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On Equality and Inequality in Stationary Populations 

By David A. Swanson and Lucky M. Tedrow 
 _____________________________________________________________________________________  

Abstract. Although it is an analytic construct important in its own right, a stationary population is an 
integral component of a life table. Using this perspective, we discuss well-known and not-so-well known 
equalities that are found a stationary population as well as a set of inequalities. There are two parts to 
the set of inequalities we discuss. The first (theorem 1) is that at any given age x, the sum of mean years 
lived and mean years remaining exceeds life expectancy at birth when x is greater than zero and less 
than the maximum lifespan (When x = zero or x =maximum lifespan, then the sum of mean years lived 
and mean years remaining is equal to life expectancy at birth). The second inequality (theorem 2) is a 
generalization of the first, namely that for the entire population, the sum of mean years lived and mean 
years remaining exceeds life expectancy at birth.  It may be that the inequality we identify as Theorem 1 
is common knowledge in some circles. However, we have found no formal description of it and believe 
that Theorem 1 represents a contribution to the literature. Similarly, it may be the case that one would 
expect that Theorem 2 would hold, given Theorem 1, but we also have not found a formal description 
of this in the literature and believe that it also represents a contribution. Finally, we note we have not 
found any discussion of an equality we found embedded in Theorem 1 (when age = 0 and when age = 
ω, then λx +ex = e0) and believe that the identification of this equality represents a contribution. We 
provide illustrations of the two inequalities and discuss them as well as selected equalities. 
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1. INTRODUCTION 

Although many of them are apparent and some that are not so apparent have been 
described, equalities represent a defining characteristic of stationary populations (Kintner 
2004). In addition to the obvious equalities such as the crude birth rate and crude death rate, 
research has revealed that: (1) mean years lived is equal to mean years remaining; and (2) the 
distribution of age composition is equal to the distribution of remaining lifetimes(Carey et al. 
2008; Rao and Carey 2014, Vaupel 2009). To these equalities, the following can be added: (1) 
mean age is equal to mean years lived (Rao and Carey 2014); and (2) mean age is equal to mean 
years remaining (Kim and Aron 1989).   

As we show in this paper, mean age can be expressed as a function of total years lived by 
the stationary population and its life expectancy at birth, which implies that for a given 
stationary population, its mean age can be expressed as a function of its crude birth rate as 
well as its crude death rate. In turn, because mean age is equivalent to mean years lived and 
mean years remaining, it also can be expressed as a function of total years lived and, 
respectively, life expectancy at birth, the crude birth rate and the crude death rate.  
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To these equalities, we add a set of inequalities by demonstrating: (1) that at any given age 
x, the sum of mean years lived and mean years remaining exceeds life expectancy at birth in a 
given stationary population, where 0 < x < ω (maximum lifespan); and (2) that for a stationary 
population as a whole, the sum of mean years lived and mean years remaining exceeds life 
expectancy at birth. We discuss this set of inequalities and provide an empirical illustration of 
them.  

Before proceeding, it is worth noting that while a stationary population is an analytic 
construct in its own part, it is an integral component of a life table [1]. As such, the equalities 
and inequalities we identify and discuss apply to life tables and their construction. As our main 
findings, we offer:  (1) Theorem 1 and provide a proof for it that shows that for a given age x, 
the sum of mean years lived (λx) and mean years remaining (ex ) exceeds life expectancy at 
birth where 0 < x < ω;  (2) Theorem 2 as a generalization of  Theorem 1 to all ages and provide 
a proof for it; and (3)   an equality we found embedded in Theorem 1, namely that when age 
= 0 or when age = ω, then λx +ex = e0. 

1.1 Equalities in a Stationary Population 
Let the size of a stationary population be To 

where  

T0 = ke0 

and 

k = radix of the life table (i.e., k = 100,000) = l0 

e0= life expectancy at birth (Mean years remaining at birth) 

Extending the notation used by Vaupel (2009), the age distribution of a stationary 
population of size To can be described by: (1) the probability density function c(a), the 
distribution of years lived; (2) the probability density function λ(a); and (3) the distribution of 
years remaining be described by the probability density function r(a). Note that by definition, 
c(a) = λ(a). Using this notation, we can define the total number of years lived by individuals 
currently alive in the stationary population (Τλ) and the total number of years remaining to 
them (Τ r), respectively, as: 
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(1) T λ =    ∫ 𝛼𝛼 𝑐𝑐(𝛼𝛼)𝜔𝜔
𝑛𝑛  = T0μλ   

(2) Τ r =   ∫ 𝛼𝛼 𝑟𝑟(𝛼𝛼)𝜔𝜔
0     =   T0μr  

Because, as we noted earlier, c(α) = λ(α ),  

              then          Tc =∫ 𝛼𝛼 𝑐𝑐(𝛼𝛼)𝜔𝜔
0   = Τλ =  ∫ 𝛼𝛼 𝜆𝜆(𝛼𝛼)𝜔𝜔

0   
Kim and Aron (1989) provide a proof that mean age in a stationary population is equal to 

mean expected years remaining. Because Vaupel (2009) demonstrated that that the mean 
number of years lived in a stationary population is equal to the mean expected years remaining, 
we can see that the three means are equivalent, using the notation just described: 

(3) μc = μr = μλ 

where   

μc = mean age = ∫ 𝛼𝛼 𝑐𝑐(𝛼𝛼)𝜔𝜔
0 𝑑𝑑𝑑𝑑  

μr = mean years remaining =  ∫ 𝛼𝛼 𝑟𝑟(𝛼𝛼)𝜔𝜔
0 𝑑𝑑𝑑𝑑  

and  

μλ = mean years lived =   ∫ 𝛼𝛼 𝜆𝜆(𝛼𝛼)𝜔𝜔
0 𝑑𝑑𝑑𝑑  

Because T0 = ke0, then it follows that  

(4) Tc/T0 = μc 

Because μc = μr = μλ, then it follows that 

(5)  Tc/T0 = μr = μλ 

And because T0 = ke0, μc can be expressed as 

(6) μc = Tc/ke0 

then it follows that 

(7) Tc = μcke0 

and 

(8) Tc/k = μce0 
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In verbal terms, equation (8) states that when divided by the radix of the life table, k, the 
total number of years lived by those alive in the stationary population, Tc, is equal to the 
product of the mean age of the stationary population, μc, and its life expectancy at birth, e0. 
When divided by the radix of the life table, the total number of years lived by those alive in 
the stationary population also is equal to: (1) the product of the mean number of years lived 
by those alive in the stationary population, μλ, and life expectancy at birth, e0; and (2) the 
product of the mean number of years remaining to those alive in the stationary population, μr, 
and life expectancy at birth, e0.   

Further, 

(9) e0 = Tc/kμc 

and because 1/e0 = b = d 

where  

b = the crude birth rate in the stationary population (k/T0) 

 d = the crude death rate in the stationary population (k/ T0) 

then it follows that the relationship, μc = Tc/ke0 can be expressed as  

(10) μc = (Tcb)/k 

In verbal terms, equation (9) states that when divided by the radix of the life table, k, the 
product of the total number of years lived by those alive in the stationary population, Tc, and 
the population’s crude birth rate, b, is equal to the mean age of the individuals currently alive 
in the stationary population.  This equality is the product of the force of fertility and the total 
years lived by those alive.  Because b = d, the equality can also be viewed as the product of 
the force of mortality and the total years lived by those alive. These equalities should not be 
surprising because for a population to be stationary, the force of increments is equal to the 
force of decrements. Similarly, it should not be surprising that specific values of mean years 
lived, μλ, and mean years remaining, μr , also result from the specific equality of the force of 
increments and the force of decrements acting in concert with the total years lived in a given 
stationary population. 
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1.2 A Set of Inequalities 
Theorem 1 

when 0 < x < ω, then  λx + ex > e0 

Definition 

λx = (T0 -Tx)/l0 = mean years lived to age x 

and 

ex = Tx/lx  = mean years remaining at age x 

Corollary 

when x =0 then λx + ex = e0 since 

(T0 -T0)/l0  + T0/l0  = 0 + e0 = e0 

and when x = ω then λx + ex = e0 since 

(T0  -Tω)/l0  + Tx/lx  =    (T0 -Tω)/l0 + Tω/lω = (T0 - 0)/l0 + 0 = e0 + 0 = e0 

Proof 

Let λx = (T0 - Tx)/l0 = (e0l0 - Tx)/l0 = e0 - Tx/l0 

then λx + ex = e0 - Tx/l0 + Tx/lx 

    and except when x= 0, so that Tx/l0  = T0/l0  = e0 

    and when Tx/lx = T0/l0 so that e0 - T0/l0 + T0/l0 = 0 + e0  = e0 

    and except when x = ω, so that  Tx/l0 = Tω/l0  

    and when Tx/lx = Tω/lω, so that e0 - Tω /l0 + Tω/lω = e0 - 0/l0 + 0/0 = e0 - 0 + 0 = e0 

then Tx/l0 < Tx/lx because l0 >lx when x >0 

Thus, λx +ex > e0  because 
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e0 - Tx/l0 +Tx/lx >e0 

 

Theorem 2   

μλ + μr > e0 

Proof 

Because μc = μr = μλ 

then it follows that μλ + μc = 2μc = 2μr = 2μλ 

Because e0 = Tc/kμc 

then it follows that  

e0/2 = Tc/k2μc 

and since e0/2 < e0 

then  

(μλ + μr)  > e0 

Once we have Tc and μc, both of which are easily obtained when c(α) is determined, we 
can determine life expectancy at birth by dividing total years in the stationary population by 
the product of k (remember k = l0) and the mean age of the population. Because of the 
equalities shown earlier, e0 also can be determined when either r(α) or λ(α) is found. And, of 
course, once e0 is obtained, b and d can be determined, as can T0. 

It is useful to note here that Pressat (1972: 479-480) examined the relationship between 
mean age of a stationary population and life expectancy at birth and found (in the notation we 
use): 

(11) μc =  ½(e0  +( σ 2/e0)) 

 where  
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  μc  = mean age of the stationary population  

  e0= life expectancy at birth 

  and 

  σ 2 
 = variance in age at death 

Pressat’s identification of equation (11) was independently re-discovered by Morales (1989) 
and identified as a re-discovery by Preston (1991).  

Equation (11) is particularly useful here because it provides the basis for an interpretation 
of the inequality given in Theorem 2, namely that μλ + μr > e0. First, recall that as shown 
earlier, the mean age of the stationary population is equal to mean years lived and to mean 
years remaining: μc = μr = μλ  and, therefore = 2μc = 2μr = 2μλ. Thus, if we multiply μc by 2, 
then equation (11) can be restated as  

(12) 2μc =  2(½(e0  +( σ 2/ e0))) = e0  +( σ 2/e0) 

Because 2μc  =  mean years lived (μλ ) plus mean years remaining (μr ) and because 2μc = e0  

+( σ 2/e0),  we can see that the sum of mean years lived and mean years remaining is equal to 
the sum of life expectancy at birth and the ratio of variance in age at death to life expectancy 
at birth: μλ + μr      = e0  +( σ 2/ e0).  Further, where σ 2   > 0, then it follows that μλ + μr > e0 
and where σ 2   = 0, then μλ + μr     = e0 .  

Because we also know that life expectancy at birth is equivalent to mean age at death, we 
also can state equation (12) as: 

(13) 2μc   = μd   + ( σ 2/μd)      

where  

     μd   = mean age at death and μc   and σ 2 are defined as before. 

Because 2μc   = μλ + μr      we can re-express (13) as: 

(14)  μλ + μr      = μd   + ( σ 2/μd)  

where  
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     all of the terms are as previously defined. 

Thus, the sum of mean years lived and mean years remaining is equal to mean age at death 
plus the ratio of the variance in age at death to mean age at death. Further, where σ 2   > 0, 
then it follows that μλ + μr > μd   and where σ 2   = 0, then μλ + μr      = μd .   

Equation 12 provides a shortcut method for calculating the variance in e0 (and its 
equivalent, mean age at death):   

(15)    σ 2 = [e0*(μλ + μr  )] –   e0
2 

This approach to calculating   is simpler to implement than others (Hakkert 1987, Hill 1993, 
Wrycza 2014) (e.g., one can simply multiply mean age (μc) by 2 and substitute this in the right 
had side of equation [15] in place of μλ + μr ). This approach also provides a meaningful 
estimate of σ 2 that among other desirable characteristics includes mortality at all ages (see 
Wryzca 2014 for a discussion of this issue), which has a range of applications (see, e.g., 
Schindler et al. 2012). Appendix Table 1 provides a set of such estimates using the information 
found in Table 1. 

1.2.1 Illustration of Theorem 1 

Using a 1990 USA Life Table (both sexes combined) from the Human Mortality Database 
(2009) as an illustration of a stationary population, we examine λx, ex, and λx+ex by age, where 
ω= 110.5 (which we set as the maximum life span; nobody lives beyond this age). Our 
examination is displayed by Figure 1, which provides a scatterplot of the relationship between 
age (x axis) and λx+ex, the sum of mean years lived and mean years remaining (y axis). Life 
expectancy at birth for this population is 75.40 years.  As shown in Figure 1, when age (x) = 
0, λx+ex = e0 and when age (x) = 110.5, λx+ex = e0. The scatterplot shows that λx+ex rises 
non-monotonically from 75.40 years (e0) when age = zero, reaches a maximum of 79.82 years 
at age 78.5, remains at this maximum to age 79.5, then monotonically declines back to  75.40 
(e0), at the maximum possible age, 110.5. As it increases, the curve is steepest from age 45 to 
age 79 and the decline from age 79 is steep all the way to age 110.5.  
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1.2.2 Illustration of Theorem 2 

In order to empirically illustrate the inequality provided by Theorem 2 and the relationship 
linking it to variance in age at death (see equations (11) through (14)), we selected a (non-
random) sample of complete USA life tables for years ending in zero and five from the Human 
Mortality Database (2009), which has an online collection of these life tables annually from 
1933 to 2013. Table 1 provides these 16 empirical examples of this inequality, μλ + μr > e0. 
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FIGURE 1. MEAN YRS LIVED + MEAN YRS REMAINING BY 
AGE
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TABLE 1.  DIFFERENCE BETWEEN THE SUM OF MEAN YEARS LIVED & MEAN YEARS 
REMAINING AND LIFE EXPECTANCY AT BIRTH: SELECTED USA LIFE TABLES FOR BOTH 

SEXES COMBINED, 1935 TO 2010 (N=16) 

YEAR 
E0                    

(1) 

MEAN YRS 
LIVED             

(2) 

MEAN YRS 
REMAINING                  

(3) 

TOTAL MEAN YRS 
LIVED & 

REMAINING              
(4) 

DIFFERENCE: 
(4) - (1) 

1935 60.89 35.47 35.47 70.94 10.05 
1940 63.23 35.86 35.86 71.72 8.49 
1945 65.58 36.55 36.55 73.10 7.52 
1950 68.07 37.12 37.12 74.24 6.17 
1955 69.56 37.62 37.62 75.24 5.68 
1960 69.83 37.66 37.66 75.32 5.49 
1965 70.24 37.81 37.81 75.62 5.38 
1970 70.74 38.00 38.00 76.00 5.26 
1975 72.54 38.67 38.67 77.34 4.80 
1980 73.74 39.09 39.09 78.18 4.44 
1985 74.67 39.39 39.39 78.78 4.11 
1990 75.40 39.75 39.75 79.50 4.10 
1995 75.89 39.90 39.90 79.80 3.91 
2000 76.86 40.20 40.20 80.40 3.54 
2005 77.63 40.60 40.60 81.20 3.57 
2010 78.85 41.14 41.14 82.28 3.43 

Source of data discussed in text. Calculations by authors. 

 
      
 As can be seen in Table 1, the difference between μλ + μr, on the one hand, and e0, on the 
other, declines (although not monotonically) as e0 increases from 1935 to 2010. The mean 
difference over all 16 observations is 5.37 years, with a standard deviation of 1.90. Because of 
Theorem 2 we know that the difference will remain positive from the re-expressed form of 
equation (12), namely, μλ + μr      = e0   + (σ 2/e0).  The trend in the sample confirms that the 
relationship is curvilinear as expected from this same re-expressed equation.  To empirically 
illustrate this, we constructed scatter plots of different equations and variable transformations 
that seemed promising using the NCSS package, version 8 (2016) and found that a quadratic 
model of the following form fit well: (difference2 ) = A + B*(ln(e0)) + C*(ln(e0))2, where A = 
25498.4. B = -11685.8 and C = 1339.6, with R2 = .9965. This model was estimated in 21 
iterations with a random seed of 2695.  A scatterplot of the relationship between difference 
and e0 along with the fitted model’s trend line is shown in Figure 2.  
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  In verbal terms, the explanation for the empirical illustration of the relationship found 
in Figure 2 and specified in the non-linear equation given by μλ + μr      = e0   + (σ 2/e0), is that 
the sum of mean years lived (μλ) and mean years remaining (μr) is equal to the mean age at 
death (μd  ) plus the ratio of the variance in age at death to mean age at death (σ 2/μd).  Recalling 
that mean age at death is equal to life expectancy at birth (e0), we can see that if the variance 
in age at death remained relatively constant (or, relatively speaking, did not increase as much 
as life expectancy) from 1935 to 2010 while life expectancy increased, then the difference, μλ 
+ μr    - e0 , would decrease during the same period, which is what is shown in Figure 2.  To 
some extent, the trend found in Figure 2 likely reflects this because other than the initial effect 
of the baby boom (1946-64), the US population aged between 1935 and 2010 and holding all 
else constant, one would expect that variance in age at death would not increase as a population 
ages because deaths become more concentrated in the older population, which, in turn, would 
be reflected in life tables constructed from such a population.  

 
FIGURE 2. The Difference between the sum of mean years lived + mean years remaining and eo 

(sum – e0) by e0 
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2. RESULTS AND DISCUSSION 

Using Carey’s equality Theorem (Carey et al. 2008, Rao and Carey 2014, Müller et al. 2004) 
and a 2005 life table for the United States, Vaupel (2009) estimates that more than 48 percent 
are 41 years or older, which implies that nearly half of the life table population will be alive in 
2050, assuming that the 2005 life table holds to 2009.  Using the same US life table and 
corresponding stationary population, we find that on average the population lived 40.60 years 
and will live another 40.60 years on average. If we assume that the 2005 life table applied to 
2009 as did Vaupel, then on average the members will live to almost 2050, which is in 
agreement with Vaupel’s estimate. Even without such an assumption, it is the case that on 
average the 2005 population lived 40.6 years and will, on average, live an another 40.6 years, 
or 81.3 years in total, which is 3.67 years more than their life expectancy at birth of 77.63  
years. While the actual differences may vary, the proof shown earlier for Theorem 2 shows 
that mean years lived + mean years remaining is greater than life expectancy at birth (μλ + μr > 
e0).  If we apply this line of reasoning to the actual 2010 US life table, we find that on average 
the 2010 population lived 41.14 years and will, on average, live another 41.14 years, or 82.28 
years in total, which is 3.43 years longer than this population’s life expectancy at birth of 78.85. 
Notice that as shown in Figure 2, that this difference is less than the difference found for the 
2005 life table, which is consistent with the model shown in Figure 2 and discussed at the end 
of the preceding section. 

Vaupel (2009) notes that in regard to work by Müller et al. (2004) and Müller et al. (2007) 
on wildlife population dynamics, Carey’s equality Theorem could be used to estimate 
population age structure. In regard to this application, we add that if a representative age 
structure is obtained for a stationary population (or one that can be made stationary with 
adjustments suggested by Müller et al. (2004) and Müller et al. (2007), through Vaupel’s 
suggestion or from another method, such as a sample, then its mean age, mean years lived, 
and mean years remaining can be determined as can its life expectancy at birth, its crude birth 
rate and its crude death rate. If a representative age structure is obtained from a random sample 
then interval estimates of these parameters can be constructed for the stationary population 
in question.  

In the form of λx and ex, Carey’s Equality Theorem also manifests itself in the data displayed 
as Figure 3, although somewhat imperfectly because the data are discrete rather than 
continuous.1As can be seen in Figure 3, the plotted values of λx by age are nearly a mirror 
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image of the plotted values of ex by age. The two curves cross at 39.75 years, which is the 
average number of years lived for this population and, also, the average number of years 
remaining.                  

 
Theorem 1 shows that for a given age x, the sum of mean years lived (λx) and mean years 

remaining  (ex) exceeds life expectancy at birth where 0 < x < ω. Theorem 2 generalizes 
Theorem 1 to all ages. As shown in equations (12) through (14) and the discussion directly 
related to these equations, we have an explanation for the inequality demonstrated in theorem 
2, which is linked to the variance in age at death. For example, if variance in age at death is 
held constant and life expectancy (mean age at death) increases then the inequality described 
by theorem 2 decreases; if variance in age at death increases and life expectancy is held constant 
then the inequality described by theorem 2 increases.  

The explanation provided for the inequality described by theorem 2 can be extended to 
theorem 1 by looking at the variance in age at death up to and including a given age. For 
example, if we are interested in the inequality found at age x, we will find that if variance in 
age at death up to and including age x is held constant and life expectancy (mean age at death) 
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increases, then the inequality described by theorem 1 decreases; if variance in age of death up 
to and including age x increases and life expectancy is held constant then the inequality 
described by theorem 1 increases.  

One implication of these two related theorems is that the average longevity of all of the 
“living” members of a given stationary population exceeds the average number of years lived 
expected at birth.  From a different perspective, Pressat (1972: 480) recognizes this inequality 
by stating that “the mean age of a stationary population is greater than half of the expectation 
of life.” He follows this with an important observation, namely that this inequality is due to 
variation in individual lengths of life. This variation is why the sum of mean years lived and 
mean years remaining exceeds life expectancy at birth. This inequality suggests that when a life 
table is used for planning the future, it is worthwhile to keep in mind that life expectancy at 
birth understates average longevity for the “living” members of the life table population 
relative to the non-linear relationship found in  the ratio of variance in age at death to life 
expectancy at birth.2 As such, when this ratio is elevated then it may be preferable to use the 
sum of mean years lived and mean years remaining instead of life expectancy at birth in some 
applications. For a similar reason, this also suggests that at a given age, it may be preferable to 
use the sum of mean years lived to that age and mean years remaining at that age instead of 
simply using life expectancy at the age in question.3 Although it does not directly take into 
account the inequalities we have demonstrated here, work by others such as Canudas-Romo 
and Zarulli (2016) and Canudas-Romo and Engelman (2016) recognizes similar implications 
involving years lived and years remaining.  
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3. ENDNOTES 

1. Villavicencio and Riffe (2016) provide a complete and formal proof of Carey’s equality in a discrete-time 
framework.  

2. In addition to Pressat (1972), Morales (1989), and Preston (1991), among others, Canudas-Romo and 
Engelman (2016) have examined the sum of mean years lived and mean years remaining. However, none of 
these authors describes the inequalities demonstrated here in the forms of theorems 1 and 2.    

3. The ratio, σ 2/e0, is equivalent to the coefficient of variation, as is σ 2/μd. As such, when making comparison 
across stationary populations in regard to variation in e0 or μd, it is more appropriate to use these measures, 
respectively, instead of σ 2. Following the observations of Pressat (1972: 480), it is worthwhile to note here 
that when any subject is examined from the perspective of “longevity,” the inequalities we have identified 
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will be found where there is variation in individual longevity. Among many others, these subjects include, 
for example, duration of first marriage (Schoen 1975), length of working life (Yusuf, Martins, and Swanson  
2014: 222-224), length of the second birth interval (Swanson 1985, 1986), length of product reliability 
(Ebeling 2010), age and length of time to product substitution (Martins, Yusuf, and Swanson 2012: 169-
189), duration of disability (Office of the Chief Actuary 2002), and the longevity of species other than 
humans (Carey and Judge 2000). 
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e0                    

(1)

TOTAL MEAN YRS 
LIVED & 

REMAINING              
(4)

VARIANCE (σ2 )  IN 
e0 (MEAN AGE AT 

DEATH)
STANDARD 

DEVIATION ((σ) 
60.89 70.94 611.94 24.74
63.23 71.72 536.82 23.17
65.58 73.1 493.16 22.21
68.07 74.24 419.99 20.49
69.56 75.24 395.10 19.88
69.83 75.32 383.37 19.58
70.24 75.62 377.89 19.44
70.74 76 372.09 19.29
72.54 77.34 348.19 18.66
73.74 78.18 327.41 18.09
74.67 78.78 306.89 17.52
75.40 79.5 309.14 17.58
75.89 79.8 296.73 17.23
76.86 80.4 272.08 16.49
77.63 81.2 277.14 16.65
78.85 82.28 270.46 16.45

APPENDIX TABLE 1.  ESTIMATE OF VARIANCE  (σ2) IN e0 (MEAN AGE AT 
DEATH) : VARIANCE = (e0*(MEAN YEARS LIVED + MEAN YEARS 

REMAINING)) - e0
2
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