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Understanding Contingent Capital 
Kailan Shang, FSA, CFA, PRM, SCJP 

 ____________________________________________________________________________________________  
Abstract. This paper is a response to the Casualty Actuarial Society’s request for proposals on "Contingent 
Capital." In light of the recent financial crisis, contingent capital, a type of hybrid security, is seen as an innovative 
way of recapitalization given the occurrence of a specified event, such as the capital adequacy ratio falling below 
the threshold. Although it has gained prominence among regulators, there are some doubts from market 
participants. The effectiveness of this automatic bail-in hybrid security is still too early to tell, given the limited 
market experience and unclearness of the impact on the share price when the conversion is triggered. The goal of 
this research is to explore the key features of contingent capital, its market, the appropriate pricing and valuation 
tools, and its application in insurance industry. It is hoped that the research will increase our understanding of 
contingent capital and facilitate the assessment of its value and risk. 
Motivation. As a new alternative of raising capital automatically under stressed situations, contingent capital is 
expected to have more weight on insurers' balance sheets in the future. It is important for actuaries to understand 
contingent capital and have the necessary tools to assess its risk. 
Method. This paper provides an overview of the contingent capital market, its features, and its potential impact. 
It also discusses the pricing and valuation models for certain contingent capital instruments. A case study is 
included to illustrate the quantitative analysis for a contingent capital instrument. 
Results. A spreadsheet model is built and used in the case study. It is capable of pricing and valuing certain types 
of contingent capital. Quantitative risk analysis and model calibration function is also included. It could serve as 
good education materials to understand the role of contingent capital, quantify its risk, and assess its effectiveness 
of absorbing loss.   
Conclusions. Contingent capital is a promising candidate to improve the capital position of the financial 
industry with a smaller cost than additional rights issuance. However, further analysis and testing are needed to 
find out the appropriate design and better understand its potential impact and related stakeholder behavior. 
There is still a journey to go before the success. 
Availability. The spreadsheet “CONTINGENT CAPITAL QA TOOL” that illustrates the quantitative analysis 
of contingent capital is available, together with the report. 
Keywords. Capital management, contingent capital, CoCo bond, systemic risk 

 ____________________________________________________________________________________________  
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EXECUTIVE SUMMARY 

The financial industry was quite successful in financial instruments innovations to meet the needs 
of investors. The wide development of the financial derivative market has been providing hedging 
tools to transfer financial risks for institutional investors. The insurance industry provides risk 
transfer as well, built on pooling the individual insurance risks together, and provides protection at a 
reasonable and affordable price. Using reinsurance and alternative risk transfer instruments that are 
normally linked with catastrophe risk, risk mitigation activities are prevalent in insurance industry. 

However, they may not be sufficient to survive a financial crisis. Firms failed for different reasons 
but clearly they held insufficient capital for the risks they took. A huge amount of money was paid 
by taxpayers merely to keep some systematically important firms alive. The cost was supposed to be 
borne by the investors, however. The regulators and the financial industry are now taking steps to 
adopt a more stringent capital rule. Contingent capital caught a lot of attention as a candidate to 
strengthen the capital position, reduce the cost of financial crisis borne by the taxpayers, and limit 
the increasing cost of capital due to more stringent capital requirements. Generally speaking, 
contingent capital provides automatic recapitalization by converting the debt instrument to equity 
when the issuer is in trouble. The trigger of the conversion is based on a pre-specified condition, 
such as equity price dropping below a certain amount or regulatory capital ratio dropping below a 
certain level. This innovation links the automatic bail-in with the capital position of the company, 
covering a much broader scope of risks than ever before.  

Several companies issued contingent capital instruments, either as a solution for the stressed 
financial condition or as an action to boost the capital buffer for future adverse events. There are 
many proposals of contingent capital design from the academic community, as well. The prevalence 
of different opinions of the appropriate trigger event for conversion implies the complexity of 
contingent capital and the immaturity of the market. There are concerns about the stakeholders’ 
rational behaviors that may push the firm down to an even worse situation. This is exactly opposite 
to what the contingent capital is designed for. Other concerns include the softening of debt’s 
disciplining power and its effectiveness. There is a lot to explore and test in the market before 
contingent capital becomes a widely accepted instrument for prudent capital management and risk 
management. 

This paper introduces the background of contingent capital, its key features, its potential impact, 
and the models for pricing, valuation, and risk assessment. It explains the reasons for issuing 
contingent capital as well as the major concerns about it. It also includes a case study illustrating the 
pricing, valuation, and quantitative risk analysis of a sample contingent capital instrument. 
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1. INTRODUCTION 

This paper is a response to the request for proposals on contingent capital by the Committee on 
Valuation, Finance, and Investments (VFIC) of the Casualty Actuarial Society (CAS). 

 1.1 Research Context 
The insurance industry has been utilizing non-traditional capital instruments to transfer risks for a 

long time. Some of them help insurers absorb losses and retain their capital in adverse events. For 
example, catastrophe bonds or catastrophe equity put arrangements protect the insurers from 
catastrophe losses. Those instruments are normally related to insurance risk, such as natural 
disasters, mortality, and longevity.  

In the recent financial crisis, systemic risk caught a lot of attention. Much discussion happened 
on how to prevent or mitigate systemic risk. Regulators are also changing their ways to regulate 
those too-big-to-fail, or systemically important financial institutions. Contingent capital, an 
innovative type of automatic bail-in hybrid security, is consideres a candidate for providing capital at 
a predetermined cost in stressed situations and for mitigating systemic risk. Contingent capital 
instruments are similar to non-traditional capital instruments used by insurance companies, except 
that the trigger is based on financial conditions instead of insurance risk. Different designs of 
contingent capital have been proposed and some of them are implemented. Although their 
effectiveness is still too early to tell, it is important for us to understand them and be equipped with 
knowledge and analytical tools for valuation and risk assessment. 

1.2 Objective  
The objective of this paper is to explore the key features and characteristics of contingent capital 

instruments, their effectiveness in risk transfer, and the pricing and valuation tools for them. A 
quantitative illustrative tool is made available for contingent capital evaluation and risk assessment. It 
is hoped that the tool will aid the actuarial community in understanding contingent capital from the 
perspective of risk transfer and capital management. 

1.3 Outline 
The remainder of the paper proceeds as follows. Section 2 gives an overview of the contingent 

capital market. Section 3 discusses the key features of contingent capital instruments. Section 4 
presents their impact and effectiveness in risk mitigation and capital management. Section 5 explores 
modern finance theory and quantitative models used in pricing, valuation, and risk reward analysis. It 
is followed by a case study of evaluating a sample contingent convertible bond in Section 6. Section 



Understanding Contingent Capital 

Casualty Actuarial Society E-Forum, 2013 Spring-Volume 2 6 
© 2013 Casualty Actuarial Society 

 

7 concludes the paper. 

2. CONTINGENT CAPITAL MARKET 

Contingent capital instruments, also known as contingent convertible bonds (CoCo bonds), 
contingent surplus notes, or enhanced capital notes, provide a mechanism that automatically convert 
the instruments to equity upon the occurrence of a specified trigger event. These instruments began 
to attract attention and gain popularity during the 2008 financial crisis. Before that, insurance 
companies protected themselves from capital deficiency under stressed situations by reinsurance 
arrangements, hedging programs, and capital raising. Those seem effective when systemic risk is 
mild in the financial system. However, the recent financial crisis told us that when systemic risk is 
prevalent, the cost of raising capital may be unaffordable. Much higher liquidity risk and 
counterparty risk might still put the company in a weak solvency position. Contagion impact is 
material and the market and regulators have been looking for capital instruments that provide better 
insulation. Contingent capital appears to be the most promising solution, although doubts about it 
are not rare. 

2.1 Market Overview 
The insurance industry has been utilizing contingent capital instruments for around two decades. 

Catastrophe equity puts and contingent surplus notes are the most common types. Catastrophe 
equity puts1 give the insurer the right to sell stocks at a fixed price in case a specified trigger event 
happens. Contingent surplus notes2

Contingent capital with a trigger event based on regulatory solvency ratio instead of insurance 
risk caught public attention in Lloyds Banking Group's exchange offer announced in November 
2009. It intended to exchange certain existing securities

 give the insurer the right to issue surplus notes in exchange for 
liquid assets upon the occurrence of a predefined trigger event. The size of the transaction ranges 
from a few million dollars to around half a billion dollars. However, the trigger events, or, in other 
words, the risks from which the companies have been protected are normally catastrophe risk 
related. The term of the protection is also relatively short. 

3 for enhanced capital notes or rights issue.4

                                                           
1 CEIOPS, “Insurance Linked Securities,” 5. 

 

2 CEIOPS, “Insurance Linked Securities,” 5. 
3 Existing securities subject to exchange offer comprised of "Upper Tier 2 securities in an aggregate principal amount of 
£2.52 billion, innovative Tier 1 securities in an aggregate principal amount of £7.68 billion and preference shares (or 
equivalents) with an aggregate liquidation preference of £4.09 billion", Lloyds Banking Group, “Exchange Offer,” 2. 
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The enhanced capital notes (ECNs) will be converted to ordinary shares if the core tier 1 capital 
ratio falls below 5%. Not only the unprecedented size for contingent capital issuance but also the 
government's big stake in the company made this transaction very special. Contingent capital is 
considered more favorable than old-fashioned hybrid securities such as convertible bonds and 
preferred shares under stressed scenarios. These traditional hybrid securities are not as good as 
contingent capital instruments in loss absorbing.  

In addition to conversion to equity if the trigger event happens, some other arrangements were 
also tried. In 2010, Rabobank issued a €1.25 billion 10-year Senior Contingent Note. Once the 
capital ratio falls below 7%, the face amount will be written down to 25% and paid back to 
investors. Liability value will be reduced if the trigger event happens, which effectively is a capital 
injection. This is different from contingent convertible bonds, where only the debt/equity ratio 
changes but the amount of capital remains the same if conversion is made at market price. 

The €500 million deal of contingent convertible bonds between Allianz and Nippon Life in mid-
2011 demonstrated the high interest of the insurance industry in using contingent capital to improve 
its capital position and reduce its risk exposure.  

Not only banks and insurance companies but other financial institutes have used contingent 
capital. In the merger of Yorkshire Building Society and Chelsea Building Society in 2009, £200 
million subordinated securities of Chelsea Building Society were planned in exchange for contingent 
convertible bonds. Once the core tier 1 capital ratio falls below 5%, they will automatically be 
converted into equity. 5

2.2 Do We Need Contingent Capital? 

 

Before diving into the details about contingent capitals, it is worth understanding the reasons for 
bringing contingent capital into the capital structure. From the regulators' perspective, it is hoped 
that contingent capital could solve the too-big-to-fail problem and reduce the loss paid by taxpayers 
instead of the investors. Compared to issuing new stocks, investors want to take advantage of the 
debt-like feature of the contingent capital: tax deductibility before the conversion and upfront and 
fixed recapitalization cost at conversion. 

As seen in the financial crisis since 2008, many too-big-to-fail companies needed government 

                                                                                                                                                             
4 The package was supposed to "(i) generate at least £7.5 billion in core tier one and/or nominal value of contingent core 
tier 1 capital through the Exchange Offer and/or related arrangements; and (ii) raise £13.5 billion (£13 billion net of 
expenses) by way of a Rights Issue, Lloyds Banking Group, “Exchange Offer,” 1. 
5 A list of contingent capital instruments issued in the past few years is given in Goldman Sachs, “Contingent Capital 
Possibilities,” 17-18. 
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bailout merely to survive. The bad outcomes of writing riskier business than what the available 
capital could support were borne by the taxpayers, not the investors who made the business 
decision. Higher capital requirement could certainly reduce the chance of default. However, as 
Bolton and Samama (2011) pointed out, the foreseen increased capital requirement for the banking 
industry according to Basel III may make it more difficult to earn the required return on equity 
(RoE) if the increased capital requirement needs to be met by the issuance of stocks. In addition, a 
sudden shift to a much more stringent capital requirement might also result in a credit crisis as the 
banks hold much less than the required capital as a buffer than previously required or have to raise 
capital to meet the capital requirement. Contingent capital seems to be a promising solution.  

(1) As a debt instrument before conversion, it limits the increase in weighted average cost of 
capital (WACC). It will not cause the concern of higher required RoE in normal 
circumstances, which happens when financing with common equity. 

(2) The tax deductibility of the debt instruments is also an argument for investors to utilize 
contingent capital in their financing. The disciplining power of creditors might also be 
preserved before conversion by maintaining the same leverage level as before. 

(3) Firms normally try to sell troublesome assets and get rid of troublesome liabilities instead of 
issuing new stocks due to its high cost. Issuing contingent capital in good time fixes the 
recapitalization cost at a reasonable level in a future distressed situation. Apparently it is a 
cheaper way than raising capital in bad economic times.  

(4) It can reduce the default probability without government bailout. Upon conversion, the 
capital base of the company will be increased so that it will have a stronger capital position 
than that before the conversion. The loss will be borne by the investors of contingent capital 
instead of the taxpayers. Therefore, it helps fulfill the goal of applying more stringent capital 
rules to too-big-to-fail firms. Bankruptcy and government bailout are very costly. Contingent 
capital can lower the chance of going through those expensive processes.  

2.3 Designs of Contingent Capital 
Despite the skepticism, there is a high and increasing interest in contingent capital instruments.  

Many designs of contingent capital have been proposed in trying to address the issues mentioned 
above. The key differences between possible designs so far concern the trigger event and the 
method of loss absorbency. 

Scope of the trigger event. The trigger event can be based on the issuer's financial condition or on an 
industry-wide indicator. Industry-wide indicators, such as an aggregated market loss index or 
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financial industry loss index, may be more suitable for mitigating systemic risk. However, it is hard 
to implement in an objective way and may convey an adverse message to the market. 

Type of the trigger event. The trigger event can be related to the stock price, regulatory capital 
adequacy ratio such as core tier 1 ratio, credit condition such as credit default swap (CDS) spread, or 
even at the regulator's discretion. Double trigger contingent capital has also been proposed. 

Level of the trigger point. Going-concern contingent capital normally has a high threshold, while 
gone-concern contingent capital has a low threshold, such as the point of non-viability. Besides the  
conversion of contingent capital, regulator's intervention is normally expected at the point of non-
viability. 

The method of loss absorbency. After the trigger event happens, contingent capital instruments will be 
converted to common equity, or have a write down of face amount and therefore liability. The 
impact is considered to be different. Write-down liability is similar to a capital injection, while 
conversion to equity is considered as capital restructure.  

Details of those proposals and their different impacts will be explored in Section 3 and Section 4. 

2.4 Stakeholder Analysis 
Regulators have shown great interest in utilizing contingent capital to absorb losses under 

stressed conditions because it is expected to reduce the need of a government bailout and therefore 
taxpayers' support. After a sizable market is developed for contingent capital, the value of issuers, 
buyers, and existing stockholders and their roles in corporate governance will also be impacted. 
Rating agencies have also considered the rating methodology for this new type of hybrid securities 
and to what extent it can boost the issuer's financial strength. 

2.4.1 Regulators 

Regulators have been busy improving the capital adequacy rules to address the issues emerging 
from the financial crisis since 2008. In addition to a higher level of capital requirement, the 
qualification standard of hybrid securities to meet the additional capital requirement is also one of 
the major focuses. Although the future success of contingent capital is uncertain, it is very likely that 
contingent capital will become a part of the capital structure to meet regulators' requirements. 

(1) In October 2010, Financial Stability Board (FSB) recommended that global systematically 
important financial institutions (SIFIs) should have higher loss absorbency. 6

                                                           
6 FSB, “Reducing the moral hazard,” 3. 

 One of the 
candidates that could be used to meet the stringent requirement is contingent capital which 
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absorbs loss at the point of non-viability. It was later endorsed by the G20.   

(2) Basel Committee on Banking Supervision (BCBS) released a rule about the additional loss 
absorbency requirement for global systematically important banks (GSIB) in late 2011. BCSC 
has considered different forms of contingent capital and decided the minimum requirements 
for going-concern contingent capital in order to meet additional requirements for GSIB. 
Contingent capital will have to be converted to Common Equity Tier 1 when the Common 
Equity Tier 1 falls below at least 7% of risk adjusted assets, which is a high threshold. It is 
also required to have a cap on the new shares and the full authorization of the issuers for an 
immediate conversion. The rule is expected to be phased in between 2016 and 2018 and 
become effective in 2019.  

(3) The European Union amended its capital requirements directive (CRD) in 2009, known as 
CRD II, which highlighted the importance role of hybrid capital instruments in capital 
management. Instruments that absorb losses on a going-concern basis and that must be 
converted to core tier 1 capital are regarded as equity capital. In 2010, a consultation paper 
(CRD IV) that includes possible further changes was issued. It states that the European 
Commission will consider the potential need for all non-core tier 1 instruments to have a 
mandatory principal write-down or conversion feature, the potential triggers for conversion, 
and alternative mechanisms and triggers of contingent capital.7

(4) U.S. regulators are also interested in the idea of using contingent capital. As one of the 
provisions in the Dodd-Frank Wall Street Reform and Consumer Protection Act, Federal 
Reserve may establish heightened prudential standards for contingent capital requirement. It 
"authorizes the Board to require each Board-supervised nonbank financial company and bank holding 
companies with total consolidated assets of $50 billion or more to maintain a minimum amount of contingent 
capital convertible to equity in times of financial stress."

 

8

(5) Office of the Superintendent of Financial Institutions Canada (OSFI) issued its final advisory 
on Non-Viability Contingent Capital. Seen as a fast movement on implementation of Basel 
III, it requires that the regulatory capital of all federally regulated deposit-taking institutions 
(DTIs) must have loss absorbing quality when the DTI fails. All the non-common Tier 1 and 

 The Fed is in discussions with bankers. 
Unlike the existing contingent capital deals that have trigger events related to the issuer's own 
capital ratio, the Fed is also exploring a system wide trigger. 

                                                           
7 COMMISSION SERVICES STAFF WORKING DOCUMENT, "POSSIBLE FURTHER CHANGES," 18-19&23. 
8 Sec 165, “Enhanced supervision,” H.R.4173 
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Tier 2 capital must satisfy the requirement for non-viability contingent capital (NVCC). 
Unlike CoCo bonds, the trigger event of NVCC is dependent on the regulators' 
announcement, either from OSFI, or federal/provincial government. Though it sounds like 
regulators have a lot of discretion, non-viability is determined based on clearly defined criteria 
which would mitigate the chance of discretion. Interestingly, this is more like a low trigger 
level, gone concern type of contingent capital compared to the high trigger level, going-
concern contingent capital required for GSIB by BCBS. 

(6) Under the Solvency II framework, contingent capital with appropriate feature can be 
classified as ancillary own fund 9 (AOF). AOF can be used to meet the solvency capital 
requirement (SCR) but not the minimum capital requirement (MCR). However, according to 
the directive, the total amounts and the amount for each AOF item are subject to supervisory 
approval. The recoverability, legal form, and any past exercise need to be taken into account 
when determining the amount qualified for AOF.10

(7) In August 2010, National Association of Insurance Commissioners (NAIC) Securities 
Valuation Office (SVO) reported on contingent capital securities. Considering that there is no 
agreement on the design of the trigger event, the task force did not draw any conclusion but 
decided to continue monitoring the development of contingent capital. 

 

It is clear that contingent capital is one of the priorities of regulators regarding regulating SIFI but 
there is still work that needs to be done for further assessment and refinement. Regulators under 
different jurisdictions may also have different opinions regarding the details.   

2.4.2 Issuers 

In order to meet more stringent capital requirements, financial institutions can either raise more 
common equity or issue contingent capital instruments that must convert to common equity upon 
the occurrence of a trigger event.  

Despite the greater complexity and the higher uncertainty of contingent capital, its potential cost 
is lower than that of common equity. This could increase the capacity for loss absorption and attract 
more issuers. In addition, the conversion of contingent capital to common equity normally means a 
dilution of existing shareholders' value. It will discourage shareholders from taking excessive risks 
above its capacity in the fear of conversion. There is also a chance that contingent capital will be 
made mandatory by regulators. 
                                                           
9 "Ancillary own funds are items of capital other than basic own funds which can be called up to absorb losses." 
CEIOPS, “QIS5,” 308. 
10 “Directive 2009/138/EC,” 48. 
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2.4.3 Debt holder 

The investors of contingent capital may be either holders of hybrid securities which will be 
exchanged for contingent capital as part of the company's restructuring plan or buyers of newly 
issued contingent capital instruments. In the Lloyds Banking Group's exchange offer in 2009, higher 
returns and immediate coupon payments motivated the exchange. New buyers may seek for high 
return and the potential gain from recovery after the conversion of contingent capital.  

Like other debt holders, contingent capital investors would discipline the risk taking of 
stockholders. It is true especially when the conversion price is high, or the chance of recovery is low. 
However, on the other hand, when the company's financial condition is near the trigger event, in 
order to get a lower conversion price for conversion at par, investors may short the stocks to drag 
the stock price further down. 

2.4.4 Shareholders 

The shareholders' value and role will change if contingent capital becomes an important 
component of the financial institutions' capital. In the long run, effective contingent capital can 
improve corporate governance, partly solve agency problem, limit excessive risk taking, and reduce 
the cost of capital. However, during the conversion of contingent capital, the existing shareholders' 
value is often diluted. This may encourage more prudent risk taking activities. But the expectation of 
conversion in the near future will lead to more stock selling, which further lowers the stock price. 
This downward spiral will exacerbate the financial condition. 

2.4.5 Rating Agencies 

Rating agencies updated their rating methodologies of hybrid securities in the light of expanding 
contingent capital markets. It is a critical factor to consider when setting the price of contingent 
capital instruments. The view of rating agencies is also important for financial strength ratings when 
contingent capital becomes sizable in loss absorbency. 

Contingent capital instruments that are rated as debt instruments normally receive ratings lower 
than investment grade. 

Debt Instrument 

In 2009, S&P issued a rating criterion for contingent capital. Contingent capital is defined as "debt 
and hybrid securities that contain triggers that convert them into equity or some other Tier-1 instrument."11

                                                           
11 “Standard & Poor's Ratings Services Criteria Regarding Contingent Capital,” 2. 

 S&P 
believes that the proposed contingent capital increases the risk of loss to the investors, compared to 
plain vanilla bonds. Contingent capital securities would receive lower credit ratings than similar ones 
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without the conversion option. Conversion of capital securities will be treated as default. 

Moody's classifies contingent capital into 3 groups: rate, no rate, and may rate. Moody's only rates 
"securities that feature triggers for conversion that are credit-linked, objective and measurable and where the impact of 
conversion can be estimated.” For triggers that are at the issuer's discretion or unrelated to the financial 
condition of the issuers, there will be no rating. When assigning the rating, the major considerations 
are "the risk that the ‘host’ security might absorb losses for a ‘going’ concern, and the expected loss severity upon 
conversion based on the conversion ratio and the likely value that would be received by investors at that point in time. 
Important considerations would include the type and transparency of the trigger, how it is calculated, and over what 
time horizon." Moody's is also concerned with contingent capital instruments that have trigger events 
based on a regulatory capital ratio. "Because many banks currently operate in rapidly changing regulatory and 
political environments, a lack of clarity on legal triggers and an overall resolution framework would prevent Moody’s 
from assigning a rating at this time."12 

When doing financial analysis, S&P considers a high trigger level and timely conversion critical 
for qualifying for an equity instrument, as stated below.  

Equity Instrument 

"The conversion would need to happen early enough in the issuer's credit deterioration to be able to make a 
difference to that decline. A trigger level set at the regulatory capital threshold--or very close to it--is generally insufficient 
in our view to warrant equity-like treatment in advance of actual conversion. Similarly, if the conversion mechanisms 
allow for a potential significant lag after the trigger breach, we would not view the security as equity-like. Such lags 
could arise from stipulated delays or from pragmatic considerations, such as infrequent trigger measurement dates."10 

Moody's determines the amount of equity credit for contingent capital based on their structures. 
Moody's thinks that "triggers have generally not proven to be fail-safe in terms of their ability to accurately identify 
credit deterioration."11 It is also difficult to ignore its similarity to debt instruments such as the fixed 
coupon rate and the need of refinance after the maturity of contingent capital. 

Rating agencies focus on whether the trigger event is clear and objective, and whether it will 
result in timely conversion, which is the key to determine its effectiveness of loss absorption.  

2.5 Some Doubts about Contingent Capital 
Most of the contingent capital securities issued to date have trigger events linked to the capital 

ratio of the issuer. Given that the major goal of regulators and issuers is to reduce systemic risk 
exposure, there are doubts about the effectiveness of risk mitigation and the future of contingent 

                                                           
12 Moody's, “Rating Considerations,” 1-6. 
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capital. Investors and researchers have voiced many suspicions about the contingent capital 
instruments.  

(1) Most of the trigger events used so far are based on the company’s own core tier 1 capital 
ratio, a regulatory capital adequacy measure. This might not provide timely conversion 
considering the fast downward slide during a crisis.13

(2) To mitigate systemic risks and reduce the need of government bailouts for systematically 
important financial institutions, the market size of contingent capital needs to be big 
enough.

 There are also concerns about using the 
capital ratio, a measure based on market value. In a stressed situation, the owners of 
contingent capital, anticipating a drastic drop in equity price and occurrence of the trigger 
event in the near future, may short the stocks and exert pressure on the stock price. By doing 
this, they can get a lower conversion price. Stockholders may sell the stocks with the 
expectation of such behavior. This downward spiral may totally devour the benefits of the 
conversion and dilute the value of existing stockholders. 

14

(3) There have been hot discussions about contingent capital’s impact on systemic risk. Some 
argue that the trigger event should be based on the loss of an industry, or the whole financial 
system, instead of the issuers’ own loss.

 New features of contingent capital cause difficulty and uncertainty for both the 
pricing and valuation of this new type of hybrid security. Its higher risk and the lack of 
knowledge and experience may daunt many investors. There are also investors who have an 
investment policy that disallows equity market investment or have a limit on equity allocation. 
They may not be able to invest in contingent capital. In addition, when contingent capital is 
converted to common equity, they may be forced to sell the stocks, which may have a big 
market impact and more loss. This is also a potential impediment for the development of the 
contingent capital market. 

15

                                                           
13 Hillion and Vermaelen, "Death Spiral Convertibles,” 3-6; MacDonald, "Contingent Capital,” 11. 

 In this way, contingent capital is only used for 
managing systemic risk. The issuer is able to raise capital using traditional methods such as 
rights issues if the issuer gets into trouble due to its idiosyncratic risk. Others argue that an 
industry-wide trigger may increase the systemic risk instead of decreasing it. If the trigger is at 
the discretion of the regulators, they might be reluctant to trigger the conversion. If 
contingent capital is triggered or is near the trigger point, it will convey a very clear adverse 
message to the market which may lead to overreaction of investors and therefore more 

14 Maes and Schoutens, "Contingent Capital," 7. 
15 Squam Lake Working Party, “An Expedited Resolution,” 4. 
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downward pressure.16

(4) While contingent capital may boost the issuer’s capital adequacy ratio, it may not be able to 
solve the liquidity issue, which is normally the direct reason for bankruptcy in a financial 
crisis. Converting contingent capital instruments such as CoCo bonds to equity will reduce 
future liquidity requirements such as interest payment. However, unlike other capital raising 
activities such as rights issue or government bailout, it will not inject liquid assets. 

 

(5) Regulators showed great interest in exploring contingent capital instruments to help prevent 
the next financial crisis and reduce the usage of taxpayers’ money to support system 
important firms. However, the rule is still vague and under development. If regulators in 
different regions have different rules for contingent capital, especially on qualification 
requirements, it could be a difficult situation for global banks and insurers.  

(6) Contingent capital might reduce the disciplining power of the debt holders. As Koziol and 
Lawrenz (2011) showed in a model, when the managers have the discretion of risk taking 
activities, the bank’s probability of financial crisis will be increased by having contingent 
capital.17

3. KEY FEATURES 

 In addition, there may be an increase in agency cost of equity and therefore the cost 
of debt due to the reduction in managerial ownership. 

There are many proposals for using contingent capital to solve the recapitalization issue faced by 
the shareholders and the too-big-to-fail issue faced by the regulators in a financial crisis. Although 
contingent capital is seen as a promising candidate to increase the capitalization level and reduce the 
possibility of government bailout, it does not have a mature market yet. Different opinions of the 
appropriate design and its complicated features justify more analysis and tests on the market before 
a full endorsement. This section will discuss the key features of contingent capital that are critical for 
fulfilling its goal in a practical way. The prominent designs and opinions of contingent capital will 
also be described.  

3.1 Trigger Event: Rule-Based or Discretionary 
The designs of contingent capital instruments include the trigger event based on clearly specified 

rules or at the regulators' or issuers' discretion. For industry-level trigger events, there are different 

                                                           
16 Goldman Sachs, “Contingent Capital,” 7, has a discussion about the problems with using a trigger based on regulatory 
discretion. 
17 Koziol and Lawrenz, “Contingent Convertibles,” 18-34. 
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opinions about the appropriate choices. For institution-level trigger events, there seems to be a 
mutual preference of using a rule-based event. Contingent capital instruments with a rule-based 
trigger event are perceived to be more transparent, predictable, and attractive to potential investors. 
It is also easier to price. 

Acharya et al. (2009) think that an industry-level trigger must be rule-based, rather than at the 
discretion of regulators. With a discretionary feature, the occurrence of trigger would convey severe 
adverse news to the market, causing a possible downward spiral. In contrast, a rule-based trigger 
would be well-anticipated and would not have such consequences. In addition, the political pressure 
on the regulators for the announcement of conversion is not trivial due to its signaling effect. Squam 
Lake Working Group (2009) has a different opinion for the rule-based industry-level trigger: they are 
concerned that the aggregate data regulators might use are likely to be imprecise, subject to 
revisions, and measured with time lags.  

Rating agencies require an objective and rule-based trigger event as one of the preconditions for 
assigning a credit rating. Therefore, a rule-based trigger event is more promising from the 
perspective of the marketability of contingent capital instruments. 

The capital access bond (CAB) proposed by Bolton and Samama (2011) is an exception for 
institution-level trigger event. The issuer has the option to convert the CAB into equity at the pre-
specified price and also has the full discretion on the conversion. Technically speaking, the 
conversion is still based on rules. The conversion will happen if the option is in the money at 
maturity. However, as pointed out by the designers, the signaling effects might prevent a decision 
based solely on the payoff of the option. Not converting the CAB when the conversion price is less 
than current market price of the stock could be conceived by the market as a higher equity value, 
which has a positive impact. Or the bank's rational management will be questioned, which has a 
negative impact. 

3.2 Trigger Event: Institution Level and/or Industry Level 
Existing proposals of contingent capital have a conversion trigger based on the issuer's financial 

condition and/or on an industry-wide indicator. The issuer's financial conditions can be indicated by 
its stock price, capital adequacy ratio, or book value of equity. Industry-wide indicators include 
aggregated market loss indices and financial industry loss indices. There is no mutual agreement on 
the type of trigger events to be used among the academic and the industry. Up till now, most 
existing contingent capital deals are based on an institution-level trigger. 

An institution-level trigger event has a focus on the financial condition of the issuer. It is not 
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directly linked to systemic crisis. Therefore, contingent capital with institution-level trigger absorbs 
loss caused by systemic risk and non-systemic risk. Someone might have concerns about the 
unnecessary protection for firms taking more than necessary non-systemic risk. Flannery (2009) 
pointed out that systemically important firms cannot be permitted to fail, as it might cause market 
turbulence, no matter what the cause is. The prevention from bankruptcy due to non-systemic risk 
might help protect the incapable managers. Flannery (2009) argued that it is a general corporate 
governance issue and is not something new brought by contingent capital. Contingent capital can at 
least protect the taxpayers as intended. 

An industry-level trigger event may be more suitable for mitigating systemic risk. With the 
industry-level trigger in place, contingent capital instruments will be converted only in a systemic 
crisis. However, it may be hard to implement in an objective way and may convey an adverse 
message to the market upon conversion. If the industry-level trigger is at the regulators' discretion, 
due to the signaling effect of conversion, there is political pressure which might delay the triggering 
and therefore cause more loss. A trigger event that is solely based on the industry-level condition 
could act as an disincentive for sound risk management, as all the firms are treated the same, no 
matter how much systemic risk they contribute to the industry.  

Some proposals include a dual trigger based on both an institution level condition and an 
industry level condition. Only when both conditions are true will the conversion be automatically 
triggered. Examples include Squam Lake Working Group (2009) and McDonald (2011). 

3.3 Trigger Event: Based on Book Value or Market Value 
Another key element of trigger events is the basis of value measurement. It could be a book value 

measure which is based on accounting rules or regulatory rules. Or it could be a market value 
measure determined by investors. Both types of measurement have their own shortcomings but a 
measure based on market value is preferred by the academic community. 

Using a trigger event based on market value might cause the following issues. 

(1) Book value of equity is subject to the adjustment of management. Given the current level of 
complexity of financial institutes, a management team has leeway to move accounting entries 
off the balance sheet, and therefore the equity under GAAP or IFRS could be manipulated. 

(2) Book value of equity is a backward-looking measure for some accounting frameworks such 
as U.S. GAAP, where historical cost plays an important role in valuation. 

(3) The reporting of financial conditions is not continuous. The timing of the trigger that is 
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based on the financial reports might lag behind the time when recapitalization is needed 
based on market condition. The timing issue might prevent the contingent capital from 
being converted to equity before the company goes bankrupt or receives government aid. 

Atrigger event based on market value will not have these issues. However, it has its own 
problems. 

(1) The stock price is subject to market manipulation. The impact could be quite significant for 
contingent capital whose conversion will cause material dilution of shareholders' value. 

(2) As pointed out by Flannery (2009), stock price is subject to random pricing errors and 
therefore random elements in the conversion based on the stock price. The impact is more 
prominent for the design where conversion price is the same as the then-current market 
price at the date of the conversion. However, the impact could be dampened if the 
conversion price is set to be the average of the daily market prices in a certain time period 
with a fixed length. 

Acharya et al. (2009) and Flannery (2009) clearly state in their reports that a market-based trigger 
is more appropriate due to its timeliness and less exposure to managerial manipulation. However, 
some existing arrangements have a capital adequacy ratio based trigger event which is a book value 
measure based on regulatory rules. Lloyds Banking Group's ECNs and Rabobank's senior 
contingent notes issued in 2009 are real examples. The reasons for choosing a capital adequacy ratio 
might be the following. 

(1) Using a capital adequacy ratio is straightforward regarding the goal of reducing the possibility 
of default or government bailout, although the failure to fulfill obligation might be caused 
directly by liquidity issue. 

(2) Some arrangements have the level of the trigger well above the minimum requirement, 
sotimeliness would be less of an issue. The conversion is more likely to happen before the 
issuer becomes insolvent. 

3.4 Conversion Price 
Conversion price determines how many shares investors will get if the conversion is triggered. It 

could be set as: 

(1) A fixed value, such as the stock price at the issue date of the contingent capital instrument. 
Some contracts specify the number of shares to be received upon conversion instead of the 
conversion price. 
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(2) The stock price at conversion, which is also known as par conversion. 

(3) The stock price at conversion with a floor. 

(4) The stock price at conversion with a discount or a premium. 

As a variant, the stock price at conversion could be determined as the average of daily stock 
prices at and before the conversion. 

McDonald (2011) provided a comprehensive analysis of different types of conversion price, 
including fixed share conversion, fixed dollar conversion, par conversion, premium conversion, and 
discount conversion. 18  Most discussions on how to choose a conversion price are about the 
implication on the dilution of shareholders' value (Section 4.2), potential price manipulation (Section 
3.5), and multiple equilibria of the market equity trigger (Section 3.6).  

3.5 Market Manipulation 
Market manipulation is one of the major concerns for the effectiveness of contingent capital in 

reducing systemic risk. The investors of the contingent convertible bonds might short sell the 
issuers' stock to limit their loss. Short selling is more likely when the stock price drops to a level 
close to triggering. If it is a conversion at par, there is more incentive to bring down the stock price, 
as it means more value transferred from shareholders to investors of contingent capital. Anticipating 
this, existing stakeholders will also sell their holdings to reduce their loss as soon as possible when 
the stock price is close to the conversion point. This will put extra pressure on the stock price. This 
phenomenon is known as the death spiral. The death spiral impact of convertible securities is not 
something entirely new. Hillion and Vermaelen (2001) investigated the death spiral convertibles19

However, whether the death spiral will continue after the conversion is questionable. If the stock 
price is too low, there might be less liquidity and a higher bid-ask spread. If the loss is material, 
investors might want to buy shares instead of selling them with the hope of a recovery or 
government bailout.  

 
and found that material loss occurred for the investors.  

Some adjustment of the conversion price might offset the impact of market manipulation. 
McDonald (2011) argued that a fixed share premium convertible structure is least exposed to 

                                                           
18 McDonald, "Contingent Capital," 5. 
 
19 "Death spiral convertibles are privately held convertible securities (preferred stock or debentures) with a conversion 
price that is set at a discount from the average (or sometimes the minimum) of past stock prices in a look-back period." 
Hillion and Vermaelen, "Death Spiral Convertibles,” 1. 
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manipulation. The lower the stock price is, the less the value after conversion. A conversion with 
premium means a further reduction of value after conversion. In fact, investors might influence the 
stock price in the opposite direction to avoid conversion. However, it is more difficult to push up 
the stock price if the issuer is in distress. 

Another commonly suggested way of preventing market manipulation is to determine the 
conversion price as the average of the past n days' stock price prior to the conversion. McDonald 
(2011) and Flannery (2009) suggested that this feature makes it more difficult for manipulation due 
to the lengthened period of holding short positions. The disadvantage of this structure is that the 
conversion might be delayed. Squam Lake Working Group (2009) also pointed out another possible 
manipulation: "If the stock price falls precipitously during a systemic crisis, management might intentionally violate 
the trigger and force conversion at a stale price that now looks good to the stockholders."20

Flannery (2009) and McDonald (2011) also examined the possibility of retiring the contingent 
capital upon conversion gradually and randomly to avoid a huge gain from price manipulation. As 
pointed out by Flannery (2009), forbidding holders of contingent capital to short sell the issuer's 
stock is also a possible solution. 

 

Another potential method of price manipulation is share repurchase. If the conversion is believed 
to be highly probable to occur, with a material value dilution, the issuer has an incentive to prevent 
the conversion by putting upward pressure by share repurchase. McDonald (2011) thinks that the 
impact would be small. If the market thinks that the goal of share repurchase is to avoid conversion, 
it will have a negative impact on the share price, and so  it might not actually happen. 

3.6 Multiple Equilibria 
One interesting conclusion by Sundaresan and Wang (2011) is that multiple equilibria or no 

equilibrium may exist for contingent capital with a market trigger.21 When the stock price is close to 
the trigger point, there could be different speculation on the occurrence of conversion. The 
equilibrium stock price near conversion could be different depending on whether or not the 
conversion will happen.  Two equilibrium prices are possible: (1) the equilibrium price which is 
above the conversion price, assuming there will be no conversion; and (2) the equilibrium price 
which is below the conversion price, assuming there will not be conversion.22

                                                           
20 Squam Lake Working Group, “An Expedited Resolution,” 5. 

 Sundaresan and Wang 
(2011) point out that multiple equilibria are caused by the value transfer between shareholders and 

21 Market trigger is a trigger on market value of equity. 
22 Mathematical deduction and numerical examples can be found in Sundaresan and Wang, "On the Design," 9-12. 
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contingent capital holders. The value transfer upon conversion will cause a sudden change in the 
stock price, the source of the difference in multiple equilibrium prices.  However, this would not be 
an issue if the conversion is made at par,23

If the conversion is not timely, the stock price can fall below the trigger point before the 
conversion of a CoCo bond. Sundaresan and Wang (2011) argue that there is no equilibrium price in 
this situation. If the conversion is believed to happen, the stock price will fall below the conversion 
price and the conversion will happen. If the conversion is believed not to happen, the stock price 
will be higher than the conversion price. Both scenarios are not consistent with the assumption that 
the stock price could fall below conversion price without a conversion.  

 

Prescott (2011) illustrated that a trigger on the market of equity could potentially cause multiple 
equilibria and nonexistence of the equilibrium. Based on the market experiment data and empirical 
evidence, it is argued that a market equity trigger “made prices and allocations less efficient and led to 
numerous conversion errors.”24

Theoretically, the lack of a unique price indicates an unstable market and a high exposure to price 
manipulation. The market price would therefore not represent its true economic value and might 
cause market inefficiency. However, the nonexistence of equilibrium happens when the stock price 
is near the trigger point. Given that contingent capital is used to deal with financial distress, the 
stock price is volatile during that period even without the presence of contingent capital. At that 
time, the equity market is in an unstable situation and the stock price is highly driven by the 
psychological factors of investors and sensitive to any new information. Multiple equilibria or the 
absence of equilibrium caused by contingent capital may make it more complicated, but not 
necessary worse. The market expectation of the occurrence of conversion will be determined by 
market participants, just as participants determine the stock price. When the expectation changes, 
the stock price can suddenly jump. A jump in stock price is not abnormal when the company is in 
financial distress. Other investor behaviors may also dominate the movement of stock price and 
push it to a certain equilibrium price. For example, the short selling behavior as discussed in Section 
3.5 may move the stock price quickly until at or below the conversion price.

 

25

                                                           
23 A conversion at par indicates that there is no value transfer between shareholders and contingent capital investors. 

 It would eliminate one 
of the two possible equilibrium prices. Therefore, multiple equilibria may not cause chaos in 
practice.  

24 Prescott, “Contingent Capital: The Trigger Problem,” 15. 
25 There is incentive for short selling behavior as long as the conversion price is linked to the then-current equity price 
even if the conversion is not at par.  



Understanding Contingent Capital 

Casualty Actuarial Society E-Forum, 2013 Spring-Volume 2 22 
© 2013 Casualty Actuarial Society 

 

Contingent capital instruments with trigger events based on book value, regulatory solvency ratio, 
and industry level loss are less exposed to the issue of multiple equilibrium. Although some trigger 
events are highly correlated with stock price and there could be value transfer between contingent 
capital holders and shareholders, the complexity and the uncertainty of the accounting and 
regulatory rules make it difficult to speculate based on the occurrence of conversion and the 
equilibrium price. Importantly, note that placing the trigger on firm value is not equivalent to placing 
the trigger on the market equity ratio. A trigger based on firm value is not affected by the multiple 
equilibrium issue. 

3.7 Proposals 
There have been many proposals about the appropriate design of contingent capital since 2008 

from the academic community. Some of them are described below to illustrate the variety, 
complexity, and the ongoing development of contingent capital market.  

Squam Lake Working Group (2009) suggested a conversion from debt to equity if two conditions 
are met. The first condition is an industry-level event such as a declaration by regulators that the 
financial system is suffering from a systemic crisis. The second is an institution-based event such as a 
violation of covenants in the hybrid-security contract. A promising candidate of the covenant is the 
capital adequacy ratio (Bank's Tier 1 Capital/risk adjusted assets). 

McDonald (2011) analyzed a dual trigger design based on the firm's stock price and the value of a 
financial institutions index. This structure potentially protects financial firms during a crisis, when all 
are performing badly, but during normal times it allows a bank with bad performance to go 
bankrupt.  

Kashyap et al. (2008) proposed using capital insurance that would "transfer more capital onto the 
balance sheets of banking firms in those states when aggregate bank capital is, from a social point of view, particularly 
scarce."26

Flannery (2009) proposed “Contingent capital certificates” (CCC) that "would be issued as debt obligations, 
but would convert into common stock if the issuer’s capital ratio fell below some critical, pre-specified value." It is 
suggested to be applied to systemically important firms. However, the condition of conversion and 
its specification are complicated compared to other proposals. Flanery’s key features are quoted 

 It is an insurance contract, not like a contingent convertible bond. The trigger of insurance 
payoff is based on the capital loss of the total banking industry. The insurance payment can help 
strengthen the solvency position and provide liquidity. 

                                                           
26 Kashyap et al., “Rethinking Capital Regulation,” 452. 
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below. 

a. A large financial firm must maintain enough common equity that its default is very unlikely. 

b. This common equity can satisfy either of two requirements: 

• Common equity with a market value exceeding 6% of some asset or risk aggregate. 

• Common equity with a market value exceeding 4% of total assets, provided it also has outstanding 
subordinated (CCC) debt that converts into shares if the firm’s equity market value falls below 4% 
of total assets. The subordinated debt must be at least 4% of total assets. 

c. The CCC will convert on the day after the issuer’s common shares’ market value falls below 4% of total 
assets. 

d. Enough CCC will convert to return the issuers’ common equity market value to 5% of its on-book total 
assets. 

e. The face value of converted debt will purchase a number of common shares implied by the market price of 
common equity on the day of the conversion. 

f. Converted CCC must be replaced in the capital structure promptly. 

g. The CCC debt converts automatically – no option. If the firm is insolvent when conversion is triggered 
(e.g., because of a jump in asset values), the debt covenants must specify a conversion price that wipes out 
the previous shareholders. 

h. CCC cannot be owned by systemically important firms for their own account. 

i. The CCC that will be converted need to follow some selection rules such as retiring the shortest maturity, 
random selection, and according to the seniorities of the CCC.27

Bolton and Samama (2011) proposed the capital access bond (CAB), "which gives the issuer of the 
bond the unconstrained right to exercise the option to repay the bond in stock at any given time during the life of the 
bond. It is effectively an option to issue equity at a prespecified price, with the added feature that the writer of the option 
puts up collateral to guarantee that it is able to fund the purchase of new equity should the buyer of the put option 
choose to exercise the option."

 

28

                                                           
27 Flannery, “Stabilizing Large,” 9-11. 

 This is quite similar to the reverse convertible bond that may be 
converted into stock or its cash equivalent at maturity or at some triggering event. CAB has two 
embedded options: a call option on the bond and a put option on the shares. Unlike the traditional 
convertible bond, both options are owned by the issuer. The idea of issuing multiple CABs with 

28 Bolton and Samama, “Capital Access Bonds,” 10. 
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different strike price is also discussed to deal with all kinds of contingencies in a crisis. 

Calomiris and Herring (2011) proposed a contingent capital instrument with a quasi market value 
based equity-ratio trigger designed to smooth the impact of the fluctuations in share prices. It is 
calculated as the 90-day moving average of the ratio of the market value of equity to the sum of the 
market value of equity and the face value of debt. The bond is not expected to be converted but will 
promote more efficient corporate governance. The trigger event is designed to be less exposed to 
manipulation. The conversion price is also set to have a material dilution of shareholders' value. 

The diversity of the proposals listed indicates that contingent capital is still under development 
both in theory and in practice. The surveys of the existing literature on contingent capital are not 
rare. Calomiris and Herring (2011)29 did a comparison of different designs regarding the amount of 
CoCo bonds required to be issued, the trigger event, and the term of conversion. Cooley et al. 
(2010)30

3.8 Post Conversion 

 summarized the types, the trigger events, whether they are equity based or credit based, 
whether they have market value trigger or book value trigger, and the drawbacks. 

There are concerns that the conversion of contingent capital gets the distressed firms out of 
trouble and at the same time keeps the incompetent management team. As Flannery (2009) pointed 
out, it is a general corporate governance issue and is not something new brought by contingent 
capital. Collender et al. (2010) mentioned that contingent capital could "require the replacement of or votes 
to replace management and the board of directors"

Ownership 

31 if a certain amount of contingent capital has been 
converted. There are concerns that contingent capital might dampen the disciplining power of debt 
holders. Allowing the replacement of management and board of directors might be a good idea, as 
this threat may discourage the management to take aggressive actions trying to recover their loss 
without caring for the downside risk. Such kind of terms written in the contingent capital contract 
would make it a complete contract 32 where the probability of default is shown by Koziol and 
Lawrenz (2011) is reduced. 

After contingent capital is converted, it is hoped that the firm will return to a healthy condition. 

New Issuance 

                                                           
29 Calomiris and Herring, "Why and How,” 42-46. 
30 Cooley et al., “Regulating Wall Street,” 168-174. 
31 Collener et al, "Automatic Recapitalization,” 13. 
32 Koziol and Lawrenz, “Contingent Convertibles,” 14-18. 
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However, the firm will have no or less automatic bail-in securities after conversion. Therefore, it is 
necessary to issue new contingent capital instruments in a short period to regain the protection. 

3.9 Contingent Capital versus Other Risk Transfer Instruments 
The insurance industry has a history of transferring risks through traditional reinsurance 

arrangements and alternative risk transfer instruments. The majority of the risks involved are 
insurance risks such as catastrophe risk, mortality risk, longevity risk, and lapse risk. Others usually 
help transfer all the risks of the written business, including financial risks to a third party. This 
section compares those existing risk transfer instruments to the relatively new contingent capital 
instruments. They are all utilized for risk mitigation but their focuses are quite different.  

Reinsurance has been used by insurance companies to transfer undesired risks, stabilize their 
claim experience, increase their capacity of writing new business, and improve the efficiency of 
capital usage. Depending on the type of reinsurance arrangement, specific risks or all risks of 
insurance business are transferred from the primary insurer to the reinsurer. It is quite different from 
contingent capital in the following aspects. 

Traditional Reinsurance Arrangement 

(1) The loss-absorbing capacity of the reinsures is less than the potential market for contingent 
capital, the whole capital market. 

(2) Reinsurance deals with the risk on the liability side, while contingent capital works as a buffer 
for the risks from both the asset side and the liability side. 

(3) The primary insurer is exposed to counterparty risk, since the reinsurer may fail to pay the 
reinsurance claim. That is not the case for the issuer of contingent capital, since the price is 
paid at the issue date. 

(4) Contingent capital provides funds under distressed situations when the conversion option is 
exercised, while reinsurance is used as a general risk transfer channel. From the perspective of 
maximizing the risk adjusted return on capital, contingent capital is probably a better choice 
given the relatively high cost of buying reinsurance protection. 

There are several types of non-traditional financial instruments that have payments contingent on 
a certain insurance event, loss, or experience. Those insurance derivatives are used to transfer 
insurance risk to reinsurers or general investors. 

Insurance Derivatives 
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(1) Industry loss warranties (ILWs) deal with the loss caused by insurance events such as 
hurricanes, windstorms, and earthquakes. The owner of the contract will get paid a specified 
amount if the industry loss caused by the disaster exceeds the trigger level.  

(2) Catastrophe bonds are sold to reduce the exposure to catastrophe risk. The investor will get a 
rich coupon payment but will lose the coupons and/or the principle once a catastrophe event 
occurs. 

(3) Longevity bonds have the amount of coupon payment linked to the number of survivors for 
a chosen population cohort. It is often used to hedge the risk that one outlives his/her 
savings. Insurance companies buy longevity bonds to protect them against the risk that the 
mortality experience is better than what is assumed when pricing life annuities.  

In contrast, contingent capital focuses on the financial risks, especially the systemic risk. In 
addition, the conversion is expected to happen only under financial stress. The writing down of 
liability or the conversion to equity helps strengthen the capital position. The insurance derivatives 
are used to limit the loss no matter whether the buyer is in financial trouble or not.   

A sidecar, an arrangement that allows the investors to get the return and take the risk of 
insurance business, can be used to enhance the insurers’ ability to take risk. Normally, a special-
purpose vehicle (SPV) needs to be established. The insurer pays a premium to the SPV and the 
investors deposit money to the SPV to cover the claims by policyholders. It is similar to quota-share 
reinsurance that transfers part of the business and risk to the reinsurer. The insurer transfers the 
written business to the investors through the sidecar. However, the entire risk is not transferred. The 
loss of the investors is limited to the funds that are put in as required. When the realized experience 
is worse than what the fund can cover, the insurer has to bear the remaining loss. However, the 
required fund value is normally high enough so that the chance of excess loss is slim. 

Sidecar 

A sidecar helps reduce the risk exposure and the reserve that is required to support the 
transferred insurance business. Both sidecars and contingent capital have a positive impact on the 
capital position, but they are meant to meet different challenges.  

(1) The return and risk is transferred to outside investors for certain written business through the 
sidecar. However, contingent capital is normally linked with the risk of the whole portfolio, 
including the retained business as well. 

(2) The sidecar is normally arranged to optimize the usage and efficiency of the capital and 
increase the risk-taking capability. When an insurer or reinsurer finds a profitable investment 
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opportunity but does not have enough capital to invest, it may consider using a sidecar to 
release some used capital to take the opportunity. In contrast, contingent capital is deployed 
to increase the loss absorbing capability and reduce the risk of insolvency. Therefore, a 
sidecar is used to prepare for taking more risks while contingent capital is used to prepare for 
future distressed situations. 

Catastrophe equity put (CEP) is a special type of contingent capital with a focus on the 
catastrophe risk. Given the material impact of catastrophe events on the loss and stock price of 
insurance companies, CEP appears to be an effective tool to mitigate the risk by flooring the equity 
value. Compared to standard equity put option contracts, it requires two conditions to be met 
contemporarily before exercising the option. 

Catastrophe Equity Put 

(1) The equity price drops below the exercise price 

(2) The catastrophe loss exceeds the prespecified amount 

Whereas other contingent capital instruments normally have triggers related to the general 
financial health condition of the issuer or the financial industry, CEP is used for mitigating 
catastrophe risk only, not financial systemic risk or any other kinds of risk. CEP and other types of 
contingent capital are not exclusive but complementary. 

A line of credit may be more appropriately termed a risk mitigation tool rather than a risk transfer 
instrument. It is a source of financing provided to credit-worthy companies or individuals by banks. 
The borrower can use the fund and need to pay interests and other related fees. Insurance 
companies, especially when publicly listed, often use line of credit to increase its available liquidity 
source and therefore help reduce the exposure to liquidity risk. 

Line of Credit 

Lines of credit and contingent capital are designed for different purposes. Lines of credit only 
allow the company to borrow extra cash at a cost. They do not change the composition and amount 
of the surplus account. When there is a capital inadequacy problem, borrowing money will not be 
helpful, as cash borrowed will be reflected on the liability side as well. Available capital will hardly 
change. On the other hand, the conversion of contingent capital will lead to a direct liability written 
down or an increase in the available capital. These two sources of financing deal with different kinds 
of risk and therefore they behave differently in many aspects. 
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4. EFFECTIVENESS AND POTENTIAL IMPACT 

4.1 The Impact on Systemic Risk 
Systemic risk is the risk that the entire financial system may collapse. Due to the interdependence 

within the financial system, the failure of one or more systemically important firms can lead to the 
crash of the entire system. Contingent capital is believed to reduce the systemic risk and default 
probability when compared to pure debt instruments. Issuing contingent capital without reducing 
the common equity provides additional capital which would certainly reduce the chance of 
bankruptcy. However, substituting common equity with contingent capital to meet capital 
requirement might have an uncertain impact on systemic risk due to the uncertainty of the 
conversion. 

The effect of reducing systemic risk was shown by Hilscher and Raviv (2011) analytically via a 
quantitative model. Based on the model setup, contingent capital financing can reduce the default 
probability compared to subordinate bond financing. In addition, the risk-taking incentive becomes 
less if the conversion price indicates a certain level of value dilution for the existing shareholders. 

Although a properly designed contingent capital may reduce systemic risk, it is not expected to be 
the entire solution for the too-big-to-fail issue. McDonald (2011) emphasized that the proposed dual 
trigger contingent capital instrument reduces a firm’s debt load but is not used to address the too-
big-to-fail issue. Regulators need to “proactively monitor the management and performance of financial 
institutions. Contingent capital is thus a backstop for regulatory failures or unforeseen market events, not a regulatory 
substitute.”33

Acharya et al. (2009) also pointed out that contingent capital is not enough for eliminating 
systemic risk. Even when the issuers in trouble remain solvent due to the timely conversion from 
debt to equity, the firms are still exposed to liquidity risk which is normally the direct cause of going 
bankruptcy. Counterparty risk also exists, although it is expected to be lower if every firm’s 
contribution to systemic risk is reduced by issuing contingent capital. The loss in excess of the value 
of the equity and contingent capital for too-big-to-fail firms is still likely to be protected by the 
government. Therefore, there is still an incentive to take risk above a firm’s capability. Acharya et al. 
(2009) concluded that “an explicit fee … charged to banks in good times based on their expected losses and their 
systemic risk contributions” is necessary for rectifying the moral hazard due to the implicit guarantee by 
the government. 

 

                                                           
33 McDonald, "Contingent Capital," 2.  
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4.2 Dilution of Shareholder Value 
When the conversion price is set to be equal to the market price, there is material dilution of 

shareholder’s value on the conversion of the CoCo bond. A fixed or floored conversion price will 
limit the dilution. With the threat of value dilution upon conversion, existing shareholders are 
discouraged from taking excessive risk above their risk tolerance. However, by fixing the conversion 
price to be the stock price at the issue date of the CoCo bonds, the magnitude of dilution of the 
shareholder’s value is floored. It might not provide enough incentive for disciplined strategic 
planning. Calomiris and Herring (2011) mentioned that in the interests of creditors and regulators 
who are more risk averse, a dilution of shareholders’ value is critical for a more stringent control on 
risk-taking activities. 

Investors’ behavior could also have an impact on the value transfer from equity holders to the 
contingent capital investors.  If the contingent capital instrument has a conversion price equal to the 
then-current stock price, contingent bond holders will probably short sell the stock near the trigger 
point as a sharp drop in stock price is favorable. Low stock price means a high value transfer. 
Shareholders who foresee this behavior will also sell their shares as soon as possible, hoping to get a 
higher price than the conversion price.  

4.3 Capital Admittance and Accounting Treatment 
The regulation and financial reporting rules have been evolving and it is not crystal clear at this 

point what the final decision will be for the treatment of contingent capital instruments. 

Under the current capital requirements directive (CRD II) of European Union, instruments that 
absorb losses on a going-concern basis and that must be converted to core Tier 1 capital are 
regarded as equity capital, capped by 50% of the core Tier 1 capital. Contingent capital instruments 
with those features are likely to be classified as Tier 2 capital under current framework. According to 
the consultation paper (CRD IV) issued in 2010, European Commission will consider the potential 
need for all non-core Tier 1 instruments to have a mandatory principal write-down or conversion 
feature, the potential triggers for conversion, and alternative mechanisms and triggers of contingent 
capital.

Capital Admittance 

34

As written in a future rule about the additional loss absorbency requirements for global 

 Therefore, it is possible that certain types of contingent capital instruments could qualify 
for non-core Tier 1 capital. 

                                                           
34COMMISSION SERVICES STAFF WORKING DOCUMENT, "POSSIBLE FURTHER CHANGES," 18-19&23. 
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systematically important banks (GSIB) released by Basel Committee on Banking Supervision (BCBS) 
in late 2011, contingent capital will have to be converted to Common Equity Tier 1 when the 
Common Equity Tier 1 falls below 7% of risk adjusted assets. It also sets a cap on the new shares 
and requires a full authorization from the issuers for an immediate conversion. 

Under the Solvency II framework, contingent capital with appropriate feature can be used to 
meet the solvency capital requirement (SCR), but not the minimum capital requirement (MCR). 
However, the amounts of ancillary own fund (AOF) items and the amount for each AOF item are 
subject to supervisory approval.35

In its final advisory on Non-Viability Contingent Capital, the Office of the Superintendent of 
Financial Institutions Canada (OSFI) requires that the regulatory capital of all federally regulated 
deposit-taking institutions (DTIs) must have a loss-absorbing quality when the DTI fails. All the 
non-common Tier 1 and Tier 2 capital must satisfy the requirements for non-viability contingent 
capital (NVCC). However, the trigger event of NVCC is at the discretion of the regulators. 
Contingent capital instruments that meet the requirements are likely to qualify for either non-
common Tier 1 or non-common Tier 2 capital. 

 

In the United States, the treatment of contingent capital is not clear, both for the banking 
industry and the insurance industry. 

There is, as of yet, no guidance issued for contingent capital regarding the accounting treatment. 
According to IAS 32, under IFRS, convertible bonds need to be presented as two components on 
the issuer’s balance sheet: 

Accounting Treatment 

(1) A financial liability whose value is determined by measuring the fair value of a similar liability 
that does not have the conversion option, and  

(2) An equity instrument whose value is determined as the fair value of the option to convert 
the instrument into ordinary shares. 

Unlike convertible bonds, the conversion option of contingent capital instruments is rule-based 
or at the discretion of the issuer or the regulators, not the investors. It is likely that contingent 
capital instrument will be presented as two components under IFRS in the same way, except that the 
value of the equity instrument depends on a different option. 

                                                           
35 “Directive 2009/138/EC,” 48. 
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In IAS 32, it is mentioned that “Classification of the liability and equity components of a convertible 
instrument is not revised as a result of a change in the likelihood that a conversion option will be exercised, even when 
exercise of the option may appear to have become economically advantageous to some holders.”36

U.S. GAAP has different treatment for convertible bonds from IFRS. According to FAS 133, for 
the issuer convertible bonds without the cash settlement option should not be separated into two 
components, as its stock price is closely related to the convertible bonds. On the other hand, for the 
investors, the embedded conversion option needs to be separated from the debt component under 
U.S. GAAP. Contingent capital might get different treatment given that regulators consider it as an 
automatic recapitalization tool to mitigate systemic risk. The equity credits might be allowed to be 
reflected before conversion. However, there is no clear rule from FASB about contingent capital. 

 The arguments are 
that the holders may not always act in the way that might be expected and the likelihood of 
conversion will change from time to time. Certainly, the same arguments also apply to contingent 
capital. It is likely that under IFRS, once the classification of the liability and equity components is 
determined at issuance, it will be kept the same until it is converted. 

The impact on earnings volatility depends on the financial condition of the issuer or the financial 
industry. If the contingent capital is treated as debt before conversion and equity after conversion, 
the earnings volatility of the issuer before conversion will be the same as that for issuing traditional 
debt. However, upon conversion, a write-down of the issuer’s liability will certainly reduce the loss 
and therefore the earnings volatility. If the conversion option is separated from the host contract, 
the earnings volatility of the issuer before conversion tends to be more volatile compared to issuing 
a traditional bond. The mark-to-market value of the conversion option will be a major contributor 
to the volatility. 

4.4 Tax Deductibility 
One of the key benefits of issuing contingent capital is the tax treatment which it is expected to 

receive. The interest payments of contingent capital are tax deductible considering the fact that 
contingent capital behaves like a debt instrument before conversion. Contingent capital and equity 
are still quite different given that contingent capital has limited upside while equity has unlimited 
upside. In addition, the contingent capital is brought in to reduce systemic risk and the cost of 
government bailout in a financial crisis. Because contingent capital has a combination of limited 
upside and potential loss absorbency, it makes more sense for it to be tax deductible.  

Bolton and Samama (2011) mentioned that Lloyds Banking Group’s ECNs and Rabobank’s 

                                                           
36 European Commission, “IAS 32,” 10. 
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Senior Contingent Notes are tax deductible.37

Bolton and Samama (2011) also mention a possibility that the option premium as part of the 
coupon payments is not tax deductible and the movement of the fair value of the embedded option 
needs to be taxed as an income. Its complexity might make this unlikely. However, the IFRS is likely 
to require the debt component and the equity component to be separately reported under fair value 
basis. Therefore, there may still be a chance that the conversion option will be treated differently 
from the pure debt component. 

 Although both of the contingent capital instruments 
were issued since the financial crisis in 2008, the two issuers are under different financial conditions 
at issuance. Lloyds Banking Group had been bailed out by the government while Rabobank was in 
good financial conditions and the Senior Contingent Notes were oversubscribed. This indicates the 
likely treatment that contingent capital might receive, both in good times and in bad times. 

4.5 Disclosure Requirement 
Due to the complexity of contingent capital, transparency is the key to its marketability. Rating 

agencies have expressed their positive view on this desired feature. Investors would also prefer 
securities with sufficient information about the issuer. Vagueness means higher required return and 
lower price of contingent capital instruments which will increase the cost of financing. The report 
publicized by Goldman Sachs emphasized more standardized bank disclosure as an important factor 
to make the objective triggers more credible.38

Not only is the disclosure of the contingent capital instrument itself necessary for transparency, 
butmore detailed and timely disclosure of financial condition, business plan, and risk appetite is also 
needed for the success of contingent capital. The issuer needs to provide enough information to the 
potential investors so that they can assess the risk and return of the instruments. Without doing this, 
investors will not be able to make an informed decision and may be reluctant to invest. 

  

4.6 Counterparty Risk Assessment 
Contingent capital instruments change the issuer’s capital structure and risk-absorbing capability. 

For the issuer, there is no counterparty risk, as the price is paid at issue. However, the default risk 
profile of the issuer is changed when contingent capital is issued. Therefore, the counterparty risk of 
holding contingent capital and the ordinary fixed income securities without conversion options will 
be affected. In addition, the expected outcome of conversion may not be realized due to the 
behaviors of the investors and the issuer, as discussed in Section 3.5. This makes the counterparty 

                                                           
37 Bolton and Samama, "Capital Access Bonds,” 31-32. 
38 Goldman Sachs, “Contingent Capital," 4-8. 
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risk analysis even more complicated. 

One straightforward approach is to rely on the credit rating given by the rating agencies. 
However, not all the contingent capital will be rated by rating agencies. The contingent capital 
instrument has to first meet the standard set out by the rating agencies. In addition, the credit rating 
may be unavailable or outdated when you need it to make the decision, especially in a stressed 
situation when the conversion is likely to happen soon. 

An alternative approach that also relies on the market available information is the credit default 
swap spread. The impact of contingent capital on the default risk is expected to be reflected in the 
CDS spread. However, this information may not be available for certain issuers and is only available 
after the contingent capital instruments are issued. 

Given the drawbacks of the approaches above, sometimes it is necessary to analyze the 
relationship between contingent capital and default risk in order to quantify the counterparty risk. 
Some papers have examples of quantifying the impact on default risk. Hilscher and Raviv (2011) 
showed analytically that contingent convertible bond financing can reduce the default probability 
compared to subordinated bond financing. The underlying logic is straightforward. The issuer will 
default if it cannot pay the coupon or redemption value of the subordinated bonds. However, that is 
not the case if a CoCo bond is used instead. The CoCo bond will be converted before the firm fails 
to pay the coupon and redemption value. Clearly, this argument is based on the assumption that the 
risk-taking behavior is the same in those two circumstances. If the issuer thinks that the introduction 
of CoCo bonds allows for a higher risk tolerance, the default risk could be higher due to the lost of 
the disciplinary power of debt instruments. 

5. PRICING, VALUATION, AND RISK ASSESSMENT 

5.1 Pricing Models 
Contingent capital, as an innovative hybrid security, contains elements of both the debt and the 

equity. Generally, there are two types of models to price contingent capital.  

(1) The first type is based on the Merton (1974) model and the Black Scholes (1973) model. 
Sometimes it is called structural model. In the Merton model, the shareholder’s value is 
considered as a call option on the firm’s value with an exercise price equal to the value of the 
debt. By translating the trigger event into an equivalent value of the firm, Merton’s model 
can be revised to model the probability of conversion using the equity call option model 
with a revised exercise price. Existing literatures about pricing contingent capital have more 
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focus on this approach. 

(2) The second type is based on Duffie and Singleton (1999), which models defaults and values 
corporate bonds through the term structure of interest rate. Sometimes it is called reduced-
form model. Unlike the Merton model, it does not explicitly consider the debt structure and 
the value of the firm at default, or, in other words, the exercise price of the call option. It 
models the default probability with a hazard rate influenced by exogenous market factors 
that are closely correlated with the firm value. To adjust for the feature of contingent capital, 
default intensity needs to be changed to trigger intensity which is the hazard function for the 
conversion. With Duffie and Singleton’s approach, both default intensity and loss ratio can 
be set as a function of an exogenous variable, such as the stock price. Therefore, stakeholder 
behavior can be explicitly incorporated in the model. The model is also capable of including 
jumps for discontinuous information, such as capital rule changes in the diffusion process. 

An extension of the first type is to include discontinuous jumps in modeling asset price. The 
classic Merton model assumes that the firm value follows the pattern of Geometric Brownian 
Motion. Geometric Brownian Motion is not good at explaining material value change over a short 
time period, which is a normal phenomenon for stock price. In addition, some contingent capital 
has its trigger event subject to ad hoc factors. As an example, for contingent capital with a trigger 
event based on capital adequacy ratio, discontinuous change in the value of the conversion option 
will happen when there is a change in capital rules, or business strategy, or when updated 
information is released, such as the capital position in a quarterly financial report. A compound 
Poisson Process is a common choice for the jump part in jump diffusion models used in the area of 
finance and risk management. It assumes an exponential distribution for the waiting time between 
jumps. The jump size follows a specified distribution itself. Sometimes, jump diffusion models are 
coupled with stochastic volatility, such as the Heston Model. This extra layer of flexibility can be 
used to take into account some stakeholder behavior such as shorting stocks before conversion. 

This section discusses some of the models for contingent capital in existing literatures and the 
possible improvement. 

Spiegeleer and Schoutens (2011) suggests a credit derivatives approach which determines the 
value of the credit spread on contingent convertible bonds by (1-Recovery Rate) × Trigger Intensity. 
Recovery rate is the ratio of the share price at conversion to the conversion price. The trigger 
intensity is associated with the probability of triggering. Realizing the difficulty in modeling the 
capital adequacy ratio based on regulatory rules or the financial ratio based on accounting rules, the 

CoCo Bonds 
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trigger event needs to be translated to an equivalent event such as the stock price dropping below a 
barrier. Utilizing the well-established digital barrier option pricing method, the probability of a 
trigger and the trigger intensity can be calculated. As the authors realized and mentioned in the 
paper, the shortcoming of a credit derivatives approach is that when the share price on the trigger 
date is very close to the conversion price, the recovery rate is almost one which would indicate that a 
contingent convertible bond is risk-free. In addition, a credit derivative approach does not consider 
the possibility that the coupon payment will cease if default event or a conversion happens. A low 
credit rating of CoCo bonds would indicate a high coupon rate, which has a big impact on the bond 
price. Equity derivative approach was suggested to take those missing factors into consideration. 
The CoCo bond can be valued as below. 

 (1) Plain Vanilla Corporate Bond 

+  (2) Knock-In Forwards between spot price and conversion price39

- (3) Down-and-in cash-or-nothing binary option on the coupon payments 

 

Both the knock-in forwards and down-and-out cash-or-nothing binary option have stock as their 
underlying asset. Therefore, it is critical to determine the appropriate barrier for the stock price that 
is equivalent to the occurrence of the trigger event, at least approximately. However, how to 
translate the trigger event into an equivalent stock price and how to determine the trigger intensity is 
vague in Spiegeleer and Schoutens (2011). The approaches also neglect the possibility that without 
the conversion, the financial institute could go bankrupt directly, especially if the checking of the 
trigger event is not frequent.  

A way of deriving the barrier for the stock price is to use the market price of existing deals. The 
authors illustrate the process of deriving an implicit barrier based on Lloyd’s deals. If a similar CoCo 
bond exists in the market, the implicit barrier approach might be used as a reference point. 
However, there are several issues with this approach. 

(1) Even if the CoCo bonds have the same features, the financial condition, business profile, and 
the strategic plan could be quite different. Those factors have a big impact on the probability 
of conversion. 

(2) Until the CoCo bond market develops to be a much bigger one, lack of liquidity and 
transparency would impede us from adopting this approach. 

But it is still valuable as a reference check for the price of the new issuance. 

                                                           
39 The knock-in forward will be effective if the trigger event for the CoCo bond happens. 
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Takahashi et al. (2001) propose an approach of pricing convertible bond based on the Duffie and 
Singleton (1999) model for default risk. They suggest integrating the default risk and stock price by 
including the default intensity in the stock price diffusion process. It looks like a very promising 
candidate for valuing contingent convertible bond, as the trigger intensity could be highly correlated 
with the stock price, depending on the design of the CoCo bonds.  

In a report by FitchSolutions, a structural approach which is more complicated than Merton’s 
model is used to value a CoCo bond. The analytical first passage time model specifies a time 
dependent threshold which allows more flexibility in the calibration and pricing process. This model 
was used to value bonds with credit risk. It is modified to value contingent capital, considering both 
the probability of conversion and the probability of default. The paper also proposed a way to 
estimate the regulatory capital position based on the leverage ratio.  

For contingent capital securities with a dual trigger design, the model could be more complicated. 
McDonald (2011) provided a pricing example of a dual trigger convertible bond based on the 
assumption that stock price and systemwide index follows correlated Geometric Brownian Processes 
with mean reversion. A simulation method is used to calculate the price of contingent capital 
securities. Historical volatility is used for the volatility parameters and the correlation. In practice, 
those assumptions might need forward-looking elements. In addition, a linear correlation might be 
too aggressive an assumption. As the conversion normally happens in a tail event, stock price and 
index value tend to move at a closer pace than in normal circumstances. 

Bolton and Samama (2011) proposed the valuation methods of capital access bond (CAB). CAB 
is similar to traditional convertible bonds with the exception that the owner of the conversion 
option is the issuer, not the investor. The issuer also has the option to call the bond before maturity. 
The option premium for covering the cost of conversion option and call option can be determined 
using standard option valuation formula. However, the probability of default should be considered. 
The option premium will be unpaid if the issuer goes bankrupt. The conversion option premium 
before adjustment also needs to reflect a certain degree of default risk. This is because it is possible 
that the issuer may go bankrupt before the CAB is converted. Therefore, using an adjusted option 
price formula is not ideal for valuing CAB. A trinomial tree model was also illustrated by Bolton and 
Samama (2011). It is more rigorous than using standard option pricing formula as it models the 
dynamic process of stock price and the conversion. 

Each type of the pricing models has its weakness. In structural models, one of the most critical 
parts is to determine the barrier for the stock price. For trigger events that are directly based on the 
stock price, it would not be an issue. However, for trigger events that are based on a capital 
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adequacy ratio, it would be very difficult to have a reasonable estimate due to the managerial 
discretion, the regulatory change, and the time lag between the release of the capital report and the 
change of stock market.  

Another thing to keep in mind when using structural models for pricing contingent capital is that 
the volatility parameters should be calibrated to appropriate target. Due to the non-flat volatility 
term structure, the implied volatility of an at-the-money equity put option could be quite different 
from that of an out-of-money equity put option. Given the level of the trigger point and financial 
condition of the issuer, an equity put option with a strike price close to expected equity price near 
conversion should be chosen as the calibration target. However, there may not be enough market 
information for out-of-money equity options in practice. It could be a major limitation of using 
structural models in such a situation. 

On the other hand, reduced form models need to calibrate the hazard rate of conversion, which 
poses a big challenge as well. Selecting an appropriate state variable that the hazard rate has a high 
dependence on and figuring out the relationship between them is not an easy task. 

In addition, without explicitly considering the cause and effect, some facts about the issuer, such 
as its capital structure, may not be appropriately priced in using reduced-form models. It may have a 
material impact on the price, considering that most of the issuers are large financial institutions with 
a diverse business and risk profile. 

There are some areas that need further research. The price of contingent capital is sensitive to 
those factors. 

(1) Existing models often lack a framework that can explicitly quantify the impact of the 
stakeholders’ behavior, such as the manipulation of the stock price (Section 3.5) and the 
multiple equilibria issue (Section 3.6).  

(2) The conversion event, similar to the default event, deals with the tail risk where market data 
normally are too sparse to be used for a credible calibration.  

(3) Depending on the design of contingent capital, it is possible that default can happen before 
the conversion option is exercised. It has not been explicitly and fully addressed in existing 
pricing models.  

(4) The impact of the issuer’s debt structure on the price of contingent capital needs to be 
incorporated in the pricing model at a more granular level considering different seniorities of 
the debt. 
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(5) New issuance of contingent capital may have an impact on the equity value due to the 
potential value transfer between shareholder and debt holder and the change in risk taking 
capability. How to incorporate this kind of change in the stock price in the pricing framework 
deserves further study.   

Catastrophe equity put (CEP) has been used by the insurance industry to transfer the negative 
impact of catastrophe event on its capital position. It gives the issuer the right to sell stocks to 
investors at a fixed price once the catastrophe loss exceeds the specified limit. Unlike CoCo bonds, 
where all the risks could lead to the occurrence of the trigger event, CEP depends on the joint 
movement of catastrophe losses and stock prices. In other words, the trigger event and the stock 
price are considered to be highly correlated for CoCo bonds, but that is not the case for CEP. 
Therefore, it is important to model the relationship between losses and stock price. 

Catastrophe Equity Put 

Cox and Pedersen (2004) introduced a framework where asset price follows the geometric 
Brownian model with additional downward jumps when there is a catastrophe event. The jump size 
is static regardless of the size of the catastrophe loss. 

Jaimungal and Wang (2006) generalized the model introduced by Cox et al. (2004) with a 
stochastic interest rate and the downward jump size depending on the total loss. Unlike Cox et al. 
(2004), the losses are assumed to follow a compound Poisson process. Jaimungal and Wang (2006) 
also pointed out that the counterparty risk is not explicitly modeled and the homogenous Poisson 
process for the catastrophe events is not appropriate for risks with seasonality. 

Lin and Chang (2007) made a further step. In the context of catastrophe losses, a constant 
expected arrival time is not an appropriate assumption. Instead of using a Poisson process, Lin and 
Chang (2007) proposed the Markov Modulated Poisson Process to model the arrival process of 
catastrophe events. The arrival process is assumed to follow a homogenous Markov chain which 
determines the state of the Poisson process. In different states, the arrival rate of catastrophe events 
could be quite different.  

There are two practical issues to consider when using those models.  

(1) Both the compound Poisson process and Markov Modulated Poisson Process require the 
calculation of the cumulative distribution function of the n-fold convolution of losses in the 
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valuation formula. Except for a few distribution types of the loss size,40 there is no closed-
form formula for calculating aggregate loss. However, there are other methods to compute 
the n-fold convolution, such as the numerical method and the method of moments.41

(2) The calibration of the loss size model is not an easy task. Historical data of the catastrophe 
loss and its resulting share price drop are helpful. But a clear picture of the current and future 
catastrophe risk exposure is necessary to get an up-to-date assumption for the distribution of 
the downward jump size. 

. But it 
requires either a loss of accuracy or a higher cost of computing resources and time.   

Some of the pricing models described are analytically tractable and some are not. In light of more 
powerful computational capabilities, a stochastic approach is another feasible approach. By 
specifying the models for interest rate, asset price, and catastrophic loss, one can simulate the asset 
price, the exercise of the conversion option, and the generated cash flows. The value of contingent 
capital can then be estimated by taking the average of the discounted values for all scenarios. There 
are two types of stochastic scenarios: risk-neutral scenarios and real-world scenarios. Market-
consistent risk-neutral valuation uses risk-neutral scenarios as discount rates while adjusting the 
probability to match the average discount value with market value. Market-consistent real-world 
scenarios use the sum of risk-free rate and implied-risk premium as a discount rate. Theoretically, 
both risk-neutral scenarios and real-world scenarios can be used for market consistent valuation. But 
risk-neutral scenarios are preferred, as they are more practical for calibration. When using risk-
neutral scenarios, only the average discount value is useful. The distribution implied from risk-
neutral scenarios probability is not realistic. Real-world scenarios are used for other purposes. It 
provides us a picture of possible outcomes. The distribution of the outcome itself, and other risk 
measures, such as value at risk (VaR), and conditional tail expectation (CTE), are very important 
tools in capital management and risk-return analysis. Normally, the most common measure is Value 
at Risk (VaR) which is the value at a certain percentile of a distribution. For example, 95% VaR is 
the 95 percentile of the loss distribution. Sometimes for distributions that are heavily skewed, VaR 
may underestimate the tail risk, as it does not consider the magnitude of the loss in the tail. 
Conditional Tail Expectation (CTE), a.k.a Tail VaR, provides more comprehensive information 

A Stochastic Approach 

                                                           
40 Jaimungal and Wang (2006) illustrated the analytical tractability when the loss size follows the Gamma distribution. 
Lin and Chang (2007) illustrated the analytical tractability when the loss size follows the lognormal distribution. Ma and 
Liu (2004) introduced an analytical scheme to compute the n-fold convolution of exponential-sum distribution 
functions. 
41 Lanzenauer, "The n-Fold Convolution," 94-98. 
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about the uncertainty in the tail. Combined with further modeling and understanding of practical 
accounting nature, such risk analysis would help the investors understand the downside risk and 
assist the issuers to assess the effectiveness of contingent capital in risk transfer. It can also help 
quantify the potential benefit of contingent capital under stress scenarios as an integrated part of 
plan sponsor’s capital planning strategy. 

Assets that are less liquid usually have a higher yield to compensate for illiquidity, ceteris paribus. 
This is often the case for the corporate bond market, where substantial difference is present and the 
liquidity premium changes through the economic or business cycle. Contingent capital market is still 
under development and its cash flows are hard to perfectly replicate using existing liquid assets, due 
to the uncertainty of an embedded conversion option. Realizing the rise of liquidity premium of 
assets during the recent financial crisis, regulators are considering adding liquidity premium in the 
valuation of insurance liability as well.

Account for Illiquidity 

42

At the current stage, it is hardly reliable to use the market data of existing contingent capital deals 
for estimating the liquidity premium, as the data are not sufficient and the terms of the contracts 
vary greatly. However, the corporate bond market has more data and there are many studies about 
how to disentangle liquidity premium from the total spread. It is practical to leverage on the liquidity 
premium of a similar corporate bond with the same credit rating as of contingent capital. Further 
adjustment can be applied based on the size of the issuance and estimated demand. The following 
methods may be used for estimating the liquidity premium for corporate bonds. 

 Therefore, a liquidity premium is a key factor to consider in 
setting the price. In the models discussed above, liquidity has not been explicitly included in the 
pricing framework. The impact of illiquidity can be reflected in the pricing models by adding a 
liquidity premium to the interest rate. However, even for assets without the conversion option, it is 
not easy to quantify the liquidity premium. The asset yield in excess of the risk-free rate includes 
expected credit spread, unexpected credit spread, liquidity premium, cost of conversion option, 
taxation difference, and residual spread caused by market inefficiency such as information 
asymmetry.  

(1) Market spread - model spread derived from structural models. The model spread is 
considered as the credit spread. 

(2) Market spread - CDS spread with the same maturity and credit rating. 

                                                           
42 CEIOPS, “Task Force Report,” 3-12. 



Understanding Contingent Capital 

Casualty Actuarial Society E-Forum, 2013 Spring-Volume 2 41 
© 2013 Casualty Actuarial Society 

 

(3) Illiquid bond return – liquid bond return with the same cash flows and credit risk. 

5.2 Valuation Models and Assumption Setting 
Sometimes, pricing is considered as valuation at the issue date. The quantitative models used for 

pricing and valuation normally are the same. However, due to different purposes and the evolution 
of the market since the issuance, the parameters used may change greatly. Even for valuation, the 
assumption used depends on the role of the stakeholder and the purpose of the valuation. This is 
not something new that is created by contingent capital. It exists for all the complicated financial 
instruments that do not have a liquid market. This section focuses on the fair valuation of the 
contingent capital before conversion. Upon conversion, there will be a liability written off or 
additional equity, whose value may be determined by the market. 

The fair value discussed here is the exit price that represents the price to be paid when the asset is 
transferred, or the price to pay when the liability is transferred. This is the type of fair value that is 
adopted by IFRS and U.S. GAAP. Several difficulties exist for the contingent capital valuation at 
current stage. 

(1) There is no liquid market for contingent capital right now. Therefore, the exit price is not 
readily available from the market. 

(2) Although there are some ways to dynamically hedge a few risks embedded in contingent 
capital, the hedging effectiveness is been questioned. The risk exposure could evolve quickly 
in stressed situation and the dynamic hedging program may not be able to offset the change 
quickly enough. Other types of risk may not be able to hedge at all, such as systemic risk. 
Those hard-to-hedge or non-hedgeable risks need to be considered when estimating the fair 
value.  

(3) The exposure to stakeholders’ behavior adds an extra layer of complexity. The quantification 
of its impact is not a trivial task and it is hard to get consensus on the assumption and the 
conclusion. 

There are several approaches that may be used for valuing financial instruments. However, due to 
the characteristics of contingent capital and its current market, not all of them are appropriate.  

(1) Using an up-to-date market price of the contingent capital instrument, which is likely to be 
unavailable and illiquid in the current market. 

(2) Using the market value of asset instruments that can replicate the payments of contingent 
capital. Due to the embedded conversion option and the stakeholders’ behavior, which are 
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hard to predict, it is difficult to find asset instruments in the market that can replicate the cash 
flows of contingent capital well in all situations. 

(3) Using the discounted value of the expected cash flows with a discount curve that includes the 
risk premium. This is also known as the actuarial approach. It is extensively used to calculate 
the value of the insurance business. However, it is not well equipped to value the asset 
instruments with embedded options.  

(a) The life of the contingent capital instruments and its cash flows vary greatly among 
different financial conditions, due to the conversion option. It is difficult to calculate the 
appropriate expected cash flows. The cash flows projected under the best estimated 
assumption may not be a good estimate, as the impact of a conversion option is likely to 
be neglected or underestimated when it is out of money at the time of valuation. 

(b) Since there is not enough active trading in current market, it is difficult to derive the risk 
premium from the market price. Subjective assumption has to be made and the discount 
value can hardly be the market consistent value. 

(4) An extension of the third approach is taking the average of the discounted values based on 
real-world stochastic scenarios. The discount factors or the state prices are calibrated to the 
market price of asset instruments, where possible. In practice, this approach is difficult due to 
the unyielding number of state prices that need to be determined, especially for a multi-period 
arbitrage free model. To estimate the market consistent value, risk-neutral scenarios are often 
used to calculate the non-arbitrage price. 

(5) Using the closed form formula where the discount rate is the risk-free rate and model 
parameters such as equity volatility are calibrated to market price of asset instruments. In this 
way, it can achieve a certain level of market consistency where liquid market is available. 
However, it is not easy to account for the impact of stakeholders’ behavior. 

(6) Taking the average of the discount values of the cash flows which are projected and 
discounted using risk-neutral stochastic scenarios. The economic scenario models are 
calibrated to the market price of asset instruments, where possible. In addition, the impact of 
expected investor behavior can be reflected to a certain extent. For example, near the trigger 
point, the stock price may be depressed by selling the existing shares or short selling. To 
account for this, the conversion can be assumed to occur before the stock price reaches the 
conversion price. 

Therefore, the closed-form valuation and stochastic risk neutral valuation are relatively more 
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appropriate for valuing contingent capital instruments. 

The models described in Section 5.1 can be used, but with adjusted parameters that reflect the 
change since the issue date. The major areas that require contemporary assumption are given below. 

(1) The economic assumption needs to be updated based on the then-current economic climate. 
It includes, but is not limited to, interest rates, credit spread, equity value and expected equity 
return. 

(2) For contingent capital that covers non-financial risks such as catastrophe risk, the assumption 
of the frequency and severity of the risk events also needs to be updated. 

(3) The financial condition of the issuer may also change and this could have a material impact 
on the value of contingent capital with a trigger event at institutional level. The probability of 
default or conversion is affected by the business strategy and outlook. 

(4) Regulatory changes sometimes have an impact on the probability of conversion for 
contingent capital as well. For example, for the conversion option based on the capital 
adequacy ratio, changes in the capital rules will directly affect the chance of conversion. 
Another example is the contingent capital with a discretionary trigger event. Changes in the 
goal or style of the regulators may also affect their willingness to trigger the conversion. 

(5) The volatility assumption of the equity return is also important, And the value of contingent 
capital is very sensitive to it. In most cases, the volatility term structure is not flat. Even if the 
volatility curve itself remains unchanged, the originally out-of-money conversion option 
could become in the money, and if that happens the volatility parameter would need to be 
updated.  

In addition, the occurrence of conversion depends on many factors that cannot be fully 
controlled or hedged, such as the change in capital rules, business strategy, economic cycle, and 
business environment. For example, if a CoCo bond has a trigger event based on the regulatory 
capital adequacy ratio, the timing of the conversion and amount of payment can be affected by a 
change in the capital rule. The estimated value based on either closed-form valuation or stochastic 
risk-neutral valuation needs to be reduced to reflect those non-hedgeable risks.  

A possible way to determine the amount of the adjustment is to calculate the cost of holding 
extra capital to cover the risk exposure. The loss can be projected annually, if a tail event related to 
the non-hedgeable risks happens. The amount of adjustment is the cost of capital rate × present 



Understanding Contingent Capital 

Casualty Actuarial Society E-Forum, 2013 Spring-Volume 2 44 
© 2013 Casualty Actuarial Society 

 

value of estimated annual losses. This is an idea borrowed from the market consistent valuation of 
insurance liabilities. Cost of residual non-hedgeable risks (CRNHR), 43

The tail event used to quantify non-hedgeable risk, in most cases, is difficult to choose, not to 
mention assigning a probability. It could be a historical extreme event or a prediction of the future 
crisis. The associated probability could be based on historical data or predicative models. 

 a component of market-
consistent embedded value (MCEV), uses this approach to estimate the cost due to the exposure to 
the non-hedgeable risks. If there is a probability associated with the tail event, such as a 1-in-200-
year event, or 99.5 percentile of the loss distribution, the capital required in the tail event is in the 
form of 99.5% value at risk. A more conservative approach to quantify the risk is to use the average 
loss if it is greater than the 99.5 percentile loss.  

5.3 Risk Assessment 
5.3.1 Greeks 

Greeks are used to measure the sensitivity of financial instruments to key drivers such as equity 
price, interest rate, volatility, and time. The sensitivity of contingent capital can be estimated by 
calculating Greeks using valuation models.  

(1) Delta (∆) = δV/δS, where δV is the change in the value of contingent capital and δS is the 
change in the equity price. The embedded conversion option is highly related to the capital 
adequacy of the issuer or the whole industry. Therefore, contingent capital instruments, 
especially those with a fixed conversion price, are sensitive to the issuer’s equity price if the 
trigger is based on an institutional level event, or the industry’s equity index if the trigger is 
based on an industry level event.  

(2) Gamma (Γ) = δ2V/δS2 explains the convexity of the value with respect to the equity price. 
The secondary level impact is more material when the equity price moves to a level that the 
conversion option is close to be exercised. 

(3) Vega (ν) = δV/δσ, whereδσ is the change in equity volatility. Higher volatility means 
higher value of the conversion option. 

(4) Rho (ρ) = δV/δr, where δr is the change in interest rate. It measures the sensitivity to 
interest rate. Contingent capital acts like fixed income securities before conversion. The 
present value of future coupon payments and redemption/conversion value will change if 
discount rate changes. 

                                                           
43 CFO Forum, “Market Consistent,” 5-6. 
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Given the diversity of contingent capital designs, it is hard to estimate the Greeks using the same 
formula. One possible way to generalize the estimation of Greeks is to translate the conversion 
option to a financial derivative with equity as the underlying asset. Valuation models that are 
analytically tractable can be used to calculate the Greeks using a closed-form formula. Stochastic 
valuation models can also be used to estimate the Greeks by revaluating the contingent capital 
instrument under shocked scenarios. In some cases, economic variables are assumed to be 
interdependent. For example, in an economic recession, a bear equity market is likely to be coupled 
with low government bond yield. A stochastic model can build the relationship in the scenarios, and 
it would be a better choice than an analytic model if this kind of interdependency needs to be 
considered. 

5.3.2 Contingent Capital Hedging 

Theoretically, the risks of contingent capital can be offset either by static hedging or by dynamic 
hedging. There have been extensive studies about replicating exotic options with plain vanilla 
options statically. As long as the contingent capital can be translated into a portfolio of financial 
instruments, static hedging techniques can be applied.  

In a case when there is no market to short the replicating portfolio or the cost is too high, 
dynamic hedging is another choice. It sets up a hedging portfolio that can offset the sensitivity of the 
contingent capital. The hedging portfolio needs to be rebalanced as the sensitivity changes, which 
may be due to a market movement or simply the passage of time. 

However, the hedging may not be as effective as expected. The basis risk for some contingent 
capital instruments may be high. For example, for the CoCo bonds with the trigger event based on 
the statutory capital adequacy ratio (CAR), the equity price may not be a perfect indicator of the 
CAR due to the complexity of the capital rules. In addition, the CAR may be reported quarterly 
while the equity price changes every day. The issuer may go bankrupt before the conversion has a 
chance to take place. Hedging strategies built for the “translated” contingent capital are vulnerable 
to basis risk. 

In addition, hedging activities may have detrimental market impact. The investors of contingent 
capital hold a short position on the conversion option. If the conversion price is fixed, short selling 
of the issuer’s stock provides an efficient Delta hedge. This will drag down the equity price further. 
When the stock price drops, more shares need to be short sold as the delta of the put option 
increases, which in turn puts more pressure on the equity price. 

5.3.3 Earnings Volatility and Capital Adequacy 

Investors of contingent capital need to consider the impact on their risk profile. Earning volatility 
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may increase due to the embedded conversion option offered to the issuers. Their available capital 
might be reduced if the conversion price is greater than the spot price at conversion. The impact will 
directly show on the financial reports such as income statement and balance sheet. Therefore, it is 
necessary to project the possible outcomes under different real-world scenarios, either stress 
scenarios or stochastic scenarios. With a clear understanding about the distribution of the future 
gain/loss, the portfolio managers can make an informed decision on whether the risks are 
acceptable or if there is any risk mitigation action to take. 

On the other hand, issuers of contingent capital would expect reduced earnings volatility and 
enhanced capital position upon conversion. 

6. CASE STUDY 

In this section, we will go through the pricing, valuation, and risk analysis of a sample contingent 
capital instrument. It is hoped that the reader will gain some perspectives of the fundamental 
quantitative works required for analyzing contingent capital. Given the diversity in the features of 
contingent capital, the methods used in the case study may not be enough or appropriate for other 
types of the contingent capital but the principle will not deviate too much. Although there is some 
calibration involved in the case study, it is insufficient to ensure a reasonable and marketable price or 
value. The main purpose of the case study is to illustrate the model, the process and the Excel tool 
built with it. More detailed market research is required to come with appropriate model parameters.  

The details of the contingent capital instrument example are given below. 

Facts about CoCo Bond XYZ 

Issuer ABC Insurance Company 

Face Amount $10,000,000 

Trigger Event NAIC RBC Ratio <=150% 

Conversion Price (CP) $40 per share 

Term of Contract (T) 10 years 

Current Stock Price (S0) $45 per share 

Current RBC Ratio 
(RBC0) 

300% 
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Credit Rating S&P BBB+ 

BBB+ rated junior 
subordinated bond yield 

7.2% 

Dividend Yield (d) 0% 

Credit Default Swap 
Curve for subordinated 
bond 

Term            Rate (bps) 

1 124.9 

2 198.9 

3 262.5 

4 300.6 

5 311.8 

7 313.9 

10 305.0 

Economic Assumption 

Risk Free Interest Rate44

3.0% 
 

(r) 

Equity Volatility (σ) 45% 

Recovery Rate for Junior 
Subordinated Bonds 

40% 

 

6.1 Pricing 
The task is to determine an appropriate and marketable coupon rate for CoCo bond XYZ.  

A plain vanilla junior subordinated bond with the same credit rating as the CoCo bond has a yield 
of 7.2%. Since the conversion price is well above the likely stock price at the conversion, the 
exercise of the conversion option means a loss to the CoCo bond holders. Therefore, the required 
yield of CoCo bond XYZ needs to be higher than 7.2% in this example. 

                                                           
44 In the case study, liquidity premium is assumed to be accounted for in the risk-free interest rate, where appropriate. 
The determination of liquidity premium is discussed in Section 5 and is not illustrated here.  



Understanding Contingent Capital 

Casualty Actuarial Society E-Forum, 2013 Spring-Volume 2 48 
© 2013 Casualty Actuarial Society 

 

CoCo bond XYZ has a trigger event linked to the NAIC RBC ratio. The distribution of future 
RBC ratio is difficult to model due to the complexity of the liability portfolio of insurance 
companies, unpredictable changes in capital rules, and the uncertainty of management actions. On 
the other hand, quantitative financial models explicitly project future stock price, interest rate, and 
credit spreads. To rely on those models, the relationship between the RBC ratio and those modeled 
economic variables need to be figured out. Two likely explanatory variables are stock price and 
credit default swap (CDS) rates. Assume that for ABC Insurance Company, the stock price is 
expected to be $15 at conversion based on the historical data of RBC ratio and stock price, an 
expected capital rule change, and the next 5-year risk budgeting plan.  

The Spiegeleer and Schoutens (2011) credit derivative approach 

The Spiegeleer and Schoutens (2011) credit derivative approach can be used to get a rough 
estimate of the CoCo bond yield. The probability of triggering during the term of the contract can 
be calculated using the valuation formula for down-and-in cash (at expiry)-or-nothing binary 
option45

 

 without discounting the payoff back to the valuation date. 
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Parameters 
B (stock price 
at conversion) 

S T R d σ 

Value 15 45 10 3% 0% 45% 

 
The probability of triggering during the life of the CoCo bond is estimated to be 61.3% based on 

the parameters listed in the table above. This indicates an intensity of 0.095 for the triggering based 
on the formulae given below. The recovery rate at conversion can be calculated as the ratio of the 

                                                           
45 Rubinstein, Mark and Eric Reiner, "Unscrambling," 75-83. 
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stock price at conversion and the conversion price. It is 37.5% (15/40) in the example. 

T
p)1log( −

−=λ  

Credit spread of CoCo Bond XYZ = λ × (1-Recovery Rate) = 5.9% 

Total yield of CoCo Bond XYZ = credit spread + risk free rate = 8.9% 

The Spiegeleer and Schoutens (2011) equity derivative approach 

With an explicit consideration of the time of the conversion and the stop of coupon payment 
upon conversion, equity derivative approach determines the price of the CoCo bond as below. 

 (1) Plain Vanilla Bond Price with risk-free discounting 

+  (2) Knock-In Forwards between spot price and conversion price46

- (3) Down-and-in cash-or-nothing binary option on the coupon payments 

 

The value of knock-in forwards and the binary option on the coupon payments can be calculated 
based on the well-established pricing formula of binary options. Using the pricing formula given by 
Spiegeleer and Schoutens (2011),47

Garcia and Pede (2011) analytical first passage time approach 

 an annual coupon rate of 9.3% will make the price of CoCo bond 
XYZ equal to its face amount. This is different from the total yield of 8.9% derived using the credit 
derivative approach. As mentioned in Section 5, credit derivative approach neglects the impact of 
coupon payments and might generate an unrealistically low bond yield, especially when the recovery 
rate is high. 

The analytical first-passage time approach model enhances the Merton model by introducing a 
time-dependent barrier for default and a non-flat volatility term structure. Details about the model 
are provided in Appendix B. 
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46 The knock-in forward will be effective if the trigger event for the CoCo bond happens. 
47 Spiegeleer and Schoutens, “Pricing Contingent,” 2011, 24. It is also listed in APPENDIX B. 
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Model parameters B, H, and σ (t) are calibrated to credit default swap (CDS) spread, equity value, 
and capital adequacy ratio. 

Parameters B  H σ1 σ2 σ3 σ4 σ5 σ6 σ7 

Value 0.03 0.7 15.0% 11.0% 12.0% 12.4% 11.6% 11.3% 11.2% 

The CoCo bond price can be calculated using the following process. 

(1)  Simulate the firm value and barrier. 

(2) Conversion time τc is simulated based on the value of Vt/Ht compared to a threshold 
translated from the RBC trigger level. 

(3) If there is no conversion before bond maturity, the value is the same as the value of the plain 
vanilla bond with risk-free discount rate. If there is a conversion, it is calculated as the value of paid 
coupons and the value after conversion. 

(4) Take the average of the bond value across all scenarios. 

With the following model setup, a CoCo bond with an annual coupon rate of 8.7% will sell at 
par. 

Parameters 
RBC Ratio 

Report 
Frequency 

Bond 
Maturity 

# of 
Scenario 

Conversion 
Price 

Value at 
Start 

V/H 
threshold 

Value annual 10 1000 0.27 

Firm: 1 

Barrier: 0.7 

Equity: 0.3 

120% 

 

More frequent capital adequacy reporting will lead to a lower CoCo bond price. 

RBC Ratio 
Reporting 
Frequency 

Annual Semi-annual Quarterly 

Value 1.00 0.98 0.96 



Understanding Contingent Capital 

Casualty Actuarial Society E-Forum, 2013 Spring-Volume 2 51 
© 2013 Casualty Actuarial Society 

 

95% 
Confidence 
Interval 

0.97 ~ 1.03 0.95 ~ 1.01 0.93 ~ 0.99 

 

If there is a strong belief that the death spiral will happen when the company approaches the 
trigger level, the model can be adjusted by increasing the asset volatility and assume there is only 
downward movement when V/H is close to the threshold. The impact of death spiral on the bond 
value is quite material based on the illustration given below. 

Investor 
Behavior 

No 
Short Selling near 

Trigger Level* 

Value 1.00 0.85 

95% 
Confidence 
Interval 

0.97 ~ 1.04 0.82 ~ 0.88 

* Downward movement and twice the calibrated volatility are assumed when V/H is below 125%. 

If there is an expectation of some ad hoc changes before the CoCo bond matures, jumps can be 
added to both the firm value and barrier. The goal of adding the jump component is to incorporate 
the expectation of more stringent capital requirement in the near future and the management actions 
in reducing the resulting cost by adjusting business strategy and mitigating risks. 

 Firm-value process: ( ) 







++= ∑

=

iN

i
i

Q
tt YWtrdtVV

1
0 exp σ  

 Barrier:   
∑+−
=∫=
iN

i
i

t
ZsBrt

HetH 10
2 )(

)(ˆ σ
 

N determines the number of jumps and it follows the Poisson process with parameter λ  

Y determines the shock size due to management actions. In this example, it is assumed to be 
positive but less than Z. 

Z determines the shock size due to capital rule changes. In this example, it is assumed to be 
positive to account for more stringent capital requirement in the future. 

For the sake of simplicity, the following parameters are used in the example. A compound 
Poisson process is simulated to determins both the number of jumps before bond maturity and the 
arrival time of jumps. 
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Parameters λ Fixed size of Y Fixed size of Z 
Equity Value at 

Start 

Value 
0.5 (expected one 
time in two years) 

0.02 0.05 0.30 

 

The value of CoCo bond is sensitive to those overall negative jumps. 

 

Jumps No 
Compound Poisson 
Process with Fixed 

Shock Size* 

Value 1.00 0.85 

95% 
Confidence 
Interval 

0.97 ~ 1.04 0.82 ~ 0.89 

* One in two years with an overall impact of 5.2% drops in equity value per time. 

 

The Duffie and Singleton (1999) Approach with Equity Price State Variable 

Duffie and Singleton (1999) proposed a new approach to model financial instruments that are 
subject to default risk. The default-adjusted short-rate process was introduced which explicitly 
consider the default hazard rate and loss ratio. The beauty of this model framework is the capability 
of having a state dependent default hazard rate and loss-ratio process. For a CoCo bond, an ideal 
candidate of the state variable is the stock price, as the exercise of the conversion option and the 
value of payoff are correlated with the stock performance. The state process could also be a jump 
diffusion process which is flexible enough to model ad hoc changes. The following model set up is 
used in the case study. 

Default-adjusted Discount Rate: ( ) ( ) ( )tSLhtrtR ,+=  

Stock Price:    ( ) 







++= ∑

=

iN

i
ist YdWdttrSS

1
0 exp σ  
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Value of Convertible Security: 






 ∫+∫Ε= ∫
−− T

t s

duuRduuRQ
tt dCeXeV
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Conversion Hazard Rate:  
tS

tSh ρθ +=),(  

Loss Ratio at Conversion:  )/1( CPKL −=  

X: Redemption Value  
Notations: 

Ct: Coupon Payment Process 
CP: Conversion Price 

∑
=

iN

i
iY

1
: Jump Component that follows Compound Poisson Process with negative shock size. 

K: Translated threshold for stock price at or below which the conversion option will be 
exercised. 
 

The volatility parameter of equity price process can be calibrated using equity option market 
value. The jump component can be used to model expected future discontinuous changes. A 
translated threshold for equity price is used to approximate the trigger event. A fixed recovery rate is 
assumed as the translated threshold for equity price divided by the conversion price. This implicitly 
assumes that the exercise of the conversion option is continuous. In reality, stock price could drop 
well below the translated threshold before the occurrence of the trigger event. It can be 
compensated for by adjusting up the hazard rate for conversion. However, the key challenge of 
using this method is the calibration of the conversion hazard rate function. Due to the lack of 
liquidity in contingent capital market, it might be difficult to have something market consistent. A 
possible way of estimation is given below. 

Step 1: Calibrate the parameters (θ and ρ) to the price of a plain vanilla bond without the 
conversion option; 

Step 2: Estimate the probability of conversion before bond maturity, based on the translated 
threshold for equity price; 

Step 3: Adjust ρ to be the estimated ρ in step 1 × probability of conversion/probability of 
default. 
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With the following inputs and parameters, the CoCo bond is priced at par in this example. 

K (estimated 
threshold for 
stock price) 

Coupon 
Rate 

Plain 
Vanilla 

Bond Yield 

Hazard Rate 
Function S T R σ 

Jump 

θ ρ λ Size 

15 8.7% 7.2% 0.035 1.46 45 10 3% 45% 0.5 0.05 
Notes: 

1. A ρ of 0.92 generates a model value of the plain vanilla bond price equal to its market value. The stock price 
process is used to approximate the probability of conversion and the probability of default by assuming that a 
stock price of $15 or less leads to a conversion and a stock price of $10 or less leads to a default. 

2. One in two years with an overall impact of 5.2% drop in equity value per time. 

6.2 Valuation 
The valuation process is quite similar to pricing except that the economic environment and 

financial condition could be much different from those at the issue date. Since there are some non-
hedgeable risks embedded in contingent capital, its market is not a complete market. Therefore, 
there is a need to deduct the cost of residual non-hedgeable risks (CRNHRs) from the value 
calculated using the pricing model. The way of calculating a market-consistent embedded value of 
insurance products can be borrowed to estimate the cost. 

A common method used to estimate CRNHR is the Cost of Capital (CoC) approach.  

yProbabilit Survival:
 tat timeFactor Discount :

Capital ofCost  :CoC
Risks HedgeableNon for  Capital Economic Required :REC

1

0
1

t

t

T

t
ttt

p

pCoCRECCRNHR

ν

ν∑
−

=
+ ×××=

 

REC0 = shocked CoCo bond value under stress scenario - current CoCo bond value 

RECt can be estimated as α×Risk Drivert 

α=REC0/Risk Driver0 

Continue with the pricing example of using the analytical first-passage time approach with annual 
RBC reporting frequency. The non-hedgeable risk to consider is a more stringent capital rule. The 
following jump component is used to represent the stress scenario. 
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Parameters λ Fixed size of Y Fixed size of Z 
Equity Value at 

Start 

Value 
0.5 (expected one 
time in two years) 

0.06 0.15 0.30 

* One in two years with an overall impact of 17.1% drops in equity value per time. 

Under the stressed scenario, the model value of a CoCo bond becomes 0.657. The risk driver is 
set to be the price of a plain vanilla bond without the conversion option and assuming no default 
risk. 

α CoC Rate CRNHR Adjusted CoCo Bond Price 

25.9% 4% 0.09 0.91 

When more than one non-hedgeable risk is considered, correlation among the risks needs to be 
quantified to reduce the aggregated required economic capital. 

6.3 Risk Assessment 
Greeks 

Greeks are used to illustrate the sensitivity of the CoCo bond value to economic variables or 
model assumptions. Using Garcia and Pede’s (2011) analytical first-passage time approach, the 
estimated Greeks are given in the table below. A negative Gamma means that the second order 
impact of a drop in equity value on CoCo bond price is also negative. This is expected, as an equity 
price decrease will not only increase the probability of conversion but also push forward the timing 
of the conversion.  

Parameter Bond Price Greeks Value 
Scenario Baseline Up Down Baseline Up Down ∆: Delta 2.6 
Equity Value 0.3 0.31 0.29 1.00 1.02 0.97 Γ: Gamma -31.1 
Interest Rate 3% 0.03 0.03 1.00 1.00 1.01 ρ: Rho -6.2 
Volatility   + 1% - 1% 1.00 0.95 1.05 ν: Vega -4.8 

 

Stochastic Analysis 

For the investors, it is also useful to take a look at the distribution of the bond value and the 
worst possible outcome. On the other hand, the issuer would be interested to know how much 
capital relief it could gain from the conversion option and how it can offset the negative earnings in 
the stressed situation. 
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Stochastic analysis with real-world scenarios can be used to look into the tail risk of investing in a 
CoCo bond and the benefit of issuing a CoCo bond at the tail event. It is also an appropriate 
framework for incorporating an expectation different from the market. In the following example, 
under some arbitrary real-world economic assumptions, the stock price, conversion time, and the 
loss of the investor at conversion are simulated and the outcomes at the tail are summarized. One 
thousand scenarios are used for illustration. 

Model Setup 

Risk Free Rate:   ( ) ( ){ } rrdWdttrtdr σαθ +−= (One Factor Hull White Model) 

Stock Price:    ( ) 







++= ∑

=

iN

i
isst YdWdttSS

1
0 exp σµ  

Expected Equity Return:  ( ) premiumrisktrtS +=),(µ  
Correlation of Diffusion Processes: ),( sr dWdWcorr=ρ  
Conversion Time:   { }KStst tc ≤≥= ..0infτ  
Loss Ratio at Conversion:  ( ) CPSKMintSL

c
/,1),( τ−=  

CP: Conversion Price 
Notations: 

∑
=

iN

i
iY

1
: Jump Component that follows Compound Poisson Process with negative shock size. 

K: Translated threshold for stock price at or below which the conversion option will be 
exercised. 
 

The following table lists major parameters used in the example. 

K (estimated 
threshold for 
stock price) 

Coupon 
Rate 

Plain 
Vanilla 

Bond Yield 

One Factor 
Hull White S T R ρ σ 

Jump 

α σ λ Size 

15 8.7% 7.2% 0.9 1.5% 45 10 3% 5% 45% 0.5 0.05 
Notes: One in two years with an overall impact of 5.2% drop in equity value per time. 

Value of tail risk measures are given below. A higher loss ratio for the investors means a greater 
reduction of debt obligation for the issuer. 
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Figures 1-3 illustrate the probability density functions of conversion time, stock price at 

conversion, and loss ratio, given that the conversion happened.  

Figure 1: Histogram of Conversion Time Given It Happens 

 
  

Variables Stock Price at 
Conversion

Conversion 
Time

Loss Ratio at 
Conversion

Risk Measures Left Tail Left Tail Right Tail
95% VaR 9.46 3.00 76%
95% CTE 8.14 2.30 80%
99% VaR 7.22 2.00 82%
99% CTE 6.53 1.60 84%

99.5% VaR 6.92 2.00 83%
99.5% CTE 5.94 1.20 85%
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Figure 2: Histogram of Stock Price at Conversion 

 
 

Figure 3: Histogram of Investor’s Loss Ratio at Conversion 

 
Based on the purpose of the risk analysis, it can be extended to quantify the impact on earnings 

volatility and capital at risk, based on a specified financial reporting framework and capital rules. 
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7. CONCLUSION 

Contingent capital is considered as a promising candidate for improving the risk tolerance of the 
financial industry and reducing the cost of the financial crisis paid by the taxpayers. Compared to 
subordinated debt instruments, contingent capital increases the capability of absorbing loss. 
Compared to equity, contingent capital has a lower cost of capital before conversion. Despite the 
doubts about its success, it is welcomed by the regulators and there have been many proposals of 
the appropriate design of contingent capital instruments. 

However, there is still a long way to go before contingent capital can be widely accepted and 
utilized. 

(1) The trigger event has so many possibilities that choosing an appropriate design is not an easy 
task. A small change of the feature may have a material impact on its effectiveness of 
reducing the chance of default. There remains a lot to discover and test in the market. 

(2) Closely related to the trigger event, the behavior of the stakeholders needs more analysis. 
They include both rational behaviors, and irrational behaviors such as panic. Some behaviors 
may drag the issuer down further near conversion instead of helping as intended. They need 
to be fully understood and the potential impact needs to be quantified. 

(3) The complexity and uncertainty of contingent capital make it difficult for pricing, valuation, 
and risk assessment. Although there are some models for analyzing contingent capital, they 
are highly data driven. Those garbage-in garbage-out models will not be very useful before a 
liquid market emerges for contingent capital. How to set a fair price is more of an art than a 
math problem. 

Hopefully after those issues are solved, contingent capital will be instrumental in reducing the 
systemic risk of the industry and default risk of financial institutions without incurring too much 
additional cost of capital for investors. 
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Supplementary Material 
A spreadsheet is built to illustrate the pricing, valuation, and risk analysis for contingent capital. It is used intensively 
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in the case study. 

APPENDIX A. QUICK GUIDE FOR CONTINGENT CAPITAL QA TOOL 

CONTINGENT CAPITAL QA TOOL is a spreadsheet model built to illustrate the pricing, 
valuation, and risk analysis for contingent capital. It is capable of pricing/valuing certain types of 
contingent capital instruments using closed form solution and stochastic approach. Model 
calibration and risk analysis are also included. It could serve as a good education material to 
understand contingent capital and risk quantification. All the quantitative results used in the case 
study are generated using this tool. 

In order to use this tool properly, the user needs to enable the macros after the spreadsheet is 
opened. Most of the calculation functions are built using VBA. In addition, the user needs to accept 
the disclaimer statements before using the tool. The spreadsheet has most of its input cells green 
colored and output cells blue colored. Tab “ReadMe” provides descriptions of the functionality, 
output, and new functions built with VBA. 

The following models have been built in the tool. 
(1) Spiegeleer et al. (2011) Credit Derivative Approach[47]: Tab “S&S Credit Approach”; 
(2) Spiegeleer et al. (2011) Equity Derivative Approach[47]: Tab “S&S Equity Approach”; 
(3) Garcia and Pede (2011) Analytical First Passage Time Approach[27]: Tab “AFPT”; 
(4) Duffie and Singleton (1999) Approach[15] with equity price as the state variable[50]: Tab “ADS”; 
(5) Risk Analysis such as VaR and Greeks: Tab “Risk Analysis”. 

APPENDIX B. MORE FORMULAS USED IN THE CASE STUDY 

Spiegeleer and Schoutens (2011) equity derivative approach48

CoCo Bond Price  
 

=   (1) Plain Vanilla Bond Price with risk free discounting 

+  (2) Knock-In Forwards between spot price and conversion price 

 - (3) Down-and-in cash (at expiry)-or-nothing binary option on the coupon payments 
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 It is approximated as the payoff of 

    (a) down-and-in asset-or-nothing call 

                                                           
48 Spiegeleer and Schoutens, “Pricing Contingent,” 2011, 24. 
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 -  (b) down-and-in asset-or-nothing put 

 -  (c) down-and-in asset(at expiry)-or-nothing 

The only difference is in the payoff time. For a CoCo bond, it happens at the time of conversion. 
For (a), (b), and (c), the payoff happens at time T. When the issuer is in a financial distress, the 
chance of the conversion is high and the conversion is expected to be early if it happens. In this 
case, the price of using (a)-(b)-(c) may not be a good estimator and may need to be adjusted to avoid 
an underestimation of CoCo bond price.  
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Garcia and Pede (2011) analytical first passage time approach 

The following model and calibration method are applied in the case study. They are based on 
Garcia and Pede (2011), either identical or with a slight difference. 
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Model Setup 

Firm-value process:  Q
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It is also assumed that NAIC RBC Ratio can be estimated based on the value of Vt and Ht. 

t
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= ˆ , where f is a monotonically increasing function. 

Equity price ( )tVfE tt ,=  follows the following partial differential equation and boundary 
conditions. 
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To transform the boundary condition ),0(),(ˆ0,0),( TttHxtxf ∈≤≤=  to a fixed one, let 
( ) ( ) ( )txfttHVftVfE ttt ,),(ˆ, *** === . It then follows the following partial differential equation 

and boundary conditions. 



Understanding Contingent Capital 

Casualty Actuarial Society E-Forum, 2013 Spring-Volume 2 63 
© 2013 Casualty Actuarial Society 

 

( )
),0(,10,0),(

,1)(ˆ),(

),0(,ˆ
ˆ

)(
2
1

***

***

***
'

***2*2*
***

Ttxtxf
RxxTHTxf

RxandTtrff
H
Hxrxfxtf xxxt

∈≤≤=
∈−=

∈∈+∂







−−∂−=∂

+
+

+σ

 

 
 

Parameters: 

Calibration Process 

( )  M to1,,, =iiBH σ  

Targets: CDS spreads, equity price, and NAIC RBC ratio. 
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Return to Step 2 if D is greater than the tolerance level of error 
This method does not guarantee a global minimum being found and different guess of initial 

values need to be tried. Adjusted Levenberg-Marquardt algorithm is used for Step 2. 

The CoCo bond price can be calculated by simulating the conversion time c first, calculating the 
value using the formulae given below, and then taking the average across the scenarios. 

CoCo Bond Price 

( ) { } ( ) { } ( ) ( )
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E

tCPTtBPTtCBP c

cc
ττ τ

ττ ,,1,1,  

Where 
CBP(t,T): CoCo bond price at time t with bond maturity at time T. 
BP(t,T): Risk free bond price at time t with bond maturity at time T. 
CP(t, τc): The value of coupon payments at time t with payments until time τc. 
P(t,T): Zero coupon bond price at time with bond maturity at time T. 
CP: Conversion price. 

c
Eτ : Stock price at conversion. 
c: Conversion time. 
Assume the RBC ratio threshold is RBC*. The corresponding ratio of firm value to the barrier is 
( )*1 RBCg −  at or below which the conversion is triggered. g -1 is the inverse function of g. Under 

each scenario, c is determined as the first time ( )*1 RBCgVt
−≤  or never. 
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One-factor Hull White Model49
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The mean of the short rate r reverts to ( ) atθ  at rate a . 

The following stochastic process for R(t) with annual step is implemented to generate stochastic 
short rates for stochastic risk analysis.: 
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Under risk-neutral valuation, the bond price is calculated as 


















−= ∑
−

=

1
* )(exp),(

T

tk
t kRTtP E  

( )

( )∑

∑ ∑∑
−

=

−−−

−

=

−

=

−−−
−

=

+







−

−
+








−

−
=









++=

2
*

1

1 1
*1

1

1
1)(

1
1

)()(

T

tl
ldl

lTtT

T

tk

k

tl
ldl

lktk
T

tk

b
btR

b
b

btRbkR

εσθ

εσθ
 

Bond price can be written as follows. 

                                                           
49 Hull, J. and A. White: “One-Factor Interest Rate,” 235-254. This section describes the details of One-factor Hull 
White interest rate model that are used for the case study. 
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Term structure of interest rates (zero’s) at time t is given by solving P(t,T) = exp{-Z(t,T)(T-t)}: 
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Interest rate model parameters 

Model Calibration 
,...2,1,0, =ttθ  need to be calibrated to the initial yield curve. It 

can be achieved by solving the following function. Z(0,T) is the T-year zero rate at time zero. 
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This equation can be solved iteratively. For T=2, 
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Market instruments such as cap/floor and swaption can be used to calibrate the volatility 
parameters. Given the analytical tractability for the one-factor Hull White model, it is relatively easy 
to calibrate the parameters using either closed form formula or trinomial tree model50
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An Actuarial Model of  Excess of  Policy Limits Losses 
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Abstract 

Motivation. Excess of policy limits (XPL) losses is a phenomenon that presents challenges for the practicing 
actuary. 
Method. This paper proposes using a classic actuarial framework of frequency and severity, modified to address 
the unique challenge of XPL. 
Results. The result is an integrated model of XPL losses together with non-XPL losses. 
Conclusions. A modification of the classic actuarial framework can provide a suitable basis for the modeling of 
XPL losses and for the pricing of the XPL loss component of reinsurance contracts. 
 
Keywords. Excess of Policy Limits. XPL. ERM. Modeling. 

             

1. INTRODUCTION 

Excess of policy limits (XPL) losses is a phenomenon that presents challenges for the practicing 
actuary. For example, exposure rating, one of the standard actuarial methods for pricing reinsurance 
layers, seems to be completely unworkable for the challenge of pricing XPL losses; yet often, an 
exposure rating approach to reinsurance pricing is the only method that the practicing actuary has at 
his disposal.  

In this paper, I propose an approach that incorporates XPL into the classic actuarial framework 
of frequency, severity, and limited expected value (LEV) of claims. In this way, XPL will simply be 
part of a broader landscape of claims behavior, and can draw upon and seamlessly integrate with 
standard actuarial tools for incorporating the price of XPL losses into the pricing of reinsurance 
contracts. In addition, using the classic actuarial framework allows one to incorporate XPL losses 
into stochastic economic capital models that are used for insurer enterprise risk management (ERM) 
purposes. 

1.1 Research Context 
The actuarial literature has very limited discussion of actuarial approaches to modeling of excess 

of policy limits losses. I have found only one paper by Braithwaite and Ware [1], which remains a 
crucially important paper.  

1.2 Objective 
In this paper, I propose a framework that builds upon the work of Braithwaite and Ware yet 
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differs in some ways.  

There are two main reasons for this difference in approach. The first reason relates to aligning 
resources with need. XPL is an important actuarial problem but by no means the paramount 
problem typically facing actuaries. As a result, I would like to propose a reasonable methodology 
that is more practicable than the one proposed in Braithwaite and Ware. Whereas Braithwaite and 
Ware’s model required the actuary to build an additional, freestanding size-of-loss curve to describe 
XPL, this paper proposes a methodology that simply extends one’s existing size-of-loss curve, 
greatly simplifying the implementation. 

The second reason that the proposed approach differs from Braithwaite and Ware is the need to 
quantify XPL losses in the context of a broader insurance portfolio; one ought to model and price 
for XPL in conjunction with other non-XPL losses. Braithwaite and Ware, discussing clash 
reinsurance treaties, focuses entirely on XPL losses. Yet the practitioner actuary often desires to 
price for XPL losses in working layer reinsurance; only a small percentage of losses will be XPL 
whereas the majority of losses will be non-XPL. The task, then, is to price these reinsurance layers 
for the XPL losses in a framework that aligns with traditional actuarial pricing methods. Similarly, 
another situation that requires modeling of XPL losses together with non-XPL losses is enterprise 
risk management (ERM), in which one seeks to model all the insurance risk of the company. 
Modeling requires an integrated framework that covers XPL and non-XPL losses together, which 
will be facilitated by the proposed new approach. 

2. ACTUARIAL MODEL OF SIZE OF LOSS DISTRIBUTION WITH 
EXTENSION TO XPL 

We begin with the classic actuarial framework for evaluating loss costs in layers with a focus on 
limited expected value (LEV). Following Clark [2], we can write that 

X = random variable for size of loss 

FX(x) = probability that random variable X, the size of loss, is less than or equal to x 

fX(x) = probability density function, first derivative of F(x) 

E[X] = expected value or average unlimited loss 

E[X;k] = expected value of loss capped at k 

The expected value of loss capped at an amount k can be defined as follows: 
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2.1 Limited Expected Value (LEV) 
Historically, actuaries needed to quantify the value of the average loss limited by the insurance 

policy; they adopted limited expected value (LEV) as the framework to calculate this value, under 
the assumption that a policy limit caps the insurance loss. 

2.2 Incorporating XPL Losses 
In light of our knowledge of XPL losses, we should revisit whether LEV is the ideal way to 

measure losses to an insurance policy. Let’s describe the average loss accruing to an insurance policy 
as the Policy Limited Expected Value (PLEV). Until now, the implicit assumption has been that 
PLEV = LEV.  

The phenomenon of XPL losses shows us, however, that the policy limit written in the insurance 
policy contract is not always potent in capping losses. Thus the identity function, PLEV = LEV, is 
not fully accurate. 

What could be a paradigm for how to think about the phenomenon of XPL losses? I propose 
that we begin to think of the effectiveness of the policy limit as being subject to a random variable. 

Let’s define a random variable Z, which follows a Bernoulli distribution. This random variable 
can have a value of 1, or “success”, with probability p, and can have a value of 0, “failure”, with 
probability 1-p. When Z=1 we have “success” and the policy limit caps the insurance loss; when 
Z=0 we have “failure” and the policy limit does not cap the insurance loss and we have an XPL 
situation. 

Now we can say that the Policy Limited Expected Value is: 
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Recalling that the probability that Z=1 is p and that Z=0 is 1-p, we write: 
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kk
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If we let x = k + (x-k) in the final integral, we can rewrite equation (2.4) is as follows: 

 

dxZxfkxpkFkdxxxfZkXPLEV
k

k
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∞

=−−+−+= )0|()()1()](1[)(),,(
0

 (2.5) 

 

One can say that on a fundamental level, equation (2.5) captures the approach crystallized in 
Braithwaite and Ware. The additional loss above and beyond the policy limit follows a different 
conditional probability density function than the initial size of loss distribution; as a result, the XPL 
loss component is a completely new entity that is grafted onto the non-XPL loss component. 

3. A MORE PRACTICAL MODEL 

How can we make this model more practical and easier to use? Let’s revisit equation (2.4) and 
make some simplifying assumptions. 

Let’s assume that the probability density function above the policy limit is not conditional on 
whether or not an XPL scenario has been triggered. As explained in Braithwaite and Ware, the XPL 
situation arises when the policyholder is found liable for actual damage to a third party; the only 
question is whether or not the insurance company’s conduct provides a basis for the courts to 
override the capping effect of the policy limit. Thus, this simplifying assumption should be 
reasonable for XPL (although perhaps not for extra-contractual obligations, ECO). 

We can then substitute the unconditional f(x) into equation (2.4) by replacing the conditional 
f(x|Z=0) and f(x|Z=1) and rewrite equation (2.4) as follows: 
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Thus we simply say that if random variable Z=1 we have a success and the policy limit caps the 
loss and if Z=0 we have a failure and the policy limit does not cap the loss. Unlike equation (2.5) 
and unlike the approach of Braithwaite and Ware, the XPL loss is not a completely new entity; 
rather, the XPL loss is simply an extension of the standard size-of-loss distribution that occurs when 
the policy limit’s capping effect is ineffective. Such a framework would be much easier to work with 
when attempting to incorporate XPL losses. 

3.1 Practical Applications: Insurance Risk Modeling 
How can we apply the proposed paradigm of equation (3.1) in a practical way to achieve a 

tangible result? One possibility would be in a simulation environment. 

3.1.1 Simulation Application #1: Collective Risk Model for Insurance Losses 

Step #1: Define the size of loss distribution for an insurance policy or portfolio of policies on a 
gross of policy limit basis. 

Step #2: Simulate individual losses and simulate the limit of the policy associated with each loss. 

Step #3: For each loss, if the loss is greater than the policy limit, then simulate Z, a Bernoulli 
random variable. If Z=1, then cap the simulated loss at the policy limit. If Z=0, then do not cap the 
loss. 

Notice that there is only one small new step here: rather than always capping the loss at the policy 
limit, let the capping be subject to the outcome of a random variable that reflects whether the policy 
limit will be effective at capping the loss or not. 

3.1.2 Simulation Application #2: Catastrophe (“Cat”) Modeling 

The software vendors for cat modeling typically employ several steps in their calculations of the 
losses to an insurance portfolio for a given simulated cat event. After the software simulates a 
catastrophic (“cat”) event, the software evaluates how the physical phenomenon affects the physical 
structures in its path. Then, in one of the final steps, the software overlays the insurance policy’s 
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contractual terms to achieve the financial loss to the company. Within this simulation environment, 
the final step could evolve away from the current deterministic view of the policy limit and towards 
a stochastic view of the policy limit. Moreover, one could consider correlating the individual 
probabilities that the policy limits fail; the correlation could depend upon geographical location and 
legal jurisdiction, among other factors. An approach to cat modeling simulations that treats policy 
limit capping of losses as a probable but not definite outcome would be more realistic and would 
show more severe risk metric output than current models. 

3.2 Reinsurance Pricing 
A second practical application of the proposed paradigm of equation (3.1) could be reinsurance 

pricing. 

Recall that traditional exposure rating is viewed as not producing loss cost indications that 
encompass XPL. After all, XPL losses by definition exceed the policy limit and thus exceed the 
exposure; how could exposure rating possibly incorporate XPL within its framework? 

Let’s revisit equation (3.1): 

 

dxxxfpdxxkfpdxxxfZkXPLEV
kk

k

∫∫∫
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 (3.1) 

 

If we multiply the first term on the right side of equation (3.1) by 1 and let 1 = p + 1 – p and 
rearrange terms, we can rewrite equation (3.1) as follows: 
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This is also the same as the following: 

 

])()[1(])()([),,(
00

dxxxfpdxxkfdxxxfpZkXPLEV
k

k

∫∫∫
∞∞

−++=  (3.3) 



An Actuarial Model of Excess of Policy Limits Losses 
 

Casualty Actuarial Society E-Forum Spring 2013-Volume 2 7 
 

 

And: 

][)1()),((),,( XEpkXLEVpZkXPLEV −+=  (3.4) 

 

Equations (3.3) and (3.4) demonstrate that in the presence of XPL losses, we have a loss severity 
that has probability p of being limited by the policy limit and probability (1-p) of not being limited 
by the policy limit. 

We can use this framework to calculate expected layer loss for excess-of-loss reinsurance 
exposure rating. 

Following Clark, for each policy we want to calculate the exposure factor, i.e. the percentage of 
the policy’s total loss that is covered by the reinsurance layer. 

 

losstotal
losslayerFactorExposure =  (3.5) 

 

Now let’s calculate the layer loss. 

 

Layer loss = Loss limited at the top of the reinsurance layer – loss limited at the bottom of the 
reinsurance layer (3.6) 

 

Here, we have a probability p that the policy limit will cap the loss and a 1-p probability that the 
policy limit will not cap the loss. While these probabilities apply to the primary policy, we assume 
that they do not apply at all to the reinsurance limit and attachment point.  

Thus, when estimating the loss limited by the top of the reinsurance layer, we have a probability p 
that the loss will be capped by the lesser of the policy limit and the top of the reinsurance layer; we 
also have a probability 1-p that the loss will be capped solely by the top of reinsurance layer, with no 
application of the policy limit. 
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Loss limited at top of reinsurance layer = p * LEV (X, min(policy limit, reinsurance exit point)) 
+ (1-p) * LEV (X, reinsurance exit point) (3.7) 

 

Note: Reinsurance exit point = reinsurance attachment point + reinsurance limit 

 

Similarly, when estimating the loss limited by the bottom of the reinsurance layer, we have a 
probability p that the loss will be capped by the lesser of the policy limit and the bottom of the 
reinsurance layer; we also have a probability 1-p that the loss will be capped solely by the bottom of 
reinsurance layer. 

 

Loss limited at bottom of reinsurance layer = p * LEV (X, min(policy limit, reinsurance 
attachment point)) + (1-p) * LEV (X, reinsurance attachment point) (3.8) 

 

Thus: 

 

Layer loss = p * LEV (X, min(policy limit, reinsurance exit point)) + (1-p) * LEV (X, 
reinsurance exit point) – {p * LEV (X, min(policy limit, reinsurance attachment point)) + (1-p) * 
LEV (X, reinsurance attachment point)} 

 

(3.9) 

 

Thus: 

 

Layer loss = p * traditional exposure rating layer LEV subject to primary policy limit + (1-p) * 
layer LEV not subject to primary policy limit (3.10) 

 

Having calculated the layer loss, which is the numerator of the exposure factor, we now need to 
calculate the denominator, the policy’s total loss. 
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Recall that the exposure factor produces layer loss by multiplying the policy’s total loss; total loss 
is usually calibrated based on policy premium multiplied by an Expected Loss Ratio (ELR). 
Therefore, whether or not the ELR was calculated to include a provision for XPL losses will affect 
how one ought to calculate the denominator of the exposure factor. 

For our discussion, let’s proceed under the assumption that the ELR does not include a provision 
for XPL loss. As a result, when calculating the “total loss” for the denominator of the exposure 
factor, we will calculate it based only on non-XPL losses. 

 

Denominator of Exposure Factor = Same as traditional exposure rating = Policy total loss 
excluding XPL = LEV(X, policy limit) 

(3.11) 

 

Then, combining equations (3.9) and (3.11), we derive: 

 

Exposure Factor = [p * LEV (X, min(policy limit, reinsurance exit point)) + (1-p) * LEV (X, 
reinsurance exit point) – {p * LEV (X, min(policy limit, reinsurance attachment point)) + (1-p) 

* LEV (X, reinsurance attachment point)}] / LEV(X, policy limit) 
(3.12) 

 

Or, more simply, combining equations (3.10) and (3.11), we derive: 

 

Exposure Factor = [p * traditional exposure rating layer LEV subject to primary policy limit + 
(1-p) * layer LEV not subject to primary policy limit] / traditional exposure rating ground up 

LEV capped at policy limit 
(3.13) 

 

3.2.1 Reinsurance Pricing: Numerical Example 

Now let’s do a numerical example of the proposed algorithm. The goal is to generate layer loss 
costs via exposure rating that include a loss provision for XPL losses. 

First, let’s stipulate some hypothetical numerical values for our policy limits distribution: 
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Exhibit 1 
 

1 2 3

Policy Limit
% of 

premium ELR%
50,000        1.0% 65.0%

100,000       1.0% 65.0%
500,000       2.0% 65.0%

1,000,000    80.0% 65.0%
2,000,000    10.0% 65.0%
3,000,000    1.0% 65.0%
4,000,000    1.0% 65.0%
5,000,000    3.0% 65.0%

10,000,000  1.0% 65.0%  
 

 

 

We also need values for our size-of-loss severity curve: 

Exhibit 2 
 

Item # Description Value
1 Curve Pareto
2 Theta 50,000    
3 Alpha 1.50         

 

 

 

Finally, we need to input parameter values for probability p that a policy limit will successfully 
cap losses and 1-p that the policy limit will not cap losses; the values may vary for each policy. Here 
we select a simple parameter structure in which all the policies in our limits table have the same 
value for p. 

 

Exhibit 3 
 

p 1-p
All Policy Limits < $25M 99% 1.00%
Policy Limit = $25M 100% 0.00%  
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We now apply the proposed methodology to the numerical values to produce the following 
output in Exhibit 4. 

 

Exhibit 4 
 

1 2 3 4 5 6

Layer Losses as % 
of total ground up 

losses

Layer Losses as % 
of total ground up 

losses

Implied 
Loading for 

XPL

Layer Limit Attachment
Traditional 

Exposure Rating
Proposed Method 

Including XPL
Proposed / 

Traditional - 1
1 500,000      -              88.420% 88.440% 0.023%
2 500,000      500,000      10.067% 10.074% 0.072%
3 1,000,000   1,000,000   1.150% 1.219% 5.989%
4 3,000,000   2,000,000   0.333% 0.403% 21.057%
5 5,000,000   5,000,000   0.031% 0.068% 119.369%
6 15,000,000 10,000,000 0.000% 0.033% #N/A

Total 100.000% 100.237% 0.237%  
 

 

 

 

Column 6 of Exhibit 4 shows the “loading factor” for each layer loss attributable to XPL. What 
is notable about this output is that choosing one simple value for p creates layer loading factors for 
XPL that are different for the various layers. Also, these loading factors for XPL would be different 
for other portfolios with different policy limits distributions, even with no change in the underlying 
value of the p parameters.1

                                                           
1 A copy of the Microsoft Excel workbook with the supporting calculations is available from the author upon request. 
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4. CONCLUSIONS 

In this paper, I propose an actuarial paradigm for describing excess of policy limits (XPL) losses. 
The central idea is that one can envision a random variable governing the application of the policy 
limit; most of the time the policy limit is enforced as it is written in the insurance contract, whereas 
other times the policy limit is superseded. This paradigm is quite parsimonious; therein lies its 
attractiveness. At the same time, this simple framework can generate nuanced, differentiated, useful, 
and non-obvious output information for practicing actuaries. One practical application would be to 
incorporate XPL losses into actuarial exposure rating estimates for casualty excess-of-loss 
reinsurance layers; the output values vary based on the attachment point and limit of the reinsurance 
layer being priced as well as the granular policy limits usage of the particular insurance portfolio 
under review. A second practical application would be to incorporate XPL losses in a simulation 
environment such as commercial software for estimating losses arising from natural catastrophes; 
envisioning policy limits as being random variables can affect the cat modeling and thus the critical 
risk metrics of an insurer’s portfolio.  
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Classifying the Tails of  Loss Distributions 

Leigh J. Halliwell, FCAS, MAAA 
____________________________________________________________________________________________  

Abstract. Of the several classifications which actuaries have proposed for the heaviness of loss-distribution tails, 
none has been generally accepted.  Here we will show that the ultimate settlement rate, or asymptotic failure rate, 
provides a natural tripartite division into light, medium, and heavy tails. We prove that all the positive moments of 
light- and medium-tailed distributions are finite.  Within the heavy-tailed distributions, we will define very heavy-
tailed and super heavy-tailed, and we will explain how the power and exponential transformations are the basis for 
these subdivisions.  An appendix relates extreme value theory to our findings. 
Keywords:  loss distribution, ultimate settlement rate, power transform, exponential transform, extreme value 
theory 

____________________________________________________________________________________________  

1. INTRODUCTION 

Many actuaries are as fascinated with the “heaviness” of loss-distribution tails as chemists are with 
heavy elements and as physicists are with heavy particles.  However, unlike those scientists, with their 
periodic table and standard particle theory, “actuarial scientists” have no generally accepted standard 
of tail comparison.  In this paper we will propose one that gives every indication of being natural, 
comprehensive, and insightful.  To outline our progress, after briefly defining in Section 2 what 
constitutes a loss distribution, in Section 3 we will introduce the ultimate settlement rate and derive 
the settlement rates of several familiar distributions.  Then in Section 4 we will show how the most 
basic transformation, a change of a distribution’s scale parameter, provides the basis for a division of 
loss distributions into light-, medium-, and heavy-tailed.  An immediate benefit from this is a proof in 
Section 5 that all the positive moments of light- and medium-tailed distributions are finite.  Infinite 
moments are a sufficient, but not a necessary condition, for being heavy-tailed.  Section 6 takes up 
the next logical transformation, the power transformation, and will show its effect on the tail class of 
a distribution.  A symmetric “multiplication” table there, showing the medium-tailed distribution to 
be like an identity element among distributions, will be crucial to the following sections.  Section 7 
contains an abstract examination into the results so far, finishing with a diagram that will make 
memorable the classification schema.  In Section 8 we will treat the next logical transformation, the 
exponential, which is the key to loss-tail heaviness.  Then in Section 9 we will treat the moments of 
exponentially transformed random variables, vindicating the power of this classification by the 
results.  Section 10 is a brief treatment of two other transformations, inverting and mixing.  Finally, 
before concluding, in Section 11 we will show that the classification is indefinitely expandable, 
encompassing ever more distant realms of heavy and light tails.  An appendix will fit extreme value 
theory into the classification schema. 
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2. LOSS DISTRIBUTIONS DEFINED 

 
For the purposes of this paper X is a loss distribution1

( ) [ ]xXobPrxS X >=
 if its survival function 

 has the following properties: 

(i)   ( ) 10 =XS  

(ii) ( ) 0>xS X  

(iii) For all 21 xx < , ( ) ( )21 xSxS XX ≥ .  And there exists some ξ such that for 

 all 21 xx <<ξ , ( ) ( )21 xSxS XX >  

(iv) ( ) 0=
∞→

xSlim Xx
 

(v) For all x greater than some ξ, ( ) 0>′′ xS X  

Although these properties are standard, some commentary will be helpful.  Property (i) implies 
that X must be positive; in particular, there is no probability mass at zero.  So this definition 
disqualifies the Tweedie distribution (Meyers [5]; cf. Footnote 15).  The property provides for X1  
to be a loss distribution, which we deem desirable.2

[ ] 0>∞=XobPr

  Property (ii) requires the tail of a loss 
distribution to be infinite.  We are not interested in classifying tails of finite distributions; they might 
as well be “no-tailed.”  Property (iii) requires for the survival function never to increase, and beyond 
some point for it strictly to decrease.  Property (iv) precludes any probability that X might be infinite.  
Though we will often encounter limits to infinity, infinity is not a real number.  This property is allied 
with the first, for if somehow , then the inverse X1  would have a probability 
mass at zero.  And property (v) demands beyond some point for the survival function to be concave 
upward.  Of course, for the second derivative to exist the first derivative must also exist.  By 
implication, the left and right derivatives must be equal.  This property ensures that at some point the 
survival function “settles down.”  Thereafter there will be no more discrete jumps or probability 
masses, no more vertices or corners, and no more undulations or inflections.  Having defined a loss 
distribution, we name the set of all loss distributions Ξ. 

 

3. THE ULTIMATE SETTLEMENT RATE 

 
                                                 
1 More accurately, X is a “loss random variable,” whose probability obeys a “loss distribution.”  But since “loss random 
variable” sounds odd, we will use ‘random variable’ and ‘distribution’ interchangeably. 

2 We also desire [ ]0XE  to equal unity, which would fail if there were any probability of the indeterminate 00 .  Cf. 
Section 5, esp. Footnote 6. 
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Of the several ways described by Klugman [4, pp. 86-92] and Corro [1] by which to compare the 
tails of loss distributions, we believe the best to be the “asymptotic failure rate” [4, p. 87] or “ultimate 
settlement rate” [1, p. 451].  Since ( ) [ ]xXobPrxS X >=  is the probability for X to “survive” at least 
until x, we may think of X as being subject to a force of mortality 

( ) ( )
( )

( ) ( )
( )xS
xf

dx
xdS

xSdx
xSlndx

X

XX

X

X
X =−=−=λ

1 .  Corro’s ultimate settlement rate is 
( )xlim XxX λ=τ

∞−
.  Just as an account compounding at a higher interest rate will eventually overtake an 

account compounding at a lower rate, regardless of their current positive balances, so too if YX τ<τ , 
( )
( )xS
xS

Y

X  will grow infinitely large with x, i.e., 
( )
( ) ∞=

∞→ xS
xSlim

Y

X

x
 or 

( )
( ) 0=

∞→ xS
xSlim

X

Y

x
.3

Xτ
  But, following 

Klugman [4, p. 88], from L’Hôpital’s rule we may express  in terms of the probability density 
function: 

( )

( )
( )
( )

( )

( )
( )( )

( )
dx

xflndlim

xf
xflim

uf

xflim

xS
xflim

xlim

X

x

X

X

x

xu
X

X

x

X

X

x

XxX

∞→

∞→

∞

=

∞→

∞→

∞→

−=

−
′

=

=

=

λ=τ

∫
form  

0
0  a  

This does not mean that ( ) ( )
dx

xflndx X
X −=λ ; it is only true in the limit as ∞→x .  Of course, 

for x≤ξ≤0 , where ξ is the “settling down” point required by property (v):  

( ) ( )
( )∫

ξ= ξ=

λ−
x

u
X duu

XX eSxS  

 

Let us look at the settlement rates of some well known distributions.  If ( )θα,Gamma~X , or 
equivalently ( )1,Gamma~X αθ , then ( ) ( ) θ








θαΓ

=
−α

θ
− 11 1xexf

x

X , for positive α.  If k<α− , 
[ ] ( )

( )αΓ
+αΓ

θ=
kXE kk .  Now: 

                                                 
3 This implies an infinite right tail for X (property ii).  Although in order for ( )xS X  to reach zero the force of mortality 

( )xXλ  must become infinite, once ( )xS X  “flatlines” at zero, ( ) 00=λ xX .  It is meaningless to speak of the 
growth (or mortality) rate of something whose quantity is zero; a zero balance in a bank account remains zero at any 
interest rate.  Property (v) guarantees the existence of ( )xXλ  far enough out, as well as for ( )xlim Xx

λ
∞−

 either to 

converge to a non-negative real number or to diverge to positive infinity. 
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( )
( ) ( )

θ
=






 −α

+
θ

−−=






 −α+

θ
−

−=−=τ
∞→∞→∞→θα

111
1

x
lim

dx

xlnxd
lim

dx
xflndlim

xx

X

x,Gamma  

The ultimate settlement rate of a Gamma-distributed random variable depends only on its scale 
parameter θ.  But the force of mortality of the exponential random variable is ( ) ( )

θ
=λ θ

1
1 x,Gamma .  For 

this reason it is legitimate to say that far enough out in the tail, every gamma distribution looks like an 
exponential distribution.  Compare this with the right tail of a normal distribution:4

( )
( )

( )

∞=






σ
µ−

=









σ
µ−

−

−=−=τ
∞→∞→∞→σµ 2

2

2

2
1

2

xlim
dx

xd
lim

dx
xflndlim

xx

X

x,N

 

 

So the right tail of the normal distribution is “lighter” than that of the gamma. 

 

For the inverse-gamma random variable, ( ) ( )11 ,Gamma~X βθ − , or ( )11 ,Gamma~X βθ , 
where 0>β .  Its density function is ( ) ( ) θ







 θ

βΓ
=

+βθ
− 11 1

x
exf x

X , and [ ] ( )
( )βΓ
−βΓ

θ=
kXE

k
k , for 

β<k .  As for its ultimate settlement rate:   

( )
( ) ( )

01
1

2 =





 +β

−
θ

−=






 +β−

θ
−

−=−=τ
∞→∞→∞→θβ xx

lim
dx

xln
x

d
lim

dx
xflndlim

xx

X

x,InvGamma  

So the inverse-gamma is “heavier-tailed” than the gamma distribution, since θ< 10 .  One might 
have surmised this from the non-existence of its positive moments greater than or equal to β. 

 
If X is a lognormal random variable, then ( )2σµ,N~Xln  and ( )

( )

x
exf

xln

X
1

2
1 2

2

2
1

2
σ

µ−
−

πσ
= .  

For all real k, [ ] 222σ+µ= kkk eXE .  All the moments of the lognormal random variable exist, even the 
negative ones.  Its ultimate settlement rate is: 

( )
( )

( )

0112
1

2

2

2

2 =





 +⋅

σ
µ−

=








−

σ
µ−

−

−=−=τ
∞→∞→∞→σµ xx

xlnlim
dx

xlnxlnd
lim

dx
xflndlim

xx

X

x,LogNorm
 

Hence, the lognormal distribution is heavier-tailed than the gamma.  Although its settlement rate 
equals the inverse-gamma’s, the existence of all its moments implies that it is not as heavy-tailed as 
                                                 
4 The normal distribution with its infinite left tail is not a loss distribution.  But we may still calculate the ultimate 
settlement rate of its right tail.  Alternatively, we could also consider the right tail of the absolute value of the standard 

normal distribution (i.e., ( )10,N~X θ )  and arrive at the same result (cf. Footnote 10). 
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the inverse gamma. 

 

Last, let X be a generalized-Pareto random variable.  In our parameterization this will mean that 
( )
( )1

1
,Gamma
,Gamma~X

β
α

θ
, where the two gamma random variables are independent.  The distribution 

function for X is ( ) ( )
( ) ( ) ( )2

11

θ+
θ









θ+
θ









θ+βΓαΓ
β+αΓ

=
−β−α

xxx
xxf X , and its moments are 

[ ] ( )
( )

( )
( )βΓ
−βΓ

αΓ
+αΓ

θ=
kkXE kk , for ( ) ( )β<∩<α−=β<<α− kkk .  Division by the 

( )1,Gamma β , or multiplication by the ( )1,InvGamma β  random variable, places a positive limit on k.  
Its ultimate settlement rate is: 

( )
( ) ( ) ( ) ( )( ) 011

=







θ+
β+α

−
−α

=
θ+β+α−−α

−=−=τ
∞→∞→∞→θβα xx

lim
dx

xlnxlndlim
dx

xflndlim
xx

X

x,,GenPareto  

Again, this is the same rate as the inverse-gamma’s and the lognormal’s.  But the domain of its 
positive moments makes its tail like the inverse-gamma’s.  The non-existence of negative moments is 
relevant only to the tail of the inverse distribution. 

 

To conclude this section, the tail of the normal distribution is lighter than the tail of the gamma 
distribution, which is lighter than the tails of the lognormal, inverse-gamma, and generalized-Pareto 
distributions, even as 0>θ>∞ .  The non-existence, or infinitude, of positive moments hints at 
secondary orderings within the last three distributions. 
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4. THE ULTIMATE SETTLEMENT RATE UNDER A SCALE 
TRANSFORMATION 

In the previous section we saw that the ultimate settlement rate of a gamma random variable is 
the inverse of its scale parameter.  Here we will generalize, and form the basis for classifying the 
(right) tails of loss distributions. 

 

If X is a random variable and θ a positive constant, the scale transformation of X is the random 
variable XY =θ .  Accordingly: 

( ) [ ] [ ] [ ] ( )θ=θ>=θ>θ=>= uSuXobPruYobPruYobPruS XY  

Hence: 

( ) ( ) ( )
( ) θ

τ
=

θθ
θ

−=
θ

−=−=τ
∞→θ∞→∞→

XX

u

X

u

Y

uY ud
uSlndlim

du
uSlndlim

du
uSlndlim 1  

A scale transformation should not be the basis for tail class; in fact, most loss distributions are 
parameterized to include one “scale” parameter along with one or more “shape” parameters.5

00 =θ
  

Because , +=θ+ , and ∞=θ∞ , there are only three essential values for ultimate 
settlement rates, zero (0), positive (+), and infinity (∞), with the ordering, ∞<+<0 .  Since smaller 

Xτ  means heavier tail, we will classify a loss distribution as light-, medium, or heavy-tailed according 
as Xτ  is ∞, +, or 0.  The meaning of the symbols in the partition ∞+ Ξ∪Ξ∪Ξ=Ξ 0  should be 
obvious.  This is the gist of our classification; the rest of the paper merely draws out its implications. 

                                                 
5 The scale parameter bears the unit of the random variable Y , so θY  is unitless, or a pure number.  Most accurate is 
to divide each random variable by a parameter and to relate them by a unitless factor (called a “scalar”), as in 

( )21 θη=θ XY .  This is a safeguard in the physical sciences, but here it would be stilted.  Cf. Footnote 13. 



Classifying the Tails of Loss Distributions 
 

Casualty Actuarial Society E-Forum, Spring 2013-Volume 2 7 

5. POSITIVE MOMENTS AND THE ULTIMATE SETTLEMENT RATE 

In Section 3 we found loss distributions whose ultimate settlement rates spanned the range of 
zero, positive, and infinity.  The normal distribution is light-tailed; the gamma distribution is 
medium-tailed; and the inverse-gamma, lognormal, and generalized-Pareto distributions are heavy-
tailed.  We also noted that some of the moments of the inverse-gamma and generalized-Pareto 
random variables were infinite.  In this section we will prove that all the positive moments of light- 
and medium-tailed random variables are finite.  But before that we will prove a partitioning lemma 
about non-negative moments, viz., that if [ ]lXE  is finite for l<0 , then [ ]kXE  is finite for 

lk <<0 . 

 

If 0>X , then 10 =X .6 [ ] ( ) 100 ==> XSXobPr  Because according to property (i) , 
[ ] 110 ==XobPr  and so [ ] [ ] 110 == EXE .  In words, the zeroth moment of a loss distribution 

exists and equals unity.  Next consider [ ]kXE  for 0>k .  Because over this range of integration kx  
is non-negative: 

[ ] ( ) ( ) ( ) ( )∫∫∫∫
∞

=

∞

==

∞

=

+≤+==
11

1

00

1
x

X
k

x
X

k

x
X

k

x
X

kk xdFxxdFxxdFxxdFxXE  

So whether or not [ ]kXE  is finite depends on ( )∫
∞

=1x
X

k xdFx .  But for 1≥x  and lk < , 
lk xx ≤≤1 .  So, if ( )∫

∞

=1x
X

l xdFx  converges, then so to does ( )∫
∞

=1x
X

k xdFx .  Likewise, if ( )∫
∞

=1x
X

k xdFx  
diverges, so too does ( )∫

∞

=1x
X

l xdFx .  Therefore, for lk <<0 , if [ ]lXE  is finite, so too is [ ]kXE .  
And if [ ]kXE  is infinite, so too is [ ]lXE .  The existence or non-existence of moments partitions the 
non-negative real numbers into two subsets.  The lower partition is not empty, since it includes zero.  
The upper partition is empty when all the positive moments converge. 

 

To return to the theorem of this section, let the distribution of X be light- or medium-tailed.  So 
( ) 0>λ=τ

∞→
xlim XxX .  And let 2Xτ=ρ , if Xτ  is finite; let 1=ρ , if it is infinite.  In either case, 

0>ρ  and there exists a 0>ξ  such that for all ξ≥x , ( )xXλ<ρ .  So for all ξ≥x : 

( ) ( )
( )

( ) ( ) ( )ξ−ρ−
ρ−λ−

ξ=
∫

ξ≤
∫

ξ= ξ=ξ= x
X

du

X

duu

XX eSeSeSxS

x

u

x

u
X

 

                                                 
6 The form 00 is undefined, even as 00000 ⋅−∞⋅ == eeln .  Corro’s “convention” that 100 =   [1, p. 453] is equivalent 
to the convention that 0000 ==⋅∞ .  This convention is wired into the arithmetic of some programming languages (e.g., 

APL and J.  R is inconsistent: 100 = , but 00  is undefined).  However, such conventions should not be placed on 
undefined, or indeterminate, forms, since in limiting cases they may assume different values. 
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By integration by parts one can show that ( )[ ] ( ) ( ) ( )∫
∞

=

+=
0

0
x

X xdhxShXhE .7

[ ] ( ) ( ) ( ) ( )

( ) ( )∫∫

∫∫∫∫
∞

ξ=

ξ−ρ−
ξ

=

∞

ξ=

ξ

=

∞

=

∞

=

ξ+⋅≤

+==+=

x

kx
X

x

k

x

k
X

x

k
X

x

k
X

x

k
X

kk

dxeSdx

dxxSdxxSdxxSdxxSXE

0

000

1

0

  So, for positive k: 

 

Finally, we simplify the inequality: 

[ ] ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) k
X

k

k

x

kx
X

k

k

x

kx
X

k

x

kx
X

x

kk

kekS

xdxeekS

xdxeekS

dxeSdxXE

ρΓξ+ξ=

ρ⋅ρρξ+ξ≤

ρ⋅ρρξ+ξ=

ξ+⋅≤

ρξ

−
∞

=ρ

−ρ−ρξ

−
∞

ξ=

−ρ−ρξ

∞

ξ=

ξ−ρ−
ξ

=

∫

∫

∫∫

0

1

1

0

1

 

Thus we prove that [ ]kXE  is not infinite.  As a result, we know that all the positive moments of 
light- and medium-tailed distributions exist. 

 

This converse (“Not all the positive moments of heavy-tailed distributions exist.”) is not true, for 
the lognormal is heavy-tailed, yet all its moments exist.  But a random variable that lacks even one 
positive moment is heavy-tailed.  This suggests a subclass of the heavy-tailed distributions 0Ξ .  
Those lacking in positive moments are heavier-tailed than those not lacking.  And the heaviest of 
many heavier-tailed distributions is the one with fewest positive moments (or the one with the most 
infinite moments).8

 

  But the next section will provide a better subclassification. 

6. THE ULTIMATE SETTLEMENT RATE UNDER A POWER 
TRANSFORMATION 

In Section 4 we found the tail classification of a random variable to be invariant to a scale 
transformation; more accurately, we devised that classification for it to be invariant.  But just as 

                                                 
7 For details cf. Halliwell [3, Appendix A] 
8 Are there distributions so heavy-tailed that they have no positive moments?  In a Section 9 we will prove that there are 
such distributions.  However, it seems that their worth is purely theoretical. 
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Klugman [4, pp. 92-93] advances from scale transformations to power transformations, so too will 
we in this section. 

 

Our form of the power transformation is γ=
θ

XY , for positive γ.9

[ ] ( )[ ] [ ]γγ θ=θ=


















θ

θ= kkkk
k

kk XEXEYEYE
  The equation 

 puts the moments of X and Y into a one-to-one 
correspondence.  Thus, distributions with infinite positive moments remain heavy-tailed under a 
power transformation.  But how other distributions power-transform requires the following analysis. 

 

Since γx  strictly increases: 

( ) [ ] [ ] ( )[ ] ( )( )γγγ θ=θ>=θ>=>= 11 uSuXobPruXobPruYobPruS XY  

Therefore: 

( )

( )( )
( )

( )

( )

( ) ( )

( ) ( ){ }

( ){ }γ−
∞→

−γγ

∞→

−γ

∞→
∞→

γ

γ

γ

∞→

∞→

⋅λ
γθ

=

⋅λ
γθ

=









θθ
γ
⋅−=







 θ

θ
θ

−=

−=τ

1

11

11

1

1

1

1

1

1

vvlim

vvlim

u
dv

vSlndlim

du
ud

ud
uSlndlim

du
uSlndlim

Xv

Xv

X

uv
u

X

u

Y

uY

 

Now ( ) XXv
vlim τ=λ

∞→
.  And 










>γ

=γ

<γ<∞

=γ−

∞→

10

11

10
1vlim

v
.  By the product rule we can express Yτ  in 

the following three-valued multiplication table (so γθ1  may be ignored): 

                                                 
9 Klugman [4, p. 93] uses ‘τ’ for the exponent ( τ= 1XY ); we use ‘γ’ to avoid confusion with Corro’s ultimate settlement 
rate τ.  We also invert the exponent, because we believe it easier to see that 1<γ  thins the tail (taking a root) and 1>γ  
thickens it (raising to a power). 
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0000:

0:

0:
1

1
10

∞⋅=τ

+∞+=τ

⋅∞∞∞∞=τ
>γ

=γ
<γ<







 =
θ

τ γ

X

X

X

Y

Heavy

Medium

Light

ThickerThinner
XY

 

Most obvious is the sensitivity of the medium-tailed random variable: the slightest exponent 
ε±=γ 1  knocks it off the medium ridge into light or heavy valleys, from which the inverse exponent 

can restore it.  For example, if X is medium-tailed, then 2XY =  is heavy-tailed.  And if 50.XY = , 
then Y is light-tailed.10

( ) ( )γγγγ == 11 YYY
  So by power transformation, a medium-tailed distribution can become either 

heavy or light.  But because , power transformations are invertible.  By repeated 
transformations and inversions, one can cycle a medium-tailed distribution through all three types; 
e.g., ( ) XXXXXX =→=→→ 224

 is a three-stop roundtrip from medium to light to 
heavy and back to medium. 

 

7. SET-THEORETIC PRESENTATION AND DIAGRAM OF RESULTS SO 
FAR 

Define [ ]θγ,;XPT , the power transformation of random variable X with positive parameters γ 
and θ, as the distribution Y such that γ=

θ
XY .  Therefore, [ ] γθ=θγ XXPT ,; .  A compound power 

transformation reduces to a simple one: 

[ ][ ] [ ]( )

( )

[ ]2

21
2

21

2

1221

12

12

1122211

,;

,;,;,;

γ

γ

θθ=θγγ=γ=

θθ=

θθ=

θγθ=θγθγ

γγ

γγ

γ

XPT

X

X

XPTXPTPT

 

Because the four original parameters are positive, the two reduced parameters are defined and 

                                                 
10 Consider the transformation 50.XY = , where ( )2½50 ,Gamma~X .  .  Because the gamma distribution is 

medium-tailed and ½=γ , Y is light-tailed: ( ) lightmedium =∞=<γ× 1 .  Moreover: 

( ) ( ) ( ) ( )xfex
x

e
dx
dxxexf ,N

xxx

Y 10
22

21½2
2

222

2
221

2
1

2½
1

=
π

=
π

=







Γ

=
−−

−
−

 

Hence, ( )10,N~Y ; the negative support of the standard normal distribution has been reflected onto the positive 
support.  Thus, the right tail of the normal distribution is light, in confirmation of what we derived in Section 3. 
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positive.  By repetition, an n-step power transformation is always equivalent to a direct one.  Due to 
the asymmetry of the scale formula, power transformation is not commutative.  But since 

( ) ( ) 32332
123123
γγγγγ θθθ=θθθ , it is associative.  And power transformation can always be inverted: 

[ ][ ] [ ] XXPTXPTPT ==θγθγ γ− 1,1;,1;,; 1 . 

 

So if X can power-transform into Y, it can do so in one step.  And from Y it can return to X in 
one step.  Therefore the range within which X can power-transform is a closed network.11

( ) [ ]{ }θγ=>θγ∃Ξ∈= ,;:0: XPTY,YXptn
  The 

power-transformation network of X is the set .  And the 
power-transformation range of Ξ⊆Φ , where Φ is a set of random variables (or of their distributions), 
can be defined as ( ) [ ]{ }θγ=>θγ∃Φ∈∃Ξ∈=Φ ,;:0,: XPTY,XYPTR  or as 

( ) ( ){ } Φ∈=Φ XXptnPTR : .  Unlike ( )Xptn , there is no guarantee of a power-transformation 
connection between any two elements of ( )ΦPTR .  Because ‘network’ connotes interconnectedness, 
we changed the noun here to ‘range’. 

 

Obviously, ( ) ∅=∅PTR  and ( ) Ξ=ΞPTR .  But of interest here is ( )+ΞPTR , the set of all 
distributions that can be formed by power-transforming medium-tailed distributions.  Above we saw 
that the power transformation “knocks distributions off the medium ridge into light or heavy 
valleys.”  Therefore, this set is larger than +Ξ , i.e., ( )++ Ξ⊂Ξ PTR .  It spills into 0Ξ  and ∞Ξ , or in 
symbols ( ) ∅≠Ξ∩Ξ +PTR0  and ( ) ∅≠Ξ∩Ξ +∞ PTR .  But there are distributions in 0Ξ  and ∞Ξ  
that are unattainable from +Ξ  by power transformation.  We found above that power transformation 
cannot unseat distributions that are so heavy as to have infinite moments; hence, a trip to them from 

+Ξ  to them is precluded.  But even the lognormal, whose moments are all finite, power-transforms 
back to lognormal. 

 

On the other hand, the symmetry of the multiplication table hints that some light-tailed 
distributions might be too light to power-transform elsewhere.  Indeed, the survival function of one 
such distribution is ( ) ( )1−−=

xe
Q exS .  It is light-tailed, since ( ) ( )
∞=

−
=−=τ

∞→∞→ dx
edlim

dx
xSlnd

lim
x

x

Q

xQ
1 .  But if γ=

θ
QY , then: 

                                                 
11 Technically, it is an algebraic group, whose set G  is { }++ ℜ×ℜ∈θγ, and whose function GGGf →×:  is 

( ) 2

12212211 ,,,
γ

θθγγ=θγθγ ,f .  The function is associative; 1,1  is the identity element; and every 

element has an inverse: ( ) ( ) 1,1,,,1,1,, 11 =θγθγ=θγθγ γ−γ− ff . 
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( ) ( )
∞=













⋅
θ
γ

=












⋅
−

θ
γ

=












⋅−
θ
γ

=τ γ
−γ

∞→

γ
−γ

∞→

γ
−γ

∞→

111 1 velimv
dv

edlimv
dv

vSlnd
lim v

v

v

v

Q

vY . 

Hence, this distribution remains light under power transformation.  So within the ∞⋅0  and 0⋅∞  
cells of the table are distributions so heavy-tailed and so light-tailed as to be unmoved by power 
transformation.  So these cannot belong to ( )+ΞPTR .  Because of this duality, we deem the power 
transformation to be a better basis for subclassification than the divergence of positive moments.  
Tail-class immutability to power transformation merits the adverb ‘very’.  Thus we will now speak of 
“very light-tailed” and “very heavy-tailed” distributions and random variables.  The lognormal is very 
heavy-tailed, though not as heavy-tailed as something with missing moments.  Quite appropriately, 
nothing is “very” medium-tailed; medium is just medium.  The following diagram will conclude this 
section: 

 

The diagram, which looks like a painted tennis court with half a net, represents a tripartite form of 
Ξ. The black regions are boundaries; Ξ is the union of the colored regions.  The middle partition is 
the set of all loss distributions whose tail classes change under power transformation.  All the 
medium-tailed distributions, the green area, must belong to this set.  The red and violet regions 
contain all the loss distributions whose tail classes do not change.  These unchangeable distributions 
are either light-tailed and in the red region or heavy-tailed and in the violet region.  The yellow region 
contains the changeable light-tailed distributions, the blue the changeable heavy-tailed.  By definition, 
power transformation cannot “jump” from the red or violet regions.  But if perchance, it could jump 
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from the middle, it could not jump back.  So since power transformation is reversible, the black 
regions are barriers to power transformation. 

 

Now consider all the changeable distributions as organized into horizontal slices of power-
transformation networks.  Whatever might be the position of distribution X in its network, γ= XY  
transforms X to the right if 1>γ and to the left if 1<γ .  The movement approaches the black 
boundaries as γ approaches infinity or zero.  If the movement passes through a medium-tailed 
distribution, then it is within the power-transform range ( )+ΞPTR .  Since a power-transformation 
range can contain at most one medium-tailed distribution,12

+Ξ
 the set of medium-tailed distributions 

 is merely an interface between 0Ξ  and ∞Ξ .  It is not intended for the green region to appear 
thick. 

 

But one might think that the transition between light and heavy implies that some γX  is medium-
tailed.  A counterexample disproves this: let R be the random variable ( ) ( ) x

R xxS −+= 1 .  Its hazard 
rate is ( ) ( ) ( )xxxlnxR +++=λ 11 .  Hence: 

( ){ }

( ) ( )( ){ }

( ) ( )
( ) ( )

( )( )







>γ

≤γ<∞
=

⋅
γθ

=









⋅⋅

+++
γθ

=

⋅+++
γθ

=

⋅λ
γθ

=τ

γ−

∞→

γ−

∞→

γ−

∞→

γ−

∞→=
θ

γ

10

10

1

111

111

1

1

1

1

1

vvlnlim

vvln
vln

vvvlnlim

vvvvlnlim

vvlim

v

v

v

RvRY

 

So there are power transformations back and forth between ∞Ξ and 0Ξ  which avoid +Ξ .  For 
this reason, the area underneath the green is porous; it shades from yellow to blue 

 

                                                 
12 More accurately, it contains at most one medium-tailed distribution per θ.  The diagram cannot represent Ξ as a metric 

space; only Xτ  and γX  are represented. 
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8. THE ULTIMATE SETTLEMENT RATE UNDER EXPONENTIAL 
AND LOGARITHMIC TRANSFORMATIONS 

Our third transformation is the exponential, which Klugman defines as XeY =  [4, p. 95].  
However, for two reasons we prefer the form 

η
−

=
θ

η 1XeY
, for 0>η .13 XeY =  First, although  

works for such random variables as the normal, with support over ℜ , we are transforming loss 
distributions, whose support is positive.  We wish all our transformations ( )xhy =  to be strictly 
increasing functions from [ )∞,0  onto, not just into, [ )∞,0 .  Therefore, ( )00 h= , as it does in the 
above forms.  Second, the parameter η , though not strictly necessary, standardizes the 
transformation; it sets the derivative at zero to unity, or ( )01 h′= .  The standardized transformation 
looks like xy =  in the neighborhood of the origin.  In fact, the limit of the standardized 
transformation as +→η 0  is the identity function ( ) xxh = .  The appeal of this limiting case is the 
second reason for our form. 

 

As for the ultimate settlement rate under the exponential transformation: 

( ) 















θ
η+

η
=
















θ
η+

η
>=








θ>

η
−

=





θ
>

θ
=

η ulnSulnXobPrueobPruYobPruS X

X

Y 11111  

Therefore: 

                                                 
13 Actually, for precision and to ensure unitless parameters in transcendental functions we should include two scale 

parameters: 
η
−

=
θ

φ
η

1
X

eY
.  But, again, as in Footnote 5, this overparameterizes, for ( )

( )

( )φη
−

=
φθ

φη 1XeY
.  This 

transformation is valid and meaningful even for 0<η , as explained in the appendix.  
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( )

( )

( )

( )

( ){ }

01

1

11

1

1

1

11

11
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⋅τ
θ

=

⋅λ
θ

=









θ
⋅⋅λ=



















θ
⋅

θ
η+

⋅−=




































θ
η+

η

















θ
η+

η

















θ
η+

η
−=

−=τ

η−

∞→

η∞→

∞→
∞→

∞→

∞→

X

v
Xv

vXv

X

uv
u

X

u

Y

uY

evlim

e
vlim

udv
vSlndlim

du

ulnd

ulnd

ulnSlnd
lim

du
uSlndlim

 

Since 0>η , medium- and heavy-tailed random variables exponentially transform into heavy-
tailed ones; light-tailed random variables are indeterminate. 

 

But let X be light-tailed ( ∞=τ X ), but not very light-tailed.  This puts X in the yellow region of 
the diagram.  Using “simply” for “not very,” we can say that X is simply light-tailed.  Then, it 
becomes heavy-tailed ( 0=τZ ) under some 1>γ  power transformation γ= XZ .  Hence: 

( ){ } ( ){ }γ−
∞→

γ−

∞→
⋅λ=⋅λ

γ
⋅γ=τ⋅γ=⋅γ= 11100 vvlimvvlim XvXvZ  

This information resolves the indeterminacy of the exponential transformation.  The following 
proof makes use of the truth that { } 01 =−γη−

∞→
velim v

v
 for 0>η : 
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( ){ } { }

( ){ }

( ){ }

Y

v
Xv

v
Xv

v

vXv

evlim

vevvlim

velimvvlim

τ=

⋅λ⋅
θ

=

⋅λ⋅
θ

=

⋅⋅λ⋅
θ

=

⋅⋅
θ

=

η−

∞→

−γη−γ−

∞→

−γη−

∞→

γ−

∞→

1

1

1

0010

11

11

 

So, in the “simply light” case, the indeterminacy of 0101
⋅∞⋅

θ
=⋅τ

θ
=τ XY  resolves to heavy. 

 

However, we do not yet know whether Y is simply heavy or very heavy (blue or violet).  So now 
let Z now be a power transformation of 

θ
Y , i.e., 

γηγ









η
−

=






θ

=
1XeYZ .  And so:  

( )
























η+

η
=























η+

η
>=












>








η
−

= γγ

γη 11

11111 ulnSulnXobPrueobPruS X

X

Z  

We have seen just above that because X is simply light-tailed, ( ){ } 0=⋅λ η−

∞→

v
Xv

evlim .  But this 
holds true any 0>η .  And since 0>γ , it will hold true also for 0>γη .  Therefore, knowing that 

( ){ } 0=⋅λ γη−

∞→

v
Xv

evlim , we can determine the value of Zτ : 



Classifying the Tails of Loss Distributions 
 

Casualty Actuarial Society E-Forum, Spring 2013-Volume 2 17 

( )
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11
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1
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
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








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







η+

η

























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























η+

η
−=τ

γ−

γη−

∞→γ−

γη

γ−

η

η

∞→γ−

η

γ−η

∞→

γ

−
γ

∞→
∞→

γ

γ

γ

∞→

v
Xv

vv

v

Xv

v

v

Xv

X

uv
u

X

uZ

evlim

ee
evlim

e

e

vlim

u

u

dv
vSlndlim

du

ulnd

ulnd

ulnSlnd

lim

 

Consequently, Y is a heavy-tailed random variable whose tail class is invariant to power 
transformation; it is very heavy-tailed.  This proves that an exponential transformation of a simply 
light-tailed random variable is a very heavy-tailed random variable.  In the diagram exponential 
transformation moves from the yellow region to the violet; unlike power transformation, it is capable 
of jumping a least the right barrier. 

 

In the exponential-transformation of medium- and heavy-tailed random variables, there is no 
indeterminacy to ( ){ } 01

=⋅λ
θ

=τ η−

∞→

v
XvY evlim .  But again, the ultimate settlement rate of a 

subsequent power transformation is ( ){ } 01
1 =⋅λ

η⋅γ
=τ γη−

∞→γ−
v

XvZ evlim . Hence, exponential 
transformation turns medium and simply heavy tails into very heavy tails.  In sum, it transforms 
yellow, green, and blue into violet.  But its differing effect on moments will be treated in the next 
section. 
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We can be brief about the logarithmic transformation ( )XlnY
η+

η
=

θ
11 .  It is the inverse of the 

exponential transformation, but less obviously than in the case of power transformation.  Define two 
operators: the exponential transformation [ ]

η
−

θ=θη
η 1,;

XeXET  and the logarithmic 
transformation [ ] ( )XlnXLT η+

η
⋅θ=θη 11,; .  Just as [ ] XXET θ→θη,;  as +→η 0 , so too 

[ ] XXLT θ→θη,;  as +→η 0 .  One who performs the algebra will find that 
[ ] [ ] XXETLTXLTET =





θθ
η

θη=





θθ
η

θη
1,;,;1,;,; .  Since 0, >θη , the inverting parameters 

exist.  Now if ( )XlnY
η+

η
=

θ
11 , then ( )

















η
−

=
θ

η
1

u

XY
eSuS  .  The reader should be able to prove by 

now that ( ) ( ){ } ∞⋅τ
θ

=η+⋅λ
θ

=τ
∞→ XXvY vvlim 111 .  So 0>η  logarithmic transformation turns light 

and medium into light; the heavy-tailed random variables are indeterminate.  It is not necessary to 
repeat the power-on-top-of-exponential-transformation argument.  Because of exponential-
logarithmic inversion, the question “Into what do yellow, green, and blue logarithmically transform?” 
is equivalent to “What exponentially transforms into yellow, green, and blue?”  Whatever it is, it can’t 
be undone by power transformation.  Therefore, what exponentially transforms into the middle 
region of the diagram must be very light.  So exponential and logarithmic transformations from the 
middle jump the barriers. 

 

9. POSITIVE MOMENTS AND THE EXPONENTIAL 
TRANSFORMATION 

Section 5 proved that all the positive moments of light- and medium-tailed random variables are 
finite.  An infinite moment is a sufficient, but not a necessary, condition for a heavy tail. Here we will 
examine the positive moments of the exponentially transformed 

η
−

=
η 1XeY .  But 

kX
k eY 








η
−

=
η 1 .  

Although this is on the order of Xke η , it is not the same.  Since our findings depend on the behavior 
of Xke η , we must first prove that [ ]kYE  is finite if and only if [ ]XkeE η  is finite. 

 

To begin, [ ] ( )[ ]
k

kXkX
k eEeEYE

η
−

=



















η
−

=
ηη 11

.  Since η and k are positive, kη  is positive.  So 
[ ]kYE   is finite if and only ( )[ ]kXeE 1−η  is finite.  And since xx ee ηη <−≤ 10  over the support of X, 

( ) xkkxk ee ηη <−≤= 100 .  So ( )[ ] 110 =<−≤ ηη XkkX eeobPr  and ( )[ ] [ ]XkkX eEeE ηη <−≤ 10 .  
Therefore, if [ ]XkeE η  is finite, then so too is ( )[ ]kXeE 1−η .  As for the converse: 
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Consequently, ( ) ( )[ ]kXk

lnx
X

xk eExdFe 12
2

−≤ η
∞

=η

η∫ .  Furthermore: 
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So [ ] ( )[ ]kXkkXk eEeE 1220 −+≤≤ ηη .  Therefore, if ( )[ ]kXeE 1−η  is finite, so too is [ ]XkeE η .  
Thus have we shown that [ ]kYE  is finite if and only if [ ]XkeE η  is finite. 

 

Now we continue with the simpler problem of examining the moments of [ ]XkeE η .  Using again 
the theorem from Section 5 that ( )[ ] ( ) ( ) ( )∫

∞

=

+=
0

0
x

X xdhxShXhE , we have: 

[ ] ( ) ( )∫∫
∞

=

η
∞

=

ηηη η+=+=
00

0 1
x

xk
X

x

xk
X

kXk dxexSkdexSeeE  
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Therefore, [ ]kYE  is finite if and only if ( )∫
∞

=

η

0x

xk
X dxexS  is finite.  Dispensing with mathematical 

rigor, we know that ( )∫
∞

=

η

0x

xk
X dxexS  is finite if and only there exists a 0>ξ  such that for all ξ≥x , 

( ) ( ) ( )ξ−η−ξ≤ xk
XX eSxS .  In words, in order for the integral to converge, at some point the survival 

function must decay at a rate greater than ηk .  But the limit of this decay is the ultimate settlement 
rate Xτ .  Hence, [ ]kYE  is finite if and only if Xk τ<η , or ητ< Xk .  Therefore, all the positive 
moments of exponential transformations of light-tailed ( ∞=τ X ) distributions are finite.  The 
positive moments of exponential transformations of medium-tailed ( ∞<τ< X0 ) distributions are 
finite for ητ< Xk  and infinite for ητ≥ Xk .  And all the positive moments of exponential 
transformations of heavy-tailed ( 0=τ X ) distributions are infinite.14

 

 

10. INVERTING AND MIXING LOSS DISTRIBUTIONS 

 
The commentary on property (i) in Section 2 stated the desirability for a loss distribution to be 

invertible.  But our only use of an inverse distribution was to derive the ultimate settlement rate of 
the inverse gamma in Section 3.  Moreover, Klugman lists a fourth transformation, viz., mixing [4, 
pp. 97-99].  Both inverting and mixing are involved in the generalized Pareto, because: 

( ) ( ) ( )

( ) ( )
( )( )θβα

α⋅θβ

α⋅
β

θ
θβα

,InvGamma,Gamma~

,Gamma,InvGamma~

,Gamma
,Gamma

~,,GenPareto

1

1
1

 

So the generalized Pareto can be formed as a gamma distribution whose scale parameter is an 
inverse-gamma distribution.  In this section we will explain why inverting and mixing tend to 
produce heavy-tailed distributions. 

 

                                                 
14 Thus indirectly we verify what we know about the lognormal distribution, an exponential transformation of the light-

tailed normal, viz., that all its moments are finite: ( )[ ] 2222 σ+µσµ = kk,kN eeE .  [ ] [ ] ( )η=≈ η kMeEYE X
Xkk .  If 

( )θα,Gamma~X , ( ) ( ) α−ηθ−=η kkM X 1 , which diverges for Xk τ=θ≥η 1 .  The missing moments 
explain the intractability, or even the nonexistence, of the moment generating functions of all but the simplest 

distributions.  However, the zeroth moment is finite: [ ] [ ] 100 == XeEYE .  So by virtue of absolute convergence in the 

complex numbers, viz.,  ( ) [ ] [ ] [ ] 11 ==≤=ϕ EeEeEt itXitX
X , the characteristic function is more successful.  All 

the imaginary moments of all real random variables exist as complex numbers. 
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First, as to inverting, if XY 1= , then: 
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Here we will assume that X has no probability mass, at least not in the neighborhood of zero.  So  

( ) 

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
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11 .  Therefore: 
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And so the ultimate settlement rate of Y is: 

( ) ( )
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where ( ) ( ) ( )∫
=

==
v

x
X

X xf
vv

vFvh
0

1
.  It is the average height of Xf  over the interval ( ]v,0 .  If Xf  

increases as +→ 0x , ( ) ( ) 0>> vfvh X .  Then 
( )
( ) 10 <<
vh
vf X , and 0=τY .  This holds true even if 

Xf  approaches infinity.  If Xf  is bounded within two positive numbers, then again, 0=τY .  The 
remaining possibility is that Xf  decreases to zero as +→ 0x , in which case 

( )
( )vh

vf X<1 . 

 

Now if Xf  is zero in some interval [ ]ε,0 , then [ ] 0=ε≤XobPr ; so 
( ) [ ] 011 =ε>=ε YobPrSY  and property (ii) would disqualify Y as a loss distribution.  So Xf  

decreases to zero, but equals zero only at the origin.  The obvious choice is a power-function 
approach into the origin, i.e., ( ) 1−γ∝ vvf X  for 1>γ .  But then ( ) γ∝ γvvF  and 

( ) 02
1

0
=

γ
=τ γ

−γ

→ +
v

v
vlim

v
Y .  So even power-function approaches are not slow enough.  For Yτ  to be 

positive, near the origin, 
( )
( )vF
vf

X

X  must be on the order of 2−v .  So 
( ) ( )

( ) 2v
k

vF
vf

dv
vFlnd

X

XX == , and 
( ) ( )

v
kkdx

x
kFlnvFln

v

x
XX −

ε
==ε− ∫

ε=
2 .  Thus, ( ) ( ) v

kk

XX eeFvF
−

εε= .  The solution which satisfies 
( ) 00 =XF  is ( )







=

>=
−

00

0

x

xexF
x
k

X .  But this is the inverse exponential cumulative density function.  
So, the only likely way of obtaining anything other than a heavy-tailed distribution by inversion is to 
invert an already inverted distribution.  One may expect inversion to produce heavy-tailed 
distributions. 

 

As for mixing, let ( ) ( ) ( )∫
θ

θ θ= dhxSxS XX .  The survival function of the mixed distribution is the 
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weighting according to ( )θdh  of the distributions indexed by θ.  Hence: 

( ) ( )
( )

( ) ( )

( ) ( )

( ) ( ) ( )

( ) ( )

( ) ( )∫

∫

∫

∫

∫

θ
θ

θ
θ

θ
θθ

θ
θ

θ
θ

θ⋅λ=

θ

θ⋅λ
=

θ

θ′

=

′
−=λ

,xdwx

dhxS

dhxSx

dhxS

dhxS

xS
xSx

X

X
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X

X

X

X
X

 

In the last equation ( ) ( ) ( ) ( ) ( )∫
θ

θθ θθ=θ dhxSdhxS,xdw XX .  The weights vary by x; but for all 
x, ( ) 1=θ∫

θ

,xdw .  As ∞→x , the weighting will shift more and more toward the “surviving” 
distributions, i.e., in favor of the distributions whose τ is least.  Consequently, { }θτ=τ XX inf .  For 
the mixed exponential distribution ( ) ∑

=

θ
−

=
n

i

x

iMX
iepxS

1

, ( ) ( )iiX maxmin θ=θ=τ 11  .  This is 

medium-tailed; but ( ) ∑
∞

=

θ
−

=
1i

x

iMX
iepxS  is heavy-tailed, if ∞=θ

∞→ ii
lim .15

11. SUPER LIGHT AND SUPER HEAVY 

 

The region within the barriers of the diagram is like the everyday world.  Its span is that of the 
power transformation.  But of course, in the long run xe  overwhelms nx .  To what others mean 
loosely by “in the long run”16

∞→x
lim mathematicians have given precision, viz., .17

                                                 
15 The Tweedie distribution is 

  Just over the right 

NXXT ++= 1 , for ( )θα,Gamma~X  and ( )λPoisson~N .  Therefore, 

( )θα,NGamma~NT  and θ=τ 1NT .  So, { } θ=τ=τ 1inf NTT , and T  is medium-tailed. 
16 Such loose speech harbors specious arguments, for which Keynes expressed disdain in his famous quip, “In the long 
run we’re all dead.”  Many use the adverb ‘exponentially’, as in “Something is growing exponentially,” to express alarm, as 
if dealing with that thing were a critical matter.  The sober truth is that almost all growth is exponential, but of limited 

duration.  Mathematically, for 0≈x , xe x γ+≈γ 1 .  Moreover, the obverse is never considered: no one ever expresses 
alarm by saying that something is decaying exponentially. 
17 Still amazing even after 150 years are the accomplishments of such mathematicians as Cauchy, Weierstrass, and 
Dedekind concerning the nature of the real numbers, which finally put to rest the 2300-year-old paradoxes of Zeno.  One 
who might try to resurrect them on the basis of today’s quantum theory would ignore the fact that the paradoxes 
themselves presuppose continuity. 
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barrier are some familiar enough distributions, the very heavy-tailed ones.  Hopping over it, first we’ll 
find exponential transformations of simply light tails with all their moments.  Second we’ll find ETs 
of middle tails with moments up to a point.  Third we’ll find ETs of simply heavy tails with no 
moments at all.  The familiar enough distributions are of the first two types; the distributions with no 
moments we will call “super heavy-tailed.”  We could refine our diagram’s color scheme in 
conformity with the spectrum: first indigo, second violet, and third ultraviolet.  The span of these 
distributions is on the order of ( )γη Xe .  But because ( ) ( )γ>>

γ xx ee , their span is greater than that of 
the power transformation.  In fact, their span is “power-on-top-of-exponential.”  But at the end of 
that span is another barrier, over which another exponential transformation jumps, and so forth.  
The same applies in the other direction, into the microworld, with the logarithmic transformation.  In 
descending order of heaviness are logarithmic transforms of simply heavy tails, which we could color 
orange.  Second are LTs of middle tails, which remain red.  And third are LTs of simply light tails, 
“super light-tailed” distributions whose color is infrared.  And then we find a barrier to be 
surmounted by another LT.18

11. CONCLUSION 

  So the classification is indefinitely extendable; but current needs 
remain within one transformation of the center. 

Good classifications are not arbitrary; they are not set by convention or decree.  Natural 
classifications should actually help those who study a subject to understand it and eventually to make 
deeper discoveries.  Work is made easier with the right tools, and the essential tool for intellectual 
work is clear definition and classification.  In this paper we entered the house of loss distributions 
through the door of the medium-tail distribution.  We explored the first floor with the help of the 
power transformation, and then found exponential and logarithmic staircases to the second floor and 
the basement.  Some the mathematics was formidable; but it all reduces to the interaction between 
power and exponential functions.  The classification scheme yielded new and beautiful insights.  
Surely there is much more to be discovered; but the classification of distributions into light, medium, 
and heavy, as well as the subclassifications “very” and “super,” almost as surely will play an 
important role therein.  Though it might be hard for now to put this theory to practical use (we’ve 
given no list of “which distribution for which purpose”), actuaries have a right to appreciate the 
beauty of their subject – its æsthetic value.  And many, perhaps most, practical benefits have arisen 
from what once had been considered “mere theory.”19

                                                 
18 But however rarefied these tails may become, they are still infinite. 

 

19 That good theory aids discovery and technological progress (and conversely, that bad theory impedes them) is 
illustrated in modern physics.  On the basis of quantum theory in 1928 Wolfgang Pauli predicted the existence of 
antimatter, in particular, the anti-electron or positron, which was discovered in 1932 and whose discovery now benefits 
mankind in positron emission tomography – commonly performed in hospitals as PET scans.  Since the 1960s the 
standard model of particle physics has predicted the one still missing particle, the Higgs boson, whose existence many 
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APPENDIX 

Extreme Value Theory 
 
 

Most casualty actuaries have studied the forms of loss distributions that are given in Klugman [3, 
Appendix A].  However, in the field of extreme-value theory, there is a generalized-Pareto 
distribution that differs from our ( )θβα ,,GenPareto .  In this appendix we will translate it into forms 
more familiar to actuaries.  The survival function of this generalized-Pareto is: 

( ) [ ]









=ξ

≠ξ





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0for 1
;0

1

x
X

e

x
xXobPr,xS  

This is the definition given in [2, p. 33] and [5], except that we have zeroed a location parameter 
and used ‘θ’ instead of ‘σ’ for the scale parameter.  The shape parameter ξ may be any real number, 
but the scale parameter θ, as always, must be positive.  The function is defined for 0=ξ  as 

( ) ( )θξ=θ
→ξ

,xSlim,xS XX ;0;
0

, which pertains to the ( )θ,Gamma 1  or ( )θlExponentia  distribution. 

 

For 0≠ξ , the probability density function is ( ) ( )
θ
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





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θ
ξ+

ξ
=−=

−
ξ

− 11

11 x
dx

xdSxf X
X .  If 0>ξ , 

the exponent is negative.  In this case, the function translates as follows: 
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Therefore, depending on the shape parameter, the tail of this distribution can be finite (“no-
tailed” 0<ξ ), medium-tailed ( 0=ξ ), or very heavy-tailed ( 0>ξ ). 

What is most relevant to our analysis of tail characteristics is that this distribution is an 
exponential transformation of the exponential distribution: 
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( )

ξ
−

θ

⋅ξ 11lExponentiae~X  

Under this transformation the light-tailed exponential distribution becomes very heavy-tailed. 
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Pricing Catastrophe Excess of  Loss Reinsurance using Market Curves 

David Morel, ACAS 

 
 

Abstract: What is a simple way to price a catastrophe excess of loss reinsurance program (Cat XL)? By simple we mean 
pricing a Cat XL with limited information. This paper presents pricing methods that only require the layer pricing of last 
year’s Cat XL program and do not require any catastrophe modelling output. 
The first method is to fit a power curve (i.e. a market curve) through the midpoints of the original Cat XL layers and 
then using that power curve to price the new program. This method has a history of actual use in the reinsurance 
market. 
However, power curves have three key weaknesses and we therefore propose a new method. In this new method we 
propose a more sophisticated spline curve as the market curve, and unlike the power curve, layers are not represented 
by their midpoints, but rather by integrating from one endpoint to another. We show how this spline method resolves 
the three weaknesses of the power curve method. 
 
Note:  
An Excel workbook accompanies this paper. There are tabs numbered from #1 to #10. We invite the reader to follow 
along in the workbook as instructed in the paper so as to increase his or her understanding of the methods. In the 
workbook, cells that serve as user inputs are highlighted in green. The parameters of market curves (power curves and 
splines) and the outputs of those market curves are shown in blue. 
There are three graphs presented in the workbook that correspond with the three graphs presented in this paper. 
Should the reader wish to use his or her own Cat XL program in the workbook the axes of the graphs may need to be 
modified. 
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1. MOTIVATION OF THE PROBLEM 

 
To motivate the problem let’s assume a catastrophe excess of loss reinsurance program (abbreviated in this paper as 
Cat XL) for a fictional insurance company called Island Insurance. Island Insurance writes property insurance 
exclusively on a small island with exposure to catastrophic perils such as hurricanes and earthquakes. The total 
insured value of all of Island Insurance’s policies (abbreviated in this paper as TIV) adds up to $2.7 billion USD. 
Island protects itself from the catastrophic perils with a Cat XL program as follows: 
 

Table 1 ‐ Original Program 

Total Insured Value ‐ TIV  2,700,000,000 

C = L x R 

Layer i  Limit ‐ L  Deductible ‐ D  ROL ‐ R  Cost ‐ C 

Layer 1  5,000,000  5,000,000  20.70% 1,035,000 

Layer 2  10,000,000  10,000,000  14.55% 1,455,000 

Layer 3  30,000,000  20,000,000  10.20% 3,060,000 

Layer 4  50,000,000  50,000,000  6.42%  3,210,000 

Layer 5  55,000,000  100,000,000  3.75%  2,062,500 

Total Program  150,000,000 5,000,000  7.22%  10,822,500 

 
Some comments: 

 ROL = Rate on Line = upfront cost of reinsurance layer / Limit of Layer 
 Cost = Limit of Layer x ROL 
 We ignore reinstatements by assuming that all layers are purchased with the same reinstatement conditions. 
 The green cells are user inputs. We recommend that the reader follow along by opening the blank workbook 

that accompanies this paper, select tab #1 and fill in TIV = 2,700,000,000 in cell D3 and the appropriate 
Limits, Deductibles and ROLs in columns C, D and E. Note that only the first deductible is necessary in cell 
D6. 

 
Let us now say that for the following year, Island’s TIV went up from $2.7B to $3.0B and also they are restructuring 
the program into four layers: $7.5m xs $7.5m, $20m xs $15m, $50m xs $35m and $90m xs $85m (for a total 
program of $167.5m xs $7.5m, thus increasing their total limit from $150m to $167.5m and their retention from 
$5m to $7.5m). 
 
The question that this paper attempts to answer is straightforward - what do we expect the new market ROLs to be 
for the new program layers if we don’t have any addition information? The only information we have at our 
disposal is last year’s Cat XL program and TIV (all given in Table 1) and this year’s proposed Cat XL program and 
new TIV. We do not have catastrophe modelling information. 
 
Although the TIV is changing year over year, we will otherwise be assuming “flat” renewal conditions: 

 Underlying mix of business stays the same 
 Geographic footprint stays the same 
 Reinsurance market is neither hardening nor softening 

 
What we want is a starting point for the Cat XL renewal. 
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2. CURRENT SOLUTION: FITTING A POWER CURVE 

 
The current solution to the problem posed above is to fit a power curve through the midpoints of the original 
program layers. This method of fitting a power curve has been known to participants in the London reinsurance 
market since at least the early 1990s; however, no published document presenting this method has been found by 
the author of this paper. 
 
In particular, the current solution is as follows: for each layer in the original program, calculate the midpoint of the 
layer as a % of the original TIV. These are the x values. By midpoint we are referring here to the arithmetic mean or 

simple average so that if the limit of the layer is L and the deductible of the layer is D, then 
TIV

LDDAVG
x

),( 
 . 

The y values are the ROLs of the layers. Let bxayxf  *)(  be a power curve through the points (x, y). We take 
the logarithm of both sides, and get )ln(*)ln()ln( xbay  . ln(y) and ln(x) are thus related linearly, and we 
calculate a and b to minimize the SSE between the left hand side and the right hand side of the equation. 
 
For Island Insurance, we calculate a = 0.00742 and b = 0.57591. These parameters can be found in blue on tab #2. 
The actual regression formulas can be found in the hidden columns K and L. 
 
Graphically the power curve looks as follows: 
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We now use f(x) to price out the new program. In tab #4 we can enter in the new TIV of 3,000,000,000 in cell C3 
and the new layering (four new layers) in columns C and D. The new midpoints as a % of the new TIV are 
calculated in column E, and f(x) is applied to these midpoints to get the new ROLs in column F. 
 
The result is as follows: 
 

Table 2 ‐ New Program Layering: Priced using Power Curve f(x) 

New TIV  3,000,000,000          

        AVG(D, D+L) / TIV  f(MP)  L x ROL1

Layer i  Limit ‐ L  Deductible ‐ D Midpoint % ‐ MP ROL1  Cost1

Layer 1  7,500,000  7,500,000 0.38% 18.51%  1,388,155

Layer 2  20,000,000  15,000,000 0.83% 11.69%  2,337,163

Layer 3  50,000,000  35,000,000 2.00% 7.06%  3,529,088

Layer 4  90,000,000  85,000,000 4.33% 4.52%  4,069,582

Total  167,500,000  7,500,000   6.76%  11,323,987

 
 
Example Calculation 1 – 
 
Let’s calculate the cost of layer #2 of the new program. This layer is $20m xs $15m. Given a TIV of $3B, the 

midpoint % is x = 
b

mm

3$

2/)15$35($ 
= 0.833%. Then we calculate the ROL = 

57591.0%)833.0(00742.0*)(   bxaxf  = 11.69%. So the cost of the layer = ROL x Limit = 11.69% x $20m = 
$2.34m. (This calculation can be found in cells E7 and F7 on tab #4.) 

 

3. POWER CURVE USING GEOMETRIC MIDPOINTS 

 
The solution above we might refer to as the power curve method using midpoints. However, instead of arithmetic 
midpoints (arithmetic mean) we could also take the geometric mean of each layer to get slightly different results. 
 
Similar to before, for each layer in the original program we calculate the geometric midpoint of the layer as a % of 
the original TIV. These are the new x values. For a layer limit L and a layer deductible D, we have 

TIV

LDD
x

)(* 
 . The y values are the same as before – the ROLs of the layers. Let bxayxf  *)(*  be a 

new power curve through the new points (x, y). We can once again calculate a and b after taking the logarithm of 
both sides and solving the linear regression. 
 
For Island Insurance, we calculate a = 0.00727 and b = 0.57264. These parameters can be found in blue on tab #5. 
The actual regression formulas can be found in the hidden columns K and L. 
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Graphically we can look at both power curves side by side: 
 

 
 
We now use f*(x) to price out the new program. In tab #7 the new TIV of 3,000,000,000 and the new Cat XL 
program structure are passed over from tab #4 and the calculated ROLs using both f(x) and f*(x) are shown in 
columns G and H respectively. 
 
The result is as follows: 
 

Table 3 ‐ New Program Layering: Priced using Power Curves f(x) and f*(x) 

New TIV  3,000,000,000             

         AVG(D, D+L) / TIV  SQRT[D x (D+L)] / TIV  f(MP) f*(GMP)

Layer i  Limit ‐ L  Deductible ‐ D  Midpoint % ‐ MP Geo Midpoint % ‐ GMP  ROL1 ROL2

Layer 1  7,500,000  7,500,000  0.38% 0.35%  18.51% 18.42%

Layer 2  20,000,000  15,000,000  0.83% 0.76%  11.69% 11.85%

Layer 3  50,000,000  35,000,000  2.00% 1.82%  7.06% 7.21%

Layer 4  90,000,000  85,000,000  4.33% 4.07%  4.52% 4.55%

Total  167,500,000  7,500,000       6.76% 6.84%
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Example Calculation 2 – 
 
Let’s calculate the cost of layer #2 of the new program using f*(x). This layer is $20m xs $15m. Given a TIV of $3B, 

the geometric midpoint % is x = 
b

mm

3$

35$*15$
= 0.764%. Then we calculate the ROL = 

57264.0* %)764.0(00727.0*)(   bxaxf  = 11.85%. So the cost of the layer = ROL x Limit = 11.85% x $20m 
= $2.37m. (This calculation can be found in cells F7 and H7 on tab #7.) 
 
What happened when we used geometric midpoints? In this case, as we can see in Table 3, we have higher ROLs for 
Layers 2, 3 and 4 and a lower ROL for Layer 1. Overall the program pricing is higher at 6.84% ROL using 
geometric midpoints than 6.76% ROL using arithmetic midpoints. We stress that these pricing differences are for 
Island Insurance only, and the author has not found a general rule as to when geometric midpoints lead to higher 
prices than arithmetic midpoints and vice versa. 
 
Having now looked at fitting power curves to both types of midpoints, we might now naturally ask, which type of 
midpoint is better? In the author’s practice arithmetic midpoints are used first because they are simpler to 
understand, and geometric midpoints are used second as a complement to the arithmetic midpoints (if at all). 
 
However, using geometric midpoints may have a theoretical justification. Note that the geometric midpoint of a 
given layer is always smaller than (to the left of) the arithmetic midpoint. Furthermore, since the power curve is a 
decreasing function, the “weighted” midpoint of a layer will also be to the left of the arithmetic midpoint. 

 

4. WEAKNESSES OF POWER CURVES 

 
Weakness #1 (Pricing of Original Program) – To see the first weakness of the power curve method let’s price 
out the original Cat XL program for Island Insurance on f(x), which can be seen on tab #2: 
 

Table 4 ‐ Fit a Power Curve through Original ARITHMETIC Midpoints  Fitted ROLs 

Total Insured Value ‐ TIV  2,700,000,000            

        AVG(D, D+L) / TIV    r = f(MP)  c = L x r  (r ‐ R) / R 

Layer i  Limit ‐ L  Deductible ‐ D Midpoint % ‐ MP ROL ‐ R ROL ‐ r  Cost ‐ c  Error %

Layer 1  5,000,000  5,000,000 0.28% 20.70%  22.00%  1,100,036  6.3%

Layer 2  10,000,000  10,000,000 0.56% 14.55%  14.76%  1,475,949  1.4%

Layer 3  30,000,000  20,000,000 1.30% 10.20%  9.06%  2,718,141  ‐11.2%

Layer 4  50,000,000  50,000,000 2.78% 6.42%  5.84%  2,920,782  ‐9.0%

Layer 5  55,000,000  100,000,000 4.72% 3.75%  4.30%  2,366,871  14.8%

Total Program  150,000,000  5,000,000   7.22%  7.05%  10,581,778  ‐2.2%

 
Here we have the original TIV of $2.7B and the original layering, yet when we apply f(x) to the midpoint %’s we get 
ROLs that are different from the original ROLs. In some cases the error % is high; for the third layer f(x) is 
underestimating the ROL by 11.2%, for the fifth layer f(x) is overestimating the ROL by 14.8%. 
 



Pricing Catastrophe Excess of Loss Reinsurance using Market Curves 
 

Casualty Actuarial Society E-Forum, Spring 2013-Volume 2 7 

These errors can also be seen by looking at the power curve in Graph 1 – notice that the curve does not go 
precisely through the points (the actual ROLs), some are above the curve and some are below. Similar error %s can 
be found for f*(x) on tab #5. 
 
Naturally, whatever pricing method we choose, we would want the new prices (the starting point) to be the same as 
the old prices if nothing has changed. The power curve method does not have this important desired property. 
 
Weakness #2 (Non Uniqueness of Layers) – To see the second weakness of the power curve method let’s 
consider the following four distinct layers (Limit L xs Deductible D): 

 $1m xs $12m 
 $5m xs $10m 
 $10m xs $7.5m 
 $15m xs $5m 

 
Notice that the midpoint of each of the above layers is $12.5m (Midpoint = AVG(D, D+L) = D + L/2), meaning 
that under the power curve method (using arithmetic midpoints), each of the above layers would be assigned the 
same ROL under f(x). Many other layers could be generated. 
 
While we might expect the ROLs for some of these layers to be similar or even the same, there is no reason to 
believe that all of these layers must have the same ROLs, as required by the power curve method, so we can consider 
this a weakness. 
 

Weakness #3 (Unboundedness) – Notice that the power curves are unbounded. bxaxf  *)( goes to infinity 

as x goes to 0. This means that if we use a power curve to price layers excess of 0 (i.e. Cat XL layers with no 

deductible), then the ROL of these layers will get arbitrarily large as the midpoint approaches 0. We will eventually 

have ROLs (e.g. 1,000%) that do not make sense. 

 

5. PROPOSED SOLUTION: SPLINE CURVE 

 
The power curves above allow the user to find the “market price” of a given Cat XL layer. Thus, in a more general 
sense, we might refer to these power curves as market curves, and we might also expect to find other, different 
market curves. 
 
The new market curve proposed in this section is the use of a spline, fitted to the original Cat XL program. 
 
Our first step is to re-envision the way the curves are used to calculate the premium cost of a layer. Instead of 
getting the midpoint % for the layer and calculating the ROL using f(x) or f*(x), as we have been doing with the 
power curve method, let’s instead use integration, and integrate from one endpoint of the layer to the other: 
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Example Calculation 3 – 
 
Let’s calculate the cost of the same layer #2 in the new program, the layer $20m xs $15m, as we have in example 
calculations 1 and 2, but this time by integrating f(x) across the layer. First let’s define the endpoints of the layer. Let 
LP2 = $15m / $3b = 0.5% be the left endpoint as a % of TIV, and let RP2 =$35m / $3b = 1.167% be the right 

endpoint as a % of TIV. Integrating f(x) from LP2 to RP2, we have cost =  







 

2

2

2

2

1*
1

*
RP

LP

RP

LP

bb x
b

a
dxxa . 

Plugging in a = 0.00742 and b = 0.57591, we get cost =  157591.0157591.0 %5.0%167.1
157591.0

00742.0  


 = 0.08%. 

Since we are integrating across x, and x is expressed as a % of the TIV, this cost is also a % of the TIV. So the cost 
in dollars would be 0.08% x $3b = $2.40m. Finally, the ROL can be worked out as ROL = Cost / Limit = $2.40m / 
$20m = 12.0%. 
 
Notice that the use of integration to calculate the layer costs automatically resolves weakness #2 of the power curve 
method. That is to say, layers with the same midpoints do not necessarily yield the same ROLs under integration. 
That is because layers are uniquely defined by their two endpoints, and since integration happens from one 
endpoint of a layer to the other endpoint, each layer has a unique integration. 
 
The second step of the proposal is to pick a price curve that improves upon f(x). Let’s call this new price curve g(x). 
We would want to pick a g(x) that has the following features: 
 

 Resolves weakness #1 of the power curve. In other words, if we use g(x) to price the original program, we 
should get the original ROLs. 

 The function should be bounded on the top and on the bottom. By bounding the function on the top, as it 
goes to 0, we resolve weakness #3. By bounding on the bottom, we have a chance to incorporate market 
knowledge that is external to the Cat XL program itself. For example, we might make the assumption that 
reinsurers will never price a layer at less than 1% ROL, no matter the underlying exposure. This information 
is not incorporated into f(x) but we could incorporate it into g(x). 

 
Let n – 1 = the number of layers in the original Cat XL program. (Island Insurance has 5 layers in the original 
program, so n – 1 = 5). Then let g(x) be a spline with n + 1 segments (so the Island spline will have 7 segments). 
Let the first segment be linear, the next n – 1 segments be quadratic (representing the original layers) and the last 
segment be linear. Such a g(x) can be constructed in a way that resolves weakness #1 and is bounded on the top and 
on the bottom with a maximum ROL and a minimum ROL. 
 
How do we do this? First, let us write down the equations for g(x). We count the n + 1 segments as 0, 1, ..., n, (n = 
6 for Island Insurance). Then segments 0 and n are linear and segments 1, 2, ..., n – 1 are quadratic (these 
correspond to the n – 1 layers in the original Cat XL program). Let’s denote the formula for segment i (or layer i) as

)(xgi  where )(xgi is defined on the interval ),( ii RPLP . Then we have: 

 xbaxg iii )(  for i = 0 and i = n (first and last segments are linear) 

 2)( xcxbaxg iiii   for i = 1, 2, ..., n – 1 (middle layers are quadratic) 
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Where: 
 00 LP  

 
TIV

D
LP i

i   (left endpoint) 

 
TIV

LD
RP ii

i


  (right endpoint) 

 1 ii LPRP  (endpoints are connected) 

 iD  is the deductible of the i-th layer of the original Cat XL program (i = 1, 2, ... , n – 1) 

 iL  is the limit of the i-th layer of the original Cat XL program (i = 1, 2, ... , n – 1) 

 nRP  is a point beyond the original Cat XL program (maximum right endpoint) 
 
How do we pick the coefficients iii cba ,,  for g(x)? We want the following conditions to hold: 
 
Condition #1 (Continuity): We want g(x) to be a continuous function; that is, we want the )(xgi to be connected 

at the endpoints. Here we have the equations )()( 11  iiii LPgRPg  for i = 0, 1, ..., n – 1. 
 
Condition #2 (Smoothness): We also want the first derivative )(xg  to be continuous. In other words, we want 
the function g(x) to be smooth. This is a necessary condition for g(x) to be considered a quadratic spline. Here we 
have the equations )()( 1

'
1

'
 iiii LPgRPg  for i = 0, 1, ..., n – 1. 

Condition #3 (Integration): We want for i = 1, 2, ..., n – 1 that  
i

i

RP

LP

ii pdxxg )(  where
TIV

Cost
p i

i   and

iii LROLCost  . iCost , iROL  and iL  are the known Cost, ROL and Limit of the i-th layer of the original Cat 
XL program. 
 
This will immediately resolve weakness #1 of the power curve as we are in essence “forcing” g(x) to integrate over 
the original layers to the original prices. 
 
Condition #4 (Maximum): We want to bound g(x) on the top. We let g(0) = MAXROLabag  0000 0)0( . 
This resolves weakness #3. 
 
Condition #5 (Minimum): We want to bound g(x) on the bottom. We let 

MINnnnnnn ROLRPbaRPgRPg  )()(  
 
Note that for conditions 4 and 5 the user is required to make a selection for the variables MAXROL , MINROL  and 

nRP . MAXROL , the maximum possible ROL, would be the ROL charged for a theoretical layer with no deductible 

and infinitesimal limit. MINROL  is the lowest possible ROL, which is reached at some point nRP  which lies beyond 
the limit of the original Cat XL program. How do we make these selections? This is a highly judgmental step. Here 
are some ideas: 

 We could look at Cat XL programs for companies similar to the one we are pricing (if available) and take 
into consideration the max and min for those programs. 

 We could set nRP  as the point beyond which no coverage would ever actually be purchased. 
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 For MINROL  we could consider the values taken on by the power curves at nRP  (i.e. )( nRPf  and )(*
nRPf

). 
 We could simply look at the curve visually and see what selections make it the “smoothest”. 

 
We now provide all of the known variables for Island Insurance in a table, the variables that we will need to set up 
the equations in Conditions 1 - 5: 
 

Table 5 ‐ Known Variables to Solve for Island Insurance Spline 

TIV  2,700,000,000               

6        LP = D / TIV  RP = (D + L) / TIV     (L x R) / TIV

Layer i  Limit ‐ L  Deductible ‐ D  Left Endpt % ‐ LP  Right Endpt % ‐ RP  ROL ‐ R  Cost % ‐ p

Layer 0  5,000,000  0  0.00%  0.19%  n/a  n/a

Layer 1  5,000,000  5,000,000  0.19%  0.37%  20.70%  0.038%

Layer 2  10,000,000  10,000,000  0.37%  0.74%  14.55%  0.054%

Layer 3  30,000,000  20,000,000  0.74%  1.85%  10.20%  0.113%

Layer 4  50,000,000  50,000,000  1.85%  3.70%  6.42%  0.119%

Layer 5  55,000,000  100,000,000  3.70%  5.74%  3.75%  0.076%

Layer 6  7,000,000  155,000,000  5.74%  6.00%  n/a  n/a

Total  150,000,000  5,000,000        7.22%  0.401%

 
 
Once again, for Island Insurance there are 5 layers in the original program and n = 6. We invite the reader to inspect 
this table in the workbook on tab #8.1. For Island Insurance, we make the following selections: 

 Let nRP  = 6.00% (cell F15) 

 Let MAXROL  = 40.00% (cell G18) 

 Let MINROL  = 3.00% (cell G19) 
 
It may be instructive for the reader to inspect the calculation of the endpoints (columns E and F) as well as the 
calculation of the ip  (column H) in Excel. 

 

6. SOLVING THE SPLINE CURVE PARAMETERS 

 
Our goal now is to use the variables in Table 5 to set up the equations from Conditions 1-5. We will then use the 
system of equations to solve for the coefficients iii cba ,,  and thus solve g(x). 
 
First some notes on counting the number of equations: 

 We have 3n + 1 equations. The continuity equations (from Condition 1) provide n equations (if there are n 
+ 1 segments then there are n equations between the segments). The smoothness equations (from 
Condition 2) also provide n equations. The integration equations (from Condition 3) provide n – 1 
equations (as there are n – 1 original layers). Finally the boundedness equations (from Conditions 4 and 5) 
provide 2 equations. Adding them all up we get a grand total of n + n + (n – 1) + 2 = 3n + 1 equations. 
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 Thus for Island Insurance (n = 6) we have 19 equations: 6 equations for the continuity between the 7 
segments, 6 equations for the smoothness between the 7 segments, 5 equations so that g(x) integrate to the 
original Cat XL prices on each original layer, and 2 equations for the boundedness conditions. 

 All of the equations are linear. Once we plug in the knowns ( MINMAXiii ROLROLpRPLP ,,,, ) then the 

equations all reduce to linear equations with iii cba ,,  as the unknowns. 

 Counting up the number of unknown variables in the 3n + 1 equations we also have 3n + 1 unknowns.
)(0 xg and )(xgn each have 2 unknown coefficients ( ii ba , ), and each of the n – 1 )(xgi  has 3 unknown 

coefficients ( iii cba ,, ), for a grand total of 2 + 2 + 3 x (n – 1) = 3n + 1 unknowns. 
 
Thus we have a system of 3n + 1 linear equations with 3n + 1 unknown variables (the coefficients), allowing us to 
use matrix algebra to solve for those coefficients. 
 
What exactly do the 19 linear equations look like for Island Insurance? We present them in the following table: 
 

Table 6 ‐ 19 Linear Equations for Island Insurance 

Eqn #  Condition / Equation Description  General Form  Expanded Form 

1  1  Continuity b/w layers 0 & 1  g0(RP0) = g1(LP1)  a0 + b0*RP0 = a1 + b1*LP1 + c1*LP1
2 

2  1  Continuity b/w layers 1 & 2  g1(RP1) = g2(LP2)  a1 + b1*RP1 + c1*RP1
2 = a2 + b2*LP2 + c2*LP2

2 

3  1  Continuity b/w layers 2 & 3  g2(RP2) = g3(LP3)  a2 + b2*RP2 + c2*RP2
2 = a3 + b3*LP3 + c3*LP3

2 

4  1  Continuity b/w layers 3 & 4  g3(RP3) = g4(LP4)  a3 + b3*RP3 + c3*RP3
2 = a4 + b4*LP4 + c4*LP4

2 

5  1  Continuity b/w layers 4 & 5  g4(RP4) = g5(LP5)  a4 + b4*RP4 + c4*RP4
2 = a5 + b5*LP5 + c5*LP5

2 

6  1  Continuity b/w layers 5 & 6  g5(RP5) = g6(LP6)  a5 + b5*RP5 + c5*RP5
2 = a6 + b6*LP6 

7  2  Smoothness b/w layers 0 & 1  g0'(RP0) = g1'(LP1)  b0 = b1 + 2*c1*LP1 

8  2  Smoothness b/w layers 1 & 2  g1'(RP1) = g2'(LP2)  b1 + 2*c1*RP1 = b2 + 2*c2*LP2 

9  2  Smoothness b/w layers 2 & 3  g2'(RP2) = g3'(LP3)  b2 + 2*c2*RP2 = b3 + 2*c3*LP3 

10  2  Smoothness b/w layers 3 & 4  g3'(RP3) = g4'(LP4)  b3 + 2*c3*RP3 = b4 + 2*c4*LP4 

11  2  Smoothness b/w layers 4 & 5  g4'(RP4) = g5'(LP5)  b4 + 2*c4*RP4 = b5 + 2*c5*LP5 

12  2  Smoothness b/w layers 5 & 6  g5'(RP5) = g6'(LP6)  b5 + 2*c5*RP5 = b6 

13  3  Area ‐ Layer 1  ∫g1(x) = p1  a1*(RP1 ‐ LP1) + ½*b1*(RP1
2 ‐ LP1

2) + ⅓*c1*(RP1
3 ‐ LP1

3) = p1 

14  3  Area ‐ Layer 2  ∫g2(x) = p2  a2*(RP2 ‐ LP2) + ½*b2*(RP2
2 ‐ LP2

2) + ⅓*c2*(RP2
3 ‐ LP2

3) = p2 

15  3  Area ‐ Layer 3  ∫g3(x) = p3  a3*(RP3 ‐ LP3) + ½*b3*(RP3
2 ‐ LP3

2) + ⅓*c3*(RP3
3 ‐ LP3

3) = p3 

16  3  Area ‐ Layer 4  ∫g4(x) = p4  a4*(RP4 ‐ LP4) + ½*b4*(RP4
2 ‐ LP4

2) + ⅓*c4*(RP4
3 ‐ LP4

3) = p4 

17  3  Area ‐ Layer 5  ∫g5(x) = p5  a5*(RP5 ‐ LP5) + ½*b5*(RP5
2 ‐ LP5

2) + ⅓*c5*(RP5
3 ‐ LP5

3) = p5 

18  4  Maximum ROL  g0(LP0) = ROLMAX  a0 + b0*LP0 = a0 = ROLMAX 

19  5  Minimum ROL  g6(RP6) = ROLMIN  a6 + b6*RP6 = ROLMIN 

 
 
These 19 equations have 19 unknowns: 6655544433322211100 ,,,,,,,,,,,,,,,,,, bacbacbacbacbacbaba . 
 
These equations can also be found in tab #8.2, although given that the workbook is designed to handle up to 8 
original layers, there are some dummy equations listed there too (i.e. 0... 99777  bacba ). 
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We then convert the 19 equations in Table 6 to the following form: 

jjjjjjjj sbkakckbkakbkak  6196181514130201 ... . 

That is to say, we convert each equation into a linear combination of the unknowns on the left hand side and a 
solution constant on the right hand side. jik is a known factor for the j-th equation and the i-th unknown variable. 

js is the solution constant to the j-th equation. 

 
For example, let’s take equation 2 which is 2

22222
2

11111 LPcLPbaRPcRPba  . From Table 5, we have that 

%37.021  LPRP . Then equation 2 in the prescribed format is as follows: 

0%001369.0%37.0%001369.0%37.0 222111  cbacba . Note that all the other unknowns have 
a factor of 0 and are not shown here. 
 

Converting the 19 equations to matrix form, we take the jik  of the left hand side and let A = 
















19,191,19

19,11,1

kk

kk







. 

We also form the unknown equation vector X = 
















6

0

b

a

  and the solution vector B = 
















19

1

s

s

 . 

 
Thus we have the equation A * X = B. Finally, we use matrix algebra to find the inverse of A, A-1. Then 
X = A-1 * B and we have solved for all the unknown coefficients simultaneously, thus solving g(x). 
The full matrices A, A-1 and the vectors B and X can all be found on tab #8.2. 
 
The solved coefficients of g(x) – the spline curve for Island Insurance – are summarized in the following table: 
 

Table 7 ‐ Island Insurance Layer Summary and Solved Spline Coefficients 

TIV  2,700,000,000                         

6        LP = D / TIV  RP = (D + L) / TIV     (L x R) / TIV          

Layer i  Limit ‐ L  Deductible ‐ D  Left Endpt % ‐ LP  Right Endpt % ‐ RP  ROL ‐ R  Cost % ‐ p  a  b  c 

Layer 0  5,000,000  0  0.00%  0.19%  n/a  n/a  0.40  ‐75.83    

Layer 1  5,000,000  5,000,000  0.19%  0.37%  20.70%  0.038%  0.45  ‐132.95  15422.37 

Layer 2  10,000,000  10,000,000  0.37%  0.74%  14.55%  0.054%  0.27  ‐31.82  1769.90 

Layer 3  30,000,000  20,000,000  0.74%  1.85%  10.20%  0.113%  0.18  ‐7.77  146.95 

Layer 4  50,000,000  50,000,000  1.85%  3.70%  6.42%  0.119%  0.13  ‐3.23  24.29 

Layer 5  55,000,000  100,000,000  3.70%  5.74%  3.75%  0.076%  0.14  ‐3.52  28.22 

Layer 6  7,000,000  155,000,000  5.74%  6.00%  n/a  n/a  0.05  ‐0.28    

Total  150,000,000  5,000,000        7.22%  0.401%          

 
 
These solved coefficients can be found on tab #8.1. Let’s now check to see if )(xg  is working the way we want it 
to work by calculating the values of )(xg  and )(xg   on the segment endpoints, and integrating )(xg  across the 
segments: 
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Table 8 ‐ Island Insurance Layer Summary and Verification of Properties of Spline Curve 

TIV  2,700,000,000     LP =  RP =     (L x R) /                

6     Deductible  D / TIV  (D + L) / TIV  ROL  TIV                

Layer i  Limit ‐ L  D  Left Endpt  Right Endpt  R  Cost % ‐ p  g(LP)  g(RP)  g'(LP)  g'(RP)  ∫LP
RPg(x) 

Layer 0  5,000,000  0  0.00%  0.19%  n/a  n/a  40.00%  25.96%  ‐75.83  ‐75.83  n/a 

Layer 1  5,000,000  5,000,000  0.19%  0.37%  20.70%  0.038%  25.96%  17.20%  ‐75.83  ‐18.71  0.038% 

Layer 2  10,000,000  10,000,000  0.37%  0.74%  14.55%  0.054%  17.20%  12.70%  ‐18.71  ‐5.60  0.054% 

Layer 3  30,000,000  20,000,000  0.74%  1.85%  10.20%  0.113%  12.70%  8.30%  ‐5.60  ‐2.33  0.113% 

Layer 4  50,000,000  50,000,000  1.85%  3.70%  6.42%  0.119%  8.30%  4.82%  ‐2.33  ‐1.43  0.119% 

Layer 5  55,000,000  100,000,000  3.70%  5.74%  3.75%  0.076%  4.82%  3.07%  ‐1.43  ‐0.28  0.076% 

Layer 6  7,000,000  155,000,000  5.74%  6.00%  n/a  n/a  3.07%  3.00%  ‐0.28  ‐0.28  n/a 

Total  150,000,000  5,000,000        7.22%  0.401%                

 
 
Checking Condition #1 (Continuity): Notice that the value that )(xg  takes at the right of segment i is equal to 

the value that )(xg  takes at the left of segment i + 1. For example, )()( 1100 LPgRPg   = 25.96%. This implies 
that )(xg  is continuous. 
 
Checking Condition #2 (Smoothness): Similarly we notice that the value that )(xg   takes at the right of segment 

i is equal to the value that )(xg   takes at the left of segment i + 1. For example, )()( 1100 LPgRPg   = -75.83. This 
implies that )(xg   is continuous (i.e. that )(xg  is smooth). Note that the derivative is negative throughout, which 
means that )(xg  is decreasing throughout. Also note that the derivative while negative is also increasing, which 
means that )(xg  is concave up (the power curves f(x) and f*(x) are also concave up). 
 
Checking Condition #3 (Integration): Notice that the integral of each gi(x) on its defined interval LPi to RPi is 

equal to ip  (i.e. the last column in Table 8, 
i

i

RP

LP
dxxg )( , is equal to the 7th column in Table 8, ip ). Thus if we use 

g(x) to price the original program with no change in TIV, we get the same ROLs as the original program. 
 
Checking Conditions #4 and #5 (Maximum and Minimum): Notice that g0(LP0) = g(0%) = 40.00% = 
ROLMAX and g6(RP6) = g(6.00%) = 3.00% = ROLMIN. 
 
These verifications can also be found on tab #8.1. 

 
  



Pricing Catastrophe Excess of Loss Reinsurance using Market Curves 
 

Casualty Actuarial Society E-Forum, Spring 2013-Volume 2 14 

7. COMPARISON OF THE METHODS 

 
We have now solved for f(x), f*(x) and g(x). Let’s use all three of them to price out the new Cat XL program for 
Island Insurance with the new TIV: 
 

Table 9 ‐ Pricing of New Program using all the Methods 

New TIV  3,000,000,000 
Endpoints and Midpoints  Power Curve f(x)  Power Curve f

*
(x)  Spline Method 

New Program Layering 

      Deductible               f(MP)  L x ROL1  f
*
(GMP)  L x ROL2  Cost3 / L  ∫LP

RPg(x) * TIV 

Layer i  Limit ‐ L  D  LP  GMP  MP  RP  ROL1  Cost1  ROL2  Cost2  ROL3  Cost3 

Layer 1  7,500,000  7,500,000  0.25%  0.35%  0.38%  0.50%  18.51%  1,388,155  18.42%  1,381,650  17.53%  1,314,627 

Layer 2  20,000,000  15,000,000  0.50%  0.76%  0.83%  1.17%  11.69%  2,337,163  11.85%  2,370,376  12.37%  2,473,283 

Layer 3  50,000,000  35,000,000  1.17%  1.82%  2.00%  2.83%  7.06%  3,529,088  7.21%  3,606,327  8.10%  4,047,793 

Layer 4  90,000,000  85,000,000  2.83%  4.07%  4.33%  5.83%  4.52%  4,069,582  4.55%  4,094,577  4.24%  3,813,139 

Total  167,500,000  7,500,000              6.76%  11,323,987  6.84%  11,452,929  6.95%  11,648,842 

 
This table can be found on tab #10. We see that using geometric midpoints, i.e. f*(x), results in ROLs that are 
generally higher than using arithmetic midpoints, i.e. f(x). We also see that, for this example, using the spline 
method results in the highest overall ROL (6.95%), with significant variation from layer to layer. For example, the 
cost of layer 3 is 14.7% higher under g(x) than under f(x) (8.10% / 7.06%), yet the cost of layer 4 is 6.2% lower 
(4.24% / 4.52%). This variation from layer to layer is due to parameterized flexibility of the spline curve, which 
becomes more apparent when we observe it visually: 
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The spline endpoints marked by asterisks indicate the left and right endpoints of the original Cat XL program, in 
addition to 0LP  and 6RP . As can be seen, the spline is strictly decreasing throughout and is higher than the power 
curves on original layers 3 and 4 and lower on original layer 5. We can also clearly see that g(x) is bounded at the 
top, that g(0) = 40.00%. 
 
We encourage the reader to try pricing out a new Cat XL program in the Excel workbook by entering in the new 
Cat XL structure in green in tab #4 and then examining the output pricing in tab #10. Here are some structures to 
test: 

 Enter in the original TIV = $2,700,000,000 and the original structure: $5m xs $5m, $10m xs $10m, $30m xs 
$20m, $50m xs $50m and $55m xs $100m. Compare tab #1 with tab #10. Notice that the layer ROLs are 
preserved under the spline curve g(x) but are not preserved under the power curves. The correct overall 
ROL for the program is 7.22%. 

 Now go back to tab #4, keep the TIV as it is, and enter the following three layers: $20m xs $5m, $30m xs 
$25m and $100m xs $55m. This gives an overall program of $150m xs $5m, the same as before. Notice in 
tab #10 that the overall ROL under the spline method stays the same at 7.22%. This is a property of using 
the spline method – while individual layer prices will be different, the overall price will be the same because 

integration is additive:   
1

1

2

2

2

1

)()()(
RP

LP

RP

LP

RP

LP

dxxgdxxgdxxg . 

0.00%

10.00%

20.00%

30.00%

40.00%

0.00% 1.00% 2.00% 3.00% 4.00% 5.00% 6.00% 7.00%

ROL

TIV %

Graph 3 ‐ Spline vs Power Curves
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8. ADVANTAGES OF POWER CURVES 

 
While we have presented the spline method as superior to power curves in that it resolves the three key weaknesses 
in section 4, there are ways in which power curves are superior to splines: 

 Power curves are easier to set up and explain than splines. 
 Splines require ROLMAX and ROLMIN to be specified judgmentally in the model; the power curves require no 

such selections. 
 The power curve function is bxaxf  *)(  and its derivative is 1**)(  bxbaxf . Since the derivative 

is negative for all x, the power curve is strictly decreasing. But for spline curves there is nothing in the 
definition that enforces this property. Upon visual inspection we may occasionally find a spline curve with a 
region that is not strictly decreasing. In those cases we might be able to “fix” the curve by selecting a 
different ROLMAX and ROLMIN. 

 Finally, an application: let’s say we have the Cat XL programs of several similar insurance companies (e.g. 
competitors of Island Insurance who also write property policies exclusively on the island). We can then fit a 
power curve through the midpoints of ALL the layers of ALL the Cat XL programs, thus creating a 
consolidated market curve for the entire island, not just Island Insurance. It is not obvious how to create 
such a consolidated market curve using a spline. 

 

9. SUMMARY 

 
In this paper we have presented the concept of pricing a catastrophe excess of loss program (Cat XL) using a 
market curve. Pricing with such a market curve is simple in that it only requires the total insured value (TIV) of the 
new program to be priced, and a benchmark program (such as last year’s Cat XL program), and does not require the 
use of catastrophe modelling output. 
We then presented the simplest market curve, which is the power curve. The power curve fits a function of the 
form bxaxf  *)(  to the midpoints (arithmetic or geometric) of the benchmark program, and then this curve is 
used to price out the new program. We showed, however, that the power curve has three key weaknesses. 
 
We then proposed a new market curve, a spline function, and the use of integration instead of taking the midpoints 
of layers, which resolves the three key weaknesses of the power curve. We showed how to solve for the spline, 
which involves solving a system of linear equations. 
 
We provided an Excel workbook that allows the reader to test all the methods. 

 

10. FURTHER RESEARCH 

 
The power curve function takes the form bxaxf  *)( , however other variations could be investigated: 

 Power Curve with a constant: cxaxf b  *)(  (Notice that ROLMIN = c) 

 Exponential Decay: xbaxf  *)(  (Notice that ROLMAX = a) 

 Exponential Decay with a constant: cbaxf x  *)(  (Notice that ROLMAX = a + c and ROLMIN = c) 
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In addition, we could investigate some of the simplifying assumptions that we made in the paper: 
 The issue of reinstatements could be studied. What happens if different layers have different reinstatement 

conditions? 
 What happens if we assume a known reinsurance market cycle as opposed to “flat”, unchanging rates? 

 
Finally, we could try to develop a formula to relate the market curve and market pricing to the underlying 
catastrophe exposure. 
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Abstract

Reinsurance reduces the required capital of the primary insurer but in-

creases that of the reinsurer. Capital is costly. All capital costs, including

that of the reinsurer, are ultimately borne by primary policyholders. Reduc-

ing the total capital of insurers and reinsurers lowers the total capital cost and

the total primary policy premium. A reinsurance arrangement is considered

optimal if it minimizes the total required capital. This optimal reinsurance is

shown to be an attracting equilibrium under price competition. Evidence sug-

gests that there is an inverse relationship between the total required capital

and the correlation between the losses held by different insurers. Examples

are constructed to support this observation.
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1 Introduction

A new type of optimal reinsurance is introduced in this paper. Reinsurance serves

many purposes, one of which is to reduce the required capital by lessening the

volatility of losses. From the shareholder point of view, capital is costly because

of income taxes and agency costs. Shareholders pay income taxes two times on
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their capital investment, first at the corporate level and then at the personal level

when they sell the stock. They would not owe the corporate tax if they invested

directly in the securities market. Agency costs exist because of the separation of

ownership and control. They include monitoring and bonding expenditures and

other losses in profits due to a misalignment of managers’ decisions and share-

holders’ welfare. Taxes and agency costs, altogether called capital costs, generally

have an increasing relationship with the amount of capital (Jensen and Meckling

1976, Perold 2005, Chandra and Sherris 2006, Zhang 2008). Thus carrying less

capital is desirable.

Reinsurance transfers losses from a ceding company to a reinsurer. Such losses

are often highly volatile. So this transfer of losses increases the capital requirement

of a reinsurer while reducing that of a ceding company. Consequently, capital

costs of the reinsurer increase and those of the ceding company decrease. The

total capital cost, the sum of that of both companies, may go either way. Capital

costs are funded by premium. Primary policy premiums include charges to cover

primary insurers’ capital costs; reinsurance premiums include charges to cover

reinsurers’ capital costs. But reinsurance premiums are funded through premiums

of primary policies. Therefore, the total capital costs of primary insurers and

reinsurers are ultimately borne by primary policyholders. If a treaty reduces a

ceding company’s capital costs more than it increases the reinsurer’s, the total

capital cost is reduced, which benefits primary policyholders. A treaty, or a set of

treaties, is optimal, if it minimizes the total capital cost. Such optimal reinsurance

arrangements are the subject of this paper.

Numerous authors have written about optimal reinsurance and have proposed

various optimality criteria. My approach is noticeably different. Usually an opti-

mal reinsurance is defined from the ceding company’s point of view. The ceding

insurer seeks a treaty to maximize its risk-adjusted return (Lampaert and Wal-

hin 2005, Fu and Khury 2010), to minimize the variance of its net loss (Kaluszka

2001, Lampaert and Walhin 2005), or to minimize the tail risk of the net loss

(Gajek and Zagrodny 2004, Cai and Tan 2007), under the constraint of a given

premium principle that links the ceded premium to the ceded loss. This line of

research is valuable. However, it does not pay enough attention to the profit tar-

get of the reinsurer. Although the proposed premium principles usually include

risk margins reflecting the volatility of the ceded loss, they generally ignore the

fact that the reinsurer needs to put up more capital thus incurring greater capital

costs. My approach places the ceding insurer and the reinsurer on an equal footing

and addresses the capital costs of both directly. A reinsurance arrangement that
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minimizes the total capital is the best deal for the combined welfare of primary

insurers, reinsurers and policyholders.

Under reasonable assumptions, minimization of the total capital cost is equiv-

alent to minimization of the total amount of capital carried by all companies.

This latter problem may be directly solved by simulating insurers’ and reinsurers’

losses. A remarkable fact, however, is that this type of optimal reinsurance need

not be solved by any one party. (In fact, neither the ceding insurer nor the rein-

surer can obtain the full knowledge of the joint probability distribution of losses of

both parties.) Market forces automatically push the insurer and the reinsurer to

select treaties with less total capital costs. In other words, an optimal reinsurance

arrangement is an attracting equilibrium.

The capital requirement will be set by a risk measure. In this paper, I assume

that the risk measure is coherent, as defined in Artzner et al. (1999). For such a

risk measure, there is an absolute lower bound for the total capitals. Regardless of

reinsurance arrangements, the total capital must be greater than this lower bound.

It can be shown that if the losses of the insurers have a certain correlation called

comonotonicity (defined in Section 5), then the total capital attains the lower

bound. This observation leads to a discussion on the relationship between optimal

reinsurance and correlated losses. Evidence suggests that an optimal treaty is one

that makes the losses of insurers and reinsurers as correlated as possible. (Such

correlation needs only occur at the tail.)

The main part of the paper is organized as follows. In Section 2, I prove that

minimization of the total primary insurance premium leads to minimization of the

total capital. I then show in Section 3 that price competition tends to produce this

type of optimal reinsurance. Coherent risk measures are discussed in Section 4. In

Section 5, I point out that a lower bound exists for the total required capital, and

in some cases an inverse relationship exists between the sum of capitals and the

correlation between losses. Section 6 contains a general formulation of the optimal

reinsurance problem. Examples are given in Section 7 to further examine the link

between the sum of capitals and correlation. Section 8 concludes the paper.

2 Why Minimize the Total Required Capital?

In this section I will rigorously prove that, if a reinsurance arrangement minimizes

the total capital cost, then it minimizes the aggregate premium of primary poli-

cyholders. I will also point out the exact conditions under which minimization of

the total capital cost is equivalent to minimization of the total amount of capital.
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Policyholders purchase insurance to protect themselves against unexpected

losses. At the same time, they also provide funds to cover all operating costs of

the insurance company, including underwriting and claim expenses, income taxes,

agency costs and reinsurance costs. The reinsurance costs, in turn, cover the

reinsurer’s expenses, taxes and agency costs, and its reinsurance costs (costs of

retrocession). Ultimately, it is the primary insurance policyholders that bear the

operating costs of primary insurers and reinsurers. For the insurance/reinsurance

market as a whole, reinsurance treaties rearrange these costs among all insurers

and reinsurers. Some reinsurance arrangements result in lower total costs than

others. A reinsurance arrangement is optimal if the total cost is minimized, in

which case the primary policyholders pay the lowest aggregate premium.

This paper focuses on minimizing the total capital cost, consisting of income

taxes and agency costs.1 To cleanly study the capital cost, I assume that the aggre-

gate underwriting and claim expenses remain constant under various reinsurance

arrangements. Therefore, these expenses can be excluded from consideration. The

gross insurance premium of a policy can be decomposed into the following com-

ponents

p = PV(Loss) + PV(Tax) + PV(Agency Cost) + Reinsurance Premium. (2.1)

The p in (2.1) represents the fair premium, which is the exact amount to fund all

insurer’s costs related to the policy. Equation (2.1) is a version of the net present

value principle. Slightly different formulas for the fair premium have appeared

in the literature (Myers and Cohn 1987, Taylor 1994, Vaughn 1998). Each term

on the right-hand side of (2.1) provides the exact amount to cover that specific

type of cost. The PV’s represent risk-adjusted present values. The loss in the

first term is the net loss. It is assumed here that the present value of insured loss

satisfies the following two basic requirements of the fair value accounting: (1) The

value PV(Loss) is independent of the carrier of the insurance policy.2 (2) The

function PV( ) is additive. The two conditions together eliminate the possibility

1Agency costs include any cost associated with the issue of “separation of ownership and con-

trol”, as discussed in Jensen and Meckling (1976), Perold (2005), like monitoring and bonding

expenditures and other losses in profits due to misalignment of managers’ decisions and share-

holders’ welfare.
2 The risk-adjusted PV can be viewed as the risk-free discounted expected cash flow plus a

risk margin, where the risk margin reflects the market, or the systematic risk of the cash flow. It

is sometimes argued that the fair value of losses should be affected by its carrier’s default risk.

In this paper, I only consider insurance firms that hold the required level of capital and whose

risk of default is negligible.

4

Reinsurance Arrangements Minimizing the Total Required Capital

Casualty Actuarial Society E-Forum, Spring Volume 2



of arbitrage. In particular, they imply that PV(Gross Loss) = PV(Net Loss) +

PV(Ceded Loss).

I now examine the relationship between the gross fair premium and the total

amount of capital held by insurers and reinsurers. Consider a one-year model

containing only one loss to be shared between a primary insurer and a reinsurer.

Let p be the gross premium charged by the primary insurer at the beginning of

the year and L the random gross loss paid at the end of the year. The primary

insurer collects the premium p then cedes an amount pc to the reinsurer, retaining

pn = p− pc. Similarly for losses, Ln = L− Lc, where Lc is the ceded loss and Ln

the net loss.

The total income tax is the sum of two charges, one on the income generated

by premiums, which equals the underwriting profit plus the investment income on

premiums, and the other on the investment income generated by capital. To write

premium formulas in a concise way, I use the following notations

ePr : capital carried by the primary insurer

eRe : capital carried by the reinsurer

tPr : average tax rate for the primary insurer

tRe : average tax rate for the reinsurer

The present value of tax for the primary insurer is of the form tPr(pn −
PV(Ln)) +uPrePr, and that for the reinsurer is tRe(pc−PV(Lc)) +uReeRe, where

the u’s are constants: if rf represents the risk-free rate, then uPr = tPr ·rf/(1+rf )

and uRe = tRe · rf/(1 + rf ). (A derivation of the multiplier rf/(1 + rf ) can be

found in Cummins 1990). Agency costs generally increase with the amount of

capital.3 For simplicity, I assume there is a linear relationship: for some constants

sPr and sRe, the present value of agency cost is sPrePr for the primary company

and sReeRe for the reinsurer.

Following (2.1), for the primary insurer, we have

p = PV(Ln) + tPr(pn − PV(Ln)) + uPrePr + sPrePr + pc (2.2)

and, for the reinsurer (if there is no retrocession),

pc = PV(Lc) + tRe(pc − PV(Lc)) + uReeRe + sReeRe. (2.3)

3 An important type of capital cost is the cost of financial distress, which increases as capital

becomes more insufficient. But firms considered in this paper satisfy a given capital requirement.

So the cost of financial distress is ignored.
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An equation for the fair gross premium p can be obtained by substituting (2.3)

into (2.2). p is the sum of the following four terms.

1. The present value of loss: PV(Ln) + PV(Lc) = PV(L), which does not vary

with reinsurance.

2. The tax on the incomes generated by premium: tPr(pn−PV(Ln))+ tRe(pc−
PV(Lc)). On the condition that the tax rates are equal, tPr = tRe = t, this

term is t(p− PV(L)), which decreases as p decreases.

3. The tax on the incomes generated by capital: uPrePr + uReeRe. If the

applicable tax rates are the same, then uPr = uRe = u, and the term equals

u(ePr + eRe), which decreases if a reinsurance contract lowers the sum of

capitals, ePr + eRe.

4. The agency cost: sPrePr +sReeRe. If the cost factors are equal, sPr = sRe =

s, then the term equals s(ePr + eRe), again a direct function of the total

capital ePr + eRe.

To sum up, as reinsurance varies, the loss component PV(L) remains constant,

while the fair premium p varies because taxes and agency costs vary. p is lower if

the present values of taxes and agency costs are lower. Under the above assump-

tions, this is equivalent to a less amount of total capital, ePr + eRe. The optimal

reinsurance is then defined as the one that minimizes ePr +eRe. An optimal treaty

creates the least gross premium, so is best for the policyholder.

This definition can be generalized to an insurance market with many primary

insurers and reinsurers, and many primary policyholders. Assume each primary

insurer covers a given set of policyholders. There are a great number of ways in

which each insurer buys reinsurance and each reinsurer enters retrocession agree-

ments. A set of reinsurance/retrocession arrangements is called optimal if it min-

imizes the total capital cost of the insurers and reinsurers. With the condition

that all companies have identical tax rates and agency cost factors, this criterion

is equivalent to minimizing the total amount of capital.4

4 It has been pointed out to me that reinsurers usually have a different tax rate than primary

companies. If tax rates or agency cost factors are not all equal, or the costs are not all linear

to the capital, then the optimal treaty is one that minimizes some increasing function of the

capitals.
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3 Market Competition Produces Lower Total Capital

Minimization of the total capital cost is a new optimality criterion. Criteria in

the existing literature are very different; see Kaluszka (2001), Gajek and Zagrodny

(2004), Lampaert and Walhin (2005), Cai and Tan (2007) and Fu and Khury (2010)

for a sample of recent papers. In these papers, reinsurance is considered optimal

if it minimizes the risk of the net loss under a given constraint on the reinsurance

cost (or a constraint on the ceded premium). This line of research is valuable for

reinsurance purchase decisions but is incomplete. A major concern of reinsurance

has been missing. The reinsurer needs additional capital to accommodate the

increased risk from assumed losses, which increases its capital cost. This extra cost

is transferred to the ceding company through reinsurance pricing. To the ceding

company, if this extra cost is not offset by the reduction of its own capital cost,

the deal is not acceptable. My method treats the ceding insurer and the reinsurer

equally. The optimal treaty is fair to both firms and is the most beneficial to

the primary policyholder. Obviously, an optimal reinsurance treaty so defined

cannot be calculated by either company since one company cannot model the

other company’s aggregate loss distribution. Fortunately, it is not necessary to

explicitly calculate the optimal treaty terms. As long as each company correctly

prices its own policies, the optimal treaty is automatically attained through price

competition. I will use a few examples to illustrate the working of this market

force.

Let us begin with a simple scenario. Assume a primary insurer has written a

line of business and would like to cede a part of it. Denote by fPr the amount

of capital cost saved by reinsurance. The reinsurer incurs extra capital costs

associated with the assumed loss. It charges the primary insurer an additional

premium, denoted by fRe, to cover these costs.5 So the primary insurer pays an

amount of premium fRe to save an amount of cost fPr. The reinsurance only makes

sense if fRe ≤ fPr, which means the sum of the capital costs of both companies

must decrease.

Assume further that there are two competing reinsurers; a treaty placed with

reinsurer 1 costs the primary insurer a premium fRe,1 to save a capital cost fPr,1,

and one placed with reinsurer 2 costs fRe,2 to save a capital cost fPr,2. The

immediate (present value) benefits from the treaties are fPr,1 − fRe,1 and fPr,2 −
fRe,2, respectively. The insurer would choose the reinsurer with the greater benefit,

5 Rigorously, fPr and fRe represent risk-adjusted present values of the corresponding capital

cost cash flows.
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which is the one producing the lower total capital cost.

Now look at an example where primary insurers choose reinsurance to compete

with each other for business. Suppose that a line of business is on the market and

two insurers are bidding. Suppose each insurer has a set of available reinsurance

options. As proved in Section 2, the fair gross premium includes a capital cost

component that equals the present value of the total capital cost of the insurer

and the reinsurer. To win the bid, an insurer looks for a reinsurance treaty that

can produce the lowest possible total capital cost. Eventually, the business will

go to the insurer able to secure a reinsurance with so low a total capital cost that

the other cannot match. Obviously, an insurer’s ability to get a more competitive

reinsurance deal depends on its existing business and capital structure.

The above analysis shows that market competition always favors a reinsur-

ance structure that produces less total capital cost. Consequently, a reinsurance

structure with the least total capital cost is an attracting equilibrium.

4 Capital Requirement Defined by a Coherent Risk

Measure

Suppose a uniform capital requirement is imposed on all insurers by regulation. I

will only deal with the loss risk, that is, the risk that L becomes very large. The

required capital can be defined by a risk measure on the loss distribution. A class

of risk measures considered desirable are the coherent risk measures. According to

Artzner et al. (1999), risk measure ρ is called coherent if it satisfies the following

conditions:

• Monotonicity: For any two losses, L1 and L2, if L1 ≤ L2, then ρ(L1) ≤ ρ(L2)

• Positive homogeneity: For any loss L and a constant a > 0, ρ(aL) = aρ(L)

• Translation invariance: For any loss L and a constant b, ρ(L+ b) = ρ(L) + b

• Subadditivity: For any two losses, L1 and L2, ρ(L1 + L2) ≤ ρ(L1) + ρ(L2)

All these properties have simple intuitive meanings. Most important to this study

is subadditivity. Subadditivity implies diversification: When two risks are pooled

together, the required capital of the pool is less than the sum of the required

capitals of each risk.

A typical property/casualty loss is a continuous random variable, that is, its

cumulative distribution function FL(x) is continuous. The p-quantile of L is de-
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fined by

Qp(L) = min{x|FL(x) ≥ p}, p ∈ (0, 1), (4.1)

and the tail value at risk (TVaR) at level p is

TVaRp(L) = E[L|L ≥ Qp(L)], p ∈ (0, 1). (4.2)

The TVaR is the most well-known coherent risk measure for continuous risks. (The

quantile, also called the value at risk, does not always respect subadditivity.) The

TVaR will be used in my illustrative examples.

Suppose a coherent risk measure ρ is selected by the regulator. Then ρ(L) is

the amount of assets a company is required to hold. In a one-year model, the

premium provides part of the assets at the beginning of the year; the required

capital thus equals the required assets minus the premium. Following Section 2,

I examine reinsurance structures that minimize the sum of the required capitals

of the insurer and the reinsurer. This is equivalent to the problem of minimizing

the sum of their required assets,6 i.e., minimizing the sum of their risk measures.

Note that the required assets should be calculated from the loss distribution at

the end of the year and discounted back to the beginning of the year. I ignore the

discounting here for simplicity.

5 Lower Bound of Total Capitals and Comonotonicity

Reconsider the simplified model with a single loss L, one primary insurer and

one reinsurer. The primary insurer issues a policy to cover the entire loss L

and cedes part of it to the reinsurer. Thus, L is split between the two insurers,

L = LPr +LRe. For a given coherent risk measure ρ, by the rule of subadditivity,

ρ(L) ≤ ρ(LPr) + ρ(LRe). This inequality provides an absolute lower bound for

the sum of capitals: however L is split between the two insurers, the sum of their

required assets is no less than ρ(L). To minimize the total required capital is to

get the sum ρ(LPr) + ρ(LRe) as close to ρ(L) as possible.

The lower bound can be attained by many reinsurance arrangements. One

trivial case is that LPr = L and LRe = 0, or LPr = 0 and LRe = L, that is, only

one insurer holds all of L. This fact is no surprise, for if there is only one insurer

6 This can be explained using equations (2.2) and (2.3). The assets for the insurer are pn+ePr,

and that for the reinsurer are pc+eRe. It is proved in Section 2 that the total (gross) fair premium

pn + pc decreases as the total capital ePr + eRe decreases. If a reinsurance treaty minimizes the

total required assets, it must simultaneously minimize the total required capital and the total

fair premium.
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and all losses are insured with it, the effect of diversification is maximized, and the

least amount of capital is required. An extension of this fact is that an insurance

market with few insurers requires less total amount of capital than a market with

many insurers. But few insurers means less competition, and insurers have less

incentive to price policies fairly.

The lower bound is also reached by the quota share reinsurance. If a is the

quota share ceding fraction (0 < a < 1), then LPr = (1− a)L and LRe = aL. The

equality ρ(L) = ρ(LPr) + ρ(LRe) follows from the rule of positive homogeneity

of ρ. More generally, if two losses L1 and L2 are perfectly linearly correlated,

that is, their linear (Pearson) correlation coefficient equals 1, then ρ(L1 + L2) =

ρ(L1)+ρ(L2). Therefore, if a reinsurance treaty splits L into two linearly correlated

parts, then the sum of their required capitals is minimized. The condition of

perfect linear correlation can rarely be fulfilled. Fortunately, it can be much

relaxed in the following two steps. First, although some kind of perfect correlation

has to exist between two losses, L1 and L2, for their risk measures to add up, the

correlation does not have to be linear—any monotonic and increasing relationship

suffices. Second, a perfect correlation only needs to exist at the tail, for large

values of L1 and L2. Mathematically, both these issues have been well treated in

the literature, as explained below.

Let me first give the definition of comonotonicity. Two random variables, X

and Y , are perfectly linearly correlated (the linear correlation coefficient of X and

Y equals 1) if and only if their support lies in a straight line with a positive slope.

(Recall that the support is the set of all possible values of X and Y in the (x, y)-

plane. It can be visualized by drawing a scatter plot. A scatter plot of a pair of

random variables is merely a small, random subset of its support.) Comonotonicity

is an extention of perfect linear correlation. Two random variables, X and Y ,

are called comonotonic, if their support lies in a one-dimensional curve that is

never decreasing. More precisely, the support of a pair of comonotonic random

variables satisfies the following condition: if, for any two points in the support,

(x1, y1) and (x2, y2), x1 < x2 implies y1 ≤ y2 and y1 < y2 implies x1 ≤ x2.

A good overview of comonotonicity and its application in risk theory is Dhaene

et al. (2006), where comonotonicity is defined for any number of random variables.

Comonotonicity can be considered a perfect nonlinear correlation. For example, if

X is a positive random variable, then X and X2 are comonotonic but not linearly

correlated. The support of (X,X2) is contained in the graph of parabola y = x2.

The Spearman rank correlation coefficient is a more meaningful measure than the

linear correlation coefficient for characterizing such a nonlinear relationship. The
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rank correlation coefficient of two comonotonic random variables equals 1 (see

Wang 1998), while their linear correlation coefficient is typically less than 1.

The TVaR is a coherent risk measure and is also additive for comonotonic risks:

If two losses L1 and L2 are comonotonic, then TVaRp(L1 + L2) = TVaRp(L1) +

TVaRp(L2) for any p (Dhaene et al. 2006).7 In the one-insurer-one-reinsurer

model, assume the required asset is determined by a risk measure ρ that is co-

herent and additive for comonotonic risks. If L is split in such a way that LPr

and LRe are comonotonic, then ρ(LPr) + ρ(LRe) reaches its lower bound ρ(L).

We have seen that the quota share reinsurance splits the loss this way. Another

example is the stop-loss reinsurance, which is defined by

LPr = min(L, k), LRe = max(L− k, 0), (5.1)

where k > 0 is the attachment point. It is easy to check that the three variables

L, LPr and LRe are comonotonic, and ρ(L) = ρ(LPr) + ρ(LRe).

Risk measures like Qp(L) and TVaRp(L) are determined by large values of L.

When looking for a way to split L into LPr and LRe to minimize the total capital,

one should focus on large losses. The condition of comonotonicity requires the

entire support of the random vector to be in a one-dimensional non-decreasing

curve. This condition is too strong. Cheung (2009) introduces the concept of

upper comonotonicity, only requiring the condition to be satisfied in the upper

tail. If LPr and LRe are upper comonotonic, then ρ(L) = ρ(LPr) + ρ(LRe), where

ρ is either Qp or TVaRp and p is sufficiently close to 1. In general, the amount

of total capital corresponding to a reinsurance structure is determined by large

losses only.

6 Optimal Reinsurance in a General Setting

I now apply the concepts developed so far to formulate a general problem about

optimal reinsurance. I have discussed the problem of splitting a single loss L

between an insurer and a reinsurer. In the real world, a primary insurer does not

have the option or the intension to cover its entire book with a reinsurance treaty.

It only attempts to cede some unwanted lines or accounts. On the other hand, a

reinsurer assumes losses from many insurers and reinsurers. A new treaty adds

losses to its existing book. When determining the optimal reinsurance, one needs

7 There are other risk measures that are coherent and additive for comonotonic risks, e.g., the

concave distortion risk measures. The VaR is additive for comonotonic risks but is not coherent

(Dhaene et al. 2006).
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to consider these “other” loss portfolios of the ceding insurer and the reinsurer, in

addition to the loss portfolio to be ceded. The following model includes all these

sets of losses.

Assume a primary insurer initially carries losses X + Z, where X will be

entirely retained and Z may be partially ceded. The reinsurer holds a loss Y

before assuming any part of Z. A reinsurance treaty splits Z into a net and a

ceded part, Z = Zn+Zc. Before reinsurance, the total required asset of the insurer

and the reinsurer is ρ(X + Z) + ρ(Y ). After reinsurance, the total required asset

is ρ(X + Zn) + ρ(Y + Zc). A treaty is optimal if the latter sum is minimized.

If ρ is a coherent risk measure, an absolute lower bound for ρ(X+Zn)+ρ(Y +

Zc) is ρ(X + Y + Z). In general, the distributions of losses X, Y and Z and

correlations between them are complex. There is no ceding arrangement that can

bring down the sum ρ(X + Zn) + ρ(Y + Zc) to anywhere near this lower bound.

Moreover, in the reinsurance market, only a few types of treaties are commonly

placed, like the quota share, excess of loss, catastrophe and stop loss treaties. This

further limits how low ρ(X + Zn) + ρ(Y + Zc) can become. Minimizing the sum

ρ(X + Zn) + ρ(Y + Zc) for a given set of available treaties is mathematically a

constrained optimization problem.

From the preceding section, we learned that if a ceding arrangement makes

X + Zn and Y + Zc comonotonic (upper comonotonicity suffices), then the sum

of required capitals attains its minimum value ρ(X + Y + Z). In other words,

the minimum sum of capitals corresponds to the maximum correlation between

the losses (their rank correlation equals 1). This suggests that the value of ρ(X +

Zn) + ρ(Y + Zc) may be inversely related to the correlation between X + Zn and

Y +Zc. A reinsurance contract that makes the total capital small must make the

correlation large. This observation, if it can be proved in certain circumstances,

should be very interesting. I will examine some examples where a linkage between

the total capital and the correlation does exist. In the appendix, I will provide a

graphic reasoning to further support this relationship.

7 Examples

In the rest of the paper, examples are provided to examine how closely the total

capital is related to the correlation between the ceding insurer’s and the reinsurer’s

losses. The first example uses normally distributed losses, where the optimal

ceding terms can be obtained in closed form. The second example is more general

and has to be solved numerically. The optimal cedings are calculated based on
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simulation results.

7.1 A multivariate normal example

Let X, Y and Z be three jointly normally distributed variables. X and Z are

losses written by the primary insurer, X will be retained and Z partially ceded;

Y is the existing loss of the reinsurer. Suppose only quota share treaties may

be placed on Z. Although this is not a realistic situation (actual losses do not

take negative values as the normal distribution does), discussion of this tractable

example can provide us valuable insights.

Let X, Y and Z have the following parameters: means µx, µy and µz, standard

deviations σx, σy and σz, and pairwise correlation coefficients γxz, γyz and γxy.

If a quota share treaty is placed and a is the ceding fraction, then the primary

company’s net loss is LPr = X + (1− a)Z, and the reinsurer’s total loss is LRe =

Y + aZ. These two losses are also normal random variables. Their means and

standard deviations are as follows.

µPr = E(LPr) = µx + (1− a)µz

σ2Pr = Var(LPr) = σ2x + (1− a)2σ2z + 2(1− a)γxzσxσz

µRe = E(LRe) = µy + aµz

σ2Re = Var(LRe) = σ2y + a2σ2z + 2aγyzσyσz

For a given confidence level p, the risk measuresQp and TVaRp of a normal random

variable can be easily obtained. In fact, they can be written as Qp = µ + hpσ

and TVaRp = µ + kpσ, where hp and kp are constants independent of µ and σ.

For example, Q0.99 = µ+ 2.33σ and TVaR0.99 = µ+ 2.67σ. Therefore, if the risk

measure ρ is of the quantile or the TVaR type, minimizing the sum ρ(LPr)+ρ(LRe)

is equivalent to minimizing the sum σPr + σRe. The latter problem will be solved

below.

The variances of the insurer and the reinsurer can be written in a simpler form

σ2Pr = σ2z((a−APr)
2 +B2

Pr)

σ2Re = σ2z((a+ARe)
2 +B2

Re),
(7.1)

where

APr = 1 + γxzσx/σz, B2
Pr = (1− γ2xz)σ2x/σ2z

ARe = γyzσy/σz, B2
Re = (1− γ2yz)σ2y/σ2z .

(7.2)

The sum of standard deviations is thus

σPr + σRe = σz

(
((a−APr)

2 +B2
Pr)

1/2 + ((a+ARe)
2 +B2

Re)
1/2

)
.
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To minimize this sum is to minimize the following function f(a)

f(a) = ((a−APr)
2 +B2

Pr)
1/2 + ((a+ARe)

2 +B2
Re)

1/2,

where the ceding fraction a is between 0 and 1. The derivative of f(a) is

f ′(a) =
a−APr

((a−APr)2 +B2
Pr)

1/2
+

a+ARe

((a+ARe)2 +B2
Re)

1/2
.

Setting the right-hand side of the equation equal to zero, moving one of the terms

to the other side and squaring the terms, we have

(APr − a)2

(a−APr)2 +B2
Pr

=
(a+ARe)

2

(a+ARe)2 +B2
Re

.

Simplifying this gives

(APr − a)2B2
Re = (a+ARe)

2B2
Pr.

Let us assume that γxz ≥ 0 and γyz ≥ 0, meaning that the losses X, Y and

Z are not negatively correlated, a condition likely to be true in the real world.

Mathematically, this implies APr ≥ 1 and ARe ≥ 0. If we assume −ARe ≤ a ≤
APr, then APr − a ≥ 0 and a + ARe ≥ 0. Taking the square root in the above

equation, we get the solution

a∗ =
APrBRe −AReBPr

BPr +BRe
. (7.3)

This is the unique zero of f ′(a) between −ARe and APr and the unique minimum

point of f(a). The function f(a) strictly decreases from −ARe to a∗ and strictly

increases from a∗ to APr. Note that the optimal ceding fraction does not depend

on how X and Y are correlated.

Now let us examine a few special cases. First, suppose Z is uncorrelated with

both X and Y , that is, γxz = γyz = 0. From the equations (7.2), APr = 1,

BPr = σx/σz, ARe = 0 and BRe = σy/σz. Using (7.3), we obtain the optimal

ceding fraction a∗ = σy/(σx + σy). So, in this case, to minimize σPr + σRe, Z

should be shared between the primary insurer and the reinsurer in proportion to

the standard deviations of their “fixed” losses, σx and σy.

A more interesting case is when Z is highly correlated to X but almost un-

correlated to Y . Then γxz ≈ 1 and γyz ≈ 0. These imply that APr ≈ 1 + σy/σz,

BPr ≈ 0, ARe ≈ 0 and BRe ≈ σy/σz. By (7.3), a∗ ≈ 1 + σx/σz. This a∗ is greater

than 1. Thus, to minimize σPr+σRe, Z should be 100 percent ceded. On the other

hand, since Z and X are highly correlated, the more Z is ceded to the reinsurer,
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the greater is the (linear) correlation between X+(1−a)Z and Y +aZ. This cor-

relation is maximized at a = 100%. In this example, the reinsurance is optimized

at the same ceded ratio where the correlation between the losses is maximized.

A parallel result is that, if Z is highly correlated to Y but almost uncorrelated

to X, then the optimal ceded ratio is 0 percent. At this ceded ratio, the correlation

between the losses is again maximized.

Now let us plug in some numerical values. Assume σx = 300, σy = 500 and

σz = 100; γxz = 0.4, γyz = 0.4 and γxy = 0.2. Using (7.2), we compute APr = 2.20,

BPr = 2.75, ARe = 2.00 and BRe = 4.58. Substituting these into (7.3), we obtain

the optimal ceding fraction a∗ = 62.5%. However, this a∗ does not provide the

maximum correlation between X + (1 − a)Z and Y + aZ. Using simulation, we

get that the maximum linear correlation coefficient is 0.290 and is reached at the

ceded ratio of 30.5 percent. Therefore, the minimum total capital does not always

correspond to the maximum correlation. As mentioned before, this result is not

really a surprise because the capital is determined by large losses, while the linear

or rank correlation coefficient does not distinguish between large and small losses

(or even negative losses, which is the case in this example).

7.2 A numerical example

If the joint distribution of losses X, Y and Z is known, and a set of available

reinsurance treaties is given, the optimal treaty can be found by simulation. To

have an easy control on correlations between the losses, I will assume the losses

are jointly lognormal. I will look at two common types of treaties, the quota share

and the stop loss.

Let the variables X, Y and Z be jointly lognormal, in the sense that ln(X),

ln(Y ) and ln(Z) are jointly normal. The mean µ0 and the standard deviation σ0

of these normal variables are as follows.

ln(X) ln(Y ) ln(Z)

µ0 19.5 20.0 17.0

σ0 0.16 0.25 1.10

The mean, the standard deviation and quantiles of X, Y and Z can be com-

puted from the above table with simple formulas. I will denote a parameter

for a normal random variable with a superscript 0, and the same parameter for

the corresponding lognormal variable without a superscript. For example, µ0x

is the mean of ln(X) and µx the mean of X. These formulas are well known:

15

Reinsurance Arrangements Minimizing the Total Required Capital

Casualty Actuarial Society E-Forum, Spring Volume 2



µx = exp(µ0x + (σ0x)2/2), and σx = exp(µ0x + (σ0x)2/2)(exp((σ0x)2) − 1)1/2. The p-

quantile of X can be written as Qp(X) = exp(µ0x+hpσ
0
x), where hp is the p-quantile

of the standard normal distribution. More complex measures of the lognormals,

like TVaRp(X) or the standard deviation of X + Y + Z, are more conveniently

estimated using simulation. Some useful statistics for X, Y and Z are listed in

the following table (loss amounts are in millions).

X Y Z

µ 298 501 44

σ 48 127 68

CV 0.16 0.25 1.53

Q0.99 427 868 312

TVaR0.99 451 941 477

I will choose ρ = TVaR0.99 as the risk measure. In addition to the known µ

and σ, if the linear correlation coefficients γxz, γyz and γxy are also given, then

the distribution of the triplet (X,Y, Z) is completely determined. Following our

naming convention, γ0xz is the linear correlation coefficient between ln(X) and

ln(Z). γ0xz determines γxz, and vise versa. A greater γ0xz corresponds to a greater

γxz. The strongest correlation between X and Z is attained when ln(X) is a linear

function of ln(Z) with a positive slope. In this case, γ0xz = 1 but γxz is generally

less than 1.8

A straightforward sampling method is used to find the optimal ceding term.

For µ and σ in the above table and known γxz, γyz and γxy, a large random

sample of (X,Y, Z) is drawn (using Excel with the @RISK add-in or with a macro

performing the Cholesky decomposition). Applying a given reinsurance treaty on

the sample data, we get samples of losses of the primary insurer and the reinsurer,

from which the TVaR of the losses can be estimated. Table 1 displays results for

quota share treaties. Five scenarios of different γ0xz, γ
0
yz and γ0xy are analyzed. For

each scenario, a set of 20,000 sample points of the triplet (X,Y, Z) is drawn; 101

quota share fractions, a, ranging from 0 to 100 percent with 1 percent increments,

are applied; the measures ρ(X + (1− a)Z) and ρ(Y + aZ) are estimated; and the

least sum of them is found by comparison, which gives the optimal quota share

term. (Loss amounts in Table 1 are in millions.)

8 The exact formula is γxz = [exp(σ0
xσ

0
zγ

0
xz) − 1]/[(exp((σ0

x)2) − 1)(exp((σ0
z)2) − 1)]1/2. When

γ0
xz = 1, γxz is generally less than 1, but the Spearman rank correlation coefficient between X

and Z equals 1.
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Table 1: Optimal Quota Share Fractions

(1) (2) (3) (4) (5)

γ0xz 0.9 0.9 0 0.1 0

γ0yz 0 0.1 0.99 0.9 0

γ0xy 0 0 0 0 0

ρ(X + Y + Z) 1,540 1,570 1,764 1,721 1,422

a∗ (optimal ceding) 100% 100% 0% 36% 75%

ρ(X + (1− a∗)Z) + ρ(Y + a∗z) 1,596 1,624 1,771 1,756 1,529

In the table, ρ(X + Y + Z) is the absolute lower bound of the total required

asset, for any type of reinsurance. In scenario (3), the optimal total asset ρ(X +

(1− a∗)Z) + ρ(Y + a∗Z) is close to ρ(X + Y +Z). But, in general, the difference

between the two is sizable. In scenarios (1) and (2), Z is strongly correlated to

X but weakly correlated Y . Ceding out the entire Z (a = 100%) would maximize

the correlation between X + (1− a)Z and Y + aZ.9 This supports the claim that

the optimal treaty is the one that creates the strongest correlation between the

insurer’s and the reinsurer’s losses. A similar relationship holds in scenario (3),

where Z is strongly correlated to Y but weakly correlated to X. The optimal term

is to cede nothing, which again corresponds to the strongest correlation between

the two losses. However, in scenario (5), the optimal ceding ratio is 75 percent,

while, as can be shown, the maximum correlation is reached at a = 55%. The two

ratios are different.

I now consider the same five correlation scenarios and perform a similar analysis

for stop-loss treaties. In each scenario, let the primary insurer’s retention, k, vary

from 20 million to 250 million, with 5 million increments. The ceded loss is

Zc = max(Z − k, 0), and the retained loss Zn = Z − Zc = min(Z, k). Comparing

the total asset ρ(X +Zn) + ρ(Y +Zc) for all these k, we get the optimal retention

k∗. The results are summarized in Table 2 (loss amounts are in millions).

In the first two scenarios, Z is highly correlated to X; in the next two scenarios,

it is highly correlated to Y . Thus, intuitively, in the first two scenarios, the

correlation (at the right tail) between X + Zn and Y + Zc increases as more of Z

is ceded. In fact, the sample linear correlation is indeed the highest at k = 20.

9 It can be proved mathematically that, if γxz is very close to 1, then the greater the ceded

ratio a, the greater the linear correlation between X+(1−a)Z and Y +aZ. The intuition behind

this result is that, if Z behaves very similarly to X, then Y + Z, for an arbitrary variable Y ,

behaves more similarly to X than Y does.
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Table 2: Optimal Stop-Loss Retentions

(1) (2) (3) (4) (5)

γ0xz 0.9 0.9 0 0.1 0

γ0yz 0 0.1 0.99 0.9 0

γ0xy 0 0 0 0 0

ρ(X + Y + Z) 1,540 1,570 1,764 1,721 1,422

k∗ (optimal retention) 20 20 250 250 85

ρ(X + Z∗n) + ρ(Y + Z∗c ) 1,598 1,625 1,804 1,770 1,557

Z∗
n = min(Z, k∗), Z∗

c = max(Z − k∗, 0)

This again supports the claim that the optimal treaty maximizes the correlation.

This statement holds true in the next two scenarios, where the optimal treaty is

to cede the least of Z. However, in scenario (5), the maximum linear correlation

is attained at the retention k = 115, which is different from the optimal retention

k∗ = 85.

Finally, let us look at scenario (5) and compare the two types of treaties. The

optimal total required asset for the stop-loss treaties is 1,557, and for the quota

share treaties it is 1,529. So the quota share is more effective in cutting the total

capital.10 This appears to contradict the general belief that a stop-loss treaty

reduces volatility more effectively than a quota share treaty. The fact is, however,

although the stop-loss treaty cuts more capital from the primary insurer, it adds

even more to the reinsurer, which results in an increase in the total required

capital. In general, which type of treaty reduces the total capital more effectively

depends on the joint distribution of all losses.

8 Conclusions

I have proposed to call a reinsurance arrangement optimal if it minimizes the

total capital of the primary insurer and the reinsurer. This optimal reinsurance

produces the lowest price for primary insurance policies, so is an attracting equilib-

rium under market competition. An interesting relationship is observed between

the total capital and the tail correlation between the losses of the insurer and the

10 The quota share structure is better in the other four scenarios as well, but those results are

of no surprise. As the stop-loss retention is limited to between 20 and 250, ceding the whole of

Z and ceding none of Z are excluded, yet the optimal quota share terms in these scenarios fall

into these extremes.
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reinsurer. A multivariate normal model and a numerical example are analyzed to

get more insight into the nature of an optimal treaty.

This paper fills a gap in the existing literature on optimal reinsurance, in

which the capital cost of the reinsurer has not been adequately addressed. My

approach establishes a close link between reinsurance and pricing of insurance and

reinsurance policies. In a competitive market, reinsurance not only provides the

ceding insurer a tool of risk transfer, but also satisfies the reinsurer with a fair

amount of profit and benefits primary policyholders by reducing their costs.

Tail correlation between losses has been widely discussed in relation to risk

measurement and management. In this paper, it is linked to the size of the total

capital. This seems to be an interesting area of research.
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Appendix. More on the Linkage Between the Total

Capital and Correlation

I have shown that the TVaR is a subadditive risk measure: If ρ = TVaRp, then

ρ(X) + ρ(Y ) ≥ ρ(X + Y ), and the equality holds if X and Y (representing the

losses of a primary insurer and a reinsurer) are comonotonic. Following this fact,

I propose that a linkage exists between the total asset ρ(X) + ρ(Y ) and the cor-

relation between X and Y , that is, the greater the tail correlation, the closer is

ρ(X) + ρ(Y ) to ρ(X + Y ). In this appendix, I will use the scatter plot to further

explain why there should be such a link.

Figures 1 through 3 provide scatter plots of a pair of losses X and Y cor-

reponding to three different correlation scenarios. (The correlations are actually

only different at the right tail.) Each loss is in the range [0, 100). In Figure 1,

X and Y are comonotonic at the tail. In Figure 2, they are not comonotonic but

are still highly correlated at the tail: as X moves up from about 80, Y generally

moves up as well, although it sometimes moves in the opposite direction (down)

slightly. In Figure 3, X and Y have little correlation at the tail.

Let the risk measure be ρ = TVaR0.9. There are 100 sample points in each

figure. The point labeled A has the 11th largest x coordinate, and the one labeled

B has the 11th largest y coordinate. The quantile Q0.99(X) is the x coordinate of

A, and Q0.99(Y ) the y coordinate of B. ρ(X) is the average of the x coordinates
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of the points to the right of A, and ρ(Y ) the average of the y coordinates of the

points higher than B. ρ(X+Y ) is the average of the largest 10 x+y of all points.

In Figure 1, A and B are actually the same point (78, 76) (coordinates are

rounded), and the points to the right of A are the same as those higher than A,

which are also the 10 points with the largest x+ y. Thus, Q0.99(X) +Q0.99(Y ) =

Q0.99(X+Y ) = 78+76 = 154, and ρ(X)+ρ(Y ) = ρ(X+Y ) (= 178). This explains

that if X and Y are perfectly correlated at the tail, then ρ(X)+ρ(Y ) = ρ(X+Y ).

In Figure 2, the upper-right tail is a rather “thin” set. Thus the two points

A and B are close to each other. Further, the following three sets of points are

similar (contain mostly the same points): those to the right of A, those higher

than B, and the ten points with the largest x+y. This implies that ρ(X)+ρ(Y ) is

close to ρ(X + Y ). (Here ρ(X) = 95.3, ρ(Y ) = 88.8 and ρ(X + Y ) = 183.9.) This

example shows that if X and Y are highly correlated at the tail, then ρ(X)+ρ(Y )

is (greater than but) close to ρ(X + Y ).

The upper-right tail in Figure 3 is not a thin set, and the two points A and

B are generally far apart. Also, it is likely that the three sets—the one to the

right of A, the one higher than B and the one with the largest x + y—contain

very different points. So ρ(X) + ρ(Y ) can be much larger than ρ(X + Y ). (Here

ρ(X) = 95.3, ρ(Y ) = 82.4 and ρ(X+Y ) = 174.1.) This is what normally happens

when X and Y are not correlated at the tail.
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Figure 1: X and Y are comonotonic at the tail; ρ(X) + ρ(Y ) = ρ(X + Y )

Figure 2: X and Y are highly correlated at the tail; ρ(X) + ρ(Y ) is close to (but

greater than) ρ(X + Y )
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Figure 3: X and Y are not correlated at the tail; ρ(X) + ρ(Y ) is generally much

greater than ρ(X + Y )
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