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Applying Credibility Concepts to
Develop Weights for Ultimate Claim

Estimators

Rajesh Sahasrabuddhe, FCAS, MAAA
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In estimating ultimate claim and claim expense amounts, actuaries often rely on estimates
developed using multiple actuarial methods. Combining these estimates is often left to
the actuary’s professional judgment. That judgment generally reflects informed but sub-
jective opinion on the relative stability and responsiveness of various methods and the
reasonableness of the results of those methods.

This paper proposes a more quantitative approach. The approach is based on credibility
concepts which are often used in ratemaking contexts but have yet to find their way into this
particular aspect of estimating unpaid claims and claim expenses. As with the ratemaking
context, credibility is based on the variance of estimators. However the application to
unpaid claim estimates requires a different approach. That approach is the subject of this
paper.

Keywords Credibility, Reserving
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1. Introduction

1.1. Research Context

The author was not able to locate any prior research on this specific topic. During the
course of preparing this paper, the author identified Rehman & Klugman[RK10] as having
some similarity in underlying concepts - though that paper has a much different application.

The CAS Taxonomy for this paper is as follows:

• Actuarial Applications and Methodologies > Reserving >Management Best Estimate

• Actuarial Applications and Methodologies > Reserving >Reserving Methods

1.2. Objective

Typically1, actuarial estimates of ultimate claims are based on a review of multiple actuarial
indications (such as those based on the chain-ladder and Bornhuetter-Ferguson methods)
and the actuary’s professional judgment. We can think of the final (selected) actuarial
estimate as a weighted average of actuarial indications and expert opinion and/or prior
knowledge. The mathematical description of that process would likely be similar to the
following:

Ĉ = Î ×Z + P × (1− Z) (1)

which we can recognize as being similar to credibility-weighted averages commonly used in
ratemaking contexts.

In the context of estimating ultimate claims2:

C = ultimate claims

Ĉ = an estimator of ultimate claims

Î = a vector of actuarial projections (indications) of C

P = the actuary’s prior estimate of ultimate claims; possibly equal to Ĉt−1

Z = a vector of credibility factors

Z = the sum of the elements of Z

There are several important considerations with respect to these variables:

1This section is based strictly on the author’s observation of common practices and does not imply that
all actuaries use the approach described.

2In this paper, the term “claim” is used rather than “loss” to be consistent with Actuarial Standard of
Practice No. 43, Property/Casualty Unpaid Claim Estimates
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• In Equation (1), we assume that Î, P and, by consequence, Ĉ, are all unbiased3

estimators of C. The author is aware that certain papers challenge this assumption.
Measuring and correcting for bias of actuarial methods is outside the scope of this
paper.

• “Prior” in this paper is not used in the rigorous statistical sense of that term. Rather,
the term refers to an estimate that management or the actuary may be “targeting”
and is based on the author’s observation that, in practice, reasonableness of an esti-
mate is often evaluated relative to some other (benchmark) estimate4. For example,
the implied loss ratios of estimates based on the first evaluation of an experience
period are assessed through reconciliation of those estimates to the loss ratio used in
establishing the premium.

In the usual judgment-based model, “credibility” for method i is then usually assigned
based on the distance between Îi and P . That is:

Zi ∝
1

d(Îi, P )
(2)

Zi = fj

(
1

d(Îi, P )

)
(3)

where d represents a generic difference function such as absolute or squared difference. As
commonly applied, fj might be termed the “actuarial judgment function.” In Figure 1, we
present a visualization of that “actuarial judgment function.”

The objective of this paper is to offer an approach to calculate Z rather than use an
“actuarial judgment function.”

1.3. Outline

The remainder of the paper proceeds as follows:

• Section 2 is a discussion of approaches that are commonly used and the approach
proposed by this paper.

• Section 3 provides the theory and practice of the credibility weighted approach. A
workbook accompanies this report to supplement the reader’s understanding of the
application in practice.

• Section 4 provides a generalized model and summarizes the findings of this paper.

3Or, more precisely, that we are aware of and can adjust for any biases in Î or P .
4As with all generalizations, this of course is not universally true. For example, if there were a known

shock loss, the benchmark may be disregarded.
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Figure 1: The Actuarial Judgment Function

2. Background and Methods

2.1. Credibility in a Ratemaking Context

Actuaries are familiar with the use of credibility in a ratemaking context. In that context,
the goal is to assign predictive value to the experience of a class relative to the predictive
value of the experience of an aggregation of classes. Although there are various models
to estimate this predictive value, credibility, generally, is proportional to the variance
between classes (also referred to as the variance of hypothetical means, VHM ) and inversely
proportional to the average variance within classes (commonly referred to as the expected
value of process variance (EVPV ))5.

2.2. Credibility in a Reserving Context

The extension of credibility to a reserving context may not be immediately clear until
we consider the general definition of the term “credibility.” That is, we need to consider
credibility as a measure of the predictive value, possibly measured on a relative basis, of
an estimator. We are not referring to credibility as calculated under a specific model. In
the approach presented in this paper, credibility for each available actuarial method is

5Though these terms are used in several papers, to the best of the author’s knowledge, they were first
used (or at least popularized) by Philbrick [Phi81].
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developed based on the variance of that method relative to the variance of each of the
other methods.

For the moment, assume that we have two competing estimates, I1 and I2, for C. Then,
the credibility model becomes:

Ĉ = Î1 × Z1 + Î2 × Z2 (4)

There is an important difference between Equation (1) and Equation (4). The latter does
not include the prior estimate. In ratemaking, the prior estimate is considered to the
extent that we cannot assign credibility to an indication(s). In unpaid claim estimation,
we have models (such as the loss ratio or Bornhuetter-Ferguson models) that allow for the
consideration of a “prior” estimate so we need not consider the estimate separately and
explicitly. This paper presents an approach where we assign 100% of the credibility to
available estimates based on the relative variance.

In evaluating variance, we consider the residual, or the difference between the observed
prediction and the “best” prediction. Furthermore, rather than consider the variance of
Ii, we consider the variance of the underlying actuarial method or model i at maturity j.
We denote the observed indication M̂i,j.

Then, the credibility weighted average of estimators can be written as:

M1,j × Z1,j + . . .+Mn,j × Zn,j (5)

Finally, we define credibility in this context as the probability that the error (residual)
of Mi,j is smaller than that of n − 1 competing estimates M1,j . . .Mi−1,j, Mi+1,j . . .Mn,j.
where

∑
Z1,j . . . Zn,j = 1.

2.3. Residual Errors

The proposed approach is based on an analysis of the distribution of residuals (ε) of each
method, Mi, at a particular maturity j. As an illustration of the concept of the variance
of residuals, we consider chain-ladder estimates based on an analysis of a development
triangle. In that situation, we would have a series of observed predictions at 12 months
which are the product of the 12-month claim development factor and previously observed
claims at 12 months for prior experience periods. After normalizing the triangle for differ-
ences between experience periods6, we would then calculate the residuals as the difference
between those predictions and the “best” values. This is only one method for developing
an estimate of the variance of the residuals. We explore the issue further in Section 3.3.1.

6For example, such difference may include those attributable to changes in costs level or exposure volume.
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3. Results and Discussion

Rather than separating theory and practice/example, I have elected to present the the-
oretical underpinnings of the proposed credibility model in the context of a minimally
specified example. I intend for this presentation to demonstrate the practicality of this
approach. This presentation also allows for easier identification of assumptions underlying
the credibility model.

3.1. Proposed Credibility Model

For our minimally specified example, we will assume the following:

• We have two competing methods, the paid chain-ladder (Method 1, M1) and the
reported incurred chain-ladder (Method 2, M2). We are concerned with the estimate
at 12 months maturity. (The maturity is unimportant to this example but it is helpful
to define the context.)

• Assume that ultimate claims (C) are 1,000. This estimate provides a sense of scale
though it is not necessary for our minimally specified example as we are provided the
distribution of residuals. (In a different circumstance, we may have the coefficient
of variation of the residuals. In this case, the estimate of ultimate claims would be
necessary.)

• We assume that the methods are unbiased. Therefore the means of the residuals for
both models are assumed to be 0 (µ(ε1) = µ(ε2) = 0).

• In our example, the paid chain-ladder has more variability in predictions than the
reported incurred chain-ladder. The residual errors are assumed to be normally
distributed with standard deviations of 200 and 300 for the reported incurred chain-
ladder and paid chain-ladder methods, respectively, (s(ε1) = 300; s(ε2) = 200;E[s] =
σ) as presented in Figure 2.

Under our definition, the credibility of the reported incurred chain-ladder is the probability
that the error of M2 (random variable denoted X2) is less than or equal to the error of M1

(random variable denoted X1).

So for any X2 = x2 (where x2 is an observation of X2), we have the following possibilities:

1. |X1| < |x2| (Credibility to Method 1)

2. |X1| > |x2| (Credibility to Method 2)

Given the symmetric distribution centered around 0, for simplicity, we use only the positive
domain of x and consider both tails of the distribution of x1. We use F and f to represent
the distribution and density functions, respectively, of the residuals. We then have the

6
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Figure 2: Distribution of Residual Errors

following credibility calculation:

Z2/2 =

∫ ∞
0

2 [1− F1(x)] f2(x) dx (6)

In words, Equation (6) states:

“Over the domain of positive values of x (i.e.
∫∞
0

), the credibility assigned
to Method 2 (i.e. Z2) is the probability that the error of Method 1 is greater
than x (i.e. (1− F1(x))) or less than −x (which by symmetry is also equal to
1− F1(x)) given that X2 = x (i.e. f2(x) dx).”

The 2 inside the integral provides consideration for both values of X1 less than
−x2 and greater than +x2. For example, if x2 = 100, we would assign credibility
to Method 2 for X1 probabilistically greater than 100 or X1 probabilistically
less than -100.

The 2 on the left-side of Equation (6) is necessary as our limits of integration
only consider one-half the domain of possible x values.

We should also recognize that if we were evaluating over the domain of negative x values, we
would replace 1−F1(x) with F1(x). This is due to the property of symmetric distributions
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centered at 0 where:

F (−x) = (1− F (x)) x > 0

F (x) = (1− F (−x)) x < 0.

This is further demonstrated in Appendix A, where we provide Equation (6) with separate
terms for values of x that are less than 0 and those greater than 0.

We can then expand Equation (6) as follows:

Z2/2 = 2

∫ ∞
0

f2(x) dx− 2

∫ ∞
0

F1(x)f2(x) dx

Z2/2 = 1− 2

∫ ∞
0

F1(x)f2(x) dx (7)

Z2 = 2− 4

∫ ∞
0

F1(x)f2(x) dx (8)

Equations (7) and (8) are intuitively appealing as they state that credibility is lost when a
competing estimate has a lower error. The constants of 2 and 4 in Equation (8) may seem
disconcerting at first but we should recognize that they are twice what they would be had
we integrated over both positive and negative values of x.

Furthermore, if we consider the limiting case where Method 1 has no error (i.e. it is a
perfect indicator of C) then:

1. F1(0) = 1

2. ∴
∫∞
0
F1(x)f2(x) dx = 1/2

3. ∴ Z2 = 0

We can use the trapezoidal rule to numerically integrate Equation (8). If we apply the
trapezoidal rule over 1,000 evenly-spaced (unit) intervals between 0 and 1,000, we can
calculate the value of the integral to be 0.342. The resulting credibility to Method 2 is
0.630.

We can also reverse the subscripts and calculate the credibility of Method 1 using Equa-
tion (8).

Z1 = 2− 4

∫ ∞
0

F2(x)f1(x) dx

The resulting credibility of Method 1 is 0.379. The sum of these credibilities don’t quite
equal 1 but that is simply the result of the approximation of the numerical integration.
We can address this issue through normalization as presented in Table 1.

8
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Raw Credibility Normalized Credibility

Method 1 0.379 0.376
Method 2 0.630 0.624

Total 1.009 1.000

Table 1: Two Method Example

3.2. Simulation

We can also use simulation if we want to avoid the effort of numerical integration. We
present the R[R C13] code to estimate credibilities via simulation.

> s e t . seed (12345)
> t r i a l s <− 1000
> pd . dev . e r r o r s <− abs ( rnorm (n = t r i a l s , mean = 0 , sd = 300) )
> rptd . dev . e r r o r s <− abs ( rnorm (n = t r i a l s , mean = 0 , sd = 200) )
> pd . dev . cred <− l ength ( which (pd . dev . e r r o r s < rptd . dev . e r r o r s ) ) / t r i a l s
> rptd . dev . cred <− l ength ( which ( rptd . dev . e r r o r s < pd . dev . e r r o r s ) ) / t r i a l s
> pd . dev . cred
[ 1 ] 0 .375
> rptd . dev . cred
[ 1 ] 0 .625

Alternatively, one could use the integrate function with the following code7.

> f <− f unc t i on ( x ) pnorm(x , 0 , 300) ∗ dnorm(x , 0 , 200)
> i n t e g r a l <− i n t e g r a t e ( f , 0 , I n f ) $ value
> rptd . dev . cred <− 2 − 4 ∗ i n t e g r a l
> rptd . dev . cred
[ 1 ] 0 .6256659

We note that the results of the simulation are quite close to those calculated from numerical
integration.

3.3. Assumptions

The minimally specified model includes several simplifying assumptions that we explore in
this section.

7This code was contributed by Mark Mordechai Goldburd. Mr. Goldburd reviewed this paper for the
CAS 2014 Fall E-Forum
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• We have assumed that the residual errors are normally distributed. Is this reasonable?

• We were provided with the standard errors in the examples in Section 3.1. What
approaches can we use to develop the estimated standard error?

• Can we consider the management’s recorded estimate within this model?

3.3.1. Residual Standard Error

Modeling the distribution of residuals is a complex topic that is outside the scope of this
paper. We should keep in mind that we are more focused on relative errors than absolute
errors. Furthermore, even when we cannot calculate that uncertainty, we should be able to
assign uncertainty based on judgment. That judgment (e.g. the uncertainty / volatility of
the reported loss development method at 12 months is ±200) is more “testable” than the
implicit assignments of credibility to methods based on the “actuarial judgment function.”

Generally, we would expect that the variance for any method would decrease over time
as paid claims are a greater percentage of ultimate claims. In this model, we calculate
credibility separately for each maturity. As such, shifts in credibility weights between
methods will occur due to differences in the rate of decrease in the variance as a function
of maturity.

Further, we would expect that methods that emphasize stability will have lower variances
at early maturities than those that emphasize responsiveness. However, this will depend
on the deviations between the a priori expected ultimate claims and the current best
estimates.

Below, we present one example approach to developing error estimates using the auto$
PersonalAutoIncurred data included in the ChainLadder [GMZ13] package for R.

1. In Table 2, we present the triangle of paid claims and volume-weighted development
factors.

2. In Table 3, we present the indications of ultimate claims based on the paid develop-
ment method and the current valuation of paid claims.

3. In Table 4, we present the indications of ultimate claims based on paid development
factors and historical valuation of paid claims from Table 2.

4. In Table 5, we present the triangle of residuals. Those residuals are calculated as the
difference between the ultimates in Table 4 and those in Table 3.

10
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Cumulative
Current Development

Origin Claims Factor Ultimates

1 353584 1.000 353584
2 350523 1.001 350874
3 385224 1.005 387150
4 373325 1.011 377432
5 382738 1.028 393455
6 386725 1.060 409928
7 367357 1.128 414379
8 317972 1.282 407640
9 246803 1.647 406485
10 126288 3.278 413972

Table 3: Ultimate Claim Estimates

In Table 5, we also present the standard deviations of the residuals8 for each age that
may be used as a basis to select the standard error of the paid development method
at each of the respective ages. Those standard deviations may be slightly understated
in an absolute sense as our triangle includes the current valuation - which will have
a deviation of 0 under this approach. However, we elected to include that diagonal
to generalize the approach and allow for other estimates of the “best” estimate of
ultimate claims.

This is only one example algorithm to estimate the standard errors for results of an actuarial
method at a particular age. We note that the ChainLadder package includes many useful
functions for developing these estimates and recommend that readers review the vignette
accompanying that package.

3.3.2. Distribution of Residuals

The credibility model presented does not require the use of the normal model to describe
the distribution of errors. Identification of the appropriate model is a complex topic that
is outside the scope of this paper. However, it would seem reasonable to use a model that

8Mr. Goldburd also noted that the standard deviations presented in Table 5 are calculated as sample
standard deviations from an estimated mean. If we assume residuals are centered on zero, it may be
more appropriate to calculate standard deviations as root mean squared distance from 0, with n as
the denominator rather than n − 1, since a degree of freedom is not lost to an estimated mean. This
would not apply to generalizations of the model (such as those presented in the Appendix) and the
calculation of residual variance is not the focus of the paper.
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is symmetric with a zero mode and mean. Rehman & Klugman [RK10] includes discussion
related to the use of a normal distribution to describe reserve variability.

3.3.3. Credibility Assigned to Management Estimates

We can consider the recorded management estimate to simply be another indication. If we
are able to compile a triangle of prior recorded estimates, we can apply a model similar to
that presented above for the paid chain-ladder method. Additionally, review of Rehman
& Klugman [RK10] may be useful in determining a model for describing such errors.

4. Conclusion

In this section, we summarize the findings of the research presented in this paper.

4.1. Principal Finding

In this paper, we have proposed a method for weighting methods that is based on the
uncertainty of the estimate. We recognize that developing measures of that uncertainty is
not a trivial matter.

Equation (6) is the primary finding of working through the minimally specified example.
Equation (6) may be generalized for n methods. The initial generalization is presented
below as Equation (10). That is, the credibility of method n relative to methods 1 . . . n− 1
may be calculated as follows.

Zn/2 =
∫∞
0

2n−1{[1− F1(x)] . . . [1− Fn−1(x)]}fn(x) (9)

Zn =
∫∞
0

2n{[1− F1(x)] . . . [1− Fn−1(x)]}fn(x) (10)

Equation (11) presents the final generalization and the primary finding of this paper.
Specifically that the credibility of method i relative to methods 1 . . . i− 1, i+ 1 . . . n is
calculated as:

Zi =
∫∞
0

2n{[1− F1(x)] . . . [1− Fi−1(x)]

[1− Fi+1(x)] . . . [1− Fn(x)]}fi(x) (11)

4.2. Distribution of Residuals

We acknowledge that determination of the distribution of errors is not trivial. However,
it would seem that assuming a normal distribution would be reasonable. In addition, so
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long as we have a consistent approach to determining errors from the various methods,
we should be able to apply our model. Those “consistent” approaches may include an
approach that assigns uncertainty based on professional judgment.

4.3. Simulation as an Alternative

In practice, using numerical integration to calculate credibility under the proposed model
is not overly difficult. It may also be appealing as setting up the model requires that we
think through issues of estimation uncertainty. In the companion workbook, we present
the calculation for four methods with standard errors 100, 200, 400, and 600. Of course,
as n increases, using simulation to estimate credibilities becomes a more attractive option.

5. Supplemental Information
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5.2. Additional R Packages

In addition to those previously cited, the R packages listed below were also used to develop
the model theory and associated documentation.

• reshape2 [Wic07]

• xtable [Dah14]
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5.4. Further Research
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Appendix A Expanded Credibility Model

Equation (6) presents a model that is simplified by assuming a symmetric distribution
centered at 0. The model prior to simplification (with the assumption maintained) is as
follows:

Z2 =

∫ 0

−∞
2F1(x)f2(x) dx+

∫ ∞
0

2 [1− F1(x)] f2(x) dx (12)

We could further relax the assumption of symmetry centered at 0. Doing so would produce
the following:

Z2 =

∫ 0

−∞
F1(x)f2(x) dx+

∫ 0

−∞
[1− F1(−x)]f2(x) dx+∫ ∞

0

[1− F1(x)] f2(x) dx+

∫ ∞
0

F1(−x)f2(x) dx (13)
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The Analysis of  “All-Prior” Data 

Mark R. Shapland, FCAS, FSA, MAAA 
 
________________________________________________________________________ 
Abstract 

Motivation. Some data sources, such as the NAIC Annual Statement – Schedule P as an example, contain a row of 
all-prior data within the triangle. While the CAS literature has a wealth of papers that have developed various 
methods for estimating tail factors, and the CAS Tail Factor Working Party recently published a report on tail factor 
methods, tail factors are not directly applicable to all-prior data.1 Moreover, the author is not aware of any papers 
dealing directly with the analysis of all-prior data. Absent a defined methodology, it seems to be common practice for 
an analysis of data triangles that include an all-prior row to either exclude the all-prior data or to make the explicit 
assumption that the case reserves, or case plus IBNR reserves, for these claims are adequate. This may be reasonable 
in certain situations but given the potential materiality of this part of the reserve it would be a useful addition to the 
actuary’s toolkit to develop some methods for analyzing the all-prior data or for testing the reasonability of assuming 
the case reserves, or case plus IBNR reserves, are adequate. 
Method. The process followed in this paper is to both graphically and formulaically illustrate the data issues and 
analysis, then apply the concepts of a well-known method with three different data sets. While only a deterministic 
point estimate method is illustrated in this paper, the framework should be quite easily adaptable to other 
deterministic methods or stochastic models. The paper also illustrates the calculations for this method and examples 
in a companion Excel spreadsheet. 
Conclusions. The methods used for any standard analysis can be adapted to accommodate all-prior data whenever it 
is present. Even in cases where the all-prior reserves prove adequate, the process of analyzing the all-prior data will 
help calibrate the tail factor used for all years by validating the selected tail factor using actual data. 
Availability. The Excel spreadsheets created for this paper “All Prior Analysis.xlsm” and “Creating All Prior 
Data.xls” are available at http://www.casact.org/pubs/forum/14fforum/. 
 
Keywords. Reserving (Reserving Methods); Reserving (Data Organization); Reserving (Reserve Variability); 
Reserving (Tail Factors). 

             

1. INTRODUCTION 

From our training in the art and science of actuarial practice, familiarity with basic data triangles and 
a wide variety of methods and models2 for extrapolating that data to its ultimate value is a way of life 
for casualty actuaries.  Recently, a significant portion of published CAS papers and research has been 
devoted to the analysis and quantification of the distribution of future payments3 and tail factors4 in 
order to greatly enhance the usefulness of a “standard” unpaid claim estimate analysis. However, the 
author is unaware of any research or papers related to the estimation of unpaid claims for the all-prior 
data found in some triangles. 

1 While it may be tempting to simply apply the tail factor to the all-prior data, we will see that this is not a sound practice. 
2 Keeping with the definitions of methods and models in [4], the primary feature that distinguishes a model from a method 

is that a model is used to calculate a “distribution of possible outcomes” whereas a method will only produce a single 
point estimate. 

3 See for example [4], which includes a large number of research papers in the Reference section. 
4 See for example [5]. 
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Estimating future payments for unpaid claims is often referred to as “squaring” the triangle when 
there is no claim development beyond the end of the triangle. Development beyond the end of the 
triangle, or the calculation of tail factors, can be thought of as the analysis of what’s beyond the end of 
or “to the right of” the square.  Similarly, ratemaking and pricing can be thought of as the analysis of 
what comes after or “below” the triangle.  The purpose of this paper is to introduce the analysis of 
what’s before or “above” the triangle. 

As we will see, the analyses “to the right of” and “above” the triangle are related, so this paper will 
build a bridge from the analysis and application of tail factors to the analysis of all-prior data. Once this 
bridge is built, it should be possible to adapt this framework to other deterministic methods and to 
stochastic models for estimating distributions of possible outcomes for the all-prior data. 

1.1 Research Context 
From a research perspective, this paper deals mainly with unpaid claim estimate analysis and 

presents a new method for a subset of the data in a typical analysis.  Along the way, the paper will also 
review data organization related to unpaid claim estimates and then show its applicability for this new 
method. While not specifically addressed in this paper, other methods for calculating point estimates 
and models used for unpaid claim variability and the calculation of uncertainty and distributions could 
also be adapted to use the all-prior data in a similar fashion, although within the specific frameworks of 
those methods and models. 

1.2 Objective 
The two primary goals of this paper are to provide the practicing actuary with some new tools for 

the analysis of all-prior data and to develop the foundation for further research in this area. 

1.3 Outline 
In order to achieve these goals, Section 2 will start by reviewing and slightly expanding the notation 

used by recent CAS research Working Parties for describing unpaid claim estimation methods and 
models. Section 3 will then review the basic data structure of all-prior data and show, both graphically 
and formulaically, how the calculation of tail factors can be extended to include all-prior data.  Section 4 
will apply this basic methodology to the chain ladder method to illustrate that estimates of all-prior data 
are not only possible but a very useful extension of existing techniques.  Finally, some possible areas for 
future research will be suggested in Section 5 and conclusions will be discussed in Section 6. 
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2. NOTATION 

For the sake of uniform notation, we will use the notation from the CAS Working Party on 
Quantifying Variability in Reserve Estimates Summary Report [2] and expanded by the CAS Tail Factor 
Working Party [5], since it was intended to serve as a basis for further research. Many models visualize 
loss statistics as a two dimensional array.  The row dimension is the period5 by which the loss 
information is subtotaled, most commonly an accident period.6  For each accident period, w , the 

),( dw  element of the array is the total of the loss information as of development age d .7  For this 
discussion, we assume that the loss information available is an “upper triangular” subset of the two-
dimensional array for rows nw ,,2,1 = .  For each row, w , the information is available for 
development ages 1 through 1+−wn .  If we think of period n  as not only the most recent accident 
period, but also the latest accounting period for which loss information is available, the triangle 
represents the loss information as of accounting dates 1 through n .  The “diagonal” for which dw +  
equals a constant, k , represents the loss information for each accident period w  as of accounting 
period k .8 

In general, the two-dimensional array will extend to columns 1,2, ,d n=  .9 For purposes of 
calculating tail factors, we are interested in understanding the development beyond the observed data 
for periods 1, 2, ,d n n u= + +  , where u  is the ultimate time period for which any claim activity 
occurs – i.e., u  is the period in which all claims are final and paid in full. As an aide to any reader not 
familiar with this notation, a graphical representation of each item is contained in Appendix F. 10 

The paper uses the following notation for certain important loss statistics:  

5 Most commonly the periods are annual (years), but as most methods can accommodate periods other than annual we will 
use the more generic term “period” to represent year, half-year, quarter, month, etc. unless noted otherwise. 

6 Other exposure period types, such as policy period and report period, also utilize tail factor methods.  For ease of 
description, we will use the generic term “accident” period to mean all types of exposure periods, unless otherwise noted. 

7 Depending on the context, the (w,d) cell can represent the cumulative loss statistic as of development age d  or the 
incremental amount occurring during the d th development period. 

8 For a more complete explanation of this two-dimensional view of the loss information see the Foundations of Casualty 
Actuarial Science [7], Chapter 5, particularly pages 210-226. 

9 Some authors define 0,1, , 1= −d n  which intuitively allows k = w  along the diagonals, but in this case the triangle 
size is x n n - 1  is not intuitive. With 1, 2, ,= d n  defined as in this paper, the triangle size x n n  is intuitive but then 
k = w+1  along the diagonals is not as intuitive. A way to think about this which helps tie everything together is to 
assume the w  variables are the beginning of the accident periods and the d  variables are at the end of the development 
periods. Thus, if we are using years then cell c(n,1)  represents accident year n  evaluated at 12/31/ n , or essentially 
1/1/ n+1 . 

10 Readers familiar with this notation could skip ahead to section 3.2. Even if you are not familiar with the notation, it is 
recommended to focus on the concepts in section 3.1 which should be familiar and not get bogged down in the notation. 
The Notation sheet in the “All Prior Analysis.xlsm” companion file should also be useful for gaining an understanding of 
the notation. 
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),( dwc : cumulative loss from accident period w  as of age d . Think “when” and “delay.” 

),( dwq : incremental loss for accident period w  during the development age from d  - 1 to 
d . Note that )1,(),(),( −−= dwcdwcdwq . 

)(),( wUuwc = : total loss from accident period w  when at the end of ultimate development u .  

)(wR : future development after age 1+−= wnd  for accident period w , i.e., = 
)1,()( +−− wnwcwU . 

( )D k : future development after age 1+−= wnd  during calendar period k , i.e., for all 
),( dwq  where w d k+ =  and 1+ > +w d n . 

( )A d : all-prior data by development age d . 

)(1)( dvdf += : factor applied to ),( dwc  to estimate )1,( +dwc  or more generally any factor 
relating to age d . This is commonly referred to as a link ratio.  )(dv  is referred to 
as the ‘development portion’ of the link ratio, which is used to estimate 

)1,( +dwq . The other portion, the number one, is referred to as the ‘unity 
portion’ of the link ratio. 

)(dF : ultimate development factor relating to development age d . The factor applied to 
),( dwc  to estimate ( , )c w u  or more generally any cumulative development factor 

relating to development age d . The capital indicates that the factor produces the 
ultimate loss level. As with link ratios, )(dV  denotes the ‘development portion’ of 
the loss development factor, the number one is the ‘unity portion’ of the loss 
development factor. 

T = T(n) : ultimate tail factor at end of triangle data, which is applied to the estimated c(w,n)  
to estimate ( , )c w u . 

x̂  an estimate of any value or parameter x . 

What are called factors here could also be summands, but if factors and summands are both used, 
some other notation for the additive terms would be needed. The notation does not distinguish paid vs. 
incurred, but if this is necessary, capitalized subscripts P  and I  could be used.  

3. ALL-PRIOR ANALYSIS OVERVIEW 

In order to analyze the all-prior data, we must start by understanding the make-up of this data and 
how it is related to the main triangle data as it is commonly understood. But before we delve into the 
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all-prior data, we will start with a triangle array of cumulative data, illustrated in Table 3.1, and a typical 
method for estimating unpaid claims excluding any all-prior data. 
Table 3.1 – Loss Triangle Data 

  d       
  1 2 3 … n-1 n 

w  1 c(1,1) c(1,2) c(1,3) … c(1,n-1) c(1,n) 
 2 c(2,1) c(2,2) c(2,3) … c(2,n-1)  
 3 c(3,1) c(3,2) c(3,3)    
 … … …     
 n-1 c(n-1,1) c(n-1,2)     
 n c(n,1)      

3.1 A Typical Unpaid Claim Estimate 
As an example, a typical deterministic analysis of this data will start with an array of link ratios or 

development factors: 

( , 1)( , )
( , )

+
=

c w df w d
c w d

. (3.1) 

Then two key assumptions are made in order to make a projection of the known elements to their 
respective ultimate values. First, it is typically assumed that each accident period has the same 
development factor. Equivalently, for each 1,2, ,= −w n d : 

( , ) ( )=f w d f d .  

Under this first assumption, one of the more popular estimators for the development factor is the 
weighted average:11 

1

1

( , 1)ˆ ( )
( , )

−

=
−

=

+
= ∑
∑

n d

w
n d

w

c w d
f d

c w d
. (3.2) 

Certainly there are other popular estimators in use, but they are beyond our scope at this stage and 
nothing is gained by exploring other estimators.  Suffice it to say that many methods and their 
corresponding estimators are still consistent with our first assumption that each accident period has the 
same factor. There are, of course, methods that do not rely on this assumption that all accident periods 
use the same development factor,12 but they are beyond the scope of this paper so that we can focus on 
a basic understanding of the analysis process. 

Assuming there is no claim development beyond the end of the triangle, projections of the ultimate 
values, ˆ( , )c w u  [or ˆ( , )c w n  since =u n  in this case], for 2,3, ,= w n , are then computed using: 

11 The popularity of this estimator may stem from it being unbiased as shown by Mack [8] and others. 
12 For example methods that trend the data can directly or indirectly result in different factors for each accident period. 
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1 ˆˆ( , ) ( , ) ( )−

=
= ∏n

i d
c w n c w d f i , for all 1d n w= − + . (3.3) 

For completeness, carrying out the calculations for formula (3.3) sequentially for each ˆ ( )f i  is often 
done to estimate each future ˆ( , )c w d , and then by subtraction each future ˆ( , )q w d  is used to estimate 
cash flows (for paid data). Alternatively, ultimate development factors can be calculated as: 

1 ˆˆ ( ) ( )−

=
=∏n

i d
F d f i , for each 1,2,..., 1= −d n . (3.4) 

 

And then formula (3.3) simplifies to: 

ˆˆ( , ) ( , ) ( )= ×c w n c w d F d , for all 1d n w= − + . (3.5) 

This part of the claim projection algorithm relies explicitly on the second assumption, namely that 
each accident period has a parameter representing its relative level. These level parameters are the 
current cumulative values for each accident period, or ( , 1)c w n w− + . Of course variations on this 
second assumption are also common, but the point is that every method has explicit assumptions that 
are an integral part of understanding the quality of that method. Graphically, our estimation model 
looks like Graph 3.1, where the blue triangle is the data we know and the orange triangle is estimated. 
Graph 3.1 – Loss Estimation without a Tail 

 

 

 

 

 

 

 

If the assumption of no claim development past the end of the triangle is true, then as we will see 
the analysis needs no further extensions as the all-prior data would similarly need no extrapolation 
beyond the end of the triangle. On the other hand, it is quite common to expect development beyond 
the end of the triangle, in which case a tail factor is generally used to extrapolate to the end of the 
expected development or the ultimate period, u . We can illustrate this graphically by expanding Graph 
3.1 to include tail development, as shown in Graph 3.2, where the rectangle in purple is the tail 
extrapolation. 
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Graph 3.2 – Loss Estimation with a Tail 

 

 

 

 

 

 

There are a variety of methods for estimating a tail factor, T(n) , but we will only use one of the 
common methods, namely, the exponential decay method.13 The method utilizes link ratios, 

)(1)( dvdf += , and assumes that the )(dv s decay at a constant rate, r , i.e., rdvdv ii ×=+ )()( 1 . The 
process consists of first fitting an exponential curve to the )(dv s, which can be accomplished by using 
a regression with the natural logarithms (natural log) of the )(dv s.  Next, the decay constant r  can be 
estimated as the inverse natural log of the slope of the fitted curve.  The remaining development, from 
a given development age d , can be estimated as: 

1

( ) (1 ( ) )
∞

=

= + ×∏ i

i

T d v d r , for ≥d n . (3.6) 

While formula (3.6) is infinite in theory, in practice the incremental factors in this formula, 
=1ˆ if(d) +v(d)×r , will get close enough to one14 such that no new development is expected or the 

development is small enough to stop. Thus, one of the decision points for a typical tail factor selection 
is determining the ultimate number of periods or u . The goal of this analysis is to complete the 
“rectangle” and estimate the future cumulative values, as illustrated in Table 3.2. 
Table 3.2 – Cumulative Loss Triangle Data with Estimated Ultimate Projections 

  d         
  1 2 3 … n-1 n … u 

w  1 c(1,1) c(1,2) c(1,3) … c(1,n-1) c(1,n) … ĉ(1,u) 
 2 c(2,1) c(2,2) c(2,3) … c(2,n-1) ĉ(2,n) … ĉ(2,u) 
 3 c(3,1) c(3,2) c(3,3) … ĉ(3,n-1) ĉ(3,n) … ĉ(3,u) 
 … … … … … … … … … 
 n-1 c(n-1,1) c(n-1,2) ĉ(n-1,3) … ĉ(n-1,n-1) ĉ(n-1,n) … ĉ(n-1,u) 
 n c(n,1) ĉ(n,2) ĉ(n,3) … ĉ(n,n-1) ĉ(n,n) … ĉ(n,u) 

Of course for an analysis using cumulative data it is a simple step to subtract the last known value 

13 For a more complete discussion of tail factor methods see [5]. The exponential decay method is shown in the “Tail 
Factors” sheet in the “All Prior Analysis.xlsm” file. 

14 Under certain circumstances the regression can result in increasing factors with could become infinite, but when this 
happens the method is normally discarded as being unreasonable. 
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for each accident period from the estimated ultimate value to arrive at the estimated unpaid for each 
accident period w  using formula (3.7). 

( )ˆ ˆ( , ) ( , 1)wR c w u c w n w= − − +  (3.7) 

For our purposes, we will also take the additional step of converting the cumulative values to 
incremental values, as illustrated in Table 3.3. 
Table 3.3 – Incremental Loss Triangle Data with Estimated Ultimate Projections 

  d         
  1 2 3 … n-1 n … u 

w  1 q(1,1) q(1,2) q(1,3) … q(1,n-1) q(1,n) … q̂(1,u)  
 2 q(2,1) q(2,2) q(2,3) … q(2,n-1) q̂( ,n )2  … q̂( ,u)2  
 3 q(3,1) q(3,2) q(3,3) … q̂( ,n )−3 1  q̂( ,n )3  … q̂( ,u)3  
 … … … … … … … … … 
 n-1 q(n-1,1) q(n-1,2) q̂(n , )−1 3  … q̂(n ,n )− −1 1  q̂(n ,n )−1  … q̂(n ,u)−1  
 n q(n,1) q̂(n, )2  q̂(n, )3  … q̂(n,n )−1  q̂(n,n )  … q̂(n,u)  

From the estimated incremental values we have an estimate of the unpaid claims for each accident 
period w  using formula (3.8) to sum the estimated incremental values. 

( )
2

ˆ ˆ( , )d u
w

d n w
R q w d=

= − +
=∑  (3.8) 

Also, adding the estimates for each accident period, we can derive a formula for the total estimated 
unpaid as shown in formula (3.9). 

( ) ( )
1 1 2

ˆ ˆ ˆ( , )w n w n d u
T w

w w d n w
R R q w d= = =

= = = − +
= =∑ ∑ ∑  (3.9) 

Using the estimated incremental values we can also create an estimate of the future cash flows by 
calendar period k  using formula (3.10) to sum the estimated incremental values along the diagonal 
instead of by row. 

( )
1

ˆ ˆ( , )=

=
= −∑w n

k
w

D q w k w , for 2 1+ ≤ ≤ +n k u  

( )ˆ ˆ( , )=

= −
= −∑w n

k
w k u

D q w k w , for 2+ ≤ ≤ +u k u n  
(3.10) 

For the formulas in (3.10), the first one is for complete diagonals (all rows) as k  increases from 
2+n  to 1+u , while in the second formula the diagonals are shrinking each period as k  goes from 
2+u  to +u n .15 Similarly, adding the estimates for each calendar period we can derive a formula for 

the total estimated unpaid as shown in formula (3.11). 
1

( ) ( )
2 2 1 2

ˆ ˆ ˆ ˆ( , ) ( , )= + = + = = + =

= + = + = = + = −
= = − + −∑ ∑ ∑ ∑ ∑k n u k u w n k n u w n

T k
k n k n w k u w k u

R D q w k w q w k w  (3.11) 

15 Keep in mind that = +k w d  and the last row is contained in each diagonal sum, so the incremental values from ˆ( , 2)q n  
to ˆ( , )q n u  are part of the details in formulas (3.10) and (3.11). 
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The Analysis of “All-Prior” Data 

3.2 The All-Prior Data 
With this brief review complete, we can now expand the analysis by examining the all-prior data. 

First, the basic loss development triangle will include the extra row as shown in Table 3.4. 
Table 3.4 – Loss Triangle Data with All-Prior Row 

  d        
  1 2 3 … n-1 n n+1 

w  0  A(2) A(3) … A(n-1) A(n) A(n+1) 
 1 c(1,1) c(1,2) c(1,3) … c(1,n-1) c(1,n)  
 2 c(2,1) c(2,2) c(2,3) … c(2,n-1)   
 3 c(3,1) c(3,2) c(3,3)     
 … … …      
 n-1 c(n-1,1) c(n-1,2)      
 n c(n,1)       

Graphically the addition of all-prior data can be illustrated in Graph 3.3, with the all-prior data 
shown in green. 
Graph 3.3 – Loss Triangle with All-Prior Data 

 

 

 

 

 

 

 

 

The color and shape for the all-prior data is significant for three reasons. First, while the main 
triangle can be either cumulative or incremental values, the all-prior data could be either16 but, more 
importantly, it is a combination of multiple periods and as such we need to introduce new notation, 

( )dA , for the cells in the all-prior row. Second, the addition of this extra row does not always include 

16 Technically, it is possible to use either incremental or cumulative data in the underlying data used to calculate the all-prior 
row. In addition, all development periods for 1, 2, ...,=d u  could be included or only the periods beyond the end of the 
triangle or 1, ...,= +d n u . For purposes of this paper we will assume the underlying data is incremental and use all 
development periods. 
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The Analysis of “All-Prior” Data 

any value in the first column(s)17 so the overall shape is no longer strictly triangular. And third, because 
the data includes multiple periods at different stages of development we can’t directly apply the factors 
from our typical analysis to extend it for the analysis of the all-prior row. 

The all-prior data is included in accounting statements so that a triangle large enough to show all 
development can be truncated by collapsing the triangle down to a specific maximum size, while still 
including all of the relevant claim information for reconciliation with the balance sheet. Thus, the all-
prior row is actually a summary of the claim activity for all claims that occurred prior to the first 
accident period ( 1=w ) in the triangle as of the date of the financial statement. 

As there can be different ways of compiling the all-prior data, the key to any analysis is to first 
understand exactly what is in the data or how it was created. As a common source of all-prior data is 
the NAIC Annual Statement Schedule P (for companies operating in the United States), we will use 
those rules here which result in each all-prior cell being the calendar period (i.e., diagonal) sum of all 
prior accident periods.18 Rather than spending time and space here dissecting the NAIC rules [10], we 
direct the interested reader to the “Creating All Prior Data.xls” companion file, which uses one data set 
to walk through the rules for compiling Schedule P and then reconciles this with a more direct 
calculation. To illustrate this we can restate Table 3.4 as Table 3.5. 
Table 3.5 – Loss Triangle Data with All-Prior Row Details 

  d           

  1 2 3 … n n+1 n+2 n+3 … u 
w  -u+2          q(-u+2,u) 
 -u+3         … q(-u+3,u) 
 …      … … … …  
 -2    … q(-2,n) q(-2,n+1) q(-2,n+2) q(-2,n+3)   
 -1   q(-1,3) … q(-1,n) q(-1,n+1) q(-1,n+2)    
 0  q(0,2) q(0,3) … q(0,n) q(0,n+1)     
 1 c(1,1) c(1,2) c(1,3) … c(1,n)      
 2 c(2,1) c(2,2) c(2,3) …       
 3 c(3,1) c(3,2) c(3,3) …       
 … … …         
 n-1 c(n-1,1) c(n-1,2)         
 n c(n,1)          

As we are assuming the all-prior data starts with (2)A , the first diagonal will include all incremental 
cells were 2= + =k w d , so the earliest accident period with data should be 2− +u  and the earliest 
accident period with data in development period u  should be 1− + +u n . Graphically, we can illustrate 
this as shown in Graph 3.4. 

17 Of course none of the columns need to be missing or blank, but for purposes of this paper we will assume the first 
column (1)A  is blank and include data in columns (2)A  and later to be consistent with the NAIC Schedule P. In Schedule 
P the paid data for (2)A  is zero, but for incurred data it only contains reserves and no payments. 

18 Two useful references for understanding the all-prior data in the NAIC Schedule P are [6] and [10]. 
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The Analysis of “All-Prior” Data 

Graph 3.4 – Loss Triangle with All-Prior Data 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Now we can more precisely define each cell in the all-prior row of data using formula (3.12), which 
is the diagonal sum of the claim activity in those periods.19, 20 

0
( ) ( , )=

=− +
= −∑w

k
w u k

A q w k w , for 2,3,..., 1= +k n .21 (3.12) 

It is not a coincidence that the diagonal sum of the all-prior row stretches out for the same number 
of periods, u , as we will expect for the tail factor. Indeed, if we can get the incremental data that was 
used to create the all-prior row then we can use this to calibrate the length of the tail factors. 

19 Technically, A(2) could be the sum of all diagonals prior to  A(3), thus the first cell in the graph would be a different color 
and Graphs 3.4 and 3.5 could be extended even further, but our focus will be on the incremental changes in the A(k), so 
we can ignore this technicality. 

20 Of course if the company did not start writing business that long ago, then claims for these older accident years would not 
exist at all and any estimates of the all-prior unpaid claims would need to be adjusted accordingly. For purposes of this 
paper we will assume business was written at least as early as is implied by the ultimate tail extrapolation.  

21 In Graphs 3.3 and 3.4, we used d  with our notation for the all-prior row, A(d), since it is used in those contexts consistent 
with development columns. In formula (3.12) and beyond we switch to using k  in our notation for the all-prior row, A(k), 
since we are illustrating how this is a diagonal sum of the incremental values. For the all-prior row =d k , so they can be 
used interchangeably. 
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The Analysis of “All-Prior” Data 

The last step in examining the all-prior row is to define the unpaid claims we need to estimate as the 
sum of the future all-prior diagonals.  Graphically, we can combine Graph 3.2 with Graph 3.4 and 
illustrate the unpaid claim estimate we are working toward in red in Graph 3.5. 

Completing the description for our all-prior estimate, we need to develop methods to solve for the 
future incremental cells for the all-prior data that will allow us to use formula (3.13) to estimate the total 
unpaid claims for the all-prior data. 

0
(0) ( )

2 2
ˆˆ ˆ( , )= = =

= + = + =− +
= = −∑ ∑ ∑k u k u w

k
k n k n w u k

R A q w k w  (3.13) 
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The Analysis of “All-Prior” Data 

Graph 3.5 – Loss Estimation with All-Prior Data and a Tail 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.3 All-Prior Analysis 
Even though we have more clearly delineated the problem, we can’t just apply the tail factors we 

would use for the rest of the analysis because those factors are based on cumulative values and, even if 
we have the incremental details for the all-prior row, we can’t calculate the appropriate cumulative 
values unless we have all of the claim data, not just the data used to calculate the all-prior row. In effect, 
to use a normal tail factor we would need the entire triangle for all periods – i.e., a u xu triangle22 
instead of an n x n triangle. If we had all of the data for the u xu triangle, then we could use formula 
(3.6) (or something similar) to successively apply a different factor ( )T d  to each accident period for 
each >d n . Then again, if we have that data we would not need to calculate tail factors or use all-prior 
data. 

22 In keeping with the notation in Graph 3.5, the rows for the u  x u  triangle would run from 1− + +u n  to n . 
Renumbering by adding −u n  to each row, the rows would then run from 1 to u . 
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The Analysis of “All-Prior” Data 

Whenever we don’t have complete cumulative data for every accident period that is part of the all-
prior data, we will need to make some assumptions about the history prior to our data triangle in order 
to use our normal tail factors.  For example, we could use the Bornhuetter-Ferguson [3] algorithm 
which uses an a priori estimate of the total losses and the loss development pattern to derive an 
estimate.  With premium and/or exposure data prior to the data triangle, we can apply the Bornhuetter-
Ferguson algorithm to estimate the cumulative values for the prior periods. 

4. ALL-PRIOR METHODS 

In order to illustrate the calculations for, and the usefulness of, the analysis of all-prior data within a 
typical deterministic analysis, three data sets were simulated, each with all of the historical data needed 
to estimate the all-prior unpaid claims.23  While the data is simulated, it was done in a way to make it 
look real and tested using methods such as those suggested in Venter [12] and other sources to make 
sure it has realistic statistical properties. The three data sets approximate companies with three different 
case reserving philosophies, “medium” case reserves, “low” case reserves and “high” case reserves, 
respectively, as well as different exposures and development patterns. Within the body of the paper, we 
will only review and primarily discuss the “medium” scenario, but the analysis and results for the other 
two are contained in the Appendices.24 

In addition to having simulated claim triangles for 10 years with an all-prior row, we are also 
assuming that we have 11 years of earned premium and expected loss ratios for the years in the all-prior 
row to approximate what you might find in practice (i.e., for the 11 years prior to the oldest year in the 
triangle). For the older periods where this information is unavailable (i.e., prior to those 11 years), we 
derive estimates for premium and expected loss ratios as you would need to do in practice. The paid 
data for the “medium” scenario is shown in Table 4.1. 

23 The simulated data is for complete 30 x 30 rectangles, with different development, exposure growth, parameters, etc., but 
all of the simulated data is fully developed prior to 30 periods. This size was chosen to be consistent with the limits of 
flexibility set up in the companion Excel file.  Each data set was then collapsed into 10 x 10 triangles, with an all-prior 
row, to illustrate the analysis. In addition, the prior 11 years of premiums and “ultimate” loss ratios are included to 
approximate the information you could obtain from the oldest accident years in the 11 Annual Statements prior to the 
current year. 

24 The complete details for all three scenarios are also included in the “All Prior Analysis.xlsm” file. The interested reader 
can select a different data set in cell “V1” on the Data sheet and recalculate the sheet to see the calculations for any of the 
scenarios. 
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The Analysis of “All-Prior” Data 

 
Table 4.1 – “Medium” Paid Loss Triangle with All-Prior Data 

 
 
 
 

 

 

 

Extending the chain ladder method for a triangle of data that includes an all-prior row, the steps to 
our analysis can be summed up as follows: 

1) Calculate the age-to-age factors excluding the all-prior row, 
2) Extrapolate the age-to-age factors and select a tail factor, 
3) Estimate the cumulative data for each prior accident period which is part of the all-prior row, 
4) Estimate the incremental data for each prior accident period (from Step 3) and sum the 

diagonals to estimate the values in the all-prior row, 
5) Use comparisons of the estimated all-prior row data to the actual all-prior row data to evaluate 

and calibrate the selected factors, 
6) Re-select, re-estimate and re-calibrate (repeat Steps 2 through 5) as needed, and 
7) Sum all future diagonals for each prior accident period to estimate the all-prior row reserves. 

4.1 Calculate Age-to-Age Factors 
The first step is to calculate the age-to-age factors or link ratios for the data triangle. Using formula 

(3.2), and excluding the all-prior (A-P) row, the weighted average age-to-age factors for this data are 
shown in Table 4.2. 25 

25 Note that if you are trying to reproduce the calculated values in the Tables in this paper, the actual values are generally 
unrounded in Excel so you may encounter rounding differences. 

12 24 36 48 60 72 84 96 108 120 132

A-P -            124,151     196,502     234,850     256,775     269,143     276,080     279,086     281,182     282,390     

2004 74,998      189,335     252,351     284,850     301,895     311,600     317,040     319,748     321,762     322,784     

2005 92,015      216,237     283,370     316,672     335,600     346,804     352,535     356,275     357,748     

2006 90,909      191,270     262,856     289,054     310,018     319,763     325,725     328,463     

2007 100,503     215,220     271,927     315,048     333,808     343,553     348,988     

2008 94,647      225,979     295,390     330,250     349,553     359,694     

2009 99,464      204,539     271,740     308,343     329,792     

2010 83,463      200,265     274,434     309,186     

2011 76,140      184,681     255,177     

2012 112,865     243,840     

2013 100,689     
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The Analysis of “All-Prior” Data 

Table 4.2 – “Medium” Paid Loss Development Factors 

 

 

 

 

 

 

 

 

 

 

In addition to the volume weighted average (VWA) factors from formula (3.2), other averages are 
shown in Table 4.2 to mimic a more typical process in practice where the actuary would compare 
different averages to select their age-to-age factors. A user entered row is also included and the selected 
factors by development period are outlined. 

4.2 Select a Tail Factor 
Using formula (3.6), we can also estimate a tail factor, including the incremental age-to-age factors 

that comprise the tail factor, which by itself is a factor to ultimate. The tail factor calculation for the 
paid data is illustrated in Table 4.3. Note that while the incremental factors that make up the tail factor 
could be ignored in an analysis without an all-prior row, they are a necessary part of this analysis since 
we need to estimate the incremental values that sum to the all-prior row data and we will need tail 
factors for >d n  in order to estimate the all-prior unpaid claims. Note also that age-to-age and tail 
factors can often be rounded to 3 decimal places in practice, but in order to calibrate the incremental 
tail factors with the ultimate development length of the data, u , more than 3 decimal places may be 
needed to help identify more precisely how many periods to include in the tail. 

12-24 24-36 36-48 48-60 60-72 72-84 84-96 96-108 108-120 Tail

2004 2.525        1.333        1.129        1.060        1.032        1.017        1.009        1.006        1.003        

2005 2.350        1.310        1.118        1.060        1.033        1.017        1.011        1.004        

2006 2.104        1.374        1.100        1.073        1.031        1.019        1.008        

2007 2.141        1.263        1.159        1.060        1.029        1.016        

2008 2.388        1.307        1.118        1.058        1.029        

2009 2.056        1.329        1.135        1.070        

2010 2.399        1.370        1.127        

2011 2.426        1.382        

2012 2.160        

VWA 2.268        1.332        1.126        1.063        1.031        1.017        1.009        1.005        1.003        

5-Yr VWA 2.270        1.328        1.128        1.064        1.031        1.017        1.009        1.005        1.003        

3-Yr VWA 2.308        1.359        1.126        1.062        1.030        1.017        1.009        1.005        1.003        

TF Fitted 1.395        1.213        1.115        1.062        1.034        1.018        1.010        1.005        1.003        1.003        

User 2.250        

Selected 2.250        1.332        1.126        1.063        1.034        1.018        1.010        1.005        1.003        1.0015      

Ultimate 3.856        1.714        1.287        1.143        1.075        1.040        1.021        1.012        1.006        1.0033      

% Paid 25.9% 58.4% 77.7% 87.5% 93.0% 96.2% 97.9% 98.9% 99.4% 99.7%

% Unpaid 74.1% 41.6% 22.3% 12.5% 7.0% 3.8% 2.1% 1.1% 0.6% 0.3%
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Table 4.3 – “Medium” Paid Tail Factor Calculation 

 

 

 

 

 

 

 

 

 

4.3 Estimate Prior Cumulative Values 
With the development factors and tail factor calculated it is a simple matter to “rectangle”26 the 

triangle, so that will not be illustrated here.27 Instead we will examine a process for estimating the 
incremental values that comprise the all-prior row of data shown in Table 4.1. To do this we can use 
the prior earned premiums, estimated ultimate loss ratios, estimated percent paid (from Table 4.2), and 
Bornhuetter-Ferguson methodology to estimate the cumulative paid for each prior year, as illustrated in 
Table 4.4. 

For example, from the simulated data we know that the premium for 2003 is 468,659 and the 
estimated ultimate loss ratio is 71.6%.28 Combining this with the estimated percent paid at 24 months 
from Table 4.2 of 54.8% we can estimate the cumulative losses for 2003 as 468,659 x .716 x .548 = 
195,823. The estimated values for all years shown in Table 4.4, for development periods from 24 to 120 
months were calculated using the same methodology. Using these estimated cumulative values at 120 
months for each prior accident year, we can then use the incremental (age-to-age) tail factors from 
Table 4.3 to estimate the remaining cumulative values to ultimate. 

26 Technically, it is more precise to say we are “rectangling” the triangle when we have a tail, but as a square is a type of 
rectangle, some may prefer to think of “squaring” in more general terms meaning turning the triangle into either a square 
or rectangle. 

27 While some calculations are skipped (or knowledge of the calculations is assumed) in the body of the paper, they are all 
contained in the companion Excel file “All Prior Analysis.xlsm” for easy reference. 

28 See the Data sheet in the “All Prior Analysis.xlsm” file. 

All Prior
Tail Years: 12 Actual 282,390     Decay 0.540      

Tail Factor: 1.0033    Estimated 303,022     Intercept 0.732      
Error % 7.3%

Period Factor Dev Log Excl Period Log Fitted Selected ATA ATU
1 2.26832  1.26832  0.238     Y 1.395339 1.395339 2.155306   
2 1.33162  0.33162  (1.104)    Y 1.213371 1.213371 1.544647   
3 1.12622  0.12622  (2.070)    3 (2.070)    1.115159 1.115159 1.273022   
4 1.06314  0.06314  (2.762)    4 (2.762)    1.062153 1.062153 1.141560   
5 1.03099  0.03099  (3.474)    5 (3.474)    1.033545 1.033545 1.074760   
6 1.01707  0.01707  (4.070)    6 (4.070)    1.018105 1.018105 1.039878   
7 1.00923  0.00923  (4.685)    7 (4.685)    1.009771 1.009771 1.021386   
8 1.00516  0.00516  (5.267)    8 (5.267)    1.005274 1.005274 1.011502   
9 1.00318  0.00318  (5.752)    9 (5.752)    1.002846 1.002846 1.006195   
10 1.001536 1.001536 1.003339   
11 1.000829 1.000829 1.001800   
12 1.000447 1.000447 1.000970   
13 1.000242 1.000242 1.000523   
14 1.000130 1.000130 1.000281   
15 1.000070 1.000070 1.000151   
16 1.000038 1.000038 1.000080   
17 1.000020 1.000020 1.000042   
18 1.000011 1.000011 1.000022   
19 1.000006 1.000006 1.000011   
20 1.000003 1.000003 1.000005   
21 1.000002 1.000002 1.000002   
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The Analysis of “All-Prior” Data 

Table 4.4 – “Medium” Paid All-Prior Projection (Cumulative) 

 

 

 

 

 

 

 

 

 

 

Note that the cumulative projections in Table 4.4 extend 12 periods beyond 120 months to match 
the number of periods used for the tail factor selection in Table 4.3,29 but we have included a total of 20 
pre-2004 accident years since that’s how many periods of all-prior data we will need to estimate the all-
prior row in the next steps. Thus, in addition to the 11 years of prior earned premiums and estimated 
ultimate loss ratios we have, we need to make some additional assumptions for years prior to the those 
11, namely a 1% growth rate and an expected loss ratio of 70% were assumed. Of course whether you 
have any premium and loss ratio data prior to the start of the triangle or not, the materiality of these 
assumptions can be stronger than the tail factor assumption when “calibrating” these assumptions by 
estimating the actual all-prior data. 

4.4 Estimate Prior Incremental Values 
After estimating the projected cumulative values, the projected incremental values are estimated by a 

simple subtraction, as illustrated in Table 4.5.  With the incremental values, we can also sum along the 
diagonal using formula (3.11) to compare these estimated values with the actual incremental values 
from the data in Table 4.1. 

29 To keep Table 4.4 from becoming unreadable only projections to 132 months are shown, but all projections can be seen 
in the companion “All Prior Analysis.xlsm” file. 

Premium Loss Ratio 24 36 48 60 72 84 96 108 120 132

1984 402,171     70.0% 164,287    218,768    246,380    261,937    270,724    275,625    278,319    279,786    280,583    281,014     

1985 406,193     70.0% 165,930    220,956    248,844    264,557    273,431    278,382    281,102    282,584    283,389    283,824     

1986 410,255     70.0% 167,589    223,165    251,332    267,202    276,165    281,165    283,913    285,410    286,222    286,662     

1987 414,357     70.0% 169,265    225,397    253,846    269,874    278,927    283,977    286,752    288,264    289,085    289,529     

1988 418,501     70.0% 170,958    227,651    256,384    272,573    281,716    286,817    289,619    291,147    291,975    292,424     

1989 422,686     70.0% 172,667    229,927    258,948    275,299    284,534    289,685    292,516    294,058    294,895    295,348     

1990 426,913     70.0% 174,394    232,226    261,537    278,052    287,379    292,582    295,441    296,999    297,844    298,302     

1991 431,182     70.0% 176,138    234,549    264,153    280,832    290,253    295,508    298,395    299,969    300,823    301,285     

1992 435,494     70.0% 177,899    236,894    266,794    283,640    293,155    298,463    301,379    302,968    303,831    304,298     

1993 439,848      69.1% 177,368    236,187    265,998    282,794    292,280    297,572    300,479    302,064    302,924    303,389     

1994 472,929      64.9% 179,117    238,515    268,620    285,581    295,161    300,505    303,441    305,041    305,910    306,380     

1995 412,911      75.1% 180,964    240,975    271,390    288,526    298,205    303,604    306,570    308,187    309,064    309,539     

1996 460,127      68.0% 182,592    243,143    273,831    291,122    300,888    306,335    309,328    310,960    311,845    312,324     

1997 471,803      67.0% 184,472    245,646    276,651    294,120    303,986    309,490    312,514    314,162    315,056    315,540     

1998 443,804      71.9% 186,215    247,968    279,265    296,899    306,858    312,414    315,467    317,130    318,033    318,522     

1999 448,454      71.9% 188,166    250,565    282,191    300,009    310,073    315,687    318,772    320,453    321,365    321,859     

2000 439,491      74.1% 190,048    253,071    285,013    303,010    313,174    318,844    321,960    323,658    324,579    325,078     

2001 499,204      65.9% 191,981    255,646    287,912    306,092    316,360    322,088    325,235    326,950    327,881    328,384     

2002 447,766      74.2% 193,888    258,184    290,772    309,132    319,502    325,286    328,465    330,197    331,137    331,646     

2003 468,659      71.6% 195,823    260,762    293,675    312,218    322,691    328,534    331,744    333,493    334,443    334,956     

Growth Loss Ratio
Prior to 1993 1.0% 70.0%
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Table 4.5 – “Medium” Paid All-Prior Projection (Incremental) 

 

 

 

 

 

 

 

4.5 Compare to Actual & Calibrate 
Comparing the estimates to the actual all-prior data we can see in Table 4.5 that the differences are 

not too far off.30 The totals for both the actual and estimated all-prior row are also included in Table 
4.3, which shows the estimates are 7.3% higher than the actual values. While the cumulative percentage 
difference of 7.3% is useful for gauging all of the assumptions for the all-prior row, it tends to be 
heavily influenced by the early development periods and is, thus, not usually responsive to changes in 
the tail factor assumptions. To calibrate the tail factor assumptions, it is much better to focus on the 
cumulative percent differences close to the end of the triangle, or use a weighted average of all 
cumulative differences with much more weight given to later development periods, which shows a 
difference of 0.4%, as illustrated in Table 4.5. 

The process of using the all-prior estimates to help “calibrate” the tail factor assumptions (i.e., what 
are reasonable for )(dv  and u ) can be quite useful in practice. For example, if we had used only 3 
decimal places in the tail factors in Table 4.3, and thus only 2 years appear to be needed in the tail,31 the 
weighted average of the cumulative percentage differences changes to -14.9% instead of +0.4%. Of 
course either )(dv  or u , or both, can be adjusted to see whether changing the tail factor assumption 
improves the fit of the estimated all-prior data to the actual data, thus validating the tail factor 

30 Again for readability values beyond 144 months of development are excluded from Table 4.5 so the diagonal values will 
not sum to the values in the Incremental row without referencing all of the values in the companion Excel file. 

31 Since all fitted factors beyond the 11th period in Table 4.3 would round to 1.000. 

12 24 36 48 60 72 84 96 108 120 132 144

1994 254           

1995 475           257           

1996 885           479           259           

1997 1,648        894           484           262           

1998 3,053        1,664        903           489           264           

1999 5,614        3,085        1,681        912           494           267           

2000 10,164      5,670        3,116        1,698        921           499           270           

2001 18,180      10,268      5,728        3,147        1,715        931           504           272           

2002 32,587      18,360      10,370      5,785        3,179        1,732        940           509           275           

2003 64,939      32,913      18,543      10,473      5,842        3,210        1,750        949           514           278           

Totals: (144+) (36-132) 36             48             60             72             84             96             108           120           132           144           

Estimated 1,309        303,022     138,094     73,886      41,383      23,068      12,720      6,947        3,774        2,044        1,106        598          

Actual 282,390     124,151     72,351      38,348      21,925      12,368      6,937        3,006        2,096        1,208        
Differences 20,632      13,943      1,535        3,035        1,143        352           10             768           (52)            (102)          
Cumulative Percent Difference 7.3% 4.2% 6.0% 4.5% 3.8% 4.7% 9.7% -4.6% -8.4%
Weights 0.25          0.50          1.00          2.00          3.00          4.00          5.00          6.00          7.00          
Weighted Average 0.4%
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assumption with actual data in the all-prior row.32 

To illustrate a more complete validation process, Table 4.6 summarizes key results when changing 
the number of years in the tail estimation from 1 to 14 years. Of course the actual validation process in 
practice can include other assumptions and methods for calculating the tail, but in the end judgment is 
required for making the final selections. 
Table 4.6 – “Medium” Paid Tail Calibration Summary 

 

 

 

 

 

 

 

4.6 Estimate All-Prior Reserves 
Finally, summing all of the diagonals below the diagonal line in Table 4.5, using formula (3.13), 

allows us to derive an independent estimate of the unpaid claims for all-prior years, as shown in Table 
4.5.33 Using this estimate of all-prior unpaid claims, we can complete the typical summary of our chain 
ladder estimates, as illustrated in Table 4.7.34 

32 While calibrating and validating could be used somewhat interchangeably, I think it is more useful to think of them as 
different yet related processes. In this case, calibration is the process of adjusting the parameters used to estimate a tail 
factor and validation is the process of checking the tail factor against the actual data in the all-prior row. 

33 As Table 4.5 is truncated beyond 144 months for readability, the interested reader can refer to the Excel file for the details 
beyond 144 months of development which sum to derive the all-prior row estimate. 

34 Note that the columns in Table 4.8 are a continuation of Table 4.7, so the column (7) referenced in Table 4.7 can be 
found in Table 4.8. 

All-Prior Projection Change in IBNR

Tail (u ) Total Cumulative Weighted Total

Years Ultimate Difference Percent Percent IBNR IBNR All-Prior Total

1 11 16,039     5.7% -28.1% (1,323)    176,381     

2 12 18,173     6.4% -14.9% (1,045)    179,629     278       3,248     

3 13 19,311     6.8% -7.8% (746)      181,532     299       1,903     

4 14 19,920     7.1% -4.0% (506)      182,639     241       1,107     

5 15 20,245     7.2% -2.0% (334)      183,279     172       640       

6 16 20,419     7.2% -0.9% (218)      183,647     116       368       

7 17 20,512     7.3% -0.4% (143)      183,857     75         211       

8 18 20,562     7.3% 0.0% (97)        183,978     47         120       

9 19 20,588     7.3% 0.1% (68)        184,046     29         68         

10 20 20,602     7.3% 0.2% (51)        184,085     17         39         

11 21 20,619     7.3% 0.3% (31)        184,116     20         31         

12 22 20,632     7.3% 0.4% (14)        184,139     17         23         

13 23 20,642     7.3% 0.4% (2)          184,155     13         16         

14 24 20,648     7.3% 0.5% 7           184,166     9           11         
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Table 4.7 – “Medium” Paid Chain Ladder Summary, with All-Prior 

 

 

 

 

 

 

 

 

The all-prior (A-P) row in Table 4.7 is highlighted to signify that it was not calculated the same as 
the remaining rows.  For the all-prior row, the estimated unpaid amount is the sum of the future 
diagonals from Table 4.5, the ultimate is (1) plus (4) and the Paid CDF is (3) divided by (1), which is 
only included for comparison purposes with the other CDFs in column (2). Note that simply using the 
tail factor for the all-prior row (1.0033 instead of 1.0046) would have misestimated the all-prior unpaid 
claims, perhaps significantly in some cases. 

The analysis in Tables 4.1 to 4.7 used paid data. Analogous work using incurred data is included in 
Appendix A as Tables A.1 to A.7, respectively. For ease of comparison, the summary of results for the 
incurred data (Table A.7) is repeated here as Table 4.8. 
Table 4.8 – “Medium” Incurred Chain Ladder Summary, with All-Prior 

 

 

 

 

 

 

 

 

Comparing the results in Tables 4.7 and 4.8, it seems fair to conclude that the case reserves for the 

Estimate of Total Unpaid Claims Using Paid Data
*All-Prior Estimate in Separate Exhibit

(1) (2) (3) (4) (5) (6)
(1) x (2) (3) - (1) (7) - (1) (4) - (5)

Paid
to Date

Paid
CDF Ultimate

Estimated
Unpaid

Case
Reserve

Estimated
IBNR

A-P* 282,390            1.0046    283,699           1,309               1,323               (14)                   
2004 322,784            1.0033     323,862            1,078               1,132               (54)                   
2005 357,748            1.0062     359,964            2,216               2,030               186                  
2006 328,463            1.0115     332,241            3,778               3,473               305                  
2007 348,988            1.0214     356,451            7,463               6,054               1,409               
2008 359,694            1.0399     374,038            14,344             11,865             2,479               
2009 329,792            1.0748     354,447            24,655             19,049             5,607               
2010 309,186            1.1426     353,283            44,097             34,772             9,326               
2011 255,177            1.2868     328,373            73,196             61,512             11,684             
2012 243,840            1.7136     417,840            174,000            118,332            55,669             
2013 100,689            3.8556     388,215            287,525            189,983            97,542             

633,661            449,522            184,139            

Estimate of Total Unpaid Claims Using Incurred Data
*All-Prior Estimate in Separate Exhibit

(7) (8) (9) (10) (11) (12)
(7) x (8) (11) + (12) (7) - (1) (9) - (7)

Incurred
to Date

Incurred
CDF Ultimate

Estimated
Unpaid

Case
Reserve

Estimated
IBNR

A-P* 283,713            1.0001    283,735           1,344               1,323               21                   
2004 323,915            1.0001     323,948            1,164               1,132               33                    
2005 359,778            1.0002     359,866            2,118               2,030               88                    
2006 331,936            1.0006     332,131            3,668               3,473               195                  
2007 355,042            1.0014     355,543            6,555               6,054               501                  
2008 371,559            1.0039     373,025            13,331             11,865             1,466               
2009 348,841            1.0093     352,096            22,304             19,049             3,255               
2010 343,957            1.0226     351,733            42,548             34,772             7,776               
2011 316,689            1.0525     333,326            78,149             61,512             16,637             
2012 362,172            1.1214     406,131            162,291            118,332            43,959             
2013 290,672            1.2840     373,216            272,527            189,983            82,544             

605,997            449,522            156,475            
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all-prior years are adequate and that an IBNR reserve near zero for these years would be reasonable.35  

Appendices B and C include analyses for the “low” case reserve simulated data for paid and incurred 
data, respectively. For ease of comparison, Tables B.7 and C.7 are repeated here as Tables 4.9 and 4.10, 
respectively. 
Table 4.9 – “Low” Paid Chain Ladder Summary, with All-Prior 

 

 

 

 

 

 

 

 
Table 4.10 – “Low” Incurred Chain Ladder Summary, with All-Prior 

 

 

 

 

 

 

 

 

Comparing the results in Tables 4.9 and 4.10, we have evidence that the case reserves for the all-
prior years are inadequate, so we have the ability to compare our estimates to any held IBNR to see if it 
is sufficient.  

35 Some tables in the Appendices have also been reduced for readability, so the reader is directed to the companion Excel 
file for all of the details. 

Estimate of Total Unpaid Claims Using Paid Data
*All-Prior Estimate in Separate Exhibit

(1) (2) (3) (4) (5) (6)
(1) x (2) (3) - (1) (7) - (1) (4) - (5)

Paid
to Date

Paid
CDF Ultimate

Estimated
Unpaid

Case
Reserve

Estimated
IBNR

A-P* 546,393            1.0122    553,046           6,653               6,075               578                  
2004 386,452            1.0114     390,872            4,420               3,476               944                  
2005 434,642            1.0185     442,661            8,020               5,946               2,074               
2006 407,012            1.0306     419,475            12,463             7,684               4,779               
2007 457,165            1.0518     480,866            23,701             16,130             7,571               
2008 398,617            1.0892     434,190            35,574             23,671             11,903             
2009 431,152            1.1550     497,975            66,823             33,566             33,257             
2010 400,155            1.2794     511,940            111,786            63,349             48,437             
2011 304,450            1.5237     463,877            159,427            94,442             64,985             
2012 231,388            2.2836     528,388            297,000            159,371            137,629            
2013 105,488            5.0838     536,281            430,793            206,653            224,140            

1,156,658         620,362            536,296            

Estimate of Total Unpaid Claims Using Incurred Data
*All-Prior Estimate in Separate Exhibit

(7) (8) (9) (10) (11) (12)
(7) x (8) (11) + (12) (7) - (1) (9) - (7)

Incurred
to Date

Incurred
CDF Ultimate

Estimated
Unpaid

Case
Reserve

Estimated
IBNR

A-P* 552,468            1.0019    553,494           7,101               6,075               1,026               
2004 389,928            1.0025     390,883            4,432               3,476               955                  
2005 440,588            1.0045     442,586            7,944               5,946               1,998               
2006 414,696            1.0084     418,178            11,166             7,684               3,482               
2007 473,295            1.0164     481,067            23,902             16,130             7,772               
2008 422,287            1.0298     434,869            36,252             23,671             12,581             
2009 464,718            1.0551     490,328            59,176             33,566             25,610             
2010 463,503            1.1028     511,172            111,017            63,349             47,669             
2011 398,892            1.1871     473,531            169,080            94,442             74,639             
2012 390,758            1.3800     539,250            307,862            159,371            148,491            
2013 312,141            1.7137     534,926            429,438            206,653            222,785            

1,167,370         620,362            547,007            

Casualty Actuarial Society E-Forum, Fall 2014  22 

                                                           



The Analysis of “All-Prior” Data 

Appendices D and E include the analysis for the “high” case reserve simulated data for paid and 
incurred data, respectively.36 For ease of comparison, Tables D.7 and E.7 are repeated here as Tables 
4.11 and 4.12, respectively. 
Table 4.11 – “High” Paid Chain Ladder Summary, with All-Prior 

 

 

 

 

 

 

 

 
Table 4.12 – “High” Incurred Chain Ladder Summary, with All-Prior 

 

 

 

 

 

 

 

 

Comparing the results in Tables 4.11 and 4.12, we have evidence that the case reserves for the all-
prior years are more than adequate, and again we have the ability to assess any held IBNR. 

36 Note that the exponential decay method (3.6) of estimating tail factors is not well suited to fitting development factors 
less than 1.000. Thus, the selected tail factor in Table E.3 needed to be estimated using a different method. 

Estimate of Total Unpaid Claims Using Paid Data
*All-Prior Estimate in Separate Exhibit

(1) (2) (3) (4) (5) (6)
(1) x (2) (3) - (1) (7) - (1) (4) - (5)

Paid
to Date

Paid
CDF Ultimate

Estimated
Unpaid

Case
Reserve

Estimated
IBNR

A-P* 2,028,756         1.0040    2,036,779        8,024               13,009             (4,985)              
2004 962,203            1.0093     971,173            8,969               11,874             (2,904)              
2005 898,591            1.0184     915,098            16,508             21,878             (5,370)              
2006 907,581            1.0363     940,536            32,955             42,994             (10,040)            
2007 977,881            1.0722     1,048,462         70,581             83,430             (12,849)            
2008 1,040,208         1.1459     1,191,977         151,769            140,745            11,025             
2009 914,456            1.2918     1,181,321         266,865            257,107            9,758               
2010 732,524            1.7372     1,272,516         539,993            528,128            11,865             
2011 496,043            2.6041     1,291,769         795,726            696,830            98,896             
2012 271,729            5.2619     1,429,810         1,158,081         933,516            224,565            
2013 99,365             14.9591   1,486,405         1,387,040         1,129,608         257,432            

4,436,510         3,859,117         577,393            

Estimate of Total Unpaid Claims Using Incurred Data
*All-Prior Estimate in Separate Exhibit

(7) (8) (9) (10) (11) (12)
(7) x (8) (11) + (12) (7) - (1) (9) - (7)

Incurred
to Date

Incurred
CDF Ultimate

Estimated
Unpaid

Case
Reserve

Estimated
IBNR

A-P* 2,041,764         0.9996    2,040,912        12,156             13,009             (853)                
2004 974,077            0.9989     973,045            10,841             11,874             (1,032)              
2005 920,468            0.9981     918,726            20,135             21,878             (1,742)              
2006 950,576            0.9972     947,946            40,364             42,994             (2,630)              
2007 1,061,310         0.9942     1,055,132         77,251             83,430             (6,179)              
2008 1,180,953         0.9933     1,173,030         132,822            140,745            (7,923)              
2009 1,171,563         0.9942     1,164,732         250,275            257,107            (6,832)              
2010 1,260,651         1.0042     1,265,965         533,442            528,128            5,314               
2011 1,192,873         1.0589     1,263,124         767,081            696,830            70,252             
2012 1,205,245         1.1466     1,381,967         1,110,238         933,516            176,722            
2013 1,228,972         1.2667     1,556,760         1,457,395         1,129,608         327,787            

4,412,001         3,859,117         552,884            
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5. FUTURE RESEARCH 

As this is the first paper outlining a process for estimating unpaid claims for all-prior data, there is 
much that can be done to expand this in various ways.  Only a few suggestions for such future research 
are offered here. 

• The historical estimation process could also incorporate assumptions from other estimation 
methods such as Berquist and Sherman [3]. 

• Closed-form estimates for the standard deviation as in Mack [8] or alternative assumptions for age-
to-age factors as in Murphy [9] may be adaptable to all-prior data. 

• The Over-Dispersed Poisson (ODP) Bootstrap models such as those discussed in Shapland and 
Leong [11] could incorporate the all-prior data analysis to simulate a distribution for the all-prior 
claims. 

• The incremental log models in Barnett and Zehnwirth [1] or Zehnwirth [13] can be extended 
backwards to simulate a distribution for the all-prior claims. 

6. CONCLUSIONS 

Whenever data being used to estimate unpaid claims includes an all-prior row and a tail factor is 
needed, the starting point to analyzing the all-prior data is understanding the data (i.e., how was it 
created and what is included). Once the data is understood, the methods introduced in this paper can 
be used to analyze the all-prior row. Regardless of whether the unpaid claims in the all-prior row are a 
significant portion of the total unpaid claims or not, the value of the methodology in helping to 
calibrate the tail factor should not be underestimated.  Indeed, the process of calibrating the tail factor 
and validating it by comparing estimates of the all-prior data to the actual all-prior data may reveal that 
the tail factor is different than otherwise expected, which will have an impact on estimates for all 
accident periods. 
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Appendix A – Incurred Analysis for “Medium” Case Reserve Data 
Table A.1 – “Medium” Incurred Loss Triangle with All-Prior Data 

 
 
 
 
 
 
 
 
 

 

Table A.2 – “Medium” Incurred Loss Development Factors 

 
 
 
 
 
 

 
 
 
 
 
 
 

 

Table A.3 – “Medium” Incurred Tail Factor Calculation 

 
 
 
 
 
 
 
 
 
 
 
 

12 24 36 48 60 72 84 96 108 120 132

A-P 226,614     253,212     272,185     278,519     281,496     283,003     283,520     283,663     283,741     283,713     

2004 250,529     286,453     307,218     317,077     321,489     322,467     323,628     323,685     323,858     323,915     

2005 277,084     325,918     342,040     353,268     356,648     358,593     359,498     359,761     359,778     

2006 271,418     298,981     316,852     323,994     328,877     330,662     331,705     331,936     

2007 284,989     320,743     335,916     347,257     352,265     354,693     355,042     

2008 297,906     334,537     353,299     365,298     369,420     371,559     

2009 277,237     307,715     333,225     343,673     348,841     

2010 270,103     313,682     337,891     343,957     

2011 255,515     292,838     316,689     

2012 323,902     362,172     

2013 290,672     

12-24 24-36 36-48 48-60 60-72 72-84 84-96 96-108 108-120 Tail

2004 1.143        1.072        1.032        1.014        1.003        1.004        1.000        1.001        1.000        

2005 1.176        1.049        1.033        1.010        1.005        1.003        1.001        1.000        

2006 1.102        1.060        1.023        1.015        1.005        1.003        1.001        

2007 1.125        1.047        1.034        1.014        1.007        1.001        

2008 1.123        1.056        1.034        1.011        1.006        

2009 1.110        1.083        1.031        1.015        

2010 1.161        1.077        1.018        

2011 1.146        1.081        

2012 1.118        

VWA 1.133        1.065        1.029        1.013        1.005        1.003        1.001        1.000        1.000        

5-Yr VWA 1.131        1.068        1.028        1.013        1.005        1.003        1.001        1.000        1.000        

3-Yr VWA 1.140        1.080        1.028        1.014        1.006        1.002        1.001        1.000        1.000        

TF Fitted 1.157        1.066        1.027        1.011        1.005        1.002        1.001        1.000        1.000        1.000        

User 1.145        

Selected 1.145        1.065        1.029        1.013        1.005        1.003        1.001        1.000        1.000        1.0001      

Ultimate 1.284        1.121        1.053        1.023        1.009        1.004        1.001        1.001        1.000        1.0001      

% Reported 0.779        0.892        0.950        0.978        0.991        0.996        0.999        0.999        1.000        1.000        

% Unrptd 0.221        0.108        0.050        0.022        0.009        0.004        0.001        0.001        0.000        0.000        

Tail Years: 5 Actual 57,099      Decay 0.417      
Tail Factor: 1.0001    Estimated 63,910      Intercept 0.377      

Error % 11.9%

Period Factor Dev Log Excl Period Log Fitted Selected ATA Ultimate
1 1.13328  0.13328  (2.015)    1 (2.015)    1.157232 1.157232 1.291574   
2 1.06541  0.06541  (2.727)    2 (2.727)    1.065522 1.065522 1.116089   
3 1.02927  0.02927  (3.531)    3 (3.531)    1.027304 1.027304 1.047457   
4 1.01315  0.01315  (4.331)    4 (4.331)    1.011378 1.011378 1.019618   
5 1.00537  0.00537  (5.228)    5 (5.228)    1.004741 1.004741 1.008147   
6 1.00253  0.00253  (5.979)    6 (5.979)    1.001976 1.001976 1.003390   
7 1.00054  0.00054  (7.521)    7 (7.521)    1.000823 1.000823 1.001411   
8 1.00028  0.00028  (8.184)    8 (8.184)    1.000343 1.000343 1.000587   
9 1.00018  0.00018  (8.646)    9 (8.646)    1.000143 1.000143 1.000244   
10 1.000060 1.000060 1.000101   
11 1.000025 1.000025 1.000041   
12 1.000010 1.000010 1.000016   
13 1.000004 1.000004 1.000006   
14 1.000002 1.000002 1.000002   
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Table A.4 – “Medium” Incurred All-Prior Projection (Cumulative) 

 
 
 
 
 
 
 
 
 
 
 

Table A.5 – “Medium” Incurred All-Prior Projection (Incremental) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table A.6 – “Medium” Incurred Tail Calibration Summary 

 
 

Premium Loss Ratio 24 36 48 60 72 84 96 108 120 132

1991 431,182     70.0% 269,158    286,762    295,154    299,037    300,641    301,402    301,650    301,754    301,797    301,815     

1992 435,494     70.0% 271,849    289,630    298,106    302,027    303,648    304,416    304,667    304,771    304,815    304,833     

1993 439,848     69.1% 271,038    288,765    297,216    301,125    302,741    303,507    303,757    303,861    303,905    303,923     

1994 472,929     64.9% 273,709    291,611    300,146    304,094    305,725    306,499    306,751    306,856    306,900    306,919     

1995 412,911     75.1% 276,532    294,619    303,241    307,230    308,878    309,660    309,915    310,021    310,065    310,084     

1996 460,127     68.0% 279,020    297,269    305,969    309,993    311,657    312,445    312,703    312,810    312,855    312,873     

1997 471,803     67.0% 281,893    300,330    309,120    313,186    314,866    315,663    315,923    316,031    316,076    316,095     

1998 443,804     71.9% 284,557    303,168    312,040    316,145    317,841    318,645    318,908    319,017    319,063    319,082     

1999 448,454     71.9% 287,538    306,344    315,310    319,457    321,171    321,984    322,249    322,360    322,406    322,425     

2000 439,491     74.1% 290,414    309,408    318,463    322,652    324,383    325,204    325,472    325,583    325,630    325,649     

2001 499,204     65.9% 293,368    312,556    321,703    325,934    327,683    328,512    328,783    328,895    328,942    328,962     

2002 447,766     74.2% 296,281    315,660    324,897    329,171    330,937    331,775    332,048    332,162    332,209    332,229     

2003 468,659     71.6% 299,239    318,811    328,141    332,457    334,241    335,087    335,363    335,478    335,526    335,546     

All-Prior Projection Change in IBNR

Tail (u ) Total Cumulative Weighted Total

Years Ultimate Difference Percent Percent IBNR IBNR All-Prior Total

1 11 6,698      11.7% 62.1% -        156,306     

2 12 6,766      11.9% 79.0% 8           156,403     8           97         

3 13 6,795      11.9% 86.0% 15         156,447     7           44         

4 14 6,806      11.9% 88.8% 19         156,466     4           20         

5 15 6,811      11.9% 90.0% 21         156,475     2           9           

6 16 6,813      11.9% 90.5% 23         156,479     1           4           

7 17 6,814      11.9% 90.7% 23         156,480     1           2           

8 18 6,814      11.9% 90.8% 24         156,481     0           1           

9 19 6,815      11.9% 90.8% 24         156,482     0           0           

10 20 6,815      11.9% 90.9% 24         156,482     0           0           

12 24 36 48 60 72 84 96 108 120 132 144

1994 8              

1995 18             8              

1996 44             18             8              

1997 106           44             18             8              

1998 257           107           45             19             8              

1999 797           260           108           45             19             8              

2000 1,696        804           262           109           46             19             8              

2001 4,147        1,714        813           265           111           46             19             8              

2002 9,055        4,189        1,731        821           268           112           47             19             8              

2003 19,188      9,147        4,232        1,749        829           270           113           47             20             8              

Totals: (144+) (36-132) 36             48             60             72             84             96             108           120           132           144           

Estimated 21             63,910      35,321      16,297      7,222        3,021        1,285        460           192           80             33             14            

Actual 57,099      26,597      18,973      6,334        2,976        1,507        517           143           77             (28)            
Differences 6,811        8,724        (2,677)       888           44             (222)          (57)            49             2              61             
Cumulative Percent Difference 11.9% -6.3% 6.6% -2.4% -7.6% 7.6% 57.7% 126.1% 219.1%
Weights 0.25          0.50          1.00          2.00          3.00          4.00          5.00          6.00          7.00          
Weighted Average 90.0%
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Table A.7 – “Medium” Incurred Chain Ladder Summary, with All-Prior 

 
 
 

Estimate of Total Unpaid Claims Using Incurred Data
*All-Prior Estimate in Separate Exhibit

(7) (8) (9) (10) (11) (12)
(7) x (8) (11) + (12) (7) - (1) (9) - (7)

Incurred
to Date

Incurred
CDF Ultimate

Estimated
Unpaid

Case
Reserve

Estimated
IBNR

A-P* 283,713            1.0001    283,735           1,344               1,323               21                   
2004 323,915            1.0001     323,948            1,164               1,132               33                    
2005 359,778            1.0002     359,866            2,118               2,030               88                    
2006 331,936            1.0006     332,131            3,668               3,473               195                  
2007 355,042            1.0014     355,543            6,555               6,054               501                  
2008 371,559            1.0039     373,025            13,331             11,865             1,466               
2009 348,841            1.0093     352,096            22,304             19,049             3,255               
2010 343,957            1.0226     351,733            42,548             34,772             7,776               
2011 316,689            1.0525     333,326            78,149             61,512             16,637             
2012 362,172            1.1214     406,131            162,291            118,332            43,959             
2013 290,672            1.2840     373,216            272,527            189,983            82,544             

605,997            449,522            156,475            
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Appendix B – Paid Analysis for “Low” Case Reserve Data 
Table B.1 – “Low” Paid Loss Triangle with All-Prior Data 

 
 
 
 
 
 
 
 
 

 

Table B.2 – “Low” Paid Loss Development Factors 

 
 
 
 
 
 

 
 
 
 
 
 
 

Table B.3 – “Low” Paid Tail Factor Calculation 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Table B.4 – “Low” Paid All-Prior Projection (Cumulative) 

 
 

12 24 36 48 60 72 84 96 108 120 132

A-P -            224,096     349,441     428,145     476,471     506,620     525,072     535,370     541,985     546,393     

2004 59,477      172,635     254,266     309,215     335,168     355,021     372,113     378,908     383,860     386,452     

2005 95,293      190,721     287,897     338,580     382,595     407,187     421,132     429,650     434,642     

2006 73,884      165,497     266,958     318,469     366,483     387,022     397,578     407,012     

2007 81,811      222,270     329,320     389,660     419,385     442,175     457,165     

2008 119,772     205,222     277,631     333,442     373,116     398,617     

2009 111,735     225,388     329,885     394,175     431,152     

2010 89,494      212,010     339,510     400,155     

2011 73,009      200,877     304,450     

2012 115,736     231,388     

2013 105,488     

12-24 24-36 36-48 48-60 60-72 72-84 84-96 96-108 108-120 Tail

2004 2.903        1.473        1.216        1.084        1.059        1.048        1.018        1.013        1.007        

2005 2.001        1.510        1.176        1.130        1.064        1.034        1.020        1.012        

2006 2.240        1.613        1.193        1.151        1.056        1.027        1.024        

2007 2.717        1.482        1.183        1.076        1.054        1.034        

2008 1.713        1.353        1.201        1.119        1.068        

2009 2.017        1.464        1.195        1.094        

2010 2.369        1.601        1.179        

2011 2.751        1.516        

2012 1.999        

VWA 2.226        1.499        1.191        1.108        1.060        1.036        1.021        1.012        1.007        

5-Yr VWA 2.109        1.483        1.190        1.112        1.060        1.036        1.021        1.012        1.007        

3-Yr VWA 2.316        1.526        1.191        1.095        1.059        1.032        1.021        1.012        1.007        

TF Fitted 1.539        1.313        1.182        1.105        1.061        1.035        1.021        1.012        1.007        1.011        

User

Selected 2.226        1.499        1.191        1.108        1.060        1.036        1.021        1.012        1.007        1.0044      

Ultimate 5.084        2.284        1.524        1.279        1.155        1.089        1.052        1.031        1.018        1.0114      

% Paid 19.7% 43.8% 65.6% 78.2% 86.6% 91.8% 95.1% 97.0% 98.2% 98.9%

% Unpaid 80.3% 56.2% 34.4% 21.8% 13.4% 8.2% 4.9% 3.0% 1.8% 1.1%

Paid Tail Factor Analysis    
All Prior

Tail Years: 15 Actual 546,393     Decay 0.580      
Tail Factor: 1.0114    Estimated 548,874     Intercept 0.930      

Error % 0.5%

Period Factor Dev Log Excl Period Log Fitted Selected ATA ATU
1 2.22626  1.22626  0.204     Y 1.539467 1.539467 3.051586   
2 1.49874  0.49874  (0.696)    Y 1.313031 1.313031 1.982236   
3 1.19095  0.19095  (1.656)    Y 1.181640 1.181640 1.509664   
4 1.10768  0.10768  (2.229)    Y 1.105398 1.105398 1.277601   
5 1.06036  0.06036  (2.807)    5 (2.807)    1.061159 1.061159 1.155783   
6 1.03556  0.03556  (3.337)    6 (3.337)    1.035488 1.035488 1.089171   
7 1.02078  0.02078  (3.874)    7 (3.874)    1.020592 1.020592 1.051843   
8 1.01230  0.01230  (4.398)    8 (4.398)    1.011949 1.011949 1.030621   
9 1.00675  0.00675  (4.998)    9 (4.998)    1.006933 1.006933 1.018451   
10 1.004023 1.004440 1.004440 1.011439   
11 1.002335 1.002640 1.002640 1.006968   
12 1.001355 1.001940 1.001940 1.004316   
13 1.000786 1.000940 1.000940 1.002372   
14 1.000456 1.000640 1.000640 1.001430   
15 1.000265 1.000340 1.000340 1.000790   
16 1.000154 1.000240 1.000240 1.000450   
17 1.000089 1.000089 1.000210   
18 1.000052 1.000052 1.000120   
19 1.000030 1.000030 1.000069   
20 1.000017 1.000017 1.000039   
21 1.000010 1.000010 1.000021   
22 1.000006 1.000006 1.000011   
23 1.000003 1.000003 1.000005   
24 1.000002 1.000002 1.000002   

Premium Loss Ratio 24 36 48 60 72 84 96 108 120 132

1994 408,252      74.4% 133,011    199,349    237,416    262,981    278,854    288,769    294,715    298,237    300,305    301,638     

1995 421,696      74.2% 137,022    205,361    244,575    270,911    287,263    297,476    303,602    307,230    309,360    310,734     

1996 426,540      75.5% 141,024    211,359    251,718    278,824    295,653    306,165    312,470    316,203    318,396    319,809     

1997 435,782      76.2% 145,416    217,941    259,557    287,507    304,860    315,699    322,200    326,050    328,311    329,768     

1998 445,319      76.8% 149,768    224,463    267,326    296,112    313,984    325,148    331,843    335,809    338,137    339,638     

1999 479,330      73.5% 154,280    231,225    275,379    305,032    323,443    334,943    341,840    345,925    348,323    349,870     

2000 482,332      75.2% 158,837    238,055    283,513    314,042    332,996    344,836    351,937    356,142    358,612    360,204     

2001 508,950      73.4% 163,591    245,180    291,998    323,440    342,963    355,157    362,470    366,801    369,345    370,984     

2002 499,443      77.0% 168,409    252,401    300,598    332,966    353,063    365,617    373,146    377,604    380,222    381,910     

2003 552 073      71 8% 173 584    260 156    309 834    343 198    363 912    376 851    384 612    389 207    391 906    393 646     
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Table B.5 – “Low” Paid All-Prior Projection (Incremental) 

 
 
 
 
 
 
 
 
 
 
 
 

 

Table B.6 – “Low” Paid Tail Calibration Summary 

 All-Prior Projection Change in IBNR

Tail (u ) Total Cumulative Weighted Total

Years Ultimate Difference Percent Percent IBNR IBNR All-Prior Total

1 11 (14,527)    -2.7% -33.9% (6,075)    497,077     

2 12 (7,802)     -1.4% -19.7% (5,031)    510,460     1,044     13,383   

3 13 (3,044)     -0.6% -9.6% (3,521)    521,061     1,510     10,602   

4 14 (822)        -0.2% -4.9% (2,439)    526,557     1,082     5,496     

5 15 635         0.1% -1.7% (1,471)    530,533     968       3,976     

6 16 1,380      0.3% -0.1% (837)      532,766     634       2,233     

7 17 1,887      0.3% 1.0% (308)      534,424     529       1,658     

8 18 2,068      0.4% 1.4% (82)        535,070     226       645       

9 19 2,170      0.4% 1.6% 66         535,461     148       391       

10 20 2,226      0.4% 1.7% 161       535,697     95         236       

11 21 2,300      0.4% 1.9% 277       535,895     116       198       

12 22 2,366      0.4% 2.0% 383       536,048     105       153       

13 23 2,417      0.4% 2.1% 467       536,161     85         113       

14 24 2,455      0.4% 2.2% 532       536,241     64         80         

15 25 2,480      0.5% 2.2% 578       536,296     46         56         

16 26 2,498      0.5% 2.2% 610       536,334     32         38         

17 27 2,509      0.5% 2.3% 632       536,359     22         25         

18 28 2,516      0.5% 2.3% 647       536,376     15         17         

19 29 2,521      0.5% 2.3% 657       536,387     10         11         

20 30 2,524      0.5% 2.3% 664       536,394     7           7           

12 24 36 48 60 72 84 96 108 120 132 144

1994 796           

1995 1,374        820           

1996 2,192        1,414        844           

1997 3,850        2,261        1,458        871           

1998 6,696        3,965        2,328        1,501        897           

1999 11,500      6,897        4,085        2,398        1,547        924           

2000 18,955      11,840      7,101        4,205        2,469        1,592        951           

2001 31,443      19,522      12,194      7,313        4,331        2,543        1,640        979           

2002 48,197      32,369      20,097      12,553      7,529        4,459        2,618        1,688        1,008        

2003 86,573      49,678      33,363      20,715      12,939      7,760        4,596        2,699        1,740        1,039        

Totals: (144+) (36-132) 36             48             60             72             84             96             108           120           132           144           

Estimated 6,653        548,874     212,814     130,042     82,786      50,912      31,107      18,716      11,286      6,892        4,319        2,657        

Actual 546,393     224,096     125,345     78,704      48,327      30,149      18,451      10,298      6,615        4,409        
Differences 2,480        (11,282)     4,697        4,082        2,585        958           264           987           277           (89)            
Cumulative Percent Difference 0.5% 4.3% 4.6% 4.2% 3.4% 3.6% 5.5% 1.7% -2.0%
Weights 0.25          0.50          1.00          2.00          3.00          4.00          5.00          6.00          7.00          
Weighted Average 2.2%
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Table B.7 – “Low” Paid Chain Ladder Summary, with All-Prior 

 
 
 

Estimate of Total Unpaid Claims Using Paid Data
*All-Prior Estimate in Separate Exhibit

(1) (2) (3) (4) (5) (6)
(1) x (2) (3) - (1) (7) - (1) (4) - (5)

Paid
to Date

Paid
CDF Ultimate

Estimated
Unpaid

Case
Reserve

Estimated
IBNR

A-P* 546,393            1.0122    553,046           6,653               6,075               578                  
2004 386,452            1.0114     390,872            4,420               3,476               944                  
2005 434,642            1.0185     442,661            8,020               5,946               2,074               
2006 407,012            1.0306     419,475            12,463             7,684               4,779               
2007 457,165            1.0518     480,866            23,701             16,130             7,571               
2008 398,617            1.0892     434,190            35,574             23,671             11,903             
2009 431,152            1.1550     497,975            66,823             33,566             33,257             
2010 400,155            1.2794     511,940            111,786            63,349             48,437             
2011 304,450            1.5237     463,877            159,427            94,442             64,985             
2012 231,388            2.2836     528,388            297,000            159,371            137,629            
2013 105,488            5.0838     536,281            430,793            206,653            224,140            

1,156,658         620,362            536,296            
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Appendix C – Incurred Analysis for “Low” Case Reserve Data 
Table C.1 – “Low” Incurred Loss Triangle with All-Prior Data 

 
 
 
 
 
 
 
 
 

 

Table C.2 – “Low” Incurred Loss Development Factors 

 
 
 
 
 
 

 
 
 
 
 
 
 

 

Table C.3 – “Low” Incurred Tail Factor Calculation 

 
 
 
 
 
 
 
 
 
 
 
 

12 24 36 48 60 72 84 96 108 120 132

A-P 313,964     419,793     474,098     509,975     528,993     540,336     546,327     549,438     551,508     552,468     

2004 229,846     286,253     326,645     356,188     367,977     378,068     384,592     387,096     389,206     389,928     

2005 272,625     317,769     373,881     395,845     419,735     430,657     435,569     439,389     440,588     

2006 239,240     296,287     343,883     375,203     398,283     406,375     411,221     414,696     

2007 273,614     361,153     416,886     443,360     456,786     467,440     473,295     

2008 280,215     326,745     365,787     389,743     411,549     422,287     

2009 299,423     361,656     410,220     449,671     464,718     

2010 301,843     364,457     432,227     463,503     

2011 263,437     341,716     398,892     

2012 318,040     390,758     

2013 312,141     

12-24 24-36 36-48 48-60 60-72 72-84 84-96 96-108 108-120 Tail

2004 1.245        1.141        1.090        1.033        1.027        1.017        1.007        1.005        1.002        

2005 1.166        1.177        1.059        1.060        1.026        1.011        1.009        1.003        

2006 1.238        1.161        1.091        1.062        1.020        1.012        1.008        

2007 1.320        1.154        1.064        1.030        1.023        1.013        

2008 1.166        1.119        1.065        1.056        1.026        

2009 1.208        1.134        1.096        1.033        

2010 1.207        1.186        1.072        

2011 1.297        1.167        

2012 1.229        

VWA 1.229        1.155        1.076        1.045        1.025        1.013        1.008        1.004        1.002        

5-Yr VWA 1.220        1.153        1.077        1.047        1.025        1.013        1.008        1.004        1.002        

3-Yr VWA 1.242        1.162        1.078        1.039        1.023        1.012        1.008        1.004        1.002        

TF Fitted 1.283        1.153        1.083        1.045        1.024        1.013        1.007        1.004        1.002        1.002        

User

Selected 1.242        1.162        1.076        1.045        1.025        1.013        1.008        1.004        1.002        1.0011      

Ultimate 1.714        1.380        1.187        1.103        1.055        1.030        1.016        1.008        1.005        1.0025      

% Reported 0.584        0.725        0.842        0.907        0.948        0.971        0.984        0.992        0.995        0.998        

% Unrptd 0.416        0.275        0.158        0.093        0.052        0.029        0.016        0.008        0.005        0.002        

Incurred Tail Factor Analysis
All Prior

Tail Years: 10 Actual 238,504     Decay 0.541      
Tail Factor: 1.0025    Estimated 230,023     Intercept 0.522      

Error % -3.6%

Period Factor Dev Log Excl Period Log Fitted Selected ATA Ultimate
1 1.22940  0.22940  (1.472)    Y 1.282709 1.282709 1.763247   
2 1.15526  0.15526  (1.863)    2 (1.863)    1.152996 1.152996 1.374628   
3 1.07641  0.07641  (2.572)    3 (2.572)    1.082798 1.082798 1.192222   
4 1.04524  0.04524  (3.096)    4 (3.096)    1.044809 1.044809 1.101057   
5 1.02458  0.02458  (3.706)    5 (3.706)    1.024250 1.024250 1.053836   
6 1.01316  0.01316  (4.331)    6 (4.331)    1.013123 1.013123 1.028886   
7 1.00796  0.00796  (4.834)    7 (4.834)    1.007102 1.007102 1.015558   
8 1.00400  0.00400  (5.521)    8 (5.521)    1.003844 1.003844 1.008396   
9 1.00185  0.00185  (6.290)    9 (6.290)    1.002080 1.002080 1.004535   
10 1.001126 1.001126 1.002450   
11 1.000609 1.000609 1.001323   
12 1.000330 1.000330 1.000713   
13 1.000178 1.000178 1.000384   
14 1.000097 1.000097 1.000205   
15 1.000052 1.000052 1.000109   
16 1.000028 1.000028 1.000056   
17 1.000015 1.000015 1.000028   
18 1.000008 1.000008 1.000013   
19 1.000004 1.000004 1.000004   
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Table C.4 – “Low” Incurred All-Prior Projection (Cumulative) 

 
 
 
 
 
 
 
 
 

Table C.5 – “Low” Incurred All-Prior Projection (Incremental) 

 
 
 
 
 
 
 
 
 
 
 
 
 

Table C.6 – “Low” Incurred Tail Calibration Summary 

 

Premium Loss Ratio 24 36 48 60 72 84 96 108 120 132

1994 408,252     74.4% 220,100    255,864    275,415    287,875    294,952    298,833    301,211    302,368    302,997    303,338     

1995 421,696     74.2% 226,737    263,579    283,720    296,556    303,846    307,844    310,293    311,486    312,134    312,485     

1996 426,540     75.5% 233,359    271,278    292,006    305,218    312,721    316,835    319,356    320,584    321,250    321,612     

1997 435,782     76.2% 240,626    279,725    301,100    314,722    322,459    326,702    329,301    330,567    331,255    331,627     

1998 445,319     76.8% 247,828    288,097    310,112    324,142    332,110    336,480    339,157    340,461    341,169    341,553     

1999 479,330     73.5% 255,294    296,776    319,454    333,907    342,115    346,616    349,374    350,717    351,446    351,842     

2000 482,332     75.2% 262,834    305,542    328,889    343,769    352,220    356,854    359,694    361,076    361,827    362,234     

2001 508,950     73.4% 270,701    314,687    338,733    354,058    362,761    367,534    370,459    371,883    372,656    373,076     

2002 499,443     77.0% 278,673    323,955    348,709    364,485    373,445    378,359    381,369    382,835    383,632    384,063     

2003 552,073     71.8% 287,236    333,909    359,424    375,685    384,920    389,985    393,088    394,599    395,420    395,865     

All-Prior Projection Change in IBNR

Tail (u ) Total Cumulative Weighted Total

Years Ultimate Difference Percent Percent IBNR IBNR All-Prior Total

1 11 (11,900)    -5.0% -34.8% -        539,749     

2 12 (10,267)    -4.3% -22.7% 227       542,847     227       3,097     

3 13 (9,411)     -3.9% -16.4% 470       544,643     243       1,797     

4 14 (8,963)     -3.8% -13.0% 664       545,678     194       1,035     

5 15 (8,729)     -3.7% -11.3% 802       546,272     138       593       

6 16 (8,606)     -3.6% -10.3% 894       546,610     92         339       

7 17 (8,541)     -3.6% -9.9% 953       546,803     59         192       

8 18 (8,508)     -3.6% -9.6% 990       546,911     37         109       

9 19 (8,490)     -3.6% -9.5% 1,012     546,973     22         61         

10 20 (8,481)     -3.6% -9.4% 1,026     547,007     13         35         

11 21 (8,470)     -3.6% -9.3% 1,041     547,034     15         27         

12 22 (8,462)     -3.5% -9.3% 1,054     547,053     13         19         

13 23 (8,456)     -3.5% -9.2% 1,063     547,066     10         13         

14 24 (8,452)     -3.5% -9.2% 1,070     547,075     7           9           

15 25 (8,449)     -3.5% -9.2% 1,075     547,081     5           6           

16 26 (8,447)     -3.5% -9.2% 1,078     547,084     3           4           

17 27 (8,446)     -3.5% -9.2% 1,080     547,086     2           2           

18 28 (8,434)     -3.5% -9.2% 1,081     547,088     1           1           

19 29 (8,421)     -3.5% -9.2% 1,082     547,088     1           1           

20 30 (8,407)     -3.5% -9.2% 1,082     547,089     0           1           

12 24 36 48 60 72 84 96 108 120 132 144

1994 174           

1995 331           179           

1996 629           341           185           

1997 1,193        648           351           190           

1998 2,521        1,227        667           362           196           

1999 4,243        2,600        1,266        688           373           202           

2000 7,968        4,369        2,678        1,304        708           384           208           

2001 14,453      8,208        4,501        2,758        1,343        730           396           214           

2002 23,347      14,880      8,451        4,634        2,840        1,382        751           407           221           

2003 43,986      24,046      15,325      8,704        4,773        2,925        1,424        774           419           227           

Totals: (144+) (36-132) 36             48             60             72             84             96             108           120           132           144           

Estimated 1,026        230,023     99,036      56,696      33,627      18,849      10,448      5,845        3,008        1,631        883           478          

Actual 238,504     105,829     54,304      35,877      19,019      11,343      5,991        3,110        2,071        960           
Differences (8,481)       (6,793)       2,392        (2,251)       (170)          (894)          (146)          (102)          (439)          (77)            
Cumulative Percent Difference -3.6% -1.3% -5.2% -4.3% -7.1% -6.3% -10.1% -17.0% -8.0%
Weights 0.25          0.50          1.00          2.00          3.00          4.00          5.00          6.00          7.00          
Weighted Average -9.4%
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The Analysis of “All-Prior” Data 

Table C.7 – “Low” Incurred Chain Ladder Summary, with All-Prior 

 
 
 

Estimate of Total Unpaid Claims Using Incurred Data
*All-Prior Estimate in Separate Exhibit

(7) (8) (9) (10) (11) (12)
(7) x (8) (11) + (12) (7) - (1) (9) - (7)

Incurred
to Date

Incurred
CDF Ultimate

Estimated
Unpaid

Case
Reserve

Estimated
IBNR

A-P* 552,468            1.0019    553,494           7,101               6,075               1,026               
2004 389,928            1.0025     390,883            4,432               3,476               955                  
2005 440,588            1.0045     442,586            7,944               5,946               1,998               
2006 414,696            1.0084     418,178            11,166             7,684               3,482               
2007 473,295            1.0164     481,067            23,902             16,130             7,772               
2008 422,287            1.0298     434,869            36,252             23,671             12,581             
2009 464,718            1.0551     490,328            59,176             33,566             25,610             
2010 463,503            1.1028     511,172            111,017            63,349             47,669             
2011 398,892            1.1871     473,531            169,080            94,442             74,639             
2012 390,758            1.3800     539,250            307,862            159,371            148,491            
2013 312,141            1.7137     534,926            429,438            206,653            222,785            

1,167,370         620,362            547,007            
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Appendix D – Paid Analysis for “High” Case Reserve Data 
Table D.1 – “High” Paid Loss Triangle with All-Prior Data 

 
 
 
 
 
 
 
 
 

 

Table D.2 – “High” Paid Loss Development Factors 

 
 
 
 
 
 

 
 
 
 
 
 

12 24 36 48 60 72 84 96 108 120 132

A-P -            694,326     1,233,322  1,605,148  1,798,756  1,911,906  1,969,504  2,002,311  2,019,120  2,028,756  

2004 79,078      195,201     376,363     563,604     760,099     854,132     909,879     940,170     953,400     962,203     

2005 55,011      166,607     338,389     508,834     706,763     803,987     853,722     883,714     898,591     

2006 62,645      195,873     369,571     541,058     719,526     811,071     874,968     907,581     

2007 75,825      190,645     413,211     587,344     815,442     914,584     977,881     

2008 81,654      244,999     466,821     694,938     922,414     1,040,208  

2009 81,003      235,834     436,030     702,479     914,456     

2010 100,835     239,091     488,580     732,524     

2011 74,250      228,057     496,043     

2012 91,294      271,729     

2013 99,365      

12-24 24-36 36-48 48-60 60-72 72-84 84-96 96-108 108-120 Tail

2004 2.468        1.928        1.497        1.349        1.124        1.065        1.033        1.014        1.009        

2005 3.029        2.031        1.504        1.389        1.138        1.062        1.035        1.017        

2006 3.127        1.887        1.464        1.330        1.127        1.079        1.037        

2007 2.514        2.167        1.421        1.388        1.122        1.069        

2008 3.000        1.905        1.489        1.327        1.128        

2009 2.911        1.849        1.611        1.302        

2010 2.371        2.043        1.499        

2011 3.071        2.175        

2012 2.976        

VWA 2.805        1.996        1.499        1.345        1.127        1.069        1.035        1.015        1.009        

5-Yr VWA 2.843        2.021        1.499        1.344        1.127        1.069        1.035        1.015        1.009        

3-Yr VWA 2.774        2.021        1.531        1.336        1.126        1.070        1.035        1.015        1.009        

TF Fitted 2.991        2.013        1.516        1.262        1.134        1.068        1.035        1.018        1.009        1.009        

User

Selected 2.843        2.021        1.499        1.345        1.127        1.069        1.035        1.018        1.009        1.0046      

Ultimate 14.959      5.262        2.604        1.737        1.292        1.146        1.072        1.036        1.018        1.0093      

% Paid 6.7% 19.0% 38.4% 57.6% 77.4% 87.3% 93.3% 96.5% 98.2% 99.1%

% Unpaid 93.3% 81.0% 61.6% 42.4% 22.6% 12.7% 6.7% 3.5% 1.8% 0.9%

Casualty Actuarial Society E-Forum, Fall 2014  35 



The Analysis of “All-Prior” Data 

Table D.3 – “High” Paid Tail Factor Calculation 

 
 
 
 
 
 
 
 
 
 
 
 

Paid Tail Factor Analysis    
All Prior

Tail Years: 13 Actual 2,028,756  Decay 0.509      
Tail Factor: 1.0093    Estimated 1,885,275  Intercept 3.912      

Error % -7.1%

Period Factor Dev Log Excl Period Log Fitted Selected ATA ATU
1 2.80509  1.80509  0.591     1 0.591     2.990863 2.990863 14.957482 
2 1.99552  0.99552  (0.004)    2 (0.004)    2.013295 2.013295 5.001059   
3 1.49908  0.49908  (0.695)    3 (0.695)    1.515739 1.515739 2.484017   
4 1.34473  0.34473  (1.065)    4 (1.065)    1.262497 1.262497 1.638816   
5 1.12735  0.12735  (2.061)    5 (2.061)    1.133604 1.133604 1.298075   
6 1.06876  0.06876  (2.677)    6 (2.677)    1.068001 1.068001 1.145086   
7 1.03521  0.03521  (3.347)    7 (3.347)    1.034611 1.034611 1.072178   
8 1.01541  0.01541  (4.173)    8 (4.173)    1.017616 1.017616 1.036310   
9 1.00923  0.00923  (4.685)    9 (4.685)    1.008966 1.008966 1.018371   
10 1.004563 1.004563 1.009321   
11 1.002323 1.002323 1.004736   
12 1.001182 1.001182 1.002408   
13 1.000602 1.000602 1.001224   
14 1.000306 1.000306 1.000622   
15 1.000156 1.000156 1.000316   
16 1.000079 1.000079 1.000160   
17 1.000040 1.000040 1.000081   
18 1.000021 1.000021 1.000040   
19 1.000010 1.000010 1.000020   
20 1.000005 1.000005 1.000009   
21 1.000003 1.000003 1.000004   
22 1.000001 1.000001 1.000001   
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Table D.4 – “High” Paid All-Prior Projection (Cumulative) 

 
 
 
 
 
 
 
 
 
 

Table D.5 – “High” Paid All-Prior Projection (Incremental) 

 
 
 
 
 
 
 
 
 
 
 
 
 

Table D.6 – “High” Paid Tail Calibration Summary 

 

Premium Loss Ratio 24 36 48 60 72 84 96 108 120 132

1994 669,311      83.4% 106,085    214,352    321,331    432,104    487,131    520,628    538,647    548,135    553,050    555,574     

1995 715,259      82.0% 111,464    225,223    337,626    454,017    511,834    547,029    565,962    575,932    581,096    583,748     

1996 758,317      81.2% 117,021    236,451    354,458    476,652    537,352    574,302    594,178    604,645    610,067    612,851     

1997 811,833      79.6% 122,811    248,150    371,996    500,235    563,938    602,716    623,576    634,561    640,251    643,172     

1998 853,244      79.5% 128,914    260,480    390,480    525,092    591,960    632,665    654,562    666,092    672,064    675,131     

1999 890,376      80.0% 135,370    273,526    410,036    551,390    621,607    664,350    687,344    699,452    705,723    708,943     

2000 986,176      75.9% 142,251    287,429    430,878    579,417    653,203    698,119    722,281    735,005    741,595    744,979     

2001 984,188      79.8% 149,259    301,589    452,105    607,961    685,383    732,511    757,864    771,214    778,129    781,680     

2002 984,698      83.8% 156,821    316,870    475,013    638,766    720,110    769,627    796,264    810,291    817,556    821,287     

2003 1,041,477   83.2% 164,676    332,742    498,806    670,761    756,180    808,177    836,148    850,878    858,507    862,424     

Growth Loss Ratio
Prior to 1993 5.0% 80.0%

All-Prior Projection Change in IBNR

Tail (u ) Total Cumulative Weighted Total

Years Ultimate Difference Percent Percent IBNR IBNR All-Prior Total

1 11 (162,400)  -8.0% -34.1% (13,009)  514,079     

2 12 (152,459)  -7.5% -23.4% (11,001)  543,201     2,008     29,122   

3 13 (147,751)  -7.3% -18.2% (9,006)    559,028     1,995     15,828   

4 14 (145,524)  -7.2% -15.7% (7,519)    567,564     1,487     8,536     

5 15 (144,473)  -7.1% -14.5% (6,533)    572,140     986       4,576     

6 16 (143,977)  -7.1% -13.9% (5,920)    574,580     613       2,440     

7 17 (143,744)  -7.1% -13.6% (5,554)    575,876     366       1,296     

8 18 (143,634)  -7.1% -13.5% (5,342)    576,562     212       686       

9 19 (143,583)  -7.1% -13.4% (5,222)    576,923     121       362       

10 20 (143,559)  -7.1% -13.4% (5,154)    577,114     68         190       

11 21 (143,526)  -7.1% -13.3% (5,082)    577,248     72         134       

12 22 (143,499)  -7.1% -13.3% (5,025)    577,337     57         89         

13 23 (143,480)  -7.1% -13.3% (4,985)    577,393     40         56         

14 24 (143,468)  -7.1% -13.3% (4,959)    577,428     26         35         

15 25 (143,461)  -7.1% -13.3% (4,942)    577,449     17         21         

16 26 (143,457)  -7.1% -13.3% (4,932)    577,461     10         12         

17 27 (143,454)  -7.1% -13.3% (4,926)    577,468     6           7           

18 28 (143,453)  -7.1% -13.3% (4,922)    577,472     4           4           

19 29 (143,452)  -7.1% -13.3% (4,920)    577,475     2           2           

20 30 (143,452)  -7.1% -13.3% (4,919)    577,476     1           1           

12 24 36 48 60 72 84 96 108 120 132 144

1994 1,290        

1995 2,652        1,356        

1996 5,421        2,784        1,423        

1997 10,985      5,689        2,922        1,494        

1998 21,897      11,531      5,972        3,067        1,568        

1999 42,743      22,994      12,108      6,271        3,221        1,647        

2000 73,787      44,916      24,162      12,724      6,590        3,384        1,730        

2001 155,856     77,422      47,128      25,353      13,350      6,915        3,551        1,816        

2002 158,142     163,753     81,344      49,516      26,637      14,027      7,265        3,731        1,908        

2003 168,066     166,064     171,956     85,419      51,997      27,971      14,729      7,629        3,918        2,003        

Totals: (144+) (36-132) 36             48             60             72             84             96             108           120           132           144           

Estimated 8,024        1,885,275  642,062     497,792     348,365     185,260     104,849     55,504      28,914      14,896      7,632        3,901        

Actual 2,028,756  694,326     538,996     371,826     193,608     113,149     57,599      32,807      16,809      9,635        
Differences (143,480)    (52,263)     (41,204)     (23,461)     (8,349)       (8,300)       (2,094)       (3,892)       (1,913)       (2,003)       
Cumulative Percent Difference -7.1% -6.8% -6.3% -6.3% -7.9% -8.5% -13.2% -14.8% -20.8%
Weights 0.25          0.50          1.00          2.00          3.00          4.00          5.00          6.00          7.00          
Weighted Average -13.3%
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Table D.7 – “High” Paid Chain Ladder Summary, with All-Prior 

 
 
 

Estimate of Total Unpaid Claims Using Paid Data
*All-Prior Estimate in Separate Exhibit

(1) (2) (3) (4) (5) (6)
(1) x (2) (3) - (1) (7) - (1) (4) - (5)

Paid
to Date

Paid
CDF Ultimate

Estimated
Unpaid

Case
Reserve

Estimated
IBNR

A-P* 2,028,756         1.0040    2,036,779        8,024               13,009             (4,985)              
2004 962,203            1.0093     971,173            8,969               11,874             (2,904)              
2005 898,591            1.0184     915,098            16,508             21,878             (5,370)              
2006 907,581            1.0363     940,536            32,955             42,994             (10,040)            
2007 977,881            1.0722     1,048,462         70,581             83,430             (12,849)            
2008 1,040,208         1.1459     1,191,977         151,769            140,745            11,025             
2009 914,456            1.2918     1,181,321         266,865            257,107            9,758               
2010 732,524            1.7372     1,272,516         539,993            528,128            11,865             
2011 496,043            2.6041     1,291,769         795,726            696,830            98,896             
2012 271,729            5.2619     1,429,810         1,158,081         933,516            224,565            
2013 99,365             14.9591   1,486,405         1,387,040         1,129,608         257,432            

4,436,510         3,859,117         577,393            
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Appendix E – Incurred Analysis for “High” Case Reserve Data 
Table E.1 – “High” Incurred Loss Triangle with All-Prior Data 

 
 
 
 
 
 
 
 
 

 

Table E.2 – “High” Incurred Loss Development Factors 

 
 
 
 
 
 

 
 
 
 
 
 

 

 

Table E.3 – “High” Incurred Tail Factor Calculation 

 
 
 
 
 
 
 
 
 
 
 
 

12 24 36 48 60 72 84 96 108 120 132

A-P 1,874,645  1,989,030  2,049,323  2,067,607  2,056,452  2,052,137  2,046,479  2,044,469  2,042,713  2,041,764  

2004 770,485     871,259     892,079     959,581     981,362     979,974     979,594     975,287     974,890     974,077     

2005 755,139     837,212     871,723     909,541     920,876     927,887     924,599     921,732     920,468     

2006 778,857     837,074     908,267     945,531     951,361     950,469     952,152     950,576     

2007 835,631     969,389     991,007     1,048,260  1,058,442  1,062,825  1,061,310  

2008 980,023     1,039,677  1,099,087  1,178,784  1,185,561  1,180,953  

2009 958,889     1,052,715  1,105,673  1,164,752  1,171,563  

2010 1,007,229  1,087,877  1,213,688  1,260,651  

2011 974,991     1,102,902  1,192,873  

2012 1,091,849  1,205,245  

2013 1,228,972  

12-24 24-36 36-48 48-60 60-72 72-84 84-96 96-108 108-120 Tail

2004 1.131        1.024        1.076        1.023        0.999        1.000        0.996        1.000        0.999        

2005 1.109        1.041        1.043        1.012        1.008        0.996        0.997        0.999        

2006 1.075        1.085        1.041        1.006        0.999        1.002        0.998        

2007 1.160        1.022        1.058        1.010        1.004        0.999        

2008 1.061        1.057        1.073        1.006        0.996        

2009 1.098        1.050        1.053        1.006        

2010 1.080        1.116        1.039        

2011 1.131        1.082        

2012 1.104        

VWA 1.104        1.061        1.054        1.010        1.001        0.999        0.997        0.999        0.999        

5-Yr VWA 1.095        1.067        1.053        1.008        1.001        0.999        0.997        0.999        0.999        

3-Yr VWA 1.105        1.083        1.054        1.007        1.000        0.999        0.997        0.999        0.999        

TF Fitted 1.192        1.062        1.020        1.006        1.002        1.001        1.000        1.000        1.000        0.999        

User

Selected 1.105        1.083        1.054        1.010        1.001        0.999        0.997        0.999        0.999        0.9995      

Ultimate 1.267        1.147        1.059        1.004        0.994        0.993        0.994        0.997        0.998        0.9989      

% Reported 0.789        0.872        0.944        0.996        1.006        1.007        1.006        1.003        1.002        1.001        

% Unrptd 0.211        0.128        0.056        0.004        (0.006)       (0.007)       (0.006)       (0.003)       (0.002)       (0.001)       

Incurred Tail Factor Analysis
All Prior

Tail Years: 8 Actual 167,119     Decay 0.322      
Tail Factor: 0.9989    Estimated 130,156     Intercept 0.597      

Error % -22.1%

Period Factor Dev Log Excl Period Log Fitted Selected ATA Ultimate
1 1.10429  0.10429  (2.261)    1 (2.261)    1.191966 1.191966 1.301527   
2 1.06108  0.06108  (2.796)    2 (2.796)    1.061760 1.061760 1.091916   
3 1.05445  0.05445  (2.911)    3 (2.911)    1.019870 1.019870 1.028402   
4 1.01011  0.01011  (4.595)    4 (4.595)    1.006393 1.006393 1.008366   
5 1.00088  0.00088  (7.031)    5 (7.031)    1.002057 1.002057 1.001961   
6 0.99911  (0.00089) 7.022     Y 1.000662 1.000662 0.999905   
7 0.99694  (0.00306) 5.788     Y 1.000213 1.000213 0.999243   
8 0.99912  (0.00088) 7.041     Y 1.000068 1.000068 0.999031   
9 0.99917  (0.00083) 7.089     Y 1.000022 1.000022 0.998962   
10 1.000007 0.999460 0.999460 0.998940   
11 1.000002 0.999780 0.999780 0.999480   
12 1.000001 0.999870 0.999870 0.999700   
13 1.000000 0.999910 0.999910 0.999830   
14 1.000000 0.999960 0.999960 0.999920   
15 1.000000 0.999980 0.999980 0.999960   
16 1.000000 0.999990 0.999990 0.999980   
17 1.000000 0.999990 0.999990 0.999990   
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Table E.4 – “High” Incurred All-Prior Projection (Cumulative) 

 
 
 
 
 
 
 
 
Table E.5 – “High” Incurred All-Prior Projection (Incremental) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table E.6 – “High” Incurred Tail Calibration Summary 

 

Premium Loss Ratio 24 36 48 60 72 84 96 108 120 132

1994 669,311     83.4% 486,823    527,159    555,862    561,479    561,975    561,474    559,754    559,264    558,797    558,496     

1995 715,259     82.0% 511,511    553,892    584,051    589,953    590,474    589,947    588,140    587,625    587,135    586,817     

1996 758,317     81.2% 537,012    581,507    613,169    619,365    619,912    619,359    617,462    616,921    616,406    616,073     

1997 811,833     79.6% 563,582    610,278    643,506    650,009    650,583    650,003    648,012    647,444    646,904    646,555     

1998 853,244     79.5% 591,586    640,602    675,482    682,308    682,911    682,301    680,211    679,615    679,049    678,682     

1999 890,376     80.0% 621,214    672,685    709,311    716,479    717,112    716,472    714,277    713,652    713,057    712,672     

2000 986,176     75.9% 652,790    706,878    745,366    752,898    753,563    752,891    750,584    749,927    749,302    748,897     

2001 984,188     79.8% 684,950    741,702    782,086    789,989    790,687    789,981    787,561    786,872    786,215    785,791     

2002 984,698     83.8% 719,655    779,283    821,713    830,017    830,750    830,009    827,466    826,742    826,052    825,606     

2003 1,041,477  83.2% 755,702    818,316    862,872    871,592    872,362    871,583    868,913    868,152    867,428    866,960     

All-Prior Projection Change in IBNR

Tail (u ) Total Cumulative Weighted Total

Years Ultimate Difference Percent Percent IBNR IBNR All-Prior Total

1 11 (34,285)    -20.5% 35.3% -        559,823     

2 12 (35,485)    -21.2% 24.7% (173)      557,075     (173)      (2,748)    

3 13 (36,159)    -21.6% 18.8% (372)      555,354     (199)      (1,721)    

4 14 (36,603)    -21.9% 14.9% (574)      554,098     (202)      (1,255)    

5 15 (36,791)    -22.0% 13.2% (691)      553,513     (117)      (585)      

6 16 (36,880)    -22.1% 12.4% (763)      553,208     (71)        (305)      

7 17 (36,923)    -22.1% 12.0% (805)      553,049     (42)        (159)      

8 18 (36,963)    -22.1% 11.7% (853)      552,884     (48)        (165)      

9 19 (36,963)    -22.1% 11.7% (853)      552,884     0           0           

10 20 (36,963)    -22.1% 11.7% (853)      552,884     0           0           

11 21 (36,963)    -22.1% 11.7% (853)      552,884     0           0           

12 22 (36,963)    -22.1% 11.7% (853)      552,884     0           0           

13 23 (36,963)    -22.1% 11.7% (853)      552,884     0           0           

12 24 36 48 60 72 84 96 108 120 132 144

1994 (111)          

1995 (288)          (117)          

1996 (467)          (302)          (123)          

1997 (515)          (490)          (317)          (129)          

1998 (1,897)       (541)          (515)          (333)          (136)          

1999 (581)          (1,991)       (567)          (540)          (349)          (142)          

2000 603           (609)          (2,090)       (596)          (567)          (367)          (149)          

2001 7,168        633           (640)          (2,195)       (625)          (595)          (385)          (157)          

2002 38,488      7,532        665           (672)          (2,307)       (657)          (626)          (405)          (165)          

2003 56,752      40,384      7,903        698           (706)          (2,420)       (690)          (656)          (425)          (173)          

Totals: (144+) (36-132) 36             48             60             72             84             96             108           120           132           144           

Estimated (853)          130,156     99,014      44,355      4,165        (3,926)       (4,857)       (4,357)       (2,034)       (1,411)       (793)          (386)         

Actual 167,119     114,384     60,293      18,285      (11,156)     (4,315)       (5,658)       (2,010)       (1,756)       (949)          
Differences (36,963)     (15,370)     (15,938)     (14,120)     7,229        (542)          1,300        (24)            344           156           
Cumulative Percent Difference -22.1% -40.9% -74.8% 32.8% 8.4% 17.1% 10.1% 18.5% 16.5%
Weights 0.25          0.50          1.00          2.00          3.00          4.00          5.00          6.00          7.00          
Weighted Average 11.7%
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The Analysis of “All-Prior” Data 

Table E.7 – “High” Incurred Chain Ladder Summary, with All-Prior 

 
 
 
 
 
 
 
 

Estimate of Total Unpaid Claims Using Incurred Data
*All-Prior Estimate in Separate Exhibit

(7) (8) (9) (10) (11) (12)
(7) x (8) (11) + (12) (7) - (1) (9) - (7)

Incurred
to Date

Incurred
CDF Ultimate

Estimated
Unpaid

Case
Reserve

Estimated
IBNR

A-P* 2,041,764         0.9996    2,040,912        12,156             13,009             (853)                
2004 974,077            0.9989     973,045            10,841             11,874             (1,032)              
2005 920,468            0.9981     918,726            20,135             21,878             (1,742)              
2006 950,576            0.9972     947,946            40,364             42,994             (2,630)              
2007 1,061,310         0.9942     1,055,132         77,251             83,430             (6,179)              
2008 1,180,953         0.9933     1,173,030         132,822            140,745            (7,923)              
2009 1,171,563         0.9942     1,164,732         250,275            257,107            (6,832)              
2010 1,260,651         1.0042     1,265,965         533,442            528,128            5,314               
2011 1,192,873         1.0589     1,263,124         767,081            696,830            70,252             
2012 1,205,245         1.1466     1,381,967         1,110,238         933,516            176,722            
2013 1,228,972         1.2667     1,556,760         1,457,395         1,129,608         327,787            

4,412,001         3,859,117         552,884            
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The Analysis of “All-Prior” Data 

Appendix F – Graphical Representation of Notation 

The paper uses the following notation for certain important loss statistics which is also represented 
graphically:  

),( dwc : cumulative loss from accident period w  as of age d . Think “when” and “delay.” 

 

 

 

 

 

 

 

 

 

),( dwq : incremental loss for accident period w  during the development age from d  - 1 to 
d . Note that )1,(),(),( −−= dwcdwcdwq . 
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)(),( wUuwc = : total loss from accident period w  when at the end of ultimate development u . 

  

 

 

 

 

 

 

)(wR : future development after age 1+−= wnd  for accident period w , i.e., = 
)1,()( +−− wnwcwU . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

( )D k : future development after age 1+−= wnd  during calendar period k , i.e., for all 
),( dwq  where w d k+ =  and 1+ > +w d n . 
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( )A d : all-prior data by development age d . 

 

 

 

 

 

 

 

 

 

)(1)( dvdf += : factor applied to ),( dwc  to estimate )1,( +dwc  or more generally any factor 
relating to age d . This is commonly referred to as a link ratio.  )(dv  is referred to 
as the ‘development portion’ of the link ratio, which is used to estimate 

)1,( +dwq . The other portion, the number one, is referred to as the ‘unity 
portion’ of the link ratio. 
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)(dF : ultimate development factor relating to development age d . The factor applied to 
),( dwc  to estimate ( , )c w u  or more generally any cumulative development factor 

relating to development age d . The capital indicates that the factor produces the 
ultimate loss level. As with link ratios, )(dV  denotes the ‘development portion’ of 
the loss development factor, the number one is the ‘unity portion’ of the loss 
development factor. 
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T = T(n) : ultimate tail factor at end of triangle data, which is applied to the estimated c(w,n)  
to estimate ( , )c w u . 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
x̂  an estimate of any value or parameter x . 
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Abstract

This article proposes using credibility theory in the context of stochastic claims reserving.

We consider the situation where an insurer has access to the claims experience of its peer com-

petitors and has the potential to improve prediction of outstanding liabilities by incorporating

information from other insurers. Based on the framework of Bayesian linear models, we show

that the development factor in the classical chain-ladder setting has a credibility expression, i.e.

a weighted average of the prior mean and the best estimate from the data. In the empirical

analysis, we examine loss triangles for the line of commercial auto insurance from a portfolio of

insurers in the US. We employ hierarchical model for the specification of prior and show that

prediction could be improved through borrowing strength among insurers based on a hold-out

sample validation.

Keywords: Bayesian Modeling, Chain-ladder method, Hierarchical model
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1 Introduction

General insurance (also known as property-casualty insurance in the U.S. and non-life insurance

in other countries) protects a person or business against the losses to its physical property or legal

liability through injury property damage. General insurance is a stable cornerstone of and makes

significant contributions to any developed economy. In 2011, as the largest insurance market in

the world the U.S. underwrote over $0.66 trillion U.S. dollars of premium in property and casualty

insurance, which account for about 4.45% of the nation’s GDP (International Insurance Fact Book

2013 ). Because of its critical role in the economy, the general insurance industry is usually highly

regulated to monitor and ensure its financial health. For example, each insurer is required to provide

sufficient technical provisions, also known as loss reserves, to support its potential outstanding

liabilities.

Loss reserves represent the best estimate of an insurer’s outstanding loss payments. In general

insurance potential reporting lags, the settlement process, and potentially reopened claims can all

lengthen the time to close a claim. For the purposes of valuation and financial reporting, the insurer

predicts the ultimate payment amount for all the claims arising from past exposures. This includes

estimates of both incurred but not reported and reported but not settled claims. The loss reserve

is then built up based on the best estimate and updated at each valuation.

There is an extensive literature on the prediction of outstanding losses and quantification of

associated predictive uncertainty. See, for example, Taylor (2000) and Wüthrich and Merz (2008)

for comprehensive reviews. One approach worth mentioning is the chain-ladder method which is

the current industry benchmark and is also the building block of the hierarchical model employed

in this study. Think of a run-off triangle of cumulative payments, where aggregated paid losses are

arranged in a triangular fashion to reflect the occurrence and development over years. The chain-

ladder algorithm uses year-to-year development factors to project cumulative payments for each

accident year. This simple algorithm is further justified by a variety of statistical models which also

provide the foundation to quantify reserving variability. Several commonly used variations include

the Mack chain ladder (Mack (1993, 1999)), the Munich chain ladder (Quarg and Mack (2008)),

and bootstrap chain ladder (England and Verrall (2002)). Additionally, the chain-ladder model can

be easily implemented in the statistical package R (see Sturtz et al. (2005)).

Credibility in Loss Reserving
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Incorporating the experience of loss payment from peers could add value to the prediction of an

insurer’s own liabilities. First, an insurer’s own claim experience might not be reliable, especially for

small insurers. In this case, the insurer might want to give less credibility to its own experience but

more to the industry-level information. Second, an insurer could borrow strength in the prediction

of its own outstanding claims by combining experiences from other companies that share similar

claim payment patterns, often in the same line of business. Third, the claim experience of all

insurers are influenced by certain common factors whether macroeconomic or due to a change in

regulation, pooling experience from multiple insurers can better capture and measure such factors.

In this work, we develop a formal structure to incorporate claim information from peer insurers

with an insurer’s own information for reserving purposes. We focus on the chain-ladder approach

and using the theory of Bayesian linear models, we show that the development factor in the claim-

ladder method has a credibility expression, i.e. a weighted average of prior knowledge and an

estimate from data. Furthermore, through hierarchical models we explore the impact of prior

specification. The Bayesian approach is a natural choice to blend collateral information with an

insurer’s own claim experience. Additionally, Bayesian models naturally incorporate parameter

uncertainty in the prediction. Bayesian methods have a long history in the loss reserving literature,

with the earliest efforts traced back to 1990s (see, for example, Jewell (1989, 1990) and Verrall

(1990)). Partly because of the development of the Markov chain Monte Carlo (MCMC) techniques,

the loss reserving literature has observed an increasing number of applications from the Bayesian

perspective. Some recent examples include Antonio and Beirlant (2008), de Alba and Nieto-Barajas

(2008), Peters et al. (2009), Meyers (2009), Merz and Wüthrich (2010), Shi et al. (2012), and Zhang

and Dukic (2012) among others.

Apart from the above literature, two recent studies incorporate information from multiple in-

surers for reserving. Zhang et al. (2012) employed a hierarchical growth curve to predict insurers’

outstanding liabilities for a single business line. Extending this idea, Shi (2013) proposed a Bayesian

copula regression model for determining reserves for dependent lines of business. Different from

these studies, we focus on the classical chain-ladder model and derive a credibility estimate. Note

that although credibility is widely used in ratemaking, to the best of our knowledge, it has not

been studied in reserving. Furthermore, both Zhang et al. (2012) and Shi (2013) focused on pre-

diction for the portfolio of insurers. In contrast, we emphasize the value of external information

Credibility in Loss Reserving

Casualty Actuarial Society E-Forum, Summer 2014-Volume 2 3



for individual insurers.

The rest of the article is structured as follows: Section 2 formulates the Bayesian linear model

and presents the credibility results in reserving prediction. Section 3 describes the loss triangle

data. Section 4 introduces the hierarchical model and proposes alternative choices for the prior

specification. Model inferences are discussed as well. Section 5 demonstrates the prediction using

the Bayesian model and compares model performance using out-of-sample validation. Section 6

concludes the paper.

2 Model

Credibility is a technique for incorporating relevant outside data and is widely used in ratemaking.

Studies on credibility begin with Mowbray (1914) and Whitney (1918). The theoretical foundation

for credibility ratemaking is due to Bühlmann (1967) where traditional credibility formulas are

derived in a distribution-free setup using a least-squares criterion. The approach was subsequently

extended and popularized by a series of studies (see Bühlmann and Gisler (2005) for a comprehensive

review). Despite of its long history in ratemaking, credibility is rarely used in reserving even though

the goal is prediction as well.

We investigate credibility in loss reserving based on the framework of Bayesian linear models

and show the credibility results for the chain-ladder method. Bayesian credibility was introduced by

Bailey (1950) and further extended by Mayerson (1964), Miller and Hickman (Miller and Hickman),

and Luo et al. (2004) among others. Our study is unique because instead of focusing on a single

insurer we show the credibility results for a group of insurers. We argue that an insurer could

borrow predictive strength from the claims experience of peer insurers.

Consider N run-off triangles, each from an individual insurer. Assume all triangles are of the

same dimension with I accident years and J(= I) development years. Let Cn
i,j denote the cumulative

paid loss in the ith (i = 1, · · · , I) accident year and the jth (j = 0, · · · , I−1) development lag of the

nth (n = 1, · · · , N) insurer. Define C
(n)
j =

(
C

(n)
1,j , · · · , C

(n)
I,j

)′
for j = 0, · · · , I−1 and n = 1, · · · , N .

Denote C
(n)
U,j =

(
C

(n)
1,j , · · · , C

(n)
I−j,j

)′
and C

(n)
L,j =

(
C

(n)
I−j+1,j , · · · , C

(n)
I,j

)′
as the vector of cumulative

payment in the upper triangle (realized loss) and lower triangle (outstanding payment), respectively.
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For the purposes of brief presentation, we further define

Yj =


C

(1)
U,j

...

C
(N)
U,j

 , Xj−1 =


C

(1)
U,j−1

. . .

C
(N)
U,j−1

 (1)

for j = 1, · · · , I − 1. To determine reserve, we follow the spirit of classic chain-ladder method and

focus on the year-to-year development factors in the triangle. Specifically we examine the following

linear model:

E(Yj |βj) = Xj−1βj (2)

Var(Yj |βj) = Rj (3)

where βj = (β
(1)
j , · · · ,β(N)

j )′ represents the vector of development factors from lag j − 1 to j, and

Rj denote the (conditional) covariance matrix for the jth development year.

We adopt a Bayesian approach for predicting outstanding payments and quantifying reserve

variability. Using a conjugate multivariate normal prior βj ∼ N(µj ,Ωj), we have

 βj

Yj

 ∼ N


 µj

Xj−1µj

 ,

 Ωj ΩjX
′
j−1

Xj−1Ωj Rj +Xj−1ΩjX
′
j−1


 (4)

It is straight forward to derive the posterior distribution of βj with

E(βj |Yj) = µj +ΩjX
′
j−1(Rj +Xj−1ΩjX

′
j−1)

−1(Yj −Xj−1µj) (5)

Var(βj |Yj) = Ωj −ΩjX
′
j−1(Rj +Xj−1ΩjX

′
j−1)

−1Xj−1Ωj (6)

Credibility Result 1: The posterior mean of development factor is a matrix-weighted average

of the prior mean and the generalized least squares estimator, i.e. E(βj |Yj) = (I−ζβ)µj+ζββ
GLS
j ,

where ζβ = (Ω−1
j +X

′
j−1R

−1
j Xj−1)

−1X
′
j−1R

−1
j Xj−1 and βGLS

j = (X
′
j−1R

−1
j Xj−1)

−1X
′
j−1R

−1
j Yj .
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Proof.

ΩjX
′
j−1(Rj +Xj−1ΩjX

′
j−1)

−1Yj

={ΩjX
′
j−1R

−1
j −ΩjX

′
j−1R

−1
j Xj−1(Ω

−1
j +X

′
j−1R

−1
j Xj−1)

−1X
′
j−1R

−1
j }Yj

=Ωj{I−X
′
j−1R

−1
j Xj−1(Ω

−1
j +X

′
j−1R

−1
j Xj−1)

−1}X′
j−1R

−1
j Yj

=Ωj{Ω−1
j }(Ω

−1
j +X

′
j−1R

−1
j Xj−1)

−1X
′
j−1R

−1
j Yj

=ζββ
GLS
j

µj −ΩjX
′
j−1(Rj +Xj−1ΩjX

′
j−1)

−1Xj−1µj

=µj − (Ω−1
j +X

′
j−1R

−1
j Xj−1)

−1X
′
j−1R

−1
j Xj−1µj

=(I− ζβ)µj

It is straightforward to see that when Ωj → ∞ or 0, ζβ → I or 0, respectively. That is, if one

knows the true value of development factors, then zero credibility is given to the data. Otherwise,

if one has no prior information on the development factors, full credibility is given to the data.

Credibility Result 2: The predictive mean of cumulative payment in each lower triangle

is a weighted average of the prior mean and the best prediction, i.e. E(C
(n)
L,j−1βj |Yj) = (1 −

ζ
(n)
β )C

(n)
L,j−1µ

(n)
j + ζ

(n)
β C

(n)
L,j−1β

(n)GLS
j , iff

Rj =


R

(1)
j

. . .

R
(N)
j

 and Ωj =


(
ω
(1)
j

)2

. . . (
ω
(N)
j

)2

 (7)

where ζ
(n)
β =

C
(n)′
U,j−1

(
R

(n)
j

)−1
C

(n)
U,j−1(

ω
(n)
j

)−2
+C

(n)′
U,j−1

(
R

(n)
j

)−1
C

(n)
U,j−1

, β
(n)GLS
j =

C
(n)′
U,j−1

(
R

(n)
j

)−1
C

(n)
U,j

C
(n)′
U,j−1

(
R

(n)
j

)−1
C

(n)
U,j−1

, and µ
(n)
j is the nth

element in µj . Furthermore, if R
(n)
j = diag

((
σ
(n)
j C

(n)
1,j−1

)2
, · · · ,

(
σ
(n)
j C

(n)
I−j,j−1

)2
)
, the predictive

mean of the outstanding payment is a weighted average of the prior mean and the chain-ladder

prediction.

Proof. The first part of the result follows from conditional assumption among triangles. The

second part of the result is due to β
(n)GLS
j =

∑I−j
i=1 C

(n)
i,j /

∑I−j
i=1 C

(n)
i,j−1 (n = 1, · · · , N), which is the

chain-ladder development factor.
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Note that the above results could be derived for each individual triangle. We emphasize that by

pooling triangles from multiple insurers we allow an insurer to blend its own claim experience with

its peers. The information sharing could be achieved by allowing triangles from different insurers to

be correlated with each other. Explicitly, that correlation could be introduced through the sampling

distribution. In this study, we focus on an implicit strategy, a hierarchical prior specification (see

Section 4). The hierarchical model is more natural and intuitive for this application, allowing an

insurer to adjust its priors based on the information borrowed from other insurers.

3 Data

In the empirical analysis, we consider run-off triangles of commercial automobile insurance from

a group of property-casualty insurers in the US. The data are from Schedule P of the National

Association of Insurance Commissioners (NAIC) database. The triangles are available in terms

of both incurred and paid losses. Our analysis uses the 1997 paid losses. Each triangle contains

payments for the claims in ten accident years from 1988 to 1997, and for each accident year up

to ten development lags. Table 1 illustrates organization of the data. For example, the first row

contains payments for claims which occurred in 1988. Because of the reporting and settlement lags,

we observe payments from 1988 through the valuation year, 1997. In contrast, for accident year

1997, we only have one year of payments by the valuation year.

Table 1: Run-off triangle from Schedule P of NAIC

Accident Year 0 1 2 3 4 5 6 7 8 9

1988 × × × × × × × × × ×
1989 × × × × × × × × × ← 1998
1990 × × × × × × × × ← 1999
1991 × × × × × × × ← 2000
1992 × × × × × × ← 2001
1993 × × × × × ← 2002
1994 × × × × ← 2003
1995 × × × ← 2004
1996 × × ← 2005
1997 × ← 2006

The goal of reserving practice is to identify the payment pattern based on realized paid losses

and to predict outstanding future payments. Using the example in Table 1, and assuming that

Credibility in Loss Reserving

Casualty Actuarial Society E-Forum, Summer 2014-Volume 2 7



all claims will be settled in ten years, we predict the unpaid losses represented by the cells in

the highlighted lower triangle. To validate the model, we use a hold-out sample to evaluate the

prediction. In our analysis, we will use the data from 1997 to develop the model and use realizations

of future payments in lower triangles to examine the predictive performance of alternative models.

The validation data are extracted from the Schedule P in the NAIC database of subsequent years

1998-2006. Specifically, the paid losses of accident year 1989 are from the Schedule P of year 1998,

the paid losses of accident year 1990 are from the Schedule P of year 1999, and so on. This process

is also demonstrated in Table 1 where the last column indicates the year from which the future

payments in lower triangles are gathered.

Schedule P contains firm level run-off triangles of aggregated claims for major business lines

of U.S. property-casualty insurers. Examples include personal auto liability, commercial auto lia-

bility, worker’s compensation, general liability, and medical malpractice. The settlement periods

for liability insurance could be lengthy due to late reporting, protracted negotiations, or judicial

proceedings. However, the triangle data of Schedule P only contains payments for the most recent

ten years. Because of this drawback, we focus on commercial auto liability where, compared with

other casualty lines, the loss payments have relatively shorter tails and take fewer years to close.

In our analysis, we examine fifteen insurers with large commercial auto liability books. We

expect that insurers could borrow more from peers of similar size. In selecting the group of insurers,

we also make sure that there is no major merger and acquisition in this particular line of business

over the study period. Specifically, the Schedule P of years 1998-2006 contains paid losses in the

upper triangles that are already extracted from the Schedule P of year 1997 as well. We use

observations in overlapping years to cross-validate the data quality of the selected insurers. To

visualize the data, Figure 1 displays the development of cumulative payments for each insurer by

accident year. Each curve connects the paid losses over time corresponding to a single accident

year. As anticipated, the curve flattens in later development years. In particular, there is no

substantial increase in the payment from the eighth to the ninth development lag for accident year

1988, which supports our assumption that it takes about ten years to close all the claims. Notice

that the volume of business written varies over years and there is substantive heterogeneity across

insurers.
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Figure 1: Multiple time series plot of cumulative paid loss

4 Bayesian Inference

In the empirical analysis, we introduce correlation between insurers and thus enable information

borrowing simply from the hierarchical specification. Specifically, we start with the model

C
(n)
ij ∼ N

(
C

(n)
ij−1β

(n)
j ,

(
σ
(n)
j C

(n)
ij−1

)2
)

β
(n)
j ∼ N(µj , θ

2)

Here, we assume that the development factors in the jth year, β
(n)
j , have the same prior distribution

with mean µj . an insurer is expected to incorporate experience of payment development from other

insurers into its own experience. The parameter θ2 is fixed and known. It determines the degrees

of shrinkage among multiple insurers in that smaller values will increase the shrinkage and larger

values will weaken it. We employ an empirical Bayes estimates for σ
(n)
j from the classical chain-

ladder model. This allows for fair comparison to the chain-ladder prediction and demonstrates the

value added by credibility.
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There are different ways to specify the prior distribution for hyperparameter µj . We discuss two

alternatives that are particularly useful in reserving applications. The first and a natural choice is

a conjugate prior. We use

µj ∼ N(a, b2)

where b2 controls the precision of prior knowledge that one has on µj and also create shrinkage in

the development factors over years. We use a = 1 and impose a diffuse prior b = +∞ assuming

that an insurer has no prior knowledge on the development factor and the only way to gather

information is to learn through its peers. The diffuse prior also guarantees the heterogeneity in

development factors over time, which is desirable because we do not expect shrinkage over time

though we anticipate shrinkage across insurers.

Alternatively, we know that as payments develop over time the development factors will tend

to one. We can think of it as a change point where at some development time k, the claims are

settled and all later factors are one. Specifically, the model is written as follows:

µj ∼

 N(a, b2) if j < k

N(1, 0.00012) if j ≥ k

k ∼ DU(1, 10)

Here we assume that there are two states for hyperparameter µj . The posterior of parameter k

determines the time period that it takes to close all claims such that the development factor is

essentially one. Assuming no prior knowledge, we use a discrete uniform prior. Note that it is

possible that it takes longer to close all claims than the window period of the triangle. In our

application, claims might continue to develop after ten years. In this case, k will be 10. In practice,

the domain knowledge of the reserving actuaries will determine the priors. Another choice that

serves a similar purpose is to think of the prior of µj as a mixture of a normal distribution and

1, then the value of the weight for the normal distribution is the posterior probability that the

development factor is significantly different from 1 (πj):
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µj ∼

 N(a, b2) with probability πj

N(1, 0.00012) with probability 1− πj

πj ∼ Unif(0, 1)

We estimate the hierarchical model using 50,000 MCMC iterations with the first 40,000 itera-

tions discarded as a burn-in sample. Though not reported here, we generate multiple chains from

different initial values, and the convergence for each parameter is confirmed with the Gelman-Rubin

statistic. The posterior of k appears to be 8, indicating that the hyperparameter µj will transit to

the absorbing state (=1) in the eighth development year.

To compare between the conjugate prior and the change point prior, Figure 2 presents the

posterior distribution of µj . The left and right panel represents the posterior when using the

conjugate and change point prior, respectively. Each box-plot corresponds to the prior mean of the

development factor in each accident year. As anticipated, we observe relative larger development

factors in the early stage and the the rate at which claims develop decreases over time. The

two panels display similar patterns in the development factors. The subtle difference is that the

development factors in the last two development years are equal to one under the change point

process, however, they follow normal distribution under the conjugate prior. It is not surprising to

see the little difference because when essentially all the claims are closed in the last two development

years as suggested by the change point process, the normal distribution could not pick up much

variability in the data.

The Bayesian linear model in Section 2 is based on the normality assumption. We employ resid-

ual analysis to validate this assumption. Note that residuals are not well defined in a Bayesian con-

text. We follow the classic definition and calculate residuals as e
(n)
ij =

(
C

(n)
ij − β̂

(n)
j C

(n)
ij−1

)
/
(
σ̂
(n)
j C

(n)
ij−1

)
,

where β̂
(n)
ij is the the posterior mode and σ̂

(n)
j is the empirical Bayes estimates. We present the

normal qq plot in Figure 3. The agreement with the 45 degree line is consistent with the normality

assumption. Also reported in Figure 3 is the plot of residual versus fitted value, where no particular

pattern is detected. Note that because there is little difference between the conjugate hyperprior

and the change point hyperprior, we only report the results from one of the two models.
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By pooling multiple triangles, an insurer could gain predictive power by borrowing strength

from other insurers. This is reflected by the shrinkage effect on the development factors, which is

illustrated in Figure 4. Each panel reports the development factors in a particular year. Recall that

parameter θ2 controls the degrees of shrinkage. We estimate the model at θ = 1, 0.1, and 0.01.

Within a panel, each curve connects the development factors estimated at various shrinkage for a

single insurer. For comparison, we also report the development factor in the chain ladder model.

As anticipated we see that a smaller θ shrinks the development factors of all insurers toward the

group average. We also observe a larger shrinkage effect on the development factors in early years

but smaller effect for later years. This is explained by the weak heterogeneity across insurers in

later development years and the small variability in their posterior mean as shown in Figure 2. In

the extreme case, the change point process even suggests that the expected development factors

in the most recent two years are equal to one. There is no shrinkage effect in the chain ladder

approach. As indicated in Section 2, the Bayesian linear model will reproduce the chain-ladder

prediction when diffuse prior is used for inference. Finally, we stress that the degrees of shrinkage,

i.e. whether to rely on an insurer’s own claim experience or to adjust the prediction toward the

industry average, requires the expert knowledge of reserving actuaries.
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Figure 4: Shrinkage effects on development factors

5 Prediction

In this study we use chain-ladder method as the benchmark from which we employ a hierarchi-

cal model to introduce credibility. The inference has focused on the development factor in the

chain-ladder framework. Therefore, the prediction follows in a straightforward way. The reserve

(outstanding payments) for insurer n, R(n), is estimated by

R̂(n) =

I∑
i=1

C
(n)
iI−i

(
β̂
(n)
I−i · · · β̂

(n)
I−1 − 1

)

where β̂
(n)
j (j = 0, · · · , I − 1) are the best estimates i.e. the posterior mode from the hierarchical

model. Wisely, reserving actuaries are more interested in a credible predictive range than a single

point prediction. A commonly used measure of reserve variability is the mean squared predic-

tion error that combines both uncertainty in the stochastic model and the unknown parameters.
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Straightforward calculation shows similar decoupling results in a Bayesian context:

MSEPR(n) = E
[
(R(n) − R̂(n))2

]
= E

[
Var(R(n)|Θ)

]
+Var

[
E(R(n)|Θ)

]

The total variance (TV ) is decomposed into average process variance (PV ) and estimation error

(EE) as in the classical analysis.

Tables 2 and 3 summarize the prediction results using the conjugate hyperprior and the change

point hyperprior respectively. We report in each table the best estimate of firm-level reserves and

the associated variability with the decoupling components under different degrees of shrinkage. The

panel with θ = +∞ is equivalent to the chain ladder prediction. As θ decreases, the shrinkage effect

strengthens. The amount of shrinkage has a pretty significant impact on the reserve, especially when

θ = 0.01. Note that the hierarchical specification drives the development factor not necessarily the

reserve toward the group average, because the development factor and reserve could be negatively

correlated. For example, a small firm might have a larger development factor, thus the shrinkage

prediction would lower the reserve prediction. In addition, we also observe the effect of shrinkage

on the reserving variability, especially for the estimation uncertainty. This is expected because the

uncertainty in hyperpriors will be added to the parameter estimates. The average process variance

is small because the conditional process variance is calculated following the chain-ladder approach

and the estimation uncertainty is subdued by the averaging process. Consistent with results in

Section 4, the predictions under the conjugate hyperprior and the change point hyperprior are

quite similar.

In the above analysis, we have used a diffuse prior (a = 1, b = +∞) for the hyperparameter

µj , assuming that no prior knowledge is available at the point of valuation. The Bayesian ap-

proach allows expert opinions into the inference process. This could also be viewed as a downside

because management could manipulate loss reserves through prior beliefs to manage earnings or

hide solvency issues, though this is somewhat true under standard models depending on how the

development factors are chosen or which method is used. We perform a prior sensitivity analysis

of the reserve predictions to determine the extent of that control. Specifically, we consider the

six combinations of a = 0.5, 1, 2 and b = 0.1, 1. The reserve estimates, total variance, process

variance and estimation error are calculated under each specification. Along with the base case,
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Table 2: Reserve prediction using conjugate prior

Company Reserve
√
TV

√
PV

√
EE Reserve

√
TV

√
PV

√
EE

θ = +∞ θ = 1
1 498,645 28,222 24,953 13,184 498,808 28,244 24,956 13,226
2 410,216 18,174 14,975 10,298 410,150 18,273 14,975 10,472
3 490,000 90,432 80,935 40,341 490,151 90,694 80,958 40,880
4 463,987 30,850 25,902 16,758 463,906 31,072 25,901 17,164
5 157,824 46,527 41,740 20,555 156,413 45,899 41,743 19,085
6 67,497 6,874 4,633 5,078 67,543 6,808 4,634 4,988
7 93,136 10,601 9,447 4,810 93,046 10,538 9,446 4,672
8 145,421 11,175 8,435 7,331 145,446 11,216 8,436 7,391
9 99,618 9,445 7,376 5,899 99,765 9,465 7,380 5,927
10 83,508 7,952 5,818 5,420 83,536 7,979 5,819 5,459
11 84,934 9,971 7,916 6,062 85,222 9,957 7,924 6,029
12 88,281 7,525 5,807 4,785 88,347 7,534 5,809 4,798
13 239,553 21,880 17,005 13,768 239,992 21,913 17,016 13,807
14 82,357 12,395 10,691 6,271 82,179 12,364 10,681 6,228
15 42,301 6,207 5,248 3,316 42,212 6,208 5,243 3,323

θ = 0.1 θ = 0.01
1 497,245 28,031 24,938 12,800 450,286 25,672 23,996 9,125
2 413,177 18,227 15,001 10,354 455,377 18,261 15,500 9,656
3 491,968 88,191 81,058 34,747 444,800 79,260 77,503 16,594
4 458,874 30,734 25,808 16,690 379,806 26,294 24,102 10,509
5 146,799 43,454 42,125 10,665 153,487 44,558 44,190 5,717
6 68,806 6,796 4,648 4,958 95,992 6,648 5,024 4,353
7 88,571 10,233 9,386 4,075 80,285 9,472 9,173 2,362
8 146,181 11,180 8,449 7,322 145,011 9,639 8,501 4,544
9 101,446 9,428 7,405 5,835 95,709 7,968 7,224 3,362
10 82,514 7,897 5,789 5,372 52,722 5,954 4,923 3,348
11 87,309 9,791 7,972 5,684 92,342 8,722 8,185 3,013
12 87,964 7,435 5,803 4,648 76,680 6,294 5,548 2,973
13 232,388 21,211 16,845 12,889 179,319 16,735 15,582 6,103
14 75,427 11,404 10,161 5,177 45,127 8,357 7,977 2,491
15 39,045 5,946 5,103 3,051 26,129 4,646 4,474 1,251
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Table 3: Reserve prediction using change point prior

Company Reserve
√
TV

√
PV

√
EE Reserve

√
TV

√
PV

√
EE

θ = +∞ θ = 1
1 498,870 28,317 24,955 13,382 498,910 28,393 24,959 13,535
2 410,435 18,217 14,978 10,369 410,483 18,189 14,979 10,319
3 490,445 91,108 80,969 41,768 489,781 90,693 80,918 40,959
4 464,048 31,019 25,903 17,065 463,516 31,043 25,890 17,127
5 157,670 46,508 41,728 20,537 156,102 46,060 41,725 19,507
6 67,681 6,863 4,635 5,061 67,663 6,818 4,635 5,000
7 93,040 10,576 9,441 4,766 92,919 10,526 9,437 4,662
8 145,140 11,165 8,430 7,320 145,104 11,212 8,430 7,393
9 99,813 9,437 7,381 5,880 99,940 9,427 7,384 5,859
10 83,543 8,011 5,820 5,506 83,692 8,021 5,823 5,517
11 84,922 9,924 7,916 5,986 84,863 9,882 7,914 5,918
12 88,409 7,511 5,810 4,760 88,209 7,551 5,806 4,827
13 239,901 21,956 17,012 13,880 240,141 22,015 17,019 13,964
14 82,378 12,396 10,696 6,266 82,236 12,350 10,685 6,193
15 42,236 6,216 5,245 3,336 42,196 6,235 5,242 3,376

θ = 0.1 θ = 0.01
1 497,308 28,205 24,936 13,180 450,274 25,654 23,996 9,074
2 413,434 18,341 15,003 10,549 454,381 18,193 15,491 9,540
3 491,147 88,324 80,998 35,220 445,029 79,329 77,528 16,808
4 458,812 30,773 25,806 16,763 379,380 26,257 24,095 10,433
5 147,018 43,513 42,132 10,873 152,649 44,506 44,139 5,700
6 68,799 6,870 4,648 5,059 96,024 6,605 5,024 4,288
7 88,497 10,203 9,385 4,003 80,238 9,468 9,171 2,353
8 146,199 11,119 8,449 7,228 144,272 9,592 8,488 4,468
9 101,371 9,434 7,403 5,848 95,695 7,968 7,224 3,362
10 82,402 7,942 5,787 5,440 51,792 5,837 4,906 3,162
11 87,259 9,824 7,972 5,741 92,359 8,718 8,186 2,998
12 87,938 7,459 5,803 4,687 76,402 6,285 5,543 2,963
13 232,652 21,360 16,853 13,124 179,148 16,699 15,578 6,016
14 75,096 11,400 10,143 5,204 45,057 8,355 7,975 2,491
15 39,236 5,951 5,113 3,046 25,911 4,638 4,467 1,248
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we present the reserve estimates and the predictive uncertainty in Figure 5. Each line in the figure

represents an individual insurer. The predictions and associated variability are relatively robust to

the prior specification, suggesting that data are informative enough for model inference.
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Figure 5: Robust analysis of reserve prediction

We employ out-of-sample validation to examine the value added by the information pooling.

Recall that we have access to the Schedule P in years 1998-2006, and thus can calculate the

actual amount of future payments (paid losses in the lower triangle) for each insurer, denoted

by Q(n). Based on the predictive distribution of reserve R(n), we compute the two-sided p-value

min
{
Pr(R(n) < Q(n)), Pr(R(n) > Q(n))

}
. A smaller p-value indicates a more extremal outcome, i.e.

the realized outcome is further away from the center of prediction. Because both under and over

reserving could be detrimental to the insurer, a small p-value implies poor predictive performance.
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The p-value is calculated using both conjugate prior and change point prior and using different

degrees of shrinkage for each prior. Results are presented in Table 4 with the largest p-value

highlighted. Recall that the diffuse prior θ = +∞ reproduce the chain ladder predictions. The

small p-values for this scenario suggest that using some degrees of shrinkage to borrow information

from peer insurers, an insurer is as least as good as the chain ladder method and as the amount of

shrinkage increases, the model improves.

Table 4: p-values from out-of-sample validation

Conjugate Prior Change Point Prior
Company θ = +∞ θ = 1 θ = 0.1 θ = 0.01 θ = +∞ θ = 1 θ = 0.1 θ = 0.01

1 0.093 0.093 0.100 0.333 0.093 0.093 0.101 0.332
2 0.001 0.001 0.001 0.000 0.001 0.001 0.001 0.000
3 0.025 0.025 0.021 0.048 0.025 0.025 0.022 0.048
4 0.045 0.046 0.062 0.113 0.046 0.048 0.063 0.109
5 0.250 0.237 0.164 0.211 0.248 0.236 0.166 0.205
6 0.015 0.015 0.023 0.020 0.016 0.015 0.024 0.020
7 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
8 0.094 0.094 0.083 0.069 0.098 0.099 0.081 0.078
9 0.151 0.148 0.109 0.231 0.146 0.142 0.111 0.232
10 0.155 0.155 0.185 0.000 0.156 0.152 0.190 0.000
11 0.234 0.242 0.310 0.492 0.232 0.230 0.308 0.492
12 0.003 0.003 0.004 0.082 0.003 0.004 0.004 0.088
13 0.007 0.006 0.013 0.362 0.006 0.006 0.013 0.358
14 0.044 0.045 0.106 0.027 0.044 0.044 0.111 0.027
15 0.291 0.296 0.489 0.003 0.295 0.297 0.476 0.003

Selected 2 2 4 7 2 2 4 7

6 Conclusion

In this paper, we investigated credibility in reserving. We started with the classical chain-ladder

method and, based on Bayesian linear models, we showed credibility results for both development

factors and reserve estimates, i.e. a weighted average of prior knowledge and best estimates from

the data. Further, we employed a hierarchical model for the prior specification such that an

insurer could blend its own experience with claim experience from peer insurers. The hierarchical

specification also leads to a shrinkage effect on the information across insurers. We emphasized

that the degree of shrinkage used in the prediction is a judgement call of the reserving actuaries,

allowing for more flexibility in the model.
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In the empirical analysis, we examined a portfolio of fifteen large US property-casualty insur-

ers’ commercial auto insurance lines. We explored alternative approaches for prior specification,

including conjugate and change point priors. The former is a natural choice for hierarchical model,

and the latter is particularly useful if one is more interested in the payment pattern in the tails. We

illustrated the advantage of the Bayesian approach to quantify reserve variability. Without loss of

interpretability, the total variance can still be decomposed into the process variance and estimation

error. Through out-of-sample validation, we showed that prediction for individual insurers can be

improved by borrowing strength from peer insurers.
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Peters, G., P. Shevchenko, and M. Wüthrich (2009). Model uncertainty in claims reserving within
Tweedie’s compound Poisson models. ASTIN Bulletin 39(1), 1–33.

Quarg, G. and T. Mack (2008). Munich chain ladder: a reserving method that reduces the gap
between ibnr projections based on paid losses and ibnr projections based on incurred losses.
Variance 2(2), 266–299.

Shi, P. (2013). A multivariate analysis of intercompany loss triangles. Working Paper.

Shi, P., S. Basu, and G. Meyers (2012). A bayesian log-normal model for multivariate loss reserving.
North American Actuarial Journal 16(1), 29–51.

Sturtz, S., U. Ligges, and A. Gelman (2005). R2winbugs: a package for running winbugs from r.
Journal of Statistical Software 12(3), 1–3.

Taylor, G. (2000). Loss Reserving: An Actuarial Perspective. Kluwer Academic Publishers.

Verrall, R. (1990). Bayes and empirical Bayes estimation for the chain ladder model. ASTIN
Bulletin 20(2), 217–243.

Whitney, A. (1918). Theory of experience rating. Proceedings of the Casualty Actuarial
Society 4(10), 274–292.

Wüthrich, M. and M. Merz (2008). Stochastic Claims Reserving Methods in Insurance. John Wiley
& Sons.

Zhang, Y. and V. Dukic (2012). Predicting multivariate insurance loss payments under the bayesian
copula framework. Journal of Risk and Insurance. Forthcoming.

Zhang, Y., V. Dukic, and J. Guszcza (2012). A bayesian nonlinear model for forecasting insurance
loss payments. Journal of the Royal Statistical Society: Series A 175(1), 1–20.

Credibility in Loss Reserving

Casualty Actuarial Society E-Forum, Summer 2014-Volume 2 21



The Use of  GAMLSS in Assessing the Distribution of  
Unpaid Claims Reserves 

Giorgio Alfredo Spedicato, Ph.D, ACAS 
Gian Paolo Clemente, Ph.D 

Florian Schewe, M.Sc 
 _____________________________________________________________________________  

Abstract  
Motivation. Regression modeling through generalized linear models (GLM) has known increasing 
popularity in last decades after milestone papers published in actuarial literature, representing one of 
the most used tools to assess the variability of unpaid claims reserve. Generalized additive models for 
location scale and shape (GAMLSS) represent an extension of classical GLM framework allowing not 
only the location parameters but also shape and scale parameters of a relevant number of distributions 
to be modeled as function of dependent variable like accident and development years. The paper 
applies GAMLSS to triangles coming from NAIC loss triangle databases in order to assess the 
distribution of unpaid loss reserve in term of best estimate as well as distributional form. 
The results of GAMLSS are critically compared with those of classical stochastic reserving approach. 
All the analyses will be performed using R statistical software. 
 
Keywords. Reserving Methods; Reserve Variability; Generalized Linear Models; GAMLSS; R 
software; NAIC Schedule P database. 

 _____________________________________________________________________________  

1.  INTRODUCTION 

Regression modeling through generalized linear models (GLM) has been successfully applied in 
dynamic financial analysis (DFA) to assess the variability of claims reserves. In particular, over-
dispersed Poisson models (ODP) have become popular due to the equality of the best estimate (BE) 
arising from its application to the ones coming from the classical chain ladder (CL). Distributions 
other than Poisson have been applied for estimating unpaid claims reserves like gamma and negative 
binomial. 

GLMs can be used to obtain an estimate of the variability of outstanding claims reserves, 
decomposed into the amount due to inherent process variability (process variance) and the amount 
due to the estimation error (estimation variance). The latter element can be estimated either 
analytically or numerically thanks to the bootstrap approach (see England & Verrall, 1999) for 
bootstrap in claims reserve framework and (England, 2002) for process error evaluation). 

GLM assumptions regarding the conditional distribution of the dependent variable are quite 
restrictive, however, since the variance of the outcome variables (that are the triangle cells) is 
expressed as a function (i.e., the variance function) of the mean of the outcome variables. A new 
class of statistical models has been introduced, generalized additive models for location, scale and 
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shape (GAMLSS), with the aim to provide a flexible regression framework. In particular, it allows 
one to use separate regression equations for all parameters of the assumed conditional distribution 
of the dependent variable. In addition, it provides tools to assess the reasonableness of the 
regression forms (by means of the functional relationship assumed and variables included) as well as 
the shape of the conditional distribution. 

Rigby & Stasinopoulos (2005) provide a theoretical introduction to GAMLSS, whilst Rigby & 
Stasinopoulos (2010) show applications of GAMLSS from a practitioners’ point of view.  At the 
time of this paper’s drafting, no paper applying GAMLSS in the loss reserving context had been 
found within actuarial literature, making Schewe (2012) and Clemente and Spedicato (2013) the only 
approaches available. An early introduction of the idea can be found in Spedicato (2012), whilst 
Schewe (2012) and Clemente & Spedicato (2013) provide more comprehensive expositions. The first 
paper uses the GAMLSS approach to estimate claims reserves of numerous lines of business by 
using paid-to-premium ratios and compares the reserve uncertainty to the CL method. The second 
paper focuses on estimating claims reserve and quantifying reserve risk variability. On the other side, 
many works on applying GLM and generalized additive models (GAM) exist (see Renshaw & 
Verrall, 1998 for a general reference). Actuarial applications of GAMLSS are indeed very scarce:  
Stasinopoulos (2007) and Klein et al. (2014) applied GAMLSS in a ratemaking context, whilst an 
application to capital modeling has been shown in Spedicato (2011). 

The application of GAMLSS for loss reserving is beneficial for two reasons. The first is that the 
regression assumptions are more flexible. For instance, making the conditional variance a function of 
external predictors (like the accident, development or calendar years) allows a more flexible modeling 
of the conditional distribution of triangle cells’ outcomes and, therefore, better assesses the process 
variance. The second reason is applying GAMLSS provides valid tools to assess the shape of the 
distribution of losses that can be tested against numerous alternative distributions. Loss reserving 
with GLMs has given little attention to the shape of the conditional distribution of triangle’s cells. In 
general, it can be said that all reserving models based on GLMs are particular cases of those that can 
be implemented under a GAMLSS framework. 

The objective of the paper is twofold: (1) to introduce theoretically GAMLSS as a possible 
modeling tool for assessing the distribution of loss reserves and (2) to show a practical application 
on NAIC Schedule P triangles (NAIC DB). The remainder of the paper proceeds as follows: Section 
2 discusses the general framework of GAMLSS and the proposed method for claims reserve 
evaluation, Section 3 describes a practical application on Schedule P databases, Section 4 reports 
main results and Section 5 drafts conclusions. 
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2.1 Introduction to GAMLSS 
 

GLM and GAM proposed to assess loss reserve distribution lead to restrictive modeling for the 
variance of the response variable since the variance only depends on the mean as expressed within 
the variance function. Rigby and Stasinopoulos claim that this is true for skewness and kurtosis as 
well. Thus the authors developed a new model which allows explicit modeling of these moments 
rather than keeping implicit dependence on the mean. They also relaxed the requirement of a 
distribution from an exponential family by allowing more general distributions. 

GAMLSS is a general class of univariate regression models where the exponential family 
assumption is relaxed and replaced by a general distribution family. The systematic part of the model 
allows all the parameters of the conditional distribution of the response variable 𝑌𝑖 (𝑖 =  1,2, … ,𝑛) 
to be modeled as parametric or non-parametric functions of explanatory variables. This means that 
an actuary can model not only the expected claim payment but also its process variance as a function 
of accident, development and/or calendar year using a regression expression. 

Let 𝜃𝑇 = �𝜃1,𝜃2, … ,𝜃𝑝� the 𝑝 parameters of a probability density function 𝑓𝑌𝑖(𝑦𝑖|𝜃1) modeled 

using an additive model. 𝜃𝑖𝑇 = �𝜃𝑖,1, 𝜃𝑖,2, … , 𝜃𝑖,𝑝� is a vector of 𝑝 parameters related to explanatory 

variables, where the first two parameters 𝜃𝑖,1 and 𝜃𝑖,2 are usually characterized as location 𝜇𝑖 and 

scale 𝜎𝑖. The remaining parameters, if any, are characterized as shape parameters. In a reserving 
context, this framework means that any cell of the triangle can be modeled by any distribution, 
where the parameters are derived by regression equations of accident and development years. The 
current R implementation of the software allows distribution up to 4 parameters to be modeled 
under this framework. 

Under this condition, we can derive the following model (when p = 4): 

⎩
⎪
⎨

⎪
⎧𝑔1(𝜇) = 𝜂1 = 𝑋1𝛽1 + ∑ 𝑍𝑗,1

𝐽1
𝑗=1 𝛾𝑗,1

𝑔2(𝜎) = 𝜂2 = 𝑋2𝛽2 + ∑ 𝑍𝑗,2
𝐽2
𝑗=1 𝛾𝑗,2

𝑔3(𝜈) = 𝜂3 = 𝑋3𝛽3 + ∑ 𝑍𝑗,3
𝐽3
𝑗=1 𝛾𝑗,3

𝑔4(𝜏) = 𝜂4 = 𝑋4𝛽4 + ∑ 𝑍𝑗,4
𝐽4
𝑗=1 𝛾𝑗,4

�                       (2.1.1) 
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where 𝜇,𝜎, 𝜈, 𝜏  are vectors of length 𝑛, 𝑋𝑘 are known design matrices, 𝛽𝑘𝑇 = �𝛽1,𝑘,𝛽2,𝑘, … ,𝛽𝑗,𝑘� 

are parameters vector, 𝑍𝑗,𝑘 are known design matrices for the random effects and 𝛾𝑗,𝑘 are random 
vectors. 

In particular, the previous equations imply that the moments of response variable in each cell can 
be expressed directly as a function of covariates after a convenient parameterization. This since 
regression equations can be used to model each parameter as a function of covariates and since the 
moments of any distribution can be expressed as functions of its own parameters. Each linear 
predictor 𝜂𝑘 consists of a parametric component 𝑋𝑘 and an additive random component. Instead of 
random effects, smooth functions may be used as in GAM. Cubic splines, penalized splines, varying 
coefficients and random effects offer a maximum degree of flexibility since they allow more complex 
scenarios than GLM (or GAM) to be modeled. 

Currently the GAMLSS R package supports more than 60 distributions, non-linear and non-
parametric relationships (e.g. cubic splines and non-parametric smoothers) and random effect 
modeling. See (Rigby & Stasinopoulos, 2010) for more details on the R package. Nevertheless for 
most real world applications, two-parametric distributions should sufficiently approximate the 
dependent variable distribution of interest. This means that for the reserving analysis in this paper 
we will consider only two-parametric distribution families. For example, reserve analysis with up to 
four parameters can be found. in Schewe (2012). 

Applying a GAMLSS model in a reserving exercise involves both selecting the distribution of the 
dependent variable (for example weibull or a lognormal) and the functional relationship between the 
parameters of the dependent variable distribution (say 𝜇 and 𝜎, if a two-parametric family has been 
chosen) and the independent variables (say accident and development years). The R package that 
implements the GAMLSS models provides various instruments to aid the selection of both the 
functional form and the distribution assumption. (Rigby & Stasinopoulos, Lancaster Booklet, 2010) 
paper provides an introduction to GAMLSS regression modeling in which the interested reader can 
find both theoretical details and applied GAMLSS modeling examples. The main instrument to 
evaluate the reasonableness of GAMLSS is the analysis of normalized quantile residuals (NQR). 
Normalized randomized quantile residuals (see Dunn & Smyth, 1996) are used to check the 
adequacy of a GAMLSS model and, in particular, its distribution component. The residuals are given 
by �̂�𝑖 = 𝛷−1(𝑢𝑖), where 𝛷−1 is the inverse of the cumulative distribution function of a standard 

normal distribution and 𝑢𝑖 = 𝐹�𝑦𝑖|𝜃�𝑖� is derived by applying the estimated cumulative distribution 

to 𝑦𝑖. If the model is specified correctly the NQR should follow a Gaussian distribution. Apart from 
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model checking, the normality properties have been used for bootstrapping GAMLSS models as 
shown in forthcoming section. 

 

2.2 GAMLSS Applications to Loss Reserve Analysis 

 
Focusing now on claim reserving analysis, we consider a generic loss development triangle of 

dimension (𝐼, 𝐽) with rows (𝑖 =  1, … , 𝐼) representing the claim accident years (AY) and columns 
(with 𝑗 =  0, … , 𝐽) describing the development years (DY) for payments. It needs to be emphasized 
that the number of columns may differ from the number of rows, for example, because of a tail in 
the payment development. 

Following an approach similar to Renshaw & Verrall (1998), we can now define 𝑃𝑖,𝑗 as the 
incremental paid claims and identify the incremental paid claims as response variables of the 
following structure: 

�
𝐸�𝑃𝑖,𝑗� = 𝑔1−1(𝜂1,𝑖,𝑗)
𝜎2�𝑃𝑖,𝑗� = 𝑔2−1(𝜂2,𝑖,𝑗)

�.          (2.2.1) 

If a model for the distribution of incremental paid claims is found on historical data 𝑃𝑖,𝑗  (𝑖 + 𝑗 ≤
 𝐼), the model can be applied to predict future payments 𝑃𝑖,𝑗 (𝑖 + 𝑗 > 𝐼). The key advantage of 

GAMLSS compared to GLMs is that 𝜎2�𝑃𝑖,𝑗� can explicitly be modeled within a statistical 
framework, instead of relying on the GLM variance function assumption. 

The ODP model is one of the most used approaches by actuarial practitioners when performing 
stochastic reserving under a regression framework. Within this framework it is assumed that each 
triangle cell 𝑃𝑖,𝑗 follows a Poisson with parameter 𝜆𝑖,𝑗.  

In addition, it is assumed that: 

a. 𝐸�𝑃𝑖,𝑗� = 𝜆𝑖,𝑗 can be modeled using a log-linear regression, for example, as a function of AY 

and DY dummy indicators: 𝐸�𝜆𝑖,𝑗� = 𝑒𝑥𝑝�𝛼 + 𝛽𝑖 + 𝛾𝑗�, where 𝛼 may be parametrized to a 
baseline accident/development period level. 

b. An over-dispersion parameter φ exists such that 𝑣𝑎𝑟�𝑃𝑖,𝑗� =φ· 𝐸�𝑃𝑖,𝑗� > 𝐸�𝑃𝑖,𝑗� holds for 

all 𝑖, 𝑗.  
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Taking into account the nature of data, however, other distributions may be more appropriate and 
provide a better fit to the underlying data than a Poisson. 

One of the aims of this paper is the investigation of which is the most appropriate distribution 
for 𝑃𝑖,𝑗 in a real-world scenario. Triangles from the NAIC DB will be used as the basis of 
investigation. A GAMLSS with a two-parametric distribution will be fit to the data and the effect of 
the covariates on the first parameter µ will be examined. 

In a second step, we will verify if the second parameter 𝜎 can be held constant or can be 
expressed as a function of either AY or DY within a regression structure similar to the one for 𝜇. 

A third step will be to use the GAMLSS to estimate claim reserves and variability of claim 
reserves. After a suitable conditional distribution and a regression structure for the location and scale 
parameters has been chosen, the GAMLSS can be applied to the lower part of the triangle to obtain 
a best estimate of reserves and variability of the estimates, as further detailed in Schewe (2012) and 
Clemente & Spedicato (2013). 

In order to assess the variability of the claims reserves, the following bootstrap-like approach can 
be used: 

1. Fit a GAMLSS model 𝑀 on an incremental paid claims triangle using a suitable distribution 
function and development year and accident year as covariates. The functional relationship 
between the location and scale parameters and their predictors could be modeled using 
dummy variables or more sophisticated functional relationships such as polynomials or 
splines. This approach would be similar to a classical ODP modeling approach for 
development triangles, but here not only a regression for the expected value of the cell but 
also for its variability would be done. The estimated parameters will be used to derive BE 
reserves and to model the process variance. Note that the application is not bound to 
incremental paid claims triangle but incremental incurred claims triangle could be used as 
well. 

2. In order to allow for prediction error, it is proposed to adapt the bootstrap algorithm 
proposed in Renshaw & Verrall (1998) to GAMLSS model: 

a. Compute the normalized quantile residuals, �̂�𝑖,𝑗 = 𝛷−1 �𝐹�𝑃𝑖,𝑗|𝜃�𝑖,𝑗��. 

b. Generate 𝑁 upper triangles of residuals �̂�𝑖,𝑗𝑘 , with 𝑘 = 1, … ,𝑁 by replacement. 

c. Derive 𝑁 upper triangles of pseudo incremental payments from the GAMLSS model 
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by the inverse relation: 𝑃�𝑖,𝑗𝑘 = 𝐹−1 �𝛷��̂�𝑖,𝑗𝑘 |𝜃�𝑖,𝑗��  

d. Refit the GAMLSS model 𝑀 on 𝑁 triangles in order to assess model variance 

e. For each cell of the lower part of each triangle, simulate the outcome 𝑃𝑖,𝑗 from the 
process distribution with mean and variance depending by the fitted GAMLSS 

3. The sum of lower triangle part cells values as predicted by the GAMLSS model corresponds 
to the reserve. 

4. The 𝑁 values derived at step 3 represent the simulated distribution of claims reserve.  

5. The main moments, that is, the best estimate and a measure of loss variability, can be 
estimated by such distribution. 

Clemente & Spedicato (2013) applied this approach to the classical Taylor-Ashe triangle (Taylor 
& Ashe, 1983) finding a Gamma distribution with development year as covariate to best fit the 
payment pattern within a reasonble set of choices. This paper will apply the outlined approach on 
generic NAIC loss triangles, using various distributions and shows how to derive with the BE 
reserve and its variability. 
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3. RESULTS 
 

3.1 Process variance analysis 
 

The first part of the analysis investigates whether, when performing loss reserving under a 
regression modeling framework, a statistical distribution may be deemed the most appropriate using 
a statistical goodness-of-fit criterion. For this purpose, a generalized Akaike information criterion 
(GAIC) will be used to compare GAMLSS. It is obtained by adding to the fitted global deviance a 
fixed penalty for each degree of freedom in the model. 

Furthermore, to address the question stated above, various GAMLSS models have been fit on 
NAIC Schedule P loss triangles following the approach outlined as follows: 

a) The incremental claim payments are expected to vary both by accident and development year. 
A second and third structure has been defined, allowing the scale parameter to vary by either 
accident or development year. 

b) Accident and development years enter the GAMLSS regression as dummy variables in all our 
analyses.  

c) The following distributions were tested: Poisson (POI), negative binomial (NBI), gamma 
(GA), Weibull (WEI), lognormal (LNORM) and inverse Gaussian (IG). Whilst the GAMLSS 
R package can handle more than 60 different distributions, the relatively limited choice is 
driven by the authors’ aims to introduce the approach and to restrict the analysis to the most 
used distributions within current actuarial practice. For each distribution, the three regression 
structures mentioned above were implemented. Note that the two discrete distributions, 
Poisson and negative binomial, are being used for a continuous random variable for the same 
reasons outlined in England & Verrall (1999). Recall that it is shown that a GLM reserve 
estimate under an ODP framework is equal to a chain-ladder reserve estimate. 

d) Each combination of regression structure and distribution has been fit to each triangle of the 
NAIC. For each triangle, we selected the model with the lowest value of GAIC criterion 
among those for which the GAMLSS algorithm was able to estimate parameters. 

e) The conditional distributions and parameter assumptions of the reference models have been 
tabulated for all the NAIC DB lines of business (product liability, other liability, medical 
malpractice, workers compensation, commercial auto and private passengers auto). 
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For the analysis of reserve variability, a triangle was picked at random (group 226, private 
passengers auto) and the upper and lower parts of the incremental paid loss triangle were arranged. 
Traditional reserving models were estimated with the aid of Gessman, Zhang, & Murphy (2013) R 
package as well as various GAMLSS reserving models. The underlying best estimates have been 
compared with the subsequent payments shown in the lower triangle and released within the NAIC 
DB package. The models’ reserve standard errors have been compared as well. 

 

 

Figure 1: Best performing conditional distribution by line of business (LoB) 
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Figure 2: Best performing shape parameter assumption by LoB 

 

Various GAMLSS have been fit on NAIC DB varying the conditional distribution assumption as 
well as the variance dependency by either accident or development years or neither of them. The 
best performing model as measured by the goodness of fit has been selected. In other words, for 
each group’s triangle, within each line of business (LoB), a “best” model has been selected. It has 
been defined by a conditional distribution assumption (tabulated on Figure 1) and a shape parameter 
assumption (tabulated on Figure 2). The gamma distribution supersedes by far the other 
distributions as the most appropriate distribution by AY. The lognormal and Weibull distributions 
are a distant second and third, respectively. Assuming the claim payment follows a discrete 
distribution (Poisson or negative binomial), as was done in earlier GLM reserving approaches, 
appears to be not supported by empirical data. Similarly, assuming the scale parameter to vary by 
accident year appears to improve the model fit in terms of GAIC.  

The R programming code that replicates the analysis of this section are the first three files 
listed in the appendix. 
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3.2 Full distribution of Unpaid Claim Reserves 

 

The approach outlined in the methodology section has been applied in order to estimate the 
reserve BE and its variability. The exercise has been carried on a group of 266 triangles for the 
private passenger LoB (henceforth called example triangle or ET). As pertaining to the NAIC 
Schedule P triangles set, it shows 10 years of development for AYs 1988–1987.  The obtained figures 
have been compared with the actual incremental payments during calendar year 1998–2006 and with 
the BE and standard deviation implied with other reserving algorithms applied on the same triangle 
(Mack formula, bootstrap chain ladder with a gamma process distribution, GLM ODP). 

Initially various GAMLSS models have been fit on the ET in order to find an appropriate 
stochastic model for the claim triangle. The selected model assumes a GAMMA conditional 
distribution, modeling the expected value to depend on both the accident and development years 
whilst the variance to vary by development year only. Then the unpaid claim distribution (see Figure 
3) has been obtained by estimating both process and parameter uncertainty as described in Section 
2.2. The green and red lines in Figure 3 represent observed payments in the lower part of the triangle 
and GAMLSS BE, respectively.  

 

 

Table1: BE and standard deviations of various loss development models on private passenger, 
Group 226  

 

model Best Estimate Standard Deviation
Mack 30.065            2.517                           
BootstrapCL 32.635            141.905                       
ODP 30.065            6.695                           
GAMLSS BASE 31.821            14.354                         
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Figure 3: GR 266 Reserve Distribution derived by the GAMLSS model. 

 

The BE and standard deviation of unpaid claims are reported in Table 1. When compared with 
actual calendar year 1998–2006 payments totaling 31,713, the GAMLSS model BE appears to be the 
closest to the actual results. However, the standard deviation of the GAMLSS model appears to be 
quite large (slightly more than double than that given by the ODP and almost seven times than the 
variability given by the Mack formula, even though far lower than the bootstrapped chain ladder 
with gamma process variance). It is difficult to explain why the difference in variability is so great 
when compared with standard models. One possible reason is that when a model that predicts not 
only the central tendency but also the variability is bootstrapped, the resulting variance is 
exacerbated. 

In addition, the estimated BE appears to be very sensitive to changing conditional distribution 
assumptions. Varying either the conditional distribution assumption or the variance form 
assumption can imply large swings in terms of the BE (see Table 2) as well as in the inherent 
variability. 

 

 

Table 2: Loss reserve BE and sigma by changing GAMLSS conditional distribution and variance 
modeling assumptions. 

model Best Estimate Standard Deviation
GA, dev 31.821            14.354                         
GA, ay 26.614            645                               
GA, none 34.527            18.671                         
WEI, ay 26.106            521                               
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3.3 Comparison of GAMLSS Reserves Estimate with BLUE Chain Ladder 

 

A final exercise was done comparing the accuracy of reserve estimates using mechanic chain 
ladder and GAMLSS approach with respect to actual lower triangle part payments (since calendar 
year 1999). The accuracy was measured by means of the root mean-squared error (RMSE); that is, 
the square root of the average squared difference between an actual outcome (the lower triangle 
cells’ actual payments) and its estimate (the best estimate). The analysis was performed on the full 
NAIC DB private passenger auto triangle set, excluding those triangles on which a standard 
GAMLSS model did not converge. In addition, chain ladder link ratios were estimated using the 
regression through the origin formula, which has been shown to be a best linear unbiased estimator 
(BLUE) of the development factors (Murphy, 1994). 

Model  RMSE 

BLUE Chain Ladder 
         

97.577  

GAMLSS 
         

16.276  
Table 3: RMSE comparisons between BLUE Chain Ladder and GAMLSS approach 

The analysis shows that the correlation between the GAMLSS and chain ladder estimates is very 
high. In addition, even if neither GAMLSS nor chain ladder systematically outperforms the other, 
the GAMLSS RMSE is significantly lower than chain ladder value; thus, suggesting GAMLSS could 
provide sensible reserves estimates. 

The R programming code that replicates this analysis are the last two files listed in the appendix. 

As a general remark, whilst GAMLSS models allow for a great degree of flexibility, they have not 
yet been studied extensively. In particular, the actual R implementation is not optimized by means of 
incorporating C code in the computationally most critical part of the estimation process. In addition, 
model estimation convergence problems may arise, especially when complex regression structures 
are used or non-standard conditional distributions are chosen. The following measures were taken in 
order to overcome such drawbacks: 

1. The R code was highly parallelized to take advantage of multicore processors when 
performing the analysis on the whole NAIC database. The aim is running much larger chunks 
of computations in parallel. 
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2. Exception was explicitly handled within the R programming code to avoid analysis 
interruptions.  

In addition, the following adjustments to the data were performed in the data preparation part: 

1. Incremental paid data were modeled. 

2. Negative increments were zeroed. 
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DISCUSSION 
 

This paper has investigated the use of GAMLSS regression models for P&C loss reserving. On an 
overall basis, a mixed result can be drawn. For various reasons, these models, appear to be 
potentially relevant for loss reserving. By allowing an explicit modeling of the variability by either or 
both accident and development years, GAMLSS overcome the limitations of standard GLMs.  
Therefore, they would better model the process variance of loss reserves. On the other hand, the 
additional parameter that is needed to be modeled reduces the degrees of freedom available. This 
can be a strong limitation of the model when using triangles of similar size to those provided in the 
NAIC DB , but in case larger triangles (as quarterly based triangles or 15x15 yearly based triangles 
requested in Solvency II technical reports) are used, this limitation can be overcome. 

The preliminary analyses carried out in the paper have shown that actual triangles of the NAIC 
DB present a source of variability that departs from the variance function assumption on which 
standard GLMs are based. In addition, a gamma conditional distribution outperforms, in terms of 
goodness of fit, other distribution like negative binomial and Poisson that are commonly assumed in 
standard GLM reserving models.  

When a GAMLSS approach has been used to assess P&C loss reserves, BE, and variability on an 
actual triangle, results have been comparable with those of other reserving methods . In addition, the 
GAMLSS approach systematically applied on the whole NAIC DB private passenger auto triangle 
set has shown an RMSE lower than the BLUE chain ladder, when predicted payments (i.e., reserves) 
have been compared with actual payments. On the other hand, unpaid claim distributions arising 
from bootstrapping GAMLSS models have been shown to be extremely sensitive with respect to 
changes in marginal distribution assumptions and cell variance. A final limitation, that needs to be 
stressed, is that convergence problems arise much more frequently than with standard GLMS.  This 
requires a greater effort in data checking and model selection. 
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Supplementary Material 
The full R code to replicate numerical results of the paper is available. In particular: 
1. 0-loadNaicTriangles.R  loads NAIC CSV files. 
2. 1-prepare data set 4 modeling.R performs additional preprocessing. 
3. 2-regression models on Naic Triangles.R performs additional analyses. 
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5. 4-Compare ChainLadder and GAMLSS.R applies ChainLadder and GAMLSS on PAP triangles and compares 

RMSE. 
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Combining Estimates 

Thomas Struppeck, FCAS, ASA, CERA 

 ____________________________________________________________________________________________  

Abstract: 

The problem of combining two or more estimates into a single estimate appears in many applications, such as 
combining estimates based on paid losses and estimates based on incurred losses, or combining estimates for 
several accident years or lines of business into a single estimate.  A methodology for performing such 
combinations which allows for correlation is described.  An accompanying Excel spreadsheet illustrates the 
procedure.   

Keywords: Reserving, Credibility, Solvency II, Ranges 
 ____________________________________________________________________________________________  

1. Introduction 

Actuaries often are faced with the task of combining two or more estimates into a single estimate.  

When estimating ultimate losses, there may be one estimate based on paid losses and another 

estimate based on incurred losses.  As a second example, consider estimates for several lines of 

business that are to be combined into a single estimate.   While these two examples are somewhat 

similar, there is a very important difference between them.  In the first example, we have two 

different estimates for the same quantity.  In the second example, we have estimates for different 

quantities.  As we will see, in the first case we will actually be able to improve on both estimates.  In 

the second case, we can only hope to not be much worse than the worst one (at least in terms of the 

width of our confidence interval).   

Patel and Raws [PR] used a simulation technique to study the effects of different methods of 

combining estimates in the case where the estimates are for different quantities (example 2 above).  

We review their results in section 3. 

The remainder of this paper is structured as follows:   

 Combining two or more estimates for the same quantity 

o Precision vs. accuracy 

o An example: two estimators for one parameter 

 Combining estimates for multiple components 

o Patel and Raws’ simulation work 

o Sums of different component pieces 

o Why normal distributions? 

 Considerations in selecting correlations 
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 An example 

 Concluding remarks 

 

2. Combining Two Or More Estimates For The Same Quantity 

First, consider the case where two independent estimates, ˆ
A  and B̂ , are available for an 

unknown parameter,   .  We will follow the usual notational convention of writing carats (“hats”) 

over parameters to denote estimators of those parameters and of using Greek letters to denote 

unknown parameters.  In a reserving context,   might represent the unpaid claims on a block of 

business, and ˆ
A and B̂ might represent two different estimates of  .  

It should be noted that we think of   as being a fixed (but unknown) number; it is not itself a 

random variable.   On the other hand, ˆ
A  and B̂ are often instances of random variables and as 

such have sampling distributions.  We will follow customary notation and write, for example, E[ ˆ
A ] 

for the expected value of (the sampling distribution of) ˆ
A . 

2.1 Precision vs. Accuracy 

The two terms “precision” and “accuracy” are often used interchangeably; however, there is a 

slight difference in their definitions.  Accuracy refers to the proximity of the expected value of an 

estimator to the true value of the parameter (the “reference value” in the illustration), whereas 

precision refers to the spread of estimator values around its expected value.  Figure 1, below, 

illustrates this for a normal density.1 

 

                                                            
1 Used with permission under the terms of the GNU Free Documentation License, Version 1.2. 
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Figure 1: The distinction between accuracy and precision 

 

2.2 An Example: Two Estimators for One Parameter 

For our first example, we will attempt to estimate the outstanding loss reserve,  .  We have an 

unbiased estimator of  , ˆ
A .  For the moment assume that this estimator has a normally distributed 

sampling distribution with mean $250 and standard deviation $30.  Then, since ˆ
A  is unbiased, a 

reasonable choice of point estimate for   would be the expected value of ˆ
A , namely $250.  Since 

the sampling distribution is known2, we can even give an approximate 95% confidence interval,  

$250   2($30) = ($190, $310) 3. 

Now suppose that a second, independent, unbiased estimator of  , B̂ , is available.  Further 

suppose that the sampling distribution of B̂  also is normal but with mean $275 and standard 

deviation $40.  This second estimator has less precision than our first estimator (it has a larger 

standard deviation), and it suggests a different point estimate.  Using just the second estimator we 

obtain another 95% confidence interval, $275   2($40) = ($195, $355).  

We would like to create a single estimator that allows these two estimates to work in tandem in a 

way that maximizes the precision of the resulting estimator.  The way to do this is to consider the 

one-parameter family of estimators obtained by taking weighted averages of ˆ
A  and B̂ : 

(1 )t A Bt t    
  

 where 0 1t   . 

                                                            
2 In fact, we do not need to know the entire sampling distribution, only its 2.5th and 97.5th percentiles. 
3 We have used 2.0 instead of 1.96 for ease of exposition; about 95% of the area under a normal is within two standard 
deviations of the mean.  The given interval is actually a 95.45% confidence interval. 
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Since we have assumed that both ˆ
A  and B̂  are unbiased, each t̂  is unbiased because 

expectation is a linear operator. 

When t is zero, we get the first estimator, and when t is 1, we get the second estimator.  In 

between, we get a family of estimators.  Since each of ˆ
A  and B̂  is normal, and they are 

independent, the weighted average t̂  is normal with mean (1 ) [ ] [ ]A Bt E tE  
 

, which in our case 

is (1 )*250 t*275 250 25t t    , and variance 2 2(1 ) [ ] [ ]A Bt Var t Var  
 

, which in our case is 
2 2 2 2(1 ) *30 *40t t  . 

We want to maximize the precision, which amounts to minimizing the standard deviation, which 

is the same as minimizing the variance.  This is easily done by taking the derivative with respect to t 

and setting it to zero: 

 

 2
2 2 2 2 2 32(1 )*30 *( 1) 2* *40 0 (30 40 ) 30 5t t t t           

 

So the minimum occurs when we let t=.36, i.e. we use 64% of estimator A and 36% of estimator 

B.  This produces 0.36̂ which is normal with mean = 259 and standard deviation = 24.  This 

estimator has the smallest standard deviation of any weighted average of our estimators and suggests 

a point estimate of $259 with an approximate 95% confidence interval of ($211, $307).  This 

estimate has the most precision of any estimator in this class. 
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Figure 2: Densities for two estimators and their optimal combination 

Figure 2, shown above, illustrates the density function for the two estimators, ˆ
A  (shown in red) 

and B̂  (shown in blue), and the density function of their optimum weighted average, 0.36̂ (shown 

in black). The weighted average, having a more concentrated density, is more precise.  Whether it is 

more accurate is a more delicate question. 

Accuracy measures how far the true parameter is from our estimate.  Since the true parameter is 

intrinsically unknowable, we will have to satisfy ourselves with a statement about confidence 

intervals.  Since 0.36̂ lies between ˆ
A  and B̂ , whatever its true value,   is closer to 0.36̂ than it is to 

at least one of ˆ
A  and B̂ .  In other words, 0.36̂ is always more accurate than the worst of ˆ

A  and 

B̂ . 
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In fact, sometimes it is more accurate than either of them.  Whenever 254.5  ,   will be closer 

to 0.36̂ than to ˆ
A . And whenever 267  ,   will be closer to 0.36̂  than to B̂ .   Using the 

sampling distribution for 0.36̂ , we see that the first interval is a 57.44% one-sided confidence 

interval for   and that the second is a 63.06% one-sided confidence interval.  The intersection of 

these two intervals is the interval 254.5 267  , which is a 20.49% confidence interval for  . 

In the example, we assumed that we had two estimators, that our estimators were normally 

distributed, and that they were independent.  If we have more than two estimators, we can still find 

the optimum weighting by using multivariate calculus techniques (setting the gradient to zero, etc.).  

If the estimators are correlated and we have a good estimate of the correlation coefficient(s), we can 

still compute the standard deviation of the weighted averages and find the optimum weighting.  In 

order to create a confidence interval, we need to know the distribution of the sum.  If our 

summands are bi-normally or multi-normally distributed4, then the sum will have a normal 

distribution.  In that case, we can create our confidence interval in the usual way, namely by picking 

the appropriate point from a table of standard normal values (a z-score), multiplying it by the 

standard deviation and using this as a radius about the point estimate. 

In practice, multiple estimates of the same quantity tend to be highly correlated.  But, unless the 

correlation is 100%, some increase in precision will occur when they are combined. 

 

3. Combining Estimates for Multiple Components 

3.1 Patel and Raws’ Simulation Work 

In [PR], Patel and Raws considered the problem of estimating a total reserve from estimates of 

the component pieces.  They used a simulation approach to compare several different possible 

distributions for the losses in each piece.  Among the distributions that they examined were the 

uniform, triangle, normal, and log-normal distributions.  In each iteration of the simulation, they 

generated losses by line from those distributions, summed them, and repeated this process many 

times to create the simulated distribution of the sum. 

In their simulations, they assumed that the component pieces were independent.  That 

assumption allowed them to select the losses for each line without having to explicitly correlate 

them.  In the text they suggest that correlations between accident years could be adjusted for in the 

choice of distribution and that correlations between lines of business could be adjusted for similarly. 

                                                            
4 It is possible for two or more jointly distributed normal random variables to have normal marginal distributions but 
not be multi-normally distributed.  
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Capturing the effects of correlation in a simulation is possible, but it can be tricky.  If one is not 

careful, the marginal distributions can fail to be what is expected.  Copulae can solve this problem. 

A (d-dimensional) copula is a mapping from the d-dimensional unit cube onto the unit interval 

that is a joint cumulative distribution function with uniform marginals.  Copulae are of interest to us 

because of Sklar’s Theorem, which says that any d-dimensional random variable (i.e. d jointly 

distributed univariate random variables) can be expressed as a composition of its d marginal random 

variables and a copula that combines them.  Furthermore, in the case of continuous random 

variables, this decomposition is unique.  So, utilizing a copula, one can impose any possible 

correlation structure on a family of random variables, such as having correlation mainly manifest 

itself in the tails.  More in depth discussions of copulae can be found in Mango and Sandor [MS] and 

Venter [V].    

The ranges of estimates that Patel and Raws obtained did not vary greatly by choice of 

distribution.  This suggests an alternative approach: instead of assuming independence and using 

multiple distributions, only use one distribution, but use one that allows for explicit correlations.  

One such distribution is the multi-normal distribution. 

3.2 Sums of Different Component Pieces 

The example in the first section illustrated how multiple estimates for the same parameter can be 

combined to create an estimate with greater precision than the original individual estimates.  Often 

the quantity that we want to estimate is a sum of several parts, each of which has an associated 

estimate --- this is the problem that Patel and Raws examined.  For instance, we could be interested 

in the total outstanding losses for a company that writes three lines of business, and we have 

estimates of the outstanding losses for each line. 

We will not be taking a weighted average here, but rather we will just take a sum.  The summing 

and averaging are closely related, but differ in an important way: in a weighted average, each 

summand gets multiplied by a number between 0 and 1, t and (1-t) in our example: 

(1 )t A Bt t    
  

 where 0 1t   

The variances of ˆ
A  and B̂  got multiplied by 2(1 )t  and 2t , respectively, and these are strictly 

less than (1-t) and t (unless t is 0 or 1).  This is how we obtained greater precision.  There is no 

similar opportunity when the coefficient is equal to one as it is in a sum. 
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What this means is that as we add more and more independent pieces to our sum, our confidence 

intervals will get nominally larger.5  By nominally larger, we mean that the width of the confidence 

interval will increase.  In relation to the size of the reserve however, the intervals might be getting 

smaller.  One possible measure of the relative size is the coefficient of variation (CV) --- the ratio of 

the standard deviation to the mean.  The square of this, the ratio of the variance to the squared 

mean, is another measure which is sometimes easier to work with.  It is called the squared 

coefficient of variation or SCV.  Both the CV and SCV are dimensionless quantities. 

When there is no correlation among the pieces and the number of pieces is large, the sampling 

distribution of the sum will start to look like a normal distribution--this is essentially the content of 

the Central Limit Theorem.  Intuitively, we expect half of our pieces to be above their respective 

medians and the other half to be below their medians; when we add them all together the errors 

tend to cancel. 

Often, however, there is reason to believe that there may be some correlation among the pieces.  

For instance, if we are estimating the total ultimate losses for a book consisting of several lines of 

long-tail business, we might model each of them separately.  Future inflation (or deflation) might 

simultaneously increase (or decrease) each of those lines effectively creating correlation. 

   

                                                            
5 If the pieces had very large negative correlations, it is possible that the confidence intervals could get smaller, but such 
instances are rare and would be quite unusual. 
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Figure 3: The marginal densities of a bi-normal pair of random variables 

Figure 3, above, illustrates the marginal densities (in red and blue) of a bi-normally distributed 

pair of random variables6.  The green ellipse represents a level curve of the joint distribution (in this 

instance, a 3-sigma ellipse7).  If the correlation is positive, the distribution of the sum corresponds to 

the major axis of the ellipse (if the correlation is negative, the minor axis).  This shows that the 

precision of the sum is smaller than the precision of the summands (unless the correlation is very 

negative).  

                                                            
6 This image is in the public domain.  The code to produce this graph can be found here: 
http://en.wikipedia.org/wiki/File:MultivariateNormal.png 
7 Symmetric confidence intervals for univariate normal variables have the property that the density function is equal at 
each end of the interval, i.e. the two endpoints of the interval form a level set of the density function.  The analog for 
bivariate or multivariate normal random variables is to use a level set of the density function as the boundary for the 
analog of a confidence interval--a confidence region.  In the case of bivariate normals, these level sets are ellipses.  The 
green one shown corresponds to three standard deviations, i.e. approximately 99.7% of the probability is inside it. 



Combining Estimates 

Casualty Actuarial Society E-Forum, Fall 2014 10 

Consider the following example: the company writes three lines of business, A, B, and C. You 

have estimated the outstanding losses for these three lines of business and selected ultimate losses 

for each.  Your estimated outstanding losses along with some estimated ranges are: 

 

Line of Business  Expected Losses  25th‐percentile Losses  75th‐percentile Losses 

A  100  90  110 

B  225  150  300 

C  350  200  500 

 

Further suppose that we believe that these estimates of the unpaid losses for lines A and B are 

50% correlated, for lines B and C are 60% correlated and for lines A and C are 50% correlated. 

Notice that we have selected our range of estimates for each line of business to a symmetric 

confidence interval (best estimate is in the center).  This is because we are going to represent all 

three lines by a multi-normal random variable with mean vector,  , and variance-covariance matrix, 

 . 

First, we select the marginal distribution for line A.  It is going to be normal with mean = 100 

(the expected value) and some standard deviation, A .   We know that the 25th-percentile is 90, 

which is 10 less than the mean, so using the standard normal table we conclude that A must be 

14.82.  This technique is just the familiar method-of-moments. 

Similarly, for line B we obtain mean = 225 and B = 111.2, and for line C, mean = 350 and C  

= 222.4. 

Since the expected value of a sum is the sum of the expected values, the mean for our total will 

be 675. 

To create the variance-covariance matrix, we start with the correlation matrix and multiply it on 

both the right and the left by a diagonal matrix with the respective standard deviations down the 

diagonal. 

The correlation matrix:    

1 0.5 0.5
0.5 1 0.6
0.5 0.6 1
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The variance-covariance matrix: 

0 0 1 0 0
0 0 1 0 0
0 0 1 0 0

A BA CA A

B AB CB B

C AC BC C

   
   

   

   
        
   
   

  

 

The variance-covariance matrix for our example: 

14.82 0 0 1 0.5 0.5 14.82 0 0
0 111.2 0 0.5 1 0.6 0 111.2 0
0 0 222.4 0.5 0.6 1 0 0 222.

219.6 824.0 1,648.0
824.0 12,365.4 14,838.5

4 1,648.0 14,838.5 49,461.8

     
            
     
     

 

The correlation matrix is easier to interpret than the variance-covariance matrix.  One reason for 

this is that the correlation matrix is dimensionless, meaning that it has no units, whereas the 

variance-covariance matrix has units, in this case square dollars.  It is generally easier to work with 

dimensionless quantities when possible. 

 

Line of 
Business 

Expected 
losses 

25th‐percentile 
losses 

75th‐percentile 
losses 

St. Dev. (Est.)  Estimated CV 

A  100  90  110  14.8  0.148 

B  225  150  300  111.2  0.494 

C  350  200  500  222.4  0.635 

Naïve Total  675  440  910  348.4  0.516 

With 
Covariance 
Adjustment  

675  465.3  884.7  310.9  0.461 

 

The range for the “naïve total” is obtained by summing the endpoints of the intervals for each 

line of business.  This corresponds to comonotonicity8, which in the case of normal random 

variables means 100% correlation.  See, for example, [S]. 

The last line labelled “with covariance adjustment” shows the 25th- to 75th-percentiles for the sum 

using the given correlations.  The term covariance adjustment is taken from the US Statutory Risk 

Based Capital (RBC) calculation. 

This calculation is easily reproduced using only Lines A, B, and C in the accompanying Excel 

spreadsheet, the use of which is described in detail later in this paper. 

                                                            
8 Incidentally, the copula corresponding to this is the upper Fréchet–Hoeffding bound. 
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3.3 Why Normal Distributions? 

Normal distributions are not the only distributions with the property that they are closed under 

addition9.  Gamma distributions and many other families of distribution also have this property, at 

least when the summands are independent and possibly with some restrictions on the parameters.  

We choose to use normal distributions to approximate the individual distributions that we are going 

to combine because: 

 Many naturally arising estimators have large-sample normal distributions.  In 

particular, large-sample bootstrap estimators are asymptotically normal. 

 The Central Limit Theorem suggests that averages (and hence sums) of independent 

observations will become normally distributed when the sample sizes get large. 

 We can easily incorporate correlation and interpret it. 

 It tends to produce results that seem reasonable. 

3.3.1 Considerations in Selecting Correlations 

Correlations are related to the 2R  statistic that comes from performing a simple regression of 

one of the two variables on the other.  This statistic gives the proportion of the variation in the 

response variable that is explained by the explanatory variable.  The square root of 2R  is an 

estimator for the correlation between the two variables.  So, an 2R of 49%, which means that about 

half of the variation on one variable is explained by the other, corresponds to an estimated 

correlation of 0.70.  Higher 2R values correspond to even larger correlations. 

Correlations can be estimated from historic data, if available, or they can be selected 

judgmentally.  Some caution should be exercised when using historic data, as common estimation 

methods can severely underestimate correlations, especially when the correlation is large.  The 

choice of a value for the correlation coefficient can be influenced by how the result is to be used.  If 

the goal is to obtain a central estimate, correlations based on historic levels may be adequate.  On 

the other hand, if the goal is to obtain estimates in the tails, higher correlation selections may be 

justified, because correlations tend to be higher in the tails--when it rains, it pours. 

 

4. An Example 

The accompanying Excel spreadsheet illustrates how this technique can be used.  The 

spreadsheet accepts up to eight lines-of-business and combines them into a single total.  The user 

                                                            
9 A family of distributions is said to be “closed under addition” if, whenever two members of the family are added 
together, the resulting sum is in the same family, but possibly with different parameters. 
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gives two points on a normal curve for each line-of-business.  The user also specifies a correlation 

matrix for the various lines-of-business. 

The reserve being estimated is outstanding losses.  This purely hypothetical example uses five 

lines.  Lines A, B, and C are taken from the above example10. Line D is a large loss, which the claim 

handler estimates will settle for $250 million, although there is a chance that it could realistically be 

as little as $150 million or as high as $400 million. Selecting the 20th-percentile to be $150 million 

and the 90th-percentile to be $400 million produces an expected loss close to $250 million; this is 

shown on the Output Page.  Tweaking the 90th-percentile to be the 89.67th-percentile trues up the 

expected loss to be $250 million.  Line E represents the unpaid losses from a recent catastrophe.  

They are currently estimated to be $450 million, but are expected to grow to $500 million.  There is 

a small chance that the ultimate losses will turn out to be much worse--we selected a 95th-percentile 

loss of $1,155 million.  We have chosen to enter $500 million as the 50th-percentile (which is the 

mean for symmetric distributions, such as the normal distribution.)  The spreadsheet uses the 

method of percentile matching (see, for example, [KPW]) and a univariate normal is determined by 

two parameters (say, the mean and the standard deviation), so we can specify two percentiles for 

each line.  

For the correlations among Lines A, B, and C, we will use the correlations we used above.  We 

believe that Line D will act less like Line A or B than Line C, so we select 25% for the first two and 

50% for the third correlation.  Finally, we feel that an increase in Line E would come from a general 

adverse change in insurance loss reserves in general (less friendly courts, unexpected inflation, etc.), 

so we select 50% for the correlation with each of Lines A, B, C, and D. 

The resulting correlation matrix is positive definite, so there is a multi-normal distribution that 

has our selected correlation matrix and that has our modelled losses for our lines of business as its 

marginals.  The sum of our five lines of business has a normal distribution with mean and standard 

deviation computed by the spreadsheet.  It is now an easy matter to select the mean and the two 

specified percentiles.  These are shown on the Output Page along with the ranges corresponding to 

no correlation and comonotonicity (“100% correlation”). 

The spreadsheet will calculate a value for any given percentile; however, it is designed for 

estimates somewhat close to the center of the distribution.  Solvency II calls for calculations at 

specified percentiles such as the 99.5th-percentile.  Caution should be exercised in estimating such 

high percentiles using these methods. 

 

                                                            
10 To reproduce the earlier example, simply set the Line D and Line E losses at the 25th- and 75th-percentiles to zero. 
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5. Concluding Remarks 

Estimates for a given quantity often are obtained by combining other estimates.  In the case of 

multiple estimates for the given quantity, we can combine them and obtain an estimate with more 

precision than any of the individual estimates.  On the other hand, if our estimate is for a sum and 

we have estimates for the summands, we cannot hope to obtain (nominal) precision better than the 

worst of our summands, and in fact we cannot even do that well.  Often, however, it is possible to 

improve the precision in a relative sense, using a measure such as the coefficient of variation. 

Patel and Raws’ simulation work showed that the choice of distribution did not matter very 

much, but they had to assume independence.  We give up the choice of distribution, always selecting 

a normal distribution, but in exchange we recapture the ability to select the correlation structure.  

Since, in many cases, independence cannot reasonably be assumed, this is a real advantage. 
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