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Restating the National Highway Transportation Safety 
Administration’s National Motor Vehicle Crash Causation 

Survey for Automated Vehicles 

Casualty Actuarial Society Automated Vehicles Task Force 

EXECUTIVE SUMMARY 

The National Highway Transportation Safety Administration (NHTSA) concluded its National 

Motor Vehicle Crash Causation Survey (NMVCCS) in 2008. The NMVCCS analyzed the events 

leading up to a motor vehicle crash to determine what was causing automobile accidents. This study, 

which found that 93% of accidents are caused by human error, is often referenced to justify and 

quantify automated vehicles’ accident reduction potential. However, this study was never intended 

to be applied to automated vehicles. 

Currently celebrating its 100th year, the Casualty Actuarial Society fulfills its mission to advance 

actuarial science through a singular focus on research and education for property/casualty actuarial 

practice. Among its 6,200 members are experts in property-casualty insurance, reinsurance, finance, 

risk management, and enterprise risk management. The Casualty Actuarial Society has created an 

Automated Vehicles Task Force (CAS AVTF) to research the technology’s risks and their 

implications for insurance and risk management. To this end, the Task Force has re-evaluated the 

NMVCCS in the context of an automated vehicle world. It found that 49% of accidents contain at 

least one limiting factor that could disable the technology or reduce its effectiveness. The safety of 

automated vehicles should not be determined by today’s standards; things that cause accidents today 

may or may not cause accidents in an automated vehicle era. Rather, things like the vehicle’s failure 

rate (after accounting for any fail-safes, infrastructure investments, and driver interactions) and 

unavoidable accidents (e.g., falling rocks) should be the gauge by which they should be measured. 

Safety metrics should also consider additional criteria that would not be part of today’s standards 

and safety concerns, as automation introduces additional risks to consider. 

This report details the CAS AVTF’s re-evaluation of the NMVCCS and notes areas for future 

research.   
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1. INTRODUCTION 

John Capp, director of electrical and control systems at General Motors R&D recently stated, 

“Someone has to get this story straight—that it’s going to take a long time before we see the true 

autonomous vehicle. There’s so much to do before we can tell a customer as he leaves the dealer’s 

lot, ‘Just close your eyes. It’s good to go.1’” The problem with Mr. Capp’s statement is that no clear 

safety benchmark has been or is being established. Company XYZ may conclude that their product 

is safe for consumers while Company ABC may believe more testing is required. This may be 

because Company XYZ has more advanced technology than ABC, has performed different tests, or 

has a different safety standard. If the technology is safe, a delay in its implementation can result in 

accidents, including fatal ones, which could have been avoided with the technology. If it’s unsafe, its 

introduction not only puts lives at risk, it also risks delaying future technological advancements.  

The absence of any clearly established safety benchmark has led interested parties to rely on the 

National Highway Transportation Safety Administration (NHTSA) National Motor Vehicle Crash 

Causation Survey’s (NMVCCS) conclusions. The NMVCCS found that 93% of accidents are caused 

by human error. Publications such as The New York Times and many of the witnesses testifying 

before the U.S. Senate and House have suggested that automated vehicles have the potential to 

reduce all of these accidents. However, the NMVCCS’s conclusions have no bearing on automated 

vehicles’ potential. The study analyzed the risks of today’s driving environment. A future of 

automated vehicles will look much different and involve different risks. As drivers rely more on the 

vehicle’s technology and less on themselves, the accident causation variables will change. An 

accurate baseline requires a new analysis that looks at these variables through a lens of automated 

vehicle performance.  

The Casualty Actuarial Society’s Automated Vehicles Task Force (CAS AVTF) has re-evaluated 

the NMVCCS data through just such a lens. The new benchmark illuminates and quantifies a broad 

array of risks that need to be overcome before the technology can reach its potential; however, this 

benchmark is merely the first step in the creation of a process that will ensure the product’s safety. 

The quantification of the risks allows stakeholders to identify and prioritize areas of concern. A 

more robust analysis also allows them to make more accurate cost-benefit decisions, thereby 

optimizing their investments. Ultimately, increasing the risks’ transparency also increases Company 

XYZ’s ability to prove the technology’s safety and benefits. In turn, this can inform decisions on 

how to support the development of a revolutionary product while balancing safety and innovation 

concerns.   

                                                 
1 http://www.nempa.org/events/2014/engineering-safer-drivers/  
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2. BACKGROUND AND OBJECTIVE 

For many people, getting into a motor vehicle is their greatest everyday risk. Each year, 

automobile accidents result in 50 million injuries and 1.2 million deaths worldwide. Automated 

vehicles have the potential to make our roads dramatically safer. However, as the technology reduces 

some risks, others may be increased and new risks may be introduced. The Casualty Actuarial 

Society has formed an Automated Vehicles Task Force to study these risks and identify 

opportunities for stakeholders and the insurance industry to improve the product.  

Automated Vehicle Background 

Advancements over the past decade have brought autonomous cars out of the realm of science 

fiction and onto our public roads. Google, Audi, and Continental have received licenses in Nevada 

to test their automated vehicles on public roadways. Volvo is conducting road tests in Sweden and 

Nissan is doing the same in Japan. Mercedes Benz has tested its technology in Germany. Great 

Britain will allow automated vehicles to be tested on public roads in January 2015.  

Regulators have tried to keep pace with the technological advancements. In the United States, 

California, Florida, Michigan, and Washington D.C. have passed bills regarding automated vehicle 

testing. The NHTSA has issued a preliminary policy statement on automated vehicles. As the 

technology advances, there will be further legislative and regulatory developments.  

National Motor Vehicle Crash Causation Survey 

 The U.S. Congress authorized the NHTSA to conduct a National Motor Vehicle Crash 

Causation Survey to understand the events leading up to a motor vehicle crash. In 2008, the 

NHTSA reported its findings to Congress. These findings were specific to the current, non-

autonomous transportation environment. There are a number of reasons why these conclusions are 

not applicable to automated vehicles.  

First, the NHTSA did not collect information on all accidents. Minor accidents and accidents 

occurring between 12:00 a.m. and 5:59 a.m. were not analyzed; care needs to be taken when 

extrapolating the results to a set of accidents that were not analyzed. Second, automobiles have 

undergone a number of changes since the evaluation period. Approximately 40% of vehicles on 

today’s roads have electronic stability control, up from 10% in 2005 when the study began. Forward 

collision avoidance systems, like Volvo’s autonomous braking system City Safe, have become much 

more prevalent in recent years. Third, the study left out variables important to determining the 

success of automated vehicles. More specifically, the location was not tracked in the dataset; 

therefore, we cannot develop as granular or as accurate a baseline as will be required to make actual 

cost-benefit decisions. For example, a countrywide estimate of snow’s impact on accidents is not 
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applicable to San Diego. Lastly, automated vehicles represent a fundamental change in 

transportation risk: one in which the driver depends on his car rather than himself. This requires a 

complete paradigm shift in the way the data is analyzed.  

Goal 

There is a need for a clear, accurate, and applicable baseline to estimate the technology’s potential 

benefits, and more importantly, what actions can help the technology reach its potential. The CAS 

AVTF has chosen to use the NMVCCS to establish this baseline for two reasons. First, the 

NMVCCS contains over 600 data elements from 5,471 accidents. This allows us to analyze a wide 

range of causation variables. Second, it allows us to demonstrate the impact from simply changing 

the study’s focus. Ultimately, it represents merely the first step on the path towards creating the 

optimal testing approach and risk management structure. 

3. SCOPE 

The NHTSA collected over 600 data elements on 6,950 crashes from January 1, 2005, through 

December 31, 2007. The Report to Congress used the data on the 5,471 crashes that occurred over 

the two-and-a-half year period, July 3, 2005, through December 31, 2007. The NHTSA collected 

information on accidents with the following characteristics: 

 The crash must have resulted in a harmful event associated with a vehicle in transport on 

a traffic way. 

 Emergency medical services must have been dispatched to the crash scene.  

 At least one of the first three crash-involved vehicles must be present at the crash scene 

when the NMVCCS researcher arrives.  

 The police must be present at the scene of the crash when the NMVCCS researcher 

arrives.  

 At least one of the first three vehicles involved in the crash must be a light passenger 

vehicle that was towed or will be towed due to damage.  

 A completed police accident report for this crash must be available. 

The Report to Congress further states: “To make the NMVCCS sample representative of all 

similar types of crashes for the whole of the United States each of the 5,471 investigated crashes has 

been assigned a certain weight based on the sample design used in this survey.” The recalculation of 

these weights falls outside the scope of this project.  Therefore, the report will show both the 

unweighted (observed) and weighted (extrapolated) frequencies.   
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The CAS AVTF also restricted its analysis to these accidents. Since this report is interested in 

quantifying potential risks to automated vehicles’ accident reduction, the Task Force focused on 

identifying instances in which the technology would be inoperable, disengaged, or involve a risky 

behavior that requires additional research. In order to determine whether the accident would be 

prevented, the Task Force asked two questions: would the technology have been operable and 

would the technology have been operated safely? Specifically, the following variables were identified 

as potential hurdles: 

Variable Dataset Description 
Traffic way ENV Used to determine when the technology would be disabled due to environmental 

conditions 
 Values of Roadway Immersed, Heavy Snow, Heavy Rain, and Dust Storm 

assumed to disable technology 
      
Weather ENV Used to determine when the technology would be disabled due to environmental 

conditions 
 Values of Snow, Rain, Sleet, Blowing Snow assumed to disable technology 

      
Vehicle 
Condition 

PCAEXT Used as a proxy for vehicle failures. If the vehicle or technology fails and the driver is not 
properly engaged, the accident could still occur. The frequency of errors is likely to 
increase as the vehicle shoulders more of the driving responsibility. 

   
      
Traffic 
Control 
Device 

TCD Tells us if a traffic control device (TCD) was present and operable at the accident.

 If the TCD was inoperable, the automated vehicle technology may not have 
been able to correctly interpret its environment to prevent the accident. 

      
Alcohol PCAEXT Used to determine if alcohol was present in any of the drivers in the accident 
      
Drug DRUGS Used to determine what other drugs were present in any of the drivers in the accident
      
Critical 
Event 

PCA NHTSA’s variable, identifying what they believed to be the critical reason for the accident

 Values of Sleeping, Heart Attack/Other Physical Impairment, External 
Distraction, Internal Distraction, and Inattention were identified as potential 
risks for automated vehicle use 

The new baseline is limited to the data elements collected in the NVMCCS. However, additional 

variables will be required to calculate the true baseline. A few of the variables that will be needed are: 

Location: As noted above, location is a key variable for establishing a reasonable cost-benefit 

analysis. It is likely that separate baselines will be needed for city driving, highway driving, and 

country driving. Cities with different environmental risks will also have different cost-benefit 

relationships to consider.  

Animal accidents: The majority of the 1.2 million annual animal hits occur in the Midwest. The 

dataset does not contain a variable detailed enough to break out the unavoidable animal hits from 

the avoidable ones. The lack of a location identifier also reduces the value of any observed variable. 
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Volvo is reportedly working on advancing its automated braking system to recognize and stop for 

deer, which may further reduce the risk. 

Other risks: The engineering and coding risks are obviously one of the largest hurdles that need 

to be overcome. The process risk involved in the tests—the risk that the tests differ from reality—

should also be quantified and adjusted for.  

Differences from NMVCCS 

The CAS AVTF’s accident level evaluation differs slightly from the NMVCCS for two reasons: 

 The data file used to produce the statistics in the Report to Congress was compiled at 

April 30, 2008. The final file available at the NMVCCS website is a later version 

(compiled on October 28, 2008) and is slightly different from the data file used for the 

report to Congress.  

 The CAS AVTF’s focus caused some accidents to be categorized differently. For 

example, if any vehicle in the accident had a pre-identified risk feature then the entire 

accident was segmented into that risk bucket.  

4. RESULTS 

The results have been divided into two sections, technological issues and behavioral issues. These 

groups of risks are then further segmented by the actual risk: 

 Technological issues: Weather, Vehicle Condition/Error, Inoperable Traffic Control 

Devices 

 Behavioral issues: Aggressive Driving/Driver Disables, Alcohol & Illicit drugs, Sleeping, 

Physical Issues/Heart Attack, Distraction 

4.1 Technological Issues 

Technological issues are ones where the technology may be inoperable or may inaccurately 

interpret the environment. Therefore, the technology’s presence would not have prevented these 

accidents. 

4.1a Weather 

Based on publicly available information at the time of this writing, automated vehicles are 

inoperable in inclement weather. Therefore, no accident could be prevented if it occurred in such 

weather, regardless of the crash’s actual cause. “Inoperable weather” is defined as snow, sleet, rain, 

or blowing snow as well as times when the road was immersed in water, heavy snow, heavy rain, or a 

dust storm.  
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Weather Unwtd Freq Wtd Freq  Unwtd Freq Wtd Freq

No weather issues 4,868 1,921,312 89.0% 87.8%

Inoperable weather 602 267,657 11.0% 12.2%

Grand Total 5,470 2,188,970  100% 100%

 

Accounting for weather in the analysis reduces the number of preventable accidents by over 

12%. However, the value to overcoming this hurdle varies dramatically depending where you live. 

For example, San Diego and San Francisco average less than 65 days of precipitation a year. 

However, Seattle averages approximately 150 days of precipitation a year.  

Automakers and technology companies may develop an in-vehicle solution to inclement weather, 

reducing the vehicles’ risk and increasing their benefits. In the meantime, a number of tests are being 

conducted that may offer alternative ways to overcome this hurdle. Volvo’s experiments with road 

magnets indicate that certain infrastructure investments might neutralize this risk. The University of 

Michigan is building a fake city in Ann Arbor to test automated vehicles. These tests may yield 

additional insights to help overcome the inclement weather issue.  

4.1b Vehicle Conditions 

NHTSA tracked if a vehicle error or deficiency occurred. For example, NHTSA noted if there 

was an issue with the braking system even if it was not the main cause of the crash. While some of 

these conditions may be easily overcome, others could be dramatically worse as the technology 

becomes more advanced and human involvement decreases. In a fully autonomous world, the driver 

is free to read, text, or even sleep. Currently, an engaged driver may be able to overcome a braking 

system error or a blown tire. However, in the automated vehicle world, the driver may not be 

sufficiently engaged to overcome such issues. These accidents will require additional research to 

ensure that the automated vehicle will be able to interpret the incident and make any necessary 

adjustments to avoid a crash. Rather than make any assumption about the unknown accidents, we 

will exclude all of the accidents where we do not know whether the technology could have 

prevented the accident.  

Vehicle Condition Present Unwtd Freq Wtd Freq Unwtd Freq Wtd Freq

Not Present 4,351 1,769,134 79.5% 80.8%

Present* 681 254,948 12.4% 11.6%*

Unknown if present 438 164,888 8.0% 7.5%

Grand Total* 5,470 2,188,970 100% 100%
*Removing the Unknowns from the subset decreases the total number of accidents from 5,470 to 5,032 and increases the percentage 
of accidents with a vehicle condition present to 12.6%.  
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4.1c Traffic Control Devices (TCD) 

For a small number of accidents, the traffic control device operating the intersection was not 

working properly. Automated vehicle technology communicates with the traffic control devices to 

determine the correct action. In these scenarios, it is unknown whether the technology will correctly 

interpret the inoperable TCD and respond correctly. 

 
Traffic Signal Unwtd Freq Wtd Freq  Unwtd Freq Wtd Freq
Not operating properly 22 7,933 0.4% 0.4%
Not present/Operating properly 5,447 2,180,736 99.6% 99.6%
Unknown 1 300 0.0% 0.0%

Grand Total 5,470 2,188,970  100% 100%

 

These numbers, though tiny, may underestimate the impact inoperable traffic control devices will 

have on automated vehicles. First, an “inoperable traffic control device” may be defined differently 

for an automated vehicle than for a human driver. Google’s automated vehicles use extremely 

detailed maps to navigate safely. If a TCD is not at the regulated height or is moved slightly, it may 

now be “inoperable” from a technological perspective while it works just fine for a human driver. 

Second, if humans do a better job of identifying and adjusting to inoperable TCDs, then NHTSA’s 

numbers will underweight these accidents in the future state.  

The University of Michigan’s study might also provide more insights into this risk. Maintaining 

the roadways and the maps might decrease the amount of technology the vehicles require while also 

increasing their safety.  

4.1d Summary of Technology Issues 

If automated vehicle technology cannot overcome the weather, vehicle errors, and inoperable 

traffic control devices, it will only be able to address 78% of the accidents on the roads. While 

human error accounts for an even greater part of these remaining crashes, it means that the upper 

bound is limited to 78% accident reduction and not the 93% that is often stated. The difference 

between a 78% accident reduction and a 93% accident reduction is 830,000 accidents or $45 billion, 

using the Eno Center for Transportation’s accident and cost estimates.2  

Note: the total does not match the sum of the pieces. This is because the same accident could 

have more than one disqualifying identifier on it. An accident that occurs in inoperable weather and 

has a vehicle issue present will be counted in each variable’s numbers, but, as it is a single accident, it 

will only be counted once when it is rolled up to “Total AV Inoperable Accidents.” 

                                                 
2 Eno Center assumes 5.5 million crashes per year with an average economic cost of $55K per crash. 
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Disabling Factor UnWtd Freq Wtd Freq UnWtd Freq Wtd Freq
Inoperable Weather 602 267,657 11.0% 12.2%
Vehicle Issue Present 681 254,948 12.4% 11.6%
TCD Not Operating Properly 22 7,933 0.4% 0.4%

AV Inoperable Accidents 1,183 466,269 21.6% 21.3%

All Accidents* 5,470 2,188,970 100% 100%
*Removing the accidents where Vehicle Issues and TCD Operability are unknown decreases the subset of accidents from 5,470 to 

5,031. It also decreases the UnWtd (unweighted) Frequency of Inoperable Weather accidents to 543 and TCDs to 20. AVs are 
inoperable in 1,183 of UnWtd accidents or 22.1% of Wtd accidents. 

4.2 Behavioral (Driver) Issues 

Simply because the technology works does not mean it will be used or used effectively. Seat belts 

have not only been proven to reduce the risk of severe to fatal crashes by up to 50%, their use is 

also required by law in most states. In spite of seat belts’ availability, safety, and legality, one in seven 

adults still refuses to buckle up. 

While it is impossible to perfectly predict how people will react to and use automated vehicles, it 

is possible to identify risky scenarios and develop policies to minimize that risk. For example, 

automated vehicles that do not speed may not only encourage their drivers to disengage the system 

but may also be a risk to other drivers on the road (e.g., Chicago’s highways, where the speed limit is 

55mph but the average non-congestion speed is typically closer to 70 mph-80 mph). It remains to be 

seen how this may be addressed in practice: for example, via “automated vehicle only” lanes, 

allowing automated vehicles to speed, or removing the driver from the loop entirely (e.g., Google’s 

new automated vehicle). Different solutions could be developed in different environments 

depending on the relative risks. For example, drivers may be less inclined to take control back from 

a law-abiding automated vehicle while in the city versus one that is on a highway. 

While Google’s approach appears to eliminate this risk by removing the driver from the equation, 

its solution does not prevent other automakers from producing a system that allows or requires the 

individual to maintain some control over the driving function. Using NHTSA’s NMVCCS, we can 

identify scenarios where the driver’s involvement may prevent the technology from eliminating the 

accident. 

4.2a Aggressive Driving 

With approximately 41 million people receiving speeding tickets each year, drivers regularly 

prioritize speed over safety. While a fleet of automated vehicles may create a more efficient 

transportation system, a law-abiding automated vehicle’s restrictions may encourage the driver to 

take over in situations in which speed is the main concern.  

The NMVCCS report breaks out accidents where aggressive driving was present and lists the 

reason for the aggressive driving. The reasons included the following: anger, frustration, always drive 
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this way, other, in a hurry/late, fleeing, and racing. Of these, it seems plausible that drivers who were 

in a hurry, fleeing, or racing would not engage an automated vehicle that follows the speed limit. 

Drivers who “always drive this way” are also problematic, as they could believe that they will drive 

better than the technology or that their driving will lead to a better result. If it seems unlikely that 

anyone will believe that, remember that 64% of Americans believe they are “excellent” or “very 

good” drivers. 

The 3.1% estimate below may be too conservative as some of the “other” aggressive driving 

actions could also lead a driver to disengage the system. Removing these 808 accidents from the 

subset slightly increases the estimate to 3.6%. While this may not seem like a large number, with 5.5 

million crashes occurring each year, it represents approximately 170,000-200,000 accidents and $9.3 

billion to $10.8 billion in economic costs, using the Eno Center’s estimates.  

Aggressive Driving Reason UnWtd Freq Wtd Freq UnWtd Freq Wtd Freq
Always drive this way 95 52,155 1.7% 2.4%
Racing 12 2,472 0.2% 0.1%
Fleeing 26 6,666 0.5% 0.3%
In a hurry 27 7,254 0.5% 0.3%
Total –  Driver Disables* 152 67,304 2.8% 3.1%

All Accidents 5,470 2,188,970     
*Note, the total does not equal the sum of the pieces as more than one aggressive driving may be given per accident. 

4.2b-f Driver Engagement Issues 

In the event the technology follows NHTSA’s levels of automation, from level 0 (no automation) 

to level 4 (fully autonomous car),3 the driver will remain an integral part of the equation throughout 

much of its development. The driver could still be an integral piece to the driving solution in a level 

4 vehicle if BMW’s or Mercedes Benz’s vision, which will always allow the individual take over the 

driving, is implemented. Therefore, having a sober and engaged driver who is able to take over 

control when needed remains an important piece to the accident reduction equation. The driver may 

not be able to perform this task if he has been drinking or was already distracted. 

  

                                                 
3 See Appendix A for a more detailed explanation of NHTSA’s levels of automation. 
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4.2b Alcohol 

Alcohol was found to be present in approximately 8% of all accidents. However, the risk 

increases dramatically at night, where it was present in approximately one out of five accidents. We 

have assumed that if alcohol wasn’t tested for (an unknown accident) then it wasn’t involved. 

Therefore, we group these accidents with the “no alcohol” accidents.  

Alcohol Present Unwtd Freq Wtd Freq Unwtd Wtd Freq

No/Unknown 5,115 2,016,577 93.5% 92.1%

Yes 355 172,393 6.5% 7.9%

Grand Total 5,470 2,188,970 100% 100%

Partially automated vehicles may decrease the risk of drunk drivers by transferring some of the 

driving responsibility from the impaired driver to the unimpaired system. However, it may also 

increase the risk in two key ways. First, it may increase the pass-off risk of a partially automated 

vehicle. An inebriated driver may not be as capable of taking over the driving task as a sober person. 

Second, it may increase the incidence of alcohol in the driver’s seat. An individual may be less likely 

to have a designated driver or call a cab if he believes he will not have to drive the automated 

vehicle. While this may decrease the accident frequency of each drinking and driving occurrence, it 

may expand the subset of inebriated drivers on the road.  

The chart below shows how much the presence of alcohol changes based on the time of day. The 

large discrepancy between alcohol presence in daytime accidents and nighttime accidents calls into 

question extrapolating our results to accidents occurring between 12:00 a.m. - 5:59 a.m., which are 

not included in the NMVCCS dataset, as noted above.  

Day/Time Alcohol present Unwtd Freq Wtd Freq Unwtd Wtd Freq
Daytime no/unknown 3,394 1,301,946 97% 97%
  Yes 95 44,723 3% 3%
Weekday Night* no/unknown 557 237,227 82% 79%
  Yes 120 61,253 18% 21%
Weekend Day no/unknown 1,059 426,213 90% 88%
  Yes 113 56,011 10% 12%
Weekend Night** no/unknown 105 51,191 80% 83%
  Yes 27 10,405 20% 17%
Grand Total   5,470 2,188,970 

*Weekday night: 6:30 p.m. – 11:59 p.m. 
**Weekend night: 9:00 p.m. – 11:59 p.m. 

4.2c Illicit drugs 

In addition to alcohol, NHTSA tracked if the driver had taken any other drugs. The types of 

drugs ranged from ones as innocuous as Lipitor to illegal drugs like cocaine. For a number of legal 

drugs, like Nyquil, it is recommended not to drive while taking them. We have broken out the illegal 

drugs from the drugs that may cause drowsiness to estimate a range of impacts.  
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Drug Use UnWtd Freq Wtd Freq UnWtd Freq Wtd Freq
Illegal 103 45,132 1.9% 2.1%
Drowsy 78 44,788 1.4% 2.0%
Drowsy or Illegal 181 89,920 3.3% 4.1%
Alcohol or Illegal* 431 205,920 7.9% 9.4%
Alcohol, Illegal or Drowsy* 502 241,596 9.2% 11.0%

All Accidents 5,470 2,188,970 100.0% 100.0%
*The total won’t equal the sum of the pieces as more than one drug may be present in each accident. 

The following drugs were defined to be “drowsy” and “illegal.”  

Drowsy Illegal 

Amphetamine Codeine Opiate Cocaine Marijuana   
Baclofen Morphine Oxycodone Crack cocaine PCP   
Barbiturates Nyquil Percocet Heroin     

4.2d Heart attack or other physical impairment of the ability to act 

A driver who is suffering a heart attack or other physical impairment is similarly unable to take 

control of a partially automated vehicle. Observing that 2% of accidents are caused when some sort 

of physical impairment, such as a heart attack, inhibits the driver’s ability to effectively control his 

vehicle may suggest some important risk management controls. Depending on the trip and the 

automated vehicle’s response, the technology could produce either a better or worse result for the 

car’s passenger. If the heart attack causes only a minor accident or forces the driver to pull off the 

road, having the driver in control may actually save his life. In these instances, the driver may get 

medical attention more quickly than if he were to continue all the way to his destination, assuming, 

of course, that his destination is not a hospital. 

On the other hand, an automated vehicle will likely provide better protection to the other drivers. 

Additionally, if the driver’s destination is close at hand, delivering the driver safely to his destination 

may allow for medical attention to be delivered in a much safer way than causing a minor accident 

or forcing the driver to pull over.  

Critical Reason Unwtd Freq Wtd Freq Unwtd Freq Wtd Freq

Heart attack or other physical impairment  138 49,868 2.5% 2.3%

Other 5,332 2,139,101 97.5% 97.7%

Grand Total 5,470 2,188,970 100% 100%

4.2e Sleeping 

A sleeping driver was the cause of almost 3% of the accidents studied. Disengaging the driver 

further may increase the frequency of this occurrence. Volvo’s Driver Alert system could be used to 

minimize this risk, but only if the driver is given enough time to become alert and fully engaged.  
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Critical Reason Unwtd Freq Wtd Freq  Unwtd Freq Wtd Freq
Sleeping, that is, actually asleep 159 62,974 2.9% 2.9%
Other 5,311 2,125,996 97.1% 97.1%
Grand Total 5,470 2,188,970  100% 100%

4.2f Driver distraction 

The ability to divert your attention away from the task of driving to something more interesting 

or productive is one of automated vehicles’ key attractions. However, it can also compound the 

driver inattention problem if the driver needs to become an active participant at random times 

through the vehicle’s trip. Almost 17% of all accidents are caused by distractions or driver 

inattention. Removing the times when alcohol or illicit drugs are involved decreases this to 15.3% of 

all accidents. For partially automated vehicles, where the driver is required to remain part of the 

driving loop, these are the accidents where a successful pass-off is paramount to the technology’s 

success.  

Critical reason Unwtd Wtd Unwtd Freq Wtd Freq
External distraction 235 75,917 4.3% 3.5%
Inattention 217 73,059 4.0% 3.3%
Internal distraction 477 216,460 8.7% 9.9%
Total 929 365,436 17.0% 16.7%
Total Excluding Alcohol and Drugs 866 334,314 15.8% 15.3%
Total 5,470 2,188,970 100% 100%

Excluding alcohol and drugs from the subset of distracted drivers allows us to focus on its 

prevalence among sober individuals. Over 15% of accidents are caused by distraction even though 

the driver is not under any influence of alcohol or drugs.  

4.2g Summary of Behavioral Issues 

Initial research into today’s technology supports the claim that continued technological 

advancements will reduce the impact of human error. The Highway Loss Data Institute (HLDI) 

found Volvo’s autonomous braking system, City Safe, to reduce the accident risk and insurance 

claims by 20%.  

However, there is a large difference between today’s technology, which supports the driver and 

leaves the driver in full control of the vehicle, and Level 3 and Level 4 automated vehicles, which 

shift the burden of driving and decision making from the driver to the vehicle. Part of automated 

vehicles’ potential value comes from their predictability. Vehicles are able to travel very closely 

together at high speeds, enabling them to increase highway capacity and fuel efficiency. However, 

the more involved the driver is, the less predictable the driving becomes. In our current 

environment, over 30% of accidents involve a behavioral characteristic that may cause the 

automated vehicle to be used incorrectly.  
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Disabling Factor UnWtd Freq Wtd Freq UnWtd Freq Wtd Freq
Driver disables* 152 67,304 2.8% 3.1%
Alcohol or Illicit Drugs 502 241,596 9.2% 11.0%
Heart Attack/Physical Impairment 138 49,868 2.5% 2.3%
Sleeping 159 62,974 2.9% 2.9%
Distraction 929 365,436 17.0% 16.7%

AV Usage Questioned** 1,742 709,153 31.8% 32.4%

All Accidents*** 5,470 2,188,970 100% 100%
* Driver is in a hurry/late, fleeing, racing, or “always drives aggressively” 
** The sum of the pieces won’t equal the total as an accident could involve many of the risk characteristics.  
***If we remove the accidents where the aggressive driving reason was unknown, the AV Usage Questioned Totals increase to 34.3% 
of accidents. 

4.3 Overall Results 

Contrary to statements such as those made in The New York Times, Forbes, The Economist, and even 

those made by professionals in front of the U.S. Senate and House, the NMVCCS’s results do not 

conclusively determine the number of accidents automated vehicles will eliminate. The NMVCCS 

data can, however, provide insight into the risks this technology faces and hurdles that must be 

overcome before it can reach its full safety potential.  

Restating the NVMCCS allows us to identify and quantify potential risks that could limit 

automated vehicles’ benefits. Based on the new benchmark we conclude that: 

 Technological advances are required to address 21.3% of accidents. 

 Some issues, like inclement weather risk, will need to be measured and addressed on a 

local level. 

 The driver remains a vital part of the accident-reduction equation.  

 Success is not only dependent on the technology’s operation but also on the 

circumstances surrounding its use. Driver behavioral issues may interfere with optimal 

implementation of the technology in over 30% of the accidents. 
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Category Disabling Factor UnWtd Freq Wtd Freq UnWtd Freq Wtd Freq 
      

Technology 
Issues 

Inoperable Weather 602 267,657 11.0% 12.2% 

Vehicle Issue Present 681 254,948 12.4% 11.6% 

Inoperable Traffic Control Device 22 7,933 0.4% 0.4% 

Total Technology Issues 1,183 466,269 21.6% 21.3% 
            

Behavioral 
(Driver) 
Issues 

Driver Disables 152 67,304 2.8% 3.1% 

Alcohol/Illicit Drugs 502 241,596 9.2% 11.0% 

Physical Impairment (heart attack) 138 49,868 2.5% 2.3% 

Sleeping 159 62,974 2.9% 2.9% 

Distraction 929 365,436 17.0% 16.7% 

Total Usage Issues 1,742 709,153 31.8% 32.4% 
            

  Total AV Issues 2,644 1,070,757 48.3% 48.9% 

  Total Accidents 5,470 2,188,970 100.0% 100.0% 

5. IMPLICATIONS FOR TESTING 

The new baseline indicates that a more robust, transparent, and collaborative effort is needed to 

optimize automated vehicles’ safety. The technology’s safety depends not only on its engineering 

and coding but also consumers’ use of it. Our work suggests two issues worthy of consideration 

with respect to test data collection. 

More comprehensive collection of real-world test data: Some states4 and the District of 

Columbia have already passed laws governing the testing of these vehicles on public roads. 

California’s Department of Motor Vehicles requires testers to report all instances when the 

automated vehicle technology was disengaged.5 In order to understand the technology’s risks, the 

entire set of miles driven must be analyzed. More disengagements do not necessarily equate to a 

faultier product if Company XYZ is performing more tests or more difficult tests than Company 

ABC.  

Limitations of simulator tests: Testing approaches that rely significantly on computer 

simulations involve a great deal of model risk, i.e., the risk that the test model does not accurately 

reflect reality. Over 30% of accidents involve a behavior risk that is very difficult to test in a 

simulator. An inebriated individual may react very differently in a simulator test than in real life. 

Testers are also unlikely to be in a hurry or race when using a computer simulation, while they may 

in real life. Removing responsibility from the driver altogether, as Google is doing, is one way to 

overcome this risk.  

                                                 
4 California, Florida, Michigan, and Nevada 
5 http://apps.dmv.ca.gov/about/lad/pdfs/auto_veh2/adopted_txt.pdf section 227.46 
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6. CONCLUSION 

Automated vehicles have the potential to transform our world, making transportation safer, 

cheaper, quicker, and greener. The technology could also transform transportation risk by shifting 

the driving responsibility and decision making from the individual to the technology. This will 

reduce or eliminate some risks while others will be increased or introduced.  

In order to properly assess the risk, accurate risk measures need to be established. While 

NHTSA’s NMVCCS found that human error is the main cause for over 90% of accidents using 

current technology, automated vehicles have a significantly different risk profile. Inclement weather, 

technological errors, and infrastructure issues can reduce the technology’s benefit. Risky driver 

behaviors may further deteriorate automated vehicles’ safety. Understanding and quantifying these 

risks will allow all stakeholders to make better decisions. 

The Casualty Actuarial Society’s Automated Vehicles Task Force believes the best way to balance 

the competing aims of safety, cost, and innovation is through robust, transparent testing and the 

application of statistical analysis appropriate to the data. Actuarial insights can support all 

stakeholders in making decisions to help the technology reach its potential and ensure it is brought 

to market as safely and efficiently as possible. 
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APPENDIX A—NHTSA’S LEVELS OF AUTOMATION6 

Level 0—No Automation 

The driver is in complete and sole control of the primary vehicle controls (brake, steering, 

throttle, and motive power) at all times, and is solely responsible for monitoring the roadway and for 

safe operation of all vehicle controls. Vehicles that have certain driver support/convenience systems 

but do not have control authority over steering, braking, or throttle would still be considered “level 

0” vehicles. Examples include systems that provide only warnings (e.g., forward collision warning, 

lane departure warning, blind spot monitoring) as well as systems providing automated secondary 

controls such as wipers, headlights, turn signals, hazard lights, etc. Although a vehicle with V2V 

warning technology alone would be at this level, that technology could significantly augment, and 

could be necessary to fully implement, many of the technologies described below, and is capable of 

providing warnings in several scenarios where sensors and cameras cannot (e.g., vehicles 

approaching each other at intersections).  

Level 1—Function-Specific Automation  

Automation at this level involves one or more specific control functions; if multiple functions are 

automated, they operate independently from each other. The driver has overall control, and is solely 

responsible for safe operation, but can choose to cede limited authority over a primary control (as in 

adaptive cruise control), the vehicle can automatically assume limited authority over a primary 

control (as in electronic stability control), or the automated system can provide added control to aid 

the driver in certain normal driving or crash-imminent situations (e.g., dynamic brake support in 

emergencies). The vehicle may have multiple capabilities combining individual driver support and 

crash avoidance technologies, but does not replace driver vigilance and does not assume driving 

responsibility from the driver. The vehicle’s automated system may assist or augment the driver in 

operating one of the primary controls—either steering or braking/throttle controls (but not both). 

As a result, there is no combination of vehicle control systems working in unison that enables the 

driver to be disengaged from physically operating the vehicle by having his or her hands off the 

steering wheel AND feet off the pedals at the same time. Examples of function-specific automation 

systems include cruise control, automatic braking, and lane keeping.  

Level 2—Combined Function Automation 

This level involves automation of at least two primary control functions designed to work in 

unison to relieve the driver of control of those functions. Vehicles at this level of automation can 

                                                 
6 http://www.nhtsa.gov/About+NHTSA/Press+Releases/U.S.+Department+of+Transportation+Releases+Policy+on
+Automated+Vehicle+Development  
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utilize shared authority when the driver cedes active primary control in certain limited driving 

situations. The driver is still responsible for monitoring the roadway and safe operation and is 

expected to be available for control at all times and on short notice. The system can relinquish 

control with no advance warning and the driver must be ready to control the vehicle safely. An 

example of combined functions enabling a Level 2 system is adaptive cruise control in combination 

with lane centering. The major distinction between Level 1 and Level 2 is that, at Level 2 in the 

specific operating conditions for which the system is designed, an automated operating mode is 

enabled such that the driver is disengaged from physically operating the vehicle by having his or her 

hands off the steering wheel AND foot off pedal at the same time.  

Level 3—Limited Self-Driving Automation 

Vehicles at this level of automation enable the driver to cede full control of all safety-critical 

functions under certain traffic or environmental conditions and in those conditions to rely heavily 

on the vehicle to monitor for changes in those conditions requiring transition back to driver control. 

The driver is expected to be available for occasional control, but with sufficiently comfortable 

transition time. The vehicle is designed to ensure safe operation during the automated driving mode. 

An example would be an automated or self-driving car that can determine when the system is no 

longer able to support automation, such as from an oncoming construction area, and then signals to 

the driver to reengage in the driving task, providing the driver with an appropriate amount of 

transition time to safely regain manual control. The major distinction between Level 2 and Level 3 is 

that at Level 3, the vehicle is designed so that the driver is not expected to constantly monitor the 

roadway while driving.  

Level 4—Full Self-Driving Automation 

The vehicle is designed to perform all safety-critical driving functions and monitor roadway 

conditions for an entire trip. Such a design anticipates that the driver will provide destination or 

navigation input, but is not expected to be available for control at any time during the trip. This 

includes both occupied and unoccupied vehicles. By design, safe operation rests solely on the 

automated vehicle system.  
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Tail Factor Convergence in Sherman’s Inverse Power 
Curve Loss Development Factor Model 

Jon Evans 
________________________________________________________________________ 
Abstract  

 
The infinite product of the age-to-age development factors in Sherman’s inverse power curve model is 
proven to converge to a finite number when the power parameter is less than -1, and alternatively to 
diverge to infinity when the power parameter is -1 or greater.  For the convergent parameter values, a 
simple formula is derived, in terms of any finite product of age-to-age factors, for the endpoints of an 
interval containing the limit of the infinite product.  These endpoints converge to the limit as the finite 
time cutoff point increases.  For any finite time cutoff, the product of age-to-age factors lies below the 
interval, and thus the lower endpoint of the interval is always a better estimate of the limit than the 
finite product itself.  Several numerical examples are included for illustration. 
 
Keywords. Tail Factor, Inverse Power Curve. 

             

1. BACKGROUND AND INTRODUCTION 

In 1984, Sherman [5] found that an inverse power curve of the form  bcta 1  fit 

empirical age-to-age loss development factors better than several other basic functional 

forms he tested.  Lowe and Mohrman in 1985 [3], expressed concern about the convergence 

of the product of the age-to-age factors.  Boor in 2006 [1, p. 373], and the CAS Tail Factor 

Working Party in 2013 [2, p. 52] noted that there has been no known closed form expression 

that approximates the tail generated by the inverse power curve.    

In practice, the age-to-age development factors produced by the curve are multiplied 

together out to some finite age cutoff, such as t = 80, to produce a cumulative development 

factor.  The impact of factors beyond that age to ultimate, or the tail factor beyond the 

cutoff, in this case t = 81…, is assumed to be negligible.  Alternatively, if the impact of the 

tail factor is not negligible, then some other modeling consideration must inform the 

selection of the cutoff time.   

The potential danger in the assumption of negligible tail factor impact is illustrated in 

Table 1.  Two different sets of parameters share the same initial age-to-age factor of 1.01 at  

t = 1 and the same cumulative factor of 1.30 from t = 1 to 100.  However, while the 

cumulative factor for Example 1, using power parameter b = –4.0, grows only a little past     

t = 100, Example 2, using b = –0.5, appears to zoom toward infinity in the tail. 
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Table 1:  Examples of Apparently Convergent and Divergent Tail Factors for 
the Inverse Power Curve Model 

 

 

 

 

 

 

 

 

 

 

This paper uses basic real analysis ([4] being a standard textbook reference) to prove that 

the infinite product of the age-to-age factors converges to a finite number when the power 

parameter b is less than -1, and diverges to +∞ when b ≥ -1.  Note, in this paper we refer to 

a sequence that increases without any upper bound as diverging to +∞, or having a limit of 

+∞.  Furthermore, when b < -1, for any finite product of the age-to-age factors up to a 

specific age n, there is a simple formula for an interval containing the limit of the infinite 

product.  As n increases, the interval becomes tighter and the endpoints each converge to the 

limit of the infinite product.  The lower endpoint of this interval is always a better estimate 

of the infinite product than the finite product of the age-to-age factors which is always less 

than the lower endpoint.   

It is worth noting again that tail divergence does not necessarily mean the model is 

invalid, but simply that any specific finite cutoff point should be otherwise justified.  For a 

convergent tail, either a cutoff point must still be justified by some other consideration or 

care must be taken that the tail factor past the cutoff is reasonably close to 1.  The interval 

Parameters Example 1 Example 2

a 545540.243359093 0.0150014750112457

b ‐4.0 ‐0.5

c 84.9422458022239 1.25044252421429

n Example 1 Example 2

1 1.010 1.010

10 1.085 1.065

100 1.300 1.300

1,000 1.337 2.482

10,000 1.338 19.293

100,000 1.338 1.27E+04

1,000,000 1.338 1.03E+13

10,000,000 1.338 1.54E+41

Cumulative Development Factors From 1 to n

Parameter Values
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estimate derived in this paper can help answer the latter question. 

The proof of convergence/divergence is laid out in Section 2.1, with the proof of several 

useful lemmas in Appendix A.  The interval estimate is derived in Section 2.2.  Numerical 

examples of the progressive convergence/divergence of the finite product and the interval 

estimate of the infinite product for several sets of parameters are shown in Section 2.3.    

 

2. CONVERGENCE THEOREM AND LIMIT ESTIMATION 

 

Following the notational conventions of the recent CAS working party [2], in the 

remainder of this paper, d, instead of t, is used for age or time. 

 

2.1 Statement and Proof of Primary Theorem 

 

First we will set up a definition for the finite product of the age-to-age factors in the inverse 

power curve model. 

Definition:      



n

d

b
n cdacbaF

1

1,,  where a > 0, b, and c ≥ 0 are real numbers and 

n is a positive integer.   

Note, this definition includes cases where d begins at a higher value than 1 as the c parameter 

can be increased to handle such cases.  It is also worth noting that   0 bcda , a key fact 

that will be used in subsequent derivations. 

Theorem 1  

(i) If b ≥ -1 then   


cbaFn
n

,,lim . 
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(ii) If b < -1 then     


cbaFcbaFn
n

,,,,lim exists.     

Proof: 

(i) For any sequence of numbers 0ix  where ni ,...,1  and 2n  the inequality 

  



n

i
i

n

i
i xx

11

11  holds according to Lemma A.3.  Applying this we have 

       





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cd

b
n

d

b
n

d

b
n dacdacdacbaF

111

111,, . 

If  b ≥ -1 then 





cn

cd

b

n
d

1

lim according to Lemma A.1, and consequently 

  


cbaFn
n

,,lim . 

(ii) By Lemma A.2,    xx 1log  for any 0x , so     log 1
b b

a d c a d c    .  

Summing over d gives 

        



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If b < -1 then 







 






cn

cd

b

n
daL
1

lim exists and is less than +∞ according to Lemma A.1.  Now 

note that   cbaFn ,,log  is an increasing sequence, because   11  bcda  implies that 

   01log  bcda , and is bounded by L. Consequently,  cbaFn
n

,,loglim


 exists and is 

less than +∞.  So    cbaFcbaFn
n

,,,,lim 


 exists and is less than +∞.   
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2.2  An Interval Estimate for the Infinite Product Limit 
 

For the convergent case of b < -1, it is possible to construct a useful interval estimate for the 

infinite product.   

Definition:  The tail upper bound factor is    














1
exp,,

1

b

cn
acbaU

b

n .   

Definition:  The tail lower bound factor is    
1

1
1,,

1







b

cn
acbaL

b

n .   

Theorem 2  

Let    cbaFcbaF n
n

,,lim,,


 .  If b < -1 then: 

(i)  1),,(lim 


cbaUn
n

. 

(ii)  1),,(lim 


cbaLn
n

. 

(iii)           cbaFcbaUcbaFcbaLcbaF nnnn ,,,,,,,,,,,  . 

Proof: 

 (i)  b + 1 < 0 implies that 
 

0
1

lim
1
















 b

cn
a

b

n
 and consequently  

 
1

1
explim

1
















 b

cn
a

b

n
.   
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(ii) b + 1 < 0 implies 
   

1
1

1
lim1

1

1
1lim

11






























 b

cn
a

b

cn
a

b

n

b

n
. 

(iii)       





1

1,,,,
nd

b
n cdacbaFcbaF .  Taking the logarithm of the tail factor and 

applying bounding techniques described in Lemmas A.1 and A.2 

      
1

1log
1

1 11 























  b

cn
adacdacda

b

nd cnd

bb

nd

b . 

Exponentiating produces     















 1

exp1
1

1 b

cn
acda

b

nd

b .  Consequently, 

),,(),,(),,( cbaFcbaUcbaF nn .   

Similarly, using techniques from Lemmas A.1 and A.3 produces 

      
1

1
1111

1

1 11 














  b

cn
adacdacda

b

nd cnd

bb

nd

b . 

Consequently, ),,(),,(),,( cbaFcbaLcbaF nn .    This completes the proof of Theorem 

2. 

The lower endpoint of the estimation interval is always a better estimate of the infinite 

product since   1,, cbaLn  and consequently      cbaFcbaLcbaF nnn ,,,,,,  .   

The tail bound factors are computationally simple even for large values of n and give a 

measure of the relative width of the estimation interval prior to doing the computationally 

intense calculation of the finite product.   For example, to achieve a certain target U for the 
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upper bound requires 
    b

a

Ub
cn








 


1

1

log1
.  A more relevant measure of 

relative error, but without any simple formula for n that the author is aware of, is the ratio of 

the tail upper bound factor to the tail lower bound factor 

        111

1

1
1

1
exp,,/,,


























b

cn
a

b

cn
acbaLcbaU

bb

nn . 

Example 1:  An upper bound factor target set at U = 1.01 for the parameter values a = 

545540,  b = -4.0, and  c = 84.9422  requires  178n .   However, by 29n   the ratio of the 

tail upper bound factor to the tail lower bound factor is about 1.01.  

2.3 More Numerical Examples 
 

Table 2 shows six different sets of parameters, each of which produces an age-to-age 

factor at d = 1 of 1.01 and a cumulative factor from d = 1 to 100 of 1.30.  The parameter 

sets are indexed by a set of values {-2.0, -1.5, -1.1, -1.0, -0.9, -0.6} for the power parameter b. 

For b = -1 the divergence happens very slowly, but for b = -1.1 the convergence happens 

remarkably slowly.  To achieve   01.1,, cbaUn for the b = -1.1 parameter set would require 

22107.2 n , although by 10103.5 n      01.1,,/,, cbaLcbaU nn , still an 

astronomically slow rate of convergence. 
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Table 2:  Examples of Finite Development Factor Products and Interval 
Estimates For Infinite Development Factor Products 

 

 

 

 

 

 

 

 

 

Parameters Example 3 Example 4 Example 5
a 12.1209748535112 1.07747300550919 0.174451676891596

b ‐2.0 ‐1.5 ‐1.1

c 33.815190439679 21.6431893821624 12.4522704340826

n Example 3 Example 4 Example 5
1 1.010    (1.352, 1.431) 1.010    (1.458, 1.589) 1.010    (2.359, 3.877)

10 1.083    (1.375, 1.428) 1.081    (1.488, 1.585) 1.078    (2.449, 3.868)

100 1.300    (1.417, 1.423) 1.300    (1.553, 1.581) 1.300    (2.713, 3.858)

1,000 1.406    (1.423, 1.423) 1.477    (1.576, 1.580) 1.610    (3.017, 3.856)

10,000 1.421    (1.423, 1.423) 1.546    (1.579, 1.580) 1.926    (3.263, 3.856)

100,000 1.423    (1.423, 1.423) 1.569    (1.580, 1.580) 2.221    (3.447, 3.856)

1,000,000 1.423    (1.423, 1.423) 1.576    (1.580, 1.580) 2.488    (3.578, 3.856)

10,000,000 1.423    (1.423, 1.423) 1.579    (1.580, 1.580) 2.723    (3.670, 3.856)

100,000,000 1.423    (1.423, 1.423) 1.580    (1.580, 1.580) 2.925    (3.733, 3.856)

1,000,000,000 1.423    (1.423, 1.423) 1.580    (1.580, 1.580) 3.096    (3.776, 3.856)

Parameters Example 6 Example 7 Example 8
a 0.112891979103701 0.0737384147594275 0.0219230164116958

b ‐1.0 ‐0.9 ‐0.6

c 10.2891979090266 8.20670480785112 2.69970572509898

n Example 6 Example 7 Example 8
1 1.010 1.010 1.010

10 1.077 1.075 1.069

100 1.300 1.300 1.300

1,000 1.668 1.744 2.185

10,000 2.161 2.550 8.118

100,000 2.803 4.119 219.782

1,000,000 3.635 7.534 8.72E+05

10,000,000 4.714 16.111 9.55E+14

100,000,000 6.113 41.946 4.86E+37

1,000,000,000 7.928 139.919 5.27E+94

Parameter Values

(Infinite Product Lower Bound, Infinite Product Upper Bound)

Parameter Values

Cumulative Development Factor Product

Cumulative Development Factor Product
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Appendix A - Lemmas 

 
Lemma A.1 
 
Let n be a positive integer and 0l .   

(i) If 1b  then 





nl

lk

b

n
klim .   

(ii) If 1b  then  





nl

lk

b

n
klim exists. 

Proof: 

It suffices to show convergence or divergence for 





nl

lk

b

n
k
1

lim  since bl is a finite number.   

For 1k and 0b , 1bk , and therefore 





nl

lk

b

n
k
1

lim . 

For 1k and 0b , bk is a strictly decreasing function of k, and therefore there is a 

sandwich inequality 

 







k

k

bb
k

k

b dttkdtt
1

1

    and consequently 









nl

l

b
nl

lk

b
nl

l

b dttkdtt
1

1

1

. 

Solving the integrals when 1b  
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     
11

11 11

1

11







 





 b

lnl
k

b

lnl bbnl

lk

b
bb

. 

For 1b , taking limits produces  

 
1

lim
1

1 1

1

1






 






 b

l
k

b

l bnl

lk

b

n

b

 

In this case, the upper bound of the inequality is a finite number and implies convergence to 

a finite number since the sequence of partial sums in the middle is non-decreasing. 

For 01  b , taking limits results in 





nl

lk

b

n
k
1

lim , since in this case the lower bound 

of the earlier inequality diverges 
   




 

 1

11
lim

11

b

lnl bb

n
. 

For the case 1b , integration of the earlier inequality leads to  







 










 



 l

nl
k

l

nl nl

lk

b log
1

1
log

1

. 

 

Once again taking limits leads to 





nl

lk

b

n
k
1

lim from the lower bound of the inequality 

diverging 










 1

1
loglim

l

nl
n

. 

Lemma A.2  

If x > 0, then   xx 1log . 
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Proof: 

If 1t  then 01/1 t , and consequently   01/1
1

1




dtt
x

. 

So, 0/
1

1

1

1

 


dttdt
xx

 and solving the integrals produces   01log  xx . 

Lemma A.3 

  



n

i
i

n

i
i xx

11

11 for any sequence of numbers 0ix ,  ni ,...,1 , and integer 2n . 

Proof: 

We proceed by induction. 

For 2n ,  since 021 xx , it follows that 212121 11 xxxxxx  . 

Assume the conclusion of the lemma is true for n where 2n .  We will show that the 

lemma is then true for n + 1. 

In general  

         












n

i
in

n

i
i

n

i
in

n

i
i xxxxxx

1
1

11
1

1

1

11111  

But   1
1

1 1 


  n

n

i
in xxx   so 

    











1

1
1

11
1

1

1111
n

i
in

n

i
i

n

i
in

n

i
i xxxxxx , 
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which establishes the lemma. 
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A Continuous Version of  Sherman’s Inverse Power 
Curve Model with Simple Cumulative Development 

Factor Formulas 

Jon Evans 

 
________________________________________________________________________ 

Abstract  
A continuous version of Sherman’s discrete inverse power curve model for loss development is defined.  
This continuous version, apparently unlike its discrete counterpart, has simple formulas for cumulative 
development factors, including tail factors.  The continuous version has the same tail convergence 
conditions and basic analytical properties as the discrete version.  Parameter fitting and numerical 
comparisons between the discrete and continuous model versions are explored.   
 
Keywords: Tail Factor, Inverse Power Curve. 

             

1. INTRODUCTION 

The inverse power curve model for loss development factors was introduced by Sherman 

in 1984 [6].  Several papers have commented on the lack of a closed form representation 

and/or tail convergence information [1], [2], and [4].  The conditions for tail factor 

convergence and estimates of the rate of tail factor convergence have been determined [3].  

However, simple or closed form formulas for finite and infinite products of the discrete 

incremental development factors still appear illusive. 

This paper will demonstrate that a continuous version of the inverse power curve model 

captures the relevant properties of the discrete model.  At the same time this continuous model 

leads to simple cumulative development factor, including tail factor, formulas.  Basic real 

analysis is used throughout this paper, as described in standard textbooks such as [5]. 

Section 2.1 defines the continuous version of the model.  Convergence conditions are 

proved in Section 2.2.  Several basic analytical properties are proven in Section 2.3.  Empirical 

fitting and a comparison with the discrete model is discussed in Section 2.4.  Further numerical 

comparisons are shown in Sections 2.5.  Section 3 contains concluding remarks.  Appendix A 

contains the proof of two lemmas and Theorem 2 from Section 2.3. 
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2. ANALYSIS AND RESULTS 

In the remainder of this paper t is used for age or time, whether discrete or continuous.   

2.1 Continuous Inverse Curve Model Definition 

The discrete version of the inverse power curve model can be defined in terms of a 

cumulative development factor  cbaFt ,,  from time 1 to t.   

 

Definition:  For real numbers a > 0, b, and c ≥ 0, 

(i) If t ≥ 2 is an integer, then     





1

1

1,,
t

k

b

t ckacbaF . 

(ii) If t = 1, then   1,,1 cbaF . 

 cbaFt ,,  obeys the finite difference equation 

       cbaFctacbaFcbaF t

b

tt ,,,,,,1  . 

If the boundary value of   1,,1 cbaF  is included then this equation, along with the 

previous parameter restrictions, is an equivalent definition of  cbaFt ,, . 

A corresponding continuous version of the inverse power curve model can similarly be 

defined in terms of a cumulative development factor  cbaF
t

,,*  from time 1 to t, but with 

much simpler closed form expressions.   

Definition:  For a > 0, b, c ≥ 0, and t ≥ 0  

(i)  
   






















b

catca
cbaF

bb

t
1

1
exp,,

11

*
 if 𝑏 ≠ −1 
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(ii)  
a

t
c

tc
cbaF 














1
,,*

 if 𝑏 = −1 

Using an analogous boundary value   1,,*

1 cbaF ,  cbaFt ,,*  is the solution to a 

differential equation in continuous time t , 

 
   cbaFcta

dt

cbadF

t

t b
,,

,,
*

*

 , 

that is analogous to the finite difference equation satisfied by the discrete model. 

2.2 Tail Convergence 

 

The tail of  cbaF
t

,,*
 converges when b < -1 and diverges when b ≥ -1, which are exactly 

the same as the conditions for convergence of  cbaFt ,,  as shown in [3].   

Theorem 1  

(i) If  𝑏 ≥ −1,    


cbaFt
t

,,lim *
 . 

(ii) If 𝑏 < −1,    
 






















 b

ca
cbaF

b

t
t 1

1
exp,,lim

1

*
.  

Proof: 

(i) If 𝑏 = −1, clearly 




 1
lim

c

tc

t
 and since 𝑎 > 0 by Lemma A.1  
















a

t c

tc

1
lim .  If 𝑏 > −1, then 𝑏 + 1 > 0,  so again by Lemma A.1

 







 b

tca
b

t 1
lim

1

 and since  xexp  is an increasing function of x, 
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   





















 b

catca
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(ii) If 𝑏 < −1, then 𝑏 + 1 < 0,  so by Lemma A.1 
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2.3 Some Basic Analytical Properties 

For convenience we will first set up notational definitions of the one period development 

factors,  cbaft ,,  for the discrete model and  cbaft ,,*  for the continuous model. 
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Lowe and Mohrman [4] listed several analytical properties for a curve of one period loss 

development factors to be “well-behaved”. 

 

Definition:  A curve of one period loss development factors, 𝑓(𝑡) for 𝑡 ≥ 0, is said to be 

well-behaved if it has all of the following properties: 
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(i) 𝑓(𝑡) ≥ 1 

(ii)   1lim 


tf
t

 

(iii) 𝑓′(𝑡) < 0  

(iv)   0'lim 
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tf
t

 

(v) 𝑓′′(𝑡) > 0  

(vi)   0''lim 
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tf
t

 

Theorem 2  

If 𝑏 < 0 then  cbaf t ,,  and  cbaft ,,*  are both well-behaved. 

See Appendix A for details of the proof. 
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2.4 Fitting to Empirical Data 

Table 1 includes an example from Sherman’s original paper [6] of the discrete model fit to 

empirical data.  Also shown are one period development factors from the continuous model, 

using the same parameter values and then using another set of parameter values refit for the 

continuous model itself.   The continuous model development factors using the same 

parameter values is fairly close to the discrete model.  When the parameters are refit the 

resulting development factors are very close to the discrete model. 

 

Table 1:  Comparison of Discrete and Continuous Models Fit to General 
Liability Data (Actual and discrete fit are from Exhibit 2 in Sherman’s original 
paper [6].  Time convention is shifted by -1 from the original paper.) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Parameters Discrete Fit Discrete Fit Continuous Fit

a 0.88614 0.88614 1.20154

b -1.7338 -1.7338 -1.8306

c 0 0 0

t Actual Discrete Model Continuous Model Continuous Model

1 1.839 1.886 1.618 1.884

2 1.279 1.266 1.205 1.262

3 1.185 1.132 1.108 1.131

4 1.077 1.080 1.068 1.080

5 1.039 1.054 1.048 1.055

6 1.033 1.040 1.035 1.040

7 1.029 1.030 1.027 1.031

8 1.030 1.024 1.022 1.024

9 1.019 1.020 1.018 1.020

10 1.014 1.016 1.015 1.016

11 1.016 1.014 1.013 1.014

12 1.013 1.012 1.011 1.012

13 1.012 1.010 1.010 1.010

14 1.008 1.009 1.009 1.009

Goodness of Fit

(R 2 ) 98.3% 97.8% 98.2%

Parameter Values

One Period Development Factors From t  to t+1
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Definition:  )(tf a
 will denote an empirical observation of a one period development factor 

from time t to t+1. 

The fits and goodness of fit (R2) numbers in Table 1 are determined using the squared error 

function 
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A simpler squared error function for the continuous model would be 
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This is still a fairly complicated function, likely not having a simple formulaic solution to 

minimize the parameters a, b, and c.  One of the few apparent advantages of the discrete 

model is a somewhat simpler error function.  It may be advantageous to use a numerical 

optimization program (like Solver in Excel) to first optimize a, b, and c for the discrete 

model.  Those values can then be used as a starting point, or initial values, for the optimizer 

to search for values optimal for the continuous model.  
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2.5 More Numerical Comparisons with Discrete Model 

 

Table 2 follows the basic layout of Table 1, except that the fitting targets a one period 

development factor of 1.01 from time 1 to 2 and a development factor of 1.30 from time 1 to 

101.  The b parameter runs through the set of values {-2.0, -1.5, -1.1, -1.0, -0.9, -0.6} in these 

examples.  Similar to what happened in Table 1, in Table 2 the continuous model is fairly close 

to the discrete model using the same parameter values and very close - identical up to 3 digits 

past the decimal in some examples - when the parameter values are refit. 
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Table 2:  Some Numerical Comparisons of Discrete and Continuous Models  

 
  Parameters Discrete Fit Discrete Fit Continuous Fit

a 12.121 12.121 12.1528

b -2.0 -2.0 -2.0

c 33.8152 33.8152 33.4513

t Discrete Model Continuous Model Continuous Model

2 1.010 1.010 1.010

11 1.083 1.081 1.083

101 1.300 1.295 1.300

1,001 1.406 1.400 1.406

10,001 1.421 1.415 1.421

100,001 1.423 1.416 1.423

1,000,001 1.423 1.416 1.423

10,000,001 1.423 1.416 1.423

100,000,001 1.423 1.416 1.423

1,000,000,001 1.423 1.416 1.423

Parameters Discrete Fit Discrete Fit Continuous Fit

a 1.07747 1.07747 1.07894

b -1.5 -1.5 -1.5

c 21.6432 21.6432 21.2437

t Discrete Model Continuous Model Continuous Model

2 1.010 1.010 1.010

11 1.081 1.079 1.081

101 1.300 1.295 1.300

1,001 1.477 1.470 1.477

10,001 1.546 1.539 1.546

100,001 1.569 1.562 1.569

1,000,001 1.576 1.569 1.577

10,000,001 1.579 1.572 1.579

100,000,001 1.580 1.572 1.580

1,000,000,001 1.580 1.573 1.580

Parameter Values

Cumulative Development Factors From 1 to t

Parameter Values

Cumulative Development Factors From 1 to t
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Table 2 (cont.):  Some Numerical Comparisons of Discrete and Continuous 
Models  
  

Parameters Discrete Fit Discrete Fit Continuous Fit

a 0.174452 0.174452 0.174523

b -1.1 -1.1 -1.1

c 12.4523 12.4523 12.0248

t Discrete Model Continuous Model Continuous Model

2 1.010 1.010 1.010

11 1.078 1.075 1.078

101 1.300 1.295 1.300

1,001 1.610 1.603 1.611

10,001 1.926 1.917 1.926

100,001 2.221 2.211 2.222

1,000,001 2.488 2.477 2.489

10,000,001 2.723 2.711 2.723

100,000,001 2.925 2.912 2.926

1,000,000,001 3.096 3.082 3.097

Parameters Discrete Fit Discrete Fit Continuous Fit

a 0.112892 0.112892 0.112913

b -1.0 -1.0 -1.0

c 10.2892 10.2892 9.85493

t Discrete Model Continuous Model Continuous Model

2 1.010 1.010 1.010

11 1.077 1.074 1.077

101 1.300 1.295 1.300

1,001 1.668 1.661 1.669

10,001 2.161 2.152 2.162

100,001 2.803 2.790 2.803

1,000,001 3.635 3.618 3.635

10,000,001 4.714 4.693 4.715

100,000,001 6.113 6.086 6.115

1,000,000,001 7.928 7.892 7.930

Parameter Values

Cumulative Development Factors From 1 to t

Parameter Values

Cumulative Development Factors From 1 to t
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Table 2 (cont.):  Some Numerical Comparisons of Discrete and Continuous 
Models  
  

Parameters Discrete Fit Discrete Fit Continuous Fit

a 0.0737384 0.0737384 0.0737367

b -0.9 -0.9 -0.9

c 8.2067 8.2067 7.7661

t Discrete Model Continuous Model Continuous Model

2 1.010 1.010 1.010

11 1.075 1.073 1.075

101 1.300 1.295 1.300

1,001 1.744 1.737 1.744

10,001 2.550 2.539 2.550

100,001 4.119 4.101 4.119

1,000,001 7.534 7.500 7.534

10,000,001 16.111 16.039 16.110

100,000,001 41.946 41.759 41.944

1,000,000,001 139.919 139.293 139.906

Parameters Discrete Fit Discrete Fit Continuous Fit

a 0.021923 0.021923 0.021913

b -0.6 -0.6 -0.6

c 2.69971 2.69971 2.24551

t Discrete Model Continuous Model Continuous Model

2 1.010 1.009 1.010

11 1.069 1.066 1.068

101 1.300 1.295 1.300

1,001 2.185 2.176 2.185

10,001 8.118 8.083 8.113

100,001 219.782 218.839 219.322

1,000,001 8.72E+05 8.69E+05 8.67E+05

10,000,001 9.55E+14 9.51E+14 9.40E+14

100,000,001 4.86E+37 4.84E+37 4.67E+37

1,000,000,001 5.27E+94 5.24E+94 4.76E+94

Parameter Values

Cumulative Development Factors From 1 to t

Parameter Values

Cumulative Development Factors From 1 to t
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3. CONCLUSIONS 

The continuous inverse power curve model presented in this paper has the same tail 

convergence conditions and “well-behaved” analytical properties as the discrete model.  

Unlike the discrete model it is known to have very simple closed formulas for cumulative 

development factors, including tail factors.  It tends to produce numerical values extremely 

close to the discrete value when fit to the same data.  Squared error functions for fitting the 

parameters of the continuous model tend to be more complex, but fits borrowed from the 

discrete model can be used as initial values to facilitate fitting the continuous model. 

Appendix A 
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An Empirical Investigation of  the Dependence between 
Catastrophe Events and the Performance of  Various Asset 

Classes 

 

Romel G. Salam 

______________________________________________________________________________ 

Abstract: For insurance and reinsurance companies primarily involved in the Catastrophe business, the 
dependence between losses from catastrophe events and the returns on their asset portfolio can significantly 
impact their risk capital calculation.  This dependence is also of relevance to capital market investors involved in 
Insurance Linked Securities (ILS) funds.  In this paper, we draw on more than 60 years of data to investigate the 
dependence between insured and economic losses from catastrophe events and the relative performance of 
several asset classes, commodities, and economic indices in the US.  We also look at the association between 
catastrophes and equities for selected catastrophe prone countries around the world.  For US equities, our 
investigation suggests two correlation effects: one corresponding to the lowest 80th percentile of catastrophe 
losses, and another corresponding to the highest 20th percentile. 

Keywords: Enterprise Risk Management, Economic Capital Model, Dependence, Correlations, Assets, 
Catastrophes, Insurance Linked Securities 
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1. INTRODUCTION 

Within the realm of dynamic financial analysis, there is broad recognition of both the importance 

and the challenges of adequately representing the dependence between risk variables.  Indeed, some 

have partially blamed the 2008 financial crisis on the failure of quantitative analysts across the 

financial industry to accurately model the dependence between complex financial instruments1.  

Those tasked with building capital models for P&C insurance and reinsurance entities need to 

account for the dependence between a number of risk variables across multiple dimensions.  There 

is some consensus around modeling the dependence of risk variables that fall within the same risk 

categories, which, for general insurance companies, are generally defined as insurance, market, credit, 

and operational.  For instance, many practitioners use normal correlation matrices to capture the 

dependence between the underwriting results for various classes of business (i.e. Marine, Property, 

Medical Malpractice), or between the performance of different asset classes (i.e. Equities, Mortgage 

Backed Securities, Treasuries).  There is much less agreement around how to represent the 

dependence between risk variables that fall in different risk categories.   

For insurance and reinsurance companies primarily involved in the Catastrophe business and 

capital market investors involved in Insurance Linked Securities (ILS) funds, the dependence 

between losses from catastrophe events and the returns on their asset portfolio are particularly 

relevant.  In this paper, we investigate the dependence between insured and economic losses from 

catastrophe events and the relative performance of several asset classes, commodities, and economic 

indices in the US.  We also investigate the dependence between economic losses from catastrophes 

and the performance of equities in Australia, Chile, Japan, the Philippines, and Thailand.  In section 

2, we provide a brief overview of our approach.  We present our findings and offer commentary in 

sections 3 and 4, respectively. We describe the data underlying this study and provide data sources in 

Appendix A.  In Appendix B, we describe the calculations of the P-values and provide the 

distributions from which they are derived.  Finally, we show selected graphs in Appendix C. 

2. OVERVIEW OF APPROACH 

For the purpose of this study, we expressed aggregate catastrophe losses incurred in a calendar 

year as a percentage of Gross Domestic Product (GDP) in the same year.  We believe this provides a 

more consistent measure of the relative importance of catastrophe losses across time but also across 

countries.  Graph 2.1 below shows annual insured catastrophe losses as a percentage of GDP for the 

                                                 
1 See Mackenzie, D. and Spears, T. (2012): “The Formula That Killed Wall Street”? (School of Social & Political Science, 
University of Edinburgh, Scotland) http://www.sps.ed.ac.uk/__data/assets/pdf_file/0003/84243/Gaussian14.pdf  
 

http://www.sps.ed.ac.uk/__data/assets/pdf_file/0003/84243/Gaussian14.pdf
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US from 1950 to 2013.  Throughout the remainder of this text, we will use the terms “catastrophe 

losses” and “catastrophe losses as a percentage of GDP” interchangeably.  Annual catastrophe 

losses are compared to the percentage change in various financial and economic indices over the 

same calendar year.  In the remainder of this text, we will sometimes use the term “return” when 

referring to the percentage change in the financial indices. 

Graph 2.1 
US Insured Catastrophe Losses as a % of GDP 

 
Our investigation relies on the following tools: 

a. Visual representations of the relationships through the use of percentile scatter plots – Each 
point on the plots represents the percentile value for each pair of observations within their 
respective sample.  These scatter plots represent the empirical copula of each pair of 
variables.   We reviewed these plots to search for trends and other patterns in the data.  For 
brevity, we refer to the percentile scatter plots simply as scatter plots in the remainder of this 
document.  Selected scatter plots are shown throughout the paper and in Appendix C. 

b. Rank correlation measurements – We used the Kendall’s Tau2 and the Kendall’s Partial Tau3 
statistics as non-parametric measures of rank correlation.  We chose non-parametric 
measures as we did not want to make any assumptions about the distributions underlying the 
variables we were studying.    As Graph 2.1 shows, US insured catastrophe losses show an 
upward trend over time even after being normalized for GDP.  Without controlling for time, 
some of the correlations we observe may simply be driven by common time dependencies 
coming across the data for both catastrophes and the financial and economic indices.  
Hence, we used the Kendall’s Partial Tau to provide a measure of correlation between any 
pair of variables that removes the effect of common time correlations.  We assess 
significance by calculating the P-values associated with the Kendall’s Tau and the Kendall’s 

                                                 
2 We reach virtually the same conclusions about the significance of the observed correlations using a Spearman Rho 
rather than a Kendall’s Tau statistic.  We prefer the latter statistic as it has a more intuitive interpretation than the 
Spearman Rho.   
3 Assume we have three variables, X, Y, and Z, the Kendall’s Partial Tau correlation coefficient for X and Y after 

removing the effect of Z is given by:       
          

      
       

 
                   represent the Kendall’s Tau correlation 

coefficients for the pairs XY, XZ, and YZ respectively.  See Gibbons, J.D. (1993, p. 49) Nonparametric measures of 
association (Sage University Paper series on Quantitative Applications in the Social Sciences, series no. 07-091).  Newbury 
Park, CA: Sage. 
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Partial Tau statistics.  The calculations of the P-values, including the underlying null 
hypotheses, are described in Appendix B. 

c. Difference in rank correlation measurements – We measured the differences between the 
Kendall’s Tau and the Kendall’s Partial Tau statistics wherever we had an indication that 
there was a shift in the correlation trends.   We assess significance by calculating the P-values 
associated with the differences in the Kendall’s Tau and Kendall’s Partial Tau statistics.  The 
calculations of the P-values are described in Appendix B.   

d. We determine the significance of the Kendall’s Tau, Kendall’s Partial Tau, and of the 
differences in the Kendall’s Tau and Kendall’s Partial Tau values throughout this paper 
based on the interpretation of P-values shown in Table 2.1 below.   This is perhaps the most 
subjective and also the most important table in this entire study.  Different interpretations of 
the P-values will likely lead to different conclusions about the statistical significance of the 
observed correlations. 

Table 2.1 
P-Value Interpretation 

One-Tailed 
P- value Ranges 

Reject Null 
Hypothesis? 

P-value ≤ .05 Yes 
P-value > .05 No 

3. FINDINGS  

We present our key findings below: 

a. We find two correlation trends between US annual catastrophe losses – either insured or 
economic – and annual changes in US equity prices.  We observe a zero or a weak positive 
correlation when catastrophe losses as a percentage of GDP fall in the first 80th percentile 
and a negative correlation when they are at or above the 80th percentile.  This is shown in 
Table 3.1.a below.  This finding is unchanged when we remove the effect of time on the 
Kendall’s Tau correlations as shown in Table 3.1.b.  Tables 3.11.a and 3.11.b show the P-
values for the differences in the Kendall’s Tau and Kendall’s Partial Tau values, respectively.  
We show the annual returns of the DJIA and DJCA against the highest 20th percentile of 
annual insured catastrophe losses in Table 3.2.  We also show the annual returns of the DJIA 
against the highest 20th percentile of economic losses due to catastrophe in Table 3.3.  Graph 
3.1 shows a scatter plot of the annual DJIA returns against annual insured catastrophe losses.  
Graphs 3.1.a and 3.1.b show separate scatter plots corresponding to the lowest 80th 
percentile and the highest 20th percentile of annual insured catastrophe losses.  We show the 
corresponding scatter plots for economic losses against the DJIA in Graphs 3.2, 3.2.a, and 
3.2.b.  
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Table 3.1.a 
Annual Catastrophe Losses against Annual Changes in Equities – US 

Catastrophe 
Losses 

Catastrophe 
Loss 

Percentile Index 

No. of 
Observations 

Kendall’s 
Tau 

One 
Tailed 
P-value 

Is 
Correlation 
Significant? 

Insured <.80 DJIA 51 17.3% 0.036 Yes 
Insured ≥.80 DJIA 13 -53.8% 0.005 Yes 
Insured <.80 DJCA 51 14.5% 0.066 No 
Insured ≥.80 DJCA 13 -41.0% 0.025 Yes 
Insured <.80 S&P 500 51 12.9% 0.090 No 
Insured ≥.80 S&P 500 13 -46.2% 0.014 Yes 

Economic <.80 DJIA 56 18.8% 0.020 Yes 
Economic ≥.80 DJIA 15 -48.6% 0.006 Yes 

 
Table 3.1.b 

Annual Catastrophe Losses against Annual Changes in Equities after Removing Effect of Time – US 

Catastrophe 
Losses 

Catastrophe 
Loss 

Percentile Index 

No. of 
Observations 

Kendall’s 
Partial 

Tau 

One 
Tailed 
P-value 

Is 
Correlation 
Significant? 

Insured <.80 DJIA 51 15.7% 0.054 No 
Insured ≥.80 DJIA 13 -56.2% 0.003 Yes 
Insured <.80 DJCA 51 13.9% 0.078 No 
Insured ≥.80 DJCA 13 -42.7% 0.021 Yes 
Insured <.80 S&P 500 51 12.8% 0.095 No 
Insured ≥.80 S&P 500 13 -48.7% 0.009 Yes 

Economic <.80 DJIA 56 18.2% 0.025 Yes 
Economic ≥.80 DJIA 15 -48.5% 0.006 Yes 
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Table 3.2 
Highest 20th Percentile of Annual Insured Catastrophe Losses against Annual Equity Returns – US 

Year 
Insured Cat 
as % of GDP 

Insured Cat(1) 
(USD MM) 

DJIA 
Return 

DJIA 
Rank (2) 

DJCA 
Return 

DJCA 
Rank (2) 

 

2010 0.096% 14,315 11.0% 32 13.1% 29  
1995 0.109% 8,325 33.5% 4 32.9% 3  
1998 0.111% 10,070 16.1% 24 10.1% 34  
2003 0.112% 12,885 25.3% 9 26.3% 7  
1989 0.135% 7,642 27.0% 6 25.3% 10  
2008 0.184% 27,045 -33.8% 64 -29.8% 64  
2012 0.215% 34,960 7.3% 35 5.0% 41  
2011 0.217% 33,640 5.5% 38 4.9% 42  
2004 0.224% 27,490 3.1% 43 13.2% 28  
1994 0.233% 17,010 2.1% 46 -7.7% 54  
2001 0.250% 26,549 -7.1% 53 -12.8% 57  
1992 0.351% 22,970 4.2% 42 4.1% 43  
2005 0.476% 62,301 -0.6% 47 7.1% 38  

(1) Source: PCS 
(2) Rank from best to worst out of 64 

 
Table 3.3 

Highest 20th Percentile of Annual Economic Losses due to Catastrophes against Annual Equity 
Returns – US 

Year 

Economic Losses 
Due to Cats 
as % of GDP 

Economic Losses 
Due to Cats(1) 
(USD MM) 

DJIA 
Return 

DJIA 
Rank (2)  

1995 0.220% 16,890 33.5% 5  
1989 0.238% 13,480 27.0% 8  
1993 0.268% 18,423 13.7% 33  
1951 0.296% 1,029 14.4% 31  
1964 0.305% 2,090 14.6% 30  
2011 0.331% 51,433 5.5% 42  
1938 0.350% 306 28.1% 6  
2008 0.392% 57,762 -33.8% 71  
1994 0.432% 31,554 2.1% 50  
1943 0.443% 900 13.8% 32  
2004 0.454% 55,692 3.1% 47  
1937 0.471% 438 -32.8% 70  
2012 0.483% 78,469 7.3% 39  
1992 0.534% 34,950 4.2% 46  
2005 1.215% 159,060 -0.6% 51  

(1) Source: EM-Dat; Years with no losses are excluded 
(2) Rank from best to worst out of 71 
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Graph 3.1 
Scatter Plot of Annual DJIA Returns against Insured Catastrophe Losses as a % of GDP 
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Graph 3.1.a 
Scatter Plot of Annual DJIA Returns against Insured Catastrophe Losses as a % of GDP for lowest 

80th Percentile of Annual Insured Catastrophes as a % of GDP 

 
Please note that the percentiles in the above graph have been recalculated based on the relative rankings of the subset of points that fall in the lowest 80th percentile of 
annual insured catastrophe losses as a % of GDP.  As such, these percentiles range from 0 to 1. 
 

Graph 3.1.b 
Scatter Plot of Annual DJIA Returns against Insured Catastrophe Losses as a % of GDP for highest 

20th Percentile of Annual Insured Catastrophes as a % of GDP 

 
Please note that the percentiles in the above graph have been recalculated based on the relative rankings of the subset of points that fall in the highest 20th percentile 
of annual insured catastrophe losses as a % of GDP.  As such, these percentiles range from 0 to 1. 
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Graph 3.2 
Scatter Plot of Annual DJIA Returns against Economic Losses due to Catastrophes as a % of GDP 
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Graph 3.2.a 
Scatter Plot of Annual DJIA Returns against Economic Losses due to Catastrophes as a % of GDP 

for lowest 80th Percentile of Economic Losses due to Catastrophes as a % of GDP 

 
Please note that the percentiles in the above graph have been recalculated based on the relative rankings of the subset of points that fall in the lowest 80th percentile of 
annual insured catastrophe losses as a % of GDP.  As such, these percentiles range from 0 to 1. 

 
Graph 3.2.b 

Scatter Plot of Annual DJIA Returns against Economic Losses due to Catastrophes as a % of GDP 
for highest 20th Percentile of Economic Losses due to Catastrophes as a % of GDP 

 
Please note that the percentiles in the above graph have been recalculated based on the relative rankings of the subset of points that fall in the highest 20th percentile 
of annual insured catastrophe losses as a % of GDP.  As such, these percentiles range from 0 to 1. 
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b. We find no significant correlation between catastrophe losses and changes in equity prices 
for Australia, Chile, Japan, and Thailand.  We did not find any significant shift in correlation 
based on the relative size of catastrophe losses.  This is shown in Table 3.4.a below.  This 
finding is unchanged when we remove the effect of time on the Kendall’s Tau correlations 
as shown in Table 3.4.b.  Please note that we only have economic losses for these countries.  
Also, the data set for these countries is much sparser compared to the US.  

Table 3.4.a 
Annual Catastrophe Losses against Annual Changes in Equities – Australia, Japan, Chile, and 

Thailand 

Catastrophe 
Losses Index 

No. of 
Observations 

Kendall’s 
Tau 

One 
Tailed 
P-value 

Is 
Correlation 
Significant? 

Economic Losses All Australia Shares 44 -11.2% 0.140 No 
Economic Losses Nikkei 225 38 1.3% 0.455 No 
Economic Losses IGPA 30 11.3% 0.191 No 
Economic Losses SET Index 22 4.8% 0.378 No 

 
Table 3.4.b 

Annual Catastrophe Losses against Annual Changes in Equities after Removing Effect of Time – 
Australia, Japan, Chile, and Thailand 

Catastrophe 
Losses Index 

No. of 
Observations 

Kendall’s 
Partial 

Tau 

One 
Tailed 
P-value 

Is 
Correlation 
Significant? 

Economic Losses All Australia Shares 44 -11.2% 0.142 No 
Economic Losses Nikkei 225 38 0.4% 0.488 No 
Economic Losses IGPA 30 3.3% 0.401 No 
Economic Losses SET Index 22 3.9% 0.383 No 

 
c. Similar to US equities, we find two correlation trends between annual catastrophe losses in 

the Philippines and annual changes in the main Philippines stock index, PSEi.  We observe a 
zero correlation when catastrophe losses as a percentage of GDP fall in the first 70th 
percentile and a negative correlation when they are at or above the 70th percentile.  This is 
shown in Table 3.5.a below.  This finding is unchanged when we remove the effect of time 
on the Kendall’s Tau correlations as shown in Table 3.5.b.  Tables 3.11.a and 3.11.b show 
the P-values for the differences in the Kendall’s Tau and Kendall’s Partial Tau values.  We 
show the annual returns of the PSEi index against the highest 30th percentile of annual 
economic losses due to catastrophes in Table 3.6.  Please note that the number of 
observations is quite sparse compared to the US data.  Graph 3.3 shows a scatter plot of the 
PSEi return against catastrophe losses.  Graphs 3.3.a and 3.3.b show separate scatter plots 
corresponding to the lowest 70th percentile and the highest 30th percentile of catastrophe 
losses.   

 
 
 
 
 
 

Table 3.5.a 
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Annual Catastrophe Losses against Annual Changes in Equities – Philippines 

Catastrophe 
Losses 

Catastrophe 
Loss 

Percentile Index 

No. of 
Observations 

Kendall’s 
Tau 

One 
Tailed 
P-value 

Is 
Correlation 
Significant? 

Economic Losses <.70 PSEi 18 3.3% 0.425 No 
Economic Losses ≥.70 PSEi 8 -64.3% 0.013 Yes 

 

Table 3.5.b 
Annual Catastrophe Losses against Annual Changes in Equities after Removing Effect of Time – 

Philippines 

Catastrophe 
Losses 

Catastrophe 
Loss 

Percentile Index 

No. of 
Observations 

Kendall’s 
Partial 

Tau 

One 
Tailed 
P-value 

Is 
Correlation 
Significant? 

Economic Losses <.70 PSEi 18 2.8% 0.439 No 
Economic Losses ≥.70 PSEi 8 -64.5% 0.011 Yes 

 
Table 3.6 

Highest 30th Percentile of Annual Catastrophe Losses against PSEi Returns – Philippines 

Year 

Economic Losses 
Due to Cats 
as % of GDP 

Economic Losses 
Due to Cats(1) 
(USD MM) 

PSEi 
Return 

PSEi 
Rank (2)  

1993 0.209% 456 152.0% 1  
2012 0.241% 855 33.6% 7  
2009 0.295% 876 62.9% 3  
1991 0.349% 699 76.7% 2  
1988 0.400% 673 2.8% 17  
1995 0.490% 1,305 -7.9% 19  
1990 0.588% 1,134 -41.2% 24  
2013 2.742% 10,413 1.3% 18  

(1) Source: EM-Dat; Years with no losses are excluded 
(2) Rank from best to worst out of 26 
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Graph 3.3 
Scatter Plot of Annual PSEi (Philippines Stock Index) Returns against Economic Losses due to 

Catastrophes as a % of GDP 
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Graph 3.3.a 

Scatter Plot of Annual PSEi (Philippines) Returns against Economic Losses due to 
Catastrophes as a % of GDP for lowest 70th Percentile of Economic Losses due to 

Catastrophes as a % of GDP 

 
Please note that the percentiles in the above graph have been recalculated based on the relative rankings of the subset of points that fall in the lowest 70th percentile of 
annual insured catastrophe losses as a % of GDP.  As such, these percentiles range from 0 to 1. 
 

Graph 3.3.b 

Scatter Plot of Annual PSEi (Philippines) Returns against Economic Losses due to 
Catastrophe Losses as a % of GDP for highest 30th Percentile of Economic Losses 

due to Catastrophes as a % of GDP 
 

 
Please note that the percentiles in the above graph have been recalculated based on the relative rankings of the subset of points that fall in the highest 30th percentile 
of annual insured catastrophe losses as a % of GDP.  As such, these percentiles range from 0 to 1. 
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d. We find no significant correlation between catastrophe losses and the returns on the 
Barclays Capital US bond indices shown below.  We did not find any significant shift in 
correlation based on the relative size of catastrophe losses.  This is shown in Table 3.7.a 
below.  This finding is unchanged when we remove the effect of time on the Kendall’s Tau 
correlations as shown in Table 3.7.b.  Please note that the data for the Barclays Capital 
indices only goes back to 1973. 

Table 3.7.a 
Annual Catastrophe Losses against Annual Returns on US Treasury, Agency, and Corporate Bonds 

Catastrophe 
Losses 

Barclays Capital 
Index 

No. of 
Observations 

Kendall’s 
Tau 

One 
Tailed 
P-value 

Is 
Correlation 
Significant? 

Insured Losses US Treasury 41 -9.8% 0.188 No 
Insured Losses US Intermediate Treasury  41 -16.6% 0.066 No 
Insured Losses US Long Treasury  41 3.9% 0.365 No 
Insured Losses US Credit 41 -6.6% 0.277 No 
Insured Losses US Intermediate Credit  41 -10.5% 0.172 No 
Insured Losses US Long Credit  41 -0.7% 0.479 No 

 
Table 3.7.b 

Annual Catastrophe Losses against Annual Returns on US Treasury, Agency, and Corporate Bonds 
after Removing Effect of Time 

Catastrophe 
Losses 

Barclays Capital 
Index 

No. of 
Observations 

Kendall’s 
Partial 

Tau 

One 
Tailed 
P-value 

Is 
Correlation 
Significant? 

Insured Losses US Treasury 41 -4.06% 0.355 No 
Insured Losses US Intermediate Treasury  41 -8.10% 0.229 No 
Insured Losses US Long Treasury  41 4.02% 0.357 No 
Insured Losses US Credit 41 -4.39% 0.344 No 
Insured Losses US Intermediate Credit  41 -6.03% 0.291 No 
Insured Losses US Long Credit  41 -1.08% 0.462 No 

 

e. We find no significant correlation between annual catastrophe losses and annual movements 
in crude oil prices as shown in Table 3.8.a below.  We did not find any significant shift in 
correlation based on the relative size of catastrophe losses. This finding is unchanged when 
we remove the effect of time on the Kendall’s Tau correlations as shown in Table 3.8.b. 

 
Table 3.8.a 

Annual Catastrophe Losses against Annual Changes in Crude Oil Price – US 

Catastrophe 
Losses Index 

No. of 
Observations 

Kendall’s 
Tau 

One 
Tailed 
P-value 

Is 
Correlation 
Significant? 

Insured Losses Crude Oil 63 9.9% 0.126 No 

 
 
 
 
 

Table 3.8.b 
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Annual Catastrophe Losses against Annual Changes in Crude Oil Price after Removing Effect of 
Time – US 

Catastrophe 
Losses Index 

No. of 
Observations 

Kendall’s 
Partial 

Tau 

One 
Tailed 
P-value 

Is 
Correlation 
Significant? 

Insured Losses Crude Oil 63 6.8% 0.222 No 

 
 

f. We find no significant correlation between annual catastrophe losses and annual movements 
in the US CPI as shown in Table 3.9.a below.  We did not find any significant shift in 
correlation based on the relative size of catastrophe losses. This finding is unchanged when 
we remove the effect of time on the Kendall’s Tau correlations as shown in Table 3.9.b. 
 

Table 3.9.a 
Annual Catastrophe Losses against Annual Changes in the US CPI 

Catastrophe 
Losses Index 

No. of 
Observations 

Kendall’s 
Tau 

One 
Tailed 
P-value 

Is 
Correlation 
Significant? 

Insured Losses CPI 64 -6.0% 0.242 No 
 

Table 3.9.b 
Annual Catastrophe Losses against Annual Changes in the US CPI after Removing Effect of Time 

Catastrophe 
Losses Index 

No. of 
Observations 

Kendall’s 
Partial 

Tau 

One 
Tailed 
P-value 

Is 
Correlation 
Significant? 

Insured Losses CPI 64 -8.6% 0.158 No 

 
g. We find evidence of a negative correlation between annual catastrophe losses and annual 

changes in both nominal and real GDP as shown in Table 3.10.a below.  We did not find any 
significant shift in correlation based on the relative size of catastrophe losses.  However, 
when we remove the effect of time, the correlation between catastrophe losses and nominal 
GDP gets weaker while that between catastrophe losses and real GDP becomes statistically 
insignificant as shown in Table 3.10.b. 
 

Table 3.10.a 

Annual Catastrophe Losses against Annual Changes in US GDP 

Catastrophe 
Losses Index 

No. of 
Observations 

Kendall’s 
Tau 

One 
Tailed 
P-value 

Is 
Correlation 
Significant? 

Insured Losses Nominal GDP 64 -25.6% 0.001 Yes 
Insured Losses Real GDP 64 -18.3% 0.017 Yes 

 
 
 
 
 

Table 3.10.b 
Annual Catastrophe Losses against Annual Changes in US GDP after Removing Effect of Time 
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Catastrophe 
Losses Index 

No. of 
Observations 

Kendall’s 
Partial 

Tau 

One 
Tailed 
P-value 

Is 
Correlation 
Significant? 

Insured Losses Nominal GDP 64 -15.0% 0.041 Yes 
Insured Losses Real GDP 64 -6.6% 0.226 No 

 
Table 3.11.a 

P-values for Difference in the Kendall’s Tau Values 

Catastrophe 
Losses Index 

Percentile 
/ # obs 

Kendall’s 
τ 

Percentile 
/ # obs 

Kendall’s 
τ 

Kendall’s 
Diff δ 

One 
Tailed 

P-
value 

Is Difference 
Significant? 

Insured DJIA <.80/51 17.3% ≥.80/13 -53.8% -71.2% - Yes 
Insured DJCA <.80/51 14.5% ≥.80/13 -41.0% -55.5% 0.007 Yes 

Insured 

S&P 
500 <.80/51 12.9% ≥.80/13 -46.2% -59.1% 0.004 Yes 

Economic DJIA <.80/56 18.8% ≥.80/15 -48.6% -67.4% - Yes 
Economic PSEi <.7/18 3.3% ≥.7/8 -64.3% -67.6% 0.021 Yes 

 
Table 3.11.b 

P-values for Difference in the Kendall’s Partial Tau Values 

Catastrophe 
Losses Index 

Percentile 
/ # obs 

Kendall’s 
Partial 

τ 

Percentile 
/ # obs 

Kendall’s 
Partial 

τ 

Kendall’s 
Partial 
Diff δ 

One 
Tailed 

P-
value 

Is Difference 
Significant? 

Insured DJIA <.80/51 15.7% ≥.80/13 -56.2% -71.9% 0.001 Yes 
Insured DJCA <.80/51 13.9% ≥.80/13 -42.7% -56.6% 0.007 Yes 

Insured 

S&P 
500 <.80/51 12.8% ≥.80/13 -48.7% -61.5% 0.004 Yes 

Economic DJIA <.80/56 18.2% ≥.80/15 -48.5% -66.7% 0.001 Yes 
Economic PSEi <.70/18 2.8% ≥.70/8 -64.5% -67.3% 0.023 Yes 

4. COMMENTARY 

There is a widely held view in the catastrophe insurance space that the capital markets are 

uncorrelated to catastrophe losses.  This seems to hold true for fixed income securities in the US but 

not for equities according to our investigation.  However, we can see how a casual evaluation of the 

data might tend to validate the conventional wisdom.  Had we measured the Kendall’s Tau and 

Kendall’s Partial Tau statistics for US equities without taking into account the shifts in correlation, 

we might come to the conclusion that equities are indeed uncorrelated to catastrophes as shown in 

Tables 4.1.a and 4.1.b below. 

 

 

 
Table 4.1.a 

Annual Catastrophe Losses against Annual Changes in Equities – US 
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Country 

Catastrophe 
Losses Index 

No. of 
Observations 

Kendall’s 
Tau 

One 
Tailed 
P-value 

Is 
Correlation 
Significant? 

US Insured Losses DJCA 64 4.9% 0.285 No 
US Insured Losses DJIA 64 6.8% 0.212 No 
US Insured Losses S&P 500 64 6.3% 0.229 No 
US Economic Losses DJIA 71 7.9% 0.164 No 

 
 

Table 4.1.b 
Annual Catastrophe Losses against Annual Changes in Equities after Removing Effect of Time – US 

Country 

Catastrophe 
Losses Index 

No. of 
Observations 

Kendall’s 
Partial 

Tau 

One 
Tailed 
P-value 

Is 
Correlation 
Significant? 

US Insured Losses DJCA 64 5.5% 0.265 No 
US Insured Losses DJIA 64 6.6% 0.226 No 
US Insured Losses S&P 500 64 6.9% 0.215 No 
US Economic Losses DJIA 71 8.0% 0.164 No 

 

When thinking about the relationship between US catastrophe losses and equities, say in terms of 

2014 dollars, it helps to split the annual insured losses into two ranges: one below $16.5B and one 

above that.  Similarly, annual economic losses can be split into two ranges: one below $38B and one 

above that.    These thresholds represent approximately .096% and .22% of projected 2014 GDP4 

and correspond to the 80th percentile of annual insured and economic catastrophe losses, 

respectively.  Below these thresholds, the correlation is either neutral or slightly positive.  Above, the 

correlation is negative indicating that equity returns tend to deteriorate as the size of catastrophe 

losses increases.  This deterioration entails weaker but not necessarily negative equity returns.  Also, 

just as importantly, the deterioration is only relative to the 13 to 15 data points that fall in the range 

of the highest 20th percentile of catastrophe losses.  For some institutions, most of the coverage they 

sell is only triggered for large enough catastrophe events so the correlation in the highest 20th 

percentile is really the most relevant. 

The Kendall’s Tau and Kendall’s Partial Tau values above the 80th percentile thresholds are 

approximately -50% as shown in Tables 3.1.a and 3.1.b.  These values imply that, once catastrophe 

losses are above these thresholds, equity returns are approximately three times more likely to 

deteriorate as the size of catastrophe losses increases than they are to improve5.   

                                                 
4 2014 GDP is estimated at $17.3T by applying a growth rate of 2.8% to the 2013 GDP.  This growth forecast is taken 
from the World Economic Outlook Update published on January 21, 2014 by the International Monetary Fund. 
http://www.imf.org/external/pubs/ft/weo/2014/update/01/pdf/0114.pdf 
5 The Kendall’s Tau coefficient τ is equal to 
      

      
                                                                                    

      

 
 

http://www.imf.org/external/pubs/ft/weo/2014/update/01/pdf/0114.pdf
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A discussion on how to model the dependence structure between assets and catastrophe losses is 

beyond the scope of this paper.  Whatever the chosen modeling approach, it needs to be 

complemented by robust sensitivity and scenario testing. 

There are many caveats and limitations to this study, some of which are discussed below:   

a. Our findings only apply to calendar year data and should not be extrapolated to longer or 
shorter time periods.  We did not necessarily observe the same degree of correlation when 
we studied some of the data for quarterly periods.  A presentation of our findings based on 
quarterly data is beyond the scope of this paper. 

b. This investigation neither demonstrates nor suggests any causation relationship between 
catastrophes and the various indices we evaluated even where the correlations are significant.   

c. The percentages of GDP discussed in the preceding paragraphs are purely a function of the 
PCS and EM-Dat data sets.  They should not be interpreted as some fixed, exact, or 
universal thresholds above which catastrophe losses and equity returns are negatively 
correlated. 

d. The losses in the observation period are primarily from natural catastrophes with 9/11 being 
the most notable exception.  We would not extrapolate the findings of this study to losses 
stemming from terrorist acts, especially those that involve nuclear, biological, chemical, or 
radioactive material.  

We hope this paper provides but the beginnings of a robust discussion around the subject of 
dependence between catastrophes and assets.  We have shared our data sources in Table A.1 of 
Appendix A hoping that others will take a critical look at the data in order to correct or augment our 
findings.  We would be interested in expanding the analysis to more countries and to a broader set 
of financial and economic indices for the five countries we reviewed outside of the US.  Finally, we 
would like to examine the sensitivity of our findings to the data on which we relied by looking into 
alternative data sources. 

  

                                                                                                                                                             
                                                  τ                                                

 
 

        
      

 
 

        
                                                                                      

                                      
         
       

                                         .  For a 

definition of the Kendall’s Tau coefficient, see Gibbons, J.D. (1993, p. 11) Nonparametric measures of association (Sage 
University Paper series on Quantitative Applications in the Social Sciences, series no. 07-091).  Newbury Park, CA: Sage. 
 



Empirical Investigation of Dependence between Catastrophe Events and Performance of Various Asset Classes 

Casualty Actuarial Society E-Forum, Fall 2014-Volume 1 20 

APPENDIX A 

DATA 

A.1. United States 

Insured Losses 

For insured losses in the United States, we relied on data from Verisk’s PCS and their definition 

of catastrophe events.  Losses are in actual dollars and not adjusted for price levels.  The PCS 

insured loss catalog goes back to 1950.  We understand that the threshold above which losses are 

captured in the PCS database has changed a few times since 1950.  We are comfortable that the 

changes in these thresholds do not create any significant distortion in our analysis. 

Economic Losses 

For economic losses in the US, we relied on data from the International Disaster Database (EM-

DAT) published by the Center for Research on the Epidemiology of Disasters of the Université 

Catholique de Louvain in Brussels, Belgium.  As with PCS’s insured losses, the economic losses are 

in nominal dollars and are not adjusted for inflation.  We only considered catastrophe events 

associated with windstorm, wildfire, earthquake, and flood.  The EM-DAT loss catalog goes back to 

1900 and is available on an annual aggregate basis.  However, there were a number of years for 

which the estimated losses from the EM-DAT catalog amount to zero.  We think that the 

prevalence of years with no losses could distort the statistics we use to measure correlation.  As 

such, we performed our analysis excluding years with no losses. 

GDP 

We used the historical GDP information available from the US Department of Commerce’s 

Bureau of Economic Analysis.  As noted above, we relied on the GDP in nominal (current) dollars 

unadjusted for price levels.  The annual GDP information goes back to 1929. 

Financial and Economic Indices 

The following indicators of financial and economic performance were used for the US: 

US Equities – We analyzed the percentage change in the value of the Dow Jones Composite 

Average (DJCA), the Dow Jones Industrial Average (DJIA), and the S&P 500 as a proxy for the 

performance of US equities.   We made no attempt to factor in dividend yields.  We obtained the 

value of the indices at the daily market close for both the DJCA and the DJIA from the FRED 

database, which start from 1/3/1949 and 5/26/1896 for the DJCA and DJIA, respectively.  The 

S&P 500 data was obtained from proprietary sources but is widely available across a number of 

different sources. 

US Treasury Bonds – We obtained the annual returns on the Barclays Capital US Treasury, US 
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Intermediate Treasury, and US Long Treasury indices.  The return information spans 41 years dating 

back to 1973. 

According to the website http://etfdb.com/, the Barclays Capital U.S. Treasury Index includes 

all publicly issued, U.S. Treasury securities that are rated investment grade, and have $250 million or 

more of outstanding face value.  The Barclays Capital US Intermediate Treasury and US Long 

Treasury Indices have a remaining maturity of between 1 and 10 years, and 10 or more years, 

respectively.   

US Corporate Bonds – We obtained the annual returns on the Barclays Capital US Credit, US Credit 
Intermediate, and US Credit Long indices.  The return information spans 41 years dating back to 
1973. 

According to the website http://etfdb.com/, the Barclays Capital US Credit and US Intermediate 

Credit indices measure the performance of investment grade corporate debt and agency bonds that 

are dollar denominated and have a remaining maturity of greater than one year, and between more 

than one year and ten years, respectively.  The Barclays Capital U.S. Long Credit Index measures the 

performance of the long term sector of the United States investment bond market, which as defined 

by the Long Credit Index includes investment grade corporate debt and sovereign, supranational, 

local authority and non-U.S. agency bonds that are dollar denominated and have a remaining 

maturity of greater than or equal to 10 years.   

Oil – We analyzed the changes in the spot price for West Texas Intermediate crude oil.  We 

obtained the information at quarterly intervals dating back to 1/1/1946 from the FRED database.  

This data series has been discontinued as of 7/1/2013. 

GDP Growth – We analyzed the changes in both nominal and Gross GDP.  The GDP 

information is obtained from the Bureau of Economic Analysis as explained above. 

CPI – We used the annual average CPI for all urban consumers as published by the Minneapolis 

Fed.  The data goes back to 1913. 

Observation Frequency 

We studied the correlation of data observed over annual periods.  We paired the annual aggregate 

catastrophe losses with changes in the index value taken over the same period.  For instance, annual 

losses incurred in 1969 are paired with the changes in asset prices observed from January 1 to 

December 31 of 1969.   

A.2. Australia, Chile, Japan, Thailand, and the Philippines 

Similar to the US data, we expressed annual economic losses incurred in a year as a percentage of 

Gross Domestic Product (GDP) in the same year.  For Chile, Japan, Thailand, and the Philippines, 

both economic loss and GDP figures are adjusted to 2005 US price levels.  For Australia, these 

http://etfdb.com/
http://etfdb.com/
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figures are adjusted to 2011 US price levels. 

Economic Losses 

For all five countries, we relied exclusively on the economic loss data available from the 

International Disaster Database (EM-DAT) mentioned above.  This loss information is originally 

provided in nominal US dollars.  Because the corresponding GDP information we used for these 

countries is adjusted to 2011 and 2005 price levels for Australia and the remaining countries, 

respectively, we brought the economic losses to the price levels corresponding to the GDP using US 

CPI data obtained from the US Bureau of Labor Statistics.  We only considered catastrophe events 

associated with windstorm, wildfire, earthquake, and flood for Chile and Japan. We also included 

industrial accidents for Australia, Thailand and the Philippines.  The EM-DAT loss catalog goes 

back to 1900 and is only available on an annual aggregate basis.  However, there were a number of 

years for which the estimated losses from the EM-DAT catalog amounted to zero.  For many of 

those years, it appears that there were significant catastrophes for which the economic loss data was 

not recorded or not available.  We think that the prevalence of years with no losses could distort the 

statistics we use to measure correlation.  As such, we performed our analysis excluding years with no 

losses.  Please note that the standards and sources used by EM-Dat to collect and measure economic 

losses due to catastrophes may vary significantly by country.  Also, the EM-Dat data may not match 

corresponding statistics collected by other local and international agencies. 

GDP 

We used the historical GDP information available from a database established by the Economic 

Research Division of the Federal Reserve Bank of St. Louis’s (FRED).  As noted above, this 

information is already expressed in 2011 USD for Australia and in 2005 USD for the remaining four 

countries.  The FRED GDP data only goes up to 2011 so we extrapolated the GDP figures for 2012 

and 2013 for each country by applying to the 2011 GDP figure the GDP growth rates 

corresponding to 2012 and 2013 obtained from various sources.  While this extrapolation is an 

oversimplification of the correct calculation of GDP in 2011 or 2005 US prices, we believe it is 

adequate for our purposes.  We also extrapolated the 2005 level GDP for years prior to 1950 for 

Japan and prior to 1951 for Chile by using the growth rates corresponding to these prior years 

observed from information available from a database established by the Maddison Project.   

Financial and Economic Indices 

We only looked at equity performance for Australia, Chile, Japan, Thailand, and The Philippines. 

Equities – We analyzed the price changes for all shares in Australia, for the Nikkei 225 (Japan), 

IGPA (Chile), SET (Thailand), and PSEi (Philippines) indices as a proxy for the performance of 

equities in those countries.  Similar to US equities, we made no attempt to factor in dividend yields.  
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The total share prices for all shares for Australia was obtained at annual periods from the FRED 

database along with the daily market close for the Nikkei 225 index.  The IGPA data was obtained 

from proprietary sources while the SET and PSEi historical data were obtained from Bloomberg. 

Summary of Data Sources 

Table A.1 below provides a comprehensive list of our data sources, most of which are available 

publicly.  We hope that others will use this data to rectify or augment our findings. 

Table A.1 
Data Source List 

 Data  Source Web Address 

Insured Catastrophe Losses – US  PCS - Verisk Subscription  
Economic Catastrophe Losses – Australia, 
Chile, Japan, Philippines, Thailand, US  

International 
Disaster Database 

http://www.emdat.be/database  

GDP – US US Department of 
Commerce 

http://www.bea.gov/  

GDP – Australia, Chile, Japan, Philippines, 
Thailand 

St Louis Fed https://research.stlouisfed.org/  

DJCA, DJIA, Nikkei 225, Australia Total 
Share Price Index 

St Louis Fed https://research.stlouisfed.org/  

S&P 500 Proprietary Subscription 
IGPA (Chile Stock Index) Proprietary Subscription 
SET: Index (Thailand), PSEi (Philippines) Bloomberg Subscription 
Barclays Capital US Treasury and US Credit 
Indices 

Barclays Capital Subscription 

West Texas Oil Spot Rate St Louis Fed https://research.stlouisfed.org/  
US CPI Minneapolis Fed https://www.minneapolisfed.org/  

 

  

http://www.emdat.be/database
http://www.bea.gov/
https://research.stlouisfed.org/
https://research.stlouisfed.org/
https://research.stlouisfed.org/
https://www.minneapolisfed.org/
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APPENDIX B 

CALCULATION OF P-VALUES 

B.1 Kendall’s Tau  

We used the Kendall’s Tau τ statistic to measure the correlations.  For the null hypothesis, we 

posit that catastrophe losses and the performance of the financial and economic indices are 

independent.  We used a simulation to generate the distributions, under the null hypothesis, of the 

Kendall’s Tau corresponding to each specific number of observations.  For instance, where we have 

64 years of observations, we calculated the Kendall’s Tau based on the simulation of 64 pairs of 

independent variables uniformly distributed on [0,1].  We derived the P-values from these 

distributions, which are summarized in Table B.1.a below for various observation counts.  

Alternatively, for a large enough number of observations, P-values can be determined by assuming 

the Kendall’s Tau to be approximately normally distributed under the null hypothesis with a mean of 

zero and variance given by 
       

       
. 

B.2 Kendall’s Partial Tau  

We used the Kendall’s Partial Tau τ statistic to measure the correlations after removing the effect 

of time.  For the null hypothesis, we posit that catastrophe losses and the performance of the 

financial and economic indices are independent after removing the effect of time.  We used a 

simulation to generate the distributions, under the null hypothesis, of the Kendall’s Partial Tau 

corresponding to each specific number of observations.  For instance, where we have 64 years of 

observations, we simulated 64 pairs, say X and Y, of independent variables uniformly distributed on 

[0,1] for each of the 64 years, say Z.  We calculated the Kendall’s Partial Tau based on the triplets 

(X,Y,Z) as described in the Overview of Approach in section 2 above6.  We derived the P-values 

from these distributions, which are summarized in Table B.1.b below for various observation 

counts.   

B.3 Difference in Kendall’s Tau and Kendall’s Partial Tau 

We calculate the differences δ in the Kendall’s Tau (Kendall’s Partial Tau) statistics for the two 

different ranges of percentile value under consideration.  For the null hypothesis, we posit that the 

Kendall’s Tau (Kendall’s Partial Tau) is zero across the entire range of percentile values.  We used a 

simulation to generate the distributions, under the null hypothesis, of the differences in the 

Kendall’s Tau (Kendall’s Partial Tau) statistics for the two different ranges of percentile values.  For 

instance, where we have 64 years of observations and want to compare the Kendall’s Tau (Kendall’s 

                                                 
6 The P-values as calculated assume X, Y, and Z are mutually independent.  Further work is needed to calculate the P-
values when the assumption of independence is violated, as is the case for some of the variables we reviewed.  
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Partial Tau) for the first 80th percentile to the Kendall’s Tau (Kendall’s Partial Tau) for the last 20th 

percentile, we calculated the difference in the Kendall’s Tau (Kendall’s Partial Tau) for the lowest 

51st observations ranked by size of catastrophe to the Kendall’s Tau (Kendall’s Partial Tau) for the 

highest 13 observations.  We derived the P-values from the distributions of δ obtained through the 

simulations.  Tables B.2.a and B.2.b show the distributions of δ for various observation counts.   

Table B.1.a 
Simulation-based Distribution of Kendall’s Tau Statistic under Null Hypothesis by Number of 

Observations 

Observations 8 13 15 18 22 30 38 

Mean (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) 
Std Dev 0.288 0.210 0.192 0.173 0.153 0.129 0.113 
1.00% (0.643) (0.487) (0.448) (0.399) (0.359) (0.301) (0.263) 
5.00% (0.500) (0.359) (0.314) (0.281) (0.255) (0.214) (0.186) 
10.00% (0.357) (0.282) (0.257) (0.229) (0.195) (0.168) (0.147) 
15.00% (0.286) (0.231) (0.200) (0.176) (0.160) (0.136) (0.118) 
20.00% (0.286) (0.179) (0.162) (0.150) (0.134) (0.108) (0.095) 
25.00% (0.214) (0.154) (0.124) (0.124) (0.108) (0.090) (0.078) 
30.00% (0.143) (0.103) (0.105) (0.098) (0.082) (0.067) (0.061) 
35.00% (0.143) (0.077) (0.067) (0.072) (0.056) (0.053) (0.044) 
40.00% (0.071) (0.051) (0.048) (0.046) (0.039) (0.034) (0.030) 
45.00% (0.071) (0.026) (0.029) (0.020) (0.022) (0.016) (0.016) 
50.00% - - (0.010) (0.007) (0.004) (0.002) (0.001) 
55.00% 0.071 0.026 0.029 0.020 0.022 0.016 0.013 
60.00% 0.071 0.051 0.048 0.046 0.039 0.034 0.030 
65.00% 0.143 0.077 0.067 0.072 0.056 0.048 0.044 
70.00% 0.143 0.103 0.105 0.085 0.082 0.067 0.058 
75.00% 0.214 0.154 0.124 0.111 0.100 0.085 0.075 
80.00% 0.214 0.179 0.162 0.150 0.126 0.108 0.095 
85.00% 0.286 0.231 0.200 0.176 0.160 0.136 0.118 
90.00% 0.357 0.282 0.238 0.216 0.195 0.163 0.144 
95.00% 0.500 0.333 0.314 0.281 0.255 0.209 0.186 
99.00% 0.643 0.487 0.448 0.399 0.351 0.297 0.260 
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Table B.1.a (continues) 
Simulation-based Distribution of Kendall’s Tau Statistic under Null Hypothesis by Number of 

Observations 

Observations 41 44 51 56 63 64 71 

Mean (0.001) (0.001) (0.000) (0.000) (0.000) (0.000) (0.000) 
Std Dev 0.109 0.104 0.097 0.092 0.087 0.086 0.081 
1.00% (0.254) (0.241) (0.225) (0.214) (0.200) (0.198) (0.189) 
5.00% (0.180) (0.173) (0.159) (0.152) (0.142) (0.142) (0.134) 
10.00% (0.139) (0.135) (0.125) (0.119) (0.111) (0.111) (0.105) 
15.00% (0.112) (0.108) (0.101) (0.096) (0.091) (0.089) (0.085) 
20.00% (0.093) (0.089) (0.082) (0.078) (0.073) (0.072) (0.069) 
25.00% (0.073) (0.072) (0.067) (0.062) (0.059) (0.058) (0.055) 
30.00% (0.059) (0.055) (0.051) (0.049) (0.046) (0.046) (0.043) 
35.00% (0.041) (0.040) (0.038) (0.035) (0.033) (0.034) (0.031) 
40.00% (0.029) (0.027) (0.024) (0.023) (0.022) (0.022) (0.021) 
45.00% (0.015) (0.013) (0.012) (0.012) (0.011) (0.011) (0.010) 
50.00% - - (0.001) - (0.001) - 0.000 
55.00% 0.012 0.013 0.012 0.012 0.011 0.011 0.010 
60.00% 0.027 0.025 0.024 0.023 0.022 0.022 0.021 
65.00% 0.041 0.040 0.037 0.035 0.033 0.033 0.031 
70.00% 0.056 0.055 0.051 0.048 0.046 0.045 0.042 
75.00% 0.073 0.070 0.065 0.062 0.058 0.058 0.054 
80.00% 0.090 0.087 0.081 0.077 0.072 0.071 0.068 
85.00% 0.112 0.108 0.100 0.095 0.090 0.088 0.084 
90.00% 0.139 0.133 0.123 0.118 0.111 0.109 0.104 
95.00% 0.178 0.171 0.159 0.151 0.142 0.141 0.133 
99.00% 0.251 0.241 0.225 0.214 0.201 0.199 0.190 
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Table B.1.b 
Simulation-based Distribution of Kendall’s Partial Tau Statistic under Null Hypothesis by Number 

of Observations 

Observations 8 13 15 18 22 30 38 

Mean (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) 
Std Dev 0.292 0.211 0.193 0.173 0.154 0.129 0.113 
1.00% (0.645) (0.485) (0.443) (0.399) (0.356) (0.299) (0.264) 
5.00% (0.486) (0.351) (0.318) (0.285) (0.254) (0.214) (0.187) 
10.00% (0.382) (0.275) (0.249) (0.223) (0.198) (0.166) (0.147) 
15.00% (0.309) (0.223) (0.202) (0.181) (0.161) (0.135) (0.119) 
20.00% (0.253) (0.180) (0.165) (0.147) (0.131) (0.110) (0.097) 
25.00% (0.207) (0.145) (0.133) (0.118) (0.105) (0.088) (0.077) 
30.00% (0.162) (0.113) (0.104) (0.092) (0.082) (0.069) (0.061) 
35.00% (0.125) (0.083) (0.076) (0.068) (0.061) (0.051) (0.045) 
40.00% (0.076) (0.055) (0.050) (0.045) (0.040) (0.034) (0.030) 
45.00% (0.042) (0.028) (0.025) (0.022) (0.020) (0.017) (0.015) 
50.00% - (0.000) (0.000) (0.001) (0.001) (0.001) (0.000) 
55.00% 0.042 0.026 0.025 0.021 0.019 0.016 0.014 
60.00% 0.075 0.053 0.049 0.044 0.039 0.032 0.028 
65.00% 0.125 0.082 0.075 0.067 0.059 0.049 0.044 
70.00% 0.162 0.113 0.102 0.090 0.081 0.067 0.059 
75.00% 0.207 0.146 0.132 0.117 0.104 0.087 0.077 
80.00% 0.253 0.180 0.164 0.146 0.130 0.109 0.095 
85.00% 0.309 0.221 0.200 0.180 0.160 0.134 0.117 
90.00% 0.380 0.272 0.247 0.222 0.196 0.165 0.145 
95.00% 0.486 0.346 0.316 0.286 0.252 0.211 0.185 
99.00% 0.645 0.481 0.442 0.398 0.351 0.294 0.261 
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Table B.1.b (continues) 
Simulation-based Distribution of Kendall’s Partial Tau Statistic under Null Hypothesis by Number 

of Observations 

Observations 41 44 51 56 63 64 71 

Mean (0.001) (0.001) (0.000) (0.000) (0.000) (0.000) (0.000) 
Std Dev 0.109 0.104 0.097 0.092 0.087 0.086 0.081 
1.00% (0.254) (0.241) (0.226) (0.214) (0.201) (0.199) (0.189) 
5.00% (0.180) (0.173) (0.160) (0.152) (0.143) (0.142) (0.134) 
10.00% (0.140) (0.134) (0.125) (0.119) (0.112) (0.111) (0.105) 
15.00% (0.113) (0.109) (0.101) (0.096) (0.090) (0.089) (0.085) 
20.00% (0.092) (0.088) (0.082) (0.078) (0.073) (0.072) (0.069) 
25.00% (0.074) (0.071) (0.066) (0.063) (0.058) (0.058) (0.055) 
30.00% (0.058) (0.055) (0.052) (0.049) (0.046) (0.045) (0.043) 
35.00% (0.043) (0.041) (0.038) (0.036) (0.034) (0.033) (0.031) 
40.00% (0.029) (0.027) (0.025) (0.024) (0.022) (0.022) (0.021) 
45.00% (0.014) (0.014) (0.012) (0.012) (0.011) (0.011) (0.010) 
50.00% (0.001) (0.000) (0.000) (0.000) (0.000) (0.000) 0.000 
55.00% 0.013 0.013 0.012 0.011 0.011 0.011 0.010 
60.00% 0.027 0.026 0.025 0.023 0.022 0.022 0.021 
65.00% 0.042 0.039 0.037 0.035 0.033 0.033 0.031 
70.00% 0.057 0.054 0.051 0.048 0.045 0.045 0.042 
75.00% 0.073 0.070 0.065 0.062 0.058 0.058 0.054 
80.00% 0.092 0.088 0.081 0.077 0.072 0.072 0.068 
85.00% 0.113 0.108 0.100 0.095 0.089 0.089 0.084 
90.00% 0.139 0.134 0.124 0.118 0.111 0.110 0.104 
95.00% 0.178 0.172 0.159 0.151 0.142 0.141 0.133 
99.00% 0.250 0.241 0.225 0.214 0.201 0.200 0.189 
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Table B.2.a 

Simulation-based Distribution of Difference δ between Kendall’s Tau Statistics under Null 
Hypothesis by Number of Observations 

Observation 
Splits 18/8 51/13 56/15 

Mean (0.001) 0.000 0.000 
Std Dev 0.336 0.231 0.213 
1.00%  (0.769) (0.530) (0.491) 
5.00%  (0.553) (0.381) (0.351) 
10.00%  (0.436) (0.298) (0.275) 
15.00%  (0.352) (0.242) (0.223) 
20.00%  (0.287) (0.197) (0.181) 
25.00%  (0.233) (0.158) (0.145) 
30.00%  (0.182) (0.123) (0.113) 
35.00%  (0.131) (0.090) (0.083) 
40.00%  (0.089) (0.059) (0.054) 
45.00%  (0.045) (0.029) (0.027) 
50.00%  (0.000) 0.000 0.000 
55.00%  0.040  0.030 0.028 
60.00%  0.085  0.059 0.055 
65.00%  0.130  0.090 0.084 
70.00%  0.176  0.123 0.113 
75.00%  0.228  0.158 0.145 
80.00%  0.286  0.197 0.181 
85.00%  0.352  0.242 0.223 
90.00%  0.435  0.299 0.275 
95.00%  0.553  0.381 0.351 
99.00%  0.762  0.532 0.491 
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Table B.2.b 
Simulation-based Distribution of Difference δ between Kendall’s Partial Tau Statistics under Null 

Hypothesis by Number of Observations 

Observation 
Splits 18/8 51/13 56/15 

Mean 0.001 0.001 0.000 
Std Dev 0.339 0.231 0.213 
1.00% (0.768) (0.530) (0.492) 
5.00% (0.559) (0.380) (0.351) 
10.00% (0.439) (0.297) (0.275) 
15.00% (0.357) (0.241) (0.222) 
20.00% (0.289) (0.197) (0.180) 
25.00% (0.233) (0.159) (0.145) 
30.00% (0.181) (0.123) (0.113) 
35.00% (0.132) (0.090) (0.083) 
40.00% (0.085) (0.059) (0.054) 
45.00% (0.040) (0.028) (0.027) 
50.00% 0.003 0.001 0.001 
55.00% 0.047 0.031 0.028 
60.00% 0.091 0.061 0.056 
65.00% 0.137 0.092 0.084 
70.00% 0.186 0.125 0.114 
75.00% 0.237 0.160 0.146 
80.00% 0.293 0.198 0.181 
85.00% 0.358 0.242 0.222 
90.00% 0.438 0.298 0.275 
95.00% 0.557 0.379 0.350 
99.00% 0.769 0.528 0.488 
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APPENDIX C 

SELECTED GRAPHS 

 
Graph C.1 

 US Economic Losses due to Catastrophe Losses as a % of GDP 

 
 

Graph C.2 
Japan Economic Losses due to Catastrophe Losses as a % of GDP 

 
 
 
Note: When comparing graphs across countries, please note that the standards and sources used by EM-Dat to collect and measure economic losses due to 
catastrophes may vary significantly by country.  The data may not match corresponding statistics collected by other local and international agencies. 
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Graph C.3 
Chile Economic Losses due to Catastrophe Losses as a % of GDP 

 
 
 

Graph C.4 
Australia Economic Losses due to Catastrophe Losses as a % of GDP 

  
 

Graph C.5 
The Philippines Economic Losses due to Catastrophe Losses as a % of GDP 

 
 

Note: When comparing graphs across countries, please note that the standards and sources used by EM-Dat to collect and measure economic losses due to 
catastrophes may vary significantly by country.  The data may not match corresponding statistics collected by other local and international agencies. 
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Graph C.6 
Thailand Economic Losses due to Catastrophe Losses as a % of GDP 

 
Note: When comparing graphs across countries, please note that the standards and sources used by EM-Dat to collect and measure economic losses due to 
catastrophes may vary significantly by country.  The data may not match corresponding statistics collected by other local and international agencies. 

 
Graph C.7 

Scatter Plot of Annual DJCA Returns against Insured Catastrophe Losses as a % of GDP 
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Graph C.7.a 
Scatter Plot of Annual DJCA Returns against Insured Catastrophe Losses as a % of GDP for lowest 

80th Percentile of Annual Insured Catastrophes as a % of GDP 

 
Please note that the percentiles in the above graph have been recalculated based on the relative rankings of the subset of points that fall in the lowest 80th percentile of 
annual insured catastrophe losses as a % of GDP.  As such, these percentiles range from 0 to 1. 
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Graph C.7.b 
Scatter Plot of Annual DJCA Returns against Insured Catastrophe Losses as a % of GDP for highest 

20th Percentile of Annual Insured Catastrophes as a % of GDP 

 
Please note that the percentiles in the above graph have been recalculated based on the relative rankings of the subset of points that fall in the highest 20th percentile 
of annual insured catastrophe losses as a % of GDP.  As such, these percentiles range from 0 to 1. 
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Graph C.8 
Scatter Plot of Annual Returns on Barclays Capital US Treasury Intermediate Index against Insured 

Catastrophe Losses 
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Graph C.9 
Scatter Plot of Annual Returns on Barclays Capital US Credit Long Index against Insured 

Catastrophe Losses as a % of GDP 
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Graph C.10 
Scatter Plot of Annual Changes in the US Real GDP against Insured Catastrophe Losses as a % of 

GDP 
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Graph C.11 
Scatter Plot of Annual Changes in the Nikkei 225 against Economic Losses due to Catastrophes as a 

% of GDP 
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Graph C.12 
Scatter Plot of Annual Changes in all Australia Shares against Economic Losses due to Catastrophe 

Losses as a % of GDP 
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The Unearned Premium Reserve for Warranty Insurance 
Richard L. Vaughan, FCAS, FSA, MAAA 

 ____________________________________________________________________________________________  

Abstract. The Unearned Premium Reserve (UPR) is the largest liability on the balance sheet of most writers of 
Warranty Insurance. Despite the specialized nature and small size of the line, the NAIC has seen fit in recent 
years to discuss the UPR for Warranty Insurance in its Regulatory Guidance on Property and Casualty Statutory 
Statements of Actuarial Opinion. 

The UPR is subject to the rules set out for long-duration contracts in Statement of Statutory Accounting 
Principles 65 (SSAP 65). Because of the high frequency and narrow size-of-loss distribution of Warranty claims, 
conventional reserve estimators such as Bornhuetter-Ferguson work quite well to estimate the UPR, but to be 
applied properly they require special modifications. In particular, it is necessary to adjust for unreported losses in 
recent diagonals of the issue-versus-breakdown lag triangle, to adjust for exposures declining by development 
month because of cancellations, to estimate appropriate tail factors, to modify expected emergence patterns for 
coverage of an obligor’s failure to perform, and to reserve appropriately for unpaid future refunds; the last two 
items are not specifically addressed in the regulations. 

This paper discusses the purpose and structure of the UPR for Warranty Insurance in general, describes the 
necessary modifications of conventional actuarial methods in detail, and illustrates them with examples. 

 ____________________________________________________________________________________________  

1. INTRODUCTION 

1.1 Warranty Insurance 

Manufacturers of consumer products are required, either by common law or by the Uniform 

Commercial Code or similar legislation, to warrant that their products are reasonably fit for their 

intended use. Making a virtue of necessity, nearly all manufacturers formalize this “implied warranty 

of merchantability” as an express warranty for a stated period, and often advertise such factory, or 

manufacturers’, warranties as a guarantee of satisfaction and as evidence of their own confidence in their 

products. 

An extensive market has arisen for contracts that supplement factory warranties by running for 

longer terms and/or by covering more parts and services. Most commonly such extended warranties or 

extended service contracts are purchased at the same time as the underlying product, or shortly thereafter. 

Their appeal to the individual consumer depends on his or her risk aversion and his or her liquidity 

relative to the cost of repairing or replacing the particular product should it prove defective. 

The classic example of extended warranties with wide consumer appeal are those covering 

automobiles, with their high initial cost, their many components subject to failure, the high price of 

replacement parts, and the large labor component of repairs. This paper discusses Warranty 

reserving mainly from the viewpoint of contracts covering automobiles, because they have special 

features, such as terms defined in months and miles and separate manufacturers’ warranties for 

power train and for other parts, which, when incorporated in a model, also allow that model to 

cover simpler warranty contracts as special cases. 

While factory warranties attach automatically to every product sold, obligate the manufacturer, 

and are embedded in the price of the product, extended warranties are usually optional, obligate the 
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retailer or a third party, and are paid for by the consumer with a single premium. Retailers offering 

such contracts on the products they sell, and assuming such service obligations themselves, are 

known as obligors, and in most states are not regulated as insurers. For tax reasons, many retailers 

actually issue their extended warranties through affiliated warranty companies. Obligors of this kind 

are also not regulated as insurers in most states, provided they insure their obligations with a 

licensed insurer. 

Most manufacturers retain the risks associated with their warranties and keep the associated loss 

data proprietary. Therefore manufacturers’ warranties, while they are essential to the design, pricing, 

and reserving of other Warranty contracts, are not themselves part of the Warranty Insurance 

marketplace. On the other hand, most warranty companies insure all or some of the risks of their 

extended service contracts. They may do so to satisfy legal requirements, for the usual benefits of 

risk transfer, or to obtain the expertise of the insurer in administration, data management, 

ratemaking, and reserving. Perhaps the most critical specialized expertise of a Warranty underwriter 

is the ability to calculate the Unearned Premium Reserve (UPR), on which both solvency and the 

ability to measure rate adequacy depend. The remainder of this paper discusses the UPR in the 

context of other reserves, of statutory requirements, and of the special adaptations necessary to 

estimate it for Warranty Insurance. 

The extended service contracts we are concerned with in this paper are supplemental to the 

factory warranty. They may extend it by covering a longer term in months or miles, more 

components of the product, additional services such as towing, a wider selection of repair facilities, 

or peripheral contingencies such as those envisioned by Guaranteed Asset Protection (GAP) and 

Involuntary Unemployment Insurance (IUI) policies. However, the principles of reserving for 

extended warranties are perfectly applicable to factory warranties and might equally well be used by 

manufacturers in accounting for their warranty liabilities. 

In recent years, Warranty Insurance, despite its relatively small and specialized nature, has drawn 

the attention of regulators because of the exposure of insurers to the failure of obligors for which 

they have written Warranty Insurance on a failure-to-perform basis. In 2009, the NAIC introduced a 

discussion of this issue in its Regulatory Guidance on Property and Casualty Statutory Statements of 

Actuarial Opinion, which was included as Appendix 9a of the American Academy’s Practice Note 

on the Statements of Actuarial Opinion. 

1.2 Loss Reserves and the UPR 

Like any other insurance product, Warranty Insurance gives rise to obligations for claims incurred 

but not reported (IBNR) and reported but not paid (RBNP), together making up the reserve for 

losses incurred but not paid (IBNP). Except for GAP insurance, reporting and settlement lags are 

short, the size-of-loss distribution is narrow, and frequencies are high, so these loss reserves are both 
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modest in size and straightforward to estimate using conventional triangle-based actuarial 

techniques. 

Unlike many other insurance products, Warranty Insurance policies tend to be of long duration 

and are usually purchased with a single premium, giving rise to a very significant obligation for losses 

“paid for” by the single premium but not yet incurred. This obligation is provided for by the 

Unearned Premium Reserve (UPR). The UPR is by far the largest liability of most Warranty insurers, 

and is therefore of paramount importance in evaluating their solvency and the solvency of individual 

Warranty programs. Moreover, the UPR is complementarily related to cumulative earned premium, 

so it is also of paramount importance when evaluating loss ratios and rate adequacy. 

As with other lines of insurance, we may analyze Warranty loss triangles (or similar arrays of 

more than two dimensions) to establish the UPR and/or loss reserves or to evaluate the adequacy of 

carried reserves determined in other ways. Typically we analyze the UPR on a policy-month basis 

(which we shall call issue month), the IBNR or IBNP reserves on an accident-month basis (which we 

shall call breakdown month), and the RBNP reserves on a report-month basis. 

Many standard actuarial techniques, such as chain-ladder and Bornhuetter-Ferguson loss 

development, the Cape Cod estimator of expected loss ratios, and the analysis and application of 

trend and seasonality, may be applied successfully to Warranty Insurance. However, the necessity of 

issue-month loss development, the importance of cancellations and refunds, and the prevalence of 

coverage on a failure-to-perform basis in whole or in part, all require certain technical adjustments to 

the standard techniques, which are a main focus of this paper. 

2. BACKGROUND AND METHODS 

2.1 Regulatory Requirements 

Most Warranty contracts are issued for terms longer than one year. Such long-duration contracts are 

subject to the requirements of Statement of Statutory Accounting Principles 65 (SSAP 65), which 

may be paraphrased as follows: the UPR must be at least as great as the greatest of (1) the amount 

payable if all policyholders surrendered their contracts for refund on the accounting date, (2) the 

sum over all in-force policies of the gross premium times the expected fraction of ultimate losses 

not yet incurred as of the accounting date, and (3) the expected present value of future losses, from 

in-force policies, not yet incurred as of the accounting date. These are called Tests 1, 2, and 3. Test 1 

values the surrender option, albeit very conservatively; Test 2 recognizes earnings as risk is borne 

and services performed; Test 3 addresses claim-paying ability. 

All three tests apply prospectively to the portfolio of contracts remaining in force at the valuation 

date after earlier cancellations. Test 1 assumes that all of these policies cancel immediately, and Test 

2 by implication assumes no further cancellations. Test 3 may take into account the effect of future 
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cancellations on expected losses, but it does not measure the expected refunds payable for such 

cancellations. Therefore Test 3 is an incomplete measure of unpaid future obligations and for that 

purpose we believe it should be supplemented with an estimate of expected future refunds. 

For Warranty business, Test 2 is usually dominant. It is normally greater than Test 1 because the 

UPR on most policies is greater than the required refund; it is normally greater than Test 3 because 

most policies are priced to produce a loss ratio less than 1.00. Moreover, the formulas or vectors of 

monthly factors used by Warranty insurers to calculate the UPR for individual contracts are normally 

calibrated to match the unincurred fraction of ultimate losses, in the manner of Test 2, since only 

this may be converted into earned premium suitable for loss ratios or other measures of 

performance. 

A few Warranty contracts are sold for terms of 12 months or less. The UPR for such contracts 

may simply be taken as pro rata, i.e., gross premium times the unelapsed fraction of the total term, as 

is usual for other lines. However, since Warranty insurers have in place a mechanism for calculating 

more precise UPR’s satisfying SSAP 65 for their long-duration contracts, they may apply the same 

technique to shorter contracts, with results that are more accurate and, usually, a bit more 

conservative. 

SSAP 65 applies to an insurer’s long-duration business in aggregate and need not be satisfied for 

any given contract or program. However, it is good practice to attempt to satisfy Test 2 for each 

program considered separately, for then the aggregate will automatically satisfy Test 2 and the 

inception-to-date loss ratio for each program will be a reasonable predictor of the ultimate loss ratio. 

Test 3 may fail for a few programs running loss ratios greater than 100%; correcting this is usually a 

pricing issue. Test 1 may fail for coverages such as GAP that earn more rapidly at first than pro rata. 

This will only be a problem in aggregate for companies that write mainly GAP or similar coverages. 

For them, the system UPR should probably continue to be on a Test 2 basis, but the UPR shown on 

the books may need to be taken from Test 1. 

2.2 Reserve Structure 

The UPR is chronologically the first component of a reserve structure ultimately designed to 

recognize all obligations “paid for” but not yet paid; it addresses those obligations not yet incurred. 

For this reason, in analyzing the UPR, the second, or development, dimension of a loss triangle is 

usually issue-to-breakdown lag. However, for some sublines of Warranty Insurance the insurer may 

find it more convenient to analyze the combined UPR and IBNP reserves by issue month versus 

issue-to-payment lag, or the combined UPR and IBNR reserves by issue month versus report lag, in 

effect giving rise to several possible reserve structures: (a) UPR, IBNR, and RBNP, or (b) 

(UPR+IBNR, called UPR) and RBNP, or (c) UPR and (IBNR+RBNP, called IBNR), or (d) 

(UPR+IBNR+RBNP, called UPR). Because the statutory UPR is governed not only by expected 
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unincurred losses but by the expected emergence pattern of losses applied to gross premium, it is usually 

conservative, so that when UPR principles are applied to some or all of the loss reserves, they in 

turn become conservative. While this practice is therefore benign, it may be necessary to separate the 

total reserve into “proper” components for annual statement purposes. 

2.3 Earnings 

The UPR governs the recognition of earnings from an individual policy or cohort of policies, 

through the general formula (earned premium) = (written premium) – (change in UPR). At the 

moment of writing, the UPR equals the written premium, having previously been zero, so no 

earnings are recognized immediately. Thereafter the UPR for a contract is monotonic non-

increasing, change in UPR is nonpositive, and earned premium is nonnegative. When the UPR 

reaches zero, premium earned since inception equals the original written premium and the contract 

is said to be fully earned. 

2.4 Cancellations and Refunds 

A characteristic feature of Warranty policies is that they are subject to cancellation for refund 

throughout their term. The amount refunded is specified by law or by contract and is usually 

different from the UPR carried at the moment of cancellation, giving rise to a gain or loss. 

Cancellations mean that in-force exposure for a cohort of contracts already issued may decline from 

month to month. By itself this creates a problem for issue-month loss development, which we 

address below. 

Moreover, the usual accounting treatment of cancellations, which nets refunds against premiums 

written in the same calendar period, even though the refunds may have arisen from earlier contracts, 

is awkward and creates difficulties for actuarial analysis, especially when the actuary is attempting to 

measure the performance of a cohort of written contracts. 

We have found it useful to distinguish premium earned by providing coverage from premium 

earned by cancellation, and we digress here to discuss this in some detail because of its close 

connection to the UPR. First, we define UPR released by cancellation to be the UPR on canceling 

policies just before cancellation. Then the following definitions relate to premium used to provide 

coverage: 

(pure written premium) = premium for new policies, gross of refunds 

 (pure earned premium) = (pure written premium) – (UPR released) – (change in UPR) 

 (pure loss ratio) = (incurred losses) / (pure earned premium) 

The corresponding figures in the financial statements are defined somewhat differently: 

 (statement written premium) = premium for new policies, net of refunds paid in month 
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 (statement earned premium) = (statement written premium) – (change in UPR) 

 (statement loss ratio) = (incurred losses) / (statement earned premium) 

The “pure” definitions are very useful when tracking a cohort, for which there is no written 

premium after the first month. The “statement” definitions are confusing for this purpose, since the 

actual financial statements would show the initial written premium reduced by refunds paid in the 

same calendar month on behalf of policies written in that month or earlier months, and would show 

refunds paid in later months as part of the written premium of later cohorts. 

Note that (statement earned premium) = (pure earned premium) + (gain from cancellations), 

where (gain from cancellations) = (UPR released) – (refunds). For Warranty Insurance on 

automobiles, where refunds are close to pro rata while UPR declines more slowly, (gain from 

cancellations) is usually positive, the statement earned premium is greater than the pure earned 

premium, and the statement loss ratio is less than the pure loss ratio. 

The “pure” definitions above involve losses but not refunds. We can create similar definitions 

treating refunds, or refunds plus losses, in a manner parallel to losses, as follows. Here the refunds 

are only for policies in the cohort being tracked: 

 (refund ratio) = (refunds) / (UPR released by cancellation) 

 (payout ratio) = (incurred losses + refunds) / ((pure WP) - (change in UPR)) 

Note that UPR released by cancellation is analogous to pure earned premium except that it 

measures premium earned through cancellation rather than through coverage. Therefore the refund 

ratio is analogous to the pure loss ratio. Finally, the payout ratio is also similar to the pure loss ratio 

except that refunds are treated as equivalent to losses; its denominator, (pure WP) – (change in 

UPR), is the total premium earned either by coverage or by cancellation. 

If we make the following two definitions, 

 (cancelled UPR ratio) = (UPR released by cancellation) / ((pure WP) - (change in UPR)) 

 (earned premium ratio) = (pure earned premium) / ((pure WP) - (change in UPR)) 

then 

 (payout ratio) = (cancelled UPR ratio)(refund ratio)+ (earned premium ratio)(loss ratio) 

showing how the parallel treatments of losses and refunds fit together. Here the cancelled UPR 

ratio is the fraction of the total premium earned in some manner that is earned by cancellation, and 

earned premium ratio is the complementary fraction earned by coverage. 
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These ratios are most useful over the time period from inception to ultimate, for then the initial 

UPR, the final UPR, and the change in UPR are all zero, the “big” denominators just equal the pure 

written premium, and the ultimate payout ratio gives a good measure of premium adequacy: 

 (ultimate payout ratio) = (ultimate losses plus refunds) / (pure written premium) 

By contrast, 

 (ultimate statement loss ratio) = (ultimate losses) / ((pure written premium) – refunds) 

which will not, in general, equal the ultimate payout ratio even if the refunds are those paid over 

time on behalf of the cohort rather than those from any source paid in the initial calendar month. 

2.5 Carried Reserves 

In principle, the management of a Warranty insurer could establish its UPR and loss reserves 

shortly after the end of each accounting period by developing inception-to-date experience data. But 

most insurers find it more practical (a) to embed formulas or strings in their administrative systems 

to generate the UPR automatically from in-force contract data at each month’s end, (b) to pull the 

RBNP reserve directly from reported loss data, and (c) to calculate the IBNR as a factor times 

RBNP, recent paid losses, or some similar base quantity. These insurers still analyze inception-to-

date experience, but do so to validate or modify their strings and formulas, rather than to establish 

the carried reserves directly. 

Strings are vectors of UPR factors that are stored with the data for each contract and multiplied 

by gross written premium for that contract to obtain the UPR at each elapsed month’s end from 

issue to expiration. These factors are normally adjusted so as to apply to an entire month’s cohort of 

similar contracts, on the assumption that contracts are issued uniformly throughout the month. The 

usual adjustment at lag n is to take an average of the factor that would be held at lag n and the factor 

that would be held at lag n-1, if all policies were written at the start of the month; this is the so-called 

one-half-month adjustment. 

In principle the string could be extended beyond the term in months to accommodate “goodwill” 

claims paid after expiration, but commonly the length of a string equals the term in months. The 

factor for the moment of issue is 1, and need not be stored with the string; similarly, the factor for 

any earlier month’s end is 0 (no UPR is needed yet since no premium has been received) and the 

factor for the end of any month beyond the end of the string is also 0 (contract fully earned). 

There may be many strings associated with a Warranty program. The choice of string for a given 

contract depends on characteristics such as term, manufacturer’s warranty, and type of product 

insured. The string is assigned when the contract is first entered into the administrative system, and 

is usually fixed thereafter, ensuring a stable accounting treatment through the life of the contract. 
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Formulas are rules for determining UPR factors from contract characteristics and elapsed months. 

They may be mathematical formulas in the usual sense, such as pro rata or Rule of 78, or they may 

be lookup tables in every respect analogous to a set of strings, except not stored with the contract. 

They normally include the one-half-month adjustment. The factors are generated fresh at each 

valuation; making it possible to change formulas easily and keep UPR patterns responsive to current 

estimates, for all contracts, old as well as new. The formula UPR for a contract equals its initial 

written premium multiplied by the formula UPR factor. 

Just as formulas may in fact be lookups of strings, strings may have originally been derived from 

formulas. A set of UPR factors, whether described by string or by formula, may be called a UPR 

curve because of its appearance when displayed graphically. 

2.6 Graphical Representation of UPR and Earnings 

The UPR for a block of contracts of term T months may be plotted against lag t ; it will equal the 

written premium at lag t=0 and will equal zero at full term, t=T, or at t=T+1 with the one-half 

month adjustment. Usually we rescale such a graph to represent UPR factors, starting with 1 at t=0 

and reaching 0 on or before t=T+1. 

Such a graph need not be continuous; it is possible to conceive of products for which claims, if 

any, emerge at a few discrete times, creating a step-function UPR curve. We shall ignore such special 

cases here. Actually, in practice all strings and many formulas are step functions with discontinuities 

at the end of each elapsed month. For our purposes it is convenient to “connect the dots” and treat 

such strings and formulas as continuous for nonnegative real t. 

As mentioned above, in the absence of new written premium, earnings are measured by negative 

change in UPR. Therefore, (a) the complement of the UPR curve is the cumulative earnings factor 

curve, (b) the negative slope of the UPR curve is proportional to the earnings rate, (c) the 

cumulative earnings factor curve is an ogive like that of a cumulative distribution function, and (d) 

the UPR curve is a mirror image of the cumulative earnings curve around the line y=0.5. Incremental 

earnings are often step functions, for example, assuming one level while the full manufacturer’s 

warranty is in effect, another level when only the power-train warranty is in effect, and still another 

level when both parts of the manufacturer’s warranty have expired. This produces changes of slope 

in the UPR curve but leaves it continuous. 

One example of a UPR formula is linear or “pro rata”, equivalent to a uniform incidence of 

losses over an earning period defined by the term and manufacturer’s warranty. This is theoretically 

correct for equipment each of whose components has an exponential distribution of time to first 

failure, where each failed component is replaced with an identical one, and where there is neither 

trend nor “breakage” (contract abandonment). Figure 1 shows (to different scales) a uniform 
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earnings pattern over 24 months and the corresponding UPR factors; this graph also illustrates the 

effect of the one-half-month adjustment for uniform writings throughout the month. 

 

 

Fig. 1. Uniform earnings and pro rata UPR factors for term 24 months 

 

Note that the one-half-month adjustment as graphed is only an approximation to uniform 

writings within the first and the last months; the true earnings pattern would not be constant, and the 

true UPR pattern within those months would be a second-degree curve. 

The pro rata UPR formula is often modified to start at the end of the manufacturer’s warranty 

(MW) instead of at issue. Warranties on so-called “brown and white” goods (electronics and 

appliances) are often reserved in this manner, with considerable justification from experience. Figure 

2 illustrates 24-month pro rata earnings from the end of a 12-month MW. 

Another example is sum-of-digits or Rule of 78, a second-degree curve whose first differences 

(evaluated at successive months’ ends) are proportional to the number of months remaining in the 

term. This is theoretically appropriate for situations where the size of loss decreases linearly to zero 

at expiration while the probability of a loss remains constant, again with neither trend nor breakage. 

An example of such coverage would be a warranty covering failure of parts subject to normal wear 
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and tear, where reimbursement reflects the amount of use already received from the part. This 

pattern is illustrated in Figure 3. Again, earnings have been shown as a step function and the UPR 

factors as a corresponding stepwise-linear function, reflecting the common practice of calculating 

UPR factors only at months’ ends. 

 
Fig. 2. Pro rata from end of manufacturer’s warranty, with one-half-month adjustment. 
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Fig. 3. Rule of 78, with one-half-month adjustment. 

Here, with a term of 24 months, the “Rule of 78” should more properly be called “Rule of 300”, 

or just “sum of digits”. The Reverse Rule of 78 – first differences proportional to number of 

months elapsed – is sometimes used as a UPR formula, with little theoretical justification, other than 

that its slow early earnings produce a “shoulder” in the UPR curve that resembles that produced by 

the manufacturer’s warranty for automobile business. This is illustrated in Figure 4. Interestingly, the 

Reverse Rule of 78 is theoretically appropriate as a UPR formula for Warranty Insurance providing 

contractual liability coverage for an obligor, without coverage of the underlying contracts unless the 

obligor fails to perform, where the underlying contracts earn uniformly, and where the probability of 

failure to perform (i.e., bankruptcy) approaches zero. 
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Fig. 4. Reverse Rule of 78, for term 24 months, with one-half-month adjustment. 

Some Warranty administrators are known to operate with just three possible choices for UPR 

formula: pro rata from end of MW, Rule of 78, and Reverse Rule of 78. 

2.7 Indicated Reserves 

By an indicated reserve we mean an estimate of a liability based on analysis of loss experience. The 

reliability of such analysis is enhanced when summed over a collection of subdivisions of the data, 

each large enough to be credible but also as homogeneous as practical. Usually this means grouping 

contracts by term, although finer subdivisions, involving other contract or product details, may 

sometimes be necessary. For purposes of this discussion, we assume we have already subdivided the 

data into one or more reasonably homogeneous and reasonably large collections of contracts and 

associated claims. 

Case reserves are usually good estimators of the RBNP reserve since pending Warranty payments 

are often known quite accurately at the report date. So loss reserving amounts to estimating either 

the IBNR reserve from breakdown dates versus report lags or estimating the IBNP reserve from 

breakdown dates versus payment lag and then subtracting the RBNP to obtain the IBNR reserve. 

Either estimate may be done with the chain-ladder estimator, not requiring any measure of exposure 

by breakdown month, or with the Bornhuetter-Ferguson estimator, using the results of a UPR 
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analysis to obtain earned exposure. The actual calculations are straightforward and familiar and we 

do not discuss them further. 

The indicated UPR is more complex and involves choices that may depend on the purpose of the 

analysis. When evaluating the adequacy of the carried UPR for a single program, a SSAP 65 Test 2 

estimate may be appropriate; when evaluating rate adequacy, Test 3; when evaluating compliance 

with SSAP 65 in aggregate, Tests 1, 2, and 3. 

We may evaluate SSAP 65 Test 1 directly by applying the refund formula to each contract in-

force at the valuation date and summing the results. The typical refund formula is a flat 100% for 30 

or 60 days, thereafter pro rata between issue and expiration (meaning there is a discontinuity at the 

end of the flat refund period), less a small surrender charge capped as a multiple of premium. This is 

a routine non-actuarial calculation and we do not discuss it further. 

From an actuarial perspective the key to evaluating Test 2 is that we must have a sound technique 

for estimating issue-to-breakdown lag patterns after removing the effect of cancellations. Part of the 

solution involves modifying Chain-Ladder loss development to accommodate exposure declining 

across each row of the triangle, part involves adjusting for the deficiency of later diagonals of the 

issue-breakdown lag triangle because of unreported losses, and part involves special procedures for 

estimating tail factors. These techniques are discussed in sections 2.11, 2.12, and 2.13, below. 

We mention in passing another estimator of loss emergence patterns, which Bühlmann [2] called 

Complementary Loss Ratio and Stanard [5] called Additive, but which we prefer to call Partial Loss 

Ratios. This method fits an additive model with only column effects to the triangle of partial loss 

ratios. Stanard’s simulations found it efficient and unbiased. For our purposes, it appears to be 

affected more than the adjusted Chain Ladder when there is trend in the historical losses that is not 

well matched with trend in the premium or other measure of exposure. 

Evaluating Test 3 requires all of the above plus sound techniques for estimating loss ratios and 

projecting future in-force exposures. In our work we usually project in-force premiums using a 

survivorship model analogous to chain-ladder loss development, but applied to the premium 

surviving cancellations at each lag. Next we use loss development to estimate issue-to-breakdown 

and breakdown-to-payment lag patterns. With these in hand, we use variations of the Cape Cod 

technique to estimate expected loss ratios, and then project future losses using a Bornhuetter-

Ferguson model. These techniques are discussed in 2.14 below. In some ways they are more easily 

understood in the Warranty context than for other lines of business; for example, when the first 

dimension of our triangles is issue month, the Bornhuetter-Ferguson expected emerged exposure is 

simply earned exposure and the Cape Cod ELR is simply the ITD loss ratio. 

Often we are not so much interested in the actual UPR for a block of business as in the average 

string of UPR factors, one for each lag, that would produce the correct UPR, not only at the given 
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valuation date but at any date. Or we may be interested in the string of UPR factors appropriate for 

each contract in the data, or for proposed contracts yet to be written. We call such strings, derived 

from experience, indicated UPR factors. 

The estimation of SSAP 65 Test 2 or Test 3 produces as an intermediate step an average set of 

indicated UPR factors for each subdivision of the data. If the subdivision is perfectly homogeneous, 

the indicated average UPR factors will also be appropriate for each contract in the subdivision. But 

subdivisions large enough to be credible are seldom perfectly homogeneous, and the indicated 

average UPR factors may not be quite right for any given contract. 

To get factors for individual contracts in the data, or for proposed contracts different from any 

of those in the data, we describe below a technique which we call “All-Terms Factors”: this is based 

on an exposure definition similar to that of Kerper and Bowron [4], together with an algorithm for 

using the experience of all contracts in one set of data to obtain a UPR curve for any contract 

whether in the data or proposed. 

2.8 Comparison of Carried and Indicated UPR 

At any given valuation date the indicated UPR is likely to differ from the carried UPR; if this 

difference is large enough the actuary will want to determine its cause and possibly revise the strings 

or formula used to establish the carried UPR. However, the difference between carried and indicated 

UPR at a single date gives little information as to what changes are needed, and moreover is highly 

dependent on the maturity distribution of the contracts that happen to be present in the data. 

For example, if the carried UPR is less than the indicated, it may be because the contracts are 

clustered at the early lags and the early carried UPR factors are inadequate, or because the contracts 

are clustered at later lags and the later carried UPR factors are inadequate, or because the maturities 

of the contracts are evenly spread and the entire set of carried UPR factors is inadequate. 

We have found it more useful to compare entire average carried UPR curve with entire indicated 

UPR curves, as shown in Figure 5 below. If the two sets of factors are not close to each other, we 

can conclude that the carried strings for some or all of the contracts need to be revised. If the 

carried and indicated factors are close, then we have evidence, though not proof, that the carried 

strings are indeed satisfactory contract by contract. 

Our comparison procedure also generates single statistics that quantify the adequacy of the 

carried UPR factors independently of the maturity distribution of the data at hand. 
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Fig. 5. Comparison of carried UPR factors with Test 2 UPR factors indicated by experience 

The comparison in Figure 5 is based on about 272,000 contracts, and 55,000 claims, with 

nominal term 72 months, from a program insured by a large Warranty underwriter. Like all UPR 

factor curves, these start with the value 1 at issue and end with the value 0 when all contracts are 

fully earned, in this case by 73 months. We may read cumulative earnings as the complement of the 

UPR curve, and the instantaneous earnings rate as proportional to its absolute slope. 

The shoulder in both curves reflects the presence of manufacturers’ warranties, typically 36 

months or longer. The fact that there are some earnings in the first 36 months reflects “extras” 

covered by the extended warranty above the services provided by the factory warranty, and also the 

fact that some drivers “mile out” of the manufacturer’s warranty before 36 months. There may be 

an issue of heterogeneity here also, with a few contracts on used cars with little or no manufacturers’ 

warranty remaining. 

The Experience curve lies above the Carried curve showing that the latter is slightly inadequate. 

To assign a measure to this inadequacy we use what we call a “steady state conservatism factor”, 

which is the ratio of the carried to the indicated Test 2 UPR if policies had been written at a 

constant rate long enough (in this case six years) so that their maturity distribution would thereafter 

be stationary. In the absence of cancellations the steady-state UPR factor distribution would be 

precisely that shown by this graph, the steady-state carried and indicated UPR’s would be 
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proportional to the areas under the respective curves, and the ratio of carried to indicated would be 

the ratio of these areas. In the present example the conservatism factor calculated in this manner is 

0.980, reflecting about 2% inadequacy. We can also calculate an alternate conservatism factor in 

which the steady state allows for cancellations; in this case it comes out 0.982, suggesting 1.8% 

inadequacy. 

Bear in mind that this entire comparison is on a Test 2 basis. It is unaffected by loss ratios and 

says essentially nothing about Test 3, the relationship between the carried UPR and expected 

unincurred losses. In this example the loss ratio happened to be well below 100% and Test 3 was 

easily satisfied, but we have no way of knowing, from these Test 2 curves alone, anything about the 

loss ratio or the adequacy of the carried UPR relative to Test 3. 

2.9 Effect of UPR Curves on Estimated Loss Ratios 

It is very important to understand the effect on estimated loss ratios, especially for immature 

blocks of business, of carried UPR curves that do not match closely with experience. Using Figure 5 

as a model, imagine that there had been a large spike in sales 24 months ago, dominating the 

contracts in the data set. Then this business would now be at lag 24 months and would have a 

carried UPR factor of about 0.9196 and an indicated factor of about 0.9298. But then the ratio of 

cumulative earned premiums would be 0.0804/0.0702, or about 1.145; if the apparent loss ratio 

were, say, 95% the true loss ratio would be about 108.8%. 

If in this case we took the apparent inception-to-date loss ratio as a predictor of the ultimate loss 

ratio, we might imagine that we were extrapolating the immature business by a factor of 3, from 24 

months to 72. In fact we would be extrapolating by a factor of more than 14, from 7% of ultimate 

losses to 100%. The estimated loss ratio is not only affected by any errors in the UPR curve, also but 

by random fluctuations in the early incurred losses, greatly leveraged.  

In this case we assumed that, although the bulk of the business was clustered at maturity 24 

months, there was enough other business to estimate the shape of the earnings curve reliably. The 

situation is exacerbated when all of the business is immature, for example, when writing started 24 

months ago, for then we must rely on tail factors, and the average extrapolation might be from 

around 12 months (assuming 24 months of uniform writings), or about 1.8% emergence, to 100%, a 

factor of more than 56. 

2.10 Trend and Seasonality 

One kind of trend operates purely in the issue-month direction, as changes in product design 

affect claim frequency and severity in sometimes irregular ways; a second kind operates purely in the 

calendar-month direction that is along both the issue-month and the development-month axes. This 

is usually the result of inflation, affects both parts and labor, and drives severity generally upward 
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while having little effect on frequency. There is actually a third kind of trend, purely in the 

development direction; this we usually regard as simply part of the earnings or UPR pattern, but if 

not controlled for it may affect our estimates of calendar trend. 

Loss emergence patterns are affected by calendar trend, in that increasing severity in the 

development direction tends to defer the emergence of losses relative to the total. This has only a 

modest effect on SSAP 65 Test 2 but a much greater potential effect on Test 3. To illustrate, Figure 

6 shows a 48-month pro rata UPR curve after a manufacturer’s warranty of 12 months, with trends 

of 0%, 5%, 10%, and 15% per annum. The steady-state SSAP 65 Test 2 UPR’s are greater than the 

no-trend case by about 2.2%, 4.2%, and 6.3%, respectively. Note that the fact that the trend extends 

through the manufacturer’s warranty has no impact on these figures. 

By contrast, the Test 3 expected unincurred losses, valued at inception of the contract, would 

increase by factors of about 15.5%, 32.8%, and 52.3%, respectively, and part of these increases 

would be the result of trend during the manufacturer’s warranty. Moreover, using a UPR curve with 

incorrect trend built in would have the same amplified effect on loss ratios estimated from immature 

data as was described the indicated-versus-carried comparison above. 

 
Fig. 6. Effect of 5%, 10% and 15% annual trend on pro rata UPR factors after MW 

Carried UPR’s by simple formulas like pro rata and Rule of 78 clearly do not anticipate trend, 

except possibly implicitly, as an offset to “breakage” (failure of eligible policyholders to present 
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claims, which can be modeled as a negative trend). On the other hand, strings obtained empirically 

by analysis of experience are likely to have embedded in them whatever trend was present in that 

experience. If it is thought desirable to include a different trend in future strings, the experience can 

be deflated prior to estimating the earnings pattern, and the results re-inflated afterward. Or the 

strings from the usual analysis may be rendered more conservative by converting the UPR factors to 

earnings factors, inflating these by the difference between future and past trends, and converting 

once again to UPR factors. 

Unlike trend, seasonality (which we take to have a period of 12 months) has rather a greater 

effect on Test 2 than on Test 3. We illustrate seasonality with an extreme, but nevertheless real, 

example: extended warranties on snowmobiles. In the Northern Hemisphere these may be expected 

to produce nearly all warranty claims during the season from November through, say, April, with the 

greatest concentration shortly after the equipment is first put in use for the season, say during 

December and January. 

This pattern has little impact on expected ultimate losses, since most contracts are sold for a 

multiple of 12 months and thus include an equal number of Decembers and Januaries no matter in 

what month they are issued. On the other hand, if it is not provided for in the UPR factors, 

seasonality may lead to serious error in the estimation or projection of loss ratios. This problem may 

be avoided in two ways. One is to deseasonalize the loss data, estimate a constant loss ratio, then 

restore seasonality to the projections; the other is to build seasonality into the UPR strings and 

assign a different string to each contract depending on the month in which it is sold. Figure 7 

illustrates the strings that might be assigned to two snowmobiles, one issued in November and one 

in March, under one plausible set of seasonality assumptions. Note that it is the slopes that are 

cyclical. 
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Fig. 7. Seasonalized UPR curves for snowmobiles, issued in November versus March 

Implementing seasonalized UPR strings, even via a lookup-table formula, would appear to 

multiply storage requirements by 12; however, it may be done by factoring the strings into an 

underlying non-seasonal component and a single set of twelve seasonality factors. Estimating 

seasonality factors from the data may be done by first estimating the non-seasonal component with 

a 13-month moving weighted average and removing it from the raw data. If desired the residuals 

may be credibility-weighted against an a-priori set of seasonality factors and/or smoothed by 

application of a “circular” variation of Whittaker-Henderson graduation. One should to be cautious 

about smoothing, however, since some monthly spikes are real, such as those motivated by the 

timing of annual sales or service promotions. 

2.11 Loss Development Factors Excluding the Effect of Cancellations. 

An important difference between loss development for Warranty Insurance and for conventional 

lines is that for SSAP 65 Test 2 we need the lag factors that would be observed if there were no 

cancellations. In effect we need to decompose the total emergence pattern of losses into a 

component due to cancellations, which for UPR purposes we discard, and a component due to loss 

emergence proper, which becomes the basis for Test 2. This section describes one approach to this 

problem. 
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Assume we have a triangle of exposures Eij that reflects cancellations, so that the Eij’s may 

decrease, but not increase, along each the row for each issue month i. By exposures we mean such 

things as in-force premium, loss fund (i.e., provision in the premium for losses), or contracts. Ei0 is 

the exposure at the moment of writing; Ei1 the exposure at the beginning of the next month, and so 

forth. Also assume that we have a triangle Lij of incremental losses. Here Li0 are the losses in the 

month of writing, Li1 in the next month, etc. Thus the exposures Eij give rise to the losses Lij. To 

keep things simple we assume that a full month of exposure is earned by each contract in the month 

of cancellation. In practice we may refine the model slightly by adjusting the Eij’s so as to recognize 

only partial exposure (usually one-half) in the month of cancellation. 

We can convert Lij to a cumulative triangle with cells Cij = Li0 + Li1 + … + Lij, and calculate 

development factors from cell (i,j) to cell (i,j+1) in the usual way as Fij = Ci(j+1) / Cij = 1 + Li(j+1) / Cij. 

These factors will reflect both ordinary loss development and cancellations. This is fine for some 

purposes, including obtaining a rough estimate of Test 3. But for other purposes, such as evaluating 

UPR curves, we need an efficient way to measure just the loss development for reasons other than 

cancellation, and these simple cumulative factors will not suffice. 

A good start would be to adjust the Ci(j+1)’s and Cij’s to the same exposure level. It is tempting to 

try to adjust Cij from its reduced exposure level Eij to the original exposure Ei0 before any 

cancellations. We can’t do this directly, since Cij corresponds not just to Eij but to the whole history 

of exposures Ei0, Ei1, …, Eij, and these may vary independently. The only way to adjust Cij is to 

adjust each of its incremental pieces Li0, Li1, …, Lij and recombine them. The adjusted Lik may be 

written as L*ik = LikEi0/Eik. Accumulating the L*ik’s to get C*i(j+1) and C*ij and taking their quotient 

we get a development factor F*ij with the effect of cancellations removed. 

But even this is not quite what we need. We are not usually interested in the triangle of cell by cell 

development factors, but in some sort of average down each column, to be used as an estimate of 

the underlying population development factors. For such an estimate to be efficient, we should give 

greater weight to those cells with greater losses or with greater exposure remaining after all earlier 

cancellations. Otherwise the larger variation in the smaller cells will contribute disproportionately to 

the variability of the average development factors. 

The most common weighting for conventional loss development is by the losses in the 

denominator, which makes the average development factor in each column equal to the sum of the 

numerators divided by the sum of the denominators. (Other weightings involving powers of the 

losses in the denominator are appropriate for particular models of the loss process. Here we are 

concerned only with a preliminary weighting to correct for changes in exposure.) The conventional 

weighting works nicely when the denominators are the Cij’s, but not when they are the C*ij’s, because 
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the adjustment of Lij to L*ij flattens out differences in volume of losses by issue month that result 

from different numbers of cancellations, and the weighting doesn’t accomplish much. 

A way around this problem is to put each Lik on the same exposure basis as Li(j+1) (that is Ei(j+1)) 

by letting L'ik = LikEi(j+1) / Eik. The adjusted cumulative losses become C'ik = L'i0 + L'i1 + … + L'ik, 
and the adjusted development factor becomes F'ij = C'i(j+1) / C'ij. This is exactly the same as F*ij, but 

this time the weighted average works in the natural way: 

ΣiC'ijF'ij / ΣiC'ij = ΣiC'i(j+1) / ΣiC'ij = (Σnumerators)/(Σdenominators) 

This looks as if it would be cumbersome to calculate. We have to loop through the j’s and for 

each one adjust all the earlier Lik’s and sum them to get the C'ij’s. But notice that 

C'ij = Σk(LikEi(j+1)/Eik) = Ei(j+1)Σk(Lik/Eik) = Ei(j+1)ΣkPik = Ei(j+1)Qij, 

where Pik = partial loss ratio and Qik = cumulative partial loss ratio. Similarly, 

C'i(j+1) = Ei(j+1)Qi(j+1), 

so that 

F'ij = C'i(j+1) / C'ij = Qi(j+1) / Qij 

No adjustment here, just developing the triangle of cumulative partial loss ratios, but we get the 

same factors! 

We do not want to use an unweighted average of these factors since all differences in exposure, 

whether due to cancellations or otherwise, have been flattened out of them. Two approaches come 

to mind that make the weights reflect volume of experience. 

If we weight the ratios Qi(j+1)/Qij by the Ei(j+1)’s, we get the following average: 

(Avg F)j = Σi(Qi(j+1)/Qij)Ei(j+1))/ΣiEi(j+1), 

which equals (Σnumerators)/(Σdenominators) if we write each development factor as 

F'ij = (Qi(j+1)/Qij)Ei(j+1)) / Ei(j+1) 

On the other hand, if we weight the ratios Qi(j+1)/Qij by the adjusted losses C'ij, we get 

(Avg F)j = Σi(Qi(j+1)/Qij)(C'ij / ΣiC'ij) = ΣiQi(j+1)Ei(j+1)/ΣiQijEi(j+1), 

once again a “sum of numerators over sum of denominators” situation if we write each 

development factor as 

F'ij = Qi(j+1)/Qij = Qi(j+1)Ei(j+1)/QijEi(j+1) 

Both of these formulas for (Avg F)j are easy to implement in software since we already have the 

exposure triangle. The first average is weighted by exposures, the second is weighted by losses. They 
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are not identical, but they are consistent with each other because expected losses are proportional to 

exposures. 

A simulation study involving extreme exposure patterns (some issue months nearly fully 

cancelled, others with few cancellations) shows that (a) the weighting by exposures appears to be 

more stable than the weighting by losses, (b) the weighting by losses at the exposure level of the 

numerator is practically indistinguishable from the weighting by losses at the initial written exposure 

level, (c) all of these variations of the loss development method are more stable than the Partial Loss 

Ratio (Stanard’s “Additive”) approach, (d) there is no evidence of bias in any of the methods, and (e) 

the differences among methods are small and would probably be immaterial with real-world data. 

2.12 Calculations Involving Issue Date versus Breakdown Lag Triangles 

In principle, the UPR covers the interval between issue and breakdown, the IBNR reserve covers 

the interval between breakdown and reporting, and the RBNP reserve covers the interval between 

reporting and payment. 

We can estimate different components of the total reserve from different triangles, as follows: 

 Cell contents Time 1 Time 2 Resulting reserve 

A Paid Issue Payment UPR + IBNR + RBNP 

B Paid Breakdown Payment IBNR + RBNP (i.e., IBNP) 

C Paid Report Payment RBNP 

D Paid + Pending Issue Report UPR + IBNR 

E Paid + Pending Breakdown Report IBNR 

F Paid Issue Breakdown UPR 

G Paid + Pending Issue Breakdown UPR 

(A,D,F,G) UPR here means expected losses not yet incurred, or SSAP 65 Test 3, roughly equal to the usual Test 2 or 
gross UPR times an expected loss ratio. 
(D,E) Relies on the pending reserve’s being exactly equal to the eventual payment, in which case the paid-plus-pending 
data is equivalent to a case-basis incurred triangle. 
(F) Unreliable without adjustment because some losses in the last few diagonals may not have been paid by the ending 
date of the data 
(G) Unreliable without adjustment because some losses in the last few diagonals may not have been reported by the 
ending date of the data 

We may use the technique described in 2.11 to handle triangles of types A and D, and ordinary 

loss development to handle B, C, and E. But triangles of types F and G require special treatment. 

The problem is that the triangle of losses by issue month versus breakdown lag is not stable, in 

the sense that the next month’s experience will not simply add a new diagonal and leave the existing 
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triangle unchanged. Instead, the next month’s experience may contain newly-reported losses that 

belong in interior cells of the existing triangle, usually somewhere in the last few diagonals. If we are 

not careful, developing an issue-versus-breakdown triangle may understate the true reserve because 

of these incompletely-paid or incompletely-reported losses in the recent diagonals. Note that case F 

(paid losses) and case G (reported losses) are structurally identical, except that F, in effect, treats 

each claim as if its report date were equal to its payment date. 

One solution to this problem is to eliminate the latest diagonals from the triangle and obtain 

development and earnings factors from the curtailed triangle. This works, but it sacrifices 

information, especially for situations where report or payment lags stretch for more than three or 

four months. 

A second approach is to use the breakdown-date versus payment-lag or report-lag triangle to 

obtain payment or report lag factors, cumulate these to obtain the expected fraction of losses paid or 

reported at the end of one, two, … months, apply these factors to the triangle of exposures 

(working in on each row from the latest diagonal) to obtain the “expected paid” or “expected 

reported” fraction of exposure, and calculate earnings factors from the original losses and these 

adjusted exposures. This is the most robust approach and makes full use of the latest information. 

Still another approach is to use a single issue-date versus breakdown-lag triangle to estimate 

simultaneously the earnings factors (in the breakdown-date direction, a “column effect”) and the 

fraction unpaid or unreported (in the calendar-month direction, a “diagonal effect”). From the latter 

we may derive lag factors for losses IBNP or IBNR, even when we do not have payment or report dates of 

individual losses or any triangle by breakdown date versus payment or report lag. Estimation proceeds iteratively, 

alternately using exposure-adjusted loss development as described in section 2.11 to estimate the 

earnings factors, then using the ratio of actual to fitted losses in the last few diagonals to estimate the 

cumulative fractions of losses reported at each lag, and then using these fractions to adjust the 

exposure in those diagonals for the next iteration.  

This “one-triangle” approach is occasionally needed, produces good results with enough data, 

and should be part of the software tool kit of any Warranty insurer. But, whenever possible, it is 

better to use the breakdown-month versus report-lag triangle to estimate the report lag factors, since 

this makes use of all the claims in the data, not just those claims that happen to have been incurred 

within a few months of the valuation date. For example, in the case of 120 months’ steady-state data 

with constant loss emergence, if all claims are settled within three months so there are just two 

independent payment lag factors to estimate, only the latest two diagonals of the issue-to-breakdown 

lag triangle will yield information relevant to estimating the “diagonal effect” of unreported losses, 

and these diagonals will contain only about 3.3% of the total claims that would be included in the 

full breakdown-to-report (or breakdown-to-payment) lag triangle.  
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2.13 Tail Factors 

It might be thought that tails would be less important when estimating UPR factors for Warranty 

insurance than when projecting accident-year runoff for other lines, because the duration of 

Warranty runoff is limited by the term of the contracts. However, when we calculate tail factors we 

are not so much trying to answer “how much will be paid each month in the future” as “how much 

remains to be paid relative to what has already been paid”. The results of an analysis of immature 

data are sensitive to this question no matter how long the tail may be in months. The only advantage 

of Warranty insurance over other lines in this respect is that the terms limit the number of distinct 

issue months for which tails need to be calculated.  

The need for tail factors only arises when estimating indicated UPR factors, since the tail is 

already incorporated in strings or formulas used for carried UPR factors. The strings and formulas 

are usually known at the time of the analysis, so it is tempting to consider the problem solved: just 

append a tail with the same shape as the average tail of the strings or formulas. However, this does 

not answer the question of how large the entire tail should be relative to what came before. 

To illustrate, suppose we have observed losses for 27 months in a new program with term 72 

months and carried reserve pro rata. The losses have emerged irregularly but moderately increasing 

with lag from issue. If we assume that losses in the tail after 27 months will be constant, producing a 

pro rata UPR curve, we know that the shape of the tail will be a straight line, but we don’t know 

how steep that line will be. Figure 8 shows three possibilities. 
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Fig. 8. Possible pro rata tails starting from the same observed losses through 27 months. 

The “medium tail” in Figure 8 looks more reasonable than the other two. The key is that its 

earnings rate was derived from the known data; in fact it equals the mean rate of loss emergence 

over the entire 27 months of known data. 

It might be objected that the slope of the tail thus selected is too gentle, since the known part of 

the curve exhibits a steepening in the last few months. One way to address this problem is to 

shorten the “lookback period” for averaging earnings to something shorter than all the known 

months. Another is to apply linear regression to the known earnings factors and either extrapolate 

them to 72 months or (as we prefer for stability) letting the earnings rate through the tail be constant 

at the fitted value for 27 months. A third way is to make the tail steeper using a factor selected by 

judgment. These possibilities are illustrated in Figure 9, using, respectively, the latest 6-month mean 

of the observed earnings, regression to month 27 of all 27 observed earnings, and a doubling of the 

earnings rate from the original 27-month mean. This does not double the slope of the tail, but 

doubles the ratio of the earnings in the tail to the earnings before the tail, since all of the UPR curves 

are based on earnings normalized to total 1.00. 
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Fig. 9. Different determinations of initial tail slope 

It is not necessary that the tail start with the first lag following the known data; in cases where the 

last few known lags are irregular, the tail may be made to start a few months earlier. 

Nor is it necessary that the tail be linear. When dealing with products for which the natural UPR 

curve earns more rapidly at first than later, we may fit Rule of 78 tails; when breakage is apparent we 

may fit a curve with exponentially declining first differences; when “miling out” is a factor we may 

fit a curve that is a weighted average of tails for the various tail lengths corresponding to, say, a 50-

point discrete distribution of miles driven per annum. The latter adjustment makes the UPR curves 

less conservative, since the miling-out of some contracts reduces the earnings in the later lags; it is 

illustrated in Figure 10. The two lower curves actually fit linear tails just like the two top curves, 

except using a weighted mixture of term lengths. 
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Fig. 10. Effect of using miles-per-annum distribution to create a mixture of tail terms. 

In practical work the actuary may need rules for calculating tails, when necessary, for multiple 

programs and/or terms being analyzed in a batch, without halting execution for insertion of 

judgment parameters. Fitting tails for Warranty contracts is as much an art as a science (just as is the 

case for other lines) and cannot eliminate the uncertainty inherent in any extrapolation. But it can be 

systematized. Our preference is to divide the problem into three parts, determining for each tail (1) 

its starting point, (2) its shape, and (3) its weight. 

When batch-processing multiple programs, we have generally found it satisfactory to start the 

tails a month or two earlier than the last available lag, to make the tail pro rata for each group of 

contracts expiring at the same time, using an estimated miles-per-annum distribution, and to average 

the earnings over a lookback period of about one quarter of the observations to determine the initial 

slope of the tail. When fine-tuning a single projection, we often prefer to use an initial earnings rate 

determined by regression, in order to join the tail smoothly to the known data. This requires 

inspection and possible judgment intervention, however, lest the fitted value at the last lag before 

the tail become negative or otherwise unreasonable. 

Possible tail shapes are not limited to pro rata and pro rata summed across remaining terms of 

different lengths. For some lines of business, such as Tire & Wheel, we may let the earnings pattern 

for each remaining term decline linearly to zero, in a sum-of-digits fashion. And it is possible to let 
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the carried UPR for each contract in a block of business, summed across contracts to the end of each 

term, determine the shape of the tail when otherwise estimating the UPR from experience and 

ignoring the carried UPR factors. 

2.14 SSAP 65 Test 3 Estimates 

For SSAP 65 Test 3 we need to convert the cancellation survivorship patterns and loss 

emergence patterns observed in estimating Test 2, together with incurred losses, into estimates of 

losses for existing contracts unincurred at the accounting date. 

While the Chain-Ladder estimator, with the adjustments described in 2.11, is well adapted to 

estimating the Test 2 UPR pattern (and therefore the Test 2 UPR) of a block of Warranty business, 

it is not usually satisfactory for the Test 3 UPR, expected unincurred losses. The reason is that many 

extended Warranty contracts earn very little during their early months, causing projection of 

expected losses for the latest issue months to be impossible or erratic. 

On the other hand, we can adapt the Bornhuetter-Ferguson method (BF) to produce stable 

projections of the Test 3 UPR, to accommodate known trends or seasonality in the calendar-month 

direction, and to be responsive to unknown or variable trends in the issue-month direction. 

The adaptations involve (a) using Hans Bühlmann’s Cape Cod estimator [2], adjusted for 

declining exposures, to obtain an expected loss ratio (ELR), (b) adjusting this procedure as necessary 

using Spencer Gluck’s decay factors, to increase responsiveness to changes in the ELR by issue 

month, and (c) detrending and/or deseasonalizing the data entering the calculations and restoring 

trend and/or seasonality to the results. 

2.14.1 Cape Cod 

In the traditional calendar-accident year context, the Cape Cod estimate of the ELR equals losses 

reported (or paid) to date divided by the portion of premium (or other measure of exposure) 

expected to have emerged as losses over the same time period. The numerator may simply be 

summed over the entire incremental loss triangle, i.e., down the latest diagonal of the cumulative loss 

triangle. The denominator is usually summed across accident periods, with each accident period 

contributing its initial earned premium multiplied by the reciprocal of its cumulative development 

factor. 

In the Warranty context, with issue months instead of accident periods, with in-force premium that 

declines across development months, and with recent diagonals deficient because of unreported 

losses, the denominator of the ELR must be adjusted. It is now summed across all cells of the 

triangle, with each cell contributing its initial in-force premium multiplied by the applicable 

incremental lag factor and, if we are working with an issue-month versus breakdown lag loss 

triangle, by the applicable factor for the expected fraction reported through the valuation date. No 
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adjustment is necessary to the numerator; it remains just the sum of paid losses across all cells of the 

incremental loss triangle. 

2.14.2 Gluck factors 

In a 1997 PCAS article [3], Spencer Gluck proposed an enhancement of the Cape Cod estimator 

that puts BF/Cape Cod at one end of a spectrum with the pure Chain-Ladder at the other. Gluck’s 

contribution may be thought of as the third in a series of simple, non-stochastic, but eminently 

practical approaches to loss reserving, the other two being the Bornhuetter-Ferguson method itself 

[1] and the Cape Cod estimator of the expected loss ratio (1983). We have found Gluck’s procedure 

to be particularly useful for Warranty insurance, where product redesigns and technical changes 

result in irregular trends in the issue-month direction. 

Gluck’s approach produces a separate ELR for each issue month. Notice that the Cape Cod 

estimator, the sum of the losses divided by the sum of the adjusted exposures, is actually an average 

of the loss ratios in each cell, weighted by adjusted exposures. Gluck multiplies these weights by a 

“Gluck weight” dependent on the distance between each issue month and the target month via a 

geometric decay factor g. The scale is immaterial so we may assume that the target month receives 

Gluck weight 1. Then the adjacent months receive Gluck weight g, the next further months receive 

Gluck weight g2, the next further months g3, and so forth. For each target month, the ELR equals the 

sum of g times losses divided by the sum of g times adjusted exposure. 

If the decay factor g equals 1, this gives the pure BF/Cape Cod; if g equals 0, it gives the pure 

Chain-Ladder; as g moves from 1 toward 0, it gives an ELR that becomes increasingly responsive to 

local trends. 

2.14.3 Trending and seasonality 

The procedures to account for trend and seasonality apply to both Test 2 and Test 3, but these 

considerations have a much greater impact on Test 3 than on Test 2. Our preferred approach is to 

deflate and deseasonalize the losses in the source data, based on breakdown date, and, to the extent 

possible, recalculate premiums in the source data, usually putting both losses and premiums on the 

level of the valuation date. If we have correctly measured the trend and seasonality to remove, the 

data becomes stationary and yields UPR factors, ELR’s, calendar-month projected losses, and Test 3 

UPR’s with no embedded trend or seasonality. We then invert the process, restoring the known 

losses to their historical values and trending and seasonalizing the future losses, producing a trended 

and seasonalized estimate of Test 3. The future trend and seasonality factors need not be identical to 

the historical ones. 

This whole procedure depends on estimates of historical trend and seasonality. In principle there 

could be one cumulative trend factor – or even one cumulative seasonality and trend factor – for 
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each historical month. In practice seasonality is usually expressed as a set of 12 factors, one for each 

calendar month, and trend is usually expressed via a single annual trend factor, presumably 

applicable to the entire time period from the earliest included month through the valuation date. 

Estimating trend and seasonality is complicated by the fact that many quantities we would like to 

measure can only properly be compared with earned premium or earned contract counts, running 

the risk that errors in earnings pattern may be confused with trends. These quantities, for which 

measured trends are suspect, include frequency, loss costs, and loss ratios. On the other hand 

severity is not dependent on earnings and calendar-month severity trend may be estimated fairly 

easily and reliably and used as a proxy for total trend. We usually calculate average severity by 

breakdown month, fit both linear and exponential curves to it, and inspect the plots for evidence of 

discontinuities which might justify separate trends for different time periods. As for seasonality, we 

usually deseasonalize the paid severity data using a 13-month moving weighted average and estimate 

the seasonality by averaging the residuals over a multiple of whole years grouped in 12 columns by 

calendar month. 

Because issue month, calendar month, and development lag are multicollinear we cannot obtain 

unique simultaneous estimates of pure trends all three of these directions, but with reasonable 

assumptions serving as constraints, we can use GLM’s to estimate issue and development frequency 

trends and issue and calendar severity and loss-cost trends, and take the product of calendar trend 

for severity and the development trend for frequency as another estimate of total development trend 

to be used in deflating UPR curves. 

2.14.4 Contractual Liability policies 

In many states, service contracts issued by a retailer directly are not regulated as insurance and 

service contracts issued through an affiliated obligor are not regulated as insurance provided the 

obligor itself insures its obligations. For this reason Warranty insurers find themselves underwriting 

some Warranty programs from the ground up, others entirely conditional on the obligor’s failure to 

perform (FTP), and still others so as to cover a share of the risk from the ground up and the 

remaining share on an FTP basis. 

Coverage written from the ground up is assigned the Warranty line of business for annual 

statement purposes; coverage entirely on an FTP basis is considered Contractual Liability Insurance 

under the line of business Other Liability – Occurrence. The most reasonable analysis of coverage 

partially insured with the rest on an FTP basis is that part of the premium (often a small part) should 

be ascribed to Contractual Liability and the remainder to Warranty, all claims should be ascribed to 

Warranty unless and until the program is in FTP status, and thereafter the insured share of claims 

should be allocated to Warranty and the remaining claims to Contractual Liability. 
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Typically a Warranty insurer will impose financial requirements on any obligor insured on an FTP 

basis to protect its interest in that obligor’s solvency, and the insurer may administer the entire 

program and its cash flow. With such protection in place the actual FTP premium may be only a 

small fraction of the amount that would be required on a first-dollar basis. For this reason, SSAP 65 

Test 2 will never be more than a small fraction of SSAP 65 Test 2 applied to the obligor’s underlying 

contracts – although the UPR factors should be somewhat greater than the factors for the 

underlying contracts because expected loss emergence is deferred by being conditional on future 

bankruptcy. 

If the FTP is priced correctly (which on account of the catastrophe risk would justify a low 

expected loss ratio) then Test 3 should be even smaller than Test 2; but in the event the program 

enters FTP status, Test 3 rises immediately to the full Test 3 at the obligor level. In principle, the 

evaluation of Test 3 for a program not in FTP status requires estimation of the probability of first 

entering insolvency at each future month together with the expected unincurred losses at that time. 

2.15 All-Terms Factors 

Suppose we need strings for a set of target contracts differing from each other in term, 

manufacturer’s warranty, odometer reading at issue, and so forth. Some or all of the target contracts 

may not be represented in the available data, or may be represented but in too small a volume to 

produce reliable indicated UPR factors. Or reasonably credible data may be available and each 

indicated string may appear reasonable in isolation but the strings for different contracts may not be 

related to each other in a logical way. 

For example, Warranty contracts are usually marketed for a few distinct terms, such as 60 months 

or 60,000 miles (conventionally written 60060), 72 months or 90,000 miles (72090), and so forth. 

When these nominal terms are effective at issuance of the contract, the data may easily be broken into 

a few homogeneous term groupings. But when the nominal terms are effective on expiration of the 

manufacturer’s warranty, there may be a great many actual terms from issue to expiration, depending 

on how much of the manufacturer’s warranty remains at time of issue. In this case it is unlikely that 

the available data would contain enough contracts to estimate UPR curves for each separate actual 

term, not to mention also account for differences in remaining manufacturer’s warranty. 

Here we describe a technique that uses an entire body of data, with many terms, to derive a family 

of UPR curves, each curve reflecting the experience of all the terms in the data, weighted by 

proximity to the term being evaluated. We call the model that generates such a family of curves All-

Terms Factors, or ATF. It is in fact a comprehensive model of the loss emergence process for 

contracts on automobiles, but it is also applicable in simplified form to other contracts. 

The ATF model derives a theoretical loss emergence pattern based on our contract, the 

manufacturer’s warranty (MW), trend, breakage (i.e., policyholders’ failure to present eligible claims), 
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and certain other factors, all conditional on the car’s being driven a given number of miles per 

annum. It then integrates over an assumed distribution of miles per annum to obtain the expected 

loss emergence pattern for the usual case where the driver’s average usage is not known in advance. 

This emergence pattern, when converted to a UPR curve, is by itself useful in reserving, and, as 

explained below, may be thought of as a broad generalization of the concept of earning pro rata 

from the end of the manufacturer’s warranty. This part of our ATF model turns out to be a modest 

extension of Kerper and Bowron’s exposure model [4], mentioned above. We explain it here in 

detail, using our own terminology and notation; it has certain enhancements but in its essentials is 

nearly identical to their model. 

Our algorithm for applying the model derives the expected loss emergence pattern in units 

proportional to expected losses, before eventually normalizing it to total 1.00. Therefore in addition 

to the earnings pattern per se, it yields estimates of relativities between any pair of proposed 

contracts. These relativities, when taken to a common base contract, are very useful in ratemaking. 

We may apply the model of loss emergence directly to a proposed contract, on the assumption 

that it accounts for all relevant factors. Alternatively, we may fit the model to a body of data and obtain a 

family of curves, one for each term in months, measuring only the effects of any factors not included in the model. We 

call these curves residual ATFs. We may then derive the UPR curve for any contract, whether part of 

the data base or not, by applying the contract’s theoretical loss emergence pattern to the residual 

emergence pattern for the same term. The residual ATFs for any given term are derived not just 

from the experience of contracts with that term, but from all contracts in the data, weighted by 

proximity to the target term.  

If the original model really does fully explain the variability of loss emergence patterns, the 

residual ATFs will all be straight lines and using them will make no difference. Otherwise, starting 

with the residual emergence pattern will improve the performance of the model on new contracts, 

provided the residuals were based on a large enough volume of relevant cxperience. 

We can, if we wish, ignore some or all of the usual explanatory variables and let their effect (if 

any) appear in the residual ATFs. If we ignore all variables except term in months, the residual 

ATF’s become a family of average UPR curves, one for each term. We call this the simplified ATF 

model. It is appropriate as an aid in reserving for whole term groupings in the same body of data 

from which the ATF’s are derived, but it will not usually produce reliable UPR curves for individual 

contracts or for different bodies of data. For these purposes the general ATF model, with its 

explanatory variables, expected loss emergence pattern, and residual ATF’s, is required. 

The ATF model starts with the assumption that parts failures will occur whether or not a car is 

covered by a warranty, and that the number or cost of such failures may be subject to trend and may 

depend on the car’s usage as well as on the passage of time. Then the model considers how parts 
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failures translate into claims against our contract; this depends on the contract term in months and 

miles, the MW in months and miles, the relationship between services covered by our contract and 

by the MW, factors such as breakage and pre-expiration claims spikes, and the distribution of miles 

driven per annum. Finally the model provides procedures for estimating the residual UPR curves, 

and other parameters, from experience. 

2.15.1 Emergence of failures 

We assume that any car is subject to parts failures of two kinds: 

a. Those that depend on use (e.g., power train) 

b. Those that depend on time (e.g., paint and trim) 

Here we consider all failures, whether ultimately paid for by the manufacturer, the insurer, or the 

customer. The cost and the earnings pattern of a contract to the insurer will eventually depend on 

how this responsibility is allocated, but it all starts from the initial failure of some part of the car. 

The failure emergence rate is therefore the starting point of the All-Terms Factors model.  

Let s be distance driven in miles and t be time elapsed in months. Assume that failures of type (a) 

emerge at a rate λa per mile and failures of type (b) emerge at a rate λb per month. We may conceive 

of these rates as Poisson lambda parameters for failure frequency, or as means per unit distance or 

time of some distribution of costs. 

For a car driven m miles per annum, ds/dt = m/12 and, if y = number or cost of failures in time t, 

E(y) = ((m/12) λa + λb)t 

or 

E(y) = (λa + (12/m)λb)s 

For our purposes we do not need the values of λa and λb in absolute terms so for simplicity we 

replace them with a single assumption: the fraction fmi of failures that emerge in proportion to miles 

driven, with the complement 1-fmi emerging in proportion to time elapsed. If we let mavg = average 

miles driven per annum, we express this as  

fmi = (mavg/12) λa / ((mavg/12) λa + λb) 

so that  

λb = (mavg/12) λa ((1 / fmi) -1) = (mavg/12) λa (1 - fmi) / fmi 

and 

E(y) = (λa (1 + (mavg/m) (1 - fmi) / fmi))s 

= (K ( fmi + (mavg/m) (1 - fmi)))s 
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which implies 

E(y) = (K(m/12) ( fmi + (mavg/m) (1 - fmi)))t 

= (K((m/12) fmi + (mavg/12) (1 - fmi)))t 

where K = λa / fmi is a constant of proportionality. 

The 12’s appear in this formula to convert mileage from annual to monthly, because the 

conventional measure of auto usage is miles per annum, but our time t is measured in months. 

Notice that K does not depend on miles driven, but that the remaining (parenthesized) factor does, 

so that the expected failures of cars driven at different rates are proportional to this factor. 

However, K may be generalized to be a function of calendar month, months elapsed since the car 

was put in service, or attained odometer reading, so that the loss emergence pattern and/or the 

relative expected costs of two cars may reflect various trends. For convenience we implement these 

trends at the same time as we implement factors representing plan design, manufacturer’s warranty, 

breakage, etc., but if you wish you may think of them as a distinct step modifying the emergence of 

failures. 

2.15.2 Emergence of claims 

The heart of our exposure model is how we adjust the failure emergence rate to convert it to a 

claims emergence rate, reflecting the conditions of our contract, the manufacturer’s warranty, the 

miles-per-annum distribution, time trend, odometer trend, breakage, claims spikes, and “extras”. 

Because of the requirements of SSAP 65 Test 2, the emergence pattern of claims is a guide to the 

desired earnings pattern of premium, and we shall speak of earnings patterns and emergence 

patterns interchangeably. The ATF model generates these emergence patterns up to a constant of 

proportionality times total losses, comparable across plans, so we may obtain valid relativities. For 

the UPR pattern we normalize the emergence factors to total 1.00 and then sum stepwise backwards 

from the last elapsed month to the first. 

In a sense our entire adjustment process is nothing more than an elaboration of the simple pro 

rata, or constant-earnings, model. It results in a step function for earnings, and a piecewise-linear 

function for UPR factors, but there may be so many steps that the UPR function is essentially 

indistinguishable from a smooth curve.  

We illustrate the successive elaborations in turn. 

Straight pro rata. Suppose the term of a contract is 60 months or 60,000 miles, with no remaining 

manufacturer’s warranty, and that it is applied to a car driven 12,000 miles per annum. Then the 

contract will expire on account of both time and mileage at the end of its 60th month. Assume for 

now that the average number of miles driven per annum (across all cars) is 15,000 and that claims 
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emerge 80% in proportion to miles and 20% in proportion to time. Then all emerging failures are 

covered by the contract, the earnings pattern is constant for 60 months, equal to K ((m/12) fmi + 

(mavg/12) (1 - fmi)) = 1050K, and is zero thereafter, and the UPR pattern is pro rata starting from 1 at 

0 months and reaching 0 at 60 months. Its total earnings, proportional to its total expected loss cost, 

will be 60(1050K) or 63000K. 

Now suppose we have another car driven 18,000 miles per annum but otherwise identical to the 

first. This car will mile out at 40 months, will earn K ((m/12) fmi + (mavg/12) (1 - fmi)) = 1450K per 

month for 40 months and zero thereafter, and its total earnings will be 40(1450K) = 58000K. The 

expected loss cost of the second car relative to the first is therefore 58000/63000 = 0.921. The UPR 

pattern of the second car is pro rata starting with 1 and reaching 0 at 40 months. 

Similarly a third car driven 30,000 miles per annum but otherwise identical to the first will mile 

out at 24 months, will have total earnings of 54000K, and a relativity to the first car of 0.857. 

The emergence pattern of the first car (reduced proportionally to start at 1) is shown in Figure 

11a; the UPR patterns of all three cars are shown in Figure 11b. 

  
Fig. 11a and 11b. Constant earnings over term of contract, and straight pro rata UPR factors. 
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Pro rata from end of MW. Suppose each of these cars is subject to a manufacturer’s warranty of 36 

months or 36,000 miles. For the first car, this warranty will expire at the end of the 36th month. The 

second car will mile out of its MW after 24 months, and the third car after 14.4 months. We assume 

no earnings for our contract during the MW. The earnings pattern (Figure 12a) now has three steps, 

zero from issue to end of MW, non-zero constant from end of MW to expiration, and zero 

thereafter. The UPR pattern (Figure 12b) is flat until the MW expires, then pro rata to 60 months 

for the first contract, 40 for the second, and 24 for the third. 

  
Fig. 12a and 12b. Constant earnings, and pro rata UPR factors, from end of MW. 

Power train and non-power train MW’s. Now suppose that each car has an extended power train (PT) 

warranty of 50 months or 50,000 miles, and that 35% of all failures relate to the power train. Now 

the earnings pattern (Figure 13a) has an additional step and the UPR pattern (Figure 13b) has an 

additional slope. 

  

Fig. 13a and 13b. Earnings with PT and non-PT MW’s and corresponding UPR factors. 

Extras and limitations. Up to now we have assumed that the full cost of a failure, and nothing 

more, is borne either by the MW or by our contract. But our contract may in fact cover only part of 

what the MW covers. We adjust for these limitations via factors Fpt and Fnpt applied to the PT and 

non-PT failures respectively. On the other hand, our contract may cover services, such as towing, 

that are not part of the MW. We relate these “extras” to y via a factor E. For example, Fpt might be 
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0.99, Fnpt 0.91, and E 0.03. Figures 14a and 14b show the effect of these values on earnings pattern 

and UPR factors. 

  
Fig. 14a and 14b. Earnings pattern with extras and limitations, and corresponding UPR curves.  

Note that the first earnings step is greater than zero, and the initial slopes of the UPR curves are 

less than zero.  

Pre-expiration spike. As a warranty contract approaches its expiration, policyholders tend to present 

claims for failures that may have accumulated over some months. If we allow that this increases by 

10% the claims presented in the final month of a contract, and (for simplicity) make no adjustment 

to the claims presented in earlier months, then the resulting earnings and UPR patterns are as shown 

in Figures 15a and 15b. 

  
Fig. 15a and 15b. Earnings pattern and UPR factors with 10% pre-expiration spike. 

Trend and breakage. Monthly trend and breakage may be represented by monthly growth or decay 

factors raised to the power of the number of elapsed months and netted against each other. This 

accounts for the effect of trend on the shape of the earnings and UPR curves. Odometer trend may 

be represented by a growth factor per (say) 10,000 miles, raised to an appropriate power based on 

the issue odometer and the number of miles driven per annum. Assuming a trend factor (more 

precisely a trend-net-of-breakage factor) of 1.05 per annum gives the results shown in Figures 16a 

and 16b (the vertical scale of Figure 16a is smaller than the previous earnings pattern tables, to 

accommodate the effect of five years’ trend). The effect on the UPR curves is to make them more 
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convex, but only slightly so; trend (when applied in the issue-month axis as well as the development 

axis) has a much greater effect on loss ratios. 

  
Fig. 16a and 16b. Earnings pattern with 5% annual trend. 

 

Combining miles per annum values. Now suppose that there is a 60% chance that a car will be driven 

12,000 miles per annum, a 35% chance of 18,000 and a 5% chance that it will be driven 30,000 

miles. Weighting the curves from Figure 16b and averaging them gives us Figure 17. 

 

Fig. 17. Weighted-average combination of UPR curves for three miles-per-annum values 
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Miles-per-annum distribution . In practice we approximate the distribution of miles driven per annum 

as multinomial with some number N (say 50) of miles values each with an associated probability. 

Most commonly we select the miles values as midpoints of equiprobable intervals determined by 

analyzing a large collection of contracts presenting claims, using issue odometer, issue date, 

odometer at time of first claim, and breakdown date of first claim. This distribution may be adjusted 

by judgment if it is felt to be biased because of having excluded contracts with no claims. In the case 

N=50 the probabilities are each 0.02. The result using a representative 50-point miles-per-annum 

distribution is shown in Figure 18. 

 
Fig. 18. UPR curve using 50-point miles-per-annum distribution. 

The slight irregularity of the UPR curve in Figure 18 beyond lag 48 months reflects the fact that 

all cars driven less than 12,000 miles per annum will expire at 60 months; therefore there is a large 

probability mass weighting the 60-month curve, with its inflection point at 50 months when the 

manufacturer’s power-train warranty expires. This is not entirely smoothed out by the contracts with 

other miles-per-annum values, since many of these mile out earlier than 50 months. 

One-half-month adjustment. We normally assume that UPR curves are to be applied to all contracts 

written in a single month, and that writings are approximately uniform through the month. Figure 19 

shows the curve from Figure 18 averaged with the same curve offset by one elapsed month, the so-

called one-half-month adjustment. 

 

Fig. 19. UPR curve with one-half-month adjustment. 
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Note that this curve is slightly smoother than the preceding curve and also reaches zero at the 

end of the 61st month, rather than the 60th, but with slope from 60 to 61 about half that of the slope 

from 59 to 60. This is the characteristic pattern for one-half-month adjustments. 

2.15.3 Residual emergence pattern 

Up to now we have talked about how failures, and resulting claims, “ought” to emerge, based on 

known factors that seem important, such as term, MW, trends, and breakage. If claims really emerge 

in this way and if we divide actual losses by adjusted exposures lag by lag, for a large collection of 

contracts with the same term, the result should be constant incremental monthly loss ratios, or 

straight-line (“pro rata”) residual ATF’s. 

But what if claims do not emerge exactly as expected? For example, what if we assumed no 

breakage but breakage really is important? Then our theoretical earnings pattern would not decline 

as much as it should with increasing lag, and our theoretical UPR curve would not be as concave as 

it should be. If in our body of data we “earn” the premiums according to our theoretical pattern, and 

then compare losses with this theoretical earned premium, the result will be a residual earnings 

pattern (proportional to the partial loss ratios to theoretical earned premium) that declines with 

increasing lag, or residual ATF’s that are concave. Now suppose that, when we apply the exposure 

model to get a theoretical earnings pattern for some proposed contract, we multiply it by the residual 

earnings pattern for the term of the contract. Then we will be approximately where we would have 

been had we built the missing factors into our model to start with. Only approximately so, because 

the residual UPR curve is based on averages, while we are applying it to a particular contract, but in 

some cases it may be exact, if the missing factors picked up in the residual curve affect all contracts 

in the same way. 

In this way we can use residual ATF’s to “true up” our theoretical UPR curves by the ATF model 

– not just for factors that we might have inadvertently omitted or mis-estimated, but for factors not 

known to the model, or handled by the model in a simplified way. For example, if breakage were not 

described by simple exponential decay, but instead tended to increase sharply after, say, year 3, the 

residual ATF’s will pick up this type of variation automatically and will transmit it back to UPR 

curves calculated for proposed contracts. 

Using residual ATFs should improve the fit of the UPR curves for proposed contracts provided 

(a) the proposed contracts are similar to the contracts in the experience data and (b) the data is of 

sufficient volume that the residual ATFs represent signal and not noise. 

2.15.4 Estimation 

Our model provides for estimating residual ATFs for any term using all terms in the experience 

data. It does this by loss development using both loss and exposure triangles, assembled separately 



The Unearned Premium Reserve for Warranty Insurance 

Casualty Actuarial Society E-Forum, Fall 2014-Volume 1 41 

for each target term t from monthly lag triangles of all available terms, weighted by proximity to the 

target term, but (a) excluding losses that may have emerged after the “official” expiration of a 

contract (for which the model provides no natural exposure) and (b) with the early rows of the 

triangle for each contributing term t* consolidated, if necessary, so that the number of rows equals 

the number of columns. The latter adjustment allows the triangle to be combined, in the weighted 

average, with triangles for terms greater than t* without distorting development patterns. As usual, 

the exposure triangle reflects the possible decline along rows due to cancellations. 

Because the emergence-of-failures patterns are independent of the MW and of our contracts, and 

the adjustments of the ATF model correct them to the expected emergence-of-claims patterns 

appropriate for our contracts using a constant of proportionality independent of term, both losses 

and adjusted exposures may be combined across terms in this way. In effect we first combine the 

data for all available terms, and then derive residual ATFs for all terms, including terms not found in 

the data. Combining the data and then deriving the curves is more consistent and systematic than 

deriving curves for each available term and then attempting to reconcile and interpolate them. Our 

use of a moving weighted average across terms almost always produces a smooth progression of 

residual ATFs from term to term; it is also tolerant of situations where there is a reasonable volume 

of data in aggregate but the data is sparse for individual terms (see Figure 20). 

The only caveat is that development must essentially cease at the true end of each term. For 

business not satisfying this condition (e.g., prepaid maintenance, where some dealers informally 

extend the term to maintain goodwill), judgment adjustments may be necessary either to the data or 

to the results of the ATF model. 
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Figure 20 illustrates residual ATFs for a single large program. The residuals are close to straight 

lines for the shorter terms, but bow outward thereafter, especially for terms 84 months and greater. 

This suggests that the longer-term contracts may be qualitatively different from the rest in ways that 

are not explained by the model, and that, in the weighted average of data from different terms, these 

contracts are pulling those of, say, 60 months, outward. Also the data at the longer terms and later 

lags is sparse, as shown by the irregularity of the UPR curves. 

 
Fig. 20. A set of residual UPR curves based on all data. 

Figure 21 shows the residual UPR curves for the same case but with the analysis subdivided so 

that the curves for terms 1-72 months depend only on data within that range, and likewise for terms 

73-120 months. There are now two families of curves with space between. 

 
Fig. 21. Residual UPR curves based on data divided at term 72 months. 
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Figure 22 shows the same curves as in Figure 21, except limited to terms 1 through 72 months 

and rescaled for clarity. For the terms from about 48 months through 72 months there is still a 

modest amount of convexity. The ATF model as applied leaves a small amount of the variability of 

these UPR curves (from pro rata) unexplained.  

 
Fig. 22. Detailed look at terms 1-72 from Fig. 21. 

Figure 23 shows the residual curves for terms 1 through 72 months after modifying the model to 

include an annual trend factor of 1.05, thereby removing that amount of trend from the residuals. 

This eliminates most of the apparent convexity. 

 
Fig. 23. Residuals after including annual trend of 1.05 in model. 

Figure 24 compares the curves for terms 36, 48, 60, and 72 months, with and without the trend, 

against pro rata lines for the same terms. Clearly the model with the 5% trend parameter brings the 

residual curves closer to straight lines. However, in estimating UPR curves for proposed contracts, if 
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trend is omitted from the model, it will emerge as part of the residuals, and thus find its way 

indirectly into the estimated curves, often making them close to what they would have been with 

trend included. 

 
Fig. 24. Comparison of residuals after fitting models with no trend and 5% trend with pro rata. 

In summary, when deriving UPR curves for proposed contracts, the ATF parameters involving 

our contract, the manufacturer’s warranty, the power-train, non-power-train, and extras fractions, 

and the pre-expiration spike, should be chosen carefully, for they affect different contracts in 

different ways. If there exists a large enough body of relevant experience, it may be used to derive 

residual ATFs that capture the effect of all other factors, including trend and breakage, at least 

approximately. The UPR curves for the proposed contracts may be derived by applying the ATF 

model starting with the residuals. Otherwise, trend and breakage parameters should also be chosen 

carefully, and the ATF model applied directly to the proposed contracts without using residuals. 

2.15.5 Relativities 

Our ATF model generates its earnings factors, before normalizing them to total 1, as amounts 

which are proportional to expected losses across plans as well as across lags within a single plan. 

Therefore, if we sum these factors across all lags, we obtain sums proportional to the total expected 

losses for each plan. This facility works identically whether starting from a table of residual ATFs or 

not. 

For example, a plan with term 48048 with underlying MW of 24024 power train and non power 

train is worth 45.2% more than a plan with term 60060 with MW of 50050 power train and 36036 

non power train, using no residuals, or 42.6% more using the residuals from the model fitted to a 

particular large account with 5% trend. 
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We make use of relativities of this type when setting up manual rate tables for new programs. 

Typically such tables involve several different terms, and several different coverage levels, applied to 

vehicles with several different manufacturers’ warranties. For used vehicles the rate table also 

includes different odometer “bands”, for example, 0-999 miles, 1000-9999 miles, 10000-19999 miles, 

and so forth. Our rating procedure then applies the ATF procedure to proposed contracts with the 

given terms, MW’s, coverage levels, and odometer-band midpoints or centers of gravity. For each 

such contract the model gives its relativity to a particular base contract. If we have separately 

estimated the expected loss cost for the base contract, these relativities lead to the expected loss cost 

for each of the proposed contracts. In this way the ATF model, primarily designed to derive families 

of UPR curves, may also derive families of expected loss costs for manual ratemaking.  

Issues of homogeneity may arise when estimating ATFs. If the contracts for some terms differ 

from those for other terms in ways not being accounted for in the model, then the residual ATFs for 

terms close to the boundary may be distorted. We may address this issue by controlling the 

weighting of data for terms successively more remote from the term being estimated. Or, if we 

know a priori that the shape of the UPR curves should differ for certain groups of terms (for 

example because they do or do not have manufacturers’ warranties), then we may request that our 

model calculate the family of curves within each of several term groupings using local data only. 

It turns out that the final strings produced by AllTermsFactors are not sensitive to assumptions 

that affect all contracts in the same way, such as breakage and time-based trend. For example, 

omitting trend entirely, when it exists in the data, will simply transfer it from the model to the 

residual curves, from which it will be picked up again by the fitted curve for each particular contract. 

On the next page is a schematic diagram of the All-Terms Factors process. The names inside 

blue ellipses are some functions in our system: AllTermsFactors, which uses experience to generate 

ATF curves for all contracts in the data, and a table of residual ATFs, ATFFormula, which applies 

ATFs to obtain UPR for each contract in the data, and GetATF, which uses residual ATFs to 

obtain UPR factors for arbitrary contracts. We do not need to be concerned here with how these 

functions operate, but need simply to recognize the roles they play in the model. 

Note the distinction between contract attributes, global parameters, and estimator controls. The 

contract attributes are stored in our data. Some of the global parameters may be estimated from the 

data, or may be selected by judgment and checked for reasonableness by inspecting the residual 

string table. The estimator controls are largely a matter of judgment. 

2.15.6 All-Terms Factors for non-auto contracts 

Many of the features described above, such as terms in months and miles, power-train versus 

non-power-train MW’s, and extras, are designed for contracts on automobiles. However, the All-

Terms Factors model also may be applied to non-auto business such as electronics or power sports. 
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One approach is to use the simplified ATF model, creating a table of ATFs by term only. This 

should be satisfactory when analyzing the UPR term by term for the same data set. If we wish to 

analyze individual contracts or groupings of contracts other than by term, but recognize differences 

among contracts in MW’s, it may be preferable to use the regular model, interpreted slightly 

differently from auto, as follows: 

 Distinguish parts versus labor instead of power train versus non-power train 

 Code all terms and MW’s in the data to have no miles limit 

 Assume a one-point dummy miles distribution with a low miles value 

 Use the “extras” input for Accidental Damage Handling coverage if applicable. 

The last point requires explanation. Most non-auto Warranty contracts do not involve extra 

services, so the coverage factors for extras are normally zero. However, some contracts provide 

Accidental Damage Handling (ADH) coverage in addition to warranty coverage in case of defects. 

ADH is different from typical extras in that (a) its expected value may be much higher, often of the 

same magnitude as the regular repair or replacement coverage, and (b) it may be subject to a months 

limit shorter than the regular term of the contract. Our ATF model as implemented in software 

provides for (a) via the “extras” parameter and provides separately for (b), contract by contract. 

 

  



The Unearned Premium Reserve for Warranty Insurance 

Casualty Actuarial Society E-Forum, Fall 2014-Volume 1 47 

All‐Terms Factors Process 

 

SOURCE 

Contract attributes:                Unique string table 
Term                    recognizing contract 
Coverage level                  attributes (u x 120) 
Mfr warranty – pt        AllTermsFactors 
Mfr warranty – not pt                Indices of contracts 
Dealer warranty                in unique string 
Odometer at issue                table (length N) 

Global parameters:  
Mileage distribution 
p = pt/(pt+npt)  losses 
k = (pt, npt, ext)/(MW pt+npt)               ATFFormula 
m = “miles fraction” 
Odometer trend 
Dev trend * Breakage decay 
Pre‐expiration spike 

Estimator controls: 
Weights decay factor                Experience factors 
Payment lag factors                by lag for source 
Tail specifications                contracts (e.g., for 
PLRM/LDM                  analyzing the source 
Issue‐breakdown/issue‐pmt              account; N x 120) 
 
TARGET 

Contract attributes:       Residual string table 
Term           removing effects of 
Coverage level         attributes (120 x 120) 
Mfr warranty – pt 
Mfr warranty – not pt 
Dealer warranty 
Odometer at issue 
 
Global parameters: 
Mileage distribution 
p = pt/(pt+npt)                  Experience factors 
k = (pt, npt, ext)/(MW pt+npt)              by lag for target 
m = “miles fraction”         GetATF     contracts (e.g., for 
Odometer trend                constructing a string 
Dev trend * Breakage decay              table; n x 120) 
Pre‐expiration spike 
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2.15.7 Miles-per-annum distributions 

Mileage distributions. The All-Terms Factors model requires that we take into account the 

number of miles driven per month by the holder of a contract; this is not known at the issue date 

but must be represented with a probability distribution. Such a distribution is naturally continuous 

but we have found it useful to approximate it with an n-point discrete distribution.  

It is tempting to measure the annual mileage distribution using issue odometer and approximate 

age of vehicle, based on model year, both usually available in the data for contracts on used cars. 

Unfortunately this gives the average miles driven by the previous owners rather than by the owners 

purchasing the contracts in the data. Instead we consider contracts presenting claims, and use the 

odometer at issue, the odometer at breakdown, the issue date, and the breakdown date of the first 

claim for each such contract. Using only the first claim avoids counting the down time for service 

and thereby reducing the apparent mileage. However, using contracts with claims probably biases 

the result upward, as discussed below. 

Figure 25 shows the distribution of miles per annum, to the nearest thousand, for contracts in a 

large representative program. 
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Fig. 25. Distribution of miles per annum, in thousands, based on first claims 

The values represented by these bars may be normalized to total 1.00 by dividing by the total 

number of contracts observed, in this case 535,947, and these probabilities used with the midpoints 

of the x values in each group to define a discrete distribution. Here the first bar runs from 0 to 500 

miles and the last bar covers 59,500 or more miles (so its midpoint should be greater than 60,000); 

the remaining bars are each of width 1,000, with boundaries 500, 1500, etc. 

The function generating the above plot provided the following statistics (from a fragment of a J-

language session screen): 

 m=:20040701 20140630 20140630 1000 0 61 1 MilesDistribBands 
‘‘ 

Mean (weighted by days) = 14930 
Mean (weighted by cars) = 16442 
Standard deviation (from variance weighted by days) = 6987 
Standard deviation (from variance weighted by cars) = 8173 
Number of observations = 535947 
Maximum = 179488 
Minimum = 365 
Probability weight for each band determined by total years 
Representative value in each band equals center of gravity 
Approximated mean: 14930.44683 
Approximated std dev: 6802.084723 

Often, instead of using groups of equal width with different probabilities, we use N groups of 

variable width with equal probabilities. The following lines illustrate this with N=50: 

 m50=.20040701 20140630 20140630 50 1 MilesDistribNpt ‘‘ 
Mean (weighted by days) = 14930 
Mean (weighted by cars) = 16442 
Standard deviation (from variance weighted by days) = 6987 
Standard deviation (from variance weighted by cars) = 8173 
Number of observations = 535947 
Maximum = 179488 
Minimum = 365 
Boundaries of bands determined by accumulated years 
Representative value in each band equals center of gravity 
Approximated mean: 14930.4052 
Approximated std dev: 6712.981379 

The mean approximated by the discrete distributions is very close to the mean of the entire 

distribution while the standard deviation is a bit smaller. This is mainly the result of compressing all 

values in the right tail of the actual distribution – which range as high as 179,488 – into a single value 

of 38,463. The whole 50-point equally-probable distribution is: 

 5 10$round >0{m50 
 2984 4828 5804 6550 7151 7675 8138 8562 8954 9318 
 9663 9992 10313 10628 10930 11224 11519 11808 12089 12373 
12658 12946 13234 13522 13815 14115 14418 14716 15025 15347 
15684 16032 16387 16755 17139 17543 17960 18412 18897 19416 
19973 20588 21279 22064 22971 24051 25402 27200 30004 38463 
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As expected, these values are much closer to each other toward the overall mean than in the 

extremes, especially in the long right tail. 

The use of miles-to-first-claim as a starting point for estimating the miles-per-annum distribution 

may be the most practical available method but is not ideal. In particular, it ignores the miles driven 

by any cars that have not presented claims. Since claims emerge largely as the result of usage, cars 

presenting claims may be expected to be driven more, on average, than all cars, and produce a 

distribution that is biased upward. One way to offset this tendency is to determine the N mileage 

intervals and their means using time as a weight, as shown above. 

Miles per annum might well be represented by a continuous distribution and we use a discrete 

approximation mainly for simplicity. If we plot the distribution from Figure 25 as a curve and 

superimpose a lognormal distribution fitted by the method of moments, we obtain the comparison 

shown in Figure 32. 

 
Figure 32. Observed miles-per-annum distribution (blue) compared with lognormal distribution 
(red) and Gamma distribution (green). 

The lognormal does not fit this distribution well, especially in the tails; the Gamma is rather 

better in the left tail (in which we are not particularly interested) but worse in the central area and the 

right tail; moreover, there is some area under both of these fitted distributions arbitrarily far to the 
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right, whereas miles driven have a practical upper bound based on speed limits and the finite 

number of hours in the day. For our purposes we find the discrete distributions more satisfactory. 

3. CONCLUSIONS 

In conclusion, the UPR is critically important for Warranty Insurance but there are reliable 

techniques for calculating it. These techniques are similar to those used for loss reserves in other 

lines of insurance, but require adaptations to address the special characteristics of Warranty 

contracts. Among these characteristics are exposure that declines over the life of a cohort of 

policies, loss development triangles that must be adjusted for incompletely reported losses in recent 

diagonals, tails that are of limited duration but contain significant probability mass, and the need to 

calculate internally consistent sets of UPR curves for entire families of contracts. When properly 

conceived and programmed, procedures for assigning and testing UPR factors may be efficiently 

applied to large numbers of Warranty programs each split into homogeneous subdivisions. 
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