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A Note on the Upper-Truncated Pareto Distribution 

David R. Clark, FCAS 
 ____________________________________________________________________________________________  
Abstract 

The Pareto distribution is widely used in modeling losses in Property and Casualty insurance.  The thick-tailed 
nature of the distribution allows for inclusion of large events.  However, in practice it may be necessary to apply 
an upper truncation point so as to eliminate unreasonably large loss amounts and to ensure that the first and 
second moments of the distribution exist. 
 
This paper provides some background on the characteristics of the upper-truncated Pareto distribution, and 
suggests some diagnostics, based on order statistics, to assist in selecting the upper truncation point. 
 
Keywords. Enterprise Risk Management, Pareto, Truncation, Order Statistics 

 ____________________________________________________________________________________________  

1. INTRODUCTION 

The Pareto distribution is useful as a model for losses in Property and Casualty insurance.  It has 
a heavy right tail behavior, making it appropriate for including large events in applications such as 
excess-of-loss pricing and Enterprise Risk Management (ERM). 

For applications in Enterprise Risk Management, however, there may be practical problems with 
the Pareto distribution because non-remote probabilities can still be assigned to loss amounts that 
are unreasonably large or even physically impossible.  Further, a Pareto distribution with shape 
parameter 𝛼 < 2 will not have a finite variance, meaning we cannot calculate a correlation matrix 
between lines of business.  In practice, an upper truncation point (T) is introduced and losses above 
that point are not included in the model.  This upper truncation point may be considered the 
“Maximum Possible Loss” (MPL). 

The difficulty for setting the upper truncation point is that the true Maximum Possible Loss for a 
given risk portfolio may not be easily determined.  Analysts may hold different opinions as to what 
is possible. 

In Enterprise Risk Management models, one goal is to evaluate the “tail” of the distribution, 
which can be very sensitive to the selection of the upper truncation point. 

The goal of this paper will be to describe the characteristics of the upper-truncated Pareto and to 
offer some measures that may be useful in selecting the upper truncation point based on the sample 
of historical loss data.  Some of these measures are results taken from the field of order statistics.  
We will not eliminate the need for the analyst to make an informed judgment when selecting the 
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upper truncation, but we can give some objective measures to assist in making that judgment more 
informed. 

1.1 Research Context 
The literature on the Pareto distribution is vast.  The text by Johnson et al. [5] provides the 

standard overview including historical genesis of the mathematical form, key characteristics and a 
comprehensive bibliography.  Within the Casualty Actuarial Society literature, the 1985 paper by 
Stephen Philbrick is a recommended introduction and includes a brief discussion of upper 
truncation. 

Our primary focus will be those characteristics of the Pareto distribution, particularly order 
statistics, that will be most useful for the Enterprise Risk Management application. 

Order statistics is a branch of statistics that has grown over recent decades.  It is concerned with 
inferences from an ordered sample of observations.  In the CAS literature, an introduction to this 
topic related to estimating Probable Maximum Loss (PML, as distinguished from MPL) is given by 
Wilkinson (1982). 

Extreme Value Theory (EVT) has developed as a branch from order statistics, with attention 
given to the distribution of the largest value of a sample.  Much of EVT deals with approximations 
to the distribution of the largest value assuming the original distribution form is unknown. 

1.2 Objective 
The objective of this paper is entirely practical: given that the upper-truncated Pareto is widely 

used in insurance applications, we wish to supply analysts with additional information for selecting 
the upper truncation point. 

1.3 Outline 
The remainder of the paper proceeds as follows: 

Section 2 will discuss the characteristics of the upper-truncated Pareto distribution itself. 

Section 3 will review the maximum likelihood method for estimating the model distribution 
parameter. 

Section 4 will introduce order statistics related to the upper-truncated Pareto and how they can 
be useful for selecting the upper truncation point. 

Section 5 will present two brief examples to illustrate the technique of estimating the upper 
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truncation based on the order statistics for the largest loss. 

2. CHARACTERISTICS OF THE UPPER-TRUNCATED PARETO 

2.1  The [Untruncated] Single Parameter Pareto 
The cumulative distribution function for the Pareto distribution is given below in formula (2.1).  

This form represents losses that are at least as large as some lower threshold, 𝜃, following the 
notation in Klugman et al.  This form is sometimes referred to as the “single parameter Pareto”  
with shape parameter 𝛼 and a lower threshold used to define the range of loss amounts supported 
(𝜃 is not considered a parameter).  Sometimes this form of the distribution is referred to as a 
“European Pareto” (see Rytgaard, 1990) to distinguish it from the two-parameter form.  An 
alternative form uses a shift 𝑌 = 𝑋 − 𝜃, representing just the portion of the excess loss above the 
threshold and the theta 𝜃 treated as a scale parameter.   For the remainder of this paper we will only 
consider the single parameter or “European” form of the distribution. 

 

𝐹(𝑥) = 1 − �
𝜃
𝑥
�
𝛼

      𝜃 ≤ 𝑥, 𝛼 > 0 (2.1) 

 

The moments of the unlimited Pareto distribution are given as follows. 

𝐸(𝑋𝑘) =
𝛼 ∙ 𝜃𝑘

𝛼 − 𝑘
       𝛼 > 𝑘 (2.2) 

 

We note that not all moments exist for the Pareto distribution.  For example, when 𝛼 ≤ 1 the 
expected value is undefined. 

2.2  The Upper-Truncated Pareto 
When we introduce an upper truncation point, 𝑇, the random variable for loss can only take on 

values between the lower threshold and the upper truncation point.  It is also interesting to note that 
the shape parameter, 𝛼, can now be any real value and is no longer restricted to being strictly 
positive. 
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𝐹(𝑥) =

⎩
⎪⎪
⎨

⎪⎪
⎧1 − �𝜃𝑥�

𝛼

1 − �𝜃𝑇�
𝛼       𝜃 ≤ 𝑥 ≤ 𝑇, 𝛼 ≠ 0

𝑙𝑛(𝑥/𝜃)
𝑙𝑛(𝑇/𝜃)        𝜃 ≤ 𝑥 ≤ 𝑇, 𝛼 = 0

� (2.3) 

 

For the special case of 𝛼 = −1, the distribution of losses is uniform between 𝜃 and 𝑇.  This may 
be surprising given that most insurance applications are heavily skewed and restrict the shape 
parameter to positive values but it does show the flexibility of the truncated form.  Negative alphas 
are theoretically valid but unusual in insurance applications; we will be concerned in this paper 
mainly with cases for 𝛼 > 0.  

All moments for the upper-truncated Pareto will always exist. 

 

𝐸(𝑋𝑘) =
𝛼 ∙ 𝜃𝑘

𝛼 − 𝑘
∙

1 − �𝜃𝑇�
𝛼−𝑘

1 − �𝜃𝑇�
𝛼        𝛼 ≠ 0,𝑘 (2.4) 

 

We may note that for the values 𝛼 = 0 and 𝛼 = 𝑘, formula (2.4) does not hold directly but we 
can estimate the moments by making use of the limiting function below. 

 

lim
𝛼→0

1 − �𝜃𝑇�
𝛼

𝛼
=  lim

𝑘→𝛼

1 − �𝜃𝑇�
𝛼−𝑘

𝛼 − 𝑘
    =  𝑙𝑛(𝑇/𝜃) 

(2.5) 

 

To provide some additional insight into the shape of the upper-truncated form, we consider the 
expected values for some special cases.  The value 𝛼 = −1 produces a uniform distribution for 
which the expected value is the mid-point or arithmetic average between 𝜃 and 𝑇.  For the value 
𝛼 = 1/2 the expected value is the square-root of the product of 𝜃 and 𝑇, also known as the 
geometric average.  For the value 𝛼 = 2 the expected value is the harmonic average of 𝜃 and 𝑇, 
found by averaging their inverses. 
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Shape Parameter 𝐸(𝑋|𝜃 ≤ 𝑋 ≤ 𝑇) 

 𝛼 = −1 (𝑇 + 𝜃)/2 

𝛼 = 0 (𝑇 − 𝜃)/𝑙𝑛(𝑇/𝜃) 

𝛼 = 1/2 √𝑇 ∙ 𝜃 

𝛼 = 1 𝑙𝑛(𝑇/𝜃)/(𝜃−1 − 𝑇−1) 

𝛼 = 2 2/(𝜃−1 + 𝑇−1) 

 

Second moments are easily found by the recurrence relation: 

 

𝐸(𝑋2|𝛼) = 𝐸(𝑋|𝛼) ∙ 𝐸(𝑋|𝛼 − 1) (2.6) 

 

2.3  Moment-Matching to Evaluate Upper Truncation 
We can make use of the first and second moments to make an estimate of the upper truncation 

point 𝑇� .  The moment-matched parameters are found by solving the equations below. 

𝐸�𝑋|𝛼�,𝑇�� =  �̅� =  
1
𝑁
�𝑥𝑖

𝑁

𝑖=1

𝐸�𝑋2|𝛼�,𝑇�� − 𝐸�𝑋|𝛼�,𝑇��
2

 =  𝑠2 =
1

𝑁 − 1
�(𝑥𝑖 − �̅�)2
𝑁

𝑖=1

 

 (2.7) 

In other words, we want to set an upper truncation point such that standard deviation of the 
fitted distribution is [at least] the standard deviation of the historical large losses. 

One obvious caution on this estimate, of course, is that it does not guarantee that the indicated 
upper truncation point 𝑇�  is greater than the largest loss actually observed historically.  We therefore 
take it as only one part of our evaluation. 
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3. MAXIMUM LIKELIHOOD ESTIMATION (MLE) 

Maximum Likelihood Estimation (MLE) is more commonly used than moment-matching for 
estimating parameters.  When there is no upper truncation, the maximum likelihood estimator for 
the Pareto shape parameter 𝛼 is found using a simple expression. 

 

𝛼�𝑀𝐿𝐸 = 𝑁 ∙ ��𝑙𝑛 �
𝑥𝑖
𝜃
�

𝑁

𝑖=1

�

−1

 (3.1) 

 

When there is an upper truncation point, the maximum likelihood estimator for 𝛼  is a bit more 
complicated and requires solving the equation below.  We may note again that both the lower 
threshold 𝜃 and the upper truncation 𝑇 are constraints supplied by the user and are not considered 
parameters to be estimated. 

 

𝛼�𝑀𝐿𝐸 = 𝑁 ∙ ��𝑙𝑛 �
𝑥𝑖
𝜃
�

𝑁

𝑖=1

− �
𝑁 ∙ 𝑙𝑛 �𝜃𝑇� ∙ �

𝜃
𝑇�

𝛼�𝑀𝐿𝐸

1 − �𝜃𝑇�
𝛼�𝑀𝐿𝐸

��

−1

 (3.2) 

 

If we do consider the lower and upper truncation points as parameters, then the MLE estimators 
are simply the smallest and largest observations respectively (see Aban et al., 2006); that is, the first 
and last order statistics from the sample. 

 

𝜃�𝑀𝐿𝐸 = 𝑀𝐼𝑁{𝑥1, 𝑥2,⋯ , 𝑥𝑁}

𝑇�𝑀𝐿𝐸 = 𝑀𝐴𝑋{𝑥1, 𝑥2,⋯ , 𝑥𝑁}
 (3.3) 

  
These MLE estimators are not as helpful for our purpose of selecting an upper truncation point.  

The goal of Maximum Likelihood Estimation is to find the model parameters that result in the 
highest probability assigned to events that we have actually observed.  In the case of the upper-
truncated Pareto, this goal is accomplished by assigning zero probability to values outside the range 
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of what we have already observed.  This is not helpful if we believe that worse events are possible. 

However, we may note that the MLE in formulas (3.1) – (3.3) includes two statistics that 
summarize the sample of losses: 

𝑀𝑒𝑎𝑛 𝑜𝑓 𝐿𝑜𝑔𝑠 =   
1
𝑁
∙�𝑙𝑛(𝑥𝑖)
𝑁

𝑗=1

𝑥𝑁 = 𝑀𝐴𝑋{𝑥1, 𝑥2,⋯ , 𝑥𝑁}

 (3.4) 

  
Together these represent sufficient statistics for the model parameters 𝛼 and 𝑇, informally 

meaning that they contain all of the information available from the sample concerning these 
parameters.1

The MLE for 𝑇�  is referred to as “non-regular,” meaning that we cannot estimate its variance 
through the regular procedure using the information matrix of second derivatives of the log-
likelihood function.  This is not, however, a great problem because we can estimate 𝑉𝑎𝑟(𝑋𝑁) using 
the moment functions given in section 4.3.  

 

Finally, it is important to remember that there is a relationship between the shape parameter 𝛼 
and the upper truncation 𝑇.  A different alpha will be estimated depending upon the selected upper 
truncation point.  To illustrate this relationship, the table below shows how the expected value of 
loss severity changes based on these parameters. 

 

 
 

                                                           
1 Chapter 7 of Arnold et al. provides a longer discussion on order statistics and sufficiency. 

Expected Pareto Severity Subject to Upper Truncation

Lower Threshold (Theta): 1,000,000

Maximum Possible Loss (Upper Truncation)
10,000,000 25,000,000 50,000,000 100,000,000 999,999,999

Alpha 0.75 2,839,841 4,072,455 5,257,028 6,698,663 13,948,679
1.05 2,507,183 3,231,920 3,793,243 4,353,690 6,137,484
1.35 2,234,010 2,641,165 2,890,943 3,093,714 3,513,688
1.65 2,015,287 2,236,237 2,342,509 2,412,446 2,510,008
1.95 1,843,001 1,959,873 2,003,684 2,027,046 2,049,735
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4. ORDER STATISTICS 

For a sample of independent losses drawn from a continuous distribution, the order statistics are 
simply the sample put into ascending order, with 𝑥1 being the smallest observation and 𝑥𝑁 being the 
largest observation. 

4.1  The Distribution of the Largest of N   Losses 
The upper-truncated Pareto, the distribution of the largest of a sample of size 𝑁 losses, is given 

in formula (4.1). 

𝐹𝑁(𝑥𝑁) =   𝐹(𝑥𝑁)𝑁  =   �
1 − � 𝜃𝑥𝑁

�
𝛼

1 − �𝜃𝑇�
𝛼 �

𝑁

  (4.1) 

 

This distribution is unimodal, with the mode defined below in formula (4.2).  The mode is not 
directly dependent upon the value of the upper truncation point 𝑇 except for the case in which 𝑇 is 
set below where the mode would otherwise be calculated. 

 

𝑀𝑜𝑑𝑒𝑁 =   𝑀𝐼𝑁 � 𝜃 ∙ �
𝛼 ∙ 𝑁 + 1
𝛼 + 1

�
1/𝛼

 ,𝑇� (4.2) 

 

Percentiles from this distribution are easily calculated, and this provides us with a hypothesis test 
for the upper truncation point. 

4.2  Hypothesis Test for Existence of Upper Truncation 
One preliminary question is whether an upper truncation is indicated at all.  A simple hypothesis 

test can help answer this question.  The null hypothesis is that there is no upper truncation point 
(that is 𝑇 = ∞).  We then compare the actual largest loss 𝑥𝑁 observed in the history and ask 
whether it is reasonable that a Pareto with no upper truncation would have generated that loss.  If 
the largest observed loss is “significantly” less than would have been expected, then we reject the 
null hypothesis and conclude that an upper truncation point should be used. 

The test statistic is a p-value: 
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𝑝 = 𝐹(𝑥𝑁|𝑇 = ∞)𝑁 =  �1 − �
𝜃
𝑥𝑁
�
𝛼

�
𝑁

≈ 𝑒𝑥𝑝 �−𝑁 ∙ �
𝜃
𝑥𝑁
�
𝛼

� (4.3) 

 

The shape parameter 𝛼 used in this test should be based on the MLE estimate with no upper 
truncation as given in formula (3.1).  The test is only appropriate for a sample size 𝑁 large enough 
that the largest observation 𝑥𝑁 does not have a significant impact on the estimate of 𝛼. 

The approximation on the right side of (4.3) is the Fréchet distribution, which is a limiting case 
for the sample maximum and a standard result from Extreme Value Theory2

Conversely, if the p-value is large, say 𝑝 > .05, that does not necessarily mean that an 
untruncated Pareto should be used – but only that our sample data is not sufficient to reject it.  The 
usefulness of the test is therefore quite limited. 

.  The hypothesis test is 
given in this form in Aban et al.  The idea is that if the p-value is small, say 𝑝 < .05, then we reject 
the null hypothesis that a Pareto with no upper truncation point is appropriate.  Unfortunately, this 
test does not tell us what the upper truncation point should be; in fact, it does not even tell us that 
an upper-truncated Pareto is correct but only that an untruncated Pareto is unlikely. 

4.3  Evaluating Moments for the Largest Loss 
The calculation for the moments of the distribution of the largest loss is not trivial but can be 

accomplished with a careful strategy.  Using a binomial series expansion of the distribution of the 
largest loss, the moments can be written as follows. 

 

𝐸𝑁�𝑋𝑁𝑘� =  𝜃𝑘 ∙��𝑁𝑗 � ∙ (−1)𝑗−1 ∙
𝛼 ∙ 𝑗 ∙ 𝜃𝑘

𝛼 ∙ 𝑗 − 𝑘
∙
�1 − �𝜃𝑇�

𝛼∙𝑗−𝑘
�

�1 − �𝜃𝑇�
𝛼
�
𝑁

𝑁

𝑗=1

        𝛼 ≠ 𝑘 (4.4) 

 

As discussed above, the terms when 𝛼𝑗 = 𝑘 can be evaluated using the limit formula (2.5).  The 
difficulty with this form is that for large sample sizes, say 𝑁 > 30, the factorial functions become 
extremely large, making the calculation numerically unstable.  An alternative form that works for 

                                                           
2 This is a result of the Gnedenko, Fisher-Tippett Theorem.  The Fréchet distribution is given in Loss Models by 
Klugman et al. as the “Inverse Weibull” distribution. 
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larger values of 𝑁 makes use of the incomplete beta distribution. 

 

𝐸𝑁�𝑋𝑁𝑘� =  𝜃𝑘 ∙
Γ(𝑁 + 1) ∙ Γ(1− 𝑘/𝛼)

Γ(𝑁 + 1 − 𝑘/𝛼) ∙
𝛽 �1 − �𝜃𝑇�

𝛼
;𝑁, 1 − 𝑘/𝛼�

𝛽 �1 − �𝜃𝑇�
𝛼

;𝑁, 1�
     𝛼 > 𝑘 (4.5) 

 

This form makes use of the incomplete beta function, defined below. 

 

𝛽(𝑦;𝑁, 𝑏) =  �
𝑡𝑁−1 ∙ (1 − 𝑡)𝑏−1

𝐵(𝑁, 𝑏)  𝑑𝑡

𝑦

0

           𝑁, 𝑏 > 0    0 < 𝑦 < 1 (4.6) 

 

The incomplete beta function cannot be used directly when 𝛼 ≤ 𝑘.  Klugman et al gives a 
recursive form that can be used for small values of 𝛼 when 𝑁 is large.  This form will not work 
when 𝑘/𝛼 is exactly equal to an integer (e.g., the cases  𝛼 = 1 or 1/2).  A third alternative is needed 
for those cases. 

Another form is written in terms of an infinite series.  Formulas (4.7) and (4.8) provide two 
infinite series that converge to the expected dollar moments. 

 

𝐸𝑁�𝑋𝑁𝑘� =  𝜃𝑘 ∙��
𝑁

𝑁 + 𝑗
� ∙ �

Γ(𝑗 + 𝑘/𝛼)
𝑗! ∙ Γ(𝑘/𝛼)� ∙ �1 − �

𝜃
𝑇
�
𝛼

�
𝑗∞

𝑗=0

     𝛼 > 0 (4.7) 

 

𝐸𝑁�𝑋𝑁𝑘� =  𝑇𝑘 − 𝜃𝑘 ∙��
𝑗

𝑁 + 𝑗
� ∙ �

Γ(𝑗 + 𝑘/𝛼)
𝑗! ∙ Γ(𝑘/𝛼)� ∙ �1 − �

𝜃
𝑇
�
𝛼

�
𝑗∞

𝑗=0

     𝛼 > 0 (4.8) 

 

These series may be slow to converge when �1 − �𝜃
𝑇
�
𝛼
�  is close to 1.00, so this may not be an 

optimal formula for evaluating the moments.  However, they do not have the numerical instability 
of formulas (4.4) or (4.5).  Further, each term in the summation is a positive value, so the first series 
converges from below whereas the second series converges from above.  The use of these two series 
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together therefore lets us calculate moments to within any desired degree of accuracy. 

We may note also that there are various recurrence relationships between moments of order 
statistics, for example as given by Khurana & Jha (1987), that can produce other methods for 
calculating the moments.  However, these do not seem to offer more numerical stability than the 
formulas given above. 

Just as we estimated 𝛼� and 𝑇�  by matching the mean and standard deviation of historical losses, 
we can alternatively estimate them by matching to the mean and largest value of the historical 
losses.3

𝐸�𝑋|𝛼�,𝑇�� =  �̅�

𝐸𝑁�𝑋𝑁|𝛼�,𝑇�� =  𝑥𝑁
 

 

(4.9) 

However, we can make a better estimate by using the order statistics of the logarithms of the 
losses, instead of the losses themselves. 

4.4  Evaluating Moments for the Largest Ln(Loss) 
Where we had used 𝐸𝑁�𝑋𝑁|𝛼�,𝑇�� to represent the expected value of the largest loss in a sample 

of 𝑁, we now define 𝐸𝑁�𝑙𝑛(𝑋𝑁/𝜃)|𝛼�,𝑇�� as the expected value of the logarithm of the largest loss, 
relative to the lower threshold. 

The transformed variable 𝑙𝑛(𝑋/𝜃) follows an exponential distribution, and this allows for 
simpler calculations of the order statistic moments. 

This form will turn out to have some advantages over working with the order statistics of the loss 
dollars themselves. 

 

𝐸𝑁 �𝑙𝑛 �
𝑋𝑁
𝜃
�� = � 𝑙𝑛 �

𝑥
𝜃
� ∙
𝑁 ∙ �1 − �𝜃𝑥�

𝛼
�
𝑁−1

∙ 𝛼 ∙ 𝜃𝛼 ∙ 𝑥−𝛼−1

�1 − �𝜃𝑇�
𝛼
�
𝑁  𝑑𝑥

𝑇

𝜃

      𝛼 ≠ 0 (4.10) 

 

This integral can be evaluated as follows. 

                                                           
3 This procedure is essentially the same as the recommendation in Cooke (1979). 
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𝛼
�
𝑁
�
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𝛼
�
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We may also note that for the untruncated Pareto as 𝑇 → ∞ this expression simplifies to: 

𝐸𝑁 �𝑙𝑛 �
𝑋𝑁
𝜃
� |𝑇 → ∞� =  

1
𝛼
�

1
𝑗

𝑁

𝑗=1

                           𝛼 ≠ 0 (4.12) 

 

These formulas can be re-written as a simple recurrence relationship between different sample 
sizes is given as follows. 

𝐸𝑁 �𝑙𝑛 �
𝑋𝑁
𝜃
�� = 𝑙𝑛 �

𝑇
𝜃
� +

1
𝛼 ∙ 𝑁

−   
𝑙𝑛 �𝑇𝜃� − 𝐸𝑁−1 �𝑙𝑛 �

𝑋𝑁−1
𝜃 ��

�1 − �𝜃𝑇�
𝛼
�

          𝛼 ≠ 0 (4.13) 

 

The sequence is starting by using the expected 𝐸�𝑙𝑛(𝑋/𝜃)� for a single loss. 

 

𝐸1 �𝑙𝑛 �
𝑋1
𝜃
�� = 𝐸 �𝑙𝑛 �

𝑋
𝜃
��  =

1
𝛼
−   

𝑙𝑛 �𝑇𝜃� ∙ �
𝜃
𝑇�

𝛼

�1 − �𝜃𝑇�
𝛼
�

          𝛼 ≠ 0 (4.14) 

 

It can also be quickly recognized that if the expected value 𝐸�𝑙𝑛(𝑋)� is replaced by the mean of 
the logarithms of the sample of observed losses, then formula (4.14) is equivalent to the MLE 
formula (3.2).   Matching the first moment of the logs is the same as performing a maximum 
likelihood estimate for the shape parameter 𝛼.  This is a very useful result because it means that 
anyone currently using MLE to estimate the shape parameter will be able to use this moment 
matching strategy as an enhancement to their existing model. 

Formulas (4.13) and (4.14) are not valid when 𝛼 = 0 but the moments for that special case are 
easily calculated. 
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We can also evaluate the expected value of the largest log-loss using infinite series similar to those 
in formulas (4.7) and (4.8).  As with those earlier expressions, we have a series that converges from 
below and a second that converges from above.  These series are also somewhat faster to converge 
than those for the dollar moments. 
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With these formulas, we are able to match the moments: 

𝐸�𝑙𝑛(𝑋)|𝛼�,𝑇�� =  
1
𝑁
∙�𝑙𝑛(𝑥𝑖)
𝑁

𝑗=1

𝐸𝑁�𝑙𝑛(𝑋𝑁)|𝛼�,𝑇�� =  𝑙𝑛(𝑥𝑁)

 (4.18) 

 

These moment-matching equations make use of the same sufficient statistics identified in 
formula (3.4).  The parameters 𝛼� and 𝑇�  are solved for numerically. 

 

We may note a few advantages to the use of the estimators in formula (4.18): 

1) The estimated 𝛼� is equivalent to the MLE estimate conditional upon 𝑇�  

2) The estimates rely upon sufficient statistics, meaning they make use of all of the information 
about the truncated Pareto parameters contained in the sample 



A Note on the Upper-Truncated Pareto Distribution 
 

Casualty Actuarial Society E-Forum, Winter 2013 14 

3) The recurrence formula is easily calculated 

4) The estimate of 𝑇�  based on log-order statistics is slightly more conservative than the estimate 
based directly on the order statistics of the loss dollars.  This is due to Jensen’s Inequality: 

𝐸�𝑙𝑛(𝑋)� ≤ 𝑙𝑛�𝐸(𝑋)� 

We now go on to show how this procedure can be applied in real-world examples. 

5.  TWO ILLUSTRATIVE EXAMPLES 

Having outlined a basic approach for estimating an upper truncation point, we will now look at 
two examples to illustrate the approach.  The examples are not intended for use as actual pricing 
factors but just to show the thought process. 

The numbers used in these examples are historical statistics related to natural disasters, and the 
samples are shown in Appendix A.  The fact that these examples are from natural disasters does not 
mean that the same techniques could not be used for casualty events. 

5.1  Earthquake Fatalities 1900-2011 
The earthquake statistics are the estimated number of deaths for events from 1900 to 2011 as 

published by the U.S. Geological Survey (USGS).  In many cases, these numbers are rough 
estimates.  For this example, we look at the 21 earthquakes with 20,000 or more deaths.  None of 
these figures has been adjusted for population changes or other factors. 

The numbers can be summarized by the following statistics: 

 

Number of Events 21 

Lower Threshold 𝜃 20,000 

Average # Deaths 89,964 

Standard Deviation of # Deaths 86,416 

Largest # Deaths 316,000 

Pareto Shape Parameter 𝛼 (from MLE) 0.89993 
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The largest earthquake event, in terms of number of deaths, occurred in 2010 in Haiti, with 
316,000 fatalities. 

The p-value from this data is .173, meaning that there is a 17.3% chance that the largest event in 
a sample of 21 would be 316,000 or less from an untruncated Pareto.  This is not strong evidence 
for rejecting the untruncated Pareto but does not rule out the possibility of including an upper 
truncation point. 

A Pareto fit with no upper truncation indicates a shape parameter of 0.89993.  Because this is less 
than 1.00000, the expected value would be undefined (infinite).  This would create a serious problem 
in modeling the events, as simulation results could be chaotic.  It is desirable to include an upper 
truncation. 

We can select an indicated upper truncation point by matching the expected values to the average 
and largest amounts in our sample.  As the graph below shows, this is an improved fit to the data 
also.  The empirical points on the log-log graph show a downward curving shape, rather than a pure 
linear relationship that would indicate an untruncated curve. 
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The values from this moment-matching calculation are listed below: 

Lower Threshold 𝜃 20,000 

Estimated Upper Truncation 𝑇 437,171 

Pareto Shape Parameter 𝛼 conditional on 𝑇 0.57122 

Expected Value of # Fatalities 88,563 

Expected Standard Deviation 88,334 

Expected Largest of 21 Events  𝐸𝑁(𝑋𝑁) 326,681 

 

The key output from this analysis is the estimated upper truncation point as 437,171.  This 
implies that the maximum possible number of deaths from an earthquake is 437,171 or about 38% 
higher than the worst event seen in the history. 

The standard deviation and actual observed largest loss the actual data are slightly lower than 
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would have been predicted by the model.  This means our estimate of the upper truncation point is 
slightly higher than what would be needed to exactly match the sample; this conservatism is 
desirable since our goal is to select an upper truncation point that represents the largest possible 
loss. 

We can also re-fit the model with different lower thresholds to include more or fewer losses to 
evaluate the sensitivity of the calculation. 

Most importantly, we want to compare the moment-matching indication to what is known about 
the physical world that might create an upper bound on the possible number of deaths.  Factors 
such as population density, construction of buildings and the possible intensities of earthquakes 
should be considered.  Catastrophe models attempt to estimate the probability distribution based on 
these factors, and output from these models should be compared. 

5.2  Large U.S. Weather Losses 1980-2011 
The weather statistics come from the National Climatic Data Center (NCDC), a part of the 

National Oceanic and Atmospheric Administration (NOAA).  The dollars are listed in thousands, 
and have been adjusted (by NCDC) to 2012 cost levels using the CPI.  The losses represent 
estimates of total damages, not limited to just the insured portion.  The sample in Appendix A are 
those events that caused $5 billion or more in 2012 dollars. 

The numbers can be summarized by the following statistics: 

Number of Events 36 

Lower Threshold 𝜃 5,000,000 

Average Loss > Threshold 18,994,444 

Standard Deviation of Losses 26,701,171 

Largest Loss Damage 146,300,000 

Pareto Shape Parameter 𝛼 (from MLE) 1.11299 

 

The largest weather event in this sample was Hurricane Katrina in 2005, estimated to be $146 
billion in 2012 dollars. 

The p-value from this data is .432, meaning we fail to reject the null hypothesis that the losses 
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came from an untruncated Pareto.  In practice, this implies that if we want to include an upper 
truncation point, it should be well above the largest order statistic. 

The graph below shows the log-log graph of damage amount (in thousands) compared to the 
empirical survival probabilities (probability of exceeding the dollar amount).  The historical amounts 
line up pretty closely along a straight line indicating, again, that if there is an upper truncation point 
then it must be much larger than the largest historical point. 
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If we calculate an upper truncation point so as to match the average and largest of the historical 
events, we find the following: 

Lower Threshold 𝜃 5,000,000 

Estimated Upper Truncation 𝑇 480,073,321 

Pareto Shape Parameter 𝛼 conditional on 𝑇 1.07182 

Expected Amount of Damage  21,014,276 

Expected Standard Deviation 39,261,964 

Expected Largest of 36 Events  𝐸𝑁(𝑋𝑁) 178,675,516 

 

The estimated upper truncation point of 480,073,321 is more than three times the largest 
observed historical event.  The conclusion is that the largest possible hurricane damage is 
significantly larger than 2005’s Hurricane Katrina.  This indication is itself subject to estimation 
uncertainty but it does provide one more piece of information for use in modeling loss exposure. 

5.3  Discussion of the Examples 
These two numerical examples illustrate some of the assumptions and limitations of this 

estimation process. 

First, we may note that the estimation is dependent upon the truncated Pareto being the “true” 
distribution for the phenomenon.  Our estimate does not reflect the possibility that some other 
distributional model might be correct.  If a different model would have been better, then it is 
possible that a higher upper truncation point would have been estimated. 

Second, we are assuming that the sample we have observed is representative, and that future 
events will be of the same kind as those that have taken place historically.  Events that are 
qualitatively different (not just bigger events of the same kind) need to be modeled separately.   It is 
common to talk of events that have never been observed as “black swans” and we should recognize 
that a model that is parameterized based on past observations cannot account for these. 

Third, we note that in both of the examples above the amounts observed were only estimates of 
the actual values, and include estimating error in themselves.  An exact count of deaths from the 
Haiti earthquake was not made, so the upper truncation point is also less exact. This estimation error 
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is compounded by uncertainty in inflation or demographic trends.  The number of earthquake 
deaths or losses from weather events was gathered from a variety of sources, including newspaper 
reports.  This type of uncertainty is also an issue in insurance losses where claim values may include 
case reserves rather than actual ultimate payments. 

These factors are common to many statistical estimation problems.  In the case of estimating an 
upper truncation point, we have the further difficulty that we are necessarily extrapolating beyond 
the range represented in our sample data.  Given this level of uncertainty, our final reality check 
needs to be to ask if the upper truncation point corresponds to some true physical limit on the size 
of the loss; and if not to consider it a lower bound on the MPL. 

6. CONCLUSIONS 

The selection of an upper truncation point for the Pareto can be difficult in insurance 
applications.  It represents, in theory, the Maximum Possible Loss (MPL) that could occur on the 
exposures written by the insurance company.  This amount is generally selected based upon 
management’s judgment about possible loss events.   The use of order statistics allows us to squeeze 
some additional information out of the observed historical losses. 

At the very least, we are able to calculate statistics such as standard deviation and expected largest 
loss for the upper-truncated Pareto, and compare these to the historical loss data.   This provides 
more information to inform the judgment being made. 
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Appendix A  -  Data Sets for Examples 
The data sets below are used as examples in Section 5.  The earthquake statistics come from the 

U.S. National Geological Survey and represent estimated fatalities for international earthquakes since 
1900.  The U.S. Weather/Climate Disasters come from the National Climatic Data Center and 
represent total economic damages from weather events in the United States for 1980-2011, adjusted 
to 2012 dollars. 

  

    

Rank # Deaths Rank $ Damage
1 316,000 1 146,300,000
2 242,769 2 77,600,000
3 227,898 3 55,600,000
4 200,000 4 44,300,000
5 142,800 5 33,400,000
6 110,000 6 28,900,000
7 87,587 7 18,700,000
8 86,000 8 18,700,000
9 72,000 9 18,200,000
10 70,000 10 16,900,000
11 50,000 11 16,700,000
12 40,900 12 16,100,000
13 32,700 13 12,800,000
14 32,610 14 12,200,000
15 31,000 15 10,900,000
16 30,000 16 10,600,000
17 28,000 17 10,400,000
18 25,000 18 10,000,000
19 23,000 19 9,300,000
20 20,896 20 8,700,000
21 20,085 21 8,500,000

22 8,300,000
23 8,300,000
24 8,300,000
25 7,300,000
26 7,300,000
27 6,900,000
28 6,800,000
29 6,500,000
30 6,300,000
31 6,000,000
32 5,600,000
33 5,400,000
34 5,400,000
35 5,300,000
36 5,300,000

Earthqake Deaths NOAA Weather Losses
1980-2011Since 1900
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Abbreviations and notations 
 

𝑁, number of large losses observed in a sample 
𝐸𝑁(𝑋𝑁), expected value of largest loss in a sample size of 𝑁 
𝑋, random variable representing a single loss amount;  𝜃 ≤ 𝑋 ≤ 𝑇 
𝑥𝑁, largest observed loss in a sample size of 𝑁  
𝜃, Theta, representing the lower threshold of losses 
𝑇, Upper truncation point – loss amount above this are not considered possible 
𝛼, Alpha, representing the “shape parameter” of the Pareto distribution 
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Calibration Of A Jump Diffusion

Rasa Varanka McKean, ACAS, MAAA

1 Introduction

This paper outlines an application of a weighted Monte Carlo method to a jump diffusion model
in the presence of clustering and runs suggestive of contagion. The paper was originally submitted as
a master’s thesis in the Mathematics in Finance program at the Courant Institute of Mathematical
Sciences, New York University, on March 15, 2003. The author wishes to make the material available
to a wider audience. Explanatory material has been added to make the paper easier to read. The
mathematics is unchanged.

Although the motivation for this application is actuarial in nature, the method is not limited
to insurance accidents. In fact, the method has broad application to financial analysis. The first
equation below may be seen as a theoretical bridge between the two fields of Actuarial Science and
Finance; the underlying processes have a common construct.

In its most general form, a sample path corresponding to a stochastic process which is differential,
homogeneous, and increasing may be decomposed as a linear part plus a pure jump function [12][10].
The process is referred to as a homogenous differential process with increasing paths. The process
will be defined in Section 2. For now, we state only the equation:

pt = p(t) = mt+

∫ ∞
0

`℘([0, t]× d`); t ≥ 0 (1)

The term ` corresponds to the size of a jump. The function ℘ counts the number of jumps. In
this paper, the counts will be Poisson distributed. The term [0, t] × d` corresponds to a set over
which the counts are taken. The expression ℘([0, t] × d`) is the number of jumps occuring up to
time t of severity between ` and `+d`. In other words, the integrand corresponds to the well-known
actuarial phrase “frequency times severity”.

The linear part of the decomposition is mt. If the linear term is dropped, i.e. mt = 0, then the
resulting pure jump function resembles an insurance aggregate loss. Frequency of accidents times
severity of those accidents are summed over a given population to obtain the total loss amount [8].
If the linear part is replaced by a Brownian motion with or without drift, a financial model results.
It’s important to note here that in the financial model, there is a stochastic differential equation
where the Brownian motion is in the exponential. There is no exponential term in the actuarial
model; a jump is a jump.

Avellaneda has calibrated a variety of financial instruments [1]. Throughout this reference, a
pricing model refers to a model for pricing less liquid instruments relatively to more liquid instru-
ments (the benchmarks). Calibration of the Monte Carlo model is performed by assigning probability
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weights to the simulated paths. The weights are derived by minimizing the Kullback-Leibler relative
entropy of the posterior measure to the prior (empirical) measure.

Recall the definition of entropy and don’t feel bad if you look it up in Wikipedia. Entropy is
a measure of how evenly energy is distributed in a system. Entropy is a measure of order versus
disorder or randomness. Relative entropy measures the entropy of one state as compared to the
entropy of a second state. A very rough analogy can be found in the measurement of temperature.
Temperature is measured with thermometers, which may be calibrated to a variety of temperature
scales such as degrees Fahrenheit, Celsius, or Kelvin. Relative entropy would be very roughly similar
to a comparison of any two of these three temperature scales.

2 Modelling A Jump Diffusion

Applications of jump diffusions include option pricing, credit risk, and actuarial science. Appli-
cations in option pricing and actuarial science are outlined in the history of jump diffusion models
below. For a financial model of credit risk, a suggested reference is [15].

A stochastic process with sample paths p(t), p(0) = 0 is said to be differential if its increments
p[t1, t2) = p(t2) − p(t1) over disjoint intervals [t1, t2) are independent, homogenous if the law of
p[t1 + s, t2 + s)is independent of s(≥ 0), and increasing if p(t1) ≤ p(t2) for t1 ≤ t2.

A sample path may be decomposed into a linear part plus an integral of Poisson processes:

pt = p(t) = mt+

∫ ∞
0

`℘([0, t]× d`); t ≥ 0 (2)

℘(dt × d`) being Poisson distributed with mean dt × ν′d` where dν = ν′d`, ν′ being the density
function of the measure dν. The measure ν shouldn’t be too large in the sense that the integral is
finite: ∫ 1

0

`dν +

∫ ∞
1

dν <∞ (3)

Then:

P[℘(B) = n] =
βn

n!
e−β ; for n ≥ 0, B ⊂ ([0,+∞)× (−∞,+∞)), (4)

β =

∫
B

dtν′d` (5)

The process pt is differential because the counts ℘(B) attached to disjoint B ⊂ [0,+∞)× (0,+∞)
are independent, and additive in the sense that ℘(

⋃
n≥1) =

∑
n≥1 ℘(Bn) for disjoint B1, B2, etc.

⊂ ([0,+∞) × (0,+∞)). ℘([t1, t2) × [`1, `2)) is just the number of jumps of p(t); t1 ≤ t < t2 of
magnitude `1 ≤ ` < `2.
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Natural extensions of the basic model would include stochastic volatility, mean reversion, and
multiple jump processes.

Stochastic volatility accommodates volatility clustering, an important feature of the data. Mean
reversion may account for perturbations induced by diffusion vs. perturbations created by jumps.
Multiple jump processes may be used to distinguish between types of jumps or sizes of jumps.
Additionally, the jump sizes may be modelled by various distributions.

Each of these scenarios will be described in turn.

3 Jump Diffusion Processes In The Literature

3.1 The Initial Pricing Model

The first pure jump model in the financial literature is attributed to Cox, Ingersoll and Ross
[4].The model is illustrated as follows in the usual discrete pricing diagram.

S↗Su↘S exp(−w∆t)

The upward and downward probabilities for stock price movement in time ∆t are λ∆t and 1−λ∆t
respectively. The asset price declines at rate w except for occasional jumps occurring as a Poisson
process with rate λ. The size of the jumps are modelled as u times the current asset price S.

Criticism of the model notes that jumps here can only be positive which is unrealistic in the
financial markets except for the probability of ruin. Note that the exponential term in the diagram
above cannot yield a negative value. However, this criticism would not hold for insurance losses.
For instance, the value of a property lost in a fire cannot be negative, one does not lose negative
time on the job due to an injury, and so forth.

Arguably, a reserve for future indemnity benefits, as an example, may be posted and subsequently
netted down due to the death of the claimant. In such a case, however, the life expectancy of the
claimant would have been quantified and posted as the initial reserve. The resulting downward
movement could be seen as parameter risk. In other words, if the reserve had been estimated with
greater accuracy, the downward movement would not have occurred. Further such arguments could
be made to show that a pure jump process is useful in modelling insurance losses.

Another criticism of the financial model is that the process leads to a distribution of stock price
values with a fat right tail and a thin left tail, the opposite to that observed for equities. Such
a distribution, however, is common in insurance and especially in reinsurance. The time lags in
discovering and reporting losses such as medical malpractice or products liability create a fat right
tail. inflationary and social trends in jury awards may be very different ten years hence, leading to
unexpected increases in the size of awards.

In Actuarial Science, pricing models for aggregate distributions of claim data occur in the cohort
approach to collective risk theory. An analysis of collective risk theory and insurance models is
beyond the scope of this paper. Aggregate loss distributions have been widely discussed in the
actuarial literature. The interested reader is referred to basic, comprehensive treatments [2] [8] [6].

3

Callibration of a Jump Diffusion

Casualty Actuarial Society E-Forum, Winter 2013



3.2 An Application To Option Pricing

Merton first suggested a modification to the standard option pricing model, a jump function
added to the Brownian motion term [13]. The jump component represents the occasional discontin-
uous breaks observed in the financial markets.

Define:

µB the expected return from an asset associated with the Brownian motion
σB the volatility of the Brownian motion
λ the rate of occurrence of a jump
κ the average jump size (amplitude) as the change in asset price.

Then the model is written in the following form:

dS

S
= (µB − λκ)dt+ σBdW + κdq (6)

where κ is drawn from a normal distribution κ ∼ N(µJ , σ
2
J) for µJ and σJ the mean and standard

deviation of the jump respectively, W is a Wiener process, and q is a Poisson process generating the
jumps. The processes W and q are assumed to be independent.

If λκ is the contribution from the jumps then the remainder µB − λκ is the expected growth rate
provided by the geometric Brownian motion.

In a special case of Merton’s model, the logarithm of the jump amplitude is normally distributed.
The European call option price is then written as:

C = Σ∞n=0

e(−λ
′T )(λ′τ)n

n!
fn (7)

where τ = T − t, λ′ = λ(1 + κ) and fn is the Black-Scholes option price with parameters

σ2
n = σ2 +

nσ2

τ
(8)

for σ, the standard deviation of the normal distribution, and

rn = r − λκ+
n(ln(1 + κ))

τ
(9)

for r, the interest rate. Terminating the infinite sum is not problematic since the factorial function
grows rapidly.

Note that the model gives rise to fatter left and right tails than Black-Scholes and is consistent
with implied volatilities in currency options but not in insurance losses.
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The key assumption in Merton’s model is that the jump component of the asset return models
non-systematic risk. This assumption would be difficult to make in an actuarial model where the
jumps may represent a mixture of both systematic risk and non-systematic risk. Insurance claim
sizes tend to cluster due to insurance policy limits, trends in jury awards, and claims adjusters’
case reserving practices. The jump component of risk may involve contract law, procedural law,
and insurance goodwill. A more sophisticated model incorporating multiple jump processes may be
required.

3.3 Stochastic Volatility

A stochastic volatility model may be of the following form.

dS

S
= µBdt+ σdW + kdq (10)

where k ∼ N(µJ , σ
2
J) and

d(lnσ2) = b(µh − ln(h2))dt+ cdZ (11)

The logarithm of the variance σ2 follows a mean-reverting process with the Wiener error term
dZ. This model is termed a stochastic volatility jump diffusion process (SVJD)[5]. The model has
constant jump amplitude and a mean-reverting process for the volatility. In other words, the path of
the volatility parameter is a mean-reverting process. Note the drift is also a mean-reverting process.

3.4 Multiple Jump Processes

In the general form of the sample path, denote the pure jump process by Jt =
∫∞
0
`℘([0, t]× d`)

and replace mt by dW where W is a Wiener process with drift dW = σdZ + µdt.

dZ is an independent Gaussian shock
σ is the variance
µ is the drift

Jt may be further decomposed as a multiple jump process Jt = J 1
t + J 2

t where J 1
t has jump-

amplitudes ≤ 1 and J 2
t has jump-amplitudes >1. The J 1

t term may be comprised of an mininite
number of small jumps. In financial and actuarial applications, the J 1

t term would assume a finite
number of jumps or insurance losses in a given period of time.

Then, referring back to equation (2):

pt = mt+

∫ ∞
0

`℘([0, t]× d`) = dW + J 1
t + J 2

t = σdZ + µdt+ J 1
t + J 2

t (12)
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3.5 Jump Amplitudes

The jump amplitudes can give rise to a variety of models. The large jumps may be seen as
rare events relative to the background noise of the diffusion. The jump amplitude may be time
dependent.

Denote the positive measure by ν and the associated density function as ν′, as before in the
general form of the model. The measure ν is the product of the Poisson rate λ and the size of the
jump.

The measure ν may not be a probability measure. In such a case, the jump diffusion model is
not of the compound Poisson type. Further,

∫
ν′(dx) =

∫
dν may not be finite.

Processes with an infinite number of jumps may be modelled by jump amplitudes with densities
given by:

1. ν′(x) = A | x |−1 e(−η±|x|) a variance gamma function

2. ν′(x) = A± | x |−(1+α) e(−η±|x|) a tempered (”truncated”) stable process

3. ν′(x) = Ae(−λx)

sinh(x) a Meixner process

Note that in these cases, the singularity occurs near the origin as the denominator approaches
zero. The small jumps may be truncated or the singularities may be omitted by dropping the J 1

t

term.

In cases where λ =
∫
ν′(x)dx < +∞, the measure is finite and the measure ν can be normalized

to define a probability measure µ which can be interpreted as the distribution of jump sizes:

µ(dx) =
ν(dx)

λ

In these cases, it may be shown that one necessarily obtains a compound Poisson process as in
formula (1). Processes constituted by stochastic variation in both the number of jumps and ampli-
tude of the jumps are termed compound processes. The independence of the variables denoting the
number of jumps and the jump amplitudes follows from the assumption of independent increments
for the sample paths. The jump amplitudes xi and xj are independent of each other ∀ i 6= j by
independence of increments. Each xi has the same distribution by homogeneity.

Consider sample paths. Let X(t) =
∑N(t)
n=0 xn where xn are independent identically distributed

random variables, N(t) is a Poisson process with rate λ. The sum of the jumps is compound
Poisson. Without loss of generality, we may assume X(0) = 0. Let dµ = dν

λ be the normalization of
the measure to a probability measure. Compute the characteristic function of the sample path:

E(eikX(t)) = E(eik
∑N(t)
n=0 xn) = E(eikx0 ...eikxN(t)) (13)
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By independence of N and x:

= E((

∫
eikxdµ(x))N(t)) =

∞∑
j=0

(λt)j

j!
e−λt(

∫
eikxdµ(x))j (14)

= e−λt
∞∑
j=0

(λt)j

j!
(

∫
eikxdµ(x))j = e−λt(eλt

∫
eikxdµ(x))

= eλt(
∫
eikxdµ(x)−1) = eλt

∫
eikxdµ(x)−λt

∫
dµ(x)

Substituting the normalized probability measure, one obtains:

et
∫
(eikx(t)−1)dν(x) (15)

In a financial or actuarial application, the number of jumps per unit of time is finite so the application
may be described by a jump process of compound Poisson type.

4 Contagion

The next step in this exposition is a description of contagion as it affects the statistical properties
of the number of jumps seen as a random process. We introduce contagion into the jump diffusion
process by considering a ”mixed” compound Poisson process. This type of process is often used in
actuarial work when one accident effectively increases the probability of future accidents through a
conditional probability.

We begin at the beginning with Polya’s urn scheme and Polya’s scheme of contagion [7]. Suppose
an urn contains b black balls and r red balls. A ball is drawn at random. The ball drawn is always
replaced and in addition, c balls of the same color are added to the urn. The absolute probability of
the sequence black, black is by Bayes’ theorem below. Let H denote the first drawing of black and
let A denote the second drawing of black. The sequence black, black is denoted by AH. If the first

ball drawn is black, the conditional probability of a black ball at the second drawing is (b+c)
(b+c+r) . The

probability of the sequence AH is, by Baye’s theorem:

P [AH] = P [A | H]P [H] =
b

(b+ r)
× (b+ c)

(b+ c+ r)
(16)

If the first two drawings result in black, the urn contains b+ 2c black balls and b+ r+ 2c balls in

total. The conditional probability of a black ball at the third trial becomes (b+2c)
(b+2c+r) . The probability
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of any sequence can be calculated in this way. The ordering of the sequence is immaterial. Any
sequence of n drawings resulting in n1 black and n2 red balls for n1+n2 = n has the same probability
as the sequence first n1 black balls and then n2 red balls given by:

Pn1,n2
=
b(b+ c)(b+ 2c)...(b+ n1c− c)r(r + c)...(r + n2c− c)

(b+ r)(b+ r + c)(b+ r + 2c)...(b+ r + nc− c)
(17)

The Polya process describes a model for contagion, where every accident increases the probability
of future accidents. The applications of the process include contagious diseases, meteorology, lattices
in crystal structure, industrial quality control, and insurance, where long runs are suggestive of
contagion or accumulated chance effect. It can be shown that the limiting form of Polya’s distribution
of probabilities is the negative binomial distribution. The limiting form may be used in a mixed
compound Poisson process as the distribution for the Poisson rate variable λ [7].

5 Calibration Of The Pricing Model

The calibration methods are taken from a pricing model developed for the financial markets due
to Avellaneda [1]. One purpose of the model is to price less liquid instruments relative to more
liquid instruments. Avellaneda has calibrated a variety of financial instruments. Further work was
done by Cont [3]. Avellaneda’s model for bid-ask spreads admits a jump diffusion, an enhancement
proposed by this paper. The enhancement will be shown in the next section.

5.1 Theory Of The Model

Consider a simulation with sample paths denoted by ω1, ..., ων . Define a uniformly weighted
simulation to be one where each path has equal probability of occurrence. In a non-uniformly
weighted simulation, we assign probabilities p1, ..., pν to each path where the probabilities are not
necessarily equal.

For a contingent claim that pays the holder hi dollars if the path ωi occurs, the value of the
contingent claim in the non-uniformly and uniformly weighted scenario where pi = 1

ν ∀i is:

Πh =

ν∑
i=1

hipi (18)

and

Πh =
1

ν

ν∑
i=1

hi (19)

respectively.

A prior distribution is generated by simulating the paths of a stochastic process which are
uniformly weighted. Probabilities p1, ..., pν are then determined to simulate a posterior distribution
comprised of non-uniformly weighted sample paths.
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For two probability vectors p1, ..., pν and q1, ..., qν , the relative entropy of p with respect to q is
defined as:

D(p | q) =
ν∑
i=1

pi log(
pi
qi

) (20)

For the Monte Carlo simulation with equal weights, denote the uniform probability vector by
u = (1/ν, . . . , 1/ν). Then substitute qi = 1/ν ≡ ui into the above equation to derive the relative
entropy distance immediately below.

The calibrated posterior probability measure is found by minimizing the Kullback-Leibler relative
entropy of the prior and posterior measures. The relative entropy distance

D(p | u) = log ν +
ν∑
i=1

pi log pi (21)

measures the deviation of the calibrated model from the prior data. Note that D ≥ 0 with equality
holding only if pi = 1

ν .

For pi = 1
ν :

D(p | u) = log ν +
1

ν
log

ν∏
i=1

pi = log ν +
1

ν
log(

1

ν
)ν = 0 (22)

The relative entropy is directly related to the support of the measure. Suppose pi = 1
ναi for

i = 1, 2, ..., ν. Let Nα represent the number of paths with αi = α.

Then,
∑
αNα = ν ,

∑
α
Nα
να = 1, and:

D(p | u) = log ν +
∑
α

Nα
να

log
1

να
(23)

which reduces to:

log ν −
∑
α

αNα
να

log ν = log ν(1−
∑
α

Nα
να

α) = log ν(1− Ep(α)) (24)

A small relative entropy corresponds to a large expected value of α. A small α corresponds to a
thin support, which implies that a large number of paths are discarded by the algorithm. A small α
may also be seen as a mismatch of probabilities between the prior and posterior measures since the
measure will be concentrated on a small number of paths in the posterior measure. One sees that
it all depends on the measure. Therein lies the difficulty in calibrating a jump diffusion when the
frequency of jumps is small.

To elucidate the theory, denote the set of sample paths as: ω(i) = (x1(ω(i)), ..., xN (ω(i)) for
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i = 1, 2, ..., ν

and the associated stochastic differential equation with Wiener process W

dX = σ(X, t)dW + µ(X, t)dt (25)

Denote the market prices of N benchmark instruments by C1, ..., CN and the present value of the
jth cashflow as g1j, g2j, ..., gνj for j = 1, ..., N . The price relations for the benchmark instruments,
for j = 1, ..., N are:

ν∑
i=1

pigij = Cj (26)

5.2 The Calibration Algorithm

As before, denote the uniform probability vector by

u = (
1

ν
, ...,

1

ν
)

In the case of the prior measure, we consider the following minimization problem.

Minimize:

D(p | u) = log ν +
ν∑
i=1

pi log pi (27)

under linear constraints Cj =
∑ν
i=1 pigij for Lagrange multipliers λ1, ..., λN :

min
λ

[max
p
{− log ν −

ν∑
i=1

pi log pi +
N∑
j=1

λj(
ν∑
i=1

pigij − Cj)}] (28)

Consider the max first. Differentiate with respect to pi, for fixed i and equate the derivative to
the Lagrange multiplier φ for the additional constraint

∑
pi = 1 :

− log pi − 1 +
N∑
j=1

λjgij = φ
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Let φ = −µ− 1

Then

− log pi − 1 +
N∑
j=1

λjgij = −µ− 1

log pi = µ+
N∑
j=1

λjgij

Let eµ = 1
Z . Then the maximum occurs at the value p∗i ∀i,

p∗i =
e(

∑N
j=1 λjgij)

Z
(29)

The constraint

ν∑
i=1

pi = 1 =

ν∑
i=1

e(
∑N
j=1 λjgij)

Z

shows that Z is a normalizing constant.

Note:

log pi =
N∑
j=1

λjgij − logZ (30)

at the max p.

Thus, at the maximum,

max
p
{− log ν −

ν∑
i=1

pi log pi +
N∑
j=1

λj(
ν∑
i=1

pigij − Cj)}

= − log ν −
ν∑
i=1

pi(
N∑
j=1

λjgij − logZ) +
N∑
j=1

λj

ν∑
i=1

pigij −
N∑
j=1

λjCj
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= − log ν +
ν∑
i=1

pi logZ −
N∑
j=1

λjCj = − log ν + logZ −
N∑
j=1

λjCj

Now consider the minimum:

min
λ

[− log ν + logZ −
N∑
j=1

λjCj ]

Differentiate with respect to λk and equate to zero:

1

Z

∂

∂λk

ν∑
i=1

e(
∑N
j=1 λjgij) − Ck =

1

Z

ν∑
i=1

gike
(
∑N
j=1 λjgij) − Ck = 0

Let

V (λ) = − log ν + logZ(λ)−
N∑
j=1

λjCj (31)

By substituting (28) into (27), one sees that the optimization of (27) is equivalent to minimizing
V (λ). For the minimizing λk so determined, define the calibrated instrument:

∂V (λ)

∂λk
=

ν∑
i=1

pigik − Ck = Ep(gk(ω))− Ck (32)

where gik = gk(ωi) = gk(ω) and Ep(gk(ω)) =
∑ν
i=1 pigk(ωi)

6 Calibration Of The Jump Diffusion Model

Avellaneda models a bid-ask spread by minimizing the relative entropy and the sum of the
weighted least-squares residuals:

χ2
w =

1

2

N∑
j=1

1

wj
(Ep(gj(w))− Cj)2 (33)

where w = (w1, ..., wN ) is a vector of positive weights.
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6.1 The Minimization

Minimize:

D(p | u) + χ2
w (34)

Preliminaries:

Denote Ep{gi(w))} by Ei. Then χ2
w =

∑N
i=1

1
wi

(Ei − Ci)2.

Let

ai =
1
√
wi

(Ei − Ci)

and
−bi = λi

√
wi

Utilizing the inequality 1
2a

2 + 1
2b

2 ≥ ab (right hand side is the inner product) and summing over i:

1

2

N∑
i=1

1

wi
(Ei − Ci)2 +

1

2

N∑
i=1

wiλ
2
i ≥ −

N∑
i=1

λi(Ei − Ci)

i.e.

χ2
w ≥ −

N∑
i=1

λi(E{gi(w)} − Ci)−
1

2

N∑
i=1

wiλ
2
i

It follows that

min
p

[D(p | u) + χ2
w] ≥ max

λ
{min

p
[D(p | u)−

N∑
j=1

λj(Ep{gj(w)} − Cj)]−
1

2

N∑
j=1

wjλ
2
j} (35)

The next equality holds by the following logic: max(x) = −min(−x).

= −min
λ

[−min
p

[D(p | u)−
N∑
j=1

λj(Ep{gj(w)} − Cj)]−
1

2

N∑
j=1

wjλ
2
j ]

and since the last two terms are independent of p

= −min
λ

[max
p

[−D(p | u) +
N∑
j=1

λjEp{gj(w)}]−
N∑
j=1

λjCj +
1

2

N∑
j=1

wjλ
2
j ]
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It can be shown that the inequality is in fact an equality.

Now let D be the entropy rather than relative entropy D =
∑ν
i=1 pi log pi, where the term log ν

is dropped without loss of generality.

Then

max
p

[−D +
N∑
j=1

λjEp(gj)] = max
p

[−D +
N∑
j=1

λj

ν∑
i=1

pigij ]

= max
p

[−
ν∑
i=1

pi log pi +
N∑
j=1

λj

ν∑
i=1

pigij ]

= −
ν∑
i=1

pi

N∑
j=1

λjgij +
ν∑
i=1

pi logZ +
N∑
j=1

λj

ν∑
i=1

pigij

where the last equality holds at the maximum p = p∗. This line now reduces to:

ν∑
i=1

pi logZ = logZ = logZ

since
∑ν
i=1 pi = 1) and Z does not depend on p.

Therefore

min
p

[D(p | u) + χ2
w] = −min

λ
[logZ −

N∑
j=1

λjCj +
1

2

N∑
j=1

wjλ
2
j ] (36)

= −min
λ

[V (λ) +
1

2

N∑
j=1

wjλ
2
j ] (37)

Here V (λ) = logZ(λ)−
∑
j λjCj is the function used in the case of exact fitting.

Differentiating with respect to λk,

∂V (λ)

∂λk
+ wkλk =

ν∑
i=1

pigik − Ck + wkλk
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= Ep{gk(w)} − Ck + wkλk = 0

and we have the optimal λk:

λ∗k = − 1

wk
[Ep
∗
{gk(w)} − Ck] (38)

Note, the minimization over p is the same as in the case of exact fitting since χ2
w does not depend

on p, and so leads to the same values of p∗i :

p∗i =
1

Z(λ∗i )
e(

∑N
j=1 λ

∗
j gij) (39)

6.2 The Calibration Algorithm

The minimizing function in the case of least-squares fitting is

log(Z(λ)−
N∑
j=1

λj(Ep
∗
{gj(w)} − Cj) +

1

2

N∑
j=1

wjλ
2
j (40)

This may be seen where, in the minimization of W (λ), the term
∑N
j=1 λj(Ep

∗{gj(w)} − Cj) is

substituted for −
∑N
j=1 λjCj . The substitution occurs since our assumption Ck = Ep{gk(w)} no

longer holds.

The term Ep∗{gj(w)} − Cj is precisely the modelled bid-ask spread, the bid-ask spread being a
small constant-valued jump. This term, however, may be any constant value. Ck is a constant, the
instantaneous price observed in the market. As an expected value, Ep∗{gj(w)} is not a stochastic
term. In fact, an expected value is a constant.

If we replace the bid-ask spread with a larger jump term, the minimization is essentially un-
changed. The mispriced asset value represented by the bid-ask spread is replaced by a larger mis-
priced value representing a shock. This paper proposes that if the shock occurs as a compound
Poisson process, one may replace the bid-ask spread by the expected value of the compound Poisson
jump.

The exhibits of the next section illustrate the concepts. See [9], [11], and [14] for background
material, basic concepts, and formulas.

7 An Example: Exhibits
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U.S. Treasury Yield Curve Rates as of 12/16/02
Term Structure of Interest Rates Fiting Parameters:

Maturity Zero Price Zero Yields y = c + b*(x-d)^2
(continuous)

1 0.985 0.015 1.483766 c
2 0.962 0.0194 -0.00053 b

` 3 0.932 0.0235 -29.3765 d
5 0.855 0.0314
7 0.769 0.0375

10 0.660 0.0415

P = exp ( -r * t)

Valuing Coupon Bonds ln ( 1+IRR (FV cash flows))
0 (nowyear) 0 Bond value Bond yield Check On
s (zeroyear) 10 (using ytm) to maturity Bond value
Bond Face Value (L) 1.00 1.072 4.03% 1.072
Bond Coupon (cL) 0.05 PV Bond

Zero Price PV Bond FV Bond Zero Yields Forward Rates Cash Flows
Maturity (via function) Cash Flows Cash Flows (via function) (via function) (continuous)

0 -1.072
1 0.992 0.050 0.050 0.84% 0.84% 0.048
2 0.959 0.048 0.050 2.11% 3.38% 0.046

Zero Yields for various maturities obtained 
from the U.S. Treasury website.

Zero Price calculated using continuous 
compounding and  fit to a parabola with R 
squared = 99.75% to obtain 
Zero Price via function.

time in years 3 0.925 0.046 0.050 2.61% 3.61% 0.044
4 0.890 0.044 0.050 2.93% 3.87% 0.043
5 0.853 0.043 0.050 3.17% 4.15% 0.041
6 0.816 0.041 0.050 3.38% 4.46% 0.039
7 0.778 0.039 0.050 3.59% 4.80% 0.038
8 0.739 0.037 0.050 3.79% 5.19% 0.036
9 0.698 0.035 0.050 3.99% 5.63% 0.035

10 0.657 0.690 1.050 4.20% 6.12% 0.702

fitted bond prices - ln (p_i) / t_i
these are PV price * FV cashflow CF * exp ( -t_i * IRR)

- ln (p_i+1 / p_i)
coupons + face value
FV (full value) cash

flows are undiscounted
Zero Yields and Forward Prices both based 
on Zero Price.  
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Fitting Program Output:
             ----  Descriptive Statistics for Variables  ----

  1: Title "Parabola";
 Variable    Minimum value   Maximum value    Mean value     Standard dev.    2: Variables x,y;
----------  --------------  --------------  --------------  --------------    3: Parameters c,b,d;
         x               1              10        4.666667        3.386247    4: Function y = c + b*(x-d)^2;
         y            0.66           0.985          0.8605       0.1261091    5: plot;

   6: data;

                   ----  Calculated Parameter Values  ---- Beginning computation...

 Parameter  Initial guess   Final estimate   Standard error      t      Prob(t)
----------  -------------  ----------------  --------------  ---------  -------
         c              1        1.48376593       0.5056422       2.93  0.06078
         b              1   -0.000533394524    0.0004189297      -1.27  0.29264
         d              1       -29.3764531        27.38353      -1.07  0.36199   ----  Final Results  ----

NLREG version 5.3
                  ----  Analysis of Variance  ---- Copyright (c) 1992-2002 Phillip H. Sherrod.

  Source     DF   Sum of Squares    Mean Square    F value   Prob(F) Parabola
----------  ----  --------------  --------------  ---------  ------- Number of observations = 6
Regression     2      0.07931547      0.03965773     588.88  0.00013 Maximum allowed number of iterations = 500
Error          3    0.0002020314    6.73438E-005 Convergence tolerance factor = 1.000000E-010
Total          5       0.0795175 Stopped due to: Relative function convergence.

Number of iterations performed = 37
Final sum of squared deviations = 2.0203139E-004
Final sum of deviations = -3.3234526E-012
Standard error of estimate = 0.00820633
Average deviation = 0.00518032
Maximum deviation for any observation = 0.00895358
Proportion of variance explained (R^2) = 0.9975  (99.75%)
Adjusted coefficient of multiple determination (Ra^2) = 0.9958  (99.58%)
Durbin-Watson test for autocorrelation = 2.021
Analysis completed 29-Dec-2002 16:38.  Runtime = 0.04 seconds.

Exhibit 7.2

Callibration of a Jump Diffusion

Casualty Actuarial Society E-Forum, Winter 2013

esmith
Typewritten Text

esmith
Typewritten Text

esmith
Typewritten Text



Vasicek Model : see Hull (4th Edition)  pp 567-9 Cox, Ingersoll and Ross Model : see Hull (4th edition) pg 570
RN model dr = a(b-r) dt + sr dz RN model dr = a(b-r) dt + s sqrt(r) dz

a 0.1779 Zero-coupon bond price a 0.2339 Zero-coupon bond price
b 0.0866 P(0,s) 0.6006 b 0.0808 P(0,s) 0.5752
r 1.50% via fn 0.6006 r 1.50% via fn 0.5752
0 (nowyr) 0.00 0 (nowyr) 0.00
s (zeroyr) 10.00 Zero yield s (zeroyr) 10.00 Zero yield
zero life 10.00 R(0,s) 5.10% zero life 10.00 R(0,s) 5.53%
r 2.00% via fn 5.10%  0.0200 via fn 5.53%

B(0,s) 4.6722 Zero yield (infinite maturity)  0.2356 Zero yield (infinite maturity)
A(0,s) 0.6442 R() 8.02% exp((s-0))-1 9.5491 R(¥) 8.05%

B(0,s) 3.8547
Volatility of zero yield A(0,s) 0.6094 Volatility of zero yield
R(0,s) 0.93%  0.09%

Vasicek Term Structure CIR Term Structure
Vasicek CIR

Vasicek Zero Yield Forward CIR Zero Yield Forward
Maturity Zero Yield Volatility Zero Price Rate Maturity Zero Yield Volatility Zero Price Rate

5.10% 0.93% 5.53% 0.09%
0 1.50% 2.00% 0 1.50% 0.24%
1 2.09% 1.83% 0.979 2.09% 1 2.21% 0.22% 0.978 2.21%
2 2.61% 1.68% 0.949 3.13% 2 2.82% 0.20% 0.945 3.44%
3 3.07% 1.55% 0.912 3.98% 3 3.35% 0.18% 0.904 4.40%
4 3.47% 1.43% 0.870 4.68% 4 3.80% 0.16% 0.859 5.17%
5 3.83% 1.32% 0.826 5.25% 5 4.20% 0.14% 0.811 5.77%
6 4.14% 1.23% 0.780 5.72% 6 4.54% 0.13% 0.762 6.25%
7 4.42% 1.14% 0.734 6.11% 7 4.84% 0.12% 0.713 6.63%
8 4.67% 1.07% 0.688 6.43% 8 5.10% 0.11% 0.665 6.93%
9 4.90% 1.00% 0.644 6.69% 9 5.33% 0.10% 0.619 7.16%

10 5.10% 0.93% 0.601 6.91% 10 5.53% 0.09% 0.575 7.35%
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Using Monte Carlo Simulation to Value Zero Yields Vasicek Model : see Hull (4th Edition)  p567-9
RN model dr = a(b-r) dt + sr dz

Random Numbers (Excel)
a 0.1779 Zero-coupon bond price

Vasicek stochastic DE b 0.0866 P(0,s) 0.6006
1st term 0.00127 r 1.50% MC Value 0.6089
2nd term 0.02000 0 (nowyr) 0.00 Zero yield
CIR stochastic DE s (zeroyr) 10.00 R(0,s) 5.10%
1st term 0.00154 zero life 10.00 MC value 4.96%
2nd term 0.00245 r 2.00%

dt 0.10 Volatility of zero yield
r + dr Vasicek CIR B(0,s) 4.6722 R(0,s) 0.93%
MC value 0.0120 0.0160 A(0,s) 0.6442 MC value 1.00%
MC stdev 0.0214 0.0026

Cox, Ingersoll and Ross Model : see Hull (4th edition) p570
RN model dr = a(b-r) dt + s sqrt(r) dz

a 0.2339 Zero-coupon bond price
b 0.0808 P(0,s) 0.5752
r 1.50% MC Value 0.5729
0 (nowyr) 0.00 Zero yield
s (zeroyr) 10.00 R(0,s) 5.53%
zero life 10.00 MC Value 5.57%
r 2.00%
dt 0.10
 0.2356 Volatility of zero yield
exp((s-0))- 9.5491 R(0,s) 0.09%
B(0,s) 3.8547 MC Value 0.01%
A(0,s) 0.6094
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Using Monte Carlo Simulation to Value Zero Yields Vasicek Model : see Hull (4th Edition)  pp 567-9
RN model dr = a(b-r) dt + sr dz

Quasi Random Numbers
a 0.1779 Zero-coupon bond price

Vasicek stochastic DE b 0.0866 P(0,s) 0.6006
1st term 0.00127 r 1.50% MC Value 0.5993
2nd term 0.02000 0 (nowyr) 0.00 Zero yield
CIR stochastic DE s (zeroyr) 10.00 R(0,s) 5.10%
1st term 0.00154 zero life 10.00 MC value 5.12%
2nd term 0.00245 r 2.00%

dt 0.10 Volatility of zero yield
r + dr Vasicek CIR B(0,s) 4.6722 R(0,s) 0.93%
MC value 0.0154 0.0164 A(0,s) 0.6442 MC value 0.91%
MC stdev 0.0194 0.0024

Cox, Ingersoll and Ross Model : see Hull (4th edition) pg 570
RN model dr = a(b-r) dt + s sqrt(r) dz

a 0.2339 Zero-coupon bond price
b 0.0808 P(0,s) 0.5752
r 1.50% MC Value 0.5720
0 (nowyr) 0.00 Zero yield
s (zeroyr) 10.00 R(0,s) 5.53%
zero life 10.00 MC Value 5.59%
r 2.00%
dt 0.10
 0.2356 Volatility of zero yield
exp((s-0))- 9.5491 R(0,s) 0.09%
B(0,s) 3.8547 MC Value 0.01%
A(0,s) 0.6094
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Using Monte Carlo Simulation to Value Bond Prices
Comparison of Results
MRE (Minimum Relative Entropy) Prior Distribution

Zero Yield

time in Vasicek Vasicek Vasicek CIR CIR CIR
years equation MC1 MC2 equation MC1 MC2

0 1.50% 1.64% 1.42% 1.50% 1.45% 1.49%
1 2.09% 1.93% 2.03% 2.21% 2.23% 2.22%
2 2.61% 2.39% 2.57% 2.82% 2.84% 2.84%
3 3.07% 3.12% 3.03% 3.35% 3.41% 3.38%
4 3.47% 3.61% 3.45% 3.80% 3.83% 3.84%
5 3.83% 3.93% 3.81% 4.20% 4.26% 4.24%
6 4.14% 4.17% 4.14% 4.54% 4.57% 4.58%
7 4.42% 4.47% 4.43% 4.84% 4.89% 4.89%
8 4.67% 4.79% 4.68% 5.10% 5.16% 5.15%
9 4.90% 5.03% 4.91% 5.33% 5.39% 5.38%

10 5.10% 5.27% 5.12% 5.53% 5.59% 5.59%

Bond Price 0.54706 0.54012 0.54478 0.52858 0.52478 0.52521

Using Monte Carlo Simulation to Value Bond Prices
Comparison of Results
MRE (Minimum Relative Entropy) Prior Distribution

Forward Rate

time in Vasicek Vasicek Vasicek CIR CIR CIR
years equation MC1 MC2 equation MC1 MC2

0 2.09% 1.93% 2.03% 2.21% 2.23% 2.22%
1 2.09% 1.93% 2.03% 2.21% 2.23% 2.22%
2 3.13% 2.85% 3.10% 3.44% 3.45% 3.46%
3 3.98% 4.59% 3.97% 4.40% 4.57% 4.45%
4 4.68% 5.08% 4.69% 5.17% 5.08% 5.22%
5 5.25% 5.22% 5.27% 5.77% 5.97% 5.84%
6 5.72% 5.37% 5.76% 6.25% 6.12% 6.32%
7 6.11% 6.27% 6.15% 6.63% 6.82% 6.70%
8 6.43% 7.05% 6.48% 6.93% 7.05% 7.00%
9 6.69% 6.95% 6.75% 7.16% 7.23% 7.24%

10 6.91% 7.35% 6.98% 7.35% 7.39% 7.42%
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Initial Bond Portfolio Value 0.522890

Final Bond Portfolio Value 0.506413

Benchmark instruments N=5, nu=11

price PV cash flow price PV cash flow price PV cash flow price PV cash flow price PV cash flow
C_1 g_1j C_2 g_2j C_3 g_3j C_4 g_4j C_5 g_5j

0.693 0.059 0.608 0.050 0.523 0.040 0.438 0.030 0.353 0.020
0.058 0.048 0.038 0.029 0.019
0.055 0.046 0.037 0.028 0.018
0.053 0.044 0.036 0.027 0.018
0.051 0.043 0.034 0.026 0.017
0.049 0.041 0.033 0.024 0.016
0.047 0.039 0.031 0.023 0.016
0.044 0.037 0.030 0.022 0.015
0.042 0.035 0.028 0.021 0.014
0.039 0.033 0.026 0.020 0.013
0.194 0.192 0.191 0.189 0.187

The Vector Of Benchmark Prices C_j The Vector Of Final Values p_i

0.692669 0.607779 0.522890 0.438000 0.353111 0.173543 0.171769 0.193366 0.209694 0.251628

The Matrix Of Present Valued Cash Flows g_ij The Matrix Of Lagrange Multipliers lambda*_j

0.059495 0.049579 0.039663 0.029748 0.019832 -0.026586 -0.047202 0.171634 0.389973 1.000000
0.057519 0.047932 0.038346 0.028759 0.019173 -0.026586 -0.047202 0.171634 0.389973 1.000000
0.055479 0.046232 0.036986 0.027739 0.018493 -0.026586 -0.047202 0.171634 0.389973 1.000000
0.053374 0.044479 0.035583 0.026687 0.017791 -0.026586 -0.047202 0.171634 0.389973 1.000000
0.051206 0.042672 0.034137 0.025603 0.017069 -0.026586 -0.047202 0.171634 0.389973 1.000000
0.048974 0.040811 0.032649 0.024487 0.016325 -0.026586 -0.047202 0.171634 0.389973 1.000000
0.046677 0.038898 0.031118 0.023339 0.015559 -0.026586 -0.047202 0.171634 0.389973 1.000000
0.044317 0.036931 0.029545 0.022158 0.014772 -0.026586 -0.047202 0.171634 0.389973 1.000000
0.041892 0.034910 0.027928 0.020946 0.013964 -0.026586 -0.047202 0.171634 0.389973 1.000000
0.039404 0.032837 0.026269 0.019702 0.013135 -0.026586 -0.047202 0.171634 0.389973 1.000000
0.194332 0.192498 0.190665 0.188832 0.186999 -0.026586 -0.047202 0.171634 0.389973 1.000000
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MRE: Find LaGrange Multipliers
Maximum allowed number of iterations = 500
Convergence tolerance factor = 1.000000E-010

Number of iterations performed = 5
Final function value = 4.9005938E-017
Analysis completed  2-Jan-2003 07:54.  Runtime = 0.02 seconds.

  ----  Calculated Parameter Values  ----

 Parameter  Initial guess   Final estimate 
----------  -------------  ----------------
        L1              1       -0.26586057
        L2              1     -0.0472018362
        L3              1       0.171634464
        L4              1       0.389972719
        L5              1                 1
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Initial Bond Portfolio Value 0.522890

Final Bond Portfolio Value 0.504591

Benchmark instruments N=5, nu=11

price PV cash flow price PV cash flow price PV cash flow price PV cash flow price PV cash flow
C_1 g_1j C_2 g_2j C_3 g_3j C_4 g_4j C_5 g_5j

0.693 0.059 0.608 0.050 0.523 0.040 0.438 0.030 0.353 0.020
0.058 0.048 0.038 0.029 0.019
0.055 0.046 0.037 0.028 0.018
0.053 0.044 0.036 0.027 0.018
0.051 0.043 0.034 0.026 0.017
0.049 0.041 0.033 0.024 0.016
0.047 0.039 0.031 0.023 0.016
0.044 0.037 0.030 0.022 0.015
0.042 0.035 0.028 0.021 0.014
0.039 0.033 0.026 0.020 0.013
0.194 0.192 0.191 0.189 0.187

The Vector Of Benchmark Prices C_j The Vector Of Final Values p_i

0.692669 0.607779 0.522890 0.438000 0.353111 0.159167 0.177378 0.197673 0.220289 0.245493

The Matrix Of Present Valued Cash Flows g_ij The Matrix Of Lagrange Multipliers lambda*_j

0.059495 0.049579 0.039663 0.029748 0.019832 -1.276111 -1.276111 -1.276111 -1.276111 -1.276111
0.057519 0.047932 0.038346 0.028759 0.019173 -1.276111 -1.276111 -1.276111 -1.276111 -1.276111
0.055479 0.046232 0.036986 0.027739 0.018493 -1.276111 -1.276111 -1.276111 -1.276111 -1.276111
0.053374 0.044479 0.035583 0.026687 0.017791 -1.276111 -1.276111 -1.276111 -1.276111 -1.276111
0.051206 0.042672 0.034137 0.025603 0.017069 -1.276111 -1.276111 -1.276111 -1.276111 -1.276111
0.048974 0.040811 0.032649 0.024487 0.016325 -1.276111 -1.276111 -1.276111 -1.276111 -1.276111
0.046677 0.038898 0.031118 0.023339 0.015559 -1.276111 -1.276111 -1.276111 -1.276111 -1.276111
0.044317 0.036931 0.029545 0.022158 0.014772 -1.276111 -1.276111 -1.276111 -1.276111 -1.276111
0.041892 0.034910 0.027928 0.020946 0.013964 -1.276111 -1.276111 -1.276111 -1.276111 -1.276111
0.039404 0.032837 0.026269 0.019702 0.013135 -1.276111 -1.276111 -1.276111 -1.276111 -1.276111
0.194332 0.192498 0.190665 0.188832 0.186999 -1.276111 -1.276111 -1.276111 -1.276111 -1.276111
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