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Abstract 
Motivation. This paper offers a Bayesian approach in ratemaking for a new territory where a company considers 
starting a new business, or for a relatively new territory where the company has very limited claims experience. 
Method. A Bayesian Poisson regression model with power priors and weakly informative priors for the model 
parameters is proposed for modeling claims frequency. Bayesian analysis of claim severity considers a gamma 
regression and non-informative uniform priors for the regression coefficients.   
Results. After incorporating the external information from a similar book of business in a similar territory, 
Bayesian analysis with power priors improved the prediction reporting a small Means Squared Prediction Error 
(MSPE).  
Conclusions. Bayesian analysis with power priors can be used effectively in auto insurance ratemaking for pricing 
of a new business in a new territory, or improving pricing of a growing business in a new territory. 
Availability. The original SAS code will be available for distribution pending the acceptance of this paper. 
 
Keywords. Bayesian analysis, GLM, new territory, power priors, predictive modeling, ratemaking.  
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1. INTRODUCTION 

1.1 Research Context 

Ratemaking for a new line of business or a new territory is subject to a judgement under uncertainty.  

Actuaries in these situations often rely on the availability of external industry data or experience from 

a similar line of business, as both of these serve as heuristic benchmarks, but sometimes they lead to 

severe and systematic errors. If the volume of claims experience is subject to significant changes (e.g., 

due to catastrophic events or regulatory conditions), these estimates will be severely biased. The 

company may gauge some prior information about the prospective new business in a new territory by 

pooling this information from the existing business, assuming the new underwriting practices in a new 

territory will remain more or less similar to the existing underwriting practices to the territory from 

which this information is drawn. A new territory may also share some common demographic, 

geographic, or climate characteristics with one of the existing territories so that the information 

contained in the existing business can be utilized in the rating process of the new territory.  

According to Chen and Ibrahim (2006, pp. 551), “Power priors have emerged recently as useful 
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informative priors for the incorporation of historical data in a Bayesian analysis” and are well-received 

in statistical practice. These priors can be efficiently incorporated in Bayesian analysis with generalized 

linear models (GLM) and help incorporate useful prior information from existing territories in the 

context of analyzing limited information from the new territory of interest.  

Most of the insurance companies are moving away from the one-way premium calculation 

approach by employing GLMs with the original statistical framework discussed in the book by 

McCullagh and Nelder (1989). The GLM models are praised for two major advantages over ordinary 

linear models. First, the GLMs work with a number of discrete distributions and continuous 

distributions, which make them more flexible compared to the ordinary linear model that is 

constrained by the normal distribution only.  Second, the GLMs allow for some transformation of the 

mean as a linear function of the covariates, with additive and multiplicative models as special cases. 

For more extensive theory behind non-life insurance pricing using GLMs, we refer the reader to books 

by Kaas et al. (2008) and Ohlsson and Johansson (2010).  

A frequentist approach to predictive modeling based on GLM models has the capability to predict 

outcomes that best represent the company’s data with insufficient regard for prior probability. The 

probability distributions of the parameters considered in this type of modeling rely on the sampling 

distributions that are based on all possible random samples of experiences that could have occurred, 

but they are not conditional on the actual sample that did occur. A Bayesian point of view considers 

inferences based on the probabilities calculated from the posterior distribution, making them 

conditional on the sample that actually did occur.  The role of prior distributions in the Bayesian 

analysis is to capture “pre-data” information about the parameters, then use the prior experience that 

was collected to update the “pre-data” information about the parameters to “posterior” information 

about the parameters.  Thus, the Bayesian approach considers parameters as random variables.  

Recently, Bayesian methods have been actively discussed in the area of predictive modeling and 

ratemaking. Boucher et al. (2008) used Bayesian and frequentist models based on generalization of 

Poisson and negative binomial distributions to account for correlation between contracts of the same 

insureds.  The authors showed that the models based on time dependence covariates (e.g., past 

experience) cannot be used in modeling of reported claims. They recommended use of random effects 

models in computing the next year’s premium as these models show improved fit compared to other 

models. The same authors, Boucher et al. (2009), extended their study by considering the relationship 
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between number of accidents and number of claims using the generalization of the zero-inflated 

Poisson (ZIP) distribution. The authors proposed an approximation of the number of accidents 

distribution that can be used to provide insightful information about the behavior of insureds using 

panel count data. A Bayesian analysis was used in computation of the predictive distribution for the 

random effects.  

Bermúdez and Karlis (2011) examined Bayesian multivariate Poisson models and their zero-inflated 

extensions for improving current ratemaking procedures. Brown and Buckley (2015) used a Bayesian 

approach to determine the number of groups in an insurance portfolio. The claim count is assumed 

to follow a Poisson distribution.   

We consider the following scenario for pricing new business in a new territory, where there is no 

prior claims experience. First, we can identify a similar territory from our existing book of business 

for which the claim experience is established. These two territories may be neighbors that share similar 

climate, geography, and demographic characteristics. For pricing the new business during the first year 

with no data, we can borrow the information from the existing territory and set the new rates. After 

the first year, for pricing the business during the second year, we can borrow the experience from the 

similar existing territory in the analysis of the limited claim experience in the new territory. Then, we 

can run the proposed Bayesian model with power priors.  We repeat this process for several years until 

we accumulate the claims experience in the new territory to be able to use the standard pricing method.  

The flow chart of this process is outlined in Figure 1.  Our proposed Bayesian model with power 

priors would provide a new way of pricing the business for a new territory (framed part of Figure 1) 

and serves as the main contribution of this paper.  The example that we provided in the subsequent 

sections would help the practitioners in implementation of this proposed method.  
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Figure 1: Flow chart of the proposed Bayesian method for pricing in a new territory.  

1.2 Objective 

The objective of this paper is to introduce a Bayesian approach with power priors and weakly 

informative priors to be used in developing frequency distribution of claims for a new territory where 

the company has very limited experience. The historical information can be borrowed from an 

adjacent territory based on geographic and demographic profiles, for purpose of the Bayesian analysis. 

A Bayesian analysis with non-informative priors for modeling severity of claims is also illustrated in a 

new territory.  

 To our knowledge, the Bayesian GLM claim models with a Poisson distribution have not 

previously been considered, either with power priors or weakly informative priors. We would like to 

close this gap in the actuarial literature by proposing the Bayesian frequency models that use power 
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priors and weak informative priors of the regression coefficients.  This approach is especially appealing 

for determining the premium rates in a new territory that lacks claims experience.      

1.3 Outline 

The remainder of the paper proceeds as follows. Section 2 presents the Bayesian methodology for 

modeling frequency and severity of claims.  Section 3 describes the analysis of real data and the results. 

Section 4 provides the summary of the model validation. The conclusion is provided in Section 5. 

 

2. BACKGROUND AND METHODS 

In this section, we explore the models for claims frequency and claims severity.  For each model, 

we show frequentist and Bayesian approaches from a theoretical perspective.  

2.1 Models for Claims Frequency 
It is popular to assume that the number of claims follows a Poisson distribution and, hence, a 

generalized linear regression can be fitted to analyze the relationship between the number of claims 

and the relevant predictors.  

 

𝑌𝑌𝑖𝑖|𝜃𝜃𝑖𝑖  ~ 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝐸𝐸𝑖𝑖 𝜃𝜃𝑖𝑖 ) (2.1) 
 

log(𝜃𝜃𝑖𝑖 ) = 𝛽𝛽0 + 𝛽𝛽1𝑥𝑥1𝑖𝑖 + 𝛽𝛽2𝑥𝑥2𝑖𝑖 + ⋯+ 𝛽𝛽𝑝𝑝𝑥𝑥𝑝𝑝𝑝𝑝 , (2.2) 
 

  
where the vertical bar “|” describes the distribution of the quantity to the left of the “|”, given 

information to the right. Here 𝑌𝑌𝑖𝑖 denotes the number of claims filed by the ith policy holder. Here, the 

vector of predictors is defined as 𝑥𝑥𝑖𝑖 = �𝑥𝑥1𝑖𝑖 , … , 𝑥𝑥𝑝𝑝𝑝𝑝�′. The Poisson mean, 𝐸𝐸𝑖𝑖 𝜃𝜃𝑖𝑖 , is determined by the 

known length of insured time (𝐸𝐸𝑖𝑖 , also known as the offset) and rate of claims (𝜃𝜃𝑖𝑖 ). Here the rate of 

claims is modeled as a function of the relevant predictors (𝜃𝜃𝑖𝑖 ), including demographic information of 

drivers, descriptive information of cars and residential areas. The regression coefficients, 𝛽𝛽0, …., 𝛽𝛽𝑝𝑝, 

relate the rate of claims with these predictors.     
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In the frequentist approach, point estimation of model parameters can be implemented via 

Maximum Likelihood Estimation (MLE) or Restricted Maximum Likelihood (REML) approaches, 

and inferences can be made based on large sample distributions of the point estimators.  Other 

distributional assumptions of the claims frequency can be used, such as zero-inflated Poisson or 

negative binomial. Initially, we considered regression models assuming these distributions as well; 

however, the fit of Poisson regression turns out to be the best for the data analyzed. Since the main 

purpose of the present study is to illustrate the incorporation of prior information from an external 

existing territory via Bayesian modeling of claims frequency when sample size is limited, we decided 

to stay with the Poisson distributional assumption. 

The Bayesian analysis treats the parameters as unknown random variables. To implement the 

analysis, we need to propose a “prior distribution” for the model parameters.  Combining the data 

likelihood and prior distribution of parameters using Bayes theorem, we are able to update the 

knowledge about the distribution of model parameters, and the updated knowledge is called “posterior 

distribution.” The posterior distributions are then used for Bayesian inference. Here we begin the 

Bayesian analysis assuming independent normal prior distributions for the regression coefficients, i.e.,  

 

𝜋𝜋�𝛽𝛽𝑗𝑗|𝛽𝛽𝑗𝑗0,𝜎𝜎𝑗𝑗2� = 𝑁𝑁(𝛽𝛽𝑗𝑗0,𝜎𝜎𝑗𝑗2),  𝑗𝑗 = 0, 1, … , 𝑝𝑝. (2.3)     

 

Higher level priors are then assumed for prior mean 𝛽𝛽𝑗𝑗0 and prior variance 𝜎𝜎𝑗𝑗2 as follows: 

𝜋𝜋(𝛽𝛽00) = 𝑁𝑁(0,10) (2.4) 
 

𝜋𝜋�𝛽𝛽𝑗𝑗0� = 𝑁𝑁(0,4),  𝑗𝑗 = 1, … ,𝑝𝑝. (2.5) 

 

𝜋𝜋(𝜎𝜎0) = 𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈(0,5), 𝜋𝜋�𝜎𝜎𝑗𝑗� = 𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈(0,1), 𝑗𝑗 = 1, … ,𝑝𝑝. (2.6) 
 

The hyper-parameters are chosen to incorporate weak informative prior distributions on the 

parameters.  Besides the weakly informative priors, we also illustrate the incorporation of prior 

information from external data of similar region via power priors. The power priors have been 
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proposed in Ibrahim and Chen (2000), with applications in hierarchical modeling discussed in Chen 

and Ibrahim (2006) and well-received in statistical practice.  

The power prior of model parameters is constructed by raising the likelihood based on the external 

data to a suitable power and then multiplied by an initial prior (usually non-informative or weakly 

informative); therefore, power prior uses the external data with a discount relative to the data of 

interest, which allows a discrepancy between insurance policy holders in this similar region and the 

current region of interest. The power prior is a useful tool to borrow strength from external data in 

Bayesian analysis. In the present study, we considered a second Bayesian analysis that incorporates the 

external data using power prior with power of 0.5, which implies a 50% discount of external 

information in the log-likelihood function of the joint posterior density function of model parameters; 

the priors used in the first Bayesian analysis (i.e. Equations (2.4)-(2.6)) are used as initial priors in this 

analysis.   

2.2 Models for Severity 

Besides the modeling of frequency of claims, it is also of interest to study whether and how the 

amount of each claim (severity) is related to the relevant factors (e.g., driver’s age, gas type, etc.). Claim 

amounts are continuous measurements and can be analyzed with ordinary linear regression or 

generalized linear regression (e.g., log-normal regression or gamma regression). Note that the 

distributional assumptions that allow heavier right tails are usually a better fit to the loss data due to 

right-skewness of such data. When claim amounts are assumed to follow gamma distributions, 

𝑍𝑍𝑖𝑖|𝜇𝜇𝑖𝑖 , 𝜈𝜈𝑖𝑖~𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺(𝜇𝜇𝑖𝑖 , 𝜈𝜈𝑖𝑖) (2.7)  
 

Or equivalently,  

                       𝑓𝑓(𝑍𝑍𝑖𝑖|𝜇𝜇𝑖𝑖 , 𝜈𝜈𝑖𝑖) = 1
Γ(𝜈𝜈𝑖𝑖)

�𝜈𝜈𝑖𝑖
𝜇𝜇𝑖𝑖
�
𝜈𝜈𝑖𝑖

(𝑧𝑧𝑖𝑖)𝜈𝜈𝑖𝑖−1exp (−𝜈𝜈𝑖𝑖𝑧𝑧𝑖𝑖
𝜇𝜇𝑖𝑖

) (2.8)  

 

where 𝜈𝜈𝑖𝑖 is the shape parameter of the gamma distribution, and 𝜇𝜇𝑖𝑖 is the  mean of the gamma variable 

and relates the covariates with the severity response. Using a log-link function, we have. 
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                    log(𝜇𝜇𝑖𝑖) = 𝛾𝛾0 + 𝛾𝛾1𝑥𝑥1𝑖𝑖 + 𝛾𝛾2𝑥𝑥2𝑖𝑖 + ⋯+ 𝛾𝛾𝑝𝑝𝑥𝑥𝑝𝑝𝑝𝑝  (2.9)    
 

 The regression coefficients, 𝛾𝛾0, …., 𝛾𝛾𝑝𝑝, relate the severity of claims with the set of predictors 

defined as 𝑥𝑥𝑖𝑖 = �𝑥𝑥1𝑖𝑖 , … , 𝑥𝑥𝑝𝑝𝑝𝑝�. Note that we assumed the same set of predictors are considered in the 

analysis of frequency and severity of claims in Equations (2) and (9), which can be modified in practice 

according to availability of data and prior beliefs. The two sets of covariates used in these two models 

are not necessarily the same.   

Frequentist approaches can be used to fit these generalized linear models described above to the 

severity data of the new territory, and likelihood-based inference would help us determine the 

relationship between severity and covariates. When expert knowledge or existing analysis results 

concerning this relationship from a similar territory are available, the Bayesian approach would help 

us incorporate the information through prior elicitation. However, we believe that one should be 

cautious of using power priors in the analysis of severity since the potential outliers or heavy right tail 

in the severity observations of the “external” data might introduce misleading information in the 

analysis and bias the conclusions.  In the present study, we used non-informative uniform priors for 

the regression coefficients:  

 

𝜋𝜋(𝛾𝛾𝑖𝑖) ∝ 1, 𝑖𝑖 = 0, 1, … ,𝑝𝑝.                    (2.10)      
 

The prior distribution of shape parameter is specified through the following parameterization. Let   

𝜅𝜅𝑖𝑖 = 𝜈𝜈𝑖𝑖
𝜇𝜇𝑖𝑖

 be the rate parameter, then we assume an inverse-gamma prior distribution for the rate 

parameter as follows, 

𝑘𝑘𝑖𝑖~ 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼(0.001, 0.001)                     (2.11)      
 

The specified prior distributions would then provide vague prior input for the analysis. 
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3. RESULTS AND DISCUSSION 

In this section, we illustrate the proposed methodology using the data from a French insurance 

company, related to 677,991 motor third-party liability policies. The data set includes exposure 

information as well as the loss information and can be found as part of the “CASdatasets” library in 

the R software (CASdatasets). The discussion about the datasets used in the book by Charpentier 

(2014) and the book itself, can be found in the book review by Miljkovic (2017).  Charpentier 

(2014) discussed the modeling of claims frequency and severity of this data based on a frequentist 

approach, using various GLM models. The rating factors include: region (R11, R23, R24, R25, R31, 

R53, R54, R72, R74), car age (0-100), density (2-27000), engine power (12 levels), brand (7 types), 

driver age (17-99), gas type (2 levels), and exposures in years (0.003-1.990).   

In order to illustrate our methodology, we randomly sampled 1000 policies from the region R24 

with density between 200-4500. This is the largest region in France that accounts for 39% of the 

business written.  Miljkovic and Fernández (2018) used the policies from the same region (R24) to 

illustrate how the unobserved heterogeneity can be modeled in an insurance portfolio using two 

different mixture-based clustering approaches. The histogram of the number of claims in this region 

as well as the severity of the claims are shown in Figure 2. The frequency of claims in this regions is: 

96.3% of zero claims, 3.5% of single claims, and 0.2% of two claims. Figure 2 also shows the density 

of the severity of claims in R24. Minimum claim amount in this region is 2 while maximum amount is 

2,036, 833 Euros. Skewness coefficient of the claim severity data is 75.12.  

 
Figure 2: Frequency of claims (left) and severity of claims (right) in R24. 

Our random stratified sample of 1000 policies maintains the same characteristics of R24 based on 
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the number of policies, gas type, density, and driver’s age.  Gas type has two levels, diesel and regular, 

with regular treated as a base level. Driver age is grouped at five levels: (17-20] (base level), (20-26], 

(26-42], (42-74], and 74+. Density is treated as a continuous predictor.  The same variables have been 

used by Joan-Philippe and Arthur Charpentier (Charpentier, 2014) when modeling the same data set 

using Poisson and Negative Binomial regression. In the analysis of frequency or severity, we 

standardized the density variable since it is fairly big in numerical values and results in a numerical 

problem in model fitting if we use the raw measurement. The new standardized density measurements 

are the raw density measurements subtracted by the mean density and then divided by the standard 

deviation of density measurements. We used “PROC STANDARD” in SAS to assist the 

standardization of this variable.   

Both the frequentist and Bayesian analysis are implemented with SAS with the SAS code included 

in Appendix B. The frequentist Poisson regression model fit was obtained via “PROC GENMOD,” 

while the Bayesian model fit of claims frequencies was obtained via “PROC MCMC.” In the analysis 

with the Bayesian Poisson regression model assuming weakly informative priors or power priors, 

20,000 samples of parameters are simulated from the posterior distributions using Markov Chain 

Monte Carlo (MCMC) algorithm, which are obtained from 650,000 MCMC iterations with the first 

150,000 cycles as burn-in iterations and a thinning rate of 10 (i.e., every 10th draw from the MCMC 

simulation is used to compute credible sets and medians of the posterior distribution).  

The frequentist and Bayesian gamma regression fit was obtained via “PROC GENMOD” while 

the Bayesian analysis utilized the “Bayes” statement provided in “PROC GENMOD.”  In the Bayesian 

analysis of claim severity, 10,000 posterior samples are obtained from 12,000 MCMC iterations with 

the first 2,000 cycles as burn-in iterations and a thinning rate of 1 (i.e., no thinning was used here). 

Convergence of the posterior simulation was evaluated using history plots and autocorrelation (ACF) 

plots of the posterior samples. Figures of the posterior sample of regression coefficients are shown in 

the Appendix A (Figures 4-6). All of the history plots show that the posterior simulation achieved 

convergence, while the ACF plots show that the (thinned) posterior samples do not have strong 

autocorrelation.   

Table-1 in the Appendix A shows the comparison of the results of the Poisson GLM regression 

model that has been run using a frequentist approach and a Bayesian hierarchical modeling approach 

with weakly informative priors and power priors. For each of these three methods we show the 
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coefficient estimates with their standard errors and the 95% confidence intervals.  In the Poisson 

model, all of the coefficient for driver age are negative relative to the base group (17, 20] with the 

largest coefficient reported for age group (26, 42].  Thus, this age group reports on average the 

lowest frequency of claims relative to age group (17, 20].  These results are in line with other studies 

showing that young drivers (17, 20] are most likely to get into car accidents.  The coefficient for 

regular gas type is negative relative to diesel gas type.  The coefficient for population density in R24 

is positive, indicating that an increase in population density results in additional claims reported.  

From Gamma regression model, we observe that the coefficients for age group (20, 26] and (26, 

42] are negative relative to the age group (17, 20] indicating that severity of claims for these groups is 

lower compared to group (17, 20].  The coefficients for age groups (42, 74] and (74+) are positive 

relative to age group (17, 20]. Also coefficient for density variable is positive indicating that the 

severity of the claims will increase on average as the population density increases.     

Since the power prior is expressed as a product of the weighted likelihood of parameters, 

conditional on the historical information and a prior distribution of the parameters before the data 

are observed, a scale or discounting parameter from 0 to 1 is used to control the weight assigned to 

historical data.  This parameter is usually controlled by user. Our Bayesian model with power priors 

assumes that 50% of external information is incorporated in the posterior distribution in the form of 

a prior input consisting of 50% of the log-likelihood of these external territory observations; thus, 

the scale parameter is 0.5.  

We observe that standard errors of the posterior estimates are smaller compared to those 

generated with the ordinary GLM. As a result, the 95% confidence intervals are narrower than those 

produced with ordinary GLM or the Bayesian GLM with non-informative priors.  Poisson 

regression results arrive at the same conclusion in terms of the risk associated with all age groups 

compared to age group 17-20. However, the smaller confidence intervals indicate the improvement 

in the estimation of the likelihood by using past information.  Power priors allow for a different 

percent of external information to be used, which allows an actuary to judgmentally incorporate this 

aspect of modeling into the analysis.  Another sample of 1000 losses was selected out of 16,181 
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policies that reported positive claim amounts.  Table 2 shows the comparison of the results of 

Bayesian gamma regression with non-informative priors to those produced using the frequentist 

approach. We can also observe that standard errors and the 95% confidence intervals related to the 

regression coefficients are smaller compared to those produced using the frequentist approach.    

4. MODEL VALIDATION 

Model validation is an important part of model building. When two competing models are 

evaluated, common techniques such as Receiver Operating Characteristic (ROC) Curves or Double 

Lift Charts can be used.  These techniques are appropriate, e.g logistic regression models, and 

require that a database of historical observations is augmented with the predictions from each of the 

competing models (Goldburd at al., 2016). Considering the nature of our application, the historical 

database is not available in a new territory where the company starts writing new business for the 

first time, or to an existing territory where the new business was recently introduced, so the claims 

experience is very limited.  In absence of the historical database, we borrowed the information from 

the “imaginary” adjacent territory that we assumed to be R24.     

Our validation is based on the “splitting data” approach and it is shown in the flowchart in 

Figure 3.  This approach assumes drawing three samples from R24:  

1) Training Set - used to perform the model building,  

2) Holdout Set (Test Set) - used to perform data validation, and  

3) The Bayesian “External Prior” Set - used to provide prior input information.    

Both the Training Set and the “External Prior” Set consist of 1000 observations, while the Test 

Set consists of 100 observations. The comparison was done to evaluate the impact of incorporating 

the information from existing external territories on the Bayesian analysis of the Training Set. Table 

3 in Appendix A summarizes the results of this validation. The Bayesian analysis with weakly 

information priors was applied to fit the Training Set and the predicted numbers of claims for the 

Test Set observations were obtained based on the corresponding posterior predictive distributions. 

Then we also fit the Bayesian analysis with power prior information from the External Prior Set to 

the Training Set and obtained the predicted number of claims for the Test Set using the new 

posterior prediction distributions.  The two sets of predicted number of claims are both compared 
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with the original observed frequencies for the Test Set and MSPEs were computed: 0.51 for the 

Bayesian analysis with weakly information priors and 0.49 for the Bayesian analysis with power 

priors.  The MSPE calculation includes three values based on frequency of claims shown in Figure 2.  

 

 
Figure 3: Flow chart of the validation process. 

 

We also fit frequentist Poisson regression on all three samples respectively to check the similarity 

of the training data, validation data, and external prior information. This validation analysis indicates 

better prediction performance when power priors are used. However, the strength of improvement 

when the power priors are used in the Bayesian, is subjected to two critical factors:  

(1) Sample size of the “current” data (i.e. Training Set in this validation analysis). When sample 

size is fairly high relative to the complexity of the model fit, the information borrowing through 

power priors would play a minor role in the model prediction performance.  
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(2) Similarity between the External Prior Set and “current” data. When the information borrowed 

through power priors are “misleading”, it is not favorable to incorporate those in the analysis.       

5. CONCLUSION 

Historical claims information is available to the actuary for the purpose of ratemaking in those 

territories where the company has been writing business for some period of time, even when no 

information is available in the case of a new territory where a company is entering business for the 

first time. The understanding of the “new territory” can almost always be augmented by existing 

information. Such borrowing of strength from historical data has long been encouraged in many 

scientific fields. These issues motivated us to investigate the feasibility of a Bayesian power prior 

approach in borrowing of strength for modeling auto rates in a new territory.  The goal of such an 

approach is to determine a practical amount of strength to borrow from the historical claims that 

strikes a balance between increased cost-efficiency and long-run statistical integrity. The methods for 

incorporating historical data should be robust to prior knowledge and consistent with the 

accumulating historical information. We aim to utilize historical information given strong evidence 

that this information would apply well in a territory that shares some common characteristics. A more 

attractive feature of such “information borrowing” is that the practitioners can pick multiple values 

of the scale or discounting parameter to compare the analysis outcomes reflecting different prior 

beliefs of the “similarity” between the historical data and current data.  

In this paper, we showed how the Bayesian analysis with power priors and non-informative priors 

can be used in modeling auto claims frequency for a new territory. By borrowing prior information 

from an existing territory that shares some similar characteristics such as climate, population 

demographics, or geography, we can develop a claim frequency model. Modeling claim severity with 

Bayesian GLM is also shown. We illustrated our approach on a small data set drawn from the motor 

third-party liability data set provided by a French insurance company.  An immediate future work we 

would like to pursue is the joint Bayesian analysis of frequency and severity of claims. The joint analysis 

would allow us to borrow information between the two numerical features of the “new territory” and, 

hence, improve the analysis with a limited amount of information. The validation of our approach was 

also provided. We believe that our attempt to introduce Bayesian analysis with power priors will 
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benefit many insurance companies as they enhance their current GLM pricing model and apply it in 

ratemaking of a new territory or an existing territory where the claims’ experience is limited.    
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Appendix A 

Table-1: Comparisons of the Regression Results for Poisson Model 

 

Table-2: Comparisons of the Regression Results for Gamma Model 

Method Frequentist Approach to Gamma Regression Bayesian Gamma Regression with 
Non-informative Priors 

Parameter Estimate SE 95% CI Estimate SE 95% CI 
Intercept 7.7746 0.1728 7.4359 8.1133 7.7869 0.1690 7.4650 8.1261 
GasRegular 0.1125 0.0819 -0.0481 0.2730 0.1109 0.0818 -0.0513 0.2651 
DriverAge(20,26] -0.6454 0.2328 -1.1017 -0.1892 -0.6423 0.2320 -1.1074 -0.2037 
DriverAge(26,42] -0.4135 0.1773 -0.7611 -0.0659 -0.4218 0.1751 -0.7695 -0.0900 
DriverAge(42,74] 0.2735 0.1727 -0.0650 0.6120 0.2652 0.1700 -0.0882 0.5741 
DriverAge(74,Inf] 0.2555 0.2302 -0.1957 0.7067 0.2587 0.2308 -0.1743 0.7226 
Density 0.0453 0.0426 -0.0382 0.1287 0.0474 0.0430 -0.0365 0.1327 

 

 
  

Method Frequentist Approach to Poisson Regression Bayesian Poisson Regression with Weakly 
Informative Priors 

Bayesian Poisson Regression with Power 
Priors 

Parameter Estimate SE 95% CI Estimate SE 95% CI Estimate SE 95% CI 

Intercept -0.4754 0.2468 -0.9590 0.0083 0.8330 0.2513 0.3292 1.3164 0.7670 0.2027 0.3531 1.1498 
GasRegular -0.2582 0.1038 -0.4617 -0.0547 -0.2588 0.1047 -0.4676 -0.0553 -0.2329 0.0839 -0.3954 -0.0661 
DriverAge(20, 26] -0.3149 0.2502 -0.8052 0.1754 -0.4907 0.2519 -0.9811 0.0053 -0.4339 0.2044 -0.8302 -0.0287 
DriverAge(26, 42] -1.0424 0.2070 -1.4481 -0.6368 -1.1942 0.2091 -1.5883 -0.7662 -1.1039 0.1711 -1.4212 -0.7554 
DriverAge(42, 74] -0.8483 0.1946 -1.2297 -0.4670 -1.0565 0.1964 -1.4231 -0.6553 -1.0441 0.1613 -1.3456 0.7111 
DriverAge(74, Inf] -0.6587 0.2609 -1.1701 -0.1473 -0.9487 0.2635 -1.4637 -0.4322 -0.9194 0.2125 -1.3389 -0.5038 
Density 0.1896 0.0393 0.1126 0.2667 0.1975 0.0392 0.1179 0.2718 0.1958 0.0328 0.1301 0.2579 
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Table-3: Validation analysis  

 

 

  

Sample Type Training Set Holdout Set External Prior Set 

Parameter Estimate SE 95% CI Estimate SE 95% CI Estimate SE 95% CI 

Intercept -0.4754 0.2468 -0.9590 0.0083 0.1793 0.8906 -1.5662 1.9248 -0.6566 0.2423 -1.1315 -0.1817 
GasRegular -0.2582 0.1038 -0.4617 -0.0547 -0.6379 0.3898 -1.4020 0.1261 -0.1784 0.1025 -0.3793 0.0225 
DriverAge(20, 26] -0.3149 0.2502 -0.8052 0.1754 -0.6266 0.8770 -2.3454 1.0923 -0.2215 0.2427 -0.6972 0.2542 
DriverAge(26, 42] -1.0424 0.2070 -1.4481 -0.6368 -1.2490 0.7849 -2.7875 0.2894 -0.8161 0.2024 -1.2129 -0.4193 
DriverAge(42, 74] -0.8483 0.1946 -1.2297 -0.4670 -0.8827 0.7406 -2.3343 0.5689 -0.8489 0.1955 -1.2321 -0.4658 
DriverAge(74, Inf] -0.6587 0.2609 -1.1701 -0.1473 -1.8648 1.2715 -4.3569 0.6272 -0.6206 0.2609 -1.1318 -0.1093 
Density 0.1896 0.0393 0.1126 0.2667 0.2220 0.1620 -0.0955 0.5395 0.1744 0.0422 0.0916 0.2571 



 

Casualty Actuarial Society E-Forum, Spring 2018-Volume 2 19 

Figure 4. History plots, ACF plots and density curves of the model parameters in the Bayesian 
Poisson regression model with weakly informative priors. 
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Figure 5. History plots, ACF plots and density curves of the model parameters in the Bayesian 
Poisson regression model with power priors. 
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Figure 6. History plots, ACF plots and density curves of the model parameters in the Bayesian 
gamma regression model. 
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Appendix B 

SAS code for the analysis.  
Part 1:  
/*Poisson regression with weakly-informative priors*/  
/*  
ClaimNb: response variable, number of claims occurred during a 
given time period in the region for a customer;  
logoffset: logarithm of the exposure (duration of the policy), 
offset variable we used in the Poisson regression; 
Gas: indicator variable, Gas=1 if the car insured uses regular 
gas; 
x2: indicator variable, x2=1 if the insured driver is older than 
22 but is 26 or younger; 
x3: indicator variable, x3=1 if the insured driver is older than 
26 but is 42 or younger; 
x4: indicator variable, x4=1 if the insured driver is older than 
42 but is 74 or younger; 
x5: indicator variable, x5=1 if the insured driver is older than 
74; 
Density: population density of the region; 
alpha: intercept; 
beta1-beta6: regression coefficients associated with Gas, X2-X5 
and Density; 
 
Priors used for alpha: alpha ~ N(mua,sda^2), with higher level 
priors mua~N(0, 10) and sda~Uniform(0,5). 
  
Priors used for alpha and all the betai's: N(mubi,sdbi), i=1,...,6, 
with higher level priors mubi~N(0,4) and sdbi~Uniform(0,1).  
*/ 
 
  
  
proc mcmc data=datasetname seed=1181 nmc=500000 nbi=150000 thin=10 
propcov=quanew monitor =(_parms_ ) outpost=out1000prior2; 
ods select Parameters PostSummaries PostIntervals tadpanel; 
parms alpha 0 beta1 0 beta2 0 beta3 0 beta4 0 beta5 0 beta6 0; 
parms mua 0 mub1 0 mub2 0 mub3 0 mub4 0 mub5 0 mub6 0; 
parms sda 0.5 sdb1 0.5 sdb2 0.5 sdb3 0.5 sdb4 0.5 sdb5 0.5 sdb6 0.5;  
prior alpha ~ normal(mua, var=sda**2); 
prior beta1 ~ normal(mub1, var=sdb1**2); 
prior beta2 ~ normal(mub2, var=sdb2**2); 
prior beta3 ~ normal(mub3, var=sdb3**2); 
prior beta4 ~ normal(mub4, var=sdb4**2); 
prior beta5 ~ normal(mub5, var=sdb5**2); 
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prior beta6 ~ normal(mub6, var=sdb6**2); 
prior mua ~ normal(0, var=10); 
prior mub: ~ normal(0, var=4); 
prior sda ~ uniform(0,5); 
prior sdb: ~ uniform(0,1); 
 
mu = exp(logoffset + alpha + beta1*Gas + 
beta2*x2+beta3*x3+beta4*x4+beta5*x5+beta6*Density); 
model ClaimNb ~ poisson(mu); 
run;  
  
Part 2:  
 
/*Poisson regression with Power prior, a0 fixed*/  
 
/* 
ClaimNb: response variable, number of claims occurred during a 
given time period in the region for a customer;  
logoffset: logarithm of the exposure (duration of the policy), 
offset variable we used in the Poisson regression; 
Gas: indicator variable, Gas=1 if the car insured uses regular 
gas; 
x2: indicator variable, x2=1 if the insured driver is older than 
22 but is 26 or younger; 
x3: indicator variable, x3=1 if the insured driver is older than 
26 but is 42 or younger; 
x4: indicator variable, x4=1 if the insured driver is older than 
42 but is 74 or younger; 
x5: indicator variable, x5=1 if the insured driver is older than 
74; 
Density: normalized population density of the region; 
 
alpha: intercept; 
beta1-beta6: regression coefficients associated with Gas, X2-X5 
and Density; 
 
Initial Priors used for alpha: alpha ~ N(mua,sda^2), with higher 
level priors mua~N(0, 10) and sda~Uniform(0,5). 
  
Initial Priors used for alpha and all the betai's: N(mubi,sdbi), 
i=1,...,6, with higher level priors mubi~N(0,4) and 
sdbi~Uniform(0,1).  
 
Power prior is used here with fixed power a0=0.5.  
*/ 
proc mcmc data=datasetname seed=1181 nmc=500000 nbi=150000 thin=10 



Rate Making for a New Territory: Enhancing GLM pricing Model with a Bayesian Analysis 
 

Casualty Actuarial Society E-Forum, Spring 2018-Volume 2 31 

propcov=quanew monitor =(_parms_ ) outpost=out1000power50; 
ods select Parameters PostSummaries PostIntervals tadpanel; 
parms alpha 0 beta1 0 beta2 0 beta3 0 beta4 0 beta5 0 beta6 0; 
parms mua 0 mub1 0 mub2 0 mub3 0 mub4 0 mub5 0 mub6 0; 
parms sda 0.5 sdb1 0.5 sdb2 0.5 sdb3 0.5 sdb4 0.5 sdb5 0.5 sdb6 0.5;  
prior alpha ~ normal(mua, var=sda**2); 
prior beta1 ~ normal(mub1, var=sdb1**2); 
prior beta2 ~ normal(mub2, var=sdb2**2); 
prior beta3 ~ normal(mub3, var=sdb3**2); 
prior beta4 ~ normal(mub4, var=sdb4**2); 
prior beta5 ~ normal(mub5, var=sdb5**2); 
prior beta6 ~ normal(mub6, var=sdb6**2); 
prior mua ~ normal(0, var=10); 
prior mub: ~ normal(0, var=4); 
prior sda ~ uniform(0,5); 
prior sdb: ~ uniform(0,1); 
begincnst; 
a0=0.5; 
endcnst; 
mu = exp(logoffset + alpha + beta1*Gas + 
beta2*x2+beta3*x3+beta4*x4+beta5*x5+beta6*Density); 
llike=logpdf('poisson',ClaimNb,mu); 
if (city='old') then llike=a0*llike; 
model general(llike); 
run;  
 
 Part 3:  
 
/*Gamma regression with noninformative prior for severity 
analysis*/  
 
/* 
AggClaimAmount: response variable, severity of claims;  
ClaimNb: number of claims occurred during a given time period in 
the region for a customer, used as the exponential family 
dispersion parameter weight for each observation;  
X1: indicator variable, Gas=1 if the car insured uses regular gas; 
x2: indicator variable, x2=1 if the insured driver is older than 
22 but is 26 or younger; 
x3: indicator variable, x3=1 if the insured driver is older than 
26 but is 42 or younger; 
x4: indicator variable, x4=1 if the insured driver is older than 
42 but is 74 or younger; 
x5: indicator variable, x5=1 if the insured driver is older than 
74; 
sdensity: normalized population density of the region; 
Default uniform priors are used for all regression coefficients; 
Default INV-Gamma(0.001, 0.001) used for the rate parameter (see 
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paper).   
*/ 
 
  
proc genmod data= datasetname; 
class Gas; 
Weight ClaimNb; 
model AggClaimAmount = x1 x2 x3 x4 x5 sdensity/ dist=gamma 
                             link=log; 
bayes seed=4 outpost=postgamma diagnostics=all summary=all; 
run;  
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