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Abstract: A solvency measure is needed to consistently and fairly determine the level of an insurer’s capital, 
which is needed for protection against defaulting on policyholder claims. There are several competing measures 
in current use, including VaR and the expected policyholder deficit. However, there is no published analytical 
method for selecting or calibrating any of these measures to produce a level of capital consistent with economic 
principles. 
  This paper develops an economic basis for selecting the solvency measure, and additionally determines how 
the measure can be calibrated to produce optimum capital. By maximizing policyholder welfare, a reasonable 
goal for regulation and corporate governance, I show that the optimal capital amount can be established by 
assessing the policyholders’ perceived value of the expected default relative to the insurer’s cost of holding 
capital. This optimality is achieved while allowing insurers a competitive rate of return. 
  The result is that the proper solvency measure is adjusted ruin probability, where the probability distribution 
of losses or assets is modified to reflect policyholders’ risk preferences. The optimal level of the adjusted ruin 
probability is uniquely determined by the frictional cost of holding capital. With this foundation, I also show 
that the subadditivity property of a coherent risk measure is an unnecessary criterion for evaluating insurance 
solvency.   
  Under the policyholder welfare framework, the level of the adjusted ruin probability standard will vary by 
degree of policyholder risk aversion, interest rates, insurer income tax rates, amount of guaranty fund protection 
and other factors not considered in applying the above conventional solvency measures. I also discuss the 
relationship between the minimum regulatory level of capital and the insurer’s optimal level. 
 
Keywords: Solvency risk measures; policyholder welfare; optimal capital; adjusted probability distribution; 
certainty-equivalent losses; frictional capital costs; exponential utility; stochastic mean; subadditivity. 

______________________________________________________________________________ 

1. INTRODUCTION AND SUMMARY  

The primary purpose of capital in an insurance organization is to protect policyholders, who 
in the event of insolvency, would not receive the full claim payment to which they are 
contractually entitled. Since there is an inverse relationship between the amount of an insurer’s 
capital and the impact of insolvency on its policyholders, it is important to know (1) what kind of 
protection is desired, (2) how much protection is needed and (3) how much capital will provide 
the desired protection.  

The first issue is addressed by selecting a solvency measure.  The commonly used solvency 
measures are ruin probability, value-at-risk (VaR), expected policyholder deficit (EPD) and tail 
value-at-risk (TVaR). These solvency measures, which are discussed more thoroughly in section 
5.4, use the probability distribution of losses and assets to characterize the harm to policyholders 
in an insolvency. The first two measures assess policyholder harm simply by whether or not an 
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insolvency occurs. The latter two measures incorporate both the likelihood of insolvency and its 
average value provided that it occurs. Given a particular solvency measure, the amount of 
protection is addressed by choosing the level of the solvency measure (for example, with VaR a 
specific confidence level must be assumed). Selecting the solvency level is called calibrating the 
solvency measure. After calibration, the required capital follows directly using actuarial and 
statistical techniques applied to the probability distributions for the relevant balance sheet items.  

There is much debate over the proper choice of risk measure: some adherents tout technical 
features, such as subadditivity (e.g., Artzner [1999]) or practical ones, such as ease of 
explanation or common use in other financial service industries. However, to my knowledge, 
there is no literature that establishes a particular solvency measure based upon economic 
principles. Furthermore, despite the widespread use of solvency measures, there has been no 
analytic basis for setting the level of the risk measure — calibration has been arbitrary, using 
judgment. Although there is a vast literature on implementing risk measures, especially VaR, 
each author inevitably assumes that the calibration level (say, 99% VaR over one year) is given. 
There is no discussion regarding how to determine the specific level.1

In this paper, I have addressed both the solvency measure and the calibration concerns by 
establishing an analytical framework that directly applies the above cost-benefit relationship for 
capital. Given that the economic objective in setting capital standards is to maximize 
policyholder welfare while allowing a fair return to the insurer’s owners, I show that this goal 
implies that there is an optimal capital amount for each insurer. That amount depends on three 
key inputs: the probability distribution of losses and assets, the insurer’s cost of holding capital 
and the risk preferences of the policyholders. If the values of these underlying variables are 
known, then the optimal capital is uniquely determined. The theoretical optimal capital amount 
then forms the basis for regulatory capital standards, internal insurer risk management and 

  This is surprising, since it 
is well known that there is a trade-off between the cost of having too much capital and the 
downside of not having enough capital. For example, few would believe that a 99.999% annual 
VaR standard is appropriate, since this level implies too much capital, which would be extremely 
costly to carry. Conversely, a 60% VaR standard would indicate an intolerable risk of insurer 
insolvency. Therefore, some intermediate value of the VaR standard must be best.  

                                                           
1 The 99.5% VaR standard of Solvency II is based on mimicking the annual default probability underlying a 
Standard & Poors BBB rating. However, this approach dodges the question, since there is no objective reason why 
this particular default rate (0.5%) is superior to that of any other rating (e.g., AA). 
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pricing applications.  

The key result of this paper is that the appropriate solvency risk measure is adjusted ruin 
probability (or a simple function of it), using a transformed distribution of outcomes for each 
component risk of the insurer. The adjusted distribution incorporates policyholder risk 
preferences and has a much fatter tail than the original distribution. This gives a suitable heavy 
weight to the extreme outcomes and prevents engineering the tail shape to manipulate capital 
requirements. Therefore, on an economic basis, the best solvency measure is none of the 
conventional measures. I show that using a conventional risk measure, such as VaR or expected 
policyholder deficit, will overstate the capital for low-risk losses (and assets) while understating 
the amount of capital for high-risk components. The latter effect is more serious. 

The level of the adjusted ruin probability standard is unique and is a function of the frictional 
cost of capital. Thus, the calibration is not arbitrary. However, the adjusted ruin probability is 
equivalent to a conventional ruin probability standard that varies by the volatility of the insurers’ 
component risks and by its policyholder risk preferences. So, even though the adjusted ruin 
probability standard may be fixed for all insurers, the corresponding unadjusted ruin probability 
will vary by line of business and by insurer. 

Under the policyholder welfare framework, the level of the adjusted ruin probability standard 
will differ by degree of policyholder risk aversion, interest rates, insurer income tax rates and 
other factors not considered when applying the above conventional solvency measures. Thus, the 
adjusted ruin probability standard is not static and will vary over time. Another consequence of 
the policyholder welfare basis is that the amount of guaranty fund protection will also influence 
insurer capital. This result is important and (to my knowledge) has been ignored in the previous 
insurance literature. 

Although the optimal level of capital may be appropriate as a standard for internal insurer 
governance and for pricing applications, I discuss how the regulatory level of capital should be 
lower than the insurer’s optimal level. 

1.1 Outline 
The remainder of the paper is summarized below: 

Section 2 provides some historical background for the development of solvency risk measures 
as applied to insurance and other financial firms.  
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Section 3 develops the notion of consumer surplus (relabeled as consumer value) and the 
certainty-equivalent value for insurance losses. The basic idea here is that consumers are risk-
averse and will pay more for insurance than the expected value of their losses. I have used these 
concepts, which are the economic foundation for insurance, to value insurer default from the 
policyholder’s perspective. This section also relates the certainty-equivalent loss concept to 
utility theory. 

Section 4 develops a simple one-period model of an insurer with risky losses and riskless 
assets and specifies the cost of holding capital. This section also formulates the premium charged 
to policyholders, which includes the frictional capital cost. 

Section 5 shows how the consumer value of the insurance transaction is maximized by 
minimizing the cost of holding capital plus the value to the policyholder of the insurer’s default. 
This section shows that the optimum amount of capital is determined from the adjusted (for 
policyholder risk preferences) ruin probability. It compares results from the adjusted ruin 
probability to those from conventional solvency measures and shows that the coherent risk 
measure property of subadditivity is not necessary for an economically valid insurance solvency 
risk measure. 

Section 6 discusses how the results of section 5 can be extended to include asset risk, guaranty 
funds and multiple-period assets and liabilities. 

Section 7 examines implementation issues in applying the above capital-setting  methodology, 
including its use in regulatory risk-based capital. 

Section 8 provides a brief conclusion. 
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2. HISTORY OF SOLVENCY RISK MEASURES 

European actuaries have applied risk measures for decades. Ruin theory, also called collective 
risk theory, is a branch of actuarial science that studies an insurer's vulnerability to insolvency 
based on mathematical modeling of the insurer's surplus (capital). The theoretical foundation of 
ruin theory, known as the classical compound-Poisson risk model in the literature, was 
introduced in 1903 by the Swedish actuary Filip Lundberg.2

The ruin probability measure has seen some use for internal insurer risk management, but has 
not yet been directly used for solvency regulation (although the closely related VaR has). 

 Usually, the main objective of the 
classical model and its extensions was to calculate the probability of an insurer’s ultimate ruin. 

The VaR measure was introduced in 1945, as a means of measuring bond portfolio risk.3

During the early 1990s, concerns about the proliferation of derivative instruments, some well-
publicized massive trading losses and the 1987 stock market crash spurred the field of financial 
risk management. Through its RiskMetrics service, JP Morgan introduced VaR to professionals 
at many financial institutions. Ultimately, the value of proprietary VaR measures was recognized 
by the Basle Committee, which authorized their use by banks for performing regulatory capital 
calculations. 

 In 
the 1970s, as leverage became widespread, securities firms sought more effective ways to 
manage portfolio risk. They wanted a single risk metric that could be applied consistently across 
asset categories, including derivatives, which were becoming increasingly complex. 
Concurrently, computing power became cheap enough to analyze large portfolios. However, 
VaR was still viewed as a theoretical tool. 

VaR became common in the banking and finance industry in the 1990s onward. It is used to 
control the risk of the positions in investment portfolios or bank divisions for managers of these 
units. Supporters of VaR-based risk management claim that a major benefit of VaR is the 
improvement in systems and modeling it forces on an institution (see Jorion [2006]). For 
insurance, it is the measure used in Europe for the capital standards of the Solvency II regime.  

After the 2008 financial crisis, VaR came under severe criticism (see Nocero [2009] and 
Einhorn [2008]), primarily because of abuses in its implementation. It has been argued that the 

                                                           
2 See Lundberg [1903]. 
3 For a more detailed discussion on the history of VaR, see Holton [2003]. 

http://en.wikipedia.org/wiki/Actuarial_science�
http://en.wikipedia.org/wiki/Systems�
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2008 financial crisis was exacerbated by bankers misusing VaR. In order to reduce apparent risk 
levels (and thereby regulatory capital) for mortgage-backed derivatives, the banks engaged in 
“tail-stuffing,” wherein the securities were purposely designed to increase the amount of risk in 
the tail, while keeping VaR at a low level. These abuses highlighted a technical weakness of 
VaR, in which very large extreme events are treated equally with events just large enough to 
breach the VaR confidence level. 

The expected policyholder deficit (EPD) measure first appeared in the insurance financial 
literature in Butsic [1994]. This work arose from participation in the American Academy of 
Actuaries Property-Casualty Risk-Based Capital group, which advised the NAIC in its 
development of the current RBC method in the early 1990s. The concept developed as a response 
to a perceived deficiency in using ruin probability (or its VaR equivalent) as a solvency standard 
in that it did not incorporate the depth of an insurer’s insolvency. 

TVaR had a similar genesis in banking and investment management as the EPD in insurance. 
It was also a response to the same deficiencies in applying VaR. The above tail-stuffing abuses 
would have been severely mitigated under a TVaR metric. The TVaR concept saw 
implementation and became common in the 2000s. It is presently used as the solvency measure 
in Swiss insurance capital regulation.  

Within the last decade or so, a new class of risk measures called spectral measures have been 
developed (see Acerbi [2002]). They are based on TVaR and include a risk-aversion component; 
i.e., extreme tail events are given weights that correspond to the investors’ desire to avoid them. 
If the weights are large, more capital is required. I have used the concept of risk-aversion in this 
paper, although under a different context (i.e., optimization). 

3. CONSUMER VALUE AND CERTAINTY EQUIVALENT 
LOSSES 

The important concept of this section is that individuals (and organizations as well) will pay 
more than expected value to insure losses. The implied value placed on losses by the 
policyholder is called the certainty equivalent value. The economic gain from buying insurance 
is called the consumer surplus, which I have renamed as consumer value. We can measure the 
consumer value by using a modified version of the underlying probability distribution of losses. 
The adjusted distribution provides the means for determining the expected loss of consumer 
value due to the possibility that the insurer becomes insolvent. The adjusted distribution can be 
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determined directly from a policyholder’s utility function. 

3.1 The Consumer Surplus Concept 
The fundamental basis for insurance is that individuals are risk-averse: they are willing to pay 

more than the mathematical expected value of their potential loss in order to buy insurance. 

As a simple example, suppose an individual is subject to loss on a home worth $100,000. 
There is a 1% chance of a total loss and a 99% probability of no loss. The mathematical expected 
value of the loss is $1,000 = 0.01 x 100,000. However, suppose that the homeowner is willing to 
pay up to $1,500 to an insurer to completely remove the risk of loss. Meanwhile, an insurer will 
charge only $1,100. The insurer is able to charge less than the policyholder (PH) is willing to pay 
because, through the law of large numbers, the risk to the insurer is reduced by pooling similar 
risks from other PHs.  

The above three amounts ($1,000, $1,500, and $1,100) are important, and deserve a distinct 
nomenclature. The first is commonly called the expected loss, and in actuarial parlance the pure 
premium. The second is the certainty equivalent expected loss and the third the premium. In 
setting prices, actuaries normally include specific loadings for the insurer’s expenses and for its 
bearing the risk, although the level of those loads is often limited by competition. In any event, 
the premium represents the insurer’s price actually charged for bearing the risk.  

The difference between the premium and the expected loss ($100 in the example above) is 
called the provision for expenses and profit. The difference between the certainty equivalent loss 
and the premium ($400) is called consumer surplus in the economics literature.4

The consumer surplus concept was introduced by Alfred Marshall in 1890,

 It is the 
difference between the total amount that consumers are willing and able to pay for a good or 
service and the total amount that they actually do pay (i.e., the market price for the product). If 
the consumer surplus is greater than zero, then the policyholder will buy insurance; otherwise the 
policyholder will self-insure. 

5

                                                           
4 In finance, the equivalent concept is called the risk premium (See Panjer [1998]). I have not used this term here, 
since the term as used in insurance often represents the market price of risk (what the insurer charges for risk) and 
not what the policyholder is willing to pay.  

 and was designed 
to measure the welfare effects of economic policy. Standard microeconomics textbooks use the 
consumer surplus concept to equilibrate supply and demand. Consumer surplus applications are 

5 Marshall, Alfred (1947 [1890]): Principles of Economics. London, Macmillan. 
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common in welfare economics and government regulation, where cost-benefit analyses are 
needed.6

For insurance, consumer surplus represents the monetary benefit to the PH of having 
insurance. Since “surplus” commonly represents a different concept (capital) in insurance, for 
this paper I have renamed consumer surplus as consumer value. 

 

I assume that in purchasing insurance, the PH will seek to maximize consumer value, which 
equals the difference between the certainty equivalent value of the potential loss, and the 
premium the PH must pay.  

3.2 Mathematical Formulation of Certainty Equivalent Losses 
For an individual PH having an exposure to an insurable risk, let y represent the size of a 

possible loss and p(y) the probability that y occurs. The expected loss L is the summation of each 
possible loss times its probability: .    

Assume that for each possible loss amount y, there is a unique amount  representing 
the certainty equivalent (CE) loss. Call the term k(y) the certainty equivalent function. Therefore, 
the CE expected loss (CEL), denoted by 𝐿�, will be the expectation   

    

 .  (3.21) 

  

Since policyholders are risk-averse, we have . The value , or the average of 
the certainty equivalent function, is a useful parameter. Notice that k ≥ 1. 

If the premium equals the expected loss, then the consumer value of the insurance equals the 
difference between the CEL and the expected loss, or . 

The contribution to the CE expectation from loss size y in equation 3.21 can also be expressed 
as , where . Here,  is a transformed probability that will 
give greater weight to large loss values and less weight to small values than p(y), thus producing 
an expected value greater than L. An alternative version of equation 3.21 is then 

   

 . (3.22) 

                                                           
6 For example, see Einav, Finkelstein, and Culleny [2010]. 
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Notice that the certainty-equivalent probabilities  are conceptually similar to the risk-
neutral measures that form the cornerstone of modern finance theory.7 Transformed probability 
measures have also been used to value insurance losses in pricing models (see Wang [1996] and 
Butsic [1999]). The CE probabilities can be considered as subjective weights attached by the PH 
to the various loss sizes. Since these weights are equivalent to probabilities, they must sum to 1. 

Thus, an important restriction on the CE function k(y) is that . Appendix A3 

discusses this restriction further. It also explains why k(y) depends not only on the particular loss 
size y, but on all the other possible loss sizes as well. 

3.3 A Numerical Example 
A numerical example will help to illustrate these concepts: suppose a PH faces a loss which 

can have three values {100, 400, 1200} with respective probabilities  
{0.60, 0.30, 0.10}. The corresponding CE function values are {0.80, 1.10, 1.90}, showing an 
increasing risk aversion with loss size. Table 3.3 below shows details of the CE expected loss 
calculation. 

 
Table 3.3 

Certainty-Equivalent Loss Calculation for Numerical Example 
 

     Total 
Loss Amount      y 100 400 1200  
Probability      p(y) 0.60 0.30 0.10 1.00 
Expected Value Component     y·p(y) 60 12 120 300 
CE Function      k(y) 0.80 1.10 1.90 1.36 
Certainty Equivalent Loss      y·k(y) 80 440 2280  
CE Exp. Loss Component       y·k(y)·p(y) 48 132 228 408 
CE Probability        k(y)·p(y) 0.48 0.33 0.19 1.00 

 
The expected loss L is 300 and the CE expected loss is 408, giving an average CE function 

value of k = 1.36 = 408/300. The CE probabilities have shifted from their unadjusted 
counterparts: the subjective chance of the small (100) loss drops from 60% to 48% and the 
subjective likelihood of the larger losses increases, from 30% and 10% to 33% and 19%. 

                                                           
7 The risk-neutral concept was first introduced by Arrow and Debreu [1954]. The Black-Scholes option pricing 
model can be derived using risk-neutral valuation, as shown in Hull [2008] (pages 307-309). 
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3.4 Utility Theory and Certainty Equivalent Losses 
By using basic principles from utility theory, we can derive some general properties for the 

CE function. There is a direct connection between utility theory and the certainty equivalent. As 
shown in Appendix A1, the CE function can be determined from the utility function and the loss 
distribution. The certainty equivalent and the expected utility formulations are dual processes; 
each can be determined using the inverse of the other.8

The first property is that the CE value function k(y) increases with loss size y. This occurs 
because utility increases with wealth, as Appendix A2 shows. 

 

Second, because of risk aversion, k(y) increases at a growing rate: its second derivative with 
respect to loss size is positive. Appendix A2 discusses this property in more detail. 

Third, as discussed below, the certainty-equivalent expected loss (and thus each k(y) value) 
depends on the variance of the loss distribution.  

If the variance is non-zero, then we apply the basic utility theory assumption that PHs are 
risk-averse. For U(x) representing the utility of (wealth given) a loss x, this implies a downward-
sloping utility function, (i.e., U'(x) < 0) and that the function is concave  (i.e., U''(x) ≤ 0). The 
absolute risk aversion function9

  

 is defined as  

 .  (3.41) 

 

Denoting the variance by σ2, it is straightforward to show10

    

 that the certainty-equivalent loss 
is approximated by 

 . (3.42) 

 

Here, W0  is the initial wealth of the PH. This important result shows that  is 
(approximately) directly proportional to the variance of the loss distribution and also 
proportional to a measure of risk aversion. If the loss distribution is normal and the utility 

                                                           
8 This duality is established by Yaari [1987], who determines that the CE value of a risky prospect can be found 
using an adjusted probability distribution. 
9 See Pratt [1964]. As shown in Appendix A1, the sign of the absolute risk aversion function is negative when utility 
is a function of wealth, but positive when a function of loss size. 
10 See Panjer et al. [1998], page 137. 
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function is exponential with risk aversion parameter a, then equation 3.42 is exact,11

    

 and as 
shown in Appendix A4, the CEL becomes  

 .  (3.43) 

 

To summarize the above results, we see that the CEL is a function of both consumer risk 
preferences and the variance of the loss distribution. Additionally, the certainty equivalent value 
function increases with loss size at an increasing rate. These properties are essential to 
determining the optimal capital for an insurer, as I develop in section 5. 

Although the optimal capital results can be developed directly from the underlying utility 
function, I prefer the certainty equivalent approach to valuing risk aversion, since it is more 
direct than the utility method and provides a tangible, monetized conversion of the expected loss. 
Also, there is a unique CE value for each possible loss size, while under expected utility, any 
linear transformation of the utility function will give valid results. Thus, the expected utility of a 
particular loss size has no meaning by itself.  

3.5 The Certainty Equivalent Expected Default Value 
In order to determine the optimal capital amount for an insurer (in section 5) it is necessary to 

find the consumer value of the insurance contract. This entails knowing the certainty equivalent 
value of the expected default. Here, for simplicity, I assume an insurer with a single 
policyholder. The expected default, also known in the actuarial literature as the expected 
policyholder deficit, is  

 

 . (3.51) 

 

Here, A represents the insurer’s assets, which are assumed to be fixed (non-stochastic) for this 
application, and y is the individual policyholder loss size. The CE value of the expected default, 
denoted by , and abbreviated to CED, can be determined by finding the CE value of the loss 
actually paid by the insurer (allowing the possibility of default) and subtracting it from the CE of 

                                                           
11 The exponential utility function can be expressed as U(x) = – exp[–a(W0 – x)], where a is the risk-aversion 
parameter, W0  is initial wealth and x is the loss value. Since exp(aW0) is a constant and utility functions are invariant 
to scale transformations, the utility reduces simply to U(x) = – exp(ax). Thus the utility at any loss size x is 
independent of initial wealth. 
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the loss  without possibility of default. The CE value for losses limited to the amount A is 

. Notice that, for losses larger than A, the amount of loss paid 

by the insurer is simply A. Here, to be consistent with the valuation of losses below the amount 
A, we must also use the subjective CE probability  of the loss being greater than A. We 
cannot use the unadjusted probability p(y). To get the CED, we have , or  

 

 . (3.52) 

 

Here, the only difference from the equation 3.51 expected default calculation is the 
substitution of the CE probability  or its equivalent k(y)p(y) for the unadjusted probability 
p(y). Notice that if A = 0, the CE default value equals the CE expected loss.  

To illustrate the certainty equivalent default concept, assume a simple case where there is a 
98% chance of a $0 loss and a 2% chance of a $1000 loss. The expected value of the loss is $20 
= 0.02(1000). Also assume that the PH has risk aversion governed by exponential utility: 

, where x is the loss size. The risk aversion parameter is a = 0.002. The utility of the 
0 loss is –1 and the utility of the $1000 loss is 
 –7.389 = –exp[0.002(1000)]. The expected utility is –1.128 = 0.98(–1) + 0.02(–7.389). The 
certainty-equivalent loss is the loss size for which the actual utility equals the expected utility; 
thus the CEL is $60.13:   –exp[0.002(60.13)] = –1.128.  

Now suppose that the loss to the PH is limited to $900. The utility of this amount is 
 –6.050 = –exp[0.002(900)]. The expected utility of the PH’s retained loss is therefore  
–1.101 = 0.98(–1) + 0.02(–6.050). The certainty equivalent value for the retained loss is $48.11. 
Therefore the CE value of the uppermost $100 of protection is the difference between the CE of 
the entire loss and the CE of the retained loss:  
$12.02 = 60.13 – 48.11. Note that the expected value of the $100 coverage is only $2.00. 

The $12.02 also represents the CE value of default when only the first $900 of loss is actually 
covered by the insurer. It is the difference between the CE expected value of the entire loss, 
minus the CE value of the coverage actually provided. 

It is interesting to compare the result of covering the last $100 of the loss (as above) with 
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covering the first $100 of loss.12

In this example, the ratio of 

 If the insurer covers the amount above $100 (i.e., the 
deductible), the utility of the retained loss is –1.221, with an expected utility of  
–1.004 and a CE of $2.21. If the deductible is $200, then the CE of the retained loss is 4.89, 
giving a $2.69 = 4.89 – 2.21 CE value for the layer from $100 to $200. The CE value of each 
layer progressively increases as we move up to higher layers. 

 to D is 6.01 for assets of $900, which is greater than 3.01, the 
ratio of the $60.13 CEL to the $20 expected loss. In general, the ratio of  to D will increase 
with the asset (and thus capital) amount.  

This tail leverage is a consequence of PH risk aversion (which creates a fatter tail than for an 
unadjusted distribution), combined with the volatility of the loss distribution. To analyze the tail 
leverage in more detail, consider a normal distribution of losses for a PH with an exponential 
utility function. Appendix A4 provides a general method for determining the CE default value 
for a given loss distribution paired with a specific utility function. It also derives explicit results 
for the normal-exponential model.  

Even with a small variance, the ratio of  to D can be large: assume a normal distribution 
with mean loss of 1000 and a 100 standard deviation. Suppose we have assets of 1100, which is 
1 standard deviation above the mean, and that the risk aversion parameter is a = 0.02. From 
equation 3.43, the overall CEL is 1100 = 1000 + (.01)(200)2, giving k (the average CE function 
across all loss sizes) of 1.10.  The straight expected default D is 8.33, but its certainty equivalent 

 is 57.39, a ratio of 6.89 to 1. For 2 standard deviations above the mean (A = 1200), we have D 
= 0.85 and  = 20.17, for a ratio of 23.75. Table 3.5a shows results for these and other asset 
values:  

 

                                                           
12 Notice that, given that the loss has already occurred, it doesn’t matter whether the $100 amount comes from 
retaining a $100 deductible or sustaining a net $100 loss on a $1000 loss where the insurer pays the first $900. The 
losses are completely equivalent to the PH. In fact, the certainty-equivalent concept makes no sense here, because ex 
post, the losses are certain. However, ex ante, the CE and expected utility concepts transform risky outcomes to 
fixed values that differ from the actual values that may occur. 
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Table 3.5a 
Tail Leverage for Numerical Example;  

Normal Loss Distribution, Exponential Utility (a = 0.02) 
 

Assets D CED Ratio 

CED/D 

Ruin Probability 

(RP) 

Adjusted Ruin Prob. 

(ARP) 

Ratio 

ARP/RP 

1100 8.33 57.39 6.9 15.866% 50.000% 3.2 

1200 0.85 20.17 23.7 2.275% 25.161% 11.1 

1300 0.04 4.44 116.2 0.135% 8.054% 59.7 

1400 0.001 0.50 701.4 0.003% 1.291% 407.5 

 
The adjusted ruin probability is the probability of default with the CE probability distribution 

used instead of its unadjusted counterpart. Figure A4 in Appendix A4 shows the probability 
densities for the normal distribution and its CE transformation. Here, it is clear that the tail of the 
adjusted distribution is much fatter than that of the parent normal distribution. 

Table 3.5b gives results for a higher risk aversion (a = 0.04): 

Table 3.5b 
Tail Leverage for Numerical Example;  

Normal Loss Distribution, Exponential Utility (a = 0.04) 
 

Assets D CED Ratio 

CED/D 

Ruin Probability 

(RP) 

Adjusted Ruin Prob. 

(ARP) 

Ratio 

ARP/RP 

1100 8.33 136.49 16.4 15.866% 68.281% 4.3 

1200 0.85 77.25 91.0 2.275% 50.000% 22.0 

1300 0.04 36.49 954.8 0.135% 31.719% 235.0 

1400 0.001 13.01 18200.4 0.003% 15.883% 5015.0 

 

Notice that even though the unadjusted probability and default values at the extreme tail are 
rather small, their CE equivalents may be meaningful. However, it is important to recognize that 
for a practical loss distribution and CE function (with extremely large losses truncated by policy 
limits and with CE factors restricted by wealth effects13

                                                           
13 For example, bankruptcy laws limit the harm of an uninsured large third-party loss to an individual. An individual 
with $100,000 of net worth is likely to value a $1 million loss about the same as a $2 million loss. 

) the CED values would not be as large 
as shown in this illustrative example. 
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3.6 Default Values with Multiple Policies 
The previous sections have analyzed results for a single policyholder under the assumption 

that an insurer covers only that PH. Here, I extend the analysis to an insurer with multiple PHs. 
However, the analytical perspective remains that of the individual PH. But now if a default 
occurs, the default amount is shared among the individual policyholders in proportion to their 
respective loss amounts. Assume that the PHs are homogeneous, with the same loss distribution 
and risk preferences.  

To illustrate CE valuation of multiple-policy default, I use the binary loss14

To illustrate the expected default calculation, suppose that an insurer covers these two PHs 
with an amount of assets equal to $200 per PH, or $400 in total. The default amount for a single 
PH (say, PH 1) depends on whether a loss occurs for PH 1 and whether a loss occurs for PH 2. If 
PH 1 doesn’t have a loss, then there cannot be a default amount for PH 1 no matter what happens 
to PH 2. If PH 1 has a loss and PH 2 does not have a loss (with 0.0196 = 0.02 x 0.98 probability) 
then the default amount for PH 1 is $600 = 1000 – 400: all $400 of the insurer’s assets cover the 
loss. If both PHs have a loss (with probability 0.0004 = 0.02 x 0.02) the total default amount is 
$1,600 = 2000 – 400, but it is shared equally, so PH 1 has a default amount of $800. Therefore, 
the expected default for PH 1 is $12.08 = 0.0196(600) + 0.0004(800). Notice that in the case 
where the insurer has only one PH (with $200 of assets), the expected default is larger: $16.00 = 
0.02(1000 – 200). 

 example with 
exponential utility introduced in section 3.5. Appendix A5 develops the CE values for the binary 
loss model, including the CED and the adjusted ruin probability. Assume that we have two PHs 
with independent losses defined by the section 3.5 example: a loss of $1,000 with a 2% 
probability and zero otherwise. The CE values are determined from exponential utility with a 
risk aversion parameter a = 0.002. 

To calculate the CE expected default value for PH 1, we use equation A5.5 from Appendix 
A5, getting $22.99. This compares to $38.05 for the single-risk insurer. Figure 3.6 compares, by 
asset value per PH, the CED per PH for the single-risk insurer to that of a two-risk insurer.  

 

                                                           
14 This simple loss model with a general utility function is used in the influential paper on insurance market 
equilibrium by Rothschild and Stiglitz [1976]. Note that a one-year term life insurance contract has a binary loss 
distribution. 
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Figure 3.6 
CE Default Values per PH by Asset Amount for a Single Risk and Two Risks 

Binary Loss with Exponential Utility 
 

 
 

Here, the CE expected default value per PH is lower when the risks are combined. This effect 
is a consequence of diversification, where the variance of losses per policy is reduced by adding 
risks to the insurer’s portfolio.  

In general, we can determine the per-PH CED for multiple risks by finding (or approximating) 
their joint CE probability distribution. This process is analogous to that of finding the unadjusted 
expected default for a portfolio of losses. In the case where the sum of the CE losses has the 
same distribution as a component CE loss (as in the normal distribution), the expected default 
calculation is straightforward. Otherwise, we must resort to approximation methods.15

The assumption of statistical independence will drive the expected default value to an 
extremely low level if the number of policies is large. However, in reality, insurance losses are 
correlated. They are subject to common factors such as inflation, regulation, the legal system and 
multi-loss events like catastrophes. Further, the mean of losses for a given line of business (or 
other subdivision of an insurer’s risk portfolio) is not known; it must be determined empirically. 
This effect is an important case of parameter risk,

 

16

                                                           
15 One method is to assume that the distribution for the sum of the CE losses has the same distribution as the 
unadjusted losses, but with a different mean and/or variance. Manipulating these two parameters will generate a 
range of corresponding utility functions. 

 which adds to the uncertainty of standard 

16 For an example, see Meyers and Schenker [1983]. 

-10 

0 

10 

20 

30 

40 

50 

60 

70 

0 200 400 600 800 1000 

Assets per PH 

Two Risks 

One Risk 



An Economic Basis for Property-Casualty Insurance Risk-Based Capital Measures 
 

Casualty Actuarial Society E-Forum, Summer 2013 17 

insurance risk models. 

Appendix B develops a model of losses based upon a stochastic mean, where the expected 
value of the loss per policy is itself a random variable. For example, suppose the unconditional 
mean loss per policy is 1000, with a standard deviation of 300. This mean is considered a 
random variable: the 1000 amount is multiplied by a separate random variable with a mean of 1 
and a 0.10 standard deviation. As the number of policies becomes large, the average policy will 
still have an expected loss of 1000, but will take on the risk of the stochastic mean variable, so it 
will have a standard deviation of 100 = (0.10)(1000). The influence of the original per-policy 
standard deviation of 300 vanishes. Thus, beyond a certain point the size of an insurer has little 
influence on the risk characteristics that determine the value of default. 

4. A ONE-PERIOD PREMIUM MODEL 

This section develops a basic insurer model and determines the premium, which includes the 
cost of holding capital. Extensions to the model are discussed in sections 6 and 7. 

4.1 A Basic Insurer Model 
To understand how optimal capital values can be determined, in this section I establish a 

simple, bare-bones model of an insurance company containing only a few necessary components.  

I have assumed that the insurer’s policyholders have the same individual loss distributions and 
the same risk aversion. Using the section 3.6 framework for multiple policies, this homogeneity 
implies that we can analyze portfolios of risks (even entire insurance companies) as if they were 
insurers having only a single policyholder. 

In this model, I eliminate extraneous variables such as expenses, income taxes and investment 
returns by assuming that they are zero. In section 5, I include these components. 

With no investment return, all assets are cash. I assume that the insurer is operating efficiently 
and thus the insurer’s costs of holding capital can be passed on to policyholders as long as it 
improves their welfare. In fact, the policyholders determine the amount of capital and then pay 
for its associated costs through their premium, denoted by π. Thus, the owners of the insurer are 
indifferent to the amount of capital actually held by the insurer, since they are fairly compensated 
for its use. 

The model is one-period: the premium and capital are determined at the beginning of the 
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period and the actual17

Its owners capitalize the company with an initial capital C. The initial assets of the insurer 
equal the premium from the policyholders plus the capital. Prior to the end of the period, the 
insurer’s cost of holding its capital is expended, so that amount is not available to pay the PH’s 
claims. The ending asset amount, denoted by A, thus equals the initial capital plus the premium, 
minus the capital cost. The loss amount is recognized at the end of the period and the default 
amount (if any) is determined accordingly.  

 loss is determined at the end of the period. Further assume that there is no 
secondary insurer default protection for policyholders, such as a guaranty fund. 

If there is no cost to the insurer for holding the capital in the company, then the insurer will 
hold enough capital to exceed the largest possible loss, and thus there is no possibility of insurer 
default. In this case, the insureds simply pay a premium π = L, the expected value of the losses. 
With no default, their consumer value is maximized at an amount , the CEL minus the 
expected loss. 

4.2 The Cost of Holding Capital 
There is a cost to an insurer for holding capital to mitigate default risk. This cost is separate 

and distinctly different than the “cost of capital,” which is the return expected by the capital 
suppliers (e.g., equity holders or bondholders) and is commensurate with the risk borne by these 
investors. To avoid the confusion created by the similar terminology, a useful name for the cost 
of holding capital is the frictional cost of capital, as defined by Hancock et al [2001]. The 
frictional capital cost (FCC) is the opportunity cost that accrues to the use of capital in an 
insurance firm, and which the investor would not incur if investing directly in financial markets. 
These costs include double taxation, financial distress, agency and regulatory restriction costs. 

The primary component of the FCC for U.S. insurers  is double taxation.18

                                                           
17 For regulatory and other external party uses, a multiple-period model must address the fact that the insurer might 
not use an unbiased estimate of losses. Accordingly, the risk of under-reserving must also be assessed, with 
additional capital required beyond what is needed for the pure loss-variation risk addressed in this paper. 

 Of the above FCC 
components, it is also the easiest to determine empirically. To illustrate, assume that an investor 
provides $100 of equity capital to an insurer, whose corporate income tax rate is 30%. The 
insurer invests the $100 in assets A with an expected return of 6%. At the end of one year the 
expected return on the assets, after taxes, is $4.20 = 100(0.06)(1 – 0.30). This amount is returned 
to the investor as a capital distribution, giving a net return on the capital of 4.2%. On the other 

18 See Harrington [1997]. 
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hand, if the investor had invested directly in the assets A, rather than through the insurer, he/she 
would have received an expected return of $6.00. 

 The $1.80 difference must be made up by charging policyholders through additional 
premium. But the extra premium itself is taxed at the 30% corporate tax rate, so it must be 
grossed up to $2.57 = 1.80/(1 – 0.30). So, the double taxation component of FCC, as it applies to 
premium, equals [rt/(1 – t)]C, where r is the insurer’s investment  return,19

I assume that the FCC is at least equal to the above double taxation cost, and that all FCC 
components are proportional to the capital amount. Let z denote the FCC per unit of capital. 
Since the FCC must be borne by the policyholders in order to provide a fair market return

 t is its income tax rate 
and C is the capital as defined in section 4.1. Notice that if the investment return is zero, then the 
double-taxation component of the FCC is also zero. 

20

 

 (the 
cost of capital) to investors, the premium must include an amount zC in addition to expected 
losses and other insurance expenses. Therefore, the basic premium model is 

 . (4.21) 

 

4.3 Fair Premium With Default  
Since the frictional costs of capital must be passed on to PHs, they will not want the insurer to 

carry unlimited capital. Therefore, the insurer will have a non-zero probability of becoming 
insolvent. Then, in order to be actuarially fair, the basic premium (L + zC) must be reduced by 
the expected value of default D:  

  

 . (4.31) 

 

                                                           
19 In a competitive market, the investment return for the FCC will tend to equal the risk-free interest rate, despite the 
insurer’s own expected return on investments. A higher return corresponds to greater risk and therefore requires a 
greater return to shareholders. Similarly, a high FCC cannot be passed on to policyholders if other insurers have 
lower investment returns and charge a smaller premium amount to cover double taxation costs. 
20 The expected return to investors, or the traditional “cost of capital” is built into the profit margin, another 
component of the fair premium. For simplicity, I have ignored it in the premium model. The profit margin can be 
directly embedded into the loss value by taking its present value at a risk-adjusted interest rate. The fair premium 
(with no default or expenses) will then equal the risk-adjusted PV of the expected loss plus the PV of the frictional 
capital costs. The cost of capital doesn’t directly enter into the premium calculation.  
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So now the premium has three components: the base amount L is increased by the FCC and is 
reduced by D. Although, as I will discuss in section 5.1, the fair premium is approximated in 
practice by the basic premium. However, the basic model is not a competitive equilibrium21

                                                           
21 See Varian [1992], page 219. 

 
model, where the premium is a market-clearing price. Since I have assumed a zero interest rate 
and that market risk is captured by the loss value L, the market expected return on capital is zero. 
For equilibrium to occur, the premium must provide investors a zero expected return. Under the 
basic premium model, the expected return is D, since the policyholders’ loss is the investors’ 
gain. In a competitive market, this gain is reduced to zero by decreasing the basic premium by D. 
Thus, the fair premium satisfies both policyholders and investors, representing an equilibrium 
result.  
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5. DETERMINING OPTIMAL CAPITAL 

Sections 3 and 4 have provided the ingredients to determine an insurer’s optimal capital: we 
have a model for the value of policyholders’ default as well as a specification for the insurer’s 
cost of carrying capital. Since the capital amount governs the default value, we can balance these 
two factors to maximize consumer value.  

5.1 General Model 
For simplicity, I initially assume that the insurer does not deduct22

The value to the policyholders of their insurance is the certainty equivalent of the insured 
losses minus the cost of the insurance (which is a certain amount). Because insolvency is 
possible, the CE value of the actual coverage is the certainty-equivalent expected loss minus the 
certainty equivalent of the expected default. The consumer value (denoted by V ) of the insurance 
transaction,

 the expected default from 
the premium, so we have the basic model  π = L + zC.  Since I have assumed that the interest rate 
is zero, the frictional capital cost rate z does not contain an income tax component (as discussed 
in section 4.2). 

23

   

 therefore, equals the certainty equivalent of the covered losses minus the premium:  

 . (5.11) 

 

As we increase the amount of assets (by adding capital), the CE value of expected default 
decreases, while the premium (through the capital holding cost zC ) increases with capital. This 
situation is a classic economics optimization problem, which can be solved by taking the 
derivative of V with respect to assets and setting it to zero. 

Since 𝐿� is constant with respect to a change in assets, taking the derivative of V with respect 
to A in 5.11 and setting the result to zero gives . From Appendix C, which 

applies the derivative of an integral, we have , so the general 

                                                           
22 This is certainly the case in practice for the U.S. with regard to an explicit premium component for default. 
However, it can be argued that weaker insurers (with higher expected default amounts) will charge a lower premium 
to remain competitive. 
23 If the CE loss distribution is derived from some utility functions (such as the square root model), the CE value of a 
constant plus a random variable is not equal to the constant plus the CE of the random variable. In this case, 
equation 5.11 is an approximation. However, it is exact for CE values derived from exponential utility.  
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condition for optimum assets is 

    

 . (5.12) 

 

Here,  is the adjusted ruin probability (ARP), or the chance that losses exceed assets, 
under the transformed density . The corresponding unadjusted ruin probability under p(x) is 
denoted by Q(A). 

For the basic premium model, where the premium excludes the expected default, we have 
. Since L is constant with respect to assets, the derivative becomes 

. The assets available to pay claims equals the initial capital C plus the 
premium, minus the frictional capital cost, so we have .  Thus, 

, with the result 

 

 . (5.13) 

 

This rather simple result establishes that the optimal level of assets (and thereby capital) is 
determined by a risk measure that is an adjusted ruin probability. The ARP is a function of the 
probability distribution of losses and the policyholder risk aversion, as incorporated into the 
transformed density function. The risk measure is calibrated to the frictional capital cost rate z. 

Given the optimal asset level from equation 5.13, the optimal capital is readily found by using 
the above relationship A = L + C.  

For a fair premium, where the insurer deducts the expected default from the premium, we 
have   and A = L + C – D. Taking derivatives of these two expressions, and 
noting that , we get  and 
. Thus,  and equation 5.12 gives 

   

   (5.14) 

 

as the condition for optimal capital.  

From section 3.5, tables 3.5a and 3.5b show that the transformed ruin probability  is 
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much larger than the unadjusted ruin probability Q(A), particularly at lower ruin probabilities 
(which correspond to the high safety levels that would be required in practice). Thus, Q(A) can 
be set to zero and equation 5.13 may be considered as an approximation24

Notice that the level of insurer expenses doesn’t affect the optimal capital, as long as the 
expenses are a function of the expected losses and not capital. Let the premium be 

 to the optimal capital 
condition for a true fair premium. 

, where e0 and e1 are constants that determine expenses. The 

derivative of V in equation 5.11 will be the same with or without expenses, since the derivatives 
of L, e0  and e1 with respect to capital are all equal to zero. 

Equation 5.12 is general in scope and can be used for alternative premium formulations. For 
example, if the frictional capital cost zC is not consumed prior to default, then the optimal capital 
is determined from , which approximates equation 5.13. 

If an insurer’s policyholders have heterogeneous risk preferences, (but with the same loss 
distribution) the optimal capital can still be calculated using equation 5.11. However, the 
premium for each PH will differ. For a given capital amount, each PH will have a specific CED 
value (based on their risk aversion) along with a share of the joint capital cost. The share is 
allocated to each PH via their willingness to pay (determined from their respective consumer 
values). This gives a higher premium for the more risk-averse PHs: in effect, they pay the low 
risk-aversion PHs in order to use a high capital amount. However, this result is theoretical, since 
normally an insurer does not charge different premiums for policyholders with identical loss 
characteristics. Accordingly, in practice the optimal capital for a group of insureds must be based 
on an average (weighted in some fashion) of their risk preferences. In this case, low and high-
risk aversion PHs will have consumer values that are less than the theoretical optimum.  

Consequently, they might improve their consumer values by moving to an insurer whose 
other PHs have similar risk preferences to their own; i.e., to the extent that insurers incorporate 
capital costs into their premium, PHs are best served by choosing an insurer whose capital 
strength suits their needs. In finance, this grouping behavior is called the clientele effect. For 
insurance, it has implications for pricing (section 7.1) and regulation (section 7.2). However, 
further analysis of this topic is beyond the scope of this paper. 

                                                           
24 Using z = 2%, and the normal-exponential model from section 3.5 (with risk aversion of 0.02), the optimal capital 
under equation 5.13 is 379.73. Under equation 5.14 it is 379.56, a difference of only 0.045%. 
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5.2 The Effect of Income Taxes 
Another variation to the premium model includes the effect of income taxes, which, as 

discussed in section 4.2, can be the major component of the frictional cost of holding capital. In 
order to pursue practical applications, the impact of income taxes on optimal capital must be 
addressed. Appendix D develops the result for optimal capital in this case. As in the general 
model with a constant frictional cost of capital, the optimal asset amount is found by setting the 
CE ruin probability equal to a constant value: 

 

 . (5.21) 

 

Here, A is the end-of-period assets (before subtracting the loss and income taxes), t is the 
income tax rate and r is the riskless investment rate of return.  

Equation 5.21 is important because it establishes a benchmark for practical applications. The 
effective corporate income tax rate for insurers will be less than the current nominal 35% highest 
marginal rate, due to the ability to defer taxes on capital gains, shelter income using municipal 
bonds and other measures. Assume that the effective rate is 30%. As discussed in section 4.2, the 
appropriate investment benchmark is the Treasury rate (which should be matched to the average 
liability duration: about 3 years for U.S. property-casualty insurers). The 3-year rate has varied 
from about 1.5% to 6% over the past 10 years. Consequently, the optimal adjusted ruin 
probability has been in the range of about 0.4% to 1.8% over this period.  

The corresponding optimal unadjusted ruin probabilities can be smaller than the 0.4% to 1.8% 
range, as indicated in the section 3.5 examples (tables 3.5a and 3.5b). However, several factors 
(e.g., using a more realistic loss distribution,25

                                                           
25 The normal and lognormal distributions that I’ve used for illustration have unlimited losses. In practice, insurance 
coverage imposes policy limits. Consequently, policyholders must absorb the high end of their losses, which carry 
the greatest CE values. This effect reduces the CE default value and increases both the ARP and the unadjusted ruin 
probability corresponding to the optimal capital. 

 incorporating the regulatory constraints in section 
7 and including the effects of guaranty funds) will increase the unadjusted ruin probabilities. 
Consequently, the above range of frictional capital costs appears to be broadly consistent with 
more subjective solvency measures such as the Solvency II 99.5% VaR standard, which 
translates to a 0.5% unadjusted ruin probability. In other words, the overall required capital for 
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an average insurer under the ARP risk model is not inconsistent with current practice. 

5.3 Numerical Examples 
Here, I’ve used the normal distribution with exponential utility from section 3.5. For the same 

parameters (1000 mean, 100 standard deviation, 0.02 risk aversion) and with a capital cost rate z 
= 0.05, we get the optimal ARP of 5% and optimal capital of 330.66 using equation 5.13 and 
equation A4.9 in Appendix A4. The CE expected loss is 1100 and CED value is 2.46 from 
equation A4.8. The premium is 1016.53 = 1000 + 0.05(330.66), and so the consumer value of the 
insurance contract is 81.00 =  1100 – 1016.53 – 2.46. Figure 5.3 below shows how the consumer 
value of the insurance varies by amount of capital. 

Figure 5.3 
Consumer Value of Insurance by Capital Amount in Numerical Example 

Normal Loss/Exponential Utility Model 
 

 
 

Notice how the shape of the CV curve is steep at low levels of capital and flattens with higher 
capital. This behavior indicates that, beyond the optimal capital level, adding more capital has 
only a slight impact on PH welfare. Thus, the relative insensitivity of the optimal capital might 
be exploited in practical applications, where it could be necessary to use approximate values for 
some of the underlying variables. 

Table 5.3 shows how the optimal capital varies by standard deviation (SD) and risk aversion: 
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Table 5.3 
Optimal Capital by Standard Deviation and Risk Aversion in Numerical Example 

 
Risk Aversion SD = 25 SD = 50 SD = 100 SD = 200 

0.005 44 92 205 493 
0.010 46 103 247 661 
0.020 51 123 331 1007 
0.040 62 165 504 1720 
0.080 83 252 860 3186 

 
As we would expect, the optimal capital increases with both risk aversion and the volatility of 

the losses. 

5.4 Comparison to Other Risk Measures 
The conventional solvency risk measures can be considered as equal to or as simple functions 

of the tail moments of the loss distribution. Here I define the nth tail moment as 

     

 , (5.41) 

 

where p(x) is the density function and A is the assets, as defined earlier. Notice that if assets are 
zero, the tail moment equals the regular moment of the entire distribution. 

Observe that the ruin probability is the 0th tail moment and the expected default (policyholder 
deficit) is the first tail moment. Define the valuation level as the predetermined numerical value 
of the tail moment, such as 1% or 5%, that produces the desired level of assets. In other words, if 
the risk measure is ruin probability (RP) and the valuation level is 1%, then MT(0) = 0.01 and we 
solve equation 5.41 for A. 

VaR is the amount of assets such that  or 1 minus the RP, where α is the VaR 
confidence level. Tail value-at-risk, or TVaR,26 is the amount of assets equal to VaR + 
MT(1)/MT(0) at the α confidence level. Thus, the conventional risk measures are simple 
functions of the tail moments with n equal to 0 or 1.27

                                                           
26 Notice that TVaR and the EPD are not equivalent and will not necessarily produce the same capital amount. EPD 
includes only the amount of loss exceeding the asset threshold A, while TVaR also includes the portion of the loss 
below A for losses exceeding A. 

 In the following discussion, I use the ruin 
probability and the expected default ratio to loss (D/L) to characterize the tail-moment based 

27 The value of n need not be an integer. For example, with n = 0.5, the weight of the tail losses will be somewhere 
between that of a ruin probability and an expected default measure. 
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solvency measures. 

It is noteworthy to compare the adjusted ruin probability (ARP) measure to the common tail-
moment risk measures. Assume that both a straight (unadjusted) ruin probability (RP = 1 – VaR) 
and an unadjusted EPD measure are also used to determine capital. Further assume that all three 
measures (ARP, RP and EPD) are calibrated to give the same capital for a typical insurer. We 
observe the valuation level for each risk measure implied by the capital and keep it fixed as we 
change the variance of the loss distribution. 

For this exercise, let the typical insurer have the characteristics of the section 5.3 example, 
with a 5% ARP providing optimum capital of 330.66. This capital amount implies that RP = 
0.047% and the EPD/Loss ratio = 0.0012%. We fix all three measures and consider two other 
insurers, also having normally distributed losses. One insurer has low-risk policyholders with a 
standard deviation (SD) of 50; the other has high-risk PHs with a 200 SD. We apply each risk 
measure to these insurers, and compare to the typical insurer: 

 
Table 5.4a 

Comparison of Risk Measures Calibrated to Normal SD = 100 
Adjusted Ruin Probability = 5% 

 

SD 
Optimal 
Capital 

Implied 
RP Using 
Optimal 
Capital 

Implied 
EPD Ratio 
Using 
Optimal 
Capital 

A 

Capital: 
RP 
Standard 

B  

Capital: 
EPD 
Standard 

A  
% Diff. 

B  
% Diff. 

50 123.3 0.685% 0.0112% 165.3 156.0 34.1% 26.6% 

100 330.7 0.047% 0.0012% 330.7 330.7 0.0% 0.0% 

200 1007.0 0.00002% 0.000001% 661.3 697.0 -34.3% -30.8% 

 
Notice that the low-risk insurer has more capital under RP and EPD, with the high-risk insurer 

having less capital, compared to the optimal capital under ARP. Because the resulting capital for 
the low and high-risk insurers is not optimal, using a conventional risk measure reduces 
consumer value. For the high-risk insurer, using RP (or its VaR equivalent) lowers the CV from 
344.07 to 311.79, a decrease equaling 3.2% of the expected loss. For the low-risk insurer, the CV 
drops from 17.70 to 16.60, a reduction of only 0.1% of the expected loss. Similarly, applying the 
EPD ratio reduces CV by 2.5% of expected loss for the high-risk insurer and 0.1% for the low-
risk insurer. Note that this disparity between the high and low-risk insurers is due to the fact that, 
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for the same level of risk-aversion, high-risk policyholders gain more consumer value from 
insurance than low-risk PHs.28

We get similar results with a lognormal

   
29

 

 distribution paired with exponential utility. Here the 
typical insurer again has a mean loss of 1000, standard deviation of 100 and a risk aversion of 
0.02. The initial calibration gives RP = 0.037% and the EPD ratio = 0.0013%. Varying the SD 
and keeping the risk measures constant, we get similar results to the normal case. Figure 5.4 
shows the loss in CV/ expected loss for the lognormal case compared to the optimal ARP capital. 
For comparison, it also provides the results for the normal distribution. 

Figure 5.4 
Loss of Consumer Value by Using RP and EPD Measures 

Compared to Optimal ARP Result; Percentage of Expected Loss 
Normal and Lognormal Distributions 

 

 
 

For both distributions, the CV loss is slightly less (for the high-risk PHs) using the EPD, 
compared to the RP measure. To summarize the above results, we see that, compared to the ARP 
                                                           
28 The CE value of the loss (being related to the variance) is lower with respect to its expected value as variance 
decreases. At the extreme, with a zero variance, there is no difference between the CEL and the expected loss and so 
the difference in CV from using any risk measure must be zero. 
29 Here I’ve approximated the lognormal distribution using the binomial option pricing method as described by 
Panjer [1998], page 246. The CE ruin probabilities and default values are directly determined using the method of 
Appendix A4. Also, I have adjusted the risk aversion parameter to produce, for each standard deviation value, the 
same CE loss as with the normal distribution. 
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standard, the conventional risk measures overstate the optimal capital for low risk lines and 
understate the capital for above-average risk lines. The latter effect is more serious, because the 
under-capitalization can produce a meaningful loss in consumer value. For the low-risk lines, the 
loss in CV appears to be negligible. 

To gain further insight regarding the deficiencies of the conventional measures, assume that 
we have calibrated all three risk measures to produce the same capital for an insurer, as in the 
above example (e.g., Table 5.4 with a 100 standard deviation). Now we increase the size of a 
particular possible loss x > A in the tail by an amount ∆.  

If RP or VaR is the standard, there is no change in capital since the loss increment does not 
affect the RP. Yet policyholders are worse off. This effect was exploited in a perverse way 
during the 2008 financial crisis, when financial firms “stuffed the tails” to keep their apparent 
risk low (see section 2.1). To manipulate the tail probabilities, the firms designed securities to 
have a low probability of loss, but with an extreme loss size when the loss occurred. 

Under an EPD or TVaR standard, the effect of a loss increment is more subtle. Suppose that 
we take two “slices” of the tail, one with smaller losses and the other with larger losses. The 
widths of the slices (i.e., the probability that the losses in the intervals will occur) are selected so 
that the probability of losses being in each interval are equal. Let x1 be the average loss in the 
lower interval and x2 be the average loss in the upper interval. If we simultaneously adjust losses 
so that x2 increases by ∆ and x1 decreases by ∆, the expected default amount remains the same 
(as does the default probability). Note, however, that this operation increases the variance of the 
tail losses. Since the certainty equivalent value function k(x) is concave upward, we have k(x2) > 
k(x1), and thus this adjustment will increase the CE value of the default. Therefore, more capital 
is needed, even though the EPD stays constant. 

The preceding discussion shows that, given a particular loss distribution, under the ARP 
method it is not possible to “engineer” the tail to produce an artificially low capital amount. If 
the tail is altered by reinsurance or other financial techniques, the CE value function will 
automatically produce the proper capital as long as the firm uses the correct loss distribution 
(adjusted for PH risk preferences). 

A practical disadvantage of using the ARP measure is that it does not translate to any fixed 
conventional standard. For example, to get the correct optimal capital under the 5% ARP 
standard, the appropriate unadjusted RP in table 5.4 ranges from 0.00002% to 0.685%. The EPD 



An Economic Basis for Property-Casualty Insurance Risk-Based Capital Measures 
 

Casualty Actuarial Society E-Forum, Summer 2013 30 

ratio has a similar large range. Although this ARP feature presents no difficulty in calculating 
capital, it may create problems in comparing results to conventional solvency measures. 

5.5 Subadditivity  
To clarify risk definition in financial economics, theoreticians have described several 

properties for a risk measure. A coherent risk measure30

The subadditivity (SA) property requires that the value of the risk measure for the 
combination of two risks is less than or equal to the sum of the risk measure values taken 
separately. For insurance capital requirements, this means that when two risks (or risk portfolios) 
are combined, the required assets derived under the risk measure must be less than or equal to the 
sum of the assets derived from applying the risk measure to the risks individually. To be 
consistent with the individual PH focus of our analysis, the subadditivity requirement can be 
restated: if two risks are combined, the assets per risk under the risk measure cannot be greater 
than assets for either risk taken separately under the risk measure.  

 is a function that satisfies monotonicity, 
subadditivity, homogeneity, and translational invariance. Subadditivity has become the most 
important of these properties when applied to risk measures used in practice. 

Assume that two PHs have identically distributed losses. Let RM1(A) represent a risk measure 
that is a function of assets per policyholder A for a PH of an insurer with one risk and RM2(A) for 
a PH of an insurer with two risks combined. For two different asset amounts A2 > A1, we have 
RM1(A2) ≤  RM1(A1) and RM2(A2) ≤  RM2(A1); i.e., increasing assets decreases the value of the 
risk measure (this is the monotonicity property of a coherent risk measure). A subadditivity 
violation will occur when  

 

 , (5.51) 

 

 where v is the valuation level of the risk measure and A is any asset amount. Under this 
inequality, a SA violation occurs because, for both measures to equal v, assets in the combined-
risk insurer must increase and assets in the single-risk insurer must decrease (this effect is shown 
graphically in figure 5.51). Therefore, assets per PH in the combined-risk insurer will be greater 
than for the single-risk insurer. 

                                                           
30 See Artzner [1999] for a discussion of coherent risk measures with insurance applications. 
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A classic bond risk example,31

Using the ruin probability counterpart to VaR as the risk measure, we have v = 0.03. Let 
Q1(A) denote the RP for the single risk and Q2(A) the RP for the combined risks. Applying 
equation 5.51, we see that for A (assets per PH) from 0 to $500,  
[Q2(A) =  0.036] > 0.03 > [Q1(A) = 0.02]. Thus, subadditivity is violated. For assets above $500, 
we have 0.03 > [Q1(A) = 0.02] > [Q2(A) =  0.004],  so there is no SA violation. Also, for a 
valuation level v > 3.68% (required assets are zero for both the single or combined risks) or v < 
2% (required assets are $1000 per PH for the single risk and $500 for the combined risks), there 
is no SA violation.  

 which has a binary loss distribution, is used to illustrate SA 
violation. I have modified this investment illustration to represent insurance by using the section 
3.6 example with two independent binary risks each with a 2% probability of a $1000 loss. 
Suppose that the VaR measure is set at 97%. This means that a single risk must have at least a 
3% chance of loss in order to require assets (and thereby capital). Otherwise no assets are 
required to back the loss. Thus, with a 2% chance of loss, no assets or capital are required. 
However, if two independent risks are combined, the probability of a loss is 3.72% = 
2(0.02)(0.98) + 0.02(0.02) and therefore $1,000 of total assets (for both PHs) is required. This 
reduces the default probability to 0.04% and satisfies the 97% VaR valuation level. Subadditivity 
is violated here since more assets are required per PH for the combined risks ($500 each) than 
for either of the separate risks (zero). 

For the adjusted ruin probability measures  or  in equations 5.13 and 5.14, there 
also is SA violation for a range of valuation levels. Applying equations A5.4 and A5.6 in 
Appendix A5 to the parameters for this example, we get Figure 5.51, which graphically shows 
the pairs ,  and , . These are labeled respectively as Qhat 2, Qhat, Theta 2 
and Theta (for simplicity, I have dropped the subscript 1 denoting a single risk). 

 

                                                           
31 This example is from Albanese [1997] and has been used by Artzner and others. 
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Figure 5.51 
Adjusted Risk Measures for Section 3.6 Example 

 

 
 

Notice that a risk measure based on PH risk preferences can be a continuous function of the 
asset amount, even if the underlying loss distribution is discrete. This occurs because the values 
of the CE expected default and its derivatives are continuous with respect to the amount of assets 
if the underlying CE function k(y) or the equivalent utility function is continuous.  

The graph shows that  >  for  ≥ 6.78%, where assets per PH are less than 

$364.44. Subadditivity can be violated in this region. Similarly,  >  when > 
6.34%, corresponding to A < 260.80. 

Does the SA violation create any negative effects for the policyholders in this example? To 
answer this, suppose that the frictional cost of capital is z = 7%, which is the valuation level for 
the adjusted risk measures. It exceeds the above critical values of 6.78% and 6.34%, so there will 
be a SA violation for each measure. From section 5.1, we have the premium and from section 3.6 
the CED values by asset amount. Thus, the consumer value for any asset value can be readily 
found. 

For a fair premium, when assets are zero, the expected default equals the expected loss of $20. 
The premium and capital are also zero. Since the CED equals the $60.13 CE loss, the consumer 
value of the insurance is zero. When assets equal the $1,000 loss value, the expected default is 
zero, but the premium equals L + zC and capital equals assets minus the premium (the capital 
cost zC is not an available asset to pay losses). Thus, the capital is $980 and the premium is 
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$88.60 = 20 + 0.07(980). The consumer value is negative: –$28.47 = 60.13 – 88.60. Between 
these asset value extremes, the CV will have an optimal value. Figure 5.52 shows the per-PH CV 
by assets for a single risk and for two combined risks. 

 

Figure 5.52 
Consumer Value per PH by Asset Amount for Single Risk and Two Risks 

Fair Premium Model; z = 7% 
 

 

 

Here, for both cases, the optimal CV is positive. This is achieved with a per-PH asset value of 
$219.51 for one risk and $244.59 for the two combined risks. The corresponding respective 
optimal capital amounts are $215.12 and $234.90. These optimal amounts are derived directly by 
solving for θ(A) = 0.07 in equation 5.14, using the Appendix A5 relationships.  

This example clearly shows that the subadditivity criterion is violated, since more assets (or 
capital) are required per policyholder for the combination of two risks than for the single risk. It 
is also clear that the PHs are better off with the SA violation under the ARP risk measure, since 
their optimal consumer value is higher when the risks are combined. 

For the basic (non-fair) premium case, where the risk measure is , we get similar results, 
with the optimal assets for a single risk being $347.43, which is less than the $356.15 optimal 
per-PH assets for the combined risks. However, since the premium is not actuarially fair, the CV 
is lower than for the fair premium case, for both the single risk and the combined risks: 
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Figure 5.53 
Consumer Value per PH by Asset Amount for Single Risk and Two Risks 

Basic (Non-Fair Premium) Model; z = 7% 
 

 
 

Notice that the CV for the single risk here is negative for all asset values, indicating that the 
risk is not insurable — the PH is better off without insurance. However, when the two risks are 
combined, they become insurable.  

With lower values of z in this binary loss example, subadditivity is not violated. For instance, 
with fair premium and z = 2%, optimal per-PH assets for the single-risk insurer are $648.35, 
compared to only $401.65 for the two-risk insurer.  

In the financial economics literature an economic justification for the subadditivity constraint 
is that “if a firm were forced to meet a requirement of extra capital that did not satisfy this 
property, the firm might be motivated to break up into two separately incorporated affiliates, a 
matter of concern for the regulator.”32

                                                           
32 See Artzner [1999], page 14. 
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Nevertheless, given that a major purpose of the subadditivity constraint is to promote 
aggregation of risks, the underlying economic basis of the adjusted risk measures used here will 
always indicate that PHs are better off33

To summarize this section, I have shown that risk measures based on PH risk-preference can 
violate subadditivity, but when they do, the result makes perfect sense economically. Further, 
policyholders are never worse off when risks are combined — a fact that does not depend on the 
risk measure used to determine capital. Therefore, we must conclude that subadditivity is an 
unnecessary criterion for an insurance solvency risk measure. 

 (or no worse off, if the risks co-vary) when risks are 
combined. Therefore, these measures promote the spirit of the SA constraint. 

6. EXTENSIONS OF RESULTS 

The analysis in the preceding sections is based on a simplified model of an insurer, and 
concentrates on estimating optimal capital for insurance losses only. I have omitted some 
important elements that must be addressed before implementing the concepts for regulation, 
internal insurer risk management, pricing or other applications. 

This section discusses some of these important missing pieces. The scope of this paper does 
not permit a full development of the topics, so for each of them I have stated the issue and 
outlined the general direction of the analysis. Although these areas present some difficulties, they 
can be attacked using the major idea of section 5: optimal capital can be determined by trading 
off the cost of holding the capital and the value to policyholders of having the capital. 

6.1 Asset Risk 
The treatment of asset risk adds another dimension to the section 3 formulation of default risk 

for losses, where I assumed that assets were riskless, with a zero return. Now assume that the 
insurer has a portion of its investments in risky securities. For initial assets of A0, the ending 
asset value will be random, with an expected value of 
 A ≥ A0 (the reward for bearing market risk is an expected return exceeding the risk-free rate). 
Further assume that the insurer keeps the total asset and loss risk constant, so that it varies its 
asset (and capital) level by changing the amount of riskless assets. 
                                                           
33 For the basic premium model, at any per-PH asset level A, the difference between the combined-risk CV and the 
single-risk CV equals the difference between the single-risk CED and the combined-risk CED. This is so because 
the premiums for the two cases are identical. Thus the result will be non-negative. For a fair premium, the difference 
is the basic premium differential minus the difference between the unadjusted expected default amounts. This too 
will always be non-negative. 
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The certainty equivalent value of a risky asset is the converse of that for a risky loss: it is less 
than the expected value of its possible payoffs. Therefore, with a zero risk-free investment 
return, the beginning of period certainty-equivalent value of the ending asset amount equals the 
expected value of the ending amount, where the expectation is taken over an adjusted probability 
distribution. For an average investor, the expected value must equal the market value of the 
assets. Thus, this calculation removes the expected return from the ending asset values. The 
adjusted, or risk-neutral distribution (see Hull [2008]), reflects the concept that the ex ante 
perceived value of a particular asset outcome will depend on the economic scenario that 
generated the asset value.34

Assume that the policyholder has the same risk preferences as the typical investor. For each 
ending asset value Ai, the CE expected default is 

 For example, a low asset value may correspond to an unfavorable 
economy where a dollar is worth more; in that case the investor will weigh the result more 
heavily than the symmetrical high asset value. 

, where from section 3,  
is the CE amount of loss limited to Ai. Therefore, the unconditional CE of default over all asset 
values is the sum of the conditional values  weighted by the risk-neutral probabilities pA(Ai) 
for the asset values occurring: 

 

 .   (6.11) 

  

Note that, if losses and assets are correlated, each  will derive from a different expected 

loss corresponding to each Ai. For most applications using continuous distributions, the above 
integral can be evaluated with numerical techniques.35 The result gives the CED for a particular 
initial asset amount A0. The optimal capital occurs when .  

To illustrate this calculation, I return to the normal-exponential example from section 5.3. 
Here, the expected loss is 1000 with a standard deviation of 100, the risk aversion is 0.02 and the 
capital cost rate is 5%. Assume that the insurer has 400 of risky assets, also with a normal 
distribution, with a 5% expected return and a SD of 80 (the volatility, or SD per unit of risky 
assets is 20%). The remaining assets are riskless, with a zero return. Also, asset risk is 
                                                           
34 Note that a risky asset whose return is uncorrelated with market returns will generally not command a positive 
expected return above the risk-free rate. 
35 For the calculations here, I have used a discrete binomial approximation to the normally distributed ending assets.  
Each asset value determines the CE value of the loss limited to the asset amount using the conditional bivariate 
normal loss distribution (where the mean loss is a linear function of the asset/loss correlation). The overall CED was 
determined by inverting the expected utility of the conditional CE values using the risk-neutral asset probabilities. 
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independent of loss risk.  

Assuming that the risk-neutral distribution is also normal, its expected value equals the initial 
asset amount.36

Generally, under the policyholder welfare framework, the capital is always higher and the CV 
is lower when an insurer has a risky investment portfolio. Since on average, insurers’ investment 
managers cannot beat the market, financial theory indicates that there is no benefit to PHs for 
holding the risky assets. In other words, the optimal investment portfolio has only riskless assets. 
Then why do insurers in practice have risky assets? To resolve this puzzle, there are several 
hypotheses, including: the insurers may believe that their investment managers can individually 
beat the market (although collectively they cannot); management compensation schemes reward 
positive income without penalizing negative income; and insurers may build an above risk-free 
investment return into their pricing models. 

 The optimal capital with the risky assets becomes 356.89, which is 26.23 greater 
than the 330.66 for the case with riskless assets. The optimal CV at 78.88, is 2.13 lower than 
with the riskless assets. 

However, even though risky assets may lower the consumer value for PHs, the reduction may 
be small enough so that it is not material. For example, in the above calculation, the loss in CV is 
only about 0.2% of the expected loss. So the risky asset conundrum is theoretically interesting 
but generally may not be a practical issue. Regulators, rating agencies and insurance 
management recognize that a large amount of risky assets is imprudent. Especially large risky 
investment portfolios require additional capital whose costs cannot be passed on to PHs in a 
competitive market.  

An important point to make here is that the risk-neutral probability distribution removes the 
positive expected excess market return from the CE default calculation. If an insurer increases its 
asset risk through securities whose return is uncorrelated with the market, the expected default 
will rise and more capital is required. Thus it is essential for an insurer to maintain a diversified 
investment portfolio. 

Also worth observing is that both insurance losses and investment returns are not considered 
to be normally distributed; often a lognormal model or some other skewed distribution is used to 
approximate these variables. It may not be possible to represent the joint distribution in a 
tractable form. A more realistic application of the CE approach for total asset and loss risk will 
require a more elaborate method, such as a simulation model.  

                                                           
36 If one does not reduce the expectation to the beginning asset level, the result can be an optimal capital amount that 
is less than that for the riskless assets. In this case the additional capital required for risky assets is negative.  
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6.2 Guaranty Funds 
This topic deserves a full treatment in a separate paper. There is much academic literature37

 Under the policyholder welfare concept, guaranty funds will substantially reduce the optimal 
capital for an insurer. To see why this is so, consider an economy in which all policyholders of 
all insurers are completely covered by a single guaranty fund (GF). Clearly, no policyholder will 
suffer an uncovered loss unless the entire industry defaults. Thus, the aggregate capital for all 
insurers is used to protect any individual policyholder. Contrast this situation with the opposite 
extreme, where no policyholder has GF protection. Here, the policyholder has access only to the 
capital of his/her own insurer. In this case, the insurer needs much more capital than in the full 
GF situation. 

 
on the economic basis and design of guaranty funds, but I have found none that analyzes the 
effect of the funds on insurers’ capital requirements. 

Under a GF within the U.S., essentially all of the capital for each insurer in a particular state is 
pooled to provide default protection for policyholders. The coverage is limited (usually $300,000 
per policyholder for most lines of business), but some lines, such as workers compensation, have 
unlimited protection and others, such as surety, have no protection. For lines protected by the 
$300,000 limit, the GF coverage can vary significantly. For example, assuming a lognormal 
distribution with a 5.0 coefficient of variation, policyholders in a line with an average loss per 
policy of $1,000 (e.g., personal insurance) will have 99.53% of their expected losses covered by 
the GF, with only 0.47% exposure to the insurer’s default. However, those policyholders in a line 
with an average loss per policy of $5,000 (say, commercial insurance) will only have 95.96% 
covered, with a 4.04% exposure. Relative to their expected loss, the ratio of non-covered losses 
for the two lines is 8.6 to 1. So, for this example the presence of GF protection is a major factor 
in assessing the optimal capital for the two lines. 

Also, the GFs themselves can become exhausted38

                                                           
37 Cummins [1988] is one of the most often cited references. He argues that a pre-funded GF system is superior to 
the predominant post-failure assessment model in current use. However, based on the analysis here, a properly 
constructed RBC implementation might produce equivalent results. 

 in extreme events, since there is an annual 
limit to the amount they can assess the solvent insurers. Thus, in order to estimate optimal capital 
for a particular insurer, the risk of GF exhaustion must be analyzed. When this threat is 
considered, a much higher portion of default risk becomes attributed to extreme events. 

38 The term guaranty fund is somewhat of a misnomer. The vast majority of the state GFs merely assess other 
solvent insurers; they have no “fund” to pay claims. Thus, the GFs themselves cannot become insolvent. 
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Consequently, modeling these becomes paramount. The extreme events can be national or world-
wide in scope (e.g., a financial crisis or a deep pricing down-cycle) or regional (such as a natural 
catastrophe). 

An important implication for analysis is that, with GF protection the optimal capital depends 
not only on the risk of a policyholder’s own insurer’s default, but also the default risk of the 
other insurers covered by the fund. Therefore, in analyzing the effect, say, of catastrophes on 
capital, one must also estimate the effect of the same catastrophes on the other insurers. This 
modeling might be simplified by using a default correlation parameter (DCP) for the insurer, 
where the parameter measures the correlation between the insurer’s default and that of the 
remainder of the insurers in a particular state. A value of zero for the DCP would mean the 
insurer’ capital can be modeled as a stand-alone entity. At the other extreme, a value of 1 would 
mean that whenever the insurer defaults, the GF is exhausted due to the simultaneous defaults of 
other insurers. 

Although the protection afforded by a GF is considerable (the expected loss above a $300,000 
threshold is a small fraction of the total expected loss), the certainty equivalent value of the 
above-threshold amount is large relative to its expectation. Consequently, the value of the GF 
protection for the policyholder is reduced somewhat in comparison to its straight expected value. 

Other considerations in modeling the effect of GFs on optimal capital are that there may be a 
degradation of service (e.g., a delay in settlement) when, upon insolvency, a policyholder’s claim 
is transferred to another claims management firm or that there may be market disruption from the 
insolvency of a large insurer. These effects can be incorporated into the model by modifying 
equation 5.11 to include a coefficient greater than 1 for the CE of the default. 

The analysis of optimal capital under a GF should feature an additional term in the premium 
calculation: the expected GF assessment for the failure of other insurers. This is an unavoidable 
cost to the policyholder that is paid ex post, so its value is stochastic at the time of the policy is 
purchased. Note that, for a specific insurer, the expected GF assessment depends on the capital 
levels of the other insurers, so the optimal capital level for that insurer is influenced by both the 
GF assessment and the ability of the other insurers to provide GF protection for the insurer.  

The presence of guaranty funds adds another element to the regulator’s role of solvency 
protection. By monitoring capital for a particular insurer, the regulator must not only protect the 
interests of that insurer’s policyholders, but also the interests of the policyholders of the other 
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insurers who would be assessed in the event of the particular insurer’s demise. 

 Summarizing this section, GF protection adds two important variables to incorporate into 
optimal capital determination. The first is the degree of GF coverage, which varies by line of 
business. More capital is required for lines with less GF coverage. Second, the optimum capital 
for an insurer depends on the default risk of other insurers covered by the GF. Thus, the 
correlation of the default risk with other insurers will affect capital: the higher the correlation, the 
higher the capital amount. Including these variables requires analysis of an insurer’s data by 
state: for example, to properly determine catastrophe risk capital, the effect of GF exhaustion 
must be estimated for each state where there is material exposure.  

6.3 Multiple Periods 
This topic is the subject of much debate in the actuarial and insurance finance literature.39

The single period model, with the above and other extensions, should suffice to determine 
optimal capital for lines of business, such as property, whose claims are paid over a short 
duration. For liability insurance, workers’ compensation and life insurance, we need to expand 
the model to encompass long-duration claims. Although the long-duration contracts can be 
modeled in continuous time, it makes sense to use a discrete, multi-period time frame. This is 
because accounting time frames determine the valuation of insurer assets and liabilities and 
hence capital. The annual time period is especially important, so for practical purposes, we need 
to examine long time-horizon asset and liability risk over one-year time increments. For shorter 
time periods (e.g., quarterly), a similar analysis will apply. 

 
There are two camps: one side advocates using an annual time horizon, wherein capital is only 
needed to offset default risk based on market values over the upcoming year. The other side 
argues that capital is needed to offset the risk that cash flow will not be sufficient to pay claims 
over the entire duration (the runoff horizon) required to settle the liability. This topic also 
deserves a separate paper, so here I have only outlined a procedure that will establish optimal 
multi-period capital. 

With long-horizon risks, we can use the same fundamental assumptions that drive optimal 
capital for a single period. The main point is that the optimal capital over several periods still 
depends on the balance between capital costs and the certainty equivalent value of default.  

A key component of the analysis is that the value of a long-horizon risk element (e.g., losses 
                                                           
39 For a good discussion of this topic, see Lowe et al. [2011]. 
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or assets) is stochastic (i.e., random) at the end of every period. Assume that we know the 
probability distribution for the evolution40 of the risk element value and there are n periods. 
Suppose the risk element is a loss with expected present value L. So, if the insurer begins the first 
year with an optimal capital level C1 and the loss value at the end of the year happens to be 

, then the risk of default (either in the next period or ultimately) will change if the 

original capital remains the same. Thus, the capital must be changed accordingly to regain the 
optimal position. 

This process leads to a sequence of capital amounts  corresponding to the 

sequence of loss values . It will also produce a series of CE expected default 

amounts at the end of each year driven by the loss values: . 

For each of these sequences of value realizations, we can determine the present value of the 
consumer value. However, we need a rule or strategy to determine the capital amount at each 
period Ct (based on Lt) that optimizes the expected present value over all possible realizations of 
the  sequence. If we find a single strategy that does this, then we have settled the 

issue of setting capital for a long-horizon risk element.  

This type of problem can be solved by a process called discrete time stochastic dynamic 
programming.41

7. APPLICATIONS 

 One of the techniques used in this method is backward induction, where one 
starts at time n – 1, finds the optimal decision rule, then steps backward to time n – 2, finds the 
optimal decision rule at that stage, and so forth, all the way back to the beginning of the first 
period. If the stochastic process is regular (such a random walk with a constant drift), then the 
decision rule at each stage will likely be the same.  

The preceding sections have developed a theoretical framework for determining optimal 
capital for insurers. This section discusses several issues involved in applying the theory in a 
practical setting. 

There will be some applications of these results that are not directly related to setting the level 

                                                           
40 This process is analogous to a discrete model of interest rate evolution, where the value at any period will generate 
multiple possibilities for the next period. Graphically, the structure will look like a tree, with each successive period 
having more branches. 
41 See Birge and Louveaux [1997]. 
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of an insurer’s capital, such as capital allocation,42 but I will leave those topics for further 
research. Also, since capital is an essential ingredient in pricing models, the optimal capital 
results will be relevant to that application;43

7.1 Implementation of Results 

 however, this work is outside the scope of this 
paper.  

The results here are new and somewhat contrary to current practice. In my view, there are 
three major obstacles to implementing them. 

The first is that there is little empirical work, especially for insurance, in quantifying 
policyholders’ risk preferences. All we know for certain is that insurance consumers are risk-
averse, and will pay more than expected value for their coverage. In the absence of empirical 
evidence the best we can do is to assume a functional form for the risk aversion process, such as 
the exponential utility used in sections 3 through 5. (I do not necessarily advocate this model; I 
have used it because it is familiar and provides mathematically tractable results). This can be 
calibrated to a presumed certainty equivalent factor (k) for an individual PH based on judgment. 

Second, the adjusted ruin probability risk measure is not as easy to understand as the 
conventional ruin probability measure. That fact that a constant ARP translates into different 
conventional ruin probability standards for different risk elements (e.g., lines of business) may be 
difficult for some to comprehend, and may undermine acceptance of the results.  

Third, the analysis has unearthed several currently unrecognized variables (e.g., the frictional 
cost of capital, which reflects interest rates and income tax rates; also, the level of guaranty fund 
protection) that should be considered in setting capital. Incorporating them will require 
considerably more data-gathering and analysis than is presently done. Based on the analysis of 
sections 3 through 6, Table 7.1 shows the key variables that should be considered in establishing 
optimal capital levels: 

 

                                                           
42 The Myers and Read [2001] capital allocation method uses an expected default that is not adjusted for 
policyholder risk preferences. Incorporating this element will allocate relatively more capital to lines with more risk-
averse policyholders. 
43 Section 5.1 has shown that, to the extent that PHs tend to select insurers having capital levels based on their risk 
preferences, then the insurer’s actual capital level (rather than an industry standard) will be relevant to setting 
prices. 



An Economic Basis for Property-Casualty Insurance Risk-Based Capital Measures 
 

Casualty Actuarial Society E-Forum, Summer 2013 43 

Table 7.1 
Summary of Key Variables for Setting Capital Requirements 

N = None; L = Low; M = Moderate; H = High 
 

Inputs 
 Risk-free 

investment 
rate 

Effective 
tax rate 

Risk-aversion 
parameter 

Fraction of 
default not 
covered by GF 

Insurer-GF 
default 
correlation 

Variation by:      
Time M L N L L 
Insurer L L/M L/M L/M M 
Line of Business L L/M M H H 
State N N N L/M H 
Econ. Scenario/  
Extreme Event 

M L M M H 

Difficulty of 
Estimation: 

L L H L/M M/H 

 
Here I have provided my subjective estimates of the importance of each relevant variable 

introduced in this paper, and how much each variable varies by time, insurer, line of business 
and other factors. I have also indicated the difficulty of estimating the parameters (in modeling 
the capital requirements) for each variable. I have assumed that incorporating the risk aversion 
component is done simply, perhaps with a single parameter. Similarly, the correlation between 
insurer default and guaranty fund exhaustion is modeled with a single parameter. Notice that 
other variables, such as the loss distribution, are quite important but are currently considered 
when assessing risk-based capital. 

Although it may appear that the conventional risk measures are better than the ARP because 
they are simpler (needing fewer variables to evaluate), this is not the case if one accepts the 
policyholder risk-preference basis of this paper: these variables were always important, but 
simply were not recognized by the conventional risk-based capital methodology.  

7.2 Regulatory Role in Capital Standards 
The preceding sections have addressed finding the optimal capital for an insurer. In an 

efficient market, insurers will gravitate toward these optimal levels without regulatory 
intervention. However, the market is far from efficient from the perspective of maximizing 
policyholder welfare, and the involvement of regulators is often necessary. An important role of 
the regulator is to mimic the outcome of an efficient market, or at least to mitigate the effects of 
the market imperfections. 



An Economic Basis for Property-Casualty Insurance Risk-Based Capital Measures 
 

Casualty Actuarial Society E-Forum, Summer 2013 44 

Consequently, this means attempting to maximize policyholder welfare while maintaining a 
competitive market for insurance. The goal of this process is to approximate the optimal capital 
generated in an efficient market. Using risk-based capital standards, the regulator has the 
authority to force an insurer to maintain a minimum level of capital. If the insurer fails to achieve 
the desired capital, the regulator can impose various restrictions on the insurer’s operations,44

This means that the more severe (i.e., shut-down) thresholds will be lower than the optimal 
capital amount for an insurer. For example, if the regulator sets the shut-down level at the 
optimum level, the insurer’s management will need to carry more than that amount of capital. 
There are several reasons why the stringent thresholds should be lower than either the optimal 
capital level: 

 
including shutting down the insurer. So, the regulator will want to set the intervention thresholds 
at levels that will tend to produce optimal capital levels. 

(1) An insurer operating above, but near the shut-down level would have a strong chance of 
being forced out of business if the business does not perform well over the following 
year. Therefore, its management will try to maintain a sufficient clearance above the 
threshold to minimize this possibility.  
 

(2) With a high threshold, there is strong possibility of misidentifying companies that are 
actually strong as weak. Harrington (in H. Scott, ed., 2005) discusses this problem. 
Regulators will tend to value this type of error (Type 2) more than the converse (Type 1 
error) where weak companies are incorrectly identified as being strong. This type of 
forbearance will lower the stringent threshold levels. 
 

(3) An insurer cannot operate near a stringent threshold without the market knowing about it. 
Operating near the threshold will signal that the insurer is weak, resulting in loss of 
business. Consequently, the insurer will become weaker, and the result will tend to be a 
self-fulfilling prophecy. 
 

Additionally, the regulator cannot be certain that an insurer with a low capital level is truly 
undercapitalized or the insurer’s policyholders have low risk aversion. In the latter instance, the 
low capital amount could be appropriate for those PHs. This possibility requires a lower stringent 

                                                           
44 Under the current U.S. risk-based capital framework designed by the National Association of Insurance 
Commissioners (NAIC), there are five control levels (thresholds), ranging from no regulatory action when capital 
exceeds 200% of the base RBC amount, to mandatory takeover of the insurer at 70% of the base RBC. 
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threshold than if all PHs had the same risk preferences.  

Since the insurers will tend to carry more capital than the stringent intervention thresholds, 
these must be set low enough to induce insurers to generally carry the optimum level of capital. 
It will be difficult to quantify the relationship between the optimal capital and the regulatory 
thresholds that will produce the optimal capital. So, as is currently done, it may be necessary to 
use expert judgment to establish the threshold levels,45

I observe here that it is quite possible that insurers will in practice carry more capital than the 
optimal amount required to benefit policyholders. This will imply a wide gap between the 
stringent-threshold regulatory amount and the amount typically held by insurers. Because of 
incentive conflicts, the interests of insurance management, shareholders, regulators and rating 
agencies may differ from those of policyholders. For example, shareholders may be interested in 
protecting the franchise value of the insurer and may shortchange the interests of current 
policyholders to obtain future profits. Insurance management may desire capital sufficient to 
protect their private interests (e.g., future employment prospects) and may care more about the 
chance of insolvency than the expected amount of the default. Regulators and rating agencies 
have a vested interest in limiting the frequency of insurer insolvencies, since the failures can be 
viewed as a breakdown of supervision or of the rating system. 

 even if the optimal capital itself can be 
estimated reasonably well. 

The above incentive conflicts are exacerbated by the presence of guaranty funds, since the 
GFs allow for a somewhat painless insolvency experience from the policyholder perspective, but 
not painless to the other parties such as regulators or insurance management. 

8. CONCLUSION 
Based on maximizing policyholder welfare, it is possible to determine the optimal capital that 

an insurer should carry. To accomplish this, the appropriate solvency risk measure is ruin 
probability, using an adjusted probability distribution that reflects policyholders’ risk aversion. 
The level of the adjusted ruin probability standard depends only on the insurer’s frictional cost of 
holding capital. The assessment of underlying probability distributions of losses and assets, 
however difficult, is a standard actuarial problem. Determining the frictional cost of capital is a 
straightforward financial economics problem. On the other hand, estimates for the policyholder 

                                                           
45 Setting the proper threshold level is conceptually another optimization problem: find the level that will create the 
best overall policyholder welfare, recognizing the above market-disrupting effects. 
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risk preferences are presently not available. This presents a ripe new area for empirical research.  

The results of the analysis here establish that a number of variables, which are not considered 
in conventional risk measures, are important to properly establish an insurer’s optimal capital. 
These features are absent when applying conventional solvency risk measures such as VaR or 
expected policyholder deficit. Incorporating these new factors is also a rich opportunity for 
further study.  

Finally, although I have focused on property-casualty insurers in particular, the underlying 
principles will apply to other financial institutions as well. These entities have primary 
stakeholders such policyholders, depositors and investors. As with property-casualty insurance, 
the welfare of these parties is governed by the same general relationship between consumer value 
and the cost of carrying capital.  
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APPENDIX A: UTILITY THEORY AND CERTAINTY  
EQUIVALENT LOSSES 

In this appendix I show the relationship between utility theory under risk and the certainty 
equivalent valuation of insurance losses. The utility of a wealth amount W is designated by u(W) 
and the initial wealth of the PH by W0. Accordingly, the utility of wealth given a loss y is u(W0 – 
y). However, since we are concerned with insurance losses here, it is convenient to redefine the 
utility to be a function of the loss amount:  
U(y) = u(W0 – y). 

Since the utility theory axioms have u'(W) > 0 and u''(W) ≤ 0, with the derivatives taken with 
respect to wealth, when we convert to the utility of loss basis, we get  
U'(y) < 0 and U''(y) ≤ 0. Here, the derivative is taken with respect to the loss size y. These results 
are developed in Appendix A2. On the utility of loss basis, the relative risk aversion function 

 becomes .  

A1: Finding CE Values From a Utility Function 
The expected utility (of wealth) is  

    

 .   (A1.1) 

 

The certainty-equivalent wealth is the amount of wealth that gives as actual utility, the same 
amount as the expected utility. Thus, , where  is the inverse of the utility 
function. The certainty-equivalent wealth, in turn, equals the actual wealth minus the certainty 
equivalent of the expected loss, or 

 

 .  (A1.2) 

 

Suppose that a policyholder faces a loss of size y with probability p, or no loss with 
probability 1 – p. We want to determine the certainty equivalent amount corresponding to y, or 
k(y)y, where k(y) is the CE function defined in section 3.2. The CE loss is  

 

 .  (A1.3) 
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From equations A1.2 and A1.3, we can determine the CE function value: 

     

  . (A1.4) 

 

Thus, it is possible to determine the CE value of an individual loss amount directly from a 
utility function and the initial wealth.  

To illustrate, consider the utility function . The initial wealth is 1600 and a 
loss of 1200 has a 10% probability. The expected wealth is 1600 – 0.1(1200) = 1480. The utility 
of the initial wealth is . The utility if the loss occurs is  , so the 
expected utility is 38 = 0.9(40) + 0.1(20). 

The certain wealth corresponding to the expected utility of 38 is  . 
Therefore, the certainty equivalent value of the expected loss is 156 = 1600 – 1444. From 
equation A1.4, the CE function value for the 1200 loss amount is k(1200) = [1600 – 
1444]/[0.1(1200)] = 1.3. Notice that this value corresponds to a CE probability of 13% for the 
1200 loss amount. 

A2: The Shape of the CE Value Function  
Because utility theory axioms impose constraints on the shape of the utility function, these 

restrictions will be reflected in the shape of the corresponding certainty-equivalent function. 
From Appendix A1, the CE function is related to the inverse of the utility function, so the 
properties of inverse functions will govern the translation from utility to certainty equivalence. 

The first utility axiom is that utility increases with wealth: the derivative of utility with respect 
to wealth is . This means that utility declines as the loss size y becomes larger (i.e., 

) and thus the certainty-equivalent function value increases with y: . 

The second utility property is that, because individuals are assumed to be risk-averse, the 
second derivative of the utility function with respect to wealth is negative:. . This 
means that utility declines as the loss size y increases, but at an increasing rate. This property 
translates to a CE function that increases at an increasing rate: . 

Returning to the Appendix A1 example, we can vary the loss size from 0 to 1600, keeping the 
other parameters the same (e.g., p = 0.1). Thus the CE function value is 
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   (A2.1) 

 

Values for this function are shown graphically in Figure A2: 

 

Figure A2 
CE Function for Appendix A2 Numerical Example 

 

 
 

A3: The CE Loss Distribution 

An important restriction on the CE function k(y) is that . This constraint 

means that the average value of the CE function equals 1, and thus will be less than 1 for losses 
that are small. This result seems anomalous, since the PH will be averse to the risk of small 
losses as well as for larger ones (albeit less risk-averse for the small ones), since the small losses 
are also random. However, it makes sense when we consider the entire loss distribution: since 
losses are mutually exclusive, two different loss values are negatively correlated. The negative 
co-variation will reduce the CE function value if the loss amounts are simultaneously considered, 
as compared to a situation where some loss sizes are considered selectively. 

To illustrate the effect of negative covariance, consider a PH facing a loss of  with 
probability ½ or another loss of  also with probability ½.  The amount  is very small. One 
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of the two amounts will occur, but not both. If the PH insures against the first event and not the 
second, the CE expected loss will be greater than its expected value. This is because there is 
apparent risk:  the loss will be zero or  with equal probability. The same is true if the 
second event is insured but not the first. However, if both events are insured (i.e., the entire loss 
distribution), then the CE expected loss will equal the expected value y, since essentially, the 
entire distribution is a single point y and there is no variance. The value y (plus or minus ) is 
certain to occur. Thus the CE expectation over the entire distribution will be less than the sum of 
the CE values of the individual loss sizes taken in isolation. 

The effect of the negative loss co-variation is that the k(y) values (such as in Appendix A2) 
will be reduced somewhat when other loss values are considered simultaneously. Extending the 
Appendix A2 example, suppose that (in addition to a loss amount of 1200 with a 10% 
probability) another loss of 1500 can occur, also with a 10% probability. Either may occur, but 
not both. Thus, there is an 80% chance that no loss will occur.  

The utility if the 1200 loss happens is , and the utility if the 1500 loss 
happens is . So, the expected utility is 35 = 0.8(40) + 0.1(20) + 0.1(10). This 
gives a CE wealth of 1225 = 352  and the CE of the expected losses is 375 = 1600 – 1225. Thus 
the joint CE of the two loss amounts is 3750 = 375/0.1. However, taken separately, the CE of the 
1200 loss is 1560 and the CE of the 1500 amount is 2310 (determined as in the Appendix A1 
example). This gives a total CE for the separate losses of 3870, which is 130 more than their 
joint CE. 

In this example, adding more possible loss values to fill out the entire probability distribution 
will reduce the CE values for all of the loss amounts even further.  

To summarize, the particular value k(y) of the CE factor for a loss size y depends not only on 
y but also on all other loss values in the loss distribution, and their respective probabilities. 

A4: Finding CE Default and Ruin Probability from a Utility Function 
If we know the probability distribution of losses and the utility function, the certainty 

equivalent loss can be determined by inverting the expected utility, as shown in section A1. The 
expected utility for losses limited to an amount of assets A is 

 

 , (A4.1) 
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where U(y) is the utility if loss size y occurs and Q(A) is the ruin probability, or chance that 
the loss exceeds assets. The expected utility for the entire loss distribution equals equation A4.1 
with A set to infinity. The CE value of the limited loss is determined from the inverse utility 
function: . The CE of default is the difference between the CE of the entire 
loss and the loss limited to assets, just as the expected default is the difference between the 
expected loss and the limited expected value. Thus . Since (from appendix C) the 
CE ruin probability  equals , we have . Note that the 
derivative of  is zero, since it is not a function of A. Equation A4.1 thus provides a method for 
determining  and  given U(y). 

This method for getting the CE values for default and ruin probability can be illustrated using 
a general loss distribution with exponential utility. Here, I define the utility of wealth for loss size 
y as , with a being the risk aversion parameter. The expected utility of the limited 
loss is  

 

 . (A4.2) 

 

To find , we first take the derivative of equation A4.1 with respect to A, getting  

 

        (A4.3) 

 

The terms involving p(A) and p(0) vanish since p(0) = 0 and the derivative of Q(A) is –p(A). 
The inverse of the exponential utility function for a utility value X is . 

Next, we take the derivative of . Note that since , its derivative equals : 
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  (A4.4) 

 

or . With a normal loss distribution, we can directly determine 
EUL(A). The normal density is  

   

  . (A4.5) 

 

Since the density in equation A4.1 is multiplied by –exp(ay), the product U(y)p(y) for the 
normal p(y) becomes another normal density ps(y) with a variate (shifted from the mean L) of 

, multiplied by the constant . Thus, the expected utility 

equals this constant and its CE is the inverse, equal to . This derives the result in 

equation 3.43. For the normal distribution, equation A4.1 becomes  

 . (A4.6) 

 

Here  is the cumulative normal probability with the shifted variate zs. Converting EUL(A) 
to a certainty equivalent, we get  

 

 . (A4.7) 

 

Since , we finally have  

 

                         .              (A4.8) 

 

To determine the adjusted ruin probability  for the normal distribution, we use equations 
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A4.4 and A4.6, getting: 

 

  . (A4.9) 

 

Notice that the distribution for Ps(A) has a mean of , while for Q(A) the mean is L. 

The mean underlying the  distribution is . Letting  , we see that 

. From equation A4.9 it is straightforward to show that 

 and therefore the CE distribution is symmetric around . However, as 
shown below, the CE distribution is not normal. 

To show the non-normality, I use the section 3.5 example with L = 1000, σ = 100 and a = 
0.02. With assets of 1300 (3 standard deviations above the mean) the unadjusted expected default 
D is 0.038 and the ruin probability is Q(1300) = 0.135%. The CE expected loss is 1100 = 1000 + 
0.5(0.02)(100)2. The shifted variate is zs = 1.00 = [1300 – 100 – (0.02)(100)]/100, which is one 
standard deviation above the mean. Thus, the shifted cumulative probability is Ps(1300) = 
0.8413. The factor   equals exp[0.02(1300 – 1100)] = 54.598, so we get  

 = 4.439 = {–ln[0.8413 + (54.598)(0.00135)]}/0.02. The CE ruin probability is  

 = 8.05% = 0.00135/[0.00135 + 0.8413/54.598]. Notice that the denominator of 
equation A4.9 contains an exponential factor that is the reciprocal of the one in equation A4.8. 

If the CE distribution were normal, then its ruin probability of 8.05% would imply a standard 
deviation of 142.71. Then, if we change the assets to 1200, we would get a CE ruin probability of 
24.17%. However, following the above calculation, the true  is 25.16%. Consequently, 
the CE distribution for the normal-exponential model is not normal. 

It is interesting to compare the CE density  with that of the underlying normal 
distribution p(y). The approximate values can be calculated taking the difference of 
successive  values. Figure A4 below shows the two densities. 
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Figure A4 

Probability Densities for Normal-Exponential Model 
Illustrative Example 

 

 
 

Notice that the CE density is symmetric, centered at the CE loss value of 1100. It also has a 
greater variance than its normal parent distribution. Also observe that, for a given asset amount 
(above the mean), the tail area of the adjusted distribution is much greater than that of the 
unadjusted distribution. 

A5: CE Values for Binary Loss Model with Exponential Utility 
Assume that an individual faces a loss of amount B with probability p > 0, and amount 0 with 

probability q = 1 – p. This is called a binary model, since there are two possible loss values: B or 
zero. The individual has risk preferences defined by exponential utility with risk aversion 
parameter a and has initial wealth of W0 before considering the loss prospect. The utility of the 
initial wealth is   and the expected utility of wealth considering the loss is  

 

 . (A5.1) 

 
Letting  denote the CE value of the wealth considering the loss, we have  , 

where  is the CE expected loss. Since , we get 
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 . (A5.2) 

 

If the individual buys insurance for a premium π and the insurer has assets A, then the amount 
of loss absorbed by the individual is B – A and the expected utility is 

.  The certainty equivalent wealth after the insurance 

purchase is the initial wealth minus the premium minus the CE expected default, or . 

Since , we solve for :  

 

 . (A5.3) 

 

Notice that if A = 0, then  and if A = B, then . The CE ruin probability  
equals the negative derivative of the CED, so we get 

 

 .  (A5.4) 

 

If A = 0, we have  and at A = B, . 

For two combined independent binary risks, the development is similar (the values of 
variables for the combined risks are denoted with a subscript 2). Here we set the initial wealth 
and premium to zero, since they do not influence the CED and hence the CE ruin probability. 
Following section 3.6, assets are A per PH, for a total of 2A. For  
A < B/2, the expected utility per PH is . For  

B/2 ≤ A < B, . Then the respective CED values are 

 

             for A < B/2 (A5.5) 

      for B/2 ≤ A < B,  

 

where  and . Here, if A = 0, we again get 

 and if A = B, then . Taking the derivative of the CED with respect to A, we get 
the CE ruin probabilities: 
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      for A < B/2 (A5.6) 

 
                for B/2 ≤ A < B. 

 

For A = 0, we get  and for A = B, . Notice that 

 and that . Thus, the CE ruin probability for the 

combined risks has a higher maximum value (at A = 0) and a lower minimum value (at A = B) 
than for a single risk. Thus, based on equation 5.51, there is a region where a subadditivity (SA) 
violation may exist and another region where a SA violation cannot happen.  

For a fair premium, equation 5.14 defines the risk measure as 
. For a single binary risk, the unadjusted ruin probability is 

Q(A) = p, for A ≤ B. Consequently, 
 

 , (A5.7) 

 

so the fair premium risk measure  is a linear function of the basic premium risk measure 
.  

For a combination of two independent binary risks, and for A < B/2, the expected default for a 
single PH is . By taking the negative of the derivative of D2 with 

respect to A we get . For B/2 ≤ A < B, we have  . Therefore, equation 
5.14 gives 

 

              for A < B/2 (A5.8) 

       for B/2 ≤ A < B. 

 

For A = 0, with some manipulation, we get  and for A = B (as a 

limit), . Just as in the basic premium case, there is a region where a 
subadditivity violation may exist and another region where it cannot occur.  

APPENDIX B: STOCHASTIC MEAN LOSS MODEL 

The classic aggregate loss model from risk theory (see Lundberg [1903]) is the compound 
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Poisson process, where the number of losses is Poisson and each individual loss has the same 
distribution with prescribed parameters and thus a stable mean. The individual losses are 
independent. However, in practice, the losses are not independent (they are subject to common 
factors such as inflation, regulation and the court system). Further, the mean of losses for a given 
line of business (or other subdivision of an insurer’s risk portfolio) is not known; it must be 
determined empirically.  

Relaxing the independence assumption, we introduce another random variable that governs 
the mean from which all the individual losses are drawn (in this section, random variables are 
indicated with a tilde).  

Let  represent the stochastic mean variable, which itself has a mean of 1 and a variance  . 
We assume that there are N policyholders. Each PH i has losses (we allow for multiple claims in 
the one-period model) denoted by . The  are measured before applying the mean variable .  

Let  denote the sum of aggregate losses before applying the stochastic mean. The 
unconditional aggregate losses are  

 

   (B.1) 

 

Here the { } are the individual losses and N  is the number of losses. and  are 
independent, so the covariance between losses is due to the stochastic mean. Let M be the mean 
of the individual loss  and  its variance. Let  be the correlation between the individual 

losses. The variance of  is   

  

   (B.2) 

  

and its mean is NM. 

The variance of the product of two independent random variables  and  is 

 

   (B.3) 

 

Here, E( ) denotes the expectation. Thus the variance of the aggregate losses  is  
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   (B.4) 

 

Let  denote the share of aggregate losses for an individual PH. Then 
. Thus, we have 

 

 .    (B.5)   

 

As N becomes large, the variance of the individual PH losses tends toward 

 

 . (B.6) 

 

So for large N, the variance of the individual PH losses tends to a constant limiting value. 
Also, if  and , the limit is . If  and , then the limit is . 
Consequently, if either the losses are subject to a stochastic mean or they are correlated, then 
with a large number of policyholders, the variance of individual PH losses will reach a limit.  

An example will illustrate the convergence. Assume that M = 1,000, ,  and 
 For N = 1,000, equation B.5 gives an individual PH variance of 28,253, compared to 

the asymptotic value of 28,180, a difference of only 0.26%. Increasing N to 10,000 policies 
moves the variance to 28,187, cutting the difference to 0.03% from the asymptotic value. Notice 
that the asymptotic standard deviation is 167.87, which compares to 300.00 from the individual 
loss distribution. 

APPENDIX C: DERIVATIVE OF THE EXPECTED DEFAULT  

To determine the derivative of the expected default, we use the general method for the 
derivative of an integral, with the upper limit a constant b and the lower limit a function of the 
variable whose derivative is taken: 

 

  . (C.1) 

 

Thus, 
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 . (C.2) 

 

The right-hand term in equation C.2 equals zero and the derivative becomes 

 

 , (C.3) 

 

where  is the tail, or ruin, probability.  

For an adjusted probability density , we have in parallel fashion, 

 

 . (C.4) 

APPENDIX D: OPTIMAL CAPITAL WITH INCOME TAXES 

Expanding the basic model to include income taxes, we also need to introduce an investment 
component. Assume that all cash is invested in riskless investments at a one-period rate r, and 
that all income is taxed at the end of the period at a rate t. Premium is collected at the beginning 
of the period and losses are paid at the end of the period. We further assume that the losses 
contain no market risk, so that the expected return to investors46

In order to attract capital from the insurer’s investors, the expected rate of return after taxes 
must also equal r.  

 in the insurer is also r. 
Alternatively, we can assume that the value of the loss is adjusted to include the market risk. 

If the premium equals the present value of the expected loss, then initial assets are 
. The expected value of the ending assets, prior to income tax, is  

. The investment income rC is taxed, leaving C + rC – trC. However, 

for a fair return to investors, the ending assets must be C + rC. The amount trC must be made up 
                                                           
46 In this formulation, the expected default is not subtracted from premium, so the result approximates a true 
equilibrium optimum, which is a more complex version of equation 5.14. 
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by charging an extra premium amount zC at some rate z proportional to capital, so the premium 
is . The extra premium is itself taxed as underwriting profit, so the amount 
zC will grow to after taxes.  Notice that the investment income rzC on 
zC is also taxed. Equating the ending after-tax value of the additional premium with the double-
taxation burden trC, we solve for z: 

 

  . (D.1) 

 

Let A represent the amount of assets prior to payment of the loss and income taxes. If the loss 
is larger than A, the insurer will default and no tax is paid. I assume here that a negative income 
tax liability arising from a large loss does not increase the assets available to pay the loss. Thus 
we have 

 

 . (D.2) 

 

In parallel fashion to equation 5.11, the consumer value V of the insurance equals the present 
value of the CE of the covered losses, minus the premium: 

 

 . (D.3) 

 

Taking derivatives and equating to zero, we have  

 

 . (D.4) 

    

From equation D.2, we get . From equation D.4 we get  

 

 .  (D.5) 
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Using the value of z in equation D.1, we get the optimal CE ruin probability in terms of the 
interest rate and the income tax rate: 

  

  . (D.6) 
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GLOSSARY OF ABBREVIATIONS AND NOTATIONS  

 
Abbreviation Meaning Section Where Defined 
ARP Adjusted ruin probability 5.1 
CE Certainty equivalent 3.2 
CEL Certainty equivalent expected loss 3.2 
CED Certainty equivalent expected default 3.5 
CV Consumer value 3.6 
DCP Default Correlation Parameter 6.2 
EPD Expected policyholder deficit 1 
FCC Frictional capital cost 4.2 
GF Guaranty fund 6.2 
NAIC National Association of Insurance Commissioners 7.2 
PV Present value 4.3 
PH Policyholder 3.1 
RBC Risk-based capital 2 
RP Ruin probability 5.4 
SA Subadditivity 5.5 
SD Standard deviation 5.3 
TVaR Tail value-at-risk 1 
VaR Value-at-risk 1 
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Notation Meaning Section Where Defined 
a Exponential utility risk aversion parameter 3.4 
A Assets 3.5 
A0 Initial assets App. D 
b Upper integration limit App. C 
B Binary loss size  5.5 
C Capital 4.1 
CEW Certainty-equivalent wealth App. A1 
D Expected default 3.5 

 Certainty-equivalent expected default 3.5 
e0 , e1 Expense coefficients 5.1 
E( ) Expectation operator App. B 
EU Expected utility App. A1 
EUL( ) Limited expected utility App. A4 
f( ) General function 3.6 
F( ) General function App. C 
g( ) General function App. C 

  Stochastic mean variable App. B 
k( ) Certainty-equivalent function 3.2 
k Average value of the CE function 3.2 
K Variable in normal-exponential model App. A4 
L Expected loss 3.2 

 Certainty-equivalent loss 3.2 

  Limited CE expected loss 3.5 

M Mean of individual loss App. B 
MT( )

 
Tail moment 5.4 

n Degree of the tail moment 5.4 
N Number of policies App. B 
p Binary loss probability App. A1 
p( ) Probability density 3.2 

 Probability density, adjusted for risk aversion 3.2 

pA( ) Risk-neutral probability density for asset size 6.1 

 Probability density with shifted mean App. A4 

Ps( ) Cumulative probability with shifted mean App. A4 
q Probability of zero loss App. A5 
Q( ) Ruin probability 5.1 

  Ruin probability, adjusted for risk aversion 5.1 

r Investment return 4.2 

  Absolute risk aversion function 3.4 

RM1( ), RM2( ) Risk Measure 5.5 
  Sum of aggregate losses, without stochastic mean App. B 
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Notation Meaning Section Where Defined 
t Income tax rate 4.2 
u( ) Utility function, based on wealth App. A1 
U( ) Utility function, based on loss size 3.4 
v Valuation level of risk measure 5.5 
V Consumer value of insurance contract 5.1 
Var( ) Variance operator App. B 
W Wealth App. A1 

 Initial wealth 3.4 

  
CE wealth given a potential loss App. A5 

x Loss size; also a general variable 3.4 

  
Random individual loss size App. B 

  Unconditional aggregate losses App. B 
y Individual policy loss size 3.2 

  Certainty equivalent loss size 3.2 

  Policyholder share of aggregate losses App. B 
z Frictional cost of capital rate 4.2 
zs Shifted normal variate App. A4 
Z1, Z2 Intermediate variables App. A5 
α VaR confidence level 5.4 

  Variance of stochastic mean App. B 

Δ Change in loss size 5.4 
ε Small change in loss size App. A3 
π Premium 4.1 
θ(  ) Fair premium risk measure 5.1 
ρ Correlation between losses App. B 

  Variance of loss 3.4 
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