))) 
  #rm(yrfin, yrmogrid) 
   
  stndat <- cbind(stndates[,bsyrct:brspan], stndates[,StationID:maxdate]) 
  rm(stndates) 
  yrdet <- as.data.table(left_join(yrfin, stndat, by = c('StationID', 'loc', 'elem')))  
  rm(yrfin, stndat) 
  #rm(stndates) 
   
  # Reorder data to organize for output 
  #(*Change Columns*) 
  yrsumdet <- cbind(yrdet[,StationID:loc], yrdet[,St:maxdate], yrdet[,elem:brspan])  
  rm(yrdet) 
   
  # Sort data 
  yrsumdet <- yrsumdet[order(elem, year, StationID), ]  
   
  # Name file to write data out to 
  fileyrdet <- paste0("_USCANyrinvgrid", SelElem, "df.csv")  
  # Write YEARLY summary to csv files  
  write_csv(yrsumdet, fileyrdet, col_names=TRUE) 
  rm(fileyrdet, yrsumdet) 
   
  gc() 
   
} 
######################################## 
#         END LOOP (Elements)          #               
######################################## 
 
##### End Program Code 
 
 
# ========================================================================================== # 
# ===== CODE 5 ============== Missing Records Summary by Year (loc) ======================== # 
# ========================================================================================== # 
 
# Go back to repeat SETUP at top if R has been closed. 
 
# Set working directory to access initial year-month summary and station inventory  
setwd(diroutput) 
 
######################################## 
#            BEGIN LOOP                #               
######################################## 
 
# Loop through yearly inventories, sum all stations by year 
 
yrfiles <- dir(pattern = "_USCANyrinvgrid") # creates the list of the files in the directory 
yrfiles  # view files selected 
 
for (g in 1:length(yrfiles)){ 
   
  # Read in Data Files - yearly station data, station dates of operation, station locations 
  yrdat <- read_csv(yrfiles[g], col_names = TRUE) 
  yrdat <- as.data.table(yrdat) 
  # Reduce columns 
  yrdat <- yrdat[, StationID:misall]  # Select consecutive columns 
   
  ###################################################  
  # Summarize missing records by year and loc 
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  yrdat[,stnct := 1] 
  miscols <- names(yrdat)[c(18:32)]   #(*Change columns*) 
  misrecsum <- yrdat[, lapply(.SD, sum, na.rm=TRUE), .SDcols=miscols,  
                      by=list(loc, elem, year)] 
  misrecsum <- as.data.table(misrecsum) 
  misrecsum <- misrecsum[order(loc, elem, year),] 
   
   
  if (g==1){ 
    misrecall <- misrecsum 
  } 
  if (g > 1){ 
    misrecall <- rbind(misrecall, misrecsum) 
  } 
   
  rm(misrecsum, yrdat) 
} 
 
# Define percentage fields (Note zerobs-to-obs has a different denom) 
misrecall[, pctobsyr := (obs/daysinyr)] 
misrecall[, pctmisyr := (misall/daysinyr)] 
misrecall[, pctclsdyr := (clsdall/daysinyr)] 
misrecall[, pctzblkyr := (zblank/daysinyr)] 
misrecall[, pctzeroyr := (zerobs/daysinyr)] 
misrecall[, pctzerobs := (zerobs/obs)] 
setnames(misrecall, 'daysum', 'stndays') 
setnames(misrecall, 'monthct', 'stnmos') 
setnames(misrecall, 'daysinyr', 'stndysinyr') 
 
# Rearrange column order 
misrecfin <- cbind(misrecall[, loc:year], misrecall[, pctzerobs:pctobsyr],  
                   misrecall[, .(stnct)], misrecall[, zerrec:misall]) 
 
 
#misrecfin[, daysyravg := stndysinyr/stns] # check it is 365 or 366 
misrecfin[, obsavg := (obs/stnct)] 
misrecfin[, clsdavg := (clsdall/stnct)] 
misrecfin[, misavg := (misall/stnct)] 
misrecfin[, zblankavg := (zblank/stnct)] 
misrecfin[, zeroavg := (zerobs/stnct)] 
misrecfin[, mosavg := (stnmos/stnct)] 
 
 
######################################## 
#         END LOOP (Elements)          #               
######################################## 
 
# Write out Missing Record Summary for All Elements 
write_csv(misrecall, "_USCANmisrecELEMdf.csv", col_names=TRUE) 
 
# Reopen option 
# misrecall <- read_csv("_USCANmisrecELEMdf.csv", col_names=TRUE) 
# misrecall <- as.data.table(misrecall) 
 
mistbl <- misrecall[,c('loc', 'elem', 'year', 'pctmisyr')] 
clsdtbl <- misrecall[,c('loc', 'elem', 'year', 'pctclsdyr')] 
obstbl <- misrecall[,c('loc', 'elem', 'year', 'pctobsyr')] 
stntbl <- misrecall[,c('loc', 'elem', 'year', 'stnct')] 
zerobstbl <- misrecall[,c('loc', 'elem', 'year', 'pctzerobs')] 
 
mistbl <- mistbl[elem %in% c('PRCP', 'SNOW', 'SNWD', 'TMAX', 'TMIN')] 
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mistblw <- spread(mistbl, elem, pctmisyr)  
mistblw[is.na(mistblw)] <- "" 
mistblw 
 
clsdtbl <- clsdtbl[elem %in% c('PRCP', 'SNOW', 'SNWD', 'TMAX', 'TMIN')] 
clsdtblw <- spread(clsdtbl, elem, pctclsdyr)  
clsdtblw[is.na(clsdtblw)] <- "" 
clsdtblw 
 
obstbl <- obstbl[elem %in% c('PRCP', 'SNOW', 'SNWD', 'TMAX', 'TMIN')] 
obstblw <- spread(obstbl, elem, pctobsyr)  
obstblw[is.na(obstblw)] <- "" 
obstblw 
 
zerobstbl <- zerobstbl[elem %in% c('PRCP', 'SNOW', 'SNWD', 'TMAX', 'TMIN')] 
zerobsw <- spread(zerobstbl, elem, pctzerobs)  
zerobsw[is.na(zerobsw)] <- "" 
zerobsw 
 
write_csv(obstblw, 'pctmisrec.csv', col_names=TRUE) 
write_csv(mistblw, 'pctmisrec.csv', col_names=TRUE) 
write_csv(clsdtblw, 'pctclsdrec.csv', col_names=TRUE) 
write_csv(zerobsw,  'pctzerobs.csv', col_names=TRUE) 
 
##### END PROGRAM CODE 
 
 
 
# ========================================================================================== # 
# ===== CODE 6 ========== BIMONTHLY (MEI) and TRIMONTHLY (ONI) INDICES ===================== # 
# ========================================================================================== # 
 
# Go back to repeat SETUP at top if R has been closed. 
 
Elements <- c('PRCP', 'SNOW', 'SNWD', 'TMAX', 'TMIN', 'WIND') 
 
# Open station level summaries by year month; sum by two- and three- month periods. 
# The MultiVariate ENSO Index (MEI) is bimonthly (two months).   
# The Oceanic Nino Index (ONI) is trimonthly (three months). 
 
# Read in MEI and ONI from base directory 
setwd(dirbase) 
MEI <- read_csv('MEI_Index.csv', col_names = TRUE) 
colnames(MEI) <- c('year', 'DecJan', 'JanFeb', 'FebMar', 'MarApr', 'AprMay', 'MayJun', 

'JunJul',  'JulAug',  'AugSep', 'SepOct', 'OctNov', 'NovDec') 
ONI <- read_csv('ONI_Index.csv', , col_names = TRUE) 
head(ONI) 
 
# use functions from tidyvers package to convert index lists from wide to long  
MEIlong <- gather(MEI, "bimo", "MEI", 2:13) 
head(MEIlong) 
ONIlong <- gather(ONI, "trimo", "ONI", 2:13) 
head(ONIlong, 10) 
setnames(ONIlong, 'Year', 'year') 
rm(MEI, ONI) 
 
# Create labels for bimonthly and trimonthly aggregations 
bimolabel <- data.frame(k = seq(1, 12, 1),  
                        bimo = c('JanFeb','FebMar', 'MarApr', 'AprMay', 'MayJun', 'JunJul',  
                                 'JulAug', 'AugSep', 'SepOct', 'OctNov', 'NovDec', 'DecJan')) 
trimolabel <- data.frame(k = seq(1, 12, 1),  
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trimo = c('JFM','FMA', 'MAM', 'AMJ', 'MJJ', 'JJA', 'JAS', 'ASO', 
'SON', 'OND', 'NDJ', 'DJF')) 

 
 
# Set working directory to access year-month summaries 
setwd(diroutput) 
######################################## 
#           BEGIN MAIN LOOP            #               
######################################## 
 
for (h in 1:length(Elements)) 
{ 
  SelElem <- Elements[h] 
   
  fileyrmo <- paste0("_USCANyrmoinv", SelElem, "df.csv")  
  fileyrmo 
  filestndt <- paste0("_USCANstndt", SelElem, "df.csv")  
  filestndt 
  #  yrmofiles <- dir(pattern = fileyrmo) # creates the list of the files in the directory 
  #  yrmofiles  # view files selected 
   
  setwd(diroutput) 
  # Read in Data files - year month data with missing records and closed dates inventories 
  yrmoall <- read_csv(fileyrmo[1], col_names = TRUE) 
  # Select columns and place in data table for efficiency 
  yrmodat <- as.data.table(yrmoall)   # 8,579,187 
  rm(yrmoall, fileyrmo) 
  minyr <- min(yrmodat$year) 
  maxyr <- max(yrmodat$year) 
   
  yrmodat[, monthct := 1]   # Count months summed in loop 
  yrmodat$monthX <- yrmodat$month 
  # Create 'Month 13' data as January of next year, 'Month 14' as February of next year 
  wrapmo13 <- yrmodat[month == 1] 
  wrapmo14 <- yrmodat[month == 2] 
  wrapmo13$monthX <- 13 
  wrapmo13$year <- wrapmo13$year - 1 
  wrapmo14$monthX <- 14 
  wrapmo14$year <- wrapmo14$year - 1 
  loopsum <- rbind(yrmodat, wrapmo13, wrapmo14) 
  loopsum <- loopsum[year >= minyr] 
  loopsum <- loopsum[order(elem, StationID, year, monthX), ] 
  rm(yrmodat) 
   
  # Create lists for loop 
  bimosum <- list() 
  trimosum <- list() 
  # Select columns of values to sum in loop 
  sumcols <- names(loopsum)[c(14:26)]   #(*Change columns*)  
  ######################################## 
  #       BEGIN MINOR LOOP               #               
  ######################################## 
  for (k in 1:12){ 
    mo1 <- as.character(k) 
    mo2 <- as.character(k+1) 
    mo3 <- as.character(k+2) 
    #mo2lab <- ifelse(k == 12, 1, mo2) 
    #mo3lab <- ifelse(k == 12, 2, mo3) 
    bimosub <- loopsum [monthX == mo1 | monthX == mo2] 
    trimosub <- loopsum[monthX %in% c(mo1, mo2, mo3)] 
    bimosum[[k]] <- bimosub[, lapply(.SD, sum, na.rm=TRUE), .SDcols=sumcols,  
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                             by=list(StationID, loc, elem, year)] 
    trimosum[[k]] <- trimosub[, lapply(.SD, sum, na.rm=TRUE), .SDcols=sumcols,  
                               by=list(StationID, loc, elem, year)] 
    bimosum[[k]]$ord <- k 
    trimosum[[k]]$ord <- k  
    bimosum[[k]]$bimo = bimolabel[k,2] 
    trimosum[[k]]$trimo = trimolabel[k,2] 
  } 
  ######################################## 
  #         END MINOR LOOP               #               
  ######################################## 
   
  # Continue through code to end 
   
  rm(wrapmo13, wrapmo14, mo1, mo2, mo3, k) 
  rm(loopsum, bimosub, trimosub, sumcols) 
   
  bimosumall <- rbindlist(bimosum) 
  trimosumall <- rbindlist(trimosum) 
  setnames(bimosumall, "daysinmo", "daysum") 
  setnames(trimosumall, "daysinmo", "daysum") 
  setnames(bimosumall, "VALm", "VAL2m") 
  setnames(trimosumall, "VALm", "VAL3m") 
  setnames(bimosumall, "VALm_US", "VAL2m_US") 
  setnames(trimosumall, "VALm_US", "VAL3m_US") 
  setnames(bimosumall, "VALsqm_US", "sumVALsqm_US") 
  setnames(trimosumall, "VALsqm_US", "sumVALsqm_US") 
  rm(bimosum, trimosum) 
   
  class(bimosumall$year) 
  bimosumall$delete <- ifelse((bimosumall$year == maxyr & bimosumall$ord == 12), 'Y', 'N') 
  trimosumall$delete <- ifelse((trimosumall$year == maxyr & trimosumall$ord == 11), 'Y',  
                        ifelse((trimosumall$year == maxyr & trimosumall$ord == 12), 'Y', 'N')) 
   
  bimofin <- subset(bimosumall, bimosumall$delete == 'N') 
  trimofin <- subset(trimosumall, trimosumall$delete == 'N') 
  bimofin[, delete:=NULL] 
  trimofin[, delete:=NULL] 
  rm(bimosumall, trimosumall) 
  #nrow(bimosumfin)  # 8,750,322 PRCP 
  #nrow(trimosumfin) # 8,846,206 PRP 
  bimofin$year <- as.integer(bimofin$year) 
  bimofin$bimo <- as.character(bimofin$bimo) 
  trimofin$year <- as.integer(trimofin$year) 
  trimofin$trimo <- as.character(trimofin$trimo) 
   
  # Merge MEI (bimo) and ONI (trimo) indices with summed data 
  bimoInd <- as.data.table(left_join(bimofin, MEIlong,  
                           by = c('year', 'bimo'))) 
  trimoInd <- as.data.table(left_join(trimofin, ONIlong,  
                            by = c('year', 'trimo'))) 
  rm(bimofin, trimofin) 
   
  # Merge Station inventories / states / coordinates 
  setwd(diroutput) 
  stndates <- read_csv(filestndt, col_names = TRUE) 
  stndates  <- as.data.table(stndates) 
   
  bimoIndSt <- as.data.table(right_join(stndates[, StationID:maxdate], bimoInd,   
                              by = c('StationID', 'loc', 'elem'))) #(*Change columns*)# 
  rm(bimoInd) 
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  trimoIndSt <- as.data.table(right_join(stndates[, StationID:maxdate], trimoInd,   
                              by = c('StationID', 'loc', 'elem'))) #(*Change columns*)# 
  rm(trimoInd) 
  rm(stndates) 
  
  setwd(diroutput) 
  bimofilenm <- paste0('_USCANbimo', SelElem, 'df.csv') 
  trimofilenm <- paste0('_USCANtrimo', SelElem, 'df.csv') 
  write_csv(bimoIndSt, bimofilenm, col_names = TRUE) 
  write_csv(trimoIndSt, trimofilenm, col_names = TRUE) 
   
  rm(bimofilenm, trimofilenm, filestndt) 
  rm(bimoIndSt, trimoIndSt) 
   
} 
 
######################################## 
#       END MAIN LOOP (Elements)       #               
######################################## 
 
rm(bimolabel, trimolabel, MEIlong, ONIlong) 
rm(h, maxyr, minyr) 
 
##### End Program Code 
 
 
 
# ========================================================================================== # 
# ===== CODE 7 ========================== WEEKLY INDICES =================================== # 
# ========================================================================================== # 
 
# Go back to repeat SETUP at top if R has been closed. 
 
Elements <- c('PRCP', 'SNOW', 'SNWD', 'TMAX', 'TMIN', 'WIND') 
 
# For weekly Nino Indices choose BegDat <- "1989/12/31"  
# (Weekly SST data starts week centered on 1990/01/03) 
# ------------------------------------------------------ 
BegDate <- "1961/01/01"    # 1961/01/01 gives same grouping as 1989/12/31 
EndDate <- "2017/12/31" 
# --------- weekly labels for grouping sums ----------- 
dte = seq(as.Date(BegDate), as.Date(EndDate), "days")  # sequence of dates from beg to end 
nodys <- length(dte)   # Number of days in sequence 
noweeks <- as.integer(nodys/7)   # Number of full weeks in sequence 
remdys <- nodys%%7             # Remaining days, not full weeks 
weeklabel <- data.frame(weekno = c(rep(1:noweeks, each = 7), rep(noweeks+1, remdys)), dte = 
seq(as.Date(BegDate), as.Date(EndDate), "days")) 
weeklabel$chardate <- paste0(as.character(substring(weeklabel$dte, 1, 4)), 
as.character(substring(weeklabel$dte, 6, 7)), as.character(substring(weeklabel$dte, 9,10))) 
weeklabel$date <- as.integer(weeklabel$chardate) 
startlab <- as.Date(BegDate)+3      # Weeks are labeled by middle day 
centerdates <- seq(as.Date(startlab), by = "7 days", length.out = noweeks)  # middle day for 
each week of sequence 
weeklabel$ctrweek <- c(rep(centerdates, each = 7), rep(as.Date(tail(centerdates,1))+7, 
remdys))  # label all days 
weeklabel$yrgrp <- substring(weeklabel$ctrweek, 1, 4) 
weeklabel <- weeklabel[,c(1,4:6)] 
rm(BegDate, EndDate, centerdates, dte, nodys, remdys, startlab, noweeks) 
# ------------------------------------------------------ 
 
######################################## 
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#          BEGIN OUTER LOOP            #               
######################################## 
 
for (z in 1:length(Elements)){ 
   
  # Set working directory to access output of daily csv files 
  setwd(diroutput)    
   
  SelElem <- Elements[z] 
  # creates the list of all the csv files in the directory 
  csvfiles <- dir(pattern = paste0("USCANday",  SelElem, "*"))  
  csvfiles <- csvfiles[30:58]  # select years since 1989 to match Nino indices 
  # csvfiles 
   
  daily <- list() 
  ######################################## 
  #    BEGIN FIRST INNER LOOP            #               
  ######################################## 
  # for selected element, loop through all years of daily records 
   
  for (q in 1:length(csvfiles)){ 
  
    # Set working directory to access output of daily csv files 
    setwd(diroutput)  
     
    daily[[q]] <- read_csv(csvfiles[[q]], col_names = TRUE) 
    subdat <- as.data.table(daily[[q]]) 
    daily[[q]] <- 0 
     
    # Create additional field columns  
    subdat[, VALsqd_US := (VAL_US)^2] 
    subdat[, zerrec:= (VAL <= 0) + 0]   
    subdat[, recs:= 1] 
    subdat[, zblank := ifelse(MFlag == 'P', 1, 0)] 
    subdat[, zerobs:= (zerrec - zblank)]   
    subdat[, obs := (recs - zblank)] 
     
    # Include additional week labels for summarizing by week (already have year and month) 
    subdatwk <- as.data.table(left_join(subdat, weeklabel, by = 'date')) 
    rm(subdat) 
     
    # Select columns to summarize based on SelElem 
    wkcol <- names(subdatwk)[c(4, 13:19)]   #(*Change columns) 
     
    weeksum <- subdatwk[, lapply(.SD, sum, na.rm=TRUE), .SDcols=wkcol,  
                         by=list(StationID, loc, elem, weekno, yrgrp, ctrweek)] 
    setnames(weeksum, 'VAL', 'VALw') 
    setnames(weeksum, 'VAL_US', 'VALw_US') 
    firstcols <- weeksum[, StationID:VALsqd_US] 
    firstcols[, VALsqw_US := (VALw_US)^2]    # PRCP 3,339 rows = 64 States x 52 weeks roughly 
    weeksum <- cbind(firstcols, weeksum[, zerrec:obs]) 
 
    rm(firstcols) 
    rm(subdatwk) 
    rm(wkcol) 
     
    # Sort columns 
    weeksum <- weeksum[order(elem, loc, weekno),] 
     
    if(q == 1){ 
      weeksall <- weeksum 
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    } 
    if( q > 1){ 
      weeksall <- rbind(weeksall, weeksum) 
    } 
     
    rm(weeksum)   
  
    gc()  # Call for garbage can to spare memory 
     
  } 
   
  ######################################## 
  #     END FIRST INNER LOOP (Years)     #               
  ######################################## 
   
  rm(daily, csvfiles, q) 
   
  # Weeks numbered according to Nino indices overlap years;  
  # Sum again to complete summation of boundary weeks. 
  wkscol <- names(weeksall)[7:15]  #(*Change columns) 
  weekly <- weeksall[, lapply(.SD, sum, na.rm=TRUE), .SDcols=wkscol,  
                      by=list(StationID, loc, elem, weekno, yrgrp, ctrweek)] 
  rm(weeksall)  #PRCP sum removes 306,156 rows 
  rm(wkscol) 
  # Calculate missing or closed records based on complete 7-day week sums 
  weekly[, misclsd := (7 - obs)] 
   
  gc() 
   
   
  # Read in list of stations with state/province, elevation, coordinates 
  setwd(dirbase) 
  stnlist <- read_csv('ghcnd-stations.csv', col_names = TRUE) 
  colnames(stnlist) <- c("StationID","lat", "lon", "elev", "St", "Name", "GSNFlag", "zip" ) 
  stnlist$loc <- as.character(substring(stnlist$StationID, 1,2)) 
  stnlist$StationID <- as.character(stnlist$StationID) 
  stnsub <- stnlist[,c(1:5,9)]  #(*Change columns*) 
  USCANstn <- subset(stnsub, stnsub$loc %in% c('US', 'CA')) 
  rm(stnlist, stnsub) 
   
  # Read in Nino Indices 
  setwd(dirbase) 
  ninoweekly <- read_csv('NinoWeekly.csv', col_names = FALSE) 
  colnames(ninoweekly) <- c("ctrweek","Nino12Ind", "Nino12Anom", "Nino3Ind", "Nino3Anom",  
   "Nino34Ind", "Nino34Anom", "Nino4Ind", "Nino4Anom") 
   
   
  ######################################## 
  #   BEGIN SECOND INNER LOOP (Years)    #               
  ######################################## 
  # Select data year by year and merge with station locations and weekly Nino indices 
  for  (p in 1:length(unique(weekly$yrgrp))){ 
    yrwrite <-  as.integer(min(weekly$yrgrp)) + (p-1) 
    weeksel <- weekly[yrgrp == yrwrite] 
     
    weekst <- as.data.table(left_join(weeksel, USCANstn[,1:5], by = 'StationID')) 
    rm(weeksel) 
    weekselst <- cbind(weekst[, StationID:elem], weekst[,.(St)], weekst[,lat:elev],  
   weekst[,weekno:misclsd])   #(*Change columns*) 
    rm(weekst) 
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    # Include weekly Nino Indices from 1990 to present in weekly table 
    weekselIndex <- as.data.table(left_join(weekselst, ninoweekly, by = 'ctrweek')) 
    rm(weekselst) 
     
    setwd(diroutput) 
    filenmweek <- paste0("USCANweek", Elements[z], yrwrite, "df.csv") 
    write_csv(weekselIndex, filenmweek, col_names = TRUE) 
    rm(yrwrite, weekselIndex) 
  } 
   
  ######################################## 
  #    END SECOND INNER LOOP (Years)     #               
  ######################################## 
  rm(USCANstn, ninoweekly, weekly, filenmweek) 
   
} 
######################################## 
#     END OUTER LOOP (Elements)        #               
######################################## 
 
rm(p, z, weeklabel) 
 
##### End Program Code 
 
 
# EXTRA CODE - does not link to weekly indices 
 
# ------- weekly labels for weeks of all years to fall on the same days ----------- 
# Choose any non-leap year from Jan 1 to Dec 31 
BegDate <- "1961/01/01" 
EndDate <- "1961/12/31" 
dt = seq(as.Date(BegDate), as.Date(EndDate), "days")  # sequence of dates from beg to end 
weekno = as.integer((c(rep(1:52, each = 7), 52))) 
 
startlab <- as.Date(BegDate)+3  
centerdates <- seq(as.Date(startlab), by = "7 days", length.out = 52) 
ctrweek <- c(rep(centerdates, each = 7), tail(centerdates, 1)) 
 
weeklab <- data.frame(weekno, ctrweek, dt) 
dtleap = as.Date("1964/02/29")  # Choose any leap day 
newrow <- data.frame(weekno = as.integer(9), ctrweek = centerdates[9], dt = dtleap) 
weeklabel <- rbind(weeklab, newrow) 
weeklabel$moday <- format(as.Date(weeklabel$dt), "%m-%d") 
weeklabel$mdchar <- as.character(paste0(substring(as.character(weeklabel$moday), 1, 2), 
substring(as.character(weeklabel$moday), 4, 5))) 
weeklabel <- weeklabel[order(weeklabel$moday),] 
weeklabel <- weeklabel[,c(1,5, 2)] 
rm(BegDate, EndDate, centerdates, dt, dtdleap, newrow, ctrweek, startlab, weeklab) 
 
# Code to advance year (if merging by full date) 
weeklabel$ctrweek <- paste0(as.character(as.integer(substring(weeklabel$ctrweek, 1, 4))+1), 
                            substring(weeklabel$ctrweek, 5, 10)) 
 
# ========================================================================================== # 
# ===== CODE 8 ============= SELECT STATIONS and SUMMARIZE BY STATE ======================== # 
# ========================================================================================== # 
# =================================== PLOT STATIONS ======================================== # 
# ========================================================================================== # 
# ================================ MAP STATE CHOROPLETH ==================================== # 
# ========================================================================================== # 
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# Go back to repeat SETUP at top if R has been closed. 
 
# Select base years (eg. 1961 - 1990) for climatology, typically 30 past years 
BegBsYr <- 1961 
EndBsYr <- 1990 
 
# Select weather element to identify summary files  
SelElem <- 'PRCP' 
 
# for mapping - read in state names and abbreviations 
setwd(dirbase) 
stabbr <- read_csv('ghcnd-states.csv', col_names = FALSE) 
colnames(stabbr) <- c('St', 'Name') 
stabbr$Name <- tolower(stabbr$Name)  # need lower case for package 'maps' 
 
# Set working directory to access output of yearly csv files 
setwd(diroutput) 
yrfilenm <- paste0('_USCANyrinvgrid', SelElem, 'df.csv') 
yrall <- read_csv(yrfilenm, col_names = TRUE) 
yrall <- as.data.table(yrall)      #   785,941 PRCP 
 
rm(yrfilenm)  
 
table(yrall$bryrct) 
table(yrall$bsyrct) 
# Select Stations from yearly data 
yrsel <- yrall[loc == 'US' & bryrct == 57] 
#yrsel <- yrall[loc == 'US' & bsyrct > 24 & rcyrct > 22] 
 
# OPTION: Plot comparisons - all US stations 
library(maps) 
USall <- yrall[loc == 'US'] 
map("state") 
points(USall$lon, USall$lat, pch=19, cex = 0.05, col = 'dodgerblue3') 
# Plot comparisons - only selected US stations 
map("state") 
points(yrsel$lon, yrsel$lat, pch=19, cex = 0.05, col = 'dodgerblue3') 
 
# REVIEW SELECTION OF STATIONS 
# view count of stations in summary data 
length(unique(yrall$StationID)) 
# view count of stations in selection 
length(unique(yrsel$StationID)) 
# view number of stations selected by State 
table(yrsel$St) 
 
# Add field for station count by state or year count by station 
yrsel[, ct := 1] 
yrselcol <- c( "VALy", "VALy_US", "obs", "ct")  #(*Change columns*) 
yrselsum <- yrsel[, lapply(.SD, sum, na.rm=TRUE), .SDcols=yrselcol,  
                  by=list(loc, St, elem, year)] 
yrstns <-   yrsel[, lapply(.SD, sum, na.rm=TRUE), .SDcols='ct',  
                  by=list(StationID, St, lat, lon)] 
yrselsum <- as.data.table(yrselsum) 
setnames(yrselsum, 'ct', 'stnct') 
yrselsum[, VALsqSt_US := (VALy_US)^2] # 56 years x 50 states 
nrow(yrselsum)  # 58 years x 50 states = 2900 
 
# Base Years State Level Summary 
baseyrs <- yrselsum[year >= BegBsYr  & year <= EndBsYr] 
# Calculate mean and stdev stats manually by formula 
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basesum <- baseyrs[, lapply(.SD, sum, na.rm=TRUE),  
                   .SDcols=c('VALy_US', 'VALsqSt_US', 'stnct', 'obs'),  
                   by=list(loc, St, elem)] 
basesum <- as.data.table(basesum) 
basesum[, bsMean := (VALy_US/30)] 
basesum[, bsSD := sqrt((VALsqSt_US - ((bsMean^2) * 30))/29)] 
setnames(basesum, 'stnct', 'bsstnyrs') 
setnames(basesum, 'obs', 'bsstnobs') 
 
# Use package dplyr to calculate mean and st dev, remove NA's 
# Warning: dplyr summarise function will not group if package 'plyr' is loaded 
# detach(package:plyr) 
  anomaly <- baseyrs %>% 
  group_by(loc, St, elem) %>% 
  summarise(bsstnobs=sum(obs), bsstnyrs = sum(stnct), bsmean = mean(VALy_US),  
            bsstdev = sd(VALy_US), rm.na = TRUE) 
 
# head(anomaly) 
 
# Merge base year statistics with yearly data set 
yrstat <- as.data.table(left_join(yrselsum, anomaly,  
                         by = c('loc', 'St', 'elem'))) 
# Calculate anomalies by year and state  
yrstat[, anom :=  (VALy_US - bsmean) / bsstdev] 
 
# Merge state names with yearly data set, for mapping  
yrstatst <- as.data.table(left_join(yrstat, stabbr, by = 'St')) 
nrow(yrstatst) 
 
# Create a file name to describe data output to write 
fileyrst <- paste0('USyrstat', SelElem, 'df.csv') 
write_csv(yrstatst, fileyrst, col_names = TRUE) 
 
# To reopen the data table 
# fileyrst <- paste0('yrstat', SelElem, 'df.csv') 
# yrstatst <- read_csv('yrselstatsPRCP56.csv', col_names = TRUE) 
# yrstatst <- as.data.table(yrstatst) 
 
#............................................. 
#...... Choropleth from Scratch .............. 
#............................................. 
 
#Load package 'maps' to plot custom choropleth  
library(maps) 
 
# Select a year of data 
SelYr <- 2016 
yrst <- yrstatst[year == SelYr] 
 
# Create breaks for ranges in the standard deviations 
yrst$STDEVgrp <- cut(yrst$anom,  
                     breaks = c(-Inf,  -1.5,  -1,  -0.5,  0, 0.5,  1,  1.5,  2, 2.5, Inf),  
                     labels = c("neg2&-", "neg1.5", "neg1.0", "neg0.5", "pos0.50", 
                                "pos1.00", "pos1.5", "pos2.0", "pos2.5", "pos3&+"),  
                     right = FALSE) 
 
# Create labels and choose color scheme to match the ranges 
STDEVgrp= c("neg2&-", "neg1.5", "neg1.0", "neg0.5",  
            "pos0.50", "pos1.00", "pos1.5", "pos2.0", "pos2.5", "pos3&+")  
colreg <- c("wheat3", "wheat2", "wheat1",  "lightyellow1", "lightcyan1", "lightskyblue1",  
            "skyblue2", "skyblue3", "skyblue4", "midnightblue") 
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# Combine group and colors in a data frame 
colregdf <- data.frame(STDEVgrp, colreg) 
 
# Merge colors with year data 
yrstcolor <- as.data.table(left_join(yrst, colregdf, by = 'STDEVgrp')) 
# Remove Alaska and Hawaii to avoid error in plotting 48 states (Check DC, Puerto Rico etc) 
yrstplot <- yrstcolor[St != 'AK' & St != 'HI'] 
 
# Split data table into segments by regional colors to plot colors 
yrstseg <- split(data.frame(yrstplot), yrstplot[, colreg]) 
 
# Draw states then add colors for each split in a loop 
map("state") 
for (r in 1:length(yrstseg)){ 
  map("state", region=yrstseg[[r]]$Name, interior=F, fill=T, boundary=T,  
      col = as.character(yrstseg[[r]]$colreg[1]), add=T) 
} 
 
# Indicate font sizes for map    
par(ps = 12, cex = 0.8, cex.main = 2.2) 
title(paste0("Precipitation Anomalies by State - ", SelYr)) 
# Add points for the selected station locations 
legendtxt <- c("< -1.5", "-1.5 to -1.0", "-1.0 to -0.5", "-0.5 to 0", "0 to +0.50", 
               "+0.5 to +1.0", "+1.0 to +1.5", "+1.5 to +2.0", "+2.0 to +2.5", "> +2.5") 
par(ps = 16) 
legend("bottomright", legendtxt,  horiz = FALSE, fill = colreg) 
# Add points for station locations 
points(yrstns$lon, yrstns$lat, pch = 19, cex = 0.3, col = 'maroon4') 
 
 
#.................................................... 
#........ Choropleth by Package ggplot2 ............. 
#.................................................... 
 
library(ggplot2) 
library(fiftystater) 
 
# ggplot2 base choropleth colors (data can be yrst or yrstcolor) 
 
t <- ggplot(yrstcolor, aes(map_id = yrstcolor$Name, fill=yrstcolor$anom)) +  
  geom_map(map = fifty_states, colour = 'black') +  
  expand_limits(x = fifty_states$long, y = fifty_states$lat) + 
  coord_map() + ggtitle(paste0('Precipitation Anomalies by State in ',  
                               SelYr, '\n(Base Years ', BegBsYr,  ' - ', EndBsYr, ')')) + 
  theme(plot.title=element_text(size = rel(1.5), lineheight = .9,  
                                family = 'Times', colour = 'black', hjust = 0.5)) + 
  theme(axis.title.x=element_blank())+ 
  theme(axis.title.y=element_blank()) 
 
t + fifty_states_inset_boxes() 
 
# assigning custom choropleth colors centere at zero 
 
q <-  ggplot(yrstcolor, aes(fill = anom, map_id = Name)) +  
  geom_map(map = fifty_states, colour = 'black') +  
  expand_limits(x = fifty_states$long, y = fifty_states$lat) + coord_map() + 
  scale_fill_gradient2(low = "wheat4", mid = "white", midpoint = 0,  
                       high = "dodgerblue4", limits = c(-3,3)) + 
  ggtitle(paste0('Precipitation Anomalies by State in ', SelYr,  
                 '\n(Base Years ', BegBsYr,  ' - ', EndBsYr, ')')) + 
  theme(plot.title=element_text(size = rel(1.5), lineheight = .9,  
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                                family = 'Times', colour = 'black', hjust = 0.5)) + 
  theme(axis.title.x=element_blank())+ 
  theme(axis.title.y=element_blank()) 
 
q + fifty_states_inset_boxes() 
 
##### End Program Code 
 
 
# ========================================================================================== #  
# ===== CODE 9 ================= COMBINE MONTHLY INDICES ================================== # 
# ========================================================================================== # 
 
# Set boundaries on data to combine – make sure years exist in the data 
MinYr <- 1951 
MaxYr <- 2017 
 
# Read in monthly Nino Indices  
setwd(dirbase) 
ninomonthly <- read_csv('NinoMonthly.csv', col_names = TRUE) 
nino <- as.data.table(ninomonthly) 
nino 
colnames(nino) <- c('year', 'month', "Nino12", "Anom12", "Nino3", "Anom3", "Nino4", "Anom4",  
   "Nino34", "Anom34") 
nino 
nino <- nino[year >= MinYr & year <= MaxYr] 
 
SOI <- read_csv('SOI_Anom.csv', col_names = FALSE) 
EQSOI <- read_csv('EQSOI.csv', col_names = FALSE) 
TNI <- read_csv('TNI.csv', col_names = FALSE) 
BEST <- read_csv('BEST1mo.csv', col_names = FALSE) 
colnames(SOI) <- c('year', seq(1:12)) 
colnames(EQSOI) <- c('year', seq(1:12)) 
colnames(TNI) <- c('year', seq(1:12)) 
colnames(BEST) <- c('year', seq(1:12)) 
 
SOIlg <- as.data.table(gather(SOI, "month", "SOI", 2:13)) 
EQSOIlg <- as.data.table(gather(EQSOI, "month", "EQSOI", 2:13)) 
TNIlg <- as.data.table(gather(TNI, "month", "TNI", 2:13)) 
BESTlg <- as.data.table(gather(BEST, "month", "BEST", 2:13)) 
SOIlg <- SOIlg[year >= MinYr & year <= MaxYr] 
EQSOIlg <- EQSOIlg[year >= MinYr & year <= MaxYr] 
TNIlg <- TNIlg[year >= MinYr & year <= MaxYr] 
BESTlg <-  BESTlg[year >= MinYr & year <= MaxYr] 
 
IndexAll <- cbind(nino, SOIlg[,3], EQSOIlg[,3], BESTlg[,3], TNIlg[,3]) 
 
write_csv(IndexAll, 'IndexMonthly.csv', col_names = TRUE) 
 
 
##### End Program Code 
 
 
# ========================================================================================== #  
# ===== CODE 10 ================= PLOT INDEX TIME SERIES =================================== # 
# ========================================================================================== # 
 
# Load packages 
library(reshape2)   # To convert Index data from wide to long 
library(ggplot2)    # To produce graphs of indices 
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setwd(dirbase) 
indices <- read_csv('IndexMonthly.csv', col_names = TRUE) 
indices <- as.data.table(indices) 
indices[indices < -99] <- NA 
IndexName <- names(indices)[3:14] #(*Change Columns*) 
 
IndexName  # view index names (column headers) 
# Select index number 
i = 4 
# assign column number of selected index 
indcol <- as.integer(i+2) 
SelIndex <- names(indices)[indcol] 
# Rename column to be plotted 
setnames(indices, SelIndex, "PlotIndex") 
PlotDat <- cbind(indices[, year:month], indices[, .(PlotIndex)]) 
PlotDat$positive <- PlotDat$PlotIndex >= 0  # TRUE/FALSE values  
ggplot(PlotDat, aes(x=year, y = PlotIndex, fill = positive))  + geom_bar(stat="identity") + 
ylab(SelIndex) 
# Reset name of column plotted to original index name  
setnames(indices, "PlotIndex", SelIndex) 
 
# If error, reset column names 
# colnames(indices) <- c(names(indices)[1:2], IndexName) 
 
MEI <- read.csv('MEI_Index.csv', header = TRUE) 
colnames(MEI) <- c('Year', 'DecJan', 'JanFeb', 'FebMar', 'MarApr', 'AprMay', 'MayJun',  
                   'JunJul', 'JulAug',  'AugSep', 'SepOct', 'OctNov', 'NovDec') 
head(MEI) 
 
# Labels used to sort bimo and trimo ascending for time series 
molabels <- data.frame(month = seq(1, 12, 1),  
                       mo = c('Jan','Feb', 'Mar', 'Apr', 'May', 'Jun',  
                              'Jul', 'Aug', 'Sep', 'Oct', 'Nov', 'Dec'), 
                       bimo = c('JanFeb','FebMar', 'MarApr', 'AprMay', 'MayJun', 'JunJul',  
                                'JulAug', 'AugSep', 'SepOct', 'OctNov', 'NovDec', 'DecJan'), 
                       trimo = c('JFM','FMA', 'MAM', 'AMJ', 'MJJ', 'JJA',  
                                 'JAS', 'ASO', 'SON', 'OND', 'NDJ', 'DJF')) 
 
# use tidyvers gather() to convert wide format to long  
MEIlong <- gather(MEI, "bimo", "MEI", 2:13) 
MEIlong[MEIlong < -99] <- NA 
head(MEIlong) 
 
# Create column to identify positie values in order to color code graph plot 
MEIlong$posM <- MEIlong$MEI >= 0    # TRUE/FALSE values  
MEIlongno <- merge(MEIlong, molabels[,c(1,3)], by = 'bimo', all.MEIlong = TRUE) 
MEIlongno <- MEIlongno[order(MEIlongno$Year, MEIlongno$month),] 
head(MEIlongno,15) 
 
ggplot(MEIlongno, aes(x=Year, y = MEI, fill = posM)) + geom_bar(stat="identity") + ylab("MEI")  
 
##### End Program Code 
 
 
# ========================================================================================== # 
# ===== CODE 11 ================ PLOT ELEMENT vs. INDEX by STATE =========================== # 
# ========================================================================================== # 
# Go back to repeat SETUP at top if R has been closed. 
library(stringr)  # Converts all capitals to title format 
 
# Base years (eg. 1961 - 1990) for climatology, that agree with data 
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BegBsYr <- 1961 
EndBsYr <- 1990 
 
Elements <- c('PRCP', 'SNOW', 'SNWD', 'TMAX', 'TMIN', 'WIND') 
 
# SELECTIONS FOR PLOTS 
SelElem <- 'SNOW'    # Four character weather element abbreviation 
SelState <- 'MN'     # Two character state abbreviation 
SelIndex <- 1        # 1, 2, 3, ..., 12 column order of index in IndexMonthly.csv 
SelMonth <- 1        # 1, 2, 3, ..., 12 month 
# Select first month of bimonthly/trimonthly sums: 
# 1 = 'JanFeb'/'JFM'; 12 = 'DecJan'/'DJF' 
 
MoLabel <- c('January', 'February', 'March', 'April', 'May', 'June', 'July',  
             'August', 'September', 'October', 'November', 'December') 
Month2 <- ifelse(SelMonth == 12, 1, SelMonth+1) 
Month3 <- ifelse(SelMonth == 11, 1, ifelse(SelMonth == 12, 2, SelMonth +2)) 
SelBiMo <- paste0(substring(MoLabel[SelMonth], 1, 3), substring(MoLabel[Month2], 1, 3)) 
TriMoSel <- paste0(substring(MoLabel[SelMonth], 1, 1), substring(MoLabel[Month2], 1, 1), 
                   substring(MoLabel[Month3], 1, 1)) 
BiMoLab <- paste(substring(SelBiMo, 1, 3), substring(SelBiMo, 4, 6), sep = ' - ') 
TriMoLab <- paste(BiMoLab, substring(MoLabel[Month3], 1, 3), sep = ' - ') 
rm(Month2, Month3) 
ElemLab <- data.frame(Elem = Elements[1:5],  

ElemName = c('Rainfall', 'Snowfall','Snow Depth',  
              'Max. Temperature', 'Min. Temperature')) 
# for mapping - read in state names and abbreviations 
setwd(dirbase) 
stabbr <- read_csv('ghcnd-states.csv', col_names = FALSE) 
colnames(stabbr) <- c('St', 'Name') 
# read in indices 
setwd(dirbase) 
indexmo <- read_csv('IndexMonthly.csv', col_names = TRUE) 
 
# Set Working Directory to access csv data files to plot 
setwd(diroutput) 
 
#  Read in Yearly Inventory 
yrfile <- paste0('_USCANyrinvgrid', SelElem, 'df.csv') 
yrdat <- read_csv(yrfile, col_names = TRUE) 
yrdat <- as.data.table(yrdat) 
 
# Select stations based on yearly inventory - customize code here 
# Input selection criteria for stations (record completeness, etc) 
selyrdat <- yrdat[bryrct == 57]   # All States 
nrow(yrdat) 
nrow(selyrdat) 
selstn <- data.frame(StationID = unique(selyrdat$StationID), keep = 'Y') 
# rm(selyrdat, yrdat)  # Remove once selections are decided 
rm(yrfile) 
 
 
#***********************************************# 
###  CHOOSE FROM THREE DATA FILES TO READ IN  ### 
#***********************************************# 
 
# Set Working Directory to access csv data files to plot 
setwd(diroutput) 
 
# For Nino Indices, SOI, EQSOI, TNI, and 'BEST', read Year Month data 
yrmofile <- paste0('_USCANyrmoinv', SelElem, 'df.csv') 
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yrmodat <- read_csv(yrmofile, col_names = TRUE) 
yrmodat <- as.data.table(yrmodat) 
 
# For MEI read bimonthly data 
MEIfile <- paste0('_USCANbimo', SelElem, 'df.csv') 
MEIdat <- read_csv(MEIfile, col_names = TRUE) 
MEIdat <- as.data.table(MEIdat) 
 
# For ONI read trimonthly data 
ONIfile <- paste0('_USCANtrimo', SelElem, 'df.csv') 
ONIdat <- read_csv(ONIfile, col_names = TRUE) 
ONIdat <- as.data.table(ONIdat) 
 
 
#**********************# 
#   MONTHLY INDICES    # 
#**********************# 
 
# Keep selected stations, merged with selected data set 
seldatmo <- as.data.table(left_join(yrmodat, selstn, by = 'StationID')) 
nrow(seldatmo) 
seldatmo <- seldatmo[keep == 'Y'] 
seldatmo[ , keep := NULL] 
nrow(seldatmo) 
seldatmo[, stns := 1] 
seldatmo[,base := ifelse(year <= EndBsYr & year >=BegBsYr, 'Y', 'N' )] 
seldatmo[,pre82 := ifelse(year < 1982, 'Y', 'N' )] 
 
# Columns to sum by state for Nino, SOI, EQSOI, TNI, BEST 
selmocols <- names(seldatmo)[c(14:26)]   #(*Change columns*) 
Statedat <- seldatmo[, lapply(.SD, sum, na.rm=TRUE), .SDcols=selmocols, 
                     by=list(St, loc, elem, year, month, pre82)] 
Statedat[, avgVALm_US := (VALm_US / obs) ] 
Statedatmo <- as.data.table(left_join(Statedat, indexmo, by = c('year', 'month'))) 
IndexName <- names(Statedatmo)[21:32] 
IndexName 
 
########## RUN PLOT ################ 
# Ok to change SelMonth, SelState, and SelIndex at this point. 
# Optional Loop - uncomment two lines plus end bracket } to remove 
for (indloop in 1:length(IndexName)){ 
  SelIndex <- indloop 
   
  # Choose the index column to plot 
  setnames(Statedatmo, IndexName[SelIndex], 'IndexPlot') 
   
  # Limit data to plot selections  
  Statedatplot <- Statedatmo[month == SelMonth & St == SelState & !is.na(IndexPlot)] 
   
  # View range of values for setting y-axis limits 
  min(Statedatplot$avgVALm_US) 
  max(Statedatplot$avgVALm_US) 
  # View range of values for setting x-axis limits 
  min(Statedatplot$IndexPlot) 
  max(Statedatplot$IndexPlot) 
   
  # Define boundaries of plot 
  xlo <- floor(min(Statedatplot$IndexPlot)) 
  xhi <- ceiling(max(Statedatplot$IndexPlot)) 
  yhi <- ceiling(max(Statedatplot$avgVALm_US)*100)/100 
   

Meteorology for Actuaries – Part 2  
Climate and the El Niño Southern Oscillation

Casualty Actuarial Society E-Forum, Spring 2018-Volume 2 80



  # Select colors and point shapes 
  color1 <- 'lightpink4' 
  color2 <- 'darkcyan' 
  pch1 = 1 
  pch2 = 18 
   
   
  # Labels and Title - revise as needed 
  ElemLabel <- subset(ElemLab, ElemLab$Elem == SelElem) 
  SelSt <- subset(stabbr, stabbr$St == SelState) 
  SelStPlot <- str_to_title(SelSt[2]) 
  PlotTitle <- paste0(SelStPlot, " ", MoLabel[SelMonth], " ", ElemLabel$ElemName, " vs. ",  
  IndexName[SelIndex],"  Index") 
   
  # Widen Plot Region before running plot code 
  plot(Statedatplot$IndexPlot, Statedatplot$avgVALm_US, xlab=paste0("Monthly ",  

 IndexName[SelIndex], " Index"), 
       ylab="average station measurement", xlim=c(xlo, xhi), ylim=c(0, yhi),  
       main=PlotTitle, 
       pch = ifelse(Statedatplot$pre82=='Y', pch1, pch2), cex.main=1.2, frame.plot=FALSE,  
       col=ifelse(Statedatplot$pre82=='Y', color1, color2)) 
  legend(xlo, yhi, pch=c(pch1, pch2), col=c(color1, color2),  

c("prior to 1982", "1982 and on"),  
          bty="o",  box.col="darkgreen", cex=.8) 
  # Label outlier points with year - choose boundaries at right and left of plot 
  Statedatplot[, outlier := ifelse(IndexPlot > xhi – 0.5 | IndexPlot < xlo + 0.5, year, "")] 
  text(Statedatplot$IndexPlot, Statedatplot$avgVALm_US, Statedatplot$outlier, pos=1, cex=0.6) 
 
   
  # Option: linear regression 
  # reg<-lm(avgVALm_US~IndexPlot, data=Statedatplot) 
  # abline(reg, lty =2, col = 'grey50') 
 
  # Reset column names in data   
  setnames(Statedatmo, 'IndexPlot', IndexName[SelIndex]) 
   
} 
 
# In case of error, restore original column names  
# colnames(Statedatmo) <- c(names(Statedatmo)[1:20], IndexName) 
 
#**********************# 
#          MEI         # 
#**********************# 
 
# Keep selected stations, merged with selected data set 
seldat <- as.data.table(left_join(MEIdat, selstn, by = 'StationID')) 
nrow(seldat) 
seldat <- seldat[keep == 'Y'] 
seldat[ , keep := NULL] 
nrow(seldat) 
seldat[, stns := 1] 
seldat[,base := ifelse(year <= EndBsYr & year >=BegBsYr, 'Y', 'N' )] 
seldat[,pre82 := ifelse(year < 1982, 'Y', 'N' )] 
 
# Columns to sum by state for MEI 
selcols <- names(seldat)[c(13:25)]   #(*Change columns*) 
StateMEI <- seldat[, lapply(.SD, sum, na.rm=TRUE), .SDcols=selcols, 
                   by=list(St, loc, elem, year, ord, bimo, MEI, pre82)] 
StateMEI <- as.data.table(StateMEI) 
StateMEI[, avgVAL2m_US := (VAL2m_US / obs)] 
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rm(seldat, MEIdat) 
 
########## RUN PLOT ################ 
# Ok to change SelBiMo and SelState at this point. 
# Limit data to plot selections 
# SelState <- 'FL' 
# SelMonth <- 2 
Month2 <- ifelse(SelMonth == 12, 1, SelMonth+1) 
SelBiMo <- paste0(substring(MoLabel[SelMonth], 1, 3), substring(MoLabel[Month2], 1, 3)) 
StateMEIplot <- StateMEI[St == SelState & bimo == SelBiMo & !is.na(MEI)] 
BiMoLab <- paste(substring(SelBiMo, 1, 3), substring(SelBiMo, 4, 6), sep = ' - ') 
 
# View range of values for setting y-axis limits 
min(StateMEIplot$avgVAL2m_US) 
max(StateMEIplot$avgVAL2m_US) 
# View range of values for setting x-axis limits 
min(StateMEIplot$MEI) 
max(StateMEIplot$MEI) 
 
xlo <- floor(min(StateMEIplot$MEI)) 
xhi <- ceiling(max(StateMEIplot$MEI)) 
yhi <- ceiling(max(StateMEIplot$avgVAL2m_US)*100)/100 
 
# Plot MEI graph - be sure to update ranges and title 
color1 <- 'lightpink4' 
color2 <- 'darkcyan' 
pch1 = 1 
pch2 = 18 
 
# Labels and Title - revise as needed 
ElemLabel <- subset(ElemLab, ElemLab$Elem == SelElem) 
SelSt <- subset(stabbr, stabbr$St == SelState) 
SelStPlot <- str_to_title(SelSt[2]) 
MEITitle <- paste0(SelStPlot, " ", BiMoLab, " ", ElemLabel$ElemName, " vs. MEI") 
 
 
plot(StateMEIplot$MEI, StateMEIplot$avgVAL2m_US, xlab="MEI",  
     ylab="average station measurement", xlim=c(xlo, xhi), ylim=c(0, yhi),  
     main=MEITitle, 
     pch = ifelse(StateMEIplot$pre82=='Y', pch1, pch2), cex.main=1.2, frame.plot=FALSE,  
     col=ifelse(StateMEIplot$pre82=='Y', color1, color2)) 
legend(xlo, yhi, pch=c(pch1, pch2), col=c(color1, color2), c("prior to 1982", "1982 and on"),  
       bty="o",  box.col="darkgreen", cex=.8) 
# Label outlier points - choose boundaries 
StateMEIplot[, outlier := ifelse(MEI > 1.6 | MEI < -1.6, year, "")] 
text(StateMEIplot$MEI, StateMEIplot$avgVAL2m_US, StateMEIplot$outlier, pos=1, cex=0.6) 
 
# Option: linear regression 
reg<-lm(avgVAL2m_US~MEI, data=StateMEIplot) 
abline(reg, lty =2, col = 'grey50') 
 
 
##### End Program Code 
 
 
# ========================================================================================== # 
# ===== CODE 12 ===================== MAP ENSO INDEX REGIONS =============================== # 
# ========================================================================================== # 
 
library(maps) 
library(mapproj)  # coordinate grids 
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# Pacific-centric Coordinates 
 
# Nino 1+2  
CoordPCNino12 <- data.frame( 
  lat = c(0, 0, -10, -10, 0), 
  lon = c(270, 280, 280, 270, 270)  
) 
 
# Nino 3 
CoordPCNino3 <- data.frame( 
  lat = c(5, 5, -5, -5, 5), 
  lon = c(210, 270, 270, 210, 210)  
) 
 
# Nino 3.4 
CoordPCNino34 <- data.frame( 
  lat = c(5, 5, -5, -5, 5), 
  lon = c(190, 240, 240, 190, 190)  
) 
 
# Nino 4 
CoordPCNino4 <- data.frame( 
  lat = c(5, 5, -5, -5, 5), 
  lon = c(160, 210, 210, 160, 160)  
) 
 
# Equatorial SOI - West (5°N-5°S, 220°W-270°W) 
CoordPCEQSOI_W <- data.frame( 
  lat = c(5, 5, -5, -5, 5), 
  lon = c(90, 140, 140, 90, 90)  
) 
 
# Equatorial SOI - East   (5°N-5°S, 80°W-130°W) 
CoordPCEQSOI_E <- data.frame( 
  lat = c(5, 5, -5, -5, 5), 
  lon = c(230, 280, 280, 230, 230)  
) 
 
######################################################## 
# NINO INDEX REGIONS - ALL INDICES 
########################################################### 
# Map Pacific Centric Index SST Region 
map("world2", xlim = c(80,300), ylim = c(-40, 40)) 
 
# EQSOI Regions 
rect(140, -5, 90, 5, col = 'lightcyan1', border = FALSE) 
rect(230, -5, 280, 5, col = 'lightcyan1', border = FALSE) 
 
map("world2", xlim = c(80,300), ylim = c(-40, 40), add = TRUE) 
map.axes() 
 
map.grid(label = FALSE, lty = 1, col = "grey") 
par(ps = 12) 
title("El Nino Southern Oscillation Index Regions", family='Times') 
 
par(ps = 10) 
lines(x = CoordPCNino12$lon, y = CoordPCNino12$lat, col = "black", lwd = 2) 
text(275, -3, "Nino",  family='Times') 
text(275, -7, "1+2" ,  family='Times') 
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par(ps = 12) 
lines(x = CoordPCNino4$lon, y = CoordPCNino4$lat, col = "black", lwd = 2) 
text(175, 1, "NINO 4",  family='Times') 
lines(x = CoordPCNino3$lon, y = CoordPCNino3$lat, col = "black", lwd = 2) 
text(255, 1, "NINO 3", family='Times') 
Nino34col <- 'dodgerblue3' 
lines(x = CoordPCNino34$lon, y = CoordPCNino34$lat, col = Nino34col, lty = 3, lwd = 3) 
text(213, 9, "NINO 3.4 / ONI", col = Nino34col, family='Times', lwd = 3) 
#text(213, 9, "NINO 3.4 / ONI / 'BEST'", col = Nino34col, family='Times', lwd = 3) 
 
SOIcol <- 'midnightblue' 
DarwinPC <- c( 130.8456, -12.4634) 
points(130.8456, -12.4634, cex = 1, col = SOIcol, pch = 19) 
par(ps = 8.5) 
text(124, -12, "Darwin", family='Times') 
Tahiti <- c(210.574, -17.6509) 
points(210.574, -17.6509, cex = 1, col = SOIcol, pch = 19) 
par(ps = 8.5) 
text(205, -15, "Tahiti", family='Times') 
 
par(ps = 12) 
lines(x = c(130.8456, 210.574), y = c(-27, -27), col = SOIcol, lwd = 1) 
text(170, -30, "SOI", family='Times', lwd = 2) 
lines(x = c(130.8456, 130.8456), y = c(-15, -27), col = SOIcol, lwd = 1) 
lines(x = c(210.574, 210.574), y = c(-20, -27), col = SOIcol, lwd = 1) 
 
EQSOIcol <- 'cyan4' 
TNIcol <- 'mediumpurple4' 
par(ps = 12) 
text(150, 23, "EQSOI",  family='Times', lwd = 2, col = EQSOIcol) 
text(231, 23, "EQSOI",  family='Times', lwd = 2,  col = EQSOIcol) 
#text(170, 32, "TNI",  family='Times', lwd = 2, col = TNIcol) 
#text(275, -27, "TNI",  family='Times', lwd = 2, col = TNIcol) 
par(ps = 9) 
text(150, 18, "(Western)",  family='Times', lwd = 1, col = EQSOIcol) 
text(231, 18, "(Eastern)",  family='Times', lwd = 1, col = EQSOIcol) 
#text(170, 27, "(Western)",  family='Times', lwd = 1, col = TNIcol) 
#text(275, -32, "(Eastern)",  family='Times', lwd = 1, col = TNIcol) 
arrows(150, 15, 135, 2, length = 0.1, angle = 20, col = EQSOIcol, lwd = 1.8) 
arrows(231, 15, 245, -2, length = 0.1, angle = 20, col = EQSOIcol, lwd = 1.8) 
#arrows(170, 23, 170, 5, length = 0.1, angle = 20, col = TNIcol, lwd = 1.8) 
#arrows(275, -24, 275, -10, length = 0.1, angle = 20, col = TNIcol, lwd = 1.8) 
 
 
 
##### End Program Code 
 
 
# ========================================================================================== # 
# ===== CODE 13 ====================== COSTLIEST STORMS ==================================== # 
# ========================================================================================== # 
 
# Go back to repeat SETUP at top if R has been closed. 
 
# Read in data on Costliest Atlantic Hurricanes 
setwd(dirbase) 
Costly <- read_csv('CostlyStorms.csv', col_names = FALSE) 
Costly <- as.data.table(Costly) 
colnames(Costly) <- c("Name", "Cat", "Dmg_USB", "year", "YrNo", "BegDay", "EndDay") 
Costly[, Label := paste(year, YrNo, sep = '_')] 
# Create columns for formating plot labels 
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Costly[, textadj := 0] 
Costly[, NameLab := ifelse(Costly$Dmg_USB >=7, Costly$Name, "")] 
head(Costly, 10) 
 
head(Costly, 10) 
tail(Costly, 10) 
#______________________________________________ 
# Plot All Storms 
#______________________________________________ 
# Sort chronologically 
Costly <- Costly[order(year, BegDay),] 
Costly$NameLab <- ifelse(Costly$Dmg_USB >=10, Costly$Name, "") 
Costly[Name == 'Hugo', 10] <- "Hugo" # Label Hugo 
# Adjust text positions and eliminate some names 
Costly[Name == 'Hugo', 9] <- - 0.5 
Costly[Name == 'Maria', 9] <- 0.5 
Costly[Name == 'Charley', 9] <-  -1.8 
Costly[Name == 'Wilma', 9] <-  1 
Costly[NameLab == 'Matthew', 10] <- "" 
Costly[NameLab == 'Rita', 10] <- "" 
Costly[NameLab == 'Irma', 10] <-  "" 
 
# Create Bar Plot of all storms (Show in wide plots screen) 
j <- barplot(Costly$Dmg_USB, ylim = c(0, 150), col = "darkblue", cex.main = 1.5,  

cex.axis = 0.8, cex.names = 0.7, names.arg = Costly$Label, las = 2,  
ylab = "U.S. Dollars ($ Billions)", xlab = "Year / Storm Number") 

j 
text(j + Costly$textadj, Costly$Dmg_USB+6, Costly$NameLab, cex = 1.2) 
lines(x = c(0, 16), y = c(9.47, 9.47), col = "darkblue", lty = 2, lwd = 1) 
text(59, 98, "Irma", cex = 1.2) 
arrows(59.5, 93.5, 65.8, 68, col = "black", length = 0.1, angle = 20, lwd = 1.9) 
 
#______________________________________________ 
# Storms Up to Andrew 
#______________________________________________ 
 
# Select years and sort chronologically 
CostlyA <- Costly[year<=1992,] 
CostlyA <- CostlyA[order(year, BegDay),] 
head(CostlyA) 
 
# Adjust text positions and eliminate some names 
CostlyA[Name == 'Andrew', 9] <-  -1 
 
# Create bar plot of storms (Show in narrow plots screen) 
a <- barplot(CostlyA$Dmg_USB, ylim = c(0, 30), col = "darkblue", cex.main = .8,  

cex.axis = .8, cex.names = 0.6, names.arg = CostlyA$Label, las = 2,  
ylab = "U.S. Dollars ($ Billions)", xlab = "Year / Storm Number") 

a 
text(a + CostlyA$textadj, CostlyA$Dmg_USB+0.9, CostlyA$NameLab, cex = 1) 
lines(x = c(0, 16), y = c(9.47, 9.47), col = "darkblue", lty = 2, lwd = 1) 

 

##### End Program Code 
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 _____________________________________________________________________________________________  

Abstract: Accumulated cyclone energy (ACE) has been used by the National Oceanic and Atmospheric 
Administration, and others, as a measure of the strength and duration of tropical cyclones and their seasonal 
activity. The Actuaries Climate Index (ACI) was launched in 2016 for the U.S. and Canada, as a measure of changes 
in climate and coastal sea level in those countries. A component measuring tropical cyclone activity is not included 
in the ACI, since the low frequency of landfalling events is not suitable for a regional index. On a global basis, 
however, an index measuring tropical cyclone activity over land and water could be particularly useful to actuaries 
and those in the insurance industry with an interest in monitoring changes in tropical cyclone activity as it relates to 
climate change. Using the ACI methodology, this paper shows the results of a global index of tropical cyclone 
activity based on ACE data. Based on the index, trends in worldwide tropical cyclone activity over the period with 
good data (1985 – 2017) have been flat to downward, but this time period is not sufficiently long for a credible 
conclusion. This result is consistent with previous research by others, but no such analysis has been previously 
published based on the ACI methodology, in index form. 

Keywords. Accumulated cyclone energy, Actuaries Climate Index® 

 _____________________________________________________________________________________________  

INTRODUCTION 
 

Accumulated Cyclone Energy is a measure of the strength and duration of tropical cyclones. 

ACE is calculated from the maximum estimated wind speed of a storm at 6-hour intervals over its 

lifetime. Specifically, accumulated cyclone energy can be calculated for any storm using the  

following formula, 

ACE = 10-4 Σ v2
max 

where vmax is the estimated maximum sustained wind speed in knots at six-hour intervals and the 

sum of wind speeds squared is divided by 10,000 for convenience. ACE is a more comprehensive 

measure than the commonly used Saffir-Simpson scale. After determining the ACE for each storm, 

values can be accumulated by season to provide a measure of seasonal tropical storm activity and 

intensity for any region of the world. A worldwide database of ACE values has been constructed by 

Phil Klotzbach[1],[2] of the Colorado State University Tropical Meteorology Project. 

ACE data is available worldwide for most ocean basins starting in 1961 and for the Atlantic back 

to 1851, though tropical cyclone records are generally less reliable prior to tracking satellites, which 

began in the 1970s and were dependent on visible light images until the early 1980s[1]. The Actuaries 

Climate Index (ACI), which is documented and updated on a web site[3] sponsored by four actuarial 

organizations in North America (American Academy of Actuaries, Canadian Institute of Actuaries, 
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Casualty Actuarial Society and Society of Actuaries), is calculated using a reference period of 1961-

1990.   As the quality of satellite data prior to the mid-1980s likely led to significant underestimates 

in tropical cyclone intensity[4],[5],[6], a reference period of 1985-2014 is used in this paper.  While a 

much longer period would probably be required to measure average tropical cyclone activity, this 30-

year period marks the beginning of good satellite-based data and is long enough to serve as a useful 

baseline. 

Figure 1 shows annual ACE by region since 1961.  One can see that the West Pacific is the most 

active basin followed by the Southern Hemisphere.  In 2017, the North Atlantic basin was the 

largest contributor to worldwide tropical cyclone activity for the first time since at least 1961. 

 

Figure 1 – Worldwide ACE by Region 
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The Actuaries Climate Index measures changes in extreme temperatures, rainfall and wind, as 

well as changes in sea level.  The wind component in the ACI is based on average daily wind speeds 

and therefore does not reflect the most damaging winds found in tropical cyclones or other strong 

windstorms.  The ACI is calculated for three-month meteorological seasons (and by month) for 12 

large land regions in the United States and Canada.  At this temporal and geographical scale, tropical 

cyclones are relatively brief occurrences that occur rarely in most of these regions and not at all in 

some.  In order to produce a meaningful index of tropical cyclone activity, a broad geographic 

measure by ocean basin (including surrounding land areas) and worldwide is required.  This paper 

summarizes such an index with annual data through 2017. 

Figure 2 shows worldwide ACE as a standardized anomaly (ACEstd) compared to the reference 

period 1985-2014.  The standardized anomaly, which is the metric used in the Actuaries Climate 

Index, is the difference between the mean ACE for each year and the reference period mean, 

divided by the standard deviation of ACE during the reference period.  The standardized anomaly is 

a common tool for comparing different statistics, and measures ACE on a basis comparable to the 

Actuaries Climate Index.  Also shown in Figure 2 are moving averages of ACEstd over five, ten, and 

twenty years.  The Actuaries Climate Index is commonly presented with a five-year moving average 

as a means of smoothing out the random variations in the index so that trends can be more easily 

seen.  For tropical cyclone statistics, even on a worldwide basis, five years is not long enough to 

accomplish similar smoothing. The ten-year average better balances stability and responsiveness and 

is selected as the key metric for this paper.  As noted, data prior to the mid 1980s is likely 

understated.  Over the subsequent time period, ten-year averages have been generally declining since 

1998 and twenty-year averages since 2006.  Research by Klotzbach[1],[5] and Maue[7],[8] has previously 

discussed these trends.  The 21st century projections in the Fifth Assessment Report of the IPCC[9] 

are that the global frequency of tropical cyclones will likely decrease or remain essentially unchanged, 

while the global mean maximum wind speed in cyclones will likely increase. 
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Figure 2 – Worldwide ACEstd using 1985-2014 Reference Period 
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Figure 3 focuses on the ten-year moving average and compares ACEstd by region through 2017.  

One can see that activity in different regions is often offsetting.  Only for the ten-year periods 

ending 1996-2005 have four or more of the five regions been above the reference period average.  

In recent years, the worldwide average has been pulled down by well-below average tropical cyclone 

activity in the Western Pacific and the Southern Hemisphere.  Ryan Maue has noted[7] that activity in 

the North Atlantic and East Pacific basins has been inversely correlated and this can be clearly seen 

in Figure 3 (red versus dark blue lines). 
 
 
Figure 3 – Comparison of regional ACEstd using ten-year averages 
 

 
 

1.1 Research Context 

This paper primarily focuses on the following areas from the Research Taxonomy: 

• Actuarial Applications and Methodologies - Data Management and Information, 
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Enterprise Risk Management Processes (Analyzing/Quantifying Risks), Ratemaking 

(Large Loss and Extreme Event Loading) 

• Financial and Statistical Methods – Natural Peril Modeling 

• Business Areas – Fire & Allied Lines, Homeowners, Reinsurance 

A search of the Database of Actuarial Research Enquiry does not show any mention of the use of 

ACE to analyze hurricane activity, or any actuarial paper on global tropical cyclone or hurricane 

activity. 

Other scientific papers on the use of ACE or analyzing global hurricane activity are: 

1. Increasing destructiveness of tropical cyclones over the past 30 years, Emanuel, 2005[10] 

2. Hurricanes and Global Warming, Pielke Jr., Landsea, Mayfield, Laver and Pasch, 2005[11] 

3. Trends in global tropical cyclone activity over the past twenty years (1986 – 2005), Klotzbach, 

2006[1] 

4. A globally consistent reanalysis of hurricane variability and trends – Kossin, Knapp, Vimont, 

Murnane and Harper, 2007[12] 

5. Northern Hemisphere tropical cyclone activity – Maue, 2009[7] 

6. Recent historically low global tropical cyclone activity – Maue, 2011[8] 

7. Historical Global Tropical Cyclone Landfalls – Weinkle, Maue & Pielke Jr., 2012[13] 

8. Extremely intense hurricanes: revisiting Webster et al. (2005) after 10 years – Klotzbach & 

Landsea, 2015[5] 

1.2 Objective 

Given the lack of actuarial literature on the subject, and the launch in November 2016 of the 

Actuaries Climate Index, this paper will provide background information and data on Accumulated 

Cyclone Energy, in the form of an index using the ACI methodology. 

1.3 Outline 

In the remainder of the paper, Section 2 will discuss background and methods used, Section 3 

summarizes and discusses results, and Section 4 describes results and conclusions in more detail. 
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2. BACKGROUND AND METHODS 

2.1 ACE data 

Sums of ACE statistics for all storms in a season or year provide a measure of the combined 

cyclone energy in that season or year. This paper is based on summaries of ACE, worldwide and by 

ocean basin, constructed by Phil Klotzbach and available on the Colorado State University 

Meteorological Project website[2].  Similar data, available on a website[14] constructed by Ryan Maue at 

Weather.us, was also reviewed in researching this paper and was used to fill a few gaps in the 

Klotzbach database. 

ACE provides a more comprehensive measure of cyclone activity that the commonly used Saffir-

Simpson measure of hurricane strength, which is usually cited based on the maximum wind speed 

over the life of a storm.  Another measure, track integrated kinetic energy (TIKE), introduced by 

Misra et al[15], accounts for the size of the wind field, in addition to intensity and duration, making it 

a slightly better statistic than ACE but TIKE data is not generally available historically on a 

worldwide basis. 

2.2 ACE statistics and values for notable storms 

Exhibit 1 displays ACE statistics from 1961 through 2017 by region and worldwide.    Regions are 

defined as follows: North Atlantic, East Pacific (north of the equator and east of 180 degrees 

longitude), West Pacific (north of the equator and west of 180 degrees longitude), North Indian and 

Southern Hemisphere. Southern Hemisphere data includes the South Indian and South Pacific and 

is for each year ending June 30th. Tropical cyclones are rare in the South Atlantic and are excluded 

from the ACE statistics.  Data for each region includes the entire time that each storm is classified as 

either tropical or sub-tropical, whether over the ocean or surrounding land areas, bays and seas.  

ACE data for storms that cross regions are assigned to the region in which they first became 

named[2]. 

As noted in the footnotes on Exhibit 1, Sheet 2, the Klotzbach data goes back to 1961 or earlier 

(to 1851 in the North Atlantic) except in the East Pacific (EPAC) and the North Indian (NIO) 

regions.  To fill in the early years in EPAC and NIO, which represent only 19% of worldwide ACE 

across all years, two sources were used: 

• Maue[11] provides ACE for 1970 EPAC and 1970-1971 NIO 

• Wikipedia provides ACE for EPAC in 1963, 1965 and 1966 on pages: 
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https://en.wikipedia.org/wiki/196n_Pacific_hurricane_season, where n is 3, 5 or 6. 

• Otherwise, the author estimated 1960s ACE in these two regions based on the number 

and maximum intensity of storms 

The largest worldwide annual value of ACE was 1,198, which occurred in 1992.  On average, ACE 

is distributed by region as follows: 

• West Pacific 41% 

• Southern Hemisphere 26% (about two-thirds of which is from the South Indian, 

based on the Klotzbach data) 

• East Pacific 16% 

• North Atlantic 14% 

• North Indian 3% 

The largest ACE for an individual storm during the satellite era is 82 for Hurricane Ioke in 2006, 

which started in the East Pacific before crossing into the West Pacific and spent 9 days as a category 

4 or 5 storm on the Saffir-Simpson scale.  The largest ACE in the North Atlantic is 70.4 for 

Hurricane Ivan in 2004, which spent 8.25 days as a category 4 or 5 storm.  These statistics are from 

Wikipedia.  More recently, Hurricane Irma in 2017 generated the second highest ACE in the North 

Atlantic during the satellite era with a value of 67.5, spending 5.5 days as a category 4 or 5 storm 

according to preliminary information from the National Oceanic & Atmospheric Administration. 

2.3 Applying the ACI method to ACE 

The standardized anomalies of annual ACE compared to the 1985-2014 reference period are 

calculated based on the following formula: 

ACEstd = (ACE for Year N – Reference period mean ACE) /  

(Reference Period ACE standard deviation) 

Exhibit 2, Sheets 1-6, show ACEstd worldwide and by region graphically.  The underlying data for 

ACEstd worldwide is shown on Exhibit 3, Sheets 1-2 and ACEstd by region is shown on Exhibit 4, 

Sheets 1-2.  

A key consideration in determining ACEstd is the choice of reference period.  As noted, the 

Actuaries Climate Index uses a reference period of 1961-1990 but the more recent period was 
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chosen for ACEstd due to concerns about the completeness of tropical cyclone data prior to the 

advent of good satellite data. 

3. RESULTS AND DISCUSSION 

Exhibit 2, Sheets 1-6 display worldwide and regional ACEstd, each on a y-axis scale measuring 

anomalies relative to the reference period standard deviations, e.g., a value of 1.00 is a year one 

standard deviation above the reference period mean.  Standardized anomalies are a useful way of 

comparing different quantities on a similar scale.   

On a worldwide basis (Exhibit 2, Sheet 1), seven of the last ten years have had significantly below 

normal tropical cyclone activity, and only one of the last ten has had significantly above normal 

activity.  In the North Atlantic, 2017 was one of the most active and intense years for hurricanes, but 

the other four ocean basins all had below normal activity bringing the worldwide total to a well-

below average level. 

Figure 2 shows worldwide ACEstd with the 1985-2014 reference period and various rolling 

averages.  Figure 4 below compares the rolling averages in Figure 2 with rolling averages calculated 

with the same reference period as the Actuaries Climate Index, i.e. 1961-1990.  The underlying 

annual ACE data is the same in each graph but the standardized anomalies are different and can be 

found in Exhibit 3, Sheets 1-2.  The reference period mean is lower for 1961-1990 than for 1985-

2014 and the standard deviation is much lower in the earlier period.  As a result, the standardized 

anomalies are much higher, peaking at around two in the graph based on the earlier reference 

period. 

Whereas in Figure 2 (and the top graph in Figure 4) all three rolling averages ending 2017 were at 

or below the 1985-2014 reference period mean, the ten-year average ending 2017 is virtually the 

same as the 1961-1990 reference period mean in the lower graph in Figure 4 and the five- and 

twenty-year averages finish above the reference period mean.  Taking the ten-year average as the 

best metric for measuring trends in global cyclone activity implies that even with the 1961-1990 

reference period the recent rolling averages indicate no significant trend. An averaging period longer 

than ten years may be more appropriate for determining trends.  Until much more data becomes 

available with good satellite measurements of tropical cyclone intensity in the coming decades, the 

appropriate averaging period and the existence of trends will remain uncertain given the natural 

variability in these statistics. 
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Figure 4 – Worldwide ACEstd Comparing Reference Periods 
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A longer historical time series is provided by NOAA[16] for the North Atlantic, which is probably 

the most-studied region but still only has high quality data back to 1966 per Klotzbach[2].  

Standardized anomalies of this ACE data are plotted below in Figure 5.  Note that the thirty-year 

averages never reached zero, i.e., the average during 1985-2014 reference period, in the pre-satellite 

era. 

Figure 5 – North Atlantic ACE with 1985-2014 Reference Period 
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It has been noted by some researchers[1],[7],[8],[9],[10],[11] that although the number of global tropical 

cyclones has not increased with climate change, the number of intense storms has been trending 

upward.  Data from Klotzbach[2] on storm counts is displayed in Exhibit 6, Sheets 1-5 and 

summarized in graphs on Exhibit 5, Sheets 1-2.  This data shows that the number of named storms 

worldwide have been fairly stable since the 1970s in the 83-90 range per year.  Ten-year averages of 

major storms (category 3-5) have been stable since about the mid-1990s at 23.5-25.5 per year but at a 

higher level than the 1970s and 1980s, consistent with research[5],[6] indicating that pre-satellite data 

likely led to significant underestimates in intensity, especially for the most intense systems.  Exhibit 

5, Sheet 2 shows a decline in the number of non-major tropical cyclones (tropical storms and 

category 1-2 cyclones/hurricanes/typhoons) from around 70 per year in the 1970s to 10-year 

averages around 60 since 2010.  

4. CONCLUSIONS 

The methodology presented in this paper produces an index of tropical cyclone activity worldwide 

and by region, consistent with the methodology used for the Actuaries Climate Index.  Such an 

index can be easily updated and analyzed periodically. 

Worldwide ACEstd since 1985, the period with good satellite data, is probably not long enough to 

credibly measure the effects of climate change on tropical cyclone activity.  The two most unusual 

years for worldwide ACEstd were 1992 and 1997, the only years more than two standard deviations 

above the reference period mean.  In the 20 years since then, there have been 14 below average 

years and only 6 above average years.  The warm temperature component of the Actuaries Climate 

Index[3], and global temperature studies, have shown rapidly increasing anomalies since the late 

1970s.  Evidence that these warmer temperatures, along with warmer oceans, have increased the 

frequency and intensity of tropical cyclones remains to be seen. 
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Exhibit	1
Sheet	1

Accumulated	Cyclone	Energy	(ACE)
Source:	http://tropical.atmos.colostate.edu/Realtime/	(except	as	noted)

North East West North Southern
Atlantic Pacific Pacific Indian Hemisphere Worldwide
(NATL) (EPAC*) (WPAC) (NIO**) (SH***) (WW)

1961 205															 32																 364														 15																 106														 722														
1962 36	 34																 416														 13																 83																 581														
1963 118															 32																 378														 16																 140														 684														
1964 170															 27																 401														 20																 155														 772														
1965 84	 40																 428														 16																 72																 640														
1966 145															 66																 299														 23																 111														 644														
1967 122															 69																 397														 16																 96																 700														
1968 45	 66																 357														 17																 169														 654														
1969 166															 35																 202														 9	 86																 498														
1970 40	 79																 288														 16																 206														 629														
1971 97	 139														 380														 15																 219														 849														
1972 36	 137														 402														 22																 260														 857														
1973 48	 115														 147														 13																 222														 546														
1974 68	 91																 198														 5	 139														 501														
1975 76	 113														 161														 28																 194														 572														
1976 84	 122														 294														 8	 179														 686														
1977 27	 22																 164														 37																 147														 397														
1978 62	 207														 237														 19																 200														 724														
1979 93	 57																 278														 15																 210														 654														
1980 149															 79																 237														 2	 284														 750														
1981 100															 73																 227														 16																 209														 625														
1982 32	 161														 355														 21																 225														 794														
1983 17	 206														 220														 4	 201														 648														
1984 84	 193														 273														 21																 207														 779														
1985 88	 193														 229														 11																 199														 720														
1986 36	 108														 333														 3	 185														 665														
1987 34	 134														 357														 15																 116														 655														
1988 103															 114														 228														 17																 126														 588														
1989 135															 112														 304														 25																 266														 842														
1990 97	 250														 375														 18																 204														 944														
1991 36	 178														 413														 20																 147														 795														
1992 76	 291														 470														 40																 322														 1,198										
1993 39	 202														 267														 9	 227														 743														
1994 32	 185														 454														 15																 318														 1,004										
1995 227															 100														 253														 14																 167														 762														
1996 166															 54																 415														 34																 235														 904														
1997 41	 171														 568														 26																 357														 1,162										
1998 182															 134														 152														 28																 258														 755														
1999 177															 90																 109														 44																 213														 633														
2000 119															 96																 252														 9	 224														 700														
2001 110															 91																 306														 15																 129														 651														
2002 67	 125														 351														 6	 193														 742														
2003 176															 57																 335														 14																 262														 843														
2004 227															 71																 481														 13																 219														 1,011										
2005 245															 97																 310														 13																 257														 922														
2006 83	 157														 321														 15																 159														 736														
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Exhibit	1
Sheet	2

Accumulated	Cyclone	Energy	(ACE)
Source:	http://tropical.atmos.colostate.edu/Realtime/	(except	as	noted)

North East West North Southern
Atlantic Pacific Pacific Indian Hemisphere Worldwide
(NATL) (EPAC*) (WPAC) (NIO**) (SH***) (WW)

2007 74																	 53																 220														 46																 183														 575														
2008 146															 84																 178														 20																 200														 628														
2009 53																	 126														 278														 8																		 114														 580														
2010 165															 51																 121														 32																 199														 568														
2011 126															 121														 190														 11																 124														 571														
2012 133															 99																 302														 4																		 148														 686														
2013 36																	 75																 276														 46																 184														 617														
2014 67																	 203														 276														 30																 191														 766														
2015 63																	 288														 479														 36																 204														 1,069										
2016 141															 185														 248														 14																 201														 789														
2017 226															 98																 155														 16																 96																 591														

Total 5,830											 6,585										 17,105								 1,054										 10,747								 41,320								
Average 102															 116														 300														 18																 189														 725														
%	of	WW 14% 16% 41% 3% 26%

Notes: ** For	EPAC,	1961-2,	1964,	1967-1969	estimated	by	author	based	on
	Wikipedia	season	summaries:	196x	Pacific	Hurricane	Season;
	1963,	1965-66	from	similar	Wikipedia	pages,	which	show	ACE.
	1970	from	Maue:	(http://wx.graphics/tropical/)

*** For	NIO,	1961-1969	estimated	by	author,	1970-71	from	Maue
	(http://wx.graphics/tropical/)

**** SH	Data	for	12	months	ending	June	30th.		Excludes	South	Atlantic.
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Exhibit	3
Sheet	1

Worldwide	Accumulated	Cyclone	Energy	as	Standardized	Anomaly	(ACEstd)

Worldwide 5-Year 10-Year 20-Year Worldwide 5-Year 10-Year 20-Year
ACEstd Average Average Average ACEstd Average Average Average

1961 0.38 -0.26
1962 -0.82 -1.09
1963 0.06 -0.48
1964 0.81 0.04
1965 -0.32 0.02 -0.74 -0.50
1966 -0.28 -0.11 -0.71 -0.60
1967 0.20 0.09 -0.38 -0.45
1968 -0.20 0.04 -0.66 -0.49
1969 -1.52 -0.43 -1.58 -0.81
1970 -0.41 -0.44 -0.21 -0.80 -0.83 -0.67
1971 1.46 -0.10 -0.10 0.49 -0.59 -0.59
1972 1.52 0.17 0.13 0.54 -0.40 -0.43
1973 -1.12 -0.01 0.01 -1.29 -0.53 -0.51
1974 -1.50 -0.01 -0.22 -1.56 -0.52 -0.67
1975 -0.90 -0.11 -0.27 -1.14 -0.59 -0.71
1976 0.07 -0.38 -0.24 -0.47 -0.79 -0.69
1977 -2.38 -1.16 -0.50 -2.17 -1.33 -0.86
1978 0.40 -0.86 -0.44 -0.24 -1.12 -0.82
1979 -0.20 -0.60 -0.30 -0.66 -0.94 -0.73
1980 0.61 -0.30 -0.20 -0.21 -0.09 -0.73 -0.66 -0.66
1981 -0.44 -0.40 -0.39 -0.25 -0.83 -0.80 -0.79 -0.69
1982 0.99 0.27 -0.45 -0.16 0.16 -0.33 -0.83 -0.63
1983 -0.25 0.14 -0.36 -0.17 -0.69 -0.42 -0.77 -0.64
1984 0.86 0.35 -0.12 -0.17 0.08 -0.27 -0.60 -0.64
1985 0.36 0.30 0.00 -0.14 -0.27 -0.31 -0.52 -0.61
1986 -0.11 0.37 -0.01 -0.13 -0.59 -0.26 -0.53 -0.61
1987 -0.19 0.14 0.20 -0.15 -0.65 -0.42 -0.38 -0.62
1988 -0.76 0.03 0.09 -0.17 -1.04 -0.50 -0.46 -0.64
1989 1.40 0.14 0.25 -0.03 0.45 -0.42 -0.35 -0.54
1990 2.27 0.52 0.41 0.11 1.05 -0.16 -0.23 -0.45
1991 1.00 0.74 0.56 0.08 0.17 0.00 -0.13 -0.46
1992 4.42 1.67 0.90 0.23 2.54 0.64 0.11 -0.36
1993 0.56 1.93 0.98 0.31 -0.13 0.82 0.16 -0.30
1994 2.77 2.20 1.17 0.52 1.40 1.01 0.29 -0.16
1995 0.72 1.89 1.21 0.61 -0.02 0.79 0.32 -0.10
1996 1.92 2.08 1.41 0.70 0.81 0.92 0.46 -0.04
1997 4.12 2.02 1.84 1.02 2.34 0.88 0.76 0.19
1998 0.66 2.04 1.98 1.04 -0.06 0.89 0.85 0.20
1999 -0.37 1.41 1.80 1.03 -0.78 0.46 0.73 0.19
2000 0.19 1.30 1.60 1.01 -0.38 0.38 0.59 0.18
2001 -0.22 0.87 1.48 1.02 -0.67 0.09 0.50 0.19
2002 0.55 0.16 1.09 0.99 -0.14 -0.41 0.24 0.17
2003 1.41 0.31 1.17 1.08 0.46 -0.30 0.29 0.23
2004 2.84 0.95 1.18 1.18 1.45 0.14 0.30 0.30
2005 2.08 1.33 1.32 1.26 0.92 0.40 0.39 0.36
2006 0.49 1.47 1.17 1.29 -0.18 0.50 0.29 0.38

Reference	Period	1961	-	1990 Reference	Period	1985	-	2014
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Worldwide	Accumulated	Cyclone	Energy	as	Standardized	Anomaly	(ACEstd)

Worldwide 5-Year 10-Year 20-Year Worldwide 5-Year 10-Year 20-Year
ACEstd Average Average Average ACEstd Average Average Average

Reference	Period	1961	-	1990 Reference	Period	1985	-	2014

2007 -0.87 1.19 0.68 1.26 -1.12 0.31 -0.05 0.35
2008 -0.42 0.82 0.57 1.27 -0.81 0.05 -0.13 0.36
2009 -0.83 0.09 0.52 1.16 -1.09 -0.46 -0.16 0.29
2010 -0.93 -0.51 0.41 1.00 -1.16 -0.87 -0.24 0.18
2011 -0.90 -0.79 0.34 0.91 -1.14 -1.07 -0.28 0.11
2012 0.07 -0.60 0.29 0.69 -0.47 -0.94 -0.31 -0.04
2013 -0.51 -0.62 0.10 0.64 -0.87 -0.95 -0.45 -0.08
2014 0.75 -0.30 -0.11 0.54 0.00 -0.73 -0.59 -0.15
2015 3.33 0.55 0.02 0.67 1.79 -0.14 -0.51 -0.06
2016 0.95 0.92 0.06 0.62 0.14 0.12 -0.47 -0.09
2017 -0.73 0.76 0.08 0.38 -1.03 0.00 -0.47 -0.26

1961-1990 1985-2014
Mean 677.3 765.6
Standard	Dev. 117.8 169.9

ACEstd	=	 (ACE	for	Year	N	-	Reference	Period	Mean)	/	(Reference	Period	Standard	deviation)
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Worldwide	Accumulated	Cyclone	Energy	as	Standardized	Anomaly	(ACEstd)	-	By	Region

10-Year 10-Year 10-Year 10-Year 10-Year
ACEstd Average ACEstd Average ACEstd Average ACEstd Average ACEstd Average

1961 1.49 -1.60 0.55 -0.41 -1.59
1962 -1.16 -1.58 1.04 -0.61 -1.97
1963 0.13 -1.60 0.68 -0.33 -1.04
1964 0.94 -1.69 0.90 -0.05 -0.80
1965 -0.41 -1.46 1.15 -0.33 -2.15
1966 0.55 -1.03 -0.05 0.24 -1.51
1967 0.19 -0.98 0.86 -0.33 -1.75
1968 -1.02 -1.03 0.49 -0.25 -0.58
1969 0.88 -1.55 -0.95 -0.94 -1.91
1970 -1.10 0.05 -0.81 -1.33 -0.15 0.45 -0.29 -0.33 0.03 -1.33
1971 -0.20 -0.12 0.20 -1.15 0.70 0.47 -0.43 -0.33 0.23 -1.14
1972 -1.16 -0.12 0.16 -0.98 0.91 0.45 0.16 -0.26 0.90 -0.86
1973 -0.97 -0.23 -0.21 -0.84 -1.45 0.24 -0.55 -0.28 0.29 -0.72
1974 -0.66 -0.39 -0.61 -0.73 -0.98 0.05 -1.20 -0.39 -1.06 -0.75
1975 -0.53 -0.40 -0.25 -0.61 -1.32 -0.19 0.64 -0.30 -0.17 -0.55
1976 -0.41 -0.50 -0.10 -0.52 -0.10 -0.20 -1.00 -0.42 -0.42 -0.44
1977 -1.30 -0.65 -1.76 -0.60 -1.30 -0.42 1.38 -0.25 -0.93 -0.36
1978 -0.75 -0.62 1.34 -0.36 -0.62 -0.53 -0.13 -0.24 -0.07 -0.31
1979 -0.26 -0.73 -1.17 -0.32 -0.24 -0.46 -0.39 -0.18 0.10 -0.11
1980 0.61 -0.56 -0.82 -0.32 -0.62 -0.50 -1.50 -0.30 1.29 0.02
1981 -0.16 -0.56 -0.92 -0.43 -0.72 -0.64 -0.30 -0.29 0.08 0.00
1982 -1.22 -0.57 0.57 -0.39 0.47 -0.69 0.05 -0.30 0.34 -0.05
1983 -1.46 -0.61 1.33 -0.24 -0.78 -0.62 -1.29 -0.37 -0.05 -0.09
1984 -0.41 -0.59 1.11 -0.07 -0.29 -0.55 0.06 -0.25 0.05 0.02
1985 -0.34 -0.57 1.10 0.07 -0.69 -0.49 -0.75 -0.39 -0.08 0.03
1986 -1.16 -0.65 -0.33 0.04 0.27 -0.45 -1.39 -0.43 -0.31 0.04
1987 -1.19 -0.63 0.11 0.23 0.49 -0.27 -0.44 -0.61 -1.43 -0.01
1988 -0.11 -0.57 -0.22 0.08 -0.71 -0.28 -0.22 -0.62 -1.27 -0.13
1989 0.39 -0.50 -0.26 0.17 0.00 -0.26 0.43 -0.53 1.00 -0.04
1990 -0.20 -0.59 2.05 0.45 0.66 -0.13 -0.14 -0.40 0.00 -0.17
1991 -1.16 -0.69 0.86 0.63 1.01 0.04 0.02 -0.37 -0.92 -0.27
1992 -0.53 -0.62 2.74 0.85 1.53 0.15 1.59 -0.21 1.91 -0.11
1993 -1.11 -0.58 1.25 0.84 -0.34 0.19 -0.91 -0.18 0.36 -0.07
1994 -1.22 -0.66 0.97 0.83 1.38 0.36 -0.38 -0.22 1.83 0.11
1995 1.84 -0.45 -0.46 0.67 -0.47 0.38 -0.47 -0.19 -0.61 0.06
1996 0.88 -0.24 -1.24 0.58 1.02 0.46 1.12 0.06 0.50 0.14
1997 -1.08 -0.23 0.74 0.64 2.44 0.65 0.46 0.15 2.47 0.53
1998 1.13 -0.11 0.12 0.68 -1.41 0.58 0.63 0.24 0.88 0.74
1999 1.05 -0.04 -0.62 0.64 -1.81 0.40 1.96 0.39 0.15 0.66
2000 0.14 -0.01 -0.53 0.38 -0.49 0.29 -0.86 0.32 0.32 0.69
2001 0.00 0.11 -0.62 0.24 0.02 0.19 -0.38 0.28 -1.22 0.66
2002 -0.67 0.10 -0.05 -0.04 0.44 0.08 -1.11 0.01 -0.19 0.45
2003 1.04 0.31 -1.19 -0.29 0.29 0.14 -0.53 0.04 0.94 0.51
2004 1.84 0.62 -0.94 -0.48 1.63 0.17 -0.54 0.03 0.25 0.35
2005 2.12 0.65 -0.52 -0.48 0.05 0.22 -0.54 0.02 0.86 0.50
2006 -0.42 0.52 0.50 -0.31 0.16 0.13 -0.38 -0.13 -0.73 0.37

ACEstd	-	Reference	Period	1985	-	2014
North	Atlantic East	Pacific West	Pacific North	Indian Southern	Hemisphere
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Worldwide	Accumulated	Cyclone	Energy	as	Standardized	Anomaly	(ACEstd)	-	By	Region

10-Year 10-Year 10-Year 10-Year 10-Year
ACEstd Average ACEstd Average ACEstd Average ACEstd Average ACEstd Average

ACEstd	-	Reference	Period	1985	-	2014
North	Atlantic East	Pacific West	Pacific North	Indian Southern	Hemisphere

2007 -0.56 0.57 -1.26 -0.51 -0.78 -0.19 2.11 0.04 -0.35 0.09
2008 0.57 0.51 -0.73 -0.60 -1.16 -0.17 -0.02 -0.03 -0.07 0.00
2009 -0.89 0.32 -0.02 -0.53 -0.24 -0.01 -0.99 -0.33 -1.46 -0.16
2010 0.87 0.39 -1.28 -0.61 -1.69 -0.13 0.94 -0.14 -0.09 -0.21
2011 0.25 0.41 -0.11 -0.56 -1.06 -0.24 -0.77 -0.18 -1.30 -0.21
2012 0.36 0.52 -0.48 -0.60 -0.02 -0.28 -1.29 -0.20 -0.90 -0.29
2013 -1.16 0.30 -0.88 -0.57 -0.26 -0.34 2.07 0.06 -0.32 -0.41
2014 -0.67 0.05 1.28 -0.35 -0.26 -0.53 0.80 0.19 -0.22 -0.46
2015 -0.74 -0.24 2.70 -0.03 1.62 -0.37 1.31 0.38 -0.01 -0.54
2016 0.49 -0.15 0.97 0.02 -0.52 -0.44 -0.53 0.36 -0.05 -0.48
2017 1.82 0.09 -0.49 0.10 -1.39 -0.50 -0.32 0.12 -1.75 -0.62

1985-2014
Mean	ACE 109.9 127.3 304.1 20.1 204.2
Standard	Dev. 63.7 59.5 107.9 12.3 61.7

ACEstd	=	 (ACE	for	Year	N	-	Reference	Period	Mean)	/	(Reference	Period	Standard	deviation)
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Number	of	Tropical	Cyclones

Named Tropical Hurricanes, Category Named Tropical Hurricanes, Category
Year Storms Storms Cycl.	&	Typh. 3+ Storms Storms Cycl.	&	Typh. 3+

1970 89 51 38 16
1971 102 44 58 22
1972 86 30 56 25
1973 82 41 41 12
1974 95 53 42 8
1975 83 42 41 17
1976 84 43 41 19
1977 69 35 34 9
1978 93 44 49 16
1979 76 40 36 20 85.9 42.3 43.6 16.4
1980 81 34 47 24 85.1 40.6 44.5 17.2
1981 89 42 47 18 83.8 40.4 43.4 16.8
1982 88 38 50 26 84.0 41.2 42.8 16.9
1983 77 33 44 20 83.5 40.4 43.1 17.7
1984 99 47 52 21 83.9 39.8 44.1 19.0
1985 102 50 52 24 85.8 40.6 45.2 19.7
1986 84 39 45 16 85.8 40.2 45.6 19.4
1987 84 43 41 18 87.3 41.0 46.3 20.3
1988 78 42 36 18 85.8 40.8 45.0 20.5
1989 90 34 56 25 87.2 40.2 47.0 21.0
1990 93 35 58 21 88.4 40.3 48.1 20.7
1991 74 30 44 22 86.9 39.1 47.8 21.1
1992 105 45 60 34 88.6 39.8 48.8 21.9
1993 82 30 52 26 89.1 39.5 49.6 22.5
1994 96 45 51 29 88.8 39.3 49.5 23.3
1995 80 32 48 24 86.6 37.5 49.1 23.3
1996 93 38 55 27 87.5 37.4 50.1 24.4
1997 101 44 57 29 89.2 37.5 51.7 25.5
1998 88 37 51 21 90.2 37.0 53.2 25.8
1999 82 41 41 21 89.4 37.7 51.7 25.4
2000 89 42 47 21 89.0 38.4 50.6 25.4
2001 84 35 49 23 90.0 38.9 51.1 25.5
2002 81 41 40 27 87.6 38.5 49.1 24.8
2003 86 37 49 25 88.0 39.2 48.8 24.7
2004 85 33 52 31 86.9 38.0 48.9 24.9
2005 99 46 53 28 88.8 39.4 49.4 25.3
2006 80 40 40 26 87.5 39.6 47.9 25.2
2007 77 33 44 23 85.1 38.5 46.6 24.6
2008 94 52 42 24 85.7 40.0 45.7 24.9
2009 85 50 35 19 86.0 40.9 45.1 24.7
2010 72 30 42 22 84.3 39.7 44.6 24.8
2011 75 37 38 21 83.4 39.9 43.5 24.6
2012 85 40 45 20 83.8 39.8 44.0 23.9
2013 92 46 46 22 84.4 40.7 43.7 23.6
2014 80 32 48 29 83.9 40.6 43.3 23.4
2015 93 38 55 39 83.3 39.8 43.5 24.5
2016 85 41 44 26 83.8 39.9 43.9 24.5
2017 84 42 42 21 84.5 40.8 43.7 24.3

Total 4151 1917 2234 1075
Average 86.5 39.9 46.5 22.4

Total	1985-2014 2596 1179 1417 716
Average 86.5 39.3 47.2 23.9

Sources:	 http://tropical.atmos.colostate.edu/Realtime/
(except	for	East	Pacific	1970	and	North	Indian	1970-1971	and	South	Atlantic:	https://en.wikipedia.org/wiki/)

Worldwide Worldwide	10-Year	Averages
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Number	of	Tropical	Cyclones

Year

1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017

Total
Average

Total	1985-2014
Average

Named Tropical Category Named Tropical Category
Storms Storms Hurricanes 3+ Storms Storms Hurricanes 3+

10 5 5 2 18 14 4 0
13 7 6 1 18 6 12 6
7 4 3 0 14 6 8 4
8 4 4 1 12 5 7 3
11 7 4 2 18 7 11 3
9 3 6 3 17 8 9 4
10 4 6 2 15 6 9 5
7 2 5 1 8 4 4 0
11 6 5 2 19 5 14 7
9 3 6 2 10 4 6 4
11 2 9 2 15 8 7 3
12 5 7 3 15 7 8 1
6 4 2 1 23 11 12 5
4 1 3 1 21 9 12 8
13 8 5 1 21 8 13 7
11 4 7 3 24 11 13 8
6 2 4 0 17 8 9 3
7 4 3 1 20 10 10 4
12 7 5 3 15 8 7 3
11 4 7 2 18 9 9 4
14 6 8 1 21 5 16 6
8 4 4 2 14 4 10 5
7 3 4 1 27 11 16 10
8 4 4 1 15 4 11 9
7 4 3 0 20 10 10 5
19 8 11 5 10 3 7 3
13 4 9 6 9 4 5 2
8 5 3 1 19 10 9 7
14 4 10 3 13 4 9 6
12 4 8 5 9 3 6 2
15 7 8 3 19 13 6 2
15 6 9 4 16 8 8 2
12 8 4 2 15 7 8 6
16 9 7 3 16 9 7 0
15 6 9 6 12 6 6 3
28 13 15 7 15 8 7 2
10 5 5 2 19 8 11 6
15 9 6 2 11 7 4 1
16 8 8 5 17 10 7 2
9 6 3 2 20 12 8 5
19 7 12 5 8 5 3 2
19 12 7 4 11 1 10 6
19 9 10 2 17 7 10 5
14 12 2 0 20 11 9 1
8 2 6 2 22 6 16 9
11 7 4 2 26 10 16 11
15 8 7 4 21 8 13 6
17 7 10 6 18 9 9 4

571 273 298 119 798 357 441 210
11.9 5.7 6.2 2.5 16.6 7.4 9.2 4.4

387 186 201 83 489 222 267 129
12.9 6.2 6.7 2.8 16.3 7.4 8.9 4.3

North	Atlantic East	Pacific
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Number	of	Tropical	Cyclones

Year

1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017

Total
Average

Total	1985-2014
Average

Named Tropical Category Named Tropical Category
Storms Storms Typhoons 3+ Storms Storms Cyclones 3+

24 12 12 11 7 4 3 1
35 11 24 11 7 5 2 1
30 8 22 14 4 0 4 0
21 9 12 4 4 4 0 0
32 17 15 3 1 0 1 0
20 6 14 5 5 2 3 0
25 11 14 9 5 5 0 0
19 8 11 4 5 3 2 2
28 13 15 3 4 2 2 0
23 9 14 8 5 4 1 0
24 9 15 9 3 3 0 0
28 12 16 6 3 1 2 0
25 6 19 12 5 3 2 1
23 11 12 6 3 3 0 0
27 11 16 9 4 2 2 0
26 9 17 6 6 6 0 0
27 8 19 8 3 3 0 0
24 7 17 12 8 8 0 0
26 13 13 7 5 4 1 1
31 10 21 8 2 2 0 1
32 11 21 8 2 1 1 1
29 9 20 11 4 3 1 1
32 11 21 11 10 7 3 1
30 10 20 9 3 0 3 0
36 16 20 12 5 4 1 1
27 12 15 7 4 2 2 1
36 15 21 10 8 4 4 1
32 10 22 12 4 2 2 1
18 9 9 5 8 3 5 1
24 13 11 4 5 2 3 3
25 10 15 8 4 2 2 0
29 9 20 11 3 2 1 1
24 8 16 11 5 5 0 0
22 5 17 11 4 3 1 0
31 11 20 14 5 3 2 0
24 6 18 10 6 6 0 0
22 9 13 10 6 5 1 1
22 6 16 9 6 3 3 2
27 15 12 8 6 5 1 1
24 9 15 7 5 4 1 0
15 6 9 4 5 2 3 2
18 8 10 7 6 5 1 0
25 10 15 10 4 4 0 0
28 12 16 11 6 2 4 1
21 9 12 7 5 3 2 2
26 6 20 16 5 3 2 2
24 11 13 11 5 4 1 0
26 14 12 6 4 2 2 1

1247 480 767 415 232 155 77 31
26.0 10.0 16.0 8.6 4.8 3.2 1.6 0.6

787 296 491 268 153 105 48 23
26.2 9.9 16.4 8.9 5.1 3.5 1.6 0.8

West	Pacific North	Indian
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Number	of	Tropical	Cyclones

Year

1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017

Total
Average

Total	1985-2014
Average

Named Tropical Category Named Tropical Category
Storms Storms Cyclones 3+ Storms Storms Cyclones 3+

30 16 14 2 17 6 11 2
29 15 14 3 20 7 13 3
31 12 19 7 15 7 8 2
37 19 18 4 23 9 14 3
33 22 11 0 18 10 8 0
32 23 9 5 20 14 6 3
29 17 12 3 16 9 7 3
30 18 12 2 15 7 8 1
31 18 13 4 20 11 9 4
29 20 9 6 17 12 5 4
28 12 16 10 16 4 12 9
31 17 14 8 21 11 10 8
29 14 15 7 19 10 9 2
26 9 17 5 11 5 6 0
34 18 16 4 24 13 11 3
35 20 15 7 20 12 8 2
31 18 13 5 21 12 9 5
25 14 11 1 11 7 4 0
20 10 10 4 13 7 6 2
28 9 19 10 17 4 13 6
24 12 12 5 17 8 9 4
19 10 9 3 14 8 6 2
29 13 16 11 14 7 7 7
26 12 14 7 12 6 6 2
28 11 17 11 22 9 13 7
20 7 13 8 14 4 10 7
27 11 16 8 18 5 13 7
38 17 21 8 20 8 12 5
35 17 18 6 15 9 6 2
32 19 13 7 20 10 10 6
26 10 16 8 17 5 12 7
21 10 11 5 14 5 9 4
25 13 12 8 17 7 10 7
28 11 17 11 18 8 10 5
22 7 15 8 15 3 12 6
26 13 13 9 18 11 7 4
23 13 10 7 15 10 5 5
23 8 15 9 14 3 11 8
28 14 14 8 21 11 10 5
27 19 8 5 18 11 7 4
25 10 15 9 14 6 8 5
21 11 10 4 12 7 5 1
20 10 10 3 16 7 9 2
24 9 15 9 16 6 10 6
24 12 12 9 14 5 9 7
25 12 13 8 16 8 8 5
20 10 10 5 9 4 5 3
19 10 9 4 11 6 5 2

1303 652 651 300 795 374 421 197
27.1 13.6 13.6 6.3 16.6 7.8 8.8 4.1

780 370 410 213 487 221 266 140
26.0 12.3 13.7 7.1 16.2 7.4 8.9 4.7

South	IndianSouthern	Hemisphere
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Number	of	Tropical	Cyclones

Year

1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017

Total
Average

Total	1985-2014
Average

Named Tropical Category Named Tropical Category
Storms Storms Cyclones 3+ Storms Storms Hurricanes 3+

13 10 3 0 0 0 0 0
9 8 1 0 0 0 0 0
16 5 11 5 0 0 0 0
14 10 4 1 0 0 0 0
15 12 3 0 0 0 0 0
12 9 3 2 0 0 0 0
13 8 5 0 0 0 0 0
15 11 4 1 0 0 0 0
11 7 4 0 0 0 0 0
12 8 4 2 0 0 0 0
12 8 4 1 0 0 0 0
10 6 4 0 0 0 0 0
10 4 6 5 0 0 0 0
15 4 11 5 0 0 0 0
10 5 5 1 0 0 0 0
15 8 7 5 0 0 0 0
10 6 4 0 0 0 0 0
14 7 7 1 0 0 0 0
7 3 4 2 0 0 0 0
11 5 6 4 0 0 0 0
7 4 3 1 0 0 0 0
4 1 3 1 1 1 0 0
15 6 9 4 0 0 0 0
14 6 8 5 0 0 0 0
6 2 4 4 0 0 0 0
6 3 3 1 0 0 0 0
9 6 3 1 0 0 0 0
18 9 9 3 0 0 0 0
20 8 12 4 0 0 0 0
12 9 3 1 0 0 0 0
9 5 4 1 0 0 0 0
7 5 2 1 0 0 0 0
8 6 2 1 0 0 0 0
10 3 7 6 0 0 0 0
6 4 2 2 1 0 1 0
8 2 6 5 0 0 0 0
8 3 5 2 0 0 0 0
9 5 4 1 0 0 0 0
7 3 4 3 0 0 0 0
9 8 1 1 0 0 0 0
10 3 7 4 1 1 0 0
9 4 5 3 0 0 0 0
4 3 1 1 0 0 0 0
8 3 5 3 0 0 0 0
10 7 3 2 0 0 0 0
9 4 5 3 0 0 0 0
11 6 5 2 0 0 0 0
8 4 4 2 0 0 0 0

505 276 229 103 3 2 1 0
10.5 5.8 4.8 2.1 0.1 0.0 0.0 0.0

290 147 143 73 3 2 1 0
9.7 4.9 4.8 2.4 0.1 0.1 0.0 0.0

South	Pacific South	Atlantic
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A Simple Method for Modeling Changes Over Time 
 

Uri Korn, FCAS 
 
__________________________________________________________________________________________  

Abstract 

Properly modeling changes over time is essential for forecasting and important for any model with data that spans 
multiple time periods.  Regression models are probably the most commonly used for building predictive models in 
the insurance industry.  These models do a fine job of fitting data and determining variable relationships, but are 
not meant for explaining how entities and relationships change over time, as time series models do.  Time series 
models, on the other hand, have other drawbacks, depending on the type of model. 
 
A method is presented to add time series components within a penalized regression framework so that these models 
are capable of handling everything a penalized generalized linear model can handle (distributional flexibility and 
credibility), as well as changes over time.  Doing this, a subset of state space model functionality can be incorporated 
in a more familiar framework.  The benefits of state space models in terms of their accuracy and intuitiveness are 
explained.  This method can be useful for pricing models and detailed profitability studies, for example, as well as 
any other type of model with observations spanning multiple time periods. 
  
Keywords. State Space Models, Penalized Regression, Elastic Net, Credibility, Forecasting, Time Series, 
Hierarchical Models 
__________________________________________________________________________________________  

1. INTRODUCTION 

Actuaries are frequently relied upon to make forecasts and predictions across time periods.  This 
can be as a forecast for a future period, such as in ratemaking, as an interpretation of the past, as in 
reserving, or both together, as in profitability studies.  Despite this, the most common type of model 
used, the linear regression model, is not equipped to handle changes over time, which is an important 
consideration when working with data that spans multiple time periods and when forecasting future 
periods. 

This type of behavior is best modeled via a state space model, a flexible and powerful time series 
method.  But besides being less familiar to many practitioners, they have other drawbacks as well, 
depending on how they are solved.  A Bayesian model can be used, but these take extra time to build 
and fit and do not scale well to very large datasets.  The other popular option is the Kalman Filter, but 
it is less accurate and does not provide the distributional flexibility that generalized linear models do. 

This paper shows a method to add random walks and related state space model functionality to 
linear regression models.  In a random walk, the complement of credibility for each period is the fitted 
value of the previous period.  This is in contrast to including the time variable as a categorical variable, 
which would use the overall mean as the complement (if using a model that incorporates credibility, 
such as a mixed model).  Besides being less intuitive since use as a categorical variable ignores the 
order of the periods, its performance is far inferior to the random walk, as is shown. 
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A simple method is shown that allows for a subset of state space model functionality, such as the 
described type of behavior, within a penalized linear regression framework that does not suffer the 
same drawbacks.  This model can handle distributional flexibility and credibility, as well as time series 
components.  With these modifications, these models are better equipped to deal with this type of 
data. 

1.1 Research Context 
State space models (SSMs) and penalized regression methods will be explained and used throughout 

this paper.  On the SSM side, De Jong and Zehnwirth 1983 were the first to introduce their use into 
the actuarial literature and use them to smooth development patterns.  Zehnwirth 1996 and Wuthrich 
and Merz 2008 both use SSMs to smooth reserving estimates and Evans and Schmid 2007 use them 
to smooth trend estimates.  De Jong 2005 gives a nice overview of SSMs and also shows examples of 
their use in mortality modeling and claims reserving.  Korn 2016 uses a simplified SSM to smooth loss 
ratios by year. 

On the penalized regression side, see Hastie, et al. 2009.  Hastie and Qian 2014 give a nice overview 
of these models and their use in the R modeling language.  Williams et al. 2015 show the benefit of 
using these models for variable selection.  And recently, Frees and Gee 2016 showed how these models 
can be used to price policy endorsements.  These lists are not meant to be comprehensive; refer to the 
mentioned papers for further references. 

1.2 Objective 
The goal of this paper is to show an approach that fits within a regression framework, is capable 

of handling time series effects,  works well with volatile data having relatively few periods, is capable 
of handling big data, and that produces results suitable for presentation.  The proposed method will 
be referred to as a (linear) regression based state space model, or RSSM for short. 

1.3 Outline 
Section 2 gives an overview of SSMs.  Section 3 discusses some alternative methods for handling 

changes over time and estimates their performance using simulation results.  Section 4 explains how 
to implement a random walk using the RSSM.  Section 5 discusses standardization of time series 
components, something that is necessary for penalized regression models.  Sections 6 and 7 discuss 
more SSM functionality that can be implemented with this approach, including changing trends and 
momentum.  Section 8 discusses some practical implementation issues, and section 9 demonstrates a 
use case involving yearly loss ratios. 
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2. AN OVERVIEW OF STATE SPACE MODELS 

State space models (SSMs) are a commonly used methodology to model how different phenomena 
change over time.  They are expressed as a series of related equations.  Their flexibility and ease of 
interpretation make them a common modeling choice.  They are usually solved for using either a 
Kalman Filter or a Bayesian type model (which are both discussed in the next section).  The proposed 
approach provides another means of solving for a subset of SSMs within a GLM framework. 

A simple linear trend model (known as “drift” in SSM terminology), for example, can be expressed 
as follows: (Kim and Nelson 1999) 

 

Yt = Xt + et 

 

Xt = Xt – 1 + u 

 

The first equation (also known as the measurement or observation equation) relates the actual data 
(Y) to the fitted values (X) with an error term (e).  In the second (also known as the state or transition 
equation), the fitted values are increased by the trend (u) each period. 

Another type of SSM is a random walk, which is a way to model gradual changes that can occur 
over time.  The complement of credibility for each period is the fitted result of the previous period, 
which is an intuitive way to model changes over time.  Such a model balances goodness of fit to the 
data versus having smaller or smoother changes from period to period.  A random walk could be 
represented as follow: 

 

Yt = Xt + et 

 

Xt = Xt – 1 + rt 

 

These equations are equivalent to the above except that in the second, the fitted values, instead of 
increasing by the same amount each period, are increased by varying amounts (r).  This variable is 
another error term whose values are also minimized.  The result is a model that balances goodness of 
fit to the data with as little change as possible, depending on the ratio of the error terms.  The first 
term (e) represents the volatility of the data, while the second (r) represents the variance or average 
magnitude of the period-to-period changes. 
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A model where the trend (or drift) itself changes via a random walk can be modeled as well.  An 
example is as follows: 

 

Yt = Xt + et  

 

Xt = Xt – 1 + ut 

 

ut = ut – 1 + rt 

 

Here, the third equation allows for the trend itself (u) to follow a random walk.  Both e and r are 
error terms that are minimized. 

More types of models are discussed as well.  Even though the proposed models are based on state 
space models, they can still be used without a complete familiarity of SSMs. 

3. COMPARISON WITH EXISTING METHODS 

3.1 An Overview 
Perhaps the most common way that actuaries use to control for changes over time is to model the 

year within a GLM as a categorical variable.  If a mixed model or penalized regression is used, 
credibility weighting is performed against the overall mean.  But such an approach ignores the 
relationships between consecutive years.  The complement of credibility for each year should be the 
fitted value of the previous year, which is much more intuitive than the overall mean.  Figure 1 
illustrates this point1.  (A penalized regression model was used so that credibility is taken into account.  
This is similar to adding the year as a random effect in a mixed model.)  Note the behavior in years 7 
and 8, for example; even though the fitted curve should most likely be decreasing in this range, this 
does not occur since it is constrained to fall in between the data points and the overall mean.  It can 
be seen that using an RSSM results in more intuitive behavior.  Note how the former is also further 
off in the latest period making forecasts of future periods less accurate. 

 

  

                                                 
1 All of these models were fit using an elastic net with 3-fold cross validation repeated 20 times. 
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Figure 1: Time as a categorical variable versus RSSM 

 

State space models are another way to model changes over time.  The most common methods of 
solving for an SSM are the Kalman Filter2 and Bayesian Markov Chain Monte Carlo (MCMC) 
modeling.  The Kalman Filter uses formulas to calculate the amount of credibility to be assigned to 
each period, using the previous period’s prediction as the complement of credibility.  The model 
requires three parameters, which are estimated via maximum likelihood: the value of the first period 
and two variance parameters that help determine the credibility.  The calculations are made easier by 
assuming that both the distribution of the errors in the data as well as that of the period-to-period 
changes are normally distributed.  (This model is essentially the time series equivalent of Buhlmann-
Straub credibility.)  For a more thorough review of the Kalman Filter, refer to Korn 2016. 

One problem with using the Kalman Filter to model insurance data is its lack of distributional 
flexibility such as a GLM provides.  Errors are assumed to be normally distributed and changes 
additive.  There are some ways of fixing these issues (see Taylor and McGuire 2007 and Korn 2016), 
but these solutions are still not as robust, flexible, and/or as simple as the proposed.  Using the Kalman 
Filter to fit the example data produces a fitted result with no changes, equal to the overall mean3.  This 
is because this model requires more than just ten data points to adequately adapt to and fit the data. 

A more flexible framework is provided by Bayesian models, which are capable of modeling SSMs, 

                                                 
2 The results of the Holt-Winters method, also known as exponential smoothing, should be roughly similar but less 

accurate than the Kalman Filter and will not be expanded upon here. 
3 The same was true when using the “bagging” method described in Korn 2016. 
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such as a random walk, as well as incorporating any type of distribution assumption.   A Bayesian 
model implementing a random walk has parameters for every single period unlike the Kalman Filter 
that only has a parameter for the first period.  Parameters are typically solved via MCMC techniques, 
which are simulations that are guided by the overall likelihood of the model.  The downsides to these 
models are the specialized expertise required as well as the time needed to build and run each model.  
These models also do not scale well to large datasets or to a large number of parameters.  As shown 
in Figure 2, running a Bayesian model on the example dataset performs satisfactory, although produces 
a much bumpier line than the proposed approach.  This makes it more difficult to interpret and not 
as suitable for presentation.  As can be seen, multiple changes are shown before year 6, despite little 
support for this in the data.  The RSSM shows a decreasing trend starting from year 6, which seems 
to be the general trend of the data; the Bayesian line is still bumpy after this point. 

Figure 2: Bayesian model versus RSSM 

   

Another approach is to use an additive model, which uses a smoothing function, often a cubic 
spline, to adapt to the data.  This type of model does a good job of fitting to the example data (using 
the mgcv package in R) as shown in Figure 3. 
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Figure 3:  Additive model fit on the example data 

 

A problem with splines is that even though the historical data may seem to fit well, they often show 
high trends at the end points, implying historical and prospective patterns that may not exist.  Related 
to this, small changes in the data or a few new data points can often result in large changes.  They are 
also very susceptible to outliers as shown in the next section.  Figure 4 shows another example that 
demonstrates these issues.  And finally, they are also difficult to blend with credibility techniques. 
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Figure 4:  Issues with the additive model fit 

 

Finally, there are ARIMA models.  Besides for not being as intuitive as the methods discussed, they 
lack the flexibility of SSMs (Carlin 1992).  Because of these issues, they will not be elaborated upon 
further. 

3.2 Simulation Results 
Simulations were conducted over a ten year period to compare the various methods to each other 

and to the proposed method.  The first simulation exercise was fairly straightforward and did not 
attempt to mimic real data by including outliers, etc.  The second simulation was meant to be more 
realistic and used t distributions instead of Gaussian and included occasional outliers to account for 
the fact that distribution fits are usually not exact.  The results are shown in Table 1.  The code used 
to run the simulations can be found in Appendix A. 
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Table 1: Simulation results of various time series methods 

 Simulation 1 – No Outliers Simulation 2 – Outliers  

Method RMSE4 of 
Fitted Data 

RMSE 
Relative to the 

Mean 

RMSE of 
Fitted Data 

RMSE 
Relative to the 

Mean 

Difference 
in 

Percentages 

Mean 0.8414 0.0% 1.296 0.0%  

Elastic Net 
With Year as 

Factor 

0.8118 -3.5% 1.412 +9.0% +12.5% 

Kalman Filter 0.8103 -3.7% 1.252 -3.3% +0.4% 

Kalman Filter 
with Bagging 

(See Korn 2016) 

0.7660 -9.0% 1.196 -7.6% +1.3% 

Bayesian Model 0.6405 -23.9% 1.081 -16.6% +7.3% 

Additive 
Model5 

0.6905 -17.9% 1.176 -9.2% +8.7% 

RSSM 0.6517 -22.5% 1.054 -18.7% +3.9% 

RSSM with 25% 
Momentum 
(See section 

6.3) 

0.6439 -23.5% 1.036 -20.0% +3.4% 

 

The Bayesian model was the best performing when there were no outliers, and the proposed 
method was the best with outliers, but both methods performed well.  Note the poor performance 
of using the year as a factor (even with credibility being taken into account, as was the case here); 
when outliers are present, it is even worse than taking a simple average.  The differences in the 
RMSE amounts are shown to the right as a rough measure of the robustness to outliers of each of 
the methods.  Both the additive and Bayesian models are more susceptible to outliers than the 
proposed method.  This is because these models depend on various formulas and assumptions to 
estimate the appropriate credibility, while the proposed uses cross validation and determines the best 
credibility by testing on the data itself. 

                                                 
4 Root mean square error 
5 Note that this method is not completely compatible with the others, as it also has a trend component, which would 

improve the performance of the other models as well. 
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4. IMPLEMENTING A RANDOM WALK 

4.1 Dummy Encodings 
The proposed approach uses a GLM framework to implement a subset of SSM functionality, such 

as random walks.  This provides a relatively simple and familiar modeling environment and also allows 
for distributional flexibility and credibility. 

To explain the approach, when a categorical variable is added to a GLM, dummy encodings are 
created, such as those shown in Table 2.  (The data values are shown on the left hand side, and the 
created model variables are shown across the top). 

 Table 2:  Default dummy encodings for a year categorical variable 

 2014 2015 2016 
2013 0 0 0 
2014 1 0 0 
2015 0 1 0 
2016 0 0 1 

To implement a random walk, dummy encodings like those shown in Table 3 can be used instead. 

 

  Table 3:  Initial dummy encodings for a random walk 

 2014 2015 2016 
2013 0 0 0 
2014 1 0 0 
2015 1 1 0 
2016 1 1 1 

With these, the coefficient value for 2014 affects not only that year, but the subsequent years, 2015 
and 2016, as well.  Likewise the coefficient value for 2015 effects both 2015 and the next year, 2016.  
If some form of credibility is applied (which is discussed in the next section), the starting point for 
each year is the previous year’s fitted value.  This allows for the fitted value of each year to be used as 
the complement of credibility for the following year.  So, for example, if the 2015 coefficient is 0, its 
fitted value will match the 2014 fitted value. 

Relating this back to SSMs, it can be seen that doing this is equivalent to the random walk, where 
r is the coefficient value for each year.  The first equation (that relates the empirical data to the fitted 
values) is identical as well, except that here, the distribution of the error term (e) is determined by the 
GLM family. 

 

Yt = Xt + et 

 



A Simple Method for Modeling Changes Over Time 

Casualty Actuarial Society E-Forum, Spring 2018-Volume 2 11 

Xt = Xt - 1 + rt 

 

Implementing the approach in this fashion keeps the solution linear, which makes solving for the 
optimal parameters much easier.  Non-linear problems are difficult to solve and even when solved, it 
is hard to determine if only a local maximum has been reached.  Most statistical packages have 
methods for modifying the default dummy encodings of certain variables.  Appendixes A and B show 
an example of doing this in R. 

4.2 Penalized Regression and Cross Validation 
Penalized regression will be used as the credibility technique for both the random walk and other 

coefficients.  This works by imposing a penalty to the likelihood the more a coefficient deviates from 
zero, thus reducing the coefficient values.  This pushes the fitted values back towards the intercept, 
which is the overall mean, and thus credibility is applied. 

Unlike mixed models, for example, which use likelihood based formulas and a number of 
assumptions to determine the magnitude of the penalty parameters, penalized regression uses k-fold 
cross validation.  K-fold cross validation works as follows: the data is randomly divided into k chunks, 
or “folds”.  The model is fit on k - 1 of these folds using different values for the penalty parameter, 
and then each of these fitted models is tested on the remaining fold.  This process is repeated k times, 
each time using a different fold for the validation.  The penalty parameter that performs best on the 
test data is chosen.  For smaller data sets, this process can even be repeated multiple times and the 
average penalty parameter selected.  This procedure is implemented in many statistical packages. 

As mentioned, this approach differs from Bayesian models, mixed models, and the Kalman Filter, 
all of which use different assumptions and formulas to estimate the penalty parameters.  Another 
benefit of cross validation is that it provides an excellent framework for testing the results of the 
model as the cross validated predictions (that is, the predictions made on the holdout or test folds) 
can be compared against the actual data to calculate various metrics that are unaffected by any possible 
overfitting. 

Another benefit is their ability to fit on a large number of variables, even with large datasets.  This 
is because of the efficient fitting algorithm: the model is initially fit using a large penalty value that 
causes most of the coefficients to be near zero, making the model easy to solve for.  This penalty is 
then gradually decreased and the model is refit, each time using the results of the previous model as 
the starting point for the coefficients.  Because of this, changes to coefficient values are small at each 
step making it easier for the fitting procedure to find the optimal values (Friedman et al. 2009).  Mixed 
models and Bayesian methods often do not scale as well with large datasets having a large number of 
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parameters.  The run time for mixed models, especially, deteriorates rapidly as the number of variables 
or data points increases. 

4.3 Types of Penalized Regression Methods 
Penalized regression methods apply a penalty to the coefficient values in order to stabilize them.  

There are two types of penalty functions frequently used.  Ridge regression is based on the squared 
value of the coefficients, also known as L2 regularization.  This is similar to a mixed model or to using 
a normal distribution as the prior in a Bayesian setting. 

The other type is the lasso, which penalizes based on the absolute value of the coefficients.  A 
benefit of this type of model is that it can aid in variable selection.  This is because the absolute value 
penalty will approach zero much faster than the squared values and so some coefficient values are set 
to zero, thus taking out their effect in the model.  The downside of this model is that it does not 
handle correlated variables well.  A compromise model called an elastic net provides the benefits of 
both by imposing a weighted average of both types of penalties (Zou and Hastie 2005).  Such a model 
can handle correlated variables and perform variable selection. 

There is another benefit of the elastic net for time series models. Because ridge regression does not 
shrink its coefficients down to zero, when using it to model a random walk, it will often show small 
changes in each year, even if it seems that there have not been any real changes.  But the lasso cannot 
be used, since time series variables have correlations, thus making the elastic net the ideal choice6.  A 
comparison of using ridge regression and the elastic net is shown in Figure 5.  Note how ridge 
regression produces the bumpier line. 

  

                                                 
6 Because of the first reason, it is suggested to give more weight to the lasso penalty. 
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Figure 5: Elastic net and ridge regression comparison 

 

Related to this, because the square of a large number is an even larger number, if the data has a 
large jump in a single year, ridge regression will often model smaller changes over the course of several 
years.  An elastic net model typically handles this scenario much better, as shown in Figure 5.  The 
ridge model shows the decreasing trend as starting from year 4, where in reality, it seems that the 
decreasing trend did not start until year 6.  A starker example is shown in Figure 6.  It can be seen that 
a one-time increase is modeled over a period of three years. 
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Figure 6: Ridge regression comparison of a large change 

 

For these reasons, the elastic net is the recommended model to use when fitting RSSMs. 

4.4 Multiple Segmentations 
Using the modified dummy encodings shown to model a random walk within a GLM framework 

makes it easy to not only model the overall changes, but also the changes by various segmentations.  
This can be done by including an interaction term between the segmentation and the random walk 
variable.  Including a random walk variable by itself as well as an interaction term between the 
segmentation and the random walk produces a model that credibility weights each segment’s changes 
using the overall average changes as the complement.  This can be a powerful tool for handling yearly 
or quarterly data in a hierarchical fashion, much more detailed than simply modeling on an average 
trend. 

 A problem exists, however, when using the simple random walk dummy encoding shown above 
(Table 3) to model multiple segmentations.  The issue is demonstrated in Figures 7 and 8.  In this 
example, several segments are fit with their changes modeled using a random walk (using an interaction 
term as described) as well as a term for each segment. 
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Figure 7: A segment moving away from the mean 

 
Figure 8:  A segment moving towards the mean 

 

The segment shown in Figure 7 is moving away from the overall mean, and in Figure 8, is moving 
towards the mean, as can be seen.  Note how the fits using the simple encodings gives rise to a steeper 
curve than expected when moving away from the mean, and a flatter than expected curve when 
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moving towards the mean.  This is because when using the simple encodings, the first point of each 
segment is determined by the value of the segment coefficient (since all of the random walk variables 
are zero at this point).  The subsequent points are determined from the interaction between the 
segment and the random walk variable, all of which are shrunken towards zero due to the penalty.  
Because of this, the model will often “take a shortcut” and gradually approach the data points over 
several periods in order to reduce the total value of this penalty, which results in the pattern mentioned. 

To fix this issue, the random walk dummy encodings can be modified so that the mean of each 
year is zero (which can be done by simply subtracting the mean from each column).  If these encodings 
are used instead, the segment coefficients now represent the average value of each segment, since the 
net effect of the random walk parameters is zero.  Doing this fixes the tendency to “take a shortcut” 
and results in behavior that is more intuitive, as can be seen 

On another note, it is worth mentioning that both the random walk and the segment parameters 
share the same penalty value.  This does not mean that they will receive the same amount of credibility 
since this depends on other factors as well.  But still, this should not be a concern as it is consistent 
with the penalized regression methodology, which uses the same penalty value for all parameters.  If 
the variables are on the same scale (which they should be – see section 5), this will give them equal 
treatment in the model.  An equal amount of explanation is penalized the same amount regardless of 
which variable it comes from.  However, if desired, a different penalty can still be used for the random 
walk components by setting the penalty of these variables to a factor of the overall penalty and using 
another round of cross validation to determine this factor, although it is usually not necessary to do 
so.  

4.5 Using Cross Validation with Panel Data 
Panel data is the term used to describe data that both uses explanatory variables and has multiple 

observations across time periods, such as the data being described here.  One of the assumptions of 
cross validation is that the folds are not correlated with each other.  But this may be violated for this 
type of data, since the same entity may exist in different folds at different time periods, and these are 
correlated with each other. 

To address this issue, instead of randomly selecting individual rows for inclusion in each fold as 
normally done, the entities themselves can be randomly assigned to folds along with all of their 
corresponding rows.  This will reduce the correlation across folds when using panel data with cross 
validation.  (Note that this is only necessary when a corresponding variable is not included in the 
model.)  
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4.6 Numeric Variables 
This section illustrated how a random walk can be used to allow the coefficients of categorical 

variables to change over time.  It is possible to do the same with numerical variables as well.  Instead 
of including interactions, as done above, a new variable can be created and added to the model that is 
the product of the random walk and that variable.  This works since: 

 

Coef1 x V + Coef2 x V x RW = V x ( Coef1 + Coef2 x RW ) 

 

Where V is the desired variable, RW is a random walk variable, and Coef1 and Coef2 are two model 
coefficients.  This allows for modeling how the relationships of numerical variables can change over 
time. 

5. STANDARDIZATION 

Before delving into more types of state space models, it is first necessary to discuss the 
standardization of different time series components.  Since the same penalty is applied to every model 
variable, they should be on the same scale so that they receive equal treatment.  Otherwise, equal 
coefficient values will cause greater changes to the variable with higher values.  If one variable is stated 
in pounds and another in ounces, for example, the one stated in pounds has a larger scale and is likely 
to have greater effect on the fitted results.  The most common approach is to normalize each variable 
by subtracting the mean and dividing by the standard deviation.  This applies to numerical variables 
only.  When dealing with both numerical and categorical variables, Gelman 2008 suggests dividing 
each numerical variable by twice the standard deviation instead.  This is because a binary variable with 
fifty percent ones has a standard deviation of 0.5. 

None of these approaches are designed for handling time series variables, however.  These also 
need to be adjusted so that they can receive equal treatment.  The following rules will be used to 
standardize time series variables to put them on the same scale as the other variables in the model and 
as each other: 

1. A random walk variable (with no momentum, which is discussed later on) does not need 
to be adjusted, since it is similar to a categorical variable, which will not be modified.  Since 
this random walk variable is not adjusted, all other time series variables can be compared 
to it for calculating their relative scaling factor. 

2. Instead of comparing the standard deviations from the mean, the scale of a time series 
variable should be determined by calculating the square root of the average squared 
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differences between each time period.  This is similar in nature to the common practice of 
using the standard deviation, but more properly reflects the nature of these variables. 

When calculating these averages, since the denominator is the same for all time series variables 
(equal to the number of time periods), it will cancel out when being compared and can be ignored.  
This means that instead of comparing the average squared differences, the sum of the squared 
differences will be used instead.  This quantity is equal to one for a plain random walk (with no 
momentum), which is the point of comparison.  Therefore, the standardization divisor for each 
variable is simply equal to the square root of the sum of the squared differences7. 

Applying these rules to a simple trend (or drift) variable, which is a numerical sequence from one 
to the number of time periods, this variable would be divided by the square root of one less than the 
number of time periods.  So, for example, a ten year series would be divided by three and a twenty six 
year series would be divided by five.  (Note that the longer series receives a greater divisor.  To explain, 
if both a trend and a random walk variable are in a model, the total penalty for using the random walk 
equals: (n – 1) times the average change, where n is the number of time periods (assuming a lasso 
penalty for simplicity).  The penalty for using the standardized trend variable equals: √(n – 1) times 
the selected trend.  Using the trend instead of the random walk can result in a lower penalty, but is 
also less flexible than the random walk.  So, since the total penalty for using the random walk grows 
with the length of the sequence, to put the variables on equal footing, it is necessary for the trend 
penalty to do the same.  Also, as the number of data points grows, a trend parameter is capable of 
having a greater impact on the likelihood, and so can withstand a larger penalty value.) 

Both Appendix A and Appendix B show R code that use these standardization rules.  When using 
in a penalized regression model, it is recommended to manually standardize all variables as described 
and to make sure that the penalized regression function used does not apply any additional 
standardization by default. 

To recap, categorical variables should not be adjusted, numerical variables should be divided by 
twice the standard deviation, and time series variables should be divided by the square root of the sum 
of the squared differences. 

                                                 
7 Note that twice this amount is not used, similar to how numerical variables are divided by twice their standard 

deviation, since dividing by this divisor already puts the variables on the same scale as a plain random walk.  By contrast, 
it is necessary to divide numerical variables by twice their standard deviation to put them on the same scale as a categorical 
variable. 
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6. EXTENDING THE RANDOM WALK 

6.1 Random Walk with Drift 
The random walk model discussed above in section 4 assumes that the expected change for each 

period is zero, and this serves as the complement of credibility.  If not the case, a trend (or drift) term 
can be added, and this value will serve as the effective complement of credibility instead.  Such a term 
can be added to a GLM by including the time period as a numerical variable.  (It is a good idea to set 
the mean of this variable to zero for the reasons mentioned in section 4.4.  This variable should also 
be standardized as illustrated in section 5.) 

6.2 Modeling a Changing Trend 
All of the discussion above focused on a random walk on the level of a variable.  It is also possible 

to model a changing trend (or drift) by using dummy encodings like those shown in Table 4. 

Table 4:  Example dummy encodings for a random walk on the slope 

 2014 2015 2016 
2013 0 0 0 
2014 1 0 0 
2015 2 1 0 
2016 3 2 1 

Using these, the 2014 coefficient, for example, will cause increases in years 2014 to 2016, and the 
2015 coefficient will cause increases in years 2015 and 2016.  This will cause a change to the slope.  A 
trend term should also be added for the starting slope unless it is assumed to be zero.  (Once again, 
coefficients that sum to zero should be used.  The variable should also be standardized, as illustrated 
in section 5.) 

6.3 Mean Reversion and Momentum 
It is also possible to build a model that uses the concept of mean reversion.  Allowing for mean 

reversion on the trend, for example, allows the trend to change, but also causes any changes to 
gradually decay over time and revert back to the long term average trend.  This can be used to model 
shorter term changes in the trend that gradually revert back towards a long term average value.  An 
example of dummy encodings with 25% mean reversion is shown in Table 5: 

Table 5:  Example dummy encodings with 25% mean reversion 

 2014 2015 2016 
2013 0 0 0 
2014 1 0 0 
2015 1 + 0.75 1 0 
2016 1 + 0.75 + 0.752 1 + 0.75 1 
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As can be seen, instead of adding one to each subsequent year, the added amounts decay 
exponentially.  (As mentioned, after these dummy encoding are created, the mean should be subtracted 
from each column so that they all equal zero.  They should be standardized as well as discussed in 
section 5. Those rules can be applied to standardize each column, which will receive slightly different 
penalties each.) 

This concept of mean reversion can be used to relate a random walk on the level of a variable to a 
random walk on the trend.  If the mean reversion is set to zero, no mean reversion will occur and the 
result is identical to a random walk on the trend.  Alternatively, if the mean reversion is set to one, the 
changing trend will immediately revert back to its long term value after one period and so each change 
only affects a single period.  This is identical to a random walk on the level of a variable.  Any value 
in between zero and one can be viewed as a compromise of the two models. 

One way of looking at these models (with perhaps a higher mean reversion value, although not 
necessarily) is as a random walk on the variable’s level, but with momentum.  In these models, the 
complement of credibility for the change of each period is a value between zero and the previous 
period’s change.  This will cause changes to continue in the same direction the following period, unless 
they are reversed.  This is often a more realistic expectation since, quite often, changes display serial 
correlation over time.   

Fitting the example data with this type of model produces the result shown in Figure 9.  Note how 
this model both improves the fit to the data and results in a smoother, nicer looking curve. 
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Figure 9: Random walk with momentum 

 

Cross validation can be used for choosing the optimal momentum for a model.  Values can be 
tested in jumps of 5%, 10%, or 25%, etc., with all random walk variables sharing the same value.  Or 
alternatively, multiple random walk variables with different momentum values can all be included and 
a grouped lasso penalty (which will cause each group of variables to either all be included or all be 
excluded) can be used to decide which are optimal, if supported by the statistical package being used. 

The SSM equations for this mean reversion model are as follows (where the average long term 
trend is assumed to be zero for simplicity).  It is easy to verify that these will produce identical results 
as using the dummy encodings shown above. 

Yt = Xt + et  

 

Xt = Xt – 1 + ut 

 

ut = aut – 1 + rt 

It can be seen that if the mean reversion parameter (a) is set to one, these equations will be 
equivalent to those of a changing slope.  If a is set to zero, then, ut = rt and these equations are 
equivalent to a random walk on the level.  If a is set to a value between zero and one, the trend will 
gradually decay back towards zero (or to the long term trend, if specified in the model). 
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6.4 Level Mean Reversion 
It is worth mentioning that mean reversion can be used on the level of a variable as well, not just 

on the trend.  This would cause any changes in the random walk to gradually decay, causing the level 
to revert back towards its long term average over time.  If a trend or drift component is also included, 
the level will gradually revert back towards the trended long term average.  This would be done by 
having the encodings of the random walk start at one as usual, but subsequent values are multiplied 
by a factor causing them to decay exponentially back towards zero over time.  However, level mean 
reversion probably has less applicability to insurance modeling. 

6.5 Extra Dispersion 
It is also worth mentioning that another time series component can be added to provide some extra 

flexibility.  A random walk models changes by period that are expected to continue in the next.  In 
contrast, another component can be added for spikes and dips to the fitted values that occur only 
within a single period and which do not continue to the next.  The SSM equations for this model are 
as follows: 

Yt = Xt + et  

 

Xt = Zt + dt 

 

Zt = Zt – 1 + rt 

 

Where Zt is another state variable and dt is this new component, which is an error term that is 
minimized.  This component can be added to a GLM by including the year as a factor.  However, 
doing so in addition to a random walk variable usually results in poorer performance (in the author’s 
experience) and using it is not recommended, unless perhaps a greater penalty is applied to these 
variables.  Another way to view this component is as a random walk with full level mean reversion. 
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7. MORE SSM COMPONENTS 

7.1 Seasonality 
If modeling on a period of less than a year, it may be necessary to account for the different levels 

of each month, quarter, or other unit, depending on the data.  This can be accomplished simply by 
adding another categorical variable, adding another random walk, or by using splines8. 

7.2 Predictive Variables 
Sometimes, the causes of yearly changes are understood and can be related to external variables.  

When this is the case, the variable can be incorporated in the model to help improve the predictions.  
This variable should be included as an index so that only changes in the variable affect the level each 
period and not the actual value of the variable (although if this variable is the same for every segment, 
the effect is identical). 

To give an example, if yearly loss ratios by country are correlated with the interest rate, an index 
based on the interest rate can be used.  This index can be created by dividing all values by the interest 
rate of the first year for that country.  Note that the index was based on the interest rate itself and not 
the change in the interest rate so that changes in the interest rate will cause changes to the yearly loss 
ratios.  If the interest rate has a lagged effect on the loss ratios, it is also possible to insert it lagged by 
the appropriate number of periods, which can be determined via another round of cross validation. 

If, on the other hand, changes in the loss ratio trend are correlated with changes in the interest rate, 
for example, another variable can be added that is the product of the interest rate index and a numerical 
variable for the year (in addition to the year variable by itself to represent the average slope).  This will 
work since: 

Coef1 x Y + Coef2 x I x Y = Y (Coef1 + Coef2 x I ) 

Where Y is the year, I is the interest rate index, and Coef1 and Coef2 are two model coefficients.  As 
can be seen, changes in the index will cause changes in the slope, the amount of which is determined 
by the value of Coef2.  (Both the interest rate and the slope should be standardized, as discussed in 
section 5.) 

                                                 
8 Note that the issues mentioned above regarding additive models do not apply here since periods are repeated multiple 

times. 
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7.3 Multidimensional Random Walks 
A two (or more) dimensional random walk can be constructed as well by interacting two random 

walks with each other.  Depending on the packages used, the columns may need to be constructed 
manually, however.  (The columns should be multiplied together while still in ones and zeros, and 
they can be made to sum to zero afterwards.)  This can be useful for geographical smoothing, for 
example. 

7.4 Correlated time series 
Correlated time series can also be modeled using this framework.  As an example, consider the case 

discussed above (section 7.2) where changes in the interest rate affect the loss ratio.  As an alternative, 
the interest rate and the loss ratio can be modeled as correlated time series.  This can be done by, 
instead of including the interest rate as a variable in each row, the interest rates would be given their 
own rows.  Then, a model can be fit with a random walk that affects both the loss ratios and the 
interest rates.  If the random walk variables in the loss ratio rows are multiplied by 10%, for example, 
each modeled point change in the interest rate will cause a 10% change in the loss ratio.  The difference 
between this model and the one discussed above is that what the model determines to be the “errors” 
in the interest rate will not affect the loss ratio, since these do not affect the path of the random walk.  
It is also possible to assign a separate random walk to the loss ratios to capture the uncorrelated 
changes.  (Although, in this example, different distribution families may be needed for each 
component, which is not possible with most standard regression packages.  A categorical variable is 
also needed to determine whether each row is a loss ratio or an interest rate so that each can receive 
proper treatment in the model formula.) 

Another example of a correlated time series approach is a dynamic factors model, which is a 
method for modeling missing or unknown variables that change over time (Geweke 1977).  The 
missing variables are modeled via a random walk but coefficients by entity control the magnitude of 
the change for each entity.  So essentially, this dynamic factor is a random walk whose magnitude 
varies by entity.  An example of this is the stock market beta for each industry and company.  Various 
market effects drive the value of stocks up and down, but each industry and company is affected 
differently from these changes. 

For the simple interest rate model, the correlation percentage can be determined via another round 
of cross validation.  Or alternatively, it can be approximated by initially fitting the percentage using 
the interest rate as a predictive variable, as discussed, then fitting another model for the random walk 
using this percentage, and then refitting the percentage using the fitted (standardized) random walk as 
a variable in the model. 

A (mostly) one-sided dynamic factors model (where all coefficients are assumed to have the same 
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sign) can be approximated in a similar fashion.  A two-sided model can be approximated by initially 
fitting the random walk with a small penalty value so that it is not shrunken to zero.  The penalty can 
then be gradually decreased as iterations between the random walk and the correlations are fit. 

For more complicated models and for more exact solutions to these models, the EM algorithm 
(Expectation-Maximization, Dempster et al. 1977) can be used.  Further discussion is outside the 
scope of this paper. 

8. SOME NOTES ON IMPLEMENTATION 

The method presented can be implemented using most existing elastic net packages.  To do so, the 
default dummy encodings for random walk variables can be changed, as discussed.  (See Appendix A 
and Appendix B for example R code.)  If not possible, the random walk variables for each period can 
also be created and added manually. 

Before a GLM solving algorithm is run, a matrix is created for the specified independent variables.  
Many GLM functions do this implicitly.  Just as a separate column is created in this matrix for each 
possible value of a categorical variable, a separate column is also created for each period in a random 
walk variable, except for the first.  If interactions with some segmentation are included, separate 
columns will be created for every combination of year and segment.  Because of this, the resulting 
matrix can become quite large for models using a large number of predictors and that have a large 
number of data points.  For most models, this is not an issue, but for very large ones, if encountering 
memory issues, instead of creating a standard matrix that utilizes memory for each cell value, a sparse 
matrix can be created instead, which only utilizes memory for non-zero cells.  This can reduce the 
amount of memory required dramatically since most of the values in a typical modeling matrix are 
usually zero.  (The example shown in Appendix A takes this approach.) 

Some sparse matrix implementations (such as the “sparse.model.matrix” function in the “Matrix” 
package in R), when building a sparse matrix, will initially create a non-sparse matrix and only convert 
it to a sparse matrix at the very end.  This can still create memory issues for very large models.  If 
encountering issues, the matrix can be constructed manually one variable at a time so that sparse 
matrices can be used even during construction, which will save memory. 

9. LOSS RATIO CASE STUDY 

The proposed method will be demonstrated on an example involving yearly loss ratios.  Three 
segments are used in the example, each having two sub-segments, making six sub-segments in all. 

Each of these segments and sub-segments are affected by various changing factors, both on the 
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premium and on the loss side, which cause the loss ratios to vary by year.  Premium is affected by rate 
changes, which are easily accounted for, but the recorded rate changes are usually not a hundred 
percent accurate and do not take everything into account, such as changes in policy wording.  On the 
losses side, besides from a longer term trend that affects the losses by a (perhaps) similar amount each 
year, social, legal, economic, and other factors can cause changes over shorter periods.  Some of these 
may affect the entire book while others can be limited to various segments or sub-segments.   

Another consideration is that claims take time to be reported and settled and so our current 
snapshot of losses will develop over time.  Our goal is to estimate the ultimate loss ratio for each year 
and for future years for reserving, rate making, profit study, or informational purposes. 

The ultimate chain ladder loss ratios are shown in Figure 10.  This example assumes that premiums 
have already been on-leveled for rate changes and that losses have been trended by the long term 
average trend (although it is possible to use the procedure to fit this as well).  For simplicity, the on-
level premiums for each sub-segment for each year are assumed to be $1,000, although varying 
premiums can be accommodated as well. 

Figure 10:  Trended, ultimate loss ratios by segment 
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To fit this data, an elastic net with variables for a random walk is used.  The model will account for 
the different loss ratio levels for each segment and sub-segment as well as the changes to each by year, 
incorporating credibility for both the level and changes.  A Tweedie family is used to fit the aggregated 
losses. 

A Cape Cod-like approach is used to account for development where the loss ratios inputted into 
the model are the reported loss ratios multiplied by the loss development factors (i.e., the chain ladder 
loss ratios), and the premiums divided by the loss development factors (i.e., the “used premiums”) are 
used as the regression weights.  This procedure accounts for development while taking into account 
the extra volatility of the greener years.  This causes the model to give less weight to these years, but 
all years are still taken into account for determining the fitted loss ratios for each year.  (As noted in 
Korn 2016, if full credibility is given to the yearly changes, the final indications will equal the chain 
ladder.  If no credibility is given to the yearly changes, the results will equal the weighted average, 
which is the Bornhuetter-Ferguson loss ratio with the Cape Cod loss ratios used as the a priori.  
Anywhere in between can be thought of as a credibility weighting between these two methods.) 

The code used to generate and fit the data is shown in Appendix B.  The regression formula used 
was as follows, where a colon is used to indicate interaction effects, ult.lr are the ultimate loss ratios, 
intercept is an intercept term, seg is the variable for the segment, subseg is the variable for the sub-segment, 
and yr.rw is a random walk variable: 

log(ult.lr) = intercept + seg + subseg + yr.rw + seg:yr.rw + subseg:yr.rw 

This is a hierarchical credibility model.  The overall average level of the loss ratio is determined by 
the intercept.  The average relativities for each segment are determined by the seg coefficients, and the 
additional relativities for each sub-segment are determined by the subseg coefficients.  Since each 
coefficient value is penalized and pushed back towards zero, each level is credibility weighted back 
towards the previous, i.e., each segment is credibility weighted back towards the overall mean and each 
sub-segment is credibility weighted back towards the segment.  The same can be said for the changes 
by year.  The yr.rw variable creates a random walk on the intercept, which affects all segments and sub-
segments.  The interaction of this variable and the segment allows for additional changes that only 
affect particular segments, and these changes are credibility weighted back towards the overall changes 
by year.  The same occurs at the sub-segment level, and these changes are credibility weighted back 
towards the indicated segment changes. 

The model just discussed does a good job of fitting all segments and their changes by year but does 
not take into account any possible autocorrelation between years, i.e., momentum of the yearly 
changes.  Stated another way, if a change is observed in a previous period, then instead of using no 
change as the complement of credibility for the next period, perhaps the complement should be set 
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to somewhere in between zero and the previous indicated change.  This can be tested by redefining 
the random walk variable with different amounts of momentum and then refitting the model.  The 
momentum value having the lowest cross validated error is then selected.  The cross validated error 
(using the deviance as the error measure) for the model with no momentum is 0.0999.  Testing in 
increments of 0.1, the next value tested is 0.1.  This model has a cross validated error of 0.0984, which 
is better than the first model.  Testing a momentum value of 0.2 yields an error of 0.1015, worse than 
the previous.  So the selected value is 0.1.  The final fitted results for each segment and sub-segment 
are shown in Figure 11. 

Figure 11: Fitted trended, ultimate loss ratios by segment 

 

Looking at this figure, some common trends can be seen.  Most of the sub-segments start increasing 
at year 3 and decrease in year 7, although this increase is delayed a year in sub-segment 3.  Common 
patterns can be seen by segment as well.  Sub-segments in segment 1 show an initial increase followed 
by a decrease, segment 2 shows a generally increasing pattern, and segment 3 shows a decrease 
followed by an increase, and then no change from year 7.  (All of this can be seen by looking directly 
at the fitted coefficients as well.)  It is also apparent that less weight is given to the more recent years 
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due to the additional uncertainty of these immature years. 

10. CONCLUSION 

This paper showed a method for incorporating a subset of state space model functionality into a 
linear regression framework.  Besides for the improved performance and ease of use of this method, 
the resulting models are intuitive and the corresponding parameters lend themselves easily to 
interpretation.  This can be a useful tool when attempting to “dig deeper” and discover changes or 
trends that may be affecting particular segments or entities.  It can make forecasts into future periods 
more accurate as well.  The results are suitable for presentation, which is an important consideration 
since findings often need to be communicated to other parties.  Lastly, it is incorporated in a 
framework that scales well to large datasets, an important consideration in the age of big data. 
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APPENDIX A:  Simulation Code 

library( glmnet ) 
library( mgcv ) 
library( compiler ) 
library( rstan ) 
 
# logit functions for later 
logit <- function(x) log( x / ( 1 - x ) ) 
ilogit <- function(x) exp(x) / ( 1 + exp(x) ) 
 
# function for creating dummy variables that include a column for every single value (unlike the default behavior in 

GLMs that leave out one value). 
# this is needed for penalized regression (i.e. credibility models), since every segment is credibility weighted back 

towards the intercept (mean) 
contr.pen <- function( n, contrasts=TRUE, sparse=FALSE ) contr.treatment( n, contrasts=contrasts, sparse=sparse 

) 
contr.pen.sparse <- function( n, contrasts=TRUE, sparse=TRUE ) contr.treatment( n, contrasts=contrasts, 

sparse=sparse ) 
 
# function for creating dummy variables for implementing random walks 
contr.randwalk <- function( n, contrasts = TRUE, sparse = TRUE, momentum=0, rel.cred=1, stdize=TRUE ) { 
   if (length(n) <= 1L) { 
     if (is.numeric(n) && length(n) == 1L && n > 1L) 
         levels <- seq_len(n) 
     else stop("not enough degrees of freedom to define contrasts") 
   } else { levels <- n } 
   levels <- as.character(levels) 
   if ( sparse ) { 
      cont <- Matrix( c(0), nrow=length(levels), ncol=length(levels) - 1, sparse=TRUE ) 
   } else { 
      cont <- matrix( c(0), nrow=length(levels), ncol=length(levels) - 1 ) 
   } 
   for ( i in 2:n ) { 
      cont[, i - 1] <- ifelse( 1:n < i, 0, ifelse( rep( momentum, n ) == 1, ( 1:n - i + 1 ), ( 1 - momentum ^ ( 1:n - i + 1 ) ) 

/ ( 1 - momentum ) ) ) 
      cont[, i - 1] <- cont[, i - 1] - mean( cont[, i - 1] ) 
   } 
   if (contrasts) { 
     colnames(cont) <- levels[-1] 
   } 
   # standardize 
   if ( stdize ) { 
      for ( i in 1:ncol(cont) ) { 
         cont[,i] <- cont[,i] / sum( diff( cont[,i] ) ^ 2 ) ^ 0.5 
      } 
   } 
 
   cont <- cont * rel.cred 
   cont 
} 
 
# fit kalman filter 
kf.fit <- function( x.obs, prem=rep( 1, length(x.obs) ), incl=1:length(x.obs) ) { 
   kf <- cmpfun( function( params, return.values=F ) { 
      n <- length(x.obs) 
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      x.pred0 <- rep( 0, n ) 
      x.pred <- rep( 0, n ) 
      k <- rep( 0, n ) 
      p0 <- rep( 0, n ) 
      p <- rep( 0, n ) 
      f <- rep( 0, n ) 
      err <- rep( 0, n ) 
       
      Q.est <- exp( params[1] ) * ilogit( params[2] ) 
      R.est <- exp( params[1] ) * prem[1] * ( 1 - ilogit( params[2] ) ) 
       
      for ( i in 1:n ) { 
         x.pred0[i] <- ifelse( i > 1, x.pred[i - 1], params[3] ) 
         err[i] <- x.obs[i] - x.pred0[i] 
         p0[i] <- ifelse( i > 1, p[i - 1] + Q.est, 0 ) 
         f[i] <- p0[i] + R.est / prem[i] 
         k[i] <- ifelse( ( ! i %in% incl ) | f[i] == 0, 0, p0[i] / f[i] ) 
         p[i] <- p0[i] * ( 1 - k[i] ) 
         x.pred[i] <- x.pred0[i] + k[i] * err[i] 
      } 
      loglik <- sum( sapply( 1:n, function(i) log( max( 1e-100, dnorm( err[i], 0, f[i] ^ 0.5 ) ) ) ) ) 
      if ( return.values ) { 
         x.smooth <- rep( 0, n ) 
         x.smooth[n] <- x.pred[n] 
         for ( i in (n - 1):1 ) x.smooth[i] <- x.pred[i] + ( p[i] / p0[i + 1] ) * ( x.smooth[i + 1] - x.pred[i] ) 
         list( loglik=loglik, Q=Q.est, R=R.est, x=x.smooth, x.pred=x.pred, f=f, k=k, p=p ) 
      } else { 
         loglik 
      } 
   } ) 
   o <- optim( c( log( var(x.obs) / 2 ), -10, sum( prem * x.obs ) / sum( prem ) ), kf, control=list( fnscale=-1 ), 

method='BFGS' ) 
   kf( o$par, return.values=T ) 
} 
 
# calculate root mean square error 
rmse <- function( x, y, i=1:length(x) ) mean( ( x[i] - y[i] ) ^ 2 ) ^ 0.5 
 
# number of years 
n <- 10 
# innovation variance 
Q <- 0.002 
# volaility 
R <- 0.003 
# serial correlation 
years.corr <- 0.1 
 
# definitions for no outliers 
q.large.pct.change <- 0 
r.large.pct.change <- 0 
q.df.reg <- 250 
q.df.large <- 250 
r.df.reg <- 250 
r.df.large <- 250 
q.large.pct.change <- 0 
r.large.pct.change <- 0 
pct.change <- 0.5 
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Q.large <- 0 
R.large <- 0 
 
# definitions for with outliers 
q.df.reg <- 6 
q.df.large <- 3 
r.df.reg <- 12 
r.df.large <- 6 
q.large.pct.change <- 0.05 
r.large.pct.change <- 0.1 
pct.change <- 0.5 
Q.large <- Q * 5 
R.large <- R * 5 
 
num.iter <- 250 
 
do.graph1 <- FALSE 
print.cvm1 <- FALSE 
do.bayes <- TRUE 
# run the simulation 
results <- sapply( 1:num.iter, function(iter) { 
   if ( iter %% 10 == 0 ) print( iter ) 
 
   # simulate data 
   q <- rt( n, q.df.reg ) * Q ^ 0.5 
   # add serial correlation 
   for ( i in 2:n ) { 
      q[i] <- years.corr * q[i - 1] + sqrt( 1 - years.corr ^ 2 ) * q[i] 
   } 
   q <- ifelse( runif( n ) < pct.change, q, rep( 0, n ) ) 
   q.large <- ifelse( runif( n ) < q.large.pct.change, rt( n, q.df.large ) * Q.large ^ 0.5, rep( 0, n ) ) 
   q <- q + q.large 
   q.cuml <- cumsum( q ) 
   a <- 20 * exp(q.cuml) 
   r.large <- ifelse( runif( n ) < r.large.pct.change, rt( n, r.df.large ) * R.large ^ 0.5, rep( 0, n ) ) 
   o <- exp( log( a ) + rt( n, r.df.reg ) * R ^ 0.5 + r.large ) 
 
   # create the time series variables 
   d <- data.frame( y=1:n, a=a, o=o ) 
   # standardize trend variable 
   d$y.std <- d$y / sqrt( n - 1 ) 
   d$y.std <- d$y.std - mean( d$y.std ) 
   d$y.fac <- factor( d$y ) 
   contrasts( d$y.fac ) <- contr.pen( nrow(d), sparse=TRUE ) 
   d$y.rw <- d$y.fac 
   contrasts( d$y.rw ) <- contr.randwalk( nrow(d), sparse=TRUE ) 
   d$y.rw.mom <- d$y.fac 
   contrasts( d$y.rw.mom ) <- contr.randwalk( nrow(d), momentum=0.25, sparse=TRUE ) 
    
   if ( do.graph1 ) { 
      plot( d$y, d$o, type='b', xlab='Year', ylab='X', lwd=2 ) 
      lines( d$y, d$a, type='b', lty=3 ) 
      abline( h=mean( d$o ), col='gray' ) 
   } 
    
   # function to fit models 
   fit.model <- function( form, num.folds=3, num.times=20, alpha=0.75, fit.incl=1:n, do.graph=do.graph1, 
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print.cvm=print.cvm1, col='blue', lty=1, lwd=1 ) { 
      x <- sparse.model.matrix( form, d ) 
     # remove the intercept (first column) since the penalized regression function adds it automatically 
      # (but create the matrix with the intercept, since sometimes the model.matrix function won’t use the correct 

contrasts for the first term of the formula without an intercept) 
      x <- x[, -1] 
  
      fit <- glmnet( x[fit.incl,], log( d$o[fit.incl] ), family='gaussian', standardize=FALSE, alpha=alpha )  #, 

lambda.min.ratio=1e-10 ) 
      fit.cv <- lapply( 1:num.times, function(i) cv.glmnet( x[fit.incl,], log( d$o[fit.incl] ), family='gaussian', 

standardize=FALSE, alpha=alpha, nfolds=num.folds, lambda=fit$lambda ) ) 
      lambda <- mean( sapply( fit.cv, function(x) x$lambda.min ) ) 
      cvm <- mean( sapply( fit.cv, function(x) min( x$cvm ) ) ) 
      p <- exp( predict( fit, newx=x, type='response', s=lambda ) ) 
      if ( do.graph ) lines( d$y, p, col=col, lwd=lwd, lty=lty ) 
      if ( print.cvm ) print( cvm ) 
      p 
   } 
 
   d$p.mean <- mean( d$o ) 
   d$p.fac <- fit.model( ~ y.fac, col='blue', print.cvm=print.cvm1 ) 
   d$p.rw <- fit.model( ~ y.rw, col='red', lwd=2, print.cvm=print.cvm1 ) 
   d$p.rw.mom <- fit.model( ~ y.rw.mom, col='red', lty=2, lwd=2, print.cvm=print.cvm1 )    
    
   # kalman filter 
   d$p.kf <- exp( kf.fit( log( d$o ), incl=1:n )$x ) 
   if ( do.graph1 ) lines( d$y, d$p.kf, col='green' ) 
    
   # kalman filter with bagging 
   fit.kf.bag <- rowSums( exp( sapply( 1:10, function(i) kf.fit( log( d$o ), incl=sample( 1:n, round( n * (2/3) ) ) )$x ) ) ) 

/ 10 
   d$p.kf.bag <- fit.kf.bag 
   if ( do.graph1 ) lines( d$y, d$p.kf.bag, col='green', lty=2 ) 
 
   # spline 
   fit.sp <- gam( log( o ) ~ s( y ), data=d ) 
   d$p.sp <- exp( predict( fit.sp, newdata=d ) ) 
   if ( do.graph1 ) lines( d$y, d$p.sp, col='gold', lwd=2 ) 
    
   # bayesian model 
   if ( do.bayes ) { 
      # model on log of observed instead of handling in model, so that comparable to other models 
      data.stan <- list( 
         x=log( d$o ) 
         , N=n 
         , y_rw_scale=5 
      ) 
      fit.bayes <- stan( 'rw_test.stan', data=data.stan, chains=3, iter=1000 ) 
      stan.obj <- extract( fit.bayes, permuted=TRUE ) 
      #traceplot( fit.bayes ) 
      #stan_dens( fit.bayes, separate_chains=TRUE ) 
      d$p.bayes <- exp( sapply( 1:n, function(i) mean( stan.obj[['y']][,i] ) ) ) 
      if ( do.graph1 ) lines( d$y, d$p.bayes, col='pink', lwd=2 ) 
   } 
    
   # calculate prediction errors of each method 
   rmse.pred <- c() 



A Simple Method for Modeling Changes Over Time 

Casualty Actuarial Society E-Forum, Spring 2018-Volume 2 34 

   for ( f in names(d)[ grep( 'p.', names(d), fixed=TRUE ) ] ) { 
      rmse.pred <- c( rmse.pred, rmse( d[[f]], d$a, 1:n ) ) 
      names( rmse.pred )[length(rmse.pred)] <- f 
   } 
   rmse.pred 
} ) 
 
data.frame( method=rownames( results ), rmse=sapply( 1:nrow(results), function(i) mean( results[i,] ) ) ) 
 
Save in separate file names “rw_test.stan”: 
data { 
   int N; 
   vector<lower=0>[N] x; 
   real<lower=0> y_rw_scale; 
} 
 
parameters { 
   vector<lower=-2, upper=2>[N - 1] y_rw; 
   real<lower=0, upper=2> y_sd; 
   real<lower=0> y_rw_sd; 
   real y1; 
} 
 
transformed parameters { 
   vector[N] y; 
    
   y[1] = y1; 
   for ( i in 2:N ) { 
      y[i] = y[i - 1] + y_rw[i - 1]; 
   } 
} 
 
 
model { 
   y1 ~ uniform( 1, 5 ); 
   y_rw_sd ~ cauchy( 0, y_rw_scale ); 
   y_rw ~ normal( 0, y_rw_sd ); 
   x ~ normal( y, y_sd ); 
} 
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APPENDIX B:  Loss Ratio Example 
library( HDtweedie )  # elastic net for Tweedie family 
library( Matrix )  # for building sparse matrices 
library( ggplot2 ) 
 
# function for creating dummy variables that include a column for every single value (unlike the default behavior in 

GLMs that leave out one value). 
# this is needed for penalized regression (i.e. credibility models), since every segment is credibility weighted back 

towards the intercept (mean) 
contr.pen <- function( n, contrasts=TRUE, sparse=FALSE ) contr.treatment( n, contrasts=contrasts, sparse=sparse 

) 
contr.pen.sparse <- function( n, contrasts=TRUE, sparse=TRUE ) contr.treatment( n, contrasts=contrasts, 

sparse=sparse ) 
 
# function for creating dummy variables for implementing random walks 
contr.randwalk <- function( n, contrasts = TRUE, sparse = TRUE, momentum=0, rel.cred=1, stdize=TRUE ) { 
   if (length(n) <= 1L) { 
     if (is.numeric(n) && length(n) == 1L && n > 1L) 
         levels <- seq_len(n) 
     else stop("not enough degrees of freedom to define contrasts") 
   } else { levels <- n } 
   levels <- as.character(levels) 
   if ( sparse ) { 
      cont <- Matrix( c(0), nrow=length(levels), ncol=length(levels) - 1, sparse=TRUE ) 
   } else { 
      cont <- matrix( c(0), nrow=length(levels), ncol=length(levels) - 1 ) 
   } 
   for ( i in 2:n ) { 
      cont[, i - 1] <- ifelse( 1:n < i, 0, ifelse( rep( momentum, n ) == 1, ( 1:n - i + 1 ), ( 1 - momentum ^ ( 1:n - i + 1 ) ) 

/ ( 1 - momentum ) ) ) 
      cont[, i - 1] <- cont[, i - 1] - mean( cont[, i - 1] ) 
   } 
   if (contrasts) { 
     colnames(cont) <- levels[-1] 
   } 
   # standardize 
   if ( stdize ) { 
      for ( i in 1:ncol(cont) ) { 
         cont[,i] <- cont[,i] / sum( diff( cont[,i] ) ^ 2 ) ^ 0.5 
      } 
   } 
 
   cont <- cont * rel.cred 
   cont 
} 
 
num.segs <- 3 
num.subsegs.each <- 2 
num.subsegs <- num.segs * num.subsegs.each 
# for finding the appropriate segment for each subsegment 
seg.map <- c( sapply( 1:num.segs, function(i) rep( i, num.subsegs.each ) ) ) 
num.yrs <- 10 
years.corr <- 0.2 
ldf <- 3 ^ ( 0.65 ^ ( ( num.yrs - 1 ):0 ) ) 
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# --- simulate losses --- 
overall.avg <- log( 700 ) 
# segment relativities 
seg.rel <- rnorm( num.segs, 0, 0.1 ) 
# subsegment relativies 
subseg.rel <- rnorm( num.subsegs, 0, 0.1 ) 
# random walk coefs 
rw.chg.init <- rnorm( num.yrs, 0, 0.2 ) 
rw.seg.chg.init <- sapply( 1:num.segs, function(i) rnorm( num.yrs, 0, 0.15 ) ) 
rw.subseg.chg.init <- sapply( 1:num.subsegs, function(i) rnorm( num.yrs, 0, 0.1 ) ) 
# add correlation (momentum) to the changes 
rw.chg <- rw.chg.init 
rw.seg.chg <- rw.seg.chg.init 
rw.subseg.chg <- rw.subseg.chg.init 
for ( i in 2:num.yrs ) { 
   rw.chg[i] <- years.corr * rw.chg.init[i - 1] + sqrt( 1 - years.corr ^ 2 ) * rw.chg.init[i] 
   for ( j in 1:num.segs ) rw.seg.chg[i, j] <- years.corr * rw.seg.chg.init[i - 1, j] + sqrt( 1 - years.corr ̂  2 ) * rw.seg.chg.init[i, 

j] 
   for ( j in 1:num.subsegs ) rw.subseg.chg[i, j] <- years.corr * rw.subseg.chg.init[i - 1, j] + sqrt( 1 - years.corr ^ 2 ) * 

rw.subseg.chg.init[i, j] 
} 
 
# using simulated values, produce the data, with error. (note this is a crude simulation) 
for ( subseg in 1:num.subsegs ) { 
   seg <- seg.map[subseg] 
   x <- exp( overall.avg + seg.rel[seg] + subseg.rel[subseg] 
      + cumsum( rw.chg ) + cumsum( rw.seg.chg[,seg] ) + cumsum( rw.subseg.chg[,subseg] ) 
      + rnorm( num.yrs, 0, 0.2 * ldf ) ) / ldf 
   d.add <- data.frame( seg=seg, subseg=subseg, yr=1:num.yrs, loss=x, ldf=ldf, ep=1000 ) 
   if ( subseg == 1 ) { 
      d <- d.add 
   } else { 
      d <- rbind( d, d.add ) 
   } 
} 
d$seg <- factor( d$seg ) 
d$subseg <- factor( d$subseg ) 
 
# cape cod-like method to develop losses and weight years 
d$ult.lr <- d$loss * d$ldf / d$ep 
# this will give the greener years less weight 
d$used.ep <- d$ep / d$ldf 
 
# --- build the model --- 
# create random walk variable 
# set different values of the momentum (and relative credibility if want) here 
rw.momentum <- 0 
rw.rel.cred <- 1 
# rw.momentum <- 0.1 
d$yr.rw <- factor( d$yr ) 
contrasts( d$yr.rw ) <- contr.randwalk( num.yrs, sparse=TRUE, momentum=rw.momentum, rel.cred=rw.rel.cred ) 
 
# create the modeling  matrix that describes the independent variables of the model (use a sparse matrix) 
# change the default contrasts (i.e. dummy variable encodings) to create columns for every level of a variable 
options( contrasts = c( 'contr.pen.sparse', 'contr.pen.sparse' ) ) 
# (no intercept in formula since glmnet function adds automatically) 
x <- sparse.model.matrix( ~ seg + subseg + yr.rw + seg:yr.rw + subseg:yr.rw, d ) 
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# remove the intercept (first column) since the penalized regression function adds it automatically 
# (but create the matrix with the intercept, since sometimes the model.matrix function won’t use the correct contrasts 

for the first term of the formula without an intercept) 
x <- x[, -1] 
options( contrasts = c( 'contr.treatment', 'contr.poly' ) ) 
 
# fit the model 
# (HDtweedie doesn't support sparse matrices unlist glmnet, so need to convert back to unsparse matrix) 
fit <- HDtweedie( as.matrix( x ), d$ult.lr, weights=d$used.ep, p=1.9, alpha=0.75, standardize=FALSE, 

lambda.factor=1e-3 ) 
# cross validate to get the optimal penalty parameter 
set.seed( 1112 ) 
fit.xval <- cv.HDtweedie( as.matrix( x ), d$ult.lr, weights=d$used.ep, p=1.9, alpha=0.75, standardize=FALSE, 

lambda.factor=1e-3, nfolds=5 ) 
# cross validated deviance (error) of the model - use this to test the momentum parameter 
min( fit.xval$cvm ) 
lambda <- fit.xval$lambda.min 
# check that the chosen penalty isn't at the ends 
which( lambda == fit.xval$lambda ) 
length( fit.xval$lambda ) 
 
# make predictions 
d$ult.lr.pred <- predict( fit, as.matrix( x ), type='response', s=lambda )[,1] 
 
# --- graph results --- 
# one at a time 
par( mfrow=c( 3, 2 ) ) 
for ( subseg in 1:num.subsegs ) { 
   plot( 1:num.yrs, d$ult.lr[d$seg == seg.map[subseg] & d$subseg == subseg], type='b', xlab='Year', ylab='LR' 
      , main=paste( 'Segment: ', seg.map[subseg], ', Subsegment: ', subseg, sep='' ) ) 
   lines( 1:num.yrs, d$ult.lr.pred[d$seg == seg.map[subseg] & d$subseg == subseg], col='blue' ) 
} 
par( mfrow=c( 1, 1 ) ) 
 
 
d.plot <- rbind( data.frame( Year=d$yr, seg=d$seg, subseg=d$subseg, Segment=paste( d$seg, d$subseg ), LR=d$ult.lr, 

Line='Actual' ) 
   , data.frame(  Year=d$yr, seg=d$seg, subseg=d$subseg, Segment=paste( d$seg, d$subseg ), LR=d$ult.lr.pred, 

Line='Predicted' ) ) 
 
# each segment together 
seg <- 1 
ggplot( d.plot[d.plot$seg == seg,], aes( Year, LR ) ) + geom_line( aes( color=Segment, linetype=Line ) ) 
 
# all together 
ggplot( d.plot, aes( Year, LR ) ) + geom_line( aes( color=Segment, linetype=Line ) ) 

 

10. REFERENCES 
[1] Carlin, B. 1992. State Space Modeling of Non-Standard Actuarial Time Series. Insurance: Mathematics and 
Economics. October 1992. Volume 11, Issue 3. pp 209-222. 
[2] De Jong, P. 2005. State Space Models in Actuarial Science. Macquarie University Actuarial Studies, Research Paper. 
No. 2005/02. July 2005.  
[3] De Jong, P. and Zehnwirth, B. 1983. Claims Reserving, State-Space Models and the Kalman Filter. Journal of the 
Institute of Actuaries, 110, pp 157-181.  



A Simple Method for Modeling Changes Over Time 

Casualty Actuarial Society E-Forum, Spring 2018-Volume 2 38 

[4] Dempster, A. P., Laird N. M., and Rubin D. B. 1977. Journal of the Royal Statistical Society. Series B (Methodological). 
Vol. 39, No. 1 (1977), pp. 1-38 
[5] Evans, Jonathan P. and Frank Schmid. 2007. Forecasting Workers Compensation Severities and Frequency Using the 
Kalman Filter. Casualty Actuarial Society Forum, 2007: Winter, pp 43–66  
[6] Frees, E. and Gee, L. 2016. Rating Endorsements Using Generalized Linear Models. Variance 10:1, 2016, pp 51-74 
[7] Friedman, J., Hastie, T., and Tibshirani, R. 2009. Regularization Paths for Generalized Linear Models via Coordinate 
Descent. Journal of Statistical Software, 33(1):1, 2010 
[8] Gelman, A. 2008. Scaling regression inputs by dividing by two standard deviations. Stat. Med. 27: 2865–2873.  
[9] Geweke, J. 1977. The Dynamic Factor Analysis of Economic Time Series. Latent Variables in Socio-Economic 
Models. Amsterdam, North Holland. 
[10] Hastie, T., Tibshirani, R., and Friedman, J. 2009. Elements of Statistical Learning, Volume 2, New York: Springer, 
2009 
[11] Hastie, T. and Qian, J. 2014. Glmnet Vignette. http://web.stanford.edu/~hastie/glmnet/glmnet_alpha.html 
[12] Kim C. and Nelson C. 1999. State-Space Models with Regime Switching. MIT Press, 1999. pp. 29-30, 36-37  
[13] Korn, U. 2016. An Extension to the Cape Cod Method with Credibility Weighting Smoothing. Casualty Actuarial 
Society E-Forum, 2016: Summer, pp 5–27  
[14] Taylor, G. and McGuire, G. 2007. Adaptive Reserving using Bayesian revision for the Exponential Dispersion 
Family. Centre for Actuarial Studies, Department of Economics, University of Melbourne.  
[15] Williams, B., Hansen, G., Baraban, A., and Santoni, A. 2015. A Preactical Approach to Variable Selection – A 
Comparison of Various Techniques. Casualty Actuarial Society E-Forum, 2015: Summer, pp 4-40 
[16] Wüthrich, M.V. and Merz, M. 2008. Stochastic Claims Reserving Methods in Insurance. Wiley.  
[17] Zehnwirth B. 1996. Kalman Filters with Applications to Loss Reserving. Research Paper Number 35, Centre for 
Actuarial Studies, The University of Melbourne.  
[18] Zou, H. and Hastie, T. 2005. Regularization and Variable Selection via the Elastic Net. J. Royal. Stat. Soc. B 
2005;67(2), pp 301-320 
 
Biography of the Author  
Uri Korn is a Director of Predictive Modeling for AIG, Client Risk Solutions where he uses advanced analytics to assist 
clients in reducing their losses. Prior to that, he was an AVP & Actuary at Axis Capital serving as the Research and 
Development support for all commercial lines of insurance. He has published papers on non-aggregated loss development 
techniques, time series, and several papers on practical approaches to credibility. Recently, he was awarded the 2017 
Ratemaking Prize for the best call paper. He graduated from the University of Pennsylvania in 2003 with a BSE in 
Computer Science in Engineering and is a Fellow of the Casualty Actuarial Society. 
 

http://web.stanford.edu/%7Ehastie/glmnet/glmnet_alpha.html


1 

The Average Maturity of  Loss  

Approximation of  Loss Development    

By 

Ira Robbin, PhD 
________________________________________________________________________ 
Abstract  

This paper will present a formula for generalizing the average date of loss approximation (ADOL) so it 
operates reasonably at immature ages, ages where the usual ADOL approximation breaks down.  The 
formula adjusts the evaluation date on the approximating exposures so they have the same average 
maturity of loss (AMOL) as those being approximated.  The formulas also accounts for differences in 
the percent of exposure to loss that has been accrued at the respective ages. The proof of the formula is 
shown.  It is based on decomposing total loss development for a set of exposures into separate pure 
loss development and exposure bucketing terms. The derivation also leads to an error term that can be 
used to gauge the accuracy of the approximation. The paper features examples in which the AMOL is 
applied to approximate policy year and policy year cut-off loss development.    
 
Keywords   Loss Development Factors, Average Date of Loss, Average Maturity of Loss    

________________________________________________________________________ 

1. INTRODUCTION  

Many property and casualty actuaries have at some point been asked to estimate policy 
year (PY) loss development patterns when the only available loss development factors (LDF) 
were on an accident year (AY) basis.  Rather than exit the spreadsheet saying that the 
differences between the policy year and accident year exposure patterns make the task 
impossible, actuaries have instead looked at the problem more carefully and arrived at the 
conclusion that the available information should be sufficient to obtain a fair approximation.  
Intuitively, they realize the AY development pattern encodes enough information so that the 
actuary should be able to take the AY pattern, make appropriate adjustments, and arrive at a 
good estimate of PY loss development.  The question then is: what exactly are these 
appropriate adjustments?  

The standard answer to this question is that the evaluation date must be adjusted for the 
difference in the average date of loss.   This produces the Average Date of Loss (ADOL) 
approximation.  Under the ADOL approximation, the policy year  LDF at a given age is 
estimated by the accident year LDF six months earlier.  The six month adjustment reflects 
the difference between the six month average date of loss for a uniform accident year and 
the twelve month average date of loss for a policy year.  
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Though the ADOL method works reasonably well for mature ages, it breaks down when 
exposures are immature.  In particular the usual ADOL approximation of a policy year starts 
to go awry for ages less than 24 months and makes no sense for ages of 6 months or less.   

The graph in Figure 1 is an example in which the ADOL approximation is graphed 
against the true policy year loss development percent of ultimate curve. The numbers behind 
the graph are derived and presented in Exhibit 2. The error is significant for ages below 15 
months.  The approximation at age 12 is 14.96%, but the actual percentage is 9.48% and the 
estimated Age-to-Ultimate is 6.685 but the actual is 10.547.  Of course, one should not even 
be using this approximation at an age where it is invalid, but some have done so for want of 
an alternative without having a good sense of how significant an error might be introduced.  

Figure 1 

 

How can one obtain an approximation that works at earlier ages, when the exposures are 
not fully earned?   The purpose of this paper is to provide an answer to that question.  This 
paper will present an approximation, the Average Maturity of Loss (AMOL) which  
generalizes the ADOL.   The formula extends to immature ages and the derivation also 
produces an equation for the error term.   The AMOL method provides a general approach 
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for estimating the LDF for one set of exposures based on the LDF from another.  It reflects 
two adjustments:    

• Age Adjustment:   The evaluation age for the LDF of the known curve is 
adjusted so both LDF are for losses with same conditional average maturity of 
loss. For example, a policy year at 12 months has conditional average date of loss 
equal to 8 months and thus a 4 month conditional average maturity of loss.  An 
accident year evaluated at 8 months also has a 4 month conditional average 
maturity.  

• Earned Exposures Adjustment:  A ratio needs to be applied to account for 
differences in the cumulative earned exposures.  For example, on a policy year as 
of 12 months the cumulative exposures are at 50%, while those for an accident 
year as of 8 months are at 67%.  Thus the PY LDF as of 12 months can be 
approximated by the AY LDF as of 8 months times the ratio, 67/50.   

The general AMOL uses one set of LDF to estimate those for another set of exposures.  
It is the logical consequence of an even more basic idea that development for any set of 
exposures is approximable as the product of two terms.  One term reflects is the percent of 
exposures earned as of the evaluation date.  The other is the percent of development on 
losses for a length of time equal to the conditional average maturity of loss for that set of 
exposures.  The general AMOL formula will be proved using the Taylor series expansion on 
the loss development integral representation previously presented in Robbin [3] and Robbin 
and Homer [4].  An expression for the error will be included in the result. Note the use of 
conditional average maturities and the cumulative percentage adjustment allow the formula 
to apply at immature ages.  A conceptually similar two-factor approach was presented by 
David Clark in Appendix B of his paper [2] on LDF curve fitting.  The formula will 
therefore sometimes be referred to as the Clark-Robbin Two-Factor AMOL Formula.  

The paper will provide a numerical example in which AY LDF are used to approximate 
LDF for a policy year and a cut-off policy year using the standard ADOL and the 
generalized AMOL..  The need to develop a cut-off policy year arises in evaluating treaty 
year experience in reinsurance.  Some risks attaching contracts allow the cedant to cut off the 
unearned exposures at the end of the first year.  What is left is equivalent to half a policy 
year.   In this example the exact development patterns will be constructed from the Robbin 
and Homer [4] generating formula.  This allows computation of the exact factors for both 
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curves and thus an explicit calculation of the error of the approximations.   

In Chapter 2 the Robbin and Homer perspective on loss development will be presented. 
This cleanly separates the inherent lag in how long it takes for claims to be reported and to 
be settled from the way that claims are bucketed for accounting and evaluation purposes.  
Chapter 3 will contain the statement and proof of the general AMOL Approximation and 
error term.   Chapter 4 will show the AMOL approximation on policy year and policy year 
cut-off exposures.    

In summary, the general AMOL method  presented in this paper will allow actuaries to 
extend the ADOL formula to early ages and it will also provide a solid practical framework 
for approximating development for less common exposure groupings.       

2. LOSS DEVELOPMENT FROM CLAIMS TO TRIANGLES  

Under the perspective found in Robbin and Homer [4] and Robbin [3] there are inherent 
stochastic processes operating at the individual claim level that describe individual claim 
development.  These quantify how long it takes for the claim to be reported after it occurs, 
how its valuation changes over time, and how long it takes to settle.  In going from 
individual claims to aggregated triangles, a bucketing is done that assigns loss activity on 
designated sets of claims over designated evaluation dates to specific cells.  Under this 
perspective, development of a loss triangle is the result of both exposure bucketing and 
underlying claims development.  Though this seems very theoretical, it leads to a useful 
general mathematical representation of loss development.   

Following Robbin and Homer [4] and Robbin [3] but slightly revising the notation, let T 
be the underlying claim development lag random variable defined as the time elapsed from 
when a claim occurs until when a unit amount of development activity gets recorded.  The 
development activity could be the recording of a reported claim, the settlement of a claim, 
the payment of a claim, or any other variable of interest usually arrayed in triangular format.    

Let A be a loss exposure bucketing random variable defined as the lag from the start of 
an exposure period until a loss occurs.   For an accident year under the usual assumptions, A 
is uniform on [0, 1].  Let PCTT|A (t) be the percent of ultimate at age t for the underlying 
development variable, T, and the exposure and evaluation bucketing variable, A.    
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Assuming all losses are subject to the same underlying loss development process, the 
percent of ultimate function can be expressed as the convolution integral: 

Robbin-Homer Convolution Formula for Percent of Ultimate (2.1) 

𝑃𝑃𝑃𝑃𝑃𝑃𝑇𝑇|𝐴𝐴(𝑡𝑡) = 𝐹𝐹𝐴𝐴+𝑇𝑇(𝑡𝑡) = � 𝑑𝑑𝑑𝑑 𝑓𝑓𝐴𝐴(𝑑𝑑) ∗ 𝐹𝐹𝑇𝑇(𝑡𝑡 − 𝑑𝑑)
𝑡𝑡

0
 

 

The integral representation assumes the random variables A and T are independent.  
Independence can be asserted based on the general grounds that the manner in which loss 
exposures are bucketed for purposes of accounting and reporting should not have any 
impact on how the claims are settled.   

Using Equation 2.1, one can derive an approximation in which separation between 
development and grouping is expressed mathematically with terms and factors that depend 
either on the underlying development or on the grouping of exposures.  It is first useful to 
define several mathematical terms: 

Definitions (2.2) 

2.2.1.  𝑃𝑃𝐶𝐶𝐶𝐶𝑑𝑑𝐶𝐶𝑡𝑡𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐶𝐶𝐴𝐴𝐴𝐴 𝐷𝐷𝐶𝐶𝑡𝑡𝐴𝐴 𝐶𝐶𝑓𝑓 𝐿𝐿𝐶𝐶𝑑𝑑𝑑𝑑 𝐸𝐸𝐸𝐸𝐸𝐸𝐶𝐶𝑑𝑑𝐸𝐸𝐴𝐴𝐴𝐴:  𝑚𝑚𝐴𝐴(𝑡𝑡) = 𝐸𝐸𝐴𝐴[𝑃𝑃|𝑃𝑃 < 𝑡𝑡]  

2.2.2.  𝑃𝑃𝐶𝐶𝐶𝐶𝑑𝑑𝐶𝐶𝑡𝑡𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐶𝐶𝐴𝐴𝐴𝐴 𝑀𝑀𝐶𝐶𝑡𝑡𝐸𝐸𝐴𝐴𝐶𝐶𝑡𝑡𝑀𝑀 𝐶𝐶𝑓𝑓 𝐿𝐿𝐶𝐶𝑑𝑑𝑑𝑑 𝐸𝐸𝐸𝐸𝐸𝐸𝐶𝐶𝑑𝑑𝐸𝐸𝐴𝐴𝐴𝐴:  𝐴𝐴𝐴𝐴(𝑡𝑡) = 𝑡𝑡 − 𝑚𝑚𝐴𝐴(𝑡𝑡)  

2.2.3.   𝑃𝑃𝐶𝐶𝐶𝐶𝑑𝑑𝐶𝐶𝑡𝑡𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝑉𝑉𝐶𝐶𝐴𝐴𝐶𝐶𝐶𝐶𝐶𝐶𝑉𝑉𝐴𝐴 𝐶𝐶𝑓𝑓 𝐷𝐷𝐶𝐶𝑡𝑡𝐴𝐴 𝐶𝐶𝑓𝑓 𝐿𝐿𝐶𝐶𝑑𝑑𝑑𝑑 𝐸𝐸𝐸𝐸𝐸𝐸𝐶𝐶𝑑𝑑𝐸𝐸𝐴𝐴𝐴𝐴:  𝐴𝐴𝐴𝐴(𝑡𝑡)
= 𝐸𝐸𝐴𝐴[(𝑃𝑃 −𝑚𝑚𝐴𝐴(𝑡𝑡))2|𝑃𝑃 < 𝑡𝑡] 

 

 

Figure 2 shows the relation between the average date of loss and the average maturity of 
loss.  

Formulas for the average date of loss, average maturity of loss, and average variance of 
loss date are shown in the Appendix for an accident year, a Cut-off Policy Year, and a Policy 
year.    
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Figure 2 

 

One can now approximate development using a two-factor formula.  One first factor is 
the percentage of ultimate exposure at the evaluation date.  The second is the percent of 
ultimate for the underlying loss development process at the average maturity of loss.  This is 
the Clark-Robbin Two-Factor Average Maturity of Loss Approximation.   The error in the 
approximation is given by a term that includes the variance in the loss exposure date.  The 
percent of ultimate of losses subject to development T when bucketed as per exposure 
distribution A is approximated via follows: 

 Clark-Robbin Two-Factor Average Maturity of Loss Approximation  (2.3) 

 

 𝑃𝑃𝑃𝑃𝑃𝑃𝑇𝑇|𝐴𝐴(𝑡𝑡) ≈ 𝐹𝐹𝐴𝐴(𝑡𝑡) ∙ 𝑃𝑃𝑃𝑃𝑃𝑃𝑇𝑇�𝐴𝐴𝐴𝐴(𝑡𝑡)� 

𝑤𝑤𝐶𝐶𝑡𝑡ℎ 𝐴𝐴𝐴𝐴𝐴𝐴𝐶𝐶𝐴𝐴 𝐹𝐹𝐴𝐴(𝑡𝑡) ∙  �1
2
∙ 𝑓𝑓𝑇𝑇′�𝐴𝐴𝐴𝐴(𝜏𝜏)� ∙ 𝐴𝐴𝐴𝐴(𝑡𝑡) �  𝑤𝑤ℎ𝐴𝐴𝐴𝐴𝐴𝐴 0 < 𝜏𝜏 < 𝑡𝑡 

 

 

 

  Proof: 

Apply the Taylor series expansion up to second order to write: 
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 𝐹𝐹𝑇𝑇(𝑡𝑡 − 𝑑𝑑) = 𝐹𝐹𝑇𝑇�𝑡𝑡 − 𝑚𝑚𝐴𝐴(𝑡𝑡)�
− �𝑑𝑑 −𝑚𝑚𝐴𝐴(𝑡𝑡)�𝑓𝑓𝑇𝑇�𝐴𝐴𝐴𝐴(𝑡𝑡)� +  1

2
�𝑑𝑑 − 𝑚𝑚𝐴𝐴(𝑡𝑡)�2𝑓𝑓𝑇𝑇′�𝐴𝐴𝐴𝐴(𝜏𝜏)� 

    
𝑤𝑤𝐶𝐶𝑡𝑡ℎ 0 ≤ 𝜏𝜏 ≤ 𝑡𝑡  

(2.4) 

Plugging this into the integral in 2.1 leads to:    

𝑃𝑃𝑃𝑃𝑃𝑃𝑇𝑇|𝐴𝐴(𝑡𝑡) = � 𝑑𝑑𝑑𝑑 𝑓𝑓𝐴𝐴(𝑑𝑑) ∙ 𝐹𝐹𝑇𝑇�𝐴𝐴𝐴𝐴(𝑡𝑡)�
𝑡𝑡

0
− � 𝑑𝑑𝑑𝑑 𝑓𝑓𝐴𝐴(𝑑𝑑) ∙ �𝑑𝑑 − 𝑚𝑚𝐴𝐴(𝑡𝑡)� ∙ 𝑓𝑓𝑇𝑇�𝐴𝐴𝐴𝐴(𝑡𝑡)�

𝑡𝑡

0
 

+1
2
∙ 𝑓𝑓𝑇𝑇�𝐴𝐴𝐴𝐴(𝜏𝜏)�� 𝑑𝑑𝑑𝑑 𝑓𝑓𝐴𝐴(𝑑𝑑) ∙ �𝑑𝑑 − 𝑚𝑚𝐴𝐴(𝑡𝑡)�2 

𝑡𝑡

0
 

 

 
 

(2.5) 

The integral with the term s- mA(t) is zero.  So the expression simplifies to: 

𝑃𝑃𝑃𝑃𝑃𝑃𝑇𝑇|𝐴𝐴(𝑡𝑡) = 𝐹𝐹𝑇𝑇�𝐴𝐴𝐴𝐴(𝑡𝑡)�𝐹𝐹𝐴𝐴(𝑡𝑡) +  1
2
 𝑓𝑓𝑇𝑇′�𝐴𝐴𝐴𝐴(𝜏𝜏)�𝐹𝐹𝐴𝐴(𝑡𝑡)𝐴𝐴𝐴𝐴(𝑡𝑡) 

 
(2.6) 

The approximation in Equation 2.3 is obtained by taking the first term.   This comprised 
of a product of two factors.  The remaining term is the error. For many bucketing 
distributions, this second term is relatively small.  If finer accuracy is desired and a particular 
functional form is assumed that allows computation of the derivative of the development 
density, f′, one can approximate the true error term by using rA(t) in place of rA(τ).    

In words, Equation 2.3 means that the percent of ultimate for underlying development 
variable T and bucketing variable A is given as the product of the cumulative distribution of 
the bucketing random variable time t multiplied by the percent of ultimate for the 
development variable at the average maturity at time t plus a second order correction.    

For an explicit application of Equation 2.3, assume underlying development is given as 
an exponential with mean, µ, so that: 

Exponential CDF, Density, and Derivative of Density     (2.7) 
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• FT(t) = 1- exp(-t/µ) 

• fT(t) = (1/µ) exp(-t/µ) 

• f′Τ(t) = - (1/µ2) exp(-t/µ) 

 

 

Formulas for the conditional average date of loss, the conditional average maturity of 
loss, and conditional variance for an accident year are shown in Appendix A. It follows that 
for t<1 (years), percent of ultimate development is approximated via:   

Bucketing-Development Approximation of Accident Year 
Development Based on Underlying Exponential Loss Development for 

t<1      

(2.8) 

 

 𝑃𝑃𝑃𝑃𝑃𝑃𝑇𝑇|𝐴𝐴(𝑡𝑡) ≈ 𝑡𝑡 ∙ �1 − exp �− 𝑡𝑡
2𝜇𝜇
� + −1

24 ∙ �
𝑡𝑡

𝜇𝜇
�
2

exp �− 𝑡𝑡
2𝜇𝜇
� �  

 

 

The formulas in 2.3, 2.7, and the Appendix can be used to derive a percent of ultimate 
approximate for t>1 for accident year development with an underlying exponential 
development process.  This is left as an exercise for the reader.   The graph in Figure 3 
shows the approximation with the second order correction term by month out to month 36 
for an exponential with mean equal to 1.50.   

Exhibit 1 shows the derivation and values graphed in Figure 3.  The approximation is 
extremely good as expected.  The graph shows the curves are on top of one another. Exhibit 
1 also shows the first order approximation and the reader can see that it, too, is quite good 

Figure 3 
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.    Another important and useful result is obtained when Equation 2.1 is applied to 
accident year exposures.  In that case, Equation 2.1 can be expressed using formulas 
involving the limited expected value of T, denoted here as LEV: 

Robbin Accident Year Percent of Ultimate Formula Based on LEVs (2.9) 

𝑃𝑃𝑃𝑃𝑃𝑃𝑇𝑇|𝐴𝐴𝐴𝐴(𝑡𝑡) = �𝑡𝑡 − 𝐿𝐿𝐸𝐸𝑉𝑉(𝑡𝑡)                                 𝑓𝑓𝐶𝐶𝐴𝐴 𝑡𝑡 < 1
1 − (𝐿𝐿𝐸𝐸𝑉𝑉(𝑡𝑡) − 𝐿𝐿𝐸𝐸𝑉𝑉(𝑡𝑡 − 1)    𝑓𝑓𝐶𝐶𝐴𝐴 𝑡𝑡 > 1� 

 

 

The proof is in Robbin [3].  Equation 2.9 provides a convenient way to generate accident 
year loss development curves given a parametric non-negative random variable such as a 
Pareto or exponential that has a tractable limited expected value formula. It was used to 
generate the exact AY curve used to approximate the policy year curve depicted in Figure 1.   

 

3. THE GENERAL AVERAGE MATURITY OF LOSS 
APPROXIMATION 

Now suppose A is an exposure bucketing random variable and assume a loss 
development curve based on A is known.  Suppose B is another exposure bucketing random 
variable.  The question arises: how can one approximate the development curve based on T 
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given exposure B using the known percent of ultimate loss development curve based on T 
given exposure A?    The answer is that a reasonable approximation using average maturity 
of loss can be obtained.  In general, two adjustments need to be made:  

• The evaluation date needs to be adjusted so the A-exposed losses at the adjusted date 
have the same average maturity as the B-grouped losses at the original evaluation 
date. 

• There needs to be an adjustment for differences in the percent of exposures earned 
to date for A and B at the respective dates.    

The General Average Maturity of Loss Approximation formula with error terms is given 
in Equation 3.1.    

Generalized Average Maturity of  Loss Approximation (3.1) 

𝐼𝐼𝑓𝑓 𝐴𝐴𝐵𝐵(𝑡𝑡) = 𝑡𝑡 − 𝑚𝑚𝐵𝐵(𝑡𝑡) = 𝐴𝐴𝐴𝐴(𝑡𝑡 ∗) =  𝑡𝑡∗ − 𝑚𝑚𝐴𝐴(𝑡𝑡∗), 𝑡𝑡ℎ𝐴𝐴𝐶𝐶 
 

 𝑃𝑃𝑃𝑃𝑃𝑃𝑇𝑇|𝐵𝐵(𝑡𝑡) =  
𝐹𝐹𝐵𝐵(𝑡𝑡)
𝐹𝐹𝐴𝐴(𝑡𝑡∗)

∙ 𝑃𝑃𝑃𝑃𝑃𝑃𝑇𝑇|𝐴𝐴(𝑡𝑡∗) 

 
+1
2
∙ �𝐴𝐴𝐵𝐵(𝑡𝑡) − 𝐴𝐴𝐴𝐴(𝑡𝑡∗)� ∙ 𝑓𝑓𝑇𝑇′(𝐴𝐴𝐴𝐴(𝑡𝑡∗))  

 

 

Proof:  The proof follows directly from Equation 2.3 and a little algebra and is left as an 
exercise for the reader.     

The first step in applying 3.1 is to find the evaluation date t* that yields the same average 
maturity of loss: 

Average Maturity Date Equation (3.2) 

 𝐴𝐴𝐵𝐵(𝑡𝑡) =  𝐴𝐴𝐴𝐴(𝑡𝑡∗) 
 

 The next step requires an evaluation of the term, PCTT|A(t*), the percent of ultimate for 
the known curve at the adjusted evaluation date.  This will require either an explicit formula 
for the known curve at all evaluation dates or use of an interpolation routine.    
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4. ACCIDENT YEAR APPROXIMATION OF POLICY YEAR AND 
CUT-OFF POLICY YEAR LOSS DEVELOPMENT PATTERNS 

In this section, the general AMOL approximation will be applied to estimate policy year 
and cut-off policy year development based on known development for an accident year.  A 
cut-off policy year is one which includes claims on policies that are written uniformly over 
the year but which cuts off those that occur after the end of the year.1  

The average maturity approximation requires finding for each evaluation date, t, the 
corresponding adjusted evaluation date, t*, so that the accident year has the same average 
maturity as the cut-off policy year.   

Using the equations in the Appendix for the cut-off policy year and solving for t* as a 
function of t to satisfy 3.3, one finds: 

AY Evaluation Date to Achieve Same Average Maturity as Cut-off Policy 
Year 

(4.1) 

4.1.1 For t≤1, it follows that t/3 = t*/2 which implies t* = (2/3)t.  

4.1.2. For 1< t ≤ 7/6, it follows that t -2/3 = t*/2 which implies t*= 2t - 4/3.  

4.1.3. For 7/6<t, it follows that that t -2/3 = t*- ½ which implies t*= t -1/6.     

 

This is demonstrated in Exhibit 3A.  A key point is that the maturity age adjustments and 
loss exposure distribution adjustments by age do not depend at all on the loss development 
curves but only on the exposure bucketing curves.  Note the adjustment varies over time.  At 
6 months, the cut-off policy year has a 4 month conditional average date of loss and a 2 
month conditional average maturity of loss.  The corresponding AY evaluation date is 4 
months as that also leads to a 2 month average maturity of loss.  When t is 12 months, the 
corresponding t* is 8 months as was previously observed.   Later when t is 24 months, the 
average maturity of loss for the cut-off policy year is 16 months (24-8).  The corresponding 
t* for an accident year at that stage is 22 months (22-6 =16).             

Exhibit 3B shows how the general average maturity of loss approximation in Formula 3.1 
is used to estimate a cut-off policy year using the accident year curve and where the 
                                                           
1 Boor [1] discusses this briefly but describes it in terms of the first accident year for a company that just started 
writing at the start of the first year.  The author’s terminology borrows from a common clause in risks attaching 
reinsurance treaties that allows the cedant to cut-off the remaining unearned exposures at the end of the year.     
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underlying loss development lag is assumed to be an exponential distribution.   The accident 
year curve was derived in Exhibit 1A.  Exhibit 3B also shows the exact percent of ultimate 
and the age-to-ultimate LDF factor for the cut-off policy year along with the associated 
errors of the approximation.   The reader is cautioned that the AMOL approximation is just 
that, an approximation.  The reader is invited to verify that the errors are within the bounds 
specified by Equation 3.1.  

The AMOL approximation of policy year LDF based on accident year patterns is shown 
in Exhibits 4A and 4B.  The conditional average date of loss, average maturity of loss, and 
adjusted age are computed in Exhibit 4A.  Policy year formulas are found in the Appendix.  
Exhibit 4B shows the evaluation at the AMOL adjusted evaluation date and the exposure 
ratio adjustment.  Note after 24 months the AMOL approximation of policy year loss 
development become the same as the usual ADOL approximation.     

5. CONCLUSION     

Perhaps the immediate practical lesson is that use of the standard ADOL can seriously 
understate the Policy Year Age-to-Ultimate factors at ages 12 and 15.  However, the AMOL 
approximation presented in this paper can be used to give a much more accurate, though 
certainly not exact,  answer.  

More generally the Average Maturity of Loss approximation has been shown to be a 
conceptually sound method for approximating loss development for an arbitrary bucketing 
of loss exposures over immature as well as mature periods.  The Two-Factor formula makes 
good intuitive sense from a standard actuarial perspective and it is supported by a solid 
mathematical foundation.    
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Exhibit 1A   Robbin-Homer LEV Formula for AY Percent of Ultimate  

 

AY PCT of Ultimate 
PCTT|AY(t)  = t-LEV(t) t<1

1-(LEV(t)-LEV(t-1)) t>1

T = Exponential

mean 1.50
Exact 

Formula

t 
months t in years LEV(t) LEV(t-1)

AY PCT 
of ULT

AY ATU 
LDF

0 0.000
1 0.083 0.081 0.000 0.23% ####
2 0.167 0.158 0.000 0.89% ####
3 0.250 0.230 0.000 1.97% 50.7033  
4 0.333 0.299 0.000 3.44% 29.0365  
5 0.417 0.364 0.000 5.29% 18.9163  
6 0.500 0.425 0.000 7.48% 13.3695  
7 0.583 0.483 0.000 10.00% 9.9952   
8 0.667 0.538 0.000 12.84% 7.7859   
9 0.750 0.590 0.000 15.98% 6.2580   

10 0.833 0.639 0.000 19.40% 5.1556   
11 0.917 0.686 0.000 23.08% 4.3330   
12 1.000 0.730 0.000 27.01% 3.7020   
13 1.083 0.771 0.081 30.96% 3.2303   
14 1.167 0.811 0.158 34.69% 2.8828   
15 1.250 0.848 0.230 38.22% 2.6166   
16 1.333 0.883 0.299 41.56% 2.4064   
17 1.417 0.917 0.364 44.71% 2.2364   
18 1.500 0.948 0.425 47.70% 2.0963   
19 1.583 0.978 0.483 50.53% 1.9791   
20 1.667 1.006 0.538 53.20% 1.8796   
21 1.750 1.033 0.590 55.73% 1.7943   
22 1.833 1.058 0.639 58.12% 1.7205   
23 1.917 1.082 0.686 60.39% 1.6560   
24 2.000 1.105 0.730 62.53% 1.5993   
25 2.083 1.126 0.771 64.55% 1.5491   
26 2.167 1.146 0.811 66.47% 1.5045   
27 2.250 1.165 0.848 68.28% 1.4646   
28 2.333 1.183 0.883 69.99% 1.4287   
29 2.417 1.201 0.917 71.62% 1.3963   
30 2.500 1.217 0.948 73.15% 1.3671   
31 2.583 1.232 0.978 74.60% 1.3405   
32 2.667 1.246 1.006 75.97% 1.3163   
33 2.750 1.260 1.033 77.27% 1.2941   
34 2.833 1.273 1.058 78.50% 1.2739   
35 2.917 1.285 1.082 79.66% 1.2553   
36 3.000 1.297 1.105 80.76% 1.2382   
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Exhibit 1B  Clark-Robbin Two Factor Approximation of AY Development  
 

 

Two Factor Formula: FA+T(t) ≈ FA(t)*FT(rA(t))
Formula with Error Term: FA+T(t) = FA(t)*FT(rA(t))+ 1/2*FA(t)*vA(t)*fT'(rA(t))

A = AY Two-Factor AMOL Approx Formula with Error Term

FA(t) mA(t) vA(t)
rA(t) =
t-mA(t) FT(rA(t))

FA(t) * 
FT(rA(t)) f'T(rA(t))

t months
t in 

years ETD%

 
Avg Date 

of Loss 
(Years)

 
Variance 

of Date of 
Loss 

g 
Maturity 
of Loss 
(Years)

PCT of T 
at Condl 

AMOL

PCT 
ULT 

Approx Error
Endpt 

eval

PCT 
ULT 

Approx Error
0 0.000  0.000 0.000
1 0.083 8.33% 0.042 0.001 0.042 2.74% 0.23% 0.00% -0.432 0.23% 0.00%
2 0.167 16.67% 0.083 0.002 0.083 5.40% 0.90% 0.01% -0.420 0.89% 0.00%
3 0.250 25.00% 0.125 0.005 0.125 8.00% 2.00% 0.03% -0.409 1.97% 0.00%
4 0.333 33.33% 0.167 0.009 0.167 10.52% 3.51% 0.06% -0.398 3.44% 0.00%
5 0.417 41.67% 0.208 0.014 0.208 12.97% 5.40% 0.12% -0.387 5.29% 0.00%
6 0.500 50.00% 0.250 0.021 0.250 15.35% 7.68% 0.20% -0.376 7.48% 0.00%
7 0.583 58.33% 0.292 0.028 0.292 17.67% 10.31% 0.30% -0.366 10.01% 0.00%
8 0.667 66.67% 0.333 0.037 0.333 19.93% 13.28% 0.44% -0.356 12.84% 0.00%
9 0.750 75.00% 0.375 0.047 0.375 22.12% 16.59% 0.61% -0.346 15.98% 0.00%

10 0.833 83.33% 0.417 0.058 0.417 24.25% 20.21% 0.81% -0.337 19.40% 0.00%
11 0.917 91.67% 0.458 0.070 0.458 26.33% 24.13% 1.06% -0.327 23.08% 0.00%
12 1.000 100.00% 0.500 0.083 0.500 28.35% 28.35% 1.33% -0.318 27.02% 0.01%
13 1.083 100.00% 0.500 0.083 0.583 32.22% 32.22% 1.26% -0.301 30.96% 0.01%
14 1.167 100.00% 0.500 0.083 0.667 35.88% 35.88% 1.19% -0.285 34.69% 0.01%
15 1.250 100.00% 0.500 0.083 0.750 39.35% 39.35% 1.13% -0.270 38.22% 0.01%
16 1.333 100.00% 0.500 0.083 0.833 42.62% 42.62% 1.07% -0.255 41.56% 0.01%
17 1.417 100.00% 0.500 0.083 0.917 45.73% 45.73% 1.01% -0.241 44.72% 0.01%
18 1.500 100.00% 0.500 0.083 1.000 48.66% 48.66% 0.96% -0.228 47.71% 0.01%
19 1.583 100.00% 0.500 0.083 1.083 51.43% 51.43% 0.90% -0.216 50.53% 0.01%
20 1.667 100.00% 0.500 0.083 1.167 54.06% 54.06% 0.86% -0.204 53.21% 0.00%
21 1.750 100.00% 0.500 0.083 1.250 56.54% 56.54% 0.81% -0.193 55.74% 0.00%
22 1.833 100.00% 0.500 0.083 1.333 58.89% 58.89% 0.77% -0.183 58.13% 0.00%
23 1.917 100.00% 0.500 0.083 1.417 61.11% 61.11% 0.72% -0.173 60.39% 0.00%
24 2.000 100.00% 0.500 0.083 1.500 63.21% 63.21% 0.69% -0.164 62.53% 0.00%
25 2.083 100.00% 0.500 0.083 1.583 65.20% 65.20% 0.65% -0.155 64.56% 0.00%
26 2.167 100.00% 0.500 0.083 1.667 67.08% 67.08% 0.61% -0.146 66.47% 0.00%
27 2.250 100.00% 0.500 0.083 1.750 68.86% 68.86% 0.58% -0.138 68.28% 0.00%
28 2.333 100.00% 0.500 0.083 1.833 70.54% 70.54% 0.55% -0.131 70.00% 0.00%
29 2.417 100.00% 0.500 0.083 1.917 72.13% 72.13% 0.52% -0.124 71.62% 0.00%
30 2.500 100.00% 0.500 0.083 2.000 73.64% 73.64% 0.49% -0.117 73.15% 0.00%
31 2.583 100.00% 0.500 0.083 2.083 75.06% 75.06% 0.46% -0.111 74.60% 0.00%
32 2.667 100.00% 0.500 0.083 2.167 76.41% 76.41% 0.44% -0.105 75.98% 0.00%
33 2.750 100.00% 0.500 0.083 2.250 77.69% 77.69% 0.42% -0.099 77.27% 0.00%
34 2.833 100.00% 0.500 0.083 2.333 78.89% 78.89% 0.39% -0.094 78.50% 0.00%
35 2.917 100.00% 0.500 0.083 2.417 80.03% 80.03% 0.37% -0.089 79.66% 0.00%
36 3.000 100.00% 0.500 0.083 2.500 81.11% 81.11% 0.35% -0.084 80.76% 0.00%
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Exhibit 2  AY Average Date of Loss Approximation of Policy Year  

 

 
  

A = AY

FA+T(t)
t-∆

months FA+T(t-∆) FB+T(t)

t 
months t in years

AY PCT 
ULT 

Shifted 
eval

ADOL 
Approx 

PCT ULT

True PY 
PCT 
ULT Error

ADOL 
Approx 

ATU LDF
True PY 

ATU LDF Error
0 0.000 0.00% -6 N/A 0.00% N/A
1 0.083 0.23% -5 N/A 0.01% N/A N/A 15,768.597 N/A
2 0.167 0.89% -4 N/A 0.05% N/A N/A 1,998.297   N/A
3 0.250 1.97% -3 N/A 0.17% N/A N/A 600.197      N/A
4 0.333 3.44% -2 N/A 0.39% N/A N/A 256.647      N/A
5 0.417 5.29% -1 N/A 0.75% N/A N/A 133.173      N/A
6 0.500 7.48% 0 0.00% 1.28% -1.28% N/A 78.097       N/A
7 0.583 10.00% 1 2.73% 2.01% 0.72% 36.670        49.832       (13.162)    
8 0.667 12.84% 2 5.36% 2.96% 2.40% 18.673        33.822       (15.149)    
9 0.750 15.98% 3 7.89% 4.16% 3.73% 12.676        24.064       (11.388)    

10 0.833 19.40% 4 10.33% 5.63% 4.70% 9.679          17.769       (8.090)      
11 0.917 23.08% 5 12.69% 7.40% 5.29% 7.882          13.521       (5.640)      
12 1.000 27.01% 6 14.96% 9.48% 5.48% 6.685          10.547       (3.862)      
13 1.083 30.96% 7 17.15% 11.89% 5.26% 5.831          8.409         (2.579)      
14 1.167 34.69% 8 19.27% 14.58% 4.68% 5.191          6.857         (1.666)      
15 1.250 38.22% 9 21.31% 17.51% 3.80% 4.693          5.712         (1.018)      
16 1.333 41.56% 10 23.28% 20.61% 2.67% 4.296          4.852         (0.556)      
17 1.417 44.71% 11 25.18% 23.84% 1.33% 3.972          4.194         (0.222)      
18 1.500 47.70% 12 27.01% 27.17% -0.15% 3.702          3.681         0.021       
19 1.583 50.53% 13 30.96% 30.53% 0.42% 3.230          3.275         (0.045)      
20 1.667 53.20% 14 34.69% 33.91% 0.78% 2.883          2.949         (0.066)      
21 1.750 55.73% 15 38.22% 37.25% 0.97% 2.617          2.685         (0.068)      
22 1.833 58.12% 16 41.56% 40.52% 1.04% 2.406          2.468         (0.061)      
23 1.917 60.39% 17 44.71% 43.69% 1.02% 2.236          2.289         (0.052)      
24 2.000 62.53% 18 47.70% 46.73% 0.97% 2.096          2.140         (0.044)      
25 2.083 64.55% 19 50.53% 49.61% 0.92% 1.979          2.016         (0.037)      
26 2.167 66.47% 20 53.20% 52.33% 0.87% 1.880          1.911         (0.031)      
27 2.250 68.28% 21 55.73% 54.91% 0.82% 1.794          1.821         (0.027)      
28 2.333 69.99% 22 58.12% 57.34% 0.78% 1.720          1.744         (0.023)      
29 2.417 71.62% 23 60.39% 59.65% 0.74% 1.656          1.676         (0.020)      
30 2.500 73.15% 24 62.53% 61.83% 0.70% 1.599          1.617         (0.018)      
31 2.583 74.60% 25 64.55% 63.89% 0.66% 1.549          1.565         (0.016)      
32 2.667 75.97% 26 66.47% 65.84% 0.62% 1.504          1.519         (0.014)      
33 2.750 77.27% 27 68.28% 67.69% 0.59% 1.465          1.477         (0.013)      
34 2.833 78.50% 28 69.99% 69.44% 0.56% 1.429          1.440         (0.011)      
35 2.917 79.66% 29 71.62% 71.09% 0.53% 1.396          1.407         (0.010)      
36 3.000 80.76% 30 73.15% 72.65% 0.50% 1.367          1.376         (0.009)      

AY Standard ADOL Approximation of PY
A = AY   m=6 months

B = PY   m = 12 months
∆ = 6 months
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Exhibit 3A   AMOL PY Cut-off  

 

Policy Year cut-off

FB(t) mB(t) t-mB(t) FA(t) mA(t)

rA(t) =

t-mA(t) t* mA(t*)

rA(t*) =

t*-mA(t*) FA(t*) FB(t)/FA(t*)

t 
months ETD%

Condl 
Avg Date 

of Loss 
(Months)

Avg 
Maturity 
of Loss 

(Months) ETD%

Condl 
Avg Date 

of Loss 
(Months)

Avg 
Maturity 
of Loss 

(Months)

Eval Age 
for AY 

Equiv 
Maturity 

(Months)

Condl 
Avg 

Date of 
Loss 

(Months)
Avg 

Maturity

ETD %  
at  Eval 

Age
ETD % 

Adj Factor
0 0.00% 0.000 0.000  0.000 0.000
1 0.69% 0.667 0.333 8.33% 0.500 0.500 0.667 0.333 0.333 5.56% 12.500%
2 2.78% 1.333 0.667 16.67% 1.000 1.000 1.333 0.667 0.667 11.11% 25.000%
3 6.25% 2.000 1.000 25.00% 1.500 1.500 2.000 1.000 1.000 16.67% 37.500%
4 11.11% 2.667 1.333 33.33% 2.000 2.000 2.667 1.333 1.333 22.22% 50.000%
5 17.36% 3.333 1.667 41.67% 2.500 2.500 3.333 1.667 1.667 27.78% 62.500%
6 25.00% 4.000 2.000 50.00% 3.000 3.000 4.000 2.000 2.000 33.33% 75.000%
7 34.03% 4.667 2.333 58.33% 3.500 3.500 4.667 2.333 2.333 38.89% 87.500%
8 44.44% 5.333 2.667 66.67% 4.000 4.000 5.333 2.667 2.667 44.44% 100.000%
9 56.25% 6.000 3.000 75.00% 4.500 4.500 6.000 3.000 3.000 50.00% 112.500%

10 69.44% 6.667 3.333 83.33% 5.000 5.000 6.667 3.333 3.333 55.56% 125.000%
11 84.03% 7.333 3.667 91.67% 5.500 5.500 7.333 3.667 3.667 61.11% 137.500%
12 100.00% 8.000 4.000 100.00% 6.000 6.000 8.000 4.000 4.000 66.67% 150.000%
13 100.00% 8.000 5.000 100.00% 6.000 7.000 10.000 5.000 5.000 83.33% 120.000%
14 100.00% 8.000 6.000 100.00% 6.000 8.000 12.000 6.000 6.000 100.00% 100.000%
15 100.00% 8.000 7.000 100.00% 6.000 9.000 13.000 6.000 7.000 100.00% 100.000%
16 100.00% 8.000 8.000 100.00% 6.000 10.000 14.000 6.000 8.000 100.00% 100.000%
17 100.00% 8.000 9.000 100.00% 6.000 11.000 15.000 6.000 9.000 100.00% 100.000%
18 100.00% 8.000 10.000 100.00% 6.000 12.000 16.000 6.000 10.000 100.00% 100.000%
19 100.00% 8.000 11.000 100.00% 6.000 13.000 17.000 6.000 11.000 100.00% 100.000%
20 100.00% 8.000 12.000 100.00% 6.000 14.000 18.000 6.000 12.000 100.00% 100.000%
21 100.00% 8.000 13.000 100.00% 6.000 15.000 19.000 6.000 13.000 100.00% 100.000%
22 100.00% 8.000 14.000 100.00% 6.000 16.000 20.000 6.000 14.000 100.00% 100.000%
23 100.00% 8.000 15.000 100.00% 6.000 17.000 21.000 6.000 15.000 100.00% 100.000%
24 100.00% 8.000 16.000 100.00% 6.000 18.000 22.000 6.000 16.000 100.00% 100.000%
25 100.00% 8.000 17.000 100.00% 6.000 19.000 23.000 6.000 17.000 100.00% 100.000%
26 100.00% 8.000 18.000 100.00% 6.000 20.000 24.000 6.000 18.000 100.00% 100.000%
27 100.00% 8.000 19.000 100.00% 6.000 21.000 25.000 6.000 19.000 100.00% 100.000%
28 100.00% 8.000 20.000 100.00% 6.000 22.000 26.000 6.000 20.000 100.00% 100.000%
29 100.00% 8.000 21.000 100.00% 6.000 23.000 27.000 6.000 21.000 100.00% 100.000%
30 100.00% 8.000 22.000 100.00% 6.000 24.000 28.000 6.000 22.000 100.00% 100.000%
31 100.00% 8.000 23.000 100.00% 6.000 25.000 29.000 6.000 23.000 100.00% 100.000%
32 100.00% 8.000 24.000 100.00% 6.000 26.000 30.000 6.000 24.000 100.00% 100.000%
33 100.00% 8.000 25.000 100.00% 6.000 27.000 31.000 6.000 25.000 100.00% 100.000%
34 100.00% 8.000 26.000 100.00% 6.000 28.000 32.000 6.000 26.000 100.00% 100.000%
35 100.00% 8.000 27.000 100.00% 6.000 29.000 33.000 6.000 27.000 100.00% 100.000%
36 100.00% 8.000 28.000 100.00% 6.000 30.000 34.000 6.000 28.000 100.00% 100.000%

A = AYB= UWY Cutoff AY Equivalent

AMOL Dates and Exposure Earning  Adjustment
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Exhibit 3B  AMOL PY Cut-off  

 

 
 

t FT|A(t) t* FT|A(t*) FB(t)/FA(t*) F*T|B(t) FT|B(t)

F*T|B(t) 
- FT|B(t) F*T|B(t) FT|B(t)

F*T|B(t) 
- FT|B(t)

t in 
months

AY PCT 
of ULT

Equivalent 
Eval Age

AY PCT 
ULT at 

Equivalent 
Eval Age 

ETD % 
Adj Factor

AMOL 
Approx of 
PY Cutoff 
PCT ULT

Exact PY 
Cutoff 

PCT 
ULT Error

AMOL 
Approx of 
PY Cutoff 
ATU LDF

Exact PY 
Cutoff 

ATU LDF Error
0 0.000% 0.000% 0.000% -           -           
1 0.227% 0.667 0.152% 12.500% 0.019% 0.013% 0.006% ##### ##### #####
2 0.893% 1.333 0.449% 25.000% 0.112% 0.100% 0.012% 890.8213  999.1486  (108.3273) 
3 1.972% 2.000 0.893% 37.500% 0.335% 0.333% 0.001% 298.7647  300.0986  (1.3339)     
4 3.444% 2.667 1.612% 50.000% 0.806% 0.779% 0.027% 124.0417  128.3236  (4.2819)     
5 5.286% 3.333 2.463% 62.500% 1.539% 1.502% 0.037% 64.9662    66.5866    (1.6204)     
6 7.480% 4.000 3.444% 75.000% 2.583% 2.561% 0.022% 38.7153    39.0486    (0.3333)     
7 10.005% 4.667 4.672% 87.500% 4.088% 4.013% 0.075% 24.4604    24.9161    (0.4557)     
8 12.844% 5.333 6.018% 100.000% 6.018% 5.913% 0.104% 16.6181    16.9111    (0.2930)     
9 15.980% 6.000 7.480% 112.500% 8.415% 8.311% 0.103% 11.8840    12.0320    (0.1479)     

10 19.396% 6.667 9.163% 125.000% 11.454% 11.255% 0.198% 8.7307      8.8846      (0.1539)     
11 23.079% 7.333 10.951% 137.500% 15.058% 14.791% 0.266% 6.6411      6.7607      (0.1196)     
12 27.013% 8.000 12.844% 150.000% 19.266% 18.962% 0.303% 5.1906      5.2736      (0.0830)     
13 30.957% 10.000 19.396% 120.000% 23.276% 23.342% -0.066% 4.2963      4.2842      0.0121      
14 34.688% 12.000 27.013% 100.000% 27.013% 27.484% -0.472% 3.7020      3.6384      0.0635      
15 38.217% 13.000 30.957% 100.000% 30.957% 31.403% -0.446% 3.2303      3.1844      0.0459      
16 41.556% 14.000 34.688% 100.000% 34.688% 35.110% -0.422% 2.8828      2.8482      0.0347      
17 44.715% 15.000 38.217% 100.000% 38.217% 38.617% -0.399% 2.6166      2.5895      0.0271      
18 47.702% 16.000 41.556% 100.000% 41.556% 41.934% -0.378% 2.4064      2.3847      0.0217      
19 50.528% 17.000 44.715% 100.000% 44.715% 45.072% -0.357% 2.2364      2.2187      0.0177      
20 53.202% 18.000 47.702% 100.000% 47.702% 48.040% -0.338% 2.0963      2.0816      0.0147      
21 55.731% 19.000 50.528% 100.000% 50.528% 50.848% -0.320% 1.9791      1.9666      0.0124      
22 58.123% 20.000 53.202% 100.000% 53.202% 53.504% -0.302% 1.8796      1.8690      0.0106      
23 60.386% 21.000 55.731% 100.000% 55.731% 56.017% -0.286% 1.7943      1.7852      0.0092      
24 62.527% 22.000 58.123% 100.000% 58.123% 58.394% -0.271% 1.7205      1.7125      0.0080      
25 64.552% 23.000 60.386% 100.000% 60.386% 60.642% -0.256% 1.6560      1.6490      0.0070      
26 66.468% 24.000 62.527% 100.000% 62.527% 62.769% -0.242% 1.5993      1.5931      0.0062      
27 68.280% 25.000 64.552% 100.000% 64.552% 64.781% -0.229% 1.5491      1.5437      0.0055      
28 69.994% 26.000 66.468% 100.000% 66.468% 66.684% -0.217% 1.5045      1.4996      0.0049      
29 71.616% 27.000 68.280% 100.000% 68.280% 68.485% -0.205% 1.4646      1.4602      0.0044      
30 73.149% 28.000 69.994% 100.000% 69.994% 70.188% -0.194% 1.4287      1.4247      0.0039      
31 74.600% 29.000 71.616% 100.000% 71.616% 71.799% -0.183% 1.3963      1.3928      0.0036      
32 75.973% 30.000 73.149% 100.000% 73.149% 73.323% -0.174% 1.3671      1.3638      0.0032      
33 77.271% 31.000 74.600% 100.000% 74.600% 74.765% -0.164% 1.3405      1.3375      0.0029      
34 78.500% 32.000 75.973% 100.000% 75.973% 76.128% -0.155% 1.3163      1.3136      0.0027      
35 79.662% 33.000 77.271% 100.000% 77.271% 77.418% -0.147% 1.2941      1.2917      0.0025      
36 80.761% 34.000 78.500% 100.000% 78.500% 78.639% -0.139% 1.2739      1.2716      0.0023      

Average Maturity Approximation and Error Comparision
Policy Year cut-off
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Exhibit 4A                                     AMOL PY  

 

 

A = AY

FB(t) mB(t) t-mB(t) FA(t) mA(t)

rA(t) =

t-mA(t) t* mA(t*)

rA(t*) =

t*-mA(t*) FA(t*) FB(t)/FA(t*)

t 
months t in years ETD%

Condl 
Avg Date 

of Loss 
(Months)

Avg 
Maturity 
of Loss 

(Months) ETD%

Condl 
Avg Date 

of Loss 
(Months)

Avg 
Maturity 
of Loss 

(Months)

Eval Age 
for AY 

Equiv 
Maturity 

(Months)

Condl 
Avg 

Date of 
Loss 

(Months)
Avg 

Maturity

ETD %  at  
AMOL 

Equiv Eval 
Age

ETD % Adj 
Factor

0 0.000 0.00% 0.000 0.000  0.000 0.000
1 0.083 0.35% 0.667 0.333 8.33% 0.500 0.500 0.667 0.333 0.333 5.56% 6.250%
2 0.167 1.39% 1.333 0.667 16.67% 1.000 1.000 1.333 0.667 0.667 11.11% 12.500%
3 0.250 3.13% 2.000 1.000 25.00% 1.500 1.500 2.000 1.000 1.000 16.67% 18.750%
4 0.333 5.56% 2.667 1.333 33.33% 2.000 2.000 2.667 1.333 1.333 22.22% 25.000%
5 0.417 8.68% 3.333 1.667 41.67% 2.500 2.500 3.333 1.667 1.667 27.78% 31.250%
6 0.500 12.50% 4.000 2.000 50.00% 3.000 3.000 4.000 2.000 2.000 33.33% 37.500%
7 0.583 17.01% 4.667 2.333 58.33% 3.500 3.500 4.667 2.333 2.333 38.89% 43.750%
8 0.667 22.22% 5.333 2.667 66.67% 4.000 4.000 5.333 2.667 2.667 44.44% 50.000%
9 0.750 28.13% 6.000 3.000 75.00% 4.500 4.500 6.000 3.000 3.000 50.00% 56.250%

10 0.833 34.72% 6.667 3.333 83.33% 5.000 5.000 6.667 3.333 3.333 55.56% 62.500%
11 0.917 42.01% 7.333 3.667 91.67% 5.500 5.500 7.333 3.667 3.667 61.11% 68.750%
12 1.000 50.00% 8.000 4.000 100.00% 6.000 6.000 8.000 4.000 4.000 66.67% 75.000%
13 1.083 57.99% 8.619 4.381 100.00% 6.000 7.000 8.762 4.381 4.381 73.02% 79.411%
14 1.167 65.28% 9.163 4.837 100.00% 6.000 8.000 9.674 4.837 4.837 80.61% 80.975%
15 1.250 71.88% 9.652 5.348 100.00% 6.000 9.000 10.696 5.348 5.348 89.13% 80.640%
16 1.333 77.78% 10.095 5.905 100.00% 6.000 10.000 11.810 5.905 5.905 98.41% 79.032%
17 1.417 82.99% 10.497 6.503 100.00% 6.000 11.000 12.503 6.000 6.503 100.00% 82.986%
18 1.500 87.50% 10.857 7.143 100.00% 6.000 12.000 13.143 6.000 7.143 100.00% 87.500%
19 1.583 91.32% 11.176 7.824 100.00% 6.000 13.000 13.824 6.000 7.824 100.00% 91.319%
20 1.667 94.44% 11.451 8.549 100.00% 6.000 14.000 14.549 6.000 8.549 100.00% 94.444%
21 1.750 96.88% 11.677 9.323 100.00% 6.000 15.000 15.323 6.000 9.323 100.00% 96.875%
22 1.833 98.61% 11.850 10.150 100.00% 6.000 16.000 16.150 6.000 10.150 100.00% 98.611%
23 1.917 99.65% 11.961 11.039 100.00% 6.000 17.000 17.039 6.000 11.039 100.00% 99.653%
24 2.000 100.00% 12.000 12.000 100.00% 6.000 18.000 18.000 6.000 12.000 100.00% 100.000%
25 2.083 100.00% 12.000 13.000 100.00% 6.000 19.000 19.000 6.000 13.000 100.00% 100.000%
26 2.167 100.00% 12.000 14.000 100.00% 6.000 20.000 20.000 6.000 14.000 100.00% 100.000%
27 2.250 100.00% 12.000 15.000 100.00% 6.000 21.000 21.000 6.000 15.000 100.00% 100.000%
28 2.333 100.00% 12.000 16.000 100.00% 6.000 22.000 22.000 6.000 16.000 100.00% 100.000%
29 2.417 100.00% 12.000 17.000 100.00% 6.000 23.000 23.000 6.000 17.000 100.00% 100.000%
30 2.500 100.00% 12.000 18.000 100.00% 6.000 24.000 24.000 6.000 18.000 100.00% 100.000%
31 2.583 100.00% 12.000 19.000 100.00% 6.000 25.000 25.000 6.000 19.000 100.00% 100.000%
32 2.667 100.00% 12.000 20.000 100.00% 6.000 26.000 26.000 6.000 20.000 100.00% 100.000%
33 2.750 100.00% 12.000 21.000 100.00% 6.000 27.000 27.000 6.000 21.000 100.00% 100.000%
34 2.833 100.00% 12.000 22.000 100.00% 6.000 28.000 28.000 6.000 22.000 100.00% 100.000%
35 2.917 100.00% 12.000 23.000 100.00% 6.000 29.000 29.000 6.000 23.000 100.00% 100.000%
36 3.000 100.00% 12.000 24.000 100.00% 6.000 30.000 30.000 6.000 24.000 100.00% 100.000%

AMOL Dates and Exposure Earning  Adjustment

B=UWY(PY)

Policy Year

AY Equivalent
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Exhibit 4B AMOL PY  

 

PCT ULT Approx vs Exact ATU LDF Approx vs Exact

t FT|A(t) t* FT|A(t*) FB(t)/FA(t*) F*T|B(t) FT|B(t)

F*T|B(t) 
- FT|B(t) F*T|B(t) FT|B(t)

F*T|B(t) 
- FT|B(t)

t in 
months

AY Loss 
PCT of 

ULT
Equivalent 
Eval Age

AY Loss 
PCT ULT 

at 
Equivalent 
Eval Age 

ETD % Adj 
Factor

Approx 
UW PCT 

ULT
UWY PCT 
ULT exact Error

AMOL 
Approx of 

PY ATU 
LDF

Exact PY 
ATU LDF Error

0 0.000% 0.000% 0.000% -             -           
1 0.227% 0.667 0.102% 6.250% 0.006% 0.006% 0.000% ###### 15,768.5972 (24.0061)    
2 0.893% 1.333 0.402% 12.500% 0.050% 0.050% 0.000% 1,992.2948 1,998.2972  (6.0024)      
3 1.972% 2.000 0.893% 18.750% 0.167% 0.167% 0.001% 597.5294   600.1972     (2.6678)      
4 3.444% 2.667 1.568% 25.000% 0.392% 0.390% 0.002% 255.1467   256.6472     (1.5006)      
5 5.286% 3.333 2.420% 31.250% 0.756% 0.751% 0.005% 132.2130   133.1732     (0.9602)      
6 7.480% 4.000 3.444% 37.500% 1.291% 1.280% 0.011% 77.4306     78.0972       (0.6666)      
7 10.005% 4.667 4.632% 43.750% 2.027% 2.007% 0.020% 49.3426     49.8322       (0.4896)      
8 12.844% 5.333 5.980% 50.000% 2.990% 2.957% 0.033% 33.4476     33.8222       (0.3747)      
9 15.980% 6.000 7.480% 56.250% 4.207% 4.156% 0.052% 23.7680     24.0639       (0.2959)      

10 19.396% 6.667 9.127% 62.500% 5.705% 5.628% 0.077% 17.5298     17.7692       (0.2395)      
11 23.079% 7.333 10.917% 68.750% 7.505% 7.396% 0.110% 13.3236     13.5214       (0.1978)      
12 27.013% 8.000 12.844% 75.000% 9.633% 9.481% 0.152% 10.3812     10.5472       (0.1660)      
13 30.957% 8.762 15.209% 79.411% 12.077% 11.892% 0.186% 8.2800       8.4092        (0.1292)      
14 34.688% 9.674 18.252% 80.975% 14.779% 14.585% 0.195% 6.7662       6.8565        (0.0903)      
15 38.217% 10.696 21.931% 80.640% 17.685% 17.507% 0.178% 5.6545       5.7119        (0.0574)      
16 41.556% 11.810 26.245% 79.032% 20.742% 20.609% 0.132% 4.8212       4.8522        (0.0310)      
17 44.715% 12.503 29.026% 82.986% 24.087% 23.844% 0.244% 4.1515       4.1939        (0.0424)      
18 47.702% 13.143 31.503% 87.500% 27.565% 27.166% 0.399% 3.6278       3.6810        (0.0532)      
19 50.528% 13.824 34.046% 91.319% 31.090% 30.534% 0.556% 3.2164       3.2750        (0.0586)      
20 53.202% 14.549 36.650% 94.444% 34.614% 33.907% 0.707% 2.8890       2.9492        (0.0602)      
21 55.731% 15.323 39.315% 96.875% 38.086% 37.248% 0.838% 2.6256       2.6847        (0.0591)      
22 58.123% 16.150 42.042% 98.611% 41.458% 40.521% 0.937% 2.4121       2.4679        (0.0558)      
23 60.386% 17.039 44.836% 99.653% 44.680% 43.692% 0.988% 2.2381       2.2888        (0.0506)      
24 62.527% 18.000 47.702% 100.000% 47.702% 46.728% 0.974% 2.0963       2.1400        (0.0437)      
25 64.552% 19.000 50.528% 100.000% 50.528% 49.607% 0.921% 1.9791       2.0158        (0.0368)      
26 66.468% 20.000 53.202% 100.000% 53.202% 52.330% 0.871% 1.8796       1.9109        (0.0313)      
27 68.280% 21.000 55.731% 100.000% 55.731% 54.907% 0.824% 1.7943       1.8213        (0.0269)      
28 69.994% 22.000 58.123% 100.000% 58.123% 57.343% 0.780% 1.7205       1.7439        (0.0234)      
29 71.616% 23.000 60.386% 100.000% 60.386% 59.649% 0.738% 1.6560       1.6765        (0.0205)      
30 73.149% 24.000 62.527% 100.000% 62.527% 61.829% 0.698% 1.5993       1.6174        (0.0180)      
31 74.600% 25.000 64.552% 100.000% 64.552% 63.892% 0.660% 1.5491       1.5651        (0.0160)      
32 75.973% 26.000 66.468% 100.000% 66.468% 65.843% 0.624% 1.5045       1.5188        (0.0143)      
33 77.271% 27.000 68.280% 100.000% 68.280% 67.689% 0.591% 1.4646       1.4773        (0.0128)      
34 78.500% 28.000 69.994% 100.000% 69.994% 69.435% 0.559% 1.4287       1.4402        (0.0115)      
35 79.662% 29.000 71.616% 100.000% 71.616% 71.087% 0.529% 1.3963       1.4067        (0.0104)      
36 80.761% 30.000 73.149% 100.000% 73.149% 72.649% 0.500% 1.3671       1.3765        (0.0094)      

Average Maturity Approximation and Error Comparision
Policy Year cut-off
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APPENDIX 

FORMULAS FOR ACCIDENT YEAR, POLICY YEAR, AND POLICY 
YEAR CUT-OFF EXPOSURE STATISTICS   

 
 

Statistic Accident Year (A1) 

Density 𝑓𝑓𝐴𝐴(𝑡𝑡) = � 1 𝑓𝑓𝑓𝑓𝑓𝑓 0<𝑡𝑡<1
0  𝑜𝑜𝑡𝑡ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

�  

CDF 𝐹𝐹𝐴𝐴(𝑡𝑡) = �
𝑡𝑡    𝑓𝑓𝑓𝑓𝑓𝑓 0<𝑡𝑡<1
1        𝑓𝑓𝑜𝑜𝑒𝑒 𝑡𝑡≥1

�  

Average Date of 
Loss 𝑚𝑚𝐴𝐴(𝑡𝑡) = �

1
2
∙𝑡𝑡  𝑓𝑓𝑓𝑓𝑓𝑓 𝑡𝑡<1
1
2    𝑓𝑓𝑜𝑜𝑒𝑒 𝑡𝑡≥1

� 
 

Average Maturity 
of Loss 𝐴𝐴𝐴𝐴(𝑡𝑡) = �

1
2
∙𝑡𝑡  𝑓𝑓𝑓𝑓𝑓𝑓 𝑡𝑡<1

𝑡𝑡−
1
2

  𝑓𝑓𝑜𝑜𝑒𝑒 𝑡𝑡≥1
� 

 
 

Variance of Loss 
Exposure Date 𝐴𝐴𝐴𝐴(𝑡𝑡) = �

1
12
∙𝑡𝑡2  𝑓𝑓𝑓𝑓𝑓𝑓 𝑡𝑡<1
1
12

    𝑓𝑓𝑜𝑜𝑒𝑒 𝑡𝑡≥1
� 

 

 
 

 Cut-off Policy Year (A2) 

Density 𝑓𝑓𝐴𝐴(𝑡𝑡) = �2𝑡𝑡  𝑓𝑓𝑓𝑓𝑓𝑓 0<𝑡𝑡<1
0  𝑜𝑜𝑡𝑡ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

� 
 

CDF 
𝐹𝐹𝐴𝐴(𝑡𝑡) = �𝑡𝑡 2  𝑓𝑓𝑓𝑓𝑓𝑓 𝑡𝑡<1

1    𝑓𝑓𝑜𝑜𝑒𝑒 𝑡𝑡≥1
� 
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Abstract.  James Stanard’s 1985 PCAS paper A Simulation Test of Prediction Errors of Loss Reserve 
Estimation Techniques was noteworthy as much for the simple and parsimonious estimators it 
introduced as for the simulation technique it used to test them.  In subsequent years, those estimators 
have been widely adopted, a comprehensive loss development simulation model has been introduced by 
a working party of the CAS, and numerous new models of the loss process, with associated estimators, 
have been published.  But there has been little further effort to compare such estimators by simulation 
in the manner of Stanard.  In this paper we revisit the use of simulation to evaluate reserve estimators, 
and apply it to several recent models.  We find good reason, as did Stanard, to prefer parsimonious 
conventional models, such as Bornhuetter-Ferguson with Cape Cod ELR’s, to the chain-ladder model, 
and we find no evidence that any of the more recent estimators tested, most of which are elaborations of 
chain-ladder, performs any better. 

1.  INTRODUCTION 

1.1 The use of simulation to test loss reserve estimators 
James Stanard’s 1985 PCAS paper A Simulation Test of Prediction Errors of Loss Reserve Estimation 

Techniques [10] was noteworthy in several respects.  First, it demonstrated the use of simulation as a 
practical technique for evaluating the bias and efficiency of various reserving methods, using 
computers readily available to actuaries of the time.  Second, it applied this simulation to test, among 
others, two simple and parsimonious techniques not well known before that date: Cape Cod and 
“additive”.  Third, it conclusively established the superiority of these new models over the 
conventional chain-ladder for the particular simulated data sets studied, and strongly suggested that 
this superiority would hold with more sophisticated simulations or indeed with real-world data. 

In fact, Stanard’s results have probably had a greater impact on actuarial practice than his method.  
For example, the Cape Cod (or Stanard-Buehlmann) estimator of expected loss ratios is now 
ubiquitous, and actuaries are universally aware of the pitfalls of chain-ladder projections in 
projecting recent accident years.  But the further development of Stanard’s simulation method has 
not been completely ignored.  Some extensions were proposed by Vaughan in 1998 [11].  In 2011, 
the CAS Loss Development Simulation Working Party published an engine simulating the loss 
process, written in R.  This simulator is in the public domain and available for download from the 
CAS web site [4], and it has stimulated additional research and development (see Shang [9]).  But 
there have been few attempts to apply such tools to evaluate the performance of specific reserve 
estimators.   This seems unfortunate in light of the many such estimators that have been proposed. 

Here we illustrate how a small part of this void might be filled, by applying the CAS simulation 
model (actually a prototype of that model from 2007, written in APL) to evaluate several recent 
estimators and compare them with those originally evaluated by Stanard. 
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1.2  Simulation of the loss process 
Simulation is the random generation of synthetic data, resembling what might be observed from 

a real-world process of interest.  For reserving this is the loss process:  the events surrounding the 
emergence of losses in a portfolio of insurance policies.  These events include the occurrence and 
reporting of accidents, the true size of each reported loss, the initial and subsequent valuations of its 
case reserves, and the timing and amounts of payments and recoveries. 

A simulation of the loss process starts from certain parameters that are not themselves simulated.  
These fixed meta-parameters permit us to customize each simulation to a particular line or lines of 
business, to a particular volume of exposure, to a particular company’s claims-handling procedures, 
and to a particular economic and legal scenario.  They include the exposures written in each time 
period, and parameters specifying the distributions of certain quantities, such as the frequency of 
accidents, the actual size of loss, the lag from accident to reporting, the lag from reporting to 
settlement, the size of any initial “fast-track” valuation, the waiting times between subsequent 
valuations, the case reserve error as a function of actual loss and time remaining until settlement, and 
so forth.  The simulation proper uses random deviates from these distributions to generate many 
sample points, each of which is a complete history of all transactions resulting from all accidents covered by 
a hypothetical portfolio satisfying the starting assumptions, and each of which may be output in its 
full detail or after aggregating into triangles. 

Some convenient forms for the distributions which model frequencies, waiting times, and dollar 
amounts are Poisson, negative binomial, exponential, Weibull, and lognormal.  For verisimilitude it 
may be useful to go back one step further, and treat the parameters of these distributions, not as 
fixed, but as subject to random change, for example via a random walk to simulate the effects of 
turnover in the insured population.  In this case the parameter in question may itself be given a 
distribution, the parameters of which become the new “fixed” ones. 

A great many separate distributions may be involved.  For example, we may wish to model 
multiple lines in a single simulation, or a line of business that includes several distinct types of loss 
potentially arising from a single accident, such as indemnity, medical, and expenses, or bodily injury 
and property damage, and we may wish frequencies to be correlated across lines or severity to be 
correlated with lag to payment.  One of the advantages of simulation is that it may be as rich and 
complex an approximation to the real world as desired.  When we are estimating we must avoid fitting 
too many parameters lest we obtain a good fit with no predictive value, but when we are generating 
simulated data there is no such constraint. 

It goes without saying that a simulation intended for testing reserve estimators should extend to 
the final disposition of each claim incurred within the exposure period being studied, since we are 
interested in how well our estimators predict the entire “future” from the “known” part of the data. 
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The measures of bias and of variability that emerge from the simulation studies discussed here 
are global rather than conditional.  They are averages across all simulated data sets whatever the 
“known” and “future” portion of each may be.  At present it does not appear feasible to use 
simulation to study the distribution of “future” runoff conditional on a particular set of “known” 
data, such as a given combination of paid and incurred loss triangles, even though in principle this 
might be accomplished via Markov Chain Monte Carlo Bayesian analysis or otherwise.  There are 
simply too many variables and too many cells involved. 

1.3  Reserve estimators amenable to testing by simulation 
It is the author’s opinion that several of the most fruitful contributions to loss reserving 

methodology in recent decades have been among the simplest: the pure Bornhuetter-Ferguson (BF) 
method, with a-priori expected loss ratios (ELR’s) [2], Buehlmann’s BF method with Cape Cod 
estimate of ELR’s [3], Stanard’s “additive” method [10], and Spencer Gluck’s 1997 enhancement of 
Cape Cod with decay factors [5].  Not only are these methods simple computationally, but they are 
parsimonious: they either eliminate the accident-year parameters of the conventional chain-ladder 
model (BF and additive), reduce the number of such parameters (Cape Cod), or constrain their independence 
(Gluck). 

These simple enhancements reduce the need for judgment intervention.  Judgment is 
troublesome and does not lend itself to simulation.  First, it may be biased, especially when 
“tutored”, i.e. when an estimate of the same reserve from a different source already exists, such as 
the carried reserve in an Actuarial Opinion situation.  Second, there is no way of gauging the 
variability of reserves estimated by judgment.  Third, it is not feasible to incorporate judgment when 
applying a reserve estimator, under program control, to each of many data sets. 

On the other hand, some estimators do not need judgment intervention, or may be modified 
with protocols to achieve the goals of judgment automatically, a sort of “meta-judgment”.  The 
Bornhuetter-Ferguson method and its variations with Cape Cod and Gluck ELR’s usually require 
little or no judgment, as does the additive estimator (which we shall henceforth call Partial Loss 
Ratios).  But even these estimators may benefit from adjustment to the development-year 
parameters, especially at the later lags where experience is thin.  In a one-off calculation the actuary 
may apply judgment to graduate the development or lag factors or to extend them with a tail.  For a 
simulation, it is straightforward to automate such adjustments, either by blending experience with 
reference factors, by curve fitting, or by specifying the parameters of any necessary tail and executing 
them under program control.  The underlying methods, together with such programmed 
adjustments, are very amenable to simulation studies.  

The simulations described here generate complete transaction histories, so they may be used to 
test estimators based on individual claims.  They also generate sets of matched triangles including 
paid and incurred losses and counts, so they may be used to test reserve estimators that rely on any 



Loss Reserve Simulation Revisited 

Casualty Actuarial Society E-Forum, Spring 2018-Volume 2 4 

one, or on more than one, of these triangles.  In this paper we limit our attention to estimators based 
on triangles of various types. 

 

2.  BACKGROUND AND METHODS 

2.1  The CAS Loss Development Simulator (CASLDS) 
Starting in 2007, the CAS Loss Development Simulation Working Party, headed by Robert Bear 

and Mark Shapland, developed a software model, written in the language R, to simulate the loss 
process in considerable detail.  This model was presented to the CAS in the E-Forum for Winter 
2011 [4], and was extensively tested to confirm that the various distributions simulated had the 
expected statistical properties.   The reader may download this model and its complete 
documentation from www.casact.org. 

For this paper the author employed a prototype of CASLDS written in APL in 2007, and slightly 
improved since then, with which he was already familiar, because this prototype models the loss 
process in sufficient detail and saves its output to files that may be read conveniently by reserving 
programs written for this study.  The author recommends the full R version of CASLDS, with its 
enhanced capabilities, for users wishing to do further work along these lines.  

2.2  Simulation Procedure 
There are two parts to our simulation procedure: (1) generating sets of loss histories, and (2) 

testing various reserve estimators by applying them to each loss history and comparing estimated 
reserves against “actual”, i.e. simulated, runoff. 

2.2.1.  Loss histories 

Each set of loss histories is a collection of 10000 particular loss histories developed with a 
common model and common parameters.  We postulate (I) a “starter” model, with a single line of 
business, a single type of loss, no parameter drift, no trend, and a modest amount of case-reserve 
error (without which no model of incurred loss development would be realistic), (II) the addition of 
parameter drift; (III) the addition of trend, (IV) an increased amount of case reserve error, and (V) 
the addition of a second line of business, with lower frequency, greater severity, and greater trend, 
combined with the first for analysis.  The parameters of these loss histories are shown in the 
following tables. 

 

http://www.casact.org/
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Loss history set I II III IV V 
 
 
Description 

 
 

Simple 

 
 

Add drift 

 
 

Add trend 

Add wider 
case 

reserve 
errors 

 
 

Complex 

      
Sample size 10000 10000 10000 10000 10000 
Accident years 10 10 10 10 10 
     Line 1 Line 2 
Exposure 1 1 1 1 1 1 
Lapse ratio (per month) 0 0.03 0.03 0.03 0.03 0.03 
Development-month turnover 0 0.03 0.03 0.03 0.03 0.03 
       
Frequency correlations across 
lines 

1 1 1 1 1   0.25 
0.25   1 

Frequency distribution Poisson Poisson Poisson Poisson Poisson Poisson 
Frequency mean (per year) 50 50 50 50 50 25 
Std dev of frequency means 0 8 8 8 8 5 
Frequency trend by accident year 1 1 1.01 1.01 1.01 1.02 
       
Report lag distribution Weibull Weibull Weibull Weibull Weibull Weibull 
Report lag mean (days) 240 240 240 240 240 300 
Report lag std dev 160 160 160 160 160 240 
Std dev of report-lag means 0 24 24 24 24 40 
Report lag minimum 0 0 0 0 0 0 
Report lag maximum 1440 1440 1440 1440 1440 1600 
       
Valuation lag distribution Lognormal Lognormal Lognormal Lognormal Lognormal Lognormal 
Valuation lag mean (days) 90 90 90 90 90 90 
Valuation lag std dev 30 30 30 30 30 30 
Std dev of valuation-lag means 0 0 0 0 0 0 
Valuation lag minimum 0 0 0 0 0 0 
Valuation lag maximum 360 360 360 360 360 360 
       
Payment lag distribution Weibull Weibull Weibull Weibull Weibull Weibull 
Payment lag mean (days) 450 450 450 450 450 720 
Payment lag std dev 300 300 300 300 300 480 
Std dev of payment-lag means 0 40 40 40 40 80 
Payment lag minimum 0 0 0 0 0 0 
Payment lag maximum 2700 2700 2700 2700 2700 4500 
       
Recovery lag distribution(*) Expon. Expon. Expon. Expon. Expon. Expon. 
Recovery lag mean (days) 120 120 120 120 120 120 
Std dev of recovery-lag means 0 0 0 0 0 0 
Recovery lag minimum 0 0 0 0 0 0 
Recovery lag maximum 730 730 730 730 730 730 

 

(*) Recovery lag parameters are shown for completeness of the model.  In the simulations 
performed here there are no recoveries, since the payment adequacy factors, shown below, are all 
1.00. 
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Loss history set (continued) I II III IV V 
 
 
Description 

 
 

Simple 

 
 

Add drift 

 
 

Add trend 

Add wider 
case 

reserve 
errors 

 
 

Complex 

     Line 1 Line 2 
Severity distribution Lognormal Lognormal Lognormal Lognormal Lognormal Lognormal 
Severity mean 10000 10000 10000 10000 10000 15000 
Severity std dev 30000 30000 30000 30000 30000 50000 
Std dev of severity means 0 4000 4000 4000 4000 6000 
Minimum severity 0 0 0 0 0 0 
Maximum severity 1000000 1000000 1000000 1000000 1000000 1000000 
Severity trend by accident year 1 1 1.03 1.03 1.03 1.04 
Fraction of trend from acc to 
pmt  

1 1 1 1 1 1 

Correlation with payment lag 0 0 0 0 0 0.5 
Probability spike at severity 0 0.1 0.1 0.1 0.1 0.1 0.1 
Deductible 0 0 0 0 0 0 
P(rounding to two signif digits) 0.2 0.2 0.2 0.2 0.2 0.2 
       
Case reserve adequacy 
distribution 

Lognormal Lognormal Lognormal Lognormal Lognormal Lognormal 

Mean adequacy at report date 1 1 1 1.10 1.10 1.20 
Mean at 30% to settlement 1 1 1 1.10 1.10 1.15 
Mean at 70% to settlement 1 1 1 1.05 1.05 1.05 
Mean at 90% to settlement 1 1 1 0.95 0.95 0.95 
Case reserve adequacy std dev 0.25 0.25 0.25 0.5 0.5 0.5 
Std dev of adequacy means 0 0.1 0.1 0.1 0.1 0.1 
P(adequacy=0 | actual=0) 0.6 0.6 0.6 0.6 0.6 0.6 
P(adequacy=0 | actual>0) 0.05 0.05 0.05 0.05 0.05 0.05 
Fast-track case reserve 4000 4000 4000 4000 4000 5000 
P(rounding to two signif digits) 0.5 0.5 0.5 0.5 0.5 0.5 
Inertia (weight to existing res) 0.2 0.2 0.2 0.2 0.2 0.2 
Min material absolute change 100 100 100 100 100 100 
Min material relative change 0.01 0.01 0.01 0.01 0.01 0.01 
       
Payment adequacy factor 
distrib(*) 

Lognormal Lognormal Lognormal Lognormal Lognormal Lognormal 

Mean payment adequacy factor 1.05 1.05 1.05 1.05 1.05 1.05 
Payment adequacy factor std dev 0.1 0.1 0.1 0.1 0.1 0.1 
Std dev of adequacy means 0 0 0 0 0 0 
Probability spike at 1.00 1 1 1 1 1 1 

(*) This section is included for completeness of the model.  Because the probability spike at 1.00 
is 1 for all simulations reported here, the payment adequacy factors have no effect. 

A few explanations are in order. 

The unit of exposure is arbitrary and here is simply taken to be a constant 1.  Frequencies are 
defined relative to the initial total exposure.  In this case there are no changes in exposure, over time, 
but, if there were any, the frequencies would be adjusted automatically to remain consistent. 

One-parameter distributions are parametrized by their means and two-parameter distributions by 
their means and standard deviations; this makes the inputs similar for all distributions.  The system 
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converts these internally to the canonical parameters appropriate for generating random deviates 
from each distribution. 

The means of most distributions may, if requested, be allowed to drift in the manner of a random 
walk, with the mean for each successive period equal to a weighted average of the existing mean and 
a mean drawn from a second-level Gamma distribution.  The weight given to the newly-drawn mean 
is determined by a lapse rate or “turnover fraction”.  The concrete interpretation for parameters that 
change by accident period is that some inforce policies lapse and are replaced by new ones from a 
wider population.  Parameters that change by development period lack this interpretation but we 
postulate a similar mechanism.  Drift only applies to those parameters for which a non-zero 
“standard deviation of means” is specified in the foregoing tables. 

Some quantities, while conveniently described over most of their range by a continuous 
distribution, also have nonzero probability spikes at certain values: for example, the probabilities that 
the actual loss will be zero, that the case reserve will be zero conditional on the actual loss’s being 
nonzero, or that the case reserve will be zero conditional on the actual loss’s being zero.   

Recoveries are treated as the difference between the initial payment and the actual loss (net of 
deductible), depending on a distribution of initial-payment adequacy factors.  This distribution in 
turn allows for a spike at 1.00; by setting the probability of this spike at 1, recoveries may be 
excluded from the simulation.  This has been done here, so as to permit testing of reserve estimators 
requiring that the column sums of the incremental paid loss triangle be non-negative. 

Case reserve adequacy is modeled by specifying a distribution with separate means at 0%, 30%, 
70%, and 90% of the time from reporting to settlement (which is known to the simulation program 
even if it would not be known in real life).  By setting these to values other than 1.00 we can model 
systematic bias in case reserves.  Valuation lags may take any value, so case reserve adequacy at lags 
other than the above fractions of the settlement lag are handled by interpolation.  A fast-track 
reserve overrides the sampled value at time of reporting, though not at subsequent valuations 
(including valuations interpolated between 0% and 30%).  There is provision for “inertia” (the 
influence of the existing case reserve on the new value), for no change unless material, and for 
clustering at “round” numbers, as well as for spikes at zero. 

Lag distributions are measured in days. 

For most parameters, separate values may be specified for each month, and parameter drift also 
takes place month by month.  Output may be in triangles of various cell sizes; here they are annual. 

Certain parameters provided as options by the simulator but receiving the same value in all our 
simulations have been omitted from the above table; chief among these is provision for frequency 
seasonality factors, which are here, by default, all 1.  
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Our sets of loss histories as described above represent entirely imaginary lines of business.  In 
practice the parameters should be selected, wherever possible, with reference to known 
characteristics of the real-world business for which the reserve estimators are to be used.  Each set 
has a sample size of 10000 loss histories; this seems reasonable for our illustrations here, in light of 
the regularity of the results, but in practice the sample size may need to be increased for some lines, 
for example those with low frequencies and broad size-of-loss distributions.  Each loss history 
covers a period of ten accident years; this also seems reasonable, in light of common practice. 

Finally, the selected frequency distributions produce only a modest number of claims in each loss 
history, in most cases with a mean of 50 per year.  This was a practical compromise in light of the 
fact that it is really the individual claims that are being simulated, each with its entire transaction 
history; most of the sets therefore contain the histories of some 5,000,000 claims, and the prototype 
simulator takes some time to generate these.  All estimators produce a tighter distribution of results 
with larger triangles, and some require programmed “meta-judgment” adjustment for sparse 
triangles, but produce more regular results, without such adjustment, for larger triangles.  To study 
this, we can sum the original 10,000 sample points by, say, fives, giving a new sample with only 
2,000 points, but each with five times the original expected frequency. 

2.2.2.  Tests and comparisons 

Our tests mainly address the question of which reserve estimators perform best against simulated 
loss histories of a particular type, but also may give some insight into which types of simulated loss 
history are best suited for evaluating particular reserve estimators. 

We consider mature data, observed through a long enough development period to obtain direct 
estimates of lag factors to ultimate.  For all five sets of loss histories described above, losses are 
essentially complete after at most 10 years, and the simulations run for ten accident years, so we use 
10 x 10 lag triangles.  Some of our simulations in fact push the final settlement of a few losses 
slightly beyond lag 10 years, but the amounts involved are immaterial. 

Following Stanard, we calculate bias and root-mean-square error, each for the calculated reserve 
compared with the simulated runoff, and each expressed as a fraction relative to the runoff averaged 
across all loss histories.  The simulated runoffs are identical across all tests and their averages across 
the samples are given in the following table: 

 

Loss history set I II III IV V 
Runoff 849,729 847,105 1,292,773 1,294,504 3,789,979 

 

Most of the estimators studied may be applied either to paid or incurred loss triangles.  Some also 
use triangle of claim counts, closed or reported.  Some use both paid and incurred information and 
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produce a combined indication.  In the tables below, we include a “combined” result for nearly all 
estimators.  In most cases this is derived from a simple average of the paid and incurred results, 
sample point by sample point, but, as mentioned, some estimators combine the paid and incurred 
information in more sophisticated ways. 

The estimators we have tested use: 

1. BF with lag factors from LDF’s and with ELR’s determined using Gluck factors 1 (Cape 
Cod), 0 (straight chain-ladder), and various intermediate values. 

2. BF with lag factors by Partial Loss Ratios (PLR), but with ELR’s determined using Gluck 
factors 1 (equivalent to straight PLR, or Stanard’s Additive method), 0 (for a “PLR chain-
ladder” model determining each year’s ELR from its own immature value), and various 
intermediate values. 

3. Quarg & Mack, Munich Chain Ladder (MCL) [8]. 

4. Merz & Wütrich, Paid-Incurred Chain Reserving Method (PIC) [6] with non-informative 
priors. 

5. Yamashiro, Recursive Credibility estimator [12]. 

6. Agbeko et al, Incurred Double Chain Ladder (DCL, IDCL, and BDCL) [1]. 

7. Müller, Affine Age-to-Age Development [7]: the models which Müller calls Generalized 
Linear Regression (ALDGLR; two parameters, constant weights) and Generalized Chain 
Ladder (ALDGCL; two parameters, weights equal to latest known losses). 

When trend is included in the simulated loss histories, we run the foregoing estimators “under” 
trending, i.e. we assume the actuary has an a-priori accident-year trend factor, with which we trend 
all losses going into the calculations to a common reference date, and then perform the inverse 
process on the results. 

Adjustments to published methods.  Several of the published methods require adjustments to work 
properly with the small data sets generated by our simulation.  Specifically: 

1. The MCL method of Quarg and Mack develops the paid and incurred losses separately but 
uses correlations between P/I ratios and residuals of paid development factors, and between 
I/P ratios and residuals of incurred development factors, to bring the two estimates closer 
together.  When applied to our sample data it is affected by the fact that for many sample 
triangles, development ends earlier than the last lag, so that the sample standard deviations 
of the later development factors are zero.  Quarg and Mack suggest using judgment to 
reduce the size of the triangles in such cases, but we found it possible to work with the full 
10 x 10 triangles in all cases.  
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Also, in their example, Quarg and Mack arbitrarily set the standard deviation of the 
development factors at the last lag (n.a. because of only a single data point) to 0.1; we 
replaced this with a value extrapolated as suggested in Mack (1993), and also used by Merz 
and Wüthrich (see below). 

Finally, large ratios of σ to ρ can produce adjusted development factors (paid or incurred) 
that are unacceptably large or small, in some cases producing infinite or negative cumulative 
projected losses.  To reduce this effect, as part of the rules for extrapolating the final value 
of the paid or incurred σ, we subject it to a maximum equal to the corresponding ρ, derived 
from the standard deviations of the I/P or P/I ratios. 

2. The PIC method of Merz and Wüthrich produces three separate estimates, one conditional 
on the known paid triangle, one conditional on the known incurred triangle, and one 
conditional on both known triangles.  While these estimates work well for large data sets, the 
method sometimes fails to produce results for data sets of the size studied here.  Moreover, 
the estimates from paid data may be unusable because of extremely large projections of later 
accident years.  This is the result of using unweighted estimates of σ, the sample standard 
deviation of log(paid development factors).   Accordingly, we added an option of weighting 
the estimates with the denominator losses in the development factors, and used this option 
for our simulation runs; this greatly reduced bias and RMS error for the paid estimates and 
slightly reduced them for the other estimates.  

To avoid zero values in the vector of standard deviations, which cause the rest of the PIC 
estimator to fail, we set them equal to the nearest preceding nonzero value, if available, else 
the nearest following nonzero value.  Similarly, to avoid a zero value in the southwest corner 
cell of the paid or incurred triangle, we replaced any such values with the average of all 
values at lag 12 months; this may introduce some positive bias to the results, but it would be 
a reasonable judgment adjustment in clinical practice. 

Even with these adjustments, the Merz & Wüthrich method fails for some data sets, usually 
because of difficulties inverting the matrices required for the incurred-only and the 
combined estimates.  In the tables below, we show the number of samples for which results 
were available, and the bias and RMS errors across these samples only. 

3. With some data sets, Yamashiro’s Recursive Credibility estimator can project cumulative 
losses that are negative for one or more years.  We treat such results as unavailable, and, in 
the tables below, we show the number of samples for which results were available, and the 
bias and RMS errors across these samples only.  Another approach is to modify the data, by 
adding a small constant to each cell of each cumulative triangle entering the calculations, and 
subtracting it from the results, increasing the constant as necessary until any negative 
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cumulative projections disappear.  While this eliminates the handful of failed estimates, its 
other properties are unknown. 

4. The estimation of the report-to-payment lag factors (π-hat) for the DCL method as 
described by Agbeko et al involves the solution of a system of linear equations relating the 
estimated accident-to-report lags β-hat and the accident-to-payment lags β-tilde-hat.  
Agbeko et al recognize that this can produce negative results or results not summing to 1.00 
and suggest a simple adjustment to correct, approximately, for this problem.  We find that 
these estimates of π-hat, whether or not they include negative values, can lead to very erratic 
projections of ultimate losses, and we estimate π-hat directly from the triangle of paid losses 
by report date versus payment lag.   The additional triangle that this requires is easily 
generated by the simulator. 

5. Thomas Müller’s Affine Loss Development requires a modest adjustment to avoid matrices 
that are not invertible.  Specifically, when the weights matrix W has diagonal elements drawn 
from the losses known through lag j, it occasionally happens in our samples that one or 
more of these known losses is zero.  To avoid this, we restrict W to its nonzero rows and 
columns, and we restrict the design matrix to its corresponding rows.  Note also that the 
matrix inversions involved in this method should be performed with extended numerical 
precision, as some of the sample triangles lead to ill-conditioned matrices. 

In the Affine Loss Development models proper – those where the regression from 
development year to development year involves both a constant c and a factor f – Müller 
suggests reducing the model to a factor f, with no constant term, when projecting the last 
accident year, for which there is not enough data to estimate both c and f.  We found that 
even for earlier development years it is possible for the estimation of c and f to produce 
erratic results, and that some adjustment is called for.  It is tempting to try to create rules of 
“meta-judgment” to switch to a factor-only model depending on a preliminary calculation of 
c and f, but it is very difficult to devise such rules without introducing bias.  Therefore we 
settled on applying the factor-only model automatically for the last two lags, rather than just 
the last one. 

2.3  Simulation Results 
2.3.1.  Simple model. 

The results of the simple model are summarized in the table below.  BF stands for Bornhuetter-
Ferguson, with lag factors determined by chain-ladder and with ELR’s determined by Cape Cod 
with Gluck decay factor G.  This family includes both the pure Cape Cod and the pure chain-ladder 
estimators.  PLR BF stands for BF with lag factors determined by partial loss ratios and ELR’s 
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determined by Cape Cod with Gluck decay factor G; this family includes both the pure PLR and the 
PLR chain-ladder estimators.  We defer discussion of Gluck factors intermediate between 0 and 1. 

The “Combined” column contains the arithmetic mean of the paid and incurred values for most 
estimators (following an often-used practice), and contains an estimate explicitly conditional on both 
the paid and incurred known triangles in the case of Merz & Wüthrich. 

In the following table the bias values for which the value of zero cannot be rejected with 
confidence 95% are printed in bold type; in some cases this may reflect the fact that the RMS error 
is large rather than that the absolute bias is small. 

 
 
Estimator 

 
N 

Paid Incurred Combined 
Bias Error Bias Error Bias Error 

BF, G=1 (pure Cape Cod) 10000 0.00036 0.39784 0.00100 0.26919 0.00068 0.31659 
BF, G=0 (pure chain-ladder) 10000 0.23931 1.78908 0.01765 0.37349 0.12848 0.99645 
PLR BF, G=1 (pure PLR) 10000 -0.00289 0.39601 0.00015 0.27094 -0.00137 0.31787 
PLR BF, G=0 (PLR CL) 10000 0.00502 0.78747 -0.00330 0.32352 0.00086 0.50225 
Quarg & Mack, MCL 10000 -0.06160 0.42254 0.03487 0.44314 -0.01337 0.39335 
Merz & Wütrich, PIC 9993 0.12856 1.40853 0.07989 0.38262 0.08306 0.49093 
Yamashiro, RC 9986 -0.00742 0.40880 -0.00742 0.40880 -0.00742 0.40880 
Agbeko et al, DCL and IDCL 10000 0.22659 1.70207 -0.03438 0.40466 0.09611 0.96363 
Agbeko et al, BDCL 10000 0.02515 0.42436     
Müller, ALD (GLR) 10000 0.00079 0.49288 0.00624 0.30889 0.00352 0.35347 
Müller, ALD (GCL) 10000 0.00141 0.52837 0.00608 0.30941 0.00374 0.36729 

 

The comparisons of chain ladder with Cape Cod and PLR confirm Stanard’s findings, as 
expected.  Even for this set of simple loss histories the pure chain ladder shows very high bias and 
RMS error. 

The performance of pure Cape Cod and pure PLR are essentially indistinguishable.  The incurred 
estimates outperform the paid, but this may be dependent on the arbitrary reserve error distributions 
assumed here. 

MCL performs markedly better than the conventional chain-ladder, but its paid estimates have a 
fairly large negative bias, probably due to the fact that the most recent accident year, if zero after 12 
months, will be projected to an ultimate of zero.  This issue is a direct result of our small data sets.  
PIC outperforms the paid chain ladder but not the incurred.  Yamashiro performs better than either 
paid or incurred chain ladder but not quite as well as pure Cape Cod or pure PLR.  DCL performs 
marginally better than conventional chain ladder.  The two Affine Loss Development models 
perform very well, despite requiring the estimation of twice as many parameters as BF or Chain 
Ladder to describe the development pattern. 
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2.3.2.  Model with parameter drift 

The results of the model with parameter drift added are summarized below. 
 
Estimator 

 
N 

Paid Incurred Combined 
Bias Error Bias Error Bias Error 

BF, G=1 (pure Cape Cod) 10000 0.00391 0.41527 0.00088 0.27587 0.00239 0.32967 
BF, G=0 (pure chain-ladder) 10000 0.28084 2.04626 0.02077 0.38274 0.1508 1.12760 
PLR BF, G=1 (pure PLR) 10000 0.00127 0.41661 0.00021 0.27912 0.00074 0.33322 
PLR BF, G=0 (PLR CL) 10000 0.01618 0.81869 -0.00202 0.32334 0.00708 0.51726 
Quarg & Mack, MCL 10000 -0.05888 0.45841 0.03437 0.45158 -0.01225 0.42037 
Merz & Wütrich, PIC 9992 0.15817 1.62550 0.08237 0.38986 0.08586 0.48937 
Yamashiro, RC 10000 -0.00199 0.48433 -0.00199 0.48433 -0.00199 0.48433 
Agbeko et al, DCL and IDCL 10000 0.26652 1.94872 -0.02969 0.41510 0.11842 1.08768 
Agbeko et al, BDCL 10000 0.02910 0.43282     
Müller, ALD (GLR) 10000 -0.00229 0.49000 0.00483 0.30818 0.00127 0.35732 
Müller, ALD (GCL) 10000 0.00468 0.58947 0.00622 0.31122 0.00545 0.39470 

 

Here Yamashiro and Müller do very well, with comparable bias to pure BF but somewhat greater 
RMS error.  MCL, PIC, and the DCL family are unexceptional, mainly because of bias.   

2.3.3.  Model with parameter drift and trend 

The results of the foregoing model with trend added are shown in the table on the following 
page.  Here T represents the trend factor (by accident period, per annum) used to detrend the data 
entering the calculations and restore the trend to the results.  The trend in the data is known: 
frequency trend of 1.01 multiplied by severity trend of 1.03, or approximately 1.04, which we take 
for T.  Normally T must be estimated from exogenous data, such as industry studies or internal 
studies involving entire lines of business, so that it may not be as successful in explaining the trend 
in each loss history as is the case here. 

The top half of this table shows selected results with no adjustment for trend, i.e. with T=1.  
Since there is trend in the data, and this in the accident-year direction, we would expect a major impact on 
the Cape Cod and pure PLR estimates (since the average loss ratios are derived mainly from the 
early years but applied mainly to the later years), some impact on the “PLR chain ladder” estimate 
(since PLR’s at the later lags are based on earlier accident years only), and practically no effect on the 
chain ladder and related estimates (since development factors are independent of accident-year 
trends).  The results confirm these expectations:  in the presence of trend, the Cape Cod and pure 
PLR estimates become unreliable because of bias, while their associated chain-ladder estimates 
remain unreliable because of variance.  Interestingly, BDCL and incurred MCL appear to be robust 
against accident-year trend. 

A solution to the breakdown of these methods in the presence of trend is to detrend the data 
entering the estimators and restore trend to the output.  This is shown in the bottom half of the 
table, with trend factor of 1.04 nearly matching the trend in the data.  The trend adjustment reduces 
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the bias of most of the traditional non-chain-ladder estimates, along with BDCL, the incurred MCL, 
and the two Affine models, to insignificant levels. 

 
 
Estimator 

 
N 

Paid Incurred Combined 
Bias Error Bias Error Bias Error 

No Adjustment for Trend (T=1) 
BF, G=1 (pure Cape Cod) 10000 -0.16440 0.41168 -0.10033 0.27943 -0.13237 0.33200 
BF, G=0 (pure chain-ladder) 10000 0.22813 1.85283 -0.00202 0.37807 0.11306 1.02522 
PLR BF, G=1 (pure PLR) 10000 -0.17779 0.41660 -0.10731 0.28426 -0.14255 0.33809 
PLR BF, G=0 (PLR CL) 10000 -0.06262 0.71149 -0.04257 0.31413 -0.05259 0.46434 
Quarg & Mack, MCL 10000 -0.07166 0.41672 0.00432 0.42136 -0.03367 0.38922 
Merz & Wütrich, PIC 9995 0.10523 1.46415 0.05450 0.38060 0.06578 0.48301 
Yamashiro, RC 9987 -0.02438 0.41462 -0.02438 0.41462 -0.02438 0.41462 
Agbeko et al, DCL and IDCL 10000 0.21060 1.76039 -0.04401 0.40594 0.08330 0.98823 
Agbeko et al, BDCL 10000 -0.00085 0.41540     
Müller, ALD (GLR) 10000 -0.15716 0.50634 -0.06729 0.30625 0.11222 0.35909 
Müller, ALD (GCL) 10000 -0.15108 0.53538 -0.06440 0.30553 0.10774 0.36917 

Adjusted for Trend, T=1.04 
BF, G=1 (pure Cape Cod) 10000 -0.00082 0.40079 -0.00639 0.27275 -0.0036 0.32223 
BF, G=0 (pure chain-ladder) 10000 0.22824 1.86232 -0.00362 0.37674 0.11231 1.02909 
PLR BF, G=1 (pure PLR) 10000 -0.00293 0.40293 -0.00633 0.27640 -0.00463 0.32629 
PLR BF, G=0 (PLR CL) 10000 -0.00698 0.77459 -0.02431 0.32241 -0.01565 0.49625 
Quarg & Mack, MCL 10000 -0.07355 0.41714 0.00388 0.42291 -0.03484 0.38979 
Merz & Wütrich, PIC 9995 0.11007 1.46111 0.06256 0.38516 0.06722 0.48334 
Yamashiro, RCy 9988 -0.02515 0.41279 -0.02448 0.41255 -0.02482 0.41265 
Agbeko et al, DCL and IDCL 10000 0.21061 1.76820 -0.04551 0.40471 0.08255 0.99122 
Agbeko et al, BDCL 10000 -0.00228 0.41454     
Müller, ALD (GLR) 10000 0.00406 0.48932 -0.00444 0.29559 -0.00019 0.34941 
Müller, ALD (GCL) 10000 0.00665 0.51633 -0.00457 0.29526 0.00104 0.35832 

 

 
2.3.4.  Model with parameter drift, trend, and wider case-reserve errors 

The results of the model with more pronounced case reserve errors (including bias at various 
stages between reporting and settlement) are shown in the table below.   

 
Estimator 

 
N 

Paid Incurred Combined 
Bias Error Bias Error Bias Error 

Adjusted for Trend, T=1.04 
BF, G=1 (pure Cape Cod) 10000 0.00168 0.40504 -0.00718 0.29232 -0.00275 0.32956 
BF, G=0 (pure chain-ladder) 10000 0.23182 1.74620 0.00044 0.41318 0.11613 0.97570 
PLR BF, G=1 (pure PLR) 10000 -0.00054 0.40706 -0.00737 0.29453 -0.00396 0.33323 
PLR BF, G=0 (PLR CL) 10000 0.00627 0.78615 -0.02157 0.35148 -0.00765 0.50273 
Quarg & Mack, MCL 10000 -0.05158 0.46547 0.01408 0.47317 -0.01875 0.44511 
Merz & Wütrich, PIC 9996 0.10947 1.35860 0.08214 0.41933 0.08633 0.52803 
Yamashiro, RC 9993 -0.01208 0.45257 -0.01156 0.45254 -0.01182 0.45255 
Agbeko et al, DCL and IDCL 10000 0.21425 1.67091 -0.03810 0.43509 0.08807 0.94669 
Agbeko et al, BDCL 10000 0.00185 0.43844     
Müller, ALD (GLR) 10000 0.00276 0.46467 -0.00334 0.33328 -0.00029 0.35894 
Müller, ALD (GCL) 10000 0.00599 0.51558 -0.00324 0.33840 0.00138 0.37621 
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As expected, the incurred results display somewhat greater error than before.  Note that the 
sampled loss histories are different from the foregoing example in both their paid and incurred 
triangles, rather than just the incurred, because simulating the bias in case reserves at various 
maturities requires additional samples from the underlying random number generator. 

 

2.3.5.  Complex model 

The results of the complex model (multiple lines and trends, etc) are shown below.  The RMS 
errors here are affected in opposite directions by the increased number of claims from the addition 
of a second line, and the fact that this “Line 2” has a much longer payment lag distribution than the 
“Line 1” inherited from the previous set of tests.  Incurred MCL shows very little bias, as do both of 
the incurred ALD estimates, although most practitioners would probably prefer the Cape Cod or 
PLR estimates if only for their smaller RMS error. 

The adjustment for trend is based on the total trends of Line 1 and Line 2, about 1.04 and 1.06, 
respectively.  With a bit of experimentation we found that 1.055 produced satisfactory results; this is 
close to the trend of Line 2, probably because the long lags of that line increase its importance to the 
reserves.  Of course, an actuary with a single loss history would not have the luxury of such 
experimentation! 

 
 
Estimator 

 
N 

Paid Incurred Combined 
Bias Error Bias Error Bias Error 

Adjusted for Trend, T=1.055 
BF, G=1 (pure Cape Cod) 10000 0.00663 0.54090 -0.00027 0.23647 0.00318 0.34844 
BF, G=0 (pure chain-ladder) 10000 0.11505 1.25797 -0.00940 0.29739 0.05282 0.69530 
PLR BF, G=1 (pure PLR) 10000 0.00365 0.50503 0.00111 0.24793 0.00238 0.34118 
PLR BF, G=0 (PLR CL) 10000 -0.02536 0.66339 -0.02086 0.26719 -0.02311 0.40632 
Quarg & Mack, MCL 10000 -0.02217 0.56480 0.00093 0.32481 -0.01062 0.39514 
Merz & Wütrich, PIC 9999 0.06883 1.13850 0.05355 0.29560 0.04657 0.53196 
Yamashiro, RC 9990 -0.04252 0.36911 -0.03598 0.35525 -0.03925 0.35873 
Agbeko et al, DCL and IDCL 10000 0.09741 1.20636 -0.02855 0.30451 0.03443 0.67329 
Agbeko et al, BDCL 10000 -0.04109 0.35145     
Müller, ALD (GLR) 10000 0.01408 1.00858 0.00366 0.28383 0.00887 0.56561 
Müller, ALD (GCL) 10000 0.01506 0.98407 0.00253 0.27924 0.00879 0.55334 

 
Effect of triangle size.  To test how the size of each sample point (based on expected frequency) 

affects the performance of some of these estimators, we combined each five successive original 
sample points into a new sample point five times larger, and similarly with ten original sample 
points.  The results are shown on the next page. 

For this complex simulation, the immaturity of the triangles fed to the estimators is slightly more 
material than with the earlier sets of loss histories.  The ratio of losses paid after lag 10 years to the 
total paid runoff is about 0.6%, and the ratio of losses recognized in the incurred triangle after lag 10 
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years to the total paid runoff is about 0.03%.  These losses, between lags 10 and 13, are included in 
the runoff, but the known portion is not supplied to the estimators, which all work with 10 x 10 
triangles.  This contributes a small negative bias to all the results in this table. 

The incurred PIC method and the ALD methods, both paid and incurred, do remarkably well 
with respect to bias and RMS error with these larger triangles, but are still not as close to zero, nor as 
tightly distributed, as either the Cape Cod or the pure PLR. 

 
 
Estimator 

 
N 

Paid Incurred Combined 
Bias Error Bias Error Bias Error 

Frequency x 5; Adjusted for Trend, T=1.055 
BF, G=1 (pure Cape Cod) 2000 0.00114 0.23277 -0.00076 0.11054 0.00019 0.15410 
BF, G=0 (pure chain-ladder) 2000 -0.00582 0.45188 -0.01961 0.13727 -0.01272 0.26067 
PLR BF, G=1 (pure PLR) 2000 0.00365 0.22377 0.00111 0.11335 0.00238 0.15262 
PLR BF, G=0 (PLR CL) 2000 -0.02891 0.34035 -0.01920 0.12990 -0.02406 0.20689 
Quarg & Mack, MCL 2000 -0.02061 0.20077 -0.01456 0.14819 -0.01758 0.16301 
Merz & Wütrich, PIC 2000 -0.00193 0.45540 0.00268 0.13141 0.00084 0.19496 
Yamashiro, RC 2000 -0.03166 0.17463 -0.02867 0.15947 -0.03016 0.16461 
Agbeko et al, DCL and IDCL 2000 -0.01675 0.43667 -0.01972 0.13708 -0.01823 0.25302 
Agbeko et al, BDCL 2000 -0.04393 0.17277     
Müller, ALD (GLR) 2000 0.00673 0.29526 0.00237 0.13719 0.00455 0.18629 
Müller, ALD (GCL) 2000 0.00798 0.29636 0.00170 0.13658 0.00484 0.18623 

Frequency x 10; Adjusted for Trend, T=1.055 
BF, G=1 (pure Cape Cod) 1000 -0.00032 0.16097 -0.00088 0.07791 -0.00060 0.10687 
BF, G=0 (pure chain-ladder) 1000 -0.02299 0.31188 -0.02117 0.09742 -0.02208 0.18114 
PLR BF, G=1 (pure PLR) 1000 0.00365 0.15554 0.00111 0.07942 0.00238 0.10585 
PLR BF, G=0 (PLR CL) 1000 -0.02930 0.25414 -0.01902 0.0928 -0.02416 0.15315 
Quarg & Mack, MCL 1000 -0.02374 0.13615 -0.01854 0.10174 -0.02114 0.11094 
Merz & Wütrich, PIC 1000 -0.01862 0.31366 -0.00712 0.09212 -0.01040 0.13684 
Yamashiro, RC 1000 -0.03192 0.12804 -0.02890 0.11519 -0.03041 0.11991 
Agbeko et al, DCL and IDCL 1000 -0.03258 0.30158 -0.02117 0.09742 -0.02688 0.1761 
Agbeko et al, BDCL 1000 -0.04417 0.12852     
Müller, ALD (GLR) 1000 0.00444 0.19669 0.00356 0.09785 0.00400 0.12532 
Müller, ALD (GCL) 1000 0.00488 0.19704 0.00321 0.09677 0.00404 0.12514 

 
Prediction of latest year only.  The above tables compare the reserve by each estimator with the 

simulated runoff for all accident years combined.  For some purposes, particularly ratemaking, we 
prefer comparisons by accident year.  The ultimate losses by year are usually of greater interest than 
the reserves.  In the earliest years, even large relative errors in forecasting the reserves may have 
negligible impact on the estimated ultimate losses, but the reserves dominate the more relevant 
recent years, so we continue to compare estimators by the reserves.  For the latest accident year: 
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Estimator (Year 10 only) 

 
N 

Paid Incurred Combined 
Bias Error Bias Error Bias Error 

Adjusted for Trend, T=1.055 
BF, G=1 (pure Cape Cod) 10000 0.01902 0.49923 0.00598 0.43331 0.01250 0.45524 
BF, G=0 (pure chain-ladder) 10000 0.30381 3.00878 -0.01468 0.67406 0.14456 1.65219 
PLR BF, G=1 (pure PLR) 10000 0.01813 0.49517 0.00736 0.43604 0.01275 0.45673 
PLR BF, G=0 (PLR CL) 10000 -0.01365 1.30555 -0.03976 0.55982 -0.02670 0.80583 
Quarg & Mack, MCL 10000 -0.04614 0.79649 0.00755 0.75418 -0.01930 0.74678 
Merz & Wütrich, PIC 9999 0.13852 2.56507 0.11288 0.66915 0.12618 0.86074 
Yamashiro, RC 9990 -0.03326 0.79578 -0.03162 0.79614 -0.03244 0.79585 
Agbeko et al, DCL and IDCL 10000 0.27420 2.93756 -0.06386 0.70457 0.10517 1.62928 
Agbeko et al, BDCL 10000 -0.03606 0.66818     
Müller, ALD (GLR) 10000 0.01931 0.64308 0.00719 0.48433 0.01325 0.51004 
Müller, ALD (GCL) 10000 0.02017 0.74935 0.00678 0.48230 0.01347 0.54499 

 
As expected, the RMS errors are much greater for a single year than for the total reserve.  They 

are enough smaller for Cape Cod and pure PLR to give little reason to prefer any of the other 
estimators for this purpose. 

Gluck factors between 0 and 1.  It was mentioned above that Gluck factors other than 1 (Cape Cod) 
or 0 (chain ladder)  are primarily useful in an environment of changing loss ratios.  But even with 
modest changes, such as the parameter drift that remains after we adjust for the trend in our 
complex model, the choice of Gluck factor may be important when projecting the latest year. 

  
 
Estimator (Year 10 only) 

 
N 

Paid Incurred Combined 
Bias Error Bias Error Bias Error 

Adjusted for Trend, T=1.055 
BF, G=1 (pure Cape Cod) 10000 0.01902 0.49923 0.00598 0.43331 0.01250 0.45524 
BF; G=0.8 10000 0.01206 0.50566 -0.00171 0.43134 0.00518 0.45158 
BF; G=0.6 10000 0.00558 0.53518 -0.00955 0.44073 -0.00198 0.46099 
BF; G=0.4 10000 0.00497 0.60349 -0.01520 0.46224 -0.00511 0.48933 
BF; G=0.2 10000 0.02621 0.84881 -0.01786 0.51221 0.00418 0.59946 
BF, G=0 (pure chain-ladder) 10000 0.30381 3.00878 -0.01468 0.67406 0.14456 1.65219 
PLR BF, G=1 (pure PLR) 10000 0.01813 0.49517 0.00736 0.43604 0.01275 0.45673 
PLR BF; G=0.8 10000 0.00888 0.49202 -0.00110 0.43198 0.00389 0.44922 
PLR BF; G=0.6 10000 -0.00260 0.50286 -0.01063 0.43653 -0.00662 0.45058 
PLR BF; G=0.4 10000 -0.01286 0.53788 -0.01930 0.44778 -0.01608 0.46283 
PLR BF; G=0.2 10000 -0.01851 0.64544 -0.02778 0.47258 -0.02314 0.50572 
PLR BF, G=0 (PLR CL) 10000 -0.01365 1.30555 -0.03976 0.55982 -0.02670 0.80583 

 

The RMS errors generally increase as the Gluck factor decreases, and the estimator takes on more 
of the characteristics of chain-ladder.  But the minimum absolute bias is with G=0.8 for the incurred 
estimators and with G=0.4 or 0.6 for the paid; under the right conditions this simple means of 
capturing changes over time in the ELR can outperform BF Cape Cod. 

2.3.6.  Correlations and combinations of estimators 
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It is common practice for actuaries to use a linear combination of two or more dissimilar 
estimates, with coefficients selected by judgment, in the expectation that the combination will give a 
more stable estimate than any one of its components.  Our “combined” columns in the above tables 
demonstrate the commonly used average of paid and incurred, for most of the estimators studied. 

To explore combinations other than just paid and incurred versions of the same estimator, we 
measured the correlations between the reserves, and between the prediction errors, of all pairs of 
estimates.  As might be expected, the reserves were highly positively correlated, as they are driven 
directly by the losses emerged to date, which are common to all estimators.  The prediction errors 
between similar estimators (e.g. BF and PLR) were also highly positively correlated; almost all the 
other pairs of prediction errors were positively correlated, giving little opportunity for reducing 
RMSE drastically via a linear combination. 

As a modest example where a combination of estimators may reduce the RMS error, using the 
simple data set, the paid Cape Cod estimate has bias of 0.00036 and RMS error of 0.39784; the 
incurred MCL model has bias of 0.02461 and RMS error of 0.51150; the correlation of the errors in 
these two estimators is about 21%.  Taking a straight average of the two gives bias of 0.01248 and 
RMS error of 0.35402, smaller than either of the components.  For another example, combining the 
paid Cape Cod estimate with the paid Yamashiro Recursive Credibility estimate (bias -0.00742, 
RMSE 0.40880) reduces the final RMSE to 0.33625, again smaller than either component.  But 
better and simpler estimates are at hand, such as the incurred Cape Cod. 

Part of the variability of the estimators studied here is attributable to egregious outliers that 
would be easily detected and rejected in practical loss reserving, but that lose themselves among the 
10,000 sample points of our simulations.  The problem may not be easily spotted in the data: for 
example, it is unremarkable for large cumulative losses at the late lags to move very slightly, but this 
sometimes produces ill-conditioned matrices to be inverted in the ALD methods.  Minimizing the 
influence of outliers suggests running several different estimators and taking the median, or, more 
generally, an average of the estimators remaining after discarding the one or two greatest, and one or 
two least, results for each sample point.  For example, we might consider combinations of the 
recently published estimators applied to the complex data set: 

 
Estimator N Bias Error 
Incurred BF, G=1 (pure Cape Cod)  10000 -0.00027 0.23647 
Median of incurred MCL, PIC, RC, DCL, and ALD GLR 10000 0.00003 0.28716 
Average of central 4 of incurred MCL, PIC, RC, DCL, and both ALD’s,  10000 0.00122 0.26646 
Average of central 2 of incurred MCL, PIC, RC, DCL, and ALD’s 10000 0.00183 0.27577 
Median of BDCL and paid and incurred MCL, PIC, RC, DCL, and ALD’s  10000 -0.02317 0.38261 
Avg of central 11 of BDCL and paid and inc’d MCL, PIC, RC, DCL, and ALD’s 9989 -0.00775 0.35236 
Avg of central 9 of BDCL and paid and inc’d MCL, PIC, RC, DCL, and ALD’s  10000 -0.01686 0.37178 
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Such combinations work, but they do not work miracles.  The incurred combinations remain 
superior to the combinations including paid estimators, and even the best of these combinations, 
while better than many of their components, are not superior to the incurred Cape Cod.  

3.  CONCLUSIONS 

Our main conclusions are that simulation remains a valuable means of evaluating loss 
reserve estimators, that the CAS Loss Development Simulator (even in its more 
limited prototype version) is a useful tool for conducting simulations, that applying 
this tool to traditional and proposed loss reserving methods can help test their 
practical usefulness, and that, in such tests, the early, parsimonious, methods of 
Bornhuetter-Ferguson, Stanard, Bühlmann, and Gluck generally hold their own very 
well. 

Some secondary conclusions relate to the particular methods tested here: 

Pure chain-ladder applied to paid losses is unsatisfactory for its extreme RMS error 
and apparent positive bias.  This appears to be exacerbated here by the small number 
of claims in each triangle; the performance improves noticeably, by comparison with 
other estimators, with larger triangles. 

Pure chain-ladder applied to incurred losses is much better than for paid losses, but is 
still generally outperformed by pure Cape Cod. 

The Partial Loss Ratios estimators generally show very little bias.  The pure PLR is 
comparable in bias and RMS error to the pure Cape Cod, while the “PLR chain-
ladder” easily outperforms the conventional chain-ladder. 

For the particular data sets simulated, most of the incurred estimates performed much 
better than the corresponding paid estimates, when measured by RMS error, and 
often when measured by absolute bias.  This may reflect the modest case reserve error 
assumed here. 

The mean of the paid and incurred estimates has no obvious advantage over the 
incurred estimate alone.  In most cases the errors from the paid and incurred 
estimates using the same estimator are highly correlated. 
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Quarg and Mack’s Munich Chain Ladder, Merz and Wüthrich’s Paid-Incurred Chain 
method, Yamashiro’s Recursive Credibility model, Agbeko’s DCL, IDCL, and BDCL 
models, and Müller’s Affine Loss Development models all performed adequately – in 
some cases very well - but in general were less successful than their simpler 
conventional counterparts.  All of them require adjustment, and/or the omission of 
some sample points, to perform properly on small data sets. 

The recently published estimators tested here are elegant and creative approaches to 
two of the most important open issues in loss reserving: how to combine paid and 
incurred information, and how to obtain reserves as a posterior distribution rather 
than a deterministic estimate.  But all depend on distributional models of the loss 
process in aggregate, rather than its detailed components.  When the detailed 
components are themselves modeled and combined via simulation, the resulting 
aggregate loss process is unlikely to satisfy these distributional models.  Real-world 
processes, driven by even more detailed components than our simulations, are likely 
to depart even further from the distributional assumptions underlying methods such 
as PIC and MCL. 

In summary, actuaries are well justified in continuing to prefer estimators such as 
Bornhuetter-Ferguson with Cape Cod ELR’s, or ELR’s using Gluck decay factors, to 
either the chain-ladder family or to more complex published models derived from 
chain-ladder.  The simplicity of these estimators appears to be their strength. 

  



Loss Reserve Simulation Revisited 

Casualty Actuarial Society E-Forum, Spring 2018-Volume 2 21 

4.  REFERENCES 

[1] Agbeko, Tony, Munir Hiabu, Maria Dolores Martinez-Miranda, Jens Perch Nielsen, and Richard 
Verrall, Validating the Double Chain Ladder Stochastic Claims Reserving Method, Variance Volume 
8 Issue 2, 2014: 138-160 
 
[2] Bornhuetter, Ronald and Ronald Ferguson, The Actuary and IBNR, PCAS LIX, 1972: 181-195 

 
[3] Bühlmann, Hans, Vereinigung Schweizerischer Versicherungsmathematiker / Association des 
Actuaires Suisses, Ecole d’été 1983, Estimation of IBNR Reserves by the Methods Chain Ladder, 
Cape Cod, and Complementary Loss Ratio, unpublished 

 
[4] CAS Loss Simulation Model Working Party, Modeling Loss Emergence and Settlement 
Processes, CAS E-Forum, 2011 Winter Volume 1: 1-124 
 
[5] Gluck, Spencer M.,  Balancing Development and Trend in Loss Reserve Analysis, PCAS 
LXXXIV, 1997: 482-532 
 
[6] Merz, Michael and Mario V. Wüthrich, Paid-incurred chain claims reserving method, Insurance:  
Mathematics and Economics, 46, 2010: 568-579 
 
[7] Müller, Thomas, Projection for Claims Triangles by Affine Age-to-Age Development, Variance 
Volume 10, Issue 1: 121-144 

 
[8] Quarg, Gerhard and Thomas Mack, Munich Chain Ladder:  A Reserving Method that Reduces 
the Gap between IBNR Projections Based on Paid Losses and IBNR Projections Based on Incurred 
Losses, Blätter der Deutschen Gesellschaft für Versicherungs- und Finanzmathematik, volume 26, number 4, 
2004: 597-630.  Reprinted in Variance, Volume 2/Issue 2, 2008: 266-299 
 
[9] Shang, Kailan, Loss Simulation Model Testing and Enhancement, CAS E-Forum, 2011 Summer: 
1-75  
 
[10] Stanard, James N., A Simulation Test of Prediction Errors for Loss Reserve Estimation 
Techniques, PCAS LXXII: 124-153 
 
[11] Vaughan, Richard L., Some Extensions of J.N. Stanard’s Simulation Model for Loss Reserving, CAS 
Forum, Fall 1998 
 
[12] Yamashiro, Marcus M., Recursive Credibility: Using Credibility to Blend Reserve Assumptions, 
Variance Volume 8 Issue 2, 2014: 105-137 
 
 
 
 
 
 


	Binder1.pdf
	01_Chatterjee_Ismail
	Abstract
	1. Research Context & Objective
	2. Defining Propensity To Be Attacked (PTBA)
	3. Some Observations On Key Parameters
	4. Calculating Example PTBAs
	5. Conclusion
	References
	Appendix: Walkthrough For Replicating Calculations

	02_Dai
	Enhancing the Generalized Linear Modeling Approach with Machine Learning Technique
	1. INTRODUCTION
	1.1 Research Context
	1.2 Objective
	1.3 Outline

	2. BACKGROUND AND METHODS
	2.1 Sewer Backup Modeling
	2.2 Territorial Ratemaking and Boundary
	2.3 Tree-Based ML Techniques
	For m=1 to M:
	2.4 Double Lift Curve


	3. RESULTS AND DISCUSSION
	3.1 Geographic Variable Score
	3.2 Sewer Backup Territorial Boundary

	4. CONCLUSIONS
	5. REFERENCES
	Biography of the Author


	03_Zhang_Miljkovic
	04_Anderson
	05_Collins
	06_Korn
	1. INTRODUCTION
	1.1 Research Context
	1.2 Objective
	1.3 Outline

	2. AN OVERVIEW OF STATE SPACE MODELS
	3. COMPARISON WITH EXISTING METHODS
	3.1 An Overview
	3.2 Simulation Results

	4. IMPLEMENTING A RANDOM WALK
	4.1 Dummy Encodings
	4.2 Penalized Regression and Cross Validation
	4.3 Types of Penalized Regression Methods
	4.4 Multiple Segmentations
	4.5 Using Cross Validation with Panel Data
	4.6 Numeric Variables

	5. STANDARDIZATION
	6. EXTENDING THE RANDOM WALK
	6.1 Random Walk with Drift
	6.2 Modeling a Changing Trend
	6.3 Mean Reversion and Momentum
	6.4 Level Mean Reversion
	6.5 Extra Dispersion

	7. MORE SSM COMPONENTS
	7.1 Seasonality
	If modeling on a period of less than a year, it may be necessary to account for the different levels of each month, quarter, or other unit, depending on the data.  This can be accomplished simply by adding another categorical variable, adding another ...
	7.2 Predictive Variables
	7.3 Multidimensional Random Walks
	A two (or more) dimensional random walk can be constructed as well by interacting two random walks with each other.  Depending on the packages used, the columns may need to be constructed manually, however.  (The columns should be multiplied together ...
	7.4 Correlated time series

	8. SOME NOTES ON IMPLEMENTATION
	9. LOSS RATIO CASE STUDY
	10. CONCLUSION
	APPENDIX A:  Simulation Code
	APPENDIX B:  Loss Ratio Example
	10. REFERENCES

	07_Robbin
	The Average Maturity of Loss Approximation of Loss Development
	By
	Ira Robbin, PhD
	1. iNTRODUCTIOn
	2. loss development from claims to triangles
	3. the general average maturity of loss approximation
	4. accident year approximation of policy year and cut-off policy year Loss development patterns
	5. conclusion
	FORMULAS FOR ACCIDENT YEAR, POLICY YEAR, AND POLICY YEAR CUT-OFF EXPOSURE STATISTICS
	Abbreviations and Notations
	Biography of the Author
	Disclaimers



	08_Vaughan

	01_Chatterjee_Ismail.pdf
	Abstract
	1. Research Context & Objective
	2. Defining Propensity To Be Attacked (PTBA)
	3. Some Observations On Key Parameters
	4. Calculating Example PTBAs
	5. Conclusion
	References
	Appendix: Walkthrough For Replicating Calculations

	02_Dai.pdf
	Enhancing the Generalized Linear Modeling Approach with Machine Learning Technique
	1. INTRODUCTION
	1.1 Research Context
	1.2 Objective
	1.3 Outline

	2. BACKGROUND AND METHODS
	2.1 Sewer Backup Modeling
	2.2 Territorial Ratemaking and Boundary
	2.3 Tree-Based ML Techniques
	For m=1 to M:
	2.4 Double Lift Curve


	3. RESULTS AND DISCUSSION
	3.1 Geographic Variable Score
	3.2 Sewer Backup Territorial Boundary

	4. CONCLUSIONS
	5. REFERENCES
	Biography of the Author


	03_Zhang_Miljkovic.pdf
	Ratemaking for a New Territory: Enhancing GLM Pricing Model with a Bayesian Analysis
	1. INTRODUCTION
	1.1 Research Context
	1.2 Objective
	1.3 Outline

	2. BACKGROUND AND METHODS
	2.1 Models for Claims Frequency
	2.2 Models for Severity

	3. RESULTS AND DISCUSSION
	4. Model Validation
	5. CONCLUSION
	Acknowledgment
	Supplementary Material

	REFERENCES
	Biographies of the Authors


	06_Korn.pdf
	1. INTRODUCTION
	1.1 Research Context
	1.2 Objective
	1.3 Outline

	2. AN OVERVIEW OF STATE SPACE MODELS
	3. COMPARISON WITH EXISTING METHODS
	3.1 An Overview
	3.2 Simulation Results

	4. IMPLEMENTING A RANDOM WALK
	4.1 Dummy Encodings
	4.2 Penalized Regression and Cross Validation
	4.3 Types of Penalized Regression Methods
	4.4 Multiple Segmentations
	4.5 Using Cross Validation with Panel Data
	4.6 Numeric Variables

	5. STANDARDIZATION
	6. EXTENDING THE RANDOM WALK
	6.1 Random Walk with Drift
	6.2 Modeling a Changing Trend
	6.3 Mean Reversion and Momentum
	6.4 Level Mean Reversion
	6.5 Extra Dispersion

	7. MORE SSM COMPONENTS
	7.1 Seasonality
	If modeling on a period of less than a year, it may be necessary to account for the different levels of each month, quarter, or other unit, depending on the data.  This can be accomplished simply by adding another categorical variable, adding another ...
	7.2 Predictive Variables
	7.3 Multidimensional Random Walks
	A two (or more) dimensional random walk can be constructed as well by interacting two random walks with each other.  Depending on the packages used, the columns may need to be constructed manually, however.  (The columns should be multiplied together ...
	7.4 Correlated time series

	8. SOME NOTES ON IMPLEMENTATION
	9. LOSS RATIO CASE STUDY
	10. CONCLUSION
	APPENDIX A:  Simulation Code
	APPENDIX B:  Loss Ratio Example
	10. REFERENCES

	07_Robbin.pdf
	The Average Maturity of Loss Approximation of Loss Development
	By
	Ira Robbin, PhD
	1. iNTRODUCTIOn
	2. loss development from claims to triangles
	3. the general average maturity of loss approximation
	4. accident year approximation of policy year and cut-off policy year Loss development patterns
	5. conclusion
	FORMULAS FOR ACCIDENT YEAR, POLICY YEAR, AND POLICY YEAR CUT-OFF EXPOSURE STATISTICS
	Abbreviations and Notations
	Biography of the Author
	Disclaimers



	01_Chatterjee_Ismail.pdf
	Abstract
	1. Research Context & Objective
	2. Defining Propensity To Be Attacked (PTBA)
	3. Some Observations On Key Parameters
	4. Calculating Example PTBAs
	5. Conclusion
	References
	Appendix: Walkthrough For Replicating Calculations

	02_Dai.pdf
	Enhancing the Generalized Linear Modeling Approach with Machine Learning Technique
	1. INTRODUCTION
	1.1 Research Context
	1.2 Objective
	1.3 Outline

	2. BACKGROUND AND METHODS
	2.1 Sewer Backup Modeling
	2.2 Territorial Ratemaking and Boundary
	2.3 Tree-Based ML Techniques
	For m=1 to M:
	2.4 Double Lift Curve


	3. RESULTS AND DISCUSSION
	3.1 Geographic Variable Score
	3.2 Sewer Backup Territorial Boundary

	4. CONCLUSIONS
	5. REFERENCES
	Biography of the Author


	03_Zhang_Miljkovic.pdf
	Ratemaking for a New Territory: Enhancing GLM Pricing Model with a Bayesian Analysis
	1. INTRODUCTION
	1.1 Research Context
	1.2 Objective
	1.3 Outline

	2. BACKGROUND AND METHODS
	2.1 Models for Claims Frequency
	2.2 Models for Severity

	3. RESULTS AND DISCUSSION
	4. Model Validation
	5. CONCLUSION
	Acknowledgment
	Supplementary Material

	REFERENCES
	Biographies of the Authors


	06_Korn.pdf
	1. INTRODUCTION
	1.1 Research Context
	1.2 Objective
	1.3 Outline

	2. AN OVERVIEW OF STATE SPACE MODELS
	3. COMPARISON WITH EXISTING METHODS
	3.1 An Overview
	3.2 Simulation Results

	4. IMPLEMENTING A RANDOM WALK
	4.1 Dummy Encodings
	4.2 Penalized Regression and Cross Validation
	4.3 Types of Penalized Regression Methods
	4.4 Multiple Segmentations
	4.5 Using Cross Validation with Panel Data
	4.6 Numeric Variables

	5. STANDARDIZATION
	6. EXTENDING THE RANDOM WALK
	6.1 Random Walk with Drift
	6.2 Modeling a Changing Trend
	6.3 Mean Reversion and Momentum
	6.4 Level Mean Reversion
	6.5 Extra Dispersion

	7. MORE SSM COMPONENTS
	7.1 Seasonality
	If modeling on a period of less than a year, it may be necessary to account for the different levels of each month, quarter, or other unit, depending on the data.  This can be accomplished simply by adding another categorical variable, adding another ...
	7.2 Predictive Variables
	7.3 Multidimensional Random Walks
	A two (or more) dimensional random walk can be constructed as well by interacting two random walks with each other.  Depending on the packages used, the columns may need to be constructed manually, however.  (The columns should be multiplied together ...
	7.4 Correlated time series

	8. SOME NOTES ON IMPLEMENTATION
	9. LOSS RATIO CASE STUDY
	10. CONCLUSION
	APPENDIX A:  Simulation Code
	APPENDIX B:  Loss Ratio Example
	10. REFERENCES

	07_Robbin.pdf
	The Average Maturity of Loss
	Approximation of Loss Development
	By
	Ira Robbin, PhD
	1. iNTRODUCTIOn
	2. loss development from claims to triangles
	3. the general average maturity of loss approximation
	4. accident year approximation of policy year and cut-off policy year Loss development patterns
	5. conclusion
	FORMULAS FOR ACCIDENT YEAR, POLICY YEAR, AND POLICY YEAR CUT-OFF EXPOSURE STATISTICS
	Abbreviations and Notations
	Biography of the Author
	Disclaimers






