
Casualty Actuarial Society 
E-Forum, Summer 2013 

 

 
 



Casualty Actuarial Society E-Forum, Summer 2013 iii 

 

The CAS E-Forum, Summer 2013 
 

The Summer 2013 Edition of the CAS E-Forum is a cooperative effort between the CAS E-Forum 
Committee and various other CAS committees, task forces, or working parties.  

This E-Forum includes three independent research papers and report 5 of the CAS Risk-Based 
Capital (RBC) Dependencies and Calibration Working Party (DCWP). Reports 1 and 2 are posted in 
E-Forum Winter 2012-Volume 1 and reports 3 and 4 are in E-Forum Fall 2012-Volume 2. 

Risk-Based Capital Dependencies and Calibration Research 
Working Party 

Allan M. Kaufman, Chairperson 
Karen H. Adams 
Emmanuel Theodore Bardis 
Jess B. Broussard 
Robert P. Butsic 
Pablo Castets 
Joseph F. Cofield 
Jose R. Couret 
Orla Donnelly 
Chris Dougherty 
Nicole Elliott 
Brian A. Fannin 
Sholom Feldblum 
Kendra M. Felisky 
Dennis A. Franciskovich 
Spencer M. Gluck 
James C. Guszcza 

Robert Haimov 
Jed Nathaniel Isaman 
Shira L. Jacobson 
Shiwen Jiang 
Alex Krutov 
Terry T. Kuruvilla 
Apundeep Singh Lamba 
Giuseppe F. LePera 
Zhe Robin Li 
Lily (Manjuan) Liang 
Thomas Toong-Chiang Loy 
Eduardo P. Marchena 
Mark McCluskey 
James P. McNichols 
Glenn G. Meyers 
Daniel M. Murphy 

Douglas Robert Nation 
G. Chris Nyce 
Jeffrey J. Pfluger 
Yi Pu 
Ashley Arlene Reller 
David A. Rosenzweig 
David L. Ruhm 
Andrew Jon Staudt 
Timothy Delmar Sweetser 
Anna Marie Wetterhus 
Jennifer X. Wu 
Jianwei Xie 
Ji Yao 
Linda Zhang 
Christina Tieyan Zhou 
Karen Sonnet, Staff Liaison 

http://www.casact.org/pubs/forum/12wforum/�
http://www.casact.org/pubs/forum/12fforumpt2/�


Casualty Actuarial Society E-Forum, Summer 2013 iii 

CAS E-Forum, Summer 2013 

Table of Contents 

Working Party Report 

An Economic Basis for Property-Casualty Insurance Risk-Based Capital Measures 
RBC Dependencies and Calibration Working Party (DCWP) .................................................................. 1-66 

Independent Research 

Kurtosis and Skewness Estimation for Non-Life Reserve Risk Distribution 
Eric Dal Moro, Fellow of the French Actuarial Association ................................................................ 1-26 

The Impact of Different Forms of Decision-Aids on User Best Assessments 
Marc-André Desrosiers, FCAS, MBA ...................................................................................................... 1-46 

Weaving Actuarial Stories 
Marc-André Desrosiers, FCAS, MBA ...................................................................................................... 1-28 



Casualty Actuarial Society E-Forum, Summer 2013 iv 

E-Forum  Committee 
Windrie Wong, Chairperson 

Cara Blank 
Mei-Hsuan Chao 
Mark A. Florenz 

Karl Goring 
Dennis L. Lange 
Bryant Russell 

Shayan Sen 
Rial Simons 

Elizabeth A. Smith, Staff Liaison/Staff Editor 
John Sopkowicz 

Zongli Sun 
Betty-Jo Walke 

Qing Wang 
Yingjie Zhang 

 

For information on submitting a paper to the E-Forum, visit 
http://www.casact.org/pubs/forum/. 

 



Casualty Actuarial Society E-Forum, Summer 2013 1 

An Economic Basis for Property-Casualty Insurance  
Risk-Based Capital Measures  

(RBC Research Working Parties Report 5) 

Robert P. Butsic  
______________________________________________________________________________ 

Abstract: A solvency measure is needed to consistently and fairly determine the level of an insurer’s capital, 
which is needed for protection against defaulting on policyholder claims. There are several competing measures 
in current use, including VaR and the expected policyholder deficit. However, there is no published analytical 
method for selecting or calibrating any of these measures to produce a level of capital consistent with economic 
principles. 
  This paper develops an economic basis for selecting the solvency measure, and additionally determines how 
the measure can be calibrated to produce optimum capital. By maximizing policyholder welfare, a reasonable 
goal for regulation and corporate governance, I show that the optimal capital amount can be established by 
assessing the policyholders’ perceived value of the expected default relative to the insurer’s cost of holding 
capital. This optimality is achieved while allowing insurers a competitive rate of return. 
  The result is that the proper solvency measure is adjusted ruin probability, where the probability distribution 
of losses or assets is modified to reflect policyholders’ risk preferences. The optimal level of the adjusted ruin 
probability is uniquely determined by the frictional cost of holding capital. With this foundation, I also show 
that the subadditivity property of a coherent risk measure is an unnecessary criterion for evaluating insurance 
solvency.   
  Under the policyholder welfare framework, the level of the adjusted ruin probability standard will vary by 
degree of policyholder risk aversion, interest rates, insurer income tax rates, amount of guaranty fund protection 
and other factors not considered in applying the above conventional solvency measures. I also discuss the 
relationship between the minimum regulatory level of capital and the insurer’s optimal level. 
 
Keywords: Solvency risk measures; policyholder welfare; optimal capital; adjusted probability distribution; 
certainty-equivalent losses; frictional capital costs; exponential utility; stochastic mean; subadditivity. 

______________________________________________________________________________ 

1. INTRODUCTION AND SUMMARY  

The primary purpose of capital in an insurance organization is to protect policyholders, who 
in the event of insolvency, would not receive the full claim payment to which they are 
contractually entitled. Since there is an inverse relationship between the amount of an insurer’s 
capital and the impact of insolvency on its policyholders, it is important to know (1) what kind of 
protection is desired, (2) how much protection is needed and (3) how much capital will provide 
the desired protection.  

The first issue is addressed by selecting a solvency measure.  The commonly used solvency 
measures are ruin probability, value-at-risk (VaR), expected policyholder deficit (EPD) and tail 
value-at-risk (TVaR). These solvency measures, which are discussed more thoroughly in section 
5.4, use the probability distribution of losses and assets to characterize the harm to policyholders 
in an insolvency. The first two measures assess policyholder harm simply by whether or not an 
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insolvency occurs. The latter two measures incorporate both the likelihood of insolvency and its 
average value provided that it occurs. Given a particular solvency measure, the amount of 
protection is addressed by choosing the level of the solvency measure (for example, with VaR a 
specific confidence level must be assumed). Selecting the solvency level is called calibrating the 
solvency measure. After calibration, the required capital follows directly using actuarial and 
statistical techniques applied to the probability distributions for the relevant balance sheet items.  

There is much debate over the proper choice of risk measure: some adherents tout technical 
features, such as subadditivity (e.g., Artzner [1999]) or practical ones, such as ease of 
explanation or common use in other financial service industries. However, to my knowledge, 
there is no literature that establishes a particular solvency measure based upon economic 
principles. Furthermore, despite the widespread use of solvency measures, there has been no 
analytic basis for setting the level of the risk measure — calibration has been arbitrary, using 
judgment. Although there is a vast literature on implementing risk measures, especially VaR, 
each author inevitably assumes that the calibration level (say, 99% VaR over one year) is given. 
There is no discussion regarding how to determine the specific level.1

In this paper, I have addressed both the solvency measure and the calibration concerns by 
establishing an analytical framework that directly applies the above cost-benefit relationship for 
capital. Given that the economic objective in setting capital standards is to maximize 
policyholder welfare while allowing a fair return to the insurer’s owners, I show that this goal 
implies that there is an optimal capital amount for each insurer. That amount depends on three 
key inputs: the probability distribution of losses and assets, the insurer’s cost of holding capital 
and the risk preferences of the policyholders. If the values of these underlying variables are 
known, then the optimal capital is uniquely determined. The theoretical optimal capital amount 
then forms the basis for regulatory capital standards, internal insurer risk management and 

  This is surprising, since it 
is well known that there is a trade-off between the cost of having too much capital and the 
downside of not having enough capital. For example, few would believe that a 99.999% annual 
VaR standard is appropriate, since this level implies too much capital, which would be extremely 
costly to carry. Conversely, a 60% VaR standard would indicate an intolerable risk of insurer 
insolvency. Therefore, some intermediate value of the VaR standard must be best.  

                                                           
1 The 99.5% VaR standard of Solvency II is based on mimicking the annual default probability underlying a 
Standard & Poors BBB rating. However, this approach dodges the question, since there is no objective reason why 
this particular default rate (0.5%) is superior to that of any other rating (e.g., AA). 
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pricing applications.  

The key result of this paper is that the appropriate solvency risk measure is adjusted ruin 
probability (or a simple function of it), using a transformed distribution of outcomes for each 
component risk of the insurer. The adjusted distribution incorporates policyholder risk 
preferences and has a much fatter tail than the original distribution. This gives a suitable heavy 
weight to the extreme outcomes and prevents engineering the tail shape to manipulate capital 
requirements. Therefore, on an economic basis, the best solvency measure is none of the 
conventional measures. I show that using a conventional risk measure, such as VaR or expected 
policyholder deficit, will overstate the capital for low-risk losses (and assets) while understating 
the amount of capital for high-risk components. The latter effect is more serious. 

The level of the adjusted ruin probability standard is unique and is a function of the frictional 
cost of capital. Thus, the calibration is not arbitrary. However, the adjusted ruin probability is 
equivalent to a conventional ruin probability standard that varies by the volatility of the insurers’ 
component risks and by its policyholder risk preferences. So, even though the adjusted ruin 
probability standard may be fixed for all insurers, the corresponding unadjusted ruin probability 
will vary by line of business and by insurer. 

Under the policyholder welfare framework, the level of the adjusted ruin probability standard 
will differ by degree of policyholder risk aversion, interest rates, insurer income tax rates and 
other factors not considered when applying the above conventional solvency measures. Thus, the 
adjusted ruin probability standard is not static and will vary over time. Another consequence of 
the policyholder welfare basis is that the amount of guaranty fund protection will also influence 
insurer capital. This result is important and (to my knowledge) has been ignored in the previous 
insurance literature. 

Although the optimal level of capital may be appropriate as a standard for internal insurer 
governance and for pricing applications, I discuss how the regulatory level of capital should be 
lower than the insurer’s optimal level. 

1.1 Outline 
The remainder of the paper is summarized below: 

Section 2 provides some historical background for the development of solvency risk measures 
as applied to insurance and other financial firms.  
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Section 3 develops the notion of consumer surplus (relabeled as consumer value) and the 
certainty-equivalent value for insurance losses. The basic idea here is that consumers are risk-
averse and will pay more for insurance than the expected value of their losses. I have used these 
concepts, which are the economic foundation for insurance, to value insurer default from the 
policyholder’s perspective. This section also relates the certainty-equivalent loss concept to 
utility theory. 

Section 4 develops a simple one-period model of an insurer with risky losses and riskless 
assets and specifies the cost of holding capital. This section also formulates the premium charged 
to policyholders, which includes the frictional capital cost. 

Section 5 shows how the consumer value of the insurance transaction is maximized by 
minimizing the cost of holding capital plus the value to the policyholder of the insurer’s default. 
This section shows that the optimum amount of capital is determined from the adjusted (for 
policyholder risk preferences) ruin probability. It compares results from the adjusted ruin 
probability to those from conventional solvency measures and shows that the coherent risk 
measure property of subadditivity is not necessary for an economically valid insurance solvency 
risk measure. 

Section 6 discusses how the results of section 5 can be extended to include asset risk, guaranty 
funds and multiple-period assets and liabilities. 

Section 7 examines implementation issues in applying the above capital-setting  methodology, 
including its use in regulatory risk-based capital. 

Section 8 provides a brief conclusion. 
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2. HISTORY OF SOLVENCY RISK MEASURES 

European actuaries have applied risk measures for decades. Ruin theory, also called collective 
risk theory, is a branch of actuarial science that studies an insurer's vulnerability to insolvency 
based on mathematical modeling of the insurer's surplus (capital). The theoretical foundation of 
ruin theory, known as the classical compound-Poisson risk model in the literature, was 
introduced in 1903 by the Swedish actuary Filip Lundberg.2

The ruin probability measure has seen some use for internal insurer risk management, but has 
not yet been directly used for solvency regulation (although the closely related VaR has). 

 Usually, the main objective of the 
classical model and its extensions was to calculate the probability of an insurer’s ultimate ruin. 

The VaR measure was introduced in 1945, as a means of measuring bond portfolio risk.3

During the early 1990s, concerns about the proliferation of derivative instruments, some well-
publicized massive trading losses and the 1987 stock market crash spurred the field of financial 
risk management. Through its RiskMetrics service, JP Morgan introduced VaR to professionals 
at many financial institutions. Ultimately, the value of proprietary VaR measures was recognized 
by the Basle Committee, which authorized their use by banks for performing regulatory capital 
calculations. 

 In 
the 1970s, as leverage became widespread, securities firms sought more effective ways to 
manage portfolio risk. They wanted a single risk metric that could be applied consistently across 
asset categories, including derivatives, which were becoming increasingly complex. 
Concurrently, computing power became cheap enough to analyze large portfolios. However, 
VaR was still viewed as a theoretical tool. 

VaR became common in the banking and finance industry in the 1990s onward. It is used to 
control the risk of the positions in investment portfolios or bank divisions for managers of these 
units. Supporters of VaR-based risk management claim that a major benefit of VaR is the 
improvement in systems and modeling it forces on an institution (see Jorion [2006]). For 
insurance, it is the measure used in Europe for the capital standards of the Solvency II regime.  

After the 2008 financial crisis, VaR came under severe criticism (see Nocero [2009] and 
Einhorn [2008]), primarily because of abuses in its implementation. It has been argued that the 

                                                           
2 See Lundberg [1903]. 
3 For a more detailed discussion on the history of VaR, see Holton [2003]. 

http://en.wikipedia.org/wiki/Actuarial_science�
http://en.wikipedia.org/wiki/Systems�
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2008 financial crisis was exacerbated by bankers misusing VaR. In order to reduce apparent risk 
levels (and thereby regulatory capital) for mortgage-backed derivatives, the banks engaged in 
“tail-stuffing,” wherein the securities were purposely designed to increase the amount of risk in 
the tail, while keeping VaR at a low level. These abuses highlighted a technical weakness of 
VaR, in which very large extreme events are treated equally with events just large enough to 
breach the VaR confidence level. 

The expected policyholder deficit (EPD) measure first appeared in the insurance financial 
literature in Butsic [1994]. This work arose from participation in the American Academy of 
Actuaries Property-Casualty Risk-Based Capital group, which advised the NAIC in its 
development of the current RBC method in the early 1990s. The concept developed as a response 
to a perceived deficiency in using ruin probability (or its VaR equivalent) as a solvency standard 
in that it did not incorporate the depth of an insurer’s insolvency. 

TVaR had a similar genesis in banking and investment management as the EPD in insurance. 
It was also a response to the same deficiencies in applying VaR. The above tail-stuffing abuses 
would have been severely mitigated under a TVaR metric. The TVaR concept saw 
implementation and became common in the 2000s. It is presently used as the solvency measure 
in Swiss insurance capital regulation.  

Within the last decade or so, a new class of risk measures called spectral measures have been 
developed (see Acerbi [2002]). They are based on TVaR and include a risk-aversion component; 
i.e., extreme tail events are given weights that correspond to the investors’ desire to avoid them. 
If the weights are large, more capital is required. I have used the concept of risk-aversion in this 
paper, although under a different context (i.e., optimization). 

3. CONSUMER VALUE AND CERTAINTY EQUIVALENT 
LOSSES 

The important concept of this section is that individuals (and organizations as well) will pay 
more than expected value to insure losses. The implied value placed on losses by the 
policyholder is called the certainty equivalent value. The economic gain from buying insurance 
is called the consumer surplus, which I have renamed as consumer value. We can measure the 
consumer value by using a modified version of the underlying probability distribution of losses. 
The adjusted distribution provides the means for determining the expected loss of consumer 
value due to the possibility that the insurer becomes insolvent. The adjusted distribution can be 
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determined directly from a policyholder’s utility function. 

3.1 The Consumer Surplus Concept 
The fundamental basis for insurance is that individuals are risk-averse: they are willing to pay 

more than the mathematical expected value of their potential loss in order to buy insurance. 

As a simple example, suppose an individual is subject to loss on a home worth $100,000. 
There is a 1% chance of a total loss and a 99% probability of no loss. The mathematical expected 
value of the loss is $1,000 = 0.01 x 100,000. However, suppose that the homeowner is willing to 
pay up to $1,500 to an insurer to completely remove the risk of loss. Meanwhile, an insurer will 
charge only $1,100. The insurer is able to charge less than the policyholder (PH) is willing to pay 
because, through the law of large numbers, the risk to the insurer is reduced by pooling similar 
risks from other PHs.  

The above three amounts ($1,000, $1,500, and $1,100) are important, and deserve a distinct 
nomenclature. The first is commonly called the expected loss, and in actuarial parlance the pure 
premium. The second is the certainty equivalent expected loss and the third the premium. In 
setting prices, actuaries normally include specific loadings for the insurer’s expenses and for its 
bearing the risk, although the level of those loads is often limited by competition. In any event, 
the premium represents the insurer’s price actually charged for bearing the risk.  

The difference between the premium and the expected loss ($100 in the example above) is 
called the provision for expenses and profit. The difference between the certainty equivalent loss 
and the premium ($400) is called consumer surplus in the economics literature.4

The consumer surplus concept was introduced by Alfred Marshall in 1890,

 It is the 
difference between the total amount that consumers are willing and able to pay for a good or 
service and the total amount that they actually do pay (i.e., the market price for the product). If 
the consumer surplus is greater than zero, then the policyholder will buy insurance; otherwise the 
policyholder will self-insure. 

5

                                                           
4 In finance, the equivalent concept is called the risk premium (See Panjer [1998]). I have not used this term here, 
since the term as used in insurance often represents the market price of risk (what the insurer charges for risk) and 
not what the policyholder is willing to pay.  

 and was designed 
to measure the welfare effects of economic policy. Standard microeconomics textbooks use the 
consumer surplus concept to equilibrate supply and demand. Consumer surplus applications are 

5 Marshall, Alfred (1947 [1890]): Principles of Economics. London, Macmillan. 
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common in welfare economics and government regulation, where cost-benefit analyses are 
needed.6

For insurance, consumer surplus represents the monetary benefit to the PH of having 
insurance. Since “surplus” commonly represents a different concept (capital) in insurance, for 
this paper I have renamed consumer surplus as consumer value. 

 

I assume that in purchasing insurance, the PH will seek to maximize consumer value, which 
equals the difference between the certainty equivalent value of the potential loss, and the 
premium the PH must pay.  

3.2 Mathematical Formulation of Certainty Equivalent Losses 
For an individual PH having an exposure to an insurable risk, let y represent the size of a 

possible loss and p(y) the probability that y occurs. The expected loss L is the summation of each 
possible loss times its probability: .    

Assume that for each possible loss amount y, there is a unique amount  representing 
the certainty equivalent (CE) loss. Call the term k(y) the certainty equivalent function. Therefore, 
the CE expected loss (CEL), denoted by 𝐿�, will be the expectation   

    

 .  (3.21) 

  

Since policyholders are risk-averse, we have . The value , or the average of 
the certainty equivalent function, is a useful parameter. Notice that k ≥ 1. 

If the premium equals the expected loss, then the consumer value of the insurance equals the 
difference between the CEL and the expected loss, or . 

The contribution to the CE expectation from loss size y in equation 3.21 can also be expressed 
as , where . Here,  is a transformed probability that will 
give greater weight to large loss values and less weight to small values than p(y), thus producing 
an expected value greater than L. An alternative version of equation 3.21 is then 

   

 . (3.22) 

                                                           
6 For example, see Einav, Finkelstein, and Culleny [2010]. 
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Notice that the certainty-equivalent probabilities  are conceptually similar to the risk-
neutral measures that form the cornerstone of modern finance theory.7 Transformed probability 
measures have also been used to value insurance losses in pricing models (see Wang [1996] and 
Butsic [1999]). The CE probabilities can be considered as subjective weights attached by the PH 
to the various loss sizes. Since these weights are equivalent to probabilities, they must sum to 1. 

Thus, an important restriction on the CE function k(y) is that . Appendix A3 

discusses this restriction further. It also explains why k(y) depends not only on the particular loss 
size y, but on all the other possible loss sizes as well. 

3.3 A Numerical Example 
A numerical example will help to illustrate these concepts: suppose a PH faces a loss which 

can have three values {100, 400, 1200} with respective probabilities  
{0.60, 0.30, 0.10}. The corresponding CE function values are {0.80, 1.10, 1.90}, showing an 
increasing risk aversion with loss size. Table 3.3 below shows details of the CE expected loss 
calculation. 

 
Table 3.3 

Certainty-Equivalent Loss Calculation for Numerical Example 
 

     Total 
Loss Amount      y 100 400 1200  
Probability      p(y) 0.60 0.30 0.10 1.00 
Expected Value Component     y·p(y) 60 12 120 300 
CE Function      k(y) 0.80 1.10 1.90 1.36 
Certainty Equivalent Loss      y·k(y) 80 440 2280  
CE Exp. Loss Component       y·k(y)·p(y) 48 132 228 408 
CE Probability        k(y)·p(y) 0.48 0.33 0.19 1.00 

 
The expected loss L is 300 and the CE expected loss is 408, giving an average CE function 

value of k = 1.36 = 408/300. The CE probabilities have shifted from their unadjusted 
counterparts: the subjective chance of the small (100) loss drops from 60% to 48% and the 
subjective likelihood of the larger losses increases, from 30% and 10% to 33% and 19%. 

                                                           
7 The risk-neutral concept was first introduced by Arrow and Debreu [1954]. The Black-Scholes option pricing 
model can be derived using risk-neutral valuation, as shown in Hull [2008] (pages 307-309). 
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3.4 Utility Theory and Certainty Equivalent Losses 
By using basic principles from utility theory, we can derive some general properties for the 

CE function. There is a direct connection between utility theory and the certainty equivalent. As 
shown in Appendix A1, the CE function can be determined from the utility function and the loss 
distribution. The certainty equivalent and the expected utility formulations are dual processes; 
each can be determined using the inverse of the other.8

The first property is that the CE value function k(y) increases with loss size y. This occurs 
because utility increases with wealth, as Appendix A2 shows. 

 

Second, because of risk aversion, k(y) increases at a growing rate: its second derivative with 
respect to loss size is positive. Appendix A2 discusses this property in more detail. 

Third, as discussed below, the certainty-equivalent expected loss (and thus each k(y) value) 
depends on the variance of the loss distribution.  

If the variance is non-zero, then we apply the basic utility theory assumption that PHs are 
risk-averse. For U(x) representing the utility of (wealth given) a loss x, this implies a downward-
sloping utility function, (i.e., U'(x) < 0) and that the function is concave  (i.e., U''(x) ≤ 0). The 
absolute risk aversion function9

  

 is defined as  

 .  (3.41) 

 

Denoting the variance by σ2, it is straightforward to show10

    

 that the certainty-equivalent loss 
is approximated by 

 . (3.42) 

 

Here, W0  is the initial wealth of the PH. This important result shows that  is 
(approximately) directly proportional to the variance of the loss distribution and also 
proportional to a measure of risk aversion. If the loss distribution is normal and the utility 

                                                           
8 This duality is established by Yaari [1987], who determines that the CE value of a risky prospect can be found 
using an adjusted probability distribution. 
9 See Pratt [1964]. As shown in Appendix A1, the sign of the absolute risk aversion function is negative when utility 
is a function of wealth, but positive when a function of loss size. 
10 See Panjer et al. [1998], page 137. 
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function is exponential with risk aversion parameter a, then equation 3.42 is exact,11

    

 and as 
shown in Appendix A4, the CEL becomes  

 .  (3.43) 

 

To summarize the above results, we see that the CEL is a function of both consumer risk 
preferences and the variance of the loss distribution. Additionally, the certainty equivalent value 
function increases with loss size at an increasing rate. These properties are essential to 
determining the optimal capital for an insurer, as I develop in section 5. 

Although the optimal capital results can be developed directly from the underlying utility 
function, I prefer the certainty equivalent approach to valuing risk aversion, since it is more 
direct than the utility method and provides a tangible, monetized conversion of the expected loss. 
Also, there is a unique CE value for each possible loss size, while under expected utility, any 
linear transformation of the utility function will give valid results. Thus, the expected utility of a 
particular loss size has no meaning by itself.  

3.5 The Certainty Equivalent Expected Default Value 
In order to determine the optimal capital amount for an insurer (in section 5) it is necessary to 

find the consumer value of the insurance contract. This entails knowing the certainty equivalent 
value of the expected default. Here, for simplicity, I assume an insurer with a single 
policyholder. The expected default, also known in the actuarial literature as the expected 
policyholder deficit, is  

 

 . (3.51) 

 

Here, A represents the insurer’s assets, which are assumed to be fixed (non-stochastic) for this 
application, and y is the individual policyholder loss size. The CE value of the expected default, 
denoted by , and abbreviated to CED, can be determined by finding the CE value of the loss 
actually paid by the insurer (allowing the possibility of default) and subtracting it from the CE of 

                                                           
11 The exponential utility function can be expressed as U(x) = – exp[–a(W0 – x)], where a is the risk-aversion 
parameter, W0  is initial wealth and x is the loss value. Since exp(aW0) is a constant and utility functions are invariant 
to scale transformations, the utility reduces simply to U(x) = – exp(ax). Thus the utility at any loss size x is 
independent of initial wealth. 
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the loss  without possibility of default. The CE value for losses limited to the amount A is 

. Notice that, for losses larger than A, the amount of loss paid 

by the insurer is simply A. Here, to be consistent with the valuation of losses below the amount 
A, we must also use the subjective CE probability  of the loss being greater than A. We 
cannot use the unadjusted probability p(y). To get the CED, we have , or  

 

 . (3.52) 

 

Here, the only difference from the equation 3.51 expected default calculation is the 
substitution of the CE probability  or its equivalent k(y)p(y) for the unadjusted probability 
p(y). Notice that if A = 0, the CE default value equals the CE expected loss.  

To illustrate the certainty equivalent default concept, assume a simple case where there is a 
98% chance of a $0 loss and a 2% chance of a $1000 loss. The expected value of the loss is $20 
= 0.02(1000). Also assume that the PH has risk aversion governed by exponential utility: 

, where x is the loss size. The risk aversion parameter is a = 0.002. The utility of the 
0 loss is –1 and the utility of the $1000 loss is 
 –7.389 = –exp[0.002(1000)]. The expected utility is –1.128 = 0.98(–1) + 0.02(–7.389). The 
certainty-equivalent loss is the loss size for which the actual utility equals the expected utility; 
thus the CEL is $60.13:   –exp[0.002(60.13)] = –1.128.  

Now suppose that the loss to the PH is limited to $900. The utility of this amount is 
 –6.050 = –exp[0.002(900)]. The expected utility of the PH’s retained loss is therefore  
–1.101 = 0.98(–1) + 0.02(–6.050). The certainty equivalent value for the retained loss is $48.11. 
Therefore the CE value of the uppermost $100 of protection is the difference between the CE of 
the entire loss and the CE of the retained loss:  
$12.02 = 60.13 – 48.11. Note that the expected value of the $100 coverage is only $2.00. 

The $12.02 also represents the CE value of default when only the first $900 of loss is actually 
covered by the insurer. It is the difference between the CE expected value of the entire loss, 
minus the CE value of the coverage actually provided. 

It is interesting to compare the result of covering the last $100 of the loss (as above) with 
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covering the first $100 of loss.12

In this example, the ratio of 

 If the insurer covers the amount above $100 (i.e., the 
deductible), the utility of the retained loss is –1.221, with an expected utility of  
–1.004 and a CE of $2.21. If the deductible is $200, then the CE of the retained loss is 4.89, 
giving a $2.69 = 4.89 – 2.21 CE value for the layer from $100 to $200. The CE value of each 
layer progressively increases as we move up to higher layers. 

 to D is 6.01 for assets of $900, which is greater than 3.01, the 
ratio of the $60.13 CEL to the $20 expected loss. In general, the ratio of  to D will increase 
with the asset (and thus capital) amount.  

This tail leverage is a consequence of PH risk aversion (which creates a fatter tail than for an 
unadjusted distribution), combined with the volatility of the loss distribution. To analyze the tail 
leverage in more detail, consider a normal distribution of losses for a PH with an exponential 
utility function. Appendix A4 provides a general method for determining the CE default value 
for a given loss distribution paired with a specific utility function. It also derives explicit results 
for the normal-exponential model.  

Even with a small variance, the ratio of  to D can be large: assume a normal distribution 
with mean loss of 1000 and a 100 standard deviation. Suppose we have assets of 1100, which is 
1 standard deviation above the mean, and that the risk aversion parameter is a = 0.02. From 
equation 3.43, the overall CEL is 1100 = 1000 + (.01)(200)2, giving k (the average CE function 
across all loss sizes) of 1.10.  The straight expected default D is 8.33, but its certainty equivalent 

 is 57.39, a ratio of 6.89 to 1. For 2 standard deviations above the mean (A = 1200), we have D 
= 0.85 and  = 20.17, for a ratio of 23.75. Table 3.5a shows results for these and other asset 
values:  

 

                                                           
12 Notice that, given that the loss has already occurred, it doesn’t matter whether the $100 amount comes from 
retaining a $100 deductible or sustaining a net $100 loss on a $1000 loss where the insurer pays the first $900. The 
losses are completely equivalent to the PH. In fact, the certainty-equivalent concept makes no sense here, because ex 
post, the losses are certain. However, ex ante, the CE and expected utility concepts transform risky outcomes to 
fixed values that differ from the actual values that may occur. 
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Table 3.5a 
Tail Leverage for Numerical Example;  

Normal Loss Distribution, Exponential Utility (a = 0.02) 
 

Assets D CED Ratio 

CED/D 

Ruin Probability 

(RP) 

Adjusted Ruin Prob. 

(ARP) 

Ratio 

ARP/RP 

1100 8.33 57.39 6.9 15.866% 50.000% 3.2 

1200 0.85 20.17 23.7 2.275% 25.161% 11.1 

1300 0.04 4.44 116.2 0.135% 8.054% 59.7 

1400 0.001 0.50 701.4 0.003% 1.291% 407.5 

 
The adjusted ruin probability is the probability of default with the CE probability distribution 

used instead of its unadjusted counterpart. Figure A4 in Appendix A4 shows the probability 
densities for the normal distribution and its CE transformation. Here, it is clear that the tail of the 
adjusted distribution is much fatter than that of the parent normal distribution. 

Table 3.5b gives results for a higher risk aversion (a = 0.04): 

Table 3.5b 
Tail Leverage for Numerical Example;  

Normal Loss Distribution, Exponential Utility (a = 0.04) 
 

Assets D CED Ratio 

CED/D 

Ruin Probability 

(RP) 

Adjusted Ruin Prob. 

(ARP) 

Ratio 

ARP/RP 

1100 8.33 136.49 16.4 15.866% 68.281% 4.3 

1200 0.85 77.25 91.0 2.275% 50.000% 22.0 

1300 0.04 36.49 954.8 0.135% 31.719% 235.0 

1400 0.001 13.01 18200.4 0.003% 15.883% 5015.0 

 

Notice that even though the unadjusted probability and default values at the extreme tail are 
rather small, their CE equivalents may be meaningful. However, it is important to recognize that 
for a practical loss distribution and CE function (with extremely large losses truncated by policy 
limits and with CE factors restricted by wealth effects13

                                                           
13 For example, bankruptcy laws limit the harm of an uninsured large third-party loss to an individual. An individual 
with $100,000 of net worth is likely to value a $1 million loss about the same as a $2 million loss. 

) the CED values would not be as large 
as shown in this illustrative example. 
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3.6 Default Values with Multiple Policies 
The previous sections have analyzed results for a single policyholder under the assumption 

that an insurer covers only that PH. Here, I extend the analysis to an insurer with multiple PHs. 
However, the analytical perspective remains that of the individual PH. But now if a default 
occurs, the default amount is shared among the individual policyholders in proportion to their 
respective loss amounts. Assume that the PHs are homogeneous, with the same loss distribution 
and risk preferences.  

To illustrate CE valuation of multiple-policy default, I use the binary loss14

To illustrate the expected default calculation, suppose that an insurer covers these two PHs 
with an amount of assets equal to $200 per PH, or $400 in total. The default amount for a single 
PH (say, PH 1) depends on whether a loss occurs for PH 1 and whether a loss occurs for PH 2. If 
PH 1 doesn’t have a loss, then there cannot be a default amount for PH 1 no matter what happens 
to PH 2. If PH 1 has a loss and PH 2 does not have a loss (with 0.0196 = 0.02 x 0.98 probability) 
then the default amount for PH 1 is $600 = 1000 – 400: all $400 of the insurer’s assets cover the 
loss. If both PHs have a loss (with probability 0.0004 = 0.02 x 0.02) the total default amount is 
$1,600 = 2000 – 400, but it is shared equally, so PH 1 has a default amount of $800. Therefore, 
the expected default for PH 1 is $12.08 = 0.0196(600) + 0.0004(800). Notice that in the case 
where the insurer has only one PH (with $200 of assets), the expected default is larger: $16.00 = 
0.02(1000 – 200). 

 example with 
exponential utility introduced in section 3.5. Appendix A5 develops the CE values for the binary 
loss model, including the CED and the adjusted ruin probability. Assume that we have two PHs 
with independent losses defined by the section 3.5 example: a loss of $1,000 with a 2% 
probability and zero otherwise. The CE values are determined from exponential utility with a 
risk aversion parameter a = 0.002. 

To calculate the CE expected default value for PH 1, we use equation A5.5 from Appendix 
A5, getting $22.99. This compares to $38.05 for the single-risk insurer. Figure 3.6 compares, by 
asset value per PH, the CED per PH for the single-risk insurer to that of a two-risk insurer.  

 

                                                           
14 This simple loss model with a general utility function is used in the influential paper on insurance market 
equilibrium by Rothschild and Stiglitz [1976]. Note that a one-year term life insurance contract has a binary loss 
distribution. 
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Figure 3.6 
CE Default Values per PH by Asset Amount for a Single Risk and Two Risks 

Binary Loss with Exponential Utility 
 

 
 

Here, the CE expected default value per PH is lower when the risks are combined. This effect 
is a consequence of diversification, where the variance of losses per policy is reduced by adding 
risks to the insurer’s portfolio.  

In general, we can determine the per-PH CED for multiple risks by finding (or approximating) 
their joint CE probability distribution. This process is analogous to that of finding the unadjusted 
expected default for a portfolio of losses. In the case where the sum of the CE losses has the 
same distribution as a component CE loss (as in the normal distribution), the expected default 
calculation is straightforward. Otherwise, we must resort to approximation methods.15

The assumption of statistical independence will drive the expected default value to an 
extremely low level if the number of policies is large. However, in reality, insurance losses are 
correlated. They are subject to common factors such as inflation, regulation, the legal system and 
multi-loss events like catastrophes. Further, the mean of losses for a given line of business (or 
other subdivision of an insurer’s risk portfolio) is not known; it must be determined empirically. 
This effect is an important case of parameter risk,

 

16

                                                           
15 One method is to assume that the distribution for the sum of the CE losses has the same distribution as the 
unadjusted losses, but with a different mean and/or variance. Manipulating these two parameters will generate a 
range of corresponding utility functions. 

 which adds to the uncertainty of standard 

16 For an example, see Meyers and Schenker [1983]. 

-10 

0 

10 

20 

30 

40 

50 

60 

70 

0 200 400 600 800 1000 

Assets per PH 

Two Risks 

One Risk 



An Economic Basis for Property-Casualty Insurance Risk-Based Capital Measures 
 

Casualty Actuarial Society E-Forum, Summer 2013 17 

insurance risk models. 

Appendix B develops a model of losses based upon a stochastic mean, where the expected 
value of the loss per policy is itself a random variable. For example, suppose the unconditional 
mean loss per policy is 1000, with a standard deviation of 300. This mean is considered a 
random variable: the 1000 amount is multiplied by a separate random variable with a mean of 1 
and a 0.10 standard deviation. As the number of policies becomes large, the average policy will 
still have an expected loss of 1000, but will take on the risk of the stochastic mean variable, so it 
will have a standard deviation of 100 = (0.10)(1000). The influence of the original per-policy 
standard deviation of 300 vanishes. Thus, beyond a certain point the size of an insurer has little 
influence on the risk characteristics that determine the value of default. 

4. A ONE-PERIOD PREMIUM MODEL 

This section develops a basic insurer model and determines the premium, which includes the 
cost of holding capital. Extensions to the model are discussed in sections 6 and 7. 

4.1 A Basic Insurer Model 
To understand how optimal capital values can be determined, in this section I establish a 

simple, bare-bones model of an insurance company containing only a few necessary components.  

I have assumed that the insurer’s policyholders have the same individual loss distributions and 
the same risk aversion. Using the section 3.6 framework for multiple policies, this homogeneity 
implies that we can analyze portfolios of risks (even entire insurance companies) as if they were 
insurers having only a single policyholder. 

In this model, I eliminate extraneous variables such as expenses, income taxes and investment 
returns by assuming that they are zero. In section 5, I include these components. 

With no investment return, all assets are cash. I assume that the insurer is operating efficiently 
and thus the insurer’s costs of holding capital can be passed on to policyholders as long as it 
improves their welfare. In fact, the policyholders determine the amount of capital and then pay 
for its associated costs through their premium, denoted by π. Thus, the owners of the insurer are 
indifferent to the amount of capital actually held by the insurer, since they are fairly compensated 
for its use. 

The model is one-period: the premium and capital are determined at the beginning of the 
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period and the actual17

Its owners capitalize the company with an initial capital C. The initial assets of the insurer 
equal the premium from the policyholders plus the capital. Prior to the end of the period, the 
insurer’s cost of holding its capital is expended, so that amount is not available to pay the PH’s 
claims. The ending asset amount, denoted by A, thus equals the initial capital plus the premium, 
minus the capital cost. The loss amount is recognized at the end of the period and the default 
amount (if any) is determined accordingly.  

 loss is determined at the end of the period. Further assume that there is no 
secondary insurer default protection for policyholders, such as a guaranty fund. 

If there is no cost to the insurer for holding the capital in the company, then the insurer will 
hold enough capital to exceed the largest possible loss, and thus there is no possibility of insurer 
default. In this case, the insureds simply pay a premium π = L, the expected value of the losses. 
With no default, their consumer value is maximized at an amount , the CEL minus the 
expected loss. 

4.2 The Cost of Holding Capital 
There is a cost to an insurer for holding capital to mitigate default risk. This cost is separate 

and distinctly different than the “cost of capital,” which is the return expected by the capital 
suppliers (e.g., equity holders or bondholders) and is commensurate with the risk borne by these 
investors. To avoid the confusion created by the similar terminology, a useful name for the cost 
of holding capital is the frictional cost of capital, as defined by Hancock et al [2001]. The 
frictional capital cost (FCC) is the opportunity cost that accrues to the use of capital in an 
insurance firm, and which the investor would not incur if investing directly in financial markets. 
These costs include double taxation, financial distress, agency and regulatory restriction costs. 

The primary component of the FCC for U.S. insurers  is double taxation.18

                                                           
17 For regulatory and other external party uses, a multiple-period model must address the fact that the insurer might 
not use an unbiased estimate of losses. Accordingly, the risk of under-reserving must also be assessed, with 
additional capital required beyond what is needed for the pure loss-variation risk addressed in this paper. 

 Of the above FCC 
components, it is also the easiest to determine empirically. To illustrate, assume that an investor 
provides $100 of equity capital to an insurer, whose corporate income tax rate is 30%. The 
insurer invests the $100 in assets A with an expected return of 6%. At the end of one year the 
expected return on the assets, after taxes, is $4.20 = 100(0.06)(1 – 0.30). This amount is returned 
to the investor as a capital distribution, giving a net return on the capital of 4.2%. On the other 

18 See Harrington [1997]. 
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hand, if the investor had invested directly in the assets A, rather than through the insurer, he/she 
would have received an expected return of $6.00. 

 The $1.80 difference must be made up by charging policyholders through additional 
premium. But the extra premium itself is taxed at the 30% corporate tax rate, so it must be 
grossed up to $2.57 = 1.80/(1 – 0.30). So, the double taxation component of FCC, as it applies to 
premium, equals [rt/(1 – t)]C, where r is the insurer’s investment  return,19

I assume that the FCC is at least equal to the above double taxation cost, and that all FCC 
components are proportional to the capital amount. Let z denote the FCC per unit of capital. 
Since the FCC must be borne by the policyholders in order to provide a fair market return

 t is its income tax rate 
and C is the capital as defined in section 4.1. Notice that if the investment return is zero, then the 
double-taxation component of the FCC is also zero. 

20

 

 (the 
cost of capital) to investors, the premium must include an amount zC in addition to expected 
losses and other insurance expenses. Therefore, the basic premium model is 

 . (4.21) 

 

4.3 Fair Premium With Default  
Since the frictional costs of capital must be passed on to PHs, they will not want the insurer to 

carry unlimited capital. Therefore, the insurer will have a non-zero probability of becoming 
insolvent. Then, in order to be actuarially fair, the basic premium (L + zC) must be reduced by 
the expected value of default D:  

  

 . (4.31) 

 

                                                           
19 In a competitive market, the investment return for the FCC will tend to equal the risk-free interest rate, despite the 
insurer’s own expected return on investments. A higher return corresponds to greater risk and therefore requires a 
greater return to shareholders. Similarly, a high FCC cannot be passed on to policyholders if other insurers have 
lower investment returns and charge a smaller premium amount to cover double taxation costs. 
20 The expected return to investors, or the traditional “cost of capital” is built into the profit margin, another 
component of the fair premium. For simplicity, I have ignored it in the premium model. The profit margin can be 
directly embedded into the loss value by taking its present value at a risk-adjusted interest rate. The fair premium 
(with no default or expenses) will then equal the risk-adjusted PV of the expected loss plus the PV of the frictional 
capital costs. The cost of capital doesn’t directly enter into the premium calculation.  
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So now the premium has three components: the base amount L is increased by the FCC and is 
reduced by D. Although, as I will discuss in section 5.1, the fair premium is approximated in 
practice by the basic premium. However, the basic model is not a competitive equilibrium21

                                                           
21 See Varian [1992], page 219. 

 
model, where the premium is a market-clearing price. Since I have assumed a zero interest rate 
and that market risk is captured by the loss value L, the market expected return on capital is zero. 
For equilibrium to occur, the premium must provide investors a zero expected return. Under the 
basic premium model, the expected return is D, since the policyholders’ loss is the investors’ 
gain. In a competitive market, this gain is reduced to zero by decreasing the basic premium by D. 
Thus, the fair premium satisfies both policyholders and investors, representing an equilibrium 
result.  
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5. DETERMINING OPTIMAL CAPITAL 

Sections 3 and 4 have provided the ingredients to determine an insurer’s optimal capital: we 
have a model for the value of policyholders’ default as well as a specification for the insurer’s 
cost of carrying capital. Since the capital amount governs the default value, we can balance these 
two factors to maximize consumer value.  

5.1 General Model 
For simplicity, I initially assume that the insurer does not deduct22

The value to the policyholders of their insurance is the certainty equivalent of the insured 
losses minus the cost of the insurance (which is a certain amount). Because insolvency is 
possible, the CE value of the actual coverage is the certainty-equivalent expected loss minus the 
certainty equivalent of the expected default. The consumer value (denoted by V ) of the insurance 
transaction,

 the expected default from 
the premium, so we have the basic model  π = L + zC.  Since I have assumed that the interest rate 
is zero, the frictional capital cost rate z does not contain an income tax component (as discussed 
in section 4.2). 

23

   

 therefore, equals the certainty equivalent of the covered losses minus the premium:  

 . (5.11) 

 

As we increase the amount of assets (by adding capital), the CE value of expected default 
decreases, while the premium (through the capital holding cost zC ) increases with capital. This 
situation is a classic economics optimization problem, which can be solved by taking the 
derivative of V with respect to assets and setting it to zero. 

Since 𝐿� is constant with respect to a change in assets, taking the derivative of V with respect 
to A in 5.11 and setting the result to zero gives . From Appendix C, which 

applies the derivative of an integral, we have , so the general 

                                                           
22 This is certainly the case in practice for the U.S. with regard to an explicit premium component for default. 
However, it can be argued that weaker insurers (with higher expected default amounts) will charge a lower premium 
to remain competitive. 
23 If the CE loss distribution is derived from some utility functions (such as the square root model), the CE value of a 
constant plus a random variable is not equal to the constant plus the CE of the random variable. In this case, 
equation 5.11 is an approximation. However, it is exact for CE values derived from exponential utility.  
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condition for optimum assets is 

    

 . (5.12) 

 

Here,  is the adjusted ruin probability (ARP), or the chance that losses exceed assets, 
under the transformed density . The corresponding unadjusted ruin probability under p(x) is 
denoted by Q(A). 

For the basic premium model, where the premium excludes the expected default, we have 
. Since L is constant with respect to assets, the derivative becomes 

. The assets available to pay claims equals the initial capital C plus the 
premium, minus the frictional capital cost, so we have .  Thus, 

, with the result 

 

 . (5.13) 

 

This rather simple result establishes that the optimal level of assets (and thereby capital) is 
determined by a risk measure that is an adjusted ruin probability. The ARP is a function of the 
probability distribution of losses and the policyholder risk aversion, as incorporated into the 
transformed density function. The risk measure is calibrated to the frictional capital cost rate z. 

Given the optimal asset level from equation 5.13, the optimal capital is readily found by using 
the above relationship A = L + C.  

For a fair premium, where the insurer deducts the expected default from the premium, we 
have   and A = L + C – D. Taking derivatives of these two expressions, and 
noting that , we get  and 
. Thus,  and equation 5.12 gives 

   

   (5.14) 

 

as the condition for optimal capital.  

From section 3.5, tables 3.5a and 3.5b show that the transformed ruin probability  is 
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much larger than the unadjusted ruin probability Q(A), particularly at lower ruin probabilities 
(which correspond to the high safety levels that would be required in practice). Thus, Q(A) can 
be set to zero and equation 5.13 may be considered as an approximation24

Notice that the level of insurer expenses doesn’t affect the optimal capital, as long as the 
expenses are a function of the expected losses and not capital. Let the premium be 

 to the optimal capital 
condition for a true fair premium. 

, where e0 and e1 are constants that determine expenses. The 

derivative of V in equation 5.11 will be the same with or without expenses, since the derivatives 
of L, e0  and e1 with respect to capital are all equal to zero. 

Equation 5.12 is general in scope and can be used for alternative premium formulations. For 
example, if the frictional capital cost zC is not consumed prior to default, then the optimal capital 
is determined from , which approximates equation 5.13. 

If an insurer’s policyholders have heterogeneous risk preferences, (but with the same loss 
distribution) the optimal capital can still be calculated using equation 5.11. However, the 
premium for each PH will differ. For a given capital amount, each PH will have a specific CED 
value (based on their risk aversion) along with a share of the joint capital cost. The share is 
allocated to each PH via their willingness to pay (determined from their respective consumer 
values). This gives a higher premium for the more risk-averse PHs: in effect, they pay the low 
risk-aversion PHs in order to use a high capital amount. However, this result is theoretical, since 
normally an insurer does not charge different premiums for policyholders with identical loss 
characteristics. Accordingly, in practice the optimal capital for a group of insureds must be based 
on an average (weighted in some fashion) of their risk preferences. In this case, low and high-
risk aversion PHs will have consumer values that are less than the theoretical optimum.  

Consequently, they might improve their consumer values by moving to an insurer whose 
other PHs have similar risk preferences to their own; i.e., to the extent that insurers incorporate 
capital costs into their premium, PHs are best served by choosing an insurer whose capital 
strength suits their needs. In finance, this grouping behavior is called the clientele effect. For 
insurance, it has implications for pricing (section 7.1) and regulation (section 7.2). However, 
further analysis of this topic is beyond the scope of this paper. 

                                                           
24 Using z = 2%, and the normal-exponential model from section 3.5 (with risk aversion of 0.02), the optimal capital 
under equation 5.13 is 379.73. Under equation 5.14 it is 379.56, a difference of only 0.045%. 
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5.2 The Effect of Income Taxes 
Another variation to the premium model includes the effect of income taxes, which, as 

discussed in section 4.2, can be the major component of the frictional cost of holding capital. In 
order to pursue practical applications, the impact of income taxes on optimal capital must be 
addressed. Appendix D develops the result for optimal capital in this case. As in the general 
model with a constant frictional cost of capital, the optimal asset amount is found by setting the 
CE ruin probability equal to a constant value: 

 

 . (5.21) 

 

Here, A is the end-of-period assets (before subtracting the loss and income taxes), t is the 
income tax rate and r is the riskless investment rate of return.  

Equation 5.21 is important because it establishes a benchmark for practical applications. The 
effective corporate income tax rate for insurers will be less than the current nominal 35% highest 
marginal rate, due to the ability to defer taxes on capital gains, shelter income using municipal 
bonds and other measures. Assume that the effective rate is 30%. As discussed in section 4.2, the 
appropriate investment benchmark is the Treasury rate (which should be matched to the average 
liability duration: about 3 years for U.S. property-casualty insurers). The 3-year rate has varied 
from about 1.5% to 6% over the past 10 years. Consequently, the optimal adjusted ruin 
probability has been in the range of about 0.4% to 1.8% over this period.  

The corresponding optimal unadjusted ruin probabilities can be smaller than the 0.4% to 1.8% 
range, as indicated in the section 3.5 examples (tables 3.5a and 3.5b). However, several factors 
(e.g., using a more realistic loss distribution,25

                                                           
25 The normal and lognormal distributions that I’ve used for illustration have unlimited losses. In practice, insurance 
coverage imposes policy limits. Consequently, policyholders must absorb the high end of their losses, which carry 
the greatest CE values. This effect reduces the CE default value and increases both the ARP and the unadjusted ruin 
probability corresponding to the optimal capital. 

 incorporating the regulatory constraints in section 
7 and including the effects of guaranty funds) will increase the unadjusted ruin probabilities. 
Consequently, the above range of frictional capital costs appears to be broadly consistent with 
more subjective solvency measures such as the Solvency II 99.5% VaR standard, which 
translates to a 0.5% unadjusted ruin probability. In other words, the overall required capital for 
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an average insurer under the ARP risk model is not inconsistent with current practice. 

5.3 Numerical Examples 
Here, I’ve used the normal distribution with exponential utility from section 3.5. For the same 

parameters (1000 mean, 100 standard deviation, 0.02 risk aversion) and with a capital cost rate z 
= 0.05, we get the optimal ARP of 5% and optimal capital of 330.66 using equation 5.13 and 
equation A4.9 in Appendix A4. The CE expected loss is 1100 and CED value is 2.46 from 
equation A4.8. The premium is 1016.53 = 1000 + 0.05(330.66), and so the consumer value of the 
insurance contract is 81.00 =  1100 – 1016.53 – 2.46. Figure 5.3 below shows how the consumer 
value of the insurance varies by amount of capital. 

Figure 5.3 
Consumer Value of Insurance by Capital Amount in Numerical Example 

Normal Loss/Exponential Utility Model 
 

 
 

Notice how the shape of the CV curve is steep at low levels of capital and flattens with higher 
capital. This behavior indicates that, beyond the optimal capital level, adding more capital has 
only a slight impact on PH welfare. Thus, the relative insensitivity of the optimal capital might 
be exploited in practical applications, where it could be necessary to use approximate values for 
some of the underlying variables. 

Table 5.3 shows how the optimal capital varies by standard deviation (SD) and risk aversion: 
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Table 5.3 
Optimal Capital by Standard Deviation and Risk Aversion in Numerical Example 

 
Risk Aversion SD = 25 SD = 50 SD = 100 SD = 200 

0.005 44 92 205 493 
0.010 46 103 247 661 
0.020 51 123 331 1007 
0.040 62 165 504 1720 
0.080 83 252 860 3186 

 
As we would expect, the optimal capital increases with both risk aversion and the volatility of 

the losses. 

5.4 Comparison to Other Risk Measures 
The conventional solvency risk measures can be considered as equal to or as simple functions 

of the tail moments of the loss distribution. Here I define the nth tail moment as 

     

 , (5.41) 

 

where p(x) is the density function and A is the assets, as defined earlier. Notice that if assets are 
zero, the tail moment equals the regular moment of the entire distribution. 

Observe that the ruin probability is the 0th tail moment and the expected default (policyholder 
deficit) is the first tail moment. Define the valuation level as the predetermined numerical value 
of the tail moment, such as 1% or 5%, that produces the desired level of assets. In other words, if 
the risk measure is ruin probability (RP) and the valuation level is 1%, then MT(0) = 0.01 and we 
solve equation 5.41 for A. 

VaR is the amount of assets such that  or 1 minus the RP, where α is the VaR 
confidence level. Tail value-at-risk, or TVaR,26 is the amount of assets equal to VaR + 
MT(1)/MT(0) at the α confidence level. Thus, the conventional risk measures are simple 
functions of the tail moments with n equal to 0 or 1.27

                                                           
26 Notice that TVaR and the EPD are not equivalent and will not necessarily produce the same capital amount. EPD 
includes only the amount of loss exceeding the asset threshold A, while TVaR also includes the portion of the loss 
below A for losses exceeding A. 

 In the following discussion, I use the ruin 
probability and the expected default ratio to loss (D/L) to characterize the tail-moment based 

27 The value of n need not be an integer. For example, with n = 0.5, the weight of the tail losses will be somewhere 
between that of a ruin probability and an expected default measure. 
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solvency measures. 

It is noteworthy to compare the adjusted ruin probability (ARP) measure to the common tail-
moment risk measures. Assume that both a straight (unadjusted) ruin probability (RP = 1 – VaR) 
and an unadjusted EPD measure are also used to determine capital. Further assume that all three 
measures (ARP, RP and EPD) are calibrated to give the same capital for a typical insurer. We 
observe the valuation level for each risk measure implied by the capital and keep it fixed as we 
change the variance of the loss distribution. 

For this exercise, let the typical insurer have the characteristics of the section 5.3 example, 
with a 5% ARP providing optimum capital of 330.66. This capital amount implies that RP = 
0.047% and the EPD/Loss ratio = 0.0012%. We fix all three measures and consider two other 
insurers, also having normally distributed losses. One insurer has low-risk policyholders with a 
standard deviation (SD) of 50; the other has high-risk PHs with a 200 SD. We apply each risk 
measure to these insurers, and compare to the typical insurer: 

 
Table 5.4a 

Comparison of Risk Measures Calibrated to Normal SD = 100 
Adjusted Ruin Probability = 5% 

 

SD 
Optimal 
Capital 

Implied 
RP Using 
Optimal 
Capital 

Implied 
EPD Ratio 
Using 
Optimal 
Capital 

A 

Capital: 
RP 
Standard 

B  

Capital: 
EPD 
Standard 

A  
% Diff. 

B  
% Diff. 

50 123.3 0.685% 0.0112% 165.3 156.0 34.1% 26.6% 

100 330.7 0.047% 0.0012% 330.7 330.7 0.0% 0.0% 

200 1007.0 0.00002% 0.000001% 661.3 697.0 -34.3% -30.8% 

 
Notice that the low-risk insurer has more capital under RP and EPD, with the high-risk insurer 

having less capital, compared to the optimal capital under ARP. Because the resulting capital for 
the low and high-risk insurers is not optimal, using a conventional risk measure reduces 
consumer value. For the high-risk insurer, using RP (or its VaR equivalent) lowers the CV from 
344.07 to 311.79, a decrease equaling 3.2% of the expected loss. For the low-risk insurer, the CV 
drops from 17.70 to 16.60, a reduction of only 0.1% of the expected loss. Similarly, applying the 
EPD ratio reduces CV by 2.5% of expected loss for the high-risk insurer and 0.1% for the low-
risk insurer. Note that this disparity between the high and low-risk insurers is due to the fact that, 
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for the same level of risk-aversion, high-risk policyholders gain more consumer value from 
insurance than low-risk PHs.28

We get similar results with a lognormal

   
29

 

 distribution paired with exponential utility. Here the 
typical insurer again has a mean loss of 1000, standard deviation of 100 and a risk aversion of 
0.02. The initial calibration gives RP = 0.037% and the EPD ratio = 0.0013%. Varying the SD 
and keeping the risk measures constant, we get similar results to the normal case. Figure 5.4 
shows the loss in CV/ expected loss for the lognormal case compared to the optimal ARP capital. 
For comparison, it also provides the results for the normal distribution. 

Figure 5.4 
Loss of Consumer Value by Using RP and EPD Measures 

Compared to Optimal ARP Result; Percentage of Expected Loss 
Normal and Lognormal Distributions 

 

 
 

For both distributions, the CV loss is slightly less (for the high-risk PHs) using the EPD, 
compared to the RP measure. To summarize the above results, we see that, compared to the ARP 
                                                           
28 The CE value of the loss (being related to the variance) is lower with respect to its expected value as variance 
decreases. At the extreme, with a zero variance, there is no difference between the CEL and the expected loss and so 
the difference in CV from using any risk measure must be zero. 
29 Here I’ve approximated the lognormal distribution using the binomial option pricing method as described by 
Panjer [1998], page 246. The CE ruin probabilities and default values are directly determined using the method of 
Appendix A4. Also, I have adjusted the risk aversion parameter to produce, for each standard deviation value, the 
same CE loss as with the normal distribution. 
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standard, the conventional risk measures overstate the optimal capital for low risk lines and 
understate the capital for above-average risk lines. The latter effect is more serious, because the 
under-capitalization can produce a meaningful loss in consumer value. For the low-risk lines, the 
loss in CV appears to be negligible. 

To gain further insight regarding the deficiencies of the conventional measures, assume that 
we have calibrated all three risk measures to produce the same capital for an insurer, as in the 
above example (e.g., Table 5.4 with a 100 standard deviation). Now we increase the size of a 
particular possible loss x > A in the tail by an amount ∆.  

If RP or VaR is the standard, there is no change in capital since the loss increment does not 
affect the RP. Yet policyholders are worse off. This effect was exploited in a perverse way 
during the 2008 financial crisis, when financial firms “stuffed the tails” to keep their apparent 
risk low (see section 2.1). To manipulate the tail probabilities, the firms designed securities to 
have a low probability of loss, but with an extreme loss size when the loss occurred. 

Under an EPD or TVaR standard, the effect of a loss increment is more subtle. Suppose that 
we take two “slices” of the tail, one with smaller losses and the other with larger losses. The 
widths of the slices (i.e., the probability that the losses in the intervals will occur) are selected so 
that the probability of losses being in each interval are equal. Let x1 be the average loss in the 
lower interval and x2 be the average loss in the upper interval. If we simultaneously adjust losses 
so that x2 increases by ∆ and x1 decreases by ∆, the expected default amount remains the same 
(as does the default probability). Note, however, that this operation increases the variance of the 
tail losses. Since the certainty equivalent value function k(x) is concave upward, we have k(x2) > 
k(x1), and thus this adjustment will increase the CE value of the default. Therefore, more capital 
is needed, even though the EPD stays constant. 

The preceding discussion shows that, given a particular loss distribution, under the ARP 
method it is not possible to “engineer” the tail to produce an artificially low capital amount. If 
the tail is altered by reinsurance or other financial techniques, the CE value function will 
automatically produce the proper capital as long as the firm uses the correct loss distribution 
(adjusted for PH risk preferences). 

A practical disadvantage of using the ARP measure is that it does not translate to any fixed 
conventional standard. For example, to get the correct optimal capital under the 5% ARP 
standard, the appropriate unadjusted RP in table 5.4 ranges from 0.00002% to 0.685%. The EPD 
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ratio has a similar large range. Although this ARP feature presents no difficulty in calculating 
capital, it may create problems in comparing results to conventional solvency measures. 

5.5 Subadditivity  
To clarify risk definition in financial economics, theoreticians have described several 

properties for a risk measure. A coherent risk measure30

The subadditivity (SA) property requires that the value of the risk measure for the 
combination of two risks is less than or equal to the sum of the risk measure values taken 
separately. For insurance capital requirements, this means that when two risks (or risk portfolios) 
are combined, the required assets derived under the risk measure must be less than or equal to the 
sum of the assets derived from applying the risk measure to the risks individually. To be 
consistent with the individual PH focus of our analysis, the subadditivity requirement can be 
restated: if two risks are combined, the assets per risk under the risk measure cannot be greater 
than assets for either risk taken separately under the risk measure.  

 is a function that satisfies monotonicity, 
subadditivity, homogeneity, and translational invariance. Subadditivity has become the most 
important of these properties when applied to risk measures used in practice. 

Assume that two PHs have identically distributed losses. Let RM1(A) represent a risk measure 
that is a function of assets per policyholder A for a PH of an insurer with one risk and RM2(A) for 
a PH of an insurer with two risks combined. For two different asset amounts A2 > A1, we have 
RM1(A2) ≤  RM1(A1) and RM2(A2) ≤  RM2(A1); i.e., increasing assets decreases the value of the 
risk measure (this is the monotonicity property of a coherent risk measure). A subadditivity 
violation will occur when  

 

 , (5.51) 

 

 where v is the valuation level of the risk measure and A is any asset amount. Under this 
inequality, a SA violation occurs because, for both measures to equal v, assets in the combined-
risk insurer must increase and assets in the single-risk insurer must decrease (this effect is shown 
graphically in figure 5.51). Therefore, assets per PH in the combined-risk insurer will be greater 
than for the single-risk insurer. 

                                                           
30 See Artzner [1999] for a discussion of coherent risk measures with insurance applications. 
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A classic bond risk example,31

Using the ruin probability counterpart to VaR as the risk measure, we have v = 0.03. Let 
Q1(A) denote the RP for the single risk and Q2(A) the RP for the combined risks. Applying 
equation 5.51, we see that for A (assets per PH) from 0 to $500,  
[Q2(A) =  0.036] > 0.03 > [Q1(A) = 0.02]. Thus, subadditivity is violated. For assets above $500, 
we have 0.03 > [Q1(A) = 0.02] > [Q2(A) =  0.004],  so there is no SA violation. Also, for a 
valuation level v > 3.68% (required assets are zero for both the single or combined risks) or v < 
2% (required assets are $1000 per PH for the single risk and $500 for the combined risks), there 
is no SA violation.  

 which has a binary loss distribution, is used to illustrate SA 
violation. I have modified this investment illustration to represent insurance by using the section 
3.6 example with two independent binary risks each with a 2% probability of a $1000 loss. 
Suppose that the VaR measure is set at 97%. This means that a single risk must have at least a 
3% chance of loss in order to require assets (and thereby capital). Otherwise no assets are 
required to back the loss. Thus, with a 2% chance of loss, no assets or capital are required. 
However, if two independent risks are combined, the probability of a loss is 3.72% = 
2(0.02)(0.98) + 0.02(0.02) and therefore $1,000 of total assets (for both PHs) is required. This 
reduces the default probability to 0.04% and satisfies the 97% VaR valuation level. Subadditivity 
is violated here since more assets are required per PH for the combined risks ($500 each) than 
for either of the separate risks (zero). 

For the adjusted ruin probability measures  or  in equations 5.13 and 5.14, there 
also is SA violation for a range of valuation levels. Applying equations A5.4 and A5.6 in 
Appendix A5 to the parameters for this example, we get Figure 5.51, which graphically shows 
the pairs ,  and , . These are labeled respectively as Qhat 2, Qhat, Theta 2 
and Theta (for simplicity, I have dropped the subscript 1 denoting a single risk). 

 

                                                           
31 This example is from Albanese [1997] and has been used by Artzner and others. 
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Figure 5.51 
Adjusted Risk Measures for Section 3.6 Example 

 

 
 

Notice that a risk measure based on PH risk preferences can be a continuous function of the 
asset amount, even if the underlying loss distribution is discrete. This occurs because the values 
of the CE expected default and its derivatives are continuous with respect to the amount of assets 
if the underlying CE function k(y) or the equivalent utility function is continuous.  

The graph shows that  >  for  ≥ 6.78%, where assets per PH are less than 

$364.44. Subadditivity can be violated in this region. Similarly,  >  when > 
6.34%, corresponding to A < 260.80. 

Does the SA violation create any negative effects for the policyholders in this example? To 
answer this, suppose that the frictional cost of capital is z = 7%, which is the valuation level for 
the adjusted risk measures. It exceeds the above critical values of 6.78% and 6.34%, so there will 
be a SA violation for each measure. From section 5.1, we have the premium and from section 3.6 
the CED values by asset amount. Thus, the consumer value for any asset value can be readily 
found. 

For a fair premium, when assets are zero, the expected default equals the expected loss of $20. 
The premium and capital are also zero. Since the CED equals the $60.13 CE loss, the consumer 
value of the insurance is zero. When assets equal the $1,000 loss value, the expected default is 
zero, but the premium equals L + zC and capital equals assets minus the premium (the capital 
cost zC is not an available asset to pay losses). Thus, the capital is $980 and the premium is 
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$88.60 = 20 + 0.07(980). The consumer value is negative: –$28.47 = 60.13 – 88.60. Between 
these asset value extremes, the CV will have an optimal value. Figure 5.52 shows the per-PH CV 
by assets for a single risk and for two combined risks. 

 

Figure 5.52 
Consumer Value per PH by Asset Amount for Single Risk and Two Risks 

Fair Premium Model; z = 7% 
 

 

 

Here, for both cases, the optimal CV is positive. This is achieved with a per-PH asset value of 
$219.51 for one risk and $244.59 for the two combined risks. The corresponding respective 
optimal capital amounts are $215.12 and $234.90. These optimal amounts are derived directly by 
solving for θ(A) = 0.07 in equation 5.14, using the Appendix A5 relationships.  

This example clearly shows that the subadditivity criterion is violated, since more assets (or 
capital) are required per policyholder for the combination of two risks than for the single risk. It 
is also clear that the PHs are better off with the SA violation under the ARP risk measure, since 
their optimal consumer value is higher when the risks are combined. 

For the basic (non-fair) premium case, where the risk measure is , we get similar results, 
with the optimal assets for a single risk being $347.43, which is less than the $356.15 optimal 
per-PH assets for the combined risks. However, since the premium is not actuarially fair, the CV 
is lower than for the fair premium case, for both the single risk and the combined risks: 
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Figure 5.53 
Consumer Value per PH by Asset Amount for Single Risk and Two Risks 

Basic (Non-Fair Premium) Model; z = 7% 
 

 
 

Notice that the CV for the single risk here is negative for all asset values, indicating that the 
risk is not insurable — the PH is better off without insurance. However, when the two risks are 
combined, they become insurable.  

With lower values of z in this binary loss example, subadditivity is not violated. For instance, 
with fair premium and z = 2%, optimal per-PH assets for the single-risk insurer are $648.35, 
compared to only $401.65 for the two-risk insurer.  

In the financial economics literature an economic justification for the subadditivity constraint 
is that “if a firm were forced to meet a requirement of extra capital that did not satisfy this 
property, the firm might be motivated to break up into two separately incorporated affiliates, a 
matter of concern for the regulator.”32

                                                           
32 See Artzner [1999], page 14. 

 But the above examples show that PHs are clearly better 
off being combined — with the consequent subadditivity violation requiring extra capital — than 
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Nevertheless, given that a major purpose of the subadditivity constraint is to promote 
aggregation of risks, the underlying economic basis of the adjusted risk measures used here will 
always indicate that PHs are better off33

To summarize this section, I have shown that risk measures based on PH risk-preference can 
violate subadditivity, but when they do, the result makes perfect sense economically. Further, 
policyholders are never worse off when risks are combined — a fact that does not depend on the 
risk measure used to determine capital. Therefore, we must conclude that subadditivity is an 
unnecessary criterion for an insurance solvency risk measure. 

 (or no worse off, if the risks co-vary) when risks are 
combined. Therefore, these measures promote the spirit of the SA constraint. 

6. EXTENSIONS OF RESULTS 

The analysis in the preceding sections is based on a simplified model of an insurer, and 
concentrates on estimating optimal capital for insurance losses only. I have omitted some 
important elements that must be addressed before implementing the concepts for regulation, 
internal insurer risk management, pricing or other applications. 

This section discusses some of these important missing pieces. The scope of this paper does 
not permit a full development of the topics, so for each of them I have stated the issue and 
outlined the general direction of the analysis. Although these areas present some difficulties, they 
can be attacked using the major idea of section 5: optimal capital can be determined by trading 
off the cost of holding the capital and the value to policyholders of having the capital. 

6.1 Asset Risk 
The treatment of asset risk adds another dimension to the section 3 formulation of default risk 

for losses, where I assumed that assets were riskless, with a zero return. Now assume that the 
insurer has a portion of its investments in risky securities. For initial assets of A0, the ending 
asset value will be random, with an expected value of 
 A ≥ A0 (the reward for bearing market risk is an expected return exceeding the risk-free rate). 
Further assume that the insurer keeps the total asset and loss risk constant, so that it varies its 
asset (and capital) level by changing the amount of riskless assets. 
                                                           
33 For the basic premium model, at any per-PH asset level A, the difference between the combined-risk CV and the 
single-risk CV equals the difference between the single-risk CED and the combined-risk CED. This is so because 
the premiums for the two cases are identical. Thus the result will be non-negative. For a fair premium, the difference 
is the basic premium differential minus the difference between the unadjusted expected default amounts. This too 
will always be non-negative. 
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The certainty equivalent value of a risky asset is the converse of that for a risky loss: it is less 
than the expected value of its possible payoffs. Therefore, with a zero risk-free investment 
return, the beginning of period certainty-equivalent value of the ending asset amount equals the 
expected value of the ending amount, where the expectation is taken over an adjusted probability 
distribution. For an average investor, the expected value must equal the market value of the 
assets. Thus, this calculation removes the expected return from the ending asset values. The 
adjusted, or risk-neutral distribution (see Hull [2008]), reflects the concept that the ex ante 
perceived value of a particular asset outcome will depend on the economic scenario that 
generated the asset value.34

Assume that the policyholder has the same risk preferences as the typical investor. For each 
ending asset value Ai, the CE expected default is 

 For example, a low asset value may correspond to an unfavorable 
economy where a dollar is worth more; in that case the investor will weigh the result more 
heavily than the symmetrical high asset value. 

, where from section 3,  
is the CE amount of loss limited to Ai. Therefore, the unconditional CE of default over all asset 
values is the sum of the conditional values  weighted by the risk-neutral probabilities pA(Ai) 
for the asset values occurring: 

 

 .   (6.11) 

  

Note that, if losses and assets are correlated, each  will derive from a different expected 

loss corresponding to each Ai. For most applications using continuous distributions, the above 
integral can be evaluated with numerical techniques.35 The result gives the CED for a particular 
initial asset amount A0. The optimal capital occurs when .  

To illustrate this calculation, I return to the normal-exponential example from section 5.3. 
Here, the expected loss is 1000 with a standard deviation of 100, the risk aversion is 0.02 and the 
capital cost rate is 5%. Assume that the insurer has 400 of risky assets, also with a normal 
distribution, with a 5% expected return and a SD of 80 (the volatility, or SD per unit of risky 
assets is 20%). The remaining assets are riskless, with a zero return. Also, asset risk is 
                                                           
34 Note that a risky asset whose return is uncorrelated with market returns will generally not command a positive 
expected return above the risk-free rate. 
35 For the calculations here, I have used a discrete binomial approximation to the normally distributed ending assets.  
Each asset value determines the CE value of the loss limited to the asset amount using the conditional bivariate 
normal loss distribution (where the mean loss is a linear function of the asset/loss correlation). The overall CED was 
determined by inverting the expected utility of the conditional CE values using the risk-neutral asset probabilities. 
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independent of loss risk.  

Assuming that the risk-neutral distribution is also normal, its expected value equals the initial 
asset amount.36

Generally, under the policyholder welfare framework, the capital is always higher and the CV 
is lower when an insurer has a risky investment portfolio. Since on average, insurers’ investment 
managers cannot beat the market, financial theory indicates that there is no benefit to PHs for 
holding the risky assets. In other words, the optimal investment portfolio has only riskless assets. 
Then why do insurers in practice have risky assets? To resolve this puzzle, there are several 
hypotheses, including: the insurers may believe that their investment managers can individually 
beat the market (although collectively they cannot); management compensation schemes reward 
positive income without penalizing negative income; and insurers may build an above risk-free 
investment return into their pricing models. 

 The optimal capital with the risky assets becomes 356.89, which is 26.23 greater 
than the 330.66 for the case with riskless assets. The optimal CV at 78.88, is 2.13 lower than 
with the riskless assets. 

However, even though risky assets may lower the consumer value for PHs, the reduction may 
be small enough so that it is not material. For example, in the above calculation, the loss in CV is 
only about 0.2% of the expected loss. So the risky asset conundrum is theoretically interesting 
but generally may not be a practical issue. Regulators, rating agencies and insurance 
management recognize that a large amount of risky assets is imprudent. Especially large risky 
investment portfolios require additional capital whose costs cannot be passed on to PHs in a 
competitive market.  

An important point to make here is that the risk-neutral probability distribution removes the 
positive expected excess market return from the CE default calculation. If an insurer increases its 
asset risk through securities whose return is uncorrelated with the market, the expected default 
will rise and more capital is required. Thus it is essential for an insurer to maintain a diversified 
investment portfolio. 

Also worth observing is that both insurance losses and investment returns are not considered 
to be normally distributed; often a lognormal model or some other skewed distribution is used to 
approximate these variables. It may not be possible to represent the joint distribution in a 
tractable form. A more realistic application of the CE approach for total asset and loss risk will 
require a more elaborate method, such as a simulation model.  

                                                           
36 If one does not reduce the expectation to the beginning asset level, the result can be an optimal capital amount that 
is less than that for the riskless assets. In this case the additional capital required for risky assets is negative.  
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6.2 Guaranty Funds 
This topic deserves a full treatment in a separate paper. There is much academic literature37

 Under the policyholder welfare concept, guaranty funds will substantially reduce the optimal 
capital for an insurer. To see why this is so, consider an economy in which all policyholders of 
all insurers are completely covered by a single guaranty fund (GF). Clearly, no policyholder will 
suffer an uncovered loss unless the entire industry defaults. Thus, the aggregate capital for all 
insurers is used to protect any individual policyholder. Contrast this situation with the opposite 
extreme, where no policyholder has GF protection. Here, the policyholder has access only to the 
capital of his/her own insurer. In this case, the insurer needs much more capital than in the full 
GF situation. 

 
on the economic basis and design of guaranty funds, but I have found none that analyzes the 
effect of the funds on insurers’ capital requirements. 

Under a GF within the U.S., essentially all of the capital for each insurer in a particular state is 
pooled to provide default protection for policyholders. The coverage is limited (usually $300,000 
per policyholder for most lines of business), but some lines, such as workers compensation, have 
unlimited protection and others, such as surety, have no protection. For lines protected by the 
$300,000 limit, the GF coverage can vary significantly. For example, assuming a lognormal 
distribution with a 5.0 coefficient of variation, policyholders in a line with an average loss per 
policy of $1,000 (e.g., personal insurance) will have 99.53% of their expected losses covered by 
the GF, with only 0.47% exposure to the insurer’s default. However, those policyholders in a line 
with an average loss per policy of $5,000 (say, commercial insurance) will only have 95.96% 
covered, with a 4.04% exposure. Relative to their expected loss, the ratio of non-covered losses 
for the two lines is 8.6 to 1. So, for this example the presence of GF protection is a major factor 
in assessing the optimal capital for the two lines. 

Also, the GFs themselves can become exhausted38

                                                           
37 Cummins [1988] is one of the most often cited references. He argues that a pre-funded GF system is superior to 
the predominant post-failure assessment model in current use. However, based on the analysis here, a properly 
constructed RBC implementation might produce equivalent results. 

 in extreme events, since there is an annual 
limit to the amount they can assess the solvent insurers. Thus, in order to estimate optimal capital 
for a particular insurer, the risk of GF exhaustion must be analyzed. When this threat is 
considered, a much higher portion of default risk becomes attributed to extreme events. 

38 The term guaranty fund is somewhat of a misnomer. The vast majority of the state GFs merely assess other 
solvent insurers; they have no “fund” to pay claims. Thus, the GFs themselves cannot become insolvent. 



An Economic Basis for Property-Casualty Insurance Risk-Based Capital Measures 
 

Casualty Actuarial Society E-Forum, Summer 2013 39 

Consequently, modeling these becomes paramount. The extreme events can be national or world-
wide in scope (e.g., a financial crisis or a deep pricing down-cycle) or regional (such as a natural 
catastrophe). 

An important implication for analysis is that, with GF protection the optimal capital depends 
not only on the risk of a policyholder’s own insurer’s default, but also the default risk of the 
other insurers covered by the fund. Therefore, in analyzing the effect, say, of catastrophes on 
capital, one must also estimate the effect of the same catastrophes on the other insurers. This 
modeling might be simplified by using a default correlation parameter (DCP) for the insurer, 
where the parameter measures the correlation between the insurer’s default and that of the 
remainder of the insurers in a particular state. A value of zero for the DCP would mean the 
insurer’ capital can be modeled as a stand-alone entity. At the other extreme, a value of 1 would 
mean that whenever the insurer defaults, the GF is exhausted due to the simultaneous defaults of 
other insurers. 

Although the protection afforded by a GF is considerable (the expected loss above a $300,000 
threshold is a small fraction of the total expected loss), the certainty equivalent value of the 
above-threshold amount is large relative to its expectation. Consequently, the value of the GF 
protection for the policyholder is reduced somewhat in comparison to its straight expected value. 

Other considerations in modeling the effect of GFs on optimal capital are that there may be a 
degradation of service (e.g., a delay in settlement) when, upon insolvency, a policyholder’s claim 
is transferred to another claims management firm or that there may be market disruption from the 
insolvency of a large insurer. These effects can be incorporated into the model by modifying 
equation 5.11 to include a coefficient greater than 1 for the CE of the default. 

The analysis of optimal capital under a GF should feature an additional term in the premium 
calculation: the expected GF assessment for the failure of other insurers. This is an unavoidable 
cost to the policyholder that is paid ex post, so its value is stochastic at the time of the policy is 
purchased. Note that, for a specific insurer, the expected GF assessment depends on the capital 
levels of the other insurers, so the optimal capital level for that insurer is influenced by both the 
GF assessment and the ability of the other insurers to provide GF protection for the insurer.  

The presence of guaranty funds adds another element to the regulator’s role of solvency 
protection. By monitoring capital for a particular insurer, the regulator must not only protect the 
interests of that insurer’s policyholders, but also the interests of the policyholders of the other 
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insurers who would be assessed in the event of the particular insurer’s demise. 

 Summarizing this section, GF protection adds two important variables to incorporate into 
optimal capital determination. The first is the degree of GF coverage, which varies by line of 
business. More capital is required for lines with less GF coverage. Second, the optimum capital 
for an insurer depends on the default risk of other insurers covered by the GF. Thus, the 
correlation of the default risk with other insurers will affect capital: the higher the correlation, the 
higher the capital amount. Including these variables requires analysis of an insurer’s data by 
state: for example, to properly determine catastrophe risk capital, the effect of GF exhaustion 
must be estimated for each state where there is material exposure.  

6.3 Multiple Periods 
This topic is the subject of much debate in the actuarial and insurance finance literature.39

The single period model, with the above and other extensions, should suffice to determine 
optimal capital for lines of business, such as property, whose claims are paid over a short 
duration. For liability insurance, workers’ compensation and life insurance, we need to expand 
the model to encompass long-duration claims. Although the long-duration contracts can be 
modeled in continuous time, it makes sense to use a discrete, multi-period time frame. This is 
because accounting time frames determine the valuation of insurer assets and liabilities and 
hence capital. The annual time period is especially important, so for practical purposes, we need 
to examine long time-horizon asset and liability risk over one-year time increments. For shorter 
time periods (e.g., quarterly), a similar analysis will apply. 

 
There are two camps: one side advocates using an annual time horizon, wherein capital is only 
needed to offset default risk based on market values over the upcoming year. The other side 
argues that capital is needed to offset the risk that cash flow will not be sufficient to pay claims 
over the entire duration (the runoff horizon) required to settle the liability. This topic also 
deserves a separate paper, so here I have only outlined a procedure that will establish optimal 
multi-period capital. 

With long-horizon risks, we can use the same fundamental assumptions that drive optimal 
capital for a single period. The main point is that the optimal capital over several periods still 
depends on the balance between capital costs and the certainty equivalent value of default.  

A key component of the analysis is that the value of a long-horizon risk element (e.g., losses 
                                                           
39 For a good discussion of this topic, see Lowe et al. [2011]. 
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or assets) is stochastic (i.e., random) at the end of every period. Assume that we know the 
probability distribution for the evolution40 of the risk element value and there are n periods. 
Suppose the risk element is a loss with expected present value L. So, if the insurer begins the first 
year with an optimal capital level C1 and the loss value at the end of the year happens to be 

, then the risk of default (either in the next period or ultimately) will change if the 

original capital remains the same. Thus, the capital must be changed accordingly to regain the 
optimal position. 

This process leads to a sequence of capital amounts  corresponding to the 

sequence of loss values . It will also produce a series of CE expected default 

amounts at the end of each year driven by the loss values: . 

For each of these sequences of value realizations, we can determine the present value of the 
consumer value. However, we need a rule or strategy to determine the capital amount at each 
period Ct (based on Lt) that optimizes the expected present value over all possible realizations of 
the  sequence. If we find a single strategy that does this, then we have settled the 

issue of setting capital for a long-horizon risk element.  

This type of problem can be solved by a process called discrete time stochastic dynamic 
programming.41

7. APPLICATIONS 

 One of the techniques used in this method is backward induction, where one 
starts at time n – 1, finds the optimal decision rule, then steps backward to time n – 2, finds the 
optimal decision rule at that stage, and so forth, all the way back to the beginning of the first 
period. If the stochastic process is regular (such a random walk with a constant drift), then the 
decision rule at each stage will likely be the same.  

The preceding sections have developed a theoretical framework for determining optimal 
capital for insurers. This section discusses several issues involved in applying the theory in a 
practical setting. 

There will be some applications of these results that are not directly related to setting the level 

                                                           
40 This process is analogous to a discrete model of interest rate evolution, where the value at any period will generate 
multiple possibilities for the next period. Graphically, the structure will look like a tree, with each successive period 
having more branches. 
41 See Birge and Louveaux [1997]. 
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of an insurer’s capital, such as capital allocation,42 but I will leave those topics for further 
research. Also, since capital is an essential ingredient in pricing models, the optimal capital 
results will be relevant to that application;43

7.1 Implementation of Results 

 however, this work is outside the scope of this 
paper.  

The results here are new and somewhat contrary to current practice. In my view, there are 
three major obstacles to implementing them. 

The first is that there is little empirical work, especially for insurance, in quantifying 
policyholders’ risk preferences. All we know for certain is that insurance consumers are risk-
averse, and will pay more than expected value for their coverage. In the absence of empirical 
evidence the best we can do is to assume a functional form for the risk aversion process, such as 
the exponential utility used in sections 3 through 5. (I do not necessarily advocate this model; I 
have used it because it is familiar and provides mathematically tractable results). This can be 
calibrated to a presumed certainty equivalent factor (k) for an individual PH based on judgment. 

Second, the adjusted ruin probability risk measure is not as easy to understand as the 
conventional ruin probability measure. That fact that a constant ARP translates into different 
conventional ruin probability standards for different risk elements (e.g., lines of business) may be 
difficult for some to comprehend, and may undermine acceptance of the results.  

Third, the analysis has unearthed several currently unrecognized variables (e.g., the frictional 
cost of capital, which reflects interest rates and income tax rates; also, the level of guaranty fund 
protection) that should be considered in setting capital. Incorporating them will require 
considerably more data-gathering and analysis than is presently done. Based on the analysis of 
sections 3 through 6, Table 7.1 shows the key variables that should be considered in establishing 
optimal capital levels: 

 

                                                           
42 The Myers and Read [2001] capital allocation method uses an expected default that is not adjusted for 
policyholder risk preferences. Incorporating this element will allocate relatively more capital to lines with more risk-
averse policyholders. 
43 Section 5.1 has shown that, to the extent that PHs tend to select insurers having capital levels based on their risk 
preferences, then the insurer’s actual capital level (rather than an industry standard) will be relevant to setting 
prices. 
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Table 7.1 
Summary of Key Variables for Setting Capital Requirements 

N = None; L = Low; M = Moderate; H = High 
 

Inputs 
 Risk-free 

investment 
rate 

Effective 
tax rate 

Risk-aversion 
parameter 

Fraction of 
default not 
covered by GF 

Insurer-GF 
default 
correlation 

Variation by:      
Time M L N L L 
Insurer L L/M L/M L/M M 
Line of Business L L/M M H H 
State N N N L/M H 
Econ. Scenario/  
Extreme Event 

M L M M H 

Difficulty of 
Estimation: 

L L H L/M M/H 

 
Here I have provided my subjective estimates of the importance of each relevant variable 

introduced in this paper, and how much each variable varies by time, insurer, line of business 
and other factors. I have also indicated the difficulty of estimating the parameters (in modeling 
the capital requirements) for each variable. I have assumed that incorporating the risk aversion 
component is done simply, perhaps with a single parameter. Similarly, the correlation between 
insurer default and guaranty fund exhaustion is modeled with a single parameter. Notice that 
other variables, such as the loss distribution, are quite important but are currently considered 
when assessing risk-based capital. 

Although it may appear that the conventional risk measures are better than the ARP because 
they are simpler (needing fewer variables to evaluate), this is not the case if one accepts the 
policyholder risk-preference basis of this paper: these variables were always important, but 
simply were not recognized by the conventional risk-based capital methodology.  

7.2 Regulatory Role in Capital Standards 
The preceding sections have addressed finding the optimal capital for an insurer. In an 

efficient market, insurers will gravitate toward these optimal levels without regulatory 
intervention. However, the market is far from efficient from the perspective of maximizing 
policyholder welfare, and the involvement of regulators is often necessary. An important role of 
the regulator is to mimic the outcome of an efficient market, or at least to mitigate the effects of 
the market imperfections. 
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Consequently, this means attempting to maximize policyholder welfare while maintaining a 
competitive market for insurance. The goal of this process is to approximate the optimal capital 
generated in an efficient market. Using risk-based capital standards, the regulator has the 
authority to force an insurer to maintain a minimum level of capital. If the insurer fails to achieve 
the desired capital, the regulator can impose various restrictions on the insurer’s operations,44

This means that the more severe (i.e., shut-down) thresholds will be lower than the optimal 
capital amount for an insurer. For example, if the regulator sets the shut-down level at the 
optimum level, the insurer’s management will need to carry more than that amount of capital. 
There are several reasons why the stringent thresholds should be lower than either the optimal 
capital level: 

 
including shutting down the insurer. So, the regulator will want to set the intervention thresholds 
at levels that will tend to produce optimal capital levels. 

(1) An insurer operating above, but near the shut-down level would have a strong chance of 
being forced out of business if the business does not perform well over the following 
year. Therefore, its management will try to maintain a sufficient clearance above the 
threshold to minimize this possibility.  
 

(2) With a high threshold, there is strong possibility of misidentifying companies that are 
actually strong as weak. Harrington (in H. Scott, ed., 2005) discusses this problem. 
Regulators will tend to value this type of error (Type 2) more than the converse (Type 1 
error) where weak companies are incorrectly identified as being strong. This type of 
forbearance will lower the stringent threshold levels. 
 

(3) An insurer cannot operate near a stringent threshold without the market knowing about it. 
Operating near the threshold will signal that the insurer is weak, resulting in loss of 
business. Consequently, the insurer will become weaker, and the result will tend to be a 
self-fulfilling prophecy. 
 

Additionally, the regulator cannot be certain that an insurer with a low capital level is truly 
undercapitalized or the insurer’s policyholders have low risk aversion. In the latter instance, the 
low capital amount could be appropriate for those PHs. This possibility requires a lower stringent 

                                                           
44 Under the current U.S. risk-based capital framework designed by the National Association of Insurance 
Commissioners (NAIC), there are five control levels (thresholds), ranging from no regulatory action when capital 
exceeds 200% of the base RBC amount, to mandatory takeover of the insurer at 70% of the base RBC. 



An Economic Basis for Property-Casualty Insurance Risk-Based Capital Measures 
 

Casualty Actuarial Society E-Forum, Summer 2013 45 

threshold than if all PHs had the same risk preferences.  

Since the insurers will tend to carry more capital than the stringent intervention thresholds, 
these must be set low enough to induce insurers to generally carry the optimum level of capital. 
It will be difficult to quantify the relationship between the optimal capital and the regulatory 
thresholds that will produce the optimal capital. So, as is currently done, it may be necessary to 
use expert judgment to establish the threshold levels,45

I observe here that it is quite possible that insurers will in practice carry more capital than the 
optimal amount required to benefit policyholders. This will imply a wide gap between the 
stringent-threshold regulatory amount and the amount typically held by insurers. Because of 
incentive conflicts, the interests of insurance management, shareholders, regulators and rating 
agencies may differ from those of policyholders. For example, shareholders may be interested in 
protecting the franchise value of the insurer and may shortchange the interests of current 
policyholders to obtain future profits. Insurance management may desire capital sufficient to 
protect their private interests (e.g., future employment prospects) and may care more about the 
chance of insolvency than the expected amount of the default. Regulators and rating agencies 
have a vested interest in limiting the frequency of insurer insolvencies, since the failures can be 
viewed as a breakdown of supervision or of the rating system. 

 even if the optimal capital itself can be 
estimated reasonably well. 

The above incentive conflicts are exacerbated by the presence of guaranty funds, since the 
GFs allow for a somewhat painless insolvency experience from the policyholder perspective, but 
not painless to the other parties such as regulators or insurance management. 

8. CONCLUSION 
Based on maximizing policyholder welfare, it is possible to determine the optimal capital that 

an insurer should carry. To accomplish this, the appropriate solvency risk measure is ruin 
probability, using an adjusted probability distribution that reflects policyholders’ risk aversion. 
The level of the adjusted ruin probability standard depends only on the insurer’s frictional cost of 
holding capital. The assessment of underlying probability distributions of losses and assets, 
however difficult, is a standard actuarial problem. Determining the frictional cost of capital is a 
straightforward financial economics problem. On the other hand, estimates for the policyholder 

                                                           
45 Setting the proper threshold level is conceptually another optimization problem: find the level that will create the 
best overall policyholder welfare, recognizing the above market-disrupting effects. 



An Economic Basis for Property-Casualty Insurance Risk-Based Capital Measures 
 

Casualty Actuarial Society E-Forum, Summer 2013 46 

risk preferences are presently not available. This presents a ripe new area for empirical research.  

The results of the analysis here establish that a number of variables, which are not considered 
in conventional risk measures, are important to properly establish an insurer’s optimal capital. 
These features are absent when applying conventional solvency risk measures such as VaR or 
expected policyholder deficit. Incorporating these new factors is also a rich opportunity for 
further study.  

Finally, although I have focused on property-casualty insurers in particular, the underlying 
principles will apply to other financial institutions as well. These entities have primary 
stakeholders such policyholders, depositors and investors. As with property-casualty insurance, 
the welfare of these parties is governed by the same general relationship between consumer value 
and the cost of carrying capital.  
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APPENDIX A: UTILITY THEORY AND CERTAINTY  
EQUIVALENT LOSSES 

In this appendix I show the relationship between utility theory under risk and the certainty 
equivalent valuation of insurance losses. The utility of a wealth amount W is designated by u(W) 
and the initial wealth of the PH by W0. Accordingly, the utility of wealth given a loss y is u(W0 – 
y). However, since we are concerned with insurance losses here, it is convenient to redefine the 
utility to be a function of the loss amount:  
U(y) = u(W0 – y). 

Since the utility theory axioms have u'(W) > 0 and u''(W) ≤ 0, with the derivatives taken with 
respect to wealth, when we convert to the utility of loss basis, we get  
U'(y) < 0 and U''(y) ≤ 0. Here, the derivative is taken with respect to the loss size y. These results 
are developed in Appendix A2. On the utility of loss basis, the relative risk aversion function 

 becomes .  

A1: Finding CE Values From a Utility Function 
The expected utility (of wealth) is  

    

 .   (A1.1) 

 

The certainty-equivalent wealth is the amount of wealth that gives as actual utility, the same 
amount as the expected utility. Thus, , where  is the inverse of the utility 
function. The certainty-equivalent wealth, in turn, equals the actual wealth minus the certainty 
equivalent of the expected loss, or 

 

 .  (A1.2) 

 

Suppose that a policyholder faces a loss of size y with probability p, or no loss with 
probability 1 – p. We want to determine the certainty equivalent amount corresponding to y, or 
k(y)y, where k(y) is the CE function defined in section 3.2. The CE loss is  

 

 .  (A1.3) 
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From equations A1.2 and A1.3, we can determine the CE function value: 

     

  . (A1.4) 

 

Thus, it is possible to determine the CE value of an individual loss amount directly from a 
utility function and the initial wealth.  

To illustrate, consider the utility function . The initial wealth is 1600 and a 
loss of 1200 has a 10% probability. The expected wealth is 1600 – 0.1(1200) = 1480. The utility 
of the initial wealth is . The utility if the loss occurs is  , so the 
expected utility is 38 = 0.9(40) + 0.1(20). 

The certain wealth corresponding to the expected utility of 38 is  . 
Therefore, the certainty equivalent value of the expected loss is 156 = 1600 – 1444. From 
equation A1.4, the CE function value for the 1200 loss amount is k(1200) = [1600 – 
1444]/[0.1(1200)] = 1.3. Notice that this value corresponds to a CE probability of 13% for the 
1200 loss amount. 

A2: The Shape of the CE Value Function  
Because utility theory axioms impose constraints on the shape of the utility function, these 

restrictions will be reflected in the shape of the corresponding certainty-equivalent function. 
From Appendix A1, the CE function is related to the inverse of the utility function, so the 
properties of inverse functions will govern the translation from utility to certainty equivalence. 

The first utility axiom is that utility increases with wealth: the derivative of utility with respect 
to wealth is . This means that utility declines as the loss size y becomes larger (i.e., 

) and thus the certainty-equivalent function value increases with y: . 

The second utility property is that, because individuals are assumed to be risk-averse, the 
second derivative of the utility function with respect to wealth is negative:. . This 
means that utility declines as the loss size y increases, but at an increasing rate. This property 
translates to a CE function that increases at an increasing rate: . 

Returning to the Appendix A1 example, we can vary the loss size from 0 to 1600, keeping the 
other parameters the same (e.g., p = 0.1). Thus the CE function value is 
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   (A2.1) 

 

Values for this function are shown graphically in Figure A2: 

 

Figure A2 
CE Function for Appendix A2 Numerical Example 

 

 
 

A3: The CE Loss Distribution 

An important restriction on the CE function k(y) is that . This constraint 

means that the average value of the CE function equals 1, and thus will be less than 1 for losses 
that are small. This result seems anomalous, since the PH will be averse to the risk of small 
losses as well as for larger ones (albeit less risk-averse for the small ones), since the small losses 
are also random. However, it makes sense when we consider the entire loss distribution: since 
losses are mutually exclusive, two different loss values are negatively correlated. The negative 
co-variation will reduce the CE function value if the loss amounts are simultaneously considered, 
as compared to a situation where some loss sizes are considered selectively. 

To illustrate the effect of negative covariance, consider a PH facing a loss of  with 
probability ½ or another loss of  also with probability ½.  The amount  is very small. One 
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of the two amounts will occur, but not both. If the PH insures against the first event and not the 
second, the CE expected loss will be greater than its expected value. This is because there is 
apparent risk:  the loss will be zero or  with equal probability. The same is true if the 
second event is insured but not the first. However, if both events are insured (i.e., the entire loss 
distribution), then the CE expected loss will equal the expected value y, since essentially, the 
entire distribution is a single point y and there is no variance. The value y (plus or minus ) is 
certain to occur. Thus the CE expectation over the entire distribution will be less than the sum of 
the CE values of the individual loss sizes taken in isolation. 

The effect of the negative loss co-variation is that the k(y) values (such as in Appendix A2) 
will be reduced somewhat when other loss values are considered simultaneously. Extending the 
Appendix A2 example, suppose that (in addition to a loss amount of 1200 with a 10% 
probability) another loss of 1500 can occur, also with a 10% probability. Either may occur, but 
not both. Thus, there is an 80% chance that no loss will occur.  

The utility if the 1200 loss happens is , and the utility if the 1500 loss 
happens is . So, the expected utility is 35 = 0.8(40) + 0.1(20) + 0.1(10). This 
gives a CE wealth of 1225 = 352  and the CE of the expected losses is 375 = 1600 – 1225. Thus 
the joint CE of the two loss amounts is 3750 = 375/0.1. However, taken separately, the CE of the 
1200 loss is 1560 and the CE of the 1500 amount is 2310 (determined as in the Appendix A1 
example). This gives a total CE for the separate losses of 3870, which is 130 more than their 
joint CE. 

In this example, adding more possible loss values to fill out the entire probability distribution 
will reduce the CE values for all of the loss amounts even further.  

To summarize, the particular value k(y) of the CE factor for a loss size y depends not only on 
y but also on all other loss values in the loss distribution, and their respective probabilities. 

A4: Finding CE Default and Ruin Probability from a Utility Function 
If we know the probability distribution of losses and the utility function, the certainty 

equivalent loss can be determined by inverting the expected utility, as shown in section A1. The 
expected utility for losses limited to an amount of assets A is 

 

 , (A4.1) 
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where U(y) is the utility if loss size y occurs and Q(A) is the ruin probability, or chance that 
the loss exceeds assets. The expected utility for the entire loss distribution equals equation A4.1 
with A set to infinity. The CE value of the limited loss is determined from the inverse utility 
function: . The CE of default is the difference between the CE of the entire 
loss and the loss limited to assets, just as the expected default is the difference between the 
expected loss and the limited expected value. Thus . Since (from appendix C) the 
CE ruin probability  equals , we have . Note that the 
derivative of  is zero, since it is not a function of A. Equation A4.1 thus provides a method for 
determining  and  given U(y). 

This method for getting the CE values for default and ruin probability can be illustrated using 
a general loss distribution with exponential utility. Here, I define the utility of wealth for loss size 
y as , with a being the risk aversion parameter. The expected utility of the limited 
loss is  

 

 . (A4.2) 

 

To find , we first take the derivative of equation A4.1 with respect to A, getting  

 

        (A4.3) 

 

The terms involving p(A) and p(0) vanish since p(0) = 0 and the derivative of Q(A) is –p(A). 
The inverse of the exponential utility function for a utility value X is . 

Next, we take the derivative of . Note that since , its derivative equals : 

 



An Economic Basis for Property-Casualty Insurance Risk-Based Capital Measures 
 

Casualty Actuarial Society E-Forum, Summer 2013 52 

  (A4.4) 

 

or . With a normal loss distribution, we can directly determine 
EUL(A). The normal density is  

   

  . (A4.5) 

 

Since the density in equation A4.1 is multiplied by –exp(ay), the product U(y)p(y) for the 
normal p(y) becomes another normal density ps(y) with a variate (shifted from the mean L) of 

, multiplied by the constant . Thus, the expected utility 

equals this constant and its CE is the inverse, equal to . This derives the result in 

equation 3.43. For the normal distribution, equation A4.1 becomes  

 . (A4.6) 

 

Here  is the cumulative normal probability with the shifted variate zs. Converting EUL(A) 
to a certainty equivalent, we get  

 

 . (A4.7) 

 

Since , we finally have  

 

                         .              (A4.8) 

 

To determine the adjusted ruin probability  for the normal distribution, we use equations 
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A4.4 and A4.6, getting: 

 

  . (A4.9) 

 

Notice that the distribution for Ps(A) has a mean of , while for Q(A) the mean is L. 

The mean underlying the  distribution is . Letting  , we see that 

. From equation A4.9 it is straightforward to show that 

 and therefore the CE distribution is symmetric around . However, as 
shown below, the CE distribution is not normal. 

To show the non-normality, I use the section 3.5 example with L = 1000, σ = 100 and a = 
0.02. With assets of 1300 (3 standard deviations above the mean) the unadjusted expected default 
D is 0.038 and the ruin probability is Q(1300) = 0.135%. The CE expected loss is 1100 = 1000 + 
0.5(0.02)(100)2. The shifted variate is zs = 1.00 = [1300 – 100 – (0.02)(100)]/100, which is one 
standard deviation above the mean. Thus, the shifted cumulative probability is Ps(1300) = 
0.8413. The factor   equals exp[0.02(1300 – 1100)] = 54.598, so we get  

 = 4.439 = {–ln[0.8413 + (54.598)(0.00135)]}/0.02. The CE ruin probability is  

 = 8.05% = 0.00135/[0.00135 + 0.8413/54.598]. Notice that the denominator of 
equation A4.9 contains an exponential factor that is the reciprocal of the one in equation A4.8. 

If the CE distribution were normal, then its ruin probability of 8.05% would imply a standard 
deviation of 142.71. Then, if we change the assets to 1200, we would get a CE ruin probability of 
24.17%. However, following the above calculation, the true  is 25.16%. Consequently, 
the CE distribution for the normal-exponential model is not normal. 

It is interesting to compare the CE density  with that of the underlying normal 
distribution p(y). The approximate values can be calculated taking the difference of 
successive  values. Figure A4 below shows the two densities. 
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Figure A4 

Probability Densities for Normal-Exponential Model 
Illustrative Example 

 

 
 

Notice that the CE density is symmetric, centered at the CE loss value of 1100. It also has a 
greater variance than its normal parent distribution. Also observe that, for a given asset amount 
(above the mean), the tail area of the adjusted distribution is much greater than that of the 
unadjusted distribution. 

A5: CE Values for Binary Loss Model with Exponential Utility 
Assume that an individual faces a loss of amount B with probability p > 0, and amount 0 with 

probability q = 1 – p. This is called a binary model, since there are two possible loss values: B or 
zero. The individual has risk preferences defined by exponential utility with risk aversion 
parameter a and has initial wealth of W0 before considering the loss prospect. The utility of the 
initial wealth is   and the expected utility of wealth considering the loss is  

 

 . (A5.1) 

 
Letting  denote the CE value of the wealth considering the loss, we have  , 

where  is the CE expected loss. Since , we get 
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 . (A5.2) 

 

If the individual buys insurance for a premium π and the insurer has assets A, then the amount 
of loss absorbed by the individual is B – A and the expected utility is 

.  The certainty equivalent wealth after the insurance 

purchase is the initial wealth minus the premium minus the CE expected default, or . 

Since , we solve for :  

 

 . (A5.3) 

 

Notice that if A = 0, then  and if A = B, then . The CE ruin probability  
equals the negative derivative of the CED, so we get 

 

 .  (A5.4) 

 

If A = 0, we have  and at A = B, . 

For two combined independent binary risks, the development is similar (the values of 
variables for the combined risks are denoted with a subscript 2). Here we set the initial wealth 
and premium to zero, since they do not influence the CED and hence the CE ruin probability. 
Following section 3.6, assets are A per PH, for a total of 2A. For  
A < B/2, the expected utility per PH is . For  

B/2 ≤ A < B, . Then the respective CED values are 

 

             for A < B/2 (A5.5) 

      for B/2 ≤ A < B,  

 

where  and . Here, if A = 0, we again get 

 and if A = B, then . Taking the derivative of the CED with respect to A, we get 
the CE ruin probabilities: 
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      for A < B/2 (A5.6) 

 
                for B/2 ≤ A < B. 

 

For A = 0, we get  and for A = B, . Notice that 

 and that . Thus, the CE ruin probability for the 

combined risks has a higher maximum value (at A = 0) and a lower minimum value (at A = B) 
than for a single risk. Thus, based on equation 5.51, there is a region where a subadditivity (SA) 
violation may exist and another region where a SA violation cannot happen.  

For a fair premium, equation 5.14 defines the risk measure as 
. For a single binary risk, the unadjusted ruin probability is 

Q(A) = p, for A ≤ B. Consequently, 
 

 , (A5.7) 

 

so the fair premium risk measure  is a linear function of the basic premium risk measure 
.  

For a combination of two independent binary risks, and for A < B/2, the expected default for a 
single PH is . By taking the negative of the derivative of D2 with 

respect to A we get . For B/2 ≤ A < B, we have  . Therefore, equation 
5.14 gives 

 

              for A < B/2 (A5.8) 

       for B/2 ≤ A < B. 

 

For A = 0, with some manipulation, we get  and for A = B (as a 

limit), . Just as in the basic premium case, there is a region where a 
subadditivity violation may exist and another region where it cannot occur.  

APPENDIX B: STOCHASTIC MEAN LOSS MODEL 

The classic aggregate loss model from risk theory (see Lundberg [1903]) is the compound 
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Poisson process, where the number of losses is Poisson and each individual loss has the same 
distribution with prescribed parameters and thus a stable mean. The individual losses are 
independent. However, in practice, the losses are not independent (they are subject to common 
factors such as inflation, regulation and the court system). Further, the mean of losses for a given 
line of business (or other subdivision of an insurer’s risk portfolio) is not known; it must be 
determined empirically.  

Relaxing the independence assumption, we introduce another random variable that governs 
the mean from which all the individual losses are drawn (in this section, random variables are 
indicated with a tilde).  

Let  represent the stochastic mean variable, which itself has a mean of 1 and a variance  . 
We assume that there are N policyholders. Each PH i has losses (we allow for multiple claims in 
the one-period model) denoted by . The  are measured before applying the mean variable .  

Let  denote the sum of aggregate losses before applying the stochastic mean. The 
unconditional aggregate losses are  

 

   (B.1) 

 

Here the { } are the individual losses and N  is the number of losses. and  are 
independent, so the covariance between losses is due to the stochastic mean. Let M be the mean 
of the individual loss  and  its variance. Let  be the correlation between the individual 

losses. The variance of  is   

  

   (B.2) 

  

and its mean is NM. 

The variance of the product of two independent random variables  and  is 

 

   (B.3) 

 

Here, E( ) denotes the expectation. Thus the variance of the aggregate losses  is  
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   (B.4) 

 

Let  denote the share of aggregate losses for an individual PH. Then 
. Thus, we have 

 

 .    (B.5)   

 

As N becomes large, the variance of the individual PH losses tends toward 

 

 . (B.6) 

 

So for large N, the variance of the individual PH losses tends to a constant limiting value. 
Also, if  and , the limit is . If  and , then the limit is . 
Consequently, if either the losses are subject to a stochastic mean or they are correlated, then 
with a large number of policyholders, the variance of individual PH losses will reach a limit.  

An example will illustrate the convergence. Assume that M = 1,000, ,  and 
 For N = 1,000, equation B.5 gives an individual PH variance of 28,253, compared to 

the asymptotic value of 28,180, a difference of only 0.26%. Increasing N to 10,000 policies 
moves the variance to 28,187, cutting the difference to 0.03% from the asymptotic value. Notice 
that the asymptotic standard deviation is 167.87, which compares to 300.00 from the individual 
loss distribution. 

APPENDIX C: DERIVATIVE OF THE EXPECTED DEFAULT  

To determine the derivative of the expected default, we use the general method for the 
derivative of an integral, with the upper limit a constant b and the lower limit a function of the 
variable whose derivative is taken: 

 

  . (C.1) 

 

Thus, 
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 . (C.2) 

 

The right-hand term in equation C.2 equals zero and the derivative becomes 

 

 , (C.3) 

 

where  is the tail, or ruin, probability.  

For an adjusted probability density , we have in parallel fashion, 

 

 . (C.4) 

APPENDIX D: OPTIMAL CAPITAL WITH INCOME TAXES 

Expanding the basic model to include income taxes, we also need to introduce an investment 
component. Assume that all cash is invested in riskless investments at a one-period rate r, and 
that all income is taxed at the end of the period at a rate t. Premium is collected at the beginning 
of the period and losses are paid at the end of the period. We further assume that the losses 
contain no market risk, so that the expected return to investors46

In order to attract capital from the insurer’s investors, the expected rate of return after taxes 
must also equal r.  

 in the insurer is also r. 
Alternatively, we can assume that the value of the loss is adjusted to include the market risk. 

If the premium equals the present value of the expected loss, then initial assets are 
. The expected value of the ending assets, prior to income tax, is  

. The investment income rC is taxed, leaving C + rC – trC. However, 

for a fair return to investors, the ending assets must be C + rC. The amount trC must be made up 
                                                           
46 In this formulation, the expected default is not subtracted from premium, so the result approximates a true 
equilibrium optimum, which is a more complex version of equation 5.14. 
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by charging an extra premium amount zC at some rate z proportional to capital, so the premium 
is . The extra premium is itself taxed as underwriting profit, so the amount 
zC will grow to after taxes.  Notice that the investment income rzC on 
zC is also taxed. Equating the ending after-tax value of the additional premium with the double-
taxation burden trC, we solve for z: 

 

  . (D.1) 

 

Let A represent the amount of assets prior to payment of the loss and income taxes. If the loss 
is larger than A, the insurer will default and no tax is paid. I assume here that a negative income 
tax liability arising from a large loss does not increase the assets available to pay the loss. Thus 
we have 

 

 . (D.2) 

 

In parallel fashion to equation 5.11, the consumer value V of the insurance equals the present 
value of the CE of the covered losses, minus the premium: 

 

 . (D.3) 

 

Taking derivatives and equating to zero, we have  

 

 . (D.4) 

    

From equation D.2, we get . From equation D.4 we get  

 

 .  (D.5) 
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Using the value of z in equation D.1, we get the optimal CE ruin probability in terms of the 
interest rate and the income tax rate: 

  

  . (D.6) 
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GLOSSARY OF ABBREVIATIONS AND NOTATIONS  

 
Abbreviation Meaning Section Where Defined 
ARP Adjusted ruin probability 5.1 
CE Certainty equivalent 3.2 
CEL Certainty equivalent expected loss 3.2 
CED Certainty equivalent expected default 3.5 
CV Consumer value 3.6 
DCP Default Correlation Parameter 6.2 
EPD Expected policyholder deficit 1 
FCC Frictional capital cost 4.2 
GF Guaranty fund 6.2 
NAIC National Association of Insurance Commissioners 7.2 
PV Present value 4.3 
PH Policyholder 3.1 
RBC Risk-based capital 2 
RP Ruin probability 5.4 
SA Subadditivity 5.5 
SD Standard deviation 5.3 
TVaR Tail value-at-risk 1 
VaR Value-at-risk 1 
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Notation Meaning Section Where Defined 
a Exponential utility risk aversion parameter 3.4 
A Assets 3.5 
A0 Initial assets App. D 
b Upper integration limit App. C 
B Binary loss size  5.5 
C Capital 4.1 
CEW Certainty-equivalent wealth App. A1 
D Expected default 3.5 

 Certainty-equivalent expected default 3.5 
e0 , e1 Expense coefficients 5.1 
E( ) Expectation operator App. B 
EU Expected utility App. A1 
EUL( ) Limited expected utility App. A4 
f( ) General function 3.6 
F( ) General function App. C 
g( ) General function App. C 

  Stochastic mean variable App. B 
k( ) Certainty-equivalent function 3.2 
k Average value of the CE function 3.2 
K Variable in normal-exponential model App. A4 
L Expected loss 3.2 

 Certainty-equivalent loss 3.2 

  Limited CE expected loss 3.5 

M Mean of individual loss App. B 
MT( )

 
Tail moment 5.4 

n Degree of the tail moment 5.4 
N Number of policies App. B 
p Binary loss probability App. A1 
p( ) Probability density 3.2 

 Probability density, adjusted for risk aversion 3.2 

pA( ) Risk-neutral probability density for asset size 6.1 

 Probability density with shifted mean App. A4 

Ps( ) Cumulative probability with shifted mean App. A4 
q Probability of zero loss App. A5 
Q( ) Ruin probability 5.1 

  Ruin probability, adjusted for risk aversion 5.1 

r Investment return 4.2 

  Absolute risk aversion function 3.4 

RM1( ), RM2( ) Risk Measure 5.5 
  Sum of aggregate losses, without stochastic mean App. B 
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Notation Meaning Section Where Defined 
t Income tax rate 4.2 
u( ) Utility function, based on wealth App. A1 
U( ) Utility function, based on loss size 3.4 
v Valuation level of risk measure 5.5 
V Consumer value of insurance contract 5.1 
Var( ) Variance operator App. B 
W Wealth App. A1 

 Initial wealth 3.4 

  
CE wealth given a potential loss App. A5 

x Loss size; also a general variable 3.4 

  
Random individual loss size App. B 

  Unconditional aggregate losses App. B 
y Individual policy loss size 3.2 

  Certainty equivalent loss size 3.2 

  Policyholder share of aggregate losses App. B 
z Frictional cost of capital rate 4.2 
zs Shifted normal variate App. A4 
Z1, Z2 Intermediate variables App. A5 
α VaR confidence level 5.4 

  Variance of stochastic mean App. B 

Δ Change in loss size 5.4 
ε Small change in loss size App. A3 
π Premium 4.1 
θ(  ) Fair premium risk measure 5.1 
ρ Correlation between losses App. B 

  Variance of loss 3.4 
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Kurtosis and skewness estimation for non-life reserve risk 
distribution 

Eric Dal Moro, Fellow of the French Actuarial Association 
 

Abstract: In the daily tasks of a non-life actuary, the reserve risk distribution plays a central role. For 
example, the estimation of the cost of capital used in commutation pricing relies heavily on the 
assumption retained for the shape of the non-life reserve risk distribution. 
 
Even though some distributions are widely used in the actuarial community (e.g. Lognormal distribution), 
it is interesting to note that very little is known on the determinants of the shape of the non-life reserve 
risk distribution. In general, the mean is usually defined as the Best Estimate and the standard deviation 
can be estimated using different methods (e.g. Mack 1993a). In terms of higher moments, Generalized 
Linear Models (GLM) and bootstrap techniques offer different possibilities of quantifying moments and 
quantiles (see Wüthrich-Merz 2008 and England and Verrall 2002). However, these models require the 
specification of some explicit parametric distribution (e.g. for the residuals) in order to be applied.     
 
Following a first introduction of skewness estimation of non-life reserve risk distribution (see Dal Moro 
2012), this article investigates the possibility to estimate the kurtosis of the non-life reserve risk 
distribution. In addition, the robustness of the skewness and kurtosis estimation based on the proposed 
formulas is tested on eight different triangles. 
 
Keywords. Skewness; Kurtosis; Platykurtic; Variance; Chain-Ladder; Reserve risk distribution; 
Correlation; Gaussian copula; Generalized Pareto Distribution; Johnson distribution. 

 

1. INTRODUCTION 

1.1 Background 

Today, whenever a non-life actuary has the necessity to use and determine the full reserve risk 
distribution, he has several options: 

• The most usual option consists in assuming that the full reserve risk distribution follows a 
lognormal distribution which parameters are fitted to the reserve Best Estimate and to the 
reserve standard deviation. The reserve standard deviation can be determined using the 
Mack method in the Chain-Ladder framework (see Mack 1993a) or in the Bornhuetter-
Ferguson framework (see Mack 2008) or using the Hybrid Chain-Ladder method (see 
Arbenz 2010). 

• Another option consists of using bootstrapping techniques to determine the full empirical 
distribution (see England and Verall 2006). 

• A final option consists of using GLM techniques (see Merz and Wüthrich 2008). 

The GLM and Lognormal assumptions essentially rely on the first and second moment of the 
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distribution and do not attempt to reflect any further knowledge of higher moments. In the same 
way, the bootstrapping techniques are based on resampling techniques which do not reflect any 
knowledge of higher moments. 

This article tries, in a first step, to determine some knowledge on higher moments of the reserve 
risk distribution, in particular skewness and kurtosis. With this knowledge, it tries to draw general 
conclusions on the appropriateness of the Lognormal assumption on the basis of test cases. 

In all the following, we will limit ourselves to the Chain-Ladder framework.  

1.2 Outline 

This paper is divided into the following sections: 

• Section 2 provides basic definitions of chain-ladder coefficients 

• Section 3 establishes the estimator of the kurtosis of the incurred claim amount for each 
development year of each accident year. 

• Section 4 provides a description of the simulations done to estimate the skewness and the 
kurtosis for non-life reserves for each accident year of a triangle. 

• Section 5 provides numerical examples. 
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2. DEFINITIONS 

2.1 Definitions of Chain-Ladder elements 

 

The following brief review of the Chain-Ladder method is based on Mack (1993a). 
 
Let kiC , denote the cumulative incurred claims amount of accident year i after k years of 

development, 1 ≤ i, k ≤ I, where I denotes the most recent accident year. Then iiIC ,1+− denotes the 
currently known claims amount of accident year I-i+1. The basic chain-ladder assumption is that 
there exists development factors 11 , ... , −Iff such that: 
 ( )  111 ,,...,| ,,1,1, −≤≤≤≤=+ IkI, iCfCCCE kikkiiki     (1) 
where the link ratios (age-to-age factors) can be estimated as follows: 

 11 , ˆ

1
,

1
1,

I-k
C

C
f kI

j
kj

kI

j
kj

k ≤≤=

∑

∑
−

=

−

=
+

       (2) 

under the assumption that { } { } jiCCCC IjjIii ≠,,...,,,..., ,1,,1,  are independent. 
 
In this paper, f̂  will denote the estimator of the random variable f . 
 
Note: The kf̂ are unbiased and uncorrelated (see Mack  1993a).  

2.2 Variance  of kiC ,  

In the framework of distribution-free calculation of the standard error of the reserve estimates, 
several variance models exist. For the purpose of this article, we will focus on the Mack standard 
error.  
As for the variance of 1, +kiC , T. Mack (1993a) induced that ( )kiiki CCCVar ,1,1, ,...,|+  (where 

( )BAVar |  denotes the conditional variance of A knowing B) should be proportional to kiC , , i.e.: 

 ( ) 111 , ,...,| 2
,,1,1, I-kI, iCCCCVar kkikiiki ≤≤≤≤=+ σ      (3) 

where 21  ˆ
1

1ˆ
2

1 ,

1,
,
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kI

kI

i
k

ki

ki
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


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



−

−−
= ∑

−
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+σ     (4) 

 
It can be shown that the estimator 2ˆ kσ  is unbiased (see Mack 1993a). 
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2.3 Skewness of kiC ,  

 
Let’s denote ( )BASK | , the conditional skewness of A knowing B:  

 ( ) ( )( )( )|BA|BEAEA|BSK 3−=  

 
Following the result in Dal Moro 2012, we assume that ( )kiiki CCCSK ,1,1, ,...,|+  is proportional to 

2
3

,kiC , i.e. : 

( ) 211 , ,...,| 32
3

,,1,1, I-kI, iSkCCCCSK kkikiiki ≤≤≤≤=+       (5) 
with:  
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  (6) 

For 2I-k =  and 1I-k = , as data is not available to estimate 3ˆ
kkS , it will be assumed that 

 0ˆ 3 =kkS for this article.  
 

 
 
 



Kurtosis and skewness estimation for non-life reserve risk distribution 
 

Casualty Actuarial Society E-Forum, Summer 2013 5 

3. KURTOSIS ESTIMATOR 

In probability theory and statistics, kurtosis is any measure of the "peakedness" of the probability 
distribution of a real-valued random variable. One common measure of kurtosis, originating with 
Karl Pearson, is based on a scaled version of the fourth moment of the data or population. 
Mathematically, it is described by the formula below for a random variable A: 

( )( )( )
( )( )( )22

4

AEAE

AEAE

−

−
=β  

For this measure, higher kurtosis means more of the variance is the result of infrequent extreme 
deviations, as opposed to frequent modestly sized deviations. If a distribution’s kurtosis is greater 
than 3, it is said to be leptokurtic. If its kurtosis is less than 3, it is said to be platykurtic. 
Leptokurtosis is associated with distributions that are simultaneously “peaked” and have “fat tails.” 
Platykurtosis is associated with distributions that are simultaneously less peaked and have thinner 
tails. 
 
With this definition of kurtosis, the aim of this section is to find an expression for the kurtosis of 

kiC , within the Chain-Ladder framework. Let’s denote ( )BAKT | , the conditional fourth centered 
moment of A knowing B:  
 ( ) ( )( )( )BBAEAEBAKT ||| 4−=  
 
For the purpose of this article, it will be assumed that: 

( )
( )[ ]2,1,1,

,1,1,

,...,|
,...,|

kiiki

kiiki

CCCVar
CCCKT

+

+  depends on k but not on i. 

This assumption implies that, for one development year within a triangle, the kurtosis is the same for 
any accident year. This assumption can be applied in the context of a reserving portfolio for which 
risks would have the same characteristics for every accident year. 
 
With such an assumption, we have: 

 

( )
( )[ ]

( )
[ ]

( ) [ ]2,
2

k,1,1,

2
,

2

,1,1,
2

,1,1,

,1,1,
k

,...,|

,...,|
 

,...,|
,...,|

such that  

kikkiiki

kik

kiiki

kiiki

kiiki
k

CCCCKT

C

CCCKT
CCCVar
CCCKT

σγ

σ
γγ

=⇒

==∃

+

+

+

+

 
 
Hence, we have the result that ( )kiiki CCCKT ,1,1, ,...,|+  is proportional to 2

,kiC , i.e. : 

( ) 311 , ,...,| 42
,,1,1, I-kI, iKtCCCCKT kkikiiki ≤≤≤≤=+      (7) 

 
Based on the definition above, the theorem below will give an unbiased estimator for  ˆ 4

ktK . 
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Theorem:  
Similar to the variance expression in equation (4), we show that the estimator below is unbiased. 
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  (8) 

For 3I-k = , 2I-k =  and 1I-k = , as data is not available to estimate  ˆ 4
ktK , it will be assumed that 

( )
 3

ˆ

ˆ
22

4

=
k

ktK
σ

for this article. This last assumption implies that the characteristic of a normal 

distribution is retained on the last development years.  
 
The proof of this theorem is given in Appendix A. 
 
Remark: 
The formula for  ˆ 4

ktK has the standard shape of a kurtosis estimator: One element which 

corresponds to the weighted average of 
4

,

1, ˆ










−+

k
ki

ki f
C

C
and another element which has a component 

( )22ˆ3 kσ  (see formula in Cramer 1946). 
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4. SIMULATIONS 

After finding the expressions for the kurtosis and the skewness of kiC , , the next step would consist 
in finding closed formulas for the skewness and kurtosis of non-life reserves by accident year. This 
should be done by using the law of total cumulants. For example, in the case of skewness, the law of 
total skewness gives: 
 ( ) ( )[ ] ( )[ ] ( ) ( )[ ]BAVarBAECovBAESKBASKEASK |,|3|| ++=  
However, when using such laws, there are difficulties which appear rapidly, in particular the need to 

estimate the element: 






−− 2,1,
2

3

1, ,...,| IiiIi CCCE .   

 
Considering the above difficulty, in order to estimate the skewness or the kurtosis of non-life 
reserves by accident year, it is therefore necessary to create a stochastic model. This model will have 
the characteristics described in this paragraph so that the Best Estimate and standard deviations 
match the moments coming from the Mack model (1993a). For the triangle below, we will fit the 

kiC ,
ˆ to a Generalized Pareto Distribution (hereinafter “GPD”) with parameters );;( ,, kkiki s ζµ with 

( )∞∞−∈ ;,kiµ , the location parameter, ( )∞∈ ;0,kis , the scale parameter and the shape parameter 

( )∞∞−∈ ;kζ . As we will see below, the shape parameter can be related to either the asymmetry of 
this distribution or to the kurtosis of the distribution, which according to paragraphs 2.3 and 3, 
depends only on k.  

 
The stochastic model is iterative: At step k (corresponding to the column k of the below triangle), all 
the parameters are known. On the basis of these parameters known at step k, the parameters of step 
k+1 are estimated using the formulas shown in this section. 

 
i Ci1 Ci2 Ci3 Ci4 Ci5 Ci6 Ci7 Ci8 Ci9 Ci10

ξ2 ξ3 ξ4 ξ5 ξ6 ξ7 ξ8 ξ9 ξ10Asymmetry

6

7

8

9

10

2

3

4

5

 
 
 
 
 
 

);;(ˆ
,,, kkikiki sGPDC ζµ∝  

Parameters of 
all distributions   

at step k are 
known 

Estimation of 
parameters of 

all distributions  
at step k+1 



Kurtosis and skewness estimation for non-life reserve risk distribution 
 

Casualty Actuarial Society E-Forum, Summer 2013 8 

 
 
Note: The chosen distribution (GPD) is merely a medium to use the known skewness  ˆ 3

kkS or the 

known kurtosis  ˆ 4
ktK of a development year so as to estimate an accident year skewness / kurtosis. 

 
With the above parameters, we have the following results: 

• ( )ki
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==  

 
At step k of the stochastic run (which corresponds to a development year in the triangle above), 
assuming that we know the 3 parameters );;( ,, kkiki s ζµ , we can generate the random variable 

kiC , with the following method: 

• Draw a random variable kiU ,  uniformly distributed on ( ]1,0 . We will see later in this section that 

there is a dependency structure between the kiU ,  which follows a Gaussian copula that needs to 
be specified to match the assumptions of Mack (1993a).  

• Then: 
( )

);;(
1ˆ

,,
,,

,, kkiki
k

kiki
kiki sGPD

Us
C

k

ζµ
ζ

µ
ζ

∝
−

+=
−

 

 
At step k+1, we have the following formulas: 

• In the case of skewness evaluation, we have: 
( )

 
31

2112
ˆ

ˆ

1

11
3

1

3
1

+

++

+

+

−
−+

=
k

kk

k

kkS
ζ

ζζ
σ

which allows to 

estimate the parameter 1+kζ . 

In the case of kurtosis evaluation, we have: 
( )

( )
( )2

11

3
11

22
1

4
1

1271
453 3

ˆ

ˆ

++

++

+

+

+−
−−

=
kk

kk

k

ktK
ζζ
ζζ

σ
 



Kurtosis and skewness estimation for non-life reserve risk distribution 
 

Casualty Actuarial Society E-Forum, Summer 2013 9 

• 
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C

C
CarianceV

1
,

,2
,1,

ˆ
1ˆˆˆ σ . The use of this definition allows us to match the overall 

mean squared error (hereinafter “mse”) resulting from this simulation with the Mack mse (see 
also Mack 1999): 
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k
Iii
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CRsem σ

 where iIiIii CCR −+−= 1,,
ˆˆ  

The knowledge of 1,
ˆ

+kiarianceV and the parameter 1+kζ allows the estimation of the parameter 

1, +kis . 

• Finally, we have: 
1

1,
1,,1, 1

ˆˆˆ
+

+
++ −
+==

k

ki
kikikki

s
CfC

ζ
µ which allows the estimation of the parameter 

1, +kiµ . 
 
 
Gaussian copula: 

According to Mack (1993a), the mse of the overall reserve estimate IRRR ˆ...ˆˆ
2 ++= is equal to: 
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This equation includes an embedded assumption of correlation between the reserve estimates iR̂ . A 
natural way to simulate such correlations is to use a Gaussian copula.  
 
Re-writing the above equation in the usual way, we have: 

 ( ) ( ) ( )∑ ∑∑
= <

+=
I

i ji
jijii RsemRsemRsemRsem

2
,

ˆˆˆˆ2ˆˆ)ˆ(ˆ ρ  
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And we can see that the correlations between the reserve estimates iR̂  are: 
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==
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These correlations are valid at the ultimate. In the case of our stepwise simulation, it is necessary to 
have a correction on these correlations so as to reflect the fact that, at step k, the view is not yet on 
the ultimate. As a matter of fact, if we denote ( )k

ji,ρ  the correlation at step k , it is equal to: 
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In order to have a correct correlation on an ultimate view, we have the following: 

 ( )
( ) ( ) ( )

( ) ( )kjki
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ˆˆˆˆ
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The correlations ( )k

ji
Ultimate

ji Correction ,, ×ρ are the characteristics of the Gaussian copulas that are used 
in our stepwise simulation. 
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5. NUMERICAL EXAMPLES 

In Appendix B, the triangles used for the application of the above methodology are shown. In this 
section, we will therefore focus on the results and their interpretations. 
 
In the table below, for each triangle (see Appendix B) and each development year, the chain-ladder 
coefficients, the Mack variance, the skewness and the kurtosis are provided: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1 2 3 4 5 6 7 8 9

1.076 0.992 0.994 0.996 0.996 1.001 1.001 0.995 1.000

52.813 7.223 3.966 2.462 2.311 0.946 0.199 0.161 0.130

0.611 -0.256 -0.349 -0.090 1.049 0.477 0.273 NA NA

317.02% 177.30% 166.23% 146.75% 340.69% 165.38% NA NA NA

1.290 1.038 0.997 0.988 0.991 0.998 0.998 0.998 0.996

412.435 55.605 12.434 2.448 0.685 1.093 0.058 0.605 0.058

0.703 0.412 0.727 -0.047 -0.058 -0.769 0.500 NA NA

223.54% 201.65% 182.26% 78.01% 144.84% 237.28% NA NA NA

1.331 1.158 1.070 0.990 0.980 0.990 0.994 1.001 1.000

105.139 45.008 14.086 26.096 4.394 2.036 0.133 0.829 0.133

0.583 0.187 0.414 -0.565 -0.141 0.230 -0.008 NA NA

204.32% 229.15% 207.06% 192.21% 103.56% 104.25% NA NA NA

1.451 1.407 1.091 0.963 1.046 1.051 0.950 0.992 1.030

190.687 220.494 8.509 155.235 10.557 3.010 4.250 0.094 0.002

0.774 1.716 -0.540 -1.059 -0.620 0.164 0.111 NA NA

324.61% 620.07% 298.72% 369.19% 164.25% 119.36% NA NA NA

1.692 1.487 1.269 1.016 1.150 1.130 0.862 1.007 1.000

31.078 66.326 70.197 33.319 23.011 3.421 14.919 0.015 0.000

-0.008 1.060 0.525 -0.507 -0.030 -0.484 -0.113 NA NA

205.13% 411.28% 302.64% 200.90% 125.54% 121.50% NA NA NA

3.491 1.747 1.457 1.174 1.104 1.086 1.054 1.077 1.018

160280 37737 41965 15183 13731 8186 447 1147 447

0.137 0.215 0.638 -0.433 0.402 -0.026 -0.497 NA NA

184.92% 170.29% 265.62% 162.92% 185.65% 123.00% NA NA NA

k

Product 
Liability

Pennsylvania

Product 
Liability

West Bend

Mack 1993

Private 
Motor

Farmers 
Alliance

Private 
Motor

NC Farm 
Bureau

Private 
Motor

New Jersey 
Manufacturers

( )224 ˆ/ˆ
kktK σ

( ) 2
323 ˆ/ˆ

kkkS σ

2ˆ kσ

kf̂

( )224 ˆ/ˆ
kktK σ

( ) 2
323 ˆ/ˆ

kkkS σ

2ˆ kσ
kf̂

( )224 ˆ/ˆ
kktK σ

( ) 2
323 ˆ/ˆ

kkkS σ

2ˆ kσ

kf̂

( )224 ˆ/ˆ
kktK σ

( ) 2
323 ˆ/ˆ

kkkS σ

2ˆ kσ

kf̂

( )224 ˆ/ˆ
kktK σ

( )224 ˆ/ˆ
kktK σ

( ) 2
323 ˆ/ˆ

kkkS σ

2ˆ kσ

kf̂

( )224 ˆ/ˆ
kktK σ

( )224 ˆ/ˆ
kktK σ

( ) 2
323 ˆ/ˆ

kkkS σ

2ˆ kσ

kf̂

( )224 ˆ/ˆ
kktK σ  

Table 1: Chain-ladder coefficients, Mack variance, Skewness and Kurtosis estimators for 10 x 10 
triangles 
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1 2 3 4 5 6 7 8 9 10 11 12 13 14

6.82 1.22 1.04 1.01 0.99 1.01 1.02 1.00 1.00 1.02 1.00 1.01 0.99 1.00

131'803'806 459'208    565'956   323'842   278'372 120'753 75'674   34'013   15'870 98'673  5'598      429         122      35      

1.031 0.070 -0.372 -0.119 -0.390 0.537 -0.334 0.863 -0.842 0.868 -0.843 0.518 NA NA

233.59% 291.73% 339.24% 193.39% 194.71% 260.08% 226.84% 314.55% 294.64% 266.31% 257.91% NA NA NA

3.17 1.31 1.16 1.10 1.06 1.04 1.03 1.03 1.02 1.03 1.02 1.03 1.02 1.01

8'756'735     1'115'133 126'117   349'261   207'405 79'654   70'839   33'789   37'388 24'469  2'983      78'442    3'144   126    

1.491 0.286 0.348 -0.155 0.621 0.177 0.920 0.411 0.658 0.713 0.865 -0.212 NA NA

631.06% 201.17% 403.49% 234.55% 294.37% 167.42% 292.94% 194.28% 291.68% 245.21% 265.76% NA NA NA

SCOR Casualty Prop

k

SCOR Motor NonProp

( )224 ˆ/ˆ
kktK σ

( ) 2
323 ˆ/ˆ

kkkS σ

2ˆ kσ

kf̂

( )224 ˆ/ˆ
kktK σ

( )224 ˆ/ˆ
kktK σ

( ) 2
323 ˆ/ˆ

kkkS σ

2ˆ kσ
kf̂

( )224 ˆ/ˆ
kktK σ  

Table 2: Chain-ladder coefficients, Mack variance, Skewness and Kurtosis estimators for 15 x 15 
triangles 

 

As expected, the skewness is positive in many instances. In addition, the kurtosis is often below 
300%. This should reflect the platykurtic nature of the non-life reserves. As a matter of fact, the 
potential of having extreme values in an incurred triangle is mechanically remote: In general, the case 
reserves input by the claim adjusters will reflect the standard movements of all the claims. Only in 
rare cases could there be an extreme event in a triangle and these extreme events will be present on 
specific lines of business like Property NatCat. In addition, an extreme event may have a smaller 
impact in the triangle if the portfolio of risk is big enough to absorb the unusual movement. As a 
consequence, the distribution should be the result of frequent modestly sized deviations and have a 
platykurtic nature.  

Following the analysis by development year, we now look at the results of the simulations below: 

 

 

 

 

Mu Sigma2
Resulting 
skewness

Resulting 
kurtosis k Theta

Resulting 
skewness

Resulting 
kurtosis

10 x 10 Private Motor Farmers Alliance -374                1493 -400% -0.01 297% NA NA NA NA 0.06        -5'966      7.99 9882%
10 x 10 Private Motor NC Farm 19'415            9'528                  49% 0.32 298% 9.77           0.216 1.59 781% 4.15        4'676        0.98 445%
10 x 10 Private Motor New Jersey Manuf. 109'719          11'961                11% 0.07 295% 11.60        0.012 0.33 319% 84.15      1'304        0.22 307%
10 x 10 Product Liab. Pennsylvania 1'474               1'784                  121% 0.06 350% 6.84           0.903 5.41 8222% 0.68        2'161        2.42 1180%
10 x 10 Product Liab. West Bend 2150 1899 88% 0.35 384% 7.38           0.577 3.34 2784% 1.28        1'678        1.77 768%
10 x 10 18'680'856    2'447'095          13% 0.13 292% 16.73        0.017 0.40 328% 58.28      320'557   0.26 310%
15 x 15 WW Casualty Prop SCOR 219'461'925  79'722'452        36% 0.14 300% 19.14        0.124        1.14           539% 7.58 28960237 0.73 379%
15 x 15 WW Motor NP SCOR 402'645'321  53'078'447        13% 0.17 289% 19.80        0.017        0.40           328% 57.55 6997030 0.26 310%

Mack 1993 triangle

Triangle 
size

LoB Company Chain-
ladder 

reserves

Chain-ladder 
stdev

CoV Overall 
simulated 
skewness

Overall 
simulated 

kurtosis
LogN Gamma

 

Table 3: Simulation (10 000 scenarios) of skewness and kurtosis of the overall reserves for the 
triangles shown in Appendix B  

Note on Table 3: CoV stands for Coefficient of Variation and equals the standard deviation 
divided by the reserves. 

Looking at the above table, we can see that the higher the CoV, the more the Lognormal and the 
Gamma distributions have their skewness and kurtosis far away from the simulated skewness and 
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kurtosis. Such deviations between the simulated distribution and Lognormal or Gamma distribution 
starts to be seen for CoV as low as 36% which are not uncommon CoVs in practice. For CoVs 
higher than 36%, the deviations get bigger and bigger. In such cases, the Lognormal and Gamma 
distributions do not fit anymore with the third and fourth simulated moments. 

In order to estimate the impact of the deviations between the simulated distribution and the 
Lognormal distribution, we followed the steps below: 

1. Fit the simulated distribution to a Johnson distribution (see Johnson 1949) on the first 4 
moments using the software R (function JohnsonFit).  

2. Estimate the Value At Risk (VaR) at 99% resulting from the application of the Johnson 
distribution. 

3. Compare the above VaR with the VaR resulting from the Lognormal distribution fitted 
on the basis of the Best Estimate and CoV. 

We recall that the family of Johnson distributions has the following properties (see also Johnson 
1949): 







 −

+=
λ
ξδγ xfz   where f is a function of simple form and z is a unit normal variable. 

Depending on f, the Johnson distribution is noted as follows: 

 log=f  : Distribution SL 

 1sinh −=f  : Distribution SU 









−+

−
+=

x
xz
λξ
ξδγ log : Distribution SB 







 −

+=
λ
ξδγ xz  : Distribution SN 
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As described above, the results of the fitting of the simulated distributions with the Johnson 
family on the basis of the first 4 moments are shown in the table below: 

 

 

 

 

Type Gamma Delta Xi Lambda VaR 99% Fitted Mean Fitted Stdev Fitted 
Skewness

Fitted 
Kurtosis

Private Motor Farmers Alliance -374                1493 -400% -0.01 297% SN -            1.000    -374                     1'493              3'099              -374                1'493              -             300%
Private Motor NC Farm 19'415            9'528               49% 0.32 298% SB 2.253        3.040    -24'390               134'033         43'432            19'355            9'406              0.19           287%
Private Motor New Jersey Manuf. 109'719          11'961            11% 0.07 295% SN -            1.000    109'719               11'961            137'544         109'719         11'961            -             300%
Product Liab. Pennsylvania 1'474               1'784               121% 0.06 350% SU -0.174      3.085    1'165                   5'208              5'864              1'474              1'784              0.06           350%
Product Liab. West Bend 2150 1899 88% 0.35 384% SU -0.785      2.715    707                       4'603              7'214              2'150              1'899              0.35           348%

18'680'856    2'447'095       13% 0.13 292% SB 1.161        3.370    4'224'926           34'719'087    24'555'541    18'645'236    2'428'748      0.18           278%
WW Casualty Prop SCOR 219'461'925  79'722'452    36% 0.14 300% SL -456.116 21.456 -1'490'114'663  1.000              411'994'159 219'461'925 79'722'452    0.14           303%

WW Motor NP SCOR 402'645'321  53'078'447    13% 0.17 289% SB 1.241        3.043    125'267'964       690'347'082 531'340'556 401'885'733 52'707'797    0.21           278%

LoB Company Chain-
ladder 

reserves

Mack 1993 triangle

CoV Overall 
simulated 
skewness

Overall 
simulated 

kurtosis

Johnson fittingChain-
ladder stdev

  Table 4: Results of the fitting of simulated distributions to Johnson distributions 

Generally, the fitted distribution shows moments which reconcile pretty well with the simulated 
distributions. As a next step, the table below provides the comparison of the VaR 99% coming from 
the Lognormal and the Johnson distributions: 

 

 

 

 

  

Johnson Lognormal

Private Motor Farmers Alliance 3'099              NA NA
Private Motor NC Farm 43'432            51'358            18%
Private Motor New Jersey Manuf. 137'544         140'453         2%
Product Liab. Pennsylvania 5'864              8'556              46%
Product Liab. West Bend 7'214              9'430              31%

24'555'541    25'089'172    2%
WW Casualty Prop SCOR 411'994'159 467'889'645 14%

WW Motor NP SCOR 531'340'556 541'742'729 2%

Mack 1993 triangle

VaR 99% Difference 
LogN 

Johnson 
VaR 99%

LoB Company

 

Table 5: Comparison of VaR 99% coming from Johnson and Lognormal distributions 

 

As expected, when the CoVs are relatively high, the capital requirements under the risk measure 
Value at Risk 99% using the lognormal assumption are much higher than the capital requirements 
using the Johnson distribution. 
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Finally, the graph below shows how far the lognormal distribution can be from the simulated 
distribution (shown as an histogram) and from the Johnson distribution in the case of the Product 
Liability triangle of West Bend: 

  

 

 

 

 

 

 

 

 

 

 

 

It is interesting to note that the simulations as well as the Johnson fitted distribution anticipate some 
possibilities for negative IBNRs. Looking into the specificities of the West Bend Product Liability 
triangle, it can be seen that the chain-ladder coefficient between development year N+6 and N+7 is 
equal to 0.86. Therefore, in certain cases, the company West Bend seems to have positive reserve 
development on this line of business. As mentioned, this is reflected in both the simulations and the 
Johnson distribution. In the case of the simulations, the maximum level of negative IBNRs is 2322 
while the case reserves are 2683. Even though it is unlikely that there would be 2322 negative IBNRs 
on the Product Liability line of West Bend, this maximum level of negative IBNRs is consistent with 
the amount of case reserve in a “best case” scenario. As a conclusion on this case, we can see that 
the use of the Lognormal distribution does not anticipate the possibilities of negative IBNRs which 
is not consistent with the past results of West Bend. Therefore, the use of the Lognormal 
distribution should be avoided on this case.     
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6. CONCLUSIONS 

Based on the results of simulations on eight triangles, it appears that the representation of the 
reserve risk distribution by a Lognormal or a Gamma distribution can have major drawbacks in the 
case of CoV of 36% and above. In particular, the use of such distribution is likely to bring higher 
and unnecessary capital requirements under VaR 99%. In order to avoid such unnecessary capital 
requirement, it is advisable to turn to other distributions fitting the skewness and kurtosis estimated 
through the simulations described in this paper. One possible choice of such distributions fitting 
with the simulated skewness and kurtosis could be the Johnson distribution. 
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Appendix A 
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For each of the 5 elements of the above equation, a formula is going to be established. For the first 
element of equation (9), we have: 
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We also established that: 
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Due to the independence of 1, +kiC and 1, +kjC , we have: 
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Due to the independence of 1, +kiC , 1, +kjC , 1, +knC  and 1, +kmC and on using the formulas 

for ( )kki BCE |4
1, +  (equation (11)), ( )kki BCE |3

1, +  (equation (10)) and ( )kki BCE |2
1, + , we have: 
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Finally, for the fourth element of equation (9), we have: 
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Due to the independence of 1, +kiC , 1, +kjC , 1, +knC , 1, +kmC and 1, +koC and on using the formulas 

for ( )kki BCE |4
1, +  (equation (11)), ( )kki BCE |3

1, +  (equation (10)) and ( )kki BCE |2
1, + , we have: 
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On inserting equations (11), (12), (13), (14) and (15) into equation (9), we have: 
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After simplifications, the above equation is given as: 
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As we have the equality below: 
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we finally get the result: 
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Appendix B 
 
Schedule P – Farmers Alliance – Incurred claim – Private motor 

N N+1 N+2 N+3 N+4 N+5 N+6 N+7 N+8 N+9
1988 10'798        11'595        11'724         11'820      11'746    11'641   11'557      11'552     11'525     11'522       
1989 11'313        13'743        13'621         13'666      13'352    13'182   13'186      13'159     13'061     
1990 15'110        15'143        15'401         14'915      14'998    14'858   14'811      14'887     
1991 15'163        15'253        14'577         14'269      14'456    14'721   14'898      
1992 14'232        14'999        14'932         14'933      14'915    14'788   
1993 14'063        15'468        15'052         15'263      15'042    
1994 12'050        12'907        13'156         13'016      
1995 12'163        13'086        12'847         
1996 11'624        13'122        
1997 12'942         

 
Schedule P – NC Farm Bureau – Incurred claim – Private Motor 

N N+1 N+2 N+3 N+4 N+5 N+6 N+7 N+8 N+9
1988 48900 65079 70815 71880 71384 71034 70442 70383 70379 70127
1989 55918 80979 85951 87272 86546 85784 85620 85427 85084
1990 63493 88613 93872 93363 91731 90592 90599 90378
1991 69112 91167 94452 93792 92186 91270 91187
1992 76922 96890 100163 98974 98405 97721
1993 86811 112247 114502 113842 112357
1994 101257 123451 127532 125923
1995 107582 134485 135931
1996 113997 141203
1997 108190  

 
Schedule P – New Jersey Manufacturers – Incurred claim – Private Motor 

N N+1 N+2 N+3 N+4 N+5 N+6 N+7 N+8 N+9
1988 50395 66425 77609 82841 83400 82368 81691 81296 81592 81590
1989 56022 75703 90838 96847 96690 94344 93918 93233 93165
1990 61079 85761 100131 105776 106002 104401 103106 102485
1991 70857 97925 113696 123809 121641 119372 117638
1992 84104 109443 126585 136514 136238 132453
1993 95669 128682 150353 161064 156112
1994 104360 134860 152751 161981
1995 116839 153337 174393
1996 136837 181052
1997 152180  
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Schedule P – Farmers Alliance – Incurred claim – Product Liability 

N N+1 N+2 N+3 N+4 N+5 N+6 N+7 N+8 N+9
1988 199 246 360 404 401 321 328 340 332 342
1989 1312 1181 1347 1390 1511 1686 1860 1689 1680
1990 493 700 817 740 912 903 897 902
1991 391 487 1472 1640 611 593 597
1992 586 741 1251 1509 1864 2040
1993 892 1285 1556 1720 1828
1994 654 1644 2060 2270
1995 379 906 1255
1996 705 950
1997 384  

 
Schedule P – West Bend – Incurred claim – Product Liability 

N N+1 N+2 N+3 N+4 N+5 N+6 N+7 N+8 N+9
1988 71 127 220 305 221 185 186 186 186 186
1989 185 318 360 377 425 382 389 258 261
1990 124 225 348 394 218 216 243 261
1991 299 344 531 1028 1266 1675 1959
1992 204 399 431 647 625 709
1993 208 459 566 714 766
1994 452 665 910 805
1995 243 532 1197
1996 319 493
1997 412  

 
Triangle from Mack 1993a 

i Ci1 Ci2 Ci3 Ci4 Ci5 Ci6 Ci7 Ci8 Ci9 Ci10

1 357'848       1'124'788     1'735'330     2'218'270     2'745'596     3'319'994     3'466'336     3'606'286     3'833'515     3'901'463     
2 352'118       1'236'139     2'170'033     3'353'322     3'799'067     4'120'063     4'647'867     4'914'039     5'339'085     
3 290'507       1'292'306     2'218'525     3'235'179     3'985'995     4'132'918     4'628'910     4'909'315     
4 310'608       1'418'858     2'195'047     3'757'447     4'029'929     4'381'982     4'588'268     
5 443'160       1'136'350     2'128'333     2'897'821     3'402'672     3'873'311     
6 396'132       1'333'217     2'180'715     2'985'752     3'691'712     
7 440'832       1'288'463     2'419'861     3'483'130     
8 359'480       1'421'128     2'864'498     
9 376'686       1'363'294     
10 344'014         
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SCOR Triangle – Investors’ day 2011 – Casualty Proportional Worldwide 
i Ci1 Ci2 Ci3 Ci4 Ci5 Ci6 Ci7 Ci8 Ci9 Ci10 Ci11 Ci12 Ci13 Ci14 Ci15

1 1'235'909     28'084'788     36'277'376     40'475'255     43'219'640     44'663'902   45'326'054      48'497'970      49'233'469      49'550'622     49'690'990     49'831'357     50'360'419     49'973'713     49'862'952     
2 1'377'332     35'709'204     43'213'075     51'753'287     56'669'470     57'444'929   59'800'911      61'566'321      62'121'477      62'876'588     62'731'073     63'128'635     63'478'522     63'123'300     -                    
3 2'227'264     38'477'741     50'151'725     53'966'008     54'671'130     57'692'644   60'487'201      61'814'232      61'750'678      62'642'901     62'622'432     61'843'626     62'208'577     -                   -                    
4 6'063'523     77'188'565     106'217'291  113'964'643  120'412'934  126'472'874 124'422'859    128'806'243    127'982'137    125'512'850   134'339'552   135'190'968   -                   -                   -                    
5 17'046'209   118'335'598  149'317'461  158'231'476  169'819'782  171'982'468 171'861'629    180'041'898    178'223'074    178'218'074   180'474'109   -                   -                   -                   -                    
6 19'133'946   129'368'180  158'428'296  161'509'739  164'007'156  161'788'099 163'095'804    160'465'113    165'298'176    166'467'315   -                    -                   -                   -                   -                    
7 15'294'531   146'782'533  181'032'613  182'220'943  171'358'201  171'997'288 170'664'146    171'561'713    169'645'162    -                   -                    -                   -                   -                   -                    
8 18'460'498   117'030'644  146'526'379  132'681'719  130'134'713  124'721'542 133'009'259    136'533'267    -                    -                   -                    -                   -                   -                   -                    
9 23'542'477   113'067'832  125'103'424  143'385'679  143'172'588  130'016'839 125'328'953    -                    -                    -                   -                    -                   -                   -                   -                    

10 17'341'979   122'713'595  142'017'246  154'409'430  144'452'872  134'267'844 -                    -                    -                    -                   -                    -                   -                   -                   -                    
11 19'850'416   134'682'628  163'649'787  168'464'316  170'525'178  -                  -                    -                    -                    -                   -                    -                   -                   -                   -                    
12 16'449'001   125'616'958  155'143'936  158'477'086  -                   -                  -                    -                    -                    -                   -                    -                   -                   -                   -                    
13 27'153'648   144'171'990  164'553'451  -                   -                   -                  -                    -                    -                    -                   -                    -                   -                   -                   -                    
14 30'745'977   141'700'503  -                   -                   -                   -                  -                    -                    -                    -                   -                    -                   -                   -                   -                    
15 14'911'754   -                   -                   -                   -                   -                  -                    -                    -                    -                   -                    -                   -                   -                   -                     

 
SCOR Triangle – Investors’ day 2011 – Motor Non Proportional Worldwide 

i Ci1 Ci2 Ci3 Ci4 Ci5 Ci6 Ci7 Ci8 Ci9 Ci10 Ci11 Ci12 Ci13 Ci14 Ci15

1 10'423'937    38'199'157     56'447'001     65'220'946     69'971'047     75'438'044   82'032'154       88'917'308       90'783'545      95'891'585     96'943'325     99'646'098     104'075'520   105'688'533   107'081'042   
2 19'822'329    62'295'888     67'897'838     78'668'550     87'437'467     101'244'678 105'098'260     106'590'001     113'349'293    115'150'660   117'761'459   119'647'411   125'137'281   128'007'498   -                    
3 16'289'990    85'826'755     104'560'866  121'691'315  142'404'493  148'725'556 153'628'342     160'474'637     165'538'675    169'936'112   173'201'144   176'369'649   177'284'240   -                   -                    
4 17'124'281    57'203'907     88'346'499     109'965'887  118'628'540  126'194'567 135'670'962     137'597'240     139'736'825    139'880'019   142'610'492   145'133'035   -                   -                   -                    
5 20'515'740    74'875'340     112'483'709  132'861'474  155'637'649  169'622'852 178'165'835     184'091'134     191'246'803    195'323'123   203'866'747   -                   -                   -                   -                    
6 33'482'519    92'014'269     129'305'456  150'572'754  163'499'855  165'457'892 172'624'920     174'772'280     182'143'897    184'582'942   -                    -                   -                   -                   -                    
7 27'392'045    96'643'323     123'004'812  144'947'690  145'787'570  148'529'812 151'376'613     153'343'145     156'330'256    -                   -                    -                   -                   -                   -                    
8 19'607'049    61'499'050     81'282'483     88'308'523     91'759'024     92'962'986   92'866'953       92'770'919       -                    -                   -                    -                   -                   -                   -                    
9 14'194'503    36'060'482     42'749'759     48'177'878     56'986'475     61'193'539   61'669'910       -                      -                    -                   -                    -                   -                   -                   -                    

10 19'089'137    53'803'738     66'496'545     76'630'418     87'210'128     93'216'641   -                      -                      -                    -                   -                    -                   -                   -                   -                    
11 22'663'556    54'418'824     73'046'329     82'194'820     89'086'080     -                  -                      -                      -                    -                   -                    -                   -                   -                   -                    
12 24'538'834    71'839'634     88'048'826     99'525'306     -                   -                  -                      -                      -                    -                   -                    -                   -                   -                   -                    
13 19'272'742    54'901'732     68'136'199     -                   -                   -                  -                      -                      -                    -                   -                    -                   -                   -                   -                    
14 14'389'656    45'362'116     -                   -                   -                   -                  -                      -                      -                    -                   -                    -                   -                   -                   -                    
15 17'306'007    -                   -                   -                   -                   -                  -                      -                      -                    -                   -                    -                   -                   -                   -                     
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The Impact of  Different Forms of  Decision-Aids on User 
Best Assessments 

Marc-André Desrosiers, FCAS, MBA 
________________________________________________________________________ 

Abstract: In a world where information can be gathered, analyzed, interpreted and diffused much faster than 
for prior generations, we inquire about optimal schemes for the presentation of predictive models. We asked 
subjects to make predictions of quarterback ratings by presenting them with different information sets, some 
information sets including a predictive model prediction (with some different ways, some direct, some indirect, 
of presenting this information). We investigate (1) actual and optimal model usage by model users, (2) 
preferences of model users over ways to present information to them, and (3) inter-personal consistency of 
predictions. We find that (i) subjects are over-confident in their predictions, (ii) that this over-confidence is 
reduced when the subjects are presented with the predictive model, (iii) that subjects prefer an indirect 
presentation of the predictive model, where the model is presented as a deviation from a base statistic that is 
perceived to be relevant and credible, (iv) that their preferences are aligned with their own informal predictive 
model, and (v) that inter-personal consistency of predictions is fostered by the indirect presentation of the 
model (as a proposed deviation from a base statistic that is perceived to be credible and relevant). 
 
Keywords: Clinical versus actuarial controversy, clinical synthesis, behavioral economics, information 
processing, business engineering, over-confidence, anchoring effects. 

________________________________________________________________________ 

1. INTRODUCTION 

When peering through a book like Macrowikinomics (Tapscott and Williams 2012), it becomes 
apparent that the ease with which information can be accumulated, processed, interpreted and used 
has greatly increased with the advent of new information technologies. While the authors may not 
focus on this, we believe that the exact nature of information processing by individuals, acting on 
their own or as part of a group, needs to be understood to be able to guide or better use the new 
possibilities arising out of increased access to (processed) information. 

From a business perspective, in many fields, predictive models have long been distributed to 
users. For example, for insurance pricing purposes, rating manuals have been extent at least since 
the beginning of the 20th century. With the advent of the powerful central computers and databases, 
businesses could begin to gather massive amounts of information from their activities, process this 
information with statistical technology that was becoming more and more powerful, and harness the 
results in tools that could be deployed to field operatives. That trend has continued to the point that, 
with today’s technology, it is relatively easy to present field operatives with "informational 
dashboards" to assist them in their decision-making. 

However, more information is not always better information and, even if all the pieces of 
available information were always relevant and pertinent, in the end, human beings still need to 
comprehend it, process it, interpret it and, ultimately, take decisions in reaction to it. Therefore, it is 



The Impact of Different Forms of Decision-Aids on User Best Assessments 

Casualty Actuarial Society E-Forum, Summer 2013 2 

worthwhile to understand the influence of the presentation of information has on human decision-
making. 

To investigate this issue, we decided to ask subjects to make predictions with access to different 
information sets: we have asked American undergraduate business students to make predictions of 
quarterback ratings. As such, we have decided to focus on the cognitive aspect of the influence of 
information sets; more specifically, the cognitive influence (in human decision-making) of the 
different ways a predictive model can be communicated. 

Because of known behavioral effects such as over-confidence and anchoring, issues of actual and 
optimal model usage are especially interesting. How much do the subjects use the model when it is 
presented to them? What variables influence that usage? Can the subjects bring information that can 
help them beat the model? How much should the subjects be using the model? What variables 
influence how much the subjects should be using the model? Are the subjects bringing in this 
information in an optimal way? Moreover, is the across subjects consistency of predictions affected 
by the way the information is presented, keeping in mind that consistency places an upper bound on 
reliability of predictions? 

Also, because information technology is not evolving in a vacuum, it is also worthwhile to ask 
about the preferences of the subjects over different ways information is presented to them. Do the 
subjects perceive differently information sets, in terms of the credibility and the relevance of the 
information they are provided with? How does this perception match up with the informal models 
subjects can use to make predictions? Does this preference line up with their own confidence in 
their predictions? 
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We find the following. 

1. The subjects display massive over-confidence in their own predictive abilities, as optimal 
model usage should be about 70% (for the population of subjects as a whole) while actual 
model usage is bounded by 30% (again, for the population of subjects as a whole) in our 
experimental design, where the subjects that were attracted to the experiment tended to 
generally perceive themselves to be knowledgeable about the subject-matter. 

2. The subjects can bring valuable information to the predictive models, as predictive 
accuracy could be increased by adding human inputs. However, the subjects do not bring 
in this information optimally as their actual predictive accuracy when they are presented 
with the model is less than optimal. 

3. Presenting the subjects with the predictive model as the only piece of extra information 
most favors model usage: inducing about 30% model usage. Presenting the model 
indirectly, as a proposed deviation from a selected contextually relevant historical mean 
reduces model usage to about 15%. We interpret this extra use of the model when it is 
presented alone to be the result of an anchoring effect. 

4. The only variable that significantly affects actual model usage is the Judging-Perceiving 
MBTI personality dimension where Judging individuals actually use the model more. The 
only variable that affects optimal model usage is the self-reported familiarity with football 
(that is, expertise in the field of interest): subjects more knowledgeable about the subject-
matter need the model less. 

5. Across subjects prediction consistency is fostered by presenting the predictive model 
indirectly as a proposed deviation from a base statistic that is perceived to be relevant and 
credible. 

6. The subjects perceive more favorably base statistics that match better with their own 
informal predictive models. 

7. When they are presented with the predictive model, the subjects prefer it to be presented 
indirectly, as a proposed deviation from a favorably perceived base statistic. 

8. The perception of credibility and relevance of the provided information lines up well with 
the self-reported confidence the subjects have in their own predictions.  



The Impact of Different Forms of Decision-Aids on User Best Assessments 

Casualty Actuarial Society E-Forum, Summer 2013 4 

1.1. Research Context 
The present research can be conceived to exist at the confluence of three major research 

programs: (1) the actuarial versus clinical controversy, (2) the research on information processing 
arising out of behavioral economics, and (3) the business engineering applied research stream. We 
will discuss each in turn. 

1.1.1. Clinical versus actuarial controversy 

In psychology and medicine, the clinical versus actuarial controversy relates to the extent to which 
a clinician can do and actually does better (or worse) than an available model based on predictive 
modeling. In "Man versus models of man: A rationale, plus some evidence, for a method of 
improving on clinical inferences" (Goldberg 1970), when examining how clinical psychologists, 
physicians, and other professionals that are typically called on to combine cues to arrive at some 
diagnostic or prognostic decision, it was found that, for the diagnostic task, models of the human 
decision-making were generally more valid than the humans themselves, even when models were 
developed on a relatively small set of cases and then humans and model competed on a completely 
new set. Such was the case because mathematical representations of such clinical judges can often be 
constructed to capture critical elements of their judgment strategies. Keeping in mind that judgment 
consistency sets an upper bound on judgment reliability, models of human decision-making, that are 
free from inconsistencies, outperforming actual human decision-making is indicative that judgment 
consistency is empirically more important than the ability of humans to incorporate information in 
more complex ways or using qualitative information that cannot be incorporated in the model of 
human decision-making. In "Effect of input from a mechanical model on clinical judgment" 
(Peterson and Pitz 1986), when exploring clinical synthesis1

Peterson and Pitz further researched the topic. They found that it is worthwhile to make a 
distinction between the belief that a prediction is correct (i.e. confidence) and the ability of a subject 
making a prediction to imagine scenarios in which a prediction is not realized (i.e. uncertainty). They 
find that confidence increases as more information is provided to the subjects but that it was 
decreased when the difficulty of the task was increased. On the other hand, uncertainty increased as 
subjects were provided with more information. (Peterson and Pitz, Confidence, Uncertainty, and the 
Use of Information 1988, 85) They also found tendencies of over-confidence, with over-confidence 
a decreasing function of quantity of information provided. (Peterson and Pitz, Effects of Amount of 
Information on Predictions of Uncertain Quantities 1986, 229) 

, it was found that performance of 
subjects improved when the model was provided, but subjects still did less well than the model. 

                                                           
1 Clinical synthesis is giving the decision makers predictions from a model as input but let him or her make the final 
judgment. 
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Finally, in "A comparison of the predictive accuracy of loan officers and their linear-additive 
models" (Zimmer 1981), a clinical versus actuarial-type study was conducted on loan officers and 
found materially the same effects as when an health care practitioner population is examined. 

An important insight that emerges from the actuarial versus clinical literature is that, because of 
the "broken leg" problem, where a user of the model may have a material insight into the problem at 
hand that cannot be easily or at all integrated into the model prediction, it is often sensible, for 
business purposes, to allow users of decision-aids to make the final selection. 

1.1.2. Behavioral economics: over-confidence and anchoring 

In economics, following the work of Simon (A Behavioral Model of Rational Choice 1955), 
significant efforts have been dedicated to refining theoretical models of preferences and human 
information processing. A seminal work in this area was "Judgment under Uncertainty: Heuristics 
and Biases" (Tversky and Kahnemen 1974) where the authors explore three families of heuristics 
that tend to induce individuals to misestimate probabilities: 

(1) the representativeness heuristic, exemplified by the following biases: 
(a) insensitivity to prior probability of outcome,  
(b) insensitivity to sample size,  
(c) misconception of chance, e.g., gambler’s fallacy, 
(d) insensitivity to predictability,  
(e) illusion of validity, and  
(f) misconception of regression [towards the mean]; 

(2) the availability heuristic, exemplified by the following biases: 
(a) biases due to the retrievability of instances, 
(b) biases of imaginability, and  
(c) illusory correlation; and 

(3) the adjustment and anchoring heuristic, exemplified by the following biases: 
(a) insufficient adjustment,  
(b) biases in the evaluation of conjunctive and disjunctive events, and  
(c) anchoring in the assessment of subjective probability distribution. 

 

Thus, two factors that can influence actual and optimal model usage are (1) subject over-
confidence due to subjects using a heuristic scheme to evaluate the relevant probabilities where the 
heuristic scheme leads to estimated probabilities that can be quite different from those that would be 
obtained under an optimal scheme (like Bayes’ theorem) and (2) anchoring which is particularly 
relevant for our purposes since it predicts that we can influence the selections made by the mere 
presentation of a numerical piece of information to the subjects. In "Framing, Probability 
Distortions, and Insurance Decisions" (Johnson, et al. 1993), potential business consequences of 
these information processing effects were explored. Among the findings of the study, it was found 
that sophisticated subjects can be subject to the same imperfect information processing bias as 
subjects in the general population are subject to. 
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1.1.3. Business engineering 

Finally, there is an array of applied business research that examines how (imperfect) information 
processing effects influence business outcomes and whether or not business practices can be 
adapted to take into account these behavioral effects to help businesses attain their objectives. An 
example of applied research that examines reliance on statistical models is "Decision Aid Reliance: A 
Longitudinal Field Study Involving Professional Buy-Side Financial Analysts" (Hunton, Arnold and 
Reck 2010): this study examines the discretionary decision-aid reliance behavior of professional buy-
side financial analysts. The researchers find that "the most interesting finding from theoretical and 
practice perspectives is that increased task ability, as determined by objective historical task 
performance, was associated with increased reliance on the DA." (Hunton, Arnold and Reck 2010, 
1019) Another example of applied business research is "Decision making in an organizational 
setting: Cognitive and organizational influences on risk assessment in commercial lending" 
(McNamara and Bromiley 1997), a field study of decision-making, where it was found that 
"organizational effects appear to dominate cognitive ones" (McNamara and Bromiley 1997, 1083). 
Finally, in "Bridging the marketing theory-practice gap with marketing engineering" (Lilien, et al. 
2002), the authors "provide several illustrations of the successful application of the marketing 
engineering concept" (Lilien, et al. 2002, 111), that are based on marketing management support 
systems that enrich decision-making. 

This literature focuses on the application of pure knowledge about human behavior to solve 
business problems/issues. This involves applied research, but note also that other pure research 
avenues are often opened. As noted above, common applications relate to banking, insurance, 
finance, marketing, accounting, etc. What is generally found is that there is a gap between pure 
knowledge and the necessary optimal design that requires field testing. As such, this often brings up 
the issue of external validity that allows one to bridge from results obtained in one context to 
another, presumably similar, context. 

1.2. Outline 
The remaining will go as follows. Section 2 will be dedicated to the background and methods. 

Section 2.1 will contain a description of the experiment. Section 2.2 will relate specifically to the 
construction of the decision-aid used in the experiment. Section 3 will present and discuss the 
results. In section 3.1, we will present a model-of-man that takes into account the treatment the 
subjects received. In section 3.2, actual model compliance will be examined; in section 3.2.1, the 
effect of presenting a proposed deviation will be presented; in section 3.2.2, the actual (implicit) 
deviation will be explored as a function of the proposed (implicit) deviation; in section 3.2.3, drivers 
of actual model compliance will be sought; in section 3.3, optimal model compliance will be 
explored; in section 3.3.1, drivers of optimal model compliance will be sought; in section 3.4, the 
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reported perceptions of credibility and relevance of the presented information will be explored; in 
section 3.5, the self-reported confidence of subjects regarding their prediction will be explored; in 
section 3.6, the interpersonal agreement of subject predictions will be presented; in section 3.7, the 
net compensation outcomes will be presented and discussed; and, in section 3.8, external validity 
considerations will be discussed. Section 4 will conclude. 

2. BACKGROUND AND METHODS 

In this section, we will describe the exact nature of the experiment and the associated predictive 
model-building activities that needed to take place before the experiment could go live. 

2.1. Experiment Description 
Targeting undergraduate business students from University of Wisconsin-Madison, an internet 

survey asking subjects to make predictions about the quarterback rating results for the coming week 
of National Football League activity2

Count Repeats
Week No Yes Total

14 82 82
15 60 12 72
16 44 51 95

Total 186 63 249

 was distributed for three weeks in a row (NFL weeks 14, 15 
and 16 of the 2012-2013 season). The target subjects were reached through in-class presentations of 
the experiment and targeted e-mail distribution lists. In particular, for week 16, subjects that had 
participated in weeks 14 and 15 were solicited to participate again. 

 
Table 1: Number of subjects by week 

2.1.1. Task description 

The subjects were asked to make predictions about the quarterback ratings for the expected 
starters for the Sunday and Monday night games of the upcoming week of NFL games. The subject 
were then presented with some high level and general information concerning quarterback ratings: 
they were referred to the appropriate Wikipedia entry describing quarterback/passer rating and they 
were told about the possible values for the statistic, what a quarterback needed to accomplish to 
obtain a perfect score, the approximate league-wise average for the score, about an intra-week 
measure of league-wise quarterback rating dispersion, and about an across-weeks measure of intra-
individual measure of quarterback rating dispersion. 

                                                           
2 Note that no predictions were asked for the Thursday night game: only predictions relating to the Sunday and Monday 
night games were asked. 
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2.1.2. Compensation description 

They were then told what the compensation scheme would be. Subjects could gain from 0 to 15 
USD, or up to 50¢ per prediction. They were told that their total compensation would be a sum of 
their by quarterback prediction compensations. Their by quarterback prediction compensations were 
computed using the following function. 

          

0

10

20

30

40

50

-30 -20 -10 0 10 20 30

C
om

pe
ns

at
io

n 
(¢

)

Prediction Error

Per Quarterback Prediction Compensation Function

 
Graph 1: Per Quarterback Prediction Compensation Function 

 

The compensation function was selected to incentivize subjects to get every prediction as right as 
possible. We believe that subject risk aversion, cautiousness, financial cautiousness, etc. would not 
play a material role in affecting subject predictions: we will come back to this when examining 
drivers of model compliance. 

2.1.3. Treatments descriptions 

Table 2 provides a high level description of the treatments. Table 3 presents for which weeks 
each treatment was ran. Table 4 presents the verbose that was presented to the subjects under each 
treatment. Note that for each week, the 30 predictions that needed to be made were separated in 
two batches of 15 predictions, which were the same 15 predictions under all the treatments of the 
week. The subjects randomly received a treatment for each batch, independently of the other batch 
of prediction as well as independently of other subjects. 

After each prediction batch, the subjects were also asked to reflect back on the predictions they 
just made. They were asked, in order, (1) how confident they felt about their predictions, (2) how 
confident they felt about the credibility and relevance of the information they were provided with 
for their predictions, and (3) to voluntarily discuss, in a free-form field, the strategies that supported 
their predictions. 



The Impact of Different Forms of Decision-Aids on User Best Assessments 

Casualty Actuarial Society E-Forum, Summer 2013 9 

Provided 
Infomation

A· B· Notes

·1 Overall Average Individual Average (only differ in nature of 
the average provided)

·2 Predictive Model Only Predictive Model Only (same)
·3 Overall Average plus 

Predictive Model 
Presented as a 

Proposed Deviation

Individual Average 
plus Predictive Model 

Presented as a 
Proposed Deviation

(see line ·1)

 
Table 2: Descriptions of treatments 

The possible treatments are A1, A2/B2, A3, B1, and B3. 
 

Possible 
Treatments

Week 14 Week 15 Week 16

A1 YES YES
A2/B2 YES YES YES

A3 YES YES
B1 YES
B3 YES YES YES  

Table 3: Time of the treatments 
 

Note that the subjects were not described the predictive model beyond the details provided in 
Table 4. This was voluntary on our part as we wanted to make sure to reproduce a setting that is 
common in the deployment of predictive models: the predictive model is constructed using 
potentially complex statistical methodologies that are generally not described in details to the users 
of the predictive models. It is not uncommon that the users are only (1) told that the predictive 
model is the ‘best’ available model and (2) shown what variables enter the predictive model. 

2.1.4. Subject population description 

Demographic information was asked to the subjects in two batches: a batch of questions was 
asked to the subjects prior to their making their predictions and a second batch of questions was 
asked after the subjects completed their predictions. 

The first batch of questions can be divided in three parts: (1) general demographic questions, (2) 
football trivia, and (3) self-assessed familiarity with football and fantasy sports. Under the heading of 
general demographics, questions were asked about: gender, age, level of study, study area, Grade 
Point Average, and mathematical abilities. 
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Common

A1

A2/B2

 the overall quarterback rating average 
for the starters

the individual's prior week quarterback 
rating result

the individual's season-to-date 
quarterback rating

the individual's two week prior 
quarterback rating result

the average season-to-date allowed 
quarterback rating for the opposing 

team

the own team win-loss record

the consistency of the quarterback rating 
for the individual

the opposing team win-loss record

A3

 the overall quarterback rating average 
for the starters

the individual's prior week quarterback 
rating result

the individual's season-to-date 
quarterback rating

the individual's two week prior 
quarterback rating result

the average season-to-date allowed 
quarterback rating for the opposing 

team

the own team win-loss record

the consistency of the quarterback rating 
for the individual

the opposing team win-loss record

B1

B3

 the overall quarterback rating average 
for the starters

the individual's prior week quarterback 
rating result

the individual's season-to-date 
quarterback rating

the individual's two week prior 
quarterback rating result

the average season-to-date allowed 
quarterback rating for the opposing 

team

the own team win-loss record

the consistency of the quarterback rating 
for the individual

the opposing team win-loss record

Player (ForTeam, @AgainstTeam) IndAvg, Stat. Model Dev.: dd.d, +/-ee.e

You will also find:
1. the overall average of the quarterback rating for the starting 
quarterbacks (OAAvg), and
2. the prediction from a statistical model (Stat. Model Dev.) expressed as a 
deviation from the overall average. That is, Stat. Model = OAAvg + Stat. 
The statistical model takes into account the following factors: 

Player (ForTeam, @AgainstTeam) OAAvg, Stat. Model Dev.: aa.a, +/-cc.c
You will also find the individual average of the quarterback rating for the 
starting quarterbacks (IndAvg).
Player (ForTeam, @AgainstTeam)  IndAvg: dd.d
You will also find:
1. the season-to-date quarterback rating for the individual (IndAvg), and
2. the prediction from a statistical model (Stat. Model Dev.) expressed as a 
deviation from the season-to-date quarterback rating for the individual 
The statistical model takes into account the following factors: 

Player (ForTeam, @AgainstTeam) Stat. Model: bb.b

For each of the listed quarterback below, please enter your forecast for their 
quarterback rating in the coming game.
You will find in brackets, first, their own team, second, the team they are playing 
against.
You will also find the overall average of the quarterback rating for the 
starting quarterbacks (OAAvg).
Player (ForTeam, @AgainstTeam) OAAvg: aa.a
You will also find the prediction from a statistical model (Stat. Model). 
The statistical model takes into account the following factors: 

 
Table 4: Treatment description 

In the table above, one can find the way the information was presented to subjects for each of the treatments described 
in Table 2. 

 

The football trivia section was originally designed as an entertainment section: that is, it was 
intended to be fun for the subjects. The questions asked were: 
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1. "Which team won the last Super Bowl (played in February 2012)?", 
2. "Who is a quarterback for the Green Bay Packers?", 
3. "Which of these players is a defensive end who, in the 2011-2012 season, was a member of the Super Bowl 

winning team, went to the Pro Bowl, and lead his team for the number of sacks in the season?", and, 
4. "Which of these players has posted the most games with a perfect passer rating?". 

 

Given that UW-Madison is in Wisconsin, it was expected that most subjects would accurately 
identify Aaron Rodgers as the quarterback for the Green Bay Packers and this expectation was met. 
Given the publicity and level of public attention surrounding the Super Bowl, it was expected that 
most subjects would have known that the New York Giants had won the last played Supe Bowl at 
the time of the survey. More subjects picked the wrong answer, but no subject picked a team that 
had not played in the Super Bowl game. Questions 3 and 4 were of a higher level of difficulty for the 
subjects and the accuracy of their answers followed accordingly. 

While the intent behind asking questions about football was to make the survey more fun for the 
subjects, it may have reduced the participation of subjects whose level of familiarity with football 
may have been average or less than average. This provided us with a subject population biased 
towards ‘football experts’ (as contrasted with the general American population), but it also 
potentially had the side-effect of making the subject population more homogeneous. 

Under the heading of self-assessed familiarity with football and fantasy sports, questions were 
asked about: 

• the self-reported familiarity of the subjects with fantasy sports, 
• the self-reported familiarity of the subjects with football, 
• the average number of days per week that the subjects watch or read sports news, and, 
• whether the subjects has a fantasy football team and, if so, whether the team was doing well or not. 
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The second batch of questions can be divided in two parts: (1) a simplified Myers-Briggs 
personality assessment, and (2) other demographic questions. The Myers-Briggs questions covered 
the following four personality dimensions (in parenthesis, the approximate proportion of the 
population that reported the dimension): 

• the Judging (65-70%) versus Perceiving dimension, 
• the Thinking (65-70%) versus Feeling dimension, 
• the Sensing (55-60%) versus Intuiting dimension, and, 
• the Introversion (60-65%) versus Extroversion dimension. 

The other questions covered cautiousness, financial cautiousness, locus of control, and other 
questions about the statistics and sports statistics. 

With all this demographic information available, it was easy for us to verify that the randomizing 
scheme integrated with our web-survey was adequate, as the generated sample appeared (materially 
and statistically) well-balanced on all dimensions. 

2.2. Preparation of the Predictive Model of Quarterback Rating 
The process to prepare predictive model quarterback rating predictions for the upcoming week 

of NFL activity went as follows. First, using a fantasy football website3, the expected starting 
quarterbacks were retrieved. Because of ease of access of information and to ensure consistency of 
information processing with sources of information that the subjects could access on their own, 
some pieces of information were also retrieved from the said website: the individual season-to-date 
quarterback rating and detailed fantasy football experts’ predictions. The expert predictions were 
retrieved but ultimately not used in predictive modeling, because we wanted to ensure that the 
subjects could bring forward valuable qualitative information not reflected in the model, and not just 
information that would have arisen between the time the experts entered their predictions and the 
time when the subjects made their predictions. Still, the detailed expert predictions were translated 
into a predicted quarterback rating by first averaging the details of the predictions across the (three) 
experts and then converting to a predicted quarterback rating using the appropriate formula4. 
Second, using football statistics websites5

• the overall quarterback rating average for the starters, 

, the remaining necessary information was retrieved: 

• the individual’s season-to-date quarterback rating, 
• the average season-to-date allowed quarterback rating for the opposing team, 
• the individual’s prior week quarterback rating result, 
• the individual’s two week prior quarterback rating result, 
• the consistency of the quarterback rating for the individual, 

                                                           
3 http://fantasynews.cbssports.com/fantasyfootball/playerindex/POS_QB. 
4 Note that the order of averaging and applying the quarterback rating formula does not affect materially the predicted 
quarterback rating. 
5http://sports.yahoo.com/nfl/stats/ and www.nfl.com/. 
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• the own team win-loss record, and, 
• the opposing team win-loss record. 

 

Each week, using the latest available information, the predictive model was calibrated by 
maximizing the compensation function across all (known) weeks (played at that time), using a 
weighting scheme that put more weight on the more recent weeks.6

It is worthwhile to note that, from a predictive modeling point of view, both the overall 
quarterback rating average for the starters and the individual’s season-to-date quarterback rating are 
basically equally powerful one-variable predictors: they both would have yielded an average 
compensation of 16.1¢ per prediction had they been used for all predictions from weeks 6 to 17 (358 
predictions). This is greatly due to the significant regression-to-the-mean that happens both at the 
league-wise level and at the intra-individual level. Note also that the predictive model would have 
generated a higher average compensation (on retrodicted quarterback ratings) than either (1) using 
only the overall mean, (2) using only the individual mean, (3) using only the predictions from the 
panel of experts on football, or (4) using a weighted average of the overall mean and the predictions 
of the panel of experts. The following table details these elements. 

 

                                                           
6 Please note that there was a significant revision to the predictive model between week 15 and 16: thus, the coefficients 
of the predictive model changed materially between the two weeks. 
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Week 14 15 16
Including Panel of 

Experts 
Predictions?

No Yes No Yes No Yes

Estimate St. Error Estimate St. Error Estimate St. Error Estimate St. Error Estimate St. Error Estimate St. Error

Starters Season-to-
date

-0.42 0.43 0.19 0.47 -0.17 0.43 0.28 0.42 0.91 0.43 0.98 0.31

Individual Season-
to-date

-0.19 0.30 -0.63 0.27 -0.21 0.26 -0.62 0.34 -0.75 0.34 0.46 0.39

Allowed QB Rating 
Opposing Team

1.11 0.26 0.16 0.35 0.85 0.38 0.01 0.44 0.58 0.45 -0.97 0.39

Prior Week Result 0.07 0.12 -0.07 0.13 0.09 0.10 -0.05 0.10 -0.10 0.14 -0.03 0.12
Prior Week Missing 

Indicator
6.97 5.72 -0.20 2.55 7.61 3.79 0.99 4.17 -1.26 6.80 0.26 4.79

Two Prior Week 
Result

0.13 0.07 0.09 0.07 0.17 0.11 0.11 0.10 0.22 0.11 -0.08 0.12

Two Prior Week 
Missing Indicator

12.01 6.41 1.02 3.54 14.80 6.73 4.04 3.35 8.52 5.28 1.26 4.38

Own Team Record 4.18 4.61 1.87 2.59 3.91 6.18 0.80 5.14 -13.18 3.49 0.95 3.33
Opposing Team 

Record
29.10 5.93 6.86 5.53 28.46 5.64 8.32 5.48 3.25 5.07 0.33 4.41

Panel of Experts 
Predictions

1.11 0.24 1.10 0.27 0.57 0.28

Random-Effects-
Like Parameter

8.17 5.63 0.00 0.06 7.06 6.11 0.00 3.08 11.43 5.89 0.00 0.14

Average 
Compensation on 

Retrodictions
Across 8 Weeks 8 Weeks 9 Weeks 9 Weeks 10 Weeks 10 Weeks

Average Prediction 
of Predictive Model

0.176 0.014 0.183 0.020 0.181 0.015 0.188 0.015 0.177 0.014 0.185 0.013

Weighted Average 
of Panel Predictions 
and Overall Average

0.167 0.016 0.167 0.017 0.170 0.012 0.170 0.011 0.171 0.011 0.171 0.010

Starters Season-to-
date

0.162 0.018 0.162 0.017 0.166 0.014 0.166 0.013 0.163 0.014 0.163 0.013

Panel of Experts 
Predictions

0.156 0.015 0.156 0.015 0.159 0.010 0.159 0.010 0.162 0.010 0.162 0.009

 
Table 5: Coefficients of predictive models for weeks 14, 15 and 16, with and without predictions of panel of experts as 

an input. 
The above table contains the coefficients used in the predictive models for weeks 14, 15 and 16 with associated standard 
errors estimated using block bootstrap (that is, a bootstrap procedure where complete weeks are re-sampled). Note that 
the coefficients of the predictive models are generally not precisely estimated. Note that there was a significant model 
change between weeks 15 and 16. Nonetheless, the predictive model fares better on the average compensation (over 
many weeks) for retrodicted quarterback ratings than just using the predictions of the panel of experts, just using the 
average season-to-date for all starters, or using a weighted average of the predictions of the panel of experts and the 
overall average of the starting quarterbacks. Note also that, when the predictions of the panel of experts are included in 
the model, the average compensation of optimized retrodictions is higher than when that information is not included in 
the predictive models. We interpret this as evidence that human input can be significant in improving predictive 
performance. 
 

In Table 5 above, note that when the predictions of the panel of experts is added to the 
predictive model, the average compensation (optimized) for the retrodicted quarterback ratings can 
be improved from what was attainable without the human input. We interpret this as evidence that 
human inputs can materially improve predictive performance. Furthermore, this improvement in 
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predictive performance seems to be substantially related to the random-effects-like7

3. RESULTS AND DISCUSSION 

 parameter 
becoming unnecessary when the prediction of the panel of experts is added as a predictive variable. 

We can now turn our attention to the analysis of the results. First, we will quickly describe minor 
data manipulations that were done in order to ensure the interpretability of the data. Records where 
the quarterbacks the panel of experts predicted would play (that is, the quarterbacks for whom 
model predictions were built) but did not actually play were removed from the analysis and treated 
as ‘not available’. Cases were the subjects were effectively predicting that the quarterbacks for whom 
a prediction was sought would not actually play were also removed and treated as ‘not available’: a 
prediction threshold of 12.5 was used to accomplish this, as this constituted a natural cutoff point in 
the data. 

  

                                                           
7 Random-effects are meant to reflect fundamentally the same effects as those reflected in greatest accuracy credibility 
theory. Examples of predictive applications of random-effects-like predictive modeling applications can be found in 
(Fundamentals of Individual Risk Rating, Part I 1992). Random-effects-like formulas are meant to allow the predictive 
model to reflect individual differences, but only to the extent they are credible (or predictive). 
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3.1 Model-of-Man 
Our first step in the analysis of the data was the construction of predictive models of subject 

predictions (that is, models-of-man). 
Predictive Model Coefficients Model-of-Man (without 

Model)
Model-of-Man (with Model) Model-of-Man (with Model 

and Cognitive Dissonance)
Week 14 Week 15 Week 16 Estimate Std. Error Estimate Std. Error Estimate Std. Error

(Intercept) -36.56 -14.22 79.08 2.70 4.89 15.14 3.37 *** 12.99 3.12 ***
Individual Season-to-date -0.19 -0.21 -0.75 0.53 0.04 *** 0.52 0.06 *** 0.42 0.06 ***
Model 0.31 0.07 *** 0.38 0.06 ***
Own Team Record 4.18 3.91 -13.18 14.98 2.39 *** 16.46 2.38 *** 17.25 2.24 ***
Opposing Team Record 29.10 28.46 3.25 -9.67 2.14 *** -13.42 2.05 *** -12.31 1.92 ***
Individual Season-to-date:A2/B2 -0.25 0.07 *** -0.21 0.07 **
Individual Season-to-date:A3 -0.08 0.08 -0.07 0.08
Individual Season-to-date:B1 -0.10 0.10 -0.02 0.10
Individual Season-to-date:B3 -0.07 0.07 -0.03 0.07
Model:A2/B2 0.24 0.08 ** 0.22 0.07 **
Model:A3 0.08 0.09 0.07 0.08
Model:B1 0.09 0.10 0.06 0.10
Model:B3 0.06 0.08 0.05 0.07
Allowed QB Rating Opposing Team 1.11 0.85 0.58 0.37 0.05 ***
Prior Week Result 0.07 0.09 -0.10 -0.01 0.02
Prior Week Missing Indicator 6.97 7.61 -1.26 -20.83 4.85 ***
Two Prior Week Result 0.13 0.17 0.22 0.05 0.02 **
Two Prior Week Missing Indicator 12.01 14.80 8.52 -11.87 2.57 ***
Individual Season-to-date:Large 
Cognitive Dissonance

0.09 0.02 ***

Individual Season-to-date:A2/B2:Large 
Cognitive Dissonance

-0.05 0.03 .

Individual Season-to-date:A3:Large 
Cognitive Dissonance

-0.01 0.03

Individual Season-to-date:B1:Large 
Cognitive Dissonance

-0.07 0.04 *

Individual Season-to-date:B3:Large 
Cognitive Dissonance

-0.04 0.03 .

Random-Effects-Like Parameter 8.17 7.06 11.43
Average Weighted Compensation 
(Retrodiction)

0.176 0.181 0.177

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1  
Table 6: Model-of-man with the predictive models attached. 

The table above contains both the predictive models that were used to provide the subjects with guidance in treatments 
A2/B2, A3 and B3 and models-of-man, both including and excluding the model as a factor. Note that, while the 
predictive models vary from week to week, the weighted average compensation they would have generated on past 
predictions remain approximately constant. The factor "Random-Effects-Like Parameter" is effectively a ballast term to 
allow the model to appropriately recognize the average residuals (of a model that does not take into account 
performance consistency) for a given individual. When the predictive model is incorporated in the model-of-man, only 
the individual mean and the model prediction seem to interact with treatment A2/B2. The coefficients suggest that, for 
treatment A2/B2, the subjects were using less of the individual mean and substituting it for the model. This is consistent 
with an anchoring effect. The model-of-man that does not incorporate the model is suggestive of why the subjects 
would substitute from the individual mean under A2/B2: the individual mean is the most important component of their 
internal model. This is consistent with an analysis of median deviation from the presented relevant mean for A1 and B1: 
the median deviation is about 10 for A1 (which presents only the overall mean) and only about 5 for B1 (which presents 
only the individual mean). 
Also, note that when the subjects do not agree with the model (this is indicated by the ‘Large Cognitive Dissonance’ 
variable which is an indicator that the unaided prediction and the model prediction are more than their median distance 
apart from each other), they tend to rely more on the individual average, but the effect is attenuated when the subjects 
are explicitly presented with the model. 

At a first glance, it is interesting to note that the subjects were effectively using a model that was 
dissimilar to the optimized predictive model. For example, the mental model of the subjects did not 
appear to incorporate well regression-to-the-mean effects, as evidenced by the negligible coefficient 
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attached to the intercept for the model-of-man that does not include the model as a predictive 
variable. This was the case even though the subjects were explicitly told that regression-to-the-mean 
was a significant feature of the data. Also, the subjects seemed to believe that the individual mean 
was a powerful predictor of future performance, as evidenced by both the 0.53 highly significant 
coefficient attached to the ‘Individual Season-to-date’ variable in the model-of-man without the 
model as a variable as well as the fact that the median absolute deviation (from the selected mean) 
from the treatment were the subjects only received the individual mean was about half of the median 
absolute deviation under the treatment received only the overall mean. 

When the ‘model’ variable is added to the model-of-man, a clear effect of information 
substitution appears: when presented only with the model, the subjects materially and significantly 
substitute the model prediction for the individual mean, as evidenced by +0.24 highly significant 
coefficient and -0.25 highly significant coefficient attached to the ‘Model:A2/B2 ‘ and ‘Individual 
Season-to-date:A2/B2’, respectively. Thus, we can speculate the following mental process could be 
occurring in the subjects. When they are presented with the model as a proposed deviation (that is, 
in treatments either A3 or B3), the subjects examine the information that the predictive model is 
providing them with and incorporate it in the best assessment predictions. The coefficient of 0.31 
attached to the ‘Model’ variable in the model-of-man suggests that the subjects have a somewhat 
low valuation of the predictive model predictions. But, when they are presented only with the model 
as an extra piece of information (that is, in treatments A2/B2), then the subjects get anchored to the 
predictive model prediction and use the model more; that is to say, the data seems to suggest that 
the extra use of the predictive model by the subjects could well come from an anchoring effect 
where the mental model of the subjects gives extra weight to the model prediction because it is a 
(unique) number that has been floated to them just before they have to make their predictions. That 
the subjects substitute from the ‘Individual Season-to-date’ variable seems natural given its 
importance in their uninfluenced mental model. 
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Furthermore, we are led to wonder about the following. What happens to subject predictions 
when their own uninfluenced predictions would be ‘far away’ from the predictive model predictions; 
that is, what do subjects do when the predictive model appears to them as particularly less relevant? 
In the ‘Model-of-Man (with Model and Cognitive Dissonance)’, we added a ‘Large Cognitive 
Dissonance’ indicator variable: the indicator was set to 1 when the distance between the 
uninfluenced subject (average) prediction and the predictive model prediction was more than the 
median distance between the two predictions. From the coefficients of the ‘Individual Season-to-
date’ crossed with the ‘Large Cognitive Dissonance’ crossed with the treatments variables, we see 
that the ‘Individual Season-to-date’ variable received a little bit more weight when the subjects 
agreed less with the predictive model. This leads us to suppose that the subjects gave increased 
weight to their own internal model when they agreed less with the predictive model prediction. This 
can be interpreted as a cognitive dissonance effect where the subjects ignore the model when they 
(particularly) do not agree with it. 

3.2. Actual Model Compliance 
We can now turn our attention towards quantifying model compliance under different 

treatments. 

3.2.1. Effect of presenting a proposed deviation 

From Graphs 2 and 3, we see that model compliance is greatest under treatments A2/B2 (at 
about 30% model compliance). The model compliance is reduced by about half when the subjects 
are presented with the model as a proposed deviation: there is about 15% model compliance under 
treatments A3 and B3. This is consistent with the effects found in the model-of-man analysis where 
(1) the subjects were found not to be utilizing the predictive model very much and (2) the subjects 
gave extra weight to the predictive model when that was all they were presented with. 
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Graph 2: Model compliance, expressed as a relationship between the actual average prediction for a given treatment 

against the average prediction when only the overall mean is presented, both axes normalized by the model prediction, 
under treatments A1, A2 and A3 for weeks 14 and 15. 

A slope of 1 indicates no model usage: which necessarily happens for A1. A slope of 0 would indicate complete model 
compliance. The line corresponding to treatment A2 has a slope of approximately 0.7: thus, implying a model usage of 
about 30%. The line corresponding to treatment A3 has a slope of about 0.85: thus, implying a model compliance of 
about 15%. If the fitted line for treatment B3 had been added to the graph above, it would materially and statistically 
overlap the fitted line for treatment A3. 
 

 
Graph 3: Model compliance, expressed as a relationship between the actual average prediction for a given treatment 

against the average prediction when only the overall mean is presented, both axes normalized by the model prediction, 
under treatments B1, B2 and B3 for week 16. 

Similarly to Graph 2, the line corresponding to treatment B2 has a slope of approximately 0.7: thus, implying a model 
usage of about 30%; and, the line corresponding to treatment B3 has a slope of about 0.85: thus, implying a model 
compliance of about 15%.  
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3.2.2. Actual (implicit) deviation as a function of the proposed (implicit) deviation 

Graphs 4 and 5 present the actual deviation as a function of the proposed deviation. Note that 
only under treatments A3 and B3 is the model presented explicitly as a proposed deviation. For 
models A1, B1 and A2/B2, this proposed deviation is implicit as the subjects either were not 
informed of the predictive model prediction (A1//B1) or were not presented the predictive model 
predictions in this way (A2/B2). A slope of 1 with a R2 of 1 in Graphs 4 and 5 would indicate 
complete model compliance. As was found in the previous section, the subjects tended to use more 
of the proposed (implicit) deviation under treatments A2/B2, less so under models A3 and B3, and 
even less so under treatments A1 and B1. What is also apparent in Graphs 4 and 5 is that the 
proportion of the subjects actual (implicit) deviation that can be explained by the proposed (implicit) 
deviation increases from treatments A1//B1 to A3//B3 to A2/B2. This is consistent with our 
working hypothesis that the model ‘takes up more mental place’ when the subjects are only 
presented the predictive model as supplementary information. 

It is interesting to note that one may measure the causal impact on subject predictions of 
changing the provided information from that of an initial information set to another information set 
by using the experimental methodology laid out above. Of particular interest to the experimenter 
was the causal impact of changing the base from which the model is presented as a proposed 
deviation; that is, the causal impact of changing the information set from that of A3 (overall average 
with model as proposed deviation) to B3 (individual average with model as proposed deviation). 
With the data obtained under the experiment, it is difficult to conclude the following definitely 
(because of the high leverage points in Graphs 4 and 5), but, visually, it appears that the actual 
deviation as a function of the proposed deviation is not overly affected by the change of basis from 
which the model is presented as a deviation. This may suggest that the subjects could be selecting an 
average level of the proposed deviation that they will use and that this level may be a function of the 
model and information set only and not of the basis from which the model is presented as a 
deviation. For business purposes, identifying if that effect was actually present would be relevant if 
one was attempting to forecast the impact of a change in information set on the ultimate usage of 
the model by users. In a marketing or sales setting, this could arise if users were presented with an 
array of prices (e.g. the cost at target profit, with the walk-away price, the suggested price of a first 
offer, the predicted valuation of the best alternative offer available to the customer, etc. presented as 
deviations).  
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Graph 4: The actual (implicit) deviation from the model expressed as a function of the proposed (implicit) deviation, for 

treatments A1, A2, and A3, for weeks 14 and 15. 
Note that the deviations from the model are implicit for treatments A1 and A2, as the subjects were not explicitly 
presented a proposed deviation. A slope of 0 means no agreement with the model, while a slope of 1 indicates complete 
agreement with the model. Similarly to what was found in Graph 2, the fitted line for treatment A3 approximately 
bisects the angle formed by the lines for A1 and A2. Note also that the proportion of the subjects’ predictions that can 
be explained by the (implicit) proposed deviation going from treatment A1 to A3 to A2 increases. 

 

 
Graph 5: The actual (implicit) deviation from the model expressed as a function of the proposed (implicit) deviation, for 

treatments B1, B2, and B3, for week 16. 
Note that the deviations from the model are implicit for treatments B1 and B2, as the subjects were not explicitly 
presented a proposed deviation.  Similarly to what was found in Graph 3, the fitted line for treatment B3 approximately 
bisects the angle formed by the lines for B1 and B2. Note that the slope for treatment B1 is closer to 1 than the slope for 
treatment A1. The change in slope obtained by going from B1 to B3 is numerically similar to that obtained from going 
from A1 to A3; similarly, the change in slope obtained by going from B3 to B2 is numerically similar from that obtained 
by going from A3 to A2.  As in Graph 4, note also that the proportion of the subjects’ predictions that can be explained 
by the (implicit) proposed deviation going from treatment B1 to B3 to B2 increases. 

3.2.3. Driver of actual model compliance 

We examined if we could identify demographic characteristics of the subjects that could help us 
predict which subjects would follow the model more or less. As mentioned earlier, the prudence or 
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risk aversion of the subjects could have potentially affected the response of the subjects such that 
the exact nature of the compensation function (as opposed to its essence which was to encourage 
subjects to provide us with their best assessment) could have influenced the outcome of the 
experiment. 

The only demographic dimension that seemed to influence the behavior of the subjects was the 
indicator for the Judging inclination of our (simplified) Myers-Briggs test. For that dimension, 
subjects that self-reported the Judging inclination tended to make greater use the model: note that 
the effect was not consistently observed as can be seen in Table 7. 

Actual Deviation Weeks 14 & 15 Weeks 16
as a function of A3 B3 B3

Proposed Deviation Coefficient St. Err. Coefficient St. Err. Coefficient St. Err.
Intercept 0.25 0.06 0.33 0.04 0.35 0.06

Indicator for Judging 
Inclination

0.19 0.07 0.01 0.04 0.18 0.06

Table 
7: Actual deviation expressed a function of the proposed deviation for those treatments with explicitly provided 

proposed deviations: that is, weeks 14 and 15 A3 and B3 as well as B3 for week 16. 
For A3 in weeks 14 and 15 and B3 for week 16, the proportion of the proposed deviation actually used by the subject is 
materially and statistically higher. This could be explained by individuals with a judging inclination seeing "the need for 
most rules" and liking "to make & stick with plans" (PersonalityType.com/LLC n.d.). 
 

A working hypothesis to explain that effect is that subjects self-reporting the Judging inclination 
reported, among other things, to see the need for most rules and prefer to stick with plans. It is then 
no great stretch to see model compliance as either thoughtful rule abiding (presuming a neutral or 
positive perception of the predictive model) or as a form of disciplining of the subject’s own 
predictions. 

3.3. Optimal Model Compliance 
Given known over-confidence behavioral effects, we examined whether the subjects, that were 

somewhat using the model, were doing so optimally or whether the subjects were ignoring valuable 
insights from the model and over-weighting their own mental model. 
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For subjects that were not explicitly presented with the predictive model (that is, subjects that 
experienced the A1 and B1 treatments), we formed the convex combination of the subjects’ 
predictions and the predictive model predictions that generated the most favorable compensation 
for the subjects. To obtain an estimated distribution for the level of optimal model compliance, we 
then repeated the exercise with bootstrapped samples. This distribution is presented below. 

The identified optimal model compliance is about 70%. This suggests massive over-confidence of 
the subjects in their own differential predictive abilities as actual model usage is much lower than 
70% when the subjects are presented with the model (30% for A2/B2 and 15% for A3//B3). 

 
Graph 6: Estimated density function of the optimal model compliance. 

The distribution of the estimated optimal compliance levels were obtained using (1) bootstrapped samples of predictions 
of subject receiving the A1 and B1 treatments, and (2) optimizing the average prediction compensation by taking a 
weighted average of the subject prediction and the model prediction. The full sample fitted value is about 70%. 
 

Note that our estimation procedure presumed that subjects not explicitly presented with the 
model were effectively not influenced by the predictive model. While this effective assumption 
cannot be practically improved upon, it is less than perfect as the overall mean and the individual 
mean were variables that were part of the predictive model and thus correlated with the model. 

3.3.1. Drivers of optimal model compliance 

Contrasted with the drivers of actual model compliance are the drivers of optimal model 
compliance. Here, we are attempting to identify which subjects should have used the model more or 
less. 
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Here again, only one demographic dimension appears important: the subject self-reported 
familiarity with football. Subjects that self-reported they knew football the most were also the ones 
that should be using the model the least. However, even subjects that needed the model the least 
were still over-confident in their abilities: their model usage is bounded above by 30% and their 
optimal model usage was about 50%. 

Bootstrapped Optimal
Model Compliance Self-Reported Familiarity with Football
Familiarity Level: 1 2 3 4 5

Min. 0.00 0.00 0.00 0.00 0.00
1st Qu. 0.28 0.69 0.50 0.59 0.37
Median 0.69 0.71 0.61 0.69 0.49
Mean 0.53 0.70 0.63 0.68 0.48

3rd Qu. 0.79 0.72 0.78 0.78 0.65
Max. 1.00 1.00 1.00 1.00 1.00

Number of Subjects 94 32 7 8 7
Prop. of Subjects 64% 22% 5% 5% 5%

Welch Two Sample t-test of whether the mean of the optimal model usage is the same for 1 
(very familiar) as for the other self-reported levels of familiarity with football.
Test statistic: -8.1172
Degrees of Freedom: 1179.003
p-value: 1.191 x 10^-15  

 Table 8: Optimal model compliance as a function of the self-reported level of familiarity with football. 
The distribution of the estimated optimal compliance levels were obtained using (1) bootstrapped samples of predictions 
of subject receiving the A1 and B1 treatments, and (2) optimizing the average prediction compensation by taking a 
weighted average of the subject prediction and the model prediction. Visually, level 1 (very familiar), levels 2 to 4, and 
level 5 should be binned together. Because the number of subjects reporting level 5 (very unfamiliar) is small, levels 2 to 
5 are binned together. Note that the subject count only covers treatments A1 and B1, but counts them once per time 
within a week where they get treatment: keep in mind that, for each week, each subject received two treatments. Using 
the proposed binning, the mean optimal model compliance for level 1 is materially and statistically different from that of 
the other levels. 
 

Note that subjects that repeated the experiment also needed the model less than other subjects, 
but it is also the case that subjects that repeated the experiment also had greater self-reported 
familiarity with football. This is a possibly natural association as subjects familiar with football 
should also be subjects that found the experiment more fun and thus worthy of repetition.  
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3.4. Perceptions of Credibility and Relevance 
As mentioned in the ‘Treatments descriptions’ section, the subjects were asked about their 

perceptions of the information sets. Subjects’ reported perceptions of the provided tools was 
thought to be relevant because, in a business setting, if employees feel that they do not have access 
to the necessary tools to do their work well, the irritation that the employees feel towards the 
employer may become so dramatic as to cause significantly lower levels of employee engagement 
and thus lead to decreased productivity. 

PMF
Weeks 14 

and 15 - C1
Weeks 14 

and 15 - C2
Weeks 14 

and 15 - C3
Weeks 14 

and 15 - C4
Weeks 14 

and 15 - C5
Week 16 - 

C1
Week 16 - 

C2
Week 16 - 

C3
Week 16 - 

C4
Week 16 - 

C5
A1//B1 11% 24% 25% 23% 16% 17% 41% 28% 12% 3%
A2/B2 5% 38% 37% 17% 3% 4% 35% 42% 18% 2%

A3 9% 25% 35% 25% 7%
B3 9% 51% 27% 11% 2% 17% 38% 36% 9% 0%

CDF (from 
C5 to C1)

Weeks 14 
and 15 - C1

Weeks 14 
and 15 - C2

Weeks 14 
and 15 - C3

Weeks 14 
and 15 - C4

Weeks 14 
and 15 - C5

Week 16 - 
C1

Week 16 - 
C2

Week 16 - 
C3

Week 16 - 
C4

Week 16 - 
C5

A1//B1 100% 89% 65% 39% 16% 100% 83% 42% 14% 3%
A2/B2 100% 95% 57% 20% 3% 100% 96% 62% 20% 2%

A3 100% 91% 67% 32% 7%
B3 100% 91% 40% 13% 2% 100% 83% 45% 9% 0% Table 9: 

Subject reported perception of credibility and relevance of provided information for A1, A2, A3 and B3 for weeks 14 
and 15 and for B1, B2 and B3 for week 16. The table at the top is an empirical probability mass function over all 

possible responses from C5 (not at all confident in credibility and relevance) to C1 (highly confident in credibility and 
relevance). The bottom table is an empirical cumulative distribution function starting at C5. 

Note that, if the provided information was unequivocally perceived as being more credible and relevant by the subjects 
than another alternative, then the empirical cumulative distribution function of credibility and relevance would be first-
order stochastically dominated by that of the alternative. We see that providing only the model (A2) generates less 
negative perceptions of credibility and relevance than either of only providing the overall mean (A1) or providing the 
overall mean and the model as a proposed deviation (A3). Note, however, how providing the individual mean (as in B1 
and B3) decreases the perceptions of negative credibility and relevance of information. This suggests the following 
simplified rule for predicting the perception of credibility and relevance: receiving the overall mean is less preferred than 
receiving the model only which is less preferred than receiving the individual mean. When a selected mean is provided, 
receiving the model as supplementary information does not appear to affect materially the perception of credibility and 
relevance. 
 

The results from Table 9 suggest that subjects preferred least the information set under A1; that 
is, being only provided with the overall mean. Note that the subjects had a much less negative 
perception of the information set under B1 (only the individual mean). This alignment of subject 
preferences and internal subject model suggests that subjects prefer being provided with a model 
with which they agree even if, as is the case here, the model is actually not more predictive than 
other models. Recall that the overall mean and the individual mean are actually equally valuable 
individual pieces of information when presented alone and that this is largely due to the large 
regression to the mean at the inter-individual and intra-individual levels.8

                                                           
8 It is worthwhile to note that both the overall average and the individual average represent valid perspectives on the 
predictive problem at hand, as is evidenced by the fact that they are both as powerful one-way predictors of quarterback 
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When the model is presented, the subjects appear to prefer it when it is presented as a proposed 
deviation from the individual mean but the subjects appear to prefer it to be presented directly if the 
alternative is to receive the model as a proposed deviation from the overall mean. This, then, 
suggests that the base (from which the model is presented as a deviation of) is an important driver 
of subject preferences (over information sets). 

Recalling that subjects appeared to revert back to their internal model when they experienced 
cognitive dissonance with the predictive model, this preference for a base in which they believe may 
be rationalized by the ease with which subjects can revert back to their own internal model when 
they do experience cognitive dissonance. 

Considering only week 16, it does appear that the subjects do (marginally) prefer also having the 
model (as opposed to not having it) when they are presented with the individual mean. 

3.5. Self-Reported Confidence  
The other side of subject preference is the induced self-reported confidence of the subjects after 

they make their predictions. 

The findings relating to self-reported confidence (in predictions) line up pretty well with findings 
concerning the perceptions of credibility and relevance of the provided information sets. As a 
general rule, when the information set was thought to be more relevant and credible, the self-
reported confidence in predictions also improved. 

As can be seen in Table 10, the slight exception to the general rule can be found for week 16 in 
the comparison of treatments B1 and B3 were the B1 subjects reported less negative self-confidence 
than the B3 subjects but where the B3 information set was perceived less negatively than the B1 
information set. 

PMF
Weeks 14 

and 15 - C1
Weeks 14 

and 15 - C2
Weeks 14 

and 15 - C3
Weeks 14 

and 15 - C4
Weeks 14 

and 15 - C5
Week 16 - 

C1
Week 16 - 

C2
Week 16 - 

C3
Week 16 - 

C4
Week 16 - 

C5
A1//B1 3% 33% 46% 11% 8% 3% 51% 35% 12% 0%
A2/B2 5% 39% 39% 15% 3% 5% 40% 36% 16% 2%

A3 0% 40% 43% 17% 0%
B3 1% 44% 41% 13% 0% 6% 39% 39% 15% 0%

CDF (from 
C5 to C1)

Weeks 14 
and 15 - C1

Weeks 14 
and 15 - C2

Weeks 14 
and 15 - C3

Weeks 14 
and 15 - C4

Weeks 14 
and 15 - C5

Week 16 - 
C1

Week 16 - 
C2

Week 16 - 
C3

Week 16 - 
C4

Week 16 - 
C5

A1//B1 100% 98% 65% 19% 8% 100% 97% 46% 12% 0%
A2/B2 100% 95% 56% 17% 3% 100% 95% 55% 18% 2%

A3 100% 100% 60% 17% 0%
B3 100% 99% 55% 13% 0% 100% 94% 55% 15% 0%  

Table 10: Subject self-reported perception of confidence in their predictions for A1, A2, A3 and B3 for weeks 14 and 15 
and for B1, B2 and B3 for week 16. The table at the top is an empirical probability mass function over all possible 

                                                                                                                                                             
ratings. As such, this experiment does not explore the effect of presenting a biased or voluntarily distorted statistic as a 
guide for prediction or as a base from which a model is presented as a proposed deviation. 



The Impact of Different Forms of Decision-Aids on User Best Assessments 

Casualty Actuarial Society E-Forum, Summer 2013 27 

responses from C5 (not confident at all) to C1 (very confident). The bottom table is an empirical cumulative distribution 
function starting at C5. 

Similarly to Table 9, a treatment that induces greater self-reported confidence than another treatment would be 
stochastically dominated by the other treatment. The data above can be approximately summarized as follows: receiving 
the overall mean induces more negative self-reported confidence than receiving the overall mean and the model as a 
proposed deviation or just the model, which induces more negative self-reported confidence than receiving the 
individual mean and the model as a proposed deviation, with only receiving the individual mean inducing least negative 
self-reported confidence in the predictions. 

3.6. Interpersonal Agreement 
Before moving on to the net effect of treatment on the average compensation to the subjects, we 

wanted to examine the effect of the treatments on inter-personal agreement. This question is 
interesting because it has been found in the actuarial versus clinical debate that increased prediction 
consistency is an important factor in increased prediction accuracy, as consistency sets an upper 
bound on reliability. 

As can be seen in Table 11, the inter-personal prediction consistency is roughly similar across 
treatments. However, subjects given the B3 treatments seem to have made more consistent 
predictions. The results of Table 11A confirm this diagnostic as the linear model of across subject 
standard deviation and variance of predictions for a given quarterback/week has a highly 
significantly negative average treatment effect for the B3 treatment. 

Having seen in the "Actual Model Compliance" section that subjects given the B3 treatment use 
the predictive model about half as much as subjects given the A2/B2 treatments, we can now 
wonder if the increased consistency of predictions in the B3 treatment can empirically counter-
balance the decreased model usage and allow the average compensation of the B3 treatment to be 
similar to that of the A2/B2 treatment. 
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Across Subjects
Standard Deviation Weeks 14 and 15 Week 16

of Predictions Average St. Dev. Average St. Dev.
A1//B1 11.9 2.7 9.7 1.6
A2/B2 10.5 3.0 10.4 2.6

A3 11.3 3.1
B3 9.6 2.4 10.4 2.5  

Table 11: The average and standard deviation of the standard deviation of across subjects standard deviation of 
prediction for A1, A2, A3 and B3 for weeks 14 and 15 and for B1, B2 and B3 for week 16. 

The inter-personal agreement of predictions is roughly similar across weeks and treatments. However, a potentially 
interesting difference is between B3 and A1 for weeks 14 and 15: B3 subjects seem to have been more consistent than 

A1 subjects. 
 

Standard Deviation Variance
Treatment # Estimate St. Error Estimate St. Error

Base Level 11.15 0.29 *** 130.86 6.67 ***
A2/B2 -0.68 0.40 .  -12.98 9.44    

A3 0.12 0.45     5.53 10.55    
B3 -1.27 0.40 ** -27.53 9.44 **  

Table 11A: A linear model of across subject standard deviation and variance across quarterback/weeks prediction sets, 
by treatment. 

The linear model of across subject standard deviation (and variance) for quarterback/week predictions is consistent with 
the results found in Table 11: treatment B3 induces increased consistency of predictions across subjects. Increased 
consistency of predictions can be a driving force of prediction accuracy, as was empirically found in the actuarial versus 
clinical debate. 

3.7. Net Compensation Outcomes 
We are now ready to analyze the net compensation outcomes by treatment. Because there are 

only three weeks of data, some caution is necessary in the interpretation of the results. In particular, 
there were only 90 quarterback/weeks in the sample; therefore, the performance comparison 
between the subjects and the predictive model must be examined with prudence. Moreover, even 
across treatments comparisons must be examined with care as the particular observed outcome 
differential was obtained under non-experimentally designed variations in information sets: that is, 
the observed difference in outcomes may reflect a particular mix of information sets induced by 
chance. In particular, the information sets were not designed to induce the optimal variation in 
variables that could have been of interest such as in generating a wide and balanced variety of (1) 
proposed deviation, (2) difference between the uninfluenced (average) subject prediction and 
predictive model predictions, (3) overall mean, (4) individual mean, etc. 

Compensation Weeks 14 and 15 Week 16 All Weeks
(per prediction) ($) Average Nb of Pred. St. Dev. Average Nb of Pred. St. Dev. Average Nb of Pred. St. Dev.

A1//B1 0.1770 1 137 0.0051 0.1734 1 004 0.0052 0.1753 2 141 0.0036
A2/B2 0.1826 1 080 0.0052 0.1816 795 0.0060 0.1822 1 875 0.0039

A3 0.1803 992 0.0053 0.1803 992 0.0053
B3 0.1921 1 160 0.0050 0.1701 951 0.0054 0.1822 2 111 0.0037

Total 0.1832 4 369 0.0026 0.1746 2 750 0.0032 0.1799 7 119 0.0020
Total excl. A1/B1 0.1853 3 232 0.0030 0.1754 1 746 0.0040 0.1815 4 978 0.0024

Model 0.1700 0.1820 0.1746  
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Table 12: The average compensation per prediction (with the associated number of predictions and standard deviation 
of compensation) for A1, A2, A3 and B3 for weeks 14 and 15 and for B1, B2 and B3 for week 16; the table includes 

sub-totals for those treatments where the subjects saw the model and the compensation that would have been obtained 
under the model.  

There is a significant difference in compensation between A1 and B3 for weeks 14 and 15. The sources for the 
difference could be (1) increased prediction consistency, (2) increased perception of credibility and relevance of 
information, (3) increased quality of information provided. Note, however, that other differences do not appear as 
significant. This suggests that subjects needed to be provided with a reference that they believed in more and a model 
prediction to significantly increase their compensation performance. Keep in mind that the compensation scheme was 
constructed to incentivize subjects to attempt to be as correct as possible with regards their predictions. 
When the subjects had access to the model, they performed better than without access to the model. In weeks 14 and 
16, they did not (on average) beat the model; but they did (on average) beat the model in week 15. 
 

From Table 12, we can see that treatments A2/B2 and B3 generated the same average 
compensation across the three weeks. Treatment A3 comes next. The clear loser in terms in 
generating favorable compensation for the subjects was treatment A1 with average compensation 
significantly and materially lower than the average compensation for treatment B3 in weeks 14 and 
15. Compared to the compensation that would have been generated if the subjects had perfect 
model compliance, the subjects fared better than the predictive model over the course of the three 
weeks: even those subjects that were not presented with the model. Again, some caution is necessary 
here since the predictive model would have beat the subjects (on average) under all treatments for 
weeks 14 and 16, but the predictive model performed poorly in week 15. The evidence does suggest 
that many of the model predictions were useful to the subjects (even for week 15) as subjects that 
had access to the model fared better than those that did not have access to it. 

It is also worthwhile to re-examine the results obtained in the ‘Optimal Model Compliance’ 
section: what would have been the average compensation of the subjects had they been using the 
model optimally? Table 13 answers this question. We can see that, under optimal model usage, the 
subjects would have generated an average compensation (0.1858) 2% higher than what they 
generated on average under treatments A2/B2 and B3 (0.1822). While a 2% improvement may not 
appear large at a first glance, if one thinks about the effect on Return on Equity of a 2% increase in 
the net income ratio, then this improvement appears much more substantial. 

Average 
Compensation 
per Prediction at 

Best Model 
Usage ($)

Mean 0.1858
St. Dev. 0.0036
1st Q 0.1834
Median 0.1857
3rd Q 0.1880  

Table 13: Estimated features of the distribution of compensation of subjects if they used the model optimally. 
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This table represents the compensation the subjects would have attained by following the optimal weighted average of 
their unaided assessment and the model. Notice that this is statistically and materially (being a 2% performance 
improvement over the average compensation obtained under A2/B2 and B3) significant. 
 

The results from Table 13 beg the question of what would have been the optimal (average) 
compensation for subjects that were already influenced by the predictive model. 

Relative Gains
(Further) Model Use A1//B1 A2/B2 A3 B3

0% 0.0% 3.9% 2.9% 3.9%
25% 2.9% 4.3% 4.3% 4.6%
50% 5.2% 4.7% 5.3% 5.0%
75% 5.8% 4.7% 5.7% 4.9%
100% 0.1% 0.1% -3.0% 0.1%  

Table 14: Estimated gains from further model use by treatment. 
The results shown in the above table can be interpreted in the following way. At no supplementary model use, the best 
outcomes are achieved under A2/B2 and B3, consistent with table with Table 12. At full model use, we obtain that there 
would be a gain compared to the unaided prediction under every treatment but A3, because of the poor performance of 
the model in week 15, as noted in the comments of Table 12. Consistent with the result of Table 13, in the table above, 
the best performance for treatments A1//B1 is achieved at 75% model for a 5.8% performance improvement. At best 
model usage, however, the optimal attainable performance is highest under the A1//B1 treatments. This may occur 
because the subject predictions correlate more with the model predictions when the subjects are presented with the 
model. Compare this with the engineering problem of identifying the best mix of instruments and weights assigned to 
instruments to generate the ‘best’ measurement: one would pick instruments whose measurement errors would be as 
little positively correlated as possible. In this case, it appears that the subjects are ‘destroying’ some of the statistical 
signal that they would be picking if they did not see the model when they are explicitly presented with the model. 
 

Table 14 suggests that subjects that were already influenced by the predictive model could not 
possibly achieve a better (average) compensation by using a weighted average of the predictions 
under the treatment and the predictive model predictions. One working hypothesis one might have 
had is that the optimal attainable (average) compensation should not be a function of the treatment. 
However, think of the following analog problem. Suppose we are attempting to take a measure of an 
empirical reality. First, suppose that we have only two (unbiased) instruments, each with their own 
level of precision. If measurement errors of the two instruments were independent, then, to obtain 
the least variable and unbiased measurement, we should weight together the measurements of the 
two instruments such that more weight is assigned to the more precise instrument. Holding constant 
the precision of the two instruments, one would prefer the measurement errors of the two 
instruments to be as negatively correlated as possible, such that the error of one instrument should 
be naturally corrected by the error of the other instrument. However, in our case, we get a case 
where the measurements taken by the subjects under A2/B2, B3 and A3 are positively correlated 
with the predictive model predictions. Thus, because of this, at the optimal compensation, the 
optimal compensation is higher under the A1//B1 treatments. Nonetheless, the net model usage at 
optimum (average) compensation [not shown] are quite similar across treatments. 
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3.8. External Validity Considerations 
Just as is the case for any social science experiment, one needs to examine the potential 

transferability of the results of the experiment to other (often, non-experimental) circumstances. 

3.8.1. Non-neutrality of the compensation scheme and environment 

In "An Effort Based Analysis of the Paradoxical Effects of Incentives on Decision-Aided 
Performance" (Samuels and Whitecotton 2011), the researchers found that 

[i]n contrast to the findings of prior research, our study shows that incentives do not necessarily decrease 
performance in the presence of decision aids. Rather, we demonstrate that the effect of incentives on decision-aided 
performance depends on other contextual factors such as the absence or presence of additional contextual 
information." (345) 

Thus, it is quite possible that changing the compensation scheme or the context of the 
experiment may affect the findings and, therefore, may make the findings non-transferable. Here is a 
potential example of such non-transferability. Imagine we go back to our example of the use of 
predictive models in a marketing or sales context. Now, imagine that the objective of the users of 
the predictive model is not to provide their best assessment of a future statistic but, instead, to try to 
optimize sales (subject to some profitability constraints). Even further, imagine that there are 
negotiations with a third party involved. In that case, while the final selection of the user is expected 
to be influenced by the model output (when provided), there is no representation that the user 
selection is a best assessment and may instead represent the impact of external constraints imposed 
by the third party. There is a priori no reason to think that these two contexts would generate similar 
results. However, in a context where the final price of a transaction is rationally related to the 
expectation of a future profitability statistic and where compensation to the users of the decision-aid 
is related to their (individual) accuracy in predicting that future profitability statistic, then the context 
of the experiment and the pricing situation become alike enough to expect some level of 
transferability. For example, this would naturally occur in an insurance pricing context, but also in 
the pricing of many financial products. 

4. CONCLUSION 

At this point, we wish to interpret the results of the experiment from a business perspective (in 
particular for insurance or retail financial products, like mortgages). Assume that the interest of the 
business is to have the users of the decision-aid be as accurate as possible in predicting the future 
performance of a profitability statistic attached to a (sold) contract. In our closely related 
experimental setting, which decision-aid would the business prefer to provide to the users? 
Assuming that the difference in costs in providing the different decision-aids were not material, then 
the business would prefer to provide a decision-aid that presents either only the predictive model or 
the predictive model presented as a proposed deviation from a statistic that the users of the 
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decision-aid find relevant and credible (in the case of the experiment, that was the individual mean) 
as they generate the same accuracy in user predictions. Which decision-aid would the users prefer to 
receive? Presumably, the users would prefer to receive higher compensation, be more confident in 
their predictions and find the decision-aid they receive relevant, and it is unclear a priori in what 
order. For our purposes, the choice of the subject should be insensible to the exact nature of the 
preference because the same basic ranking comes up under any weighting of the preferences: the 
users would prefer to receive either only a statistic they perceive as relevant and credible or the 
model presented as a proposed deviation from the same statistic, as these two decision-aids generate 
similar compensation, similar self-confidence and similar perceptions of relevance of information. 
So, altogether, this implies that the decision-aid that should be deployed is the decision-aid with the 
predictive model presented as a proposed deviation from a statistic that is perceived by the subjects 
to be relevant and credible. 

Further, applied research needs to be done at the business level: our research has not identified 
what features of the individual mean statistic made it so attractive to subjects and, even if we had 
done that, it is unclear that this piece of the research would be transferable. Note, however, that the 
experimental framework that we used should be implementable in an applied (business) research 
framework at relatively little costs. This means that the applied researchers can conduct meaningful 
applied (business) research, with an experimental inclination, without needing to develop tools to the 
point where they are ready to be deployed in a production environment: it should be apparent from 
our research that significant insights can be gathered in a simplified, even to the point of being 
skeletal, framework. 

The current research does leave open many empirically interesting questions. For example, what 
would be the best way to seek out the subjective opinion of the subjects to arrive at the most 
predictive best assessment? Should the opinion of the user be sought and then the final prediction 
be generated mechanically from the recorded prediction and the output of the predictive model? If 
the user always needs to have a final say in the recorded prediction, should the users be limited in 
their ability to deviate from the predictive model? For example, should the users be limited in their 
freedom to deviate from the model only globally or should there be a limit on the ability of users to 
deviate from the model that applies prediction by prediction (or both)? Is there a way to ensure that 
the deviations from the model reproduce some form of distribution known to hold for the 
underlying population (that the predictions relate to) as a whole? 
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Appendix A. On-line Survey Tool 
 
Consent Block 
 
*UNIVERSITY OF WISCONSIN-MADISON* 
 
*Subject CONSENT to Participate in Research Study "Quarterback Rating Experiment"* 
 
*Title of the Study*: Quarterback Rating Forecasts 
*Principal Investigator* (*PI*): Justin Sydnor (phone: 608-263-2138, email: jsydnor@bus.wisc.edu) 
*Mailing Address*: 5287 Grainger Hall, Wisconsin School of Business, 975 University Ave., Madison, WI, 53706 
 
*Introduction* 
 
You are invited to participate in this research study about forecasting. 
We are studying how people make predictions about quarterback ratings in upcoming NFL games. You are invited to 
take part because you are a student at UW-Madison. Note that you must be a citizen of the United States of America to 
participate in the study: this is because we can only provide compensation to American citizens. Your participation is 
voluntary. 
 
*Procedures* 
 
If you decide to participate in this research, you will be asked to forecast the quarterback rating of quarterbacks expected 
to start in the coming weekend of NFL activity. We will also collect information about you for this research study. This 
information includes gender, year of birth, citizenship, attained education level, major, GPA. We will also ask you about 
your familiarity with, interest in and understanding of football, sports statistics, and fantasy sports. We will also ask 
questions to assess some of your personality traits. This questionnaire will be conducted with an online Qualtrics-created 
survey. 
 
*Risks/Discomforts* 
    
The only risk of taking part in this study is that your study information could become known to someone who is not 
involved in performing or monitoring this study. 
 
*Benefits* 
   
You are not expected to benefit directly from participating in this study. Your participation in this research study may 
benefit other people by helping us learn more about how individuals make decisions. There are no direct benefits to you 
from participating in this research. 
 
*Compensation* 
 
You will receive a compensation that will be determined as a function of your forecasts and the actual outcomes in the 
coming weekend of NFL football. Your compensation will range from zero (0) to fifteen (15) dollars. If you choose to 
participate, the exact way to compute your compensation will be described within the survey. Once the actual values for 
the forecasts you made are known, we will tally up your compensation and send you an e-mail to let you know where 
you can pick them up on campus. Once you have received your compensation, your name and e-mail address will be 
removed from the databases related to the experiment. 
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*Confidentiality* 
    
 
For compensation purposes, we will ask you to provide us with your name and your preferred e-mail address: we need 
this information because your compensation is determined based on your answers to the survey. We may provide your 
name and preferred e-mail address to support staff so that these persons can give you your compensation. You will also 
need to complete a Participant Payment Disclosure Form (i.e., Subject Log) in order to be paid. Once you receive your 
compensation, we will delete your name and e-mail address from our records. After that, all other data will be stored 
indefinitely on a secure location on campus in a faculty member or graduate student computer. 
 
*Participation* 
 
Your participation is voluntary. You do not have to continue with this on-line survey and you may refuse to do so. If 
you refuse to continue, however, you cannot take part in this research study. You may completely withdraw from the 
study at any time without penalty. You also may choose to cease participation or skip any questions that you do not feel 
comfortable answering. 
 
*Questions about the Research* 
  
Please take as much time as you need to think over whether or not you wish to participate. If you have any questions 
about this study at any time, contact the Principal Investigator Justin Sydnor at 608-263-2138. If you are not satisfied 
with response of research team, have more questions, or want to talk with someone about your rights as a research 
participant, contact the Social and Behavioral Science Institutional Review Board at the University of Wisconsin-
Madison: 310 Lathrop Hall, 1050 University Avenue, Madison, WI 53706, phone: 608-263-2320. 
 
    1. STATEMENT OF CONSENT 
 
    By entering the information below, you acknowledge that: 
    _*You have read the above information. 
    You have received answers to the questions you have asked. 
    You consent to participate in this research. 
    You are an American citizen. 
    You are at least 18 years of age.*_ 
 
    Type your first and last names 
 
 
    Type your preferred email address (so that we can communicate to you 
    the exact details of where and when you can pick up your compensation). 
 
 
    2. Do you agree to participate in this study? 
 
  * Yes 
  * No 
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Demographics Block 
 
The following questions are about demographics. 
 
    What is your citizenship? 
 
  * United States of America 
  * Other 
 
    What is your gender? 
 
  * Male 
  * Female 
 
    What year were you born? 
 
    Are you a ___? 
 
  * Freshman 
  * Sophomore 
  * Junior 
  * Senior 
  * Graduate 
  * Other 
 
    What is your major? (If more than one choice may apply, pick the one 
    you most enjoy.) 
 
    What is your current Grade Point Average? 
 
    On a scale of 1 (very comfortable) to 5 (having difficulty), how would you rate your mathematical abilities? 
 
Football Trivia 
 
The following questions are football trivia. 
 
    Which team won the last Supe Bowl (played in February 2012)? 
 
  * Cleveland Browns 
  * Green Bay Packers 
  * New York Giants 
  * University of Wisconsin-Madison Badgers 
  * New England Patriots 
 
    Who is a quarterback for the Green Bay Packers? 
 
  * Phil Esposito 
  * Aaron Rodgers 
  * Tom Brady 
  * Peyton Manning 
  * Tim Tebow 
 
 
    Which of these players is a defensive end who, in the 2011-2012 season, was a member of the Super Bowl winning 
team, went to the Pro Bowl, and lead his team for the number of sacks in the season? 
 
  * Jason Pierre-Paul 
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  * Osi Umenyiora 
  * Russell Martin 
  * J.J. Watt 
  * Clay Matthews 
 
    Which of these players has posted the most games with a perfect passer rating? 
 
  * Dan Marino 
  * Joe Montana 
  * Peyton Manning 
  * Ben Roethlisberger 
  * Steve Young 
 
Familiarity with Football and Fantasy Sports 
 
In the following questions, you will be asked about your familiarity with football and fantasy sports. 
 
    On a scale of 1 to 5 (where 1 is very familiar and 5 is very unfamiliar), how would rate your own familiarity with 
fantasy sports? 
 
1 (very familiar)  2  3  4  5 (very unfamiliar) 
     
    On a scale of 1 to 5, how would rate your own familiarity with football? 
 
1 (very familiar)  2  3  4  5 (very unfamiliar) 
     
    On average, how many days per week do you watch or read sports news? 
 
1  2  3  4  5  6  7 
       
    Do you currently have a fantasy football team? 
 
Yes  No 
  
    If you do have a fantasy football team, please rate your ability at fantasy football from 1 (very good) to 5 (very poor). 
 
1 (very good)  2  3  4  5 (very poor) 
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Task Description and Compensation Scheme 
 
This page describes the task we ask you to complete in this survey. We will also describe the exact formula that will be 
used to compute your compensation. 
 
_*Task Description*_: 
 
For the 30 or so quarterbacks that are expected to start the game in the upcoming weekend of NFL football, you will be 
asked to provide your forecast of the quarterback rating for the week for each of these quarterbacks. 
 
Let us share with you some information about the statistic that we are asking you to forecast. 
 
According to Wikipedia, passer rating 
<http://en.wikipedia.org/wiki/Passer_rating> is a measure of the performance of quarterbacks. Passer rating is 
calculated using each quarterback’s completion percentage, passing yardage, touchdowns and interceptions. A perfect 
passer rating in the NFL is 158.3. A perfect rating requires at least a 77.5% completion rate, at least 12.5 yards per 
attempt, a touchdown on at least 11.875% of attempts, and no interceptions. 
 
Here are some _*facts about quarterback ratings*_ for this season: 
- the _*average*_ for starting quarterbacks is about *_90_*, 
- on any given week, _*about half of the quarterback rating will be between 75 and 125*_, and 
- about _*75% of the time ratings fall within about 30 of the quarterback’s own season average*_. 
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_*Compensation Scheme:*_ 
 
You will be compensated for your participation based on how accurately you are able to forecast quarterback ratings this 
week.  Here we describe the exact formula we will use to determine your compensation. 
 
Your earnings in this experiment will be based on how accurate your predictions are.  You can earn up to $0.50 for each 
prediction, for a total possible earnings of $15 if you manage to perfectly predict the rating of each quarterback this 
week.  Any prediction that is off by more than 25 points will earn you no money for that prediction.  So if you miss each 
prediction by 25 points or more, you will earn nothing in the experiment.  Your goal here should simply be to try to 
make each prediction as accurately as you think possible. 
 
The following table describes the compensation scheme. For the cases in between, the compensation will be obtained by 
interpolating between the values in the following table. 
Error = Your Forecast - Actual Value  Your Compensation ($) 
+/- 30 (or more) 
 0.00 
+/- 25  0.00 
+/- 20  0.10 
+/- 15  0.20 
+/- 10  0.30 
 +/-5  0.40 
0  0.50 
 
Finally, your total compensation will be the sum of your compensation for each of your individual forecasts. 
 
    Suppose that you have made the following forecasts with the attached actual values, what would be your 
compensation? 
 
    *Player*  *Your Forecast*  *Actual QB Rating* 
    Quarterback #1  100  133 
    QB #2  60  50 
    QB #3  90  95 
 
  * 0.1 
  * 0.3 
  * 0.5 
  * 0.7 
  * 0.9 
 
The correct answer was 0.7. 
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Sensitize Info Set 
 
In the coming pages, we’ll ask to make two sets of predictions. The survey will randomly select what extra information, 
if any, you’ll be provided with to make your forecasts. The extra information will be described at the top of the page. 
 
Forecasts - Treatment 1 
 
You will now be asked to make your forecast for half of the quarterbacks. 
 
    For each of the listed quarterback below, please enter your forecast for their quarterback rating in the coming game. 
 
    You will find in brackets, first, their own team, second, the team they are playing against. 
 
    _*You will also find the overall average of the quarterback rating for the starting quarterbacks (OAAvg). 
 
*_ Tom Brady (Patriots, @49ers) _*OAAvg*_: 85.8         
(…)         
        
Forecasts - Treatment 1 - Retrospective Confidence 
 
    How confident do you feel about your first series of predictions? 
 
1 (very confident)  2  3  4  5 (not confident at all) 
     
    How confident do you feel about the credibility and relevance of the information you were provided with for the first 
series of predictions? 
 
1 (highly confident in credibility and relevance)  2  3  4  5 (not at all confident in credibility 
and relevance) 
     
    We would be interested in learning about the strategies you used in making your predictions. Feel free to tell us about 
the strategies that supported your prediction choices. 
 
Sensitize 2 
 
In the next page, we’ll ask to make the second set of predictions. The survey will randomly select what extra 
information, if any, you’ll be provided with to make your forecasts. The extra information will be described at the top of 
the page. 
 
_*Note that this extra information may *__*(or may not)*__*differ from the extra information you were provided with 
for the first selection*_ 
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Forecasts - Treatment 2 
 
You will now be asked to make your forecast for the other half of the quarterbacks. 
 
    For each of the listed quarterback below, please enter your forecast 
    for their quarterback rating in the coming game. 
 
    You will find in brackets, first, their own team, second, the team they are playing against. 
 
    _*You will also find the overall average of the quarterback rating for the starting quarterbacks (OAAvg). 
 
*_ Jay Cutler (Bears, @Packers) _*OAAvg*_: 85.8         
(…)        
 
Forecasts - Treatment 2 - Retrospective Confidence 
 
    How confident do you feel about your second series of predictions? 
 
1 (very confident)  2  3  4  5 (not confident at all) 
     
    How confident do you feel about the credibility and relevance of the information you were provided with for the 
second series of predictions? 
 
1 (highly confident in credibility and relevance)  2  3  4  5 (not at all confident in credibility 
and relevance) 
     
    We would be interested in learning about the strategies you used in making your predictions. Feel free to tell us about 
the strategies that supported your prediction choices. 
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Ex Post Demographics - MBTI 
 
The following questions are aimed at facilitating the understanding of your personality type. 
 
    Below, you will find two descriptions. Select the set that best corresponds to you. 
    
 *A*   
      * I Make decisions objectively 
      * I appear cool and reserved 
      * I am most convinced by rational arguments 
      * I am honest and direct 
      * I value honesty and fairness 
      * I take few things personally 
      * I am good at seeing flaws 
      * I am motivated by achievement 
      * I argue or debate issues for fun 
 
*B* 
      * I decide based on my values & feelings 
      * I appear warm and friendly 
      *  I am most convinced by how I feel 
      * I am diplomatic and tactful 
      * I value harmony and compassion 
      * I take many things personally 
      * I am quick to compliment others 
      * I am motivated by appreciation 
      * I avoid arguments and conflicts 
 
A  B 
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Below, you will find two descriptions. Select the set that best corresponds to you. 
    
 *A*   
 
      * I focus on details & specifics 
      * I admire practical solutions 
      * I notice details & remember facts 
      * I am pragmatic 
      * I live in the here-and-now 
      * I trust actual experience 
      * I like to use established skills 
      * I like step-by-step instructions 
      * I work at a steady pace 
      
*B* 
      * I focus on the big picture & possibilities 
      * I admire creative ideas 
      * I notice anything new or different 
      * I am inventive 
      * I think about future implications 
      * I trust my gut instincts 
      * I prefer to learn new skills 
      * I like to figure things out for myself 
      * I work in bursts of energy 
 
A  B 
  
    Below, you will find two descriptions. Select the set that best corresponds to you. 
 
    *A*   
      * I have high energy 
      * I talk more than listen 
      * I think out loud 
      * I act, then think 
      * I like to be around people a lot 
      * I prefer a public role 
      * I can sometimes be easily distracted 
      * I prefer to do lots of things at once 
      * I am outgoing & enthusiastic 
      
*B* 
      * I have quiet energy 
      * I listen more than talk 
      * I think quietly inside their heads 
      * I think, then act 
      * I feel comfortable being alone 
      * I prefer to work "behind-the-scenes" 
      * I have good powers of concentration 
      * I prefer to focus on one thing at a time 
      * I am self-contained and reserved 
 
A  B 
  
    Below, you will find two descriptions. Select the set that best corresponds to you. 
 
    *A*   
      * I like to have things settled 
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      * I take responsibilities seriously 
      * I pay attention to time & am usually prompt 
      * I prefer to finish projects 
      * I work first, play later 
      * I seek closure 
      * I see the need for most rules 
      * I like to make & stick with plans 
      * I find comfort in schedules 
  
*B* 
      * I like to keep my options open 
      * I am playful and casual 
      * I am less aware of time and may run late 
      * I prefer to start projects 
      * I play first, work later 
      * I may have difficulty making some decisions 
      * I question the need for many rules 
      * I like to keep plans flexible 
      * I want the freedom to be spontaneous 
 
A  B 
  
Ex Post Demographics - Other 
 
For the following questions, you are asked to find the applicability of the statement to you on a scale of 1 ("I’m very 
much like that") to 5 ("I am not at all like that"). 
 
    My friends would say I am cautious. 
 
1 ("I’m very much like that")  2  3  4  5 ("I am not at all like that") 
     
    Being financially cautious is important to me. 
 
1  2  3  4  5 
     
    I like statistics. 
 
1  2  3  4  5 
     
    I like SPORT’s statistics. 
 
1  2  3  4  5 
 
    I enjoy reading the sports news. 
 
1  2  3  4  5 
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I enjoy reading about sport statistics. 
 
1  2  3  4  5 
     
    I quite often feel that things are set in my life and I can’t change them. 
 
1  2  3  4  5 
     
    I’m aware that, while I can’t always control what happens around me, I do control my own reaction to said events. 
 
1  2  3  4  5 
     
    I believe that when people find themselves in bad situations, it’s usually due more to unlucky circumstances. 
 
1  2  3  4  5 
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Weaving Actuarial Stories 

Marc-André Desrosiers, FCAS, MBA 

  
Abstract: Given that actuaries are using (informal) economic theories in their work (to build useful databases, to 
support the implementation process of proposed policies, etc.), it is worthwhile to understand the way these 
(informal) theories function and to evaluate their quality. We will construct a view of economic thinking that 
shows that economic theories fundamentally function like stories, like narratives. With that view in hand, we will 
then be able to highlight common mistakes in actuarial work as well as propose alternate views for the future 
work of actuaries. 
 
Keywords: Credible Worlds, Imitation of an Action, Philosophy of Science, Epistemology of Economics, 
Narrative Theory. 

  

1. INTRODUCTION 

During the course of my career as a ratemaking actuary for Property/Casualty insurance 
products, I have come to notice that the practice of actuarial pricing may rely heavily on statistical 
methodology, but it also depends heavily on the capacity of the actuary to make sense of the 
underlying economics of the purchase of insurance. For instance, when it comes time for the actuary 
to select which variables to examine whether in a costing model, a buying ratio predictive model, a 
predictive model of deviations from system rates or a model of price elasticity, the modeling actuary 
needs to form, at least, an informal theory of the mechanisms in play to be able to dig through 
immense databases to isolate and compose variables that have the potential to be informative. 
Moreover, since ratemaking is an activity that does not end until the prices make their way to the 
markets, and maybe not even then, the pricing actuary needs to worry about whether or not 
intermediate users of the models, such as underwriters and brokers, will accept the proposed pricing 
models. To pass that hurdle, the pricing actuary often will present the rationale for broad and 
specific elements of the model by appealing to, sometimes, informal theories that the stakeholders 
of the insurer have about what drives the buying and claiming behaviors of the insureds. In effect, 
what I have come to observe is that significant efforts of theorizing of choice behavior under risk 
are taken by practicing field actuaries. 

While the theorizing activities mentioned above often take place at an informal level, their 
cumulative resulting effects can be material to the success of the activities of the insurer: largely 
because they are so deeply related to policy-making with regards to pricing, the key driver of 
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profitability (and thus solvability and existence) of the insurer. 

But, for some practicing and many academic actuaries, it is not even obvious that economic 
modeling does or should enter their practice. To them, the actuary should be focusing on predictive 
modeling with an absolutely agnostic attitude regarding the nature of the processes driving the data1. 
This attitude can be contrasted with two other ‘schools’ of statistical/probabilistic work oriented 
towards economic applications. One is the causal modeling orientation to estimation2. Two is the 
structural approach to estimation3

While we are not proposing that actuaries stop using the (predictive modeling) tools that have 
made them successful in their environment, we are proposing that something important is lost with 
such pure agnosticism. That loss even affects the statistical aspect of the work. Take the example of 
building and calibrating a rating algorithm. With a completely agnostic attitude, all the variables that 
are statistically significant would be kept. Reflecting on the underlying (economic) reality that 
generated the data would help the actuary (1) make reasonableness checks about the nature and 
strength of the relationships found, (2) avoid over-fitting of the data because of the work done in 
(1), and (3) go through a healthy dose of story-telling about the selected models that can help the 
stakeholders of the actuarial work wrap their head about the significance of the model. 

. In both of these approaches, the modeler gets heavily involved 
with theorizing. Under the causal approach, the modeler gets involved because some form of a priori 
reasoning needs to take place in the selection of statistical instruments (given the humanly or 
economically relevant selected question of interest). Under structural modeling, the modeler needs 
to become quite familiar with the underlying (economic) theoretical model to be able to write down 
conditions the models predict would be observed in empirical reality. Either way, agnosticism about 
the underlying reality that generated the data is a no-go. 

We will thus explore here what makes a theoretical economics model ‘good’. We do so in the 
hope that actuaries will be better equipped with answering the question of whether or not the 
(economic) theories they are using are well constructed and relevant to the problems at hand. With 
that exploration in hand, we will then explore implications relating to: (1) the asymmetry between 

                                                           
1 As examples of work that are much in line with the said attitude, see (Regression Modeling with Actuarial and Financial Applications 2010) and (Loss 
Models: From Data to Decisions 1998). 
2 A good example of that type of work can be found in (Mostly Harmless Econometrics: An Empiricist's Companion 2009). One unfortunate aspect of 
causal-style estimation is that it is never obvious to what extent the identified causal factor will reproduce in situations that are not exactly like the 
situations in which the causal factor was identified. 
3 Good examples of that type of approach can be found in the examples of (Analysis of Panel Data 2003). An unfortunate aspect of structural 
estimation is that, at times, only factors of profoundly unrealistic models can be estimated due to mathematical tractability issues. 
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past and future, (2) the difference between regularity and causality, (3) why actuarial science needs to 
move beyond statistics and into econometrics, (4) how to identify model blind spots and comment 
on their importance, (5) what are alternative considerations into building a good rating system, and 
(6) how actuaries can get involved into the human side of claims. 

1.1 RESEARCH METHODOLOGY 

To explore how (many) good economic theories are constructed, we will start by relating some 
commonly known economic theories that actuaries sometimes share with each other. These stories 
relate to adverse selection, moral hazard and the pricing cycle: all subjects deep at the heart of 
actuarial practice. 

We will then introduce the concepts of narrative causality and of the imitation of an action. On 
that subject, we will hear thoughts coming from different traditions: from economists reflecting on 
the trade of economic theorizing and its relationship to economics at large, from Paul Ricoeur 
(through the words of one of his commentators4

With these tools in hand, we will be able to turn to the applications that we mentioned above. 

) reflecting on narrative theory and on the practice 
of the historical science, through Ricoeur’s work, from a range of thinkers that reflected on narrative 
theory, the historical science, the functioning of language and models, etc., and from applied 
mathematicians building concepts that allow them to build models relating to human activity. 

1.2 Outline 

The remainder of the text will go as follows. Section 2 will be dedicated to recalling commonly 
shared actuarial economic models: in section 2.1, we will discuss the economist’s view of adverse 
selection; in section 2.2, we will discuss the actuary’s view of adverse selection; in section 2.3, we will 
discuss moral hazard; and, in section 2.4, we will discuss the rationality of the pricing (and reserving) 
cycles. Section 3 will be dedicated to understanding how (many) good economic narratives work: in 
section 3.1, we will discuss the importance for story telling of being able to interpret human action; 
in section 3.2, we will discuss the inside view of the characters; as contrasted as the discussion of the 
outside view of the (implied) narrator we will have in section 3.3; in section 3.4, we will discuss 
features of fictional time; in section 3.5, we will discussed how narrative causality differs from both 

                                                           
4 We will mostly use the commentary by (Dowling 2011). Another relevant commentary is (Discussion: Ricoeur on Narrative 1991). 
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sufficient reason and efficient cause; at that point, the reader may choose to skip to section 4 relating 
to a first set of applications of the work done so far and come back to section 3.6 after that; in 
section 3.6, we will explore how narratives serve as laboratories to identify unintended 
consequences; in section 3.7, we will discuss how good a story induces a  
(mini-)paradigm shift and how that may differ from the story being true; in section 3.8, we will 
explore how collective entities may properly enter economic stories; and, in section 3.9, we will 
mention how the mathematical language enters economic story telling. Section 4 will discuss the 
basic applications: in section 4.1, we will discuss how the past is not necessarily representative of the 
future; and, in section 4.2, we will discuss how regular succession can be quite different from 
causality. Section 5 will be dedicated to more advanced applications: in section 5.1, we will discuss 
how the statistical work of the actuary needs to be supplemented with story-telling; in section 5.2, 
we will discuss how a narrative approach to economic theorizing can assist the actuary in identifying 
model blind spots and assessing their importance; in section 5.3, we will use the framework built 
above to construct an alternative view of what a good rating system could look like; and, finally, in 
section 5.4, we will discuss why and how the actuary can get involved in the claims process. 

2. ACTUARIAL STORIES 

With a view of understanding how good economic theorizing functions, we propose to start by 
relating a couple of examples of economic models that commonly enter actuarial education and are 
commonly in the mind of many practitioners when going through their ratemaking exercises. The 
hope is that the features of good narratives that will be identified in section 3 will be readily apparent 
to the reader when considering how those commonly related stories were built. 

2.1 The Economist’s View of Adverse Selection 

This particular story motivates why, even if the insurer was a monopolist, if the purchasing of 
coverage was not mandatory, it could happen that large sub-populations could be left out of the 
insurance system. 

Let’s provide a typical example of adverse selection as the economic literature has considered it. The setting can 
be a life insurance pool in the 18th century (Bühlmann 1997). Suppose that there is initially only one insurer: 
basically it’s the insurer for the county, and there is no competition yet. The insurer is not sophisticated yet, so 
the ‘local actuary’ sets the rate such that premium cover losses: effectively, the group starts with a pooled rate. 
Now, for random reasons (maybe the insureds are temporarily acting less than fully rationally, maybe because 
of the temporary influence of preferences other than that of terminal wealth, ... ), a small subset of insureds 
decides to leave the pool. Since rating is basically projecting past trends into the future, the rate for the next 
year will decrease if the proportion of high-risk individuals that left the pool is greater than that of low-risk 
individuals. If that’s the case, most of the people that left have no incentive to not come back in as the price for 
the same coverage has decreased. There’s also no reason to believe that people attracted to buy in the pool will 
have a significantly different proportion of high-risk/low-risk than the proportions already in the pool. But, 
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what if, at the more likely extreme, only low-risk people are tempted to leave? Then, the rate for the next year 
will increase, and most low-risk people not already in the pool won’t be tempted to get (back) in, but the high-
risk people won’t feel the disincentive and the pool will actually attract more high-risk people than the rate 
anticipated. The insurer will have to increase rates even further the period after. The same phenomenon can 
apply in many successive periods. In the limit, if the insurer hasn’t filed for bankruptcy already, only high-risk 
individuals will be left and they will be purchasing the full amount of insurance at their own adequate rate. 
[Freely inspired by (Akerlof 1970)] 

2.2 The Actuary’s View of Adverse Selection 

This particular story motivates why rate segmentation (based on cost differentials) is a sensible 
action to take in a competitive insurance market. 

Consider the situation in which a company (e.g., Simple Company) charges an average rate for all risks when 
other competing companies have implemented a rating variable that varies rates to recognize the differences in 
expected costs. In this case, Simple Company will attract and retain the higher-risk insureds and lose the lower-
risk insureds to other competing companies where lower rates are available. This results in a distributional shift 
toward higher-risk insureds that makes Simple Company’s previously “average” rate inadequate and causes the 
company to be unprofitable. Consequently, Simple Company must raise the average rate. The increase in the 
average rate will encourage more lower-risk insureds to switch to a competing company, which causes the 
revised average rate to be unprofitable. This downward spiral will continue until Simple Company improves 
their rate segmentation, becomes insolvent, or decides to narrow their focus solely to higher-risk insureds and 
raises rates accordingly. This process is referred to as adverse selection. (Werner and Modlin 2010, 151) 

2.3 Moral Hazard 

This particular story motivates why, as long as the actions that the insureds take to avoid or 
contain losses are not observable by the insurer, including risk sharing features (like deductibles, 
coinsurance or limits) in insurance contracts is a sensible action to take by the insurer, even if the 
insured is loss averse and the insurer is basically and relatively risk neutral. 

Assume that there is an insurer that approaches the market with insurance contracts. The insured, then, can 
accept one of the proposed contracts. Once coverage starts, the insured has a choice to follow two generic 
paths: (1) the insured can put in all the necessary efforts to avoid losses, or (2) the insured can stop putting in 
the necessary efforts to prevent losses. The insurer cannot become aware of whether or not the insured is 
taking the necessary steps to avoid losses. Clearly, if the insurer was able to become aware of the level of effort 
put in by the insured to avoid losses, the risk neutral insurer could rate accordingly and provide risk-averse 
insureds with contracts that they prefer and that protect them fully against insured losses. When the insured has 
more information than the insurer about the level of effort displayed to avoid losses, incentive compatibility 
forces the insurer to offer contracts where the insured faces some of the risk; for, imagine the insurer did not 
force the insured to face some of the risk, then the insured would receive the same coverage no matter what 
level of effort was put in to avoid losses, and the insured would rationally put in as low a level of costly effort 
as possible to avoid the loss and, thus, claim, on average, more. [Freely inspired by (Chavas 2004, 192)] 

2.4 The Rationality of the Pricing (and Reserving) Cycle(s) 

This story motivates why it could be the case that pricing cycles arise even in the absence of 
exogenous shocks to insurer capital, like large catastrophes. 
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Underwriting cycles, like profit fluctuations in other industries, reflect the interdependence of rival firms. 
Strong policyholder loyalty and demand inelasticity hold the allure of large returns for incumbent firms, but the 
apparent ease of entry into insurance, the lack of market concentration, and the difficulty of monitoring 
competitors’ prices preclude excessive profits. The interaction of these forces keeps the market in 
disequilibrium, with continuing price oscillations. (Feldblum 1990, 175) 

The rationality of the reserving cycle could follow in an environment where rates are regulated so 
that charged rates are based on the insurers’ expected losses and expenses plus a set profit margin. 
In that case, insurers’ reserves (which are presumably set within a margin of error that is often 
economically material), that do enter the expected losses, are one of the only ways left for the insurer 
to endogenously affect insurance prices. That being said, this does not rationalize the reserving cycle 
in a non-rate regulated environment. 

3. HOW DO (MANY) GOOD ECONOMIC NARRATIVES WORK 

The question of the nature and evaluation of theories in economic theory is a question that 
received a fair bit of attention in the wake of some successful and some disastrous economic 
interventions in the recent past: whether it be the Eastern transition from a control to market 
economy, the massive deregulation of banking and finance markets that many suspect to be at least a 
contributing cause for the recent Great Recession, or the massive auctions of the cellular 3G 
capacity in the USA and UK. In particular, (The Puzzle of Modern Economics: Science or Ideology 
2010) written by Roger E. Backhouse addresses these issues. The first part of his work deals with 
fact finding relating to recent involvement of economists in public policy (Backhouse 2010, 15-96)¸ 
while the 6th chapter "Creating a ‘Scientific’ Economics" (Backhouse 2010, 99-116) and 7th chapter 
"The Quest for a Rigorous Microeconomics" (Backhouse 2010, 117-136) deal with the nature of 
modeling in economics. 

As a matter of course, Backhouse will be mainly interested in macroeconomic policy; however, 
for our purpose which is to relate to actuarial practice, we are much more interested in 
microeconomic policy-making. Therefore, we will follow a different path. Our path will instead take 
us much closer to understanding how economic theorizing draws upon our ability to follow a story, 
if only indirectly at times. 

It is our thesis that (many) sound economic arguments are fundamentally ‘good’ imitations of an 
action. We are thus very close to the view proposed by Robert Sugden in (Credible Worlds: The 
Status of Theoretical Model in Economics 2008) and (Credible Worlds, Capacities and Mechanisms 2009). 
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At the heart of an ‘imitation of an action’, we find a text (either literally written or rendered 
verbally) which unfolds an imaginary world for the audience: we find 

 (...) the idea that literary works are self-contained worlds with their own laws and their own logic (...). (…) The 
best way to understand mimesis preaxeos5

We will spend the rest of the section attempting to highlight the nature of a ‘good’ ‘imitation of 
an action’. 

 (...) is to begin by freeing the concept of ‘imitation’ from any narrowly 
conceived comparison of art work and object, as in the physical resemblance between a marble bust and its 
subject. (Dowling 2011, 2) 

3.1 Interpreting Human Action 
 
From the point of view of the economist, the condition of human existence exhibit four fundamental 
characteristics. The ends are various. The time and the means for achieving these ends are limited and capable 
of alternative application. At the same time the ends have different importance. Here we are, sentient creatures 
with bundles of desires and aspirations, with masses of instinctive tendencies all urging us in different ways to 
action. But the time in which these tendencies can be expressed is limited. The external world does not offer 
full opportunities for their complete achievement. Life is short. (…) Our fellows have other objectives. Yet we 
can use our lives for doing different things, our materials and the services of others for achieving different 
objectives. (Robbins 2008, 74) 

 The entry point of a ‘good’ ‘imitation of an action’ is the building of believable characters. As the 
passage above is made to illustrate, part of what makes characters believable is that they suffer from 
the human condition. For example, in the passage above, the presumption is that the large diversity 
of sought ends contrasted with the limited available means and time to achieve those ends is a 
human universal: so much so that persons from all cultures, backgrounds, ages and times are 
expected to recognize it to be true of themselves and of the persons that surround them. 

Notice how the above characterization abstracts from a lot of the minutiae of our lives. In 
theorizing generally, it is commonly sound and necessary to abstract from some features of the 
problem at hand and instead focus (sometimes to the point of caricaturing) on other features of the 
problem. In fact, it was the opinion of Milton Friedman that, in the process of abstraction at the 
heart of modeling, some of the ‘assumptions’ may be entirely unrealistic: to the point that, very 
often, the most significant and useful theories are built on ‘assumptions’ that are wildly unrealistic.6

                                                           
5 mimesis praxoes roughly translates to the action of imitating. 

 
In fact, it is one of our hopes here to be able to provide guidance about which assumptions must be 

6 "In so far as a theory can be said to have 'assumptions' at all, and in so far as their 'realism' can be judged independently of the validity of the 
predictions, the relation between the significance of a theory and the 'realism' of its 'assumptions' is almost the opposite of that suggested by the view 
under criticism. Truly important and significant hypotheses will be found to have 'assumptions' that are wildly inaccurate descriptive representations of 
reality, and, in general, the more significant the theory, the more unrealistic the assumptions (in this sense)." (Friedman 2008, 153) 
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realistic to drive the point of the economic narrative and which ones can be simplified, even to the 
point of caricature. 

Despite Friedman’s insistence that assumptions about economic agents need not be realistic, 
significant efforts have been deployed to provide economics with a less idealized view of economic 
agents. Herbert Simon has been a great proponent of that view. In his essay (A Behavioral Model of 
Rational Choice 1955), Simon was proposing that we attempt to refine our assumptions about how 
human beings deal with situations of economic interest: Simon wanted us to replace the (rational) 
‘economic man’ of traditional economics with a view of human beings that have preferences that 
may appear inconsistent from some point of view, that use inappropriate rule-of-thumbs for 
assessing relevant probabilities instead of Bayes’ theorem and other probability and statistics 
theorem, that have imperfect access to relevant information, etc. (Simon 1955, 99) 

Yet, some story telling requires the author and the audience to be able to interpret human actions 
within a specific cultural context. Take a simple example of understanding why it might be the case 
that the owners of automobiles with make "Lexus", "Mercedes", "BMW" may have higher than 
average price elasticity with regard to their automobile insurance coverage. In that case, the actuary 
needs to use cultural awareness to understand that automobiles with these makes are signs of wealth 
and luxury. The actuary should also understand that people do become rich by ‘becoming good at 
negotiating prices’. Thus, the actuary could form a working hypothesis that the price elasticity for 
automobile insurance may be higher than average for owners of cars with those makes. 

Bottom line, it is important to build believable characters that react (to hypothetical situations) in 
a way that we recognize as plausible "because those same reasons [to explain why we undertake an 
action] are necessarily the means we use to explain to ourselves the actions of other people." 
(Dowling 2011, 4) 

3.2 The Inside View of the Characters 

What makes history radically different from the physical sciences, Collingwood argues, is that historical events 
have an ‘inside’ - how the historical actor understood themselves and their actions - as well as an ‘outside’, 
meaning a subjection to external forces such as climate, geography, social institutions, and the like. 
Collingwood’s ‘outside’ corresponds (...) to any social and physical environment independent of consciousness, 
and his ‘inside’ to the thoughts and motives of human agents. (...) [T]he inside includes a great deal more than 
rational calculation, as when unconscious desires or undeclared animosities become, along with conscious 
motives, a mainspring of action. (Dowling 2011, 56) 
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To understand why the inside views of the characters is relevant to economic storytelling, it is 
relevant to contrast the intentions behind historic storytelling, as described by Collingwood, to 
(economic) policy-supporting story-telling. The (presumed) intention that supports discourse 
relating to the science of history is to say something true about the past. Contrasted with this, the 
(presumed) intention of (economic) policy-making understood in its positive, as contrasted with its 
normative, sense is to say something true about what could possibly, plausibly or probably happen if 
a given set of policies is implemented. In a basic way, history is aimed at the past, while policy-
making is aimed at the future. Caution is required here, because a large motivation for historical 
science undertaking is the understanding of the past so as to avoid its pitfalls or foster its successes 
(in the future). But it is also the case that people need to be able to imagine how their actions will 
appear, in retrospect, either to their future selves or to future generations, to be able to best guide 
their policies about what to do. 

The key to why the inside view of the characters is relevant to (economic) story-telling is that, 
while they are in the story, the characters are literally unable to grasp the meaning of their actions as 
set against the background of the whole story. To them, the situations of the story are experienced 
in a state of imperfect knowledge (with informational blind spots, with some elements of available 
information not understood at all or well, with poor forecasts about how our future selves or 
generations will value our current actions, etc.).7

Without the inside view of the characters, one could be tempted to ask of the characters to act in 
synch with the ultimate lesson that a modeler may be attempting to draw out of an economic theory. 
But, for us, meaning and lessons are not available at the beginning of a story, but at the end. 
Therefore, to connect with the characters, it is important for the audience of the (economic) story to 
be able to traverse the story as if they were the characters in the story, with their state of imperfect 
knowledge and foresight. 

 

3.3 The Outside View of the (Implied) Narrator 

We will refer to the outside view in a way different from that of Collingwood as reported above. 
For us, the outside view is the dual of the inside view of the characters: if the inside view is the view 
of the story as it is experienced by the characters as they suffer the story and react accordingly, the 

                                                           
7 "(...) a chain of causal implication that must be traversed in time, and in a state of partial or imperfect knowledge (...)An important point for Ricoeur 
is that any audience outside the horizon of the events in the story (...) must make this traversal in just the same state of imperfect knowledge as those 
inside it." (Dowling 2011, 8-9) 
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outside view corresponds to that of a narrator that has already grasped the events of the story as a 
whole and can thus highlight the lessons implied by the story. 

In essence, we are saying that many economic narratives employ implicit omniscient narrators. 
Omniscient because it is quite common for the implied narrator of economic stories to be able to 
“say” exactly what the state of knowledge of the different characters is, what they prefer, what they 
are trying to do, etc. It is implicit because, as contrasted with, say, many modern novels, the narrator 
does not necessarily have an explicit voice within the (economic) story. For example, in the way that 
we presented the four actuarial stories in section 2, the narrator can be identified explicitly because 
the audience is being asked to consider a scenario. However, as we will comment on more later on, 
those stories could easily have been written almost completely with a mathematical language: as a set 
of assumptions and theorems. Indeed, some of those same stories from section 2 were initially 
related in their mathematical formulation. When that happens, the effective assumption is that the 
audience of the theory is able to translate the mathematical formulation into a story about people, 
their goals, their values, their hidden agendas, their beliefs, etc., facing situations and taking actions 
in accordance. When they do so, the audience is invoking a narrator that reports to them the interior 
discourse of the characters, the events as they truly happen without the characters being necessarily 
aware of them, etc. 

We call this an outside view because it is a view from outside the time of the story, outside of the 
time that the characters would be experiencing. It is a view from which the globality of the story can 
be grasped. From this point of view, it is possible to extract lessons concerning the policies under 
consideration, because, outside of the time of the story, one can grasp together the intentions of the 
characters with the ultimate consequences of their chosen actions. 

3.4 The Fictional Time of the Story 

We live in a world in which, not only are the things that we want scarce, but their exact occurrence is a matter 
of doubt and conjecture. In planning for the future we have to choose, not between certainties, but rather 
between a range of estimated probabilities. It is clear that the nature of this range itself may vary, and 
accordingly there must arise not only relative valuation of the different kinds of uncertainties between 
themselves, but also of different ranges of uncertainty similarly compared. From such concepts may be 
deduced many of the most complicated propositions of the theory of economic dynamics. (Robbins 2008, 79) 

The experience of time has to be one of the fundamental human universal. Across civilizations, 
cultures, ages, times, etc., human beings have formed wisdom about their experience of the passage 
of time and recorded that wisdom in idioms of their language. The quote above is meant to illustrate 
that, for human beings, the passage of time is not the neutral and regular swing of the pendulum. 
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Time takes meaning in the worries, concerns, projects, etc. that we experience. Now, how does that 
translate in the stories that interest us? 

3.4.1 Calendar Time in the Story 

It is worthwhile to note that most cultures have a calendar: a calendar that helps them keep track 
of the movement of celestial bodies, of seasons, etc.; a calendar that starts at a meaningful event; a 
calendar which helps mark important intimate, private and public moments. Now, calendars are 
imminently public: if calendars were not public, they could not help people synchronize their 
activities. In fact, the importance of calendar time has increased dramatically with the advent of the 
written language, of written contracts, and, even more so, of the digital age. For example, in my own 
life, I keep track of pay-days that come every two weeks, of rents due at every beginning of the 
months, of utility bills due every month, of classes I need to teach that take place twice a week, and 
so on. 

So, in an economic narrative, even when it is written in a mathematical language, the reference to 
time is not a reference to the neutral physical time of Newtonian mechanics. It is not even a 
reference to the warped physical time of general relativity. It is a reference to the humanly 
meaningful time of calendars and clocks. Admittedly, calendars are built with a view on the 
movements of the celestial bodies; but, calendars are meaningful to humans and not to the Sun, the 
Moon, ... Calendars also help us explain to ourselves the actions of other people: whether it be 
understanding why farmers are sowing seeds, understanding why people rush to the nearest mall to 
buy a pine tree, why a man spends a full morning making reservations at a local restaurant, etc. Thus, 
in a story, we can invoke calendar time to justify, rationalize, the actions of the characters. In effect, 
this is saying that calendar time lives just as much in stories as it does in our lived lives. That being 
said, the calendar time of the story is, by construction, fictive, while the calendar time of our lives is 
not. What is important is that the characters react to it in a way that we can comprehend. 

3.4.2 Available Information 

In natural languages, it is quite common for some verb tenses to be commonly associated with 
the telling of stories. Take the example of the opening of Star Wars: "A long time ago in a galaxy far, 
far away...." Given that this is the opening of a science-fiction movie (which would generally indicate 
a futuristic inclination for the movie), the invocation of the past may seem odd. In fact, the 
invocation of the past is more meant to indicate that a fictional story will be related. The use of the 
imperfect verb tense also often serves the same aim. 
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In effect, within natural languages, many verb tenses are used in narratives and the reason why 
there are many verb tenses used in narratives is to allow the narrator to reflect the position of the 
characters in the time of the story. Just like in real life, the characters look backward and forward in 
time. So, natural languages have provided us with ways to say that somebody was reflecting about 
the meaning of some events or was considering attempting an action or considering the 
consequences of said attempted action. 

In economic narratives, as they are often either based on or expressible in terms of game theory, 
the notion of information set and of allowable actions serve substantially the same purpose. For 
example, in a (repeated) game theory setting8

  

, at any given point in the time of the game, a given 
player has access to some information relating to past and current steps in the game, but not to 
others; the player has properly understood the meaning of some pieces of information, but not 
others: thus allowing the player to form a view about the future; the player is also attempting to 
achieve some ends, often expressed in terms of attempting to maximize some preference function, 
and is allowed to take on some actions, but not others. 

                                                           
8  See (Repeated Games and Reputations 2006) for an advanced introduction to repeated game theory. Another variant of game theory where 
dynamics are crucial is evolutionary game theory. For an introduction, see (Evolutionary Games and Equilibrium Selection 1997). 
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3.4.3 Disproportions and Meaningfulness 

What necessarily emerges from the disproportion [between time taken to narrate and time as it passed in the 
story] is a structure of significance. (...) [I]ts primary importance is that it represents a break or rupture with 
linear time, a transformation of Aristotle’s cosmic time into a time of human preoccupation or concern. (…) At 
the level of events (...) characters move forward in a world where choices must be made with only approximate 
guess about their consequences, where accidents might occur at any moment to alter fortunes of the individual 
or the community, and where people must be judged on the shifting and uncertain ground of social 
appearances. (Dowling 2011, 47-48) 

Consider again the stories that were relayed in section 2. The stories narrate the events centering 
around insurer and insureds decisions. Yet, presumably, these decisions take a tiny fraction of 
calendar time. But, they take up almost the entirety of narrated time, the time taken to go through 
the story. Why is that so? Compare with plain-vanilla dramatic movies, for example. In those 
movies, again, much of the movie will not cover many events that occur daily to the characters: like 
time spent on personal hygiene, time spent eating, etc. The movie-maker is instead choosing to 
focus the attention of the audience on the events that relate to the story at hand: events that are 
significant and meaningful in the story. 

So, many economic narratives will focus the attention of the audience on particular (often 
recurrent) decisions that need to be taken by individuals, firms, governments, etc. In effect, the 
entirety of the time of narration is taken to describe those moments of pondering, decision, and 
action. 

3.5 Narrative Causality vs. Efficient Cause vs. Sufficient Reason 

Ordinary life, Aristotle said, is most often made up of actions and events that take place in meaningless 
succession: ‘one thing after another’. But narrative always involves, due to the logic of emplotment, a strong 
implication of causality: ‘one thing because of another’. (...) [E]mplotment permits an intuitive grasping 
together (...) of otherwise heterogeneous elements (...). (Dowling 2011, 5) 

At this point, we are ready to introduce the concept of narrative causality. In effect, causality is at 
the heart of narration because the audience needs to grasp why events occur in the sequence that 
they do: a story is not a (mere) temporal sequence of events. 
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But, what makes narrative causality different from other forms of causality that we commonly 
encounter: how is narrative causality different efficient cause9? How is narrative causality different 
from sufficient reason10

Let’s first address how narrative causality incorporates argumentation by sufficient reason. 
Because, in a well constructed narrative, the actions of the characters make sense taking into account 
their motivations and their environment as they face it; necessarily, characters have to have sufficient 
reason to take the actions that they actually do take within the story. It is worthy to note that some 
economists have thought that some brands of economic arguments rest entirely on sufficient 
reason

? 

11

Still, why is it that argumentation by sufficient reason comes so naturally in economics? It is 
simply because economics is concerned with human choices. So doing, economic argumentation 
must extend itself beyond the material world and "involve links in the chain of causal explanation 
which are psychical, not physical, and which are, for that reason, not necessarily observable by 
behaviourist methods." (Robbins 2008, 85)

 and, when expressing that thought, they were referring to the theory of valuation. 

12

By way of contrast, as Ricoeur noted (Ricoeur 1983, 249-255), the explanation of the evolution of 
human societies (especially in the historical science) must also make room for efficient cause: it must 
make room for change occurring in the natural environment of human beings. This is one way that 
efficient cause must enter narrative causality: by providing the rules by which the natural 
environment of the characters is evolving. For actuarial purposes, this is especially relevant. Whether 
the actuary is considering the impact of epidemics, the impact of weather and climate, the impact of 

 

                                                           
9 "The 'efficient cause' of an object is equivalent to that which causes change and motion to start or stop (such as a painter painting a house) (see 
Aristotle, Physics II 3, 194b29). In many cases, this is simply the thing that brings something about. For example, in the case of a statue, it is the 
person chiseling away which transforms a block of marble into a statue." (Wikipedia n.d.) 
10 "Fourth Form: The Principle of Sufficient Reason of Acting (principium rationis sufficientis agendi); briefly known as the law of motivation.[11] 'Any 
judgment that does not follow its previously existing ground or reason' or any state that cannot be explained away as falling under the three previous 
headings 'must be produced by an act of will which has a motive.' As his proposition in 43 states, 'Motivation is causality seen from within.'[12]" 
(Wikipedia n.d.) 
11 "The distinctive character given to this system of theory by these postulates and by the point of view resulting from their acceptance may be 
summed up broadly and concisely in saying that the theory is confined to the ground of sufficient reason instead of proceeding on the ground of 
efficient cause." (Veblen 2008, 133) 
12 Here's another take at the same basic points: "The first, inescapable in any thinking about human conduct, is fundamentally the problem of the 
reality of choice, or 'freedom of the will'. It involves the essence of the value problem in the sense of individual values, and is at bottom the problem of 
the relation between individual man and nature. The second basic problem has to do with the relation between the individual man and society. 
The crucial fact in connection with the first problem is that, if motive or end in any form is granted any role in conduct, it cannot be that of a cause in 
the sense of causality in natural science. (...) Motive cannot be treated as a natural event. A fundamental contrast between cause and effect in nature 
and end and means in human behaviour if of the essence of the facts which set the problem of interpreting behaviour. There seems to be no possibility 
of making human problems real, without seeing in human activity an element of effort, contingency, and, most crucially, of error, which must for the 
same reasons be assumed to be absent from natural processes." (Knight 2008, 101) 
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ground movements, etc., the actuary is commonly faced with taking into account how the natural 
world is affecting the human environment. 

But efficient cause also enters narrative causality because the characters must take into account 
physical, chemical, biological, etc. laws in figuring out what they can do and how they will go about 
effecting their choices. Now, in most economic narratives, as opposed to, say, crime novels, there is 
generally little emphasis on the exact ways in which the characters take actions. Still, for an 
economic narrative to be instructive, it is often the case that the narrative must reflect, even on an 
abstract level, the actual potentialities that humans have to effect their intentions. 

As mentioned in the outline, readers eager to get to applications of the work done so far should 
skip to section 4 "Basic Applications" and come back to complete this section before moving on to 
section 5 "Advanced Applications ". 

3.6 A Laboratory to Explore Unintended Consequences 

As one looks back on a completed series of events in a plot, it does seem as though there is something like 
unity or simultaneity in the causal chain. (...) [N]o, it was entirely unforeseeable; yes, we now see that it was 
inevitable after all. (…) Every story (...) is in an important sense told forward and backward (...). The forward 
movement, which belongs to what Ricoeur calls the syntagmatic order of discourse, links a movement from 
event X to event Y in an irreducibly temporal way. (...) At the same time, any continuous implication that the 
story has already been grasped as a whole (...) mean that events must be moving toward a conclusion so far 
unforeseen by its characters and by us its audience. (Dowling 2011, 9-10) 

We are here getting at one fundamental reason why human beings tell each other stories: so that 
not everybody has to actually go through an experience to be able to draw the lessons from that 
experience. In effect, stories allow us to simulate reality and draw conclusions about what would 
really happen if we made certain choices or decisions. This is particularly valuable when the events, 
were they actually experienced, would induce dramatic consequences, e.g., irreparable damages, 
points-of-no-return, etc. 

Given that we have argued that economics (and actuarial science also) are heavily grounded in 
policy-making, which is intrinsically forward-looking, it is quite natural to wish to be able to be able 
to comment about the actual, as contrasted with intended, effects of a policy, if it were implemented. 
And, our daily lives inform us that what actually takes place may well be far away from what we 
intended: sometimes because of poor execution on our part, but sometimes because people that 
share the world with us form intentions to interfere with our projects. Presumably, they do so 
because they choose to, if only at a subliminal level. And, their choice is the result from their own 
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projects, their own possibilities, their own preferences, their own conjectures, etc. And, this is where 
stories become useful simulations: because all the characters have to act in accordance with their 
own beliefs and motivations, the story as a whole may unfold in a way that does not match any of 
the characters’ stated or hidden intentions. Thus, the story serves as a (virtual) laboratory that allows 
people to explore the unintended consequences of their choices and actions. 

What are the stories from section 2 allowing us to experience without actually having to 
experience it? The story on the economist’s view of adverse selection is meant to help us understand 
that it may be that all the people from a population may either gain or be no worse off from having 
a central power mandate insurance, when the distortions from adverse selection are too severe. The 
story of the actuary’s view of adverse selection is meant to help us understand that, in a competitive 
insurance market, an insurer that does not invest in (cost and) rate segmentation may have its 
solvability threatened. The story about moral hazard is meant to illustrate that risk sharing is an 
invaluable feature of insurance contracts because, without it, claim inflation may make insurance 
unaffordable. And, the story about the pricing cycle is meant to illustrate that pricing cycles may not 
be the result of insurer irrationality and, so, suggest that education may not be the way out of the 
cycles. In all of the cases, the audience of the story is able to (virtually) experience the ‘bad 
consequences’ (unavailable coverage, insurer insolvency, claim inflation, continuing pricing cycles) 
without having necessarily to go through the experience themselves. 

3.7 (Mini-)Paradigms Shifts vs. Truth 

Are the stories of section 2 true? While the question may seem harmless, in fact, it is a source of 
great embarrassment13

                                                           
13 As the stories are not intended as stories about what actually happens (or, even for that matter, what literally will or would actually happen), the 
question asked is not actually that far from the question of asking whether a fictional work, like War and Peace, is actually true. 

. If one meant by true that there is a correspondence between the events of 
the stories and events in the real (empirical) world, then a sensible answer may well be that the 
question is undecidable as, in the real (empirical world), the setups of the stories have never actually 
been encountered. If one meant that, if, in the real (empirical) world, we set up a situation that is like 
the initial conditions of the stories, then events would unfold as in the stories, then the question may 
still be undecidable, not as a matter of principle, but because it may be actually impossible to effect 
such setups. Such is the case because to construct those stories many circumstances from life have 
been abstracted away (and replaced by implicit and, yet, potentially not neutral assumptions). 
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A potentially more promising avenue is to think about stories as being metaphorically true. But, 
then one has to come up with a view about what makes a metaphor true. A metaphor is meant to 
highlight how a certain aspect of something is like a certain aspect of some other thing. Is the 
likeness then true?14

The question then becomes whether or not the above question needs to receive a definite answer 
to allow us to make progress. Supposing we remain agnostic about the truth of fictional narratives, 
which would include the stories from section 2 as they were not stories meant to relay how (real) 
events actually unfolded, then it may still be sensible to ask if those stories were powerful, useful, ... 

 

Here, we are pointing towards the idea that good economic narratives induce change in 
perspectives in the audience that allows them to better deal with their own lives. So, we say that 
good economic narratives are useful and that the channel for their usefulness is a change in 
perspectives from which events, data, choices, policies, etc. are considered. In effect, we are saying 
that good economic narratives induce (mini-)paradigms shifts in their audience. 

In fact, all of the stories above were presented with the shift in vision-of-reality in mind: the 
stories were meant to induce (mini-)paradigms shift. And, of all of the presented stories, maybe it is 
the story initially presented by Akerlof that had the more lasting effect. In fact, Akerlof won the 
Nobel prize for that work15

3.8 The Place of Collective Entities 

. 

Examining the stories of section 2, we find that some of the characters are not, not even in 
principle, individuals: case in point, when insurers are brought in as characters of the story. What we 
have here is a case where a collective entity is a character in the story. But, then, how are we to make 
sense of assessments, motivations, intentions, etc. of collective entities? As the summary of the 
assessments, motivations, intentions, etc. of the composing individuals? Take the case of insurers. 
What is the objective of an insurer? To exist? To remain solvent? To provide insurance coverage at a 
fair price? To make profit? In fact, there are some groups of stakeholders of the insurer that would 

                                                           
14 It is tempting to say that the likeness cannot be actually be true because truth has no degree while likeness does. And, when we say that truth has no 
degree, we are aware that we say things like 'half-truths': but, we say such things when the things told were literally true (and recognized to be such) but 
they were presented to be interpreted in a misleading way.  
15 "Akerlof is perhaps best known for his article, 'The Market for Lemons: Quality Uncertainty and the Market Mechanism', published in Quarterly 
Journal of Economics in 1970, in which he identified certain severe problems that afflict markets characterized by asymmetrical information, the paper 
for which he was awarded the Nobel Prize." (Wikipedia n.d.) 
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focus on subsets of these possible answers. So, while it is certainly true that the way the insurer acts 
as a character in a story is a function of the individuals that exist in the sphere of the insurer, the 
insurer does not appear reducible to that of those individuals. Yet, collective entities commonly 
enter narratives: not just economic narratives, but fictional narratives, historic narratives, etc. 

Let us examine a little bit more closely how collective entities enter historic narratives. 
What gives such terms [singular collectives, like ‘Germany’, ‘Americans’, etc.] meaning is that they refer to 
concepts - family, tribe, clan, nation - that are constitutive of individual consciousness, and which therefore 
have a real existence in what Husserl called the Lebenswelt or ‘life world’ of men and women. (…) Taken 
together, Ricoeur argues, these factors [civilizational forces] generate ‘an ethics of participatory belonging,’ 
meaning that individuals themselves as belonging to the group (...) but as sharing a common destiny. (...) This is 
the category of what Ricoeur will call first-order entities, meaning that they are directly rooted in the real life of 
men and women. (…) Any first-order entity, Ricoeur thinks, may legitimately be treated as a quasi-character (...) 
in historical narrative. (...) The point is that such entities have a semi-autonomous status in historical reality. 
(Dowling 2011, 66-67) 

The key point for our purposes is that it is sensible to take collective entities as characters in a 
story because, as people, we are able to understand how these entities enter our lives. They enter our 
lives by our (potentially subliminal) choices. While it is true that actuaries, many of whom are 
employees or contractors of insurers, have their own individual agenda, they also understand 
themselves to act, in their capacities as employees or contractors, for the insurer. The same can be 
true of many stakeholder groups of the insurer, in many circumstances. In effect, the insurer can be 
properly treated as character in a story because, as a collective entity, it has much of the same 
characteristics of individuals. It has tendencies, it processes and assesses information, it has a 
diversity of aim, it has limited access to resources to achieve these aims, and it suffers from internal 
conflict. Thus, we think of collective entities in stories in a way analogous to the way we think of 
individual characters. 

But, contrast this with a disconnected sub-population. Take a sub-portfolio of (homogenous) 
insureds in an insurer’s book of business. There, it may well be sensible to think only in terms of 
representative individuals, because the composing individuals do not feel connected to each other: in 
their minds, they do not constitute a group. 

3.9 The Place of the Mathematical Language 

One clear cut distinctive feature of many economic narratives is their use of the mathematical 
language. In that way, they contrast themselves pretty clearly from most other forms of narratives 
(plays, novels, movies, etc.) where the mathematical language may be invoked incidentally, often 
through a character that is using mathematics. By contrast, in their published versions, economic 
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narratives may look more like a mathematical theory (with assumptions, lemmas and theorems) than 
a text like A Midsummer Night’s Dream. 

Hopefully, by now, it should be apparent that the mathematical language enters economic 
narratives as a secondary feature. The audience of the story is supposed to be able to take the 
abstractions expressed in mathematics and convert them back to characters with aspirations, views, 
etc., that are acting in an environment that they may be able to change. 

In effect, we are saying that, even when they are expressed mathematically, economic models 
draw upon the capacity of its readers and users to be able to follow a story. 

The remaining of section 3.9 is mainly addressed to a public that is familiar with economic 
theoretical work and can be safely skipped at a first reading. Example of readers that may find the 
remaining of the present section useful are those that are aware of the mathematical formulation of 
the lemons model of Akerlof or the underlying game-theoretic Industrial Organization works 
underlying the Feldblum article. 

Now, even when the economic story is making serious allowance to the natural language 
narrative form, mathematics is often invoked in at least two sub-arguments: (1) in figuring out what 
would be best to do from the point of view of the characters and (2) in determining how the story 
would need to turn out so that no character would wish to change the course of action they are 
pursuing (when the story enters an equilibrium). These two uses of mathematics within economic 
narratives require specific attention. 

3.9.1 Optimizing Behavior 

The use of mathematics to determine the best possible reaction of a character given its 
motivation and beliefs requires specific attention because, in economic narratives, that use of 
mathematics is often associated with the two following sub-arguments: (1) the actual process used 
by the character to figure out what to do next is going to give exactly the same answer as the 
mathematically determined optimal course of action and, therefore, (2) there is no need to examine 
exactly how people actually select their course of action. In fact, the work that we exposed above 
suggests that both assumptions are problematic. Regarding (2), our work suggests that persuasive 
narratives allow the audience to understand why the characters are taking the actions they are taking: 
the audience needs the inside view. This is in direct contradiction with a proposal to not examine the 
way people choose a course of action. More importantly, if it is the case that people actually do end 
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up choosing actions that match what a mathematically constructed solution to an optimization 
problem would say they should do, the work done above suggests that this very fact requires an 
explanation in terms of the motivation of the characters, their understanding of the environment 
they are in, etc. This suggests that it may be worthwhile for economists to, also maybe, attempt to 
solve the problem at hand from the point of view of the characters in a narrative the same as the 
characters would tackle the problem. So doing, they would address both points. 

3.9.2 Equilibrium Selection 

Mathematics is often used in economic narratives to identify the conditions under which no 
characters would be motivated to change their course of action: thus, inducing an equilibrium. A 
commonly encountered problem is that there may be quite many possible ‘final situations’ in the 
story where the ‘no-incentive-to-change’ condition may be met. How, then, does the economist 
choose which of those final situations could actually be an outcome of the story? The work above 
suggests that it is in ‘going through the story’, many times, under many relevant initial situations, that 
the question may be best resolved. In effect, we are suggesting that equilibria of the story may be 
selected16

4. BASIC APPLICATIONS 

 using the narrative causality criterion presented in section 3.5. 

Given the large emphasis on mathematics in actuarial training and given that a lot of efforts of 
mathematics arose out of problems of the natural sciences, it is common for actuaries to be 
indoctrinated in the natural sciences approach to deduction and causality. Two characteristics of 
argumentation in the natural sciences come to mind here. One, argumentation in the natural sciences 
often uses arguments by covering laws, or the Deductive Nomological model. It can be expressed 
as: 

1. Laws: L1, L2, …,Ln 
2. Initial Conditions: C1, C2, …, Cn 
3. Therefore, E (the explanandum or phenomenon of interest) (Reiss 2012, 32) 

Two, argumentation in the natural sciences often invokes the following version of causality: 

(a) X is universally associated with Y; 

                                                           
16  Note that equilibrium is not the only possible outcome of a process. For example, as in Feldblum's model, equilibrium never arises. When that 
happens, mathematical structures are often convenient to characterize the outcome: does it lead to periodic behavior, does it have an attractor, is there 
a time scale where the solution stabilizes? Even if an equilibrium occurs, it is not necessarily obvious that only one type of equilibrium will arise for 
very close parameters of the problem: in effect, is the model subject to bifurcations? 
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(b) Y follows X in time; 
(c) X and Y are spatio-temporally contiguous (there are no time-wise or space-wise gaps in between X and Y). 

(Reiss 2012, 104) 

With the work that has been done so far, it should be apparent that economic narratives do not 
function in these ways. Given that we have argued that the narrative as whole serves as the 
argument, it should be clear that no more than bits and pieces of the narrative can employ the 
Deductive Nomological model of argumentation; and, often, it will be used to allow the audience to 
keep track of the effects of efficient causes in the story. Also, given that we have argued that 
narrative causality is at work in stories, we can see that a different notion of causality is at work. (1) 
In stories, there is enough place left for contingency and luck for effects not to be universally 
associated with their causes. (2) In stories, things like simultaneous and, even, reverse causation are 
common. Take, for example, the case of the story that rationalizes the pricing cycle. In that case, the 
insurers are taking actions based on their beliefs about other insurers, and their own action induces 
the other insurers to act in the predicted way. Here, the phenomenon of self-confirming beliefs is an 
example of contemporary causation. Reverse causation arises naturally when actions are taken in a 
forward-looking context: e.g., a character does an action at one point in time because of a belief 
about what will happen in the future: the future drives the past. (3) Action at a distance is quite 
common in narratives: in effect, the narrative is constructed around the propagation of a cause to its 
effects. Next, we will inquire about the effects of these inappropriate ways of arguing on actuarial 
work. 

4.1 The Past Is Not Necessarily Representative of the Future 

(...) [N]on-autonomous relations are not lawlike; they do not represent the underlying causal ordering. (...) 
[C]ausal ordering is a property of models that is invariant with respect to interventions within the model and 
structural equations are equations that correspond to the specified possibilities of intervention. (Hoover, 
Econometrics as Observation: The Lucas Critique and the Nature of Econometric Inference 2008, 301-302) 

Here is a common mistake made by actuaries when they do not use the right concept of causality 
in their work: they wrongfully assume that past trends will carry forward in the future. Take, for 
example, loss trends. It is not an uncommon actuarial assumption to use the same loss trends for 
both the past as for the future. Even when they are not the same, future trends are not uncommonly 
selected as a carry-forward of recent trends. Now, imagine that those trends are quite high: that is, 
loss costs are increasing quite fast. If we were to then imagine a narrative that incorporates insureds, 
insurers and governments, it is not unreasonable to imagine a scenario where the insurers feel 
pressure to charge the loss cost trends in the premium, where insureds then pressure the 
government for premium reduction, and the government may have to intervene to set up measures 
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to contain the loss cost trend. In effect, in the story, the feedback is making it such that the past loss 
cost trend is unlikely to continue unabated. In effect, we are saying that regular relations are not 
necessarily causal and, if they are not causal, it is quite possible for the regularity to disappear quite 
rapidly. This suggests that, when proper causes have not been identified, it is prudent to set up 
regular and high frequency monitoring to validate the regularities that are being exploited in practice 
are still there. It is also means that, for medium- or long-term forecasting, the identification of the 
appropriate causal mechanisms is an integral part of a successful forecasting process. 

4.2 The Nose of the Donkey Does Not Cause Its Tail 

There was a man who sat each day looking out through a narrow vertical opening where a single board had 
been removed from a wooden fence. Each day a wild ass of the desert passed outside the fence and across the 
narrow opening — first the nose, then the head, the forelegs, the long brown back, the hindlegs, and lastly the 
tail. One day the man leaped to his feet with a light of discovery in his eyes and he shouted for all who could 
hear him: "It is obvious! The nose causes the tail!" 

Stories of the Hidden Wisdom from the Oral History of Rakis (Herbert 1984, 359) 

Another common actuarial mistake is to (sometimes implicitly) assume that what comes first in a 
regular succession must be the cause of a phenomenon. Take the following example. Imagine a 
homogeneous subportfolio of insureds that are relatively insensitive to rate increases. It could be 
that this is a class of insureds that values dearly their time and thus attach a high perceived cost to 
shopping for insurance: they do not shop much for insurance. The effect of their reduced 
willingness to shop will be to (1) increase their retention and (2) increase their profitability. Now, 
assume (price) elasticity modeling is done: by examining the impact on retention of a change in 
price. What the modeling actuary will find is that increased retention and increased profitability, both 
observed first, leads to lower price elasticity (observed second because it is a result of the price 
change). But, the true causal channel was exactly the opposite: reduced price elasticity leads to 
increased retention and increased profitability. Thus, it is not necessarily the case that what comes 
first in the observation of a regular succession is the cause of what follows. 

5. ADVANCED APPLICATIONS 

Finally, we can now address more involved applications of the work done above. These 
applications bear on the future of the training of actuaries and they bear on the future of actuarial 
practice. 
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5.1 Model Calibration and Story Telling 

The first (advanced) application of our work relates to the way statistical work should be thought 
and conducted within the actuarial profession. One way to put the point is to say that actuarial 
statistical practice needs to become more like econometrics and less like statistics. That is, it is a 
consequence of our work that calibration (even probabilistically- or statistically-minded calibration) 
of models supporting policy-making needs to heavily relate to the narrative that support them. Why? 
Because, then, the modeling actuary is likely to fall prey to the two fatal flaws that were mentioned in 
section 4: inappropriately assuming that the past will carry forward in the future and inappropriately 
(potentially implicitly) assuming that what is observed first is the cause of what comes after. 

Another way to cast the point is as follows. One of the difficulties with purely statistical strains of 
reasoning (e.g., predictive modeling) is that it remains agnostic about the nature of the underlying 
mechanisms at work. And, because of this agnostic inclination, the efforts of the modeler are then 
re-directed towards what is possible for the modeler: for example, the modeler then focuses on in-
sample quality of fit statistics, out-of-sample model performance, information criteria, etc. Again, 
because of the agnosticism about causes, little if any efforts are put into understanding how come 
the observed results have come about. And, if actuarial science were statistics, this would be no great 
loss. However, actuaries do no work in a vacuum: actuaries need to convince stakeholders of the 
insurer that the measures that they are proposing based on the estimation/calibration work is 
justified, sensible, prudent, etc. Thus, actuaries need to be able to weave together their statistical 
work and the economic theorizing work. And, their education should reflect that requirement and 
not be excessively oriented towards predictive modeling. 

Also, as was also mentioned in the introduction, actuaries that go through the process of 
theorizing about the results they obtain may be less likely to fall prey to over-fitting of the data: 
because they may question some of the raw results they obtain and drop some relationships or some 
variables from their models when the fitted relationship does not appear sensible based on their 
theorizing. 

A (disciplined) process of storytelling about the observed relationships in the data that can be 
quite useful is highlighting incoherent observations coming from the model: when the actuary begins 
to rationalize the observations emanating from the model, some relationships may begin to appear 
contradictory, thus providing an opportunity to selectively revisit the model. 
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5.2 Understanding Model Blind Spots 

Here, we intend to walk the readers through two examples of understanding model blind spots: 
(1) we will go through the example of three potential sources of inelasticity to insurance prices and 
how they lead to radically different strategies and (2) we will go through an Enterprise Risk 
Management exercise to understand how model blind spots imply that much caution is necessary in 
the use of model results. Our hope here is to highlight how (economic) theorizing can be crucial for 
the modeling actuary in the interpretation and application of the found results. 

Let us start with the price elasticity exercise. Suppose a modeling actuary goes through an 
exercise like that explained in (Beyond the Cost Model: Understanding Price Elasticity and Its 
Applications 2013). Then, suppose that the modeling actuary identifies that the age with insurer, that 
is the number of years since the original inception date of the policy, is a critical variable in driving 
down the price elasticity of demand (for the insurance provided by the insurer). An almost 
immediate application of that result in premium optimization would be to attempt to increase rates 
(potentially moderately) for the segment of insureds that have been with the insurer a long time. 
Now, with further theorizing, the modeling actuary could come up with, at least, three big working 
hypotheses for why that segment of insureds is so price inelastic: (1) the insureds in the segment are 
price inelastic because the insurer has properly and better identified a large cost differential that 
allows the insurer to price so attractively in the segment that a mild variation in price does not lead 
to a material fluctuation in the buying ratio, (2) the insureds in that segment experience large search 
costs (e.g., they value greatly the time spent on researching a competitive offer, they loathe going 
through the 20 questions round with brokers and insurers to receive alternative quotes, they fear that 
the potentially negative perception that could arise by having many parties accessing information like 
credit scores, etc.), or (3) the insureds in that segment value loyalty (maybe in the hope that the 
length and the strength of the relationship with the insurer may induce a more understanding 
attitude on the part of the insurer in the event of a claim). These differing working hypotheses lead 
to different ‘side-predictions’ about the appropriate course of action to take in the segment. Start 
with the example of large search costs. This could lead the actuary to see if the rating algorithm 
could not be better integrated with a web on-line tool or if the algorithm could be simplified without 
materially affecting rate adequacy. If it were a matter of loyalty, the insurer should be seeking to 
strengthen the relationship with the insured as much as possible: this could lead to some concerted 
efforts with agents and/or brokers to meet or communicate more actively with the client. If the 
effect was only due to price, then all of the extra efforts (of the options laid out above) could well be 
wasted and should not be attempted at all. Thus, the identification of price elasticity leaves the 
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actuary with a puzzle leading to further questions and modeling17

Now, let us examine an Enterprise Risk Management application. Take the framework as laid out 
in (Actuarial Geometry 2006). There Steve Mildenhall is attempting to build a framework for 
(insurer insurance operations) risk assessment that constitutes an improvement on some work of the 
prior generation that followed too closely the finance literature without taking into consideration the 
particular nature of insurance risk: e.g., non-transferrable contracts, no way to take a multiple or 
fractional position on a contract, etc. Our efforts thus far, though, do allow us to identify the 
material model blind spot of the enterprise as he lays it out: there is no theory of prices underlying 
the work. There is no theory of valuation. There is no theory of strategic interactions. And, here is 
one place where this lack of taking into account of strategic interaction becomes important. Go back 
to the Feldblum story about the rationality of the pricing (and reserving) cycle that we mentioned 
above. In that case, fluctuations in the industry Loss Ratio (thus of most insurers) are induced by 
strategic interactions; and, those Loss Ratio fluctuations are leading to material insurance risk, even 
to the point of being a material source of insolvency risk. In this case, the model blind spot can be 
identified: leading to prudence in model application. That being said, as opposed to the prior 
example, here the remedy to the blind spots of the model are not easy to implement; but, at least, 
the actuary can go through an exercise in imagination of thinking about which ways the model 
results could be biased because of the model blind spots. 

; but, it also means that prudence is 
the better part of valor in the use and application of model results. 

5.3 An Alternative View of a Good Rating System 

Let us look back at our story on the actuarial view of adverse selection. We concluded that that 
story was warning insurers that rate segmentation was crucial to their continued solvency. But, is 
that the final word on the story? What does the moral of the story become when we revisit section 
3.1; what happens when we try to better understand what the insureds want from the underwriting 
process? Sure, insureds want available coverage. Sure, they want it cheap. Sure, they want to be able 
to make sense of why the price is so high. Yet, people now constantly feel pressed for time. There is 
a definite sense that we are bombarded with information, that we must constantly be available to 

                                                           
17  For example, if loyalty was at the core of the observed price inelasticity, then increasing the number of (positive) contacts with the insured should 
lead to increased buying due to a price elasticity that decreases even further; while, if search costs was at the heart of the observed price inelasticity, 
increased communication (especially about further offers) may make the insured more price elastic as the insured may be force to experience some of 
the negative effects of those search costs. Under a loyalty causal channel, increased communication can be valuable to the insured; under a search cost 
causal channel, the insured values minimizing shopping activities and would prefer to be left alone as much as possible. Thus, different causal channels 
lead to different side-predictions that can be tested. 
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examine and process information, ... Time feels like it is speeding up (Birnbaum and al. 2012). And, 
in that context, it is no wonder that insureds put a premium on not having to answer 20 questions 
about every minutia that an actuary may believe could be relevant to assess insurance risk. So, what 
can actuaries do to address that aspiration? For one, actuaries can look to answer some of the 
questions that they would like answered on their own. How? By peering through public records. For 
example, works on building have to be recorded with municipal entities. Another example: why ask 
an insured for neighboring exposure and why not instead do a Google search of the insured’s 
address. The idea is for insurers to make sure that, when they go to the insured to answer a question, 
it is because only the insured could have answered the question. For two, actuaries can examine 
more closely their predictive modeling output and reflect on whether or not the extra variables and 
very many variables that they would like to use for ratemaking materially contribute to (either) the 
insurance risk (or, the assessment of the price elasticity) of the insured. What do we mean by 
materially? We say that a factor is material if one’s decision would change had the factor changed. 
So, when an extra piece of information would affect the premium by a ‘pocket money’ amount, is it 
really necessary to have the variable in the rating algorithm? In effect, we are saying that simplicity is 
also valuable; but, more importantly, we are saying that rating algorithm simplicity is becoming more 
valuable in this time when people feel pressed for time. 

5.4 Claims Are Not Just Numbers 

The Rockfeller Corporation studied why customers defect and found the following: (...) 
68% The customer believes you do not care about him or her. (Baker 2006, 163) 

Another insight that can be gleaned from the work above is that a good modeler of human 
content must constantly make the effort to connect back with the underlying human reality that is 
being modeled. How tempting for actuaries to produce reports about Loss Ratios, retention, closing 
ratio, etc. examining the influence of variable X, Y, Z and writing a quick comment to a superior 
about the found relationships. Now, try the following. Think back to a time you needed to work 
with your insurer. You just suffered a fire. You just got into a car accident. Your possessions just got 
stolen. ... Now, think about how time felt right there and then. I would wager that, in some ways, 
time slowed down: in the sense that many concerns just took a back seat to that event. At the same 
time, time may have felt to speed up because, before you know it, you needed to be rushed to a 
hospital, or ... The point being that immediate priorities take over routine. And, this is a time of 
profound human vulnerability. It is a time when being treated like a person, with dignity, is 
profoundly valued. Actuaries need to remember that persons are at the root of the numbers they 
work with. And, maybe, a good way for actuaries to be reminded of that message is to get involved 
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in the administration of claims. Why not get actuaries involved in the modeling of the claims hotline 
queue? Why not get actuaries involved in attempting to understand when a claim is likely to get big 
enough to warrant a more senior adjuster to assist in the settlement process? In effect, why not let 
actuaries use their acquired skills in modeling to assist the people that will be working directly with 
the insureds in their time of need? 

6. CONCLUSION 

We would like to finish this essay with a bit of a more general reflection. We have argued that 
causation in the natural world is dramatically different from that in the human world. But, maybe, 
this is not so completely true. Recently, Ilya Prigogine has argued that the natural sciences need to 
make room for ‘dramatic changes of behavior’, even in deterministic systems. More generally, he was 
advocating a re-thinking of the laws of mechanics (whether classical or quantum) in the terms of 
evolution of probabilities. (Prigogine 1994, 51) Now, it appears the way that narratives function is 
not so completely different: in the sense that the events of a story are connected by probability and 
not certainty.18

Moreover, we do believe that mathematics may help in the formalizing of the modeling scheme 
described above. We suspect that logic could be expanded to account for an evaluation of whether 
the events in a story are appropriately connected. That may require logicians to formalize the notion 
of coherence. Perhaps that will require a probabilistic and fuzzy intentional time-tensed dynamic 
logic. 
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