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______________________________________________________________________________ 
Abstract 

Motivation. This paper proposes a triangle-based stochastic reserving framework for parsimoniously describing 
insurance claims generation, reporting and settlement processes with intuitive parameters. 
 
Method. Deterministic compartmental models are explored as extensible tools to describe and project the 
insurance claims process using a small number of parameters, including a measure of case reserve robustness. A 
Schedule-P reserving case study illustrates the application of a nonlinear hierarchical (“mixed-effects”) framework 
to fit compartmental models to outstanding and cumulative paid claims development triangles, simultaneously. 
This allows one or more of the claims process parameters to vary by claims cohort in accordance with a statistical 
distribution. An optional Bayesian implementation facilitates the robust incorporation of external information and 
judgment into the projection of reserve uncertainty. 
 
Results. A flexible stochastic reserving framework is established, with benefits including the ability to explicitly 
account for reporting and/or settlement rate changes, make inferences about components of the claims process 
and scenario test future process changes using information gathered across the business. 
 
Conclusions. Hierarchical compartmental models can describe and project the insurance claims process in an 
optional level of detail for the purpose of setting reserves. 
 
Availability. Frequentist model R code is contained in Appendix E, Bayesian model OpenBUGS code is contained 
in Appendix F and an illustration spreadsheet is available at: http://www.casact.org/pubs/forum/16sforum/.  
 
Keywords. Stochastic loss reserving, compartmental reserving models, claims process modeling, hierarchical 
models, nonlinear mixed-effects, Bayesian modeling, MCMC. 

______________________________________________________________________________ 

1. INTRODUCTION 

A variety of triangle-based stochastic reserving techniques have been proposed for estimating 

future general insurance claims payments, ranging from generalized linear models (England and 

Verrall, 2002) to nonlinear hierarchical models (Guszcza, 2008). Methods incorporating both paid and 

incurred information have been explored (Martínez-Miranda, Nielsen and Verrall, 2012; Quarg and 

Mack, 2004), which provide richer inference and improved interpretability. Furthermore, Bayesian 

methods (Zhang, Dukic and Guszcza, 2012; Meyers, 2007; England and Verrall, 2005; Verrall, 2004) 

have become increasingly ubiquitous; providing flexibility and the ability to robustly incorporate 

judgment into uncertainty projections.  

This paper explores a new triangle-based (and optionally-Bayesian) stochastic reserving framework 

which considers the relationship between exposure, case reserves and paid claims. By doing so, it 

enables practitioners to build communicable models that are consistent with their understanding of 

the insurance claims process. Furthermore, it supports the identification and quantification of claims 

process characteristics to provide tangible business insights. 

http://www.casact.org/pubs/forum/16sforum/


Hierarchical Compartmental Models for Loss Reserving 

Casualty Actuarial Society E-Forum, Summer 2016  2 

1.1 Research Context 

Compartment(al) models (Sheppard, 1948) are extensible tools for describing the transfer of 

material between components of a system over time. For a sufficient volume of claims, the insurance 

claims process can be represented by a small number of compartments and intuitive parameters. The 

parameters describe aggregate claims movements between compartments and the ultimate loss ratio 

(ULR), decomposed into a reported loss ratio and a measure of case reserve robustness.  

Motivated by Guszcza (2008), a nonlinear hierarchical modeling framework is proposed for fitting 

compartmental loss reserving models to claims triangles, allowing one or more of the model 

parameters (and hence development patterns) to vary by claims cohort in accordance with a statistical 

distribution. This enables flexible and parsimonious compartmental models to be fitted to reported 

outstanding claims and cumulative paid claims development triangles, simultaneously.  

An optional Bayesian implementation (akin to Zhang, Dukic and Guszcza, 2012) allows external 

information and judgment to be incorporated into reserve uncertainty projections. Additionally, 

Markov chain Monte Carlo (MCMC) techniques facilitate model flexibility, and consequently, specific 

features such as the correlation between successive observations and calendar shocks can be 

accounted for. 

1.2 Objective 

Hierarchical compartmental reserving models have parallels with the hierarchical growth curves 

put forward by Guszcza (2008). In contrast to monotonic growth curves however, compartmental 

models can be fitted to cumulative paid claims and outstanding claims reserves, simultaneously. Since 

outstanding claims typically rise and fall over time, negative incurred claims development is supported. 

Furthermore, explicit modeling of outstanding claims may reduce the subjectivity inherent in the 

selection of a growth curve for tail extrapolation. Finally, relating compartmental model parameters 

back to the claims process provides intuitive control over the level of model complexity. 

In contrast to Zhang, Dukic and Guszcza (2012), the corresponding Bayesian implementation 

enables prior beliefs to be more readily incorporated into process-based model parameters. This allows 

drivers of uncertainty to be isolated. Additionally, Bayesian hierarchical compartmental models have 

the flexibility to handle negative development for reserve uncertainty projections contrary to many 

existing GLM-type methods (England and Verrall, 2002).  

Furthermore, compared to existing methods that utilize both paid and incurred data (e.g. 

Martínez-Miranda, Nielsen and Verrall, 2012; Quarg and Mack, 2004), a compartmental approach 

ensures consistency between estimated paid and incurred claims. 
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Although this paper proposes a triangle-based approach, methods incorporating individual claims 

data (e.g. Antonio and Plat, 2014; Parodi, 2013) exhibit a number of desirable properties, including 

the ability to reflect underlying claims processes. Such methods typically require a combination of 

models to be parameterized however, whereas a compartmental framework allows claims process 

characteristics to be quantified using a single structural model. Additionally, hierarchical model 

diagnostic tests can help to mitigate the risk of overfitting the data and reducing extrapolation validity. 

1.3 Outline 

The remainder of the paper proceeds as follows:  

 Section 2 will introduce compartmental modeling theory, hierarchical compartmental 

models and Bayesian hierarchical compartmental models. 

 Section 3 will define a compartmental model for the claims process. Parameter 

interpretations will be discussed and a number of practical extensions will be explored. 

 Section 4 will contain a triangle reserving case study detailing the application of frequentist 

and Bayesian hierarchical compartmental models to a Schedule-P dataset.  

 Section 5 will present a brief overview of future development areas. 

 Section 6 will summarize the paper’s findings.  

Appendices will contain various supplementary materials including the case study data, frequentist 

modeling R code, and Bayesian modeling OpenBUGS code.  
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2. COMPARTMENTAL MODELS 

A system is said to be a compartment(al) system when its entities can be grouped into a finite 

number of connected homogeneous components, known as compartments (Sheppard, 1948). They 

are often used to describe how entities/materials change location or state over time. The set of all 

possible compartments in a system is called the state-space, and the phenomena under study in each 

compartment are described by state-variables (Blomhøj, Kjeldsen and Ottesen, 2014). 

Compartmental models can be deterministic or stochastic, containing discrete or continuous 

state-variables in discrete or continuous time. In deterministic models, the behavior of the quantities 

within the system is dictated solely by their past behavior and the rules that govern the model. In 

contrast, stochastic models imply a distribution of possible behaviors (Brauer, 2008). A useful feature 

of compartmental models is that complexity can be controlled by adjusting the number of 

compartments and/or their corresponding inflows and outflows.  

The focus of this paper will be a practical claims reserving application of deterministic, 

continuous state-variable and continuous-time compartmental models. The rationale is as 

follows: 

 Compartmental models describing exposure, reported outstanding claims and cumulative 

paid claims (where the latter two are simultaneously fitted) have not yet been introduced 

into the loss reserving literature. 

 Deterministic models are practical to implement, and their simplicity results in clear and 

communicable claims process parameters. 

 The hierarchical framework proposed in Section 4 increases mathematical complexity to 

the extent that at present, appropriate hierarchical stochastic compartmental reserving 

models are not easily implementable in conventional software.  

Sections 2.1 and 2.2 will contain overviews of deterministic and stochastic compartmental models, 

and Section 2.3 will introduce hierarchical compartmental models.  

2.1 Deterministic compartmental models 

Deterministic compartmental models have many possible applications. One of which is to describe 

the transport of material through biological systems, where compartments have physiological 

interpretations. For example, “compartmental pharmacokinetic models” are commonly used to 

describe the continuous transfer of an administered drug into, within and out of a patient. State-spaces 

typically comprise blood plasma and body tissues/organs, with state-variables denoting their drug 

concentration-time (or amount-time) profiles.  
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Deterministic, continuous-time models can be expressed as linear systems of ordinary differential 

equations (ODEs), with state-variables expressed as differentials of time. Analytical state-variable 

solutions are linear combinations of exponential terms describing the estimated amounts of material 

in each compartment at each time.  

A one compartment pharmacokinetic model with state-space {𝑃𝑙𝑎𝑠𝑚𝑎(𝑡)} for a direct intravenous 

drug dose can be written schematically as follows: 

                                           

Alternatively, the model can be written as a single ODE, where the state-variable {𝐴1(𝑡)} denotes 

the amount of drug in the blood plasma at time 𝑡, and the positive “rate elimination constant” {𝑘𝑒𝑙} 

describes how quickly the drug is eliminated from the body. It is assumed that elimination of the drug 

is constant and directly proportional to its amount (first-order kinetics): 

 𝑑𝐴1/𝑑𝑡 =  −𝑘𝑒𝑙𝐴1 

𝐴1(0) = 𝐷𝑜𝑠𝑒 
(2.1) 

A patient’s blood plasma amount-time profile 𝐴1(𝑡) can be measured by repeatedly sampling their 

blood over the time following a drug dose. The rate parameter 𝑘𝑒𝑙 can then be estimated by solving 

the ODE and fitting the model to the patient’s amount-time observations. Denoting 𝑦𝑗 as the 𝑗th drug 

amount measurement for a patient, we can specify a nonlinear regression (Seber and Wild, 1989) as 

 𝐴1(𝑡𝑗) = 𝑦𝑗 = 𝐷𝑜𝑠𝑒 ∙ 𝑒−𝑘𝑒𝑙𝑡𝑗 + 𝜀𝑗 

𝜀𝑗~𝑁(0, 𝜎2) 
(2.2) 

where 𝜎2 is the variance of the discrepancy between the model fit and the drug amount 

measurements. For illustrative purposes, an estimated blood plasma amount-time profile 𝐴1̂(𝑡𝑗) for a 

given dose and rate of elimination is as follows: 

     

Plasma
Dose

kel

https://en.wikipedia.org/wiki/First_order_kinetics
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2.2 Stochastic compartmental models 

In contrast to deterministic compartmental models, stochastic compartmental models introduce 

uncertainty external to the history of the modeled process by assuming that one or more of the states 

are random variables. This may be achieved, for example, by adding probabilistic state transfer 

mechanisms to an existing deterministic structure (Rescigno and Segre, 1966).  

Three example forms of stochastic compartmental models and their corresponding properties are: 

1) Discrete-time Markov chain models: discrete state-variables, discrete time steps 

2) Continuous-time Markov chain models: discrete state-variables, continuous time scale  

3) Stochastic differential equation (SDE) models: continuous state-variables and time scale 

Hachemeister (1980) provides a loss reserving application of discrete-time Markov chain models. 

Analogously, Orr (2007), Hasselager (1994) and Norberg (1993) provide loss reserving applications of 

continuous-time Markov chain models. 

2.3 Hierarchical compartmental models 

Section 2.1 describes how a deterministic compartmental model can be used to estimate a drug 

amount-time profile for a single patient. However, in practice drug developers wish to make inferences 

about a population of individuals that may eventually take a particular drug. Assuming a drug has been 

administered to a group of individuals and expressing 𝑦𝑖𝑗 as the 𝑗th drug amount measurement  

(𝑗 = 1 𝑡𝑜 𝑛𝑖) for the 𝑖th individual (𝑖 = 1 𝑡𝑜 𝑀), we could use nonlinear regression to fit a separate 

compartmental model to each individual: 

 𝑦𝑖𝑗 = 𝐷𝑜𝑠𝑒𝑖 ∙ 𝑒−𝑘𝑒𝑙𝑖𝑡 + 𝜀𝑖𝑗 (2.3) 

However, this modeling approach may result in many parameters relative to the number of data 

points available for modeling, reducing the credibility of each estimated parameter. 

An alternative approach is to pool all individuals’ concentration measurements and fit one 

compartmental model with a single parameter to all individuals combined: 

 𝑦𝑖𝑗 = 𝐷𝑜𝑠𝑒𝑖 ∙ 𝑒−𝑘𝑒𝑙𝑡 + 𝜀𝑖𝑗  (2.4) 

Although 𝑘𝑒𝑙 is likely to be estimated with greater precision than each 𝑘𝑒𝑙𝑖
 in Eq. (2.3), it is unlikely 

to result in an accurate fit to each individual due to between-patient variability e.g. differing 

metabolisms. 

The approach commonly used in pharmacokinetic modeling in addition to other life and social 

sciences is nonlinear hierarchical modeling, which has previously been advocated for loss reserving 
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by Guszcza (2008). Hierarchical (or mixed-effects) models allow some model parameters to be 

fixed across individuals and some to vary by individual. More generally, they allow parameters to 

vary by any natural data grouping. For example, for estimating insurance claims reserves Guszcza 

(2008) proposes claims cohorts (individual accident years) as a grouping for cumulative paid claims.  

A hierarchical framework allows model parameters to vary by the assumed data grouping in 

accordance with a statistical distribution defined by a mean and variance only. This reduces the number 

of estimable parameters compared to the first modeling approach outlined above. Conversely, because 

the modeler can select which parameters vary by individual, each individual can be described in greater 

detail compared to the second modeling approach outlined above. 

Hierarchical/mixed-effects models are said to allow data-sparse individuals to “borrow strength” 

from data-rich individuals. For parameters that vary by individual, an individual’s parameter estimate 

is a weighted average of: 

1) The estimated average parameter value across all individuals; and 

2) The estimated individual parameter value for the individual.  

The weight given to the individual parameter value is proportional to the individual’s data volume. 

To illustrate how nonlinear hierarchical models are structured, Eq. (2.3) can be rewritten as 

 𝑦𝑖𝑗 = 𝐷𝑜𝑠𝑒𝑖 ∙ 𝑒−(𝑘𝑒𝑙̅̅̅̅̅+(𝑘𝑒𝑙𝑖−𝑘𝑒𝑙̅̅̅̅̅))∙𝑡 + 𝜀𝑖𝑗 (2.5) 

where 𝑘𝑒𝑙
̅̅ ̅̅  represents the average rate of elimination across all individuals. Denoting 𝑘𝑒𝑙

̅̅ ̅ as 𝛽, and 

𝑘𝑒𝑙𝑖
− 𝑘𝑒𝑙

̅̅ ̅̅  as 𝑏𝑖 (Pinheiro and Bates, 2000), this becomes 

 𝑦𝑖𝑗 = 𝐷𝑜𝑠𝑒𝑖 ∙ 𝑒−(𝛽+𝑏𝑖)∙𝑡 + 𝜀𝑖𝑗 

𝜀𝑖𝑗~𝑁(0, 𝜎2), 𝑏𝑖~𝑁(0, 𝜓2) 
(2.6) 

where 𝛽 is referred to as a fixed-effect and 𝑏𝑖 as a random-effect, which has its own probability 

sub-model. A shared distribution for the random-effects induces a correlation between individuals, 

which may be an appropriate assumption if they are assumed to come from a wider population. 𝜎2 

represents the within-subject variability, whereas 𝜓2 represents the between-subject variability. For 

any number of individuals being modeled, only three parameters (𝛽, 𝜎 and 𝜓) need to be estimated. 

Two key reasons for using a hierarchical framework are parsimony and flexibility. These features 

may be useful for loss reserving where data are incomplete and sometimes limited for modeling 

purposes, requiring descriptive models that do not overfit.  

Antonio and Zhang (2014) provide a detailed exploration of nonlinear hierarchical models for 

insurance data. 
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2.3.1 Bayesian hierarchical compartmental models 

A modeler may want to incorporate external information and/or judgment into a compartmental 

model to account for information not contained within the modeled dataset. For example, in drug 

development there may be other data-rich drug administration studies from which to base parameter 

prior distributions. For the hierarchical model outlined in Eq. (2.6) it could be assumed that 

 log(𝛽)~𝑁(𝛽,̅ 𝛾2) (2.7) 

where 𝛽 denotes the fixed-effect for the rate of drug elimination, and 𝛽,̅ 𝛾2 denote the prior mean 

and variance of log(𝛽) respectively, which are specified by the modeler rather than estimated. Bayes’ 

rule can then be used to estimate the posterior distribution of the fixed-effect as 

 𝑝(𝛽|𝑦𝑖𝑗) ∝ 𝑝(𝛽) 𝑝(𝑦𝑖𝑗|𝛽) 

≡ 𝑝(𝛽|𝑦𝑖𝑗) ∝ 𝑝(𝛽) ℒ(𝛽; 𝑦𝑖𝑗) 

𝑝𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟 ∝ 𝑝𝑟𝑖𝑜𝑟 × 𝑙𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑 

(2.8) 

where 𝑝(∙) is a probability density function, 𝛽 is the “random” parameter for which we wish to 

make inferences, 𝑦𝑖𝑗 is the “fixed” 𝑗th observation for individual 𝑖 and ℒ(∙) is the likelihood function. 

The posterior distribution is a credibility weighting of the prior distribution and likelihood function, where 

the weight placed on prior beliefs is inversely proportional to the volume of modeled data. 

As highlighted by Zhang, Dukic and Guszcza (2012), this approach can be useful for loss reserving 

where it is often essential for a practitioner to incorporate judgment into reserve projections to allow 

for information not contained within the modeled data. Additionally, Bayesian methods allow us to 

quantify reserve uncertainty consistently with the definition stated by the 2005 Casualty Actuarial 

Society Working Party on Quantifying Variability in Reserve Estimates: 

‘Given . . . our current state of knowledge, what is the probability that [the entity’s] final payments will be no larger 
than the given value’. 

This can be framed mathematically using Bayesian statistics. Denoting 𝑈𝐿𝑅𝑖 as the ultimate loss 

ratio (and parameter of interest) for the 𝑖th claims cohort and 𝐼𝑛𝑐𝑢𝑟𝑟𝑒𝑑𝑖𝑗 as the 𝑗th cumulative incurred 

claims observation for the 𝑖th claims cohort, the posterior density of 𝑈𝐿𝑅𝑖 given 𝐼𝑛𝑐𝑢𝑟𝑟𝑒𝑑𝑖𝑗 is 

 𝑝(𝑈𝐿𝑅𝑖|𝐼𝑛𝑐𝑢𝑟𝑟𝑒𝑑𝑖𝑗) ∝ 𝑝(𝑈𝐿𝑅𝑖) ℒ(𝑈𝐿𝑅𝑖; 𝐼𝑛𝑐𝑢𝑟𝑟𝑒𝑑𝑖𝑗) (2.9) 

which provides an estimate of ULR parameter uncertainty. It is straightforward to incorporate 

process uncertainty into this posterior, from which a distribution for final payments can be derived 

consistently with the above definition. Finally, Bayesian models increase flexibility because they 

require only that model parameters and the relationships between them are specified.  

A detailed exposition of Bayesian methods and their applications is given by Gelman et al. (2013). 
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3. COMPARTMENTAL MODELS FOR LOSS RESERVING 

To specify a deterministic, continuous state-variable and continuous-time compartmental model 

for the insurance claims process, a state-space must be defined. The selection of a possible state-space 

is illustrated by considering the insurance claims process over development time for a cohort of claims 

e.g. an accident year: 

1) Once a group of insurance policies have been written and incepted, they are exposed to the 

risk of making claims. Therefore an initial “Exposed to Risk” state is defined.  

2) For some proportion of exposed policies, claim events will occur and be reported to the 

insurer. Claims are typically case reserved and classed as being outstanding until settled, 

defining a second state: “Claims Outstanding”. 

3) A proportion of all reported outstanding claims will be settled with a payment amount, 

which defines a “Claims Paid” state. 

The state-space is therefore {Exposed to Risk(𝑡), Claims Outstanding(𝑡), Claims Paid(𝑡)}. The 

states-variables in turn denote the amount of remaining exposure, the monetary amount of claims 

outstanding, and the cumulative monetary amount of claims paid at development time 𝑡. 

Assuming that the above process is a forward process only, i.e. no material re-opening of paid 

claims, a model schematic can be written as follows: 

                     

Exposure reduces over time as groups of claims are reported and become paid at some proportion 

of their outstanding amounts. This reduces the claim amounts outstanding (eventually to 0 as 𝑡 

becomes large) and ensures consistency between paid and incurred claims estimates. Although this 

model is for claim amounts, an adapted version could be defined for claim numbers (not shown). 

To initialize the process, a suitable measure of exposure must be chosen as an input variable. For 

an accident year/quarter cohort of claims, earned premiums could be used (Guszcza, 2008; Clark, 

2003). Alternatively, a pure exposure measure could be chosen in line with the original pricing basis 

(see Section 3.2). 

Independently of the chosen exposure measure, the timing of policies coming on-risk during the 

claims cohort should be considered. If policies coming on-risk during an accident year/quarter are 

largely replaced by similar policies coming off-risk, i.e. steady-state conditions, a practitioner could 

Exposed to 
Risk

Claims 
Outstanding

Claims
Paid
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input all exposures into to the system at development time 0. This is the approach taken for the case 

study presented in Section 4. Similarly, it would be acceptable to input all exposures at time 0 if all (or 

a large proportion of) policies that could give rise to a claim in the cohort are on-risk at the start of 

the cohort (e.g. accident quarter). However, if exposure materially fluctuates during the lifetime of the 

cohort, a more sophisticated approach is required to match the input exposures with the cohort’s 

development times at which the policies come on-risk (see Section 3.2). 

For an accident year/quarter cohort of claims, the use of (ultimate) earned premiums as an 

exposure measure provides an appealing parameter set. A schematic for what will be termed the 

“baseline model” is shown below, followed by its corresponding parameter definitions: 

  

 Reported Loss Ratio (“𝑅𝐿𝑅”): the proportion of premiums that become reported claims. 

 Rate of earning and reporting (“𝑘𝑒𝑟”): the rate at which claim events occur and are 

subsequently reported to the insurer. 

 Reserve Robustness Factor (“𝑅𝑅𝐹”): the proportion of outstanding claims that eventually 

become paid by the insurer. 

 Rate of payment (“𝑘𝑝”): the rate at which outstanding claims are paid by the insurer. 

Therefore this model is defined in terms of proportions {𝑅𝐿𝑅, 𝑅𝑅𝐹} and rates {𝑘𝑒𝑟 , 𝑘𝑝}. For the 

continuous-time assumption to hold, a sufficient number of policies must be written to give rise to a 

steady “flow” of reported and paid claims over development time.  

Denoting the state-space {Exposed to Risk(𝑡), Claims Outstanding(𝑡), Claims Paid(𝑡)} as 

{𝐸𝑋(𝑡), 𝑂𝑆(𝑡), 𝑃𝐷(𝑡)}, the above model can be written as follows: 

 

 

 

𝑑𝐸𝑋/𝑑𝑡 =  −𝑘𝑒𝑟 ∙ 𝐸𝑋 

𝑑𝑂𝑆/𝑑𝑡 =  𝑘𝑒𝑟 ∙ 𝑅𝐿𝑅 ∙ 𝐸𝑋 − 𝑘𝑝 ∙ 𝑂𝑆 

𝑑𝑃𝐷/𝑑𝑡 =  𝑘𝑝 ∙ 𝑅𝑅𝐹 ∙ 𝑂𝑆 

 

(3.1) 

Compartment initial conditions are 𝐸𝑋(0) = 𝑒𝑎𝑟𝑛𝑒𝑑 𝑝𝑟𝑒𝑚𝑖𝑢𝑚𝑠 = 𝑃, 𝑂𝑆(0) = 0 and 𝑃𝐷(0) = 0, 

assuming steady-state exposure. Each parameter is assumed to be constant over development time 𝑡; 

however, this assumption is relaxed in Section 3.2.  

Earned 

Premiums Exposed to 
Risk

Claims 
Outstanding

Claims
Paid

RLR RRF

ker kp
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Analytical state-variable solutions can be obtained using Laplace transforms (Gustav, 1974): 

 𝐸𝑋(𝑡) = 𝑃𝑒−𝑘𝑒𝑟𝑡 

𝑂𝑆(𝑡) =  
𝑃 ∙ 𝑅𝐿𝑅 ∙ 𝑘𝑒𝑟

𝑘𝑒𝑟 − 𝑘𝑝 
∙ (𝑒−𝑘𝑝𝑡 − 𝑒−𝑘𝑒𝑟𝑡) 

𝑃𝐷(𝑡) =  
𝑃 ∙ 𝑅𝐿𝑅 ∙ 𝑅𝑅𝐹

𝑘𝑒𝑟 − 𝑘𝑝 
∙ (𝑘𝑒𝑟 ∙ (1 − 𝑒−𝑘𝑝𝑡) − 𝑘𝑝 ∙ (1 − 𝑒−𝑘𝑒𝑟𝑡)) 

 

 
(3.2) 

The paid claims solution is analogous to a “growth curve”, as put forward for loss reserving by 

Clark (2003). For a given set of parameters, the state-variables in the above system can be visualized 

over development time 𝑡 as follows:   

      

Although exposure may be impractical to track over time, outstanding and cumulative paid claims 

are typically observable at specific development time points, albeit incomplete for reserving purposes. 

Nonlinear regression techniques can be used to fit Eq. (3.2) to outstanding and cumulative paid claims 

simultaneously to derive parameter estimates and project the claims process to ultimate. 

3.1 Parameter interpretations 

The two rate parameters 𝑘𝑒𝑟 (𝑘𝑒𝑟 > 0) and 𝑘𝑝 (𝑘𝑝 > 0) determine the monetary value of remaining 

exposures reported and outstanding claims paid respectively, per infinitesimal unit of time (with units 

𝑡−1). The term “𝑘𝑒𝑟” is used to reflect that a policy exposed to risk must have a claim event occur 

before it is reported, and may also be termed a rate of reporting (from exposure). It follows that higher 

magnitude rate parameters imply faster claims reporting/payment. However, if the model were to 

contain these rate parameters alone then all exposure would eventually convert to paid claims, resulting 

in a 𝑈𝐿𝑅 equal to 100% (for a premium-based exposure measure). 

 To allow a range of possible ultimate loss ratios it is necessary to specify at least one proportion 

parameter, similar to Clark (2003). The two proportion parameters 𝑅𝐿𝑅 (𝑅𝐿𝑅 > 0) and 𝑅𝑅𝐹 (𝑅𝑅𝐹 > 0) 

determine the percentage of exposures that become reported claims and the percentage of outstanding 
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claims that become paid claims respectively. The 𝑅𝑅𝐹 parameter therefore indicates the average level 

of case over- or under-reserving for a cohort of claims. If case handlers persistently under-reserve, 

this would imply an 𝑅𝑅𝐹 of over 100% and vice versa. An 𝑅𝑅𝐹 of 100% indicates perfect case reserving 

on average amongst a cohort of claims. However, this may be the result of some claims being heavily 

over-reserved and some claims being heavily under-reserved, cancelling each other out in aggregate. 

Persistent over-reserving is often associated with an incurred development pattern that rises and 

falls. Claims incurred at development time 𝑡 {𝐼𝑁𝐶(𝑡)} can be derived under the model as 

 𝐼𝑁𝐶(𝑡) =  𝑂𝑆(𝑡) + 𝑃𝐷(𝑡) (3.3) 

and visualized (for an 𝑅𝑅𝐹 less than 100%): 

            

Thus the model is able to capture negative incurred increments. Under the model, estimated 

cumulative incurred and paid claims tail development is defined by the extrapolation of estimated 

outstanding claims to zero (driven by 𝑘𝑝), and the estimated 𝑅𝑅𝐹. A convenient result is that the 

estimated ultimate loss ratio (𝑈𝐿𝑅) can be directly obtained as 

 𝑈𝐿𝑅 =  𝑅𝐿𝑅 ∙ 𝑅𝑅𝐹 (3.4) 

The reason for this can be observed by equating the paid loss ratio (𝑃𝐿𝑅) at development time 𝑡 to 

the product of the 𝑅𝐿𝑅 and 𝑅𝑅𝐹 parameter definitions for a homogeneous group of claims, which are 

reported and subsequently paid together, i.e. 

 𝑃𝐷(𝑡)

𝑃
=  

𝑂𝑆(𝑡 − 𝑣)

𝑃
 ∙  

𝑃𝐷(𝑡)

𝑂𝑆(𝑡 − 𝑣)
 (3.5) 

where 𝑡 denotes development time within the claims cohort and 𝑣 represents the elapsed time 

between the homogeneous group of claims being reported outstanding and paid. It is assumed that 

the premiums (𝑃) for their underlying policies are written before time 𝑡 − 𝑣. It follows that the 𝑅𝐿𝑅 

numerator and 𝑅𝑅𝐹 denominator of the right hand side cancel out, and the 𝑃𝐿𝑅 converges to the 𝑈𝐿𝑅 

for sufficiently large 𝑡. 
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3.1.1 ExBNR vs. RBNS 

Using the compartmental model above it is possible to derive an exposed but not reported 

(“ExBNR”) reserve and reported but not settled (“RBNS”) reserve at development time 𝑡. The term 

“ExBNR” reflects the loss of claim event timing information once claims are grouped into outstanding 

and paid claims cohorts, and contains incurred but not reported (“IBNR”) plus unearned claims: 

 𝐸𝑥𝐵𝑁𝑅(𝑡) =  𝐸𝑋(𝑡) ∙ 𝑅𝐿𝑅 ∙ 𝑅𝑅𝐹 

𝑅𝐵𝑁𝑆(𝑡) =  𝑂𝑆(𝑡) ∙ 𝑅𝑅𝐹 

𝑅𝑒𝑠𝑒𝑟𝑣𝑒(𝑡) =  𝐸𝑥𝐵𝑁𝑅(𝑡) + 𝑅𝐵𝑁𝑆(𝑡) 

(3.6) 

The reserves contain “IBNER” (incurred but not enough reported), indicated by the appearance 

of the reserve robustness factor (𝑅𝑅𝐹). They can be visualized over development time for a given set 

of parameters as follows: 

                 

Taking the definition of IBNR to be ultimate losses less incurred losses to date, Eq. (3.4) can be 

used to define ultimate losses as 𝑃 ∙ 𝑅𝐿𝑅 ∙ 𝑅𝑅𝐹, and hence 𝐼𝐵𝑁𝑅(𝑡) = 𝑃 ∙ 𝑅𝐿𝑅 ∙ 𝑅𝑅𝐹 − 𝐼𝑁𝐶(𝑡). When 

𝐸𝑋(0) = 𝑃, Eq. (3.6) provides an alternative derivation: 𝐼𝐵𝑁𝑅(𝑡) = 𝑅𝑒𝑠𝑒𝑟𝑣𝑒(𝑡) − 𝑂𝑆(𝑡). 

3.2 Model extensions 

Compartmental models are extensible, allowing practitioners to adjust them in line with their 

understanding of the claims process for the class of business being modeled. Matching model 

extensions to underlying processes may also enable models to be more easily communicated to 

stakeholders. 

Parameters within the model have thus far been assumed to be constant and independent of 

development time. However, it may be desirable for one or more of the model parameters to depend 

on development time. For example, allowing the rate of reporting 𝑘𝑒𝑟 to increase with development 

time 𝑡 could capture delays between claim events and reports: 
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 𝑘𝑒𝑟(𝑡) = 𝛽𝑒𝑟 ∙ 𝑡 (3.7) 

                   

Alternatively, liability claims outstanding in later development periods may be those in/awaiting 

litigation. To reflect a potentially slower rate of settlement and subsequent payment for such claims, a 

nonlinear rate of payment 𝑘𝑝(𝑡) could be specified as follows: 

 
𝑘𝑝(𝑡) =

𝛽𝑝,1

𝛽𝑝,2 + 𝑡
 (3.8) 

        

This function assumes that rate of payment reductions decrease over development time. Substituting 

the above rate functions into Eq. (3.1) gives 

 

 

 

𝑑𝐸𝑋/𝑑𝑡 =  −𝛽𝑒𝑟 ∙ 𝑡 ∙ 𝐸𝑋 

𝑑𝑂𝑆/𝑑𝑡 =  𝛽𝑒𝑟 ∙ 𝑡 ∙ 𝑅𝐿𝑅 ∙ 𝐸𝑋 − {𝛽𝑝,1/(𝛽𝑝,2 + 𝑡)} ∙ 𝑂𝑆 

𝑑𝑃𝐷/𝑑𝑡 =  {𝛽𝑝,1/(𝛽𝑝,2 + 𝑡)}  ∙ 𝑅𝑅𝐹 ∙ 𝑂𝑆 

(3.9) 

Implied development patterns for the baseline model and extended model incorporating the above 

functions are outlined in Appendix A. 

The proportion parameters could also be expressed as functions. For example, case reserves may 

be less robust at later development times for claims facing uncertain litigation. In practice, there are 

numerous plausible functions for describing how the claims process parameters are observed or 

perceived to behave; however, these will not be explored further in this paper.  
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It is also possible to increase the number of compartments to reflect claims sub-processes. For 

example, a bodily injury claims sub-class may exhibit a marked delay between claims being reported 

and subsequently being settled while damages are being quantified. This could be modeled using a 

“delay” state as follows: 

 

Other potentially modelable sub-processes include calendar shocks (Section 4.2.2), reopened 

claims, third party claims payment recoveries, reinsurance recoveries, latent claims etc. However, 

available data may limit the degree to which complexity can be increased. 

As noted in Section 3, it may be appropriate to initialize a compartmental reserving model with a 

non-premium measure of exposure. In which case the baseline schematic can be rewritten as follows: 

 

The parameter interpretations for this model are largely unchanged; however, the reported loss 

ratio is replaced by a reported burning cost: 

 Reported Burning Cost (“𝑅𝐵𝐶”): the proportion of exposures that become reported claims. 

The ultimate burning cost (𝑈𝐵𝐶) can be obtained from the 𝑅𝐵𝐶 and 𝑅𝑅𝐹 parameters (analogously 

to the 𝑈𝐿𝑅 in Eq. (3.4)) as 

 𝑈𝐵𝐶 =  𝑅𝐵𝐶 ∙ 𝑅𝑅𝐹 (3.10) 

This parameterization could be useful for pricing. The anticipated exposure for a cohort of new 

business could be multiplied by a selected 𝑈𝐵𝐶 (allowing for changes in underwriting, claims 

environment, reserve robustness etc.) to derive an estimated loss cost. This may form the risk premium 

or be a precursor to a full frequency-severity analysis, for example. 

Finally, compartmental reserving models can be generalized to describe exposure accumulation for 

cases where steady-state conditions do not hold (see Section 3). This can be achieved by continuously 

inputting portions of premium/exposure into the system over a period of time. 
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For example, if claims are grouped into an underwriting cohort then ultimate premiums can be 

projected to derive a discrete incremental writing pattern. For a cohort’s premium and claims data 

observed at discrete development times 𝑟∆, 𝑟 ∈ {0,1,2, … } after the commencement of the underwriting 

cohort, 𝑃𝑃𝑁[𝑟] can be defined as the proportion of ultimate premiums written uniformly over the 

period 𝑟∆→ 𝑟∆ + ∆. It follows that ∑ 𝑃𝑃𝑁[𝑟] = 1∞
0 . The input to the exposure compartment (denoted 

by 𝐸𝑋⃗⃗⃗⃗  ⃗) over each continuous time increment 𝑡 → 𝑡 + 𝛿𝑡 (where 𝛿 is infinitesimally small) can then be set 

to 

 
𝐸𝑋⃗⃗⃗⃗  ⃗(𝑡 → 𝑡 + 𝛿𝑡) =  𝑢𝑙𝑡𝑖𝑚𝑎𝑡𝑒 𝑝𝑟𝑒𝑚𝑖𝑢𝑚𝑠 ∙ 𝛿𝑡 ∙ 𝑃𝑃𝑁 (⌊

𝑡

∆
⌋) (3.11) 

where ⌊∙⌋ denotes the floor or “next smallest integer value”. If there is substantial time between 

policies being written and subsequently incepting (i.e. bound but not incepted “BBNI” policies), then 

the aforementioned writing pattern could be replaced by an inception pattern. 

3.3 Limitations 

As discussed in Section 3, all exposures can be input to the compartmental reserving system at 

time 0 under steady-state conditions. However, if steady-state conditions do not hold and material 

exposure fluctuations are not taken into account (e.g. using the approach outlined above), these will 

be absorbed into the reporting rate parameter 𝑘𝑒𝑟. This could lead to misleading 𝑘𝑒𝑟 comparisons if 

the model is fitted to multiple claims cohorts, and additionally, may result in poor model fits. 

Equation (3.5) illustrates a key assumption of deterministic compartmental reserving models: at a 

given time, claims within each compartment are assumed to be well-mixed and homogeneous i.e. they 

are assumed to behave uniformly and in accordance with a single set of parameters. In reality, each 

individual claim is likely to have a distinct 𝑅𝐿𝑅, 𝑘𝑒𝑟, 𝑅𝑅𝐹 and 𝑘𝑝 from every other claim. However, for 

an aggregated cohort of claims values it is only necessary for the average behavior of the cohort to be 

in line with the model parameters at each time, which may be a reasonable assumption for a high 

volume of claims within a particular claim size range. 

A limitation of this approach is that a cohort with many heterogeneous individual claims (e.g. 

low-frequency high-value claims) or erratic case reserve fluctuations may not be well reflected by a 

deterministic compartmental model. To model a heterogeneous cohort, one could cap claims values 

within the cohort at a specified threshold and apply a frequency-severity or alternative approach for 

losses above the threshold. Other data segmentation techniques may be appropriate or, alternatively, 

the differing behavior of individual claims may be more accurately reflected by a stochastic or 

semi-stochastic compartmental model, as outlined in Appendix B.  

A practical limitation is that some claims cohorts will have limited development histories, 
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preventing a credible deterministic compartmental reserving model from being fitted due to a high 

ratio of parameters relative to data points. This limitation is addressed in Section 4. 

3.4 Illustration 

A spreadsheet containing a parameter-adjustable discretized compartmental reserving model is 

available at: http://www.casact.org/pubs/forum/16sforum/. This illustrates the dynamics of how the 

amounts in each compartment are determined over time for both constant and non-constant rate 

parameters. Additionally, it allows both steady-state and accumulating exposure. 

http://www.casact.org/pubs/forum/16sforum/
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4. HIERARCHICAL COMPARTMENTAL RESERVING CASE STUDY 

The preceding Sections explore a deterministic compartmental reserving model for a single cohort 

of claims (e.g. an accident year). However, reserves are typically set for several cohorts of claims, often 

grouped into triangles. Cohorts are likely to have some shared characteristics; for example, due to the 

same underwriters and claims handling philosophy. However, they are also likely to exhibit differences; 

for example, due to changes in underlying risk profiles and differing claims environments.  

The nonlinear hierarchical approach outlined in Section 2.3 allows for individual claims cohort 

characteristics when the data are credible, while allowing less mature cohorts to borrow strength from 

more mature cohorts. This can help to achieve parsimony. Following Guszcza (2008), triangles are 

viewed as “longitudinal” datasets, where claims cohorts are individuals and cumulative losses at 

various development times are a series of observations for each individual. 

Frequentist and Bayesian hierarchical compartmental models will be fitted to a sample loss 

reserving dataset obtained at: http://www.casact.org/research/index.cfm?fa=loss_reserves_data. 

The selected workers’ compensation dataset comprises both outstanding and cumulative paid claims 

development data grouped by accident years 1988-1997 and development years 1-10, together with 

earned premiums by accident year. The dataset contains both upper triangles (calendar years 

1988-1997) and lower triangles of data (calendar years 1998-2006). The upper triangles and earned 

premiums as at 12/31/1997 are as follows: 

 

 

Outstanding Claims ($'000s)

AY Prem 1 2 3 4 5 6 7 8 9 10

1988 104 53 41 32 25 17 13 10 7 2 1

1989 89 54 37 27 20 14 10 7 3 2

1990 86 55 37 28 18 11 7 4 3

1991 99 61 42 26 15 9 6 4

1992 105 66 46 31 22 12 8

1993 119 68 51 40 22 17

1994 111 62 47 32 24

1995 78 57 49 35

1996 64 57 42

1997 48 41

Cumulative Paid Claims ($'000s)

AY Prem 1 2 3 4 5 6 7 8 9 10

1988 104 10 23 33 40 45 48 50 51 52 52

1989 89 8 19 30 37 41 43 45 46 46

1990 86 9 24 35 43 48 51 53 54

1991 99 13 33 47 56 62 65 67

1992 105 11 29 42 51 56 59

1993 119 12 27 38 47 51

1994 111 11 27 38 46

1995 78 13 32 44

1996 64 13 31

1997 48 9

http://www.casact.org/research/index.cfm?fa=loss_reserves_data
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Claims development data should initially be visualized by accident year to establish whether: 

1) A compartmental model is appropriate i.e. whether there is a detectable process; and 

2) There are any claims process characteristics that can be identified from the outset. 

The below plots suggest a clear process between claims being reported and subsequently paid, 

therefore a compartmental model may be appropriate. The data are also relatively stable, suggesting 

that the baseline compartmental model outlined in Section 3 is an appropriate starting point.  

 

Incurred development has a clear downwards trend typical of over-stated case reserves at some 

point during the development history, i.e. 𝑅𝑅𝐹 < 1: 

  

Development Year

O
S

 &
 P

a
id

 c
la

im
s
 (

$
0

0
0

)

0

20

40

60

1988

0 2 4 6 8 10

1989 1990

0 2 4 6 8 10

1991 1992

0 2 4 6 8 10

1993 1994

0 2 4 6 8 10

1995 1996

0 2 4 6 8 10

0

20

40

60

1997

Outstanding Paid Hold-out samples

Development Year

In
c
u
rr

e
d
 c

la
im

s
 (

$
0
0
0
)

0

20

40

60

80

0 2 4 6 8 10

1988
1989
1990
1991
1992
1993
1994
1995
1996
1997



Hierarchical Compartmental Models for Loss Reserving 

Casualty Actuarial Society E-Forum, Summer 2016  20 

In Section 4.1 a frequentist hierarchical compartmental model will be fitted, assessed for goodness 

of fit and improved as necessary. A Bayesian implementation will be explored in Section 4.2. For both 

exercises, model predictability will be tested against the lower triangle hold-out samples.  

4.1 Frequentist modeling 

The motivations for exploring frequentist hierarchical compartmental models (and point estimates) 

before their Bayesian counterparts are as follows: 

 Best estimate reserves are of principle stakeholder interest, followed by reserve uncertainty; 

 Fewer modeling assumptions are required and thus model building is less time consuming; 

and 

 Model run times are relatively quick, allowing models to be tested, interpreted and 

improved upon relatively quickly. 

The baseline compartmental model ODEs (Section 3) are 

 

 

 

𝑑𝐸𝑋/𝑑𝑡 =  −𝑘𝑒𝑟 ∙ 𝐸𝑋 

𝑑𝑂𝑆/𝑑𝑡 =  𝑘𝑒𝑟 ∙ 𝑅𝐿𝑅 ∙ 𝐸𝑋 − 𝑘𝑝 ∙ 𝑂𝑆 

𝑑𝑃𝐷/𝑑𝑡 =  𝑘𝑝 ∙ 𝑅𝑅𝐹 ∙ 𝑂𝑆 

 

(4.1) 

with initial conditions 𝐸𝑋(0) = 𝑒𝑎𝑟𝑛𝑒𝑑 𝑝𝑟𝑒𝑚𝑖𝑢𝑚𝑠 = 𝑃, 𝑂𝑆(0) = 0 and 𝑃𝐷(0) = 0 (assuming 

steady-state exposure ‒ see Section 3). To ensure that compartmental model parameter estimates are 

positive, we reparameterize using the logarithm of the parameters {𝑙𝑘𝑒𝑟 = log(𝑘𝑒𝑟) , 𝑙𝑅𝐿𝑅 = log(𝑅𝐿𝑅) , 

𝑙𝑘𝑝 = log(𝑘𝑝) , 𝑙𝑅𝑅𝐹 = log(𝑅𝑅𝐹)} to give an initial “structural” model: 

 

 

 

𝑑𝐸𝑋/𝑑𝑡 =  −exp (𝑙𝑘𝑒𝑟) ∙ 𝐸𝑋 

𝑑𝑂𝑆/𝑑𝑡 =  exp (𝑙𝑘𝑒𝑟) ∙ exp (𝑙𝑅𝐿𝑅) ∙ 𝐸𝑋 − exp (𝑙𝑘𝑝) ∙ 𝑂𝑆 

𝑑𝑃𝐷/𝑑𝑡 =  exp (𝑙𝑘𝑝) ∙ exp (𝑙𝑅𝑅𝐹) ∙ 𝑂𝑆 

 

(4.2) 

This model can be specified in a format compatible with the R software (R Core Team, 2016) 

package “nlmeODE” (Tornøe et al., 2004a) and combined with a grouped data object (see 

Appendices D and E). The data comprise upper triangles of outstanding and cumulative paid claims 

together with compartment initial conditions (earned premiums) by accident year, as outlined above. 

To fit a hierarchical compartmental model based on the above ODEs, it must be decided which of 

the model parameters should have random-effects and therefore vary by accident year. For this case 

study, the components of the ultimate loss ratio (the reported loss ratio and reserve robustness factor) 

will be assumed to vary by accident year to define a baseline hierarchical model.  
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The Eq. (4.2) outstanding and cumulative paid claims state-variable solutions for accident year  

𝑖 = 1 to 10 and development year 𝑗 = 1 to 11 − 𝑖 can be denoted 𝑓𝑂𝑆(𝑃𝑖 , 𝝓𝑖 , 𝑡𝑗) and 𝑓𝑃𝐷(𝑃𝑖 , 𝝓𝑖 , 𝑡𝑗) 

respectively, where 𝑃𝑖 is the earned premium for accident year 𝑖. Stacking response variables for 

outstanding claims 𝑂𝑆𝑖𝑗 and cumulative paid claims 𝑃𝐷𝑖𝑗  into a single response variable 

𝒚𝑖𝑗 = (𝑂𝑆𝑖𝑗 , 𝑃𝐷𝑖𝑗)
𝑇 enables a nonlinear hierarchical “statistical” model to be specified (Model 1): 

 𝒚𝑖𝑗 = 𝒇(𝑃𝑖 , 𝝓𝑖 , 𝑡𝑗) + 𝜺𝑖𝑗 

𝒚𝑖𝑗 = [
𝑂𝑆𝑖𝑗

𝑃𝐷𝑖𝑗
] ,     𝒇(𝑃𝑖, 𝝓𝑖 , 𝑡𝑗) = [

𝑓𝑂𝑆(𝑃𝑖, 𝝓𝑖 , 𝑡𝑗)

𝑓𝑃𝐷(𝑃𝑖, 𝝓𝑖, 𝑡𝑗)
],     𝜺𝑖𝑗 = [

𝜀𝑖𝑗
𝑂𝑆

𝜀𝑖𝑗
𝑃𝐷] 

𝝓𝑖 = [

𝜙1𝑖

𝜙2𝑖

𝜙3𝑖

𝜙4𝑖

] =

[
 
 
 
𝑙𝑘𝑒𝑟

𝑙𝑅𝐿𝑅𝑖

𝑙𝑘𝑝

𝑙𝑅𝑅𝐹𝑖]
 
 
 
= [

𝛽1

𝛽2

𝛽3

𝛽4

] + [

0
𝑏1𝑖

0
𝑏2𝑖

] = 𝜷 + 𝒃𝑖 

𝒃𝑖~𝑁2 ([
0
0
] , [

𝜓1
2 0

0 𝜓2
2]) , 𝜺𝑖𝑗~𝑁2 ([

0
0
] , 𝜎2 [

1 0
0 𝜆2]) 

(4.3) 

The fixed-effects 𝜷 represent the mean values of the logarithm of the claims process parameters 

across a theoretical “population” of accident years, and the random-effects 𝒃𝑖 represent the deviations 

of the individual accident year parameters 𝝓𝑖 from their mean values. The random-effects are assumed 

to be independent for different accident years and the within-accident-year errors 𝜺𝑖𝑗 are assumed to 

be independent for different (𝑖, 𝑗), and independent of the random-effects (Pinheiro and Bates, 2000). 

The variance of random-effect 𝑏𝑞𝑖 ∈ 𝒃𝑖 is denoted 𝜓𝑞
2. The within-accident-year variances are denoted 

𝜎2 and 𝜆2𝜎2 for outstanding and cumulative paid claims respectively.  

Initial fixed-effect parameter estimates are required to begin optimization, which could be obtained 

using a self-starting algorithm (Appendix C) or selected judgmentally as follows: 

 Development year 1 outstanding claims are observed to be a high proportion of earned 

premiums. Therefore the reported loss ratio initial value has been selected as 100%, i.e. all 

premiums are assumed to convert to reported claims. 

 The early outstanding loss peaks indicate a fast rate of reporting, so an initial value of 1.5 

has been selected. This results in a value of claims reported in the first development year 

equal to (1 − 𝑒−1.5) ∙ 𝑃 ∙ 𝑅𝐿𝑅 = 78% ∙ 𝑃 ∙ 𝑅𝐿𝑅. 

 The downwards incurred development trend indicates large case reserve redundancies 

(𝑅𝑅𝐹 < 1), therefore a value of 0.75 has been selected. 

 The rate of payment is observed to be slower than the rate of reporting, justifying a selected 

initial value equal to half the rate of reporting (0.75). 
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The above model can be combined with the previously outlined ODE system and fitted to the 

outstanding and cumulative paid triangles concurrently using the R package “nlme” (Pinherio et al., 

2016). Convergence is achieved in seconds. Appendix E contains the R model code and output. 

The estimated random-effect standard deviations (�̂�𝑞) relative to the fixed-effects (�̂�𝑝 ∈ �̂�) for 𝑙𝑅𝐿𝑅𝑖  

(�̂�1 = 0.19; �̂�2 = 0.03) and 𝑙𝑅𝑅𝐹𝑖 (�̂�2 = 0.13; �̂�4 = −0.41) indicate significant variation by accident year, 

justifying the inclusion of the random-effects. The within-accident-year error standard deviation for 

paid claims fits is estimated to be �̂� = 18% of the within-accident-year error standard deviation for 

outstanding claims fits, which seems reasonable since paid claims development is comparatively stable. 

A set of diagnostic plots can be inspected to verify modeling assumptions and assess model fit: 

 

The upper left two plots indicate that the standardized residuals are approximately normal for this 

model, and the “Actual vs. Predicted” plot shows that the model fits the data reasonably well for most 

of the data range. However, some higher valued observations are under-predicted by the model, and 

the “Residuals vs. Predicted” plot highlights this. The remaining residual plots mostly lie between 

[-2, 2] and overlaid LOESS smoothers (Cleveland, 1979) suggest they are absent of trends. 
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To assess how well this model describes each accident year, we can plot the observed development 

data by accident year (circles) and superimpose the individual model fits (solid lines). To highlight the 

between-accident-year variability, the population-level fits (based on the fixed-effects and replicating 

a pooled model fit ‒ see Section 2.3) are also shown (dashed lines): 
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The population fits demonstrate that the model would not accurately describe claims development 

if parameters were fixed across accident years. The individual cumulative paid claims fits are 

reasonable, but the outstanding claims fits systematically under-predict the peak observations. It 

appears that claims are modeled to be reported over a longer time period than the data suggests. 

 

4.1.1 Development time-dependent reporting rate 

To attempt to improve the fits, we can adjust the structural model. Selecting a rate of reporting 

that speeds up over time may reduce the overall modeled reported time and reflect any reporting 

delays (see Section 3.2): 

 𝑘𝑒𝑟(𝑡) = 𝛽𝑒𝑟 ∙ 𝑡  

      

To incorporate this rate of reporting into the model, we can define 𝑙𝛽𝑒𝑟 = log(𝛽𝑒𝑟) and re-specify 

the compartmental model’s ODE system as follows: 
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𝑑𝐸𝑋/𝑑𝑡 =  −exp (𝑙𝛽𝑒𝑟) ∙ 𝑡 ∙ 𝐸𝑋 

𝑑𝑂𝑆/𝑑𝑡 =  exp (𝑙𝛽𝑒𝑟) ∙ 𝑡 ∙ exp (𝑙𝑅𝐿𝑅) ∙ 𝐸𝑋 − exp (𝑙𝑘𝑝) ∙ 𝑂𝑆 

𝑑𝑃𝐷/𝑑𝑡 =  exp (𝑙𝑘𝑝) ∙ exp (𝑙𝑅𝑅𝐹) ∙ 𝑂𝑆 

 

(4.4) 

This structural model can be specified in R using the code in Appendix E. 

Revising the definition of 𝒇(𝑃𝑖 , 𝝓𝑖 , 𝑡𝑗) to reflect the state-variable solutions of Eq. (4.4), we can write 

down a second hierarchical model (Model 2): 

 𝒚𝑖𝑗 = 𝒇(𝑃𝑖 , 𝝓𝑖 , 𝑡𝑗) + 𝜺𝑖𝑗 

𝒚𝑖𝑗 = [
𝑂𝑆𝑖𝑗

𝑃𝐷𝑖𝑗
] ,     𝒇(𝑃𝑖, 𝝓𝑖 , 𝑡𝑗) = [

𝑓𝑂𝑆(𝑃𝑖, 𝝓𝑖 , 𝑡𝑗)

𝑓𝑃𝐷(𝑃𝑖, 𝝓𝑖, 𝑡𝑗)
],     𝜺𝑖𝑗 = [

𝜀𝑖𝑗
𝑂𝑆

𝜀𝑖𝑗
𝑃𝐷] 

𝝓𝑖 = [

𝜙1𝑖

𝜙2𝑖

𝜙3𝑖

𝜙4𝑖

] =

[
 
 
 

𝑙𝛽𝑒𝑟

𝑙𝑅𝐿𝑅𝑖

𝑙𝑘𝑝

𝑙𝑅𝑅𝐹𝑖]
 
 
 
= [

𝛽1

𝛽2

𝛽3

𝛽4

] + [

0
𝑏1𝑖

0
𝑏2𝑖

] = 𝜷 + 𝒃𝑖 

𝒃𝑖~𝑁2 ([
0
0
] , [

𝜓1
2 0

0 𝜓2
2]) , 𝜺𝑖𝑗~𝑁2 ([

0
0
] , 𝜎2 [

1 0
0 𝜆2]) 

(4.5) 

The model form, number of estimable parameters and statistical assumptions are unchanged from 

the previous model. However, rather than estimating the logarithm of the rate of reporting, we are 

estimating the logarithm of the linear coefficient for how the rate of reporting increases over 

development time, i.e. 𝑙𝛽𝑒𝑟 replaces 𝑙𝑘𝑒𝑟.  

To ensure that outstanding claims are modeled to be reported over a shorter time-frame than 

previously, the starting value for 𝑙𝛽𝑒𝑟 has been set to 5. This implies a reporting rate that is 

approximately 1.5 times faster than the Model 1 estimated rate at development year 0.5. The remaining 

initial parameter values have been set to the estimated fixed-effects in the previous model (to 2 decimal 

places). The model code and numerical output is contained in Appendix E. 

Under Model 2, the within-accident-year error standard deviation for cumulative paid claims fits is 

estimated to be �̂� = 25% of the within-accident-year error standard deviation for the outstanding 

claims fits (up from �̂� = 18%), which may be due to an improvement in outstanding claims model fits. 

The “Actual vs. Predicted” plot below suggests that this model fits the data more closely than the 

last; however, the residuals exhibit a minor violation of normality. Furthermore, the 

“Residuals vs. Development Year” plot has a downwards trend across later development periods, 

indicating a small degree of over-prediction. Few data points drive this trend however, and therefore 

it may not be significant.  
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The inclusion of a time-dependent rate of reporting has resulted in a more accurate description of 

the outstanding claims peaks. However, for the 1991 accident year there is evidence of continued over 

prediction, perhaps due to a differing rate of payment for this year. 

 

 

 

Paid claims are slightly over-predicted for later development periods, consistent with the residual 

plots. However, the incurred fits are improved due to the more accurate description of outstanding 

claims. A statistical comparison of this model against the last shows that the information criterion 
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statistics (AIC and BIC) have both reduced. Therefore we may deduce that Model 2 is preferred to 

Model 1 and inspect it in greater detail (see Appendix E) 

Approximate 95% confidence intervals show that the fixed-effects 𝜷 (the mean-level logarithm of 

the compartmental reserving model parameters) are statistically significantly different from zero at the 

1% level. Furthermore, the estimated fixed-effects correlation matrix contains a strong negative 

correlation between the rate of reporting and rate of payment parameters (-0.72). This seems intuitive: 

if few claims are reported over a given time period, a case handling team is likely to be better equipped 

to handle each payment more quickly than if many claims are reported over an equivalent time period. 

At this stage the structural model could justifiably be selected as final. However, for other datasets 

further modifications may be required, such as those outlined in Section 3.2.  

4.1.2 Random-effects correlation 

In a hierarchical framework there are various possible statistical model modifications. For example, 

correlations between random-effects can be explored. The graphs below show the Model 2 estimated 

𝑅𝐿𝑅𝑖 and 𝑅𝑅𝐹𝑖 parameters for each accident year alongside earned premiums for illustration: 

  

The first plot suggests a positive correlation between the reported loss ratio and reserve robustness 

factor parameters by accident year, indicative of a case reserving cycle effect, i.e. more conservative 

case reserves (low 𝑅𝑅𝐹𝑖) in a hard market (low 𝑅𝐿𝑅𝑖) to create cushions for the future (Line et al., 2003). 

The model estimates market softening between 1994 and 1997 (increasing 𝑅𝐿𝑅𝑖); a conclusion 

supported by reducing premium volumes across these years.  

Additionally, case reserves are estimated to be increasingly robust between 1993 and 1997, which 

corroborates the reducing downward trend for incurred model fits across these years. There is a 
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discrepancy for the 1991 accident year where the data appear to be exhibiting over-reserving, yet the 

model does not recognize this. 

To estimate the correlation between the random-effects for 𝑙𝑅𝐿𝑅𝑖 and 𝑙𝑅𝑅𝐹𝑖, we can update the 

random-effects variance-covariance matrix to define a third model (Model 3 in Appendix E): 

 
𝚿 = [

𝜓1
2 𝜓12

𝜓21 𝜓2
2 ]  

The covariance between random-effect 𝑞 and random-effect 𝑟 ≠ 𝑞 is denoted 𝜓𝑞𝑟. The updated 

model estimates a strong and statistically significant positive correlation between the estimated 

reported loss ratio and reserve robustness factor random-effects (0.78).  

To assess whether this model is significantly improved from the last, a likelihood ratio test can be 

carried out. The resultant p-value of 0.013 indicates that the hypothesis that the correlation between 

the random-effects is zero can be rejected at the 5% level (but not at the 1% level). We may therefore 

marginally prefer Model 3 to Model 2, particularly if we wish to make inferences about the correlation 

between 𝑙𝑅𝐿𝑅𝑖 and 𝑙𝑅𝑅𝐹𝑖 to assess case reserve cycle strength. 

We could add random-effects for the remaining compartmental model parameters to define a 

fourth model. For example, a “block-diagonal” random-effects variance-covariance structure 

(Pinheiro and Bates, 2000) allows the rate of payment to vary by accident year independently of 𝑙𝑅𝐿𝑅𝑖 

and 𝑙𝑅𝑅𝐹𝑖, resulting in differing payment patterns by accident year: 

 

𝚿 = [

𝜓1
2 𝜓12 0

𝜓21 𝜓2
2 0

0 0 𝜓3
2

]  

The statistical comparisons for Model 4 against the previous models (Appendix E) show a reduced 

BIC and significant likelihood ratio test for the new random-effect, suggesting that Model 4 should 

be preferred. However, the “Residuals vs. Development Year” diagnostic comparisons below tell a 

different story. Although Models 3 and 4 both produce a downwards residual trend which indicates a 

degree of over-prediction, Model 4’s trend is stronger. 

A double-log transformation log{𝒚𝑖𝑗} = log{𝒇(𝑃𝑖 , 𝝓𝑖 , 𝑡𝑗)} +  𝜺𝑖𝑗 reduces the downwards trend for both 

models, but residual normality is consequently violated (not shown). 

Although the residual plot for Model 3 has two outliers, we may judge this model more suitable 

for best estimate reserving purposes if it is considered less likely to over-project ultimate losses. On 

this basis Model 4 will be rejected in favor of Model 3 (noting that either model could be justifiably 

selected).  
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While it may be possible to further improve model fits by experimenting with alternative initial 

parameter values, Model 3 appears adequate based on the residual plot above and individual accident 

year fits (see below). We can therefore select Model 3 as final and compare its projections against the 

lower triangle hold-out samples (open circles) as follows:  
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Outstanding claims extrapolations have generally under-estimated actual outstanding development, 

while the cumulative paid claims extrapolations have generally over-estimated actual cumulative paid 

development. 

 

The under- and over-projections largely offset each other for the incurred extrapolations, although 

the aforementioned 1991 accident year development fit issue has propagated into the extrapolation. 
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In contrast to the historical upper triangle development, hold-out sample outstanding claims have 

taken longer to converge to zero and hold-out sample cumulative paid claims increases have tapered 

relative to their initial “growth”. These characteristics suggest a slow-down in the rate of payment 

in the hold-out sample, perhaps consistent with the nonlinear rate of payment function defined in 

Section 3.2. It could be that the estimated softening market (see graph below) led to tighter cashflow 

and slower payments (Line et al., 2003). There may also be reserve robustness improvements in later 

hold-out development years. Additionally, the residual plots at the fitting stage displayed some 

evidence of over-prediction, which could partially account for the paid claims over-projections.  

Although the modeled dataset showed insufficient evidence of a payment rate reduction over time, 

had cashflow tightening been anticipated as a result of the estimated softening market, a practitioner 

could have scenario tested slowdowns in the rate of payment for the purpose of setting reserves.  

In addition to payment rate reductions, case reserve robustness appears to have increased between 

the 1993 and 1996 accident years, shown by negative incurred development flattening across these 

years. Furthermore, the 1997 accident year appears to have exhibited under-reserving (or late 

reporting/claim re-openings) in contrast to the over-reserving trend seen in previous years. The 

compartmental model estimated increasing reserve robustness between 1993 and 1996, and a small 

amount of under-reserving for 1997. This is despite there being only two observations available for 

modeling 1997, resulting in a fit principally reliant on data-rich years which exhibited over-reserving: 

    

The hierarchical compartmental reserving (CR) modeled development time 10 and ultimate 

incurred claims (time ∞, given by 𝑃𝑖 × 𝑅𝐿�̂�𝑖 × 𝑅𝑅�̂�𝑖) are shown below, alongside the Munich chain 

ladder (MCL; Quarg and Mack, 2004) and basic chain ladder (CL) incurred method results (without 

tail factors) by accident year.  
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To compare the predictability of each method, the percentage differences from the actual time 10 

incurred claims are shown with the closest estimate(s) highlighted: 

 

AY 
Time 10 
Incurred 

CR Incurred 

t=10   t=∞ 
MCL 

Incurred 
CL 

Incurred 

 
var(CR) var(MCL) var(CL) 

1988 53,261 54,149  53,611 53,261 53,261  2% 0% 0% 

1989 48,162 48,769  48,288 47,640 48,109  1% -1% 0% 

1990 56,368 57,447  57,112 57,132 54,697  2% 1% -3% 

1991 71,274 74,028  73,926 72,016 65,550  4% 1% -8% 

1992 67,515 67,718  67,323 66,276 61,847  0% -2% -8% 

1993 62,122 62,331  61,664 60,035 60,658  0% -3% -2% 

1994 59,974 61,670  61,160 59,663 60,521  3% -1% 1% 

1995 71,829 71,073  70,878 69,426 66,815  -1% -3% -7% 

1996 72,573 71,970  71,959 69,680 61,118  -1% -4% -16% 

1997 59,939 53,597  53,617 49,977 42,242  -11% -17% -30% 

Total 623,017 622,751  619,537 605,106 574,819  0% -3% -8% 

 

The following conclusions can be drawn: 

 The compartmental model produces the closest time 10 incurred loss estimates in total; 

 The superior estimation accuracy of the compartmental approach for less mature accident 

years can be accredited to the model estimating increasingly robust case reserve setting 

(driven by a softening market ‒ see above); and 

 The Munich chain ladder method recognizes a shift in case reserve robustness by utilizing 

paid claims development. However, the basic chain ladder method does not, resulting in 

heavily under-estimated time 10 incurred losses. 

In practice the Bornhuetter-Ferguson method (1972) may be used for the less mature years, 

possibly closing the estimation accuracy gap. Although not shown, the compartmental modeled 

ultimate paid and incurred estimates are equal whereas the Munich chain ladder estimates differ. 

Thus far we have only considered point estimates. However, a compartmental framework enables 

scenario testing of one or more of the claims process parameters to generate a range of possible 

ultimate claims. For example, case reserving philosophy or settlement approaches could be discussed 

with the relevant case handlers/claims teams to establish a range of plausible 𝑅𝑅𝐹 and/or 𝑘𝑝 

parameters.  

Prediction errors could be assessed analytically or using bootstrapping techniques (England and 

Verrall, 1999). Additionally or alternatively, a hierarchical compartmental reserving model could be 

specified in a fully Bayesian framework, which will be explored in the following Sections.  
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4.2 Bayesian modeling 

We may wish to implement the selected frequentist model within a Bayesian framework for the 

reasons outlined in Section 2.3.1. In particular: 

 Judgment and information external to the claims triangle data can be robustly incorporated; 

 Reserve uncertainty can be quantified as part of the fitting process; and 

 Flexibility enables additional model features to be incorporated with relative ease. 

We can specify a Bayesian hierarchical model by rewriting the paid and outstanding compartmental 

model differential equation solutions in Eq. (4.5) to explicitly state parameters with random-effects 

(𝝓𝑖) and without random-effects (𝜼). The Bayesian implementation will incorporate autoregressive 

sub-models for outstanding and cumulative paid claims residuals to reduce recurrent under/over 

prediction (Zhang, Dukic and Guszcza, 2012): 

 𝑂𝑆𝑖𝑗 = 𝑓𝑂𝑆(𝑃𝑖 , 𝝓𝑖 , 𝜼, 𝑡𝑗) + 𝜀𝑖𝑗
𝑂𝑆 

𝑃𝐷𝑖𝑗 = 𝑓𝑃𝐷(𝑃𝑖 , 𝝓𝑖 , 𝜼, 𝑡𝑗) + 𝜀𝑖𝑗
𝑃𝐷 

(4.6) 

𝝓𝑖 = [
𝜙1𝑖

𝜙2𝑖
] = [

𝑙𝑅𝐿𝑅𝑖

𝑙𝑅𝑅𝐹𝑖
] 𝜼 = [

𝜂1

𝜂2
] = [

𝑙𝑘𝑒𝑟

𝑙𝑘𝑝
] 

[
𝜙1𝑖

𝜙2𝑖
] ~𝑁2 (𝜽 = [

𝜃1

𝜃2
] ,𝚿 = [

𝜓1
2 𝜓12

𝜓21 𝜓2
2 ]) 

𝜀𝑖𝑗
𝑂𝑆 = 𝜌𝑂𝑆𝜀𝑖𝑗−1

𝑂𝑆 + 𝛿𝑖𝑗
𝑂𝑆 

𝛿𝑖𝑗
𝑂𝑆~𝑁{0, 𝜎𝑂𝑆

2 (1 − 𝜌𝑂𝑆
2 )} 

𝜀𝑖1
𝑂𝑆~ 𝑁(0, 𝜎𝑂𝑆

2 ) 

𝜀𝑖𝑗
𝑃𝐷 = 𝜌𝑃𝐷𝜀𝑖𝑗−1

𝑃𝐷 + 𝛿𝑖𝑗
𝑃𝐷 

𝛿𝑖𝑗
𝑃𝐷~𝑁{0, 𝜎𝑃𝐷

2 (1 − 𝜌𝑃𝐷
2 )} 

𝜀𝑖1
𝑃𝐷~ 𝑁(0, 𝜎𝑃𝐷

2 ) 

The statistical assumptions are analogous to the selected frequentist model and similarly, 𝑙𝑅𝐿𝑅𝑖 and 

𝑙𝑅𝑅𝐹𝑖 are assumed to vary by accident year with co-dependency. Residual autocorrelation terms are 

denoted 𝜌𝑂𝑆 and 𝜌𝑃𝐷, and model process error is captured by the residual error terms 𝜀𝑖𝑗
𝑂𝑆 and 𝜀𝑖𝑗

𝑃𝐷. 

Normal prior distributions have been assigned to the implied fixed-effects. Similarly to the frequentist 

model these are the means of 𝑙𝑅𝐿𝑅𝑖 and 𝑙𝑅𝑅𝐹𝑖 (denoted 𝜽), together with 𝑙𝛽𝑒𝑟 and 𝑙𝑘𝑝 (denoted 𝜼): 

 𝜽~𝑁2(�̅�, 𝛀) 

𝜼~𝑁2(�̅�, 𝚷) 
(4.7) 

In Eq. (4.7), �̅� and 𝛀 denote the prior mean and variance-covariance matrix of 𝜽, whereas �̅� and 𝚷 

denote the prior mean and variance-covariance matrix of 𝜼. 

The prior means for the fixed-effects have been set to the estimated fixed-effects in the selected 

frequentist model, and the prior variance-covariance matrices describing uncertainty in the 
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fixed-effects have been set to replicate the frequentist estimated fixed-effects confidence intervals: 

 
�̅� = {−0.15,−0.21}𝑇 

�̅� = {1.7, −0.9}𝑇 

𝛀 = [0.05132 0
0 0.05062] 

𝚷 = [0.03922 0
0 0.01242] 

(4.8) 

These priors imply fixed-effect independence; however, their posterior distributions can 

demonstrate dependence. A prior distribution has also been assigned to the variance-covariance matrix 

of 𝝓𝑖  (𝚿) i.e. the variance of the implied random-effects, describing the magnitude of variability for the 

accident year varying (log) proportion parameters 𝑙𝑅𝑅𝐹𝑖 and 𝑙𝑅𝐿𝑅𝑖: 

 𝚿~𝑊2
−1(𝚺, 𝜈) (4.9) 

𝑊2
−1 is an inverse-Wishart distribution (and conjugate prior) with 2 × 2 scale matrix 𝚺 and 𝜈 degrees 

of freedom (Gelman et al., 2013). The frequentist analysis results have not been used to inform this 

prior. Instead, a vague prior has been set to allow the variance-covariance matrix to be principally 

estimated from the data. The prior inverse scale matrix and degrees of freedom have been set as 

 𝚺−1 = [
1 0.8

0.8 1
], 𝜈 = 2 (4.10) 

where the degrees of freedom are as low as possible while still maintaining a proper distribution 

(Johnson and Kotz, 1972). Although this prior is vague in its description of accident year variability 

magnitude, the off-diagonal elements have been set to give a 0.80 positive correlation between 𝑙𝑅𝐿𝑅𝑖 

and 𝑙𝑅𝑅𝐹𝑖 (recall that the estimated correlation in the selected frequentist model was 0.78).  

Vague priors have been assigned to the remaining model parameters. Priors for the standard 

deviations of the within-accident-year errors have been selected to comfortably cover the standard 

deviations estimated in the selected frequentist model. Finally, priors for the correlation terms of the 

autoregressive processes have been set to cover the minimum and maximum correlation values: 

 
𝜎𝑂𝑆~𝑈(0,10000) 

𝜎𝑃𝐷~𝑈(0,5000) 

𝜌𝑂𝑆~𝑈(−1,1) 

𝜌𝑃𝐷~𝑈(−1,1) 
(4.11) 

Using OpenBUGS (Bayesian inference Using Gibbs Sampling; Lunn et al., 2000), three parallel 

Markov chains were run with 60,000 burn-in iterations per chain, followed by 100,000 iterations per 

chain. To reduce sample autocorrelation, every 50th iteration of each chain was used, resulting in 2,000 

simulated draws per chain and 6,000 samples in total. Various diagnostics checks were carried out to 

ensure that the simulation had converged to its approximate stationary distribution. Individual 

parameter estimation convergence was initially assessed and, as an example below, the values of 𝑘𝑝 

have been plotted over MCMC iterations by Markov chain. 
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The similar and stable chains indicate that the posterior distribution of 𝑘𝑝 has approximately 

converged to its stationary distribution. Densities for model parameters were also inspected. The 

estimated ultimate loss ratio posterior density for the 1995 accident year is as follows: 

              

The density is smooth and bell-shaped, suggesting that convergence has been achieved. Finally, 

checks were carried out to assess sample autocorrelation. The plot below shows that the 

autocorrelation of the second chain 𝛽𝑒𝑟 samples is not statistically different from zero: 
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Given the diagnostics above (and various others not shown) the simulation appears to have reached 

approximate convergence and we can proceed to inspect the model diagnostic plots. Posterior 

densities are estimated for all parameters of interest, and therefore the diagnostic plots are based on 

estimated posterior density medians: 

 

Residual normality approximately holds and the model fits are close to the observations. However, 

similarly to the frequentist model there is a downward trend in the “Residuals vs. Development Year” 

plot across later development years.  

Similarly to Section 4.1, the individual accident year fits can be inspected. In the Bayesian setting 

however, for unobserved development years (𝑡𝑗 ∈  𝑖 + 𝑗 ≥ 12) 95% posterior predictive intervals 

(“PPIs”) can be plotted (Gelman et al., 2013). These show a range of prediction uncertainty due to 

both parameter and process uncertainty. Since this model is a Bayesian implementation of the selected 

frequentist model, we will compare the median fits, extrapolations and PPIs to the observed and 

hold-out sample development together: 
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The median fits are similar to the selected frequentist model with some minor improvements. The 

PPIs are slightly wider for less mature accident years and contain the possibility of both under- and 

over- reserving. However, the outstanding claims PPIs do not converge to zero and even fall below 

zero in later development periods because of the residual normality assumption in Eq. (4.6).  
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To address this shortfall, a double-log transformed model form was tested: 

 log(𝑂𝑆𝑖𝑗) = log{𝑓𝑂𝑆(𝑃𝑖 , 𝝓𝑖 , 𝜼, 𝑡𝑗)} + 𝜀𝑖𝑗
𝑂𝑆 

log(𝑃𝐷𝑖𝑗) = log{𝑓𝑃𝐷(𝑃𝑖, 𝝓𝑖 , 𝜼, 𝑡𝑗)} + 𝜀𝑖𝑗
𝑃𝐷 

(4.12) 

Similarly to the equivalent frequentist model, this transformation resulted in a violation of residual 

normality. In particular, there were too many small residuals relative to larger residuals, which is 

characteristic of an overfitted model. Therefore the model was rejected.  

The paid claims PPIs are generally narrower than the outstanding claims PPIs due to closer model 

fits: median �̂�𝑃𝐷 = 760 and median �̂�𝑂𝑆 = 3151. However, paid claims are over-projected similarly to 

the frequentist model, suggesting that a smaller residual error variance could instil false extrapolation 

confidence if possible future development period claims process shifts are not considered. 

 

To assess posterior parameter uncertainty, we can review median parameter estimates and their 

95% central posterior intervals {median [2.5%ile, 97.5%ile]} (Gelman et al., 2013). For the 1997 accident 

year 𝑅𝐿�̂�10 = 1.10 [0.95, 1.25] and 𝑅𝑅�̂�10 = 1.02 [0.83, 1.23], suggesting that case reserve robustness is 

the main driver of ULR uncertainty (𝑈𝐿�̂�10 = 1.12 [0.93, 1.30]).  

The estimated residual autocorrelations are �̂�𝑂𝑆 = 0.58 [0.30, 0.83] and �̂�𝑃𝐷 = 0.55 [0.27, 0.75], 

indicating moderate to strong serial correlation. The estimated accident year correlation between 𝑙𝑅𝐿𝑅𝑖 

and 𝑙𝑅𝑅𝐹𝑖 is �̂�𝑙𝑅𝐿𝑅𝑖𝑙𝑅𝑅𝐹𝑖
= �̂�12/{�̂�1�̂�2}  =  0.77 [0.38, 0.93], indicating a strong case reserving cycle effect. 

However, the 95% posterior interval is quite wide and the extent of the estimated effect is significantly 
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influenced by the variance-covariance matrix prior in Eq. (4.10).  

Model predictive power can be evaluated by inspecting the 95% PPI hold-out sample coverages as 

follows: 

95% PPI 
Coverage 

1-year 
ahead 

10-years 
ahead 

Total 

Outstanding 89% 100% 93% 

Paid 100%  67% 82% 

Incurred 100% 100% 98% 

The outstanding and incurred claims PPI coverages are close to the nominal 95% rate across all 

time horizons. The poor coverage for the 10-year ahead and total paid claims hold-out samples can 

be attributed to over-projection, particularly for the 1994 accident year. Removing this year from the 

coverage calculations gives a 10-year coverage of 78% and total coverage of 93%.  

The over-projections may be the result of hold-out sample rate of payment reductions (see Section 

4.1.2) and/or differing rates of payment by accident year not reflected by the structural model and 

PPIs. Similarly to the frequentist setting, we could have scenario tested slow-downs in the rate of 

payment over development time. PPI coverage could possibly have been improved in practice by 

using informative priors for the random-effects or, alternatively, by increasing the number of random 

effects. The latter option will be explored in the following scenario. 

4.2.1 Scenario 1: Fully random structure 

We may be able to achieve a more accurate description of historical claims development by allowing 

all claims process parameters to vary by accident year: 

 

𝝓𝑖 = [

𝜙1𝑖

𝜙2𝑖

𝜙3𝑖

𝜙4𝑖

] =

[
 
 
 
𝑙𝑘𝑒𝑟,𝑖

𝑙𝑅𝐿𝑅𝑖

𝑙𝑘𝑝,𝑖

𝑙𝑅𝑅𝐹𝑖]
 
 
 

 

[

𝜙1𝑖

𝜙2𝑖

𝜙3𝑖

𝜙4𝑖

]~𝑁4

(

 
 

𝜽 = [

𝜃1

𝜃2

𝜃3

𝜃4

] , 𝚿 =

[
 
 
 
 
𝜓1

2 𝜓12 𝜓13 𝜓14

𝜓21 𝜓2
2 𝜓23 𝜓24

𝜓31 𝜓32 𝜓3
2 𝜓34

𝜓41 𝜓42 𝜓43 𝜓4
2 ]
 
 
 
 

)

 
 

 

(4.13) 

𝚿 contains ten estimable parameters, which may not be supported by this dataset. However, 

negligible posterior covariance terms can be enforced by setting a prior assumption that 𝑙𝑘𝑒𝑟,𝑖 and 𝑙𝑘𝑝,𝑖 

vary independently of all other parameters (see below). The assigned prior distributions and assumed 

parameter values are unchanged from the previous model, yet fewer priors are required because we 

do not need to distinguish between those parameters that do and do not vary by accident year. 
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The fixed-effects prior assumptions are as follows: 

 𝜽~𝑁4(�̅�, 𝛀) 

�̅� = {1.7, −0.15,−0.9, −0.21}𝑇 

𝛀 = [

0.03922 0 0 0
0 0.05132 0 0
0 0 0.01242 0
0 0 0 0.05062

] 

(4.14) 

The random-effects variance-covariance matrix prior assumptions are as follows: 

 𝚿~𝑊4
−1(𝚺, 𝜈) 

𝚺−1 = [

1 0 0 0
0 1 0 0.8
0 0 1 0
0 0.8 0 1

] , 𝜈 = 4 
(4.15) 

This assumes independence of the random-effects for 𝑙𝑘𝑒𝑟,𝑖 and 𝑙𝑘𝑝,𝑖 . The remaining parameter 

priors, statistical assumptions and convergence arguments are unchanged from the previous model. 
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The diagnostics reveal that the fits are closer to the observations than the previous model. 

However, the residuals appear to be in violation of normality, indicating a degree of overfitting. 

Additionally, the downwards residual vs. development year trend is worsened (analogously to when 

complexity was increased in the frequentist modeling). 

To assess this model against the last, we can compare each model’s deviance information criterion 

(DIC) as follows: 

DIC Outstanding Paid 

Bayesian Model 1 1031.0 879.6 

Bayesian Model 2 1003.0 890.1 

The DIC has decreased for the outstanding fits, indicating an improvement. However, it has 

increased for the paid fits which suggests that the model could be over-parameterized. There is an 

overall DIC reduction, and given the diagnostic plots a practitioner may select this model. In which 

case we will compare this model’s incurred extrapolations against the hold-out samples as follows: 

 

The fits more closely describe each individual year’s incurred development relative to the previous 

model. Additionally, despite a number of years exhibiting over-reserving, the 1995 accident year fit 

assumes under-reserving on average (median 𝑅𝑅�̂�8 = 1.08). This difference could be a feature of 

allowing all of the compartmental model parameters to vary by accident year according to a vague 

prior for 𝚿, enabling the model to place weight on the sharp incurred increase between development 

years 1 and 2. We could reduce the degree to which parameters vary across years (particularly less 
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mature years where priors carry greater weight) by setting an informative variance-covariance prior. 

The plots also show that the 1997 incurred density’s mean is greater than its median. This is because 

the ULRs are assumed to be log-normally distributed (recall from Eq. (4.13) that 𝑙𝑅𝐿𝑅𝑖 and 𝑙𝑅𝑅𝐹𝑖 are 

assumed to be normally distributed). 

    

The 95% PPI hold-out sample coverages (with the previous model’s stated in brackets) are as follows: 

95% PPI 
Coverage 

1-year 
ahead 

10-years 
ahead 

Total 

Outstanding 100% (89%) 100% (100%) 100% (93%) 

Paid 89% (100%) 67% (67%) 69% (82%) 

Incurred 100% (100%) 100% (100%) 100% (98%) 

PPI 1-year ahead coverage has marginally improved for outstanding claims but worsened for paid 

claims. Outstanding and incurred claims coverages have improved to 100% across all time horizons. 

However, paid claims coverage has deteriorated owing to the model estimated (average) 

under-reserving for the 1995 accident year not materializing. As with the previous model’s 

extrapolations, rate of payment reductions are not projected.  

The OpenBUGS code for this model is contained in Appendix F. 

The final scenario and area of model improvement that will be considered concerns the model fits 

by calendar year. 
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4.2.2 Scenario 2: Calendar shock sub-model 

The outstanding claims residuals vs. calendar year plot for the previous model (shown below) 

displays a moderate downwards positional shift of residuals between the 1995 and 1996 calendar years, 

and upwards positional shift between 1996 and 1997. 

              

This appears to be the result of outstanding claims exhibiting a step change at the same point in 

calendar time, perhaps due to a case reserve review during 1996. To capture the 1996 calendar shock 

within the model, we can define an indicator variable 𝐶𝑖𝑗 (for accident year 𝑖 = 1 to 10 and development 

year 𝑗 = 1 to 11 − 𝑖) to mark the time before and after the calendar shock for each accident year: 

 
𝐶𝑖𝑗 = {

1, 𝑖 + 𝑗 < 10
0,         𝑖 + 𝑗 ≥ 10

 (4.16) 

To quantify the impact of the apparent case reserve review, we can then define an estimable 

proportional calendar shock impact variable, 𝑎𝑖, and restate 𝑂𝑆𝑖𝑗 in Eq. (4.6): 

 𝑂𝑆𝑖𝑗 = 𝑓𝑂𝑆(𝑃𝑖, 𝝓𝑖, 𝑡𝑗) ∙ (1 − 𝐶𝑖𝑗 ∙ 𝑎𝑖) + 𝜀𝑖𝑗
𝑂𝑆 (4.17) 

Therefore up until the end of the 1995 calendar year, the expected outstanding claims for accident 

year 𝑖 and development year 𝑗 are equal to 𝑓𝑂𝑆(𝑃𝑖 , 𝝓𝑖 , 𝑡𝑗) as before. However, once the review has taken 

place, outstanding claims are estimated to be (1 − 𝑎𝑖)% of their pre-shock values. Subsequent claims 

payments can be modeled to account for the shock as follows: 

 𝑑𝐸𝑋/𝑑𝑡 =  −exp (𝑙𝛽𝑒𝑟) ∙ 𝑡 ∙ 𝐸𝑋 

𝑑𝑂𝑆/𝑑𝑡 =  exp (𝑙𝛽𝑒𝑟) ∙ 𝑡 ∙ exp (𝑙𝑅𝐿𝑅) ∙ 𝐸𝑋 − exp (𝑙𝑘𝑝) ∙ 𝑂𝑆 

𝑑𝑃𝐷/𝑑𝑡 =  exp (𝑙𝑘𝑝) ∙ exp (𝑙𝑅𝑅𝐹) ∙ (1 − 𝐶𝑖𝑗 ∙ 𝑎𝑖) ∙ 𝑂𝑆 

(4.18) 

Upper and lower bounds for the estimated change in outstanding claims following the calendar 
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shock have been set at 1% and 199% of the outstanding claims prior to the shock and assumed to be 

accident year independent. Candidate 𝑎𝑖s are selected from a uniform distribution in the optimization:  

 𝑎𝑖~𝑈(−0.99,0.99) (4.19) 

The remaining parameter priors, statistical assumptions and convergence arguments are unchanged 

from the previous model. 

 

While the model fits are very close to the observations, there appears to be a serious violation of 

residual normality. The residual histogram shows that this model has far too many small magnitude 

residuals relative to mid-size residuals than expected under a standard normal distribution; an 

indication that claims are being overfitted by the model (similarly to the double-log model in Eq. (4.12)).  

DIC Outstanding Paid 

Bayesian Model 1 1031.0 879.6 

Bayesian Model 2 1003.0 890.1 

Bayesian Model 3 930.3 899.4 

The DIC has substantially reduced for outstanding claims but has increased again for paid claims. 
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Combined with the above diagnostics, this suggests that the model is over-parameterized.  

Although this model is not advisable for reserving purposes, its incurred extrapolations have been 

compared to the hold-out samples for illustrative purposes as follows:  

 

The 95% PPI hold-out sample coverages (with the previous model’s stated in brackets) are as follows: 

95% PPI 
Coverage 

1-year 
ahead 

10-years 
ahead 

Total 

Outstanding 100% (100%) 100% (100%) 98% (100%) 

Paid 89% (89%) 67% (67%) 71% (69%) 
Incurred 100% (100%) 89% (100%) 91% (100%) 

This model describes historical claims development more accurately than all previous models, yet 

incurred claims PPI coverage has reduced to its lowest level. It appears that explicitly modeling the 

outstanding claims calendar shock removes it from the modeled process error. Consequently, potential 

future calendar shocks are less likely to be adequately covered by the PPIs (such as the apparent 1999 

shock affecting the 1994, 1995 and 1997 accident years).  

The OpenBUGS code for this model is contained in Appendix F. 

Although a more complex model could be built for future calendar shocks, this would not resolve 

the existing overfitting issue. 
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5. DISCUSSION 

A hierarchical framework draws statistical strength across individuals, which can facilitate 

parsimony. However, as the case study demonstrates, this does not imply that the resultant model will 

be parsimonious. Diagnostic scrutiny is essential when selecting a hierarchical model for estimating 

reserves and their uncertainty. 

Clark and Rangelova (2015) illustrate the importance of capturing accident year/development year 

interactions, and recommend that statistical methods allow intervention points for adjustment of 

intermediate results. In a hierarchical compartmental framework, an optional number of 

random-effects describe accident year development pattern differences based on intuitive parameters. 

The parameters themselves can be modeled to vary over development time. This flexibility allows the 

description of accident year/development year interactions such as changes in reporting/settlement 

rates and case reserve robustness, in addition to calendar shocks. 

Although not demonstrated in the case study, continuous calendar trends such as inflation can be 

modeled within a compartmental framework. If a continuous “force of inflation” 𝛿 is assumed then 

expected claims payments 𝑓𝑃𝐷(𝑃𝑖 , 𝝓𝑖 , 𝑡𝑗) can be revised to include the inflation factor: 

 𝑓𝑃𝐷
′ (𝑃𝑖, 𝝓𝑖 , 𝑡𝑗) = 𝑓𝑃𝐷(𝑃𝑖, 𝝓𝑖 , 𝑡𝑗) ∙ 𝑒(𝑖+𝑗−2)𝛿 (5.1) 

As detailed by Zhang, Dukic and Guszcza (2012), the first calendar year 𝑖 + 𝑗 = 2 is treated as a 

“base” and subsequent expected calendar year payments are inflated by a factor 𝑒(𝑖+𝑗−2)𝛿, where 𝛿 is 

estimated or pre-specified. A similar approach could be taken to inflate outstanding claims or, 

alternatively, the differential equation system itself could be adjusted. 

The deterministic compartmental model assumption of a smooth and detectable claims process 

relies upon claims cohort homogeneity for a volume of claims. This may not always be the case, and 

therefore further research is required to establish the validity and value of hierarchical semi-stochastic 

compartmental reserving models (Appendix B).  

Other possible areas for future research include: 

 The use of compartmental models to capture specific sub-processes such as legal shocks, 

catastrophes, latent claims, reopened claims, reinsurance recoveries and 

salvage/subrogation, to name but a few. 

 Exploring the value of covariate models based on separate data sources. For example, if a 

claims handling team increased in size then one might expect the rate of payment to 

increase also. 
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 Establishment of a library of reporting/payment rate vs. development time functions along 

with their corresponding development profile properties. 

 Simultaneous compartmental reserving for multiple insurance companies, e.g. by adding an 

extra level of hierarchy to describe company variation (Zhang, Dukic and Guszcza, 2012). 

Many of the aforementioned extensions could be naturally incorporated within a Bayesian 

framework. Additionally, the Bayesian implementation itself could be further refined by considering 

alternative prior distributions. For example, prior dependence of random-effect variance and 

correlation terms could be controlled by using the separation strategy proposed by Barnard, 

McCulloch and Meng (2000). 

Further work is required to evaluate the benefits of a compartmental approach compared to 

established methods, particularly for the estimation of reserve uncertainty. 
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6. CONCLUSIONS 

This paper introduces a practical compartmental modeling framework for describing cumulative 

claims development. In particular, by considering the claims process over time as  

Exposed to Risk → Claims Outstanding → Claims Paid, an intuitive set of parameters have been 

defined which include a measure of case reserve robustness.  

Cumulative paid claims model solutions are analogous to Clark’s growth curve approach to loss 

reserving (2003). In contrast to growth curves which contain implicit tail factors, compartmental 

reserving model tail factors and hence ultimate projections are dictated by the extrapolation of 

outstanding losses to zero and estimated case reserve robustness. A number of possible model 

extensions have been explored to describe the nuances of the class of business being modeled, 

including changing reporting and/or settlement rates. 

Following Guszcza (2008), a flexible nonlinear hierarchical framework is proposed to describe 

claims triangle data. Claims cohorts are viewed as individuals and cumulative losses are viewed as a 

series of observations for each individual. In contrast to Guszcza, cumulative paid triangles and 

outstanding claims triangles are fitted to, which enhances inference and interpretability. A probability 

sub-model allows a selection of the compartmental model parameters to vary by cohort and describe 

claims cohort pattern heterogeneity. Claims process trends can be identified and scenario tested, and 

parameter interpretability facilitates model discussion across the wider business. 

A Bayesian implementation (similar to Zhang, Dukic and Guszcza, 2012) enables the robust 

incorporation of judgment and/or external information into claims projections. In addition to 

quantifying reserve uncertainty consistently with its definition, it offers additional model flexibility so 

that features such as residual autocorrelation and calendar effects can be explicitly accounted for. 
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Supplementary Material 

A single-cohort compartmental reserving model illustration spreadsheet is available at 
http://www.casact.org/pubs/forum/16sforum/. The frequentist models in this paper were fitted using statistical software 
‘R’, freely available at http://www.r-project.org. The R packages “nlmeODE” and “nlme” can be installed from the base 
R program. The Bayesian models in this paper were fitted using Bayesian Gibbs Sampling software ‘OpenBUGS’, freely 
available at http://www.openbugs.net. The case study dataset is freely available at 
http://www.casact.org/research/reserve_data/wkcomp_pos.csv (NAIC company code 337). 

http://www.casact.org/pubs/forum/16sforum/
http://www.r-project.org/
http://www.openbugs.net/
http://www.casact.org/research/reserve_data/wkcomp_pos.csv
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Appendix A: Implied development patterns 

Implied continuous-time patterns of development are obtainable from the baseline compartmental 

reserving model solutions. Recall Eq. (3.2), which describes the claims process assuming that all 

exposure is input at time 0 and all model parameters are constant over development time 𝑡: 

 
𝑂𝑆(𝑡) =

𝑃 ∙ 𝑅𝐿𝑅 ∙ 𝑘𝑒𝑟

𝑘𝑒𝑟 − 𝑘𝑝 
∙ (𝑒−𝑘𝑝𝑡 − 𝑒−𝑘𝑒𝑟𝑡) 

𝑃𝐷(𝑡) =
𝑃 ∙ 𝑅𝐿𝑅 ∙ 𝑅𝑅𝐹

𝑘𝑒𝑟 − 𝑘𝑝 
∙ (𝑘𝑒𝑟 ∙ (1 − 𝑒−𝑘𝑝𝑡) − 𝑘𝑝 ∙ (1 − 𝑒−𝑘𝑒𝑟𝑡)) 

 

 

Given that 𝑈𝐿𝑅 = 𝑅𝐿𝑅 ∙ 𝑅𝑅𝐹, it follows that 𝑃 ∙ 𝑅𝐿𝑅 ∙ 𝑅𝑅𝐹 from the third ODE equates to the 

estimated ultimate losses. To derive the implied pattern of paid development at time 𝑡, we can 

therefore divide 𝑃𝐷(𝑡) by 𝑃 ∙ 𝑅𝐿𝑅 ∙ 𝑅𝑅𝐹 to give 

 
𝑃𝐷(𝑡) % =

1

𝑘𝑒𝑟 − 𝑘𝑝 
∙ (𝑘𝑒𝑟 ∙ (1 − 𝑒−𝑘𝑝𝑡) − 𝑘𝑝 ∙ (1 − 𝑒−𝑘𝑒𝑟𝑡)) (A.1) 

Similarly, by summing 𝑂𝑆(𝑡) and 𝑃𝐷(𝑡), dividing by 𝑃 ∙ 𝑅𝐿𝑅 ∙ 𝑅𝑅𝐹 and simplifying, the implied 

incurred pattern of development can be derived as 

𝐼𝑁𝐶(𝑡) % = 
𝑘𝑒𝑟 ∙ (𝑒−𝑘𝑝𝑡 − 𝑒−𝑘𝑒𝑟𝑡) + 𝑅𝑅𝐹 ∙ (𝑘𝑒𝑟 ∙ (1 − 𝑒−𝑘𝑝𝑡) − 𝑘𝑝 ∙ (1 − 𝑒−𝑘𝑒𝑟𝑡))

𝑅𝑅𝐹 ∙ (𝑘𝑒𝑟 − 𝑘𝑝) 
 (A.2) 

For a given set of parameters (with an 𝑅𝑅𝐹 < 1), Eq. (A.1) and (A.2) can be visualized over 
development time as follows: 

 

             

For perfect case reserving on average across a cohort of claims i.e. 𝑅𝑅𝐹 = 1 (resulting in all claim 

amounts outstanding becoming paid claims), the incurred pattern in Eq. (A.2) simplifies and can be 

interpreted as an Exposed to Risk (“EtR”) to reporting pattern: 

 𝐼𝑁𝐶(𝑡) % = 𝐸𝑡𝑅 𝑡𝑜 𝑅𝑒𝑝𝑜𝑟𝑡(𝑡) % =  1 − 𝑒−𝑘𝑒𝑟𝑡 (A.3) 

This result can also be obtained by letting 𝑘𝑝 → 0 in Eq. (3.2), and dividing 𝑂𝑆(𝑡) by 𝑃 ∙ 𝑅𝐿𝑅. To 

derive a report to payment pattern, it could be assumed that all exposures are initialized into the 

outstanding compartment at time 0. This results in a model that is defined in terms of two parameters 
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only: a rate of payment and a reserve robustness factor. We can write the state-variable solutions as 

 𝑂𝑆(𝑡) = 𝑃𝑒−𝑘𝑝𝑡  

𝑃𝐷(𝑡) = 𝑃 ∙ 𝑅𝑅𝐹 ∙ (1 − 𝑒−𝑘𝑝𝑡)  
(A.4) 

Similarly to above, the payment pattern 𝑃𝐷(𝑡) % can be derived by dividing 𝑃𝐷(𝑡) by ultimate 

claims, which in this instance is 𝑃 ∙ 𝑅𝑅𝐹. Given that we are only considering the claims process from 

reporting onwards, the resulting pattern can be interpreted as a report to payment pattern: 

 𝑃𝐷(𝑡) % = 𝑅𝑒𝑝𝑜𝑟𝑡 𝑡𝑜 𝑃𝑎𝑦𝑚𝑒𝑛𝑡(𝑡) % =  1 − 𝑒−𝑘𝑝𝑡 (A.5) 

This result can also be obtained by letting 𝑘𝑒𝑟 → ∞ in Eq. (3.2), and dividing 𝑃𝐷(𝑡) by 

𝑃 ∙ 𝑅𝑅𝐹 ∙ 𝑅𝐿𝑅. For a given set of parameters, the EtR to report and report to payment development 

patterns can be visualized over development time as follows:  

               

The development patterns are based on rate parameters which are constant over development time. 

If the rate parameters varied over time however, development patterns would also be expected to 

vary. Equations (A.3) and (A.5) can be generalized to allow for variable rates by writing  

 𝐸𝑡𝑅 𝑡𝑜 𝑅𝑒𝑝𝑜𝑟𝑡(𝑡) % = 1 − 𝑒−∫ k𝑒𝑟(𝑡)
𝑡
0 𝑑𝑡 

𝑅𝑒𝑝𝑜𝑟𝑡 𝑡𝑜 𝑃𝑎𝑦𝑚𝑒𝑛𝑡(𝑡) % = 1 − 𝑒−∫ k𝑝(𝑡)𝑑𝑡
𝑡
0  

(A.6) 

The graphs below show implied EtR to report and report to payment development patterns both 

for constant rate parameters (dashed lines), and parameters that vary over development time in 

accordance with the functions outlined in Section 3.2 (solid lines): 
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In contrast to a constant rate of reporting, a reporting rate that linearly increases over development 

time results in a slower pattern of reported claims development initially, which speeds up over time. 

This could be used to reflect a delay between claim events and claim reports for an accident cohort of 

claims. Allowing the rate of payment to decrease over development time results in a faster pattern of 

payment initially, which slows down over time. This is reflective of a slower settlement rate for claims 

outstanding in later development periods, perhaps due to litigation.  

Corresponding incurred and payment patterns for both constant and non-constant rate parameters 

(obtained using numerical methods) can also be compared as follows: 

 

The impact of altering parameters values/functions on development patterns can be seen in the 

illustration spreadsheet available at: http://www.casact.org/pubs/forum/16sforum/. 
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Appendix B: Semi-stochastic compartmental reserving models 

The deterministic compartmental model outlined in Section 3 assumes the same average claims 

behavior throughout the lifetime of a cohort. However, there are many reasons why there may be 

additional variability in the process, e.g. erratic case reserve fluctuations, claims payment backlogs etc. 

It may therefore be appropriate to re-specify the baseline model as a semi-stochastic (or “grey box”; 

Tornøe et al., 2004b) model by introducing a Wiener process (or multiple processes) into the model’s 

structural form. To do this we must first re-write Eq. (3.1) by moving the time increment (𝑑𝑡) terms 

to the right hand side of the ODEs, giving 

 

 

 

𝑑𝐸𝑋 = (−𝑘𝑒𝑟 ∙ 𝐸𝑋)𝑑𝑡 

𝑑𝑂𝑆 = (𝑘𝑒𝑟 ∙ 𝑅𝐿𝑅 ∙ 𝐸𝑋 − 𝑘𝑝 ∙ 𝑂𝑆)𝑑𝑡 

𝑑𝑃𝐷 =  (𝑘𝑝 ∙ 𝑅𝑅𝐹 ∙ 𝑂𝑆)𝑑𝑡 

 

(B.1) 

To incorporate a Wiener process for outstanding claims we can write 

 

 

 

𝑑𝐸𝑋 = (−𝑘𝑒𝑟 ∙ 𝐸𝑋)𝑑𝑡 

𝑑𝑂𝑆 = (𝑘𝑒𝑟 ∙ 𝑅𝐿𝑅 ∙ 𝐸𝑋 − 𝑘𝑝 ∙ 𝑂𝑆)𝑑𝑡 + 𝜎𝑂𝑆𝑑𝑊 

𝑑𝑃𝐷 =  (𝑘𝑝 ∙ 𝑅𝑅𝐹 ∙ 𝑂𝑆)𝑑𝑡 

 

(B.2) 

where 𝑊 is a standard (and additive) Wiener process such that 𝑊(𝑡2) − 𝑊(𝑡1)~𝑁(0, |𝑡2 − 𝑡1|), and 

𝜎𝑂𝑆 is the estimable element of the Wiener process standard deviation (the diffusion coefficient), 

representing volatility in outstanding claims not captured by the deterministic ODEs. For illustration, 

this allows model solutions (plotted at yearly time steps) to look as follows: 

                 

An issue with the model outlined above is that the volatility in outstanding claims is assumed to be 

constant, and therefore the Wiener process can cause outstanding claims to fall below zero. Although 

this is plausible for classes of business where salvage/subrogation is material, Eq. (B.2) assumes that 

large outstanding claims fluctuations can persist at later development times where they would typically 

be expected to be zero. This can lead to negative paid increments, as shown above. To address this, 
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the above Wiener process can be assumed to be a multiple of the amount in the outstanding claims 

compartment (i.e. state-dependent), giving  

 

 

 

𝑑𝐸𝑋 = (−𝑘𝑒𝑟 ∙ 𝐸𝑋)𝑑𝑡 

𝑑𝑂𝑆 = (𝑘𝑒𝑟 ∙ 𝑅𝐿𝑅 ∙ 𝐸𝑋 − 𝑘𝑝 ∙ 𝑂𝑆)𝑑𝑡 + 𝜎𝑂𝑆𝑂𝑆𝑑𝑊 

𝑑𝑃𝐷 =  (𝑘𝑝 ∙ 𝑅𝑅𝐹 ∙ 𝑂𝑆)𝑑𝑡 

 

(B.3) 

The volatility introduced to the claims process is therefore proportional to amounts outstanding at 

each development time, which may be a more realistic assumption. Although this model can be fitted 

to a single cohort, for the multiple cohort case using hierarchical models (Section 4) it is not 

straightforward to implement Eq. (B.3) in conventional software (at the time of writing). However, 

Eq. (B.2) can be implemented in a hierarchical framework using the R package “PSM” (Klim et al., 

2009).  

A key benefit of using SDEs is that they can account for residual autocorrelation (see Section 4.2) 

in a flexible manner. Furthermore, SDEs can describe claims process mechanisms that are too 

complex to include in the structural model (Overgaard et al., 2005). A similar approach could be used 

to model low-frequency high-severity losses. As an alternative to the semi-stochastic model above, 

probability transfer mechanisms between compartments could be incorporated (Rescigno and Segre, 

1966). 
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Appendix C: Nonlinear regression self-starting algorithm 

Nonlinear regression models require parameter starting values for optimization to take place. 

Although visual inspection and judgment can be used to select reasonable starting values 

(see Section 4.1), inappropriate estimates can result in the model converging to a local rather than 

global likelihood maximum. A starting value algorithm is therefore outlined below for a single-cohort 

baseline compartmental reserving model, based on the “method of residuals” (Macheras, 1987).  

We reexamine the baseline compartmental model defined by Eq. (3.1) and (3.2) and note that by 

some development time point, most claims will have been reported i.e. 𝐸𝑋(𝑡) → 0. From this point 

onwards, only the claims payment phase of the process will remain. Provided that 𝑘𝑒𝑟 is sufficiently 

larger than 𝑘𝑝, we can ignore the reporting term 𝑒−𝑘𝑒𝑟𝑡 and obtain the following expression for later 

development time outstanding claims, 𝑂𝑆(𝑡)𝐿𝐴𝑇𝐸 : 

 
𝑂𝑆(𝑡)𝐿𝐴𝑇𝐸 = 

𝑃 ∙ 𝑅𝐿𝑅 ∙ 𝑘𝑒𝑟

𝑘𝑒𝑟 − 𝑘𝑝 
∙ 𝑒−𝑘𝑝𝑡 (C.1) 

This can be viewed graphically as follows: 

                

Denoting 𝜷 = {𝛽1, 𝛽2, 𝛽3, 𝛽4}
𝑇 = {𝑘𝑒𝑟 , 𝑅𝐿𝑅, 𝑘𝑝, 𝑅𝑅𝐹}

𝑇
 and 𝑂𝑆𝑗 as the 𝑗th outstanding claims 

observation, we can write down the following regression model: 

 
𝑂𝑆𝑗

𝐿𝐴𝑇𝐸 = 
𝑃 ∙ 𝛽2 ∙ 𝛽1

𝛽1 − 𝛽3 
∙ 𝑒−𝛽3𝑡𝑗  + 𝜀𝑗

𝑂𝑆 (C.2) 

This phase of the solution has only one exponential term, enabling us to take logarithms of both 

sides to linearize the model:  

 
log(𝑂𝑆𝑗

𝐿𝐴𝑇𝐸) = log (
𝑃 ∙ 𝛽2 ∙ 𝛽1

𝛽1 − 𝛽3 
) − 𝛽3𝑡𝑗 + 𝜖𝑗

𝑂𝑆 (C.3) 

Denoting 𝜃0 = log (
𝑃∙𝛽2∙𝛽1

𝛽1−𝛽3 
), 𝜃3 = −𝛽3, a linear regression can be specified and carried out: 

 log(𝑂𝑆𝑗
𝐿𝐴𝑇𝐸) = 𝜃0 + 𝜃3𝑡𝑗 + 𝜖𝑗

𝑂𝑆 (C.4) 
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This regression should be carried out for the logarithm of outstanding claims development values 

from the point at which the exposure is assumed to be negligible. However, this time point is not 

likely to be known. Even if it was, there may be practical restrictions to carrying out regression C.4 

and subsequent regressions from this time point onwards (discussed at the end of this Appendix).  

Once estimates �̂�0 and �̂�3 have been found, we establish that 
𝑃∙𝛽2∙𝛽1

𝛽1−𝛽3 

̂
= 𝑒�̂�0 and �̂�3 = −�̂�3. 

This gives an estimate of the rate of payment, 𝑘𝑝. The next step is to identify that 

 
𝑂𝑆𝑗 = 𝑂𝑆𝑗

𝐿𝐴𝑇𝐸 −
𝑃 ∙ 𝛽2 ∙ 𝛽1

𝛽1 − 𝛽3 
∙ (𝑒−𝛽1𝑡𝑗) (C.5) 

This can be rearranged and linearized as follows for 𝑂𝑆𝑗
𝐿𝐴𝑇𝐸 − 𝑂𝑆𝑗 > 0: 

 
𝑂𝑆𝑗 − 𝑂𝑆𝑗

𝐿𝐴𝑇𝐸 = −
𝑃 ∙ 𝛽2 ∙ 𝛽1

𝛽1 − 𝛽3 
∙ (𝑒−𝛽1𝑡𝑗) 

log(𝑂𝑆𝑗
𝐿𝐴𝑇𝐸 − 𝑂𝑆𝑗)|

𝑂𝑆𝑗
𝐿𝐴𝑇𝐸−𝑂𝑆

𝑗
>0

= log (
𝑃 ∙ 𝛽2 ∙ 𝛽1

𝛽1 − 𝛽3 
) − 𝛽1𝑡𝑗 

(C.6) 

𝑂𝑆𝑗
𝐿𝐴𝑇𝐸 can be taken as its estimated value in the previous regression, 𝑂𝑆�̂�

𝐿𝐴𝑇𝐸
, and the intercept 

log (
𝑃∙𝛽2∙𝛽1

𝛽1−𝛽3 
) can be fixed to the previously estimated intercept, �̂�0. 

 Denoting 𝜃1 = −𝛽1 and rearranging, a second linear regression can be specified through the origin 

(Turner, 1960): 

 log(𝑂𝑆�̂�
𝐿𝐴𝑇𝐸

− 𝑂𝑆𝑗)|
𝑂�̂�𝑗

𝐿𝐴𝑇𝐸
−𝑂𝑆

𝑗
>0

= 𝜃0 + 𝜃1𝑡𝑗 + 𝜉𝑗 

log(𝑂𝑆�̂�
𝐿𝐴𝑇𝐸

− 𝑂𝑆𝑗)|
𝑂�̂�𝑗

𝐿𝐴𝑇𝐸
−𝑂𝑆

𝑗
>0

− 𝜃0 = 𝜃1𝑡𝑗 + 𝜉𝑗 
(C.7) 

        

 

Development time (t)

log(OS(t)_Late) kp regression
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Once an estimate of �̂�1 of 𝜃1 has been found, we establish that �̂�1 = −�̂�1, thus providing an estimate 

of the rate of reporting, 𝑘𝑒𝑟. Given our estimates of 𝑘𝑒𝑟 and 𝑘𝑝, we can infer an estimate of the 𝑅𝐿𝑅. 

To see how, we recall the definition of 𝜃0 in Eq. (C.4) and rearrange as follows: 

 
log (

𝑃 ∙ 𝛽2 ∙ 𝛽1

𝛽1 − 𝛽3 
) = 𝜃0 

𝛽2 =
𝑒𝜃0 ∙ (𝛽1 − 𝛽3)

𝑃 ∙ 𝛽1
 

𝛽2 =
𝑒𝜃0 ∙ (−𝜃1 + 𝜃3)

𝑃 ∙ −𝜃1
 

(C.8) 

We can therefore substitute in the previously estimated parameters to get an estimate of 𝛽2: 

 
�̂�2 =

𝑒�̂�0 ∙ (−𝜃1 + 𝜃3)

𝑃 ∙ −𝜃1

 (C.9) 

This is an estimate of the 𝑅𝐿𝑅. Finally, to estimate the 𝑅𝑅𝐹 we note that the above procedure 

generates parameter estimates for all elements of the paid claims solution in Eq. (3.2) except the 𝑅𝑅𝐹: 

 
𝑃𝐷(𝑡) =

𝑃 ∙ 𝑅𝐿𝑅 ∙ 𝑅𝑅𝐹

𝑘𝑒𝑟 − 𝑘𝑝 
∙ (𝑘𝑒𝑟 ∙ (1 − 𝑒−𝑘𝑝𝑡) − 𝑘𝑝 ∙ (1 − 𝑒−𝑘𝑒𝑟𝑡)) 

𝑃𝐷(𝑡) =
𝑃 ∙ 𝑅𝐿𝑅

𝑘𝑒𝑟 − 𝑘𝑝 
∙ (𝑘𝑒𝑟 ∙ (1 − 𝑒−𝑘𝑝𝑡) − 𝑘𝑝 ∙ (1 − 𝑒−𝑘𝑒𝑟𝑡)) ∙ 𝑅𝑅𝐹 

 

(C.10) 

Rewriting as a regression as per above gives: 

 
𝑃𝐷𝑗 =

𝑃 ∙ 𝛽2

𝛽1 − 𝛽3 
∙ (𝛽1 ∙ (1 − 𝑒−𝛽3𝑡𝑗) − 𝛽3 ∙ (1 − 𝑒−𝛽1𝑡𝑗)) ∙ 𝛽4 + 𝜔𝑗 (C.11) 

Substituting in the estimates of each parameter apart from 𝛽4, we can denote 𝜃4 = 𝛽4 and rewrite 

Eq. (C.11) as follows: 

 𝑃𝐷𝑗 = 𝑓(𝑃, 𝜃1, 𝜃2, 𝜃3, 𝑡𝑗) ∙ 𝜃4 + 𝜔𝑗 (C.12) 

Development time (t)

log(OS(t)_Late)

log(OS(t)_Late - OS(t))

kp regression

ker regression
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This regression is linear in the parameter that we are interested in estimating, 𝜃4 (𝑅𝑅𝐹), and 

therefore a linear regression through the origin can be carried out to derive an estimate of 𝜃4: �̂�4. 

The vector of parameter starting values, 𝜷0, can then be set to be:  

 𝜷0 = {𝛽1
0, 𝛽2

0, 𝛽3
0, 𝛽4

0}𝑇 = {𝑘𝑒𝑟
0 , 𝑅𝐿𝑅0, 𝑘𝑝

0, 𝑅𝑅𝐹0}
𝑇

= {−𝜃1, 𝜃2, −𝜃3, 𝜃4}
𝑇
 (C.13) 

Although this algorithm is based on a single cohort of claims, for the multiple cohort case (e.g. 

using hierarchical models as outlined in Section 4), the algorithm could be used to derive parameter 

estimates for each individual cohort. To derive fixed-effect starting values, one could then calculate 

weighted average parameters based on the number of data points within each cohort, for example. 

Selecting 𝒕𝒋
𝑳𝑨𝑻𝑬 

As stated above, a practitioner is unlikely to be able to identify when exposure has fallen close to 

zero for a particular claims cohort. Furthermore, a claims cohort might not have a long enough 

development history to be able to fit a regression from 𝑡𝑗
𝐿𝐴𝑇𝐸 onwards. This issue is more prevalent if 

the rate of reporting is slow because by definition, exposures will convert to reported claims and tend 

to zero at a slower rate. 

Being that the goal is to specify starting values for the parameters being estimated and not to derive 

final estimates, it may be acceptable to compromise on the point at which 𝑡𝑗
𝐿𝐴𝑇𝐸 is defined at the cost 

of reducing the accuracy of the initial parameter estimates. One possibility is to calculate peak 

outstanding claims from the data, 𝑀𝐴𝑋_𝑂𝑆, and define the corresponding development time point as 

𝑡𝑗
𝑀𝐴𝑋_𝑂𝑆. For the regressions outlined above, 𝑡𝑗

𝐿𝐴𝑇𝐸 could then be defined as 𝑡𝑗 ≥ 𝑡𝑗
𝑀𝐴𝑋_𝑂𝑆.  

In some instances (e.g. when 𝑘𝑒𝑟 much faster than 𝑘𝑝) this will be a close approximation to when 

exposure is close to zero. In others however, it is likely to be a less accurate approximation due to a 

high probability of new non-negligible value claims being subsequently reported. The graph below 

illustrates the discrepancy in regression slopes, i.e. initial parameter estimates, for 

𝑘𝑒𝑟 = 2.33𝑘𝑝: 

      Development time (t)

True kp regression

True ker regression

Approx kp regression

Approx ker regression
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This approach to defining 𝑡𝑗
𝐿𝐴𝑇𝐸 will result in a degree of starting value parameter estimation error 

(more predominantly for 𝑘𝑒𝑟), with a magnitude inversely proportional to the underlying rate of 

reporting. On the other hand, if 𝑘𝑒𝑟 is too fast, there won’t be early phase data to derive its estimate 

in the first place (in which case a large estimate can be selected arbitrarily). Additionally, the less mature 

the cohort, the less reliable the parameter estimates will be. However, this approach should initialize 

the nonlinear regression optimization process at a sensible point in the parameter space. 

It’s worth noting that 𝑡𝑗
𝑀𝐴𝑋_𝑂𝑆 may appear long before the true payment phase if outstanding claims 

development is volatile. Therefore in practice, judgment will be necessary to decide from which 

development time point the observed logarithm of the outstanding claims can be considered linear. 

The degree of linearity must be balanced with the number of development data points available to 

carry out the regression for 𝑘𝑝. In cases where there are no observations subsequent to the maximum 

outstanding claims value, this algorithm cannot be used.  

In the case of development time-dependent parameters (Section 3.2), the parameter starting value 

algorithm could be used to find approximate parameter starting values by setting nonlinear rate 

functions equal to the parameter estimates above. However, identifiability will be an issue for rate 

functions with more than one parameter (unless at least one of the parameters is arbitrarily fixed). 
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Appendix D: Frequentist case study data 

 
Data key 

“Cohort” = accident year 
“t” = development year 
“Claims” = outstanding claims for “Type”=1 and cumulative paid claims for “Type”=2 
“Dose” = exposure/earned premium 
“Cmt” = exposure compartment number 
 
> Data <- groupedData(Claims ~ t | Cohort/Type, data = Data) 

 
Grouped Data: Claims ~ t | Cohort/Type 

    Cohort  t Claims Type   Dose Cmt 

1     1988  0      0    1 104437   1 

2     1988  0      0    2      0   1 

3     1988  1  53121    1      0   1 

4     1988  1   9558    2      0   1 

5     1988  2  41222    1      0   1 

6     1988  2  22778    2      0   1 

7     1988  3  32309    1      0   1 

8     1988  3  33298    2      0   1 

9     1988  4  24944    1      0   1 

10    1988  4  40348    2      0   1 

11    1988  5  17104    1      0   1 

12    1988  5  45146    2      0   1 

13    1988  6  13137    1      0   1 

14    1988  6  48048    2      0   1 

15    1988  7   9605    1      0   1 

16    1988  7  49782    2      0   1 

17    1988  8   6515    1      0   1 

18    1988  8  50623    2      0   1 

19    1988  9   1661    1      0   1 

20    1988  9  51812    2      0   1 

21    1988 10   1322    1      0   1 

22    1988 10  51939    2      0   1 

23    1989  0      0    1  88883   1 

24    1989  0      0    2      0   1 

25    1989  1  54145    1      0   1 

26    1989  1   7913    2      0   1 

27    1989  2  37188    1      0   1 

28    1989  2  19472    2      0   1 

29    1989  3  26976    1      0   1 

30    1989  3  29622    2      0   1 

31    1989  4  20015    1      0   1 

32    1989  4  36816    2      0   1 

33    1989  5  14319    1      0   1 

34    1989  5  40975    2      0   1 

35    1989  6  10179    1      0   1 

36    1989  6  43302    2      0   1 

37    1989  7   6672    1      0   1 

38    1989  7  44707    2      0   1 

39    1989  8   2575    1      0   1 

40    1989  8  45871    2      0   1 

41    1989  9   2071    1      0   1 
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42    1989  9  46229    2      0   1 

43    1990  0      0    1  85956   1 

44    1990  0      0    2      0   1 

45    1990  1  55211    1      0   1 

46    1990  1   8744    2      0   1 

47    1990  2  37221    1      0   1 

48    1990  2  24302    2      0   1 

49    1990  3  27760    1      0   1 

50    1990  3  35406    2      0   1 

51    1990  4  17990    1      0   1 

52    1990  4  43412    2      0   1 

53    1990  5  11417    1      0   1 

54    1990  5  48057    2      0   1 

55    1990  6   6716    1      0   1 

56    1990  6  50897    2      0   1 

57    1990  7   4282    1      0   1 

58    1990  7  52879    2      0   1 

59    1990  8   3015    1      0   1 

60    1990  8  53956    2      0   1 

61    1991  0      0    1  99339   1 

62    1991  0      0    2      0   1 

63    1991  1  60617    1      0   1 

64    1991  1  13301    2      0   1 

65    1991  2  42144    1      0   1 

66    1991  2  32950    2      0   1 

67    1991  3  25987    1      0   1 

68    1991  3  47201    2      0   1 

69    1991  4  14805    1      0   1 

70    1991  4  56394    2      0   1 

71    1991  5   9406    1      0   1 

72    1991  5  61650    2      0   1 

73    1991  6   5792    1      0   1 

74    1991  6  65039    2      0   1 

75    1991  7   3966    1      0   1 

76    1991  7  66566    2      0   1 

77    1992  0      0    1 104897   1 

78    1992  0      0    2      0   1 

79    1992  1  65719    1      0   1 

80    1992  1  11424    2      0   1 

81    1992  2  46047    1      0   1 

82    1992  2  29086    2      0   1 

83    1992  3  31250    1      0   1 

84    1992  3  42034    2      0   1 

85    1992  4  22245    1      0   1 

86    1992  4  50910    2      0   1 

87    1992  5  11878    1      0   1 

88    1992  5  56406    2      0   1 

89    1992  6   8408    1      0   1 

90    1992  6  59437    2      0   1 

91    1993  0      0    1 119427   1 

92    1993  0      0    2      0   1 

93    1993  1  68133    1      0   1 

94    1993  1  11792    2      0   1 

95    1993  2  51102    1      0   1 

96    1993  2  27161    2      0   1 

97    1993  3  39934    1      0   1 
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98    1993  3  38229    2      0   1 

99    1993  4  21824    1      0   1 

100   1993  4  46722    2      0   1 

101   1993  5  16955    1      0   1 

102   1993  5  50742    2      0   1 

103   1994  0      0    1 110784   1 

104   1994  0      0    2      0   1 

105   1994  1  62434    1      0   1 

106   1994  1  11194    2      0   1 

107   1994  2  46661    1      0   1 

108   1994  2  26893    2      0   1 

109   1994  3  32248    1      0   1 

110   1994  3  38488    2      0   1 

111   1994  4  24140    1      0   1 

112   1994  4  45580    2      0   1 

113   1995  0      0    1  77731   1 

114   1995  0      0    2      0   1 

115   1995  1  56971    1      0   1 

116   1995  1  12550    2      0   1 

117   1995  2  48677    1      0   1 

118   1995  2  31604    2      0   1 

119   1995  3  35336    1      0   1 

120   1995  3  44045    2      0   1 

121   1996  0      0    1  63646   1 

122   1996  0      0    2      0   1 

123   1996  1  56526    1      0   1 

124   1996  1  13194    2      0   1 

125   1996  2  41707    1      0   1 

126   1996  2  31474    2      0   1 

127   1997  0      0    1  48052   1 

128   1997  0      0    2      0   1 

129   1997  1  40799    1      0   1 

130   1997  1   9372    2      0   1 
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Appendix E: Frequentist modeling R code 

Baseline structural model (Section 4.1) 
> DEmodel <- list( 

+                 DiffEq=list( 

+                     dy1dt = ~ -lker*y1, 

+                     dy2dt = ~ lker*lRLR*y1 - lkp*y2, 

+                     dy3dt = ~ lkp*lRRF*y2), 

+                 ObsEq=list( 

+                     EX   = ~ 0, 

+                     OS   = ~ y2, 

+                     PA   = ~ y3),          

+ States=c("y1","y2","y3"),  

+ Parms=c("lker","lRLR","lkp","lRRF"), 

+ Init=list(0,0,0)) 

Model 1 (Section 4.1) 
> ReservingModel <- nlmeODE(DEmodel,Data) ### “Data” = data in Appendix D 

> nlmeModel <- nlme(Claims ~ 

ReservingModel(lker,lRLR,lkp,lRRF,t,Cohort,Type), 

+ data = Data, 

+ fixed = lker+lRLR+lkp+lRRF ~ 1,  ### fixed-effect parameters 

+ random = pdDiag(lRLR + lRRF ~ 1),  ### parameters with random-effects 

+ groups = ~Cohort,    ### data grouping (accident years) 

+ weights = varIdent(form = ~1 | Type), ### residual error functions: OS&PD 

+ start = c(lker = log(1.5), lRLR = log(1),  

 lkp = log(0.75), lRRF = log(0.75)), ### parameter starting values 

+ control=list(returnObject=TRUE,msVerbose=TRUE, 

+ msMaxIter=10000,pnlsMaxIter=10000, 

+ pnlsTol=0.4),    ### tolerance for PNLS convergence 

+ verbose=TRUE) 

> nlmeModel 

Nonlinear mixed-effects model fit by maximum likelihood 

 Model: Claims ~ ReservingModel(lker, lRLR, lkp, lRRF, t, Cohort, Type)  

 Data: Data  

 Log-likelihood: -1164.386 

 Fixed: lker + lRLR + lkp + lRRF ~ 1  

       lker        lRLR         lkp        lRRF 

 0.40824328  0.02575157 -0.79246675 -0.40644353  

      ### estimated fixed-effects: �̂� 
Random effects: 

 Formula: list(lRLR ~ 1, lRRF ~ 1) 

 Level: Cohort 

 Structure: Diagonal 

             lRLR      lRRF Residual 

StdDev: 0.1870103 0.1318661 3171.213 

      ### estimated random-effect & 

Variance function:    ### residual std dev terms: {�̂�𝑖𝑘 , �̂�} 

 Structure: Different standard deviations per stratum 

 Formula: ~1 | Type  

 Parameter estimates: 

        1         2  

1.0000000 0.1790677     ### OS&PD residual std deviation  

Number of Observations: 130   ### multipliers: {1, �̂�}  

Number of Groups: 10 
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Extended structural model – development time-dependent reporting rate (Section 4.1.1) 
> DEmodel2 <- list( 

+                 DiffEq=list( 

+                     dy1dt = ~ -lBer*t*y1, 

+                     dy2dt = ~ lBer*t*lRLR*y1 - lkp*y2, 

+                     dy3dt = ~ lkp*lRRF*y2), 

+                 ObsEq=list( 

+                     EX   = ~ 0, 

+                     OS   = ~ y2, 

+                     PA   = ~ y3),          

+ States=c("y1","y2","y3"),  

+ Parms=c("lBer","lRLR","lkp","lRRF"), 

+ Init=list(0,0,0))  

Model 2 (Section 4.1.1) 
> ReservingModel2 <- nlmeODE(DEmodel2,Data) 

> nlmeModel2 <- nlme(Claims ~ 

ReservingModel2(lBer,lRLR,lkp,lRRF,t,Cohort,Type), 

+ data = Data, 

+ fixed = lBer+lRLR+lkp+lRRF ~ 1, 

+ random = pdDiag(lRLR + lRRF ~ 1), 

+ groups = ~Cohort, 

+ weights = varIdent(form = ~1 | Type), 

+ start=c(lBer = log(5), lRLR = log(1.03),  

 lkp = log(0.45), lRRF = log(0.67)), 

+ control=list(returnObject=TRUE,msVerbose=TRUE, 

+ msMaxIter=10000,pnlsMaxIter=10000, 

+ pnlsTol=0.4), 

+ verbose=TRUE) 

> nlmeModel2 

Nonlinear mixed-effects model fit by maximum likelihood 

 Model: Claims ~ ReservingModel2(lBer, lRLR, lkp, lRRF, t, Cohort, Type)  

 Data: Data  

 Log-likelihood: -1156.344 

 Fixed: lBer + lRLR + lkp + lRRF ~ 1  

      lBer       lRLR        lkp       lRRF  

 1.7637739 -0.1608870 -0.9339032 -0.1886841  

 

Random effects: 

 Formula: list(lRLR ~ 1, lRRF ~ 1) 

 Level: Cohort 

 Structure: Diagonal 

             lRLR      lRRF Residual 

StdDev: 0.1684008 0.1469151 2491.433 

 

Variance function: 

 Structure: Different standard deviations per stratum 

 Formula: ~1 | Type  

 Parameter estimates: 

        1         2  

1.0000000 0.2509692  

Number of Observations: 130 

Number of Groups: 10 
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> anova(nlmeModel,nlmeModel2) 

           Model df      AIC      BIC    logLik 

nlmeModel      1  8 2344.771 2367.711 -1164.386 

nlmeModel2     2  8 2328.688 2351.628 -1156.344 

 

> intervals(nlmeModel2) 

Approximate 95% confidence intervals 

 

 Fixed effects: 

          lower       est.       upper 

lBer  1.6599011  1.7637739  1.86764663 

lRLR -0.2696058 -0.1608870 -0.05216819 

lkp  -0.9671036 -0.9339032 -0.90070283 

lRRF -0.2873897 -0.1886841 -0.08997844 

 

> summary(nlmeModel2) 

Correlation:  

     lBer   lRLR   lkp    

lRLR -0.110               

lkp  -0.723  0.143        

lRRF  0.142 -0.077 -0.253 

Model 3 – random-effects correlation (Section 4.1.2) 
> nlmeModel3 <- update(nlmeModel2,random=list(lRLR+lRRF~1)) 

 

> intervals(nlmeModel3) 

Approximate 95% confidence intervals 

 

Random Effects: 

 Level: Cohort  

                    lower      est.     upper 

sd(lRLR)       0.09864002 0.1571791 0.2504587 

sd(lRRF)       0.09475350 0.1517442 0.2430128 

cor(lRLR,lRRF) 0.34584978 0.7795638 0.9387946 

 

> anova(nlmeModel,nlmeModel2,nlmeModel3) 

           Model df      AIC      BIC    logLik   Test  L.Ratio p-value 

nlmeModel      1  8 2344.771 2367.711 -1164.386                         

nlmeModel2     2  8 2328.688 2351.628 -1156.344                         

nlmeModel3     3  9 2324.543 2350.351 -1153.272 2 vs 3 6.144368  0.0132 

Model 4 – block-diagonal random-effects structure (Section 4.1.2) 
> nlmeModel4 <- update(nlmeModel3,random=pdBlocked(list(lRLR + lRRF~1, lkp 

~ 1))) 

 

> anova(nlmeModel,nlmeModel2,nlmeModel3,nlmeModel4) 

           Model df      AIC      BIC    logLik   Test   L.Ratio p-value 

nlmeModel      1  8 2344.771 2367.711 -1164.386                          

nlmeModel2     2  8 2328.688 2351.628 -1156.344                          

nlmeModel3     3  9 2324.543 2350.351 -1153.272 2 vs 3  6.144368  0.0132 

nlmeModel4     4 10 2305.500 2334.175 -1142.750 3 vs 4 21.043472  <.0001 
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Supplementary code – for structural model x, hierarchical model y 
> residuals(nlmeModely, type="normalized") ### standardized model residuals 

 

> fitted(nlmeModely)    ### model predictions 

 

> IndCoef <- coef(nlmeModely)  ### individual accident year (log) 

compartmental parameter estimates  

 

> ReservingModelx(    ### model projections to time 10 

+ rep(IndCoef[,1],each=2*11), 

+ rep(IndCoef[,2],each=2*11), 

+ rep(IndCoef[,3],each=2*11), 

+ rep(IndCoef[,4],each=2*11), 

+ Data_Full$t,Data_Full$Cohort,Data_Full$Type) 
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Appendix F: Bayesian modeling OpenBUGS code 

Scenario 1: Fully random structure model (Section 4.2.1) 
Replace red code with blue code to switch to Scenario 2: Calendar shock sub-model (Section 4.2.2). 

model {   

 for (i in 1:n.ind) {    

  for (j in 1:1) {   

   data_O[i, j] ~ dnorm(mean_O[i, j] , tau_O)      

   data_P[i, j] ~ dnorm(mean_P[i, j] , tau_P)      

   data_I[i, j] <- data_O[i, j] + data_P[i, j]  

       

   mean_O[i, j] <- solution[i,j,2]  

   mean_P[i, j] <- solution[i, j, 3]       

   mean_I[i, j] <- mean_O[i, j] + mean_P[i, j] 

        } 

  for (j in 2:n.grid) {          

   data_O[i, j] ~ dnorm(mean_O[i, j] , tau_O2)      

   data_P[i, j] ~ dnorm(mean_P[i, j] , tau_P2)      

   data_I[i, j] <- data_O[i, j] + data_P[i, j]  

 

   mean_O[i, j] <- solution[i, j, 2] + rho2 * (data_O[i, j-1] - mean_O[i, j-1]) 

 

   #Calendar shock substitution 
   #mean_O[i, j] <- solution[i,j,2] * (1 - C[i,j] * a[i]) + rho2 *(data_O[i, j-1] -  

   #mean_O[i, j-1])  

 

   mean_P[i, j] <- solution[i, j, 3] + rho3 * (data_P[i, j-1] - mean_P[i, j-1])  

   mean_I[i, j] <- mean_O[i, j] + mean_P[i, j] 

        }      

  theta[i, 1:p] ~ dmnorm(mu[1:p], omega.inv[1:p, 1:p])     

     

  param[i, 1] <- theta[i, 1] 

  param[i, 2] <- theta[i, 2] 

  param[i, 3] <- theta[i, 3] 

  param[i, 4] <- theta[i, 4]  

  param[i, p+1] <- prem[i] 

   

  Ber[i] <- exp(theta[i, 1])        

  RLR[i] <- exp(theta[i, 2])      

  kp[i] <- exp(theta[i, 3])   

  RRF[i] <- exp(theta[i, 4]) 

     

  ULR[i] <- RLR[i] * RRF[i] 

  ILR10[i] <- data_I[i, 10] / prem[i]  

   

  solution[i, 1:n.grid, 1:dim] <- ode(inits[i, 1:dim], 

      grid[1:n.grid], D(A[i, 1:dim], t[i]), origin, tol)   

      

  D(A[i, 1], t[i]) <- -Ber[i] * t[i] * A[i, 1]       

  D(A[i, 2], t[i]) <- Ber[i] * t[i] * RLR[i] * A[i, 1] - kp[i] * A[i, 2]  
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  D(A[i, 3], t[i]) <- kp[i] * RRF[i] * A[i, 2]   

  

  #Calendar shock substitution 
  #D(A[i, 3], t[i]) <- kp[i] * RRF[i] * (1 - V[i]*a[i]) * A[i, 2]  

  #V[i] <- step((i + t[i]) - 10)  

  #a[i] ~ dunif(-0.99,0.99) 

 

  inits[i, 1] <- prem[i]  

  inits[i, 2] <- 0  

  inits[i, 3] <- 0   

      }       

            

 mu[1:p] ~ dmnorm(mu.prior.mean[1:p], mu.prior.prec[1:p, 1:p])     

 omega.inv[1:p, 1:p] ~ dwish(omega.inv.matrix[1:p, 1:p], omega.inv.dof)    

 

 omega[1:p, 1:p] <- inverse(omega.inv[1:p, 1:p])   

 ResC <- omega[2, 4] / (sqrt(omega[2, 2]) * sqrt(omega[4, 4]))     

     

 sigma_O ~ dunif(0, 10000)   

 tau_O <- pow(sigma_O, -2) 

 

 sigma_O2 <- sigma_O * sqrt(1 - pow(rho2, 2)) 

 tau_O2 <- pow(sigma_O2, -2) 

  

 sigma_P ~ dunif(0, 5000) 

 tau_P <- pow(sigma_P, -2)  

  

 sigma_P2 <- sigma_P * sqrt(1 - pow(rho3, 2)) 

 tau_P2 <- pow(sigma_P2, -2) 

   

 rho2 ~ dunif(-1,1) 

 rho3 ~ dunif(-1,1) 

  

 

#Standardized residuals   
for (i in 1:n.ind) {        

  for (j in 1:1) {      

   r_O[i,j] <- (data_O[i, j] - mean_O[i, j] ) * sqrt(tau_O) 

   r_P[i,j] <- (data_P[i, j] - mean_P[i, j] ) * sqrt(tau_P) 

    

        } 

  for (j in 2:n.grid) { 

          

   r_O[i,j] <- (data_O[i, j] - mean_O[i, j] ) * sqrt(tau_O2) 

   r_P[i,j] <- (data_P[i, j] - mean_P[i, j] ) * sqrt(tau_P2) 

  

        } 

      } 

    }   

 



Hierarchical Compartmental Models for Loss Reserving 

Casualty Actuarial Society E-Forum, Summer 2016  69 

Data and prior parameters 
list( 

p = 4, dim = 3, 

origin = 0.0, 

tol = 1.0E-6, 

n.ind = 10, n.grid = 10, 

grid = c(1,2,3,4,5,6,7,8,9,10), 

prem = c(104437, 88883, 85956, 99339, 104897, 119427, 110784, 77731, 63646, 48052), 

mu.prior.mean = c(1.7, -0.15, -0.9, -0.21), 

mu.prior.prec = structure( 

.Data = c( 

650, 0, 0, 0, 

0, 380, 0, 0, 

0, 0, 5400, 0, 

0, 0, 0, 390), 

.Dim = c(4, 4)), 

omega.inv.matrix = structure( 

.Data = c( 

1, 0, 0, 0, 

0, 1, 0, 0.8, 

0, 0, 1, 0, 

0, 0.8, 0, 1), 

.Dim = c(4, 4)), 

omega.inv.dof = 4, 

 

data_O = structure(.Data = c( 

53121, 41222, 32309, 24944, 17104, 13137, 9605, 6515, 1661, 1322,  

54145, 37188, 26976, 20015, 14319, 10179, 6672, 2575, 2071, NA,  

55211, 37221, 27760, 17990, 11417, 6716, 4282, 3015, NA, NA,  

60617, 42144, 25987, 14805, 9406, 5792, 3966, NA, NA, NA,  

65719, 46047, 31250, 22245, 11878, 8408, NA, NA, NA, NA,  

68133, 51102, 39934, 21824, 16955, NA, NA, NA, NA, NA,  

62434, 46661, 32248, 24140, NA, NA, NA, NA, NA, NA,  

56971, 48677, 35336, NA, NA, NA, NA, NA, NA, NA,  

56526, 41707, NA, NA, NA, NA, NA, NA, NA, NA,  

40799, NA, NA, NA, NA, NA, NA, NA, NA, NA), 

.Dim = c(10,10)), 

data_P = structure(.Data = c( 

9558, 22778, 33298, 40348, 45146, 48048, 49782, 50623, 51812, 51939,  

7913, 19472, 29622, 36816, 40975, 43302, 44707, 45871, 46229, NA,  

8744, 24302, 35406, 43412, 48057, 50897, 52879, 53956, NA, NA,  

13301, 32950, 47201, 56394, 61650, 65039, 66566, NA, NA, NA,  

11424, 29086, 42034, 50910, 56406, 59437, NA, NA, NA, NA,  

11792, 27161, 38229, 46722, 50742, NA, NA, NA, NA, NA,  

11194, 26893, 38488, 45580, NA, NA, NA, NA, NA, NA,  

12550, 31604, 44045, NA, NA, NA, NA, NA, NA, NA,  

13194, 31474, NA, NA, NA, NA, NA, NA, NA, NA,  

9372, NA, NA, NA, NA, NA, NA, NA, NA, NA), 

.Dim = c(10,10)) 

) 
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#Calendar shock substitution 

#,C = structure( 

#.Data = c( 

#0, 0, 0, 0, 0, 0, 0, 0, 1, 1,  

#0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 

#0, 0, 0, 0, 0, 0, 1, 1, 1, 1,  

#0, 0, 0, 0, 0, 1, 1, 1, 1, 1,  

#0, 0, 0, 0, 1, 1, 1, 1, 1, 1,  

#0, 0, 0, 1, 1, 1, 1, 1, 1, 1,  

#0, 0, 1, 1, 1, 1, 1, 1, 1, 1,  

#0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 

#1, 1, 1, 1, 1, 1, 1, 1, 1, 1,  

#1, 1, 1, 1, 1, 1, 1, 1, 1, 1), 

#.Dim = c(10,10))  

#) 

 

Initial values (1) 
list( 

rho2 = 0.5, 

rho3= 0.5, 

sigma_O = 5000, 

sigma_P = 500, 

mu = c(1.7, -0.15, -0.9, -0.21), 

omega.inv = structure( 

.Data = c( 

10, 0, 0, 0, 

0, 10, 0, 0.8, 

0, 0, 10, 0, 

0, 0.8, 0, 10), 

.Dim = c(4, 4)), 

theta = structure( 

.Data = c( 

1.7, -0.15, -0.9, -0.21, 

1.7, -0.15, -0.9, -0.21, 

1.7, -0.15, -0.9, -0.21, 

1.7, -0.15, -0.9, -0.21, 

1.7, -0.15, -0.9, -0.21, 

1.7, -0.15, -0.9, -0.21, 

1.7, -0.15, -0.9, -0.21, 

1.7, -0.15, -0.9, -0.21, 

1.7, -0.15, -0.9, -0.21, 

1.7, -0.15, -0.9, -0.21), 

.Dim = c(10, 4)) 

) 

Initial values (2) 
list( 

rho2 = 0.6, 

rho3= 0.2, 

sigma_O = 3000, 

sigma_P = 700, 

mu = c(1.4, -0.07, -0.2, -0.51), 

omega.inv = structure( 

.Data = c( 

15, 0, 0, 0, 

0, 15, 0, 0.5, 

0, 0, 15, 0, 

0, 0.5, 0, 15), 

.Dim = c(4, 4)), 

theta = structure( 

.Data = c( 

1.4, -0.07, -0.2, -0.51, 

1.4, -0.07, -0.2, -0.51, 

1.4, -0.07, -0.2, -0.51,  

1.4, -0.07, -0.2, -0.51,  

1.4, -0.07, -0.2, -0.51, 

1.4, -0.07, -0.2, -0.51, 

1.4, -0.07, -0.2, -0.51, 

1.4, -0.07, -0.2, -0.51, 

1.4, -0.07, -0.2, -0.51, 

1.4, -0.07, -0.2, -0.51), 

.Dim = c(10, 4)) 

) 

 

Initial values (3) 

list( 

rho2 = 0.2, 

rho3= 0.6, 

sigma_O = 1500, 

sigma_P = 1000, 

mu = c(1.1, 0, 0, -0.29), 

omega.inv = structure( 

.Data = c( 

5, 0, 0, 0, 

0, 5, 0, 0.3, 

0, 0, 5, 0, 

0, 0.3, 0, 5), 

.Dim = c(4, 4)), 

theta = structure( 

.Data = c( 

1.1, 0, 0, -0.29, 

1.1, 0, 0, -0.29, 

1.1, 0, 0, -0.29, 

1.1, 0, 0, -0.29,  

1.1, 0, 0, -0.29, 

1.1, 0, 0, -0.29, 

1.1, 0, 0, -0.29, 

1.1, 0, 0, -0.29, 

1.1, 0, 0, -0.29, 

1.1, 0, 0, -0.29), 

.Dim = c(10, 4)) 

) 
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Abbreviations and notations 
AY, accident year (row dimension of triangle)  NLME, nonlinear mixed-effects 

AIC, Akaike information criterion ODE, ordinary differential equation 

BBNI, bound but not incepted PD, paid claims (cumulative) 
BIC, Bayesian information criterion PLR, paid loss ratio 
CY, calendar year PPI, posterior predictive interval 
DIC, deviance information criterion RBNS, reported but not settled 
EtR, Exposed to Risk RBC, reported burning cost 
EX, exposure RLR, reported loss ratio 
ExBNR, exposed but not reported RRF, reserve robustness factor 
GLM, generalized linear model SDE, stochastic differential equation 
IBNR, incurred but not reported UBC, ultimate burning cost 
OS, outstanding claims ULR, ultimate loss ratio 
MCMC, Markov chain Monte Carlo  
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