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Minimum Bias, GLMs and Credibility in the Context of 
Predictive Modeling 

Christopher Gross and Jonanthan Evans 

______________________________________________________________________________ 
Abstract: 

When predictive performance testing, rather than testing model assumptions, is used for validation, the needs for 
detailed model specification are greatly reduced.  Minimum bias models trade some degree of statistical 
independence in data points in exchange for statistically much more tame distributions underlying individual data 
points. A combination of multiplicative minimum bias and credibility methods for predictively modeling losses 
(pure premiums, claim counts, and/or average severity, etc.) based on explanatory risk characteristics is defined.  
Advantages of this model include grounding in longstanding and conceptually lucid methods with minimal 
assumptions.  An empirical case study is presented with comparisons between multiplicative minimum bias and a 
typical generalized linear model (GLM). Comparison is also made with methods of incorporating credibility into 
GLM.   

Keywords: predictive modeling, minimum bias, credibility, ratemaking, generalized linear models 

______ 

1. INTRODUCTION

As predictive models that relate losses (pure premiums, claim counts, and/or average severity, etc.)
to explanatory risk characteristics become ever more commonplace, some of the practical problems 
that frequently emerge include: 

• Models often use complex techniques that are effectively “black boxes” without a lucid
conceptual basis.

• Models may require very detailed parametric or distributional assumptions. Invalid
assumptions may result in biased parameters.

• A highly Frequentist approach, usually involving Maximum Likelihood Estimation (MLE),
can lead to overfitting sparsely populated data bins.

Some longstanding methods can be combined to overcome these problems: 

• Minimum Bias Iterative fitting of parameters is simple, longstanding in practice, and non-
parametric in specification.

• Credibility methods are similarly simple and longstanding.  Credibility directly solves the
sparse bin problem.

Most importantly, properly done predictive testing, in contrast with testing model assumptions, 
makes highly detailed model specification generally unnecessary. 
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1.1 Research Context 

The minimum bias criteria and iterative solution methodology were introduced by Bailey and 
Simon in [2] and [3].  Brown in [5] substituted the minimum bias criteria with MLE of Generalized 
Linear Models (GLM), an approach further explored by Mildenhall in [10].  Venter in [13] further 
discusses credibility issues related to minimum bias methods.  The basic contemporary reference on 
credibility methods is Klugman, S., et al. [9].  Nelder and Verrall in [11] and Klinker in [8] discuss 
incorporating random effects into GLM to implement credibility adjustments.  Brosius and Feldblum 
provide a modern practical guide to Minimum Bias Methods in [4].  A similar practical guide to GLM 
is provided by Anderson, et al. in [1].  A demonstration of predictive model fitting and testing can be 
found in Evans and Dean [6], particularly the predictive testing methods that will be used in this paper.  
“Gibbs Sampling” is a term we will use for Markov Chain Monte Carlo (MCMC) methods, as these 
are implemented using Gibbs Sampling software, such BUGS, WinBUGS, or JAGS.  Scollnik in [12] 
introduces MCMC.  Particularly relevant to this paper is the recent book on predictive modeling for 
actuaries Frees, E., et al. [7].  This book contains very detailed information on GLM, particularly 
incorporating credibility through Gibbs Sampling.  This paper represents in a certain sense an opposite 
perspective from [7] and [12], by emphasizing very simple models combined with rigorous predictive 
testing as described in [6]. 

1.2 Outline 

The remaining sections of this paper are: 

2. Predictive Performance as the Modeling Objective 

3. Multiplicative Minimum Bias Iteration 

4. Incorporating Credibility 

5. Anchoring And Iteration Blending For Practical Iterative Convergence 

6. Testing of Individual Explanatory Variables 

7. Empirical Case Study 

8. Summary Discussion 

Appendix A. Details of Empirical Case Study 

Appendix B. Gibbs Sampling Model Code 
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2. PREDICTIVE PERFORMANCE AS THE MODELING OBJECTIVE 

Traditionally, statistical models tend to use the same data for both fitting and validation.  Validation 
tends to involve testing of model assumptions.  For example, a linear regression of the form Y = m 
X + b + ξ, where ξ ~ Normal(0, σ2), might be fit, using least squares, to a set of data points (xi, yi), i 
=1,…,n.  Validation tests would check to verify that the residuals ξi are normally distributed with 
constant variance and are independent of xi, yi, and each other.  Hypothesis tests would then be 
performed to confirm that the probability is sufficiently remote that the actual data set would result if 
m = 0 or b = 0 (null hypotheses).  This framework relies on detailed assumptions, without which 
validation testing would not be possible. 

Modern predictive models split available data into multiple sets for separate fitting and validation.  
In the previous example, the parameters m and b might be fit to the points (xi, yi), i =1 ,…, k , using 
any method, and then tested on the points (xi, yi), i =k+1 ,…, n.  The test would only be concerned 
with how well bxmy ii

ˆˆˆ +=  predicts iy for the test set.  A bootstrap quintile test might be used, where 
the validation points are sorted by the value iŷ  into 5 equal-sized groups.  The average value of iy  
should ascend with the quintile groups and for each group the average value of iy  should be close to 
the average value of iŷ .  Figure 1 is a hypothetical example of a quintile test, with bootstrap confidence 
intervals added, as described by Evans and Dean in [6], validation of rating factors.  Note, the 
assumption ξ ~ Normal(0, σ2) and other implicit assumptions of linear regression are unnecessary 
here.   

Figure 1. Hypothetical Example of Bootstrap Quintile Test Predictive Validation of Rating 
Factors 
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In practice, predictive modelers often split data into three or more sets (i.e., training, testing, and 
validation), but only the distinction between two separate data sets for fitting and validation will be 
covered in this paper. 

In the predictive framework, detailed model assumptions are not necessary.  A model, even if its 
assumptions seem unjustified or erroneous, is valid as long as it performs well at predicting outcomes 
for data that were not used to fit its parameters.  This comes with the caveat that care must be taken 
that both the fitting and validation data should be representative of – effectively random samples of 
– the loss process.  For example, predictive testing might be misleading if both the fitting and 
validation data occurred in a single year influenced by a somewhat rare catastrophe, such as a 
hurricane. 

3. MULTIPLICATIVE MINIMUM BIAS ITERATION 

Suppose the basic data available consists of actual losses 0,..,1
≥

niiL  and exposures 0,..,1
≥

niiP  ,(

00 ,..,,.., 11
=⇒=

nn iiii LP ) where jj ni ,...,1=  indexes the individual classes within the classification 

dimension j and nii ,..,1   denotes the cell corresponding to the intersection of a single class in each 

classification dimension.  Also the total exposure in any class is positive, 0,..,1
>∑

=ki
ii

j

n
P , otherwise it 

would make sense to exclude the class entirely from estimating rating parameters.  A multiplicative 

minimum bias model assumes that `
,...,1

,,..,,..,,.., 111 ∏
=

+=
j

jnnn
nj

ijiiiiii XPBL .  The parameters 
jijX ,  are fit 

with the goal of minimizing some bias function, or functions, of the residual errors
niiB ,..,1
.   

The minimum bias goal is that the sum of the residual errors for each class ∑
=ki

ii
j

n
B ,..,1

should be 0. 

A corresponding iterative sequence of parameter estimates can be formed whose convergence 

corresponds to convergence to the goal: 
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The effective sample is now ∑

= nj
jn

,...,1

data points with values ∑
=ki

ii
j

n
L ,..,1

 , which reduces to 

)1(
,...,1

−−∑
=

nn
nj

j  linearly independent numbers.  There is a corresponding )1( −n  dimensional 

degeneracy in the parameters. If the parameters 
kikX ,  are multiplied by a constant 𝑐𝑐 > 0 and the 

parameters 
lilX ,  are divided by 𝑐𝑐, where 0 ≤ 𝑘𝑘 < 𝑙𝑙 ≤ 𝑛𝑛  ,   then ∏

= j

j
nj

ijX
,...,1

,  will be unchanged.  

The Central Limit Theorem implies that the distribution of ∑
=ki

ii
j

n
L ,..,1

can be expected to more 

closely resemble a Normal distribution, with a generally lower coefficient of variation than the 

individual cell values 
niiL ,..,1
.  However, whereas the cellular values 

niiL ,..,1
 can reasonably be assumed 

to be statistically independent of each other, the aggregated values ∑
=ki

ii
j

n
L ,..,1

 include many statistical 

dependencies since there is an overlap of cells between classes in different dimensions.  So, a tradeoff 

is made for a minimum bias iteration model.  Statistical independence of sample data points, a desirable 

property, is partially sacrificed in exchange for the benefit of a more Normal distribution, generally 

having a lower coefficient of variation than the distributions underlying each sample data point.  This 

taming of the distribution of data points means that it becomes less necessary to specify the 

distribution of the individual cellular loss values, or as may be the case the distributions of individual 

loss observations within the cells, as would be necessary for a GLM.   

Example 1 

Suppose there are three classification dimensions, each with 10 classes, resulting in 1,000 individual 
cells.  We can expect about 100 times as much data underlying each class as for each cell, and 
correspondingly an average coefficient of variation by class that is only about 10% as much as by cell.  
Two classes in different dimensions overlap in 10 cells and thus actual losses between them will have 
a correlation coefficient of about 10%. 
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Multiplicative minimum bias effectively aims toward the same parameters estimates as a GLM with 
a logarithmic link function and Poisson likelihood function.  The logarithmic link converts the sum 
of linear explanatory factors into a multiplicative product of their exponentials.  The Poisson 
likelihood leads to equations for MLE that correspond to a fixed limit point of the minimum bias 
iteration, as pointed out by Brown in [5]. 

However, the Poisson distributional assumption is usually unrealistic and not a part of the 
minimum bias model.  Data are generally not restricted to integer values.  The Poisson coefficient of 
variation (CV) is not scale independent (it is 10 times greater when applied to dollar amounts versus 
when applied to the same amounts measured as pennies) and implodes for large nominal means (mean 
of 1,000,000 implies a CV of 0.1%).  So, the Poisson assumption is important only in the optimization 
equations it implies for MLE.  

4. INCORPORATING CREDIBILITY 

Credibility adjustments 10 , ≤≤
jijZ  can be easily and directly incorporated into the iteration 

equations: 

∑ ∏

∑

= ≠

=
+ +−=

=

ki jl
tilii

ki
ii

kjkjtkj

kj

j

ln

j

n

XP

L
ZZX

X

,,,..,

,..,

,,1,,

1,,

1

1

)1(

1

 (4.1)  

 

Note, other than the constraint of the interval [0, 1], nothing has been specified about the 
determination of ijZ , .  There are many possibilities for 

jijZ , , including functions of the sum of 

exposure ∑
=

=
ki

iikj
j

n
PP ,..,, 1

.  The ultimate test will be the predictive performance of the final model 

regardless of whether ijZ ,  itself satisfies any traditional goals of credibility theory, such as limiting 

fluctuation or greatest accuracy. 

For GLM, the basic and common protection against fitting parameters to data that is not credible 
is to throw away explanatory variables whose parameters are not statistically distinct from 0, those 
variables with high p-values.   

To add a true credibility, or “shrinkage”, adjustment is complicated.  The two main approaches are: 
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1. General Linear Mixed Models.  At least some rating factors are assumed to be random rather 
than fixed effects, but an MLE-like fitting method is still used.  Numerical solution is rather 
difficult and, in practice, functions in R or procedures in SAS are used, very much as black 
boxes.  See [7], [8] and [11] for background. 

2. Bayesian Networks and Gibbs Sampling.   Rating factors in each class dimension follow a prior 
distribution.  The parameters of the prior distributions follow distributions that are very diffuse.  
Numerical solution is performed using a Gibbs Sampling program, such as JAGS or 
WinBUGS.  The model itself is elaborately specified and lucid to an audience sophisticated 
enough read the specification.  See [7] and [12] for background. 

 
In Section 7, we will demonstrate an example of the second approach. 

5. ANCHORING AND ITERATION BLENDING FOR PRACTICAL 
ITERATIVE CONVERGENCE 

In practice the convergence of the iterative algorithms can be a problem even after the application 
of credibility.  For one thing there is still the problem of )1( −n  dimensional degeneracy previously 
mentioned.  Also, highly correlated dimensions can also contribute to non-convergence or slow 
convergence in practice. Other than the automatic degeneracy we will not attempt to deal with the 
more general convergence issue in a precise mathematical way, which appears to be an open problem 
for multiplicative minimum bias.  From a practical point of view anchoring and iteration blending can 
effectively provide timely convergence. 

Anchoring directly eliminates the degeneracy.  One approach is to fix one of the parameters in 
each of )1( −n  dimensions to the value of 1.0; or to fix such a parameter in each of n dimensions 
and add a single overall base rate parameter.  Another approach is to use a single overall base rate and 
rescale the parameters in each dimension to a weighted average of 1.0 at the end of each iteration.  

Example 2 

If 







=

11
11

P  and 







=

43
21

L  then parameter iterations will oscillate back and forth between 

the values 







=

0.30.2
5.35.1

X  and 







=

2.18.0
4.16.0

X .  However, if we “anchor” one parameter at 1.00 
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the iterations will converge to 







=

800.1200.1
333.2000.1

X . 

Iteration blending can be implemented to accelerate convergence by modifying the iterative 
equations to be:  

( ) 1,,
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,..,

,,1,, 1)1(
1

1

+

= ≠

=
+ −+

















+−=
∑ ∏

∑
tkj
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tilii

ki
ii

kjkjtkj X
XP

L
ZZX

j

ln

j

n

αα

 

(5.1) 

where 0 < 𝛼𝛼 < 1 is a selected constant blending parameter.   

As an extreme illustration of correlation, let one classification dimension be replicated or made 
once redundant.  Setting 𝛼𝛼 = 0.5 will allow the model to converge. Each one of the replicated 
dimensions will end up sharing equally in the observed predictive relationship, combining together to 
provide the appropriate prediction. In the case of full credibility, they will exactly reproduce the result 
from not replicating the dimension. With less than full credibility, the result will not be exactly the 
same from not replicating the dimension, but will be similar.  

    

6. TESTING OF INDIVIDUAL EXPLANATORY VARIABLES 

Sometimes predictive modeling techniques are used specifically to determine whether or not 
individual explanatory variables, or equivalently classification dimensions, are statistically significant. 
As mentioned earlier, when using GLM techniques, it is common to consider the p-values of the 
estimated parameters. These p-values are calculated under the distributional and other assumptions, 
such as independence of the GLM model being used. 

Whether distributional assumptions are made (as with GLM) or not (as with minimum bias), tests 
of predictive performance can be performed and compared with and without a given classification 
dimension.  In cases where the improvement is insignificant the dimension should be removed for 
the sake of parsimony.  

7. EMPIRICAL CASE STUDY 

The empirical data used in this case study consists of 371,123 records of medical malpractice 
payments obtained from the National Practitioner Data Bank. Three explanatory variables will be used 
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for modeling payment amounts: Original Year, Allegation Group and License Field.  The records will be 
randomly split into two sets for model fitting and validation, respectively.  Further details are included 
in Appendix A. 

7.1 GLM Model Specifications 

For our GLM model we will consider: 

1. The logarithmic link function, which causes the fit factors to act multiplicatively. 

2. Several likelihood functions:  Gaussian, Poisson, Gamma, and Inverse Gaussian.  These 
correspond to assumptions that variance σ2 is related to mean μ as σ2 = constant, σ2 ∝  μ, 
σ2 ∝  μ2, and  σ2 ∝  μ3, respectively. 

3. Initially we will ignore credibility considerations, aside from reviewing p-values, and later we 
will use Gibbs Sampling to incorporate credibility. 

7.2 Comparison of GLM and Minimum Bias Model Results 

Figures 2 and 3 and Table 1 show the bootstrap quantile testing results of fitting and performance 
testing models.  Optimal noise-to-signal estimates along the lines described in [6] suggested using 20 
quantiles.  Also, see [6] for details on the definitions of the test statistics.  The “old statistic” test 
measure is the ratio of the variance of the relative average payments after rating factors are applied to 
the same variance before rating factors are applied, lower being better.  The “new statistic” test 
measure is essentially the square root of the difference between these two variances, higher being 
better.  

Although Figures 2 and 3 only correspond to the Minimum Bias fits, Table 1 demonstrates that 
the Log-Poisson GLM was identical to the Minimum Bias approach, and the best fitting model.  In 
fact, we checked the individual predicted values and verified that they were numerically identical.  Log-
Gaussian and Log-Gamma were almost as good.  The MLE for our run of Log-Inverse Gaussian 
failed to converge, almost certainly driven by its unrealistic variance assumption. 

Figures 4 and 5 correspond to “Traditional” univariate rate relativities for the three explanatory 
variables.  Rating factors are calculated separately and independently in each classification dimension.  
The Traditional method clearly performs much worse than Minimum Bias and the convergent GLMs, 
but is still a great improvement over no adjustment. 
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Figure 2. Bootstrap 20 Quantiles Test Validation of Minimum Bias Rating Factors 

 

 

 

 

 

 

 

 

 

 

Figure 3. Allegation Nature - Bootstrap Test Validation of Minimum Bias Rating Factors 

 

 

 

0%

25%

50%

75%

100%

125%

150%

175%

200%

225%

250%

R
el

at
iv

e 
Av

er
ag

e 
Pa

ym
en

t 5th Percentile

95th Percentile

25th Percentile
75th Percentile

5th Percentile

95th Percentile

25th Percentile
75th Percentile

5th Percentile

95th Percentile

25th Percentile
75th Percentile

Before Rating Factors

After Rating Factors

0%

25%

50%

75%

100%

125%

150%

175%

200%

225%

250%

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

R
el

at
iv

e 
Av

er
ag

e 
Pa

ym
en

t

Quantiles Based on Expected Rate Relativity

5th Percentile

95th Percentile

25th Percentile
75th Percentile

Before Experience Rating

After Experience Rating 5th Percentile

95th Percentile

25th Percentile
75th Percentile

Before Experience Rating

After Experience Rating 5th Percentile

95th Percentile

25th Percentile
75th Percentile

Before Rating Factors

After Rating Factors



Minimum Bias, GLMs, and Credibility in the Context of Predictive Modeling 
 

Casualty Actuarial Society E-Forum, Winter 2017  11 

Figure 4. Bootstrap 20 Quantiles Test Validation of Traditional Rating Factors 

 

 

 

 

 

 

 

 

 

 

Figure 5. Allegation Nature - Bootstrap Test Validation of Traditional Rating Factors 
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Table 1.  Predictive Performance Statistics for Various Models 

 

 

 

 

 

 

At this point we have a clear picture of the relative predictive performance of the different models.  
However, we have not specifically tested the validity of any of the model assumptions, such as 
likelihoods, independence assumptions, etc.  The optimal performance of Minimum Bias/Log-
Poisson is likely due to the general validity of its implicit connection to the Central Limit Theorem as 
discussed earlier. 

The GLM assumption that all risks are identically distributed is potentially problematic taken 
together with the log-link function. 

Figures 6 through 8 illustrate the lack of distributional consistency for this dataset. We have broken 
the observations in the training data into 20 quantiles weighted by modeled values, sorted by 
actual/modeled result. Using the same breakpoints, determined from the entire training dataset, we 
then calculated the amount of summed modeled values for each allegation group. If the errors were 
identically distributed for each allegation group there should be only a random fluctuation around the 
5% of total expected for each bin. 

Figure 6 shows all allegation natures and naturally each bin demonstrates no differences in the 
weighted proportion.  Figure 7 shows that the anesthesia related allegation group has a much higher 
percentage in the lowest bin than what would have been expected from the overall population,  

Old Statistic New Statistic Old Statistic New Statistic

Mult. Minimum Bias 0.007 0.512 0.023 0.425

GLMs
Log-Gaussian 0.010 0.511 0.041 0.422
Log-Poisson 0.007 0.512 0.023 0.425
Log-Gamma 0.009 0.511 0.033 0.422
Log-InverseGaussian

Traditional 0.135 0.470 0.089 0.408

Failed to Converge Failed to Converge

20 Quantiles Allegation Nature
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Figure 6. All Allegation Nature 20 Value Weighted Quantile Bins  
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Figure 7. Anesthesia Allegation 20 Value Weighted Quantile Bins 
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Figure 8. Treatment Allegation 20 Value Weighted Quantile Bins  
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of the error distribution.  Figure 8 shows that, while not as dramatic, the treatment related allegation 
group shows greater variation than the overall error distribution, with more of the highest and lowest 
values. 

This is far from uncommon with highly-skewed insurance data. The problem is compounded by 
the multiple dimensions of data. Error distributions could be, and likely are, differently distributed 
across many of the dimensions, if not every dimension being analyzed. Without adjustment, the basic 
assumption in a GLM is that the errors are identically distributed. The use of the log-link function, in 
conjunction with maximum likelihood estimation, puts a great deal of faith in the distributional 
assumption, inferring conclusions about results in the tail, based on the more voluminous observations 
at the lower parts of the distribution. But it is the tail itself that is of primary interest in most insurance 
questions, with the majority of the aggregate losses being caused by the minority of claims. Despite 
the unreasonable implied assumption of a log-Poisson GLM, because it happens to have effectively 
the same parameter estimation formulas as the multiplicative minimum bias approach, which has the 
associated Central Limit Theorem advantages previously described, it is less vulnerable to these 
distributional differences. 

Table 2 shows a comparison of the model biases by allegation group on the validation data using 
multiplicative minimum bias with full credibility vs. GLM with a log-Gaussian assumption, by 
comparing actual aggregated results by allegation group to aggregated modeled results over a number 
of bootstrapped test sets. Despite the log-Gaussian assumption better characterizing the distribution 
of the data than does the log-Poisson assumption, it ultimately produces estimates that are more 
vulnerable to distributional differences. The only allegation group with a worse log-Gaussian mean 
bias was that for Equipment/Product related payments, and in that group, both sets of bootstrapped 
ranges contained zero, suggesting that the bias measure was inconclusive. 
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Table 2.  Bootstrapped (Actual – Modeled)/Modeled By Allegation Nature 

 

 

 

 

 

 

 

Multiplicative Minimum Bias Log-Gaussian
Mean 5th % 95th % Mean 5th % 95th %

Diagnosis 1.0% 0.1% 2.0% 1.3% 0.4% 2.3%
Anesthesia 4.3% 0.0% 9.5% 7.1% 2.5% 11.9%

Surgery 0.8% -0.3% 2.1% 1.1% -0.2% 2.5%
Medication 0.9% -2.2% 4.0% 2.2% -0.6% 5.4%

IV & Blood Products 3.0% -11.3% 20.5% 3.6% -6.8% 15.9%
Obstetrics 0.1% -2.4% 2.8% -0.4% -2.3% 1.8%
Treatment -0.5% -2.0% 1.1% -2.5% -4.0% -1.0%

Monitoriing 0.2% -5.1% 6.2% 0.9% -4.3% 5.7%
Equipment/Product -3.4% -11.0% 5.4% 0.0% -9.3% 8.7%

Other -11.1% -15.8% -5.7% -14.3% -19.6% -8.9%
Behavioral Health 11.9% -6.5% 34.4% 13.2% -10.4% 40.9%

Blank -17.0% -38.8% 5.5% -20.7% -37.7% -0.6%
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7.3 Incorporating Credibility into Minimum Bias 

Although the overall predictive performance without any credibility adjustments was very good, 
there are reasons to explore credibility.  In some sparsely populated classes for License Field, rating 
variables might be so unreliable as to lead to adverse selection problems in real world applications. 

In the previous example, the p-values for the rating factors in the Log-Poisson were all 
infinitesimally low (the largest p-value ~ 10-204).  This is likely due to the problematic general 
phenomenon that p-values tend to always implode with very large volumes of data, such as the volume 
in the example.  In stark contrast, most of the p-values for the Log-Gaussian and Log-Gamma models 
were high, from 1% to approaching 100%.  Whether these p-value results indicate any of the likelihood 
selections are valid, or not, they demonstrate the generally awkward nature of trying to use p-values 
and class consolidation to handle the lack of credibility in sparsely populated classes.  

Rather than attempt a p-value based class consolidation, we will explore the impact of a very simple 

credibility adjustment for Minimum Bias.  We select the very simple form 
KP

P
Z

j

j

j
ij

ij
ij +
=

,

,
,  where 

jijP ,  is the number of records where the ij class for classification dimension j and K ≥ 0 is a judgmental 

selection.  Table 3 shows that this simple credibility adjustment only tends to erode overall predictive 
value for this large dataset with only truly predictive variables included. 

Table 3.  Predictive Performance Statistics for Credibility Adjusted Multiplicative Minimum 
Bias 

 

 

 

  

Old Statistic New Statistic Old Statistic New Statistic

Mult. Minimum Bias
K = 0 0.007 0.512 0.023 0.425
K = 1 0.009 0.511 0.032 0.425
K = 10 0.010 0.511 0.030 0.423
K = 25 0.009 0.510 0.029 0.425
K = 50 0.010 0.511 0.022 0.424
K = 100 0.011 0.511 0.028 0.425
K = 200 0.013 0.509 0.031 0.423
K = 700 0.023 0.505 0.082 0.414

20 Quantiles Allegation Nature
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To construct a smaller example where credibility is more relevant, we will use a random set of only 
5,000 records for fitting and another random set of 5,000 records for testing, shown in Tables 4 and 
5 and Figures 9 through 12.  We will also do a full test using all the remaining 366,123 records not 
used for fitting, shown in Tables 6 and 7 and Figures 13 and 14. 

Table 4.  Smaller Sample Predictive Performance Statistics for Various Models  

 

Table 5.  Smaller Sample Predictive Performance Statistics for Credibility Adjusted 
Multiplicative Minimum Bias 
 

 
 

As Tables 4 through 7 and Figures 9 through 14 show, the incorporation of credibility was 
particularly important when distinguishing differences between the allegation groups. Actuaries are 
regularly asked to provide estimates of the impact of rating variables despite having less than fully  

 
 

Old Statistic New Statistic Old Statistic New Statistic

Mult. Minimum Bias
K = 0 0.021 0.463 2.216 -0.683
K = 1 0.016 0.457 1.138 -0.419
K = 10 0.012 0.461 0.454 0.246
K = 25 0.022 0.458 0.394 0.316
K = 50 0.043 0.450 0.376 0.338
K = 100 0.068 0.449 0.373 0.345
K = 200 0.093 0.432 0.384 0.345
K = 700 0.255 0.387 0.479 0.319

6 Quantiles Allegation Nature

Old Statistic New Statistic Old Statistic New Statistic

Mult. Minimum Bias 0.021 0.463 2.216 -0.683

GLMs
Log-Gaussian 0.041 0.448 3.252 -0.785
Log-Poisson 0.021 0.463 2.216 -0.683
Log-Gamma 0.052 0.445 2.245 -0.704
Log-InverseGaussian

Traditional 0.524 0.302 2.419 -0.751

6 Quantiles Allegation Nature

Failed to Converge Failed to Converge
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Figure 9. Smaller Sample Bootstrap 6 Quantiles Test Validation of Minimum Bias Rating 
Factors 

 
Figure 10. Smaller Sample Allegation Nature - Bootstrap Test Validation of Minimum Bias 
Rating Factors 
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Figure 11. Smaller Sample Bootstrap 6 Quantiles Test Validation of Minimum Bias 
(Credibility K = 10) Rating Factors 

 
Figure 12. Smaller Sample Allegation Nature - Bootstrap Test Validation of Minimum Bias 
(Credibility K = 10) Rating Factors 
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Table 6.  Full Test of Smaller Sample Predictive Performance Statistics for Various Models  

  

Table 7.  Full Test of Smaller Sample Predictive Performance Statistics for Credibility 
Adjusted Multiplicative Minimum Bias 

 
 

Old Statistic New Statistic Old Statistic New Statistic

Mult. Minimum Bias 0.031 0.488 1.906 -0.403

GLMs
Log-Gaussian 0.038 0.482 2.673 -0.556
Log-Poisson 0.031 0.488 1.906 -0.403
Log-Gamma 0.072 0.474 3.256 -0.653
Log-InverseGaussian

Traditional 0.489 0.350 2.158 -0.471

20 Quantiles Allegation Nature

Failed to Converge Failed to Converge

Old Statistic New Statistic Old Statistic New Statistic

Mult. Minimum Bias
K = 0 0.031 0.488 1.906 -0.403
K = 1 0.020 0.492 0.835 0.139
K = 10 0.012 0.494 0.169 0.380
K = 25 0.013 0.493 0.187 0.379
K = 50 0.026 0.489 0.215 0.372
K = 100 0.063 0.479 0.246 0.364
K = 200 0.117 0.460 0.289 0.355
K = 700 0.300 0.399 0.427 0.317

20 Quantiles Allegation Nature
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Figure 13. Full Test of Smaller Sample Bootstrap 6 Quantiles Test Validation of Minimum 
Bias (Credibility K = 10) Rating Factors 

 
Figure 14. Full Test of Smaller Sample Allegation Nature - Bootstrap Test Validation of 
Minimum Bias (Credibility K = 10) Rating Factors 
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credible data. While the overall result may appear to be relatively unaffected by increasing the 

credibility standard, the ability to more robustly differentiate between them is illustrated. 

8.4 Incorporating Credibility Into GLM 
 

We can incorporate credibility, or “shrinkage” of parameter estimates, into a GLM model by 
defining a hierarchical Bayesian Network of random variables: 
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kY are the individual actual claim amounts to be fit.  jiU , are parameters in log space, with 4,1U
being a constant and the other j= 1,2, or 3 corresponding to License Field, Allegation Group, and Original 
Year, respectively. 

kji ,
is an index of which class the kY observation falls into in each classification 

dimension. kδ  is a random over-dispersion for each observation which itself has variance 2
2σ .  2

1σ  
is the parameter variance for each class parameter.  Since 4,1U , 2

1σ , and 2
2σ  follow highly diffuse 
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distributions they will effectively be “fitted” parameters when Gibbs Sampling is performed. 2
1σ , and 

2
2σ conceptually correspond to parameter and process variances in credibility.   

We will also defined a simpler form of this model eliminating the over-dispersion arising from 2
1σ

and 2
2σ .  Running this simpler model numerically produced the same parameters as the MLE Log-

Poisson/Minimum Bias with no credibility adjustment, confirming that our Gibbs Sampling model is 
constructed and coded on the right track up to to the point of adding credibility adjustments.   

When the model including the kδ  and 2
2σ  was run numerically there was a shrinkage effect 

observed in the set of parameters.  Table 8 shows that the range of the 1,iU  contracted significantly 
with over-dispersion.  There was a slight broadening of the ranges for 2,iU  and 3,iU , which is not 
unreasonable as none of the corresponding classes in these dimensions are sparsely populated.  

Table 8.  Shrinkage Effect in Range of Gibbs Sampled Parameter Fits 
 

 
 

Unfortunately, although there was a credibility-like shrinkage affect, the predictive performance 
actually deteriorated.  Figures 15 and 16 show the deteriorating situation when the Gibbs Sampling 
with over-dispersion is included in the large split of the data.  Table 9 shows the deterioration in test 
statistics for both the large split and smaller sample. 

There are potential criticisms of the Bayesian network model as we have defined it.  For example, 
the anchoring of the parameters for the first classes 3,2,10,1 == jU j ; offsetting the prior 
distributions on parameters so as to have mean 1 after exponentiation 

83,...,2),2/(Normal~ 2
1

2
11, =− iUi σσ ;  the same parameter variance 2

1σ was used for all three 
classification dimensions; etc.  However, the authors experimented with a myriad of alterations to 
the model definition, even going so far as to convert the likelihood function into a Negative Binomial 
distribution to capture the impact of over-dispersion of the Poisson more directly.  In all cases tried 
performance deteriorated further or did not improve.  The earlier presented multiplicative minimum 

Min Max Min Max Min Max

Large Split
w/o overdispersion -4.103 0.775 -0.920 0.473 0.000 0.691
w overdispersion -2.173 0.550 -0.975 0.742 -0.040 0.494

Smaller Sample
w/o overdispersion -6.570 2.234 -1.405 0.432 0.000 0.742
w overdispersion -2.033 0.963 -1.992 0.318 -0.069 0.691

Ui,1 Ui,2 Ui,3
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bias model with incorporated credibility would be vulnerable to similar or more extensive potential 
criticisms.  Yet implementing it went quickly and easily produced desirable results. 

This failed modeling experience in no way proves that a well performing Gibbs Sampled Bayesian 
model cannot be defined in this context.  Obviously, well performing examples for much simpler 
situations, such as one classification dimension and an identity link function, are well known and easy 
to construct.   Nor is the point that the theory behind these models does not provide deep insights 
into understanding modeling and statistical estimation.  However, in this case, orders of magnitude 
more input of resources both in time and sophistication in effort than was used for minimum bias 
produced inferior predictive performance.  Though neither author of this paper is a specialist in Gibbs 
Sampling methods, one author (Evans) has used them occasionally for over 10 years and informally 
consulted several more experienced specialists (in Acknowledgements).  As of this writing, we have 
not been able to diagnose why the model as defined performs so much more poorly than a regular 
MLE GLM with no shrinkage effect. Whether the model is in some way poorly designed or, much 
less likely, one of the many technical choices made in running the Gibbs Sampling software should be 
tuned differently, does not alter the key conclusion.  Namely, that the tremendous additional resource 
and intellectual burdens of such detailed and sophisticated models may offer no advantage, or may 
even be disadvantageous, in many practical situations of predictive modeling. 

Figure 15. Full Test of Smaller Sample Bootstrap 20 Quantiles Test Validation of Gibbs 
Sampled Rating Factors with Shrinkage 
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Figure 16. Full Test of Smaller Sample - Allegation Nature - Bootstrap Test Validation of 
Gibbs Sampled Rating Factors with Shrinkage 

 

 

 

 

 

 

 

 

Table 9.  Test Statistics for Gibbs 
Sampled Rating Factors 

 

8. SUMMARY DISCUSSION 

The predictive modeling framework greatly reduces the burdens of model specification, because 
models are validated based on their predictive performance rather than hypothesis testing of model 
assumptions.  Minimum bias models transform basic data in such a way as to partially sacrifice sample 
independence in exchange for much tamer distributions of individual data points that are much less 

Old Statistic New Statistic Old Statistic New Statistic

Large Split (20 Quantiles)
w/o overdispersion 0.007 0.512 0.023 0.425
w overdispersion 0.102 0.463 0.219 0.376

Smaller Sample (6 Quantiles)
w/o overdispersion 0.021 0.463 2.216 -0.683
w overdispersion 0.101 0.403 3.616 -0.943

Full Test Smaller Sample (20 Quantiles)
w/o overdispersion 0.031 0.488 1.906 -0.403
w overdispersion 0.098 0.448 4.723 -0.818
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needy of detailed distributional specification. The combination of multiplicative minimum bias 
iteration with a generic incorporation of credibility as presented in this paper demonstrates that a very 
simple model, without complete distributional specification, in practice can provide comparable or 
better predictive value than a far more complex model, such as a typical GLM. 

GLM models are fit to individual data points and require specification of the distributions 
underlying each data point.  Consequently, GLM models can be significantly vulnerable to inaccurate 
specifications and their fundamental complexity makes the practical incorporation of credibility 
adjustments, such as including random effects or fitting parameters through Gibbs sampling, very 
complex.  

Philosophically, simpler modeling is desirable.  In practice, simpler models are beneficial in many 
ways, such as lower skill requirements for operational personnel and greater lucidity to a much wider 
audience.  Some previous papers, such as Brown in [5] and Mildenhall in [10], have highlighted the 
sense in which minimum bias iteration is a special case of GLM and encouraged – at least implicitly – 
minimum bias practitioners to switch to GLM as a richer framework.  There is some irony that with 
the advent of the predictive framework minimum bias may often be somewhat more advantageous, 
in principle and practice. 

While GLM models are powerful and belong in the set of tools applied by actuaries, consideration 
should also be given to multiplicative minimum bias models and the traditional actuarial concept of 
partial credibility. Ultimately the test of any predictive model should be how it performs on out-of-
sample data. 
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Appendix A Details of Empirical Case Study 

The empirical data used in this case study consists of 371,123 records of medical malpractice 
payments obtained from the National Practitioner Data Bank. Three explanatory variables were used 
for modeling payment amounts: Original Year, Allegation Group and License Field.  The following Tables 
A.1 through A.3 display record counts by each of the explanatory variables overall and for the 
individual predictive modeling splits. 

 
Table A.1 Counts of Records by License Field 
 

 

License Field Total Fit Test 5,000 Fit 5,000 Test Full Test
Allopathic Physician (MD) 271,443    135,514    135,929    3644 3661 267,799    
Phys. Intern/Resident (MD) 2,113        1,063        1,050        34 28 2,079        
Osteopathic Physician (DO) 17,612      8,829        8,783        237 244 17,375      
Osteo. Phys. Intern/Resident (DO) 324            161            163            8 6 316            
Dentist 46,516      23,425      23,091      623 596 45,893      
Dental Resident 145            64              81              4 3 141            
Pharmacist 1,890        952            938            24 20 1,866        
Pharmacy Intern [available 9/9/2002] 2                 1                 1                 0 0 2                 
Pharmacist, Nuclear 6                 4                 2                 0 0 6                 
Pharmacy Assistant 19              12              7                 0 0 19              
Pharmacy Technician [available 9/9/2002] 12              7                 5                 0 1 12              
Registered (RN) Nurse 5,715        2,885        2,830        91 80 5,624        
Nurse Anesthetist 1,568        777            791            19 19 1,549        
Nurse Midwife 873            431            442            18 8 855            
Nurse Practitioner 1,288        598            690            19 24 1,269        
Doctor of Nursing Practice [available 11/8/2010] 1                 -             1                 0 0 1                 
Advanced Nurse Practitioner [3/5/02 - 9/9/02] 4                 3                 1                 0 0 4                 
LPN or Vocational Nurse 692            345            347            9 9 683            
Clinical Nurse Specialist [available 9/9/02] 18              12              6                 1 0 17              
Certified Nurse Aide/Nursing Assistant [available 10/17/05] 36              18              18              0 1 36              
Nurses Aide 78              39              39              2 2 76              
Home Health Aide (Homemaker) 22              10              12              0 0 22              
Health Care Aide/Direct Care Worker [available 10/17/05] 3                 1                 2                 0 0 3                 
Psychiatric Technician 15              10              5                 0 0 15              
Dietician 22              11              11              0 1 22              
Nutritionist 1                 1                 -             0 0 1                 
EMT, Basic 200            106            94              3 2 197            
EMT, Cardiac/Critical Care 28              17              11              0 0 28              
EMT, Intermediate 26              13              13              1 2 25              
EMT, Paramedic 59              32              27              0 1 59              
Clinical Social Worker 206            107            99              2 0 204            
Podiatrist 7,654        3,809        3,845        92 113 7,562        
Clinical Psychologist [last use 9/9/02] 875            436            439            15 15 860            
Psychologist [available 9/9/02] 352            174            178            2 5 350            
School Psychologist [available 9/9/02] 1                 -             1                 0 0 1                 
Audiologist 39              23              16              2 1 37              
Art/Recreation Therapist 2                 1                 1                 0 0 2                 
Massage Therapist 82              54              28              3 1 79              
Occupational Therapist 85              43              42              0 0 85              
Occup. Therapy Assistant 11              7                 4                 0 0 11              
Physical Therapist 1,094        545            549            14 14 1,080        

Large Split Smaller Sample
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Table A.1 Counts of Records by License Field (continued) 

 
 

License Field Total Fit Test 5,000 Fit 5,000 Test Full Test
Phys. Therapy Assistant 94              48              46              0 3 94              
Rehabilitation Therapist 9                 3                 6                 0 0 9                 
Speech/Language Pathologist 14              9                 5                 0 0 14              
Hearing Aid/Instrument Specialist [available 10/17/05] 2                 1                 1                 0 0 2                 
Medical Technologist [changed to 501(6/15/09)] 64              28              36              0 0 64              
Medical/Clinical Lab Technologist [available 6/15/09] 1                 1                 -             0 0 1                 
Medical/Clinical Lab Technician [available 6/15/09] 2                 -             2                 0 0 2                 
Surgical Technologist [available 6/15/09] 7                 4                 3                 0 0 7                 
Surgical Assistant [available 6/15/09] 1                 -             1                 0 0 1                 
Cytotechnologist [available 11/22/99] 11              7                 4                 0 0 11              
Nuclear Med. Technologist 14              5                 9                 0 0 14              
Rad. Therapy Technologist 12              5                 7                 0 0 12              
Radiologic Technologist 169            89              80              1 0 168            
X-Ray Technician or Operator [available 6/15/09] 5                 2                 3                 0 0 5                 
Acupuncturist 58              22              36              0 0 58              
Athletic Trainer [available 11/22/99] 6                 3                 3                 1 0 5                 
Chiropractor 5,834        2,928        2,906        78 87 5,756        
Dental Assistant 15              8                 7                 1 1 14              
Dental Hygienist 41              22              19              1 2 40              
Denturist 27              8                 19              0 0 27              
Homeopath 6                 5                 1                 1 0 5                 
Medical Assistant 33              14              19              1 0 32              
Counselor, Mental Health 167            84              83              1 2 166            
Midwife, Lay (Non-Nurse) 22              14              8                 0 0 22              
Naturopath 17              9                 8                 0 0 17              
Ocularist 25              12              13              0 1 25              
Optician 17              10              7                 0 0 17              
Optometrist 715            367            348            6 11 709            
Orthotics/Prosthetics Fitter 9                 5                 4                 1 0 8                 
Phys. Asst., Allopathic 1,713        847            866            26 22 1,687        
Phys. Asst., Osteopathic 137            71              66              3 3 134            
Perfusionist [available 11/22/99] 8                 2                 6                 1 0 7                 
Podiatric Assistant 14              9                 5                 0 0 14              
Prof. Counselor 209            109            100            4 3 205            
Prof. Cnslr., Alcohol 9                 2                 7                 0 1 9                 
Prof. Cnslr., Family/Marriage 177            96              81              4 5 173            
Prof. Cnslr, Substance Abuse 23              13              10              0 0 23              
Marriage and Family Therapist [available 9/9/02] 27              15              12              1 0 26              
Respiratory Therapist 48              24              24              1 0 47              
Resp. Therapy Technician 14              4                 10              0 0 14              
Other Health Care Pract, Not Classified [available 11/22/99] 45              31              14              0 0 45              
Unspecified or Unknown 170            86              84              1 2 169            

Total 371,123    185,562    185,561    5,000        5,000        366,123    

Large Split Smaller Sample
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Table A.2 Counts of Records by Allegation Nature 

 
 
 
Table A.3 Counts of Records by Origination Year Group 
 

 
 
  

Allegation Nature Total Fit Test 5,000 Fit 5,000 Test Full Test
Diagnosis Related 105,674       52,516          53,158          1,409       1,388       104,265       
Anesthesia Related 10,974          5,421            5,553            127           153           10,847          
Surgery Related 88,763          44,538          44,225          1,176       1,211       87,587          
Medication Related 20,197          10,047          10,150          259           268           19,938          
IV & Blood Products Related 1,259            625                634                14             16             1,245            
Obstetrics Related 25,988          13,081          12,907          384           345           25,604          
Treatment Related 100,666       50,517          50,149          1,380       1,372       99,286          
Monitoring Related 7,313            3,594            3,719            103           106           7,210            
Equipment/Product Related 2,037            989                1,048            32             24             2,005            
Other Miscellaneous 7,404            3,791            3,613            106           106           7,298            
Behavioral Health Related 677                361                316                7                9                670                
blank 171                82                  89                  3                2                168                

Total 371,123       185,562       185,561       5,000       5,000       366,123       

Large Split Smaller Sample

Total Fit Test 5,000 Fit 5,000 Test Full Test
1990-1992 40,574    20,306    20,268    568          515          40,006    
1993-1994 39,016    19,480    19,536    570          529          38,446    
1995-1996 37,048    18,557    18,491    516          509          36,532    
1997-1998 35,689    17,838    17,851    490          493          35,199    
1999-2000 38,036    19,045    18,991    469          516          37,567    
2001-2002 39,277    19,650    19,627    491          533          38,786    
2003-2004 36,565    18,256    18,309    472          508          36,093    
2005-2007 47,519    23,756    23,763    659          646          46,860    
2008-2012 57,399    28,674    28,725    765          751          56,634    

Total 371,123  185,562  185,561  5,000      5,000      366,123  

Large Split Smaller Sample
Origination Year
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Appendix B Gibbs Sampling Model Code 
 
With Poisson Over-dispersion 
model 
{ 
 U[1,4]~dunif(0,20) 
 U[1,1]<-0 
 U[1,2]<-0 
 U[1,3]<-0 
 Tau[1]  ~ dlnorm(0,0.1) 
 Mu<-  -pow(Tau[1],-1)/2 
 Tau[2] ~ dlnorm(0,0.1) 
 Mu2<-  -pow(Tau[2],-1)/2 
 Tau[3]<-Tau[1]/Tau[2] 
 for(i in 2:N1) { U[i,1]~dnorm(Mu,Tau[1]) } 
 for(i in 2:N2) { U[i,2]~dnorm(Mu,Tau[1]) } 
 for(i in 2:N3) { U[i,3]~dnorm(Mu,Tau[1]) } 
 for(i in 1:N) { 
  ProcError[i]~dnorm(Mu2,Tau[2])  

lambda1[i]<-exp(min(20,ProcError[i]+U[1,4]+U[X[i,1],1]+U[X[i,2],2]+U[X[i,3],3])) 
  Y[i]~dpois(lambda1[i]) 
  } 
 } 
 
Without Poisson Over-dispersion 
model 
{ 
 U[1,4]~dunif(0,20) 
 U[1,1]<-0 
 U[1,2]<-0 
 U[1,3]<-0 
 Tau[1]  ~ dlnorm(0,0.1) 
 Mu<-  -pow(Tau[1],-1)/2 
 
 for(i in 2:N1) { U[i,1]~dnorm(Mu,Tau[1]) } 
 for(i in 2:N2) { U[i,2]~dnorm(Mu,Tau[1]) } 
 for(i in 2:N3) { U[i,3]~dnorm(Mu,Tau[1]) } 
 for(i in 1:N) { 
  lambda1[i]<-exp(min(20,U[1,4]+U[X[i,1],1]+U[X[i,2],2]+U[X[i,3],3])) 
  Y[i]~dpois(lambda1[i]) 
  } 
 }
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Abstract

A Bayesian MCMC stochastic loss reserve model provides an arbitrarily large number 
of equally likely parameter sets that enable one to simulate future cash flows o f the 
liability. Using these parameter sets to represent all future outcomes, it is possible to 
describe any future state in the model’s time horizon including those states necessary 
to calculate a cost of capital risk margin. This paper shows how to use the MCMC 
output to: (1) Calculate the risk margin for an “ultimate” time horizon; (2) Calculate 
the risk margin for a one-year time horizon; and (3) Analyze the effect of diversification 
in a risk margin calculation for multiple lines of insurance.
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1 Introduction

With the growing influence of Bayesian MCMC models in stochastic loss reserving such as
Meyers (2015) this paper will illustrate one way to use such a model to calculate a cost of
capital risk margin for non-life insurance liabilities. The need for such a calculation is found
in the “technical provisions” specified in the European Union’s Solvency II act.1

These technical provisions refer to the insurer’s liability for unpaid losses. Specifically:

1. “The value of the technical provisions shall be equal to the sum of a best estimate and
a risk margin.”

2. “The best estimate shall correspond to the probability-weighted average of future cash
flows, taking account of the time value of money using the relevant risk-free interest
rate term structure.”

3. “The risk margin shall be calculated by determining the cost of providing an amount
of eligible own funds equal to the Solvency Capital Requirement necessary to support
the insurance obligations over the lifetime thereof.”

4. “Insurance undertakings shall segment their insurance obligations into homogeneous
risk groups, and as a minimum by lines of business, when calculating the technical
provisions.”

A Bayesian MCMC stochastic loss reserve model provides an arbitrarily large number
(say 10,000) of equally likely parameter sets that enable one to simulate future cash flows
of the liability. From these parameter sets, it is possible to describe any future state in the
model’s time horizon including those states necessary to calculate the technical provisions.
That is what this paper will do.

Here is a high-level description of that cash flow.

1. At the end of the current calendar year (call this time t = 0), the insurer posts its best
estimate of the liability. The insurer also posts the amount of capital, C0, needed to
contain the uncertainty in this estimate. It invests C0 in a fund that earns income at
the risk-free interest rate i.

1The provisions quoted here are stated in Section 2, Article 77 and Article 80, of Chapter VI of the act,
p 222. http://register.consilium.europa.eu/pdf/en/09/st03/st03643-re01.en09.pdf.
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2. At the end of the next calendar year, at time t = 1, the insurer uses its next year of loss
experience to reevaluate its liability. It then posts its updated estimate of the liability
and the capital, C1, needed to contain the uncertainty in this estimate. The difference
between C0 · (1 + i) and C1 is returned to the investor. If that difference is negative,
as it occasionally will be, the investor is expected to contribute an amount to make up
that difference.

3. The process continues for future calendar years, t, with the amount,

Ct−1 · (1 + i)− Ct,

being returned to (or being contributed by) the investor.

4. At some time t = u, the loss is deemed to at ultimate, i.e. no significant changes in
the loss is anticipated and so we set Ct = 0 for t > u. For the examples in this paper,
u = 9.

The present value, discounted at the risky rate r, of the amount returned is equal to

u∑
t=1

Ct−1 · (1 + i)− Ct

(1 + r)t
.

Since r > i, this present value will be less than the initial capital investment of C0. To
adequately compensate the investor for taking on the risk of insuring policyholder losses, the
difference can be made up at time t = 0 by what we now define as the cost of capital risk
margin, RCOC .

RCOC ≡ C0 −
u∑

t=1

Ct−1 · (1 + i)− Ct

(1 + r)t
= (r − i) ·

u∑
t=0

Ct

(1 + r)t
(1)

with the second equality coming after some algebraic manipulations.

Note that RCOC is similar to, but not identical to, the Solvency II risk margin.

RSII ≡ (r − i) ·
u∑

t=0

Ct

(1 + i)t
(2)

The problem that now needs to be addressed is the calculation of the Cts. A straight-
forward way to project a future cash flow for this process would be to take a fitted Bayesian
MCMC model and simulate an additional calendar year of losses for t = 1. Then fit another
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Bayesian MCMC model to the original data and the simulated data to get the loss estimate
and capital requirements for t = 1. Then continue this process for t = 2, . . . , u.

While the execution speed of Bayesian MCMC software has significantly increased in
recent years, repeating this for 10,000 simulated future cash flows would undoubtedly strain
the patience of most practicing actuaries. This paper will propose a faster, but conceptually
identical, way to calculate the capital requirements for this process.

Now that we have defined the cost of capital risk margin, here is the route this paper
will take to address the problems that need to be solved to calculate the risk margin.

• First we show how to use the Bayesian MCMC machinery to calculate the cash flows
and corresponding loss estimates implied by the model.

• Then we show how to calculate the best estimate and the risk margins from the cash
flows.

• Then we will investigate the effect of insurer size and line of business on risk margins.

• Then we will address the effect of diversification by line of business.

While the examples this paper focus on an “ultimate” time horizon, jurisdictions such
as the European Union require insurers to calculate their capital requirements and their risk
margin based on a one-year time horizon. The final section will show, with an example,
how to adjust the models so that the one-year time horizon can be incorporated within the
framework of this paper.

The data for the examples in this paper are taken from the CAS Loss Reserve Database.
The data consist of 50 loss triangles in the Commercial Auto (CA), Personal Auto (PA),
Workers’ Compensation (WC) and Other Liability (OL) lines of insurance. The loss triangles
used in this paper were selected from the list given in Appendix A of Meyers (2015).

The algorithms described in this paper are computationally intensive. As one reads
this paper, they might question if the computations can be done in a reasonable time. The
answer is yes. The scripts that are included with the paper were run on my standard issue
high-end laptop. The run times for the calculations are about two minutes per loss triangle
for the model in Section 3 and about seventeen minutes per triangle for the model in Section
5.
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2 Cash Flows and Statistics of Interest

This paper will use the Changing Settlement Rate (CSR) model described in Meyers (2015)
as modified in Meyers (2016). As shown in these papers, this model has been successfully
validated on the lower triangle holdout data for a set of 200 loss triangles, 50 from each of four
lines of business. The model is fit to a cumulative paid loss triangle, T0 ≡ {Xw,d} where the
accident year, w = 1, . . . , 10 and the development year, d = 1, . . . , 11−w. This model allows
for accident year effects, development year effects and a variable claim settlement rate. The
details of the model are in the references above. What is relevant for this paper is that given
the loss triangle, T0, the model uses Bayesian MCMC to obtain a sample of 10,000 equally
likely lognormal,{µj

w,d, σ
j
d}

10,000
j=1 , parameter sets from the posterior distribution, {µw,d, σd|T0}.

This paper assumes that these parameter sets can be used to describe the possible future
cash flows by a simulation.

With these parameter sets we can calculate the best estimate as the probability weighted
average of the present value of expected future cash flows. This will be equal to the expected
value of the differences in the cumulative payments between development years, i.e.

EBest =

∑10,000
j=1

∑10
w=2

∑10
d=12−w exp

(
µj
w,d + (σj

d)
2/2
)
− exp

(
µj
w,d−1 + (σj

d−1)
2/2
)

10, 000 · (1 + i)w+d−11.5 (3)

This calculation assumes that the losses are paid one half year before the end of future
calendar year t = w + d− 11.

For the scope of this paper, let’s also select the ultimate loss, Uj, associated with the
jth parameter set to be the sum of the expected values of the losses for d = 10 over all the
accident years. i.e.,

Uj =
10∑

w=1

exp
(
µj
w,10 + (σj

10)
2/2
)

(4)

For those wishing to allow for loss development after d = 10, I suggest that a Bayesian
MCMC version of Clark (2003) would be a good place to begin.

For the lower triangle of {Xj
w,d}

10,000
j=1 , define the simulated loss trapezoid for future

calendar year t that includes the upper loss triangle, T0, and the first t diagonals of from the
lower loss triangle, i.e.

T j
t ≡

{
Xw,d for w = 1, . . . , 10 and d = 11− w, . . . , 10
Xj

w,d for w = t+ 1, . . . , 10 and d = 12− w, . . . ,min(11− w + t, 10)
(5)
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where Xj
w.d is simulated from a lognormal distribution with parameters µj

w,d and σj
d.

Let’s temporarily drop the assumption that we know the parameter set index j. All we
have is an observed loss trapezoid, Tt. Then using Bayes’ Theorem and the fact that initially,
all j are equally likely, the probability that the parameter set index is equal to j given Tt is
given by

Pr [J = j|Tt] =

∏
Xw,d∈Tt

φ
(
log(Xw,d)|µj

w,dσ
j
d

)
10,000∑
k=1

∏
Xw,d∈Tt

φ
(
log(Xw,d)|µk

w,dσ
k
d

) (6)

where φ is the probability density function for the normal distribution.

At this point, there are a number of options one can choose to calculate the various
statistics that are of interest to insurer risk managers. For example, given Tt, one could
calculate the ultimate loss estimate, Et as

Et ≡ E

[
10∑

w=1

Xw,10|Tt

]
=

10,000∑
j=1

Pr [J = j|Tt] · Uj. (7)

If one accepts that the Bayesian MCMC output as representative of all future scenarios,
Equation 7 is exactly the right calculation for the loss estimate given Tt. But let’s consider
what one should do to calculate, say, the 99.5th percentile. First one should sort the scenarios
in order of increasing Uj. It is not uncommon to find a case where there is a scenario, j,
with Pr[J ≤ j|T9] = 0.9900 and Pr[J ≤ j + 1|T9] = 0.9960. For cases such as this, I
tried a linear interpolation that occasionally yielded small discretization errors that gave
theoretically impossible results2.

To avoid these annoying cases, I decided to calculate the statistics of interest by first
taking a random sample of size 10,000 (with replacement), {St}, of the Ujs with sampling
probabilities Pr[J = j|Tt] . This is subject to an additional simulation error, but it should
be small.

The “statistics of interest” for risk margin are, for t = 0, . . . , 9:

1. The mean, Et, which is equal to the arithmetic average of {St}.

2. The Tail Value-at-Risk at the α level (TVaR@α), which is equal to the arithmetic
average of the (1− α)·10,000 highest values of {St}3.

2Such as a negative capital when the required assets were determined by the TVaR measure of risk.
3While this paper does not use the Value-at-Risk (VaR) in its examples, one could calculate the VaR@α

as the (1− α) · 10, 000th highest value of {St}.
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Let’s denote the total required capital by Ct ≡ TVaR@α− Et.

We summarize the above in the following algorithm.

Algorithm 1 Calculate Capital Scenarios
1: for k = 1, . . . , 10, 000 do
2: for t = 0, . . . , 9 do
3: Simulate cash flows {T k

t } using the parameter set {(µk
w,d, σ

k
d)}

4: Use Equation 6 to calculate Pr
[
J = j|T k

t

]
for each j = 1, . . . , 10, 000

5: Take a random sample of size 10,000 with replacement, {Sk
t }, of {Uj}10,000j=1 with

sampling probabilities Pr
[
J = j|T k

t

]
.

6: Set Ek
t equal to the arithmetic average of {Sk

t }.
7: Set Ck

t equal to the arithmetic average of the highest (1−α)·10,000 highest values
of {Sk

t }, minus Ek
t .

8: end for
9: end for

The examples in this paper use α = 97%. This selection is for illustrative purposes only.

Calculating Ek
t for t = 0, . . . , 9 yields the kth path that the loss estimate takes as it

moves toward its ultimate value. Of interest for what follows is the set of possible paths
that the loss estimate can take. Figure 1 shows the paths for the paths that contain the
100th, the 300th,. . ., and the 9,900th highest Ek

9 s of Insurer #353 for Commercial Auto in
the CAS Loss Reserve Database. This figure illustrates that the Ek

t s tend to become more
certain over time.
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Figure 1
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Also of interest is the paths of the required capital, Ck
t , for t = 0, . . . , 9. Figure 2 shows

the paths of Ck
t that correspond to the paths taken by Ek

t in Figure 1. This figure illustrates
that as the estimates of the Ek

t s become more more certain, the required capital, Ck
t , tends

to decrease over time.

Figure 2
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3 Risk Margins

This section applies the cost of capital risk margin formula, given by Equation 1, to the set
of required capital paths, {Ck

0 , . . . , C
k
9}

10,000
k=1 . Recall that the that formula defined the cost

of capital risk margin as the present value of the capital released as the loss reserve liability
becomes more certain. Figure 3 shows the paths of released capital that correspond to the
paths taken by the Ck

t s in Figure 2. In general, this figure shows that most of the capital
gets released early on, and that occasionally it is necessary to add capital.

Figure 3

Applying Equation 1 we get for each k

Rk
COC ≡ Ck

0 −
u∑

t=1

Ck
t−1 · (1 + i)− Ck

t

(1 + r)t
(8)
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Then the risk margin is given by

RCOC =
1

10, 000

10,000∑
k=1

Rk
COC (9)

Figure 4 shows a histogram of the Rk
COCs for our example.

Figure 4
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Of interest is the ratio of the risk margin and the size of the best estimate. To investigate,
I calculated the risk margins for all 200 loss triangles in our data. After some exploratory
analysis, I concluded that: (1) there are significant differences by line of business; and (2)
there is an approximate linear relationship between the log of the risk margin and the log of
the best estimate. Figure 5 shows the plots of the log(RCOC) against log(EBest), along with
the coefficients of an ordinary linear regression of the form

log(RCOC) = a+ b · log(EBest) (10)

Figure 54

4Three small volatile insurers had negative best estimates and were excluded from the linear regression.
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We can rewrite Equation 10 in the form

RCOC

EBest

= ea · (EBest)
b−1 (11)

Note from Figure 5 that that b < 1 for all four lines of insurance. This implies that
the risk margin to best estimate ratio decreases as the best estimate increases. As Figure
6 shows the ratio can be quite high for insurers with small best estimates. I can see where
some insurers might object, especially if the line with the high ratio is a small part of the
insurer’s book of business.

Figure 65

5A small number of estimates fell outside the range of these figures.
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4 Diversification

As stated in the introduction, the EU Solvency II provision states explicitly that “Insurance
undertakings shall segment their insurance obligations into homogeneous risk groups, and as
a minimum by lines of business, when calculating the technical provisions.” This means that
the total risk margin for a multiline insurer is the sum of the risk margins over its individual
lines of business.

Longtime observers of the insurance business have long recognized that multiline insurers
benefit from the diversification of their risk of loss. This being the case, they might well want
to reflect the benefits of diversification in their risk margins. The problem with a formal
recognition of diversification is that the benefits have been difficult to quantify. What many
are afraid of is the possibility that significant losses from the different lines of business could
happen at the same time. This possibility is often referred to as the “dependency problem.”

As such, the Solvency II non-recognition of diversification may appear to some to be
prudent.

Mathematical tools that can be used to describe dependency have been available for
quite some time. See, for example, Frees and Valdez (1998) and Wang (1998). The main
tool described in these papers is called a copula, which is a multivariate distribution on
an L-dimensional unit hypercube in which the marginal distributions have a uniform(0,1)
distribution. Given a copula C and samples {lSk

t }, (see Section 2) for each line l of L lines
of business, one begins to calculate RCOC by first executing the following algorithm.

Algorithm 2 Calculate Samples for Dependent Lines
1: for k = 1, . . . , 10, 000 do
2: for t = 1, . . . , 9 do
3: Simulate an L-tuple vector {P k

l }Ll=1 of uniform(0,1) numbers from the copula C .
4: For each line of business, l, select lQ

k
t to be the Pl · 10, 000 highest value of {lSk

t }.
5: end for
6: Set the total ultimate loss TS

k
t =1 Q

k
t + · · ·+L Q

k
t .

7: end for

Use the output of this algorithm to calculate, {TCk
t }

10,000
k=1 for t = 1, . . . , 9, and Equations

8 and 9 to calculate TRCOC .

So if one believes that the lines of business are correlated, it is possible to calculate the
risk margin for the total liability that reflects whatever diversification that is warranted by
one’s choice of a dependency structure. As it turns out, there has been some recent empirical
work on determining that structure.
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Let’s first look at Avanzi, Taylor and Wong (2016). The point of their paper is that
correlations can arise from an inappropriate model. To quote their abstract – “We show with
some real examples that, sometimes, most (if not all) of the correlation can be “explained’
by an appropriate methodology. Two major conclusions stem from our analysis.”

1. “In any attempt to measure cross-LoB correlations, careful modeling of the data needs
to be the order of the day. The exercise will not be well served by rough modeling,
such as the use of simple chain ladders, and may indeed result in the prescription of
excessive risk margins and/or capital margins.”

2. “Such empirical evidence as examined in the paper reveals cross-LoB correlations that
vary only in the range zero to very modest. There is little evidence in favor of the
high correlation assumed in some jurisdictions. The evidence suggests that these as-
sumptions derived from either poor modeling or a misconception of the cross-LoB
dependencies relevant to the purpose to which they are applied.”

Meyers (2016) arrives at a similar conclusion. This paper first shows how to fit a bivari-
ate CSR model, that allows for dependencies, to triangles for two lines of business from the
same insurer. It then compares the fit of the bivariate model to a similar bivariate model
that assumes independence for 102 within insurer pairs. Taking into account the additional
parameter introduced by the dependent model, it concludes that the model assuming inde-
pendence has a better fit for all 102 pairs of triangles.

In other words, the appropriate dependency structure is to assume that the lines of
business are independent. This assumes, as demonstrated in Meyers (2016) for the CSR
model used in this paper, that careful modeling has been carried out.

The independence assumption allows us to simplify the procedure described at the be-
ginning of this section. Given the samples {lSk

t },For each line l of L lines of business, one
begins to calculate RCOC by first executing following algorithm.

Algorithm 3 Calculate Samples for Independent Lines
1: for k = 1, . . . , 10, 000 do
2: for t = 1, . . . , 9 do
3: Set the total ultimate loss sample to be {TSk

t } = {1Sk
t }+ · · ·+ {LSk

t }.
4: end for
5: end for

Use the sample,{TSk
t }, to obtain {TCk

t }
10,000
k=1 for t = 1, . . . , 9. Then use Equations 8 and

9 to calculate the combined risk margin, TRCOC .
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The combined risk margins in this paper were calculated using the independence as-
sumption. This choice was not made for mathematical convenience. Meyers (2016) shows
how to estimate the parameters of a model with dependency between the lines. The steps
outlined at the beginning of this section show how to implement a dependency assumption
if warranted.

From the loss triangles studied in Meyers (2015) there were five insurers with a loss
triangle in all four lines. Table 1 gives the combined risk margin for these five insurers in the
“Total” rows in the “Allocated Risk Margin” column. Over all five insurers, the diversification
credit,

1− Combined Risk Margin
Total Standalone Risk Margin

,

ranged from 30.3% to 48.3%.

Of interest, if not essential, is to see how this combined risk margin is allocated down
to the individual lines of insurance. Allocating the cost of capital to individual lines is more
important for pricing than for financial reporting as the former case requires an insurer to
quote a price for an individual insurance contract. For the latter case, a risk margin need
only apply to the total insurer liabilities.

Allocating the cost of capital has been debated in the actuarial profession for decades.
About 15 years ago, there were a number of papers that address the issue in a pricing context.
Mango and Ruhm (2003) and Meyers (1999) are two of many papers that were published
around then. Forgoing the seemingly endless discussion that accompanies this topic, this
paper allocates combined capital to lines of insurance in proportion to the lines marginal
cost of capital.

Once one has done the coding necessary to calculate the combined risk margin, it takes
only a little additional computer run time to allocate the combined risk margin to individual
lines. So let’s proceed.

Given the samples, {lSk
t }, for each line l of L lines of business, one begins to calculate

marginal cost of capital for line l, (l)RCOC , by first executing Algorithm 4 below. Then for
each line l execute Algorithm 5.

The fourth column of Table 1 gives the marginal cost of capital, (l)RCOC , by insurer for
each line of insurance. Note that the sum of the marginal cost of capitals by line is less than
the combined cost of capital in the “Total” column. We then allocate the cost of capital by
line of insurance in proportion to the marginal capital by

(l)RACOC ≡(l) RCOC · TRCOC

(1)RCOC + · · ·+(L) RCOC

(12)
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Note that there are many instances where the diversification credit is in excess of 80%.
This occurs when a “small” line of insurance is part of the portfolio of a “large” insurer.
Regardless of what one thinks of allocating the cost of capital, one cannot deny that a
“small” line of insurance adds little to the risk of a large insurer. The insurer size effect
illustrated in Figure 6 can be significantly reduced by taking diversification into account.

Algorithm 4 Calculate Leave-Line-Out Samples
1: for k = 1, . . . , 10, 000 do
2: Set the total ultimate loss sample to be {TSk

t } = {1Sk
t }+ · · ·+ {LSk

t }.
3: for t = 1, . . . , 9 do
4: Set the leave-line-out ultimate loss sample for line l to be {(−l)Sk

t } = {TSk
t } −

{lSk
t }.

5: end for
6: end for

Algorithm 5 Calculate Marginal Cost of Capital
1: for l = 1, . . . L do
2: for t = 1, . . . 9 do
3: Use the sample, {(−l)Sk

t }, to calculate the leave-line-out capital, {(−l)Ck
t }

10,000
k=1 .

4: end for
5: Use Equations 8 and 9 to calculate the leave-line-out cost of capital risk margin,

(−l)RCOC .
6: Calculate the marginal cost of capital risk margin, (l)RCOC ≡ TRCOC −(−l)RCOC .
7: end for
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Estimated Best Marginal Allocated Standalone Diver.
Grp./Line Ult. Loss Esitmate Risk Margin Risk Margin Risk Margin Credit

1528/CA 88,756 13,822 464 852 1,447 41.1%
PA 311,659 36,507 542 996 1,519 34.4%

WC 129,762 13,207 61 111 550 79.8%
OL 19,143 4,697 243 447 1,065 58.0%

Total 549,320 68,233 1,310 2,406 4,581 47.5%

1767/CA 2,205,897 310,203 108 171 5,963 97.1%
PA 90,312,996 9,921,107 20,620 32,566 76,527 57.4%

WC 1,677,179 227,010 175 276 5,637 95.1%
OL 2,443,660 956,344 76,495 120,812 132,428 8.8%

Total 96,639,732 11,414,664 97,398 153,825 220,555 30.3%

3240/CA 97,298 18,684 346 554 1,653 66.5%
PA 1,092,757 136,373 1,862 2,983 3,208 7.0%

WC 38,960 4,155 42 67 467 85.7%
OL 13,774 2,638 36 58 459 87.4%

Total 1,242,789 161,850 2,286 3,663 5,787 36.7%

5185/CA 96,071 23,262 837 1,592 2,544 37.4%
PA 268,908 43,305 952 1,811 2,719 33.4%

WC 100,322 16,768 91 173 1,100 84.3%
OL 140,606 22,440 216 410 1,346 69.5%

Total 605,907 105,775 2,095 3,985 7,709 48.3%

14176/CA 28,929 11,759 982 1,716 2,191 21.7%
PA 144,563 26,494 380 663 1,439 53.9%

WC 111,498 20,075 263 460 1,229 62.6%
OL 5,290 1,287 35 61 326 81.3%

Total 290,280 59,615 1,660 2,900 5,185 44.1%

Table 1
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5 One-Year Time Horizon

The risk margin calculations above assumed an “ultimate” time horizon to establish the
required capital. Some regulatory jurisdictions, e.g. Solvency II, specify that the insurer
should assume a one-year time horizon. This section extends the methodology of the previous
sections to cover the one-year time horizon.

A high-level description of the methodology is to use a Bayesian MCMC model to obtain
10,000 equally likely scenarios that represent the future evolution of the line of business that
produced the loss triangle. Then, as new losses come in, it uses Bayes’ Theorem to update
the probability of each scenario. From these updated probabilities, one then calculate the
statistics that are needed to calculate the risk margin.

A key step in this methodology is to assign a unique ultimate loss estimate to each sce-
nario. As Figure 1 illustrates, changes in the ultimate loss estimate for the later development
periods are relatively rare, so the assignment of the ultimate loss estimate, Uj, specified in
Equation 4, to the jth scenario is a good approximation.

However as Figure 1 also illustrates, there is significant uncertainty in the ultimate loss
after one additional year of development. So the assignment of the ultimate loss estimate of
Uj to the jth scenario is not a good approximation.

Under a one-year time horizon capital requirement, the capital is determined by the
estimate of the ultimate losses after one more calendar year of loss experience. To calculate
the risk margin we will need the distribution of ultimate loss estimates at the end or each
calendar year. These estimates will depend upon the calendar year, t.

To get a good approximation, Ot,j, of the expected ultimate loss for the jth scenario, one
can simulate future loss experience from the parameter set of that scenario and calculate the
ultimate loss estimate, M times. Then set Ot,j equal to the average of those estimates. The
details are in the Algorithm 6 below.

Both the accuracy of the estimate of Ot,j and the computer run time increase with M . I
experimented with different values of M and found that M = 12 obtained results that were
sufficiently accurate given the intrinsic variation of the underlying MCMC simulation.

Use Algorithm 7 to calculate the risk margin for the one year time horizon. In this
algorithm, one simply substitutes Ot+1,j for Uj in the 5th step of Algorithm 1. Given the
output of Algorithm 7, one then calculates risk margins using Equations 8 and 9.
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Algorithm 6 Calculate Scenario Estimates by Calendar Year
for m = 1, . . . ,M do

for j = 1, . . . , 10, 000 do
for t = 1, . . . , 9 do

Simulate Tt using the parameters (µj
w,d, σ

j
d).

Use Equation 6 to calculate {Pr [N = n|Tt]}10,000n=1 .
Use Equation 7 to calculate the ultimate loss estimate, Om

t,j.
end for
Set Om

10,j = Om
9,j

end for
end for
for j = 1, . . . , 10, 000 do

for t = 1, . . . , 10 do
Set Ot,j = mean(Om

t,j).
end for

end for

Algorithm 7 Calculate Capital Scenarios for a One-Year Time Horizon
for k = 1, . . . , 10, 000 do

for t = 0, . . . , 9 do
Simulate cash flows {T k

t } using the parameter set {(µk
w,d, σ

k
d)}

Use Equation 6 to calculate Pr
[
J = j|T k

t

]
for each j = 1, . . . , 10, 000

Take a random sample of size 10,000 with replacement, {Sk
t }, of the {Ot+1,j}10,000j=1

with sampling probabilities Pr
[
J = j|T k

t

]
.

Set Ek
t equal to the arithmetic average of {Sk

t }.
Set Ck

t equal to the arithmetic average of the highest (1− α)·10,000 highest values
of {Sk

t }, minus Ek
t .

end for
end for
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Figures 7-9 show the one-year time horizon capital paths, release paths and risk margins
of Insurer #353 for Commercial Auto that correspond to Figures 2, 3 and 4, respectively for
the ultimate time horizon.

Figure 7
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Figure 8
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Figure 9
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6 Concluding Remarks

There has not been universal agreement on the assumptions underlying a cost-of-capital risk
margin formula. Beyond the underlying Bayesian MCMC stochastic loss reserve model, this
paper makes the the following key assumptions.

1. The required required assets for an insurer are determined by the TVaR@α measure
of risk.

2. The required capital calculation assumes an “ultimate” time horizon.

3. The distribution of outcomes for the different lines of business are independent.

In numerous advisory committee meetings held at International Actuarial Association
events, I heard the following argument supporting the one-year time horizon. Insolvency is
usually not an instantaneous event. If the insurer finds itself under stress within a year, it
will have time to make the necessary adjustments.

At the same meetings I also heard the following heuristic definition of a risk margin. The
risk margin is to provide sufficient funds to transfer its liability to another insurer. “Sufficient
funds” should include the cost of capital.

My approach to risk margins was governed by the following considerations.

1. The term of such a portfolio risk transfer contract is unlikely to be for a single year,
with the risk reverting back to the original insurer at the end of the year.

2. For a multi-line insurer, the risk being transferred is unlikely consist of a single line of
insurance.

3. Dependency between lines is model dependent. In Meyers (2016) I demonstrated that
the independence assumption is warranted for the CSR model used in this paper.

4. The theoretical advantages of the TVaR@α over the Var@α have been well-documented
by Artzner et. al. (1999). Whatever computational difficulty there may have been with
the TVaR is not an issue with the methodology used in this paper.

In recognition of the fact that reasonable people may differ on their assumptions, this
paper points the way to use alternative assumptions. The methodology described in this
paper should be readily adopted for any Bayesian MCMC model.
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7 Appendix

Included with this paper is a zip archive containing the following.

• RM 1Line.R - The script that produces the risk margin calculations in Sections 2 and
3.

• RM 4Line.R - The script that produces the risk margin calculations in Section 4.

• RM 1Line 1yr.R - The script that produces the risk margin calculations in Section 5.

• Risk Margins for 200 Triangles.xlsx - Risk margin single line calculations for all 200
triangles

The computer language for the scripts is R (https://www.r-project.org.) The com-
puter language for the MCMC calculations is Stan (http://mc-stan.org/interfaces/
rstan.html.)
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Appendices 
Risk Margins for 200 triangles (Excel file) 
RM_Line1.R (R file) 
RM_Line1_1yr.R (R file) 
RM_4Lines.R (R file) 

http://www.casact.org/pubs/forum/17wforum/Risk%20Margins%20for%20200%20Triangles.xlsx
http://www.casact.org/pubs/forum/17wforum/RM_1Line.R
http://www.casact.org/pubs/forum/17wforum/RM_1Line_1yr.R
http://www.casact.org/pubs/forum/17wforum/RM_4Lines.R
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