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An Extension to the Cape Cod Method with Credibility 
Weighted Smoothing 

Uri Korn, FCAS, MAAA 
______________________________________________________________________________ 

Abstract 
The Cape Cod method is a commonly used technique where the a priori loss ratio is calculated as the weighted 
average of the chain ladder ultimate loss ratios across all years with the “used” premium as the weights. It applies 
the same a priori loss ratio estimate (on a trended, current rates level) across all years, without consideration for 
any possible changes that may have occurred. A difficulty arises when the loss ratios show improvement or 
deterioration, which is a fairly common scenario. When this occurs, the amount of credibility that should be 
given to the shift is mostly left to guesswork. 
This paper uses the Kalman Filter to automatically smooth the loss ratios based on the amount of credibility 
inherent in the data in a manner that is robust and that is consistent with the Cape Cod method. It is shown how 
this method can be thought of as a credibility weighting between the Cape Cod and Chain Ladder techniques, 
each of which are possible at the two extremes. It is then shown how external predictive information, such as the 
state of the economy or the insurance cycle, can be incorporated to help produce more accurate results. 
Simulation results are presented that illustrate the error reduction this method can provide to both historical years 
and to the latest year. 
Keywords. Loss Reserving, Credibility, Smoothing, Kalman Filter, Trend 

______________________________________________________________________________ 

1. INTRODUCTION 

The Cape Cod or Stanard-Buhlmann (Stanard 1985) method is a commonly used technique where 
the a priori loss ratio is calculated as the weighted average of the chain ladder ultimate loss ratios across 
all years with the “used” premium as the weights. It applies the same a priori loss ratio estimate (on a 
trended, current rates level) across all years, without consideration for any possible changes that may 
have occurred. A difficulty arises when the loss ratios show improvement or deterioration, which is a 
fairly common scenario. This can happen as a result of using rate changes or trends that are not 
completely accurate, changes in policy wording, or temporary shifts in the exposure to loss caused by 
economic or other factors. When this occurs, the amount of credibility that should be given to the 
shift is mostly left to guesswork. Being too slow to give credit to improving experience can cause the 
company to miss out on profitable opportunities and also frustrate underwriting management, and 
detecting deterioration too late can cause declines in profitability and capital that could have been 
avoided. Being too slow to detect any type of change can also contribute to diminished confidence in 
the entire reserving process. On the other hand, reacting to noise too quickly will cause faulty decisions 
to be made with negative results as well. 

This paper presents a method that automatically smooths loss ratios based on the amount of 
credibility inherent in the data and that is consistent with the Cape Cod approach. If no credibility is 
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given to any changes, a single loss ratio will be indicated for all years, and the results will match the 
Cape Cod method. On the other extreme, if full credibility is given to the chain ladder indications 
from each year, the final results will match the Chain Ladder method. Anywhere in between can be 
thought of as a credibility weighting between these two methods. It is then shown how external 
predictive information, such as the state of the economy or the insurance cycle, can be incorporated 
to help produce more accurate results. 

1.1 Research Context 
Gluck (1997) improved upon the original Cape Cod technique by adding a decay factor which gives 

increased weight to the more local experience, effectively smoothing the data. But there is still little 
guidance as to how much credibility or smoothness should be used. (There are formulas in the 
appendix for approximating this, but they are difficult to follow and implement, and the iterative 
approach suggested to solve the equations is not guaranteed to converge to the optimal solution, and 
likely will not.)  

The Kalman Filter is a very popular smoothing algorithm used in many econometric applications. 
De Jong and Zehnwirth (1983) were the first to introduce its use into reserving and used it to help 
smooth development patterns. Both Zehnwirth (1996) and Wuthrich and Merz (2008) use the Kalman 
Filter to smooth the actual reserving estimates, but their formulations are much more complicated 
than a simple Cape Cod approach and will not be discussed here. Evans and Schmid (2007) use the 
Kalman Filter to derive smooth trend estimates but their approach is not suitable, nor intended, to 
apply directly to loss ratio estimates. None of these approaches demonstrate a simple, easy to 
understand framework that is in line with traditional actuarial practice, as the Cape Cod method does. 
The Kalman Filter formulas can also seem non-intuitive and hard to understand, making 
implementation of such an algorithm in the reserving context challenging. Finally, and also very 
critical, the indicated smoothness derived from the Kalman Filter or similar methods can be very 
volatile and inaccurate, essentially precluding its use in practice. As mentioned in Schmid et al. (2013), 
even the time series used for NCCI ratemaking is too short to reliably estimate the variance of the 
year-to-year changes, which is essential to determining the credibility. Having a smaller amount of data 
than NCCI would compound this problem. If this issue is not properly handled, such as by using the 
strategies that will be discussed in this paper, the Kalman Filter results cannot be relied upon. 

1.2 Objective 
The goal of this paper is to present a simple, easy to understand, and yet powerful and robust 

framework of applying the Kalman Filter to smooth loss ratio estimates that is consistent with the 
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Cape Cod method. This smoothing algorithm is applied to the on-level, trended ultimate Chain Ladder 
loss ratios with weights equal to the premiums divided by the LDFs, or the “used premiums”. The 
results of this algorithm are the a priori loss ratios to apply to each year via a Bornhuetter-Ferguson 
method. If the algorithm determines that no credibility or smoothness should be given, the result for 
each year will be the weighted average across all years, and the method will be equivalent to the Cape 
Cod. On the other extreme, if full credibility or maximum smoothness is indicated, the a priori loss 
ratios for each year will match those of the Chain Ladder method, and so the final results will be 
identical to the Chain Ladder as well. Anywhere in the middle, the method can be thought of as a 
credibility weighting between these two methods. 

This paper will also discuss the intuition behind the Kalman Filter formulas relating them to basic 
credibility theory. Many of the approaches mentioned apply the Kalman Filter on the logarithm of 
loss ratios, making it inconsistent with the Cape Cod approach and hard to determine the relative 
weights by year and requiring a messy bias correction if not using Bayesian software for calculation. 
Taylor and McGuire (2003) show a solution to this problem via what they call an EDF Filter, but the 
math required to implement it is complex. This paper applies the Kalman Filter on the loss ratios 
themselves but modifies the algorithm in a similar but simpler fashion to be able to handle 
multiplicative innovations, that is, the changes from year to year, and non-normally distributed errors. 
Strategies are also shown to make it robust so that it can be used in practice even with sparse, volatile 
data, and this is illustrated via simulation testing. 

1.3 Outline 
Section 2 discusses the intuition behind the Kalman Filter and shows how to apply it to model loss 

ratios, and section 3 shows how to make the algorithm more robust. Incorporating external predictive 
information is discussed in section 4, and examining multiple lines simultaneously is discussed in 
section 5. Finally, section 6 shows the results of running simulations using the methods discussed. 

2. THE KALMAN FILTER 

The method presented in this paper uses the Kalman Filter to determine the amount of smoothness 
or credibility that should be given to each year. The Kalman Filter was originally developed in 1960 
for use in signal processing (Kalman 1960) but has become very common for solving time series 
econometric models.  It is able to handle more complex types of models than are illustrated in this 
paper. For ease of understanding and implementation, a simplified version that contains only the 
needed components is discussed instead. 
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2.1 Intuition Behind the Kalman Filter 
To understand how this algorithm works, assume that rate and trend are both flat and that we are 

attempting to predict the expected loss ratio for year 2 where we know (for certain) that the loss ratio 
for year 1 was 70%. Before observing any experience from the second year, our prediction would be 
70%, the same as year 1. Assume that now we observe a (projected) loss ratio of 80% in the second 
year, which is still incomplete, and we want to estimate the expected loss ratio to be used in a 
Bornhuetter-Ferguson method to estimate the IBNR for the remainder of the year. If there was no 
loss volatility, we would assume that the 80% loss ratio will continue for the remainder of the year and 
this would be our estimate. On the other hand, if the loss volatility was extremely high such that the 
80% prediction for this year had a large degree of uncertainty, we would give it almost no credibility, 
and our estimate would be the year 1 estimate, which is 70%. More practically, our estimate should 
fall somewhere in between these two extremes and take into account both the volatility of the losses 
and the volatility of the year-to-year changes. If these two variances were equal, we would select the 
midpoint, 75%. More generally, the optimal credibility to give to the second year’s experience equals 
the variance of the year-to-year changes divided by the sum of the two variances, since this would 
produce the result with the lowest variance. Venter (2003) derives this result and shows that it is the 
basis for Buhlmann credibility. The variance of this estimate cannot be greater than each of the 
individual predictors; otherwise, we would just select one of them instead. The inverse of the variance 
equals the sum of the inverses of each of the variances. (Bolstad 2007) 

If we now want to estimate the expected loss ratio for year 3, similar logic would apply, except that 
now the variance of the year 2 estimate needs to be taken into account as well. The total variance of 
using the year 2 estimate for year 3 would equal the variance of this estimate plus the variance of the 
year-to-year changes. This variance would then be compared to the loss volatility to calculate the 
optimal credibility to give to the third year’s experience in the year 3 estimate. Once we have observed 
and predicted the loss ratio for the third year, this estimate can now be used to improve the prediction 
for the second year. To determine the amount of credibility to give to the year 3 estimate for the year 
2 result, a similar formula is used except that the variance of this predictor is compared against the 
variance of the year-to-year changes instead of the variance of the losses. 

This is essentially what the Kalman Filter does (the part that we are using, at least); the actual 
formulas are shown in the next section. 

2.2 Kalman Filter Formulas 
Similar logic is used to run the Kalman Filter. A first iteration is performed looking at the years (or 

quarters, etc.) going forwards. Then, once an initial estimate has been determined for each year, 
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another iteration is performed, this time, starting at the end and traveling backwards by year. This is 
done to back-smooth the results and modify the earlier estimates taking into account what is known 
about the later years, since the first iteration only considers the reverse. 

As alluded to in the previous section, two values are used in the first iteration for each prediction 
estimate and variance. The first represents the prediction for a particular year before observing the 
experience of that year, and the second represents a revised prediction that also takes into account the 
experience of that year.  

There are three unknown parameters that are needed to run this algorithm: the starting loss ratio 
for the first year, the volatility of the experience, and the volatility of the year-to-year changes. 
Maximum likelihood is used to determine these values. Note that the likelihood is calculated using the 
initial loss ratio estimates, that is, the estimates before considering the experience for each year. This 
is done because otherwise, if the estimates after considering each year’s experience were used, the 
algorithm would seek to minimize the differences between these actual and fitted loss ratios, which 
would result in indications that were completely smoothed to all of the noise in the experience. Then, 
after this forward iteration has been performed and after the values of all of the unknown parameters 
have been determined, another back-smoothing iteration is performed to calculate the final results. 

The amount of credibility each new year is given in the rolling forward predictor is known as the 
Kalman gain and is equivalent to the credibility discussed in the previous section. This is shown as K 
in the formulas below. The formulas below show the predictor of year t before considering that year’s 
experience as Xt|t-1, the predictor after considering the year’s experience as Xt|t, and the final back-
smoothed predictor as Xt|T. Similar notation is used for the variance. Note that these are not the final 
formulas, as some changes are needed to make the algorithm more suitable for loss ratios, which are 
shown later in section 2.3. Explanations are given by the formulas to relate it to the concepts discussed 
in the previous section. For the notation, Y are the observed loss ratios, X are the predicted loss ratios, 
P are the variances of the predictors, n is the forecast error, R is the loss volatility, Q is the volatility 
of the year-to-year changes, K is the Kalman gain, f is the total variance of the predictor including the 
volatility of the losses, and loglik is the log-likelihood. Norm(a, b, c) is used here to represent the log-
likelihood of the normal distribution at a, with mean of b, and variance of c. (Kim and Nelson 1999) 

The best estimate for the next year before observing the experience is the previous year’s 
prediction. The variance of this prediction is the same as the previous year’s variance plus the volatility 
of the year-to-year changes. 
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Xt|t-1 = Xt-1|t-1 (2.1) 

Pt|t-1 = Pt-1|t-1 + Q (2.2) 

The total error for the amount a prediction can differ from actual equals the prediction error (from 
the “true” value) plus the loss volatility. 

ft = Pt|t-1 + R (2.3) 

To determine the amount of credibility to give to a year’s experience, the variance of the rolling 
forward prediction is compared against the loss volatility. This is shown as K, and is called the Kalman 
gain. 

Kt = Pt|t-1 / ft, = Pt|t-1 / ( Pt|t-1 + R ) (2.4) 

nt = Yt - Xt|t-1 (2.5) 

Xt|t = Xt|t-1 + Ktnt = (1 - Kt)) Xt|t-1 + Kt Yt (2.6) 

The variance of this rolling forward predictor decreases after observing and incorporating the 
experience, based on the formula mentioned that the inverse of the variance equals the sum of the 
inverses of the two variances. Simple algebra can show that this is equivalent to the below. 

Pt|t = Pt|t-1 (1 - Kt ) = Pt|t-1 R / ( Pt|t-1 + R ) 
1 / Pt|t = 1 / R + 1 / Pt|t-1 = ( Pt|t-1 + R ) / Pt|t-1 R ; Pt|t = Pt|t-1 R / (Pt|t-1 + R ) 

(2.7) 

The likelihood is calculated on the prediction error before observing that year’s experience using 
the variance calculated for the rolling forward predictor. 

loglikt = Norm( nt , 0, ft ) (2.8) 

After the initial prediction of the last year has been calculated, the results are back-smoothed. This 
matches the result mentioned in the previous section. 

Xt|T = Xt|t + ( Pt|t / Pt+1|t )( Xt+1|T - Xt|t ) = Z Xt+1|T + (1 - Z)Xt|t , where Z = Pt|t /(Pt|t + R ) (2.9) 

Even though a few modifications will be made to these formulas to apply more to loss ratios, an 
illustration is shown below using the numbers from the previous section. The R (loss volatility) and Q 



An Extension to the Cape Cod Method with Credibility Weighted Smoothing 
 

Casualty Actuarial Society E-Forum, Summer 2016 7 

(volatility of year-to-year changes) parameters, which are determined via maximum likelihood, are 
assumed to be 1 and 0.5, respectively. 

X1|0 = 70% 

X2|1 = X1|0 = 70% 

P1|0 = 0 

P2|1 = P1|0 + Q = 0 + 0.5 = 0.5 

f2 = P2|1 + R = 0.5 + 1 = 1.5 

K2 = P2|1 / f2 = 0.5 / 1.5 = 0.333, 

n2 = Y2 – X2|1 = 80% – 70% = 10% 

X2|2 = X2|1 + K2n2 = 70% + 0.333 x 10% = 73.33% 

P2|2 = P2|1 (1 – K2) = 0.5 x (1 – 0.333) = 0.333 

2.3 Modifications for Loss Ratios 
As mentioned, this smoothing algorithm will be applied to determine the a priori loss ratios for use 

in a Bornhuetter-Ferguson method. The inputs are the chain ladder loss ratios, since these are the loss 
ratios that have been observed for incomplete years at the current point in time. The “used premiums” 
are used as the weights, since this represents the volume for the losses observed thus far. If no 
smoothness is indicated, the a priori loss ratios will match that of the Cape Cod technique. If, on the 
other hand, maximum smoothness is given, they will match the chain ladder estimates, and using these 
in a Bornhuetter-Ferguson method will yield identical results as this method. Anywhere in between 
can be thought of as a credibility weighting between these two methods as the IBNR predicted for 
the remainder of each year will only consider each year’s experience to the extent that it is credible. 

To apply this algorithm on loss ratio data, a couple of modifications are necessary. The first is to 
deal with years that have different premium volumes, and thus different expected loss volatility, since 
the original formulas assume that this is constant per year. To allow for different variances, a variance 
factor can be used as one of the parameters instead of the actual variance. Assuming that the variance 
of each year is inversely proportional to the premium volume, which is a good assumption if all policies 
are homogenous in terms of severity, the variance for each year is equal to this variance factor divided 
by the premium. For incomplete years, the “used” premium is used instead, as discussed. 

Ideally, the factor applied to the premiums of incomplete years should reflect the additional 
variance of these years, which includes both the decreased volume as well as any uncertainty in the 
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loss development patterns. Performing some algebra, it can be seen that the factor relating to the 
decreased volume is actually the claim count development factor and not the loss development factor, 
as used in the Cape Cod method. (The derivation is shown in Appendix A.) However, using the claim 
count development factor would be ignoring any uncertainty in the loss development pattern, so using 
the loss development factor, which is usually slightly higher than the claim count development factor, 
is recommended to account for this additional variance as an approximation. This will also make it 
consistent with the Cape Cod method, which is a desirable property. Alternatively, it is also possible 
to use the claim count development factors and estimate the uncertainty in the development patterns 
more exactly if desired. 

Another modification is needed to handle non-normally distributed errors. Instead of calculating 
the likelihood using a normal distribution as the original algorithm does, a gamma or negative binomial 
distribution can be used instead. (A gamma distribution is appropriate for modeling on severity data 
and a negative binomial for modeling on frequency data.) The mean and variance resulting from the 
Kalman Filter algorithm can be used to solve for the two parameters of the appropriate distribution. 
If using a gamma distribution, for example, the variances calculated in the Kalman Filter algorithm 
will really be the variances divided by the means squared, and so it is assumed that the variance is 
proportional to the square of the mean. A negative binomial is not appropriate for modeling loss 
ratios, since this data often has a variance-to-mean ratio less than one, which this distribution does 
not allow. A Poisson distribution cannot be used since it does not have an additional parameter for 
the variance. An overdispersed Poisson has another parameter for the variance but is more difficult 
to implement. Similarly, implementing a Tweedie distribution, which is often used to model on loss 
ratios, is difficult as well.  

But both a Poisson and Tweedie can be approximated fairly well. Calculating the log-likelihood as 
the average of the log-likelihoods of the normal and gamma distributions produces results that are 
very close to using a Generalized Linear Model with a Poisson distribution. Taking a weighted average 
between these two log-likelihoods with the weight to the gamma distribution equal to half the desired 
power of a Tweedie distribution also comes very close to using a Generalized Linear Model with a 
Tweedie distribution. So, for example, applying a weight of 1.67 / 2 = 0.835 to the gamma log-
likelihood and a weight of 0.165 to the normal log-likelihood comes very close to using a Tweedie 
with a power of 1.67. When this is done, another parameter is needed as the constant factor to convert 
the variance to the coefficient of variation, which is needed to solve for the gamma parameters. (If 
only a gamma is used, this parameter is not needed, since the variance variable in the Kalman Filter 
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formulas will already represent the variance divided by the mean squared.) Conducting a simulation1 
and comparing the results to a similar GLM when no smoothness resulted (which was about half the 
time) produced results that were very close. The gamma results matched the GLM results almost 
exactly. The Poisson and Tweedie results were within 0.05 percentage points of the GLM indications 
89% and 98% of the time, respectively, and were within 0.1 percentage points 100% of the time. The 
results show that this method produces a fairly decent approximation. 

If a gamma distribution is used, the yearly innovations are assumed to be multiplicative since it 
assumes that the variance is proportional to the square of the response, which works well with 
handling multiplicative relationships, similar to its use in Generalized Linear Models. If a normal 
distribution is used, the yearly innovations are assumed to be additive. If the approximation of the 
Poisson distribution is used, as described, the yearly innovations are assumed to be in between additive 
and multiplicative. It is difficult to say what the appropriate form these innovations should take2, but 
if it is desired to have multiplicative innovations, the formulas can be modified to use the product of 
Q and the loss ratio for a Poisson distribution. For a Tweedie distribution with power p, the product 
of Q and the loss ratio to the power of two minus p is used instead. This change will cause the variance 
of the innovations to be related to the square of the mean. 

The final formulas that take these modifications into account are shown below. epow is the 
exponential power used (0 for normal, 1 for Poisson, between 1 and 2 for Tweedie, and 2 for gamma), 
EP is the used premium, Gamma(x, alpha, beta) is the gamma log-likelihood at x with parameters alpha 
and beta, and NB(x, n, p) is the negative binomial log-likelihood at x with parameters n and p. These 
formulas assume that the year-to-year changes are multiplicative, although this may or may not be the 
case. 

X1|0 = <Set from a parameter> (2.10) 

P1|0 = 0 (2.11) 

Xt|t-1 = Xt-1|t-1 (2.12) 

Pt|t-1 = Pt-1|t-1 + Q Xt|t-12 - epow (2.13) 

                                                 
1 Frequency was simulated using a negative binomial with a mean of 50 and a variance-to-mean ratio of 2.5.  Severity was 
simulated from a lognormal distribution with mu and sigma parameters of 10 and 2, respectively, a retention of $100 
thousand and limit of two million.  Trend per year was 5%, autocorrelation was 10%, and variance of the year-to-year 
changes was 0.0001.  Premium was set so that the expected loss ratio for the first year would be 70%.  500 simulations 
were run. 
2 Looking at industry data using a Box-Cox test (which is out of scope of this paper produced conflicting results with a 
very large confidence interval depending on the line and the time period looked at. 
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ft = Pt|t-1 + R / EPt (2.14) 

Kt = Pt|t-1 / ft, (2.15) 

nt = Yt - Xt|t-1 (2.16) 

Xt|t = Xt|t-1 + Ktnt (2.17) 

Pt|t = Pt|t-1 (1 - Kt ) (2.18) 

loglik-normt = Norm( nt , 0, ft ) (2.19) 

alpha = X2t|t-1 / ( ft × <Parameter>) (2.20) 

beta = Xt|t-1 / ( ft × <Parameter>) (2.21) 

loglik-gammat = Gamma( Yt , alpha, beta ) (2.22) 

loglikt = (epow/2) loglik-gammat + (1 - epow/2) loglik-normt (2.23) 

Back-Smoothing: 

Xt|T = Xt|t + ( Pt|t / Pt+1|t ) ( Xt+1|T - Xt|t ) 

 

(2.24) 

For a negative binomial: 

n = Xt|t-1 / ( ft × <Parameter> - 1 ) 

 

(2.25) 

p = 1 / ( ft × <Parameter> ) (2.26) 

loglikt = NB( Yt , n, p ) (2.27) 

 
Since a gamma distribution is used which does not have any likelihood at zero, any zero loss ratios 

should be set to a very small number slightly above zero. 

As general advice, when solving for the two variance parameters, it is recommended to use one 
parameter for the total variance and another parameter for the percentage of the total variance that is 
attributable to the year-to-year changes (a logit function can be used to ensure that this value is 
between zero and one). The noise variance parameter can then be set to the total variance parameter 
multiplied by one minus this percentage, and then multiplied by the average premium volume, or 
something similar, to make this parameter relative to the premium volume. If this strategy is not used, 
care should be taken as solving for these variance parameters directly can sometimes cause difficulty 
with optimization routines. 

With volatile data, it is often helpful to cap losses at an appropriate point to make the data more 
stable. If there have been changes in retentions or policy limits, the premium should be adjusted 



An Extension to the Cape Cod Method with Credibility Weighted Smoothing 
 

Casualty Actuarial Society E-Forum, Summer 2016 11 

appropriately as well. It is also possible to use this same algorithm on claim frequency and/or severity 
separately. For frequency, the premium should be adjusted if there have been changes in the retentions 
or policy limits by dividing out the average expected (conditional) severity. When looking at frequency, 
it is possible to include all claims, or to only include significant claims greater than a certain threshold. 

3. ROBUSTIFYING THE METHOD 

As mentioned, the indicated smoothness of the Kalman Filter can be unreliable with relatively few 
data points. It also struggles with data as volatile as loss ratios. Without addressing these issues, the 
algorithm cannot be used in practice. 

The number of available data points depends on how long the company’s history is with the 
segment being analyzed. It also depends on how consistent processes and practices have been since 
this determines the relevant data that can be used. Even though the purpose of this algorithm is to 
address gradual shifts, it may still be beneficial to discard older information that is deemed less relevant 
and that does not add any value for prediction of the more recent data. If less than twenty years or so 
of data are available for analysis, it is strongly recommended to use quarterly data instead, which will 
increase the number of data points four-fold. Even with twenty years of data or more, using quarterly 
data can still greatly increase the accuracy of the method since it enables better estimation of the 
variance. If different loss ratios are expected in each quarter due to the effects of seasonality, this can 
be addressed similarly to the incorporation of external data, as described in section 4.1. (Credibility 
can be incorporated as well, as described in section 4.2.) 

Another technique to make the algorithm more robust is to use bootstrapped aggregation, or 
“bagging”, where multiple iterations of the algorithm are performed, each time on only a fraction of 
the years or quarters. The final indicated a priori loss ratios are then calculated as the average across 
all iterations. Each iteration will receive a varying amount of smoothness based upon which 
years/quarters are included, and averaging across all of these produces a much more stable and reliable 
result. (Just to be clear, the average of each indicated loss ratio should be used, and not the average of 
the smoothness parameters, since the former produces much more reliable results than the latter.) 
Using fifty iterations with selecting two thirds of the data each time seems to perform quite well both 
in simulation tests and on actual data. (When implementing, it is important to either explicitly set the 
random number generator seed or to ensure that the same bootstrapped simulations are used each 
time to avoid having the indications change slightly when rerun.) 

To implement, if a data point is skipped, the Kalman gain should be set to zero to give it no 
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credibility. This will result in the predictor variance being increased by the year-to-year variance 
reflecting the fact that the prediction interval is being extended by skipping this point. So even though 
the Kalman gain is artificially decreased at one point, this will cause it to be increased for the following 
point. The likelihood of this point should still be included in the overall likelihood so that it affects 
the average, however, since the bootstrapping is only needed for the amount of smoothness, and 
bootstrapping on this will only decrease stability slightly. 

An example where the Kalman Filter was run fifty times from simulated data is shown in Figure 1. 
The first ten individual runs are shown as well as the run that resulted in the most smoothness (dotted 
lines). The average is shown as the thick solid line. Note how volatile the amount of smoothness can 
be from single runs, ranging from far too much credibility given to none at all, which occurred in 17 
out of the 50 runs. The average incorporates all of these indications and results in a much more stable 
and reasonable result. 

Figure 1 

 

4. ADDING PREDICTIVE VARIABLES 

4.1 Formulas 
Predictive variables, such as the state of the economy or of the market cycle, can be incorporated 

to improve the accuracy of the predictions. The following formulas can be used, where V is the total 
impact of the predictive variables at each period, v are the predictive variables, and coef are fitted 
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coefficients for each of these variables3: 

b1|0 = <Set From a Parameter> (4.1) 

P1|0 = 0 (4.2) 

Vt = exp( ∑   
𝑖𝑖 coefi × vi ) (4.3) 

bt|t-1 = bt-1|t-1 (4.4) 

Xt|t-1 = bt|t-1 Vt (4.5) 

Pt|t-1 = Pt-1|t-1 + Q Xt|t-12 - epow (4.6) 

ft = Pt|t-1 Vt2 + R / EPt (4.7) 

Kt = Pt|t-1 Vt / ft, (4.8) 

nt = Yt - Xt|t-1 (4.9) 

bt|t = bt|t-1 + Ktnt (4.10) 

Pt|t = Pt|t-1 (1 - Kt Vt ) (4.11) 

loglik-normt = Norm( nt , 0, ft ) (4.12) 

alpha = X2t|t-1 / ( ft ×<Parameter>) (4.13) 

beta = Xt|t-1 / ( ft ×<Parameter>) (4.14) 

loglik-gammat = Gamma( Yt , alpha, beta ) (4.15) 

loglikt = (epow/2) loglik-gammat + (1 - epow/2) loglik-normt (4.16) 

Back-Smoothing: 

bt|T = bt|t + ( Pt|t / Pt+1|t ) ( bt+1|T - bt|t ) 

 

(4.17) 

Xt|T = bt|T Vt (4.18) 

An exponential function was used to calculate the impact of the predictive variables, similar to a 
log-link GLM, but other alternatives are possible as well. b is an intermediate variable similar to an 
intercept. Using this method is similar to using a GLM where the intercept can vary over time. 

The predictive variables here function similarly to a GLM, in that their effect is calculated 
cumulatively, as opposed to being incremented by an additional amount for each year. This means 

                                                 
3  These formulas are obtained by replacing the H matrix from the original formulas with the result of the predictive 
variables. 
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that if, for example, the change in GDP is judged to affect loss ratios, then the actual GDP should be 
used as a variable, and not the change in the GDP. This way, the incremental effect to each year will 
be the change in this variable. Similarly, if the change in the GDP growth rate is desired instead, then 
the GDP change should be used as a variable. 

Using this method, it also is possible to fit a constant trend to the data by including the year as a 
predictive variable. This example is used to help illustrate this method. Loss ratios with a constant 
frequency trend per year were simulated4. Three methods were compared: a (Tweedie) GLM, the 
Kalman Filter model with no trend and the Kalman Filter model with the year as a predictive variable 
to represent the trend (both using the approximation for the Tweedie distribution that was discussed). 

It is interesting to see the results of the Kalman Filter without trend model. Sometimes this model 
can do a fairly decent job of following the trend in the data, although it often needs to adapt too much 
to the data in order to do so, and as a result, produces some overfitting as in Figure 2. In this example, 
the Kalman Filter with trend model indicated no smoothness and so the result is very close to the 
Tweedie GLM. The dotted, “actual” line here is the “true” value for each year before volatility is added 
in the simulation, and the solid, “observed” line is the result with added volatility. 

                                                 
4 Frequency was simulated using a negative binomial with a mean of 25 and a variance-to-mean ratio of 3.  Severity was 
simulated from a lognormal distribution with mu and sigma parameters of 10 and 2, respectively, a retention of $100 
thousand and limit of two million.  Trend per year was 3%, autocorrelation was 40%, and variance of the year-to-year 
changes was 0.0025.  Premium was set so that the expected loss ratio for the first year would be 70%.  For the bagging, 
25 iterations were used using ⅔ of the data on each iteration.  200 simulations were run.  The models were fit using the 
approximation for the Tweedie family mentioned earlier. 
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Figure 2 

 
Figure 3 is another example where the Kalman Filter with trend model differs from the GLM and 

also smooths to the data. In this example, this model does a very good job of adapting to the changing 
loss ratios per year as well as to the trend in the data, much better than both the simpler trend model 
and Kalman Filter model (although, of course, this will not always be the case). (The Kalman Filter 
line is shown with a thinner line in the below graph, as it is not relevant in this example.) 
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Figure 3 

 
 

The results of running many simulations are shown in Figure 4. As expected, the Kalman Filter 
with trend model outperforms both the Kalman Filter without trend and the GLM models. 

Figure 4 

Method RMSE5 

Kalman Filter Without Trend 0.201 

GLM 0.167 

Kalman Filter With Trend 0.157 

 

  

                                                 
5 RMSE stands for Root mean squared error.  It is the square root of the average error squared. 
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4.2 Further Robustifying This Method 
Accidentally including a variable that has no true predictive value can degrade performance. 

Significance tests can also be unreliable. One way to address this issue and also to increase the accuracy 
even for truly predictive variables is to use penalized regression. This applies a penalty to large 
coefficient values, which helps to stabilize the model. With categorical/dummy variables, the effect is 
similar to credibility weighting, but this method can be used for all types of variables. Ridge regression, 
a type of penalized regression, will be illustrated. To implement, the logarithm of a normal probability 
density function with a mean of 0 is evaluated at each coefficient value (just for the predictive variables, 
that is), and this sum is added to the total log-likelihood. The variance of this normal distribution can 
be estimated using cross validation. 

One simple way to perform cross validation is to test various candidate variance values and fit the 
model on only a fraction of the data. The remaining data is then used to calculate the mean squared 
error divided by the mean to the appropriate power (one for Poisson, two for gamma, etc.), multiplied 
by the used premium. This process should be repeated several times to gather a more reliable estimate. 
It also helps reduce the number of iterations needed if the same samplings are used for each value 
being testing, although this is not required. A graph of the average mean square errors can show 
whether enough iterations have been performed. 

The same variance is usually used for all coefficients. Non-dummy variables should be standardized 
to all be on the same scale so that their variances are comparable; this can be done by subtracting out 
the mean and dividing by the standard deviation, or if dummy variables are being used as well, by 
dividing by two times the standard deviation (Gelman 2008). Using this method lessens the negative 
effect of noise variables and also improves the performance of predictive variables. There are other 
methods of performing cross validation that will not be discussed here. 

5. MULTIPLE LINES 

Multiple lines can be evaluated together using the same variance parameters, R and Q, but allowing 
different initial loss ratio parameters for each line. This will leverage the volatility estimation across all 
of the lines together. 

Going one step further, it is possible to do the same, but have the initial loss ratios related to each 
other via credibility weighing. This can be done using Bayesian credibility, and this method can be 
implemented simply, without the use of specialized Bayesian software, as will be explained. If a normal 
distribution is used as the prior distribution for the initial loss ratios, this is a conjugate prior since a 
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normal distribution is also being used for the loss ratios, and so, the posterior distribution will be 
normally distributed. This means that maximum likelihood estimation, which returns the mode, can 
be used to estimate the mean, since the mean is identical to the mode for a normal distribution. 
Performing credibility in this fashion will also match the Buhlmann-Straub credibility results (Herzog 
1989). To implement, another parameter should be added for the complement of credibility. Then, 
the log-likelihood of a normal probability density function evaluated at each initial loss ratio with a 
mean of the credibility complement should be calculated for each line. Adding the sum of these log-
likelihoods to the total log-likelihood will cause the loss ratios to shift towards the overall mean and 
credibility weighting will be performed. The variance of this normal prior distribution is equivalent to 
the between variance used in the Buhlmann-Straub method. One way to estimate it is to use the 
Buhlmann-Straub formulas (as described in Korn 2015 to apply to loss ratios, for example).  

Using this approach to calculating the between variances, however, does not consider the loss ratio 
changes by year as calculated by the Kalman Filter and so is slightly inconsistent. As an alternative, 
cross validation can be used instead, similar to ridge regression, which was described earlier. Different 
between variances can be tested where the loss ratios are fit using only a fraction of the data and the 
remainder of the data is used to calculate the mean square error divided by the mean to the appropriate 
power, multiplied by the used premium. Using this will be consistent with the loss ratio changes by 
year. 

There is still an issue, however, since credibility weighting the initial loss ratios towards the mean 
but then allowing the remaining ones to vary freely sometimes produces results that deviate away from 
the mean with time, even if this is not the case, especially if the between variance chosen is relatively 
small. Bayesian credibility was used to credibility weight the initial loss ratios, which has the formula: 

f(Posterior | Data, Parameters) = f(Likelihood | Data, Parameters) x f(Prior | Parameters). 

Credibility weighting is performed since the prior component, f(Prior | Parameters), applies a penalty 
to the parameters as they deviate away from the mean. This prior needs to be a function of the model 
parameters. 

However, it is also possible to reparameterize the model so that instead of using the initial loss 
ratios as the parameters, the ending loss ratios are used instead. Note that it is possible to solve for 
the ending loss ratios given all of the Kalman Filter parameters including the initial loss ratios. Because 
of this, it is also possible to invert the equations and to solve for the initial loss ratios given the ending 
loss ratios. So, the ending loss ratios can be used as the parameters of the model, the initial loss ratios 
can be solved for, and then the Kalman Filter can be run as normal. To make the process simpler, 
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instead of actually performing all of these calculations, we can run the Kalman Filter as normal using 
the initial loss ratios as the parameters, but still “pretend” that the ending loss ratios are the parameters 
and calculate the prior distribution credibility penalty using the ending loss ratios, since the result 
would be exactly the same. So, in summary, nothing needs to be changed, and the ending loss ratios 
can be used for credibility weighting. 

This method produces better behaving models that do not artificially deviate either towards or 
away from the mean. Because the Kalman Filter iterates forwards through all of the loss ratios, and 
then conducts another iteration backwards to smooth the results, the ending loss ratio can almost be 
thought of as the midpoint of the iteration. Therefore, it is recommended to use the ending loss ratios 
for calculating the log-likelihoods of the normal prior distribution. 

6. SIMULATION RESULTS 

A simulation was run6 to help illustrate the benefits this method can provide, although, of course, 
the exact benefit will vary from case to case. In this scenario, two random variables were combined to 
simulate the frequency per year, and it was assumed that one of these was known. This was done to 
simulate a scenario where a predictive variable is known that affects the frequency per year, such as 
the state of the economy, but that not everything about how the frequency changes is known. 

The summary of the results are shown in Figure 5. 

                                                 
6 Frequency was simulated using a negative binomial with a mean of 50 for complete years and a variance-to-mean ratio 
of 2.5.  Severity was simulated from a lognormal distribution with mu and sigma parameters of 10 and 2, respectively, a 
retention of $100 thousand and limit of two million.  Autocorrelation was 30% for each of the frequency variables and for 
the severity variable, variance of the year-to-year changes was 0.005 for each of the frequency variables and 0.00025 for 
the severity variable.  Development factors were used that affected the frequency that decreased by 0.05 starting at the 
22nd period.  Premium was set so that the expected loss ratio for the first year would be 70%.  For the methods that used 
bagging, 25 iterations were used using ⅔ of the data on each iteration.  500 simulations were run.  The models were fit 
using the approximation for the Tweedie family mentioned earlier. 
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Figure 5 

Method RMSE 
All Years 

RMSE 
Latest Year 

RMSE All 
Years - 

Compared 
to Cape 

Cod 

RMSE Latest 
Year - 

Compared to 
Cape Cod 

Cape Cod 1.211 0.312 0% 0% 

Kalman Filter 0.538 0.132 -55.5% -57.6% 

Kalman Filter with Bagging 0.508 0.126 -58.1% -59.5% 

Kalman Filter with Predictive 
Variable 

0.485 0.120 -59.9% -61.4% 

Kalman Filter with Predictive 
Variable and Bagging 

0.462 0.114 -61.9% -63.3% 

Kalman Filter with Predictive 
Variable, Penalized Regression 
and Bagging7 

0.453 0.105 -62.6% -66.3% 

Tweedie GLM with Predictive 
Variable (Weighted by Used 
Premium per Year) 

0.704 0.165 -41.8% -47.2% 

The main conclusion is the amount of benefit this method is capable of providing over the Cape 
Cod, which does not adapt to changing conditions and cannot include predictive variables. Each of 
these individually is also able to provide significant benefit. 

7. CONCLUSIONS 

The goal of this paper was to present a relatively simple method that can be implemented in 
spreadsheets to extend the Cape Cod and is capable of accounting for changes indicated in the data 
and from external predictive variables. Estimating expected loss ratios per year with volatile data can 
often be a confusing and difficult task, subject to a large degree of judgement. It is our hope to improve 
this process by adding some guidance from modern statistical techniques without losing the simple 
and intuitive nature of the Cape Cod method. 

                                                 
7 Only 100 iterations were performed for this method because of its longer running time.  Also, only 10 iterations of 
bootstrapping were performed.  Using a higher number is expected to further improve the performance of this method. 
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APPENDIX A 

The appropriate development factor to relate to the increased volatility of incomplete experience 
can be derived using the formula for the variance of aggregate losses, where A are the ultimate 
aggregate losses, F is the ultimate frequency, S is the ultimate severity, VTMF is the variance-to-mean 
ratio for the frequency, CVS is the coefficient of variation for the severity, RPT are the reported losses, 
and ULT are the ultimate losses: 

V(A) = V(F) E(S2) + E(F) V(S) = VTMF F S2 + F CVs S2 = F S2 ( VTMF + CVS
2 ) 

The variance of the reported losses is equal to the below, since the observed frequency is F / CCDF 
(where CCDF is the claim count development factor), and the observed severity is S / SDF (where 
SDF is the severity development factor, which is equal to the LDF divided by the CCDF): 

 

𝑉𝑉(𝑅𝑅𝑅𝑅𝑅𝑅) =  𝐹𝐹
𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶

 ×  𝑆𝑆2

𝑆𝑆𝑆𝑆𝐹𝐹2
 ×  ( 𝑉𝑉𝑉𝑉𝑀𝑀𝐹𝐹  +  𝐶𝐶𝑉𝑉𝑆𝑆2 )  

 

The variance of ultimate losses is then equal to: 

 

𝑉𝑉(𝑈𝑈𝑈𝑈𝑈𝑈) =  𝑉𝑉(𝑅𝑅𝑅𝑅𝑅𝑅) ×  𝐿𝐿𝐿𝐿𝐹𝐹2  =  𝑉𝑉(𝑅𝑅𝑅𝑅𝑅𝑅) × 𝐶𝐶𝐶𝐶𝐶𝐶𝐹𝐹2 × 𝑆𝑆𝑆𝑆𝐹𝐹2 

= 𝐹𝐹
𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶

 ×  𝑆𝑆2

𝑆𝑆𝑆𝑆𝐹𝐹2
 ×  ( 𝑉𝑉𝑉𝑉𝑀𝑀𝐹𝐹  +  𝐶𝐶𝑉𝑉𝑆𝑆2 ) × 𝐶𝐶𝐶𝐶𝐶𝐶𝐹𝐹2 × 𝑆𝑆𝑆𝑆𝐹𝐹2 

=  𝐹𝐹 × 𝑆𝑆2 × (𝑉𝑉𝑉𝑉𝑀𝑀𝐹𝐹  +  𝐶𝐶𝑉𝑉𝑆𝑆2 )  × 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 

=  𝑈𝑈𝑈𝑈𝑈𝑈 ×  𝑆𝑆 ×  (𝑉𝑉𝑉𝑉𝑀𝑀𝐹𝐹  +  𝐶𝐶𝑉𝑉𝑆𝑆2 )  × 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 

 

Note how all SDF terms cancel out and the only development term remaining is the claim count 
development factor. 
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Hierarchical Compartmental Models for Loss Reserving 

Jake Morris, FIA 

______________________________________________________________________________ 
Abstract 

Motivation. This paper proposes a triangle-based stochastic reserving framework for parsimoniously describing 
insurance claims generation, reporting and settlement processes with intuitive parameters. 
 
Method. Deterministic compartmental models are explored as extensible tools to describe and project the 
insurance claims process using a small number of parameters, including a measure of case reserve robustness. A 
Schedule-P reserving case study illustrates the application of a nonlinear hierarchical (“mixed-effects”) framework 
to fit compartmental models to outstanding and cumulative paid claims development triangles, simultaneously. 
This allows one or more of the claims process parameters to vary by claims cohort in accordance with a statistical 
distribution. An optional Bayesian implementation facilitates the robust incorporation of external information and 
judgment into the projection of reserve uncertainty. 
 
Results. A flexible stochastic reserving framework is established, with benefits including the ability to explicitly 
account for reporting and/or settlement rate changes, make inferences about components of the claims process 
and scenario test future process changes using information gathered across the business. 
 
Conclusions. Hierarchical compartmental models can describe and project the insurance claims process in an 
optional level of detail for the purpose of setting reserves. 
 
Availability. Frequentist model R code is contained in Appendix E, Bayesian model OpenBUGS code is contained 
in Appendix F and an illustration spreadsheet is available at: http://www.casact.org/pubs/forum/16sforum/.  
 
Keywords. Stochastic loss reserving, compartmental reserving models, claims process modeling, hierarchical 
models, nonlinear mixed-effects, Bayesian modeling, MCMC. 

______________________________________________________________________________ 

1. INTRODUCTION 

A variety of triangle-based stochastic reserving techniques have been proposed for estimating 

future general insurance claims payments, ranging from generalized linear models (England and 

Verrall, 2002) to nonlinear hierarchical models (Guszcza, 2008). Methods incorporating both paid and 

incurred information have been explored (Martínez-Miranda, Nielsen and Verrall, 2012; Quarg and 

Mack, 2004), which provide richer inference and improved interpretability. Furthermore, Bayesian 

methods (Zhang, Dukic and Guszcza, 2012; Meyers, 2007; England and Verrall, 2005; Verrall, 2004) 

have become increasingly ubiquitous; providing flexibility and the ability to robustly incorporate 

judgment into uncertainty projections.  

This paper explores a new triangle-based (and optionally-Bayesian) stochastic reserving framework 

which considers the relationship between exposure, case reserves and paid claims. By doing so, it 

enables practitioners to build communicable models that are consistent with their understanding of 

the insurance claims process. Furthermore, it supports the identification and quantification of claims 

process characteristics to provide tangible business insights. 

http://www.casact.org/pubs/forum/16sforum/
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1.1 Research Context 

Compartment(al) models (Sheppard, 1948) are extensible tools for describing the transfer of 

material between components of a system over time. For a sufficient volume of claims, the insurance 

claims process can be represented by a small number of compartments and intuitive parameters. The 

parameters describe aggregate claims movements between compartments and the ultimate loss ratio 

(ULR), decomposed into a reported loss ratio and a measure of case reserve robustness.  

Motivated by Guszcza (2008), a nonlinear hierarchical modeling framework is proposed for fitting 

compartmental loss reserving models to claims triangles, allowing one or more of the model 

parameters (and hence development patterns) to vary by claims cohort in accordance with a statistical 

distribution. This enables flexible and parsimonious compartmental models to be fitted to reported 

outstanding claims and cumulative paid claims development triangles, simultaneously.  

An optional Bayesian implementation (akin to Zhang, Dukic and Guszcza, 2012) allows external 

information and judgment to be incorporated into reserve uncertainty projections. Additionally, 

Markov chain Monte Carlo (MCMC) techniques facilitate model flexibility, and consequently, specific 

features such as the correlation between successive observations and calendar shocks can be 

accounted for. 

1.2 Objective 

Hierarchical compartmental reserving models have parallels with the hierarchical growth curves 

put forward by Guszcza (2008). In contrast to monotonic growth curves however, compartmental 

models can be fitted to cumulative paid claims and outstanding claims reserves, simultaneously. Since 

outstanding claims typically rise and fall over time, negative incurred claims development is supported. 

Furthermore, explicit modeling of outstanding claims may reduce the subjectivity inherent in the 

selection of a growth curve for tail extrapolation. Finally, relating compartmental model parameters 

back to the claims process provides intuitive control over the level of model complexity. 

In contrast to Zhang, Dukic and Guszcza (2012), the corresponding Bayesian implementation 

enables prior beliefs to be more readily incorporated into process-based model parameters. This allows 

drivers of uncertainty to be isolated. Additionally, Bayesian hierarchical compartmental models have 

the flexibility to handle negative development for reserve uncertainty projections contrary to many 

existing GLM-type methods (England and Verrall, 2002).  

Furthermore, compared to existing methods that utilize both paid and incurred data (e.g. 

Martínez-Miranda, Nielsen and Verrall, 2012; Quarg and Mack, 2004), a compartmental approach 

ensures consistency between estimated paid and incurred claims. 
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Although this paper proposes a triangle-based approach, methods incorporating individual claims 

data (e.g. Antonio and Plat, 2014; Parodi, 2013) exhibit a number of desirable properties, including 

the ability to reflect underlying claims processes. Such methods typically require a combination of 

models to be parameterized however, whereas a compartmental framework allows claims process 

characteristics to be quantified using a single structural model. Additionally, hierarchical model 

diagnostic tests can help to mitigate the risk of overfitting the data and reducing extrapolation validity. 

1.3 Outline 

The remainder of the paper proceeds as follows:  

 Section 2 will introduce compartmental modeling theory, hierarchical compartmental 

models and Bayesian hierarchical compartmental models. 

 Section 3 will define a compartmental model for the claims process. Parameter 

interpretations will be discussed and a number of practical extensions will be explored. 

 Section 4 will contain a triangle reserving case study detailing the application of frequentist 

and Bayesian hierarchical compartmental models to a Schedule-P dataset.  

 Section 5 will present a brief overview of future development areas. 

 Section 6 will summarize the paper’s findings.  

Appendices will contain various supplementary materials including the case study data, frequentist 

modeling R code, and Bayesian modeling OpenBUGS code.  
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2. COMPARTMENTAL MODELS 

A system is said to be a compartment(al) system when its entities can be grouped into a finite 

number of connected homogeneous components, known as compartments (Sheppard, 1948). They 

are often used to describe how entities/materials change location or state over time. The set of all 

possible compartments in a system is called the state-space, and the phenomena under study in each 

compartment are described by state-variables (Blomhøj, Kjeldsen and Ottesen, 2014). 

Compartmental models can be deterministic or stochastic, containing discrete or continuous 

state-variables in discrete or continuous time. In deterministic models, the behavior of the quantities 

within the system is dictated solely by their past behavior and the rules that govern the model. In 

contrast, stochastic models imply a distribution of possible behaviors (Brauer, 2008). A useful feature 

of compartmental models is that complexity can be controlled by adjusting the number of 

compartments and/or their corresponding inflows and outflows.  

The focus of this paper will be a practical claims reserving application of deterministic, 

continuous state-variable and continuous-time compartmental models. The rationale is as 

follows: 

 Compartmental models describing exposure, reported outstanding claims and cumulative 

paid claims (where the latter two are simultaneously fitted) have not yet been introduced 

into the loss reserving literature. 

 Deterministic models are practical to implement, and their simplicity results in clear and 

communicable claims process parameters. 

 The hierarchical framework proposed in Section 4 increases mathematical complexity to 

the extent that at present, appropriate hierarchical stochastic compartmental reserving 

models are not easily implementable in conventional software.  

Sections 2.1 and 2.2 will contain overviews of deterministic and stochastic compartmental models, 

and Section 2.3 will introduce hierarchical compartmental models.  

2.1 Deterministic compartmental models 

Deterministic compartmental models have many possible applications. One of which is to describe 

the transport of material through biological systems, where compartments have physiological 

interpretations. For example, “compartmental pharmacokinetic models” are commonly used to 

describe the continuous transfer of an administered drug into, within and out of a patient. State-spaces 

typically comprise blood plasma and body tissues/organs, with state-variables denoting their drug 

concentration-time (or amount-time) profiles.  
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Deterministic, continuous-time models can be expressed as linear systems of ordinary differential 

equations (ODEs), with state-variables expressed as differentials of time. Analytical state-variable 

solutions are linear combinations of exponential terms describing the estimated amounts of material 

in each compartment at each time.  

A one compartment pharmacokinetic model with state-space {𝑃𝑙𝑎𝑠𝑚𝑎(𝑡)} for a direct intravenous 

drug dose can be written schematically as follows: 

                                           

Alternatively, the model can be written as a single ODE, where the state-variable {𝐴1(𝑡)} denotes 

the amount of drug in the blood plasma at time 𝑡, and the positive “rate elimination constant” {𝑘𝑒𝑙} 

describes how quickly the drug is eliminated from the body. It is assumed that elimination of the drug 

is constant and directly proportional to its amount (first-order kinetics): 

 𝑑𝐴1/𝑑𝑡 =  −𝑘𝑒𝑙𝐴1 

𝐴1(0) = 𝐷𝑜𝑠𝑒 
(2.1) 

A patient’s blood plasma amount-time profile 𝐴1(𝑡) can be measured by repeatedly sampling their 

blood over the time following a drug dose. The rate parameter 𝑘𝑒𝑙 can then be estimated by solving 

the ODE and fitting the model to the patient’s amount-time observations. Denoting 𝑦𝑗 as the 𝑗th drug 

amount measurement for a patient, we can specify a nonlinear regression (Seber and Wild, 1989) as 

 𝐴1(𝑡𝑗) = 𝑦𝑗 = 𝐷𝑜𝑠𝑒 ∙ 𝑒−𝑘𝑒𝑙𝑡𝑗 + 𝜀𝑗 

𝜀𝑗~𝑁(0, 𝜎2) 
(2.2) 

where 𝜎2 is the variance of the discrepancy between the model fit and the drug amount 

measurements. For illustrative purposes, an estimated blood plasma amount-time profile 𝐴1̂(𝑡𝑗) for a 

given dose and rate of elimination is as follows: 

     

Plasma
Dose

kel

https://en.wikipedia.org/wiki/First_order_kinetics
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2.2 Stochastic compartmental models 

In contrast to deterministic compartmental models, stochastic compartmental models introduce 

uncertainty external to the history of the modeled process by assuming that one or more of the states 

are random variables. This may be achieved, for example, by adding probabilistic state transfer 

mechanisms to an existing deterministic structure (Rescigno and Segre, 1966).  

Three example forms of stochastic compartmental models and their corresponding properties are: 

1) Discrete-time Markov chain models: discrete state-variables, discrete time steps 

2) Continuous-time Markov chain models: discrete state-variables, continuous time scale  

3) Stochastic differential equation (SDE) models: continuous state-variables and time scale 

Hachemeister (1980) provides a loss reserving application of discrete-time Markov chain models. 

Analogously, Orr (2007), Hasselager (1994) and Norberg (1993) provide loss reserving applications of 

continuous-time Markov chain models. 

2.3 Hierarchical compartmental models 

Section 2.1 describes how a deterministic compartmental model can be used to estimate a drug 

amount-time profile for a single patient. However, in practice drug developers wish to make inferences 

about a population of individuals that may eventually take a particular drug. Assuming a drug has been 

administered to a group of individuals and expressing 𝑦𝑖𝑗 as the 𝑗th drug amount measurement  

(𝑗 = 1 𝑡𝑜 𝑛𝑖) for the 𝑖th individual (𝑖 = 1 𝑡𝑜 𝑀), we could use nonlinear regression to fit a separate 

compartmental model to each individual: 

 𝑦𝑖𝑗 = 𝐷𝑜𝑠𝑒𝑖 ∙ 𝑒−𝑘𝑒𝑙𝑖𝑡 + 𝜀𝑖𝑗 (2.3) 

However, this modeling approach may result in many parameters relative to the number of data 

points available for modeling, reducing the credibility of each estimated parameter. 

An alternative approach is to pool all individuals’ concentration measurements and fit one 

compartmental model with a single parameter to all individuals combined: 

 𝑦𝑖𝑗 = 𝐷𝑜𝑠𝑒𝑖 ∙ 𝑒−𝑘𝑒𝑙𝑡 + 𝜀𝑖𝑗  (2.4) 

Although 𝑘𝑒𝑙 is likely to be estimated with greater precision than each 𝑘𝑒𝑙𝑖
 in Eq. (2.3), it is unlikely 

to result in an accurate fit to each individual due to between-patient variability e.g. differing 

metabolisms. 

The approach commonly used in pharmacokinetic modeling in addition to other life and social 

sciences is nonlinear hierarchical modeling, which has previously been advocated for loss reserving 
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by Guszcza (2008). Hierarchical (or mixed-effects) models allow some model parameters to be 

fixed across individuals and some to vary by individual. More generally, they allow parameters to 

vary by any natural data grouping. For example, for estimating insurance claims reserves Guszcza 

(2008) proposes claims cohorts (individual accident years) as a grouping for cumulative paid claims.  

A hierarchical framework allows model parameters to vary by the assumed data grouping in 

accordance with a statistical distribution defined by a mean and variance only. This reduces the number 

of estimable parameters compared to the first modeling approach outlined above. Conversely, because 

the modeler can select which parameters vary by individual, each individual can be described in greater 

detail compared to the second modeling approach outlined above. 

Hierarchical/mixed-effects models are said to allow data-sparse individuals to “borrow strength” 

from data-rich individuals. For parameters that vary by individual, an individual’s parameter estimate 

is a weighted average of: 

1) The estimated average parameter value across all individuals; and 

2) The estimated individual parameter value for the individual.  

The weight given to the individual parameter value is proportional to the individual’s data volume. 

To illustrate how nonlinear hierarchical models are structured, Eq. (2.3) can be rewritten as 

 𝑦𝑖𝑗 = 𝐷𝑜𝑠𝑒𝑖 ∙ 𝑒−(𝑘𝑒𝑙̅̅̅̅̅+(𝑘𝑒𝑙𝑖−𝑘𝑒𝑙̅̅̅̅̅))∙𝑡 + 𝜀𝑖𝑗 (2.5) 

where 𝑘𝑒𝑙
̅̅ ̅̅  represents the average rate of elimination across all individuals. Denoting 𝑘𝑒𝑙

̅̅ ̅ as 𝛽, and 

𝑘𝑒𝑙𝑖
− 𝑘𝑒𝑙

̅̅ ̅̅  as 𝑏𝑖 (Pinheiro and Bates, 2000), this becomes 

 𝑦𝑖𝑗 = 𝐷𝑜𝑠𝑒𝑖 ∙ 𝑒−(𝛽+𝑏𝑖)∙𝑡 + 𝜀𝑖𝑗 

𝜀𝑖𝑗~𝑁(0, 𝜎2), 𝑏𝑖~𝑁(0, 𝜓2) 
(2.6) 

where 𝛽 is referred to as a fixed-effect and 𝑏𝑖 as a random-effect, which has its own probability 

sub-model. A shared distribution for the random-effects induces a correlation between individuals, 

which may be an appropriate assumption if they are assumed to come from a wider population. 𝜎2 

represents the within-subject variability, whereas 𝜓2 represents the between-subject variability. For 

any number of individuals being modeled, only three parameters (𝛽, 𝜎 and 𝜓) need to be estimated. 

Two key reasons for using a hierarchical framework are parsimony and flexibility. These features 

may be useful for loss reserving where data are incomplete and sometimes limited for modeling 

purposes, requiring descriptive models that do not overfit.  

Antonio and Zhang (2014) provide a detailed exploration of nonlinear hierarchical models for 

insurance data. 
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2.3.1 Bayesian hierarchical compartmental models 

A modeler may want to incorporate external information and/or judgment into a compartmental 

model to account for information not contained within the modeled dataset. For example, in drug 

development there may be other data-rich drug administration studies from which to base parameter 

prior distributions. For the hierarchical model outlined in Eq. (2.6) it could be assumed that 

 log(𝛽)~𝑁(𝛽,̅ 𝛾2) (2.7) 

where 𝛽 denotes the fixed-effect for the rate of drug elimination, and 𝛽,̅ 𝛾2 denote the prior mean 

and variance of log(𝛽) respectively, which are specified by the modeler rather than estimated. Bayes’ 

rule can then be used to estimate the posterior distribution of the fixed-effect as 

 𝑝(𝛽|𝑦𝑖𝑗) ∝ 𝑝(𝛽) 𝑝(𝑦𝑖𝑗|𝛽) 

≡ 𝑝(𝛽|𝑦𝑖𝑗) ∝ 𝑝(𝛽) ℒ(𝛽; 𝑦𝑖𝑗) 

𝑝𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟 ∝ 𝑝𝑟𝑖𝑜𝑟 × 𝑙𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑 

(2.8) 

where 𝑝(∙) is a probability density function, 𝛽 is the “random” parameter for which we wish to 

make inferences, 𝑦𝑖𝑗 is the “fixed” 𝑗th observation for individual 𝑖 and ℒ(∙) is the likelihood function. 

The posterior distribution is a credibility weighting of the prior distribution and likelihood function, where 

the weight placed on prior beliefs is inversely proportional to the volume of modeled data. 

As highlighted by Zhang, Dukic and Guszcza (2012), this approach can be useful for loss reserving 

where it is often essential for a practitioner to incorporate judgment into reserve projections to allow 

for information not contained within the modeled data. Additionally, Bayesian methods allow us to 

quantify reserve uncertainty consistently with the definition stated by the 2005 Casualty Actuarial 

Society Working Party on Quantifying Variability in Reserve Estimates: 

‘Given . . . our current state of knowledge, what is the probability that [the entity’s] final payments will be no larger 
than the given value’. 

This can be framed mathematically using Bayesian statistics. Denoting 𝑈𝐿𝑅𝑖 as the ultimate loss 

ratio (and parameter of interest) for the 𝑖th claims cohort and 𝐼𝑛𝑐𝑢𝑟𝑟𝑒𝑑𝑖𝑗 as the 𝑗th cumulative incurred 

claims observation for the 𝑖th claims cohort, the posterior density of 𝑈𝐿𝑅𝑖 given 𝐼𝑛𝑐𝑢𝑟𝑟𝑒𝑑𝑖𝑗 is 

 𝑝(𝑈𝐿𝑅𝑖|𝐼𝑛𝑐𝑢𝑟𝑟𝑒𝑑𝑖𝑗) ∝ 𝑝(𝑈𝐿𝑅𝑖) ℒ(𝑈𝐿𝑅𝑖; 𝐼𝑛𝑐𝑢𝑟𝑟𝑒𝑑𝑖𝑗) (2.9) 

which provides an estimate of ULR parameter uncertainty. It is straightforward to incorporate 

process uncertainty into this posterior, from which a distribution for final payments can be derived 

consistently with the above definition. Finally, Bayesian models increase flexibility because they 

require only that model parameters and the relationships between them are specified.  

A detailed exposition of Bayesian methods and their applications is given by Gelman et al. (2013). 
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3. COMPARTMENTAL MODELS FOR LOSS RESERVING 

To specify a deterministic, continuous state-variable and continuous-time compartmental model 

for the insurance claims process, a state-space must be defined. The selection of a possible state-space 

is illustrated by considering the insurance claims process over development time for a cohort of claims 

e.g. an accident year: 

1) Once a group of insurance policies have been written and incepted, they are exposed to the 

risk of making claims. Therefore an initial “Exposed to Risk” state is defined.  

2) For some proportion of exposed policies, claim events will occur and be reported to the 

insurer. Claims are typically case reserved and classed as being outstanding until settled, 

defining a second state: “Claims Outstanding”. 

3) A proportion of all reported outstanding claims will be settled with a payment amount, 

which defines a “Claims Paid” state. 

The state-space is therefore {Exposed to Risk(𝑡), Claims Outstanding(𝑡), Claims Paid(𝑡)}. The 

states-variables in turn denote the amount of remaining exposure, the monetary amount of claims 

outstanding, and the cumulative monetary amount of claims paid at development time 𝑡. 

Assuming that the above process is a forward process only, i.e. no material re-opening of paid 

claims, a model schematic can be written as follows: 

                     

Exposure reduces over time as groups of claims are reported and become paid at some proportion 

of their outstanding amounts. This reduces the claim amounts outstanding (eventually to 0 as 𝑡 

becomes large) and ensures consistency between paid and incurred claims estimates. Although this 

model is for claim amounts, an adapted version could be defined for claim numbers (not shown). 

To initialize the process, a suitable measure of exposure must be chosen as an input variable. For 

an accident year/quarter cohort of claims, earned premiums could be used (Guszcza, 2008; Clark, 

2003). Alternatively, a pure exposure measure could be chosen in line with the original pricing basis 

(see Section 3.2). 

Independently of the chosen exposure measure, the timing of policies coming on-risk during the 

claims cohort should be considered. If policies coming on-risk during an accident year/quarter are 

largely replaced by similar policies coming off-risk, i.e. steady-state conditions, a practitioner could 

Exposed to 
Risk

Claims 
Outstanding

Claims
Paid
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input all exposures into to the system at development time 0. This is the approach taken for the case 

study presented in Section 4. Similarly, it would be acceptable to input all exposures at time 0 if all (or 

a large proportion of) policies that could give rise to a claim in the cohort are on-risk at the start of 

the cohort (e.g. accident quarter). However, if exposure materially fluctuates during the lifetime of the 

cohort, a more sophisticated approach is required to match the input exposures with the cohort’s 

development times at which the policies come on-risk (see Section 3.2). 

For an accident year/quarter cohort of claims, the use of (ultimate) earned premiums as an 

exposure measure provides an appealing parameter set. A schematic for what will be termed the 

“baseline model” is shown below, followed by its corresponding parameter definitions: 

  

 Reported Loss Ratio (“𝑅𝐿𝑅”): the proportion of premiums that become reported claims. 

 Rate of earning and reporting (“𝑘𝑒𝑟”): the rate at which claim events occur and are 

subsequently reported to the insurer. 

 Reserve Robustness Factor (“𝑅𝑅𝐹”): the proportion of outstanding claims that eventually 

become paid by the insurer. 

 Rate of payment (“𝑘𝑝”): the rate at which outstanding claims are paid by the insurer. 

Therefore this model is defined in terms of proportions {𝑅𝐿𝑅, 𝑅𝑅𝐹} and rates {𝑘𝑒𝑟 , 𝑘𝑝}. For the 

continuous-time assumption to hold, a sufficient number of policies must be written to give rise to a 

steady “flow” of reported and paid claims over development time.  

Denoting the state-space {Exposed to Risk(𝑡), Claims Outstanding(𝑡), Claims Paid(𝑡)} as 

{𝐸𝑋(𝑡), 𝑂𝑆(𝑡), 𝑃𝐷(𝑡)}, the above model can be written as follows: 

 

 

 

𝑑𝐸𝑋/𝑑𝑡 =  −𝑘𝑒𝑟 ∙ 𝐸𝑋 

𝑑𝑂𝑆/𝑑𝑡 =  𝑘𝑒𝑟 ∙ 𝑅𝐿𝑅 ∙ 𝐸𝑋 − 𝑘𝑝 ∙ 𝑂𝑆 

𝑑𝑃𝐷/𝑑𝑡 =  𝑘𝑝 ∙ 𝑅𝑅𝐹 ∙ 𝑂𝑆 

 

(3.1) 

Compartment initial conditions are 𝐸𝑋(0) = 𝑒𝑎𝑟𝑛𝑒𝑑 𝑝𝑟𝑒𝑚𝑖𝑢𝑚𝑠 = 𝑃, 𝑂𝑆(0) = 0 and 𝑃𝐷(0) = 0, 

assuming steady-state exposure. Each parameter is assumed to be constant over development time 𝑡; 

however, this assumption is relaxed in Section 3.2.  

Earned 

Premiums Exposed to 
Risk

Claims 
Outstanding

Claims
Paid

RLR RRF

ker kp
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Analytical state-variable solutions can be obtained using Laplace transforms (Gustav, 1974): 

 𝐸𝑋(𝑡) = 𝑃𝑒−𝑘𝑒𝑟𝑡 

𝑂𝑆(𝑡) =  
𝑃 ∙ 𝑅𝐿𝑅 ∙ 𝑘𝑒𝑟

𝑘𝑒𝑟 − 𝑘𝑝 
∙ (𝑒−𝑘𝑝𝑡 − 𝑒−𝑘𝑒𝑟𝑡) 

𝑃𝐷(𝑡) =  
𝑃 ∙ 𝑅𝐿𝑅 ∙ 𝑅𝑅𝐹

𝑘𝑒𝑟 − 𝑘𝑝 
∙ (𝑘𝑒𝑟 ∙ (1 − 𝑒−𝑘𝑝𝑡) − 𝑘𝑝 ∙ (1 − 𝑒−𝑘𝑒𝑟𝑡)) 

 

 
(3.2) 

The paid claims solution is analogous to a “growth curve”, as put forward for loss reserving by 

Clark (2003). For a given set of parameters, the state-variables in the above system can be visualized 

over development time 𝑡 as follows:   

      

Although exposure may be impractical to track over time, outstanding and cumulative paid claims 

are typically observable at specific development time points, albeit incomplete for reserving purposes. 

Nonlinear regression techniques can be used to fit Eq. (3.2) to outstanding and cumulative paid claims 

simultaneously to derive parameter estimates and project the claims process to ultimate. 

3.1 Parameter interpretations 

The two rate parameters 𝑘𝑒𝑟 (𝑘𝑒𝑟 > 0) and 𝑘𝑝 (𝑘𝑝 > 0) determine the monetary value of remaining 

exposures reported and outstanding claims paid respectively, per infinitesimal unit of time (with units 

𝑡−1). The term “𝑘𝑒𝑟” is used to reflect that a policy exposed to risk must have a claim event occur 

before it is reported, and may also be termed a rate of reporting (from exposure). It follows that higher 

magnitude rate parameters imply faster claims reporting/payment. However, if the model were to 

contain these rate parameters alone then all exposure would eventually convert to paid claims, resulting 

in a 𝑈𝐿𝑅 equal to 100% (for a premium-based exposure measure). 

 To allow a range of possible ultimate loss ratios it is necessary to specify at least one proportion 

parameter, similar to Clark (2003). The two proportion parameters 𝑅𝐿𝑅 (𝑅𝐿𝑅 > 0) and 𝑅𝑅𝐹 (𝑅𝑅𝐹 > 0) 

determine the percentage of exposures that become reported claims and the percentage of outstanding 
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claims that become paid claims respectively. The 𝑅𝑅𝐹 parameter therefore indicates the average level 

of case over- or under-reserving for a cohort of claims. If case handlers persistently under-reserve, 

this would imply an 𝑅𝑅𝐹 of over 100% and vice versa. An 𝑅𝑅𝐹 of 100% indicates perfect case reserving 

on average amongst a cohort of claims. However, this may be the result of some claims being heavily 

over-reserved and some claims being heavily under-reserved, cancelling each other out in aggregate. 

Persistent over-reserving is often associated with an incurred development pattern that rises and 

falls. Claims incurred at development time 𝑡 {𝐼𝑁𝐶(𝑡)} can be derived under the model as 

 𝐼𝑁𝐶(𝑡) =  𝑂𝑆(𝑡) + 𝑃𝐷(𝑡) (3.3) 

and visualized (for an 𝑅𝑅𝐹 less than 100%): 

            

Thus the model is able to capture negative incurred increments. Under the model, estimated 

cumulative incurred and paid claims tail development is defined by the extrapolation of estimated 

outstanding claims to zero (driven by 𝑘𝑝), and the estimated 𝑅𝑅𝐹. A convenient result is that the 

estimated ultimate loss ratio (𝑈𝐿𝑅) can be directly obtained as 

 𝑈𝐿𝑅 =  𝑅𝐿𝑅 ∙ 𝑅𝑅𝐹 (3.4) 

The reason for this can be observed by equating the paid loss ratio (𝑃𝐿𝑅) at development time 𝑡 to 

the product of the 𝑅𝐿𝑅 and 𝑅𝑅𝐹 parameter definitions for a homogeneous group of claims, which are 

reported and subsequently paid together, i.e. 

 𝑃𝐷(𝑡)

𝑃
=  

𝑂𝑆(𝑡 − 𝑣)

𝑃
 ∙  

𝑃𝐷(𝑡)

𝑂𝑆(𝑡 − 𝑣)
 (3.5) 

where 𝑡 denotes development time within the claims cohort and 𝑣 represents the elapsed time 

between the homogeneous group of claims being reported outstanding and paid. It is assumed that 

the premiums (𝑃) for their underlying policies are written before time 𝑡 − 𝑣. It follows that the 𝑅𝐿𝑅 

numerator and 𝑅𝑅𝐹 denominator of the right hand side cancel out, and the 𝑃𝐿𝑅 converges to the 𝑈𝐿𝑅 

for sufficiently large 𝑡. 
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3.1.1 ExBNR vs. RBNS 

Using the compartmental model above it is possible to derive an exposed but not reported 

(“ExBNR”) reserve and reported but not settled (“RBNS”) reserve at development time 𝑡. The term 

“ExBNR” reflects the loss of claim event timing information once claims are grouped into outstanding 

and paid claims cohorts, and contains incurred but not reported (“IBNR”) plus unearned claims: 

 𝐸𝑥𝐵𝑁𝑅(𝑡) =  𝐸𝑋(𝑡) ∙ 𝑅𝐿𝑅 ∙ 𝑅𝑅𝐹 

𝑅𝐵𝑁𝑆(𝑡) =  𝑂𝑆(𝑡) ∙ 𝑅𝑅𝐹 

𝑅𝑒𝑠𝑒𝑟𝑣𝑒(𝑡) =  𝐸𝑥𝐵𝑁𝑅(𝑡) + 𝑅𝐵𝑁𝑆(𝑡) 

(3.6) 

The reserves contain “IBNER” (incurred but not enough reported), indicated by the appearance 

of the reserve robustness factor (𝑅𝑅𝐹). They can be visualized over development time for a given set 

of parameters as follows: 

                 

Taking the definition of IBNR to be ultimate losses less incurred losses to date, Eq. (3.4) can be 

used to define ultimate losses as 𝑃 ∙ 𝑅𝐿𝑅 ∙ 𝑅𝑅𝐹, and hence 𝐼𝐵𝑁𝑅(𝑡) = 𝑃 ∙ 𝑅𝐿𝑅 ∙ 𝑅𝑅𝐹 − 𝐼𝑁𝐶(𝑡). When 

𝐸𝑋(0) = 𝑃, Eq. (3.6) provides an alternative derivation: 𝐼𝐵𝑁𝑅(𝑡) = 𝑅𝑒𝑠𝑒𝑟𝑣𝑒(𝑡) − 𝑂𝑆(𝑡). 

3.2 Model extensions 

Compartmental models are extensible, allowing practitioners to adjust them in line with their 

understanding of the claims process for the class of business being modeled. Matching model 

extensions to underlying processes may also enable models to be more easily communicated to 

stakeholders. 

Parameters within the model have thus far been assumed to be constant and independent of 

development time. However, it may be desirable for one or more of the model parameters to depend 

on development time. For example, allowing the rate of reporting 𝑘𝑒𝑟 to increase with development 

time 𝑡 could capture delays between claim events and reports: 
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 𝑘𝑒𝑟(𝑡) = 𝛽𝑒𝑟 ∙ 𝑡 (3.7) 

                   

Alternatively, liability claims outstanding in later development periods may be those in/awaiting 

litigation. To reflect a potentially slower rate of settlement and subsequent payment for such claims, a 

nonlinear rate of payment 𝑘𝑝(𝑡) could be specified as follows: 

 
𝑘𝑝(𝑡) =

𝛽𝑝,1

𝛽𝑝,2 + 𝑡
 (3.8) 

        

This function assumes that rate of payment reductions decrease over development time. Substituting 

the above rate functions into Eq. (3.1) gives 

 

 

 

𝑑𝐸𝑋/𝑑𝑡 =  −𝛽𝑒𝑟 ∙ 𝑡 ∙ 𝐸𝑋 

𝑑𝑂𝑆/𝑑𝑡 =  𝛽𝑒𝑟 ∙ 𝑡 ∙ 𝑅𝐿𝑅 ∙ 𝐸𝑋 − {𝛽𝑝,1/(𝛽𝑝,2 + 𝑡)} ∙ 𝑂𝑆 

𝑑𝑃𝐷/𝑑𝑡 =  {𝛽𝑝,1/(𝛽𝑝,2 + 𝑡)}  ∙ 𝑅𝑅𝐹 ∙ 𝑂𝑆 

(3.9) 

Implied development patterns for the baseline model and extended model incorporating the above 

functions are outlined in Appendix A. 

The proportion parameters could also be expressed as functions. For example, case reserves may 

be less robust at later development times for claims facing uncertain litigation. In practice, there are 

numerous plausible functions for describing how the claims process parameters are observed or 

perceived to behave; however, these will not be explored further in this paper.  
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It is also possible to increase the number of compartments to reflect claims sub-processes. For 

example, a bodily injury claims sub-class may exhibit a marked delay between claims being reported 

and subsequently being settled while damages are being quantified. This could be modeled using a 

“delay” state as follows: 

 

Other potentially modelable sub-processes include calendar shocks (Section 4.2.2), reopened 

claims, third party claims payment recoveries, reinsurance recoveries, latent claims etc. However, 

available data may limit the degree to which complexity can be increased. 

As noted in Section 3, it may be appropriate to initialize a compartmental reserving model with a 

non-premium measure of exposure. In which case the baseline schematic can be rewritten as follows: 

 

The parameter interpretations for this model are largely unchanged; however, the reported loss 

ratio is replaced by a reported burning cost: 

 Reported Burning Cost (“𝑅𝐵𝐶”): the proportion of exposures that become reported claims. 

The ultimate burning cost (𝑈𝐵𝐶) can be obtained from the 𝑅𝐵𝐶 and 𝑅𝑅𝐹 parameters (analogously 

to the 𝑈𝐿𝑅 in Eq. (3.4)) as 

 𝑈𝐵𝐶 =  𝑅𝐵𝐶 ∙ 𝑅𝑅𝐹 (3.10) 

This parameterization could be useful for pricing. The anticipated exposure for a cohort of new 

business could be multiplied by a selected 𝑈𝐵𝐶 (allowing for changes in underwriting, claims 

environment, reserve robustness etc.) to derive an estimated loss cost. This may form the risk premium 

or be a precursor to a full frequency-severity analysis, for example. 

Finally, compartmental reserving models can be generalized to describe exposure accumulation for 

cases where steady-state conditions do not hold (see Section 3). This can be achieved by continuously 

inputting portions of premium/exposure into the system over a period of time. 
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For example, if claims are grouped into an underwriting cohort then ultimate premiums can be 

projected to derive a discrete incremental writing pattern. For a cohort’s premium and claims data 

observed at discrete development times 𝑟∆, 𝑟 ∈ {0,1,2, … } after the commencement of the underwriting 

cohort, 𝑃𝑃𝑁[𝑟] can be defined as the proportion of ultimate premiums written uniformly over the 

period 𝑟∆→ 𝑟∆ + ∆. It follows that ∑ 𝑃𝑃𝑁[𝑟] = 1∞
0 . The input to the exposure compartment (denoted 

by 𝐸𝑋⃗⃗⃗⃗  ⃗) over each continuous time increment 𝑡 → 𝑡 + 𝛿𝑡 (where 𝛿 is infinitesimally small) can then be set 

to 

 
𝐸𝑋⃗⃗⃗⃗  ⃗(𝑡 → 𝑡 + 𝛿𝑡) =  𝑢𝑙𝑡𝑖𝑚𝑎𝑡𝑒 𝑝𝑟𝑒𝑚𝑖𝑢𝑚𝑠 ∙ 𝛿𝑡 ∙ 𝑃𝑃𝑁 (⌊

𝑡

∆
⌋) (3.11) 

where ⌊∙⌋ denotes the floor or “next smallest integer value”. If there is substantial time between 

policies being written and subsequently incepting (i.e. bound but not incepted “BBNI” policies), then 

the aforementioned writing pattern could be replaced by an inception pattern. 

3.3 Limitations 

As discussed in Section 3, all exposures can be input to the compartmental reserving system at 

time 0 under steady-state conditions. However, if steady-state conditions do not hold and material 

exposure fluctuations are not taken into account (e.g. using the approach outlined above), these will 

be absorbed into the reporting rate parameter 𝑘𝑒𝑟. This could lead to misleading 𝑘𝑒𝑟 comparisons if 

the model is fitted to multiple claims cohorts, and additionally, may result in poor model fits. 

Equation (3.5) illustrates a key assumption of deterministic compartmental reserving models: at a 

given time, claims within each compartment are assumed to be well-mixed and homogeneous i.e. they 

are assumed to behave uniformly and in accordance with a single set of parameters. In reality, each 

individual claim is likely to have a distinct 𝑅𝐿𝑅, 𝑘𝑒𝑟, 𝑅𝑅𝐹 and 𝑘𝑝 from every other claim. However, for 

an aggregated cohort of claims values it is only necessary for the average behavior of the cohort to be 

in line with the model parameters at each time, which may be a reasonable assumption for a high 

volume of claims within a particular claim size range. 

A limitation of this approach is that a cohort with many heterogeneous individual claims (e.g. 

low-frequency high-value claims) or erratic case reserve fluctuations may not be well reflected by a 

deterministic compartmental model. To model a heterogeneous cohort, one could cap claims values 

within the cohort at a specified threshold and apply a frequency-severity or alternative approach for 

losses above the threshold. Other data segmentation techniques may be appropriate or, alternatively, 

the differing behavior of individual claims may be more accurately reflected by a stochastic or 

semi-stochastic compartmental model, as outlined in Appendix B.  

A practical limitation is that some claims cohorts will have limited development histories, 



Hierarchical Compartmental Models for Loss Reserving 

Casualty Actuarial Society E-Forum, Summer 2016  17 

preventing a credible deterministic compartmental reserving model from being fitted due to a high 

ratio of parameters relative to data points. This limitation is addressed in Section 4. 

3.4 Illustration 

A spreadsheet containing a parameter-adjustable discretized compartmental reserving model is 

available at: http://www.casact.org/pubs/forum/16sforum/. This illustrates the dynamics of how the 

amounts in each compartment are determined over time for both constant and non-constant rate 

parameters. Additionally, it allows both steady-state and accumulating exposure. 

http://www.casact.org/pubs/forum/16sforum/
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4. HIERARCHICAL COMPARTMENTAL RESERVING CASE STUDY 

The preceding Sections explore a deterministic compartmental reserving model for a single cohort 

of claims (e.g. an accident year). However, reserves are typically set for several cohorts of claims, often 

grouped into triangles. Cohorts are likely to have some shared characteristics; for example, due to the 

same underwriters and claims handling philosophy. However, they are also likely to exhibit differences; 

for example, due to changes in underlying risk profiles and differing claims environments.  

The nonlinear hierarchical approach outlined in Section 2.3 allows for individual claims cohort 

characteristics when the data are credible, while allowing less mature cohorts to borrow strength from 

more mature cohorts. This can help to achieve parsimony. Following Guszcza (2008), triangles are 

viewed as “longitudinal” datasets, where claims cohorts are individuals and cumulative losses at 

various development times are a series of observations for each individual. 

Frequentist and Bayesian hierarchical compartmental models will be fitted to a sample loss 

reserving dataset obtained at: http://www.casact.org/research/index.cfm?fa=loss_reserves_data. 

The selected workers’ compensation dataset comprises both outstanding and cumulative paid claims 

development data grouped by accident years 1988-1997 and development years 1-10, together with 

earned premiums by accident year. The dataset contains both upper triangles (calendar years 

1988-1997) and lower triangles of data (calendar years 1998-2006). The upper triangles and earned 

premiums as at 12/31/1997 are as follows: 

 

 

Outstanding Claims ($'000s)

AY Prem 1 2 3 4 5 6 7 8 9 10

1988 104 53 41 32 25 17 13 10 7 2 1

1989 89 54 37 27 20 14 10 7 3 2

1990 86 55 37 28 18 11 7 4 3

1991 99 61 42 26 15 9 6 4

1992 105 66 46 31 22 12 8

1993 119 68 51 40 22 17

1994 111 62 47 32 24

1995 78 57 49 35

1996 64 57 42

1997 48 41

Cumulative Paid Claims ($'000s)

AY Prem 1 2 3 4 5 6 7 8 9 10

1988 104 10 23 33 40 45 48 50 51 52 52

1989 89 8 19 30 37 41 43 45 46 46

1990 86 9 24 35 43 48 51 53 54

1991 99 13 33 47 56 62 65 67

1992 105 11 29 42 51 56 59

1993 119 12 27 38 47 51

1994 111 11 27 38 46

1995 78 13 32 44

1996 64 13 31

1997 48 9

http://www.casact.org/research/index.cfm?fa=loss_reserves_data
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Claims development data should initially be visualized by accident year to establish whether: 

1) A compartmental model is appropriate i.e. whether there is a detectable process; and 

2) There are any claims process characteristics that can be identified from the outset. 

The below plots suggest a clear process between claims being reported and subsequently paid, 

therefore a compartmental model may be appropriate. The data are also relatively stable, suggesting 

that the baseline compartmental model outlined in Section 3 is an appropriate starting point.  

 

Incurred development has a clear downwards trend typical of over-stated case reserves at some 

point during the development history, i.e. 𝑅𝑅𝐹 < 1: 
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In Section 4.1 a frequentist hierarchical compartmental model will be fitted, assessed for goodness 

of fit and improved as necessary. A Bayesian implementation will be explored in Section 4.2. For both 

exercises, model predictability will be tested against the lower triangle hold-out samples.  

4.1 Frequentist modeling 

The motivations for exploring frequentist hierarchical compartmental models (and point estimates) 

before their Bayesian counterparts are as follows: 

 Best estimate reserves are of principle stakeholder interest, followed by reserve uncertainty; 

 Fewer modeling assumptions are required and thus model building is less time consuming; 

and 

 Model run times are relatively quick, allowing models to be tested, interpreted and 

improved upon relatively quickly. 

The baseline compartmental model ODEs (Section 3) are 

 

 

 

𝑑𝐸𝑋/𝑑𝑡 =  −𝑘𝑒𝑟 ∙ 𝐸𝑋 

𝑑𝑂𝑆/𝑑𝑡 =  𝑘𝑒𝑟 ∙ 𝑅𝐿𝑅 ∙ 𝐸𝑋 − 𝑘𝑝 ∙ 𝑂𝑆 

𝑑𝑃𝐷/𝑑𝑡 =  𝑘𝑝 ∙ 𝑅𝑅𝐹 ∙ 𝑂𝑆 

 

(4.1) 

with initial conditions 𝐸𝑋(0) = 𝑒𝑎𝑟𝑛𝑒𝑑 𝑝𝑟𝑒𝑚𝑖𝑢𝑚𝑠 = 𝑃, 𝑂𝑆(0) = 0 and 𝑃𝐷(0) = 0 (assuming 

steady-state exposure ‒ see Section 3). To ensure that compartmental model parameter estimates are 

positive, we reparameterize using the logarithm of the parameters {𝑙𝑘𝑒𝑟 = log(𝑘𝑒𝑟) , 𝑙𝑅𝐿𝑅 = log(𝑅𝐿𝑅) , 

𝑙𝑘𝑝 = log(𝑘𝑝) , 𝑙𝑅𝑅𝐹 = log(𝑅𝑅𝐹)} to give an initial “structural” model: 

 

 

 

𝑑𝐸𝑋/𝑑𝑡 =  −exp (𝑙𝑘𝑒𝑟) ∙ 𝐸𝑋 

𝑑𝑂𝑆/𝑑𝑡 =  exp (𝑙𝑘𝑒𝑟) ∙ exp (𝑙𝑅𝐿𝑅) ∙ 𝐸𝑋 − exp (𝑙𝑘𝑝) ∙ 𝑂𝑆 

𝑑𝑃𝐷/𝑑𝑡 =  exp (𝑙𝑘𝑝) ∙ exp (𝑙𝑅𝑅𝐹) ∙ 𝑂𝑆 

 

(4.2) 

This model can be specified in a format compatible with the R software (R Core Team, 2016) 

package “nlmeODE” (Tornøe et al., 2004a) and combined with a grouped data object (see 

Appendices D and E). The data comprise upper triangles of outstanding and cumulative paid claims 

together with compartment initial conditions (earned premiums) by accident year, as outlined above. 

To fit a hierarchical compartmental model based on the above ODEs, it must be decided which of 

the model parameters should have random-effects and therefore vary by accident year. For this case 

study, the components of the ultimate loss ratio (the reported loss ratio and reserve robustness factor) 

will be assumed to vary by accident year to define a baseline hierarchical model.  
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The Eq. (4.2) outstanding and cumulative paid claims state-variable solutions for accident year  

𝑖 = 1 to 10 and development year 𝑗 = 1 to 11 − 𝑖 can be denoted 𝑓𝑂𝑆(𝑃𝑖 , 𝝓𝑖 , 𝑡𝑗) and 𝑓𝑃𝐷(𝑃𝑖 , 𝝓𝑖 , 𝑡𝑗) 

respectively, where 𝑃𝑖 is the earned premium for accident year 𝑖. Stacking response variables for 

outstanding claims 𝑂𝑆𝑖𝑗 and cumulative paid claims 𝑃𝐷𝑖𝑗  into a single response variable 

𝒚𝑖𝑗 = (𝑂𝑆𝑖𝑗 , 𝑃𝐷𝑖𝑗)
𝑇 enables a nonlinear hierarchical “statistical” model to be specified (Model 1): 

 𝒚𝑖𝑗 = 𝒇(𝑃𝑖 , 𝝓𝑖 , 𝑡𝑗) + 𝜺𝑖𝑗 

𝒚𝑖𝑗 = [
𝑂𝑆𝑖𝑗

𝑃𝐷𝑖𝑗
] ,     𝒇(𝑃𝑖, 𝝓𝑖 , 𝑡𝑗) = [

𝑓𝑂𝑆(𝑃𝑖, 𝝓𝑖 , 𝑡𝑗)

𝑓𝑃𝐷(𝑃𝑖, 𝝓𝑖, 𝑡𝑗)
],     𝜺𝑖𝑗 = [

𝜀𝑖𝑗
𝑂𝑆

𝜀𝑖𝑗
𝑃𝐷] 

𝝓𝑖 = [

𝜙1𝑖

𝜙2𝑖

𝜙3𝑖

𝜙4𝑖

] =

[
 
 
 
𝑙𝑘𝑒𝑟

𝑙𝑅𝐿𝑅𝑖

𝑙𝑘𝑝

𝑙𝑅𝑅𝐹𝑖]
 
 
 
= [

𝛽1

𝛽2

𝛽3

𝛽4

] + [

0
𝑏1𝑖

0
𝑏2𝑖

] = 𝜷 + 𝒃𝑖 

𝒃𝑖~𝑁2 ([
0
0
] , [

𝜓1
2 0

0 𝜓2
2]) , 𝜺𝑖𝑗~𝑁2 ([

0
0
] , 𝜎2 [

1 0
0 𝜆2]) 

(4.3) 

The fixed-effects 𝜷 represent the mean values of the logarithm of the claims process parameters 

across a theoretical “population” of accident years, and the random-effects 𝒃𝑖 represent the deviations 

of the individual accident year parameters 𝝓𝑖 from their mean values. The random-effects are assumed 

to be independent for different accident years and the within-accident-year errors 𝜺𝑖𝑗 are assumed to 

be independent for different (𝑖, 𝑗), and independent of the random-effects (Pinheiro and Bates, 2000). 

The variance of random-effect 𝑏𝑞𝑖 ∈ 𝒃𝑖 is denoted 𝜓𝑞
2. The within-accident-year variances are denoted 

𝜎2 and 𝜆2𝜎2 for outstanding and cumulative paid claims respectively.  

Initial fixed-effect parameter estimates are required to begin optimization, which could be obtained 

using a self-starting algorithm (Appendix C) or selected judgmentally as follows: 

 Development year 1 outstanding claims are observed to be a high proportion of earned 

premiums. Therefore the reported loss ratio initial value has been selected as 100%, i.e. all 

premiums are assumed to convert to reported claims. 

 The early outstanding loss peaks indicate a fast rate of reporting, so an initial value of 1.5 

has been selected. This results in a value of claims reported in the first development year 

equal to (1 − 𝑒−1.5) ∙ 𝑃 ∙ 𝑅𝐿𝑅 = 78% ∙ 𝑃 ∙ 𝑅𝐿𝑅. 

 The downwards incurred development trend indicates large case reserve redundancies 

(𝑅𝑅𝐹 < 1), therefore a value of 0.75 has been selected. 

 The rate of payment is observed to be slower than the rate of reporting, justifying a selected 

initial value equal to half the rate of reporting (0.75). 
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The above model can be combined with the previously outlined ODE system and fitted to the 

outstanding and cumulative paid triangles concurrently using the R package “nlme” (Pinherio et al., 

2016). Convergence is achieved in seconds. Appendix E contains the R model code and output. 

The estimated random-effect standard deviations (𝜓̂𝑞) relative to the fixed-effects (𝛽̂𝑝 ∈ 𝜷̂) for 𝑙𝑅𝐿𝑅𝑖  

(𝜓̂1 = 0.19; 𝛽̂2 = 0.03) and 𝑙𝑅𝑅𝐹𝑖 (𝜓̂2 = 0.13; 𝛽̂4 = −0.41) indicate significant variation by accident year, 

justifying the inclusion of the random-effects. The within-accident-year error standard deviation for 

paid claims fits is estimated to be 𝜆̂ = 18% of the within-accident-year error standard deviation for 

outstanding claims fits, which seems reasonable since paid claims development is comparatively stable. 

A set of diagnostic plots can be inspected to verify modeling assumptions and assess model fit: 

 

The upper left two plots indicate that the standardized residuals are approximately normal for this 

model, and the “Actual vs. Predicted” plot shows that the model fits the data reasonably well for most 

of the data range. However, some higher valued observations are under-predicted by the model, and 

the “Residuals vs. Predicted” plot highlights this. The remaining residual plots mostly lie between 

[-2, 2] and overlaid LOESS smoothers (Cleveland, 1979) suggest they are absent of trends. 
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To assess how well this model describes each accident year, we can plot the observed development 

data by accident year (circles) and superimpose the individual model fits (solid lines). To highlight the 

between-accident-year variability, the population-level fits (based on the fixed-effects and replicating 

a pooled model fit ‒ see Section 2.3) are also shown (dashed lines): 
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The population fits demonstrate that the model would not accurately describe claims development 

if parameters were fixed across accident years. The individual cumulative paid claims fits are 

reasonable, but the outstanding claims fits systematically under-predict the peak observations. It 

appears that claims are modeled to be reported over a longer time period than the data suggests. 

 

4.1.1 Development time-dependent reporting rate 

To attempt to improve the fits, we can adjust the structural model. Selecting a rate of reporting 

that speeds up over time may reduce the overall modeled reported time and reflect any reporting 

delays (see Section 3.2): 

 𝑘𝑒𝑟(𝑡) = 𝛽𝑒𝑟 ∙ 𝑡  

      

To incorporate this rate of reporting into the model, we can define 𝑙𝛽𝑒𝑟 = log(𝛽𝑒𝑟) and re-specify 

the compartmental model’s ODE system as follows: 
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𝑑𝐸𝑋/𝑑𝑡 =  −exp (𝑙𝛽𝑒𝑟) ∙ 𝑡 ∙ 𝐸𝑋 

𝑑𝑂𝑆/𝑑𝑡 =  exp (𝑙𝛽𝑒𝑟) ∙ 𝑡 ∙ exp (𝑙𝑅𝐿𝑅) ∙ 𝐸𝑋 − exp (𝑙𝑘𝑝) ∙ 𝑂𝑆 

𝑑𝑃𝐷/𝑑𝑡 =  exp (𝑙𝑘𝑝) ∙ exp (𝑙𝑅𝑅𝐹) ∙ 𝑂𝑆 

 

(4.4) 

This structural model can be specified in R using the code in Appendix E. 

Revising the definition of 𝒇(𝑃𝑖 , 𝝓𝑖 , 𝑡𝑗) to reflect the state-variable solutions of Eq. (4.4), we can write 

down a second hierarchical model (Model 2): 

 𝒚𝑖𝑗 = 𝒇(𝑃𝑖 , 𝝓𝑖 , 𝑡𝑗) + 𝜺𝑖𝑗 

𝒚𝑖𝑗 = [
𝑂𝑆𝑖𝑗

𝑃𝐷𝑖𝑗
] ,     𝒇(𝑃𝑖, 𝝓𝑖 , 𝑡𝑗) = [

𝑓𝑂𝑆(𝑃𝑖, 𝝓𝑖 , 𝑡𝑗)

𝑓𝑃𝐷(𝑃𝑖, 𝝓𝑖, 𝑡𝑗)
],     𝜺𝑖𝑗 = [

𝜀𝑖𝑗
𝑂𝑆

𝜀𝑖𝑗
𝑃𝐷] 

𝝓𝑖 = [

𝜙1𝑖

𝜙2𝑖

𝜙3𝑖

𝜙4𝑖

] =

[
 
 
 

𝑙𝛽𝑒𝑟

𝑙𝑅𝐿𝑅𝑖

𝑙𝑘𝑝

𝑙𝑅𝑅𝐹𝑖]
 
 
 
= [

𝛽1

𝛽2

𝛽3

𝛽4

] + [

0
𝑏1𝑖

0
𝑏2𝑖

] = 𝜷 + 𝒃𝑖 

𝒃𝑖~𝑁2 ([
0
0
] , [

𝜓1
2 0

0 𝜓2
2]) , 𝜺𝑖𝑗~𝑁2 ([

0
0
] , 𝜎2 [

1 0
0 𝜆2]) 

(4.5) 

The model form, number of estimable parameters and statistical assumptions are unchanged from 

the previous model. However, rather than estimating the logarithm of the rate of reporting, we are 

estimating the logarithm of the linear coefficient for how the rate of reporting increases over 

development time, i.e. 𝑙𝛽𝑒𝑟 replaces 𝑙𝑘𝑒𝑟.  

To ensure that outstanding claims are modeled to be reported over a shorter time-frame than 

previously, the starting value for 𝑙𝛽𝑒𝑟 has been set to 5. This implies a reporting rate that is 

approximately 1.5 times faster than the Model 1 estimated rate at development year 0.5. The remaining 

initial parameter values have been set to the estimated fixed-effects in the previous model (to 2 decimal 

places). The model code and numerical output is contained in Appendix E. 

Under Model 2, the within-accident-year error standard deviation for cumulative paid claims fits is 

estimated to be 𝜆̂ = 25% of the within-accident-year error standard deviation for the outstanding 

claims fits (up from 𝜆̂ = 18%), which may be due to an improvement in outstanding claims model fits. 

The “Actual vs. Predicted” plot below suggests that this model fits the data more closely than the 

last; however, the residuals exhibit a minor violation of normality. Furthermore, the 

“Residuals vs. Development Year” plot has a downwards trend across later development periods, 

indicating a small degree of over-prediction. Few data points drive this trend however, and therefore 

it may not be significant.  
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The inclusion of a time-dependent rate of reporting has resulted in a more accurate description of 

the outstanding claims peaks. However, for the 1991 accident year there is evidence of continued over 

prediction, perhaps due to a differing rate of payment for this year. 

 

 

 

Paid claims are slightly over-predicted for later development periods, consistent with the residual 

plots. However, the incurred fits are improved due to the more accurate description of outstanding 

claims. A statistical comparison of this model against the last shows that the information criterion 
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statistics (AIC and BIC) have both reduced. Therefore we may deduce that Model 2 is preferred to 

Model 1 and inspect it in greater detail (see Appendix E) 

Approximate 95% confidence intervals show that the fixed-effects 𝜷 (the mean-level logarithm of 

the compartmental reserving model parameters) are statistically significantly different from zero at the 

1% level. Furthermore, the estimated fixed-effects correlation matrix contains a strong negative 

correlation between the rate of reporting and rate of payment parameters (-0.72). This seems intuitive: 

if few claims are reported over a given time period, a case handling team is likely to be better equipped 

to handle each payment more quickly than if many claims are reported over an equivalent time period. 

At this stage the structural model could justifiably be selected as final. However, for other datasets 

further modifications may be required, such as those outlined in Section 3.2.  

4.1.2 Random-effects correlation 

In a hierarchical framework there are various possible statistical model modifications. For example, 

correlations between random-effects can be explored. The graphs below show the Model 2 estimated 

𝑅𝐿𝑅𝑖 and 𝑅𝑅𝐹𝑖 parameters for each accident year alongside earned premiums for illustration: 

  

The first plot suggests a positive correlation between the reported loss ratio and reserve robustness 

factor parameters by accident year, indicative of a case reserving cycle effect, i.e. more conservative 

case reserves (low 𝑅𝑅𝐹𝑖) in a hard market (low 𝑅𝐿𝑅𝑖) to create cushions for the future (Line et al., 2003). 

The model estimates market softening between 1994 and 1997 (increasing 𝑅𝐿𝑅𝑖); a conclusion 

supported by reducing premium volumes across these years.  

Additionally, case reserves are estimated to be increasingly robust between 1993 and 1997, which 

corroborates the reducing downward trend for incurred model fits across these years. There is a 
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discrepancy for the 1991 accident year where the data appear to be exhibiting over-reserving, yet the 

model does not recognize this. 

To estimate the correlation between the random-effects for 𝑙𝑅𝐿𝑅𝑖 and 𝑙𝑅𝑅𝐹𝑖, we can update the 

random-effects variance-covariance matrix to define a third model (Model 3 in Appendix E): 

 
𝚿 = [

𝜓1
2 𝜓12

𝜓21 𝜓2
2 ]  

The covariance between random-effect 𝑞 and random-effect 𝑟 ≠ 𝑞 is denoted 𝜓𝑞𝑟. The updated 

model estimates a strong and statistically significant positive correlation between the estimated 

reported loss ratio and reserve robustness factor random-effects (0.78).  

To assess whether this model is significantly improved from the last, a likelihood ratio test can be 

carried out. The resultant p-value of 0.013 indicates that the hypothesis that the correlation between 

the random-effects is zero can be rejected at the 5% level (but not at the 1% level). We may therefore 

marginally prefer Model 3 to Model 2, particularly if we wish to make inferences about the correlation 

between 𝑙𝑅𝐿𝑅𝑖 and 𝑙𝑅𝑅𝐹𝑖 to assess case reserve cycle strength. 

We could add random-effects for the remaining compartmental model parameters to define a 

fourth model. For example, a “block-diagonal” random-effects variance-covariance structure 

(Pinheiro and Bates, 2000) allows the rate of payment to vary by accident year independently of 𝑙𝑅𝐿𝑅𝑖 

and 𝑙𝑅𝑅𝐹𝑖, resulting in differing payment patterns by accident year: 

 

𝚿 = [

𝜓1
2 𝜓12 0

𝜓21 𝜓2
2 0

0 0 𝜓3
2

]  

The statistical comparisons for Model 4 against the previous models (Appendix E) show a reduced 

BIC and significant likelihood ratio test for the new random-effect, suggesting that Model 4 should 

be preferred. However, the “Residuals vs. Development Year” diagnostic comparisons below tell a 

different story. Although Models 3 and 4 both produce a downwards residual trend which indicates a 

degree of over-prediction, Model 4’s trend is stronger. 

A double-log transformation log{𝒚𝑖𝑗} = log{𝒇(𝑃𝑖 , 𝝓𝑖 , 𝑡𝑗)} +  𝜺𝑖𝑗 reduces the downwards trend for both 

models, but residual normality is consequently violated (not shown). 

Although the residual plot for Model 3 has two outliers, we may judge this model more suitable 

for best estimate reserving purposes if it is considered less likely to over-project ultimate losses. On 

this basis Model 4 will be rejected in favor of Model 3 (noting that either model could be justifiably 

selected).  
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While it may be possible to further improve model fits by experimenting with alternative initial 

parameter values, Model 3 appears adequate based on the residual plot above and individual accident 

year fits (see below). We can therefore select Model 3 as final and compare its projections against the 

lower triangle hold-out samples (open circles) as follows:  
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Outstanding claims extrapolations have generally under-estimated actual outstanding development, 

while the cumulative paid claims extrapolations have generally over-estimated actual cumulative paid 

development. 

 

The under- and over-projections largely offset each other for the incurred extrapolations, although 

the aforementioned 1991 accident year development fit issue has propagated into the extrapolation. 
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In contrast to the historical upper triangle development, hold-out sample outstanding claims have 

taken longer to converge to zero and hold-out sample cumulative paid claims increases have tapered 

relative to their initial “growth”. These characteristics suggest a slow-down in the rate of payment 

in the hold-out sample, perhaps consistent with the nonlinear rate of payment function defined in 

Section 3.2. It could be that the estimated softening market (see graph below) led to tighter cashflow 

and slower payments (Line et al., 2003). There may also be reserve robustness improvements in later 

hold-out development years. Additionally, the residual plots at the fitting stage displayed some 

evidence of over-prediction, which could partially account for the paid claims over-projections.  

Although the modeled dataset showed insufficient evidence of a payment rate reduction over time, 

had cashflow tightening been anticipated as a result of the estimated softening market, a practitioner 

could have scenario tested slowdowns in the rate of payment for the purpose of setting reserves.  

In addition to payment rate reductions, case reserve robustness appears to have increased between 

the 1993 and 1996 accident years, shown by negative incurred development flattening across these 

years. Furthermore, the 1997 accident year appears to have exhibited under-reserving (or late 

reporting/claim re-openings) in contrast to the over-reserving trend seen in previous years. The 

compartmental model estimated increasing reserve robustness between 1993 and 1996, and a small 

amount of under-reserving for 1997. This is despite there being only two observations available for 

modeling 1997, resulting in a fit principally reliant on data-rich years which exhibited over-reserving: 

    

The hierarchical compartmental reserving (CR) modeled development time 10 and ultimate 

incurred claims (time ∞, given by 𝑃𝑖 × 𝑅𝐿𝑅̂𝑖 × 𝑅𝑅𝐹̂𝑖) are shown below, alongside the Munich chain 

ladder (MCL; Quarg and Mack, 2004) and basic chain ladder (CL) incurred method results (without 

tail factors) by accident year.  
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To compare the predictability of each method, the percentage differences from the actual time 10 

incurred claims are shown with the closest estimate(s) highlighted: 

 

AY 
Time 10 
Incurred 

CR Incurred 

t=10   t=∞ 
MCL 

Incurred 
CL 

Incurred 

 
var(CR) var(MCL) var(CL) 

1988 53,261 54,149  53,611 53,261 53,261  2% 0% 0% 

1989 48,162 48,769  48,288 47,640 48,109  1% -1% 0% 

1990 56,368 57,447  57,112 57,132 54,697  2% 1% -3% 

1991 71,274 74,028  73,926 72,016 65,550  4% 1% -8% 

1992 67,515 67,718  67,323 66,276 61,847  0% -2% -8% 

1993 62,122 62,331  61,664 60,035 60,658  0% -3% -2% 

1994 59,974 61,670  61,160 59,663 60,521  3% -1% 1% 

1995 71,829 71,073  70,878 69,426 66,815  -1% -3% -7% 

1996 72,573 71,970  71,959 69,680 61,118  -1% -4% -16% 

1997 59,939 53,597  53,617 49,977 42,242  -11% -17% -30% 

Total 623,017 622,751  619,537 605,106 574,819  0% -3% -8% 

 

The following conclusions can be drawn: 

 The compartmental model produces the closest time 10 incurred loss estimates in total; 

 The superior estimation accuracy of the compartmental approach for less mature accident 

years can be accredited to the model estimating increasingly robust case reserve setting 

(driven by a softening market ‒ see above); and 

 The Munich chain ladder method recognizes a shift in case reserve robustness by utilizing 

paid claims development. However, the basic chain ladder method does not, resulting in 

heavily under-estimated time 10 incurred losses. 

In practice the Bornhuetter-Ferguson method (1972) may be used for the less mature years, 

possibly closing the estimation accuracy gap. Although not shown, the compartmental modeled 

ultimate paid and incurred estimates are equal whereas the Munich chain ladder estimates differ. 

Thus far we have only considered point estimates. However, a compartmental framework enables 

scenario testing of one or more of the claims process parameters to generate a range of possible 

ultimate claims. For example, case reserving philosophy or settlement approaches could be discussed 

with the relevant case handlers/claims teams to establish a range of plausible 𝑅𝑅𝐹 and/or 𝑘𝑝 

parameters.  

Prediction errors could be assessed analytically or using bootstrapping techniques (England and 

Verrall, 1999). Additionally or alternatively, a hierarchical compartmental reserving model could be 

specified in a fully Bayesian framework, which will be explored in the following Sections.  
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4.2 Bayesian modeling 

We may wish to implement the selected frequentist model within a Bayesian framework for the 

reasons outlined in Section 2.3.1. In particular: 

 Judgment and information external to the claims triangle data can be robustly incorporated; 

 Reserve uncertainty can be quantified as part of the fitting process; and 

 Flexibility enables additional model features to be incorporated with relative ease. 

We can specify a Bayesian hierarchical model by rewriting the paid and outstanding compartmental 

model differential equation solutions in Eq. (4.5) to explicitly state parameters with random-effects 

(𝝓𝑖) and without random-effects (𝜼). The Bayesian implementation will incorporate autoregressive 

sub-models for outstanding and cumulative paid claims residuals to reduce recurrent under/over 

prediction (Zhang, Dukic and Guszcza, 2012): 

 𝑂𝑆𝑖𝑗 = 𝑓𝑂𝑆(𝑃𝑖 , 𝝓𝑖 , 𝜼, 𝑡𝑗) + 𝜀𝑖𝑗
𝑂𝑆 

𝑃𝐷𝑖𝑗 = 𝑓𝑃𝐷(𝑃𝑖 , 𝝓𝑖 , 𝜼, 𝑡𝑗) + 𝜀𝑖𝑗
𝑃𝐷 

(4.6) 

𝝓𝑖 = [
𝜙1𝑖

𝜙2𝑖
] = [

𝑙𝑅𝐿𝑅𝑖

𝑙𝑅𝑅𝐹𝑖
] 𝜼 = [

𝜂1

𝜂2
] = [

𝑙𝑘𝑒𝑟

𝑙𝑘𝑝
] 

[
𝜙1𝑖

𝜙2𝑖
] ~𝑁2 (𝜽 = [

𝜃1

𝜃2
] ,𝚿 = [

𝜓1
2 𝜓12

𝜓21 𝜓2
2 ]) 

𝜀𝑖𝑗
𝑂𝑆 = 𝜌𝑂𝑆𝜀𝑖𝑗−1

𝑂𝑆 + 𝛿𝑖𝑗
𝑂𝑆 

𝛿𝑖𝑗
𝑂𝑆~𝑁{0, 𝜎𝑂𝑆

2 (1 − 𝜌𝑂𝑆
2 )} 

𝜀𝑖1
𝑂𝑆~ 𝑁(0, 𝜎𝑂𝑆

2 ) 

𝜀𝑖𝑗
𝑃𝐷 = 𝜌𝑃𝐷𝜀𝑖𝑗−1

𝑃𝐷 + 𝛿𝑖𝑗
𝑃𝐷 

𝛿𝑖𝑗
𝑃𝐷~𝑁{0, 𝜎𝑃𝐷

2 (1 − 𝜌𝑃𝐷
2 )} 

𝜀𝑖1
𝑃𝐷~ 𝑁(0, 𝜎𝑃𝐷

2 ) 

The statistical assumptions are analogous to the selected frequentist model and similarly, 𝑙𝑅𝐿𝑅𝑖 and 

𝑙𝑅𝑅𝐹𝑖 are assumed to vary by accident year with co-dependency. Residual autocorrelation terms are 

denoted 𝜌𝑂𝑆 and 𝜌𝑃𝐷, and model process error is captured by the residual error terms 𝜀𝑖𝑗
𝑂𝑆 and 𝜀𝑖𝑗

𝑃𝐷. 

Normal prior distributions have been assigned to the implied fixed-effects. Similarly to the frequentist 

model these are the means of 𝑙𝑅𝐿𝑅𝑖 and 𝑙𝑅𝑅𝐹𝑖 (denoted 𝜽), together with 𝑙𝛽𝑒𝑟 and 𝑙𝑘𝑝 (denoted 𝜼): 

 𝜽~𝑁2(𝜽̅, 𝛀) 

𝜼~𝑁2(𝜼̅, 𝚷) 
(4.7) 

In Eq. (4.7), 𝜽̅ and 𝛀 denote the prior mean and variance-covariance matrix of 𝜽, whereas 𝜼̅ and 𝚷 

denote the prior mean and variance-covariance matrix of 𝜼. 

The prior means for the fixed-effects have been set to the estimated fixed-effects in the selected 

frequentist model, and the prior variance-covariance matrices describing uncertainty in the 
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fixed-effects have been set to replicate the frequentist estimated fixed-effects confidence intervals: 

 
𝜽̅ = {−0.15,−0.21}𝑇 

𝜼̅ = {1.7, −0.9}𝑇 

𝛀 = [0.05132 0
0 0.05062] 

𝚷 = [0.03922 0
0 0.01242] 

(4.8) 

These priors imply fixed-effect independence; however, their posterior distributions can 

demonstrate dependence. A prior distribution has also been assigned to the variance-covariance matrix 

of 𝝓𝑖  (𝚿) i.e. the variance of the implied random-effects, describing the magnitude of variability for the 

accident year varying (log) proportion parameters 𝑙𝑅𝑅𝐹𝑖 and 𝑙𝑅𝐿𝑅𝑖: 

 𝚿~𝑊2
−1(𝚺, 𝜈) (4.9) 

𝑊2
−1 is an inverse-Wishart distribution (and conjugate prior) with 2 × 2 scale matrix 𝚺 and 𝜈 degrees 

of freedom (Gelman et al., 2013). The frequentist analysis results have not been used to inform this 

prior. Instead, a vague prior has been set to allow the variance-covariance matrix to be principally 

estimated from the data. The prior inverse scale matrix and degrees of freedom have been set as 

 𝚺−1 = [
1 0.8

0.8 1
], 𝜈 = 2 (4.10) 

where the degrees of freedom are as low as possible while still maintaining a proper distribution 

(Johnson and Kotz, 1972). Although this prior is vague in its description of accident year variability 

magnitude, the off-diagonal elements have been set to give a 0.80 positive correlation between 𝑙𝑅𝐿𝑅𝑖 

and 𝑙𝑅𝑅𝐹𝑖 (recall that the estimated correlation in the selected frequentist model was 0.78).  

Vague priors have been assigned to the remaining model parameters. Priors for the standard 

deviations of the within-accident-year errors have been selected to comfortably cover the standard 

deviations estimated in the selected frequentist model. Finally, priors for the correlation terms of the 

autoregressive processes have been set to cover the minimum and maximum correlation values: 

 
𝜎𝑂𝑆~𝑈(0,10000) 

𝜎𝑃𝐷~𝑈(0,5000) 

𝜌𝑂𝑆~𝑈(−1,1) 

𝜌𝑃𝐷~𝑈(−1,1) 
(4.11) 

Using OpenBUGS (Bayesian inference Using Gibbs Sampling; Lunn et al., 2000), three parallel 

Markov chains were run with 60,000 burn-in iterations per chain, followed by 100,000 iterations per 

chain. To reduce sample autocorrelation, every 50th iteration of each chain was used, resulting in 2,000 

simulated draws per chain and 6,000 samples in total. Various diagnostics checks were carried out to 

ensure that the simulation had converged to its approximate stationary distribution. Individual 

parameter estimation convergence was initially assessed and, as an example below, the values of 𝑘𝑝 

have been plotted over MCMC iterations by Markov chain. 
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The similar and stable chains indicate that the posterior distribution of 𝑘𝑝 has approximately 

converged to its stationary distribution. Densities for model parameters were also inspected. The 

estimated ultimate loss ratio posterior density for the 1995 accident year is as follows: 

              

The density is smooth and bell-shaped, suggesting that convergence has been achieved. Finally, 

checks were carried out to assess sample autocorrelation. The plot below shows that the 

autocorrelation of the second chain 𝛽𝑒𝑟 samples is not statistically different from zero: 
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Given the diagnostics above (and various others not shown) the simulation appears to have reached 

approximate convergence and we can proceed to inspect the model diagnostic plots. Posterior 

densities are estimated for all parameters of interest, and therefore the diagnostic plots are based on 

estimated posterior density medians: 

 

Residual normality approximately holds and the model fits are close to the observations. However, 

similarly to the frequentist model there is a downward trend in the “Residuals vs. Development Year” 

plot across later development years.  

Similarly to Section 4.1, the individual accident year fits can be inspected. In the Bayesian setting 

however, for unobserved development years (𝑡𝑗 ∈  𝑖 + 𝑗 ≥ 12) 95% posterior predictive intervals 

(“PPIs”) can be plotted (Gelman et al., 2013). These show a range of prediction uncertainty due to 

both parameter and process uncertainty. Since this model is a Bayesian implementation of the selected 

frequentist model, we will compare the median fits, extrapolations and PPIs to the observed and 

hold-out sample development together: 
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The median fits are similar to the selected frequentist model with some minor improvements. The 

PPIs are slightly wider for less mature accident years and contain the possibility of both under- and 

over- reserving. However, the outstanding claims PPIs do not converge to zero and even fall below 

zero in later development periods because of the residual normality assumption in Eq. (4.6).  
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To address this shortfall, a double-log transformed model form was tested: 

 log(𝑂𝑆𝑖𝑗) = log{𝑓𝑂𝑆(𝑃𝑖 , 𝝓𝑖 , 𝜼, 𝑡𝑗)} + 𝜀𝑖𝑗
𝑂𝑆 

log(𝑃𝐷𝑖𝑗) = log{𝑓𝑃𝐷(𝑃𝑖, 𝝓𝑖 , 𝜼, 𝑡𝑗)} + 𝜀𝑖𝑗
𝑃𝐷 

(4.12) 

Similarly to the equivalent frequentist model, this transformation resulted in a violation of residual 

normality. In particular, there were too many small residuals relative to larger residuals, which is 

characteristic of an overfitted model. Therefore the model was rejected.  

The paid claims PPIs are generally narrower than the outstanding claims PPIs due to closer model 

fits: median 𝜎̂𝑃𝐷 = 760 and median 𝜎̂𝑂𝑆 = 3151. However, paid claims are over-projected similarly to 

the frequentist model, suggesting that a smaller residual error variance could instil false extrapolation 

confidence if possible future development period claims process shifts are not considered. 

 

To assess posterior parameter uncertainty, we can review median parameter estimates and their 

95% central posterior intervals {median [2.5%ile, 97.5%ile]} (Gelman et al., 2013). For the 1997 accident 

year 𝑅𝐿𝑅̂10 = 1.10 [0.95, 1.25] and 𝑅𝑅𝐹̂10 = 1.02 [0.83, 1.23], suggesting that case reserve robustness is 

the main driver of ULR uncertainty (𝑈𝐿𝑅̂10 = 1.12 [0.93, 1.30]).  

The estimated residual autocorrelations are 𝜌̂𝑂𝑆 = 0.58 [0.30, 0.83] and 𝜌̂𝑃𝐷 = 0.55 [0.27, 0.75], 

indicating moderate to strong serial correlation. The estimated accident year correlation between 𝑙𝑅𝐿𝑅𝑖 

and 𝑙𝑅𝑅𝐹𝑖 is 𝜌̂𝑙𝑅𝐿𝑅𝑖𝑙𝑅𝑅𝐹𝑖
= 𝜓̂12/{𝜓̂1𝜓̂2}  =  0.77 [0.38, 0.93], indicating a strong case reserving cycle effect. 

However, the 95% posterior interval is quite wide and the extent of the estimated effect is significantly 
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influenced by the variance-covariance matrix prior in Eq. (4.10).  

Model predictive power can be evaluated by inspecting the 95% PPI hold-out sample coverages as 

follows: 

95% PPI 
Coverage 

1-year 
ahead 

10-years 
ahead 

Total 

Outstanding 89% 100% 93% 

Paid 100%  67% 82% 

Incurred 100% 100% 98% 

The outstanding and incurred claims PPI coverages are close to the nominal 95% rate across all 

time horizons. The poor coverage for the 10-year ahead and total paid claims hold-out samples can 

be attributed to over-projection, particularly for the 1994 accident year. Removing this year from the 

coverage calculations gives a 10-year coverage of 78% and total coverage of 93%.  

The over-projections may be the result of hold-out sample rate of payment reductions (see Section 

4.1.2) and/or differing rates of payment by accident year not reflected by the structural model and 

PPIs. Similarly to the frequentist setting, we could have scenario tested slow-downs in the rate of 

payment over development time. PPI coverage could possibly have been improved in practice by 

using informative priors for the random-effects or, alternatively, by increasing the number of random 

effects. The latter option will be explored in the following scenario. 

4.2.1 Scenario 1: Fully random structure 

We may be able to achieve a more accurate description of historical claims development by allowing 

all claims process parameters to vary by accident year: 

 

𝝓𝑖 = [

𝜙1𝑖

𝜙2𝑖

𝜙3𝑖

𝜙4𝑖

] =

[
 
 
 
𝑙𝑘𝑒𝑟,𝑖

𝑙𝑅𝐿𝑅𝑖

𝑙𝑘𝑝,𝑖

𝑙𝑅𝑅𝐹𝑖]
 
 
 

 

[

𝜙1𝑖

𝜙2𝑖

𝜙3𝑖

𝜙4𝑖

]~𝑁4

(

 
 

𝜽 = [

𝜃1

𝜃2

𝜃3

𝜃4

] , 𝚿 =

[
 
 
 
 
𝜓1

2 𝜓12 𝜓13 𝜓14

𝜓21 𝜓2
2 𝜓23 𝜓24

𝜓31 𝜓32 𝜓3
2 𝜓34

𝜓41 𝜓42 𝜓43 𝜓4
2 ]
 
 
 
 

)

 
 

 

(4.13) 

𝚿 contains ten estimable parameters, which may not be supported by this dataset. However, 

negligible posterior covariance terms can be enforced by setting a prior assumption that 𝑙𝑘𝑒𝑟,𝑖 and 𝑙𝑘𝑝,𝑖 

vary independently of all other parameters (see below). The assigned prior distributions and assumed 

parameter values are unchanged from the previous model, yet fewer priors are required because we 

do not need to distinguish between those parameters that do and do not vary by accident year. 
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The fixed-effects prior assumptions are as follows: 

 𝜽~𝑁4(𝜽̅, 𝛀) 

𝜽̅ = {1.7, −0.15,−0.9, −0.21}𝑇 

𝛀 = [

0.03922 0 0 0
0 0.05132 0 0
0 0 0.01242 0
0 0 0 0.05062

] 

(4.14) 

The random-effects variance-covariance matrix prior assumptions are as follows: 

 𝚿~𝑊4
−1(𝚺, 𝜈) 

𝚺−1 = [

1 0 0 0
0 1 0 0.8
0 0 1 0
0 0.8 0 1

] , 𝜈 = 4 
(4.15) 

This assumes independence of the random-effects for 𝑙𝑘𝑒𝑟,𝑖 and 𝑙𝑘𝑝,𝑖 . The remaining parameter 

priors, statistical assumptions and convergence arguments are unchanged from the previous model. 
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The diagnostics reveal that the fits are closer to the observations than the previous model. 

However, the residuals appear to be in violation of normality, indicating a degree of overfitting. 

Additionally, the downwards residual vs. development year trend is worsened (analogously to when 

complexity was increased in the frequentist modeling). 

To assess this model against the last, we can compare each model’s deviance information criterion 

(DIC) as follows: 

DIC Outstanding Paid 

Bayesian Model 1 1031.0 879.6 

Bayesian Model 2 1003.0 890.1 

The DIC has decreased for the outstanding fits, indicating an improvement. However, it has 

increased for the paid fits which suggests that the model could be over-parameterized. There is an 

overall DIC reduction, and given the diagnostic plots a practitioner may select this model. In which 

case we will compare this model’s incurred extrapolations against the hold-out samples as follows: 

 

The fits more closely describe each individual year’s incurred development relative to the previous 

model. Additionally, despite a number of years exhibiting over-reserving, the 1995 accident year fit 

assumes under-reserving on average (median 𝑅𝑅𝐹̂8 = 1.08). This difference could be a feature of 

allowing all of the compartmental model parameters to vary by accident year according to a vague 

prior for 𝚿, enabling the model to place weight on the sharp incurred increase between development 

years 1 and 2. We could reduce the degree to which parameters vary across years (particularly less 
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mature years where priors carry greater weight) by setting an informative variance-covariance prior. 

The plots also show that the 1997 incurred density’s mean is greater than its median. This is because 

the ULRs are assumed to be log-normally distributed (recall from Eq. (4.13) that 𝑙𝑅𝐿𝑅𝑖 and 𝑙𝑅𝑅𝐹𝑖 are 

assumed to be normally distributed). 

    

The 95% PPI hold-out sample coverages (with the previous model’s stated in brackets) are as follows: 

95% PPI 
Coverage 

1-year 
ahead 

10-years 
ahead 

Total 

Outstanding 100% (89%) 100% (100%) 100% (93%) 

Paid 89% (100%) 67% (67%) 69% (82%) 

Incurred 100% (100%) 100% (100%) 100% (98%) 

PPI 1-year ahead coverage has marginally improved for outstanding claims but worsened for paid 

claims. Outstanding and incurred claims coverages have improved to 100% across all time horizons. 

However, paid claims coverage has deteriorated owing to the model estimated (average) 

under-reserving for the 1995 accident year not materializing. As with the previous model’s 

extrapolations, rate of payment reductions are not projected.  

The OpenBUGS code for this model is contained in Appendix F. 

The final scenario and area of model improvement that will be considered concerns the model fits 

by calendar year. 
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4.2.2 Scenario 2: Calendar shock sub-model 

The outstanding claims residuals vs. calendar year plot for the previous model (shown below) 

displays a moderate downwards positional shift of residuals between the 1995 and 1996 calendar years, 

and upwards positional shift between 1996 and 1997. 

              

This appears to be the result of outstanding claims exhibiting a step change at the same point in 

calendar time, perhaps due to a case reserve review during 1996. To capture the 1996 calendar shock 

within the model, we can define an indicator variable 𝐶𝑖𝑗 (for accident year 𝑖 = 1 to 10 and development 

year 𝑗 = 1 to 11 − 𝑖) to mark the time before and after the calendar shock for each accident year: 

 
𝐶𝑖𝑗 = {

1, 𝑖 + 𝑗 < 10
0,         𝑖 + 𝑗 ≥ 10

 (4.16) 

To quantify the impact of the apparent case reserve review, we can then define an estimable 

proportional calendar shock impact variable, 𝑎𝑖, and restate 𝑂𝑆𝑖𝑗 in Eq. (4.6): 

 𝑂𝑆𝑖𝑗 = 𝑓𝑂𝑆(𝑃𝑖, 𝝓𝑖, 𝑡𝑗) ∙ (1 − 𝐶𝑖𝑗 ∙ 𝑎𝑖) + 𝜀𝑖𝑗
𝑂𝑆 (4.17) 

Therefore up until the end of the 1995 calendar year, the expected outstanding claims for accident 

year 𝑖 and development year 𝑗 are equal to 𝑓𝑂𝑆(𝑃𝑖 , 𝝓𝑖 , 𝑡𝑗) as before. However, once the review has taken 

place, outstanding claims are estimated to be (1 − 𝑎𝑖)% of their pre-shock values. Subsequent claims 

payments can be modeled to account for the shock as follows: 

 𝑑𝐸𝑋/𝑑𝑡 =  −exp (𝑙𝛽𝑒𝑟) ∙ 𝑡 ∙ 𝐸𝑋 

𝑑𝑂𝑆/𝑑𝑡 =  exp (𝑙𝛽𝑒𝑟) ∙ 𝑡 ∙ exp (𝑙𝑅𝐿𝑅) ∙ 𝐸𝑋 − exp (𝑙𝑘𝑝) ∙ 𝑂𝑆 

𝑑𝑃𝐷/𝑑𝑡 =  exp (𝑙𝑘𝑝) ∙ exp (𝑙𝑅𝑅𝐹) ∙ (1 − 𝐶𝑖𝑗 ∙ 𝑎𝑖) ∙ 𝑂𝑆 

(4.18) 

Upper and lower bounds for the estimated change in outstanding claims following the calendar 

1988 1990 1992 1994 1996

-2
-1

0
1

2

OS Residuals vs CY

Calendar Year

R
e
s
id

u
a
ls



Hierarchical Compartmental Models for Loss Reserving 

Casualty Actuarial Society E-Forum, Summer 2016  45 

shock have been set at 1% and 199% of the outstanding claims prior to the shock and assumed to be 

accident year independent. Candidate 𝑎𝑖s are selected from a uniform distribution in the optimization:  

 𝑎𝑖~𝑈(−0.99,0.99) (4.19) 

The remaining parameter priors, statistical assumptions and convergence arguments are unchanged 

from the previous model. 

 

While the model fits are very close to the observations, there appears to be a serious violation of 

residual normality. The residual histogram shows that this model has far too many small magnitude 

residuals relative to mid-size residuals than expected under a standard normal distribution; an 

indication that claims are being overfitted by the model (similarly to the double-log model in Eq. (4.12)).  

DIC Outstanding Paid 

Bayesian Model 1 1031.0 879.6 

Bayesian Model 2 1003.0 890.1 

Bayesian Model 3 930.3 899.4 

The DIC has substantially reduced for outstanding claims but has increased again for paid claims. 
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Combined with the above diagnostics, this suggests that the model is over-parameterized.  

Although this model is not advisable for reserving purposes, its incurred extrapolations have been 

compared to the hold-out samples for illustrative purposes as follows:  

 

The 95% PPI hold-out sample coverages (with the previous model’s stated in brackets) are as follows: 

95% PPI 
Coverage 

1-year 
ahead 

10-years 
ahead 

Total 

Outstanding 100% (100%) 100% (100%) 98% (100%) 

Paid 89% (89%) 67% (67%) 71% (69%) 
Incurred 100% (100%) 89% (100%) 91% (100%) 

This model describes historical claims development more accurately than all previous models, yet 

incurred claims PPI coverage has reduced to its lowest level. It appears that explicitly modeling the 

outstanding claims calendar shock removes it from the modeled process error. Consequently, potential 

future calendar shocks are less likely to be adequately covered by the PPIs (such as the apparent 1999 

shock affecting the 1994, 1995 and 1997 accident years).  

The OpenBUGS code for this model is contained in Appendix F. 

Although a more complex model could be built for future calendar shocks, this would not resolve 

the existing overfitting issue. 
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5. DISCUSSION 

A hierarchical framework draws statistical strength across individuals, which can facilitate 

parsimony. However, as the case study demonstrates, this does not imply that the resultant model will 

be parsimonious. Diagnostic scrutiny is essential when selecting a hierarchical model for estimating 

reserves and their uncertainty. 

Clark and Rangelova (2015) illustrate the importance of capturing accident year/development year 

interactions, and recommend that statistical methods allow intervention points for adjustment of 

intermediate results. In a hierarchical compartmental framework, an optional number of 

random-effects describe accident year development pattern differences based on intuitive parameters. 

The parameters themselves can be modeled to vary over development time. This flexibility allows the 

description of accident year/development year interactions such as changes in reporting/settlement 

rates and case reserve robustness, in addition to calendar shocks. 

Although not demonstrated in the case study, continuous calendar trends such as inflation can be 

modeled within a compartmental framework. If a continuous “force of inflation” 𝛿 is assumed then 

expected claims payments 𝑓𝑃𝐷(𝑃𝑖 , 𝝓𝑖 , 𝑡𝑗) can be revised to include the inflation factor: 

 𝑓𝑃𝐷
′ (𝑃𝑖, 𝝓𝑖 , 𝑡𝑗) = 𝑓𝑃𝐷(𝑃𝑖, 𝝓𝑖 , 𝑡𝑗) ∙ 𝑒(𝑖+𝑗−2)𝛿 (5.1) 

As detailed by Zhang, Dukic and Guszcza (2012), the first calendar year 𝑖 + 𝑗 = 2 is treated as a 

“base” and subsequent expected calendar year payments are inflated by a factor 𝑒(𝑖+𝑗−2)𝛿, where 𝛿 is 

estimated or pre-specified. A similar approach could be taken to inflate outstanding claims or, 

alternatively, the differential equation system itself could be adjusted. 

The deterministic compartmental model assumption of a smooth and detectable claims process 

relies upon claims cohort homogeneity for a volume of claims. This may not always be the case, and 

therefore further research is required to establish the validity and value of hierarchical semi-stochastic 

compartmental reserving models (Appendix B).  

Other possible areas for future research include: 

 The use of compartmental models to capture specific sub-processes such as legal shocks, 

catastrophes, latent claims, reopened claims, reinsurance recoveries and 

salvage/subrogation, to name but a few. 

 Exploring the value of covariate models based on separate data sources. For example, if a 

claims handling team increased in size then one might expect the rate of payment to 

increase also. 



Hierarchical Compartmental Models for Loss Reserving 

Casualty Actuarial Society E-Forum, Summer 2016  48 

 Establishment of a library of reporting/payment rate vs. development time functions along 

with their corresponding development profile properties. 

 Simultaneous compartmental reserving for multiple insurance companies, e.g. by adding an 

extra level of hierarchy to describe company variation (Zhang, Dukic and Guszcza, 2012). 

Many of the aforementioned extensions could be naturally incorporated within a Bayesian 

framework. Additionally, the Bayesian implementation itself could be further refined by considering 

alternative prior distributions. For example, prior dependence of random-effect variance and 

correlation terms could be controlled by using the separation strategy proposed by Barnard, 

McCulloch and Meng (2000). 

Further work is required to evaluate the benefits of a compartmental approach compared to 

established methods, particularly for the estimation of reserve uncertainty. 
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6. CONCLUSIONS 

This paper introduces a practical compartmental modeling framework for describing cumulative 

claims development. In particular, by considering the claims process over time as  

Exposed to Risk → Claims Outstanding → Claims Paid, an intuitive set of parameters have been 

defined which include a measure of case reserve robustness.  

Cumulative paid claims model solutions are analogous to Clark’s growth curve approach to loss 

reserving (2003). In contrast to growth curves which contain implicit tail factors, compartmental 

reserving model tail factors and hence ultimate projections are dictated by the extrapolation of 

outstanding losses to zero and estimated case reserve robustness. A number of possible model 

extensions have been explored to describe the nuances of the class of business being modeled, 

including changing reporting and/or settlement rates. 

Following Guszcza (2008), a flexible nonlinear hierarchical framework is proposed to describe 

claims triangle data. Claims cohorts are viewed as individuals and cumulative losses are viewed as a 

series of observations for each individual. In contrast to Guszcza, cumulative paid triangles and 

outstanding claims triangles are fitted to, which enhances inference and interpretability. A probability 

sub-model allows a selection of the compartmental model parameters to vary by cohort and describe 

claims cohort pattern heterogeneity. Claims process trends can be identified and scenario tested, and 

parameter interpretability facilitates model discussion across the wider business. 

A Bayesian implementation (similar to Zhang, Dukic and Guszcza, 2012) enables the robust 

incorporation of judgment and/or external information into claims projections. In addition to 

quantifying reserve uncertainty consistently with its definition, it offers additional model flexibility so 

that features such as residual autocorrelation and calendar effects can be explicitly accounted for. 
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Supplementary Material 

A single-cohort compartmental reserving model illustration spreadsheet is available at 
http://www.casact.org/pubs/forum/16sforum/. The frequentist models in this paper were fitted using statistical software 
‘R’, freely available at http://www.r-project.org. The R packages “nlmeODE” and “nlme” can be installed from the base 
R program. The Bayesian models in this paper were fitted using Bayesian Gibbs Sampling software ‘OpenBUGS’, freely 
available at http://www.openbugs.net. The case study dataset is freely available at 
http://www.casact.org/research/reserve_data/wkcomp_pos.csv (NAIC company code 337). 

http://www.casact.org/pubs/forum/16sforum/
http://www.r-project.org/
http://www.openbugs.net/
http://www.casact.org/research/reserve_data/wkcomp_pos.csv
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Appendix A: Implied development patterns 

Implied continuous-time patterns of development are obtainable from the baseline compartmental 

reserving model solutions. Recall Eq. (3.2), which describes the claims process assuming that all 

exposure is input at time 0 and all model parameters are constant over development time 𝑡: 

 
𝑂𝑆(𝑡) =

𝑃 ∙ 𝑅𝐿𝑅 ∙ 𝑘𝑒𝑟

𝑘𝑒𝑟 − 𝑘𝑝 
∙ (𝑒−𝑘𝑝𝑡 − 𝑒−𝑘𝑒𝑟𝑡) 

𝑃𝐷(𝑡) =
𝑃 ∙ 𝑅𝐿𝑅 ∙ 𝑅𝑅𝐹

𝑘𝑒𝑟 − 𝑘𝑝 
∙ (𝑘𝑒𝑟 ∙ (1 − 𝑒−𝑘𝑝𝑡) − 𝑘𝑝 ∙ (1 − 𝑒−𝑘𝑒𝑟𝑡)) 

 

 

Given that 𝑈𝐿𝑅 = 𝑅𝐿𝑅 ∙ 𝑅𝑅𝐹, it follows that 𝑃 ∙ 𝑅𝐿𝑅 ∙ 𝑅𝑅𝐹 from the third ODE equates to the 

estimated ultimate losses. To derive the implied pattern of paid development at time 𝑡, we can 

therefore divide 𝑃𝐷(𝑡) by 𝑃 ∙ 𝑅𝐿𝑅 ∙ 𝑅𝑅𝐹 to give 

 
𝑃𝐷(𝑡) % =

1

𝑘𝑒𝑟 − 𝑘𝑝 
∙ (𝑘𝑒𝑟 ∙ (1 − 𝑒−𝑘𝑝𝑡) − 𝑘𝑝 ∙ (1 − 𝑒−𝑘𝑒𝑟𝑡)) (A.1) 

Similarly, by summing 𝑂𝑆(𝑡) and 𝑃𝐷(𝑡), dividing by 𝑃 ∙ 𝑅𝐿𝑅 ∙ 𝑅𝑅𝐹 and simplifying, the implied 

incurred pattern of development can be derived as 

𝐼𝑁𝐶(𝑡) % = 
𝑘𝑒𝑟 ∙ (𝑒−𝑘𝑝𝑡 − 𝑒−𝑘𝑒𝑟𝑡) + 𝑅𝑅𝐹 ∙ (𝑘𝑒𝑟 ∙ (1 − 𝑒−𝑘𝑝𝑡) − 𝑘𝑝 ∙ (1 − 𝑒−𝑘𝑒𝑟𝑡))

𝑅𝑅𝐹 ∙ (𝑘𝑒𝑟 − 𝑘𝑝) 
 (A.2) 

For a given set of parameters (with an 𝑅𝑅𝐹 < 1), Eq. (A.1) and (A.2) can be visualized over 
development time as follows: 

 

             

For perfect case reserving on average across a cohort of claims i.e. 𝑅𝑅𝐹 = 1 (resulting in all claim 

amounts outstanding becoming paid claims), the incurred pattern in Eq. (A.2) simplifies and can be 

interpreted as an Exposed to Risk (“EtR”) to reporting pattern: 

 𝐼𝑁𝐶(𝑡) % = 𝐸𝑡𝑅 𝑡𝑜 𝑅𝑒𝑝𝑜𝑟𝑡(𝑡) % =  1 − 𝑒−𝑘𝑒𝑟𝑡 (A.3) 

This result can also be obtained by letting 𝑘𝑝 → 0 in Eq. (3.2), and dividing 𝑂𝑆(𝑡) by 𝑃 ∙ 𝑅𝐿𝑅. To 

derive a report to payment pattern, it could be assumed that all exposures are initialized into the 

outstanding compartment at time 0. This results in a model that is defined in terms of two parameters 
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only: a rate of payment and a reserve robustness factor. We can write the state-variable solutions as 

 𝑂𝑆(𝑡) = 𝑃𝑒−𝑘𝑝𝑡  

𝑃𝐷(𝑡) = 𝑃 ∙ 𝑅𝑅𝐹 ∙ (1 − 𝑒−𝑘𝑝𝑡)  
(A.4) 

Similarly to above, the payment pattern 𝑃𝐷(𝑡) % can be derived by dividing 𝑃𝐷(𝑡) by ultimate 

claims, which in this instance is 𝑃 ∙ 𝑅𝑅𝐹. Given that we are only considering the claims process from 

reporting onwards, the resulting pattern can be interpreted as a report to payment pattern: 

 𝑃𝐷(𝑡) % = 𝑅𝑒𝑝𝑜𝑟𝑡 𝑡𝑜 𝑃𝑎𝑦𝑚𝑒𝑛𝑡(𝑡) % =  1 − 𝑒−𝑘𝑝𝑡 (A.5) 

This result can also be obtained by letting 𝑘𝑒𝑟 → ∞ in Eq. (3.2), and dividing 𝑃𝐷(𝑡) by 

𝑃 ∙ 𝑅𝑅𝐹 ∙ 𝑅𝐿𝑅. For a given set of parameters, the EtR to report and report to payment development 

patterns can be visualized over development time as follows:  

               

The development patterns are based on rate parameters which are constant over development time. 

If the rate parameters varied over time however, development patterns would also be expected to 

vary. Equations (A.3) and (A.5) can be generalized to allow for variable rates by writing  

 𝐸𝑡𝑅 𝑡𝑜 𝑅𝑒𝑝𝑜𝑟𝑡(𝑡) % = 1 − 𝑒−∫ k𝑒𝑟(𝑡)
𝑡
0 𝑑𝑡 

𝑅𝑒𝑝𝑜𝑟𝑡 𝑡𝑜 𝑃𝑎𝑦𝑚𝑒𝑛𝑡(𝑡) % = 1 − 𝑒−∫ k𝑝(𝑡)𝑑𝑡
𝑡
0  

(A.6) 

The graphs below show implied EtR to report and report to payment development patterns both 

for constant rate parameters (dashed lines), and parameters that vary over development time in 

accordance with the functions outlined in Section 3.2 (solid lines): 
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In contrast to a constant rate of reporting, a reporting rate that linearly increases over development 

time results in a slower pattern of reported claims development initially, which speeds up over time. 

This could be used to reflect a delay between claim events and claim reports for an accident cohort of 

claims. Allowing the rate of payment to decrease over development time results in a faster pattern of 

payment initially, which slows down over time. This is reflective of a slower settlement rate for claims 

outstanding in later development periods, perhaps due to litigation.  

Corresponding incurred and payment patterns for both constant and non-constant rate parameters 

(obtained using numerical methods) can also be compared as follows: 

 

The impact of altering parameters values/functions on development patterns can be seen in the 

illustration spreadsheet available at: http://www.casact.org/pubs/forum/16sforum/. 
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Appendix B: Semi-stochastic compartmental reserving models 

The deterministic compartmental model outlined in Section 3 assumes the same average claims 

behavior throughout the lifetime of a cohort. However, there are many reasons why there may be 

additional variability in the process, e.g. erratic case reserve fluctuations, claims payment backlogs etc. 

It may therefore be appropriate to re-specify the baseline model as a semi-stochastic (or “grey box”; 

Tornøe et al., 2004b) model by introducing a Wiener process (or multiple processes) into the model’s 

structural form. To do this we must first re-write Eq. (3.1) by moving the time increment (𝑑𝑡) terms 

to the right hand side of the ODEs, giving 

 

 

 

𝑑𝐸𝑋 = (−𝑘𝑒𝑟 ∙ 𝐸𝑋)𝑑𝑡 

𝑑𝑂𝑆 = (𝑘𝑒𝑟 ∙ 𝑅𝐿𝑅 ∙ 𝐸𝑋 − 𝑘𝑝 ∙ 𝑂𝑆)𝑑𝑡 

𝑑𝑃𝐷 =  (𝑘𝑝 ∙ 𝑅𝑅𝐹 ∙ 𝑂𝑆)𝑑𝑡 

 

(B.1) 

To incorporate a Wiener process for outstanding claims we can write 

 

 

 

𝑑𝐸𝑋 = (−𝑘𝑒𝑟 ∙ 𝐸𝑋)𝑑𝑡 

𝑑𝑂𝑆 = (𝑘𝑒𝑟 ∙ 𝑅𝐿𝑅 ∙ 𝐸𝑋 − 𝑘𝑝 ∙ 𝑂𝑆)𝑑𝑡 + 𝜎𝑂𝑆𝑑𝑊 

𝑑𝑃𝐷 =  (𝑘𝑝 ∙ 𝑅𝑅𝐹 ∙ 𝑂𝑆)𝑑𝑡 

 

(B.2) 

where 𝑊 is a standard (and additive) Wiener process such that 𝑊(𝑡2) − 𝑊(𝑡1)~𝑁(0, |𝑡2 − 𝑡1|), and 

𝜎𝑂𝑆 is the estimable element of the Wiener process standard deviation (the diffusion coefficient), 

representing volatility in outstanding claims not captured by the deterministic ODEs. For illustration, 

this allows model solutions (plotted at yearly time steps) to look as follows: 

                 

An issue with the model outlined above is that the volatility in outstanding claims is assumed to be 

constant, and therefore the Wiener process can cause outstanding claims to fall below zero. Although 

this is plausible for classes of business where salvage/subrogation is material, Eq. (B.2) assumes that 

large outstanding claims fluctuations can persist at later development times where they would typically 

be expected to be zero. This can lead to negative paid increments, as shown above. To address this, 
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the above Wiener process can be assumed to be a multiple of the amount in the outstanding claims 

compartment (i.e. state-dependent), giving  

 

 

 

𝑑𝐸𝑋 = (−𝑘𝑒𝑟 ∙ 𝐸𝑋)𝑑𝑡 

𝑑𝑂𝑆 = (𝑘𝑒𝑟 ∙ 𝑅𝐿𝑅 ∙ 𝐸𝑋 − 𝑘𝑝 ∙ 𝑂𝑆)𝑑𝑡 + 𝜎𝑂𝑆𝑂𝑆𝑑𝑊 

𝑑𝑃𝐷 =  (𝑘𝑝 ∙ 𝑅𝑅𝐹 ∙ 𝑂𝑆)𝑑𝑡 

 

(B.3) 

The volatility introduced to the claims process is therefore proportional to amounts outstanding at 

each development time, which may be a more realistic assumption. Although this model can be fitted 

to a single cohort, for the multiple cohort case using hierarchical models (Section 4) it is not 

straightforward to implement Eq. (B.3) in conventional software (at the time of writing). However, 

Eq. (B.2) can be implemented in a hierarchical framework using the R package “PSM” (Klim et al., 

2009).  

A key benefit of using SDEs is that they can account for residual autocorrelation (see Section 4.2) 

in a flexible manner. Furthermore, SDEs can describe claims process mechanisms that are too 

complex to include in the structural model (Overgaard et al., 2005). A similar approach could be used 

to model low-frequency high-severity losses. As an alternative to the semi-stochastic model above, 

probability transfer mechanisms between compartments could be incorporated (Rescigno and Segre, 

1966). 
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Appendix C: Nonlinear regression self-starting algorithm 

Nonlinear regression models require parameter starting values for optimization to take place. 

Although visual inspection and judgment can be used to select reasonable starting values 

(see Section 4.1), inappropriate estimates can result in the model converging to a local rather than 

global likelihood maximum. A starting value algorithm is therefore outlined below for a single-cohort 

baseline compartmental reserving model, based on the “method of residuals” (Macheras, 1987).  

We reexamine the baseline compartmental model defined by Eq. (3.1) and (3.2) and note that by 

some development time point, most claims will have been reported i.e. 𝐸𝑋(𝑡) → 0. From this point 

onwards, only the claims payment phase of the process will remain. Provided that 𝑘𝑒𝑟 is sufficiently 

larger than 𝑘𝑝, we can ignore the reporting term 𝑒−𝑘𝑒𝑟𝑡 and obtain the following expression for later 

development time outstanding claims, 𝑂𝑆(𝑡)𝐿𝐴𝑇𝐸 : 

 
𝑂𝑆(𝑡)𝐿𝐴𝑇𝐸 = 

𝑃 ∙ 𝑅𝐿𝑅 ∙ 𝑘𝑒𝑟

𝑘𝑒𝑟 − 𝑘𝑝 
∙ 𝑒−𝑘𝑝𝑡 (C.1) 

This can be viewed graphically as follows: 

                

Denoting 𝜷 = {𝛽1, 𝛽2, 𝛽3, 𝛽4}
𝑇 = {𝑘𝑒𝑟 , 𝑅𝐿𝑅, 𝑘𝑝, 𝑅𝑅𝐹}

𝑇
 and 𝑂𝑆𝑗 as the 𝑗th outstanding claims 

observation, we can write down the following regression model: 

 
𝑂𝑆𝑗

𝐿𝐴𝑇𝐸 = 
𝑃 ∙ 𝛽2 ∙ 𝛽1

𝛽1 − 𝛽3 
∙ 𝑒−𝛽3𝑡𝑗  + 𝜀𝑗

𝑂𝑆 (C.2) 

This phase of the solution has only one exponential term, enabling us to take logarithms of both 

sides to linearize the model:  

 
log(𝑂𝑆𝑗

𝐿𝐴𝑇𝐸) = log (
𝑃 ∙ 𝛽2 ∙ 𝛽1

𝛽1 − 𝛽3 
) − 𝛽3𝑡𝑗 + 𝜖𝑗

𝑂𝑆 (C.3) 

Denoting 𝜃0 = log (
𝑃∙𝛽2∙𝛽1

𝛽1−𝛽3 
), 𝜃3 = −𝛽3, a linear regression can be specified and carried out: 

 log(𝑂𝑆𝑗
𝐿𝐴𝑇𝐸) = 𝜃0 + 𝜃3𝑡𝑗 + 𝜖𝑗

𝑂𝑆 (C.4) 

S
ta

te
-v

a
ri

a
b

le
 s

o
lu

ti
o

n
s

Development time (t)

EX(t) OS(t) OS(t)_Late



Hierarchical Compartmental Models for Loss Reserving 

Casualty Actuarial Society E-Forum, Summer 2016  56 

      

This regression should be carried out for the logarithm of outstanding claims development values 

from the point at which the exposure is assumed to be negligible. However, this time point is not 

likely to be known. Even if it was, there may be practical restrictions to carrying out regression C.4 

and subsequent regressions from this time point onwards (discussed at the end of this Appendix).  

Once estimates 𝜃̂0 and 𝜃̂3 have been found, we establish that 
𝑃∙𝛽2∙𝛽1

𝛽1−𝛽3 

̂
= 𝑒𝜃̂0 and 𝛽̂3 = −𝜃̂3. 

This gives an estimate of the rate of payment, 𝑘𝑝. The next step is to identify that 

 
𝑂𝑆𝑗 = 𝑂𝑆𝑗

𝐿𝐴𝑇𝐸 −
𝑃 ∙ 𝛽2 ∙ 𝛽1

𝛽1 − 𝛽3 
∙ (𝑒−𝛽1𝑡𝑗) (C.5) 

This can be rearranged and linearized as follows for 𝑂𝑆𝑗
𝐿𝐴𝑇𝐸 − 𝑂𝑆𝑗 > 0: 

 
𝑂𝑆𝑗 − 𝑂𝑆𝑗

𝐿𝐴𝑇𝐸 = −
𝑃 ∙ 𝛽2 ∙ 𝛽1

𝛽1 − 𝛽3 
∙ (𝑒−𝛽1𝑡𝑗) 

log(𝑂𝑆𝑗
𝐿𝐴𝑇𝐸 − 𝑂𝑆𝑗)|

𝑂𝑆𝑗
𝐿𝐴𝑇𝐸−𝑂𝑆

𝑗
>0

= log (
𝑃 ∙ 𝛽2 ∙ 𝛽1

𝛽1 − 𝛽3 
) − 𝛽1𝑡𝑗 

(C.6) 

𝑂𝑆𝑗
𝐿𝐴𝑇𝐸 can be taken as its estimated value in the previous regression, 𝑂𝑆𝑗̂

𝐿𝐴𝑇𝐸
, and the intercept 

log (
𝑃∙𝛽2∙𝛽1

𝛽1−𝛽3 
) can be fixed to the previously estimated intercept, 𝜃̂0. 

 Denoting 𝜃1 = −𝛽1 and rearranging, a second linear regression can be specified through the origin 

(Turner, 1960): 

 log(𝑂𝑆𝑗̂
𝐿𝐴𝑇𝐸

− 𝑂𝑆𝑗)|
𝑂𝑆̂𝑗

𝐿𝐴𝑇𝐸
−𝑂𝑆

𝑗
>0

= 𝜃0 + 𝜃1𝑡𝑗 + 𝜉𝑗 

log(𝑂𝑆𝑗̂
𝐿𝐴𝑇𝐸

− 𝑂𝑆𝑗)|
𝑂𝑆̂𝑗

𝐿𝐴𝑇𝐸
−𝑂𝑆

𝑗
>0

− 𝜃0 = 𝜃1𝑡𝑗 + 𝜉𝑗 
(C.7) 
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Once an estimate of 𝜃̂1 of 𝜃1 has been found, we establish that 𝛽̂1 = −𝜃̂1, thus providing an estimate 

of the rate of reporting, 𝑘𝑒𝑟. Given our estimates of 𝑘𝑒𝑟 and 𝑘𝑝, we can infer an estimate of the 𝑅𝐿𝑅. 

To see how, we recall the definition of 𝜃0 in Eq. (C.4) and rearrange as follows: 

 
log (

𝑃 ∙ 𝛽2 ∙ 𝛽1

𝛽1 − 𝛽3 
) = 𝜃0 

𝛽2 =
𝑒𝜃0 ∙ (𝛽1 − 𝛽3)

𝑃 ∙ 𝛽1
 

𝛽2 =
𝑒𝜃0 ∙ (−𝜃1 + 𝜃3)

𝑃 ∙ −𝜃1
 

(C.8) 

We can therefore substitute in the previously estimated parameters to get an estimate of 𝛽2: 

 
𝛽̂2 =

𝑒𝜃̂0 ∙ (−𝜃1 + 𝜃3)

𝑃 ∙ −𝜃1

 (C.9) 

This is an estimate of the 𝑅𝐿𝑅. Finally, to estimate the 𝑅𝑅𝐹 we note that the above procedure 

generates parameter estimates for all elements of the paid claims solution in Eq. (3.2) except the 𝑅𝑅𝐹: 

 
𝑃𝐷(𝑡) =

𝑃 ∙ 𝑅𝐿𝑅 ∙ 𝑅𝑅𝐹

𝑘𝑒𝑟 − 𝑘𝑝 
∙ (𝑘𝑒𝑟 ∙ (1 − 𝑒−𝑘𝑝𝑡) − 𝑘𝑝 ∙ (1 − 𝑒−𝑘𝑒𝑟𝑡)) 

𝑃𝐷(𝑡) =
𝑃 ∙ 𝑅𝐿𝑅

𝑘𝑒𝑟 − 𝑘𝑝 
∙ (𝑘𝑒𝑟 ∙ (1 − 𝑒−𝑘𝑝𝑡) − 𝑘𝑝 ∙ (1 − 𝑒−𝑘𝑒𝑟𝑡)) ∙ 𝑅𝑅𝐹 

 

(C.10) 

Rewriting as a regression as per above gives: 

 
𝑃𝐷𝑗 =

𝑃 ∙ 𝛽2

𝛽1 − 𝛽3 
∙ (𝛽1 ∙ (1 − 𝑒−𝛽3𝑡𝑗) − 𝛽3 ∙ (1 − 𝑒−𝛽1𝑡𝑗)) ∙ 𝛽4 + 𝜔𝑗 (C.11) 

Substituting in the estimates of each parameter apart from 𝛽4, we can denote 𝜃4 = 𝛽4 and rewrite 

Eq. (C.11) as follows: 

 𝑃𝐷𝑗 = 𝑓(𝑃, 𝜃1, 𝜃2, 𝜃3, 𝑡𝑗) ∙ 𝜃4 + 𝜔𝑗 (C.12) 

Development time (t)

log(OS(t)_Late)

log(OS(t)_Late - OS(t))

kp regression

ker regression
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This regression is linear in the parameter that we are interested in estimating, 𝜃4 (𝑅𝑅𝐹), and 

therefore a linear regression through the origin can be carried out to derive an estimate of 𝜃4: 𝜃̂4. 

The vector of parameter starting values, 𝜷0, can then be set to be:  

 𝜷0 = {𝛽1
0, 𝛽2

0, 𝛽3
0, 𝛽4

0}𝑇 = {𝑘𝑒𝑟
0 , 𝑅𝐿𝑅0, 𝑘𝑝

0, 𝑅𝑅𝐹0}
𝑇

= {−𝜃1, 𝜃2, −𝜃3, 𝜃4}
𝑇
 (C.13) 

Although this algorithm is based on a single cohort of claims, for the multiple cohort case (e.g. 

using hierarchical models as outlined in Section 4), the algorithm could be used to derive parameter 

estimates for each individual cohort. To derive fixed-effect starting values, one could then calculate 

weighted average parameters based on the number of data points within each cohort, for example. 

Selecting 𝒕𝒋
𝑳𝑨𝑻𝑬 

As stated above, a practitioner is unlikely to be able to identify when exposure has fallen close to 

zero for a particular claims cohort. Furthermore, a claims cohort might not have a long enough 

development history to be able to fit a regression from 𝑡𝑗
𝐿𝐴𝑇𝐸 onwards. This issue is more prevalent if 

the rate of reporting is slow because by definition, exposures will convert to reported claims and tend 

to zero at a slower rate. 

Being that the goal is to specify starting values for the parameters being estimated and not to derive 

final estimates, it may be acceptable to compromise on the point at which 𝑡𝑗
𝐿𝐴𝑇𝐸 is defined at the cost 

of reducing the accuracy of the initial parameter estimates. One possibility is to calculate peak 

outstanding claims from the data, 𝑀𝐴𝑋_𝑂𝑆, and define the corresponding development time point as 

𝑡𝑗
𝑀𝐴𝑋_𝑂𝑆. For the regressions outlined above, 𝑡𝑗

𝐿𝐴𝑇𝐸 could then be defined as 𝑡𝑗 ≥ 𝑡𝑗
𝑀𝐴𝑋_𝑂𝑆.  

In some instances (e.g. when 𝑘𝑒𝑟 much faster than 𝑘𝑝) this will be a close approximation to when 

exposure is close to zero. In others however, it is likely to be a less accurate approximation due to a 

high probability of new non-negligible value claims being subsequently reported. The graph below 

illustrates the discrepancy in regression slopes, i.e. initial parameter estimates, for 

𝑘𝑒𝑟 = 2.33𝑘𝑝: 

      Development time (t)

True kp regression

True ker regression

Approx kp regression

Approx ker regression
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This approach to defining 𝑡𝑗
𝐿𝐴𝑇𝐸 will result in a degree of starting value parameter estimation error 

(more predominantly for 𝑘𝑒𝑟), with a magnitude inversely proportional to the underlying rate of 

reporting. On the other hand, if 𝑘𝑒𝑟 is too fast, there won’t be early phase data to derive its estimate 

in the first place (in which case a large estimate can be selected arbitrarily). Additionally, the less mature 

the cohort, the less reliable the parameter estimates will be. However, this approach should initialize 

the nonlinear regression optimization process at a sensible point in the parameter space. 

It’s worth noting that 𝑡𝑗
𝑀𝐴𝑋_𝑂𝑆 may appear long before the true payment phase if outstanding claims 

development is volatile. Therefore in practice, judgment will be necessary to decide from which 

development time point the observed logarithm of the outstanding claims can be considered linear. 

The degree of linearity must be balanced with the number of development data points available to 

carry out the regression for 𝑘𝑝. In cases where there are no observations subsequent to the maximum 

outstanding claims value, this algorithm cannot be used.  

In the case of development time-dependent parameters (Section 3.2), the parameter starting value 

algorithm could be used to find approximate parameter starting values by setting nonlinear rate 

functions equal to the parameter estimates above. However, identifiability will be an issue for rate 

functions with more than one parameter (unless at least one of the parameters is arbitrarily fixed). 
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Appendix D: Frequentist case study data 

 
Data key 

“Cohort” = accident year 
“t” = development year 
“Claims” = outstanding claims for “Type”=1 and cumulative paid claims for “Type”=2 
“Dose” = exposure/earned premium 
“Cmt” = exposure compartment number 
 
> Data <- groupedData(Claims ~ t | Cohort/Type, data = Data) 

 
Grouped Data: Claims ~ t | Cohort/Type 

    Cohort  t Claims Type   Dose Cmt 

1     1988  0      0    1 104437   1 

2     1988  0      0    2      0   1 

3     1988  1  53121    1      0   1 

4     1988  1   9558    2      0   1 

5     1988  2  41222    1      0   1 

6     1988  2  22778    2      0   1 

7     1988  3  32309    1      0   1 

8     1988  3  33298    2      0   1 

9     1988  4  24944    1      0   1 

10    1988  4  40348    2      0   1 

11    1988  5  17104    1      0   1 

12    1988  5  45146    2      0   1 

13    1988  6  13137    1      0   1 

14    1988  6  48048    2      0   1 

15    1988  7   9605    1      0   1 

16    1988  7  49782    2      0   1 

17    1988  8   6515    1      0   1 

18    1988  8  50623    2      0   1 

19    1988  9   1661    1      0   1 

20    1988  9  51812    2      0   1 

21    1988 10   1322    1      0   1 

22    1988 10  51939    2      0   1 

23    1989  0      0    1  88883   1 

24    1989  0      0    2      0   1 

25    1989  1  54145    1      0   1 

26    1989  1   7913    2      0   1 

27    1989  2  37188    1      0   1 

28    1989  2  19472    2      0   1 

29    1989  3  26976    1      0   1 

30    1989  3  29622    2      0   1 

31    1989  4  20015    1      0   1 

32    1989  4  36816    2      0   1 

33    1989  5  14319    1      0   1 

34    1989  5  40975    2      0   1 

35    1989  6  10179    1      0   1 

36    1989  6  43302    2      0   1 

37    1989  7   6672    1      0   1 

38    1989  7  44707    2      0   1 

39    1989  8   2575    1      0   1 

40    1989  8  45871    2      0   1 

41    1989  9   2071    1      0   1 
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42    1989  9  46229    2      0   1 

43    1990  0      0    1  85956   1 

44    1990  0      0    2      0   1 

45    1990  1  55211    1      0   1 

46    1990  1   8744    2      0   1 

47    1990  2  37221    1      0   1 

48    1990  2  24302    2      0   1 

49    1990  3  27760    1      0   1 

50    1990  3  35406    2      0   1 

51    1990  4  17990    1      0   1 

52    1990  4  43412    2      0   1 

53    1990  5  11417    1      0   1 

54    1990  5  48057    2      0   1 

55    1990  6   6716    1      0   1 

56    1990  6  50897    2      0   1 

57    1990  7   4282    1      0   1 

58    1990  7  52879    2      0   1 

59    1990  8   3015    1      0   1 

60    1990  8  53956    2      0   1 

61    1991  0      0    1  99339   1 

62    1991  0      0    2      0   1 

63    1991  1  60617    1      0   1 

64    1991  1  13301    2      0   1 

65    1991  2  42144    1      0   1 

66    1991  2  32950    2      0   1 

67    1991  3  25987    1      0   1 

68    1991  3  47201    2      0   1 

69    1991  4  14805    1      0   1 

70    1991  4  56394    2      0   1 

71    1991  5   9406    1      0   1 

72    1991  5  61650    2      0   1 

73    1991  6   5792    1      0   1 

74    1991  6  65039    2      0   1 

75    1991  7   3966    1      0   1 

76    1991  7  66566    2      0   1 

77    1992  0      0    1 104897   1 

78    1992  0      0    2      0   1 

79    1992  1  65719    1      0   1 

80    1992  1  11424    2      0   1 

81    1992  2  46047    1      0   1 

82    1992  2  29086    2      0   1 

83    1992  3  31250    1      0   1 

84    1992  3  42034    2      0   1 

85    1992  4  22245    1      0   1 

86    1992  4  50910    2      0   1 

87    1992  5  11878    1      0   1 

88    1992  5  56406    2      0   1 

89    1992  6   8408    1      0   1 

90    1992  6  59437    2      0   1 

91    1993  0      0    1 119427   1 

92    1993  0      0    2      0   1 

93    1993  1  68133    1      0   1 

94    1993  1  11792    2      0   1 

95    1993  2  51102    1      0   1 

96    1993  2  27161    2      0   1 

97    1993  3  39934    1      0   1 
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98    1993  3  38229    2      0   1 

99    1993  4  21824    1      0   1 

100   1993  4  46722    2      0   1 

101   1993  5  16955    1      0   1 

102   1993  5  50742    2      0   1 

103   1994  0      0    1 110784   1 

104   1994  0      0    2      0   1 

105   1994  1  62434    1      0   1 

106   1994  1  11194    2      0   1 

107   1994  2  46661    1      0   1 

108   1994  2  26893    2      0   1 

109   1994  3  32248    1      0   1 

110   1994  3  38488    2      0   1 

111   1994  4  24140    1      0   1 

112   1994  4  45580    2      0   1 

113   1995  0      0    1  77731   1 

114   1995  0      0    2      0   1 

115   1995  1  56971    1      0   1 

116   1995  1  12550    2      0   1 

117   1995  2  48677    1      0   1 

118   1995  2  31604    2      0   1 

119   1995  3  35336    1      0   1 

120   1995  3  44045    2      0   1 

121   1996  0      0    1  63646   1 

122   1996  0      0    2      0   1 

123   1996  1  56526    1      0   1 

124   1996  1  13194    2      0   1 

125   1996  2  41707    1      0   1 

126   1996  2  31474    2      0   1 

127   1997  0      0    1  48052   1 

128   1997  0      0    2      0   1 

129   1997  1  40799    1      0   1 

130   1997  1   9372    2      0   1 
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Appendix E: Frequentist modeling R code 

Baseline structural model (Section 4.1) 
> DEmodel <- list( 

+                 DiffEq=list( 

+                     dy1dt = ~ -lker*y1, 

+                     dy2dt = ~ lker*lRLR*y1 - lkp*y2, 

+                     dy3dt = ~ lkp*lRRF*y2), 

+                 ObsEq=list( 

+                     EX   = ~ 0, 

+                     OS   = ~ y2, 

+                     PA   = ~ y3),          

+ States=c("y1","y2","y3"),  

+ Parms=c("lker","lRLR","lkp","lRRF"), 

+ Init=list(0,0,0)) 

Model 1 (Section 4.1) 
> ReservingModel <- nlmeODE(DEmodel,Data) ### “Data” = data in Appendix D 

> nlmeModel <- nlme(Claims ~ 

ReservingModel(lker,lRLR,lkp,lRRF,t,Cohort,Type), 

+ data = Data, 

+ fixed = lker+lRLR+lkp+lRRF ~ 1,  ### fixed-effect parameters 

+ random = pdDiag(lRLR + lRRF ~ 1),  ### parameters with random-effects 

+ groups = ~Cohort,    ### data grouping (accident years) 

+ weights = varIdent(form = ~1 | Type), ### residual error functions: OS&PD 

+ start = c(lker = log(1.5), lRLR = log(1),  

 lkp = log(0.75), lRRF = log(0.75)), ### parameter starting values 

+ control=list(returnObject=TRUE,msVerbose=TRUE, 

+ msMaxIter=10000,pnlsMaxIter=10000, 

+ pnlsTol=0.4),    ### tolerance for PNLS convergence 

+ verbose=TRUE) 

> nlmeModel 

Nonlinear mixed-effects model fit by maximum likelihood 

 Model: Claims ~ ReservingModel(lker, lRLR, lkp, lRRF, t, Cohort, Type)  

 Data: Data  

 Log-likelihood: -1164.386 

 Fixed: lker + lRLR + lkp + lRRF ~ 1  

       lker        lRLR         lkp        lRRF 

 0.40824328  0.02575157 -0.79246675 -0.40644353  

      ### estimated fixed-effects: 𝜷̂ 
Random effects: 

 Formula: list(lRLR ~ 1, lRRF ~ 1) 

 Level: Cohort 

 Structure: Diagonal 

             lRLR      lRRF Residual 

StdDev: 0.1870103 0.1318661 3171.213 

      ### estimated random-effect & 

Variance function:    ### residual std dev terms: {𝜓̂𝑖𝑘 , 𝜎̂} 

 Structure: Different standard deviations per stratum 

 Formula: ~1 | Type  

 Parameter estimates: 

        1         2  

1.0000000 0.1790677     ### OS&PD residual std deviation  

Number of Observations: 130   ### multipliers: {1, 𝜆̂}  

Number of Groups: 10 
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Extended structural model – development time-dependent reporting rate (Section 4.1.1) 
> DEmodel2 <- list( 

+                 DiffEq=list( 

+                     dy1dt = ~ -lBer*t*y1, 

+                     dy2dt = ~ lBer*t*lRLR*y1 - lkp*y2, 

+                     dy3dt = ~ lkp*lRRF*y2), 

+                 ObsEq=list( 

+                     EX   = ~ 0, 

+                     OS   = ~ y2, 

+                     PA   = ~ y3),          

+ States=c("y1","y2","y3"),  

+ Parms=c("lBer","lRLR","lkp","lRRF"), 

+ Init=list(0,0,0))  

Model 2 (Section 4.1.1) 
> ReservingModel2 <- nlmeODE(DEmodel2,Data) 

> nlmeModel2 <- nlme(Claims ~ 

ReservingModel2(lBer,lRLR,lkp,lRRF,t,Cohort,Type), 

+ data = Data, 

+ fixed = lBer+lRLR+lkp+lRRF ~ 1, 

+ random = pdDiag(lRLR + lRRF ~ 1), 

+ groups = ~Cohort, 

+ weights = varIdent(form = ~1 | Type), 

+ start=c(lBer = log(5), lRLR = log(1.03),  

 lkp = log(0.45), lRRF = log(0.67)), 

+ control=list(returnObject=TRUE,msVerbose=TRUE, 

+ msMaxIter=10000,pnlsMaxIter=10000, 

+ pnlsTol=0.4), 

+ verbose=TRUE) 

> nlmeModel2 

Nonlinear mixed-effects model fit by maximum likelihood 

 Model: Claims ~ ReservingModel2(lBer, lRLR, lkp, lRRF, t, Cohort, Type)  

 Data: Data  

 Log-likelihood: -1156.344 

 Fixed: lBer + lRLR + lkp + lRRF ~ 1  

      lBer       lRLR        lkp       lRRF  

 1.7637739 -0.1608870 -0.9339032 -0.1886841  

 

Random effects: 

 Formula: list(lRLR ~ 1, lRRF ~ 1) 

 Level: Cohort 

 Structure: Diagonal 

             lRLR      lRRF Residual 

StdDev: 0.1684008 0.1469151 2491.433 

 

Variance function: 

 Structure: Different standard deviations per stratum 

 Formula: ~1 | Type  

 Parameter estimates: 

        1         2  

1.0000000 0.2509692  

Number of Observations: 130 

Number of Groups: 10 
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> anova(nlmeModel,nlmeModel2) 

           Model df      AIC      BIC    logLik 

nlmeModel      1  8 2344.771 2367.711 -1164.386 

nlmeModel2     2  8 2328.688 2351.628 -1156.344 

 

> intervals(nlmeModel2) 

Approximate 95% confidence intervals 

 

 Fixed effects: 

          lower       est.       upper 

lBer  1.6599011  1.7637739  1.86764663 

lRLR -0.2696058 -0.1608870 -0.05216819 

lkp  -0.9671036 -0.9339032 -0.90070283 

lRRF -0.2873897 -0.1886841 -0.08997844 

 

> summary(nlmeModel2) 

Correlation:  

     lBer   lRLR   lkp    

lRLR -0.110               

lkp  -0.723  0.143        

lRRF  0.142 -0.077 -0.253 

Model 3 – random-effects correlation (Section 4.1.2) 
> nlmeModel3 <- update(nlmeModel2,random=list(lRLR+lRRF~1)) 

 

> intervals(nlmeModel3) 

Approximate 95% confidence intervals 

 

Random Effects: 

 Level: Cohort  

                    lower      est.     upper 

sd(lRLR)       0.09864002 0.1571791 0.2504587 

sd(lRRF)       0.09475350 0.1517442 0.2430128 

cor(lRLR,lRRF) 0.34584978 0.7795638 0.9387946 

 

> anova(nlmeModel,nlmeModel2,nlmeModel3) 

           Model df      AIC      BIC    logLik   Test  L.Ratio p-value 

nlmeModel      1  8 2344.771 2367.711 -1164.386                         

nlmeModel2     2  8 2328.688 2351.628 -1156.344                         

nlmeModel3     3  9 2324.543 2350.351 -1153.272 2 vs 3 6.144368  0.0132 

Model 4 – block-diagonal random-effects structure (Section 4.1.2) 
> nlmeModel4 <- update(nlmeModel3,random=pdBlocked(list(lRLR + lRRF~1, lkp 

~ 1))) 

 

> anova(nlmeModel,nlmeModel2,nlmeModel3,nlmeModel4) 

           Model df      AIC      BIC    logLik   Test   L.Ratio p-value 

nlmeModel      1  8 2344.771 2367.711 -1164.386                          

nlmeModel2     2  8 2328.688 2351.628 -1156.344                          

nlmeModel3     3  9 2324.543 2350.351 -1153.272 2 vs 3  6.144368  0.0132 

nlmeModel4     4 10 2305.500 2334.175 -1142.750 3 vs 4 21.043472  <.0001 
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Supplementary code – for structural model x, hierarchical model y 
> residuals(nlmeModely, type="normalized") ### standardized model residuals 

 

> fitted(nlmeModely)    ### model predictions 

 

> IndCoef <- coef(nlmeModely)  ### individual accident year (log) 

compartmental parameter estimates  

 

> ReservingModelx(    ### model projections to time 10 

+ rep(IndCoef[,1],each=2*11), 

+ rep(IndCoef[,2],each=2*11), 

+ rep(IndCoef[,3],each=2*11), 

+ rep(IndCoef[,4],each=2*11), 

+ Data_Full$t,Data_Full$Cohort,Data_Full$Type) 
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Appendix F: Bayesian modeling OpenBUGS code 

Scenario 1: Fully random structure model (Section 4.2.1) 
Replace red code with blue code to switch to Scenario 2: Calendar shock sub-model (Section 4.2.2). 

model {   

 for (i in 1:n.ind) {    

  for (j in 1:1) {   

   data_O[i, j] ~ dnorm(mean_O[i, j] , tau_O)      

   data_P[i, j] ~ dnorm(mean_P[i, j] , tau_P)      

   data_I[i, j] <- data_O[i, j] + data_P[i, j]  

       

   mean_O[i, j] <- solution[i,j,2]  

   mean_P[i, j] <- solution[i, j, 3]       

   mean_I[i, j] <- mean_O[i, j] + mean_P[i, j] 

        } 

  for (j in 2:n.grid) {          

   data_O[i, j] ~ dnorm(mean_O[i, j] , tau_O2)      

   data_P[i, j] ~ dnorm(mean_P[i, j] , tau_P2)      

   data_I[i, j] <- data_O[i, j] + data_P[i, j]  

 

   mean_O[i, j] <- solution[i, j, 2] + rho2 * (data_O[i, j-1] - mean_O[i, j-1]) 

 

   #Calendar shock substitution 
   #mean_O[i, j] <- solution[i,j,2] * (1 - C[i,j] * a[i]) + rho2 *(data_O[i, j-1] -  

   #mean_O[i, j-1])  

 

   mean_P[i, j] <- solution[i, j, 3] + rho3 * (data_P[i, j-1] - mean_P[i, j-1])  

   mean_I[i, j] <- mean_O[i, j] + mean_P[i, j] 

        }      

  theta[i, 1:p] ~ dmnorm(mu[1:p], omega.inv[1:p, 1:p])     

     

  param[i, 1] <- theta[i, 1] 

  param[i, 2] <- theta[i, 2] 

  param[i, 3] <- theta[i, 3] 

  param[i, 4] <- theta[i, 4]  

  param[i, p+1] <- prem[i] 

   

  Ber[i] <- exp(theta[i, 1])        

  RLR[i] <- exp(theta[i, 2])      

  kp[i] <- exp(theta[i, 3])   

  RRF[i] <- exp(theta[i, 4]) 

     

  ULR[i] <- RLR[i] * RRF[i] 

  ILR10[i] <- data_I[i, 10] / prem[i]  

   

  solution[i, 1:n.grid, 1:dim] <- ode(inits[i, 1:dim], 

      grid[1:n.grid], D(A[i, 1:dim], t[i]), origin, tol)   

      

  D(A[i, 1], t[i]) <- -Ber[i] * t[i] * A[i, 1]       

  D(A[i, 2], t[i]) <- Ber[i] * t[i] * RLR[i] * A[i, 1] - kp[i] * A[i, 2]  
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  D(A[i, 3], t[i]) <- kp[i] * RRF[i] * A[i, 2]   

  

  #Calendar shock substitution 
  #D(A[i, 3], t[i]) <- kp[i] * RRF[i] * (1 - V[i]*a[i]) * A[i, 2]  

  #V[i] <- step((i + t[i]) - 10)  

  #a[i] ~ dunif(-0.99,0.99) 

 

  inits[i, 1] <- prem[i]  

  inits[i, 2] <- 0  

  inits[i, 3] <- 0   

      }       

            

 mu[1:p] ~ dmnorm(mu.prior.mean[1:p], mu.prior.prec[1:p, 1:p])     

 omega.inv[1:p, 1:p] ~ dwish(omega.inv.matrix[1:p, 1:p], omega.inv.dof)    

 

 omega[1:p, 1:p] <- inverse(omega.inv[1:p, 1:p])   

 ResC <- omega[2, 4] / (sqrt(omega[2, 2]) * sqrt(omega[4, 4]))     

     

 sigma_O ~ dunif(0, 10000)   

 tau_O <- pow(sigma_O, -2) 

 

 sigma_O2 <- sigma_O * sqrt(1 - pow(rho2, 2)) 

 tau_O2 <- pow(sigma_O2, -2) 

  

 sigma_P ~ dunif(0, 5000) 

 tau_P <- pow(sigma_P, -2)  

  

 sigma_P2 <- sigma_P * sqrt(1 - pow(rho3, 2)) 

 tau_P2 <- pow(sigma_P2, -2) 

   

 rho2 ~ dunif(-1,1) 

 rho3 ~ dunif(-1,1) 

  

 

#Standardized residuals   
for (i in 1:n.ind) {        

  for (j in 1:1) {      

   r_O[i,j] <- (data_O[i, j] - mean_O[i, j] ) * sqrt(tau_O) 

   r_P[i,j] <- (data_P[i, j] - mean_P[i, j] ) * sqrt(tau_P) 

    

        } 

  for (j in 2:n.grid) { 

          

   r_O[i,j] <- (data_O[i, j] - mean_O[i, j] ) * sqrt(tau_O2) 

   r_P[i,j] <- (data_P[i, j] - mean_P[i, j] ) * sqrt(tau_P2) 

  

        } 

      } 

    }   
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Data and prior parameters 
list( 

p = 4, dim = 3, 

origin = 0.0, 

tol = 1.0E-6, 

n.ind = 10, n.grid = 10, 

grid = c(1,2,3,4,5,6,7,8,9,10), 

prem = c(104437, 88883, 85956, 99339, 104897, 119427, 110784, 77731, 63646, 48052), 

mu.prior.mean = c(1.7, -0.15, -0.9, -0.21), 

mu.prior.prec = structure( 

.Data = c( 

650, 0, 0, 0, 

0, 380, 0, 0, 

0, 0, 5400, 0, 

0, 0, 0, 390), 

.Dim = c(4, 4)), 

omega.inv.matrix = structure( 

.Data = c( 

1, 0, 0, 0, 

0, 1, 0, 0.8, 

0, 0, 1, 0, 

0, 0.8, 0, 1), 

.Dim = c(4, 4)), 

omega.inv.dof = 4, 

 

data_O = structure(.Data = c( 

53121, 41222, 32309, 24944, 17104, 13137, 9605, 6515, 1661, 1322,  

54145, 37188, 26976, 20015, 14319, 10179, 6672, 2575, 2071, NA,  

55211, 37221, 27760, 17990, 11417, 6716, 4282, 3015, NA, NA,  

60617, 42144, 25987, 14805, 9406, 5792, 3966, NA, NA, NA,  

65719, 46047, 31250, 22245, 11878, 8408, NA, NA, NA, NA,  

68133, 51102, 39934, 21824, 16955, NA, NA, NA, NA, NA,  

62434, 46661, 32248, 24140, NA, NA, NA, NA, NA, NA,  

56971, 48677, 35336, NA, NA, NA, NA, NA, NA, NA,  

56526, 41707, NA, NA, NA, NA, NA, NA, NA, NA,  

40799, NA, NA, NA, NA, NA, NA, NA, NA, NA), 

.Dim = c(10,10)), 

data_P = structure(.Data = c( 

9558, 22778, 33298, 40348, 45146, 48048, 49782, 50623, 51812, 51939,  

7913, 19472, 29622, 36816, 40975, 43302, 44707, 45871, 46229, NA,  

8744, 24302, 35406, 43412, 48057, 50897, 52879, 53956, NA, NA,  

13301, 32950, 47201, 56394, 61650, 65039, 66566, NA, NA, NA,  

11424, 29086, 42034, 50910, 56406, 59437, NA, NA, NA, NA,  

11792, 27161, 38229, 46722, 50742, NA, NA, NA, NA, NA,  

11194, 26893, 38488, 45580, NA, NA, NA, NA, NA, NA,  

12550, 31604, 44045, NA, NA, NA, NA, NA, NA, NA,  

13194, 31474, NA, NA, NA, NA, NA, NA, NA, NA,  

9372, NA, NA, NA, NA, NA, NA, NA, NA, NA), 

.Dim = c(10,10)) 

) 
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#Calendar shock substitution 

#,C = structure( 

#.Data = c( 

#0, 0, 0, 0, 0, 0, 0, 0, 1, 1,  

#0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 

#0, 0, 0, 0, 0, 0, 1, 1, 1, 1,  

#0, 0, 0, 0, 0, 1, 1, 1, 1, 1,  

#0, 0, 0, 0, 1, 1, 1, 1, 1, 1,  

#0, 0, 0, 1, 1, 1, 1, 1, 1, 1,  

#0, 0, 1, 1, 1, 1, 1, 1, 1, 1,  

#0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 

#1, 1, 1, 1, 1, 1, 1, 1, 1, 1,  

#1, 1, 1, 1, 1, 1, 1, 1, 1, 1), 

#.Dim = c(10,10))  

#) 

 

Initial values (1) 
list( 

rho2 = 0.5, 

rho3= 0.5, 

sigma_O = 5000, 

sigma_P = 500, 

mu = c(1.7, -0.15, -0.9, -0.21), 

omega.inv = structure( 

.Data = c( 

10, 0, 0, 0, 

0, 10, 0, 0.8, 

0, 0, 10, 0, 

0, 0.8, 0, 10), 

.Dim = c(4, 4)), 

theta = structure( 

.Data = c( 

1.7, -0.15, -0.9, -0.21, 

1.7, -0.15, -0.9, -0.21, 

1.7, -0.15, -0.9, -0.21, 

1.7, -0.15, -0.9, -0.21, 

1.7, -0.15, -0.9, -0.21, 

1.7, -0.15, -0.9, -0.21, 

1.7, -0.15, -0.9, -0.21, 

1.7, -0.15, -0.9, -0.21, 

1.7, -0.15, -0.9, -0.21, 

1.7, -0.15, -0.9, -0.21), 

.Dim = c(10, 4)) 

) 

Initial values (2) 
list( 

rho2 = 0.6, 

rho3= 0.2, 

sigma_O = 3000, 

sigma_P = 700, 

mu = c(1.4, -0.07, -0.2, -0.51), 

omega.inv = structure( 

.Data = c( 

15, 0, 0, 0, 

0, 15, 0, 0.5, 

0, 0, 15, 0, 

0, 0.5, 0, 15), 

.Dim = c(4, 4)), 

theta = structure( 

.Data = c( 

1.4, -0.07, -0.2, -0.51, 

1.4, -0.07, -0.2, -0.51, 

1.4, -0.07, -0.2, -0.51,  

1.4, -0.07, -0.2, -0.51,  

1.4, -0.07, -0.2, -0.51, 

1.4, -0.07, -0.2, -0.51, 

1.4, -0.07, -0.2, -0.51, 

1.4, -0.07, -0.2, -0.51, 

1.4, -0.07, -0.2, -0.51, 

1.4, -0.07, -0.2, -0.51), 

.Dim = c(10, 4)) 

) 

 

Initial values (3) 

list( 

rho2 = 0.2, 

rho3= 0.6, 

sigma_O = 1500, 

sigma_P = 1000, 

mu = c(1.1, 0, 0, -0.29), 

omega.inv = structure( 

.Data = c( 

5, 0, 0, 0, 

0, 5, 0, 0.3, 

0, 0, 5, 0, 

0, 0.3, 0, 5), 

.Dim = c(4, 4)), 

theta = structure( 

.Data = c( 

1.1, 0, 0, -0.29, 

1.1, 0, 0, -0.29, 

1.1, 0, 0, -0.29, 

1.1, 0, 0, -0.29,  

1.1, 0, 0, -0.29, 

1.1, 0, 0, -0.29, 

1.1, 0, 0, -0.29, 

1.1, 0, 0, -0.29, 

1.1, 0, 0, -0.29, 

1.1, 0, 0, -0.29), 

.Dim = c(10, 4)) 

) 
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Abstract 

Motivation. The development of a wide variety of reserve variability models has been primarily driven 
by the need to quantify reserve uncertainty. This quantification can serve as the basis for satisfying a 
number of Solvency II requirements in Europe, can be used to enhance Own Risk Solvency 
Assessment (ORSA) reports, and is often used as an input to DFA or Dynamic Risk Models, to name 
but a few. Moving beyond quantification, the purpose of this paper is to explore other aspects of 
reserve variability which allow for a more complete integration of these key risk metrics into the larger 
Enterprise Risk Management framework. 
 
Method. This paper will primarily use a case study to discuss and illustrate the process of integrating 
the output from periodic reserve and reserve variability analysis into the enterprise risk management 
process. Consequences of this approach include the production of valuable performance indicators and 
an increase in the lines of communication between the actuarial function and other insurance functional 
departments, both of which are valuable to management. 
 
Results. By expanding the regular reserving process to include regular variability analysis and expanding 
the dialogue with management, the actuary can greatly contribute to the understanding of risks related 
to claim management within an enterprise. 
 
Conclusions. The value of this process is not limited to reserving as it can logically and directly be 
extended into pricing, reinsurance optimization, etc. 
 
Availability. In lieu of technical appendices, companion Excel workbooks are included that illustrate 
the calculations described in this paper. The companion materials are summarized in the Supplementary 
Materials section and are available at [CAS to fill in location]. 
 
Keywords. Reserve variability, enterprise risk management, actual versus expected, back-testing, 
deviations from expectation, one-year time horizon, validation, reserve distribution testing, assumption 
consistency, run-off analysis, key performance indicator. 
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1. Introduction 

Never has it been more important for actuaries to improve their understanding of reserve 
variability. Updated International Financial Reporting Standards (IFRS Phase II) will likely 
require all insurance companies to record an independently measured and updated risk 
margin. In Europe, Solvency II directives already require the recognition of a risk margin 
and validation standards require the Actuarial Function to comment on material deviations 
from prior expectations. 

A range of reasonable estimates can be selected based on the results of deterministic 
methods, some scenario testing, and a few basic rules of thumb. Such a range, together with 
some heroic assumptions, can provide an unsophisticated aid to management in selecting a 
risk margin. More commonly, however, the calibration of risk margins makes use of modern 
stochastic modelling techniques, resulting in a distribution of possible outcomes,1 with the 
outcomes providing the ability to measure statistical properties such as the mean, mode, 
percentiles, etc. There are a number of uses for the results of stochastic modelling 
techniques beyond the calibration of a risk margin, many of which can be incorporated for 
use within the Enterprise Risk Management (“ERM”) process such that “new” information 
can be quickly used to assess performance. For example, key performance indicators 
(“KPIs”) can be developed based on a range of percentiles around the expected outcomes. 

Back-testing is a validation technique that enables the reserving actuary to assess the 
“new” information inherent in the loss triangles, relative to “known” information and future 
expectations inherent in the prior analysis. However, without an analysis of reserve 
variability, an assessment of the significance of deviations from expectations on both a 
granular level (individual accident periods) and an aggregate level (by reserving segment, by 
line of business, or by Company) is not quantifiable. Even with an analysis of reserve 
variability, bifurcating significant deviations as being the result of mean estimation error, 
variance estimation error, and/or random error is difficult. 

                                                           
1 A distribution of possible outcomes is an expression of the “full breadth” of the possibilities of the future 

payouts. Note that the estimation of unpaid claims involves significant uncertainties that cannot be 
completely estimated, so “full breadth” should be thought of as a reasonable estimate of the distribution 
to the extent that it can be estimated using historical data (for independent risk) and a subjective 
adjustment to account for variability attributable to systemic risk. Further, the available historical data 
may be limited such that an adjustment to account for events not in the data (“ENID”) may also be 
necessary. For this reason, a distribution of possible outcomes may not be possible using the most 
sophisticated actuarial techniques available. 
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A systematic back-testing process as part of a comprehensive ERM system, which uses 
the output of prior reserve variability analyses, significantly increases the ability of the 
actuary to assess deviations from expectations and provides management with an early 
indication of the current period’s performance relative to the actuary’s expectations. Further, 
a systematic back-testing process allows for the evaluation of the universe of deviations, 
relative to the distributional expectations for the current period. 

Within the comprehensive ERM solution, assumption consistency becomes an important 
consideration. When selecting a central estimate2 for an unpaid claim estimate, the practicing 
actuary commonly weights the results from multiple methods. By assigning weights to 
multiple methods, the actuary is partially accepting or rejecting the assumptions inherent in 
each method that contributes to the selection of their central estimate.3  

Therefore the future expectation for each data element (e.g., incremental paid losses) is a 
weighted average of the respective expected data element from each of the methods which 
received weight. Likewise, the inherent uncertainty in the selected estimate is more 
appropriately modeled as a weighted average of the expected uncertainty in the methodology 
which underlies each model used to estimate uncertainty as this also helps to address model 
risk.4 In contrast, an approach which uses a single model (e.g., Mack or an ODP bootstrap 
of the paid chain ladder method alone) to estimate the uncertainty around a point estimate 
based on multiple methods, uses an assumption set for the variance which is at best partially 
rejected during the selection of the point estimate and at worst involves assumptions which 
are completely different from those used for the point estimate. 

This paper will develop and examine a framework for reserve distribution testing and 
validation and demonstrate its use with real datasets within an Enterprise Risk Management 
framework. It will also illustrate how stochastic results based on a one-year time horizon (as 
specified in Solvency II) can be used in the subsequent year's process of estimating reserves 
                                                           
2 This paper uses the term “central estimate,” consistent with Actuarial Standard of Practice No. 43, 

“Property/Casualty Unpaid Claim Estimates,” promulgated by the Actuarial Standards Board [1]. With 
respect to Solvency II and IFRS Phase II, regulations and guidance use the term “best estimate” to mean 
the same thing.  

3 Accepting or rejecting assumptions is a simplification of the entire process and all considerations. For 
example, not giving weight to a method for a specific year is not rejection of the method or any specific 
assumption within the method as the method may be given some weight for another year. Thus, this 
description of the process of weighing methods to arrive at a central estimate should be interpreted as 
including all considerations an actuary uses. 

4 Weighting deterministic methods is also a way to address model risk. The entire process of weighting 
multiple models is outside the scope of this paper, but common issues (like consistency of variances 
between models) are assumed to have been resolved when selecting weights. 
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to get an early indication of the expected reserve changes due to the emergence of new 
information. 

1.1 Research Context 
The importance of assumption consistency should not be underestimated. Paragraph 

3.6.2 of ASOP 43 [1] states that an actuary “should use assumptions that, in the actuary’s 
professional judgment… are not internally inconsistent.”  Also note that Article 122.2 of the 
Solvency II Framework Directive [10] (“FD”) states that models “used to calculate the 
probability distribution forecast shall… be consistent with the methods used to calculate 
technical provisions.” Finally, section C from Technical Actuarial Standards: Modelling 
(“TAS-M”) [11] states that assumptions should be consistent in “a model or in a suite of 
models.” TAS-M further suggests that different assumptions (i.e., use of multiple methods 
that use different assumptions) are “not always inconsistent. For example, if several 
independent models are used in conjunction to provide better estimates than any one model 
could provide on its own, different assumptions might be chosen deliberately.” If however, 
inconsistent assumptions are used, TAS-M requires a disclosure statement. 

Actuarial literature includes a number of approaches to quantifying the uncertainty of 
reserve estimates based on the variability observed in the actual historical development of 
the claims under consideration. In practice, the most frequently used approaches are 
statistical approximations to relatively simple regression models. Such approaches have the 
advantages of being (relatively) straightforward to implement, interpret, and explain. They 
can be applied equally well to accident or underwriting period data to generate results on the 
same basis. Two regression models in particular tend to dominate: the Mack [18] linear 
regression model and the ODP bootstrap model originally developed by England & Verrall 
[7, 8].  

In both cases, the expected values of the reserve estimate are equal to the results of the 
deterministic paid chain ladder method using the all-year volume-weighted average 
development factors, which is rarely the sole basis for the central estimate, especially for 
immature accident periods. Some practitioners of such models get around this limitation by 
“shifting” the modelled distribution such that the mean of the distribution is equal to the 
central estimate and the standard deviation from the model is maintained. The “shift” is 
usually implemented in an additive fashion by adding to each iteration the difference 
between the central estimate and the result of the paid chain ladder method (using the all-
year volume-weighted average link ratios) by accident period. In order to get to the expected 
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payments by development period, the “shift” will also need to be allocated to the 
incremental payments, which is often done in proportion to the overall expected average 
incremental payments before the shift. 

As originally framed, the Mack [18] model (and by extension, the Merz-Wüthrich [19] 
model) provides a method for estimating a coefficient of variation (“CoV”) for the reserve 
estimate. In order to convert the CoV into an estimate at a specific confidence level, 
however, it is necessary to select a particular parametric probability distribution whose 
parameters can be determined by the CoV together with the central estimate. 

The ODP Bootstrap model originally developed by England & Verrall [7, 8] is often used 
in a similar manner to Mack [18] in the sense that the distributional output for the basic 
“chain ladder” model with paid data is “shifted” so the mean matches the central estimate. 
However, the ODP bootstrap approach can be extended to simulate any number of 
methods without requiring the selection of a particular parametric probability distribution as 
described in Shapland [27]. It is this approach which enables the actuary to maximize the 
assumption consistency between the central estimate of loss reserves and the calibration of 
reserve variability. 

1.2 Objective 
The objective of integrating loss reserve variability into the ERM process is to improve 

the estimation and management of loss reserves and reserving risk. 

In order to manage reserve risk, one needs to measure it first. Integrating reserve risk into 
a continuously monitored ERM process ensures that assumptions are tracked and validated 
over time and that changes in assumptions are justified relative to the performance of prior 
assumptions. 

Back-testing is a validation technique which can provide insight which improves a 
reserving process in that inevitable deviations from expectations are forced to be understood 
and future decision points (i.e., assumptions and expert judgement) can be based on the 
performance of past decision points. 
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2. Notation 

The notation in this paper is from the CAS Working Party on Quantifying Variability in 
Reserve Estimates Summary Report [5] since it is intended to serve as a basis for further 
research. 

Many models visualize loss data as a two-dimensional array, ),( dw with accident period 
or policy period w , and development age d (think w  = “when” and d  = “delay”). For this 
discussion, it is assumed that the loss information available is an “upper triangular” subset 
for rows 1, 2, ,w n=   and for development ages 1, 2, , 1d n w= − + . The “diagonal” 
for which dw +  equals the constant, k , represents the loss information for each accident 
period w  as of accounting period k .5 

For purposes of including tail factors, the development beyond the observed data for 
periods 1, 2, ,d n n u= + +  , where u  is the ultimate time period for which any claim 
activity occurs – i.e., u  is the period in which all claims are final and paid in full – must also 
be considered. 

The paper uses the following notation for certain important loss statistics: 

),( dwc : cumulative loss from accident year w  as of age d .6 

),( dwq : incremental loss for accident year w  from d  - 1 to d . 

)(),( wUnwc = : total loss from accident year w  when claims are at ultimate values at 
time n , or with tail factors7 

( , ) ( )c w u U w= : total loss from accident year w  when claims are at ultimate values at 
time u . 

( )R w : future development after age d  for accident year w , i.e., = 
),()( dwcwU − . 

)(df : factor applied to ),( dwc  to estimate )1,( +dwq  or can be used more 
generally to indicate any factor relating to age d . 

)(dF : factor applied to ),( dwc  to estimate ( , 1)c w d +  or ),( nwc  or can be 

                                                           
5 For a more complete explanation of this two-dimensional view of the loss information, see the 

Foundations of Casualty Actuarial Science [12], Chapter 5, particularly pages 210-226. 
6 The use of accident year is for ease of discussion. All of the discussion and formulas that follow could 

also apply to underwriting year, policy year, report year, etc. Similarly, year could also be half-year, 
quarter or month. 

7 This would imply that claims reach their ultimate value without any tail factor. This is generalized by 
changing n  to n t u+ = , where t  is the number of periods in the tail. 



The Actuary & Enterprise Risk Management: 
Integrating Reserve Variability 

 

8  Casualty Actuarial Society Forum, Summer 2016 

used more generally to indicate any cumulative factor relating to age d . 

)(wG : factor relating to accident year w  – capitalized to designate ultimate 
loss level. 

( )h k : factor relating to the diagonal k  along which w + d  is constant.8 

),( dwe : a random fluctuation, or error, which occurs at the w , d  cell. 

)(xE : the expectation of the random variable x . 

)(xVar : the variance of the random variable x . 

)(xDist : the distribution of the random variable x . 

)(xPy : the y  percentile of the distribution of the random variable x . 

x̂ : an estimate of the parameter x . 

What are called factors here could also be summands, but if factors and summands are 
both used, some other notation for the additive terms would be needed. The notation does 
not distinguish paid vs. incurred, but if this is necessary, capitalized subscripts P  and I  
could be used. 

3. Back-Testing 

Back-testing is a process of comparing actual results with the expected results in order to 
answer the question “are the actual results better or worse than expected?” This simple 
question has many important nuances and ramifications, including psychological 
implications in the sense that people naturally tend to assume or hope for more “better than 
expected” back-tests than ”worse than expected”. While people also intuitively understand 
that a “worse than expected” back-test is “normal” the tendency to want more “better than 
expected” back-tests can creep into the initial expected results in the form of a bias for 
setting expectations higher than they may have otherwise been set. On the other hand, 
pressure to publish better financial results can push initial expectations lower. 

In its simplest form a back-test can be formulated as in (3.1) for a particular incremental 

                                                           
8 Some authors define 1,...,1,0 −= nd  which intuitively allows wk =  along the diagonals, but in this 

case the triangle size is 1−×nn  which is not intuitive. With nd ,...,2,1=  defined as in this paper, 
the triangle size nn×  is intuitive, but then 1+= wk  along the diagonals is not as intuitive. A way to 
think about this which helps tie everything together is to assume the w  variables are the beginning of the 
accident periods and the d  variables are at the end of the development periods. Thus, if years are used 
then cell )1,(nc  represents accident year n  evaluated at 12/31/n, or essentially 1/1/n+1. 
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value. 

)],(ˆ[),( dwqEdwq −  (3.1) 

By subtracting the expected result from the actual result a “better than expected” result 
means that the actual result was less than the expected result. Somewhat counterintuitively, 
however, this “better than expected” result is actually a negative number. 

The term “run-off” or a run-off analysis is often used interchangeably with “back-test” as 
the goal is to watch how actual results compare to the initial expectations. However, the run-
off outcome is generally formulated as in (3.2) for a particular incremental value. 

),()],(ˆ[ dwqdwqE −  (3.2) 
For the run-off test a “better than expected” result also means that the actual result was 

less than the expected result, but in this case the value is positive and perhaps more intuitive. 
Even as “back-test” and “run-off” can be used interchangeably, formulas (3.1) and (3.2) 
could also be interchanged between terms. For simplicity, from this point forward the paper 
will only refer to “back-testing” and will assume the reader can transition between terms and 
formulas (3.1) and (3.2) as preferred. 

A back-test can be performed at either a granular or at a higher level. At a granular level, 
this would involve testing a single method or even a specific assumption within a method, 
with the goal of understanding the efficacy of that method or assumption. At a higher level 
the back-test will provide insight into the sum total of all methods and assumptions used to 
produce a final estimate. Granular level back-testing tends to be more of an academic or 
technical review whereas the higher level back-testing tends to focus at a management level, 
which is where the remainder of this paper will focus. 

Within the ERM vernacular, the output of back-testing can be considered a KPI. As with 
other KPIs within an ERM system, information about deviations from expected outcomes 
provides valuable information for management. 

3.1 Deterministic Back-Testing 
For deterministic methods, the resulting point estimate is the sole source of the 

“expectation” from which to test deviations.9 Consider, for example, the back-test results in 
Table 3.1. While a final back-test of the ultimate projection will be useful when all the claims 

                                                           
9 For a deterministic analysis the point estimate does not contain any specific statistical meaning such as a 

mean, mode or median, so the term “expectation” likewise does not have any statistical connotation other 
than being a convenient reference to the central estimate. 
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are completely settled, the value of the back-test is typically drawn from the interim 
evaluations in order to check whether the incremental amounts are consistent with the 
development to date with respect to the ultimate projection. 

In Table 3.1, actual accruals for accident year (“AY”) 2015 are shown but expected 
accruals for AY 2015, and therefore differences, are not shown. This is because the 2015 
calendar year (“CY”) experience includes payments and case reserve changes attributable to 
AY 2015 and prior. The expectations, on the other hand, are based on the reserve analysis as 
of the prior year-end, in this case for AY 2014 and prior (i.e., as of 31 December 2014). In 
this paper the term “AY < CY” is used to denote the subtotal of all accident years not 
including the current accident year and “AY = CY” is used to denote the experience for the 
most recent AY which does not have a comparable expectation based on the prior reserve 
analysis alone. 

Table 3.1 Back-Testing Example: Deterministic Actual vs. Expected 
Sample Insurance Company

Consolidation of All Segments
Deterministic Actual vs. Expected as of December 31, 2015

Actual Expected Actual Expected
AY Age Paid Paid Difference Incurred Incurred Difference

2006 120 3,069 3,701            (632) 1,863 2,158            (295)
2007 108 5,905 7,405            (1,500) 3,145 2,794            351
2008 96 8,986 10,073          (1,087) 3,553 6,142            (2,589)
2009 84 18,992 19,027          (35) 9,872 11,285          (1,413)
2010 72 51,003 47,151          3,852 25,942 26,873          (931)
2011 60 105,067 103,127        1,940 52,012 54,534          (2,522)
2012 48 202,932 194,479        8,453 106,624 106,020        604
2013 36 334,434 325,644        8,790 189,908 192,143        (2,235)
2014 24 841,484 833,793        7,691 454,217 479,073        (24,856)
2015 12 1,798,138 2,528,235
Totals 3,370,010    3,375,371    
AY<CY 1,571,872 1,544,400 27,471 847,136 881,022 (33,886)  

The “Difference” columns in Table 3.1 are calculated using formula (3.1), but like all 
deterministic back-tests the amounts reveal more about the direction of the outcome than 
the significance. Similar comparisons of actual and “expected” values are not difficult to 
compile for a number of other data elements (e.g., closed claims, reported claims, etc.), but 
while the total numbers of positive and negative deviations may be instructive it does not 
overcome the lack of a measure of significance. The only area where care needs to be 
exercised is in the calculation of the expected incremental amounts. For this, each method 
used should be converted into the incremental value being tested (e.g., paid claims) and then 
weighted together to arrive at an expectation which is consistent with the overall 
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assumptions used to determine the selected estimate by accident period.10 A typical short cut 
of multiplying the selected estimate by a selected development pattern will create a 
disconnection between assumptions at the macro and micro levels and should therefore be 
avoided. 

A logical extension of this back-test is to check if the actual outcome falls within the 
reasonable range that was used to develop and select the central estimate. With a range, the 
formulation of the back-test can take the form of a percent, with a result between 0 and 
100% indicating the outcome was within the range, a result greater than 100% indicating the 
outcome was above the range, and a result less than zero indicating the outcome was below 
the range. 

)],(ˆ[)],(ˆ[
)],(ˆ[),(

dwqMindwqMax
dwqMindwq

−
−  (3.3) 

Continuing the example above, the back-test using a range is illustrated in Table 3.2, with 
the “Range Percent” columns calculated using formula (3.3). 

Table 3.2 Back-Testing Example: Actual to Deterministic Range of Estimates 

 

 

 

 

 

 

 

The range used for this test can vary based on preferences or testing criteria. For 
example, the range could include only methods given some weight by accident year (the 
“weighted range”), the range could include all methods given weight for any accident year 
(the “method range”), or the range could be expanded to include methods not given any 
weight or scenario testing (the “possible range”). 

                                                           
10 The “Results – Deterministic” sheet in the “LOB Backtest.xlsm” file illustrates the process of combining 

weighted estimates of the incremental values consistently with the overall unpaid estimates by accident 
year. 

Sample Insurance Company
Consolidation of All Segments

Deterministic Actual vs. Method Range as of December 31, 2015
Actual Paid Paid Range Actual Incurred Incurred

AY Age Paid Minimum Maximum Percent Incurred Minimum Maximum Difference
2006 120 3,069 3,701            3,704 -21075% 1,863 2,158            2,162 -6790%
2007 108 5,905 5,827            8,983 2% 3,145 1,210            4,380 61%
2008 96 8,986 9,887            10,277 -231% 3,553 5,955            6,356 -599%
2009 84 18,992 17,726          20,381 48% 9,872 9,981            12,657 -4%
2010 72 51,003 44,889          49,487 133% 25,942 24,600          29,236 29%
2011 60 105,067 100,495        106,278 79% 52,012 51,856          57,857 3%
2012 48 202,932 191,183        198,745 155% 106,624 102,222        110,845 51%
2013 36 334,434 310,031        338,355 86% 189,908 174,120        205,898 50%
2014 24 841,484 794,706        853,821 79% 454,217 436,298        503,306 27%
2015 12 1,798,138 2,528,235
Totals 3,370,010    3,375,371    
AY<CY 1,571,872 1,481,602 1,586,896 86% 847,136 811,568 929,564 30%
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While the relationship between the actual outcome and the range is a bit more instructive 
than the back-test of actual to “expected”, unfortunately it is still more about direction than 
significance. 

3.2 Stochastic Back-Testing 
The only way to test the significance of the deviations from expected is to start with a 

reserve variability analysis to estimate the distribution of possible outcomes – i.e., instead of 
simply reviewing whether the outcome is better or worse than expected, the question 
becomes “is the outcome significantly different than expected?” As with a deterministic 
back-test, the calculation of expected values will reflect the models employed during the 
analysis and requires assumption consistency with the methods contributing to the selected 
unpaid claim estimate. More importantly, in order to dissect the efficacy of the models and 
assumptions used in a stochastic analysis of unpaid claims, consistency of assumptions for 
both mean and variance is important.  As noted in Section 1.1, using multiple methods to 
select a point estimate and then using a single “shifted” model  approach is quite 
inconsistent in the sense that the assumptions for the mean and variance are completely 
different. 

Assuming that model and assumption consistency is maintained within a reserve 
variability analysis, the assessment of the significance or materiality of the resulting 
differences is a straightforward process using a percentile function. Formula (3.4) uses the 
Excel PERCENTRANK.INC function, but percentile functions for other software would 
be similar.11 

)},()],,(ˆ[{K.INCPERCENTRAN)],([ dwqdwqDistdwqPx =  (3.4) 

Like for the deterministic back-test, the only area where care needs to be exercised is in 
the development of the distributions for each incremental value. The output of stochastic 
models may only include the simulations for the totals by year, but most software will 
include the simulations of incremental amounts as an output option. Assuming the 
incremental simulations are available, then the only issue remaining is to insure that the 
incremental output has been weighted and shifted consistently with the overall model 

                                                           
11 In Excel, the =PERCENTRANK.INC(Array,X) function has two required parameters, Array, which is 

the range of values which can be used to determine relative standing within the range and, X, which is the 
value for which you want to determine the rank. The function returns the rank of X within the Array as a 
percentage (0, 1, inclusive) of the range of values. 
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assumptions.12 

For the examples used in this paper a reserve variability analysis was completed using four 
variations of the ODP bootstrap model (i.e., Paid Chain Ladder, Incurred Chain Ladder, 
Paid Bornhuetter-Ferguson, Incurred Bornhuetter-Ferguson), including weighting and 
shifting to match the assumptions and unpaid claim estimates for a deterministic analysis 
using the same methods in order to estimate the expected distribution of possible outcomes. 
The approach was used for three sample reserving segments and correlated to derive an 
aggregate distribution in order to illustrate the process for a whole company.13 

Table 3.3 Back-Test Example: Stochastic Actual vs. Expected 
Sample Insurance Company
Aggregation of All Segments

Stochastic Actual vs. Expected as of December 31, 2015
Actual Expected Actual Expected

AY Age Paid Paid Percentile Incurred Incurred Percentile
2006 120 3,069 4,077            31.8% 1,863 2,115            49.8%
2007 108 5,905 6,163            47.9% 3,145 1,819            80.6%
2008 96 8,986 10,176          33.6% 3,553 6,026            20.9%
2009 84 18,992 20,033          39.0% 9,872 10,399          46.3%
2010 72 51,003 48,298          71.6% 25,942 25,562          55.3%
2011 60 105,067 104,415        54.3% 52,012 53,101          44.8%
2012 48 202,932 196,083        74.2% 106,624 104,075        61.7%
2013 36 334,434 331,701        57.1% 189,908 185,173        64.0%
2014 24 841,484 839,689        52.8% 454,217 469,822        29.3%
2015 12 1,798,138 2,528,235
Totals 3,370,010    3,375,371    
AY<CY 1,571,872 1,560,637 61.2% 847,136 858,093 37.6%  

Large (small) deviations between actual and expected values are expected when a reserve 
variability analysis concludes that uncertainty is high (low). The use of an expected 
distribution of possible outcomes for each accident period and in total (i.e. AY < CY) 
implies that the use of percentiles automatically adjusts for differences in uncertainty by year 
or segment as illustrated in Table 3.3. 

Note that for simplicity the examples and case study do not include an expected 
distribution of possible outcomes for most recent accident period (i.e., AY = CY), as this 
would require modeling that is generally not included in the reserving analysis for the prior 
period. However, if the reserving analysis is extended to include a distribution of the next 
                                                           
12 For a useful reference see Shapland [27]. The “RawSimResults” sheets in the “LOB Backtest.xlsm” file 

assume that the incremental output by year and by iteration has been weighted and shifted as described in 
Shapland [27]. 

13 While the terms can be used interchangeably, in this paper “consolidation” is used to mean a 
deterministic sum of the parts or segments whereas “aggregation” is used to mean the stochastic 
correlation of the parts or segments.  
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accident year (perhaps in a “pricing risk” calibration) then this could be included with the 
back-test. The only caveat to the inclusion of pricing risk is that it will be based on 
expectations of future exposures, so any back-test should first adjust the distribution for the 
actual exposures prior to calculation of percentiles in order to more properly compare these 
once future exposures to all the prior years which were based on actual exposures. 

Deviations expressed as a percentile provide an indication as to the materiality. Note that 
deviations expressed as extreme percentiles do not necessarily indicate a problem with the 
methodology employed during the prior analysis, as observations at the extreme levels of a 
distribution of possible outcomes should occur. 

3.3 Stochastic Key Performance Indicators 
Reviewing a single percentile is instructive, but hardly useful. In the greater scheme of 

determining materiality, the single observation is more about random noise than materiality. 
Only with a large number of observations can the analyst start to detect material issues by 
observing patterns or biases in the percentiles. It is in the detection of patterns that the key 
performance indicators add value to the stochastic analysis. Consider for example Figure 3.1 
which graphically displays pre-defined thresholds which are used to define stochastic KPI 
thresholds. 

Figure 3.1 Pre-defined KPI thresholds 

0% 5% 25% 75% 95% 100%
 

As illustrated in Figure 3.1, the case study in this paper uses thresholds at the 25th and 75th 
percentile, the 5th and 95th percentile, as well as the simulated minimum and maximum of the 
distribution of possible outcomes to denote material deviations from expected. Such 
deviations can be communicated visually using a table of numbers (see Tables 3.3 and 5.10), 
a chart of individual accident periods (see Figures 3.2a and 3.2b), or a chart of the total 
calendar year – i.e., all accident years combined (see Figures 3.3a and 3.3b).  
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Figure 3.2a Paid KPI Thresholds by Accident Year 

 

Figure 3.2b Incurred KPI Thresholds by Accident Year 

 
Figures 3.2a and 3.2b show where the actual incremental paid and actual incremental 

incurred by accident year for a single reserving segment; the black, orange, and red points, 
fall within the thresholds of the expected distribution of possible outcomes. Note that the 
blue color coded areas represent the areas defined by the pre-defined thresholds as defined 
in Figure 3.1. 

Figures 3.3a and 3.3b show where the actual incremental paid and actual incremental 
incurred for the calendar year (i.e., all accident years AY < CY) for a Segment; the orange 
and red points, fall within the expected distribution of possible outcomes. Again, the blue 
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color coded areas represent the areas defined by the pre-defined thresholds. 

Figure 3.3a Calendar Year Paid KPI 

 

Figure 3.3b Calendar Year Incurred KPI 

 
When using tables or charts, the materiality of the deviation can be better understood by 

using color coded fonts (see Tables 3.3 and 5.10) or color coded areas representing breaches 
of pre-defined thresholds (see Figure 3.1) within the distribution of possible outcomes.  

There are caveats to this approach such as: 

1. Various assumptions (each requiring validation) need to be made in order to produce 
a distribution of possible outcomes (distributional predictions);  

2. The approach tends to work well for high frequency segments on a gross of 
reinsurance basis but not necessarily for low frequency segments or on a net or ceded 
basis; and  

3. Analysis of industry performance over the past few decades show that some ODP 
bootstrap model variations, absent adjustment for model weaknesses, may 
underestimate reserve risk (i.e. the distribution of possible outcomes could be wider). 

4. Reserving Within an ERM Framework 

There are numerous definitions of ERM. The common themes and principles that 
emerge from the various definitions, as summarized by the 2016 International Actuarial 
Association paper [16] “Actuarial Aspects of ERM for Insurance Companies,” are: 

1. ERM is a continuous process; 

2. ERM adopts a holistic view to risk and assesses risk from the perspective of the 
company’s aggregate position as well as from a standalone perspective; 
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3. ERM is concerned with all risks, including those that are unquantifiable or difficult to 
quantify; 

4. ERM considers uncertainty from both a positive and negative viewpoint; 

5. ERM aims to achieve greater value for all stakeholders by assisting in achieving an 
appropriate risk-reward balance; and 

6. ERM considers both the short term and the long term aspects of risk. 

Key components of a company’s ERM system include risk governance, risk strategy, and 
the steps that make up the core risk management process consisting of risk identification, 
risk assessment, risk measurement, risk response, risk monitoring and risk reporting. 

Risk governance generally includes the assignment of roles and responsibilities, the 
establishment of risk policies and procedures, robust internal control systems, and risk 
culture. For the assignment of roles and responsibilities, many companies adopt a “three 
lines of defense” model. The first line is responsible for the regular operations of the 
business. The second line is responsible for overseeing of the operations of the first line. 
Finally, the third line is responsible for independent review (i.e., audit) and assurance of the 
operations of the first and second lines. 

Once risk has been identified, analyzed and measured then management is faced with 
responding to the risks. Responses are often characterized as avoiding, accepting, mitigating, 
or sharing.  

The ERM process does not change the way that an actuarial function manages loss 
reserves and the corresponding reserving risk. Rather, the ERM process formalizes the 
governance around the process and ensures a consistent and continuous approach. In the 
case study below, one such approach is described. With or without an ERM process, the 
actuarial function within an insurance entity is responsible for the reliability and adequacy of 
the calculation of loss reserves, including: 

• Promptly reporting major deviations from expectations such that management has the 
relevant information necessary for the decision-making process; and 

• Investigating the causes of deviations such that changes to the assumptions and 
methodologies can be suggested in order to improve the central estimate of loss 
reserves. 

The ERM process adds a change control process such that unauthorized changes to the 
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model are restricted and changes are documented. 

Risk monitoring is linked to risk measurement and reporting in that the quality of 
measurement and reporting often determines the extent of monitoring possible. In the case 
study below, a high quality measurement process which increases the scope of typical 
monitoring of loss reserves is described, including: 

• Clear assignment of risk ownership and establishment of timely automatic reporting 
mechanisms; 

• Consistent, accurate, and auditable controlling of both the deterministic method(s) 
and methodology supporting the selected central estimate, and the stochastic model(s) 
supporting the corresponding reserve uncertainty conclusion in the form of an 
expected distribution of possible outcomes; 

• Producing metrics than an actuarial function can use to identify deviations from prior 
expectations and efficiently allocate analysis resources, prior to commencing with the 
current analysis; 

• Allowing for analysis resources to hypothesize and monitor whether deviations from 
expectations are the result of mean estimation error, variance estimation error, or 
random error; 

• Producing performance indicators that management can use to anticipate the 
conclusions of the actuarial analyses, based on how the prior assumptions have held 
up; and  

• Expanding the discussion to interested parties outside of the actuarial function, 
regarding major deviations from expectations. 

Monitoring would normally be done with a frequency that is appropriate to the risk in 
question. Monitoring should be sufficiently frequent to allow decisions to be made and for 
action to be taken on an informed basis. In the case study below, a process that uses annual 
analyses is described, which is typical, but a more frequent basis can be similarly achieved as 
long as the data and processes are established accordingly. 

5. Enterprise Risk Management in Action – A Case Study 

With the foundation established, the rest of the paper will illustrate the advantages of 
integrating reserve variability into the Enterprise Risk Management system by using a case 
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study. Summary tables and graphs for each LOB and the aggregate results are shown in 
Appendices C, D, E, and F, respectively. 

5.1 Introduction 
The case study presents the work cycle for an actuarial function within a sophisticated 

ERM system, including a more robust estimation process for the unpaid claim estimates (i.e., 
loss reserves) as of 31 December 2015. To set the stage, a general timeline of activity is 
established before presenting the details. 

• Prior to year-end 2015: Levels of back-testing granularity are defined14 to be Entity 
Total, Segment Total (where Entity Total = ΣSegment), and AY for each Segment 
(where Segment Total = Σ AY for each Segment).15 

• Prior to year-end 2015: Two levels of thresholds are defined,16 such that observations 
in the 5% tail areas (i.e., less than the 5th percentile and greater than the 95th 
percentile) and 25% tail areas initiate action.17 

• Prior to year-end 2015: Elements included in the automatic back-testing system are 
defined to include paid loss and incurred loss. Other elements, such as reported 
and closed claim counts, could be included in a live system but they are 
excluded here for simplicity. 

• Prior to year-end 2015: Enhanced documentation standards18 of assumptions and 
expert judgement are established for the analysis and validation of each reserving 
segment.19 

                                                           
14 Note that changes in the segmentation, and the ramifications to the ERM system, need to be thoroughly 

addressed prior to the year-end. 
15 Note that it is often more practical to exclude special Segments and very mature AYs, such that “Entity 

Total = ΣSegment + excluded segments” and “Segment Total = Σ AY for each Segment + prior AYs”. 
16 Note that thresholds could be nominal (e.g., differences larger than $1 million), relative (e.g., differences 

150% larger than the mean expected), or distributional (e.g., observations above the 95th percentile of 
possible future outcomes). 

17 Note that the identification of a threshold breach does not imply that an error in the prior calculation has 
been identified. Rather, a breach brings attention to large deviations such that the assumptions and 
methodology underlying the expectation can be reviewed. 

18 Note that enhanced documentation includes a list of relevant and material assumptions for each segment, 
the results of sensitivity testing material assumptions, segment specific diagnostics with qualitative 
descriptions supporting the conclusions, and justification (if available) for material expert judgement 
exercised. 

19 Note that enhanced documentation together with the automated back-testing ensures that a change in 
employee personnel does not unnecessarily render the historical assumption set and rationale less 
transparent or understandable (i.e., the institutional memory stays intact.) 
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• 4 January 2016: The accounting function closes the books such that all data elements 
as of the 31 December 2015 valuation date are available on an AY and CY basis. 

• 5 January 2016: Granular results of automated back-testing of the current CY (i.e., CY 
2015) and deviations20 from the predictions for CY 2015 (based on the loss reserve 
analysis as of 31 December 2014) are available. 

o Previously identified segments (or previously identified data elements from a 
segment) are included in the automated back-testing procedure where a robust 
validation of the CY 2015 accruals can be achieved. 

o AY 2014 and prior incremental accruals (i.e., AY < CY) are compared to the 
expectations as of 31 December 2014, based on the final distribution of possible 
outcomes estimated by the actuarial function in the prior reserving analysis. The 
process can be expanded to include specific models, but that is not done 
here only for simplicity. 

o AY 2015 incremental accruals (i.e., AY = CY) can be compared to the 
expectations for losses related to the unearned premium as of 31 December 2014, 
with adjustment for actual new business written during 2015. For simplicity, 
these amounts are not included in the details of the case study shown 
below, although it should be noted that deviations from expectations can 
be described as a mixture of reserve risk and premium risk. 

• 5 January 2016: The actuarial function determines an efficient allocation of analysis 
resources so that segments and/or AYs which exhibit a large number of significant 
deviations receive additional attention. 

• 5 January 2016: Breaches in the 25% tail areas initiate additional hindsight analysis 
including hypothesis testing as to whether the breach could have been caused by an 
assumption error in either the deterministic or stochastic analysis, a systematic effect 
(e.g., an explainable change in the internal or external environment), or random 
variation. 

• 5 January 2016: Breaches in the 5% tail areas initiate an alert system intended to 
collect relevant information from other departments (e.g., data quality, underwriting, 
claims, and reinsurance).  

                                                           
20 The automated back-test identifies areas where the deviations from predictions breach a pre-defined 

threshold (for multiple levels of granularity and for multiple data elements.) 
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• 5 January 2016: Conditional reserve estimates using the 1-year time horizon analysis as 
of 31 December 2014 are available to management as an early indication of the 
reserve changes that will occur for the 31 December 2015 evaluation. (See Appendix 
A for an overview of the one-year time horizon.) 

• 5 January 2016: Armed with a view of how each segment performed during CY 2015, 
relative to the expectations inherent in the actuarial methodology as of 31 December 
2014, the actuarial function can commence with its valuation analysis as of 31 
December 2015.  

• 5-26 January 2016: During the analysis, diagnostics and statistical tools are used to 
review assumptions and calibrate the parameters of each of the methods and models 
which comprise the segment’s methodology. Such diagnostics and tests are retained in 
a log so that they can be referenced in the actuarial report. Also interaction with 
interested parties outside of the actuarial function provide a critical sounding board 
for expert judgement exercised. 

• 27 January 2016: At the conclusion of the analysis a recommendation for the loss 
reserve is sent to management, taking the form of an actuarial function report.  

• 10 February 2016: After the dust settles, the expectations for CY 2016 are compiled 
by the actuarial function, based on the expectations inherent in the analysis as of 31 
December 2015. Further analyses of change are completed and documented. 
Suggestions for the enhancement of the robust estimation process for CY 2016 (levels 
of granularity, thresholds, data elements, diagnostic retention and other enhanced 
documentation) are considered, based on the performance and the collective findings 
of the analysis. 

5.2 Basis of Underlying Data 
In producing this case study real industry data was used.21 To ensure confidentiality, 

triangular data for 10 accident years was aggregated from a small number of insurance 
entities writing Commercial Auto (“CA”), Private Passenger Auto (“PPA”), and 
Homeowners (“HO”), as of consecutive year-ends. This produced a data set for a fictitious 
entity.  

By performing a deterministic and stochastic analysis on the annual data for this fictitious 

                                                           
21 The data comes from historical Schedule P triangles, as compiled by SNL Financial. 
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entity, an exercise which is often undertaken by actuarial departments every year-end, the 
case study attempts to highlight the wealth of information that is ripe for integration within 
an ERM framework to enhance the understanding of the underlying dynamics, including the 
production of KPIs for reserving risk.  

The deterministic analysis was limited to four methods, namely: the paid and incurred 
chain ladder (“Pd CL” and “Inc CL”) methods and the paid and incurred Bornhuetter-
Ferguson (“Pd BF” and “Inc BF”) methods. The selected ultimate loss estimates for each 
accident year are a weighted average of the four methods. To maximize assumption 
consistency, four ODP bootstrap models consistent with each of the deterministic methods 
were used. The selected distribution of possible outcomes for each accident year are a 
weighted average of the four ODP bootstrap models (using the same weights as for the 
deterministic methods),22 shifted such that the mean of the distribution for each accident 
year is equal to the selected unpaid loss. 

It is reasonable to expect that the underlying data within the fictitious entity would be 
available by the first Monday of the year (4 January 2016) and that the generous management 
of the fictitious entity allows the actuarial department to spend three weeks in completing its 
work. Within such tight schedules, the importance of activity before the year-end is 
emphasized, which calibrates the framework such that diagnostics and KPIs are produced as 
soon as the underlying data is available. 

In the case study, the diagnostics and KPIs focus on the performance of the most recent 
period (i.e., the past CY). The framework and approach can just as easily focus on multiple 
periods, which for some reserving segments would be appropriate. The multiple period 
approach provides insight that could be used to reduce unnecessary adjustments in the 
underlying actuarial assumptions (i.e., additional volatility caused by overreaction to single 
period observations). 

5.3 Validation of the Prior Analysis 
As noted above, enhanced documentation standards of assumptions and expert 

judgement are established for the analysis and validation of each reserving segment. A non-

                                                           
22 Note that weighting distributions together requires that possible outcomes mean the same thing in each 

model. For example, the unadjusted output for an ODP bootstrap model applied to a paid (an incurred) 
loss triangle would result in a distribution of possible unpaid loss (IBNR) outcomes. Prior to weighting, 
the incurred ODP bootstrap models implemented were adjusted such that the outputs were distributions 
of possible unpaid loss outcomes as described in Shapland [27]. 
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exhaustive list of assumptions that require validation and examples of enhanced 
documentation could include the following: 

5.3.1 Selected Loss Development Factors (“LDFs”) 

The Mack [18] paper introduced three assumptions which underlie the chain ladder 
method, the first two of which are validated as part of the enhanced documentation for the 
fictitious entity. 

)(),()],(),...,1,(|)1,([ dFdwcdwcwcdwcE ×=+  (5.1) 
)},(),...,1,({&)},(),...,1,({ njcjcnicic are independent for ji ≠  (5.2) 

2),()],(),...,1,(|)1,([ ddwcdwcwcdwcVar σ×=+  (5.3) 

Assumption (5.1) says that the all year loss weighted average (“AYLWA”) multiplied by 
the value in the last diagonal is equivalent to the expected value of the next diagonal given 
the observations to date. The validation test for this assumption (shown in Figures 5.1 and 
5.2) compares the LDF which is a regression through the origin (red line) relative to an 
alternative approach that uses an intercept term (green line).23 If the regression with an 
intercept is not significantly different than the regression through the origin, then the LDF is 
validated. 

                                                           
23 A more complete exposition of tests which can be used to validate the three Mack assumptions are 

provided in Venter [29]. The graphs in Figures 5.1, 5.2, 5.3 and 5.4 were created using the “Bootstrap 
Models.xlsm” companion Excel file for Shapland [27]. 
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Table 5.1 Commercial Auto: Chain Ladder Methods 
Sample Insurance Company   

Commercial Auto -- Paid Data     
Chain Ladder Development as of December 31, 2014

AY 12 24 36 48 60 72 84 96 108 120
2006 77,401 140,425 189,316 223,326 243,182 250,182 254,305 256,672 257,689
2007 76,085 142,122 193,196 224,406 246,220 257,226 263,698 264,871
2008 79,850 139,041 181,905 209,366 228,012 237,792 240,300
2009 80,323 144,482 192,134 227,723 249,165 259,339
2010 83,919 152,487 203,761 245,150 270,525
2011 82,001 151,768 201,189 245,541
2012 91,514 170,696 240,652
2013 103,957 177,709
2014 105,547

12-24 24-36 36-48 48-60 60-72 72-84 84-96 96-108 108-120 120-132
ATA 1.805            1.347            1.184            1.095            1.039            1.018            1.007            1.004            1.002            1.002            
CDF 3.385            1.875            1.392            1.176            1.074            1.033            1.015            1.008            1.004            1.002            

Unpaid 0.705            0.467            0.282            0.149            0.069            0.032            0.015            0.008            0.004            0.002            

Sample Insurance Company   
Commercial Auto -- Incurred Data     

Chain Ladder Development as of December 31, 2014
AY 12 24 36 48 60 72 84 96 108 120

2006 133,521 185,161 221,635 241,420 251,646 255,508 256,596 258,041 258,524
2007 128,727 187,403 222,093 247,345 258,712 265,636 269,558 270,758
2008 132,567 181,263 209,262 226,237 236,863 241,107 242,171
2009 137,295 188,962 222,624 247,335 258,856 265,496
2010 142,862 202,363 239,239 269,940 281,376
2011 138,650 199,791 239,719 266,101
2012 151,778 227,353 282,394
2013 169,171 235,983
2014 177,611

12-24 24-36 36-48 48-60 60-72 72-84 84-96 96-108 108-120 120-132
ATA 1.418            1.193            1.106            1.045            1.022            1.008            1.005            1.002            1.001            1.001            
CDF 2.029            1.431            1.200            1.085            1.038            1.016            1.008            1.003            1.001            1.001            

Unrptd 0.507            0.301            0.166            0.078            0.037            0.016            0.008            0.003            0.001            0.001             

Figure 5.1 Commercial Auto: Testing the first two paid LDFs 

Corr. = 0.952 P-Value = 0.000 Int. P-Value = 0.045
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Figure 5.2 Commercial Auto: Testing the first two incurred LDFs 
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For the fictitious entity, the LDFs were validated, so the CL methods using the AYLWA 

are reasonable. Note that each ODP bootstrap model is 100% consistent with using the 
AYLWA for the deterministic method, so none of the residuals were removed (i.e., no 
outliers were selected in the calibration of the ODP bootstrap models). The a priori loss 
ratios and tail factors used in the ODP bootstrap models were also consistent, except that 
variance assumptions were also added.  

Note that the implementation of a “picker approach” (to reflect observable trends) in 
selecting LDFs would necessitate additional validation of each “pick” and consideration of 
consistent treatment of the residuals in the calibration of the ODP bootstrap model, but that 
was not done in the case study in keeping with the theme of simplicity. 

5.3.2 Accident Year Independence 

Regarding assumption (5.2), the independence of the accident years can be validated using 
a table of the individual LDFs and color coding the LDFs which are smaller (green shading) 
or larger (red shading) than the median LDF for each development period, as illustrated in 
Figure 5.3. This color coding aids in searching for patterns in the LDFs which could indicate 
that they are not independent. For example, the independence assumption could be violated 
if there were a strong diagonal trend, or clustering, of one of the colors. 
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Figure 5.3 Commercial Auto: Testing independence of accident years 

Test of the Independence Between Accident Years (Paid)
1 2 3 4 5 6 7 8 CY

AY 12 24 36 48 60 72 84 96 Small Large
2006 1.81  1.35  1.18  1.09  1.03  1.02  1.01  1.00  1 0
2007 1.87  1.36  1.16  1.10  1.04  1.03  1.00  0 2
2008 1.74  1.31  1.15  1.09  1.04  1.01  2 1
2009 1.80  1.33  1.19  1.09  1.04  4 0
2010 1.82  1.34  1.20  1.10  3 2
2011 1.85  1.33  1.22  1 3
2012 1.87  1.41  1 5
2013 1.71  4 3

Median 1.82  1.34  1.18  1.09  1.04  1.02  1.01  1.00   
Test of the Independence Between Accident Years (Incurred)

1 2 3 4 5 6 7 8 CY
AY 12 24 36 48 60 72 84 96 Small Large

2006 1.39  1.20  1.09  1.04  1.02  1.00  1.01  1.00  1 0
2007 1.46  1.19  1.11  1.05  1.03  1.01  1.00  0 2
2008 1.37  1.15  1.08  1.05  1.02  1.00  2 0
2009 1.38  1.18  1.11  1.05  1.03  3 1
2010 1.42  1.18  1.13  1.04  3 1
2011 1.44  1.20  1.11  2 4
2012 1.50  1.24  1 6
2013 1.39  4 2

Median 1.41  1.19  1.11  1.05  1.02  1.00  1.01  1.00   
In practice, the independence of the accident years can be distorted by certain calendar 

year effects like major changes in the claims handling process or in case reserve 
strengthening. 

5.3.3 A Priori BF Loss Ratios (“IELR”) 

In the case study, the a priori or initial expected loss ratios (“IELR”) used in the BF 
methods were based on published figures (i.e., selected ultimate loss amounts from Schedule 
P), expressed as a percentage of premium. IELRs are an important assumption and an 
example of expert judgement which requires additional validation.  
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Table 5.2 Commercial Auto: IELRs 
Sample Insurance Company   

Commercial Auto     
Paid CL Inc CL Management Selected

AY ULR ULR IELR ULR
2006 73.2% 73.2% 73.3% 73.2%
2007 76.0% 77.3% 77.4% 76.7%
2008 64.5% 64.5% 64.6% 64.5%
2009 62.8% 63.2% 63.2% 63.0%
2010 60.4% 60.7% 60.8% 60.6%
2011 53.2% 53.2% 53.4% 53.2%
2012 57.9% 58.5% 58.5% 58.2%
2013 54.5% 55.3% 54.7% 54.9%
2014 57.3% 57.7% 52.9% 54.7%  
Validation, in this case, would likely take the form of sensitivity testing the important 

assumptions underlying the IELR. The common sources of expert judgement in this case 
would be renewal studies performed by the underwriting department and actuarial analyses 
summarizing average premium levels achieved relative to the expected premium level. 

5.3.4 Weighting Scheme 

No single method is perfect. For this reason, it has become best practice for actuaries 
estimating an insurer’s unpaid claim estimate to review and assess the merits of multiple 
methods for each reserving segment in the actuarial analysis.  

Traditional unpaid claim projection methods are generally based on averages that produce 
an indication of the unpaid claims reserves or a “reasonable estimate” for each accident 
period and in total. The results of these methods, being based on different data and 
assumptions, give different answers. For example, chain ladder approaches applied to 
aggregate paid losses and aggregate incurred losses will produce different estimates of 
ultimate losses for each accident period and in total. 

Expert judgement supported by tangential information (e.g., expected loss ratios, 
severities, and frequencies from underwriting and claims experts) can be helpful in the 
reconciliation of the results from various methods. The reconciliation of the method results 
is a process where an actuary investigates and rationalizes large differences at a granular level 
(i.e., by reserving segment and accident period) in the results from multiple methods. 

Although the reconciliation process is generally a source of significant insight, a common 
outcome is that a subset of implemented methods each produce different but reasonable 
outcomes for a given accident period. In this case, the actuary often chooses to credibility 
weight the results of the methods which have produced reasonable results, rather than 
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selecting a single method for that accident period. 

Estimates for immature accident periods benefit from expert judgement supported by 
tangential information. For these accident periods, payments are few and case reserves are 
based on incomplete information, which means that chain ladder methods can be easily 
distorted by the behavior of a few claims. As accident periods mature, the actuary tends to 
rely more on period-specific information as found in chain ladder methods. This is because 
settlement amounts are known for closed claims and future payments for open claims 
become more predictable as more claim specific information is collected (e.g., loss survey, 
repair estimates, details of injury). 

Table 5.3 Commercial Auto: Weighting scheme 
Sample Insurance Company

Commercial Auto
Calculation of Weighted Ultimate as of December 31, 2014

Ultimate Values by Method Weights by Method Weighted
AY Age Paid CL Inc CL Paid BF Inc BF Paid CL Inc CL Paid BF Inc BF Ultimate

2006 108 258,835 258,835 258,837 258,836 50.0% 50.0% 0.0% 0.0% 258,835        
2007 96 267,103 271,591 267,143 271,592 50.0% 50.0% 0.0% 0.0% 269,347        
2008 84 243,981 244,137 243,991 244,141 50.0% 50.0% 0.0% 0.0% 244,059        
2009 72 267,942 269,784 267,999 269,783 50.0% 50.0% 0.0% 0.0% 268,863        
2010 60 290,475 292,079 290,608 292,092 50.0% 50.0% 0.0% 0.0% 291,277        
2011 48 288,645 288,592 288,785 288,669 50.0% 50.0% 0.0% 0.0% 288,618        
2012 36 335,023 338,775 335,956 338,702 25.0% 25.0% 25.0% 25.0% 337,114        
2013 24 333,220 337,698 333,662 336,635 0.0% 0.0% 50.0% 50.0% 335,149        
2014 12 357,305 360,286 338,097 344,953 0.0% 0.0% 50.0% 50.0% 341,525        
Totals 2,642,529    2,661,779    2,625,078    2,645,402    2,634,788     

As illustrated in Table 5.3, the selection of a weighting scheme is an example of exercising 
expert judgement, which should be adequately documented, including: the inputs on which 
the judgement is based; the objectives and decision criteria; the materiality of the expert 
judgement made; any material limitations and the steps taken to mitigate the effect of these 
limitations; and the validation carried out for the expert judgement. Other selections based 
on expert judgment should also be adequately documented. 

Article 77 of the Solvency II FD states that the “value of technical provisions shall be 
equal to the sum of a best estimate and a risk margin.” Ignoring discounting and the risk 
margin for the purposes of this case study, the best estimate is further defined to correspond 
to the “probability weighted average of future cash flows.”24 Note that Article 122.2 of the 

                                                           
24 A strong interpretation of the required correspondence to a probability weighted average of future cash 

flows is that a “distribution of possible outcomes” needs to be modelled. Note that deriving such a 
distribution of possible outcomes may not be possible using even the most sophisticated actuarial 
techniques available. The best attempt at such, however, would require the consideration of multiple 
(deterministic) methods and multiple (stochastic) models in order to calibrate a distribution of possible 
outcomes. In addition, such a distribution would require consideration of systemic risks that may not 
have been adequately modelled otherwise. A weaker interpretation of the required correspondence to a 
probability weighted average of future cash flows is that each actuarial method produces future cash 
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FD ensures that models “used to calculate the probability distribution forecast shall… be 
consistent with the methods used to calculate technical provisions.” Consistency would 
include elements of expert judgement exercised by the actuary during the calculation of 
technical provisions, including the use of shorter term average development factors, 
adjustment for trends, etc. 

5.3.4 Other Manual Adjustments 

It can happen that adjustments to the ultimate loss estimate are implemented based on  
(i.e., after) the weighting of multiple methods or models. In the case study, the weighting of 
paid and incurred chain ladder methods for accident year 2007 results in an IBNR value less 
than 0 for Commercial Auto. Such a scenario implies that the case reserve may be 
redundant. The suggested course of action is to interact directly with the claims team, if 
possible, to determine the likelihood of this conclusion. For purposes of the case study, a 
small IBNR has been added and the consequences of this decision is included in the 
expected values of the subsequent year’s back-test as illustrated in Table 5.4. Throughout the 
tables in the “LOB Backtest.xlsm” file, deviations from the weighted results are highlighted 
in green. 

Table 5.4 Commercial Auto: Manual Adjustment of Accident Year 2007 
Sample Insurance Company

Commercial Auto
Total Unpaid Reconciliation as of December 31, 2014

Paid Incurred Weighted Case Total Selected Selected Total
AY Age to Date to Date Ultimate Reserve IBNR Unpaid Ultimate IBNR Unpaid

2006 108 257,689 258,524 258,835 835 311 1,146 258,835 311 1,146
2007 96 264,871 270,758 269,347 5,887 (1,411) 4,476 271,500 742 6,629
2008 84 240,300 242,171 244,059 1,871 1,888 3,759 244,059 1,888 3,759
2009 72 259,339 265,496 268,863 6,157 3,367 9,524 268,863 3,367 9,524
2010 60 270,525 281,376 291,277 10,851 9,901 20,752 291,277 9,901 20,752
2011 48 245,541 266,101 288,618 20,560 22,517 43,077 288,618 22,517 43,077
2012 36 240,652 282,394 337,114 41,742 54,720 96,462 337,114 54,720 96,462
2013 24 177,709 235,983 335,149 58,274 99,166 157,440 335,149 99,166 157,440
2014 12 105,547 177,611 341,525 72,064 163,914 235,978 341,525 163,914 235,978
Totals 2,062,173    2,280,414    2,634,788    218,241        354,374        572,615        2,636,941    356,527        574,768         

5.3.5 Coefficient of Variation of the IELR 

In the case study, the uncertainty in the IELR is required as an input to the ODP 
bootstrap for the BF models and was calibrated to follow a lognormal distribution with a 
Coefficient of Variation (“CoV”) of 8%. The purpose of this assumption is to include 
uncertainty in the IELR by simulating from a lognormal distribution a different IELR for 
each iteration.  

                                                                                                                                                 
flows unique to the assumptions underlying the respective method as applied to an accident period and 
reserving segment. These competing cash flow projections are weighted together based on the subjective 
credibility assigned to each accident period of each method. 
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5.3.6 Heteroscedasticity 

An analysis of residuals by itself is an example of a validation technique. For the case 
study, the residuals are analyzed to identify trends or other features in the data that may not 
be completely modeled by the chain ladder approach.  

Figure 5.4 Commercial Auto: Plots of Residuals (Paid) 
 

 

 

 

 

 

 

 

 

 

 

Particularly important are the identification of heteroscedasticity and outliers. In the ODP 
bootstrap model,25 residuals are resampled with replacement – that is, they are taken from 
any location in the residual triangle, and placed in another random location to form the 
sample triangle. Therefore, the residuals should all be independent, identically distributed 
random numbers (i.e., homoscedastic). Heteroscedasticity occurs when the residuals are not 
identically distributed. By looking at the variability of the residuals by period (e.g., by 
accident year) you can visually inspect them to make sure the variability is consistent 
between periods. If they are not consistent, this is an indication that heteroscedasticity is 
present in the residuals and additional parameters may be needed to adjust for the different 
variances by period.26 

The adjustment for heteroscedasticity is typically made by focusing on the Plot of 
                                                           
25 The typical ODP bootstrap model is semi-parametric, but conditions could exist for the implementation 

of a fully parametric ODP bootstrap, which allows for the sampling of residuals from a distribution (a 
more robust solution). 

26 For a more complete discussion, see Shapland [27] section 4.6 and section 5. 
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Residuals against Development Period (see Figure 5.4) and identifying columns with similar 
dispersion of residuals. While it is tempting to add hetero groupings to force additional 
consistency of the residuals (e.g., at 60 months where the dispersion appears low), this will 
be done at the expense of adding more parameters to an already highly parameterized model. 
This is not to say that trying other hetero groups is never justified, just that the ODP 
bootstrap already has one parameter for every development period and one parameter for 
every accident period (minus one), so adding parameters for heteroscedasticity must be 
decided carefully. 

5.3.7 Process Variance adjustment to the ODP Bootstrap 

One of the last steps in the ODP bootstrap is the use of a distributional assumption in 
order to add process variance to the simulated future incremental values. Without this step 
the projected incremental values would be point estimates rather than possible outcomes. In 
the case study, the Gamma distribution was used as this is the most common choice. The 
Normal or Lognormal distributions are possible alternative distributions which could be 
tested to see if they produce material differences in results, but that is outside the scope of 
the case study. 

5.3.8 Correlation Between Segments 

Thus far the list of assumptions which could be tested has been focused at the segment 
or model level. As the case study is intended to replicate a complete ERM system, 
correlation to derive an aggregate distribution is also included.  

In general, the aggregate distribution of unpaid claims can be materially narrower than the 
sum of the individual distributions, after considering correlation between the segments. This 
difference between the correlated aggregate and the sum of the segments would not be as 
material in cases where the segments are all strongly positively correlated, where there is little 
variability in the individual distributions, or where one segment is far larger than the rest. 

For the case study, correlation was measured using a pairwise approach.27 A more robust 
solution, e.g., a maximum likelihood estimation (“MLE”) copula, could be used to solve for 
all correlations at once since it is done analyzing all of the data at once. However, the MLE 
copula approach can be less than ideal when data is excluded or missing for one or more 

                                                           
27 The pairwise approach is used in the “Aggregation.xlsm” companion file for the Shapland [27] paper, 

which was used to create Tables 5.5 and 5.6. 
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segments.28,29 The measurement of correlation could be done using paid residuals and/or 
incurred residuals, both before and after heteroscedasticity adjustments. The resulting 
correlation matrices for paid loss residuals before heteroscedasticity are shown in Table 5.5. 

Table 5.5 Pairwise Rank Correlation of Residuals and P-values– Paid Loss 

Rank Correlation of Residuals prior to Hetero Adjustment - Paid
PPA CA HO

PPA 1.000 0.276 -0.142
CA 0.276 1.000 0.027
HO -0.142 0.027 1.000

P-Values of Rank Correlation of Residuals prior to Hetero Adjustment - Paid
PPA CA HO

PPA 0.000 0.066 0.352
CA 0.066 0.000 0.860
HO 0.352 0.860 0.000  

In order to aggregate distributions of possible outcomes for the entity, one needs to 
evaluate the inherent correlation by segment. For this, the p-values can be reviewed to assess 
the significance of the correlation between each pair of segments. In this test, the smaller the 
p-value the more significant the calculated correlation and a larger p-value (e.g., greater than 
0.05 is a typical threshold) indicates that the correlation is not significantly different than 
zero. Therefore, the p-values of 0.352 (HO x PPA) and 0.860 (HO x CA) imply that the 
measured correlation is not significantly different from zero, while the p-value of 0.066 
implies that the measured correlation is close to the true correlation. The selected correlation 
in Table 5.6 reflects the consideration of the p-values. 

                                                           
28 For example, if you are only using two year average age-to-age ratios for one segment, then only the data 

for the last three diagonals can be used in the estimation process. The maximum likelihood copula only 
uses data points that are common for every segment, so it is possible to have a problematic situation 
where there are no common data points for all segments. 

29 It is important to note any adjustments to the ODP bootstrap model (i.e., anything less than the AYLWA 
for the link ratios or exclusion of outliers) will result in some of the residuals (that would otherwise be 
included) being excluded from the correlation matrix calculations. 
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Table 5.6 Selected Correlation Matrix 

Assumed Correlation Matrix
PPA CA HO

PPA 1.000 0.276 0.000
CA 0.276 1.000 0.000
HO 0.000 0.000 1.000  

The validation of correlation assumptions is a challenge. Monitoring both the measured 
rank correlation and corresponding p-values over time can provide some insight as to the 
stability of the correlation assumptions. Even so, the selected correlation assumption may 
also consider the impact of issues not in the measured coefficients, such as contagion or lack 
of prior catastrophe losses. 

5.4 Implied Expected Values from Multiple Methods 
Future expected incremental values (i.e., paid loss, reported claims, etc.) could be 

produced in a number of ways. For example, they could be independently calculated based 
on an independent analysis or they could be calculated based on consecutive differences of 
cumulative estimates which result from a curve fit. Although such practice is common, a 
continuous ERM process intends to improve the models and methods employed in the 
estimation process. Therefore, the approach used here is to estimate the future incremental 
values that arise from the methods (and models) which have received weight and any 
subsequent adjustments.  The idea is that deviations can be traced back to the underlying 
deterministic calculations, for which validated assumptions with enhanced documentation is 
available and subsequent adjustments, for which documentation of decision points are 
available. 

One challenge that immediately arises from this approach is that expected future 
incremental paid (and incurred) loss values must be gleaned from the expectations inherent 
in incurred (and paid) methods. In the extreme case where the incurred chain ladder method 
receives 100% of the weight for all accident years, expected incremental paid losses still need 
to be produced even though no paid method received weight. In order to address this 
challenge, the collection of methods as a whole is considered in order to rely on analogous 
paid methods. Continuing the example from the case study (see above for LDF validation 
and weighting scheme), the formulas (5.4) to (5.7) are used to derive expected cumulative 
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amounts, for a particular method, from which incremental amounts follow.30 
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Note that a consequence of this approach is that any IBNR adjustment made subsequent 
to the weighting of methods will have an impact on both expected paid and incurred 
amounts. With cumulative paid and incurred amounts by development period so derived for 
each method, the weighting scheme can be applied to determine the weighted cumulative 
paid and incurred amounts, from which the incremental amounts can be derived. Examples 
of the next diagonal of incremental values (i.e., for Calendar Year 2015 during the year end 
2014 analysis) are shown in Tables 5.7 and 5.8. 

Table 5.7 Commercial Auto: Implied Expected Paid Losses 
Sample Insurance Company   

Commercial Auto     
Expected Paid Losses during CY 2015           

AY Paid CL Inc CL Paid BF Inc BF Weighted Selected
2006 572               572               573               572               572               572               
2007 1,049            5,518            1,068            5,497            3,284            4,863            
2008 1,642            1,797            1,647            1,796            1,720            1,720            
2009 4,560            6,375            4,590            6,348            5,468            5,468            
2010 10,624          12,177          10,695          12,130          11,401          11,401          
2011 23,280          23,230          23,355          23,247          23,255          23,255          
2012 44,341          47,533          44,779          47,112          45,941          45,941          
2013 61,648          64,865          61,823          63,957          62,890          62,890          
2014 85,007          86,597          78,521          82,254          80,388          80,388          

AY<CY 232,723        248,663        227,052        242,913        234,917        236,497         

                                                           
30 Formulas (5.4) and (5.6) may seem redundant in the sense that the expected incremental development for 

the paid and incurred methods, respectively, are derived directly from the method itself. The formulas are 
included for completeness of exposition and as a link to the calculations in the “LOB Backtest.xlsm” file. 
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Table 5.8 Commercial Auto: Implied Expected Incurred Losses 
Sample Insurance Company   

Commercial Auto     
Expected Incurred Losses during CY 2015          

AY Paid CL Inc CL Paid BF Inc BF Weighted Selected
2006 155               155               157               156               155               155               
2007 (3,976)           507               (3,937)           507               (1,735)           912               
2008 1,062            1,217            1,070            1,220            1,140            1,140            
2009 288               2,116            345               2,115            1,202            1,202            
2010 4,482            6,061            4,608            6,067            5,271            5,271            
2011 11,967          11,915          12,068          11,956          11,941          11,941          
2012 26,520          29,980          27,409          29,941          28,462          28,462          
2013 41,780          45,513          42,556          45,037          43,797          43,797          
2014 72,073          74,156          63,052          67,932          65,492          65,492          

AY<CY 154,351        171,620        147,327        164,931        155,725        158,372         

5.5 Advantages of Using the ODP Bootstrap  
In the case study, the ODP bootstrap approach is relied on to model uncertainty. A main 

advantage of this approach is that the assumption set in the uncertainty calibration is largely 
consistent with the assumption set in the point estimate calibration, while areas of 
inconsistency (or adjustment) are identified, documented, and (to the extent possible) 
validated for reasonableness. Of course the uncertainty calibration required additional 
assumptions to be made, each of which required documentation and validation.31 

Alternatively, the Mack [18] method could be used for the uncertainty calibration, but in 
doing so a number of additional challenges arise, only some of which can be overcome.  

1. The variance assumptions in the Mack method would be largely inconsistent with the 
assumptions used to calibrate a point estimate. Recall that the selected weights imply a 
full rejection of the chain ladder methods for the most recent accident years.  

2. The Mack method produces a variance estimate for each accident year and in total, but a 
distribution needs to be postulated in order to translate this variance estimate into a 
distribution of outcomes. The likelihood is low that such a distribution includes all 
possible outcomes and validation of such may not be possible. 

3. The Mack formula and resulting variance estimate (on an ultimate basis) would need to 
be bifurcated such that variance estimates would be available for each development 
period between the valuation date and the date at which time the losses are fully 

                                                           
31 This does not imply that the ODP bootstrap model is the only model suited for this process. In actual 

practice many other models can be considered with their assumptions validated, documented, etc. 
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developed (at ultimate). 

4. The practicing actuary learns very little about the data and underlying uncertainty when 
using a closed form model such as Mack. This follows because such models require 
limited calibration to get a result and limited diagnostics regarding the underlying 
assumptions. Further, the uncertainty is highly dependent on the observable loss 
development factors, relative to the AYLWA, which in the tail area can be limited.  

5. The practicing actuary has little ability to adjust the results of the Mack method in cases 
where the output from the closed form solution is inconsistent with expectations. 

5.6 ERM Governance Elements and Automatic Alert System 
The manipulation and validation of methods and models, while interesting and attractive 

to actuaries, is only a small part of the case study.  The real benefit of a well-defined ERM 
process results from a governance structure that allows the actuary to actively manage 
resources and to escape the confines of their office to actively engage with professionals 
from other departments. 

5.6.1 Governance 

The ERM system used in the case study includes several KPIs that result from the 
reserving process. For each KPI, the risk owner and risk reviewer are defined. At the highest 
level, the KPIs for aggregate (i.e., entity-wide) paid loss and aggregate incurred loss could be 
defined such that the Chief Actuary is the Risk Owner and the Chief Executive Officer 
(“CEO”) is the Risk Reviewer. 

In discussing governance, KPIs, and thresholds, it is important to remember that 1 in 100 
realizations is expected to fall above the 99th percentile. Stated differently, just because a 
deviation is large does not necessarily mean that the prior methods and models were 
calibrated incorrectly. On the contrary, there are three possible explanations which can be 
investigated: 

1. There could be a change in an internal process which was unknown at the time of the 
prior analysis contributing to the large deviation; 

2. One or more of the prior modelling assumptions, with respect to the deterministic 
methods and stochastic models, may be causing the large deviation; or 

3. A large deviation could simply be the result of a random occurrence. 
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5.6.2 Automatic Alert System 

Further, the realized values are subject to thresholds, each with well-defined 
consequences in case of a breach. The case study uses thresholds at the 25th and 75th 
percentile, the 5th and 95th percentile, as well as the simulated minimum and simulated 
maximum of the distribution of possible outcomes to denote material deviations from 
expected, as illustrated in Figure 3.1. 

The CEO receives an immediate and automatic email from the ERM system on the first 
day of the analysis period confirming whether the 5% or 95% thresholds were breached by 
the aggregate paid loss or aggregate incurred loss. 

Figure 5.5 Sample Automated E-Mail #1 to the CEO 

 

 

 

 

 

 

 

 

The automatic alert system will send as many emails as needed based on the pre-defined 
thresholds to the appropriate Risk Owners and Risk Reviewers. For example, while the CEO 
is the risk reviewer and the Chief Actuary is the risk owner of the aggregate results, for the 
results by segment the Chief Actuary is the risk reviewer and the Reserving Actuary is the 
risk owner. 
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Figure 5.6 Sample Automated E-Mail #2 to the Chief Actuary 

 

 

 

 

 

 

 

 

 

For the emails illustrated in Figures 5.5 and 5.6 there is also a report attached which the 
recipients can open to review the specific results. The reports attached to the email, which 
also highlight any breached thresholds, are shown in Appendix B. For higher levels of 
management a more aggregate view will tend to be the first priority and at lower levels of 
management a more detailed view will be important as the automated system will reflect the 
responsibilities of the individuals. 

5.6.3 One-Year Time Horizon as Preliminary Monitoring Tool 

On the first day of the analysis, the Actuarial Function is capable of sharing even more 
information with the CEO & CFO, which is a valuable early warning system related to both 
the direction and potential magnitude of aggregate reserve changes on financial results. The 
value comes from estimating the one-year time horizon reserves which are conditional on 
the possible outcomes of the ultimate time horizon distribution. No matter whether the early 
warning is positive or negative, management as a whole can keep their eye on the risk 
management issues related to reserve changes from the beginning of the reserving exercise 
instead of reacting to surprises toward the end of the exercise, just prior to the publishing of 
financial results. 

The one-year time horizon has been developed and promoted by entities subject to the 
Solvency II regime in Europe using both an ODP bootstrap approach and as a modification 
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to the Mack model developed by Merz & Wüthrich [19]. Essentially, because entities are 
required to hold sufficient capital to be 99.5% certain of staying solvent over a one-year time 
horizon, actuaries have developed techniques which bifurcate measures of reserving risk into 
two pieces, the reserving risk over a single year and the reserving risk over all subsequent 
years. 

The calibration of reserving risk over a one-year time horizon using the ODP bootstrap 
approach produces a conditional reserve at each probability level and involves a two-step 
process:32 

1. Possible outcomes are simulated as usual but only the simulations of the first calendar 
year cash flows are retained (the one-year time horizon). These simulated diagonals 
are used to re-parameterize the ODP bootstrap model based on the original data plus 
the simulated diagonals; 

2. Point estimates for the remainder of the unpaid claims subsequent to the one-year 
time horizon are created for each possible outcome of the original triangle plus the 
simulated one-year diagonal. Note that point estimates in this case have not been 
adjusted for process variance as they are intended to represent a reserve estimate 
which is conditional on the outcome of the one-year time horizon. 

Table 5.9 Differences between Expected and Conditional Reserves 

 

 

 

 

 

By calculating the percentile of the actual calendar year paid within the distribution of 
expected calendar year paid using (3.4), then the conditional reserve would be the same 
percentile of the distribution of point estimates subsequent to the one-year time horizon 
using formula (5.8). The expected reserve for the new analysis is equal to the expected 
reserve for the prior analysis less the actual amount paid during the year as shown in (5.9). In 
other words, the new expected reserve is equal to the prior expected reserve if the estimate 
                                                           
32 See Appendix A for a graphical overview of the one-year time horizon calculations using the ODP 

bootstrap model. 

Sample Insurance Company
Aggregation of All Segments

Summary of Conditional Reserves as of December 31, 2015
Private Passenger Auto Commercial Auto Homeowners Total (Sum)

Conditional Expected Conditional Expected Conditional Expected Conditional Expected
AY Reserve Reserve Change Reserve Reserve Change Reserve Reserve Change Reserve Reserve Change

2006 2,680            2,991            (311)              643               603               40                  -                747               (747)              3,323            4,341            (1,018)           
2007 7,248            5,498            1,750            3,257            4,242            (985)              164               721               (557)              10,669          10,461          208               
2008 8,654            10,061          (1,406)           1,675            2,582            (907)              1,367            1,640            (272)              11,697          14,283          (2,586)           
2009 15,635          19,472          (3,836)           5,593            4,121            1,472            (1,153)           1,793            (2,946)           20,075          25,386          (5,311)           
2010 31,595          38,066          (6,470)           13,946          6,632            7,313            3,722            340               3,381            49,263          45,039          4,224            
2011 73,359          71,302          2,057            20,073          19,441          632               3,979            6,894            (2,915)           97,412          97,638          (227)              
2012 151,670        156,061        (4,390)           57,978          45,442          12,536          12,839          9,468            3,370            222,487        210,971        11,516          
2013 292,882        322,812        (29,930)         110,701        81,627          29,075          21,590          26,615          (5,024)           425,174        431,054        (5,880)           
2014 581,448        574,019        7,430            170,589        147,146        23,442          59,458          80,333          (20,875)         811,496        801,499        9,997            
2015
Totals 1,165,174    1,200,281    (35,107)         384,456        311,837        72,619          101,967        128,553        (26,586)         1,651,596    1,640,671    10,926          
AY<CY 1,159,897    1,200,281    (40,385)         390,213        311,837        78,376          96,676          128,553        (31,876)         1,646,786    1,640,671    6,115            
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of ultimate loss did not change at all. The estimated reserve change, therefore, is represented 
by the difference between conditional reserve and the expected reserve, i.e., (5.8) minus (5.9). 
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Figure 5.7 Automated E-Mail #3 to the CEO and CFO 

 

 

 

 

 

 

 

 

 

The CEO and CFO receive an immediate and automatic email from the ERM system on 
the first day of the analysis period stating a preliminary estimate for the change in reserves, 
based on the conditional reserves given the possible outcomes under a one-year time 
horizon and the actual paid loss observed during the most recent calendar year. The report 
attached to the email is shown in Appendix B. Based on the conditional reserves, the 
aggregate increase of $10.9 million may not be of immediate concern, but the Commercial 
Auto increase of $78.4 million will certainly draw attention. 

5.6.4 Allocating Resources 

In addition to the conditional reserves by segment, it is possible to quantify and rank the 
deviation from expected for each of the outcomes. For the case study, 80 outcomes include 
10 paid observations and 10 incurred observations, calculated as 9 AYs and Segment Total 
(i.e. AY < CY), for 3 Segments and the Aggregate (i.e., after correlation). 

A ranked list of deviations allows for an alternative approach to managing actuarial 
resources. Actuarial managements often use an approach that assigns individuals to 
segments. An advantage of this approach is that an individual develops an area of expertise 
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and relationships with corresponding claims and underwriting professionals. A disadvantage 
of this approach is that the methodology and corresponding documentation may receive less 
external challenge, increasing the risk that business will be disrupted in case the current 
expert needs to be replaced. 

An alternative approach, using the ranked list of deviations, includes the allocation of 
resources based on the quantitative deviation from expected. This alternative approach 
envisions assigning resources based on need. If the methods and models are producing large 
deviations from expected, assignment of a resource with a proven ability to “put out fires” 
may be advantageous. This approach pre-supposes that the department manager has a strong 
sense of the strengths and weaknesses of their team.  

5.6.5 Additional Indicators of Performance  

In the case of the Commercial Auto segment, the experience observed on day one of the 
analysis is quite poor so immediately digging into the drivers will be important. As shown in 
Table 5.10, two of the incurred observations (highlighted with grey shading) have breached 
the minimum and maximums defined by the prior models. A further two incurred and two 
paid observations have breached the 5%/95% threshold (highlighted with red font); and 5 
incurred and 4 paid observations have breached the 25%/75% threshold (highlighted with 
orange font). Only 5 observations sit comfortably in the core 50%, from 25% to 75% of the 
distribution of possible outcomes. Absent changes in the methodology and modelling, the 
one-year time horizon exercise implies a deterioration of more than 13% (equal to 78,376 / 
[262,931 + 311,837], referring to values found in Tables 5.9 and 5.10). 
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Table 5.10 Assessing the 20 Observations for Commercial Auto 
Sample Insurance Company

Commercial Auto
Stochastic Actual vs. Expected as of December 31, 2015
Actual Expected Actual Expected

AY Age Paid Paid Percentile Incurred Incurred Percentile
2006 120 543 571               57.9% (47) 154               0.0%
2007 108 2,387 3,131            21.8% 1,040 448               82.8%
2008 96 1,177 1,665            33.5% 851 1,167            44.5%
2009 84 5,403 5,044            63.1% 2,954 1,669            86.1%
2010 72 14,120 11,061          91.1% 9,035 5,606            94.2%
2011 60 23,636 23,276          56.1% 16,524 11,960          93.9%
2012 48 51,020 45,272          86.7% 36,454 29,103          92.7%
2013 36 75,813 62,481          96.5% 61,541 44,392          99.3%
2014 24 88,832 79,698          86.1% 83,154 66,555          97.0%
2015 12 99,123 178,539
Totals 362,054        390,045        
AY<CY 262,931 232,199 98.9% 211,506 161,054 100.0%  

Looking closer at the incurred observations in Table 5.10 and Figure 5.8, notice that 
immature AYs appear to have been significantly underestimated. Though not conclusive, the 
realized values imply there may have been a problem with the deterministic methods 
underlying the prior analysis. Although the minimum and maximum have been breached, the 
prior uncertainty estimates may have been too narrow or the mean was too low or a 
combination of both, as 8 of the 10 realizations are above the 75th percentile of the 
distribution. 

Figure 5.8 Assessing the Incurred AY Observations for Commercial Auto 

 
Looking closer at the paid observations in Table 5.10 and Figure 5.9, notice that 
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immature AYs appear to have again been significantly underestimated. Though not 
conclusive, the realized values imply again that there may have been a problem with the 
deterministic methods underlying the prior analysis. Again the prior uncertainty estimates 
may have been too narrow or the means too low or both (but to a lesser extent than 
observed in the incurred KPIs). 

Figure 5.9 Assessing the Paid AY Observations for Commercial Auto 
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Note the skewness across AYs in the models underlying both the incurred and paid 

expectations by observing the differences between the expected values or means (the green 
line) and median values (the blue line) in the Figures 5.8 and 5.9. 

An ERM system also has pre-defined actions, which are conditional on the breaching of 
the 95th percentile threshold. For Commercial Auto, these actions include immediate and 
automatic emails from the ERM system to the Data Quality Manager, Claims Manager, and 
Reinsurance Manager, among others; as illustrated in Figures 5.10 to 5.12. This presupposes 
some training of non-actuarial professionals so that they understand that 5 of the 100 
observations should breach the 95th percentile and that a breach does not necessarily indicate 
that the methods and models were calibrated incorrectly. However, as part of the risk 
management collaboration that is being cultivated, these emails move all concerned to 
action. 
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Figure 5.10 Automated E-Mail #4 to the Data Quality Manager 

 

Figure 5.11 Automated E-Mail #5 to the Claims Manager 
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Figure 5.12 Automated E-Mail #6 to the Reinsurance Manager 

 
For the emails illustrated in Figures 5.10, 5.11, and 5.12 there is also a report attached 

which the recipients can open to review the specific results. The reports attached to the 
email, which also highlight any breached thresholds, are shown in Appendix B. 

5.7 Using Back-testing Diagnostics to Assess Uncertainty 
As noted above, a single observation has limited value related to assessing the overall 

quality of the variability estimates. However, it can be a value added exercise to review a 
large number of observed percentiles relative to the expectations. For the example in Table 
5.11, 50% of the observations are expected to manifest within the 25th to 75th percentile. 
Likewise, 90% of the observations are expected to manifest within the 5th to 95th percentile 
and 10% of the observations are expected to manifest either below the 5th or above the 95th 
percentiles.  

Table 5.11 Assessing Uncertainty in the 80 Observations 
Sample Insurance Company

Summary of Theshold Activity by Segment as of December 31, 2015
Number Percentage

25% < X < 75% 5% < X < 95% 5% > X < 95% 25% < X < 75% 5% < X < 95% 5% > X < 95%
Expected Actual Expected Actual Expected Actual Expected Actual Expected Actual Expected Actual

PPA 10 14 18 18 2 2 50.0% 70.0% 90.0% 90.0% 10.0% 10.0%
CA 10 5 18 14 2 6 50.0% 25.0% 90.0% 70.0% 10.0% 30.0%
HO 10 12 18 20 2 0 50.0% 60.0% 90.0% 100.0% 10.0% 0.0%

AGG 10 18 18 20 2 0 50.0% 90.0% 90.0% 100.0% 10.0% 0.0%
Total 40 49 72 72 8 8 50.0% 61.3% 90.0% 90.0% 10.0% 10.0%  

Based solely on the 80 observations, the Commercial Auto line of business appears to 
need attention (which is consistent with the conditional reserves). Further, the Homeowners 
and Private Passenger Auto lines of business appear to be behaving with less uncertainty 
than expected. While not definitive, this process provides clues as to where the ODP 
bootstrap models may have been underestimating or overestimating the inherent uncertainty. 
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While it is tempting to draw conclusions, restraint is required as random noise can easily 
have a larger or smaller number of extreme observations than witnessed in Table 5.11. 
Nevertheless, evidence is mounting that Commercial Auto deserves the most attention. 

5.8 The Feedback Loop 
A critical and common part of reserving and ERM is the feedback loop. Reviewing and 

re-evaluating models and assumptions is a healthy part of any reserve analysis and an open 
discussion of risks within the ERM framework naturally leads back to the original 
assumptions. In the case study, all assumptions discussed in Section 5.3 were systematically 
reviewed and alternative assumptions tested to determine if there was a material difference in 
the back-test with the benefit of hindsight.  

The only assumption that proved to have more than an insignificant impact on the back-
test was the a priori loss ratio assumption for the Bornhuetter-Ferguson models. As shown 
in Table 5.2, the management IELR of 52.9% for 2014 is a bit low compared to the 
projected loss ratios from the Pd CL and Inc CL models, so for the back-test the 2014 IELR 
was changed to 57.5%. Comparing Table 5.12 with Table 5.10, the back-test of this 
assumption has a significant impact on the paid results for 2014, but the incurred results for 
2014 are not as significant and the impact on the AY < CY results were insignificant. 
Table 5.12 Revised Observations for Commercial Auto after A Priori Adjustment for 2014 

 

 

 

 

 

 

 

 

While the assumed loss ratios over the past few years have been decreasing, in the light of 
the back-testing it seems more likely that the loss ratios have remained constant at best or 
have been increasing. 

Sample Insurance Company
Commercial Auto

Stochastic Actual vs. Expected as of December 31, 2015
Actual Expected Actual Expected

AY Age Paid Paid Percentile Incurred Incurred Percentile
2006 120 543 571               57.9% (47) 154               0.0%
2007 108 2,387 3,131            21.8% 1,040 448               82.8%
2008 96 1,177 1,665            33.5% 851 1,167            44.5%
2009 84 5,403 5,044            63.1% 2,954 1,669            86.1%
2010 72 14,120 11,061          91.1% 9,035 5,606            94.2%
2011 60 23,636 23,276          56.1% 16,524 11,960          93.9%
2012 48 51,020 45,272          86.7% 36,454 29,103          92.7%
2013 36 75,813 62,481          96.5% 61,541 44,392          99.3%
2014 24 88,832 85,603          65.4% 83,154 73,782          85.3%
2015 12 99,123 178,539
Totals 362,054        390,045        
AY<CY 262,931 238,104 96.7% 211,506 168,281 99.9%
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Figure 5.13 Commercial Auto: Plots of Residuals (Paid) 
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The benefit of hindsight led to an observation that a calendar year trend was evident yet 
overlooked (see bottom left graph in Figure 5.13). It is important here to pause and 
contemplate how frequently such trends are observed and disregarded (or considered 
immaterial). The point here is that the enhanced documentation provides an evidence trail 
that confirms that the trend was not addressed. With the benefit of hindsight, however, 
more attention is given to such diagnostics as a material driver of performance. 

After identification of this possible explanation, a new model as of the previous valuation 
date can be calibrated. In this case, the relationship between the ODP bootstrap model and 
the GLM it is based on became useful. The ODP bootstrap model uses one parameter for 
every development year and one parameter for every accident year (minus one). Therefore 
the ODP bootstrap model is unable to add parameters to account for calendar year effects 
without removing corresponding accident year or development year parameters. 

New GLM Bootstrap models based on paid and incurred data were calibrated with 
calendar year parameters, which was able to model the calendar year effect (see Figure 5.14, 
where shading refers to the parameters being used). The underlying calendar year trends 
inherent in the new GLM Bootstrap models imply no trend from 2006 until 2011, but an 
annual trend of 7.3% for years 2011 and subsequent using the paid data and a trend of 6.4% 
using the incurred data. 
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Figure 5.14 Commercial Auto: Plots of Residuals (Paid) for GLM Bootstrap Model 
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The new GLM Bootstrap models based on paid and incurred data performed better than 

the prior selected models, as seen in Table 5.13, and many of the model statistics are better.  

At first glance Table 5.13 does not appear to be significantly better than Table 5.10. 
However, a review of Figures 5.15 and 5.16 (for the GLM Bootstrap) reveals that adding the 
calendar year trend to the models counteracts the upward trend in Figures 5.8 and 5.9 (prior 
to GLM Bootstrap) to a significant degree (more for paid than incurred) which provides a 
rationale (or evidence) for the increasing loss ratios over the last few years. This corroborates 
the earlier back-test of the Bornhuetter-Ferguson a priori loss ratios. The resulting variations 
in Figures 5.15 and 5.16 also indicates that the variability of the potential outcomes may still 
be too narrow (e.g., Bornhuetter-Ferguson a priori variance could be larger), but this is just a 
preliminary review. 
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Table 5.13 Assessing the Commercial Auto Observations for the GLM Bootstrap Models 
Sample Insurance Company

Commercial Auto
Stochastic Actual vs. Expected as of December 31, 2015
Actual Expected Actual Expected

AY Age Paid Paid Percentile Incurred Incurred Percentile
2006 120 543 432               69.4% (47) 228               2.0%
2007 108 2,387 942               96.6% 1,040 516               86.8%
2008 96 1,177 2,117            14.0% 851 1,181            37.9%
2009 84 5,403 5,001            64.1% 2,954 2,665            64.7%
2010 72 14,120 12,100          82.3% 9,035 6,659            89.8%
2011 60 23,636 27,514          11.8% 16,524 13,869          84.2%
2012 48 51,020 46,010          87.6% 36,454 31,896          87.7%
2013 36 75,813 66,910          94.6% 61,541 50,020          98.5%
2014 24 88,832 88,362          54.1% 83,154 78,184          77.8%
2015 12 99,123 178,539
Totals 362,054        390,045        
AY<CY 262,931 249,388 86.0% 211,506 185,218 98.7%  

The ERM process has provided the information to identify the problem segment and the 
enhanced documentation has allowed quick testing of the prior assumptions to provide an 
alternative model which can be considered and implemented by the actuarial resources for 
the current valuation. Additionally, the GLM approach has both identified when the positive 
calendar year trend begins (i.e., the break point) and quantified the trend rates, which allows 
the actuary to engage more directly with the claims department, where deeper knowledge 
may exist to improve the modeling process. 

Figure 5.15 Assessing the Incurred AY Observations for Commercial Auto (GLM Bootstrap 
Model) 
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Figure 5.16 Assessing the Paid AY Observations for Commercial Auto (GLM Bootstrap Model) 

 

 

 

 

 

 

 

 

 

 

A direct email from the Chief Actuary to the relevant Claims Officer, as illustrated in 
Figure 5.17, is the logical next step in the process so that communication around this issue 
can begin. Note that the process allows the actuary to speak to the claims officer in the 
language the claims officer understands: no mention of triangles, IBNR, accident years, or 
any other actuarial concepts that may be unfamiliar. 

Figure 5.17 Manual E-Mail to the Claims Officer 

 

 

 

 

 

 

 

 

 

The value of this active feedback loop on reserving risk within the ERM process can’t be 
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overestimated. Not only does it naturally expand the actuarial conversation regarding risk 
drivers to the entire firm, but it also flows into other risks such as claims management and 
pricing risk. Indeed, consider the impact that identifying this trend will have on future 
pricing discussions for Commercial Auto. 

6. Conclusions 

While the value of including reserve variability estimates as part of the “normal” reserving 
cycle processes is questioned by some, and perhaps feared by others, the purpose of this 
paper is to show how making reserve variability estimates a routine part of the analysis can 
greatly benefit the risk management process. Keeping these estimates in the “back room” or 
“hidden until needed” does not benefit anyone. If casualty actuaries are going to truly 
embrace Enterprise Risk Management, then deep discussions of reserving risk must become 
part of the actuarial lexicon. 
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Supplementary Material 
There are companion files designed to give the reader a deeper understanding of the concepts discussed in 

the paper. The files are all in the “Actuary & ERM.zip” file. The files are: 
 
LOB Backtest.xlsm – this file contains the detailed calculations described in this paper for a single segment 

or line of business. Data can be entered and simulation output can be added for calculating both expected and 
actual outcomes, along with various statistical measures and results. Deterministic calculations and results are 
also included for comparison to stochastic results. 

 
AGG Backtest.xlsm – this file can be used to summarize the deterministic and stochastic results from the 

LOB Backtest.xlsm file (selected results need to be copied to this file) for three lines of business. Aggregate 
simulation output can be added for calculating both expected and actual outcomes, along with various 
statistical measures and results. 

 
 



The Actuary & Enterprise Risk Management: 
Integrating Reserve Variability 

 

54  Casualty Actuarial Society Forum, Summer 2016 

APPENDICIES 

Appendix A – Overview of One-Year Time Horizon 

A “standard” ODP bootstrap model can be represented graphically as follows: 

 

 

 

 

 

 

 

 

 

 

 

• The “standard” model is based on paid data, but incurred data can also be used to 
reflect information in case reserves and converted to a random payment stream. 

• The “standard” model is based on the chain ladder methodology, but other methods 
such as Bornhuetter-Ferguson and Cape Cod can also be included. 

• Multiple models can also be “weighted” and “shifted” to reconcile with the 
deterministic “best estimate”. 

• Aggregation of the segment results can be done to derive a consolidated corporate 
result, even though these graphs are for one segment. 

By using the first diagonal of the possible future outcomes and then calculating a point 
estimate for the remaining unpaid claims, the one-year time horizon can be represented 
graphically as follows: 
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• The “one-year” model is based on paid data, but incurred data can also be used to 
reflect information in case reserves and converted to a random payment stream for 
the first diagonal and expected payments for the remaining diagonals. 

• The “one-year” model is based on the chain ladder methodology, but other methods 
such as Bornhuetter-Ferguson and Cape Cod can also be included. For internal 
consistency, all of the assumptions for the “standard” model should apply unchanged 
for the “one-year” model. 

• Multiple models can also be “weighted” and “shifted” to reconcile with the 
deterministic “best estimate”. The weights should be the same as for the “standard” 
model and “shifting” should be consistent with “standard” model so that the first 
diagonal after shifting is identical. 

• Distributions of conditional point estimates can also be created for each accident year 
even though the total of all accident years combined is shown in the graphs. 

• Aggregation of the segment results can be done to derive a consolidated corporate 
result, even though these graphs are for one segment. 
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Appendix B – Reports Attached to Emails 

Figure B.1 – Report on 2015 Aggregate Exposures 

Stochastic Model Results

2015 Aggregation of All Segments Exposure
Customize Page | Edit Layout | Printable View | Help for this Page       

« Back to List: Custom Object Definitions

Stochastic Model Detail

Model Name      2015 Aggregation of All Segments Exposure Assumption Owner      Chief Actuary

Description      Reports To      Chief Executive Officer

Assumption Value      Expected Value Assumption Value Date      12/31/2014

Assumption Minimum      5.0% Next Update Due      12/31/2015

Assumption Maximum      95.0%

  Realized Value
Paid Actual      1,571,872 Incurred Actual      847,136

Paid Expected      1,560,637 Incurred Expected      858,093

Paid Percentile      61.2% Incurred Percentile      37.6%

Stochastic Values Help     

Action Number Exposure Period Age Paid Actual Paid Expected Incurred Actual Incurred Expected Incurred Percentile

Edit | Del 0001 12/31/2006 120 3,069 4,077 1,863 2,115 49.8%

Edit | Del 0002 12/31/2007 108 5,905 6,163 3,145 1,819 80.6%

Edit | Del 0003 12/31/2008 96 8,986 10,176 3,553 6,026 20.9%

Edit | Del 0004 12/31/2009 84 18,992 20,033 9,872 10,399 46.3%

Edit | Del 0005 12/31/2010 72 51,003 48,298 25,942 25,562 55.3%

Edit | Del 0006 12/31/2011 60 105,067 104,415 52,012 53,101 44.8%

Edit | Del 0007 12/31/2012 48 202,932 196,083 106,624 104,075 61.7%

Edit | Del 0008 12/31/2013 36 334,434 331,701 189,908 185,173 64.0%

Edit | Del 0009 12/31/2014 24 841,484 839,689 454,217 469,822 29.3%

Edit | Del 0010 12/31/2015 12 1,798,138 0 2,528,235 0

Page 1 of 1

Expected Aggregation of All Segments claim 
payments during 2015 for exposure periods prior to 
2015 based on data generated by claims system as 
of 12/31/2015 relative to the 12/31/2014 actuarial 
assumptions.
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Figure B.2 – Report on 2015 Private Passenger Auto Exposures 

Stochastic Model Results

2015 Private Passenger Auto Exposure
Customize Page | Edit Layout | Printable View | Help for this Page       

« Back to List: Custom Object Definitions

Stochastic Model Detail

Model Name      2015 Private Passenger Auto Exposure Assumption Owner      Reserving Actuary

Description      Reports To      Chief Actuary

Assumption Value      Expected Value Assumption Value Date      12/31/2014

Assumption Minimum      5.0% Next Update Due      12/31/2015

Assumption Maximum      95.0%

  Realized Value
Paid Actual      1,071,854 Incurred Actual      571,794

Paid Expected      1,076,388 Incurred Expected      631,511

Paid Percentile      44.9% Incurred Percentile      0.6%

Stochastic Values Help     

Action Number Exposure Period Age Paid Actual Paid Expected Incurred Actual Incurred Expected Incurred Percentile

Edit | Del 0011 12/31/2006 120 2,500 2,733 2,042 2,056 56.7%

Edit | Del 0012 12/31/2007 108 3,485 2,908 2,261 1,312 81.0%

Edit | Del 0013 12/31/2008 96 7,582 8,098 4,061 5,207 33.2%

Edit | Del 0014 12/31/2009 84 13,765 14,773 8,076 8,835 41.7%

Edit | Del 0015 12/31/2010 72 33,083 35,326 16,495 20,439 15.6%

Edit | Del 0016 12/31/2011 60 75,969 74,381 35,496 40,022 21.2%

Edit | Del 0017 12/31/2012 48 139,715 140,849 68,886 74,159 25.6%

Edit | Del 0018 12/31/2013 36 234,781 243,390 119,582 128,507 20.2%

Edit | Del 0019 12/31/2014 24 560,974 553,931 314,895 350,974 2.9%

Edit | Del 0020 12/31/2015 12 764,210 0 1,205,957 0

Page 1 of 3

Expected Private Passenger Auto claim payments 
during 2015 for exposure periods prior to 2015 
based on data generated by claims system as of 
12/31/2015 relative to the 12/31/2014 actuarial 
assumptions.
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Figure B.3 – Report on 2015 Commercial Auto Exposures 

Stochastic Model Results

2015 Commercial Auto Exposure
Customize Page | Edit Layout | Printable View | Help for this Page       

« Back to List: Custom Object Definitions

Stochastic Model Detail

Model Name      2015 Commercial Auto Exposure Assumption Owner      Reserving Actuary

Description      Reports To      Chief Actuary

Assumption Value      Expected Value Assumption Value Date      12/31/2014

Assumption Minimum      5.0% Next Update Due      12/31/2015

Assumption Maximum      95.0%

  Realized Value
Paid Actual      262,931 Incurred Actual      211,506

Paid Expected      232,199 Incurred Expected      161,054

Paid Percentile      98.9% Incurred Percentile      100.0%

Stochastic Values Help     

Action Number Exposure Period Age Paid Actual Paid Expected Incurred Actual Incurred Expected Incurred Percentile

Edit | Del 0021 12/31/2006 120 543 571 (47) 154 0.0%

Edit | Del 0022 12/31/2007 108 2,387 3,131 1,040 448 82.8%

Edit | Del 0023 12/31/2008 96 1,177 1,665 851 1,167 44.5%

Edit | Del 0024 12/31/2009 84 5,403 5,044 2,954 1,669 86.1%

Edit | Del 0025 12/31/2010 72 14,120 11,061 9,035 5,606 94.2%

Edit | Del 0026 12/31/2011 60 23,636 23,276 16,524 11,960 93.9%

Edit | Del 0027 12/31/2012 48 51,020 45,272 36,454 29,103 92.7%

Edit | Del 0028 12/31/2013 36 75,813 62,481 61,541 44,392 99.3%

Edit | Del 0029 12/31/2014 24 88,832 79,698 83,154 66,555 97.0%

Edit | Del 0030 12/31/2015 12 99,123 0 178,539 0

Page 2 of 3

Expected Commercial Auto claim payments during 
2015 for exposure periods prior to 2015 based on 
data generated by claims system as of 12/31/2015 
relative to the 12/31/2014 actuarial assumptions.
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Figure B.4 – Report on 2015 Homeowners Exposures 

Stochastic Model Results

2015 Homeowners Exposure
Customize Page | Edit Layout | Printable View | Help for this Page       

« Back to List: Custom Object Definitions

Stochastic Model Detail

Model Name      2015 Homeowners Exposure Assumption Owner      Reserving Actuary

Description      Reports To      Chief Actuary

Assumption Value      Expected Value Assumption Value Date      12/31/2014

Assumption Minimum      5.0% Next Update Due      12/31/2015

Assumption Maximum      95.0%

  Realized Value
Paid Actual      237,087 Incurred Actual      63,836

Paid Expected      252,049 Incurred Expected      65,528

Paid Percentile      28.4% Incurred Percentile      50.2%

Stochastic Values Help     

Action Number Exposure Period Age Paid Actual Paid Expected Incurred Actual Incurred Expected Incurred Percentile

Edit | Del 0031 12/31/2006 120 26 773 (132) (95) 83.5%

Edit | Del 0032 12/31/2007 108 33 125 (156) 59 31.4%

Edit | Del 0033 12/31/2008 96 227 414 (1,359) (349) 23.5%

Edit | Del 0034 12/31/2009 84 (176) 217 (1,158) (105) 18.5%

Edit | Del 0035 12/31/2010 72 3,800 1,911 412 (482) 67.2%

Edit | Del 0036 12/31/2011 60 5,462 6,758 (8) 1,119 12.2%

Edit | Del 0037 12/31/2012 48 12,197 9,961 1,284 813 81.4%

Edit | Del 0038 12/31/2013 36 23,840 25,830 8,785 12,274 37.9%

Edit | Del 0039 12/31/2014 24 191,678 206,060 56,168 52,293 62.7%

Edit | Del 0040 12/31/2015 12 934,805 0 1,143,739 0

Page 3 of 3

Expected Homeowners claim payments during 
2015 for exposure periods prior to 2015 based on 
data generated by claims system as of 12/31/2015 
relative to the 12/31/2014 actuarial assumptions.
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Figure B.5 – Report on 2015 Conditional Reserves 

Stochastic Model Results

2015 Conditional Reserves by Segment
Customize Page | Edit Layout | Printable View | Help for this Page       
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Stochastic Model Detail

Model Name      2015 Conditional Reserves by Segment Assumption Owner      Chief Actuary

Description      Reports To      Chief Executive Officer

Assumption Value      Percentile of One-Year Horizon Assumption Value Date      12/31/2014

Output Value      One-Year Reserve Estimate Next Update Due      12/31/2015

  Realized Value
Sum of Yrs      (2,154) Sum of Yrs      10,926 Sum of Yrs      72,619 Sum of Yrs      (35,107)

CY 2015      (2,086) CY 2015      6,115 CY 2015      78,376 CY 2015      (40,385)

Overall Change: Aggregation of All Segm Overall Change: Sum of Segments Largest Increase: CA Largest Decrease: PPA

Stochastic Values Help     

Aggregation of All Segments

Action Number Exposure Period Age Original Actual Paid Paid Percentile Conditional Change

Edit | Del 0001 12/31/2006 120 7,410 3,069 31.8% 2,539 (1,802)                     

Edit | Del 0002 12/31/2007 108 16,366 5,905 47.9% 11,349 888                         

Edit | Del 0003 12/31/2008 96 23,269 8,986 33.6% 10,961 (3,322)                     

Edit | Del 0004 12/31/2009 84 44,378 18,992 39.0% 21,615 (3,771)                     

Edit | Del 0005 12/31/2010 72 96,042 51,003 71.6% 49,308 4,269                      

Edit | Del 0006 12/31/2011 60 202,705 105,067 54.3% 97,157 (481)                        

Edit | Del 0007 12/31/2012 48 413,903 202,932 74.2% 222,250 11,279                    

Edit | Del 0008 12/31/2013 36 765,488 334,434 57.1% 427,667 (3,387)                     

Edit | Del 0009 12/31/2014 24 1,642,982 841,484 52.8% 795,671 (5,828)                     

Edit | Del 0010 SUM OF YRS 3,212,543 1,571,872 1,638,516 (2,154)

Edit | Del 0011 CY 2015 3,212,543 1,571,872 61.2% 1,638,584 (2,086)                     

Sum of All Segments

Action Number Exposure Period Age Original Actual Paid Paid Percentile Conditional Change

Edit | Del 0012 12/31/2006 120 7,410 3,069 N/A  3,323 (1,018)                     

Edit | Del 0013 12/31/2007 108 16,366 5,905 N/A  10,669 208                         

Edit | Del 0014 12/31/2008 96 23,269 8,986 N/A  11,697 (2,586)                     

Edit | Del 0015 12/31/2009 84 44,378 18,992 N/A  20,075 (5,311)                     

Edit | Del 0016 12/31/2010 72 96,042 51,003 N/A  49,263 4,224                      

Edit | Del 0017 12/31/2011 60 202,705 105,067 N/A  97,412 (227)                        

Edit | Del 0018 12/31/2012 48 413,903 202,932 N/A  222,487 11,516                    

Edit | Del 0019 12/31/2013 36 765,488 334,434 N/A  425,174 (5,880)                     

Edit | Del 0020 12/31/2014 24 1,642,982 841,484 N/A  811,496 9,997                      

Edit | Del 0021 SUM OF YRS 3,212,543 1,571,872 1,651,596 10,926

Edit | Del 0022 CY 2015 3,212,543 1,571,872 N/A  1,646,786 6,115                      
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25,386                      

Expected conditional reserves as of 12/31/2015 for 
exposure periods prior to 2015 based on data 
generated by claims system during CY 2015 
relative to the 12/31/2014 actuarial assumptions.
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Figure B.5 – Report on 2015 Conditional Reserves (Cont.) 

Stochastic Model Results

2015 Conditional Reserves by Segment
Customize Page | Edit Layout | Printable View | Help for this Page       

« Back to List: Custom Object Definitions

Stochastic Model Detail

Model Name      2015 Conditional Reserves by Segment Assumption Owner      Chief Actuary

Description      Reports To      Chief Executive Officer

Assumption Value      Percentile of One-Year Horizon Assumption Value Date      12/31/2014

Output Value      One-Year Reserve Estimate Next Update Due      12/31/2015

  Realized Value

Stochastic Values Help     

Private Passenger Auto (PPA)

Action Number Exposure Period Age Original Actual Paid Paid Percentile Conditional Change

Edit | Del 0023 12/31/2006 120 5,491 2,500 48.2% 2,680 (311)                        

Edit | Del 0024 12/31/2007 108 8,983 3,485 69.4% 7,248 1,750                      

Edit | Del 0025 12/31/2008 96 17,643 7,582 43.4% 8,654 (1,406)                     

Edit | Del 0026 12/31/2009 84 33,237 13,765 37.5% 15,635 (3,836)                     

Edit | Del 0027 12/31/2010 72 71,149 33,083 30.5% 31,595 (6,470)                     

Edit | Del 0028 12/31/2011 60 147,271 75,969 61.4% 73,359 2,057                      

Edit | Del 0029 12/31/2012 48 295,776 139,715 45.5% 151,670 (4,390)                     

Edit | Del 0030 12/31/2013 36 557,593 234,781 26.5% 292,882 (29,930)                   

Edit | Del 0031 12/31/2014 24 1,134,993 560,974 62.3% 581,448 7,430                      

Edit | Del 0032 SUM OF YRS 2,272,135 1,071,854 1,165,174 (35,107)

Edit | Del 0033 CY 2015 2,272,135 1,071,854 44.9% 1,159,897 (40,385)                   

Commercial Auto (CA)

Action Number Exposure Period Age Original Actual Paid Paid Percentile Conditional Change

Edit | Del 0034 12/31/2006 120 1,146 543 57.9% 643 40                           

Edit | Del 0035 12/31/2007 108 6,629 2,387 21.8% 3,257 (985)                        

Edit | Del 0036 12/31/2008 96 3,759 1,177 33.5% 1,675 (907)                        

Edit | Del 0037 12/31/2009 84 9,524 5,403 63.1% 5,593 1,472                      

Edit | Del 0038 12/31/2010 72 20,752 14,120 91.1% 13,946 7,313                      

Edit | Del 0039 12/31/2011 60 43,077 23,636 56.1% 20,073 632                         

Edit | Del 0040 12/31/2012 48 96,462 51,020 86.7% 57,978 12,536                    

Edit | Del 0041 12/31/2013 36 157,440 75,813 96.5% 110,701 29,075                    

Edit | Del 0042 12/31/2014 24 235,978 88,832 86.1% 170,589 23,442                    

Edit | Del 0043 SUM OF YRS 574,768 262,931 384,456 72,619

Edit | Del 0044 CY 2015 574,768 262,931 98.9% 390,213 78,376                    

Page 2 of 3

603                          

4,242                       

2,582                       

4,121                       

6,632                       

19,441                      

45,442                      

81,627                      

147,146                    

311,837                    

311,837                    

Current

2,991                       

5,498                       

10,061                      

19,472                      

38,066                      

71,302                      

156,061                    

322,812                    

574,019                    

1,200,281                 

1,200,281                 

Current

Expected conditional reserves as of 12/31/2015 for 
exposure periods prior to 2015 based on data 
generated by claims system during CY 2015 
relative to the 12/31/2014 actuarial assumptions.

New Value

Edit Delete Clone

?

?

?

?

?

?

??

Edit Delete Clone

?

 
 



The Actuary & Enterprise Risk Management: 
Integrating Reserve Variability 

 

62  Casualty Actuarial Society Forum, Summer 2016 

Figure B.5 – Report on 2015 Conditional Reserves (Cont.) 

Stochastic Model Results

2015 Conditional Reserves by Segment
Customize Page | Edit Layout | Printable View | Help for this Page       
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Stochastic Model Detail

Model Name      2015 Conditional Reserves by Segment Assumption Owner      Chief Actuary

Description      Reports To      Chief Executive Officer

Assumption Value      Percentile of One-Year Horizon Assumption Value Date      12/31/2014

Output Value      One-Year Reserve Estimate Next Update Due      12/31/2015

  Realized Value

Stochastic Values Help     

Homeowners (HO)

Action Number Exposure Period Age Original Actual Paid Paid Percentile Conditional Change

Edit | Del 0045 12/31/2006 120 773 26 13.9% 0 (747)                        

Edit | Del 0046 12/31/2007 108 754 33 61.9% 164 (557)                        

Edit | Del 0047 12/31/2008 96 1,867 227 57.2% 1,367 (272)                        

Edit | Del 0048 12/31/2009 84 1,617 (176) 14.1% (1,153) (2,946)                     

Edit | Del 0049 12/31/2010 72 4,140 3,800 85.6% 3,722 3,381                      

Edit | Del 0050 12/31/2011 60 12,356 5,462 37.5% 3,979 (2,915)                     

Edit | Del 0051 12/31/2012 48 21,665 12,197 74.9% 12,839 3,370                      

Edit | Del 0052 12/31/2013 36 50,455 23,840 40.5% 21,590 (5,024)                     

Edit | Del 0053 12/31/2014 24 272,011 191,678 28.0% 59,458 (20,875)                   

Edit | Del 0054 SUM OF YRS 365,640 237,087 101,967 (26,586)

Edit | Del 0055 CY 2015 365,640 237,087 28.4% 96,676 (31,876)                   
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Appendix C – Back-Testing Results for Private Passenger Auto 

Table C.1 – Calculation of Weighted Ultimate (Deterministic) 
Sample Insurance Company

Private Passenger Auto
Calculation of Weighted Ultimate as of December 31, 2014

Ultimate Values by Method Weights by Method Weighted
AY Age Paid CL Inc CL Paid BF Inc BF Paid CL Inc CL Paid BF Inc BF Ultimate

2006 108 1,218,574 1,218,574 1,218,578 1,218,577 50.0% 50.0% 0.0% 0.0% 1,218,574    
2007 96 1,376,278 1,375,860 1,376,284 1,375,866 50.0% 50.0% 0.0% 0.0% 1,376,069    
2008 84 1,439,598 1,439,241 1,439,624 1,439,261 50.0% 50.0% 0.0% 0.0% 1,439,420    
2009 72 1,561,673 1,558,592 1,561,726 1,558,664 50.0% 50.0% 0.0% 0.0% 1,560,133    
2010 60 1,649,696 1,645,907 1,649,700 1,646,004 50.0% 50.0% 0.0% 0.0% 1,647,802    
2011 48 1,669,252 1,665,339 1,670,112 1,665,994 50.0% 50.0% 0.0% 0.0% 1,667,295    
2012 36 1,746,970 1,739,396 1,750,509 1,741,935 25.0% 25.0% 25.0% 25.0% 1,744,703    
2013 24 1,841,516 1,816,296 1,855,755 1,827,462 0.0% 0.0% 50.0% 50.0% 1,841,608    
2014 12 1,897,487 1,829,829 1,944,009 1,877,128 0.0% 0.0% 50.0% 50.0% 1,910,569    
Totals 14,401,045  14,289,034  14,466,298  14,350,890  14,406,172   

 
Table C.2 – Reconciliation of Total Unpaid (Deterministic) 

Sample Insurance Company
Private Passenger Auto

Total Unpaid Reconciliation as of December 31, 2014
Paid Incurred Weighted Case Total Selected Selected Total

AY Age to Date to Date Ultimate Reserve IBNR Unpaid Ultimate IBNR Unpaid
2006 108 1,213,083 1,214,471 1,218,574 1,388 4,103 5,491 1,218,574 4,103 5,491
2007 96 1,367,086 1,369,955 1,376,069 2,869 6,114 8,983 1,376,069 6,114 8,983
2008 84 1,421,777 1,427,920 1,439,420 6,143 11,500 17,643 1,439,420 11,500 17,643
2009 72 1,526,896 1,538,117 1,560,133 11,221 22,016 33,237 1,560,133 22,016 33,237
2010 60 1,576,653 1,604,722 1,647,802 28,069 43,080 71,149 1,647,802 43,080 71,149
2011 48 1,520,024 1,584,626 1,667,295 64,602 82,669 147,271 1,667,295 82,669 147,271
2012 36 1,448,927 1,583,503 1,744,703 134,576 161,200 295,776 1,744,703 161,200 295,776
2013 24 1,284,015 1,535,603 1,841,608 251,588 306,005 557,593 1,841,608 306,005 557,593
2014 12 775,576 1,238,406 1,910,569 462,830 672,163 1,134,993 1,910,569 672,163 1,134,993
Totals 12,134,037  13,097,323  14,406,172  963,286        1,308,849    2,272,135    14,406,172  1,308,849    2,272,135     

 
Table C.3 – Expected Incremental Development – Paid (Deterministic) 

Sample Insurance Company
Private Passenger Auto -- Paid Data

Expected Incremental Future Development as of December 31, 2014
AY 12 24 36 48 60 72 84 96 108 120 132 Total

2006 2,742            2,749            5,491
2007 2,783            3,097            3,104            8,983
2008 8,029            3,128            3,239            3,247            17,643
2009 13,923          8,893            3,390            3,511            3,519            33,237
2010 34,453          16,297          9,393            3,581            3,708            3,717            71,149
2011 73,449          36,693          16,490          9,504            3,623            3,752            3,761            147,271
2012 139,035        79,111          38,585          17,340          9,994            3,810            3,946            3,955            295,776
2013 237,853        152,195        84,565          41,245          18,536          10,683          4,073            4,218            4,227            557,593
2014 547,018        256,629        157,719        87,634          42,742          19,208          11,071          4,220            4,371            4,381            1,134,993  

 
Table C.4 – Expected Incremental Development – Incurred (Deterministic) 

Sample Insurance Company
Private Passenger Auto -- Incurred Data

Expected Incremental Future Development as of December 31, 2014
AY 12 24 36 48 60 72 84 96 108 120 132 Total

2006 2,050            2,053            4,103
2007 1,481            2,315            2,319            6,114
2008 5,322            1,331            2,421            2,425            11,500
2009 9,743            5,576            1,443            2,624            2,629            22,016
2010 21,433          8,685            5,890            1,524            2,772            2,776            43,080
2011 40,949          19,818          8,788            5,959            1,542            2,805            2,809            82,669
2012 76,014          41,204          20,892          9,264            6,282            1,626            2,957            2,962            161,200
2013 135,434        78,332          44,616          22,622          10,031          6,802            1,760            3,201            3,207            306,005
2014 361,322        130,571        82,786          47,153          23,908          10,601          7,189            1,860            3,383            3,389            672,163  
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Table C.5 – Actual vs. Expected Back-test (Deterministic) 

Sample Insurance Company
Private Passenger Auto

Deterministic Actual vs. Expected as of December 31, 2015
Actual Expected Actual Expected

AY Age Paid Paid Difference Incurred Incurred Difference
2006 120 2,500 2,742            (242) 2,042 2,050            (8)
2007 108 3,485 2,783            702 2,261 1,481            780
2008 96 7,582 8,029            (447) 4,061 5,322            (1,261)
2009 84 13,765 13,923          (158) 8,076 9,743            (1,667)
2010 72 33,083 34,453          (1,370) 16,495 21,433          (4,938)
2011 60 75,969 73,449          2,520 35,496 40,949          (5,453)
2012 48 139,715 139,035        680 68,886 76,014          (7,128)
2013 36 234,781 237,853        (3,072) 119,582 135,434        (15,852)
2014 24 560,974 547,018        13,956 314,895 361,322        (46,427)
2015 12 764,210 1,205,957
Totals 1,836,064    1,777,751    
AY<CY 1,071,854 1,059,284 12,569 571,794 653,748 (81,954)  

 
Table C.6 – Actual to Range of Estimates Back-test (Deterministic) 

Sample Insurance Company
Private Passenger Auto

Deterministic Actual vs. Method Range as of December 31, 2015
Actual Paid Paid Range Actual Incurred Incurred

AY Age Paid Minimum Maximum Percent Incurred Minimum Maximum Difference
2006 120 2,500 2,742            2,744 -12977.0% 2,042 2,050            2,052 -332.1%
2007 108 3,485 2,574            2,993 217.7% 2,261 1,272            1,691 236.3%
2008 96 7,582 7,851            8,218 -73.5% 4,061 5,144            5,515 -291.9%
2009 84 13,765 12,402          15,469 44.5% 8,076 8,215            11,282 -4.5%
2010 72 33,083 32,601          36,307 13.0% 16,495 19,564          23,302 -82.1%
2011 60 75,969 71,579          75,753 105.2% 35,496 39,041          43,372 -81.8%
2012 48 139,715 134,970        143,551 55.3% 68,886 71,591          80,910 -29.0%
2013 36 234,781 222,411        249,543 45.6% 119,582 117,907        148,270 5.5%
2014 24 560,974 500,290        570,167 86.8% 314,895 308,639        389,322 7.8%
2015 12 764,210 1,205,957
Totals 1,836,064    1,777,751    
AY<CY 1,071,854 987,421 1,104,745 72.0% 571,794 573,423 705,671 -1.2%  

 
Table C.7 – Estimated Unpaid Claims by Accident Year (Stochastic) 

Sample Insurance Company
Private Passenger Auto

Stochastic Estimates as of December 31, 2014
Estimated Unpaid Claims by Accident Year

AY Mean Std Dev CoV Min Max 5% 25% Median Mode 75% 95%
2006 5,491            2,751            50.1% 19                  16,929          1,188            3,538            5,318            19                  7,256            10,281          
2007 8,983            3,423            38.1% (395)              27,201          3,633            6,557            8,844            13,467          11,195          14,917          
2008 17,643          4,155            23.6% 5,353            34,375          11,018          14,771          17,448          14,798          20,330          24,790          
2009 33,237          5,245            15.8% 15,269          60,704          24,910          29,619          33,085          32,036          36,639          42,225          
2010 71,149          6,902            9.7% 48,314          99,369          60,123          66,324          71,033          72,699          75,783          82,763          
2011 147,271        9,088            6.2% 114,275        187,688        132,806        141,043        147,027        142,651        153,290        162,219        
2012 295,776        14,568          4.9% 244,570        348,069        272,495        285,945        295,225        281,357        305,146        320,628        
2013 557,593        25,394          4.6% 457,369        651,838        516,980        540,414        556,720        552,490        574,475        599,860        
2014 1,134,993    46,822          4.1% 973,312        1,337,053    1,062,388    1,102,616    1,132,386    1,181,722    1,165,441    1,216,110    
Total 2,272,135    59,102          2.6% 2,064,755    2,479,344    2,177,063    2,231,575    2,270,627    2,295,340    2,311,669    2,371,532     
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Table C.8 – Estimated Claims Paid by Calendar Year (Stochastic) 
Sample Insurance Company

Private Passenger Auto
Stochastic Estimates as of December 31, 2014

Estimated Paid Claims by Calendar Year
CY Mean Std Dev CoV Min Max 5% 25% Median Mode 75% 95%

2015 1,076,388    31,344          2.9% 949,483        1,213,672    1,025,966    1,054,657    1,075,871    1,048,875    1,096,712    1,129,462    
2016 551,046        19,390          3.5% 479,596        631,486        519,806        537,516        550,967        553,695        564,102        582,949        
2017 311,957        13,916          4.5% 259,341        367,185        289,477        302,543        311,686        316,778        321,297        335,118        
2018 163,631        9,937            6.1% 130,776        200,970        147,538        156,774        163,477        162,064        170,225        180,340        
2019 80,988          7,270            9.0% 52,760          116,518        69,328          76,043          80,859          84,649          85,870          93,146          
2020 40,653          5,645            13.9% 20,217          62,342          31,712          36,714          40,478          39,787          44,381          50,138          
2021 22,548          4,548            20.2% 7,784            40,869          15,431          19,416          22,362          21,178          25,499          30,348          
2022 12,196          3,877            31.8% (166)              29,026          6,142            9,531            12,012          8,133            14,672          18,808          
2023 8,412            3,700            44.0% (121)              27,344          2,614            5,876            8,238            (121)              10,742          14,779          
2024 4,316            2,311            53.6% (50)                15,575          764               2,652            4,155            (50)                5,756            8,407            
Total 2,272,135    59,102          2.6% 2,064,755    2,479,344    2,177,063    2,231,575    2,270,627    2,295,340    2,311,669    2,371,532     

 
Table C.9 – Mean Future Incremental – Paid (Stochastic) 

Sample Insurance Company
Private Passenger Auto - Paid

Mean Future Incremental as of December 31, 2014
AY 12 24 36 48 60 72 84 96 108 120 132 Total

2006 2,733            2,758            5,491
2007 2,908            3,022            3,053            8,983
2008 8,098            3,080            3,226            3,239            17,643
2009 14,773          8,493            3,216            3,363            3,392            33,237
2010 35,326          15,895          9,164            3,479            3,614            3,670            71,149
2011 74,381          36,251          16,246          9,369            3,594            3,713            3,719            147,271
2012 140,849        78,253          38,124          17,114          9,886            3,733            3,891            3,925            295,776
2013 243,390        149,664        83,084          40,493          18,186          10,534          3,985            4,107            4,150            557,593
2014 553,931        253,630        155,843        86,574          42,317          19,004          10,953          4,164            4,262            4,316            1,134,993  

 
Table C.10 – Standard Deviation of Future Incremental – Paid (Stochastic) 

Sample Insurance Company
Private Passenger Auto - Paid

Standard Deviation Future Incremental as of December 31, 2014
AY 12 24 36 48 60 72 84 96 108 120 132 Total

2006 1,534            1,543            2,751
2007 1,496            1,721            1,722            3,423
2008 2,135            1,567            1,785            1,763            4,155
2009 2,748            2,262            1,679            1,864            1,895            5,245
2010 4,154            2,887            2,321            1,745            1,952            1,988            6,902
2011 5,827            4,105            2,892            2,358            1,770            1,987            2,013            9,088
2012 8,864            6,479            4,403            3,076            2,516            1,860            2,084            2,091            14,568
2013 13,598          9,804            6,879            4,728            3,270            2,652            1,990            2,215            2,225            25,394
2014 25,362          14,095          10,125          7,121            4,866            3,297            2,703            2,032            2,275            2,311            46,822  

 
Table C.11 – Coefficient of Variation of Future Incremental – Paid (Stochastic) 

Sample Insurance Company
Private Passenger Auto - Paid

CoV Future Incremental as of December 31, 2014
AY 12 24 36 48 60 72 84 96 108 120 132 Total

2006 56.1% 55.9% 50.1%
2007 51.4% 57.0% 56.4% 38.1%
2008 26.4% 50.9% 55.3% 54.4% 23.6%
2009 18.6% 26.6% 52.2% 55.4% 55.9% 15.8%
2010 11.8% 18.2% 25.3% 50.2% 54.0% 54.2% 9.7%
2011 7.8% 11.3% 17.8% 25.2% 49.3% 53.5% 54.1% 6.2%
2012 6.3% 8.3% 11.5% 18.0% 25.5% 49.8% 53.5% 53.3% 4.9%
2013 5.6% 6.6% 8.3% 11.7% 18.0% 25.2% 49.9% 53.9% 53.6% 4.6%
2014 4.6% 5.6% 6.5% 8.2% 11.5% 17.3% 24.7% 48.8% 53.4% 53.6% 4.1%  
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Table C.12 – Estimated Unpaid Claims by Accident Year in 2015 (Stochastic) 
Sample Insurance Company   

Private Passenger Auto - Paid         
Stochastic Estimates as of December 31, 2014       

Estimated Unpaid Claims by Accident Year, Calendar Year 2015 Only        
AY Mean Std Dev CoV Min Max 5% 25% Median Mode 75% 95%

2006 2,733            1,534            56.1% 9                    9,689            444               1,629            2,563            9                    3,697            5,509            
2007 2,908            1,496            51.4% (269)              10,441          750               1,873            2,750            (252)              3,766            5,640            
2008 8,098            2,135            26.4% 1,608            20,022          4,867            6,616            7,934            8,649            9,413            11,850          
2009 14,773          2,748            18.6% 6,175            26,858          10,506          12,878          14,607          13,421          16,523          19,567          
2010 35,326          4,154            11.8% 19,713          52,817          28,828          32,396          35,169          36,788          38,033          42,514          
2011 74,381          5,827            7.8% 52,662          98,238          65,082          70,380          74,239          70,540          78,233          84,209          
2012 140,849        8,864            6.3% 105,135        178,702        126,665        134,837        140,706        140,360        146,614        155,792        
2013 243,390        13,598          5.6% 189,263        302,308        221,056        234,122        243,174        238,506        252,536        266,186        
2014 553,931        25,362          4.6% 462,086        667,072        513,991        536,419        553,004        547,742        570,306        597,839        
Total 1,076,388    31,344          2.9% 949,483        1,213,672    1,025,966    1,054,657    1,075,871    1,048,875    1,096,712    1,129,462     

 
Table C.13 – Actual vs. Expected Back-test & Conditional Reserve (Stochastic) 

Sample Insurance Company
Private Passenger Auto

Stochastic Actual vs. Expected as of December 31, 2015
Actual Expected Actual Expected Conditional Expected

AY Age Paid Paid Percentile Incurred Incurred Percentile Reserve Reserve Change
2006 120 2,500 2,733            48.2% 2,042 2,056            56.7% 2,680            2,991            (311)              
2007 108 3,485 2,908            69.4% 2,261 1,312            81.0% 7,248            5,498            1,750            
2008 96 7,582 8,098            43.4% 4,061 5,207            33.2% 8,654            10,061          (1,406)           
2009 84 13,765 14,773          37.5% 8,076 8,835            41.7% 15,635          19,472          (3,836)           
2010 72 33,083 35,326          30.5% 16,495 20,439          15.6% 31,595          38,066          (6,470)           
2011 60 75,969 74,381          61.4% 35,496 40,022          21.2% 73,359          71,302          2,057            
2012 48 139,715 140,849        45.5% 68,886 74,159          25.6% 151,670        156,061        (4,390)           
2013 36 234,781 243,390        26.5% 119,582 128,507        20.2% 292,882        322,812        (29,930)         
2014 24 560,974 553,931        62.3% 314,895 350,974        2.9% 581,448        574,019        7,430            
2015 12 764,210 1,205,957
Totals 1,836,064    1,777,751    1,165,174    1,200,281    (35,107)         
AY<CY 1,071,854 1,076,388 44.9% 571,794 631,511 0.6% 1,159,897    1,200,281    (40,385)          

 
Figure C.1 – Graph of KPI Thresholds by Accident Year – Paid (Stochastic) 

 
Figure C.2 – Graph of KPI Thresholds by Calendar Year – Paid (Stochastic) 
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Figure C.3 – Graph of KPI Thresholds by Accident Year – Incurred (Stochastic) 

 
Figure C.4 – Graph of KPI Thresholds by Calendar Year – Incurred (Stochastic) 

 
Figure C.5 – Graph of Realized Values vs. Assumptions – Paid (Stochastic) 

 
 
Figure C.6 – Graph of Realized Values vs. Assumptions – Incurred (Stochastic) 
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Appendix D – Back-Testing Results for Commercial Auto 

Table D.1 – Calculation of Weighted Ultimate (Deterministic) 
Sample Insurance Company

Commercial Auto
Calculation of Weighted Ultimate as of December 31, 2014

Ultimate Values by Method Weights by Method Weighted
AY Age Paid CL Inc CL Paid BF Inc BF Paid CL Inc CL Paid BF Inc BF Ultimate

2006 108 258,835 258,835 258,837 258,836 50.0% 50.0% 0.0% 0.0% 258,835        
2007 96 267,103 271,591 267,143 271,592 50.0% 50.0% 0.0% 0.0% 269,347        
2008 84 243,981 244,137 243,991 244,141 50.0% 50.0% 0.0% 0.0% 244,059        
2009 72 267,942 269,784 267,999 269,783 50.0% 50.0% 0.0% 0.0% 268,863        
2010 60 290,475 292,079 290,608 292,092 50.0% 50.0% 0.0% 0.0% 291,277        
2011 48 288,645 288,592 288,785 288,669 50.0% 50.0% 0.0% 0.0% 288,618        
2012 36 335,023 338,775 335,956 338,702 25.0% 25.0% 25.0% 25.0% 337,114        
2013 24 333,220 337,698 333,662 336,635 0.0% 0.0% 50.0% 50.0% 335,149        
2014 12 357,305 360,286 338,097 344,953 0.0% 0.0% 50.0% 50.0% 341,525        
Totals 2,642,529    2,661,779    2,625,078    2,645,402    2,634,788     

 
Table D.2 – Reconciliation of Total Unpaid (Deterministic) 

Sample Insurance Company
Commercial Auto

Total Unpaid Reconciliation as of December 31, 2014
Paid Incurred Weighted Case Total Selected Selected Total

AY Age to Date to Date Ultimate Reserve IBNR Unpaid Ultimate IBNR Unpaid
2006 108 257,689 258,524 258,835 835 311 1,146 258,835 311 1,146
2007 96 264,871 270,758 269,347 5,887 (1,411) 4,476 271,500 742 6,629
2008 84 240,300 242,171 244,059 1,871 1,888 3,759 244,059 1,888 3,759
2009 72 259,339 265,496 268,863 6,157 3,367 9,524 268,863 3,367 9,524
2010 60 270,525 281,376 291,277 10,851 9,901 20,752 291,277 9,901 20,752
2011 48 245,541 266,101 288,618 20,560 22,517 43,077 288,618 22,517 43,077
2012 36 240,652 282,394 337,114 41,742 54,720 96,462 337,114 54,720 96,462
2013 24 177,709 235,983 335,149 58,274 99,166 157,440 335,149 99,166 157,440
2014 12 105,547 177,611 341,525 72,064 163,914 235,978 341,525 163,914 235,978
Totals 2,062,173    2,280,414    2,634,788    218,241        354,374        572,615        2,636,941    356,527        574,768         

 
Table D.3 – Expected Incremental Development – Paid (Deterministic) 

Sample Insurance Company
Commercial Auto -- Paid Data

Expected Incremental Future Development as of December 31, 2014
AY 12 24 36 48 60 72 84 96 108 120 132 Total

2006 572               574               1,146
2007 4,863            882               884               6,629
2008 1,720            959               540               541               3,759
2009 5,468            1,810            1,056            595               596               9,524
2010 11,401          4,957            1,961            1,144            644               646               20,752
2011 23,255          10,556          4,912            1,943            1,134            638               640               43,077
2012 45,941          27,285          12,374          5,758            2,277            1,329            748               750               96,462
2013 62,890          44,425          27,071          12,277          5,712            2,259            1,319            742               744               157,440
2014 80,388          61,679          44,125          26,889          12,194          5,674            2,244            1,310            737               739               235,978  

 
Table D.4 – Expected Incremental Development – Incurred (Deterministic) 

Sample Insurance Company
Commercial Auto -- Incurred Data

Expected Incremental Future Development as of December 31, 2014
AY 12 24 36 48 60 72 84 96 108 120 132 Total

2006 155               156               311
2007 912               (85)                (85)                742
2008 1,140            455               147               147               1,888
2009 1,202            1,341            502               161               162               3,367
2010 5,271            2,284            1,452            544               175               175               9,901
2011 11,941          5,989            2,263            1,439            539               173               173               22,517
2012 28,462          13,911          6,991            2,642            1,680            629               202               202               54,720
2013 43,797          29,442          13,736          6,903            2,609            1,659            621               200               200               99,166
2014 65,492          44,040          28,917          13,491          6,780            2,562            1,629            610               196               196               163,914  
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Table D.5 – Actual vs. Expected Back-test (Deterministic) 

Sample Insurance Company
Commercial Auto

Deterministic Actual vs. Expected as of December 31, 2015
Actual Expected Actual Expected

AY Age Paid Paid Difference Incurred Incurred Difference
2006 120 543 572               (29) (47) 155               (202)
2007 108 2,387 4,863            (2,476) 1,040 912               128
2008 96 1,177 1,720            (543) 851 1,140            (289)
2009 84 5,403 5,468            (65) 2,954 1,202            1,752
2010 72 14,120 11,401          2,719 9,035 5,271            3,764
2011 60 23,636 23,255          381 16,524 11,941          4,583
2012 48 51,020 45,941          5,079 36,454 28,462          7,992
2013 36 75,813 62,890          12,923 61,541 43,797          17,744
2014 24 88,832 80,388          8,444 83,154 65,492          17,662
2015 12 99,123 178,539
Totals 362,054        390,045        
AY<CY 262,931 236,497 26,434 211,506 158,372 53,134  

 
Table D.6 – Actual to Range of Estimates Back-test (Deterministic) 

Sample Insurance Company
Commercial Auto

Deterministic Actual vs. Method Range as of December 31, 2015
Actual Paid Paid Range Actual Incurred Incurred

AY Age Paid Minimum Maximum Percent Incurred Minimum Maximum Difference
2006 120 543 572               573 -1947.6% (47) 155               157 -11482.4%
2007 108 2,387 2,629            7,097 -5.4% 1,040 (1,329)           3,154 52.8%
2008 96 1,177 1,642            1,797 -300.2% 851 1,062            1,220 -133.1%
2009 84 5,403 4,560            6,375 46.4% 2,954 288               2,116 145.9%
2010 72 14,120 10,624          12,177 225.1% 9,035 4,482            6,067 287.2%
2011 60 23,636 23,230          23,355 323.6% 16,524 11,915          12,068 3013.1%
2012 48 51,020 44,341          47,533 209.3% 36,454 26,520          29,980 287.1%
2013 36 75,813 61,648          64,865 440.3% 61,541 41,780          45,513 529.3%
2014 24 88,832 78,521          86,597 127.7% 83,154 63,052          74,156 181.0%
2015 12 99,123 178,539
Totals 362,054        390,045        
AY<CY 262,931 228,631 250,242 158.7% 211,506 149,974 174,267 253.3%  

 
Table D.7 – Estimated Unpaid Claims by Accident Year (Stochastic) 

Sample Insurance Company
Commercial Auto

Stochastic Estimates as of December 31, 2014
Estimated Unpaid Claims by Accident Year

AY Mean Std Dev CoV Min Max 5% 25% Median Mode 75% 95%
2006 1,146            814               71.0% (10)                5,794            78                  535               1,001            (10)                1,614            2,674            
2007 6,629            1,224            18.5% 4,226            12,888          4,900            5,718            6,480            5,217            7,369            8,901            
2008 3,759            1,453            38.6% 301               11,438          1,635            2,703            3,633            2,931            4,649            6,345            
2009 9,524            2,142            22.5% 3,182            20,485          6,275            8,015            9,377            10,379          10,869          13,349          
2010 20,752          3,200            15.4% 10,281          35,184          15,708          18,540          20,585          18,785          22,831          26,235          
2011 43,077          4,575            10.6% 26,937          64,990          35,935          39,920          42,912          45,008          46,064          50,902          
2012 96,462          8,635            9.0% 64,159          131,809        82,929          90,631          96,052          94,959          101,869        111,214        
2013 157,440        14,252          9.1% 106,918        218,146        134,900        147,693        157,063        161,109        166,699        181,556        
2014 235,978        20,115          8.5% 165,204        320,049        204,296        222,059        235,235        228,038        249,252        269,810        
Total 574,768        27,218          4.7% 472,897        687,879        530,792        556,111        574,426        558,264        592,649        620,040         
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Table D.8 – Estimated Claims Paid by Calendar Year (Stochastic) 
Sample Insurance Company

Commercial Auto
Stochastic Estimates as of December 31, 2014

Estimated Paid Claims by Calendar Year
CY Mean Std Dev CoV Min Max 5% 25% Median Mode 75% 95%

2015 232,199        12,743          5.5% 186,133        286,448        211,733        223,345        231,854        239,707        240,793        253,653        
2016 155,214        10,078          6.5% 123,220        202,461        138,975        148,466        154,950        152,408        161,829        172,239        
2017 94,488          7,627            8.1% 67,914          124,583        82,240          89,213          94,253          97,115          99,485          107,381        
2018 49,452          5,311            10.7% 33,520          73,129          40,823          45,820          49,320          49,423          52,929          58,355          
2019 22,776          3,557            15.6% 10,658          37,548          17,087          20,273          22,624          21,106          25,137          28,853          
2020 10,624          2,554            24.0% 2,401            21,272          6,697            8,827            10,460          11,167          12,231          15,060          
2021 4,974            1,804            36.3% 522               13,768          2,328            3,680            4,783            5,419            6,057            8,218            
2022 2,823            1,412            50.0% (123)              11,759          872               1,773            2,649            2,360            3,651            5,416            
2023 1,476            950               64.4% 8                    7,844            222               771               1,325            8                    2,002            3,244            
2024 741               621               83.8% 4                    4,737            28                  275               596               4                    1,045            1,956            
Total 574,768        27,218          4.7% 472,897        687,879        530,792        556,111        574,426        558,264        592,649        620,040         

 
Table D.9 – Mean Future Incremental – Paid (Stochastic) 

Sample Insurance Company
Commercial Auto - Paid

Mean Future Incremental as of December 31, 2014
AY 12 24 36 48 60 72 84 96 108 120 132 Total

2006 571               575               1,146
2007 3,131            1,735            1,763            6,629
2008 1,665            983               557               555               3,759
2009 5,044            1,988            1,170            657               666               9,524
2010 11,061          5,146            2,028            1,189            658               672               20,752
2011 23,276          10,564          4,895            1,925            1,135            636               646               43,077
2012 45,272          27,668          12,508          5,837            2,304            1,348            757               768               96,462
2013 62,481          44,600          27,194          12,354          5,746            2,265            1,308            744               746               157,440
2014 79,698          61,955          44,373          26,936          12,267          5,703            2,264            1,311            730               741               235,978  

 
Table D.10 – Standard Deviation of Future Incremental – Paid (Stochastic) 

Sample Insurance Company
Commercial Auto - Paid

Standard Deviation Future Incremental as of December 31, 2014
AY 12 24 36 48 60 72 84 96 108 120 132 Total

2006 515               519               814
2007 881               534               538               1,224
2008 908               826               500               500               1,453
2009 1,465            990               879               523               533               2,142
2010 2,208            1,565            1,042            912               547               559               3,200
2011 3,189            2,197            1,559            1,027            908               563               556               4,575
2012 5,203            3,869            2,573            1,795            1,181            1,062            626               625               8,635
2013 7,006            5,566            4,081            2,625            1,792            1,197            1,056            629               634               14,252
2014 8,276            6,947            5,516            4,013            2,599            1,783            1,182            1,064            623               621               20,115  

 
Table D.11 – Coefficient of Variation of Future Incremental – Paid (Stochastic) 

Sample Insurance Company
Commercial Auto - Paid

CoV Future Incremental as of December 31, 2014
AY 12 24 36 48 60 72 84 96 108 120 132 Total

2006 90.1% 90.2% 71.0%
2007 28.2% 30.8% 30.5% 18.5%
2008 54.6% 84.0% 89.8% 90.1% 38.6%
2009 29.0% 49.8% 75.2% 79.6% 80.0% 22.5%
2010 20.0% 30.4% 51.4% 76.7% 83.2% 83.2% 15.4%
2011 13.7% 20.8% 31.8% 53.4% 80.0% 88.5% 86.1% 10.6%
2012 11.5% 14.0% 20.6% 30.7% 51.3% 78.8% 82.7% 81.3% 9.0%
2013 11.2% 12.5% 15.0% 21.2% 31.2% 52.8% 80.8% 84.5% 84.9% 9.1%
2014 10.4% 11.2% 12.4% 14.9% 21.2% 31.3% 52.2% 81.2% 85.4% 83.8% 8.5%  
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Table D.12 – Estimated Unpaid Claims by Accident Year in 2015 (Stochastic) 
Sample Insurance Company

Commercial Auto - Paid
Stochastic Estimates as of December 31, 2014

Estimated Unpaid Claims by Accident Year, Calendar Year 2015 Only
AY Mean Std Dev CoV Min Max 5% 25% Median Mode 75% 95%

2006 571               515               90.1% (5)                   4,550            7                    182               441               (5)                   813               1,573            
2007 3,131            881               28.2% 1,923            8,619            2,052            2,457            2,966            2,052            3,634            4,804            
2008 1,665            908               54.6% 47                  6,639            440               990               1,522            1,421            2,191            3,355            
2009 5,044            1,465            29.0% 1,265            11,797          2,893            3,975            4,902            5,069            5,945            7,666            
2010 11,061          2,208            20.0% 4,960            20,538          7,667            9,509            10,915          10,312          12,486          14,886          
2011 23,276          3,189            13.7% 13,209          37,472          18,316          21,040          23,131          21,086          25,331          28,725          
2012 45,272          5,203            11.5% 28,879          68,025          37,212          41,731          44,991          42,206          48,538          54,277          
2013 62,481          7,006            11.2% 36,066          90,980          51,265          57,668          62,265          61,583          67,022          74,418          
2014 79,698          8,276            10.4% 49,321          113,281        66,688          74,012          79,329          73,977          85,090          93,641          
Total 232,199        12,743          5.5% 186,133        286,448        211,733        223,345        231,854        239,707        240,793        253,653         

 
Table D.13 – Actual vs. Expected Back-test & Conditional Reserve (Stochastic) 

Sample Insurance Company
Commercial Auto

Stochastic Actual vs. Expected as of December 31, 2015
Actual Expected Actual Expected Conditional Expected

AY Age Paid Paid Percentile Incurred Incurred Percentile Reserve Reserve Change
2006 120 543 571               57.9% (47) 154               0.0% 643               603               40                  
2007 108 2,387 3,131            21.8% 1,040 448               82.8% 3,257            4,242            (985)              
2008 96 1,177 1,665            33.5% 851 1,167            44.5% 1,675            2,582            (907)              
2009 84 5,403 5,044            63.1% 2,954 1,669            86.1% 5,593            4,121            1,472            
2010 72 14,120 11,061          91.1% 9,035 5,606            94.2% 13,946          6,632            7,313            
2011 60 23,636 23,276          56.1% 16,524 11,960          93.9% 20,073          19,441          632               
2012 48 51,020 45,272          86.7% 36,454 29,103          92.7% 57,978          45,442          12,536          
2013 36 75,813 62,481          96.5% 61,541 44,392          99.3% 110,701        81,627          29,075          
2014 24 88,832 79,698          86.1% 83,154 66,555          97.0% 170,589        147,146        23,442          
2015 12 99,123 178,539
Totals 362,054        390,045        384,456        311,837        72,619          
AY<CY 262,931 232,199 98.9% 211,506 161,054 100.0% 390,213        311,837        78,376           

 
Figure D.1 – Graph of KPI Thresholds by Accident Year – Paid (Stochastic) 

 
Figure D.2 – Graph of KPI Thresholds by Calendar Year – Paid (Stochastic) 
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Figure D.3 – Graph of KPI Thresholds by Accident Year – Incurred (Stochastic) 

 
Figure D.4 – Graph of KPI Thresholds by Calendar Year – Incurred (Stochastic) 

 
Figure D.5 – Graph of Realized Values vs. Assumptions – Paid (Stochastic) 
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Figure D.2 – Graph of Realized Values vs. Assumptions – Incurred (Stochastic) 
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Appendix E – Back-Testing Results for Homeowners 

Table E.1 – Calculation of Weighted Ultimate (Deterministic) 
Sample Insurance Company

Homeowners
Calculation of Weighted Ultimate as of December 31, 2014

Ultimate Values by Method Weights by Method Weighted
AY Age Paid CL Inc CL Paid BF Inc BF Paid CL Inc CL Paid BF Inc BF Ultimate

2006 108 328,806 328,806 328,806 328,806 50.0% 50.0% 0.0% 0.0% 328,806        
2007 96 423,382 422,484 423,380 422,484 50.0% 50.0% 0.0% 0.0% 422,933        
2008 84 542,749 542,575 542,751 542,574 50.0% 50.0% 0.0% 0.0% 542,662        
2009 72 551,124 549,747 551,123 549,745 50.0% 50.0% 0.0% 0.0% 550,435        
2010 60 680,803 678,422 680,808 678,412 50.0% 50.0% 0.0% 0.0% 679,612        
2011 48 758,487 757,002 758,506 756,997 50.0% 50.0% 0.0% 0.0% 757,744        
2012 36 702,481 700,796 702,653 700,788 25.0% 25.0% 25.0% 25.0% 701,679        
2013 24 801,498 797,111 801,473 797,161 0.0% 0.0% 50.0% 50.0% 799,317        
2014 12 992,257 996,379 993,794 996,481 0.0% 0.0% 50.0% 50.0% 995,137        
Totals 5,781,585    5,773,322    5,783,294    5,773,446    5,778,327     

 
Table E.2 – Reconciliation of Total Unpaid (Deterministic) 

Sample Insurance Company
Homeowners

Total Unpaid Reconciliation as of December 31, 2014
Paid Incurred Weighted Case Total Selected Selected Total

AY Age to Date to Date Ultimate Reserve IBNR Unpaid Ultimate IBNR Unpaid
2006 108 328,033 328,901 328,806 868 (95) 773 328,806 (95) 773
2007 96 422,179 422,654 422,933 475 279 754 422,933 279 754
2008 84 540,795 543,199 542,662 2,404 (537) 1,867 542,662 (537) 1,867
2009 72 548,818 550,729 550,435 1,911 (294) 1,617 550,435 (294) 1,617
2010 60 675,472 680,658 679,612 5,186 (1,046) 4,140 679,612 (1,046) 4,140
2011 48 745,388 758,597 757,744 13,209 (853) 12,356 757,744 (853) 12,356
2012 36 680,014 701,622 701,679 21,608 57 21,665 701,679 57 21,665
2013 24 748,862 787,351 799,317 38,489 11,966 50,455 799,317 11,966 50,455
2014 12 723,126 930,676 995,137 207,550 64,461 272,011 995,137 64,461 272,011
Totals 5,412,687    5,704,387    5,778,327    291,700        73,940          365,640        5,778,327    73,940          365,640         

 
Table E.3 – Expected Incremental Development – Paid (Deterministic) 

Sample Insurance Company
Homeowners -- Paid Data

Expected Incremental Future Development as of December 31, 2014
AY 12 24 36 48 60 72 84 96 108 120 132 Total

2006 386               387               773
2007 (240)              497               497               754
2008 325               266               638               638               1,867
2009 (364)              418               270               647               647               1,617
2010 1,297            397               516               333               798               799               4,140
2011 6,423            2,763            443               575               371               890               891               12,356
2012 9,503            6,648            2,568            412               535               345               827               828               21,665
2013 24,902          11,755          7,541            2,913            467               607               391               939               940               50,455
2014 206,388        33,665          14,702          9,432            3,643            584               759               489               1,174            1,175            272,011  

 
Table E.4 – Expected Incremental Development – Incurred (Deterministic) 

Sample Insurance Company
Homeowners -- Incurred Data

Expected Incremental Future Development as of December 31, 2014
AY 12 24 36 48 60 72 84 96 108 120 132 Total

2006 (48)                (47)                (95)
2007 401               (61)                (61)                279
2008 (319)              (61)                (78)                (78)                (537)
2009 340               (412)              (62)                (80)                (80)                (294)
2010 169               (432)              (509)              (76)                (98)                (98)                (1,046)
2011 1,645            (1,143)           (482)              (568)              (85)                (109)              (109)              (853)
2012 1,543            839               (1,064)           (449)              (528)              (79)                (102)              (102)              57
2013 12,913          745               955               (1,212)           (511)              (602)              (90)                (116)              (116)              11,966
2014 52,259          13,378          925               1,185            (1,504)           (634)              (747)              (112)              (144)              (144)              64,461  
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Table E.5 – Actual vs. Expected Back-test (Deterministic) 

Sample Insurance Company
Homeowners

Deterministic Actual vs. Expected as of December 31, 2015
Actual Expected Actual Expected

AY Age Paid Paid Difference Incurred Incurred Difference
2006 120 26 386               (360) (132) (48)                (84)
2007 108 33 (240)              273 (156) 401               (557)
2008 96 227 325               (98) (1,359) (319)              (1,040)
2009 84 (176) (364)              188 (1,158) 340               (1,498)
2010 72 3,800 1,297            2,503 412 169               243
2011 60 5,462 6,423            (961) (8) 1,645            (1,653)
2012 48 12,197 9,503            2,694 1,284 1,543            (259)
2013 36 23,840 24,902          (1,062) 8,785 12,913          (4,128)
2014 24 191,678 206,388        (14,710) 56,168 52,259          3,909
2015 12 934,805 1,143,739
Totals 1,171,892    1,207,575    
AY<CY 237,087 248,619 (11,532) 63,836 68,902 (5,066)  

 
Table E.6 – Actual to Range of Estimates Back-test (Deterministic) 

Sample Insurance Company
Homeowners

Deterministic Actual vs. Method Range as of December 31, 2015
Actual Paid Paid Range Actual Incurred Incurred

AY Age Paid Minimum Maximum Percent Incurred Minimum Maximum Difference
2006 120 26 386               386 -143771.0% (132) (48)                (47) -33682.3%
2007 108 33 (688)              207 80.5% (156) (48)                850 -12.1%
2008 96 227 235               413 -4.6% (1,359) (407)              (229) -534.5%
2009 84 (176) (1,051)           322 63.7% (1,158) (350)              1,030 -58.5%
2010 72 3,800 99                  2,485 155.1% 412 (1,028)           1,372 60.0%
2011 60 5,462 5,673            7,170 -14.1% (8) 900               2,417 -59.9%
2012 48 12,197 8,582            10,415 197.2% 1,284 650               2,526 33.8%
2013 36 23,840 22,756          27,002 25.5% 8,785 10,700          15,091 -43.6%
2014 24 191,678 203,968        207,819 -319.1% 56,168 49,431          53,586 162.1%
2015 12 934,805 1,143,739
Totals 1,171,892    1,207,575    
AY<CY 237,087 243,694 253,519 -67.2% 63,836 63,878 73,919 -0.4%  

 
Table E.7 – Estimated Unpaid Claims by Accident Year (Stochastic) 

Sample Insurance Company
Homeowners

Stochastic Estimates as of December 31, 2014
Estimated Unpaid Claims by Accident Year

AY Mean Std Dev CoV Min Max 5% 25% Median Mode 75% 95%
2006 773               920               119.1% (18)                7,510            (16)                121               459               (18)                1,101            2,668            
2007 754               1,334            176.9% (2,345)           11,715          (831)              (164)              445               (446)              1,359            3,384            
2008 1,867            1,847            98.9% (2,791)           15,138          (541)              573               1,534            1,422            2,847            5,402            
2009 1,617            1,975            122.1% (4,363)           14,310          (989)              206               1,315            921               2,700            5,238            
2010 4,140            2,932            70.8% (4,812)           24,814          9                    2,020            3,791            1,561            5,885            9,480            
2011 12,356          4,435            35.9% 404               35,123          5,775            9,158            11,996          12,056          15,160          20,191          
2012 21,665          5,686            26.2% 5,673            46,724          13,069          17,642          21,254          23,445          25,267          31,717          
2013 50,455          9,708            19.2% 23,208          98,051          35,582          43,515          49,808          41,265          56,737          67,307          
2014 272,011        30,285          11.1% 176,947        402,593        224,048        250,890        271,241        293,093        291,855        323,755        
Total 365,640        33,369          9.1% 247,985        505,728        312,138        342,419        364,523        360,985        387,991        421,695         
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Table E.8 – Estimated Claims Paid by Calendar Year (Stochastic) 
Sample Insurance Company

Homeowners
Stochastic Estimates as of December 31, 2014

Estimated Paid Claims by Calendar Year
CY Mean Std Dev CoV Min Max 5% 25% Median Mode 75% 95%

2015 252,049        25,430          10.1% 171,900        348,486        211,598        234,404        251,252        261,859        269,070        294,959        
2016 55,570          9,158            16.5% 29,368          103,028        41,386          49,232          55,076          52,236          61,369          71,445          
2017 26,772          6,387            23.9% 7,593            56,696          17,092          22,144          26,470          27,827          30,888          37,890          
2018 14,401          4,923            34.2% 333               38,744          7,102            10,932          13,965          13,221          17,409          23,173          
2019 6,241            3,422            54.8% (2,952)           24,140          1,334            3,813            5,881            5,630            8,306            12,436          
2020 3,212            2,583            80.4% (4,367)           18,449          (318)              1,383            2,867            2,281            4,693            7,986            
2021 2,735            2,471            90.3% (5,722)           17,438          (656)              1,006            2,423            770               4,070            7,339            
2022 2,318            2,271            98.0% (3,834)           15,984          (819)              769               1,965            1,163            3,562            6,552            
2023 2,340            1,852            79.1% 0                    18,642          155               940               1,938            -                3,281            5,981            
Total 365,640        33,369          9.1% 247,985        505,728        312,138        342,419        364,523        360,985        387,991        421,695         

 
Table E.9 – Mean Future Incremental – Paid (Stochastic) 

Sample Insurance Company
Homeowners - Paid

Mean Future Incremental as of December 31, 2014
AY 12 24 36 48 60 72 84 96 108 120 Total

2006 773               773
2007 125               629               754
2008 414               237               1,215            1,867
2009 217               293               205               903               1,617
2010 1,911            319               403               259               1,248            4,140
2011 6,758            2,604            416               545               348               1,685            12,356
2012 9,961            6,391            2,487            402               503               333               1,588            21,665
2013 25,830          11,299          7,304            2,814            459               585               373               1,792            50,455
2014 206,060        33,797          14,743          9,478            3,682            608               775               527               2,340            272,011  

 
Table E.10 – Standard Deviation of Future Incremental – Paid (Stochastic) 

Sample Insurance Company
Homeowners - Paid

Standard Deviation Future Incremental as of December 31, 2014
AY 12 24 36 48 60 72 84 96 108 120 Total

2006 920               920
2007 831               1,054            1,334
2008 952               995               1,243            1,847
2009 704               934               1,030            1,236            1,975
2010 1,805            844               1,062            1,187            1,397            2,932
2011 3,045            1,966            892               1,170            1,287            1,508            4,435
2012 3,658            2,927            1,919            867               1,092            1,236            1,419            5,686
2013 6,340            4,080            3,298            2,086            951               1,234            1,378            1,574            9,708
2014 24,137          7,203            4,746            3,852            2,459            1,138            1,508            1,636            1,852            30,285  

 
Table E.11 – Coefficient of Variation of Future Incremental – Paid (Stochastic) 

Sample Insurance Company
Homeowners - Paid

CoV Future Incremental as of December 31, 2014
AY 12 24 36 48 60 72 84 96 108 120 Total

2006 119.1% 119.1%
2007 665.2% 167.5% 176.9%
2008 229.9% 419.4% 102.3% 98.9%
2009 324.5% 318.6% 503.5% 136.9% 122.1%
2010 94.4% 264.4% 263.5% 458.1% 112.0% 70.8%
2011 45.1% 75.5% 214.7% 214.7% 369.8% 89.5% 35.9%
2012 36.7% 45.8% 77.2% 215.6% 217.1% 370.6% 89.4% 26.2%
2013 24.5% 36.1% 45.2% 74.1% 207.1% 210.9% 370.0% 87.9% 19.2%
2014 11.7% 21.3% 32.2% 40.6% 66.8% 187.1% 194.6% 310.6% 79.1% 11.1%  
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Table E.12 – Estimated Unpaid Claims by Accident Year in 2015 (Stochastic) 
Sample Insurance Company

Homeowners - Paid
Stochastic Estimates as of December 31, 2014

Estimated Unpaid Claims by Accident Year, Calendar Year 2015 Only
AY Mean Std Dev CoV Min Max 5% 25% Median Mode 75% 95%

2006 773               920               119.1% (18)                7,510            (16)                121               459               (18)                1,101            2,668            
2007 125               831               665.2% (1,973)           6,958            (1,083)           (157)              (63)                (74)                294               1,701            
2008 414               952               229.9% (2,175)           9,496            (742)              (26)                118               (26)                693               2,285            
2009 217               704               324.5% (1,892)           9,688            (523)              (96)                (27)                (96)                360               1,645            
2010 1,911            1,805            94.4% (2,885)           14,491          (317)              565               1,550            (564)              2,884            5,331            
2011 6,758            3,045            45.1% 47                  22,789          2,482            4,544            6,378            4,282            8,579            12,327          
2012 9,961            3,658            36.7% 1,207            28,737          4,701            7,304            9,587            9,740            12,199          16,585          
2013 25,830          6,340            24.5% 8,694            52,980          16,319          21,257          25,371          19,688          29,857          37,189          
2014 206,060        24,137          11.7% 132,533        295,967        167,429        189,609        205,307        200,574        221,714        247,353        
Total 252,049        25,430          10.1% 171,900        348,486        211,598        234,404        251,252        261,859        269,070        294,959         

 
Table E.13 – Actual vs. Expected Back-test & Conditional Reserve (Stochastic) 

Sample Insurance Company
Homeowners

Stochastic Actual vs. Expected as of December 31, 2015
Actual Expected Actual Expected Conditional Expected

AY Age Paid Paid Percentile Incurred Incurred Percentile Reserve Reserve Change
2006 120 26 773               13.9% (132) (95)                83.5% -                747               (747)              
2007 108 33 125               61.9% (156) 59                  31.4% 164               721               (557)              
2008 96 227 414               57.2% (1,359) (349)              23.5% 1,367            1,640            (272)              
2009 84 (176) 217               14.1% (1,158) (105)              18.5% (1,153)           1,793            (2,946)           
2010 72 3,800 1,911            85.6% 412 (482)              67.2% 3,722            340               3,381            
2011 60 5,462 6,758            37.5% (8) 1,119            12.2% 3,979            6,894            (2,915)           
2012 48 12,197 9,961            74.9% 1,284 813               81.4% 12,839          9,468            3,370            
2013 36 23,840 25,830          40.5% 8,785 12,274          37.9% 21,590          26,615          (5,024)           
2014 24 191,678 206,060        28.0% 56,168 52,293          62.7% 59,458          80,333          (20,875)         
2015 12 934,805 1,143,739
Totals 1,171,892    1,207,575    101,967        128,553        (26,586)         
AY<CY 237,087 252,049 28.4% 63,836 65,528 50.2% 96,676          128,553        (31,876)          

 
Figure E.1 – Graph of KPI Thresholds by Accident Year – Paid (Stochastic) 

 
Figure E.2 – Graph of KPI Thresholds by Calendar Year – Paid (Stochastic) 
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Figure E.3 – Graph of KPI Thresholds by Accident Year – Incurred (Stochastic) 

 
Figure E.4 – Graph of KPI Thresholds by Calendar Year – Incurred (Stochastic) 

 
Figure E.5 – Graph of Realized Values vs. Assumptions – Paid (Stochastic) 
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Figure E.6 – Graph of Realized Values vs. Assumptions – Incurred (Stochastic) 
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Appendix F – Back-Testing Aggregate Results 

Table F.1 – Reconciliation of Total Unpaid (Deterministic) 
Sample Insurance Company

Consolidation of All Segments
Total Unpaid Reconciliation as of December 31, 2014

Paid Incurred Weighted Case Total Selected Selected Total
AY Age to Date to Date Ultimate Reserve IBNR Unpaid Ultimate IBNR Unpaid

2006 108 1,798,805 1,801,896 1,806,215 3,091 4,319 7,410 1,806,215 4,319 7,410
2007 96 2,054,136 2,063,367 2,068,349 9,231 4,982 14,213 2,070,502 7,135 16,366
2008 84 2,202,872 2,213,290 2,226,141 10,418 12,851 23,269 2,226,141 12,851 23,269
2009 72 2,335,053 2,354,342 2,379,431 19,289 25,089 44,378 2,379,431 25,089 44,378
2010 60 2,522,650 2,566,756 2,618,692 44,106 51,936 96,042 2,618,692 51,936 96,042
2011 48 2,510,953 2,609,324 2,713,658 98,371 104,334 202,705 2,713,658 104,334 202,705
2012 36 2,369,593 2,567,519 2,783,496 197,926 215,977 413,903 2,783,496 215,977 413,903
2013 24 2,210,586 2,558,937 2,976,074 348,351 417,137 765,488 2,976,074 417,137 765,488
2014 12 1,604,249 2,346,693 3,247,231 742,444 900,538 1,642,982 3,247,231 900,538 1,642,982
Totals 19,608,897  21,082,124  22,819,287  1,473,227    1,737,163    3,210,390    22,821,440  1,739,316    3,212,543     

 
Table F.2 – Expected Incremental Development – Paid (Deterministic) 

Sample Insurance Company
Consolidation of All Segments -- Paid Data

Expected Incremental Future Development as of December 31, 2014
AY 12 24 36 48 60 72 84 96 108 120 132 Total

2006 3,701            3,709            7,410
2007 7,405            4,476            4,485            16,366
2008 10,073          4,353            4,417            4,426            23,269
2009 19,027          11,120          4,716            4,752            4,762            44,378
2010 47,151          21,651          11,869          5,058            5,151            5,162            96,042
2011 103,127        50,012          21,845          12,022          5,128            5,281            5,292            202,705
2012 194,479        113,044        53,527          23,509          12,806          5,484            5,521            5,533            413,903
2013 325,644        208,375        119,178        56,435          24,715          13,549          5,783            5,899            5,911            765,488
2014 833,793        351,973        216,546        123,955        58,580          25,466          14,073          6,020            6,282            6,295            1,642,982  

 
Table F.3 – Expected Incremental Development – Incurred (Deterministic) 

Sample Insurance Company
Consolidation of All Segments -- Incurred Data

Expected Incremental Future Development as of December 31, 2014
AY 12 24 36 48 60 72 84 96 108 120 132 Total

2006 2,158            2,161            4,319
2007 2,794            2,169            2,172            7,135
2008 6,142            1,726            2,489            2,494            12,851
2009 11,285          6,504            1,883            2,706            2,711            25,089
2010 26,873          10,537          6,833            1,991            2,849            2,853            51,936
2011 54,534          24,663          10,569          6,831            1,995            2,868            2,873            104,334
2012 106,020        55,954          26,819          11,457          7,434            2,175            3,057            3,062            215,977
2013 192,143        108,519        59,307          28,313          12,129          7,859            2,291            3,285            3,291            417,137
2014 479,073        187,988        112,628        61,829          29,184          12,530          8,072            2,358            3,436            3,441            900,538  

 
Table F.4 – Actual vs. Expected Back-test (Deterministic) 

Sample Insurance Company
Consolidation of All Segments

Deterministic Actual vs. Expected as of December 31, 2015
Actual Expected Actual Expected

AY Age Paid Paid Difference Incurred Incurred Difference
2006 120 3,069 3,701            (632) 1,863 2,158            (295)
2007 108 5,905 7,405            (1,500) 3,145 2,794            351
2008 96 8,986 10,073          (1,087) 3,553 6,142            (2,589)
2009 84 18,992 19,027          (35) 9,872 11,285          (1,413)
2010 72 51,003 47,151          3,852 25,942 26,873          (931)
2011 60 105,067 103,127        1,940 52,012 54,534          (2,522)
2012 48 202,932 194,479        8,453 106,624 106,020        604
2013 36 334,434 325,644        8,790 189,908 192,143        (2,235)
2014 24 841,484 833,793        7,691 454,217 479,073        (24,856)
2015 12 1,798,138 2,528,235
Totals 3,370,010    3,375,371    
AY<CY 1,571,872 1,544,400 27,471 847,136 881,022 (33,886)  

Table F.5 – Actual to Range of Estimates Back-test (Deterministic) 
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Sample Insurance Company
Consolidation of All Segments

Deterministic Actual vs. Method Range as of December 31, 2015
Actual Paid Paid Range Actual Incurred Incurred

AY Age Paid Minimum Maximum Percent Incurred Minimum Maximum Difference
2006 120 3,069 3,701            3,704 -21075.4% 1,863 2,158            2,162 -6790.5%
2007 108 5,905 5,827            8,983 2.5% 3,145 1,210            4,380 61.0%
2008 96 8,986 9,887            10,277 -230.8% 3,553 5,955            6,356 -599.0%
2009 84 18,992 17,726          20,381 47.7% 9,872 9,981            12,657 -4.1%
2010 72 51,003 44,889          49,487 133.0% 25,942 24,600          29,236 28.9%
2011 60 105,067 100,495        106,278 79.1% 52,012 51,856          57,857 2.6%
2012 48 202,932 191,183        198,745 155.4% 106,624 102,222        110,845 51.1%
2013 36 334,434 310,031        338,355 86.2% 189,908 174,120        205,898 49.7%
2014 24 841,484 794,706        853,821 79.1% 454,217 436,298        503,306 26.7%
2015 12 1,798,138 2,528,235
Totals 3,370,010    3,375,371    
AY<CY 1,571,872 1,481,602 1,586,896 85.7% 847,136 811,568 929,564 30.1%  

 
Table F.6 – Estimated Unpaid Claims by Accident Year (Stochastic) 

Sample Insurance Company
Aggregation of All Segments

Stochastic Estimates as of December 31, 2014
Estimated Unpaid Claims by Accident Year

AY Mean Std Dev CoV Min Max 5% 25% Median Mode 75% 95%
2006 7,410            3,000            40.5% 209               20,930          2,762            5,258            7,230            7,126            9,376            12,584          
2007 16,366          3,857            23.6% 4,326            35,971          10,293          13,681          16,160          13,955          18,874          23,025          
2008 23,269          4,798            20.6% 7,340            41,630          15,697          19,961          23,038          24,448          26,387          31,552          
2009 44,378          6,012            13.5% 23,290          73,490          34,774          40,249          44,172          43,645          48,324          54,552          
2010 96,042          8,137            8.5% 68,354          129,130        82,986          90,380          95,868          97,281          101,523        109,899        
2011 202,705        11,141          5.5% 162,433        245,913        184,872        195,065        202,429        213,672        210,093        221,392        
2012 413,903        18,019          4.4% 348,396        495,863        385,145        401,826        413,324        431,386        425,535        444,597        
2013 765,488        31,256          4.1% 643,540        893,747        714,958        744,538        764,726        758,282        786,020        818,610        
2014 1,642,982    62,139          3.8% 1,378,415    1,972,517    1,544,716    1,602,194    1,641,001    1,633,958    1,682,508    1,746,787    
Total 3,212,543    79,355          2.5% 2,811,937    3,596,084    3,084,602    3,161,789    3,211,505    3,295,980    3,261,725    3,343,252     

 
Table F.7 – Estimated Claims Paid by Calendar Year (Stochastic) 

Sample Insurance Company
Aggregation of All Segments

Stochastic Estimates as of December 31, 2014
Estimated Unpaid Claims by Calendar Year

CY Mean Std Dev CoV Min Max 5% 25% Median Mode 75% 95%
2015 1,560,637    43,888          2.8% 1,326,487    1,761,442    1,490,151    1,531,594    1,560,068    1,569,675    1,589,323    1,634,164    
2016 761,830        24,692          3.2% 671,495        861,974        721,379        745,435        761,974        778,026        778,144        802,553        
2017 433,217        17,767          4.1% 368,636        499,640        404,462        420,952        433,003        430,492        445,020        463,153        
2018 227,484        12,686          5.6% 180,708        277,701        206,908        218,837        227,342        231,979        235,833        248,870        
2019 110,005        8,936            8.1% 81,148          145,658        95,506          104,003        109,870        108,106        115,810        124,858        
2020 54,489          6,783            12.4% 30,217          81,348          43,677          49,928          54,233          53,345          58,990          65,976          
2021 30,258          5,508            18.2% 11,536          54,292          21,555          26,490          30,113          31,602          33,792          39,599          
2022 17,338          4,694            27.1% 1,748            38,761          9,925            14,127          17,132          15,736          20,273          25,447          
2023 12,228          4,234            34.6% 351               31,873          5,612            9,261            12,025          15,750          14,892          19,631          
2024 5,057            2,388            47.2% (46)                15,791          1,427            3,333            4,900            4,363            6,546            9,313            
Total 3,212,543    79,355          2.5% 2,811,937    3,596,084    3,084,602    3,161,789    3,211,505    3,295,980    3,261,725    3,343,252     

 
Table F.8 – Mean Future Incremental – Paid (Stochastic) 

Sample Insurance Company
Aggregation of All Segments - Paid

Mean Future Incremental as of December 31, 2014
AY 12 24 36 48 60 72 84 96 108 120 132 Total

2006 4,077            3,333            7,410
2007 6,163            5,387            4,816            16,366
2008 10,176          4,300            4,998            3,794            23,269
2009 20,033          10,774          4,591            4,922            4,058            44,378
2010 48,298          21,360          11,595          4,927            5,520            4,342            96,042
2011 104,415        49,419          21,556          11,839          5,077            6,033            4,365            202,705
2012 196,083        112,311        53,119          23,353          12,692          5,415            6,236            4,693            413,903
2013 331,701        205,564        117,582        55,662          24,391          13,384          5,665            6,643            4,896            765,488
2014 839,689        349,382        214,959        122,988        58,266          25,315          13,992          6,001            7,332            5,057            1,642,982  
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Table F.9 – Standard Deviation of Future Incremental – Paid (Stochastic) 
Sample Insurance Company

Aggregation of All Segments - Paid
Standard Deviation Future Incremental as of December 31, 2014

AY 12 24 36 48 60 72 84 96 108 120 132 Total
2006 1,851            1,623            3,000
2007 1,927            2,080            1,809            3,857
2008 2,494            2,030            2,244            1,833            4,798
2009 3,202            2,660            2,162            2,280            1,974            6,012
2010 5,017            3,331            2,742            2,331            2,477            2,065            8,137
2011 7,305            5,065            3,417            2,795            2,369            2,568            2,101            11,141
2012 10,921          8,101            5,518            3,644            3,008            2,443            2,580            2,185            18,019
2013 16,733          12,067          8,683            5,833            3,853            3,164            2,615            2,786            2,312            31,256
2014 36,658          17,799          12,858          9,241            6,087            3,943            3,330            2,814            2,992            2,388            62,139  

 
Table F.10 – Coefficient of Variation of Future Incremental – Paid (Stochastic) 

Sample Insurance Company
Aggregation of All Segments - Paid

CoV Future Incremental as of December 31, 2014
AY 12 24 36 48 60 72 84 96 108 120 132 Total

2006 45.4% 48.7% 40.5%
2007 31.3% 38.6% 37.6% 23.6%
2008 24.5% 47.2% 44.9% 48.3% 20.6%
2009 16.0% 24.7% 47.1% 46.3% 48.6% 13.5%
2010 10.4% 15.6% 23.6% 47.3% 44.9% 47.6% 8.5%
2011 7.0% 10.2% 15.8% 23.6% 46.7% 42.6% 48.1% 5.5%
2012 5.6% 7.2% 10.4% 15.6% 23.7% 45.1% 41.4% 46.6% 4.4%
2013 5.0% 5.9% 7.4% 10.5% 15.8% 23.6% 46.2% 41.9% 47.2% 4.1%
2014 4.4% 5.1% 6.0% 7.5% 10.4% 15.6% 23.8% 46.9% 40.8% 47.2% 3.8%  

 
Table F.11 – Estimated Unpaid Claims by Accident Year in 2015 (Stochastic) 

Sample Insurance Company
Aggregation of All Segments - Paid

Stochastic Estimates as of December 31, 2014
Estimated Unpaid Claims by Accident Year, Calendar Year 2015 Only

AY Mean Std Dev CoV Min Max 5% 25% Median Mode 75% 95%
2006 4,077            1,851            45.4% 4                    12,459          1,386            2,758            3,891            3,545            5,211            7,424            
2007 6,163            1,927            31.3% 92                  14,962          3,317            4,823            5,994            6,136            7,317            9,584            
2008 10,176          2,494            24.5% 2,955            24,018          6,391            8,444            9,987            8,710            11,747          14,546          
2009 20,033          3,202            16.0% 9,752            35,160          15,071          17,795          19,882          19,530          22,094          25,607          
2010 48,298          5,017            10.4% 27,691          69,353          40,292          44,825          48,117          49,900          51,560          56,893          
2011 104,415        7,305            7.0% 76,379          135,132        92,822          99,305          104,299        105,433        109,283        116,607        
2012 196,083        10,921          5.6% 157,181        242,812        178,556        188,588        195,828        193,134        203,222        214,311        
2013 331,701        16,733          5.0% 257,765        396,823        304,516        320,387        331,465        315,168        342,845        359,464        
2014 839,689        36,658          4.4% 679,077        1,011,508    781,489        815,305        839,033        862,142        862,844        900,811        
Total 1,560,637    43,888          2.8% 1,326,487    1,761,442    1,490,151    1,531,594    1,560,068    1,569,675    1,589,323    1,634,164     

 
Table F.12 – Actual vs. Expected Back-test & Conditional Reserve (Stochastic) 

Sample Insurance Company
Aggregation of All Segments

Stochastic Actual vs. Expected as of December 31, 2015
Actual Expected Actual Expected Conditional Expected

AY Age Paid Paid Percentile Incurred Incurred Percentile Reserve Reserve Change
2006 120 3,069 4,077            31.8% 1,863 2,115            49.8% 2,539            4,341            (1,802)           
2007 108 5,905 6,163            47.9% 3,145 1,819            80.6% 11,349          10,461          888               
2008 96 8,986 10,176          33.6% 3,553 6,026            20.9% 10,961          14,283          (3,322)           
2009 84 18,992 20,033          39.0% 9,872 10,399          46.3% 21,615          25,386          (3,771)           
2010 72 51,003 48,298          71.6% 25,942 25,562          55.3% 49,308          45,039          4,269            
2011 60 105,067 104,415        54.3% 52,012 53,101          44.8% 97,157          97,638          (481)              
2012 48 202,932 196,083        74.2% 106,624 104,075        61.7% 222,250        210,971        11,279          
2013 36 334,434 331,701        57.1% 189,908 185,173        64.0% 427,667        431,054        (3,387)           
2014 24 841,484 839,689        52.8% 454,217 469,822        29.3% 795,671        801,499        (5,828)           
2015 12 1,798,138 2,528,235
Totals 3,370,010    3,375,371    1,638,516    1,640,671    (2,154)           
AY<CY 1,571,872 1,560,637 61.2% 847,136 858,093 37.6% 1,638,584    1,640,671    (2,086)            
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Figure F.1 – Graph of KPI Thresholds by Accident Year – Paid (Stochastic) 

 
Figure F.2 – Graph of KPI Thresholds by Calendar Year – Paid (Stochastic) 

 
Figure F.3 – Graph of KPI Thresholds by Accident Year – Incurred (Stochastic) 

 
Figure F.4 – Graph of KPI Thresholds by Calendar Year – Incurred (Stochastic) 
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Figure F.5 – Graph of Realized Values vs. Assumptions – Paid (Stochastic) 

 
 
Figure F.6 – Graph of Realized Values vs. Assumptions – Paid (Stochastic) 
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Figure F.7 – Graph of Realized Values vs. Assumptions – Incurred (Stochastic) 

 
 
Figure F.8 – Graph of Realized Values vs. Assumptions – Incurred (Stochastic) 
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Abbreviations and notations 
The following abbreviations and notations are used in the paper. 
AY, Accident Year CY, Calendar Year 
AY = CY, the latest AY for which there is no comparable 
expectation based on the prior annual reserve analysis 

AY < CY, all AYs except the latest AY for which there is 
a comparable expectation based on the prior annual 
reserve analysis 

AYLWA, All Year Loss Weighted Average IELR, Initial Expected Loss Ratio 
BF, Bornhuetter-Ferguson Inc BF, Incurred Bornhuetter-Ferguson Method 
CA, Commercial Automobile Inc CL, Incurred Chain Ladder Method 
CEO, Chief Executive Officer KPI, Key Performance Indicator 
CL, Chain Ladder LDF, Loss Development Factor 
CoV, Coefficient of Variation MLE, Maximum Likelihood Estimation 
ENID, Events Not In the Data ODP, over-dispersed Poisson 
ERM, Enterprise Risk Management Pd BF, Paid Bornhuetter-Ferguson Method 
FD, Framework Directive Pd CL, Paid Chain Ladder Method 
GLM, Generalized Linear Models PPA, Private Passenger Automobile 
HO, Homeowners TAS-M, Technical Actuarial Standard: Modelling 
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Using the Hayne MLE Models: A Practitioner’s Guide 

Mark R. Shapland, FCAS, FSA, MAAA 
Ping Xiao 

________________________________________________________________________ 

Abstract 
Motivation. The Hayne MLE family of models are quite elegant in their application, but like most models 
in order to address the needs of the practicing actuary the modeling framework needs to allow for the 
flexibility to deal with many different practical issues. While actuaries are accustomed to making practical 
adjustments to their algorithms, there is motivation to stay as close to the theoretical underpinnings of 
the models as possible in order to maintain a sound foundation. Whenever the paper strays a bit from the 
theory, those departures are noted so practitioners can adequately judge their impact. 
 
Method. This paper starts by reviewing the Hayne MLE modeling framework using a standard notation. 
Then it covers a number of practical data issues and addresses the diagnostic testing of the model 
assumptions. Next it will explore a variety of enhancements to the basic framework to allow the models 
to address other issues related to reserving and pricing risk. Finally, since no single model is perfect, ways 
to combine or credibility weight the Hayne MLE model results with various other models are explored 
in order to arrive at a “best estimate” of the distribution. This is similar to how a deterministic best 
estimate is generally derived in practice, so ways for the practitioner to correlate models by segment in 
order to simulate aggregate results are discussed.  
 
Results. The paper will illustrate the practical implementation of the Hayne MLE modeling framework 
as a powerful tool for estimating a distribution of unpaid claims. 
 
Conclusions. The paper outlines the full versatility of the Hayne MLE models for the practicing actuary. 
 
Availability. In lieu of technical appendices, several companion Excel workbooks are included that 
illustrate the calculations described in this paper. The companion materials are summarized in the 
Supplementary Materials section and are available at [CAS to fill in location]. 
 
Keywords. Maximum Likelihood Estimate, Reserve Variability, Reserve Range, Distribution of Possible 
Outcomes, Generalized Linear Model, Best Estimate. 
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1. Introduction 

With the introduction of the Hayne [8] MLE family of models the CAS membership has 
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gained a very powerful and useful new toolset for estimating unpaid claim distributions from 

a data triangle. The growing need for stochastic models for use as part of Enterprise Risk 

Management and the changing regulatory landscape makes these new stochastic models all the 

more important. However, like most papers on stochastic modeling, the Hayne [8] paper 

focuses primarily on the theory and development of the basic modeling framework, which of 

course is the critical first step. This paper is an attempt to build and expand upon the 

foundation of these models by exploring different aspects of their use on a regular basis so 

that the practicing actuary has a more complete toolset for solving a wider variety of actuarial 

problems. 

1.1 Objectives 

One objective of this paper is to review the theoretical foundation of Hayne MLE models 

to better understand the assumptions and parameters. If model assumptions and parameters 

do not fit the statistical features found in the data then the results of a simulation may not be 

a very good estimate of the distribution of possible outcomes. Thus, the modeling framework 

must be able to adapt or “fit” the model to the data so this point will be elaborated on in later 

sections. 

Another objective of this paper is to show how the Hayne MLE modeling framework can 

be used in practice to help the wider adoption of unpaid claim distributions. Most of the papers 

describing stochastic models, including the Hayne [8] paper, tend to focus primarily on the 

theoretical aspects of the model while ignoring the data issues that commonly arise in practice. 

As a result the models can be quite elegantly implemented yet suffer from practical limitations 

such as only being useful for complete triangles or only for positive incremental values. Thus, 

while keeping as close to the theoretical foundation as possible, this objective is to illustrate 

how practical adjustments can be made to accommodate common data issues and allow the 

model to “fit” the data. As a practical matter, it is also possible that the model does not fit the 

data very well, or less well than other models, so the process of diagnosing the reasonability 

of the assumptions will inform the actuary’s judgment when considering adjustments to the 

parameters or how much weight, if any, to give the model in relation to other models. 

A related issue seems to be the notion that actuaries are still searching for the perfect model 

to describe “the” distribution of unpaid claims, as if imperfections in a model remove it from 

all consideration since it can’t be “the one.” This notion can also manifest itself when an 

actuary settles for a model that seems to work the best or is the easiest to use, or with the idea 

that each model must be used in its entirety or not at all. Interestingly, this notion was dispelled 
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long ago with respect to deterministic point estimates as actuaries commonly use many 

different methods, which range from easy to complex, and judgmentally weight the results to 

arrive at their best estimate. 

 Model risk – the risk that the model you have chosen is not the same as the one that 

generates future losses – is very real. Weighting or combining multiple estimates is a very 

practical way of addressing model risk. Thus, another objective of this paper is to show how 

stochastic reserving can be similar to deterministic reserving when it comes to analyzing and 

using the best parts of multiple models by illustrating how the results from a Hayne MLE 

model can be weighted together with other models. More importantly, the paper hopes to 

illustrate the advantage of using a more complete set of risk estimation tools (which can 

include both stochastic models and deterministic methods) to arrive at an actuarial best 

estimate of the distribution of possible outcomes, rather than to focus on deterministic 

methods to select the “mean” and then simply “add on” a simple approximation or use only 

a favorite model to turn that selected mean into a distribution. 

2. Notation 

Rather than use the notation in the Hayne [8] paper, the notation from the CAS Working 

Party on Quantifying Variability in Reserve Estimates Summary Report [4] will be used since 

it is intended to serve as a ”standard notation” for further research. 

Many models visualize loss data as a two-dimensional array, ),( dw with accident period or 

policy period w , and development age d (think w  = “when” and d  = “delay”). For this 

discussion, it is assumed that the loss information available is an “upper triangular” subset for 

rows 1, 2, ,w n  and for development ages 1, 2, , 1d n w   . The “diagonal” for 

which dw  equals the constant, k , represents the loss information for each accident period 

w  as of accounting period k .1 

For purposes of including tail factors, the development beyond the observed data for 

periods 1, 2, ,d n n u   , where u  is the ultimate time period for which any claim activity 

occurs, or the period in which all claims are final and paid in full, must also be considered. 

The paper uses the following notation for certain important loss statistics:  

                                                           

 
1 For a more complete explanation of this two-dimensional view of the loss information, see the Foundations of 

Casualty Actuarial Science [6], Chapter 5, particularly pages 210-226. 
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),( dwc : cumulative loss from accident2 year w  as of age d .  

),( dwq : incremental loss for accident year w  from d  - 1 to d . 

)(),( wUnwc  : total loss from accident year w  when claims are at ultimate values at time 

n 3
, or  

( , ) ( )c w u U w : total loss from accident year w  when claims are at ultimate values at time 

u .  

( )R w : future development after age d  for accident year w , i.e., = 

),()( dwcwU  . 

)(df : parameter or factor applied to ),( dwc  to estimate )1,( dwq  or can be 

used more generally to indicate any parameter or factor relating to age 

d . 

)(dF : parameter or factor applied to ),( dwc  to estimate ( , 1)c w d   or ),( nwc  

or can be used more generally to indicate any cumulative parameter or 

factor relating to age d . 

T =T(n) : ultimate tail factor at end of triangle data, which is applied to the estimated 

c(w,n)  to estimate ( , )c w u . 

)(wG : parameter or factor relating to accident year w  – capitalized to designate 

ultimate loss level. 

( )h k : parameter or factor relating to the diagonal k  along which w + d  is 

constant.4 

),( dwM : matrix factors relating to both accident year w  and development year d  

parameters. 

                                                           

 
2 The use of accident year is used for ease of discussion. All of the discussion and formulas that follow could 

also apply to underwriting year, policy year, report year, etc. Similarly, year could also be half-year, quarter or 
month. 

3 This would imply that claims reach their ultimate value without any tail factor. This is generalized by changing 

n  to n t u  , where t  is the number of periods in the tail. 
4 Some authors define 1,...,1,0  nd  which intuitively allows wk   along the diagonals, but in this case 

the triangle size is 1nn  which is not intuitive. With nd ,...,2,1  defined as in this paper, the triangle 
size nn  is intuitive, but then 1 wk  along the diagonals is not as intuitive. A way to think about this 
which helps tie everything together is to assume the w  variables are the beginning of the accident periods and 
the d  variables are at the end of the development periods. Thus, if years are used then cell )1,(nc  represents 
accident year n  evaluated at 12/31/n, or essentially 1/1/n+1. 
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),( dwe : a random fluctuation, or error, which occurs at the w , d  cell. 

),( dwb : cumulative claim count from accident year w  as of age d .  

),( dwp : incremental claim count for accident year w  from d  - 1 to d . 

)(wN : the exposures for accident year w . 

),( dwA : the incremental average for accident year w  from d  - 1 to d . 

][xE : the expectation of the random variable x . 

][xVar : the variance of the random variable x . 

 ,  : variance parameters. 

What are called factors here could also be summands, but if factors and summands are 

both used, some other notation for the additive terms would be needed. The notation does 

not distinguish paid vs. incurred, but if this is necessary, capitalized subscripts P  and I  could 

be used. 

3. The Hayne MLE Models 

The Hayne MLE models5 are based on a triangular array of incremental values: 

        

  1 2 3 … n-1 n 
 1 q(1,1) q(1,2) q(1,3) … q(1,n-1) q(1,n) 

 2 q(2,1) q(2,2) q(2,3) … q(2,n-1)  
 3 q(3,1) q(3,2) q(3,3) …   
 … … …     

 n-1 q(n-1,1) q(n-1,2)     
 n q(n,1)      

 By incorporating an exposure adjustment the variety of methods available for analysis is 

widened, as the focus shifts to the incremental averages: 

)(

),(
),(

wN

dwq
dwA  . (3.1) 

Hayne [8] notes that the exposure adjustment for average incremental values (3.1) can be 

based on exposure counts or premium amounts, which would commonly be referred to as an 

average pure premium or burning cost. In addition, the exposure adjustment can be based on 

                                                           

 
5 While condensed for ease of exposition, significant portions of Section 3 are based on Hayne [8]. 

d

w
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an estimate of ultimate claim counts, which would be commonly referred to as an average 

claim severity: 

),(

),(
),(

uwb

dwq
dwA  . (3.2) 

In the case of the average claim severity, the ultimate claim counts are often only estimates 

and as such could be treated as random variables, which will be addressed in Section 4. 

The Hayne MLE models are then based on a generalized framework that expresses each 

underlying method as a matrix-valued function of a parameter vector θ : 

)(),( θMdwA  . (3.3) 

In order to turn this general framework into a stochastic model two key assumptions are 

made. First, the variance of each incremental value is assumed to be proportional to a power 

of the square of the mean. It is quite common to assume the variance is proportional to a 

power of the expected values, but the square of the mean is used to allow incremental values 

to be negative. Also, the constant of proportionality is exponential allowing the parameter to 

take on any value while assuring positive values for the variance. Second, as the variance of an 

average of a sample with a finite variance will be inversely proportional to the number of items 

in the sample, the constant of proportionality is assumed to vary inversely to the number of 

exposures. 

 The stochastic model is then expressed as follows: 

)],([ dwAE  (3.4) 







)(
)(

)(
)],([ 2)](ln[

2
wNe

wN

e
dwAVar  . (3.5) 

Hayne [8] notes that this model includes an implicit structural heteroscedasticity and that 

both the expected values and variances differ by accident and development year. The two 

variance parameters,   and  , provide a mechanism to approximate the variance structure 

of the data without over-parameterizing the model. However, the formulae can be modified 

to allow   to vary by development period if additional control over the heteroscedasticity is 

desired. 

Hayne [8] eloquently describes additional assumptions and processes for estimating the 

parameters for the stochastic model expressed in (3.4) and (3.5), including R code in the 

appendix. As this can’t be improved upon here, it is left to the reader to review the Hayne [8] 

paper for further details, but the focus will turn to the five different implementations of this 

general framework before moving on to various practical implementation issues. For anyone 
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not familiar with R, the implementation of the process of estimating model parameters in R is 

replicated in Excel in the companion “Hayne MLE Models.xlsm” file. Note, however, that 

while the Solver algorithm in Excel should estimate parameters which are very close to those 

estimated in R there can be differences and in some cases constraints may need to be added 

to the Excel Solver algorithm. 

3.1 Berquist-Sherman Model 

Berquist and Sherman [2] developed methods to recognize that incremental severities can 

have different “levels” by accident year as well as different trends by development year. Hayne 

[8] simplifies this approach by assuming a uniform trend from one accident year to the next 

which replaces different levels with uniform changes in level, which also indirectly impact the 

development for each year.  

wGedfdwAE  )()],([  (3.6) 

 

In the Hayne Berquist-Sherman model, the )(df  parameters represent an average 

incremental by development period. The G  parameter is a constant accident year trend where 

nw ,...,3,2,1 . Using the data from Hayne [8], the companion Excel file summarizes the 

Berquist-Sherman model parameters as in Table 3.1. 
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Table 3.1. Summary of Berquist-Sherman Parameters 

 

In addition to the mean and standard deviation of each parameter, which are nearly identical 

to those in Hayne [8], the Coefficient of Variation (“CoV”) row is added so that the 

heteroscedastistic variance by parameter is more apparent. The Decay Ratios row is simply the 

mean of the development parameter divided by the mean of the prior development parameter, 

which will be used in later discussions about tail extrapolation. 

Table 3.2. Expected Incremental Mean Values for Berquist-Sherman Model 

 

 

 

 

Using formulas (3.6) and (3.5) to calculate the expected mean and standard deviation the 

results for each incremental value are shown in Tables 3.2 and 3.3, respectively. 

Table 3.3. Incremental Standard Deviation Values for Berquist-Sherman Model 

 

 

 

 

Reviewing Table 3.2 you can see how the expected mean values for each development 

period relate to the model parameters for )(df  in Table 3.1 by looking at each column. Also, 

comparing rows allow you to see how the trend parameter G  impacts each accident year. 

3.2 Cape Cod Model 

Hayne [8] notes that the traditional Bornhuetter-Ferguson [3] method estimates future 

losses by accident year as a percent of an a priori estimate of the ultimate losses for that year. 

Development Period Parameters (Average Incremental)

12 24 36 48 60 72 84 96 108 120

Mean 620.95            760.66            708.15            553.57            349.99            181.39            70.96              43.88              11.08              15.21              

Std Dev 40.50              46.55              43.00              35.49              26.17              17.66              10.39              8.74               4.22               7.34               

Decay Ratios: 122.5% 93.1% 78.2% 63.2% 51.8% 39.1% 61.8% 25.2% 137.3%

CoV: 6.5% 6.1% 6.1% 6.4% 7.5% 9.7% 14.6% 19.9% 38.1% 48.3%

Accident Year

Trend K p AIC BIC Parameters

Mean 0.045              11.216            0.654              643.4              669.5              Acc Period 0

Std Dev 0.009              1.037              0.085              Dev Period 10

CoV: 18.9% 9.2% 12.9% Trend 1

11

Predicted Incremental Mean [Model Fitted] (Paid [÷ Ultimate Claims])
1 2 3 4 5 6 7 8 9 10 Future

Year 12 24 36 48 60 72 84 96 108 120 Totals

2006 649.69 795.86 740.93 579.17 366.20 189.78 74.25 45.91 11.59 15.92 0.00

2007 679.73 832.66 775.18 605.95 383.13 198.56 77.69 48.03 12.13 16.65 16.65

2008 711.16 871.16 811.03 633.96 400.84 207.74 81.28 50.25 12.69 17.42 30.11

2009 744.04 911.43 848.52 663.28 419.37 217.34 85.04 52.57 13.27 18.23 84.07

2010 778.44 953.57 887.75 693.94 438.76 227.39 88.97 55.00 13.89 19.07 176.93

2011 814.43 997.66 928.80 726.03 459.05 237.90 93.08 57.55 14.53 19.95 423.01

2012 852.08 1,043.79 971.74 759.59 480.27 248.90 97.38 60.21 15.20 20.88 922.84

2013 891.48 1,092.05 1,016.67 794.71 502.48 260.41 101.89 62.99 15.90 21.84 1,760.22

2014 932.70 1,142.54 1,063.67 831.46 525.71 272.45 106.60 65.90 16.64 22.85 2,905.28

2015 975.82 1,195.36 1,112.85 869.90 550.02 285.05 111.53 68.95 17.41 23.91 4,234.97

10,554.09

Predicted Incremental Standard Deviation [Model Fitted] (Paid [÷ Ultimate Claims])
1 2 3 4 5 6 7 8 9 10 Future

Year 12 24 36 48 60 72 84 96 108 120 Totals

2006 95.13 108.63 103.66 88.24 65.39 42.55 23.04 16.82 6.84 8.42 0.00

2007 98.60 112.59 107.44 91.46 67.77 44.10 23.88 17.43 7.09 8.72 8.72

2008 97.68 111.54 106.45 90.61 67.14 43.69 23.65 17.27 7.02 8.64 11.14

2009 100.06 114.26 109.04 92.82 68.78 44.75 24.23 17.69 7.19 8.85 21.05

2010 104.03 118.79 113.36 96.50 71.51 46.53 25.19 18.39 7.48 9.20 33.37

2011 108.82 124.26 118.59 100.95 74.80 48.67 26.35 19.24 7.82 9.63 59.90

2012 107.65 122.92 117.31 99.86 74.00 48.15 26.07 19.03 7.74 9.52 94.79

2013 112.81 128.81 122.93 104.64 77.54 50.45 27.32 19.95 8.11 9.98 144.29

2014 114.36 130.58 124.62 106.08 78.61 51.15 27.69 20.22 8.22 10.12 192.16

2015 110.40 126.07 120.31 102.41 75.89 49.38 26.73 19.52 7.94 9.77 224.29

349.83
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In contrast, a feature of the Cape Cod method is that it derives the a priori estimates directly 

from the data. Hayne [8] essentially combines these methods by assuming that the incremental 

average amounts are the product of an accident year factor and lag factor, which are usually 

taken as ultimate loss for the year and the percentage of losses emerging that year.  

1,1

1,1

1,1

1,1

),()()1,1(

),()1,1(

),()1,1(

),1,1(

)],([




























dw

dw

dw

dw

dfwGG

dfG

wGG

G

dwAE   (3.7) 

In the Hayne Cape Cod model, the )1,1(G  parameter, or scale, is a constant from which all 

other parameters are based. The )(wG  parameters are factors multiplied times the constant 

which essentially adjust the base for average exposure changes by accident year. The )(df  

parameters are factors multiplied times the constant, or constant adjusted by the )(wG  

parameters, which essentially adjust the base (by accident year) for average incremental 

changes by development year. Using the data from Hayne [8], the companion Excel file 

summarizes the Cape Cod model parameters as in Table 3.4. 

Table 3.4. Summary of Cape Cod Parameters 

 

 

 

 

 

Using formulas (3.7) and (3.5) to calculate the expected mean and standard deviation the 

results for each incremental value are shown in Tables 3.5 and 3.6, respectively. 

Table 3.5. Expected Incremental Mean Values for Cape Cod Model 

 

 

 

 

 

Predicted Incremental Mean [Model Fitted] (Paid [÷ Ultimate Claims])
1 2 3 4 5 6 7 8 9 10 Future

Year 12 24 36 48 60 72 84 96 108 120 Totals

2006 620.07 732.01 659.04 519.38 330.98 176.23 68.79 41.73 9.53 15.05 0.00

2007 719.49 849.38 764.70 602.65 384.04 204.48 79.82 48.43 11.05 17.47 17.47

2008 696.47 822.21 740.24 583.37 371.76 197.94 77.27 46.88 10.70 16.91 27.61

2009 819.84 967.86 871.37 686.71 437.61 233.01 90.95 55.18 12.60 19.90 87.68

2010 853.00 1,006.99 906.61 714.48 455.31 242.43 94.63 57.41 13.11 20.71 185.86

2011 943.01 1,113.26 1,002.28 789.88 503.36 268.01 104.62 63.47 14.49 22.89 473.48

2012 950.77 1,122.42 1,010.52 796.38 507.50 270.22 105.48 63.99 14.61 23.08 984.87

2013 979.71 1,156.58 1,041.28 820.62 522.95 278.44 108.69 65.94 15.05 23.78 1,835.47

2014 725.16 856.08 770.74 607.41 387.08 206.10 80.45 48.81 11.14 17.60 2,129.33

2015 721.47 851.72 766.81 604.31 385.10 205.05 80.04 48.56 11.08 17.52 2,970.19

8,711.96

Accident Period Parameters 

Scale 2007 2008 2009 2010 2011 2012 2013 2014 2015

Mean 620.067          1.160              1.123              1.322              1.376              1.521              1.533              1.580              1.169              1.164              

Std Dev 30.048            0.066              0.064              0.072              0.075              0.082              0.084              0.091              0.082              0.105              

CoV 4.8% 5.7% 5.7% 5.4% 5.4% 5.4% 5.5% 5.8% 7.1% 9.0%

Development Period Parameters (Average Incremental)

24 36 48 60 72 84 96 108 120

Mean 1.181              1.063              0.838              0.534              0.284              0.111              0.067              0.015              0.024              

Std Dev 0.041              0.040              0.036              0.029              0.023              0.016              0.016              0.009              0.017              

Decay Ratios 90.0% 78.8% 63.7% 53.2% 39.0% 60.7% 22.8% 158.0%

CoV 3.5% 3.8% 4.3% 5.5% 8.1% 14.8% 23.1% 61.1% 70.4%

K p AIC BIC Parameters

Mean 13.104            0.435              619.3              661.5              Acc Period 9

Std Dev 1.010              0.083              Dev Period 9

CoV 7.7% 19.0% Scale 1

19
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Table 3.6. Incremental Standard Deviation Values for Cape Cod Model 

 

 

 

 

 

 

Reviewing Table 3.5 you can see that the scale, or constant, is the value for 2006 at 12 

months of development. The )(wG , or accident year, parameters are used to adjust the scale 

in the 12 month column and then the )(df , or development year, parameters are used to 

adjust the scale, or scale adjusted by accident year, for each development column. 

3.3 Chain Ladder Model 

For the traditional Chain Ladder method, average development factors are multiplied by 

the cumulative amounts by accident year to estimate the expected future incremental values. 

Hayne [8] also uses the cumulative amounts by accident year, but instead derives parameters 

which represent the proportion of the incremental value in each development year. The 

parameters are constrained so that the incremental values sum to the cumulative values. In 

addition, 1n  parameters are used with the last development year parameter derived so that 

the sum of all parameters is 100%. 
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 (3.8) 

In the Hayne Chain Ladder model, the )(wG  parameters are the cumulative values for each 

accident year. The )(df  parameters are factors multiplied times the cumulative values to 

derive the expected incremental values by development year. Only 1n  parameters are 

Predicted Incremental Standard Deviation [Model Fitted] (Paid [÷ Ultimate Claims])
1 2 3 4 5 6 7 8 9 10 Future

Year 12 24 36 48 60 72 84 96 108 120 Totals

2006 58.08 62.43 59.64 53.77 44.20 33.60 22.31 17.95 9.44 11.52 0.00

2007 62.35 67.02 64.03 57.73 47.45 36.07 23.96 19.28 10.14 12.37 12.37

2008 59.13 63.56 60.72 54.75 45.00 34.21 22.72 18.28 9.61 11.73 15.17

2009 63.13 67.86 64.83 58.45 48.04 36.52 24.26 19.52 10.26 12.52 25.36

2010 64.83 69.69 66.58 60.02 49.34 37.51 24.91 20.04 10.54 12.86 36.04

2011 68.78 73.94 70.63 63.68 52.35 39.79 26.43 21.26 11.18 13.64 55.18

2012 66.30 71.26 68.08 61.38 50.45 38.35 25.47 20.49 10.78 13.15 73.31

2013 68.34 73.45 70.17 63.27 52.01 39.53 26.26 21.12 11.11 13.56 98.55

2014 59.01 63.43 60.59 54.63 44.90 34.14 22.67 18.24 9.59 11.70 104.47

2015 55.18 59.32 56.67 51.09 42.00 31.92 21.20 17.06 8.97 10.95 114.30

210.79
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derived and the “parameter” for the last development period is one minus the sum of the 

1n  parameters. In order to constrain the sum of the expected incremental values to equal 

the cumulative values, the )(df  parameters are divided by the sum of the parameters for that 

accident year so that the proportional factors for that accident year up to the diagonal sum to 

100%. Using the data from Hayne [8], the companion Excel file summarizes the Chain Ladder 

model parameters as in Table 3.7. 

Table 3.7. Summary of Chain Ladder Parameters 

 

 

 

 

The parameter for 120 months is greyed since it is derived by subtracting the sum of the 

other parameters from one. Using formulas (3.8) and (3.5) to calculate the expected mean and 

standard deviation the results for each incremental value are shown in Tables 3.8 and 3.9, 

respectively. 

Table 3.8. Expected Incremental Mean Values for Chain Ladder Model 

 

 

 

 

Table 3.9. Incremental Standard Deviation Values for Chain Ladder Model 

 

 

 

 

Reviewing Table 3.8 it is not as obvious how the parameters relate to the incremental values 

compared to the Berquist-Sherman or Cape Cod models. However, if you sum the incremental 

values up to the diagonal for each accident year, you will discover that they sum to the 

cumulative value for each accident year. Thus, the )(df  parameters can be seen as 

Development Period Parameters (Average Incremental)

12 24 36 48 60 72 84 96 108 120

Mean 0.195              0.231              0.208              0.164              0.104              0.056              0.022              0.013              0.003              0.005              

Std Dev 0.005              0.005              0.005              0.005              0.005              0.004              0.003              0.003              0.002              0.003              

Decay Ratios: 118.1% 90.0% 78.8% 63.7% 53.2% 39.0% 60.8% 22.9% 157.7%

CoV: 2.5% 2.3% 2.5% 3.1% 4.5% 7.3% 14.3% 22.6% 60.4% 69.6%

K p AIC BIC Parameters

Mean 13.074            0.438              619.4              661.5              Acc Period 10

Std Dev 1.007              0.082              Dev Period 9

CoV: 7.7% 18.8% Trend 0

19

Predicted Incremental Mean [Model Fitted] (Paid [÷ Ultimate Claims])
1 2 3 4 5 6 7 8 9 10 Future

Year 12 24 36 48 60 72 84 96 108 120 Totals

2006 617.57 729.07 656.33 517.19 329.57 175.45 68.44 41.59 9.51 15.00 0.00

2007 715.93 845.18 760.86 599.56 382.05 203.39 79.34 48.21 11.03 17.39 17.39

2008 695.14 820.64 738.76 582.16 370.96 197.49 77.04 46.81 10.71 16.89 27.60

2009 823.53 972.20 875.21 689.67 439.47 233.96 91.26 55.46 12.69 20.01 88.15

2010 854.54 1,008.81 908.16 715.64 456.02 242.77 94.70 57.55 13.16 20.76 186.17

2011 943.04 1,113.29 1,002.22 789.76 503.25 267.91 104.51 63.51 14.53 22.91 473.37

2012 951.15 1,122.87 1,010.84 796.55 507.58 270.22 105.41 64.06 14.65 23.11 985.02

2013 981.03 1,158.13 1,042.59 821.57 523.52 278.70 108.72 66.07 15.11 23.83 1,837.53

2014 726.85 858.06 772.46 608.70 387.88 206.49 80.55 48.95 11.20 17.66 2,133.89

2015 723.30 853.88 768.69 605.74 385.99 205.49 80.16 48.71 11.14 17.57 2,977.37

8,726.49

Predicted Incremental Standard Deviation [Model Fitted] (Paid [÷ Ultimate Claims])
1 2 3 4 5 6 7 8 9 10 Future

Year 12 24 36 48 60 72 84 96 108 120 Totals

2006 58.10 62.48 59.67 53.76 44.14 33.49 22.18 17.84 9.35 11.41 0.00

2007 62.38 67.08 64.06 57.72 47.38 35.96 23.81 19.15 10.04 12.25 12.25

2008 59.23 63.69 60.83 54.80 44.99 34.14 22.61 18.18 9.53 11.63 15.04

2009 63.44 68.22 65.15 58.70 48.19 36.57 24.22 19.47 10.21 12.46 25.27

2010 65.08 69.98 66.84 60.22 49.44 37.51 24.84 19.98 10.47 12.78 35.91

2011 69.01 74.21 70.87 63.86 52.42 39.78 26.34 21.18 11.11 13.56 55.07

2012 66.53 71.54 68.32 61.56 50.54 38.35 25.40 20.42 10.71 13.07 73.29

2013 68.61 73.78 70.46 63.48 52.12 39.55 26.19 21.06 11.04 13.48 98.71

2014 59.22 63.68 60.82 54.79 44.98 34.14 22.61 18.18 9.53 11.63 104.68

2015 55.39 59.56 56.88 51.25 42.07 31.93 21.14 17.00 8.91 10.88 114.60

211.05
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representing an average proportion of the incremental values compared to the cumulative 

values. 

3.4 Hoerl Curve Model 

The Hoerl Curve is a three parameter exponential model which uses the development lag 

for all three parameters; i.e., number of periods, number of periods squared and the natural 

log of the number of periods. Hayne [8] combines these three parameters with a constant level 

parameter and an accident year trend factor.  

)2()3()ln()2()1()1( 2

)],([ GwfdfdfdGedwAE   (3.9) 

In the Hayne Hoerl Curve model, the )1(G  parameter is the constant level on a log scale. 

The )2(G  parameter is a constant trend which adjusts the level by accident year. The )1(f , 

)2(f , and )3(f  parameters are factors multiplied times the development lags; i.e., by d , 
2d

, and )ln(d , respectfully. Using the data from Hayne [8], the companion Excel file summarizes 

the Hoerl Curve model parameters as in Table 3.10. 

Table 3.10. Summary of Hoerl Curve Parameters 

 

 

 

 

 

Using formulas (3.9) and (3.5) to calculate the expected mean and standard deviation the 

results for each incremental value are shown in Tables 3.11 and 3.12, respectively. 

Table 3.11. Expected Incremental Mean Values for Hoerl Curve Model 

 

 

 

 

  

Parameters (Average Incremental)

Level d d2 ln(d) Trend

Mean 6.496              0.005              (0.065)            0.596              0.043              

Std Dev 0.220              0.240              0.019              0.323              0.008              

CoV: 3.4% 4687.1% -28.4% 54.2% 19.5%

K p AIC BIC Parameters

Mean 13.147            0.506              639.7              653.8              Level 1

Std Dev 1.014              0.083              Development 3

CoV: 7.7% 16.3% Trend 1

5

Predicted Incremental Mean [Model Fitted] (Paid [÷ Ultimate Claims])
1 2 3 4 5 6 7 8 9 10 Future

Year 12 24 36 48 60 72 84 96 108 120 Totals

2006 651.30 813.57 751.30 567.59 362.10 197.86 93.30 38.14 13.55 4.20 0.00

2007 679.90 849.29 784.29 592.51 378.00 206.55 97.40 39.81 14.15 4.38 4.38

2008 709.75 886.58 818.73 618.53 394.60 215.62 101.67 41.56 14.77 4.57 19.34

2009 740.92 925.51 854.68 645.68 411.93 225.08 106.14 43.38 15.42 4.77 63.58

2010 773.45 966.15 892.20 674.04 430.01 234.97 110.80 45.29 16.09 4.98 177.16

2011 807.41 1,008.57 931.38 703.63 448.90 245.28 115.66 47.28 16.80 5.20 430.22

2012 842.86 1,052.85 972.28 734.53 468.61 256.05 120.74 49.35 17.54 5.43 917.72

2013 879.87 1,099.08 1,014.97 766.78 489.18 267.30 126.04 51.52 18.31 5.67 1,724.80

2014 918.50 1,147.34 1,059.53 800.45 510.66 279.03 131.58 53.78 19.11 5.92 2,860.07

2015 958.83 1,197.72 1,106.06 835.59 533.08 291.28 137.35 56.14 19.95 6.18 4,183.37

10,380.64
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Table 3.12. Incremental Standard Deviation Values for Hoerl Curve Model 

 

 

 

 

Reviewing Table 3.11, the link to the parameters must be viewed on a log scale. Starting 

with the first development column, the beginning “levels” for each accident year on a log scale 

is the )1(G  parameter plus the trend times the number of years, plus one of the )1(f  and 

)2(f  parameters. Moving from left to right across the development years, the combination 

of the three development parameters acts to first increase the incremental values, then to 

decrease the incremental values in a smooth curve. 

3.5 Wright Model 

The Wright model also uses the three parameter Hoerl curve, but instead of a constant 

level and trend parameters, individual parameters for each accident year “level” are used. 

)3()ln()2()1()( 2

)],([ fdfdfdwGedwAE   (3.10) 

In the Hayne Wright model, the )(wG  parameters are the individual levels for each accident 

year. Similar to the Hoerl Curve model, the )1(f , )2(f , and )3(f  parameters are factors 

multiplied times the development lags; i.e., by d , 
2d , and )ln(d , respectfully. Using the data 

from Hayne [8], the companion Excel file summarizes the Wright model parameters as in 

Table 3.13. 

Table 3.13. Summary of Wright Parameters 

 

 

 

 

 

Using formulas (3.10) and (3.5) to calculate the expected mean and standard deviation the 

results for each incremental value are shown in Tables 3.14 and 3.15, respectively. 

 

Accident Period Parameters 

2006 2007 2008 2009 2010 2011 2012 2013 2014 2015

Mean 6.312              6.472              6.436              6.587              6.636              6.738              6.742              6.771              6.475              6.468              

Std Dev 0.168              0.167              0.167              0.166              0.167              0.167              0.166              0.164              0.166              0.184              

CoV 2.7% 2.6% 2.6% 2.5% 2.5% 2.5% 2.5% 2.4% 2.6% 2.8%

Development Period Parameters (Average Incremental)

d d2 ln(d)

Mean 0.192              (0.078)            0.290              

Std Dev 0.183              0.015              0.232              

CoV 95.4% -19.5% 80.0%

Parameters

K p AIC BIC Acc Period 10

Mean 14.592            0.319              612.3              642.4              Dev Period 3

Std Dev 0.909              0.075              13

CoV 6.2% 23.4%

Predicted Incremental Standard Deviation [Model Fitted] (Paid [÷ Ultimate Claims])
1 2 3 4 5 6 7 8 9 10 Future

Year 12 24 36 48 60 72 84 96 108 120 Totals

2006 95.72 107.11 102.88 89.29 71.14 52.41 35.84 22.80 13.51 7.47 0.00

2007 98.43 110.15 105.81 91.82 73.16 53.89 36.85 23.45 13.90 7.68 7.68

2008 96.76 108.28 104.00 90.26 71.91 52.98 36.23 23.05 13.66 7.55 15.61

2009 98.34 110.05 105.71 91.73 73.09 53.84 36.82 23.42 13.88 7.67 28.29

2010 101.45 113.52 109.04 94.63 75.39 55.54 37.98 24.16 14.32 7.92 47.90

2011 105.29 117.83 113.18 98.22 78.25 57.65 39.42 25.08 14.86 8.22 76.12

2012 103.35 115.65 111.08 96.40 76.81 56.58 38.69 24.61 14.59 8.06 107.15

2013 107.45 120.25 115.50 100.23 79.86 58.83 40.23 25.59 15.17 8.38 149.87

2014 108.08 120.95 116.18 100.82 80.33 59.18 40.47 25.74 15.26 8.43 190.32

2015 103.53 115.85 111.28 96.57 76.94 56.68 38.76 24.66 14.62 8.08 216.00

354.98
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Table 3.14. Expected Incremental Mean Values for Wright Model 

 

 

 

 

 

Table 3.15. Incremental Standard Deviation Values for Wright Model 

 

 

 

 

Reviewing Table 3.14 you can see the similarities to Table 3.11. Starting with the first 

development column, the beginning “levels” for each accident year on a log scale is the )(wG  

parameter plus one of the )1(f  and )2(f  parameters. Moving from left to right across the 

development years, the combination of the three development parameters acts to first increase 

the incremental values, then to decrease the incremental values in a smooth curve. 

3.6 The Simulation Process 

For each of the Hayne MLE models, using the parameters to calculate the expected mean 

and standard deviation for each incremental cell is only the starting point. Additional outputs 

for each model are the standard deviations for each parameter (shown in Tables 3.1, 3.4, 3.7, 

3.10, and 3.13) and the variance-covariance matrix of all the parameters (not shown). Using 

the means and variance-covariance matrix, the simulation process starts by sampling a random 

set of new parameters using the multi-variate Normal distribution. For example, a sample 

iteration for the Berquist-Sherman model could look like Table 3.16. 

Table 3.16. Sample of Berquist-Sherman Parameters 

 

 

Using the sample parameters, the next step in the simulation process is to calculate the 

mean and standard deviation for each cell as in Tables 3.17 and 3.18. 

Predicted Incremental Mean [Model Fitted] (Paid [÷ Ultimate Claims])
1 2 3 4 5 6 7 8 9 10 Future

Year 12 24 36 48 60 72 84 96 108 120 Totals

2006 617.75 724.24 668.24 509.80 326.60 176.91 81.32 31.79 10.59 3.01 0.00

2007 724.55 849.44 783.76 597.94 383.06 207.49 95.38 37.29 12.42 3.52 3.52

2008 698.92 819.39 756.04 576.79 369.51 200.15 92.00 35.97 11.98 3.40 15.38

2009 813.22 953.39 879.68 671.11 429.93 232.88 107.05 41.85 13.94 3.96 59.74

2010 854.17 1,001.41 923.98 704.91 451.59 244.61 112.44 43.96 14.64 4.16 175.19

2011 945.66 1,108.66 1,022.94 780.41 499.95 270.81 124.48 48.67 16.21 4.60 464.77

2012 949.61 1,113.29 1,027.21 783.67 502.04 271.94 125.00 48.87 16.27 4.62 968.75

2013 977.65 1,146.17 1,057.55 806.81 516.87 279.97 128.70 50.31 16.75 4.76 1,804.17

2014 726.83 852.12 786.23 599.82 384.26 208.14 95.68 37.41 12.46 3.54 2,127.54

2015 721.95 846.40 780.95 595.80 381.68 206.75 95.04 37.16 12.37 3.51 2,959.65

8,578.71

Predicted Incremental Standard Deviation [Model Fitted] (Paid [÷ Ultimate Claims])
1 2 3 4 5 6 7 8 9 10 Future

Year 12 24 36 48 60 72 84 96 108 120 Totals

2006 57.98 61.00 59.45 54.53 47.30 38.89 30.35 22.48 15.83 10.59 0.00

2007 61.39 64.59 62.95 57.74 50.09 41.18 32.13 23.81 16.76 11.21 11.21

2008 58.37 61.41 59.86 54.90 47.63 39.16 30.55 22.64 15.93 10.66 19.17

2009 60.93 64.10 62.48 57.31 49.71 40.87 31.89 23.63 16.63 11.13 30.96

2010 62.47 65.73 64.06 58.76 50.97 41.91 32.70 24.23 17.05 11.41 45.57

2011 65.55 68.96 67.21 61.65 53.48 43.97 34.31 25.42 17.89 11.97 64.96

2012 63.03 66.32 64.64 59.29 51.43 42.28 32.99 24.44 17.21 11.51 80.91

2013 64.73 68.10 66.38 60.88 52.81 43.42 33.88 25.10 17.67 11.82 103.01

2014 57.96 60.98 59.43 54.51 47.28 38.88 30.33 22.47 15.82 10.58 109.72

2015 54.21 57.03 55.58 50.98 44.22 36.36 28.37 21.02 14.80 9.90 117.40

225.23

Berquist-Sherman:
Development Period Parameters (Average Incremental)

12 24 36 48 60 72 84 96 108 120

668.32            704.13            645.21            559.41            380.69            165.37            84.01              33.80              26.55              15.75              

Trend K p

0.047              11.268            0.661              
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Table 3.17. Sampled Incremental Mean Values for Berquist-Sherman 

 

 

 

 

Table 3.18. Sampled Incremental Std. Dev. Values for Berquist-Sherman 

 

 

 

 

Next, using the sampled mean and standard deviation for each incremental cell process 

variance is added by randomly generating an observation for each cell using the Normal 

distribution and the sampled mean and standard deviation for that cell. Continuing the 

example, U(0,1) random values are shown in Table 3.19 and the random observations based 

on the means and standard deviations by cell in Tables 3.17 and 3.18, respectively, are shown 

in Table 3.20. 

Table 3.19. Random Values 

 

 

 

 

Table 3.20. Sample Observations for Berquist-Sherman 

 

 

 

 

Since the model is typically based on average severities, the final step is to multiply the 

Generate Incremental Mean from Random Parameters (Paid [÷ Ultimate Claims])
1 2 3 4 5 6 7 8 9 10 Future

Year 12 24 36 48 60 72 84 96 108 120 Totals

2006 700.40 737.93 676.18 586.26 398.96 173.31 88.05 35.42 27.82 16.50 0.00

2007 734.02 773.35 708.64 614.40 418.11 181.63 92.27 37.12 29.16 17.29 17.29

2008 769.26 810.47 742.66 643.89 438.18 190.35 96.70 38.90 30.56 18.12 48.68

2009 806.18 849.37 778.30 674.79 459.21 199.48 101.34 40.77 32.02 18.99 91.78

2010 844.88 890.14 815.66 707.18 481.25 209.06 106.21 42.73 33.56 19.91 202.40

2011 885.43 932.87 854.81 741.13 504.35 219.09 111.31 44.78 35.17 20.86 431.21

2012 927.93 977.65 895.84 776.70 528.56 229.61 116.65 46.93 36.86 21.86 980.47

2013 972.47 1,024.57 938.84 813.98 553.93 240.63 122.25 49.18 38.63 22.91 1,841.51

2014 1,019.15 1,073.75 983.91 853.06 580.52 252.18 128.11 51.54 40.48 24.01 2,913.81

2015 1,068.07 1,125.29 1,031.13 894.00 608.39 264.29 134.26 54.01 42.43 25.16 4,178.97

10,706.12

Generate Incremental Standard Deviation from Random Parameters (Paid [÷ Ultimate Claims])
1 2 3 4 5 6 7 8 9 10 Future

Year 12 24 36 48 60 72 84 96 108 120 Totals

2006 107.53 111.30 105.06 95.60 74.12 42.71 27.30 14.95 12.74 9.02 0.00

2007 111.61 115.53 109.04 99.23 76.93 44.33 28.33 15.52 13.23 9.37 9.37

2008 110.73 114.62 108.19 98.45 76.33 43.98 28.11 15.40 13.12 9.29 16.08

2009 113.59 117.58 110.98 100.99 78.30 45.12 28.84 15.79 13.46 9.53 22.84

2010 118.27 122.42 115.55 105.15 81.52 46.98 30.02 16.44 14.02 9.92 38.30

2011 123.90 128.25 121.05 110.15 85.40 49.21 31.45 17.23 14.69 10.40 63.50

2012 122.74 127.05 119.92 109.12 84.60 48.75 31.16 17.07 14.55 10.30 105.43

2013 128.81 133.33 125.84 114.51 88.79 51.16 32.70 17.91 15.27 10.81 159.23

2014 130.77 135.36 127.76 116.26 90.14 51.94 33.20 18.18 15.50 10.97 206.04

2015 126.42 130.86 123.52 112.40 87.14 50.22 32.09 17.58 14.98 10.61 238.34

376.95

Simulated Random Values [Correlated] (Paid)
1 2 3 4 5 6 7 8 9 10

Year 12 24 36 48 60 72 84 96 108 120

2006 0.4009            0.4189            0.9459            0.3101            0.3192            0.1740            0.4005            0.0364            0.1201            0.0822            

2007 0.3078            0.7144            0.5731            0.1989            0.4034            0.4817            0.3595            0.8254            0.8173            0.6103            

2008 0.3334            0.8134            0.5619            0.9379            0.3830            0.0163            0.1479            0.8463            0.9088            0.9352            

2009 0.9491            0.2084            0.7126            0.2911            0.4702            0.6269            0.7621            0.4779            0.1540            0.0921            

2010 0.7837            0.4402            0.1229            0.8062            0.4995            0.3770            0.3096            0.5040            0.8820            0.0521            

2011 0.1960            0.2693            0.0002            0.3931            0.1450            0.0349            0.1155            0.0600            0.3554            0.0203            

2012 0.7020            0.0977            0.2878            0.7736            0.5855            0.0297            0.9950            0.3926            0.7570            0.6794            

2013 0.5225            0.0925            0.9975            0.3746            0.1550            0.5164            0.0112            0.7273            0.1654            0.5295            

2014 0.4272            0.7301            0.3417            0.6337            0.3146            0.7889            0.2524            0.8902            0.8295            0.6409            

2015 0.0630            0.4542            0.8377            0.4535            0.9946            0.1432            0.5699            0.1098            0.7175            0.1494            

Generate Random Observation from Sampled Incremental Mean & Variance (Paid [÷ Ultimate Claims])
1 2 3 4 5 6 7 8 9 10 Future

Year 12 24 36 48 60 72 84 96 108 120 Totals

2006 667.37 709.01 844.47 532.84 359.51 130.00 79.63 7.10 11.80 3.16 0.00

2007 670.92 834.93 723.93 523.28 394.97 177.35 80.40 51.29 40.82 19.53 19.53

2008 714.78 909.75 754.66 794.60 411.07 91.53 65.10 54.30 47.90 32.15 80.05

2009 991.65 745.44 836.84 612.69 449.33 212.28 121.06 39.09 17.25 5.51 61.86

2010 934.48 865.17 672.08 795.40 477.14 191.62 89.39 42.09 49.95 2.84 184.27

2011 770.31 845.46 403.96 704.98 407.24 124.96 71.03 16.39 28.85 (1.54) 239.69

2012 988.80 802.30 820.93 855.55 543.17 132.74 197.56 41.30 46.56 26.29 987.63

2013 973.59 836.35 1,296.12 770.69 456.90 240.28 43.88 59.43 22.61 23.20 1,617.00

2014 988.06 1,152.40 924.07 888.17 531.34 292.49 103.72 73.59 54.89 27.54 2,895.81

2015 862.99 1,103.37 1,150.12 874.98 832.28 206.77 138.49 30.96 50.55 13.31 4,400.84

10,486.67
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random observations times the ultimate claim counts6 by year to convert the sample to total 

claim values, as in Table 3.21.  

Table 3.21. Conversion to Total Value for Berquist-Sherman 

 

 

 

 

Repeating these steps a large number of times, the results for all iterations can be saved and 

summarized by accident year, calendar year, and a variety of other ways. The output will be 

discussed in more detail in Sections 5 and 6. 

4. Practical Issues 

Now that the basic Hayne MLE framework has been described, a variety of practical issues 

needed for addressing many common problems can be addressed. In order to distinguish 

whether the underlying model has parameters associated with individual development period, 

the underlying models can be categorized into two families. The first family has parameters 

tied to individual development age — Berquist Sherman, Cape Cod, and Chain Ladder models 

fall into this family. The other family has no definite parameters on individual development 

period and the parameters are more comparable to coefficient of regression on development 

age (operational time) — Hoerl Curve and Wright models belong to this family. 

4.1. Negative Incremental Values 

In general for the Hayne MLE framework, no special care is required in modeling triangles 

with a few negative entries.  When the total incremental values for a given development period 

is significantly lower than zero, models from the first family have no problem dealing with this 

type of triangle. Calibrated development period parameters, most likely, will turn out to be 

negative to reflect negative expected incremental values for the period. For models from the 

second family, incremental means are exponential and hence are always positive so negative 

incremental values in the triangle are difficult to model, which typically implies 

                                                           

 
6 This step depends on the original exposure basis used to parameterize the model. For example, if the model is 

based on pure premiums then the last step is to multiply times exposures by year. 

Convert Incremental Severity (Paid [÷ Ultimate Claims]) to Total Incremental Value (in 000's)
1 2 3 4 5 6 7 8 9 10 Future

Year 12 24 36 48 60 72 84 96 108 120 Totals

2006 26,135 27,766 33,070 20,866 14,079 5,091 3,118 278 462 124 0

2007 25,946 32,289 27,996 20,236 15,275 6,859 3,109 1,983 1,578 755 755

2008 29,878 38,029 31,546 33,215 17,183 3,826 2,721 2,270 2,002 1,344 3,346

2009 41,910 31,505 35,368 25,894 18,990 8,972 5,116 1,652 729 233 2,614

2010 38,763 35,888 27,879 32,994 19,792 7,948 3,708 1,746 2,072 118 7,643

2011 30,978 34,000 16,245 28,350 16,377 5,025 2,856 659 1,160 (62) 9,639

2012 43,110 34,979 35,791 37,301 23,682 5,787 8,613 1,801 2,030 1,146 43,059

2013 41,006 35,226 54,590 32,460 19,244 10,120 1,848 2,503 952 977 68,105

2014 42,960 50,106 40,178 38,617 23,103 12,717 4,510 3,200 2,387 1,197 125,908

2015 42,712 54,608 56,922 43,305 41,192 10,234 6,854 1,532 2,502 659 217,808

478,879
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inappropriateness of the model and resulting in a bad fit to the data. However, negative 

numbers can still be simulated due to the process variance during simulation so a close fit may 

still work. 

4.2. Standardized Residuals 

As the Hayne MLE framework is based on an assumed distribution, i.e., the normal 

distribution for incremental values, this implies that the standardized residuals should be 

normally distributed with mean of zero and a standard deviation of one. If the average of all 

the residuals is significantly different than zero, then the fit of the model should be questioned. 

The goodness of fit to a standard normal distribution of standardized residuals, to some 

degree, implies the appropriateness of the chosen model. Unlike the ODP Bootstrap model, 

however, the standardized residuals are not used during the simulation process. 

While the residuals are not sampled, the mean and standard deviation of the residuals can 

be used to adjust the process variance simulations. For the mean, an average of the residuals 

greater than zero implies that the mean of the parameters are “low” compared to means that 

would result in an average of zero. Thus, the adjustment for the mean is to increase the mean 

for each cell by the standard deviation for that cell times the average of the residuals. Similarly, 

a standard deviation of the residuals greater than one implies “less” variability than would be 

“normal” so the standard deviation for each cell can be increased by multiplying it times the 

standard deviation of the residuals. 

Another way of thinking about this adjustment is to remember that the process variance in 

the simulations is based on N(0, 1), so if the residuals exhibit a mean and standard deviation 

which differ from zero and one, respectively, then this adjustment allows the process variance 

to more closely match the residuals. In the “Hayne MLE Models.xlsm” file, the “Include 

Residual Adjustment” option on the Inputs sheet allows the user to use this adjustment or not 

as this will move away from the calculated Hayne MLE parameters but it could be a way fitting 

the model to the data. 

4.3. Using an N-Year Average 

It is quite common for actuaries to use averages that are less than all years in their chain-

ladder and related methods. Similarly, the Hayne MLE models can be adjusted to only consider 

the data in the most recent diagonals. For the Hayne MLE framework, only the most recent 

1L  diagonals (since an L -year average uses 1L  diagonals) could be used to parameterize 

the model. The shape of the data to be modeled essentially becomes a trapezoid instead of a 
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triangle and the excluded diagonals are given zero weight in the models. When running the 

simulations the entire triangle can still be used since the parameterization of the model has 

already been constrained by the number of diagonals. 

The companion “Hayne MLE Models.xlsm” file has not been specifically designed to select 

an L -year model, but that can easily be accomplished by using the outlier table to give zero 

weight to the prior diagonals. 

4.4. Missing Values 

Sometimes the loss triangle will have missing values. For example, values may be missing 

from the middle of the triangle, or a triangle may be missing the oldest diagonals, if loss data 

was not kept in the early years of the book of business. 

If values are missing, then the following calculations will be affected: 

 Fitted parameters  

 Variance-Covariance Matrix 

 Fitted triangle  

 Residuals 

 Degrees of freedom 

There are several solutions. The missing value may be estimated using the surrounding 

values. Or, the parameterization of the model can exclude the missing values as long as the 

missing value is not compromising the surrounding incremental values, or for the Chain 

Ladder model the cumulative values. In any case, zero weights are applied to corresponding 

entries in maximizing log-likelihood functions. The mean and standard deviation of the 

incremental corresponding to the missing value can be derived from simulated parameters.  

If the missing value lies on the most recent diagonal, parameters can be calibrated without 

any issue except for the Chain Ladder model, which relies on paid-to-date losses to estimate 

average incremental values. A solution is to use the value in the second most recent diagonal 

to fit the triangle and the average incremental formula should be adjusted to be divided by the 

sum of the first wn   parameters rather than 1wn  parameters. Of course for other MLE 

models, simply using the outliers to apply zero weight to the corresponding cell will allow the 

model to be parameterized without disturbing the overall framework.  
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4.5. Outliers 

There may be a few extreme or incorrect values in the original triangle dataset that could 

be considered outliers. These may not be representative of the variability of the dataset in the 

future and, if so, the modeler may want to remove their impact from the model. These values 

could be removed, and dealt with in the same manner as missing values by applying zero 

weight to corresponding incremental. 

If there are a significant number of outliers, then this could be an indication that the model 

is not a good fit to the data. Outliers should always be removed only after careful consideration 

of the underlying data to make sure it is truly an unusual event.  

4.6. Heteroscedasticity 

As noted earlier, the Hayne MLE models include variance parameters which adjust the 

variance for each cell instead of assuming a constant variance throughout. In essence, the 

modeling framework assumes heteroscedasticity. However, since the variance for the 

incremental value is only specified using two parameters, it is still possible that the modeled 

heteroscedasticity does not match up well with the variances in the data. In this case, additional 

variance parameters can be specified as described in Hayne [8], but that is outside the scope 

of this paper. 

4.7. Heteroecthesious Data 

The basic Hayne MLE framework assumes both a symmetrical shape (e.g., annual by 

annual, quarterly by quarterly, etc. triangles) and homoecthesious data (i.e., similar exposures).7 

Other non-symmetrical shapes (e.g., annual x quarterly data) can also be modeled with the 

Hayne MLE framework as assumptions are independent from triangle shapes. 

Most often, the actuary will encounter heteroecthesious data (i.e., incomplete or uneven 

exposures) at interim evaluation dates, with the two most common data triangles being either 

a partial first development period or a partial last calendar period. For example, with annual 

data evaluated as of June 30, partial first development period data would have all development 

periods ending at 6, 18, 30, etc. months, while partial last calendar period data would have 

development periods as of 12, 24, 36, etc. months for all of the data in the triangle except the 

                                                           

 
7 The terms homoecthesious and heteroecthesious are a combination of the Greek homos (or ὁμός) meaning the same 

or hetero (or έτερο) meaning different and the Greek ekthesē (or έκθεση) meaning exposure. They were 
introduced in Shapland [15]. 
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last diagonal, which would have development periods as of 6, 18, 30, etc. months. In either 

case, not all of the data in the triangle has full annual exposures – i.e., it is heteroecthesious 

data. 

4.7.1. Partial first development period data 

For partial first development period data, the first development column has a different 

exposure period than the rest of the columns (e.g., in the earlier example the first column has 

six months of development exposure while the rest have 12), as illustrated in Figure 4.1. In 

models such as Berquist Sherman, Cape Cod and Chain Ladder, where a parameter is specified 

for each development period, it is not an issue in the parameterization process. Likewise, for 

the Hoerl Curve or Wright models, development age or operational time is embedded in the 

model so the development age component should reflect this partial first development period 

and no further adjustment is required when fitting the model.  

After simulation, an additional adjustment for this type of heteroecthesious data is applied 

in the projection of future incremental values. In a deterministic analysis, the most recent 

accident year needs to be adjusted to remove exposures beyond the evaluation date. For 

example, continuing the previous example the development periods at 18 months and later 

are all for an entire year of exposure whereas the six month column is only for six months of 

exposure. Thus, the 18 month incremental values will effectively extrapolate the first six 

months of exposure in the latest accident year to a full accident year’s exposure. Accordingly, 

it is common practice to reduce the projected future payments by half to remove the exposure 

from June 30 to December 31.8 

Figure 4.1. Triangle Shape for Partial First Development Period 

 

 

 

 

 

 

                                                           

 
8 Reduction by half is actually an approximation since it would also make sense to account for the differences 

in development between the first and second half years. 

Triangle Shape Diagram
Accident Development in Months

Year 6 18 30 42 54 66 78 90 102 114

2006 0.5 1 1 1 1 1 1 1 1 1

2007 0.5 1 1 1 1 1 1 1 1

2008 0.5 1 1 1 1 1 1 1

2009 0.5 1 1 1 1 1 1

2010 0.5 1 1 1 1 1

2011 0.5 1 1 1 1

2012 0.5 1 1 1

2013 0.5 1 1

2014 0.5 1

2015 0.5
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The simulation process for Hayne MLE models can be adjusted similarly to the way a 

deterministic analysis would be adjusted. After simulated parameters are used to project the 

future incremental values the last accident year’s values can be reduced (in the previous 

example by 50%) to remove the future exposure and then process variance can be simulated 

as before. Alternatively, the future incremental values can be reduced after the process variance 

step. For example, Table 4.1 can be compared to Table 3.21 to see the reduction in the future 

exposures for the last accident year. 

Table 4.1 Total Values Adjusted to Remove Future Exposures 

 

 

 

 

4.7.2. Partial last calendar period data 

For a partial last calendar period data, most of the data in the triangle has annual exposures 

and annual development periods, except for the last diagonal which, continuing the example, 

only has a six-month development period as illustrated in Figure 4.2. A simple approach is to 

adjust the raw data incremental values along the diagonal to a full development period to make 

them consistent with the rest of the triangle. The parameterization process can then be done 

with the adjusted incremental values. 

  

Adjust Total Incremental Value to Remove Future Exposures (Paid) 
1 2 3 4 5 6 7 8 9 10 Acc Yr

Year 6 18 30 42 54 66 78 90 102 114 Unpaid

2006 28,857,379 34,633,541 34,647,465 21,990,975 15,245,558 7,118,499 4,118,037 1,554,858 909,294 1,036,639 0

2007 26,990,356 36,365,617 37,107,448 20,096,463 16,226,379 4,625,682 4,294,384 742,007 1,685,216 437,669 437,669

2008 27,339,334 38,824,698 41,206,538 27,457,777 19,874,669 8,614,451 4,357,317 2,305,030 1,936,202 875,195 2,811,397

2009 33,025,357 44,270,589 34,259,044 30,153,257 16,962,781 7,431,261 5,249,446 2,650,407 852,779 1,794,671 5,297,857

2010 22,528,035 48,022,691 34,464,620 26,371,971 17,854,923 9,339,285 4,970,790 1,779,924 1,169,219 1,112,603 9,032,536

2011 30,981,966 42,055,231 39,432,800 30,503,214 18,950,981 4,885,726 5,591,433 3,801,018 2,533,830 512,219 17,324,226

2012 41,326,250 54,286,380 40,110,104 34,320,894 20,507,632 9,781,702 5,854,535 3,771,950 2,580,919 2,407,282 44,904,020

2013 38,369,807 48,715,364 48,470,486 35,752,741 15,959,829 10,458,698 5,220,660 4,310,765 1,937,228 599,141 74,239,063

2014 48,530,079 61,040,684 52,480,950 38,089,201 22,880,897 7,109,981 3,763,221 4,049,779 864,925 1,953,303 131,192,259

2015 56,887,997 33,868,120 29,884,232 23,102,485 17,305,781 7,240,564 2,881,388 1,974,971 573,449 47,687 116,878,677

402,117,704
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Figure 4.2. Triangle Shape for Partial Last Calendar Period 

 

 

 

 

 

 

During the Hayne MLE simulation process, incremental means and standard deviations 

can be calculated from the fully annualized sample parameters and used to simulate 

incremental values. Then, the last diagonal from the sample triangle can be adjusted to de-

annualize the incremental values in the last diagonal – i.e., reversing the annualization of the 

original last diagonal – as illustrated in Table 4.2. Finally, the future incremental values for the 

last accident year must be reduced (in the previous example by 50%) to remove the future 

exposure, as illustrated in Table 4.3.9 

Table 4.2 Total Values Adjusted to De-Annualize Incremental Values 

 

 

 

 

Table 4.3 Total Values Adjusted to Remove Future Exposures 

 

 

 

 

4.8. Parameter Adjustments 

The Hayne MLE framework will find the optimal parameters for the specified model. Like 

                                                           

 
9 These heteroecthesious data issues can be addressed in the “Hayne MLE Models.xlsm” file. 

Triangle Shape Diagram
Accident Development in Months

Year 12 24 36 48 60 72 84 96 108 120

2006 1 1 1 1 1 1 1 1 1 0.5

2007 1 1 1 1 1 1 1 1 0.5

2008 1 1 1 1 1 1 1 0.5

2009 1 1 1 1 1 1 0.5

2010 1 1 1 1 1 0.5

2011 1 1 1 1 0.5

2012 1 1 1 0.5

2013 1 1 0.5

2014 1 0.5

2015 0.5

Adjust Total Incremental Value for Exposures (Paid) 
1 2 3 4 5 6 7 8 9 10 11 Future

Year 12 24 36 48 60 72 84 96 108 120 132 Totals

2006 28,857,379 34,633,541 34,647,465 21,990,975 15,245,558 7,118,499 4,118,037 1,554,858 909,294 518,319 518,319 518,319

2007 26,990,356 36,365,617 37,107,448 20,096,463 16,226,379 4,625,682 4,294,384 742,007 842,608 1,061,442 218,834 1,280,277

2008 27,339,334 38,824,698 41,206,538 27,457,777 19,874,669 8,614,451 4,357,317 1,152,515 2,120,616 1,405,699 437,598 3,963,913

2009 33,025,357 44,270,589 34,259,044 30,153,257 16,962,781 7,431,261 2,624,723 3,949,926 1,751,593 1,323,725 897,336 7,922,580

2010 22,528,035 48,022,691 34,464,620 26,371,971 17,854,923 4,669,643 7,155,037 3,375,357 1,474,571 1,140,911 556,302 13,702,178

2011 30,981,966 42,055,231 39,432,800 30,503,214 9,475,491 11,918,353 5,238,579 4,696,226 3,167,424 1,523,025 256,110 26,799,716

2012 41,326,250 54,286,380 40,110,104 17,160,447 27,414,263 15,144,667 7,818,119 4,813,243 3,176,434 2,494,100 1,203,641 62,064,467

2013 38,369,807 48,715,364 24,235,243 42,111,613 25,856,285 13,209,264 7,839,679 4,765,713 3,123,997 1,268,185 299,571 98,474,306

2014 48,530,079 30,520,342 56,760,817 45,285,076 30,485,049 14,995,439 5,436,601 3,906,500 2,457,352 1,409,114 976,651 161,712,601

2015 14,221,999 76,534,118 63,752,353 52,986,717 40,408,266 24,546,345 10,121,952 4,856,358 2,548,419 621,136 47,687 276,423,351

652,861,709

Adjust Total Incremental Value to Remove Future Exposures (Paid) 
1 2 3 4 5 6 7 8 9 10 11 Acc Yr

Year 12 24 36 48 60 72 84 96 108 120 132 Unpaid

2006 28,857,379 34,633,541 34,647,465 21,990,975 15,245,558 7,118,499 4,118,037 1,554,858 909,294 518,319 518,319 518,319

2007 26,990,356 36,365,617 37,107,448 20,096,463 16,226,379 4,625,682 4,294,384 742,007 842,608 1,061,442 218,834 1,280,277

2008 27,339,334 38,824,698 41,206,538 27,457,777 19,874,669 8,614,451 4,357,317 1,152,515 2,120,616 1,405,699 437,598 3,963,913

2009 33,025,357 44,270,589 34,259,044 30,153,257 16,962,781 7,431,261 2,624,723 3,949,926 1,751,593 1,323,725 897,336 7,922,580

2010 22,528,035 48,022,691 34,464,620 26,371,971 17,854,923 4,669,643 7,155,037 3,375,357 1,474,571 1,140,911 556,302 13,702,178

2011 30,981,966 42,055,231 39,432,800 30,503,214 9,475,491 11,918,353 5,238,579 4,696,226 3,167,424 1,523,025 256,110 26,799,716

2012 41,326,250 54,286,380 40,110,104 17,160,447 27,414,263 15,144,667 7,818,119 4,813,243 3,176,434 2,494,100 1,203,641 62,064,467

2013 38,369,807 48,715,364 24,235,243 42,111,613 25,856,285 13,209,264 7,839,679 4,765,713 3,123,997 1,268,185 299,571 98,474,306

2014 48,530,079 30,520,342 56,760,817 45,285,076 30,485,049 14,995,439 5,436,601 3,906,500 2,457,352 1,409,114 976,651 161,712,601

2015 14,221,999 38,267,059 31,876,176 26,493,358 20,204,133 12,273,173 5,060,976 2,428,179 1,274,210 310,568 23,844 138,211,676

514,650,033
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all models, this also means that there will be times that the noise in the data will lead to 

“distortions” in the parameters. This is akin to the need to select age-to-age factors to smooth 

the development pattern. The ability to judgmentally adjust some of the parameters is also 

possible with the Hayne MLE models. For example, consider the plot of the decay ratios for 

the Berquist-Sherman model in Figure 4.3. 

Figure 4.3. Decay Ratios for Berquist-Sherman Model 

 

 

 

 

 

 

 

In Figure 4.3, notice the “outlier” for the 120 month development period. This is actually 

an indication that the fitted or modeled parameter for 108 months may be lower than would 

have been expected. Reviewing the development year parameters, the choice for the modeler 

boils down to deciding whether to accept the parameters as reasonable or adjusting them to 

smooth out some of the noise in the data. For this Berquist-Sherman model example, the 

manual adjustment in Table 4.4 can be compared to the parameters in Table 3.1.10 

Table 4.4. User Selected Parameters for Berquist-Sherman 

 

 

 

To adjust the mean for 108 months, the decay ratios were reviewed and the original mean 

of 11.08 was seen to be low compared to the surrounding parameters due to the low decay 

ratio for 108 months and high decay ratio for 120 months. The parameter of 26.00 was selected 

by smoothing the decay ratios for the last three development periods. Notice that only the 

                                                           

 
10 Similar manual adjustments for each of the models are illustrated in Appendix A. 

User Selected Parameters:

12 24 36 48 60 72 84 96 108 120

Mean 620.96            760.67            708.16            553.57            350.00            181.39            70.97              43.88              26.00             15.21              

Std Dev 40.50              46.55              43.00              35.49              26.17              17.66              10.40              8.75               7.60               7.36               

Decay Ratios: 122.5% 93.1% 78.2% 63.2% 51.8% 39.1% 61.8% 59.3% 58.5%

CoV: 6.5% 6.1% 6.1% 6.4% 7.5% 9.7% 14.7% 19.9% 29.2% 48.4%

Accident Year

Trend K p AIC BIC Decay Ratio Periods Distribution Adjusted Actual

Mean 0.045              11.216            0.654              647.9              674.0              0.0% 0 Gamma 1.0000 1.0000

Std Dev 0.009              1.094              0.089              0.0%

CoV: 18.9% 9.8% 13.6%

Tail Extrapolation Implied Tail Factor
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mean parameters need to be adjusted since the MLE framework allows the variance-

covariance parameters to be recalculated based on the selected parameter, we are essentially 

assuming the expected incremental losses are derived from selected parameters, or the true 

parameters for the data. Also, the diagnostics will give an indication of the significance of the 

change to the model parameters. Finally, while user selected parameters will tend to move the 

statistics away from optimal, the goal is to reasonably replicate the statistical features of the 

data and other adjustments, like the residual adjustment discussed in section 4.2, can also be 

made if the impact on the residuals is significant. 

4.9. Tail Extrapolation 

One of the most common data issues is that claim development is not complete within the 

loss triangle and tail factors are commonly used to extrapolate beyond the end of the data 

triangle. There are many common methods for calculating tail factors and a useful reference 

in this regard is the CAS Tail Factor Working Party Report [5]. However, for the Hayne MLE 

models a different approach is required in order to extrapolate the parameters so that a multi-

variant normal distribution can continue to be used. Once extrapolation is used to extend the 

parameters, incremental values can all be extended to include development periods beyond 

the end of the triangle – i.e., the tail periods. 

 For the first family of models (i.e., Berquist-Sherman, Cape Cod, and Chain Ladder) the 

decay ratios shown in Tables 3.1, 3.4, and 3.7 can be used as a mean of extrapolating the 

development parameters for each model similarly to how a tail factor might be calculated for 

a deterministic method. In the “Hayne MLE Models.xlsm” file, five different regression 

models (i.e., average, linear, logarithmic, power, and polynomial) can be used to extrapolate 

decay ratios for up to 5 years from either the modeled or user selected parameters. For 

example, Table 4.5 illustrates the extrapolation for the Berquist-Sherman model, which is 

based on the user selected parameters in Table 4.4 so the graph in Table 4.5 can be compared 

to Figure 4.3. 

Table 4.5. Berquist-Sherman Model Tail Extrapolation 

 

 

 

 

Decay Ratio Analysis:

Parameters: User Curve Type: Power 3 Least Squares Regression Coefficients: Goodness of Fit Statistics:

4 x^a -0.3916 R
2
 Statistic 0.710              

coefficient 1.1559 Regression Deviation 13.5%

Suggested Decay Parameters:

Mean 45.3%

Standard Deviation 13.7%

Selected Selected Incremental -                 DY Decay Ratio

Periods Decay Ratio Outliers Age  Decay Ratio  Fitted Factors 9

12-24 1.225 0 1 1.225 1.156 -0.392 24 1.2250 1.156              1 1 1.2250

24-36 0.931 0 2 0.931 0.881 0.145 36 0.9310 0.881              2 2 0.9310

36-48 0.782 0 3 0.782 0.752 #N/A 48 0.7817 0.752              3 3 0.7817

48-60 0.632 0 4 0.632 0.672 #N/A 60 0.6323 0.672              4 4 0.6323

60-72 0.518 0 5 0.518 0.615 72 0.5183 0.615              5 5 0.5183

72-84 0.391 0 6 0.391 0.573 84 0.3912 0.573              6 6 0.3912

84-96 0.618 0 7 0.618 0.539 96 0.6183 0.539              7 7 0.6183

96-108 0.593 0 8 0.593 0.512 108 0.5926 0.512              8 8 0.5926

108-120 0.585 0 9 0.585 0.489 120 0.5850 0.489              9 9 0.5850

120-132 0.469 132 0.469              

132-144 0.452 144 0.452              

144-156 0.437 156 0.437              

156-168 0.423

168-180 0.411

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

0 12 24 36 48 60 72 84 96 108 120 132 144 156 168

Berquist & Sherman MLE Decay Ratio Plot [Paid]

Actual (All) Fitted Actual (Used)
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From these regression models, the implied tail decay mean is the fitted decay ratio from the 

regression and the decay standard deviation is the average deviation for the actual decay ratios 

from the regression curve. The length of the tail period can then be determined by reviewing 

the means of the incremental periods beyond the triangle and then including enough periods 

such that the means in the final development column are close to zero. Using the decay ratio 

statistics and selected number of periods in the tail, the Hayne MLE framework will also 

extend the variance-covariance matrix to include the tail periods. Continuing the Berquist-

Sherman example, the extended parameters for 3 years are illustrated in Table 4.6, which can 

be compared to Table 4.4.11 

Table 4.6. Extended Parameters for Berquist-Sherman Model 

 

 

 

One of the interesting features of this extrapolation process is that Coefficients of Variation 

in the tail parameters are increasing which is a statistical feature you would expect to find. The 

implied tail factor is also shown in the table in order to better compare with other models and 

traditional methods.12 Finally, two different “Tail Sampling Options” are included for use in 

the simulation process. For the “Conditional Variance” option, the parameters in the tail are 

sampled using the multi-variate normal along with all the other parameters. For the 

“Sampling” option, a decay ratio is sampled using the mean and standard deviation from the 

regression and the selected distribution (i.e., Gamma, Normal, or Lognormal can be selected). 

For the second family of models (i.e., Hoerl Curve and Wright), there are no parameters 

tied specifically to development age, so it is a simple matter to extend the “development” ages. 

The length of the tail period can be determined by reviewing the means of the incremental 

periods beyond the triangle and then including enough periods such that the means in the final 
                                                           

 
11 The modeled parameters are also extended in the companion file, but they are not illustrated in the paper. 
12 The “adjusted” tail factor would be for annualized data if there were exposure issues as discussed in Section 

4.7, whereas the “actual” tail factor would be for the data as is. 

User Selected Parameters:

12 24 36 48 60 72 84 96 108 120 132 144 156

Mean 620.96            760.67            708.16            553.57            350.00            181.39            70.97              43.88              26.00             15.21              6.89              3.12              1.41             

Std Dev 40.50              46.55              43.00              35.49              26.17              17.66              10.40              8.75               7.60               7.36               4.05              2.13              1.09             

Decay Ratios: 122.5% 93.1% 78.2% 63.2% 51.8% 39.1% 61.8% 59.3% 58.5%

CoV: 6.5% 6.1% 6.1% 6.4% 7.5% 9.7% 14.7% 19.9% 29.2% 48.4% 58.8% 68.4% 77.6%

Accident Year

Trend K p AIC BIC Decay Ratio Periods Distribution Adjusted Actual

Mean 0.045              11.216            0.654              647.9              674.0              45.3% 3 Gamma 1.0034 1.0034

Std Dev 0.009              1.094              0.089              13.7%

CoV: 18.9% 9.8% 13.6%

Tail Extrapolation Implied Tail Factor

Tail Sampling Option

Conditional Variance
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development column are close to zero. 

A key ingredient for all of these considerations is to verify that the simulations in the tail 

are reasonable. For example, the tail period represents the extension of development 

parameters and using just a single period may not produce appropriate incremental results. 

4.10. Incurred Data 

The Hayne MLE models can be used to model both paid and incurred loss data. Using 

incurred data incorporates case reserves, thus perhaps improving the ultimate estimates. 

However, the resulting distribution from using incurred data will be possible outcomes of the 

IBNR, not a distribution of the unpaid. There are two possible approaches for modeling an 

unpaid loss distribution using incurred loss data: modeling incurred data and convert the 

ultimate values to a payment pattern, or, modeling paid and case reserves separately. 

Using the first approach, a convenient way of converting the results of an incurred data 

model to a payment stream is to run the paid data model in parallel with the incurred data 

model, and use the random payment pattern from each iteration from the paid data model to 

convert the ultimate values from each corresponding iteration from the incurred data to a 

payment pattern for each iteration (for each accident year individually). The “Hayne MLE 

Models.xlsm” file illustrates this concept. It is worth noting, however, that this process allows 

the “added value” of using the case reserves to help predict the ultimate results to work its 

way into the calculations, thus perhaps improving the ultimate estimates, while still focusing 

on the payment stream for measuring risk. In effect, it allows a distribution of IBNR to 

become a distribution of IBNR and case reserves. 

This process can also be made more sophisticated by correlating the multi-variate normal 

simulation of the paid and incurred models (e.g., the model parameters and/or process 

variance). In order to specify a correlation coefficient between the paid and incurred models, 

the correlation of the standardized residuals can be measured as, for example, in Figure 4.4 

for the Berquist-Sherman model. 

Figure 4.4. Correlation of Paid & Incurred Standardized Residuals 
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From Figure 4.4 observe that there is a positive correlation between the paid and incurred 

standardized residuals for the Berquist-Sherman model. This is not surprising as incurred data 

includes paid data, but using this to correlate the paid and incurred simulations is a way of 

including this statistical feature of the data in the model. In the “Hayne MLE Models.xlsm” 

file the correlation assumption is specified in the Inputs sheet and it will only be used to 

correlate the process variance portion of the paid and incurred data models. 

The second approach could be accomplished by applying the Hayne MLE models to the 

case reserve triangle and then “combining” the case reserve and paid claim simulations. This 

has the advantage over the first approach of not modeling the paid losses twice, but it would 

also require specifying the correlation of the paid and outstanding losses. This second 

approach is beyond the scope of this paper. 

5. Diagnostics 

The quality of any model depends on the quality of the underlying assumptions. When a 

model fails to “fit” the data, it is unlikely to produce a good estimate of the distribution of 

possible outcomes.13 However, a balance must be considered between parsimony of 

parameters and the goodness-of-fit. Over-parameterization may cause the model to be less 

predictive of future losses. On the other hand, no model will perfectly “fit” the data, so the 

best you can hope for with any model is that it reasonably represents the data and your 

understanding of the processes that impact the data. Therefore, diagnostically evaluating the 

assumptions underlying a model is important for evaluating whether it will produce reasonable 

results or not and whether it should stay in your selected group of reasonable models. 

The CAS Working Party [4], in the third section of their report on quantifying variability in 

reserve estimates, identified 20 criteria or diagnostic tools for gauging the quality of a stochastic 

model. The Working Party also noted that, in trying to determine the optimal fit of a model, 

or indeed an optimal model, no single diagnostic tool or group of tools can be considered 

definitive. Depending on the statistical features found in the data, a variety of diagnostic tools 

are necessary to best judge the quality of the model assumptions and to adjust the parameters 

                                                           

 
13 While the examples are different, significant portions of sections 5 and 6 are based on IAA [10] and Milliman 

[13]. 
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of the model. This paper will discuss some of these tools in detail as they relate to the Hayne 

MLE models. 

The key diagnostic tests are designed for three purposes: to test various assumptions in the 

model, to gauge the quality of the model fit to the data, and to help guide the adjustment of 

model parameters, if needed. Some tests are relative in nature, enabling results from one set 

of model parameters to be compared to those of another, for a specific model, allowing a 

modeler to improve the fit of the model. For the most part, however, the tests can’t be used 

to compare different models. The objective, consistent with the goals of a deterministic 

analysis, is not to find the one best model, but rather a set of reasonable models. 

Some diagnostic measures include statistical tests, providing a pass/fail determination for 

some aspects of the model assumptions. This can be useful even though a “fail” does not 

necessarily invalidate an entire model; it only points to areas where improvements can be made 

to the model or its parameterization. The goal is to find the sets of models and parameters 

that will yield the most realistic, most consistent simulations, based on statistical features found 

in the data.14 

5.1 Residual Graphs 

As noted earlier, the Hayne MLE models rely on the normal distribution assumption for 

incremental values and the standardized residuals are independent and identically distributed 

about the standard normal distribution conditional on parameters. Graphing residuals is a 

good way to check this. Consider the residual graphs for the Berquist-Sherman model in Figure 

5.1 for the modeled parameters. 

Figure 5.1. Berquist-Sherman Residual Graphs [Modeled Parameters] 

 

 

 

 

 

                                                           

 
14 Using the data from Hayne [8], diagnostic graphs and tests for all five of the Hayne MLE models are included 

in Appendix A. 
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For each model, going clock-wise, and starting from the lower-left-hand corner, the graphs 

in Figure 5.1 show the residuals (blue and red dots15) by calendar period, development period, 

and accident period and against the fitted incremental value (in the lower-right-hand corner). 

In addition, the graphs include a trend line (in green) that highlights the averages for each 

period. 

Most residuals from the Berquist-Sherman model appear reasonably random and the 

averages do not deviate significantly from zero by development periods and payment periods. 

The averages by development period are not surprising since there is a parameter for each 

development period, but the lack of a trend by payment year is more useful since without a 

calendar year trend parameter this would be problematic for the Berquist-Sherman model. The 

averages by accident period appear significantly different from zero, which may indicate that 

a single trend component is not enough to model the level of incremental values by exposure 

periods. 

Also of interest are the three large negative residuals in early development period, which 

are indicated in red as outliers. This could indicate the need to adjust those development period 

parameters although adjustments to remove outliers is typically a last resort compared to other 

options.   

5.2 Normality Test 

To see whether the standardized residuals are normally distributed, tests comparing the 

residuals against a normal distribution are useful. This also enables a comparison of the 

modeled parameters to the user selected parameter sets and gauging the skewness of the 

residuals in order to further validate the suitability of the chosen model. For example, Figure 

5.2 shows the normality tests for the Berquist-Sherman model comparing the modeled and 

                                                           

 
15 In the graphs that follow, the red dots are outliers as identified in Figure 5.3. 
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user selected parameters. 

Figure 5.2. Normality Plots for Berquist-Sherman  

 

 

 

 

 

 

The residual plots appear close to normally distributed, with the data points tightly 

distributed around the diagonal line. While there is an additional outlier for the user selected 

parameters, the p-value, a statistical pass-fail test for normality, improved from 3.9% to 8.0%, 

and the R2 improved from 95.5% to 96.3%. The p-value is generally considered a “passing” 

score of the normality test when it is greater than 5.0%.16 The graphs in Figure 5.2 also show 

N  (the number of data points). 

While the p-value and R2 tests assess the goodness of fit of the model to the data, they do 

not penalize for added parameters. Adding more parameters will almost always improve the 

fit of the model to the data, but the goal is to have a good fit with as few parameters as possible. 

Two other tests, the Akaike Information Criteria (AIC) and the Bayesian Information Criteria 

(BIC), address this limitation, using the difference between each residual and its normal 

counterpart from the normality plot to calculate the Residual Sum Squared (RSS) and include 

a penalty for additional parameters, as shown in (5.1) and (5.2), respectively.17 

2
2 ln( ) 1

RSS
AIC p n

n

  
     

 
 (5.1) 

ln( ) ln( )
RSS

BIC n p n
n

     (5.2) 

A smaller value for the AIC and BIC tests indicate an improvement, especially with respect 

to overcoming the penalty of adding a parameter. For the Berquist-Sherman model test in 

                                                           

 
16 Note that this doesn't indicate whether the Hayne MLE model itself passes or fails, it only tests whether the 

residuals can be judged to be normally distributed. 
17 There are different versions of the AIC and BIC formula from various authors and sources, but the general 

idea of each version is consistent. Other similar formulas could also be used. 

N = 55 P-Value = 3.9% R2 = N = 55 P-Value = 8.0% R2 =
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Figure 5.2, there were no parameters added but the values increased a little which is expected 

since the user selected parameters are not the optimal parameters. It is important to remember 

that the AIC and BIC tests are model specific in the sense that they are not well suited for 

comparing different model, but rather different parameterizations of the same model. 

5.3 Outliers 

Identifying outliers in the data provides another useful test in determining model fit. 

Outliers can be represented graphically in a box-whisker plot, which shows the inter-quartile 

range (the 25th to 75th percentiles) and the median (50th percentile) of the residuals—the so-

called box. The whiskers then extend to the largest values within three times this inter-quartile 

range.18 Values beyond the whiskers may generally be considered outliers and are identified 

individually with a point. For example, the Box-Whisker plots in Figure 5.3 compare the 

modeled and user selected parameters for the Berquist-Sherman model. 

If the data in those outlier cells genuinely represent events that cannot be expected to 

happen again, the outlier(s) may be removed from the model (by giving it/them zero weight). 

But extreme caution should be taken even when the removal of outliers seems warranted. The 

possibility always remains that apparent outliers may actually represent realistic extreme values, 

which, of course, are critically important to include as part of any sound analysis. 

Figure 5.3. Berquist-Sherman Box-Whisker Plots  

 

 

 

 

 

 

Additionally, when residuals are not normally distributed a significant number of outliers 

tend to result – i.e., the distributional shape of the residuals may be skewed or otherwise not 
                                                           

 
18 Various authors and textbooks use widths for the whiskers which tend to span from 1.5 to 3 times the inter-

quartile range. Changing the multiplier will therefore make the Box-Whisker plot more or less sensitive to 
outliers. It is also possible to illustrate “mild” outliers with a multiplier of 1.5 and the more “extreme” outliers 
with a multiplier of 3 using different colors and/or symbols in the graphs. Of course the actual multipliers can 
be adjusted based on personal preference. 

Interquartile Range = [-0.56, 0.70] Median = Interquartile Range = [-0.62, 0.60] Median = 

Outliers = 3 Outliers = 4

0.22 0.19
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Box-Whisker Plot (Model Fitted)

-3 -2 -1 0 1 2 3

Box-Whisker Plot (User Selected)



Using the Hayne MLE Models: A Practitioner’s Guide 
 

 

Casualty Actuarial Society E-Forum, Summer 2016 33 

normal. In this case, it is impossible for the Hayne MLE simulation to capture this shape as it 

relies on the normality assumption, although adjusting the parameters may help “restore” 

normality. Finally, a significant number of residuals can also mean the underlying model is not 

a good fit to the data so other models should be used or this model given less weight (see 

Section 6). 

While the three diagnostic tests shown above demonstrate techniques commonly used with 

most types of models, they are not the only tests available.19 Next, we’ll take a look at the 

flexibility of the Hayne MLE framework and some of the diagnostic elements of the simulation 

results. For a more extensive list of other tests available, see the report, CAS Working Party 

on Quantifying Variability in Reserve Estimates [4]. 

5.4. Model Results 

Once the parameter diagnostics have been reviewed, simulations should be run for each 

model.20 These simulation results provide an additional diagnostic tool to aid in evaluation of 

the model, as described in section 3 of CAS Working Party [4]. As an example, the results for 

the Berquist-Sherman Hayne MLE model will be reviewed. The estimated-unpaid results 

shown in Table 5.1 were simulated using 10,000 iterations with the parameters from Table 4.6. 

5.4.1. Estimated-Unpaid Results 

It’s recommended to start a diagnostic review of the estimated unpaid results with the 

standard error (standard deviation) and coefficient of variation (standard error divided by the 

mean), shown in Table 5.1. Keep in mind that for books of business with relatively stable 

volume the standard error should increase when moving from the oldest years to the most 

recent years, as the standard errors (value scale) should follow the magnitude of the mean of 

unpaid estimates. In Table 5.1, the standard errors conform to this pattern. At the same time, 

the standard error for the total of all years should be larger than any individual year. 

  

                                                           

 
19 For example, see Venter [17]. 
20 Throughout the paper, all simulations include both parameter uncertainty and process uncertainty as illustrated 

in Tables 3.16 through 3.21. 
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Table 5.1. Estimated Unpaid Model Results for Berquist-Sherman 

 

 

 

 

 

 

 

Also, the coefficients of variation should generally decrease when moving from the oldest 

year to the more recent years and the coefficient of variation for all years combined should be 

less than for any individual year.  

The main reason for the decrease in the coefficient of variation has to do with the 

independence in the incremental claim-payment stream. Because the oldest accident year 

typically has only a few incremental payments remaining, or even just one, the variability is 

nearly all reflected in the coefficient. For more current accident years, random variations in 

the future incremental payment stream may tend to offset one another, thereby reducing the 

variability of the total unpaid loss.21 

While the coefficients of variation should go down, they could also start to rise again in the 

most recent years. Such reversals are from a couple of issues: 

 With an increasing number of parameters used in the model, the parameter uncertainty 

tends to increase when moving from the oldest years to the more recent years, 

particularly for models with accident year parameters, where uncertainty could increase 

in more recent accident years.  

 In the most recent years, parameter uncertainty can grow to overpower process 

uncertainty, which may cause the coefficient of variation to start rising again. At a 

minimum, increasing parameter uncertainty will slow the rate of decrease in the 

coefficient of variation. 

                                                           

 
21 To visualize this reducing Coefficient of Variation, recall that the standard deviation for the total of several 

independent variables is equal to the square root of the sum of the squares. 

Sample Insurance Company Sample Insurance Company

Hayne Paper Data Hayne Paper Data

Accident Year Unpaid (in 000's) Calendar Year Unpaid (in 000's)

Paid Berquist & Sherman Model Paid Berquist & Sherman Model

Accident Mean Standard Coefficient 50.0% 75.0% 95.0% 99.0%

Year To Date Unpaid Error of Variation Minimum Maximum Percentile Percentile Percentile Percentile

2006 123,738 441           573           129.9% (1,475)       2,372        391           823           1,420        1,881        

2007 140,983 1,083        825           76.2% (1,675)       4,401        1,048        1,611        2,466        3,113        

2008 147,516 2,459        1,168        47.5% (1,527)       6,082        2,417        3,252        4,462        5,274        

2009 174,349 4,793        1,595        33.3% (172)          11,597      4,758        5,809        7,391        8,954        

2010 173,637 8,629        1,992        23.1% 1,588        16,582      8,542        9,810        11,955      13,951      

2011 174,996 18,214      3,136        17.2% 7,989        30,302      18,135      20,292      23,509      25,381      

2012 169,224 41,402      5,008        12.1% 25,322      59,952      41,302      44,862      49,756      53,216      

2013 134,010 75,281      7,480        9.9% 53,427      105,936    74,961      80,194      87,930      93,542      

2014 68,911 127,141    11,108      8.7% 93,649      164,080    127,078    134,809    144,791    152,998    

2015 35,798 210,599    16,205      7.7% 159,908    275,851    210,505    221,397    236,756    253,297    

Totals 1,343,162 490,041    31,334      6.4% 405,127    622,322    488,329    510,471    542,250    566,151    
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The model may be overestimating the uncertainty in recent accident years if the increase is 

significant. In that case, another model may need to be used. Keep in mind also that the 

standard error or coefficient of variation for the total of all accident years will be less than the 

sum of the standard error or coefficient of variation for the individual years. This is because 

the model assumes that the random process generating the process uncertainty in each 

accident year is independent.  

Minimum and maximum results are the next diagnostic element in the analysis of the 

estimated unpaid claims in Table 5.1, representing the smallest and largest values from all 

iterations of the simulation. These values will need to be reviewed in order to determine their 

veracity. If any of them seem implausible, the model assumptions would need to be reviewed. 

Their effects could materially alter the mean indication. 

5.4.2. Mean, Standard Deviation and CoV of Incremental Values 

The mean, standard deviation and coefficients of variation for every incremental value from 

the simulation process can also provide useful diagnostic results, enabling a deeper review into 

potential coefficient of variation issues that may be found in the estimated unpaid results. 

Consider, for example, the mean, standard deviation and coefficient of variation results shown 

in Tables 5.2, 5.3, and 5.4, respectively. 

Table 5.2. Mean of Incremental Values for Berquist-Sherman 

 

 

 

 

 

 

Table 5.3. Standard Deviation of Incremental Values for Berquist-Sherman 

 

 

 

 

Sample Insurance Company Sample Insurance Company

Hayne Paper Data Hayne Paper Data

Accident Year Incremental Values by Development Period Accident Year Incremental Values by Development Period

Paid Berquist & Sherman Model Paid Berquist & Sherman Model

Accident Mean Values (in 000's)

Year 12 24 36 48 60 72 84 96 108 120 132 144 156

2006 25,064     31,145     28,656     22,440     14,281     7,309       2,843       1,814       1,079       613          269          116          56            

2007 25,835     32,119     29,703     23,223     14,691     7,552       2,961       1,878       1,113       617          278          134          54            

2008 29,579     36,189     33,544     26,237     16,817     8,639       3,384       2,100       1,250       695          309          138          66            

2009 31,088     38,234     35,446     27,737     17,569     9,087       3,546       2,182       1,318       747          329          139          78            

2010 31,976     39,197     36,545     28,680     18,113     9,362       3,640       2,270       1,354       789          336          162          80            

2011 32,175     39,680     36,868     29,088     18,350     9,495       3,691       2,294       1,384       767          343          162          78            

2012 36,809     45,089     42,259     32,820     20,700     10,715     4,251       2,642       1,571       883          374          184          82            

2013 36,915     45,693     42,709     33,487     20,936     10,886     4,241       2,615       1,582       860          396          192          85            

2014 40,158     49,481     45,856     36,060     22,785     11,583     4,600       2,882       1,699       972          425          189          88            

2015 47,924     58,862     54,790     43,026     27,063     13,895     5,533       3,402       2,037       1,139       498          234          118          

Sample Insurance Company Sample Insurance Company

Hayne Paper Data Hayne Paper Data

Accident Year Incremental Values by Development Period Accident Year Incremental Values by Development Period

Paid Berquist & Sherman Model Paid Berquist & Sherman Model

Accident Standard Error Values (in 000's)

Year 12 24 36 48 60 72 84 96 108 120 132 144 156

2006 4,010       4,911       4,418       3,910       2,782       1,895       1,037       776          619          498          365          238          162          

2007 4,203       5,015       4,679       3,993       2,819       1,920       1,079       791          626          465          365          254          171          

2008 4,524       5,085       4,684       4,094       3,163       1,992       1,185       906          688          533          407          285          191          

2009 4,337       5,232       5,277       4,218       3,313       2,126       1,228       929          743          544          439          286          190          

2010 4,665       5,270       5,114       4,576       3,282       2,213       1,243       911          708          563          420          301          199          

2011 4,639       5,546       5,234       4,562       3,410       2,243       1,240       955          759          589          441          303          196          

2012 5,184       6,314       5,718       4,887       3,589       2,420       1,337       996          800          655          473          324          220          

2013 5,169       6,197       6,028       5,178       3,800       2,491       1,415       1,022       788          625          479          337          226          

2014 5,652       6,619       6,140       5,421       4,013       2,649       1,467       1,142       881          676          548          353          239          

2015 6,057       7,346       7,284       6,284       4,601       3,062       1,707       1,244       982          789          605          416          288          
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Table 5.4. Coefficient of Variation of Incremental Values for Berquist-Sherman 

 

 

 

 

 

 

The mean values in Table 5.2 appear consistent throughout and support the increases in 

estimated unpaid by accident year that are shown in Table 5.1. In fact, the future mean values, 

which lay beyond the stepped diagonal line in Table 5.2, sum to the results in Table 5.1. The 

standard deviation values in Table 5.3 also appear consistent, but the standard deviations can’t 

be added because the standard deviations in Table 5.1 represent those for aggregated 

incremental values by accident year, which are less than perfectly correlated. The coefficient 

of variation values in Table 5.4 help the user efficiently review both the incremental mean and 

standard deviation values in Tables 5.2 and 5.3 as inconsistencies in a column will highlight 

issues with either the means or standard deviations or both. The coefficients by column in 

Table 5.4 all appear consistent, so the other main use of this table is to review the progression 

of CoVs by development period which should increase over time as they do in Table 5.4 

indicating that the final incremental payments in the tail tend to be the most uncertain. 

6. Using Multiple Models 

So far the focus has only been on one model. In practice, multiple stochastic models should 

be used in the same way that multiple methods should be used in a deterministic analysis. First 

the results for each model must be reviewed and finalized, after an iterative process of 

diagnostic testing and reviewing model output to make sure the model “fits” the data, has 

reasonable assumptions and produces reasonable results. Then these results can be combined 

by assigning a weight to the results of each model.  

Two primary methods exist for combining the results for multiple models: 

Sample Insurance Company Sample Insurance Company

Hayne Paper Data Hayne Paper Data

Accident Year Incremental Values by Development Period Total Unpaid Distribution (in 000's)

Paid Berquist & Sherman Model Paid Berquist & Sherman Model

Accident Coefficient of Variation Values

Year 12 24 36 48 60 72 84 96 108 120 132 144 156

2006 16.0% 15.8% 15.4% 17.4% 19.5% 25.9% 36.5% 42.8% 57.3% 81.3% 135.7% 204.6% 290.1%

2007 16.3% 15.6% 15.8% 17.2% 19.2% 25.4% 36.4% 42.1% 56.2% 75.4% 131.3% 189.1% 319.2%

2008 15.3% 14.1% 14.0% 15.6% 18.8% 23.1% 35.0% 43.2% 55.1% 76.6% 131.6% 206.4% 291.3%

2009 14.0% 13.7% 14.9% 15.2% 18.9% 23.4% 34.6% 42.6% 56.4% 72.9% 133.3% 206.4% 241.8%

2010 14.6% 13.4% 14.0% 16.0% 18.1% 23.6% 34.1% 40.2% 52.3% 71.4% 125.1% 186.2% 248.6%

2011 14.4% 14.0% 14.2% 15.7% 18.6% 23.6% 33.6% 41.7% 54.8% 76.8% 128.4% 187.1% 249.9%

2012 14.1% 14.0% 13.5% 14.9% 17.3% 22.6% 31.4% 37.7% 50.9% 74.2% 126.3% 175.8% 267.6%

2013 14.0% 13.6% 14.1% 15.5% 18.1% 22.9% 33.4% 39.1% 49.8% 72.7% 121.0% 175.4% 265.3%

2014 14.1% 13.4% 13.4% 15.0% 17.6% 22.9% 31.9% 39.6% 51.9% 69.6% 128.8% 187.2% 271.3%

2015 12.6% 12.5% 13.3% 14.6% 17.0% 22.0% 30.8% 36.6% 48.2% 69.3% 121.4% 177.3% 243.1%
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 Run models with the same random variables. For this algorithm, every model uses 

the exact same random variables. In the “Hayne MLE Models.xlsm” file, the random 

values are simulated before they are used to simulate results, which means that this 

algorithm may be accomplished by reusing the same set of random variables for each 

model. At the end, the incremental values for each model, for each iteration by accident 

year (that have a partial weight), can be weighted together. 

 Run models with independent random variables. For this algorithm, every model 

is run with its own random variables. In the “Hayne MLE Models.xlsm” file the 

random values are simulated before they are used to simulate results, which means that 

this algorithm may be accomplished by simulating a new set of random variables for 

each model.22 At the end, the weights are used to randomly select a model for each 

iteration by accident year so that the result is a weighted “mixture” of models. 

Both algorithms are similar to the process of weighting the results of different deterministic 

methods to arrive at an actuarial best estimate. The process of weighting the results of different 

stochastic models produces an actuarial best estimate of a distribution. In practice it is also 

common to further “adjust” or “shift” the weighted results by year after considering case 

reserves and the calculated IBNR. For example, in an older year the weighted value could 

result in a negative IBNR which offsets case reserves and a reasonable adjustment could be to 

accept the case reserves by “shifting” the IBNR to zero. This “shifting” can also be done for 

weighted distributions, either additively to maintain the exact shape and width of the 

distribution by year or multiplicatively to maintain the exact shape of the distribution but 

adjusting the width of the distribution. 

Table 6.1. Model weights by accident year 

 

 

 

 

 

                                                           

 
22 In general, in order to simulate new random values a new seed value must be selected (or a seed value of zero 

can be used), otherwise the same random values will be simulated. In the “Hayne MLE Models.xlsm” file the 
seed value is incremented for each model and data type so that different seed values are being used as long as 
new random numbers are generated for each model and data type. 

Accident Model Weights by Accident Year

Year Paid BS Incd BS Paid CC Incd CC Paid CL Incd CL Paid HC Incd HC Paid WR Incd WR TOTAL

2006 25.0% 25.0% 25.0% 25.0% 100.0%

2007 25.0% 25.0% 25.0% 25.0% 100.0%

2008 25.0% 25.0% 25.0% 25.0% 100.0%

2009 25.0% 25.0% 25.0% 25.0% 100.0%

2010 25.0% 25.0% 25.0% 25.0% 100.0%

2011 16.7% 16.7% 16.7% 16.7% 16.7% 16.7% 100.0%

2012 12.5% 12.5% 12.5% 12.5% 12.5% 12.5% 12.5% 12.5% 100.0%

2013 12.5% 12.5% 12.5% 12.5% 12.5% 12.5% 12.5% 12.5% 100.0%

2014 12.5% 12.5% 12.5% 12.5% 12.5% 12.5% 12.5% 12.5% 100.0%

2015 12.5% 12.5% 12.5% 12.5% 12.5% 12.5% 12.5% 12.5% 100.0%
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By comparing the results for all ten models (or fewer, depending on how many are used)23 

a qualitative assessment of the relative merits of each model may be determined. Bayesian 

methods can be used to determine weighting based on the quality of each model’s forecasts.24 

The weights can be determined separately for each year. The table in Table 6.1 shows an 

example of weights for the Hayne MLE data.25 The weighted results are displayed in the “Best 

Estimate” column of Table 6.2. As a parallel to a deterministic analysis, the means from the 

eight models given some weight could be used to derive a reasonable range from the modeled 

results (i.e., from $395,563 to $490,041) as shown in Table 6.3. Alternatively, if only results by 

accident year which are given some weight when deriving the best estimate are considered, 

then the “weighted range” may be a more representative view of the uncertainty of the 

actuarial central estimate.26 

Table 6.2. Summary of mean results by model 

 

 

 

 

 

  

                                                           

 
23 Other models in addition to the Hayne MLE models could also be included in the weighting process as long 

as the simulated results are in the form of random incremental payment streams. 
24 Quality of the forecast could be defined in a number of ways, but the essential idea is to measure the relative 

predictive power of competing models. 
25 For simplicity, the weights are only illustrative and not derived using Bayesian methods. 
26 The “modeled range” in Figure 6.3 is derived using each model that is given at least some weight for any 

accident year – i.e., if the model is used. In contrast, the “weighted range” is derived using only the models 
given weight for each accident year, which are highlighted in grey in Figure 6.2 and 6.4. 

Sample Insurance Company Sample Insurance Company

Hayne Paper Data Hayne Paper Data

Summary of Results by Model (in 000's) Reconciliation of Total Results (in 000's)

Mean Estimated Unpaid Best Estimate (Weighted)

Accident Berquist & Sherman Cape Cod Chain Ladder Hoerl Curve Wright Best Est.

Year Paid Incurred Paid Incurred Paid Incurred Paid Incurred Paid Incurred (Weighted)

2006 441                 528                 485                 488                 168                 177                 86                   91                   64                   65                   471                 

2007 1,083              1,164              1,201              1,228              477                 507                 269                 281                 218                 218                 1,148              

2008 2,459              2,494              2,355              2,427              1,281              1,389              919                 937                 694                 718                 2,453              

2009 4,793              4,812              5,172              5,182              3,975              4,278              2,872              2,861              2,715              2,769              4,945              

2010 8,629              8,400              9,239              8,940              8,073              8,721              7,681              7,516              7,597              7,429              8,642              

2011 18,214            17,179            20,571            20,421            19,370            20,588            17,664            16,874            19,119            19,046            19,280            

2012 41,402            38,115            44,568            42,079            43,332            44,793            40,416            37,923            42,804            40,657            41,487            

2013 75,281            66,959            78,842            74,018            77,959            80,697            73,354            67,037            76,810            72,994            74,398            

2014 127,141          110,465          93,698            93,653            93,147            101,410          125,089          112,174          93,415            94,782            107,115          

2015 210,599          178,646          147,763          150,595          147,782          162,612          207,924          182,932          147,450          151,814          173,575          

Totals 490,041          428,763          403,895          399,031          395,563          425,172          476,274          428,627          390,884          390,491          433,516          
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Table 6.3. Summary of ranges by accident year 

 

 

 

 

 

 

 

 

When selecting weights for stochastic models, the standard deviations should also be 

considered in addition to the means by model since the weighted best estimate should reflect 

the actuary’s judgments about the entire distribution not just a central estimate. Thus, 

coefficients of variation by model can be used for this purpose as illustrated in Table 6.4. 

Table 6.4. Summary of CoV results by model 

 

 

 

 

 

 

With a focus on the entire distribution, the weights by year were used to randomly sample 

the specified percentage of iterations from each model. A more complete set of the results for 

the “weighted” iterations can be created similar to the tables shown in section 5. The 

companion “Best Estimate.xlsm” file can be used to weight ten different models together in 

order to calculate a weighted best estimate. An example is shown in the table in Table 6.5 for 

the Hayne [8] data. 

  

Sample Insurance Company Sample Insurance Company

Hayne Paper Data Hayne Paper Data

Summary of Results by Model (in 000's) Reconciliation of Total Results (in 000's)

Ranges Best Estimate (Weighted)

Accident Best Est. Weighted Modeled

Year (Weighted) Minimum Maximum Mininum Maximum

2006 471                 441                 528                 86                   528                 

2007 1,148              1,083              1,228              269                 1,228              

2008 2,453              2,355              2,494              919                 2,494              

2009 4,945              4,793              5,182              2,861              5,182              

2010 8,642              8,400              9,239              7,516              9,239              

2011 19,280            17,179            20,588            16,874            20,588            

2012 41,487            37,923            44,793            37,923            44,793            

2013 74,398            66,959            80,697            66,959            80,697            

2014 107,115          93,147            127,141          93,147            127,141          

2015 173,575          147,763          210,599          147,763          210,599          

Totals 433,516          380,045          502,488          395,563          490,041          

Sample Insurance Company Sample Insurance Company

Hayne Paper Data Hayne Paper Data

Summary of Results by Model (in 000's) Reconciliation of Total Results (in 000's)

Coefficient of Variation Best Estimate (Weighted)

Accident Berquist & Sherman Cape Cod Chain Ladder Hoerl Curve Wright

Year Paid Incurred Paid Incurred Paid Incurred Paid Incurred Paid Incurred

2006 129.9% 118.0% 131.4% 131.3% 239.3% 254.9% 279.2% 281.7% 632.5% 639.9%

2007 76.2% 78.5% 97.7% 98.2% 156.0% 163.8% 166.4% 168.8% 303.7% 311.0%

2008 47.5% 48.6% 64.5% 64.5% 78.5% 82.7% 92.4% 93.5% 146.0% 147.4%

2009 33.3% 33.7% 38.6% 38.3% 39.7% 45.7% 51.1% 51.4% 58.0% 58.2%

2010 23.1% 25.1% 27.2% 27.1% 25.0% 32.5% 32.2% 32.7% 31.1% 30.8%

2011 17.2% 17.0% 15.6% 15.0% 14.1% 24.0% 20.8% 20.6% 17.1% 16.3%

2012 12.1% 13.5% 10.0% 9.8% 9.3% 22.4% 13.4% 13.9% 10.7% 10.1%

2013 9.9% 10.6% 7.7% 7.0% 6.4% 20.8% 10.2% 10.5% 7.7% 6.7%

2014 8.7% 9.4% 8.5% 7.0% 5.9% 24.0% 8.5% 9.0% 8.2% 6.5%

2015 7.7% 8.4% 9.4% 5.8% 5.2% 22.0% 7.2% 7.8% 9.4% 5.4%

Totals 6.4% 6.1% 5.9% 4.6% 4.1% 11.8% 6.0% 5.7% 5.5% 3.9%
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Table 6.5. Estimated unpaid model results (weighted) 

 

 

 

 

 

 

 

 

As one final check of the weighted results it would be common to review the implied IBNR 

to make sure there are no issues as shown in Table 6.6. By reviewing this reconciliation, and 

perhaps also comparing it to deterministic results, additional adjustments could be made to 

various assumptions. For example, from year 2006 in Table 6.6 it may be more realistic to 

revisit the tail factor assumptions or the weights by model so that the unpaid estimate is more 

consistent with the case reserves. Finally, after the interactive process of reviewing results and 

adjusting assumptions is complete, it may still be prudent to make adjustments to the best 

estimate of the unpaid by shifting the results as noted earlier in this section.  

Table 6.6. Reconciliation of total results (weighted) 

 

 

 

 

 

 

 

 

 

Sample Insurance Company Sample Insurance Company

Hayne Paper Data Hayne Paper Data

Accident Year Unpaid (in 000's) Calendar Year Unpaid (in 000's)

Best Estimate (Weighted) Best Estimate (Weighted)

Accident Paid Mean Standard Coefficient 50.0% 75.0% 95.0% 99.0%

Year To Date Unpaid Error of Variation Minimum Maximum Percentile Percentile Percentile Percentile

2006 123,738          471                 644                 136.7% (2,545)             4,909              405                 829                 1,576              2,333              

2007 140,983          1,148              1,049              91.4% (3,520)             6,314              1,092              1,780              2,957              3,957              

2008 147,516          2,453              1,357              55.3% (3,302)             10,083            2,408              3,290              4,714              5,954              

2009 174,349          4,945              1,789              36.2% (4,448)             12,718            4,898              6,102              7,933              9,502              

2010 173,637          8,642              2,208              25.5% (1,331)             19,227            8,604              10,106            12,319            14,029            

2011 174,996          19,280            3,656              19.0% 4,625              39,886            19,143            21,530            25,382            28,830            

2012 169,224          41,487            6,136              14.8% 16,382            75,478            41,413            45,225            51,128            58,189            

2013 134,010          74,398            9,887              13.3% 25,947            157,876          74,300            79,822            90,176            104,245          

2014 68,911            107,115          17,580            16.4% 28,733            187,403          104,724          120,254          137,020          148,299          

2015 35,798            173,575          30,419            17.5% 9,842              285,509          170,237          197,558          224,280          240,117          

Totals 1,343,162       433,516          38,243            8.8% 254,901          599,252          432,354          460,201          497,529          524,069          

Normal Dist. 433,516          38,243            8.8% 433,516          459,310          496,420          522,483          

logNormal Dist. 433,522          38,456            8.9% 431,826          458,398          499,520          530,586          

Gamma Dist. 433,516          38,243            8.8% 432,392          458,661          498,279          527,410          

TVaR 464,489          483,287          513,512          536,643          

Normal TVaR 464,029          482,127          512,401          535,442          

logNormal TVaR 464,105          483,728          518,630          546,956          

Gamma TVaR 463,996          483,043          516,174          542,419          

Sample Insurance Company Sample Insurance Company

Hayne Paper Data Hayne Paper Data

Reconciliation of Total Results (in 000's) Summary of Model Distributions (in 000's)

Best Estimate (Weighted) (Using Histograms)

Accident Paid Incurred Case Estimate of Estimate of

Year To Date To Date Reserves IBNR Ultimate Unpaid

2006 123,738          124,486          748                 (277)                124,209          471                 

2007 140,983          141,488          505                 643                 142,131          1,148              

2008 147,516          150,057          2,541              (88)                  149,969          2,453              

2009 174,349          180,737          6,388              (1,443)             179,294          4,945              

2010 173,637          182,952          9,315              (673)                182,279          8,642              

2011 174,996          193,196          18,200            1,080              194,276          19,280            

2012 169,224          199,879          30,655            10,832            210,711          41,487            

2013 134,010          189,518          55,508            18,890            208,408          74,398            

2014 68,911            132,561          63,650            43,465            176,026          107,115          

2015 35,798            110,269          74,471            99,104            209,373          173,575          

Totals 1,343,162       1,605,143       261,981          171,535          1,776,678       433,516          
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6.1 Additional Output 

Three rows of percentile numbers for the normal, lognormal, and gamma distributions, 

which have been fitted to the total unpaid-claim distribution, may be seen at the bottom of 

the table in Table 6.5. The fitted mean, standard deviation, and selected percentiles are in their 

respective columns; the smoothed results can be used to assess the quality of fit, parameterize 

a dynamic financial analysis (“DFA”) model, or used to smooth the estimate of extreme 

values,27 among other applications. 

Four rows of numbers indicating the Tail Value at Risk (“TVaR”), defined as the average 

of all of the simulated values greater than or equal to the percentile value, may also be seen at 

the bottom of Table 6.5. For example, in this table, the 99th percentile value for the total unpaid 

claims for all accident years combined is $524,069, while the average of all simulated values 

that are greater than or equal to is $536,643. The Normal TVaR, Lognormal TVaR, and 

Gamma TVaR rows are calculated similarly, except that they use the respective fitted 

distributions in the calculations rather than actual simulated values from the model. 

An analysis of the TVaR values is likely to help clarify a critical issue: if the actual outcome 

exceeds the X percentile value, by how much will it exceed that value on average? This type 

of assessment can have important implications related to risk-based capital calculations and 

other technical aspects of enterprise risk management. But it is worth noting that the purpose 

of the normal, lognormal, and gamma TVaR numbers is to provide “smoothed” values—that 

is, that some of the random statistical noise is essentially prevented from distorting the 

calculations. 

6.2. Estimated Cash Flow Results 

A model’s output may also be reviewed by calendar year (or by future diagonal), as shown 

in the table in Table 6.7. A comparison of the values in Tables 6.5 and 6.7 indicates that the 

total rows are identical, because summing the future payments horizontally or diagonally will 

produce the same total. Similar diagnostic issues (as discussed in Section 5) may be reviewed 

in the table in Table 6.7, with the exception of the relative values of the standard errors and 

coefficients of variation moving in opposite directions for calendar years compared to accident 

                                                           

 
27 A random instance of an extreme percentile can be quite erratic compared to the same percentile of a 

distribution fitted to the simulated distribution. This random noise for extreme percentiles could be cause for 
increasing the number of iterations, but if the same percentiles for the fitted distributions are stable perhaps 
they can be used in lieu of more iterations. Of course the use of the extreme values assumes that the models 
are reliable. 
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years. This phenomenon makes sense on an intuitive level when one considers that “final” 

payments, projected to the furthest point in the future, should actually be the smallest, yet 

relatively most uncertain. 

Table 6.7. Estimated Cash Flow (weighted) 

 

 

 

 

 

 

 

6.3. Estimated Ultimate Loss Ratio Results 

Another output table, Table 6.8, shows the estimated ultimate loss ratios by accident year. 

Similar to the estimated unpaid and estimated cash-flow tables, the values in this table are 

calculated using all simulated values, not just the values beyond the end of the historical 

triangle. Because the simulated sample triangles represent additional possibilities of what could 

have happened in the past, even as the “squaring of the triangle” and process variance 

represent what could happen as those same past values are played out into the future, there is 

sufficient information to enable estimation of the variability in the loss ratio from day one 

until all claims are completely paid and settled for each accident year.28  

Table 6.8. Estimated loss ratio (weighted) 

 

 

 

 

 

                                                           

 
28 If one is only interested in the “remaining” volatility in the loss ratio, then the values in the estimated unpaid 

table (Figure 6.5) can be added to the cumulative paid values by year and divided by the premiums. 

Sample Insurance Company Sample Insurance Company

Hayne Paper Data Hayne Paper Data

Calendar Year Unpaid (in 000's) Calendar Year Unpaid Claim Runoff (in 000's)

Best Estimate (Weighted) Best Estimate (Weighted)

Calendar Mean Standard Coefficient 50.0% 75.0% 95.0% 99.0%

Year Unpaid Error of Variation Minimum Maximum Percentile Percentile Percentile Percentile

2016 160,184          14,166            8.8% 109,684          222,966          159,583          169,553          184,716          195,263          

2017 116,073          12,102            10.4% 72,833            166,146          115,235          124,202          136,915          145,439          

2018 75,084            8,938              11.9% 34,373            111,295          74,509            80,772            90,836            97,566            

2019 42,212            6,021              14.3% 16,605            71,311            41,859            46,173            52,711            57,524            

2020 21,143            3,889              18.4% 8,545              37,308            20,894            23,666            27,935            30,994            

2021 9,680              2,613              27.0% (212)                20,773            9,541              11,348            14,156            16,596            

2022 4,960              1,802              36.3% (2,713)             13,036            4,900              6,101              8,021              9,492              

2023 2,371              1,338              56.4% (3,187)             8,932              2,299              3,229              4,684              5,783              

2024 1,102              992                 90.0% (2,827)             6,547              1,003              1,691              2,847              3,857              

2025 462                 632                 136.8% (3,435)             4,443              376                 790                 1,644              2,350              

2026 182                 383                 210.8% (2,728)             2,866              122                 357                 865                 1,365              

2027 61                   221                 363.4% (1,545)             1,829              24                   130                 460                 799                 

Totals 433,516          38,243            8.8% 254,901          599,252          432,354          460,201          497,529          524,069          

Sample Insurance Company Sample Insurance Company

Hayne Paper Data Hayne Paper Data

Accident Year Ultimate Loss Ratios (in 000's) Accident Year Incremental Values by Development Period

Best Estimate (Weighted) Best Estimate (Weighted)

Accident Earned Mean Standard Coefficient 50.0% 75.0% 95.0% 99.0%

Year Premium Loss Ratio Error of Variation Minimum Maximum Percentile Percentile Percentile Percentile

2006 184,450          71.9% 7.2% 10.0% 48.2% 105.4% 70.9% 76.1% 85.2% 91.9%

2007 237,093          60.5% 4.5% 7.5% 38.0% 84.3% 60.4% 63.3% 67.9% 71.8%

2008 297,807          52.3% 3.9% 7.5% 37.0% 71.5% 52.1% 54.7% 59.0% 62.6%

2009 349,324          49.3% 3.6% 7.3% 28.3% 61.3% 49.6% 51.8% 54.8% 56.9%

2010 361,198          48.1% 3.4% 7.1% 32.3% 61.8% 48.3% 50.5% 53.3% 55.2%

2011 374,921          50.0% 6.7% 13.4% 14.0% 100.2% 50.3% 52.8% 60.8% 73.3%

2012 370,904          54.2% 6.3% 11.6% 20.5% 102.4% 54.3% 57.3% 62.8% 77.2%

2013 345,267          58.3% 7.0% 12.0% 21.2% 125.7% 58.3% 61.6% 68.9% 82.2%

2014 301,114          61.4% 9.5% 15.5% 16.3% 104.4% 59.9% 68.8% 76.9% 82.8%

2015 277,987          77.0% 13.1% 17.0% 4.4% 129.2% 75.3% 87.5% 98.8% 105.2%

Totals 3,100,065       57.0% 2.2% 3.9% 48.8% 66.6% 56.9% 58.4% 60.7% 62.5%
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Reviewing the simulated values indicates that the standard errors in Table 6.8 should be 

proportionate to the means, while the coefficients of variation should be relatively constant 

by accident year. In terms of diagnostics, any increases in standard error and coefficient of 

variation for the most recent years would be consistent with the reasons previously cited in 

Section 5.4 for the estimated unpaid tables. Risk management-wise, the loss ratio distributions 

have important implications for projecting pricing risk – the mean loss ratios can be used to 

view any underwriting cycles and help inform the projected mean for the next few years, while 

the coefficients of variation can be used to select a standard deviation for the next few years.29 

6.4. Estimated Unpaid Claim Runoff Results 

Table 6.9, shows the runoff of the total unpaid claim distribution by future calendar year. 

Like the estimated unpaid and estimated cash-flow tables, the values in this table are calculated 

using only future simulated values, except that future diagonal results are sequentially removed 

so that only the unpaid claims at the end of each future calendar period are remaining. These 

results are quite useful for calculating the runoff of the unpaid claim distribution when 

calculating risk margins using the cost of capital method. 

Table 6.9. Estimated unpaid claim runoff (weighted) 

 

 

 

 

 

 

 

                                                           

 
29 The coefficients of variation measure the variability of the loss ratios, given the movements by year. Without 

this information, it is common to base the future standard deviation on the standard deviation of the historical 
mean loss ratios, but this is not ideal since the variability of the mean loss ratios is not the same as the possible 
variation in the actual outcomes given movements in the means. 

Sample Insurance Company Sample Insurance Company

Hayne Paper Data Hayne Paper Data

Calendar Year Unpaid Claim Runoff (in 000's) Accident Year Ultimate Loss Ratios (in 000's)

Best Estimate (Weighted) Best Estimate (Weighted)

Calendar Mean Standard Coefficient 50.0% 75.0% 95.0% 99.0%

Year Unpaid Error of Variation Minimum Maximum Percentile Percentile Percentile Percentile

2015 433,516          38,243            8.8% 254,901          599,252          432,354          460,201          497,529          524,069          

2016 273,331          27,072            9.9% 142,347          383,736          272,131          292,254          319,167          337,111          

2017 157,258          17,542            11.2% 67,252            220,814          156,499          169,104          187,514          200,341          

2018 82,174            10,939            13.3% 32,880            123,782          81,702            89,376            100,832          108,855          

2019 39,962            6,966              17.4% 14,345            69,981            39,632            44,447            52,029            57,298            

2020 18,819            4,746              25.2% 1,463              41,958            18,626            21,805            27,058            30,892            

2021 9,139              3,442              37.7% (4,763)             26,381            8,926              11,285            15,161            18,408            

2022 4,178              2,466              59.0% (5,361)             15,768            3,933              5,672              8,598              11,114            

2023 1,807              1,647              91.2% (7,328)             10,335            1,565              2,713              4,837              6,709              

2024 704                 938                 133.2% (4,654)             6,189              539                 1,172              2,474              3,628              

2025 243                 491                 202.5% (3,442)             3,710              152                 455                 1,135              1,876              

2026 61                   221                 363.4% (1,545)             1,829              24                   130                 460                 799                 
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6.3 Distribution Graphs 

A final model output to consider is a histogram of the estimated unpaid amounts for the 

total of all accident years combined, as shown in the graph in Figure 6.1. The histogram is 

created by counting the number of outcomes within each of 100 “buckets” of equal size spread 

between the minimum and maximum outcome. To smooth the histogram a kernel density 

function30 is often used, which is the green bars in Figure 6.1. 

Another useful strategy for graphing the total unpaid distribution may be accomplished by 

creating a summary of the ten model distributions used to determine the weighted “best 

estimate” and distribution. An example of this graph using the kernel density functions is 

shown in Figure 6.2 and dots for the mean estimates, which would represent a traditional 

range31, are also included. 

Figure 6.1. Total Unpaid Claims Distribution 

  

 

 

 

 

 

 

 

 

 

 

 

                                                           

 
30 A kernel density function uses weighed values of the surrounding values, with decreasing weight the further 

from the value in question, in order to smooth the values. 
31 A traditional range would use deterministic point estimates instead of means of the distributions, but the intent 

is consistent. While the points would technically have an infinitesimal probability and should therefore sit on 
the x-axis, they are elevated above the zero probability level purely for illustration purposes. 

Sample Insurance Company Sample Insurance Company

Hayne Paper Data Hayne Paper Data

Total Unpaid Distribution (in 000's) Summary of Results by Model (in 000's)

Best Estimate (Weighted) Mean Estimated Unpaid

254.4K 288.9K 323.5K 358.0K 392.6K 427.1K 461.6K 496.2K 530.7K 565.3K 599.8K
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Figure 6.2. Summary of model distributions 

  

 

 

 

 

 

 

 

 

 

 

6.4 Correlation & Aggregation 

Results for an entire business unit can be estimated, after each business segment has been 

analyzed and weighted into best estimates, using aggregation. This represents another area 

where caution is warranted. The procedure is not a simple matter of adding up the distributions 

for each segment. In order to estimate the distribution of possible outcomes for a company 

as a whole, a correlation of results among segments must be used.32 To illustrate aggregation, 

data from the “Industry Data.xls” file for Parts A, B, and C are used. The various model tables 

and graphs for the Part A, Part B, and Part C results are shown in Appendices B, C, and D, 

respectively. 

Simulating correlated variables is commonly accomplished with a multi-variate distribution 

whose parameters and correlations have been previously specified. This type of simulation is 

most easily applied when distributions are uniformly identical and known in advance (for 

example, all derived from a multi-variate normal distribution). Unlike the ODP bootstrap 

framework, in which the characteristics of the overall distribution are unknown in advance, 

the multi-variate normal distribution assumption in the Hayne MLE framework could allow 

                                                           

 
32 This section assumes the reader is familiar with correlation. 

Sample Insurance Company

Hayne Paper Data

Summary of Model Distributions (in 000's)

(Using Kernel Densities)
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model correlation for multiple business segments. However, the correlation among parameters 

from each segment has to be defined before consolidating the variance-covariance matrices to 

simulate parameters for all segments. Thus, a fair amount of parameters are needed for 

correlation and it is difficult to visualize the gigantic aggregated variance-covariance matrix, so 

it is beyond the scope of this paper. 

Alternatively, two useful correlation processes for the Hayne MLE model are synchronized 

parameter simulation and re-sorting.33 

With synchronized parameter simulation, in each iteration, independent normal random 

values are simulated for each parameter and each segment, then correlation is applied to adjust 

the simulated random numbers for the second segment and beyond, and modified random 

numbers are used for multi-variate normal distribution sampling. 

The synchronized simulation process can be implemented in Excel once a correlation 

matrix has been estimated. There are, however, two potential drawbacks to this process. First, 

since multiple LOB/segments are being simulated simultaneously either the size of the 

workbook needs to increase to accommodate all of the segments or the random number 

streams need to be correlated in a separate process. Second, when the multiple models are 

weighted to get a “best estimate” for each segment the coordination of multiple models and 

segments is even more complex. 

The second correlation process, re-sorting, can be accomplished with algorithms such as 

Iman-Conover34 or Copulas, among others. The primary advantages of re-sorting include:  

 The correlation is a combination of parameter uncertainty and process variance,  

 Different correlation assumptions may be employed, and 

 Different correlation algorithms may also have other beneficial impacts on the 

aggregate distribution. 

For example, using a t-distribution Copula with low degrees of freedom rather than a 

normal-distribution Copula, will effectively “strengthen” the focus of the correlation in the 

tail of the distribution, all else being equal. This type of consideration is important for risk-

                                                           

 
33 For a useful reference see Kirschner, et al. [11]. The Kirschner paper is about correlation for the ODP 

Bootstrap model, but the two processes can be used with other models. 
34 For a useful reference see Iman and Conover [9] or Mildenhall [12]. In the “Aggregate Estimate.xlsm” file the 

Iman-Conover algorithm is used to “Generate Rank Values” on the Inputs sheet. 
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based capital and other risk modeling issues. 

To induce correlation among different segments in the “Aggregation.xlsm” file, a 

correlation matrix can be calculated using Spearman’s Rank Order for each data / model type 

combination in order to select a correlation assumption. Using the selected correlation, re-

sorting based on the ranks of the total unpaid claims for all accident years combined can be 

done. The calculated correlations for Parts A, B, and C based on the paid residuals for 

Berquist-Sherman may be seen in the first part of Table 6.10. A second part of Table 6.10 are 

the p-values for each correlation coefficient, which are an indication of whether a correlation 

coefficient is significantly different than zero as the p-value gets close to zero.35 

Table 6.10. Estimated Correlation and P-values 

 

 

 

 

 

 

 

By reviewing the correlation coefficients for each “pair” of segments, along with the p-

values, from different sets of correlations matrices (e.g., from paid or incurred data for each 

model) judgment can be used to select a correlation matrix assumption. As noted above, 

caution is warranted as these calculated correlation matrices are limited to the data used in the 

calculation and the impact of other systemic issues, such as contagion, may also need to be 

considered. 

  

                                                           

 
35 While judgment is clearly appropriate, the typical threshold is a p-value of 5% – i.e., a p-value of 5% or less 

indicates the correlation is significantly different than zero, while a p-value greater than 5% indicates the 
correlation is not significantly different than zero. 

Rank Correlation of Residuals Paid BS Model  - [Modeled]

LOB HO PPA CA

HO 1.00 0.26 0.22

PPA 0.26 1.00 0.15

CA 0.22 0.15 1.00

P-Value of Rank Correlation of Residuals Paid BS Model - [Modeled]

LOB HO PPA CA

HO 0.00 0.06 0.11

PPA 0.06 0.00 0.29

CA 0.11 0.29 0.00



Using the Hayne MLE Models: A Practitioner’s Guide 
 

 

Casualty Actuarial Society E-Forum, Summer 2016 48 

Table 6.11. Aggregate estimated unpaid 

 

 

 

 

 

 

 

 

Using these correlation coefficients, the “Aggregate Estimate.xlsm” file, and the simulation 

data for Parts A, B, and C, the aggregate results for the three lines of business were calculated 

and summarized in Table 6.11. A more complete set of tables for the aggregate results is shown 

in Appendix E. 

Note that using residuals to correlate the lines of business (or other segments), as in the 

synchronized simulation method, and measuring the correlation between residuals, as in the 

re-sorting method, both tend to create correlations that are close to zero. For reserve risk, the 

correlation that is desired is between the total unpaid amounts for two segments. The 

correlation that is being measured is the correlation between each incremental future loss 

amount, given the underlying model describing the overall trends in the data. This may or may 

not be a reasonable approximation. 

While not the direct measure being sought, keep in mind that some level of implied 

correlation between lines of business will naturally occur due to correlations between the 

model parameters – e.g., similarities in development parameters, so correlation based on the 

correlation between the remaining random movements in the incremental values given the 

model parameters (i.e., residuals) may be reasonable. However, an example of an issue not 

particularly well suited to measurement via residual correlation is contagion between lines of 

business – i.e., single events that result in claims in multiple lines of business. To account for 

this, and to add a bit of conservatism, the correlation assumption can be easily changed based 

on actuarial judgment. 

Correlation is often thought of as being much stronger than “close to zero”, but in this 

Sample Insurance Company Sample Insurance Company

Aggregate Three Lines of Business Aggregate Three Lines of Business

Accident Year Unpaid (in 000's) Calendar Year Unpaid (in 000's)

Accident Paid Mean Standard Coefficient 50.0% 75.0% 95.0% 99.0%

Year To Date Unpaid Error of Variation Minimum Maximum Percentile Percentile Percentile Percentile

2006 18,613            146                 1,002              688.1% (2,013)             74,778            37                   55                   421                 2,422              

2007 20,618            198                 993                 500.3% (1,523)             37,034            70                   94                   503                 3,069              

2008 22,866            246                 927                 377.4% (5,763)             54,447            128                 162                 542                 3,227              

2009 22,842            367                 1,286              350.7% (2,918)             90,399            230                 268                 695                 3,778              

2010 22,351            535                 1,359              254.3% (1,875)             69,139            406                 452                 860                 3,458              

2011 22,422            869                 1,266              145.7% (3,632)             68,690            760                 826                 1,253              4,003              

2012 24,350            1,589              939                 59.1% (4,107)             27,387            1,518              1,633              2,198              4,927              

2013 19,973            2,814              1,424              50.6% (8,046)             80,667            2,785              2,963              3,667              6,153              

2014 18,919            5,418              4,384              80.9% (8,120)             407,319          5,420              5,768              6,863              9,408              

2015 15,961            13,369            3,352              25.1% (11,431)           98,644            13,319            14,627            17,722            21,777            

Totals 208,915          25,550            9,304              36.4% (815)                476,278          24,635            26,612            32,642            55,933            

Normal Dist. 25,550            9,304              36.4% 25,550            31,826            40,854            47,195            

logNormal Dist. 25,528            6,217              24.4% 24,803            29,163            36,812            43,354            

Gamma Dist. 25,550            9,304              36.4% 24,430            31,065            42,526            52,000            

TVaR 28,995            32,475            48,429            89,074            

Normal TVaR 32,974            37,377            44,742            50,348            

logNormal TVaR 30,371            33,900            40,865            47,165            

Gamma TVaR 32,838            38,140            48,373            57,295            



Using the Hayne MLE Models: A Practitioner’s Guide 
 

 

Casualty Actuarial Society E-Forum, Summer 2016 49 

case the correlation being considered is typically the loss ratio movements by line of business. 

For pricing risk, the correlation that is desired is between the loss ratio movements by accident 

year between two segments. This correlation is not as likely to be close to zero, so correlation 

of loss ratios (e.g., for the data in Table 6.8) is often done with a different correlation 

assumption compared to reserving risk. 

7. Future Research 

While common use of the Hayne MLE models may be in its infancy, the hope is that this 

paper will spur more widespread use of the models. Nevertheless, there are many area where 

further research can add value, but only a few key areas are offered up here. 

 Use of Other Distributions – The key assumption which allows the framework for the 

Hayne MLE is the Normal distribution. Other distribution assumptions, while more 

complex mathematically, may provide useful alternatives; 

 Simulating Frequency and Severity – Instead of simply basing the Hayne MLE on the 

estimate ultimate claim count, the claim count could also be generated stochastically, with 

correlation between frequency and severity outputs, and thus simulating both at the same 

time; 

 A Flexible Model – Similar to the GLM bootstrap or incremental log models it may be 

possible to develop a model using the Hayne MLE framework where the user can specify 

the place for parameters and include a diagonal parameter; 

 Time Horizon Models – As other models have been adapted for calculation of the one-

year time horizon for Solvency II purposes, the Hayne MLE models could also be so 

adapted; 

 MCMC Models – It is possible that Markov Chain Monte Carlo (MCMC) models could 

be used to induce additional correlation into the Hayne MLE models; and 

 Pricing Models – In order to expand the usefulness of the models, they could be 

extrapolated into future underwriting periods. 

8. Conclusions 

While this paper endeavored to show how the Hayne MLE models can be used in a variety 

of practical ways, and to illustrate the diagnostic tools the actuary needs to assess whether the 

model is working well, it should not be assumed that a given Hayne MLE model is well suited 
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for every data set. However, it is hoped that the Hayne MLE “toolsets” can become an integral 

part of the actuary’s regular estimation of unpaid claim liabilities, rather than just a “black box” 

to be used only if necessary or after the deterministic methods have been used to select a point 

estimate. Finally, the modeling framework allows the actuary to “adjust” the model parameters 

to smooth anomalies in the data instead of simply accepting the model as is and essentially 

forcing the data to “fit” the model. 
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Supplementary Material 

There are several companion files designed to give the reader a deeper understanding of the concepts 
discussed in the paper. The files are all in the “Hayne MLE Practitioners Guide.zip” file. The files are: 

 
Model Instructions.pdf – this file contains a written description of how to use the primary Hayne MLE 

modeling files. 
 
Primary modeling files: 
Industry Data.xls – this file contains Schedule P data by line of business for the entire U.S. industry and five 

of the top 50 companies, for each LOB that has 10 years of data. 
  
Hayne MLE Models.xlsm – this file contains the detailed model steps described in this paper as well as various 

modeling options and diagnostic tests. Data can be entered and simulations run and saved for use in calculating 
a weighted best estimate. 

 
Best Estimate.xlsm – this file can be used to weight the results from ten different models to get a “best 

estimate” of the distribution of possible outcomes. 
 
Aggregate Estimate.xlsm – this file can be used to correlate the best estimate results from 3 LOBs/segments. 
 
Correlation Ranks.xlsm – this file contains examples of ranks used to correlate results by LOB/segment. 
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Appendix A – User Selected Parameters & Diagnostics 

In this appendix, the selected parameters and diagnostics are shown for paid data for each 

model. 

Figure A.1. User Selected Parameters for Berquist-Sherman 

 

 

 

 

 

 

 

 

 

Figure A.2. Residual Graphs for Berquist-Sherman [Modeled Parameters] 

 

 

 

 

 

 

 

 

 

 

 

  

12 24 36 48 60 72 84 96 108 120 132 144 156

Mean 620.96            760.67            708.16            553.57            350.00            181.39            70.97              43.88              26.00             15.21              7.05              3.27              1.51             

Std Dev 40.50              46.55              43.00              35.49              26.17              17.66              10.40              8.75               7.60               7.36               6.47              4.32              2.67             

Decay Ratios: 122.5% 93.1% 78.2% 63.2% 51.8% 39.1% 61.8% 59.3% 58.5%

CoV: 6.5% 6.1% 6.1% 6.4% 7.5% 9.7% 14.7% 19.9% 29.2% 48.4% 91.8% 132.3% 176.2%

Accident Year

Trend K p AIC BIC Decay Ratio Periods Distribution Adjusted Actual

Mean 0.045              11.216            0.654              647.9              674.0              46.3% 3 Gamma 1.0036 1.0036

Std Dev 0.009              1.094              0.089              32.5%

CoV: 18.9% 9.8% 13.6%

Decay Ratio Analysis:

Parameters: Model Curve Type: Power 3 Least Squares Regression Coefficients: Goodness of Fit Statistics:

4 x^a -0.3673 R
2
 Statistic 0.240              

coefficient 1.1166 Regression Deviation 32.5%

Suggested Decay Parameters:

Mean 46.3%

Standard Deviation 32.5%

Selected Selected Incremental -                 DY Decay Ratio

Periods Decay Ratio Outliers Age  Decay Ratio  Fitted Factors 9

12-24 1.225 0 1 1.225 1.117 -0.367 24 1.2250 1.117              1 1 1.2250

24-36 0.931 0 2 0.931 0.866 0.110 36 0.9310 0.866              2 2 0.9310

36-48 0.782 0 3 0.782 0.746 #N/A 48 0.7817 0.746              3 3 0.7817

48-60 0.632 0 4 0.632 0.671 #N/A 60 0.6323 0.671              4 4 0.6323

60-72 0.518 0 5 0.518 0.618 72 0.5183 0.618              5 5 0.5183

72-84 0.391 0 6 0.391 0.578 84 0.3912 0.578              6 6 0.3912

84-96 0.618 0 7 0.618 0.546 96 0.6183 0.546              7 7 0.6183

96-108 0.252 0 8 0.252 0.520 108 0.2525 0.520              8 8 0.2525

108-120 1.373 0 9 1.373 0.498 120 1.3732 0.498              9 9 1.3732

120-132 0.479 132 0.479              

132-144 0.463 144 0.463              

144-156 0.448 156 0.448              

156-168 0.435

168-180 0.424

Tail Extrapolation Implied Tail Factor

Tail Sampling Option
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Figure A.3. Residual Graphs for Berquist-Sherman [Selected Parameters] 

 

 

 

 

 

 

 

 

 

 

 

Figure A.4. Normality Plots for Berquist-Sherman 

 

 

 

 

 

 

Figure A.5. Box-Whisker Plots for Berquist-Sherman 
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Figure A.6. Model Structure Graphs for Berquist-Sherman 

 

 

 

 

 

 

 

 

 

 

 

Figure A.7. User Selected Parameters for Cape Cod 
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User Selected Parameters:

Scale 2007 2008 2009 2010 2011 2012 2013 2014 2015

Mean 620.067          1.160              1.123              1.322              1.376              1.521              1.533              1.580              1.169              1.164              

Std Dev 30.027            0.066              0.064              0.072              0.075              0.082              0.084              0.091              0.082              0.105              

CoV 4.8% 5.7% 5.7% 5.4% 5.4% 5.4% 5.5% 5.8% 7.0% 9.0%

Development Period Parameters (Average Incremental)

24 36 48 60 72 84 96 108 120 132 144 156

Mean 1.181              1.063              0.838              0.534              0.284              0.111              0.067              0.040             0.024              0.011            0.005            0.002           

Std Dev 0.041              0.040              0.036              0.029              0.023              0.016              0.016              0.015              0.017              0.009              0.004              0.002            

Decay Ratios 90.0% 78.8% 63.7% 53.2% 39.0% 60.7% 59.4% 60.7%

CoV 3.5% 3.8% 4.3% 5.5% 8.1% 14.9% 23.1% 37.8% 70.6% 77.1% 83.4% 89.7%

K p AIC BIC Decay Ratio Periods Distribution Adjusted Actual

Mean 13.104            0.435              663.9              706.0              46.4% 3 Gamma 1.0037 1.0037

Std Dev 1.061              0.087              11.8%

CoV 8.1% 19.9%

Decay Ratio Analysis:

Parameters: User Curve Type: Power 3 Least Squares Regression Coefficients: Goodness of Fit Statistics:

4 x^a -0.3195 R
2
 Statistic 0.435              

coefficient 1.0261 Regression Deviation 11.6%

Suggested Decay Parameters:

Mean 46.4%

Standard Deviation 11.8%

Selected Selected Incremental -                 DY Decay Ratio

Periods Decay Ratio Outliers Age  Decay Ratio  Fitted Factors 8

24-36 0.900 0 2 0.900 0.822 -0.320 24 0.9003 0.822              2 2 0.9003

36-48 0.788 0 3 0.788 0.722 0.026 36 0.7881 0.722              3 3 0.7881

48-60 0.637 0 4 0.637 0.659 #N/A 48 0.6373 0.659              4 4 0.6373

60-72 0.532 0 5 0.532 0.614 #N/A 60 0.5324 0.614              5 5 0.5324

72-84 0.390 0 6 0.390 0.579 72 0.3903 0.579              6 6 0.3903

84-96 0.607 0 7 0.607 0.551 84 0.6067 0.551              7 7 0.6067

96-108 0.594 0 8 0.594 0.528 96 0.5943 0.528              8 8 0.5943

108-120 0.607 0 9 0.607 0.509 108 0.6069 0.509              9 9 0.6069

120-132 0.492 120 0.492              

132-144 0.477 132 0.477              

144-156 0.464 144 0.464              

156-168 0.452

168-180 0.442
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Figure A.8. Residual Graphs for Cape Cod [Modeled Parameters] 

 

 

 

 

 

 

 

 

 

 

 

Figure A.9. Residual Graphs for Cape Cod [Selected Parameters] 

 

 

 

 

 

 

 

 

 

 

 

 

 

Residual Graphs for Cape Cod Hayne MLE Paid Model [Model Fitted]
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Figure A.10. Normality Plots for Cape Cod 

 

 

 

 

 

 

Figure A.11. Box-Whisker Plots for Cape Cod 

 

 

 

 

 

 

Figure A.12. Model Structure Graphs for Cape Cod 
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Figure A.13. User Selected Parameters for Chain Ladder 

 

 

 

 

 

 

 

 

 

Figure A.14. Residual Graphs for Chain Ladder [Modeled Parameters] 
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Figure A.15. Residual Graphs for Chain Ladder [Selected Parameters] 

 

 

 

 

 

 

 

 

 

 

 

Figure A.16. Normality Plots for Chain Ladder 

 

 

 

 

 

 

Figure A.17. Box-Whisker Plots for Chain Ladder 
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Figure A.18. Model Structure Graphs for Chain Ladder 

 

 

 

 

 

 

 

 

 

 

 

Figure A.19. User Selected Parameters for Hoerl Curve 
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Figure A.20. Residual Graphs for Hoerl Curve [Modeled Parameters] 

 

 

 

 

 

 

 

 

 

 

 

Figure A.21. Residual Graphs for Hoerl Curve [Selected Parameters] 
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Figure A.22. Normality Plots for Hoerl Curve 

 

 

 

 

 

 

Figure A.23. Box-Whisker Plots for Hoerl Curve 

 

 

 

 

 

 

Figure A.24. Model Structure Graphs for Hoerl Curve 
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Figure A.25. User Selected Parameters for Wright 

 

 

 

 

 

Figure A.26. Residual Graphs for Wright [Modeled Parameters] 
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Figure A.27. Residual Graphs for Wright [Selected Parameters] 

 

Figure A.28. Normality Plots for Wright 

 

 

 

 

 

 

Figure A.29. Box-Whisker Plots for Wright 

 

 

 

 

 

 

Residual Graphs for Wright Hayne MLE Paid Model [User Selected]
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Figure A.30. Model Structure Graphs for Wright 
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Appendix B – Schedule P, Part A Results 

In this appendix the results for Schedule P, Part A (Homeowners / Farmowners) are 

shown. 

Figure B.1. Estimated unpaid model results (Paid Berquist-Sherman) 

 

Figure B.2. Total unpaid claims distribution (Paid Berquist-Sherman) 

 
 

Sample Insurance Company Sample Insurance Company

Schedule P, Part A -- Homeowners / Farmowners Schedule P, Part A -- Homeowners / Farmowners

Accident Year Unpaid (in 000's) Calendar Year Unpaid (in 000's)

Paid Berquist & Sherman Model Paid Berquist & Sherman Model

Accident Mean Standard Coefficient 50.0% 75.0% 95.0% 99.0%

Year To Date Unpaid Error of Variation Minimum Maximum Percentile Percentile Percentile Percentile

2006 5,234 1                     2                     180.3% (13)                  12                   1                     3                     6                     9                     

2007 6,470 3                     5                     145.9% (12)                  25                   3                     6                     11                   19                   

2008 7,848 9                     11                   119.8% (26)                  45                   8                     15                   27                   36                   

2009 7,020 18                   19                   106.5% (47)                  103                 18                   30                   50                   65                   

2010 7,291 38                   33                   88.7% (84)                  218                 38                   59                   94                   118                 

2011 8,134 80                   60                   75.4% (120)                263                 79                   120                 177                 219                 

2012 10,800 181                 113                 62.5% (211)                575                 181                 253                 362                 478                 

2013 7,522 342                 207                 60.6% (274)                1,106              343                 470                 707                 810                 

2014 7,968 789                 427                 54.2% (727)                2,126              800                 1,062              1,461              1,789              

2015 9,309 4,880              1,850              37.9% (2,872)             11,865            4,846              6,061              7,993              9,246              

Totals 77,596 6,340              1,916              30.2% (896)                13,657            6,355              7,623              9,484              10,650            

Normal Dist. 6,340              1,916              30.2% 6,340              7,632              9,491              10,797            

logNormal Dist. 6,791              3,793              55.9% 5,929              8,426              13,971            19,927            

Gamma Dist. 6,340              1,916              30.2% 6,149              7,507              9,785              11,624            
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Figure B.3. Estimated unpaid model results (Incurred Berquist-Sherman) 

 

Figure B.4. Total unpaid claims distribution (Incurred Berquist-Sherman) 

 
 

Sample Insurance Company Sample Insurance Company

Schedule P, Part A -- Homeowners / Farmowners Schedule P, Part A -- Homeowners / Farmowners

Accident Year Unpaid (in 000's) Calendar Year Unpaid (in 000's)

Incurred Berquist & Sherman Model Incurred Berquist & Sherman Model

Accident Mean Standard Coefficient 50.0% 75.0% 95.0% 99.0%

Year To Date Unpaid Error of Variation Minimum Maximum Percentile Percentile Percentile Percentile

2006 5,234 1                     4                     296.4% (54)                  50                   1                     3                     7                     13                   

2007 6,470 3                     9                     267.7% (172)                109                 3                     6                     15                   23                   

2008 7,848 10                   35                   354.9% (735)                675                 8                     16                   31                   50                   

2009 7,020 21                   41                   189.4% (106)                1,032              18                   31                   60                   96                   

2010 7,291 44                   138                 311.7% (155)                3,281              32                   56                   107                 251                 

2011 8,134 82                   105                 129.2% (1,215)             1,430              70                   114                 218                 400                 

2012 10,800 181                 289                 159.6% (5,037)             5,874              159                 252                 419                 713                 

2013 7,522 339                 684                 201.7% (12,497)           9,046              282                 453                 902                 1,762              

2014 7,968 794                 2,795              351.9% (63,725)           50,307            656                 965                 1,816              3,496              

2015 9,309 4,260              2,334              54.8% (695)                46,021            4,081              5,048              7,206              11,774            

Totals 77,596 5,736              3,744              65.3% (56,400)           54,796            5,441              6,633              9,385              14,683            

Normal Dist. 5,736              3,744              65.3% 5,736              8,262              11,895            14,446            

logNormal Dist. 6,881              6,211              90.3% 5,108              8,597              18,185            30,775            

Gamma Dist. 5,736              3,744              65.3% 4,945              7,637              12,945            17,771            
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Figure B.5. Estimated unpaid model results (Paid Cape Cod) 

 

Figure B.6. Total unpaid claims distribution (Paid Cape Cod) 

 
 

Sample Insurance Company Sample Insurance Company

Schedule P, Part A -- Homeowners / Farmowners Schedule P, Part A -- Homeowners / Farmowners

Accident Year Unpaid (in 000's) Calendar Year Unpaid (in 000's)

Paid Cape Cod Model Paid Cape Cod Model

Accident Mean Standard Coefficient 50.0% 75.0% 95.0% 99.0%

Year To Date Unpaid Error of Variation Minimum Maximum Percentile Percentile Percentile Percentile

2006 5,234 2                     2                     145.7% (7)                    13                   1                     3                     6                     9                     

2007 6,470 4                     4                     112.8% (8)                    29                   3                     5                     10                   17                   

2008 7,848 10                   9                     88.7% (19)                  40                   10                   16                   26                   34                   

2009 7,020 21                   16                   76.6% (32)                  76                   22                   32                   47                   62                   

2010 7,291 40                   28                   70.0% (50)                  130                 40                   60                   84                   106                 

2011 8,134 81                   48                   59.7% (88)                  286                 81                   112                 156                 199                 

2012 10,800 240                 119                 49.6% (124)                659                 240                 323                 441                 501                 

2013 7,522 298                 157                 52.7% (398)                969                 301                 395                 553                 677                 

2014 7,968 717                 336                 46.8% (322)                1,894              711                 933                 1,276              1,577              

2015 9,309 3,937              1,416              36.0% (6)                    8,153              3,904              4,835              6,319              7,312              

Totals 77,596 5,350              1,478              27.6% 1,256              10,155            5,392              6,272              7,856              8,680              

Normal Dist. 5,350              1,478              27.6% 5,350              6,347              7,781              8,788              

logNormal Dist. 5,374              1,707              31.8% 5,121              6,313              8,529              10,535            

Gamma Dist. 5,350              1,478              27.6% 5,214              6,259              7,990              9,374              
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Figure B.7. Estimated unpaid model results (Incurred Cape Cod) 

 

Figure B.8. Total unpaid claims distribution (Incurred Cape Cod) 

 
 

Sample Insurance Company Sample Insurance Company

Schedule P, Part A -- Homeowners / Farmowners Schedule P, Part A -- Homeowners / Farmowners

Accident Year Unpaid (in 000's) Calendar Year Unpaid (in 000's)

Incurred Cape Cod Model Incurred Cape Cod Model

Accident Mean Standard Coefficient 50.0% 75.0% 95.0% 99.0%

Year To Date Unpaid Error of Variation Minimum Maximum Percentile Percentile Percentile Percentile

2006 5,234 1                     3                     185.0% (28)                  20                   1                     2                     6                     10                   

2007 6,470 3                     10                   283.2% (235)                59                   3                     6                     11                   25                   

2008 7,848 11                   13                   120.2% (160)                154                 10                   17                   30                   49                   

2009 7,020 26                   28                   110.4% (136)                428                 23                   36                   65                   111                 

2010 7,291 50                   114                 226.4% (72)                  2,555              40                   63                   113                 204                 

2011 8,134 92                   99                   107.8% (1,066)             1,254              79                   122                 214                 385                 

2012 10,800 211                 164                 78.0% (72)                  3,242              189                 270                 452                 668                 

2013 7,522 297                 698                 234.9% (16,494)           5,425              272                 404                 768                 1,308              

2014 7,968 1,315              15,993            1216.4% (9,454)             498,887          652                 944                 1,711              2,637              

2015 9,309 3,884              1,745              44.9% (5)                    21,243            3,736              4,672              6,505              9,280              

Totals 77,596 5,890              16,156            274.3% (12,718)           504,979          5,150              6,196              8,438              11,426            

Normal Dist. 5,890              16,156            274.3% 5,890              16,788            32,465            43,476            

logNormal Dist. 5,943              3,903              65.7% 4,967              7,439              13,302            20,006            

Gamma Dist. 5,890              16,156            274.3% 150                 3,384              33,123            80,833            
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Figure B.9. Estimated unpaid model results (Paid Chain Ladder) 

 

Figure B.10. Total unpaid claims distribution (Paid Chain Ladder) 

 
 

Sample Insurance Company Sample Insurance Company

Schedule P, Part A -- Homeowners / Farmowners Schedule P, Part A -- Homeowners / Farmowners

Accident Year Unpaid (in 000's) Calendar Year Unpaid (in 000's)

Paid Chain Ladder Model Paid Chain Ladder Model

Accident Mean Standard Coefficient 50.0% 75.0% 95.0% 99.0%

Year To Date Unpaid Error of Variation Minimum Maximum Percentile Percentile Percentile Percentile

2006 5,234 12                   11                   93.8% (16)                  66                   10                   17                   32                   45                   

2007 6,470 23                   17                   73.8% (21)                  98                   22                   33                   53                   71                   

2008 7,848 44                   23                   52.8% (18)                  131                 42                   59                   86                   104                 

2009 7,020 53                   25                   47.1% (13)                  165                 51                   70                   95                   116                 

2010 7,291 75                   29                   38.3% (4)                    188                 74                   95                   125                 146                 

2011 8,134 125                 36                   28.9% (6)                    259                 125                 149                 183                 215                 

2012 10,800 244                 57                   23.3% 60                   413                 245                 282                 339                 372                 

2013 7,522 311                 68                   21.7% 55                   506                 311                 358                 417                 451                 

2014 7,968 698                 113                 16.1% 355                 1,036              694                 771                 881                 969                 

2015 9,309 3,841              364                 9.5% 2,667              4,806              3,832              4,091              4,437              4,673              

Totals 77,596 5,425              443                 8.2% 3,925              6,815              5,422              5,731              6,159              6,411              

Normal Dist. 5,425              443                 8.2% 5,425              5,724              6,154              6,456              

logNormal Dist. 5,425              449                 8.3% 5,407              5,717              6,194              6,552              

Gamma Dist. 5,425              443                 8.2% 5,413              5,717              6,174              6,509              
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Figure B.11. Estimated unpaid model results (Incurred Chain Ladder) 

 

Figure B.12. Total unpaid claims distribution (Incurred Chain Ladder) 

 

Sample Insurance Company Sample Insurance Company

Schedule P, Part A -- Homeowners / Farmowners Schedule P, Part A -- Homeowners / Farmowners

Accident Year Unpaid (in 000's) Calendar Year Unpaid (in 000's)

Incurred Chain Ladder Model Incurred Chain Ladder Model

Accident Mean Standard Coefficient 50.0% 75.0% 95.0% 99.0%

Year To Date Unpaid Error of Variation Minimum Maximum Percentile Percentile Percentile Percentile

2006 5,234 12                   11                   97.4% (17)                  86                   10                   17                   31                   45                   

2007 6,470 23                   18                   77.9% (14)                  126                 21                   33                   56                   71                   

2008 7,848 43                   24                   55.5% (17)                  129                 41                   59                   87                   109                 

2009 7,020 52                   28                   53.3% (16)                  178                 49                   68                   99                   135                 

2010 7,291 74                   32                   43.2% (3)                    240                 71                   94                   131                 161                 

2011 8,134 124                 42                   34.4% (6)                    259                 122                 150                 198                 237                 

2012 10,800 243                 68                   28.0% 45                   470                 242                 287                 362                 402                 

2013 7,522 304                 87                   28.5% 42                   633                 300                 357                 459                 528                 

2014 7,968 704                 157                 22.4% 240                 1,476              697                 793                 969                 1,130              

2015 9,309 3,701              596                 16.1% 1,605              5,935              3,684              4,060              4,695              5,169              

Totals 77,596 5,279              651                 12.3% 3,057              7,701              5,258              5,697              6,332              6,838              

Normal Dist. 5,279              651                 12.3% 5,279              5,718              6,349              6,793              

logNormal Dist. 5,279              664                 12.6% 5,238              5,700              6,437              7,010              

Gamma Dist. 5,279              651                 12.3% 5,252              5,702              6,393              6,910              

Sample Insurance Company

Schedule P, Part A -- Homeowners / Farmowners

Total Unpaid Distribution (in 000's)

Incurred Chain Ladder Model

3.1K 3.5K 4.0K 4.4K 4.9K 5.4K 5.8K 6.3K 6.8K 7.2K 7.7K

P
ro

b
a
b

il
it

y

Total Unpaid

Histogram

Kernel Density



Using the Hayne MLE Models: A Practitioner’s Guide 
 

 

Casualty Actuarial Society E-Forum, Summer 2016 72 

Figure B.13. Estimated unpaid model results (Paid Hoerl Curve) 

 

Figure B.14. Total unpaid claims distribution (Paid Hoerl Curve) 

 
 

Sample Insurance Company Sample Insurance Company

Schedule P, Part A -- Homeowners / Farmowners Schedule P, Part A -- Homeowners / Farmowners

Accident Year Unpaid (in 000's) Calendar Year Unpaid (in 000's)

Paid Hoerl Curve Model Paid Hoerl Curve Model

Accident Mean Standard Coefficient 50.0% 75.0% 95.0% 99.0%

Year To Date Unpaid Error of Variation Minimum Maximum Percentile Percentile Percentile Percentile

2006 5,234 -                  -                  -                  -                  -                  -                  -                  -                  

2007 6,470 47                   29                   63.3% (37)                  170                 44                   63                   100                 129                 

2008 7,848 79                   42                   52.3% (47)                  262                 75                   102                 154                 208                 

2009 7,020 97                   45                   46.3% (42)                  291                 93                   124                 173                 224                 

2010 7,291 111                 46                   41.7% (34)                  329                 106                 140                 193                 232                 

2011 8,134 148                 56                   38.0% 2                     396                 142                 180                 250                 317                 

2012 10,800 236                 71                   30.0% 35                   523                 233                 277                 361                 422                 

2013 7,522 320                 78                   24.5% 21                   613                 318                 368                 452                 502                 

2014 7,968 798                 137                 17.2% 345                 1,259              796                 888                 1,028              1,127              

2015 9,309 4,428              451                 10.2% 3,062              5,849              4,422              4,724              5,179              5,546              

Totals 77,596 6,264              616                 9.8% 4,469              8,520              6,225              6,665              7,308              7,868              

Normal Dist. 6,264              616                 9.8% 6,264              6,680              7,278              7,698              

logNormal Dist. 6,264              618                 9.9% 6,234              6,662              7,329              7,837              

Gamma Dist. 6,264              616                 9.8% 6,244              6,668              7,311              7,786              
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Figure B.15. Estimated unpaid model results (Incurred Hoerl Curve) 

 

Figure B.16. Total unpaid claims distribution (Incurred Hoerl Curve) 

 
 

Sample Insurance Company Sample Insurance Company

Schedule P, Part A -- Homeowners / Farmowners Schedule P, Part A -- Homeowners / Farmowners

Accident Year Unpaid (in 000's) Calendar Year Unpaid (in 000's)

Incurred Hoerl Curve Model Incurred Hoerl Curve Model

Accident Mean Standard Coefficient 50.0% 75.0% 95.0% 99.0%

Year To Date Unpaid Error of Variation Minimum Maximum Percentile Percentile Percentile Percentile

2006 5,234 -                  -                  -                  -                  -                  -                  -                  -                  

2007 6,470 47                   31                   64.7% (45)                  177                 44                   64                   101                 137                 

2008 7,848 80                   42                   52.7% (50)                  278                 76                   103                 155                 205                 

2009 7,020 96                   45                   47.2% (37)                  317                 91                   124                 175                 220                 

2010 7,291 110                 47                   42.5% (31)                  340                 105                 136                 191                 237                 

2011 8,134 145                 56                   38.6% 2                     423                 140                 177                 243                 307                 

2012 10,800 229                 69                   30.3% 36                   532                 225                 269                 348                 405                 

2013 7,522 305                 78                   25.6% 22                   574                 302                 353                 441                 497                 

2014 7,968 759                 137                 18.1% 349                 1,500              756                 844                 991                 1,102              

2015 9,309 4,140              424                 10.2% 3,012              5,953              4,134              4,401              4,861              5,250              

Totals 77,596 5,911              554                 9.4% 4,278              8,496              5,876              6,251              6,842              7,399              

Normal Dist. 5,911              554                 9.4% 5,911              6,285              6,822              7,199              

logNormal Dist. 5,911              553                 9.4% 5,885              6,268              6,862              7,313              

Gamma Dist. 5,911              554                 9.4% 5,894              6,275              6,850              7,275              
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Figure B.17. Estimated unpaid model results (Paid Wright) 

 

Figure B.18. Total unpaid claims distribution (Paid Wright) 

 

Sample Insurance Company Sample Insurance Company

Schedule P, Part A -- Homeowners / Farmowners Schedule P, Part A -- Homeowners / Farmowners

Accident Year Unpaid (in 000's) Calendar Year Unpaid (in 000's)

Paid Wright Model Paid Wright Model

Accident Mean Standard Coefficient 50.0% 75.0% 95.0% 99.0%

Year To Date Unpaid Error of Variation Minimum Maximum Percentile Percentile Percentile Percentile

2006 5,234 -                  -                  -                  -                  -                  -                  -                  -                  

2007 6,470 47                   31                   65.1% (31)                  194                 44                   65                   105                 138                 

2008 7,848 83                   44                   52.6% (51)                  281                 81                   107                 161                 210                 

2009 7,020 93                   45                   48.5% (30)                  262                 86                   118                 176                 212                 

2010 7,291 111                 49                   43.9% (5)                    346                 106                 143                 195                 236                 

2011 8,134 150                 58                   38.9% (17)                  399                 147                 185                 252                 304                 

2012 10,800 265                 81                   30.6% 56                   615                 257                 312                 411                 480                 

2013 7,522 304                 75                   24.8% 41                   603                 300                 353                 430                 487                 

2014 7,968 791                 124                 15.7% 373                 1,197              788                 868                 993                 1,077              

2015 9,309 3,905              343                 8.8% 2,992              4,995              3,902              4,135              4,465              4,703              

Totals 77,596 5,750              514                 8.9% 4,193              7,586              5,711              6,056              6,678              7,075              

Normal Dist. 5,750              514                 8.9% 5,750              6,096              6,595              6,946              

logNormal Dist. 5,750              514                 8.9% 5,727              6,082              6,632              7,048              

Gamma Dist. 5,750              514                 8.9% 5,734              6,088              6,621              7,013              
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Figure B.19. Estimated unpaid model results (Incurred Wright) 

 

Figure B.20. Total unpaid claims distribution (Incurred Wright) 

 

Figure B.21. Model weights by accident year 

 

Sample Insurance Company Sample Insurance Company

Schedule P, Part A -- Homeowners / Farmowners Schedule P, Part A -- Homeowners / Farmowners

Accident Year Unpaid (in 000's) Calendar Year Unpaid (in 000's)

Incurred Wright Model Incurred Wright Model

Accident Mean Standard Coefficient 50.0% 75.0% 95.0% 99.0%

Year To Date Unpaid Error of Variation Minimum Maximum Percentile Percentile Percentile Percentile

2006 5,234 -                  -                  -                  -                  -                  -                  -                  -                  

2007 6,470 44                   28                   63.3% (39)                  192                 41                   61                   93                   122                 

2008 7,848 81                   43                   52.5% (39)                  283                 77                   104                 160                 205                 

2009 7,020 94                   47                   50.6% (46)                  358                 88                   118                 180                 236                 

2010 7,291 115                 51                   44.0% (14)                  392                 111                 146                 204                 256                 

2011 8,134 154                 58                   37.5% (8)                    497                 150                 185                 253                 322                 

2012 10,800 251                 72                   28.7% 55                   530                 248                 296                 383                 442                 

2013 7,522 297                 73                   24.4% 86                   540                 295                 346                 416                 477                 

2014 7,968 777                 114                 14.7% 412                 1,187              775                 854                 971                 1,053              

2015 9,309 3,812              266                 7.0% 3,013              4,733              3,808              3,988              4,264              4,448              

Totals 77,596 5,625              440                 7.8% 4,333              7,210              5,605              5,887              6,392              6,829              

Normal Dist. 5,625              440                 7.8% 5,625              5,923              6,350              6,650              

logNormal Dist. 5,625              438                 7.8% 5,608              5,911              6,374              6,721              

Gamma Dist. 5,625              440                 7.8% 5,614              5,916              6,369              6,701              

Sample Insurance Company

Schedule P, Part A -- Homeowners / Farmowners

Total Unpaid Distribution (in 000's)
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Accident Model Weights by Accident Year

Year Paid BS Incd BS Paid CC Incd CC Paid CL Incd CL Paid HC Incd HC Paid WR Incd WR TOTAL

2006 40.0% 30.0% 30.0% 100.0%

2007 40.0% 30.0% 30.0% 100.0%

2008 40.0% 30.0% 30.0% 100.0%

2009 40.0% 30.0% 30.0% 100.0%

2010 40.0% 30.0% 30.0% 100.0%

2011 40.0% 30.0% 30.0% 100.0%

2012 40.0% 30.0% 30.0% 100.0%

2013 40.0% 30.0% 30.0% 100.0%

2014 40.0% 30.0% 30.0% 100.0%

2015 40.0% 30.0% 30.0% 100.0%
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Figure B.22. Estimated mean unpaid by model 

 

Figure B.23. Estimated ranges 

 

Sample Insurance Company Sample Insurance Company

Schedule P, Part A -- Homeowners / Farmowners Schedule P, Part A -- Homeowners / Farmowners

Summary of Results by Model (in 000's) Reconciliation of Total Results (in 000's)

Mean Estimated Unpaid Best Estimate (Weighted)

Accident Berquist & Sherman Cape Cod Chain Ladder Hoerl Curve Wright Best Est.

Year Paid Incurred Paid Incurred Paid Incurred Paid Incurred Paid Incurred (Weighted)

2006 1                     1                     2                     1                     12                   12                   -                  -                  -                  -                  5                     

2007 3                     3                     4                     3                     23                   23                   47                   47                   47                   44                   9                     

2008 9                     10                   10                   11                   44                   43                   79                   80                   83                   81                   20                   

2009 18                   21                   21                   26                   53                   52                   97                   96                   93                   94                   29                   

2010 38                   44                   40                   50                   75                   74                   111                 110                 111                 115                 49                   

2011 80                   82                   81                   92                   125                 124                 148                 145                 150                 154                 94                   

2012 181                 181                 240                 211                 244                 243                 236                 229                 265                 251                 217                 

2013 342                 339                 298                 297                 311                 304                 320                 305                 304                 297                 318                 

2014 789                 794                 717                 1,315              698                 704                 798                 759                 791                 777                 739                 

2015 4,880              4,260              3,937              3,884              3,841              3,701              4,428              4,140              3,905              3,812              4,312              

Totals 6,340              5,736              5,350              5,890              5,425              5,279              6,264              5,911              5,750              5,625              5,792              

Sample Insurance Company Sample Insurance Company

Schedule P, Part A -- Homeowners / Farmowners Schedule P, Part A -- Homeowners / Farmowners

Summary of Results by Model (in 000's) Reconciliation of Total Results (in 000's)

Ranges Best Estimate (Weighted)

Accident Best Est. Weighted Modeled

Year (Weighted) Minimum Maximum Mininum Maximum

2006 5                     1                     12                   1                     12                   

2007 9                     3                     23                   3                     23                   

2008 20                   9                     44                   9                     44                   

2009 29                   18                   53                   18                   53                   

2010 49                   38                   75                   38                   75                   

2011 94                   80                   125                 80                   125                 

2012 217                 181                 244                 181                 244                 

2013 318                 298                 342                 298                 342                 

2014 739                 698                 789                 698                 789                 

2015 4,312              3,841              4,880              3,841              4,880              

Totals 5,792              5,166              6,587              5,350              6,340              



Using the Hayne MLE Models: A Practitioner’s Guide 
 

 

Casualty Actuarial Society E-Forum, Summer 2016 77 

Figure B.24. Reconciliation of total results (weighted) 

 

Figure B.25. Estimated unpaid model results (weighted) 

 

Figure B.26. Estimated cash flow (weighted) 

 

Sample Insurance Company Sample Insurance Company

Schedule P, Part A -- Homeowners / Farmowners Schedule P, Part A -- Homeowners / Farmowners

Reconciliation of Total Results (in 000's) Summary of Model Distributions (in 000's)

Best Estimate (Weighted) (Using Histograms)

Accident Paid Incurred Case Estimate of Estimate of

Year To Date To Date Reserves IBNR Ultimate Unpaid

2006 5,234              5,237              3                     2                     5,239              5                     

2007 6,470              6,479              9                     1                     6,480              9                     

2008 7,848              7,867              19                   1                     7,868              20                   

2009 7,020              7,046              26                   3                     7,050              29                   

2010 7,291              7,341              50                   (1)                    7,340              49                   

2011 8,134              8,225              91                   3                     8,228              94                   

2012 10,800            11,085            285                 (68)                  11,017            217                 

2013 7,522              7,810              288                 30                   7,840              318                 

2014 7,968              8,703              735                 4                     8,707              739                 

2015 9,309              12,788            3,478              834                 13,621            4,312              

Totals 77,596            82,580            4,984              808                 83,388            5,792              

Sample Insurance Company Sample Insurance Company

Schedule P, Part A -- Homeowners / Farmowners Schedule P, Part A -- Homeowners / Farmowners

Accident Year Unpaid (in 000's) Calendar Year Unpaid (in 000's)

Best Estimate (Weighted) Best Estimate (Weighted)

Accident Paid Mean Standard Coefficient 50.0% 75.0% 95.0% 99.0%

Year To Date Unpaid Error of Variation Minimum Maximum Percentile Percentile Percentile Percentile

2006 5,234              5                     8                     169.9% (37)                  63                   2                     6                     21                   35                   

2007 6,470              9                     14                   148.1% (30)                  103                 4                     11                   40                   59                   

2008 7,848              20                   22                   110.9% (38)                  156                 13                   28                   65                   92                   

2009 7,020              29                   25                   85.5% (71)                  227                 26                   43                   76                   99                   

2010 7,291              49                   35                   70.7% (90)                  210                 49                   72                   107                 133                 

2011 8,134              94                   55                   58.3% (132)                318                 96                   130                 180                 219                 

2012 10,800            217                 106                 49.0% (281)                659                 222                 284                 385                 478                 

2013 7,522              318                 162                 51.0% (438)                1,177              314                 400                 600                 759                 

2014 7,968              739                 335                 45.3% (1,016)             2,588              719                 903                 1,341              1,678              

2015 9,309              4,312              1,512              35.1% (2,872)             12,591            4,060              5,087              7,090              8,710              

Totals 77,596            5,792              1,571              27.1% (800)                14,273            5,568              6,609              8,652              10,410            

Normal Dist. 5,792              1,571              27.1% 5,792              6,851              8,375              9,446              

logNormal Dist. 5,846              1,890              32.3% 5,562              6,880              9,343              11,583            

Gamma Dist. 5,792              1,571              27.1% 5,651              6,760              8,594              10,056            

Sample Insurance Company Sample Insurance Company

Schedule P, Part A -- Homeowners / Farmowners Schedule P, Part A -- Homeowners / Farmowners

Calendar Year Unpaid (in 000's) Calendar Year Unpaid Claim Runoff (in 000's)

Best Estimate (Weighted) Best Estimate (Weighted)

Calendar Mean Standard Coefficient 50.0% 75.0% 95.0% 99.0%

Year Unpaid Error of Variation Minimum Maximum Percentile Percentile Percentile Percentile

2016 3,871              1,443              37.3% (3,836)             11,833            3,690              4,610              6,468              7,923              

2017 959                 413                 43.0% (878)                3,461              923                 1,183              1,709              2,114              

2018 446                 221                 49.6% (643)                1,488              429                 563                 848                 1,073              

2019 214                 113                 52.7% (371)                721                 208                 279                 408                 514                 

2020 124                 69                   55.9% (183)                529                 122                 165                 240                 304                 

2021 72                   44                   61.1% (103)                286                 71                   99                   146                 185                 

2022 44                   29                   66.8% (83)                  180                 43                   62                   94                   120                 

2023 28                   22                   78.5% (51)                  167                 26                   40                   66                   88                   

2024 16                   16                   104.0% (38)                  132                 12                   23                   47                   68                   

2025 10                   12                   124.9% (26)                  125                 7                     14                   33                   51                   

2026 6                     9                     155.5% (34)                  87                   3                     9                     24                   39                   

2027 3                     7                     220.4% (23)                  100                 1                     3                     16                   29                   

Totals 5,792              1,571              27.1% (800)                14,273            5,568              6,609              8,652              10,410            
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Figure B.27. Estimated loss ratio (weighted) 

 

Figure B.28. Estimated unpaid claim runoff (weighted) 

 

Figure B.29. Mean of incremental values (weighted) 

 

Figure B.30. Standard deviation of incremental values (weighted) 

 

Sample Insurance Company Sample Insurance Company

Schedule P, Part A -- Homeowners / Farmowners Schedule P, Part A -- Homeowners / Farmowners

Accident Year Ultimate Loss Ratios (in 000's) Accident Year Incremental Values by Development Period

Best Estimate (Weighted) Best Estimate (Weighted)

Accident Earned Mean Standard Coefficient 50.0% 75.0% 95.0% 99.0%

Year Premium Loss Ratio Error of Variation Minimum Maximum Percentile Percentile Percentile Percentile

2006 7,878              69.8% 21.6% 31.0% -26.9% 168.0% 67.7% 80.4% 108.4% 129.3%

2007 8,257              79.7% 22.8% 28.6% -29.4% 192.7% 78.8% 90.5% 120.1% 141.0%

2008 8,812              89.6% 24.5% 27.4% -11.8% 254.9% 89.0% 100.9% 132.4% 155.1%

2009 9,823              75.4% 22.6% 29.9% -57.7% 189.6% 73.1% 86.1% 116.6% 138.5%

2010 11,499            66.1% 20.0% 30.3% -44.6% 173.3% 64.5% 75.4% 101.7% 122.0%

2011 12,965            65.2% 19.1% 29.4% -37.5% 169.8% 64.0% 74.1% 99.1% 117.4%

2012 13,875            84.3% 25.1% 29.8% -32.7% 231.7% 80.7% 96.3% 130.5% 157.9%

2013 14,493            57.6% 18.6% 32.3% -36.6% 160.7% 55.3% 66.5% 91.7% 109.1%

2014 15,202            60.4% 19.3% 32.0% -17.0% 175.8% 58.1% 70.0% 95.2% 114.0%

2015 15,148            96.2% 26.7% 27.7% -16.9% 235.7% 90.5% 110.0% 146.5% 172.7%

Totals 117,952          74.0% 7.2% 9.7% 47.5% 109.0% 73.9% 78.6% 85.9% 91.8%

Sample Insurance Company Sample Insurance Company

Schedule P, Part A -- Homeowners / Farmowners Schedule P, Part A -- Homeowners / Farmowners

Calendar Year Unpaid Claim Runoff (in 000's) Accident Year Ultimate Loss Ratios (in 000's)

Best Estimate (Weighted) Best Estimate (Weighted)

Calendar Mean Standard Coefficient 50.0% 75.0% 95.0% 99.0%

Year Unpaid Error of Variation Minimum Maximum Percentile Percentile Percentile Percentile

2015 5,792              1,571              27.1% (800)                14,273            5,568              6,609              8,652              10,410            

2016 1,920              505                 26.3% (102)                4,329              1,876              2,206              2,823              3,308              

2017 961                 275                 28.6% (206)                2,428              950                 1,116              1,441              1,713              

2018 515                 159                 30.8% (97)                  1,203              515                 616                 779                 913                 

2019 301                 110                 36.5% (101)                828                 299                 371                 485                 574                 

2020 178                 80                   45.3% (135)                674                 171                 225                 321                 402                 

2021 106                 62                   58.8% (132)                515                 98                   139                 221                 297                 

2022 62                   48                   77.6% (74)                  417                 51                   84                   153                 217                 

2023 34                   35                   102.2% (96)                  305                 24                   47                   103                 156                 

2024 18                   23                   123.2% (58)                  243                 11                   26                   63                   100                 

2025 9                     14                   154.2% (38)                  162                 4                     12                   37                   61                   

2026 3                     7                     220.4% (23)                  100                 1                     3                     16                   29                   

Sample Insurance Company Sample Insurance Company

Schedule P, Part A -- Homeowners / Farmowners Schedule P, Part A -- Homeowners / Farmowners

Accident Year Incremental Values by Development Period Accident Year Incremental Values by Development Period

Best Estimate (Weighted) Best Estimate (Weighted)

Accident Mean Values (in 000's)

Year 12 24 36 48 60 72 84 96 108 120 132 144 156

2006 3,865              1,191              233                 103                 43                   25                   14                   8                     6                     3                     2                     1                     1                     

2007 4,622              1,425              285                 123                 53                   30                   17                   10                   7                     3                     2                     2                     1                     

2008 5,563              1,705              335                 148                 61                   35                   20                   12                   9                     4                     3                     2                     2                     

2009 5,203              1,608              317                 138                 59                   33                   18                   11                   8                     4                     3                     2                     2                     

2010 5,342              1,647              323                 144                 61                   34                   19                   11                   8                     4                     3                     2                     2                     

2011 5,969              1,800              359                 159                 67                   38                   22                   13                   9                     4                     3                     2                     2                     

2012 8,260              2,509              495                 217                 91                   51                   29                   18                   12                   6                     4                     3                     2                     

2013 5,857              1,818              356                 160                 67                   37                   21                   13                   9                     4                     3                     2                     2                     

2014 6,467              1,975              393                 172                 73                   41                   24                   14                   10                   5                     3                     2                     2                     

2015 10,266            3,145              620                 276                 114                 64                   37                   22                   15                   8                     5                     4                     3                     

Sample Insurance Company Sample Insurance Company

Schedule P, Part A -- Homeowners / Farmowners Schedule P, Part A -- Homeowners / Farmowners

Accident Year Incremental Values by Development Period Accident Year Incremental Values by Development Period

Best Estimate (Weighted) Best Estimate (Weighted)

Accident Standard Error Values (in 000's)

Year 12 24 36 48 60 72 84 96 108 120 132 144 156

2006 1,557              610                 166                 88                   43                   27                   17                   11                   8                     5                     4                     3                     3                     

2007 1,742              676                 187                 99                   49                   30                   19                   12                   9                     6                     5                     4                     4                     

2008 2,010              765                 209                 111                 55                   34                   22                   14                   11                   7                     6                     5                     4                     

2009 2,042              785                 212                 111                 55                   34                   21                   14                   10                   7                     5                     4                     4                     

2010 2,106              807                 223                 116                 59                   35                   22                   14                   11                   7                     5                     4                     4                     

2011 2,300              869                 240                 127                 63                   38                   24                   15                   12                   8                     6                     5                     4                     

2012 3,134              1,159              309                 158                 80                   48                   30                   20                   14                   9                     8                     6                     5                     

2013 2,476              953                 263                 139                 68                   41                   26                   16                   12                   8                     6                     5                     4                     

2014 2,723              1,050              284                 148                 74                   44                   28                   18                   13                   8                     6                     5                     5                     

2015 3,609              1,403              374                 200                 97                   59                   36                   23                   17                   12                   9                     8                     7                     
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Figure B.31. Coefficient of variation of incremental values (weighted) 

 

Figure B.32. Total unpaid claims distribution (weighted) 

 

Sample Insurance Company Sample Insurance Company

Schedule P, Part A -- Homeowners / Farmowners Schedule P, Part A -- Homeowners / Farmowners

Accident Year Incremental Values by Development Period Total Unpaid Distribution (in 000's)

Best Estimate (Weighted) Best Estimate (Weighted)

Accident Coefficients of Variation

Year 12 24 36 48 60 72 84 96 108 120 132 144 156

2006 40.3% 51.2% 71.1% 85.1% 100.7% 107.7% 120.5% 128.4% 136.7% 174.4% 200.4% 226.6% 249.8%

2007 37.7% 47.5% 65.4% 80.9% 92.4% 99.3% 112.8% 119.4% 129.6% 172.6% 195.5% 218.5% 244.5%

2008 36.1% 44.9% 62.3% 75.2% 89.6% 95.6% 107.4% 114.5% 123.2% 165.8% 185.0% 206.7% 235.0%

2009 39.2% 48.8% 66.8% 80.7% 93.0% 101.2% 114.9% 121.9% 127.6% 172.6% 189.1% 214.2% 239.5%

2010 39.4% 49.0% 68.8% 80.7% 97.1% 104.3% 115.3% 123.1% 130.5% 172.1% 192.4% 210.9% 237.6%

2011 38.5% 48.3% 66.8% 79.8% 94.1% 99.3% 112.5% 120.7% 128.3% 168.0% 185.7% 209.3% 236.7%

2012 37.9% 46.2% 62.3% 72.7% 88.2% 94.8% 102.4% 109.4% 117.7% 159.1% 176.0% 198.6% 228.9%

2013 42.3% 52.4% 73.9% 86.7% 101.8% 110.0% 119.8% 129.4% 136.3% 170.6% 190.1% 213.5% 244.3%

2014 42.1% 53.2% 72.3% 85.8% 101.0% 107.9% 117.3% 125.6% 133.1% 169.4% 191.4% 212.9% 232.3%

2015 35.2% 44.6% 60.4% 72.2% 85.1% 90.8% 99.1% 104.9% 115.8% 153.8% 171.3% 193.9% 220.4%

Sample Insurance Company Sample Insurance Company

Schedule P, Part A -- Homeowners / Farmowners Schedule P, Part A -- Homeowners / Farmowners
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Figure B.33. Summary of model distributions 

 

Sample Insurance Company

Schedule P, Part A -- Homeowners / Farmowners

Summary of Model Distributions (in 000's)

(Using Kernel Densities)
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Appendix C – Schedule P, Part B Results 

In this appendix the results for Schedule P, Part B (Private Passenger Auto Liability) are 

shown. 

Figure C.1. Estimated unpaid model results (Paid Berquist-Sherman) 

 

Figure C.2. Total unpaid claims distribution (Paid Berquist-Sherman) 

 

Sample Insurance Company Sample Insurance Company

Schedule P, Part B -- Private Passenger Auto Liability Schedule P, Part B -- Private Passenger Auto Liability

Accident Year Unpaid (in 000's) Calendar Year Unpaid (in 000's)

Paid Berquist & Sherman Model Paid Berquist & Sherman Model

Accident Mean Standard Coefficient 50.0% 75.0% 95.0% 99.0%

Year To Date Unpaid Error of Variation Minimum Maximum Percentile Percentile Percentile Percentile

2006 11,816 39                   8                     20.8% 13                   72                   39                   45                   53                   59                   

2007 12,679 68                   9                     13.6% 36                   103                 68                   74                   83                   89                   

2008 13,631 108                 10                   9.4% 75                   144                 108                 114                 124                 132                 

2009 14,472 184                 11                   6.2% 151                 224                 185                 192                 204                 212                 

2010 13,717 311                 14                   4.4% 263                 369                 312                 320                 333                 343                 

2011 13,090 571                 18                   3.2% 510                 627                 572                 583                 602                 618                 

2012 12,490 1,107              29                   2.6% 1,025              1,215              1,108              1,128              1,154              1,171              

2013 11,598 2,110              48                   2.3% 1,964              2,276              2,112              2,140              2,192              2,223              

2014 10,306 3,964              87                   2.2% 3,680              4,247              3,962              4,021              4,109              4,167              

2015 6,357 8,078              173                 2.1% 7,523              8,628              8,074              8,192              8,369              8,484              

Totals 120,157 16,541            271                 1.6% 15,759            17,433            16,553            16,724            16,991            17,159            

Normal Dist. 16,541            271                 1.6% 16,541            16,724            16,987            17,172            

logNormal Dist. 16,541            271                 1.6% 16,538            16,722            16,991            17,182            

Gamma Dist. 16,541            271                 1.6% 16,539            16,723            16,989            17,178            
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Figure C.3. Estimated unpaid model results (Incurred Berquist-Sherman) 

 

Figure C.4. Total unpaid claims distribution (Incurred Berquist-Sherman) 

 

Sample Insurance Company Sample Insurance Company

Schedule P, Part B -- Private Passenger Auto Liability Schedule P, Part B -- Private Passenger Auto Liability

Accident Year Unpaid (in 000's) Calendar Year Unpaid (in 000's)

Incurred Berquist & Sherman Model Incurred Berquist & Sherman Model

Accident Mean Standard Coefficient 50.0% 75.0% 95.0% 99.0%

Year To Date Unpaid Error of Variation Minimum Maximum Percentile Percentile Percentile Percentile

2006 11,816 41                   9                     21.3% 13                   77                   41                   46                   55                   62                   

2007 12,679 69                   10                   14.6% 39                   107                 69                   76                   87                   93                   

2008 13,631 110                 11                   10.5% 74                   156                 109                 117                 129                 137                 

2009 14,472 187                 14                   7.5% 144                 240                 187                 196                 211                 222                 

2010 13,717 315                 19                   6.0% 261                 391                 315                 328                 347                 363                 

2011 13,090 576                 30                   5.3% 468                 707                 576                 596                 623                 646                 

2012 12,490 1,113              54                   4.8% 845                 1,264              1,116              1,147              1,199              1,243              

2013 11,598 2,109              96                   4.6% 1,787              2,498              2,111              2,177              2,266              2,330              

2014 10,306 3,950              178                 4.5% 3,393              4,637              3,952              4,066              4,239              4,355              

2015 6,357 8,041              366                 4.6% 6,334              9,228              8,026              8,288              8,650              8,948              

Totals 120,157 16,511            492                 3.0% 14,729            18,489            16,495            16,835            17,297            17,794            

Normal Dist. 16,511            492                 3.0% 16,511            16,843            17,320            17,655            

logNormal Dist. 16,511            492                 3.0% 16,504            16,838            17,332            17,687            

Gamma Dist. 16,511            492                 3.0% 16,506            16,840            17,328            17,676            
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Figure C.5. Estimated unpaid model results (Paid Cape Cod) 

 

Figure C.6. Total unpaid claims distribution (Paid Cape Cod) 

 

Sample Insurance Company Sample Insurance Company

Schedule P, Part B -- Private Passenger Auto Liability Schedule P, Part B -- Private Passenger Auto Liability

Accident Year Unpaid (in 000's) Calendar Year Unpaid (in 000's)

Paid Cape Cod Model Paid Cape Cod Model

Accident Mean Standard Coefficient 50.0% 75.0% 95.0% 99.0%

Year To Date Unpaid Error of Variation Minimum Maximum Percentile Percentile Percentile Percentile

2006 11,816 305                 1,958              641.5% 0                     36,642            16                   69                   956                 4,630              

2007 12,679 351                 2,087              595.3% 22                   39,584            43                   100                 1,033              4,939              

2008 13,631 413                 2,214              535.9% 59                   41,095            84                   146                 1,180              5,464              

2009 14,472 511                 2,371              463.5% 130                 44,495            161                 226                 1,273              5,749              

2010 13,717 633                 2,322              366.8% 249                 45,048            294                 355                 1,426              5,889              

2011 13,090 884                 2,272              256.9% 484                 43,956            555                 611                 1,665              5,851              

2012 12,490 1,401              2,230              159.2% 976                 44,387            1,082              1,142              2,089              6,281              

2013 11,598 2,374              2,201              92.7% 1,858              43,272            2,069              2,130              3,085              7,659              

2014 10,306 4,212              2,322              55.1% 3,532              48,773            3,897              3,997              4,965              9,352              

2015 6,357 8,351              2,347              28.1% 7,248              52,155            8,056              8,265              9,150              13,969            

Totals 120,157 19,435            22,304            114.8% 15,233            439,407          16,251            16,796            26,583            69,103            

Normal Dist. 19,435            22,304            114.8% 19,435            34,479            56,121            71,321            

logNormal Dist. 18,404            5,673              30.8% 17,587            21,550            28,867            35,446            

Gamma Dist. 19,435            22,304            114.8% 11,848            26,812            64,241            103,101          
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Figure C.7. Estimated unpaid model results (Incurred Cape Cod) 

 

Figure C.8. Total unpaid claims distribution (Incurred Cape Cod) 

 

Sample Insurance Company Sample Insurance Company

Schedule P, Part B -- Private Passenger Auto Liability Schedule P, Part B -- Private Passenger Auto Liability

Accident Year Unpaid (in 000's) Calendar Year Unpaid (in 000's)

Incurred Cape Cod Model Incurred Cape Cod Model

Accident Mean Standard Coefficient 50.0% 75.0% 95.0% 99.0%

Year To Date Unpaid Error of Variation Minimum Maximum Percentile Percentile Percentile Percentile

2006 11,816 190                 746                 391.9% 0                     9,272              16                   69                   877                 3,473              

2007 12,679 223                 768                 344.3% 22                   9,932              43                   100                 942                 3,562              

2008 13,631 286                 852                 297.8% 55                   10,795            86                   146                 1,087              3,948              

2009 14,472 384                 914                 238.4% 128                 11,267            169                 234                 1,251              4,318              

2010 13,717 508                 878                 172.8% 253                 11,161            304                 365                 1,316              4,388              

2011 13,090 742                 826                 111.3% 469                 10,301            557                 612                 1,488              4,300              

2012 12,490 1,255              778                 62.0% 885                 10,899            1,091              1,149              1,966              4,634              

2013 11,598 2,195              726                 33.1% 1,762              10,855            2,059              2,139              2,836              5,297              

2014 10,306 4,034              675                 16.7% 3,364              11,716            3,923              4,062              4,582              6,785              

2015 6,357 8,415              515                 6.1% 7,434              14,114            8,371              8,612              9,068              10,103            

Totals 120,157 18,232            7,536              41.3% 15,207            109,195          16,630            17,144            25,086            50,824            

Normal Dist. 18,232            7,536              41.3% 18,232            23,315            30,627            35,763            

logNormal Dist. 18,025            3,936              21.8% 17,610            20,370            25,116            29,095            

Gamma Dist. 18,232            7,536              41.3% 17,205            22,599            32,131            40,152            
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Figure C.9. Estimated unpaid model results (Paid Chain Ladder) 

 

Figure C.10. Total unpaid claims distribution (Paid Chain Ladder) 

 
 

Sample Insurance Company Sample Insurance Company

Schedule P, Part B -- Private Passenger Auto Liability Schedule P, Part B -- Private Passenger Auto Liability

Accident Year Unpaid (in 000's) Calendar Year Unpaid (in 000's)

Paid Chain Ladder Model Paid Chain Ladder Model

Accident Mean Standard Coefficient 50.0% 75.0% 95.0% 99.0%

Year To Date Unpaid Error of Variation Minimum Maximum Percentile Percentile Percentile Percentile

2006 11,816 536                 3,745              698.6% 0                     70,078            19                   90                   1,532              8,689              

2007 12,679 602                 4,030              669.2% 20                   75,408            48                   126                 1,704              9,201              

2008 13,631 681                 4,276              628.2% 57                   79,197            88                   170                 1,892              10,040            

2009 14,472 798                 4,564              572.0% 129                 85,847            165                 259                 2,008              10,661            

2010 13,717 901                 4,410              489.2% 243                 84,539            294                 379                 2,129              10,702            

2011 13,090 1,135              4,285              377.7% 474                 82,537            547                 628                 2,315              10,327            

2012 12,490 1,649              4,245              257.4% 953                 81,846            1,072              1,149              2,810              10,613            

2013 11,598 2,636              4,296              163.0% 1,896              82,205            2,061              2,142              3,817              12,255            

2014 10,306 4,493              4,528              100.8% 3,577              89,297            3,897              3,996              5,690              14,021            

2015 6,357 8,629              4,501              52.2% 7,540              92,918            8,051              8,195              9,809              18,554            

Totals 120,157 22,060            42,872            194.3% 15,256            823,872          16,189            16,962            34,096            115,071          

Normal Dist. 22,060            42,872            194.3% 22,060            50,977            92,579            121,796          

logNormal Dist. 19,588            7,896              40.3% 18,168            23,603            34,394            44,805            

Gamma Dist. 22,060            42,872            194.3% 4,314              23,741            104,947          208,038          
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Figure C.11. Estimated unpaid model results (Incurred Chain Ladder) 

 

Figure C.12. Total unpaid claims distribution (Incurred Chain Ladder) 

 

Sample Insurance Company Sample Insurance Company

Schedule P, Part B -- Private Passenger Auto Liability Schedule P, Part B -- Private Passenger Auto Liability

Accident Year Unpaid (in 000's) Calendar Year Unpaid (in 000's)

Incurred Chain Ladder Model Incurred Chain Ladder Model

Accident Mean Standard Coefficient 50.0% 75.0% 95.0% 99.0%

Year To Date Unpaid Error of Variation Minimum Maximum Percentile Percentile Percentile Percentile

2006 11,816 212                 994                 469.1% (1,028)             16,639            10                   55                   904                 4,948              

2007 12,679 226                 1,009              446.6% (5,368)             16,438            38                   85                   1,047              3,770              

2008 13,631 243                 867                 357.1% (4,064)             10,852            70                   135                 1,029              4,617              

2009 14,472 375                 1,083              288.8% (601)                14,903            151                 227                 1,236              5,709              

2010 13,717 445                 1,049              235.9% (3,824)             15,213            255                 399                 1,511              4,644              

2011 13,090 598                 1,083              181.0% (2,561)             13,647            441                 674                 1,523              5,014              

2012 12,490 990                 1,092              110.3% (2,239)             15,426            897                 1,315              2,329              4,854              

2013 11,598 1,704              1,577              92.6% (3,079)             13,891            1,641              2,364              3,908              7,614              

2014 10,306 3,106              2,388              76.9% (5,810)             20,138            3,137              4,479              6,789              8,088              

2015 6,357 6,652              4,635              69.7% (14,979)           22,158            6,703              9,505              14,259            16,821            

Totals 120,157 14,551            9,189              63.1% (13,211)           115,434          13,628            17,226            25,849            49,616            

Normal Dist. 14,551            9,189              63.1% 14,551            20,749            29,666            35,928            

logNormal Dist. 25,561            52,784            206.5% 11,140            26,572            92,799            223,349          

Gamma Dist. 14,551            9,189              63.1% 12,669            19,278            32,188            43,849            
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Figure C.13. Estimated unpaid model results (Paid Hoerl Curve) 

 

Figure C.14. Total unpaid claims distribution (Paid Hoerl Curve) 

 

Sample Insurance Company Sample Insurance Company

Schedule P, Part B -- Private Passenger Auto Liability Schedule P, Part B -- Private Passenger Auto Liability

Accident Year Unpaid (in 000's) Calendar Year Unpaid (in 000's)

Paid Hoerl Curve Model Paid Hoerl Curve Model

Accident Mean Standard Coefficient 50.0% 75.0% 95.0% 99.0%

Year To Date Unpaid Error of Variation Minimum Maximum Percentile Percentile Percentile Percentile

2006 11,816 31                   6                     19.3% 15                   55                   31                   35                   42                   47                   

2007 12,679 55                   8                     15.0% 35                   90                   54                   60                   69                   78                   

2008 13,631 98                   11                   11.3% 66                   137                 97                   105                 118                 127                 

2009 14,472 180                 15                   8.6% 140                 234                 179                 190                 206                 220                 

2010 13,717 309                 22                   7.0% 246                 384                 309                 323                 345                 356                 

2011 13,090 561                 34                   6.1% 459                 688                 560                 583                 618                 641                 

2012 12,490 1,057              57                   5.4% 880                 1,275              1,058              1,093              1,154              1,188              

2013 11,598 2,052              101                 4.9% 1,716              2,381              2,052              2,114              2,222              2,283              

2014 10,306 4,145              201                 4.9% 3,441              4,783              4,154              4,273              4,458              4,653              

2015 6,357 8,030              386                 4.8% 6,852              9,105              8,032              8,286              8,689              8,951              

Totals 120,157 16,517            562                 3.4% 14,682            18,267            16,519            16,894            17,410            17,867            

Normal Dist. 16,517            562                 3.4% 16,517            16,896            17,442            17,825            

logNormal Dist. 16,517            563                 3.4% 16,507            16,891            17,459            17,869            

Gamma Dist. 16,517            562                 3.4% 16,511            16,893            17,453            17,853            
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Figure C.15. Estimated unpaid model results (Incurred Hoerl Curve) 

 

Figure C.16. Total unpaid claims distribution (Incurred Hoerl Curve) 

 

Sample Insurance Company Sample Insurance Company

Schedule P, Part B -- Private Passenger Auto Liability Schedule P, Part B -- Private Passenger Auto Liability

Accident Year Unpaid (in 000's) Calendar Year Unpaid (in 000's)

Incurred Hoerl Curve Model Incurred Hoerl Curve Model

Accident Mean Standard Coefficient 50.0% 75.0% 95.0% 99.0%

Year To Date Unpaid Error of Variation Minimum Maximum Percentile Percentile Percentile Percentile

2006 11,816 32                   6                     20.1% 15                   55                   31                   36                   43                   50                   

2007 12,679 56                   9                     15.9% 34                   97                   55                   61                   72                   79                   

2008 13,631 100                 12                   12.4% 66                   143                 99                   107                 120                 131                 

2009 14,472 183                 17                   9.5% 132                 238                 182                 194                 214                 227                 

2010 13,717 314                 26                   8.2% 212                 400                 314                 332                 357                 375                 

2011 13,090 570                 43                   7.5% 426                 716                 569                 597                 645                 679                 

2012 12,490 1,074              73                   6.8% 835                 1,329              1,074              1,122              1,196              1,251              

2013 11,598 2,082              132                 6.3% 1,641              2,530              2,084              2,169              2,300              2,401              

2014 10,306 4,203              241                 5.7% 3,414              5,065              4,196              4,363              4,600              4,783              

2015 6,357 8,167              443                 5.4% 6,639              10,105            8,175              8,444              8,904              9,166              

Totals 120,157 16,781            549                 3.3% 14,964            19,012            16,788            17,130            17,678            18,120            

Normal Dist. 16,781            549                 3.3% 16,781            17,151            17,684            18,059            

logNormal Dist. 16,781            549                 3.3% 16,772            17,146            17,698            18,097            

Gamma Dist. 16,781            549                 3.3% 16,775            17,148            17,695            18,085            
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Figure C.17. Estimated unpaid model results (Paid Wright) 

 

Figure C.18. Total unpaid claims distribution (Paid Wright) 

 

Sample Insurance Company Sample Insurance Company

Schedule P, Part B -- Private Passenger Auto Liability Schedule P, Part B -- Private Passenger Auto Liability

Accident Year Unpaid (in 000's) Calendar Year Unpaid (in 000's)

Paid Wright Model Paid Wright Model

Accident Mean Standard Coefficient 50.0% 75.0% 95.0% 99.0%

Year To Date Unpaid Error of Variation Minimum Maximum Percentile Percentile Percentile Percentile

2006 11,816 33                   6                     18.0% 19                   52                   32                   36                   44                   49                   

2007 12,679 57                   8                     14.2% 35                   87                   56                   62                   72                   77                   

2008 13,631 103                 12                   11.2% 69                   149                 102                 110                 124                 131                 

2009 14,472 188                 16                   8.5% 132                 238                 188                 198                 215                 227                 

2010 13,717 322                 23                   7.2% 252                 392                 321                 337                 361                 375                 

2011 13,090 572                 36                   6.4% 471                 719                 572                 597                 635                 656                 

2012 12,490 1,039              63                   6.0% 832                 1,219              1,042              1,082              1,140              1,185              

2013 11,598 1,982              116                 5.8% 1,603              2,345              1,983              2,057              2,174              2,245              

2014 10,306 4,172              259                 6.2% 3,263              5,107              4,178              4,339              4,619              4,755              

2015 6,357 7,932              596                 7.5% 6,151              10,392            7,894              8,315              8,943              9,467              

Totals 120,157 16,399            712                 4.3% 14,387            18,935            16,364            16,858            17,619            18,179            

Normal Dist. 16,399            712                 4.3% 16,399            16,879            17,570            18,055            

logNormal Dist. 16,399            710                 4.3% 16,383            16,869            17,593            18,119            

Gamma Dist. 16,399            712                 4.3% 16,389            16,873            17,587            18,100            
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Figure C.19. Estimated unpaid model results (Incurred Wright) 

 

Figure C.20. Total unpaid claims distribution (Incurred Wright) 

 

Figure C.21. Model weights by accident year 

 

Sample Insurance Company Sample Insurance Company

Schedule P, Part B -- Private Passenger Auto Liability Schedule P, Part B -- Private Passenger Auto Liability

Accident Year Unpaid (in 000's) Calendar Year Unpaid (in 000's)

Incurred Wright Model Incurred Wright Model

Accident Mean Standard Coefficient 50.0% 75.0% 95.0% 99.0%

Year To Date Unpaid Error of Variation Minimum Maximum Percentile Percentile Percentile Percentile

2006 11,816 3,966,020           89,251,382         2250.4% 11                   2,562,613,734       32                      37                      47                      182                    

2007 12,679 6,836,660           151,785,937       2220.2% 35                   4,285,467,202       57                      63                      75                      397                    

2008 13,631 11,394,086         249,064,047       2185.9% 70                   6,902,830,083       105                    114                    130                    631                    

2009 14,472 22,062,894         473,328,887       2145.4% (19)                  12,454,255,734     197                    209                    231                    1,248                 

2010 13,717 33,137,459         697,879,848       2106.0% 175                 17,782,233,386     332                    349                    382                    2,198                 

2011 13,090 57,164,640         1,225,268,490    2143.4% 307                 33,399,406,687     577                    606                    652                    3,679                 

2012 12,490 112,525,697       2,407,249,389    2139.3% 479                 64,465,798,848     1,066                 1,105                 1,196                 6,437                 

2013 11,598 217,196,589       4,589,378,234    2113.0% 876                 115,499,405,106   2,020                 2,103                 2,279                 12,504               

2014 10,306 395,484,469       8,302,943,031    2099.4% (546)                208,307,514,180   4,137                 4,285                 4,552                 24,508               

2015 6,357 854,159,749       18,202,471,420  2131.0% 2,861              478,840,892,606   8,366                 8,599                 9,075                 50,131               

Totals 120,157 1,713,928,261    36,360,742,828  2121.5% 6,088              944,500,417,566   16,866               17,188               17,873               101,915             

Normal Dist. 1,713,928,261    36,360,742,828  2121.5% 1,713,928,261   26,238,876,608 61,522,027,980 86,301,665,037 

logNormal Dist. 42,038                82,461                196.2% 19,093               44,556               150,791             355,000             

Gamma Dist. 1,713,928,261    36,360,742,828  2121.5% 0                        0                        41                      4,737,757,328   
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Accident Model Weights by Accident Year

Year Paid BS Incd BS Paid CC Incd CC Paid CL Incd CL Paid HC Paid WR Paid WR Incd WR TOTAL

2006 10.0% 20.0% 10.0% 20.0% 10.0% 20.0% 5.0% 5.0% 100.0%

2007 10.0% 20.0% 10.0% 20.0% 10.0% 20.0% 5.0% 5.0% 100.0%

2008 10.0% 20.0% 10.0% 20.0% 10.0% 20.0% 5.0% 5.0% 100.0%

2009 10.0% 20.0% 10.0% 20.0% 10.0% 20.0% 5.0% 5.0% 100.0%

2010 10.0% 20.0% 10.0% 20.0% 10.0% 20.0% 5.0% 5.0% 100.0%

2011 10.0% 20.0% 10.0% 20.0% 10.0% 20.0% 5.0% 5.0% 100.0%

2012 10.0% 20.0% 10.0% 20.0% 10.0% 20.0% 5.0% 5.0% 100.0%

2013 10.0% 20.0% 10.0% 20.0% 10.0% 20.0% 5.0% 5.0% 100.0%

2014 10.0% 20.0% 10.0% 20.0% 10.0% 20.0% 5.0% 5.0% 100.0%

2015 10.0% 20.0% 10.0% 20.0% 10.0% 20.0% 5.0% 5.0% 100.0%
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Figure C.22. Estimated mean unpaid by model 

 

Figure C.23. Estimated ranges 

 

Sample Insurance Company Sample Insurance Company

Schedule P, Part B -- Private Passenger Auto Liability Schedule P, Part B -- Private Passenger Auto Liability

Summary of Results by Model (in 000's) Reconciliation of Total Results (in 000's)

Mean Estimated Unpaid Best Estimate (Weighted)

Accident Berquist & Sherman Cape Cod Chain Ladder Hoerl Curve Best Est.

Year Paid Incurred Paid Incurred Paid Incurred Paid Incurred (Weighted)

2006 39                   41                   305                 190                 536                 212                 31                   33                   140                 

2007 68                   69                   351                 223                 602                 226                 55                   57                   186                 

2008 108                 110                 413                 286                 681                 243                 98                   103                 215                 

2009 184                 187                 511                 384                 798                 375                 180                 188                 314                 

2010 311                 315                 633                 508                 901                 445                 309                 322                 439                 

2011 571                 576                 884                 742                 1,135              598                 561                 572                 677                 

2012 1,107              1,113              1,401              1,255              1,649              990                 1,057              1,039              1,165              

2013 2,110              2,109              2,374              2,195              2,636              1,704              2,052              1,982              2,093              

2014 3,964              3,950              4,212              4,034              4,493              3,106              4,145              4,172              3,923              

2015 8,078              8,041              8,351              8,415              8,629              6,652              8,030              7,932              7,928              

Totals 16,541            16,511            19,435            18,232            22,060            14,551            16,517            16,399            17,079            

Sample Insurance Company Sample Insurance Company

Schedule P, Part B -- Private Passenger Auto Liability Schedule P, Part B -- Private Passenger Auto Liability

Summary of Results by Model (in 000's) Reconciliation of Total Results (in 000's)

Ranges Best Estimate (Weighted)

Accident Best Est. Weighted Modeled

Year (Weighted) Minimum Maximum Mininum Maximum

2006 140                 31                   536                 31                   536                 

2007 186                 55                   602                 55                   602                 

2008 215                 98                   681                 98                   681                 

2009 314                 180                 798                 180                 798                 

2010 439                 309                 901                 309                 901                 

2011 677                 561                 1,135              561                 1,135              

2012 1,165              990                 1,649              990                 1,649              

2013 2,093              1,704              2,636              1,704              2,636              

2014 3,923              3,106              4,493              3,106              4,493              

2015 7,928              6,652              8,629              6,652              8,629              

Totals 17,079            13,687            22,060            14,551            22,060            
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Figure C.24. Reconciliation of total results (weighted) 

 

Figure C.25. Estimated unpaid model results (weighted) 

 

Sample Insurance Company Sample Insurance Company

Schedule P, Part B -- Private Passenger Auto Liability Schedule P, Part B -- Private Passenger Auto Liability

Reconciliation of Total Results (in 000's) Summary of Model Distributions (in 000's)

Best Estimate (Weighted) (Using Histograms)

Accident Paid Incurred Case Estimate of Estimate of

Year To Date To Date Reserves IBNR Ultimate Unpaid

2006 11,816            11,863            47                   92                   11,956            140                 

2007 12,679            12,752            72                   113                 12,865            186                 

2008 13,631            13,743            112                 103                 13,846            215                 

2009 14,472            14,687            216                 99                   14,786            314                 

2010 13,717            14,079            362                 77                   14,156            439                 

2011 13,090            13,691            600                 76                   13,767            677                 

2012 12,490            13,683            1,193              (28)                  13,655            1,165              

2013 11,598            13,912            2,313              (221)                13,691            2,093              

2014 10,306            14,625            4,319              (396)                14,229            3,923              

2015 6,357              15,188            8,830              (902)                14,285            7,928              

Totals 120,157          138,223          18,066            (987)                137,236          17,079            

Sample Insurance Company Sample Insurance Company

Schedule P, Part B -- Private Passenger Auto Liability Schedule P, Part B -- Private Passenger Auto Liability

Accident Year Unpaid (in 000's) Calendar Year Unpaid (in 000's)

Best Estimate (Weighted) Best Estimate (Weighted)

Accident Paid Mean Standard Coefficient 50.0% 75.0% 95.0% 99.0%

Year To Date Unpaid Error of Variation Minimum Maximum Percentile Percentile Percentile Percentile

2006 11,816            140                 1,002              717.3% (2,012)             74,732            33                   46                   409                 2,417              

2007 12,679            186                 992                 534.2% (1,534)             37,021            59                   75                   490                 3,024              

2008 13,631            215                 926                 431.1% (5,790)             54,408            101                 118                 513                 3,196              

2009 14,472            314                 1,285              408.8% (2,963)             90,358            179                 200                 646                 3,686              

2010 13,717            439                 1,359              309.7% (1,945)             69,048            308                 333                 765                 3,336              

2011 13,090            677                 1,264              186.9% (3,824)             68,442            562                 598                 1,051              3,798              

2012 12,490            1,165              928                 79.7% (4,552)             27,150            1,088              1,144              1,762              4,562              

2013 11,598            2,093              1,405              67.1% (8,529)             79,999            2,066              2,153              2,880              5,341              

2014 10,306            3,923              4,359              111.1% (9,679)             405,947          3,935              4,095              5,126              7,619              

2015 6,357              7,928              2,727              34.4% (16,198)           92,918            8,087              8,384              10,346            14,962            

Totals 120,157          17,079            8,888              52.0% (8,740)             467,516          16,313            17,135            22,900            45,682            

Normal Dist. 17,079            8,888              52.0% 17,079            23,074            31,698            37,755            

logNormal Dist. 17,362            6,693              38.5% 16,200            20,823            29,882            38,509            

Gamma Dist. 17,079            8,888              52.0% 15,565            21,956            33,823            44,176            
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Figure C.26. Estimated cash flow (weighted) 

 

Figure C.27. Estimated loss ratio (weighted) 

 

Figure C.28. Estimated unpaid claim runoff (weighted) 

 

Sample Insurance Company Sample Insurance Company

Schedule P, Part B -- Private Passenger Auto Liability Schedule P, Part B -- Private Passenger Auto Liability

Calendar Year Unpaid (in 000's) Calendar Year Unpaid Claim Runoff (in 000's)

Best Estimate (Weighted) Best Estimate (Weighted)

Calendar Mean Standard Coefficient 50.0% 75.0% 95.0% 99.0%

Year Unpaid Error of Variation Minimum Maximum Percentile Percentile Percentile Percentile

2016 7,556              1,252              16.6% (4,926)             16,377            7,784              8,077              8,947              10,799            

2017 3,729              587                 15.7% (1,542)             7,781              3,832              3,979              4,440              5,204              

2018 2,056              329                 16.0% (1,017)             4,299              2,111              2,196              2,449              2,901              

2019 1,120              275                 24.5% (599)                12,854            1,116              1,175              1,441              1,965              

2020 672                 853                 126.9% (349)                60,793            576                 625                 1,032              2,954              

2021 426                 833                 195.4% (435)                33,332            306                 346                 791                 2,860              

2022 293                 815                 277.8% (956)                44,837            170                 205                 692                 2,742              

2023 244                 1,086              445.1% (1,312)             70,895            101                 132                 643                 3,052              

2024 209                 1,139              544.5% (744)                60,995            63                   93                   574                 3,034              

2025 180                 1,049              584.4% (1,512)             53,125            34                   64                   578                 2,993              

2026 159                 825                 519.5% (1,570)             23,121            19                   43                   550                 3,195              

2027 156                 1,260              805.5% (3,523)             74,981            11                   25                   478                 3,172              

2028 169                 3,600              2134.8% (7,667)             342,488          6                     12                   412                 2,742              

2029 110                 1,288              1168.6% (1,140)             66,389            2                     4                     196                 2,239              

Totals 17,079            8,888              52.0% (8,740)             467,516          16,313            17,135            22,900            45,682            

Sample Insurance Company Sample Insurance Company

Schedule P, Part B -- Private Passenger Auto Liability Schedule P, Part B -- Private Passenger Auto Liability

Accident Year Ultimate Loss Ratios (in 000's) Accident Year Incremental Values by Development Period

Best Estimate (Weighted) Best Estimate (Weighted)

Accident Earned Mean Standard Coefficient 50.0% 75.0% 95.0% 99.0%

Year Premium Loss Ratio Error of Variation Minimum Maximum Percentile Percentile Percentile Percentile

2006 15,679            72.5% 22.1% 30.5% -127.2% 554.0% 76.2% 78.6% 87.9% 125.3%

2007 15,510            77.8% 22.5% 28.9% -120.8% 321.8% 81.5% 83.9% 94.7% 134.4%

2008 16,428            79.2% 22.7% 28.7% -80.0% 418.0% 83.0% 85.4% 94.4% 135.3%

2009 18,432            76.0% 20.6% 27.1% -121.9% 568.8% 78.9% 81.6% 90.2% 128.0%

2010 20,376            66.2% 18.8% 28.5% -71.4% 405.5% 68.9% 71.2% 79.5% 112.5%

2011 20,821            63.2% 18.2% 28.8% -133.5% 391.5% 65.9% 67.8% 76.8% 108.6%

2012 20,445            64.2% 18.6% 29.0% -112.3% 193.2% 66.9% 68.8% 78.9% 114.7%

2013 20,724            63.2% 19.0% 30.1% -110.9% 441.9% 66.1% 67.9% 76.3% 110.3%

2014 20,414            67.4% 27.9% 41.3% -151.2% 2038.6% 69.9% 72.0% 81.6% 118.0%

2015 20,467            68.8% 20.5% 29.8% -139.5% 485.5% 70.7% 73.2% 87.2% 128.7%

Totals 189,295          69.3% 7.0% 10.1% 30.3% 277.8% 70.1% 73.0% 78.1% 84.1%

Sample Insurance Company Sample Insurance Company

Schedule P, Part B -- Private Passenger Auto Liability Schedule P, Part B -- Private Passenger Auto Liability

Calendar Year Unpaid Claim Runoff (in 000's) Accident Year Ultimate Loss Ratios (in 000's)

Best Estimate (Weighted) Best Estimate (Weighted)

Calendar Mean Standard Coefficient 50.0% 75.0% 95.0% 99.0%

Year Unpaid Error of Variation Minimum Maximum Percentile Percentile Percentile Percentile

2015 17,079            8,888              52.0% (8,740)             467,516          16,313            17,135            22,900            45,682            

2016 9,523              8,743              91.8% (3,814)             460,913          8,426              9,009              14,012            40,239            

2017 5,794              8,725              150.6% (2,272)             457,482          4,538              4,972              10,156            37,168            

2018 3,738              8,694              232.6% (1,255)             455,334          2,400              2,757              8,053              35,056            

2019 2,619              8,557              326.8% (656)                452,390          1,281              1,572              6,762              33,341            

2020 1,946              8,054              413.8% (307)                438,625          705                 938                 5,628              29,716            

2021 1,520              7,587              499.1% (156)                432,875          400                 597                 4,727              25,537            

2022 1,227              7,152              582.9% (101)                427,826          231                 388                 3,904              21,800            

2023 983                 6,647              676.3% (9,318)             427,376          133                 257                 3,207              18,459            

2024 774                 6,071              784.7% (9,365)             424,965          72                   160                 2,498              14,866            

2025 594                 5,472              921.1% (9,345)             411,264          39                   93                   1,874              11,321            

2026 435                 4,936              1134.2% (9,102)             393,463          19                   46                   1,261              7,898              

2027 279                 3,988              1430.4% (7,664)             342,491          8                     17                   690                 5,233              

2028 110                 1,288              1168.6% (1,140)             66,389            2                     4                     196                 2,239              
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Figure C.29. Mean of incremental values (weighted) 

 

Figure C.30. Standard deviation of incremental values (weighted) 

 

Figure C.31. Coefficient of variation of incremental values (weighted) 

 

Sample Insurance Company Sample Insurance Company

Schedule P, Part B -- Private Passenger Auto Liability Schedule P, Part B -- Private Passenger Auto Liability

Accident Year Incremental Values by Development Period Accident Year Incremental Values by Development Period

Best Estimate (Weighted) Best Estimate (Weighted)

Accident Mean Values (in 000's)

Year 12 24 36 48 60 72 84 96 108 120 132 144 156 168 180

2006 4,987              3,176              1,405              801                 432                 214                 108                 56                   31                   23                   14                   12                   16                   29                   68                   

2007 5,286              3,367              1,491              850                 458                 226                 114                 59                   32                   25                   15                   14                   18                   34                   80                   

2008 5,706              3,639              1,611              918                 495                 244                 123                 63                   35                   26                   16                   14                   18                   32                   73                   

2009 6,134              3,912              1,729              987                 532                 263                 133                 68                   38                   28                   17                   15                   20                   38                   90                   

2010 5,909              3,764              1,667              950                 512                 253                 128                 66                   36                   27                   16                   15                   20                   38                   92                   

2011 5,763              3,671              1,625              927                 499                 247                 125                 64                   35                   27                   16                   15                   20                   37                   91                   

2012 5,748              3,660              1,619              924                 498                 246                 124                 64                   35                   27                   16                   15                   20                   36                   84                   

2013 5,728              3,651              1,617              921                 497                 245                 124                 64                   35                   27                   16                   15                   20                   38                   92                   

2014 6,012              3,829              1,695              967                 521                 258                 130                 67                   37                   28                   17                   15                   21                   43                   125                 

2015 6,161              3,925              1,737              991                 534                 264                 133                 69                   38                   29                   17                   16                   22                   43                   110                 

Sample Insurance Company Sample Insurance Company

Schedule P, Part B -- Private Passenger Auto Liability Schedule P, Part B -- Private Passenger Auto Liability

Accident Year Incremental Values by Development Period Accident Year Incremental Values by Development Period

Best Estimate (Weighted) Best Estimate (Weighted)

Accident Standard Error Values (in 000's)

Year 12 24 36 48 60 72 84 96 108 120 132 144 156 168 180

2006 1,504              955                 425                 241                 131                 65                   33                   17                   9                     7                     11                   22                   58                   187                 752                 

2007 1,503              957                 426                 241                 131                 65                   33                   17                   9                     7                     12                   25                   68                   210                 696                 

2008 1,629              1,033              460                 261                 142                 70                   35                   18                   10                   8                     12                   25                   65                   192                 656                 

2009 1,622              1,031              458                 260                 141                 70                   35                   18                   10                   8                     13                   28                   76                   249                 951                 

2010 1,621              1,027              459                 260                 141                 70                   35                   18                   10                   8                     13                   28                   79                   269                 994                 

2011 1,612              1,022              458                 258                 140                 69                   35                   18                   10                   8                     13                   28                   77                   250                 917                 

2012 1,673              1,061              472                 268                 145                 72                   36                   19                   10                   8                     13                   27                   67                   192                 618                 

2013 1,670              1,063              473                 268                 145                 72                   36                   19                   10                   8                     13                   28                   78                   254                 950                 

2014 1,709              1,083              485                 275                 149                 74                   37                   19                   11                   8                     13                   31                   108                 572                 3,565              

2015 1,730              1,096              486                 277                 150                 74                   38                   20                   11                   9                     14                   31                   92                   328                 1,288              

Sample Insurance Company Sample Insurance Company

Schedule P, Part B -- Private Passenger Auto Liability Schedule P, Part B -- Private Passenger Auto Liability

Accident Year Incremental Values by Development Period Total Unpaid Distribution (in 000's)

Best Estimate (Weighted) Best Estimate (Weighted)

Accident Coefficients of Variation

Year 12 24 36 48 60 72 84 96 108 120 132 144 156 168 180

2006 30.1% 30.1% 30.2% 30.1% 30.3% 30.4% 30.3% 30.6% 30.9% 31.7% 77.8% 175.4% 359.0% 643.8% 1099.6%

2007 28.4% 28.4% 28.5% 28.4% 28.6% 28.6% 28.7% 28.9% 29.2% 30.0% 78.7% 186.6% 373.9% 612.0% 865.2%

2008 28.5% 28.4% 28.6% 28.4% 28.7% 28.6% 28.7% 28.9% 29.3% 30.2% 78.3% 178.7% 355.4% 591.5% 898.4%

2009 26.4% 26.4% 26.5% 26.4% 26.6% 26.6% 26.6% 26.8% 27.3% 28.2% 77.7% 181.3% 372.8% 661.7% 1057.6%

2010 27.4% 27.3% 27.5% 27.4% 27.5% 27.6% 27.6% 27.9% 28.3% 29.0% 78.5% 188.1% 394.4% 708.1% 1079.9%

2011 28.0% 27.8% 28.1% 27.8% 28.1% 28.0% 28.2% 28.5% 28.9% 29.6% 79.8% 189.0% 390.0% 668.2% 1007.6%

2012 29.1% 29.0% 29.1% 29.0% 29.2% 29.1% 29.1% 29.4% 29.8% 30.8% 79.4% 180.6% 340.5% 529.0% 733.9%

2013 29.2% 29.1% 29.3% 29.1% 29.3% 29.3% 29.4% 29.5% 29.8% 30.6% 80.1% 190.3% 391.1% 673.6% 1037.3%

2014 28.4% 28.3% 28.6% 28.4% 28.6% 28.5% 28.7% 28.8% 29.3% 29.9% 78.3% 202.5% 513.3% 1333.7% 2845.1%

2015 28.1% 27.9% 28.0% 27.9% 28.2% 28.1% 28.2% 28.6% 28.8% 29.9% 80.0% 196.5% 420.2% 757.1% 1168.6%
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Figure C.32. Total unpaid claims distribution (weighted) 

 

Figure C.33. Summary of model distributions 

 
  

Sample Insurance Company Sample Insurance Company

Schedule P, Part B -- Private Passenger Auto Liability Schedule P, Part B -- Private Passenger Auto Liability

Total Unpaid Distribution (in 000's) Summary of Results by Model (in 000's)

Best Estimate (Weighted) Mean Estimated Unpaid
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Appendix D – Schedule P, Part C Results 

In this appendix the results for Schedule P, Part C (Commercial Auto Liability) are shown. 

Figure D.1. Estimated unpaid model results (Paid Berquist-Sherman) 

 

Figure D.2. Total unpaid claims distribution (Paid Berquist-Sherman) 

 

Sample Insurance Company Sample Insurance Company

Schedule P, Part C -- Commercial Auto Liability Schedule P, Part C -- Commercial Auto Liability

Accident Year Unpaid (in 000's) Calendar Year Unpaid (in 000's)

Paid Berquist & Sherman Model Paid Berquist & Sherman Model

Accident Mean Standard Coefficient 50.0% 75.0% 95.0% 99.0%

Year To Date Unpaid Error of Variation Minimum Maximum Percentile Percentile Percentile Percentile

2006 1,563 1                     3                     251.9% (20)                  14                   1                     3                     7                     10                   

2007 1,469 4                     5                     149.6% (23)                  22                   3                     7                     13                   18                   

2008 1,387 14                   8                     54.9% (21)                  43                   14                   19                   28                   34                   

2009 1,350 28                   10                   35.4% (9)                    62                   27                   34                   44                   51                   

2010 1,342 50                   13                   25.4% 5                     91                   50                   58                   71                   81                   

2011 1,198 103                 16                   15.6% 55                   157                 103                 114                 128                 140                 

2012 1,061 209                 22                   10.3% 110                 303                 210                 224                 243                 256                 

2013 853 402                 28                   6.9% 308                 490                 401                 421                 448                 467                 

2014 645 742                 40                   5.4% 619                 888                 741                 768                 809                 842                 

2015 294 1,176              51                   4.4% 1,026              1,341              1,173              1,212              1,260              1,299              

Totals 11,162 2,729              111                 4.1% 2,361              3,140              2,725              2,798              2,918              2,983              

Normal Dist. 2,729              111                 4.1% 2,729              2,804              2,911              2,986              

logNormal Dist. 2,729              111                 4.1% 2,727              2,802              2,915              2,996              

Gamma Dist. 2,729              111                 4.1% 2,727              2,803              2,913              2,993              
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Schedule P, Part C -- Commercial Auto Liability
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Figure D.3. Estimated unpaid model results (Incurred Berquist-Sherman) 

 

Figure D.4. Total unpaid claims distribution (Incurred Berquist-Sherman) 

 

Sample Insurance Company Sample Insurance Company

Schedule P, Part C -- Commercial Auto Liability Schedule P, Part C -- Commercial Auto Liability

Accident Year Unpaid (in 000's) Calendar Year Unpaid (in 000's)

Incurred Berquist & Sherman Model Incurred Berquist & Sherman Model

Accident Mean Standard Coefficient 50.0% 75.0% 95.0% 99.0%

Year To Date Unpaid Error of Variation Minimum Maximum Percentile Percentile Percentile Percentile

2006 1,563 1                     3                     258.7% (25)                  13                   1                     3                     6                     9                     

2007 1,469 3                     5                     152.9% (27)                  24                   3                     6                     12                   17                   

2008 1,387 14                   8                     56.8% (23)                  45                   13                   18                   27                   33                   

2009 1,350 27                   10                   38.6% (7)                    76                   26                   33                   45                   53                   

2010 1,342 49                   15                   30.0% 4                     107                 49                   59                   75                   88                   

2011 1,198 103                 23                   22.1% 46                   186                 102                 117                 142                 162                 

2012 1,061 213                 39                   18.1% 107                 334                 212                 239                 275                 304                 

2013 853 418                 67                   16.0% 160                 655                 418                 463                 531                 577                 

2014 645 786                 122                 15.6% 363                 1,249              783                 864                 981                 1,074              

2015 294 1,271              182                 14.3% 655                 1,879              1,274              1,387              1,570              1,699              

Totals 11,162 2,885              276                 9.6% 1,805              3,901              2,887              3,072              3,340              3,553              

Normal Dist. 2,885              276                 9.6% 2,885              3,072              3,340              3,528              

logNormal Dist. 2,885              281                 9.8% 2,872              3,066              3,370              3,601              

Gamma Dist. 2,885              276                 9.6% 2,876              3,066              3,354              3,567              
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Figure D.5. Estimated unpaid model results (Paid Cape Cod) 

 

Figure D.6. Total unpaid claims distribution (Paid Cape Cod) 

 

Sample Insurance Company Sample Insurance Company

Schedule P, Part C -- Commercial Auto Liability Schedule P, Part C -- Commercial Auto Liability

Accident Year Unpaid (in 000's) Calendar Year Unpaid (in 000's)

Paid Cape Cod Model Paid Cape Cod Model

Accident Mean Standard Coefficient 50.0% 75.0% 95.0% 99.0%

Year To Date Unpaid Error of Variation Minimum Maximum Percentile Percentile Percentile Percentile

2006 1,563 2                     7                     352.9% (28)                  39                   2                     5                     13                   21                   

2007 1,469 5                     10                   202.5% (35)                  45                   4                     11                   22                   33                   

2008 1,387 15                   12                   80.5% (24)                  71                   14                   22                   34                   45                   

2009 1,350 29                   14                   49.5% (25)                  97                   28                   38                   52                   63                   

2010 1,342 53                   17                   32.0% 2                     103                 53                   65                   82                   92                   

2011 1,198 101                 19                   18.9% 29                   165                 101                 114                 133                 149                 

2012 1,061 212                 24                   11.3% 131                 303                 211                 228                 250                 266                 

2013 853 407                 30                   7.4% 296                 509                 406                 426                 455                 477                 

2014 645 767                 46                   6.0% 619                 932                 766                 796                 845                 882                 

2015 294 1,093              73                   6.7% 826                 1,319              1,093              1,142              1,216              1,265              

Totals 11,162 2,684              130                 4.8% 2,267              3,103              2,680              2,772              2,895              2,998              

Normal Dist. 2,684              130                 4.8% 2,684              2,772              2,898              2,987              

logNormal Dist. 2,684              131                 4.9% 2,681              2,770              2,904              3,002              

Gamma Dist. 2,684              130                 4.8% 2,682              2,770              2,901              2,996              
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Figure D.7. Estimated unpaid model results (Incurred Cape Cod) 

 

Figure D.8. Total unpaid claims distribution (Incurred Cape Cod) 

 

Sample Insurance Company Sample Insurance Company

Schedule P, Part C -- Commercial Auto Liability Schedule P, Part C -- Commercial Auto Liability

Accident Year Unpaid (in 000's) Calendar Year Unpaid (in 000's)

Incurred Cape Cod Model Incurred Cape Cod Model

Accident Mean Standard Coefficient 50.0% 75.0% 95.0% 99.0%

Year To Date Unpaid Error of Variation Minimum Maximum Percentile Percentile Percentile Percentile

2006 1,563 (34)                  1,036              -3051.6% (32,754)           310                 0                     3                     10                   25                   

2007 1,469 (35)                  1,169              -3319.0% (36,931)           820                 2                     7                     20                   56                   

2008 1,387 42                   790                 1886.5% (2,137)             18,514            10                   19                   40                   110                 

2009 1,350 11                   643                 5723.4% (18,141)           8,214              25                   37                   62                   107                 

2010 1,342 (19)                  1,741              -9140.2% (53,588)           3,106              53                   70                   102                 194                 

2011 1,198 112                 749                 666.5% (13,123)           18,673            113                 133                 182                 506                 

2012 1,061 459                 8,951              1951.6% (36,649)           279,556          223                 255                 353                 979                 

2013 853 533                 4,998              937.7% (46,566)           125,917          417                 464                 613                 2,008              

2014 645 1,277              16,899            1323.6% (21,260)           524,102          732                 793                 1,051              3,347              

2015 294 402                 10,559            2627.1% (306,693)         24,226            1,047              1,143              1,540              3,321              

Totals 11,162 2,747              23,026            838.1% (130,300)         711,166          2,611              2,788              3,131              4,659              

Normal Dist. 2,747              23,026            838.1% 2,747              18,278            40,621            56,313            

logNormal Dist. 7,743              34,578            446.6% 1,692              5,487              29,805            97,831            

Gamma Dist. 2,747              23,026            838.1% 0                     0                     3,034              #NUM!
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Figure D.9. Estimated unpaid model results (Paid Chain Ladder) 

 

Figure D.10. Total unpaid claims distribution (Paid Chain Ladder) 

 

Sample Insurance Company Sample Insurance Company

Schedule P, Part C -- Commercial Auto Liability Schedule P, Part C -- Commercial Auto Liability

Accident Year Unpaid (in 000's) Calendar Year Unpaid (in 000's)

Paid Chain Ladder Model Paid Chain Ladder Model

Accident Mean Standard Coefficient 50.0% 75.0% 95.0% 99.0%

Year To Date Unpaid Error of Variation Minimum Maximum Percentile Percentile Percentile Percentile

2006 1,563 1                     5                     494.6% (26)                  28                   1                     3                     9                     15                   

2007 1,469 3                     7                     245.1% (38)                  30                   2                     7                     15                   22                   

2008 1,387 13                   10                   75.7% (27)                  46                   12                   19                   28                   37                   

2009 1,350 26                   12                   46.8% (29)                  71                   26                   34                   46                   54                   

2010 1,342 51                   15                   29.9% (13)                  103                 51                   62                   76                   85                   

2011 1,198 101                 17                   17.2% 29                   159                 101                 113                 128                 142                 

2012 1,061 211                 21                   10.2% 121                 313                 211                 225                 245                 256                 

2013 853 406                 26                   6.5% 330                 493                 405                 423                 449                 470                 

2014 645 766                 34                   4.4% 669                 882                 766                 790                 822                 848                 

2015 294 1,096              43                   3.9% 974                 1,249              1,097              1,123              1,168              1,204              

Totals 11,162 2,675              95                   3.5% 2,374              3,000              2,675              2,739              2,829              2,912              

Normal Dist. 2,675              95                   3.5% 2,675              2,739              2,831              2,896              

logNormal Dist. 2,675              95                   3.6% 2,673              2,738              2,834              2,903              

Gamma Dist. 2,675              95                   3.5% 2,674              2,738              2,833              2,901              

Sample Insurance Company

Schedule P, Part C -- Commercial Auto Liability
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Paid Chain Ladder Model
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Figure D.11. Estimated unpaid model results (Incurred Chain Ladder) 

 

Figure D.12. Total unpaid claims distribution (Incurred Chain Ladder) 

 

Sample Insurance Company Sample Insurance Company

Schedule P, Part C -- Commercial Auto Liability Schedule P, Part C -- Commercial Auto Liability

Accident Year Unpaid (in 000's) Calendar Year Unpaid (in 000's)

Incurred Chain Ladder Model Incurred Chain Ladder Model

Accident Mean Standard Coefficient 50.0% 75.0% 95.0% 99.0%

Year To Date Unpaid Error of Variation Minimum Maximum Percentile Percentile Percentile Percentile

2006 1,563 1                     6                     693.6% (33)                  36                   0                     3                     9                     19                   

2007 1,469 3                     9                     357.0% (89)                  58                   1                     6                     18                   30                   

2008 1,387 12                   16                   127.8% (44)                  85                   10                   20                   40                   60                   

2009 1,350 25                   26                   100.8% (54)                  148                 22                   38                   70                   102                 

2010 1,342 47                   47                   100.1% (147)                214                 44                   74                   131                 180                 

2011 1,198 97                   89                   92.1% (191)                493                 95                   149                 252                 343                 

2012 1,061 200                 196                 98.1% (548)                955                 200                 317                 527                 709                 

2013 853 384                 366                 95.2% (1,275)             1,789              381                 616                 961                 1,279              

2014 645 718                 638                 88.8% (1,751)             3,360              724                 1,122              1,759              2,244              

2015 294 1,071              907                 84.7% (3,060)             4,244              1,136              1,645              2,559              3,298              

Totals 11,162 2,557              1,221              47.7% (4,786)             7,504              2,541              3,329              4,603              5,312              

Normal Dist. 2,557              1,221              47.7% 2,557              3,381              4,566              5,398              

logNormal Dist. 4,521              9,406              208.0% 1,959              4,686              16,441            39,696            

Gamma Dist. 2,557              1,221              47.7% 2,366              3,243              4,839              6,213              

Sample Insurance Company

Schedule P, Part C -- Commercial Auto Liability
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Figure D.13. Estimated unpaid model results (Paid Hoerl Curve) 

 

Figure D.14. Total unpaid claims distribution (Paid Hoerl Curve) 

 

Sample Insurance Company Sample Insurance Company

Schedule P, Part C -- Commercial Auto Liability Schedule P, Part C -- Commercial Auto Liability

Accident Year Unpaid (in 000's) Calendar Year Unpaid (in 000's)

Paid Hoerl Curve Model Paid Hoerl Curve Model

Accident Mean Standard Coefficient 50.0% 75.0% 95.0% 99.0%

Year To Date Unpaid Error of Variation Minimum Maximum Percentile Percentile Percentile Percentile

2006 1,563 1                     8                     738.6% (34)                  39                   1                     5                     13                   25                   

2007 1,469 2                     10                   562.6% (43)                  55                   2                     7                     16                   27                   

2008 1,387 6                     12                   210.0% (38)                  56                   5                     12                   25                   39                   

2009 1,350 14                   15                   104.5% (46)                  70                   13                   23                   39                   50                   

2010 1,342 36                   19                   51.6% (20)                  99                   36                   48                   68                   89                   

2011 1,198 91                   23                   25.0% (13)                  167                 91                   106                 129                 143                 

2012 1,061 203                 27                   13.4% 116                 294                 203                 220                 247                 267                 

2013 853 395                 31                   7.9% 306                 505                 395                 415                 448                 467                 

2014 645 730                 40                   5.5% 616                 867                 729                 757                 798                 824                 

2015 294 1,164              50                   4.3% 1,013              1,342              1,165              1,196              1,247              1,284              

Totals 11,162 2,641              110                 4.2% 2,328              2,997              2,641              2,719              2,822              2,896              

Normal Dist. 2,641              110                 4.2% 2,641              2,715              2,822              2,896              

logNormal Dist. 2,641              110                 4.2% 2,639              2,714              2,826              2,907              

Gamma Dist. 2,641              110                 4.2% 2,640              2,714              2,824              2,903              

Sample Insurance Company

Schedule P, Part C -- Commercial Auto Liability
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Figure D.15. Estimated unpaid model results (Incurred Hoerl Curve) 

 

Figure D.16. Total unpaid claims distribution (Incurred Hoerl Curve) 

 

Sample Insurance Company Sample Insurance Company

Schedule P, Part C -- Commercial Auto Liability Schedule P, Part C -- Commercial Auto Liability

Accident Year Unpaid (in 000's) Calendar Year Unpaid (in 000's)

Incurred Hoerl Curve Model Incurred Hoerl Curve Model

Accident Mean Standard Coefficient 50.0% 75.0% 95.0% 99.0%

Year To Date Unpaid Error of Variation Minimum Maximum Percentile Percentile Percentile Percentile

2006 1,563 ########### ########### -3162.3% ########### ########### 1                     4                     17                   12,332,021     

2007 1,469 ########### ########### -3162.3% ########### ########### 2                     7                     27                   37,702,476     

2008 1,387 ########### ########### 3162.3% ########### ########### 5                     12                   35                   ###########

2009 1,350 ########### ########### 3162.3% ########### ########### 14                   24                   182                 ###########

2010 1,342 ########### ########### 3162.3% (51,418,906)    ########### 36                   51                   4,042              ###########

2011 1,198 ########### ########### 3162.3% (487,667)         ########### 93                   113                 17,391            ###########

2012 1,061 ########### ########### 3162.3% (5,299,244)      ########### 210                 244                 36,869            ###########

2013 853 ########### ########### 3162.3% (2,019,237)      ########### 420                 475                 66,618            ###########

2014 645 ########### ########### 3162.3% (54,398,452)    ########### 791                 877                 124,983          ###########

2015 294 ########### ########### 3162.3% (157,144)         ########### 1,290              1,410              211,790          ###########

Totals 11,162 ########### ########### 3162.3% (27,682,830)    ########### 2,840              3,023              469,045          ###########

Normal Dist. ########### ########### 3162.3% ########### ########### ########### ###########

logNormal Dist. ########### ########### 240623181.5% 7,145              276,650          53,267,753     ###########

Gamma Dist. ########### ########### 3162.3% 0                     0                     ########### ###########

Sample Insurance Company

Schedule P, Part C -- Commercial Auto Liability

Total Unpaid Distribution (in 000's)
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Figure D.17. Estimated unpaid model results (Paid Wright) 

 

Figure D.18. Total unpaid claims distribution (Paid Wright) 

 

Sample Insurance Company Sample Insurance Company

Schedule P, Part C -- Commercial Auto Liability Schedule P, Part C -- Commercial Auto Liability

Accident Year Unpaid (in 000's) Calendar Year Unpaid (in 000's)

Paid Wright Model Paid Wright Model

Accident Mean Standard Coefficient 50.0% 75.0% 95.0% 99.0%

Year To Date Unpaid Error of Variation Minimum Maximum Percentile Percentile Percentile Percentile

2006 1,563 1                     14                   1071.2% (101)                93                   1                     8                     21                   36                   

2007 1,469 2                     16                   642.8% (69)                  100                 3                     10                   27                   44                   

2008 1,387 6                     17                   301.3% (61)                  106                 5                     14                   34                   56                   

2009 1,350 14                   20                   145.3% (73)                  145                 12                   25                   45                   67                   

2010 1,342 35                   23                   67.2% (68)                  141                 35                   49                   73                   96                   

2011 1,198 87                   25                   29.2% 7                     205                 86                   102                 128                 157                 

2012 1,061 202                 29                   14.6% 88                   323                 202                 220                 249                 270                 

2013 853 398                 34                   8.4% 263                 509                 399                 420                 454                 476                 

2014 645 754                 45                   5.9% 628                 942                 754                 783                 824                 866                 

2015 294 1,088              69                   6.3% 853                 1,350              1,086              1,131              1,204              1,255              

Totals 11,162 2,587              121                 4.7% 2,151              3,124              2,585              2,664              2,786              2,907              

Normal Dist. 2,587              121                 4.7% 2,587              2,668              2,786              2,868              

logNormal Dist. 2,587              121                 4.7% 2,584              2,667              2,790              2,881              

Gamma Dist. 2,587              121                 4.7% 2,585              2,667              2,789              2,876              
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Figure D.19. Estimated unpaid model results (Incurred Wright) 

 

Figure D.20. Total unpaid claims distribution (Incurred Wright) 

 

Figure D.21. Model weights by accident year 

 

Sample Insurance Company Sample Insurance Company

Schedule P, Part C -- Commercial Auto Liability Schedule P, Part C -- Commercial Auto Liability

Accident Year Unpaid (in 000's) Calendar Year Unpaid (in 000's)

Incurred Wright Model Incurred Wright Model

Accident Mean Standard Coefficient 50.0% 75.0% 95.0% 99.0%

Year To Date Unpaid Error of Variation Minimum Maximum Percentile Percentile Percentile Percentile

2006 1,563 ########### ########### -3155.7% ########### ########### 1                     7                     18                   37                   

2007 1,469 ########### ########### 3107.7% (10,943,017)    ########### 2                     9                     26                   2,259              

2008 1,387 ########### ########### 2219.7% (151,422,813)  ########### 5                     14                   37                   2,113              

2009 1,350 ########### ########### 3289.5% ########### ########### 14                   29                   54                   620                 

2010 1,342 ########### ########### -3134.5% ########### ########### 39                   56                   89                   14,339            

2011 1,198 ########### ########### 3109.8% 6                     ########### 103                 124                 167                 392,998          

2012 1,061 ########### ########### 3105.4% 65                   ########### 226                 251                 293                 658,553          

2013 853 ########### ########### 3107.7% (2,533)             ########### 435                 466                 516                 1,573,045       

2014 645 ########### ########### 3111.5% (1,508)             ########### 763                 806                 890                 2,689,124       

2015 294 ########### ########### 3108.7% 338                 ########### 1,103              1,166              1,283              3,789,386       

Totals 11,162 ########### ########### 3108.9% (1,002)             ########### 2,684              2,796              2,961              9,258,513       

Normal Dist. ########### ########### 3108.9% ########### ########### ########### ###########

logNormal Dist. 18,838            106,398          564.8% 3,284              11,586            71,059            253,986          

Gamma Dist. ########### ########### 3108.9% 0                     0                     0                     ###########

Sample Insurance Company

Schedule P, Part C -- Commercial Auto Liability
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Accident Model Weights by Accident Year

Year Paid BS Incd BS Paid CC Paid CL Incd CL Paid HC Paid WR 0 0 0 TOTAL

2006 14.3% 14.3% 14.3% 14.3% 14.3% 14.3% 14.3% 100.0%

2007 14.3% 14.3% 14.3% 14.3% 14.3% 14.3% 14.3% 100.0%

2008 14.3% 14.3% 14.3% 14.3% 14.3% 14.3% 14.3% 100.0%

2009 14.3% 14.3% 14.3% 14.3% 14.3% 14.3% 14.3% 100.0%

2010 14.3% 14.3% 14.3% 14.3% 14.3% 14.3% 14.3% 100.0%

2011 14.3% 14.3% 14.3% 14.3% 14.3% 14.3% 14.3% 100.0%

2012 14.3% 14.3% 14.3% 14.3% 14.3% 14.3% 14.3% 100.0%

2013 14.3% 14.3% 14.3% 14.3% 14.3% 14.3% 14.3% 100.0%

2014 14.3% 14.3% 14.3% 14.3% 14.3% 14.3% 14.3% 100.0%

2015 14.3% 14.3% 14.3% 14.3% 14.3% 14.3% 14.3% 100.0%
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Figure D.22. Estimated mean unpaid by model 

 

Figure D.23. Estimated ranges 

 

Sample Insurance Company Sample Insurance Company

Schedule P, Part C -- Commercial Auto Liability Schedule P, Part C -- Commercial Auto Liability

Summary of Results by Model (in 000's) Reconciliation of Total Results (in 000's)

Mean Estimated Unpaid Best Estimate (Weighted)

Accident Berquist & Sherman Cape Cod Chain Ladder Hoerl Curve Best Est.

Year Paid Incurred Paid Incurred Paid Incurred Paid (Weighted)

2006 1                     1                     2                     1                     1                     1                     1                     1                     

2007 4                     3                     5                     3                     3                     2                     2                     3                     

2008 14                   14                   15                   13                   12                   6                     6                     11                   

2009 28                   27                   29                   26                   25                   14                   14                   23                   

2010 50                   49                   53                   51                   47                   36                   35                   47                   

2011 103                 103                 101                 101                 97                   91                   87                   99                   

2012 209                 213                 212                 211                 200                 203                 202                 207                 

2013 402                 418                 407                 406                 384                 395                 398                 403                 

2014 742                 786                 767                 766                 718                 730                 754                 756                 

2015 1,176              1,271              1,093              1,096              1,071              1,164              1,088              1,130              

Totals 2,729              2,885              2,684              2,675              2,557              2,641              2,587              2,679              

Sample Insurance Company Sample Insurance Company

Schedule P, Part C -- Commercial Auto Liability Schedule P, Part C -- Commercial Auto Liability

Summary of Results by Model (in 000's) Reconciliation of Total Results (in 000's)

Ranges Best Estimate (Weighted)

Accident Best Est. Weighted Modeled

Year (Weighted) Minimum Maximum Mininum Maximum

2006 1                     1                     2                     1                     2                     

2007 3                     2                     5                     2                     5                     

2008 11                   6                     15                   6                     15                   

2009 23                   14                   29                   14                   29                   

2010 47                   35                   53                   35                   53                   

2011 99                   87                   103                 87                   103                 

2012 207                 200                 213                 200                 213                 

2013 403                 384                 418                 384                 418                 

2014 756                 718                 786                 718                 786                 

2015 1,130              1,071              1,271              1,071              1,271              

Totals 2,679              2,517              2,894              2,557              2,885              
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Figure D.24. Reconciliation of total results (weighted) 

 

Figure D.25. Estimated unpaid model results (weighted) 

 

Figure D.26. Estimated cash flow (weighted) 

 

Sample Insurance Company Sample Insurance Company

Schedule P, Part C -- Commercial Auto Liability Schedule P, Part C -- Commercial Auto Liability

Reconciliation of Total Results (in 000's) Summary of Model Distributions (in 000's)

Best Estimate (Weighted) (Using Histograms)

Accident Paid Incurred Case Estimate of Estimate of

Year To Date To Date Reserves IBNR Ultimate Unpaid

2006 1,563              1,577              14                   (12)                  1,565              1                     

2007 1,469              1,505              36                   (33)                  1,472              3                     

2008 1,387              1,436              49                   (38)                  1,398              11                   

2009 1,350              1,417              67                   (44)                  1,373              23                   

2010 1,342              1,445              102                 (56)                  1,389              47                   

2011 1,198              1,345              147                 (48)                  1,297              99                   

2012 1,061              1,339              278                 (71)                  1,267              207                 

2013 853                 1,327              474                 (71)                  1,256              403                 

2014 645                 1,442              797                 (41)                  1,401              756                 

2015 294                 1,422              1,128              1                     1,424              1,130              

Totals 11,162            14,255            3,093              (413)                13,841            2,679              

Sample Insurance Company Sample Insurance Company

Schedule P, Part C -- Commercial Auto Liability Schedule P, Part C -- Commercial Auto Liability

Accident Year Unpaid (in 000's) Calendar Year Unpaid (in 000's)

Best Estimate (Weighted) Best Estimate (Weighted)

Accident Paid Mean Standard Coefficient 50.0% 75.0% 95.0% 99.0%

Year To Date Unpaid Error of Variation Minimum Maximum Percentile Percentile Percentile Percentile

2006 1,563              1                     7                     526.2% (101)                95                   1                     4                     12                   23                   

2007 1,469              3                     9                     274.3% (89)                  100                 3                     8                     18                   30                   

2008 1,387              11                   13                   119.2% (71)                  115                 11                   18                   31                   46                   

2009 1,350              23                   17                   75.1% (80)                  216                 24                   33                   50                   68                   

2010 1,342              47                   24                   52.3% (111)                272                 47                   59                   82                   118                 

2011 1,198              99                   39                   39.1% (235)                571                 100                 115                 147                 224                 

2012 1,061              207                 80                   38.8% (880)                891                 208                 228                 290                 490                 

2013 853                 403                 139                 34.6% (974)                1,841              401                 428                 551                 920                 

2014 645                 756                 244                 32.3% (1,740)             3,765              755                 793                 1,014              1,635              

2015 294                 1,130              370                 32.8% (2,262)             4,783              1,133              1,199              1,533              2,406              

Totals 11,162            2,679              474                 17.7% (500)                6,591              2,683              2,837              3,362              4,119              

Normal Dist. 2,679              474                 17.7% 2,679              2,999              3,458              3,781              

logNormal Dist. 2,749              897                 32.6% 2,614              3,239              4,411              5,478              

Gamma Dist. 2,679              474                 17.7% 2,651              2,982              3,503              3,903              

Sample Insurance Company Sample Insurance Company

Schedule P, Part C -- Commercial Auto Liability Schedule P, Part C -- Commercial Auto Liability

Calendar Year Unpaid (in 000's) Calendar Year Unpaid Claim Runoff (in 000's)

Best Estimate (Weighted) Best Estimate (Weighted)

Calendar Mean Standard Coefficient 50.0% 75.0% 95.0% 99.0%

Year Unpaid Error of Variation Minimum Maximum Percentile Percentile Percentile Percentile

2016 1,069              176                 16.4% 38                   2,391              1,072              1,135              1,337              1,599              

2017 744                 136                 18.3% (166)                1,830              745                 794                 945                 1,154              

2018 443                 90                   20.2% (178)                1,298              444                 478                 568                 714                 

2019 229                 52                   22.7% (149)                661                 229                 252                 301                 385                 

2020 106                 29                   27.5% (90)                  313                 106                 122                 150                 182                 

2021 48                   19                   40.3% (55)                  176                 47                   60                   80                   99                   

2022 23                   15                   63.7% (37)                  139                 23                   32                   47                   61                   

2023 11                   12                   104.9% (49)                  94                   11                   18                   30                   42                   

2024 3                     8                     248.7% (60)                  55                   3                     8                     16                   25                   

2025 1                     6                     454.7% (86)                  61                   1                     4                     11                   18                   

2026 1                     4                     777.7% (46)                  59                   0                     2                     7                     14                   

2027 0                     3                     1416.3% (27)                  40                   0                     1                     4                     9                     

Totals 2,679              474                 17.7% (500)                6,591              2,683              2,837              3,362              4,119              
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Figure D.27. Estimated loss ratio (weighted) 

 

Figure D.28. Estimated unpaid claim runoff (weighted) 

 

Figure D.29. Mean of incremental values (weighted) 

 

Figure D.30. Standard deviation of incremental values (weighted) 

 

Sample Insurance Company Sample Insurance Company

Schedule P, Part C -- Commercial Auto Liability Schedule P, Part C -- Commercial Auto Liability

Accident Year Ultimate Loss Ratios (in 000's) Accident Year Incremental Values by Development Period

Best Estimate (Weighted) Best Estimate (Weighted)

Accident Earned Mean Standard Coefficient 50.0% 75.0% 95.0% 99.0%

Year Premium Loss Ratio Error of Variation Minimum Maximum Percentile Percentile Percentile Percentile

2006 1,748              86.6% 27.2% 31.4% -264.5% 340.5% 88.5% 91.5% 108.2% 180.7%

2007 1,810              80.6% 24.5% 30.5% -193.1% 335.3% 81.8% 84.5% 101.8% 166.6%

2008 1,915              73.5% 22.2% 30.3% -139.9% 287.7% 74.4% 77.5% 93.9% 149.7%

2009 2,275              60.3% 19.4% 32.2% -126.9% 245.5% 60.6% 62.7% 78.5% 128.9%

2010 2,524              53.4% 18.0% 33.6% -107.9% 232.9% 54.0% 56.1% 70.8% 116.8%

2011 2,445              53.0% 17.4% 32.9% -132.3% 248.4% 53.2% 55.0% 69.9% 116.6%

2012 2,543              49.5% 18.2% 36.9% -190.8% 224.8% 49.7% 51.4% 67.2% 117.4%

2013 2,461              51.1% 17.5% 34.2% -117.8% 240.1% 50.9% 52.7% 69.3% 116.5%

2014 2,485              56.2% 18.1% 32.2% -132.1% 278.3% 56.1% 58.3% 75.8% 123.2%

2015 2,383              60.2% 19.8% 32.9% -118.2% 257.3% 60.3% 63.7% 81.5% 130.0%

Totals 22,588            60.8% 6.2% 10.2% 20.4% 93.6% 61.1% 63.8% 70.9% 77.6%

Sample Insurance Company Sample Insurance Company

Schedule P, Part C -- Commercial Auto Liability Schedule P, Part C -- Commercial Auto Liability

Calendar Year Unpaid Claim Runoff (in 000's) Accident Year Ultimate Loss Ratios (in 000's)

Best Estimate (Weighted) Best Estimate (Weighted)

Calendar Mean Standard Coefficient 50.0% 75.0% 95.0% 99.0%

Year Unpaid Error of Variation Minimum Maximum Percentile Percentile Percentile Percentile

2015 2,679              474                 17.7% (500)                6,591              2,683              2,837              3,362              4,119              

2016 1,610              308                 19.1% (590)                4,201              1,612              1,714              2,049              2,557              

2017 865                 179                 20.7% (445)                2,522              866                 933                 1,114              1,419              

2018 422                 97                   23.0% (268)                1,247              422                 465                 561                 715                 

2019 193                 54                   28.1% (119)                634                 193                 222                 277                 342                 

2020 88                   35                   39.9% (86)                  339                 87                   108                 143                 179                 

2021 40                   25                   62.0% (65)                  204                 39                   54                   80                   105                 

2022 16                   17                   105.8% (80)                  113                 16                   26                   45                   64                   

2023 5                     12                   222.4% (77)                  93                   5                     11                   25                   38                   

2024 2                     8                     387.7% (83)                  81                   2                     6                     15                   28                   

2025 1                     5                     694.5% (49)                  62                   0                     3                     9                     18                   

2026 0                     3                     1416.3% (27)                  40                   0                     1                     4                     9                     

Sample Insurance Company Sample Insurance Company

Schedule P, Part C -- Commercial Auto Liability Schedule P, Part C -- Commercial Auto Liability

Accident Year Incremental Values by Development Period Accident Year Incremental Values by Development Period

Best Estimate (Weighted) Best Estimate (Weighted)

Accident Mean Values (in 000's)

Year 12 24 36 48 60 72 84 96 108 120 132 144 156

2006 321                 373                 334                 236                 133                 63                   27                   13                   8                     2                     1                     0                     0                     

2007 309                 359                 322                 227                 128                 61                   26                   13                   8                     2                     1                     0                     0                     

2008 299                 347                 311                 219                 124                 59                   25                   13                   8                     2                     1                     0                     0                     

2009 291                 338                 303                 213                 121                 57                   25                   12                   8                     2                     1                     0                     0                     

2010 286                 332                 298                 209                 119                 56                   24                   12                   7                     2                     1                     0                     0                     

2011 275                 320                 286                 202                 114                 54                   23                   11                   7                     2                     1                     0                     0                     

2012 267                 310                 278                 196                 110                 53                   23                   11                   7                     2                     1                     0                     0                     

2013 267                 310                 278                 196                 111                 53                   23                   11                   7                     2                     1                     0                     0                     

2014 297                 345                 309                 218                 123                 58                   25                   12                   8                     2                     1                     0                     0                     

2015 305                 353                 317                 223                 126                 60                   26                   12                   8                     2                     1                     0                     0                     

Sample Insurance Company Sample Insurance Company

Schedule P, Part C -- Commercial Auto Liability Schedule P, Part C -- Commercial Auto Liability

Accident Year Incremental Values by Development Period Accident Year Incremental Values by Development Period

Best Estimate (Weighted) Best Estimate (Weighted)

Accident Standard Error Values (in 000's)

Year 12 24 36 48 60 72 84 96 108 120 132 144 156

2006 104                 117                 106                 75                   44                   23                   14                   10                   9                     6                     5                     4                     3                     

2007 98                   110                 99                   71                   41                   22                   13                   10                   9                     6                     4                     4                     3                     

2008 94                   105                 96                   67                   40                   21                   13                   10                   9                     6                     4                     4                     3                     

2009 98                   109                 99                   70                   41                   22                   12                   10                   8                     6                     4                     4                     3                     

2010 100                 112                 101                 72                   42                   22                   12                   10                   8                     6                     4                     3                     3                     

2011 94                   105                 95                   68                   39                   21                   12                   9                     8                     5                     4                     3                     3                     

2012 101                 114                 103                 73                   43                   22                   12                   9                     8                     5                     4                     3                     3                     

2013 95                   106                 96                   69                   39                   20                   12                   9                     8                     5                     4                     3                     3                     

2014 99                   111                 100                 71                   41                   22                   12                   10                   8                     5                     4                     3                     3                     

2015 103                 117                 106                 75                   43                   23                   13                   10                   8                     5                     4                     3                     3                     
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Figure D.31. Coefficient of variation of incremental values (weighted) 

 

Figure D.32. Total unpaid claims distribution (weighted) 

 

Sample Insurance Company Sample Insurance Company

Schedule P, Part C -- Commercial Auto Liability Schedule P, Part C -- Commercial Auto Liability

Accident Year Incremental Values by Development Period Total Unpaid Distribution (in 000's)

Best Estimate (Weighted) Best Estimate (Weighted)

Accident Coefficients of Variation

Year 12 24 36 48 60 72 84 96 108 120 132 144 156

2006 32.4% 31.4% 31.7% 32.0% 33.1% 36.5% 49.8% 75.4% 108.1% 300.4% 599.5% 982.0% 1807.7%

2007 31.6% 30.6% 30.7% 31.2% 31.9% 36.4% 49.4% 75.6% 108.5% 278.9% 601.2% 1156.2% 1193.4%

2008 31.5% 30.4% 30.7% 30.7% 32.1% 35.9% 50.0% 76.0% 110.9% 297.0% 666.9% 1051.0% 1366.6%

2009 33.5% 32.3% 32.5% 32.9% 33.9% 37.9% 49.9% 77.7% 108.6% 292.6% 586.7% 1061.1% 1535.5%

2010 34.8% 33.7% 34.0% 34.3% 35.3% 38.5% 51.0% 80.1% 109.0% 300.1% 572.5% 934.5% 2346.4%

2011 34.0% 32.9% 33.2% 33.6% 34.5% 38.4% 51.9% 78.3% 114.1% 297.8% 581.3% 1007.1% 1454.7%

2012 37.9% 36.9% 37.1% 37.5% 38.5% 42.1% 54.5% 81.5% 117.4% 298.5% 536.2% 1189.7% 1266.2%

2013 35.4% 34.2% 34.5% 35.0% 35.4% 38.9% 51.9% 79.6% 113.7% 294.5% 575.8% 963.2% 1305.7%

2014 33.4% 32.2% 32.5% 32.8% 33.6% 37.7% 48.8% 77.3% 106.5% 278.9% 578.7% 999.3% 1598.3%

2015 33.9% 33.0% 33.3% 33.6% 34.0% 37.5% 49.6% 76.4% 106.0% 271.3% 531.0% 860.7% 1416.3%

Sample Insurance Company Sample Insurance Company

Schedule P, Part C -- Commercial Auto Liability Schedule P, Part C -- Commercial Auto Liability

Total Unpaid Distribution (in 000's) Summary of Results by Model (in 000's)

Best Estimate (Weighted) Mean Estimated Unpaid
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Figure D.33. Summary of model distributions 

  

Sample Insurance Company

Schedule P, Part C -- Commercial Auto Liability

Summary of Model Distributions (in 000's)

(Using Kernel Densities)
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Appendix E – Aggregate Results 

In this appendix the results for the correlated aggregate of the three Schedule P lines of 
business (Parts A, B, and C) are shown, using the correlation calculated from the paid data for 
the Berquist-Sherman model. 

Figure E.1. Estimated unpaid model results 

 

Figure E.2. Estimated cash flow 

 

Sample Insurance Company Sample Insurance Company

Aggregate Three Lines of Business Aggregate Three Lines of Business

Accident Year Unpaid (in 000's) Calendar Year Unpaid (in 000's)

Accident Paid Mean Standard Coefficient 50.0% 75.0% 95.0% 99.0%

Year To Date Unpaid Error of Variation Minimum Maximum Percentile Percentile Percentile Percentile

2006 18,613            146                 1,002              688.1% (2,013)             74,778            37                   55                   421                 2,422              

2007 20,618            198                 993                 500.3% (1,523)             37,034            70                   94                   503                 3,069              

2008 22,866            246                 927                 377.4% (5,763)             54,447            128                 162                 542                 3,227              

2009 22,842            367                 1,286              350.7% (2,918)             90,399            230                 268                 695                 3,778              

2010 22,351            535                 1,359              254.3% (1,875)             69,139            406                 452                 860                 3,458              

2011 22,422            869                 1,266              145.7% (3,632)             68,690            760                 826                 1,253              4,003              

2012 24,350            1,589              939                 59.1% (4,107)             27,387            1,518              1,633              2,198              4,927              

2013 19,973            2,814              1,424              50.6% (8,046)             80,667            2,785              2,963              3,667              6,153              

2014 18,919            5,418              4,384              80.9% (8,120)             407,319          5,420              5,768              6,863              9,408              

2015 15,961            13,369            3,352              25.1% (11,431)           98,644            13,319            14,627            17,722            21,777            

Totals 208,915          25,550            9,304              36.4% (815)                476,278          24,635            26,612            32,642            55,933            

Normal Dist. 25,550            9,304              36.4% 25,550            31,826            40,854            47,195            

logNormal Dist. 25,528            6,217              24.4% 24,803            29,163            36,812            43,354            

Gamma Dist. 25,550            9,304              36.4% 24,430            31,065            42,526            52,000            

TVaR 28,995            32,475            48,429            89,074            

Normal TVaR 32,974            37,377            44,742            50,348            

logNormal TVaR 30,371            33,900            40,865            47,165            

Gamma TVaR 32,838            38,140            48,373            57,295            

Sample Insurance Company Sample Insurance Company

Aggregate Three Lines of Business Aggregate Three Lines of Business

Calendar Year Unpaid (in 000's) Calendar Year Unpaid Claim Runoff (in 000's)

Calendar Mean Standard Coefficient 50.0% 75.0% 95.0% 99.0%

Year Unpaid Error of Variation Minimum Maximum Percentile Percentile Percentile Percentile

2016 12,497            2,095              16.8% (797)                23,980            12,494            13,633            15,903            17,708            

2017 5,432              760                 14.0% 175                 10,046            5,475              5,859              6,587              7,241              

2018 2,945              423                 14.4% (100)                5,390              2,965              3,176              3,586              3,989              

2019 1,562              310                 19.8% (95)                  13,391            1,553              1,674              1,959              2,463              

2020 902                 857                 95.0% (102)                60,941            810                 893                 1,281              3,189              

2021 546                 835                 153.0% (320)                33,504            431                 490                 928                 3,022              

2022 361                 817                 226.4% (880)                44,982            242                 289                 756                 2,813              

2023 283                 1,087              384.4% (1,221)             70,925            144                 183                 681                 3,090              

2024 228                 1,139              499.5% (714)                61,008            84                   120                 590                 3,055              

2025 190                 1,049              551.1% (1,481)             53,144            46                   79                   587                 3,006              

2026 165                 825                 499.4% (1,571)             23,126            27                   54                   554                 3,206              

2027 160                 1,260              789.6% (3,531)             74,987            14                   33                   480                 3,172              

2028 169                 3,600              2134.8% (7,667)             342,488          6                     12                   412                 2,742              

2029 110                 1,288              1168.6% (1,140)             66,389            2                     4                     196                 2,239              

Totals 25,550            9,304              36.4% (815)                476,278          24,635            26,612            32,642            55,933            
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Figure E.3. Estimated loss ratio 

 

Figure E.4. Estimated unpaid claim runoff 

 

Figure E.5. Mean of incremental values 

 

Figure E.6. Standard deviation of incremental values 

 

Sample Insurance Company Sample Insurance Company

Aggregate Three Lines of Business Aggregate Three Lines of Business

Accident Year Ultimate Loss Ratios (in 000's) Accident Year Incremental Values by Development Period

Accident Earned Mean Standard Coefficient 50.0% 75.0% 95.0% 99.0%

Year Premium Loss Ratio Error of Variation Minimum Maximum Percentile Percentile Percentile Percentile

2006 25,305            72.6% 15.3% 21.1% -52.5% 368.8% 74.2% 79.3% 91.2% 108.2%

2007 25,577            78.6% 15.6% 19.8% -34.7% 224.3% 80.3% 85.5% 97.6% 114.8%

2008 27,155            82.2% 16.0% 19.5% -18.6% 276.9% 84.0% 89.3% 102.3% 119.9%

2009 30,529            74.6% 14.5% 19.4% -59.9% 373.8% 75.7% 80.8% 93.3% 109.0%

2010 34,399            65.2% 13.0% 19.9% -24.3% 269.8% 66.3% 70.9% 81.9% 94.6%

2011 36,231            63.2% 12.5% 19.8% -47.2% 251.4% 64.2% 68.8% 79.9% 92.2%

2012 36,863            70.7% 14.1% 20.0% -37.8% 146.6% 70.7% 77.5% 92.4% 107.1%

2013 37,678            60.2% 12.8% 21.3% -34.6% 271.2% 60.8% 65.9% 77.7% 89.1%

2014 38,101            63.9% 16.8% 26.2% -54.2% 1115.7% 64.2% 69.8% 82.1% 95.7%

2015 37,997            79.2% 15.9% 20.1% -36.7% 313.1% 78.0% 86.8% 104.4% 121.2%

Totals 329,835          70.4% 4.9% 6.9% 47.9% 195.6% 70.5% 73.2% 77.3% 81.3%

Sample Insurance Company Sample Insurance Company

Aggregate Three Lines of Business Aggregate Three Lines of Business

Calendar Year Unpaid Claim Runoff (in 000's) Accident Year Ultimate Loss Ratios (in 000's)

Calendar Mean Standard Coefficient 50.0% 75.0% 95.0% 99.0%

Year Unpaid Error of Variation Minimum Maximum Percentile Percentile Percentile Percentile

2015 25,550            9,304              36.4% (815)                476,278          24,635            26,612            32,642            55,933            

2016 13,054            8,804              67.4% (18)                  464,252          11,965            12,832            17,870            43,814            

2017 7,621              8,748              114.8% (193)                459,695          6,389              6,960              12,059            39,214            

2018 4,676              8,706              186.2% (93)                  456,649          3,366              3,757              8,953              36,003            

2019 3,113              8,561              275.0% 2                     452,976          1,799              2,096              7,305              33,834            

2020 2,212              8,057              364.3% 67                   439,029          986                 1,225              5,912              30,057            

2021 1,665              7,588              455.6% 21                   433,153          557                 758                 4,879              25,743            

2022 1,305              7,152              548.1% 14                   427,965          318                 480                 3,998              21,821            

2023 1,022              6,647              650.3% (9,274)             427,465          177                 304                 3,245              18,524            

2024 794                 6,071              764.6% (9,339)             425,019          94                   187                 2,507              14,898            

2025 604                 5,472              906.6% (9,336)             411,276          49                   108                 1,873              11,341            

2026 438                 4,936              1126.0% (9,105)             393,463          23                   52                   1,269              7,908              

2027 279                 3,988              1430.4% (7,664)             342,491          8                     17                   690                 5,233              

2028 110                 1,288              1168.6% (1,140)             66,389            2                     4                     196                 2,239              

Sample Insurance Company Sample Insurance Company

Aggregate Three Lines of Business Aggregate Three Lines of Business

Accident Year Incremental Values by Development Period Accident Year Incremental Values by Development Period

Accident Mean Values (in 000's)

Year 12 24 36 48 60 72 84 96 108 120 132 144 156 168 180

2006 9,173              4,740              1,972              1,141              608                 302                 149                 77                   45                   28                   16                   14                   17                   29                   68                   

2007 10,218            5,151              2,099              1,201              639                 318                 157                 82                   47                   30                   18                   16                   20                   34                   80                   

2008 11,568            5,691              2,256              1,285              680                 339                 169                 88                   51                   33                   19                   17                   20                   32                   73                   

2009 11,629            5,858              2,348              1,338              711                 353                 176                 92                   53                   34                   20                   18                   22                   38                   90                   

2010 11,538            5,742              2,289              1,303              691                 343                 171                 89                   52                   33                   20                   18                   22                   38                   92                   

2011 12,007            5,790              2,270              1,288              680                 340                 170                 88                   52                   33                   20                   17                   22                   37                   91                   

2012 14,275            6,479              2,392              1,337              699                 350                 176                 93                   54                   34                   21                   18                   22                   36                   84                   

2013 11,853            5,778              2,251              1,277              674                 335                 168                 87                   51                   33                   20                   17                   22                   38                   92                   

2014 12,776            6,149              2,397              1,357              716                 357                 178                 94                   54                   35                   21                   18                   23                   43                   125                 

2015 16,732            7,423              2,675              1,491              773                 388                 195                 103                 60                   38                   23                   20                   25                   43                   110                 

Sample Insurance Company Sample Insurance Company

Aggregate Three Lines of Business Aggregate Three Lines of Business

Accident Year Incremental Values by Development Period Accident Year Incremental Values by Development Period

Accident Standard Deviation Values (in 000's)

Year 12 24 36 48 60 72 84 96 108 120 132 144 156 168 180

2006 2,168              1,131              467                 268                 145                 74                   39                   22                   15                   11                   12                   22                   58                   187                 752                 

2007 2,302              1,179              475                 272                 146                 75                   40                   23                   16                   11                   13                   26                   68                   210                 696                 

2008 2,598              1,299              517                 293                 156                 80                   43                   25                   17                   12                   14                   26                   65                   192                 656                 

2009 2,610              1,303              513                 293                 158                 81                   43                   25                   16                   12                   15                   29                   76                   249                 951                 

2010 2,637              1,313              516                 292                 158                 81                   44                   25                   17                   12                   15                   29                   79                   269                 994                 

2011 2,801              1,342              525                 295                 158                 82                   44                   26                   17                   12                   15                   28                   77                   250                 917                 

2012 3,566              1,581              577                 320                 173                 90                   48                   29                   20                   13                   15                   28                   67                   192                 618                 

2013 3,004              1,428              550                 312                 166                 85                   47                   26                   18                   12                   15                   29                   78                   254                 950                 

2014 3,196              1,509              572                 323                 171                 90                   48                   28                   19                   13                   15                   32                   108                 572                 3,565              

2015 4,007              1,903              637                 359                 187                 98                   54                   32                   22                   15                   17                   32                   92                   328                 1,288              



Using the Hayne MLE Models: A Practitioner’s Guide 
 

 

Casualty Actuarial Society E-Forum, Summer 2016 113 

Figure E.7. Coefficient of variation of incremental values 

 

Figure E.8. Calculation of risk based capital 

 

Figure E.9. Total unpaid claims distribution 

 
 

  

Sample Insurance Company Sample Insurance Company

Aggregate Three Lines of Business Aggregate Three Lines of Business

Accident Year Incremental Values by Development Period Total Unpaid Distribution

Accident Coefficients of Variation

Year 12 24 36 48 60 72 84 96 108 120 132 144 156 168 180

2006 23.6% 23.9% 23.7% 23.5% 23.9% 24.6% 26.1% 28.6% 33.7% 38.3% 74.9% 156.3% 332.5% 643.8% 1099.6%

2007 22.5% 22.9% 22.7% 22.7% 22.8% 23.6% 25.6% 27.7% 33.0% 36.7% 74.4% 164.6% 342.8% 612.0% 865.2%

2008 22.5% 22.8% 22.9% 22.8% 23.0% 23.7% 25.7% 28.1% 33.5% 36.9% 73.2% 155.0% 321.5% 591.5% 898.4%

2009 22.4% 22.2% 21.8% 21.9% 22.2% 22.9% 24.4% 26.9% 31.1% 34.5% 72.3% 160.6% 344.1% 661.7% 1057.6%

2010 22.9% 22.9% 22.6% 22.4% 22.9% 23.5% 25.6% 27.8% 32.6% 35.7% 73.4% 165.2% 363.3% 708.1% 1079.9%

2011 23.3% 23.2% 23.1% 22.9% 23.3% 24.0% 26.0% 28.9% 33.9% 37.1% 73.8% 163.4% 354.9% 668.2% 1007.6%

2012 25.0% 24.4% 24.1% 24.0% 24.7% 25.6% 27.5% 31.1% 36.0% 39.1% 73.3% 151.8% 301.9% 529.0% 733.9%

2013 25.3% 24.7% 24.4% 24.5% 24.7% 25.4% 27.8% 30.1% 34.9% 37.6% 74.0% 164.7% 356.7% 673.6% 1037.3%

2014 25.0% 24.5% 23.9% 23.8% 23.8% 25.1% 26.8% 29.9% 34.4% 37.3% 73.1% 175.0% 466.6% 1333.7% 2845.1%

2015 23.9% 25.6% 23.8% 24.0% 24.1% 25.3% 27.7% 31.1% 36.3% 40.0% 72.2% 160.0% 368.1% 757.1% 1168.6%

Sample Insurance Company Sample Insurance Company

Aggregate Three Lines of Business Aggregate Three Lines of Business

Indicated Unpaid Claim Risk Portion of Required Capital (in 000's) Indicated Pricing Risk Portion of Required Capital (in 000's)

Earned Mean 99.0% Value at Risk Allocated Unpaid Premium

LOB / Segment Premium Unpaid Unpaid Capital Capital Ratio Ratio

Homeowners / Farmowners 15,148 5,792 10,410            4,618              4,048              69.9% 26.7%

Private Passenger Auto Liability 20,467 17,079 45,682            28,602            25,072            146.8% 122.5%

Commercial Auto Liability 2,383 2,679 4,119              1,439              1,262              47.1% 52.9%

Total 37,997 25,550 60,210            34,660            

Aggregate 37,997 25,550 55,933            30,382            30,382            118.9% 80.0%

Sample Insurance Company Sample Insurance Company

Aggregate Three Lines of Business Aggregate Three Lines of Business

Total Unpaid Distribution Reconciliation of Total Results (in 000's)

-1300 46.5K 94.3K 142.1K 189.9K 237.8K 285.6K 333.4K 381.2K 429.0K 476.8K
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Abbreviations and notations 
Collect here in alphabetical order all abbreviations and notations used in the paper 

AIC, akaiki information criteria CoV, coefficient of variation 
BIC, bayesian information criteria HC, hoerl curve 
BS, berquist-sherman CC, cape cod  
WR, wright  CL, chain ladder  
TVaR, Tail Value at Risk VaR, Value at Risk 
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Innovation Fueled by Risk Management 

Aaron M. Halpert, ACAS, MAAA 

We generally do not tend to think of innovation and risk management as compatible themes. 
Innovation conjures up images of bold new ideas, thinking outside the box, disrupting established 
ways of doing things, and breaking new ground. Outdated applications of risk management, on the 
other hand, focused almost entirely on reducing or transferring risk, primarily by imposing controls, 
keeping things from getting out of hand, and inside the box. Contemporary enterprise risk 
management (ERM) programs, which focus not only on the identification, measurement, mitigation, 
monitoring and communication of risk, but also on capitalizing on risk opportunities, provides a 
better fit with innovation. 

In truth, the two themes are not only compatible, but having an effective ERM protocol actually 
fuels and enables innovation. This essay makes the case for this compatibility, and offers some ideas 
from current ERM thinking on how to best use risk management tools to bolster innovation. 

MINIMIZING RISKS ASSOCIATED WITH NEW IDEAS 

Some have described one of the key pillars of innovation as “never fail to fail.”1 Successful 
innovation requires a higher tolerance for failure. With failure comes the opportunity to quickly learn 
from mistakes and inappropriate assumptions about a product or its market, and build a better idea. 
However, costly failure may not be acceptable to an organization’s Board or owners. How do we 
balance these competing imperatives? Most current approaches to ERM focus on the development 
of an organization’s risk appetite and related risk tolerances. Management and the Board will lay out 
statements that capture the types and amounts of risk the organization is willing to entertain in 
conducting its business.  Naturally the levels of risk tolerated in different segments of the business 
will be evaluated in light of the potential returns that can be achieved in each segment. As such, the 
organization may be willing to tolerate more risk in a new product venture with high potential 
returns than it would in a mature product producing more limited returns. An articulation of the risk 
tolerance for innovation products, and how it relates to the organization’s overall risk tolerance, will 
provide an effective framework for pursuing innovation strategies. 

Once an idea has been articulated and captured by an organization (usually in a document that 
summarizes the concept and why it may be attractive to the organization’s stakeholders), many 
effective innovation platforms begin with a process called Minimum Viable Product (MVP) testing. 
MVP testing accelerates learning by testing a product hypothesis in small scale experimentation for a 
                                                 

1 “The Eight Pillars of Innovation” by Susan Wojcicki, 2011, http://bit.ly/1qoWpqm. 

http://bit.ly/1qoWpqm
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limited market using minimal resources. As such, MVP testing exemplifies the integration of risk 
management into the innovation process. By testing on a limited scale and with limited new product 
features, the risk of undertaking new product ventures that produce disappointing results is 
minimized. 

Looking at this approach more broadly, a small investment in product testing (with relatively high 
tolerance for limited loss to be experienced in the testing phase) will lead to a refinement of the 
product/service and marketing plan and also result in a better understanding of the risks associated 
with product/service implementation. In other words, risk management is not a process that is glued 
onto an innovation process, but rather is an important component integrated into the approach used 
to develop new ideas. 

AN INNOVATION RISK MANAGEMENT FRAMEWORK 

With this in mind, we can sketch out how the risk management function can strengthen the 
innovation process. The following steps illustrate how risk management specialists can do so: 

1. Working with the Board and management to articulate their risk appetite for new innovations 
and how it relates to the organization’s overall risk appetite. 

While setting risk tolerance is not an exact science, doing so allows the Board to set risk policy for 
the organization, and facilitates an ongoing monitoring process for management to demonstrate that 
risks are maintained within established tolerance levels. As noted earlier, innovation will likely only 
be successfully achieved through a willingness to take on more risk than an organization would 
normally consider. Once this is recognized however, the board has an opportunity to set specified 
higher risk tolerances for innovation efforts with a clear vision of how this fits with the overall risk 
profile. 

2. Reviewing new ideas and their associated product testing plans to develop plausible outcome 
scenarios, and determine the risks associated with pilot testing efforts. They also provide 
assurance that the risks associated with these outcomes are within the relatively broad risk 
tolerances. 

Scenario testing and stress testing are important elements in any ERM toolkit. Such an analysis is 
particularly important in product testing both prior to testing a prototype as well as analyzing results 
afterwards. At the front end, development of reasonable outcome scenarios provides the innovation 
team with better insights for developing controls and also helps identify which product features are 
most susceptible to producing adverse results. 

3. Working with the innovation team to review pilot testing results and assist in redefining product 
attributes and marketing strategies. Concurrently, risks associated with the refined product are 
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recalibrated, and assurance is provided that the recalibrated risks are within a somewhat narrower 
risk tolerance level. 

Post testing analysis provides clues about whether the risks were fully understood in the first 
place and also helps to further refine the product/market attributes as well as the controls necessary 
to keep the full product roll out within defined risk tolerance levels. 

4. Assuring that all the relevant controls are in place when the final product launch is 
recommended to the Board. 

This final step brings the pieces together to help launch new product ideas and provide a level of 
assurance that downside risk is managed at the same time. The more effective the risk management 
protocols are, the more likely it is that the Board and management will enthusiastically support the 
organization’s efforts. 

AN EXAMPLE 

Let’s consider an example, and see how this process would apply. Suppose an insurer were to 
assess whether to expand their mechanical breakdown coverage for insured autos to include damage 
to the auto resulting from engine system hacking. Given the limited knowledge of the exposure (how 
many systems are susceptible to hacking, how likely are hackers to act, how much damage will result, 
etc.), the insurer would have to recognize that the financial results attached to this expansion of 
coverage would be considerably more uncertain than the breakdown coverage to which it is being 
attached. 

By first analyzing a wide range of scenarios that reflect assumptions about who will purchase the 
coverage, the incidence of hacking, the resulting damage to the auto’s systems, etc. the team can 
develop estimates of the resulting underwriting loss under severely adverse conditions. If the risk is 
deemed too high relative to the organization’s innovation risk tolerance, product features can be 
scaled back to limit coverage, marketing plans can be limited to certain market segments and 
geographies, or the project can be deferred to allow more time to better understand the potential 
incidence of hacking into “the internet of things.” Limited prototype versions of the coverage would 
be tested in limited markets and the results can further inform decisions on product features, pricing, 
and how broadly the coverage would be marketed for the full roll out. 

Finally, risk management professionals can assist in developing controls to assure that the 
aggregate risk associated with the new coverage remains within pre-determined tolerance levels. In 
addition to traditional reinsurance considerations, and taking a page from the evolving cyber security 
world, controls for the program might include industry data on make and model hacking incidents, 
aggregate exposure monitoring based on available incident frequency, and the likelihood of incidents 
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affecting several insureds simultaneously. 

CONCLUSION 

While failure provides a critical opportunity for learning and improving innovation efforts, the 
risk of failure must be actively managed within the innovating organization’s ERM protocols. As 
such, by providing a framework in which innovation efforts are more confidently undertaken, risk 
management does not inhibit innovation — it actually fuels it. 
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Innovation in Crop Insurance: The Price-Flex® Story 

Michael G. Wacek, FCAS, MAAA, CERA 

Starting in 2012 and continuing for several years since, I have been witness to a burst of 
innovation in the seemingly staid world of crop insurance, which is too often dismissed as an 
obscure backwater of the U.S. insurance industry. 2012 was the year that Hudson Insurance Group 
teamed up with leading crop insurance agency Silveus Insurance Group and economic consulting 
firm Watts and Associates to introduce a new supplemental crop insurance product called Price-
Flex®.1 As chief risk officer of Odyssey Re, Hudson’s parent, I was called upon to vet the pricing 
engine that had been developed by Watts; and thus began a collaboration with Watts, which has 
expanded to include innovative loss ratio hedging, that continues through today.  

To understand the nature of the innovation I am going to discuss, it will be helpful to know a 
little about the Federal Crop Insurance Program, which is administered by the Risk Management 
Agency (RMA) of the U.S. Department of Agriculture (USDA) on behalf of the Federal Crop 
Insurance Corporation (FCIC). The RMA has developed a suite of Multiple Peril Crop Insurance 
(MPCI) policies for sale to American farmers by a limited number of approved insurance providers 
(AIPs), each of which is eligible for reinsurance protection provided by the FCIC.2 The RMA has 
developed both the policy language and the rates for the various MPCI coverages, and under the 
terms of their agreement with the RMA, the AIPs are not permitted to deviate from either those 
standard policy terms or rates. In addition, the RMA has imposed restrictions on commissions paid 
to agents. In other words, the AIPs cannot compete with each other on the basis of coverage or 
price, nor are they entirely free to compete for agents by paying higher commissions. As a result, 
competition in the U.S. crop insurance market turns on service, both to agents and farmers, and also 
on private crop insurance products, which are supplemental coverages outside the RMA’s standard 
MPCI suite (and thus not reinsured by the FCIC). These private supplemental coverages are subject 
to RMA (as well as state insurance department) approval. While RMA rules prohibit tying the sale of 
private products to the sale of an MPCI policy, as a practical matter most farmers find it more 
convenient to buy all of their coverage from a single AIP. As a result, many AIPs find that offering 
their own suite of private supplemental policies with attractive characteristics in terms of coverage 
and/or price is an effective way to compete for the pockets of MPCI business they find most 
attractive. 

                                                 
1 Price-Flex is a registered trademark of Watts and Associates, Inc., Billings, MT. 
2 As of January 2016 there were 17 AIPs, including Hudson, eligible to provide MPCI coverage under the Standard 

Reinsurance Agreement with the FCIC.  
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The most popular MPCI policies in recent years, comprising about 80% of total premiums, have 
been those providing revenue protection, which the RMA describes as follows:  

Revenue Protection policies insure producers against yield losses due to natural 
causes such as drought, excessive moisture, hail, wind, frost, insects, and disease, and 
revenue losses caused by a change in the harvest price from the projected price.3 

These revenue protection (RP) policies put a floor under a farmer’s revenue, defined as yield per 
acre ×  crop price ×  acreage. A farmer can typically buy protection up to 85% of projected revenue 
(effectively a 15% deductible), where the projected revenue per acre is equal to the yield per acre 
times the higher of the projected price and the harvest price. There is a claim under the revenue policy 
if, and to the extent that, actual revenue falls below the guaranteed level. 

Years ago, in order to facilitate efficient and transparent administration of MPCI policies, the 
RMA introduced a standardized approach to determining the projected and harvest prices used in 
establishing coverage and adjusting claims for each crop. Under that approach, the actual price 
received by a farmer at his local elevator is ignored, and instead, for coverage and claim purposes all 
farmers within specified regions are deemed to receive the same harvest price for their crops.  

This deemed harvest price is the one-month average daily price of a specified futures contract. To 
illustrate, for policies covering corn in most parts of the Upper Midwest, the harvest price is defined 
as the October average daily price on the corn futures contract for December delivery; for policies 
covering soybeans in the same region, the harvest price is equal to the October average daily price 
on the soybeans futures contract for November delivery. October is said to be the price discovery period 
for determination of the harvest price. 

The projected price is established in similar way. For example, for most parts of the Upper 
Midwest the projected price for corn is the February average price on the December futures 
contract, and for soybeans it is the February price on the November futures contract. February is 
said to be the price discovery period for determination of the projected price. 

The use of standardized crop prices not only streamlines administration but also simplifies the 
pricing of the MPCI policies (though that is a task left to the RMA) as well as supplemental private 
products such as Price-Flex. Rather than having to try to estimate the prices actually received by 
each farmer, the pricing model can focus on just the relevant futures prices. 

As mentioned earlier, under an MPCI revenue protection policy the farmer’s revenue guarantee is 
based on the higher of the projected price and the harvest price, both of which are determined by 
reference to average futures prices during specified price discovery periods. Price-Flex is 
supplemental crop insurance that expands the basic coverage provided by MPCI revenue protection 
                                                 
3 http://www.rma.usda.gov/policies/ 

http://www.rma.usda.gov/policies/
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and similar policies4 by allowing the farmer to add one or more additional price discovery periods to 
the formula for determining the revenue guarantee. The Price-Flex revenue guarantee is based on 
the highest of the projected price, harvest price and the prices emerging from the additional Price-
Flex price discovery periods.  

While all MPCI policies for a given crop and region have a common anniversary date, typically a 
few months before planting begins, Hudson begins selling Price-Flex policies nearly a year earlier. 
For example, for corn in most parts of the Upper Midwest, the common anniversary date (or sales 
closing date) for crop year 2016 MPCI policies is March 15, 2016; in contrast, Hudson offered 2016 
Price-Flex coverage starting in April 2015. 

Because futures prices are used directly in the determination of coverage and claims, Hudson’s 
Price-Flex pricing framework uses the latest available futures price as a rating variable, both in order 
to rate policies more accurately and, importantly, to avoid the risk of adverse selection associated 
with using stale prices. As a consequence, the rate paid by a farmer today, with the corn futures price 
at $3.93 a bushel, would be different from the rate he would have paid yesterday with corn futures at 
$3.87. Underwriters of most other types of property-casualty insurance rarely have the opportunity 
to price their policies with such up-to-date information. 

Hudson can use this latest crop price information for pricing Price-Flex because 

• The latest futures price is both relevant and observable, 

• Regulators have been willing to approve its use as a rating variable, and, critically, 

• Through its partnership with Watts and Associates, Hudson can efficiently handle the 
required quoting, policy issuance and administration. 

Thanks to the efficient IT infrastructure and data collection systems, the entire portfolio of Price-
Flex  policies in force can be “repriced” every day using the latest futures price information to 
provide an updated estimate of the expected portfolio claim costs.  

In addition, the pricing model can also be applied to the portfolio on a daily basis to determine 
the effect of a range of “as-if” futures prices on projected claim costs, as illustrated graphically below 
for the April 13, 2015 valuation of Hudson’s 2015 portfolio of Price-Flex policies linked to the 
December corn futures contract.  

 

 

                                                 
4 In addition to RP policies protecting a farmer directly, there are similar policies based on county level data. 
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Since the impact of a futures price movement on expected claims can be predicted using the 
pricing model, that predictable effect can be offset by taking a suitable position in the underlying 
futures contract.5 In other words, that portion of the risk in Price-Flex claims related to crop prices 
can be hedged, at least over very short periods of time. That last qualification is critical. This is not a 
static hedge that can be put in place and then forgotten. Instead, the hedge has to be reviewed 
frequently and adjusted to reflect changes in the portfolio and/or in expected portfolio claims as a 
function of the current futures price. 

From a risk management perspective, the prospect of hedging Hudson’s Price-Flex crop price 
risk was intriguing. Back-testing of the hedging algorithm over the period 1990-2012 revealed that it 
would have substantially reduced the variability of the Price-Flex loss ratio for policies linked to 
December corn and November soybeans, bringing the hedged loss ratio in most years much closer 
to the target loss ratio.6  

However, as a new and unusual idea for a property-casualty company, there was skepticism at the 
group level about using derivatives to hedge insurance risk. After all, weren’t many supposedly 
sophisticated players in the financial markets badly burned during the financial crisis by derivatives? 
How realistic and reliable was the back-testing? What experience did Hudson or Odyssey Re have in 

                                                 
5 The size of the position and whether it is long or short is related to the slope of the curve representing expected claims 

as a function of the futures price. 
6 The effect of the hedging algorithm is generally to reduce loss ratios that would in the absense of hedging be above the 

target loss ratio and increase those that would otherwise be below the target. 
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derivatives trading? These questions and others led Hudson to put the hedging idea aside 
temporarily. 

Over the course of more than a year, the ERM team at Odyssey Re modeled the effect of 
hedging on Hudson’s Price-Flex portfolio using as-if “paper trades” instead of real ones. That 
exercise provided further evidence that the risk mitigation effects of employing the hedging 
algorithm were real.  

The strength of that analysis, together with other supporting material, addressed the roots of the 
original skepticism, and this time a new proposal to begin hedging Hudson’s Price-Flex risk was 
approved. I am happy to say that the live hedging program using actual trades has proved as 
effective as the paper exercise had suggested it would be. 

In summary, the Price-Flex story at Hudson is one of innovation on several levels. First, unlike 
most traditional property-casualty ratemaking, the Price-Flex pricing model had to be developed to 
cope with not only fairly conventional insurance variables like crop yields but also the modeling of 
futures prices. Second, because Hudson wanted to avoid being confined to a common anniversary 
date for policy sales, it was necessary to build a pricing model dynamic enough to be able to 
incorporate daily futures prices, both to maximize pricing accuracy and to avoid adverse selection. 
Finally, to manage the commodity price risk inherent in the Price-Flex product, the pricing model 
was extended to devise a portfolio loss ratio hedging algorithm that may be the first of its kind in the 
property-casualty industry. 

Apart from the personal thrill I have experienced in witnessing this innovation, I am also seeing 
for the first time the outlines of potential disruption of the traditional insurance industry. As a 
veteran of traditional insurance, I find it difficult to see how an insurance version of Uber or Airbnb 
could usurp traditional homeowners or car insurance, much less commercial insurance. However, 
taking a page from the RMA’s book, which decided years ago to standardize the crop prices used in 
crop insurance by using reference prices instead of the actual ones the farmer receives, what if a 
new, non-traditional insurer emerged to offer streamlined first party coverages, perhaps including 
some totally new ones, using observable reference prices to establish coverage amounts and/or to 
value claims? We all know that insurance industry expense ratios are high, and if there were a way to 
reduce costs substantially by eliminating underwriting and claims administration costs, it might just 
take the insurance industry by storm. Food for thought! 
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David R. Clark, FCAS 
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Abstract 

This paper provides an introduction to the use of Bayesian methods for blending prior information with 
a loss development pattern from a triangle.  The methods build upon conjugate forms discussed in earlier 
literature but introduce the Generalized Dirichlet as a prior, which allows for a significant simplification 
in calculation. The discussion is mainly restricted to the question of blending observed data with prior 
beliefs and not on the question of reserve ranges. 

The paper is aimed at practicing actuaries seeking an introduction to Bayesian ideas for loss development.  
The methods will work with a single development triangle analyzed in a spreadsheet. 

 

Keywords. Bayesian loss development, conjugate prior, Generalized Dirichlet 

             

1. INTRODUCTION 

The selection of loss development patterns is a critical piece of actuarial analysis for casualty 
insurance business and it arises in both pricing and reserving.  The most common data 
structure for this analysis is the development triangle. The actuary can estimate a pattern from 
the triangle but would typically impose judgment in selecting the final pattern based on prior 
knowledge or external data. 

The incorporation of expert judgment and external data makes loss development analysis 
a natural application for the Bayesian framework.  The Bayesian framework provides a way to 
incorporate this prior knowledge in a systematic way.  This paper will provide a very basic 
model to allow the practicing actuary to begin using the Bayesian ideas. 

In many non-insurance applications of Bayesian statistics, the observed data overwhelms 
the prior distribution, making the exact form of the prior irrelevant.  This is not so for 
insurance, where the data is often sparse or volatile; the prior knowledge can have a great 
influence on the final results. 

We will focus on the narrow problem of selecting a pattern from a loss development 
triangle (no exposure units or loss ratio information), blending the data in the triangle with 
prior knowledge.  For convenience, this will be done using conjugate forms, which make the 

Casualty Actuarial Society E-Forum, Summer 2016 1 



Introduction to Bayesian Loss Development 

 

calculations trivial to perform.  Anyone who knows how to calculate an age-to-age factor will 
be able to begin doing Bayesian analysis right away. 

1.1 Research Context 
Bayesian ideas have been part of actuarial thinking for many years, often in the context of 

credibility theory, which has been called the “cornerstone of actuarial science” (Hickman, 
1999).  Bayesian methods have previously been introduced in the context of reserving, and 
have gained more attention recently because of advances in computational algorithms such as 
Markov Chain Monte Carlo (MCMC) techniques. 

The Bayesian approach has been noted for three major advantages: 

1) It allows the analyst to incorporate prior knowledge or expertise in a logically coherent 
way. 

2) It can incorporate complex, nonlinear relationships to provide a more realistic model 
than can be done otherwise. 

3) It can incorporate uncertainty in all model parameters and therefore produce realistic 
reasonable ranges around predicted values. 

Prior papers such as Meyers (2015) and Zhang, et al (2012) have generally focused on the 
problem of estimating ranges around reserve estimates.  Authors such as Robbin (1986), 
Mildenhall (2006), Wüthrich (2007), and England, et al (2012) have also used the Bayesian 
concepts to illuminate the relationships between traditional models such as chain ladder and 
Bornhuetter-Ferguson. 

While many papers acknowledge that “The Bayesian paradigm offers a formal mechanism 
for incorporating into one's analysis information not contained in the available data” (Zhang, 
2012), it is not always clear how this can be done.  Diffuse or noninformative priors are used 
in much of the literature. 

1.2 Objective 
In this paper, we present a conjugate Bayesian model applied to a standard loss 

development triangle.  We will assume that the goal of the analyst is to estimate a development 
pattern using this data to update prior beliefs.  Our focus will be on how to organize the prior 
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beliefs about the development pattern into an explicit prior distribution for this blending 
problem. 

By staying in the context of the conjugate1 models, the blending of prior knowledge with 
new data can be done with very simple calculations.  This allows analyst to begin experimenting 
with these ideas immediately without the need for special software or programming skills.  The 
hope is that this model will help build intuition in the Bayesian framework and become the 
stepping stone for expanding to more advanced models. 

1.3 Outline 
Section 2 of this paper will outline the mathematics of the Bayesian conjugate form for the 

loss development pattern estimation; this will give all of the theory underlying the approach.  
Section 3 will provide a numerical example showing how the model can be implemented in 
practice.  Section 4 gives a brief sketch of future research and ways to extend the model into 
more realistic (and more complex) forms.  

2. BACKGROUND AND MATHEMATICS 

This section provides all of the mathematics needed to derive the conjugate family for 
Bayesian loss development.  Most of this is not critical for the actuary who is only looking to 
implement the method, and can be skimmed. 

2.1 Bayesian Theory in General 
Bayesian theory assumes that an analyst working with a loss development triangle does not 

start as a “blank slate” with no idea of what a development pattern looks like.  Instead, it 
assumes that the analyst comes with some “prior” expectation and is willing to change that 
prior belief based on what is observed in the new data. 

The theory is derived from Bayes’ theorem, which calculates the “inverse probability” of a 
parameter value 𝜃𝜃, based on observed data 𝑥𝑥. 

1 Conjugacy is “the property that the posterior distribution follows the same parametric form as the prior 
distribution” (Gelman, et al (2013), page 35). This is a technical definition, but the attraction of conjugacy is 
in the practical implementation and interpretability. 
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(1.1) 

The major challenge for applying Bayes’ theorem in practice is that the parameter 𝜃𝜃 is 
usually a vector of multiple parameters.  This means that we need to specify a multi-
dimensional distribution 𝑓𝑓(𝜃𝜃) and also be able to evaluate the multi-dimensional integral in 
the denominator.  This presents a computational challenge. 

There have been three main strategies for handling the computation challenge: 

1) Use of conjugate priors, allowing closed-form solutions for carefully chosen 
distributional forms. 

2) Linear approximations to the formula (e.g., Bühlmann-Straub) 

3) Numerical approximations 

a. Quadrature evaluation of the integral 

b. Simulation-based approached (MCMC) 

With greater computer speeds and improved algorithms, the simulation-based methods 
have allowed for Bayesian methods to be used in many fields.  These models are especially 
useful when we need to evaluate complex models. 

The conjugate families are much more useful for introductory purposes because they allow 
the calculations to be done simply and even manually.  It is also very useful to include 
conjugate forms in some of the components of a simulation model (“conditionally conjugate” 
parameters) to improve efficiency. 

For this paper, we will stay in the conjugate world in order to introduce all of the concepts 
in the loss development application such that any actuary can implement.  If you can calculate 
an age-to-age factor, then you can do Bayesian analysis! 

 

2.2 The Beta-Binomial Conjugate Relationship 
Blending patterns is a multivariate problem, but it is easiest to attack the problem by starting 

with the univariate case.  We begin with the univariate Beta-Binomial case, because it will be 
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the main building block for the loss development application. 

The Beta distribution works with a continuous random variable, 𝑝𝑝, that can be any value 
between 0 and 1.  The density function is given below. 

( ) ( )
( ) ( ) ( ) 11 1f p p p βαα β
α β

−−Γ +
= ⋅ ⋅ −
Γ ⋅Γ

 
(2.1) 

 

( )E p α
α β

=
+

 
(2.2) 

The Beta distribution is usefully interpreted as the ratio of gamma random variables.  The 
two gamma random variable have different shape parameters, but share a common scale 
parameter 𝜙𝜙, which does not affect the Beta random variable. 

( )
( )

1

2

1

1 2

,
,

Z Gamma
Z Gamma

Zp
Z Z

α φ
β φ

=
+



  

(2.3) 

We can also note that the shape parameters 𝛼𝛼 and 𝛽𝛽 must be positive numbers but they 
are not restricted to being integer values. 

The likelihood function for the observed data 𝑥𝑥 will be assumed to come from a binomial 
distribution with the probability function below. 

( ) ( )| 1 n xxn
f x p p p

x
− 

= ⋅ ⋅ − 
 

 
(2.4) 

The binomial is often interpreted as the number of “successes” observed in a sample of 𝑛𝑛 
trials, given a probability of success 𝑝𝑝.  The maximum likelihood estimator of this probability 
is calculated easily. 



xp
n

=  
(2.5) 

While the binomial distribution is strictly speaking restricted to integer values, we will make 
an approximation in this application that the estimator above can include non-integer values 
for 𝑥𝑥 and/or 𝑛𝑛 when estimating the proportion 𝑝𝑝. 
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If the parameter 𝑝𝑝 has a Beta prior distribution as defined above, then we apply Bayes’ 
theorem to revise our distribution based on the observed data. 

( ) ( ) ( )
( )

( )
( ) ( ) ( ) 11|

| 1 n xxf x p f p n
f p x p p

f x x n x
βαα β

α β
+ − −+ −⋅ Γ + +

= = ⋅ ⋅ −
Γ + ⋅Γ + −

 
(2.6) 

The fact that the posterior distribution for 𝑝𝑝 is again a Beta distribution gives us the reason 
for calling this a “conjugate” form. 

The expected value of the proportion can also be written in a linear form. 

( )| x x nE p x
n n n n

α α α β
α β α β α β α β

     + + = = ⋅ + ⋅       + + + + + + +       
 

(2.7) 

Alternatively, we can write the updating of parameters in a simple form: 
( ) ( )

( ) ( )

1 0

1 0

x

n x

α α

β β

= +

= + −
 

(2.8) 

With this updating formula, we have a very useful way of interpreting the parameters as 
being “pseudo-data.”  That is, the prior parameters 𝛼𝛼(0) and 𝛽𝛽(0) are combined with the new 
data as though they were previously observed data points.  Our prior knowledge is used as 
though it had been previously observed data. 

Koop, et al (2007, page 19) summarize this concept well: 

“Natural conjugate priors have the desirable feature that prior information can be 
viewed as ‘fictitious sample information’ in that it is combined with the sample in 
exactly the same way that additional sample information would be combined.  The 
only difference is that the prior information is ‘observed’ in the mind of the researcher, 
not in the real world.” 

This interpretability is useful when prior knowledge comes in a subjective form.  For 
example, someone may say “I selected the development pattern based upon my twenty years 
of experience as an actuary.”  This is still useful in the Bayesian framework but we need to 
translate twenty years of experience into equivalent dollars of loss development data. 
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2.3 The Dirichlet-Multinomial Conjugate Relationship 
The Dirichlet distribution is a multivariate generalization of the Beta distribution, which 

allows for a sequence of proportions, {𝑝𝑝1, 𝑝𝑝2,⋯ ,𝑝𝑝𝑘𝑘}.  The probability density function is 
similar to the Beta distribution except that the random variable is now a vector of percentages. 
These are interpreted as the incremental percentages of ultimate loss paid or reported in each 
identified period.  

( ) ( )
( ) ( ) ( )

11 2

11 2

i

k
k

i
ik

f p pαα α α
α α α

−

=

Γ + + +
= ⋅
Γ ⋅Γ Γ ∏





 
(3.1) 

The expected percent-of-ultimate in each period is proportional to its corresponding alpha. 

( )
1 2

i
i

k

E p α
α α α

=
+ + +

 
(3.2) 

The sequence of expected percentages produces the expected loss development pattern 
(either paid or reported).  Figure 1 represents the proportion of ultimate loss in each 
incremental period.  This assumption is consistent with Robbin (1986), Hesselager & Witting 
(1988), de Alba (2002), and Mildenhall (2006). 

Figure 1 

 

Similar to the Beta-Binomial model, the Dirichlet is conjugate with a Multinomial 
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distribution, the Multinomial being the multivariate generalization of the Binomial.  The 
parameters are given a similar updating. 

( ) ( )
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(3.3) 

In this updating formula, the sequence {𝑥𝑥1, 𝑥𝑥2,⋯ , 𝑥𝑥𝑘𝑘} is proportional to the observed 
losses in each development period.  It is most convenient to think of these as the shape 
parameters of gamma random variables, similar to the sequence of {𝛼𝛼1,𝛼𝛼2,⋯ ,𝛼𝛼𝑘𝑘}.   As such, 
the new data comes as the incremental losses divided by the common scale parameter 𝜙𝜙. 

The scale parameter 𝜙𝜙 is the variance/mean ratio of the loss data.  We will assume that this 
is a fixed and known quantity, though that assumption can be relaxed later in the work. 

If an estimate of the variance/mean ratio is needed, it can be approximated from the data 
just as is done for the dispersion parameter in a GLM2, where 𝐶𝐶𝑡𝑡,𝑑𝑑 is the cumulative loss for 
year 𝑡𝑡 as of development period 𝑑𝑑.  This is approximately a variance/mean ratio. 

𝜙𝜙 =
𝑉𝑉𝑉𝑉𝑉𝑉�𝐶𝐶𝑡𝑡,𝑑𝑑�
𝐸𝐸�𝐶𝐶𝑡𝑡,𝑑𝑑�

≈
1

𝑛𝑛 − #𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝
∙�

��𝐶𝐶𝑡𝑡,𝑑𝑑+1 − 𝐶𝐶𝑡𝑡,𝑑𝑑� − 𝐶𝐶𝑡𝑡,𝑢𝑢𝑢𝑢𝑢𝑢 ∙ 𝑝𝑝𝑘𝑘−𝑑𝑑�
2

𝐶𝐶𝑡𝑡,𝑢𝑢𝑢𝑢𝑢𝑢 ∙ 𝑝𝑝𝑘𝑘−𝑑𝑑𝑡𝑡,𝑑𝑑

 

(3.4) 

The major difficulty in the Dirichlet-Multinomial model is that we need to have a complete 
development pattern from the data in order to perform the updating.  This is precisely not the 
case for loss development; we have a triangle of incomplete patterns.  Fortunately, this 
difficulty is solved via the Generalized Dirichlet distribution. 

 

2 See for McCullagh & Nelder (1989) as a standard reference. 

This is the same concept used in the over-dispersed Poisson (ODP) version of the chain ladder method, as 
presented in papers such as Renshaw and Verrall (1998).  This connection is not accidental, as the binomial 
model presented here is simply a conditional Poisson model.  That is, if 𝑋𝑋1 and 𝑋𝑋2 are Poisson random 
variables, then 𝑋𝑋1|𝑋𝑋1 + 𝑋𝑋2 = 𝑁𝑁 is a binomial random variable.   This relationship extends to the over-
dispersed and multivariate versions of the distributions. 
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2.4 The Generalized Dirichlet Distribution 
The Generalized Dirichlet distribution was introduced by Connor and Mosimann (1969) 

in the context of biological science. Wong (1998) further investigated this form and provides 
the Bayesian updating formulas.  Ng, et al (2011) provides more description of this 
distribution, renaming it the “nested Dirichlet.” 

 Instead of a sequence of model parameters {𝛼𝛼1,𝛼𝛼2,⋯ ,𝛼𝛼𝑘𝑘}, we have a parameter set with 
alphas and betas: {𝛼𝛼1,𝛼𝛼2,⋯ ,𝛼𝛼𝑘𝑘−1,𝛽𝛽1,𝛽𝛽2,⋯ ,𝛽𝛽𝑘𝑘−1}.  Just as 𝛼𝛼𝑖𝑖 was seen to be proportional 
to incremental loss, the 𝛽𝛽𝑖𝑖 parameter is proportional to cumulative loss.  This added flexibility 
means that we can have different weights for each cumulative development age, making it 
natural for the development triangle data format. 

These parameters generalize the Dirichlet distribution given above.  But the random 
variable 𝑝𝑝 = {𝑝𝑝1,𝑝𝑝2,⋯ ,𝑝𝑝𝑘𝑘}, is interpreted exactly the same as before. 
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(4.1) 

The Generalized Dirichlet has independence3 between 𝑝𝑝1 and 𝑝𝑝2/(1 − 𝑝𝑝1) and between 
subsequent conditional values 𝑝𝑝3/(1 − 𝑝𝑝1 − 𝑝𝑝2) and so forth.  For the loss development 
application this implies that all of the age-to-age factors are independent.  This independence 
assumption between age-to-age factors is paralleled in the chain ladder method (Mack, 1993). 

The expected incremental losses are given as below.  Formulas for all of the moments and 
co-moments are given in Wong (1998). 
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(4.2) 

The expected incremental values are more easily calculated via a recursive formula. 
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  
(4.3) 

3 This property is described as “neutrality” by Connor and Mosimann (1969), and it only holds for the 
Generalized Dirichlet when the variables are ordered.  It is for this reason that we use the notation that the 
first variable is the tail factor, and then move from right to left up to 𝑘𝑘 as the first (usually age 12) factor.  In 
this order the distribution is a perfect model for development triangle data. 
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The Dirichlet is a special case when 𝛽𝛽𝑗𝑗 = 𝛼𝛼𝑗𝑗+1 + 𝛽𝛽𝑗𝑗+1. 

The Bayesian updating formulas are also straightforward. 
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β β + +

= +

= + + + +

 
(4.4) 

Using the cumulative losses from the triangle, this is written as shown below.  For losses 
in accident year 𝑡𝑡 as of development period 𝑑𝑑, the cumulative amount is 𝐶𝐶𝑡𝑡,𝑑𝑑.  The values used 
for updating the parameters remove the scaling parameter:  𝑥𝑥 = �𝐶𝐶𝑡𝑡,𝑑𝑑+1 − 𝐶𝐶𝑡𝑡,𝑑𝑑�/𝜙𝜙. 
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(4.5) 

The dispersion parameter 𝜙𝜙 acts as a scaling parameter on the loss data from the triangle. 

The great advantage of this Generalized Dirichlet is that we can exclude the first 𝑝𝑝1 or the 
first several points and the remaining points are still a Generalized Dirichlet.  Further, the 
relationship of the first increment to the sum of the remaining increments is always a Beta 
distribution. 

( ) 1

1
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1

 E p α
α β

=
+

 
(4.6) 

This relationship of one period to all the others is exactly what is needed in the calculation 
of age-to-age link ratios in the chain ladder method.   The notation needs to be reversed: for 
example, count 𝑖𝑖=1 for last incremental loss oldest period, and 𝑖𝑖 = 𝑘𝑘 for losses in the first 
year.  The model parameters therefore translate very easily into familiar age-to-age factors. 
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=        12
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β−
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(4.7) 

The age-to-age factor for development period 𝑑𝑑 is calculated from the triangle as shown 
below.  The weighted average age-to-age (ATA) factor should be familiar to most actuaries. 
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(4.8) 

The credibility blended numbers are given in a simple form as in formula (4.9) below. 
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(4.9) 

Given the model parameters for the Generalized Dirichlet and the scaling parameter 𝜙𝜙, 
this credibility blending can be performed in a spreadsheet cell or even on paper.  A numerical 
example of this calculation is given in Section 3.2. 

Part of what has made the conjugate form so easy to implement is the assumption of 
independence between development ages.  Unfortunately, the disadvantage of the 
independence assumption is that ages with little volume will get little credibility weight.  There 
is no consideration of adjacent points, and no more weight assigned if all ages show 
consistently better (or worse) development than the benchmark.  Most notably, the benchmark 
tail factor will never change based on the client data. 

Most users, however, would want some dependence between ages.  For example, if all of 
the age-to-age factors in the client’s triangle are below the benchmark, then the benchmark 
tail should also be reduced.  The next section of our paper will provide a way to include such 
a dependence structure. 

 

2.5 Mixtures of Generalized Dirichlet Distributions 

The model above provides a full conjugate Bayesian model that can be easily implemented 
by an analyst with knowledge of calculating age-to-age factors.  The conjugate family is actually 
a bit more flexible still and allows for further expansion of the prior distributions. 

The principle is that a linear combination of conjugate priors will still be a conjugate prior.  
If the analyst decides that the prior knowledge includes a library of possible development 
patterns (perhaps slow/medium/fast), then the prior is defined as a weighted average of these 
priors.   The weights {𝑤𝑤1,𝑤𝑤2,𝑤𝑤3} act as a discrete mixture distribution. 

Casualty Actuarial Society E-Forum, Summer 2016 11 



Introduction to Bayesian Loss Development 

 

( ) ( ) ( ) ( )1 1 2 2 3 3f p w GD p w GD p w GD p= ⋅ + ⋅ + ⋅  (5.1) 

For each of the individual Generalized Dirichlet distributions 𝐺𝐺𝐺𝐺𝑙𝑙(𝑝𝑝), we perform the 
same updating as outlined in the previous section.  In addition, we update the weights in 
proportion to the likelihood functions for each. 

The likelihood functions are the products of the Beta-Binomial functions for each age 
included in the analysis. 
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(5.2) 

For non-integer values of 𝑛𝑛 and 𝑥𝑥, we can replace �𝑛𝑛𝑥𝑥� with Γ(𝑛𝑛+1)
Γ(𝑛𝑛−𝑥𝑥+1)∙Γ(𝑥𝑥+1)

.  We may also 

note that a special case of formula (5.2) is the uniform distribution when 𝛼𝛼 = 𝛽𝛽 = 1, 

indicating that all values are equally likely. 

The updating of the weights is a straight-forward application of Bayes’ theorem. 

( )
( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

0
1

0 0 0
1 1 2 2 3 3

j j
j

w f x
w

w f x w f x w f x
⋅

=
⋅ + ⋅ + ⋅

 
(5.3) 

Section 3.3, below, gives a numerical example illustrating this formula.  The ability to adjust 
the tail factor in the data according to client data is a major practical advantage. 

 

3.  NUMERICAL EXAMPLE 

3.1 Selecting the Model Parameters 

The description of the Bayesian model given in the previous section has flexibility for the 
analyst to supply a large number of prior parameters.  We now discuss how this can be done 
without making all of these choices arbitrary. 

Parodi and Bonche (2010), describe the uncertainty in prior information from two sources: 

1. Market heterogeneity – the spread of different risks around some industry average 

2. Estimation uncertainty – the industry average, though large, may still be of limited size 
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We may choose to give the prior distribution more variance depending upon how we 
evaluate these sources of uncertainty.  Nonetheless, we usually have some prior knowledge 
and are not completely uninformed about external information. 

In many application of Bayesian models, the choice of prior is not given much attention 
because it is assumed that the data will overwhelm the prior assumption anyway.  For insurance 
applications we cannot assume this, and instead want to provide meaningful prior information.  
The discussion of “noninformative” or “diffuse” priors is therefore just a starting point. 

For the Beta or Dirichlet distributions, a standard noninformative prior is to set all of the 
parameters equal to 1.00.  That is, 𝛼𝛼1 = 𝛼𝛼2 = ⋯ = 𝛼𝛼𝑘𝑘 = 1; this is sometimes referred to as 
the Laplace prior.   Even more diffuse is the Jeffreys prior with 𝛼𝛼1 = 𝛼𝛼2 = ⋯ = 𝛼𝛼𝑘𝑘 = 1/𝑘𝑘.  
In both these cases, the expected pattern would have equal percentages in each period.  In the 
most extreme case, we have 𝛼𝛼1 = 𝛼𝛼2 = ⋯ = 𝛼𝛼𝑘𝑘 = 0; which is an improper prior, sometimes 
called a Haldane prior, that gives no weight to the prior information and therefore will always 
result in a posterior expected value equal to the chain ladder calculation. 

We would like our prior to have expected values equal to our prior knowledge.  In the 
reserving exercise, this may be equal to the pattern selected in a prior reserve study.  In the 
pricing exercise, the prior pattern may be taken from the expiring pricing or from an average 
of similar risks. 

One approach to setting the sequence of alphas is to make them proportional to the 
incremental losses in our benchmark pattern.  If these are scaled to add up to 1.00 then we 
have a very wide uncertainty similar to the Jeffreys prior.  If the alphas add up to a larger 
quantity, say 100, then the prior benchmark pattern will be given much more weight.  The 
sequence of betas can be set to make the Generalized Dirichlet equal to a simple Dirichlet: 
𝛽𝛽𝑗𝑗 = 𝛼𝛼𝑗𝑗+1 + 𝛽𝛽𝑗𝑗+1. 

Alternatively, we can set �𝛼𝛼𝑗𝑗 + 𝛽𝛽𝑗𝑗� as a constant, generally greater than 2, with the 𝛼𝛼𝑗𝑗 and 
𝛽𝛽𝑗𝑗 values set to match the ATA factors. 

The other key input is the dispersion parameter 𝜙𝜙, which is defined as the variance/mean 
of the data in the triangle.  A small value of 𝜙𝜙 will result in more weight given to the new data 
because it implies small process variance. 

This dispersion parameter may be estimated empirically from representative triangles, or it 
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can be selected based on other sources for aggregate distributions.  For example, in Table M4 
we can approximate the distributions using a Gamma.  The expected loss group (ELG) 
represents the insurance charge at an entry ratio of 1.00.  The expected losses for the ELG 
divided by the Gamma shape parameter is therefore an estimate for the scale 𝜙𝜙. 

Table 1 

 

For a starting point, we can select a combination of the parameters, such that 𝜙𝜙 ∙ �𝛼𝛼𝑗𝑗 + 𝛽𝛽𝑗𝑗� 
is constant for all 𝑗𝑗. 

If the prior distribution and scale parameter are calculated from a sample of patterns 
collected from peer companies, then it may be considered an “empirical Bayes” model.  
Schmid (2012) and Shi and Hartman (2014) provide models on that basis.  

 

3.2 Numerical Example with One Benchmark Pattern 
For an example of the loss development task, we introduce a triangle of cumulative loss 

payments.  This data was taken from a sample of companies collected in the CAS Website, 
and represents Products Liability loss net of reinsurance.  The example is, of course, only for 
illustration.5 

The average age-to-age (ATA) factors are calculated as all year weighted averages.  The 
“Col. 1” number represents the sum of losses for a given age, excluding the latest diagonal; 

4 Table M is an industry tool for excess-of-aggregate charges for Workers’ Compensation.  The numbers 
shown here are not from that source, but were created only to illustrate the concept. 

5 For the interested reader, an Excel file including the example that follows can be provided by the author 
upon request. 

 Theoretical "Table M" (for illustration)
Gamma 
Shape 

Parameter

Insurance 
Charge at 
Entry=1

Expected 
Loss Group

Aggregate 
Loss Size 
(example)

Implied 
Variance/Mean

0.5 0.484 48 360,000        720,000            
1 0.368 37 1,000,000     1,000,000         

1.5 0.308 31 2,000,000     1,333,333         
2 0.271 27 3,750,000     1,875,000         

Casualty Actuarial Society E-Forum, Summer 2016 14 

                                                           



Introduction to Bayesian Loss Development 

the “Col. 2” number represents the sum of the subsequent column. 

Table 2 

 

The average ATA factors are easily calculated by the actuary and, if desired, could be 
replaced with the values for only including the latest, say, three diagonals. 

The ATA factors in the triangle show considerable volatility, so it is desirable to blend the 
data with other benchmarks to improve the stability. 

Table 3 

 

The table below brings in the prior knowledge.  We assume that we know a loss 
development pattern.  This pattern may come from industry sources, peer companies, or  prior 
reserve studies. 

We must select the alpha and beta parameters for each age.  We can set these such that the 
expected pattern equals our benchmark:  ATA = (Alpha+Beta)/Beta. 

The total value of Alpha+Beta is selected to be 4.00 in this example, representing a weakly 
informative prior.  The variance/mean ratio or scale parameter 𝜙𝜙 is selected as 1,000 
($1,000,000 since the original Schedule P units are in thousands).  The “Col. 1” and “Col. 2” 

 Sample Triangle = Cumulative Products Liability Paid Losses
12 24 36 48 60 72 84 96

1990 73 262 469 528 536 591 604 606
1991 148 346 391 502 522 514 567
1992 99 198 219 394 408 430
1993 118 255 352 412 581
1994 275 415 645 803
1995 261 446 637
1996 130 471
1997 148

Col. 1 1,104 1,922 2,076 1,836 1,466 1,105 604
Col. 2 2,393 2,713 2,639 2,047 1,535 1,171 606

Avg ATA 2.168 1.412 1.271 1.115 1.047 1.060 1.003

 Age-to-Age Factors
12-24 24-36 36-48 48-60 60-72 72-84 84-96

1990 3.589 1.790 1.126 1.015 1.103 1.022 1.003
1991 2.338 1.130 1.284 1.040 0.985 1.103
1992 2.000 1.106 1.799 1.036 1.054
1993 2.161 1.380 1.170 1.410
1994 1.509 1.554 1.245
1995 1.709 1.428
1996 3.623
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entries are simply the scale parameter times the Beta and Alpha+Beta parameters of the 
Generalized Dirichlet. 

Table 4 

 

The blended pattern is simply the addition of the Col. 1 and Col. 2 weights from the triangle 
and the benchmark pattern (scaled by 𝜙𝜙). 

As noted previously, the conjugate form puts the prior knowledge into a form as though it 
was prior loss development data.  The prior knowledge is added to the data from the new 
triangle as though we actually had more loss in the weighted-average calculation.  The table 
below makes use of formula (4.9) to blend the patterns. 

Table 5 

 

This calculation can be easily incorporated into reserving studies or pricing work.  The 
values for the alpha, beta and scale parameters in our example are only for illustration; the 
actuary can sensitivity test values in real examples in order to gain intuition for setting 

 Prior Assumptions
12 24 36 48 60 72 84 96

LDF 21.950 7.787 3.946 2.512 1.842 1.558 1.415 1.315
ATA 2.819 1.973 1.571 1.364 1.182 1.101 1.076 1.315

Alpha 2.58 1.97 1.45 1.07 0.62 0.37 0.28 0.96
Beta 1.42 2.03 2.55 2.93 3.38 3.63 3.72 3.04

Alpha+Beta 4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.00

Variance/ Mean: 1,000

Col. 1 1,419      2,027     2,546     2,933     3,383     3,633     3,717     3,042     
Col. 2 4,000      4,000     4,000     4,000     4,000     4,000     4,000     4,000     

 Example of Blending Client and Benchmark Patterns
12-24 24-36 36-48 48-60 60-72 72-84 84-96 96-Ult

ATA from Triangle
Col. 1 1,104      1,922     2,076     1,836     1,466     1,105     604        -         
Col. 2 2,393      2,713     2,639     2,047     1,535     1,171     606        -         
ATA 2.168 1.412 1.271 1.115 1.047 1.060 1.003

Benchmark Pattern
Col. 1 1,419      2,027     2,546     2,933     3,383     3,633     3,717     3,042     
Col. 2 4,000      4,000     4,000     4,000     4,000     4,000     4,000     4,000     
ATA 2.819 1.973 1.571 1.364 1.182 1.101 1.076 1.315

Blended Pattern
Col. 1 2,523      3,949     4,622     4,769     4,849     4,738     4,321     3,042     
Col. 2 6,393      6,713     6,639     6,047     5,535     5,171     4,606     4,000     
ATA 2.534 1.700 1.436 1.268 1.141 1.091 1.066 1.315
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reasonable values. 

One limitation in this implementation is that the “tail” factor will always be equal to the 
benchmark number.  This is because we have assumed independence between all ATA factors.  
This assumption is relaxed in the next section, as more robust priors are used. 

 

3.3 Numerical Example with Library of Benchmark Patterns 
The example in section 3.2 assumes that there is a benchmark development pattern and 

some level of uncertainty around that pattern.  It further assumes independence between the 
ATA factors for each development age. 

We can expand the prior assumptions to instead assume that there is not just a single 
benchmark pattern but rather a library of such patterns.  For example, we may assume that 
there are fast, medium and slow developing businesses, perhaps differing due to settlement 
strategies or case reserving practices.  Each of these patterns has its own Generalized Dirichlet 
parameters, and there is some prior belief as to the probability of a given triangle being from 
any member of the library. 

For a reinsurer, this may mean that their client companies’ development patterns are 
naturally clustered into Fast/Medium/Slow groups, but without a perfect way to tell 
beforehand to which cluster a given client belongs. 

Table 6 

 

 

As we noted earlier, the distribution of 1/ATA always follows a Beta distribution.  For each 
development age, we can make a graph of the density functions for each of the benchmark 
patterns as a test for reasonableness. 

  

 Cumulative Loss Development Factors
12 24 36 48 60 72 84 96

Fast 14.014 4.930 2.607 1.759 1.406 1.263 1.191 1.155

Medium 21.950 7.787 3.946 2.512 1.842 1.558 1.415 1.315

Slow 49.240 15.860 7.407 4.163 2.706 2.057 1.750 1.567
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Figure 2 

 

 

We may have the case that the user has specified three different patterns, with variance 
within each.  The prior mixture weights are assumed to be 1/3 to each of the three benchmark 
patterns.  For Bayesian updating, the same procedure from Section 3.2 is applied for each of 
these patterns separately.  

The mixture weights are then updated using formula (5.3).  An example is show for the 
Fast pattern below, with formula (5.2) calculated as loglikelihood for each development age. 
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Table 7 

 

This is known as a mixture model and it is still relatively easy to compute because a mixture 
of conjugate distributions is still a conjugate form.  The posterior will again be a discrete 
mixture of Generalized Dirichlet distributions. Because the data from the triangle generally 
showed a faster pattern than implied in our benchmark, the weights are revised to shift more 
weight to the “Fast” curve. 

Table 8 

 

This use of a mixture of benchmark patterns can be expanded to include as many alternative 
patterns as desired, though for practical purposes three is sufficient.  The major point is simply 
to illustrate the great flexibility for incorporating prior knowledge. 

 Calculaton of Loglikelihood (Fast Pattern)

12-24 24-36 36-48 48-60 60-72 72-84 84-96 96-Ult

Data from Triangle
Col. 1 1,104 1,922 2,076 1,836 1,466 1,105 604
Col. 2 2,393 2,713 2,639 2,047 1,535 1,171 606

Variance/Mean Ratio: 1,000
N 2.39 2.71 2.64 2.05 1.54 1.17 0.61
X 1.29 0.79 0.56 0.21 0.07 0.07 0.00

Benchmark Pattern
LDF 14.014 4.930 2.607 1.759 1.406 1.263 1.191 1.155
ATA 2.843 1.891 1.482 1.251 1.113 1.060 1.031 1.155

Alpha 6.5 4.7 3.3 2.0 1.0 0.6 0.3 1.3
Beta 3.5 5.3 6.7 8.0 9.0 9.4 9.7 8.7

Alpha+Beta 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0

Loglikelihood -0.9363 -1.0052 -0.8252 -0.5260 -0.2687 -0.2535 -0.0290 0.0000

 Bayesian Updating of Probabilities

Difference Relative Original Revised
LogLikelihood in LL Likelihood Weights Weights

A B=A-Max(A) C=exp(B) D E=C*D/Avg( C )

Slow -4.61 -0.77 0.464 33.33% 20.41%
Baseline -4.06 -0.21 0.810 33.33% 35.61%
Fast -3.84 0.00 1.000 33.33% 43.98%

0.758 100.00% 100.00%
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4. RESULTS AND DISCUSSION 

It was the main goal of this paper to provide a Bayesian model that can be implemented 
quickly for the practicing non-technical actuary.  The use of the conjugate form allows that 
implementation.  Once this introductory material has been mastered, it is hoped that actuaries 
will seek to expand the model to make them more realistic. 

4.1 Summary of Conjugate Model 
The conjugate model is based on some simplified assumptions for ease of implementation.   

It is worth remembering some of the assumptions we have required. 

1) The variance/mean ratio is assumed to be constant and known (supplied by the analyst) 

2) All incremental development should be strictly positive 

3) Individual incremental losses are independent 

  

4.2 Extensions of the Model 

Some of the ways that we can expand on the simple model are given below.  These go 
beyond the conjugate form and therefore require moving to simulation models.  The simple 
conjugate form may still be a component or special case of these advances. 

4.2.1 Parametric versus Nonparametric Models 
The use of the Dirichlet or Generalized Dirichlet distribution allows for a pattern with a 

parameter for each development period.  This creates a very flexible shape but requires 
estimation of many parameters.   An alternative is the use of a parametric “growth curve” such 
as described in Zhang, et al (2012). 

A parametric curve creates a much smoother development pattern, which is more 
constrained because of the fewer parameters.  The Dirichlet is sometimes called a 
nonparametric model because it can follow the data more closely; however, “nonparametric” 
is a bit of a misnomer because it does not mean “no parameters” but rather potentially “many 
parameters.” 

The use of a parametric growth curve can be incorporated in a Bayesian framework, with 
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the prior distribution being on the parameters.  This does not fit as neatly into our conjugate 
form, but can be handled in simulation-based MCMC models. 

4.2.2 Including Exposures or Other External Data 
The models above assume that the actuary is selecting a loss development pattern from a 

development triangle, and that the basic assumptions of the chain ladder method apply.  For 
example, that the same pattern is applicable for all accident years. 

The Bayesian framework allows us to move beyond this limited data and include other 
information.  We could bring in data such as exposure units (e.g., onlevel premium) or 
expected loss ratios.  This additional information may also have prior distributions reflecting 
the relative uncertainty in the data.  Robbin (1986) and Mildenhall (2006) show that as the 
relative uncertainties change the results move between familiar methods such as Cape Cod 
and Bornhuetter-Ferguson. 

In addition to exposure or premium information, the model can expand to modify the 
assumption that all accident years share the same expected development pattern.  Meyers 
(2015) introduces a “changing settlement rate” (CSR) model that includes an interaction term 
to adjust each accident year. 

4.2.3 Calculation of Predictive Distribution 

This paper has been focused on getting an estimate of expected ultimate loss that 
incorporates prior knowledge, and we have not directly discussed the variability around that 
estimate.  However, because all of the analysis presented in this paper has been based on 
explicit distribution forms, all of the building blocks are in place to calculate ranges around 
estimated ultimate losses. 

The evaluation of variance depends directly upon the scale parameter 𝜙𝜙, which has been 
assumed to be fixed and known – in fact supplied by the analyst.  For computing ranges we 
would more generally want this parameter to be considered a random variable with its own 
prior distribution.  The variance should also be considered uncertain in order to evaluate the 
full uncertainty in the final estimate of ultimate loss. 

4. CONCLUSIONS 

This paper has presented an introduction to Bayesian loss development and gives an 
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implementation that can be used immediately by any actuary.   The use of the Generalized 
Dirichlet allows simpler computation than presented in earlier papers and allows for 
calculations that are as direct as the calculation of age-to-age factors.   The use of a conjugate 
form allows an interpretation of prior knowledge in the form of “fictitious” prior loss 
development.  The conjugate form can also be expanded with discrete mixtures to allow 
greater flexibility in specifying prior knowledge. 

It is hoped that this paper will allow more actuaries to experiment with the Bayesian 
framework and then be comfortable to move to ever more realistic modeling work. 
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Abbreviations and Mathematical Notation 
ATA Age-to-Age factor , or “link ratio” 
LDF Cumulative Loss Development Factor 
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𝑝𝑝 A variable representing a portion between 0 and 1.  It is a parameter (number of successes) in the 
Binomial distribution or the random variable itself for Beta distribution.  In the univariate distributions 
(Binomial, Beta) it is written without a subscript; in the multivariate cases (Multinomial, Dirichlet) it is 
written with a subscript. 

𝜙𝜙 Scale Parameter, or variance-to-mean ratio of aggregate loss 
𝛼𝛼,𝛽𝛽 Shape parameters of Gamma, Beta and Generalized Dirichlet distributions 
𝐶𝐶𝑡𝑡,𝑑𝑑 Cumulative losses for accident year 𝑡𝑡 as of development age 𝑑𝑑 
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