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The Actuary’s Role in Transfer Pricing 

Lynne Bloom, FCAS, MAAA 

Marc Oberholtzer, FCAS, MAAA 

 
________________________________________________________________________ 
Abstract  
When related parties enter into cross border intercompany reinsurance, most countries require that the 
intercompany pricing be consistent with an “arm’s-length standard”. An arm’s-length standard is an 
internationally accepted concept that the price of a transaction needs to be reasonably consistent with what 
would have been negotiated between unrelated parties.  In the U.S., regulations governing the intercompany 
prices are in the Internal Revenue Code (“IRC”) Section 482 and Treasury Regulations promulgated 
thereunder.  The analysis and documentation surrounding these regulations is referred to as transfer pricing 
analysis. Actuaries often play a key role in creating transfer pricing documentation since it requires an in depth 
knowledge of reinsurance pricing and a fundamental understanding of the reinsurance market.  In this paper, 
we will provide an overview of transfer pricing regulations and acceptable documentation.  Further, we will 
explore and demonstrate the methods that are commonly used to support the pricing of such transactions, 
which include Return on Economic Capital, Market Based, Expected Profits, Rate-on-Line and Contract 
Comparison.  We will also give practical examples and provide considerations for the actuary performing these 
analyses. 
 

Keywords. Reinsurance, Transfer Pricing, Tax 
             

1. INTRODUCTION 

The property and casualty insurance industry increasingly operates on a global level. As 

part of an overall global business strategy, many companies utilize intercompany reinsurance 

to manage risk and capital more effectively while ultimately improving profitability. 

Accordingly, taxing authorities in many jurisdictions are focusing on and challenging more 

and more the pricing associated with these related party transactions (i.e., transfer pricing). 

A common circumstance arises for U.S. domiciled insurance companies that have 

affiliates in jurisdictions such as Bermuda that have no corporate taxes.  In such cases, the 

Internal Revenue Service (IRS), the U.S.’ taxing authority, may challenge the U.S. company 

with regard to its pricing of reinsurance ceded to such an affiliate, with the concern that the 

U.S. company is paying reinsurance premiums that are greater than what might be observed 

between unrelated parties.  Since the companies are affiliated, the IRS may take the view that 

the ceding company has an incentive to pay excessive premium for the risk being reinsured, 

because it reduces the U.S. taxable income and thus the tax obligation.  

Taxing authorities in many jurisdictions have regulations that guide companies on how to 

appropriately develop evidence for the pricing of intercompany transactions.  Typically, such 
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guidance requires that the pricing be consistent with that which would be charged between 

unrelated parties; this is sometimes referred to as the “arms-length standard.”  While transfer 

pricing applies not only to reinsurance but to all intercompany transactions, demonstrating 

that pricing is arms-length is often more challenging for reinsurance as it does not have a 

listed market price.  As a result, actuaries often play a key role in creating transfer pricing 

documentation since it requires an in-depth knowledge of reinsurance pricing and a 

fundamental understanding of the reinsurance market. 

However, relatively few actuaries perform transfer pricing analyses or are even aware of 

the regulatory need for such analyses.  In this paper, we will provide a high level overview of 

transfer pricing regulations and acceptable documentation.  Further, we will explore and 

demonstrate the methods that are commonly used to support the pricing of such 

transactions, which include Return on Economic Capital, Market Based, Expected Profits, 

Rate-on-Line and Contract Comparison.  We will also give practical examples and provide 

considerations for the actuary performing these analyses. 

1.1 Research Context 

Although no specific papers addressing the role of actuaries in transfer pricing have been 

published, the general concepts are covered to a certain degree by other authors, notably 

Rodney Kreps in “Investment Equivalent Insurance Pricing” and Lee R Steeneck in “Loss 

Portfolios: Financial Reinsurance.” 

1.2 Objective 

The objective of this paper is to provide education and support to actuaries when 

performing transfer pricing analyses, including practical examples of several methods that are 

commonly used in such circumstances. 

1.3 Outline 

The remainder of the paper proceeds as follows: 

Section 2: Background and Current Tax Regulations 

Section 3: Types of Methods 

Section 4:  Methodology and Examples 
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Section 5:  Potential Issues and Variations 

Section 6: Conclusions 

2. BACKGROUND AND CURRENT TAX REGULATIONS

Many multinational companies use intercompany reinsurance as a key component of their

business strategy and often need to consider certain country-specific regulations when 

dealing with cross-border transactions. When related parties enter into reinsurance contracts, 

most countries require that pricing of these intercompany transactions be consistent with an 

arm’s-length standard. An arm’s-length standard is an internationally accepted concept 

requiring the price of a transaction to be reasonably consistent with the price that unrelated 

parties would have negotiated.  

In the U.S., regulations governing intercompany reinsurance transaction pricing may be 

found in Internal Revenue Code (“IRC”) Section 482 and Treasury Regulations promulgated 

thereunder, as well as a penalty provision prescribed in IRC Section 6662. However, these 

regulations do not prescribe a particular method for determining the pricing of such a 

transaction. To avoid the risk of penalties resulting from the IRS disagreeing with the 

intercompany reinsurance pricing and imposing an adjustment, a taxpayer must prepare and 

maintain documentation to substantiate its pricing of an intercompany transaction by the 

time it files its tax return. Section 6662 requires documentation including, but not limited to, 

the following: 

• An overview of the taxpayer’s business,

• A description of the intercompany transaction(s),

• Selection of the method used to demonstrate that the pricing is consistent with an

arm’s-length transaction, and

• An analysis to substantiate the intercompany pricing.

Taxing authorities in many jurisdictions outside the U.S. have similar transfer pricing 

requirements.  Since no two reinsurance contracts are identical, demonstrating arms-length 

intercompany contract pricing can be challenging. Nevertheless, the documentation and 

judgments made therein should support the intercompany pricing because taxing authorities 

will heavily scrutinize the documentation, and the level of scrutiny will increase as the 
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transaction decreases the entity’s tax obligation. 

2.1 Definition of “Price” for a Reinsurance Contract 

For excess of loss reinsurance contracts, “price” is commonly expressed as the contract 

premium.  In some cases it is expressed as a percentage of underlying subject premium, but, 

effectively, the price is still the final premium. However, on a quota share contract, the 

determination of price arises in effect from the ceding commission.  Since premiums and 

losses covered under quota share percentages are determined as a contractually stated 

proportion of the underlying reinsured contracts, the contractual commissions are the actual 

determinant of the contract pricing.  The higher the expected ceding commission, the lower 

the effective price of the contract.  

3. TYPES OF METHODS

The approaches that actuaries typically use to determine the price of intercompany

reinsurance contracts fall into four general categories of methods: 

1. Capital Based

2. Market Based

3. Contract Comparison (including Rate on Line)

4. Expected Profits

As a starting point, for transfer pricing purposes it is helpful to evaluate a reinsurance 

contract in the same manner that a pricing actuary in an actuarial department would price a 

reinsurance contract.  However, the approaches used for transfer pricing support may be 

different from traditional pricing approaches.  The actuary is trying to determine a 

reasonable market price and may operate at a different level of detail than the company 

pricing actuaries (level of detail and breadth of methods used may be more or less).  Also the 

transfer pricing actuary may derive a range of acceptable prices, the width of which would 

vary depending on the type of business and the uncertainty in the market.  There are also 

specific company considerations that may alter the price of the reinsurance contract. For 

example, a company may place more value on a contract because it contains a certain class of 

business that balances its portfolio. In addition, some of the methods used are hybrid 
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methods, utilizing market data, company data and specific contract data and generally do not 

fit squarely into one of the four approaches. 

3.1 Capital Based Methods 

The most commonly used and most complicated approaches are capital based methods, 

whereby price is determined based on economic variables and a theoretical construct, 

described below.  The basic components that determine the price are: 

1. Expected amount of covered losses, discounted to present value

2. Internal expenses

3. Cost of capital that the assuming company would maintain over time for the risk

inherent in the contract.

Capital Based methods require an estimate of capital associated with the policy as well an 

estimate of what investors demand as a return on that capital.  This class of methods is 

useful for both excess of loss and quota share contracts.  It tends to be an especially useful 

method for evaluating lines of business where the pricing tends to be highly dependent on 

the uncertainty and duration of the cash flows.  For portfolios of business that may be 

evaluated in a loss portfolio transfer or a commutation, variations of this method are almost 

exclusively used as the other methods described herein are often not applicable. 

There are various approaches in which the capital required by the assuming company is 

estimated.  Some common ways to determine capital are: 

1. A solvency ratio, for example the 99.5th percentile of the loss distribution, with

further consideration given to diversification within the reinsurer’s portfolio of

business.

2. Observed leverage ratios in the property/casualty insurance sector, comprised of

premium to surplus and/or reserve to surplus ratios.

3. Based on a risk-based capital (RBC) prescribed ratio applied to premiums and

estimated unpaid claims, which vary by line of business.

4. An allocation of total company capital.

The principal advantage of capital based methods is that they are generally the most 

consistent with common actuarial pricing approaches.  Capital based methods directly 
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consider the distribution of expected losses, expected payment pattern, cost of capital, and 

profitability targets to estimate price.  

Nevertheless, there are potential limitations with this approach.  In applying this method, 

there are numerous assumptions required, notably the selections of a capital requirement and 

an appropriate return on capital are othen be subjective, particularly if the assuming 

company does not provide reinsurance to unrelated parties.  These assumptions may be 

made and the overall model may lack real market significance and may not reflect changes in 

cycle or market forces that drive price. As such, these methods are often not the primary 

methods used for coverages that cover predictable and more homogeneous exposures.    

As an additional consideration, if the assuming company writes reinsurance to unrelated 

parties, it is helpful to demonstrate to taxing authorities that key assumptions used in the 

pricing (i.e., required capital, expected return, etc.) are the same between third party 

contracts and intercompany contracts. 

3.2 Market Based Methods 

Market based methods essentially amount to industry comparisons of commonly used 

market benchmarks, such as combined ratios from publicly available information. Combined 

ratios are most commonly applicable for quota share contracts, as excess of loss contracts 

are typically more difficult to determine market benchmarks for.  Considering the impact of 

the time value of money can be a challenging nuance of this method. 

This method is typically performed on a line of business level, such as commercial auto 

liability, or at times by general class of business, such as Reinsurance Type B.  This may be a 

higher or different level of aggregation than typically used by reinsurance pricing actuaries.   

The principle advantage of these types of methods is simplicity.  They also reflect current 

market conditions and have “real world” significance.  They are easy to explain to others and 

defendable.  Additionally, they do not require assumptions regarding capital requirements 

and expected return on capital. 

A disadvantage to these methods is that they may not reflect the nuances of a particular 

contract, and as such the more uncertainty and/or the longer the payout of claims, the less 

reasonable these methods are for transfer pricing.  These methods will therefore work best 

for short tail contracts, where price and contract features are more homogenous in the 
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market.   

3.3 Contract Comparison Methods 

In determining an arms-length price, an actuary may leverage insights gained from the 

pricing of contracts with unrelated parties.  This may include directly comparing the pricing 

for similarly reinsured business, indirect comparisons, and an approach we refer to as “the 

rate-on-line method.”  Rate-on-line is defined as the price of a layer divided by the width of 

the layer.  In application, this method leverages information regarding rates-on-line from 

externally placed reinsurance to estimate rates-on-line on other layers being reinsured 

between related parties for the same underlying business.     

An important advantage to these methods is that they directly or indirectly provide 

evidence that the pricing is consistent with actual contracts between unrelated parties.   

A disadvantage to these methods might be that they don’t consider a broader market or 

economic perspective or unique contract features because they are focused on just a few 

contracts. 

These methods can work equally well for both quota share and excess of loss contracts, 

for various levels of risk. 

3.4 Expected Profit Methods 

The expected profit method is used for straight quota share contracts only, and it 

compares the expected profit of the assuming company to the expected profit of the 

ceding company.  All else equal, taxing authorities may expect that the ceding and 

assuming companies share profits consistent with their proportional share as 

contractually set under the contract.  Oftentimes, in our experience, we have found that 

the ceding company retains somewhat more of its proportional share as this entity 

typically owns and controls the business and would tend to negotiate a somewhat greater 

share in the open market. 

An advantage to this method is its logical appeal and simplicity.  However, there are 

several disadvantages.  One, apart from acquisition expenses, it is not clear how the 

assuming company’s operating expenses are considered.  Two, it is not clear if the 

equivalence of profit is performed before or after income taxes.  The application of this 

method can yield significantly different results depending on how these assumptions are 
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set. 

4. METHODOLOGY AND EXAMPLES

This section will present individual methods within the classes listed above and give

examples of the application for each method.  The examples are meant to provide simple 

illustrations as to how the methods could be applied in practice, and in certain cases we used 

simplifying assumptions for ease of the illustration.  In practice, the methods used to support 

transfer pricing of reinsurance contracts should strive to be reasonable from an actuarial 

perspective, yet understandable to taxing authorities.  In striking this balance, the methods 

used are often less sophisticated than those used to price reinsurance transactions in the 

open market. 

To illustrate these methods, we perform the methods with a sample quota share contract, 

a sample aggregate excess of loss contract and/or a sample property excess contract. 

4.1 Contracts 

4.1.1 The Quota Share Contract 

Assume you have the following quota share contract: 

1. Underlying Subject Premium = 100,000

2. Percent Ceded = 50%

3. Actual Ceding Commission = 25.0%

4. Lines of Business = Other Liability Occurrence

5. Acquisition costs = 25% or $25,000

6. Assuming Company expense ratio = 2%

7. Ceding Company is U.S. based with a tax rate of 35%

8. Assuming Company is domiciled in Bermuda and pays no corporate taxes.
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Historical Data is given as follows: 

Calendar 
Year

Earned 
Premium

Paid Loss 
and Expense

Caried 
Ultimate Loss Ratio

2004 238,416$      118,942$    132,090$    55.4%
2005 233,273        120,946      132,616      56.9%
2006 246,685        109,425      126,153      51.1%
2007 201,719        110,161      133,728      66.3%
2008 140,162        67,477        91,263        65.1%
2009 97,008          44,881        75,019        77.3%
2010 86,469          30,429        67,909        78.5%
2011 72,845          25,854        61,078        83.8%
2012 66,176          6,339          44,688        67.5%
2013 53,467          2,685          45,257        84.6%

1,436,220$   637,139$    909,801$    63.3%

Coefficient of Variation of Loss Ratio  19.0%

4.1.2 The Aggregate Excess of Loss Contract  

Assume that the underlying business above had an aggregate excess cover written 

for losses between a 72.5% and 92.5% loss ratio.  Also assume the price of the 

contract is 6.75% of underlying subject premium.  All other info between the two 

parties is the same. 

4.1.3 The Property Excess of Loss Contract 

Assume this is a property excess of loss contract covering the layer from $25 

million excess of $40 million.  The ceding company reinsures layers up through $40 

million with third party reinsurers.    The current data available is as follows: 
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Layer
Premium 

Charged 2013

10 M xs 15 M 4,875,000$       
10 M xs 25 M 1,100,000        
5 M X 35 M 300,000           

All other company information is as above. The contract has been priced at 

$1,027,000. 

4.2 Return on Economic Capital Method (ROEC Method) 

 The ROEC method is a common variation of a capital based method, where an estimate 

of the premium is made considering commissions paid to the ceding insurer, an estimate of 

losses that will be covered under the contract, and an estimated return on economic capital 

that is commensurate with the assuming company's target rate of return or opportunity cost 

of capital.   

Economic capital is a theoretical construct representing the amount of capital an 

assuming company would need to dedicate to a specific block of business in order to 

maintain solvency a high percentage of the time.  For purposes of our illustrations, we 

assumed that the assuming company would price these agreements based on dedicating 

capital that would result in 99.5th percentile of certainty that it would be sufficient to cover 

the uncertainties under the transaction, as this percentage is one we commonly observe 

being applied in practice.  The assuming company must hold this amount of capital over the 

life of the contract and therefore will incur an opportunity cost of maintaining this capital 

rather than investing it in other investments.  The opportunity cost, along with the total 

value of losses, is considered as part of the cost of assuming business.   

There are several alternatives that can be used to the way we derive economic capital, and 

we list some of the alternatives below: 

1. Using industry or target premium to surplus or reserve to surplus ratios to determine

capital (this method will be illustrated below).
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2. Using RBC ratios or other industry benchmark ratios to determine capital.

3. Using an allocation of total company capital.

The advantage to the way we will illustrate the capital requirement is that it is relatively 

easy to calculate.  A transfer pricing review might offer several alternative versions of this 

method to illustrate the range of prices in which a reasonable arms-length price might fall. 

Since the amount of premium is dependent on the overall capital charge over the life of 

the contract and since the overall level of capital required is dependent on how much 

premium is received, the determination of premium is made through an iterative process. 

When a reinsurance contract is written, the expected outcome is that premium will cover the 

losses associated with the contract. However, there is a reasonable probability that the actual 

losses under the contract will exceed the consideration, creating the need for required capital.  

However, the more adequate the premium, the less need for capital; therefore, the amount 

of capital required is dependent on premium charged.      

We will illustrate this method for our quota share and aggregate excess of loss methods 

since the data and information provided lends well for pricing those contracts.  It should be 

noted however, that industry data specific to type of business can replace many of the 

components in our analysis, where needed. 

4.2.1 General Formula 

The general premium formula employed in the ROEC method is: 

Premium = Discounted value of losses plus expenses plus the discounted cost of capital 

over the life of the contract. 

4.2.2 Considerations and Assumptions 

The following components are determined to perform the ROEC method: 
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1. Total Variability and Expected Distribution of Losses - A first step in this approach is

to estimate the expected losses, as well as the potential variability of such losses.

The greater the variability, the more economic capital the assuming company

would need to maintain and thus the greater the premium.  To estimate

variability, losses might be modeled using lognormal distributions and a selected

coefficient of variation (CV).  Using historical data above, selection might be

presented as follows:

 

Where (a) = Standard Deviation of the loss ratio column divided by the weighted 

average (63.35%) of that column and (b) = square root ((a)^2 x (1+ Parameter Risk 

Load)) since in our experience parameter loads are more commonly applied to 

variance rather than standard deviation.  The parameter risk load is selected 

judgmentally based on industry norms. Note for simplicity this example does not 

include enhancement such as on-leveling of premium and loss trends.  The 

Calendar 
Year

Earned 
Premium

Paid Loss 
and Expense

Caried 
Ultimate Loss Ratio

2004 238,416$      118,942$    132,090$    55.4%
2005 233,273        120,946      132,616      56.9%
2006 246,685        109,425      126,153      51.1%
2007 201,719        110,161      133,728      66.3%
2008 140,162        67,477        91,263        65.1%
2009 97,008          44,881        75,019        77.3%
2010 86,469          30,429        67,909        78.5%
2011 72,845          25,854        61,078        83.8%
2012 66,176          6,339          44,688        67.5%
2013 53,467          2,685          45,257        84.6%

1,436,220$   637,139$    909,801$    63.3%

 (a) Coefficient of Variation of Loss Ratio  19.0%

Parameter Risk Load  as a % of Variance 50.0%

(b) Final CV 23.2%
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appropriate CV is a matter of judgment and the Actuaries best judgment with 

regards to the appropriate data and final selection.  

In addition for contracts with more than one line of business, the distribution of the 

aggregate business should consider correlations among the lines of business.  A full 

review of appropriate modeling of losses is beyond the scope of this paper. 

The higher the selected CV, the higher the need for capital, and therefore the higher 

the capital charge and the higher the premium (or lower the commission for a quota 

share contract).  

2. Solvency Standard - Our example uses the 99.5th percentile of the above distribution to

determine total capital needs.  In another words, we assume that the reinsurer’s risk

appetite is such that no more than a one in 200 chance of ruin is acceptable.  The

selected percentile is an assumption that can be varied.

3. Time Value of Money - This approach considers the time value of money on the

premium and economic capital.  Accordingly, the U. S. Treasury security interest

rates when the contract would have been priced are commonly used in practice.  A

good resource can be found at http://www.treasury.gov.  We used the treasury yield

curve to match cash flows to the appropriate risk free interest rates.

4. Capital Charge – In this context, the capital charge in essence reflects the amount of

return expected above the risk free rate which is commensurate with the risks of

writing this type of reinsurance.  Note that because of the nature of the way we

perform our calculations, we assume a pre-tax rate.

This assumption may be benchmarked using the reinsurers own recent experience or 

using industry data.  It is a very subjective assumption, and as such it may be useful 

to calculate premiums using a range of estimates based on a range of capital charges. 

The rates we have observed in the industry have varied widely, albeit more recently 

we have observed rates between 4% and 10%.  For purposes of our illustrations, we 

used a charge of 5%. 
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5. Expected Payout Pattern of Losses – For our example, we used the payout pattern

implied by the historical data and smoothed the tail.  This pattern is important as it

determines how long capital will need to be held.  To the extent that losses are not

yet paid, uncertainty remains and capital must be held.  The longer the payout

pattern, the longer the need for capital and the higher the capital charge.  A higher

capital charge will increase premium; however, the longer payout pattern will

decrease the discounted value of the losses.

6. Expected Loss Ratio on Underlying Business – This estimate will be determined by

available data and underwriting expectations.  We judgmentally selected a loss ratio

of 70% based on recent years’ experience in our example.

7. Diversification Benefit – The actuary should also consider a diversification benefit

present to the assuming company in adding the contract to its portfolio of business.

In some cases, this is not relevant as the assuming company may write no other

business besides a contract from its affiliate.  Or conversely, the assuming company

may write a highly diversified portfolio, and thus the contract may require

significantly less capital due to diversification.  This also tends to be an assumption

that requires significant judgment.

Suppose in the case of our other liability quota share contract, the reinsurer writes 

mostly property business for the rest of its book.  In such a case, it would be logical 

to assume that the contract will not require as much additional capital.  If the history 

is as follows, we might assign a diversification benefit around 87% 
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The weighted column simply weights the 99.5th percentile loss ratio by the 40/60 

weights which would be derived from expected losses (in the year the contract is priced for). 

The portfolio column uses the portfolio variance formula: 

In the formula above, Rho, shown in the formula as (ρ), is the correlation observed 

between lines. (Note this is used for simplicity and to show the effect of such a correlation. 

While we have observed diversification benefits on multi-line portfolios it is beyond the 

scope of this paper to explore the best ways to estimate correlation.  The actuary should use 

their best judgment and for purposes of demonstrating to IRS, keep it simple and well 

documented.) The diversification benefit of 86.7% is derived by taking the 99.5th percentile 

Calendar Year

Other 
Liability 

Loss Ratio
Property 

Loss Ratio Weighted Portfolio

2004 55.4% 74.0%
2005 56.9% 64.7%
2006 51.1% 85.0%
2007 66.3% 84.7%
2008 65.1% 85.1%
2009 77.3% 83.8%
2010 78.5% 75.3%
2011 83.8% 73.5%
2012 67.5% 68.0%
2013 84.6% 70.0%

63.3% 76.9%

Select Loss Ratio  70.0% 68.0% 68.8% 68.8%
CV of Loss Ratio 19.0% 10.1%

Parameter Risk Load (% of Variance) 50.0% 50.0%
Correlation  -13.9%

Weights  40.0% 60.0%
Final CV 23.2% 12.3% 11.0%

99.5th Percentile 123.1% 92.6% 104.8% 90.8%
Diversifications Benefit  86.7%
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based on the portfolio CV and dividing it by the 104.8% which is based on a weighted 

average and therefore would assume 100% correlation.  The capital required for this contract 

therefore is reduced to 86.7% of original capital requirement.  

4.2.3 Results – Quota Share Contract 

The following table is an illustration of the application of the ROEC method performed for 

the quota share contract, considering the assumptions as described in this section.  A more 

detailed version of this exhibit is presented in Exhibit 1. 

Note the initial level of needed capital is determined as the 99.5th percentile (including 

diversification benefit) of discounted outstanding loss minus the total economic premium 

(nominal premium less ceding commission).  As time progresses, the capital becomes the 

99.5th percentile of the remaining outstanding loss minus the nominal held reserves at each 

point in time.  In our example, we assumed a proportional relationship between capital and 

reserves overtime.  Although the actuary can model this more scientifically, we feel this is 

Calendar 
Year

Paid 
Loss (%)

Duration 
Matched 
Rate (%)

Discount 
Factor To 
Time Zero

Disc. 
Percent 

Paid
Percent 
Outs.

Disc. 
Percent 
Outs.

Disc. 
Outs. 
Loss

Needed 
Capital

Capital 
Charge at 

5.00%

Disc. 
Capital 
Charge

1.000     100.00 92.00 32,200 13,321
2014 5.93      0.10     1.000     5.93   94.07 86.11 30,140 13,009 329 329
2015 8.25      0.26     0.996     8.22   85.81 78.15 27,351 11,648 650 648
2016 28.14    0.58     0.986     27.74    57.67 50.84 17,794 6,933 582 574
2017 2.48      1.02     0.965     2.39   55.19 49.45 17,306 7,057 347 335
2018 15.02    1.51     0.935     14.04    40.17 36.02 12,608 5,154 353 330
2019 14.11    1.93     0.900     12.71    26.06 23.29 8,152 3,301 258 232
2020 8.44      2.28     0.864     7.29   17.62 15.83 5,541 2,277 165 143
2021 4.36      2.55     0.828     3.61   13.26 12.16 4,255 1,844 114 94
2022 4.46      2.75     0.794     3.54   8.80 8.21 2,874 1,300 92 73
2023 3.80      2.94     0.759     2.88   5.00 4.79 1,677 806 65 49
2024 5.00      3.07     0.728     3.64   0.00 0.00 0 0 40 29

Total Charge  2,836

Economic Premium 35,751

Nominal Premium 50,000

Implied Commission 28.50%
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adequate for transfer pricing documentation purposes.  Another simplifying assumptions is 

that the payout pattern at the 99.5th percentile and the expected value are the same. 

Although it is possible to conceive two very different patterns,  we feel using one pattern is 

suitable for transfer pricing purposes.  In essence you are providing a corroborative range 

around price. 

The economic premium must also equal the (discounted losses plus the cost of capital)/(1- 

the reinsurer expense ratio of 2%).  Since the amount of capital depends on economic 

premium, the economic premium must be calculated iteratively.  Commission is then 

determined by comparing the economic premium with the nominal premium. 

4.2.4 Aggregate Excess of Loss Contract 

For the aggregate excess of loss contract over the same book of business, we simply apply 

that same lognormal loss distribution to the layer of the contract.  For this we use the Mean 

Excess Value (MEV) function of the lognormal distribution: 

Therefore, expected value in layer = MEV (attachment point or 72.5% loss ratio) x 

probability that losses are above 72.5% loss ratio – MEV (limit or 92.5% loss ratio) x 

probability that losses are above 92.5% loss ratio.  In this case, the expected value of the 

layer as a percentage of subject premium is 4.3%.  The 99.5th percentile of the underlying 

losses cover the whole layer and therefore the 99.5th percentile of the aggregate contract is 

20% of the underlying premium. 
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The following are the results of applying the ROEC method for this contract.  More 

detail is displayed in Exhibit 2.. 

Note that we did not recalculate a diversification benefit for this contract. It is often more 

challenging to estimate correlation reliably on an aggregate excess contract versus a portfolio 

of relatively homogeneous first dollar claims.  Nevertheless, such correlation should still be 

considered to the extent the actuary believes it is meaningful to the estimates.   

4.3 Leverage Ratio Method (LR Method) 

This method is essentially identical to the ROEC method, except that capital is 

determined by observing premium and reserves to surplus ratios in the property/casualty 

insurance industry.  While less “actuarial” than the ROEC method, the LR Method has an 

advantage of simplicity in that the approach is essentially the same but there are fewer 

assumptions surrounding required capital that need to be made.  Instead, required capital is 

estimated at the property/casualty insurance sector level considering broader industry 

statistics.  However, as a disadvantage, in cases where the assuming entities in the industry 

Calendar 
Year

Paid 
Loss (%)

Duration 
Matched 
Rate (%)

Discount 
Factor To 
Time Zero

Disc. 
Percent 

Paid
Percent 
Outs.

Disc. 
Percent 
Outs.

Disc. 
Outs. 
Loss

Needed 
Capital

Capital 
Charge at 

5.00%

Disc. 
Capital 
Charge

1.000     100.00 89.48 3,876 10,466
2014 -        0.10     1.000     -     100.00 89.52 3,878 13,573 258 258
2015 5.93      0.26     0.996     5.91   94.07 83.89 3,634 12,703 679 676
2016 8.25      0.58     0.986     8.13   85.81 76.53 3,315 11,589 635 626
2017 28.14    1.02     0.965     27.16    57.67 50.03 2,167 7,507 579 559
2018 2.48      1.51     0.935     2.32   55.19 49.16 2,129 7,441 375 351
2019 15.02    1.93     0.900     13.52    40.17 36.02 1,560 5,464 372 335
2020 14.11    2.28     0.864     12.19    26.06 23.43 1,015 3,557 273 236
2021 8.44      2.55     0.828     6.99   17.62 16.01 693 2,438 178 147
2022 4.36      2.75     0.794     3.47   13.26 12.32 534 1,890 122 97
2023 4.46      2.94     0.759     3.39   8.80 8.43 365 1,306 95 72
2024 8.80      3.07     0.728     6.40   0.00 0.00 0 0 65 47

Total Charge  3,405

Economic Premium 7,430

Nominal Premium 100,000
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have significant risks beyond underwriting, such as significant reserve uncertainty, using the 

leverage ratio method alone may not produce a reasonable estimate.   

For this reason, we use this method on the quota share contract only, as industry 

aggregate leverage ratios may not fit an aggregate excess contract.  In lieu of using ratios for 

the industry as a whole, we may consider ratios for companies that are similar to the 

assuming company or that reinsure predominantly the lines of business covered by the 

contract.  For this illustration, we used the industry as a whole and ratios of net premium 

plus reserves divided by average surplus averaged to approximately 1.8 over the latest 5 

calendar years. 

This method also has to be solved iteratively as initial capital is determined based on 

initial premium and total premium must also equal discounted losses plus capital charge plus 

expenses.  These are our results for the quota share contract: 

Further detail can be found in Exhibit 3. 

Calendar 
Year

Paid 
Loss (%)

Duration 
Matched 
Rate (%)

Discount 
Factor To 
Time Zero

Disc. 
Percent 

Paid
Percent 
Outs.

Disc. 
Percent 
Outs.

Disc. 
Outs. 
Loss

Needed 
Capital

Capital 
Charge at 

5.00%

Disc. 
Capital 
Charge

1.000     100.00 92.00 32,200 20,635
2014 5.93      0.10     1.000     5.93   94.07 86.11 30,140 18,291 510 509
2015 8.25      0.26     0.996     8.22   85.81 78.15 27,351 16,686 915 911
2016 28.14    0.58     0.986     27.74    57.67 50.84 17,794 11,214 834 822
2017 2.48      1.02     0.965     2.39   55.19 49.45 17,306 10,732 561 541
2018 15.02    1.51     0.935     14.04    40.17 36.02 12,608 7,812 537 502
2019 14.11    1.93     0.900     12.71    26.06 23.29 8,152 5,068 391 352
2020 8.44      2.28     0.864     7.29   17.62 15.83 5,541 3,427 253 219
2021 4.36      2.55     0.828     3.61   13.26 12.16 4,255 2,578 171 142
2022 4.46      2.75     0.794     3.54   8.80 8.21 2,874 1,711 129 102
2023 3.80      2.94     0.759     2.88   5.00 4.79 1,677 972 86 65
2024 5.00      3.07     0.728     3.64   0.00 0.00 0 0 49 35

Total Charge  4,201

Economic Premium 37,144

Nominal Premium 50,000

Implied Commission 25.71%
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4.4 Other Capital Based Methods 

There are multiple alternatives to calculation of capital such as using RBC ratios or 

allocation of total company capital.  Such methods would be applied in an identical manner 

as the ROEC, except with a different amount for required capital.   

The application of these methods is from the perspective of the assuming company 

and how much capital the company is expected to hold against the contract at a given point 

in time.  The cost of such capital then becomes part of our calculation of premium.  An 

alternative method would be to calculate returns form the point of view of the investor and 

recreate financial statements to derive when capital has to be invested and released. The cash 

flows are then discounted at the investor’s required rate of return and the premium can be 

set such that the net present value to the investor is zero.  We have not illustrated this 

alternative approach; however, in our experience the results tend to be substantially the same 

as those produced by the ROEC method. 

4.5 Market Combined Ratio Method 

The market combined ratio method compares the expected combined ratios using 

industry benchmarks to that expected to be generated by the reinsurance contract being 

evaluated.  The source of industry benchmarks is typically aggregate industry data, refined 

by line of business as applicable.  This method is most commonly used for quota share 

contracts, as it is typically easier to obtain industry benchmarks. 
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Below are the results of an illustration using industry combined ratios.  In this 

illustration, the industry combined ratios were lower than we observed in the data for our 

sample contract.  Our sample contract has a loss ratio of 70% and actual ceding 

commission of 25%. The indicated commission for this method would be the commission 

that sets the combined ratio equal to that reported by the industry for the coverage type and 

selected group of accident years: 

Based on this data, for the other liability line of business as a whole, we might 

conclude that our contract is providing reinsurance to risks that are less variable than the 

broader industry since the expected combined ratio for our sample contract is much higher. 

Generally, the market combined ratio method works well with shorter tail and less varied 

lines such as nonstandard personal auto or accident and health quota share.  In such cases, 

using sector combined ratios provides reinsurance pricing estimates that are consistent with 

observed industry practice, and such estimates tend to be greater than estimates based on 

methods that derive rates based on perceived uncertainty. 

4.6  Indirect Industry Comparison Method 

Industry Other 
Liability 

Combined Ratio 
(%)

Lower Quartile  61.0
Median  74.3

Upper Quartile  86.8
Contract Expected Combined Ratio  95.0

Equalizing Commission  
Lower Quartile  (9.0) 

Median  4.3
Upper Quartile  16.8
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Indirect comparison methods often tend to equalize the playing field depending 

on the amount of uncertainty present in the contract.  For this approach, we measure the 

risk of the contract by its CV.  All else equal, a reinsurer should expect to receive a greater 

risk margin for increased uncertainty - the greater the uncertainty, the lower the expected 

combined ratio.  While we acknowledge that many other factors and nuances in pricing, this 

method merely shows that a contract is in line with industry risk / price relationships in 

general and can be a useful tool in demonstrating fair pricing. 

The indirect industry comparison method may be applied using aggregate industry 

data for combined ratios over, for example, a 5 to 10 year period.  For each company that is 

included in the comparison, we can calculate the standard deviation of those reported 

combined ratios and the current combined ratio.  By doing this for a group of companies 

for lines of business related to the contract we can establish a relationship between risk and 

price. 

Our analysis of industry data for other liability revealed the following average 

combined ratios (%): 

In our illustration, the CV for the quota share contract is 23.2% and the CV of 

the aggregate excess contract is 170.3%.  The combined ratios at current prices are 95% and 

64.2% respectively.  In addition to evaluating at averages by industry band, a line could be 

fit to individual CV data points to provide another estimate of combined ratios.  So in this 

case, for the aggregate excess contract, the CV of 170.3% is fitted to a combined ratio of 

63.6% which compares well with the priced combined ratio of 64.2%.  For the quota share 

contract, the fitted price of 92.7% also compares well with the expected combined ratio of 

95.%.  The last to columns display what the price would have been for expected combined 

ratio to match the fitted. This is illustrated in the table below: 

CV greater than 1.0 56.7      
CV greater than .5 and less than 1.0 73.2      
CV greater than .25 and less than .5 86.4      
CV less than .25 100.6    
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4.7 Contract Comparison Method 

An analysis of other contracts that are written or entered into by either the ceding or 

assuming company can be relevant to preparing support in a transfer pricing analysis, and 

both ceded and assumed contracts are considered as long as they were entered into 

between unrelated parties. Tax experts often consider comparable contracts to be the 

strongest support when evidencing transfer pricing.  Unfortunately, in most cases, the 

pricing in one reinsurance contract is not directly comparable to the pricing in another, 

particularly for excess of loss contracts.   

Another area that the actuary may want to investigate is pricing practices of the 

reinsurer.  If third parties are all priced using the same ROEC method or the same table of 

underwriting benchmarks, it is important that the intercompany contract follow the same 

set of rules.   

Lastly, the Indirect Industry Comparison Method can be used on third party contracts 

in which the ceding company and assuming company are engaged. The following table 

shows what a typical comparison of existing contracts might look like: 

Contract CV

Fitted 
Combined 
Ratio (%)

Expected 
Combined 
Ratio (%)

Implied 
Comission at 

Fitted 
Combined 

Ratio

Implied Price 
at Fitted 

Combined 
Ratio

Aggregate Excess Fitted Value 170.3% 63.6       64.2              6.8               
Quota Share 23.2% 92.7       95.0              22.7      
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Third Party Reinsured Contract Type

Coefficient 

of Variation

Expected

Combined

Ratio Margin

Company A All Lines QS 16.5% 95.5% 4.5%

Company B Marine QS 16.0% 96.0% 4.0%

Company C Property Catastrophe QS 58.7% 66.8% 33.2%

Company D General Liability & Liquor Liability QS 16.4% 94.0% 6.0%

Company E Property QS 16.7% 100.0% 0.0%

Company F Workers' Compensation XOL 76.9% 90.4% 9.6%

Company 5 Auto QS Retro Reinsurance 11.9% 97.0% 3.0%

Company H Workers' Compensation XOL 26.3% 91.9% 8.1%

Company I Medical Professional Liability Clash XOL 60.0% 73.0% 27.0%

Company J Property Catastrophe Retrocession 125.0% 68.4% 31.6%

Minimum 11.9% 66.8% 0.0%

Maximum 125.0% 100.0% 33.2%

The Actuary’s Role in Transfer Pricing 
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Qualitatively, we can say that our current other liability contracts are in line with 

existing contracts in terms of the relationship of risk to price. 

4.8 Rate on Line Method (ROL Method) 

In the absence of sufficient data to conduct other methods, as in the case of the 

sample property excess contract, it is often useful to use a ROL method. ROL is defined 

as the price of a reinsurance layer divided by the width of that layer.  The premise of this 

method is that as the attachment point of the insurance layer increases, the rate on line 

should decrease, since the frequency of losses decreases. To the extent the ceding 

company has entered into contracts with unrelated parties for certain layers of coverage, 

the rates on line observed can be leveraged to estimate a range of rates on line for a layer 

of coverage written between related parties. 

The following is an illustration of an application of the Rate on Line Method. 

There are various considerations that may impact the evaluation of the results, such as 

expense ratios and margin requirements – these are typically considered in developing a 

range. 

4.9 Expected Profits Method 

The expected profits method is applicable for traditional quota share contracts. The 

basic premise of this method is that all else being equal, the ceding company and the 

assuming company should receive their proportionate share of expected profits.  Note for 

simplicity, we did this on a nominal basis. The following displays our analysis. 

Layer
Premium 

Charged 2013
Width Of 

Layer
Charged Rate 

on Line
Low Selected 

ROL
High Selected 

ROL Low Premium
High 

Premium

10 M xs 15 M 4,875,000$   10,000,000   48.8%
10 M xs 25 M 1,100,000  10,000,000   11.0%
5 M xs 35 M 300,000     5,000,000    6.0%
25 M xs 40M 25,000,000   3.0% 5.0% 750,000$      1,250,000$   
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Ceding Company Assuming Company

Premium 50,000 50,000

Expenses (25,000) (1,000)

Expected Commission 12,500 (12,500)

Expected Losses (35,000) (35,000)

Margin 5.0% 3.0%

After Tax Margin 3.3% 3.0%

Equalizing Commission

Before Tax 24.0%

After Tax 24.8%
Commission at 24.8% 12,424 (12,424)

Margin 4.8% 3.2%
After Tax Margin 3.2% 3.2%

There are several key assumptions in the analysis that require judgment. First, 

for both the ceding and assuming companies, the expenses applicable to 

performing this exercise needs to be estimated.  For the reinsurer, expenses should 

be the nominal amount to write the contract.   Taxation also needs to be 

considered.  If the balancing of profits is performed on an after-tax basis, then in 

effect the ceding company is receiving a share of the tax benefit from the 

transaction and reducing the estimated price.  In practice, we observe both to 

determine the fairness of a contract.   

5. POTENTIAL ISSUES AND VARIATIONS

During the course of performing transfer pricing analyses, there are several 

challenges that may arise. 

5.1 Loss Portfolio Transfers 

Transfer pricing applies to loss portfolio transfers (LPT) between related 

parties, even though for U.S. statutory purposes company management may be 

tempted to book the transaction at book value to ensure the transaction is surplus 

neutral.  This may not produce results that are consistent with transfer pricing 

approaches.  For LPTs, the ROEC method generally works very well since it 
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captures the risk specific to the transfer and the unique payment patterns that may 

arise.  Other methods described herein are generally less appropriate.   

The trade-off between cost of capital and discount in the losses will be 

important in determining if price should be greater than, equal to or less than book 

value.  Because of the inherent uncertainty in pricing such a transaction, it is also 

useful to vary assumptions such as capital charge and capital requirement to derive 

a range in price.  

5.2 Captive Reinsurance Companies 

The arms-length principle and pricing approaches described herein are 

equally applicable for pricing business ceded to affiliated captive reinsurance 

companies.  However, there may be additional considerations that arise with 

captive reinsurance companies, such as: 

1. The capital held in the captive may be much less than required under an

economic capital analysis.

2. Internal expenses for captives are generally much lower than other reinsurance

companies.

3. Captives may be subject to different tax laws, depending on the jurisdiction.

Accordingly, when performing transfer pricing on captive reinsurance transactions, 

the actuary should modify the methods appropriately.   

5.3 Limited Industry Data 

,Because of their multi-jurisdictional nature of transactions, transfer pricing 

engagements may involve classes of business not typically covered by industry 

sources such as Best’s or SNL financials, which deal with statutory lines of business. 
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However, the principle of the relationship between risk and price is the same as are 

the economic principles above.  In this case, methods like the indirect industry 

method and contract comparison methods can be very useful.  Also, the actuary can 

find Schedule P lines that are very similar to foreign business.  

5.4 Multiple Jurisdiction and Contracts 

For some cross-border reinsurance contracts, there are multiple jurisdictions that 

may be impacted.  In these cases, each taxing authority involved in tested 

transactions will have an interest in the fairness of price, and in particular an interest 

in not unfairly losing tax revenue.  Several points are important to note in this 

situation: 

1. Each intercompany contract should be fairly priced on its own.  For example,

it is generally not appropriate to have an excessively priced contract be offset

with an underpriced one.  Taxing authorities may only focus on the excessively

priced contract.

2. A jurisdiction may be a country or a state, depending on the tax laws.  It is

important to have a comprehensive understanding of the tax treatment for

each entity.  Companies that are locating in certain jurisdictions may be taxed

in another region, depending on the relevant corporate and tax laws.

3. Pricing methodologies between transactions in the group should use consistent

methodology.  This is similar to the assertion that pricing assumptions must be

consistent with the company’s pricing of third party transactions.

5.5 Taxing Authority Challenges 

Taxing authorities, such as the IRS in the U.S., may challenge transfer pricing 

documentation and assess the company for the difference between what it considers 

to be an appropriate price and the actual price charged multiplied by the tax rate. 

The IRS may challenge assumptions or a certain methodology.  For example, for a 

given transaction between affiliates, if the IRS determines that premiums paid from 
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the U.S. to the Bermuda affiliate were excessive, it would assess the company for 

additional taxes.  In addition, if the company did not maintain transfer pricing 

documentation, there would be an additional penalty assessed.  As such, 

documentation of the assumptions and methodologies that were used to support the 

transfer pricing provide “penalty protection” for the U.S. taxpayer. 

6. CONCLUSIONS

Transfer pricing is of increasing importance for many companies that operate 

internationally.  Taxing authorities are focusing to a greater extent on intercompany 

agreements, including related party reinsurance contracts.  Many casualty actuaries have an 

effective blend of reinsurance pricing training and experience, as well as broader reinsurance 

market insights and access to industry data to support transfer pricing evaluations on these 

contracts.   

The methods to fairly price reinsurance contracts are not limited to what is presented 

in this paper. However, we believe that this paper provides useful descriptions and 

illustrations for an actuary conducting transfer pricing work in coordination with tax 

professionals. 

The Appendix contains a summary of our illustrations as well as a sample presentation of 

results. 

Appendix A 

Exhibits are contained in Appendix A which show further details of examples provided in 
this paper. 
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Summary of Indications
Quota Share
Commission

Aggregate
Excess Rate

Property Excess
Premium

ROEC 28.5% 7.4%

LR 25.7%

Market Combined Ratio Median 4.3%

Market Combined Ratio Upper 16.8%

Indirect Industry 22.7% 6.8%

Rate On Line Low 750,000$

Rate On Line High 1,250,000$

Expected profits 24.8%

Actual 25.0% 6.8% 1,027,000$
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Exhibit 1

Return on Economic Capital Method - Quota Share

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

Calendar
Year Paid Duration Paid Loss (%)

Duration
Matched Rate

(%)

Discount
Factor To
Time Zero

Disc. Percent
Paid

Net Premium
paid in Percent Outs.

Disc. Percent
Outs.

Disc. Outs.
Loss

Needed
Capital

Capital
Charge at

5.00%
Disc. Capital

Charge

1.000 35,751 100.00 92.00 32,200 13,321
2014 0.500 5.93 0.10 1.000 5.93 - 94.07 86.11 30,140 13,009 329 329

2015 1.500 8.25 0.26 0.996 8.22 85.81 78.15 27,351 11,648 650 648
2016 2.500 28.14 0.58 0.986 27.74 57.67 50.84 17,794 6,933 582 574
2017 3.500 2.48 1.02 0.965 2.39 55.19 49.45 17,306 7,057 347 335
2018 4.500 15.02 1.51 0.935 14.04 40.17 36.02 12,608 5,154 353 330
2019 5.500 14.11 1.93 0.900 12.71 26.06 23.29 8,152 3,301 258 232
2020 6.500 8.44 2.28 0.864 7.29 17.62 15.83 5,541 2,277 165 143
2021 7.500 4.36 2.55 0.828 3.61 13.26 12.16 4,255 1,844 114 94
2022 8.500 4.46 2.75 0.794 3.54 8.80 8.21 2,874 1,300 92 73
2023 9.500 3.80 2.94 0.759 2.88 5.00 4.79 1,677 806 65 49
2024 10.500 5.00 3.07 0.728 3.64 0.00 0.00 0 0 40 29

(a) Total Charge 2,836

Calculations (b) Economic Premium 35,751

(5) 1/(1+(4)/100)^(2) (c) Nominal Premium 50,000

(6) (3) x (5) (d) Implied Commission 28.50%

(7) 100 - Cumulative of (3)

(8) Sumproduct of future (3) and (5) divided by current (5)

(9) (8) x (c) x Expected loss Ratio of 70%

(10) Initial Value: (9) x Loss ratio of 123.1 (99.5th percentile) / Expected Loss Ratio of 70.0 x Diversification Benefit of 86.7% - (b)

(b) represents premium and therefore held unearned premium at time contract is written

Subsequent Values subtract Nominal Loss reserves held at each point in time = (7) x (c) x Expected loss Ratio of 70%

(11) Previous (10) x capital charge of 5%

(12) (11) x (5)

(a) Sum of (12)

(b) Solved iteratively such that it is equal to [(a) plus initial value of (9)]/(1-expense ratio of 2%]

(d) 1 - (b)/(c)
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Exhibit 2

Return on Economic Capital Method - Aggregate Excess

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

Calendar Year Paid Duration Paid Loss (%)

Duration
Matched Rate

(%)

Discount
Factor To
Time Zero

Disc. Percent
Paid Percent Outs.

Disc. Percent
Outs.

Disc. Outs.
Loss

Needed
Capital

Capital
Charge at

5.00%
Disc. Capital

Charge

- 1.000 100.00 89.48 3,876 10,466
2014 0.500 - 0.10 1.000 - 100.00 89.52 3,878 13,573 258 258

2015 1.500 5.93 0.26 0.996 5.91 94.07 83.89 3,634 12,703 679 676
2016 2.500 8.25 0.58 0.986 8.13 85.81 76.53 3,315 11,589 635 626
2017 3.500 28.14 1.02 0.965 27.16 57.67 50.03 2,167 7,507 579 559
2018 4.500 2.48 1.51 0.935 2.32 55.19 49.16 2,129 7,441 375 351
2019 5.500 15.02 1.93 0.900 13.52 40.17 36.02 1,560 5,464 372 335
2020 6.500 14.11 2.28 0.864 12.19 26.06 23.43 1,015 3,557 273 236
2021 7.500 8.44 2.55 0.828 6.99 17.62 16.01 693 2,438 178 147
2022 8.500 4.36 2.75 0.794 3.47 13.26 12.32 534 1,890 122 97
2023 9.500 4.46 2.94 0.759 3.39 8.80 8.43 365 1,306 95 72
2024 10.500 8.80 3.07 0.728 6.40 0.00 0.00 0 0 65 47

(a) Total Charge 3,405

Calculations (b) Economic Premium 7,430

(5) 1/(1+(4)/100)^(2) (c) Nominal Premium 100,000

(6) (3) x (5) (d) Rate 7.43%

(7) 100 - Cumulative of (3)

(8) Sumproduct of future (3) and (5) divided by current (5)

(9) (8) x Expected cost of Layer of 4.3% x (c)

(10) Initial Value: (9) x 20% of (c) (99.5th percentile) x initial value of (8)/100 - (b)

(b) represents premium and therefore held unearned premium at time contract is written

Subsequent Values subtract Nominal Loss reserves held at each point in time = 4.3% x (7)

(11) Previous (10) x capital charge of 5%

(12) (11) x (5)

(a) Sum of (12)

(b) Solved iteratively such that it is equal to [(a) plus initial value of (9)]/(1-expense ratio of 2%]

(d) (b)/(c)
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Exhibit 3

Leverage Ratio Method - Quota Share

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

Calendar Year Paid Duration Paid Loss (%)

Duration
Matched Rate

(%)

Discount
Factor To
Time Zero

Disc. Percent
Paid Percent Outs.

Disc. Percent
Outs.

Disc. Outs.
Loss

Needed
Capital

Capital
Charge at

5.00%
Disc. Capital

Charge

- 1.000 100.00 92.00 32,200 20,635
2014 0.500 5.93 0.10 1.000 5.93 94.07 86.11 30,140 18,291 510 509
2015 1.500 8.25 0.26 0.996 8.22 85.81 78.15 27,351 16,686 915 911
2016 2.500 28.14 0.58 0.986 27.74 57.67 50.84 17,794 11,214 834 822
2017 3.500 2.48 1.02 0.965 2.39 55.19 49.45 17,306 10,732 561 541
2018 4.500 15.02 1.51 0.935 14.04 40.17 36.02 12,608 7,812 537 502
2019 5.500 14.11 1.93 0.900 12.71 26.06 23.29 8,152 5,068 391 352
2020 6.500 8.44 2.28 0.864 7.29 17.62 15.83 5,541 3,427 253 219
2021 7.500 4.36 2.55 0.828 3.61 13.26 12.16 4,255 2,578 171 142
2022 8.500 4.46 2.75 0.794 3.54 8.80 8.21 2,874 1,711 129 102
2023 9.500 3.80 2.94 0.759 2.88 5.00 4.79 1,677 972 86 65
2024 10.500 5.00 3.07 0.728 3.64 0.00 0.00 0 0 49 35

(a) Total Charge 4,201

Calculations (b) Economic Premium 37,144

(5) 1/(1+(4)/100)^(2) (c) Nominal Premium 50,000

(6) (3) x (5) (d) Implied Commission 25.71%

(7) 100 - Cumulative of (3)

(8) Sumproduct of future (3) and (5) divided by current (5)

(9) (8) x (c) x Expected loss Ratio of 70%

(10) Initial Value: (b) / 1.8

(b) represents premium and therefore held unearned premium at time contract is written

Subsequent Values use Nominal Loss reserves held at each point in time = (7) x (c) x Expected loss Ratio of 70% / 1.8

(11) Previous (10) x capital charge of 5%

(12) (11) x (5)

(a) Sum of (12)

(b) Solved iteratively such that it is equal to [(a) plus initial value of (9)]/(1-expense ratio of 2%]

(d) 1 - (b)/(c)
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Summary of Indications
Quota Share
Commission

Aggregate
Excess Rate

Property Excess
Premium

ROEC 28.5% 7.4%

LR 25.7%

Market Combined Ratio Median 4.3%

Market Combined Ratio Upper 16.8%

Indirect Industry 22.7% 6.8%

Rate On Line Low 750,000$

Rate On Line High 1,250,000$

Expected profits 24.8%

Actual 25.0% 6.8% 1,027,000$



Exhibit 1

Return on Economic Capital Method - Quota Share

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

Calendar
Year Paid Duration Paid Loss (%)

Duration
Matched Rate

(%)

Discount
Factor To
Time Zero

Disc. Percent
Paid

Net Premium
paid in Percent Outs.

Disc. Percent
Outs.

Disc. Outs.
Loss

Needed
Capital

Capital
Charge at

5.00%
Disc. Capital

Charge

1.000 35,751 100.00 92.00 32,200 13,321
2014 0.500 5.93 0.10 1.000 5.93 - 94.07 86.11 30,140 13,009 329 329

2015 1.500 8.25 0.26 0.996 8.22 85.81 78.15 27,351 11,648 650 648
2016 2.500 28.14 0.58 0.986 27.74 57.67 50.84 17,794 6,933 582 574
2017 3.500 2.48 1.02 0.965 2.39 55.19 49.45 17,306 7,057 347 335
2018 4.500 15.02 1.51 0.935 14.04 40.17 36.02 12,608 5,154 353 330
2019 5.500 14.11 1.93 0.900 12.71 26.06 23.29 8,152 3,301 258 232
2020 6.500 8.44 2.28 0.864 7.29 17.62 15.83 5,541 2,277 165 143
2021 7.500 4.36 2.55 0.828 3.61 13.26 12.16 4,255 1,844 114 94
2022 8.500 4.46 2.75 0.794 3.54 8.80 8.21 2,874 1,300 92 73
2023 9.500 3.80 2.94 0.759 2.88 5.00 4.79 1,677 806 65 49
2024 10.500 5.00 3.07 0.728 3.64 0.00 0.00 0 0 40 29

(a) Total Charge 2,836

Calculations (b) Economic Premium 35,751

(5) 1/(1+(4)/100)^(2) (c) Nominal Premium 50,000

(6) (3) x (5) (d) Implied Commission 28.50%

(7) 100 - Cumulative of (3)

(8) Sumproduct of future (3) and (5) divided by current (5)

(9) (8) x (c) x Expected loss Ratio of 70%

(10) Initial Value: (9) x Loss ratio of 123.1 (99.5th percentile) / Expected Loss Ratio of 70.0 x Diversification Benefit of 86.7% - (b)

(b) represents premium and therefore held unearned premium at time contract is written

Subsequent Values subtract Nominal Loss reserves held at each point in time = (7) x (c) x Expected loss Ratio of 70%

(11) Previous (10) x capital charge of 5%

(12) (11) x (5)

(a) Sum of (12)

(b) Solved iteratively such that it is equal to [(a) plus initial value of (9)]/(1-expense ratio of 2%]

(d) 1 - (b)/(c)



Exhibit 2

Return on Economic Capital Method - Aggregate Excess

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

Calendar Year Paid Duration Paid Loss (%)

Duration
Matched Rate

(%)

Discount
Factor To
Time Zero

Disc. Percent
Paid Percent Outs.

Disc. Percent
Outs.

Disc. Outs.
Loss

Needed
Capital

Capital
Charge at

5.00%
Disc. Capital

Charge

- 1.000 100.00 89.48 3,876 10,466
2014 0.500 - 0.10 1.000 - 100.00 89.52 3,878 13,573 258 258

2015 1.500 5.93 0.26 0.996 5.91 94.07 83.89 3,634 12,703 679 676
2016 2.500 8.25 0.58 0.986 8.13 85.81 76.53 3,315 11,589 635 626
2017 3.500 28.14 1.02 0.965 27.16 57.67 50.03 2,167 7,507 579 559
2018 4.500 2.48 1.51 0.935 2.32 55.19 49.16 2,129 7,441 375 351
2019 5.500 15.02 1.93 0.900 13.52 40.17 36.02 1,560 5,464 372 335
2020 6.500 14.11 2.28 0.864 12.19 26.06 23.43 1,015 3,557 273 236
2021 7.500 8.44 2.55 0.828 6.99 17.62 16.01 693 2,438 178 147
2022 8.500 4.36 2.75 0.794 3.47 13.26 12.32 534 1,890 122 97
2023 9.500 4.46 2.94 0.759 3.39 8.80 8.43 365 1,306 95 72
2024 10.500 8.80 3.07 0.728 6.40 0.00 0.00 0 0 65 47

(a) Total Charge 3,405

Calculations (b) Economic Premium 7,430

(5) 1/(1+(4)/100)^(2) (c) Nominal Premium 100,000

(6) (3) x (5) (d) Rate 7.43%

(7) 100 - Cumulative of (3)

(8) Sumproduct of future (3) and (5) divided by current (5)

(9) (8) x Expected cost of Layer of 4.3% x (c)

(10) Initial Value: (9) x 20% of (c) (99.5th percentile) x initial value of (8)/100 - (b)

(b) represents premium and therefore held unearned premium at time contract is written

Subsequent Values subtract Nominal Loss reserves held at each point in time = 4.3% x (7)

(11) Previous (10) x capital charge of 5%

(12) (11) x (5)

(a) Sum of (12)

(b) Solved iteratively such that it is equal to [(a) plus initial value of (9)]/(1-expense ratio of 2%]

(d) (b)/(c)



Exhibit 3

Leverage Ratio Method - Quota Share

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

Calendar Year Paid Duration Paid Loss (%)

Duration
Matched Rate

(%)

Discount
Factor To
Time Zero

Disc. Percent
Paid Percent Outs.

Disc. Percent
Outs.

Disc. Outs.
Loss

Needed
Capital

Capital
Charge at

5.00%
Disc. Capital

Charge

- 1.000 100.00 92.00 32,200 20,635
2014 0.500 5.93 0.10 1.000 5.93 94.07 86.11 30,140 18,291 510 509
2015 1.500 8.25 0.26 0.996 8.22 85.81 78.15 27,351 16,686 915 911
2016 2.500 28.14 0.58 0.986 27.74 57.67 50.84 17,794 11,214 834 822
2017 3.500 2.48 1.02 0.965 2.39 55.19 49.45 17,306 10,732 561 541
2018 4.500 15.02 1.51 0.935 14.04 40.17 36.02 12,608 7,812 537 502
2019 5.500 14.11 1.93 0.900 12.71 26.06 23.29 8,152 5,068 391 352
2020 6.500 8.44 2.28 0.864 7.29 17.62 15.83 5,541 3,427 253 219
2021 7.500 4.36 2.55 0.828 3.61 13.26 12.16 4,255 2,578 171 142
2022 8.500 4.46 2.75 0.794 3.54 8.80 8.21 2,874 1,711 129 102
2023 9.500 3.80 2.94 0.759 2.88 5.00 4.79 1,677 972 86 65
2024 10.500 5.00 3.07 0.728 3.64 0.00 0.00 0 0 49 35

(a) Total Charge 4,201

Calculations (b) Economic Premium 37,144

(5) 1/(1+(4)/100)^(2) (c) Nominal Premium 50,000

(6) (3) x (5) (d) Implied Commission 25.71%

(7) 100 - Cumulative of (3)

(8) Sumproduct of future (3) and (5) divided by current (5)

(9) (8) x (c) x Expected loss Ratio of 70%

(10) Initial Value: (b) / 1.8

(b) represents premium and therefore held unearned premium at time contract is written

Subsequent Values use Nominal Loss reserves held at each point in time = (7) x (c) x Expected loss Ratio of 70% / 1.8

(11) Previous (10) x capital charge of 5%

(12) (11) x (5)

(a) Sum of (12)

(b) Solved iteratively such that it is equal to [(a) plus initial value of (9)]/(1-expense ratio of 2%]

(d) 1 - (b)/(c)
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The Lognormal Random Multivariate 
Leigh J. Halliwell, FCAS, MAAA 

 ____________________________________________________________________________________________  

Abstract 

For decades the lognormal random variable has been widely used by actuaries to analyze heavy-tailed insurance 
losses.  More recently, especially since ERM and Solvency II, actuaries have had to solve problems involving the 
interworking of many heavy-tailed risks.  Solutions to some of these problems may involve the relatively 
unknown extension of the lognormal into the multivariate realm.  The purpose of this paper is present the basic 
theory of the lognormal random multivariate. 

 

Keywords: lognormal, multivariate, moment generating function, positive-definite 

 ____________________________________________________________________________________________  

1. INTRODUCTION 

The lognormal random variable  σμ,~NXeY   is familiar to casualty actuaries, especially to those in 

reinsurance.  It vies with the Pareto for the description of heavy-tailed and catastrophic losses.  

However, unlike the Pareto, all its moments are finite.  Moreover, the formula for the lognormal 

moments is rather simple:   2σμ 22nnn eYE  .  So its first two moments are   2σμ 2 eYE  and 

    22 σ2σ2μ22 eYEeYE   .  Hence, its variance is      1
2σ2  eYEYVar , a formula so well known 

that actuaries commonly refer to 1
2σ e  as the “CV squared” of the lognormal.  But in recent years, 

with the rise of ERM and capital modeling, actuaries have needed to model many interrelated 

random variables.  If these random variables are heavy-tailed, it may be apt to model them with the 

lognormal random multivariate, which we will now present.1 

                                                 
1 The standard reference for the lognormal distribution is Klugman [1998, Appendix A.4.1.1].  On the subject of heavy-
tailed distributions, see Klugman [1998, §2.7.2] and Halliwell [2013]. 
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2. MOMENT GENERATION AND THE LOGNORMAL MULTIVARIATE 

The lognormal random multivariate is xy e , where 
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x  is an n×1 normal multivariate with 

n×1 mean μ and n×n  variance Σ.  As a realistic variance, Σ must be positive-definite, hence 

invertible.2 

 

The probability density function of the normal random vector x with mean µ and variance Σ is:3 
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xj from –∞ to +∞; ndxdxdV 1 .  The moment generating function of x is 

   












 
 

n

j
jj Xt

eEeEM 1tt x
x , where t is an n×1 vector.  Partial derivatives of the moment generating 
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The lognormal moments come directly from the normal moment generating function.  For example, 

if jet  , the jth unit vector, then        jX
j YEeEeEM jj   x

x
ee .  Likewise, 

                                                 
2 For a review of positive-definite matrices see Judge [1988, Appendix A.14]. 
3 See Johnson and Wichern [1992, Chapter 4] and Judge [1988, §2.5.7]. 
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     kj
XX

kj YYEeeEM kj  eex .  So the normal moment generating function is the key to the 

lognormal moments. 

 

The moment generating function of the normal random vector x is: 
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A multivariate “completion of the square” results in the identity: 

          ttμt2ΣtμxΣtμxxt2μxμx 11    

We leave it for the reader to verify the identity.  By substitution, we have: 
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The reduction of the integral to unity in the second last line is due to the fact that 

 
     ΣtμxΣtμx

2

1 1

2

1  


e

n
 is the probability density function of the normal random vector with 

mean tμ   and variance Σ. 
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So the moment generating function of the normal multivariate  ,μ~ Nx  is   2ttμtt  eM x .  As 

a check:4 
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And for the second derivative: 
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The lognormal moments follow from the moment generating function: 

        2μ2eeμee e jjjjjjjj eeMeEeYE j
X

j
  x

x  

The second moments are conveniently expressed in terms of first:  
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So,             1,   jkeYEYEYEYEYYEYYCov kjkjkjkj , which is the multivariate equivalent of 

the well-known scalar formula   1
2σ2  eeCV X .  The whole variance matrix can be expressed as 

                                                 
4 The vector formulation of partial differentiation is explained in Judge [1988, Appendix A.17]. 
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       nneEEVar 
 





  1yyy , where ‘◦’ represents elementwise multiplication (the Hadamard 

product).  Defining the diagonalization of a vector as  

















n

n

v

v

diag

00

00

00

v
1

1  , we may express 

the variance in terms of the usual matrix multiplication as         yyy EdiageEdiagVar nn
  1 .  

Because   yEdiag  is diagonal in positive elements (hence, symmetric and positive-definite), 

 xVar  is positive-definite if and only if nne 
 1  is positive-definite.  Although beyond the scope of 

this paper, it can be proven5 that if Σ is positive-definite, as stipulated above, then so too is 

nne 
  1 .6 

3. CONCLUSION 

The mean and the variance of the lognormal multivariate are straightforward extensions of their 

scalar equivalents.  Simulating lognormal random outcomes is nothing more than exponentiating 

simulated normal random multivariates.  Therefore, one faced with the problem of modeling several 

heavy-tailed random variables in a mean-variance framework may find an acceptable solution in the 

lognormal random multivariate. 
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Abstract

The paper offers a simple framework for ranking the common reinsurance struc-
tures in practice with the theory of stochastic orders. The basic idea is to slice
the space of reinsurance structures into groups by expected loss cost to facilitate
the comparisons within the group and between groups. Given the standard risk
aversion assumption in economics, a spectrum of reinsurance structures with
the same expected loss cost can be compared analytically with one another and
sequenced based on their risk coverages under the convex order. The paper then
expands the dimension of the comparison to groups of reinsurance structures
with different expected loss costs, which can be ranked under the increasing
convex order and the usual stochastic order. As such, the paper maps out the
ordering for the entire space of reinsurance structures and presents it in a ma-
trix format for quick reference. The implication of this stochastic ordering to
reinsurance pricing is also investigated.

Keywords: Reinsurance; Usual Stochastic Order, Convex Order; Increasing
Convex Order; Stochastic Dominance; Insurance Premium Principles.
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1 Introduction

Reinsurance is one of the most frequently used risk management tools by insurance
companies in managing their portfolios. Insurance companies regularly evaluate and
if necessary, modify the structure of their reinsurance program to adjust their overall
risk exposures in an evolving business environment. For example, an enterprise risk
management (ERM) analysis may compare the coverages and the efficiency between
the current reinsurance program and alternative reinsurance structures. These alter-
native reinsurance structures may involve increasing or decreasing the retention level
of an excess of loss reinsurance, adding an aggregate deductible or an aggregate limit,
and adjusting the placement ratio.

To find the optimal reinsurance contract that maximizes an objective variable, such
as the net underwriting income, the typical industry approach is to run a simulation
model with as many potential reinsurance structures as possible. One of the key
challenges in the ERM evaluation process is how to set the reinsurance prices for these
alternative options, which to a large extent determines the efficiencies of the options.
Given that the ERM modelers usually do not have the benefit of market quotes for all
the options, it is important that these reinsurance structures can be properly ordered
and priced in the model. The abundance of reinsurance choices together with the
complexity of reinsurance pricing, however, often makes the selection process very
difficult.

The goal of this paper is to provide actuaries, underwriters, and brokers a frame-
work to compare common reinsurance structures so that unnecessary simulation may
be avoided and reasonable results can be obtained quickly in an ERM analysis. We
first explore the risk ranking of common reinsurance structures using the convex order
from the theory of stochastic orders (e.g., Shaked and Shanthikumar (2007), Müller
and Stoyan (2002), and Denuit et al. (2005)). We then further expand the dimension
of the comparison to reinsurance structures with different expected loss costs using
the usual stochastic order (equivalently, the First-order Stochastic Dominance)1 and
the increasing convex order (dual to the general Second-order Stochastic Dominance).

The convex order is dual to the concave order, which is the familiar Rothschild-
Stiglitz second-order stochastic dominance (R-S SSD) with equal means as pioneered
by Rothschild and Stiglitz (1970) in economics. Heyer (2001) uses the general SSD
to rank reinsurance contracts on an empirical distribution basis through simulation.
Assuming a risk-averse principal (or equivalently an increasing concave utility func-
tion), if the net underwriting income resulting from reinsurance structure A is larger in
”size” and less volatile than reinsurance structure B, then A is second-order stochastic
dominating B from a cedant’s point of view. However, the result of the underwriting
income comparison using the general SSD is often inconclusive as demonstrated in
Heyer’s analysis. This paper will focus on the loss distributions, rather than the un-
derwriting income distributions, of the reinsurance structures as there exists a natural
ordering for the former, but not necessarily for the latter.

1See Levy (1998) for a general introduction to stochastic dominance, and see Heyer (2001) for an
application of stochastic dominance to reinsurance.
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The convex order allows us to compare alternatives that have the same expected
value, and thus eliminate the need to compare ”size” or ”magnitude.” The focus of the
comparison, instead, can then be on the ”variability” or the pure risk of the reinsur-
ance structures. We will show analytically that any risk-averse individual under the
convex order can distinguish and rank basic reinsurance structures given their natural
orders in ”variability.” In short, under the convex order, the stop-loss reinsurance is
more risky than the quota share reinsurance, which in turn is more risky than the
reinsurance with an aggregate limit (i.e., 100% quota share with a cap):

Aggregate Limit �cx Quota Share �cx Stop-loss

where A �cx B means B dominates A under the convex order.
This line of reasoning can be extended to analyzing the aggregate loss treaties with

more than one contract feature. For example, a quota share treaty with a stop-loss
threshold can be compared with a quota share treaty with an aggregate limit. More
parameters need to be calibrated within a treaty to make sure that the mean loss is the
same across all treaties as required by the convex order. Note that these combination
structures with two contract features form a continuum of options that are bounded
by the three basic reinsurance structures. Outlined below are the rankings of some
possible combinations.

Aggregate Limit

�cxMixture of Quota Share and Aggregate Limit

�cxQuota Share

�cxMixture of Stop-loss and Quota Share

�cxStop-loss.

The approaches we have used in analyzing the aggregate loss reinsurance can also
be applied to the excess of loss (XOL) reinsurance treaties with features such as
annual aggregate deductible (AAD), higher per claim retention2, partial placement
(or equivalently cedant co-participation) and aggregate limit. Note that the convex
order is closed under convolutions. That is, when the claim count distribution is
independent of the severity distributions, the dominance relationship between the
severity distributions at the per risk/per occurrence level can be carried over to the
aggregate layer loss level. This closure property is crucial in proving the relationship
between XOL with Partial Placement and XOL with Higher Retention.

We will show that under the convex order, these XOL reinsurance treaties along

2Here the per risk/per occurrence retention is raised, but the sum of the retention and limit is
the same as that for the original layer. See Definition 5.6

Stochastic Ordering of Reinsurance Structures

Casualty Actuarial Society E-Forum, Spring 2015 3



with the corresponding hybrid structures can be ranked analytically as follows:

XOL with Aggregate Limit

�cxXOL with Mixture of Partial Placement and Aggregate Limit

�cxXOL with Partial Placement

�cxXOL with Mixture of Higher Retention and Partial Placement

�cxXOL with Higher Retention

�cxXOL with Mixture of Aggregate Deductible and Higher Retention

�cxXOL with Aggregate Deductible.

The next step is to expand the dimension of the comparison to reinsurance struc-
tures with different expected loss costs using the usual stochastic order (equivalently,
the First-order Stochastic Dominance) and the increasing convex order (the dual to
the general Second-order Stochastic Dominance). The usual stochastic order (�st)
can be established between any two structures that are of the same type, but have
different expected losses. If different types of structures are involved in the one-on-
one comparison, we may be able to establish dominance under the weaker increasing
convex order (�icx).

The use of the usual stochastic order and increasing convex order greatly expands
the range of reinsurance structures that can be compared and ranked. While it ap-
pears that the number of comparison combinations may be infinite, some reinsurance
treaties, however, are not comparable under any of the three stochastic orders. Partic-
ularly, the comparison is inconclusive between a quota share treaty and a treaty with
both an aggregate limit and an aggregate deductible. The reason for inconclusiveness
is that neither treaty has thicker tails on both ends of the density function, which is
required for the dominance relationship. But we will show that the inconclusiveness
follows a predictable pattern based on the types of reinsurance structure.

Section 2 of the paper defines the three stochastic orders and Section 3 compares
the risk rankings of basic reinsurance structures under the convex order. The paper
then extends the analysis to the reinsurance structures with different expected values
in Section 4 while Section 5 applies the same methodology to excess of loss reinsurance.
We then compare aggregate reinsurance structures with XOL reinsurance structures in
Section 6. The implications of this risk ranking analysis to reinsurance pricing and the
optimal reinsurance literature are considered in Section 7 and the concluding remarks
are in Section 8. In the appendix, we analyze some XOL reinsurance structures that
cannot be compared with those structures analyzed in Section 5. The implication is
that we may need to divide reinsurance structures into subsets such that the members
of the subsets can be compared with one another.

2 Preliminaries

Assume a standard collective risk model where x > 0 is a continuous ground-up loss
random variable for a single occurrence or a single risk with mean 0 < E(x) < ∞
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and variance 0 < V ar(x) < ∞. Let N ≥ 0 be an integer-based random variable
for the ground-up loss frequency and independent of x. S denotes the corresponding
aggregate loss and S =

∑N
i=1 xi, where i is the index for N and S = 0 when N = 0.

We first define the usual stochastic order and then introduce the increasing convex
order and the convex order.

Definition 2.1. Usual Stochastic Order - (Definition 1.A.1 in Shaked and Shan-
thikumar (2007)) Let X and Y be two random variables such that P (X > t) ≤ P (Y >
t) for all t ∈ (−∞,∞). Then X is said to be smaller than Y in the usual stochastic
order or X �st Y .

In economics, the usual stochastic order is called the first-order stochastic dom-
inance (FSD). The definition implies that at every percentile, Y has a higher value
than X. It can be characterized as X �st Y if, and only if, E(φ(X)) ≤ E(φ(Y )) for
all non-decreasing functions φ : R → R, provided the expectations exist. Clearly, if
X �st Y , then E(X) ≤ E(Y ) and V ar(X) ≤ V ar(Y ) as both the expectation and
the variance functions are non-decreasing.

Definition 2.2. Increasing Convex Order - (Definition 4.A.1 in Shaked and
Shanthikumar (2007)) Let X and Y be two random variables such that E(φ(X)) ≤
E(φ(Y )) for all increasing convex functions φ : R → R, provided the expectations
exist. Then X is said to be smaller than Y in the increasing convex order or X �icx Y .

The increasing convex order is a dual order to the increasing concave order or
the second-order stochastic dominance (Theorem 7.3.10, Kass et al.(2009)), which
is often used by financial economists to analyze investment decision-making under
uncertainty. In other words, if a risk-averse individual prefers Y to X under the
second-order stochastic dominance, he/she would equivalently also prefer −X to −Y
under the increasing convex order. Thus it is usually a matter of convenience and
intuition to use the increasing convex order rather than the increasing concave order
or the second-order stochastic dominance when the objects for comparison are losses
rather than assets.

Definition 2.3. Convex Order - (Definition 3.A.1 in Shaked and Shanthikumar
(2007)) Let X and Y be two random variables such that E(φ(X)) ≤ E(φ(Y )) for all
convex functions φ : R → R, provided the expectations exist. Then X is said to be
smaller than Y in the convex order or X �cx Y .

The convex order is closely related to the increasing convex order and second-order
stochastic dominance. The difference between the convex order and the increasing
convex order is that the convex order requires that E(φ(X)) ≤ E(φ(Y )) holds for all
convex functions φ. Since φ(x) = x and φ(x) = −x are both convex, X �cx Y implies
that X and Y must have the same expected value, i.e., E(X) = E(Y ).

In a sense, the increasing convex order compares both the ”size” and the ”variabil-
ity” of random variables while the convex order compares only the ”variability,” given
that the underlying random variables must have the same expected value. Focusing
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on the convex order first allows us to make comparison between reinsurance struc-
tures of the same ”size.” This is essentially the concept of risk defined by Rothschild
and Stiglitz (1970) in economics. The standard characterizations for these stochastic
orders are summarized as follows:

Proposition 2.1. (Theorems 4.A.3, 3.A.1, and 4.A.6 in Shaked and Shanthikumar
(2007)) Let X and Y be two random variables. The stop-loss premium function of X
is defined as πX(d) =

∫∞
d

(1− F (x))dx, where F is the distribution function and d is
a stop-loss threshold.

(1)X �icx Y if, and only if, πX(d) ≤ πY (d),∀d ≥ 0

(2)Given E(X) = E(Y ), X �cx Y if, and only if, πX(d) ≤ πY (d),∀d ≥ 0

(3)X �icx Y if, and only if, there exist a random variable Z such that

X �st Z �cx Y or X �cx Z �st Y

Proposition 2.1 says that having a larger stop-loss premium is a necessary and
sufficient condition for both the convex order and the increasing convex order. It
can be shown that it is just a necessary condition for the usual stochastic order.
Thus if X �st Y , then X �icx Y . Or equivalently in economics, if −X is first-order
stochastic dominating −Y , −X is also second-order stochastic dominating −Y . Item
(3) of the proposition above is the well-known separation theorem that links the three
stochastic orders and will be used in Section 4 to show the dominance relationship
between reinsurance structures with different expected loss costs.

Assuming equal means, a sufficient condition for one random variable having larger
stop-loss premium than the other random variable for every stop-loss threshold is that
the distribution functions of the two random variable cross only once.

Definition 2.4. Single Crossing Condition3 - The distribution functions F and
G satisfy the single crossing condition if for some u∗ in (0, 1),{

F−1(u) ≤ G−1(u) if u ≥ u∗

F−1(u) ≥ G−1(u) if u < u∗.

The following proposition shows that this single crossing property together with
the equality of the means can be used to establish the convex order between two
random variables.

Proposition 2.2. (Theorem 3.3.C in Rüschendorf (2013); Property 3.4.19 in Denuit
et al. (2005)) - Let X and Y be two random variables with distribution functions F
and G, respectively, such that E(X) = E(Y ). Then X �cx Y if for some u∗ in (0, 1),{

F−1(u) ≤ G−1(u) if u ≥ u∗

F−1(u) ≥ G−1(u) if u < u∗.

3Also known as the Karlin-Novikov Cut Criterion in its simplest form or the Thicker Tail condition
in the actuarial literature (Denuit et al. (2005)).
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We will see below in Section 3 that the comparison of the basic reinsurance struc-
tures can fit neatly into the framework with the single crossing condition. On the
other hand, multiple crossings can happen between the distribution functions of other
types of reinsurance such as excess of loss reinsurance. To establish the ranking for
those reinsurance structures, we need to use the property of closure under convolu-
tions for the three stochastic orders (Theorems 1.A.3, 3.A.13, and 4.A.9 in Shaked
and Shanthikumar (2007)) as shown in Sections 5 and 6.

3 Aggregate Loss Reinsurance

We first investigate three basic reinsurance structures - those with stop-loss, aggregate
limit, or quota share. The distribution functions for all these structures are defined
on the same space as the gross aggregate loss (0 ≤ S <∞), which is continuous and
increasing. Assuming that these structures have the same means, we’ll show that they
can be ranked using the convex order since their distribution functions cross only once
when compared in pairs.

3.1 Three Basic Reinsurance Structures

Definition 3.1. Stop-Loss - The stop-loss reinsurance SD with a threshold D > 0
is

SD =

{
0 if 0 ≤ S < D

S −D if D ≤ S.

Definition 3.2. Quota Share - Let 0 < q < 1 be a quota share percentage. The
quota share reinsurance is Sq = qS.

Definition 3.3. Aggregate Limit (i.e., 100 % quota share with a cap)- The rein-
surance SL with an aggregate limit L > 0 is

SL =

{
S if 0 ≤ S < L

L if L ≤ S.

To illustrate the interrelationship of these reinsurance structures, the distribution
functions FSD

, FSq , and FSL
for the reinsurance contracts with stop-loss, quota share

and aggregate limit, respectively, are graphed below in the typical Lee graph format
(Lee (1988)) with the y-axis as loss amount and the x-axis as distribution percentile.
The area under each curve is the expected value of the respective loss random variable,
which is assumed the same for all reinsurance structures in the illustration.

In Figure 1, the blue curve is the distribution function for aggregate gross loss S
while the red curve represents a stop-loss reinsurance SD, which stays flat until the
aggregate loss amount reaches the stop-loss threshold D at around 40th percentile and
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then increases with the same incremental amounts as S. The expected retained loss
amount by the cedant would be equivalent to the area between the two curves.

The green curve in Figure 2 represents the distribution function for a reinsurance
with an aggregate limit (SL) while the red curve is for a stop-loss reinsurance (SD).
The SL curve follows the same path as the gross loss curve S and then becomes flat at
the aggregate limit L. The areas between the curves before and after the intersection
are the same and represent the trade-off between the two reinsurance structures. The
curve for the stop-loss reinsurance is more spread out with higher weights in the upper
tail.

Figure 3 compares the curves between the aggregate limit reinsurance SL and
the quota share reinsurance Sq while Figure 4 compares the latter with the stop-loss
reinsurance SD. Notice the differences between the curves in Figures 3 and 4 are less
than those in Figure 2 as it will be shown later that the stop-loss reinsurance and
aggregate limit reinsurance are the two extreme options in terms of riskiness.

The reason that we can conveniently graph the distribution functions of S, SD, SL,
and Sq in the same space is that SD, SL, and Sq are non-decreasing functions of S
and are in fact comonotone (Definition 1.9.1 in Denuit et al. (2005)). That is, given
a specific aggregate loss S∗ and its percentile u∗ on the distribution function of S,
the corresponding S∗D, S

∗
L, and S∗q are all at the same percentile u∗ on the distribution

functions of SD, SL, and Sq, respectively. This makes the comparison of reinsurance
structures much straightforward.
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3.2 Risk Rankings of Basic Structures

The steps to show that stop-loss reinsurance dominates quota-share reinsurance follow
the classical results in van Heerwaarden, Kass and Goovaerts (1998), where they show
that a risk-averse cedant would prefer the stop-loss reinsurance contract to all other
contracts if all contracts have the same expected loss cost.

Proposition 3.1. Assume that the stop-loss reinsurance SD, the aggregate limit rein-
surance SL, and the quota share reinsurance Sq for a ground-up aggregate loss S
defined above have the same expected value. Under the convex order, the stop-loss
reinsurance is more risky than the quota share reinsurance, which in turn is more
risky than the reinsurance with an aggregate limit. That is SL �cx Sq �cx SD, or

Aggregate Limit �cx Quota Share �cx Stop-Loss.

Proof. Based on Theorem 6.1 in van Heerwaarden, Kass and Goovaerts (1989), the
CDF of the retained loss net of a reinsurance with an aggregate deductible intersects
only once with the CDF of the retained loss net of any other reinsurance structure
given the equality of the mean losses. This also implies that the CDF of SD crosses
only once with the CDF of any other reinsurance structures including Sq. Let S∗

denote the gross loss at the intersection of SD and Sq. That is S∗ − D = qS∗, or
S∗ = D

1−q . The value of SD and Sq at the intersection would be S∗D = S∗q = qD
1−q and

FS(S∗) = FSD
( qD
1−q ) = FSq(

qD
1−q ). Note that when S∗ < S, Sq < SD since SD increases

faster than Sq. Similarly, SD ≤ Sq when S ≤ S∗. Thus the CDF of SD crosses the
CDF of Sq from below (in the context of a Lee graph). That is,{

FSq(x) ≤ FSD
(x) if x ≤ qD

1−q

FSD
(x) ≤ FSq(x) if qD

1−q ≤ x.

By Proposition 2.2, Sq �cx SD and the stop-loss reinsurance is more risky than
the quota share reinsurance under the convex order. Similarly, we can demonstrate
SL �cx Sq. By the transitivity property of the convex order, SL �cx Sq �cx SD.

Example 1: The XYZ Insurance Company writes $50 million general liability insur-
ance annually at an expected loss ratio of 70%. Currently the company has a 20%
quota share treaty with a 20% ceding commission and no aggregate limit. XYZ is
considering replacing the quota share with a stop-loss reinsurance treaty that attaches
at an 80% loss ratio with a reinsurance premium of $5.5 million. The company esti-
mates that the expected loss cost of the stop-loss treaty is $3.5 million, which means
the implied margin is $2 million.

The table below shows the treaty premium, treaty expected loss and implied rein-
surance margin for each structure.
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Table 1 : Ranking Comparison
Option Option Insurance/Reins. Expected Implied
Type Description Premium Loss Cost Margin
S Gross $50M $35M
Sq 20% Quota Share $(10-2)M=$8M $7M $1M

Sq 10% Quota Share $(5-1)M=$4M $3.5M $0.5M
SD Stop-Loss $5.5M $3.5M $2M

Based on the risk ordering analysis, the comparable treaties under the convex
order are the stop-loss treaty and the 10% quota share treaty as both have the same
expected loss cost and the former is more risky than the latter. This is also reflected in
the extra margin charge of (2M−0.5M) = 1.5M. Note that the stop-loss threshold D
is at an 80% loss ratio or $40M. The intersection point of the 10% quota share and the
stop-loss treaties is at S = D/(1− q) = 40/0.9 = 44.44M or SD = Sq = qD/(1− q) =
$4.44M. In other words, the 10% quota share treaty recovers more than the stop-loss
treaty when the gross loss is less than $44.44M. The extra margin is meant to cover
the uncertainty of the loss beyond $44.44M. The company should weigh their risk
preference against the extra margin in selecting their reinsurance program.

3.3 Hybrid Reinsurance Structures

This line of reasoning and analysis can be extended to the aggregate loss reinsurance
treaties with more than one contract feature, which include combinations of stop-loss,
quota share, and aggregate limit. As more features are included in a reinsurance
structure, more parameters such as stop-loss threshold and aggregate limit need to
be calibrated to make sure that the mean losses are the same across all treaties as
required by the convex order. We define below two additional types of reinsurance
and show that they can be properly ordered under the convex order along with the
three basic reinsurance structures.

Definition 3.4. Quota Share with Aggregate Limit - The reinsurance Sq,L with
an aggregate limit L > 0 and a quota share percentage 0 < q < 1 is

Sq,L =

{
qS if 0 ≤ qS < L

L if L ≤ qS.

Definition 3.5. Quota Share with Stop-Loss - The reinsurance SD,q with a stop-
loss threshold D > 0 and a quota share percentage 0 < q < 1 is

SD,q =

{
0 if 0 ≤ qS < D

qS −D if D ≤ qS.

Proposition 3.2. Denote q, q1, and q2 as quota share percentages, D and D2 as stop-
loss thresholds, and L and L1 as aggregate limits. Let 0 < q < q1 < 1, 0 < q < q2 < 1,
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0 < D2 < D, and 0 < L < L1 such that the reinsurance options, SL, Sq1,L1, Sq, SD2,q2,
and SD for a ground-up aggregate loss S have the same expected value. That is,

E(SL) = E(Sq1,L1) = E(Sq) = E(SD2,q2) = E(SD).

Then the following orderings can be established:

SL �cx Sq1,L1 �cx Sq �cx SD2,q2 �cx SD

or

Aggregate Limit

�cxMixture of Quota Share and Aggregate Limit

�cxQuota Share

�cxMixture of Stop-loss and Quota Share

�cxStop-loss

Proof. SL �cx Sq1,L1 since the distribution function of Sq1,L1 intersects only once with
the distribution function of SL from below at L and the single crossing condition
applies. Similarly, since 0 < q < q1 < 1, the distribution function of Sq intersects only
once with the distribution function of Sq1,L1 from below at L1 and thus Sq1,L1 �cx Sq.

Since 0 < q < q2 < 1, Sq2 represents a larger layer than Sq. Similar to the proof
in Proposition 3.1, the loss distribution function from a larger layer with a stop-loss
such as SD2,q2 crosses only once with the distribution function of any other reinsurance
option such as Sq, given that E(Sq) = E(SD2,q2). And we conclude that Sq �cx SD2,q2 .
The proof of SD2,q2 �cx SD follows the same argument in Proposition 3.1.

Example 2: Continuing the example in Section 3.1, the XYZ insurance company
considers lowering the stop-loss threshold from 80% to 75% loss ratio, but taking
a 10% co-participation in the stop-loss treaty. It also considers adding an overall
aggregate limit to the quota share reinsurance. It has been determined that both
the new stop-loss reinsurance and a 12% quota share reinsurance with 9.6 million
aggregate limit have an expected loss cost of 3.5 million.

Based on the risk ranking analysis and the quotes received earlier in the example in
Section 3.2, the reinsurance premium for the new stop-loss option should be between
$5.5M and $4M and the premium for the 12% quota share reinsurance with a $9.6M
aggregate limit should be less than $4M. In this case, Option SL would be a 100%
quota share reinsurance with a small overall aggregate limit such as $5M.

The new option SD2,q2 is obviously not the only treaty that can be ranked between
the stop-loss reinsurance SD and the quota share reinsurance Sq. Contract options can
be created by decreasing the stop-loss threshold from the 80% loss ratio and reducing
the quota share percentage from 100% such that the combination of the stop-loss
threshold and quota share percentage have the same expected loss as before. Then in
theory, infinite number of options can be ordered and placed in between Options SD

and Sq. Under the convex order, the option with a higher stop-loss threshold would
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dominate those with lower stop-loss thresholds. Similarly, a continuum of options can
fill the space between Options SL and Sq by changing the quota share percentage and
aggregate limit while keeping the expected loss cost constant.

Table 2 : Ranking Analysis
Option Option Quoted Reins. Expected Implied
Type Description Premium Loss Cost Margin

100% Quota Share,
SL $5M Aggregate Limit. $3.5M

12% Quota Share,
Sq1,L1 $9.6M Aggregate Limit. $3.5M

10% Quota Share,
Sq No Aggregate Limit. $(5-1)M=$4M $3.5M $0.5M

Stop-loss attaching at 75% LR,
SD2,q2 90% Quota Share. $3.5M

Stop-loss attaching at 80% LR,
SD 100% Quota Share. $5.5M $3.5M $2M

4 Beyond Convex Order

We have shown in Section 3 that the basic reinsurance structures and their combina-
tions can be compared in pairs and ranked using the convex order. The comparison
is static in nature as the range of the structures is limited to those having the same
expected loss cost. In this section we expand the comparison to the structures with
different expected loss costs. The tools that we use are the usual stochastic order and
the increasing convex order as defined in Section 2. We show in the following proposi-
tion that the dominance relationship under these two stochastic orders for structures
with different expected values can be clearly mapped out. On the other hand, some
reinsurance structures are not comparable even though their expected loss costs may
be far apart.

Proposition 4.1. Denote q, q1, and q2 as quota share percentages, D, and D2 as stop-
loss thresholds, and L, and L1 as aggregate limits. Let 0 < q < q1 < 1, 0 < q < q2 < 1,
0 < D2 < D, and 0 < L < L1 such that the reinsurance options, SL, Sq1,L1, Sq, SD2,q2,
and SD for a ground-up aggregate loss S have the same expected value m. That is,

E(SL) = E(Sq1,L1) = E(Sq) = E(SD2,q2) = E(SD) = m.

Consider a similar set of reinsurance structures, SL′, Sq′1,L
′
1
, Sq′, SD′2,q

′
2
, and SD′ for

the same ground-up aggregate loss S, where 0 < q′ < q′1 < 1, 0 < q′ < q′2 < 1,
0 < D′2 < D′, and 0 < L′ < L′1 such that

E(SL′) = E(Sq′1,L
′
1
) = E(Sq′) = E(SD′2,q

′
2
) = E(SD′) = n > m.

Then the following orderings can be established:
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SL′ Sq′1,L
′
1

Sq′ SD′2,q
′
2

SD′

SL �st �icx �icx �icx �icx

�icx if q′1 < q1, L1 < L′1
Sq1,L1 �st if q1 ≤ q′1, L1 ≤ L′1 �icx �icx �icx

Sq �st �icx �icx

�icx if q2 < q′2, D2 < D′2
SD2,q2 �st if q2 ≤ q′2, D

′
2 ≤ D2 �icx

SD �st

where the table reads, from left to right, SL �st SL′, SL �icx Sq′1,L
′
1
, Sq1,L1 �icx Sq′1,L

′
1

if q′1 < q1 and L1 < L′1, and so on.

Proof. We first show the usual stochastic orderings (�st) on the diagonal of the table
above. Since n > m, the following inequalities must be true : L < L′, q < q′ and
D′ < D. Then the distribution functions of SL′ , Sq′ , and SD′ are above those of SL,
Sq, and SD, respectively, at every percentile. Thus we have SL �st SL′ , Sq �st Sq′ , and
SD �st SD′ . Similarly, if q1 ≤ q′1 and L1 ≤ L′1, the distribution function of Sq′1,L

′
1

are
above that of Sq1,L1 at every percentile. By the same token, if q2 ≤ q′2 and D′2 ≤ D2,
the distribution function of SD′2,q

′
2

are above that of SD2,q2 at every percentile. This
proves all the usual stochastic orderings (�st) on the diagonal.

Now we prove Sq1,L1 �icx Sq′1,L
′
1

if q′1 < q1 and L1 < L′1. According to Proposition
3.2, we can find a q∗ < q1 such that Sq1,L1 �cx Sq∗,L′1

. Since E(Sq′1,L
′
1
) = n > m

= E(Sq∗,L′1
) = E(Sq1,L1), then q∗ < q′1, and Sq1,L1 �cx Sq∗,L′1

�st Sq′1,L
′
1
. By Proposition

2.1, Sq1,L1 �icx Sq′1,L
′
1
. Similarly, we can show SD2,q2 �icx SD′2,q

′
2

if q2 < q′2 and D2 < D′2.
Note that SL �st SL′ �cx Sq′1,L

′
1
. By Proposition 2.1, SL �icx Sq′1,L

′
1
. All the other

increasing convex ordering pairs on the upper right corner of the table follow the same
argument.

Note that when q1 < q′1, and L′1 < L1, no relationship can be derived between
Sq1,L1 and Sq′1,L

′
1

as the former has a larger left tail while the latter has a larger right
tail. Similarly, no ordering can be established for SD2,q2 and SD′2,q

′
2

when q′2 < q2 and
D′2 < D2. Figures 5 and 6 illustrate this point.

In Figure 5, the curve V V ∗ is the collection of reinsurance treaties with the same
expected loss m, where each point on the curve represents a different combination of
quota share percentage q2 and stop-loss threshold D2. For example, point V represents
a reinsurance treaty with a $50M stop-loss threshold and a 60% quota share. Similarly,
the curve V ′V ′′ is the collection of reinsurance treaties, all having the same expected
loss n, where n > m. Proposition 4.1 says that the relationship between the points on
the V ′V ′′ curve and the point V is such that the treaties above point V ′ on the V ′V ′′

curve are riskier than V under the increasing convex order and the points between V ′

and V ′′ including V ′ and V ′′ are riskier than V under the usual stochastic order. The
treaties below V ′′, however, do not have any dominating relationship with V .

Similarly in Figure 6, the WW ∗ and the W ′W ′′ curves represent the reinsurance
structures having expected loss costs of m and n, respectively, where n > m. The
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treaties between W ′ and W ′′ are dominating W under the usual stochastic order while
the treaties along the curve above W ′ are dominating W under the increasing convex
order. No dominating relationship exists between W and those treaties below W ′′ on
the W ′W ′′ curve.

5 Application to Excess of Loss Reinsurance

The approach above can be applied to the excess of loss (XOL) reinsurance except
that the terminologies used in XOL are slightly different. The equivalent of a stop-loss
threshold in an XOL reinsurance is called an aggregate deductible while the equivalent
of a quota share in XOL is called partial placement or co-participation from a cedant’s
point of view. We first define the various XOL options.

5.1 Basic XOL Definitions and Risk Rankings

Definition 5.1. Excess of Loss - For l, r > 0, the (l xs r) layer loss for a risk or an
occurrence is

(x− r)+ ∧ l =


0 if 0 ≤ x < r

x− r if r ≤ x < r + l

l if r + l ≤ x

Definition 5.2. Aggregate Layer Loss - Let Y =
∑N

i=1((xi − r)+ ∧ l) denote the
aggregate layer loss for the (l xs r) layer where the summation is over the ground-up
loss frequency random variable N with index i. Y = 0 when N = 0.

Definition 5.3. XOL with Aggregate Deductible - The XOL reinsurance YD
with an aggregate deductible D > 0 is

YD =

{
0 if 0 ≤ Y < D

Y −D if D ≤ Y
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Definition 5.4. XOL with Aggregate Limit - The XOL reinsurance YL with an
aggregate limit L > 0 is

YL =

{
Y if 0 ≤ Y < L

L if L ≤ Y

Definition 5.5. XOL with Partial Placement - Let Yq = qY denote the XOL
reinsurance with partial placement where 0 < q < 1 is the ratio ceded to reinsurers
and (1− q) is the cedant’s co-participation ratio in the reinsurance.

Proposition 5.1. Assume that the XOL reinsurance with aggregate deductible, ag-
gregate limit and partial placement have the same expected value. Under the convex
order, the XOL reinsurance with an aggregate deductible is more risky than the XOL
reinsurance with partial placement, which in turn is more risky than the XOL rein-
surance with an aggregate limit. That is YL �cx Yq �cx YD, or

XOL with Aggregate Limit

�cxXOL with Partial Placement

�cxXOL with Aggregate Deductible.

Proof. Similar to the proof of Proposition 3.1.

Example 3: The XYZ Insurance Company writes $100 million of commercial auto
insurance annually. The company is presented with three reinsurance options: (1) $4M
xs $1M XOL reinsurance with unlimited free reinstatements, (2) $4M xs $1M XOL
reinsurance with an aggregate deductible of $3M and unlimited free reinstatements,
or (3) $4M xs $1M XOL reinsurance with three free reinstatements. The company
estimates that the expected loss costs for options 1, 2 and 3 are $6M, $4M, and $5.5M,
respectively, and quoted reinsurance premiums are $8M, $5.8M and $7M, respectively.

The following table summarizes the estimated expected loss cost and market quotes
for each of the reinsurance options:

Table 3 : Ranking Analysis
Option Variation of Quoted Reins. Expected Implied
Type 4x1 XOL Premium Loss Cost Margin
Y Free unlimited reinstatements $8M $6M $2M

YD $3M aggregate deductible $5.8M $4M $1.8M
Free unlimited reinstatements

Yq 66.6% (=4/6) placement $5.33M $4M $1.33M

Free unlimited reinstatements
Yq 91.7% (=5.5/6) placement $7.33M $5.5M $1.83M

3 free reinstatements
YL (aggregate limit =16M) $7M $5.5M $1.5M

According to the risk ranking analysis, a relevant comparison can be made between
the 4x1 XOL reinsurance with a 66.6% placement and the 4x1 reinsurance with a $3M
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aggregate deductible as the expected loss costs are the same at $4M. The extra margin
charge is $0.47M (1.8M-1.33M) for the risky aggregate deductible option. On the other
hand, the theory indicates that the 4x1 XOL reinsurance with a 91.7% placement is
more risky than the 4x1 XOL reinsurance with an aggregate limit of $16M (implied
by the three reinstatements). The extra margin charge for the 4x1 XOL reinsurance
with a 91.7% placement is $0.33M (1.83M-1.5M).

5.2 Higher XOL Retention as An Option

In XOL reinsurance, insurers can consider another option, namely adjusting their per
risk/per occurrence retentions. Insurers often make these adjustments in response
to changes in the underlying exposure and the implication to capital requirements.
In this section, we will explore how an XOL reinsurance with a higher retention is
stacking up against other types of XOL reinsurance in terms of risk ranking. Again
we will assume all reinsurance structures under consideration in this section have the
same expected value.

Definition 5.6. XOL with Higher Retention - Given an (l xs r) layer, the (lH xs
rH) layer is a layer with a higher retention if r < rH , lH < l and (r + l) = (rH + lH).
Let YH =

∑N
i=1((xi − rH)+ ∧ lH) denote the aggregate layer loss for the (lH xs rH)

layer where the summation is over the ground-up loss x with frequency N .

For example, by definition, a $3M xs $2M XOL layer is a higher layer than a
$4M xs $1M XOL layer while the sums of the respective limits and retentions are
identical at $5M. Suppose the cedant co-participates in the $4M xs $1M layer so
that the resulting $4M xs $1M XOL reinsurance with partial placement has the same
expected value as the $3M xs $2M XOL reinsurance. We will show in the following
proposition that the latter is more risky than the former under the convex order.

Proposition 5.2. (Higher Retention vs. Partial Placement) Let Yq denote the (l xs
r) XOL with partial placement and YH denote the (lH xs rH) XOL where rH > r,
lH < l, and r+ l = rH + lH . Assuming E(Yq) = E(YH), then under the convex order,
YH is more risky than Yq. That is Yq �cx YH , or

Partial Placement �cx Higher Retention

Proof. First we analyze the two per risk/occurrence severity random variables, q[(x−
r)+∧l] and [(x−rH)+∧lH ]. The relationship between q[(x−r)+∧l] and [(x−rH)+∧lH ] is
similar to that of a quota share reinsurance with q as the quota share percentage and a
stop-loss reinsurance with (rH−r) as the stop-loss threshold. Note that qE[(x−r)+∧l]
= E[(x−rH)+∧ lH ]. Then the single crossing condition and the equality of the means
imply that on the individual severity distribution basis,

q[(x− r)+ ∧ l] �cx [(x− rH)+ ∧ lH ].

That is, under the convex order [(x− rH)+ ∧ lH ] is more risky than q[(x− r)+ ∧ l].
Note that Yq =

∑N
i=1 q[(xi − r)+ ∧ l] and YH =

∑N
i=1[(x− rH)+ ∧ lH ] where N is the
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number of risks/occurrences and E(Yq) = E(YH). As the convex order is closed under
convolution (Theorem 3.A.13, Shaked & Shanthikumar (2007)) and the frequency
random variable N is independent, we get Yq �cx YH .

Proposition 5.3. (Higher Retention vs. Aggregate Deductible) Let YD denote the
(l xs r) XOL reinsurance with aggregate deductible D and let YH denote the (lH xs
rH) XOL reinsurance where r < rH , lH < l and (r + l) = (rH + lH). Assuming
E(YD) = E(YH), then under the convex order, YD is more risky than YH . That is
YH �cx YD, or

XOL with Higher Retention �cx XOL with Aggregate Deductible

Proof. Similar to the proof for Proposition 3.1, Theorem 6.1 in van Heerwaarden,
Kass and Goovaerts (1989) implies that the CDF of YD also crosses only once with
the CDF of any other XOL reinsurance structures such as YH given that the (lH xs
rH) layer is a subset of the original layer. Given the equality of the means and the
single crossing property, Proposition 2.2 implies that YH �cx YD.

Combining Propositions 5.1, 5.2, and 5.3 and using the transitivity of the convex
order, we obtain the following result:

XOL with Aggregate Limit

�cxXOL with Partial Placement

�cxXOL with Higher Retention

�cxXOL with Aggregate Deductible.
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The red curve in Figure 7 represents the distribution function for a reinsurance
with aggregate deductible YD, which stays flat until the aggregate layer loss amount
reaches the deductible threshold D at the 25th percentile and then increases with the
same incremental amounts as Y .

The yellow curve represents the distribution function of an XOL reinsurance with
partial placement Yq while the blue curve is for an XOL reinsurance YH with a per
risk/occurrence retention level higher than that for Y . Given that Yq and YH have
the same expected loss, the blue YH curve starts under the yellow Yq curve, then the
two curves intertwine over most of the percentiles, and finally the YH curve takes over
after the last intersection at the 70th percentile. Notice that the convex order does
allow multiple crossings of the CDF curves as long as the stop-loss premium require-
ment in Proposition 2.1 is satisfied. When multiple crossings occur, it is difficult to
discern convex order dominance empirically. Thus the analytical proof is an impor-
tant confirmation of the dominance relationship and serves as an indication tool for
reinsurance pricing.

5.3 Hybrid XOL Structures

Again this line of reasoning and analysis can be extended to the XOL treaties with
more than one contract feature, which include combinations of aggregate deductibles,
higher retentions, partial placement, and/or aggregate limits. For common reinsur-
ance structures with at most two contract features, proving stochastic ordering may
be straightforward. We define below three additional types of reinsurance and show
that they can be properly ordered under the convex order along with the four ba-
sic XOL reinsurance structures. For these reinsurance structures with two contract
features, the proof of stochastic ordering is similar to those in Propositions 5.2 and
5.3.

Definition 5.7. Mixture of Partial Placement and Aggregate Limit - The
XOL reinsurance Yq,L with an aggregate limit L > 0 and a placement ratio 0 < q < 1
is

Yq,L =

{
qY if 0 ≤ qY < L

L if L ≤ qY.

Definition 5.8. Mixture of Higher Retention and Partial Placement - The
XOL reinsurance YH,q with a placement ratio 0 < q < 1 and a higher retention as
defined in Definition 5.6 is YH,q = qYH .

Definition 5.9. Mixture of Aggregate Deductible and Higher Retention -
The XOL reinsurance YD,q with an aggregate deductible D > 0 and a higher retention
as defined in Definition 5.6 is

YH,D =

{
0 if 0 ≤ YH < D

YH −D if D ≤ YH .
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Similar to Proposition 4.1, the following proposition uses the usual stochastic order
and the increasing convex order and extends the analysis to include XOL reinsurance
structures with different expected losses.

Proposition 5.4. Denote H, H2, and H3 as higher retention layers, q, q2, and q3
as placement ratios, D and D3 as aggregate deductibles, and L and L1 as aggregate
limits. Let 0 < q < q1 < 1, 0 < q < q2 < 1, 0 < D3 < D, 0 < L < L1, and H be a
higher layer than either H2 or H3 such that the XOL reinsurance options, YL, Yq1,L1,
Yq, YH2,q2, YH , YH3,D3, and YD for an aggregate layer loss Y have the same expected
value, m. That is,

E(YL) = E(Yq1,L1) = E(Yq) = E(YH2,q2) = E(YH) = E(YH3,D3) = E(YD) = m.

Then the following orderings can be established:

YL �cx Yq1,L1 �cx Yq �cx YH2,q2 �cx YH �cx YH3,D3 �cx YD

or

XOL with Aggregate Limit

�cxXOL with Mixture of Partial Placement and Aggregate Limit

�cxXOL with Partial Placement

�cxXOL with Mixture of Higher Retention and Partial Placement

�cxXOL with Higher Retention

�cxXOL with Mixture of Aggregate Deductible and Higher Retention

�cxXOL with Aggregate Deductible.

Moreover, consider a similar set of reinsurance structures, YL′, Yq′1,L′1, Yq′, YH′2,q′2,
YH′, YH′3,D′3 and YD′, on the same layer aggregate loss Y , where 0 < q′ < q′1 < 1,
0 < q′ < q′2 < 1, 0 < D′3 < D′, 0 < L′ < L′1, and H ′ is a higher layer than either H ′2
or H ′3 such that

E(YL′) = E(Yq′1,L′1) = E(Yq′) = E(YH′2,q′2) = E(YH′) = E(YH′3,D′3) = E(YD′) = n > m.

Then the following orderings can be established:

YL′ Yq′1,L′1 Yq′ YH′2,q′2 YH′ YH′3,D′3 YD′

YL �st �icx �icx �icx �icx �icx �icx

Yq1,L1 see * �icx �icx �icx �icx �icx

Yq �st �icx �icx �icx �icx

YH2,q2 see ** �icx �icx �icx

YH �st �icx �icx

YH3,D3 see *** �icx

YD �st

where the table reads, from left to right, YL �st YL′, YL �icx Yq′1,L′1, and so on.
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* Yq′1,L′1
�icx if q′1 < q1, L1 < L′1

Yq1,L1 �st if q1 ≤ q′1, L1 ≤ L′1

** YH′2,q′2 *** YH′3,D′3
�icx if H2 < H ′2, q2 < q′2 �icx if H ′3 < H3, D3 < D′3

YH2,q2 �st if H ′2 ≤ H2, q2 ≤ q′2 YH3,D3 �st if H ′3 ≤ H3, D
′
3 ≤ D3

where in general H < H ′ means H ′ has a higher per risk/occurrence retention than
H.

Proof. The proof of YL �cx Yq1,L1 �cx Yq is similar to the proof of Proposition 3.2
while the proof of Yq �cx YH2,q2 �cx YH is similar to the proof of Proposition 5.2,
where the convex order is established first at the per risk/occurrence level. Use the
closure by convolution property to prove the ordering at the aggregate layer loss level.
Similarly, use Proposition 5.3 to prove YH �cx YH3,D3 �cx YD since D3 < D and H is
a higher layer than H3, which in turn is a higher layer than the original layer for YD.

The usual stochastic orderings (�st) and the increasing convex orderings (�icx) in
the large table above are similar to those in Proposition 4.1 except the relationship
for the structures with the higher retention layers. We need to show YH �st YH′ and
the relationships in the (**) grid and (***) grid. Since n > m, H is a higher layer
than H ′. Then the distribution function of YH′ must be above that of YH at every
percentile, hence YH �st YH′ .

If H ′2 ≤ H2 and q2 ≤ q′2, the distribution function of YH′2,q′2 must be above that
of YH2,q2 at every percentile. By the same token, if H ′3 ≤ H3 and D′3 ≤ D3, the
distribution function of YH′3,D′3 must be above that of YH3,D3 at every percentile. This
proves all the usual stochastic ordering on the diagonal.

If q2 < q′2 and H2 < H ′2, based on the first half of this proposition, we can find a q∗

greater than q2 such that YH2,q2 �cx YH′2,q∗ . Since E(YH′2,q′2) = n > m = E(YH′2,q∗) =
E(YH2,q2), then q∗ must be smaller than q′2 and YH2,q2 �cx YH′2,q∗ �st YH′2,q′2 . By
Proposition 2.1, YH2,q2 �icx YH′2,q′2 . Similarly, we can show YH3,D3 �icx YH′3,D′3 if
H ′3 < H3 and D3 < D′3, and Yq1,L1 �icx Yq′1,L′1 if q′1 < q1 and L1 < L′1.

Similar to Figures 5 and 6 for aggregate loss reinsurance, Figures 8 and 9 illustrate
the relationships between YH′2,q′2 and YH2,q2 and between YH′3,D′3 and YH3,D3 , respec-
tively. In Figure 8, the curve V V ∗ represents the collection of reinsurance treaties with
the same expected loss m, where each point on the curve is a different combination
of placement percentage q2 and layer retention H2. Similarly, the curve V ′V ′′ is the
collection of reinsurance treaties, all having the same expected loss n, where n > m.
Proposition 5.4 says that the relationship between the points on the V ′V ′′ curve and
the point V is such that the treaties above point V ′ on the V ′V ′′ curve are riskier than
V under the increasing convex order and the points between V ′ and V ′′ including V ′

and V ′′ are riskier than V under the usual stochastic order. The treaties below V ′′,
however, do not have any dominating relationship with V . Similar interpretation can
be made for Figure 9, where the WW ∗ and the W ′W ′′ curves represent reinsurance
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structures with different combinations of layer retentions and aggregate deductibles
and having expected loss costs of m and n, respectively (n > m).

In general, with equal means, options with an aggregate deductible would domi-
nate those without an aggregate deductible under the convex order. If both options
have an aggregate deductible, then the one with a higher aggregate deductible would
dominate the other with a lower aggregate deductible. Similarly, options without an
aggregate limit would dominate those with an aggregate limit. If both options have
an aggregate limit, then the one with a higher aggregate limit would dominate the
other with a lower aggregate limit.

Example 4: Continuing the example in Section 5.1, the XYZ insurance company de-
cides to explore other options by increasing the retention level of the XOL reinsurance
for commercial auto liability and is willing to co-participate up to 20%. The company
determines that the $3M xs $2M XOL reinsurance and the $2.5M xs $2.5M XOL
reinsurance have the expected loss costs of $5 million and $4 million, respectively.
Both options assume unlimited reinstatements. In addition, the company estimates
that adding a $1.5 million aggregate deductible to the $3M xs $2M XOL reinsurance
can reduce the expected loss cost to $4M. Similarly, decreasing the number of free
reinstatements from three to one for the $4M xs $1M XOL reinsurance also reduces
the expected loss cost to $4M.

Based on the risk ranking analysis and the quotes received earlier for the $4M xs
$1M layer, the reinsurance premiums for these new options should be less than $5.8M
and greater than $5.33M and should be in the order as shown in Table 4.

An interesting question can be raised as to how the reinsurance premium for an
XOL layer (e.g., Option YH) can be approximated in general. Based on the risk
ranking results, one can find a premium lower bound for an XOL layer from a lower
retention layer with partial placement (Option YH2,q2) and an upper bound from a
lower retention layer with an aggregate deductible (Option YH3,D3). Clearly the closer
the layers and the smaller the aggregate deductible, the better the approximation of
the reinsurance premium.
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Table 4 : Ranking Analysis
Option Option Quoted Reins. Expected Implied
Type Description Premium Loss Cost Margin

4x1 XOL, 100% placement,
YL 1 free reinstatement. $4M

4x1 XOL, 71.7% placement,
Yq1,L1 3 free reinstatements. $5.09M $4M $1.09M

4x1 XOL, 66.6% placement,
Yq free unlimited reinstatements. $5.33M $4M $1.33M

3x2 XOL, 80% placement, (0.8*5)
YH2,q2 free unlimited reinstatements. =$4M

2.5x2.5 XOL, 100% placement,
YH free unlimited reinstatements. $4M

3x2 XOL, 100% placement,
YH3,D3 free unlimited reinstatements, $4M

$1.5M aggregate deductible.
4x1 XOL, 100% placement,

YD free unlimited reinstatements, $5.8M $4M $1.8M
$3M aggregate deductible.

6 A Global Comparison

In reinsurance practice, the need to compare XOL reinsurance structures with the
reinsurance on aggregate losses arises constantly. The metrics used in comparison
are usually the distribution moments, such as mean and standard deviation along
with some tail measures. In this section, we use the stochastic ordering approach to
comparing reinsurance options that are on either an aggregate loss basis or an XOL
basis.

Proposition 6.1. Denote q as an XOL placement ratio, D and D1 as a stop-loss
threshold and an XOL aggregate deductible, respectively, and L and L1 as an aggregate
limit and an XOL aggregate limit, respectively. Let 0 < q < 1, 0 < D1 < D,
0 < L < L1 and H be a higher layer such that the reinsurance options, SL, YL1, Yq,
YH , YD1, and SD have the same expected loss value, m. That is,

E(SL) = E(YL1) = E(Yq) = E(YH) = E(YD1) = E(SD) = m.

Then the following orderings can be established:

SL �cx YL1 �cx Yq �cx YH �cx YD1 �cx SD
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or

Aggregate Limit

�cxXOL with Aggregate Limit

�cxXOL with Partial Placement

�cxXOL with Higher Retention

�cxXOL with Aggregate Deductible

�cxStop-loss

Consider a similar set of reinsurance structures, SL′, YL′1, Yq′, YH′, YD′1, and SD′, with
regard to the same underlying loss, where 0 < q′ < 1, 0 < D′1 < D′, and 0 < L′ < L′1
and H ′ is a higher per risk/occurrence layer such that

E(SL′) = E(YL′1) = E(Yq′) = E(YH′) = E(YD′1) = E(SD′) = n > m.

Then the following orderings can be established:

SL′ YL′1 Yq′ YH′ YD′1 SD′

SL �st �icx �icx �icx �icx �icx

YL1 �st �icx �icx �icx �icx

Yq �st �icx �icx �icx

YH �st �icx �icx

YD1 �st �icx

SD �st

where the table reads, from left to right, SL �st SL′, SL �icx YL′1, YL1 �st YL′1 and so
on.

Proof. The proof for the first half of the proposition follows the proofs in Proposition
3.1 and Proposition 5.4. The proof of the (�icx) and (�st) relationship in the grid
follows the first half of this proposition and Propositions 4.1 and 5.4, where we show
that if A �cx B �st C, then A �icx C.

Note that the quota share reinsurance is not compatible with this comparison
framework involving XOL reinsurance. The right tail of the quota share reinsurance
is always thicker than that of the XOL reinsurance while the opposite is true for the
left tail. Proposition 6.1 also indicates that stop-loss reinsurance and the reinsurance
with an aggregate limit serve as the upper and lower boundaries for the XOL reinsur-
ance options. To make the comparison more complete, we can add the hybrid XOL
reinsurance from Section 5.3. Given the transitivity of the convex order, the ranking
of those hybrid XOL reinsurances would be the same as indicated in Proposition 5.3.
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7 Implications to Pricing and Optimal Reinsur-

ance

Assuming reinsurance companies are also risk averse, it is reasonable to assume that
they would adopt premium principles that observe the established ordering above.
Suppose the reinsurance structures under consideration have the same expected value
and reinsurance companies employ the expected loss premium principle in calculation
of the reinsurance premium. The actuarial literature indicates that stop-loss reinsur-
ance would always be preferred by the cedant as it passes more risk to the reinsurer
and costs the same as all the other options. Thus the implication of the risk ranking
analysis above is that if reinsurance A is found to be more risky than reinsurance
B, then reinsurance A should be priced higher than reinsurance B to compensate for
the higher risk. As such, these ranking results may serve as an elementary tool in
identifying inconsistent market quotes.

In the optimal reinsurance literature (e.g., Cheung (2010)), the frequently used ap-
proach in finding optimal reinsurance is by maximization/minimization of an objective
function over a convex constraint. The convex objective function (to be minimized)
can be VaR or TVaR of the retained exposure, which is defined as total exposure
minus ceded exposure plus the reinsurance premium for the ceded exposure.

Definition 7.1. VaR objective function - The VaR objective function is

MinVaR[X − f(X) + PR(f(X))]

where f(X) is the ceded loss and PR(f(X)) is the corresponding reinsurance pre-
mium.

Obviously if the premium calculation is expected value based, the optimal rein-
surance would always be the stop-loss reinsurance given that a tail measure is the
selection criterion. Thus it is more realistic if the premium principle is convex in the
maximization/minimization process (e.g., Chi (2012), Guerra & Centeno (2010)).

The standard deviation principle and the variance principle along with the Wang
principle are known to observe the second order stochastic dominance relationship.
It would be interesting to evaluate the pricing differentials among the reinsurance
structures using the three premium principles, which could be a subject for future
research.

8 Conclusions

Reinsurance can be regarded as financial derivatives on a random loss process, which
determines how reinsurers and insurers would share the loss upon its realization.
The major technical difference between reinsurance and other financial derivatives
such as stock options is that common reinsurance structures are comonotone with the
underlying loss process. This makes the comparison of reinsurance structures intuitive
and sometimes straightforward.
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Following the classical results on optimal reinsurance in the actuarial literature,
the paper4 has shown that many common reinsurance structures in practice can be
ranked either under the convex order if they have the same expected loss costs or
under the increasing convex order and the usual stochastic order if they have different
expected loss costs. Using the results of the paper, actuaries and underwriters can
easily compare the riskiness of various reinsurance structures in an ERM and/or
reinsurance retention analysis. The results also imply that reinsurers should price
these reinsurance contracts with premium principles that recognize the risk rankings
established in the paper.

4Loss discount and other accounting treatments that may be associated with specific reinsurance
treaties are not considered here and are beyond the scope of this paper.
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Appendix

A.1 Alternative Definition for Higher Layers

In this section, we expand the definition of higher layers in Section 5.2 by dropping
the requirement that a higher layer must be a subset of the original layer. Thus a
higher layer and the original layer can be overlapping or even disjoint as long as the
retention of the higher layer is greater than that of the original layer. Then results
similar to Proposition 5.2 are still valid while Proposition 5.3 may not be true for all
reinsurance structures under this new definition. We redefine a higher layer as follows:

Definition A.4. XOL with Higher Retention - Given an (l xs r) layer, the (lH
xs rH) layer is a layer with a higher retention if r < rH and (r + l) ≤ (rH + lH). Let
YH =

∑N
i=1((xi − rH)+ ∧ lH) denote the aggregate layer loss for the (lH xs rH) layer

where the summation is over the ground-up loss x with frequency N .

Proposition A.1. (Higher Retention vs. Partial Placement) Let Yq denote the (l
xs r) XOL with partial placement and YH denote the (lH xs rH) XOL where r < rH
and (r + l) ≤ (rH + lH). Assuming E(Yq) = E(YH), then under the convex order, YH
is more risky than Yq. That is Yq �cx YH , or

XOL with Partial Placement �cx XOL with Higher Retention

Proof. Again we consider the two per risk/occurrence severity random variables, q[(x−
r)+ ∧ l] and [(x − rH)+ ∧ lH ]. Note that qE[(x − r)+ ∧ l] = E[(x − rH)+ ∧ lH ]. We
need to consider the following three cases:

(r + l) = (rH + lH) higher layer is a subset;

(r + l) ≤ rH < (rH + lH) two disjoint layers;

rH < (r + l) < (rH + lH) two overlapping layers.

Proposition 5.2 covers the first case, where (r + l) = (rH + lH). If (r + l) ≤ rH <
(rH + lH), the CDF of [(x − rH)+ ∧ lH ] must cross the CDF of q[(x − r)+ ∧ l] once
from below at some x∗ ≥ rH , where q[(x − r)+ ∧ l] already reaches its maximum at
ql. If rH < (r + l) < (rH + lH), the crossing of the two CDF’s can only occur when
x is between rH and (rH + lH) since the CDF of [(x− rH)+ ∧ lH ] becomes flat when
(rH + lH) ≤ x or when x ≤ rH . By applying Theorem 6.1 in van Heerwaarden, Kass
and Goovaerts (1989) again, we can show that the two CDF’s crosses only once since
the CDF of the retained loss net of [(x− rH)+ ∧ lH ] is flat between rH and (rH + lH).

For the latter two cases, the single crossing condition and the equality of the means
imply that on the individual severity distribution basis,

q[(x− r)+ ∧ l] �cx [(x− rH)+ ∧ lH ].

That is, under the convex order [(x−rH)+∧ lH ] is more risky than q[(x−r)+∧ l]. Note
that on the aggregate basis, Yq =

∑N
i=1 q[(xi−r)+∧ l] and YH =

∑N
i=1[(xi−rH)+∧ lH ],

Stochastic Ordering of Reinsurance Structures

Casualty Actuarial Society E-Forum, Spring 2015 26



where N is the number of risks/occurrences and E(Yq) = E(YH). As the convex order
is closed under convolution (Theorem 3.A.13, Shaked & Shanthikumar (2007)) and
the frequency random variable N is independent, we get Yq �cx YH .
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The Consideration of  Loss Timing for Risk Transfer 
Analysis 

Peter Johnson, FCAS, MAAA 

 
________________________________________________________________________ 

Abstract 
Motivation. An important consideration in a risk transfer analysis is the potential variability of loss timing.  By 
excluding this variability, a risk transfer analysis could lead to materially different results, thereby causing users to 
draw different conclusions about risk transfer. 
Method. This paper specifically illustrates the variation in payment patterns commonly found in paid loss and 
allocated loss adjustment expense development patterns (payment patterns) then provides an example of one 
method that can be used to model this payment pattern volatility.  The impact of modeling this payment pattern 
volatility is illustrated with Expected Reinsurer Deficit (ERD) results under a hypothetical reinsurance structure.  
Important model considerations also reflected are correlation and discount rate assumptions.  The ERD test is 
also used to illustrate the sensitivity of these modeled assumptions. 
Results. The change in the results of a risk transfer test such as the ERD test can be material after consideration 
of payment pattern timing. 
Conclusions. Modeling the variation of payment patterns is important for a broad spectrum of actuarial 
analyses. When evaluating reinsurance risk transfer test statistics it is important to keep in mind features that are 
sensitive to the variation of loss payment timing.  The loss payment timing may have a significant impact on the 
present value of losses ceded to a reinsurer.  At the very least the variation in timing will have an impact on the 
present value of losses used in the ERD test statistic, particularly with larger discount rates.  Correlation of 
payment timing (or duration) with ultimate loss and allocated loss adjustment expense (ALAE) modeled is also 
an important consideration that can impact the results of the ERD test.  The results below show the sensitivity of 
changes in correlation and discount rates combined with modeling the variation in the payment timing of ceded 
paid loss and ALAE. 
Keywords. Risk Transfer, Timing Risk, ERD test, Correlation, Sensitivity of Assumptions. 

             

1. INTRODUCTION 

The timing of all cash flows between a primary insurer and reinsurer is an important 

consideration when assessing a reinsurance structure for risk transfer.  This paper specifically looks 

at the timing of losses associated with variations in loss and ALAE development patterns.  We will 

illustrate the potential impact loss timing variability can have on risk transfer test statistics such as 

the ERD.   

1.1 Research Context 

Reinsurance contractual features and the variability in loss and ALAE development patterns can 

have a material impact on the results of traditional risk transfer tests such as the ERD test statistic.  

Discount rate and correlation between simulated payment pattern and ultimate loss and ALAE are 

important assumptions to consider and can impact the results of the ERD test.   
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1.2 Objective 

The intent of this paper is to provide high level insight into the importance of capturing loss and 

ALAE payment timing risk in models used to assess risk transfer.  This is accomplished by 

providing illustrative examples of the variation in paid loss and ALAE timing, a simple model to 

simulate this timing, and the results of the ERD test under various assumptions. 

1.3 Outline 

The remainder of the paper proceeds as follows. Section 2.1 will discuss the risk transfer 

requirements under the guidance in the Statement of Financial Accounting Standards No. 113 (FAS 

113). Section 2.2 will briefly discuss the Expected Reinsurer Deficit (ERD) test statistic for 

evaluation risk transfer. Section 2.3 will illustrate an example of the actual timing difference 

commonly found in loss development patterns.  Section 2.3 will also give an example of a 

correlation analysis and simulated payment pattern.  Section 2.4 shows the sensitivity of ERD results 

to payment pattern timing (i.e., variable versus fixed), correlation, and discount rates under a 

hypothetical reinsurance program. 

2. BACKGROUND AND METHOD 

2.1 Requirements for Risk Transfer 

Timing of losses is a fundamental component of the “significant insurance risk” requirement 

under the guidance in the Statement of Financial Accounting Standards No. 113 (FAS 113).  To 

summarize FAS 113: There are two requirements that must be met for a short duration contract to be 

considered as “indemnifying the cedant”. 

1. Reinsurer assumes significant insurance risk under the reinsured portions of insurance 

contracts; and 

2. It is reasonably possible that the reinsurer may realize significant loss from the 

transaction. 

Note: Contracts are exempt from risk transfer requirements when the reinsurer assumes 

“substantially all” of the insurance risk relating to the reinsured portions of the underlying insurance 

contracts (e.g., straight quota share contracts).  It is still good practice to test this type of reinsurance 

deal for risk transfer and thoroughly understand the contract terms.  This includes understanding the 
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potential limitations that certain terms may have on the reinsurer’s ultimate underwriting 

performance compared to the cedant. 

To evaluate requirement (1), there must be a possibility of significant variation in the amount or 

timing of cash flows between assuming and ceding companies.  When developing a stochastic loss 

model to evaluate the variation in the amount or timing of cash flows, consideration should be given 

to the distribution of probable loss outcomes and the timing of losses ceded to the reinsurer. To 

evaluate requirement (2), the present value of all cash flows between the reinsurer and the cedant 

under reasonably possible scenarios must be evaluated. 

2.2 ERD Risk Transfer Test 

The ERD test statistic reflects the probability of a net present value underwriting loss for the 

reinsurer multiplied by the net present value of the average severity of the underwriting loss. In this 

context, underwriting loss is the amount by which the present value of losses plus expenses exceeds 

the present value of premium as of the effective date of the reinsurance policy.  The average severity 

in this context is the average underwriting loss (as a percentage of premium).  A commonly accepted 

but not endorsed ERD threshold is 1% where an indicated ERD % greater than 1% passes risk 

transfer.  This is consistent with the 10-10 test’s 10% probability times a 10% underwriting loss (i.e., 

at least a 10% chance of an underwriting loss ratio of at least 110%), however the ERD test also 

considers severity of underwriting loss.  It is important to note “ERD has not been explicitly 

endorsed by any professional body.  However, while the CAS Working Party paper stopped short of 

endorsing the ERD, they prefer its use as the de facto standard over the 10-10 rule.” 1 The risk 

transfer results illustrated Exhibit 5 below only consider the ERD test.  Once one considers the 

timing risk associated with the potential variation in paid loss and ALAE the conclusions of risk 

transfer could potentially change. 

2.3 Timing Differences in Historical Cumulative Loss Patterns 

The sensitivity of risk transfer can be assessed by looking at risk transfer statistics such as the 

ERD test statistic and gross versus ceded cash flows at various probability levels.  The variation in 

payment timing can be better understood after an investigation of historical data that has had time 

to develop to full maturity.  Consider the following cumulative paid loss and ALAE percentages (as 

a percentage of ultimate loss and ALAE) for policy years 1996 through 2002 for a professional 

liability insurer2.  Note this time horizon extends across only seven accident years of data, but 

illustrates the loss timing differences commonly found in other long tailed lines of insurance 

reviewed by the author. 
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2.3.1 Actual Example of Timing Differences in Paid Loss and ALAE Data 

 

 

The variation in cumulative paid loss and ALAE percentages as of 60 months of development 

ranges from 48% to 78% for the 7 accident years of data displayed above.  The relationship of this 

potential variation in payment pattern timing and the variation in ultimate loss and ALAE 

settlements for a policy period is an important consideration when assessing a reinsurance contract 

for risk transfer.  Consider the following section as a potential analysis in assessing this relationship. 
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2.3.2 Correlation of Loss & ALAE Payment Timing and Ultimate Loss and ALAE Data 

 

Exhibit 2 

Correlation of Payment Pattern Timing  

and Ultimate Loss and ALAE 

     
  Cumulative Cumulative Duration 2 

 Selected Paid Loss & Paid Loss & of Paid Loss 

Loss Ultimate Loss ALAE at 60 ALAE % at 60 & ALAE 

Year & ALAE Months of Dev Months of Dev 1 (in Years) 

1996             16,893                   13,216  78.2%                   4.0  

1997             22,113                   13,600  61.5%                   4.6  

1998             27,316                   14,004  51.3%                   5.3  

1999             29,292                   15,121  51.6%                   4.9  

2000             32,160                   15,292  47.6%                   5.3  

2001             45,879                   29,124  63.5%                   4.5  

2002             50,889                   34,397  67.6%                   4.6  

2003             66,981                   43,100  64.3%                   4.7  

2004             58,066                   34,926  60.1%                   4.9  

     

   Correlation Correlation 

   to Ult Loss to Ult Loss 

   & ALAE & ALAE 

  Correlation 96'-02' -4.6% 10.4% 

  Correlation 96'-03' 7.6% 5.5% 

  Correlation 96'-04' 6.1% 9.5% 

     

  (1) As a percentage of Ultimate Loss & ALAE   

  (2) Duration is based on a discount rate of 2% and payments occurring mid-year 

 

The indicated correlation between selected ultimate loss & ALAE and the payment pattern 

timing is not highly negative or positive based on the professional liability rate filing data2 illustrated 

in Exhibit 2.  Note this is based on a limited number of mature loss years of data and further 

research based on a longer horizon of mature data may lead to different conclusions.  Also, note 

historical exposure/policy counts underlining the selected ultimate loss & ALAE is unknown and 

trending ultimate loss and ALAE for changes in exposure could lead to different correlation 

indications.  In the author’s opinion, it is likely that the duration of the payment pattern generally 

has a small positive correlation to ultimate loss and ALAE.  As such, the sensitivity of the ERD test 
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results will be shown under several correlation scenarios.  First, let us consider a model to simulate 

the payment pattern timing seen in Exhibit 1. 

 

2.3.3 Fitted Payment Pattern 

Exhibit 3 shows the simulated cumulative paid loss percentages by maturity at the 10th percentile, 

mean and 90th percentile. These percentages are fitted to the professional liability filing loss patterns 

illustrated in Section 2.3.1 above.  As such, these simulated outcomes reflect payment pattern 

variation consistent with the actual variation in historical cumulative payment patterns.  The author 

selected the lognormal distribution with a fitted mean and coefficient of variation to produce the 

simulated mean payment pattern shown in Exhibit 3.  To produce the simulated mean pattern 

shown in Exhibit 3, the author selected the lognormal distribution based on the results of Excel 

Solver.  The lognormal distribution produced the best fit (i.e., the lowest MSE) after considering 

several other continuous distributions such as the beta and gamma.  Further, the author allowed the 

mean parameter to vary uniformly between a selected min and max thereby resulting in the 

distribution of paid loss and ALAE patterns shown below.  The selections were made using best fit 

and judgment. 
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The variability in the above simulated payment patterns is consistent with actual historical paid 

loss and ALAE development patterns for the long tailed lines of business that the author has 

observed, such as professional liability, medical malpractice, workers' compensation, mortgage 

insurance, etc.  Note the range of 10% to 90% in Exhibit 3 above represents 80% of simulated 

accident year events in the reinsurance risk transfer analysis.  The variability in loss timing can lead 

to materially different ERD test results especially after considering the combined correlation and 

discount rate assumptions. 

2.4 Illustrative Example of ERD Results 

To illustrate the potential impact of timing risk under various assumptions of payment pattern 

timing, correlations, and discount rates, first consider the following hypothetical captive reinsurance 

program and set of assumptions. 

 The primary insurer cedes $260,000 in premium on January 1, 2014 to the captive reinsurer 

with a 30% ceding commission; 
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 The captive reinsurance program attaches on an aggregate excess of loss basis where primary 

insurer loss and ALAE for policy year 2014 above $475,000 is covered by the reinsurance policy and 

reinsures loss and ALAE up to a limit of $225,000.  This equates to a maximum underwriting loss 

ratio to the reinsurer of approximately 16.5% (i.e., [($225,000 + 30% x $260,000) / ($260,000)] -1; 

 Coverage is provided on an occurrence basis for policy year 2014 for professional liability; 

 Direct ultimate policy-year losses of the primary insurer follow a lognormal loss distribution 

with an expected loss of $550,000 and a coefficient of variation of 40%; 

 Based on the correlation analyses in Exhibit 2 above, a 0% correlation is assumed when 

modeling the correlation between the duration of simulated paid loss and ALAE and ultimate paid 

loss and ALAE; 

 The timing of paid loss and ALAE is modeled with a lognormal distribution using a fitted 

mean and standard deviation; and 

 A discount rate of 2% is selected based on current U.S. treasury yields. Discussion of the 

interest rate selection is beyond the scope of this paper. 

 

Exhibit 4 shows ERD results under the assumptions above: 

 

Exhibit 4 

ERD Test Cash Flow and Results 

(Discount: 2.0%, Simulated Payment Pattern, Correlation: 0.0%)  

     

Cumulative  Present Value Present Value  

Probability Present Value Ceding Ceded Underwriting 

Distribution % Ceded Loss Commission Premium Deficit 

99%  $                210   $                  78   $                260  10.74% 

98%  $                209   $                  78   $                260  10.32% 

95%  $                207   $                  78   $                260  9.46% 

90%  $                203   $                  78   $                260  8.13% 

80%  $                192   $                  78   $                260  3.78% 

70%  $                132   $                  78   $                260  0.00% 

60%  $                  75   $                  78   $                260  0.00% 

50%  $                  31   $                  78   $                260  0.00% 

     

  Average Underwriting Deficit (ERD Ratio)  1.64% 
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The results above are based on 10,000 Monte Carlo simulated trials using the simulation software 

Oracle Crystal Ball.  After considering these results let us now consider the sensitivity of the ERD 

ratio in assuming a fixed payment pattern (i.e., not simulating the payment pattern).  As shown in 

Exhibit 5, the ERD ratio produced by assuming a static or fixed payment pattern decreases slightly 

under this reinsurance structure and modeled assumptions.  Exhibit 5 also shows the results of the 

ERD test across various combinations of correlation and discount rate assumptions. 

 

Exhibit 5 

ERD Test Results Under Various Scenarios 1 

    
 Discount ERD % Simulated ERD % Fixed 

Correlation2 Rate  Payment Pattern Payment Pattern 

0% 2% 1.64% 1.53% 

25% 2% 1.50% 1.53% 

50% 2% 1.36% 1.53% 

0% 4% 0.32% 0.14% 

25% 4% 0.21% 0.14% 

50% 4% 0.11% 0.14% 

    

(1) The above results illustrate how the results of the ERD test are sensitive to modeled 

  assumptions of correlation, discount rates, and variability in payment pattern timing. 

(2) Reflects correlation between simulated ultimate loss and ALAE and 

  the average duration of the simulated payment pattern.  Correlation assumption  

  does not affect the ERD results for the fixed payment pattern.  

 

Exhibit 5 illustrates how the ERD result is sensitive to the assumptions of payment pattern 

timing, correlation, and discount rate.  Other reinsurance structures are likely more or less sensitive 

to these assumptions depending on the contractual terms, economic environment, line of business 

reinsured, etc.  The variability in the timing of losses is affected by numerous events, including but 

not limited to government moratoriums, economic trends, claims practice changes, changes in TPA, 

changes in reserving practices, and changes in the distribution of business written.  Reinsurance 

contractual features sensitive to the timing risk component of risk transfer such as commutation 

options, fixed coverage periods, and working covers should also be considered. 
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3. CONCLUSIONS 

Modeling this variation in loss timing is important for a broad spectrum of actuarial analyses.  

This includes pro forma analyses, risk transfer analyses, and premium deficiency reserve analyses.  

When evaluating reinsurance risk transfer statistics it is important to keep in mind features that are 

sensitive to the variation of loss payment timing, particularly when the ERD result is near a 

threshold where risk transfer is questionable.  In addition to payment pattern timing, discount rate 

and correlation are assumptions that can have a material impact on the result of the modeled ERD 

statistic.  It is important to understand the sensitivity of those assumptions as they may change 

under different economic environments, reinsurance structures and lines of business reinsured.  The 

loss variation may have a significant impact on the amount of losses ceded to a reinsurer.  At the 

very least, the variation in timing will have an impact on the present value of losses used in the ERD 

test statistic, particularly with larger discount rates. 
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Abstract:  

A commutation is an agreement between the cedent and the reinsurer. In exchange for a onetime payout to the 
cedent, the commutation completely releases the reinsurer from an identified set of reserves that fall under the 
reinsurance contract. Reinsurers and cedents agree to commute claim obligations for a variety of reasons. 
Foremost on this list is reinsurer or cedent insolvency. In the case of reinsurer insolvency there is rarely a use for 
a pricing formula as all of the reinsurer’s cedents will likely get some negotiated fraction of their outstanding 
obligations from the reinsurer. In other cases, including cedent insolvency, pricing formulas are useful. However, 
even if the pricing methodology is agreed between cedent and reinsurer, the parameters used in these formulas 
often vary between the reinsurer and the cedent. In some cases, this will widen the gap of acceptable prices and 
make it harder for an agreement to be reached. In other cases it will do the opposite.  

In this paper, I consider a variety of factors that would influence how a cedent and, separately, how the reinsurer 
would value a commutation. Examples are given to broadly illustrate how these factors could be included in a 
pricing formula. At the end, there is also a short discussion on more qualitative considerations that may override 
pricing formulae.  

 ____________________________________________________________________________________________  

1. INTRODUCTION 

Once a motivation has been established that brings the cedent and the reinsurer to the table to 
discuss a commutation, the key factors that influence the acceptable price for each party must be 
valued.  

For example, the cedent may consider: 

1. Valuation of the reserves to be reassumed, especially the worst case scenarios. In the case of 
significant Bodily Injury, assumptions on increases in medical utilization and medical inflation 
are important.  

2. Tax value based on both internal effective tax rate and value of the IRS discount unwind 
3. Capital required to take back the reserves, considering both internal calculation of economic 

capital and rating agency required capital 
4. Cost of capital 
5. Value of eliminating credit risk and any Sch. F penalties 
6. Value of reduction in recoverables, if overloaded on the given reinsurer 
7. Internal new money investment rate compared to the risk free yield  
8. Value of cash in the prevailing investment environment 
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9. Impact on financial statements – generally an income loss at time of transaction 
10. Value of avoiding costly litigation when dispute exists over coverage with the reinsurer 
11. Expense savings due to elimination of future claims and processing expenses 

The reinsurer is likely to consider the flip side of most of these issues. However, there are likely 
to be differences in how each party interprets and values the same items. For example, the valuation 
of the IRS discount unwind is likely to be based on different discount factors, perhaps higher 
discount factors if the reinsurer relies on an excess of loss table while the cedent relies on a primary 
line of business table. The reinsurer may have a different tax position than the cedent and the impact 
of tax may be more or less significant. The reinsurer is likely to have a different and perhaps higher 
cost of capital than the cedent, given the relatively higher probability of ruin for a reinsurance 
company compared to that of a primary company, all else being equal. The reinsurer may strive to 
attain a high rating from the rating agencies, and thus need more capital, if this impacts their ability 
to be on the authorized list for the various ceding companies. If the transaction results in an income 
gain in the financial statement, and income already meet targets for the year, the fact that the 
transaction generates income may not be important. Even the magnitude of the income impact may 
differ between the reinsurer and the cedent if they are not carrying the same reserves. The cost of 
potential insolvency of the cedent to the reinsurer will have a different value (mostly based on the 
notion that claims will not be handled as robustly as when the cedent is solvent) than the removal of 
the credit risk of the reinsurer has to the cedent. The reinsurer may also have a different investment 
strategy than the cedent and paying cash may be more or less costly to the reinsurer.  

In the remainder of the paper, I will consider several scenarios that reflect some of these 
differences in viewpoint and illustrate a way to price for them.  

2. THE EFFECT OF TAX ON COMMUTATION VALUES 

Using the formula put forth by Connor and Olsen1, we calculate the commutation price for the 
cedent and separately, the reinsurer, as the ambivalence point where the cost of not commuting is 
equal to the cost of commuting. If the commutation price for the reinsurer is larger than the 
commutation price for the cedent, then the commutation is feasible.  

2.1 Cedent 

The cost of not commuting is equal to the tax benefit that would accrue due to unwind of IRS 
discount on reserves. In other words, the cedent, by transferring reserves to the reinsurer has lost 
the tax benefit that would exist if they had kept the reserves.  

1 Connor and Olsen, “Commutation Pricing in the Post-Tax Reform Era”, CAS Proceedings 1991 
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The cost of commuting is equal to present value of the reserves taken back less the commutation 
payment plus the tax the cedent would pay on any tax based profit from the transaction.  

Putting this into equation form:  

Cost of Not Commuting = Tax Benefit on IRS Discount UnwindC  (2.1) 

Cost of Commuting = NPV(Loss) – CPC + (CPC – DiscIRSC(Loss)) * Tax RateC  (2.2) 

Setting the two equations equal and solving for the commutation price, CPC, 

CPC = (NPV(Loss) – Tax Disc UnwindC – DiscIRSC(Loss) * Tax RateC)/(1 – Tax RateC) (2.3) 

CPC = Cedent Commutation Price 

DiscIRSC = Discounted Value of Unpaid Loss, using Cedent IRS discount factors 

Tax RateC = Cedent Tax Rate 

2.2 Reinsurer 

The cost of not commuting is equal to the present value of the reserves less the tax benefit from 
the unwind of IRS discount on reserves.  

The cost of commuting is equal to the commutation payment made plus the tax paid on any tax 
based profit from the transaction. Note that the profit on the transaction, itself, is not included here 
because the profit would be realized in the future in the form of investment income on reserves.    

Cost of Not Commuting = NPV(Loss) - Tax Benefit on IRS Discount UnwindR  (2.4) 

Cost of Commuting = CPR + (DiscIRSR(Loss) – CPR) * Tax RateR   (2.5) 

Setting the two equations equal and solving for CPR, 

CPR = (NPV(Loss) – Tax Disc UnwindR – DiscIRSR(Loss) * Tax RateR)/(1 – Tax RateR) (2.6) 

CPR = Reinsurer Commutation Price 

DiscIRSR = Discounted Value of Unpaid Loss, using Reinsurer’s IRS discount factors 

Tax RateR = Reinsurer’s Tax Rate 

In other words, the two equations are equal if the loss estimations and payout patterns are the 
same, the discount rate used to present value the losses are the same, the IRS discount factors are 
the same and the effective tax rates are the same.  
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Under what conditions would the commutation be feasible, i.e. the payment acceptable to the 
cedent is less than the commutation payment the reinsurer is willing to make?  

If the effective tax rate of the cedent is higher than the tax rate of the reinsurer, the cedent will 
get more benefit from taking back the reserves than the reinsurer will lose from giving up the 
reserves. Thus the cedent’s acceptable price will be lower than the reinsurer’s.  

Likewise, if the IRS discount unwind benefit is larger for the cedent than the reinsurer, the 
cedent’s price will be lower than the reinsurer’s. This means the cedent would need to be using a 
longer IRS payment pattern than the reinsurer. The reverse is more likely, which will make the 
commutation less feasible.  

The example below assumes an effective tax rate of 30% for the cedent and 25% for the 
reinsurer. In addition, it assumes that the cedent uses the IRS discount factors for the “Other 
Liability” line while the reinsurer uses the factors from the “Reinsurance Non-Proportional 
Assumed Liability”. The tax rate difference facilitates the commutation since the cedent gets more 
benefit from the tax aspects of the commutation than the reinsurer. On the other hand, the longer 
IRS discount pattern impedes the commutation since the cedent has a smaller tax discount unwind. 
The tax rate differential has a slightly larger impact so the commutation is feasible.  
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Table 1 

  

Cedent Reinsurer Govt
Tax Rate 30.0% 25.0% 35.0%
Tax Table Other Liab Reinsurance
New $ Rate 2.50% 2.5% 1.00%

Cedent Discounts at their New Money Rate of 2.5% IRS Discount Factor - "Other Liability - Occurrence" 2013

(1) (2) (3) (4) (5) (6) = (1)*(5) (7) = (1) - (6) 
(8) = (7)i - 

(7)i+1 (9) = (8)*(3) 

Calendar 
Years Unpaid

Payout 
Pattern Disc Factor Disc Loss IRS Disc Factor IRS Disc Unpaid IRS Discount

IRS Disc 
Unwind

NPV(IRS Discount 
Unwind)

2014 20,000,000        35.0% 0.99            6,914,107          93.5% 18,702,600             1,297,400       
2015 13,000,000        25.0% 0.96            4,818,193          94.4% 12,278,383             721,617          575,783          554,847                   
2016 8,000,000          20.0% 0.94            3,760,541          95.0% 7,597,072               402,928          318,689          299,611                   
2017 4,000,000          15.0% 0.92            2,751,615          95.6% 3,822,832               177,168          225,760          207,068                   
2018 1,000,000          5.0% 0.89            894,834             96.4% 964,140                  35,860            141,308          126,447                   
2019 -                     0.0% 0.87            -                     96.6% -                            -                  35,860            31,306                     

100.0% 19,139,291        1,297,400       1,219,279                

Cedent - Cost to Not Commute Cedent - Cost to Commute

(a) = (4)Total (b) = (9)Total (c) (d) = (b)*(c) (e) = (d) (f)=(a)
(g) = [(f) - (d) - 

(6)2014 * (c)]/[1-(c)]
(h) = (g) - 

(6)2014 (i) = (c)*(h) (j) = (f) - (g) + (i)

NPV Loss
NPV Tax Disc 

Unwind Tax Rate

Tax Hit on 
Unwind of 
Discount

Cost to Not 
Commute NPV Loss

Commutation 
Payment Profit Tax on Profit Cost to Commute

19,139,291     1,219,279          30.0% 365,784      365,784             19,139,291           18,803,896             101,296          30,389            365,784                   

Reinsurer Discounts at their New Money Rate of 2.5% IRS Discount Factor - "Reinsurance  Non-Proportional Assumed Liability" 2013

(1) (2) (3)
(4) = [(1)i - 
(1)i+1]*(3) (5) (6) = (1)*(5) (7) = (1) - (6) 

(8) = (7)i - 
(7)i+1 (9) = (8)*(3) 

Calendar 
Years Unpaid

Remaining 
Payout 
Pattern Disc Factor Disc Loss IRS Disc Factor IRS Disc Unpaid IRS Discount

IRS Disc 
Unwind

NPV(IRS Discount 
Unwind)

2014 20,000,000        35.0% 0.99            6,914,107          92.2% 18,435,480             1,564,520       
2015 13,000,000        25.0% 0.96            4,818,193          88.0% 11,433,695             1,566,305       (1,785)             (1,720)                     
2016 8,000,000          20.0% 0.94            3,760,541          89.0% 7,118,872               881,128          685,177          644,159                   
2017 4,000,000          15.0% 0.92            2,751,615          93.6% 3,743,648               256,352          624,776          573,048                   
2018 1,000,000          5.0% 0.89            894,834             96.0% 959,635                  40,365            215,987          193,273                   
2019 -                     0.0% 0.87            -                     95.3% -                            -                  40,365            35,239                     

100.0% 19,139,291        1,564,520       1,443,998                

Reinsurer - Cost to Not Commute Reinsurer - Cost to Commute

(a) = (4)Total (b) = (9)Total (c) (d) = (b)*(c) (e) = (a) - (d)
(f) = [(a) - (d) - 

(6)2014 * (c)]/[1-(c)] (g) = (6), 2014 row (h) = (g) - (f) (i) = (c)*(h) (j) = (f) + (i)

NPV Loss
NPV Tax Disc 

Unwind Tax Rate

Tax Benefit 
on Unwind 

Disc
Cost to Not 
Commute

Commutation 
Payment

IRS Reserves Taken 
Down Profit Tax on Profit Cost to Commute

19,139,291     1,443,998          25.0% 361,000      18,778,291        18,892,562           18,435,480             (457,082)         (114,270)         18,778,291              

CP = (NPV(Loss) - Tax Disc Unwind - IRS Disc (Loss)*Tax Rate)/(1-Tax Rate)
CPC = (19,139,291 - 365,784 - 18,702,600*30%)/(1-30%) = 18,803,896
CPR = (19,139,291 - 361,000 - 18,435,480*25%)/(1-25%) = 18,892,562
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3. INCORPORATING RISK LOAD 

We are going to start with the same commutation price formula as above, except now we are 
going to factor in the cost of capital. Capital is required to support negative variation in reserve 
outcomes. When the reinsurer commutes reserves, capital supporting the reserves can be taken 
down, which is a benefit if you assume that there is an immediate business use for the capital.  
Conversely, the cedent in taking back the reserves has to put capital up, which could otherwise be 
used to generate profits. This is a cost to the cedent, assuming that the cedent does not have unused 
capital with no immediate use.  

The relationship between this benefit to the reinsurer and the cost to the cedent depends on how 
much capital is employed and the relative costs of capital. The combination of capital and cost of 
capital can be viewed as a risk load. If the risk load required by the cedent is less than the risk load 
released by the reinsurer, then the transaction will be facilitated.  

Note that risk load is an internal computation that does not impact the income statement, so 
there are no tax consequences. 

We can use the equations from above.  

3.1 Cedent 

The cost of not commuting remains the same as above, no risk load is needed. 

The cost of commuting has the additional cost of the risk load.  

CPC = (NPV(Loss) – Tax Disc UnwindC – DiscIRSC(Loss) * Tax RateC + RLC)/(1 – Tax RateC) 
RLC = Cedent Risk Load (3.1) 

3.2 Reinsurer 

The cost of commuting remains the same, no risk load is needed. 

The cost of not commuting has the additional cost of the risk load. 

CPR = (NPV(Loss) – Tax Disc UnwindR – DiscIRSR(Loss) * Tax RateR + RLR)/(1 – Tax RateR) 
RLR = Reinsurer’s Risk Load (3.2) 

Now let’s look at how the risk load for the cedent could compare to the risk load for the 
reinsurer. As mentioned above, there are two components to a risk load – the required capital and 
the target return on capital. The concepts discussed in this section will be applicable to any capital 
approach. There are many ways to set required capital.  For example, it could be set using an 
economic approach such as Value at Risk (VaR) or Tail Value at Risk (TVaR); based on regulatory 
required capital or rating agencies requirements for a given rating; or on a more simplified formula 
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like reserves/capital. For the purposes of illustration, we are going to use an economic approach 
based on the 99th percentile VaR.  Nowadays, most reserving software will produce reserve 
distributions that can be used to estimate this. Let’s assume that both the reinsurer and the cedent 
set capital based on the profit/loss at the 99th worst income result at the time of commutation and 
run off this capital as the 99th worst income diminishes with loss payments. Let’s assume that the 
runoff of the capital can be expressed as a factor against the initial 99th worst income. Appendix A 
shows the derivation of this runoff factor. The risk load required is then equal to the cost of capital 
(think of this as “target ROE”), reduced for the after-tax investment income rate earned on the 
capital, multiplied by the 99th worst income multiplied by the Factor for Runoff of capital.  

 

RLC = [(Target ROEC – Investment Rate after Tax)]*Income99thC*FRunoffC   (3.3) 

RLR = [(Target ROER – Investment Rate after Tax)]*Income99thR*FRunoffR    (3.4) 

RL = Risk Load 

F = Factor for Runoff of Capital 

Target ROE = Companies cost of capital 

As before, subscripts C and R stand for Cedent and Reinsurer, respectively. 

It is unlikely that these two risk loads will be equal. For example, the reinsurance business, being 
inherently more volatile than primary insurance, will generally require a higher cost of capital. The 
view of the reinsurer on the 99th worst outcome could be better or worse than the cedent and their 
view on how uncertainty diminishes over the lifetime of the reserve payments will also differ. For 
example, information on the claims making up the reserves is asymmetric. The cedent has more 
information on the reserves than the reinsurer. Generally, more information will allow for less 
parameter risk in estimating the aggregate loss distribution. This means the 99th worst outcome will 
be lower for the cedent, all else being equal. With a higher cost of capital and a worse 99th income, 
both of which imply a higher risk load for the reinsurer, the transaction will be facilitated.  

Let’s now introduce a diversity factor. If the relationship between the 99th percentile of the 
commutation reserves and the 99th percentile of the rest of the company’s reserves do not move in 
full unison (for example as measured by correlation or a tail copula value), there will be a reduction 
in the required risk load for the commutation reserves. The diversity factor is the marginal impact of 
the 99th worst outcome for the commutation reserves on the 99th worst outcome of the company’s 
other reserves. For example, in property catastrophe, if the set of commutation reserves comes from 
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one cat zone, the diversity will be more significant  if the insurer has cat reserves spread over many 
cat zones. If all their reserves come from one cat zone (e.g. a mono-state writer), then there will be 
little to no diversity. For casualty, the same impact would result if the commutation reserves came 
from one line of business and the insurer book is spread over many lines of business.   

It may be that a large multi-line primary insurer has more diversity than a reinsurer focused on 
higher layers. This would also facilitate the commutation since the risk load released by the reinsurer 
would be larger than the risk load required by the cedent. Of course, if the cedent is a less diversified 
insurer, such as a small mono-line writer, the opposite may be true.  

In the example below the reinsurer’s cost of capital is assumed to be 15%, while the cedent’s is 
10%. In addition, the cedent is assumed to have a diversity factor of 50%, i.e. that only half the 
capital that the transaction requires on a stand-alone basis is needed when it is considered part of the 
cedent’s whole reserve portfolio. The reinsurer’s diversity factor is assumed to be 75%. “Capital” as 
used here refers to the economic capital at the 99th income percentile, as above, not capital required 
by a rating agency.  

The factor for the runoff of capital is based on the simplified notion that the risk in the reserves 
diminishes in accordance with the reduction in outstanding losses. Thus, it is fully determined by the 
payout pattern and the discount rate. The calculation of this is shown in Appendix A. A more 
sophisticated reserve variability model could show that risk falls off faster than outstanding reserves.  

Note, in the calculation of the risk load below, that a “premium” is calculated in order to 
determine the capital required, since the required capital considers the downside “profit” not just the 
downside losses.  

One way to think of this is that when the reinsurance contract incepted, the reinsurer received 
funds from the cedent to pay for the risk assumed. The capital put up by the reinsurer would be 
based on the 99th worst outcome considering both inflows and outflows. Inflows would be initial 
premium and the expected value of reinstatement or sliding scale premiums (if any). Outflows would 
be expected losses, ceding commissions (if any), reinsurer expenses, brokerage (if involving a broker 
market reinsurer), and any loss sensitive profit features like a profit commission, no claims bonus, 
sliding scale cede, etc., although the profit features are not likely to apply in the worst outcome 
scenarios used to set the capital.  

What I’m doing in the example below is inferring the premium needed to hit the ROE target. 
This is purely notional because it has nothing to do with the commutation payment, other than its 
use in determining the risk load. One could think of it as the original target ROE premium reduced 
for the proportional reduction in risk since the contract incepted. The derivation of the premium is 
shown in Appendix B. Note that line (6), “NPV Profit (after Tax)” is the risk load.  
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Calculation of Risk Load:  

Table 2 

 

  

Cedent Reinsurer Govt
Tax Rate 30.0% 25.0% 35.0%
Tax Table Other Liab Reinsurance
Discount Rate 2.50% 2.50% 1.00%

Cedent Reinsurer

(1) Premium 22,372,729                 25,190,017       

(2) Expected Loss 20,000,000                 20,000,000       

(3) Discounted Loss 19,139,291                 19,139,291       
(4) = 1-3 NPV Profit (before Tax) 3,233,438                   6,050,726        
Tax Tax Rate 30.0% 25.0%
(6) = 4*(1-Tax) NPV Profit (after Tax) 2,263,407                  4,538,044       

(7)= Disc Rate*(1-Tax) Passive Return 1.8% 1.9%
(8) = 15 Capital 27,435,234                 34,575,576       

(9) = 7 + 6/8 ROE 10.0% 15.0%

Cost of Capital
Risk Free Risk Margin Total

Reinsurer 1.0% 14.0% 15.0%
Cedent 1.0% 9.0% 10.0%

Capital Calculation
(10) Agg Loss Curve 99th Downside Loss (Disc) 40,000,000                 40,000,000       
(11) = 1-10 99th Downside NPV Profit (17,627,271)                (14,809,983)      
(12) Selected Diversity Factor 0.50                          0.75                
(13)=11*12*-1 First Year Capital 8,813,635                   11,107,487       
(14)=Sum NPV(O/S) Runoff Multiplier 3.11                          3.11                
(15) = 13*14 All Years Capital 27,435,234                 34,575,576       
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Calculation of Commutation Price:  

Table 3 

 

As you can see the commutation is facilitated by the fact that the risk load released by the 
reinsurer is larger than the risk load put up by the cedent. 

Required capital could also be driven by a rating agency’s required capital level to maintain a 
given rating. If you assume that primary insureds are less sophisticated than insurers, it would follow 
that a higher rating would be more valuable to a reinsurer than an insurer. It is also likely that a 
rating agency will require a reinsurer to hold more capital for a given level of reserves for a given 
rating level than an insurer. Both of these factors would increase the reinsurer’s risk load relative to 
the cedent and facilitate the commutation.  

Cedent

Cost to Not Commute
(1) (2) (3) (4) = 3

NPV Tax Disc 
Unwind Tax Rate

Tax Hit on 
Unwind Disc

Cost to Not 
Commute

              1,219,279 30.0%             365,784                     365,784 

Cost to Commute
(1) (2) (3) (4) (5) (6) = 1 + 2 + 5 - 3

NPV Loss Risk Load CP Profit 
Tax on 
Profit Cost to Commute

            19,139,291 2,263,407                           22,037,334           3,334,734 1,000,420  365,784                   

Reinsurer

Cost to Not Commute
(1) (2) (3) (4) (5) (6) = 1 + 5 - 4

NPV Loss
NPV Tax Disc 

Unwind Tax Rate
Tax Benefit on 
Unwind Disc Risk Load

Cost to Not 
Commute

            19,139,291                      1,443,998 25.0%              361,000   4,538,044                23,316,336 

Cost to Commute
(1) (2) (3) (4) (6) = 1 + 4

CP Reserves Taken Down
Profit on 

Transaction
Tax on 

Transaction Cost to Commute
            24,943,288 18,435,480                         (6,507,808)         (1,626,952) 23,316,336              

CP = (NPV(Loss) - Tax Disc Unwind - IRS Disc (Loss)*Tax Rate + RL)/(1-Tax Rate)
CPC = (19,139,291 - 365,784 - 18,702,600*30% + 2,263,407)/(1-30%) = 22,037,334
CPR = (19,139,291 - 361,000 - 18,435,480*25% + 4,538,044)/(1-25%) = 24,943,288
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Generally, a cedent or a reinsurer that is concerned with financial ratings may base their required 
capital, for pricing purposes, on the capital required by the rating agency to achieve their desired 
rating. One would think that this is likely to exceed the economic capital required, since rating 
agencies should build in a margin of error. 

4. INCORPORATING REINSURER CREDIT RISK AND SCHEDULE F 
PENALTIES  

Unlike the previous costs and benefits discussed above, we will assume that reinsurer credit risk 
will impact only the cedent’s commutation ambivalence point. It could be argued that there is a 
possible benefit to the reinsurer of commuting reserves, if it has an impact on their rating agency 
credit rating. A commutation would generally have to be very large and the credit rating unstable for 
this to have any impact. We’ll ignore this potential benefit to the reinsurer.   

In the required capital formula for one of the larger rating agencies, there is a fixed factor applied 
to reinsurance recoverables of 10%. This factor can vary considerably based on the rating of the 
reinsurer, the dependence of the cedent upon reinsurance (leverage of recoverables plus ceded 
premiums to surplus), and the concentration of recoverables with the given reinsurer. It could be as 
low as 2% and as high as 100%.  The charge for credit risk requires the cedent to put up capital to 
support the ceded reserves. The cost can be viewed as a risk load based on the cedent’s cost of 
capital. Unlike the cedent risk load discussed above, which only arises when the reserves are 
commuted, this risk load exists when the reserves are not commuted and disappears when they are.  

Commuting will eliminate this risk load which will lower the required commutation price for the 
cedent.  

CPC = (NPV(Loss) – Tax UnwindC – DiscIRSC(Loss) * Tax RateC + RLEconomic – RLCredit)/(1-Tax RateC) (4.1) 

Note that this charge is an internal cost to the cedent and does not enter into the income 
statement, so there is no tax impact.  

An alternative approach to assessing an economic impact of reinsurance credit risk, as opposed 
to the rating agency charge, is to use transition matrices, such as those calculated by S&P. These 
matrices will give the probability of default over a specified time horizon for a given starting rating 
value. These can then be extended as far as desired into the future and a cumulative default rate 
determined. To that default rate, an assumed percentage of recovery has to be applied to get a total 
loss amount. Note that this calculation does not reflect the impact of a slowdown in reinsurance 
payments such as that reflected in Schedule F.  
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Schedule F penalties are generally a charge against surplus. This means that the ceded reserves are 
assigned additional capital. So another risk load is required to support the ceded reserves. The 
impact is exactly identical in form to the impact of credit risk. Commutation will eliminate this cost, 
and the cedent will accept a lower commutation price to eliminate this risk load.  

CPC = (NPV(Loss) – Tax UnwindC – DiscIRSC(Loss) * Tax RateC + RLEconomic – RLCredit - RLSchF)/ 
(1-Tax RateC) (4.2) 

Schedule F penalties (or equivalents for GAAP accounting) apply to financial statement capital. 
Presumably, rating agencies will have factored in slowdown in payments or other drivers of Schedule 
F penalties into the factor they select above, which means that it would be double counting to 
include risk loads for both components.  

In the example below, both loads are included under the assumption that “credit risk” refers to 
the default of the reinsurer, while Schedule F penalties applies to the slowdown in payments that can 
occur independent of default.  

The credit risk charge is based upon the assumption that the cedent has a reinsurance leverage of 
100% (current recoverables plus ceded premiums is equal to surplus) and the charge is 45%. To 
simplify the calculation, we assume that the charge is then the capital needed to support the 
transaction *45%, i.e. we assume no extra diversity reduction.  The risk load associated with it is 
10% of capital, i.e. an ROE of 10%. The Schedule F penalty is based on the reinsurer being 
classified as a slow payer. The capital in this case is the reinsurance recoverable of $20m * Sch. F 
Penalty of 20%.  
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Calculation of Risk Load:  

Table 4 

 

  

Cedent Reinsurer Govt
Tax Rate 30.0% 25.0% 35.0%
Tax Table Other Liab Reinsurance
New $ Rate 2.50% 2.50% 1.00%
Reinsurance Leverage 100.0% N/A

Credit Charge (Rating Agency) 45%
Schedule F Penalty 20%

Cedent Reinsurer

(1) Premium 22,372,729                     25,190,017            

(2) Expected Loss 20,000,000                     20,000,000            

(3) Discounted Loss 19,139,291                     19,139,291            
(4) = 1-3 NPV Profit (before Tax) 3,233,438                      6,050,726             
Tax Tax Rate 30.0% 25.0%
(6) = 4*(1-Tax) NPV Profit (after Tax) 2,263,407                      4,538,044             

(7)= Disc Rate*(1-Tax) Passive Return 1.8% 1.9%
(8) = 17 Capital 27,435,234                     34,575,576            

(9) = 7 + 6/8 ROE 10.0% 15.0%

Cost of Capital
Risk Free Risk Margin Total

Reinsurer 5.0% 10.0% 15.0%
Cedent 5.0% 5.0% 10.0%

Capital Calculation
(10) Agg Loss Curve 99th Downside Loss (Disc) 40,000,000                     40,000,000            
(11) = 1-10 99th Downside NPV Profit (17,627,271)                    (14,809,983)           
(12) Selected Diversity Factor 0.50                              0.75                     
(13)=11*12*-1 First Year Capital 8,813,635                      11,107,487            
(14)=Sum NPV(O/S) Years Held Multiplier 3.11                              3.11                     
(15) = 13*14*Reins Lev*Credit Chg Credit Risk Capital 12,345,855                     -                      
(16) = 2*Sch F Penalty Sch F Capital 4,000,000                      -                      
(17) = 13*14 Economic Risk Load Capital 27,435,234                     34,575,576            
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Calculation of Commutation Price:  

Table 5 

 

Note that the commutation price is unchanged for the reinsurer.  

5. INCORPORATING FUNDING OF COMMUTATION PAYMENTS  

This addresses the issue of the cost to the reinsurer of converting reserves into cash for a 
commutation payment and the cost to the insurer of investing cash to pay for the future payments 
on the commuted reserves.  

In a rising interest rate environment, relative to when the reserves were funded by the reinsurer, 
if the reinsurer is matching assets with liabilities and has to liquidate assets to fund the commutation, 

Cedent

Cost to Not Commute
NPV Tax Disc 

Unwind Tax Rate
Tax Hit on 

Unwind Disc Credit Risk Load
Sch F Risk 

Load
Cost to Not 
Commute

        1,219,279 30.0%            365,784              1,234,586         400,000           2,000,369 

Cost to Commute

NPV Loss
Economic 
Risk Load

Commutation 
Payment

Profit on 
Transaction

Tax on 
Profit

Cost to 
Commute

      19,139,291 2,263,407            19,702,212                 999,612 299,884       2,000,369         

Reinsurer

Cost to Not Commute

NPV Loss
NPV Tax 

Disc Unwind Tax Rate
Tax Benefit on 
Unwind Disc Risk Load

Cost to Not 
Commute

      19,139,291       1,443,998 25.0%                 361,000      4,538,044         23,316,336 

Cost to Commute
Commutation 

Payment
Reserves 

Taken Down
Profit on 

Transaction
Tax on 

Transaction
Cost to 

Commute
      24,943,288 18,435,480         (6,507,808)            (1,626,952) 23,316,336       

CPC = (NPV(Loss) - Tax Disc Unwind - IRS Disc (Loss)*Tax Rate + RL - Risk LoadCredit - Risk LoadSch F)/(1-Tax Rate)
CPC = (19,139,291 - 365,784 - 18,702,600*30% + 2,263,407 - 1,234,586 - 400,000)/(1-30%) = 19,702,212
CPR = (19,139,291 - 361,000 - 18,435,480*25% + 4,538,044)/(1-25%) = 24,943,288
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it is likely to realize capital losses in the process. This will increase the cost to it and lower its 
acceptable commutation price. The opposite is true in a falling interest rate environment.  

In a very low and flat yield curve environment such as that prevailing in 2014, there is likely to be 
much more investment in short-term instruments since liquidity is valuable and there is less to be 
gained from investing long. In this case, the reinsurer is likely to have sufficient cash or short-term 
instruments on hand to fund the commutation payment. Thus, there may not be the need to realize 
capital losses to fund the commutation.  

On the other hand, the cedent will often invest new cash in a variety of instruments that 
maximize the overall portfolio return without slavish regard to the exact matching of assets and 
liabilities. In this case, the new money rate of the cedent is the defacto maximum discount rate the 
cedent will use to value the commutation reserves, even if long term assets that match the liability 
duration have a higher return.  

The literature often advocates the use of risk-free discount rates under the assumption that any 
higher discount rate involves risk for the cedent and should be separated from the pure 
commutation value (or another risk load added). In practice, the risk free rate is determined by the 
lowest risk available investments. This is often considered to be the rates offered by US 
Government securities. However, there remains a risk of default, even of the US Government, so 
the theoretical risk-free rate should be even lower.  

At the present time, the rates on US Government securities have been maintained per monetary 
policy at extremely low rates. These rates would probably not be feasible to use in valuing a 
commutation. For example, if the cedent invested in US Government bonds, the current yield curve 
for the duration of reserves in our example would imply a yield of 0.43%. The examples above have 
assumed a 2.5% new money rate. If the 0.43% rate was used, how would the cedent’s commutation 
price change? First, the NPV(Loss) would increase. Second the discounted 99th worst loss outcome 
would increase, which would increase the capital required. The income would go down because the 
discounted loss is higher and the passive return on capital would decrease. The rating agency credit 
charge, since it is applied against required capital (before diversity) would also increase, which 
increases the credit risk load. This would be slightly offset by an increase in the present value of the 
IRS discount unwind. The net effect would drive the cedent to a higher risk load and a higher 
required commutation price.  

NPV(Loss) would increase from $19.1m to $19.8m 

99th worst loss outcome increases from $40.0m to $41.5m 

NPV(IRS Discount Unwind) from increase from $365k to $385k 
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Years Held Multiplier would increase from 3.11 to 3.27 

Economic risk load would increase from $2.3m to $2.8m 

Credit risk load would increase from $1.2m to $1.3m 

Commutation price would increase from $19.7m to $21.4m 

 

This calculation assumes that the cedent will match the pure loss component of the commutation 
proceeds with the liability duration, i.e. that the current risk-free rate will be used to price the 
commutation. In this historically low interest rate environment, various other strategies may be 
employed to maximize the return on the commutation proceeds. For example, the cedent could hold 
all the proceeds in short-term investments and reinvest to match the remaining loss duration if and 
when the interest rates turn upwards. An example illustrating this approach is given in Appendix D.  

If there is a cost to liquidating investments to fund the commutation, the Commutation Price 
formula for the reinsurer includes an additional term:  

Cost of Commuting = CPR + (DiscIRSR(Loss) – CPR) * Tax RateOrdinary Income +Realized Capital Losses *  
(1 – Tax RateCapital Gains)  (5.1) 

The realized investment losses are netted for capital gains tax. The commutation payment 
formula then includes an additional term for the realized capital loss. It is a negative term because 
the larger the capital loss, the lower the acceptable commutation price for the reinsurer.  

CPR = (NPV(Loss) – Tax Disc UnwindR – DiscIRSR(Loss) * Tax RateOrdinary Income + RLR – 
Realized Capital Losses * (1 – Tax RateCapital Gains))/(1 – Tax RateR)  (5.2) 

Calculation of Capital Loss on Commutation:  

Table 7 

Commutation Price at 2.5% new money rate
CPC = (19,139,291 - 365,784 - 18,702,600*30% + 2,263,407 - 1,234,586 - 400,000)/(1-30%) = 19,702,212

Commutation Price at 0.43% Government Rate
CPC = (19,846,402 - 385,021 - 18,702,600*30% + 2,794,042 - 1,296,339 - 400,000)/(1-30%) = 21,354,721
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This is a decrease of $881k. 

6. MEDICAL COST, MEDICAL UTILIZATION AND TORT LIABILITY 
TRENDS  

So far, we have avoided any discussion of disagreement between the insurer and the reinsurer in 
the size of the ultimate reserves. For reserves that are likely to be impacted by future medical 
inflation, medical utilization or tort liability award trends, the cedent is likely to have a more 
conservative view than the reinsurer. Complicating the situation is that some cedents may not 
explicitly include the cost of medical inflation or medical utilization into their reserve estimates. The 
reinsurer may take the reserves presented by the cedent at face value without knowing whether or 
not such future costs are built in. However, the cedent will include this cost when negotiating the 
commutation potentially creating a large gap between the reserves held by the reinsurer and the 
ultimate values estimated by the cedent.  

Workers Compensation claims involving permanent total injuries with an expectation of lifetime 
medical payments often have these characteristics. In order to calculate a discounted reserve value 
for a single such claim, the following information is required:  

•  Information about weekly indemnity payments, COLAs associated with them and any 
time limit on indemnity,  

• Ongoing medical costs, anticipated future surgeries, medication costs, home care, etc. and 
the inflation associated with these costs  

• Estimated life expectancy and the appropriate life table   

Strips At Time of Purchase Strips At Time of Commutation
Calendar 

Year Payments Maturity
Yield 
Curve Price Maturity

Yield 
Curve Price

2014 7,000,000     1 1.0% 6,930,693   1 3.00% 6,796,117     
2015 5,000,000     2 1.3% 4,877,305   2 3.25% 4,690,184     
2016 4,000,000     3 1.5% 3,825,268   3 3.50% 3,607,771     
2017 3,000,000     4 1.8% 2,798,876   4 3.75% 2,589,219     
2018 1,000,000     5 2.0% 905,731      5 4.00% 821,927        

20,000,000   19,337,873 18,505,218   

Capital Loss at Time of Commutati 832,655      

CPR = (19,139,291 - 361,000 - 18,435,480*25% + 4,538,044 - 832,655*(1-20%))/(1-25%) = 24,055,123
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Differences in inflation assumptions can have a huge impact, especially on excess of loss layers. 
The following example illustrates the impact of assuming a 3% medical inflation (near-term medical 
CPI) vs. a 6% inflation (longer-term medical CPI). In practice, different inflation assumptions would 
be made for each medical cost component, such as medications (including brand label becoming 
generic), anticipated advances in medical devices/surgeries which may have a very high initial cost, 
inflation in home health care, cost of prosthetics, end of life spike in costs, etc.  

In the example below, under both scenarios, the full $5m limit is exhausted. However, the 
present value of the reserves, when the medical inflation is 6%, is $1.5m compared to $1.1m when 
the medical inflation is 3%.  

In this case, distributions around the key cost parameters should be employed in order to arrive 
at a fair expected value. Improvements in life expectancy, not always captured in the latest available 
life table, would be one such key parameter.  

Many of these considerations also play a role in serious automobile claims, product liability 
claims, latent injury claims, etc. that have the possibility of catastrophic bodily injury.  

Table 8 
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Example of Medical Inflation Rate on Commutation Value

Parameters

Date of  Loss 1/1/2008
Evaluation Date: 12/31/2014
Rated Age: 65
Gender M
Est'd Annual Indem. Pmt: 20,000.00$         Per State Formula
Est'd Annual Med. Pmt: 50,000.00$         Estimated by Cedent
Cost of Living Adjustment: 2.00% Specified by State as 20 year COLA
Est'd Medical Cost Infl'n: 6.00%
Indemnity Paid to Date: 200,000
Medical Paid to Date: 500,000
Reins. Attachment Point: 1,000,000
Reins. Limit: 5,000,000

Discount Rate: 2.50%
100% Expected Layer Pmt, Discounted 1,508,781

Incremental Incremental Probability of 2.5%
Indemnity Medical Total Cumulative Excess of Surviving Discount Expected

Cal Yr. Payment Payment Payment Payment Attachment to the Pmt Yr Factor Disc't  Pmt
2014 200,000 500,000 700,000 700,000 0 1.00                    
2015 20,199 51,478 71,677 771,677 0 100.0% 0.99                    -                 
2016 20,603 54,567 75,170 846,847 0 98.6% 0.96                    -                 
2017 21,015 57,841 78,856 925,703 0 97.0% 0.94                    -                 
2018 21,435 61,311 82,747 1,008,450 8,450 95.3% 0.92                    7,389              
2019 21,864 64,990 86,854 1,095,304 95,304 93.6% 0.89                    72,725            
2020 22,301 68,889 91,191 1,186,494 186,494 91.7% 0.87                    72,980            
2021 22,747 73,023 95,770 1,282,264 282,264 89.6% 0.85                    73,122            
2022 23,202 77,404 100,606 1,382,871 382,871 87.5% 0.83                    73,141            
2023 23,666 82,048 105,715 1,488,586 488,586 85.2% 0.81                    73,015            
2024 24,140 86,971 111,111 1,599,696 599,696 82.7% 0.79                    72,718            
2025 24,622 92,190 116,812 1,716,508 716,508 80.1% 0.77                    72,230            
2026 25,115 97,721 122,836 1,839,344 839,344 77.4% 0.75                    71,551            
2027 25,617 103,584 129,201 1,968,546 968,546 74.5% 0.73                    70,679            
2028 26,130 109,799 135,929 2,104,474 1,104,474 71.4% 0.72                    69,589            
2029 26,652 116,387 143,039 2,247,514 1,247,514 68.3% 0.70                    68,245            
2030 27,185 123,370 150,556 2,398,069 1,398,069 64.9% 0.68                    66,618            
2031 27,729 130,773 158,502 2,556,571 1,556,571 61.3% 0.67                    64,696            
2032 28,283 138,619 166,902 2,723,473 1,723,473 57.7% 0.65                    62,491            
2033 28,849 146,936 175,785 2,899,259 1,899,259 53.9% 0.63                    60,010            
2034 29,426 155,752 185,178 3,084,437 2,084,437 50.0% 0.62                    57,259            
2035 30,015 165,097 195,112 3,279,549 2,279,549 46.1% 0.60                    54,237            
2036 30,615 175,003 205,618 3,485,167 2,485,167 42.2% 0.59                    50,974            
2037 31,227 185,503 216,731 3,701,898 2,701,898 38.2% 0.57                    47,496            
2038 31,852 196,634 228,485 3,930,383 2,930,383 34.3% 0.56                    43,842            
2039 32,489 208,432 240,921 4,171,304 3,171,304 30.4% 0.55                    40,055            
2040 33,139 220,938 254,076 4,425,380 3,425,380 26.7% 0.53                    36,187            
2041 33,801 234,194 267,995 4,693,375 3,693,375 23.2% 0.52                    32,295            
2042 34,477 248,245 282,723 4,976,098 3,976,098 19.8% 0.51                    28,442            
2043 35,167 263,140 298,307 5,274,405 4,274,405 16.7% 0.49                    24,690            
2044 35,870 278,929 314,799 5,589,204 4,589,204 13.9% 0.48                    21,100            
2045 36,588 295,664 332,252 5,921,456 4,921,456 11.3% 0.47                    17,730            
2046 37,319 313,404 350,724 6,272,180 5,000,000 9.1% 0.46                    3,276              
2047 38,066 332,208 370,274 6,642,454 5,000,000 7.1% 0.45                    -                 
2048 38,827 352,141 390,968 7,033,422 5,000,000 5.5% 0.44                    -                 
2049 39,604 373,269 412,873 7,446,295 5,000,000 4.1% 0.43                    -                 
2050 40,396 395,666 436,061 7,882,357 5,000,000 3.0% 0.42                    -                 
2051 41,204 419,405 460,609 8,342,966 5,000,000 2.0% 0.41                    -                 
2052 42,028 444,570 486,598 8,829,563 5,000,000 1.1% 0.40                    -                 
2053 42,868 471,244 514,112 9,343,676 5,000,000 0.4% 0.39                    -                 
2054 43,726 499,519 543,244 9,886,920 5,000,000 0.0% 0.38                    -                 
2055 44,600 529,490 574,090 10,461,010 5,000,000 0.0% 0.37                    -                 
2056 45,492 561,259 606,751 11,067,761 5,000,000 0.0% 0.36                    -                 

Total 1,508,781
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Table 9 

 

 

Example of Medical Inflation Rate on Commutation Value

Parameters

Date of  Loss 1/1/2008
Evaluation Date: 12/31/2014
Rated Age: 65
Gender M
Est'd Annual Indem. Pmt: 20,000.00$         Per State Formula
Est'd Annual Med. Pmt: 50,000.00$         Estimated by Cedent
Cost of Living Adjustment: 2.00% Specified by State as 20 year COLA
Est'd Medical Cost Infl'n: 3.00%
Indemnity Paid to Date: 200,000
Medical Paid to Date: 500,000
Reins. Attachment Point: 1,000,000
Reins. Limit: 5,000,000

Discount Rate: 2.50%
100% Expected Layer Pmt, Discounted 1,098,766

Incremental Incremental Probability of 2.5%
Indemnity Medical Total Cumulative Excess of Surviving Discount Expected

Cal Yr. Payment Payment Payment Payment Attachment to the Pmt Yr Factor Disc't  Pmt
2014 200,000 500,000 700,000 700,000 0 1.00                    
2015 20,199 50,744 70,943 770,943 0 100.0% 0.99                    -                 
2016 20,603 52,267 72,870 843,813 0 98.6% 0.96                    -                 
2017 21,015 53,835 74,850 918,663 0 97.0% 0.94                    -                 
2018 21,435 55,450 76,885 995,548 0 95.3% 0.92                    -                 
2019 21,864 57,113 78,977 1,074,526 74,526 93.6% 0.89                    62,402            
2020 22,301 58,827 81,128 1,155,654 155,654 91.7% 0.87                    64,927            
2021 22,747 60,592 83,339 1,238,993 238,993 89.6% 0.85                    63,631            
2022 23,202 62,409 85,612 1,324,604 324,604 87.5% 0.83                    62,240            
2023 23,666 64,282 87,948 1,412,552 412,552 85.2% 0.81                    60,743            
2024 24,140 66,210 90,350 1,502,902 502,902 82.7% 0.79                    59,130            
2025 24,622 68,196 92,819 1,595,721 595,721 80.1% 0.77                    57,394            
2026 25,115 70,242 95,357 1,691,078 691,078 77.4% 0.75                    55,545            
2027 25,617 72,349 97,967 1,789,044 789,044 74.5% 0.73                    53,592            
2028 26,130 74,520 100,650 1,889,694 889,694 71.4% 0.72                    51,528            
2029 26,652 76,756 103,408 1,993,102 993,102 68.3% 0.70                    49,337            
2030 27,185 79,058 106,243 2,099,345 1,099,345 64.9% 0.68                    47,011            
2031 27,729 81,430 109,159 2,208,504 1,208,504 61.3% 0.67                    44,556            
2032 28,283 83,873 112,156 2,320,660 1,320,660 57.7% 0.65                    41,993            
2033 28,849 86,389 115,238 2,435,899 1,435,899 53.9% 0.63                    39,340            
2034 29,426 88,981 118,407 2,554,305 1,554,305 50.0% 0.62                    36,612            
2035 30,015 91,650 121,665 2,675,970 1,675,970 46.1% 0.60                    33,820            
2036 30,615 94,400 125,015 2,800,985 1,800,985 42.2% 0.59                    30,992            
2037 31,227 97,232 128,459 2,929,444 1,929,444 38.2% 0.57                    28,152            
2038 31,852 100,149 132,000 3,061,444 2,061,444 34.3% 0.56                    25,328            
2039 32,489 103,153 135,642 3,197,086 2,197,086 30.4% 0.55                    22,551            
2040 33,139 106,248 139,386 3,336,472 2,336,472 26.7% 0.53                    19,852            
2041 33,801 109,435 143,236 3,479,709 2,479,709 23.2% 0.52                    17,261            
2042 34,477 112,718 147,196 3,626,904 2,626,904 19.8% 0.51                    14,808            
2043 35,167 116,100 151,267 3,778,171 2,778,171 16.7% 0.49                    12,520            
2044 35,870 119,583 155,453 3,933,624 2,933,624 13.9% 0.48                    10,420            
2045 36,588 123,170 159,758 4,093,382 3,093,382 11.3% 0.47                    8,525              
2046 37,319 126,865 164,185 4,257,566 3,257,566 9.1% 0.46                    6,848              
2047 38,066 130,671 168,737 4,426,303 3,426,303 7.1% 0.45                    5,392              
2048 38,827 134,591 173,418 4,599,722 3,599,722 5.5% 0.44                    4,157              
2049 39,604 138,629 178,233 4,777,955 3,777,955 4.1% 0.43                    3,132              
2050 40,396 142,788 183,184 4,961,138 3,961,138 3.0% 0.42                    2,302              
2051 41,204 147,072 188,275 5,149,413 4,149,413 2.0% 0.41                    1,544              
2052 42,028 151,484 193,511 5,342,925 4,342,925 1.1% 0.40                    859                 
2053 42,868 156,028 198,897 5,541,822 4,541,822 0.4% 0.39                    323                 
2054 43,726 160,709 204,435 5,746,256 4,746,256 0.0% 0.38                    (0)                   
2055 44,600 165,530 210,131 5,956,387 4,956,387 0.0% 0.37                    (0)                   
2056 45,492 170,496 215,988 6,172,375 5,000,000 0.0% 0.36                    (0)                   

Total 1,098,766
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7. QUALITATIVE CONSIDERATIONS IN COMMUTATIONS 

The following illustrate some of the considerations that may cause the cedent or the reinsurer to 
be motivated to commute beyond the formula dynamics described above. These examples are 
merely a sampling of reasons and are far from exhaustive. 

1. Distressed Reinsurer or Cedent - Here, the first party to the negotiation table generally will 
get the best outcome (as long as the distressed company is expected to run-off without going 
into receivership. Otherwise any agreement may be subject to unwind due to the principle of 
“voidable preference”). So the solvent party may be highly motivated to settle. Settling for 
discounted loss values (effectively harvesting the imbedded value in the undiscounted 
reserves) may bolster the solvency of the distressed party. These situations will often involve 
global commutations and can be quite large. Usually cost considerations such as risk loads, 
different tax treatment, credit risk, etc. will not play into the settlement.  

2. Two bombs are detonated in a large city within blocks of each other 1 hour apart. The 
cedent has a WC reinsurance treaty for $5m xs $5m on an occurrence basis. The issue at 
hand: is it one or two occurrences? The total loss is calculated at $25m. If it is considered 
two occurrences, the insurer believes it is entitled to collect $10m in recoveries; if one 
occurrence, only $5m. This same issue is affecting many reinsurance contracts and the 
resolution is tied up in court proceedings that will take many years to resolve. However, the 
insurer has already paid the full $25m loss. The amount of the reinsurance recovery, and the 
delay in determining it, will affect both the balance sheet and the income statement for 
several years. The cedent is motivated to commute. The insurer and reinsurer may agree to 
commute for a compromise payment of $7.5m.  

Another example of dispute over the number of occurrences could arise in consecutive risks 
attaching property cat treaties with an interlocking clause that limits the recovery from a 
single event to one occurrence limit, even when both treaties are involved. If there is a 
question about the number of events, such as when a hurricane hits in one area, strengthens 
and then later hits in another area, this can tie up recoveries.  

3. A cedent has a WC reinsurance treaty for the layer $8m xs $2m. One of the employees of an 
insured, 25 years old, has suffered a traumatic brain injury and will need lifetime care. The 
rated age of the injured worker is 75 years. The claim is valued at $10m and the duration of 
the claim is expected to be 30 years. The discounted value is $4.1m. This splits into a 
discounted value of $1.4m for the insurer and $2.6m for the reinsurer. The insurer has the 
opportunity to enter into a structured settlement for $3.0m. The strict application of the 
reinsurance language would allow a recovery of only $1.0m. However, if the settlement is not 
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entered into, both the insurer and reinsurer will pay more on a present value basis. The 
duration of the first $1m of payments is 12 years and the duration of the $8m xs $2m 
payments is 39 years.  

No settlement: 

Insurer: $1.4m 

Reinsurer: $2.6m 

Structured Settlement with no commutation: 

Insurer: $2.0m 

Reinsurer: $1.0m 

Structured Settlement with allocation of discount to each layer: 

Insurer: $1.3m 

Reinsurer: $1.7m 

The insurer and reinsurer agree to commute the claim for $1.7m. The reinsurer saves $0.9m 
and the insurer saves $0.1m and both eliminate future uncertainty.  

4. A large multi-line insurer decides to exit the surety line. The book consists largely of contract 
surety bonds. They have an uncapped quota share treaty on a risks attaching basis. The book 
has produced a higher than expected combined ratio result of 90%. A lower combined ratio 
was anticipated because the insurer price included a profit load higher than 10%, due to the 
systemic catastrophe potential. Claims handling is crucial for this line of business. In 
particular, the extension of credit to obligees can often ameliorate potential cash-flow 
induced claims. The ascertaining of where this is likely to lower losses involves substantial 
involvement and ongoing discussions with the obligees. The reinsurer is concerned about 
the claims handling expertise that will be applied in the run-off of this book. The insurer 
believes their run-off results will be equal to or better than historical results. The reinsurer 
may be motivated to commute for a combined ratio of 100% on the run-off exposure and 
the insurer may be happy to accept this.  

5. Casualty reinsurance purchased in the time period 1960 – 1980. Attachment points and 
limits are quite low relative to current cost levels – $4m xs $1m layers in today’s dollars are 
equivalent to $400k xs $100k or $800k xs $200k during those time periods. Any remaining 
claim recoveries will be small in magnitude and few in number. Both insurer and reinsurer 
are motivated to commute just to eliminate future administrative costs. The commutation 
amounts are likely to be small as well, which will also facilitate the commutation.  
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6. Sidecar/Cat Bond/Hedge Fund Reinsurer – the hedge fund has provided the initial capital 
to fund the agreement (generally in the form of a “special purpose vehicle”) and now wants 
to commute in order to repatriate capital to investors. The underlying business in these 
agreements is typically short-tail business where reserves are paid quickly and commutation 
values can be agreed soon after the expiration of the agreement. In these cases, usually 
commutation is an up-front expectation so the mechanism for calculating the commutation 
does not involve compromise.   

Another example of a pre-agreed commutation is when a reinsurance contract includes a 
mandatory commutation clause. This was often seen in worker’s compensation excess of 
loss facultative certs where one of the reinsurers was a life company. In these cases all the 
parameters for calculation of the individual claim values were generally spelled out in the 
cert.  

7. Coverage dispute on specific underlying claims. For example, Cedent A may write a layer of 
an insured’s program. There may be a strong case for an expected and intended defense (i.e. 
the insured knew of the loss before the policy period). Cedent A settles the claim for a small 
discount on the full layer value without taking the case to trial. However, the reinsurer also 
covers Cedent B participating higher up on the insured’s coverage tower. Cedent B more 
aggressively fights the claim and eventually gets a better result at a higher discount on the 
layer value. The reinsurer disputes the settlement value of Cedent A. Cedent A and the 
reinsurer may agree to commute the claim using the higher discount on the lower layer.  
 

8. Conclusion 

A cedent and a reinsurer may agree to commute individual claims or entire books of business for 
many reasons. When both parties are solvent, the commutation negotiation may involve many 
cost/benefit considerations beyond the simple discounted value of the outstanding reserves. Some 
of those addressed here include tax value embedded in the reserves, capital needed to support the 
reserves, reinsurer credit risk, funding considerations and differing viewpoints on cost inflation. 
When these costs/benefits are included in the commutation price, the commutation may be 
facilitated or hindered depending on the magnitude of the cost/benefit of these items to both 
parties.   

There are also many other financial reasons that may drive commutation settlements that may not 
allow for such a detailed cost/benefit analysis. Principal among these is commutation involving a 
distressed counterparty. Some other reasons include disputed claims, structured settlements, cedent 
exit from a line of business, expense considerations on low activity treaties and prior commutation 
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expectations, such as a mandatory commutation clause. There are, of course, many other reasons 
that are not enumerated here.  

DISCLAIMERS 

The opinions expressed are solely those of the author and are not presented as a statement of the 
views or practices of any past or present employer. The author assumes no liability whatsoever from 
any damages that may result, directly or indirectly, from use or reliance on any observation, opinion, 
idea or method presented in this paper. 
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Appendix A – Derivation of Capital Run-off Factor (Section 3) 

The capital run-off factor is the multiplier applied to initial capital in order to get at total capital. 
Initial capital is set at the time of commutation and is based on the selected approach. In this paper, 
we have used the 99th percentile VaR of income. In other words, if the final amount of reserves to 
be paid was known at the end of the year and it was the 99th worst outcome, we would utilize the full 
initial capital held to pay the losses.  

However, if the payout pattern extends over several years, and the outcome remains uncertain 
over those years, we have to continue to hold capital until the final outcome either requires us to use 
part or all of the capital or release the capital for other uses. Generally, the uncertainty reduces as the 
outstanding losses are paid down. This means that the 99th worst outcome also reduces. So, while 
capital has to be held for many years, the amount of that capital reduces each year. In this paper, we 
have made the simplifying assumption that capital reduces proportionally as outstanding losses 
reduce. An argument can be made that the major risk is frontloaded in the payment pattern and 
capital should be taken down more rapidly than the reduction in the outstanding losses. Certainly 
one can construct cases where the risk is front loaded and other cases where it is back loaded.   

In Table A below, the calculation of the capital runoff factor, ‘F’, is shown. The implication with 
this method is that the initial variation as a percentage of the mean, remains the same as reserves are 
paid out. For example, if the aggregate income curve was a lognormal, the coefficient of variation 
would determine the 99th percentile. This method would be equivalent to assuming that the CoV 
remains the same each year as the reserves are paid out, i.e. the mean would shrink but the CoV 
would stay the same. This is probably conservative for claims that are certain as to amount but the 
payment is slow. One example would be a set of high excess Fortune 100 casualty claims, all of 
which are large enough to exhaust the insurer’s layers with certainty but payment is slow because of 
negotiations with all of the insurers on the full tower of coverage. On the other hand, there are 
claims where payments do not indicate a proportional reduction in future uncertainty. One example 
would be Worker’s Compensation lifetime pension cases, where the biggest source of variability is 
the future medical inflation and utilization. As payments are made (especially indemnity payments), 
this variability may not decrease in proportion to the reduction in outstanding loss.  
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In formula terms, the runoff factor, ‘F’, can be expressed as:  

Runoff Factor = ‘F’ = 1+ ∑i=2
n∑j=i

n NPV0(Unpaidj-1 – Unpaidj)  (A.1) 

Where,  

NPV0 = NPV back to time of commutation 

i = 1 is time of commutation 

i = n is time of last payment 

 

Table A 

 

 

 

 

  

(1) (2) = (1)i-1 - (1)i

(3) = NPV[Sum(2i 

to 
26)]/(1+d)^Yeari

i Year O/S Loss O/S Reserves  Payout % of Intial Capital
1 0.00 20,000,000      100.0% 100.0%
2 0.50 13,000,000      65.0% 35.0% 93.4%
3 1.50 8,000,000        40.0% 25.0% 59.6%
4 2.50 4,000,000        20.0% 20.0% 36.1%
5 3.50 1,000,000        5.0% 15.0% 17.8%
6 4.50 -                   0.0% 5.0% 4.4%

Runoff Factor 'F': 3.11                       
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Appendix B – Derivation of Premium used in Risk Load Calculation  
(Section 3) 

The example in Table 2 of Section 3 did not include any expense. In this derivation, it will be 
included. The premium we are deriving here can be viewed as the premium that the reinsurer would 
charge if it was to assume the same reserves that are being considered for commutation. In other 
words, it would want the premium to cover the expected value of the reserves, all expenses 
associated with the transaction -both internal and external- and a profit load that yields their target 
after-tax return on capital. Losses, expenses and the stream of capital supporting the reserves would 
all be considered on a present value basis.  

Premium is equal to the sum of discounted losses, discounted expenses and profit margin. Now, 
profit margin does not have to cover the entire target return on capital. Capital is invested while it is 
used to support the reserves.  Let’s call the after-tax investment income earned on capital, the 
“passive” return. The after-tax profit margin on the insurance cash flows, we’ll call the “active” 
return. We’ll assume that the discount rate used to present value the cash flows is equal to the 
investment income rate on the capital. The sum of the passive and active returns has to equal the 
after-tax target return on capital.  

The after-tax profits from both the active and passive returns have to equal the target after-tax 
ROE times the capital. In formulaic terms:  

Premium = LossDisc + ExpenseDisc +Active Profit (B.1) 

Premium = LossDisc + ExpenseDisc + Total Profit  – Passive Profit  (B.2) 

Premium = LossDisc + ExpenseDisc + ROE*Capital/(1-Tax Rate) – Discount Rate*Capital (B.3) 

Capital = (99th percentile worst loss – Premium)*Diversity Factor*Runoff Multiplier (B.4) 

Note that the profit due to the active return is just the premium less the loss and expense,  

Active Profit = ROE*Capital/(1-Tax Rate) – Discount Rate*Capital (B.5) 

After Tax, it becomes 

After-Tax Active Profit = ROE*Capital – Discount Rate*Capital*(1-Tax Rate) (B.6) 

While the after-tax passive profit is: 

After-Tax Passive Profit  = Discount Rate*Capital*(1-Tax Rate)  (B.7) 
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Finally, the sum of the active and passive profits equals:  

After-Tax Active Profit + After-Tax Passive Profit = ROE*Capital = Target Profit (B.8) 

Replacing Capital in equation (A.3) with (A.4) and solving for Premium, gives the following 
expression:  

Premium = [LDisc+EDisc + (ROE/(1-T) – d)*L99th*D*F]/[1+ (ROE/(1-T) – d)*D*F]  (B.9) 

LDisc = Present Value of Expected Loss 

EDisc = Present Value of Expenses 

ROE = Target after-tax Return on Capital 

T = Tax Rate on income 

d = Discount Rate 

L99 = Present Value of 99th percentile worst loss (not income) 

D = Diversity Factor 

F = Runoff multiplier 
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Appendix C – Sensitivity of Commutation Price to Variations in Factors 

 

 

 

 

 

 

 

 

 

 

 

  

Section 2
Tax Rate

20.0% 25.0% 30.0% 35.0%

IRS Table = "Other Liab"

Discount Rate
2.50% 18,943,644      18,878,428 18,803,896  18,717,897 
5.00% 17,976,062      17,851,064 17,708,209  17,543,376 

IRS Table = "Reinsurance"

Discount Rate
2.50% 18,954,244      18,892,562 18,822,068  18,740,729 
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Section 3

Tax Rate of 30% and IRS Discount Pattern = "Other Liab"

Risk Load
ROE

Disc Rate 5% 10% 15% 20%
2.5% 984,091             2,263,407        3,323,005        4,215,012           
5.0% 428,495             1,684,923        2,728,443        3,608,946           

Commutation Price
ROE

Disc Rate 5% 10% 15% 20%
2.5% 20,209,740        22,037,334      23,551,046      24,825,342         
5.0% 18,320,344        20,115,242      21,605,985      22,863,846         
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Appendix D – Example of Investing Short (Section 5) 

In Section 5, a component of the commutation payment is duration matched to the loss 
payments using the risk free rate. In today’s historically low interest rate environment, one could ask 
if there are other better strategies to investing than duration matching. For example, what would 
happen if assets were kept short with the expectation of an imminent upward movement in interest 
rates? An upward movement in interest rates, as long as the yield curve was upward sloping, would 
have less impact on the short assets than the longer duration matched assets. The short assets could 
then be reinvested at the longer duration needed to match the remaining liabilities. It is possible that 
the realized loss, when interest rates rise, on the short assets would be more than offset by the gain 
in return on the reinvested longer assets. This strategy would provide funds in excess of the required 
loss payments. This is a good strategy as long as interest rates are expected to rise significantly 
enough and soon enough relative to the payment of the losses. There are multiple dimensions 
involved here – the timing of the change, the magnitude of the change, the slope of the yield curve, 
etc. The breakeven solution would be a bounded surface along these dimensions. There may be no 
solutions or a continuum of solutions. For example, take the following table:  

Table 6 

 

 

 

 

 

 

The column labeled “2014 Yield Curve”  uses the risk-free US Governmental bond yield curve 
effective in October, 2014. This is our base case: duration matching using the current risk-free yield 
curve.  The three remaining interest rate columns are derived by holding assets at the 6 month rate 
until interest rates rise. The yield curve is assumed to move upward, using the slope of the current 
yield curve, at the beginning of Year 2, Year 3 or Year 4.  Table 6 shows the required interest rate, 
highlighted in red, at 6 months and each year thereafter in order to breakeven with the current yield 
curve.  When the 6 month interest rate rises, the assets held at the 6 month rate must be liquidated 
to be reinvested at the higher interest rates. When they are liquidated, there is a realized loss. This is 
indicated in the table above as “Realized Loss, Discounted to Inception”. The sum of the 
discounted payments and the realized loss has to equal the original discounted payments. This table 

Breakeven Increases in Interest Rate by Year

Years Payments
2014 Yield 

Curve
Discounted 
Payments

Interest Rate 
Rise in Year 2

Discounted 
Payments

Interest Rate 
Rise in Year 3

Discounted 
Payments

Interest Rate 
Rise in Year 4

Discounted 
Payments

0.5 7,000,000     0.125% 6,995,629        0.125% 6,995,629        0.125% 6,995,629      0.125% 6,995,629   
1.5 5,000,000     0.250% 4,981,308        1.358% 4,960,192        0.125% 4,990,640      0.125% 4,990,640   
2.5 4,000,000     0.750% 3,925,973        1.483% 3,907,758        4.940% 3,894,971      0.125% 3,987,527   
3.5 3,000,000     1.250% 2,872,358        1.983% 2,852,722        5.065% 2,778,744      32.607% 2,595,438   
4.5 1,000,000     1.500% 935,196           2.483% 916,593           5.565% 871,192         32.732% 651,492      

Realized Loss, Discounted to Inception: 77,572             179,290         489,740      

19,710,466      19,710,466      19,710,466    19,710,466 
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shows that large increases in interest rates are required to offset the loss in income from investing 
short. This is due to the short payment pattern in this example. Results would be more reasonable 
for a long tail liability type payment pattern. 

Realized Loss:   

Let Ai = Funds assumed to be the investable at the end of Year i. Year 1 is the first year after the   
date of commutation. A0 = NPV(Loss) using original yield curve assumed to be starting 
funds. 

Let Pi = Payment in Year i 

Let ri = investment rate for a duration of i – 6 months from original yield curve. r1  is our initial 
short-term (6 month) rate 

Let Ri = investment rate for a duration of i – 6 months after increase in yield curve. R1 is our 
short-term (6 month) rate after the increase in yield curve 

Let Hi = realized loss at beginning of Year i from liquidating assets at investment rate r1  

Assets investable at end of Year i, assuming that assets are kept at the 6 month rate:  

Ai = [Ai-1*(1+r1)0.5 – Pi]*(1+r1)0.5                                                                                                                                                                        (D.1) 

Realized loss at beginning of Year i:  

Hi = [Ai-1*(1+R1)0.5 – Ai-1*(1+r1)0.5]/(1+R1)0.5                                                                               (D.2) 

Using the example in Table 6 for the 6 month interest rate increasing in year 2,  

A0 = $19,710,466 

A1= [$19,710,466*(1.00125)0.5 - $7,000,000]*(1.00125)0.5 = $12,730,730 

H2 = [$7,743,520*(1.01358)0.5 - $7,743,520*(1.00125)0.5 ]/(1.01358)0.5 = $77,669 

Discounting H3 back to inception requires discounting for one years at R1 = 1.01358 

Realized loss, discounted back to inception:  

$77,669/(1.01358)1 = $77,572 

Clearly, H2 cannot be calculated without knowing R1, which is calculated in the following section.  
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Required Interest Rate Change: 

Depending on how long the assets are kept at the investment rate r1, the increase in the discounted 
loss payments compared to those derived from the duration matched yield curve, must be made up by 
the lower discounted value of the future loss payments discounted at rate R1, R2, etc.. In addition, the 
discount on the future loss payments must be enough to also offset the realized loss, calculated above. 

Using the original yield curve, the formula for the NPV of losses is:  

∑  𝑛
𝑖=1 Pi/(1+ri)(i-0.5)                                                                                                                           (D.3) 

When the yield curve increases in year j+1, the formula for the NPV of losses combined with the 
realized loss is:  

∑  𝑗
𝑖=1 Pi/(1+r1)(i-0.5) + ∑  𝑛

𝑖=𝑗+1 Pi/[(1+r1)(j)(1+Ri-j)(i-j-0.5)].+ Hj+1/(1+r1)(j-1)                                             (D.4) 

 

Set (D.3) equal to (D.4) and solve for R1. You need to use the consistent slope assumption in the 
following formula:  

Ri = R1+(ri – r1)                                                                                                                    (D.5) 

Note that the formula for Hj+1 also includes R1.  

In the case where the 6 month investment rate changes in Year 2, R1 = 1.1358% 

  

  

Casualty Actuarial Society E-Forum, Spring 2015 32 



Commutation Pricing – Cedent and Reinsurer Perspectives 

9. REFERENCES 

[1.] Connor, Vincent and Olsen, Richard, “Commutation Pricing in the Post-Tax Reform Era”, CAS Proceedings, 
1991, Vol. 78 Part 2, No. 149, 81 - 109 

[2.] Meyer, Jeffrey, Moore, Scott and Ogden, Dale, “3E. Reinsurance Commutations”, CLRS, 1990, 705-740 
[3.] Ogden, Dale, Powell, David and Hutter, Heidi, “7E. Reinsurance Commutations”, CLRS, 1990, 1577-1598 
[4.] Blumsohn, Gary, “Levels of Determinism in Workers Compensation Reinsurance Commutations”, CAS 

Proceedings, 1999, Vol. 86 Part 1, No. 164, 1 – 79 
[5.] Steeneck, Lee, “Commutation of Claims – a CAS Study Note”, 1-26 
[6.] AM Best, “Understanding BCAR”, Methodology, 2003, 1-23 

 
 
Abbreviations and notations 
CP, commutation price ROE, return on equity 
NPV, net present value F, runoff factor for capital 
RL, risk load d, discount rate 
T, tax rate D, diversity factor 
  

 

Casualty Actuarial Society E-Forum, Spring 2015 33 



Casualty Actuarial Society E-Forum, Spring 2015 1 

An Enhanced Understanding of Using the RAA Excess Casualty 

Loss Development Study For Reserve Analysis 

Chaim Markowitz A.C.A.S. M.A.A.A. 

____________________________________________________  

Abstract:  

This article explores the differences between the various studies published by the RAA over the years. In 

comparing the reporting patterns for the different lines of business in the RAA study, I attempt to determine 

what factors can have an effect on the reporting patterns. Based on the data I show that these factors include 

the underwriting cycle, data quality and data manipulation to minimize the impact of any one company. I 

also show how the actuary can incorporate this information in using the RAA data in his reserving analysis. 

 

Keywords: RAA, Benchmarks, Underwriting Cycle, Reporting Patterns, Reserving, Reinsurance 

____________________________________________________  

1. INTRODUCTION 

The RAA publishes a bi-annual study of incurred and paid loss triangles of the reinsurance 

companies that are members of the RAA. The triangles that are published are comprised of four 

casualty lines of business: Auto Liability, General Liability excluding Asbestos and Pollution, Medical 

Malpractice and Workers’ Compensation. Besides triangles for the entire line of business, the data is 

also broken out by attachment point, divided into  five attachment point ranges. As a disclaimer, in 

the introduction to its study, the RAA cautions that for various reasons  the results of one study will 

not necessarily match up to the results of a prior or subsequent study.  

The RAA triangles are often used to help the actuary in determining the ultimate loss for the 

non-proportional and facultative reinsurance triangles. In the casualty lines, especially for the long-

tailed, high attachment point lines, there is often not enough credible company data to determine an 

appropriate ultimate loss. By incorporating the RAA studies, the actuary can come to a more 

reasonable conclusion in selecting an ultimate loss. However, if the RAA studies do change over 

time, and it is in fact true that one cannot assume a later study will match up with an earlier study, 

then what will be the impact to a company’s results when a new RAA study is published? This paper 

will attempt to demonstrate if differences between the studies do exist, and if they exist, several 

suggestions will be offered to explain these differences. Several reserving procedures that utilize the 

RAA data will then be shown, with an attempt to show if any of the possible explanations could 
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have an impact on the procedures. This will help the actuary decide when to use the RAA 

benchmarks and what assumptions need to be made when using them. 

 

1.1 Research Context 

To the best of my knowledge, there has been no prior research done that compares the RAA 

studies. However, the RAA in its bi-annual study details the limitations that one should be aware of 

before using the study. These limitations can be helpful in understanding the potential differences 

between the studies. Furthermore, one area which is explored is the effect of the underwriting cycle 

on the different RAA studies. There has been some research published showing the impact that the 

underwriting cycle might have on the amount of reserves held by a company. In particular, the 

working party paper presented at the 2008 General Insurance Convention (Hilder), as well as the 

paper published by Line (et al)  (Line), focus extensively on this issue.  

1.2 Objectives 

The primary goal of this paper is to understand what is driving the differences between the 

various studies published by the RAA. This is important for a couple of reasons. First of all, there 

might exist within a company some reserving groups where the company’s historical data is sparse 

or volatile which will necessitate heavy reliance on benchmarks. Significant changes in these 

benchmarks may lead to significant changes in the reserve indications for reasons which are external 

to the reserve portfolio.  This in turn may compromise the credibility of the actuaries in the eyes of 

end users of actuarial indications such as company management. Understanding why the RAA data 

has changed can go a long way in minimizing the concerns of management.  

Secondly, from the actuarial side, an actuary might be tempted to continue using the benchmarks 

from a prior study even when a newer study is available. If in fact the newer study does give 

different results than the prior study, and the actuary does not update his projections, the reserves 

could wind up being either deficient or redundant. Furthermore, by understanding what differences 

exist, and why they exist, will help the actuary decide when it is appropriate to use the RAA 

benchmarks and what assumptions should be made in using them. Understanding these differences 

can help the reserving actuary make the necessary adjustments in the actuary’s projections. 

1.3 Outline  

This paper will focus on the reporting patterns for the Auto Liability line of business. I will 

compare the reporting patterns by attachment point for the last four RAA studies. Where 

differences exist, I will propose some possible explanations and test the assumptions from the RAA 
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data. Finally, based on my findings, I will make some recommendations for the reserving actuary to 

keep in mind when using the RAA study as a benchmark. 

2 METHODOLOGY 

In this paper I will use the incurred loss triangles from the last four 1 RAA studies to produce a 

set of loss reporting patterns for the different attachment point triangles produced by the RAA.  

Although patterns are available for the General Liability, Medical Malpractice and Workers’ 

Compensation lines of business, in this paper I will just present the results for Auto Liability. A 

cursory review on the GL and WC lines seems to produce similar results to the Auto Liability line so 

for the sake of simplicity I have focused solely on the Auto Liability line. A more in-depth study 

would be needed for the other lines and it would be interesting to compare the results of each of the 

lines.  

 In order to eliminate any bias due to the judgmental selection of factors between the various 

studies, I used the same procedure for each of the triangles. The all year weighted averages were 

selected for each triangle, without eliminating any high or low factors. By choosing the average for 

all years, the hope is that the outliers, both high and low, will balance each other out. Secondly, in 

selecting the tail factors, if based on the experience, the cumulative reported loss percentage was at 

100% in a period with at least 5 years of experience, then no curve fitting was performed. Where the 

reporting percentage was more than 100%, then at the period where the reporting percentage 

reached 100%, a factor of 1.00 was chosen for the tail. In the event that it was necessary to select a 

tail factor other than 1.00, I used curve fitting to project the tail. Since my intention was not to 

figure out what the appropriate tail is, but rather to compare the studies, I chose the same curve fit 

for each study. The curve fit used was the one which gave the highest R^2 for the 2012 study. This 

curve fit was then used for that particular triangle in each of the studies. 

 

2.1    Results 

The RAA publishes triangles by various attachment points. In the exhibit below is a table 

detailing the five different attachment point ranges published by the RAA. 

 

 

 

                                                           
1 This includes the 2005, 2007, 2009 and the 2012 RAA studies. 
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Range Name Attachment Point Range 

Range 1 1 to 210,000 

Range 2 210,001 to 500,000 

Range 3 500,001 to 2,050,000 

Range 4 2,050,001 to 5,500,000 

Range 5 5,500,001 and greater 

 

Looking at a comparison between the studies, at the various attachment points,2 it is clear that 

the loss reporting pattern for the 2009 study is slower than the other studies.  Even for Range 1 

where the 2009 study seems to match up pretty well with the 2005 and 2007 study, it is still 

significantly slower than the 2012 study.  There are several possible explanations for this and I will 

attempt to explore each of the possibilities.  

 

                                                           
2 For Auto Liability, Range 4 data was only published in the 2005 and 2012 study. Therefore, this paper will only focus 
on Ranges 1, 2 and 3. 
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12 24 36 48 60 72 84 

2007 23.4% 52.4% 69.6% 82.8% 91.4% 95.7% 98.6% 

2009 22.0% 50.9% 68.0% 81.3% 88.7% 92.5% 94.8% 

% difference -6.2% -2.9% -2.2% -1.8% -3.0% -3.3% -3.8% 

     
 

  

 
12 24 36 48 60 72 84 

2009 22.0% 50.9% 68.0% 81.3% 88.7% 92.5% 94.8% 

2012 28.4% 59.2% 76.5% 88.1% 94.6% 97.8% 98.5% 

% difference 29.3% 16.3% 12.5% 8.4% 6.7% 5.6% 3.9% 
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2005 Range 2

2007 Range 2
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2012 Range 2
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PERCENT OF ULTIMATE LOSS REPORTED 

 

 
12 24 36 48 60 72 84 

2007 20.7% 51.4% 72.9% 85.6% 93.7% 97.6% 98.3% 

2009 18.6% 46.2% 64.3% 75.5% 83.3% 87.3% 90.8% 

% difference -10.4% -10.2% -11.8% -11.8% -11.1% -10.5% -7.7% 

        

 
12 24 36 48 60 72 84 

2009 18.6% 46.2% 64.3% 75.5% 83.3% 87.3% 90.8% 

2012 21.5% 53.9% 73.4% 85.3% 93.2% 97.3% 98.4% 

% difference 16.1% 16.8% 14.1% 13.0% 11.9% 11.4% 8.4% 
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Development Period 

2005 Range 3

2007 Range 3

2009 Range 3

2012 Range 3

AUTO LIABILITY RANGE 3 
PERCENT OF ULTIMATE LOSS REPORTED 

 

 
12 24 36 48 60 72 84 

2007 19.9% 50.0% 70.8% 83.9% 90.1% 95.0% 97.1% 

2009 17.8% 45.7% 64.9% 77.3% 83.1% 87.7% 90.6% 

% difference -10.9% -8.6% -8.3% -7.9% -7.7% -7.7% -6.7% 

        

 
12 24 36 48 60 72 84 

2009 17.8% 45.7% 64.9% 77.3% 83.1% 87.7% 90.6% 

2012 17.7% 48.0% 67.6% 81.8% 88.2% 93.4% 96.6% 

% difference -0.2% 5.2% 4.1% 5.8% 6.2% 6.5% 6.6% 
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2.2 UW Year Cycle 

 
       One possible explanation for the slower reporting pattern in the 2009 study can be due to the 

position within the underwriting cycle. An underwriting cycle is the cyclical manner in which profits 

within the sector tend to rise and fall over a period of time. Over the last decade, studies have been 

done to show that there is a relationship between the underwriting cycle and reserving cycle. A 

reference was made by Bob Conger (Conger), a past president of the CAS, during his keynote 

address to the 2002 GIRO convention. Subsequently, several papers have been published showing 

that there is indeed a relationship between the underwriting cycle and the reserving cycle, and that 

the underwriting cycle can distort development patterns. Line (et al) (Line) attempted to offer 

several hypotheses why this might be the case. Although the authors were not able to confirm or 

refute their hypotheses beyond doubt, they did point out that the soft market years appeared to 

develop more slowly than the hard market years.  

       If this is indeed the case, then it is quite possible that the underwriting cycle is driving the 

difference in the benchmarks. The patterns selected for each study are based on the all year weighted 

averages for each period. It should be pointed out that the later studies will contain more accident 

years in the weighted averages for a particular development period compared to the earlier studies. 

For example, the weighted averages for the 2012 study will contain two more accident years 

(accident years 2009 and 2010)  in the average than the 2009 study (where the latest accident year is 

2008). However, even taking this into account, to the extent that a soft market year is given more 

weight in the average, it would stand to reason that the overall weighted average will be slower. 

Conversely, if the hard market years are given more weight, then the overall average for a particular 

period will be faster.  

       In order to test this theory, it is first necessary to determine which years are the hard market 

years and which years are the soft market years. It is widely assumed that AY 1997-2001 were the 

soft market years for reinsurance. In fact if one looks at Schedule P data3 from the 2013 year-end 

annual statements for the years 1987-2013, one can clearly see that the reinsurance results for AY 

1997-2001 were worse than other years.   It appears that we can say that these years were in fact the 

soft market years.4  

 

 
 
                                                           
3 Schedule P Part 1  data was taken from the 1996, 2003 and 2013 Annual Statements using data  collected by SNL 
Financial   
4 The following exhibits have been adapted from a presentation given by Christopher Bozman of Towers Watson. 
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  Furthermore, the following exhibits show a comparison between the soft market years and 

the hard market years from the most recent RAA study. It seems clear from the RAA data, that the 

soft market years do in fact produce slower reporting patterns than the other years. 
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We are now left with determining if in fact the soft market years of the 2009 study are the reason 

why its reporting pattern is slower than the other studies. If we compare the reporting patterns of 

each of the studies excluding the soft market years as well as the patterns for just the soft market 

years,5 we get the following results.6  

 

 

 

 

 

 

 

 

                                                           
5 As shown above, we have determined that the soft market years are the underwriting years 1997-2001 
6 For simplicity and to make the exhibits easier to read, I have left out the patterns from the 2005 study. The patterns 
from the 2005 study are similar to the 2007 and 2012 studies. 
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If we look at the reporting patterns for the non-soft market years, we see that the Range 1 and 

Range 2 triangles show the same reporting pattern for each of the RAA Studies.  The Range 3 

triangle actually shows a faster reporting pattern for the 2007 study, but this could be due to other 

factors as well. In comparison, the triangles for underwriting years 1997-2001, the soft market years, 

show a completely different result. The 2009 RAA study has a much slower reporting pattern than 

both the 2007 and 2012 studies. This would suggest  that the soft market years have a significant 

impact to the overall all year weighted average reporting pattern for the 2009 study as opposed to 

the other studies.  

 

We can understand that the reason the soft market years affect the 2009 study moreso than the 

2005 or 2007 is because by 2009 we are further along in the development and the adverse 

development has more of an impact on the 2009 tail. For example, if we look at the actual triangle 

we can see that the additional two years of development increase the average for the development 

periods significantly.  

 
RAA 2009 Study: Auto Range 2 

        

            Origin 
Period 

12 24 36 48 60 72 84 96 108 120 132 

1997 2.660 1.571 1.313 1.118 1.072 1.012 1.017 1.001 0.998 1.013 1.007 

1998 3.093 1.474 1.276 1.107 1.028 1.045 0.999 1.002 0.999 1.020 

 1999 2.964 1.473 1.263 1.100 1.013 1.000 1.014 1.016 1.068 

  2000 2.690 1.481 1.219 1.160 1.076 1.004 1.167 1.074 

   2001 2.039 1.533 1.114 1.108 1.038 1.217 1.143 

    

            RAA 2007 Study: Auto Range 2 

        

            Origin 
Period 

12 24 36 48 60 72 84 96 108 120 132 

1997 2.691 1.550 1.278 1.109 1.063 1.019 1.011 0.990 0.999 

  1998 3.157 1.495 1.267 1.098 1.027 1.037 1.004 0.999 

   1999 3.019 1.537 1.234 1.100 1.012 0.998 1.015 

    2000 2.548 1.462 1.200 1.149 1.059 1.004 

     2001 2.077 1.530 1.103 1.099 1.030 

       
However, why do we not see a similar impact on the 2012 study?  
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2.2.1 Effect of Using Volume Weighted Averages 

 
One possible explanation is that to ensure that a single company’s data does not dominate the 

triangle in the latest study put out in 2012, the RAA scaled individual company data and adjusted the 

data volume by applying a certain percentage to the entire triangle. Although the magnitude of the 

actual development factors is not affected, the volume of losses is affected (RAA Historical Loss 

Development Study 2012 edition). Given that the patterns were calculated using volume weighted 

averages, it is quite possible that the volume of data in the 2012 study has been artificially changed, 

resulting in a different reporting pattern than would otherwise have been calculated.  

If instead of using volume weighted averages, we use straight averages we can eliminate the 

distortion caused by any artificial change to the actual data. For example, if we look at the straight 

averages for both the Range 2 and Range 3 triangles, we see that the 2009 study is still slower than 

the other studies. This would indicate that the difference between the studies is not solely affected 

by the volume of data. However, being that the difference between the RAA studies is less when we 

use the simple averages, as opposed to using the weighted averages, this does lend support to the 

idea that the artificial change to the volume of data is affecting the comparison.  
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Development Period 

2007 RAA Study: Range 2

2009 RAA Study: Range 2

2012 RAA Study: Range 2

AUTO LIABILITY: RANGE 2 
SIMPLE AVERAGE: ALL YEARS 

PERCENT OF ULTIMATE LOSS REPORTED 

 

 
12 24 36 48 60 72 84 

2007 23.3% 55.8% 76.4% 88.0% 94.6% 99.1% 98.8% 

2009 21.7% 52.9% 72.0% 83.0% 89.7% 93.5% 95.8% 

% difference -6.8% -5.1% -5.8% -5.6% -5.2% -5.6% -3.0% 

        

 
12 24 36 48 60 72 84 

2009 21.7% 52.9% 72.0% 83.0% 89.7% 93.5% 95.8% 

2012 22.8% 57.3% 75.6% 87.3% 94.0% 98.6% 99.2% 

% difference 5.0% 8.3% 5.0% 5.1% 4.8% 5.5% 3.5% 
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AUTO LIABILITY RANGE 2   
WEIGHTED AVERAGE: ALL YEARS               

PERCENT OF ULTIMATE LOSS REPORTED 

 

 
12 24 36 48 60 72 84 

2007 20.7% 51.4% 72.9% 85.6% 93.7% 97.6% 98.3% 

2009 18.6% 46.2% 64.3% 75.5% 83.3% 87.3% 90.8% 

% difference -10.4% -10.2% -11.8% -11.8% -11.1% -10.5% -7.7% 

        

 
12 24 36 48 60 72 84 

2009 18.6% 46.2% 64.3% 75.5% 83.3% 87.3% 90.8% 

2012 21.5% 53.9% 73.4% 85.3% 93.2% 97.3% 98.4% 

% difference 11.7% 11.4% 13.3% 13.4% 12.5% 11.7% 8.3% 
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AUTO LIABILITY: RANGE 3 
SIMPLE AVERAGE: ALL YEARS 

PERCENT OF ULTIMATE LOSS REPORTED 

 

 
12 24 36 48 60 72 84 

2007 19.3% 51.5% 72.6% 85.1% 90.3% 95.7% 97.8% 

2009 18.2% 48.8% 69.3% 82.0% 87.2% 92.3% 94.6% 

% difference -5.8% -5.3% -4.6% -3.7% -3.5% -3.6% -3.2% 

        

 
12 24 36 48 60 72 84 

2009 18.2% 48.8% 69.3% 82.0% 87.2% 92.3% 94.6% 

2012 17.0% 47.2% 66.7% 79.9% 86.7% 92.5% 96.0% 

% difference -6.7% -3.3% -3.8% -2.6% -0.6% 0.2% 1.4% 
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2.2.2 Commutation Effect 

 

A second possible explanation  is that the RAA study is net of commutations. It is quite possible 

that by the time the 2012 study was done, several reinsurers took steps to commute the unprofitable 

business from these years.7  Without the bad business from the soft market years in the triangle, the 

effect on the  reporting patterns would not be as severe as it is in the 2009 study. This could explain 

why the reporting patterns for the 2012 study are more similar to the 2005 and 2007 study than they 

                                                           
7 It is also possible that some of the unprofitable reinsurers dropped out of the RAA study.  
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12 24 36 48 60 72 84 

2007 19.9% 50.0% 70.8% 83.9% 90.1% 95.0% 97.1% 

2009 17.8% 45.7% 64.9% 77.3% 83.1% 87.7% 90.6% 

% difference -10.9% -8.6% -8.3% -7.9% -7.7% -7.7% -6.7% 

        

 
12 24 36 48 60 72 84 

2009 17.8% 45.7% 64.9% 77.3% 83.1% 87.7% 90.6% 

2012 17.7% 48.0% 67.6% 81.8% 88.2% 93.4% 96.6% 

% difference -0.2% 5.2% 4.1% 5.8% 6.2% 6.5% 6.6% 
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are to the 2009 study. Although  one would still see a slower reporting pattern in the 2012 study for 

the soft market years, the pattern would follow more closely  the 2005 and 2007 study. 

     However, this explanation is not very likely. The soft market years were from 1997-2001, and the 

deteriorating results should have already been apparent to companies after a few years. This is 

especially true with Auto Liability, which has a shorter tail than other casualty lines. If there were any 

significant commutations, the impact on the triangles should have already been noticeable in the 

2005 and 2007 RAA studies. Furthermore, a look at the data seems to lend support that 

commutations are not an adequate explanation. If we compare the actual reported losses in Range 3 

for both the 2009 and 2012 studies we see the following results. 

 

 
Range 3: Difference between 2012 and 2009 study (in millions) 

          Accident Year 1 2 3 4 5 6 7 8 9 

1993 (6.3) (12.5) (15.1) (13.6) (12.8) (10.2) (9.0) (9.1) (8.2) 

1994 (7.6) (14.1) (22.8) (26.0) (26.5) (26.2) (24.6) (24.4) (24.4) 

1995 (7.2) (12.9) (16.1) (18.8) (14.5) (15.0) (15.8) (15.2) (14.8) 

1996 (11.3) (20.3) (25.3) (23.0) (21.4) (21.3) (20.4) (21.3) (22.5) 

1997 (11.4) (14.8) (15.2) (20.9) (19.9) (18.9) (16.2) (15.8) (16.3) 

1998 (8.7) (18.0) (20.3) (19.2) (19.8) (20.1) (19.5) (19.9) (21.4) 

1999 (5.0) (16.8) (20.1) (18.3) (19.2) (16.7) (15.2) (14.7) (21.4) 

2000 (13.4) (19.4) (32.5) (37.3) (40.6) (37.7) (34.9) (44.2) (53.1) 

2001 (2.9) (0.5) 6.5  0.5  0.4  (1.8) (9.0) (15.7) 
 

         

 
 

Range 3: Percentage Difference between 2012 and 2009 study 

Accident Year 
         1993 -39.3% -35.0% -33.5% -28.4% -25.6% -20.2% -17.6% -17.5% -16.0% 

1994 -39.8% -37.1% -44.1% -44.6% -43.4% -41.9% -38.7% -37.3% -37.3% 

1995 -44.8% -36.8% -33.7% -35.1% -26.9% -26.0% -26.7% -25.5% -25.1% 

1996 -65.9% -54.5% -50.4% -43.4% -38.1% -37.1% -36.4% -37.3% -38.6% 

1997 -60.9% -38.0% -29.2% -31.8% -28.5% -25.4% -21.1% -20.2% -20.6% 

1998 -51.7% -41.5% -33.0% -26.0% -24.9% -23.2% -22.1% -22.4% -23.7% 

1999 -23.3% -22.1% -20.3% -16.1% -15.9% -13.5% -12.0% -11.5% -15.9% 

2000 -47.7% -33.4% -35.9% -32.3% -31.4% -28.0% -25.7% -30.3% -34.2% 

2001 -22.9% -0.9% 8.4% 0.5% 0.4% -1.5% -7.0% -11.6% 
  

The Range 3 reported losses for the years 1997-2001 in  the  2012 study are  significantly  less 

than the 2009 study.  However, a look at other accident years also shows a significant decrease in 

losses in the 2012 study as compared to the 2009 study.  This would suggest that the first 
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explanation of a data volume offset is a more probable explanation. It would be interesting to 

compare the future studies to the 2012 study and see if the data volume is consistent or has changed. 

2.3 Other Explanations 
 

2.3.1 Change in Volume of Data by Attachment Point 

 

Another explanation for the differences is something that the RAA cautions about and that is the 

availability of the data by attachment point. The RAA relies on its members to not only provide the 

data but to also segment the data by attachment point. It is quite possible that a particular company 

did not have the data available by attachment point for one study, yet it was available for a prior or 

subsequent study. If this would be the case, then there could be a change in the data reported from 

one study to the next. 

 

To check this, we can look at the data for all ranges combined to see how the patterns compare.8   

 
 

                                                           

8 The Auto Liability triangle for the total reported losses starts with AY 1973 while the attachment point data starts with 

AY 1986. However, the RAA points out that the data before 1986 can be distorted due to the existence of long tailed 

PIP claims. Therefore, I have shown the total data starting from 1986. 
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In looking at the patterns, it seems that in the aggregate the reporting patterns for the various 

RAA studies are similar. It is only when the data is broken out by attachment point range, is there a 

difference. This does lend support to the hypothesis that the breakout of data by attachment point 

has changed from study to study.  However, we previously showed that the differences in the studies 

are isolated to the soft market years. Therefore, it is quite possible that when looking at the total 

triangle, the volume of data for the non-soft market years compensate for the differences in the soft 

market years.  

 

 

2.3.2 Number of Companies Reporting Data 

 
It is also possible that there was a change in the volume of data being reported. As the tables 

below show, the number of companies reporting data changed from study to study. It is quite 

possible that the change in volume due to the number of companies reporting data had an impact 

on the reporting patterns. Furthermore, there was also a change in the number of companies 

reporting data for a particular attachment point. This also could have had an impact on the reporting 

patterns. 
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Number Of Companies Reporting Data 

         Total 
 

Range 1 

AY 2007 2009 2012 
 

  2007 2009 2012 

1995 17 9 10 
 

1995 6 5 5 

1996 16 9 10 
 

1996 6 5 5 

1997 16 9 10 
 

1997 6 4 5 

1998 15 9 10 
 

1998 7 5 5 

1999 15 9 10 
 

1999 7 5 5 

2000 16 9 12 
 

2000 7 5 6 

2001 16 11 13 
 

2001 7 5 7 

2002 15 12 14 
 

2002 6 4 7 

2003 15 14 16 
 

2003 7 5 7 

2004 15 14 16 
 

2004 7 5 8 

2005 15 14 16 
 

2005 7 6 8 

2006 15 15 16 
 

2006 7 7 8 

         

         Range 2 
 

Range 3 

  2007 2009 2012 
 

  2007 2009 2012 

1995 7 5 5 
 

1995 5 7 5 

1996 7 5 5 
 

1996 5 7 5 

1997 7 5 5 
 

1997 5 7 4 

1998 7 4 4 
 

1998 5 7 5 

1999 7 5 5 
 

1999 5 7 5 

2000 8 5 7 
 

2000 5 7 6 

2001 9 6 7 
 

2001 6 8 6 

2002 7 6 7 
 

2002 6 7 5 

2003 8 7 8 
 

2003 7 8 5 

2004 9 8 9 
 

2004 7 8 4 

2005 9 7 8 
 

2005 8 8 5 

2006 9 7 7 
 

2006 7 8 7 
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3 SOME PRACTICAL APPLICATIONS 
 

It would be instructive to take a look at some of the explanations offered in this paper, and 

understand how it might affect the reserving process.  

We have shown that some of the RAA data might have been manually adjusted to limit the 

impact of any one company and that this manual adjustment has an effect on the volume weighted 

averages. Therefore, it would be prudent for the actuary to keep this in mind and to realize that 

one’s LDF selections might be distorted due to the adjustments made to the data volume. It would 

not be unreasonable to suggest that simple averages rather than volume weighted averages should be 

used in projecting RAA benchmarks. 

Although the RAA triangles can be used as benchmarks in the reserving process, care must be 

taken when using them to make sure that the appropriate set of triangles are used. Obviously, if one 

uses a triangle by attachment point then one must make sure that it matches the attachment point of 

the experience. However, one must also be careful to determine if the RAA data is a good proxy for 

the company’s experience. There a couple of procedures that can be used to adjust the RAA data to 

fit the company experience. Let us see if any of the issues mentioned above would have an impact 

on these procedures.  

 

 

3.1 Adjusting the Triangle Using Relativities 

 

   One procedure that can be used is for a situation where the experience triangle has a different 

attachment point mix for different accident years.  However, rather than using development factors 

derived from the RAA data, one might still want to project the losses based on the actual experience. 

There will be a concern that the historical development for a particular development period is not 

on a consistent basis because of the fact that the attachment point levels are not consistent across all 

the accident years. In the example we will use, the losses for AY 1984-1991 consists of contracts 

attaching at RAA Range 4, while AY 1992-2001 attach at RAA Range 3.  

One can use the RAA data to bring the triangle onto the same attachment point basis through a 

procedure which is conceptually similar to the Berquist-Sherman Method (Berquist & Sherman). 

The Berquist-Sherman Method adjusts the historical paid loss data based on the current settlement 

rate, resulting in an adjusted paid development pattern. Similarly, in this procedure we can restate 

part of the triangle using a set of relativities calculated from the RAA data.  
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The first step is to select age-to-age development factors for both the Range 3 and Range 4 

triangles. We then select which range will be restated. In our example, we will restate Range 4, AY 

1984-1991 to be on a Range 3 basis so that the entire triangle is equivalent to a Range 3 attachment 

point triangle. We will take the selected factors from the RAA Range 3 triangle at each period and 

divide by the RAA Range 4 selected factors for that period. We now have relativities for each of the 

12-24, 24-36 etc. periods. These relativities are then applied to each of the age-to-age factors from 

the portion of the triangle that contains Range 4 data. We now have an entire triangle that attaches 

at Range 3. When we look at the development in this adjusted triangle, we can assume that any 

differences one sees in one particular development period between two or more accident years are 

not due to the change in attachment point. 

 

 
(1) (2) (1)/(2) 

 

Range 3 
Age-to- 

Age 

Range 4 
Age-to- 

Age Relativity  

12 2.25126 2.42411 92.9% 

24 1.27361 1.26709 100.5% 

36 1.24862 1.14338 109.2% 

48 1.14113 1.23178 92.6% 

60 1.13399 1.12219 101.1% 

72 1.09131 1.04160 104.8% 

84 1.07609 1.16705 92.2% 

96 1.04185 1.13838 91.5% 

 
Original Triangle: Range 4 

    

      
AY (1) 12-24 

(2) 24-
36 

(3) 36-
48 

(4) 48-
60 

(5) 60-
72 

1984 2.813  2.513  2.555  2.112  1.731  

1985 1.101  42.313  2.136  1.053  1.520  

1986 1.417  1.512  13.592  2.128  1.013  

1987 1.006  1.088  1.736  2.355  1.006  

1988 1.101  3.390  5.178  1.696  1.119  

1989 1.101  5.273  1.366  1.808  1.487  

1990 1.149  1.124  1.115  1.506  0.864  

1991 2.331  1.154  0.874  1.022  1.013  

      

 
12 24 36 48 60 

Relativity Factor 92.9% 100.5% 109.2% 92.6% 101.1% 
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Adjusted Triangle: Range 4 * Relativity Factor 

 

AY (1) 12-24 (2) 24-36 (3) 36-48 (4) 48-60 (5) 60-72 

1997 2.612  2.526  2.791  1.957  1.749  

1998 1.022  42.531  2.333  0.976  1.536  

1999 1.316  1.519  14.843  1.971  1.024  

2000 0.935  1.094  1.895  2.182  1.017  

2001 1.022  3.408  5.655  1.571  1.131  

2002 1.022  5.300  1.492  1.675  1.503  

2003 1.067  1.130  1.217  1.395  0.873  

2004 2.165  1.160  0.955  0.947  1.024  

 
 

In this example, the accident years we are adjusting were not from the soft market years. 

However, the RAA benchmarks we are using includes the slower development attributed to the soft 

market years. Is the underwriting year cycle effect distorting the calculated relativities? We can check 

this by calculating relativities from an RAA triangle that excludes the soft market years. Here are the 

results.  

 

 

 
Relativity Excluding Soft Market 

 
(1) (2) (1)/(2) 

 

Range 3 Age-
to- Age 

Range 4 
Age-to- 

Age Relativity 

12 1.85240 2.43082 76.2% 

24 1.18198 1.25624 94.1% 

36 1.17540 1.13989 103.1% 

48 1.11454 1.22035 91.3% 

60 1.10902 1.13657 97.6% 

72 1.11861 0.98295 113.8% 

84 1.07652 1.21306 88.7% 

96 1.04258 1.17257 88.9% 
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Original Triangle: Range 4 
    

      
AY (1) 12-24 

(2) 24-
36 

(3) 36-
48 

(4) 48-
60 

(5) 60-
72 

1984 2.813  2.513  2.555  2.112  1.731  

1985 1.101  42.313  2.136  1.053  1.520  

1986 1.417  1.512  13.592  2.128  1.013  

1987 1.006  1.088  1.736  2.355  1.006  

1988 1.101  3.390  5.178  1.696  1.119  

1989 1.101  5.273  1.366  1.808  1.487  

1990 1.149  1.124  1.115  1.506  0.864  

1991 2.331  1.154  0.874  1.022  1.013  

      

 
12 24 36 48 60 

Relativity Factor 76.2% 94.1% 103.1% 91.3% 97.6% 
 
 
 
      

Adjusted Triangle: Range 4 * Relativity Factor 
  

      
AY (1) 12-24 (2) 24-36 (3) 36-48 

(4) 48-
60 

(5) 60-
72 

1984 2.143  2.365  2.635  1.929  1.689  

1985 0.839  39.812  2.203  0.962  1.483  

1986 1.080  1.422  14.015  1.943  0.989  

1987 0.767  1.024  1.790  2.151  0.982  

1988 0.839  3.190  5.339  1.549  1.092  

1989 0.839  4.961  1.409  1.651  1.451  

1990 0.876  1.058  1.149  1.375  0.843  

1991 1.776  1.086  0.901  0.934  0.988  

 

 

If we compare the all year average from each adjusted triangle, we can conclude that the 

underwriting cycle effect can have an impact on the relativities. Therefore, if one decides to calculate 

relativities from the RAA study, one must keep in mind the possibility that the effects of 

underwriting cycle will influence the results. 
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1997-2014 All Year Avg. Including Soft Market 

 

(1) 12-24 (2) 24-36 (3) 36-48 (4) 48-60 (5) 60-72 

4.358  4.355  2.154  1.365  1.109  

  

1997-2014 All Year Avg. Excluding Soft Market 

 

(1) 12-24 (2) 24-36 (3) 36-48 (4) 48-60 (5) 60-72 

4.246  3.814  1.890  1.239  1.019  

 

3.2 Calculating the Tail 

 
Another area in which the RAA benchmarks can be useful is in calculating the tail factor. In the 

long tailed casualty lines, very often there is not enough data to calculate a credible tail factor. One 

approach is to use the tail found in the RAA triangles. However, there are times when one is not 

confident that the RAA data is a perfect fit for the experience. In such a case one can use a 

procedure described in a paper written by the CAS Working Party on Tail Factors (The CAS Tail 

Factor Working Party). In this procedure, one can compare the age-to-age factors from the 

experience data to the benchmark age-to-age factors prior to the development of the tail. The 

relativities from these factors can then be used to estimate an adjustment multiplier for the 

benchmark tail factor. Here is an example using data from the RAA Workers’ Compensation Range 

2.  
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 (1) (2)= (1)-1 (3) (4)= (3)-1 (5)=(2)/(4) 

Maturity 
Experience 
Age to Age 

Development 
Portion 

Benchmark 
Age to Age Development Portion Relativity 

12 3.906  2.906  3.960  2.960  98.2% 

24 1.837  0.837  1.988  0.988  84.7% 

36 1.325  0.325  1.408  0.408  79.6% 

48 1.238  0.238  1.256  0.256  93.0% 

60 1.191  0.191  1.188  0.188  101.5% 

72 1.130  0.130  1.128  0.128  102.0% 

84 1.081  0.081  1.064  0.064  126.1% 

96 1.073  0.073  1.077  0.077  94.1% 

108 1.053  0.053  1.067  0.067  80.3% 

120 1.044  0.044  1.041  0.041  108.8% 

132 1.029  0.029  1.033  0.033  88.1% 

144 1.017  0.017  1.021  0.021  80.0% 

156 1.021  0.021  1.034  0.034  63.0% 

      

    
Average (last 6 periods) 85.7% 

    
Tail 1.287  

    
Adjusted Tail 1.246  

 

How would the results be different if we assumed that the development in our experience 

triangle is not affected by the soft market because these years were commuted? If we adjusted the 

RAA data to remove the soft market patterns, would our results change? 
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Maturity 
Experience 
Age to Age 

Development 
Portion 

Benchmark 
Age to Age 

Development 
Portion Relativity 

12 3.906  2.906  3.869  2.869  101.3% 

24 1.837  0.837  1.731  0.731  114.6% 

36 1.325  0.325  1.257  0.257  126.3% 

48 1.238  0.238  1.222  0.222  107.3% 

60 1.191  0.191  1.193  0.193  98.6% 

72 1.130  0.130  1.132  0.132  98.3% 

84 1.081  0.081  1.097  0.097  83.9% 

96 1.073  0.073  1.068  0.068  105.9% 

108 1.053  0.053  1.042  0.042  128.5% 

120 1.044  0.044  1.048  0.048  93.0% 

132 1.029  0.029  1.025  0.025  114.2% 

144 1.017  0.017  1.013  0.013  130.1% 

156 1.021  0.021  1.010  0.010  221.5% 

      

    
Average 132.2% 

    
Tail 1.203  

    
Adjusted Tail 1.268  

      

    

% Difference from 
prior exhibit 1.8% 

 

In this scenario, it does not seem that the underwriting cycle effect impacts this procedure. 

Intuitively, this makes sense as we are comparing the RAA benchmark to the experience and 

applying the adjustment factor to the RAA tail. When we compare the two scenarios, we see that the 

adjustment factor for scenario 1 is 35% lower than scenario 2. However, the development portion 

of the tail factor for scenario 1 is 41% higher. In effect the lower adjustment factor is cancelled out 

by the higher tail. 

 

 

4 CONCLUSIONS 

 
We have presented evidence to show that the different RAA studies in fact do produce different 

results. In trying to understand the differences we have suggested several explanations. Among the 
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explanations presented were the effects of the underwriting cycle and the manual adjustment to the 

volume of data. We have also shown how both of these suggestions can have an impact on how the 

RAA data is used in creating benchmarks to be used in a reserving analysis.  
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 An Integrated Approach to the Design of a Reinsurer's 
Data Architecture 

Isaac Mashitz, FCAS, MAAA, Ph.D.  
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Abstract 

A reinsurer's internal database can be a valuable source of data that has the potential of providing a competitive 
advantage. This data can be used to refine pricing, business steering, contract design, new product development, 
planning, reserving, capital utilization and much more. To maximize the value of this internal database, it is 
important that the data be aligned, complete, and as granular as possible. This paper presents some of the 
significant uses of internal data, describes some of the most common challenges and discusses elements of an 
ideal database. The paper ends with a detailed discussion on line of business structure and describes an ideal way 
of allocating data elements to a more granular unit with particular application to IBNR allocation to contract. 

Keywords: Reinsurance Data, Reinsurance Information Management, IBNR allocation, Reinsurance line of 
business 

____________________________________________________________________________________________ 

1. INTRODUCTION

Insurers and reinsurers have long been aware of the value of data. Access to ISO and NCCI data has 

enabled US insurers to build sophisticated data driven models. Even more valuable than public data 

is proprietary data that is not available to competitors. Access to proprietary data can give an insurer 

a significant competitive advantage in its development of pricing parameters. The internal data can 

also provide an insurer with a deeper understanding of the accuracy of their pricing as well as a more 

detailed understanding of their own book of business. For example, a reinsurer can gain insight into 

the following questions: 

What were the profitability relativities of the various sub-segments of the book of business? 

Were large accounts or small accounts more profitable? Supported umbrella or unsupported? 

What were the relativities between new business and renewal business? The answers to these 

and many other similar questions can help a reinsurer steer its business to greater profits. 

How accurate were the reinsurer's estimate of the pricing components such as frequency, 

severity, rate level, development patterns, and so on? Even if the loss ratio estimates were 

accurate, a better understanding of the components can help a reinsurer fine tune its pricing 

and develop a more profitable book. It can also improve the reinsurer's ability to help their 

clients.   

These and many more examples are discussed in detail in Section 2. 

The proprietary data is generated during the many processes that make up the life cycle of an 

insurance or reinsurance contract. One normal path for the data flow of a reinsurer is that it begins 

with pricing where the goal is to analyze the risk and develop pricing estimates. It then continues 

with the underwriting and contract process where the goal is to negotiate, determine, and bind the 

terms of coverage. This part of the process is sometimes referred to as the administration process. 
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Once the contract incepts, the data flow continues with the accounting and claims functions where 

cedant data is entered. The data entered during this process is sometimes referred to as the booking 

data. Generally the data life cycle ends with finance where additional estimates are entered and the 

company's financials are produced.  

While the main focus at each step is to satisfy the narrow requirements of the function entering the 

data, the value of the proprietary database is maximized when contract data can be tracked through 

the whole data life cycle. The technical IT capabilities exist, but the challenge is to develop a robust 

data architecture and implement the database protocols to support it. The impetus to accomplish this 

will come from those with the vision that this data can catapult internal profitability analyses to a 

new dimension. There is no professional in an insurance company better suited than the actuary to 

combine the business vision with the technical capabilities required to execute, especially in North 

America. 

This paper explores 

1) Specific ways in which a reinsurer can use their internal data to improve their competitive 

position 

2) Some common issues that inhibit the use of a reinsurer's internal database 

3) Some basic concepts underlying the ideal design of a reinsurer's database that will allow 

the reinsurer to maximize its ability of using it as a competitive tool.  

The paper concludes with an in-depth discussion of the line of business attribute as well as an 

allocation approach applied to IBNR.   

2. DATA USAGE 

2.1 Internal Data Used to Improve Pricing and Business Steering 

2.1.1 Actual versus Expected (AvE) Analysis. This is critical in the effort to validate or fine-tune 

pricing assumptions. The most elementary application is a comparison of actual loss ratio and pricing 

expected loss ratio. AvE can be expanded to validate assumptions on: frequency, severity, paid and 

incurred patterns, cause of loss, probability of multi claimant occurrences, primary ELR, primary rate 

levels, loss trends, et cetera. A sophisticated AvE analysis will separate the catastrophe from the non-

catastrophe exposures and allow analysis of the contract at coverage level. 

2.1.2 Development of Pricing Parameters. Assumptions on pricing parameters such as expected 

loss ratios, loss development patterns, frequency and severity assumptions, trend factors, size of loss 

distributions are essential to any sophisticated pricing analysis. Generally, most of these assumptions 

are developed from industry data. This data is broadly available and, therefore, may not provide any 

competitive advantage. Any ability to supplement the industry data with internal data creates the 

opportunity to gain a competitive advantage. Internal data can be even more valuable in cases where 

little or no industry data exists. For specially designed reinsurance covers such as clash covers, do we 
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know their historic experience? Can we distinguish between the loss experience of separate 

components of clash covers such as runaway allocated loss adjustment expense (ALAE), multi-line 

accumulation, multi-insured accumulation, extra contractual obligations (ECO) and excess of policy 

limits (XPL)?   

2.1.3 Business Steering. What are the profitability relativities of large clients versus small clients, 

new reinsurance contracts versus renewals, mature primary books of business versus new ventures, 

broad multi-line reinsurance contracts versus very specifically defined covers? Similarly what are the 

profitability relativities of single state versus multi-state WC reinsurance covers, reinsurance covers 

on admitted carriers versus excess and surplus lines carriers, claims made versus occurrence medical 

reinsurance covers, and small law firms versus large law firms liability policies?  How do supported 

versus unsupported umbrella reinsurance covers compare? How about primary versus excess 

umbrella? What are the separate loss rates for the auto versus general liability exposure of umbrella 

covers? Can we separate the catastrophe versus non-catastrophe components when calculating 

profitability? These are just examples of the many questions that one can ask when deciding on a 

strategy of choosing what business to reinsure. 

2.1.4 Contract Features. Many contract features have an economic impact on the contract 

profitability that is at best estimated and frequently totally ignored. One such example is the cost of 

covering ECO and XPL.  Another example is a treaty clause that gives a cedant choosing to non-

renew a treaty, the option to cancel on a run-off basis or a cut-off basis. There is little or no industry 

data that can be used to quantify the impact of many standard (and non-standard) contract terms. 

Properly coded internal data can provide the required data.  

2.1.5 Renewal Analysis. At the annual renewal of a treaty, we perform the standard experience and 

exposure rating to arrive at a quote. If this treaty has been written for several years, we can examine 

how well these pricing methods have predicted ultimate treaty results in prior years. Consistent biases 

may indicate something is not adequately considered in the pricing. An analysis of the complete 

profitability of the relationship with the client is also important. This is especially true when making a 

difficult decision on a particular renewal.  

2.1.6 New Product Development and Client Services. Detailed data on the cause and 

consequence of loss, industry segment, subline, et cetera can help a reinsurer develop and price 

profitable new products. Alternatively, these insights can be shared with clients to help them become 

more profitable. The ability of a reinsurer to use their own data to help clients better understand the 

profit drivers of their business can significantly strengthen the value added by the reinsurance 

relationship.   

2.2 Internal Data Used to Improve Internal Processes 

2.2.1 Pricing Reserving Linkage. The expected loss ratio, premium earnings pattern and expected 

incurred and paid loss lag patterns of the contract are important feeds from Pricing to Reserving. In 
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addition, Pricing's most recent view of past years' results can be important input into the IBNR 

calculation.  

2.2.2 Recalculation of the Reinsurance Layer Expected Loss Ratio (ELR) At the time of 

pricing, the reinsurer makes assumptions on the primary ELR, primary rate changes, underlying 

claim frequency, loss trend, et cetera. Many of these assumptions are known with much greater 

certainty a year or two after contract inception. Yet for non-proportional covers, losses are still 

mostly unreported. A properly designed pricing database would allow easy, automatic recalculation 

of an updated ELR for the reinsurance layer using the more recently known values of these pricing 

parameters.  

2.2.3 Accumulation control.  A key part of risk management is tracking a company's loss exposure 

to a single event. The most obvious example is tracking loss exposure to a natural catastrophe (nat 

cat) such as a hurricane or an earthquake.  Accumulation of loss by nat cat scenario (San Francisco 

earthquake or Gulf Coast hurricane) from pricing models is a standard feature of most catastrophe 

modeling tools. Casualty lines of business are also exposed to accumulation of loss from a single 

event. Examples include asbestos, various pharmaceutical events, and environmental catastrophes. In 

the absence of detailed data by contract, liability accumulations by insured, product, industry 

segment, et cetera are a challenge, especially for a large multinational reinsurer. 

2.2.4 Asset Liability Matching & Capital management. A key requirement of both enterprise 

risk management and sophisticated investment management is an understanding of the probability 

distribution of future cash flows. Most specifically both the mean and variance of the duration of 

liabilities need to be estimated. Automated data feeds from the pricing database to the reserving 

database and from there to the enterprise risk model support this process.    

2.2.5 Planning. Each year, reinsurers develop a plan detailing the expected premium, loss ratio and 

profit by line of business expected in the following year. A sophisticated planning process generally 

starts with individual planning of all large contracts. An automated feed of premium, expected loss 

ratio, expected cash flows and expected profitability for in-force contracts by line of business enables 

efficient planning down to contract level. 

2.2.6 Legal Entity Data. Legal entity data is required, at a minimum for regulatory purposes. This 

data may also be required for tax purposes and for rating agencies. For a large global group with 

many legal entities (in some cases hundreds of legal entities) it is not a trivial task to ensure accurate 

legal entity data. A properly constructed and maintained database can simplify this process.  

3. DATA ISSUES 

Some of the main difficulties encountered in the goal of building an ideal internal database are 

discussed below. 
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3.1 Data Completeness 

It is important to ensure that the many valuable data elements that are calculated during the pricing 

process or during the claims management process are stored in a database. These include 

3.1.1 Expected Loss Ratio. The individual contract pricing expected loss ratio needs to be captured 

and transferred to reserving to serve as an a priori loss ratio. 

3.1.2 Pricing Loss Lag Patterns.  Portfolio patterns are generally available from reserving. 

However, these are historic patterns reflecting historic business mix, attachment points, et cetera. 

Pricing patterns reflect changes in business mix, attachment points, et cetera At a minimum these can 

be aggregated to serve as a check on the reserving patterns. Ideally, the individual account patterns 

can be used to more accurately allocate IBNR to individual accounts and to measure profitability by 

account. 

3.1.3 Subject Premium. The reinsurer will always record the reinsurance premium. For conducting 

rate level and trend analyses, the reinsurance premium alone may be insufficient. The reinsurer 

should strive to record the underlying exposure. For example, for personal motor it would be vehicle 

count. For commercial motor it might be miles driven or number of power units. For hospital 

liability it might be number of beds. This would enable the reinsurer to track excess loss costs and 

excess frequency relative to an absolute exposure base that is not affected by the insurance cycle.  If 

that is not available, then the subject premium (or equivalently the reinsurance rate) should be 

recorded. This, at least removes the effect of the reinsurance cycle on the exposure base. 

3.1.4 Detailed Pricing Data for Advanced Applications. This includes frequency and severity 

expectations as well as exposure and experience rating details. For example, tracking the expected 

loss estimates developed from the exposure rating and experience rating of each account and 

comparing each of these estimates to the actual developed ultimate loss can provide feedback on 

how well each of these pricing approaches is performing. Capturing the expected primary loss ratio 

enables a straightforward update to the pricing a priori loss ratio as primary loss ratios become 

known. 

3.1.5 Ground up Loss. When a reinsurance agreement covers an excess contract, the ground up loss 

needs to be recorded. For example, a reinsurance agreement covers 80% of a $4 million xs $1 million 

layer on a primary policy. This primary policy is excess of a $10 million lower layer covered by a 

different primary insurer. There is a ground up $15 million loss. The first $10 million is covered by 

the first primary policy. The second primary policy records a $5 million gross loss. It keeps the first 

$1 million and cedes 80% of the next $4 million to the reinsurer. The ground up loss reported by the 

second primary insurer to the reinsurer may be defined as $5 million. However, to develop accurate 

size of loss distributions we would need the full $15 million loss. 

3.1.6 Other Claim Data. Without belaboring the point, cause of loss, consequence of loss, 

ECO/XPL claims, et cetera need to be recorded in order to enable sophisticated analyses. Events 
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with multiple claimants need to be identified and the claim data split by claimant. Claims that exceed 

the reinsurer's layer need to be identified and where possible, the full market loss should be recorded.  

3.2 Data Alignment  

3.2.1 Contract ID. It is essential to have the ability to track the contract (or contract segment) from 

pricing database to underwriting and contract database to accounting and claims database to Finance 

database. If different contract IDs are used in pricing and in the underwriting systems it can make it 

difficult, if not impossible, to compare actual experience versus expected. 

3.2.2 Line of Business. Many reinsurance contracts provide coverage for more than one line of 

business. For example, a casualty excess treaty may provide coverage for general liability, umbrella, 

motor and workers compensation. We need to ensure that for each contract the premium and loss 

allocations to line of business are consistent in each of the applications. The following are some 

examples where an issue may arise. A homeowners quota share may be booked by accounting as 

100% property or while in pricing it was split between property and liability. The property portion 

itself may be booked by accounting as 100% fire while in pricing it was split between fire and 

hurricane. Database protocols need to be established to ensure that all contracts are recorded 

consistently.  

3.2.3 Data Corrections 

When data is passed from one application to another, a misalignment may occur when data is 

corrected in the original application. Frequently the interface between the two applications occurs 

only once and the corrected data is not sent to the receiving application. Database protocols need to 

be established to handle such cases.  

3.2.4 Other examples of data alignment challenges 

Cedant must be entered identically in all applications. While this may appear trivial, it is not. Even 

small differences in the spelling of a cedant may make it difficult to combine data by cedant. As we 

discuss later, selecting the cedant from a drop down menu is an ideal way of solving this issue.  

A quota share reinsurance cover on a primary excess contract can be called proportional, following 

the reinsurance structure, or excess based on its absolute structure. Clear database protocols need to 

be in place to ensure that a quota share reinsurance cover on a primary excess contract is adequately 

and consistently encoded in all systems. 

A no-claims bonus can be considered commission (an expense) or negative premium. Again a clear 

set of guidelines is necessary. 

A reinsurance contract may be written to provide coverage on a losses occurring basis. In this case, 

there is a premium portfolio transfer to the reinsurer representing the reinsurer's portion of the 

primary insurer's unearned premium reserve at the inception of the reinsurance contract. In addition 

there will be quarterly installments paid to the reinsurer representing the reinsurer's portion of the 
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primary insurer's premium incepting during the term of the reinsurance contract. If the reinsurance 

contract includes a commission paid by the reinsurer to the primary insurer, practices can differ 

whether to book the portfolio premium net of commission or gross of commission. Clear database 

protocols need to be in place to guarantee clarity and consistency.  

As part of pricing, a contract specific loss payment pattern may be derived from the cedant's 

submission. In such cases, it is then necessary that this contract specific pattern be used for the 

contract profitability calculation in the profitability evaluation systems.   

3.3 Data Granularity 

3.3.1 Granularity. It is important that data be entered in the most granular form possible. For 

example, premium and loss on a treaty covering medical malpractice should be entered as medical 

malpractice and not to the more general professional liability. This level of granularity is necessary to 

enable a reinsurer to monitor the profitability of its medical malpractice business.  

3.3.2 Multiline Contracts. It is important that data be separately entered for each line of a multiline 

contract. For example, property treaty data should be entered separately for fire and for nat cat and 

not entered as 100% fire.  An auto quota share treaty that covers both auto liability as well as auto 

physical damage should be split to show premium and loss separately for liability and physical 

damage and not entered as 100% auto liability.   

These line of business issues will be discussed in greater detail in Section 6.  

3.4 Allocations 

Probably the most important allocation to individual contract is IBNR. Since in most cases, IBNR is 

calculated at the portfolio level, it is necessary to allocate IBNR to contract in order to evaluate 

contract profitability. A simplistic allocation methodology may cause serious data quality issues with 

account profitability data. 

Internal expenses, capital charges and taxes all need to be allocated if full profitability data at the 

contract level is desired. Again, care is necessary in developing the allocation methodology. 

In section 7, this paper presents an allocation methodology that will generally produce reasonable 

results.  

3.5 Data Inconsistency 

Two examples of situations where different systems may calculate the same thing in different ways 

are the currency conversion routine and the discounting methodology. It is important that a uniform 

methodology should be used in all applications.  
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4. BASIC PRINCIPLES 

4.1 Consistent and Aligned Contract Identification and Structure 

4.1.1 A Single Internal and Universally Used Contract ID. An internal contract ID should be 

created for each contract and used throughout the life cycle of the contract, from submission 

through pricing, underwriting, accounting, claims, and finance.  This ID should be contained on each 

record of every contract. It may be necessary to have multiple contract IDs, especially when using 

external vendor applications. For example, a reinsurer may use externally provided software for its 

premium and loss accounting or for its contact administration. These may have protocols regarding 

contract ID that are not consistent with the internal ID. This is acceptable. These external contract 

IDs, however,  need to be linked to the internal contract ID and at least in the internal databases, the 

internal contract ID should appear on every record as well. 

4.1.2 A Single Contract Structure. A single consistent contract structure should be used 

throughout the life cycle of the contract. This includes a consistent line of business structure, type of 

business (proportional versus non-proportional) structure, et cetera. 

4.2 Full Income Statement at Granular Level.  

Assume for example that the lowest granular level of data is line of business/underwriting 

year/contract. Call this the contract unit. All elements of the income statement should be calculated 

or allocated down to the contract unit. This includes all premium, commission and loss (including 

IBNR). It also includes internal expenses, capital charges and taxes. This would be done on both a 

nominal and discounted basis.  

If all income statement components are pushed down to contract unit level, it will be possible to 

develop full profitability analyses on any dimension. In particular the data will be available to answer 

the questions raised in section 2.1.3.   

4.3 Data Consistency 

4.3.1 Consistent (unique) Definition and Rules for Each Variable. Each variable should be 

clearly defined with a unique meaning and set of rules. Examples of data elements that require special 

attention were discussed in Section 3.  

4.3.2 Consistent Protocols for Each Calculation.  

The protocols for currency conversion and investment income calculation can be very complex. 

Should a single point conversion be used or should a dynamic conversion routine be used? When 

using a dynamic conversion routine what dates should be used for estimates? In either case, should 

the rates be daily, monthly, or quarterly? Should they be end of period or mid-point? 
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4.4 Industry Standards 

An industry data standard would help to align the consistency of submission, contract and financial 

data and to enhance the data quality end to end. Many of the issues discussed throughout this paper, 

could be more easily resolved if there was an accepted industry data standard.  An industry data 

standard is currently not available.  

5. IMPLEMENTATION 

5.1 Corporate Culture Supporting Quality Internal Data 

A high quality integrated internal database requires a corporate commitment to invest the necessary 

funding and resources. This is especially true for a large multi-national reinsurer. Local practices that 

differ by region may need to be consolidated. Practices that favor a narrow departmental view may 

need to be replaced by practices that support the broader corporate benefit. Specific resources 

dedicated to data quality management and review may need to be created.  

5.1.1 Communicating and Marketing the Value of Data. Employees across the company need to 

understand that the data they enter is crucial to the continuing success of the corporation. Senior 

executives should stress that the internal data is a key component of competitive advantage. 

Executives should periodically publish actual examples of how data was used to generate profitable 

business.  Occasional awards to employees responsible for significant improvements in data value 

should be given. These types of recognition will motivate employees towards high standards of data 

quality. Management support of data quality initiatives is critical to validate the necessary costs. 

5.1.2 Responsibility for Data Quality. If data is really viewed as a source of value then 

responsibility for data entry needs to be assigned with the goal of assuring a high level of data quality. 

If responsibility for data entry stops at a junior level, it is not likely that the highest standards of data 

quality will be achieved. When a reinsurance agreement is consummated and the contract is entered 

into the reinsurer's database, a senior member of the deal team should sign off on the coding.   

5.2 Centralized Data Functions 

An integrated database requires some degree of central oversight. One way of accomplishing this is a 

small specialized central data unit under the guidance of a data management board that represents 

the various corporate functions and business units. This board will make the tough decisions on 

tradeoff between cost and granularity.  

5.2.1 Single Uniform Definition of all Data Elements. A data dictionary needs to be established 

that is used throughout the company. It needs to be mandatory that all systems utilize the data 

dictionary. This includes the definition of each data field and all allowable values. For example, the 

field "Type of Business" will mean the same thing and have the same allowable values in each 

system. If there is a need for multiple versions of a data element, separate names must be used and 
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each version must be clearly defined. For example, the original pricing expected loss ratio for a 

contract may be modified to reflect information received after contract inception. This modified 

expected loss ratio is used by reserving as the contract a-priori loss ratio. These two expected loss 

ratios need to separate names and definitions. Education and training, including online easily 

available reference material, needs to be available. 

5.2.2 Single Set of Booking Rules. Similarly, a single set of rules needs to be promulgated to define 

how contract data is to be recorded. Specifically, rules need to clearly define how to deal with multi-

year contracts, nat cat exposure on homeowners contracts, proportional shares of excess contracts, 

and no claims bonuses, et cetera. 

5.2.3 Data Quality Reviews. Peter Drucker famously said, "What gets measured gets improved." A 

common finding in the data quality area is that any field  that is not used or reviewed can be expected 

to have very low data quality. A detailed discussion of data reviews is beyond the scope of this paper. 

The following describe major components of a data quality review. 

Data Validity – Data fields are tested to ensure that they contain only valid data. For example, 

a numeric field whose values should be between 0 and 1 can be checked to verify that all 

entered data is between 0 and 1. A field containing a code can be checked to verify that the 

entered code is valid. Ideally, data should be automatically verified at time of entry. A data 

quality review would check fields that are not automatically verified.  

Data Reasonability – Data fields are tested to ensure they contain reasonable values. For 

example, an expected paid loss lag pattern for a reinsurance contract is designed to display 

the cumulative percentage of ultimate loss that is expected to be paid at each yearend 

following the contract inception. Values that do not appear reasonable can be identified 

either by comparing them against a predetermined reasonable range or by testing for outliers. 

Values that fail the reasonability check are not necessarily invalid. There may be a reason why 

the data for a particular contract behaves differently than expected. These values are 

candidates for further investigation.  

Data Alignment – Data accessed from different sources that are expected to be similar can be 

compared.  For example, the expected premium by line of business within contract can be 

compared to the actual accounted premium by line of business within contract. Large 

differences are candidates for further investigation. This example will be covered in great 

detail in section 6.  

Data Accuracy – Data is manually compared to source documents. This is standard data 

auditing.  

5.3 Technical Standards 

5.3.1 Header records. At the first entry of a contract into company systems (usually this will occur 

when the submission is received), a header record should be created. This record will contain basic 
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information about the contract, most importantly an internal contract ID. This header record will be 

contained within all systems containing contract data. It will be part of any record where data is 

transmitted from one system to another.  

5.3.2 Single internal contract ID.  This single internal contract ID from the header record is 

critical to ensure that all contract information can be tracked and combined. Especially when some 

of the systems are external, a unique contract ID cannot be ensured. Some systems may require a 

purely numeric contact ID while others will have alphanumeric components. The header internal 

contract ID will always be the same and this allows each system to define, if necessary, a second 

contract ID according to its unique internal system requirements without compromising the ability to 

match contract data in different systems. 

5.3.3 Drop down menus.  Wherever possible, data entry should be from a drop down menu rather 

than entered directly. For example, a cedant company name could be directly entered. However, this 

will likely lead to multiple versions of the name. An ideal way to ensure that the cedant company 

name will always appear identically the same, is to force that data element to be selected from a drop 

down menu. 

5.3.4 Single Data Warehouse.  Ideally all contract information should be stored in a single data 

warehouse. This should include data from submission, pricing, underwriting and contract, 

accounting and claims, IBNR, and finance.  

5.3.5 Golden copy.  Original data is often fed into downstream systems and from there it may be 

fed further downstream. Each data transfer carries with it the risk of data modification. There may 

be criteria that restrict full data transfer. For example, non-traditional transactions or intra group 

retrocessions may be excluded.  In other cases, data may be modified by currency conversions, line 

of business mappings, et cetera. Within the data warehouse, each data element should have a "golden 

copy." This is the original and most accurate source for that data element. For example, the pricing 

expected loss ratio "golden copy" is the one that comes directly from pricing. 

A more ideal solution may that each data element is only stored in one place. All reporting is handled 

by dynamically linked tables and queries. This may be more easily accomplished in universe-based 

data environment.  

5.3.6 Mapping matrix.  In some instances, it may not be possible for the coding in two systems to 

be identical. This is not a desirable situation and it violates the ideals described in this paper. It may, 

however, not be economically viable to correct the situation. In such cases, it is important to create a 

mapping matrix that shows how to map from one structure to the other.  

5.3.7 Data Extraction and Report Generation. Data necessary for an analysis may need to be 

drawn from several data sources, each with a different reporting tool. This can be a daunting task for 

many potential users who are not expert on each data source and reporting tool. Databases and 

reporting tools should be designed to make data accessible to all users. Wherever possible, screens 
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should be standardized across reporting tools. An online facility should be available to help users 

find the data they need. 

6. DETAILED DISCUSSION OF LINE OF BUSINESS (LOB) ISSUES 

6.1 LoB Structure - Line of business is a complicated combination of different characteristics. 

The lines of business in the US NAIC Annual Statement include: peril (fire, earthquake), industry 

segment (farmowners, homeowners), coverage (occurrence versus claims made), object insured 

(airplane in aircraft coverage, ship in ocean marine coverage, automobile in auto physical damage 

coverage), et cetera. The lines of business used by many reinsurers are even more complex. For 

example, umbrella and clash are really coverage combinations of underlying lines. 

The LoB attribute may have special importance to a reinsurer since this may be the most granular 

level for the accounting of a reinsurance contract. For example, a single reinsurance treaty may cover 

many primary segments of business. In addition to the segments mentioned above, these may 

include personal and commercial segments, different classes of business such as lawyers liability and 

accountants liability, and so on. On a reinsurer's books, the premium and loss for the treaty may only 

be split into lines of business.  

Ideally, the LoB attribute would be split into at least these four attributes: industry segment, object 

insured, coverage and peril. Such a split allows for a much richer data structure. This may be difficult 

to implement because of cost considerations and because of culture shock. If this split Lob structure 

cannot be implemented, the following issues need to be considered.  

6.1.1 Nat Cat Exposure on Other Lines of Business.  Property nat cat is generally a subline of 

property. However, many other lines, including workers compensation, motor, marine, and aviation 

are also exposed to nat cat events. Let us take motor as an example. Unless we duplicate the nat cat 

structure into motor, we are faced with the choice of either coding the exposure to nat cat (in which 

case it will be considered property business and not motor) or to motor (in which case we will not be 

able to identify it as nat cat). Either way, how does a reinsurer track its nat cat experience on motor 

business?  

One possible solution is to utilize the pricing nat cat component of the pricing expected loss ratio. 

This can be applied to the earned premium to obtain an estimate of the portion of the earned 

premium covering the nat cat exposure. The nat cat losses can be identified by the cause of loss 

code. This approach provides a breakdown of the premium and loss into cat and noncat. This 

approach requires a high quality alignment between the pricing ELR data and the premium and loss 

database, good data quality for the cause of loss data, and the ability to insert this data into the 

standard corporate profitability reports.  

6.1.2 Personal versus Commercial. This is very similar to the above situation. Unless we duplicate 

lines of business we may not be able to distinguish between personal and commercial experience. 
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Examples are: nat cat on commercial property vs homeowners and auto assigned risk on commercial 

vs personal auto.  

6.1.3 Coverage.  Most frequent example is claims made vs occurrence. If a treaty covers both, how 

do we separately code the premium and loss? 

6.2 LoB Alignment.  For a multiline treaty, a line of business structure needs to be defined and 

the premium and loss need to be allocated to the lines of business. In some cases, the submission 

data used for pricing and the accounting data are provided on a consistent basis and the coding is 

straightforward. In other cases the data is not provided on a consistent basis and the coding can be 

challenging. For the reasons discussed in section 2, it is important that the structure and allocation be 

identical (or at the very minimum aligned) throughout the life cycle of the contract.  

The following outlines a process to achieve this goal. 

6.2.1 The LoB Structure Available for Coding is Identical in All Systems. This includes pricing, 

underwriting, accounting and finance. While this may sound obvious, this is not always the case. 

6.2.2 The LoB Structure is Set During the Pricing Analysis.  This structure will be based on the 

submission data and the expected accounting data. The pricing premium for each LoB of a multi-line 

treaty with a single indivisible premium rate will be calculated in a way that expected profitability is 

equal among the LoBs. 

6.2.3 The Pricing LoB Structure and Premium Allocation is Fed into the Underwriting 

Systems. The underwriter has the ability to adjust the pricing structure and allocation but they must 

be aligned. 

6.2.4 Aligning the Pricing and Reporting LoB Structure. The case of a non-proportional treaty 

with a single non-divisible rate against subject premium is discussed first. Losses are individually 

reported with full detail.   

6.2.4.1 Submission Information is More Granular than the Accounting Information. A 

reinsurance professional liability treaty covering lawyers liability and accountants liability, will be used 

to illustrate the issues.  Assume the submission provided detailed experience.  Separate loss models 

were developed for the lawyers liability business and the accountants liability business. These loss 

models were combined and a single rate was quoted to the cedant for their professional liability 

subject premium. In the pricing database, based on the individual loss models, the reinsurance 

premium was allocated to the two sublines in a manner that made them equally profitable.  The 

accounting data is reported with losses separately coded to lawyers liability and accountants liability 

but with a single premium for professional liability.  

One alternative to alignment is to separately code each of the pricing and accounting data to the 

maximum granularity available. In the above example, the pricing data is separately coded to 

accountants liability and lawyers liability while the accounting data is coded separately for the loss 

data but the premium data is combined. Theoretically, the pricing data can then be used to separate 
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the aggregate professional liability premium into the sublines. This will allow profitability analyses, 

AvE analyses, recalculation of APLR for reserving, et cetera by subline.  In practice, this approach 

has the following two disadvantages.  

This additional step will need to be performed at the contract level for each separate analysis 

of lawyers liability versus accountants liability, thus creating an inefficiency. 

Many standard reports will not include this extra step and will thus provide incomplete data. 

The preferred approach is that at the time the individual accounting records are entered, the 

premium is separately coded to the two sublines according to the percentages coming from the 

pricing analysis. Since the individually accounted losses will have detailed coding from the cedant, the 

losses will be accurately recorded by subline. This data will now flow into all the standard corporate 

reports and allow for automated reporting of detailed profitability data by professional liability 

subline.   

Please note that in this case even if the cedant reported a premium split between lawyers and 

accountants based on primary exposure that was different than the pricing percentages it is likely that 

the pricing percentages should be used. The reason is that the pricing allocations estimate exposure 

at the excess layer covered by the treaty. Primary premium distribution may not be the best indicator 

of how to distribute the excess premium.  

6.2.4.2 More Complex Example. The following chart illustrates a more complex example. Here, 

the treaty covers multiple line of business. In some cases, the pricing information is more granular 

and in some cases the cedant reports are more granular. The proposal below, is an effort to 

maximize data granularity.   

In this example we accept from pricing that the treaty is 50% liability and 50% motor and that the 

motor premium is split 70% liability and 30% hull. We accept from cedant reporting that the liability 

premium is split 40% lawyers and 60% accountants. 

 

Combining all this we get the following distribution: 
Reporting LoBs LoB % Calculation 
motor liability 35% .70 X .50 
motor hull 15% .30 X .50 
lawyers liability 20% .40 X .50 
accountants liability 30% .60 X .50 
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The mapping matrix referred to in section 5.2.7 for this example is shown below. 

  

Pricing LoBs 

  
Motor Liability Motor Hull Liability 

  
35% 15% 50% 

Reporting LoBs LoB % 
   motor liability 35% 100%     

motor hull 15%   100%   

lawyers liability 20%     40% 

accountants liability 30%     60% 

 

6.2.4.3 Proportional Example. The proportional treaty case is generally treated the same way with 

two important differences: 

If the cedant data differs in the allocation percentages from the original pricing expectation, then we 

will accept the cedant percentages.  The reason for this difference is that in the proportional case the 

different allocation percentages are assumed to be caused by a shift in the underlying exposure. 

Please note that in the non-proportional case, we can also take into account shifts in underlying 

exposure. But, in order to do so we need to store deeper pricing information. In addition to the 

expected pricing premium by line, we need to store expected underlying cedant exposure and excess 

intensities by line. This would represent a nice additional sophistication. 

A second difference, is that since losses are generally not reported individually, then it is necessary to 

allocate the losses to line of business as well. The pricing percentages for loss by line of business 

would be used the same way they are used for premium. Please note, that the pricing percentages for 

loss can be different than for premium. The reason for this is that the pricing may have different 

expected loss ratios by line. 
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In this example we accept from cedant reporting that the treaty is 40% liability and 60% motor and 

that the liability premium is split 40% lawyers and 60% accountants. We accept from pricing that the 

motor premium is split 70% motor liability and 30% motor hull. 

Combining all this we get the following distribution: 
Reporting LoBs LoB % Calculation 
motor liability 42% .70 X .60 
motor hull 18% .30 X .60 
lawyers liability 16% .40 X .40 
accountants liability 24% .60 X .40 

 The chart for the proportional case would be as follows. 

 

 

7. IBNR ALLOCATION AND OTHER ALLOCATIONS 

7.1 IBNR Allocation 

Many data items need to be allocated from an aggregated level to a more granular level. Examples 

may include: IBNR, internal expenses, capital or capital charges, taxes, et cetera. Generally speaking, 

the preferred approach is to calculate each of these bottom up using the individual contract features 

and then "truing – up" the bottom up results to match the corporate figures. In this section, this 

approach is applied to the allocation of IBNR from the portfolio level to the individual contract 

level.  
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IBNR is normally calculated at portfolio levels using aggregated data. But since reinsurers need to 

understand the profitability of historic results by client and even contract, IBNR calculated at the 

portfolio level is allocated to individual contract. Since the profitability of business at the client and 

contract level is a critical component of business decisions, care needs to be taken to allocate using 

the best possible estimate.  

One way to improve the reasonableness of any allocation methodology is to calculate the values at 

the granular level using all available information and then make only relatively small adjustments to 

ensure that the aggregation of the bottom up numbers match the calculated numbers at the portfolio 

level. Ideally, the granular level calculation would take into account type and age of claim, would 

incorporate a methodology based on  claim counts as well as claim amounts, would distinguish 

between paid loss and loss reserves, would separately calculate incurred but not enough reported 

(IBNER) and pure IBNR, et cetera. This sophisticated approach may be too complex and difficult to 

implement. The following simpler and more practical approach is suggested. 

The following data is necessary by line of business within contract:  

Earned premium (EP)  (from financial systems) 

Expected loss ratio (ELR) (from pricng) 

Expected loss reporting pattern (LAGt) (from pricing). This will be displayed as a cumulative 

percentage of expected reported loss at time t.  

The initial bottom-up contract Bornhuetter-Fergusson IBNR is given by the following formula 

Initial IBNRt = EP X ELR X (1 - LAGt) 

This IBNR is aggregated over all contracts and compared to the calculated IBNR at the portfolio 

level. The initial contract IBNR is multiplied by an adjustment factor AFt to ensure that the sum of 

the contract IBNR is equal to the portfolio IBNR. So the final contract IBNR at time t is given by 

IBNRt = EP X ELR X (1 - LAGt) X AFt 

The advantages of this approach are: 

The contract IBNR is transparent and easily explainable. The EP is not disputed. the ELR 

and the lag pattern were agreed to by the deal team at the time the contract was written. The 

AF adjustment should hopefully be relatively small. 

Assuming the AF is close to unity, the majority of the IBNR is determined by the individual 

contract metrics. So, it has an excellent chance of being a best estimate.  

This approach automatically provides an alternate view of the portfolio IBNR. If the AF is 

small then the bottom up methodology supports the top down result. If the AF is large, it 

provides a flag to indicate which portfolios might require a more detailed analysis. This 

alternate approach can be particularly valuable when the portfolio is undergoing change 

(retentions, limits, underlying business, et cetera). 
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This approach clearly requires the availability of the contract/LoB ELR and Lag. This in turn 

requires that the pricing database captures and stores contract/LoB ELRs and Lags. In addition it 

requires that the pricing database and the accounting database are aligned in terms of contract ID 

and LoB structure. If this data is available, the approach outlines above is easy to implement and will  

significantly improve the credibility of the allocated IBNR as compared to an allocation based only 

on earned premium and incurred loss.  

7.2 Expected Emerged Loss 

As a byproduct of the above IBNR allocation methodology, the contract/LoB expected emerged 

losst is calculated as 

  expected emerged losst = EP X ELR X LAGt 

A comparison of expected emerged loss and actual emerged loss can serve as an excellent metric of 

how a contract is performing. It is especially valuable because it is independent of any portfolio 

effect or impact of reserving conservatism or lack thereof. It can form the basis of both internal and 

external discussion without the often emotional arguments surrounding the IBNR. It can also serve 

as an important feedback to pricing since it uses pricing's own estimates to compare to actual. 

7.3 Capital Allocation and Expense Allocation 

The concept of allocating capital and expense to granular levels has been extensively discussed in the 

actuarial literature and a detailed discussion of these allocations is beyond the scope of this paper.  

However, it deserves noting that the above allocation methodology can also be effectively used for 

other allocations including expense allocation and capital allocation. The concept is to develop the 

best possible formula to calculate these items on a contract level given basic contract characteristics 

such as line of business, type of business, country, premium size, expected loss, number of expected 

claims, risk metrics such as variability and shortfall, new vs renewal, et cetera. These items are then 

calculated at the contract level, aggregated to the portfolio level and compared to a portfolio value 

that was determined previously. The individual contract values are then scaled to assure that the sum 

of the contract values is equal to the portfolio value. 

8. CONCLUSION 

Hopefully, this paper will motivate reinsurance actuaries to spearhead an increased realization of the 

value of a company's internal data and create the desire to develop a data architecture that will enable 

significantly more sophisticated data analyses. The potential benefit to those leading this effort can 

be very large.  There is nobody better suited to be passionate about this cause than the actuarial 

community. 
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1.  INTRODUCTION 

A fundamental function of reinsurance is to provide financial recovery from natural catastrophes. 
A well-functioning insurance market can enable rebuilding efforts that would overwhelm the 
resources of individual households and communities.  

By its nature, catastrophe risk is often not diversifiable on a local or even regional scale. Instead, 
insurers usually look to the global reinsurance markets for catastrophe risk protection. 

Recently, a third option has risen to prominence as hedge funds, pension funds, and other 
institutional investors (hereafter “alternative capital”) have sought to “directly” invest in catastrophe 
risk. Through investments in insurance-linked securities (ILS) and collateralized reinsurance, 
alternative capital has increased the available supply of property catastrophe risk coverage and driven 
ILS prices toward all-time lows.  

Yet alternative capital may be most remarkable not for its impacts to date, but for its vast 
untapped potential. ILS is still a niche asset class, and the existing market for catastrophe risk is 
dwarfed by the pool of available institutional capital. Nevertheless, price competition on existing 
property catastrophe risk may have already reached the point of diminishing returns. Product 
innovation is needed to support the growth rate of alternative capital and to produce further 
improvements in the availability and cost of catastrophe coverage.  

In this paper, the use of pooling and tranching techniques similar to those used in collateralized 
debt obligations (CDOs) is proposed as a tool for expanding the market for catastrophe risk.  

Given the somewhat infamous legacy of CDOs and inherent complexity of catastrophe risk, the 
pairing of the two may seem problematic. However, catastrophe risk is a far stronger candidate for 
inclusion in a CDO-type structure than economic assets such as securitized mortgages. An 
appropriately designed collateralized risk obligation (CRO) would have significantly less systemic 
vulnerability than the subprime mortgage-fueled CDOs at the heart of the recent financial crisis.   

In fact, the concept of a CRO is not entirely novel. Limited numbers of CRO-type instruments 
were issued in the early to mid-2000s, only to largely disappear at the onset of the financial crisis. 
The market for catastrophe risk has matured in the interim, yet suffers from limitations that a CRO 
is well-suited to address.  

CROs should improve efficiency and stimulate growth in the catastrophe risk market in two key 
ways.  
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First, CROs would simultaneously increase the availability of investment-grade catastrophe risk and high-
yielding catastrophe risk. The vast majority of recently securitized catastrophe risk is either unrated or 
assigned a speculative, or "junk," rating. Large institutional investors frequently place limits on the 
amount of non-investment-grade risk they will hold in their portfolios. On the other end of the 
spectrum, falling yields on catastrophe risk have led to heightened demand for high-yielding 
catastrophe securities. Thus, CROs should further expand the supply of alternative capital. 

Second, CROs should encourage investment in heretofore underinsured perils and geographic locations. In a 
CRO, unusual or diversifying perils provide enhanced value, which is due to their low correlation 
with the other assets in the portfolio. CROs should contribute to the globalization of a 
predominantly US and European market, and stimulate the growth of insurance in developing 
economies. 

Guide to this paper 

Building a CRO: Sections 2 and 3  

Section 2 presents a brief overview of alternative capital, its recent increase in popularity, and the 
emerging need for product innovations such as the CRO. 

Section 3 outlines a basic design framework for CROs. It also addresses a key question: How are 
CROs different from the CDOs that underpinned the financial crisis? This section demonstrates 
that the primary pitfalls of pre-crisis CDOs are largely mitigated for CROs, which is due to the 
nature of insurance risk and the structure of insurance markets.  

Case study: Section 4 

Section 4 provides a stylized example of a CRO. This “sample CRO” is used to discuss potential 
pricing and rating methodologies for CROs. In addition, it illustrates the differences in achievable 
credit enhancement (i.e., leverage) between CROs and traditional CDOs. 

Practical considerations, market history, and conclusion: Sections 5 and 6 

Section 5 considers several practical and historical questions surrounding the implementation of a 
CRO. Who are the likely sponsors? What kinds of CRO-type instruments were issued prior to the 
financial crisis? What lessons can be drawn from their history?  

Section 6 provides conclusions.  
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2.  THE RISE OF ALTERNATIVE 
CAPITAL 

2.1 – Market transformation  
2013 was a banner year for alternative capital 

investments in their various forms (see Sidebar 1). 
Catastrophe bonds enjoyed their second largest 
issuance year on record, and reached an all-time peak 
for the amount of total principal outstanding 
(approximately US$20.2 billion).1 Collateralized 
reinsurance had even stronger growth, surpassing the 
traditional catastrophe bond market in size for the 
first time.2 This significant influx of alternative capital 
led to rapidly falling prices, with some sources 
quoting a year-over-year decrease in catastrophe bond 
spreads of nearly 40%.3 

Yet, this may be just the beginning of alternative 
capital’s entry into catastrophe risk markets. While 
current estimates peg the amount of invested 
alternative capital at around US$50 billion as of early 
2014, this pales in comparison to the estimated 
US$30 trillion of existing worldwide pension fund 
assets. Further allocations to catastrophe risk of even 
1% to 2% of these assets could double or triple the 
capacity of the existing US$300 billion USD 
catastrophe risk market.4 Many market analysts expect 
an explosive next five years for alternative capital, 
with projections ranging from $40 billion USD to 
$150 billion USD in new alternative capital entering the marketplace.5,6,7 

However, for every risk investor there must also be a risk seller, and there are limits on alternative 
capital's ability to grow purely through price competition on property catastrophe risk. If supply 

1 Swiss Re [33] 
2 Artemis.bm [2]  
3 Plenum Insurance Linked Capital [26]  
4 Guy Carpenter [14] 
5 Artemis.bm [3]  
6 Artemis.bm [4]  
7 BNY Mellon [8]  

Sidebar 1:  
Major Existing Types of Alternative 

Capital Investments 
Catastrophe bonds: Investments in 
Special Purpose Vehicles (SPVs) in which 
a limit of catastrophe coverage is fully 
collateralized by outside investors, who 
are paid periodic risk-based coupons by 
the ceding (re)insurer through the SPV. 
After a triggering event, the investor may 
lose the principal for the ceding reinsurer 
to cover claims. 
Collateralized reinsurance: Reinsurance 
coverage in which capital markets 
investors fully collateralize the reinsurance 
limit offered in exchange for an up-front 
reinsurance premium.  
Industry Loss Warranties (ILWs): 
Dual-trigger reinsurance or derivative 
contracts (typically fully collateralized) in 
which the payout is based upon both an 
industry loss threshold and the ultimate 
net loss to the cedent. 
Sidecars: Financial structures designed to 
allow outside investors to take on a 
quota-share portion of the risk written by 
a (re)insurer, by establishing a 
collateralized limit of coverage for which 
reinsurance premiums are paid. Generally 
designed to have a limited lifespan and 
intended to capture the increase in rates 
often witnessed after a major catastrophe. 
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outpaces demand, investors will at some point reach a minimum acceptable return for a given level 
of risk. Indeed, some reports have suggested that prices on certain risks have already begun to reach 
this lower boundary.8,9 Alternative capital also faces a stiff test from traditional providers of 
catastrophe risk protection. Despite public promises to avoid a pricing "race to the bottom," 
catastrophe-focused reinsurers are unlikely to simply let profitable business walk away. Longtime 
client relationships and add-on services provide reinsurers an edge that in some instances may 
overcome the lower prices of alternative capital.  

Thus, the long-term growth prospects for alternative capital depend on the ability to leverage its 
primary advantage over the traditional reinsurance model—a lower cost of capital—into the 
development of market-expanding and market-completing innovations.  

2.2 – Market expansion 
Market-expanding innovations introduce new exposures to the alternative capital market. To a 

certain extent, the globalization of the insurance industry will sow the seeds of opportunity for 
market-expanding innovation. As the epicenter of insurance growth shifts toward Asia-Pacific and 
similar regions,10 opportunities for investing in new catastrophe risks will multiply. The quality of 
catastrophe models and data for these regions will also improve, providing potential investors with 
better tools for measuring risk and assessing investment opportunities.   

Alternative capital investors have already demonstrated enthusiasm for the limited number of 
developing market catastrophe securitizations to date. Catastrophe bonds for diversifying perils—
such as Mexican hurricane risk, Mexican earthquake risk, and Turkish earthquake risk—have 
enjoyed high investor demand and coupon spreads well below the market average. More 
opportunities may be on the horizon, as officials in countries such as India and the Philippines have 
recently voiced interest in securitizing a portion of their countries’ catastrophe risks.11,12 

Another candidate for market-expanding innovation is the securitization of new types of risk, 
including terrorism risk and catastrophic liability risk. These risks are significantly harder to model 
than natural catastrophe risk. For instance, any terrorism risk model must contend with terrorists’ 
intention of avoiding predictability. Nevertheless, falling margins in property catastrophe risk may 
eventually push alternative capital into these harder-to-model perils: At some point, every risk must 
have its price.   

8 Munich Re [24] 
9 Carrier Management [11]  
10 Munich Re [23]  
11 The Economic Times [13]  
12 Reuters [29]  
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2.3 – Market completion 
Market-completing innovations bring new investors into the market. Despite recent success, the 

catastrophe risk market still lacks many of the characteristics exhibited by more mature financial 
markets. Certain market-completing innovations stand to grow the catastrophe risk market by removing 
existing supply-side limitations.  

For example, most catastrophe bonds to date13 have been identified as speculative or “junk”-
grade risk, receiving ratings between BB- and BB+. Compared to other fixed-income alternatives 
such as corporate bonds, catastrophe bonds are disproportionately high-risk investments.  

The low ratings of existing catastrophe risk instruments serve to limit the pool of potential 
alternative capital investors, as institutional investors are frequently limited in the amount of non-
investment-grade risk they can hold. Similarly, financial services companies subject to risk-based 
capital standards (e.g., banks and insurers) are required to hold more capital for low-rated, non-
investment-grade assets. 

2.4 – The role of the CRO 
Assume that you wish to build a new product for the property catastrophe risk market with both 

market-expanding and market-completing properties. These goals would appear to be at odds. Market 
expansion usually requires the inclusion of previously uncharted risks, entailing greater uncertainty 
and requiring correspondingly higher returns. Conversely, market completion through the 
introduction of investment-grade investment options seems to require the creation of safer, lower-
risk catastrophe instruments. 

The introduction of CROs may be able to achieve both of these objectives. CROs would 
produce a wide spectrum of rated catastrophe risk, opening up investment opportunities for a 
broader range of potential investors. It would also promote the securitization of new types of risk in 
order to help diversify the catastrophe risk assets collateralizing the pool.  

Of course, catastrophe risk is very different from the credit risk found in traditional CDOs. As 
such, it is important to understand how a CRO might differ from a traditional CDO, and the 
impacts of these differences on the success and sustainability of the CRO.  

  

13 The current market also contains a number of unrated instruments offering investment opportunities generally similar to 
speculative rated securities. 

Casualty Actuarial Society E-Forum, Spring 2015 6 

                                                 



A New Model for Weathering Risk: CDOs for Natural Catastrophes 

3.  DIVIDE AND CONQUER: CATASTROPHE RISK AND THE CRO 

3.1 –CDOs and insurance companies 
Set aside catastrophe risk for a moment and begin with the underlying structure: How does a 

basic CDO function? During the financial crisis, CDOs (particularly those containing high 
concentrations of risky subprime mortgages) became notorious for their complexity and 
inscrutability. However, these derivative structures bear striking structural similarities to a much 
older and more familiar type of financial vehicle—the insurance company. The resemblances are 
illustrated by two key parallels between CDOs and insurers: tranching and the law of large numbers. 

A CDO is comprised of a pool of financial assets14 carved into tranches, a series of ordered claims 
to the pool’s cash flows. Investors in senior tranches have first claim to pool profits, and are followed 
in order by holders of mezzanine and equity (or junior) tranches. In exchange for bearing a larger share 
of the pool’s default risk, equity trancheholders are compensated with the highest potential returns. 
At the opposite end, senior tranches appeal to risk-averse investors willing to accept lower returns in 
exchange for holding highly rated assets.  

The appeal of a CDO is that the most senior tranches15 can often be structured to satisfy rating 
agencies’ requirements for an exceptionally strong (typically AAA) credit rating. Generally, the credit 
ratings of these tranches significantly exceed those of the underlying pool collateral assets were they 
to be rated individually, which is due to the security provided by the subordinate tranches.  

The structure of an insurance company is fundamentally similar. As with a CDO, an insurer 
carves up a pool of underlying assets (in this case, the profits or losses on insurance policies) into de 
facto “tranches.” The tranched structure of an insurer is illustrated by considering the priority order 
of the insurer’s liabilities in a run-off scenario. Outstanding policyholder obligations (e.g., loss and 
unearned premium reserves) receive the highest priority, and are analogous to senior CDO tranches. 
The insurer’s other debt obligations are equivalent to mezzanine tranches, and the equityholders of 
an insurer match to equity CDO trancheholders (see Figure 1). This tranche-based description of 
insurers has been examined in detail elsewhere, notably in the context of analyzing reinsurance 
arrangements.16 

  

14 These assets are often assumed to be homogenous.  
15 Complex CDO structures can have upwards of 10 (or more) tranches, with several senior tranches, a number of mezzanine tranches, 
and one or more equity tranches.  
16Mango, D. & Bunick, C. [21]  
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Figure 1: Structural Comparison of a CDO and an Insurance Company 

 

The second parallel is that CDOs, like insurers, derive their economic value from the law of large 
numbers. Both are vulnerable when the assumptions underlying the that law does not hold and 
single events can cause a large volume of highly correlated losses—Hurricane Andrew and the 
mortgage downturn being prominent examples.   

These similarities beget an obvious question from comparing many decades of insurance industry 
success to the financial conflagration caused almost immediately by CDOs: Why the enormous 
discrepancy? Further, could a CRO avoid the pitfalls that undermined the CDOs of the mid-2000s?  

The remainder of this section seeks to answer these questions. First, the composition of a CRO 
will be roughly outlined and compared to that of a pre-crisis CDO. Then, the CRO will be 
scrutinized in the context of the key structural factors contributing to the collapse of the CDO 
market.  

3.2 – Designing a CRO 
As noted above, catastrophe risk can pose a threat to the law of large numbers. By nature, 

catastrophes affect a large number of policies simultaneously, making catastrophe risk diversifiable 
only on a global scale.  
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There is, however, potential for diversification - of two kinds - if sufficient variety of global 
catastrophe risk can be collected into a single pool. First, this structure would enjoy geographic 
diversification: For instance, Asian typhoon activity is not fully correlated (and in fact may be 
inversely correlated) with North American hurricane activity.17 

Second, a broadly based catastrophe risk pool benefits from typological diversification. Natural 
disasters can be geophysical (e.g., earthquake), meteorological (e.g., convective storms and tropical 
cyclones), or even climatological (e.g., drought) in nature.18 Each type is driven by forces that are not 
fully correlated—and often, are not correlated at all. For example, the occurrence of a Japanese 
earthquake is unlikely to impact the likelihood of a major U.S. hurricane.     

The ideal CRO will pool the broadest range of natural catastrophe risks possible to ensure ample 
diversification. But what form will these risks take? The most basic building block of insurance risk 

is the individual insurance policy, but 
securitized instruments are ill-suited to 
insuring single policies. Instead, the pooled 
“risks” in a CRO must be pooled portfolios of 
catastrophe risk collected by insurers.   

The cost efficiency of the CRO is further 
enhanced if the pooled catastrophe risks are 
already securitized and tradable. Catastrophe 
bonds have a somewhat liquid secondary 
market, and have already undergone the 
initial modeling and pricing process. 
Fractional shares of existing catastrophe 
bonds likely represent strong building blocks 
for the CRO.  

But does the market have enough existing 
catastrophe risk material to support CROs? 
Outstanding catastrophe bonds number in 
the dozens, while a single mortgage-based 

CDO pooled thousands of individual mortgages. It was this numerousness (and the law of large 
numbers) that enabled the credit enhancement found in CDOs.  

Nonetheless, it should not be necessary to acquire thousands of catastrophe assets to create a 

17 Maloney, E. & Hartmann, D. [20] 
18 Among other types not listed. 

Sidebar 2:  
Impact of Asset Quantity on a CDO 

High (1,000+ assets): 
Benefits 
• Achieves greater spread of diversifiable risk 
• Creates proportionally more highly-rated securities 
• Allows for greater structuring flexibility and complexity 

Drawbacks 
• Requires significantly stronger modeling assumptions 
• Creates more of a “black box” – complexity may not fully 

be understood 
• Requires higher ongoing management costs 

Low (5-10 assets): 
Benefits 
• Simpler to model – may be able to fully specify 

relationships between each pair of assets 
• Uses less resources for gathering and managing pool assets 

Drawbacks 
• Achieves less credit enhancement  
• May be harder to reach cost-efficient pool size 
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well-functioning CRO. The key to the feasibility of the CRO is the fact that a relatively low number 
of pooled assets is needed to capture the vast majority of portfolio diversification benefits. For 
instance, under the assumptions shown in Figure 2, approximately 85% of the available 
diversification benefits are captured by a pool of only 10 securities. After this point, the marginal 
benefit of adding further assets to the pool decreases rapidly.  

Figure 2: Diversification Effects on Portfolios of Varying Size 

 

Compared to catastrophe risk securities, individual mortgages are comparatively low in value: A 
large number of mortgages are required to create an economically viable pool.19 On the other hand, 
individual catastrophe bonds are frequently issued with several hundred million dollars of principal 
at stake, each bond covering a portfolio of thousands of individual insurance policies. A fractional 
share of a single catastrophe bond offering can represent an investment of many millions of dollars.   

It should be feasible to create a CRO with a relatively low number of underlying assets, perhaps 
between five and 10. The resulting structure will likely be smaller than the average pre-crisis 
subprime mortgage CDO (for which one source provides an average size of $829 million).20 

19 Ashcraft, A. and Schuermann, T. [6] 
20 Barnett-Hart, A.K. [7] 
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However, CROs should also have a lower size threshold for economic viability, because of the 
reduced expense load for ongoing management of several securities as opposed to thousands.    

3.3 – Does the CRO have the same vulnerabilities as pre-crisis subprime 
CDOs?  

The effort spent designing a CRO is wasted if the resulting structure exhibits the same 
weaknesses that led to the collapse of the CDO market during the financial crisis. What are the key 
factors that led to those losses, and how should we expect a CRO to fare in comparison?   

After the onset of the crisis, many sought to diagnose the causes behind the collapse of the CDO 
market. Their conclusions, while wide-ranging, tended to highlight similar themes. These themes can 
be separated into two categories: 

• Modeling-focused observations: Addressed which assumptions failed to match reality. 
• Behavioral-focused observations: Addressed why assumptions failed to match reality. 

The balance of this section provides a brief overview of the fall of pre-crisis CDOs through the 
lens of the categories above. It finds that a well-designed CRO should fare better on almost every 
test of systemic vulnerability, proving to be significantly more robust than its pre-crisis subprime 
predecessors.  

3.4 – Modeling: The actuary and the Gaussian copula 
In standard CDO models, two types of input parameters must be estimated for each underlying 

asset. The simpler is the default profile—the likelihood of default across time, independent of any 
other asset in the pool. If this information is not readily available for each asset, then simplifying 
homogeneity assumptions can streamline the model. 

A more significant challenge is quantifying an asset’s dependency profile with each of the other 
assets—in short, how its likelihood of default is affected by surrounding defaults.  For a portfolio of 
1,000 mortgages, modeling the interactions among each asset using a traditional linear correlation 
matrix requires close to a half million parameter estimates.21 This approach is usually unwieldy—and 
for a long time represented the biggest barrier to CDO modeling.22 

In 2000, actuary David X. Li proposed pricing CDOs with copula models, which were then 
primarily found in biostatistics and actuarial science.23 In particular, Li’s paper presented the use of a 
Gaussian copula constructed from a multivariate normal distribution. Unlike many other copula 
forms, the Gaussian has the practical advantage of being easily generalizable from the two-variable 

21 Because the correlation coefficient is assumed to be 1 along the diagonal, and is the same pairwise for analogous cells on either side 
of the diagonal.  
22 Mathematically, it is nearly impossible to ensure a positive semi-definite correlation matrix. 
23 Li, D. [18]  

Casualty Actuarial Society E-Forum, Spring 2015 11 

                                                 



A New Model for Weathering Risk: CDOs for Natural Catastrophes 

situation (find the single dependency between x and y) to the n-variable situation (find the various 
dependencies among a, b, c, d…etc.). To do so, it utilizes a crucial simplification: It assumes that the 
entire dependency structure for the pool of assets is driven by a common factor, which can be 
estimated as a single pool default correlation parameter ρ (rho).    

The Gaussian copula model (and the similar models that followed) provided solutions to what 
had seemed an impossible mathematical problem—but in return, it required the assumption that the 
relationships among thousands of mortgages could be fully expressed by a solitary constant. This 
key parameter held enormous sway over the model output, particularly due to the significant 
leverage inherent in CDOs. Thus, the most senior CDO tranches were almost indestructible assuming 
the models used to price and rate them were correct—and highly susceptible to downgrade if they were 
not.24,25,26,27 

The models, of course, turned out to be wildly optimistic. As the housing bubble burst, mortgage 
default rates skyrocketed past all recent historical benchmarks, nationwide. This caused rating 
agencies to reassess their models and downgrade AAA tranches at an unprecedented pace. The 
ensuing collateral calls and liquidity crunch kicked off the financial crisis and crystallized the public’s 
image of the CDO: A structured finance vehicle both incomprehensible and toxic.   

In comparison, CROs should be able to rely upon a more accurate and robust modeling process. 
Natural catastrophe models forecast physical events, while economic models forecast human 
behavior: The former lie more in the realm of science, the latter social science. While it is important 
not to downplay the amount of uncertainty in catastrophe models (which is significant), it is also 
true that they need not capture the additional behavioral component inherent in financial markets - 
which often drives tail outcomes (e.g., a “run on the bank”). At least in the short run, humans can 
have little impact over the occurrence or severity of any particular natural catastrophe—the very 
reason that catastrophe risk is desired as a zero-beta investment.28 

Further, the low number of assets in a CRO allows for more transparent pricing. With accurate 
exposure information and access to catastrophe models, it is possible to research each CRO asset in 
detail.29 In a CRO, relationships among specific assets can be identified and modeled on a case-by-
case basis as opposed to relying on a single, catch-all assumption to represent the entire dependency 
structure. Potential CRO modeling techniques are described in Section 4.2 below. 

24 Coval, J., Jurek, J., & Stafford, E. [12] 
25 Krahnen, J. & Wilde, C. [17] 
26 Hull, J. & White, A. [16] 
27 Heitfield, E. [15] 
28 That is, an investment showing no correlation with the performance of the equity markets as a whole.  
29 Some CDOs, to further complicate the matter, were comprised solely out of tranches of other CDOs – creating a third layer of 
tranching.  
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3.5—Behavior: A matter of incentives 
While it is important to understand the weaknesses in the CDO pricing models used in practice 

during the mid-2000s, it is more important to understand why the modeling assumptions turned out 
to be wholly inaccurate. 

At the heart of the matter was an incentives problem: Most of the key participants in the life 
cycle of a CDO were compensated according to the volume of completed CDO transactions. 
Worse, most CDO originators retained little to none of the downside risk associated with the 
securities: 

• Mortgage writers adopted an “originate-to-distribute” model that removed their portfolios of 
subprime mortgages from their balance sheets and led to a loosening of loan standards.30 

• Major banks then turned loan portfolios into securitized instruments, collecting a healthy 
underwriting fee while typically retaining little to no risk.31 The lower-rated tranches of these 
mortgage-backed securities were then re-tranched into CDOs, providing yet another 
opportunity for fees.32 

A misguided incentive structure plagued not only the formation of CDOs, but their evaluation by 
the major credit rating agencies. As the CDO market exploded, so too did the fees paid to rating 
agencies - who were paid not only on volume, but by the arranger of the security (and not by the 
ultimate investor). For the ratings agencies, taking a more pessimistic view than the competition 
often meant watching arrangers take their subsequent (and highly lucrative) business elsewhere.33 

As a result, the only participants with a strong incentive to accurately assess the quality of the 
assets were the investors themselves.  In reality, many investors were either unable or unwilling to 
invest the resources necessary to obtain their own view of CDO risk, instead putting their faith in 
the CDOs’ sterling credit ratings. Only the eventual market implosion revealed what is obvious in 
hindsight: Real skin in the game—fundamental to appropriately motivating CDO intermediaries—
was absent at nearly every stage.  

Fortunately, these issues are largely absent in a CRO. Securitized insurance risk is generally 
written on an excess-of-loss basis, often with cedent co-participation in the reinsured layer. Unlike pre-
crisis mortgage originators, primary insurers thus have every incentive to write good business—
because they retain the vast majority of risk on their policies.  

In addition, reinsurance markets are highly relationship-based. Many of the same intermediaries 

30 Purnanandam, A. [28] 
31 Ashcraft Schuermann [6] 
32 Many of the losses eventually suffered by major banks were incurred by those that weren’t quite good enough at removing the toxic 
assets they were creating from their balance sheets. 
33Barnett-Hart [7] 
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that serve the catastrophe bond market also provide services for a range of non-catastrophe 
reinsurance transactions by similar (or even the same) parties. There arguably exists a stronger 
reputational incentive for the actors along the catastrophe securitization structuring chain to respect 
the interests of the other involved parties.  

Thus, a properly structured CRO may avoid both the modeling and incentives problems that 
plagued pre-crisis CDOs. Significant expertise is still needed to grasp the numerous sources of risk 
inherent in catastrophe contracts: Nevertheless, the robustness of insurance markets should allow 
the CRO to avoid becoming simply the latest example of a “toxic” structured finance asset. 

 

 

 

  

Casualty Actuarial Society E-Forum, Spring 2015 14 



A New Model for Weathering Risk: CDOs for Natural Catastrophes 

4.  A CRO PRICING EXAMPLE 

4.1 – Overview  
This section considers the pricing of a theoretical five-asset CRO. It is designed to highlight the 

key features of the structure without excessive functional detail. Analysis is presented in a simplified 
form, with most mathematical details left to the Appendix.   

For our sample CRO, we assume that the asset pool consists of fractional shares of single-peril 
Rule 144(A)—that is, publicly issued—catastrophe bonds with a one-year duration. Each bond has 
thus been evaluated by a third-party catastrophe model vendor during the initial pricing and issuance 
process. We assume that we have a stand-alone exceedance probability (EP) curve for each asset 
representing its loss profile. We also have the following summary statistics for each bond: 

• Attachment probability: The likelihood that a bond will suffer a nonzero loss to its 
principal. 

• Expected loss: The average percent of principal that a bond is expected to lose. 

• Exhaustion probability: The likelihood that a bond will suffer a complete loss to its 
principal. 

Figure 3 shows the selected parameters for each of the five securities in our sample CRO, based 
loosely on existing market securities. The current, public Standard & Poor’s rating table for 
catastrophe bonds was utilized to estimate a rating for each security. None of the securities listed 
below qualifies for an investment-grade credit rating. 

Figure 3: Sample CRO Composition 

 

Assumed Estimated Estimated S&P
Term Expected Attachment Exhaustion Implied

(Years) Loss Probability Probability Rating

Florida Hurricane - FLH 1 4.00% 5.33% 2.67% B+

New England Hurricane - NEH 1 2.00% 2.67% 1.33% BB

US (California) Earthquake - USQ 1 3.00% 4.00% 2.00% BB-

Japan Earthquake - JPQ 1 3.00% 4.00% 2.00% BB-

Turkey Earthquake - TUQ 1 1.50% 2.00% 1.00% BB+
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Next, we aim to estimate similar performance metrics for each CRO tranche.34 To do so, we 
must first define the tranches’ attachment and detachment (or exhaustion) points. 

In a CDO, tranches are designed to maximize the size of the highest-rated (usually AAA) 
tranches. The endpoints of each tranche are frequently calibrated to precisely meet the minimum 
standards of a given rating category. With only five assets, such a level of refinement is less feasible 
for a CRO. Instead, we will divide the sample pool into four illustrative tranches: 

• Equity tranche: Eroded by aggregate losses of the first 0% to 20% of pool collateral. 
• Mezzanine tranche: Eroded by aggregate losses from 20% to 40% of pool collateral. 
• Senior tranche: Eroded by aggregate losses from 40% to 60% of pool collateral. 
• Super-Senior tranche: Eroded by aggregate losses from 60% to 100% of pool collateral. 

4.2 – CRO dependency modeling 
The prices of CRO tranches, as with those of a traditional CDO, depend heavily on how the 

individual risks in the collateral pool relate to one another. These effects are magnified greatly in 
senior tranches, whose loss profiles are highly leveraged on the pool’s dependency patterns. 

There are at least two plausible approaches to reflecting asset dependencies in CRO pricing. 

The first approach is through event simulation, using the same techniques that are used to price 
stand-alone catastrophe bonds. Each major catastrophe modeler produces a simulated “event set” of 
natural catastrophes. Using this event set, simulated years are generated for the portfolio of 
exposures—which in this case represents all of the securities within the asset pool. From these 
simulations, one can obtain the EP curve and summary statistics referenced above. These are then 
used to price the CRO tranches.   

However, investors may consider the outputs of the major catastrophe modelers to be somewhat 
of a black box. Further, perhaps detailed exposure information is not available for each asset in the 
CRO, or the model becomes unwieldy and hard to analyze on a portfolio-wide basis. In any of these 
cases, investors may desire another approach for establishing their own “view of risk.” 

An alternative to event simulation is a portfolio analysis approach. For our sample CRO, this 
consists of taking each of the five individual EP curves (i.e., catastrophe model outputs) and relating 
them to one another—as opposed to trying to create a comprehensive portfolio EP curve out of the 
combined exposure sets.  

34 Note that for a CRO with sequentially stacked, non-overlapping tranches, the exhaustion probability of one tranche is equivalent to 
the attachment probability of the next higher tranche. 
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Catastrophe modeling firms already enable this type of analysis by producing pairwise linear 
correlation matrices for the existing universe of catastrophe bonds.35 However, using this particular 
type of matrix for CRO pricing may be problematic. It best suits analysis based on the normal 
distribution—the use of which was one of the issues with traditional CDO pricing. 

Recall that normal Gaussian copulas (and related forms) were used for CDO pricing because of 
the challenges in extending two-dimensional dependency modeling to higher dimensions. 
Fortunately, there are alternative methodologies that are likely superior for pools with relatively few 
assets, such as a CRO. 

The use of vine copulas is one such alternative. Vine copulas tackle the multi-dimensional challenge 
by modeling pairs of copulas in two dimensions and then linking them together in “vines.” 
Importantly, this procedure allows for the use of tail-heavy copulas that fit the tail-heavy 
distributions being modeled—and better, it allows for the use of different copulas to model each pair 
of assets. This eliminates the need for an overarching (and often ill-fitting) assumption about which 
single copula best fits the data. 

4.3 – Rating the sample CRO with a vine copula approach 

A vine copula model can be used to estimate the loss parameters and credit ratings of the various 
tranches of our sample CRO.36 To illustrate the importance of asset interdependencies, we rate the 
CRO tranches under two assumptions: 

• Independence model: The performance of each asset in the CRO is assumed to be fully 
independent of the performance of each of the other assets. 

• Dependencies model: While independence is assumed for many pairs of assets, a few are 
assumed to have positive loss correlation captured by a Clayton copula:37 

o There is assumed to be a slight positive correlation between Florida and Northeast 
hurricane risk. 

o Similarly, there are assumed to be slight positive correlations among earthquake risks 
in the U.S., Japan, and Turkey. 

o There is assumed to be no correlation between hurricane and earthquake risk types.  

Figures 4 and 5 show the results of modeling under each set of assumptions. Modeling details, 
mathematical derivations, and additional key assumptions are outlined in the Appendix. 

  

35 Risk Management Solutions, Inc. Miu Platform [30]  
36 After the key loss statistics and ratings have been estimated, the tranches can be priced through any number of theoretical 
approaches or by comparison to existing market securities.  
37 For the purposes of this paper, the various taus are selected judgmentally and for illustrative purposes only. 
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Figure 4: Estimated Independence Model Tranche Loss Parameters 

 

Based on the Independence model, we find that both the senior and super-senior tranches of the 
sample CRO have simulated default probabilities low enough to quality for investment-grade ratings 
on the S&P ratings table for structured finance instruments.38 In addition, the super-senior tranche 
(representing a full 40% of the CDO collateral) meets the ratings table standards for a AAA rating.    

Figure 5: Estimated Dependencies Model Tranche Loss Parameters 

 

In contrast, the Dependencies model concentrates a higher percentage of the losses in tail 
outcome events—that is, in higher tranches of the CRO. As a result, both the senior and super-
senior tranches of the sample CRO are rated one notch lower than the comparable tranches in the 
Independence model.  

38Barnett-Hart [7] 

Sample CRO   

Independence Model  

Tranche Default Expected Implied

Tranche Range Probability Loss Rating

Junior 0-20% 16.79700% 12.86343% CCC+

Mezzanine 20-40% 1.03720% 0.65358% BB+

Senior 40-60% 0.02670% 0.01458% A

Super-Senior 60-100% 0.00020% 0.00003% AAA

Based on Monte Carlo Simulation

Sample CRO

Dependencies Model

Tranche Default Expected Implied

Tranche Range Probability Loss Rating

Junior 0-20% 16.62980% 12.75911% CCC+

Mezzanine 20-40% 1.17590% 0.74806% BB+

Senior 40-60% 0.04010% 0.02176% A-

Super-Senior 60-100% 0.00050% 0.00006% AA+

Based on Monte Carlo Simulation
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Even though the absolute effects on default probability and expected loss may be small (e.g., the 
expected default probability on the super-senior tranche goes up 0.0003%), the relative impacts of the 
Dependencies model are significant, as shown in Figure 6.  

Figure 6: Modeled Loss Comparisons by Tranche 

 

The incorporation of dependencies shifts risk from the junior tranche to the other tranches, with 
the relative impact growing as the level of seniority increases. This finding, which matches the results 
of a number of financial crisis analyses, highlights the importance of accurate incorporation of 
dependencies into a CRO model—despite the fact that correlations among insurance risks may be 
low compared to those found in the financial markets.   

4.4 – Other observations 

Despite the potential advantages a CRO may enjoy in terms of modeling accuracy and stability, it 
nevertheless provides less credit enhancement (e.g., fewer AAA-rated assets) than a traditional 
CDO. Figure 7 compares our sample CRO tranching structure to that of a pre-crisis mortgage-
backed CDO—Goldman Sachs’ GASMP Trust 2006-NC2 (GSAMP). GSAMP was split into the 
following 17 tranches:39 

• 5 senior tranches, each rated AAA by S&P 
• 9 mezzanine tranches, with investment-grade ratings ranging from AA+ to BBB- 
• 3 junior tranches (including an equity tranche), with speculative-grade ratings ranging from 

BB+ to unrated.  
  

39 Ashcraft Schuermann [6] 

Sample CRO   

Model Comparison  

(1) (2) (3) (4)

Independence Dependencies (3) / (1)

Model Model Relative

Expected Expected (2) - (1) Percent

Tranche Loss Loss Difference Change

Junior 12.86343% 12.75911% -0.10431% -0.811%

Mezzanine 0.65358% 0.74806% 0.09448% 14.456%

Senior 0.01458% 0.02176% 0.00717% 49.164%

Super-Senior 0.00003% 0.00006% 0.00003% 73.380%

Based on Figures 4 and 5
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Figure 7: Tranche Structure, Pre-crisis CDO vs. Sample CRO 

 

GSAMP contains a significantly higher proportion of senior risk than the sample CRO.  On a 
proportional basis, the difference is most striking between the sets of junior tranches, which make 
up 20% of the CRO but only 3% of GSAMP. 

However, this may not be too severe of a drawback for the CRO. In some instances, the 
alternative capital market has shown significant appetite for ILS with a default risk similar to or 
higher than that of the sample CRO’s junior tranche. For example, USAA’s Residential Re 2013-2 
(Class 1) catastrophe bond exposed investors to an attachment probability of 21.38% and an 
expected loss of 13.06% -  and received one of the lowest pricing ratios of coupon-to-expected loss 
ever seen in the market.  

In fact, the CRO’s creation of junk junior tranches may be a significant benefit to alternative 
capital investors who seek a high-yielding portfolio of catastrophe risk as opposed to a well-
diversified one.40 For these investors, rapidly falling spreads on peak perils such as Florida hurricane 

40 The rationale for these investors is often that holding catastrophe risk itself (in small quantities) serves as the macro-level diversifier 
for the rest of their portfolios. Under this paradigm, pursuing diversification within the catastrophe portfolio can lead to an 
unnecessary erosion of returns.  
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risk have threatened their return objectives. This potentially opens the door for the use of small, 
targeted allocations to CRO junior tranches as part of a larger investment strategy. 

5.  POTENTIAL SPONSORS AND CAPITAL CONSIDERATIONS 

5.1 – Market history: Multiple-event securitizations 
Prior to the financial crisis, a few major insurers and reinsurers experimented with creating 

investment-grade securitizations of their risk. These multiple-event securitizations worked similarly to 
CROs: High credit ratings were obtained by insuring only the second, third, or further subsequent 
events happening in a given period across a worldwide portfolio. In essence, they were CROs that 
simply excluded the junior tranche. 

The first catastrophe bond to have a tranche receive an “A” rating in such a manner was issued 
by the French reinsurer SCOR Group in December 2001.41 Atlas Reinsurance II covered European 
windstorm, Japanese earthquake, and Californian earthquake risk. It had two tranches: Class B notes 
provided coverage for the second qualifying catastrophe in the contract period, while Class A notes 
provided coverage for the third.42  While the Class B notes received a BB+ rating, Class A received 
the coveted “A”—with an annual expected loss of 0.05% and coupon spread above LIBOR of 
2.38%.43,44 

This rating reversed S&P’s policy of maintaining a BBB+ ceiling for catastrophe bonds, which 
was due to the “cliff risk” inherent in a first-event cover: No matter how unlikely the event, the 
owner of a first-event catastrophe security faces the risk of full default with little or no warning. 
Because Atlas II required an accumulation of events to be triggered, S&P was comfortable that cliff 
risk was sufficiently mitigated. In the event of a first triggering event, investors would have the 
opportunity to reassess their holdings - and offload them if they believed the risk profile no longer 
suited their objectives.45 

Other major insurance players such as Swiss Re and Converium also issued multiple-event 
securitizations in the early to mid-2000s. Since then, the market for such products appears to have 
largely disappeared: The share of investment-grade catastrophe risk fell from roughly a quarter of 
the market in 2007 to zero in 2013.46 Why might this have occurred? 

41 Woo, G. [37] 
42SCOR retains the first qualifying catastrophe without assistance from Atlas Reinsurance II. 
43 Woo [37] 
44Artemis Deal Directory [5]  
45 Boyle C. [9]  
46 Willis Re Capital Markets [36] 
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5.2 – Capital adequacy: The challenge of single-cedent CROs 
To illustrate, consider the return periods (the “1 in X” odds) for triggering each tranche of the 

sample CRO under the Dependencies model. By implied rating, the mezzanine and senior tranche 
are approximately equivalent to Atlas II’s Class B and A notes, respectively. 

Figure 8: Return Periods by Tranche, Sample CRO 

 

The senior tranche of the sample CRO has a return period of approximately 2,500 years. In 
comparison, the Solvency Capital Requirement (SCR) under Solvency II requires European 
insurance companies to hold capital to protect against a 1-in-200-year series of events. Most 
companies hold capital to protect against events beyond this 1-in-200-year standard: Ratings 
agencies will generally insist on it. However, holding capital is expensive. Companies may not care 
(and it could be argued, shouldn’t care) about risk at return periods far exceeding their internal capital 
adequacy targets. 

A similar line of argument provides a case against a single-cedent CRO. For example, a company 
with the risks contained in the sample CRO and a capital adequacy horizon that doesn’t extend to 
2,500 years could simply buy protection up to the exhaustion point of the mezzanine tranche (e.g., 
by securitizing only the first two events occurring on the global portfolio). This would prevent the 
company from paying for coverage that is not in line with its overall strategic plan. 

There are still a number of reasons for a company to consider a full-fledged CRO solution. 
Perhaps an insurance group’s regionally based companies need reinsurance cover that cannot be 
consumed by catastrophes in another region, or the company has capital management goals that go 
beyond a simple analysis of return period adequacy. Nevertheless, it is not surprising that the 
popularity of the single-cedent multiple-event securitization has waned over time.   

Sample CRO     

Dependencies Model     

Default Return

Tranche Probability Period

Junior 16.62980% 6 Years

Mezzanine 1.17590% 85 Years

Senior 0.04010% 2,494 Years

Super-Senior 0.00050% 200,000 Years
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5.3 – Market history: Gamut Re 

An alternative vision of the CRO (and the primary one offered in this paper) combines 
securitized risks from a number of companies. This avoids the problems described in the prior 
section, as each company’s risks can be securitized at a lower return period (e.g., the 25- to 100-year 
periods commonly found in today’s catastrophe bonds). For this type of CRO, the historical 
precedents are more infrequent—perhaps limited to a single structure established immediately prior 
to the financial crisis. 

In June 2007, the hedge fund Nephila Capital raised over $300 million to sponsor Gamut Re 
Ltd., a sidecar-type vehicle whose returns from investing in catastrophe risk were allocated across 
five tranches.47,48 The catastrophe portfolio held in Gamut was actively managed by Nephila Capital, 
and ran through the end of 2009. Details are shown in Figure 9 

Figure 9: Gamut Re Tranche Structure. 

 

Gamut Re expired at the end of 2009 and was not renewed, with Nephila citing the increased 
cost of debt in the immediate post-crisis markets.49 Since then, it appears that no similar transactions 
have been attempted (at least publicly).  

Yet conditions have changed since 2009. Fixed-income coupon rates currently approach all-time 
lows and an unprecedented (and increasing) number of investors have turned their attention to the 
catastrophe risk markets. As the diversity and number of catastrophe securitizations continue to 

47 PR Newswire [27]  
48SIFMA: Insurance & Risk-Linked Securities Conference [31]  
49 Trading Risk [34]  

Nephila Capital - Gamut Re

Tranche Structure, Ratings, and Yields

Size S&P

Class (in M $USD) Coupon* Rating

A 60 1.4% A-

B 120 3.0% BBB+

C 60 7.0% BB-

D 25 15.0% NR

E 45 Equity NR

*Represents spread over LIBOR

Source: PR New sw ire
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increase, so too does the feasibility of the CRO—and with it, the expansion of catastrophe risk 
markets to investors and risks that heretofore have remained on the outside looking in.  

6.  CONCLUSION: NEW SKIES AHEAD? 

More than most other economic assets, catastrophe risk securitizations are well-suited to 
inclusion in tranche-based leveraging structures. As evidenced by the lessons of the recent financial 
crisis, such structures do not offer a panacea for maturing financial markets: Nevertheless, the CRO 
may serve as a powerful tool for completing and expanding the existing market for catastrophe risk. 

Because of their inherent similarity to CDOs—the fuel for the financial crisis meltdown—we can 
expect that the concept of tranched catastrophe risk might require patient exploration. However, a 
well-structured CRO is likely to avoid many of the systemic modeling and incentive-based 
vulnerabilities that were fatal to the pre-crisis CDO market. In contrast, CROs are well-positioned to 
take advantage of recent advances in dependency and catastrophe modeling to provide a nuanced, 
powerful, and relatively transparent basis for market analysis.  

Above all, the CRO is arguably the optimal tool for generating investment-grade catastrophe risk, 
a missing ingredient in the current market. Securitizing risk that is too far out in the tail (either on a 
single-event or multiple-event basis) is unlikely to appeal to many companies on a stand-alone basis. 
As the catastrophe risk market continues to expand, however, it becomes increasingly possible to 
generate investment-grade risk by combining the risk of a number of different companies—opening 
up new possibilities for the financial markets to spread the risk from natural catastrophes on a global 
basis.  
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APPENDIX: MODELS FOR CRO PRICING 

A.1 – Key modeling assumptions and background 
The following assumptions and background discussion apply to each of the two models 

discussed in this Appendix. 

Assume that the assets are equally weighted in the CRO—that is, each asset represents 20% of 
the overall portfolio. Further, assume that the catastrophe bonds are zero-coupon: That is, a single 
payment is made at the end of the payment term to the bondholder if the bond has yet to default.50 

On an individual basis, we assume that the payoff profile for each catastrophe bond asset in the 
pool could be replicated by a bull put spread (assuming the appropriate options existed). For 
example, a catastrophe bond written to cover a 50% quota share of the layer $100 million excess of 
$100 million would have a payoff profile as a function of X, the random variable representing size 
of loss, as shown in Figure 10. 

Figure 10: Sample Catastrophe Bond Payoffs by Size of Loss 

 

By combining the payoff function with the exceedance probability function (that is, the survival 
distribution function of the size of loss), we can derive the full payoff probability function for each 
asset. In practice, the exceedance probability function will be given by the modeled EP curve. For 
the sake of this example, we assume that each of our assets has the following simplified payoff 
structure: 

50 This assumption likely would not be justified in an actual pricing model, but does not materially change the generalizable 
conclusions of this paper. 
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• For each asset, assume the chance of loss hitting the insured layer (the “attachment 

probability”) is iy , which is given by the historical data. 

• Similarly, assume that the chance of a full-limits loss to the insured layer (the “detachment 

probability”) is iz , which is given by the historical data. 

• Assume that the exceedance function is linear between the attachment and detachment 
points.51  Let the expected loss (EL) for each asset be the probability-weighted expectation 
of the amount of payoff not received by the bondholder that is due to catastrophe loss. 

Given this, 2/)( iii zyEL +=  

For each of the assets in our sample CRO, we assume a term-to-expiration of one year and 
default parameters designed to approximate current market offerings. We determine the implied 
credit rating for each asset based on the most recent Standard and Poor’s (S&P) rating matrix for 
catastrophe securities, shown in Figure 11.52 

Figure 11: Illustrative S&P Catastrophe Risk Rating Table 

 

A.2 – The Independence model 
The following section prices the CRO tranches under the assumption that the performance of 

each of the underlying single-peril securities is unrelated to each other asset in the CRO.   

The concept and mathematics behind the Independence model are simple. Given the assumption 
of independence, it becomes a straightforward three-step process to assess the risk profile for each 
CRO tranche: 

51 Outside of the range between the attachment and detachment points, the payoff function is constant. 
52Standard &Poors [32] 
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1. Using a Monte Carlo simulation generator, simulate X number of years of performance for 
each of the assets using the payoff profiles and exceedance curve given above. In this paper, 
X = 1,000,000. 

2. For each simulated year, add up the probability-weighted losses for the assets to get the total 
loss as a percent of pool collateral. 

3. Assign the total pool losses to tranches according to the tranching algorithm outlined in 
Section 4. 

The results are presented in Figure 4 above.  

A.3 – The Dependencies model: Clayton copulas 
The Dependencies model produces a more nuanced view of the risk profile for each tranche. We 

take a vine copula modeling approach in conjunction with a set of Clayton copulas. The Clayton 
copula concentrates risk into the left tail of the dependency structure, which in this case we will take 
to mean high-loss outcomes leading to low-payout states of the security. A major benefit of the 
Clayton copula is that it is solvable in closed form, leading to a relatively straightforward simulation 
process when one of the variables is already known.  

This procedure, per Venter (2007), is as follows:53 

• u and v represent the inverse single-variable cumulative distribution function for x and y
respectively, that is: 

o )(1 xFu X
−=  

o )(1 yFv Y
−=  

• a represents the Kendall’s tau (τ ) for the relationship between the two single-variable 
distributions.  See below for description of Kendall’s tau. 

• ),( vuCu  represents the partial first derivative with regards to the first argument 

Then, the following holds for the Clayton copula (Figure 12): 

  

  

53Venter, G. [35] 
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Figure 12: Derivation of Simulation Formula for Clayton Copula 
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Thus—with knowledge of ),( vuCu , u , and constant a – we can simulate the variable v  as the 
output variable conditioned on the independently simulated variables ),( vuCu and u . 

To utilize this model, we must first estimate Kendall’s tau. Although Kendall’s tau differs from 
the standard Pearson product-moment correlation coefficient, its form is much the same—a number 
between -1 and 1 (inclusive) with the following meanings: 

• A tau of -1 represents a pair of fully anti-correlated (negatively correlated) assets 

• A tau of 0 represents a pair of uncorrelated assets 

• A tau of 1 represents a pair of fully correlated assets 

The impacts of Kendall’s tau on the modeled outputs from the Clayton copula are shown below.  
Simulated relationships between variables using a Kendall’s tau of 0.0 (Figure 13) and a Kendall’s tau 
of 0.4 (Figure 14) are shown below. Note that while the joint distribution of the variables is evenly 
spread in Figure 13, it instead shows a concentration in the lower left-hand corner (and a smaller 
amount of concentration in the upper right-hand corner) in Figure 14.  
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Figure 13: Clayton copula simulation, Tau = 0.0 Figure 14: Clayton copula simulation, Tau = 0.4 

In practice, tau estimates will likely be selected for each pair of assets based on a combination of 
historical data, existing catastrophe models, and expert judgment. For the purposes of this paper, 
estimates of tau are selected judgmentally and for purely academic purposes as follows: 

• The relationship between Florida and New England hurricane risk is captured by a tau of 0.2 

• The relationship between US earthquake and Japan earthquake risk is captured by a tau of 0.2 

• The relationship between US earthquake and Turkey earthquake risk is captured by a tau of 0.2 

• All other relationships (direct or conditional) are independent (captured by a tau of 0.0). 

These relationships are captured in the pairwise tau matrix shown in Figure 15 below. Note that 
despite being captured in a similar form, these constants do not represent the linear Pearson’s 
constants typically shown in correlation matrices.   

Figure 15: Tau Matrix for Sample CRO 
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A.4 – The Dependencies model: Vine copulas 
Vine copula models enjoy a number of advantages over the higher-dimensional copulas 

traditionally used by financial practitioners to model CDOs:  

Traditional copula models are limited to the use of a single copula to describe the entire 
dependency structure. In comparison, a vine copula model is highly flexible: A different copula may 
be selected for each relationship, reflecting its specific attributes (e.g., tail heaviness). 

As a result, vine copula models require far fewer assumptions regarding the behavior of the pool, 
particularly regarding the homogeneity of pool assets. 

The primary multivariate copula models (e.g., Gaussian, Student’s t) are generally either 
symmetric or have only moderate tail heaviness, particularly in higher dimensions. Thus, these 
models may fail to capture the true tail risk contained in a CDO, particularly given that modeling 
asymmetries in the dependency structure (i.e., choosing the shape of the copula) can sometimes have 
a greater impact on results than modeling asymmetries in the marginal distributions of the individual 
assets themselves.54 

The primary weakness of a vine copula model is the large number of parameter estimates needed 
as the size of the pool grows. Assuming a single-parameter copula is used for each dependency, a 
pool of n assets requires the estimation of (n)(n-1)(0.5) dependency parameters for a fully specified 
model. The number of estimated parameters can frequently be reduced by careful vine structuring 
and/or a constant parameter assumption for all conditional dependencies past a certain vine level. 
Nevertheless, vine copula models are likely to be far more accurate for pools containing a limited 
number of securities, where the additional precision of the individual dependency estimates is not 
overwhelmed by the increased risk from estimating many parameters. 

Recent empirical testing of financial return data suggests that vine copulas offer improvements 
over existing models for pools of up to 10 to 12 assets.55 As a result, CROs are ideal candidates for 
vine copula modeling, allowing for more precise pricing specifications than previously available for a 
tranche-based security.  

There are a number of ways to build vine copula models, and there are a number of sources 
offering more detailed explorations of the theory of vine copula modeling.56,57,58 For the purposes of 
this paper, a D-Vine copula model will be used to evaluate the sample CRO under the Dependencies 

54 Low, R. K. Y. et al. [19] 
55 Ibid. 
56 Nikoloulopoulos, A., Joe, H., & Li, H. [25]   
57Brechmann, E. & Czado, C. [10] 
58Mendes, B., Semeraro, M., & Leal, R. [22]  
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model. For illustration, a D-Vine structure for four assets is shown in Figure 16.59 

Figure 16: D-Vine Copula Modeling Structure 

 

The first level in the vine contains direct pairwise dependencies.  Subsequent levels contain 
conditional dependencies based on relationships identified in higher vine levels and conditioned on 
the shared variables.60 Once a pool of assets is decomposed into pairwise direct and conditional 
relationships, pool results are simulated recursively.61 

With a modified version of the Monte Carlo procedure used above and the simulation methodology 
provided in Aas et al. (2006),62 we obtain the revised tranche estimates of default probability and 
expected loss shown in Section 4.  

 

  

59 The other prominent vine types are C-Vines and R-Vines, respectively.   
60 For instance, the combination of the 1-2 and 2-3 relationships results in the dependency between variables 1 and 3, conditioned on 
2. 
61Using the inverse of selected partial derivatives of the copula function. 
62Aas, K. et al. [1]  
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A Frequency-Severity Stochastic Approach to Loss 
Development 

Uri Korn, FCAS, MAAA 

_____________________________________________________________________ 

Abstract 

In this paper, we present a stochastic loss development approach that models all the core components of the 
claims process separately.  The benefits of doing so are discussed, including the providing of more accurate 
results by increasing the data available to analyze.  This also allows for finer segmentations, which is very helpful 
for pricing and profitability analysis.   
 
Keywords. Loss Development, Frequency, Severity, Reserve Variability, Cox Proportional Hazards Model 

             

 

1. INTRODUCTION 

Over the recent past, there has been much development and discussion of new stochastic models 

for loss development.  These models apply a more scientific approach to the old problem of 

estimating unpaid losses, but most still stick with the same strategy of using aggregate losses.  Using 

aggregate losses discards much useful information that can be used to improve predictions, such as 

the reporting times of unpaid claims, the number of currently open claims, and separate frequency 

and severity information.   

In many cases, working with aggregate data may be satisfactory and the extra work involved in 

building a more detailed model may not justify the benefit.  But for some cases such as those 

involving low-frequency/high-severity losses, where fine segmentations are desired, or when there 

are relatively fewer years of data available, this pushes the limits of what aggregate data can do, even 

with the most sophisticated stochastic models.  In this paper we present a stochastic loss 

development model that analyzes all of the underlying parts of the claims process separately, while 

still keeping the model as simple as possible. 

1.1 Research Context 

There have been other works as well that recommend using more detailed data to help produce 

more accurate results.  Zhou et al. 2009 uses a Generalized Linear Model approach to loss 

development modeling on frequency and severity separately.  Meyers 2007 does this as well, but 

within a Bayesian framework.  And recently, Parodi 2013 handles the frequency component of pure 

IBNR by modeling on claim emergence times directly, one of the components of our model as well, 

but has more complicated formulas for handling the bias caused by data that is not at ultimate 
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1.2 Objective 

This goal of our method is to model the underlying claims process in more detail and to improve 

the accuracy of predictions.  The models mentioned above as well as other similar approaches do 

not use many useful pieces of information available in the data, such as the reporting times (and 

number, for some) of unpaid claims, how the likelihood of a claim being paid changes as the claim 

ages, and individual detail of how outstanding reserved claims have been settling.  There is also no 

framework for handling mixes of policy retentions and limits and for dealing with changes in this 

mix over time.  Lastly, modeling processes that are more abstracted and removed from reality like 

the total development process of aggregate losses makes it harder to fit simple parametric models 

that can be used to smooth volatility and produce more accurate fits; this will be elaborated later on 

as well.  The approach developed in this paper was designed to use as much information as possible 

while not being overly complicated. 

There are many benefits of individually modeling each component of the claims process 

separately.  This can be compared to analyzing data for a trend indication.  Combining frequency 

and severity information can often mask important patterns in the data while separating them out 

usually yields better predictions.  This is because when there are different underlying drivers 

affecting the data, it becomes harder to see what the true patterns in the data are.  Take, for example, 

two incurred triangles for two different segments, in which the first segment has a slower reporting 

pattern, but more severe losses than the second.  More severe losses tend to be reserved for sooner 

and more conservatively, and so this will make the aggregate loss development pattern faster.  On 

the other hand, the slower reporting pattern will obviously make the pattern slower than the second.  

When comparing these two aggregate triangles, it may be difficult to judge whether the differences 

are caused mostly from volatility, or whether there are in fact real differences between these two 

segments.  In contrast, looking at each component separately will yield clearer details and results.  

The example we gave applied to comparing two separate triangles, but this will also create problems 

when attempting to select development factors for a single, unstable triangle.  High volatility 

compounds this issue. 

Second, by looking at every component separately, we increase the data available to analyze since, 

for example, only a fraction of reported claims end up being paid or reserved for.  When looking at 

aggregate data, we only see the paid or incurred claims, but if we analyze the claim reporting pattern 

separately, we are able to utilize every single claim, even those that close without payment or reserve 

setup.  When making predictions, we are also able to take into account the number and 

characteristics of claims that are currently open, which will add to the accuracy of our predictions. 
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Lastly, as mentioned, by separating out each piece, it becomes much easier to fit parametric 

models to the data that we can be confident in.  It is difficult to find an appropriate curve that 

provides a good fit to the development patterns in aggregate data.  But it is relatively easy to find 

very good fits for each of the individual pieces of the development process, such as the reporting 

and settlement times and the severity of each loss.  Fitting parametric models involves estimating 

fewer parameters than relying on empirical data where every single duration needs to be estimated 

independently, and so helps lower the variance of the predictions, since prediction variance increases 

with the number of parameters being estimated, as is known1.  We show an example later based on 

simulated data that demonstrates that the prediction volatility can be cut by more than half by using 

this method over standard triangle methods.  Fitting parametric models to each piece will also help 

us control for changes in retentions and limits, as well as enable us to create segmentations in the 

data, as will be explained more later. 

1.3 Outline 

For this model, we break the claims process down into five separate pieces, as shown in the 

diagram below.  Each piece will be discussed below in more detail.   

 

 

 

The five parts we will analyze are as follows: 

A) The reporting time of each claim 

                                                 
1 That is, with keeping the data the same.  By separating out each piece, even though we now need to estimate separate 
parameters for each piece, this does not increase the variance, since we are working with more data.  This is analogous to 
how separating out frequency and severity trend information would not increase the variance even though we now have 
to estimate two trend parameters instead of one. 
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B) The percent of reported claims that are paid, as well as the settlement times of reported claims 

C) The severity of each paid claim 

D) The final settlement amount of each claim that has outstanding case reserves 

E) Legal payments 

The next section will discuss fitting distributions when right truncation is present in the data, 

which will be used for some of these pieces; it will also discuss the fitting of hyper-parameters, 

which is not absolutely necessary to build this model, but can be used to make it more refined.  

Section 3 will then discuss each of these modeling steps in detail and section 4 will discuss the how 

to use each piece to calculate the unpaid and ultimate loss and legal estimates.  Section 5 will show a 

numerical example of using this method on simulated data.  Section 6 will discuss ways to check this 

model, and finally, section 7 will discuss some alternatives and other uses of this model, such as to 

calculate the volatility of ultimate losses. 

2. TECHNICAL BACKGROUND 

Before we delve into the details of each piece, we first need to explain the process of right 

truncation and how to build a model when it is present in the data.  This will be discussed in the first 

two parts of this section.  It will also be helpful to understand the process of fitting hyper-

parameters, which will be discussed in the third part of this section. 

2.1 Maximum Likelihood Estimation with Right Truncation 

When modeling insurance losses, we normally have to deal with left truncation and right 

censoring.  Left truncation is caused by retentions where we have no information regarding the 

number of claims below the retention.  Right censoring is caused by policy limits and is different 

from truncation in that we know the number of claims that pierce the limit, even if we still do not 

know the exact dollar amounts.  Reported claim counts, for example, which we will be analyzing in 

this paper, are right truncated, since we have no information regarding the number of claims that 

will occur after the evaluation date of the data. 

We will be using Maximum Likelihood Estimation (MLE) to model reporting times, and MLE 

can handle right truncation similar to how it handles left truncation.  To handle left truncation, the 

likelihood of each item is divided by the survival function at its truncation point; similarly, to handle 

right truncation, each item's likelihood should be divided by the cumulative distribution function 

(CDF) at its truncation point. 
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2.2 Reverse Kaplan-Meier Method for Right Truncation 

When fitting a distribution to data, it is a good idea to compare the fitted curve to the empirical 

to help judge the goodness of fit.  Probably the most common method actuaries use to calculate the 

empirical distribution when dealing with retentions and limits (i.e. left truncation and right 

censoring) is the Kaplan-Meier method.  Here, however, we have data that is right truncated, which 

is not handled by this method.  We propose a modification to work with right truncated data that we 

will refer to as the reverse-Kaplan-Meier method. 

In the normal Kaplan-Meier method, we start from the left and calculate the conditional survival 

probabilities at each interval.  For example, we may first calculate the probability of being greater 

than 1 conditional on being greater than 0, i.e. s(1) / s(0).  We may then calculate s(2) / s(1), and so 

on.  For this second interval, we would exclude any claims with retentions greater than 1, with limits 

less than 2, and with claims less than 1.  To calculate the value of s(2) for example, we would 

multiply these two probabilities together, that is: 

s(2)=
s(1)

s (0)
×

s(2)

s (1)  

To accommodate right truncation, we will instead start from the right and calculate the 

conditional CDF probabilities, e.g. F(9) / F(10), followed by F(8) / F(9), etc.  To calculate the value 

of F(8) for example, we can multiply these probabilities together: 

F (8)

F (10)
=

F (9)

F (10)
×

F (8)

F (9)    

This is the value of F(8) conditional on the tail of the distribution at t=10.  We can plug in this tail 

value from the fitted distribution and use this empirical curve to test the goodness of fit of our fitted 

distribution.  Using this method, all points of the calculated empirical distribution depend on the tail 

portion, which can be very volatile because of the thinness in this portion of the data.  For the 

comparison with the fitted distribution to be useful, the right-most point should be chosen at a 

point before the data gets too volatile.  It may be helpful to choose a couple of different right-most 

points for the comparison. 

2.3 Hyper-Parameters 

This method can be used to help refine some pieces of the model, but is not absolutely necessary.  

It involves fitting a distribution to data via MLE but letting one or more of the distribution 

parameters vary based on some characteristic of each data point.  We refer to this technique as the 

hyper-parameters method, since the distribution's parameters themselves have parameters, and these 
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are known as hyper-parameters.  This can be useful, for example, if we want our reporting times 

distribution to vary based on the retention. 

To set this method up, each claim should have its own distribution parameters.  These 

parameters are a function of some base parameters (that are common to all claims), the claim's 

retention, in this example, and another adjustment parameter that helps determine how fast the 

parameter changes with retention.  These base parameters can be the distribution parameters at a 

zero retention or at the lowest retention.  Both the base parameters and the adjustment parameters 

are then all solved for using MLE.  If there are different segments, each segment can be given its 

own base parameters but share the same adjustment parameters.  Either one or more of the 

distribution's parameters can contain hyper-parameters.  It is also possible to reparameterize the 

distribution to help obtain the relationship we want, as will be shown in the below example. 

In this example, we will assume that we are fitting a Gamma distribution, with parameters alpha 

and beta, to the reporting times of all claims (which will be explained more later), and that we wish 

the mean of this distribution to vary with the retention, with the assumption that claims at higher 

retentions are generally reported later.  The mean of a Gamma distribution is given by alpha divided 

by beta, and so we need to reparameterize the distribution.  We will reparameterize our distribution 

to have parameters for the mean (mu) and for the coefficient of deviation (CV).  The original 

parameters can be obtained by alpha = 1 / CV², and beta = 1 / ( mu x CV² ).  Only the first 

parameter, mu, will vary with the retention. 

The first step is to determine the shape of an appropriate curve to use for this parameter.  For 

this, we fit the data with MLE allowing only one parameter for the CV, but having different 

parameters for the mean for each group of retentions.  Plotting these points can help determine 

whether a linear of a logarithmic curve is the most appropriate.  The final curve can then be plotted 

against these points to help judge the goodness of fit.  After doing this, assume that we decided to 

use the equation, log(mur)= log(mubase)+ exp (theta)× log(r /base) , where r is the retention of 

each claim, base is the retention of the lowest claim, and log(mubase)  and theta are parameters that 

are fit via MLE, in addition to the CV parameter which is common across all claims.  We took the 

exponent of theta to ensure that the mu parameter is strictly increasing with retention.  Once this is 

done, we have a distribution that is appropriate for every retention. 

3. MODELING STEPS 

The modeling of each of the five parts will now be explained in detail.  Using all of these pieces 

for the calculation of the unpaid and ultimate projections will be discussed in the following section. 
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Table 1 below shows the data that will be needed for each of the steps. 

Table 1: 

Part Data Fields Needed 

A) Reporting Times Claim Level, All Claims Accident Date, Report Date 

B) Percent Paid and 
Settlement Times 

Claim Level, All Closed Claims 

(May also include open 
outstanding claims as well) 

Report Date, Closed Date, Final 
State of Claim (Paid or Not) 

C) Severity Claim Level, All Closed Claims Claim Amount, Retention, Policy 
Limit, Accident Date, Closed Date 

D) Case Outstanding 
Claims 

Claim Level, All Closed Claims 
That Have Had an Outstanding 
Reserve At Some Point 

Average Outstanding Value, 
Ultimate Paid Amount (including 
zeros), Policy Limit 

E) Legal Payments Aggregate Claim Data, All Data Paid Losses and Paid Legal Amounts 
by Total Duration 

 

3.1 Part A: Reported Times 

In this section, we will explain how to model the reporting lag, that is, the time from the accident 

date of a claim to the report date.  (If report date is unavailable, the create quarter can be used 

instead by using the first quarter that each claim number first appears.)  This will be used to help 

estimate the pure IBNR portion of unpaid losses later.  This data is right truncated since we have no 

information about the number of claims that will occur after the evaluation date.  The right 

truncation point for each claim is the evaluation date of the data minus the accident date of the 

claim.  We will use MLE to fit a distribution to these times.  The Exponential, Weibull, and Gamma 

distributions all appear to fit this type of data very well.  (A log-logistic curve may also be 

appropriate in some cases with a thicker tail, although the tail of this distribution should be cut off at 

some point so as not to be too severe.) 

After this data is fit with MLE using right truncation, the goodness of fit should be compared 

against the empirical curve which can be obtained using the reverse-Kaplan-Meier method, all as 

described in the previous section.  Using this approach, as opposed to using aggregate data, makes it 

much easier to see if the reporting lag distribution has any significant historical changes.  There is 

also no need to estimate a separate tail piece as this is already included in the reporting times 
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distribution2. 

3.2 Part B: The Likelihood of a Claim Being Paid 

The second component to be modeled is the percent of reported claims that will ultimately be 

paid.  This can be done very simply by dividing the number of paid claims by the total number of 

closed claims, but this estimate may be biased if closed with no payment (CNP) claims tend to close 

faster than paid claims.  If this is true and we do not take this into account, we will underestimate 

the percent of claims that are paid, since our snapshot of data being used will have relatively more 

CNP claims that would be present after all claims are settled.  To give an extreme example to help 

illustrate this point, say there are two report years of data.  All CNP claims settle in the first year, and 

all paid claims settle in the second year.  There are 100 claims each year, and 50% of claims are paid.  

The evaluation date of the data is one year after the latest year.  The first year will have 50 CNP 

claims and 50 paid claims.  When looking at the second year however, we will see 50 CNP claims 

and no paid claims, since all of the claims that will ultimately be paid are still open (and we do not 

know what their final state will be).  When we calculate the percent of claims paid using the available 

data, we will get the following: 

50 paid claims

50 paid claims+ 100closed claims
=

1

3  

which is less than the correct value of 50%. 

Instead, we will suggest an alternative approach.  For the first step, we fit distributions to all paid 

claims and to all CNP claims separately.  (If the distributions do not appear different, then the paid 

likelihood can be calculated simply by dividing and there is no need to go further.)  There will still be 

many open claims in the data that we do not know what their ultimate state will be making the 

ultimate number of paid and CNP claims unknown, and so this data is right truncated as well.  The 

right truncation point for each claim is equal to the reported date subtracted from the evaluation 

date.  The Exponential, Weibul, and Gamma distributions all appear to be good candidates for this 

type of data as well. 

The ultimate number of paid claims is equal to the following, where F(x) is the cumulative 

distribution function evaluated at x: 

∑
i= All Paid Claims

1/ F Paid (Evaluation Date− Report Datei)  

                                                 
2 This tail may only be accurate if relatively small, otherwise, it is an extrapolation, which may not be accurate.  The 
Gamma tail seems slightly better than the Weibull, but this observation is based off of limited data. 
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And the ultimate number of unpaid claims is equal to: 

∑
i= All CNPClaims

1/ F CNP(Evaluation Date− Report Datei)  

And so, the ultimate percent of claims that are paid is equal to: 

Ultimate Paid Claims

Ultimate Paid Claims+ UltimateCNPClaims  

Dividing each claim by the CDF at the right truncation point is similar to performing a chain ladder 

method.  The most recent years may have high development factors and may be unstable.  To 

address this, we can make the method more similar to a Cape Cod-like method by weighting each 

year appropriately according to the credibility of each year.  To do this, the weight for each year can 

be set to the average of the calculated CDF values of each claim multiplied by the claim volume.  

The paid distribution or the CNP distribution can be used to calculate this CDF, or it can be taken 

as the average of the two.  To give more recent, relevant experience slightly more weight, an 

exponential decay factor can be applied as well.  Alternatively, the actual number of claims per year 

can be used instead.  For this version, the ultimate claim counts for each year should be multiplied 

by the ratio of the actual claim count to the ultimate claim count for that year.  Using this 

reweighting technique (that is, dividing by the CDF and then multiplying by an off-balance factor 

for each year) will not change the number of claims, but still addresses the bias that is caused from 

our data being right truncated.  We will refer to this approach as right truncated reweighting.  This 

approach will be used when building more complicated models on this type of data. 

So far, we have calculated the total percentage of claims that will be paid; this will be used for the 

calculation of pure IBNR.  We also need to determine how this percentage changes with duration to 

be able to apply this to currently open claims for calculation of IBNER.  If paid claims have a longer 

duration than CNP claims, then it should be expected that the paid percentage should increase with 

duration, since relatively more CNP claims will have already closed earlier.  So the longer a claim is 

open, the more chance it has of being paid.  To calculate this, we can use Bayes' formula as follows: 

P (Paid | t≥ x)=
P (t≥ x | Paid )× P (Paid )

P ( t≥ x | Paid )× P (Paid )+ P( t≥ x |CNP )× P (CNP )  

=
sPaid ( x)× P (Paid )

sPaid (x)× P (Paid )+ sCNP(x )× P (CNP )  

 

(3.1) 

where t is the time from the reported date of the claim and x is the duration for each year.  It is also 

possible to calculate the paid likelihoods for claims closing at exactly a given duration (that is, not 

conditional as in the above) by using the PDFs instead of the survival functions in formula 3.1.  
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These values can then be used to compare against the actual paid likelihoods by duration as a sanity 

check.  The conditional likelihoods cannot be used for this since these likelihoods represent the 

probability of a claim being paid given that it has been open for at least a certain number of years, 

but not exactly at that time. 

A more detailed model that also incorporates outstanding claims can be built as well, where 

instead of just modeling the lags and probabilities of two states (paid and CNP), the outstanding 

state is modeled as well.  Once claims are in the outstanding state, they can then transition to either 

the paid or CNP states.  All of these states and transitions can be modeled using the same 

techniques discussed in this section.  The ultimate probability of a claim being paid is then equal to 

the probability of a reported claim being paid (before transitioning to an outstanding state, that is) 

plus the product of the probabilities of transitioning to an outstanding state and of transitioning 

from an outstanding state to a paid state.  This is a mini Markov Chain model, with bias correction 

caused from the right truncation of the data.  If open claims are assigned different “signal” reserves 

that represent information about the possibility of payment for each claim, then a more detailed 

Markov Chain model can be built that incorporates the probability of transitioning to and from each 

of these “signal” states as well. 

Another possible refinement is to have the paid (or other state) likelihoods vary by various 

factors, such as the type of claim or the reporting lag, by building a GLM on the claim data.  To 

account for the bias caused from the data being at an incomplete state, right truncated reweighting 

can be used to calculate the weights for the GLM, and a weighted regression can be performed; this 

will account for the bias without altering the total number of observations.  The settlement lag 

distributions can even be allowed to vary by various factors as well using the hyper-parameters 

approach.  The resulting probabilities will be the paid (or other) likelihoods from time zero, which 

can be applied to new, pure IBNR claims.  For currently open claims for calculation of IBNER, 

Bayes’ formula (3.1) should be used to calculate the conditional probabilities given that a claim has 

been open for at least a certain amount of time.  If the settlement lag distributions were allowed to 

vary, the appropriate distribution should be used for this calculation as well. 

We should note that using right truncated reweighting for the GLM and then again adjusting the 

resulting probabilities is not double counting the effects of development.  The former is to account 

for the fact that the data used for modeling is not at ultimate, while the latter is needed to reflect 

how the probability of a claim being paid varies over time. 

It may seem odd at first that the probabilities for open claims are developed and so will always be 

higher than the probabilities used to apply to new, pure IBNR claims (if this is how claims develop, 
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which it often is).  If everything develops as expected, the total predicted number of paid claims will 

not change, as will be illustrated.  Using an example similar to the above, there are 100 claims and 

half of these claims will be paid.  All unpaid claims close in the first year and all paid claims close in 

the second year. The initial, unconditional probability to apply to new claims is 50%.  After a year, 

we will assign 100% probability of being paid to all the remaining claims.  Initially we predicted that 

half of the 100 claims will be paid, which is 50 claims.  After a year, no actual claims were paid and 

we will predict that 100% of the 50 remaining claims will be paid, which also equals 50 claims.  This 

estimate would be biased downwards if we did not apply this adjustment to calculate the conditional 

probabilities. 

3.3 Part C: Severity Portion 

This portion involves fitting an appropriate severity distribution to the claim data.  Before doing 

so, all losses should be trended to a common year.  We will also need to take into account that more 

severe claims tend to be reported and settled later.  It is technically possible to have the paid 

settlement time distribution vary with claim size and use right truncated reweighting here as well, but 

this approach will likely not be accurate since only a few large claims may have settled earlier.  

Because this problem is also relevant to constructing Increased Limit Factors in general, we will 

elaborate on this in detail.  There are many ways that this can be accounted for, but we will only 

discuss a couple. 

The first way is to use the hyper-parameters approach discussed earlier.  Claim severity can be a 

function of the reporting lag, the settlement lag, both, or the sum of the two, which is the total 

duration of the claim.  If these lag distributions were made to vary by retention or by other factors, it 

may be more accurate to model on the percentile complete instead of the actual lag.  To give an 

example of using the hyper-parameters approach, if we allowed the scale parameter of our 

distribution to vary with duration, this would be assuming that each claim increases by the same 

amount on average, no matter the size of the claim.  (Note that this may be a poor assumption as it 

is more likely that the tail potential increases with duration, since the more severe claims tend to 

arrive at the later durations.)  The limited expected value (LEV) at any lag can now be calculated.  

This LEV can be used directly if solving for ultimate losses by simulating claim arrival times.  If 

using a closed form solution, a weighted average of the LEVs can be calculated by using the 

(conditional) reporting times and/or settlement times distributions.  If the total duration was used, 

the distribution for total duration can be obtained by calculating the discrete convolution of the 
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reporting and settlement times distributions.3  If we wanted to calculate a single distribution that 

represents the expected amount of claims that will be settled in each duration, we can do the 

following.  We will first note that if survival values are generated from a loss distribution, and these 

survival values are then converted into a probability density function (PDF) by taking the differences 

of the percentages at each interval, and then this data is refit via MLE using these PDF percentages 

as the weights (by multiplying each log-likelihood by its weight), the original distribution parameters 

will be produced.  (This can be confirmed via simulation.)  The values for each likelihood can either 

be the average of the two values for each interval, or more accurately, can be represented as a range.  

MLE can be performed using ranges by setting each likelihood to the difference of the CDFs at the 

two interval values.  This can also be done by generating the PDF values from the distribution 

directly, but in order to be accurate, this would need to be done at very fine increments.  Using this, 

we can generate a single distribution based on the percentages of claims expected to be settled in 

each duration by generating the PDF tables for each duration as mentioned, and then setting the 

total sum of the weights for each duration to equal the percentage of claims expected to be settled in 

each duration.  (It is possible that this mixed distribution of durations may not be the same as the 

original distribution used to fit a single duration.  If this is the case, parameters can be added by 

creating a mixed distribution of the same type as the original distribution.  There is no fear of adding 

too many parameters and over-fitting here, since we are not fitting to actual data, but to values that 

have already been smoothed.)  The survival percentages generated should start at and be conditional 

on the lowest policy retention and go up to the top of the credible region for the severity curve.  

This will make the mixing of the different duration curves more properly reflect the actual claim 

values and make the final fitted distribution more accurate. 

Another way to account for the increasing severity by duration, is to use a survival regression 

model called the Cox Proportional Hazards Model.  This model does not rely on any distribution 

assumptions for the underlying data, as it is semi-parametric.  It can also handle retentions and 

limits, i.e. left truncation and right censoring.  As opposed to a GLM that models on the mean, the 

Cox model tells how the hazard function varies with various parameters.  The Cox Model is 

multiplicative, similar to a log-link function in a GLM.  The form of the model is: 

H i(t)= H 0(t)exp(B i 1 X i 1+ Bi 2 X i 2+ ...) , where H i(t) is the cumulative hazard function for a 

particular risk at time t, H 0(t) is the baseline hazard, roughly similar to an intercept (although this is 

                                                 
3 A discrete convolution is calculated by first converting each of these continuous distributions to be discrete.  The 
probabilities for each amount, x, are then calculated by multiplying the probabilities of each distribution that add up to x.  
For example, for x = 3, this can be achieved by a reporting lag of 0 and a settlement lag of 3, or a reporting lag of 1 and 
a settlement lag of 2, etc. 
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not returned from the model), and the B's and X's are the coefficients and the data for a particular 

risk, respectively.  The cumulative hazard function, H(t) is equal to: H(t) = exp[-s(t)], and so s(t) = -

ln[H(t)].  It can be seen from this formula that a multiplicative factor applied to the cumulative 

hazard function is equivalent to taking the survival function to a power4.  We will use this fact below.  

A full discussion of the Cox model is outside the scope of this paper5.   

Assuming that we are modeling on the total duration of each claim, with this approach we are 

assuming that the hazard function of the data changes with the duration.  The hazard can be thought 

of very roughly as the thickness of the tail, and so we are assuming that the tail is what increases 

with duration.  

Initially, a Cox model should be run on the individual loss data with a coefficient for each 

duration to help judge the shape of the curve for how the hazard changes with duration.  Next, 

another model should be fit with a continuous coefficient either for the duration or the log of 

duration, or any other function of duration that is appropriate.  Different segments that may be 

changing by year can also be controlled for with other coefficients.6 

Assuming the log of duration was used, the pattern for how the severity curve changes with 

duration, d, can be obtained from the results of the Cox model, as follows: 

Relative Hazard (d )= exp (Cox Duration Coefficient× log(d ))= dCox DurationCoefficient
  (3.2) 

There are two ways that will be discussed to create severity distributions using this information.  

Before we explain the first method, we first need to mention that if an empirical survival curve is 

generated from claim data using the Kaplan-Meier method, and this survival function is then 

converted to a PDF and fitted with MLE, as explained, the parameters will match those that would 

be obtained from fitting the claim data directly with MLE.  (This can be confirmed via simulation as 

well.)  The first way involves first calculating the empirical survival curve at the base duration, where 

the base duration is the duration that is assigned a coefficient of zero in the Cox model.  To do this, 

instead of using the probably more familiar Kaplan-Meier method to calculate the empirical survival 

function, we use the Nelson-Aalen method to calculate the empirical cumulative hazard function.  

As a note on the Nelson-Aalen method, calculating the cumulative hazard and then taking the 

negative of the natural logarithms to convert to a survival function will produce very similar values 

to the survival values produced from the Kaplan-Meier method.  The Nelson-Aalen estimate is equal 

                                                 
4 Even though the Cox Model technically models on the instantaneous hazard function, since it also assumes that the 
hazards always differ by a constant multiplicative factor, this model can also be viewed as modeling on the cumulative 
hazard as well, since the ratios between the instantaneous and cumulative hazards will be the same. 
5 For a longer explanation, see Fox 2002. 
6 These segments should ideally be treated as separate strata in a stratified model. 
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to: 

H (t)=∑
i≤ t

d i

n i
 

Where d i  is the number of events in each interval and n i  is the number of total risks that exist at 

each interval.  To calculate the hazard at the base duration using the coefficients from the Cox 

model, the following formula can be used: 

H 0(t)=∑
i≤ t

∑
Each Risk

1/exp(coefficient (d i))

ni

 

 (3.3) 

The only difference from the normal Nelson-Aalen formula is that instead of counting all events the 

same, as one, each event is counted as the inverse of the exponent of the sum of its coefficients. 

Using this, we can calculate the survival function at the base hazard by taking the negative of the 

natural logarithm of the cumulative hazard.  With the base survival function, we can now calculate 

the survival function at any duration, d, using the following formula: 

sd (t)= sBase(t)
RelativeHazard (d )

  (3.4) 

The survival functions at each duration can then be converted to probability distribution functions 

and then fit with MLE as shown above.  Doing this will produce a distribution for each duration (or 

duration group, if durations were combined to simplify this procedure).  A single distribution 

representing a weighted average of the expected durations can also be obtained by combining the 

data from multiple durations together and weighting each according to the expected percentage of 

claims expected to be settled at each duration.  (Note that this new distribution may not be the same 

type as the original distribution as mentioned above.)  Alternatively, another way that does not 

require fitting a distribution at every duration is to only fit a distribution to the base duration.  The 

fitted survival values can be produced at the base duration using this distribution, and the survival 

values at any duration can then be obtained by taking this base survival function to the appropriate 

power.  The limited expected values can now be obtained by “integrating” the survival values at the 

desired duration, since: 

 LEV (Retention ,Policy Limit )= ∫
Retention

Retention+ PolicyLimit

s (x )dx  

Where by LEV(Retention, Policy Limit), we mean the limited expected value from the retention up 

to the retention plus the policy limit.  To do this discretely, we can use this formula as an 

approximation: 
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LEV (Retention ,Policy Limit)= (Width of s( x) Increments)× ∑
Retention

Retention+ Policy Limit

s( x)  

The thinner the increment width that the survival values are calculated at, the more accurate this will 

be.  Putting this together, the formula to calculate the LEV at each duration d is as follows: 

LEV d ( Retention , Policy Limit )= Width× ∑
Retention

Retention+ PolicyLimit

s(x )
RelativeHazard (d )

 
 (3.5) 

The second method to construct distributions for each duration is similar except that it involves 

adjusting the actual claim values instead of the survival or hazard functions.  We can use the well 

known relationship for adjusting a distribution for trend, F(x) = F'(ax) (Rosenberg et al. 1981), 

where F(x) is the cumulative distribution function of the original distribution before adjusting for 

trend, F'(x) is the same after adjusting for trend, and a is the trend adjustment factor.  Similarly here, 

using survival functions instead of cumulative distribution functions, we can solve for the 

adjustment factor for every value of x that satisfies, s( x)= s ' (ax )= s(ax)Desired Adjustment
, or 

equivalently, s( x)1 /Desired Adjustment= s(ax ) , since the latter is computationally quicker to solve.  The 

survival values can be determined from either the empirical Kaplan-Meier survival function or from 

a fitted survival function applied to the entire data set.  This factor, a, can be determined for every 

claim amount and duration by backing into the value of a that satisfies the equality.  Once this is 

done, all of the original loss data can be adjusted to the base duration, and then a loss distribution 

can be fit to this data.  We can use this same method to adjust the claim data to any duration, or 

alternatively, any of the methods discussed above in this section can be performed to derive LEVs at 

all of the durations. 

If one is using a one- or two-parameter Pareto distribution, this process becomes simpler since 

taking the survival function to a power is equivalent to multiplying the alpha parameter by a factor.  

This can be easily seen by looking the Pareto formulas, which will not be shown here.  Once the 

distribution is fit at the base duration using one of the methods discussed, the distribution for any 

duration can be obtained by adjusting the alpha parameter, as follows: 

αd= αbase× Relative Hazard (d )   (3.6) 

Similar methods can be used if using other types of regression models as well, such as a GLM or 

an Accelerated Failure Time model, which will not be elaborated on here. 

3.4 Part D: Outstanding Reserved Claims 

This section explains the estimating of the ultimate settlement values of claims that currently have 
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outstanding reserves.  Note that this is different from open, non-reserved claims in that the reserve 

amounts here are significant.  For example, some companies set up a reserve amount of one dollar 

or a similar amount to indicate that a claim is open, but that no real estimate of the claim's ultimate 

settlement value is available yet. 

To calculate the ultimate paid amounts, we will use a logistic GLM (that is a GLM with a logit 

link and a binomial error term) on all closed claims that have had an outstanding reserve set up at 

some point in the claim's lifetime.  We will model on the dollar amounts divided by the policy limits 

using the following regression equation: 

Paid

Policy Limit
= B1

AverageO /S

Policy Limit
+ B2 exp(

AverageO /S

Policy Limit
)  

 (3.7) 

We used the average outstanding value for each claim since the reserve amount of a claim may have 

changed over time7.  Note that this ratio can also be calculated directly by dividing the sum of 

ultimate paid dollars by the sum of outstanding reserves, but this result may be biased since the 

ultimate settlement values depend on the dollar amount of reserves setup, and this amount depends 

on the duration.  It is also not as refined as it could be.  CNP claims can be included or excluded 

from this model.  If they are excluded, a separate model will need to be built to account for.  If they 

are included, right truncated reweighting should be performed on the claims to avoid any bias. 

Formula 3.7 seems to provide a very good fit to some types of data, although sometimes 

logarithms or other alternatives (such as splines) are more appropriate, depending on the book of 

business and the company.  The logistic model will ensure that the predicted value is always less than 

one, since the claim cannot (usually) settle for more than the limit.  (Some GLM packages may give a 

warning when modeling on data that is not all ones and zeros, but it should still return appropriate 

results.)  Once again, the fit should be compared to the actual.  This model will capture the fact that 

claims reserved near the policy limit tend to settle for lower on average (since they only have one 

direction to move), while claims reserved for lower amounts have a tendency to develop upwards, 

on average.  It is also possible to add coefficients for the type of claim and other factors if desired. 

3.5 Part E: Legal Payments 

The legal percentages should be calculated for each duration, since this percentage usually 

increases with duration.  To address credibility issues with looking at each duration separately, a 

                                                 
7 Alternatively, it is also possible to include every outstanding amount in the model, weight appropriately so that all of 
the rows for each claim add up to one, and use a Generalized Linear Mixed Model to account for the correlation 
between the data points. 
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curve should be fit to this data.  Once this is done, cumulative percentages should be calculated for 

each duration by taking a weighted average of the legal percentages from each duration until the last 

duration.  The weights should be based on the expected amount of paid dollars per duration.  This 

pattern can be obtained by looking at the aggregate data, or by using the model from this paper and 

simulating all years' losses from the beginning.  (This will be discussed a bit more later as well).  

These cumulative legal percentages will be applied to the unpaid losses for each accident year. 

The approach we chose to use here is not as refined as it could be.  It is also possible to build a 

more robust model that determines the legal payments separately for each of the parts from Table 1, 

and takes into account the number claims as well as the limits and retentions by year, etc.  We used a 

simpler approach here so as not to over-complicate our approach. 

4. CALCULATION OF UNPAID LOSSES 

Each part of the unpaid loss plus legal expenses now needs to be calculated.  Table 2 below 

shows the data that is needed for each part that will be described in detail below.  The right-most 

column also shows which parts of the modeling steps from Table 1 each piece depends on. 

Table 2: 

Part Data Fields Needed Depends 
On 

1) Pure IBNR Grouped Policy Data Average Expected Accident Date 
(Average of the Effective Date and the 
Earlier of the Expiration Date and the 
Evaluation Date), Retention, Policy Limit, 
Sum of Exposures or On-Level Premiums 

A, B, C 

2) IBNER on 
Non-Reserved 
Claims 

Claim Level Detail, All 
Open Non-Reserved 
Claims 

Accident Date, Report Date, Retention, 
Policy Limit 

B, C 

3) IBNER on 
Reserved Claims 

Claim Level Detail, All 
Open Reserved Claims 

Outstanding Amount, Policy Limit D 

4) Legal Payments None None E 

 

4.1 Part 1: Pure IBNR 

For the calculation of pure IBNR, we will calculate the frequency of a claim for each policy using 
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a Cape Cod-like method while also controlling for differences in retentions between policies.  We 

will use the following formula to calculate the frequency per exposure unit: 

Frequency=
Total Reported Claims

Used ExposureUnits  
 (4.1) 

Where F(x) and s(x) are the CDF and survival function, respectively, calculated at x and Used 

Exposures Units is defined as: 

Exposure Units× F Report Time( Eval Date− Avg Accident Date)× sSeverity (Retention)   (4.2) 

The severity distribution should be detrended to the appropriate year before calculating this value.  

Doing this will take care of the frequency trend component that is a result of retention erosion.  If 

there is a non-zero ground up frequency trend as well, this should also be accounted for.  If using 

premiums, the exposure units can be the on-level premiums divided by the LEV for the policy layer.  

Dividing by the LEV takes the severity component out of the premium.  Similar to the Cape Cod 

method, we multiply the exposures by the percentage of claims that were expected to have already 

been reported at this point in time.  We obtain this percentage by applying the CDF of reported 

claim times (Part A) to the right truncation point for each group of policies.  So as not give too 

much weight to older years, decaying weights can be used here as well.  To take different retentions 

into account, we need to consider that a policy with a retention of $100,000 may only see 50% of the 

ground up claims while a policy with a retention of $200,000 may only see 20%.  By multiplying the 

exposures by the survival function at the retention, we adjust for this.  (The severity distribution that 

should be used should not be calculated at a specific duration, but should be the overall average 

distribution that would be used to price accounts.) 

We then calculate the expected IBNR frequency per policy using this formula: 

Frequency× Exposures× sReport Time( Eval Date− Avg Acc Date)× sSeverity(R)   (4.3) 

Where “Eval Date” is the evaluation data, “Avg Acc Date” is the average accident data, and “R” is 

the retention.  The exposures times the survival function of the reported times represents the 

unused portion of the exposures.  Once we have this, we can multiply the expected frequency per 

policy by the paid likelihood, obtained from Part B to get the expected number of paid IBNR 

claims.  We then apply Part C to calculate the average severity for each paid claim by calculating the 

conditional severity of each paid claim above the retention, that is, LEV(Retention, Policy Limit) / 

s(Retention).  The claim distribution should be detrended to the appropriate year if it is desired to 

have losses on a historical basis.  Otherwise, if trended losses are needed for pricing or profitability 

purposes, no detrending is needed.  The durations, reporting lags, and/or settlement lags should be 
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taken into account if the severity distribution was made dependent on these, by using the 

appropriate conditional distributions given the current reporting lag of each claim. 

4.2 Part 2: IBNER on Non-Reserved Claims 

For each open non-reserved claim, we need to calculate the probability of it being paid given its 

current duration using formula 3.1 from Part B above.  Severities can be calculated taking into 

account each claim's reporting lag and the conditional settlement times distribution given its current 

settlement lag.  Multiplying these two pieces together yields the expected value of IBNER for each 

claim.  Summing up all of these values will yield the total IBNER on opened, non-reserved claims 

for the entire book. 

4.3 Part 3: IBNER on Reserved Claims 

All that is needed for this part is to apply the model from Part D to all open reserved claims to 

produce the expected paid ratio to policy limit for each claim, and then multiply each percentage by 

the policy limit to obtain the dollar amount.  Subtracting the total outstanding reserves from this 

number will yield the IBNER for these claims.  Note that this amount can be both positive and 

negative.  

4.4 Part 4: Legal Payments 

The appropriate cumulative legal percentage from Part E should then be applied to each accident 

year's total unpaid losses to calculate the total expected legal payments, taking into account the age 

of each year.  This part is only needed if legal payments are paid outside of the policy limits; 

otherwise, they should be included in Part C, in the average severity. 

4.5 IBNR and Ultimate Losses 

Taking the sum of the four parts above will yield the unreported loss plus legal estimates per year.  

Adding this to the incurred losses will produce the ultimate indications.  It is also possible to 

calculate the losses for a prospective year of policies with the expected makeup of retentions and 

policy limits from the beginning to derive an estimate of the expected ultimate losses for the 

prospective period.  This can be done for historical periods as a check as well.  

5. NUMERICAL EXAMPLE 

We will now illustrate this method with an example using simulated data.  To simplify, we will not 
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include any outstanding claims or legal payments, so only Parts A (reporting times), B (percent of 

claims paid and settlement times), and C (claim severity) will be needed.  We will also assume that 

the claim severity does not change with duration or year, and that all claims occur on the first day of 

each year.  We first walk through an example using a particular simulation run chosen at random, 

and then discuss the results of running many simulations. 

Claim reporting and settlement times were simulated from Exponential distributions, with a 

mean of 2 years for reporting times, and means of 4 and 3 years for the settlement times of claims 

that end up being paid and unpaid, respectively.  Claim frequencies were simulated from a Negative 

Binomial distribution having a variance-to-mean ratio of 2 and a frequency per policy of 0.5 (for 

claims above the retention).  Each claim had a probability of 20% of being paid.  Claim severity was 

simulated from a Lognormal distribution with mu and sigma parameters of 9 and 2, respectively.  All 

policies had a retention of half a million and a policy limit of one million.  We simulated ten years of 

data, with 1,000 accounts each year.  The two tables below show what the aggregate loss triangle 

looks like for this simulation run, and the respective link ratios for that run.  Note the large amount 

of volatility in the link ratios. 

1 2 3 4 5 6 7 8 9 1 0

2004 $2,603 $7,733 $13,900 $18,985 $22,930 $28,700 $32,359 $33,268 $36,414 $38,731

2005 $1,565 $5,296 $14,285 $23,152 $27,106 $31,980 $34,089 $37,308 $38,502

2006 $708 $6,249 $10,862 $16,483 $19,533 $25,779 $31,793 $35,490

2007 $1,479 $4,321 $9,433 $14,885 $19,508 $24,071 $25,798

2008 $1,068 $5,550 $9,263 $20,372 $26,033 $29,437

2009 $1,350 $10,322 $19,760 $27,413 $33,388

201 0 $1,065 $3,656 $10,077 $17,731

201 1 $2,732 $7,055 $14,523

201 2 $2,356 $9,900

Year  / 
Duration

 

Year 1 :2 2:3 3:4 4:5 5:6 6:7 7:8 8:9 9:10

2004 2.970 1.798 1.366 1.208 1.252 1.127 1.028 1.095 1.064

2005 3.384 2.698 1.621 1.171 1.180 1.066 1.094 1.032

2006 8.824 1.738 1.517 1.185 1.320 1.233 1.116

2007 2.922 2.183 1.578 1.311 1.234 1.072

2008 5.195 1.669 2.199 1.278 1.131

2009 7.647 1.914 1.387 1.218

201 0 3.432 2.756 1.760

201 1 2.582 2.059

201 2 4.203  

We will now use the method described in this paper.  Following Part A, the first step is to fit an 

Exponential distribution to the reporting times of all claims using MLE, taking the right truncation 

point of each year's claims into account.  Doing this yielded a mean of 1.99, very close to the actual 
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value of 2, which is not surprising given the large number of reported claims.  Using this, we 

calculated the value of the CDF at the right truncation point for every policy (which is the evaluation 

date of the data minus the average accident data of each policy), and then multiply this by the 

number of exposures to produce the number of used exposures per year.  Dividing the total number 

of claims by this number yields the excess claim frequency per policy.  Normally, we would also 

multiply by the survival function at each claim's retention to produce the ground up frequency (as in 

formula 4.2); we chose to skip this step for simplicity since all policies have the same retention in 

this example.  The results are shown in the table below.  The bottom right of this table shows that 

the final calculated frequency per policy was 0.500, which matches the actual value used to simulate 

the data.  Again, this accuracy is not surprising given the large number of total claims. 

Year Used Exposures Claims Frequency

2004 993 521 52.4

2005 989 476 48.1

2006 982 502 51.1

2007 970 499 51.4

2008 951 471 49.5

2009 918 433 47.1

201 0 865 424 49.0

201 1 778 399 51.3

201 2 633 307 48.5

201 3 394 206 52.3

TOTAL 8474 4238 50.0
 

We now continue with Part B, and fit distributions to all of the paid and CNP claims separately, 

also with taking the right truncation point of each claim into account.  The fitted means of the 

Exponential distributions for the paid and CNP claims were 4.17 and 2.91, not far from the actual 

values of 4 and 3, respectively.  We then develop each claim by taking the inverse of the CDF at the 

right truncation point, and add up all of these values to produce the ultimate number of paid and 

CNP claims per year as detailed in section 3.2.  We can then estimate the percentage of claims that 

are paid each year by dividing.  To be more similar to a Cape Cod-like method, as mentioned, to 

calculate the weights given to each year, we first calculate the average of the paid and the CNP CDF 

values for each claim.  We then take the average of these values across all claims for each year.  

Using this, older, more mature years are given more weight and newer, greener years are given less.  

To place some more weight on the more recent experience, a yearly exponential decay factor can be 

applied, as mentioned above in section 3.2, but we did not do so in this example for simplicity.  The 

results are shown in the table below.  The final calculated value for the percent of claims paid was 

21.2%, close to the true value of 20%. 
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Year Ultimate Paid Claims Ultimate CNP Claims Relative Weight Percent Paid

2004 123 409 0.88 23.1

2005 86 392 0.87 18.1

2006 100 401 0.82 19.9

2007 87 404 0.78 17.8

2008 89 349 0.71 20.3

2009 104 336 0.64 23.6

201 0 99 304 0.55 24.6

201 1 84 277 0.45 23.1

201 2 101 231 0.32 30.4

201 3 36 191 0.17 15.8

TOTAL 908 3294 NA 21.2  

Note how both the results in this table (minus the latest two years) as well as the previous table 

that shows claim frequency were relatively stable by year, even with volatile data such as this.  This is 

usually not the case with loss development factors, as can be seen from the triangle above. 

We then use formula 3.1 shown above to solve for the conditional percent of claims paid given 

that a claim has been open for a certain amount of time.  This percentage needs to be calculated for 

every open claim and depends on the evaluation date of the data and the report lag of each claim.  

The average percentages for each year are shown in the table below.  Note how the likelihood of 

being paid is higher for claims from older years which have been open for longer; this was expected 

since the average settlement time for paid claims was longer than that of unpaid claims. 

Year Percent

2004 35.6

2005 31.9

2006 32.0

2007 29.2

2008 28.2

2009 26.4

201 0 25.1

201 1 24.3

201 2 23.0  

The final piece is Part C, where we estimate the parameters of the severity distribution.  Fitting a 

Lognormal distribution to the data using MLE, taking the retention and limit of each claim into 

account produced mu and sigma parameters of 11.5 and 1.45, compared to the true parameters of 9 

and 2.  Using these parameters to calculate the average limited expected value for the appropriate 

retention and limit yields $479,726; the actual value was $469,588.  (In practice, if all retentions and 

limits are the same and average severity does not appear to significantly change with the duration, it 

would be more efficient to calculate the average of the claim values directly, instead of fitting a 

distribution.)   
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We now use the results from the three steps above to estimate the unpaid losses per year.  We 

use the formulas above to calculate the pure IBNR and the IBNER per policy.  Recall that pure 

IBNR is calculated at the policy level by multiplying the unused exposures by the claim frequency 

and multiplying that by the expected percentage of claims that will be paid and the claim severity 

(formula 4.3).  IBNER is calculated at the claim level by multiplying the likelihood that each claim 

will be paid given its current duration (formula 3.1) by the severity.  Results are then aggregated by 

year.  Adding paid losses yields our ultimate projections.  The results are shown in the table below. 

Year Paid Pure IBNR IBNER Total Unpaid Ultimate

2004 38.7 0.3 9.6 9.9 48.6

2005 38.5 0.6 9.5 10.0 48.5

2006 35.5 0.9 13.3 14.3 49.8

2007 25.8 1.5 14.9 16.4 42.2

2008 29.4 2.5 21.2 23.7 53.2

2009 33.4 4.1 20.5 24.7 58.0

201 0 17.7 6.8 24.0 30.8 48.6

201 1 14.5 11.3 27.8 39.1 53.6

201 2 9.9 18.7 22.5 41.2 51.1

201 3 2.5 30.8 17.8 48.6 51.1
 

The below table shows how the results from this simulation compare to the actual.   

Year

2004 9.9 12.0 48.6 47.0 -2.1 -17.5% 1.7 3.6%

2005 10.0 11.7 48.5 47.0 -1.6 -13.7% 1.6 3.4%

2006 14.3 16.6 49.8 47.0 -2.3 -13.9% 2.8 6.0%

2007 16.4 13.2 42.2 47.0 3.1 23.5% -4.8 -10.2%

2008 23.7 24.1 53.2 47.0 -0.4 -1.7% 6.2 13.2%

2009 24.7 25.4 58.0 47.0 -0.8 -3.2% 11.1 23.6%

201 0 30.8 24.3 48.6 47.0 6.5 26.8% 1.6 3.4%

201 1 39.1 31.1 53.6 47.0 8.0 25.7% 6.6 14.0%

201 2 41.2 37.1 51.1 47.0 4.1 11.1% 4.1 8.7%

201 3 48.6 40.7 51.1 47.0 8.0 19.7% 4.2 8.9%

258.7 236.1 50.5 47.0 22.6 9.6% 3.5 7.5%

Estimated 
Unpaid

Actual 
Unpaid

Estimated 
Ultimate

Actual 
Ultimate

Unpaid 
Difference

Unpaid 
Percent 

Difference
Ultimate 

Difference

Ultimate 
Percent 

Difference

TOTAL / 
AVERAGE

 

Running many simulations confirms that this method is unbiased, even with a tail that extends 

for another 10 to 15 years past the evaluation date of the data.  For comparison with a standard 

triangle method, we used the Cape Cod method with the modified Bondy method (Boor 2006) for 

estimating the tail, where the tail is set to the square of the latest loss development factor; this was 

about correct, although we did not penalize for any overall tail bias.  Running 5,000 simulations 

showed a coefficient of variation for total unpaid losses for our method of 11.1% compared to 

23.1% for the aggregate triangle method, meaning that in this example, our method cut the standard 
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deviation down by more than half.  The difference in the ultimate projections was a bit under 40%, 

also quite dramatic.  As the data became sparser and we decreased the number of accounts per year, 

the benefit of our method over the triangle method became more pronounced, and it became 

smaller as we increased the number of years or accounts, both as expected.  Any change that made 

the data more volatile, such as increasing the frequency variance-to-mean ratio, increasing the sigma 

parameter in the severity distribution, or extending the settlement times of claims all decreased the 

difference between the two methods, although not too significantly.  At first, the direction of this 

change may seem surprising, but the fact is that as data becomes more volatile, there is less that can 

be done with it.  As an extreme example, for data that is so volatile that has almost no credibility, 

any method used on it will perform just as poorly, since the volatility is coming all from the data and 

not from the predictions.   

We should mention that the differences in volatility mentioned are overstated since no human 

input was used for selecting the best loss development factors.  On the flip side though, no penalty 

was given for any inaccuracy of the tail estimate.  But regardless, it should not be surprising that this 

method can lower the volatility by a very large margin; each parameter needed for predicting 

ultimate losses is estimated using the entire data, as opposed to the triangle method where each 

“parameter” only uses data from a single duration.  In addition, the estimated parameters from the 

latter part of the triangle are often very volatile and affect the entire estimate since they feed into all 

the earlier age-to-ultimate factors. 

6. CHECKING 

The most obvious way to check this model is to compare the ultimate results to that produced 

from a standard triangle analysis.  Results are not expected to match, but this should still give some 

indication as to the appropriateness of the model.   

If settlement times from Part B were calculated for times of paid claims only, that is, not 

including outstanding reserved claims, then paid loss development factors can be produced by 

starting each year from the beginning and calculating the expected losses at each duration.  Loss 

development factors can then be calculated from these expected payments by duration, and these 

can then be compared to the factors obtained from a triangle method as a sanity check.  It is also 

possible to use these paid loss development factors directly as an alternative.  Producing incurred 

loss development factors is more complicated as we would also need to take into account when 

reserves are set up, how they change, and when they will ultimately be paid. 
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7. REFINEMENTS AND ALTERNATIVE MODELS 

7.1 Paid Only Model 

A simplified version of this model can be used that only uses paid losses and does not consider 

reported or reserved claims.  With this approach, Parts B (percent paid and settlement times) and D 

(reserved claims) can be left out of the model since we are only interested in the settlement of paid 

claims.  Part A (reporting times) will be modified to only include paid claims and will now model the 

complete reporting plus settlement duration of each claim.  This approach does not take advantage 

of all of the data that the full model does, but is much easier to implement.  With this version, we 

also do not have to worry about dependencies between reporting and settlement times, and so this 

can also serve as a test for the full version of the model. 

With this paid-only model, more accurate modeling by retentions can also be performed.  In the 

full model, we modeled on the retention of each policy, so for example, a 50 million dollar claim on 

a policy with a one million retention would only be considered under the one million retention 

group.  With this new model, however, a Kaplan-Meier like approach can be used and this claim can 

be counted under all retentions up to 51 million, since this claim would still have occurred at all of 

these retentions.  To model this, we would use the MLE hyper-parameters method similar to the 

above, but claims can be counted multiple times in all of the retention groups that they could have 

occurred at.  Normally, the Kaplan-Meier method is done at increments of every claim level, but this 

is clearly not possible here because of performance constraints.  Instead, the method can be 

performed using wider intervals.  This approach is not possible with the full version since the 

ultimate paid amounts for each claim in the model is unknown. 

7.2 Segmentations using Mixed Models and Bayesian Credibility 

Our model consists of a bunch of different parametric distributions and GLMs.  Each 

distribution can be broken into finer segments and incorporate credibility by building a Bayesian 

model.  Similarly, instead of using GLMs, Generalized Linear Mixed Models (GLMMs) can be used 

to incorporate credibility by segment.  To produce credibility weighted estimates, it is better to run a 

prospective year from the beginning instead of adding the credibility weighted unpaid estimates to 

actual losses.  If this is not done, the unpaid portion may be credibility weighted, but the actual 

losses that already occurred still need to take credibility into account in order to be useful for a 

prediction.  Alternatively, initial estimates can be produced without taking credibility into account, 

and these estimates can then be credibility weighted.  Further discussion is outside the scope of this 

paper. 
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7.3 Differences by Retention 

All of the reporting and settlement time distributions can be made to vary with the retention of 

each claim by using the hyper-parameters approach discussed above in section 2.3.  This will take 

into account that larger claims, and thus policies with higher retentions, may have slower reporting 

and settlement of claims. 

7.4 Copulas 

As an alternative to using the hyper-parameters and the other approaches mentioned, normal or t 

copulas can be used instead to take into account the dependencies of the reporting, settlement, and 

claim severity distributions.  A further discussion is outside the scope of this paper. 

7.5 Calculation of Volatility 

This model can also be used to estimate the volatility in the IBNR or ultimate losses, either in 

closed form or via simulation.  Alternatively, our framework can also be used estimate the 

uncertainty in the loss predictions resulting from a regular triangle method.  To do this, losses will 

need to be simulated and triangles can be generated from these losses.  Simulating a paid triangle is 

relatively straightforward, but building a reported triangle is more difficult since it involves 

simulating the changes in each claim’s outstanding reserve values over time.  The frequency of each 

claim having a reserve change per year or quarter can be calculated directly.  For the average 

magnitude of each change, Part D above (section 3.4) can be modified to model all reserve changes, 

instead of just changes from the outstanding amount to the paid amount.  Now, given a starting 

reserve (as a percentage of the limit), we can calculate the expected reserve after the change.  To be 

able to simulate though, we need to build distributions around these expected values.  To do this, a 

Beta distribution can be fit to the data using the hyper-parameters approach to set the mean equal to 

the predicted value from the GLM and allowing the volatility (that is the sum of the alpha and beta 

parameters) to be solved for using MLE.  Once this is done, a Beta distribution will be available for 

each starting reserve amount that can be used to simulate the magnitude of the change.  Once a 

triangle is simulated, LDFs can be calculated (and ideally smoothed) and a method similar to that 

used to calculate the actual IBNR and ultimate losses can be performed.  Running many simulations 

will yield the distribution of the prediction errors, either on an absolute basis, or for a one year time 

horizon, which is needed for Solvency II. 
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8. CONCLUSIONS 

The goal of the frequency-severity development approach presented in this paper is improved 

accuracy and better segmentation.  This model can also produce valuable information regarding the 

expected frequency and severity of individual policies, provide a better framework for investigating 

how the reporting and settlement patterns may be changing over time, and generate volatility 

estimates.  A large loss load can be easily calculated as well using the severity distribution.  All of the 

benefits of this model, however, need be evaluated against the additional effort involved.  For cases 

involving very volatile or sparse data, including low frequency-high severity books of business, 

aggregate triangle methods start to struggle and their predictions can even become very questionable 

at times.  In these scenarios, the case for building a more detailed model, such as the one presented 

in this paper, becomes even stronger.  This model also takes many factors into account that triangle 

methods do not, such as the settlement lag of each claim and the outstanding amounts of each 

reserved claim, individually and not in aggregate, and so can be used to produce more accurate, 

refined estimates. 
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