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PREFACE 
Automated vehicles (AVs) have the potential to significantly change people’s lives. While there are many 
specific questions and issues — for example, when AVs are likely to be rolled out, or become the 
predominate mode of travel — that are the subject of vigorous, even contentious debate with respect to AVs, 
the potential of AVs to change transportation and the way we live is basically undeniable. 

Much of the thinking, research, and public pronouncements regarding AVs has occurred in silos, focusing on 
issues or technological advancements of most interest to a particular group, organization, or industry. Indeed, 
it is understandable that, for an innovation whose effects are potentially so deep and far-reaching, a wide 
variety of industries and organizations would have interest, both in the topic and in its outcome. But is 
working independently the most effective and efficient environment in which to bring such new technology 
safely to the public? 

This document reflects the research, deliberations, and current thinking of the Automated Vehicles Task 
Force (AVTF) of the Casualty Actuarial Society (CAS). Our overarching theme and belief is that actuaries, 
and the insurance and risk management industries, have a critical role to play in responsibly and cost-
effectively bringing new technologies such as this to market. We also believe that it is imperative for the 
various parties and stakeholders — manufacturers, technologists, policymakers, attorneys, risk managers, 
insurers, and actuaries — to cooperate during the development and rollout of AV technology, and address 
collaboratively issues such as defining and collecting appropriate data, considering potential liability systems 
for an AV world, and establishing appropriate performance benchmarks by which to evaluate AV 
technologies. 

Why actuaries? Actuaries are skilled and experienced in identifying, quantifying, and managing risks. Only 
through a proper assessment of risk can certain critical decisions be responsibly made: e.g., when AV 
technology is ready for deployment, how risk should be priced and managed, and what is the optimal public 
policy approach to take toward resolving potential future liabilities associated with the technology. 

Why multidisciplinary cooperation? Collaboration early in the developmental and testing phases will allow for 
identification and specification of consistent data formatting and collection processes. Clean, consistent data 
are essential for proper analytical evaluation, which is necessary in order to quantify the risks associated with 
AVs. In addition, many other critical decisions will need to be made, including a risk-minimizing AV rollout 
strategy, and an optimal liability system for an AV world. A multidisciplinary approach, across functions and 
industries, will help ensure that all perspectives are considered and included. 

More generally, the CAS AVTF has taken a somewhat different approach to AV research than other 
organizations. Our motivation is action-oriented: we are focused on what should be done to ensure the 
technology is brought to market as safely and efficiently as possible. We are not concerned with predicting 
when the technology will arrive or what its societal impact will be. While interesting, such predictions will not 
make the technology safer or more affordable. Nor do they allow us to see what decisions or changes need to 
be made to accomplish these goals. While actuaries will not be the ultimate arbiters of these decisions, we can 
help ensure the right questions are being asked and the right data are being used and analyzed by the right 
people to answer these questions. 

We have purposely restricted our studies to areas in which casualty actuaries have expertise: the 
implementation and evaluation of insurance pricing models, the quantification of liability costs, and the 
analysis of risks. It should not be inferred that we believe the selected topics are the ones most important to 
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the automated vehicle discussion — but they are important topics, and we believe that our involvement in 
them can benefit and expedite the entire process. 

For the general reader, this report may appear, deliberately so, to be somewhat lengthy and detailed. This is 
because we have multiple audiences in mind. While we want our research and conclusions to be accessible to 
the general public, the report is consciously written to accommodate individuals interested in gaining a 
detailed understanding of the issues, with a view toward what can be done to improve the autonomous 
vehicle development and risk management process, as well as an understanding of why these steps are needed 
and how they will benefit the introduction of AVs. It is our hope and desire that this document represents an 
early stage of an ongoing dialogue, and that the details and assumptions described will allow future studies to 
build upon this work.  

Furthermore, it is essential that the complexity and nuance involved in each of the issues addressed herein is 
fully appreciated. Many of the questions surrounding automated vehicles involve tradeoffs and uncertainties. 
Embracing the complexity and working to better understand the risks will ensure a purposeful, balanced 
decision-making process with respect to developing, introducing, and sustaining AVs.  

Where there is risk and uncertainty, actuaries facilitate better decision-making. We hope that this report will 
help “contribute to the well-being of society as a whole,” as dictated by the Casualty Actuarial Society’s 
mission statement. 
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EXECUTIVE SUMMARY OF THE OVERALL REPORT 
 

Introduction 

The development, introduction, and rollout of automated vehicle technology depends upon the collection of 
relevant data and its analysis. The specification of collected data types and formats should be a cooperative 
effort amongst all parties to AVs — manufacturers, technologists, policymakers, attorneys, risk managers, 
insurers, and actuaries — in order to ensure that all perspectives and stakeholder needs are considered.  

Casualty actuaries, properly engaged and utilized, can help automated vehicle technology reach market as 
safely and efficiently as possible. Where safety and efficiency diverge or come into conflict, casualty actuaries, 
skilled and experienced in assessing risks, can quantify and clarify the inherent tradeoffs involved.  

There are three specific areas where casualty actuaries’ involvement can aid the technology’s development. 
These topics correspond to the three papers comprising this report. 

 

Topic 1: Insurance Premiums  

The pricing of insurance for automated vehicles depends upon collecting appropriate and adequate data, 
making a variety of assumptions, and possibly requiring the development of new actuarial techniques. 

In the long-run, insurers will price automated vehicles appropriately. Basic insurance pricing practices require 
premiums to follow costs, so if AVs lead to lower losses, those will eventually lead to lower premiums. 
However, the long-run view tells us nothing about the actual insurance premium discount the technology will 
receive when first introduced. And the cost of risk in the marketplace is important to the disposition of the 
technology: overpricing the technology may make this potentially lifesaving advancement too expensive for 
some, while underpricing the technology forces the individuals in non-AVs (presumably less-safe vehicles) to 
subsidize the AV-insureds’ premiums and shoulder a greater portion of the cost and driving risk. Accurate 
pricing of risks is necessary to avoid such cross-subsidies. 

Using some traditional techniques, insurers’ pricing models could take a long time to recognize improved 
performance that results from vehicle construction (such as improved safety resulting from AV technology). 
Based on the model we used and on certain assumptions which are meant to be illustrative, a vehicle that 
reduces losses by 50 percent will only receive an 8 percent discount after four years. If completely crashless, 
the discount will only be 15 percent. However, this is dependent on the technology’s introduction, the 
number of vehicles with the technology, and the insurer’s view of the risk. The more vehicles with the 
technology, the greater the discount will be. When varying these assumptions, a completely crashless car 
could earn up to a 78 percent discount after four years (see Table 4). Today, insurers are often unable to 
identify the technology’s presence on vehicles; thus, they are unable to distinguish between vehicles with the 
technology and those without. This is an example of the need for cooperative and multidisciplinary data 
specification and collection: insurers and manufacturers need a more direct and transparent collaboration to 
ensure the technology is clearly identifiable in the insurers’ datasets and its performance is explicitly 
quantified.  
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Topic 2: Liability System 

To insure the risks associated with automated vehicles, policymakers may consider a shift from a negligence-
based personal auto liability system, to a strict products liability setting — but such decisions should 
contemplate all potential system costs, not just claims costs. 

The mechanisms by which automated vehicle liability will (or should) be evaluated, and responsibility 
assessed, are complex issues that necessarily involve tradeoffs. From an insurance and risk management 
standpoint, greater coverage for such liability is accompanied by greater costs. Adopting certain provisions for 
legal responsibility in the liability system might make it more difficult to achieve certain claim settlement 
goals. A detailed, transparent evaluation of the costs, benefits, and risks is necessary for the American public, 
through their democratically elected representatives, to ensure the optimal liability system is in place when 
automated vehicles are brought to market. 

With the move toward automated vehicles, it is possible that the liability insurance mechanism will shift from 
personal automobile to products liability. Such a shift would bring with it greater coverage — but that greater 
coverage would be accompanied by higher frictional costs. Combining coverage and costs, the shift would 
double or perhaps even triple the average vehicle premium, with a smaller portion of each premium dollar 
going toward claimant compensation. Frequency would have to decrease by almost 75 percent for the vehicle 
premium to be unchanged. While other issues may be more important than the cost of coverage, they should 
be evaluated through a similar prism, with the end result being purposefully selected. The active participation 
of casualty actuaries (who facilitate better decision-making where there is risk and uncertainty) and the 
insurance industry (which specializes in compensating claimants fairly and efficiently) in the evaluation will 
support and enhance the analysis and the decision-making process.  

 

Topic 3: Automated Vehicle Risks 

AV risks need to be accurately and realistically measured and understood, and compared to appropriate 
benchmarks. 

The safe introduction of automated vehicles requires a direct recognition of the risks that the technology will 
encounter. Identifying and addressing these risks requires detailed datasets and risk management expertise. 
After identifying and quantifying the risks and their correlations, the risk-minimizing introduction strategy 
requires the creation of a single, comprehensive approach that looks at the risk holistically and in total. 
Analyzing and addressing risks in a linear, silo-type fashion fails to recognize the reality of the situation, and 
therefore fails to accomplish its goal.  

Once a rollout strategy is developed, the technology’s performance must be understood. This requires the 
calculation of an accurate benchmark that the technology’s experience can be compared against. Only casualty 
actuaries’ predictive models, built off insurers’ robust datasets, are granular, accurate, unbiased, responsive, 
and stable enough to effectively evaluate the technology’s performance. For example, these models could be 
used to compare an automated vehicle’s performance against groups of drivers based upon type of driver, 
geography, including or excluding certain kinds of drivers or accidents, etc. An accurate benchmark permits 
the performance to be better understood, thereby allowing safer vehicles to reach market quicker.  
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Conclusion 

Casualty actuaries will not build the transformational AV technology — however, by pricing the technology 
accurately, we can provide a financial incentive to purchase technology that reduces losses and makes life 
more convenient and flexible. Casualty actuaries will not create the liability system that governs automated 
vehicle incidents, however, by quantifying the premiums and other costs involved in the different systems, we 
can illuminate and quantify the costs and benefits involved in the tradeoffs, thereby ensuring a transparent 
and unbiased decision-making process. Casualty actuaries will not bring the technology to market, however, 
by establishing a more granular, accurate, and responsive benchmark, we can place the technology’s 
performance in more appropriate context and allow safer products to reach the market quicker. Through 
these small but important contributions, casualty actuaries can help ensure the technology is brought to 
market as quickly, efficiently, and safely as possible. 
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1: Automated Vehicles’ Impact on 
Personal Automobile Premiums — 

“What discount will I receive?”  
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EXECUTIVE SUMMARY OF TOPIC 1 

Accurate pricing of products and services, including automated vehicle technology, benefits society. If AV 
risk is overpriced, resulting in consumers being overcharged for AV insurance, their cost is increased, making 
them less affordable. This unnecessarily slows the adoption of potentially lifesaving AV technology. 
Conversely, underpricing AV risk, and thus undercharging for AV insurance, reduces their cost, making AVs 
more attractive than their risks warrant, and forcing other non-AV insureds (with presumably less-safe 
vehicles) to be overcharged for insurance. In such a situation, the individuals with the least-safe vehicles are 
not only taking on a disproportionate share of risk, they are also shouldering a disproportionate share of the 
insurance costs. Such a circumstance is generally considered an undesirable cross-subsidy. Accurately pricing 
AVs when they are introduced allows consumers to make more informed decisions. To the extent the 
technology reduces insured losses, accurate pricing of risk and insurance provides a financial incentive for 
consumers to purchase vehicles with the technology. 

The question “what premium discount will an insured receive for purchasing a vehicle with loss-reducing 
technology” requires an evaluation of the effectiveness of insurers’ pricing models. In this research, the CAS 
AVTF received unique access to an actual insurer’s pricing model and data. Access to this model has allowed 
the AVTF to differentiate its research and findings from other studies, which have simply evaluated the 
aggregate premium change. Focusing on aggregates leaves unanswered the question of what must be done to 
ensure the vehicles are priced appropriately.  

Current auto insurance pricing models are created for today’s driving environment, where the individual is the 
largest determinant of accident costs. Our research demonstrates that, by using these current models in an 
emerging AV environment, there may be a significant lag between introducing safer technology and seeing 
the consequent impact reflected in auto insurance premiums. For example, based on one insurer’s pricing 
model, we found that, if the vehicle is categorized as a “new” model, with no comparable prior model year, 
then a vehicle that lowers loss costs by 50 percent will only receive an 8 percent premium discount after four 
years. Even a vehicle with no losses will still only receive a 15 percent premium discount after four years. On 
the other hand, if the technology is introduced on existing automobile models, the insurance pricing model 
will give its experience more weight, resulting in a larger premium discount. With this approach, the average 
premium discount after four years for a vehicle that reduces losses by 50 percent will be 21 percent; the 
maximum discount will be 38 percent (see Table 4). 

These figures are examples, based upon several other illustrative assumptions. The actual discount the vehicle 
receives depends not only on the technology’s ability to reduce losses and on how the insurer categorizes the 
vehicle (new or existing car model), but also on the number of vehicles with the technology, and how the 
technology is rolled out. For example, the numerical results above assume manufacturers will introduce the 
technology as a standard automobile feature — although this is not reflective of today’s reality. Currently, it is 
very difficult, and sometimes impossible, for insurers to distinguish between vehicles with and without 
advanced technology. Unless this changes, improved performance will take even longer to be reflected in 
premium discounts. This is one reason that a multidisciplinary, collaborative effort to specify types and 
formats of data, and then to collect that data, is so important. 

The best way for the technology to be priced accurately is for insurers, manufacturers, and others to develop 
a more direct, open, and collaborative relationship — starting with a multidisciplinary, cooperative effort to 
specify types and formats of data, and then to collect and analyze that data. Insurers need to better 
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understand the technology’s performance — not to mention being able to identify whether or not advanced 
technology is present in the various cars that underlie the data — to quantify its impact. 

In the long-run, the technology will be priced appropriately. Insurers have shown the ability to adapt to 
changes and trends in losses, and to develop more accurate models to meet the challenges they face. 
Collaboration between insurers and manufacturers will accelerate recognition of the evidence and promote 
pricing accuracy. 

.  
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INTRODUCTION 

In order for AV technology to be brought to market as safely and efficiently as possible, it is important that 
any reduction in insurance losses be reflected in the insurance premium. The greater the discount, the more 
affordable the product becomes and the quicker it will proliferate through the automobile population.  
Therefore, the correct question to ask is “what discount will be afforded a vehicle that reduces potential 
insurance losses?” This is a different question than “how will automated vehicles impact insurance 
premiums?” The second question can be answered by some very simple assumptions and calculations. 
However the first question requires access to pricing models that utilize proprietary data and complex 
statistical analysis. It should be no surprise then that the existing research has failed to answer the more 
pertinent question.  

For this research, the CAS AVTF was granted access to the actual auto insurance pricing model of an insurer. 
While some of the data and statistics are necessarily hidden to protect this insurer, the results of our research 
and scenario testing are clear: based upon a pricing model like the one to which we were granted access, 
without more data and collaboration between interested parties, it will take a long time for improved vehicle 
performance to result in a significant insurance premium discount. For the interested reader’s benefit, we will 
first walk through the generics of insurance pricing to provide adequate context. Then, we will clearly define 
our assumptions, discuss the results, and recommend a pathway for improvement. 

PART I: INSURANCE PRICING BASICS 

Before diving into the analysis, we must first understand the basics of insurance pricing.  

A. Cost Based vs. Market Pricing Approach 

Personal auto insurance premiums are determined using a cost-based pricing approach. This means that your 
insurer estimates how much it expects to pay in claims for an insurance policy then adds its expenses and 
profit to it to calculate the final premium. In most states, insurers have to submit these numbers to, and 
sometimes gain approval from, state departments of insurance before they can finalize this price.  

This approach differs from a market-based pricing approach where companies are allowed to charge 
whatever the market allows. In a cost-based system, a pair of shoes’ price would equal the cost of its inputs 
plus, in the case of insurance, a state approved profit margin. In a market-based system, shoes’ prices are 
determined by the buyers and cost however much they will pay. 

If insurance losses decrease, so will premiums. This is what happened in the late 2000’s, as the average auto 
insurance premium decreased every year from 2005 to 2009. 2012’s average premium was lower than 2003’s 
average premium.1 Assuming automated vehicles reduce insurance losses, what is important is not if 
premiums will change, but how and when premiums will change. 

Note that an additional aspect of the cost-based pricing approach is that the premiums will only change if one 
or more of the cost components (losses, expenses, or profit load) change. Shifting the responsibility for 
paying these losses, say from the individual to the manufacturer, does not eliminate these costs. 

 

                                                            
1 Source NAIC republished:  http://www.iii.org/table-archive/21247   

http://www.iii.org/table-archive/21247
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Table 1 

 
*Source NAIC republished: http://www.iii.org/table-archive/21247 

B. Law of Large Numbers  

Unlike other products, insurers do not know how much their product will cost when they sell it. Consider a 
simple financial bond — i.e., a fixed-income security. Aside from the possibility that the issuer of the bond 
will default, the cash flows on a bond are fixed and predictable: the bondholder and the bond issuer know 
both the amount and timing of the cash flows to be received. Contrast that with auto insurance: not only are 
the amounts and timing of any losses uncertain at the beginning of the policy period — it is not even known 
whether there will be a loss. 

The law of large numbers provides a way for insurers to come up with a stable, accurate prediction of the 
cost. The law states that the average result from a large number of trials will trend towards the expected value. 
Put simply, if insurers group a lot of similar risks together, that group’s actual costs will equal its expected 
costs. This allows insurers to use historical experience to predict future experience.  

C. State-Based Pricing Approach 

There is one final nuance to insurance pricing that may not be clear to the casual reader: insurance premiums 
are set at the state level. The very first step of each pricing analysis determines the state’s overall rate need. If 
the actuary projects a 0 percent rate need for the state, it means that the premium we expect to need is exactly 
the same we expect to collect. However, this doesn’t mean that every individual insured will be charged 
exactly the same rate. If the actuary finds that 50 percent of customers deserve a 5 percent increase, then the 
other half of customers will receive a 5 percent decrease to get back to the 0 percent overall change.  

If loss-reducing technology is unidentified, then their lower loss potential will be shared by all the insureds in 
the state. Assuming the vehicles with the technology account for a small share of the state, the discount will 
be extremely small. Looking at the aggregate premium change, as other studies have done, tell us nothing 
about the premium change the individual will see. A more applicable impact analysis will calculate the 
discount the loss-reducing technology will receive. This will quantify the insurers’ pricing model deficiency (if 
any exists). It will also quantify the benefit (discount) that can be achieved by proactively addressing any 
deficiencies.  
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PART I CONCLUSION 

The cost-based pricing nature of insurance guarantees that lower insurance costs will be followed by reduced 
premiums. What is uncertain is not if premiums will change but how and when the change will occur. How 
much cheaper or more expensive will AV insurance premiums be compared with their non-automated 
counterparts? 

Accurately matching price to risk provides societal benefits. Overpricing automated vehicle technology risk 
and loss potential will make safer vehicles more expensive than they should be, putting them out of reach for 
many Americans and slowing their adoption. Conversely, underpricing AV risk will force the other drivers — 
in presumably less safe vehicles — to subsidize these vehicles’ insurance premiums. The goal should be to 
price the vehicles and their risks as accurately as possible as quickly as possible.  

 
 
PART II: VEHICLE PRICING MODEL BACKGROUND 
 
Most insurers adjust insured’s premiums for the cars they drive through the assignment of symbols to 
vehicles. A Honda Civic will (likely) have a lower symbol and insurance premium than a Bentley, reflecting its 
lower repair costs. So how responsive are these models to changes in vehicle technology that drives insurance 
losses? While these models are proprietary, the CAS’s AVTF has partnered with one of the few companies 
that own such a model. Without direct access to such a model, the analysis would be effectively useless. 
 
A. Model setup 

For simplicity purposes, the model was run using countrywide liability (Bodily Injury/Property Damage — 
BI/PD) data. There is no reason to believe the results would vary significantly for individual states. It was 
also determined that the BI/PD results would be a reasonable proxy for the other coverages.  

This does not represent an actuarial opinion that the technology will impact all coverages the same. Instead, it 
can only be read that if the technology reduces the coverage losses by the stated amount, the coverage 
specific premium will be impacted by the calculated discount.  

B. Model formula 
 

The model’s basic formula is simplistic enough such that it can be shown. However, the true value lies in the 
underlying data that allows the insurer to come up with the most accurate pricing for each vehicle. 

The vehicle’s symbol is a function of the vehicle’s actual experience, its prior model year’s experience, and its 
body style (sports car, sedan, coupe, SUV, etc.…). It is calculated as follows: 

2016 Toyota Corolla vehicle symbol
= W1 ∗ �Experience2016 Toyota Corolla� + W2 ∗ �Symbol2015 Toyota Corolla�
+ (1 − W1 − W2) ∗ (Body Style Factor) 

 Wi = Weight assigned to each factor 

This has two important implications for interested stakeholders. First, the number of vehicles in the insurer’s 
dataset matters a great deal. The more vehicles there are in the experience data the more weight will be given 
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to its actual experience (W1). However, we also need to know how much weight should be given to last year’s 
symbol (W2). Second, how the insurer views the vehicle also matters a great deal. If the insurer believes the 
vehicle is so new that there is no prior model year to use in the formula, or if the vehicle is a drastic enough 
change where prior model years are not representative, its symbol will be driven by the Body Style Factor, a 
much broader category. Therefore, two separate scenarios were run to estimate how the technology might 
impact insurance premiums. 

C. Insured loss reduction 

Discussions surrounding automated vehicle impact have typically centered on its ability to decrease accident 
frequency. However, insurers care about the impact on total insurance losses, which are determined as shown: 

𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 𝐿𝐿𝐿𝐿𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 = (𝑁𝑁𝐼𝐼𝑁𝑁𝑁𝑁𝐼𝐼𝐼𝐼 𝐿𝐿𝑜𝑜 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐼𝐼𝐼𝐼𝐼𝐼𝐴𝐴𝐼𝐼) ∗ (𝐶𝐶𝐿𝐿𝐼𝐼𝐴𝐴 𝐿𝐿𝑜𝑜 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐼𝐼𝐼𝐼𝐼𝐼𝐴𝐴) =  𝐸𝐸𝐸𝐸𝐸𝐸𝐿𝐿𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 ∗ 𝐹𝐹𝐼𝐼𝐼𝐼𝐹𝐹𝐼𝐼𝐼𝐼𝐼𝐼𝐴𝐴𝐹𝐹 ∗ 𝑆𝑆𝐼𝐼𝑆𝑆𝐼𝐼𝐼𝐼𝐴𝐴𝐴𝐴𝐹𝐹 

Reducing the frequency does not guarantee that total insured losses will also decrease, for the following 
possible reasons: 

1. Exposure Increase: If drivers respond to the technology’s introduction by driving more miles, then a 
reduction in frequency (number of accidents per mile) may be offset by an exposure increase (number of 
miles driven).  
 

2. Exposure Change:  If the technology’s introduction increases driver distraction or deteriorates the 
driver’s skill, then overall accident frequency may not change: the lower frequency while the technology is 
driver may be offset by a higher frequency while the individual is driving. 

 

3. Severity Increase: More vehicle technology, and possibly more expensive technology, may increase the 
cost of repairs and offset the lower frequency.  

In order to test the pricing model’s effectiveness, we assume that the technology will reduce total insured 
losses by 25 percent, 50 percent, 75 percent and 100 percent. This is not an actuarial opinion on the 
technology’s actual or expected effectiveness; these assumptions are provided and used for illustrative 
purposes.  

 

 

PART III: PRICING MODEL RESULTS 

A. Scenario 1 — New Vehicle 

The introduction of such a transformative vehicle as one that can completely eliminate crashes (and insured 
losses) is likely to follow this path. Insurers will look at the vehicle as brand new vehicle and will rate it as 
such. This approach requires an assumed growth pattern to estimate the weights that will be used. Based on 
other new vehicles, we have assumed the insurer will have 2,500 vehicles in year one; 5,000 vehicles in year 
two; 7,500 vehicles in year three; and 10,000 vehicles in year four. These numbers appear to be reasonable, if 
slightly aggressive, based on vehicles counts for other new vehicles in the insurer’s data set. The results are as 
follows: 
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Table 2 

Vehicle Symbol Discount 
    Number of   Insured Loss Reduction 
Year   Vehicles   25% 50% 75% 100% 
1   2,500   0.5% 0.9% 1.3% 1.8% 
2   5,000   1.4% 2.6% 3.9% 5.1% 
3   7,500   2.8% 5.1% 7.4% 9.7% 
4   10,000   4.4% 8.0% 11.6% 15.2% 

 
When the technology is introduced, the vehicle will have the same symbol as its Body Style Factor. After one 
year of experience, the next model year will receive between a 0 percent and a 1.8 percent discount depending 
on how much the technology actually reduces insured losses. After four years, a vehicle that reduces insured 
losses by 50 percent will only be given an 8 percent discount. Four years with zero insured losses will lead to a 
15.2 percent discount (based on the stated assumptions). At 10,000 exposures in Year 4, the credibility factor 
is still low enough that the majority of the automated vehicle’s symbol is based on the body style factor. 
Therefore, even a completely crashless vehicle will receive only a modest discount after four years of use.   

 

B. Scenario 2 — Existing Vehicles 

This approach uses actual vehicle counts. The assumption is that the exact same number of Honda Civics, 
Volvo XC 60’s, etc.… will be on the road as there are currently. This bypasses the exposure-growth period 
but may be less-accurate from a real-world-scenario standpoint. It has the benefit of showing how the results 
change in a somewhat steady-state environment. In this approach, since there are established exposures for 
most of the vehicles, the starting factor is the individual vehicle’s actual factor (which is a credibility-weighted 
mixture of vehicle and body style results). The average vehicle discount is shown below: 

Table 3 

Average Vehicle Symbol Discount 
    Number of   Insured Loss Reduction 
Year   Vehicles   25% 50% 75% 100% 
1   Actual   4.3% 7.4% 10.5% 13.6% 
2   Actual   7.1% 13.7% 20.0% 26.3% 
3   Actual   9.7% 18.2% 25.7% 35.4% 
4   Actual   11.1% 21.0% 31.0% 41.2% 
        

With the greater credibility, the impact of loss reduction is realized more quickly. Under this approach, after 
four years of zero losses, the average discount is 41.2 percent. This is because no vehicle is 100 percent 
credible (in fact, the maximum credibility is 78 percent for an individual vehicle), so there is always some 
amount — and in many cases a significant amount — of body style factor being incorporated. 

There is also a large amount of variation in the answer when you use this method due to the wide range of 
credibility values for the individual vehicles: the more exposure data on a vehicle, the more credible its results, 
and the larger its potential discount. The maximum vehicle discount is shown below: 
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Table 4 

Max Vehicle Symbol Discount 
    Number of   Insured Loss Reduction 
Year   Vehicles   25% 50% 75% 100% 
1   Actual   7.4% 15.0% 22.7% 30.6% 
2   Actual   12.2% 24.7% 37.5% 50.5% 
3   Actual   15.8% 31.9% 48.3% 65.6% 
4   Actual   18.8% 38.0% 57.6% 77.6% 
        

The difference between the tables is most easily explained through a thought experiment. Assume one 2016 
Bentley is sold and does not get into an accident over the next year. How much should this experience reduce 
the premium for a 2017 Bentley purchased by someone else? The obvious answer is that it should have very 
little impact. This is what we see in Table 2, where the discount is very small. 

Conversely, what if there are 400,000 Toyota Camrys sold in 2016 and none of these have an insured loss? As 
no vehicle is 100 percent credible, it doesn’t mean that it is impossible for future Camrys to have a loss, but it 
does provide much more information than the Bentley. Therefore, the 2017 Camry will receive a much 
greater discount than the 2017 Bentley. The difference between Table 2 and Table 4 illustrates the impact that 
volume has on the calculation. 

C. Complicating Factor 

The prior analysis assumed that, when the loss-reducing technology was introduced on a vehicle, it was 
introduced as a standard feature. However, this is not reflective of reality. On many vehicles, advanced 
technology is optional, and its presence is not included in the VIN. When this is the case, insurers can have 
trouble distinguishing between the vehicles that have the technology and those that do not. The vehicles with 
the technology and those without the technology are grouped together in the insurer’s data. This will mute 
the technology’s observed impact. Assuming the insurer cannot identify the vehicles with and without the 
technology, then having every Honda Civic equipped with technology that reduces losses by 50 percent will 
be viewed as the same way as having half of Honda Civics equipped with technology that reduces losses by 
100 percent. Therefore, the actual discount depends not only on the insurer’s model, but also on the way the 
manufacturer introduces it (e.g., standard equipment vs. optional equipment, whether it’s identifiable in the 
VIN, etc.). 

PART III - CONCLUSION 

Auto insurers have shown a willingness to invest in data and improve their models to develop the most 
accurate price possible for insuring the risk of potential losses. Many have implemented a multi-variate rating 
approach, expanded the number of variables in their data set, and developed coverage level vehicle rating 
factors. If automobile accident risk factors change, competitive pressures will force insurers to develop new 
models that more accurately match the premium to the risk.  

However, the creation of these models will not be quick or easy. Current auto insurance pricing models are 
built off and built for the current driving environment, where the individual is the main cause of the accident. 
Therefore, it will take a long time for improved expected performance, driven by the vehicle, to result in a 
lower insurance premium. The length of time it takes will be impacted by technology’s ability reduce costs, 
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the number vehicles with the technology, how the insurer views the data, and how the manufacturer 
introduces the technology.  

 
=============================================================== 
TOPIC 1 
AUTO INSURANCE PRICING 
RECOMMENDATION 
 
 
The best way for these vehicles to be priced as accurately as possible and as quickly as possible is for 
manufacturers and casualty actuaries to develop a much more direct, open, and collaborative relationship.  

The better and sooner auto insurers understand AV technology, the faster its impact on insurance premiums 
will work its way into and through auto insurance pricing. Insurers need to understand how the technology 
works, assess how individuals will use it, and ultimately estimate how it will impact insurance losses. This 
requires the insurer to figure out what data must be collected and how to interpret that data. This will 
necessitate insurers and manufacturers working more closely together and sharing data and experience. 
Engaging the insurance industry in any automated vehicles tests that are being conducted can help insurers 
progress more quickly along the learning curve and decrease the time it takes to accurately price the new 
technology. 

=============================================================== 
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2: Automated Vehicle Liability — 
Compensating claimants fairly and 

efficiently 
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EXECUTIVE SUMMARY OF TOPIC 2 

The fully self-driving car is unique in terms of its potential liability. No other common consumer product is 
as necessary, as utilized, and as dangerous as the automobile. This potential liability is demonstrated by 
statistics for the two most recent years for which final mileage and fatality figures are available.  Americans 
drove over three trillion miles in 2015, or “approximately 337 round trips from Earth to Pluto.” 2 This 
volume of driving resulted in over 35,000 deaths.3 The year 2016 saw vehicle miles driven increase by 2 
percent, with over 37,000 deaths.4  

A shift to a driverless world will be unlike anything we’ve ever encountered. Neither airplanes, elevators, nor 
any other historical product introduction can serve as an effective guide for automated vehicles; the risk and 
scale are simply incomparable. What we do have, fortunately, is time. Unlike other transformational 
advancements, this is one we are able to (somewhat) foresee. Therefore, we should use this time to ensure the 
liability system surrounding the technology will be ready when the technology is.  

Currently, auto liability is based primarily on a negligence system, and financial accountability in the event of a 
loss is ascribed to the responsible party. The purchase of a personal auto insurance policy is the typical 
manner in which an insured protects herself or himself from losses associated with owning and operating a 
vehicle. In a future AV world, some believe that a strict liability system, directed at (probably) the 
manufacturers of AVs, would be more appropriate and efficient, with possibly a type of products liability 
insurance as the standard method of protecting against liability.  

The decision as to the best liability system in an AV world is an important one, with deep implications — and 
also several factors to consider up-front. Among other things, the ideal liability system will align responsibility 
and accountability, encourage manufacturers to invest in product improvement, compensate claimants fairly 
and efficiently, and minimize frictional costs. 

Certainly a critical factor to consider and evaluate is the cost of providing liability insurance coverage in an 
AV environment. Conceptually, this cost is most easily quantified as the change in insurance premium 
resulting from the introduction of AVs. Actually quantifying the premium change is an extremely complex 
calculation, even with the aid of numerous simplifying assumptions, but we have attempted to do so. Assume 
the following: every vehicle is owned by the manufacturer; every vehicle is fully autonomous; manufacturers 
purchase first dollar liability coverage but self-insure physical damage claims; each vehicle has $1 million of 
liability coverage; and accident frequency and severity is unchanged. Under these assumptions, we estimate 
that shifting liability from personal automobile insurance to products liability will increase the average vehicle 
premium (in 2011 dollars) from $781 to $1,578 — $2,355. (The large prospective premium range 
demonstrates the uncertainty involved in such a simplistic analysis.) Based on these figures, accident 
frequency would have to decrease approximately 75 percent for a vehicle’s premium to be lower than today’s 
(in real dollars). Essentially, products liability is simply a more expensive type of insurance: it affords more 
coverage for each vehicle and that coverage costs more, with less of the premium dollar going towards 
claimants. 

However, there are many other considerations that must be taken into account to create the optimal liability 
system. Pushing the costs to the manufacturers, rather than the individuals, more closely aligns accountability 

                                                            
2 https://www.fhwa.dot.gov/pressroom/fhwa1607.cfm  
3 http://www.nhtsa.gov/About+NHTSA/Press+Releases/nhtsa-2015-traffic-deaths-up-07012016  
4 https://www.nhtsa.gov/press-releases/usdot-releases-2016-fatal-traffic-crash-data  

https://www.fhwa.dot.gov/pressroom/fhwa1607.cfm
http://www.nhtsa.gov/About+NHTSA/Press+Releases/nhtsa-2015-traffic-deaths-up-07012016
https://www.nhtsa.gov/press-releases/usdot-releases-2016-fatal-traffic-crash-data
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and responsibility. Products liability’s potentially unlimited liability affords the consumer greater coverage in 
the event the product does not work as intended. On the other hand, shifting claims settlement responsibility 
to the manufacturer decreases the chance of a fair and efficient settlement: accountability and responsibility 
become misaligned as manufacturers are not rewarded for fair and efficient claims handling. Neither 
manufacturers nor products liability insurers can match personal automobile insurers’ claims handling 
capabilities. Personal auto insurers spend over $20 billion a year on claims handling, which is ten times more 
than products liability insurers spend, twenty-times larger than NHTSA’s total budget, and 150 times larger 
than NHTSA’s “Vehicle Safety Research” budget.  

Through a more collaborative and inquisitive approach, the strengths and weaknesses of different liability 
systems’ ability to handle automated vehicles can be identified and quantified. Any deficiencies will have a 
better chance of being eliminated if we act soon. An effective and efficient liability system can encourage 
manufacturers to develop and produce a safer product while also affording the public more protection when 
adverse events occur.  
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2.1: Automated Vehicle Liability — 
From personal automobile to 

products liability: calculating the 
premium impact 

  



Automated Vehicles and the Insurance Industry — A Pathway to Safety: The Case for Collaboration 

Casualty Actuarial Society E-Forum, Spring 2018 23 

INTRODUCTION 

Any evaluation of liability necessarily involves an estimate of the costs involved. Currently, automated vehicle 
liability discussion has centered on auto liability versus products liability. Despite some apparent similarities, 
these coverages are extremely different. They are sold through different distribution and cost structures and 
have different coverage definitions, triggers, and amounts. These nuances’ impact on premium can only be 
effectively quantified by casualty actuaries trained in both personal automobile and products liability pricing.   

The goal of this study is not to predict what will happen or to estimate the impact on any individual 
policyholder, but rather to provide an understanding of the efficacy of the two liability systems as defined by 
the coverage they afford and the costs associated with that coverage. In the end, we can see how different the 
cost and coverage would be if products liability insurance rather than personal automobile insurance covered 
every vehicle. 

 

PART I — ASSUMPTIONS 

A. Data Sources 

This analysis is focused on industry-wide results. Therefore, a single insurer’s dataset would be an insufficient 
foundation from which to base our analysis. Therefore, we have opted to use the following industry sources:  

• NAIC 2011/2012 Auto Insurance Database Report:5 This serves as the basis of the analysis. It provides 
earned exposures, earned premiums, incurred losses, and claim counts by coverage and state for the 
voluntary and involuntary market. 
 

• Insurance Research Council:6 This is used to estimate the number of uninsured drivers in each state. 
 

• S&P Global Market Intelligence: This was used to calculate the expense ratios for each state by expense 
type and coverage. It was also used to select appropriate profit targets. 
 

• Rate Filings: Actual rate filings were used to select appropriate profit targets 
 

• Proprietary industry data sources: Our analysis makes use of multiple, proprietary data sources. These 
sources will be noted and will be detailed to the extent possible.  

 

B. Data Assumptions 

The data sources, while robust, were not created with this analysis in mind. Therefore, a number of 
assumptions were made to allow the analysis to progress: 

• Texas is excluded from the analysis. No good data source exists for the Texas private passenger auto 
insurance market. Rather than use inaccurate data, Texas is simply excluded from all of the numbers.  
 

 We assume excluding Texas will not bias the average vehicle premium calculation. 
 

 We will only measure the change in total insurance market relative to the benchmark; it will only 
be shown in percentage terms. For example, we can still conclude that the market will shrink by 

                                                            
5 http://www.naic.org/documents/prod_serv_statistical_aut_pb.pdf  
6 http://www.iii.org/fact-statistic/uninsured-motorists  

http://www.naic.org/documents/prod_serv_statistical_aut_pb.pdf
http://www.iii.org/fact-statistic/uninsured-motorists


Automated Vehicles and the Insurance Industry — A Pathway to Safety: The Case for Collaboration 

Casualty Actuarial Society E-Forum, Spring 2018 24 

5 percent while excluding Texas, but we cannot conclude that the market shrink by $500 million 
without having a Texas premium estimate. 
 

• Only private passenger autos are included. Commercial automobiles and miscellaneous vehicles are 
excluded.  
 

• Baseline: The 2011 private passenger insurance market, excluding Texas, is the being used as the baseline.  

 

C. End State Assumptions 

While the current personal automobile insurance market is well understood, it is much less clear what the 
automated vehicle market will look like. Clearly defining the end-state allows us to, piece-by-piece, replace 
personal automobile insurance coverage with products liability. This is not a prediction of what will happen. 
Nor is it a recommendation of what should happen. These simplifying assumptions merely allow for a more 
direct calculation of the premium change. 

• The number of vehicles is unchanged.  
 

• Every vehicle is owned by the manufacturer. 
 

• Every vehicle is fully autonomous.  
 

• Manufacturers purchase first dollar liability coverage but self-insure the physical damage. In other words, 
insurers will pay all liability claims and manufacturers will pay to fix their own vehicles.  

 

• Severity: underlying accident severity is unchanged from today:  
 

 Physical damage coverage: Vehicle values are expected to be the same as they are today.  
 

 Liability coverage: Vehicles will carry $1,000,000/$1,000,000/$1,000,000 liability limits. This 
means there will be $1,000,000 of bodily injury coverage per accident and $1,000,000 of property 
damage coverage for each accident.  
 

• Claim Frequency: The end-state claim frequency is treated as an independent variable with five scenarios 
tested: no change (base), 10 percent reduction, 25 percent reduction, 50 percent reduction, 75 percent 
reduction, and 90 percent reduction. 
 

• Other insurance coverage impacts: The impact on other insurance premiums, such as health insurance, 
are outside the scope of the analysis.  

 

• “Premium” definition: we will use the term “premium” as the cost incurred to pay liability claims and 
physical damage repairs caused by automobile usage. This broader definition is used to better understand 
the true change in costs.  

 

D. Scenarios 

A singular point estimate of the premium change fails to connote the level of uncertainty involved in the 
analysis and outcome.  

• Claim frequency: Five scenarios were run to estimate the impact changing frequency would have on 
premiums: No change (base), 25 percent decrease, 50 percent decrease, 75 percent decrease, and 90 
percent decrease. These are not predictions of what will happen. 
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• Coverage: Generally, automobile insurance has bodily injury, property damage, medical coverage, 
uninsured/underinsured motorists coverage, comprehensive coverage, and collision coverage all split out. 
Many of these coverages have their own, coverage-specific limits. However, products liability would 
cover many of these coverages under its single liability limit. Two scenarios were calculated: adjusting the 
split sub-limits and rolling the sub-limits together into a single limit products liability limit.  

• Tort vs. No-Fault: Auto liability claims settlement rules differ among states. In “no-fault” states, your 
insurer will pay your claim regardless of who is at fault. In “tort” states, the at-fault driver is responsible 
for the payments. We use state-specific increased limit factor adjustments to calculate the additional cost 
associated with higher liability limits. Therefore, we are explicitly considering the different liability 
systems’ impact on liability costs.  

 

• Fixed vs. Variable Expenses: Actuarial pricing indications will split expenses into its fixed and variable 
components. Some expenses, like taxes and commissions, scale with premiums. Others, like salaries, are 
typically fixed and are not impacted by small premium changes. However, fixed expenses must change 
when there are large changes in the business: if a company grows by 50 percent it must hire more 
workers, and the salary growth will scale, somewhat, with the premium growth. Due to the uncertainty 
involved in such a dramatic shift in coverage, two scenarios were calculated: first, assuming expenses will 
be 100 percent variable and second, splitting the expenses into their fixed and variable components. 

 

E. Industry Premium Impact 

While the focus of the study is on the change in average vehicle cost, we also calculate the change in the 
insurance industry’s overall premium size. This calculation is aimed at providing additional context for the 
changes. The impacts are shown in blue, bold, and italicized font after the average vehicle premium change is 
shown. The industry impact numbers are only shown in percentage terms (due to Texas’ exclusion). The 
average vehicle premium change and industry premium change will not match. Do not try to tie the industry 
change to any number in the chart shown above it. 

 

 

PART II — BASELINE INSURANCE PREMIUM CALCULATION 

In order to calculate the premium will change, we first must begin by breaking down current automobile 
insurance premiums into their underlying components: 

Premium = Expected Claim Payments + Expenses + Profit 

• Expected Claim Payment = Exposure * Frequency * Severity 
o Exposure = Earned vehicle year 
o Frequency = Number of claims per vehicle year 
o Severity = Loss dollars per claim 

• Expenses = Loss adjustment expenses + Acquisition expenses + General & other expenses + Taxes 
- Loss adjustment expenses = Defense Costs + Other adjustment expenses 
- Acquisition expenses = Commission + Other Acquisition expenses 
- Taxes = Taxes, licenses & fees 
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Defense Costs and Containment (DCC) 

Defense costs merit special discussion before moving on. These costs are the amount the insurer spends on 
lawyers and other claim specific expenses. The costs typically fall outside the policy limits and are small for 
personal auto insurance. While this is often included with claim payments, it is important to split it out as the 
costs scale with the limit — the higher the limit, the higher the potential payment, and the greater incentive to 
incur DCC to manage costs. Therefore, we will keep these expenses split out. See Liability Appendix A for 
the detailed calculations underlying the benchmark calculation. 

  % of Allocation of Premium Dollar     

Market Insureds Claim Payment DCC* Expenses Profit Total   Avg Prem 

Voluntary 99.8% 60.3% 2.2% 34.4% 3.1% 100%    $       779.85  

Residual7 0.2% 62.3% 3.3% 34.4% 0.0% 100%    $   1,554.22  

Combined 100.0% 60.3% 2.2% 34.4% 3.1% 100%    $       781.23 

 
 

EXPECTED CLAIM PAYMENT 

The expected claim payments, here on out referred to as the “expected loss,” can be further split into the 
likelihood the insured gets into an accident and the amount that will be paid if an accident occurs.   These 
calculations were done separately by coverage and market and are shown in Liability Appendix A (pages 5-6).  

 

Expected Loss Components by Market 

        

Market Frequency Severity Expected Loss 

Voluntary 0.16 2,971  $         470.28 

Residual 0.26 3,786  $         968.47  

Combined 0.16 2,973  $         471.16  

 
It is important to differentiate between the voluntary market and residual market risks. The residual market 
exists for those who cannot find coverage in the voluntary market. These risks often have much worse 
experience and select less coverage (lower limits and forgo physical damage coverage) than risks in the 
voluntary market.  
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Expected Loss Components by Coverage 

        

Coverage Frequency Severity Expected Loss 

Bodily Injury 0.01 12,797  $       120.3  

Property Damage 0.03 2,558  $        89.5  

Combined Single Limit (BI/PD) 0.04 5,388  $       213.7  

Personal Injury Protection 0.02 6,305  $       101.7  

Medical Payments 0.01 2,751  $        21.3  

Uninsured/Underinsured Motorists 0.00 9,608  $        41.1  

Comprehensive 0.08 919  $        72.3  

Collision 0.06 2,985  $       171.9  

Total 0.16 2,973  $       471.2  

 
The frequency, severity, and expected loss amounts and percentages vary by coverage. Some of these 
coverages are mutually exclusive; the total will not equal the sum of the pieces. Individuals will either choose 
BI/PD or Combined Single Limit coverage but not both. The same typically goes for Medical Payments 
coverage and Personal Injury Protection. The expected loses can also vary widely by state as the different 
state laws impact claim payments. Lastly, only approximately 76 percent of vehicles carry Comprehensive 
coverage and 72 percent carry Collision. The total is the weighted average across all vehicles, which considers 
the underlying distribution of risks and coverages.  

 

Uninsured Motorists 

Using the Insurance Research Council’s 2012 Uninsured Motorists report,8 13.4 percent of private passenger 
automobiles are uninsured. We assumed their accident frequencies and severities mirror those in the residual 
market. 

  

 

PART III — PREMIUM ADJUSTMENTS TO PRODUCTS LIABILITY COVERAGE 

 

INTRODUCTION 

Our goal is to calculate how the vehicle and industry premiums if: 

• 100 percent of vehicles are self-driving and owned by the manufacturer 
• Manufacturers purchase first dollar liability coverage but self-insure physical damage coverage 

                                                            
8 http://www.iii.org/fact-statistic/uninsured-motorists Table “ESTIMATED PERCENTAGE OF UNINSURED MOTORISTS BY 
STATE, 2012 (1)” 

http://www.iii.org/fact-statistic/uninsured-motorists
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We’ve broken the calculation into seven steps to adjust the current market to this desired state. While the 
impact of each step is quantified, both as a change from the prior step and as a change from the benchmark, 
the relative size of impact should be used with caution. The order in which the adjustments are made will 
impact the size of the change.  

1. Insured population adjustment: 100 percent vehicles receive full insurance coverage 
2. Provide voluntary liability limit coverage to every vehicle 
3. Pass physical damage coverage to manufacturer 
4. Redefine claim coverage based on manufacturer ownership liability 
5. Eliminate physical damage deductibles 
6. Replace personal automobile expenses and profit provisions with commercial insurance assumptions 
7. Increase limits to $1 million 

 

PREMIUM ADJUSTMENTS 

Step 1 — Insured population9 

If the manufacturers own and insure every vehicle, then there will be no uninsured vehicles. This will 
eliminate the need for uninsured motorists coverage10 and provide everyone full coverage (liability and 
physical damage). Currently uninsured motorists’ coverage and premium is assumed to match the residual 
markets’ at the state level. Differences in the countrywide results, shown below, reflect the different state 
residual market and uninsured market distributions. 

Average Premium 

Market Baseline New 

Voluntary $   780 $  850 

Residual $ 1,554 $ 2,312 

Uninsured - $ 2,118 

Total $  781 $  1,022 

 

Impact on Insurance Market Size: Adding the uninsured drivers to the insurance pool, adding full 
coverage to all vehicles, and removing UM/UIM coverage causes the total insurance market 
premium to increase 51 percent. As a reminder, the change in market size can only be measured on a 
percentage basis due to the exclusion of Texas from the underlying dataset.  

  

                                                            
9 Details can be found in Liability Appendix B 
10 The need for underinsured motorist coverage won’t truly be eliminated until step 2, but UM/UIM premiums cannot be separated.  
Therefore, its elimination is being included in this step. 

 

Uninsured motorists’ frequency and severity 
was set equal to the residual markets’ 
frequency and severity in each state.  The 
difference in average premium is a result of 
distributional differences:  the uninsured 
population and residual market differ in size 
in each state. 
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Step 2 — Voluntary market liability limits 

Risks forced into the residual market typically buy lower limits, often purchasing the minimum required 
limits. This effectively caps the liability claim payment when that insured is at fault in an accident. However, if 
the manufacturer owns and operates the vehicle, then all vehicles will have the same coverage and limit. 
Therefore, the residual market (and recently added uninsured market) needs to have their observed severities 
adjusted to reflect their higher liability limits.  

The cost of higher limits is quantified through the calculation and 
application of increased limit factors. These factors tell us how much 
more premium needs to be collected to provide the higher coverage 
limit.  

The Bodily Injury and Property Damage increased limit factors (ILF’s) 
are calculated from a proprietary industry data source. The factors 
were calculate separately for each state to account for the different 
liability systems. The factors were aggregated to a countrywide 
estimate using the NAIC state exposure distributions.  

No adjustment was made to Comprehensive and Collision coverage. 
This assumes the differences in repair costs between markets (voluntary, residual, uninsured) is immaterial. 

 

Average Premium 
Market Baseline Step 1 Step 2 Chg from baseline 
Voluntary  $   780  $    850  $    850  9% 
Residual  $ 1,554  $ 2,312  $  2,755  77% 
Uninsured  -    $ 2,118  $  2,545  - 
Total  $  781   $  1,022  $  1,080  38% 

 

Impact on Insurance Market Size: Increasing the residual market and uninsured drivers’ limits will 
increase the insurance market’s total premium by 9 percent. It will be 60 percent larger than it is 
today. The premium observed premium increase for each vehicle and the overall market is due to an 
expansion of coverage: every vehicle in the market is now fully insured at the voluntary market’s 
liability limits.  

  

Covg 
Increased Limit 
Adjustment Factor 

BI 1.70 
PD 1.14 
CSL_BI 1.05 
CSL_PD 1.05 
PIP 1.10 
MP 1.10 
Comp 1.00 
Collision 1.00 
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Step 3 — Manufacturers self-insure physical damage coverage 

If the manufacturers own the vehicles, it seems reasonable that they will not purchase physical damage 
coverage from insurers. The companies are large enough to accept the financial risk and pay for the repairs 
themselves. The cost of the repairs will still be factored into the overall operational cost. However, the 
insurance industry’s expenses and profit loads for comprehensive and collision coverages will be eliminated 
(set to 0 percent). 

Physical Damage Expense Ratio   Physical Damage Profit Target 
Vehicle Market Baseline Step 3   Vehicle Market Baseline Step 3 
Voluntary 34.4% 0.0%   Voluntary 5.0% 0.0% 
Residual 34.4% 0.0%   Residual 0.0% 0.0% 
Uninsured 34.4% 0.0%   Uninsured 0.0% 0.0% 

 
Shifting the responsibility for physical damage payments from the insurer to the manufacturer reduces the 
average premium 16.4 percent, from $1,080 to $902 per vehicle. Of the $902, the insurer will only receive 
$601. The other $301 goes to the manufacturer to pay for repairs. The repair shops will continue to make 
their same profits, but the manufacturer will not make any money for accepting this risk.  

Average Premium11 

Market Baseline Step 2 Step 3 
Step  
Chg  

Chg from 
baseline 

Voluntary $        780 $       850 $      692 -19% -11% 
Residual $    1,554 $   2,755 $   2,462 -11% 58% 
Uninsured - $   2,545 $   2,245 -12% - 
Total $     781 $   1,080 $     902 -16% +16% 

 
Impact on Insurance Market Size: Shifting the physical damage losses to the manufacturer causes 
the size of the insurance market to decrease by 71 percent. It will now be 11 percent smaller than it is 
today. The difference between the +16 percent vehicle “premium” increase and the 11 percent 
market decline is the fact that the $301 of the vehicle premium is going to the manufacturer, not the 
insurer. 

  

                                                            
11 We will refer to the “premium” as the operational cost required for the liability plus physical damage payments.  However, insurers 
will only be responsible for the liability piece.  
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Step 4- Claim coverage definition change 

Shifting the ownership and liability from the individual to the manufacturer will cause some claim coverage 
definitions to change. If a driver, driving alone, hits an animal, the liability coverage is not triggered. The 
damage to the vehicle will be covered under the comprehensive coverage, subject to the insured’s deductible. 
The individual’s injuries will be covered under the medical coverage (medical payments or personal injury 
protection). If the injuries exceed the medical coverage limit, the insured’s health coverage will drop down 
and pay for its portion of the loss (subject to the health insurance coverage rules). In the new environment, 
the manufacturer will be held liable for all accidents regardless of their cause. Therefore, these accidents need 
to be added to the liability frequency. 

Using a proprietary industry data source, we calculate that 4.1 percent of comprehensive claims are caused by 
animal hits. Applying this 4.1 percent to Comprehensive’s frequency of 9.06 claims per 100 vehicle years, we 
calculate 0.37 claims per 100 vehicles are caused by animal hits. These claims need to be added to the bodily 
injury frequency.12 This increases bodily injury frequency from 1.29 claims per 100 vehicle years to 1.66 
claims per 100 vehicle years. We decided to only increase the bodily injury frequency and not the bodily injury 
and property damage frequencies to err on the side of conservatism. Simply increasing property damage’s 
frequency and ignoring the impact the accidents would have on bodily injury lawsuits would understate the 
impact. Applying the frequency increase to both coverages would likely overstate the impact. Therefore, 
rather than judgmentally selecting a different frequency, we opted to only apply the frequency increase to 
bodily injury coverage. 

Conversely, 0.3 percent of Comprehensive claims are “personal effects.” The manufacturer will not be liable 
for lost items, just as a taxi-cab’s liability policy does not cover passengers’ lost items.13 Therefore, these 
claims have to be removed. This reduces the Comprehensive frequency from 9.06 to 9.03 claims per 100 
vehicle years.  

Average Premium 

Market Baseline Step 3 Step 4 Step 4 Chg  
Chg from 
baseline 

Voluntary $      780 $     692 $     766 11% -2% 
Residual $   1,554 $  2,462 $  2,557 4% 65% 
Uninsured - $  2,245 $  2,340 4% - 

Total $     781 $    902 $    980 9% 25% 
 
Impact on Insurance Market Size: Changing the claim coverage definition expands coverage on 
each automobile. The average liability premium increases from $601 to $679. The total insurance 
market grows by 11 percent and will be approximately the same size as today (+0 percent change 
from today). 

  

                                                            
12 If the driver hits an animal with a non-immediate family member in the vehicle, liability coverage can be triggered.  It was decided 
not to make an adjustment for these potential claims as it is expected the number of these claims is small and will be offset by tree-hit 
claims that are excluded from the adjustment. 
 
13 Lost items can be covered under the passengers’ homeowners policy, but that impact is beyond the scope of this analysis 
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Step 5 — Elimination of physical damage deductible 

Shifting vehicle ownership and physical damage payment responsibility to the manufacturer requires one last 
change: removing the physical damage deductible. Currently, the model assumes the individual is responsible 
for the deductible payments. With all the claims accurately grouped into their new coverage definitions, we 
can remove the deductibles so the manufacturer pays all the physical damage claim costs. 

Eliminating the deductible will increase the number of claims and the amount of each claim. However, no 
data source allows us to accurately calculate how the frequency will change — insurers do not receive data 
about claims that are smaller than an insured’s deductible. Our proprietary industry data source allowed us to 
calculate the impact deductibles have on claim severity. The change in severity was calculated by adding the 
deductible to every claim to calculate the claim’s gross cost. Removing the deductible increases 
Comprehensive’s severity by a factor of 1.64 and Collision’s severity by a factor of 1.15. 

Average Premium 
Market Baseline Step 4 Step 5 Step 5 Chg  Chg from baseline 
Voluntary $      780 $     766 $     837 9% 7% 
Residual $  1,554 $  2,557 $  2,732 7% 76% 
Uninsured - $  2,340 $  2,515 8% - 
Total $    781 $    980 $  1,065 9% 36% 

 
Impact on Insurance Market Size: As the manufacturer, not the insurer, is responsible for paying 
physical damage losses, this adjustment does not change the insurance industry’s premium volume.  

 

Steps 1 — 5 Summary 

In the analysis’ current state, every private passenger auto is fully autonomous and owned by the 
manufacturer. The manufacturer buys a private passenger automobile insurance policy to cover its liability 
losses but pays for any vehicle damage itself. Each vehicle has the same bodily injury and property damage 
limits of, approximately, $115K/$250K/$70K. If the vehicle gets into an accident, each claimant can only 
receive $115,000 with each accident’s payment capped at $250,000 for bodily injuries. Any property that is 
damaged in the accident is covered up to $70,000. Medical Payment and Personal Injury Protection provide 
additional coverage. Medical Payments limits are typically around $5,000 - $10,000, while PIP varies widely by 
state.  

The average vehicle premium has increased from $781 to $1,065, but the amount of coverage has also 
expanded dramatically. In this scenario, every vehicle has the same coverage and is charged the same 
premium. In today’s market, insured’s rates vary dramatically based on their expected losses. The individual 
impact will vary widely; the best risks will see a rate increase while the worst risks will see a decrease 
(automated vehicles assumed to have the average accident frequency and severity). The size of the insurance 
market is largely unchanged. While insurers are no longer responsible for physical damage claims, it now 
covers liability on 15 percent more vehicles.  
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  # of Avg Vehicle Prem Chg in Insurance Mkt 

Adjustments 
Covered 
Vehicles14 Total 

Paid to 
insurers 

Paid to 
manufacturer Incremental Cumulative 

Baseline 178,476,905 781 781 0 - - 

1.  100% Insured 206,636,973 1,022 1,022 0 51% 51% 

2.  Voluntary Limits 206,636,973 1,080 1,080 0 9% 60% 

3. Self-insure Phys Dam 206,636,973 902 601 301 -71% -11% 

4. Claims Covg Definition 206,636,973 979 679 301 11% 0% 

5. First dollar phys dam 206,636,973 1,065 679 386 0% 0% 
 

Step 6 — Expenses and Profit15 

Personal auto insurance and products liability insurance have very different cost structures. Shifting coverage 
also requires a consideration of the differences in these structures.  

Products liability is sold through different distributions with higher associated acquisition expenses (expenses 
are shown per premium dollar). This is due, in part, to products liability’s bespoke nature. The coverages and 
pricing are determined through extension negotiations and are tailored specifically to that manufacturer. On 
the other hand, personal automobile coverages and prices are necessarily pre-determined as they must be 
approved by state departments of insurance. Therefore, customers get to pick and choose pre-priced features. 
In total, products liability policies have $0.043 higher expenses for every premium dollar. 

 
Expense Ratio 

 
Personal Auto 

Selected  
Products Liability 

Commissions & Brokerage 8.8% 13.7% 
Other Acquisition 8.4% 6.4% 
Total Acquisition Expense 17.2% 20.2% 
General Expenses 5.5% 7.5% 
Adjusting and other expenses 9.5% 9.5% 
Taxes, licenses & fees 2.2% 1.6% 
Total Expenses 34.4% 38.7% 

 
Products liability insurers also have different profit targets than personal auto insurers. Products liability is a 
much longer-tailed line of business, meaning insurers are able to hold onto each dollar of premium for longer 
and earn a higher investment return. However, this is typically more than offset by the underlying riskiness of 
the product. Insurers have to hold more capital per dollar of insurance for products liability than they do for 
personal auto insurance; therefore, they have to target a higher profit margin to achieve their desired return 
on risk adjusted capital. We have assumed that products liability insurers will target a 90 percent combined 
ratio, or a 10 percent profit margin. However, the exact target will be highly dependent on the specific nature 
of the product. The greater the uncertainty surrounding the product, the average settlement, and the rating 
agencies’ capital requirements, the higher the profit margin will be. 

                                                            
14 Excludes Texas 
15 A detailed explanation of the expense differences and additional information on other commercial lines of business is discussed in 
Appendix D. 
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Average Premium 
Market Baseline Step 5 Step 6 Step 6 Chg  Chg from baseline 
Total* $  781 $  1,065 $  1,229 15% 57% 

*All vehicles are expected to have the expected performance, and therefore, they will all be charged the same premium.  
 
Impact on Insurance Market Size: Increasing the expenses and profit targets increases the insurance 
market by 24.2 percent, leading it to be 24.5 percent larger than it is today.  

 

Step 7 — $1 million limit 

Currently, injured parties’ settlement is capped at relatively low limits ($115K per person and $250K per 
accident for bodily injury). In reality, manufacturers’ products liability risk is unlimited. Therefore, the liability 
cap should be removed to reflect the true cost of shifting liability to the manufacturer. Unfortunately, we do 
not have a good way to estimate the cost of such an unlimited cap. We have opted instead to increase the 
limits to $1 million of bodily injury coverage and$1 million of property damage coverage per accident. We will 
continue to use the personal automobile increased limit factors as they are the most closely tied to automobile 
accident severities. If automated vehicles accident severity differs from current severities, this adjustment will 
need to be updated. 

Using the same methodology as before, an increased limit factor of 1.82 is required to increase the bodily 
injury limits to $1,000,000/$1,000,000 and 1.21 to increase the property damage limit to $1,000,000.  

Increasing the limit also increases the amount of money that will be spent on defense cost and containment. 
The insurer has a greater incentive to employ lawyers to defend its insured the greater the potential claim 
payment. This can be seen by looking at how much insurers currently spend defending claims for different 
liability coverages. For every dollar an insurer spends on personal automobile liability payments, it spends six 
cents on defense costs and containment. Conversely, it spends seventy-six cents on defense costs and 
containment for every dollar it spends on products liability claim payments.  

We decided to use the Commercial Auto Liability factors to match the $1 million liability cap. Removing the 
cap will increase the average accident severity and increase the defense cost and containment expenses.   

      DCC Factor 
Coverage DCC Factor16   Coverage Baseline17 Selected 
PPA Liability 1.06   BI 1.05 1.11 
Commercial Auto Liability 1.11   PD 1.05 1.11 
Products Liability 1.76   CSL_BI 1.06 1.11 
Other Liab - Occurrence 1.24   CSL_PD 1.06 1.11 
CMP - Liability 1.40   PIP 1.09 1.11 
Medical Malpractice 1.47   MP 1.05 1.11 
Workers Compensation 1.13   Comp 1.00 1.00 
      Collision 1.00 1.00 

  

                                                            
16 Calculated from S&P Global Market Intelligence using 2012-2014. 
17 Calculated from NAIC database using 2009-2011. 
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Step 7 — Liability Coverage Scenarios 

As stated in the introduction, two different liability scenarios were tested: adjusting the underlying coverages 
(split coverage) and rolling the coverages together into a single, liability coverage. The split coverage approach 
is the simplest and most straightforward as we simply apply the new increased limit factors to the bodily 
injury and property damage premiums. Medical payment and personal injury protection payments are added 
on top.  

Combining all the liability payments into a single coverage is more reflective of the future state, but it is also 
more difficult to do. We aim to replicate the Step 6 loss costs and then calculate the new single coverage 
premium.  

 

 

 

 

 

 

 

 

While both options start with the same expected loss dollars, the increased limit factors are not applied to 
medical payment or personal injury protection coverages in Option 1 — Split Coverage. Option 2 — Single 
Coverage assumes that all of the current liability and medical payments claims have the same distribution, and 
therefore, it is appropriate to apply the same bodily injury increased limit factor to both.   

Average Vehicle Liability Premium 
Liability Step 6 Step 7 - Opt 1 Step 7 - Opt 2 
Frequency 7.31 7.31 7.51 
Severity 5,579 8,885 12,083 
E[L] 408 649 908 
DCC 24 73 101 
Expenses 326 545 762 
Profit 84 141 197 
Liab Vehicle Prem 842 1,408 1,968 

 

 

  

Average Vehicle Liability Premium 
Liability Step 6 Single Covg 
Freq 7.31 7.51 
Severity 5,579 5,428 
E[L] 408 408 
DCC 24 22 
Expenses 326 325 
Profit 84 84 
Prem 842 839 
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Adding physical damage losses to the liability losses produces the following average premiums: 

Average Premium Option 1 Option 2 

Market Baseline Step 6 
Step 7 - 
Opt 1 

Step 7 - 
Opt 2 

Step 7 
Chg  

Chg from 
baseline 

Step 7 
Chg  

Chg from 
baseline 

Total $ 781 $ 1,229 $ 1,794 $ 2,355 
46 
percent 92 percent 

92 
percent 201 percent 

 
Impact on Insurance Market Size: Increasing the limits on each vehicle to $1,000,000 for bodily 
injury and $1,000,000 for property damage increases the average premium and total market premium. 
Under the Option 1 — Split Coverage, medical payment and personal injury protection coverages are 
capped at the current voluntary limit and the total insurance market will grow an additional 84 
percent; it will be 108 percent larger than it is today.  

Under Option 2 — Single Coverage, first party medical payments and personal injury protection 
coverages have no sublimit and the total insurance market will grow an additional 166 percent; it will 
be 191 percent larger than it is today 

 

Step 1 — 7 Summary 

With the same accident frequency and $1 million limits, shifting the automobile accident coverage from 
personal automobile insurance to products liability will double to triple the average vehicle premium: from 
$781 to $1,794-$2,355 (depending on the liability coverage assumption). Most of the change comes from 
dramatically expanding each vehicle’s coverage.  

However, higher liability expenses and profit also contribute to the increase. Under our assumptions, 
approximately $0.60 of every auto premium dollar is used to pay claimants. Even after removing the insurer’s 
expense and profit provisions on physical damage claims, a smaller portion of each premium dollar goes to 
claimant compensation in the new, products liability coverage environment. However, it should be noted that 
“target” profits are not the same as “achieved” profits. Not once in the past nine years has the personal 
automobile insurance market achieved the assumed target underwriting profits.18     
 

 

 

 

 

 

 

 

While it is obvious that the higher premium’s greatest driver is the higher losses — due to the expansion of 
coverage — the amount insurers will spend on lawyers to fight claims increases over 300 percent than in 

                                                            
18 See Liability Appendix E for details 

    Current 
Prem Dollar Dist Baseline Option 1 Option 2 
Expected Loss 60.3% 57.7% 55.0% 
DCC 2.2% 4.0% 4.3% 
Expenses 34.4% 30.4% 32.4% 
Profit 3.1% 7.8% 8.4% 
Total 100% 100% 100% 
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today’s personal automobile insurance market. Higher limits increase the amount the insureds receive for 
each claim, but they also increase the insurers’ claim settlement expenses and target underwriting profit.  

 

 

 

 

 

 

 

 

 

Step 8 — Frequency Reduction Scenarios 

It is generally assumed that automated vehicles will reduce the number of accidents — safety being one of 
their key selling points. Therefore, assuming the same frequency in the long-run end-state may paint an 
inaccurate picture of the true expected costs. The end-state is re-calculated under five frequency reduction 
scenarios, shown below. We applied the frequency reduction factor similarly across all coverages: liability, 
medical payments, comprehensive, and collision. Comprehensive claims are the most likely to experience 
their own, unique claim frequency change pattern.19 The assumed patterns are for simplicity sake only and do 
not represent an actuarial opinion on the projected frequency change.  

 

Baseline Avg Prem $  781         
              

Average vehicle premium   
Cumulative change in insurance market 
premium 

  Option 1 Option 2     Option 1 Option 2 
Step 7 $  1,794 $  2,355   Step 7 108% 191% 
Freq Reduction       Freq Reduction     
10% $  1,628 $  2,041   10% 87% 148% 
25% $  1,378 $  1,722   25% 56% 107% 
50% $     963 $  1,192   50% 4% 38% 
75% $     547 $    662   75% -48% -31% 
90% $     297 $    343   90% -79% -72% 

                                                            
19 Automated vehicle technology’s impact on hail damage, car theft, glass breakage, fires, and other comprehensive claims is unlikely 
to follow the same reduction pattern that automobile accidents experience. 

Average Vehicle Premium 
  Step 7 
Avg Prem Baseline Option 1 Option 2 
Freq 15.8 23.5 23.7 
Severity 2,973 4,410 5,462 
Expected Loss 471 1,036 1,294 
DCC 17 73 101 
Expenses 268 545 762 
Profit 24 141 197 
Total $ 781 $ 1,794 $ 2,355 
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Even with a 50 percent reduction in all claims, insureds will still be paying more per vehicle than they do 
today — in part because they will be receiving much more coverage. The insurance market’s total premium 
will also be greater than it is today. It isn’t until accidents are decreased by 75 percent that the average vehicle 
premium is less than it is today. This can conversely be interpreted as saying, if automated vehicles reduce 
frequency by 75 percent, each vehicle will be afforded with $1 million liability coverage and first dollar 
physical damage coverage at a lower premium than the today’s countrywide average (in real dollars).  

 

Step 9 — Fixed vs. Variable Expenses Scenarios 

There is one last consideration that should be taken into account before wrapping up the premium impact 
discussion and that is the treatment of expenses. There is a minimum premium that insurers must charge to 
issue a policy, no matter how low the expected losses are. These minimum premiums set a floor on how low 
premiums can go. Therefore, impacts that cause the premium to approach this floor, such as dramatic 
frequency reductions, must explicitly address this consideration by splitting the expenses into their fixed and 
variable components.  

Up until now, we have assumed that all expenses are variable — the expenses are proportional to premium. 
However, this is not a true reflection of reality. Some expenses, such as profit, commissions, and taxes, vary 
directly with premium: an additional dollar of premium increases these expenses by the same amount. Other 
expenses, such as the staff’s salary, do not scale with premium: an additional dollar of premium doesn’t 
change the amount the insurer spends on salaries. Each expense ratio is allocated to “fixed20” and “variable” 
as follows: 

 

Expense Ratio % Fixed % Variable 
Commissions & Brokerage 0 100 
Other Acquisition 50 50 
General Expenses 100 0 
Adjusting and other 100 0 
Taxes, licenses & fees 0 100 

 
The baseline fixed and variable expense ratios are 19.2 percent and 15.2 percent, respectively. This 
corresponds to a fixed expense per vehicle charge of $150. This decreases to $130 per vehicle by keeping the 
total fixed expense dollars unchanged but increasing the number of insured vehicles. Treating expenses in this 
manner lowers the starting premium but also sets a floor on how low the premiums can decrease. With 
expenses fixed at $130 per vehicle, a 90 percent accident reduction only reduces the average vehicle premium 
by approximately 40 percent versus a 60 percent decrease if all expenses are variable.  

  

                                                            
20 Note that even “fixed” expenses are not truly fixed.  The staff’s salary that is assumed to be fixed will surely be cut if the insurer 
shrinks by 50 percent.  Conversely, if the insurer grows by 50 percent, it will surely need more staff and will increase salaries.  In this 
way, even “fixed” expenses are somewhat variable.  Therefore, caution should be used when interpreting both expense treatments.   
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Average vehicle premium   
Cumulative chg in insurance market 
prem 

Step 7 Option 1 Option 2   Step 7 Option 1 Option 2 
w/o split $  1,794 $  2,355   w/o split 108% 191% 
Split expenses $  1,578 $  1,980   Split expenses 77% 136% 
Freq 
Reduction       

Freq 
Reduction     

10% $  1,451 $  1,747   10% 62% 106% 
25% $  1,262 $  1,508   25% 39% 76% 
50% $    945 $  1,110   50% 2% 26% 
75% $   629 $    711   75% -36% -23% 
90% $   439 $    472   90% -58% -53% 

 

 

PART IV — CONCLUSION 

Insurance premiums offer one way to evaluate different liability systems’ efficacy. Even after our numerous 
simplifying (and unrealistic) assumptions, calculating the shift in liability system from personal automobile to 
products liability is a labor intensive calculation that requires a great deal of product and pricing expertise. 
Liability system evaluations that leave out the premium cost ignore a key aspect of the system’s effectiveness. 

Beyond simply highlighting the complexities involved in such a calculation, the analysis illuminates and 
quantifies many of the nuances between the coverages. Under our assumptions, products liability affords 
greater coverage than personal automobile: covering the vehicles with higher liability limits and no physical 
damage deductibles. Certain claims, such as animal hits, will now be covered under these higher limits 
compared to today, where medical expenses beyond the low automobile policy limits are covered under the 
claimant’s health insurance policy. The expanded coverage is passed to the consumer through higher 
premiums.  

Products liability is also a more expensive coverage. The complexity and uniqueness of the product is 
accompanied by higher distribution costs. Higher limits increase the claim settlement costs. Unlimited liability 
increases the amount of capital that must be held, and subsequently, the underwriting profit insurers must 
target. Even with the manufacturer providing physical damage coverage at cost (removing the insurer’s 
expenses and profit from these coverage premiums), the shift to products liability results in a lower 
percentage of each premium dollar going to claimant payments.   

Lastly, the shift to products liability involves a great deal of uncertainty, not only over the product’s 
performance but also in premium cost. Therefore, the potential cost — as measured through insurance 
premium — is best viewed as a range rather than a simple point estimate.  
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Table 2  
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2.2: Automated Vehicle Liability — 
Non-premium considerations 
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PART I - INTRODUCTION 

The premium cost of the liability system is just one of many considerations that should be taken into account 
when weighing a potential system’s efficacy. The ideal liability system will aim to balance many goals.  

- It should align responsibility and accountability. 
- It should encourage manufacturers to invest in product improvement. 
- Claimants should be compensated fairly and efficiently. 
- Keeping all else equal, the system that accomplishes these tasks at the lowest cost will be superior to 

another one. 

While we will discuss a number of additional issues concerning the liability system, this is neither an 
exhaustive list of the issues nor is it a complete discussion of the identified issues. Instead, this is an 
addendum to the prior study aimed at placing the premium costs in proper context. Without such a 
discussion we worry that the reader may infer that we believe that the premium cost is the only piece worth 
considering.  

 

PART II - PRODUCT: AUTOMATED VEHICLE LIABILITY COVERAGE  

 

ACCOUNTABILITY AND RESPONSIBILITY 

To the extent the product, and not the individual, causes the accident, it seems reasonable to assume the 
liability should rest with the manufacturer(s) of that product. A level five, fully automated vehicle that has no 
steering wheel or brake (no way for the driver to take over), seems to mandate the assignment of liability to 
the product and not the passenger. Therefore, products liability — despite its higher costs — more closely 
aligns accountability and responsibility than personal automobile insurance (in the level five automated 
vehicle, end-state scenario). 

 

COVERAGE 

Technically, manufacturers’ products have no liability cap in that claimants can sue for any amount they want. 
Some states cap non-economic damages for some claim types. For example, “Michigan places a cap on 
noneconomic damages for product liability actions in an amount not to exceed $280,000 unless the product’s 
defect caused death or permanent loss of a vital bodily function. In such circumstances, the amount 
recoverable shall not exceed $500,000. The $500,000 cap will not apply if the defendant was grossly 
negligent.21” 

Without caps, manufacturers may decide not to offer the product if they feel the potential cost is too high. 
Higher caps, or unlimited caps, are also accompanied by higher frictional costs. For every $1 that goes to a 
claimant, insurers only spend $0.06 on defense cost and containment for personal auto liability claims versus 
spending $0.11, $0.40, and $0.76 on defense cost and containment for commercial auto liability, commercial 
general liability, and products liability coverage. Conversely, capping losses shifts the risk from the 

                                                            
21 http://www.iadclaw.org/assets/1/19/Product_Liability_June_2014.pdf  

http://www.iadclaw.org/assets/1/19/Product_Liability_June_2014.pdf
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manufacturer to the individual. This tradeoff is best left to the public and their democratically elected 
representatives.  

 

PART III - CLAIMS HANDLING  

Effective claims handling treatment reduces the cost of fraud. “The Insurance Research Council estimated 
that fraud and claim buildup added over $5.6 billion of excess auto injury payments in the United States in 
2012.22” Fraud increases the auto insurance premiums for everyone else.  

 

ACCOUNTABILITY AND RESPONSIBILITY 

While it makes sense that the manufacturer of a product be held accountable for product defects, making that 
same manufacturer responsible for compensating claimant creates misaligned incentives. We should aim to 
align the customer’s purchase incentives with the seller’s incentives. Splitting out the product purchase 
decision, which product will give me the best value for my dollar, and the claim settlement purchase decision, 
which provider will settle my claim fairly and efficiently, increases the system’s transparency and empowers 
the customer.  

 

EXPERTISE & INFRASTRUCTURE 

In 2013, the personal automobile insurance industry spent approximately $17 billion on claims handling 
personnel salaries (adjusting and other expenses). It spent an additional $5 billion on claim specific expenses 
(defense cost and containment). NHTSA’s 2015 budget was $830 million, less than 4 percent what the 
personal automobile insurance industry spends on claims adjusting expenses. Of the $830 million, only $130 
million went towards Vehicle Safety Research.23 Products liability insurance market spent almost 80 percent 
of its 1.75 billion claims handling expenses on defense cost and containment. Shifting the claims handling 
responsibility away from personal automobile insurers may be accompanied by a dramatic loss of claims 
handling expertise and infrastructure.  

 

SETTLEMENT FAIRNESS 

When an accident occurs, each party should have equal representation. In today’s environment, each party is 
represented by his/her insurance company. Each company has equal access to the accident facts. Thus, a 
negotiated agreement between equal parties with equal information can ensue. The outcome is less certain if 
the individual has to bring a claim against the manufacturer. The manufacturer, with more financial resources 
and access to its proprietary data, has much more leverage over the individual. Where the accident fault and 
the potential settlement is unknowable in advance, the system should provide all parties equal opportunity to 
a fair outcome.  

 

                                                            
22 http://www.insurance-research.org/sites/default/files/downloads/IRC%20Fraud%20News%20Release.pdf  
23 See Non-Premium Liability Considerations:  Appendix F for detailed NHTSA budget. 

http://www.insurance-research.org/sites/default/files/downloads/IRC%20Fraud%20News%20Release.pdf
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PART IV - CONCLUSION 

Beyond its simple legal definition, automated vehicle liability is a complex and nuanced issue. Restricting the 
analysis to an environment with 100 percent level five, manufacturer-owned vehicles greatly simplifies the 
issue. Even with such a simplifying assumption, the answers are unclear. If we are going to devise the optimal 
system to govern partial and fully automated vehicles — if such a system exists — our democratically elected 
representatives will need a clear view of the risks, costs, and benefits involved in each of the tradeoffs. Our 
representatives should aim at gathering the facts needed to evaluate these tradeoffs. Actuaries can help 
quantify some of these tradeoffs to facilitate better decision making. 

 
 
 
 
=============================================================== 
TOPIC 2 
AUTOMATED VEHICLE LIABILITY  
RECOMMENDATION 
 
 
The American public should be the ultimate arbiters of automated vehicle liability. They must evaluate the 
costs and benefits involved in each of the many decisions: should we use an existing system or try to create a 
new on? How much coverage should be provided? What data should be reported? And so on. The answers to 
these, and other, questions should be made in a purposeful and transparent manner after an unbiased 
assessment of the issues. 

The complexity and uncertainty of these issues calls for a more open collaboration between the American 
public (through their representatives), legal experts, manufacturers, and casualty actuaries. The first step in 
solving any complex problem is bringing the right people together. This will ensure the right questions are 
being asked, the appropriate data is gathered, and the subsequent analysis is accurate. The tradeoff decision is 
the public’s choice, and theirs alone to make. However, the facts and understanding that is needed for these 
decisions to be made in an informed and unbiased fashion will rely on an open, transparent, and candid 
collaboration between the various stakeholders. Thus, the final decision, whatever it may be, will be sure to 
reflect the public’s true desires.  

=============================================================== 
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3: Automated Vehicle Risk 
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EXECUTIVE SUMMARY 

The introduction of automated vehicles may eliminate some risks (e.g., certain types of behavioral driver 
errors) — but it may at the same time exacerbate other risks (e.g., hacking).  Risks cannot be evaluated or 
managed in silos. They are intertwined: the elimination of one accident causation risk does not guarantee the 
accident will be prevented, or that other causes may not emerge in the absence of the original cause. To the 
extent that a goal of AV rollout is increased safety through overall accident reduction, we must develop a 
single, comprehensive AV introduction strategy that minimizes the risk in total. The creation of such a 
strategy requires access to detailed, quantifiable data on both the technology’s performance and general 
driving incidents. This data must be supplemented by risk management expertise to partially adjust for the 
uncertainty that exists from the risks that will only be observed through the actual introduction of AVs.  

Even a basic study, such as the one performed here by the AVTF, can provide guidance on what must be 
done. First, more data is needed: more recent and granular accident causation data, in addition to the obvious 
need for technological performance data. Second, AV operation can be supported by non-technological 
solutions: for example, strategies can be used to increase non-AV drivers’ familiarity with AV technology and 
tendencies, thus decreasing the risk further. Third, the risks and subsequent safety benchmarks are location 
and circumstance dependent: snow, deer, infrastructure issues, and the behavior of other drivers are just a few 
of the risks that differ based on where the technology operates. One implication of this circumstance-
dependent benchmark is that municipalities, especially familiar with their indigenous local conditions, may be 
able to take actions to reduce the technology’s operational risk.  

In much AV discussion to-date, the evaluation of AV technology’s performance has been against one 
particular benchmark: the NHTSA’s police-reported, countywide data. However, this approach is decidedly 
insufficient. This dataset is biased, incomplete, and not granular enough for thorough and insightful 
performance analysis. Comparing the accident rate for a vehicle that only operates in Pittsburg or San 
Francisco to the countrywide average tells us little about the technology’s relative performance. Looking at 
the aggregate “average” accident rate, which includes accidents from drunk drivers, teen drivers, and elderly 
drivers, may also not be the benchmark we want. Instead, a more nuanced view, that allows the technology to 
be compared against a specific subset of drivers or placed in context, such as being able to compare the 
technology to the top 10 percent of drivers, allows for a more accurate understanding of the technology’s 
performance. With accident rates and circumstances always changing, comparing actual performance to 
historical performance may be inappropriate. The benchmark against which to measure performance must be 
responsive enough to consider these changes while also being stable enough to overcome the natural 
statistical noise in the data.  

Casualty actuaries’ predictive models based on insurers’ robust automobile accident data provide the best 
avenue and starting point for calculating a benchmark that accurately illustrates the technology’s performance. 
Only though the use of this data and these models can the NHTSA be confident that self-driving cars meet 
its safety standard.24   

                                                            
24 http://www.bloomberg.com/news/articles/2016-06-08/u-s-auto-regulator-says-self-driving-cars-must-be-twice-as-safe  

http://www.bloomberg.com/news/articles/2016-06-08/u-s-auto-regulator-says-self-driving-cars-must-be-twice-as-safe
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3.1: Automated Vehicle Risk — Risk 
minimization introduction strategy 
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INTRODUCTION 

The arrival of an AV world has been the focus of much speculation, with many introduction and adoption 
timelines finding their way into publication. These predictions in turn generate discussion on the hurdles the 
technology faces and the risks entailed in its introduction. These discussions raise important issues that must 
be addressed. The CAS AVTF has aimed to support the discussion of automated vehicle risk through the 
creation of a more concrete framework in which these issues can be evaluated and understood. 

To accomplish this task, we have undertaken a thought experiment: if we were charged with creating the risk 
minimizing introduction strategy for AVs, how would we go about it and what would that strategy looks like? 
This thought experiment is meant to serve as an example for future analyses (which will be based on actual 
data emerging from the experience of developing and testing AVs). This work should not be taken as an 
actuarial opinion on what should be done or even be read as what actually minimizes automated vehicle risk. 
At this early date, there are simply too many uncertainties and assumptions around the technology’s operation 
to overcome.    

 

PART I — OBJECTIVE 

Goal Definition 

Our goal is to develop a risk management program for the introduction of a level five,25 fully self-driving 
vehicle that minimizes the manufacturer’s liability costs. If the liability system is designed properly, 
manufacturers will pay for product failures. Defining the problem in this manner provides two key benefits. 
First, it allows “risk” to be quantified through the calculation of a liability premium. Second, by looking at the 
issue from the manufacturer’s viewpoint, we more accurately reflect the issue as it will be addressed in the 
real-world.  

Goal Prioritization 

Liability costs are a combination of the number of incidents and the cost of each incident and will be 
calculated as:  

�(𝐼𝐼𝐼𝐼𝐴𝐴𝐴𝐴𝐼𝐼𝐼𝐼𝐼𝐼𝐴𝐴 𝐼𝐼𝐸𝐸𝐸𝐸𝐿𝐿𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼)𝑖𝑖 ∗ (𝐼𝐼𝐼𝐼𝐴𝐴𝐴𝐴𝐼𝐼𝐼𝐼𝐼𝐼𝐴𝐴 𝑜𝑜𝐼𝐼𝐼𝐼𝐹𝐹𝐼𝐼𝐼𝐼𝐼𝐼𝐴𝐴𝐹𝐹)𝑖𝑖 ∗ (𝐴𝐴𝑆𝑆𝐼𝐼𝐼𝐼𝐴𝐴𝐴𝐴𝐼𝐼 𝐴𝐴𝐼𝐼𝐴𝐴𝐴𝐴𝐼𝐼𝐼𝐼𝐼𝐼𝐴𝐴 𝐼𝐼𝐼𝐼𝑆𝑆𝐼𝐼𝐼𝐼𝐴𝐴𝐴𝐴𝐹𝐹)𝑖𝑖

𝑛𝑛

𝑖𝑖=1

 

Unfortunately, the CAS Automated Vehicles Task Force does not have access to the data needed to calculate 
a quantified risk assessment. Instead, we are forced to take a more generic approach leveraging the work done 
in the Liability Premium Calculation analysis. Products liability insurers spend $0.60 - $0.80 on defense costs 
for every $1.00 they pay to claimants.26 This means the mere act of being sued costs almost as the settlement 
payments. Therefore, manufacturers’ risk minimization goals will be prioritized as follows: 

                                                            
25 NHTSA has adopted the six-level automated vehicle definition (Levels 0 through 5) of the Society of Automotive Engineers (SAE):  
http://www.nhtsa.gov/technology-innovation/automated-vehicles-safety. 
26 Source S&P Global Market Intelligence – republished:  http://www.iii.org/fact-statistic/products-liability table titled “Defense 
Costs And Cost Containment Expenses As A Percent Of Incurred Losses, 2012 – 2014.” 

http://www.nhtsa.gov/technology-innovation/automated-vehicles-safety
http://www.iii.org/fact-statistic/products-liability
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The primary goal is to minimize the number of incidents — if nothing bad happens, there will be no 
lawsuit.27 The secondary goal is to minimize the severity of any incident that does occur — if something bad 
does happen the goal is to minimize the pain. Our use of the term “incident” is intended to mirror the 
definition used in negligence lawsuits, in which the plaintiff must prove harm was incurred. This definition 
extends beyond simple bodily injury claims to property damage and other forms of harm28.  

 

PART II — DATA ACQUISITION 

The strength of any analysis is constrained by the data on which it is based. In the real analysis, the 
technology’s test data and simulated data will be needed. This should be supplemented with additional driving 
data to place the technology’s operation in a broader context. Finally, judgment needs to be used to 
extrapolate future performance from test data. The goal of the data should be to identify and quantify risks 
that will prevent the technology’s successful operation (getting the individual from point A to point B safely).  

 

Dataset 1 — Adjusted National Motor Vehicle Crash Causation Survey 

NHTSA’s 2008 National Motor Vehicle Crash Causation Survey provides the most detail on automobile 
accident causation available to the Task Force. However, the data needs to be adjusted so that we can use it 
to identify risks to automated vehicles rather than to human drivers. Even after such an adjustment, a number 
of issues still reside within the data that future studies should look to overcome. 

Dataset Deficiencies 

• Out-of-date: It only includes accidents from 2005-2007. Today’s vehicle technology has improved 
significantly since then. More current data will provide more accurate insights into today’s driver-vehicle 
relationship and will therefore be more predictive of the future relationship.  
 

• Completeness: It excludes a large number of accidents including, but not limited to: any accident that 
occurred from 12:00am — 5:59am, any accident that didn’t have an emergency medical service 
dispatched to the scene, and any accident without an available police report. Additionally, important 
variables, such as location, are not included in the dataset.  

 

• Focus: It focuses on accident causation in today’s driving environment. Events that are handled easily by 
human drivers but can cause an automated vehicle to malfunction — like potholes or snow — are 
excluded from the dataset (these events do not result in an accident in today’s driving environment but 
might if the technology were at the helm).  

 

 

Dataset 2 — Judgment 

                                                            
27 Fraud can still occur, but it’s uncertain how the introduction strategy will be changed by these costs.   
28 The details and nuances of negligence and liability law are beyond the scope of this paper.  While negligence lawsuits typically 
require a pecuniary loss, our definition is simply “something unintended or bad” occurred. 
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Even if testing data is obtained and used, it will need to be supplemented with unidentified risks. Judgmental 
risks need to be explicitly identified and prioritized if not quantified. The number of unknown and 
judgmental risks can be reduced through more direct testing of the product’s use. However, we must be 
careful not to extrapolate too much from the test data as the risks may change as the technology progresses 
through the market.  

 

Dataset 3 — Technological Performance 

Actual data on the technology’s capabilities is not available to the Task Force. Therefore, we have replaced 
the actual data with generic assumptions. Using assumptions allows us to demonstrate how to construct a risk 
minimization introduction strategy; however, replacing the most important piece of the analysis — the 
technology’s performance — with predetermined performance assumptions negates the ability to use the 
conclusion as anything other than a thought experiment. 

Assumptions 

• The technology does not operate in inclement weather (rain, snow, etc.).29 
• The technology needs accurate, up-to-date maps of the surrounding environment. 
• All other errors will be random. 

o The technology’s error rate is lower than a human driver. The more the technology is in control, 
the fewer accidents there will be. 

 

PART III — RISK IDENTIFICATION & QUANTIFICATION 

Now that our data sources have been clearly defined, we can begin the process of identifying the risks and 
quantifying as much as we can.  

 

Dataset 1 — Adjusted National Motor Vehicle Crash Causation Survey 

We will use the adjusted NMVCCS to identify and quantify risks to automated vehicles’ successful operation. 
Eight risks have been explicitly identified from the dataset. These risks fall into two generic groups: risks 
surrounding the technology’s operation and driver usage, or behavioral, risks. 

 

A. Technological Issues 

A1 - Weather: Technology disabling inclement weather was present in 12.2 percent of accidents. We have 
assumed the technology will not work in inclement weather. Therefore, the driver would have still been in 
control and the accident would have occurred in the same fashion that it did. The NMVCCS doesn’t have any 

                                                            
29 Recent reports indicate that manufacturers may be able to overcome the weather problem.     
Ford:  http://www.detroitnews.com/story/business/autos/detroit-auto-show/2016/01/11/ford-fusion-driverless-snow/78612944/  
Google:  http://static.googleusercontent.com/media/www.google.com/en//selfdrivingcar/files/reports/report-1215.pdf  

http://www.detroitnews.com/story/business/autos/detroit-auto-show/2016/01/11/ford-fusion-driverless-snow/78612944/
http://static.googleusercontent.com/media/www.google.com/en/selfdrivingcar/files/reports/report-1215.pdf
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location identifying characteristics, so no further refinement was possible. However, in the real world, 
weather’s impact varies by location. 

A2 - Vehicle Condition: The NHTSA defined variable, “Vehicle Condition,” was present in 11.6 percent of 
accidents. These include such errors as “tire/wheel deficiency” and “lighting deficiency.” While the Vehicle 
Condition was only identified as the critical reason in 2.5 percent of the accidents, it indicates that the vehicles 
involved in accidents often have minor issues with them that may contribute to the accident. Non-
technological vehicle deficiencies can increase the accident risk in automated vehicles. In other words, 
individuals don’t always maintain their vehicles. If the technology’s success rate requires the vehicle to be in 
mint condition, it may underperform the manufacturer’s expectations.  

A3 - Infrastructure: We are not able to identify or quantify the other environmental factors that might cause 
an automated vehicle to malfunction. Reports have indicated that potholes and unmapped roads can create 
problems for automated vehicle technology.30 These issues are typically handled by today’s drivers and thus, 
are not in the NMVCCS dataset as no accident results. The 0.4 percent of accidents that occurred with an 
inoperable traffic control device is to be interpreted as a placeholder: infrastructure errors might pose a risk to 
automated vehicles. The size and scope of the risks cannot be calculated without additional data. The exact 
data that is needed will depend on the vehicle’s use.  

 

B. Behavioral Issues 

Manufacturers who want to minimize the number of incidents involving their technology need to be 
concerned not only with the technology’s operation but also with its use. While seatbelts are available in every 
vehicle and are legally required to be worn in 49 states,31 one in seven adults refuse to buckle up. If the 
automated vehicle technology is ignored or used incorrectly and an accident occurs, the manufacturer may 
have to spend money to defend itself regardless of its fault.  

B1 - Driver Disables: In 3.1 percent of accidents, drivers told the police officer they were ‘racing,’ ‘fleeing,’ ‘in 
a hurry,’ or ‘always drove (aggressively).’ It’s unclear if these drivers would have used the technology or how 
these drivers would have used the technology.  

B2 - Drugs: Alcohol, illegal drugs, or potentially drowsy medication were present in 11.0 percent of 
accidents.32 However, this number likely understates the drugs’ actual presence in drivers as accidents from 
midnight to 5:59am are excluded from the study. Manufacturers cannot be certain how drivers under the 
influence will use their product. Furthermore, while automated vehicles may make driving under the influence 
safer — by shifting the driving responsibility from the impaired driver to the unimpaired vehicle — they may 
also make driving under the influence more prevalent. Hence, the net impact cannot be predicted. 

B3 - Physical Impairment: 2.3 percent of accidents were caused by the driver having a heart attack or other 
physical impairment. Automated vehicles cannot prevent heart attacks, so the focus in these instances will be 
minimizing the severity. 

                                                            
30 http://www.technologyreview.com/news/530276/hidden-obstacles-for-googles-self-driving-cars/  
31 http://www.ghsa.org/html/stateinfo/laws/seatbelt_laws.html  
32 Just including alcohol and illegal drugs reduces their presence to 9.4 percent 

http://www.technologyreview.com/news/530276/hidden-obstacles-for-googles-self-driving-cars/
http://www.ghsa.org/html/stateinfo/laws/seatbelt_laws.html
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B4 - Sleeping: A sleeping driver was the cause of 2.9 percent of accidents. Again, this risk is likely understated 
as accidents occurring from midnight to 5:59am are excluded. If the technology’s safe operation requires a 
vigilant driver, these accidents would have likely still occurred. 

B5 - Distraction: Driver distraction is the cause of 16.7 percent of accidents, with internal distraction being 
the main issue (9.9 percent). Despite being fully responsible for the vehicle, drivers are easily distracted. As 
they become less engaged in the driving function, distraction is likely to increase.  

 

Table 3

 
 

At least one limiting variable, technological or behavioral, was present in 48.9 percent of accidents. Note, that 
the summation of the pieces does not equal the totals. This accounts for correlations between variables, 
ensuring that an accident with multiple causes is only counted once. This analysis tells us nothing about when 
the technology will actually fail. Instead, it allows us to identify future data that is needed, such as location 
specific weather information and infrastructure issues. It also highlights the importance of the driver’s 
relationship with the technology. Just because the technology is safe and available does not meant that it will 
be used or used correctly. Manufacturers fearing lawsuits for incidents occurring in their vehicle, regardless if 
the technology, individual, or both are at fault must have an introduction strategy that addresses this issue.  

Dataset 2 — Judgement 

Until automated vehicles are fully utilized by the public, no dataset exists that provides a comprehensive risk 
analysis. Even real-world testing and millions of miles of simulations will have gaps. Additionally, the risks 
will change as the technology evolves over time. Therefore, a comprehensive understanding of risk requires 
that any dataset be supplemented with a set of factors that need to be included in the analysis. Seven 
additional risks are identified, and incident severity causes, previously ignored, are discussed.  
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C1 - Driver Skill Deterioration: The more the technology is in control, the more out of practice individuals 
might become. Therefore, certain scenarios that individuals are able to handle today may result in an accident 
in the future. If the technology’s ability increases at a faster rate than the driver’s deteriorates, this may not 
pose much of a problem. However, manufacturers need to recognize the risk is dynamic. The situation needs 
constant monitoring as the risk minimization actions may change over time. 

C2 - Pass-Off Risk: This is the risk that is created when the vehicle goes from technological control back to 
human control. This scenario could be triggered by the human choosing to take control or by the vehicle 
passing responsibility to the individual when it encounters a scenario it is unable to handle.  

C3 - Other Driver Interaction: How other drivers, pedestrians, and bikers on the road react is also unknown. 
Drivers’ reactions can change based on their age, driving experience, familiarity with the technology, their 
mood, or almost any other factor.  

C4 - Animal Hits: While accidents involving animals are included in the NMVCCS, the dataset appears to be 
insufficient extrapolation. State Farm estimates that there are over 1.2 million deer-vehicle collisions 
annually; 33 however, the NMVCCS’s extrapolated number of accidents involving animals is only 22,366 — 
or approximately 1.0 percent of all accidents. This could be due to NHTSA’s requirement that a police report 
be filed to be included in the data, and claimants may be less inclined to call the police in a single vehicle 
animal hit. The risks animals pose to vehicles varies dramatically by location and time of year. It’s also 
uncertain how the technology interacts with the animals. While it may be able to avoid some accidents, 
animals may be even more unpredictable than people. Residents in areas with significant animal populations 
will undoubtedly know someone who has had a deer run into the side of their car while driving. There’s 
nothing that can be done in times like these.  

C5 - Hacking: The introduction of more technology in the vehicle may increase the risk that vehicles will be 
hacked. In the future, the risk of hacking may increase regardless of the vehicle’s automation.34 At this point, 
we do not know what hacking’s causes or risk factors may be. Operating in a city may increase the risk by 
exposing other drivers to the hacked vehicle. It may also decrease part of the risk by reducing the average 
speed and enabling emergency response teams to respond more quickly. More research will be required to 
properly evaluate the risk.  

C6 - Random Errors: As stated in our assumptions, technological errors will still occur. However, their 
appearance will be random. Therefore, it is important that when an incident occurs, its severity minimized.  

C7 - Unknown: It’s important to include a placeholder for unknown events. It’s impossible to predict 
everything that will happen. Therefore, we must accept the fact that there are things that we don’t know and 
cannot predict.  

C8 - Incident Severity Risks: There are a number of factors that determine how severe an incident will be. By 
breaking the drivers into their respective risk components, we can create a risk management structure that 
minimizes severity of unpreventable incidents. 

• Speed: The number one determinant of accident severity is the vehicle’s speed.  

                                                            
33 http://www.insurancejournal.com/news/national/2012/10/24/267786.htm  
34 http://www.wired.com/2015/07/hackers-remotely-kill-jeep-highway/  

http://www.insurancejournal.com/news/national/2012/10/24/267786.htm
http://www.wired.com/2015/07/hackers-remotely-kill-jeep-highway/
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• Pedestrians: The second biggest determinant of severity is if the accident involves a vehicle and an 
individual. Pedestrian-vehicle interactions are most likely to occur at cross-walks or in parking lots. 

• Location: If an accident occurs, it is important that the passengers receive medical attention as quickly as 
possible. Where the accident occurs has a large impact on its potential severity.  

• Vehicle design: Design choices can be made to minimize the impact to the vehicle’s passengers and to the 
external parties.   

 

PART IV — INTRODUCTION STRATEGY 

With the risks identified and (somewhat) quantified, the risk management strategy can be created. The goal is 
to select the introduction strategy that minimizes the risks (costs) in total. The approach cannot be a 
piecemeal approach that addresses each risk in isolation. The following approach represents our attempt to 
do so. In reality, manufacturers will want to run scenarios that explicitly quantify the costs of different 
strategies and select the one that results in the lowest cost.35 

 

A. Approach to Vehicle Introduction 

• Introduce the vehicle as a manufacturer-owned public transportation-service 
• Do not allow humans to take over. 
• Only allow the vehicle to operate in a small, pre-defined location. 

o The location should be in a major city where high speeds can be avoided. 
o The location should be in a favorable climate. 
o Hospitals should be easily accessible. 

• If it is the first company to release its product in the area, it should conduct tests with a small number of 
vehicles in the specified area before introduction. 

• It should introduce a fleet large enough to reach scale but not so large as to eliminate other public 
transportation options. 

 

B. Vehicle Design 

• The vehicle should include an emergency response call button. 
• The vehicle design should be created to minimize the risk to pedestrians and passengers. 

o In-vehicle safety equipment should be included (e.g., airbags). 

 

C. Operation Details 

• The fleet should be shut down during inclement weather. 
• The fleet should be serviced regularly — at the manufacturer’s discretion.  

                                                            
35 In actuality, they will select the strategy that results in the greatest profit which may differ.  However, the greater the liability costs, 
the more the profitability decision will be driven by minimizing costs.  
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D. Caveat 

A key assumption underpinning this introduction strategy is that the technology can operate without a 
human. If not, then a fully self-driving car (NHTSA and SAE Level 5) cannot be introduced. Instead, the 
technology will be introduced to support the driver while keeping the driver at the center of the equation.  
The risk minimization introduction strategy for this approach is not included. 

 

PART V — INTRODUCTION EVALUATION 

We will walk through how the approach laid out above is expected to minimize the risk. We also highlight 
flaws in the approach and lingering risks. Risk minimization is not the same as risk elimination. Having a 
sober, well-trained individual drive in good weather with low traffic may minimize automobile accident risk in 
today’s environment, but it does not eliminate it. The same can be said when analyzing automated vehicles. 

 

Goal 1: Minimize Incident Frequency 

A. Removing the Driver 

Removing the driver eliminates the greatest source of uncertainty. Now the technology’s success or failure is 
completely dependent on its own abilities. It is much easier for the company to predict how its technology 
will react than how an individual will. This also eliminates the driver’s learning curve and driver ability 
deterioration risks.  

By owning the vehicles itself, the manufacturer can be assured that the vehicle maintenance is done correctly 
and in a timely manner. This more closely aligns incentives and decision making — when should the brakes 
or tires be replaced? The answer to the question is very different if the individual owns the vehicle and is held 
liable; if the manufacturer owns the vehicle and is held liable; and if the individual owns the vehicle but the 
manufacturer is held liable.  

Removing the driver also eliminates the strongest risk mitigation tool: having the driver take over. Therefore, 
this strategy increases the technology’s burden. (This caveat will continue to be mentioned to ensure the 
reader does not interpret any of our statements as opinions on the technology’s actual performance.) 

 

B. Restricting Location 

Restricting the vehicle’s operating location to a major city with lower speeds and a favorable climate greatly 
reduces the incident risk, incident severity, and manufacturer cost.  

• This introduction strategy minimizes the vehicle’s speed and the trip length (distance and time).  
• Restricting its location minimizes the service cost — it’s cheaper to service vehicles that are nearby than 

if they reside all over the country.  
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• Having a fleet of vehicles operate within a small area decreases the chance that unknown infrastructure 
changes will arise. When an issue does arise, the issue can be identified and fixed more quickly.  

• Weather is very difficult to predict. Therefore, a risk avoidance strategy — selecting a city with a 
favorable climate — is the best way to minimize this risk. Limiting the fleet’s size will allow the company 
to shut down its vehicle when the weather calls for it without completely disrupting the city’s travel. 

• Unknown risks are also minimized by limiting the operating radius. The more diverse the environment 
and drivers encountered, the more unknowns there are.  

 

C. Testing and Implementation 

Introducing a large number of vehicles in a small area, after tests are done with a smaller number of vehicles 
in the same area, decreases the risk other drivers pose. This approach increases the other drivers’ familiarity 
with the technology by slowly exposing them to the technology and keeping them engaged with the 
technology. However, restricting the technology to specific areas increases the “tourist risk:” a driver new to 
the area will have no experience driving around the technology. These drivers will now be surrounded by a 
large number of automated vehicles.  

Operating in a city increases the risks to pedestrians. However, this can be reduced through the introduction 
of other risk mitigation structures: such as the creation of automated vehicle pick-up and drop-off zones in 
businesses’ parking lots to minimize the technology-pedestrian interaction. For these sorts of actions to be 
cost-benefit positive, scale is required. Therefore, introducing a large number of vehicles in a small area allows 
scale to be reached sooner and additional risk mitigation approaches to be implemented.  

 

Goal 2: Minimize Incident Severity 

D. Restricting Location to a City 

Restricting the vehicle’s operation can help reduce incident severity along three dimensions: 

D1. Speed - The average speed in cities is much lower than highway driving. Therefore, restricting the 
operating location to roads with lower speed limits — avoiding high speeds altogether — imposes a natural 
cap on vehicle speed. However, operating in a city dramatically increases the vehicle-pedestrian interaction 
risk. This risk will be discussed in more detail later. 

D2. Hospital proximity - Operating close to a hospital further reduces the potential severity by decreasing the 
time it takes for emergency response teams to reach the accident scene.  

D3. Physical impairment - Physical impairments, such as heart attacks, were responsible for 2.3 percent of 
accidents based on NHTSA’s NMVCCS. Automated vehicles won’t prevent a heart attack from occurring; 
however, we can try to minimize the severity when they occur. The deployment approach minimizes the 
severity of these incidents in three ways: 

• Including an emergency response call button allows the passenger to alert the proper authority.  
• Operating close to a hospital again makes it easier and quicker for the proper authorities to reach the 

injured party. 
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• Operating in a small area imposes a time-cap on each trip length. The injury is more likely to go 
unnoticed the longer the trip. Shortening the length of the trip decreases the length of time the injury 
goes unnoticed.   

 

Remaining Risks 

The introduction strategy aims to minimize the risk, but it will not eliminate it. The process leaves (at least) 
five risks to be aware of. 

E1. Increased technological demands: As mentioned, removing the driver dramatically removes a key support 
function. Without the driver to act as a failsafe, 100 percent of the driving function falls on the technology.   

E2. Vehicle-pedestrian interaction: Removing the driver from the vehicle and operating exclusively in a city 
reduces two key sources of risk (the driver and the environment), but it also increases the risk pedestrians 
face.  

E3. Hacking: This risk hasn’t been addressed. Removing the driver from the equation may actually increase 
this risk. The net impact will have to be estimated and benchmark goals must be established.  

E4. Exposure change: Historically, making transportation easier (whether because it’s cheaper, faster, or more 
comfortable) has led to an increase in use. However, future travel patterns are unknown. Changing travel 
patterns could change the risks the technology faces. 

E5. Future risks: The risks the vehicles encounter will change over time. Other drivers and pedestrians may 
change their behavior — taking more risks. Less frequent active driving may decrease the driver’s ability when 
they drive their own vehicle.  

 

PART VI - IMPLICATIONS 

Our analysis relies on outdated and incomplete data. However, the output from an accurate risk analysis will 
have important implications for other stakeholders. Using our analysis as an example, we discuss some of the 
implications that result from the conclusion. 

This introduction approach indicates that the technology will not progress down the NHSTA levels of 
automation in a nice and orderly fashion. A new, city-based public transportation alternative will provide a 
great deal of value, but it won’t negate the need for private vehicle ownership. Therefore, manufacturers will 
continue introducing technology that supports but does not replace the driver.  

This indicates that multiple safety benchmarks will be required.  The safety benchmark for a vehicle that 
removes the driver from the equation may differ from driver-centric benchmark.  Without a driver, incidents 
per trip may be required in addition to incidents per mile.  

Non-technological actions can reduce the technology’s risk. The testing approach can be used to improve the 
technology’s actual performance and reduce the risk other drivers pose to the vehicles.  
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Risks, and benchmarks, include a location-dependent aspect. In addition to learning the local driving norms, 
the technology will encounter different environmental risks depending on where it operates. A “safe” product 
in Austin, Texas may not be as safe if introduced in Milwaukee, Wisconsin. This further indicates that 
municipalities may be able to encourage the technology’s development. Knowing that a complete solution 
isn’t necessary for the technology to come to market, local officials may be able to take actions that create a 
safe haven for the technology.  

 

PART VII — CONCLUSION 

Individuals navigate a myriad of risks every time they get behind the wheel. Policies, such as driver licensing 
laws, vehicle safety requirements, and roadway design, have been created to minimize the risk. Similarly, 
automated vehicles will encounter numerous risks. These risks do not negate the potential of automated 
vehicles to increase safety and change lives and society. However, it is important not to dismiss these risks 
that AVs will indeed encounter. Instead, the risks should be clearly acknowledged, enumerated, quantified, 
and addressed in a concrete fashion. 

First, we must gather the necessary data. Without data, no analysis can progress. The data should be specific 
to the technology’s use and allow for risks and correlations to be quantified. Quantifying the risks provides 
the necessary context for decisions to be made. For example, if automated vehicles — which will certainly be 
subject to hacking risk — will result in 1,000 hacking deaths, the technology may look unappealing from that 
“hacking risk silo” viewpoint. But if AVs also eliminate all other accidents, and thus reduce the number of 
automobile accident deaths by over 30,000, the increased hacking risk may be viewed as acceptable. It may 
not, but policymakers and society must ultimately make such decisions, and context is needed in order to 
properly evaluate the tradeoff.  

Second, a singular, comprehensive strategy is required. Risks do not occur in a linear fashion, or in silos, and 
we must not try to address them that way. The introduction strategy must view risk as the interconnected 
continuum it is, and develop an approach to minimize the risk in aggregate. The optimal strategy will 
therefore be the one which produces the lowest overall cost of risk. 

Third, the risk analysis should be used to as a guide and not a verdict. The results can help us identify what 
can be done to improve the product’s safety. The mere act of highlighting the risk can help reduce its impact.  

Casualty actuaries’ risk management and automobile accident expertise can help these risks be more explicitly 
identified and quantified. We can also help create a more robust introduction strategy to bring the technology 
to market as safely and efficiently as possible. 
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3.2: Automated Vehicle Risk — 
Safety Benchmark 
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INTRODUCTION 

Thus far, auto manufacturers and technology companies have, for the most part, been extremely cautious and 
safety-conscious in rolling out automated vehicle technology. Collectively, over a billion dollars has been 
invested, and the technology has undergone over a million miles of real-world tests plus countless more 
simulated miles. At some point, however, not offering the technology to the public will be more harmful than 
offering it, as the technology’s absence will enable preventable accidents and deaths will continue to occur. A 
performance standard is therefore an essential piece of the equation that brings the technology to market 
safely and efficiently. Mark Rosekind, the Administrator of NHTSA, stated in 2016 that self-driving cars must 
start by being twice as safe.36 However, without the active participation of personal auto insurers, AV 
performance cannot be effectively measured against even this simple goal. Only personal auto insurers’ 
actuarial predictive models provide the necessary detail to compare accident rates by location and, more 
importantly, driver risk characteristic. 37  
 
 
I - BENCHMARK CALCULATION 

An accurate benchmark is necessary to understand the technology’s safety. Auto insurers’ actuarial predictive 
models represent the best way to calculate such a benchmark. The following items are the key components of 
an effective benchmark. 

 

A — COMPLETE & UNBIASED 

If we are going to prevent potentially life-saving technology from entering the market, or if we are going to 
allow an unmanned vehicle to transport individuals, we want to be as confident as possible in the safety 
measurement. The benchmark we compare the technology’s performance against ought to use a complete set 
of accidents. However, according to NHTSA, only 55 percent of accidents are reported to the police.38 
Therefore, any benchmark based off NHTSA’s police reported data will be incomplete and inaccurate. 

The completeness issue may be overcome if the dataset is representative of the accident rate in its entirety. 
Unfortunately, using only police reported accidents biases the benchmark by ignoring specific accident types: 
both high frequency/low severity accidents and single vehicle, lower severity accidents are less likely to result 
in a police report. Forcing automated vehicles to report all incidents will cause their “accident rate” to exceed 
the benchmark, all things being equal, due to the biased benchmark. Actuarial models are built off a more 
complete and unbiased dataset as insureds have a financial incentive to report most accidents to their insurer.  

 

B - GRANULARITY  

Accident risk differs by four key characteristics: the individual, the vehicle, the driving environment, and the 
vehicle’s use. NHTSA’s 2008 Motor Vehicle Crash Causation Survey confirmed other studies’ findings that 

                                                            
36 http://www.bloomberg.com/news/articles/2016-06-08/u-s-auto-regulator-says-self-driving-cars-must-be-twice-as-safe  
37 For an interesting perspective, see https://www.rand.org/blog/articles/2017/11/why-waiting-for-perfect-autonomous-vehicles-
may-cost-lives.html  
38 http://www-nrd.nhtsa.dot.gov/pubs/812013.pdf  

http://www.bloomberg.com/news/articles/2016-06-08/u-s-auto-regulator-says-self-driving-cars-must-be-twice-as-safe
https://www.rand.org/blog/articles/2017/11/why-waiting-for-perfect-autonomous-vehicles-may-cost-lives.html
https://www.rand.org/blog/articles/2017/11/why-waiting-for-perfect-autonomous-vehicles-may-cost-lives.html
http://www-nrd.nhtsa.dot.gov/pubs/812013.pdf
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humans are the main cause of automobile accidents.39 The accident rate benchmark must first and foremost 
explicitly account for the individual behind the wheel. Do we want to include 16 year olds’ experience in the 
benchmark? What about 90 year olds’? The accident rate will further differ based on the driving environment: 
city frequency rates differ from rural; rush-hour frequencies differ from off-peak driving; inclement weather 
increases the accident risk. If the automated vehicle is tested in optimal weather, driving on highways during 
off-peak hours, and controlled by engineers with perfect driving records, we would naturally expect the 
accident rate to be lower than an “average” driver.  

Only insurers’ datasets include driving statistics at such a granular level. From this data, separate benchmarks 
can be calculated for city and rural driving, for drivers with prior accidents and without, and by business 
versus pleasure use.  

 

C - CONTINUUM  

Using a simple average accident rate benchmark has the advantage of being simple to calculate; however, it is 
inadequate for such an important decision. Accident rates are not uniformly distributed. Therefore, the 
“average” rate is not the same as the accident rate of the “average” driver. Having an accident rate that is half 
the average is not the same as having an accident rate equivalent to the best 25 percent of drivers. 

The additional detail afforded by insurers’ actuarial predictive models allows for a continuum of accident rates 
to be calculated. Therefore, automated vehicles’ performance can be put in more proper context. The 
vehicles’ accident rate can be compared against the top 5 percent, 10 percent, 25 percent, or 50 percent for 
the specified details: individuals, location, vehicles, and usage.  

For example, only insurers’ data and the actuarial models will allow for a statement such as: “automated 
vehicles’ accident rate falls within the top 10 percent of Los Angeles drivers’ accident rates.”  

 

II - BENCHMARK APPLICATION  

Beyond the data and statistical expertise needed to calculate an accurate benchmark is the ability to deploy the 
benchmark in such a way to accurately measure the technology’s actual performance. Three additional issues 
must be considered: 

 

D - RESPONSIVENESS 

Accident rates are always changing. Weather patterns, demographic changes, construction, and economic 
trends are just a few of the variables that can cause accident rates to vary from year-to-year. An effective 
benchmark must be responsive enough to account for these changes. Comparing automated vehicles’ actual 
performance against a benchmark calculated from prior years’ experience will exacerbate the issue. Therefore, 
the ideal benchmark will need to be updated continuously to provide the most accurate measurement. 
Insurers are constantly updating their models to reflect the most up-to-date data available. Additionally, 
insurers’ models are forward facing: they try to predict next year’s performance. Therefore, their actuarial 

                                                            
39 https://crashstats.nhtsa.dot.gov/Api/Public/ViewPublication/811059  

https://crashstats.nhtsa.dot.gov/Api/Public/ViewPublication/811059
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predictive models are already being done in such a way as to produce the most up-to-date accident rate 
performance. 

 

E — STABILITY 

The goal for a more responsive benchmark needs to be balanced against the goal of having a stable 
benchmark. The more granular the measurement, the more susceptible it is to having statistical noise distort 
the results. Statistical noise is the natural variation that can occur in the data. We need to be careful not to 
extrapolate from the noise. The benchmark calculation and the performance measurement need to be created 
and calculated to produce a stable evaluation. Increasing the amount of data and utilizing different statistical 
variance minimization techniques allows actuarial models to produce more stable results. The models can also 
tell us once our measurement has become too granular to act as an effective and stable benchmark 

 

F - INDEPENDENCE 

A final, but important, distinction lies in who calculates the benchmark and tracks performance. A simple way 
to balance the previous issues is by making insurers responsible for calculating the benchmark and tracking 
the vehicles’ performance. If an insurer predicts the vehicles will be safer than they truly are, it will pay out 
more claims than it expected. Conversely, if an insurer predicts the vehicles will be less safe than they truly 
are, other insurers will be able to compete for and steal the business at a profitable price. Insurers are then 
able to pass on the costs to the manufacturer through the premium they charge. Having manufacturers 
calculate the benchmark to which they will compare themselves creates a conflict of interest.  

 

III — CAVEAT 

The safety benchmark will further depend on how automated vehicles are used. Quantifying the technology’s 
risk as accidents per mile driven may make sense if the technology tracks closely with today’s driving. 
However, there are many reasons this may be an inadequate measure.  If the driver is removed from the 
equation, then the technology’s performance may be better measured by its incident per trip experience. As 
an extreme example, a technology that errors out every trip, may have a very low accident per mile rate while 
still not being considered “safe” by today’s standard. Additionally, the use of accidents as the measurement 
may be deemed too extreme in the future. Instead, the number of incidents per mile may be more predictive 
of future performance — where an incident is defined a precursor to an accident, such as crossing the center 
line, making too wide of a turn, or having the technology disengage. Data of this nature is not readily 
available. Therefore, the data would have to be defined, then gathered and analyzed. All of this takes time. 
The earlier we start, the better chance the technology’s performance will be appropriately quantified, thereby 
allowing it to come to market as safely and efficiently as possible. 

 

IV - CONCLUSION 

While automated vehicles hold the promise to transform the transportation system and save millions of lives 
around the world, their performance cannot be appropriately understood without the calculation of an 
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effective benchmark. Even goals as simple as NHTSA’s, that automated vehicles be twice as safe as today’s 
driven vehicles, require detailed data and complex statistical analyses. Casualty actuaries, effectively engaged, 
can help policymakers develop the benchmarks needed to understand the technology’s performance. 
Manufacturers can have a more concrete target to hit and be better rewarded by surpassing a target more 
specific to their technology’s use.  

 

 

 
=============================================================== 
TOPIC 3 
AUTOMATED VEHICLE RISK 
RECOMMENDATION 
 

Automated vehicle risk is an extremely complex issue. The technological risks are intertwined with human 
and environmental factors largely outside the control of the engineers. An effective analysis will look neither 
to disqualify the technology nor to turn a blind eye to its inherent dangers. Instead, we must address the risks 
head on. Bringing manufacturers, casualty actuaries, and policymakers together will allow for the creation of a 
more accurate and robust risk management program. Insurers’ data and automobile accident causation 
expertise can supplement manufacturers’ automated vehicle tests. Insurers can also provide policymakers with 
an independent and unbiased evaluation of the technology’s performance. Together, we can develop a robust 
introduction strategy to minimize the technology’s risk and more appropriately quantify and compare the 
expected performance to today’s driving environment.  

=============================================================== 
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Liability Insurance Premiums: Appendix A 
- Calculating the Baseline - 

Page 1 of 6 

Step 1 — Adjusting NAIC Dataset 

The “NAIC Auto Insurance Database Report: 2011/2012” includes state and coverage level data. Therefore, 
adjustments were made at the state and coverage level.  

Step 1A — Remove adjusting and other expenses (AAO) 

“Adjusting and other expense” is included in the loss dollars for all coverages in every state except California 
and Maryland40. AAO is made up things like salaries for claims personnel and typically doesn’t vary by state. 
Therefore, a single AAO factor was selected for liability coverages and physical damage coverages. Based on 
S&P Global Market Intelligence, a liability AAO factor of 1.13 was selected and a physical damage AAO 
factor of 1.15 was selected.  

 
Private Passenger Auto Liability 2010 2011 2012 2013 Total 

Incd Loss 68,985,019 71,335,030 71,475,681 74,021,834 285,817,564 

Incd DCC 3,964,878 3,972,365 4,433,924 4,622,986 16,994,153 

Incd AAO 9,403,788 9,532,868 10,202,259 10,487,747 39,626,662 

AAO Factor 1.13 1.13 1.13 1.13 1.13 

            

Private Passenger Auto Physical Damage 2010 2011 2012 2013 Total 

Incd Loss 37,978,150 41,984,676 42,944,513 43,318,804 166,226,143 

Incd DCC 243,368 227,022 261,054 199,766 931,210 

Incd AAO 6,027,089 6,084,011 6,424,617 6,663,251 25,198,968 

AAO Factor 1.16 1.14 1.15 1.15 1.15 

 Source: S&P Global Market Intelligence IEE 

 AAO Factor = (Incurred Loss + Incurred DCC + Incurred AAO) / (Incurred Loss + Incurred DCC) 

  

                                                            
40 Texas’ loss dollars also excluded AAO, but as Texas data are completely removed from the analysis, no adjustment is required.  It is 
being mentioned only for completeness sake.   
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Step 1B — Remove defense cost and containment expenses (DCC) 

“Defense cost and containment expense” is mostly made up of payments to lawyers to litigate claims. These 
costs vary more widely by state as each state’s legal environment and insurance rules impacts an insurer’s 
decision to settle or fight a claim in court. Using the state pages from S&P Global Market Intelligence, 
separate DCC factors are selected for each state and coverage group: PIP and Other PPA Liability (Physical 
Damage DCC = 1.0). The selected factor is the weighted average of 2010-2014: DCC Factor = (Paid Loss + 
Paid DCC) / (Paid Loss) 

DCC Adj Factor 
 

 DCC Adj Factor 

State Other PPA Liab PIP 
 

 State Other PPA Liab PIP 

AK 1.05 1.03 
 

 MT 1.05 1.03 

AL 1.04 1.13 
 

 NC 1.02 1.09 

AR 1.03 1.02 
 

 ND 1.03 1.03 

AZ 1.04 1.07 
 

 NE 1.03 1.09 

CA 1.06 1.19 
 

 NH 1.03 1.10 

CO 1.05 1.14 
 

 NJ 1.10 1.13 

CT 1.05 1.11 
 

 NM 1.04 1.07 

DC 1.05 1.02 
 

 NV 1.07 1.09 

DE 1.06 1.06 
 

 NY 1.08 1.15 

FL 1.07 1.10 
 

 OH 1.05 1.07 

GA 1.04 1.17 
 

 OK 1.04 1.06 

HI 1.05 1.03 
 

 OR 1.05 1.06 

IA 1.04 1.05 
 

 PA 1.06 1.03 

ID 1.04 1.04 
 

 RI 1.04 1.15 

IL 1.06 1.09 
 

 SC 1.03 1.05 

IN 1.05 1.05 
 

 SD 1.04 1.06 

KS 1.03 1.02 
 

 TN 1.05 1.06 

KY 1.04 1.03 
 

 TX 1.04 1.02 

LA 1.07 1.12 
 

 UT 1.04 1.03 

MA 1.04 1.10 
 

 VA 1.04 1.06 

MD 1.04 1.02 
 

 VT 1.03 1.08 

ME 1.03 1.12 
 

 WA 1.06 1.05 

MI 1.11 1.07 
 

 WI 1.05 1.07 

MN 1.05 1.11 
 

 WV 1.06 1.02 

MO 1.04 1.04 
 

 WY 1.04 1.32 

MS 1.04 0.90 
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Step 1C — Adjust PIP and Med Pay state definitions 

In speaking with the NAIC analyst who worked on the dataset, some PIP-only states had exposures and 
losses assigned to both Med Pay and PIP coverages. While updates will be made in future NAIC publications, 
an external adjustment was required for this analysis. 

Step 2 — Segmenting premium into its components 

We assume the 2011 earned premiums are priced adequately. Therefore, the average premium can be split 
into its expected losses, expenses, and profit. Since the expense ratios and profit targets are more stable, the 
expected losses were calculated as Average Premium * (1 — selected expense ratio — selected profit target).  

Step 2A — Select expense ratio 

The expense ratios, which come from S&P Global Market Intelligence, are selected on a countrywide basis to 
match the subsequent analysis. The expense ratios did not vary enough by coverage to vary the selections.  

PPA Liab Calculation 2010 2011 2012 2013 Total   Selected 

AAO  Incd AAO/EP 9.4% 9.3% 9.6% 9.5% 9.5%   9.5% 

Gen Exp GE/EP 5.4% 5.6% 5.6% 5.7% 5.6%   5.5% 

Comm & Brok Comm & Brok / WP 8.9% 8.8% 8.7% 8.5% 8.7%   8.8% 

Other Acq OA / WP 8.1% 8.4% 8.5% 8.6% 8.4%   8.4% 

Taxes TLF/WP 2.3% 2.2% 2.2% 2.2% 2.2%   2.2% 

                  

PPA Phys 
Dam Calculation 2010 2011 2012 2013 Total   Selected 

AAO  Incd AAO/EP 9.2% 9.3% 9.7% 9.6% 9.5%   9.5% 

Gen Exp GE/EP 5.1% 5.3% 5.4% 5.6% 5.4%   5.5% 

Comm & Brok Comm & Brok / WP 8.9% 8.9% 8.8% 8.7% 8.8%   8.8% 

Other Acq OA / WP 8.1% 8.3% 8.5% 8.7% 8.4%   8.4% 

Taxes TLF/WP 2.2% 2.2% 2.2% 2.2% 2.2%   2.2% 

                  

PPA Total Calculation 2010 2011 2012 2013 Total   Selected 

AAO  Incd AAO/EP 9.3% 9.3% 9.6% 9.6% 9.5%   9.5% 

Gen Exp GE/EP 5.3% 5.5% 5.5% 5.7% 5.5%   5.5% 

Comm & Brok Comm & Brok / WP 8.9% 8.9% 8.8% 8.6% 8.8%   8.8% 

Other Acq OA / WP 8.1% 8.3% 8.5% 8.7% 8.4%   8.4% 

Taxes TLF/WP 2.2% 2.2% 2.2% 2.2% 2.2%   2.2% 
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Step 2B — Split fixed versus variable expenses 

In order to estimate the minimum premium, the expense selections were further segmented into fixed and 
variable expense. Actuarial judgment was used to allocate the expenses. 

 

Expense Expense Ratio Fixed Expense % 

AAO 9.5% 100% 

General Expenses 5.5% 100% 

Commission & Brokerage 8.8% 0% 

Other Acquisition 8.4% 50% 

Taxes, Licenses, Fees 2.2% 0% 

 
 

Step 2C — Select profit target 

Because we are conducting a pricing approach, a target profit ratio needs to be used instead of the actual 
achieved profit. This removes any pricing inadequacies or redundancies from the analysis. The selected profit 
targets differ by coverage and market and were selected largely based on judgment after reviewing a number 
of companies’ indication filings across a myriad of states. 

Insurers typically require a higher profit margin on physical damage coverage than liability coverage. This is 
because the liability claims have a longer tail, so the insurer can make a higher investment return on the liability 
premium than on the physical damage premium. We assume that insurers do not target any profit on residual 
market risks.  

  

Profit Target 

Coverage Voluntary Residual 

Liability 2.0% 0.0% 

Physical Damage 5.0% 0.0% 
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Step 2D — Calculate expected losses 

The expected loss and DCC ratio is calculated for each coverage as: 1 — expense ratio — profit target. The 
coverage expected losses are then calculated by multiplying the 2011 earned premium from the NAIC 
database by the ratio and dividing out the DCC.  

 Voluntary Residual 

Coverage 

Expected 
Loss & DCC 

Ratio 
Avg 

Prem 
DCC Adj. 

Factor E[L] 

Expected 
Loss & 

ALAE Ratio 
Avg 

Prem 
DCC Adj. 

Factor E[L] 

BI 63.6% 199 1.05 119.9 65.6% 496 1.05 308.9 

PD 63.6% 148 1.05 89.2 65.6% 428 1.05 267.0 

CSL 63.6% 356 1.06 213.6 65.6% 1,137 1.06 703.0 

PIP 63.6% 174 1.09 101.2 65.6% 381 1.09 228.9 

MP 63.6% 35 1.05 21.3 65.6% 68 1.05 42.5 

UM 63.6% 68 1.05 41.1 65.6% 39 1.05 24.4 

Comp 60.6% 119 1.00 72.3 65.6% 238 1.00 156.2 

Collision 60.6% 283 1.00 171.7 65.6% 775 1.00 508.8 

 
Step 2E — Calculate frequency and severity 

The expected losses are further segmented into its specific components: the probability a loss occurs 
(frequency) and the amount that will be paid if a loss occurs (the severity). A priori frequency and severity 
estimates are calculated using the NAIC adjusted dataset (which removes AAO and DCC from the loss 
results).  

The 2011 experience was used for the voluntary market. This experience should be more reflective of the 
expected experience embedded in the 2011 rates. The experience was sufficiently stable. The 2009-2011 
experience was used for the residual market. The experience was simply too variable to extrapolate from a 
single year.  

Caveat: There is an issue with the NAIC claim counts. The counts are not reportedly consistently across all 
companies. Some companies report claimant counts while others report claim counts. This means that a 
single vehicle accident with two injured passengers will be reported as two claim counts by one company and 
one claim count by another. As this issue exists in other industry data sources, no adjustment could be made. 
Therefore, the selected final frequency was balanced to ensure that  

Expected loss = Expected frequency × Expected severity 
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The combined single limit coverage is split into its bodily injury and property damage components on the loss 
side and rolled up and balanced at overall coverage level since only one premium is charged for both 
coverages.  

Voluntary  A priori   
 

  Selected 

Loss Covg Freq Severity E[L]  
Target 
E[L]  

Freq Adj 
Factor Freq Severity E[L] 

BI 1.01 12,820 129.35  119.9 0.93 0.94 12,820 119.9 

PD 3.89 2,557 99.59  89.2 0.90 3.49 2,557 89.2 

CSL_BI 0.76 17,124 130.82  213.6 0.97 0.74 17,124 127.5 

CSL_PD 3.30 2,674 88.38  
 

0.97 3.22 2,674 86.1 

PIP 1.88 6,304 118.53  101.2 0.85 1.60 6,304 101.2 

MP 0.85 2,751 23.36  21.3 0.91 0.77 2,751 21.3 

UM_BI 0.15 21,478 32.70  41.1 1.16 0.18 21,478 37.8 

UM_PD 0.22 1,292 2.80  
 

1.16 0.25 1,292 3.2 

Comp 9.54 919 87.70  72.3 0.82 7.86 919 72.3 

Collision 5.83 2,985 173.90  171.7 0.99 5.75 2,985 171.7 

 

Residual A priori   
 

  Selected 

Loss Covg Freq Severity E[L]  
Target 
E[L]  

Freq Adj 
Factor Freq Severity E[L] 

BI 4.57 9,098 415.52  308.9 0.74 3.39 9,098 308.9 

PD 12.57 2,691 338.18  267.0 0.79 9.92 2,691 267.0 

CSL_BI 1.74 23,163 402.34  702.9 1.12 1.95 23,163 452.3 

CSL_PD 6.39 3,489 222.93    1.12 7.18 3,489 250.6 

PIP 5.70 6,461 368.46  228.9 0.62 3.54 6,461 228.9 

MP 2.48 2,210 54.78  42.5 0.78 1.92 2,210 42.5 

UM_BI 0.84 5,005 42.23  24.4 0.57 0.48 5,005 24.0 

UM_PD 0.03 2,360 0.74    0.57 0.02 2,360 0.4 

Comp 18.77 936 175.58  156.2 0.89 16.70 936 156.2 

Collision 18.20 3,178 578.46  508.8 0.88 16.01 3,178 508.8 
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Current 
% of 

market 
% with 

Collision 
% with 

Comprehensive   Updated 
% of 

market 
% with 

Collision 
% with 

Comprehensive 

Voluntary 86.5% 72.0% 76.4%   Voluntary 86.5% 100.0% 100.0% 

Residual 0.2% 24.2% 28.4%   Residual 0.2% 100.0% 100.0% 

Uninsured 13.4% 0.0% 0.0%   Uninsured 13.4% 100.0% 100.0% 

Voluntary Market 

  Avg Vehicle Prem     # of Vehicles 

Covg Baseline New Chg   Covg Baseline New Chg 

BI  $             198.68  $         198.68 0.0%   BI 168,102,794 168,594,577 0.3% 

PD  $             147.57  $         147.57 0.0%   PD 168,594,577 168,594,577 0.0% 

CSL  $             356.38  $         356.38 0.0%   CSL 10,075,709 10,075,709 0.0% 

PIP  $             173.64  $         173.64 0.0%   PIP 65,802,486 84,876,070 29.0% 

MP  $                35.05  $           35.05 0.0%   MP 72,716,521 93,794,216 29.0% 

UM  $                68.03  $                  - -100.0%   UM 158,462,800 0 -100.0% 

Comp  $             119.21  $         119.21 0.0%   Comp 136,459,637 178,670,286 30.9% 

Collision  $             283.22  $         283.22 0.0%   Collision 128,685,976 178,670,286 38.8% 

Total  $             779.85  $         850.13 9.0%   Total 178,670,286 178,670,286 0.0% 

 
Residual Market 

  Avg Prem     # of Vehicles 

Covg Baseline New Chg   Covg Baseline New Chg 

BI  $               496.11   $         496.11  0.0%   BI 296,509 316,194 6.6% 

PD  $               428.45   $         428.45  0.0%   PD 316,194 316,194 0.0% 

CSL  $            1,137.04   $     1,137.04  0.0%   CSL 1,893 1,893 0.0% 

PIP  $               380.89   $         380.89  0.0%   PIP 308,994 309,613 0.2% 

MP  $                  67.90   $           67.90  0.0%   MP 1,932 8,474 338.6% 

UM  $                  39.19   $                  -    -100.0%   UM 273,257 0 -100.0% 

Comp  $               238.00   $         238.00  0.0%   Comp 90,487 318,087 251.5% 

Collision  $               775.18   $         775.18  0.0%   Collision 76,865 318,087 313.8% 

Total  $            1,554.22   $     2,311.55  48.7%   Total 318,087 318,087 0.0% 

 

  



Automated Vehicles and the Insurance Industry — A Pathway to Safety: The Case for Collaboration 

Casualty Actuarial Society E-Forum, Spring 2018 72 

Liability Insurance Premiums: Appendix C 
- Step 2: Residual Market Liability Limit Adjustment - 

Page 1 of 1 

Bodily Injury 

A proprietary data source was used to calculate the state increased limit factors (ILF’s) and the distribution of 
vehicles with each limit. The NAIC state exposure distribution was then used to aggregate the state ILF’s to a 
countrywide estimate.  

The residual market was assumed to select the minimum liability limits in each state. Using the proprietary 
state increased limit factors and NAIC exposures, the countrywide minimum increased limit factor was 
calculated to be 0.71. The countrywide average increased limit factor was calculated to be 1.21. Therefore, the 
ILF required to bring the residual market to the voluntary market’s coverage is 1.21/0.71 = 1.70. The average 
limits are approximately $115K/$250K. This is read as the vehicle has $115,000 of liability coverage per 
claimant and $250,000 per accident, which isn’t a real limit offering. However, it gives a general sense of the 
amount of coverage the average voluntary market risk is carrying. The ILF required to bring the residual 
market to the voluntary market’s coverage is therefore 1.21/0.71 = 1.70.  

Property Damage 

The same process was used to calculate property damage’s ILF. The minimum PD ILF is 0.94 and equates to 
a limit of approximately $15,000 of coverage. The average property damage ILF is 1.07 and equates to a limit 
of approximately $70,000 of coverage. The ILF required to bring the residual market and uninsured vehicles 
to the voluntary market’s average is 1.07/0.94 = 1.14. 

Combined Single Limit  

No data source could be found that would have allowed us to differentiate the minimum combined single 
limits and the voluntary average combined single limit. A factor of 1.05 was judgmentally selected. There are 
very few exposures in the residual market that have this coverage, so the selection — even if it’s wrong — 
will not have a material impact on the conclusions. 

Medical Coverage (Personal Injury Protection and Medical Payments) 

A factor of 1.10 was judgmentally selected as no data source was identified that will enable a more explicit 
calculation to be done. If it was assumed that no adjustment was required — selecting an increased limit 
factor of 1.0 — the average premium would only change by $3. So again, this selection does not have a 
material impact on the conclusions. 

Physical Damage 

No increased limit factor is applied. This implies that voluntary, residual, and uninsured vehicles are similar in 
value and deductible. Furthermore, it implies that fully self-driving vehicles will not cost more to repair than 
today’s vehicles. As we are assuming the end-state (100 percent of vehicles are fully autonomous), the 
technology’s costs may not be materially different than the today’s costs. Even if they are higher, they are 
unlikely to be a material consideration of the liability structure surrounding automated vehicles.  
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The cost structures for products liability and personal automobile are materially different. Using the industry’s 
annual statements (from S&P Global Market Intelligence), we can quantify the expense differences between 
the two products. The expenses are shown as a percent of premium to allow them to be comparable.  

Distribution 

Personal auto insurance and products liability are sold through very different mechanisms. Auto insurance is 
typically sold through a local agent or direct through the internet. Companies use public advertisements and 
commissions to encourage customers to choose their product. Products liability insurance has higher 
commissions and broker expenses. An agent placing products liability insurance is able to negotiate with the 
insurance company over both the price and the contract features. This allows companies to create their own 
insurance policy. Personal auto policies offer a number of pre-defined and pre-priced features.  

Products liability insurance entails lower marketing costs, but this does not offset the higher commissions. In 
total, switching the liability from personal auto to products liability will increase the distribution cost per 
dollar of insurance from 17.2 percent to 20.2 percent. Commercial auto (20.6 percent), other liability — 
occurrence (19.4 percent), and CMP (Commercial Multiple Peril) — liability (24.1 percent) all have higher 
acquisition costs than personal auto insurance. Hence, the costs would be expected to increase regardless of 
the commercial line of business after which we model the new product.   

 

 

 

 

 
General Expenses 

Products liability also has higher “General Expenses” than personal auto insurance. This is mostly attributed 
to the fact that products liability has more personal touch points than personal auto insurance. The more an 
actual person needs to get involved, the greater the costs. Commercial auto (7.2 percent), other liability — 
occurrence (7.0 percent), and CMP — liability (7.1 percent) also have higher general expenses than personal 
auto insurance. 

 

 

 

Acquisition Expense 
Personal 

Auto 
Products 
Liability 

Commissions & Brokerage 8.8% 13.7% 

Other Acquisition 8.4% 6.4% 

Total 17.2% 20.2% 

Expense 
Personal 

Auto 
Products 
Liability 

General Expenses 5.5% 7.5% 
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Taxes, Licenses and Fees 

Products liability has lower taxes, licenses, and fees than personal auto insurance, as well as commercial auto 
(2.5 percent), other liability — occurrence (1.8 percent), and CMP — liability (2.2 percent). 

 

 

 

 

Adjusting and Other Expenses 

The insurance company’s claims handling costs, which cannot be assigned to a specific claim, are allocated in 
the Adjusting and other expense bucket. These expenses are mostly made up of the Claims department’s 
salaries. These costs are similar for both products.  

 

 

 

 

 

Total 

In total, products liability insurance spends $0.387 of every premium dollar on these expenses while personal 
auto insurance spends $0.344. For comparison, commercial auto insurance spends $0.368; other liability — 
occurrence insurance spends $0.338; and CMP — liability spends $0.391.  

  

Expense 
Personal 

Auto 
Products 
Liability 

Taxes, Licenses, Fees 2.2% 1.6% 

Expense 
Personal 

Auto 
Products 
Liability 

AAO 9.5% 9.5% 
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Personal Automobile 
 

While the gross combined ratio is going to provide a more apples-to-apples comparison to the analysis, a net 
combined ratio view provides similar insights. As shown, personal automobile only achieved the selected 
target combined ratio (96.9 percent) in two of the past eleven years (2005 and 2006). The assumption that 
$0.60 of every premium dollar goes to claimants understates what actually has occurred over the past nine 
years.  
 

 
http://www.iii.org/presentation/2015-2016-and-beyond-financial-results-from-an-actuarial-point-of-view-
052416, see slide 60   

http://www.iii.org/presentation/2015-2016-and-beyond-financial-results-from-an-actuarial-point-of-view-052416
http://www.iii.org/presentation/2015-2016-and-beyond-financial-results-from-an-actuarial-point-of-view-052416
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NHTSA BUDGET 

 

 

Source: “Budget Estimates Fiscal Year 2016: National Highway Traffic Safety Administration”, page 18. 
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Practical LDF Interpolation for Well-Behaved IBNR  

Ira Robbin, Ph.D. 
 
________________________________________________________________________ 
Abstract  

Actuaries have devised numerous methods for interpolating annual evaluation loss development factors 
(LDF) to arrive at quarterly evaluation factors. Not all of these work as well as might be hoped.  Some 
introduce oscillations not found in the original factors.  Many lead to IBNR projections that move 
erratically or have blips that are hard to explain.  This paper advances the approach to interpolation by 
taking a whole curve perspective, defining properties of well-behaved interpolates, and focusing on 
attributes of the resulting IBNR projections.  It demonstrates a set of simple practical techniques including 
a backfill algorithm to compute factors at immature ages.  
  
Keywords   Loss Development Patterns, Interpolation, Equilibrium, IBNR    

             

1. INTRODUCTION 

Many practicing property casualty reserving actuaries face a recurring challenge each 
quarter: how to update IBNR balances for a multitude of splits by line of business, distribution 
channel, market segment, and geographic division.  Given the lack of time and resources, 
doing a complete granular analysis is simply not practical.  Further many of the splits do not 
have sufficient data to support a credible full-triangle analysis when the data is evaluated by 
quarter.    

How do actuaries meet this challenge?  One popular solution is to take the year-ending 
IBNR balances and use loss development factors (LDF) at quarterly evaluations to estimate 
the run-off.  The quarterly LDF are often derived  by interpolating annual LDF.  To obtain 
the annual evaluation LDF, actuaries tend to rely on a segment’s own data if it is sufficiently 
credible.  However, when the data for a cell is too volatile even after grouping it at annual 
evaluation points, it is a common and accepted practice to derive default annual evaluation 
factors based on triangles of loss data aggregated over similar lines and segments. Both 
aggregation and annual evaluation increase the stability of the factors.   The resulting annual 
evaluation default LDF are sometimes further refined by cell based on a review of industry 
data, claims department statistics, and other information. 1 Once the annual evaluation 

                                                           
1 For example default LDF for northwest region small commercial risk division general liability (GL) losses might 
be derived from loss triangles for the full general liability line of business and then reduced slightly based on the 
actuary’s belief that risks in the small commercial division have losses that develop a bit more quickly than other 
GL business. 
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development factors for a particular segment are selected, the next step is to interpolate them 
by quarter.2     

Though interpolation of LDF might seem a trivial task, there are many available techniques 
and they can produce a range of answers.  Some are vulnerable to anomalies or require too 
many actuarial overrides.  Others induce seasonality that does not exist or an apparent trend 
that later turns out to be illusory.  Many don't work well at early ages because they fail to 
distinguish development of exposure to loss from development of loss on exposures that have already occurred.  
Others implicitly forecast blips in expected quarterly IBNR run-off.  At this time, no particular 
interpolation approach has been universally accepted.  Actuaries want a set of interpolation 
techniques that are simple to implement, yet robust and free from anomalies.  This aim of this 
paper is to provide a framework for achieving that goal.      

1.1 Three Properties of Well-Behaved Interpolates  
The first specific objective this paper is to propose a non-exhaustive set of properties that 

well-behaved interpolation algorithms should satisfy.  In this paper three will be proposed.     

The first is that the method should not introduce extra oscillations.  The term, inherited 
monotonicity, will be used to describe this: 

• Inherited Monotonicity:  The quarterly age-to-age (ATA) LDF interpolates do not 
oscillate more often than the original annual ATA LDF.   For example, suppose the 
24-36 ATA LDF was larger than the 36-48 ATA LDF.  A violation of inherited 
monotonicity would exist if the 36-39 month interpolate was larger than the 33-36 
month factor.  See Table 1 for an example of such a violation.   

  

                                                           
22 Another option is to interpolate the default annual LDF for the aggregation and use those as default 
interpolates for each cell.    
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Table 1 

 

The second and third properties are defined by examining the resulting IBNR evolution 
on a hypothetical book of business produced by a growth model in equilibrium.  In this growth 
model, it is assumed all accident years have the same actual ultimate losses and the same 
pattern of development:  The second and third properties are equilibrium IBNR stability and 
monotonicity of total runoff from all prior years: 

• Equilibrium IBNR Stability:  Once equilibrium is achieved, total IBNR stays level 
each quarter. Each quarter the growth of IBNR from the new accident year is exactly 
offset by the total of IBNR runoff from all prior accident years.  Table 2 shows an 
example of a violation of Equilibrium IBNR stability normalized so the year-ending 
balance is $1,000 and quarter ending “0” is the end of the first year in which 
equilibrium is attained.  

Table 2 

 

• Monotonically Decreasing Total Prior Year IBNR Runoff: In equilibrium, the 

Qtr 0 1 2 3 4 5
IBNR All Prior AY     1,000        800        625        450        300        225 

IBNR Current AY          -          300        450        500        700        575 

IBNR Total     1,000     1,100     1,075        950     1,000        800 

Quarter ending IBNR balance 

Equilibrium IBNR Stability Violation

Age
ATA LDF

Age 24 - 27 27 - 30 30 - 33 33 - 36 36 - 39 39 - 42 42 - 45 45 - 48
ATA LDF     1.150     1.120     1.090     1.068     1.120     1.065     1.050     1.038 

Quarterly Interpolates Quarterly Interpolates 

Annual Evaluation Factors

Inherited Monotonicity Violation

24-36 36-48
1.500 1.300
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quarterly totals of IBNR runoff from all prior accident years form a monotonic 
decreasing sequence under the assumption the development pattern never goes 
negative (i.e. the LDF are never below unity).  Table 3 has an example of this. 

Table 3 

 

  It might be initially surprising to realize that an arbitrary interpolation scheme will not 
necessarily satisfy any of these properties.  Many methods introduce oscillating LDF, non-
level equilibrium IBNR and a bouncy ride for the prior year IBNR run-off pattern.     

Some may object that equilibrium conditions are unrealistic and of not much relevance to 
real-world situations.   However, it is more accurate to think of it in the converse.  If an 
interpolation routine produces IBNR fluctuations in the ideal conditions of level-growth 
equilibrium, then who knows what mischief may ensue in actual scenarios.   In real-world 
scenarios problems do not jump out as clearly as they do in equilibrium.   Later in this paper, 
it will be proved that an accident year LDF pattern will satisfy equilibrium IBNR stability if it 
is generated from uniform exposure to loss, the usual assumption made for a non-seasonal 
accident year, and a fixed underlying claim development pattern.      

1.2 Three Interpolation Tools  
This paper will present several practical techniques for use in the interpolation process.  

The first, tail-tapering, is not strictly an interpolation tool but rather a procedure that quickly 
smooths out the tail of the initial set of annual evaluation factors. However, it is essential to 
taper the tail before attempting to interpolate and in that sense it is the first step of the 
interpolation process. Tail-tapering takes the user selected percent of ultimate value at the 
user-selected tapering onset age and then employs a straightforward routine to smoothly taper 

Qtr 0 1 2 3 4 5

Prior AY IBNR $1,000 $700 $600 $450 $300 $225 

Prior Year IBNR 
Runoff

$300 $100 $150 $150 $75 

Prior Year IBNR Runoff Monotonicity Violation  

Quarter ending IBNR balance 
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to ultimate at the user-selected selected ultimate age.3      

The second is normalized cross-year increment smoothing with monotonicity adjustment. This starts by 
computing level quarterly increments separately for each year. Then simple arithmetic 
smoothing is applied over all quarters beyond month 12.  The increments by year are then 
normalized so as to reproduce the original annual evaluation LDF.   If the provisional results 
violate the inherited monotonicity property, averages against the initial level increments are 
performed for any year in need of correction.   This stage produces interpolates that are 
relatively smooth and which inherit monotonicity.  Other methods unknowingly court 
difficulty when they examine each year in isolation and pay no attention to the transition from 
one year to the next.  The averaging across years is one very simple way (not necessarily the 
only or the best way) to address that neglect.   

The third tool is the stability backfill technique.  This is an algorithm for determining the 
factors at immature ages by requiring the resulting factors to produce IBNR values satisfying 
the Equilibrium IBNR Stability property.     

  The overall method with tail tapering, cross-year smoothing, and stability backfill will be 
identified by the acronym, SWIMON (Smoothing With Increments - Monotonically 
Normalized). 

1.2.1 Tapering the Tail  

It is best to first taper the tail of the annual evaluation LDF before performing quarterly 
interpolation.   This assumes the initial tail goes all the way to ultimate.  More sophisticated 
approaches are needed if this is not true and the tail factors must be extrapolated.  Also it is 
assumed that the actuary has LDF deemed acceptable up to a certain age. They may be all-
weighted year averages for example or averages ex Hi/Lo.   The problem in this situation is 
that the tail factors may be quite erratic even if close to unity.  There may be a few unity factors 
interspersed with occasional blips up and down that over the span of a few years might add 
up to point or two.  Some actuaries would set the curve to unity and write-off this small 
amount.   Others will try their hand at smoothing by eye.  This tends to absorb an inordinate 
amount of actuarial effort, with students tapering by eye and managers and chief actuaries 
refining the numbers.  For example, a student upon seeing annual LDF machine averages of 

                                                           
33 See the Appendix for the definitions of increments, age-to-age-factors, tail decay rates and other 
representations of loss development. 
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1.008, 0.995, and 1.003, might propose a string of three factors equal to 1.002.  The manager 
may refine that to 1.0025, 1.0020, and 1.00195.  Others will try curve fitting that sometimes 
works well, but which is sometimes confounded by the oscillations in the tail and the need to 
remove outliers to arrive at a good fit.  Even after fitting there may be a small tail out to infinity 
that the actuary would like to close out.      

So how is it possible to extricate actuaries from this tedious and low value-added part of 
the process?  The solution to be demonstrated in Chapter 2 is to taper the annual evaluation 
factors from a selected age onward to a selected ultimate age.   The resulting tapered annual 
evaluation factors can then be grafted onto the body of the curve.  Essentially the idea is to 
take the three key parameters that the actuary can readily select to define the tail and use those 
to construct a smooth tail.    The tail-tapered curve can be interpolated by quarter as will be 
explained in the next section.4    

1.2.2. Avoiding Middle Age Interpolation Disorders  

Assuming relatively stable patterns of LDF in the middle and later stages of development, 
the problem is how to interpolate to a quarterly basis without inducing seasonal bias or 
producing erratic patterns going from one quarter to the next.  For instance, a method might 
overstate the IBNR takedown for the first quarter of each prior accident year so the company 
more often than not sees what looks like beneficial prior year development in the first quarter 
of each year.   Note that the IBNR runoff in a quarter is the expected development.  If the 
IBNR runoff is overstated, then actual development will tend to come in low relative to this 
false benchmark.   The company may conclude results are better than they truly are.  By the 
time this gets corrected in the remaining quarters the biased figures may have led to incorrect 
business decisions.   Another problem is that some interpolation routines yield answers prone 
to jumps at year-end. These routines usually generate quarterly expected development that 
proceeds nicely from quarter to quarter during the year and all seems fine.  However, the 
pattern then might break sharply for the first quarter of the subsequent year (quarter 5 from 
the starting quarter).  This can only be explained if the annual factors increase instead of 
decrease from one year to the next.   Otherwise this would be a manifestation of a failure of 

                                                           
4 Preliminary tail-tapering is often useful even if one is not doing quarterly interpolation.  It may improve the 
performance of curve-fitting routines being used to smooth out factors at earlier ages. Even the step of setting 
factors to unity beyond a selected ultimate age is beneficial since some machine–generated averages that appear 
to be unity on a display are not.  These can lead to small sums that make their appearance in unexpected places. 
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inherited monotonicity.  The overall point is that faulty interpolation routines lead to blips in 
IBNR evolution that are difficult to explain.      

The increment smoothing, normalization, and monotonicity adjustment procedure is 
designed to address these potential problems.   It is presented in more detail in Chapter 3.     

1.2.3. Exposure Growth Problems in Early Age Interpolation  

Finally there is the question of what to do about the start-up period.  Many methods fail 
to extend reasonably to early ages simply because they fail to account for the increasing 
exposure separately from the development of losses already incurred. The general solution as 
explained by Robbin [3] and Robbin and Homer [4] is to explicitly account for the dependence 
of loss development patterns on underlying exposure period development.  Those papers 
describe fitting different parametric forms against data.  In this paper a simpler backfill 
technique will be used in which the early age factors are determined so that the IBNR stays 
fixed each quarter in a level growth model.   The approach will be demonstrated in Chapter 4.  
In Chapter 5, it will be shown that an accident year LDF pattern generated via the Robbin 
formula under reasonable uniformity assumptions will produce IBNR that automatically 
satisfies the backfill formula.    

1.3 Existing Literature  
Recent works by Boor [2] and by Bloom [1] provide useful quick methods (“hacks”) for 

interpolating LDF.  Bloom’s paper shows interpolates of 12, 24, 36 … month factors at ages 
15, 27, 39, ..., computed with a variety of methods including Linear, Inverse Power Curve 
(IVP), IVP decay, Exponential, and Exponential Decay.  Her paper also has methods for 
extrapolating to immature ages.   

Boor fits a Weibull curve form to the implicit IBNR percentages derived from the original 
annual evaluation factors.  He then uses the Weibull curve shape to arrive at monthly 
interpolates between the annual factors.  He extends to early ages and makes monthly exposure 
adjustments to convert the scaled Weibull factors to be on an accident year basis.   

This paper is intended to advance actuarial interpolation tools and concepts beyond what 
is found in these works and other existing literature.  It promotes a new “whole-curve” 
perspective on interpolation and highlights the need to define properties of behavior for 
interpolates.  It also adds to the literature by stressing the importance of evaluating the qualities 
of interpolates by examining the resulting evolution of IBNR.  The three techniques 
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demonstrated in this paper are offered as useful if basic additions to the actuarial toolbox of 
practical methods.         

 To be clear, many actuaries do produce IBNR projections as a standard component of 
reserve analysis.  However, documentation of this important part of the process does not 
appear to have previously found its way into the literature or at least not in the standard articles 
on interpolation of LDF.  

1.4 Comparison Example   
To clarify the distinction between different methods and the properties of their resulting 

interpolates, methods from the Bloom paper, the Boor paper, and this paper will be used to 
interpolate the sample annual factors from the Bloom paper.  This will be done in Chapter 6.    

First the IVP method in the Bloom paper will be extended to show interpolates at all 
intermediate quarters beyond age 12 months.(e.g. for ages 18 and 21, not just age 15).  Then 
the “Method of 12” described in that paper will be used to fill in the early quarters.5   Boor’s 
Weibull fitting and splicing method will be applied to the same set of factors and summarized 
by quarter.6  The three alternative sets of interpolated LDF will then be compared.    

1.5 Expected Quarterly Development and Projected IBNR Run-off  
A fundamental message of this paper is that the actuary should review predicted amounts 

of expected quarterly development by accident year over at least five projected calendar 
quarters.  Dubious patterns of expected development indicate a poorly performing 
interpolation method.  The actuary should be able to explain any strange blips or else go back 
and derive new interpolates.   

The schedule of expected quarterly IBNR and IBNR run-off based on the SWIMON 
interpolates will be computed starting with an arbitrary hypothetical set of year-end balances.  
This will be done in Chapter 7. It should be noted that many reserving actuaries already 
produce IBNR runoff projections and study them carefully for anomalies.   

1.6 Equilibrium Run-off Comparison  
Equilibrium IBNR projections by quarter will be computed for the SWIMON, IVF/12, 

and Spliced Weibull IBNR interpolates in Chapter 8.   Some may initially feel this has little 
                                                           
5 Bloom presented many methods and did not recommend these over any others. 
6 Boor shows interpolates on a monthly basis.  
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relevance since there are few stable equilibrium scenarios in the real world.  The author’s 
perspective is that any equilibrium oscillations need to be subtracted out of real world 
indications.  A scale that is not calibrated properly will yield incorrect results.  In effect, the 
equilibrium analysis can indicate if a set of interpolates is appropriately balanced.    

1.7 Conclusion  
It is hoped the practical techniques presented in this paper will achieve acceptance as useful 

additions to the actuarial toolbox.  The tail-tapering technique could be employed in deriving 
LDF patterns outside of an interpolation context.  Also, there is nothing to prevent the actuary 
from applying the interpolation methods in this paper to interpolate Paid LDF and then 
project estimated Unpaid Losses instead of IBNR.      

While the comparison of methods was necessary to clarify distinctions between different 
algorithms, the fundamental message of this paper is not that one method did or did not work 
better than others on a specific example.  It is that actuaries should analyze the behavior and 
characteristics of the interpolated LDF and the resulting IBNR evolution.  Indeed, many 
already do and in that sense this paper can be viewed as an initial attempt to codify and extend 
existing practice Whether actuaries accept or reject those particular interpolation techniques, 
a major objective of the author will have been achieved if it fosters a greater awareness of the 
importance of examining the behavior of the whole curve of LDF interpolates and the 
resulting quarterly IBNR run-off projections.   

2. TAIL TAPERING AND TRUNCATION 

Given that an initial percent of ultimate selection, PCT0(tI), has been made for month tI, 
which is divisible by 12, and a subsequent decay rate of unreported loss, q, has been selected, 
the infinitely extrapolated annual evaluation percent of ultimate series PCT*(t) for t>tI is 
generated inductively via: 

𝑃𝑃𝑃𝑃𝑃𝑃∗(𝑡𝑡𝐼𝐼) = 𝑃𝑃𝑃𝑃𝑃𝑃0(𝑡𝑡𝐼𝐼) (2.1) 

𝑃𝑃𝑃𝑃𝑃𝑃∗(𝑡𝑡𝐼𝐼 + 𝑘𝑘 ∙ 12) = 𝑃𝑃𝑃𝑃𝑃𝑃∗(𝑡𝑡𝐼𝐼 + (𝑘𝑘 − 1) ∙ 12) + 𝑞𝑞 ∙ 𝑄𝑄∗(𝑡𝑡𝐼𝐼 + (𝑘𝑘 − 1) ∙ 12) 
 

where Q= 1-PCT and k is a positive integer  
 

 

For example, if PCT0 is 90% at 120 months and q is 40%, then PCT* is 94% at 132 and 
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96.4% at age 144.  

Now suppose the actuary selects an age, tF, at which it is desired the development pattern 
will reach ultimate.   Set the multiplier, M, via: 

𝑀𝑀 =
1 − 𝑃𝑃𝑃𝑃𝑃𝑃∗(𝑡𝑡𝐼𝐼)

𝑃𝑃𝑃𝑃𝑃𝑃∗(𝑡𝑡𝐹𝐹) − 𝑃𝑃𝑃𝑃𝑃𝑃∗(𝑡𝑡𝐼𝐼)
 

(2.2) 

 Then set annual increments, INC, between tI and tF, via 

𝐼𝐼𝐼𝐼𝑃𝑃∗(𝑡𝑡𝐼𝐼 + 𝑘𝑘 ∙ 12) = 𝑃𝑃𝑃𝑃𝑃𝑃∗(𝑡𝑡𝐼𝐼 + 𝑘𝑘 ∙ 12) − 𝑃𝑃𝑃𝑃𝑃𝑃∗(𝑡𝑡𝐼𝐼 + (𝑘𝑘 − 1) ∙ 12) 
 

(2.3) 

𝐼𝐼𝐼𝐼𝑃𝑃(𝑡𝑡𝐼𝐼 + 𝑘𝑘 ∙ 12) = 𝑀𝑀 ∙ 𝐼𝐼𝐼𝐼𝑃𝑃∗(𝑡𝑡𝐼𝐼 + 𝑘𝑘 ∙ 12)  

The actuary should set initial and final ages and the value of q so that the increments appear 
reasonable.  An example is shown in Table 4. 

Table 4 Tail-tapering Example   

 
 
The initial machine generated percentages of ultimate, the un-normalized, and final 
normalized tail-tapered curves are shown in Graph 1.    
  

 Age Pct Ult
Initial 36 90%
Ultimate 72 100%

Decay Rate 40.0%
Multiplier 1.276

Age (Months) 36 48 60 72
P0 : Initial Machine PCT of ULT 90.0% 98.6% 95.4% 99.9%

P* : Decay Tapered PCT of ULT- 
Unnormalized

90.0% 94.0% 96.4% 97.8%

P: Decay Tapered PCT of ULT- 
Normalized 

90.0% 95.1% 98.2% 100.0%
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Graph 1 

 

 

3. CROSS-YEAR QUARTERLY SMOOTHING, NORMALIZATION, 
AND MONOTONICITY FIXING 

The next step in the SWIMON procedure is to obtain annual increments of development.  
This is done by taking differences between the percent of ultimate values.  After that 
preparatory step, each annual increment is divided equally to get initial increments by quarter.  
For example if the percent of ultimate goes from 80.0% to 90.0% over months 48 to 60, then 
the increment for year five is 10.0% and the initial set of quarterly increments for year five is 
2.5% for each quarter.   

The next step is to smooth these across all quarters starting with quarter five out to ultimate.  
In the example shown in Exhibit 1B, three point smoothing is done twice.  The initial annual 
evaluation LDF are taken from the example in Bloom’s paper. The smoothed increments are 
then renormalized to preserve the annual totals.  

Though the initial level increments will satisfy the inherited monotonicity property, the 
same cannot be guaranteed after they are smoothed and normalized.   So the resulting 
increments are examined and if any violation is found, it can be removed by averaging the 
increments for the year in which the violation occurs with the initial level increments for that 
year.   This is also shown in Exhibit 1B.    Overall, this procedure tempers the jump from one 
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year to the next and leads to quarterly increments that evolve more reasonably than the initial 
flat values, but which still balance to the desired annual totals. 

4. IMMATURE AGE IBNR EQUILIBRIUM STABILITY BACKFILL  

  To extrapolate back to quarters over the first year, the SWIMON approach is to backfill 
so as to achieve level IBNR each quarter in the equilibrium growth phase on a level book of 
business.  The key idea is the IBNR added from the new accident year must offset the sum of 
IBNR run-off for all prior accident years.   

The mathematical construction is begun with some general definitions.  Let IBNR%(t) be 
the IBNR percentage for the tth month of development of an accident year as a percent of 
ultimate loss and let IBNRQ(w,k) be the IBNR percentage for the wth prior accident year as 
of the kth calendar quarter after the end of year y-1.   Here k runs from 1 to 4.  For example 
IBNRQ(2,3) is the IBNR percentage as of the end of the third quarter for the second prior 
accident year.   Let w=0 correspond to the current accident year.  It follows that:  

IBNR Definitions (4.1) 

𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑄𝑄(0,𝑘𝑘) = 𝑘𝑘
4
− 𝑃𝑃𝑃𝑃𝑃𝑃(3𝑘𝑘)                                   for w = 0             

𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑄𝑄 (𝑤𝑤, 𝑘𝑘) = 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼% (12𝑤𝑤 + 3𝑘𝑘) = 1 − 𝑃𝑃𝑃𝑃𝑃𝑃(12𝑤𝑤 + 3𝑘𝑘) 

𝑓𝑓𝑓𝑓𝑓𝑓 𝑤𝑤 = 1, 2, … 

 

When w= 0, the “k/4” term is needed because it is the percent of ultimate exposure 
incurred as of the kth quarter under the usual uniformity assumptions for an accident year.  
For example, if k=3, and the percent of ultimate as of the end of the third quarter is 40%, then 
the IBNR% for the third quarter of the current accident year is 75%-40% = 35%.   The “k/4’ 
term gets replaced by unity when w = 1, 2, ….  For example, the IBNR for the second prior 
accident year as of the third quarter after year-end is the IBNR percentage at month 33 which 
is 100% minus the percent of ultimate at month 33.      

The quarterly IBNR run-off for the wth prior AY as of the kth subsequent quarter is defined 
as the difference in IBNR for the k-1st and kth quarters and denoted as R(IBNRQ)(w,k):    

IBNR Run-off (4.2) 
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𝐼𝐼(𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑄𝑄)(𝑤𝑤,𝑘𝑘) =  −∆𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑄𝑄 (𝑤𝑤, 𝑘𝑘) = 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑄𝑄( 𝑤𝑤, 𝑘𝑘 − 1) − 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑄𝑄(𝑤𝑤,𝑘𝑘)   
= 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼% �12 ∗ 𝑤𝑤 + 3(𝑘𝑘 − 1)� − 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼% (12𝑤𝑤 + 3𝑘𝑘)         

 

For example the third quarter IBNR Runoff percentage for the second prior accident year 
is the difference between the IBNR percentage at 30 (2*12+3*2) months and 33 (2*12 + 3*3) 
months. 

The next part of the exposition is to determine formulas for IBNR in equilibrium under 
uniform growth assumptions.  The equilibrium and level growth assumptions mean that 
ultimate losses are the same for all accident years and that IBNR totals can be obtained by 
summing the appropriate percentages.   Thus, to attain stability in equilibrium, the increase in 
IBNR for the current accident year must equal the total runoff for the prior years:      

 (4.3) 

∆𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑄𝑄(0,𝑘𝑘) =  𝐼𝐼(𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑄𝑄)(𝐴𝐴𝐴𝐴𝐴𝐴 𝑃𝑃𝑓𝑓𝑃𝑃𝑓𝑓𝑓𝑓 𝐴𝐴𝐴𝐴,𝑘𝑘) = �𝐼𝐼(𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑄𝑄)(𝑤𝑤,𝑘𝑘)
𝑤𝑤=1

   

𝑓𝑓𝑓𝑓𝑓𝑓 𝑘𝑘 = 1, 2, 3, 4 
 

 

 

Recall w=0 is used here to stand for the current accident year.  

Knowing the change in IBNR is enough to solve for the incremental percent of ultimate, 
INCQ, for the current accident year. Let ETD(k) be the percentage of ultimate loss exposure 
earned to date as of the kth quarter.  For an accident year, the ETD function is 25%, 50%, 
75%, and 100% for the first four quarters and 100% thereafter.  Then for k= 1, 2, 3, 4, it 
follows that: 

 (4.4) 

𝐼𝐼𝐼𝐼𝑃𝑃𝑄𝑄(𝑘𝑘) = 𝑃𝑃𝑃𝑃𝑃𝑃(3𝑘𝑘) − 𝑃𝑃𝑃𝑃𝑃𝑃(3(𝑘𝑘 − 1)) = ∆𝐸𝐸𝑃𝑃𝐸𝐸 − ∆𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼(0,𝑘𝑘)
 

 
 

 

  For example, if total prior year IBNR runoff for the second quarter is 14.0%, then the 
incremental increase in percent of ultimate in the second quarter is 11.0% (25%-14%).  

This method is shown in Exhibit 1C again using the example from Bloom’s paper and the 
mature year interpolates derived in Exhibit 1B.   The quarterly interpolated LDF are then 
grafted together to make one curve from age 3 months on to ultimate.  This is shown in 
Exhibit 1A 



Practical LDF Interpolation for Well-Behaved IBNR 
 

Casualty Actuarial Society E-Forum, Spring 2018   14 

As will be proved in the next section, under level growth model assumptions, the IBNR 
for immature periods of a uniform accident year must grow enough to offset the run-off for 
all prior years. 

5. EQUILIBRIUM IBNR STABILITY 

Many readers accept the concept of equilibrium IBNR stability because it is intuitively 
appealing.  Others might not be entirely convinced and perhaps wonder if some non-seasonal 
development pattern might nonetheless give rise to IBNR oscillations in equilibrium.  In this 
section it will be shown that under the usual uniformity assumptions and other reasonable 
assumptions, the IBNR must be stable in equilibrium under level growth.     

To set the groundwork, it is necessary to quickly summarize the general loss development 
pattern representation theory of Robbin and Homer [3] and an additional accident year result 
from Robbin [2].  Under slightly revised notation, let T be the underlying claim settlement lag 
random variable defined as the time elapsed from when a claim occurs until it settles.  Let A 
be a loss exposure bucketing random variable defined as the lag from the start of an exposure 
period until a loss occurs.   For an accident year under the usual assumptions, A is uniform on 
[0, 1].  The percent of ultimate for the underlying development variable T and the exposure 
bucketing variable A is given by the convolution integral: 

Robbin-Homer Convolution Formula for Percent of Ultimate (5.1) 

𝑃𝑃𝑃𝑃𝑃𝑃𝑇𝑇|𝐴𝐴(𝑡𝑡) = 𝐹𝐹𝐴𝐴+𝑇𝑇(𝑡𝑡) = � 𝑑𝑑𝑑𝑑 𝑓𝑓𝐴𝐴(𝑑𝑑) ∗ 𝐹𝐹𝑇𝑇(𝑡𝑡 − 𝑑𝑑)
𝑡𝑡

0
 

 

The integral representation assumes the random variables A and T are independent.  
Independence can be asserted based on the general grounds that the manner in which loss 
exposures are bucketed for purposes of accounting and reporting should not have any impact 
on how the claims are settled.    

For an accident year, Equation 5.1 can be expressed using formulas that include the limited 
expected value of T, denoted here as LEV: 

Robbin Accident Year Percent of Ultimate Formula Based on LEVs (5.2) 

𝑃𝑃𝑃𝑃𝑃𝑃𝑇𝑇|𝐴𝐴(𝑡𝑡) = �𝑡𝑡 − 𝐿𝐿𝐸𝐸𝐿𝐿(𝑡𝑡)                                 𝑓𝑓𝑓𝑓𝑓𝑓 𝑡𝑡 < 1
1 − (𝐿𝐿𝐸𝐸𝐿𝐿(𝑡𝑡) − 𝐿𝐿𝐸𝐸𝐿𝐿(𝑡𝑡 − 1)    𝑓𝑓𝑓𝑓𝑓𝑓 𝑡𝑡 > 1� 
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The proof is in Robbin [2].  Equation 5.2 provides a convenient way to generate accident 
year loss development curves given a parametric non-negative random variable such as a 
Pareto or exponential that has a tractable limited expected value formula.     

The new result in this paper is that Equation 5.2 implies IBNR stability in equilibrium. 

AY Equilibrium IBNR Stability (5.3)) 

𝐿𝐿𝐿𝐿𝑡𝑡 𝑎𝑎𝑎𝑎 𝐴𝐴𝐴𝐴 𝑑𝑑𝐿𝐿𝑑𝑑𝐿𝐿𝐴𝐴𝑓𝑓𝑑𝑑𝑑𝑑𝐿𝐿𝑎𝑎𝑡𝑡 𝑑𝑑𝑎𝑎𝑡𝑡𝑡𝑡𝐿𝐿𝑓𝑓𝑎𝑎,𝑃𝑃𝑃𝑃𝑃𝑃∗(𝑡𝑡), 𝑏𝑏𝐿𝐿 𝑔𝑔𝑃𝑃𝑑𝑑𝐿𝐿𝑎𝑎.  
 

𝐼𝐼𝑓𝑓  𝑡𝑡ℎ𝐿𝐿𝑓𝑓𝐿𝐿 𝐿𝐿𝑒𝑒𝑃𝑃𝑑𝑑𝑡𝑡𝑑𝑑 𝑎𝑎 𝑎𝑎𝑓𝑓𝑎𝑎
− 𝑎𝑎𝐿𝐿𝑔𝑔𝑎𝑎𝑡𝑡𝑃𝑃𝑑𝑑𝐿𝐿 𝑓𝑓𝑎𝑎𝑎𝑎𝑑𝑑𝑓𝑓𝑑𝑑 𝐴𝐴𝑎𝑎𝑔𝑔 𝑑𝑑𝑎𝑎𝑓𝑓𝑃𝑃𝑎𝑎𝑏𝑏𝐴𝐴𝐿𝐿,𝑃𝑃,𝑤𝑤𝑃𝑃𝑡𝑡ℎ 𝑓𝑓𝑃𝑃𝑎𝑎𝑃𝑃𝑡𝑡𝐿𝐿 𝑑𝑑𝐿𝐿𝑎𝑎𝑎𝑎  

𝑑𝑑𝑠𝑠𝑠𝑠ℎ 𝑡𝑡ℎ𝑎𝑎𝑡𝑡 
 𝑃𝑃𝑃𝑃𝑃𝑃∗(𝑡𝑡) =  𝑃𝑃𝑃𝑃𝑃𝑃𝑇𝑇|𝐴𝐴(𝑡𝑡), 

 
 𝑡𝑡ℎ𝐿𝐿𝑎𝑎 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 𝑃𝑃𝑑𝑑 𝑠𝑠𝑓𝑓𝑎𝑎𝑑𝑑𝑡𝑡𝑎𝑎𝑎𝑎𝑡𝑡 𝑃𝑃𝑎𝑎 𝐿𝐿𝑞𝑞𝑠𝑠𝑃𝑃𝐴𝐴𝑃𝑃𝐴𝐴𝑃𝑃𝑏𝑏𝑓𝑓𝑃𝑃𝑠𝑠𝑑𝑑 𝑃𝑃𝑎𝑎 𝑎𝑎  

𝑔𝑔𝑓𝑓𝑓𝑓𝑤𝑤𝑡𝑡ℎ 𝑑𝑑𝑓𝑓𝑑𝑑𝐿𝐿𝐴𝐴 𝑤𝑤𝑃𝑃𝑡𝑡ℎ  𝐴𝐴𝐿𝐿𝑑𝑑𝐿𝐿𝐴𝐴 𝑔𝑔𝑓𝑓𝑓𝑓𝑤𝑤𝑡𝑡ℎ. 
 

 

  Proof: The change in IBNR for quarter k is given using 4.2 as 

∆𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑄𝑄(𝑘𝑘) = �∆𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑄𝑄 (𝑤𝑤,𝑘𝑘)
𝑤𝑤=0 

 
(5.4) 

Expanding each of the change in IBNR terms for an accident year, A, with a fixed 
development distribution T in terms of the PCTs of ultimate and then substituting in 5.2, one 
finds for w=0: 

∆𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑄𝑄𝑇𝑇|𝐴𝐴(0, 𝑘𝑘) =
 1
4
−  �𝑃𝑃𝑃𝑃𝑃𝑃𝑇𝑇|𝐴𝐴(3𝑘𝑘) − 𝑃𝑃𝑃𝑃𝑃𝑃𝑇𝑇|𝐴𝐴�3(𝑘𝑘 − 1)��

=
1
4
− �

3𝑘𝑘
4
− 𝐸𝐸(3𝑘𝑘) − �

3(𝑘𝑘 − 1)
4

− 𝐸𝐸(3(𝑘𝑘 − 1))��

= �𝐸𝐸(3𝑘𝑘) − 𝐸𝐸�3(𝑘𝑘 − 1)�� 

 

(5.5) 

For w =1, 2, … 
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∆𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑄𝑄𝑇𝑇|𝐴𝐴(𝑤𝑤, 𝑘𝑘) = 

1 −  𝑃𝑃𝑃𝑃𝑃𝑃𝑇𝑇|𝐴𝐴(12𝑤𝑤 + 3𝑘𝑘) − �1 − 𝑃𝑃𝑃𝑃𝑃𝑃𝑇𝑇|𝐴𝐴�12𝑤𝑤 + 3(𝑘𝑘 − 1)��
= 𝐸𝐸(12(𝑤𝑤 − 1) + 3𝑘𝑘) − 𝐸𝐸(12𝑤𝑤 + 3𝑘𝑘)

−�𝐸𝐸(12(𝑤𝑤 − 1) + 3(𝑘𝑘 − 1)) − 𝐸𝐸�12𝑤𝑤 + 3(𝑘𝑘 − 1)�� 

 

(5.6) 

Plugging 5.5 and 5.6 back into 5.4, one finds that each new term in the sum offsets the 
residual of previous term and leaves a residual that is offset by the next term.   

For example with k=2, one has after 4 terms: 

∆𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑄𝑄(2) =
 𝐸𝐸(6) − 𝐸𝐸(3)

+𝐸𝐸(18) − 𝐸𝐸(6) − {𝐸𝐸(15) − 𝐸𝐸(3)} 
 

+𝐸𝐸(30) − 𝐸𝐸(18) − {𝐸𝐸(27) − 𝐸𝐸(15)}
 𝐸𝐸(42) − 𝐸𝐸(30) − {𝐸𝐸(39) − 𝐸𝐸(27)}

= 𝐸𝐸(42) − 𝐸𝐸(39)
 

(5.7) 

Assuming T has a finite mean, the difference in the limited expected values must go to 
zero. It follows the ∆IBNRQ(k)=0.  Therefore total IBNR does not change by quarter in 
equilibrium for an accident year pattern generated by A given T.    

So the entire suite of AY development curves that can be generated by Equation 5.2 are 
curves that will satisfy equilibrium IBNR stability.   

6.  COMPARISON OF LDF FOR DIFFERENT METHODS 

In this chapter, different interpolation methods are compared on the specific set of annual 
factors in the Bloom paper [1].  Interpolations from the SWIMON procedure are derived and 
compared with those derived from the IVP Method and Method of 12 as shown in Bloom [1] 
and the fitted Weibull Spliced IBNR model presented by Boor[2].  The derivation and results 
are shown in Exhibits 2 and 3 respectively.  Readers with questions about those methods 
should refer back to the Bloom and Boor papers. The resulting sets of ATA and ATU LDF 
are compared in Exhibit 4A and the corresponding percent of ultimate and incremental curves 
are shown in Exhibit 4B.  Graph 2 shows the ATA LDF.   
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Graph 2 

 
    

Since the original annual LDF are monotonically decreasing, the bounce in the 12/IVP and 
Weibull spliced curves indicate a violation of the inherited monotonicity property.   

7.  QUARTERLY INTERPOLATED LDF AND INDICATED IBNR 

Any set of quarterly interpolated LDF can be used to project IBNR Runoff by quarter for 
each prior accident year. Starting with the year-end prior accident year IBNR balances at the 
end of the prior calendar year as given, this chapter will show how the LDF can be used to 
compute IBNR run-off percentages or equivalent IBNR decay factors.   

7.1 IBNR Runoff by Accident Year 

Let INCQ(w,k) be the percentage increment of development during the kth quarter after 
year end for the wth prior AY. Let PCT(t) be the interpolated percent of ultimate pattern 
derived from the interpolated LDF, where t is expressed in months.  Then the increments are 
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given as:  

𝐼𝐼𝐼𝐼𝑃𝑃𝑄𝑄(𝑤𝑤, 𝑘𝑘) = 𝑃𝑃𝑃𝑃𝑃𝑃(12𝑤𝑤 + 3𝑘𝑘) − 𝑃𝑃𝑃𝑃𝑃𝑃(12𝑤𝑤 + 3(𝑘𝑘 − 1)) 
 

(7.1) 

The resulting IBNR run-off percentages, RUNQ(w,k), as factors against their respective 
year-end balances are given as:  

𝐼𝐼𝑅𝑅𝐼𝐼𝑄𝑄(𝑤𝑤,𝑘𝑘) =
𝐼𝐼𝐼𝐼𝑃𝑃𝑄𝑄(𝑤𝑤,𝑘𝑘)

1 − 𝑃𝑃𝑃𝑃𝑃𝑃(12𝑦𝑦)    
 

(7.2) 

The runoff can also be expressed as a series of decay ratios applied against the each prior 
IBNR balance.  

𝐸𝐸𝐼𝐼𝑄𝑄(𝑤𝑤,𝑘𝑘) = 1 −
𝐼𝐼𝐼𝐼𝑃𝑃𝑄𝑄(𝑤𝑤, 𝑘𝑘)

𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑄𝑄(𝑤𝑤,𝑘𝑘 − 1)    
 

(7.3) 

For example, if IBNR for the second prior accident year was 48% of ultimate as of year- 
end and 40% of ultimate for the as of the end of the second quarter of the current calendar 
year and the increment during the third quarter was 4.0%, then the Run-off percentage would 
8.25% (=4/48) and the Decay Ratio for the third quarter would be 90% (=1-4/40).  

Exhibit 5 shows IBNR Runoff tables that result from applying the SWIMON interpolates 
of the Bloom annual LDF to a set of sample year-ending IBNR balances.  These balances are 
not derived from any equilibrium condition, but are instead meant to typify a real-world 
situation.  Nonetheless, using the SWIMON interpolates, the resulting IBNR Runoff schedule 
evolves in a reasonable fashion.   

8.  EQUILIBRIUM IBNR COMPARISON 

In this section Equilibrium IBNR percentages by quarter are computed under the 
assumption of level growth and based on the three different methods of interpolation applied 
to the annual factors from Bloom’s example.   Formulas from Chapters 4 and 5 are used and 
all values are expressed as percentages of ultimate loss for an accident year.  Results are shown 
in Exhibit 6 for the SWIMON method, in Exhibit 7 for the 12/IVP procedure, and in Exhibit 
8 for the Weibull Splices approach.   The “B” sections of these exhibits show the computation 
of the change in IBNR by quarter based on the interpolated factors.  The “A” sections show 
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the change in IBNR by accident year and quarter for five subsequent quarters.  The “A” 
sections have prior year and current year totals and the grand totals for each quarter.  A 
summary comparison is provided in Exhibit 9.  

 Exhibit 9 shows that the SWIMON method is the only one to satisfy Equilibrium IBNR 
stability.  It also shows that the SWIMON and the Weibull Splicing methods satisfy the 
monotonic decreasing total prior year IBNR runoff property.  

9. CONCLUSION  

This paper has made the initial effort in defining some basic properties that are desirable 
in an LDF interpolation routine.  It has gone beyond the purely mathematical aspects of 
general interpolation to focus on the particular qualities of LDF interpolation.  It has 
documented the widespread actuarial practice of producing quarterly IBNR run-off schedules 
and highlighted the importance of examining the IBNR run-off projections out to five quarters 
at least.  

It has demonstrated one set of simple tools for interpolating LDF.  The tail-tapering is 
useful in its own right.  The cross-year averaging of increments of development with annual 
normalization and monotonicity adjustment combines a series of mathematically basic steps 
to produce a robust result.  The strategy of cross-year smoothing, of not looking at each year 
in isolation, is an advance over splicing.  Even though the back-filling for level equilibrium 
IBNR is computationally straightforward, it has a stronger conceptual foundation than various 
numerical extension routines and it eliminates unintended, algorithmic-induced seasonality.  

In conclusion, it has been argued in this paper that LDF interpolation should be done on 
a whole curve basis with focus on the behavior of the resulting IBNR projections.  Other 
approaches that examine years in isolation or ignore IBNR evolution are effectively missing 
one of the key reasons why actuaries interpolate LDF in the first place.  This paper was written 
to address the challenge faced by reserving actuaries in updating and projecting IBNR each 
quarter.  Such a practical focus has led to a better understanding of the conceptual attributes 
of desirable interpolation routines. It is hoped others will advance this line of thinking further 
perhaps by proposing more sophisticated sets of properties interpolates should satisfy or by 
developing more sophisticated set of tools to produce even better-behaved interpolations.   
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Appendix A – Different Representations of Loss Development  
 

One of the practical observations offered in this paper is that there is useful flexibility to 
be gained in keeping on hand several equivalent ways to describe loss development.  The 
actuary can then adopt whatever perspective is most convenient for solving a particular 
problem.  The different representations are: 

• age-to-age factors 

• age-to-ultimate factors 

• percent of ultimate values 

• incremental percentages = IBNR  takedown schedules  

• IBNR and tail decay rates 

For t = 1, 2, 3, …,   , let X(t) be the incremental amount of loss development in the tth 

period for one particular exposure period and let S(t) be the cumulative development so that: 

S(t) = X(1) + X(2) + …, + X(t) 

 Define the Age-to-Age factor: 

ATA(t) = S(t+1)/S(t). 

Let X(t) = B*INC(t) and S(t) = B* PCT(t) where  

INC(t) = PCT(t) - PCT(t-1). 

Also define the Age-to-Ultimate factor 

ATU(t) = 1/PCT(t). 

In this construction, B is the ultimate loss, PCT is the percent of ultimate, and INC is the 
increment of development. Note that B, S, X, PCT, INC, ATA, and ATU are all random 
variables.  

Define random variables, Q(1), Q(2), … ,Q(t), where 0< Q(t) < 1, via: 

𝑄𝑄(1) =  𝑃𝑃𝑃𝑃𝑃𝑃(1) Eq(1) 

𝑄𝑄(𝑡𝑡 + 1) =
𝐼𝐼𝐼𝐼𝑃𝑃(𝑡𝑡 + 1)
1 − 𝑃𝑃𝑃𝑃𝑃𝑃(𝑡𝑡)
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The Q random variables are called the tail decay rate random variables.  Q(t) is called the 
decay rate and is interpreted as the fraction of the loss development tail remaining after time, 
t-1, that will be reported during the tth period.  If one has a set of decay rate variables, the 
process can be run in reverse to generate a percent of ultimate pattern.   

 Eq (2) 

𝑃𝑃𝑃𝑃𝑃𝑃(𝑡𝑡) = 1 −  �(1 − 𝑄𝑄(𝑑𝑑))
𝑠𝑠=1

 

 

(2.1) 

𝐼𝐼𝐼𝐼𝑃𝑃(𝑡𝑡) = 𝑄𝑄(𝑡𝑡) ∙  �(1 − 𝑄𝑄(𝑑𝑑))
𝑠𝑠=1

 (2.2) 

For example, if Q(1) is 20% and Q(2) is 10%, then PCT(2) = 1-(.8)(.9) = 28% and INC(2) 
= .10*(1-.8) = 8%. 
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EXHIBITS 

 

 
  

Glossary of Exhibits

1 Interpolation: SWIMON
1A Full curve
1B Smoothing Increments for Mature AY
1C Early Age Equilibrium Backfill

2 12/IVP Interpolation
3 Weibull Splicing
4 Interpolation Methods Comparison

4A ATA and ATU LDF
4B PCT ULT and Increments

5 IBNR Runoff under SWIMON
6 Equilibrium IBNR: SWIMON
7 Equilibrium IBNR: 12/IVP
8 Equilibrium IBNR: Weibull Spliced
9 Equilibrium IBNR Comparison
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Exhibit 1A 

 
 
  

Quarterly LDF Interpolation 
SWIMON

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)

Age Interval
AY ATA 

LDF
AY ATU 

LDF
AY PCT 

ULT
AY Increm

 by Yr
AY Increm 
Interp by Q

AY PCT 
ULT

AY ATA 
LDF

AY ATU 
LDF

ITD 
ATU LDF

From Ex 1C
Running sum 

of (7)

Ratios of 
consec rows of 

(8) 1/(9)

ITD Expos 
as % of 

AY*(10)

0 0.00%
3 0 - 3 9.38% 9.38% 2.268 10.661 2.665
6 3 - 6 11.90% 21.28% 1.648 4.700 2.350
9 6 - 9 13.79% 35.06% 1.429 2.852 2.139

12 9 - 12 1.500 1.996 50.11% 50.11% 15.04% 50.11% 1.156 1.996 1.996
15 12 - 15 7.83% 57.94% 1.113 1.726 1.726
18 15 - 18 6.52% 64.46% 1.087 1.551 1.551
21 18 - 21 5.61% 70.07% 1.073 1.427 1.427
24 21 - 24 1.200 1.331 75.16% 25.05% 5.09% 75.16% 1.061 1.331 1.331
27 24 - 27 4.61% 79.77% 1.051 1.254 1.254
30 27 - 30 4.05% 83.82% 1.041 1.193 1.193
33 30 - 33 3.48% 87.30% 1.033 1.145 1.145
36 33 - 36 1.050 1.109 90.19% 15.03% 2.89% 90.19% 1.018 1.109 1.109
39 36 - 39 1.66% 91.85% 1.013 1.089 1.089
42 39 - 42 1.18% 93.03% 1.010 1.075 1.075
45 42 - 45 0.89% 93.91% 1.008 1.065 1.065
48 45 - 48 1.025 1.056 94.70% 4.51% 0.79% 94.70% 1.008 1.056 1.056
51 48 - 51 0.71% 95.41% 1.006 1.048 1.048
54 51 - 54 0.60% 96.02% 1.006 1.041 1.041
57 54 - 57 0.54% 96.55% 1.005 1.036 1.036
60 57 - 60 1.020 1.030 97.07% 2.37% 0.51% 97.07% 1.005 1.030 1.030
63 60 - 63 0.51% 97.58% 1.005 1.025 1.025
66 63 - 66 0.50% 98.08% 1.005 1.020 1.020
69 66 - 69 0.48% 98.56% 1.005 1.015 1.015
72 69 - 72 1.010 1.010 99.01% 1.94% 0.45% 99.01% 1.003 1.010 1.010
75 72 - 75 0.30% 99.31% 1.002 1.007 1.007
78 75 - 78 0.25% 99.55% 1.002 1.004 1.004
81 78 - 81 0.22% 99.78% 1.002 1.002 1.002
84 81 - 84 1.000 1.000 100.00% 0.99% 0.22% 100.00% 1.000 1.000 1.000
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Exhibit 1B 

 

Quarterly LDF Interpolation 
Normalized Cross-Year Smoothing of AY Increments 
Fixed to Inherit Monotonicity  

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)

Age Interval
AY ATA 

LDF
AY ATU 

LDF
AY PCT 

ULT

AY 
Increm 

by Yr

Initial AY 
Increm by 

Qtr 

AY 
Increm 

Smooth 1

AY 
Increm 

Smooth 2

Norm 
AY 

Increm

Mono 
Fixed 

Norm AY 
Increm

By year, 
(6)/4 

3-pt smooth 
of (7)

3-pt 
smooth of 

(8)

Normaliz
e by year 
to match 

(10) or  
Average 

(10) and (7)
0 0.00%
3 0 - 3 12.53%
6 3 - 6 12.53%
9 6 - 9 12.53% 12.53%
12 9 - 12 1.500 1.996 50.11% 50.11% 12.53% 10.44% 10.44%
15 12 - 15 6.26% 8.35% 8.35% 7.83% 7.05%
18 15 - 18 6.26% 6.26% 6.96% 6.52% 6.39%
21 18 - 21 6.26% 6.26% 5.98% 5.61% 5.94%
24 21 - 24 1.200 1.331 75.16% 25.05% 6.26% 5.43% 5.43% 5.09% 5.68%
27 24 - 27 3.76% 4.59% 4.59% 4.61% 4.61%
30 27 - 30 3.76% 3.76% 4.04% 4.05% 4.05%
33 30 - 33 3.76% 3.76% 3.47% 3.48% 3.48%
36 33 - 36 1.050 1.109 90.19% 15.03% 3.76% 2.88% 2.88% 2.89% 2.89%
39 36 - 39 1.13% 2.00% 2.00% 1.66% 1.66%
42 39 - 42 1.13% 1.13% 1.42% 1.18% 1.18%
45 42 - 45 1.13% 1.13% 1.07% 0.89% 0.89%
48 45 - 48 1.025 1.056 94.70% 4.51% 1.13% 0.95% 0.95% 0.79% 0.79%
51 48 - 51 0.59% 0.77% 0.77% 0.71% 0.71%
54 51 - 54 0.59% 0.59% 0.65% 0.60% 0.60%
57 54 - 57 0.59% 0.59% 0.58% 0.54% 0.54%
60 57 - 60 1.020 1.030 97.07% 2.37% 0.59% 0.56% 0.56% 0.51% 0.51%
63 60 - 63 0.49% 0.52% 0.52% 0.54% 0.51%
66 63 - 66 0.49% 0.49% 0.50% 0.51% 0.50%
69 66 - 69 0.49% 0.49% 0.46% 0.47% 0.48%
72 69 - 72 1.010 1.010 99.01% 1.94% 0.49% 0.41% 0.41% 0.42% 0.45%
75 72 - 75 0.25% 0.33% 0.33% 0.30% 0.30%
78 75 - 78 0.25% 0.25% 0.27% 0.25% 0.25%
81 78 - 81 0.25% 0.25% 0.25% 0.22% 0.22%
84 81 - 84 1.000 1.000 100.00% 0.99% 0.25% 0.25% 0.25% 0.22% 0.22%
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Exhibit 1C 

 

Quarterly LDF Interpolation 
Backfill for Equilibruim IBNR Stability

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

Age Interval

AY Interp 
Qtrly Increm 
after 12 mos 

Change in 
IBNR

Cal Q in 
Year y

Prior AY  Total 
Change in 

Equil IBNR

AY Loss 
Exposure 

ITD

Change
 in 

Exposure

Change
 in Equil 

IBNR AY Increm

-(3)
min((1),12)/

12
Diff of consec 

rows of (7) -(6) (8)-(9)

0 0.00%
3 0 - 3 1 -15.62% 25.00% 25.00% 15.62% 9.38%
6 3 - 6 2 -13.10% 50.00% 25.00% 13.10% 11.90%
9 6 - 9 3 -11.21% 75.00% 25.00% 11.21% 13.79%

12 9 - 12 4 -9.96% 100.00% 25.00% 9.96% 15.04%
15 12 - 15 7.83% -7.83% 100.00% 0.00% -7.83% 7.83%
18 15 - 18 6.52% -6.52% 100.00% 0.00% -6.52% 6.52%
21 18 - 21 5.61% -5.61% 100.00% 0.00% -5.61% 5.61%
24 21 - 24 5.09% -5.09% 100.00% 0.00% -5.09% 5.09%
27 24 - 27 4.61% -4.61% 100.00% 0.00% -4.61% 4.61%
30 27 - 30 4.05% -4.05% 100.00% 0.00% -4.05% 4.05%
33 30 - 33 3.48% -3.48% 100.00% 0.00% -3.48% 3.48%
36 33 - 36 2.89% -2.89% 100.00% 0.00% -2.89% 2.89%
39 36 - 39 1.66% -1.66% 100.00% 0.00% -1.66% 1.66%
42 39 - 42 1.18% -1.18% 100.00% 0.00% -1.18% 1.18%
45 42 - 45 0.89% -0.89% 100.00% 0.00% -0.89% 0.89%
48 45 - 48 0.79% -0.79% 100.00% 0.00% -0.79% 0.79%
51 48 - 51 0.71% -0.71% 100.00% 0.00% -0.71% 0.71%
54 51 - 54 0.60% -0.60% 100.00% 0.00% -0.60% 0.60%
57 54 - 57 0.54% -0.54% 100.00% 0.00% -0.54% 0.54%
60 57 - 60 0.51% -0.51% 100.00% 0.00% -0.51% 0.51%
63 60 - 63 0.51% -0.51% 100.00% 0.00% -0.51% 0.51%
66 63 - 66 0.50% -0.50% 100.00% 0.00% -0.50% 0.50%
69 66 - 69 0.48% -0.48% 100.00% 0.00% -0.48% 0.48%
72 69 - 72 0.45% -0.45% 100.00% 0.00% -0.45% 0.45%
75 72 - 75 0.30% -0.30% 100.00% 0.00% -0.30% 0.30%
78 75 - 78 0.25% -0.25% 100.00% 0.00% -0.25% 0.25%
81 78 - 81 0.22% -0.22% 100.00% 0.00% -0.22% 0.22%
84 81 - 84 0.22% -0.22% 100.00% 0.00% -0.22% 0.22%
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Exhibit 2 

 

 
 

Quarterly LDF Interpolation Early Age Plus 12 Method
IVP and Method of 12 Mature Age IVP Decay for each year

ln(ATU-1) = ln(a)+ b*ln(1/T)  

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)

Age

AY 
ATA 
LDF

AY 
ATU 
LDF

AY 
PCT 
ULT

Exposure 
(ETD) as % 
of AY ULT Interval

AY ATU 
LDF

AY PCT 
ULT

AY ATA 
LDF

1/(4)

0 0.00% 0.00% 0 - 3 0.00%
3 25.00% 3 - 6 13.404   7.46% 2.377    
6 50.00% 6 - 9 5.639     17.73% 1.783    
9 75.00% 9 - 12 3.163     31.62% 1.585    

12 1.500 1.996 50.11% 100.00% 12 - 15 1.996     50.11% 1.175    
15 100.00% 15 - 18 a 51.9 1.698     58.89% 1.115    
18 100.00% 18 - 21 b 1.6 1.522     65.69% 1.081    
21 100.00% 21 - 24 1.409     70.99% 1.059    
24 1.200 1.331 75.16% 100.00% 24 - 27 1.331     75.16% 1.074    
27 100.00% 27 - 30 a 2008.5 1.239     80.69% 1.051    
30 100.00% 30 - 33 b 2.7 1.179     84.80% 1.036    
33 100.00% 33 - 36 1.138     87.87% 1.026    
36 1.050 1.109 90.19% 100.00% 36 - 39 1.109     90.19% 1.017    
39 100.00% 39 - 42 a 428.0 1.090     91.71% 1.013    
42 100.00% 42 - 45 b 2.3 1.076     92.92% 1.011    
45 100.00% 45 - 48 1.065     93.90% 1.009    
48 1.025 1.056 94.70% 100.00% 48 - 51 1.056     94.70% 1.008    
51 100.00% 51 - 54 a 2479.2 1.047     95.48% 1.007    
54 100.00% 54 - 57 b 2.8 1.040     96.12% 1.005    
57 100.00% 57 - 60 1.035     96.64% 1.004    
60 1.020 1.030 97.07% 100.00% 60 - 63 1.030     97.07% 1.008    
63 100.00% 63 - 66 a 1.8E+09 1.022     97.80% 1.005    
66 100.00% 66 - 69 b 6.1 1.017     98.33% 1.004    
69 100.00% 69 - 72 1.013     98.72% 1.003    
72 1.010 1.010 99.01% 100.00% 72 - 75 Linear ATU 1.010     99.01% 1.002    
75 100.00% 75 - 78 a ###### 1.008     99.26% 1.002    
78 100.00% 78 - 81 b 134.4 1.005     99.50% 1.002    
81 100.00% 81 - 84 1.003     99.75% 1.003    
84 1.000 1.000 #### 100.00% 84 - 1.000     100.00% 1.000    

Plus 12 Method
{[ATU12)]^(12+1
2+t)/12}/ETD
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Exhibit 3 

 

  

Quarterly LDF Interpolation Weibull Fit age 12-60 a (1.7469)  
Weibull Splicing IBNR= exp(-c*T^b) b 0.7517   

T = Avg Maturity C= exp(a) 0.1743   

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13)

Age

Avg 
Loss 

Maturity
AY ATA 

LDF
AY ATU 

LDF IBNR
ln(-

ln(IBNR))
ln(Maturity

)

Weibull 
Fit IBNR 

Curve

Weibull 
IBNR 
Interp

PCT 
ULT for 
Maturity

ATU 
LDF for 
Maturity

AY 
ATU 
LDF

AY ATA  
LDF

1-1/(4) ln(-ln((5))) ln((2)) Scale (8) 
by year to 

hit (5) 

1-(9) 1/(10) (11)*min
(1,12/(1

))

(12)/(12) 
next row

0 0.0 100.0% 100.0% 100.0% 0.0%
3 1.5 78.9% 78.4% 21.6% 4.629    ##### 3.119
6 3.0 67.2% 66.3% 33.7% 2.968    5.937 1.906
9 4.5 58.3% 57.2% 42.8% 2.336    3.115 1.561
12 6.0 1.500 1.996 49.89% (0.363)    1.792       51.2% 49.9% 50.1% 1.996    1.996 1.184
15 9.0 40.3% 40.7% 59.3% 1.685    1.685 1.114
18 12.0 32.4% 33.9% 66.1% 1.514    1.514 1.077
21 15.0 26.3% 28.8% 71.2% 1.405    1.405 1.056
24 18.0 1.200 1.331 24.84% 0.331     2.890       21.6% 24.8% 75.2% 1.331    1.331 1.067
27 21.0 17.9% 19.8% 80.2% 1.247    1.247 1.050
30 24.0 15.0% 15.8% 84.2% 1.187    1.187 1.039
33 27.0 12.5% 12.5% 87.5% 1.143    1.143 1.031
36 30.0 1.050 1.109 9.81% 0.842     3.401       10.6% 9.8% 90.2% 1.109    1.109 1.016
39 33.0 8.9% 8.4% 91.6% 1.091    1.091 1.013
42 36.0 7.6% 7.1% 92.9% 1.077    1.077 1.011
45 39.0 6.5% 6.1% 93.9% 1.065    1.065 1.009
48 42.0 1.025 1.056 5.30% 1.078     3.738       5.5% 5.3% 94.7% 1.056    1.056 1.008
51 45.0 4.7% 4.6% 95.4% 1.048    1.048 1.007
54 48.0 4.1% 3.9% 96.1% 1.041    1.041 1.006
57 51.0 3.5% 3.4% 96.6% 1.035    1.035 1.005
60 54.0 1.020 1.030 2.93% 1.261     3.989       3.0% 2.9% 97.1% 1.030    1.030 1.006
63 57.0 2.6% 2.3% 97.7% 1.024    1.024 1.005
66 60.0 2.3% 1.8% 98.2% 1.018    1.018 1.005
69 63.0 2.0% 1.4% 98.6% 1.014    1.014 1.004
72 66.0 1.010 1.010 0.99% 1.529     4.190       1.7% 1.0% 99.0% 1.010    1.010 1.003
75 69.0 1.5% 0.7% 99.3% 1.007    1.007 1.003
78 72.0 1.3% 0.4% 99.6% 1.004    1.004 1.002
81 75.0 1.1% 0.2% 99.8% 1.002    1.002 1.002
84 78.0 1.000 1.000 0.00% 1.0% 0.0% 100.0% 1.000    1.000 1.000
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Exhibit 4A 

 

Interpolation Methods Comparison
ATU and ATA

Age Interval

Original 
ATU 
LDF SWIM

12-12 and 
IVF 

Method 
Weibull 
Splicing SWIM

12-12 
and IVF 
Method 

Weibull 
Splicing

0
3 0 - 3 10.661 13.404 18.518 2.268 2.377 3.119
6 3 - 6 4.700 5.639 5.937 1.648 1.783 1.906
9 6 - 9 2.852 3.163 3.115 1.429 1.585 1.561
12 9 - 12 1.996 1.996 1.996 1.996 1.156 1.175 1.184
15 12 - 15 1.726 1.698 1.685 1.113 1.115 1.114
18 15 - 18 1.551 1.522 1.514 1.087 1.081 1.077
21 18 - 21 1.427 1.409 1.405 1.073 1.059 1.056
24 21 - 24 1.331 1.331 1.331 1.331 1.061 1.074 1.067
27 24 - 27 1.254 1.239 1.247 1.051 1.051 1.050
30 27 - 30 1.193 1.179 1.187 1.041 1.036 1.039
33 30 - 33 1.145 1.138 1.143 1.033 1.026 1.031
36 33 - 36 1.109 1.109 1.109 1.109 1.018 1.017 1.016
39 36 - 39 1.089 1.090 1.091 1.013 1.013 1.013
42 39 - 42 1.075 1.076 1.077 1.010 1.011 1.011
45 42 - 45 1.065 1.065 1.065 1.008 1.009 1.009
48 45 - 48 1.056 1.056 1.056 1.056 1.008 1.008 1.008
51 48 - 51 1.048 1.047 1.048 1.006 1.007 1.007
54 51 - 54 1.041 1.040 1.041 1.006 1.005 1.006
57 54 - 57 1.036 1.035 1.035 1.005 1.004 1.005
60 57 - 60 1.030 1.030 1.030 1.030 1.005 1.008 1.006
63 60 - 63 1.025 1.022 1.024 1.005 1.005 1.005
66 63 - 66 1.020 1.017 1.018 1.005 1.004 1.005
69 66 - 69 1.015 1.013 1.014 1.005 1.003 1.004
72 69 - 72 1.010 1.010 1.010 1.010 1.003 1.002 1.003
75 72 - 75 1.007 1.008 1.007 1.002 1.002 1.003
78 75 - 78 1.004 1.005 1.004 1.002 1.002 1.002
81 78 - 81 1.002 1.003 1.002 1.002 1.003 1.002
84 81 - 84 1.000 1.000 1.000 1.000 1.000 1.000 1.000

AY ATU LDF AY ATA LDF
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Exhibit 4B  

 
 

Interplation Methods Comparison
PCT ULT and Increments

Age Interval

Original 
AY 

PCT 
ULT SWIM

12-12 
and IVF 
Method 

Weibull 
Splicing SWIM

12-12 
and IVF 
Method 

Weibull 
Splicing

0
3 0 - 3 9.4% 7.5% 5.4% 9.4% 7.5% 5.4%
6 3 - 6 21.3% 17.7% 16.8% 11.9% 10.3% 11.4%
9 6 - 9 35.1% 31.6% 32.1% 13.8% 13.9% 15.3%
12 9 - 12 50.1% 50.1% 50.1% 50.1% 15.0% 18.5% 18.0%
15 12 - 15 57.9% 58.9% 59.3% 7.8% 8.8% 9.2%
18 15 - 18 64.5% 65.7% 66.1% 6.5% 6.8% 6.7%
21 18 - 21 70.1% 71.0% 71.2% 5.6% 5.3% 5.1%
24 21 - 24 75.2% 75.2% 75.2% 75.2% 5.1% 4.2% 4.0%
27 24 - 27 79.8% 80.7% 80.2% 4.6% 5.5% 5.0%
30 27 - 30 83.8% 84.8% 84.2% 4.1% 4.1% 4.0%
33 30 - 33 87.3% 87.9% 87.5% 3.5% 3.1% 3.3%
36 33 - 36 90.2% 90.2% 90.2% 90.2% 2.9% 2.3% 2.7%
39 36 - 39 91.9% 91.7% 91.6% 1.7% 1.5% 1.5%
42 39 - 42 93.0% 92.9% 92.9% 1.2% 1.2% 1.2%
45 42 - 45 93.9% 93.9% 93.9% 0.9% 1.0% 1.0%
48 45 - 48 94.7% 94.7% 94.7% 94.7% 0.8% 0.8% 0.8%
51 48 - 51 95.4% 95.5% 95.4% 0.7% 0.8% 0.7%
54 51 - 54 96.0% 96.1% 96.1% 0.6% 0.6% 0.6%
57 54 - 57 96.6% 96.6% 96.6% 0.5% 0.5% 0.5%
60 57 - 60 97.1% 97.1% 97.1% 97.1% 0.5% 0.4% 0.5%
63 60 - 63 97.6% 97.8% 97.7% 0.5% 0.7% 0.6%
66 63 - 66 98.1% 98.3% 98.2% 0.5% 0.5% 0.5%
69 66 - 69 98.6% 98.7% 98.6% 0.5% 0.4% 0.4%
72 69 - 72 99.0% 99.0% 99.0% 99.0% 0.5% 0.3% 0.4%
75 72 - 75 99.3% 99.3% 99.3% 0.3% 0.2% 0.3%
78 75 - 78 99.6% 99.5% 99.6% 0.2% 0.2% 0.3%
81 78 - 81 99.8% 99.8% 99.8% 0.2% 0.2% 0.2%
84 81 - 84 100.0% 100.0% 100.0% 100.0% 0.2% 0.2% 0.2%

AY PCT ULT AY Increments
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Exhibit 5A 

 

 

AY IBNR Run-off by Q
 LDF Interpolation: SWIMON

AY

Year 
end 

IBNR Q1 Q2 Q3 Q4 Q5

y
y-1 800 674     570     480     398     324     
y-2 610 497     397     312     241     200     
y-3 320 266     227     199     173     150     
y-4 500 433     376     325     277     228     
y-5 80 66       52       39       27       19       
y-6 10 7         5         2         -      -      

Total Prior AY 2,320   1,943   1,627   1,357   1,116   921     

IBNR Run-off
AY Q1 Q2 Q3 Q4 Q5
y
y-1 126     105     90       82       74       
y-2 113     99       85       71       41       
y-3 54       38       29       26       23       
y-4 67       57       51       49       48       
y-5 14       14       13       12       8         
y-6 3         3         2         2         -      

Total Prior AY 377     315     270     241     194     
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Exhibit 5B 

 
 

IBNR Runoff Calculations
 LDF Interpolation: SWIMON

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)

Age Interval

Interp 
ATA 
LDF

ATU 
LDF

AY PCT 
ULT

Tail of  
ULT 
Loss Increment

IBNR 
Runoff 
Factor

Exposure 
to Date 

(ETD)%
ETD 

IBNR%

Change in 
IBNR (% 
AY ULT)

Running 
back 

product of  
(3) 1/(4) 1-(5)

Row Dif f s 
of  (6) (7)/(6)

AY 
Uniform 

Expos (9)-(5)

0 0.00% 100.00% 0.00%
3 0 - 3 2.268 10.661 9.38% 90.62% 9.38% 25.00% 15.62% 15.62%
6 3 - 6 1.648 4.700 21.28% 78.72% 11.90% 50.00% 28.72% 13.10%
9 6 - 9 1.429 2.852 35.06% 64.94% 13.79% 75.00% 39.94% 11.21%

12 9 - 12 1.156 1.996 50.11% 49.89% 15.04% 100.00% 49.89% 9.96%
15 12 - 15 1.113 1.726 57.94% 42.06% 7.83% 15.69% 100.00% 42.06% -7.83%
18 15 - 18 1.087 1.551 64.46% 35.54% 6.52% 15.51% 100.00% 35.54% -6.52%
21 18 - 21 1.073 1.427 70.07% 29.93% 5.61% 15.79% 100.00% 29.93% -5.61%
24 21 - 24 1.061 1.331 75.16% 24.84% 5.09% 17.00% 100.00% 24.84% -5.09%
27 24 - 27 1.051 1.254 79.77% 20.23% 4.61% 18.56% 100.00% 20.23% -4.61%
30 27 - 30 1.041 1.193 83.82% 16.18% 4.05% 20.03% 100.00% 16.18% -4.05%
33 30 - 33 1.033 1.145 87.30% 12.70% 3.48% 21.50% 100.00% 12.70% -3.48%
36 33 - 36 1.018 1.109 90.19% 9.81% 2.89% 22.77% 100.00% 9.81% -2.89%
39 36 - 39 1.013 1.089 91.85% 8.15% 1.66% 16.94% 100.00% 8.15% -1.66%
42 39 - 42 1.010 1.075 93.03% 6.97% 1.18% 14.44% 100.00% 6.97% -1.18%
45 42 - 45 1.008 1.065 93.91% 6.09% 0.89% 12.70% 100.00% 6.09% -0.89%
48 45 - 48 1.008 1.056 94.70% 5.30% 0.79% 12.92% 100.00% 5.30% -0.79%
51 48 - 51 1.006 1.048 95.41% 4.59% 0.71% 13.45% 100.00% 4.59% -0.71%
54 51 - 54 1.006 1.041 96.02% 3.98% 0.60% 13.15% 100.00% 3.98% -0.60%
57 54 - 57 1.005 1.036 96.55% 3.45% 0.54% 13.48% 100.00% 3.45% -0.54%
60 57 - 60 1.005 1.030 97.07% 2.93% 0.51% 14.94% 100.00% 2.93% -0.51%
63 60 - 63 1.005 1.025 97.58% 2.42% 0.51% 17.44% 100.00% 2.42% -0.51%
66 63 - 66 1.005 1.020 98.08% 1.92% 0.50% 20.62% 100.00% 1.92% -0.50%
69 66 - 69 1.005 1.015 98.56% 1.44% 0.48% 24.94% 100.00% 1.44% -0.48%
72 69 - 72 1.003 1.010 99.01% 0.99% 0.45% 31.34% 100.00% 0.99% -0.45%
75 72 - 75 1.002 1.007 99.31% 0.69% 0.30% 29.82% 100.00% 0.69% -0.30%
78 75 - 78 1.002 1.004 99.55% 0.45% 0.25% 35.62% 100.00% 0.45% -0.25%
81 78 - 81 1.002 1.002 99.78% 0.22% 0.22% 50.00% 100.00% 0.22% -0.22%
84 81 - 84 1.000 1.000 100.00% 0.00% 0.22% 100.00% 100.00% 0.00% -0.22%
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Exhibit 6A 

 

 

IBNR Change Projection in Equilibrium Assuming Level Growth 
Interpolation:  SWIMON

AY Q1 Q2 Q3 Q4 Q5
y 15.62% 13.10% 11.21% 9.96% -7.83%
y-1 -7.83% -6.52% -5.61% -5.09% -4.61%
y-2 -4.61% -4.05% -3.48% -2.89% -1.66%
y-3 -1.66% -1.18% -0.89% -0.79% -0.71%
y-4 -0.71% -0.60% -0.54% -0.51% -0.51%
y-5 -0.51% -0.50% -0.48% -0.45% -0.30%
y-6 -0.30% -0.25% -0.22% -0.22%

AY y 15.62% 13.10% 11.21% 9.96% -7.83%
All Prior -15.62% -13.10% -11.21% -9.96% -7.79%

Total 0.00% 0.00% 0.00% 0.00% -15.62%

Change in IBNR Projected by Q



Practical LDF Interpolation for Well-Behaved IBNR 
 

Casualty Actuarial Society E-Forum, Spring 2018   33 

Exhibit 6B 

 

Calculation of IBNR Change Assuming Level Equilibrium
Interpolation:  SWIMON

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)

Age Interval

Interp 
ATA 
LDF

ATU 
LDF

AY PCT 
ULT

Tail of  
AY ULT 

Loss Increm

Expos to 
Date (ETD) 

%
Change in 

ETD

BNR  
Tail of 

Loss ETD 
as % of 
AY Ult

Change in 
IBNR

Running 
back 

product of 
(3) 1/(4) 1-(5)

Row Diffs 
of (6) min(12,(1))/12

Row Diffs 
of (8) (8)-(5) (9)-(7)

0 0.00% 100.00% 0.00%
3 0 - 3 2.268 10.661 9.38% 90.62% 9.38% 25.00% 25.00% 15.62% 15.62%
6 3 - 6 1.648 4.700 21.28% 78.72% 11.90% 50.00% 25.00% 28.72% 13.10%
9 6 - 9 1.429 2.852 35.06% 64.94% 13.79% 75.00% 25.00% 39.94% 11.21%
12 9 - 12 1.156 1.996 50.11% 49.89% 15.04% 100.00% 25.00% 49.89% 9.96%
15 12 - 15 1.113 1.726 57.94% 42.06% 7.83% 100.00% 0.00% 42.06% -7.83%
18 15 - 18 1.087 1.551 64.46% 35.54% 6.52% 100.00% 0.00% 35.54% -6.52%
21 18 - 21 1.073 1.427 70.07% 29.93% 5.61% 100.00% 0.00% 29.93% -5.61%
24 21 - 24 1.061 1.331 75.16% 24.84% 5.09% 100.00% 0.00% 24.84% -5.09%
27 24 - 27 1.051 1.254 79.77% 20.23% 4.61% 100.00% 0.00% 20.23% -4.61%
30 27 - 30 1.041 1.193 83.82% 16.18% 4.05% 100.00% 0.00% 16.18% -4.05%
33 30 - 33 1.033 1.145 87.30% 12.70% 3.48% 100.00% 0.00% 12.70% -3.48%
36 33 - 36 1.018 1.109 90.19% 9.81% 2.89% 100.00% 0.00% 9.81% -2.89%
39 36 - 39 1.013 1.089 91.85% 8.15% 1.66% 100.00% 0.00% 8.15% -1.66%
42 39 - 42 1.010 1.075 93.03% 6.97% 1.18% 100.00% 0.00% 6.97% -1.18%
45 42 - 45 1.008 1.065 93.91% 6.09% 0.89% 100.00% 0.00% 6.09% -0.89%
48 45 - 48 1.008 1.056 94.70% 5.30% 0.79% 100.00% 0.00% 5.30% -0.79%
51 48 - 51 1.006 1.048 95.41% 4.59% 0.71% 100.00% 0.00% 4.59% -0.71%
54 51 - 54 1.006 1.041 96.02% 3.98% 0.60% 100.00% 0.00% 3.98% -0.60%
57 54 - 57 1.005 1.036 96.55% 3.45% 0.54% 100.00% 0.00% 3.45% -0.54%
60 57 - 60 1.005 1.030 97.07% 2.93% 0.51% 100.00% 0.00% 2.93% -0.51%
63 60 - 63 1.005 1.025 97.58% 2.42% 0.51% 100.00% 0.00% 2.42% -0.51%
66 63 - 66 1.005 1.020 98.08% 1.92% 0.50% 100.00% 0.00% 1.92% -0.50%
69 66 - 69 1.005 1.015 98.56% 1.44% 0.48% 100.00% 0.00% 1.44% -0.48%
72 69 - 72 1.003 1.010 99.01% 0.99% 0.45% 100.00% 0.00% 0.99% -0.45%
75 72 - 75 1.002 1.007 99.31% 0.69% 0.30% 100.00% 0.00% 0.69% -0.30%
78 75 - 78 1.002 1.004 99.55% 0.45% 0.25% 100.00% 0.00% 0.45% -0.25%
81 78 - 81 1.002 1.002 99.78% 0.22% 0.22% 100.00% 0.00% 0.22% -0.22%
84 81 - 84 1.000 1.000 100.00% 0.00% 0.22% 100.00% 0.00% 0.00% -0.22%
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Exhibit 7A 

 

 

IBNR Change Projection in Equilibrium Assuming Level Growth 
Interpolation:  12/IVP

AY Q1 Q2 Q3 Q4 Q5
y 17.54% 14.73% 11.12% 6.51% -8.78%
y-1 -8.78% -6.80% -5.30% -4.17% -5.53%
y-2 -5.53% -4.11% -3.07% -2.32% -1.52%
y-3 -1.52% -1.21% -0.98% -0.80% -0.78%
y-4 -0.78% -0.63% -0.52% -0.43% -0.73%
y-5 -0.73% -0.53% -0.39% -0.29% -0.25%
y-6 -0.25% -0.25% -0.25% -0.25%

AY y 17.54% 14.73% 11.12% 6.51% -8.78%
All Prior -17.59% -13.53% -10.51% -8.26% -8.81%

Total -0.05% 1.19% 0.61% -1.75% -17.59%

Change in IBNR Projected by Q
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Exhibit 7B 

 

 
  

Calculation of IBNR Change Assuming Level Equilibrium
Interpolation:  12/IVP

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)

Age Interval

Interp 
ATA 
LDF

ATU 
LDF

AY PCT 
ULT

Tail of  
AY ULT 

Loss Increm

Expos to 
Date (ETD) 
as % of AY 

ULT
Change in 

ETD

BNR  
Tail of 

Loss ETD 
as % of 
AY Ult

Change in 
IBNR

Running 
back 

product of 
(3) 1/(4) 1-(5)

Row Diffs 
of (6) min(12,(1))/12

Row Diffs 
of (8) (8)-(5) (9)-(7)

0 0.00% 100.00% 0.00%
3 0 - 3 2.377 13.404 7.46% 92.54% 7.46% 25.00% 25.00% 17.54% 17.54%
6 3 - 6 1.783 5.639 17.73% 82.27% 10.27% 50.00% 25.00% 32.27% 14.73%
9 6 - 9 1.585 3.163 31.62% 68.38% 13.88% 75.00% 25.00% 43.38% 11.12%
12 9 - 12 1.175 1.996 50.11% 49.89% 18.49% 100.00% 25.00% 49.89% 6.51%
15 12 - 15 1.115 1.698 58.89% 41.11% 8.78% 100.00% 0.00% 41.11% -8.78%
18 15 - 18 1.081 1.522 65.69% 34.31% 6.80% 100.00% 0.00% 34.31% -6.80%
21 18 - 21 1.059 1.409 70.99% 29.01% 5.30% 100.00% 0.00% 29.01% -5.30%
24 21 - 24 1.074 1.331 75.16% 24.84% 4.17% 100.00% 0.00% 24.84% -4.17%
27 24 - 27 1.051 1.239 80.69% 19.31% 5.53% 100.00% 0.00% 19.31% -5.53%
30 27 - 30 1.036 1.179 84.80% 15.20% 4.11% 100.00% 0.00% 15.20% -4.11%
33 30 - 33 1.026 1.138 87.87% 12.13% 3.07% 100.00% 0.00% 12.13% -3.07%
36 33 - 36 1.017 1.109 90.19% 9.81% 2.32% 100.00% 0.00% 9.81% -2.32%
39 36 - 39 1.013 1.090 91.71% 8.29% 1.52% 100.00% 0.00% 8.29% -1.52%
42 39 - 42 1.011 1.076 92.92% 7.08% 1.21% 100.00% 0.00% 7.08% -1.21%
45 42 - 45 1.009 1.065 93.90% 6.10% 0.98% 100.00% 0.00% 6.10% -0.98%
48 45 - 48 1.008 1.056 94.70% 5.30% 0.80% 100.00% 0.00% 5.30% -0.80%
51 48 - 51 1.007 1.047 95.48% 4.52% 0.78% 100.00% 0.00% 4.52% -0.78%
54 51 - 54 1.005 1.040 96.12% 3.88% 0.63% 100.00% 0.00% 3.88% -0.63%
57 54 - 57 1.004 1.035 96.64% 3.36% 0.52% 100.00% 0.00% 3.36% -0.52%
60 57 - 60 1.008 1.030 97.07% 2.93% 0.43% 100.00% 0.00% 2.93% -0.43%
63 60 - 63 1.005 1.022 97.80% 2.20% 0.73% 100.00% 0.00% 2.20% -0.73%
66 63 - 66 1.004 1.017 98.33% 1.67% 0.53% 100.00% 0.00% 1.67% -0.53%
69 66 - 69 1.003 1.013 98.72% 1.28% 0.39% 100.00% 0.00% 1.28% -0.39%
72 69 - 72 1.002 1.010 99.01% 0.99% 0.29% 100.00% 0.00% 0.99% -0.29%
75 72 - 75 1.002 1.008 99.26% 0.74% 0.25% 100.00% 0.00% 0.74% -0.25%
78 75 - 78 1.002 1.005 99.50% 0.50% 0.25% 100.00% 0.00% 0.50% -0.25%
81 78 - 81 1.003 1.003 99.75% 0.25% 0.25% 100.00% 0.00% 0.25% -0.25%
84 81 - 84 1.000 1.000 100.00% 0.00% 0.25% 100.00% 0.00% 0.00% -0.25%
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Exhibit 8A 

 

 

IBNR Change Projection in Equilibrium Assuming Level Growth 
Interpolation:  Weibull Splice

AY Q1 Q2 Q3 Q4 Q5
y 19.60% 13.56% 9.74% 6.99% -9.22%
y-1 -9.22% -6.74% -5.11% -3.98% -5.04%
y-2 -5.04% -4.04% -3.28% -2.68% -1.46%
y-3 -1.46% -1.21% -1.01% -0.84% -0.75%
y-4 -0.75% -0.63% -0.53% -0.45% -0.60%
y-5 -0.60% -0.52% -0.44% -0.38% -0.30%
y-6 -0.30% -0.26% -0.23% -0.20%

AY y 19.60% 13.56% 9.74% 6.99% -9.22%
All Prior -17.37% -13.39% -10.60% -8.53% -8.15%

Total 2.23% 0.16% -0.85% -1.53% -17.37%

Change in IBNR Projected by Q
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Exhibit 8B 

 

 

Calculation of IBNR Change Assuming Level Equilibrium
Interpolation:  Weibull Splice

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)

Age Interval

Interp 
ATA 
LDF

ATU 
LDF

AY PCT 
ULT

Tail of  
AY ULT 

Loss Increm

Expos to 
Date (ETD) 
as % of AY 

ULT
Change in 

ETD

BNR  
Tail of 

Loss ETD 
as % of 
AY Ult

Change in 
IBNR

Running 
back 

product of 
(3) 1/(4) 1-(5)

Row Diffs 
of (6) min(12,(1))/12

Row Diffs 
of (8) (8)-(5) (9)-(7)

0 0.00% 100.00% 0.00%
3 0 - 3 3.119 18.518 5.40% 94.60% 5.40% 25.00% 25.00% 19.60% 19.60%
6 3 - 6 1.906 5.937 16.84% 83.16% 11.44% 50.00% 25.00% 33.16% 13.56%
9 6 - 9 1.561 3.115 32.10% 67.90% 15.26% 75.00% 25.00% 42.90% 9.74%
12 9 - 12 1.184 1.996 50.11% 49.89% 18.01% 100.00% 25.00% 49.89% 6.99%
15 12 - 15 1.114 1.685 59.33% 40.67% 9.22% 100.00% 0.00% 40.67% -9.22%
18 15 - 18 1.077 1.514 66.07% 33.93% 6.74% 100.00% 0.00% 33.93% -6.74%
21 18 - 21 1.056 1.405 71.18% 28.82% 5.11% 100.00% 0.00% 28.82% -5.11%
24 21 - 24 1.067 1.331 75.16% 24.84% 3.98% 100.00% 0.00% 24.84% -3.98%
27 24 - 27 1.050 1.247 80.20% 19.80% 5.04% 100.00% 0.00% 19.80% -5.04%
30 27 - 30 1.039 1.187 84.24% 15.76% 4.04% 100.00% 0.00% 15.76% -4.04%
33 30 - 33 1.031 1.143 87.51% 12.49% 3.28% 100.00% 0.00% 12.49% -3.28%
36 33 - 36 1.016 1.109 90.19% 9.81% 2.68% 100.00% 0.00% 9.81% -2.68%
39 36 - 39 1.013 1.091 91.65% 8.35% 1.46% 100.00% 0.00% 8.35% -1.46%
42 39 - 42 1.011 1.077 92.85% 7.15% 1.21% 100.00% 0.00% 7.15% -1.21%
45 42 - 45 1.009 1.065 93.86% 6.14% 1.01% 100.00% 0.00% 6.14% -1.01%
48 45 - 48 1.008 1.056 94.70% 5.30% 0.84% 100.00% 0.00% 5.30% -0.84%
51 48 - 51 1.007 1.048 95.45% 4.55% 0.75% 100.00% 0.00% 4.55% -0.75%
54 51 - 54 1.006 1.041 96.08% 3.92% 0.63% 100.00% 0.00% 3.92% -0.63%
57 54 - 57 1.005 1.035 96.61% 3.39% 0.53% 100.00% 0.00% 3.39% -0.53%
60 57 - 60 1.006 1.030 97.07% 2.93% 0.45% 100.00% 0.00% 2.93% -0.45%
63 60 - 63 1.005 1.024 97.67% 2.33% 0.60% 100.00% 0.00% 2.33% -0.60%
66 63 - 66 1.005 1.018 98.19% 1.81% 0.52% 100.00% 0.00% 1.81% -0.52%
69 66 - 69 1.004 1.014 98.63% 1.37% 0.44% 100.00% 0.00% 1.37% -0.44%
72 69 - 72 1.003 1.010 99.01% 0.99% 0.38% 100.00% 0.00% 0.99% -0.38%
75 72 - 75 1.003 1.007 99.31% 0.69% 0.30% 100.00% 0.00% 0.69% -0.30%
78 75 - 78 1.002 1.004 99.58% 0.42% 0.26% 100.00% 0.00% 0.42% -0.26%
81 78 - 81 1.002 1.002 99.80% 0.20% 0.23% 100.00% 0.00% 0.20% -0.23%
84 81 - 84 1.000 1.000 100.00% 0.00% 0.20% 100.00% 0.00% 0.00% -0.20%
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Exhibit 9 

 

 
 
  

IBNR Change Projection in Equilibrium Assuming Level Growth 
Comparison of Interpolation Methods

Qtr AY y

All 
Prior 
AY Total AY y

All 
Prior 
AY Total AY y

All 
Prior 
AY Total

Q1 15.62% -15.62% 0.00% 17.54% -17.59% -0.05% 19.60% -17.37% 2.23%
Q2 13.10% -13.10% 0.00% 14.73% -13.53% 1.19% 13.56% -13.39% 0.16%
Q3 11.21% -11.21% 0.00% 11.12% -10.51% 0.61% 9.74% -10.60% -0.85%
Q4 9.96% -9.96% 0.00% 6.51% -8.26% -1.75% 6.99% -8.53% -1.53%
Q5 -7.83% -7.79% -15.62% -8.78% -8.81% -17.59% -9.22% -8.15% -17.37%

Change in IBNR Projected by Q
SWIMON 12/IVP Weibull Spliced
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LDF, Loss Development Factor 
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