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Complex Random Variables 

Leigh J. Halliwell, FCAS, MAAA 
______________________________________________________________________________ 

Abstract: Rarely have casualty actuaries needed, much less wanted, to work with complex numbers.  One readily 
could wisecrack about imaginary dollars and creative accounting.  However, complex numbers are well 
established in mathematics; they even provided the impetus for abstract algebra.  Moreover, they are essential in 
several scientific fields, most notably in electromagnetism and quantum mechanics, the two fields to which most 
of the sparse material about complex random variables is tied.  This paper will introduce complex random 
variables to an actuarial audience, arguing that complex random variables will eventually prove useful in the field 
of actuarial science.  First, it will describe the two ways in which statistical work with complex numbers differs 
from that with real numbers, viz., in transjugation versus transposition and in rank versus dimension.  Next, it 
will introduce the mean and the variance of the complex random vector, and derive the distribution function of 
the standard complex normal random vector.  Then it will derive the general distribution of the complex normal 
multivariate and discuss the behavior and moments of complex lognormal variables, a limiting case of which is 
the unit-circle random variable ΘieW =  for real Θ uniformly distributed.  Finally, it will suggest several 
foreseeable actuarial applications of the preceding theory, especially its application to linear statistical modeling.  
Though the paper will be algebraically intense, it will require little knowledge of complex-function theory.  But 
some of that theory, viz., Cauchy’s theorem and analytic continuation, will arise in an appendix on the complex 
moment generating function of a normal random multivariate. 
 
Keywords: Complex numbers, matrices, and random vectors; augmented variance; lognormal and unit-circle 
distributions; determinism; Cauchy-Riemann; analytic continuation 

______________________________________________________________________________ 

1. INTRODUCTION 

Even though their education has touched on algebra and calculus with complex numbers, most 

casualty actuaries would be hard-pressed to cite an actuarial use for numbers of the form iyx + .  

Their use in the discrete Fourier transformation (Klugman [1998], §4.7.1) is notable; however, many 

would view this as a trick or convenience, rather than as indicating any further usefulness.  In this 

paper we will develop a probability theory for complex random variables and vectors, arguing that 

such a theory will eventually find actuarial uses.  The development, lengthy and sometimes arduous, 

will take the following steps.  Sections 2-4 will base complex matrices in certain real-valued matrices 

called “double-real.”  This serves the aim of our presentation, namely, to analogize from real-valued 

random variables and vectors to complex ones.  Transposition and dimension in the real-valued 
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realm become transjugation and rank in the complex.  These differences figure into the standard 

quadratic form of Section 5, where also the distribution of the standard complex normal random 

vector is derived.  Section 6 will elaborate on the variance of a complex random vector, as well as 

introduce “augmented variance,” i.e., the variance of dyad whose second part is the complex 

conjugate of the first.  Section 7 derives of the formula for the distribution of the general complex 

normal multivariate.  Of special interest to many casualty actuaries should be the treatment of the 

complex lognormal random vector in Section 8, an intuition into whose behavior Section 9 provides 

on a univariate or scalar level.  Even further simplification in the next two sections leads to the unit-

circle random variable, which is the only random variable with widespread deterministic effects.  In 

Section 12 we adapt the linear statistical model to complex multivariates.  Finally, Section 13 lists 

foreseeable applications of complex random variables.  However, we believe their greatest benefit 

resides not in their concrete applications, but rather in their fostering abstractions of thought and 

imagination.  Three appendices delve into mathematical issues too complicated for the body of 

paper.  Those who work on an advanced level with lognormal random variables should read 

Appendix A (“Real-Valued Lognormal Random Vectors”), regardless of their interest in complex 

random variables.    

2. INVERTING COMPLEX MATRICES 

Let m×n complex matrix Z be composed of real and imaginary parts X and Y, i.e., YXZ i+= .  Of 

course, X and Y also must be m×n.  Since only square matrices have inverses, our purpose here 

requires that nm = .  Complex matrix BAW i+=  is an inverse of Z if and only if nIWZZW == , 

where In is the n×n identity matrix.  Because such an inverse must be unique, we may say that 

WZ 1 =− .  Under what conditions does W exist? 

 



Complex Random Variables 

Casualty Actuarial Society E-Forum, Fall 2015 3 

First, define the conjugate of Z as YXZ i−= .  Since the conjugate of a product equals the product 

of the conjugates,1 if Z is non-singular, then nn IIZZZZ 11 === −− .  Similarly, nIZZ 1 =− .  

Therefore, Z  too is non-singular, and 1-1
ZZ =

−
.  Moreover, if Z is non-singular, so too are Zni  

and Zni .  Therefore, the invertibility of YX i+ , XY i+− , YX i−− , XY i− ,  YX i− , XY i+ , 

YX i+− , and XY i−−  is true for all eight or true for none.  Invertibility is no respecter of the real 

and imaginary parts. 

 

Now if the inverse of Z is BAW i+= , then ( )( ) ( )( )YXBABAYXI iiiin ++=++= .  

Expanding the first equality, we have: 

( )( )

( ) ( )XBYAYBXA
YBXBYAXA

YBXBYAXA

BAYXI
2

++−=
−++=
+++=

++=

i
ii

iii
iin

 

Therefore, nIZW =  if and only if nIYBXA =−  and nn0XBYA ×=+ .  We may combine the last 

two equations into the partitioned-matrix form: 









=















 −
0
I

B
A

XY
YX n  

Since 0XBYA =+  if and only if 0XBYA =−− , another form just as valid is: 









=







−







 −

nI
0

A
B

XY
YX

 

We may combine these two forms into the balanced form: 

n
n

n
2I

I0
0I

AB
BA

XY
YX

=







=







 −







 −
 

                                                 
1 If Z and W are conformable to multiplication: 

( )( ) ( ) ( ) ( )( ) WZBAYXYAXBYBXAYAXBYBXABAYXZW =−−=+−−=++−=++= iiiiii   
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Therefore, nIZW =  if and only if 







=







 −







 −

n

n

I0
0I
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XY
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.  By a similar expansion of the 

last equality above, nIWZ =  if and only if 







=







 −







 −

n

n

I0
0I

XY
YX

AB
BA

.  Hence, we conclude 

that the n×n complex matrix YXZ i+=  is non-singular, or has an inverse, if and only if the 2n×2n 

real-valued matrix 






 −
XY
YX

 is non-singular.  Moreover, if 
1

XY
YX −








 −
 exists, it will have the form 








 −
AB
BA

 and 1Z−  will equal BA i+ . 

3. COMPLEX MATRICES AS DOUBLE-REAL MATRICES 

That the problem of inverting an n×n complex matrix resolves into the problem of inverting a 

2n×2n real-valued matrix suggests that with complex numbers one somehow gets “two for the price 

of one.”  It even hints of a relation between the general m×n complex matrix YXZ i+=  and the 

2m×2n complex matrix 






 −
XY
YX

.  If X and Y are m×n real matrices, we will call 






 −
XY
YX

 a 

double-real matrix.  The matrix is double in two senses; first, in that it involves two (same-sized and 

real-valued) matrices X and Y, and second, in that its right half is redundant, or reproducible from 

its left. 

 

Returning to the hint above, we easily see an addition analogy: 
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And if Z1 is m×n and Z2 is n×p, so that the matrices are conformable to multiplication, then 

( )( ) ( ) ( )21212121221121 XYYXYYXXYXYXZZ ++−=++= iii .  This is analogous with the 

double-real multiplication: 









−+
−−−

=






 −







 −

21212121

21212121

22

22

11

11

YYXXXYYX
XYYXYYXX

XY
YX

XY
YX

 

Rather trivial is the analogy between the m×n complex zero matrix and the 2m×2n double-real zero 

matrix 






 −×

00
00 nm , as well as that between the n×n complex identity matrix and the 2n×2n double-

real identity matrix 






 −

n

n

I0
0I

. 

 

The general 2m×2n double-real matrix may itself be decomposed into quasi-real and quasi-imaginary 

parts: 






 −
+








=







 −
0Y
Y0

X0
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XY
YX

.  And in the case of square matrices ( nm = ) this extends 

to the form 
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n

n , wherein the double-real matrix 
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0I
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n

n is analogous with the imaginary unit, inasmuch as: 

( ) 
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Finally, one of the most important theorems of linear algebra is that every m×n complex matrix 

YXZ i+=  may be reduced by invertible transformations to “canonical form” (Healy [1986], 32-

34).  In symbols, for every Z there exist non-singular matrices U and V such that: 
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nm

r
nnnmmm

×
××× 








=

00
0I

VZU  

The m×n real matrix on the right side of the equation consists entirely of zeroes except for r 

instances of one along its main diagonal.  Since invertible matrix operations can reposition the ones, 

it is further stipulated that the ones appear as a block in the upper-left corner.  Although many 

reductions of Z to canonical form exist, the canonical forms themselves must all contain the same 

number of ones, r, which is defined as the rank of Z.  Providing the matrices with real and complex 

parts, we have: 

( )( )( )
( ) ( )
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The double-real analogue to this is: 
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As shown in the previous section, 






 −
PQ
QP

 is non-singular, or invertible, if and only if 

QPU i+=  is non-singular; the same is true for 






 −
RS
SR

.  Therefore, the rank of the double-real 

analogue of a complex matrix is twice the rank of the complex matrix.  Moreover, the 2r instances of 

one correspond to r quasi-real and r quasi-imaginary instances.  It is not possible for the 

contribution to the rank of a matrix to be real without its being imaginary, and vice versa. 
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To conclude this section, there are extensive analogies between complex and double-real matrices, 

analogies so extensive that one who lacked either the confidence or the software to work with 

complex numbers could probably do a work-around with double-real matrices.2   

4. COMPLEX MATRICES AND VARIANCE 

[ ] ( )( ) 



 ′−−==Σ µµ xxx EVar  is a real-valued n×n matrix, whose jkth element is the covariance of 

the jth element of x with the kth element.  Since the covariance of two real-valued random variables is 

symmetric, Σ must be a symmetric matrix.  But a realistic Σ must have one other property, viz., non-

negative definiteness (NND).  This means that for every real-valued n×1 vector ξ, 0Σξξ ≥′ .3  This 

must be true, because Σξξ′  is the variance of the real-valued random variable xξ′ : 

[ ] ( )( ) ( )( ) ( )( ) ξξξξξξξξξξξ Σ′=



 ′−−′=



 ′−−′=



 ′′−′′−′=′ µµµµµµ xxxxxxx EEEVar  

Although variances of real-valued random variables may be zero, they must not be negative.  Now if 

0Σξξ >′  for all 10ξ ×≠ n , the variance Σ is said to be positive-definite (PD).  Every invertible NND 

matrix must be PD.  Moreover, every NND matrix may be expressed as the product of some real 

matrix and its transpose, the most common method for doing this being the Cholesky 

                                                 

2 The representation of the complex scalar iyxz +=  as the real 2×2 matrix 






 −
xy
yx

 is a common theme in 

modern algebra (e.g., section 7.2 of the Wikipedia article “Complex number”).  We have merely extended the 
representation to complex matrices.  Our representation is even more meaningful when expressed in the Kronecker-

product form Y.
01
10

X
10
01

0Y
Y0

X0
0X

XY
YX

⊗






 −
+⊗








=







 −
+








=







 −
  Due to certain properties 

of the Kronecker product (cf. Judge [1988], Appendix A.15), all the analogies of this section would hold even in the 

commuted form 






 −
⊗+








⊗

01
10

Y
10
01

X .  In practical terms this means that it matters not whether the form 

is 2×2 of m×n or m×n of 2×2. 
3 More accurately, [ ]0Σξξ ≥′ , since the quadratic form Σξξ′  is a 1×1 matrix.  The relevant point is that 1×1 real-
valued matrices are as orderable as their real-valued elements are.  Appendices A.13 and A.14 of Judge [1988] provide 
introductions to quadratic forms and definiteness that are sufficient to prove the theorems used herein. 
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decomposition (Healy [1986], §7.2).  Accordingly, if Σ is NND, then 0ΣAA ≥′  for any conformable 

real-valued matrix A.  Finally, if Σ is PD and real-valued n×r matrix A is of full column rank, i.e., 

( ) rrank rn =×A , then the r×r matrix ΣAA′  is PD. 

 

In the remainder of this section we will show how the analogy between YX i+  and 






 −
XY
YX

 

leads to a proper definition of the variance of a complex random vector.  We start by considering  








 −
XY
YX

 as a real-valued variance matrix.  In order to be so, first it must be symmetric: 








 −
=








′′−

′′
=

′








 −
XY
YX

XY
YX

XY
YX

 

Hence, 






 −
XY
YX

 is symmetric if and only if XX =′  and YY −=′ .  In words, X is symmetric and 

Y is skew-symmetric.  Clearly, the main diagonal of a skew-symmetric matrix must be zero.  But of 

greater significance, if a and b are real-valued n×1 vectors: 

( ) ( ) ( ) YabaYbaYbYbaYbaYba 11 ′−=−′=′′=′′=′=′ ×  

Consequently, if ab = : 

( )
110

2
YaaYaa

2
YaaYaaYaa ×=

′−+′
=

′+′
=′  

 

Next, considering the specifications on X, Y, a, and b, we evaluate the 2×2 quadratic form: 
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Therefore, 






 −







 −′








 −
ab
ba

XY
YX

ab
ba

 is PD [or NND] if and only if 














 −′









b
a

XY
YX

b
a

 is PD 

[or NND]. 

 

Now the double-real 2n×2 matrix 






 −
ab
ba

 is analogous with the n×1 complex vector ba i+ .  Its 

transpose 







′′−

′′
=

′








 −
ab
ba

ab
ba

 is analogous with the 1×n complex vector ba ′−′ i .  Moreover, 

( ) ( ) ( )*bababababa iiiii +=′+=
′

+=′−=′−′ , where ‘*’ is the combined operation of 
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transposition and conjugation (order irrelevant).4  And 






 −
XY
YX

 is analogous with the n×n 

complex matrix YX i+ .  Accordingly, the complex analogue of the double-real quadratic form 








 −







 −′








 −
ab
ba

XY
YX

ab
ba

 is ( ) ( )( )baYXba * iii +++ .  Moreover, since 






 −
XY
YX

 is 

symmetric, ( ) ( ) YXYXYXYX * iiii +=−−=′−′=+ .  A matrix equal to its transposed conjugate 

is said to be Hermetian: matrix Γ is Hermetian if and only if Γ=Γ* .  Therefore, YX inn +=Γ ×  is 

the variance matrix of some complex random variable yxz in +=×1  if and only if Γ is Hermetian 

and 






 −
XY
YX

 is non-negative-definite.5 

 

Because ( ) ( )( ) 














 −′









=⋅+















 −′









=+++

b
a

XY
YX

b
a

0
b
a

XY
YX

b
a

baYXba * iiii , the definiteness 

of  YX i+=Γ  is the same as the definiteness of 






 −
XY
YX

.  Therefore, a matrix qualifies as the 

variance matrix of some complex random vector if and only if it is Hermetian and NND.  Just as the 

variance matrix of a real-valued random vector factors as nn×′=Σ AA  for some real-valued A, so too 

the variance matrix of a complex random vector factors as nn×=Γ AA*  for some complex A.  

Likewise, every invertible Hermetian NND matrix must be PD.  Due to the skew symmetry of their 

                                                 
4 The transposed conjugate is sometimes called the “transjugate,” which in linear algebra is commonly symbolized with 
the asterisk.  Physicists prefer the “dagger” notation A†, though physicist Hermann Weyl [1950, p. 17] called it the 

“Hermetian conjugate” and symbolized it as A~ . 

5 It is superfluous to add ‘symmetric’ here.  For YX i+=Γ  is Hermetian if and only if 






 −
XY
YX

 is symmetric. 
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complex parts, the main diagonals of Hermetian matrices must be real-valued.  If the matrices are 

NND [or PD], all the elements of their main diagonals must be non-negative [or positive]. 

 

Let Γ represent the variance of the complex random vector z.  Its jkth element represents the 

covariance of the jth element of z with the kth element.  Since Γ is Hermetian, 

[ ] [ ] [ ] [ ] [ ] jkjkjkkjkjkjkj γγ =Γ=Γ=Γ′=Γ=Γ= * .  Because of this, it is fitting and natural to define 

the variance of a complex random vector as: 

[ ] ( )( ) ( )( )[ ]*µµµµ −−=



 ′

−−==Γ zzzzz EEVar  

The complex formula is like the real formula except that the second factor in the expectation is 

transjugated, not simply transposed.  This renders Γ Hermetian, since: 

( )( )[ ] ( )( ){ }[ ] ( )( )[ ] Γ=−−=−−=−−=Γ ****** µµµµµµ zzzzzz EEE  

It also renders Γ NND.  For since ( )( )*zz µµ −−  is NND, its expectation over the probability 

distribution of z must also be so.  Usually Γ is PD, in which case  1−Γ  exists. 

5. THE EXPECTATION OF THE STANDARD QUADRATIC FORM 

The most common quadratic form in zn×1 involves the variance of the complex random variable, 

viz., ( ) ( )µµ −Γ− − zz 1* , where [ ]zVar=Γ .  The expectation of this quadratic form equals n, the 

rank of the variance.  The following proof uses the trace function.  The trace of a matrix is the sum 

of its main-diagonal elements, and if A and B are conformable ( ) ( )BAtrABtr = .  Moreover, the 

trace of the expectation equals the expectation of the trace.  Consequently: 
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( ) ( )[ ] ( ) ( )( )[ ]
( )( )( )[ ]
( )( )[ ]( )
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=
=
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The analogies above between complex and double-real matrices might suggest the result to be 2n.  

However, for real-valued random variables ( ) ( )[ ] nE =−Σ− − µµ xx 1* , and the complex case is a 

superset of the real.  So by extension, the complex case must be the same. 

 

But an insight is available into why the value is n, rather than 2n.  Let x and y be n×1 real-valued 

random vectors.  Assume their means to be zero, and their variances to be identity matrices (so zero 

covariance): 
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The quadratic form is: 
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Since the elements have unit variances, the expectation is: 
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Now let z be the n×1 complex random vector yx i+ .  Since [ ] 10 ×=+ niE yx , the variance of z is: 
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The complex quadratic form is: 

( ) ( )( ) [ ] 







Σ′′=

+

+
=
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The complex form is half the real-valued form; hence, its expectation equals n.  The condensation of 

the 2n real dimensions into n complex ones inverts the order of operations: 

∑∑
== +

+
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Within the sigma operator, the sum of two quotients becomes the quotient of two sums.  A proof 

for general variance Γ involves diagonalizing Γ, i.e., that Γ can be eigen-decomposed as 

*WWΛ=Γ , where Λ is diagonal and nIWWWW ** == .6 

 

At this point we can derive the standard complex normal distribution.  The normal distribution is 

( )
( )

2

2

2
22

1 σ
µ

πσ

−
−

=
x

X exf .  The standard complex normal random variable is formed from two 

independent real normal variables whose means equal zero and whose variances equal one half: 

( )
( )

( )
( )

( )
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( ) ( ) zzyxyx

yx

Z eeeeeezf −+−−−
−

−
−

−

====
ππππππ
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1 2222

22

212
0
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0

 

The distribution of the n×1 standard complex normal random vector is ( ) zz*1z ef nπ
=z .  A vector so 

distributed has mean [ ] 10 ×= nE z  and variance [ ] [ ] nEVar I=′= zzz . 

6. COMPLEX VARIANCE, PSEUDOVARIANCE, AND AUGMENTED 
VARIANCE 

Section 4 justified the definition of the variance of a complex random vector as: 

[ ] ( )( ) ( )( )[ ]*µµµµ −−=



 ′

−−==Γ zzzzz EEVar  

The naïve formula differs from this by one critical symbol (prime versus asterisk): 

( )( ) 



 ′−−= µµ zzEC  

                                                 
6 Cf. Appendix C for eigen-decomposition and diagonalization.  We believe the insight about commuting sums and 
quotients to be valuable as an abstraction.  But of course, a vector of n independent complex random variables of unit 

variance translates into a vector of 2n independent real random variables of half-unit variance, and n
n

j
=∑

=

2

1 2
1

.  Because 

of the half-unit real variance, the formula in the next paragraph for the standard complex normal distribution, lacking 
any factors of two, is simpler than the formula for the standard real normal distribution. 
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This naïveté leads many to conclude that [ ] [ ] [ ]zzz VarVariiVar −== 2 , whereas it is actually:7 

 [ ] ( ) ( ){ }[ ] ( ) ( )[ ] ( )( )[ ] ( ) [ ] [ ]zzzzzzzzz VarVariiEiiiiEiiEiVar =−=−−=−−=−−= *** µµµµµµ  

Nevertheless, there is a role for the naïve formula, which reduces to: 

( )( ) ( )( ) ( )( )[ ] [ ]zzzzzzzz ,C
*

CovEEE =−−=






 ′
−−=



 ′−−= µµµµµµ  

Veeravalli [2006], whose notation we follow, calls C the “relation matrix.”  The Wikipedia article 

“Complex normal distribution” calls it the “pseudocovariance matrix.”  Because of the naïveté that 

leads many to a false conclusion, we prefer the ‘pseudo’ terminology (better, “pseudovariance”) to 

something as bland as “relation matrix.”  However, a useful and non-pejorative concept is what we 

will call the “augmented variance.”    

 

The augmented variance is the variance of the complex random vector z augmented with its 

conjugate z , i.e., the 2n×1 vector 







z
z

.  Its expectation is 
[ ]
[ ] 








=








=








µ
µ

z
z

z
z

E
E

E .  And its variance is 

(for brevity we ignore the mean): 

[ ] [ ] [ ]
[ ] [ ]






=








′′








=




























=








zzzz
zzzz

zz
z
z

z
z

z
z

z
z

,,
,,*

CovCov
CovCov

EEVar  

In two ways this matrix is redundant.  First, [ ] [ ] [ ] [ ]zzzzzzzz ,, CovEECov =′=′= ; equivalently, 

[ ] [ ] Γ== zz VarVar .  And second, [ ] [ ] [ ] [ ] C,, ==′=′= zzzzzzzz CovEECov .  Therefore: 

[ ] [ ]
[ ] [ ] 








Γ

Γ
=








=








C

C
,,
,,
zzzz
zzzz

z
z

CovCov
CovCov

Var  

                                                 
7 In general, for any complex scalar α, [ ] [ ]zz VarVar ααα = . 
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As with any valid variance matrix, the augmented variance must be Hermetian.  Hence, 










Γ′
′Γ

=
′










Γ
Γ

=
′









Γ

Γ
=








Γ

Γ
=








Γ

Γ
*

**

C
C

C
C

C
C

C
C

C
C

, from which follow Γ=Γ*  and CC =′ .  

Moreover, it must be at least NND, if not PD.  It is important to note from this that the 

pseudovariance is an essential part of the augmented z; it is possible for two random variables to 

have the same variance and to covary differently with their conjugates.  How a complex random 

vector covaries with its conjugate is useful information; it is even a parameter of the general complex 

normal distribution, which we will treat next. 

7. THE COMPLEX NORMAL DISTRIBUTION 

All the information for deriving the complex normal distribution of yxz in +=×1   is contained in 

the parameters of the real-valued multivariate normal distribution: 



















ΣΣ
ΣΣ

=Σ







=








××

yyyx

xyxx

y

x

y
x

nnnN 2212 ,
μ
μ

μ~  

According to this variance structure, the real and imaginary parts of z may covary, as long as the 

covariance is symmetric: xyyx Σ′=Σ .  The grand Σ matrix must be symmetric and PD.  The 

probability density function of this multivariate normal is:8 

( )
( )

[ ] [ ] 







−
−

Σ′−′′−′−







−
−

Σ′−′′−′−










−−

Σ
=

Σ
= y

x
yx

y

x
yx

y
x

μy
μx

μyμx
2
1

2

μy
μx

μyμx
2
1

2

11

2
1

2

1y,x eef
nnn ππ

 

 

                                                 
8 As derived briefly by Judge [1988, pp 49f].  Chapter 4 of Johnson [1992] is thorough.  To be precise, Σ   under the 

radical should be Σ , the absolute value of the determinant of Σ.  However, the determinant of a PD matrix must be 
positive (cf. Judge [1988, A.14(1)]). 
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Since yxz i+= , the augmented vector is 







Ξ=
















−

=







−
+

=







y
x

y
x

yx
yx

z
z

n
nn

nn

i
i

i
i

II
II

.  We will call 









−

=Ξ
nn

nn
n i

i
II
II

 the augmentation matrix; this linear function of the real-valued vectors produces 

the complex vector and its conjugate.  An important equation is: 

n
n

n

nn

nn

nn

nn
nn iii

i
2

* I2
2I0
02I

II
II

II
II

=







=








−








−

=ΞΞ  

Therefore, Ξn has an inverse, viz., one half of its transjugate. 

 

The augmented mean is 







=








−
+

=







Ξ=








μ
μ

μμ
μμ

μ
μ

yx

yx

y

x

z
z

i
i

E n .  The augmented variance is: 

( ) ( )
( ) ( )









Γ

Γ
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Σ−Σ+Σ+ΣΣ+Σ−Σ−Σ
Σ+Σ+Σ−ΣΣ−Σ−Σ+Σ
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Σ−ΣΣ−Σ
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yyxyyxxx

yyyx

xyxx

z
z
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And so: 

( ) ( ) ( ) 111*1*
1

1

C
C −−−−

−
− ΞΣΞ=ΣΞΞ=








Γ

Γ
=








nnnnVar

z
z

 

This can be reformulated as 1
1

*1*

C
C −

−
− Σ=Ξ








Γ

Γ
Ξ=Ξ








Ξ nnnnVar

z
z

. 
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We now work these augmented forms into the probability density function: 
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*
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n
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n
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n

Var

n
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e
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However, this is not quite the density function of z, since the differential volume has not been 

considered.  The correct formula is ( ) ( ) xyz y,xz dVfdVf







=
y
xz .  The differential volume in the xy 

coordinates is ∏
=

=
n

j
jj dydxdV

1
xy .  A change of dxj entails an equal change in the real part of dzj, 

even as a change of dyj entails an equal change in the imaginary part of dzj.  Accordingly, 

( ) xy
1111

z 1 dVdydxdydxidydxidyidxdV
n

j
jj

n

j
jj

n
n

j
jj

n
n

j
jj =⋅===⋅= ∏∏∏∏

====

.  It so happens that 

Ξn does not distort volume; but this had to be demonstrated.9 

 

So finally, the probability density function of the complex random vector z is: 
                                                 
9 This will be abstruse to some actuaries.  However, the integration theory is implicit in the change-of-variables 
technique outlined in Hogg [1984, pp 42-46].  That the n×n determinant represents “the volume function of an n-
dimensional parallelepiped” is beautifully explained in Chapter 4 of Schneider [1973]. 
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( ) ( ) ( ) ( )
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−
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Γ
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1
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This formula is equivalent to the one found in the Wikipedia article “Complex normal distribution.”  

Although CC 1−Γ−ΓΓ  appears within the radical of that article’s formula, it can be shown that 

CC
C

C 1−Γ−ΓΓ=
Γ

Γ
.  As far as allowable parameters are concerned, µ may be any complex 

vector.  
Γ

Γ
C

C
 is allowed if and only if Σ=Ξ








Γ

Γ
Ξ 4

C
C*

nn  is real-valued and PD. 

 

Veeravalli [2006] defines a “proper” complex variable as one whose pseudo[co]variance matrix is 

0n×n.  Inserting zero for C into the formula, we derive the probability density function of a proper 

complex random variable whose variance is Γ: 
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The transformations in the last several lines rely on the fact that Γ is Hermetian and PD.  Now the 

standard complex random vector is a proper complex random vector with mean zero and variance 

In.  Therefore, in confirmation of Section 5, its density function is zz*1 −enπ
. 

8. THE COMPLEX LOGNORMAL RANDOM VECTOR AND ITS 
MOMENTS 

A complex lognormal random vector is the elementwise exponentiation of a complex normal 

random vector: 1
1

×=×
nen

zw .  Its conjugate also is lognormal, since zee == zw .  Deriving the 

probability density function of w is precluded by the fact that wze →:  is many-to-one.  

Specifically, ( )kizz ewe π2+==  for any integer k.  So unlike the real-valued lognormal random 

variable, whose density function can be found in Klugman [1998, §A.4.11], an analytic form for the 
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complex lognormal density is not available.  However, even for the real-valued lognormal the 

density function is of little value; its moments are commonly derived from the moment generating 

function of the normal variable on which it is based.  So too, the moment generating function of the 

complex normal random vector is available for deriving the lognormal moments. 

 

We hereby define the moment generating function of the complex n×1 random vector z as 

( ) [ ]zz
z

ts
11 t,s ′+′
×× = eEM nn .  Since this definition may differ from other definitions in the sparse 

literature, we should justify it.  First, because we will take derivatives of this function with respect to 

s and t, the function must be differentiable.  This demands simple transposition in the linear 

combination, i.e.,  zz ts ′+′  rather than the transjugation zz ** ts + .  For transjugation would involve 

derivatives of the form 
ds
sd , which do not exist, as they violate the Cauchy-Riemann condition.10  

Second, even though moments of z  are conjugates of moments of z, we will need second-order 

moments involving both z and z .  For this reason both terms must be in the exponent of the 

moment generating function. 

 

                                                 
10 Cf. Appendix D.1.3 of Havil [2003].  Express ( )iyxzf +=  in terms of real-valued functions, i.e., as 

( ) ( )yxviyxu ,, ⋅+ .  The derivative is based on the matrix of real-valued partial derivatives 







∂∂∂∂
∂∂∂∂
yvyu
xvxu

.  

For the derivative to be the same in both directions, the Cauchy-Riemann condition must hold, viz., that 

yvxu ∂∂=∂∂  and yuxv ∂∂−=∂∂ .  But for ( ) iyxzzf −== , the partial-derivative matrix is 







−10

01
; 

hence yvxu ∂∂≠∂∂ .  The Cauchy-Riemann condition becomes intuitive when one regards a valid complex 

derivative as a double-real 2×2 matrix (Section 3).  Compare this with ( ) iyxzzf +== , whose matrix is 







10
01

, 

which represents the complex number 1. 
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We start with terminology from Section 7, viz., that 
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that 

















ΣΣ
ΣΣ

=Σ







=








××

yyyx

xyxx

y

x

y
x

nnnN 2212 ,
μ
μ

μ~ .  According to Appendix A, the moment 

generating function of the real-valued normal random vector  
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 is: 
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Consequently: 
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It is so that we could invoke it here that Appendix B went to the trouble of proving that complex 

values are allowed in this moment generating function. 

 

But in two ways we can simplify this expression.  First: 

( ) ( ) ( ) ( ) ( ) ( ) zzyxyxyx
y

x μtμsμμtμμsμtsμts
μ
μ

tsts ′+′=−′++′=′−+′+=











 ′−′+ iiii  



Complex Random Variables 

Casualty Actuarial Society E-Forum, Fall 2015 23 

And second, again from Section 7, **
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nnnnnnVar Ξ








ΣΣ
ΣΣ

Ξ=ΞΣΞ=







Γ

Γ
=








×

yyyx

xyxx

z
z

, or 

equivalently, 







ΣΣ
ΣΣ

=
Ξ









Γ

ΓΞ

yyyx

xyxx

2C
C

2

*
nn .  Hence: 

( ) ( ) ( ) ( ) ( ) ( )






−
+Ξ









Γ

ΓΞ




 ′−′+=








−
+









ΣΣ
ΣΣ





 ′−′+

ts
ts

2C
C

2
tsts

ts
ts

tsts
*

i
i

i
i nn

yyyx

xyxx  

On the right side, ( ) ( )
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And the simplified expression, based on the mean and the augmented variance of z, is: 
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As in Appendix A, let je  denote the jth unit vector of nℜ , or even better, of nC .  Then: 

[ ] ( )

[ ] ( ) [ ]jjjjjj
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Moreover: 

[ ] [ ] ( ) ( )kkkjjkjjkjkjkj eMeEeeE kj

CCCC
2
1μμ

0,ee
++++++ =+== z

zzzz  
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According to Section 6, C is symmetric ( CC =′ ).  This and further simplification leads to: 

[ ] ( ) ( ) [ ] [ ] jkkj
jkjkkkkjjjkkkjjkjjkj

kj eeEeEeeeeE CCC
2
1C

2
1μC

2
1μCCCC

2
1μμ

⋅===
++






 ++






 ++++++ zzzz  

Hence, mindful of the transjugation (*) in the definition of complex covariance, we have: 

[ ] [ ] [ ] [ ] [ ] [ ] [ ] ( )1, C −⋅=−=



−



= jkkjkjkjkjkjkj eeEeEeEeEeeEeEeEeeEeeCov zzzzzzzzzzzz  

In terms of zw e=  this translates as [ ] [ ] [ ] ( )nneEECov ×−




 ′= 1, Cwwww , in which the ‘◦’ operator 

represents elementwise multiplication.11  So too: 

[ ] [ ] ( )1,, C −⋅



==



 jkkjkjkj eeEeEeeCoveeCov zzzzzz  

This translates as [ ] [ ] [ ] ( )nneEECov ×−




 ′= 1, Cwwww . 

 

The remaining combination is the mixed form [ ]kj eeE zz : 

[ ] [ ] [ ] ( ) ( )kjkkjjjkkjkjkjkj eMeEeeEeeE kj

Γ+++Γ+++ ====
CC

2
1μμ

e,ez
zzzzzz  

Since Γ is Hermetian, jkjkjkkj Γ=Γ=Γ′=Γ * .  Hence: 

[ ] ( ) ( ) [ ] [ ] jkkj
jkjkkkkjjjkjkkjjjkkj
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⋅=== zzzz 2
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2
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Therefore, [ ] [ ] [ ] [ ] [ ] [ ] ( )1, −⋅=−= Γ jkkjkjkjkj eeEeEeEeEeeEeeCov zzzzzzzz , which translates as 

[ ] [ ] [ ] ( )nneEECov ×
Γ −





 ′= 1, wwww .  By conjugation, [ ] ( )1, −⋅



=



 Γjkkjkj eeEeEeeCov zzzz , 

which translates as [ ] [ ] [ ] ( )nneEECov ×
Γ −





 ′= 1, wwww . 

                                                 
11 Elementwise multiplication is formally known as the Hadamard, or Hadamard-Schur, product, of which we will make 
use in Appendices A and C.  Cf. Million [2007]. 
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We conclude this section by expressing it all in terms of 1
1

×=×
nen

zw .  Let z be complex normal with 

mean µ and augmented variance 
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Scaling all the lognormal means to unity (or setting 2Dμ −= ), we can say that the coefficient-of-

lognormal-augmented-variation matrix equals nn

Var
e 221 ×










−z
z

, which is analogous with the well-

known coefficient of lognormal variation 1
2σ −e . 

9. THE COMPLEX LOGNORMAL RANDOM VARIABLE 

The previous section derived the augmented mean and variance of the lognormal random vector; 

this section provides some intuition into it.  The complex lognormal random variable, or scalar, 



Complex Random Variables 

Casualty Actuarial Society E-Forum, Fall 2015 26 

derives from the real-valued normal bivariate 
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restriction; since ( ) ( ) ( )V,0μV,0μVμ, CNCNCN eeee == + , the normal mean affects only the scale of the 

lognormal.  The variance is written in correlation form, where 1ρ1 ≤≤− .  As usual, ∞<< τσ,0 .  
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We will say little about non-zero correlation ( 0ρ ≠ ); but at this point a digression on complex 

correlation is apt.  The coefficient of correlation between Z and its conjugate is: 

ZZZZ
ii ρ
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As a form of covariance, correlation is Hermetian.  Moreover: 
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So, the magnitude of complex correlation is not greater than unity.  The imaginary part of the 

correlation is zero unless some correlation exists between the real and imaginary parts of the 

underlying bivariate.  More interesting are the two limits: 1ρlim
02

=
+→ ZZτ

 and 1ρlim
0σ2

−=
+→ ZZ .  In the 
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first case, ZZ → in a statistical sense, and the correlation approaches one.  In the second case, 

ZZ −→ , and the correlation approaches negative one. 

 

Now if ZeW = , by the formulas of Section 8, [ ] ( ) ( ) ρστ2τσ2ρστ2τσ0 2222 ii eeeWE ⋅== −+−+  and 

[ ] ( ) ρστ2τσ 22 ieeWE −− ⋅= .  And the augmented variance is: 
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In the first case above, as +→ 0τ 2 , 







→








1
12σ2

e
W
W

E  and ( ) 







−→








11
11

1
22 σσ ee

W
W

Var .  Since 

the complex part Y becomes probability-limited to its mean of zero, the complex lognormal 

degenerates to the real-valued XeW = .  The limiting result is oblivious to the underlying correlation 

ρ, since WW → . 
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In the second case, as +→ 0σ 2 , 







→







 −

1
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e
W
W

E  and  
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ee
eee
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Var .  As 

in the first case, both [ ] [ ]WEWE =  and the underlying correlation ρ has disappeared.  Nevertheless, 

the variance shows W and its conjugate to differ; in fact, their correlation is the real-valued 

( ) ( ) [ ]WEeeeWW −=−=−−= −− 222

11ρ τττ .  Since 0τ 2 > , 0ρ1 <<− WW  and 

[ ] [ ] 10 <=< WEWE . 

 

Both these cases are understandable from the “geometry” of iYXiYXZ eeeeW === + .  The 

complex exponential function is the basis of polar coordinates; Xe  is the magnitude of W, and Y is 

the angle of W in radians counterclockwise from the real axis of the complex plane.  Imagine a 

canon whose angle and range can be set.  In the first case, the angle is fixed at zero, but the range is 

variable.  This makes for a lognormal distribution along the positive real axis.  In the second case, 

the canon’s angle varies, but its range is fixed at 10 =e .  This makes all the shots to land on the 

complex unit circle; hence, their mean lies within the circle, i.e., [ ] 1<WE .  Moreover, the symmetry 

of Y as ( )2τ,0N -distributed guarantees [ ]WE  to fall on the real axis, or [ ] 11 <<− WE .  

Furthermore, since the normal density function strictly decreases in both directions from the mean, 

more shots land to the right of the imaginary axis than to the left, so [ ] 10
2

<=< −τeWE .  A “right-

handed” canon, or a canon whose angle is measured clockwise from the real axis, fires iYX eeW −=  

shots. 

 



Complex Random Variables 

Casualty Actuarial Society E-Forum, Fall 2015 29 

A shot from an unrestricted canon will “almost surely” not land on the real axis.12  If we desire 

negative values from the complex lognormal random variable, as a practical matter we must extract 

them from its real or complex parts, e.g., ( )WU Re= .  One can see in the second case, that as 2τ  

grows larger, so too grows larger the probability that 0<U .  As ∞→2τ , the probability 

approaches one half.  In the limit, the shots are uniformly distributed around the complex unit 

circle.  In this specialized case ( +→ 0σ 2  and ∞→2τ ), the distribution of ( )WU Re=  is 

( )
21

1
u

ufU
−

=
π

, for 11 ≤≤− u .13 

This suggests a third case, in which ∞→2τ  while 2σ  remains at some positive amount.  An 

intriguing feature of complex variables is that infinite variance in Y leads to a uniform distribution of 

iYe .14  So if iYXZ eeeW == , ( ) YeWU X cosRe ==  will be something of a reflected lognormal; 

both its tails will be as heavy as the lognormal’s.15  In this case: 
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Again, ρ has disappeared from the limiting distribution; but in this case 0ρ =WW . 

 

                                                 
12 For an event almost surely to happen means that its probability is unity; for an event almost surely not to happen 
means that its probability is zero.  The latter case means not that the event will not happen, but rather that the event has 
zero probability mass.  For example, if X ~ Uniform[0, 1], Prob[X=½] = 0.  So X almost surely does not equal ½, even 
though ½ is as possible as any other number in the interval.   
13 For more on this bimodal Arcsine(-1, 1) distribution see Wikipedia, “Arcsine distribution.” 
14 The next section expands on this important subject.  “Infinite variance in Y” means “as the variance of Y approaches 

infinity.”  It does not mean that iYe  is uniform for a variable Y whose variance is infinite, e.g., for a Pareto random 
variable whose shape parameter is less than or equal to two. 
15 Cf. Halliwell [2013] for a discussion on the right tails of the lognormal and other loss distributions. 
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In practical work with ( )WU Re= ,16 the angular part iYe  will be more important than the 

lognormal range Xe .  For example, one who wanted the tendency for the larger magnitudes of 

( )WU Re=  to be positive might set the mean of Y at 2π−  and the correlation ρ to some positive 

value.  Thus, greater than average values of Y, angling off into quadrants 4 and 1 of the complex 

plane, would correlate with larger than average values of X and hence of Xe .  Of course, 

[ ] 2τ=YVar  would have to be small enough that deviations of π±  from [ ] 2π−=YE  would be 

tolerably rare.  Equivalently, one could set the mean of Y at 2π  and the correlation ρ to some 

negative value.  As a second example, one who wanted negative values of U to be less frequent than 

positive, might set both the mean of Y and ρ to zero, and set the variance of Y so that 

[ ]2Prob π>Y  is desirably small.  Some distributions of U for 22 στ >>  are bimodal, as in the 

specialized case +→ 0σ 2  and ∞→2τ .  But less extreme parameters would result in unimodal 

distributions for U over the entire real number line. 

10. THE COMPLEX UNIT-CIRCLE RANDOM VARIABLE 

In the previous section we claimed that as the variance 2τ  of the normal random variable Y 

approaches infinity, iYe approaches a uniform distribution over the complex unit circle.  The 

explanation and justification of this claim in this section prepare for an important implication in the 

next. 

 

Let real-valued random variable Y be distributed as [ ]2σμ,N , and let iYeW = .  According to the 

moment-generating-formula of Section 8, ( ) [ ] ( ) 2σμ2σμ 2222 tititititY
Y eeeEitM −+ === .  Although the 

                                                 
16 In the absence of an analytic distribution, practical work with the complex lognormal would seem to require 
simulating its values from the underlying normal distribution. 
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formula applies to complex values of t, here we’ll restrict it to real values.  With ℜ∈t  ( )itMY  is 

known as the characteristic function of real variable Y.  And so: 

( )
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==== −
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∞→∞→ 0if0
0if1
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2σ

σ

μ2σμ

σσ

22

2

22

22 t
t

eeeitM t
tittit

Y  

It is noteworthy, and indicative of a uniformity of some sort, that µ drops out of the result. 

 

Next, let real-valued random variable Θ be uniformly distributed over [ ]naa π2, + , where n is a 

positive integer; in symbols, [ ]naa π2,U~ +Θ .  Then: 
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Letting n approach infinity, we have: 
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Hence, ( ) ( ) 0
σ

δlimlim
2 tYn

itMitM ==
∞→

Θ∞→
.  The equality of the limits of the characteristic functions of 

the random variables implies the identity of the limits of their distributions; hence, the diffuse 

uniform [ ]∞+aa,U  is “the same” as the diffuse normal [ ]∞μ,N .17 

                                                 
17 Quotes are around ‘the same’ because the limiting distributions are not proper distributions.  The notion of diffuse 
distributions comes from Venter [1996, pp. 406-410], who shows there how different diffuse distributions result in 
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Indeed, for the limit to be 0δt  it is not required that n be an integer.  But for [ ]naa π2,U~ +Θ , the 

integral moments of Θ= ieW  are: 

[ ] [ ]








≠
±±=

=
== Θ

integralnot if0
,2,1if0

0if1

jn
jn
j

eEWE ijj   

So if n is an integer, jn will be an integer, and all the integral moments of W will be zero, except for 

the zeroth.  Therefore, the integral moments of Θ= ieW  are invariant to n, as long as the n in 2πn, 

the width of the interval of Θ, is a whole number.  Hence, although we hereby define the unit-circle 

random variable as Θie  for [ ]π2,0~ UΘ , the choice of 0=a  and 1=n  is out of convenience, 

rather than out of necessity.  The probability for Θie  to be in an arc of this circle of length l equals 

π2l . 

 

The integral moments of the conjugate of Θ−= ieW  are the same, for 

[ ] [ ] [ ] [ ]jjj
jjj WEWEWEWE ===== 00 δδ .  Alternatively, [ ] [ ] ( ) 00 δδ jj

ijj eEWE === −
Θ− .  And 

the jkth mixed moment is [ ] [ ] ( )[ ] ( ) jkkj
kjiikijkj eEeeEWWE δδ 0 ==== −
Θ−Θ−Θ .  Since 

[ ] [ ] 0== WEWE , the augmented variance of the unit-circle random variable is: 
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Hence, Θ= ieW  for [ ]π2,0~ UΘ  is not just a unit-circle random variable; having zero mean and 

unit variance, it is the standard unit-circle random variable. 
                                                                                                                                                             
different Bayesian estimates.  But here every continuous random variable Y diffuses through the periodicity of iYe  into 
the same limiting distribution, viz., the Kronecker 0δt  (note 31). 
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Multiplying W by a complex constant 0α ≠  affects the radius of the random variable, whose jkth 

mixed moment is: 

( ) ( )[ ] [ ] ( )
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===
kj
kjWWEWWE

j

jk
kjkjkjkj

if0
ifααδαααααα  

The augmented variance is [ ] 2Iαααα
α
α

==






 WVar
W
W

Var .  One may consider α as an instance of a 

complex random variable Α.  Due to the independence of Α from W, the jkth mixed moment of 

ΑW is ( ) ( )[ ] [ ] [ ] [ ] ( )[ ] jk
j

jk
kjkjkjkj ΑΑEΑΑEWWEΑΑEΑWΑWE δδ === .  Its augmented 

variance is [ ] [ ] [ ] [ ] [ ]{ } [ ]WVarΑEΑEAVarWVarΑΑE
AW
AW

Var +==







.  Unlike the one-dimensional 

W, ΑW can cover the whole complex plane.  However, like W, it too possesses the desirable 

property that ( )[ ] 0δ j
jΑWE = .18 

11. UNIT-CIRCULARITY AND DETERMINISM 

The single most important quality of a random variable is its mean.  In fact, just having reliable 

estimates of mean values would satisfy many users of actuarial analyses.  Stochastic advances in 

actuarial science over the last few decades notwithstanding, much actuarial work remains 

deterministic.  Determinism is not the reduction of a stochastic answer ( )XfY =  to its mean 

[ ] ( )[ ]XfEYE = .  Rather, the deterministic assumption is that the expectation of a function of a 

random variable equals the function of the expectation of the random variable; in symbols, 

                                                 
18 The existence of the moments [ ]kj ΑΑE  needs to be ascertained.  In particular, moments for j and k as negative 

integers will not exist unless [ ] [ ] [ ] 00Prob10Prob10Prob =>−=≠−== ΑΑΑΑ . 
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[ ] ( )[ ] [ ]( )XEfXfEYE == .  Because this assumption is true for linear f, it was felt to be a 

reasonable or necessary approximation for non-linear f. 

 

Advances in computing hardware and software, as well as increased technical sophistication, have 

made determinism more avoidable and less acceptable.  However, the complex unit-circular random 

variable provides a habitat for the survival of determinism.  To see this, let f be analytic over the 

domain of complex random variable Z.  From Cauchy’s Integral Formula (Havil [2003, Appendix 

D.8 and D.9]) it follows that within the domain of Z, f can be expressed as a convergent series 

( ) ∑
∞

=

+=++=
1

010
j

j
j zaazaazf  .  Taking the expectation, we have: 
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But if for every positive integer j [ ] [ ] jj ZEZE = , then: 

( )[ ] [ ] [ ] [ ]( )ZEfZEaaZEaaZfE
j

j
j

j

j
j =+=+= ∑∑

∞

=

∞

= 1
0

1
0  

Therefore, determinism conveniently works for analytic functions of random variables whose 

moments are powers of their means. 

 

Now a real-valued random variable whose moments are powers of its mean would have the 

characteristic function: 

( ) [ ] ( ) [ ] ( ) [ ] [ ]
[ ] ( )itMeXE
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This is the characteristic function of the “deterministic” random variable, i.e., the random variable 

whose probability is massed at one point, its mean.  So determinism with real-valued random 
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variables requires “deterministic” random variables.  But some complex random variables, such as 

the unit-circle, have the property [ ] [ ] jj ZEZE =  without being deterministic. 

 

In fact, when [ ] [ ] jj ZEZE = , not only is ( )[ ] [ ][ ]ZEfZfE = .  For positive integer k, ( )zf k  is as 

analytic as f itself; hence, ( )[ ] [ ]( )ZEfZfE kk = .  So the determinism with these complex random 

variables is valid for all moments; nothing is lost. 

 

In Section 10 we saw that for the unit-circle random variable Θ= ieW  and for ,2,1 ±±=j ,  

[ ] [ ] [ ] jjj WEWEWE ===− 0 .  Can determinism extend to non-analytic functions which involve 

the negative moments?  For example, let ( ) ( )zzg −= η1 , for some complex 0η ≠ .  The function 

is singular at η=z ; but within the disc { } { }η:1η: <=< zzzz  the function equals the 

convergent series: 
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Outside the disc, or for { } { }η:1η: >=> zzzz , another convergent series represents the 

function: 
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So, if 1η > , then η1<=W .  In this case: 
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However, if 1η < , then η1>=W .  So in this case: 
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Both answers are correct; however, only the first satisfies the deterministic equation 

( )[ ] [ ]( ) ( ) η10 === gWEgWgE . 

 

To understand why the answer depends on whether η is inside or outside the complex unit circle, let 

us evaluate ( )[ ]WgE  directly: 

( )[ ] ( )[ ] ( )[ ]
π
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2
θ

η
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i ∫

=
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−
=−=−=  

The next step is to transform from θ into θiez = .  So θθθ izddiedz i == , and the line integral 

transforms into a contour integral over the unit circle C: 
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Now the value of each of these integrals is one if its singularity is within the unit circle C, and zero if 

it is not.19  Of course, the singularity of the first integral at 0=z  lies within C; hence, its value is 

one.  The second integral’s singularity at η=z  lies within C if and only if 1η < .  Therefore: 

( )[ ] [ ]( )




<
>

⋅=








−
−

−
= ∫∫ 1ηif0

1ηif1
η2

1
02

1
η
1 WEg

z
dz

iz
dz

i
WgE

CC ππ
 

So the deterministic equation will hold for one of the Laurent series according to which the domain 

of the non-analytic function is divided into regions of convergence.  Fascinating enough is how the 

function ( )
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=
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= ∫ 1ηif0
1ηif1
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1ηφ

C z
dz

iπ
 serves as the indicator of a state, viz., the state of being 

inside or outside the complex unit circle. 

 

                                                 
19 Technically, the integral has no value if the singularity lies on C; but there are some practical advantages for “splitting 
the difference” in that case. 
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12. THE LINEAR STATISTICAL MODEL 

Better known as “regression” models, linear statistical models extend readily into the realm of 

complex numbers.  A general real-valued form of such models is presented and derived in Halliwell 

[1997, Appendix C]: 
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The subscript ‘1’ denotes observations, ‘2’ denotes predictions.  Vector 1y  is observed; the whole 

design matrix X is hypothesized, as well as the fourfold ‘Σ’ variance structure.  Although the 

variance structure may be non-negative-definite (NND), the variance of the observations 11Σ  must 

be positive-definite (PD).  Also, the observation design 1X  must be of full column rank.  The last 

two requirements ensure the existence of the inverses 1
11
−Σ  and ( ) 1

1
1

111 XX −−Σ′ .  The best linear 

unbiased predictor of 2y  is ( )βyβy ˆXˆXˆ 11
1

112122 −ΣΣ+= − .  The variance of prediction error 

22 ŷy −  is [ ] ( ) [ ]( ) 12
1

1121221
1

112121
1

1121222 XXˆVarXXˆ ΣΣΣ−Σ+
′

ΣΣ−ΣΣ−=− −−− βyyVar .  Embedded 

in these formulas are the estimator of β and its variance: 

( ) [ ] 1
1

1111
1

111
1

1
1

111 XˆXXXˆ yβyβ −−−− Σ′⋅=Σ′Σ′= Var . 

 

For the purpose of introducing complex numbers into the linear statistical model we will concern 

ourselves here only the estimation of the parameter β.  So we drop the subscripts ‘1’ and ‘2’ and 

simplify the observation as ey += Xβ , where [ ] Γ=eVar .  Again, X must be of full column rank 

and Γ must be Hermetian PD.  According to Section 4, transjugation is to complex matrices what 

transposition is to real-valued matrices.  Therefore, the short answer for a complex model is: 

( ) [ ] yβyβ 1*1*11* XˆXXXˆ −−−− Γ⋅=ΓΓ= Var . 
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However, deriving the solution from the double-real representation in Section 3 will deepen the 

understanding.  The double-real form of the observation is: 
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All the vectors and matrices in this form are real-valued.  The subscripts ‘r’ and ‘i’ denote the real 

and imaginary parts of y, X, β, and e.  Due to the redundancy of double-real representation, we may 

retain just the left column: 
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Note that if X is real-valued, then 0X =i , and ry  and iy  become two “data panels,” each with its 

own parameter rβ  and iβ .20 

 

Now let 







−

=Ξ
tt

tt
t i

i
II
II

, the augmentation matrix of Section 7, where t is the number of 

observations.  Since the augmentation matrix is non-singular, premultiplying the left-column form 

by it yields equivalent but insightful forms: 

                                                 
20 This assumes zero covariance between the error vectors. 
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The first insight is that eey +=+= βXXβ  is as much observed as ey += Xβ .  The second 

insight is that 







e
e

Var  is an augmented variance, whose general form according to Section 6 is 
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Var .  Therefore, the general form of the observation of a complex linear model is 
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, where 
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Var .  Not only is y  as observable as y, but also β  

is as estimable as β.  Furthermore, although the augmented variance may default to 0C = , the 

complex linear statistical model does not require 







e
e

 to be “proper complex,” as defined in Section 

7. 

 

Since X is of full column rank, so too must be 







X0
0X

.  And since Γ is Hermetian PD, both it and 

its conjugate Γ  are invertible.  But the general form of the observation requires 







Γ

Γ
C

C
 to be 
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Hermetian PD, hence invertible.  A consequence is that both the “determinant” forms CC 1−Γ−Γ  

and CC 1−Γ−Γ  are Hermetian PD and invertible.  With this background it can be shown, and the 

reader should verify, that 







Η

Η
=








Γ

Γ −

K
K

C
C 1

, where ( ) 11CC −−Γ−Γ=Η  and ΗΓ−= − CK 1 .  The 

important point is that inversion preserves the augmented-variance form. 

 

The solution of the complex linear model 
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The conjugates of the two equations in β̂  and β̂  are the same equations in β̂  and β̂ : 





















Η′′
Η

=








Η′+′
+Η

=




















Η′′
Η

β
β

yy
yy

β
β

ˆ
ˆ

XXXKX
XKXXX

XKX
KXX

ˆ

ˆ

XXXKX
XKXXX ******

 



Complex Random Variables 

Casualty Actuarial Society E-Forum, Fall 2015 42 

Therefore, 











=













β
β

β
β

ˆ
ˆ

ˆ

ˆ
.  It is well known that the estimator of a linear function of a random variable 

is the linear function of the estimator of the random variable.  But conjugation is not a linear 

function.  Nevertheless, we have just proven that the estimator of the conjugate is the conjugate of 

the estimator. 

13. ACTUARIAL APPLICATIONS OF COMPLEX RANDOM VARIABLES 

How might casualty actuaries put complex random variables to work?  Since the support of most 

complex random variables is a plane, rather than a line, their obvious application is bivariate.  An 

example is a random variable whose real part is loss and whose imaginary part is LAE.  Another 

application might pertain to copulas.  According to Venter [2002, p. 69], “copulas are joint 

distributions of unit random variables.”  One could translate these joint distributions into 

distributions of complex variables whose support is the complex unit square, i.e., the square whose 

vertices are the points iiz ,1,1,0 += .  However, for now it seems that real-valued bivariates 

provide the necessary theory and technique for these purposes. 

 

Actuaries who have applied log-linear models to triangles with paid increments have been frustrated 

applying them to incurred triangles.  The problem is that incurred increments are often negative, and 

the logarithm of a negative number is not real-valued.  This has led Glenn Meyers [2013] to seek 

modified lognormal distributions whose support includes the negative real numbers.  The persistent 

intractability of the log-linear problem was a major reason for our attention to the lognormal 

random vector 1
1

×=×
nen

zw  in Section 8.  But to model an incurred loss as the exponential function 

of a complex number suffers from two drawbacks.  First, to model a real-valued loss as iyx eee ⋅=z  

requires y to be an integral multiple of π.  The mixed random variable Xe  with probability p and 
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Xe−  with probability p−1 is not lognormal.  No more suitable are such “denatured” random 

variables as ( )ZeRe .  Second, one still cannot model the eminently practical value of zero, because 

for all z, 0≠ze .21  At present it does not appear that complex random variables will give birth to 

useful distributions of real-valued random variables.  Even the unit-circle and indicator random 

variables of Sections 10 and 11, as interesting as they are in the theory of analytic functions, most 

likely will engender no distributions valuable to actuarial work. 

 

The complex version of the linear model in Section 12 showed us that conjugates of observations 

are themselves observations and that conjugates of estimators are estimators of conjugates.  

Moreover, there we found a use for augmented variance.  Nonetheless we are still fairly bound to 

our conclusion to Section 3, that one who lacked either the confidence or the software to work with 

complex numbers could probably do a work-around with double-real matrices. 

 

So how can actuarial science benefit from complex random variables?  The great benefit will come 

from new ways of thinking.  The first step will be to overcome the habit of picturing a complex 

number as half real and half imaginary.  Historically, it was only after numbers had expanded from 

rational to irrational that the whole set was called “real.”  Numbers ultimately are sets; zero is just 

the empty set.  How real are sets?  Regardless of their mathematical reality, they are not physically 

real.  Complex numbers were deemed “real” because mathematicians needed them for the solution 

of polynomial equations.  In the nineteenth century this spurred the development of abstract 

algebra.  At first new ways of thinking amount to differences in degree; at some point many develop 

                                                 
21 If 0=ae  for some a, then for all z 00 =⋅=== −−+− azaazaazz eeeee .  One who sees that 

00lim =⋅=⋅
−∞→

iyiyx

x
eee  might propose to add the ordinate ( ) −∞== xzRe  to the complex plane.  But not only 

is this proposal artificial; it also militates against the standard theory of complex variables, according to which all points 
infinitely far from zero constitute one and the same point at infinity. 
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into differences in kind.  One might argue, “Why study Euclidean geometry?  It all derives from a 

few axioms.”  True, but great theorems (e.g., that the sum of the angles of a triangle is the sum of 

two right angles) can be a long way from their axioms.  A theorem means more than the course of 

its proof; often there are many proofs of a theorem.  Furthermore, mathematicians often work 

backwards from accepted or desired truths to efficient and elegant sets of axioms.   Perhaps the 

most wonderful thing about mathematics is its “unreasonable effectiveness in the natural sciences,” 

to quote physicist Eugene Wigner.  The causality between pure and applied mathematics works in 

both directions.  Therefore, it is likely that complex random variables and vectors will find their way 

into actuarial science.  But it will take years, even decades, and technology and education will have to 

prepare for it. 

14. CONCLUSION 

Just as physics divides into different areas, e.g., theoretical, experimental, and applied, so too 

actuarial science, though perhaps more concentrated on business application, justifiably has and 

needs a theoretical component.  Theory and application cross-fertilize each other.  In this paper we 

have proposed to add complex numbers to the probability and statistics of actuarial theory.  With 

patience, the technically inclined actuary should be able to understand the theory of complex 

random variables delineated herein.  In fact, our multivariate approach may even more difficult to 

understand than the complex-function theory; but both belong together.  Although all complex 

matrices and operations were formed from double-real counterparts, we believe that the “sum is 

greater than the parts,” i.e., that the assimilation of this theory will lead to higher-order thinking and 

creativity.  In the sixteenth century the “fiction” of 1−=i  allowed mathematicians to solve more 

equations.  Although at first complex solutions were deemed “extraneous roots,” eventually their 

practicality became recognized; so that today complex numbers are essential for science and 
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engineering.  Applying complex numbers to probability has lagged; but even now it is part of signal 

processing in electrical engineering.  Knowing how rapidly science has developed with nuclear 

physics, molecular biology, space exploration, and computers, who would dare to bet against the 

usefulness of complex random variables to actuarial science by the mid-2030s, when many scientists 

and futurists expect nuclear fusion to be harnessed and available for commercial purposes? 



Complex Random Variables 

Casualty Actuarial Society E-Forum, Fall 2015 46 

REFERENCES 

[1.] Halliwell, Leigh J., Conjoint Prediction of Paid and Incurred Losses, CAS Forum, Summer 1997, 241-380, 
www.casact.org/pubs/forum/97sforum/97sf1241.pdf. 

 
[2.] Halliwell, Leigh J., “Classifying the Tails of Loss Distributions,” CAS E-Forum, Spring 2013, Volume 2, 

www.casact.org/pubs/forum/13spforumv2/Haliwell.pdf. 
 

[3.] Havil, Julian, Gamma: Exploring Euler’s Constant, Princeton University Press, 2003. 
 

[4.] Healy, M. J. R., Matrices for Statistics, Oxford, Clarendon Press, 1986. 
 

[5.] Hogg, Robert V., and Stuart A. Klugman, Loss Distributions, New York, Wiley, 1984. 
 

[6.] Johnson, Richard A., and Dean Wichern, Applied Multivariate Statistical Analysis (Third Edition), Englewood 
Cliffs, NJ, Prentice Hall, 1992. 

 
[7.] Judge, George G., Hill, R. C., et al., Introduction to the Theory and Practice of Econometrics (Second Edition), New 

York, Wiley, 1988. 
 

[8.] Klugman, Stuart A., et al., Loss Models: From Data to Decisions, New York, Wiley, 1998. 
 

[9.] Meyers, Glenn, “The Skew Normal Distribution and Beyond,” Actuarial Review, May 2013, p. 15, 
www.casact.org/newsletter/pdfUpload/ar/AR_May2013_1.pdf. 

 
[10.] Million, Elizabeth, The Hadamard Product, 2007, http://buzzard.ups.edu/courses/2007spring/ 

projects/million-paper.pdf. 
 

[11.] Schneider, Hans, and George Barker, Matrices and Linear Algebra, New York, Dover, 1973. 
 

[12.] Veeravalli, V. V., Proper Complex Random Variables and Vectors, 2006, http://courses.engr. 
illinois.edu/ece461/handouts/notes6.pdf. 

 
[13.] Venter, G.G., "Credibility," Foundations of Casualty Actuarial Science (Third Edition), Casualty Actuarial Society, 

1996.  
 

[14.] Venter, G.G., "Tails of Copulas," PCAS LXXXIX, 2002, 68-113, www.casact.org/pubs/proceed/ 
proceed02/02068.pdf. 

 
[15.] Weyl, Hermann, The Theory of Groups and Quantum Mechanics, New York, Dover, 1950 (ET by H. P. Robertson 

from second German Edition 1930). 
 

[16.] Wikipedia contributors, “Arcsine distribution,” Wikipedia, The Free Encyclopedia, 
http://en.wikipedia.org/wiki/Arcsine_distribution (accessed October 2014). 

 
[17.] Wikipedia contributors, “Complex normal distribution,” Wikipedia, The Free Encyclopedia, 

http://en.wikipedia.org/wiki/Complex_normal_distribution (accessed October 2014). 
 

[18.] Wikipedia contributors, “Complex number,” Wikipedia, The Free Encyclopedia, 
http://en.wikipedia.org/wiki/Complex_number (accessed October 2014). 

http://www.casact.org/pubs/forum/97sforum/97sf1241.pdf
http://www.casact.org/pubs/forum/13spforumv2/Haliwell.pdf
http://www.casact.org/newsletter/pdfUpload/ar/AR_May2013_1.pdf
http://buzzard.ups.edu/courses/2007spring/%20projects/million-paper.pdf
http://buzzard.ups.edu/courses/2007spring/%20projects/million-paper.pdf
http://www.casact.org/pubs/proceed/%20proceed02/02068.pdf
http://www.casact.org/pubs/proceed/%20proceed02/02068.pdf
http://en.wikipedia.org/wiki/Arcsine_distribution
http://en.wikipedia.org/wiki/Complex_normal_distribution
http://en.wikipedia.org/wiki/Complex_number


Complex Random Variables 

Casualty Actuarial Society E-Forum, Fall 2015 47 

APPENDIX A 

REAL-VALUED LOGNORMAL RANDOM VECTORS 

Feeling that the treatment of lognormal random vectors in Section 8 would be too long, we have 

decided to prepare for it in Appendices A and B.  According to Section 7, the probability density 

function of real-valued n×1 normal random vector x with mean µ and variance Σ is: 

( )
( )

( ) ( )μxμx
2
1 1

2

1x
−Σ′−− −

Σ
= ef

nπ
x  

Therefore, ( ) 1x =∫
ℜ∈ nx

dVf x .  The single integral over nℜ  represents an n-multiple integral over each 

xj from –∞ to +∞; ndxdxdV 1= . 

 

The moment generating function of x is ( ) [ ]
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j
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x , where t is a suitable n×1 

vector.22  Partial derivatives of the moment generating function evaluated at 10t ×= n  equal moments 

of x, since: 
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But lognormal moments are values of the function itself.  For example, if jet = , the jth unit vector, 

then ( ) [ ] [ ]jj X
j eEeEM == ′ x

x
ee .  Likewise, ( ) [ ]kj XX

kj eeEM =+ eex .  The moment generating 

function of x, if it exists, is the key to the moments of xe . 

 
                                                 
22 All real-valued t vectors are suitable; Appendix B will extend the suitability to complex t. 
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The moment generating function of the real-valued multivariate normal x is: 

( ) [ ]
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A multivariate “completion of the square” results in the identity: 

( ) ( ) [ ]( ) [ ]( ) ttμt2ΣtμxΣtμxxt2μxμx 11 Σ′−′−+−Σ′+−=′−−Σ′− −−  

We leave it for the reader to verify.  By substitution, we have: 

( )
( )

( ) ( ){ }

( )
[ ]( ) [ ]( ){ }

( )
[ ]( ) [ ]( )

2ttμt

2ttμt

2ttμt

x

ΣtμxΣtμx
2
1

x

ttμt2ΣtμxΣtμx
2
1

x

xt2μxμx
2
1

1

2

1

2

1

2

1t

1

1

1

Σ′+′

Σ′+′

Σ′+′

ℜ∈

+−Σ+−−

ℜ∈

Σ′−′−+−Σ+−−

ℜ∈

′−−Σ′−−

=

⋅=

⋅
Σ

=

Σ
=

Σ
=

∫

∫

∫

−′

−′

−

e
e

edVe

dVe

dVeM

n

n

n

n

n

n

π

π

π
x

 

The reduction of the integral to unity in the second last line is due to the fact that 

( )
[ ]( ) [ ]( )ΣtμxΣtμx

2
1 1

2

1 +−Σ+−− −′

Σ
e

nπ
 is the probability density function of the real-valued n×1 normal 

random vector with mean tμ Σ+  and variance Σ.  This new mean is valid if it is real-valued, which 

will be so if t is real-valued.  In fact, tμ Σ+  is real-valued if and only if t is real-valued. 
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So the moment generating function of the real-valued normal multivariate ( )Σ,μ~ Nx  is 

( ) 2ttμtt Σ′+′= eM x , which is valid at least for nℜ∈t .  As a check:23 
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And for the second derivative: 
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The lognormal moments follow from the moment generating function: 
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The second moments are conveniently expressed in terms of first moments:  
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23 The vector formulation of partial differentiation is explained in Appendix A.17 of Judge [1988]. 



Complex Random Variables 

Casualty Actuarial Society E-Forum, Fall 2015 50 

So, [ ] [ ] [ ] [ ] [ ] [ ]( )1, −=−= Σ jkkjkjkjkj eeEeEeEeEeeEeeCov XXXXXXXX , which is the multivariate 

equivalent of the well-known scalar formula [ ] [ ] [ ] 1
2σ22 −== eeEeVareCV XXX .  Letting [ ]xeE  

denote the n×1 vector whose jth element is [ ]jXeE ,24 and [ ]





 xeEdiag  as its n×n diagonalization, 

we have [ ] [ ] { } [ ]





−






= ×

Σ xxx eEdiageeEdiagVar nn1 .  Because [ ]





 xeEdiag  is diagonal in positive 

elements (hence, symmetric and PD), [ ]xVar  is NND [or PD] if and only if nne ×
Σ −1  is NND [or 

PD].25  Symmetry is no issue here, because for real-valued matrices, Σ is symmetric if and only if 

nne ×
Σ −1  is symmetric. 

 

The relation between Σ and nne ×
Σ −=Τ 1  is merits a discussion whose result will be clear from a 

consideration of 2×2 matrices.  Since 22×Σ  is symmetric, it is defined in terms of three real numbers: 









=Σ

db
ba

.  Now Σ is NND if and only if 1) 0≥a , 2) 0≥d , and 3) 02 ≥− bad .  Σ is PD if and 

only if these three conditions are strictly greater than zero.  If a or d is zero, by the third condition b 

also must be zero.26  Since we are not interested in degenerate random variables, which are 

effectively constants, we will require a and d to be positive.  With this requirement, Σ is NND if and 

                                                 
24 This would follow naturally from the “elementwise” interpretation of Ae , i.e., that the exponential function of matrix 

A is the matrix of the exponential functions of the elements of A.  But if A is a square matrix, Ae  may have the 

“matrix” interpretation ∑
∞

=

+
1

!AI
j

j
n j . 

25 PD [positive-definite] and NND [non-negative-definite] are defined in Section 4. 

26 Since NND matrices represent variances, 
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.  The 

fact that a or d equals 0 implies that b equals 0 means that a random variable can’t covary with another random variable 
unless it covaries with itself. 
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only if  adb ≤2 , and PD if and only if adb <2 .  Since a and d are positive, so too is ad, as well as 

the geometric mean ad=γ .  So Σ is NND if and only if  γγ ≤≤− b , and PD if and only if 

γγ <<− b .  It is well-known that ( ) ( )dadada ,max
2

,min ≤
+

≤≤ γ  with equality if and only if 

da = . 

 

Now the same three conditions determine the definiteness of 








−−
−−

=−=Τ ×
Σ

11
11

1 22 db

ba

ee
ee

e .  

Since we required a and d to be positive, both 1−ae  and 1−de  are positive.  This leaves the 

definiteness of Τ dependent on the relation between ( )( )11 −− bb ee  and ( )( )11 −− da ee .  We will 

next examine this relation according to the three cases 0=b , 0>b , and 0<b , all of which must 

be subject to γγ ≤≤− b . 

 

First, if 0=b , then γγ <<− b  and Σ is PD.  Furthermore, ( )( ) ( )( )11011 −−<=−− dabb eeee .  

Therefore, in this case, the lognormal transformation 221 ×
Σ −=Τ→Σ e  is from PD to PD.  And 

zero covariance in the normal pair produces zero covariance in the lognormal pair.  In fact, since 

zero covariance between normal bivariates implies independence (cf. §2.5.7 of Judge [1988]), the 

lognormal bivariates also are independent. 

 

In the second case, 0>b , or more fully, γ≤< b0 .  Σ is PD if and only if γ<b .  Define the 

function ( ) ( )( )xex x 1ln −=ϕ  for positive real x (or +ℜ∈x ).  A graph will show that the function 

strictly increases, i.e., ( ) ( )21 xx ϕϕ <  if and only if 21 xx < .  Moreover, the function is concave 

upward.  This means that the line segment between points ( )( )11 , xx ϕ  and ( )( )22 , xx ϕ  lies above 
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the curve ( )xϕ  for intermediate values of x.  In particular, 
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( ) ( ) ( )dab ϕϕϕ +≤2 .  The equality prevails if and only if dab === γ , or if and only if dba == .  

If dba ==  then Σ is not PD; otherwise Σ is PD.  Hence: 
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 −
+







 −
=+≤=







 −
d

e
a

edab
b

e dab 1ln1ln21ln2 ϕϕϕ  

The inequality is preserved by exponentiation: 








 −







 −
≤







 −
d

e
a

e
b

e dab 111
2

 

This leads at last to the inequality: 

( ) ( )( ) ( )( ) ( )( )111111111
222

22
−−⋅≤−−








=−−≤







 −
=− dadada

b
b eeeebee

ad
b

b
ebe

γ
 

Therefore, in this case ( ) ( )( )111 2
−−≤− dab eee  with equality if and only if dba == .  This means 

that if 0>b , the lognormal transformation 221 ×
Σ −=Τ→Σ e  is from NND to NND.  But Τ is 

NND only if ( ) ( )( )111 2
−−=− dab eee , or only if dba == .  Otherwise, Τ is PD.  So, when 

0>b , 221 ×
Σ −=Τ e  is PD except when all four elements of Σ have the same positive value.  Even 
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the NND matrix 







=Σ

dad
ada  log-transforms into a PD matrix, unless da = .  So all PD and 

most NND normal variances transform into PD lognormal variances.  A NND lognormal variance 

indicates that at least one element of the normal random vector is duplicated. 

 

In the third and final case, 0<b , or more fully, 0<≤− bγ .  This is equivalent to γ≤−< b0 , or 

to the second case with b− .  In that case, ( ) ( )( )111 2
−−≤−− dab eee  with equality if and only if 

dba =−= .  But from this, as well as from the fact that 10 022 <<< ⋅ee b , it follows: 

( ) ( ) ( ) ( )( ) ( )( )11111111 222222
−−⋅<−−≤−=−=− −− dadabbbbbb eeeeeeeeee  

So in this case the inequality is strict: ( ) ( )( )111 2
−−<− dab eee , and Τ is PD.  Therefore, if 0<b , 

the lognormal transform 221 ×
Σ −=Τ→Σ e  is PD, even if Σ is NND. 

 

To summarize, the lognormal transformation 221 ×
Σ −=Τ→Σ e  is PD if Σ is PD.  Even when Σ is 

not PD, but merely NND, Τ is almost always PD.  Only when Σ is so NND as to conceal a 

random-variable duplication is its lognormal transformation NND. 

 

The Hadamard (elementwise) product and Schur’s product theorem allow for an understanding of 

the general lognormal transformation nne ×
Σ −=Τ→Σ 1 .  Denoting the elementwise nth power of Σ 

as 



factorsn

n ΣΣ=Σ , we can express elementwise exponentiation as ∑
∞

=

Σ Σ=
0

!
j

j je  .  So 

∑
∞

=
×

Σ Σ=−=Τ
1

!1
j

j
nn je  .  According to Schur’s theorem (§3 of Million [2007]), the Hadamard 
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product of two NND matrices is NND.27  Since Σ is NND, its powers jΣ  are NND, as well as the 

terms !jjΣ .  Being the sum of a countable number of NND matrices, Τ also must be NND.28  

But if just one of the terms of the sum is PD, the sum itself must be PD.  Therefore, if Σ is PD, 

then Τ also is PD. 

 

Now the kernel of m×n matrix A is the set of all nℜ∈x  such that 0Ax = , or 

( ) { }0Ax:xA ==ker .  The kernel is a linear subspace of nℜ  and its dimensionality is ( )Arankn − .  

By the Cholesky decomposition the NND matrix U can be factored as nnnn ×× ′= WWU .  The 

quadratic form in U is ( ) ( )WxWxWxWxUxx ′=′′=′ .  If 0Uxx =′ , then 10Wx ×= n , and 

11 00WWxWUx ×× =′=′= nn .  Conversely, if 10Ux ×= n , then 0Uxx =′ .  So the kernel of NND 

matrix U is precisely the solution set of 0Uxx =′ , i.e., 0Uxx =′  if and only if ( )Ukerx∈ .  

Therefore, the kernel of ∑
∞

=

Σ=Τ
1

!
j

j j  is the intersection of the kernels of jΣ , or 

( ) ( ) 
∞

=

Σ=Τ
1j

jkerker .  It is possible for this intersection to be of dimension zero, i.e., for it to equal 

{ }10 ×n , even though the kernel of no jΣ  is.  Because of the accumulation of intersections in 

∑
∞→

=

Σ
k

j

j j
1

!  , the lognormal transformation of NND matrix Σ tends to be “more PD” than Σ itself.  

                                                 
27 Appendix C provides a proof of this theorem. 

28 For the quadratic form of a sum equals the sum of the quadratic forms: xUxxUx ∑∑ ′=






′
k

k
k

k .  In fact, if the 

coefficients aj are non-negative, then ∑
∞

=

Σ
1j

j
ja   is NND, provided that the sum converges, as Σe  does. 
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We showed above that if Σ is PD, then nne ×
Σ −=Τ 1  is PD.  But even if Σ is NND, Τ will be PD, 

unless Σ contains a 2×2 subvariance 







ΣΣ
ΣΣ

kkkj

jkjj  whose four elements are all equal. 
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APPENDIX B 

THE NORMAL MOMENT GENERATING FUNCTION AND COMPLEX 
ARGUMENTS 

In Appendix A we saw that the moment generating function of the real-valued normal multivariate 

( )Σ,μ~ Nx , viz., ( ) 2ttμtt Σ′+′= eM x , is valid at least for nℜ∈t .  The validity rests on the identity 

( )
[ ]( ) [ ]( )

1
2

1

x

ΣtμxΣtμx
2
1 1

=
Σ

∫
ℜ∈

+−Σ+−− −′

dVe
n

nπ
 for real-valued tμξ Σ+= .  But in Section 8 we must 

know the value of ( )
( )

( ) ( )
dVe

n
n∫

ℜ∈

−Σ−− −′

Σ
=

x

ξxξx
2
1 1

2

1ξ
π

ϕ  when ξ is a complex n×1 vector.  So in 

this appendix, we will prove that for all nC∈ξ , ( ) 1ξ =ϕ . 

 

The proof begins with diagonalization.  Since Σ is symmetric and PD, 1−Σ  exists and is symmetric 

and PD.  According to the Cholesky decomposition (Healy [1986, §7.2]), there exists a real-valued 

n×n matrix W such that 1WW −Σ=′ .  Due to theorems on matrix rank, W must be non-singular, or 

invertible.  So the transformation Wxy =  is one-to-one.  And letting Wξζ = , we have 

( )ξxWζy −=− .  Moreover, the volume element in the y coordinates is: 

Σ
=Σ=′=′=== − x

x
1

xxx
2

xy WWWWWW dVdVdVdVdVdVdV . 

Hence: 
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( )
( )

( ) ( )

( )
( ) ( )

( )
( )[ ] ( )[ ]

( )
( ) ( )

( )

( )

( )

( )

( )∏

∏ ∫

∫ ∏

∫

∫

∫

∫

∫

=

=

∞

−∞=

−−

ℜ∈ =

−−

ℜ∈

−−

ℜ∈

−′−−

ℜ∈

−′−−

ℜ∈

−′−−

ℜ∈

−Σ−−

=

∑
=

∑
=

∑
=

=

Σ
=

Σ
=

Σ
=

=

=

=

′

−′

n

j
j

n

j
j

n

j

n

n

n

n

n

j

n

j
jj

n

n

j
jj

n

n

j
jj

n

n

n

n

de

dVe

dVe

dVe

dVe

dVe

dVe

1

1 y

ζy
2
1

y 1

ζy
2
1

y

ζy
2
1

y
y

ζyζy
2
1

x

x

ξxWξxW
2
1

x
x

ξxWWξx
2
1

x

ξxξx
2
1

ζψ

y
2
1

2
1

2

1

2

1

2

1

2

1

2

1ξ

1

2

1

2

1

2

1

π

π

π

π

π

π

π
ϕ

 

In the last line ( ) ( )
∫
=

−−

+∞→
−∞→

=
b

ax

x

b
a

dxe
2ζ

2
1

2
1ζψ lim π

.  Obviously, if ζ is real-valued, ( ) 1ζψ = .  So the 

issue of the value of a moment generating function of a complex variable resolves into the issue of 

the “total probability” of a unit-variance normal random variable with a complex mean.29 

 

To evaluate ( )ζψ  requires some complex analysis with contour integrals.  First, consider the 

standard-normal density function with a complex argument: ( ) 2

2

2
1 z

ezf
−

=
π

.  By function-

composition rules, since both 2z  and the exponential function are “entire” functions (i.e., analytic 

                                                 
29 We deliberately put ‘total probability’ in quotes because the probability density function with complex ζ is not proper; 
it may produce negative and even complex values for probability densities. 
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over the whole complex plane), so too is ( )zf .  Therefore, ( ) 0=∫C dzzf  for any closed contour C 

(cf. Appendix D.7 of Havil [2003]).  Let C be the parallelogram traced from vertex bz =  to vertex 

az =  to vertex ζ−= az  to vertex ζ−= bz  and finally back to vertex bz = .  Therefore: 

( )

( ) ( ) ( ) ( )∫∫∫∫

∫

−

−

−

−

+++=

=

b

b

b

a

a

a

a

b

C

dzzfdzzfdzzfdzzf

dzzf

ζ

ζ

ζ

ζ

0

 

The line segments along which the second and fourth integrals proceed are finite; their common 

length is ( ) ( )ζζζζ −−==−=−−= bbaaL , where 0ζζζ ≥= .  By the triangle inequality 

( ) ( ) ( ) dzzfdzzfdzzf
a

a

a

a

a

a
∫∫∫
−−−

=≤
ζζζ

.  But ( )zf  is a continuous real-valued function, so over a 

closed interval it must be upper-bounded by some positive real number M.  Hence, 

( ) ( ) ( )( ) [ ]( )( ) ( ) LaMdzaazfSupdzzfSupdzzfdzzf
a

a

a

a

a

a

a

a

⋅=−∈=≤≤ ∫∫∫∫
−−−− ζζζζ

ζ, .  Likewise, 

( ) [ ]( )( ) ( ) LbMdzbbzfSupdzzf
b

b

b

b

⋅=−∈≤ ∫∫
−− ζζ

ζ, . 

 

Now, in general:  
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( ) ( ) ( )

( )2

22

22

22

22

Re

2

22

22

22

2

2
1

2
1

z

zz

zz

zz

zz

e

e

ee

ee

ee

zfzfzf

−

+
−

−−

−−

−−

∝

∝

⋅∝

⋅
=

⋅=

=

π

ππ

 

Therefore, since ℜ∈a : 

( ) ( ) [ ]

( )

0

ζ1,1;lim

ζ,;limlim

1Re

Re

Re

2
2

2

2

∝
⋅∝

⋅




















 −∈∝

⋅




 −∈∝⋅

∞−




















−

+∞→

−

−∞→−∞→

Le

L
aa

zeSup

LaazeSupLaM

a
za

a

z

aa

 

Similarly, ( ) 0lim ∝⋅
+∞→

LbM
b

.  So in the limit as −∞→a  and +∞→b  on the real axis, the second 

and fourth integrals approach zero.  Accordingly: 

{ }

( ) ( ) ( ) ( )

( ) ( )












+=













+++=

=

∫∫

∫∫∫∫

−

−
+∞→
−∞→

−

−

−

−

+∞→
−∞→

+∞→
−∞→

ζ

ζ

ζ

ζ

ζ

ζ

lim

lim

lim 00

b

a

a

b
b
a

b

b

b

a

a

a

a

b
b
a

b
a

dzzfdzzf

dzzfdzzfdzzfdzzf  

And so, ( ) ( ) ( ) 1
2
1 2

2
1ζ

ζ
limlimlim ===−= ∫∫∫∫

+∞

∞−

−

+∞→
−∞→

+∞→
−∞→

−

−
+∞→
−∞→

dzedzzfdzzfdzzf
zb

a
b
a

a

b
b
a

b

a
b
a π
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So, at length: 

( ) ( )

( )( ) ( )

( )

( )

1

2
1

ζ
2
1

ζ
2
1

2
1ζψ

ζ

ζ

ζ

ζ

2
1

ζ

ζ

2
1

ζζ
2
1

ζ
2
1

lim

lim

lim

lim

lim

2

2

2

2

=

=

=

+=

+=

=

∫

∫

∫

∫

∫

−

−=
+∞→
−∞→

−

−=

−

+∞→
−∞→

−

−=

−

+∞→
−∞→

=

−+−

+∞→
−∞→

=

−−

+∞→
−∞→

b

az
b
a

b

az

z

b
a

b

az

z

b
a

b

ax

z

b
a

b

ax

x

b
a

dzzf

dze

zde

zde

dxe

π

π

π

π

 

So, working backwards, what we proved for one dimension, viz., ( ) ( )
1

2
1ζψ

2ζ
2
1

== ∫
+∞

−∞=

−−

x

x
dxe

π
, 

applies n-dimensionally: for all nC∈ξ , ( )
( )

( ) ( )
1

2

1ξ
x

ξxξx
2
1 1

=
Σ

= ∫
ℜ∈

−Σ−− −′

dVe
n

nπ
ϕ .  Therefore, even 

for complex t, ( ) 2ttμtt Σ′+′= eM x .  Complex values are allowable as arguments in the moment 

generating function of a real-valued normal vector.  This result is critical to Section 8. 

 

Though we believe the contour-integral proof above to be worthwhile for its instructional value, a 

simple proof comes from the powerful theorem of analytic continuation (cf. Appendix D.12 of 

Havel [2003]).  This theorem concerns two functions that are analytic within a common domain.  If 

the functions are equal over any smooth curve within the domain, no matter how short,30 then they 

                                                 
30 The length of the curve must be positive; equality at single points, or punctuated equality, does not qualify.   
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are equal over all the domain.  Now ( ) ( )
∫
=

−−

+∞→
−∞→

=
b

ax

x

b
a

dxe
2ζ

2
1

2
1ζψ lim π

 is analytic over all the complex 

plane.  And for all real-valued ζ, ( ) 1ζψ = .  So ( )ζψ  and ( ) 1ζ =f  are two functions analytic over the 

complex plane and identical on the real axis.  Therefore, by analytic continuation ( )ζψ  must equal 

one for all complex ζ.  Analytic continuation is analogous with the theorem in real analysis that two 

smooth functions equal over any interval are equal everywhere.  Analytic continuation derives from 

the fact that a complex derivative is the same in all directions.  It is mistaken to regard the real and 

imaginary parts of the derivative as partial derivatives, as if they applied respectively to the real and 

imaginary axes of the independent variable.  Rather, the whole derivative applies in every direction. 
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APPENDIX C 

EIGEN-DECOMPOSITION AND SCHUR’S PRODUCT THEOREM 

Appendix A quoted Schur’s Product Theorem, viz., that the Hadamard product of non-negative-

definite (NND) matrices is NND.  Million [2007] proves it as Theorem 3.4; however, we believe our 

proof in this appendix to be simpler; moreover, it affords a review of eigen-decomposition.  Those 

familiar with eigen-decomposition may skip to the last paragraph. 

 

Let Γ be an n×n Hermetian NND matrix.  As explained in Section 4, ‘Hermetian’ means that 

*Γ=Γ ; ‘NND’ means that for every complex n×n vector z (or nC∈z ), 0zz* ≥Γ .  Positive 

definiteness [PD] is a stricter condition, in which 0zz* =Γ  if and only if 10z ×= n . 

 

Complex scalar λ and non-zero vector ν form an “eigenvalue-eigenvector” pair of Γ, if λνν =Γ .  

Since 10ν ×= n  is excluded as a trivial solution, vector ν can be scaled to unity, or 1νν* = .  But 

λνν =Γ  if and only if ( ) 10νλI ×=−Γ nn .  If nλI−Γ  is non-singular, or invertible, then: 

( ) ( ) ( ) 11
11 00λIνλIλIνIν ××
−− =−Γ=−Γ−Γ== nnnnnn  

Hence, allowable eigenvectors require for nλI−Γ  to be singular, or for its determinant nλI−Γ  to 

be zero.  Since the determinant is an nth-degree equation (with complex coefficients based on the 

elements of Γ) in λ, it has n root values of λ, not necessarily distinct.  So the determinant can be 

factored as ( ) ( ) ( )nnf λλλλλIλ 1 −−=−Γ=  .  Since ( ) 0Iλλ =−Γ= njjf , there exist non-

zero solutions to ( ) 10νλI ×=−Γ nn .  So for every eigenvalue there is a non-zero eigenvector, even a 

non-zero eigenvector of unit magnitude. 
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The first important result is that the eigenvalues of Γ are real-valued and non-negative.  Consider the 

jth eigenvalue-eigenvector pair, which satisfies the equation jjj νλν =Γ .  Therefore, 

jjjjj ννλνν ** =Γ .  Since Γ is NND, jj νν*Γ  is real-valued and non-negative.  Also, jj νν*  is real-

valued and positive.  Therefore, their quotient λj is a real-valued and non-negative scalar.  

Furthermore, if Γ is PD, jj νν*Γ  is positive, as well as λj. 

 

The second important result is that eigenvectors paired with unequal eigenvalues are orthogonal.  

Let the two unequal eigenvalues be kj λλ ≠ .  Because the eigenvalues are real-valued, jj λλ = .  The 

eigenvector equations are jjj νλν =Γ  and kkk νλν =Γ .  The following string of equations relies on 

Γ’s being Hermetian (so *Γ=Γ ): 

( )

( )
( )

0

νννν

νννν

νννν

ννλννλ

ννλννλ

ννλννλννλλ

**

***

***

***

**

***

=

Γ−Γ=

Γ−Γ=

Γ−Γ=

−=

−=

−=−

kjkj

kjkj

kjjk

kjkjkj

kjkkjj

kjkkjjkjkj

 

Because 0λλ ≠− kj , the eigenvectors must be orthogonal, or 0νν* =kj .  If all the eigenvectors are 

distinct, the eigenvectors form an orthogonal basis of nC .  But even if not, the kernel of each 

eigenvalue, or ( ) { }zλz:zIλ j
n

nj Cker =Γ∈=−Γ  is a linear subspace of nC  whose rank or 

dimensionality equals the multiplicity of the root λj in the characteristic equation ( ) nf λIλ −Γ= .  

This means that the number of mutually orthogonal eigenvectors paired with an eigenvalue equals 
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how many times that eigenvalue is a root of its characteristic equation.  Consequently, there exist n 

eigenvalue-eigenvector pairs ( )jj ν,λ  such that jjj νλν =Γ  and ijkj δνν* = .31 

 

Now, define W as the partitioned matrix [ ]nnn ννW 1 =× .  The jkth element of W*W equals 

ijkj δνν* = ; hence, nIWW* = .  A matrix whose transjugate is its inverse is called “unitary,” as is 

W.32  Furthermore, define Λ as the n×n diagonal matrix whose jjth element is λj.  Then: 

[ ] [ ] [ ] [ ] Λ=















==ΓΓ=Γ=Γ W

λ

λ
νννλνλννννW

1

11111

n

nnnnn   

And so, **
n WWWWI Λ=Γ=Γ=Γ , and Γ is said to be “diagonalized.”  Thus have we shown, 

assuming the theory of equations, 33 the third important result, viz., that every NND Hermetian 

matrix can be diagonalized.  Other matrices can be diagonalized; the NND [or PD] consists in the 

fact that all the eigenvalues of this diagonalization are non-negative [or positive]. 

 

The fourth and final “eigen” result relies on the identity jj eνW* = , which just extracts the jth 

columns of each side of nIWW* = .  As in Appendix A, je  is the jth unit vector.  Therefore: 

                                                 
31 The Kronecker delta, ijδ , is the function ( )0,1,IF ji = . 
32 To be precise, at this point W* is only the left-inverse of W.  But by matrix-rank theorems, the rank of W equals n, so 
W has a unique full inverse -1W .  Then ( ) ( ) 111*1*** WWIWWWWWWIWW --

n
--

n ===== . 

33 The theory of equations guarantees the existence of the roots of the nth-degree equation ( ) .λIλ nf −Γ=   
Appendix D.9 of Havel [2003] contains a quick and lucid proof of this, the fundamental theorem of algebra. 
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( )( )
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=

Λ=Γ

n

j
jjj

n

n

j
jjjn

n

j
jjj

n

j
jjj

n

j
jjj

n

j

*
jjj

1

*

1

*

*

1

**

*

1

**

*

1

***

*

1

*

ννλ

IννλI

WWννλWW

WWννWλW

WνWνWλW

WeeλW

WW

 

The form ∑
=

n

j
jjj

1

*ννλ  is called the “spectral decomposition” of Γ (§7.4 of Healy [1986]), which plays 

the leading role in the following succinct proof of Schur’s product theorem. 

 

If Σ and Τ are two n×n Hermetian NND definite matrices, we may spectrally decompose them as 

∑
=

=Σ
n

j
jjj

1

*ννλ  and ∑
=

=Τ
n

j
jjj

1

*ηηκ , where all the λ and κ scalars are non-negative.  Accordingly: 



Complex Random Variables 

Casualty Actuarial Society E-Forum, Fall 2015 66 

( ) ( ) ( )
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srsrsr
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n
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=

=
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ΤΣ=ΤΣ

∑∑

∑∑

∑∑

∑∑

∑∑

∑∑

∑∑

= =

= =

= =

= =

= =

==

==

1 1

*

1 1

*

1 1

1 1

1 1

11

1

*

1

*

ηνηνκλ

ηνηνκλ

ηνηνκλ

ηνηνκλ

ηνηνκλ

ηηκννλ

ηηκννλ











 

Hence, ( )( )∑∑
= =

=ΤΣ
n

r

n

s
srsrsr

1 1

*ηνηνκλ  .  Since each matrix ( )( )*ηνην srsr   is Hermetian 

NND, and each scalar srκλ  is non-negative, ΤΣ   must be Hermetian NND.  Therefore, the 

Hadamard product of NND matrices is NND. 
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