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Beyond the Cost Model:  Understanding Price Elasticity 
and Its Applications 

 
Serhat Guven, FCAS, MAAA, and Michael McPhail, FCAS, MAAA  

	
________________________________________________________________________ 

Abstract 
 Once cost models have been constructed, insurers spend a significant amount of time translating 
those expected cost models into a rating algorithm.  Today, competitive analytics are widely used to 
support this effort.  However, companies often fail to fully integrate competitive analytics into the 
pricing process.  The intent of this paper is to provide the basic tools needed for insurers to make more 
effective pricing decisions using customer price elasticity of demand.  To achieve this, we will explore 
demand modeling techniques, as well as practical applications of demand modeling in pricing.   
 
Keywords. Price elasticity; demand; generalized linear modeling; price simulation; price optimization 

_______________________________________________________________________ 
 
1. INTRODUCTION 

We learned in our introductory economics courses that price elasticity of demand (PED) 

is loosely defined as the change in demand for a given change in price.  It measures a 

consumer’s sensitivity to a change in price for a given good or service, ranging from high 

sensitivity (elastic) to low sensitivity (inelastic).   In equation form,  

ܧ                                                 ൌ െ	ሺఓುభିఓುబሻ/ఓುబ
ሺ௉ଵି௉଴ሻ/௉଴

   (1.1) 

Where  ܧ = PED 

  ܲ0 = Initial Price 

  ܲ1 = New Price 

 ௉଴ = Demand at initial priceߤ	 

 ௉ଵ = Demand at new priceߤ	 

One of the benefits of PED is that it enables a firm to enhance its pricing strategies 

through a better understanding of the price sensitivity of its target market.  Let’s look at a 

basic example.  Suppose an accountant has been operating a private firm for the past five 

years and has built a base of loyal customers. Although sales are stable, growth is stagnant 

and he is becoming concerned with the long-term viability of the firm.  He decides to 

implement a 20% discount on first-time tax returns to bring in new business.  As an 

accountant, he understands the need to maintain profitability and simultaneously raises the 

price of a tax return from $250 to $275.  Knowing that his current customers are extremely 
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loyal, he believes the majority of them will accept the slight increase rather than face the risks 

associated with switching accountants (i.e. lower quality).  In other words, he is altering his 

pricing strategy based on the price elasticity of his target market.  For new business, which 

tends to be more price sensitive, he is lowering the price of first-time tax returns to $220 

($275 x 80%).  He offsets the discount by raising the price for his existing business, which 

tends to be less price sensitive.  Through this pricing strategy, he expects to increase his 

customer base and revenue in the long term.   In reality, there are a number of factors that 

must be considered when altering pricing strategy, but hopefully this example provides some 

insight into how PED can be utilized. 

Another benefit of PED is the accurate measurement of revenue changes in response to 

pricing changes.  In the above example, the accountant increased the price of tax returns for 

current customers by 10% (275/250 - 1).  Although a majority of customers will accept the 

increase, some customers are expected to switch accountants.  Ignoring growth, consider the 

following: 

(1) 

Current 

 Price 

(2) 

Proposed 

 Price 

(3) 

# of Current 

Customers 

(4) 

# of Customers 

Expected to Leave 

Due to Rate Change 

(5) = (1) * (3) 

Expected Revenue 

Under Current 

Rates 

(6) = (2) * ((3) – (4)) 

Expected Revenue 

Under Proposed Rates 

(7) = (6)/(5) - 1 

Expected % 

Change in 

Revenue 

$250 $275 100 5 $25,000 $26,125 4.5% 

 

Although the accountant is still profitable, the expected percentage change in revenue is less 

than half of the proposed rate change.  But what if the number of customers expected to 

leave were ten rather than five?  In that case, the expected percentage change in revenue 

would actually be negative, resulting in an overall loss to the business.  Understanding the 

effects of demand on revenue is crucial to making pricing decisions that improve the overall 

position of the firm. 

As an actuary in the P&C insurance market, PED opens up a whole new realm of 

possibilities.  Although competitive analytics are widely used in the industry today, many 

companies fail to fully integrate them into the pricing process.  For a specific firm, what does 

Table 1.1 Price change vs. revenue change
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it mean to be competitive?  Is it purely a function of price or should more abstract concepts 

such as brand and loyalty also be considered?  How can a firm systematically incorporate 

that information into its pricing strategy?  The rest of this paper will attempt to answer these 

questions, with a focus on basic techniques that can be used to model demand.   In Section 

2, we discuss demand modeling including model form and model structure.  In Sections 3 & 

4, we explore practical applications of PED in the context of price simulation and price 

optimization.  Finally, in Section 5, we provide our concluding remarks. 

Before moving into demand modeling, the authors would like to provide a clarification 

on the intent of this paper.  Due to minimal actuarial literature regarding PED, this paper 

strives to offer an introductory review of the topic as opposed to an actual practitioner’s 

guide.  As such, concepts deserving of numerous pages receive little treatment for the sake 

of brevity.  Our hope is that this paper provides a springboard for further work on PED.  

2. DEMAND MODELING 

In statistical models, there are two basic types of data variables.  The fitted response 

variable is the output of the model whereas predictor variables are inputs to the model.  

Given a set of predictors, the model will provide a fitted response.  The actual response in 

the data has two elements.  The signal represents the predictive behavior and the noise is the 

random behavior.  The goal of the model is to separate the signal from the noise.  Thus, we 

are trying to identify a function that, when applied to the predictors, produces a fitted 

response which represents the signal in the actual response.   

When modeling the price elasticity of demand, the first task is to clearly define the actual 

response.   In addition, it is useful to classify the different types of predictors that are to be 

studied.  There are significant challenges in clarifying the data for elasticity modeling.  For 

example, many companies wrestle with the definition of a quote – questions such as how 

long a quote can stay open before it is considered a rejection, how do you deal with multiple 

changes to endorsements, among many other such issues.  These issues are outside of the 

scope of this paper.   

Price elasticity modeling builds a model in which the actual response is the individual 

customer’s acceptance or rejection of a quote or renewal offering.  The predictors in these 
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models can be classified as price and non price related.  The fitted elasticity is derived from 

the coefficients that are associated with the price related predictors in the model.  Note it can 

be useful to further categorize price factors as external (reflecting pricing activities of 

competitors) and internal (reflecting pricing activities of the company). 

In the following sections, we will be discussing the structural form of a model where, 

given the actual response and predictors, we will be able to calculate fitted responses and 

derive fitted elasticity.  In discussing the model form, we will focus on the following three 

areas: 

 Error distribution of the actual response 

 Functional form that relates the actual response to the predictors 

 Structural design of the predictors 

Furthermore, we will discuss key validation techniques to assess the quality of the 

projections.  The result of the form and modeling exercise is to improve understanding of a 

consumer’s behavior toward price.  

2.1. Error Distribution 

Unlike many other responses that practitioners model, it is a relatively straight forward 

exercise to select the error distribution function of a price elasticity model.  Since the actual 

response is of the form yes/no, the binomial distribution is the most appropriate choice.  

Note that it is possible to have intermediate phases that are associated with different degrees 

of acceptance or rejection, but that is outside the scope of this article.   

Before continuing, it is useful to understand what it means to have a binomial 

distribution.  Error distributions are defined in empirical terms as well as functional forms.  

Empirically, the actual response can only be 0 or 1, meaning the selection of a binomial 

structure is clearly supported.  The functional form of an error distribution relates the 

variance of the actual response to the fitted response.  Another interesting interpretation is 

to understand how the variance function plays a part in model form.  The relationship of the 

variance to the mean in a binomial distribution assumes the following form: 

Variance = Mean x (1 – Mean) 
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Because a binary response is modeled, the fitted response will lie between 0 and 1 (more 

on this later).  Given that constraint, the following picture shows the relationship between 

the mean and the variance: 

	

 

The variance of a result represents the degree of uncertainty associated with the predictions 

of that result.  In a cost model, it is common to assume that the larger the fitted value, the 

greater the uncertainty (variability) of the estimate.  In elasticity models, both large and small 

estimates have lower variability whereas mid-range estimates have higher variability.  This is 

the inherent nature of binomial models.  If all the records are always rejecting offers (actual 

response is low - zero), then the modeler can feel fairly confident that future offers will be 

rejected.  Similarly, if all records are always accepting offers, (actual response is high - one) 

then the same high level of confidence can be said about forecasted results.  Now if the 

actual response is mid range, i.e. 50%, then there would be much greater uncertainty 

associated with the fitted value.  Once the distribution function has been selected, the next 

key structure is the link function. 

2.2. Link Function 

The link function is the functional form that relates the response to the predictors.  There 

are two key requirements when selecting a link function for elasticity modeling.  The first is 

that the fitted response of the probability of acceptance or rejection of a price offer should 

lie between 0 and 1.  The requirement of the link function is to transform the resulting 

coefficients from the structural design into a result that is consistent with the laws of 

probability.  Note that in common statistical terminology, the combination of coefficients 

Figure 2.1 Variance mean relationship of binomial distribution
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from the structural design of the model is called a linear predictor.  It is not necessary for the 

linear predictor to be purely linear, as will be discussed in following sections. 

 The second requirement, though less stringent, is that the fitted responses approach pure 

acceptance or rejection but never actually reach it.  This asymptotic behavior is best 

visualized as the following S-shape curve: 

	
 

Allowing the fitted response to reach pure acceptance or rejection implies too much 

certainty in the forecast. 

Unlike error distributions, there are many choices of link functions that satisfy these 

requirements.  Two functions commonly used in practice are: 

1. The logit or logistic function 

ߤ                                                                     ൌ ݂ሺݔሻ ൌ 	
ଵ

ଵାଵ/ୣ୶୮	ሺ௫ሻ
 (2.1)

Where x is the linear predictor 

2. The probit or normal function 

	=	f(x)	=	(x)	 (2.2)	

Where		is the cumulative normal distribution 

When selecting between different functions, it can be useful to perform validation tests using 

the elasticity concept.  Recall that because we cannot observe individual elasticity, we have to 

derive it from the fitted responses from the model.  There are many ways to define elasticity, 

and we will focus on the following two: 

Figure 2.2 Shape of modeled response for elasticity modeling 
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1. Classical Elasticity, which is the percentage change in demand due to the percentage 

change in price.  As defined in the introduction, for a given customer, 

ܧ	                                                       ൌ െ	ሺఓುభିఓುబሻ/ఓುబ
ሺ௉ଵି௉଴ሻ/௉଴

 (2.3) 

Assume P1 > P0 so that the numerator is negative and the denominator is positive.  

From this formula, the initial expected demand is ‘fixed’ so elasticity has a linear 

relationship with demand.  Note that Pi is the expected probability of success 

associated with the price Pi. 

2. Linear Predictor Elasticity, which we define as the change in the linear predictor due 

to the percentage change in price.  Specifically, for a given customer: 

ܧ                                                        ൌ 	െ
ቀఉబା∝ൈ	

ುభ
ುబ
	ቁିቀఉబା∝ൈ	

ುబ
ುబ
ቁ

ሺ௉ଵି௉଴ሻ/௉଴
	 (2.4) 

Assuming a simple linear predictor with no nonlinear components and one price 

factor: 

ܧ                                                                       ൌ	െ∝	 (2.5) 

Where		is the coefficient associated with the price factor  

Note that in this simple case, E does not vary with demand.  Thus, as the expected 

demand increases, we expect E to be constant.  This relationship holds true 

regardless of the number of non-price factors in the model structure. 

Comparing these two definitions with respect to demand yields the following two lines on 

this theoretical graph: 
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As shown in Figure 2.3, the linear predictor elasticity (dashed) does not vary by demand 

whereas classical elasticity (solid) has a linear relationship with demand.  While there is 

limited interpretative appeal of linear predictor elasticity, we developed this particular 

definition because it has useful properties when assessing link functions.   

Consider the following validation exercise.  A model was built using quote data from 

months one through six.  During months seven and eight, the number of quotes and 

converted policies were captured.  Also assume that a rate change took effect between 

months seven and eight.  The model was used to score the expected close rates of the month 

seven and month eight quotes.  Using these scores, the two months of data were ranked 

from highest to lowest and placed into 17 bins each having approximately the same number 

of quotes.  For each bin, the average linear predictor elasticity was calculated as follows: 

Month 7 Linear Predictor = ln(CR7/(1-CR7)) 

Month 8 Linear Predictor = ln(CR8/(1-CR8))  

Where CRi is the Close Rate in month i 

Then, the change in the observed linear predictor divided by the change in average price 

between the two months was calculated.  This yields the following graph where the model 

used a logit link function: 

 

Figure 2.3 Classical and linear predictor elasticity vs. demand 
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In this graph, the x-axis is the expected conversion for the quotes in both months.  This 

score was used to create approximately equal weighted buckets as identified by the bars from 

the right hand y-axis.  On the left hand y-axis, the average linear predictor elasticity was 

calculated for each group as the change in the aggregate observed linear predictor divided by 

the change in average price between months seven and eight.       

Building a similar graph with the same model structure using a probit link function 

produces the following: 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
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Figure 2.4 Linear predictor elasticity vs. demand for logit link function 
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For this particular data set, the actual linear predictor elasticity line in the logistic model is 

flatter than the actual linear predictor elasticity line in the probit model.  From the prior 

theoretical discussion, the linear predictor elasticity would be expected to be flat when 

plotted against the expected demand.  In this case, the logistic link function outperforms the 

probit link function as it results in a linear predictor elasticity that is more constant relative 

to demand.   

As with any modeling exercise, the practitioner’s choice should be validated to ensure the 

best possible model.  Now that the distribution and link function have been selected, the 

next step is to identify the structural design of the predictors. 

2.3. Model Structure 

Building the model structure is a balance between over-fitting and under-fitting.  When 

the model structure is too complex, there is a greater likelihood of over-fitting the data.  This 

generally results in the loss of predictive power.  However, when the structure is too simple, 

there is a likelihood of under-fitting the data, also resulting in the loss of explanatory power.  

When building the model structure, there are a variety of tests the analyst performs to ensure 

that each element in the model reflects this balance.  These include: 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
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Conversion Group

Figure 2.5 Linear predictor elasticity vs. demand for probit link function 
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 Statistical Tests - these include but are not limited to basic Type III tests, standard 

errors, etc. 

 Consistency Tests – typically these test consistency across different time frames in 

the data.  Alternatively, consistency can be tested across different random data splits. 

 Judgment – the best models reflect the balance of technical information and 

knowledge of the underlying process. 

The structural design of the model is often called the linear predictor.  It reflects the 

combinations of parameters or coefficients that are applied to a particular observation.  Note 

that the modeler specifies the structural design, the link function, and error distribution.  The 

model then calculates a set of parameters that are based on these assumptions.   

The linear predictor contains a variety of different objects to reflect the different 

predictors.  In addition to categorizing predictors as price and non-price factors, they can 

also be classified as categorical and continuous elements.  When a predictor is considered 

categorical, a parameter is calculated for each level in the predictor.  When a predictor is 

considered continuous, a parameter is based on the form of the function introduced.   The 

following example illustrates this concept.  Without loss of generality, assume the following 

simple model structure: 

Base + RatingArea + NamedInsuredAge + f1(RateChange) +f2(CompetitivePosition) 

In this case, the CompetitivePosition is defined as the MarketPrice/CompanyPrice, where 

the MarketPrice is a straight average of five competitors.  This particular metric was useful in 

this model.  There are many other competitive metrics that can be used in demand modeling 

(rank, cheapest ratios, etc.) and there are many challenges in obtaining this external data.  

These concepts are outside of the scope of this paper.   

Looking back at the model form in the example, RatingArea and NamedInsuredAge are 

treated as categorical elements whereas RateChange and CompetitivePosition are continuous 

elements which are introduced as first degree polynomials.  Consider the following output 

from a model: 
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Level Predictor Component 

Base  -0.37876 

NamedInsuredAge 25 0.39105 

RatingArea 1A 0.07411 

RateChange 1.09 -0.9235 * 1.09 + 1.0389 

CompetitivePosition 1.07 -0.9414 * 1.07 + 1.1767 

Linear Predictor 0.28809 

Fitted Value 0.57153 

  Table 2.1 Model structure example; no interactions 

The component represents the parameter applied to the predictor.  For categorical factors, 

the parameter and component are the same.  For continuous factors, the parameter is a 

coefficient applied to the predictor to yield the component.   So the linear predictor for this 

particular observation is the sum of the components.  These components are either specific 

parameters for categorical concepts OR functions of continuous concepts.  The fitted value 

is then the inverse link function applied to the linear predictor.  In the example, the model is 

using a logit link function as defined earlier.   

The prior example reflects a model structure in which the predictors are all treated as 

main effects.  This is a strictly linear concept in which the relationship between predictors 

does not vary based on other predictors.   Adding main effects to the model should be done 

with great care to ensure the main effect is both statistically valid and the resulting pattern in 

the parameters is explainable.  These results should be validated within the framework of the 

three classes of tests described previously. 

To remove this constraint in the linear predictor, it is common to introduce interaction 

terms.  An interaction term is a non-linear construct that allows the results of one predictor 

to become dependent on the value of another predictor.  Building on the prior example, 

assume we have the following model structure: 
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Base + RatingArea + NamedInsuredAge + f1(RateChange) + f2(CompetitivePosition) + 

f2(CompetitivePosition.RatingArea) 

For this model structure the curve parameters for the competitive position will vary based 

on rating area.  Specifically: 

Level Predictor Component 

Base  -0.37781 

NamedInsuredAge 25 0.38846 

RatingArea 1A 0.09457 

RateChange 1.09 -0.9216 * 1.09 + 1.0368 

CompetitivePosition 1.07 -0.9234 * 1.07 + 1.1542 

CompPosit.RatingArea 1A - 1.07 -0.4548 * 1.07 + 0.5685 

Linear Predictor 0.38550 

Fitted Value 0.59520 

           Table 2.2 Model structure example; interactions between competitive position and rating area 

Similar to the discussion related to the main effect, adding interaction terms to the model 

should be done within the context of model testing.  Identifying interactions are a great way 

to complicate the model structure to improve its explanatory power.  This process is 

generally a non-trivial task.  The various strategies for identifying interactions are outside the 

scope of this paper. 

Recall the main purpose in building a demand model is to project the expected price 

sensitivity of the in-force customer or new business quote – in other words, the elasticity.  

Using the definitions from the prior section, we see that the elasticity is a slope function 

associated with the price factors in the model.  Oftentimes, when building a model structure, 

we are looking for interactions (i.e. non-linear relationships) between the price and non-price 

factors.  Within a traditional linear predictor, the analyst could build a model structure where 
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all price factors interact with all non-price factors.  This model would have a strong chance 

of over-fitting the data, and there is a possibility that a derived negative elasticity could occur 

from such a model.   

Arbitrarily adding interactions is generally not a good idea.  This could lead to over-fitting 

which would weaken the predictive power of the model.  In addition, adding any type of 

complexity to a model should be validated based on statistical, consistency and judgment 

tests.  As in other models, if a structure does not produce coherent results, then that 

structure should not be included in the model form.  However, there are technical solutions 

available to build these complex interactions forms without resulting in the negative elasticity 

issue. 

Localization 

The first approach is to build localized models.  Essentially, the analyst would use a 

decision tree tool to split the data into various subsets.  The local main effects models will be 

built for each subset.  By splitting the data into more homogenous subgroups, the modeler 

can build simpler models on smaller sets of data which would have the same effect of 

building complex models on larger sets of data.  The localization procedure is easy to explain 

and implement; however, depending on the split, the model could produce discontinuities in 

some of the continuous factors.  For example, if the split was based on rate increases versus 

rate decreases, then the resulting elasticity projections around the no rate change would not 

likely be continuous. 

Customer Scoring 

The second approach is to use a form of customer scoring to build the model structure.  

In this approach, a main effect model is built to include price and non-price factors.  

Interactions among the non-price factors are then incorporated as necessary.  The 

parameters from the non-price factors are then combined into a customer score.  This score 

is then interacted with the price factors to yield the necessary complexity.   Clarifying this 

with an example, assume we have the following model form: 

Base + RatingArea + NamedInsuredAge + f1(RateChange) + f2(CompetitivePosition) 

Using the parameters from RatingArea and NamedInsuredAge, the following model form is 

built: 
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Base + Score + f1(RateChange) + f2(CompetitivePosition) 

Where   Score = RatingArea + NamedInsuredAge 

Note at this point both of these models would produce the exact same fitted values. The 

final step is to introduce the interaction: 

Base + Score + f1(RateChange) + f2(CompetitivePosition) + Score.f1(RateChange) +                     

Score.f2(CompetitivePosition) 

The following picture illustrates this effect: 

	

    
 

The x-axis represents the competitive position defined as MarketPrice/CompanyPrice.  The 

MarketPrice is defined as a complex weighted average of a collection of competitors’ prices.  

The left hand side of the x-axis represents less competitive rates and the right hand side 

represents more competitive rates.  The left hand y-axis is the fitted value from the model 

and the right hand y-axis is the quote distribution.  The score of the customer is derived 

from the non-price factors as described earlier.  Sometimes this is labeled as the loyalty of a 

customer because it reflects the component of the expected demand that is not based on 

price.  Each line represents a customer score where the higher the score the greater the 

‘loyalty’ of the customer.  When this customer score is interacted with the competitive price 

Figure 2.6 Interaction between customer score and competitive position
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factor, we see that the steepest lines (i.e. most price sensitive) are evident in the middle of 

the tapestry.  This makes sense because the most loyal customers (the flatter lines on the top 

end of the tapestry) are less price sensitive as they identify with either the brand or other 

services provided by the company.  On the opposite end, the least loyal customers (the 

flatter lines on the bottom end of the tapestry) are less price sensitive as they do not identify 

with the company brand or do not seem to be interested in the additional services provided 

by the company.   The middle of the spectrum represents customers who are more 

influenced by the pricing and less so by branding. 

The customer scoring approach allows the modeler to introduce a significant level of 

complexity into the model form.  There are interpretative challenges of what makes a more 

loyal customer for the non-price factors.  In addition, the two staged approach implies an 

amount of quantitative certainty associated with parameters from the original main effects 

model. 

Non-linear Modeling 

The third approach defines the scoring parameters and the main effects parameters 

within the same fitting algorithm.  The following nonlinear model form is constructed: 

Base + RatingArea + NamedInsuredAge + f1(RateChange) + f2(CompetitivePosition) + 

Score.f1(RateChange) + Score.f2(CompetitivePosition) 

Where   Score = exp(RatingArea + NamedInsuredAge) 

Essentially, there are two sets of non-price coefficients that are being calculated within the 

model.  The first represent the parameters to be applied to the main effects.  The second set 

correspond to the embedded score function.  This solution is different from the customer 

scoring approach because it is based on deriving the score parameters at the same time as the 

main effect parameters.  Recall the customer scoring solution is a recursive process where 

the customer score is parameterized in the main effect.  This score is then introduced in a 

subsequent model both as a main effect and an interaction term.  The advantage of the non-

linear model is to remove the element of recursion.  Note that the more stable the main 

effects parameters, the less the difference between the prior two model forms. 

As with the customer scoring approach, there are interpretive challenges to the non-linear 

structure.  In addition, the specific structure can produce convergence issues in the fitting 
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algorithm; however, this can be partly alleviated by simplifying the structure.  Finally, this 

approach (along with the customer scoring strategy) ignores the potential for real negative 

elasticity.  This possibility can exist when a company takes massive rate decreases resulting in 

cancellations.  When customers see a large decrease, they tend to believe that they were 

previously and unfairly priced too high.  This jeopardizes the customer/insurer relationship 

and causes many customers to shop and switch insurers. 

2.4. Validation 

The resulting models from these approaches need to be validated using out of time 

samples to test their performance.  In earlier sections, validation techniques which were 

associated with specifying the correct link function were discussed.  In this section, we will 

focus on two additional validation strategies associated with a validation data set. 

The validation data set can either be a random hold out sample from the original data OR 

an out of time sample OR both.  The value of an out of time sample is that it reflects an 

accurate measure of predictive accuracy.  The models built on historical data are applied to 

subsequent data.  What better way to assess the model performance than to use ‘future’ data.  

The disadvantage of an out of time sample is that there could be a significant change in the 

way business operates that is not reflective of the historical data (e.g. sudden increased 

presence of internet aggregators).  So, the lack of predictive power is not a fault of the 

model, but rather due to the fact that the times are changing.  A similar converse statement 

can be made about a random sample – it is a good measure of explanatory power and will 

not be skewed by distributional drifts in the trend; however, the measure provides a weak 

insight into how well the model will perform in the future.  Ultimately, the modeler decides 

on variations of these two themes. 

Once the validation data set has been defined, the model structure and resulting 

parameters that were built from the training and testing data can be used to score the 

validation records.  These scores can then be compared to the actual values to assess model 

performance.  Consider the following example: 
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In this example, two models were compared to actual results based on an out of time 

validation data set in much the same way that was described in the previous section.  As 

before, the out of time data is the number of quotes from months seven and eight.  The first 

model (dotted) was built using a standard logistic regression within a GLM framework.  The 

model form was localized and several interactions were introduced into the localized 

components.  The second model (dashed) was built using the non-linear method described 

in the prior section.  Applying the structure and parameters to the out of time validation data 

set, a modeled elasticity score was generated from both models.  The quote data was then 

ranked into approximately 11 equal weighted buckets based on the ratio of the score from 

both models.  Specifically: 

(GLMFittedElasticty/GNMFittedElasticity – 1) * 100 

This ratio represents the x-axis in Figure 2.7.  For each of these buckets, the aggregate 

modeled elasticities were calculated as described earlier (the change in close rate divided by 

the change in price).  The dashed line and the dotted line intersect when both models 

produce the same score.  To the left of the intersection, the dashed line is higher than the 

dotted.  This represents the set of observations in which the GNM produces a higher 

Figure 2.7 Validation of elasticity models against observed elasticity 
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expected elasticity.  To the right of the intersection, the dashed line is less than the dotted 

which represents when the GNM approach produces a lower expected elasticity.   

Finally, the observed elasticities (solid line) for each of these buckets were plotted.  

Comparing these different lines allow the modeler to assess which structural form is doing a 

better job of predicting the elasticity.  In this particular case, it appears as if the non-linear 

model structure is over-fitting the historical data.  Thus, it has weaker predictive power.  

This result is more apparent when the GNM predicts a higher elasticity than the GLM. 

In the prior example, the model structure and resulting parameters were validated on an 

out of time sample.  From this approach, we can make general statements about the 

appropriateness of the model form; however, we are unable to make specific statements 

about the strengths and weaknesses of particular aspects of the model structure.  For 

example, how predictive is the set of parameters coming from a particular interaction?  An 

approach to deal with this problem is to use the validation data to reparameterize the model 

structure that was built from the historical data.  The modeler can then compare the 

parameters calculated from the training and testing data to the parameters calculated from 

the validation data.  The inconsistencies between the sets of the parameters indicate where 

there are weaknesses in the predictive power of certain aspects of the model structure. 

Modeling the demand and deriving elasticity provides a powerful understanding of the 

customer’s reaction to the presented price.  This understanding is crucial in setting the right 

rate for the risk.  These models require different technical expertise than those of standard 

costs models, as was described by their structure and form.  Ultimately, when building a 

model it is imperative to realize that, regardless of strategy, the best models tend to be a 

mixture of technical expertise combined with business acumen. 

3. PRICE SIMULATION 

In the following two sections, we will look at practical applications of PED, beginning 

with price simulation.  With the help of our demand models, price simulation allows us to 

“predict” how our book of business will change over time with respect to key metrics such 

as profitability and demand.  To gain an understanding of how price simulation can be 

utilized in the pricing process, the remainder of this section will focus on a specific example. 
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3.1. Scenario Testing 

During a rate review, it is not uncommon for an insurance company to have a few 

different scenarios that it would like to test.  Although the company may have a high-level 

idea in mind (such as a 5% rate decrease), there are a number of ways that 5% decrease can 

be allocated.  Price simulation allows us to determine which scenario will help us best 

achieve our goals.  For example, suppose an insurer writes personal auto insurance.  Based 

on initial countrywide planning efforts, the insurer has decided to pursue a 5% rate decrease 

in state X.   In addition, it would like to simulate two price scenarios to help determine 

which one should be implemented.  The scenarios are as follows: 

 Scenario 1 – 5% base rate decrease 

 Scenario 2 – 15% decrease for operators aged 25-30 off-balanced to an overall 5% 

decrease 

Once the scenarios have been determined, the assumptions that feed the simulator must be 

developed.  For this example, assume the following: 

 Datasets 

o Quotes 

o Renewals 

 Conversion Model 

o Price Component - Premium 

 Retention model 

o Price Component – Market Competitiveness (fixed) 

 Time Horizon – Four periods, each lasting six months 

 Quote Growth Rate – 5% each period 

 Quotes do not enter simulation until new rates go into effect at the beginning of 

period 1 

 Quote distribution constant over time (i.e. if 21 year olds represent 15% of the 

quotes in period 0, they will represent 15% in subsequent periods as well) 

 Aging Assumptions 

o Operators age by 1 every other period 

o Vehicles age by 1 every other period 
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3.2. Running the Simulation 

Now that the assumptions have been identified, the insurer can run a simulation.  For 

educational purposes, we will examine “quotes” and “renewals” separately to gain an 

understanding of the mechanics underlying price simulation.  Let us begin with “quotes”: 

 Quotes 

 

(1)  

Period 

(2)  

Policies 

Offered 

(3)  

Policies 

Written 

(4) = (3) / (2) 

Conversion 

Rate 

(5)  

Policies 

Retained 

(6) = (5) / (3) 

Retention Rate 

(7)  

Profit Margin 

(8) 

Elasticity 

Scenario 1 

0 N/A N/A N/A N/A N/A N/A N/A 

1 20,000 5,493 27.5% 4,669 85.0% 1.9% 1.8 

2 21,000 5,767 27.5% 4,902 85.0% 1.9% 1.8 

3 22,050 6,058 27.5% 5,150 85.0% 1.9% 1.8 

4 23,153 6,360 27.5% 5,406 85.0% 1.9% 1.8 

Scenario 2 

0 N/A N/A N/A N/A N/A N/A N/A 

1 20,000 5,646 28.2% 4,743 84.0% 1.8% 2.4 

2 21,000 5,928 28.2% 4,980 84.0% 1.8% 2.4 

3 22,050 6,228 28.2% 5,231 84.0% 1.8% 2.4 

4 23,153 6,538 28.2% 5,492 84.0% 1.8% 2.4 

Table 3.1 Quote simulation 

In period 0, there are no Policies Offered since we assumed quotes do not enter the 

simulation until period 1.  In period 1, the initial quote dataset of 20,000 enters the 

simulation.  In period 2, 21,000 new quotes enter the simulation based on the assumed 5% 

quote growth rate.  Periods 3 & 4 follow similarly.  Polices Written shows the number of 

quotes converted based on the assumed conversion model.  Once policies written are 

determined, an aggregate Conversion Rate can be calculated, as shown in Column (4).  

Policies Retained gives the number of converted quotes that persist to the next period 

based on the assumed retention model.  Once policies retained are determined, an aggregate 

Retention Rate can be calculated, as shown in Column (6).  Column (7) shows the Profit 

Margin changes over time in each scenario.  The conversion rate, retention rate and profit 

margin are the same for each period because the quote distribution remains constant over 

time per our assumptions.    Lastly, Column (8) contains the aggregate elasticity for the quote 

dataset.  Since elasticity is a function of demand and demand is higher in Scenario 2, it 

follows that the Scenario 2 elasticity is higher than the Scenario 1 elasticity.  Based on Table 



Beyond the Cost Model: Understanding Price Elasticity and its Applications 
	

	
	

22	
	

3.1, which scenario is better?   From a growth perspective, Scenario 2 is superior.  However, 

from a profit margin perspective, the insurer would recommend Scenario 1.  Before making 

a final decision, we must consider “existing business”: 

Renewals 

 
(1)  

Period 

(2)  

Policies Offered 

(3)  

Policies Retained 

(4) = (3) / (2) 

Retention Rate 

(5)  

Profit Margin 

Scenario 1 

0 50,000 44,000 88.0% 2.5% 

1 44,000 41,287 93.8% 2.4% 

2 45,9561 44,162 96.1% 2.3% 

3 49,064 47,147 96.1% 2.2% 

4 52,296 49,315 94.3% 2.2% 

Scenario 2 

0 50,000 44,000 88.0% 2.5% 

1 44,000 41,287 93.8% 2.4% 

2 46,030 44,155 95.9% 2.5% 

3 49,135 47,121 95.9% 2.6% 

4 52,352 49,263 94.1% 2.7% 

Table 3.2 Renewal simulation 

In period 0, policies offered equal the initial renewal dataset of 50,000 policies.  In period 1, 

policies offered equal the policies retained from period 0.  This number is the same in both 

scenarios since we assumed the price component in the retention model was fixed (i.e. the 

market price and competitor price were perfectly correlated).  In period 2, converted quotes 

from period 1 have transitioned to renewals.  Thus, policies offered equal the sum of period 

1 policies retained from the quotes in Table 3.1 and the renewals table in Table 3.2.  Periods 

3 and 4 follow similar logic. Policies Retained shows the number of renewal policies that 

are retained to the next period based on the assumed retention model.   Once policies 

retained are determined, an aggregate Retention Rate can be calculated, as shown in 

Column (4).  Lastly, Column (5) shows how the Profit Margin changes over time in each 

scenario.  Based on Table 3.2, which scenario is better?   From a retention perspective, 

Scenario 1 is best.  However, from a profit margin perspective, the insurer would choose 

Scenario 2.  Since Tables 3.1 and 3.2 failed to provide a consistent solution, we must 

examine the total results to determine which scenario to recommend. 

																																																								
1	45,956	=	41,287	+	4,669	
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Total (Renewals + Quotes) 

 
(1) 

Period 

(2) 

Policies Offered 

(3)  

Policies Written 

(4)  

Policies Retained 

(5)  

Earned Premium 

(6) 

Profit Margin 

(7) 

Absolute Profit 

Scenario 1 

0 50,000 50,000 44,000 $35,250,000 2.5% $881,250 

1 64,000 49,493 45,956 $34,486,258 2.3% $810,152 

2 66,956 51,723 49,064 $36,412,258 2.3% $822,930 

3 71,114 55,122 52,296 $38,800,399 2.2% $842,146 

4 75,449 58,657 54,722 $40,949,798 2.2% $888,759 

Scenario 2 

0 50,000 50,000 44,000 $35,250,000 2.5% $881,250 

1 64,000 49,646 46,030 $34,729,064 2.3% $812,026 

2 67,030 51,958 49,135 $36,692,114 2.4% $891,271 

3 71,185 55,363 52,352 $39,087,466 2.5% $985,029 

4 75,505 58,890 54,755 $41,236,423 2.6% $1,076,159 

Table 3.3 Total business simulation 

After viewing the combined results in Table 3.3, the answer is clear.  Over the stated time 

horizon of two years, Scenario 2 outperforms Scenario 1 from growth, retention, and profit 

perspectives.  Whereas traditional analysis provides little distinction between the scenarios, 

price simulation allowed the insurer to “predict” how its book will change over time in each 

scenario, resulting in the better choice.   

Please note that the above example is intended to illustrate the concept of price 

simulation.  With a slight difference in rate allocation, we see that Scenario 2 yields more 

policies (~30) and higher profit (~$400,000) than Scenario 1 by the end of period 4.  Not 

surprisingly, further rate allocation with a larger book of business could lead to a more 

significant difference in pricing scenarios.  

4. PRICE OPTIMIZATION 

Suppose ABC Insurance wants to increase its new business conversion rate.  One option 

is to decrease the overall premium level.  This will certainly increase the company’s 

conversion rate, but it’s probably not the optimal solution because it affects each insured 

equally.  Another approach is for the company to be more surgical in its approach by 

targeting specific market segments with higher growth potential.  Although this option is 

superior to the first, current techniques rely on sub-optimal human judgment when deciding 

which segments to target.  Price optimization is a mathematical procedure that allows 
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insurers to determine the appropriate rates to charge to maximize some metric over some 

specified time horizon.  As stated above, ABC Insurance wanted to increase its overall 

conversion rate on new business.  Although the approaches described will do that, the result 

will be inferior to a price optimization routine that analyzes thousands of different pricing 

options.   Examples of metrics a company might want to maximize include: 

 Profitability 

o Percentage basis (margin) 

o Absolute basis (total dollars) 

 New Business Conversion 

 Renewal Business Retention 

 Competitive Position 

It is important to note that these metrics are not mutually exclusive.  Typically, a company 

sets a constraint on one metric while maximizing another.  For example, a company may 

want to maximize its new business conversion rate while maintaining its current profitability.   

Similarly, a company may want to maximize its profitability while maintaining its current 

conversion rate.    

4.1. Price Optimization Methods 

In this section, we will discuss two price optimization methods.  The first method 

optimizes prices at the rating structure level by determining optimal rating factors for the 

structures the company has chosen to revise.  This method optimizes on the current rating 

structure directly, and is therefore easy to implement.  However, it fails to identify gaps in 

the current rating structure where growth potential is not being realized.  The second 

method optimizes prices irrespective of the current rating structure by determining an 

optimized premium for each insured in a firm’s book of business.   This has a number of 

advantages: 

 Optimizes premium at the individual insured level 

 Provides opportunity for improvements in a firm’s rating structure by optimizing 

rates outside of the current pricing system 

 Produces an efficient frontier of optimized premiums representing the highest 

possible demand at varying profit levels 



Beyond the Cost Model: Understanding Price Elasticity and its Applications 
	

	
	

25	
	

Despite these advantages, this method has a few drawbacks.  First, it requires more time 

since a rating structure must be reverse engineered from the optimized premiums.   Second, 

some of the benefit gained from the optimization routine is lost during the reverse 

engineering process due to modeling limitations.  In addition to the disadvantages listed 

above, both methods suffer from regulatory constraints, which will be discussed in a later 

section.  The remainder of this section will focus on the second method.  

4.2. The Benefit Function 

Assume a firm wants to maximize its new business conversion rate while maintaining its 

current profitability.  The firm has decided to use price optimization to achieve this goal.  In 

order to optimize prices at the individual insured level, we begin with the benefit function.  

In basic terms, the benefit function calculates the expected profit for each insured over a 

specific time horizon.  In equation form, the one-year benefit function might look like this: 

                                       BFi  CDi * (Qi  Li  E i)  (4.1) 

Where  BF  = Benefit Function 

  CD  = Cumulative Demand 

  Q = Proposed Premium 

  L  = Pure Premium 

  E  = Expenses 

  i  = ith  insured 

Let us examine each piece of the equation starting with cumulative demand.  In order to 

calculate cumulative demand, we need a conversion model and a retention model.  Each of 

these models can be created using the techniques described in Section 2 of this paper.  Once 

the models are built, we simply accumulate total demand for each individual over the stated 

time horizon.  For a one-year time horizon, the cumulative demand for new business is the 

probability that the firm acquires the insured in year one.  If the time horizon were three 

years, then the cumulative demand for new business would be the probability that the firm 

acquires the insured in year one, multiplied by the probability that the firm retains the 

insured for two more years.  The proposed premium is derived by solving for the 

optimized premium.  The pure premium is an estimate of the expected loss costs for each 



Beyond the Cost Model: Understanding Price Elasticity and its Applications 
	

	
	

26	
	

insured.  Lastly, we must account for expenses.   Once we have defined each piece of the 

benefit function, we can solve for the proposed premium (i.e. optimized premium) by 

maximizing the benefit function.  This results in an optimized premium for each insured that 

maximizes his or her expected profit over the stated time horizon irrespective of the 

conversion rate.  Although this certainly qualifies as an optimized premium, it is not the 

optimized premium sought by the firm in our example.  Remember, our firm wanted to 

increase its new business conversion rate while maintaining its current profitability.  So, 

where does the firm go from here? 

4.3. The Efficient Frontier 

The efficient frontier is a curve that plots the expected loss ratio against demand.  It is 

“efficient” because each point on the curve represents a set of optimized premiums.  The 

maximized benefit function exists on the efficient frontier at the point where profitability is 

the greatest.  As we saw earlier, it has a set of “optimized” premiums associated with it; 

namely, the ones that maximize profitability over the stated time horizon.  As you move up 

the curve, demand increases and profitability decreases.  Points inside the curve, such as the 

firm’s current position, are considered sub-optimal because the company could improve 

demand while maintaining profitability, improve profitability while maintaining demand, or 

some combination thereof.  If a firm wants to maximize its new business conversion rate 

while keeping its current profitability constant, the firm moves its position up the curve until 

it reaches the optimized location.  To move up the curve, the optimization routine analyzes 

the PED curve for each individual insured to determine the proper price to charge them in 

order to achieve the target expected loss ratio.   
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Once a set of optimized premiums has been determined that meets the firm’s goals, the 

firm can finally reverse engineer a rating structure by modeling the optimized premiums.  In 

general, this just involves fitting the current rating structure onto the optimized premiums.  

However, thanks to the flexible nature of optimizing at the individual insured level, other 

predictors may be used to account for gaps in the current rating structure found during the 

reverse engineering process.   Although there are a number of ways to complete the reverse 

engineering process, we have chosen to omit that discussion due to the limited scope of this 

paper. 

4.4. Implementing Optimized Rates in a Regulatory Environment 

One substantial challenge associated with price optimization is implementing optimized 

rates within the constraints of a regulatory environment.  The important thing to remember 

is that price optimization is a tool designed to help firms make better pricing decisions.  As 

with any rate filing, a company starts by developing indications based on the loss 

propensities, expense loads and rate of return objectives for various segments of its book of 

business.  At this point, the company can choose to stay at the current rates, use the 

indicated rates, or deviate from the indicated rates based on business judgment.   In this 

regard, price optimization can be seen as a deviation from the indicated rates.  Of course, 

this doesn’t mean that a firm can file anything that comes out of the optimization routine.   

Since price optimization relies on PED in addition to loss propensity, it could conflict with 

traditional pricing methods.  For example, suppose a mature segment of a firm’s book of 

business has a traditional actuarial rate indication of -10%.  In addition to this, assume the 

segment has a low PED relative to the rest of the book.  Now, assume the firm runs an 

optimization routine designed to increase overall demand.  Due to the low PED of the 

mature segment, the optimized rate will most likely be higher than the current rate since that 

particular segment is less price sensitive.  However, this conflicts with the indicated decrease 

of -10%.  In this case, the optimized rates could be subject to regulatory challenge and may 

need to be revised to coincide with the loss indications.  As a result, some of the benefit 

from the optimization routine would be lost.  This example is not meant to deter the use of 

price optimization; it’s meant as a reminder that the final rates decided upon still require 

actuarial justification and approval by state agencies. 
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5. CONCLUDING REMARKS 

In this paper, we detailed basic techniques for developing demand models with emphasis 

on model form and model structure.  Next, we examined the use of PED in the context of 

two practical applications: price simulation and price optimization.  Lastly, we described how 

to implement optimized rates in a regulatory environment.    

Despite the sophistication present in the insurance industry today, the integration of 

competitive data within the pricing process continues to invite further exploration.  This 

paper provides the reader with the basic tools needed to begin this process.  With these 

tools, insurers possess the necessary knowledge and skills to implement more targeted 

pricing decisions that better achieve their goals. 
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Abstract: This study relates negative binomial and generalized Poisson regression models through the mean-
variance relationship, and suggests the application of these models for overdispersed or underdispersed count 
data. In addition, this study relates zero-inflated negative binomial and zero-inflated generalized Poisson 
regression models through the mean-variance relationship, and suggests the application of these zero-inflated 
models for zero-inflated and overdispersed count data. The negative binomial and generalized Poisson regression 
models were fitted to the Malaysian OD claim count data, whereas the zero-inflated negative binomial and zero-
inflated generalized Poisson regression models were fitted to the German healthcare count data. 
 
Keywords: negative binomial regression, generalized Poisson regression, zero-inflated negative binomial 
regression, zero-inflated generalized Poisson regression. 

______________________________________________________________________________ 

 

1. INTRODUCTION 
Poisson regression has been widely used for fitting count data. As examples, in insurance area, 

Aitkin et al. (1990) and Renshaw (1994) fitted Poisson regression to two different sets of U.K. 

motor claim data, whereas in healthcare area, Riphahn et al. (2003) fitted the model to German 

Socioeconomic Panel (GSOEP) data. However, count data often display overdispersion and 

inappropriate imposition of Poisson regression may underestimate the standard errors and overstate 

the significance of regression parameters. Quasi Poisson regression has been suggested to 

accommodate overdispersion in count data and the advantage of using this model is that the model 

can be fitted without knowing the exact probability function of the response variable, as long as the 

mean is specified to be equivalent to Poisson mean and the variance can be written as a linear 

proportion of Poisson mean. To account for overdispersion, quasi Poisson regression produces 

regression estimates equivalent to Poisson regression, but standard errors larger than Poisson 

regression (Ismail and Jemain 2007). In insurance applications, McCullagh and Nelder (1989) fitted 

quasi Poisson regression to damage incidents of cargo-carrying vessels and Brockman and Wright 

(1992) fitted the model to U.K. own damage motor claim data. 

 

 Besides quasi Poisson regression, several mixed Poisson regressions have been considered as 

alternatives for handling overdispersed count data. The details of mixed Poisson regressions such as 

Poisson-inverse Gaussian (PIG), Poisson-lognormal (PLN) and Poisson-gamma (or negative 

binomial) can be found in Denuit et al. (2007), who applied these models for accommodating 
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overdispersed claim data. For the case of both overdispersed and underdispersed count data, 

generalized Poisson and COM-Poisson regression models have been suggested and fitted by several 

researchers (Consul 1989, Consul and Famoye 1992, Famoye et al. 2004, Wang and Famoye 1997, 

Conway and Maxwell 1962, Shmueli et al. 2005, Lord et al. 2008, Lord et al. 2010). 

 

 Several parameterizations have been performed for negative binomial (NB) regression, and 

the two well known models, NB-1 and NB-2, have been applied (Cameron and Trivedi 1986, 

Lawless 1987, McCullagh and Nelder 1989, Cameron and Trivedi 1998, Winkelmann 2008, Hilbe 

2007). However, both NB-1 and NB-2 regressions are not nested, and appropriate statistical tests to 

choose a better model cannot be carried out. Recently, the functional form of NB regression has 

been extended and introduced as NB-P regression, where both NB-1 and NB-2 regressions are 

special cases of NB-P when 1P   and 2P   respectively (Greene 2008). The advantage of using 

NB-P regression is that it parametrically nests both NB-1 and NB-2 regressions, and hence, allowing 

statistical tests of the two functional forms against a more general alternative. In particular, 

likelihood ratio test can be implemented for choosing between NB-1 against NB-P regressions, or 

NB-2 against NB-P regressions. Applications of several parameterizations for NB, PIG and PLN 

regressions can be found in Boucher et al. (2007), who fitted NB (NB-1, NB-2 and NB-K+1), PIG 

(PIG-1, PIG-2 and PIG-K+1) and PLN (PLN-1, PLN-2 and PLN-K+1) regressions to Spanish 

motor claim data. 

 

 Several parameterizations have also been performed for generalized Poisson (GP) regression 

where the two well known models, GP-1 and GP-2, have been applied for dealing with 

overdispersed as well as underdispersed count data (Consul and Jain 1973, Consul 1989, Consul and 

Famoye 1992, Famoye et al. 2004, Wang and Famoye 1997, Ismail and Jemain 2007). Similar to NB-

1 and NB-2 regressions, both GP-1 and GP-2 regressions are not nested and appropriate statistical 

tests to choose a better model cannot be performed. Recently, the functional form of GP regression 

has been extended and introduced as GP-P regression, where both GP-1 and GP-2 regressions are 

special cases of GP-P when 1P   and  2P   respectively (Zamani and Ismail 2012). The advantage 

of using GP-P is that it parametrically nests both GP-1 and GP-2, and therefore, allowing statistical 

tests of the two functional forms against a more general alternative. In particular, likelihood ratio test 

can be implemented for choosing between GP-1 against GP-P regressions, or GP-2 against GP-P 

regressions. 

 

 In terms of properties, there is no big difference between NB and GP distributions when the 

means and variances are fixed, but, GP distribution has heavier tail whereas NB distribution has 
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more mass at zero (Joe and Zhu 2005). In addition, the score tests for overdispersion in Poisson vs. 

NB (NB-1 and NB-2) regressions and Poisson vs. GP (GP-1 and GP-2) regressions are equal (Yang 

et al. 2007, Yang et al. 2009a).  

 

 In several cases, count data often have excessive number of zero outcomes than are 

expected in Poisson regression. As an example, the proportion of zero claims in motor insurance 

data may increase due to the conditions of deductible and no claim discount that discourage insured 

drivers to report small claims (Yip and Yau 2005). In healthcare area as another example, services of 

psychiatric outpatient may report a large proportion of zero utilization of such services for many 

patients (Neelon et al. 2010). Zero-inflated datasets can also be found in other areas such as 

environmental sciences (Agarwal et al. 2002), medicine (Bohning et al. 1996) and manufacturing 

(Lambert 1992). Zero-inflation phenomenon is a very specific type of overdispersion, and zero-

inflated Poisson (ZIP) regression has been suggested to handle purely zero-inflated data. ZIP 

regression mixes a distribution degenerate at zero with a Poisson distribution, by allowing the 

incorporation of explanatory variables in both the zero process and the Poisson distribution. 

 

 As an alternative to ZIP regression, one may consider zero-inflated negative binomial 

(ZINB) regression if the count data continue to suggest additional overdispersion. ZINB regression 

is obtained by mixing a distribution degenerate at zero with a NB distribution, by allowing the 

incorporation of explanatory variables in both the zero process and the NB distribution. 

Applications of ZINB-1 and ZINB-2 regressions can be found in Ridout et al. (2001). 

 

 Besides ZINB, zero-inflated generalized Poisson (ZIGP) regression has been proposed as an 

alternative to handle zero-inflation and additional overdispersion in count data. ZIGP regression, 

which mixes a distribution degenerate at zero with a GP distribution and allows the incorporation of 

explanatory variables in both the zero process and the GP distribution, have been applied by 

Famoye and Singh (2006) for domestic violence data and by Yang et al. (2009b) for apple shoot 

propagation data. However, both ZIGP-1 and ZIGP-2 regressions are not nested and appropriate 

statistical tests to choose a better model cannot be carried out. Recently, the functional form of 

ZIGP regression has been extended and introduced as ZIGP-P regression (Zamani and Ismail 

2013a), where ZIGP-1 and ZIGP-2 regressions are special cases of ZIGP-P regression when  1P   

and 2P    respectively. The advantage of using ZIGP-P regression is that it parametrically nests 

both ZIGP-1 and ZIGP-2 regressions, and hence, allowing statistical tests of the two functional 

forms against a more general alternative. In particular, likelihood ratio test can be implemented for 

choosing between ZIGP-1 against ZIGP-P regressions, or ZIGP-2 against ZIGP-P regressions. 
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 Even though ZIGP regression is a good competitor of ZINB regression, in several cases, 

ZINB regression may not provide converged values in the iterative technique of the fitting 

procedure, and thus, ZIGP regression may be considered as an alternative (Famoye and Singh 2006). 

In addition, when both zero-inflation and overdispersion exist in count data, ZIGP regression 

behaves similarly to ZINB regression. As examples, Yang et al. (2009b) proved that the score 

statistics for testing overdispersion in ZIP against ZIGP (ZIGP-1 and ZIGP-2) regressions and ZIP 

against ZINB (ZINB-1 and ZINB-2) regressions are equal, whereas Joe and Zhu (2005) proved that 

ZIGP distribution provides better fit than ZINB distribution when there is a large zero fraction and 

heavy tail, implying that the ZIGP regression can be used as an alternative for modeling zero-

inflated and overdispersed count data. 

 

The objectives of this study are: 

 to relate NB and GP regressions through the mean-variance relationship, 

 to suggest applications of these models for overdispersed or underdispersed claim count 

data, 

 to relate ZINB and ZIGP regression models through the mean-variance relationship, and 

finally, 

 to suggest applications of these zero-inflated models for zero-inflated and overdispersed 

claim count data. 

 

 

2. NB REGRESSION MODELS 
Let 1 2( , ,..., )T

nY Y Y
 
be the vector of count random variables and n  be the sample size. The 

probability mass function (p.m.f.) for Poisson regression is, 

 

 

exp( )
Pr( ) , 0,1,...

!

iy
i i

i i i
i

Y y y
y

 
                                               (1) 

 

with mean and variance ( ) ( )i i iE Y Var Y   . The mean or the fitted value can be assumed to 

follow a log link, ( ) exp( )i iE Y   ix 'β , where ix  denotes the vector of explanatory variables and 

β   the vector of regression parameters. The maximum likelihood estimates can be obtained by 

maximizing the log likelihood. 
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 The latent heterogeneity can be incorporated by rewriting the conditional mean of Poisson 

regression as (Cameron and Trivedi 1986, Cameron and Trivedi 1998, Winkelmann 2003, Greene 

2008), 

 

 ( | ) exp( )i i i i iE Y k    ix 'β , 

 

where exp( )i ik   is assumed to follow gamma distribution with mean 1 and variance 1v a  , 

with probability density function (p.d.f.), 

 

 
1 exp( )
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so that the conditional Poisson regression is, 
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The marginal distribution is NB regression with p.m.f., 
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
.                         (2) 

 

where the mean is iiYE )( , the variance is 1( ) (1 ) (1 )i i i i iVar Y v a       , and 1v a   

denotes the dispersion parameter. The NB regression in (2) is also referred as NB-2 regression. 

Another parameterization for NB regression is by letting 1
iv a   in (2) to produce NB-1 

regression, with mean iiYE )(
 
and variance ( ) (1 )i iVar Y a  . Another parameterization is the 

NB-P regression, which is produced by letting 1 2 P
iv a    in (2), so that the mean is iiYE )(

 
and the variance is 1( ) (1 )P

i i iVar Y a    , where a  denotes the dispersion parameter and P  the 

functional parameter (Greene 2008). 

 

 NB regressions reduce to Poisson regression in the limit as 0a  , and display 

overdispersion when 0a . In addition, NB-P regression reduces to NB-1 when 1P   and reduces 

to NB-2 when 2P  . Therefore, NB-P regression parametrically nests both NB-1 and NB-2, and 
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allows statistical tests of the two functional forms against a more general alternative. The mean of 

NB regressions can also be assumed to follow the log link, ( ) exp( )i iE Y   ix 'β , and the 

maximum likelihood estimates can be obtained by maximizing the log likelihood. 

 

 NB-P regression can be fitted to count data using R program. For faster convergence, 

estimated parameters from fitting Poisson regression can be used as initial values. Both NB-1 and 

NB-2 regressions can also be fitted using the same fitting procedure, by letting the functional 

parameter, P, to be fixed at P=1 and P=2 respectively for NB-1 and NB-2. 

 

 We can also use MASS package in R to fit Poisson and NB-2 regression models. If we use glm 

function and set family=poisson, we can get Poisson regression. If we use glm.nb function, we can get 

NB-2 regression.  

 

 

3. GP REGRESSION MODELS 
The p.m.f of GP distribution is (Consul and Famoye 1992), 

  
1( ) exp( )

Pr( ) ,      0,1,2,...
!

iy
i i

i i i
i

vy vy
Y y y

y

    
   ,                  (3) 

 

where 0 
 
and 4max( 1, ) 1v    . The mean and variance are 1( ) (1 )iE Y v   

 
and 

3 2( ) (1 ) (1 )iVar Y v v      , where 2(1 )v   denotes the dispersion factor and v  the dispersion 

parameter.  

 

There are two well known parameterizations for GP regression, referred as GP-1 and GP-2. 

By letting  (1 )i iv    in (3), GP-1 regression is produced with mean ( )i iE Y 
 
and variance 

2( ) (1 )i iVar Y v   . GP-1 regression reduces to Poisson regression when 0v  , allows 

overdispersion when 0v  , and allows underdispersion when 0v  . A new form of GP-1 

regression, which has the same properties but different form of p.m.f., was recently proposed in 

Zamani and Ismail (2012) by rewriting 1(1 )v a a    and 1(1 )i ia    in (3). The mean and 

variance of new GP-1 regression are ( )i iE Y 
 
and 2( ) (1 )i iVar Y a   , where a   denotes the 

dispersion parameter. The other parameterization is GP-2 regression, involving the parameterization 

of 1(1 )i iv a a  
 

and 1(1 )i i ia     in (3), with mean ( )i iE Y 
 

and variance 
2( ) (1 )i i iVar Y a   . Another parameterization is GP-P regression, which was recently proposed 

in Zamani and Ismail (2012), obtained using 1 1(1 )P
i i ia      and 1 1 1(1 )P P

i iv a a      in (3). 
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The mean and variance of GP-P regression are ( )i iE Y 
 
and 1 2( ) (1 )P

i i iVar Y a   , where a  

denotes the dispersion parameter and P  the functional parameter. 

 

GP regressions reduce to Poisson regression when 0a  , display overdispersion when 

0a  , and display underdispersion when 0a  . In addition, GP-P reduces to new GP-1 when 

1P  ,  and reduces to GP-2 when 2P  . Therefore, GP-P regression parametrically nests both 

new GP-1 and GP-2 regressions, and allows statistical tests of the two functional forms against a 

more general alternative. The mean of GP regressions can be assumed to follow the log link, 

( ) exp( )i iE Y   ix 'β , and the maximum likelihood estimates can be obtained by maximizing the 

log likelihood. 

 

 GP-P regression can be fitted using R program. For faster convergence, estimated parameters 

from fitting Poisson regression can be used as initial values. The Poisson, new GP-1 and GP-2 

regressions can also be fitted using the same fitting procedure, by letting the dispersion parameter, a, 

to be fixed at a=0 for Poisson and by letting the functional parameter, P, to be fixed at P=1 and P=2 

respectively for new GP-1 and GP-2. An example of SAS code for fitting GP-1 and GP-2 regressions 

can be found in Yang et al. (2007) and Yang et al. (2009a) respectively.  

 

 We can also use ZIGP package in R to fit GP-2 regression models. If we use est.zigp function 

and set fm.Z=NULL (which is the weight for zero-inflation), we can get GP-2 regression. Table 1 

summarizes the p.m.f., mean and variance of Poisson, NB and GP regression models.  
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Table 1: Poisson, NB and GP regression models 

Regression 
model 

P.m.f. Mean and variance 
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Several general comparisons can be made regarding NB and GP regression models: 

 NB regressions reduce to Poisson regression in the limit as 0a  , whereas GP regressions 

reduce to Poisson regression when 0a  . 

 The mean-variance relationships of NB-1 and GP-1 are linear, NB-2 is quadratic, GP-2 is 

cubic, NB-P is to the pth power, and GP-P is to the (2p-1)th power. 

 Likelihood ratio test (LRT) can be performed for testing overdispersion in Poisson vs. NB 

(NB-1 and NB-2) regressions, 0 : 0H a   vs. 1 : 0H a  . Since the null hypothesis is on the 

boundary of parameter space, the asymptotic distribution for LRT statistic is a mixture of 

half of probability mass at zero and half of chi-square with one degree of freedom (Lawless 

1987). 

 Likelihood ratio test (LRT) can also be performed for testing dispersion (over or 

underdispersion) in Poisson vs. GP (GP-1 and GP-2) regressions, 0 : 0H a   vs. 1 : 0H a  , 

where the LRT statistic is asymptotically distributed as a chi-square with one degree of 

freedom (Consul and Famoye 1992, Wang and Famoye 1997).  

 In terms of properties, there is no big difference between NB and GP distributions when the 

means and variances are fixed. However, GP distribution has heavier tail, whereas NB 

distribution has more mass at zero (Joe and Zhu 2005).  

 
 
4. ZIP REGRESSION MODEL 
Zero-inflated Poisson (ZIP) regression has been used by researchers for handling purely zero-

inflated count data. ZIP regression can be obtained by mixing a distribution degenerate at zero with 

the Poisson distribution, by allowing the incorporation of explanatory variables in both the zero 

process and the Poisson distribution. The p.m.f. of ZIP regression is, 
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where 10  i  and 0i , with mean iiiYE  )1()(   and variance 

( ) (1 ) (1 )i i i i iVar Y      . ZIP regression reduces to Poisson regression when 0i , and 

exhibits overdispersion when 0i . The covariates can be incorporated by using a log link for i  
and a logit link for i , 
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where ix  and iz  are the vectors of explanatory variables, and β  and γ  are the vectors of regression 

parameters. Maximum likelihood estimates can be obtained by maximizing the log likelihood. 

 

 

5. ZINB REGRESSION MODELS 
Zero-inflated negative binomial (ZINB) regressions have been used by researchers for handling both 

zero-inflation and overdispersion in count data. ZINB-1 regression can be obtained by mixing a 

distribution degenerate at zero with the NB-1 distribution, by allowing the incorporation of 

explanatory variables in both the zero process and the NB-1 distribution. The mean and variance of 

ZINB-1 regression are iiiYE  )1()(   and ( ) (1 ) (1 )i i i i iVar Y a       . 

 

ZINB-2 regression can be obtained by mixing a distribution degenerate at zero with the NB-

2 distribution, by allowing the incorporation of explanatory variables in both the zero process and 

the NB-2 distribution. The mean and variance of ZINB-2 regression are iiiYE  )1()(   and 

( ) (1 ) (1 )i i i i i iVar Y a        . 

 

The ZINB-P regression can be obtained by mixing a distribution degenerate at zero with the 

NB-P distribution, by allowing the incorporation of explanatory variables in both the zero process 

and the NB-P distribution. The mean and variance of ZINB-P regression are iiiYE  )1()(   and 

)1()1()( 1

ii

P

iiii aYVar    . 

 

ZINB regressions reduce to NB regressions when 0i , and reduce to ZIP regression in 

the limit as 0a  . The variance of ZINB regressions exhibits overdispersion when 0a  and 

0i , allowing the models to be used for handling both zero-inflated and overdispersed count 

data. The link functions for ZINB regressions can also be written as (5). Maximum likelihood 

estimates can be obtained by maximizing the log likelihood.  

 

 ZINB-P regression can be fitted using R program. For faster convergence, estimated 

parameters from fitting ZIP regression can be used as initial values. Both ZINB-1 and the ZINB-2 

regressions can also be fitted using the same fitting procedure, by letting the functional parameter, P, 

to be fixed respectively at P=1 and P=2 for ZINB-1 and ZINB-2. 
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 We can also use PSCL package in R to fit ZIP and ZINB-2 regression models. If we use 

zeroinfl function and set dist=”poisson”, we can get ZIP regression. If we set dist=”negbin”, we can get 

ZINB-2 regression. 

 

 

6. ZIGP REGRESSION MODELS 
As an alternative for handling zero-inflation and overdispersion in count data, zero-inflated 

generalized Poisson (ZIGP) regressions can be fitted. ZIGP-1 regression is obtained by mixing a 

distribution degenerate at zero with the GP-1 distribution, by allowing the incorporation of 

explanatory variables in both the zero process and the GP-1 distribution. The mean and variance of 

ZIGP-1 regression are iiiYE  )1()(   and ))1(()1()( 2
iiiii vYVar    . A new form of 

ZIGP-1 regression has been proposed by Zamani and Ismail (2013a), by mixing a distribution 

degenerate at zero with the new GP-1 distribution, and allowing the incorporation of explanatory 

variables in both the zero process and the new GP-1 distribution. The mean and variance of new 

ZIGP-1 are iiiYE  )1()(   and ))1(()1()( 2
iiiii aYVar   . 

 

ZIGP-2 regression is obtained by mixing a distribution degenerate at zero with the GP-2 

distribution, by allowing the incorporation of explanatory variables in both the zero process and the 

GP-2 distribution. The mean and variance of ZIGP-2 regression are iiiYE  )1()(   and 

))1(()1()( 2
iiiiii aYVar   . 

 

A functional form of ZIGP, which is referred as ZIGP-P, was recently proposed by Zamani 

and Ismail (2013a). ZIGP-P regression is obtained by mixing a distribution degenerate at zero with 

the GP-P distribution, by allowing the incorporation of explanatory variables in both the zero 

process and the GP-P distribution. The mean and variance of ZIGP-P regression are 

iiiYE  )1()(   and ))1(()1()( 21
ii

P
iiii aYVar    . When 0i , ZIGP regressions 

reduce to GP regressions, and when 0a , ZIGP regressions reduce to ZIP regression. In addition, 

when 1P   and 2P  , ZIGP-P regression reduces to ZIGP-1 and ZIGP-2 regressions 

respectively. The variance of ZIGP regressions exhibit overdispersion when 0a   and 0i , 

indicating that they can be used for handling both zero-inflated and overdispersed count data. The 

link functions for ZIGP regressions can also be written as (5), and the maximum likelihood 

estimates can be obtained by maximizing the log likelihood.     

  

 ZIGP-P regression can be fitted using R program. For faster convergence, estimated 

parameters from fitting ZIP regression can be used as initial values. The ZIP, ZIGP-1 and ZIGP-2 
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regressions can also be fitted using the same fitting procedure, by letting the dispersion parameter, a, 

to be fixed at a=0 for ZIP and by letting the functional parameter, P, to be fixed respectively at P=1 

and P=2 for ZIGP-1 and ZIGP-2. An example of SAS code for fitting ZIGP-2 regression can be 

found in Yang et al. (2009b). 

 

 We can also use ZIGP package in R to fit ZIP and ZIGP-2 regression models. If we use 

est.zigp function and set fm.W=NULL (which is the weight for dispersion), we can get ZIP 

regression. We can get ZINB-2 regression if both fm.Z (weight for zero-inflation) and fm.W (weight 

for dispersion) are not set to NULL. Table 2 summarizes the p.m.f., mean and variance of ZIP, 

ZINB and ZIGP regression models.   

 

Several general comparisons can be made regarding ZINB and ZIGP regression models: 

 ZINB regressions reduce to ZIP regression in the limit as 0a  , whereas ZIGP 

regressions reduce to ZIP regression when 0a  . 

 LRT can be performed for testing overdispersion in ZIP vs. ZINB regressions, where 

0 : 0H a   vs. 1 : 0H a  . Since the null hypothesis is on the boundary of parameter space, 

the asymptotic distribution for LRT statistic is a mixture of half of probability mass at zero 

and half of chi-square with one degree of freedom (Stram and Lee 1994, 1995). 

 The signed square root of likelihood ratio test (SSN-LRT) can be performed for testing 

overdispersion in ZIP vs. ZIGP regressions, 0 : 0H a   vs. 1 : 0H a  , where the statistic is 

asymptotically distributed as a standard normal (Yang et al. 2009b, Famoye and Singh 2006). 

 Since GP distribution has heavier tail and NB distribution has more mass at zero, both 

ZINB and ZIGP regressions can be used for fitting zero-inflated and overdispersed count 

data (Joe and Zhu 2005).  
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Table 2: ZIP, ZINB and ZIGP regression models 

Model P.m.f. Mean and variance 
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Model P.m.f. Mean and variance 
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7. TESTS FOR NB AND GP REGRESSION MODELS 
 

7.1  Likelihood Ratio Test (LRT) 

Since NB regressions reduce to Poisson regression in the limit as 0a  , the test of overdispersion 

in Poisson vs. NB-1 regressions and Poisson vs. NB-2 regressions, 0:0 aH  vs. 1 : 0H a  , can be 

performed using LRT, 1 02(ln ln )T L L  , where 1ln L  and 0ln L  are the models’ log likelihood 

under their respective hypothesis. Since the null hypothesis is on the boundary of parameter space, 

the LRT is asymptotically distributed as half of probability mass at zero and half of chi-square with 

one degree of freedom (Lawless 1987). In other words, to test the null hypothesis at significance 

level  , the critical value of chi-square distribution with significance level 2  is used, or reject H0 if 
2
1 2 ,1T   . As an example, for 0.05 significance level, the critical value is 2

0.90,1 2.7055   instead of 
2
0.95,1 3.8415  . 

 

  A two-sided test can be performed for dispersion (over or underdispersion) in Poisson vs. 

new GP-1 regressions and Poisson vs. GP-2 regressions, 0:0 aH  vs. 0:1 aH , using LRT 

which is asymptotically distributed as a chi-square with one degree of freedom. If we are interested 

in  a one-sided test for overdispersion in Poisson vs. new GP-1 regressions and Poisson vs. GP-2 

regressions, 0:0 aH  vs. 1 : 0H a  , we can use signed square root of likelihood ratio statistic 

(SSR-LRT), 1 0sgn( ) sgn( ) 2(ln ln )a T a L L  , where sgn(.)  is a sign function which indicates 

value of 1 when 0a   and value of -1 when 0a  . Under 0H , SSR-LRT is asymptotically 

distributed as a standard Normal distribution. 

 

  A two-sided test for testing NB-1 vs. NB-P, NB-2 vs. NB-P, new GP-1 vs. GP-P and GP-2 

vs. GP-P regressions can be performed using LRT. The hypothesis are 0 : 1H P   vs. 1 : 1H P   or 

0 : 2H P   vs. 1 : 2H P  , and the LRT is asymptotically distributed as a chi-square with one degree 

of freedom. 

   

7.2  Wald Test 
The test of overdispersion in Poisson vs. NB-1 regressions and Poisson vs. NB-2 regressions can 

also be performed using Wald statistic which is, 
2ˆ

ˆ( )

a

Var a
, where â  is the estimate of dispersion 

parameter and ˆ( )Var a  is its variance. Since the null hypothesis is on the boundary of parameter 
space, the Wald statistic is asymptotically distributed as half of probability mass at zero and half of 
chi-square with one degree of freedom. For testing dispersion (over or underdispersion) in Poisson 
vs. GP-1 regressions and Poisson vs. GP-2 regressions, the Wald statistic can also be applied, and 
the statistic is asymptotically distributed as a chi-square with one degree of freedom. 
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 Using similar approach, the adequacy of NB-1 vs. NB-P, NB-2 vs. NB-P, new GP-1 vs. GP-

P and GP-2 vs. GP-P regression can be performed using Wald statistic which is, 
2ˆ

ˆ( )

P

Var P
, where P̂  

is the estimate of functional parameter and ˆ( )Var P  is its variance. The Wald statistic is 
asymptotically distributed as a chi-square with one degree of freedom.  

 

7.3 Vuong Test 
For non-nested models, a comparison between models with p.m.f. 1(.)p  and 2 (.)p  can be 

performed using Vuong test (Vuong 1989), 
( )

m n
V

sd m
 , where m  is the mean of im , ( )sd m  is the 

standard deviation of im , n  the sample size and 1

2

( )
ln

( )
i i

i
i i

p y
m

p y

 
  

 
. The Vuong test statistic follows 

a standard normal. As an example, for 0.05 significance level, the first model is “closer” to the actual 
model if V  is larger than 1.96. In the other hand, the second model is “closer” to the actual model if 
V  is smaller than -1.96. Otherwise, neither model is “closer” to the actual model and there is no 
difference between using the first or the second model. 
  
 For models with unequal number of parameters, the equation for im  in Vuong test is slightly 
modified to account for the difference in the number of parameters, 

1 1 2

2

( )
ln ln( )

( ) 2
i i

i
i i

p y k k
m n

p y

  
  

 
, where 1k  and 2k  are the number of parameters in model 1 and 

model 2 respectively. 

 

7.4 AIC and BIC 

When several models are available, one can compare the models’ performance based on several 

likelihood measures which have been proposed in statistical literatures. Two of the most regularly 

used measures are Akaike Information Criteria (AIC) and Bayesian Schwartz Information Criteria 

(BIC). The AIC penalizes a model with larger number of parameters, and is defined as 

AIC 2 ln 2L p   , where ln L  denotes the fitted log likelihood and p  the number of parameters. 

The BIC penalizes a model with larger number of parameters and larger sample size, and is defined 

as BIC 2 ln ln( )L p n   , where ln L  denotes the fitted log likelihood, p  the number of 

parameters and n the sample size.  
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8 TESTS FOR ZINB AND ZIGP REGRESSION MODELS 
 

8.1  Likelihood Ratio Test 

Since ZINB regressions reduce to ZIP regression in the limit as 0a  , the test of overdispersion in 

ZIP vs. ZINB-1 regressions and Poisson vs. ZINB-2 regressions, 0:0 aH  vs. 1 : 0H a  , can be 

performed using LRT. Since the null hypothesis is on the boundary of parameter space, the LRT 

statistic is asymptotically distributed as half of probability mass at zero and half of chi-square with 

one degree of freedom (Stram and Lee 1994, 1995). 

 
  A two-sided test can be performed to test dispersion (over or underdispersion) in ZIP vs. 

new ZIGP-1 regressions and ZIP vs. ZIGP-2 regressions using LRT, 0:0 aH  vs. 0:1 aH . 

Since ZIP regression model is nested within new ZIGP-1 and ZIGP-2 regressions, the boundary 

problem does not exist and the statistic is asymptotically distributed as a chi-square with one degree 

of freedom. If we are interested in a one-sided test for overdispersion in ZIP vs. new ZIGP-1 

regressions and ZIP vs. ZIGP-2 regressions, 0:0 aH  vs. 1 : 0H a  , we can use SSR-LRT which 

is asymptotically distributed as a standard Normal distribution. 

 

  A two-sided test for adequacy of ZINB-1 vs. ZINB-P, ZINB-2 vs. ZINB-P, new ZIGP-1 

vs. ZIGP-P and ZIGP-2 vs. ZIGP-P regressions can be performed using LRT, where the 

hypothesis are 0 : 1H P   vs. 1 : 1H P   or 0 : 2H P   vs. 1 : 2H P  . Since both ZINB-1 and 

ZINB-2 regressions are nested within ZINB-P regression, and both ZIGP-1 and ZIGP-2 

regressions are nested within ZIGP-P regression, the LRT statistic is asymptotically distributed as a 

chi-square with one degree of freedom. 

 

8.2  Wald Test 

The test of overdispersion in ZIP vs. ZINB-1 regressions and ZIP vs. ZINB-2 regressions can also 

be performed using Wald statistic. Since the null hypothesis is on the boundary of parameter space, 

the Wald statistic is asymptotically distributed as half of probability mass at zero and half of chi-

square with one degree of freedom. For dispersion (over or underdispersion) in ZIP vs. ZIGP-1 

regressions and ZIP vs. ZIGP-2 regressions, the Wald statistic can also be applied, where the 

statistic is asymptotically distributed as a chi-square with one degree of freedom. 

 

 Using similar approach, the adequacy of ZINB-1 vs. ZINB-P, ZINB-2 vs. ZINB-P, new 

ZIGP-1 vs. ZIGP-P and ZIGP-2 vs. ZIGP-P regressions can be performed using Wald statistic, 

where the statistic is asymptotically distributed as a chi-square with one degree of freedom.  



Estimation of Claim Count Data Using Negative Binomial, Generalized Poisson, Zero-Inflated Negative Binomial 
and Zero-Inflated Generalized Poisson Regression Models 

Casualty Actuarial Society E-Forum, Spring 2013 18 

9. EXAMPLES  
 
9.1 Malaysian Own Damage Claim Counts 

The dataset for private car Own Damage (OD) claim counts analyzed in Zamani and Ismail (2012) is 

reconsidered here for fitting NB and GP regression models. The data was based on 1.01 million 

private car policies for a three-year period of 2001-2003, the exposures were expressed in car-year 

units, and the incurred claims consisted of claims already paid as well as outstanding. Table 3 shows 

the rating factors and rating classes for the exposures and incurred claims. The estimates of Poisson 

regression were used as initial values for fitting NB and GP regressions. 

 

Table 3: Rating factors and rating classes (Malaysian OD data) 

 

Rating factors Rating classes 

  

Vehicle age 0-1 year  

 2-3 years 

 4-5 years 

 6-7 years 

 8+ years 

Vehicle c.c. 0-1000 

 1001-1300 

 1301-1500 

 1501-1800 

 1801+ 

Vehicle make Local type 1 

 Local type 2 

 Foreign type 1 

 Foreign type 2 

 Foreign type 3 

Location North 

 East 

 Central 

 South 

 East Malaysia 
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Table 4 shows the parameter estimates and their t-ratios for the fitted models. The best 

Poisson model was chosen using backward stepwise based on both AIC (chose model 2 if 

model 2 model 1AIC AIC ) and p-values (drop a covariate if it is not significant). The same Poisson 

covariates were then utilized for fitting NB and GP regressions to ensure that the LRT can be 

performed. The results in Table 4 indicate that the regression parameters for all models have similar 

estimates. As expected, NB and GP models provide similar inferences for the regression parameters, 

i.e. their t -ratios, in absolute value, are smaller than Poisson model. In particular, the estimates and 

t-ratios of NB-1 are closer to GP-1, and similar results are also observed between NB-2 and GP-2, 

and between NB-P and GP-P. These results are expected since the mean-variance relationships for 

NB-1 and GP-1 are linear, NB-2 is quadratic, GP-2 is cubic, and both NB-P and GP-P are in the pth 

power and the (2p-1)th power respectively. 

 

  For testing overdispersion in Poisson versus NB-1 regressions, 0:0 aH  vs. 1 : 0H a  , 

the likelihood ratio and the Wald t respectively are 2[-2182.75-(-3613.71)]=2861.92 and 14.44, 

indicating that the null hypothesis is rejected and the NB-1 is more adequate. The likelihood ratio 

and Wald t for testing overdispersion in Poisson versus NB-2, Poisson versus GP-1 and Poisson 

versus GP-2 regressions are (2840.50, 2896.96, 2691.08) and (9.93, 19.22, 12.27) respectively, also 

indicating that the data is overdispersed and NB-2, GP-1 and GP-2 regressions are better than 

Poisson regression. 
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Table 4: NB and GP regression models (Malaysian OD data) 
Parameters 
 

Poisson NB-1 NB-2 NB-P GP-1 GP-2 GP-P 
Est. t-ratio Est. t-ratio Est. t-ratio Est. t-ratio Est. t-ratio Est. t-ratio Est. t-ratio 

               
Intercept -3.04 -195.43 -3.05 -70.55 -3.20 -45.78 -3.09 -54.19 -3.06 -67.78 -3.17 -48.22 -3.09 -54.03
    
2-3 year 0.51 41.09 0.53 15.07 0.57 8.75 0.54 11.36 0.53 14.62 0.58 9.11 0.55 11.47
4-5 year 0.52 39.96 0.51 14.03 0.52 8.02 0.52 10.70 0.51 13.29 0.51 8.10 0.52 10.56
6-7 year 0.43 33.63 0.45 12.55 0.40 6.14 0.44 9.19 0.46 12.20 0.37 5.92 0.45 9.34
8+ year 0.24 19.11 0.24 6.84 0.27 4.19 0.25 5.40 0.24 6.55 0.29 4.48 0.26 5.45
    
1001-1300 cc -0.31 -24.64 -0.28 -8.30 -0.12 -2.03 -0.24 -5.20 -0.27 -7.69 -0.08 -1.36 -0.23 -5.05
1301-1500 cc -0.16 -14.83 -0.16 -5.17 0.10 1.69 -0.12 -2.86 -0.15 -4.81 0.19 3.03 -0.12 -3.04
1501-1800 cc 0.14 12.93 0.13 4.36 0.25 4.61 0.15 3.90 0.13 4.08 0.27 5.18 0.14 3.69
1801+ cc 0.11 10.83 0.11 3.77 0.33 5.92 0.16 4.05 0.11 3.64 0.34 6.05 0.15 3.95
    
Local type 2 -0.46 -32.41 -0.45 -11.55 -0.27 -4.04 -0.40 -7.94 -0.45 -11.07 -0.35 -5.47 -0.41 -8.23
Foreign type 1 -0.20 -19.17 -0.18 -6.12 -0.27 -5.38 -0.20 -5.32 -0.17 -5.54 -0.34 -6.79 -0.20 -5.16
Foreign type 2 0.18 11.50 0.21 4.80 0.34 6.34 0.26 5.19 0.22 4.96 0.31 5.93 0.25 5.10
Foreign type 3 - - - - - - - - - - - - - -
    
East 0.35 19.91 0.39 8.29 0.31 4.71 0.36 6.28 0.41 8.37 0.28 4.83 0.37 6.56
Central 0.32 29.43 0.31 10.21 0.31 5.28 0.31 7.50 0.31 9.63 0.28 4.76 0.31 7.39
South 0.26 20.40 0.26 7.20 0.36 5.87 0.30 6.36 0.26 6.92 0.39 6.77 0.30 6.42
East Malaysia 0.13 8.87 0.12 3.04 0.11 1.80 0.12 2.26 0.12 2.80 0.10 1.77 0.11 2.15
    
a  - - 7.07 14.44 0.14 9.93 1.57 6.60 2.01 19.22 0.02 12.27 0.64 7.95

P  - - 1.00 - 2.00 - 1.39 39.00 1.00 - 2.00 - 1.27 46.23
Log likelihood -3613.71 -2182.75 -2193.46 -2114.38 -2165.23 -2268.17 -2111.91
AIC 7259.42 4399.50 4420.92 4264.77 4364.45 4570.33 4259.83
BIC 7328.30 4472.67 4494.10 4342.25 4437.63 4643.51 4337.31
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  For testing the adequacy of NB-1 against NB-P and GP-1 against GP-P regressions, 

1:0 PH  vs. 1:1 PH , the likelihood ratio and Wald t respectively are (136.74, 106.64) and 

(39.00, 46.23), implying that the null hypothesis is rejected and both NB-P and GP-P are more 

adequate. The likelihood ratios for testing adequacy of NB-2 versus NB-P and GP-2 versus GP-P 

regressions, 0 : 2H P   vs. 1 : 2H P  , are (158.16, 312.52), also indicating that both NB-P and GP-

P are better models.  

 

Based on AIC and BIC, GP-P model has the lowest value for both criteria, indicating that 

the GP-P is the best model. However, based on Vuong test between GP-P as the first model and 

NB-P as the second model, the statistic is 1.0647 (less than 1.96), indicating that neither model is 

preferred over the other. 

 

9.2 German Healthcare Data 

The German Socioeconomic Panel (GSOEP) data (Riphahn et al. 2003) which was analyzed in 

Zamani and Ismail (2013a) is reconsidered here for fitting ZINB and ZIGP regression models. For 

an illustration purpose, only the first 438 individual data were fitted, where the response variable is 

the number of doctor visit in the last three month and the covariates were gender, age, health 

satisfaction, marital status, working status and education years. Table 5 shows the mean and standard 

deviation of the selected variables.  

 

Table 5: Descriptive summary (German healthcare data) 

 

Variable Measurement Mean Standard 

deviation

    

DOCVIS       Number of doctor visit in last three months        2.93 33.09 

GENDER     Female=1; Male=0                                              0.51 0.25 

AGE              Age in years                                                        43.30 116.23 

HSAT            Health satisfaction 6.84 4.89 

MARRIED    Married=1; else=0                                               0.54 0.25 

WORKING  Employed=1; else=0                                           0.79 0.17 

EDUC           Years of schooling                                               12.45 9.77 
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As mentioned previously, the covariates of i  and i  for ZIP, ZINB and ZIGP regressions 

can be included via the log and logit link functions, as shown in (5), where the vectors ix  and iz
 may or may not share the same components. For the case where the covariates are not utilized in 

i , the log and logit functions can be rewritten as (Yip and Yau, 2005; Ozmen and Famoye, 2007), 

 

                        βxT
ii )log(  and 












1
log .                        (6) 

The data were fitted to ZIP, ZINB and ZIGP regressions using link functions (6), and the 

estimates of ZIP regression were used as initial values for fitting ZINB and ZIGP regressions. 

 

Table 6 shows the parameter estimates and their t -ratios for the fitted models. The best ZIP 

model was chosen based on p-values (drop a covariate if it is not significant). The same ZIP 

covariates were then utilized for fitting ZINB and ZIGP models to ensure that the LRT can be 

performed. Since ZINB-P model did not provide converged solutions, the results are not displayed 

in the table. The results in Table 6 indicate that the regression parameters for all models have similar 

estimates. As expected, both ZINB and ZIGP regressions provide similar inferences for the 

regression parameters, i.e. their t -ratios, in absolute value, are smaller than ZIP. 

 

  For testing overdispersion in ZIP versus ZINB-1 and ZIP versus ZINB-2 regressions, 

0:0 aH  vs. 1 : 0H a  , the likelihood ratio and Wald t respectively are (393.40, 525.30) and (6.16, 

3.99), indicating that the null hypothesis is rejected and both ZINB-1 and ZINB-2 regressions are 

more adequate. The Vuong test for choosing between non-nested models of ZINB-2 as the first 

model and ZINB-1 as the second model is 5.5287 (more than 1.96), indicating that the ZINB-2 is a 

better model.  

 

  The likelihood ratio and Wald t for testing overdispersion in ZIP versus ZIGP-1 and ZIP 

versus ZIGP-2 regressions are (524.00, 521.44) and (7.68, 6.31) respectively, also indicating that the 

data is overdispersed, and both ZIGP-1 and ZIGP-2 are better models than ZIP. For testing the 

adequacy of ZIGP-1 against ZIGP-P regressions, 1:0 PH  vs. 1:1 PH , and ZIGP-2 versus 

ZIGP-P regressions, 0 : 2H P   vs. 1 : 2H P  , the likelihood ratio and Wald t respectively are (7.34, 

9.90) and 9.22, implying that the null hypothesis is rejected and ZIGP-P is more adequate. 
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Table 6: ZIP, ZINB and ZIGP regression models (German healthcare data) 

 

Parameter ZIP ZINB-1 ZINB-2 ZIGP-1 ZIGP-2 ZIGP-P 

 est. t-ratio est. t-ratio est. t-ratio est. t-ratio est. t-ratio est. t-ratio

             

Intercept 2.49 26.26 2.33 13.46 2.29 8.00 2.33 10.10 2.34 8.36 2.42 9.13

GENDER 0.30 4.85 0.21 1.90 0.58 3.83 0.52 3.73 0.52 3.52 0.60 3.90 

HSAT -0.22 -18.67 -0.16 -7.23 -0.25 -7.95 -0.22 -8.19 -0.24 -7.44 -0.25 -8.10

MARRIED 0.26 4.25 0.14 1.42 0.20 1.37 0.13 1.06 0.18 1.23 0.17 1.17 

WORKING 0.15 2.35 0.13 1.13 0.05 0.27 -0.06 -0.44 0.14 0.81 0.00 -0.02

  -0.33 -3.16 -0.22 -2.28 -1.69 -2.65 -1.38 -4.92 -0.99 -4.25 -1.29 -4.49 

a                           - - 2.53 6.16 1.39 3.99 1.52 7.68 0.33 6.31 0.77 3.80 

P  - - 1.00 - 2.00 - 1.00 - 2.00 - 1.46 9.22 

     

Log likelihood        -1136.48 -939.78 -873.83 -874.48 -875.76 -870.81 

AIC                        2284.96 1893.56 1761.66 1762.97 1765.52 1757.62 

BIC 2309.45 1922.13 1790.24 1791.54 1794.09 1790.28 
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  Based on AIC and BIC, ZIGP-P model has the lowest AIC but ZINB-2 model has the 

lowest BIC. For chosing between ZINB-2 as the first model and ZIGP-P as the second model 

which involves non-nested models with different number of parameters, the Vuong test statistic is 

1.7303 (less than 1.96), indicating that neither model is preferred over the other.  

 

  Table 7 shows the parameters, log likelihood, AIC and BIC for the best ZIGP-P and ZINB-

2 models, chosen based on p-values (drop a covariate if it is not significant). Based on AIC and BIC, 

ZIGP-P model has the lowest value for both criteria. However, the Vuong test statistic for 

comparing between ZINB-2 as the first model and ZIGP-P as the second model, which are non-

nested models, is 1.6803 (less than 1.96), indicating that neither model is preferred over the other.  

 

Table 7: ZINB-2 and ZIGP-P models with significant covariates (German healthcare data) 

 

Parameter ZINB-2 ZIGP-P 

 est. t-ratio p-value est. t-ratio p-value

       

Intercept 2.46 9.87 0.00 2.53 11.01 0.00 

GENDER 0.55 3.68 0.00 0.59 3.91 0.00 

HSAT -0.26 -8.16 0.00 -0.26 -8.27 0.00 

  -1.75 -2.67 0.00 -1.28 -4.72 0.00 

a                                       1.43 4.11 0.00 0.78 3.94 0.00 

P  2.00 - - 1.46 9.31 0.00 

       

Log likelihood                    -874.77 -871.50 

AIC                                    1759.54 1755.01 

BIC 1779.95 1779.50 

   

 

 

10. CONCLUSIONS 
This study has related NB and GP regressions through the mean-variance relationship and has 

shown applications of these models for overdispersed count data. In addition, this study has related 

ZINB and ZIGP regressions through the mean-variance relationship and has shown applications of 

these zero-inflated models for zero-inflated and overdispersed count data. 
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The Malaysian data for private car Own Damage (OD) claim counts analyzed in Zamani and 

Ismail (2012) has been reconsidered for fitting Poisson, NB and GP regression models. The results 

indicate that the regression parameters of all models have similar estimates and the t -ratios, in 

absolute value, for NB and GP models are smaller than Poisson model. The likelihood ratio and 

Wald t for testing overdispersion indicate that the data is overdispersed, and NB-1, NB-2, GP-1 and 

GP-2 models are better than Poisson model. The likelihood ratio and Wald t also imply that both 

NB-P and GP-P are the best two models. Based on AIC and BIC, GP-P model has the lowest value 

for both criteria. However, based on Vuong test between GP-P and NB-P models, neither model is 

preferred over the other.  

 

The German Socioeconomic Panel (GSOEP) data (Riphahn et al. 2003) which was analyzed 

in Zamani and Ismail (2013a) has been reconsidered for fitting ZIP, ZINB and ZIGP regression 

models. Unfortunately, ZINB-P model did not provide converge solutions and the results were not 

displayed. For other models, the results indicate that the regression parameters of all models have 

similar estimates and the t -ratios, in absolute value, for ZINB and ZIGP models are smaller than 

ZIP model. The likelihood ratio and Wald t for testing overdispersion indicate that the data is 

overdispersed, and ZINB-1, ZINB-2, ZIGP-1 and ZIGP-2 models are better than ZIP model. For 

ZINB models, the Vuong test indicates that ZINB-2 regression is better than ZINB-1 regression, 

whereas for ZIGP models, the likelihood ratio and Wald t indicate that ZIGP-P regression is better 

than both ZIGP-1 and ZIGP-2 regressions. Based on AIC and BIC, ZIGP-P model has the lowest 

AIC but ZINB-2 model has the lowest BIC. However, based on Vuong test between ZINB-2 and 

ZIGP-P regressions, neither model is preferred over the other.  

 

Several general comparisons can be made regarding NB and GP regression models. Firstly, 

NB regression reduces to Poisson regression in the limit as 0a  , whereas GP regression reduces 

to Poisson regression when 0a  . Secondly, the mean-variance relationships of NB-1 and GP-1 are 

linear, NB-2 is quadratic, GP-2 is cubic, NB-P is to the pth power, and GP-P is to the (2p-1)th 

power. Thirdly, LRT can be performed for testing overdispersion in Poisson vs. NB regressions, 

where the statistic is asymptotically distributed as a mixture of half of probability mass at zero and 

half of chi-square with one degree of freedom (Lawless 1987). LRT can also be performed for 

testing dispersion (over or underdispersion) in Poisson vs. GP regressions, where the statistic is 

asymptotically distributed as a chi-square with one degree of freedom (Consul and Famoye 1992, 

Wang and Famoye 1997). And finally, in terms of properties, there is no big difference between NB 

and GP distributions when the means and variances are fixed. However, GP distribution has heavier 

tail, whereas NB distribution has more mass at zero (Joe and Zhu 2005).  
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Several general comparisons can also be made regarding ZINB and the ZIGP models. 

Firstly, ZINB regression reduces to ZIP regression in the limit as 0a  , whereas ZIGP regression 

reduces to ZIP regression when 0a  . Secondly, LRT can be performed for testing overdispersion 

in ZIP vs. ZINB regressions, where the statistic is asymptotically distributed as a mixture of half of 

probability mass at zero and half of chi-square with one degree of freedom (Stram and Lee 1994, 

1995). SSN-LRT can be performed for testing overdispersion in ZIP vs. ZIGP regressions, where 

the statistic is asymptotically distributed as a standard normal (Yang et al. 2009b, Famoye and Singh 

2006). And finally, in terms of properties, GP distribution has heavier tail whereas NB distribution 

has more mass at zero, indicating that both ZINB and ZIGP regressions can be used for fitting 

zero-inflated and overdispersed count data (Joe and Zhu 2005).  

 

In this study, we have fitted a variety of models to two different datasets, involving several 

forms of NB, GP, ZINB and ZIGP regressions. The selection of the best model depends on many 

considerations. First, we can check for overdispersion, and if the data is slightly overdispersed, we 

can fit the data to quasi-Poisson regression. Secondly, if our data is largely overdispersed and it is 

not caused by excessive zeros but due to variation in the data, we can fit NB and GP regressions. 

Thirdly, if our data is both overdispersed and zero-inflated, we can fit zero-inflated (ZINB, ZIGP) 

and hurdle (HNB, HGP) regressions. Nevertheless, the hurdle regression models were not discussed 

in this study. Finally, the choice between zero-inflated (ZINB, ZIGP) and hurdle (HNB, HGP) 

models should be based upon a priori knowledge of the cause of excessive zeros in the data. Zero-

inflated models are interpreted as a mix of structural and sampling zeros from two processes; the 

process that generates excess zeros from a binary distribution which are the structural zeros, and the 

process that generates both non-negative and zero counts from Poisson or NB distributions which 

are the sampling zeros. In the other hand, hurdle models assume that all zeros are sampling zeros. 

Therefore, as a crude guideline, if occurrences of count event do not depend on any condition and 

may occur at any time, the hurdle models should be fitted. However, if occurrences of count events 

depend on specific conditions and/or time, such as the case of deductible or no claim discount in 

insurance data, the zero-inflated models are more appropriate. 
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Extending the Asset Share Model: Recognizing the Value of  
Options in P&C Insurance Rates 

Greg McNulty 

 
______________________________________________________________________________ 

Abstract: In this paper we will present a refinement of the well-known asset share model for ratemaking. The 
new method for calculating premiums and premium relativities accounts for risk classification transition 
probabilities. The relationship between risk class transition and options on insurance coverage is discussed. 
Some simple examples will be worked which will demonstrate how risk class transition can cause problems for 
the traditional asset share model which are remedied by our extended asset share model. We will also show how 
the new method can be used to determine the price for insurance policies with the popular “accident 
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______________________________________________________________________________ 

1. INTRODUCTION 

Many P&C actuaries are familiar with the asset share model through the work of Sholom 

Feldblum, [1]. The method demonstrates how lower prices can be justified for more loyal customers 

by essentially crediting some of the expected profits on renewal terms to the first term. However, 

there is a disconnect between the theory and practice. The asset share model assumes a constant (or 

perhaps gradually inflating) premium over the life of the policy, whereas in practice the rate may 

change at policy renewal, sometimes drastically, as more information about the insured is revealed. 

In this paper we will present a method for calculating premiums and premium relativities that 

accounts for risk classification transition probabilities. 

We begin in Section 2 with a discussion of the merits and shortcomings of the established asset 

share model. Section 3 will present a very simple example for ratemaking with two risk classes. 

Policies will be limited to one renewal, but the twist is that policies can change from one risk class to 

another. We will show that in carefully accounting for risk class transition, we arrive at different 

indicated rates than both the traditional method and the standard asset share model. 

In Section 4 we will discuss options, and demonstrate that the difference between the extended 

asset share method developed here and the standard asset share model is that the assumption of 

constant premium inflation causes the standard model to include the cost of options on future 

coverage in the indicated prices. The extended model allows us to correctly price the “floating rate” 

policy, and separately determine the cost of the options. 

In Section 5 we will present the full mathematical framework for the extended asset share model 
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and in Section 6 we will apply the extended asset share model in two worked examples, including 

pricing insurance policies with the “accident forgiveness” feature popular in personal lines insurance. 

We will conclude in Section 7 with some additional considerations 

2. THE STANDARD ASSET SHARE MODEL 

Hopefully the reader is familiar with Feldblum's paper [1] on the asset share model which 

presents a method for pricing insurance contracts by looking at lifetime expected premium, loss and 

expense. Traditional methods view only a single contract term. The mechanics of the model are 

straightforward: for the first and all subsequent renewal terms estimate the losses and expenses 

expected to be incurred. An estimate of the probability of the policy renewing is also required. The 

required premium can then be calculated using the traditional premium formula: 

ܲ ൌ
ܨ ൅ ܮ

1 െ ܷ െ ܸ
 

where P, F, and L represent the expected lifetime present value of premium, fixed expense and loss, 

respectively, while V is the variable cost ratio and U is the desired underwriting profit provision as a 

percent of premium. Feldblum uses examples to demonstrate how differing probabilities of renewal 

combined with decreasing loss costs as policy tenure increases can cause optimal premium 

relativities to be very different from loss relativities; these were traditionally assumed to be the same 

except for fixed expense loading. 

2.1 Why the Asset Share Model is an Improvement 

The asset share model is a major improvement over the traditional method of ratemaking. It has 

been well documented, in the paper by Wu and Lin [4], that average loss costs improve as 

policyholder tenure increases. The paper shows that this phenomenon is present in most lines of 

business, not just private passenger auto which was the subject of the Feldblum paper. 

So why not just charge the traditional premium for each term of a policy? Premiums will be 

higher for the first term and decrease from there, with the company securing an expected profit for 

every term of a customer's time with the company. Consumer behavior gives insurers an 

opportunity for a better strategy: charge a lower premium to new customers when they are more 

sensitive to price, and charge higher than actuarial premiums for renewal terms when customers are 

likely to renew and less sensitive to price. Note that this is not necessarily irrational consumer 

behavior; it is simply a matter of preferring cash now (in the form of a lower new business policy 

premium) to a stream of contingent future cashflows (renewal discounts which are realized only if 
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the policy is renewed). The asset share model determines the required premium under the better 

strategy. 

2.2 Shortcomings of the Asset Share Model 

Another well documented phenomenon in insurance is that past loss experience is indicative of 

future loss experience. Ratemaking schemes in personal lines, commercial lines and reinsurance 

businesses all charge higher premiums to policyholders who experience losses, or greater than 

expected losses. In the asset share model it is assumed that premium gradually inflates over time so 

that if a customer is charged a premium ܲ at inception, they will be expected to pay ሺ1 ൅ ሻ௡ݎ ∗ ܲ 

for the nth policy term, where ݎ is the rate of inflation. In actuality, a cohort of policies that were 

identical at inception will, due to experience rating, be paying a wide range of premiums for their 

future renewal policies. 

To see why this is problematic, think about how we would use the asset share model to 

determine optimum relativities for experience rating factors in personal lines. We would set up tables 

of expected loss, expenses, renewal probabilities and premium for two groups, “Low” and “High” 

expected future loss. There would be two independent variables, the premium for the low group and 

the premium for the high group. We could determine the correct premium for each and the 

differential between the two would be our new experience rating factor. Suppose the new factor 

amounts to a 20% increase in premium for “high” risk customers. The asset share model we set up 

is likely no longer valid because renewal rates should decrease with increasing premiums. Also, the 

expected inflation trend in the premium for the low group should increase because the small fraction 

of them that receive the “high risk” premium on renewal after having adverse experience will pay 

20% higher premiums. It may be possible to iterate the process and come to an answer, but it seems 

that this may not be the best solution. 

The assumption of constantly inflating premiums can lead us astray in other scenarios as well. 

Suppose we use the asset share model to determine optimal premium relativities for new drivers 

versus those with 5 years of experience, and we determine that premiums for new drivers need to be 

30% higher over the life of the policy. What happens when the driver attains 5 years of experience 

and wishes to renew the policy? In most cases the company would need to charge the customer the 

lower “experienced driver” rate. The original asset share model is now invalidated because it was 

counting on profitable policy years six and beyond priced at the higher rate to subsidize expected 

underwriting losses on the first few years of the policy. Even if the new rate is consistent with an 

asset share model somehow recalculated for this risk, we can never go back in time and charge more 

for policy terms that are already over for which our rate was inadequate. This error would lead to the 

company systematically undercharging customers over their lifetimes and poor profitability. 
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2.3 Remedy for the Above Issues 

The problems noted above are just symptoms of the fact that a group of policies that were 

identical in terms of risk classification as new customers will have a range of different characteristics 

at renewal and be charged different premiums. The solution is simply to track the movement of 

policies into different risk classes as they renew. Note that “risk classifications” need not be limited 

to different expected losses, but also renewal rates, loss cost trends or any other parameter that will 

have an effect on premium. 

A helpful analogy is the binomial model of stock movements from basic finance. A stock starts at 

time t ൌ 0	at price ܵ଴, and at time 1 it increases to price ܵ଴	݁௥ା௦ with probability ݌ or decreases to 

price ܵ଴	݁௥ି௦ with probability 1 െ   .݌

For insurance contract pricing purposes we will need several additional pieces of information at 

each “node”: premium, loss, expense and probability of moving into each of the next nodes. Since 

the policy may not renew, the probabilities need not add to 1. We will refer to this method as either 

the extended asset share model, or the option model. 

3. SIMPLE EXAMPLE 

Let's illustrate a simple example to show how the extended model works. Importantly, we'll also 

show that the extended model indicates a different premium amount and relativities even in the 

simplest of cases. 

The example is set up as follows: 

 Insurer sells annual policies, and the rate plan has two risk classes: high and low. 

 Policies renew 80% of the time after 1 year, and none renew after 2 years. 

 Premium P collected and expense 20%	 ∗ 	ܲ paid at time 0 and 1 

 Fixed expense 10 paid at time 0 

 Losses of ܮ௟௢௪ 	ൌ 	50 or ܮ௛௜௚௛ 	ൌ 	70 paid at times 1 and 2, depending on the policy's risk 

classification 

 There is a 10% chance after 1 year that a low risk policy will be reclassified as high risk and 

charged the corresponding premium; all high risk policies remain high risk; renewal 

probability is independent of reclassification 
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 Cash flows discounted at 5% interest, and the company desires a 5% UW profit on premium 

The goal is to determine what premium to charge for a low risk policy and a high risk policy, 

under the assumption that the rate can vary only by a policy's risk classification at the beginning of 

each term and is independent of the original risk classification. 

3.1 Traditional Ratemaking 

We will begin with traditional ratemaking, which uses the premium loading formula: 

ܲ ൌ
ܨ ൅ ܮ

1 െ ܷ െ ܸ
 

Taking all inputs literally we would get: 

௟ܲ௢௪ 	ൌ 	 ሺ10	 ൅ 	50ሻ/ሺ1	– 	20%	 െ 	5%ሻ 	ൌ 	80	

௛ܲ௜௚௛ 	ൌ 	 ሺ10	 ൅ 	70ሻ/ሺ1	 െ 	20%	 െ 5%ሻ 	ൌ 	106.67	

The obvious problem with this is that if this premium is also applied at renewal, the customer 

must pay again for the fixed expenses, even though they are incurred only at the initial policy 

purchase. The most elementary way to correct for this would be to amortize fixed expenses over the 

policy's expected lifetime. In this example we have an expected lifetime of 1.8, so we would replace 

the fixed expenses of 10 in the formulas above with 10/1.8 = 5.56 and determine premiums of: 

௟ܲ௢௪ 	ൌ 	 ሺ5.56	 ൅ 	50ሻ/ሺ1	– 	20%	 െ 	5%ሻ 	ൌ 	74.08	

௛ܲ௜௚௛ ൌ 	 ሺ5.56	 ൅ 	70ሻ/ሺ1	 െ 	20%	 െ 5%ሻ 	ൌ 	100.75	

Note that the loss relativity is 70/50	 ൌ 	1.400 and the implied premium relativity is 100.75/

74.08	 ൌ 	1.3600.	

3.2 Standard Asset Share Model 

Next we will use the standard asset share model. We will again use the premium loading formula, 

but the inputs will be expected present value of lifetime premium, fixed expense and loss. We also 

need to have an estimate of premium and loss trend, for which we will need some additional 

assumptions.  

The classification ratemaking example in Feldblum's paper uses the same premium and loss trend 

for both classes, so we will do the same here. Suppose the company does not currently charge 

different rates for the two classes, but the book of business is made up mostly of low risk policies. 

The observed premium trend will then be 0%, since at renewal the average insured’s premium stays 

the same. The loss trend however could be approximated at 4%, since the typical insured is low risk 

and their loss cost increases by 40% in 10% of cases. Below, we calculate the premium for each class 
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of policyholders by balancing the expected present value of premium to the expected present value 

of loss and expense. 

ሺܸܲܧ ௟ܲ௢௪ሻ 	ൌ 	 ௟ܲ௢௪ 	∗ 	 ሺ1 ൅	
଴.଼
ଵ.଴ହ

ሻ 	ൌ		

ሺ10	 ൅	 ହ଴
ଵ.଴ହ

	൅	଴.଼	∗	ହ଴	∗	ଵ.଴ସ
ଵ.଴ହమ

ሻ/ሺ1	– 	20%	 െ 	5%ሻ	

⇒ 	 ௟ܲ௢௪ 	ൌ 	72.16	

ሺܸܲܧ ௛ܲ௜௚௛ሻ 	ൌ 	 ௛ܲ௜௚௛ 	∗ 	 ሺ1 ൅	
଴.଼
ଵ.଴ହ

ሻ 	ൌ		

ሺ10	 ൅	 ଻଴
ଵ.଴ହ

	൅	଴.଼	∗	଻଴	∗	ଵ.଴ସ
ଵ.଴ହమ

ሻ/ሺ1	– 	20%	 െ 	5%ሻ	

⇒ 	 ௛ܲ௜௚௛ 	ൌ 	97.99	

The premium relativity implied here is 97.99/72.16	 ൌ 	1.3580. Notice that the premiums here 

are lower than for the traditional ratemaking case. That's because losses are discounted to time 0 at 

5% in the asset share model. Also notice that the premium relativity is lower, so that premiums for 

the low and high risk classes are proportionally closer to each other. That's because when losses are 

discounted, a larger portion of the premium goes toward the time 0 fixed expense which is equal for 

the two risk classes. 

3.3 Extended Asset Share/Option Model 

Now we will calculate premiums using the extended asset share/option model. Like the 

traditional asset share model, we will use the expected present value of premium, loss and expense, 

accounting for probability of renewal. The difference in this solution is that we will explicitly 

recognize the effect of low risk policies moving to the high risk class at time 1.  

We first calculate the premium for high risk policies: 

ሺܸܲܧ ௛ܲ௜௚௛ሻ 	ൌ 	 ௛ܲ௜௚௛ 	∗ 		 ሺ1 ൅	
଴.଼
ଵ.଴ହ

ሻ 	ൌ		

ሺ10	 ൅	 ଻଴
ଵ.଴ହ

	൅	଴.଼	∗	଻଴	
ଵ.଴ହమ

ሻ/ሺ1	– 	20%	 െ 	5%ሻ	

⇒ 	 ௛ܲ௜௚௛ ൌ 	96.46	

Notice that we actually arrived at a lower indicated premium than in the standard asset share 

model. The difference is that before we had determined a 4% average loss trend and applied that to 

all policies, whereas here we recognize that high risk policies have zero loss trend. 

For low risk class policies, the calculation differs from the standard model in the renewal term 

expected losses and premium. Since there is a 10% chance that the risks are reclassified as high risk, 

we have: 
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	ݏݏ݈ܽܿ	݇ݏ݅ݎ	|	ଶܮሺܸܲܧ ൌ ݐ	ݐܽ	ݓ݋݈	 ൌ 0ሻ 	ൌ 	 ሺ0.8	 ∗ 	0.9	 ∗ 	50	 ൅ 	0.8	 ∗ 	0.1	 ∗ 	70ሻ/1.05ଶ		

ൌ 	37.73	

Note that, not coincidentally, this is exactly the same result as for the standard asset share model 

because this process is what we observed in order to determine the 4% overall loss trend.  

For premium, we also recognize that the 10% of low risk policies that are reclassified will also be 

charged the high risk class premium upon renewal. Following the same logic as above we have: 

ሺܸܲܧ ଶܲ	|	݇ݏ݅ݎ	ݏݏ݈ܽܿ	 ൌ ݐ	ݐܽ	ݓ݋݈	 ൌ 0ሻ 	ൌ 	 ሺ0.8	 ∗ 	0.9	 ∗ 	 ௟ܲ௢௪ 	൅ 	0.8	 ∗ 	0.1	 ∗ 	96.46ሻ/1.05	

where we have used the premium calculated above for high risk policies. Putting it all together: 

௟ܲ௢௪ 	൅	ሺ0.8	 ∗ 	0.9	 ∗ 	 ௟ܲ௢௪ 	൅ 	0.8	 ∗ 	0.1	 ∗ 	96.46ሻ/1.05	 ൌ		

ሺ10	 ൅	 ହ଴
ଵ.଴ହ

	൅ 	37.73ሻ/ሺ1	– 	20%	 െ 	5%ሻ	

⇒ 	 ௟ܲ௢௪ 	ൌ 	71.06	

This implies a premium relativity of 1.3574, slightly less than in the standard asset share case. 

Also, the premiums for both classes are lower. They are lower for high risk policies because we are 

not incorrectly applying a loss trend factor, and they are lower for the low risk class policies because 

the higher expected losses in term two are paid for by increased premiums on those policies that 

transition to the high risk class group. In the standard asset share case, the increased second term 

losses were partially prepaid by higher premiums in the first term, even on policies that remain low 

risk. 

3.4 Reclassification and Trend 

The simplicity of this example allows us to closely examine what went wrong with the standard 

asset share model. The problem was our calculation and application of trend. For loss trend we saw 

that for 10% of policies loss costs increased 40% at renewal, so assuming that most of our book of 

business was low risk we would have observed a 4% annual loss trend. This trend is a function of 

risk class loss costs and transition probability. For a good paper describing this phenomenon, see [7]. 

In reality, there will also be a general inflation factor which impacts losses. The advantage that the 

extended model gives us is that we can explicitly break the average trend down into its two 

components: risk classification transition and inflation. 

4. OPTIONS 

4.1 Implicit Options in the Standard Asset Share Model 

The standard asset share model assumes that premium will stay the same, or perhaps gradually 
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inflate over the life of the policy, while the extended model recognizes that the rate can change at 

renewal. Even if all loss costs, expenses, renewal rates and trends were identical these two policies, 

one where the rate is the same or gradually inflates at renewal and one that has no premium 

restriction, would have different values. 

Let's refer back to the example. What would be the indicated premium for a policy where the 

renewal rate was the same as the new business rate, even if the risk is reclassified at renewal? The 

rate would be the same for the high risk class policy as we calculated above for the extended asset 

share model. The expected lifetime premium, where the nominal premium is the same in both 

terms, is set equal to the loaded expected present value of fixed expenses and loss costs. For the 

high risk policies we have: 

ሺܸܲܧ ௛ܲ௜௚௛ሻ 	ൌ 	 ௛ܲ௜௚௛ 	∗ 	 ሺ1 ൅	
଴.଼
ଵ.଴ହ

ሻ 	ൌ		

ሺ10	 ൅	 ଻଴
ଵ.଴ହ

	൅ 	0.8	 ∗ 	 ଻଴
ଵ.଴ହమ

	ሻ/ሺ1	– 	20%	 െ 	5%ሻ	

⇒ 	 ௛ܲ௜௚௛ 	ൌ 	96.46	

This is the same as in the option model because there is no risk reclassification for high risk 

policies in our example.  

For the low risk class, we recognize the transition probability and corresponding high risk loss 

costs in the second term, but we do not recognize any increase in premium for the second term 

because there is none, as we are assuming. Borrowing from above we have: 

ሺܸܲܧ ௟ܲ௢௪ሻ 	ൌ 	 ௟ܲ௢௪ 	∗ 	 ሺ1 ൅	
଴.଼
ଵ.଴ହ

ሻ 	ൌ		

ሺ10	 ൅	 ହ଴
ଵ.଴ହ

	൅ 	37.73ሻ/ሺ1	– 	20%	 െ 	5%ሻ	

⇒ 	 ௟ܲ௢௪ 	ൌ 	72.16	

Note that this is the same premium we obtained in the standard asset share model. That is 

because here the expected loss in the second term given that there is a second term is 50 * 1.04. This 

is the same term appearing in the calculation for the standard asset share model since we estimated a 

4% loss trend. Also, when we calculated the standard asset share model we had assumed a 0% 

premium trend, which is exactly what the premium trend would be for an insurance policy with a 

guaranteed renewal rate as we have here. 

So we obtain the same premium for a guaranteed rate contract as we get for a traditional contract 

priced using the standard asset share model. What should the difference in price be between an 

insurance contract with a guaranteed renewal price and one without? The difference will be the value 
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of the implicit option that comes with a guaranteed renewal rate; the option, but not obligation, for 

the insured to renew the policy for a predetermined price. 

Let's determine the value of this option in our example from the perspective of the customer. If 

they start out classified as low risk, the price for insurance using the extended asset share model is 

71.06. The price has an 8% chance of increasing to 96.46 at renewal (10% chance of our company's 

premium increasing and an 80% chance that the policy renews), otherwise it remains at 71.06. This 

is exactly like a simple example from option pricing using the binomial stock price model. 

The possible values of the insurance contract at time 1 are 96.46 with probability 8%, 71.06 with 

probability 72%, and 0 with probability 20%. The strike price of the call option is the low risk price 

which is 71.06. Since the option is purchased at time zero and the payoff is at time one we must 

discount, so the value of the option is: 

	ܥ ൌ 	0.08	 ∗ 	ሺ96.46	– 	71.06ሻ	/	1.05	 ൌ 	1.935	

The reader may note that things don’t seem to add up. We said that the guaranteed rate contract 

is a standard contract plus an option, so the value of the guaranteed rate contract should be the 

value of the standard contract plus the value of the option, but we have: 

71.06	 ൅ 	1.935	 ൌ 73.00	 ് 	72.16	

The disconnect is that since the rate for the guaranteed rate contract is fixed for the life of the 

policy, the price of the option is amortized and paid for in equal amounts in the first and second 

terms. The expected NPV of a dollar of premium charged to a low risk customer with a guaranteed 

price contract is: 

1	 ൅	 ଴.଼
ଵ.଴ହ

	ൌ 	1.762	

so the price per term for the option is: 

1.935/1.762	 ൌ 	1.10	

and we have: 

71.06	 ൅ 	1.10	 ൌ 	72.16	

So the price of the guaranteed rate contract is the sum of the price of the standard contract and 

the amortized cost of the option. 

4.2 The Renewal Rate Change Option 

It’s also possible to view a standard insurance contract as a guaranteed rate contract where the 

policyholder has sold the implicit call option back to the insurer. How would that transaction work 

exactly? Suppose the policy has been reclassified as high risk before renewing. The policyholder can 
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renew at the guaranteed price. The insurer will then choose to exercise the call option, since the 

price of insurance exceeds the option's strike price of the guaranteed rate. The option seller, the 

customer, must pay the insurer the difference between the strike price (low risk policy premium) and 

the asset price (high risk policy premium), the asset being an insurance policy. The net payment 

upon renewal by the customer is the high risk class price, as is the case in a standard insurance 

contract. This is a convenient way of viewing insurance options as insurance company assets; 

renewal rate change options. 

4.3 Business Relevance 

The above is not just abstract theory. We have shown that in a relatively simple example, we are 

able to charge actuarially justified lower prices for insurance coverage. We are also able to price the 

value of options on insurance coverage. In any insurance contract where the price at renewal is not 

completely predetermined, the insurer holds a renewal rate change option of some value, but there 

are many examples of true insurance options that are being sold to insurance customers in the 

marketplace today. 

In personal lines, some companies offer special features that act to reduce or eliminate rate 

increases upon renewal. One such feature is “accident forgiveness”. In this case, the company will 

decline to reclassify the policy as higher risk even though there has been a claim, meaning that the 

premium would be increased under the standard rating plan. The company in this case is selling an 

option to the customer, or equivalently, failing to buy back the renewal rate change option on a fixed 

rate contract. The option is a bit more complex however because other types of rate changes would 

still be allowed.  

Another interesting product in personal lines is perpetual deposit fire insurance. For this type of 

policy, the insured places a deposit with the insurer and in return receives “free” fire insurance 

coverage. The deposit is returned when the policy terminates, no matter what the loss experience 

has been. This product is a swap between interest payments and insurance payments. One could 

imagine some bells and whistles added, much like has been done in life insurance, that incorporate 

complex option-like features such as minimum investment returns.  

In commercial insurance and reinsurance, there are many types of policy features which involve 

the implicit selling of options. Some common features are policy extensions, see [5], and multi-year 

coverage. Multi-year coverage is the most obvious example of options in insurance because it is 

precisely the guaranteeing of future insurance coverage availability at a predetermined price. 

Different contracts may have features which oblige the insured to purchase coverage in the future 
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years, which would make these contracts more like forward contracts. 

An interesting example in reinsurance is a contingently automatically renewing policy. How it 

works is that if the financial result (e.g. loss ratio or combined ratio) remains within a certain range, 

then the reinsurer is obligated to renew the treaty at a predetermined price. If the cedent has the 

right but not obligation to buy at the strike price, then this reinsurance contract contains options on 

future reinsurance coverage with a trigger. It may also contain compound options if the renewed 

treaty again includes options. 

Another area where insurance options are present is in the regulation of insurance rates. There 

are many laws which limit cancellation of policies, limit the magnitude of rate changes, and prevent 

or slow rate changes. Some of the most hotly debated regulations are those which either allow or 

disallow certain risk classifications. These are all examples of options which are required to be 

included in the regulated contracts, or limitations on the exercise of renewal rate change options.  

5. GENERAL FRAMEWORK FOR THE EXTENDED ASSET 
SHARE/OPTION MODEL 

We will now present the full mathematical framework for applying the extended asset share 

model in the general case. The general case is an extension of the simple example in a number of 

ways. There can be an unlimited number of risk classes and policy terms. Risk classes can transition 

to and from any other class. The expected loss for any risk class can be anything in any policy term, 

independent of previous or future terms and of other risk classes. The same will be true for renewal 

rates and transition probabilities. 

The mechanics are essentially just linear algebra, with each dimension representing a risk class. 

Premium, losses and fixed expenses will be represented by vectors, or series of vectors. We track the 

movements of risks through the risk classes with a series of matrices. These matrices will represent 

the transition probabilities between each risk class and probability of termination at each renewal. 

We will continue to use the simple premium loading formula, with expected present lifetime value 

for all inputs.  

Given the loss cost and fixed expense vectors, the risk class transition matrices, the discount 

factors, premium trend and the variable expense and profit loads, the method will solve for the 

current premium level and rate relativities which result in the expected present value of lifetime 

premium equaling the loaded expected present value of loss costs and expenses simultaneously for 

all risk classes. 

Suppose there are n distinct risk classifications. Let ܴ be an n-dimensional vector such that ܴሾ݅ሿ 
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is the premium relativity for the ith risk class. ܴ is fixed and does not vary over time. We can require 

that ܴሾ1ሿ 	ൌ 	1.00. Let ܲሺݐሻ be a premium index over time (a real function, not a vector), so that 

ܲሺݐሻ is the expected average rate level independent of risk class transitions. Basically, if a company 

assumes it will take a 5% rate increase each year, then we would have  

ܲሺ݊ሻ 	ൌ 	ܲሺ0ሻ 	∗ 	1.05௡	

We do not need to assume or specify a ܲሺ0ሻ, as the method will solve for the correct current 

average rate. Let ܮ௧ be a series of n-dimensional vectors so that ܮ௧ሾ݅ሿ is the expected loss costs for 

risk class ݅ at time ݐ. Let ܨ be an n-dimensional vector of fixed expenses so that ܨሾ݅ሿ is the fixed 

expense, assumed to all be incurred at time 0, for risk class i. Let ܷ and ܸ be the usual profit and 

variable expense provisions in the premium. These are real numbers, independent of time and risk 

class. Let ݒሺݐሻ be a series of discount factors, such that the present value of $1 at time ݐ is ݒሺݐሻ at 

time 0. Obviously we must have ݒሺ0ሻ 	ൌ 	1. Finally, let ܣ௧ be a series of n-dimensional square 

matrices such that the probability that a risk in class ݅ at time 0 is in class ݆ at time ݐ is ܣ௧ሾ݅, ݆ሿ. The 

matrices are cumulative transition probability matrices; it is equivalent to define a series of 

incremental transition probability matrices. 

Many readers will notice that under the above construction the policies’ risk classification forms a 

Markov Chain. It may be possible to put more of this exposition into the language already 

developed in the extensive literature on Markov models, but the goal of this paper is to build on the 

asset share model as developed in the actuarial literature. 

5.1 Premium Formula 

We use the standard premium loading formula and as usual equate premiums with loaded loss 

plus fixed expense, but we use the expected present lifetime value for all quantities as in the standard 

asset share model: 

෍ ܲሺ݊ሻ ∗ ௡ݒ ∗ ௡ሺܴሻܣ
ஶ

௡ୀ଴
ൌ ଵ

ଵି௎ି௏
൤ܨ ൅෍ ௡ݒ ∗ ௡ሻܮ௡ሺܣ

ஶ

௡ୀ଴
൨ (1)

Let's first break down the left hand side to see why it equals the expected present lifetime value 

of premium. More precisely, it is an n-dimensional vector, such that the ith entry is the expected 

lifetime present value of premium for a risk in class ݅ at time 0. ܲሺ݊ሻ is the average “rate” at time ݊, 

and ݒ௡ is the discount factor to time zero. The ith entry of ܣ௡ሺܴሻ, which is a matrix applied to a 

vector, is the inner product of the ith row of the matrix ܣ௡ with the vector ܴ. Since ܣ௡ is the 
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cumulative transition probability matrix, the rows represent the distribution among the risk classes at 

time ݊ of risks starting in the class corresponding to that row (as we have defined it). That means 

the ith entry of ܣ௡ሺܴሻ is the average premium relativity factor at time ݊ for risks in class ݅ at time 0, 

weighted by the probability that the risk is in each class at time ݊. So when we sum over all time 

periods ݊ (the initial new business policy purchase and all subsequent renewals), the ith entry on the 

left hand side is the expected present lifetime value of premium for risks in class ݅ at time 0, taking 

into account discounting, probability of renewal, premium trend and the difference in premium due 

to future expected risk classification changes. 

What about the right hand side? Likewise, it is a vector. The ith entry equals the expected present 

value of lifetime losses and fixed expense, loaded for profit and variable expense. The profit and 

expense portions are clear, so we will discuss the sum. Again, ݒ௡ is the discount factor to time 0. 

The ith entry of ܣ௡ሺܮ௡ሻ is the average loss costs at time n for a risk that was in class ݅ at time 0. 

That's because the ith entry is the inner product of the ith row of ܣ௡, which is the risk class 

distribution at time ݊ of risks starting in class ݅ at time 0, with the vector ܮ௡, which is the vector of 

loss costs by risk class at time ݊. Therefore the right hand side is a vector representing the loaded 

expected present value of lifetime expense and loss costs for each risk class. 

Despite the summation, the left hand side is just a matrix applied to the premium relativity 

vector. To get premium alone on the left hand side we apply the inverse of the matrix (assuming it 

has one): 

ܲሺ0ሻ ∗ ܴ ൌ 	 ଵ
ଵି௎ି௏

൬෍
ܲሺ݊ሻ
ܲሺ0ሻ

∗ ௡ݒ ∗ ௡ܣ
ஶ

௡ୀ଴
൰
ିଵ

൬ܨ ൅෍ ௡ݒ ∗ ௡ሻܮ௡ሺܣ
ஶ

௡ୀ଴
൰ (2)

5.2 Return to Traditional Ratemaking 

We can recreate the traditional ratemaking formula from the extended asset share model 

premium formula above by making some simplifying assumptions for the parameters. Suppose that 

losses gradually inflate over time with premium trending in step. Also suppose losses trend with 

general inflation, which is expected to match the risk free investment return. In the notation above 

we would have: 

ܲሺ݊ሻ
ܲሺ0ሻ

ൌ 	
௡ሾ݅ሿܮ
଴ሾ݅ሿܮ

ൌ ,௡ିଵݒ	 ∀	݅ 

The premium formula then simplifies to: 

଴ܲ ∗ ܴ ൌ 	 ଵ
ଵି௎ି௏

൬෍ ௡ܣ
ஶ

௡ୀ଴
൰
ିଵ

൬ܨ ൅෍ ଴ሻܮ௡ሺܣ
ஶ

௡ୀ଴
൰ 
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Distributing the matrix on the right side to the fixed expense and loss terms separately, we can 

cancel the matrix and its inverse: 

଴ܲ ∗ ܴ ൌ 	 ଵ
ଵି௎ି௏

ቈ൬෍ ௡ܣ
ஶ

௡ୀ଴
൰
ିଵ

ሺܨሻ ൅	ܮ଴቉ 

Now premium and loss are unaffected by the matrix sum. Supposing again that we ignored risk 

class transitions, then each ܣ௡ would be a diagonal matrix, with entries equal to the renewal 

probability for each risk class. We would then have that the sum of ܣ௡ over all ݊ would be a 

diagonal matrix with entries equal to the expected lifetime at time 0 of the policy given its risk class. 

The ith entry of the ሺ∑ ௡ஶܣ
௡ୀ଴ ሻିଵሺܨሻ vector would then be the fixed expense for the ith risk class 

divided by the expected policy lifetime for risk class ݅. This is the same expense amortization that we 

have seen previously. So what we have shown is that traditional ratemaking with fixed expense 

amortization is the equivalent of the extended asset share model with simplified premium and loss 

trend assumptions. 

6. IN-DEPTH EXAMPLES 

We will work through two more complex examples to demonstrate the potential of the extended 

asset share model. First we will broaden the assumptions in the two risk class case we analyzed at the 

beginning of the paper, and explore how changes in the parameters affect the premium relativities. 

Then we enhance the example by adding a “medium risk” class with slightly higher expected losses 

but the same premium as the low risk class. This will demonstrate how to use the extended asset 

share/option model to determine the proper premium to charge for “accident forgiveness” or other 

anti-experience rating policy features. We will again show that the indicated premium will be the sum 

of the standard premium plus the amortized cost of the options. 

6.1 Two Risk Class Case 

We can use the extended asset share model premium formula to calculate premiums and 

relativities for a more complex two risk class example. The low risk class will be given all the 

characteristics of more desirable underwriting risks such as decreasing loss costs and longer expected 

lifetime, while the high risk group will be given less desirable characteristics. After calculating the 

premium, we will compare the derivative of the premium with respect to the various parameters. 

The assumptions are as follows: 

 Insurer sells annual policies, and the rate plan has two risk classes: high and low 
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 Low risk policies renew with 90% probability at the end of each term, indefinitely 

 High risk policies renew with 70% probability at the end of each term, indefinitely 

 Premium ܲ collected and expense 20%	 ∗ 	ܲ paid at times 0, 1, 2, etc. 

 Fixed expense 10 paid at time 0 

 Losses of ܮ௟௢௪ሺ0ሻ 	ൌ 	50 or ܮ௛௜௚௛ሺ0ሻ 	ൌ 	70 paid at time 1 for the first term 

 Losses inflate at 1% per year for low risk policies and 3% per year for high risk policies 

 At the end of each and every year there is a 10% chance that a low risk policy will be 

reclassified as high risk and charged the corresponding premium; all high risk policies remain 

high risk 

 Low risk class policies renew with only a 70% probability at the time of reclassification to 

high risk 

 Premiums are expected to inflate at 4% per year. 

 Cash flows discounted at 5% interest, and the company desires a 5% UW profit on premium 

The only area of ambiguity is that we have said low risk policies renew 90% of the time, 

transition to high risk 10% of the time, and renew 70% of the time after transition (due to their 

aversion to rate increases). We will assume the 90% renewal rate is the total renewal rate so that at 

renewal 10% do not renew, 7% (=10% * 70%) transition to high risk and renew, and the remaining 

83% remain low risk and also renew. 

Notice that we have assumed premium trend will outpace loss trend on policies that start today. 

Accounting for this phenomenon of improving loss costs over policy tenure was the original 

motivation behind the asset share model. 

The starting point is the extended asset share premium formula (2) where we had isolated the 

premium on the left hand side. All necessary parameters are defined above, and the solution is an 

exercise in linear algebra. Detail on the calculations can be found in Appendices 1 and 3 and were 

completed using Sage, the Python-based open source mathematics software. 

As a point of reference, let's determine what premiums we would charge if our ratemaking 

method was traditional with expense amortization: 

௟ܲ௢௪ 	ൌ 	 ሺ50	 ൅	
ଵ଴
ଵ଴
ሻ/ሺ1 െ .2 െ .05ሻ 	ൌ 	68.00	

௛ܲ௜௚௛ 	ൌ 	 ሺ70	 ൅	
ଵ଴
ଷ.ଷଷ

ሻ/ሺ1 െ .2 െ .05ሻ 	ൌ 	97.33	

where 10 and 3.33 are the expected lifetimes of low and high risk policies, respectively, given a 
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90% and 70% probability of renewal. 

The extended asset share model determines the optimal premiums as follows: 

௟ܲ௢௪ 	ൌ 	56.22	

௛ܲ௜௚௛ 		ൌ 	90.92	

The method indicates discounts relative to the traditional premium, just as the standard asset 

share model would. The discount is higher for low risk policies because their loss trend is more 

greatly outpaced by premium trend. 

It is more interesting here to determine the sensitivity of the low risk premium to the new 

parameter we have introduced with the extended model: risk classification transition probability. 

Also, because we are recognizing the chance for reclassification, the low risk premium may also 

depend on the parameters of the high risk class.  

In fact, it isn't even obvious a priori whether the derivative of ௟ܲ௢௪ is positive or negative with 

respect to transition probability. Let us present seemingly valid arguments for both positions. We 

will call the transition probability inclusive of renewal probability, 7% in our example here,	ݍ: 

 ߲ ௟ܲ௢௪ ⁄	ݍ߲ ൏ 	0: Since ௟ܲ௢௪	 is smaller than ௛ܲ௜௚௛ and total lifetime profit is set at 5% of 

premium, the dollar amount of required profit on low risk policies is lower than for high risk 

policies. When policies transition to high risk, they are priced to a higher dollar value of 

profit, so the extra profit made on transitioning low risk policies subsidizes the price for low 

risk policies that do not transition. 

 ߲ ௟ܲ௢௪ ⁄	ݍ߲ ൐ 	0: Since high risk policies have short lifetimes, the profit must be front loaded 

in the first few terms. When low risk policies transition, it is into the later terms of the high 

risk class which have low profitability or may even be unprofitable. The low risk price will 

need to be raised to subsidize the relative loss on transitioning policies. 

There are some obvious flaws in both of these arguments, but either could be valid under certain 

assumptions for this simple example. For the parameters we have assumed we have: 

߲ ௟ܲ௢௪ ⁄	ݍ߲ 	ൌ 	െ0.28 (ݍ expressed as a percentage) 

That means that keeping all other parameters the same, a 1 point increase in transition probability 

(inclusive of renewal rate) should result in a reduction in premium of 28 cents for all low risk 

policies. That makes sense in terms of argument number 1: since premium trend outpaces loss trend 

for high risk policies, they become more profitable as time goes on and that additional profit 
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subsidizes the price of all low risk policies. If we change the parameters of the example so that high 

risk loss trend is 4% and premium trend is only 2%, then we see that: 

߲ ௟ܲ௢௪ ⁄	ݍ߲ 	ൌ  (expressed as a percentage	ݍ) 0.19	

In this case argument number 2 is correct. Since high risk loss trend outpaces premium trend, 

later terms of high risk policies are less profitable and may even result in loss. Those terms are 

precisely when low risk classes are expected to transition, so those losses must be subsidized by 

higher rates for all low risk policies. 

To give some context to the values above we will show the derivative of the low risk premium 

with respect to some of the other variables. The reader should keep in mind that a 1 point change in 

trend is a much larger variation proportionally than a $1 change in expected loss, or a 1 point change 

in renewal probability. To put these measures on an even basis of deviations from the mean, we 

should look at derivatives of the natural log of the quantities. These can be interpreted as the 

percentage change in low risk class premium for every percent change in the independent variable. 

To obtain the figures below from the raw derivatives calculated in Appendix 1 one simply needs to 

scale by the ratio of the quantities using:  

݈݀݊ሺݕሻ ݈݀݊ሺݔ⁄ ሻ ൌ ሺ݀ݕ ⁄ݕ ሻ ሺ݀ݔ ⁄ݔ ሻ⁄ ൌ ݕ݀ ⁄ݔ݀ ∗  ݕ/ݔ

We have: 

߲݈݊ሺ ௟ܲ௢௪ሻ/߲݈݊ሺݍሻ 	ൌ 	െ0.04	

߲݈݊ሺ ௟ܲ௢௪ሻ/߲݈݊ሺ݌ሻ 	ൌ 	െ0.94 (݌		= low risk renewal and non-transition probability) 

߲݈݊ሺ ௟ܲ௢௪ሻ/߲݈݊ሺܮ௟௢௪ሻ 	ൌ 	0.99	

߲݈݊ሺ ௟ܲ௢௪ሻ/߲݈݊ሺݎ଴ሻ 	ൌ  (= low risk class loss trend		଴ݎ) 3.91	

߲݈݊ሺ ௟ܲ௢௪ሻ/߲݈݊ሺݎଵሻ 	ൌ  ( = high risk class loss trend	ଵݎ)	1.73	

The above shows that the calculated premium is much more highly leveraged on loss trends than 

the other variables. While the risk class transition probability appears relatively unimportant, the 

high risk class loss trend has more leverage on the low risk class premium than either the low risk 

renewal rate or the low risk loss costs. There must be some significant second order effects as well, 

since if the transition probability were zero, then the high risk loss trend would have no effect on 

low risk premium. 

6.2 Anti-Experience Rating 

As mentioned above, a popular feature of personal lines insurance is “accident forgiveness” or 

anti-experience rating. A private passenger auto rating plan typically segments risks finely by accident 
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and driving violation history. What would typically happen after an accident is that at renewal the 

policy would be reclassified based on the new information and charged a higher premium. The 

promise made by companies offering anti-experience rating to select groups of customers is that in 

the event of an accident, the company will decline to reclassify the risk and the renewal premium will 

remain the same. This is a very good example of an option, or more precisely a call option held by 

the customer and purchased from the insurer.  

We will calculate the correct premium for policies with anti-experience rating options using the 

extended asset share model. We will utilize the previous example with some modifications as 

follows: 

 There is a third risk class, medium or “med” as a variable subscript 

 ܮ௠௘ௗ 	ൌ 	55 and loss trend over time is 2% 

 Low risk policies transition to medium risk only with the same 10% probability at the end of 

each and every year 

 Medium risk policies are charged the same premium as low risk, i.e. their slightly higher 

expected loss is “forgiven” 

 Medium risk policies renew with 95% probability, including the term in which they transition 

 Medium risk policies transition to high risk with probability 25% at each renewal, otherwise 

they remain medium risk 

We will try to answer the following simple questions: What price would we charge to each of the 

three classes, low, medium and high, if we ignore anti-experience rating? Then, given that medium 

risk policies are “forgiven”, and charged the same price as low risk policies, what should that price 

be? What is the value of the call options offered to the low risk policies? How do these quantities 

relate? 

It is worth taking a moment to think about how difficult it would be to answer these questions 

using just the traditional ratemaking formula or the standard asset share model. Traditional 

ratemaking clearly falls short, since it only considers one policy period of loss costs. If we add fixed 

expense amortization, then it would actually indicate a lower price for low risk policies with anti-

experience price guarantees, since the expected policy lifetime is longer. Although it is possible for a 

policy feature which increases insurer costs but also increases policy tenure to pay for itself in 

increased lifetime profit, the traditional formula is not capable of truly identifying these 

opportunities and this example is not one of them. 
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The standard asset share model incorporates persistency rates and trends, so it gives a better 

chance for modeling this example. The option would affect premium trend since premiums increase 

less because of option exercise, and customer persistency since customers offered below market 

prices will be more likely to renew. The standard asset share model would be able to pick up these 

effects; it's just a question of how accurate it would be. Since the two effects are likely to be small 

and in opposite directions the analyst may only be confident that the premium should be different, 

but unsure whether it should be higher or lower. 

Another problem with the standard asset share model is that it assumes constant trends 

throughout time. Since the low risk policies are guaranteed the same rate at the first renewal, the 

premium trend due to risk reclassification is 0%. There will still be the 4% overall annual premium 

inflation we assumed. Premium trend will increase for subsequent renewals as policies transition to 

high risk and are charged higher premiums. Eventually, all policies will be classified as high risk and 

premium trend will again be 0% attributable to reclassification, plus premium inflation. This clearly 

cannot be modeled properly with a constant trend. Likewise the standard asset share model assumes 

a constant loss trend, but in this example we have the same phenomenon of changing trends 

throughout time. 

Even if we were to recognize the changing loss and premium trend throughout time in the 

standard asset share model, how would we calculate those trends? What is the average premium 

increase between the third and fourth renewal for policies starting out as low risk at time zero? It is a 

function of the transition matrix and the premiums charged, but we haven't determined the proper 

premiums yet. The same complications arise with persistency rates. We seem to be doomed before 

we even begin. 

 This is a relatively simple problem when using the extended asset share model, solved in just a 

few lines of code which are detailed in Appendix 2. The correct premiums are: 

௟ܲ௢௪	(no option)	ൌ 	$54.98	

௠ܲ௘ௗ (no option)	ൌ 	$64.25	

௟ܲ௢௪	(with option)  ൌ 	 ௠ܲ௘ௗ (with option)		ൌ 	$57.65	

௛ܲ௜௚௛ 	ൌ 	$90.92		

Note that for policies starting out as high risk, there is no difference between this example and 

the previous one where we only had high and low risk policies. All trends and persistency rates are 

the same, so the extended asset share model has indicated the same premium. The premiums 

indicated for the low risk class, either with or without the option, are not comparable with the 

previous example because we have changed the parameters. In particular, the expected lifetime is 
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different and the rate of transition to high risk is different. 

The second part of the problem is to determine the value of the options embedded in the low 

risk class policy with forgiveness, and to relate it to the price we determined for the policy with and 

without the options. We know the option is a call option held by the insured. What is the strike 

price? Because the low policyholder is guaranteed a price at renewal of $57.65 we might guess that to 

be the strike price, but the $57.65 is the price for another term of insurance coverage plus another 

call option on the price of insurance at the next renewal. The $57.65 really represents $54.98 for 

insurance coverage, plus $2.67 for call options with strike price $54.98. 

We can easily determine the value of the option with exercise at the first renewal. There is a 10% 

chance that they will be reclassified as medium risk, and in that event a 95% chance of renewing for 

a combined 9.5% chance of option exercise. The “market price” for medium risk insured is what the 

company would like to charge, $64.25. After incorporating the 4% premium trend and  5% cash 

flow discounting, the present value of this option at time zero is: 

0.095	 ∗ 	ሺ64.25	– 	54.98ሻ 	∗ 	݁଴.଴ସି଴.଴ହ 	ൌ 	$0.8719	

That's a lot less than the $2.67 we've determined should be charged to provide low risk policies 

with the option, so where is the disconnect? We need to consider options provided on future 

renewals as well. What is the value of the option to a policy that has already moved to the medium 

classification? The market price is $64.25 and we are offering them an in-the-money option to 

purchase insurance at renewal for $54.98. We have assumed they have a 95% total persistency rate 

with a 25% chance of being reclassified as high risk and a 70% rate of renewal if that happens. The 

probability of option exercise is 95% - 25% * 70% = 77.5%. With discounting and trending, the 

NPV of this option at the beginning of a term is: 

0.775	 ∗ 	ሺ64.25	– 	54.98ሻ 	∗ 	݁଴.଴ସି଴.଴ହ 	ൌ 	$7.1128	

This is a lot more than the difference in premium we determined for adding the option to a low 

risk policy. Recall the simple example from Section 3. There was only one option provided for the 

life of the policy since all policies terminated at the second renewal, but the cost of the option was 

spread over both the first and second term premiums. We will show the same for this example, that 

the $2.67 extra charged for the low and medium risk policies with forgiveness is the amortized cost 

of options offered over the life of the policy.  

The lifetime value of the options can be calculated directly using the binomial model from basic 

finance. The value of the option is the expected present value of the payoff, which is the difference 

between the strike price and the market price at time of option exercise, times the probability of 
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option exercise. At the nth renewal, the option pays off for all low risk class policies transitioning to 

medium risk, and all low risk policies that transitioned to medium risk in the 1st though n-1st renewal 

and remain medium risk. The reader can verify the following expression with increased decimal 

precision as the lifetime present value of the option payoffs: 

ሺ64.24538 െ 54.98420ሻ෍ ෍ 0.805௡ିଵି௞ ∗ 0.095 ∗ 0.775௞ ∗ ݁ି଴.଴ଵ௡
௡ିଵ

௞ୀ଴

ஶ

௡ୀଵ
 

Evaluating either algebraically or numerically, we find that the lifetime present value of options 

offered to a low risk policy at time zero is approximately $18.4379. 

From the Sage output (see Appendix 2), we have that the present value of $1 charged to low and 

medium risk policies over their lifetime, until termination or transition to high risk, is $6.92. Again 

increasing decimal precision, we find that the present value of the $2.67 charge is equal to the above:	

2.66569	 ∗ 	6.91675	 ൌ 	$18.4379 

So what we have shown is that the extended asset share model calculates the premium required 

for an insurance policy with accident forgiveness as the price of a standard policy plus the amortized 

cost of the options. 

7. ADVANCED CONSIDERATIONS AND DISCUSSION 

As we have seen, there are a number of advantages with the extended asset share/option model. 

We have been able to more precisely price traditional insurance contracts based on expected lifetime 

profit, and we can also price more complex policy features such as options on future coverage 

prices. This paper is meant to be an introduction of the method, not the final word. Below are some 

issues worth further consideration. 

7.1 Dynamic Persistency 

The biggest shortcoming of the method as presented here is that renewal rates are not 

independent of premium levels in reality. Obviously, the higher the price, the lower the probability 

of renewal, especially if the price is high relative to competitors. In the development above our 

transition matrices ܣ௡ are not functions of ܴሾ݅ሿ, which effectively assumes independence so that the 

premium can be isolated on the left hand side of the equation. This was a problem we identified 

with the original asset share model. There is nothing stopping us from defining ܣ௡ as being a matrix 

of functions of the premium relativities, ܴሾ݅ሿ, but this would require more complex numerical 

methods for determining the optimal premium relativities. 
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7.2 More Sophisticated Premium Formulas 

Throughout we assumed that the premium was given by a simple loading formula. What the asset 

share model was able to do for us was more precisely determine the effect of risk reclassification on 

the optimal premiums. In practice, it may be desirable to use one of the many other premium 

formulas, see [6], such as IRR or RORAC with capital allocation. One could extend the current 

method by determining an allocated capital vector ܥ, one amount for each risk class. The desired 

rate of return times the allocated capital would then be an expense accounted for on the right hand 

side of the premium equation. 

7.3 Regulatory Constraints 

A final issue worth discussing is the constraint on rates that may prevent the use of the extended 

(or even traditional) asset share models. It is conceivable that two risks could have identical expected 

loss costs, expenses and renewal rates but be charged different premiums. For example, it could be 

that one risk is much more likely to transition to a state that is not able to be charged actuarial rates 

and cannot be canceled. Our method would call for that risk's current rate to be increased to pay for 

expected future losses. This phenomenon may violate some state insurance laws, and even 

“Actuarial Standard Of Practice Number 12, Risk Classification” could be interpreted as prohibiting 

this. 

The disconnect is that, as we mentioned in our discussion of insurance options, there is an 

implicit option being sold with the policy since the insured will have the right but not obligation to 

buy at a predetermined price which is less than “market price” (the rate the company would like to 

charge) in case of transition to the subsidized risk class. A potential defense of the method to the 

above criticism would be that the price difference reflects a true difference in costs, with that 

difference being the cost of the option. Just as options on stock prices or commodities are real and 

quantifiable, options on insurance coverage are real and quantifiable as I hope this paper has 

demonstrated. It would therefore be actuarially appropriate and in line with the ASOP to charge an 

increased premium for this additional cost. 

If the company were prohibited from explicitly charging for legally mandated insurance options 

bundled with the policy, then a solution would be to selectively offer a policy with a longer term to 

the risks with lower transition probability to the subsidized class. The rate for the standard policy 

would be increased to cover the option value, and all policyholders who qualified would opt for the 

longer term policy whose rate would be relatively lower because the implicit options are cheaper. 
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 Appendix 1. Code for Example of Section  6.1 

Below is a copy of the Sage code used to calculate the results in Section 6.1: 

sage:	a,b	ൌ	varሺ'a,b'ሻ	
sage:	p,q,r,s	ൌ	varሺ'p,q,r,s'ሻ	
sage:	v,d	ൌ	varሺ'v,d'ሻ	
sage:	A	ൌ	matrixሺ2,	ሾp,q,r,sሿሻ	
sage:	D	ൌ	matrixሺ2,	ሾa,0,0,bሿሻ	
sage:	x,y,z,w	ൌ	varሺ'x,y,z,w'ሻ	
sage:	S	ൌ	matrixሺ2,	ሾx,y,z,wሿሻ	
sage:	I	ൌ	matrixሺ2,	ሾ1,0,0,1ሿሻ	
sage:	T	ൌ	v*I	൅	v*A*S*D	‐	S	
sage:	g	ൌ	varሺ'g'ሻ	
sage:	g	ൌ	solveሺሾ	e	ൌൌ	0	for	e	in	T.listሺሻ	ሿ,	S.listሺሻ,	solution_dict	ൌ	Trueሻ	
sage:	S_solve	ൌ	S.subsሺ*gሻ	
sage:	resetሺ'e'ሻ	
sage:	M_left	ൌ	I‐v*d*A	
sage:	M_right	ൌ	M_left*S_solve	
sage:	l_1,l_2	ൌ	varሺ'l_1,l_2'ሻ	
sage:	L	ൌ	vectorሺሾl_1,l_2ሿሻ	
sage:	P_1,P_2,U,V,	F_1,F_2	ൌ	varሺ'P_1,P_2,U,V,	F_1,F_2'ሻ	
sage:	P	ൌvectorሺሾP_1,P_2ሿሻ	
sage:	F	ൌ	vectorሺሾF_1,	F_2ሿሻ	
sage:	P	ൌ	ሺM_left*S_solve*L	൅	M_left*Fሻ/ሺ1‐U‐Vሻ	
sage:	example	ൌ	ሾሼl_1:50,	l_2:70,	F_1:10,	F_2:10,	v:e^‐0.05,	d:e^0.04,	a:e^0.01,	b:e^0.03,	U:0.05,	V:0.20,	
sage:	p:0.83,	q:0.07,	r:0,	s:0.7ሽሿ;	
sage:	P.subsሺ*exampleሻ	
ሺ56.2179531176269,	90.9236721460172ሻ	
sage:	Pሾ0ሿ.diffሺqሻ.subsሺ*exampleሻ/100	
‐0.281473365369170	
sage:	example2	ൌ	ሾሼl_1:50,	l_2:70,	F_1:10,	F_2:10,	v:e^‐0.05,	d:e^0.02,	a:e^0.01,	b:e^0.04,	U:0.05,	V:0.20,	
sage:	p:0.83,	q:0.07,	r:0,	s:0.7ሽሿ;	
sage:	Pሾ0ሿ.diffሺqሻ.subsሺ*example2ሻ/100	
0.188685376430719	
sage:	Pሾ0ሿ.diffሺpሻ.subsሺ*exampleሻ	
‐63.9320830023675	
sage:	Pሾ0ሿ.diffሺl_1ሻ.subsሺ*exampleሻ	
1.11622969670737	
sage:	Pሾ0ሿ.diffሺaሻ.subsሺ*exampleሻ	
217.553423159780	
sage:	Pሾ0ሿ.diffሺbሻ.subsሺ*exampleሻ	
94.3772606495679	
sage:	Pሾ0ሿ.diffሺl_2ሻ.subsሺ*exampleሻ	
‐0.0149466720869281	
sage:	Pሾ0ሿ.diffሺdሻ.subsሺ*exampleሻ	
‐359.635554630114	
sage:	Pሾ0ሿ.diffሺsሻ.subsሺ*exampleሻ	
‐3.26752863057154	
sage:	Pሾ0ሿ.diffሺvሻ.subsሺ*exampleሻ	
‐2.68704335235142	
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Appendix 2. Code for Example of Section 6.2 

Below is a copy of the Sage code used to calculate the results in Section 6.2: 

sage:	v,d	ൌ	varሺ'v,d'ሻ	
sage:	A	ൌ	matrixሺ3,	ሾ.805,.095,0,	0,.775,.175,	0,0,.7ሿሻ	
sage:	D	ൌ	matrixሺ3,	ሾe^0.01,0,0,0,e^0.02,0,0,0,e^0.03ሿሻ	
sage:	s1,s2,s3,s4,s5,s6,s7,s8,s9	ൌ	varሺ's1,s2,s3,s4,s5,s6,s7,s8,s9'ሻ	
sage:	S	ൌ	matrixሺ3,	ሾs1,s2,s3,s4,s5,s6,s7,s8,s9ሿሻ	
sage:	I	ൌ	matrixሺ3,	ሾ1,0,0,0,1,0,0,0,1ሿሻ	
sage:	v	ൌe^‐0.05	
sage:	d	ൌe^0.04	
sage:	T	ൌ	v*I	൅	v*A*S*D	‐	S	
sage:	g	ൌ	varሺ'g'ሻ	
sage:	g	ൌ	solveሺሾ	e	ൌൌ	0	for	e	in	T.listሺሻ	ሿ,	S.listሺሻ,	solution_dict	ൌ	Trueሻ	
sage:	S_solve	ൌ	S.subsሺ*gሻ	
sage:	resetሺ'e'ሻ	
sage:	M_left	ൌ	ሺI‐v*d*Aሻ.inverseሺሻ	
sage:	L	ൌ	vectorሺሾ50,55,70ሿሻ	
sage:	P_1,P_2,P_3,	U,	Vൌ	varሺ'P_1,P_2,P_3,	U,	V'ሻ	
sage:	P	ൌvectorሺሾP_1,P_1,P_3ሿሻ	
sage:	F	ൌ	vectorሺሾ10,10,10ሿሻ	
sage:	M	ൌ	matrixሺ2,3,ሾ1,0,0,0,0,1ሿሻ	
sage:	U	ൌ	0.05	
sage:	Vൌ	0.2	
sage:	G1	ൌ	M*ሺM_left*P	‐	ሺS_solve*L	൅	Fሻ/ሺ1‐U‐Vሻሻ	
sage:	G1	
ሺ6.91675209043679*P_1	൅	1.12370402721951*P_3	‐	500.921305786324,	3.25769915424678*P_3	‐	
296.201975547860ሻ	
sage:	solns	ൌ	solveሺ	ሾe	ൌൌ	0	for	e	in	G1.listሺሻሿ,	ሾP_1,	P_3ሿ,	solution_dict	ൌ	Trueሻ	
sage:	ሾሾsሾP_1ሿ.nሺ25ሻ,	sሾP_3ሿ.nሺ25ሻሿ	for	s	in	solnsሿ	
ሾሾ57.64989,	90.92367ሿሿ	
sage:	P2	ൌvectorሺሾP_1,P_2,P_3ሿሻ	
sage:	G2	ൌ	ሺM_left*P2	‐	ሺS_solve*L	൅	Fሻ/ሺ1‐U‐Vሻሻ	
sage:	solns2	ൌ	solveሺ	ሾe	ൌൌ	0	for	e	in	G2.listሺሻሿ,	ሾP_1,	P_2,	P_3ሿ,	solution_dict	ൌ	Trueሻ	
sage:	ሾሾsሾP_1ሿ.nሺ25ሻ,	sሾP_2ሿ.nሺ25ሻ,	sሾP_3ሿ.nሺ25ሻሿ	for	s	in	solns2ሿ	
ሾሾ54.98420,	64.24538,	90.92367ሿሿ	
	
	
	
	
	
	
	
	
	
	
	
	
	
	



Extending the Asset Share Model: Recognizing the Value of Options in P&C Insurance Rates 

Casualty Actuarial Society E-Forum, Spring 2013 26 

Appendix 3. Matrix Math 

Here we will bridge the extended asset share model premium formula in the paper with 
the code in the previous two appendices. 

We begin with the premium side matrix sum, which is simpler. In formula (2) of Section 
5.1, the extended asset share premium formula where we have isolated the premium on the 
left hand side, the right hand side contained the term: 

൬෍ ௡ܲ

଴ܲ
∗ ௡ݒ ∗ ௡ܣ

ஶ

௡ୀ଴
൰
ିଵ

 

Since the incremental transition probabilities are the same for all time periods, we have 
௡ܣ ൌ ௡ݒ ,௡. Likewiseܣ	 ൌ ௡ for the present value factors and ݀௡ݒ	 ൌ 	݀௡ for the premium 
trend. The familiar geometric series formula can then be used: 

෍ ௡ݔ
ஶ

௡ୀ଴
ൌ 	

1
1 െ ݔ

 

Since the sum is inverted on the right side of the formula, that is where we get the term: 

௟௘௙௧ܯ ൌ 	1 െ ݒ ∗ ݀ ∗  ܣ

The matrix sum for the loss is a little trickier. In the general case, we let ܮ௡ be a series of 
independent vectors. We cannot just sum the matrices because they are being applied to a 
series of vectors, not just one as in the premium sum: 

෍ ௡ݒ ∗ ௡ሻܮ௡ሺܣ
ஶ

௡ୀ଴
 

In these examples however, we assume constant loss inflation trends for each risk class, 
so we have: 

௡ܮ ൌ ;଴ሻܮ௡ሺܦ ܦ	 ൌ 	ቀ݁
௥భ 0
0 ݁௥మ

ቁ 

So the problem is now to simplify the matrix sum: 

ܵ ൌ 	෍ ௡ାଵݒ ∗ ௡ܣ ∗ ௡ܦ
ஶ

௡ୀ଴
 

Here we use ݒ௡ ൌ  ௡ାଵ since losses are paid at the end of the period, instead of theݒ	
beginning as premiums are.  
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We cannot simply apply the geometric series however because the matrices ܣ and ܦ do 
not necessarily commute, i.e. ܣ௡ ∗ ௡ܦ 	് ሺܣ ∗  ሻ௡. We do however have the followingܦ
which produces a simple identity for S: 

ݒ ∗ ܫ ൅ ݒ ∗ ܦܵܣ ൌ ݒ ∗ ܫ ൅ ݒ ∗ ܣ ൬෍ ௡ାଵݒ ∗ ௡ܣ ∗ ௡ܦ
ஶ

௡ୀ଴
൰ܦ 

ൌ ݒ ∗ ܫ ൅෍ ௡ାଶݒ ∗ ௡ାଵܣ ∗ ௡ାଵܦ
ஶ

௡ୀ଴
	 

ൌ ݒ ∗ ܫ ൅෍ ௡ାଵݒ ∗ ௡ܣ ∗ ௡ܦ
ஶ

௡ୀଵ
 

ൌ෍ ௡ାଵݒ ∗ ௡ܣ ∗ ௡ܦ
ஶ

௡ୀ଴
ൌ ܵ 

We let Sage solve this equation numerically. 
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PEBELS: Policy Exposure-Based Excess Loss Smoothing 

Marquis J. Moehring, ACAS 
______________________________________________________________________________ 

Abstract: The invention of PEBELS, or policy exposure based excess loss smoothing, was motivated by the need 
to develop estimates of high layer expected loss cost for extremely small, non-credible segments of a primary 
property book of business. The existing actuarial literature provides methods for estimating high layer excess loss 
cost for large property portfolios in aggregate, but does not provide a method to produce similar provisions for 
smaller subsets of such a book. PEBELS was developed to be just such a method. PEBELS generalizes existing 
pricing theory from published property per risk reinsurance exposure rating methods and leverages increasingly 
available exposure data to produce a method which allows the practitioner to develop accurate high layer 
expected loss cost estimates down to the policy level. Once the theoretical framework required to implement this 
method in practice has been formulated, this paper continues to explore applications of PEBELS outside of 
primary insurance pricing where granular segmentation of expected loss by layer would refine results, such as 
adjusting modeled catastrophe average annual losses (AALs) for bias from implicit linearity assumptions, 
improving the predictiveness of property predictive models including generalized linear models (GLMs), and 
refining the published property per risk reinsurance exposure rating method.  
 
Motivation. Develop a practical method to determine property large loss provisions. 
Method. Property exposure analysis. 
Results. The PEBELS method of developing property large loss provisions, for use in any application requiring 
segmentation between primary and excess property loss layers. 
Conclusions. PEBELS is a practical theory of property large loss exposure. 
Availability. N/A 
 
Keywords. Property, Ratemaking, Large Loss, Excess Loss, Catastrophe, Average Annual Loss, AAL, Predictive 
Modeling, Generalized Linear Model, GLM, Reinsurance, Exposure Rating, Property Per Risk Reinsurance, PPR 

______________________________________________________________________________ 

1. INTRODUCTION 
Anyone who has been responsible for property pricing has faced the issue of how to incorporate 

experience from very infrequent but very large claims into their analysis. This is particularly an issue 

for non-weather losses for which modeled average annual losses are not available. While it is 

relatively easy to determine an aggregate provision for non-catastrophe large losses (NCLL) for a large 

credible property book [9], it is far less obvious how to determine an appropriate provision for a 

smaller, less credible, subset of such a book, e.g. a specific program in a specific state.  

The actuarial literature is eerily silent on how to produce such a provision even though very 

infrequent but very large NCLLs drive a disproportionate amount of total loss in property lines [4]. 

Determining appropriate NCLL provisions for smaller subsets of a larger book is an important step 

when developing rate level indications specifically for these subsets. PEBELS was developed as a 

method for producing such provisions by leveraging insured value data (which, thanks to the 

prevalence of catastrophe modeling, continues to become increasingly accurate and available), 

exposure curve theory (which was developed for pricing property per risk reinsurance treaties), and 

the aggregate NCLL provision for the more credible aggregate book (which is routinely determined 
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using published methods). 

The method given in this paper was designed for use in producing property rate level indications 

for primary insurers (personal or commercial). It will be demonstrated that PEBELS is actually a 

generalization of per risk reinsurance exposure rating techniques in the published actuarial literature, 

which allows further refinement of existing reinsurance pricing techniques and facilitates the 

development of additional exposure-based ratemaking applications for both primary insurers and 

reinsurers. Furthermore, despite the method being developed specifically for use with non-

catastrophe large loss experience, it will be shown that the method is equally applicable for 

catastrophe ratemaking applications given appropriate exposure curve assumptions. 

 

1.1 Research Context 

PEBELS was born of the practical problem described in the introduction. Although the 

aggregate NCLL provision for an entire property book was available with full credibility, similar 

provisions for subsets of the book by program and state had very low credibility. Furthermore, it 

was clear by inspection of the underlying exposures in some of these smaller, non-credible subsets 

that their fundamental exposure to NCLL varied dramatically. Since the business imperative was to 

develop reliable indications at the program and state level, it became necessary to determine reliable 

NCLL provisions at this level. 

The first step undertaken was a literature review, with the intention of adopting a previously 

published method for determining the NCLL provision. However, none was found. Hurley [4] and 

Werner [9] provide methods for determining the overall NCLL provision for an entire book, either 

explicitly or implicitly, but that issue had already been resolved in this application. A two-sided 

percentile approach to excess loss loading was also identified in Dean [3], but it was also designed to 

smooth experience for an aggregate book. What was needed was a way to determine appropriate 

NCLL provisions by program and state even when such segments had extremely low credibility. 

A second step was to expand the literature review beyond that available for primary property 

ratemaking. The literature for developing excess loss provisions in liability lines was much more 

developed than that for property lines. However, this was also of little help in solving the problem 

since the ground-up severity distribution of liability risks was generally assumed similar regardless of 

whether the insured selects a $1M limit or a $10M limit [7], while this is far from the case with 

property insurance. In property insurance the insured value (loosely analogous to the “limit” of a 
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liability policy) is strongly correlated with the size and value of the exposure. Thus the underlying 

severity distribution of the $1M policy is likely to be much different than that of the $10M policy. 

This distributional dependence on insured values will be formulated in terms of exposure curves in 

the body of Section 2.5. 

Continuing to expand the literature review to applications in reinsurance pricing led to the most 

relevant methods and theory, though these were not directly applicable to the problem at hand. 

Clark [2] and Ludwig [5] were the most significant as they laid out the state of the art for exposure 

rating for property per risk reinsurance which became the basis for deriving PEBELS. Bernegger [1] 

afforded valuable insight into options available to determine appropriate exposure curves and how 

to vary these curves between heterogeneous risks. Most notably Bernegger provided specific 

analytical curves that are sufficient for a very simple implementation of PEBELS. 

Finally, a survey of current methods was conducted to determine whether any unpublished 

methods in common practice could be adapted to solve this problem. Commonly used methods fell 

into two broad categories: (1) empirical methods, and (2) allocation methods. 

Empirical methods, which have been extensively used by ISO, directly compute excess loss 

factors as total loss to loss below a specified threshold. The data are segmented as desired (in the 

example given above this would be by program and state, while ISO’s commercial property filings 

have historically segmented by construction and protection classes). In addition, the data are further 

segmented by insured value interval. Segmenting the excess loss factor estimates by insured value 

improves estimates by partially controlling for bias in the empirical estimate from the distributional 

dependence on the insured value noted above. The main challenge with this method is process 

variance. Even with ISO’s massive volume of data, it had to make two adjustments to manage the 

extensive volatility in its commercial property analysis: (1) it used 10 years of experience in 

computing excess loss factor estimates (twice as much as it used in the experience period for rate 

level indications), and (2) it used the fitted values from curves fitted to the excess loss factor 

estimates rather than the estimates themselves as the large loss provisions in their rate level 

indications.  

Large process variance in our data was apparent from the fact that the empirical excess loss 

factor estimates even at the state level (before subdividing by program or insured value interval) 

were extremely volatile. In fact, this was the reason a new method for determining excess loss 

provisions was needed. The fact that ISO with all of its industry data had to double its experience 

period and use fitted curves to stabilize their results only reinforced the conclusion to search for a 
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more stable approach.  

Another obstacle to using this method was the presence of mix shifts. ISO’s use of an extended 

experience period is reasonable only to the extent the implicit assumption that the industry portfolio 

is relatively stable over the ten year large loss experience period is reasonable.  While it is plausible to 

assume this is true for bureau data which roughly correspond to the industry’s total data, it is far less 

reasonable to assume that any single carrier’s mix of business is stable for such a long period of time. 

Furthermore, it was well known that the book under consideration had experienced significant mix 

shifts over the last several years.  

Although it is tempting to add experience from additional years to increase data volume we must 

be cognizant that adding older years of historical data will not improve our loss projection when the 

historical book of business which produced that experience is not representative of the prospective 

book of business being rated. This phenomenon is demonstrated by Mahler [6] in his study which 

concluded that using additional years of data when exposure risk characteristics are known to be 

shifting can actually decrease the predictive accuracy of the resulting projections. 

Finally, allocation methods were considered where the goal was to allocate the NCLL provision 

for a large credible property book down to the level of program and state using a “reasonable” 

allocation base. This approach was intuitively appealing because it was simple to explain, easy to 

implement, and it tied directly to the credible overall NCLL provision of the total book of business 

under consideration. Furthermore, it was believed that an appropriate exposure base would yield 

stable results and control for mix shifts. Thus it was decided to use the allocation approach.  

However, even though we had decided to pursue this approach, it was not clear what a 

“reasonable” allocation base would be. Given the intention to allocate this provision down to a level 

where there was little credibility and large heterogeneity in underlying exposure to NCLL, it was 

critical to develop a reliably predictive allocation base. 

Taking the survey one step further, practitioners were interviewed as to the allocation bases in 

current use and their satisfaction with each. Allocation bases in common usage were: (1) loss (either 

total or capped below a specified threshold) and (2) earned premium. Practitioners surveyed were 

generally aware that neither of these bases were particularly satisfactory, the reasons for which will 

be elaborated on in Section 2.1 below. 

1.2 Objective 

The goal of this work was to develop a method to determine appropriate non-catastrophe large 
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loss provisions for low credibility segments of business. Since a method to produce such provisions 

was not found in the existing actuarial literature (see research context above), it became necessary to 

develop a new technique. The result of this work was the development of PEBELS. 

Sections 2.1-2 continue where Section 1.1 ended by demonstrating problems with the allocation 

bases in common usage. It goes on to describe issues with insured value which was the first unique 

allocation base explored. Section 2.3 defines and formulates PEBELS. Sections 2.4-5 provide 

background necessary to understand the theory behind the many generalizations to traditional per 

risk reinsurance pricing theory that PEBELS relies on to make accurate estimates of excess loss 

exposure. Sections 2.6-10 describe the dimensions in which PEBELS is generalized relative to 

traditional per risk reinsurance pricing. Sections 2.11-14 focus on applications of PEBELS in 

catastrophe modeling, predictive modeling, and per risk reinsurance pricing. Section 2.15 is a 

discussion of practical issues that must be grappled with to successfully implement a PEBELS 

analysis. 

 

1.3 Outline 

2.1 Allocation Bases in Common Usage 

2.2 Insured Value 

2.3 The Formulation of PEBELS 

2.4 Property Per Risk Reinsurance Exposure Rating 

2.5 Property Exposure Curves 

2.6 The PEBELS Exposure Base: PEBEL and NLE 

2.7 Per Policy Generalization 

2.8 Heterogeneity Generalization 

2.9 Historical versus Prospective Exposure Distribution Generalization 

2.10 Low Credibility Generalization 

2.11 The Scope of PEBELS 

2.12 PEBELS and Adjusting Modeled Catastrophe AALs 

2.13 PEBELS and Predictive Models 
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2.14 PEBELS and Revised Property Per Risk Reinsurance Exposure Rating 

2.15 A Final Word on Exposure Curves 

2. BACKGROUND AND METHODS 

 

2.1 Allocation Bases in Common Usage 

The exhibits below were created based on simulated data from 10,000 hypothetical homeowners 

insurance exposures for a hypothetical insurer who writes homeowners business in three states (X, Y 

and Z) and in three programs: one for each of Barns, Houses and Estates. NCLL exposure is 

assumed identical by state, but is assumed to vary by program. 

State X and Y are not catastrophe exposed and are assumed to have identically distributed rates; 

State Z is catastrophe exposed and is assumed to have 50% higher rates than States X and Y on 

average to compensate for this exposure. Barns are assumed to be small structures with insured 

values not exceeding $25,000, Houses are assumed to be single-family dwellings with insured values 

not exceeding $500,000, and Estates are considered to be large luxury dwellings with insured values 

not exceeding $10,000,000. The total exposures are equally distributed among States X, Y and Z. 

Houses comprise 90% of the exposures while Barns and Estates each comprise 5%. Ultimate losses 

at prospective levels for these exposures were simulated for these risks using loss distributions 

inferred from exposure curves assumed for each program. More details of the simulated exposures 

and the calculations underlying the allocations below are contained in the simulation and exhibit 

work files which are attached to this research paper. In each of the exhibits below, loss amounts in 

excess of $100,000 are considered “excess” and the overall NCLL provision for the entire book is 

defined as the total excess loss during the experience period, which is $16,920,439 (out of 

$23,172,176 in total loss) based on the simulation described above. 

The actual simulated excess loss experience for this book by state and program is summarized in 

Table 1 below. 
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Table 1: Actual NCLL by State and Program 

Program 

State:  Barn  House  Estate  Total 

X  0  1,760,617  2,414,135  4,174,752 

Y  0  1,214,428  2,830,850  4,045,278 

Z  0  806,427  7,893,983  8,700,409 

Total  0  3,781,471  13,138,968  16,920,439 

 

It can be immediately inferred from the data that not every cell can be fully credible. There are 

large differences between House and Estate NCLL experience by state, which we would not expect 

a priori since our assumptions imply that we have the same expected NCLL in each state and in each 

program. This is the motivation for allocating or “smoothing” the total experience as opposed to 

relying solely on historical results. Our first attempt at the allocation method uses losses capped at 

$100,000 as a proxy for NCLL exposure. The results are summarized in Table 2 below. 

 

Table 2: NCLL Allocation by State and Program Based on Capped Loss  

Program 

State:  Barn  House  Estate  Total 

X  65,617  4,454,532  927,711  5,447,860 

Y  157,712  5,743,197  541,304  6,442,214 

Z  83,916  3,757,569  1,188,881  5,030,366 

Total  307,245  13,955,299  2,657,895  16,920,439 

 

This first attempt suffers from many problems. The first problem is that it allocates NCLL to the 

Barns Program (because Barns generate losses below $100,000). However, since no Barns have 

insured values over $25,000, these exposures are not able to produce losses in excess of the 

$100,000 threshold and thus should have $0 allocated to them. This is the first red flag that capped 

loss is not an appropriate proxy for NCLL exposure. Another issue is that the allocated provision 

for Houses varies quite a bit, which is unexpected given that we are assuming that each state has the 

same expected NCLL exposure on average. Finally, Estates seem to be allocated much less than 

Houses which seems wrong since Estates generated most of the actual excess losses. In short, this 
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allocation base does not appear to be appropriately correlated with NCLL exposure. 

A second closely related attempt is to allocate NCLL based on losses in excess of the $100,000 

threshold. The results of this approach are summarized below in Table 3. 

 

Table 3: NCLL Allocation by State and Program Based on Excess Loss  

Program 

State:  Barn  House  Estate  Total 

X  0  1,760,617  2,414,135  4,174,752 

Y  0  1,214,428  2,830,850  4,045,278 

Z  0  806,427  7,893,983  8,700,409 

Total  0  3,781,471  13,138,968  16,920,439 

 

The problem with the results of this allocation base is that it is numerically equal to the actual 

NCLL in Table 1 which we already decided had insufficient credibility. This implies that the use of 

total losses which is the sum of capped and excess losses will yield a result between that of the actual 

NCLL and the NCLL allocated using capped losses, both of which we have identified as undesirable 

options. 

Searching for a more stable base leads us to earned premium. Table 4 below summarizes the 

NCLL allocation based on earned premium. 

 

Table 4: NCLL Allocation by State and Program Based on Earned Premium 

Program 

State:  Barn  House  Estate  Total 

X  26,206  2,398,755  2,356,210  4,781,170 

Y  26,191  2,403,745  2,443,075  4,873,011 

Z  32,884  3,679,817  3,553,556  7,266,257 

Total  85,281  8,482,317  8,352,841  16,920,439 

 

As expected these NCLL allocations are much more stable. However, we are back to allocating 

NCLL to the Barn program. An even more ominous problem is that we are systematically biased 

towards allocating more NCLL exposure to State Z. Recall that rates in State Z are assumed to be 
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50% higher than States X and Y to compensate for catastrophe exposure, even though all three 

states have the same expected NCLL exposure. 

While we could achieve a satisfactory result in the example above by adjusting the premiums 

from State Z, that is only possible due to our simplistic 50% assumption. In practice it is much 

harder to identify, quantify and adjust for the many considerations that would bias earned premium 

as a measure of NCLL exposure. Frequency of low severity claims and rate adequacy are prominent 

examples of such potential biases. 

 

2.2 Insured Value 

Having exhausted the traditionally used allocation bases, insured value was considered as a 

potential allocation base. Historically, insured value data tended to be poorly captured or otherwise 

unavailable because it is not reported on financial statements. However, given the increasing reliance 

of insurers on catastrophe modeling, both the availability and quality of insured value data has 

dramatically increased in recent years. Interestingly, while it was commonly understood that insured 

value is highly predictive of catastrophic loss potential, the fact that it was also highly predictive of 

non-catastrophe large loss potential has gone largely unnoticed. This observation is fundamental to 

the formulation of PEBELS given in Section 2.3. Table 5 below summarizes the NCLL allocation 

based on insured value. 

 

Table 5: NCLL Allocation by State and Program Based on Insured Value 

Program 

State:  Barn  House  Estate  Total 

X  9,807  1,598,954  3,958,740  5,567,502 

Y  9,664  1,602,367  4,101,806  5,713,837 

Z  10,102  1,645,086  3,983,912  5,639,100 

Total  29,573  4,846,408  12,044,458  16,920,439 

 

Aside from the fact that we are again allocating NCLL to Barns, this base seems to be a marked 

improvement in terms of stability and the proportion of NCLL allocated to Estates versus Houses. 

A small modification that would alleviate the non-zero allocation to Barns would be to allocate 

based on layer insured value defined as the amount of insured value in the exposed layer. For example, 
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in the tables above, the layer of interest is from $100,000 to infinity so a barn with insured value of 

$25,000 would have a layer insured value of $0, while a $300,000 house would have a layer insured 

value of $300,000 - $100,000 = $200,000. Similarly a $5,000,0000 estate will have a layer insured 

value of $4,900,000  Table 6 below summarizes the NCLL allocation based on layer insured value. 

 

Table 6: NCLL Allocation by State and Program Based on Layer Insured Value 

Program 

State:  Barn  House  Estate  Total 

X  0  1,157,291  4,402,339  5,559,630 

Y  0  1,163,078  4,564,989  5,728,067 

Z  0  1,201,790  4,430,953  5,632,742 

Total  0  3,522,159  13,398,280  16,920,439 

 

At this point it seems that all obvious allocation issues have been resolved. Furthermore, there is 

no doubt that NCLL exposure is strongly dependent on layer insured value. However, there remains 

a subtle issue as to whether the allocation between Houses and Estates is appropriate. Using layer 

insured value as the allocation base implies that the potential for loss in the layer from $100,000 to 

$200,000 on a $500,000 house contributes the same amount of NCLL exposure as the layer from 

$9,900,000 to $10,000,000 on a $10,000,000 estate. Is that “reasonable” to assume? 

Intuitively, it seems far more likely that a $500,000 single-family dwelling will experience a partial 

loss of 40% ($200,000 / $500,000) or more than that a $10,000,000 estate will suffer a total loss. 

This is because:  

 Total losses are less common than smaller, partial losses 

 Larger losses, as measured by the ratio of insured loss over insured value, become less 

likely as the insured value of the property increases 

The first bullet follows from the observation that people tend to put out the fire, or otherwise 

stop whatever damage is being incurred. The second bullet is a bit more subtle, but can be 

conceptualized in terms of how “spread-out” the property exposure is.  

Barns are not very “spread-out” at all. The chances of a total loss to a barn given a fire is almost 

100% (the barn would likely be engulfed in the time that it would take to detect the fire). At the 

other extreme, college campuses are highly “spread-out”. A fire is unlikely to cause damage to a large 
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proportion of the campus since it will almost certainly be localized to a single building, or in extreme 

cases it may spread to a few nearby buildings before the fire is contained. Even extreme catastrophes 

are unlikely to totally destroy all the buildings on a campus. Thus, given a loss to a college campus 

the loss is very likely to be a small percentage of the total insured value. 

 

2.3 The Formulation of PEBELS 

PEBELS, or policy exposure based excess loss smoothing, is based on the notion that exposure 

to excess loss should be directly computed based on the characteristics of the policy itself. A 

technique was devised based on a generalization of the traditional per risk reinsurance exposure 

rating algorithm to directly quantify the exposure to excess loss for a given policy which is defined as 

the policy exposure based excess loss (PEBEL) for that policy. When PEBEL is taken as the base for 

allocating or “smoothing” aggregate NCLL we call that the PEBELS method of allocating excess 

loss.  

For ease of illustration, the general formulation of PEBEL for the ith policy is copied below from 

Section 2.6 where it is derived,  

 

௜ܮܧܤܧܲ ൌ ௜ܲ ∗ ௜ܴܮܧ ∗ ,௜ܨܧ  ݁ݎ݄݁ݓ
 

(2.7)

 
Pi is the premium of the ith policy, 
ELRi is the expected loss ratio, which is assumed to be constant for all policies (for now), 
EFi = the proportion of total loss cost expected in the excess layer. 

 

Note that there is no theoretical reason why PEBELi could not be used as a direct estimate of 

NCLL for a given policy. However, in practice it is preferable to use it as an allocation base because 

(1) we are assuming that actual NCLL is fully credible at the aggregate level, which makes it desirable 

for the sum of the NCLL estimates for all segments to equal the aggregate NCLL, and (2) using 

PEBELi directly as our estimate of NCLL implies we have full confidence in the estimate from 

Equation 2.7, which would require a great deal of precision in specifying inputs as will be 

demonstrated in the following sections.  

The balance of this paper will develop the theory behind Equation 2.7 and the practical 

considerations that must be addressed to ensure a reasonable NCLL allocation using PEBELS. The 
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emphasis will be on understanding the many complex dynamics of the property excess loss 

distributions by policy, and how PEBELS can be leveraged to reflect these dynamics leading to 

refined policy level NCLL estimates. 

 

2.4 Property Per Risk Reinsurance Exposure Rating 

Exposure rating for high property loss layers has been common in reinsurance pricing since 1963 

when Ruth Salzmann published a study [8] using building losses from fire claims on a book of 

homeowners policies to quantify the relationship between size of loss and insured value. This study 

was widely utilized in reinsurance pricing despite its deliberately narrow scope. Among the results of 

Salzmann’s work were the first exposure curves. Ludwig [5] greatly expanded on Salzmann’s work in 

1991 by considering perils other than just fire, first party coverages other than just building, and 

commercial property exposures.  

Clark [2] states in his 1996 study note on reinsurance pricing that “the exposure rating model is 

fairly simple, but at first appears strange as nothing similar is found on the primary insurance side”, 

although no implication is made that something similar could not exist on the primary insurance 

side. He then goes on to produce an example of how a reinsurer might use exposure rating in 

practice which is reproduced below in Table 7 for background on this pricing technique. 
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Table 7: Property Per Risk Exposure Rating Example from David Clark's 1997 Study Note 

Treaty Retention:  $100,000  

Treaty Limit:  $400,000  

(1)  (2)  (3)  (4)  (5)  (6)  (7)  (8)  (9) 

Insured 
Value 
Range 
($000s) 

Midpoint 
($000s) 

Retention 
as a % of 
Insured 
value 

Retention 
+ Limit as 
a % of 
Insured 
value 

Exposure 
Factor 

Subject 
Premium 

Expected 
Loss 
Ratio 

Expected 
Primary 
Losses 

Expected 
Reinsurer 
Losses 

20‐100  60  167%  833%  0%  682,000  65%  443,300  0 

100‐250  175  57%  286%  26%  161,000  65%  104,650  27,209 

250‐1,000  625  16%  80%  41%  285,000  65%  185,250  75,953 

1,000‐
2,000 

1,500  7%  33%  33%  1,156,000 65%  751,400  247,962 

                          

Grand 
Total 

            2,284,000 65%  1,484,600 351,124 

(1)  =  ranges in which property exposures were banded based on their insured value 

(2)  =  average of range given in (1) 

(3)  =  100 / (2) 

(4)  =  (100 + 400) / (2) 

(5)  =  [Exposure Curve Evaluated at (4)] ‐ [Exposure Curve Evaluated at (3)] 

(6)  =  sum of primary premiums of property exposures in insured value range 

(7)  =  Assumption 

(8)  =  (6) * (7) 

(9)  =  (5) * (8) 

 

Clark provided an illustrative exposure curve for the purpose of the example. Note that column 

(5) develops the exposure factor using that exposure curve. The next section is an introduction to 

practical considerations for selecting and using exposure curves. 

 

2.5 Property Exposure Curves 

An exposure curve, G(x), gives the proportion of the total loss cost at or below a specified 
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threshold, x, as a function of the threshold itself. When using exposure curves the threshold is stated 

as a percent of a total measure of exposure. Most authors have used insured value as the 

denominator, though Bernegger [1] varied his formulation by specifying maximum possible loss to 

be the denominator in order to facilitate his analytical distributional analysis by ensuring that the 

range of possible threshold values is always less than or equal to 100%, which is not necessarily the 

case when using insured value as the denominator. This paper uses insured value as the 

denominator, which is common in practice. 

Given a retention of interest, (say $100,000 to be consistent with our preceding examples), an 

exposure curve can help answer the question of what percent of total loss cost will be eliminated by 

the retention. The threshold can be expressed mathematically as: 

 

x = (Gross Loss Amount in Dollars) / (Insured Value) 

 

(2.1)

In this formulation the exposure curve, G(x) is given by: 

 

ሻݔሺܩ ൌ 	
׬ ሾ1 െ ݕሻሿ݀ݕሺܨ
௫
଴

׬ ሾ1 െ ݕሻሿ݀ݕሺܨ
ଵ
଴

, ሻݔሺܨ	݁ݎ݄݁ݓ ൌ ݄݁ݐ ݁ݒ݅ݐ݈ܽݑ݉ݑܿ ݂݋	݊݋݅ݐܿ݊ݑ݂	݊݋݅ݐݑܾ݅ݎݐݏ݅݀  ݔ
(2.2)

 

Because these curves describe the relationship between the proportion of loss under the retention 

relative to the total, they are equivalent to the loss distribution function conditional on having a loss. 

In fact Bernegger [1] demonstrates that the cumulative distribution function of the loss distribution, 

F(x), can be stated mathematically as a function of the exposure curve using the following 

relationship: 

 

ሻݔሺܨ ൌ 1 െ
ሻݔᇱሺܩ
ᇱሺ0ሻܩ

݄݊݁ݓ	 ݔ ݏ݅ ݅݊ ሾ0, 1ሻ; ݎ݋ ሻݔሺܨ ൌ 1 ݄݊݁ݓ ݔ ൌ 1 
(2.3)

 

This observation is important because it implies that determining the appropriate exposure 

curves for a given risk is indirectly equivalent to specifying a loss distribution for that risk in a 

manner analogous to the way that making ILF selections is indirectly analogous to specifying a loss 
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distribution [7].  

Consequently, for the same reasons that it may be appropriate to select different ILFs between 

different classes of liability risks based on their underlying loss distributions, it is also appropriate to 

vary selected exposure curves by risk class to appropriately reflect the underlying loss distribution. 

For example, it will almost certainly be appropriate to vary the selected exposure curve by insured 

values where significant differences arise for the reasons outlined in Section 2.2. 

For the sake of the illustrative examples given in the sections below we will use Bernegger’s 

analytical exposure curve formulation [1] derived from the Maxwell-Boltzmann, Bose-Einstein, 

Fermi-Dirac, and Planck, or MBBEFD distribution from statistical mechanics, which he found to be 

“very appropriate for the modeling of empirical loss distributions on the interval [0, 1].” Bernegger’s 

parameterization of the MBBEFD for use in modeling exposure curves with the maximum loss 

limited to a maximum possible loss which we have assumed to be insured value in Equation 2.1: 

 

ሻݔሺܩ ൌ 	
ln	ሾሺ݃ െ 1ሻܾ ൅ ሺ1 െ ܾ݃ሻܾ௫ሿ െ ln ሺ1 െ ܾሻ

ln	ሺܾ݃ሻ
, ݁ݎ݄݁ݓ ݃ ܽ݊݀ ܾ ݁ݎܽ  ݏݎ݁ݐ݁݉ܽݎܽ݌	݄݁ݐ

(2.4)

 

In Bernegger’s paper this form is only one of four possible piecewise expressions given for G(x). 

However, the other three specify endpoint conditions or mathematical extremes, so we need only 

focus on this form to use the curve in practical applications.  

Bernegger went on to fit this parameterization of the MBBEFD distribution he formulated to 

well-known exposure curves that were the result of a study conducted by Swiss Re, a well-known 

reinsurer. Four such exposure curves were fit to Equation 2.4, each curve loosely corresponding to 

risks of increasing size or how “spread-out” the exposure is, as discussed in Section 2.2 above. In 

addition a fifth curve was fit based on data from Lloyd’s of London, the well-known insurance 

exchange. The curve resulting from these data is considered to correspond to larger and more 

spread out risks than are contemplated in any of the Swiss Re curves. 

Having computed the pairs of (b, g) parameters from fits to each of the five exposure curves 

described above, Bernegger devised a parametric mapping of the pairs that transformed them from 

two dimensions to a single dimension which allowed linear interpolation between the well-known 

exposure curves. This interpolation scheme is given below: 
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݃௖ ൌ ݁ሺ଴.଻଼ା଴.ଵଶ௖ሻ௖ 
 

(2.5)

and 

ܾ௖ ൌ ݁ଷ.ଵି଴.ଵହሺଵ ା ௖ሻ௖ 
 

(2.6)

In his study Bernegger concluded that the five fitted curves were adequately modeled using values 

of the parameter c = 1.5, 2.0, 3.0, 4.0, or 5.0 with 1.5 corresponding to the Swiss Re curve 

appropriate for the smallest properties and 5.0 corresponding to the Lloyd’s of London curve. 

The example given above in Table 7 assumed an illustrative exposure curve provided by Clark to 

facilitate his example. Unless specified otherwise, the numerical examples provided in the tables 

below use exposure factors derived from the continuous Bernegger exposure curve given in 

Equation 2.4 with parameters g = 4.221 and b = 12.648, which were derived using Bernegger’s fitted 

interpolation of the “well known” Swiss Re and Lloyd’s of London exposure with c = 1.5, which 

most closely corresponds to the first Swiss Re curve in Bernegger’s formulation. This c value was 

selected for convenience and ease of illustration. 

 

2.6 The PEBELS Exposure Base: PEBEL and NLE 

As stated in Section 2.3, PEBELS maintains that exposure to excess loss should be directly 

computed based on the characteristics of the policy itself. Up to this point, only indirect measures of 

excess loss exposure have been tested. However, the non-proportional per risk reinsurance pricing 

background developed in Sections 2.4 and 2.5 can be used to develop the direct measure of excess 

loss exposure given in Section 2.3, in Equation 2.7. 

To get the allocation base, we simply compute the expected excess loss implied by the exposure 

rating methodology developed in Section 2.4, for each policy individually. The result of this 

computation for each policy is defined to be the PEBEL for each policy which is taken as the 

PEBELS base for allocating aggregate NCLL. Table 8 demonstrates this computation using four 

representative example risks from our simulation. 
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Table 8: Property Per Risk Exposure Rating of Selected Individual Policies for Illustration 

(Under Assumption of Homogeneous Risk Characteristics) 

Layer Lower Bound:  $100,000  

Layer Upper Bound:  Unlimited 

(1)  (2)  (3)  (4)  (5)  (6)  (7)  (8)  (9) 

Policy 
Insured 
Value 
($000) 

Policy 
Program 

Layer 
Lower 

Bound as 
a % of 
Insured 
value 

Layer 
Upper 
Bound 
as a % of 
Insured 
value 

Exposure 
Factor 

Policy 
Premium 

Expected 
Loss 
Ratio 

Expected 
Primary 
Losses 

PEBEL 

20,319  Barn  492%  Infinite  0%  127  65.0%  83  0 

313,398  House  32%  Infinite  53%  1,567  65.0%  1,019  535 

220,278  House  45%  Infinite  40%  1,652  65.0%  1,074  433 

8,883,554  Estate  1%  Infinite  97%  1,156,000  65.0%  751,400  728,260 

 

Notice that this calculation mimics the computation shown in Table 7 in every respect except 

that the calculation is done per policy; just as in Section 2.4, all policies are assumed to have the 

same expected loss ratio, and the same exposure curve was used for each exposure. The 

reasonableness of these assumptions will be explored in the sections below. 

The NCLL allocation implied by using this basis is summarized in Table 9 below: 

Table 9: NCLL Allocation by State and Program Using PEBELS 

(Under Assumption of Homogeneous Risk Characteristics) 

Program 

State:  Barn  House  Estate  Total 

X  0  1,651,927  3,109,857  4,761,784 

Y  0  1,661,574  3,229,621  4,891,195 

Z  0  2,572,479  4,694,981  7,267,460 

Total  0  5,885,980  11,034,459  16,920,439 

 

Now this allocation is starting to become refined in that it is not only capturing where there is 

exposure to excess loss, but it is also contemplating the likelihood of excess loss from the exposure 
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by contemplating exposure factors derived from the exposure curve.  

Unfortunately, this allocation still has at least one problem. Notice how the allocations to State Z 

are biased high relative to States X and Y. This is because premiums in State Z are higher than X 

and Y due to catastrophe exposure which is skewing this allocation high relative to its true non-

catastrophe excess loss potential which is the same as the other states. The generalizations given in 

Section 2.8 will provide the flexibility necessary to correct for this and another more subtle 

distortion. However, before diving into techniques to refine the allocation we will decompose the 

PEBEL analytically to derive a simplified formulation which will allow this method to be used when 

exposure profiles used for catastrophe modeling are available but the data detail required to reliably 

attach policy premiums is not available.  

We begin by abstracting the tabular computation illustrated in Table 8 as: 

 

௜ܮܧܤܧܲ ൌ ௜ܲ ∗ ௜ܴܮܧ ∗ ,௜ܨܧ  ݁ݎ݄݁ݓ
 

(2.7)

 
Pi is the premium of the ith policy 
ELRi is the expected loss ratio, which is assumed to be constant for all policies (for now) 
EFi = G(xUpper Bound) – G(xLower Bound), is the exposure factor of the ith policy 
 
Equation 2.7 can be expanded into: 

 

௜ܮܧܤܧܲ ൌ ሺܧ௜ ∗ ሻݎ ∗ ௜ܴܮܧ ∗ ,௜ܨܧ  ݁ݎ݄݁ݓ
 

(2.8)

 
 ௜ is the insured value of the ith policyܧ
௜ܧ is the base rate such that ݎ ∗ ݎ ൌ ௜ܲ, which is assumed to be the same for all policies in the 
absence of policy-specific premium information. (This is the key assumption for deriving the 
simplified formulation). 

 

Since the intended application is to use PEBELi as an allocation base, the implied excess loss 

potential attributable to the ith policy will be: 

 

௜ܮܧܤܧܲ
௧௢௧௔௟ܮܧܤܧܲ

ൌ
௜ܧ ∗ ݎ ∗ ௜ܴܮܧ ∗ ௜ܨܧ
∑ ௜ܧ ∗ ݎ ∗ ௜ܴܮܧ ∗ ௜௜ܨܧ

ൌ
௜ܧ ∗ ௜ܨܧ
∑ ௜ܧ ∗ ௜௜ܨܧ

 

 

(2.9)
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Thus the simplified formulation is a reduced form allocation base equal to: 

 

௜ܧܮܰ ൌ ௜ܧ ∗ ,௜ܨܧ  ݁ݎ݄݁ݓ
 

(2.10)

 
NLEi is defined to be the Net Layer Exposure for a given policy.  
 

The allocation based on NLE will be numerically equal to the allocation based on PEBEL 

whenever the ELR and ݎ are constant for each risk. The ELR assumption is common, but the rate 

assumption is less so and suffers from the obvious problem that it is not true. However, it is a fair a 

priori assumption in the absence of premium detail. If we had rate detail such as average premium 

modification we could incorporate such information into this allocation base improving its accuracy, 

but the chances that we would have such specific modifier detail without having policy premiums is 

exceedingly unlikely.  

 

2.7 Per Policy Generalization 

The first generalization to the exposure rating algorithm has already been introduced. It is simple 

and subtle, but should be pointed out since it is one of the cornerstones of the PEBELS approach. 

The per policy generalization is simply the insistence that excess loss exposure be quantified at the 

policy level. 

Note that computing PEBEL at the policy level is a break from computing it for groups of 

policies with similar insured values, which is how it is computed in the published reinsurance 

approach reproduced in Section 2.4. While the use of grouped insured value bands was, no doubt, 

an artifact of some data or operational limitation, it is sub-optimal in at least three ways. 

Most obviously, it is approximate. The exposure factors are computed using the midpoints of the 

insured value bands which will be incorrect for most if not all risks in the band. As we become 

increasingly reliant on the distributional information in the exposure curves to set differences in 

excess loss exposure between risks, this inaccuracy becomes decreasingly acceptable. Luckily it is 

easily overcome by computing PEBEL per policy. 

Second, it would be insufficient for our application. We are trying to allocate excess loss exposure 

down to the granular level of state and program. Attempting to use PEBEL implied by the broad 

grouping approach for this purpose would only compound the inaccuracy described directly above. 
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The third problem with a grouped approach is that it requires an assumption of homogeneity of 

all risks within the band, which, as Section 2.6 alluded, might not be reasonable. In the example 

from Section 2.6, one band may include risks in both States X and Z which vary in their exposure to 

catastrophes and thus overall premium levels even though their exposure to non-catastrophe excess 

loss potential is identical. In that example, assuming homogeneity is too restrictive. 

  

2.8 Heterogeneity Generalization 

Up to this point no effort has been made to tailor the PEBEL assumptions by policy to reflect 

policy-specific characteristics even though failing to do so has introduced distortions in our NCLL 

allocation. This section will provide the tools to refine the allocation base for heterogeneity between 

policies. 

The preferred method to correct for differing rate levels not driven by non-catastrophe loss 

exposure is to vary the ELR by policy. Specifically, we want to use an ELR representative of the true 

non-catastrophe expected loss (note: by varying the ELR by policy we are segmenting policies by 

expected total loss as measured by the ELR). If we assume that the 65.0% ELR assumed so far is 

appropriate for States X and Y, then the appropriate non-catastrophe ELR for State Z is 65% / 1.5 

= 43.3% which follows from our assumption that Z has the same ex-catastrophe exposure as X and 

Y but has rates that are 50% higher due to its catastrophe exposure. In practice you would not know 

a priori how much rates varied so the ex-catastrophe ELR may be estimated as the total ELR minus 

the catastrophe LR implied by modeled AALs or whatever measure is deemed appropriate. The 

NCLL allocation derived by varying the ELR for cat exposure is summarized below in Table 10. 

 

Table 10: NCLL Allocation by State and Program Using PEBELS 

(Reflect ELR Heterogeneity for Catastrophe Exposure Only) 

Program 

State:  Barn  House  Estate  Total 

X  0  1,927,950  3,629,488  5,557,438 

Y  0  1,939,209  3,769,264  5,708,473 

Z  0  2,001,546  3,652,982  5,654,528 

Total  0  5,868,705  11,051,734  16,920,439 
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Now this allocation looks very smooth, perhaps too smooth. If State Z really is catastrophe 

exposed, it probably requires a higher profit margin than States X and Y to support the additional 

capital required to write in that state. Suppose the additional profit margin required was 5%, then the 

true ex-catastrophe ELR for state Z is actually (65.0% - 5.0%) / 1.5 = 40.0%. 

But we cannot stop there. Once we have opened the Pandora’s Box of rate adequacy adjustments 

we have to consider other possible rate differentials. For example, we may require an additional 

profit margin, say another 5%, for Estates based on the additional capital required to write such 

large exposures. We could go even farther down this path specifying ELR differentials between 

different states, but at a certain point this gets impractical since we would need exactly the type of 

rate level indications we plan to use this analysis to produce. However, that does not keep us from 

reflecting significant deviations in ELR that we can reflect with confidence based on broad 

characteristics such as catastrophe-exposure, program, or pronounced rate inadequacy. In all other 

situations broad ELR assumptions are used. Table 11 below gives the ELR assumptions for each 

segment used in the final allocation. 

 
Table 11: Final Non‐Catastrophe ELR Assumptions by State and Program 

Program 

State:  Barn  House  Estate 

X  65.0%  65.0%  60.0% 

Y  65.0%  65.0%  60.0% 

Z  40.0%  40.0%  33.3% 
 

The NCLL allocation using these final ELR assumptions is summarized below in Table 12. 

 

Table 12: NCLL Allocation by State and Program Using PEBELS 

(Reflect Final Non‐Catastrophe ELR Assumptions by State and Program) 

Program 

State:  Barn  House  Estate  Total 

X  0  2,086,412  3,625,663  5,712,075 

Y  0  2,098,596  3,765,292  5,863,888 

Z  0  1,999,437  3,345,039  5,344,475 

Total  0  6,184,445  10,735,994  16,920,439 

 



PEBELS: Policy Exposure-Based Excess Loss Smoothing 

Casualty Actuarial Society E-Forum, Spring 2013 22 
 

The magnitude of the impact of adjusting for differing expected profit loads is much less than the 

magnitude of the impact of reflecting differences in cat-exposures which reinforces the decision to 

only reflect significant differences in broad groups of policies. 

The last significant source of heterogeneity we will discuss is that stemming from differences in 

underlying loss distributions by policy. By using the same exposure curve for all risks we are 

implicitly assuming that all risks are homogeneous with respect to their underlying loss distributions. 

In particular Clark [2] identified this issue in his study note on reinsurance pricing, cautioning that 

“an implicit assumption in the exposure rating approach outlined above is that the same exposure 

curve applies regardless of the size of the insured value…This assumption of scale independence 

may be appropriate for homeowner’s business, for which this technique was first developed but may 

be a serious problem when applied to large commercial risks.” 

Each of the three programs referenced throughout this paper can be expected to have 

dramatically differing distributions of insured values. Thus it is not reasonable to expect that they 

would have the same loss distributions and thus the same exposure curves. 

In the simulation examples above the exposure factors have been derived using the continuous 

Bernegger exposure curve given in Equation 2.4 with parameters g = 4.221 and b = 12.648, which 

were derived using Bernegger’s fitted interpolation of the “well known” Swiss Re and Lloyd’s of 

London exposure with c = 1.5, which was chosen because it most closely corresponds to the first 

Swiss Re curve in Bernegger’s formulation.  

Recall from Section 2.5 that according to Bernegger’s formulation we can reflect an increase in 

the size or how “spread out” a risk is by selecting larger values of c. Reflecting this fact in the 

characterization of which curve is appropriate for a given risk will have the effect of producing 

thinner tails in the exposure curves of larger properties. This can produce the counterintuitive, yet 

empirically observable, phenomenon that larger properties can have less excess loss potential than 

smaller properties in a given loss layer. 

For our purposes it is necessary to appropriately vary exposure curves by risk to reflect 

distributional differences in underlying policy exposure to excess loss. For the purpose of the 

illustration we will assume that the Bernegger interpolation with c = 1.5 is appropriate for Houses, 

but not for Barns or Estates. For Barns we will assume that given a loss, a barn will suffer a total 

loss which is consistent with the very concentrated nature of such a small exposure; For Estates we 
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will assume that the Bernegger interpolation with c = 4.0 (loosely corresponding to the fourth Swiss 

Re curve according to Bernegger) is appropriate. The results of the NCLL allocation reflecting these 

refined exposure curve selections are summarized below in Table 13. 

 

Table 13: NCLL Allocation by State and Program Using PEBELS 

(Reflect all Heterogeneity Adjustments by State and Program) 

Program 

State:  Barn  House  Estate  Total 

X  0  2,420,543  3,284,039  5,704,582 

Y  0  2,434,679  3,432,505  5,867,184 

Z  0  2,319,639  3,029,034  5,348,674 

Total  0  7,174,861  9,745,577  16,920,439 

 

The results of this allocation are interesting in that NCLL exposure has shifted modestly from 

Estates to Houses. The larger the difference in underlying loss distribution, and thus exposure curve, 

the more dramatic this NCLL shift will be, and in practice it can be quite dramatic. Note that 

Section 2.2 discussed the phenomenon whereby larger exposures have a lower likelihood of having 

larger losses as a percentage of insured value, so this shift is consistent with our intuition of the 

underlying loss process. By reflecting the differences in loss distributional characteristic via selection 

of an appropriate exposure curve, we can quantify how much exposure a nominal amount of high 

layer of exposure incurs for a small property versus a larger property, a quantity we were not 

previously able to measure. 

It is worth noting that determining an appropriate exposure curve requires care and judgment. 

Furthermore, the universe of available exposure curves is less expansive than one would hope for. 

That being said, there are reasonable curves available for these applications that at least allow the 

practitioner to reflect major loss distributional differences for significantly different classes of risks. 

While a comprehensive discussion of exposure curves is beyond the scope of this paper, it is also 

worth noting that there exists significant opportunity to expand the library and understanding of 

exposure curves. Currently available exposure curve options are discussed in Section 2.15. 

 



PEBELS: Policy Exposure-Based Excess Loss Smoothing 

Casualty Actuarial Society E-Forum, Spring 2013 24 
 

2.9 Historical versus Prospective Exposure Distribution Generalization 

To this point we have made no effort to specify when the exposure distribution to be used in 

computing the PEBEL or NLE should be evaluated. For common analyses requiring an exposure 

distribution such as catastrophe modeling or reinsurance quoting, the latest available exposure 

distribution is desired, which is reasonable given the prospective nature of those tasks. Therefore we 

will define the latest available exposure distribution to be the prospective exposure distribution.  

For loss ratio rate making we are uniquely interested in allocating the historical losses stated at their 

prospective level. By virtue of producing loss ratio based rate level indications, we are using historical 

experience we have determined to be relevant as the basis for our loss ratio projection. The exercise 

now is to allocate that experience to where exposure was earned. This is a fundamentally different 

task than catastrophe modeling where simulations are used as the basis for the projection instead of 

historical experience. 

The losses used in the examples throughout this paper are stated at their prospective level by 

virtue of the assumption that they have been developed and trended as specified in Section 2.1. This 

is a fair assumption because developing and trending property losses are both routine tasks in 

practice. The challenge this paper was written to address is how to allocate the historical NCLL to 

the historical exposures whose experience forms the basis for our loss ratio based rate level indications. 

Using the prospective exposure distribution to allocate historical NCLL can lead to significantly 

skewed and in some cases nonsensical loss ratio based rate level indications.  

For example, consider a situation where the company has decided to non-renew all policies in 

State Z over the last year in order to curtail catastrophe risk. If that were the case then the 

prospective exposure distribution would reflect the fact that there is no longer any business in force 

in State Z and thus all historical NCLL experience would be allocated between states X and Y, 

dramatically overstating their rate level indications. This example was deliberately dramatic (though 

not unrealistic) in order to demonstrate the phenomenon. In practice even small shifts will distort 

the NCLL allocation if the prospective exposure distribution is used in place of historical. 

Another example is an insurer entering a new state. Suppose the company has decided to expand 

its writings into State N this last year.  The company’s new product has proven to be competitive in 

State N and the insurer now has a comparable number of policies in State N as it does in X, Y and 

Z. Using the prospective exposure distribution will cause roughly a fourth of the NCLL experience 

from the entire experience period to be allocated to state N even though it has not yet earned even a 

full year’s exposure. This will cause the rate level indications for states X, Y and Z to be understated. 
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Thus we need a meaningful definition of historical exposures which can be used to develop the 

NCLL allocations needed for our rate level indications. To accomplish this we define the historical 

exposures to be the sum of the “earned” exposures over the experience period. Of course since 

earned exposures will never be available in our data sources, we will have to determine a reliable 

proxy for it. To do this we can use an accountant’s trick. We observe that exposures (and written 

premiums) of in force policies are stated as of a specified date in the same way that assets on a 

balance sheet are stated as of a specified date. For accounting purposes the average value of assets 

during the year is often taken as the average of the asset values at the beginning and end of a year. 

Extrapolating this rationale, we can estimate earned exposures of a specific segment during a given 

year as the average of the historical exposures at the beginning and end of the year. 

Of course this is not to say that there is no value to computing PEBEL using the prospective 

exposure distribution. Such an analysis could be quite useful for NCLL exposure monitoring, 

analogous to the catastrophe exposure modeling frequently performed by insurance companies. It is 

just not the right exposure distribution for loss ratio ratemaking. 

 

2.10 Low Credibility Generalization 

Keep in mind that all of the analysis above assumes that historical NCLL experience is fully 

credible in total. If this is not the case, then credibility methods must be applied in order to develop 

a reliable total expected historical NCLL provision that can be allocated. 

The first thing to note is that we can and should band historical NCLL experience in layers to get 

more credibility out of our data. In the examples derived above we have considered only two bands: 

the primary layer and the excess layer from $100,000 to infinity which was selected to keep the 

examples simple. However, in practice we will want to band to maximize credibility in lower bands 

and give ourselves an opportunity to use reasonable complements in less credible bands. 

Consider the following simple banding scheme that can be used to illustrate the method: 

 $0 to $100,000 –  the primary layer 

 $100,001 to $500,000 –  the first excess layer which we will assume fully credible 

 $500,001 to infinity –  the high excess layer assumed to be only 30% credible  
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The PEBEL per policy will now have to be computed by layer. The only difference in the 

computation will be that the argument of the exposure curve, G(x) must be limited to the upper and 

lower bounds of the layer when determining the exposure factor EFi for the given layer (the example 

reproduced in Table 7 provides a numerical example of this). A separate allocation will then be 

performed for each layer using the techniques developed in this paper. 

The only new complication in this scenario is that the NCLL experience in the $500,001 to 

infinity layer is only 30% credible. Thus it must be credibility weighted with an appropriate 

complement before the allocation can be completed. 

The task then is to identify a meaningful complement of credibility. One method suggested by 

Clark [2] for pricing non-credible per risk reinsurance layers was to use the actual experience in a 

credible lower loss layer to approximate the expected experience in a non-credible higher loss layer 

by applying the relationship implied by the PEBEL in each layer. We can apply this approach in our 

problem to derive reasonable complements of credibility from the $100,001 to $500,000 layer as 

follows:  

 

௧௢	଴.ଵெ$ܮܮܥܰ $଴.ହெ
ு௜௦௧௢௥௜௖௔௟ ∗

଴.ହெ$ܮܧܤܧܲ ௧௢ ௜௡௙௜௡௜௧௬
ு௜௦௧௢௥௜௖௔௟

଴.ଵெ$ܮܧܤܧܲ ௧௢ $଴.ହெ
ு௜௦௧௢௥௜௖௔௟  

 

(2.11)

 

Or alternately using the primary layer as follows: 

 

$଴.ଵெ	௧௢	଴$ܮܮܥܰ
ு௜௦௧௢௥௜௖௔௟ ∗

଴.ହெ$ܮܧܤܧܲ ௧௢ ௜௡௙௜௡௜௧௬
ு௜௦௧௢௥௜௖௔௟

଴$ܮܧܤܧܲ ௧௢ $଴.ଵெ
ு௜௦௧௢௥௜௖௔௟  

 

(2.12)

 

An alternate complement can be inferred from the quoted cost of per risk excess of loss 

reinsurance rates using the formulation below: 

 

ሺݐܿ݁ݎ݅ܦ	݀݁݊ݎܽܧ	݉ݑ݅݉݁ݎܲሻ ∗ ሺܴ݁݅݊݁ܿ݊ܽݎݑݏ ሻ݁ݐܴܽ ∗ ሺܴ݁݅݊ݎ݁ݎݑݏᇱݏ ሻ (2.13)ܴܮ	݈ܾ݁݅ݏݏ݅݉ݎ݁ܲ
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The reinsurance rate in this context would be specific to the company’s property per risk excess 

of loss treaty which would probably be quoted by layer. This complement is messy for several 

reasons including: 

 It will likely cover multiple property lines as opposed to just the line under review 

 The rate will likely cover catastrophic excess loss in addition to non-catastrophic 

 The quoted layers may not align with those being used for PEBELS analysis 

 The reinsurer’s permissible loss ratio will not be obvious 

However, despite all these complications this complement has the very desirable property that it 

reflects the actual cost to the insurer for the reinsured layer of loss because this is what the insurer 

actually pays to insure those layers. This gives it a very concrete interpretation, makes it easy to 

explain, and easy to defend. In fact, the smaller an insurer’s property portfolio is, and thus the lower 

the credibility implicit in the insurer’s actual experience, the more attractive this complement 

becomes relative to the alternative. 

 

2.11 The Scope of PEBELS 

Property actuaries do not currently have a systematic framework to quantify the non-linear 

relationship between expected losses in primary and excess loss layers. For liability insurance, 

increased loss factors (ILFs) have long been the framework for quantifying this relationship. In 

practice ILFs are often developed based on a broad group of risks and then imposed on similar risks 

in a straight forward manner which makes them easy to use and explain. A key reason for the 

crispness of this formulation is due to the large degree of independence between the loss process 

and the limit purchased by the insured which simplifies the formulation greatly [7].  

Property is not afforded any such simplifying assumptions. On the contrary, property lines are 

plagued by a high level of dependence between insured value and the underlying loss process. 

Furthermore, property lines are also beset by complications such as catastrophic exposure, diverse 

capital requirements, etc. PEBELS provides a framework from which to reflect and quantify all of 

these moving parts simultaneously in determining the relationship between the expected primary 



PEBELS: Policy Exposure-Based Excess Loss Smoothing 

Casualty Actuarial Society E-Forum, Spring 2013 28 
 

and excess loss. 

Even though PEBELS was created to solve a very specific allocation problem, it evolved into the 

theory of property excess loss rating described above. The theoretical framework of inputs and 

levers for allocating property losses between primary and excess layers given in the sections above is 

general enough that it can be tailored for use in any application that requires segmentation between 

primary and excess property loss layers given appropriate actuarial input assumptions. 

The sections below provide some examples of applications which could benefit from the 

segmentation between property loss layers that PEBELS affords. 

 

2.12 PEBELS and Adjusting Modeled Catastrophe AALs 

Traditionally, catastrophe models have assumed that average annual losses (AALs) are linearly 

proportional to exposure. However, we know both from practice and from the theory presented in 

this paper that this is not a valid assumption. All of our discussion about the theory of exposure 

curves and the property loss distributions that underlie them suggest that property loss costs are 

non-linear. This a priori reasoning was empirically validated for catastrophe loss costs by the 

hurricane exposure curve study completed by Ludwig using Hurricane Hugo [5]. 

As such, we would expect, given that total AAL results are calibrated to total industry 

catastrophes, that the catastrophe loss ratios implied by modeled AALs should be understated for 

property books with smaller insured values (such as personal lines) and overstated for property 

books with larger insured values (such as commercial lines). This reasoning is consistent with 

anecdotal observations. 

As discussed in Section 2.11, the methods developed from PEBELS provide the framework from 

which to quantify an appropriate measure of the amount by which modeled AALs should increase 

with a linear increase in exposure. Adjusting modeled AALs for this PEBELS effect would eliminate 

the systematic bias from implicit modeling assumption that AALs increase linearly with exposure. 

To implement this type of refinement the practitioner would need to identify appropriate 

exposure curves to be used for the given catastrophe exposure under consideration. This would 

require care and judgment, but no more so than any of the myriad of other assumptions that 

comprise a typical catastrophe model. 

Of course there exists an opportunity for catastrophe modelers to directly enhance their models 
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to reflect the non-linearity of expected catastrophe loss cost with insured value in their models. 

However, until such a refinement is implemented within the models, insurers can directly adjust 

their own AALs estimates using a post-modeling PEBELS adjustment. 

 

2.13 PEBELS and Predictive Models 

It is common practice when creating predictive models such as generalized linear models (GLMs) 

to use separate models to predict the frequency and severity components of the reviewed line of 

business’s expected loss. Not surprisingly, the severity model tends to be tremendously less stable 

than the frequency model for lines and coverages with significant exposure to very infrequent but 

very large losses, such as the property exposures this paper has focused on. This phenomenon is 

amplified when property coverage is modeled by peril, because total loss for perils such as fire and 

lightning are disproportionately driven by very infrequent but very large losses relative to other 

perils. 

My hypothesis is that modeling on PEBELS for representative layers in the models would be 

more predictive than modeling on insured value alone for the reasons explored in the this paper. 

This is plausible because PEBELS was developed to contemplate actual expected exposure within a 

layer of insured value and thus contains more information about layer exposure than raw insured 

value does, assuming that reasonable exposure curves and heterogeneity assumptions are applied. 

While PEBELS estimates do contain frequency information from the exposure curve 

assumptions, the biggest benefit from using PEBELS in predictive modeling would likely be from 

refining the severity model where large loss observations are so sparse. This is true whether a single 

uncapped severity model is used, or if uncapped severity is modeled using a combination of 1) a 

capped severity model (say the cap is $100,000 to be consistent with our preceding examples), 2) a 

propensity model (the probability that the claim amount will exceed $100,000 given that there is a 

claim), and 3) an excess model (the severity of the excess portion of the claim given that the claim 

amount exceeds $100,000). When the combination model is used I would hypothesize that PEBELS 

would be most predictive in the excess model. 

 

2.14 PEBELS and Revised Property Per Risk Reinsurance Exposure Rating 

Besides moving to a per policy computation and reflecting heterogeneity by policy which are 
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discussed in Sections 2.7 and 2.8 above, a major point in the PEBELS formulation discussed in 

Section 2.9 is the importance of distinguishing between the historical exposure distribution and 

prospective exposure distribution, and applying the appropriate distribution for the appropriate 

application. 

Clark [2] states that property per risk exposure rates are generally used to determine the exposure 

relativities between a credible and non-credible layer. This relativity is then multiplied by the ratio to 

historical losses in the credible layer to develop the indicated exposure base rate as detailed below: 

 

ு௜௚௛௘௥	ே௢௡ି஼௥௘ௗ௜௕௟௘ܮܮܥܰ ௅௔௬௘௥
ா௫௣௘௖௧௘ௗ	௉௥௢௦௣௘௖௧௜௩௘ ൌ ஼௥௘ௗ௜௕௟௘ܮܮܥܰ ௅௢௪௘௥ ௅௔௬௘௥

ு௜௦௧௢௥௜௖௔௟  
 

∗ 	
௅௔௬௘௥	ு௜௚௛௘௥	ே௢௡ି஼௥௘ௗ௜௕௟௘ܮܧܤܧܲ

௉௥௢௦௣௘௖௧௜௩௘

௅௔௬௘௥	௅௢௪௘௥	஼௥௘ௗ௜௕௟௘ܮܧܤܧܲ
௉௥௢௦௣௘௖௧௜௩௘  

 
 

(2.14)

Based on the reasoning presented in Section 2.9 there are two problems with this approach. First, 

there is no reason that the ratio of PEBEL between the higher and lower layers based on the 

prospective exposure distribution is representative to the relationship based on the historical 

exposure distribution (which is the relationship we need to establish). Second, there is no adjustment 

to reflect the relative change in exposure between prospective and historical exposure distributions 

for the layer being rated.  

An alternate formulation that would reconcile both issues is: 

 

௅௔௬௘௥	ு௜௚௛௘௥	ே௢௡ି஼௥௘ௗ௜௕௟௘ܮܮܥܰ
ா௫௣௘௖௧௘ௗ	௉௥௢௦௣௘௖௧௜௩௘ ൌ ሺܰܮܮܥ஼௥௘ௗ௜௕௟௘ ௅௢௪௘௥ ௅௔௬௘௥

ு௜௦௧௢௥௜௖௔௟ ሻ * 
 
 

ሺ
௅௔௬௘௥	ு௜௚௛௘௥	ே௢௡ି஼௥௘ௗ௜௕௟௘ܮܧܤܧܲ

ு௜௦௧௢௥௜௖௔௟

௅௔௬௘௥	௅௢௪௘௥	஼௥௘ௗ௜௕௟௘ܮܧܤܧܲ
ு௜௦௧௢௥௜௖௔௟ ሻ 	∗ ሺ

௅௔௬௘௥	ு௜௚௛௘௥	ே௢௡ି஼௥௘ௗ௜௕௟௘ܮܧܤܧܲ
௉௥௢௦௣௘௖௧௜௩௘

௅௔௬௘௥	ு௜௚௛௘௥	ே௢௡ି஼௥௘ௗ௜௕௟௘ܮܧܤܧܲ
ு௜௦௧௢௥௜௖௔௟.஺௡௡௨௔௟௜௭௘ௗ ሻ 

 
 

(2.15)

The first ratio adjusts for the historical ratio of the high layer exposure relative to low layer 

exposure, while the second ratio allows us to quantify the prospective layer exposure relative to the 
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historical, which for all the reasons outlined in Section 2.9 is more accurate than the traditional 

approach. The historical PEBEL can be annualized by simply dividing by the total number of years in 

the experience period. 

Note that for reinsurance pricing we are using historical experience to project a prospective loss 

cost so there is an additional layer of computation to bring the estimate to the level of the 

prospective exposure distribution, which is not done in loss ratio ratemaking as described in Section 

2.9. 

My anticipation is that the most difficult part of implementing this more refined exposure rating 

algorithm will be obtaining the historical exposure profiles from the reinsured. However, in many 

cases the reinsurer should have a history of exposure profiles from past quotes if the insured has 

renewed multiple times. Furthermore, given the prevalence of catastrophe modeling, it is becoming 

increasingly likely that the primary insurer may have a history of historical exposure profiles readily 

available. 

 

2.15 A Final Word on Exposure Curves 

In practice specifying the exposure curves is a key step in a PEBELS analysis. Furthermore, the 

practitioner should be aware that the more complex the underlying policy is, the more judgment is 

required. An example of an area where judgment must be applied is in defining “insured value” for 

large commercial risks with a stand-alone contents limit. A reasonable approach is to add this value 

to the stand-alone building limit in determining the total insured value since they are both exposed 

to a total loss; however, this is not necessarily the optimal choice since the building and contents 

may not share the same underlying loss distribution, thus the need for actuarial judgment. Another 

wrinkle is the question of how to incorporate the limit for business interruption coverage, especially 

when coverage is provided on an “actual loss sustained” basis, in which case the exposure is 

essentially unlimited. 

Despite the additional judgment required for more complex risks, analyses involving these more 

complex risks tend to benefit most strongly from a PEBELS approach because it is with these risks 

that data are least credible and heterogeneity among policies is greatest, affording them the most 

utility from PEBELS’s ability to segment excess loss exposure based on policy characteristics. 

Another critical area where judgment is required is in specifying the exposure curve (or curves) to 

be used in the analysis. The more homogeneous the book of business being analyzed, the more 
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likely it is that using a single exposure curve in the analysis is a reasonable approach. However, 

regardless of how many curves are required, a decision must ultimately be made as to what curve to 

use for each given policy. Ideally we would select curves that are particularly appropriate for the risks 

under consideration, but the universe of available curves is limited so we must operate within our 

available choices. 

There are a few publically available curves published in the actuarial literature, but only the fitted 

Bernegger curves offer more than a few points, which is why I used them for the illustrations in this 

paper. There are also some well-known curves such as the Swiss Re or Lloyd’s of London curves. 

Additionally, commercially produced curves such as ISO’s PSOLD curves may be available for 

purchase. A motivated insurer may also choose to create proprietary curves. 

Lastly, an interesting property of exposure curves that was highlighted in Ludwig’s study [5] is 

that exposure curves vary by peril. While this conclusion may seem somewhat obvious, it is 

significant in that most of the available exposure curves are given on a combined peril basis. In most 

cases they are not segmented by many attributes at all, even ones that might obviously seem 

predictive of the underlying loss distribution such as class, occupancy or protection.  

  

3. RESULTS AND DISCUSSION 
The original intention of the project that led to the development of PEBELS was to identify a 

method from the existing literature via literature review. The expectation was to find a method or 

theory analogous to that of ILFs used in liability insurance or ELFs used in workers compensation 

insurance, but no comparable method or theory for property insurance was identified. However, 

theory on property exposure curves and methods for pricing property per risk treaties in the 

property reinsurance literature was identified, and came to form the theoretical foundation upon 

which PEBELS was built. 

The key result of this work was the development of PEBELS, which was designed to be an 

accurate and practical theory of property non-catastrophe excess loss exposure. Although the scope 

of the original problem was quite narrow, the numerous challenges worked through to develop an 

allocation basis that passed the necessary reasonability tests led to the development of an 

increasingly sophisticated model in order to quantify the non-linearity between the expected loss 

costs in different loss layers for a given property risk. PEBELS provides a framework that is general 

enough to apply in a variety of situations. 
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Because PEBELS is a theory of expected property excess loss by layer, it can be used in any 

application where such tool would be of value. Some applications explored in this paper were 

 Catastrophe Modeling – to correct for implicit assumption that AAL is linearly 

proportional to insured value 

 Predictive Modeling –  to use PEBELS to improve predictiveness of severity models 

 Property Per Risk Reinsurance Pricing – to use findings to refine the existing model 

4. CONCLUSIONS 
PEBELS is a theory of property excess loss exposure that can be used to quantify the non-linear 

relationship between expected loss costs in different loss layers. PEBELS is the closest analog that 

property insurance has to ILFs for liability insurance. 

PEBELS requires far more care and judgment to use than ILFs do, mainly due to the presence of 

many more sources of heterogeneity between policies and the interactions between those sources of 

heterogeneity present in property insurance relative to liability. The PEBELS formulation in this 

paper provides the framework of theory and practical levers required to utilize this theory in 

practical applications. 
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Catastrophe Pricing: Making Sense of  the Alternatives  

Ira Robbin, Ph.D.  

______________________________________________________________________________ 
Abstract:  
This paper examines different ways of pricing catastrophe (CAT) coverage for reinsurance treaties and large 
insurance accounts.  While all the methods use CAT loss simulation model statistics, they use different 
statistics and different algorithms to arrive at indicated prices.  This paper will provide the reader with the 
conceptual foundations and practical insights for understanding alternative approaches.   
      
Keywords: Catastrophe Pricing, Risk Measure, Coherence, Capital Allocation  

______________________________________________________________________________ 

1. INTRODUCTION 

This paper will examine different ways of pricing the property catastrophe (CAT) coverage 

provided by reinsurance treaties and by insurance policies written on large accounts.   All the 

approaches utilize CAT loss simulation models to estimate key statistics.  However, they differ in the 

choice of statistics and their ways of translating statistics into premiums.  

For the type of business under discussion, all widely-accepted methods use a Return on Risk-

adjusted Capital (RORAC) approach.  Indicated prices are defined as those that hit the specified 

target return on an amount of required capital that has been adjusted for risk.  Where the methods 

differ is in how they arrive at the amount of required capital.   They employ different risk measures 

and they use risk measures in different ways.   

One objective of this paper is to bridge the gap of understanding between abstract formulas and 

black-box simulation software.  It will provide definitions and also demonstrate how to apply them.   

It will show, in particular, how to properly define relevant risk measures on sets of discrete data such 

as those found in a deck of simulated CAT losses by year.    The paper will feature a comparison of 

pricing indications for a few hypothetical accounts.  In the end, the reader should have a better 

understanding of the formulas and a balanced framework for evaluating the alternatives.   

1.1 Existing Literature  

In 1990, Kreps [13] published an influential paper on Marginal Capital methods for pricing 

reinsurance treaties.  He used Marginal Variance as a metric for determining Marginal Capital. 

Mango [15] observed that applying Marginal Variance or Marginal Standard Deviation to CAT 

pricing led to pricing that was Order Dependent.   He proposed an application of game theory to 

eliminate the order dependency.    



Catastrophe Pricing: Making Sense of the Alternatives 
 

Casualty Actuarial Society E-Forum, Spring 2013  2 

In the late 1990’s, the Value at Risk (VaR) concept moved from the financial literature into rating 

agency capital requirement models.   It was then but a short step before Incremental VaR (also 

referred to as Marginal VaR) approaches to required capital made their way into CAT pricing 

algorithms.  However, theoreticians, such as Artzner, Delbaen, Eber, and Heath [4], had proposed a 

set of fundamental axiomatic properties called coherence and observed that VaR is not coherent.  

Others, including Acerbi and Tashce [1] and Wang [24], also objected to VaR, citing its incoherence 

along with other objections.   Order dependence is also a problem for Marginal VaR.   Meyers, 

Klinker, and Lalonde [19] also highlighted the point that the Marginal VaR method does not 

calibrate automatically with the portfolio and introduced an overall adjustment factor to achieve 

such calibration.    

Rockafellar and Uryasev [22], Acerbi and Tasche [1] and others have promoted use of Tail Value 

at Risk (TVaR) as a risk metric, citing its coherence as a key advantage.  As Uryasev and Rockafellar 

[22] explained, TVaR may not be the same as Conditional Tail Expectation (CTE) in discrete cases.1 

This paper will explain and demonstrate the difference.     

Kreps [14] developed a general riskiness leverage model and also proposed co-statistics as an 

alternative to incremental statistics. Co-statistics provide a method for allocating portfolio capital 

based on account contributions to portfolio results.  This approach has great intuitive appeal, but 

the application of the contribution concept to tail statistics such as VaR and TVaR does not produce 

perfectly well-behaved risk measures. As will be shown later with a simple example, Co-VaR is 

unstable in that modest changes in the inputs can lead to wild swings in the resulting statistic2.  A 

new result in this paper is that Co-TVaR fails subadditivity, a defining property of coherence.  This 

is perhaps a bit surprising since TVaR is coherent and one might have hoped co-measures would 

inherit coherence properties.        

Other authors such as Bodoff [6] and Wang [24] have questioned the exclusive focus on the tail 

inherent in VaR and TVaR.  Bodoff proposed a Percentile Allocation approach and Wang proposed 

use of Distortion Measures.   

Venter [23] and Goldfarb [12] have published excellent survey articles that provide useful 

                                                           
1 Many authors incorrectly assume TVaR and CTE are the same, but this is only true for continuous distributions.  For 
example, D’Arcy [9] wrote, “…Tail-Value-at-Risk (TVaR), which is also termed Tail Conditional Expectation (TCE), 
takes the average of all values above a particular percentile….TVaR only provides the average loss if a loss in excess of 
the TVaR threshold were to occur.”       
2 From informal discussions, the author is aware that this behavior is known to several analysts.  However, it does not 
seem to have been previously noted in the literature. 
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background and discussion.  What is clear from a review of existing literature is that the field is not 

settled.  Practitioners use approaches decried by theoreticians and shrug off anomalies. Yet, the 

experience of 2010-2012 suggests that sub-optimal approaches were used that may have 

inadvertently promoted “de-worsification”.3  Overall, there is no want of proposals and opinions.     

1.2 Organization of the Paper 

The discussion will begin in Chapter 2 with a definition of the indicated account premium based 

on required CAT capital. Chapter 3 will present an overview of risk measure theory and then 

examine several commonly used risk measures.  Chapter 4 will discuss the different algorithms used 

to set CAT capital for an account.   

Then in Chapter 5 several particular algorithms will be reviewed.  Finally in Chapter 6, simulation 

will be used to generate hypothetical years of CAT loss data for a portfolio and two sample 

accounts.  Then risk measures and algorithms will be applied to this set of simulated data to arrive at 

prices based on different procedures.  Chapter 7 will provide several general observations and 

Chapter 8 will have a summary and conclusion. 

2. INDICATED PREMIUM ALGORITHMS 

Let X denote the CAT Loss for a particular account and let P(X) denote the indicated premium 

prior to any loading for expenses.  We may write the indicated premium as the sum of the expected 

CAT Loss, E[X] plus a risk load, RL(X). 

 

 
 

 
Equation (2.1)

We define some basic properties that an indicated pricing algorithm formula should obey.   

Table 1   

Premium Algorithm Basic Properties 

1. Monotonic:  If X1  X2, then P(X1)  P(X2). 

2. Pure:  If X a constant, then RL(X) =0 and P(X)=E[X] =  

                                                           
3 “De-worsification” is a term used ( see article by Brodsky [7] ) to describe overzealous diversification to the point that 
business is written with minimal or no profit load in order to diversify a portfolio.     
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3. Bounded:  If X  K, then P(X)  K. 

4. Continuous(Stable):  P(X) is a continuous function4 of  X. 

We say a premium calculation algorithm is coherent if it also satisfies:  

Table 2   

Premium Algorithm Coherence Properties 

1. Scalable:  P(X) =P(X) 

2. Translation Invariant:  P(X+) = P(X)+ 

3. Subadditive:   P(X1 +X2)  P(X1) + P(X2) 

Other authors first define coherence as a set of properties of risk measures, but from our 

perspective it seems more natural to define it first with respect to the indicated premiums.   

2.1 RORAC Pricing Formula 

Write C(X) to stand for the Required CAT Capital for the account.  Applying the RORAC 

approach to pricing, the risk load is given by applying a target return, rTarget, against required capital.  

Thus the indicated premium is given as:  

  Equation (2.1.1)

Note Equation 2.1.1 produces a premium equal to the Expected Loss when the required capital is 

zero.    

3. RISK MEASURES 

The different premium calculations use different formulas for computing Required CAT Capital 

for an account.  They employ different functions, called risk measures, to quantify risk.  The risk 

measures are also used in different algorithmic procedures.  

3.1 Risk Measures 

We define a risk measure simply as a mapping from real-valued random variables to the non-

negative real numbers.  It is desirable that a risk measure, , obey basic properties that correspond to 

                                                           
4 Continuity is with respect to the L1 topology.  
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the basic premium algorithm properties in Table 1:   

Table 3   

Risk Measure Basic Properties 

1. Monotonic:  If X1  X2, then E[X1]+(X1)  E[X2]+(X2) 

2. Pure:  If X a constant, then (X)=0 

3. Bounded:  If X  K, then  (X)  K. 

4. Continuous(Stable):   (X) is a continuous function of  X. 

Note monotonicity for risk measures is more complicated than the corresponding property for 

indicated premiums.  The reason is that if one random variable always exceeds another, it need not 

have more risk.   However, under Property #1 in Table 3, the sum of its measured risk plus its 

expected value should exceed the corresponding sum for the smaller random variable.   The idea of 

purity in a risk measure is that, if the outcome is known and fixed, a pure risk metric will say there is 

no risk.5   Some popular risk measures such as VaR are not pure.  However, unless a risk measure is 

pure, it may produce a pricing algorithm that does not satisfy Basic Property 2 in Table 1 and thus 

may generate a strictly positive risk load even if the loss is fixed and constant. Boundedness requires 

that the measured risk be no greater than the largest possible loss, if there is such a largest loss.  

Finally, the property of continuity means that small changes in the points or probabilities do not lead 

to large changes in the measured value of risk.  As we will see later, some commonly used premium 

algorithms are not stable.   

Going beyond the basic properties, we now turn to the special properties of coherence.  We say a 

risk measure is coherent if it is scalable, translation invariant, and subadditive.    

Table 4   

Coherence Properties of Risk Measures 

1. Scalable:  (X) =(X) 

2. Translation Invariant:  (X+) = (X) when 0 

3. Subadditive:  (X1 +X2)    (X1) + (X2) 

                                                           
5 Panjer and Jing [20] present a similar property called “riskless allocation” under which a risk with no uncertainty gets a 
zero capital allocation.   
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These definitions are arranged so they are consistent with the comparable coherent premium 

calculation properties.    

Some (see Panjer and Jing [20]) believe scalability is a fundamental property expressing the idea 

that currency conversion should not impact measured risk.  Unfortunately, some commonly-used 

measures of risk, such as variance, do not obey the scaling property.    Acerbi and Tasche [1] refuse 

to refer to a function as a risk measure if it does not obey coherence properties.   While we agree 

with the points these authors have made, we choose to use a very broad definition of a risk measure.   

This is for convenience.  We need a ready way to refer to the various functions that are used, rightly 

or wrongly, to measure risk in pricing CAT covers. 

3.1.1 Sign Conventions    

Our approach to sign conventions is the same as that taken in most papers on property and 

casualty insurance.   However, in reviewing the academic and financial literature, a reader may find it 

confusing because sign conventions are the reverse of what we have used.  For example, many 

authors, including Artzner, Delbaen, Eber and Heath [4] as well as Acerbi and Tashce [1], state the 

property of translation invariance as (X + ) = (X) -   

From this perspective, the random variable X represents the net outcome: so a positive result is 

favorable.  Adding a constant reduces the measured amount of risk.   For our work, the random 

variable X represents the CAT loss; so larger positives are less favorable.   

Many of the other financial and academic authors also allow the risk measure to be negative, 

while for our purposes we always want the risk measure to be non-negative.  Again most of the 

writers focusing on property and casualty insurance assume, implicitly or explicitly, that risk 

measures are non-negative.6      

3.1.2 Risk Measure Definitions on Distributions with Mass Points    

In a CAT pricing context, it is important to understand just how to apply the definition of any 

particular risk measure to a loss distribution that has mass points.   There are three reasons for this.  

First, it is common practice to use a CAT simulation model to generate thousands of simulated years 

of results.  So any measure needs to be defined on such a set of discrete sample points.  Second, the 

impact of catastrophic events on underlying building values may produce real mass points.  For 

                                                           
6 In Wang [24] the translation invariance property is presented with all positive signs and in Venter [23] all the risk 
measures are non-negative.  
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example, if a risk has a $100 million beachfront hotel in a hurricane prone locale and no other 

property nearby, there could be a natural mass point at $100 million.  Finally, limits and layering 

could also give rise to mass points.       

3.2 Specific Risk Measures 

We will now list several risk measures, discuss them briefly, and then show how they work on a 

small set of hypothetical sample loss data.   

Table 5   

Specific Risk Measures 

1. Variance:    

2. Semivariance:    

3. Standard Deviation:    

4. Semi Standard Deviation:     

5. Value at Risk:  for 0< < 1 

6. Tail Value at Risk: 

 

7. Excess Tail Value at Risk:		  

8. 

 

Distortion Risk Measure:   
where F*(x) = g(F(X))  for g a distortion function 
 

9. Excess Distortion Risk Measure:   

where E*[X] is the mean under a distortion risk measure 
and  = E[X] 

3.2.1 Variance and Standard Deviation 

Variance and Standard Deviation are well-known.   Both are pure risk measures in the sense we 

have defined that term.   However, Variance is not scalable and is therefore not coherent, but 

Standard Deviation is.    
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Semivariance has been advocated by Fu and Khury [11] and SemiStandard Deviation does obey 

the scaling property (Property 1 in Table 5).   A major appeal of both is that they do not count 

favorable deviations as part of the risk.  Exhibit 1, Sheet 1 shows the computation of these measures 

in an example with twenty sample points.   

3.2.2 VaR, TVaR, and XTVaR 

VaR is a well-known metric that was developed in financial and investment risk analysis settings.  

VaR() is the th  percentile.  It is intuitively the “best of the worst”, the least unfavorable outcome 

from the worst (1- ) % of outcomes.  This may not be precisely correct when there are mass points 

and the cumulative distribution jumps discontinuously.  To make the definition work in the general 

case, the “infimum” formulation is used7.   VaR is not pure: its value on a constant is equal to that 

constant.  VaR is not subadditive and therefore not coherent.    

TVaR is intuitively the average loss in the worst (1- ) % of outcomes.  As the definition in Table 

5 indicates, the computation of this average entails evaluating two terms.  The first term is the 

product of the Conditional Tail Expectation (CTE) where CTE =  and the 

probability weight corresponding to the tail of X values strictly larger than VaR().  The second term 

is the product of VaR() times the residual probability needed so that the total of the two 

probabilities equals (1- ).  The sum of these two terms is then divided by (1 -) to obtain TVaR.  

For example, suppose VaR(99.0%) = 150 and assume the probability of X values strictly larger than 

150 is 0.8%.  It follows the mass at 150 is equal to or larger than 0.2%.  Also assume the CTE is 200.  

Then TVaR(99.0%) equals 190 since 190 =(200*0.8% + 150*0.2%)/1.0%. 

In the general case, the residual probability will be non-zero only when there is a strictly positive 

mass point at VaR().   When there is no mass point, TVaR is equal to CTE. However, in the 

discrete case, 1-F(VaR()), the probability of exceeding VaR(), may be less than 1- .  If that 

scenario, CTE is not truly an average of the worst (1-) of outcomes and the second term is needed.  

Our definition follows that of several authors (Rockafellar and Uryasev [22], and Acerbi and Tasche 

[1]) by including a portion of the mass point at VaR() in the definition of TVaR.    

When evaluating VaR and TVaR on a sample of trial data as might be generated by a simulation 

model, the formulas can be stated in a more straightforward way using the rankings of ordered data.   

                                                           
7 The infimum is this context is the lower bound of the tail. 
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Table 6  

Ranking Definitions of VaR and TVaR  

Let X1≥ X2 ≥ …≥Xn  be an ordering of n trails of X.   

If k=(1-)n, then: 
 

1. VaR(Χ 
 

2. TVaR(   


k

j jk 1
  

1
 

 
 

For instance, if there are 20 trials, the largest trial is VaR(95%) since 1= (1-.95)*20 and the 

smallest trial is VaR(0%) since 20= (1-0)*20.  Also observe that TVaR(0%) is the average of all 20 

sample points. Under these definitions VaR(75%) is the 5th largest point and TVaR(75%) is the 

average of the 5 largest points.8   Exhibit 1, Sheet 2 shows the computation of these measures using 

the “ranking” definitions in the simple example of twenty samples points.  Note the repetition of 

some of the sample point values does not cause any difficulty for the ranking definitions.    

TVaR is not pure, but it is subadditive.   As Acerbi and Tasche [1] and others have noted, the 

CTE may fail subadditivity in the discrete case9.  XTVaR captures the average amount by which the 

worst (1-)% of loss outcomes exceeds the mean.   Note TVaR is automatically larger than the mean 

so XTVaR is non-negative.   In cases where X is constant, TVaR will be equal to the expectation, 

while XTVaR will be zero.   Thus XTVaR is a pure risk measure, while TVaR is not.  

3.2.3 Distortion Risk Measures   

Wang [24] has proposed use of distortion risk measures and shown that they are coherent when g 

is continuous.  We have not seen the excess risk measure in the literature, but we list it as an obvious 

extension that leads to a coherent and pure risk measure.    

One particular distortion is the Wang shift10: 

  Equation (3.2.3.1)

                                                           
8 One alternative is to use the average of the 4 largest points out of 20 for TVaR(75%) and more generally use the 
average of the k-1, instead k largest points, as the definition for TVaR().  In our view, the definition with k points is 
better, for one, because it results in TVaR(0) being equal to the average.     
9 Acerbi and Tasche[1] use the terminology Tail Conditional Expectation (TCE) where we use CTE. 
10 Wang also introduced the Proportional Hazards transform [26].  
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  Here  is the standard unit normal and  is the Wang shift parameter. 

  Exhibit 1, Sheet 3 has an example with columns showing how the original cumulative 

distribution is transformed.   To pick a particular row, the second ranking point out of twenty 

sample points has an empirical cumulative distribution (cdf) of 0.950.  The standard unit normal 

inverse of 0.950 is 1.645.  The Wang shift in the example is 0.674.  Subtracting this from 1.645 yields 

0.971 and the standard normal has a cdf of 0.834 at 0.971.  So the cdf is transformed from 95.0% to 

83.4%. New transformed mass densities are derived by subtracting the transformed cdfs in 

sequence.  Using the resulting transformed densities moves the mean from 10.0 to 16.7; so the 

resulting excess mean is 6.7.    

4. ALGORITHMIC PROCEDURES 

There are three different ways of using risk measures to arrive at a capital calculation algorithm.  

In this chapter, we will review these and define properties of such algorithms.   

First is a Standalone capital computation.  This simply involves looking at the value of a selected 

risk measure on an account’s own CAT loss distribution.  Even if this is not the final selected 

approach, it is usually a good idea to know the standalone value for any account as it provides a 

baseline for comparison.  Some analysts would stop there and say the standalone capital from a 

coherent pure risk measure is the right answer.  A variation of the standalone approach is the market 

equilibrium approach.  This method attempts to find the theoretical price that should be charged for 

a given risk in a hypothetical fair and efficient market in equilibrium.  While this may seem the direct 

opposite of a standalone approach, it can be rightly classed as a variant of a standalone concept in 

that the indicated price for an account does not depend on other risks in the portfolio.      

Other methods do reflect the portfolio in their computations.  The second general algorithm, the 

Marginal approach, determines required capital for an account by computing how it changes 

required capital for the portfolio.   The third general algorithm, Real Allocation, entails use of a risk 

measure as an allocation base to allocate portfolio capital.  This methodology may use one risk 

measure to compute required portfolio capital and then possibly another one as an allocation base.           

Let X stand for the CAT Loss for a particular account and let R denote the portfolio CAT Loss 

excluding that account.   Write C(X) to stand for the Account CAT Capital for the account.  

Equations for the three general procedures are:  
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Table 7 

 General CAT Capital Calculation Procedures 
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We say the Marginal and Real Allocation procedures are Portfolio Dependent because the 

required capital amounts depend on the portfolio as well as on the account.   We define several 

properties of Portfolio Dependent Algorithms.         

Table 8   

Portfolio Dependent Capital Properties 

1. Standalone Capital Cap:   A portfolio dependent algorithm is capped by 
standalone capital if C(X|R)  C(X). 

2. Automatically Calibrated:   A portfolio dependent algorithm is 
automatically calibrated if   

 
3. Order Dependent:   A portfolio dependent algorithm is order dependent if   

C(X1 | R+X2)   C(X1 | R) for some X1    and X2.. 

.    

4.1 Calibration and Consolidation Benefits or Penalties  

With both Standalone and Marginal approaches, there is a potential mismatch between the sum 

of individual account required capital amounts and the required capital for the portfolio taken as a 

whole.  In other words, they are not automatically calibrated. If the portfolio requires less capital 

than the sum of the account capital requirements, as would be true for a subadditive measure, the 

difference will be called the consolidation benefit.   However, not all risk measures are subadditive 

and therefore it is possible to have a consolidation penalty.  So, even though it is a near universal 

truth in insurance that risk is reduced by pooling, that may not necessarily be the case with respect to 
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CAT coverage.  Further, when subadditivity fails with a marginal algorithm, it is possible that 

required standalone capital is less than the indicated marginal capital. Such an algorithm would not 

satisfy the standalone cap.   

Exhibit 2 has an example showing VaR is not subadditive.  In the exhibit there are 20 trials with 

results for an account, “A”, and a Reference Portfolio.  The next column shows the computed sum, 

“A+ Ref”, for each trial.  Then there is a block labeled “Ordered Loss Data” showing the resulting 

rank-ordered losses for risk A, the Reference Portfolio, and the sum.   The ordering is done 

separately for each.   Since the 5th largest loss for account A is 4 and the 5th largest loss for the 

Reference Portfolio is 34, it follows that VaRA(75%) is 4.and  VaRRef(75%) is 34.  Yet the 5th largest 

loss for the combined portfolio after A is added is 39.   So the Marginal VaR for account A is 5 ( = 

39-34), which exceeds its Standalone VaR.     

There are two general options for achieving calibration if desired when it does not occur 

automatically.  A simple and direct idea is to apply a calibration factor to each initial required capital 

amount.11  The other approach is to use game theoretic methods or other approaches to “auction 

off” any portfolio consolidation benefit (or penalty).  Another view is that there is no need to 

reconcile the sum of the individual account required capital amounts and required capital for the 

portfolio.  The key point is that users should be aware of the calibration properties of any proposed 

method and make adjustments or not according to their own philosophy.    

4.2 Incoherence and Order Dependence 

Marginal methods are also prone to generating required capital amounts that fail one or more of 

the coherence properties. They inherit incoherence if they are based on an incoherent measure, and 

they are also subject to order dependence12 and other vulnerabilities arising from the nature of the 

incremental process.   

For example, the scaling property does not necessarily hold if capital is based on Marginal VaR.  

This means that capital for a 50% share of a treaty is not necessarily twice the capital needed for a 

25% share.  See Exhibit 3 for an example demonstrating this. 

TVaR has been shown to be coherent.   However, if one is not careful with definitions and uses 

TCE (Tail Conditional Expectation) instead of TVaR, the resulting capital formula is not necessarily 

                                                           
11 Meyers, Klinker, and LaLonde [19] proposed such a factor to calibrate capital requirements based on the Marginal 
VaR.  
12 Mango [15] showed the order dependence of marginal variance and marginal standard deviation. 
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even monotonic.  In other words, adding an account may decrease the conditional tail expectation.   

Exhibit 4 demonstrates this.     

4.3 Portfolio Allocation Methodologies  

True allocation methodologies are less subject to calibration and order dependence issues than 

marginal methods.  There are several different approaches to real allocation.   Some are effectively a 

reprise of the methods used to set account capital; only in this context they are used to allocate a 

portfolio total already determined.  

Table 9  
 Allocation Procedures 

 
1. Stand Alone: Allocate portfolio capital in proportion to account Stand-alone 

risk measures 
  

2. Marginal:  Allocate portfolio capital in proportion to account marginal impact 
on portfolio risk measure.  

 Game Theory Modified Marginals:  Adjust Marginals via Game Theory 
so allocations are not order dependent. 

	
3. Co-Measure:  Allocate portfolio capital using a co-measure. 

4. Percentile Allocation:  Allocate surplus based on allocations of each percentile 
of portfolio loss. 

 

4.4 Standalone and Marginal Allocations 

The first method uses an allocation base equal to the standalone value of a risk measure.  This 

measure could be the same or different than the one used to compute required portfolio capital.   

The second approach uses allocations proportional to the account marginal increments.   The order 

in which an account is added to a portfolio can have a strong influence on its marginal impact.  This 

can lead to pricing anomalies.  Mango [15] has developed a refinement of the marginal allocation 

approach in which game theoretic averaging over all orderings produces a more stable allocation.     

4.5 Contribution Statistics 

The third allocation concept is based on Contribution Statistics (Co-Statistics).  The Co-

Statistic for an account is conceptually the amount it contributes to the portfolio statistic, where the 

computation is based on an examination of the scenarios that determine the portfolio statistic.   
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Given that the portfolio had an adverse result, how much of it was due to a particular account?  If 

portfolio capital is determined by a particular risk measure, the associated account co-measures are 

automatically additive and consistent with the portfolio total. 

4.5.1. Co-VaR Instability 

Though intuitively appealing, Co-Statistics may exhibit troublesome behavior. One significant 

problem is that Co-VaR can be unstable.13   Specifically, this means Co-VaR can change dramatically 

due to small changes in the data.  Even more troubling, different sets of simulations can yield quite 

different answers and increasing the number of trials may or may not yield convergence.     

How does this arise?  Consider the simulated events for the portfolio put in descending order.  

For each event, the contribution due to a specific treaty is also known from the simulation.  

However, depending on how the events line up at the portfolio level, the Co-stats for the treaty may 

vary considerably.     The treaty may contribute a sizeable portion of loss to the event corresponding 

to the portfolio 100-year VaR, yet it may add nothing to many of the events close by in the list.   Or 

the opposite may be true.    

Exhibit 5 shows an example in which the portfolio 100-year VaR is $405 and the associated Co-

VaR for the account is $20.  But for the events on either side, the account loss is $0.   Averaging 

over a band of nearby points (the set {6, 0, 20, 0, 4} in the example in Exhibit 5) will produce a 

more stable and meaningful answer.  This will be called the Co-Stat Band approach.   How large a 

neighborhood to include is a matter of judgment.          

4.5.2. Co-TVaR Fails to be Subadditive 

To calculate Co-TVaR for Treaty A when it is added to a given Reference Portfolio, the first step 

is to rank-order events by the sum of combined Reference Portfolio plus Treaty A losses. This is 

shown in Exhibit 6, Sheet 1 where the ordered total is displayed in the far right column.  Then the 

contribution of Treaty A to the sum is posted in the column labeled Co-A.  To obtain Co-TVaR of 

the 75th percentile, we average the Co-A amounts for the first 5 out of 20 of the events ordered on 

the sum14 and arrive at Co-TVaR = (1+7+0+4+3)/5= 3.   

It is known that TVaR is coherent and that has helped spark interest in using Co-TVaR as an 

                                                           
13 The behavior of co-VaR is important because VaR is often used to define required capital at the portfolio level.   
Perhaps the most natural way to allocate VaR-based portfolio capital would be to use co-VaR.   
14 In cases where several events have the same total loss equal to the VaR of the target percentile, results from all 
orderings of those events should be averaged to get the resulting co-stat.   
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allocation metric.  However, as we demonstrate by example in Exhibit 6, Co-TVaR is not coherent 

because it is not necessarily subadditive.   This is a new result that has not been previously presented 

in the literature.  Continuing with the example, we already know Co-TVaR of Treaty A is 3.0 and 

Sheet 2 and Sheet 3 of Exhibit 6 show the Co-TVaR of Treaty B is 3.0 and the Co-TVaR for the 

combination of the two, Treaty A+B, is 11.0.  To be subadditive, the Co-TVaR for Treaty A+B 

would needs to be less than 6.0.       

4.6 Percentile Allocation 

Bodoff [6] has proposed the concept of percentile allocation.  This starts with the observation 

that capital is needed to cover not just the large event losses, but also all losses up to and including 

those due to large events.   For the first dollar of capital that is needed to cover losses, an allocation 

is done proportional to how often an account will use that first dollar relative to the other accounts.   

This entails looking at all events, seeing which ones tap the first dollar of capital, and then looking at 

account losses for each of those events.  Event probabilities are then used to allocate the first dollar 

of capital.   After the first dollar is allocated, the same procedure is followed to allocate the second 

dollar and so forth. This method is fairly stable and is not order dependent.       

5. PRACTICAL APPLICATION ISSUES 

Before going further, we need to address several practical issues that directly impact which 

methods can realistically be used to price CAT business.   

5.1 Reference Portfolios 

The first is that all the portfolio approaches are fundamentally impractical in their pure form.  

This is because reality differs from the one-by-one pricing paradigm implicit in portfolio approaches.   

Under this paradigm, the model is run, a quote is generated, and the account is bound in an instant 

during which no other changes take place to the portfolio.    In the real world, time is not frozen.   

The portfolio changes as other accounts expire or are bound15 in the time lag between quoting and 

binding a particular account.  So the indicated price at the time of binding could be different than 

the indicated price at the time of quoting.    

In principle, one should rerun and derive updated indications for all existing unbound quotes 

                                                           
15 Or possibly those that are authorized but not yet bound.  Since the authorized share of treaty may not be the final 
share, a more careful treatment would use an estimate of the expected final share. 
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each time the portfolio changes.  But this is unworkable.   It would slow down the process of 

providing quotes to underwriters and put a huge strain on models and analysts during peak renewal 

season.  Further, even if the modeling could be done, the market will not accept quotes that change 

after they are made.   Thus, in practice, it is likely very few companies attempt to use the actual up-

to-date portfolio as the base for their pricing calculations.  None that we are aware of revise existing 

open quotes.   Rather most of them use a defined Reference Portfolio.  This is fixed for a week or a 

month or a quarter.  The possible conceptual advantage in using a portfolio-based pricing algorithm 

may be partially undercut if the Reference Portfolio differs materially from the real one.         

In some shops, a renewal account is run against a Reference Portfolio that includes the expiring 

policy.  While that is technically wrong and can lead to inaccurate results, the alternative entails 

setting up a custom Reference Portfolio for each account.  That can become somewhat 

cumbersome. 

5.2 Impracticality of Game Theoretic Averaging   

In theory, averaging over all possible orders of accounts is the ideal solution to order dependence 

anomalies.   However, in practice that is generally unworkable.   While Mango found a closed form 

solution for a particular risk measure so that one did not need to actually run impact statistics for 

each ordering, such closed form solutions do not exist for many risk measures.   The number of 

different orderings explodes in factorial fashion with the number of accounts so that performing all 

the brute-force computations is usually not feasible.  This is one reason the order dependence issue 

is often ignored and Marginal statistics are computed against the Reference Portfolio with each 

account added on a last-in basis.    

6. DEMONSTRATION 

We will now demonstrate various pricing algorithms on hypothetical CAT loss data.  We start 

with 50 events as shown in Exhibit 7.  Each has a 2% annual probability of occurring.   We also 

show the loss amounts for a Reference Portfolio and for two risks, denoted Treaty A and Treaty B.  

Both these risks have the same theoretical mean loss; however Treaty A losses are much more 

volatile.   Total Annual Treaty A losses are theoretically independent of the Annual Reference 

Portfolio losses as Treaty A was constructed so that it has zero loss for events that generate losses 

for the Reference Portfolio.  Under this construction, events with IDs from 1 to 25 have zero loss 

for Treaty A and non-zero loss for the Reference Portfolio.  The situation is reversed for events 
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with IDs from 26 to 50.  Treaty B was constructed so that it has significant correlation with the 

Reference Portfolio because it has losses on many of the events that give rise to Reference Portfolio 

losses.  It was also constructed to be theoretically independent of Treaty A.  To summarize Treaty A 

is independent and volatile, while Treaty B is relatively well-behaved but correlated.  

We then simulated 1,000 trial years and created a matrix with 1,000 rows and 50 columns to 

record which events if any occurred in each year.  An excerpt of that matrix is shown in Exhibit 8.   

This sample size of 1,000 is too small to drive sampling error down to the fine decimals.  This is 

true, even though with 2% annual probabilities each event should turn up in roughly 50 of the 1,000 

trial years.   We computed linear and rank correlations on the simulated data for each of our two 

risks.  These are consistent with our construction.  In the 1,000 trial years, Treaty A has a 1% linear 

correlation with the Reference Portfolio, while Treaty B has a 60% linear correlation.  The 

corresponding sample rank correlations over these trials are -2% and 93% for treaties A and B 

respectively.   

  Indicated capital amounts and indicated premiums were then computed using Standalone and 

Incremental algorithms with the VaR, TVaR, and XTVaR risk measures.  Required capital amounts 

and premium indications were also computed using Real Allocation based on the standalone 

amounts and the co-statistics of these risk measures.   For Co-VaR, we used a banded approach for 

stability.  Results are detailed in Exhibit 9 and a pricing comparison for the two risks is shown on 

Sheet 3 of Exhibit 9.  

As might be expected, the incremental portfolio and co-statistic methods produce very modest 

risk loads for Treaty A.   Indications using Co-XTVaR in particular have very little risk load.    The 

standalone pricing for Treaty A is much higher.  It is up to the reader to decide whether it makes 

sense to charge negligible risk load on this volatile account because it diversifies the portfolio or to 

go with substantial risk load because it is risky on a standalone basis. The situation is reversed for 

Treaty B.   It has significant risk load under all the portfolio based methods, but standalone pricing 

is lower than it was for Treaty A.      

7. GENERAL OBSERVATIONS 

This chapter contains several key general observations that impact catastrophe pricing.    

7.1 Sampling Error 

In the background one should always be aware that simulation models are being used to generate 
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the results and that simulation statistics are prone to sampling error.  When adding a small account 

to a large initial portfolio, such sampling error may mask or distort the impact of adding the new 

account.  The resulting relative error in pricing may be quite significant.   As well, the pricing of 

relatively small changes in treaty layers may be prone to inaccuracy due to sampling error. 

The event probabilities in simulation models are often quite small.  Many events have return 

periods on the order of 10,000 years.   To get even a roughly accurate estimate that has a 

representative number of such events, one needs to run the model with the number of trials set as a 

multiple of the return period of rare events in the models.         

Beyond that, there are other pricing pitfalls stemming from sampling error.  One of the most 

common is pricing a layer by taking differences of other layers that were priced using results from 

several different simulations.  Statistical fluctuations could lead to an inconsistent result.  All layers 

of interest need to be run in one set of simulation trials to achieve more accurate differentials in 

layer prices.   Of course, sampling error can be reduced by running more simulation trials.16  The 

analyst needs to balance the extra time and cost against the need for accuracy. 

7.2 Tails   

A key area of distinction concerns how much influence the tail has on the answer. Under some 

methods, capital allocation is determined solely by the tail.  “Tail-Only” advocates implicitly or 

explicitly believe the tail should be regarded as the one true indicator of risk.  Others argue that any 

event that could potentially consume capital needs to be considered; not just the tail events that 

would consume all the capital.     

 Beyond the philosophical divide, one should be aware that tail dependence tends to increase the 

volatility in the results.    This is partly due to statistical sampling error.  Further, as models change 

over time, the tails often move quite a bit more than the expected CAT losses.    

For strict empiricists, an additional concern is that there is effectively no empirical way to validate 

the distribution of events in the extreme tail.   What is the average size of portfolio losses that 

happen less frequently on average than once in every 250 years?  It would take more than twenty 

samples of 1,000 simulated years to obtain a tentative estimate of this average.   The simulation 

                                                           
16 The author is advocating the analyst estimate beforehand how many simulated years are needed to achieve a desired 
level of accuracy in the estimated value of the risk measure.  This is not the same as the flawed procedure of running sets 
of trials and stopping when results seem to stabilize.  When the trial sets are too small to reliably capture the big but rare 
events, results from two or three sets of trials may be fairly stable.  However, such “stable” results could underestimate 
the true tail of losses.       
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modeling software can do this without any problem, but our available empirical history is 

insufficient to validate the estimate.    

This line of thinking also highlights the high-end cut-off problem.   The size and frequency of 

mega-events included in a model may have an inordinate impact on any particular tail metric.  

Whether there are enough extreme events in a model is subject to some debate.17  However, once 

very rare events are put into a model, it is not clear on what philosophical grounds we can exclude 

geologically significant asteroid strikes or comet impacts or events relating to ice ages.  Many 

practicing analysts feel that discussion of such calamities is a vast digression and that such events 

should not be in the model as they could unduly impact tail metrics.    

7.3 Diversification Benefit  

If required capital for the portfolio is less than the sum of the standalone requirements, then 

there is effectively a diversification benefit to the portfolio as a whole.  Many pricing methods would 

translate this into a reduction in the overall level of pricing of the whole portfolio as compared to 

the total pricing that would otherwise result if each account were priced on a standalone basis.  For 

example, if the portfolio required 10% less capital than the sum of the standalone capital 

requirements, indicated standalone account pricing for each account could be given a 10% haircut to 

arrive at the final indication reflecting the portfolio diversification benefit.    

Another sense of diversification benefit arises at the account level even if there is no overall 

benefit to the portfolio.  Some methods effectively surcharge risks in peak zones, and provide 

discounts for those written in off-peak zones.   It had been an accepted truism for many that CAT 

pricing indications should reward such geographic diversification.  But the experience of recent years 

(2010-12) has led some to question the uncritical acceptance of diversification and warn of the 

dangers of “de-worsification”.18    

Our comparisons indicate that some algorithms lead to bargain-basement prices for exposures in 

zones where the company has little existing exposure.  This highlights the issue: how much of a 

discount in the indicated price is justifiable in order to achieve the benefits of diversification?    
                                                           
17 No vendor we are aware has said it included an event as large as the Japanese earthquake of March 2011 in its event 
set for events associated with faults in that region of Japan.    

18  Brodsky [7] quoted the noted CAT modeling expert Karen Clark as saying , “… some reinsurers may want diversification a little 
too much …”  and  "How much do you want to write of this underpriced risk just to get diversification?”.  
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7.4 Treatment of Premiums, Commissions, and Loss-sensitive Features   

As argued in Robbin and DeCouto [21], capital should be based on the distribution of Bounded 

Underwriting Loss, B, where  

B= Max(0, Loss + Commission – Premium)   Equation (7.6.1) 

Notice there is a floor in the definition which prevents any negative result.  In effect this prevents 

reduction in capital for scenarios where a profit is made.  

In practice, capital is often based on just the loss and no adjustment is made for the premium or 

expense.  The advantage is that this is straightforward to implement.  An excess metric, such as 

XTVaR, captures the amount by which loss is above the mean and that partly incorporates the more 

complete approach.  However, the reader is cautioned that the more sophisticated methodology is 

needed to model reinstatements and loss-sensitive features.   

8. SUMMARY AND CONCLUSION 

We started with the theory and basic equations of CAT pricing within the RORAC framework 

and saw that the crux of the issue comes down to how to set capital for an account.  We looked at 

basic properties of risk measures, examined several specific ones, and demonstrated that some fail 

key theoretical properties.  We have also systematically reviewed the Standalone, Marginal, and Real 

Allocation algorithms for computing CAT capital.  We have shown the theoretical formulas, 

demonstrated how they work with accessible discrete examples, and illustrated why some need to be 

modified to be practical.  We emphasized the “ranking” definitions as a clear way to define and 

compute the VaR and TVaR metrics.   We also explained why TVaR on a discrete data set of CAT 

loss data is not the same as the Conditional Tail Expectation, and why a banded version of Co-VaR 

is necessary.  We presented the new result that Co-TVaR is not subadditive.    

Our work led to a concrete comparison of how various alternatives performed on two 

hypothetical accounts.  A key goal of our presentation was to provide an understandable illustration 

of the process for generating the answers.  We started with an event loss table showing account and 

portfolio losses for each event in a modest set of hypothetical CAT events.  We then used this to 

generate simulated random results by year. With this generated data, we computed capital under 

several alternatives.  Our examples showed that incremental or co-statistic tail based pricing could 

lead to pricing barely above expectation for a non-correlated, but risky, account.   
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If nothing else, we would urge any reader considering different CAT pricing methodologies to 

examine their properties and see how they work on simple examples.   We hope this paper helps to 

increase understanding of the alternatives.  We also hope it motivates readers to investigate, test, and 

achieve insights beyond those we have offered.  
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Exhibit 1
Sheet 1

Risk Measure Definitions -Discrete Example
Variance, Standard Dev, SemiVariance and SemiStnd Dev 

Statistic Value Statistic Value
Trials 20 Variance 88.4

Average 10.0 Standard Dev 9.4
Semivariance 64.2

SemiStnd Dev 8.0

Ordered Loss Data

Rank Loss
Variance 

Contribution
Semivariance 
Contribution

1 40.0 900 900
2 26.0 256 256
3 18.0 64 64
4 14.0 16 16
5 14.0 16 16
6 14.0 16 16
7 14.0 16 16
8 10.0 0 0
9 8.0 4 0

10 8.0 4 0
11 6.0 16 0
12 6.0 16 0
13 6.0 16 0
14 4.0 36 0
15 4.0 36 0
16 2.0 64 0
17 2.0 64 0
18 2.0 64 0
19 2.0 64 0
20 0.0 100 0
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Exhibit 1
Sheet 2

Risk Measure Definitions -Discrete Example
VaR, TVaR and XTVaR

Statistic Value Statistic Value
Trials 20 Rank for VaR 5.0

Average 10.0 VaR 14.0
Percentage 75.00% TVaR 22.4

XTVaR 12.4

Ordered Loss Data

Rank Loss VaR Percentage
Conditional 

Tail Avg
1 40.0 95% 40.0
2 26.0 90% 33.0
3 18.0 85% 28.0
4 14.0 80% 24.5
5 14.0 75% 22.4
6 14.0 70% 21.0
7 14.0 65% 20.0
8 10.0 60% 18.8
9 8.0 55% 17.6

10 8.0 50% 16.6
11 6.0 45% 15.6
12 6.0 40% 14.8
13 6.0 35% 14.2
14 4.0 30% 13.4
15 4.0 25% 12.8
16 2.0 20% 12.1
17 2.0 15% 11.5
18 2.0 10% 11.0
19 2.0 5% 10.5
20 0.0 0% 10.0
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Exhibit 1
Sheet 3

Risk Measure Definitions -Discrete Example
Transformed Mean and XSTransformed Mean

Statistic Value Statistic Value
Trials 20 Wang Shift Parameter 0.674

Average 10.0 Transformed Mean 16.7
Percentage 75.00% XS Transformed Mean 6.7

Ordered Loss Data

Rank Loss Empirical CDF
Transformed 

CDF
Transformed 

Density
1 40.0 100.0% 100.0% 16.6%
2 26.0 95.0% 83.4% 10.6%
3 18.0 90.0% 72.8% 8.7%
4 14.0 85.0% 64.1% 7.5%
5 14.0 80.0% 56.6% 6.6%
6 14.0 75.0% 50.0% 6.0%
7 14.0 70.0% 44.0% 5.4%
8 10.0 65.0% 38.6% 4.9%
9 8.0 60.0% 33.7% 4.5%

10 8.0 55.0% 29.2% 4.2%
11 6.0 50.0% 25.0% 3.8%
12 6.0 45.0% 21.2% 3.5%
13 6.0 40.0% 17.7% 3.2%
14 4.0 35.0% 14.5% 2.9%
15 4.0 30.0% 11.5% 2.7%
16 2.0 25.0% 8.9% 2.4%
17 2.0 20.0% 6.5% 2.1%
18 2.0 15.0% 4.4% 1.8%
19 2.0 10.0% 2.5% 1.5%
20 0.0 5.0% 1.0% 1.0%
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Exhibit 2

Statistic Value Mean VaR
Trials 20 2.50 4.00
Percentage 75.00% 25.00 34.00
Rank 5 27.50 38.00

27.50 39.00
0.00 -1.00

5.00

Loss Data by Trial Ordered Loss Data

Trial A Ref A+Ref Rank A Ref A+Ref
1 0.00 12.00 12.00 1 8.00 37.00 41.00
2 0.00 37.00 37.00 2 8.00 36.00 40.00
3 4.00 36.00 40.00 3 7.00 35.00 40.00
4 0.00 35.00 35.00 4 6.00 34.00 40.00
5 6.00 34.00 40.00 5 4.00 34.00 39.00
6 2.00 17.00 19.00 6 4.00 32.00 37.00
7 1.00 16.00 17.00 7 4.00 31.00 35.00
8 8.00 32.00 40.00 8 3.00 30.00 34.00
9 0.00 27.00 27.00 9 2.00 27.00 30.00
10 0.00 14.00 14.00 10 2.00 27.00 27.00
11 3.00 27.00 30.00 11 1.00 26.00 26.00
12 4.00 15.00 19.00 12 1.00 23.00 24.00
13 0.00 20.00 20.00 13 0.00 20.00 20.00
14 4.00 30.00 34.00 14 0.00 18.00 20.00
15 8.00 31.00 39.00 15 0.00 17.00 19.00
16 2.00 18.00 20.00 16 0.00 16.00 19.00
17 1.00 23.00 24.00 17 0.00 16.00 17.00
18 0.00 26.00 26.00 18 0.00 15.00 16.00
19 7.00 34.00 41.00 19 0.00 14.00 14.00
20 0.00 16.00 16.00 20 0.00 12.00 12.00

Consolidation Benefit
Marginal VaR for A

Failure of VaR Subadditivity

Risk A Standalone
Reference Portfolio

Sum
Combined Portfolio
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Exhibit 3
Sheet 1

Failure of Marginal VaR Scalability - Risk A + Portfolio

Statistic Value Mean VaR
Trials 20 2.50 4.00
Percentage 75.0% 25.00 34.00
Rank 5 27.50 38.00

27.50 37.00
0.00 1.00

3.00

Loss Data by Trial Ordered Loss Data

Trial A Ref A+Ref Rank A Ref A+Ref
1 4.00 12.00 16.00 1 8.00 37.00 41.00
2 0.00 37.00 37.00 2 8.00 36.00 40.00
3 0.00 36.00 36.00 3 7.00 35.00 40.00
4 0.00 35.00 35.00 4 6.00 34.00 39.00
5 6.00 34.00 40.00 5 4.00 34.00 37.00
6 2.00 17.00 19.00 6 4.00 32.00 36.00
7 1.00 16.00 17.00 7 4.00 31.00 35.00
8 8.00 32.00 40.00 8 3.00 30.00 34.00
9 0.00 27.00 27.00 9 2.00 27.00 30.00
10 0.00 14.00 14.00 10 2.00 27.00 27.00
11 3.00 27.00 30.00 11 1.00 26.00 26.00
12 4.00 15.00 19.00 12 1.00 23.00 24.00
13 0.00 20.00 20.00 13 0.00 20.00 20.00
14 4.00 30.00 34.00 14 0.00 18.00 20.00
15 8.00 31.00 39.00 15 0.00 17.00 19.00
16 2.00 18.00 20.00 16 0.00 16.00 19.00
17 1.00 23.00 24.00 17 0.00 16.00 17.00
18 0.00 26.00 26.00 18 0.00 15.00 16.00
19 7.00 34.00 41.00 19 0.00 14.00 16.00
20 0.00 16.00 16.00 20 0.00 12.00 14.00

Marginal VaR for A

Risk A Standalone
Reference Portfolio

Sum
Combined Portfolio

Consolidation Benefit
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Exhibit 3

Sheet 2

Statistic Value Mean VaR
Trials 20 5.00 8.00
Percentage 75.0% 25.00 34.00
Rank 5 30.00 42.00

30.00 38.00
0.00 4.00

4.00

Loss Data by Trial Ordered Loss Data

Trial 2A Ref 2A+Ref Rank 2A Ref 2A+Ref
1 8.00 12.00 20.00 1 16.00 37.00 48.00
2 0.00 37.00 37.00 2 16.00 36.00 48.00
3 0.00 36.00 36.00 3 14.00 35.00 47.00
4 0.00 35.00 35.00 4 12.00 34.00 46.00
5 12.00 34.00 46.00 5 8.00 34.00 38.00
6 4.00 17.00 21.00 6 8.00 32.00 37.00
7 2.00 16.00 18.00 7 8.00 31.00 36.00
8 16.00 32.00 48.00 8 6.00 30.00 35.00
9 0.00 27.00 27.00 9 4.00 27.00 33.00
10 0.00 14.00 14.00 10 4.00 27.00 27.00
11 6.00 27.00 33.00 11 2.00 26.00 26.00
12 8.00 15.00 23.00 12 2.00 23.00 25.00
13 0.00 20.00 20.00 13 0.00 20.00 23.00
14 8.00 30.00 38.00 14 0.00 18.00 22.00
15 16.00 31.00 47.00 15 0.00 17.00 21.00
16 4.00 18.00 22.00 16 0.00 16.00 20.00
17 2.00 23.00 25.00 17 0.00 16.00 20.00
18 0.00 26.00 26.00 18 0.00 15.00 18.00
19 14.00 34.00 48.00 19 0.00 14.00 16.00
20 0.00 16.00 16.00 20 0.00 12.00 14.00

Marginal VaR for 2A

Failure of Marginal VaR Scalability - Risk 2*A + Portfolio

Consolidation Benefit

Risk 2A Standalone
Reference Portfolio

Sum
Combined Portfolio
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Exhibit 4

Conditional Tail Expectation is Not Monotonic

Statistic Value Mean VaR TVaR CTE
Trials 20 2.50 4.00 6.60 7.25
Percentage 75.0% 25.00 34.00 35.20 36.00
Rank 5 27.50 38.00 41.80 43.25

27.50 34.00 35.40 35.75
0.00 4.00 6.40 7.50

0.00 0.20 -0.25

Loss Data by Trial Ordered Loss Data

Trial A Ref A+Ref Rank A Ref A+Ref
1 8.00 12.00 20.00 1 8.00 37.00 37.00
2 0.00 37.00 37.00 2 8.00 36.00 36.00
3 0.00 36.00 36.00 3 7.00 35.00 35.00
4 0.00 35.00 35.00 4 6.00 34.00 35.00
5 1.00 34.00 35.00 5 4.00 34.00 34.00
6 2.00 17.00 19.00 6 4.00 32.00 34.00
7 7.00 16.00 23.00 7 4.00 31.00 34.00
8 0.00 32.00 32.00 8 3.00 30.00 33.00
9 4.00 27.00 31.00 9 2.00 27.00 32.00
10 4.00 14.00 18.00 10 2.00 27.00 31.00
11 6.00 27.00 33.00 11 1.00 26.00 26.00
12 8.00 15.00 23.00 12 1.00 23.00 24.00
13 0.00 20.00 20.00 13 0.00 20.00 23.00
14 4.00 30.00 34.00 14 0.00 18.00 23.00
15 3.00 31.00 34.00 15 0.00 17.00 20.00
16 2.00 18.00 20.00 16 0.00 16.00 20.00
17 1.00 23.00 24.00 17 0.00 16.00 20.00
18 0.00 26.00 26.00 18 0.00 15.00 19.00
19 0.00 34.00 34.00 19 0.00 14.00 18.00
20 0.00 16.00 16.00 20 0.00 12.00 16.00

Consolidation Benefit
Marginal Measure

Risk A Standalone
Reference Portfolio

Sum
Combined Portfolio
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Exhibit 5 
Instability of  Co-VaR 

Rank 
VaR 

Percentage
Portfolio 

Loss
Risk A 

Loss 
1 

98 99.02% $422 $6  
99 99.01% $408 $0  
100 99.00% $405 $20  
101 98.99% $395 $0  
102 98.98% $390 $4  

10,000    
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Exhibit 6

Sheet 1
Co-TVaR Subadditivity Failure

Risk A Co-TVaR Calculation

Stat Value Results A Ref A+Ref
Trials 20 Mean 2.50 25.00 27.50
Pct 75.0% VaR 4.00 33.00 36.00
Rank 5 TVaR 6.60 35.80 38.00

Co-TVaR 3.00 35.00 38.00

Loss Data by Trial Separately Ordered Co-Stats

Trial A Ref A+Ref Rank A Ref Trial Co- A Co-Ref A+Ref
1 2.00 8.00 10.00 1 8.00 39.00 7 1.00 39.00 40.00
2 0.00 38.00 38.00 2 8.00 38.00 3 7.00 32.00 39.00
3 7.00 32.00 39.00 3 7.00 35.00 2 0.00 38.00 38.00
4 0.00 35.00 35.00 4 6.00 34.00 14 4.00 33.00 37.00
5 2.00 14.00 16.00 5 4.00 33.00 6 3.00 33.00 36.00
6 3.00 33.00 36.00 6 3.00 33.00 4 0.00 35.00 35.00
7 1.00 39.00 40.00 7 3.00 32.00 19 0.00 34.00 34.00
8 2.00 16.00 18.00 8 2.00 30.00 15 3.00 30.00 33.00
9 8.00 25.00 33.00 9 2.00 27.00 11 6.00 27.00 33.00

10 0.00 11.00 11.00 10 2.00 26.00 9 8.00 25.00 33.00
11 6.00 27.00 33.00 11 2.00 25.00 12 8.00 22.00 30.00
12 8.00 22.00 30.00 12 1.00 23.00 18 0.00 26.00 26.00
13 0.00 20.00 20.00 13 1.00 22.00 17 1.00 23.00 24.00
14 4.00 33.00 37.00 14 1.00 20.00 16 2.00 18.00 20.00
15 3.00 30.00 33.00 15 0.00 18.00 13 0.00 20.00 20.00
16 2.00 18.00 20.00 16 0.00 16.00 8 2.00 16.00 18.00
17 1.00 23.00 24.00 17 0.00 16.00 20 1.00 16.00 17.00
18 0.00 26.00 26.00 18 0.00 14.00 5 2.00 14.00 16.00
19 0.00 34.00 34.00 19 0.00 11.00 10 0.00 11.00 11.00
20 1.00 16.00 17.00 20 0.00 8.00 1 2.00 8.00 10.00  
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Exhibit 6
Sheet 2

Co-TVaR Subadditivity Failure

Risk B Co-TVaR Calculation

Stat Value Results B Ref B+Ref
Trials 20 Mean 2.50 25.00 27.50
Pct 75.0% VaR 4.00 33.00 36.00
Rank 5 TVaR 6.40 35.80 38.40

Co-TVaR 3.00 35.40 38.40

Loss Data by Trial Separately Ordered Co-Stats

Trial B Ref B+Ref Rank B Ref Trial Co- B Co-Ref B+Ref
1 0.00 8.00 8.00 1 9.00 39.00 7 5.00 39.00 44.00
2 0.00 38.00 38.00 2 7.00 38.00 2 0.00 38.00 38.00
3 4.00 32.00 36.00 3 7.00 35.00 14 4.00 33.00 37.00
4 2.00 35.00 37.00 4 5.00 34.00 4 2.00 35.00 37.00
5 2.00 14.00 16.00 5 4.00 33.00 3 4.00 32.00 36.00
6 1.00 33.00 34.00 6 4.00 33.00 19 1.00 34.00 35.00
7 5.00 39.00 44.00 7 3.00 32.00 11 7.00 27.00 34.00
8 1.00 16.00 17.00 8 2.00 30.00 9 9.00 25.00 34.00
9 9.00 25.00 34.00 9 2.00 27.00 6 1.00 33.00 34.00

10 0.00 11.00 11.00 10 2.00 26.00 15 0.00 30.00 30.00
11 7.00 27.00 34.00 11 1.00 25.00 12 7.00 22.00 29.00
12 7.00 22.00 29.00 12 1.00 23.00 18 2.00 26.00 28.00
13 1.00 20.00 21.00 13 1.00 22.00 17 1.00 23.00 24.00
14 4.00 33.00 37.00 14 1.00 20.00 16 3.00 18.00 21.00
15 0.00 30.00 30.00 15 1.00 18.00 13 1.00 20.00 21.00
16 3.00 18.00 21.00 16 0.00 16.00 8 1.00 16.00 17.00
17 1.00 23.00 24.00 17 0.00 16.00 20 0.00 16.00 16.00
18 2.00 26.00 28.00 18 0.00 14.00 5 2.00 14.00 16.00
19 1.00 34.00 35.00 19 0.00 11.00 10 0.00 11.00 11.00
20 0.00 16.00 16.00 20 0.00 8.00 1 0.00 8.00 8.00
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Exhibit 6
Sheet 3

Co-TVaR Subadditivity Failure

Combined Risk A + Risk B  Co-TVaR Calculation

Stat Value Results A+B Ref
A+B
+Ref

Trials 20 Mean 5.00 25.00 30.00
Pct 75.0% VaR 8.00 33.00 40.00
Rank 5 TVaR 12.80 35.80 42.20

Co-TVaR 11.00 31.20 42.20

Loss Data by Trial Separately Ordered Co-Stats

Trial A+B Ref
A+B
+Ref Rank A+B Ref Trial

Co- 
A+B Co-Ref

A+B
+Ref

1 2.00 8.00 10.00 1 17.00 39.00 7 6.00 39.00 45.00
2 0.00 38.00 38.00 2 15.00 38.00 3 11.00 32.00 43.00
3 11.00 32.00 43.00 3 13.00 35.00 9 17.00 25.00 42.00
4 2.00 35.00 37.00 4 11.00 34.00 14 8.00 33.00 41.00
5 4.00 14.00 18.00 5 8.00 33.00 11 13.00 27.00 40.00
6 4.00 33.00 37.00 6 6.00 33.00 2 0.00 38.00 38.00
7 6.00 39.00 45.00 7 5.00 32.00 12 15.00 22.00 37.00
8 3.00 16.00 19.00 8 4.00 30.00 6 4.00 33.00 37.00
9 17.00 25.00 42.00 9 4.00 27.00 4 2.00 35.00 37.00

10 0.00 11.00 11.00 10 3.00 26.00 19 1.00 34.00 35.00
11 13.00 27.00 40.00 11 3.00 25.00 15 3.00 30.00 33.00
12 15.00 22.00 37.00 12 2.00 23.00 18 2.00 26.00 28.00
13 1.00 20.00 21.00 13 2.00 22.00 17 2.00 23.00 25.00
14 8.00 33.00 41.00 14 2.00 20.00 16 5.00 18.00 23.00
15 3.00 30.00 33.00 15 2.00 18.00 13 1.00 20.00 21.00
16 5.00 18.00 23.00 16 1.00 16.00 8 3.00 16.00 19.00
17 2.00 23.00 25.00 17 1.00 16.00 5 4.00 14.00 18.00
18 2.00 26.00 28.00 18 1.00 14.00 20 1.00 16.00 17.00
19 1.00 34.00 35.00 19 0.00 11.00 10 0.00 11.00 11.00
20 1.00 16.00 17.00 20 0.00 8.00 1 2.00 8.00 10.00
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Exhibit 6
Sheet 4

Co-TVaR Subadditivity Failure

Summary

Value
20

75%
5

Results A B A+B Ref
A+B
+Ref

Mean 2.50 2.50 5.00 25.00 30.00
VaR 4.00 4.00 8.00 33.00 40.00

TVaR 6.60 6.40 12.80 35.80 42.20
Co-TVaR 3.00 3.00 11.00 31.20 42.20

Loss Data by Trial

Trial A B A+ B Ref
A+ B
+Ref

1 2.00 0.00 2.00 8.00 10.00
2 0.00 0.00 0.00 38.00 38.00
3 7.00 4.00 11.00 32.00 43.00
4 0.00 2.00 2.00 35.00 37.00
5 2.00 2.00 4.00 14.00 18.00
6 3.00 1.00 4.00 33.00 37.00
7 1.00 5.00 6.00 39.00 45.00
8 2.00 1.00 3.00 16.00 19.00
9 8.00 9.00 17.00 25.00 42.00

10 0.00 0.00 0.00 11.00 11.00
11 6.00 7.00 13.00 27.00 40.00
12 8.00 7.00 15.00 22.00 37.00
13 0.00 1.00 1.00 20.00 21.00
14 4.00 4.00 8.00 33.00 41.00
15 3.00 0.00 3.00 30.00 33.00
16 2.00 3.00 5.00 18.00 23.00
17 1.00 1.00 2.00 23.00 25.00
18 0.00 2.00 2.00 26.00 28.00
19 0.00 1.00 1.00 34.00 35.00
20 1.00 0.00 1.00 16.00 17.00

Statistic
Trials
Pct

Rank
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Exhibit 7
Sheet 1

Event ID
Annual 

Probability
Treaty A

 Loss
Treaty B

 Loss
Reference 

Portfolio Loss
1 2% 0 500 125,000
2 2% 0 1,000 100,000
3 2% 0 1,000 90,000
4 2% 0 2,000 80,000
5 2% 0 2,500 75,000
6 2% 0 3,000 70,000
7 2% 0 3,000 60,000
8 2% 0 3,000 50,000
9 2% 0 3,000 50,000

10 2% 0 2,500 40,000
11 2% 0 2,000 38,000
12 2% 0 1,000 36,000
13 2% 0 1,000 34,000
14 2% 0 1,000 32,000
15 2% 0 1,000 30,000
16 2% 0 2,000 25,000
17 2% 0 2,500 20,000
18 2% 0 3,000 15,000
19 2% 0 3,000 10,000
20 2% 0 3,000 5,000
21 2% 0 3,000 5,000
22 2% 0 2,500 4,000
23 2% 0 2,000 3,000
24 2% 0 1,000 2,000
25 2% 0 500 1,000

Event Loss table
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Exhibit 7
Sheet 2

Event ID
Annual 

Probability
Treaty A

 Loss
Treaty B

 Loss
Reference 

Portfolio Loss
26 2% 12,500 0 0
27 2% 10,000 0 0
28 2% 7,500 0 0
29 2% 5,000 0 0
30 2% 4,000 0 0
31 2% 3,000 0 0
32 2% 2,000 0 0
33 2% 1,000 0 0
34 2% 900 0 0
35 2% 800 0 0
36 2% 700 0 0
37 2% 600 0 0
38 2% 500 0 0
39 2% 400 0 0
40 2% 300 0 0
41 2% 200 0 0
42 2% 100 0 0
43 2% 90 0 0
44 2% 80 0 0
45 2% 70 0 0
46 2% 60 0 0
47 2% 50 0 0
48 2% 50 0 0
49 2% 50 0 0
50 2% 50 0 0

Event Loss table
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Exhibit 8

Event ID 1 2 3 4 5
Treaty A Loss 0 0 0 0 0
Treaty B Loss 500 1,000 1,000 2,000 2,500
Treaty C Loss 500 0 1,000 0 2,500
Reference Portfolio Loss 125,000 100,000 90,000 80,000 75,000
Ref + A + B 125,500 101,000 91,000 82,000 77,500
Simulated Annual Prob 1.80% 1.60% 1.90% 2.60% 2.40%
Prob Occ 2.00% 2.00% 2.00% 2.00% 2.00%

 Trial Year
Number 
of events

 Event
 ID 1

 Event
 ID 2

 Event
 ID 3

 Event
 ID 4

 Event
 ID 5

1 0 0 0 0 0 0
2 1 0 0 0 0 0
3 0 0 0 0 0 0
4 2 0 0 0 0 0
5 2 0 0 0 0 0
6 2 0 0 0 0 0
7 1 0 0 0 0 0
8 1 0 1 0 0 0
9 1 0 0 0 0 0

10 1 0 0 1 0 0
11 1 0 0 1 0 0
12 1 0 0 0 0 0
13 1 0 0 0 0 0
14 1 0 0 0 0 0
15 0 0 0 0 0 0
16 2 0 0 0 0 0
17 0 0 0 0 0 0
18 0 0 0 0 0 0
19 0 0 0 0 0 0
20 0 0 0 0 0 0

Simulation of  1,000 Trial Years for  50  events

Event Indicator Matrix
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Sheet 1

Capital and Pricing Indications
Treaty A

E[L]
Linear 

Correlation
Rank 

Correlation

Percentage 95.0% 19,651

Target Return 15.0% 1,060 1% -2%

Capital Calculation 
Method

Treaty A 
Standalone 

Capital

Reference 
Portfolio

 Capital

Reference 
+ Treaty A

 Capital

Treaty A 
Required 

Capital

Treaty A 
Indicated 
Premium

Treaty A 
Indicated 

Risk Load

Risk Load 
% of 

Premium
Standalone VaR 7,590 N/A N/A 7,590 2,198 1,139 52%

Standalone TVaR 11,255 N/A N/A 11,255 2,748 1,688 61%

Standalone XTVaR 10,195 N/A N/A 10,195 2,589 1,529 59%

VaR Increment N/A 100,000 102,000 2,000 1,360 300 22%

TVaR Increment N/A 130,800 132,206 1,406 1,271 211 17%

XTVaR Increment N/A 111,149 111,495 346 1,112 52 5%

Allocation via
 Standalone VaR

7,590 100,000 102,000 7,196 2,139 1,079 50%

Allocation via
 Standalone TVaR

11,255 100,000 102,000 10,318 2,608 1,548 59%

Allocation via
 Standalone XTVaR

10,195 100,000 102,000 9,437 2,475 1,416 57%

Band Co-VaR 
Allocation

N/A N/A 102,000 3,237 1,545 486 31%

Co-TVaR
 Allocation

N/A N/A 102,000 1,239 1,246 186 15%

Co-XTVaR
 Allocation

N/A N/A 102,000 1,519 1,288 228 18%

Reference Portfolio

Treaty A
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Exhibit 9
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Capital and Pricing Indications
Treaty B

E[L]
Linear 

Correlation
Rank 

Correlation

Percentage 95.0% 19,651
Target Return 15.0% 1,054 60% 93%

Capital Calculation 
Method

Treaty B 
Standalone 

Capital

Reference 
Portfolio

 Capital

Reference 
+ Treaty B

Capital

Treaty B 
Required 

Capital

Treaty B 
Indicated 
Premium

Treaty B 
Indicated 

Risk Load

Risk Load 
% of 

Premium
Standalone VaR 4,000 N/A N/A 4,000 1,654 600 36%

Standalone TVaR 5,480 N/A N/A 5,480 1,876 822 44%

Standalone XTVaR 4,426 N/A N/A 4,426 1,718 664 39%

VaR Increment N/A 100,000 104,000 4,000 1,654 600 36%

TVaR Increment N/A 130,800 134,010 3,210 1,536 482 31%

XTVaR Increment N/A 111,149 113,305 2,156 1,377 323 23%

Allocation via
 Standalone VaR

4,000 100,000 104,000 4,000 1,654 600 36%

Allocation via
 Standalone TVaR

5,480 100,000 104,000 5,403 1,864 810 43%

Allocation via
 Standalone XTVaR

4,426 100,000 104,000 4,408 1,715 661 39%

Band Co-VaR 
Allocation

N/A N/A 104,000 2,588 1,442 388 27%

Co-TVaR
 Allocation

N/A N/A 104,000 2,491 1,428 374 26%

Co-XTVaR
 Allocation

N/A N/A 104,000 2,571 1,440 386 27%

Reference Portfolio
Treaty B
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Sheet 3

Treaty A vs Treaty B Comparison

Simulated 
Value E[L]

Linear 
Correlation

Rank 
Correlation

Percentage 95.0% 19,651

Target Return 15.0% 1,060 1% -2%

1,054 60% 93%

Treaty A 
Required 

Capital

Treaty A 
Indicated 
Premium

Risk Load 
% of 

Premium

Treaty B 
Required 

Capital

Treaty B 
Indicated 
Premium

Risk Load 
% of 

Premium
7,590 2,198 52% 4,000 1,654 36%

11,255 2,748 61% 5,480 1,876 44%

10,195 2,589 59% 4,426 1,718 39%

2,000 1,360 22% 4,000 1,654 36%

1,406 1,271 17% 3,210 1,536 31%

346 1,112 5% 2,156 1,377 23%

7,196 2,139 50% 4,000 1,654 36%

10,318 2,608 59% 5,403 1,864 43%

9,437 2,475 57% 4,408 1,715 39%

3,237 1,545 31% 2,588 1,442 27%

1,239 1,246 15% 2,491 1,428 26%

1,519 1,288 18% 2,571 1,440 27%

Standalone TVaR Allocation

Standalone XTVaR Allocation

Band Co-VaR Allocation

Co-TVaR Allocation

Co-XTVar Allocation

Standalone VaR Allocation

Capital and Pricing Indications Summary

Reference Portfolio

Treaty A

Treaty B

Capital Calculation Method
Standalone VaR

Standalone TVaR

Standalone XTVaR

VaR Increment

TVaR Increment

XTVaR Increment
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Loss Cost Components and Industrial Structure 

Frank Schmid 

______________________________________________________________________________ 
Abstract 
Motivation.  Concomitant with the 2007-2009 recession, the U.S. economy experienced profound changes in 
industrial structure that led to widely varying growth rates of employment by industry.  Whereas some of these 
changes may be temporary, others are likely to be permanent or keep progressing.  Among the sectors exhibiting 
the most significant shifts in employment levels are manufacturing, health care, and construction.  Quantifying 
the impact of the changes to the industrial structure on loss cost components is important for understanding 
trends in NCCI aggregate ratemaking. 
Method.  A statistical model is employed to measure the impact of the rates of employment growth by industry 
and the change in the rate of private nonfarm employment growth on the growth rates of frequency and the 
indemnity and medical severities.  Frequency is defined as the ratio of the lost-time claim count (developed to 
ultimate) to on-leveled and wage-adjusted premium.  Severity is defined as the ratio of (on-leveled, developed-to-
ultimate, and wage-adjusted) losses to the number of lost-time claims (developed to ultimate).  In a sensitivity 
analysis, ridge regression is applied to control for possible multicollinearity. 
Results.  The industries whose changes in the rates of employment growth are most pertinent to variations in 
the rate of frequency growth are health care and construction (but not manufacturing).  The industrial structure is 
of little import to the growth rate of indemnity severity, but of consequence for the growth rate of medical 
severity.  Further, the evidence regarding the effect on the growth rate of frequency of changes in the rate of 
employment growth agrees with the findings on the impact of job flows previously documented in Schmid [6]. 
Availability.  The model was implemented in R (http://cran.r-project.org/) using the sampling platform JAGS 
(Just Another Gibbs Sampler, http://www-ice.iarc.fr/~martyn/software/jags/).  JAGS was linked to R by 
means of the R package rjags (http://cran.r-project.org/web/packages/rjags/index.html). 
 
Keywords.  Aggregate Ratemaking, Industrial Structure, Loss Cost Components, Ridge Regression 

______________________________________________________________________________ 

1. INTRODUCTION 

Concomitant with the 2007-2009 economic recession, the U.S. economy experienced profound 

changes in industrial structure that led to widely varying growth rates of employment by industry.  

Whereas some of these changes may be temporary, others are likely to be permanent or keep 

progressing.  Among the sectors exhibiting the most significant shifts in employment levels are 

manufacturing, health care, and construction.  Quantifying the impact of the changes to the 

industrial structure on loss cost components is important for understanding trends in NCCI 

aggregate ratemaking. 

The impact of changes in the industrial structure on loss cost components is quantified at the 

state level using a Bayesian statistical model.  The model relates the logarithmic rates of frequency 

growth on the logarithmic rates of employment growth by industry and on the first difference in the 

logarithmic rate of total private nonfarm employment growth.  This analysis is then repeated for the 

rates of indemnity and medical severity growth.  In a sensitivity analysis, ridge regression is applied 

to these three loss cost components to control for possible multicollinearity among the covariates. 
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In keeping with NCCI trend selection methodology in aggregate ratemaking, frequency is defined 

as the ratio of the lost-time claim count (developed to ultimate) to on-leveled and wage-adjusted 

premium.  Severity is defined as the ratio of (on-leveled, developed-to-ultimate, and wage-adjusted) 

losses to the number of lost-time claims (developed to ultimate).  With frequency and severity 

defined in this way, the loss ratio equals the product of frequency and the pertinent severity.  

Because frequency and the severities share the claim count as an influence, albeit in opposite ways 

(as claim count is the numerator of frequency and the denominator of the severities), some of the 

economic forces bearing on frequency have the opposite effect on the severities.  Although these 

opposing effects do not necessarily offset each other entirely, economic conditions oftentimes affect 

the loss ratio much less than they affect frequency and the pertinent severity. 

The aggregate ratemaking data employed in the analysis are on a paid basis; state funds are 

included where applicable.  There are 37 states in the data set, 35 of which are on policy years, the 

remaining two are on accident years.  The model makes use of employment forecasts (by industry 

and private nonfarm) from a professional forecasting firm in generating forecasts for the loss cost 

components.  These forecasts for the loss cost components extend through Policy (or, where 

applicable, Accident) Year 2015. 

The model shows that construction, among all industries, exerts the most influence on loss cost 

components during the studied time period.  This influence is most manifest in the time window of 

the recession (which lasted from December 2007 to June 2009) and its immediate aftermath (Policy 

Year 2009 and Accident Year 2010).  The four states that experienced the steepest decline in 

construction employment in the United States between 2007 and 2009 (based on annual numbers) 

are Nevada (56 percent), Arizona (51 percent), Florida (44 percent), and Idaho (40 percent), all of 

which are included in the data set.  By comparison, the overall percentage decline in construction 

employment in the United States during the same time period amounted to only 28 percent. 

Chart 1 presents industry histograms that display monthly numbers of nonfarm employees 

broken down by Bureau of Labor Statistics (BLS) sectors and supersectors.  The histograms start in 

November 2001, which marks the trough in employment following the 2001 recession.  The light 

gray bars indicate increases in employment relative to the respective previous month; similarly, the 

dark gray bars indicate decreases in employment relative to the previous month. 
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Chart 1: Change in Industrial Structure Following the 2001 Post-Recession Low in Employment 

 

Note: Nonfarm Employment, seasonally adjusted, monthly observations, November 2001 through 
September 2011.  Source: FRED, https://research.stlouisfed.org/fred2; U.S. Bureau of Labor 
Statistics (BLS), http://www.bls.gov. 

Most noticeable are the comparatively steep percentage declines in employment in the 

manufacturing and construction sectors during and immediately following the latest recession 

(which is indicated by the gray rectangles).  At the same time, the employment increases in the 

supersector Education and Health Services showed little signs of slowing during the latest recession.  

Note that the public school system is included in the government sector; more than 80 percent of 

the employees in the supersector Education and Health Services fall into the category Health Care 

and Social Assistance (or, health care, for short), the remainder comprising Educational Services. 

Although manufacturing employment started recovering in 2010, this recovery may fail to restore 

the pre-recession level of employment.  Such has been the experience since the double-dip recession 

of the early 1980s.  As Chart 2 shows, over the past 30 years, manufacturing has never reached the 

pre-recession level during the subsequent economic recovery. 
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Chart 2: Manufacturing Employment 

 

Note: Employment is from National Income and Product Account (NIPA) Tables 6.5 (A [1929-
1948], B [1948-1987], C [1987-2000], and D [1998-2009]) and measured in numbers of full-time 
equivalent employees.  The break in the manufacturing series indicates the switch from SIC 
(Standard Industrial Classification) to NAICS (North America Industry Classification System).  
Frequency of observation: annual; latest available data point: 2010.  Source: Bureau of Economic 
Analysis (BEA), http://www.bea.gov. 

1.1 Research Context 

Understanding loss cost trends and forecasting these trends is challenging.  First, the data series 

are comparatively short and, second, these series exhibit a high degree of volatility. 

There are two types of models that have been developed for the purpose of eliciting loss cost 

trends.  First, there are models that estimate the trend rate of growth of the loss cost component 

under the assumption of stationarity on time intervals between structural breaks.  Among these 

models are the Exponential Trend model traditionally considered in NCCI aggregate ratemaking.  

Another class of models employs covariates in forecasting trends in lost cost components.  The 

shortness of the time series and their high volatilities pose a particular problem for such structural 

models.  In small samples, only the most extreme contributions of covariates are able to breach the 



Loss Cost Components and Industrial Structure 

Casualty Actuarial Society E-Forum, Spring 2013 5 

© Copyright 2013 National Council on Compensation Insurance, Inc.  All Rights Reserved. 

threshold of statistical significance; see Gelman and Weakliem [2].  This is because the shorter the 

sample, the higher the standard error of the estimated regression coefficient, all else being equal.  

Specifically, the risk associated with regression on small samples is that the correlation between the 

dependent variable and the covariate is a random outcome, which does not repeat itself in systematic 

ways in the future.  As a result, the covariate may adversely affect the quality of the forecast.  All else 

being equal, the more covariates are tested during the model building process, the higher is the 

probability that a covariate will be included based on random correlation. 

Among models that employ covariates for the purpose of forecasting loss cost trends are the 

model discussed here and the model developed by Brooks [1].  The covariate in the Brooks model 

that has the most explanatory power is the ratio of cumulative injury claims to total indemnity 

claims.  This raises another problem of structural models, which is the availability of forecasts for 

the covariates. 

1.2 Objective 

The objective is to quantify the effect of changes in the industrial structure on the lost cost 

components in NCCI aggregate ratemaking.  This quantification is primarily for the purpose of 

improving the understanding of loss cost trends during the aftermath of the 2007–2009 economic 

recession.  It is not the objective of the model to deliver trend estimates that feed directly into the 

trend selection in aggregate ratemaking; this is because this model is geared toward an economic 

situation that is likely to be transitory.  The degree of change in the industrial structure may not 

perpetuate itself at the current pace, which would deprive the model of its value added.  Likewise, 

had this model been developed prior to the latest recession, it may have been dismissed due to a lack 

of explanatory power. 

1.3 Outline 

What follows in Section 2 is a description of the model.  Section 3 then discusses the data and 

presents the estimated effects.  Section 4 concludes. 

2. THE MODEL 

In three independent regressions, the logarithmic growth rates of frequency and the severities are 

related to the logarithmic rates of employment growth by industry and the first difference in the 

logarithmic rate of growth of private nonfarm employment.  For every state, the conditional mean 
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of the logarithmic rate of growth of the respective loss cost component is assumed to be normally 

distributed.  All data are state-level observations. 

The states are estimated simultaneously in a pooled time-series cross-section framework.  All 

states share the same regression coefficients (of the employment growth by industry and the change 

in the rate of private nonfarm employment growth); this is to reduce the risk of mistaking noise for 

a signal in a situation where the time series are short and volatile, as discussed.  The variance of the 

normal distribution of the conditional mean is allowed to vary by state, thus resulting in a discrete 

scale mixture of normal distributions as the likelihood of the Bayesian model. 

In addition to the growth rates of employment by industry, the first difference in the rate of 

private nonfarm employment growth is the only other covariate.  The inclusion of this covariate in 

the regression model is motivated by the study by Schmid [6] on job flows.  In this study, it was 

shown that the rate of frequency growth is affected by changes in the rates of job creation and job 

destruction.  Because forecasts for job creation and destruction are not available, only the net job 

flows effect (that is, net job creation as it manifests itself in employment growth) is included in the 

model. 

In a sensitivity analysis, a ridge regression version of the model was estimated.  Ridge regression 

was developed by Hoerl and Kennard [3][4] for the purpose of reducing the mean square error of 

estimated regression coefficients in the presence of nonorthogonality.  Specifically, ridge regression 

is an approach to mitigate the adverse effects of multicollinearity, which arises from correlations 

among the set of covariates.  Such multicollinearity may cause the estimated regression coefficients 

to be excessively large in magnitude or have the wrong sign. 

The use of ridge regression is motivated by the possibility that the industry growth rates are 

highly correlated with each other, as they are subject to common shocks (associated with economic 

recessions and expansions).  On the other hand, if the differences between the ridge estimates and 

the conventional estimates are small, this indicates that these correlations are mild and the estimated 

regression coefficients can be relied upon. 

All covariates were centered, which implies that the intercept of the regression equation delivers 

the growth rate of the respective loss cost component in the steady state. 

For the purpose of the ridge regression, all covariates were standardized, which means that they 

were not only centered but also normalized by their sample standard deviations.  Following the 
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estimation, the regression coefficients were transformed back to non-standardized (yet centered) 

coefficients for the purpose of making them comparable to the conventional estimates. 

Ridge regression is straightforward to implement in Bayesian regression models, as documented 

in The BUGS Project [7].  After standardizing the covariates, the prior distributions for the 

covariates are assigned a common precision (which is the reciprocal value of the variance).  In the 

model, a common precision is shared by the parameters measuring the impact of the employment 

growth by industry (but not by the parameter that quantifies the effect of the change in the rate of 

private nonfarm employment growth). 

In order to align the time window of the covariates with policy years, the rate of employment 

growth by industry was measured Q2 (second quarter of the calendar year) over Q2.  For instance, 

the rate of frequency growth in construction employment for Policy Year 2008 is calculated by 

comparing the employment level in Q2/2009 to the one in Q2/2008.  For accident year data, the 

corresponding growth rate was measured Q4 over Q4.  The same principle applies to the difference 

in the rate of growth of private nonfarm employment. 

For the purpose of statistical modeling, the industries displayed in Chart 1 were aggregated.  The 

resulting broader industry categorization reduces the number of covariates and thus the risk of 

fitting to noise.  Further, the government sector was dropped because this sector is not pertinent to 

the analysis. 

Chart 3 displays the industry aggregation.  The services sectors were grouped into a single 

industry, except for Trade, Transportation, and Utilities and Education and Health Services.  Trade, 

Transportation, and Utilities is a large sector and, unlike some other services sectors, its level of 

employment is highly susceptible to variations in economic activity.  For this reason, the Trade, 

Transportation, and Utilities sector is treated as a stand-alone industry.  Education and Health 

Services shows a trajectory of employment growth different from any other services industry (as 

shown in Chart 1) and hence deserves special attention.  The three goods-producing sectors 

Construction, Manufacturing, and Natural Resources and Mining were also left disaggregated. 

The model was implemented in R (http://cran.r-project.org/) using the sampling platform JAGS 

(Just Another Gibbs Sampler, http://www-ice.iarc.fr/~martyn/software/jags/).  JAGS was linked 

to R by means of the R package rjags (http://cran.r-project.org/web/packages/rjags/index.html). 
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Chart 3: Industry Aggregation 

 

3. FINDINGS 

The data (expressed as growth rates) are from the 2010 NCCI ratemaking season and run from 

1991 through 2008 for policy years, and from 1992 through 2009 for accident years.  Employment 

data are on a quarterly basis and provided by a professional data provider and forecaster.  Note that 

forecasts are subject to revision; the forecasts used in this study are as of July 6, 2011.  From these 

quarterly observations, 12-month growth rates are calculated, as discussed.  Historical employment 

observations run through Q1/2011; employment forecasts start in Q2/2011. 

The measured quantitative effects for the influence of the industrial structure on loss cost 

components are presented in Table 1 (frequency growth), Table 2 (indemnity severity growth), and 

Table 3 (medical severity growth).  The displayed regression coefficients have a straightforward 

interpretation.  For instance, in Table 1, the regression coefficients measure the change of frequency 

growth in percentage points in response to a one-percentage point change in employment growth in 

the industry in question.  As an example, let us start out in a situation where frequency declines at an 

annual rate of four percent and construction employment grows at an annual rate of one percent.  

Then, the construction sector shrinks, its growth rate dropping by seven percentage points to a 

negative six percent.  If nothing else changed, frequency growth would increase by approximately 

one percentage point (a negative 0.07 multiplied by a negative 0.154) to a negative three percent 

from the original negative four percent. 

At the same time, the decrease in the growth rate of construction employment, if not offset by 

changes in employment growth in other industries, changes the rate of private nonfarm employment 
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growth in the state.  This implication points to the second effect, which is related to job flows.  For 

the frequency growth regression, the posterior distribution of the coefficient that reflects the 

influence of changes to the rate of employment growth is displayed in Chart 4. 

Table 1: Effect on Frequency Growth in Percentage Points in Response to a One-Percentage Point 

Change in Industry Employment Growth Change 

Discrete Scale Mixture of Normal Distributions 

  Standard Approach Ridge Regression Probability that Variable 
Has Explanatory Power 

(Percent)   Estimated Coefficient Estimated Coefficient 

Trade, Transportation, and Utilities -0.132 -0.129 13.17 

Education and Health Services -0.430 -0.422 87.47 

Services NEC 0.149 0.135 23.68 

Construction -0.154 -0.148 87.61 

Manufacturing 0.125 0.125 23.69 

Natural Resources and Mining 0.002 0.001 8.53 

Note that the public school system is part of Government, not Education and Health Services.  The 
bulk of jobs in Education and Health Services fall into the category Health Care and Social 
Assistance. 

Chart 4: Effect of Change in Net Job Creation on Frequency Growth 
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Chart 4 shows that a drop in the rate of private nonfarm employment growth, as typically 

associated with a slowdown in economic growth, causes the rate of frequency growth to decline.  

Specifically, economic recessions tend to accelerate the decline in frequency, whereas recoveries 

from recessions tend to slow down this decline or reverse it temporarily. 

Table 2: Effect on Indemnity Severity Growth in Percentage Points in Response to a One-

Percentage Point Change in Industry Employment Growth Change 

Discrete Scale Mixture of Normal Distributions 

  Standard Approach Ridge Regression Probability That Variable 
Has Explanatory Power 

(Percent)   Estimated Coefficient Estimated Coefficient 

Trade, Transportation, and Utilities 0.120 0.104 4.73 

Education and Health Services 0.035 0.027 1.91 

Services NEC -0.248 -0.229 4.48 

Construction 0.058 0.054 2.43 

Manufacturing -0.022 -0.023 2.21 

Natural Resources and Mining -0.015 -0.013 2.13 

Note that the public school system is part of Government, not Education and Health Services.  The 
bulk of jobs in Education and Health Services fall into the category Health Care and Social 
Assistance. 

Table 3: Effect on Medical Severity Growth in Percentage Points in Response to a One-Percentage 

Point Change in Industry Employment Growth Change 

Discrete Scale Mixture of Normal Distributions 

  Standard Approach Ridge Regression Probability That Variable 
Has Explanatory Power 

(Percent)   Estimated Coefficient Estimated Coefficient 

Trade, Transportation, and Utilities 0.425 0.383 96.30 

Education and Health Services 0.148 0.143 25.89 

Services NEC -0.508 -0.455 93.22 

Construction 0.151 0.142 96.27 

Manufacturing -0.198 -0.191 91.07 

Natural Resources and Mining -0.072 -0.070 98.20 

Note that the public school system is part of Government, not Education and Health Services.  The 
bulk of jobs in Education and Health Services fall into the category Health Care and Social 
Assistance. 
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To continue with the numerical example, if the mentioned hypothetical contraction of the 

construction sector reduced the rate of private nonfarm employment by three tenths of a percentage 

point, then this effect of a decline in the rate of job creation would accelerate the frequency decline 

by approximately 0.1 percentage points (a negative 0.003 multiplied by 0.365), thus bringing the total 

effect on frequency growth to about 0.9 percentage points.  In summary, the rate of frequency 

decline would slow to 3.1 percent from the original four percent. 

Tables 1 through 3 display the ridge regression results alongside the conventional regression 

outcomes.  Because ridge regression shrinks the regression coefficients toward zero, these 

coefficients are smaller in absolute value than those generated by the conventional regression 

approach.  The comparatively modest differences in magnitudes between the coefficients of the two 

approaches validate the conventional regression estimates. 

Evidence of explanatory power of the covariates was established by means of the Generalized 

Linear Spike-and-Slab Stochastic Search Variable Selection approach developed by Pang and Gill [5].  

By means of variable selection, it is possible to provide a probability that the null hypothesis is true 

(and, hence, a probability that the null hypothesis is false).  For instance, in Table 1, the probability 

that variation in construction employment growth has power in explaining variation in frequency 

growth equals 87.61 percent.  The only other industry with a high probability of having explanatory 

power is health care; the probability that variations in health care employment are relevant for 

variations in frequency growth equals 87.47 percent.  Interestingly, the probability that variations in 

the growth rate of manufacturing employment contribute to variations in the growth rate of 

frequency runs at only 23.69 percent. 

The reason that a decline in the growth rate of construction employment has a positive impact on 

frequency growth (that is, decelerates the decline in frequency) is that construction is a low-

frequency industry in the context of NCCI aggregate ratemaking.  This is because, for aggregate 

ratemaking purposes, frequency is defined as claim count normalized by premium, as opposed to 

claim count normalized by wages or the number of full-time equivalent employees. 

The interpretation of the regression coefficients in Table 2 (indemnity severity) and Table 3 

(medical severity) is analogous to the reading of the regression coefficients in Table 1 (frequency) 

delivered above.  It is noteworthy that all the regression coefficients switch signs when going from 

frequency (Table 1) to the severities (Tables 2 and 3).  This confirms that the effects on frequency 

growth of changes in the rates of employment growth by industry are at least partially offset by 

effects on the severities.  This offset originates primarily from the medical severity where all but one 
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regression coefficient exhibit high probabilities of having explanatory power.  This is in stark 

contrast to the regression coefficients for indemnity severity, none of which musters more than a 

five-percent probability of being statistically relevant. 

As discussed, the change in the rate of private nonfarm employment growth is the only covariate 

aside from the rates of employment growth by industry.  The probability that changes in private 

nonfarm employment growth have statistical power to explain frequency growth equals 90.73 

percent.  This statistical evidence agrees with the role of jobs flows for the business cycle behavior 

of frequency discussed in Schmid [6].  The probabilities that changes in the rate of private nonfarm 

employment growth are relevant to the rates of indemnity growth equals 100 percent; the 

corresponding number for medical severity reads 32.57 percent. 

Chart 5 summarizes for the first analyzed state the regression results for frequency growth.  In 

this state, which is on policy years, the (percentage) decline in construction employment 

approximately equals the reading for the United States overall.  The observed rates of frequency 

growth are plotted alongside the values predicted by the model.  The gray box represents the future 

from the perspective of the 2010 ratemaking season.  Within the gray box, the predicted values for 

the rate of frequency growth are forecasts.  All displayed growth rates are logarithmic. 

Chart 5: State No. 1: Job Losses in Construction Were Close to the National Average 
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The steady state rate of frequency growth of the state displayed in Chart 5 runs at a negative 5.4 

percent and is represented by a horizontal line.  By comparison, the equally weighed average of the 

steady state rates of frequency growth among the 37 states in the data set equals a negative 4.4 

percent; the corresponding premium-weighted average comes to a negative 4.3 percent.  (Premiums 

are as of Policy Year 2008 or Accident Year 2009, as applicable.) 

In Chart 5, the transparent box represents the influence of changes in the industrial structure, as 

measured by variations in the rates of employment growth by industry; the solid gray box stands for 

the effect of variations in the change of the rate of private sector employment growth.  Both boxes 

measure the influence relative to the steady state. 

There is little action in the estimated effects prior to Policy Year 2008.  Although the recession 

started in December 2007, most states did not experience meaningful declines in employment before 

mid-2008.  The delayed response of employment to the recession is evident from Chart 6, which 

displays the cumulative employment growth since the onset of the recession for every U.S. state, the 

District of Columbia, and the United States.  In this chart, the recession is represented by a gray box. 

Chart 6: Cumulative Change in Nonfarm Employment Since Onset of Recession 

 

Note: Nonfarm Employment, seasonally adjusted.  The set of individual states and the range of U.S. 
states include the District of Columbia.  Frequency of observation: monthly; latest available data 
point for US: August 2011.  Tick marks indicate beginning of year.  Sources: U.S. Bureau of Labor 
Statistics (BLS), http://www.bls.gov; NBER, http://www.nber.org/cycles.html. 
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As shown in Chart 5, in Policy Year 2009, the change in industrial structure contributed to an 

increase in frequency, which was more than offset by the influence originating from the slowdown 

in net job creation.  As hiring moderates, the share of short-tenured workers on the payroll declines, 

which contributes to an acceleration of the frequency decline.  This reasoning is supported by Chart 

7, which states that about a quarter of workers are responsible for about one-third of all workplace 

injuries—these are the workers that have been with the current employer for one year or less. 

Chart 7: Workplace Injury Proportions by Job Tenure 

 

Note: Workplace injuries represent nonfatal injuries and illnesses involving days away from work.  
Short job tenure means 11 months or less (workplace injuries) or 12 months or less (employment).  
Intermediate length of service means one to five years and 13 months to four years, respectively.  
Long length of service means more than five years or five years or more, respectively.  Percentages 
for workplace injuries do not account for a small “residual category.”  Job tenure information for 
employment is available bi-annually (for January only).  Percentages may not add to 100 due to 
rounding.  Source: U.S. Bureau of Labor Statistics (BLS), http://www.bls.gov. 

Chart 5 shows two effects on the rate of frequency growth that holds for nearly all of the 37 

analyzed states.  First, in Policy Year 2008 (or Accident Year 2009, where applicable), the industrial 

structure effect and the net job creation effect opposed each other; while the industrial structure 
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effect contributed to an increase in the rate of frequency growth, the net job creation effect 

subtracted from it.  Second, in Policy Year 2009 (or Accident Year 2010, where applicable), the two 

effects pointed in the same direction by contributing to an increase in frequency growth.  The reason 

for the net job creation effect changing direction is that employment growth turned positive in many 

states in late 2009 and early 2010, as depicted in Chart 6. 

For further five states, the regression results for frequency growth are summarized in Charts 8 

through 12.  Similar to the state exhibited in Chart 5, the state displayed in Chart 8 experienced a 

(percentage) decline in construction employment that was about equal to the decline in the United 

States overall.  Things are different in Charts 9 through 12, which represent states with sharply 

contracting construction sectors; note that states that experienced steep declines in construction 

employment were also subject to above-average (percentage) losses in private nonfarm employment.  

As is evident from Charts 9 through 12, both the industrial structure effect and the net job creation 

effect are more pronounced (when measured in changes of percentage points) than in the states 

shown in Charts 5 and 8.  Taking the two effects together, frequency growth in Policy Year 2009 

(Accident Year 2010) is forecast to be several percentage points higher (but not necessarily positive) 

for states with worse-than-average slumps in the housing market. 

Chart 8: State No. 2: Job Losses in Construction Were Close to the National Average 
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Chart 9: State No. 3: Job Losses in Construction Exceed the National Average 

 

Chart 10: State No. 4: Job Losses in Construction Exceed the National Average 
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Chart 11: State No. 5: Job Losses in Construction Exceed the National Average 

 

Chart 12: State No. 6: Job Losses in Construction Exceed the National Average 
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Chart 5 and Charts 8 through 12 show that the economic effects that emanate from the changes 

in the industrial structure effect and the net job creation are expected to taper off quickly after Policy 

Year 2009 (Accident Year 2010).  Based on the forecasts for employment growth used in the model, 

the effects will have largely dissipated by Policy (Accident) Year 2015. 

4. CONCLUSIONS 

The change in industrial structure concomitant with the 2007-2009 recession and its aftermath 

affects ratemaking loss cost components in important ways.  This effect is largely due to the pre-

recession expansion and subsequent contraction of the construction sector.  Thus, the effect is most 

pronounced in states that experienced a steep downturn in the housing market. 

There are offsetting effects on the part of the severities.  Medical severity appears to be more 

responsive to changes in industrial structure than indemnity severity, although this finding should 

not be considered conclusive. 

The model has not been validated using a holdout period.  This is because, within the history of 

available aggregate ratemaking data, there have been no changes in the industrial structure of the 

economy comparable in magnitude. 

The effect is likely to be transitory.  In the model, the rates of frequency and severity growth 

revert to their steady states as the economy returns to its trend rate of growth.  It is important to 

note that this return to the steady state is a model assumption, not a model outcome. 

In fact, an important question raised by this analysis is how the recent changes in industrial 

structure may have altered the steady state of frequency growth.  Although this question is beyond 

the scope of the analysis presented here, there is evidence that the role of the industrial structure in 

determining the rate of frequency decline in the steady state is rather small. 

Chart 13 shows the BLS injury and illness rate for all private industry on an annual basis since 

1977, the first year for which this data series is available.  The edge of the gray shading reports the 

injury and illness rate that we would have observed had the industrial structure not changed in 1977.  

The chart shows that the bulk of the frequency decline happened within the industries, and only 7.5 

percent of the frequency decline that was observed between 1977 and 2010 is due to the change in 

industrial structure.  This finding motivated the assumption of an unaltered steady state in the 

presented statistical model. 
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Chart 13: BLS Injury and Illness Rate and Change in Industrial Structure 

 

Note: Injury and Illnesses Cases per 100 Full-Time-Equivalent Workers, Total Recordable Cases, All 
Private Industry.  Frequency of observation: annual; latest available data point: 2010.  No data points 
are available for 2001 and 2002 due to changes in industry classification.  Tick marks indicate 
beginning of year.  The data points are mid-year.  Sources: Bureau of Economic Analysis (BEA), 
http://www.bea.gov; U.S. Bureau of Labor Statistics (BLS), http://www.bls.gov/iif. 
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Bayesian Trend Selection 

Frank Schmid, Chris Laws, and Matthew Montero 

______________________________________________________________________________ 
Abstract 
Motivation.  Selecting loss ratio trends is an integral part of NCCI aggregate ratemaking.  The trend selection 
draws on an exponential trend (ET) regression model that is applied, alternatively, to the latest 5, 8, and 15 
observations (dubbed 5-point, 8-point, and 15-point ET).  Then, using actuarial judgment (which may account 
for a variety of influences), the three estimates are aggregated into a single forecast.  This process of decision 
making under uncertainty can be formalized using Bayesian model selection. 
Method.  A Bayesian trend selection (BTS) model is introduced that averages across the three ET models.  
Using a double-exponential likelihood, this model minimizes the sum of absolute forecast errors for a set of 
(overlapping) holdout periods.  The model selection is accomplished by means of a categorical distribution with a 
Dirichlet prior.  The model is estimated by way of Markov chain Monte Carlo simulation (MCMC). 
Results.  The BTS is validated on data from past ratemaking seasons.  Further, the robustness of the model is 
examined for past ratemaking data and a long series of injury (and illness) incidence rates for the manufacturing 
industry.  In both cases, the performance of the BTS is compared to the 5-point, 8-point, and 15-point ET, using 
the random walk as a benchmark.  Finally, for the purpose of illustration, the BTS is implemented for an 
unidentified state. 
Availability.  The model was implemented in R (cran.r-project.org/), using the sampling platform JAGS (Just 
Another Gibbs Sampler, www-ice.iarc.fr/~martyn/software/jags/).  JAGS was linked to R via the R package 
rjags (cran.r-project.org/web/packages/rjags/index.html). 
 
Keywords.  Model Selection, Model Averaging, Model Robustness, Aggregate Ratemaking, Trend Estimation, 
Workers Compensation 

______________________________________________________________________________ 

1. INTRODUCTION 

Selecting loss ratio trends is an integral part of NCCI aggregate ratemaking.  The trend selection 

draws on an exponential trend (ET) regression model that is typically applied to the latest 5, 8, and 

15 observations; these three alternative regressions are dubbed the 5-point, 8-point, and 15-point 

ET.  Then, using actuarial judgment (which may account for a variety of influences), the three 

estimates are aggregated into a single forecast.  This process of decision making under uncertainty 

can be formalized using Bayesian model selection. 

In what follows, a Bayesian trend selection (BTS) model is introduced that averages across the 

three ET models.  Using a double-exponential likelihood, this model minimizes the sum of absolute 

forecast errors for a set of (overlapping) holdout periods.  The model selection is accomplished by 

means of a categorical distribution with a Dirichlet prior.  The model is estimated by way of Markov 

chain Monte Carlo simulation (MCMC). 

The BTS is validated on data from past ratemaking seasons.  Further, the robustness of the 

model is examined for past ratemaking data and a long series of injury (and illness) incidence rates 

for the manufacturing industry.  In both cases, the performance of the BTS is compared to the 5-
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point, 8-point, and 15-point ET, using the random walk as a benchmark.  Finally, for the purpose of 

illustration, the BTS is implemented for an unidentified state. 

The BTS, as any model, is limited in the scope of information that it is capable of processing—at 

the same time, this statistical model is not subject to potential biases of human decision making.  On 

one hand, human judgment is capable of considering influences beyond the scope of statistical 

models, such as changing economic conditions.  On the other hand, research pioneered by Amos 

Tversky and Daniel Kahneman shows that human decision making is subject to systematic errors.  

Although decision making under uncertainty is liable to random errors (if only due to measurement 

errors in the data), systematic errors lead to predictable biases.  Most interestingly, Tversky and 

Kahneman [10] argue that the prevalence of biases is “not restricted to the layman.  Experienced 

researchers are also prone to the same biases—when they think intuitively.” 

Among the biases identified by Tversky and Kahneman [10] is one related to the availability of 

events, that is, the ease with which occurrences can be retrieved from the memory bank.  The more 

available an event is, the more this event weighs on the decision, all else being equal.  Among the 

factors shaping the availability of an event is its salience.  Events that occur more recently or have 

greater degrees of immediacy (for instance, seeing a house burn, as opposed to reading about the fire 

in the newspaper) loom larger on the human mind.  The salience bias poses a risk of overreacting to 

recent events and extreme outcomes.  For an extensive discussion of the availability bias, see Taylor 

[9]. 

1.1 Research Context 

Past work on trend modeling in the context of ratemaking in workers compensation includes 

Brooks [2], Evans and Schmid [4], and Schmid [7].  All of these approaches face a major challenge in 

the shortness and comparatively high volatility of the available time series. 

Brooks [2] studied the determinants of indemnity frequency for California using ordinary least 

squares regression.  Indemnity frequency is defined as the ratio of indemnity-related claim count to 

payroll at the 1987 wage level.  The explanatory variables comprise measures of indemnity benefit 

and medical benefit levels, macroeconomic variables, and the ratio of cumulative injury claims to 

total indemnity claims; the latter variable accounts for more than half the explanatory power of the 

presented models. 

In Brooks [2], all variables are transformed into first differences (on the raw scale; on the scale of 

the natural logarithm, such first differences would represent continuously compounded rates of 
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growth).  The author runs 84 indemnity frequency regressions (the maximum possible number, 

given the set of available explanatory variables), orders them by the adjusted R-squared, and then 

publishes the seven highest ranking models. 

Brooks [2] aims at a high R-squared (adjusted for the degrees of freedom), by having “accounted 

for as much variation as possible.” Brooks [2] reads a high explanatory power of the model as an 

indication that the estimates “are not distorted due to a misspecified model with a large portion of 

unaccounted-for variance.” Yet, there is little relation between a small forecast error and a high R-

squared.  For instance, in a game of (two six-faced) dice, seven is the best forecast for any toss, 

because this is the forecast that minimizes the expected forecast error; at the same time, regressing 

49 sevens on the 49 possible outcomes of this game of dice generates an R-squared of zero.  See also 

Armstrong [1], who argues against the use of the R-squared (and, more generally, measures of in-

sample fit) in selecting the most accurate time-series model. 

The approach of considering a multitude of models, as pursued by Brooks [2], creates a condition 

of multiple comparisons.  Considering a set of statistical hypotheses simultaneously increases the 

probability of false positives in the context of traditional significance tests, and thus invalidates 

conventional measures of statistical significance.  For instance, when applying a type 1 error 

probability of 10 percent in an F-test (that is, in an analysis of variance, which tests the statistical 

significance of the model), 10 percent of a random set of models are statistically significant by 

chance, on average.  Specifically, among the 84 models that Brooks [2] ran, in expected value terms, 

eight will turn out statistically significant by chance. 

Evans and Schmid [4] discuss the use of the Kalman filter for frequency and severity forecasting 

in NCCI aggregate ratemaking.  Although, in general, the Kalman filter is a powerful tool for 

breaking down time-series data into signal and noise, the time series employed in NCCI ratemaking 

are too short to estimate reliably the variances of innovation and white noise.  Specifically, in short 

time series, the Kalman filter may overestimate the innovation variance, thus favoring the random 

walk (over alternative data-generating processes). 

Schmid [7] tries to overcome the problem associated with the Kalman filter in short time series 

by using a random-walk smoother.  The innovation variance of this smoother is calibrated such that 

the root mean squared forecast error for the time horizon of three years is minimized, on average.  

Although this model performs as expected, it is difficult to communicate to the decision maker. 
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The advantage of the approach by Brooks [2] is its use of covariates, which, in a single-equation 

model, may improve the forecasts considerably.  Forecasts for macroeconomic variables that may 

serve as covariates may be readily available from professional forecasting firms.  Conversely, the 

model developed by Brooks [2] requires forecasts for the ratio of cumulative injury claims to total 

indemnity claims, which is the covariate that wields the most explanatory power (Brooks [2]).  This 

ratio may be just as difficult to forecast as the variable of interest.  From this perspective, the use of 

covariates can pose an obstacle when using single-equation regression models for the purpose of 

forecasting. 

1.2 Objective 

The objective is to formalize the actuarial decision making process of trend selection, rather than 

developing a new trend model.  Statistically, this decision making process under uncertainty is a 

problem of model selection.  The models that compete in this selection process are the 5-point, 8-

point, and 15-point ET.  The resulting forecast is a weighted average of the three ET estimates, 

where the weights are the posterior probabilities generated by the model selection process. 

1.3 Outline 

What follows in Section 2 is a description of the forecasting task and the data.  Section 3 offers 

the theoretical framework of Bayesian model selection.  Section 4 presents the validation of the 

model on past ratemaking data.  Section 5 examines the robustness of the model; in addition to 

ratemaking data, the model is applied to a long time series of manufacturing injury (and illness) 

incidence rates.  Section 6 applies the model to an unidentified state.  Section 7 concludes. 

2. FORECASTING TASK AND DATA 

The objective is to forecast, in the context of aggregate ratemaking, compound annual growth 

rates for the indemnity and medical loss ratios or, alternatively, compound annual growth rates for 

frequency and the indemnity and medical severities.  Severity is defined as the ratio of (on-leveled, 

developed-to-ultimate, and wage-adjusted) losses to the number of lost-time claims (developed to 

ultimate).  Frequency is defined as the ratio of the lost-time claim count (developed to ultimate) to 

on-leveled and wage-adjusted premium.  The loss ratio is the product of frequency and the 

respective severity. 

The forecasts apply to the time period between the midpoint of the respective policy (accident) 

year included in the experience period and the midpoint of the proposed rate effective period—this 



Bayesian Trend Selection 

Casualty Actuarial Society E-Forum, Spring 2013 5 

© Copyright 2013 National Council on Compensation Insurance, Inc. All Rights Reserved. 

time interval is called the trend period.  For the latest policy (accident) year that is included in the 

experience period, the length of the trend period usually amounts to slightly more than three years.  

The rate effective period is the time period during which the rates are expected to be effective, based 

on the rate filing.  In NCCI rate filings, the experience period comprises at least two policy 

(accident) years. 

All data are state-level observations and are on an annual basis.  From the perspective of the 

model, there is no difference between processing policy year and accident year data.  (In NCCI 

ratemaking, nearly all states operate on policy year information.) 

The ET and, hence the BTS, do not make use of covariates or an autoregressive process.  As a 

result, the forecast compound annual growth rate (CAGR) can be scaled up to the trend period 

simply by means of compounding. 

In NCCI ratemaking, where the experience period comprises more than one policy (or accident) 

year, the ET models make use of policy (or accident) year observations through the end of the 

experience period.  Then, different scale factors are applied for the individual policy (or accident) 

years in the experience period when compounding the CAGR. 

3. STATISTICAL MODELING 

The BTS is a tool for decision making under uncertainty.  Statistically, this concept of decision 

making is implemented by means of model selection in a Bayesian framework.  The objective of the 

approach is to arrive at a forecast by means of weighted averaging across a set of candidate models.  

This set of models arises from the ET applied to a set of time intervals, all of which end with the 

most recent observation but differ by the degree to which they extend into the past.  The weights of 

the average originate in the posterior probabilities by which each of the approaches is deemed to be 

the “true” model. 

3.1 Exponential Trend (ET) 

The ET model regresses the (natural) logarithm of (for instance) frequency on a linear trend.  The 

forecast CAGR is then backed out of the regression coefficient that captures this linear time trend. 
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The semi-logarithmic regression equation reads 

 ln  ,  1,...,      t tY t t T , (1) 

where  ln tY  is the dependent variable (e.g., the natural logarithm of frequency),   is the intercept, 

  is the parameter that captures the time trend, t  is an error term, and T  equals the number of 

observations of the time series. 

The forecast CAGR equals 

ˆ
1e  ,  (2) 

where ̂  is the ordinary least squares estimate of the parameter that reflects the influence of time. 

Note that the least squares approach makes no assumption about the distribution of the 

conditional mean of the dependent variable.  In particular, the conditional mean of y  need not be 

normally distributed for the ET to deliver meaningful estimates. 

Due to the loss ratio being equal to the product of frequency and the respective severity, the 

following relation holds for the CAGR forecasts: 

 
ˆ ˆˆ

1 1
           

   
frequency severityloss ratioe e e  .  (3) 

In NCCI ratemaking, the ET is typically applied to the latest 5, 8, and 15 data points.  The 

forecast growth rate is judgmentally determined and may be interpreted as a weighted average of the 

resultant three CAGR.  By applying judgment, it is possible to factor in influences that lie outside 

the model, such as additional trend estimates or changes in economic conditions. 

3.2 Bayesian Trend Selection (BTS) 

In what follows, the nature of the BTS approach is illustrated for the frequency trend selection; 

the loss ratio trend selections are implemented accordingly and independently.  The CAGR for the 

severity rates of growth are then backed out of the CAGR of frequency and the respective loss ratio.  

Loss ratio modeling is given preference over the modeling of severity, since loss ratio rates of 

growth are generally smoother than severity (and frequency) rates of growth.  This is because the 

numerator of frequency equals the denominator of severity and, as a result, some of the variation of 

the frequency and the severity series cancels out at the level of the loss ratio. 

In a first step, for a given state, three values for the CAGR of frequency are estimated using the 

5-point, 8-point, and 15-point ET.  A holdout period of three years applies to each of the three ET 

specifications, which means that the time windows of the ET models shift into the past by three 
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years.  This estimation process is performed for the S  most recent ratemaking data sets (inclusive of 

the ongoing ratemaking season).  Currently, S  equals three but may be allowed to increase with 

future ratemaking seasons.  By employing such a holdout period, the CAGR forecasts can be 

compared to the realized values three years hence.  The three-year holdout period is motivated by 

the length of the trend period in aggregate ratemaking, which typically amounts to slightly more than 

three years, as mentioned.  (Note that the S  holdout periods are overlapping, since they are three-

year time windows that move in increments of one year.)  The realized CAGR three years hence that 

is compared to the ET forecast defined in Equation (2) is calculated as 3
3/ 1T TY Y   , where Y  is 

the observed value of frequency. 

In the BTS framework, the forecasts and the realized values three years hence are related to each 

other by means of a double exponential distribution.  In this model, there are S  observations, since 

every frequency data set generates one data point.  The three ET forecasts compete for being 

considered as the location parameter of the double-exponential distribution.  This selection process 

is accomplished by means of a categorical distribution with a Dirichlet prior. 

In relating forecasts to realized values, the double exponential distribution minimizes the sum of 

absolute forecast errors, as opposed to the sum of squared forecast errors.  In the context of the 

BTS, minimizing the sum of squared forecast errors would be equivalent to minimizing the root 

mean squared forecast error, which Armstrong [1] has shown to be “unreliable, especially if the data 

might contain mistakes or outliers.” Instead, by minimizing the sum of absolute forecast errors, the 

BTS is robust to outliers. 

The BTS model reads 

 Dexp , ,  1,...,s sy s S  � , (4) 

 , 1,...,f
s sy s S  

 , (5) 

 Cat p 
� , (6) 

 Dirchp 


� , (7) 

 1,1,1 
 , (8) 

 ~ Ga 0.001,0.001 , (9) 

= 2 /  , (10)
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where the suffix 1,...,s S  indicates the respective ratemaking data set.  The most recent data set 

pertains to the ongoing ratemaking season, whereas the remaining 1S   data sets originate from 

ratemaking seasons of the immediate past. 

Equation (4) presents the double exponential distribution, which defines the likelihood of the 

Bayesian model; as mentioned, a double exponential likelihood minimizes the sum of absolute 

errors, which are the S  forecast errors from as many holdout periods. 

The model selection mechanism comprises Equations (5) through (8).  In Equation (5), the 

conditional mean of the double exponential distribution is chosen from the vector of the three 

competing CAGR forecasts fy


 that arise from as many ET models.  The parameter  , which takes 

on integer values between (and inclusive of) unity and three, selects the element of the vector fy


 

that is to serve as the location parameter of the double exponential distribution.  This parameter   is 

generated by a categorical distribution (Equation [6]) with a Dirichlet prior (Equation [7]).  The 

parameters of the Dirichlet distribution (Equation [8]) are identical, thus affording each of the three 

ET models equal prior probability of being the “true” model. 

Equation (9) depicts the gamma prior for the scale parameter of the double exponential 

distribution.  Equation (10) denotes the standard deviation of the double exponential errors, as an 

informational item. 

The model is estimated by means of MCMC.  Every iteration of the Markov chain generates a 

draw from the categorical distribution.  The relative frequency with which a model is selected equals 

the posterior probability of this model representing the “true” data-generating process.  The CAGR 

for frequency (and, similarly, for the loss ratios) is then computed as a weighted average of the 

CAGR values of the three ET models estimated without a holdout period, using the latest available 

observations.  The weights of this average are the relative frequencies of the values assumed by the 

parameter  .  The CAGR values for the severities are backed out of the CAGR values for frequency 

and the loss ratios according to Equation (3). 

Finally, in a sensitivity analysis, the BTS is re-estimated S  times, each time leaving out one of the 

S  data sets.  This leave-out-one cross-validation (CV) generates a range of forecasts that do not 

necessarily include the original forecast (that was obtained when including all S  data sets).  Further, 

this range of forecasts can be comparatively narrow, because only the posterior probabilities (of the 

ET models) are cross-validated, not the ET estimates themselves.  A CV range that lies below the 

BTS forecast indicates that the risk is skewed toward the downside, thus implying that the decision 
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maker should be cautious about selecting a value greater than the BTS forecast.  Similarly, a CV 

range that lies entirely above the BTS forecast indicates a risk of the forecast being too low. 

The JAGS code of the BTS outlined in Equation (4) through Equation (10) is documented in 

Appendix 8.1. 

4. MODEL VALIDATION 

The BTS is validated by means of comparing its forecast performance to the 5-point, 8-point, 

and 15-point ET.  The forecasts of all four models are benchmarked to the random walk.  If a time 

series follows a random walk, then the best forecast for any future time period is the latest observed 

value. 

Implementing the BTS requires S  data sets of a contiguous time period—the ongoing and past 

1S  ratemaking seasons.  As discussed, S  is set to three but may be increased as the number of 

available data sets grows with future ratemaking seasons. 

Validating the BTS necessitates a total of 3S  data sets.  For instance, applying the BTS during 

the 2012 ratemaking season (where the latest available policy year is 2010) necessitates data from the 

2011 and 2010 ratemaking seasons as well.  Model validation requires, in addition, data sets from the 

ratemaking seasons 2007 through 2009. 

In a first step, the BTS is applied retrospectively to the 2008 ratemaking season, thus making use 

of the 2008, 2007, and 2006 ratemaking data sets.  Then, in a second step, the three-year CAGR 

forecasts associated with the three ET models and the BTS are compared to the CAGR that were 

observed for the time period 2009 through 2011.  For this purpose, the sums of absolute forecast 

errors are computed across the set of analyzed states and normalized by the forecast error associated 

with the random walk.  (For every state, there is one three-year forecast for each model and data 

series; for instance, there is one BTS forecast for the three-year CAGR of frequency.) 

The model validation makes use of 29 states.  States with an insufficient number of observations 

or insufficient number of past data sets could not be considered.  Such data limitations may arise in 

states that switched from accident year to policy year information in the recent past or in states that 

have only recently been added to the data collection process. 

Chart 1 depicts the absolute forecast errors, summed up across the 29 states and normalized by 

the forecast error of the random walk.  Values greater than unity imply that the respective model 

underperforms the random walk, thus adding no information that is not yet comprised in the latest 
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observed data point.  As judged by the loss ratio forecasts, the BTS is the second-best model, behind 

the 15-point ET.  As an informational item, the BTS comes in first for medical severity, second for 

frequency, and third for indemnity severity, each time outperforming the random walk. 

The performance of the ET models relative to the random walk is most interesting.  On one 

hand, it appears that the frequency rate of growth is highly nonstationary, given the performance of 

the random walk compared to the BTS and the ET models.  On the other hand, the only model that 

beats the random walk is the 15-point ET, which is the model that is most appropriate when the 

frequency growth rate is stationary. 

Chart 1: Sum of Absolute Forecast Errors, Validated on the 2011 Ratemaking Season 

 

5. ROBUSTNESS 

The concept of model robustness has been pioneered by Lars Hansen and Thomas Sargent.  

According to this principle, a decision rule should be designed such that it “works well enough (is 

robust) despite possible misspecification of its model” (Ellison and Sargent [3]).  In particular, the 

performance of the model should be adequate even in a worst-case scenario.  For an extensive 

treatment of the concept of robustness, see Hansen and Sargent [5]. 

In the context of the BTS, robustness has two dimensions.  First, the performance of the BTS in 

forecasting the CAGR of the loss ratios should be adequate for any state.  Specifically, for the loss 
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ratios, the largest absolute forecast error of the BTS should be smaller than the largest absolute 

forecast error within the set of four alternative models, that is, the three ET models and the random 

walk.  Chart 2 shows that the BTS satisfies this condition although, for the indemnity loss ratio, the 

advantage of the BTS over the worst-performing ET (5-point) and the random walk is slender.  

Regarding the ratio that defines the normalized largest absolute forecast error in Chart 2, numerator 

(model) and denominator (random walk) may not refer to the same state. 

Second, the performance of the BTS should be adequate in an environment where the nature of 

the time series changes.  As shown by Schmid [8], the data-generating process of the injury (and 

illness) incidence rate in the manufacturing industry has changed over the course of the 20th century 

from one of high variance and small serial correlation in the error term to one with low variance and 

high persistence in the error.  The structural break in the degree of serial correlation occurred in the 

early 1960s and coincided with the end of a two-decade decline in the variance.  In part, the change 

in the nature of the manufacturing incidence rate may be related to changes in the data collection 

process, although it is worthy of note that OSHA (Occupational Safety and Health Administration) 

did not become effective until 1971. 

Chart 2: Maximum Absolute Forecast Error, Validated on the 2011 Ratemaking Season 

 

Chart 3 depicts the incidence rate of workplace injuries (and illnesses) for the manufacturing 

industry; the series runs from 1926 through 2010.  The incidence rate is on a logarithmic scale, 

which implies that a straight line signifies a constant rate of growth.  The gray vertical bars indicate 
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economic recessions, as defined by the NBER (National Bureau of Economic Research).  With 

OSHA becoming operational in 1971, the incidence rate started including work-related illnesses.  

For methodological details on the incidence rate and for data sources, see Appendix 8.2. 

Chart 3: Manufacturing Injury (and Illness) Incidence Rate, 1926–2010, per 100 FTE Employees 

 
Chart 4 presents the logarithmic rates of growth (that is, first differences in natural logarithms) of 

the manufacturing injuries (and illnesses) incidence rate; again, the gray bars indicate recessions.  The 

decline in variance and the increase in persistence of variations around zero (as a proxy for the 

negative, possibly time-varying mean) are apparent.  Starting in the early 1960s, frequency increases 

are more likely to be followed by further increases than they were in the first half of the 20th 

century; likewise, frequency decreases show more persistence as well.  Clearly, the nature of the time 

series changed over time. 

In the context of the manufacturing incidence rate, a defining characteristic of a robust decision 

rule is its adequate forecast performance in both the early high-variance low-persistence regime and 

the later low-variance high-persistence regime.  In what follows, the three ET models and the BTS 

are applied to the full series (1926–2010); the early regime, inclusive of the transition period (1926–

1964); and the second regime. 
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Similar to studying model robustness for ratemaking data, the 5-point, 8-point, and 15-point ET 

models are applied with a holdout period of three years, using time windows that roll forward at 

increments of one year.  The three forecast errors that are associated with the three neighboring time 

windows are the basis for the model selection of the BTS.  The BTS forecast is then calculated as a 

weighted average of the 5-point, 8-point, and 15-point ET forecasts, where the ET models have 

been run with data leading up to the start of the forecasting horizon (and, hence, without the three-

year holdout period).  The resulting BTS forecast error is compared to the forecast errors of the 5-

point, 8-point, and 15-point ET that enter the weighted average of the BTS forecast. 

Chart 4: Manufacturing Injury (and Illness) Incidence Rate, Log Growth Rate, 1927–2010 

 
Chart 5 depicts for the full manufacturing incidence rate series the sum of absolute errors of the 

three ET models and the BTS, normalized by the sum of absolute forecast errors of the random 

walk.  The BTS and the 5-point ET perform about equally well, outperforming the random walk and 

the 15-point and 8-point ET models, although the performance differences to the 8-point ET is 

slim. 
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Chart 5: Manufacturing Incidence Rate, Sum of Absolute Errors, Normalized, 1926–2010 

 

Chart 6 presents the analysis of the forecast error for the first, high-variance low-persistence 

regime and the subsequent transition period (1926–1964).  Here again, the BTS and the 5-point ET 

perform about equally well, beating the random walk and the 15-point and 8-point ET models. 

Chart 6: Manufacturing Incidence Rate, Sum of Absolute Errors, Normalized, 1926–1964 
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Finally, Chart 7 offers the analysis for the second regime (1965–2010).  In this low-variance high-

persistence setting, only the 5-point ET outperforms the random walk.  The BTS comes in second, 

although the performance differences to the 8-point and 15-point ET models are slender. 

Whereas, for the ratemaking data, the 15-point ET emerged as the highest performing model, for 

the manufacturing incidence rate, it is the 5-point ET.  At the same time, the BTS outperforms the 

15-point ET for the manufacturing series and beats the 5-point ET on the ratemaking data.  The 

BTS performs well in both environments.  Although the BTS never emerges as the winner, it proves 

to be the most robust model. 

The BTS delivers a robust decision rule due to its ability to draw on any of the ET models; the 

BTS makes its model selection based on recent forecast performance.  As the nature of a time series 

changes, the BTS adapts and leans toward the most suitable model.  At the same time, the BTS is 

conservative in its model selection in that it never unequivocally adopts the highest performing 

model (which explains why it underperforms the 15-point ET on the loss ratios and the 5-point ET 

on the manufacturing incidence rate series). 

Chart 7: Manufacturing Incidence Rate, Sum of Absolute Errors, Normalized, 1965–2010 
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6. APPLICATION 

The BTS is applied to an unidentified state.  The data originates from the 2011 NCCI ratemaking 

season. 

There are two types of charts.  The first type of chart displays the observed growth rates, the 5-

point, 8-point, and 15-point ET estimates, and the BTS forecast.  To avoid clutter, the CAGR values 

associated with the three ET models are indicated by boxes (instead of lines), where the horizontal 

distances between the boxes indicate the time intervals associated with 4, 7, and 14 rates of growth.  

Further, there are the CV forecast ranges, which may be close to vanishing in some of the charts. 

The second type of chart displays the posterior probabilities related to the three ET models.  As 

mentioned, these posterior probabilities are the relative frequencies with which any of the three ET 

models was selected during the BTS estimation process.  This second type of chart is available only 

for frequency and the loss ratios—this is because the CAGR forecasts for the severities are backed 

out of the CAGR forecasts for frequency and the respective loss ratio. 

Chart 8 depicts the analysis of the indemnity loss ratio, which displays a clear upward drift.  The 

5-point ET estimate exceeds the 8-point ET estimate, which, in turn, exceeds the 15-point ET 

estimate.  As a consequence of this apparent nonstationarity (that is, time-variation in the mean rate 

of growth), the BTS affords high probabilities to ET models that do not reach deep into the past 

(see Chart 9). 

Chart 10 presents the results for the medical loss ratio.  The growth rate of this time series is 

comparatively stable, as indicated by the close proximity of the 5-point, 8-point and 15-point ET 

estimates to each other.  As a result, the BTS leans toward stationarity (that is, the presumption of a 

time-invariant mean rate of growth), thus preferring estimates based on long time series to estimates 

that rely on only the most recent data points (see Chart 11).  Clearly, if a time series is stationary, the 

CAGR should be calculated from a high number of data points, since this increases the accuracy of 

the estimate. 

Chart 12 displays the frequency analysis.  The rate of frequency growth appears to drift up, as 

indicated by the observation that the CAGR forecasts of the 8-point and 5-point ET models exceed 

the estimate of the 15-point ET.  The BTS forecast is close to the 5-point and 8-point ET estimates, 

as implied by the high posterior probabilities afforded to the two models (see Chart 13). 



Bayesian Trend Selection 

Casualty Actuarial Society E-Forum, Spring 2013 17 

© Copyright 2013 National Council on Compensation Insurance, Inc. All Rights Reserved. 

Chart 8: Indemnity Loss Ratio, Growth Rates, 1996–2009 

 

Chart 9: Indemnity Loss Ratio, Posterior ET Probabilities 
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Chart 10: Medical Loss Ratio, Growth Rates, 1996–2009 

 

Chart 11: Medical Loss Ratio, Posterior ET Probabilities 
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Chart 12: Frequency, Growth Rates, 1996–2009 

 

Chart 13: Frequency, Posterior ET Probabilities 
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severity loss ratio.  Chart 15, on the other hand, indicates that the growth rate of the medical loss 

ratio is highly stationary 

Chart 14: Indemnity Severity, Growth Rates, 1996–2009 

 

Chart 15: Medical Severity, Growth Rates, 1996–2009 
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7. CONCLUSION 

The BTS is an attempt to formalize the trend selection process in NCCI aggregate ratemaking.  

The information processed by the BTS is confined to past forecast errors, which represents both a 

strength and a weakness of this model.  On one hand, the BTS is not prone to biases in human 

decision making.  On the other hand, the model is not capable of processing information that is not 

incorporated in the data, such as changes in the economic or legislative environments that occurred 

between the end of the experience period and the time of decision making. 

Given the relative shortness of the loss ratio data series available in NCCI aggregate ratemaking, 

and considering the high degree of volatility of these series, the use of covariates bears the risk of 

fitting to noise; such overfitting can cause considerable forecast errors.  Further, economic 

conditions tend to mean-revert; for instance, economic recessions usually last less than a year.  The 

comparatively long trend period of slightly more than three years typically suffices for average 

economic conditions to reestablish themselves.  Thus, mean reversion limits the loss of information 

associated with the absence of macroeconomic covariates as long as the decision maker relies on 

long-term averages. 

A major strength of the BTS is its robustness.  Although the BTS underperforms the 15-point 

ET on recent ratemaking data sets, the BTS performs well in an environment where the nature of 

the data-generating process is changing.  Because there is always a degree of uncertainty surrounding 

the process that generates the growth rates of the loss ratios (or alternatively, frequency and the 

severities), the BTS emerges as a robust decision rule. 

The strength of the BTS becomes apparent when, for instance, in a given state, the growth rate 

of frequency repeatedly falls short of its long-term average.  Such was the case during the boom in 

the housing market in the early 2000s, as documented in Schmid [6].  On one hand, the 15-point ET 

generates the smallest forecast errors in general; on the other hand, observing the frequency rate of 

growth falling short of trend for many years running poses a challenge to the decision maker.  

Although these frequency growth rates ultimately mean-reverted, the time it takes for the trend to 

reestablish itself in the observed rates of growth may be longer than a decision maker is prepared to 

tolerate. 
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8. APPENDIX 

8.1 JAGS Code (BTS) 
## Bayesian Trend Selection (BTS) 
model 
{ 
  for(series.i in 1:n.series){ 
    for(year.i in 1:n.model.years){ 
      actual[series.i,year.i] ~ ddexp(mu[series.i,year.i],tau[series.i]) 
      mu[series.i,year.i] <- exp.trend[series.i,year.i,model.id[series.i]] 
    } 
 
    tau[series.i] ~ dgamma(0.001,0.001) 
    sigma[series.i] <- sqrt(2)/tau[series.i] 
 
    model.id[series.i] ~ dcat(model.id.p[series.i,1:n.exp.trend]) 
    model.id.p[series.i,1:n.exp.trend] ~ ddirch(lambda[series.i,]) 
  } 
} 

8.2 BLS Manufacturing Injury and Illness Incidence Rate, 1926–2010 

The long series of manufacturing injury and illness rates (1926–2010) is inspired by research at 

the Federal Reserve Bank of Dallas.  In its Annual Report, authored by Michael Cox and Richard 

Alm (dallasfed.org/assets/documents/fed/annual/2000/ar00.pdf), the Bank published a series of 

injury rates per 1,000 full-time workers in manufacturing for the period 1926 through 1999 (page 8). 

The Dallas Fed series of manufacturing injury and illness incidence rates runs from 1926 through 

1999 and draws on four sources: 

 Historical Statistics of the United States: Colonial Times to 1970, Census Bureau, 1975, 

www.census.gov/prod/www/abs/statab.html; incidence rates are available from 1926 

through 1970 

 Statistical Abstract of the United States, various years, 

www.census.gov/prod/www/abs/statab.html 

 Webster [11]; incidence rates are available from 1977 through 1997 

 BLS 

From 1926 through 1970, the rate is the average number of disabling workplace injuries per 

million man hours worked; effective 1958, the industry definition was revised to conform to the 

1957 edition of the Standard Industrial Classification (SIC) Manual.  (The SIC was developed in the 

1930s; www.census.gov/epcd/www/sichist.htm.) 
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From 1972 on, the number of injuries and illnesses per 100 full-time workers is computed as 

(N/EH) × 200,000, where N is the number of injuries and illnesses and EH is the total hours 

worked by all employees during the calendar year; 200,000 is the base for 100 equivalent full-time 

workers (working 40 hours per week, 50 weeks per year). 

The Statistical Abstract of the United States (1976) reports the old incidence series through 1970 and 

the new series for 1972.  The 1971 incidence rate in our data set, which equals 15.4, was obtained by 

means of linear interpolation, since no incidence rate is reported by the Statistical Abstract of the United 

States, issues 1972 through 1974, 1976 through 1977.  The 1970 number equals 15.2, and the 1972 

number equals 15.6.  Although, due to methodological differences, the new series is not comparable 

to the old series, the structural break between the two series is insignificant.  It is worthy of note that 

the record keeping and data reporting process for the incidence rate changed significantly with 

OSHA (Occupational Safety and Health Administration, www.osha.gov/) becoming operational in 

1971. 

Starting in 2003, the manufacturing industry is no longer defined by the Standard Industrial 

Classification Manual, www.osha.gov/pls/imis/sic_manual.html, but instead is based on the newly 

created NAICS, www.census.gov/eos/www/naics/.  Prior to adopting NAICS, the definition of 

manufacturing had been updated periodically to conform to SIC Manual revisions. 
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Indemnity Benefit Duration and Obesity 

Frank Schmid, Chris Laws, and Matthew Montero 

______________________________________________________________________________ 
Abstract 
Motivation.  There is mounting evidence of obesity contributing to the cost of workers compensation.  
Longitudinal studies by Duke University (Østbye, Dement, and Krause [5]) of its own employees—and by Johns 
Hopkins University (Pollack et al. [7]) of employees of a multi-site U.S. aluminum manufacturing company—
point to substantially higher odds of injury for workers in the highest obesity category.  Further, a 2011 Gallup 
survey (Witters and Agrawal [9]) of 109,875 full-time employees found that obese employees account for a 
disproportionately high number of missed workdays, thus causing a significant loss in economic output.  Finally, 
an NCCI study (Laws and Schmid [4]) of workers compensation claims established that where claimants are 
assigned a comorbidity code indicating obesity, the medical costs of the claim are a multiple of what is observed 
otherwise.  In the following study, using a methodology similar to the one employed by Laws and Schmid [4], but 
accounting for a possible immortal time bias, it is shown that the indemnity benefit duration of claimants with an 
obesity-related comorbidity indicator is a multiple of what is observed for comparable non-obese claimants. 
Method.  The study makes use of a matched-pairs research design, where obese claims are matched with 
comparable non-obese claims in the data set.  Exact matching applies to all claim characteristics, except age at 
injury, where proximity matching is employed.  The set of matched pairs is then analyzed using a semiparametric 
Bayesian Weibull proportional hazard model, the nonparametric component of which accounts for the possible 
nonlinear influence of age.  Aside from age, an indicator variable signifying obesity is the only covariate in the 
model—this is because net of these two covariates (and duration, which serves as the dependent variable), the 
claims within each set of matched pairs are identical.  The model is estimated by means of MCMC (Markov chain 
Monte Carlo simulation). 
Results.  The study shows that, based on Temporary Total and Permanent Total indemnity benefit payments, 
the duration of obese claimants is more than five times the duration of non-obese claimants, after controlling for 
primary ICD-9 code, injury year, U.S. state, industry, gender, and age.  When Permanent Partial benefits are 
counted toward indemnity benefit duration as well, this multiple climbs to more than six. 
Availability.  The model was implemented in R (cran.r-project.org/) using the sampling platform JAGS (Just 
Another Gibbs Sampler, mcmc-jags.sourceforge.net/).  JAGS was linked to R by means of the R package rjags 
(cran.r-project.org/web/packages/rjags/index.html). 
 
Keywords.  Obesity, Duration, Proportional Hazard Model, Semiparametric Model, Workers Compensation 

______________________________________________________________________________ 

1. INTRODUCTION 

There is mounting evidence of obesity contributing to the cost of workers compensation.  

Longitudinal studies by Duke University (Østbye, Dement, and Krause [5]) of its own employees—

and by Johns Hopkins University (Pollack et al. [7]) of employees of a multi-site U.S. aluminum 

manufacturing company—point to substantially higher odds of injury for workers in the highest 

obesity category.  Further, a 2011 Gallup survey (Witters and Agrawal [9]) found that obese 

employees account for a disproportionately high number of missed workdays, thus causing a 

significant loss in economic output.  Finally, an NCCI study (Laws and Schmid [4]) of workers 

compensation claims found that claimants with a comorbidity code indicating obesity experience 

medical costs that are a multiple of what is observed for comparable non-obese claimants. 
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In contrast to the mentioned studies, there is research that finds no evidence for a link between 

work-related injuries and obesity.  Shaw et al. [8] “assess the effect of body mass index (BMI) on 

pain and function outcomes in the acute and sub-acute stages of work-related low back pain (LBP),” 

finding that “BMI is not a useful prognostic factor during the acute and sub-acute stages of work-

related LBP.”  Similarly, Pollack and Cheskin [6], who review the early literature on the relation 

between workplace injuries and obesity, report only weak evidence for such a link. 

In the following study, using a methodology similar to the one employed by Laws and Schmid 

[4], but accounting for a possible immortal time bias, it is shown that the indemnity benefit duration 

of claimants with an obesity-related comorbidity indicator is a multiple of what is observed for 

comparable non-obese claimants.  The study makes use of a matched-pairs research design, where 

obese claims are matched with comparable non-obese claims in the data set.  Exact matching applies 

to all claim characteristics, except age at injury, where proximity matching is employed.  The set of 

matched pairs is then analyzed using a semiparametric Bayesian Weibull proportional hazard model, 

the nonparametric component of which accounts for the possible nonlinear influence of age.  Aside 

from age, an indicator variable signifying obesity is the only covariate in the model—this is because 

net of these two covariates (and duration, which serves as the dependent variable), the claims within 

each set of matched pairs are identical.  The model is estimated by means of Markov chain Monte 

Carlo simulation (MCMC).  The study shows that, based on Temporary Total and Permanent Total 

indemnity benefit payments, the duration of obese claimants is more than five times the duration of 

non-obese claimants, after controlling for primary ICD-9 code, injury year, U.S. state, industry, 

gender, and age.  When Permanent Partial benefits are counted toward duration as well, this multiple 

climbs to more than six. 

1.1 Research Context 

The Duke University study by Østbye, Dement, and Krause [5] is a comprehensive statistical 

analysis of the effect of obesity on the cost of workers compensation.  This study makes use of a 

longitudinal data set, which was obtained by monitoring a cohort of 11,728 employees of Duke 

University and the Duke University Health System from January 1, 1997, through December 31, 

2004.  The cohort was defined by all employees who had at least one health risk assessment (HRA) 

during this time period; taking an HRA is voluntary and available to employees eligible for 

healthcare benefits.  (Note that the number of members in the study may have shrunk over time due 

to employee termination or disability.)  The members of this cohort were assigned to body mass 

index (BMI) categories based on the first HRA they participated in during the time of the study. 
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At the end of the eight-year time window, the number of workers compensation claims, the 

number of lost workdays, and the indemnity and medical costs related to workers compensation 

were tallied for each employee; then, this information was matched to the BMI category (and other 

characteristics) of the claimant.  There are six BMI categories, ranging from underweight to 

recommended weight, overweight, and three classes of obesity.  The highest level of obesity is class 

III, which comprises the morbidly obese, identified by a BMI of 40 or higher.  The Duke University 

study finds that for the morbidly obese employees, the medical costs are 6.8 times the costs for 

employees of recommended weight.  At the same time, an employee in this morbidly obese group is 

twice as likely to have a claim, while the number of lost workdays is almost 13 times higher.  For 

obese classes II (BMI of at least 35 but less than 40) and I (BMI of at least 30 but less than 35), the 

medical costs per employee are (respectively) 3.1 and 2.6 times the medical costs for employees of 

recommended weight; the respective multiples for the number of claims read 1.9 and 1.5, while the 

respective multiples for the lost workdays are 8.3 and 5.3.  (The numbers cited above rest on the 

bivariate analysis presented in Østbye, Dement, and Krause [5], Table 3.) 

Another way of presenting the findings of the Duke University study is on an approximate per-

claim basis.  Transforming the medical costs per 100 full-time equivalent (FTE) employees into costs 

per claim based on the reported means shows that this amount is 3.4 (obesity class III), 1.7 (obesity 

class II), and 1.7 (obesity class I) times the magnitude recorded for employees of normal weight.  

The corresponding numbers for indemnity read 5.5 (obesity class III), 3.4 (obesity class II), and 2.9 

(obesity class I).  Finally, the number of lost workdays per claim for obesity classes III, II, and I are 

6.4, 4.5, and 3.5 (respectively) times the amount for claimants of recommended weight.  (Here, too, 

the numbers are based on the bivariate analysis presented in Table 3 of Østbye, Dement, and Krause 

[5].) 

The Johns Hopkins University study (Pollack et al. [7]) offers no direct evidence of an effect of 

obesity on lost workdays.  The authors analyze the distribution and odds of occupational injury 

among 7,690 workers at eight plants of a U.S. aluminum manufacturing company from January 1, 

2002, through December 31, 2004.  The study finds that the odds of injury in the highest obesity 

group, as compared to the ideal body weight, runs at 2.21; injuries to the leg or knee were 

particularly prevalent among this very obese group. 

Finally, the Gallup survey (Witters and Agrawal [9]) focused on “unhealthy days” per month, 

which are then converted into missing workdays at a rate of 0.31 missed workdays per unhealthy 

day.  The survey was conducted from January 2, 2011, through October 2, 2011, covering 109,875 
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full-time employees.  Employees of normal weight and no chronic conditions establish the baseline 

rate; the chronic conditions included in the survey comprise a past heart attack, high blood pressure, 

high cholesterol, cancer, diabetes, asthma, depression, and certain types of recurring pain.  The 

baseline rate of unhealthy days per month runs at 0.34.  At 0.36, this number is slightly higher for 

the group of overweight or obese and no chronic conditions.  Similarly, the number of unhealthy 

days per month for those with one or two chronic conditions is higher for the overweight and obese 

(at 1.08) than those of normal weight (1.07).  Finally, for employees with three or more chronic 

conditions, the numbers of unhealthy days per month read 3.51 for the overweight and obese and 

3.48 for those of normal weight.  Although correlation does not establish causation, it is of interest 

that among the full-time working population, of the employees who have one or two chronic 

conditions, there are twice as many obese or overweight employees than there are employees of 

normal weight.  When it comes to the group of employees with three or more chronic conditions, 

the number of obese or overweight employees exceeds those of normal weight by a factor of more 

than three. 

1.2 Objective 

The effect of obesity on indemnity benefit duration is studied using nonparametric and 

semiparametric statistical approaches.  Indemnity benefit duration is measured in two alternative 

ways.  Both statistical analyses account for interval-censoring and right-censoring of duration.  The 

nonparametric analysis rests on Kaplan-Meier plots; the semiparametric model employs a partially 

linear regression in a Weibull proportional hazard framework. 

1.3 Outline 

Section 2 offers a detailed description of how the data set was compiled, how obesity was 

identified, and how indemnity benefit duration was calculated.  This is followed by a discussion of 

challenges that arise from matching by age, and by descriptive information of the matched pairs that 

enter the analysis.  Section 3 then offers a nonparametric analysis based on Kaplan-Meier plots and a 

semiparametric analysis using a partially linear Weibull proportional hazard model.  Section 4 

concludes.  An appendix offers technical details on the immortal time bias correction, the choice of 

the primary ICD-9 code, the conversion of benefit time into calendar time for the waiting period, 

and the calculation of duration where there are multiple matches; further, the appendix displays the 

JAGS computer code for the Weibull proportional hazard model. 
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2. THE DATA 

We use a large data set of workers compensation claims provided by a set of insurance 

companies.  The data comprise records from 40 states (AK, AL, AR, AZ, CO, CT, DC, FL, GA, HI, 

IA, ID, IL, IN, KS, KY, LA, MD, ME, MI, MO, MS, MT, NC, NE, NH, NM, NV, OK, OR, RI, 

SC, SD, TN, TX, UT, VA, VT, WI, and WV) and 11 injury years (1998–2008).  The transaction 

dates run through December 31, 2009, thus allowing for the accumulation of at least one year of 

indemnity and medical transactions for any given claim.  Further, the data is evaluated as of June 30, 

2010, thereby accommodating a reporting lag of six months.  Claimants who are reported as being 

15 years of age or younger are excluded. 

A claim is categorized as “obese” if, for any diagnostic field (other than the primary one) on any 

medical transaction that occurs within 12 months after injury, the three leading digits of the ICD-9 

code equal 278.  The ICD-9 code 278, which is “non-reimbursable,” denotes overweight, obesity, 

and other hyperalimentation.  Note that the claim characteristic of interest rests on medical 

transactions.  For instance, a claim whose indemnity benefits ends after one month without having 

acquired the ICD-9 code 278 may still qualify as obese if, within the following 11 months, there is a 

medical transaction with a 278 comorbidity indicator. 

Allowing claims 12 months to acquire the ICD-9 code 278 creates “immortal time,” that is, time 

during which the claim could not have ended—otherwise, the claim would not have been able to 

acquire the ICD-9 code 278.  The problem that arises from there being immortal time may best be 

illustrated for the case where there is no difference between indemnity benefit and medical benefit 

durations.  Assume that obesity has no impact on the duration of a claim and that any given claim 

on any given day has a certain probability of ending and, independent of that, a certain probability of 

assuming the ICD-9 code 278.  The longer the duration of a claim is, the more time this claim has to 

acquire the code; as a result, the median duration of claims with an ICD-9 code 278 tends to exceed 

the median duration of claims that did not acquire this code.  This difference in median durations is 

known as “immortal time bias.” 

In order to correct for the immortal time bias, it is stipulated that a non-obese claim be a 

potential match for an obese claim only if this non-obese claim had at least one medical transaction 

past the time span it took the obese claim to acquire the ICD-9 code 278.  As shown in Appendix 

5.1, this immortal time bias correction (ITBC) almost perfectly removes the bias, given the nature of 

the data set.  This does not imply that the applied ITBC approach will perform well in general. 
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The data set offers no information on the body mass index (BMI), which is a standard measure 

of obesity.  As a result, we are not able to differentiate among degrees of obesity.  It can be assumed 

that the comorbidity indicator identifies the claimant as severely obese, thus putting this claimant 

into one of the higher obesity classes.  This conjecture is supported by the fact that only 0.15 

percent of the claims in the data set acquire the ICD-9 code 278 (within 12 months of the date of 

injury).  By comparison, in the Duke University study (Østbye, Dement, and Krause [5]), the 

proportion of morbidly obese claimants amounts to 4.9 percent. 

The small percentage of obese claims in the total number of claims, along with the very high total 

number of claims (4,821,562) is most suited for a matched-pairs research design.  In such an 

analytical setting, each obese claim in the data set is matched with a non-obese claim of the same 

primary ICD-9 code (at the three-digit level), injury year, U.S. state, industry, gender, and age at 

injury.  Except for age at injury, all matching criteria are categorical in nature, which allows for exact 

matching (thus obviating the need for propensity matching).  At the same time, extending the 

concept of exact matching to age at injury (which is measured on a scale of integers) leaves many 

obese claims without matches.  Thus, for age at injury, we use proximity matching. 

Proximity matching rests on the concept of the nearest neighbor.  When exact matching for age 

is not feasible (for lack of exact matches when using integers for years of age), researchers often 

resort to matching by age bracket.  In matching by age bracket, an obese claim is paired with a non-

obese claim that belongs to the same (for instance) five-year age bracket (subject to being identical 

by all exact-matching characteristics).  A disadvantage of matching by age bracket is that many 

claims are not matched with the closest neighbor.  For instance, a 20-year-old obese claimant may be 

matched (within the 20–24 age bracket) with a 24-year-old non-obese claimant but is prevented 

from being matched with an otherwise identical 19-year-old claimant.  Proximity matching avoids 

this problem by looking for the nearest neighbor.  At the same time, it may not be appropriate to 

have the concept of the nearest neighbor rest on the simple age difference.  Because aging is a 

nonlinear process, it may be preferable to match an obese 25-year-old claimant with a 20-year-old 

instead of a 30-year-old.  Similarly, matching an obese 55-year-old with a non-obese 60-year-old may 

be more appropriate than matching this person with a non-obese 50-year-old.  For this reason, we 

use a sigmoid function to create a fuzzy set for youngness; the sigmoid function reads 

1/(1 exp(- ( - 45)))h  , where h is the age at injury and σ was chosen to equal 0.12.  (For the concept 

of fuzzy sets, see, for instance, Kasabov [2].)  Chart 1 depicts the fuzzy set; the degree of youngness 

is set to 50 percent at age 45 and then, in an “S-shaped” manner, it gets near zero and 100 percent as 
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the years of age approach 100 and zero, respectively.  The nearest neighbor of an obese claim to an 

otherwise identical non-obese claim is defined by the smallest difference (in absolute value terms) in 

the degree of youngness. 

Chart 1: Degree of Youngness, Defined by Sigmoid Function 
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In establishing the primary ICD-9 code, there is an order of priority based on (1) providers, (2) 

the time in the duration of a claim at which the medical service was provided, and then (3) the paid 

amount.  The logic of establishing the primary ICD-9 code is detailed in Appendix 5.2. 

Matching by industry relies on an NCCI industry classification; the five industries comprise 

Manufacturing, Contracting, Office and Clerical, Goods and Services, and Miscellaneous. 

To summarize, we define as neighbors to a given obese claim the set of non-obese claims that 

match exactly based on primary ICD-9 code, injury year, U.S. state, industry, and gender; only non-

obese claims are considered that have at least one medical transaction following the acquisition of 

the ICD-9 code 278 by the pertinent obese claim.  In this matching process, a given non-obese claim 

may be used as a neighbor to more than one obese claim.  Among the thus identified set of 

neighbors, the nearest neighbor is chosen based on the degree of youngness. 



Indemnity Benefit Duration and Obesity 

Casualty Actuarial Society E-Forum, Spring 2013 8 

© Copyright 2013 National Council on Compensation Insurance, Inc.  All Rights Reserved. 

This nearest neighbor may not be unique because of ties in the youngness distance, in which case 

there are multiple matches.  In the event of multiple non-obese matches for a given obese claim, a 

synthetic claim is generated using the median duration from the set of multiple matches.  The 

algorithm for calculating the median indemnity benefit duration for a set of multiple matches is 

provided in Appendix 5.3. 

2.1 Indemnity Benefit Duration 

We calculate indemnity benefit duration (duration, for short) based on recorded indemnity 

transactions.  The transactions are from the payment categories Temporary Total and Permanent 

Total; claims with transactions in the category Fatal are excluded.  In a sensitivity analysis, we count 

transactions in the Permanent Partial category toward duration as well. 

The duration of indemnity benefits may be censored.  Censoring occurs when the duration is 

only partially known.  In the event of right-censoring, the duration is only known to be greater than 

a certain value.  In the case of interval-censoring, the duration falls into a given interval, as is the 

case with a claim that does not breach the waiting period.  Note that for the purpose of this study, 

we count the waiting period toward the indemnity benefit duration even where the retroactive 

period has not been reached. 

We employ two concepts of duration.  Duration concept I aggregates compensated time intervals 

based on the “from-date” and “through-date” information associated with benefit payments.  If 

more than 20 percent of the transactions associated with a given claim miss the from-/through-date 

information, then the claim is categorized as right-censored at the waiting period. 

Duration concept II measures the time interval between injury date and most recent through-

date.  Transaction dates substitute for through-dates where the latter are missing.  On one hand, 

duration concept II appears to be less sensitive to missing observations; on the other hand, if a 

claimant returned to work intermittently, duration concept II fails to capture this information. 

For claims without indemnity transactions, it is assumed that the claim did not breach the waiting 

period.  Such claims are treated as interval-censored on the waiting period.  For claims with 

indemnity transactions, benefit duration is established by means of the concept of dormancy; only 

transactions prior to the date of dormancy are considered.  The date of dormancy is the first 

transaction date that is not followed by another transaction within 180 days; reopenings past the 

date of dormancy are not accounted for.  The latest date for which such a transaction-free time 

interval can be established is 180 days prior to December 31, 2009 (which is the latest transaction 
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date considered in this study).  Claims for which no 180-day transaction-free interval can be 

established are categorized as right-censored. 

Both duration concepts measure calendar time (as opposed to number of missed workdays).  

Where there are transactions of indemnity payments available, measuring calendar time is 

straightforward; this is because the time intervals covered by the from-/through-date sets of 

recorded transactions tend to refer to calendar time rather than the number of compensated 

workdays; this calendar year information can then be linked to the date of injury.  Measuring 

duration when there are no indemnity transactions is more demanding.  Appendix 5.4 offers an 

algorithm for measuring the elapsed calendar time that leads up to the end of the waiting period. 

2.2 Matching-Toward-the-Center Problem 

Matching by the degree of youngness tends to pair old claimants with younger claimants and 

young claimants with older claimants; this is because the numbers of claimants on the edges of the 

age distribution tend to be comparably small.  For instance, within the age bracket 60–64, the 

number of observations tends to decline with age.  Thus, a claimant at the center of this age bracket 

has a comparatively high chance of being “matched down the age distribution,” as opposed to being 

“matched up”; this is simply because the number of potential matches within this bracket is greater 

at lower ages than at higher ages.  Conversely, young claimants tend to be “matched up the age 

distribution.” Note that this matching toward the center (of the age distribution) is not unique to 

proximity matching, but it is also characteristic of the traditional approach of matching by the age 

bracket.  Although proximity matching by age, as applied in this analysis, mitigates the matching-

toward-the-center-problem, it turns out not to eliminate the problem entirely. 

In Laws and Schmid [4], the dependent variable is the (natural) logarithm of the ratio of obese to 

non-obese claim costs; age at injury serves as a covariate.  In such a regression design, matching 

toward the center of the age distribution affects the interpretation of the regression results for age 

(and age alone).  As pointed out by the authors, if the medical costs of workers compensation claims 

increase with age, then the influence of age on the cost of obesity is underestimated for young 

claimants and overestimated for old claimants.  As a consequence, the estimated effect of age may 

be distorted on the edges of the age distribution, taking on an “S-shaped” form. 

In this study, and unlike in Laws and Schmid [4], for each pair of obese/non-obese claims, both 

observations enter the statistical analysis.  As a result, the estimated effect of age is not adversely 
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affected by the matching-toward-the-center problem as long as the influence of age is properly 

accounted for in the regression equation. 

2.3 Descriptive Characteristics 

We start out with a data set of 4,821,562 claims, of which 7,145 (or 0.1482 percent) are 

categorized as obese.  We are able to match 6,528 obese claims (or 91 percent) to non-obese claims, 

among which we identified 487,603 potential matches before correcting for the immortal time bias 

and applying proximity matching by the degree of youngness.  Correcting for the immortal time bias 

reduces the number of usable obese claims to 6,435; the number of potential non-obese matches 

drops to 356,423.  After proximity matching by the degree of youngness, the number of potential 

matches reduces to 14,929, which translates into an approximate 2.3 non-obese matches per obese 

claim. 

Table 1 details the number of matched pairs by injury year.  The non-obese claim of a matched 

pair may be synthetic where there are multiple matches, as discussed above. 

Table 1: Numbers of Matched Pairs by Injury Year 

Injury Year Number of Matched Pairs 
1998 333 
1999 319 
2000 391 
2001 472 
2002 550 
2003 548 
2004 591 
2005 678 
2006 759 
2007 841 
2008 953 
Total 6,435 
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Chart 2 offers the relative claim frequency by U.S. state, pooled over the studied 11 injury years.  

Florida and Texas are the most highly represented states, whereas Rhode Island and West Virginia 

are the least highly represented.  The representation of a state in the data set depends primarily on 

the size of its labor force, but it also depends on the combined market share of the insurance 

companies that contribute to the analyzed data set.  Another contributing factor is the share 

represented by the self-insured. 

Chart 2: Relative Frequency of Matched Pairs by State, 1998–2008 
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Chart 3 presents a distribution of age at injury of the set of studied (obese and non-obese) claims; 

again, the observations are pooled over the 11 injury years.  The median age at injury is in the 

neighborhood of 40. 

Chart 3: Relative Frequency of Claims by Age at Injury, 1998–2008 
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Chart 4 displays the relative frequency of the number of matches per obese claim.  As mentioned, 

on average, there are 2.3 matches per obese claim, but, as the chart illustrates, this distribution is 

highly skewed.  The majority of obese claims (around 60 percent) have only one match; obese claims 

with more than 10 matches are rare.  As discussed, where matches are not unique, the median 

duration is calculated using the algorithm detailed in Appendix 5.3. 

Chart 4: Relative Frequency of Numbers of Matches per Obese Claim 
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Finally, Chart 5 depicts a frequency distribution for the number of unique matches per obese 

claim.  The multiple matches shown in Chart 4 are not necessarily unique in the sense that they may 

have different durations (but are otherwise identical).  In Chart 5, a match is unique if there is no 

other (non-obese) claim that is identical in all respects (disregarding the type of censoring).  For 

instance, two claims with durations of two weeks, one of them being right-censored, do not count as 

only one observation in the chart.  Chart 5 indicates that in the vast majority of cases, an obese claim 

has a unique non-obese match. 
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Chart 5: Relative Frequency of Numbers of Unique Matches per Obese Claim 
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3. THE STATISTICAL ANALYSIS 

Conceptually, the statistical problem of quantifying the effect of obesity on the duration of 

indemnity benefits is one of survival, that is, continuation of benefits.  The hazard in this survival 

framework manifests itself in the termination of benefits.  In a first step, the data is analyzed by 

means of Kaplan-Meier plots.  Following this nonparametric analysis, a semiparametric Weibull 

proportional hazard model is estimated.  In both analyses, the obese claims enter the statistical 

model along with their non-obese match.  Also, both statistical frameworks account for interval-

censoring and right-censoring.  Finally, in both analytical settings, benefit duration is measured in 

calendar time. 

3.1 Kaplan-Meier Plots 

The Kaplan-Meier estimator is a simple way of computing a survival curve, which is a graph that 

depicts the survival experience (i.e., continuation) of indemnity benefit payments by claim.  The 

percentage of surviving claims is displayed on the vertical axis.  The horizontal axis depicts calendar 

time since injury. 

Chart 6 presents the Kaplan-Meier plots for duration concept I.  The vertical axis of the plot 

indicates the proportion of claims that survive any given day displayed on the timeline (which is on 
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the log10 scale).  The reading on the vertical axis of the starting point of the survival curve indicates 

the proportion of claims that do not breach the waiting period.  As shown, only about 25 percent of 

obese claims do not breach the waiting period, whereas more than 50 percent of the non-obese 

claims do not breach the waiting period. 

The waiting period varies by state, from a minimum of three days to a maximum of seven days.  

After translating lost workdays into calendar time (see Appendix 5.4), the upper bound of this 

interval grows to 11 days.  This is because a worker whose regular workweek runs from Monday 

through Friday, and whose first missed workday is a Friday, will have missed eleven calendar days by 

the time he will have missed seven workdays.  In the Kaplan-Meier plot, during the waiting period, 

the hazard of the affected, interval-censored claims is constant. 

The whiskers at the bottom of the Kaplan-Meier plots indicate the location of non-censored 

claims (“Observed”) and censored claims (“Censored”); censored claims may be either interval-

censored (in which case the whiskers indicates the end of the waiting period) or right-censored (at 

the waiting period or later). 

Chart 6: Kaplan-Meier Plot for Duration Concept I 
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Chart 6 shows that for any duration displayed on the horizontal axis, the proportion of claimants 

still collecting indemnity benefits is considerably higher for the obese than for the non-obese.  To 
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the degree that obesity correlates with age, the vertical distance between the survival curves may be 

distorted slightly by the matching-toward-the-center effect. 

Chart 7 displays the survival curves for duration concept II.  These curves look very similar to 

those obtained using duration concept I. 

Chart 7: Kaplan-Meier Plot for Duration Concept II 
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In an effort to ascertain the impact that the immortal time bias would have on the results if left 

uncorrected, we applied the Kaplan-Meier estimator to the data without the immortal time bias 

correction (ITBC).  Chart 8 displays (for duration concept I) the survival curves with and without 

ITBC.  As mentioned, the ITBC correction reduces the data set to 6,435 obese claims and 14,929 

non-obese claims.  Without the ITBC, the number of obese claims is slightly larger at 6,528; by 

comparison, there are 19,397 matching non-obese claims.  Not surprisingly, the Kaplan-Meier 

estimators for the two sets of obese claims are nearly identical to the point of being indistinguishable 

in the chart.  For the non-obese matches, however, the survival curves are distinctly different and, 

considering the log10 scale, this difference is nonnegligible. 
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Chart 8: Kaplan-Meier Plot for Duration Concept I, Immortal Time Bias Correction 
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3.2 Weibull Proportional Hazard Model 

The purpose of the proportional hazard model is to quantify the effect of obesity on the mean 

(and median) duration while controlling for the influence of age.  Controlling for age is necessitated 

by the matching-toward-the-center effect. 

A proportional hazard model implies that the hazard in one group (e.g., the obese) is, on the 

timeline (calendar time since injury), a constant proportion of the hazard in the other group (e.g., the 

non-obese); this proportion is known as the hazard ratio.  The baseline hazard as a function of time 

is assumed to follow a Weibull distribution. 

As specified, the Weibull proportional hazard model accommodates interval-censoring and right-

censoring.  Further, the model is semiparametric in that it consists of a parametric component (akin 

to a standard, linear regression model) and a nonparametric component.  The linear component 

includes only one explanatory variable, which is the indicator variable for obesity.  The purpose of 

the nonparametric component is to capture the potentially nonlinear influence of age. 

The model is estimated by means of MCMC, using the sampling platform JAGS in R.  The JAGS 

code is displayed in Appendix 5.5. 
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Following Dellaportas and Smith [3], the hazard function can be written as 

          0; expt t f zX Xβ  , (1) 

where   0 t  is an unknown function of time and   f zXβ  is a semiparametric regression model.  

The matrix X  comprises the covariates at time t  that are included in the parametric component of 

the partially linear model, and z  represents the single covariate that enters the nonparametric 

component.  The nonparametric component is represented by a linear spline with knots at ages 25, 

35, 45, 55, and 65.  For the purpose of parameter identification, the spline is centered on age 45. 

For      1
 0 t t , we obtain the Weibull hazard function 

        1; expt t f zX Xβ  , (2) 

where   0  is the shape parameter of the Weibull distribution. 

With the cumulative hazard given by    t t , we can write the Weibull density function as 

             1 exp expf t t f z t f zXβ Xβ  . (3) 

Repeatedly substituting the scale parameter   for the generalized semiparametric regression 

model   exp f zXβ  delivers the Weibull density function and its familiar form: 

    
    

 

 

 
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   

   

  

1

1

1

exp          

exp exp

exp  .                     

f t t f z t

t f z t

t t

Xβ

Xβ  (4) 

The mean of the Weibull distribution is known to read 

1
1 1

1


 
      

   
 , (5) 

where   is the gamma function.  Similarly, the median of the Weibull distribution equals 

  
1

11
ln 2





   
 

 . (6) 

Most interestingly, the ratio of the mean to the median is solely a function of the shape parameter 

  and, thus, independent of the hazard   and the associated generalized semiparametric regression 

model   exp f zXβ .  By implication, any multiplicative impact of a covariate on the mean equals 

the multiplicative impact on the median. 
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The effect of obesity is captured by an indicator variable and manifests itself in a change in 

intercept; this indicator variable is the only covariate in the parametric part of the partially linear 

regression model. 

Let 1̂β  be the estimated intercept associated with obese claims, and let 0β̂  be the corresponding 

value for non-obese claims.  In this case then, the ratio of mean (and median) durations of obese 

claims to non-obese claims (or, equivalently, the multiplicative impact of obesity on mean and 

median durations) equals 

  

  

 

1
ˆ

1
1
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0 11

ˆ

0

1
ˆˆexp
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ˆˆexp

f z

f z
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 
 
    
 
 
  

β
β β

β

 ,  (7) 

where   0 1
ˆ ˆexp  β β  is the associated hazard ratio. 

Chart 9 depicts the multiplicative impact of obesity.  As shown in the chart, the mean and median 

durations of obese claimants are more than five times the average durations of non-obese claimants.  

When Permanent Partial benefit payments are counted toward indemnity benefit duration as well, 

this multiple climbs to more than six. 

Chart 10 displays the hazard ratio.  When excluding Permanent Partial benefit payments, the 

probability of the indemnity benefits of an obese claim ending on any given day is a little more than 

half the probability of this event occurring for a non-obese claim.  Including Permanent Partial 

benefit payments in the analysis has little impact on the estimated hazard ratio. 

Finally, Chart 11 depicts the effect of age on indemnity duration for the set of matched pairs 

analyzed in this study.  The effect of age is net of the effect of obesity.  As mentioned, the spline is 

centered on age 45 for the purpose of parameter identification; as a result, the credible intervals are 

relative to a claimant with an age at injury of 45.  (For the difference between credible intervals and 

confidence intervals, see Carlin and Louis [1].)  The chart shows that a claimant whose age at injury 

falls into the age bracket 45 to 65 tends to have indemnity benefit durations that are about twice the 

indemnity durations of claimants who sustain a workplace injury at age 25.  As a caveat, the research 

design employed in this study aims at discerning the effect of obesity on indemnity benefit duration, 

not the effect of age.  For the purpose of arriving at definitive statements on the effect of age, it is 

preferable to use a more comprehensive data set, as opposed to the employed matched pairs. 
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Chart 9: Multiplicative Impact of Obesity on Mean Duration; Exclusive and Inclusive of Permanent 

Partial Indemnity Benefits; Duration Concept I and II; 80 Percent Credible Intervals 
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Chart 10: Hazard Ratio; Exclusive and Inclusive of Permanent Partial Indemnity Benefits; Duration 

Concept I and II; 80 Percent Credible Intervals 
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Chart 11: Effect of Age on Mean Duration, Duration Concept II, 80 Percent Credible Intervals 
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4. CONCLUSION 

The study finds that obesity contributes in significant ways to the length of time during which 

claimants receive indemnity benefits.  Indemnity duration was measured based on Temporary Total 

and Permanent Total indemnity benefit payments; in a sensitivity analysis, Permanent Partial 

benefits were counted toward indemnity benefit duration as well.  Two concepts of aggregating 

observed indemnity benefit transactions into duration were employed, with little difference in the 

results.  Further, the statistical analysis accounted for the presence of interval-censoring and right-

censoring, both in the nonparametric framework of Kaplan-Meier plots and in the Bayesian 

semiparametric proportional hazard model. 

The statistical analysis showed that claimants with a comorbidity indicator pointing to obesity 

have an indemnity benefit duration that is more than five times the value of claimants who do not 

have this comorbidity indicator but are otherwise comparable.  Inclusive of Permanent Partial 

indemnity payments, this multiple climbs to more than six. 
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Clearly, the limiting factor in this study is the lack of information on the body mass index of the 

claimant.  On one hand, it can be argued that the analysis overestimates the effect of obesity if the 

assignment of the comorbidity indicator, the ICD-9 code 278, is related to the arrival of obesity-

related medical complications, as opposed to the condition of obesity.  Medical complications 

provide an incentive to the physician to assign this “non-reimbursable” ICD-9 code.  From this 

perspective, a selection bias may be introduced, as a result of which claimants who acquire this 

comorbidity indicator may disproportionately belong to the highest obesity category—the morbidly 

obese; this conjecture is supported by the fact that only 0.15 percent of the claims in the data set 

acquire the ICD-9 code 278 (within 12 months of the date of injury).  On the other hand, a case can 

be made that the effect of obesity is underestimated.  This is because many of the claimants who are 

categorized as non-obese in this study may, in fact, be overweight or obese, thereby diminishing the 

measured contribution of obesity to duration. 

Despite the limitations of the data set employed in this study, the results obtained for the effect 

of obesity on indemnity duration are close to what has been established by Duke University for the 

morbidly obese.  Based on the reported means in the Duke University study, for the morbidly obese, 

the number of lost workdays per claim amounts to 6.4 times the value observed for claimants of 

recommended weight.  By comparison, for duration concept I [II], the multiples established here 

equal 5.4 [5.3] (Temporary Total and Permanent Total) and 6.6 [6.7] (Temporary Total, Permanent 

Total, and Permanent Partial). 

5. APPENDIX 

5.1 Simulation for Validating the Immortal Time Bias Correction (ITBC) 

A Monte-Carlo simulation was carried out to investigate the validity of the immortal time bias 

correction described earlier.  The simulation maintains the primary features of the underlying data-

generation process under the assumptions that, first, the data-generating process for benefit duration 

is the same for all claims and, second, the probability of acquiring a 278 ICD-9 code is governed 

solely by the duration of a claim.  The simulation assumes that (1) claims only generate ICD-9 codes 

while they are open, (2) claims are only considered open over their indemnity benefit duration, (3) 

there is a fixed probability, , that on any day that a claim is open, it will produce a 278 ICD-9 code, 

and (4) the acquiring of a 278 ICD-9 on day  is independent of the acquiring of a 278 on day , 

provided that ≠ .  In this simulation, the parameters were calibrated to reflect important 

characteristics of the data and the estimated statistical model. 
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The algorithm generates pairs of obese and non-obese claims as follows: 

(1) Draw the indemnity benefit duration and the time to the first occurrence of a ICD-9 code 

278 for a claim classified as obese 

(a) Randomly generate an indemnity benefit duration from a Weibull distribution and 

round up to the nearest integer 

(b) Randomly draw the time to the first ICD-9 code 278 from a geometric distribution with 

parameter  (Note: This step b is independent of step a) 

(c) If the time to the first ICD-9 code 278 is greater than the minimum of the drawn 

indemnity benefit duration or one year, then reject the draw and return to step 1; 

otherwise, accept the draw and proceed to step 2 

(2) Draw a suitable non-obese claim to pair with the obese claim generated in step 1 

(a) Randomly generate an indemnity benefit duration from a Weibull distribution and 

round up to the nearest integer 

(b) Randomly draw the time to the first ICD-9 code 278 from a geometric distribution with 

parameter  (Note: This step b is independent of step a) 

(c) If the time to the first ICD-9 code 278 is less than the minimum of the drawn 

indemnity benefit duration or one year, then reject the draw and return to step 2; 

otherwise, accept the draw and return the obese/non-obese pair 

Under the aforementioned simulation, the average duration for claims flagged as obese is 98.5 

days; the average duration for claims flagged as non-obese is 98.2 days. 

Carrying out the simulation without the immortal time bias correction is equivalent to all 

generated claims passing step 2c.  Without the immortal time bias correction, the average duration 

for claims flagged as obese is 98.5 days and the average duration for claims flagged as non-obese is 

9.5 days. 

The simulation result demonstrates that the proposed correction removes the bulk of the 

immortal time bias. 
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5.2 Logic of Establishing Primary ICD-9 Code 

The primary ICD-9 code of a given claim is the first ICD-9 code associated with reported 

medical transactions (using a valid service date) based on the following order of priority: 

(1) Paid amount must be greater than zero 

(2) Provider Group must be one of the following four: 

01 (Physician), 04 (Hospital, Ambulatory Surgical Center, X-Ray, Lab), 05 (Clinic), 

07 (Non-Medical) 

When no such transaction exists, transactions from all other providers are considered: 

02 (Chiropractor), 03 (Therapist), 06 (Pharmacies and Durable Medical Equipment Center), 

08 (Other) 

(3) Transactions are selected from the first remaining  

(4) service date, subject to data cleansing considerations 

(5) From the ICD-9 codes resulting from steps 1 through 3, the ICD-9 codes associated with the 

highest paid amount over the (heretofore recorded) life of the claim are selected 

The paid amount of a transaction is assigned in full to any ICD-9 code associated with the 

transaction 

(5) If there are ties after applying the mentioned criteria, an ICD-9 code is randomly selected from 

the set of tied codes 

5.3 Determining the Median Duration among Multiple Non-Obese Matches 

Assume that an obese claim has multiple matching non-obese claims.  In this case, the matching 

non-obese claim assumes the median duration of the set of multiple matches.  This median duration 

is computed by first sorting the matching claims by duration.  Then, in the event that the number of 

matching claims is odd, all claims are identified that have the same duration as the central value.  If 

more than one such claim exists, a choice is made among these claims based on the following 

hierarchy, listed in descending order: right-censored, non-censored, interval-censored.  In the event 

that the number of matching claims is even, the two central values are identified.  Then, all claims 

with a duration that equals the longest duration of these two values are identified.  If more than one 

such claim exists, a choice is made among these claims based on the following hierarchy, listed in 

descending order: right-censored, non-censored, interval-censored. 
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5.4 Converting the Waiting Period into Calendar Time 

Waiting periods are stated in numbers of workdays.  These workdays were converted into 

calendar time by assuming employees work five consecutive days a week.  The conversion algorithm 

reads as follows: 

(1) In the event that the day of injury is between (and inclusive of) Monday and Friday, the days off 

work are Saturday and Sunday; else, it is Tuesday and Wednesday 

(2) Determine the shortest vector of consecutive days of the week, starting with the day of injury, 

such that the length of the vector, excluding the days off work, equals the waiting period 

5.5 JAGS Code (Weibull Proportional Hazard Model) 

## Defining is.censored (from JAGS Manual) 
## X ~ dinterval(failure.time, waiting.period.or.last.observed) 
## Left Censored X = 0; Right Censored X = 1; Not Censored X = NA 
model 
{ 
for(i.obs in 1:n.obs){ 
   failure.time[i.obs] ~ dweib(r,mu[i.obs]) 
   is.censored[i.obs] ~ dinterval(failure.time[i.obs], waiting.period.or.last.observed[i.obs]) 
 
    mu[i.obs] <- exp(alpha[is.obese[i.obs]+1] + f[i.obs]) 
 
    f[i.obs] <- age[i.obs] * beta[1] + 
        (age[i.obs] >= knot[1])*(age[i.obs] - knot[1])*b[1] + 
            (age[i.obs] >= knot[2])*(age[i.obs] - knot[2])*b[2] + 
                (age[i.obs] >= knot[3])*(age[i.obs] - knot[3])*b[3] + 
                    (age[i.obs] >= knot[4])*(age[i.obs] - knot[4])*b[4] + 
                        (age[i.obs] >= knot[5])*(age[i.obs] - knot[5])*b[5] 
 
    median[i.obs] <- (log(2) * 1/mu[i.obs])^(1/r) 
} 
 
##Spline 
##Random regression coefficients corresponding to the truncated polynomial functions 
for(i.knot in 1:n.knots){ 
    b[i.knot] ~ dnorm(0, tau.b) 
} 
 
##Fixed regression coefficient corresponding to the ‘plus’ functions 
beta ~ dnorm(0,1.0E-2) 
 
##Priors 
r ~ dexp(1) 
alpha[1] ~ dnorm(0,0.01) ##Not Obese 
alpha[2] ~ dnorm(0,0.01) ##Obese 
 
tau.b ~ dgamma(1.0E-3,1.0E-3) 
sigma.b <- 1/sqrt(tau.b) 
 
obese.control <- alpha[2] - alpha[1] 
} 
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The Impact of  Physician Fee Schedule Introductions in 
Workers Compensation: An Event Study 

Frank Schmid and Nathan Lord 

______________________________________________________________________________ 
Abstract 
Motivation.  Quantifying the impact of the introduction of physician fee schedules in workers compensation is 
an integral part of NCCI legislative pricing.  Although the vast majority of U.S. states have physician fee 
schedules in place, a small number of jurisdictions operate without such a legal provision.  Several studies have 
attempted to measure the impact of fee schedule introductions on the price and utilization of medical services 
provided by physicians.  None of these analyses delivered evidence of an aggregate utilization increase in 
response to fee schedule introductions, although some point to changes in utilization for isolated procedures.  
Further, this prior research established overwhelming evidence that fee schedules contribute to lower price levels 
and lower rates of price level increases. 
Method.  This study analyzes the introduction of workers compensation physician fee schedules in two states: 
Tennessee (which adopted a fee schedule in July 2005) and Illinois (February 2006).  Event study methodology is 
used to quantify the aggregate effect of these legislative actions.  This aggregate effect is measured by a change in 
the severity index, which comprises both the price and utilization responses.  Time series modeling is used to 
forecast the severity and utilization indexes that would have been observed absent the fee schedule introduction.  
The differences between observed (net of noise) and forecast severity and utilization indexes in the third month 
of fee schedule operation then serve as estimates for the impacts of the fee schedule implementation.  The price 
response to this cost containment measure is backed out of the severity and utilization responses.  In a sensitivity 
analysis, the price level response is obtained by comparing the price level of the third post-implementation 
month to the price level of the final pre-implementation month; the change in the price level thus measured is 
then combined with the estimated utilization effect to arrive at the severity response. 
Results.  In both jurisdictions, the fee schedule introductions contribute to a marked decline in the price level of 
medical services provided by physicians, as well as a permanent weakening in the rate at which this price level 
subsequently increases.  In Tennessee, the price level declines in excess of 7 percent, and the annual rate of 
inflation lessens by 0.3 percentage points.  By comparison, in Illinois, the price level drops by slightly more than 
5 percent and the annual rate of inflation decreases by 0.6 percentage points.  In Tennessee, there is a negative 
utilization response, which may be related to a restriction on physician choice that was implemented prior to the 
fee schedule introduction.  For Illinois, the utilization response is essentially nil. 
Availability.  The statistical model was implemented in R (cran.r-project.org), using the R package forecast (cran.r-
project.org/web/packages/forecast/index.html). 
 
Keywords.  Physician Fee Schedules, Utilization, Workers Compensation 

______________________________________________________________________________ 

1. INTRODUCTION 

Quantifying the impact of the introduction of physician fee schedules in workers compensation is 

an integral part of NCCI legislative pricing.  Although the vast majority of U.S. states have physician 

fee schedules in place, a small number of jurisdictions operate without such a legal provision.  

Several studies have attempted to measure the impact of fee schedule introductions on the price and 

utilization of medical services provided by physicians.  None of these analyses delivered evidence of 

an aggregate utilization increase in response to fee schedule introductions, although some point to 
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changes in utilization for isolated procedures.  Further, this prior research established overwhelming 

evidence that fee schedules contribute to lower price levels and lower rates of price level increases. 

This study analyzes the introduction of workers compensation physician fee schedules in two 

states: Tennessee (which adopted a fee schedule in July 2005) and Illinois (February 2006).  Event 

study methodology is used to quantify the aggregate effect of these legislative actions.  This 

aggregate effect is measured by a change in the severity index, which comprises both the price and 

utilization responses.  Time series modeling is used to forecast the severity and utilization indexes 

that would have been observed absent the fee schedule introduction.  The differences between 

observed (net of noise) and forecast severity and utilization indexes in the third month of fee 

schedule operation then serve as estimates for the impacts of the fee schedule implementation.  The 

price response to this cost containment measure is backed out of the severity and utilization 

responses.  In a sensitivity analysis, the price level response is obtained by comparing the price level 

of the third post-implementation month to the price level of the final pre-implementation month; 

the change in the price level thus measured is then combined with the estimated utilization effect to 

arrive at the severity response. 

1.1 Research Context 

Studies on the impact of physician fee schedules fall into two categories.  First, there are analyses 

that compare, for a given point in time, states with a physician fee schedule to states without such a 

legal provision.  Second, there are single-state studies that focus on the time windows before and 

after the fee schedule introduction or, alternatively, compare workers compensation medical care to 

Group Health.  Cross-state studies may be most suited for discerning the long-term effects of fee 

schedule introductions, although isolating the contribution of a physician fee schedule from other 

cost containment measures can be challenging.  Paradoxically, now that the vast majority of states 

utilize physician fee schedules in workers compensation, gauging the degree to which these legal 

provisions succeed in containing the medical costs of workers compensation claims becomes an 

increasingly demanding task—this is because the counterfactual becomes progressively difficult to 

establish.  Then again, single-state studies of the long-term effects of fee schedule introductions have 

their own challenges—the reason is that, over time, the analyzed jurisdictions may experience a host 

of changes to the legislative and economic environment that affect the provision of medical services 

by physicians in workers compensation.  Examples of such changes include restrictions on physician 

choice and programs that provide incentives for returning to work. 

Early cross-state studies of the effect of physician fee schedule introductions on the medical costs 

of workers compensation claims include a 1986 paper by Borba [2], research published in 1989 by 

the National Council on Compensation Insurance [14], an analysis by Boden and Fleischman [1] of 
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the same year, and a paper by Durbin and Appel [4] from 1991.  Further studies were published by 

Pozzebon [15] in 1994 and by Robertson and Corro [21] in 2007. 

In a preliminary analysis, Borba [2] compares the medical costs per claim of fee schedule states to 

non-fee schedule states.  The author draws on workers compensation claims filed in 1980 and 1983, 

as recorded in the Detailed Claims Information (DCI) database of the National Council on 

Compensation Insurance (NCCI).  The 1980 data set comprises three fee schedule jurisdictions 

(Florida, Massachusetts, and New York) and 10 non-fee schedule jurisdictions; the 1983 data set 

covers four fee schedule jurisdictions (Hawaii, Florida, Massachusetts, and Oregon) and 8 non-fee 

schedule jurisdictions.  The author standardizes the medical care expenditures of the various states 

using information from the Health Care Financing Administration (HCFA).  Borba finds that in the 

1980 (1983) data set, the costs per claim are 9.0 (15.4) percent lower in fee schedule states than in 

non-fee schedule states. 

The 1989 article by the National Council on Compensation Insurance [14] relates preliminary 

findings of a study undertaken by the NCCI Research Division.  This study covers the time period 

1965 through 1984 and an undisclosed number of jurisdictions; there are 512 annual observations.  

Based on an econometric time series–cross section approach, physician fee schedules are found to 

reduce the average medical costs per claim by 11.9 percent.  Following this preliminary analysis, 

Durbin and Appel [4] published final results two years later, using a data set that spans the same 

time period (1965 through 1984) and comprises 33 jurisdictions.  In this refined study, the authors 

arrive at a long-term effect of physician fee schedules on the medical costs per claim of a negative 

3.5 percent; in a sensitivity analysis, a variation of the employed econometric model delivers a cost 

reduction of 5.4 percent. 

The two multi-state studies, Boden and Fleischman [1] and Pozzebon [15], find no evidence for 

cost containment effects of physician fee schedules in workers compensation.  The study by Boden 

and Fleischman provides an extensive analysis of the medical costs of workers compensation claims 

in 43 jurisdictions over the time period 1965 through 1985.  The data were obtained from the 

National Council on Compensation Insurance, independent rating bureaus, and exclusive state 

funds.  In a statistical analysis, the authors correlate for 41 jurisdictions the average annual rate of 

medical cost growth with the presence of a fee schedule.  The measured correlation, although 

negative, is weak.  Boden and Fleischman state that this lack of a statistical relation does not provide 

evidence for fee schedules having no effect and call for a more elaborate statistical analysis. 

The approach pursued by Pozzebon [15] differs from the six discussed cross-state studies in that 

it makes use of individual claims data, as opposed to aggregates.  The analyzed set of workers 

compensation claims consists of a random sample of 31,707 claims, which was drawn from a total 
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of 316,280 claims recorded in the NCCI DCI database.  Only claims that could be considered closed 

18 months after the date of injury were included in the sample.  The observations range from injury 

years 1979 through 1987 and comprise 17 jurisdictions.  The author reports eight versions of a time 

series–cross section model, all of which establish a statistically significant influence of physician fee 

schedules on the medical costs of workers compensation claims.  In seven specifications, this 

influence is positive; the estimated percentage effect varies between 6.2 percent and 10.5 percent.  

Then again, in one specification, this influence is negative, measuring minus 6.8 percent.  According 

to the author, the study suggests that physician fee schedules (among other measures of cost 

control) are not effective in containing the medical costs of workers compensation claims. 

Robertson and Corro [21] use the least granular data of all cross-state studies when comparing 

individual medical transactions in workers compensation to Group Health.  The data set of medical 

transactions related to workers compensation claims was provided by a set of insurance carriers.  

The Group Health data were obtained from MEDSTAT Group, Inc. (now known as Thomson 

Medstat) and comprise medical transactions related to PPOs, HMOs, and traditional health care 

plans.  The analysis covers the time period 1997 through 2004 and encompasses 14 jurisdictions.  

Robertson and Corro show that in the jurisdictions without a fee schedule (Illinois, Indiana, and 

Tennessee), medical prices in workers compensation have the highest markup over Group Health. 

An early single-state study on the effect of fee schedule introductions was sponsored by the 

Minnesota Department of Labor and Industry [13] and released in 1990.  Further single-state studies 

were published in 1994 by Roberts and Zonia [20] on Michigan, and in 2010 by Radeva et al. [17] 

[18] on Illinois and Tennessee. 

The 1990 study sponsored by the Minnesota Department of Labor and Industry [13] contrasts 

the costs of medical care associated with the workers compensation claims of a large insurance 

carrier to the costs of medical care experienced by Blue Cross/Blue Shield Minnesota for similar 

injuries.  Further, this research investigates how medical costs per claim and charges for certain types 

of injury in the Minnesota workers compensation system compare to other states.  The study 

concludes that there is no evidence that the physician fee schedule in Minnesota had a “significant 

direct impact on medical expenditures.”  The authors acknowledge that the “ineffectiveness is due in 

large part to faulty design of the medical fee schedule.  Strategies that may increase effectiveness 

include limiting reimbursements to hospitals and mandating utilization review.” 

Roberts and Zonia [20] analyze the introduction of a physician fee schedule in Michigan.  This 

fee schedule became effective in August 1989, along with a utilization review process.  The authors 

compare the medical costs of workers compensation claims of the post-implementation time period 

October 1, 1989 through March 31, 1990 to the corresponding six-month time window in the prior 
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year.  The data set was provided by an insurer that accounted for about 17 percent of premium 

dollars in the voluntary workers compensation market in this jurisdiction at the time.  Only claims 

for which the medical treatment started in the stated time intervals were included.  The sample size 

in the pre-implementation time window equaled 6,997, compared to 9,620 in the time interval 

following the implementation.  Roberts and Zonia find that the median medical costs of workers 

compensation claims were 25.7 percent higher in the post-implementation time window; by 

comparison, from October 1988 to March 1990, the medical care component of the Consumer Price 

Index (CPI) increased by only 12.4 percent.  The authors conclude that there is no evidence that the 

implementation of a physician fee schedule in Michigan decreased the medical costs of workers 

compensation claims. 

In two studies, Radeva et al. [17] [18] analyze the impact of the introduction of physician fee 

schedules in Illinois and Tennessee.  The Tennessee fee schedule took effect in July 2005; the Illinois 

fee schedule became operational in February 2006.  In both jurisdictions, the physician fee schedule 

was part of a comprehensive set of policy actions concerning the reimbursement of medical care 

provided by physician and hospitals in the context of workers compensation.  The authors quantify 

the impact of these legislative reform packages using workers compensation claims with more than 

seven days of lost time.  For Tennessee, the authors are able to show that, following the fee schedule 

introduction, the medical costs per claim stabilized at the pre-implementation level.  By comparison, 

during the three years prior to this legislative action taking effect, the medical costs per claim had 

increased at an annual rate of 7 percent, on average.  Similarly, for Illinois, the authors find that the 

rate of growth of medical payments per claim slowed to 5 percent from the 12 percent annual 

average that was observed during the three years leading up to the fee schedule. 

None of the discussed research publications provides persuasive findings of a systematic effect of 

fee schedule introductions on the utilization of medical care in workers compensation.  Of the 

cross-state studies, only Borba [2] and Robertson and Corro [21] investigate the degree to which the 

impact of fee schedules on the cost of medical care may be due to differences in utilization.  Borba 

reports that the number of office visits is higher in fee schedule states than in non-fee schedule 

states but cautions that this finding may be related to differences in compensability associated with 

waiting periods.  Robertson and Corro, who study a dozen common workers compensation injuries 

for 14 jurisdictions, find no evidence of an impact of fee schedules on utilization. 

Among the mentioned single-state studies, Roberts and Zonia [20] and Radeva et al. [18] address 

possible utilization effects of fee schedule introductions.  Roberts and Zonia discover a decrease in 

the number of procedures to treat patients when comparing the post-implementation time window 

to the pre-implementation time interval surrounding the Michigan fee schedule implementation.  

Although this decrease in the supply of medical care is not statistically significant, in the context of a 
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statistically significant decrease in the duration of treatment, the finding points to a reduction in 

utilization.  Then again, the authors document a “dramatic change … in the use of procedures for 

which there was no specific maximum fee in the fee schedule.”  Finally, Radeva et al. state that, 

following the Tennessee fee schedule introduction, “utilization by major nonhospital services … did 

not change significantly.” 

1.2 Objective 

The objective of this study is to evaluate the impacts of fee schedule introductions on the medical 

costs of workers compensation claims.  The medical costs of these claims are measured using a 

concept of contemporaneous severity.  This concept of severity encompasses both the price and the 

quantity of medical services consumed within a given time window, where the consumption is 

normalized by the number of claims active during this time window.  As a consequence of the 

contemporaneous nature of the severity measure, changes in the consumption of medical services 

associated with variations in claim duration are not accounted for. 

This being an event study on a small set of jurisdictions, the impact of fee schedule introductions 

is measured on an unconditional basis.  Specifically, the impact is not conditioned on the legislative 

environment of the jurisdiction, its demographic characteristics, or its economic conditions.  Most 

important, the analysis does not attempt to isolate the contribution of the physician fee schedule to 

the efficacy of the whole body of cost containment measures; some of these measures may have 

been introduced alongside the fee schedule or may have been in place at the time this legal 

stipulation became effective.  Among such cost containment initiatives may be mandatory utilization 

reviews, restrictions on physician choice, and hospital fee schedules. 

1.3 Outline 

What follows in Section 2 is a description of the data on fee schedules and medical transactions 

that are employed in this study.  Section 3 outlines the severity, price, and utilization indexes used to 

gauge the responses to the fee schedule introductions; further, this section introduces the concept of 

price departure and offers a description of the time series model that establishes the counterfactual, 

defined as the situation that would have been observed absent the fee schedule introduction.  Next, 

Section 4 presents the measured effects of the fee schedule introductions for the two analyzed 

states.  Section 5 concludes. 

2. THE DATA 

The study uses data from two sources.  First, physician fee schedules were obtained from Ingenix 

Inc. (now known as OptumInsight, Inc.) and employed in the analysis as stated by this data 
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provider.  Second, the effects of fee schedule introductions were measured on a large set of medical 

transactions associated with workers compensation claims.  These transaction records cover the time 

period January 1, 2000 through December 31, 2010 and were provided by a set of insurance carriers. 

The jurisdictions analyzed in this study are Tennessee and Illinois.  The jurisdiction state criterion 

and provider zip code information are used when linking medical transactions to a given state.  

Neither of the two states operates a state fund; both Tennessee and Illinois operate second injury 

funds, which are not associated with significant numbers of transactions and not included in the data 

set.  As measured by written premium, for the year 2006, the market share of the carriers 

contributing to the medical transaction data set equals 30.7 percent for Tennessee and 32.8 percent 

for Illinois.  In this market share computation, the self-insured are excluded. 

The data set excludes transactions associated with medical services provided by hospitals and 

ambulatory surgical centers, but includes transactions related to services delivered by physicians (as 

the provider type) at these places of service.  The medical transactions data were edited using expert 

knowledge on billing and reimbursement practices, and the data set was cleansed using statistical 

tools of outlier detection.  For an overview on the employed data cleansing tools, see the appendix 

(Section 6). 

The medical services associated with the obtained transaction records can be categorized into the 

American Medical Association (AMA) service categories Evaluation and Management Services, 

Anesthesia, Surgery, Radiology, Pathology and Laboratory, and Medicine.  Transactions related to 

Anesthesia were excluded from the study due to difficulties in quantifying the units of service that 

are associated with the individual records.  Pathology and Laboratory tends to be sparsely populated 

and, although included in All Categories, is consequently not studied as an independent service 

category.  Physical Medicine, as a subcategory of Medicine, is defined by Current Procedural 

Terminology (CPT) codes ranging from 97001 through 97799. 

For the purpose of this study, medical services are identified by a combination of CPT code and 

modifier; only modifiers that are recognized by fee schedules are considered.  For transactions 

associated with a thus identified medical service, the maximum allowable reimbursement (MAR) 

may vary by geozip (geographic areas identified by arrays of zip codes; Illinois only) and place of 

service.  Where such variation exists, the MAR of a given medical service cannot be read directly 

from the fee schedule but instead needs to be calculated for any given month as a weighted average 

across geozips and places of service, where the weights are the number of units of service provided. 

For a given medical service, the study recognizes a MAR only if the fee schedule specifies a dollar 

amount (dubbed fixed-value MAR), as opposed to defining the MAR as usual and customary or in 

percent of billed charges, for instance.  When a fee schedule change occurs mid-month, for the 
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purpose of calculating the average MAR of a given medical service for that month, the pertinent fee 

schedules are prorated based on the numbers of units of service provided under each regime. 

Because the MAR that applies to a given medical transaction may differ with the place of service 

and (in Illinois) across geozips, the average monthly MAR of a given medical service may vary over 

time for a given fee schedule.  This is because the distribution of transactions by place of service and 

geozip may change from month to month. 

3. RESEARCH FRAMEWORK 

The impact of fee schedule introductions is analyzed in a time window surrounding the fee 

schedule effective date.  The counterfactual is established using a time series model that is calibrated 

to a multi-year pre-implementation time period.  This way, possible changes in behavior associated 

with the anticipation of the fee schedule on the part of claimants, physicians, and insurers have only 

a dampened impact on the measured effect. 

3.1 Price, Utilization, and Severity Indexes 

The impact of fee schedule introductions is read from indexes.  These indexes are on a monthly 

basis and calculated for the mentioned AMA categories and, these service categories taken together, 

for All Categories.  Further, these indexes are computed for Physical Medicine, which constitutes a 

subset of the AMA category Medicine. 

Price indexes are calculated for two sets of prices.  First, there is a price index calculated from 

reimbursed amounts, encompassing all medical services.  Second, there is a price index based on the 

fee schedule, comprising only medical services subject to a fixed-value MAR. 

Both price indexes are Fisher indexes—prices and quantities are measured on the level of the 

medical service.  Technically, the Fisher index is the geometric mean of the Laspeyres and Paasche 

indexes.  The Laspeyres index compares the set of prices of the current month to the set of prices of 

the previous month, using as weights the quantities of medical services of the previous month.  The 

Paasche index undertakes this comparison by using as weights the quantities of the current month. 

The formula for the Laspeyres index reads 

1
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By comparison, the equation for the Paasche index is given by 
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In the equations above, swapping prices for quantities and vice versa delivers the Laspeyres and 

Paasche quantity indexes.  Analogous to the Fisher price index, the Fisher quantity index is obtained 

as the geometric mean of the Laspeyres and Paasche quantity indexes.  For details on price and 

quantity indexes, see International Labour Office [10]. 

The Fisher index has a host of desirable properties.  The most important property of the Fisher 

index in the context of this study is its ability to break down accurately the price and quantity 

responses to changes in relative prices.  For instance, if the structure of consumed medical services 

changes in response to some services increasing in price less than others, then the Laspeyres 

(Paasche) price index overestimates (underestimates) the rate of inflation in the event that medical 

consumption shifts toward services that have increased in price comparatively less.  This bias occurs 

because the Laspeyres index is based on the quantities of the previous month, which do not yet 

account for the shift in consumption toward the services that have become comparatively less 

expensive.  Conversely, the Paasche index draws on the new quantities, thereby biasing the reading 

of the rate of inflation in the opposite direction. 

The Fisher quantity index corresponds to the Fisher price index at reimbursed amounts—both 

concepts encompass medical services regardless of their fee schedule treatment.  The product of 

these two Fisher indexes is related to the transaction volume.  Specifically, the percentage change 

from the previous month of the product of the Fisher price and quantity indexes equals the 

percentage change in the transaction volume on which these indexes are calculated. 

A utilization index is calculated by normalizing the Fisher quantity index by the number of active 

claims in the applicable month.  This utilization index is again calculated for the mentioned service 

categories and for All Categories.  Note that the number of active claims in a given month may vary 

across service categories.  Specifically, a claim is considered active in a given service category (in All 

Categories) if there is a transaction associated with this claim in this service category (in any service 

category) that enters the price index for this service category (for All Categories) in that month. 

A severity index is calculated as the product of the Fisher price index at reimbursed amounts and 

the utilization index.  The following relation holds among the rates of severity growth ( s ), the rate 

of inflation ( p ), and the rate of utilization growth ( u ): 

(1 ) (1 ) 1s p u      . (3) 
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The utilization index represents a contemporaneous concept of utilization, since it builds only on 

transactions that have been observed in the month under consideration.  To the degree to which the 

consumption of medical services provided by physicians is front-loaded in the lifetime of a claim, 

the utilization index (and, hence, the severity index) may increase in response to an influx of claims.  

This property of the utilization index may explain some of the seasonal variation that the utilization 

and the severity indexes display over the course of the calendar year.  Seasonality in the utilization of 

medical services is to be expected, given the influence of climactic conditions on economic activity, 

in particular in the construction and leisure and hospitality industries.  Finally, to the degree to which 

there is front-loading of medical services in the lifetime of a claim, the utilization index may decrease 

in response to a systematic increase in claim duration. 

In Tennessee, in Physical Medicine, the MAR of a given medical service may be regressive with 

respect to the number of units of service provided to the claimant.  Due to data limitations, this 

regression in MAR was not factored into the computation of the price index at fee schedule. 

3.2 Price Departure 

Typically, medical services provided by physicians are reimbursed at or below fee schedule, 

although jurisdictions vary by the degree to which the stipulated price ceilings are enforced.  For 

instance, in Tennessee, the Commissioner may assess civil penalties for fee schedule violations at his 

discretion.  By comparison, in Illinois, reimbursement above fee schedule is permitted when agreed 

to pursuant to a written contract. 

Price departure measures the deviation of reimbursement from fee schedule.  Specifically, price 

departure is defined as the ratio of transaction volume at reimbursed amounts to transaction volume 

at fee schedule, minus 1.  In the denominator, for transactions associated with medical services that 

are not subject to a fixed-value MAR, reimbursed amounts substitute for the fee schedule.  Medical 

services that are not subject to a fixed-value MAR are subject to price ceilings that are defined as a 

percentage of charges or are subject to usual and customary reimbursement (which may be defined 

as a function of charges).  The transaction volume that contributes to the price departure calculation 

is slightly more comprehensive than the transaction volume that finds its way into the computation 

of the price and quantity indexes.  This is because medical services enter the price (or quantity) index 

of a given month only if there is at least one transaction associated with these services in both the 

current month and the prior month. 

Similar to the price, utilization, and severity indexes, price departure is calculated on a monthly 

basis for All Categories, the mentioned AMA categories, and Physical Medicine.  To provide a 

numerical example, a price departure of minus 0.05 (or, equivalently, a negative 5 percent) states that 

the reimbursed amounts are 5 percent below fee schedule, on average. 
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Changes in the difference between the price indexes at reimbursed amounts and at fee schedule 

do not map exactly into changes in price departure.  For instance, for a given array of prices, the 

price index does not respond to changes in quantities.  By contrast, the price departure may increase 

for given reimbursement practices and a given fee schedule if the distribution of transactions shifts 

in favor of medical services that exhibit a comparatively large spread between MAR and reimbursed 

amount. 

For Tennessee, in keeping with the computation of the price index at fee schedule, the regressive 

nature of the fee schedule in Physical Medicine was not factored into the computation of the price 

departure. 

3.3 Time Series Model 

The impact of a fee schedule introduction is measured by the difference between the observed 

severity index net of noise and the severity index that is estimated to have materialized absent the fee 

schedule.  This aggregate impact is broken down into the price and utilization responses.  The 

utilization response is again measured by the difference between the observed value net of noise and 

the counterfactual.  After establishing the severity and utilization responses in this way, the price 

response is obtained as a residual.  No prorating of the responses is necessary because, in both 

jurisdictions, the fee schedule introduction took effect on the first day of the month. 

Visual inspection of the severity and price index charts indicates that the responses of these 

indexes to the fee schedule introductions have come to completion by the third post-

implementation month; this holds for both analyzed jurisdictions and across all service categories.  

This short time lag in the response to fee schedule introductions agrees with the response to fee 

schedule changes documented in Schmid and Lord [23].  According to these authors, the bulk of the 

price and severity adjustments to fee schedule changes occur within the first two months of the new 

fee schedules having taken effect. 

For the severity and utilization indexes, observed index values net of statistical noise and 

counterfactual index values are established using a univariate time series model.  The statistical 

model is applied to the respective index through the final pre-implementation month for the 

purpose of generating forecasts for the post-implementation months.  The third month of the 

forecast time period establishes the counterfactual of interest.  Next, the statistical model is applied 

to the post-implementation observations, starting in the third month of the fee schedule operation.  

The first fitted value in this post-implementation time series delivers the observed value net of noise 

that is compared to the counterfactual. 
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The time series model employed in this analysis is a univariate exponential smoothing state-space 

model called TBATS.  This model was developed by De Livera, Hyndman, and Snyder [5] and is 

available as part of the R package forecast.  TBATS stands for Trigonometric, Box-Cox transform, 

ARMA errors, Trend, and Seasonal components, which summarizes the basic characteristics of this 

model.  The seasonal components of the model are based on a trigonometric specification, which 

distinguishes this approach from the competing BATS model—the trigonometric specification limits 

the number of parameters in the seasonal components of the model.  The number of seasonal 

periods was set to 12, thus acknowledging the monthly nature of the time series.  Auto-regressive 

moving average (ARMA) errors were permitted, as well as the Box-Cox transform (which corrects 

for possible non-normality).  For the purpose of forecasting, trend dampening was employed, 

although this may have little impact, given the short forecasting horizon of only three data points.  

Automatic model selection was employed using the Akaike information criterion (AIC). 

4. IMPACT OF PHYSICIAN FEE SCHEDULE INTRODUCTIONS 

This section presents the impacts of physician fee schedule introductions on the price, utilization, 

and severity indexes of medical care provided by physicians in the context of workers compensation.  

These impacts are discussed in their overall effect (All Categories) and, for illustration, in their effect 

on an individual service category or subcategory.  For Tennessee, this category is Evaluation and 

Management Services and, for Illinois, it is Physical Medicine.  The monthly price, utilization, and 

severity indexes run from January 2000 through December 2010.  The fee schedule introductions in 

the two states occur approximately in the middle of the observed 11-year time period.  Further, the 

events of interest occurred well ahead of the economic downturn that started in December 2007 

(www.nber.org/cycles.html). 

4.1 Tennessee 

In 2004, the Tennessee Workers’ Compensation Act underwent a sweeping reform.  As a result 

of this legislative action, a physician fee schedule was introduced, effective July 1, 2005.  This fee 

schedule became mandatory on January 1, 2006. 

The Tennessee fee schedule was designed as a multiple of the applicable Medicare fee schedule, 

where the multiplicative factors vary by procedure.  For repeat services in occupational and physical 

therapy, these multiples regress to unity, thereby gradually lowering the price ceiling to 100 percent 

of the amount reimbursable under Medicare.  Reimbursement of procedures not explicitly covered 

by the fee schedule is limited to the lesser of usual and customary and 100 percent of Medicare.  

Prior to the fee schedule introduction, reimbursement was subject to usual and customary practices, 

as defined by the Medical Care and Cost Containment Committee. 



The Impact of Physician Fee Schedule Introductions in Workers’ Compensation: An Event Study 

Casualty Actuarial Society E-Forum, Spring 2013 13 

© Copyright 2013 National Council on Compensation Insurance, Inc.  All Rights Reserved. 

As implemented, the Tennessee fee schedule updated annually based on the Medicare Economic 

Index, upon review by the Commissioner.  Having been tied to Medicare in this way, the MAR for a 

given medical service could change without further legislative action.  The first Medicare-related 

update of the Tennessee physician fee schedule took effect on January 1, 2006. 

As part of the 2004 legislative reform, Tennessee limited provider choice.  It is mandatory that 

the employer offer a panel of three physicians.  From this list of providers, the employee has the 

privilege to choose one.  The physician may be changed during ongoing treatment only with consent 

from both the employee and the employer.  The employer has to give proof of the existence of the 

panel by signing a legal form, a copy of which has to be provided to the employee.  This provision 

became effective for injuries on or after July 1, 2004. 

The Tennessee data set contains 66 observations prior to the fee schedule implementation, and 

an equal number following it.  All pre-implementation observations feed into the time series model 

that establishes the counterfactual for the third post-implementation month.  All but the first two 

post-implementation observations are employed in the time series model that eliminates the 

statistical noise from the observed severity and utilization indexes in the third month of fee schedule 

operation. 

4.1.1 All Categories 

Chart 1, top panel, depicts the Fisher price indexes of medical services, at reimbursed amounts 

and at fee schedule.  As mentioned, the price index at fee schedule is based on the fixed-value MAR.  

When no fixed-value MAR is available (for instance, because the medical service is subject to usual 

and customary reimbursement or the price ceiling is defined as a percentage of billed charges), this 

medical service is not involved in the computation of the price index at fee schedule. 

In Chart 1, top panel, the first box (June 2005) associated with the price index at reimbursed 

amounts indicates the final month prior to the fee schedule implementation; the second box 

(September 2005) points to the third month of fee schedule operation.  For this third post-

implementation month, the impact of the fee schedule is measured by the difference between the 

counterfactual and the fitted value. 

The displayed price index at fee schedule starts in the third post-implementation month and, for 

that month, this index is normalized to the price index at reimbursed amounts.  If, subsequently, the 

price index at reimbursed amounts rises above the price index at fee schedule, this implies that since 

that first common month, on average, the inflation rate of the former has exceeded the inflation rate 

of the latter (as measured by the compound annual growth rate).  As mentioned, the price index at 

fee schedule may change from month to month, even as the fee schedule does not.  This is because 

the distribution of transactions by place of service may vary over time. 
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Chart 1: Tennessee, Price Indexes and Price Departure, All Categories 

 

Chart 1, bottom panel, displays the price departure for All Categories, starting in the month the 

fee schedule took effect.  As discussed, the price departure is calculated as the ratio of transaction 

volume at reimbursed amounts to transaction volume at fee schedule, minus 1.  For a given fee 

schedule, an increase in the price index at reimbursed amounts tends to diminish the magnitude of 

the price departure, thereby shortening the depicted bars.  Yet, as pointed out, changes in the price 

departure do not perfectly correlate with changes in the vertical distance between the price indexes. 

The chart reveals that between the July 2005 fee schedule introduction and the end of 2006, the 

price departure averaged around minus 21 percent.  Then, in January 2007, following a fee schedule 

increase, the price departure deepened to a value beyond a negative 25 percent.  As the reimbursed 

amounts rose in mid-2007, the price departure retreated slightly.  In early 2008, in the course of a 

major fee schedule decrease, only about half of the stipulated reduction in MAR manifested itself in 

a decline of the price level at reimbursed amounts.  As a result of the limited adjustment, the price 

departure shrank to about a negative 16 percent. 

The fee schedule reduction in early 2008 holds a lesson regarding the interaction between policy 

decisions and pricing behavior.  Following a muted price level response to the 2008 fee schedule 

reduction, the fee schedule was raised in the second half of 2009.  Clearly, during the time period 
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2008 through 2009, the price level at reimbursed amounts was more stable than the price ceilings 

imposed by policy actions.  Further, the episode shows that the relation between fee schedules and 

reimbursed amounts is reciprocal. 

Chart 2 depicts the severity and the utilization indexes in two panels.  The panels, which are 

drawn on the same scale, display the observed, raw data (light gray) alongside the fitted values 

(black) generated by the time series model.  The time window surrounding the fee schedule 

introduction is highlighted by a gray box.  At the center of this box are the forecasts (dark gray), 

which are the estimated values in the first three post-implementation months for the hypothetical 

situation that no fee schedule was introduced.  The fee schedule impact is measured by the vertical 

distance between the final value of these three forecasts and the first fitted value available for the 

post-implementation time period—both values are from the third month of fee schedule operation.  

This vertical distance between the observed value net of noise and the counterfactual indicates a 9.3 

percent drop in severity (top panel) and a comparatively small 2.0 percent decrease in utilization 

(bottom panel).  As implied by Equation (3), the decline in the price index at reimbursed amounts 

equals 7.4 percent. 

The severity index displayed in Chart 2, top panel, displays a fair amount of statistical noise, 

which adds to the uncertainty associated with the estimated severity response.  Thus, a sensitivity 

analysis is performed where the severity response is backed out of the observed change in the price 

level and the estimated utilization effect.  The observed change in the price level is obtained by 

comparing the price level of the third post-implementation month to the price level of the final pre-

implementation month; the price level response thus measured equals minus 7.4 percent, which (as a 

rounded number) equals the price level response established above.  By way of Equation (3), based 

on unrounded numbers, the severity response amounts to a negative 9.2 percent, which is nearly 

identical to the previously established value. 
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Chart 2: Tennessee, Severity and Utilization Responses, All Categories 

 

Chart 2, bottom panel, displays the utilization index, which exhibits a pronounced seasonality.  

Because the severity index is the product of the utilization index and the price index, the seasonality 

inherent in the utilization index carries over to the severity index (top panel). 

Aside from this seasonal variation, the utilization index remains flat following the fee schedule 

introduction.  This absence of a post-implementation utilization trend is in stark contrast to the 

steady utilization increase during the years leading up to the fee schedule.  The estimated drop 

(compared to the counterfactual) and subsequent ebbing of the utilization index may be more 

related to the restriction on physician choice introduced in mid-2004 than to the fee schedule.  

Empirical studies by Durbin and Appel [4] and Neumark, Barth, and Victor [15] provide clear 

evidence of the cost containment effect of restrictions on provider choice.  However, these studies 

focus on the overall cost impact and do not explicitly address the contribution of utilization changes. 

For the purpose of comparing fee schedule prices to pre-implementation reimbursement at large, 

the price departure was calculated for the final pre-implementation month on an as and if implemented 

basis.  This concept of ex ante price departure is analogous to the price departure displayed in the 

bottom panel of Chart 1 in that reimbursed amounts again substitute for the fee schedule where 

medical services have not been assigned a fixed-value MAR.  With the ex ante price departure 
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calculated in this way, in the final pre-implementation month, the price level at reimbursed amounts 

was 15.7 percent below the price level at the impending fee schedule.  By comparison, the price level 

at reimbursed amounts was 23.1 percent below the price level at fee schedule in the third month of 

fee schedule operation—the ex post price departure.  The differential between ex ante and ex post price 

departures is attributable to the decline in the price level at reimbursed amounts. 

It is worth noting that the share of the transaction volume of the final pre-implementation month 

that was going to be subject to the fee schedule equaled 95.4 percent.  In keeping with existing 

methodology, in this computation, only medical services that were to receive a fixed-value MAR 

were regarded as subject to the impending fee schedule. 

4.1.2 Evaluation and Management Services 

The impact of the fee schedule introduction on an individual service category is exemplified on 

Evaluation and Management Services.  The analysis performed on this service category is analogous 

to the inquiry undertaken for All Categories.  When it comes to normalizing the quantity index by 

the number of active claims for a given month, only claims for which there were transactions 

recorded in Evaluation and Management Services (in that month) were considered.  In this service 

category, the share of the transaction volume of the final pre-implementation month that was going 

to be subject to the fee schedule amounted to 97.1 percent. 

Chart 3 exhibits for Evaluation and Management Services the price index at reimbursed amounts 

and at fee schedule (top panel), along with the price departure (bottom panel).  In this service 

category, contrary to the discussed All Categories (and all other service categories), the price level at 

reimbursed amounts increased following the fee schedule implementation.  This price level increase 

measures 11.0 percent or, based on the discussed sensitivity analysis, 10.0 percent. 
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Chart 3: Tennessee, Price Indexes and Price Departure, Evaluation and Management Services 

 

For a given medical service, in a given month, the reimbursed amounts are not necessarily 

uniform.  Instead, these amounts describe a distribution, which frequently is multimodal.  The price 

ceiling of a newly introduced fee schedule may pose a binding constraint for the top percentiles of 

the distribution or reimbursed amounts.  By means of capping the top percentiles at the fixed-value 

MAR, the fee schedule lowers the average reimbursed amount, all else being equal.  From this 

perspective, the introduction of a fee schedule is expected to depress the average reimbursement for 

a given medical service or, more broadly, the price index at reimbursed amounts of a given service 

category.  But then, in Evaluation and Management Services, the price index at reimbursed amounts 

increased.  Given that this service category accounts for 25.6 percent of the volume in the final pre-

implementation month, this finding can hardly be treated as an anomaly in the data. 

A possible explanation of the atypical response of the price level for Evaluation and Management 

Services may be found in the heuristic of anchoring discussed in psychology.  In this cognitive 

process, an individual adjusts its numerical judgment or attitude toward a value that it considers as a 

candidate answer.  As argued by Kahneman, Ritov, and Schkade [11], “anchoring effects are among 

the most robust observations in the psychological literature.”  These authors identify two “necessary 

and apparently sufficient conditions for the emergence of anchoring effects.”  One condition is “the 
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presence of some uncertainty about the correct or appropriate response.”  The other condition is “a 

procedure that causes the individual to consider a number as a candidate answer.”  In the context of 

physician fee schedules, the introduction of a MAR may serve as a candidate answer to the question 

of appropriate reimbursement. 

Clearly, anchoring is not the only process that is capable of generating the observed price level 

response in Evaluation and Management Services.  In industrial economics, it has been argued that 

price ceilings serve as focal points that solve the coordination problem inherent in tacit collusion.  

The concept of focal points has been introduced by Schelling [22], who showed how mutually 

recognized signs are able to facilitate solutions in coordination games.  In the context of physician 

fee schedules, the MAR may serve as a focal point for the coordination of billing behavior among 

physicians.  In a study of the credit card market in the 1980s, Knittel and Stango [12] argue that 

price ceilings solved the coordination problem that made tacit collusion possible.  Then again, there 

are doubts that price ceilings can serve as focal points.  For instance, Engelmann and Normann [6] 

analyze in an experimental setting whether price ceilings have a collusive effect.  Based on results 

established in laboratory markets, the authors reject the focal-point hypothesis, according to which 

price ceilings solve the coordination problem associated with tacit collusion.  The experiments show 

that markets with price ceilings have lower prices than markets without such constraints. 

As argued, capping the upper percentiles of the distribution of reimbursed amounts reduces its 

mean, all else being equal.  Conversely, to the extent that the MAR anchors the judgment regarding 

an appropriate reimbursement, the distribution of reimbursed amounts moves toward the MAR, 

thereby increasing the mean of this distribution.  The net effect of these two opposing forces 

determines whether the average reimbursement for a given medical service or the overarching price 

index of the applicable service category increases in response to a fee schedule introduction. 

When compared to All Categories, the ex ante price departure in Evaluation and Management 

Services was extensive, measuring a negative 21.1 percent.  This large differential between the center 

of the pre-implementation distribution of reimbursed amounts and the newly introduced MAR may 

have afforded the anchoring effect an elevated degree of leverage.  The price level increase that 

followed the fee schedule introduction reduced this differential to an ex post price departure of minus 

13.7 percent (as measured in the third post-implementation month, according to its definition). 

Chart 3 shows that in Evaluation and Management Services, the adjustment of the reimbursed 

amounts to the fee schedule implementation was swift.  In spite of sluggish responses to subsequent 

fee schedule changes, by the end of the year 2010, the rate of inflation at reimbursed amounts that 

had materialized since the third post-implementation month was in close proximity to the rate of 

inflation implied by the stipulated price ceilings. 
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Chart 4 displays the fee schedule impacts on the severity and utilization indexes.  The increase in 

severity reads 12.1 percent or, using the sensitivity analysis, 11.0 percent.  The utilization response is 

positive but contained, measuring 1.0 percent.  Remarkably, for Evaluation and Management 

Services, the utilization response agrees with classical economic theory, which posits that supply 

increases with price.  Similarly, for Surgery (not shown) and Radiology (not shown), the utilization 

effect in response to a price level decrease is negative, albeit slender.  Assuming that physicians have 

some discretion over the amount of medical care they provide to a claimant, it can be expected that 

the supply of these services will increase with the reimbursed amounts (and, correspondingly, 

decrease in response to a payment reduction).  Then again, for the service category Medicine (not 

shown), the estimated utilization effect in response to a price level increase is positive and is thus at 

odds with classical economic theory.  It is worth noting that at the level of the service category, there 

is a fair degree of statistical noise in the data, which poses a challenge to measuring an effect that, if 

it exists, is likely to be small in magnitude.  As a result of the elevated level of randomness, the 

estimated utilization effects for the individual services categories have to be interpreted with caution. 

Chart 4: Tennessee, Severity and Utilization Responses, Evaluation and Management Services 

 

A negative utilization effect in response to a price increase agrees with the income targeting 

hypothesis put forward by Camerer at al. [3] in a study of New York City taxi drivers.  Based on this 
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proposition, the supply of services decreases with price since a given income target can be reached 

with less input.  But then, as argued by Schmid and Lord [23] in a study of workers compensation 

fee schedule changes, there is no indication of income targeting on the part of physicians.  More 

important, Radeva et al. [19], in the context of the Tennessee fee schedule introduction, provide 

persuasive evidence that, in the category Evaluation and Management Services, physicians respond 

to changes in reimbursed amounts according to classical economic theory.  The authors show that 

physicians substituted comparatively complex established patient office visits (CPT code 92214) for 

less complex ones (CPT code 92213).  At the same time, the reimbursed amount for the more 

complex office visit increased by 29 percent, on average, compared to a mere 18 percent for the less 

complex of these services; the price increases were measured over the time period 2004 through 

2006. 

Aside from the two competing economic hypotheses, there is also the formative force of best 

medical practice.  Although fee schedule introductions may alter economic incentives in the short 

term, it is difficult to argue that medical treatments do not revert to best practice in the longer term, 

especially as treatment patterns and medical technology evolve over time. 

4.2 Illinois 

The state of Illinois introduced a physician fee schedule in workers compensation effective 

February 1, 2006.  Prior to this legislative provision taking effect, reimbursement was subject to 

being reasonable and necessary.  When the employer did not agree to the expenses, the employee 

could file a petition asking the Workers’ Compensation Commission to decide the disputed issue.  

For details, see Illinois Workers’ Compensation Commission [8]. 

The Illinois fee schedule set the MAR of medical services to 90 percent of the 80th percentile of 

charges observed from August 1, 2002 through August 1, 2004.  These charges were adjusted for the 

CPI for the period August 1, 2004 through September 30, 2005. 

The MAR varies by geozip, which is defined by the zip codes that share the same first three 

digits, and by the site where the treatment occurred.  Employers or insurance carriers may contract 

with providers at prices higher than fee schedule.  Procedures for which the physician fee schedule 

does not stipulate a fixed-value MAR, the default reimbursement is set to 76 percent of actual 

charge. 

Prior to the fee schedule introduction, amendments to the Illinois Workers’ Compensation Act 

ended balance billing.  As stated in the Fiscal Year 2005 Annual Report of the Illinois Workers’ 

Compensation Commission [9], effective July 20, 2005, “[a] provider cannot hold an employee liable 

for costs related to non-disputed services for a compensable injury and shall not bill or attempt to 
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recover from the employee the difference between the provider’s charge and the amount paid by the 

employer or insurer on a compensable injury.” 

In Illinois, an employee may choose any doctor or hospital.  The employee is entitled to two 

choices of medical provider and their respective chains of referrals.  These provisions were in place 

over the entire time window covered by this study; for details, see Illinois Workers’ Compensation 

Commission [7] [8].  More recently, upon approval by the Department of Insurance, the employer 

may sponsor a Preferred Provider Program (PPP).  Where implemented, the PPP is the employee’s 

first provider choice, by default.  By opting out of the PPP, the employee exercises his right on a 

second choice; the employee is then limited to one choice of doctor and subsequent referrals. 

The Illinois data set contains 73 observations prior to the fee schedule introduction and 59 

observations following it.  As with Tennessee, all pre-implementation observations are employed in 

the time series model that establishes the counterfactual for the third post-implementation month, 

and all but the first two post-implementation observations enter the time series model that removes 

the statistical noise from the observed severity and utilization indexes. 

4.2.1 All Categories 

For All Categories, Chart 5, top panel, depicts the Fisher price indexes of medical services, at 

reimbursed amounts and at fee schedule.  Again, the boxes (2006, January and April) indicate the 

final pre-implementation and the third post-implementation months.  And, as before, the price 

index at fee schedule starts in the third month of the fee schedule operation and is normalized to the 

price index at reimbursed amounts observed in that month. 

As the chart shows, the price index at reimbursed amounts closely tracks the price index at fee 

schedule during the first four years of the fee schedule operation.  Then, several months into the 

year 2009, the price index at reimbursed amounts starts climbing as the price index at fee schedule 

begins to soften, thereby opening up a gap between the two indexes.  As a result of the emerging 

difference in the rates of inflation, over the course of the year 2009, the price departure (displayed in 

the bottom panel) contracted from a value in the neighborhood of about minus 21 percent to 

approximately minus 17 percent. 

Comparing Chart 5 to the corresponding chart for Tennessee (Chart 1) reveals that for a given 

fee schedule, the price index at fee schedule is less stable in Illinois than in Tennessee.  This is 

because, in Illinois, the fee schedule varies by geozip.  As the geographic distribution of transactions 

varies from month to month, the average MAR for a given medical service may change as a result. 

Chart 6 depicts the severity and the utilization indexes in two panels.  Again, the two panels are 

drawn on the same scale and display the observed data (light gray) alongside the fitted (black) and 
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forecast (dark gray) values generated by the time series model.  For the third post-implementation 

month, the vertical distance between the observed value net of noise and the forecast indicates a 4.9 

percent drop in severity (top panel).  The change in utilization (bottom panel) is essentially nil (at 0.3 

percent).  By implication, the decline in the price index at reimbursed amounts equals 5.2 percent or, 

based on the sensitivity analysis, 5.3 percent. 

Chart 5: Illinois, Price Indexes and Price Departure, All Categories 

 

In the final pre-implementation month, the relative deviation of the reimbursed amounts from 

the MAR of the impending fee schedule—the ex ante price departure—ran at minus 14.7 percent.  

By comparison, the ex post price departure came to minus 18.8 percent (as shown in Chart 5, bottom 

panel).  This differential of the ex post price departure to the ex ante price departure is due to the 

mentioned 5 percent drop in the price level at reimbursed amounts.  Regarding the coverage of the 

fee schedule, 98.75 percent of the transaction volume in the pre-implementation month was going 

to be subject to fixed-value MAR. 

The utilization index displayed in Chart 6 (bottom panel) exhibits a marked seasonality, similar to 

what was observed for Tennessee.  It is evident from the chart that the seasonality in the severity 

index is more pronounced in the post-implementation time window.  This increase in the amplitude 

of the seasonal variation is a statistical artifact that arises from the multiplication with increasing 
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price index values.  For a higher level of the severity index, a given percentage of seasonal variation 

translates into a greater magnitude of absolute change.  A closer look at the utilization index (bottom 

panel) reveals no apparent increase in seasonality. 

Chart 6, bottom panel, demonstrates that, in Illinois, there is no leveling out of the consumption 

of medical services (per active claim) following the fee schedule introduction.  This lends support to 

the hypothesis that the receding utilization growth observed in Tennessee is related to the restriction 

of provider choice, rather than the physician fee schedule. 

Chart 6: Illinois, Severity and Utilization Responses, All Categories 

 

4.2.2 Physical Medicine 

The impact of the fee schedule introduction is exemplified for Physical Medicine.  As mentioned, 

Physical Medicine is a subcategory of the AMA category Medicine, defined by the CPT code range 

97001 through 97799.  In this category, the share of the transaction volume of the final pre-

implementation month that was going to be subject to the fee schedule equaled 99.5 percent. 

Chart 7 exhibits for Physical Medicine the price index at reimbursed amounts and at fee schedule 

(top panel), along with the price departure (bottom panel).  Following the initial price level decrease 

associated with the fee schedule introduction, the rate of inflation at reimbursed amounts fell short 

of the rate of inflation at fee schedule, thereby exposing a gap between the two indexes.  Then, after 
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being largely flat for Calendar Years 2007 and 2008, the price index at reimbursed amounts rose 

noticeably in 2009 before softening in the second half of 2010.  This surge in the price index in 

Physical Medicine contributed to the discussed rise in the price index for All Categories (Chart 5). 

Chart 7, bottom panel, depicts the price departure for Physical Medicine.  The run-up in the price 

level at reimbursed amounts from early 2009 to about mid-2010 manifested itself in a lessening of 

the price departure from a negative 15 percent to a mere negative 7.5 percent, approximately. 

Chart 7: Illinois, Price Indexes and Price Departure, Physical Medicine 

 

Chart 8 displays the severity (top panel) and utilization indexes.  Again, the fee schedule impact is 

measured by the vertical distance between the final value of the three forecast data points and the 

first fitted value available for the post-implementation time period—both values are from the third 

month of fee schedule operation.  This vertical distance between the observed value net of noise and 

the counterfactual indicates a 7.1 percent drop in severity (top panel) and a negligible 0.3 percent 

increase in utilization (bottom panel).  By implication, the decline in the price index at reimbursed 

amounts equals 7.3 percent.  Based on the sensitivity analysis, the price level decrease measures 4.1 

percent; the implied severity decline amounts to 3.9 percent. 
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The insignificant utilization responses in All Categories and Physical Medicine are in accord with 

similarly immaterial utilization effects (not shown) in Medicine overall, Evaluation and Management 

Services, and Radiology.  Only Surgery displays a material utilization increase, at 8.5 percent; this is 

in response to a 13.9 percent (sensitivity analysis: 8.6 percent) decline in the price level.  It is worth 

noting that Surgery is a comparatively sparsely populated service category (as measured by number 

of transactions, not dollars) and thus liable to a fair amount of statistical noise. 

Chart 8: Illinois, Severity and Utilization Responses, Physical Medicine 

 

4.3 Summary of Effects 

Table 1 summarizes the findings of the event study for All Categories.  The table exhibits the 

responses to the fee schedule introductions of severity, price level, and utilization.  Further, the table 

informs on the ex post price departure (defined as relative deviation of reimbursed amounts from fee 

schedule in the third month of fee schedule operation) as well as the ex ante price departure (which, 

by definition, is computed for the final pre-implementation month). 

Although Table 1 does not capture any potential impact of the fee schedule introduction that 

may have materialized following the third post-implementation, such residual effect may be gauged 

by studying Charts 2 (Tennessee) and 6 (Illinois). 
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Both fee schedule introductions elicit negative price level responses—these responses amount to 

minus 7.4 (7.4) percent for Tennessee and minus 5.2 (5.3) percent for Illinois, where the values in 

parentheses were obtained in a sensitivity analysis.  In Tennessee, the negative utilization effect may 

be associated with restrictions on provider choice that were implemented a year before the fee 

schedule introduction.  In Illinois, the utilization response is immaterial.  As a consequence, the 

severity responses that can be attributed with confidence to the fee schedule introductions are those 

associated with the price level. 

Table 1: Impact of Fee Schedule Introduction, All Categories 

 
Jurisdiction 

Effects 
(Percent Change) 

Price Departure 

(Percent) 
(Percentage 

Points) 

 Severity Price Level Utilization Ex Ante Ex Post Difference 

Tennessee –9.3 (–9.2) –7.4 (–7.4) –2.0 –15.7 –23.1 –7.4 

Illinois –4.9 (–5.0) –5.2 (–5.3)  0.3 –14.7 –18.7 –4.0 

Note: Values in parentheses pertain to the sensitivity analysis.  Calculations are based on unrounded 

numbers; consequently, the displayed values may differ from those obtained when performing the 

calculations on the displayed, rounded values.  The negative utilization effect in Tennessee may be 

related to restrictions on physician choice introduced in mid-2004. 

The negative price level responses indicate that the hypothesized anchoring effect does not 

dominate the opposing effect that originates in the price ceilings becoming binding constraints.  

Then again, as discussed for Evaluation and Management Services in the context of the Tennessee 

fee schedule introduction, a pronounced ex ante price departure may prompt an increase in the price 

index at reimbursed amounts. 

The ex ante price departures of the two jurisdictions are remarkably similar, measuring about 

minus 15 percent.  Yet, there is a considerable difference in the ex post price departures.  Whereas for 

Tennessee, the difference between the ex ante to ex post price departures measures 7.4 percentage 

points, for Illinois, it is 4.0 percentage points. 

The absence of a significant utilization response allows for a straightforward evaluation of fee 

schedule introductions, because it enables the decision-maker to focus on the price level impact.  

For an ex ante price departure in the neighborhood of minus 15 percent, the effect of the fee 

schedule introduction can be summarized by a price decline of between 5 and 7.5 percent.  As an 

alternative, the effect of the fee schedule introduction can be summarized in a drop in the price 

departure (from the ex ante value to the ex post value) by between 4 and 7.5 percentage points. 
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The discussed reduction in the price level informs on the initial, short-term effect of the fee 

schedule introduction.  The long-term, permanent effect is more difficult to establish, if only 

because there is more than one way of measuring it.  The long-term effect of the fee schedule 

introduction may be related to the permanence of the initial effect on the price level.  Alternatively, 

the long-term effect may be tied to a lasting reduction in the rate of inflation (compared to the rate 

that would be observed otherwise).  According to this latter definition, the long-term effect includes 

and extends beyond the permanence of the initial price level decrease.  It is important to note that a 

permanent non-increase in the rate of inflation (compared to what would be observed otherwise) is 

a sufficient condition for the initial effect on the price level to be permanent. 

It could be argued that the permanence of the initial price level effect can be read from the 

behavior of the post-implementation price departure.  Yet, even if the price departure remained at 

the ex post level (apart from short-term fluctuations), this would not constitute evidence of the initial 

effect being permanent.  This is because of the possibility of regulatory capture, as put forward by 

Stigler [24].  According to this theory of public choice, the regulated (here, the physicians) find ways 

of employing the regulators to their own economic benefit.  Specifically, as a result of regulatory 

capture, the fee schedule might become so accommodating over time that, despite a stable or even 

deepening price departure, the price index at reimbursed amounts grows as fast as it would absent 

the fee schedule.  Additionally, the price departure may remain stable as the fee schedule allows for a 

rate of inflation that, over time, erases the initial effect and restores the price level to what would be 

observed absent the cost containment measure.  Due to the possibility of a fee schedule being 

diluted as a result of regulatory capture, the magnitude of the price departure cannot serve as a 

measure of the permanence of the initial price level decrease. 

Research findings that point to the permanence of the effect of fee schedules on the price level 

of medical services provided by physicians have been published by Robertson and Corro [21] and, 

most recently, by Yang and Fomenko [26].  (The research report by Yang and Fomenko follows 

earlier editions, which offer similar findings.)  As discussed, Robertson and Corro compare workers 

compensation to Group Health and show that in jurisdictions without a fee schedule, medical prices 

in workers compensation tend to have a higher markup over Group Health.  Yang and Fomenko, in 

comparing 25 jurisdictions for the first half of 2011, demonstrate that the six non-fee schedule 

jurisdictions are among the seven states with the highest price level for nonhospital, nonfacility 

medical services delivered in the context of workers compensation.  Illinois is the only fee schedule 

jurisdiction that ranks with the set of non-fee schedule states. 

As mentioned, if the post-implementation rate of inflation is no greater than what would be 

observed absent the fee schedule, then this can be read as an indication of the permanence of the 

initial price level decrease.  Marked differences in the rates of price inflation for medical services 
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between fee schedule states and non-fee schedule states have been observed by Yang and Fomenko 

[26].  (Here again, the findings reported by Yang and Fomenko have been published in earlier 

editions of that research report.)  Yang and Fomenko present an annual price index for workers 

compensation-related nonhospital, nonfacility services for the time period 2002 through (the first 

half of) 2011.  The authors show that, among the 25 studied jurisdictions, the six non-fee schedule 

states are among the jurisdictions with a higher than average rate of inflation.  Similar evidence has 

been established by Schmid and Lord [23], who study medical services provided by physicians in the 

context of workers compensation for 32 states in the time period 2000 through 2010.  These authors 

show that states without fee schedules (or with charge-based fee schedules, where reimbursement is 

determined as a percentage of the charged amount) are liable to experience above-average rates of 

inflation. 

As pertains to the two jurisdictions studied here, the rates of inflation during the years following 

the fee schedule introduction are considerably below their pre-implementation values.  This also 

holds for the rates of inflation of the medical care components of the applicable regional CPI 

(regional M-CPI, for short).  For Tennessee, the pertinent Bureau of Labor Statistics region is the 

South; for Illinois, it is the Midwest. 

Table 2 exhibits the rates of inflation for the Fisher index at reimbursed amounts and for the 

applicable regional M-CPI.  The pre-implementation values of the price indexes run from January 

2000 through the pertinent final pre-implementation month, which is June 2005 for Tennessee and 

January 2006 for Illinois.  By comparison, the post-implementation price index series starts in the 

third post-implementation month and ends in December 2010.  The price indexes are not seasonally 

adjusted.  Technically, the rates of inflation are calculated as compound annual growth rates.  In a 

first step, the difference in the natural logarithms of the final and first monthly values of the 

applicable time window was divided by the fractional number of years that separates these two 

observations.  In the next step, this ratio was exponentiated and diminished by one. 

The impact of the fee schedule introduction on the rate of inflation is determined by means of a 

difference-in-differences approach.  First, for each inflation series, the pre-implementation values are 

subtracted from the corresponding post-implementation numbers.  Second, for every jurisdiction, 

the resulting difference for the Fisher price index is diminished by the difference obtained for the 

regional M-CPI. 



The Impact of Physician Fee Schedule Introductions in Workers’ Compensation: An Event Study 

Casualty Actuarial Society E-Forum, Spring 2013 30 

© Copyright 2013 National Council on Compensation Insurance, Inc.  All Rights Reserved. 

Table 2: Annual Rates of Inflation: Post-Implementation Compared to Pre-Implementation 

 
 
Jurisdiction 

Fisher Price Index 
at Reimbursed Amounts 

(Percent Increase) 
Regional M-CPI 

(Percent Increase) 
Difference in Differences

(Percentage Points) 

 Before After Before After  

Tennessee 1.5 0.6 4.0 3.5 –0.3 

Illinois 5.0 3.0 4.8 3.4 –0.6 

Note: The values for the difference in differences were computed from unrounded rates of inflation 

and, as a result, may disagree with the corresponding values obtained from the displayed rounded 

rates of inflation. 

As shown in Table 2, for both jurisdictions, the fee schedule introduction has contributed to a 

lasting reduction in the rate of inflation for medical services delivered by physicians in the context of 

workers compensation.  This reduction goes beyond what has been observed for medical care in 

general.  For Tennessee, the annual rate of increase in the price index of medical services provided 

by physicians is 0.3 percentage points lower than what would be observed without the fee schedule.  

For Illinois, the reduction in the annual rate of inflation amounts to 0.6 percentage points.  Although 

Illinois sustains the smaller decline in the price level, it does experience the larger decrease in the rate 

of inflation. 

5. CONCLUSION 

Event study methodology was employed to quantify the impact of physician fee schedule 

introductions on the price and quantity levels of medical services provided by physicians to workers 

compensation claimants. 

In accordance with previous studies of fee schedule introductions, no material and systematic 

increase in utilization related to this cost containment measure has been discovered.  The decrease in 

utilization that was estimated for Tennessee may be related to restrictions on provider choice that 

were introduced a year before the fee schedule was implemented.  By implication, the impact of a 

fee schedule introduction is largely confined to the price level response. 

In both jurisdictions, the short-term impact on the price level is substantial; more important, 

there is a weakening of the rate at which this price level subsequently increases.  In Tennessee, the 

price level declines by 7.4 percent and the annual rate of inflation lessens by 0.3 percentage points.  

By comparison, in Illinois, the price level dips by 5.2 percent and the annual rate of inflation slows 

by 0.6 percentage points.  Alternative to the change in the price level, the short-term effect of the fee 
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schedule introduction can be gauged by a change in price departure (from the ex ante value to the ex 

post value).  For Tennessee, the price departure expands by 7.4 percentage points and, for Illinois, it 

grows by 4.0 percentage points. 

For Evaluation and Management Services in Tennessee, the price level increases in the wake of 

the fee schedule introduction.  Possibly, this price level response may be due to an anchoring effect.  

Yet, no direct evidence in favor of this hypothesis was produced and, hence, competing hypotheses 

cannot be dismissed without further research. 

The analysis was unconditional in that there was no attempt to isolate the fee schedule impact 

from other cost containment measures that may have been implemented alongside.  Further, no 

economic or demographic differences across the two studied jurisdictions were accounted for.  This 

operational constraint originated in the small number of events available for the analysis.  But then, 

such dissimilarities in the legislative and economic environment between the two jurisdictions may 

account for the difference in the price level and inflation responses in the presence of nearly 

identical ex ante price departures. 
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6. APPENDIX 

6.1 Recoding Units of Service 

For some medical services, the supplied quantity of service is measured in number of minutes.  

Yet, the units of service, as laid down in the fee schedule, refer to the number time intervals, where a 

time interval is defined as a multiple of minutes.  Medical services where the units of service are 

defined in such a way are common in Anesthesia (not covered in this study) and Physical Medicine. 

In the employed data set, there were transaction records that appeared to report the number of 

minutes instead of the units of service.  Before subjecting these transactions to the data cleansing 

tools discussed below, an algorithm was applied for the purpose of recoding the reported units of 

service, if necessary.  First, if the reported units equaled 9 or less, the reported value was left in 

place.  Second, if the number of units reported was a multiple of 15, it was assumed that this 

reported value refers to the number of minutes.  Third, if the number of units reported was not a 

multiple of 15 but was a multiple of 10, it was again assumed that the reported value reflects the 

number of minutes.  Finally, if the reported value was greater than 9 but was not a multiple of 15 or 

10, the units of service were treated as unknown—this way, the transaction is excluded from the 

computation of the price fences detailed below, yet is submitted to the associated outlier detection 

and management. 

6.2 Outlier Detection 

Outlier detection is undertaken independently for each jurisdiction and calendar year.  At the 

center of the outlier detection approach is the schematic plot developed by Tukey [25].  The 

algorithm associated with this plot applies to reimbursement per unit of service on the natural log 

scale.  Percentiles are indicated by the letter p; upper case format indicates a percentile on the raw 

scale, whereas the lower case points to the logarithmic scale.  Outlier detection is performed on the 

level of the medical service and on the level of the service category.  Price fences are defined for the 

purpose of restating prices and quantities. 

For a given medical service, if P75≠P25, then the price fences are set to p75+0.6 and p25–0.6.  

Exceptions are transactions for which the paid-to-submit ratio is greater than 0.5; in these cases, the 

lower fence is set to p25–0.7.  Conversely, if P75=P25, then the price fences are set to p85+0.2 and p15–

0.2.  Transactions that fall inside the price fences of a given medical service make it into the 

calculation of the price fences at the level of the service category.  The upper fence at the level of the 

service category is defined as the maximum of p90+0.5 (where the percentile is based on the service 

category) and the maximum of the upper fences across all medical services (in that service category) 

that register at least 20 transactions in the applicable calendar year.  Similarly, the lower fence at the 
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level of the service category is defined as the minimum of p10–0.5 and the minimum of the lower 

fences across all medical services that account for at least 20 transactions. 

Transactions that are located inside the fences, both at the level of the medical service and the 

level of the service category, remain unedited.  These transactions enter the computation of the 

average price per unit of service and the median units of service per transaction for the applicable 

medical service in a given month. 

Medical services that register less than 12 records (in a given year and jurisdiction) are excluded 

from the analysis. 

6.3 Outlier Management 

Outlier management is undertaken on a calendar year basis, in keeping with the price fences, 

which were computed from data for the calendar year. 

Transactions that come with prices per unit of service above the upper fences of the applicable 

medical service or the overarching service category are reset to the mean price of this medical 

service; the units of service associated with these transactions remain unaltered. 

Transactions with prices per unit of service below the lower fences of the respective medical 

service or the applicable service category have their units of service restated based on the following 

process—that process also applies to transactions with unknown units.  First, the number of units is 

set to the median number of units per transaction for this medical service; this median number of 

units is typically unity.  Then, the price is recalculated based on the units of service thus restated.  If 

this recalculated price falls below the lower fences of the medical service or the service category, 

then the units of service associated with this transactions is set to unity.  Then again, the price is 

recalculated.  If this price still falls below any of the two applicable lower price fences, then the 

record is discarded as a nuisance transaction.  Conversely, if, during this iterative process, the 

recalculated price exceeds any of the two upper fences, then this price is reset to the mean of the 

applicable medical service and no further restatement is done. 

6.4 Tukey’s Schematic Plot (Boxplot) 

Chart A.1 depicts Tukey’s schematic plot, also known as box-and-whiskers plot or boxplot.  The 

objective of the boxplot is to report major location parameters (such as the median and the 25th and 

75th percentiles) and to identify outliers.  In this graph, the hinges that define the upper and lower 

limits of the box identify the inter-quartile range (IQR), which comprises 50 percent of the data.  

For the purpose of this study, the fences are defined on the logarithmic scale.  The upper fence 

signifies the sum of the 75th percentile and 0.6 on the natural log scale (which corresponds to 

multiplying the 75th percentile on the raw scale by 1.8, approximately).  The lower fence equals the 
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difference between the 25th percentile and 0.6 on the log scale (which amounts to dividing the 25th 

percentile on the raw scale by 1.8, approximately).  Values beyond the fences are considered outliers. 

Chart 9: Tukey’s Schematic Plot (Box Plot) 
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Applications of Convex Optimization in PremiumRating

Dimitri Semenovich

Abstract: In this paper we discuss the application of modern mathematical optimization tech-
niques to some of the common problems in insurance premium rating. e computationally
tractable setting of convex optimization [] is particularly attractive as it encompasses parame-
ter estimation in generalized linear models and offers means to address practical challenges such
as variable selection, coefficient smoothing, spatial and hierarchical priors, constraints on rela-
tivities and the time evolution of model parameters. Recent advances in modelling systems for
convex optimizationmake thesemethods not only eminently practical but also inmany respects
more flexible than what is presently offered by statistical soware.

Keywords: Convex optimization, generalized linear models, credibility, graduation, spatial
smoothing, dynamic regression, revenue management.

 I
In this paper we formulate several commonmodels arising in premium rating as convex optimiza-
tion problems and describe the use of constraints and regularization to address practical issues
such as variable selection, coefficient smoothing, hierarchical credibility, parameter evolution and
spatial priors in a unified framework. e resulting optimization problems can be solved using ef-
ficient algorithms [] developed for convex programming.

Many classical actuarial techniques such asWhittaker graduation and various credibilitymod-
els can be interpreted as performing regularized or constrained fitting [, , ]:

minimize
w

L(y;w) +R(w) minimize
w

L(y;w)

subject to R(w) ≤ ϵ,
()

whereL(y;w) is the term penalizingmodel error relative to the data y and the regularization term
R(w) measures the lack of smoothness or some other desired property of the model w. While
not a part of the classical theory, regularization has important implications for the practical use
of generalized linear models (GLMs), by now a nearly universal tool in premium rating. Namely,
rather than carrying out manual feature design and selection it may oen be far more effective to
control the degrees of freedom of the model by imposing penalties or constraints on the coeffi-
cients. Recent advances in solvers and open source modelling soware for convex optimization
[] have made it exceedingly easy to develop such custommodels.

e idea of regularization itself has been developed independently many times in many dif-
ferent fields, e.g. the work of A. Tikhonov on operator equations in the s []. It is also the
principal reason for the remarkable performance of the “support vector machines” family of algo-
rithms which implicitly generate feature spaces of high dimension through the kernel functions
[].

Video lectures for the Stanford course EEA Convex Optimization, made publicly available via the Stanford En-
gineering Everywhere initiative, are highly recommended as background for this paper.


CAS E-Forum, Spring 2013 
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In recent years there has been a resurgence of interest in a particular form of regularization
known as “ℓ1-norm” regularization. Its early applications appeared in geophysics in s []
where its sparsity inducing properties had been employed for signal recovery. Around the same
time in the actuarial literature Schuette proposed an ℓ1-norm formulation of the graduation prob-
lem [] which allowed it to be solved by linear programming; this idea was further developed in
econometrics as quantile smoothing splines []. It was not until much later that ℓ1-norm regular-
ization had become a widely adopted technique in signal processing with applications including
computing transform coefficients (“basis pursuit”) [] and signal recovery from incompletemea-
surements (“compressive sensing”) []. In statistics, the idea of ℓ1-norm regularization was pop-
ularized by the well-known “lasso” procedure [] for linear regression and its many extensions
[, , , ]. While for a long time ℓ1-norm regularization has been viewed as little more than
a useful heuristic in optimization, recent theoretical results (e.g. []) have provided surprising
guarantees on its performance in certain restricted settings.

What the above models have in common is that they all, together with many others [], can
be formulated as convex optimization problems. Recognizing convexity and its implied proper-
ties offers a unifying perspective on a collection of seemingly unrelated ideas frommany different
fields and dramatically reduces the need to develop special purpose algorithms as many instances
can be handled by standard solvers. Moreover, convex problems constitute, perhaps, the widest
known class of optimization problems for which exist efficient algorithms guaranteed to find a
global solution, making convexity especially desirable when reliable numerical solutions are a re-
quirement.

is paper consists of twomain parts. In the first halfwe outline the basics ofmathematical op-
timization and convex calculus and briefly describe the connection between convex optimization
and statistical estimation. In the second part we focus on the application of convex optimization
to some of the problems in technical premium rating. We discuss variable selection, curve fit-
ting, spacial clustering and smoothing, additivemodels, hierarchical credibility, time evolution of
model parameters and stochastic optimization.

. Related work
A number of unifying approaches along similar lines have been previously proposed in the actu-
arial literature but using as the foundation algorithmic developments from statistics, rather than
mathematical optimization. ese include Bayesian multilevel extensions of generalized linear
models [, ] and the so called “mixed effect” models []. Unlike convex optimization, how-
ever, these have arguably less broad scope of applicability (e.g. ability to handle constraints is
lacking) and do not take into account computational complexity of the proposed methods.

It should be noted at the same time that stateful sampling algorithms such as variants of geo-
metric Markov chain Monte Carlo [], used for inference in Bayesian models, bear close resem-
blance to iterative optimization methods and their hybridization is an active area of research, e.g.
[]. It seems not unreasonable to hope that one day an effective synthesis will be attained.

emost complete treatment of actuarial models from the perspective of convex optimization
was developed in a visionary paper of Brockett [], albeit in the dual form and some  years
before advances in algorithms and computing power have made such schemes truly practical for
all insurance applications.

In particular it is worth noting that one of many fields where convex analysis has proven to be the key tool is mathe-
matical economics; see [] for an accessible introduction from this point of view.

e equivalence between “information theoretic” maximum entropy principle and maximum likelihood estimation
for exponential families is discussed in standard references, e.g. [].

 Casualty Actuarial Society Forum, Spring 
CAS E-Forum, Spring 2013 
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 O   

. Mathematical optimization
A constrained optimization problem has the the following form:

minimize
x

f0(x)

subject to fi(x) ≤ bi, i = 1, . . . ,m.
()

e vector x ∈ Rn is the optimization variable, the function f0 : Rn → R is the objective function,
the functions fi : Rn → R, i = 1, . . . ,m are the inequality constraint functions , and the constants
b1, . . . , bm are the limits, or bounds, for the constraints. A vector x∗ is called a solution or a global
minimum of the optimization problem () if no other vector satisfying the constraints achieves
a smaller objective value, that is for any z ∈ Rn with f1(z) ≤ b1, . . . , fm(z) ≤ bm we have f0(z) ≥
f0(x

∗).

.. Convex optimization

While the general problem () is computationally completely intractable, we can mitigate this by
restricting the class of functions f0, . . . , fm. For example, if we take the objective and the con-
straints to be linear, the optimization problem () is called a linear program and can be written
as:

minimize
x

cTx

subject to aTi x ≤ bi, i = 1, . . . ,m.
()

Despite the seeming simplicity surprisingly many problems in business operations and engineer-
ing (e.g. optimal network flow) can be expressed in this form []. ere are also applications in
statistics and econometrics (least absolute deviations, quantile regression []). e subject was
developed in s and s by L. Kantorovich andG. Dantzig. e latter introduced the simplex
algorithm for solving linear programs that for many applications remains unsurpassed to this day
and can routinely solve problems with millions of variables and constraints.

A less restrictive class of tractable optimization problems is the one in which the objective and
constraint functions are convex, namely:

fi(αx+ βy) ≤ αfi(x) + βfi(y) ()

for all x,y ∈ Rn and all α, β ∈ R with α + β = 1, α ≥ 0, β ≥ 0. Convex functions have the
essential property that every local minimum is also a global minimum. A function g(x) is called a
concave function if −g(x) is convex. It is easy to check that linear functions are convex (they are
also concave) and therefore linear programs are a special case of convex optimization problems.

ere are efficient polynomial time algorithms (e.g. so called interior point methods []) for
global minimization of convex functions subject to convex inequality constraints. Indeed convex
problems are effectively the widest class of optimization problems for which such algorithms exist
at this time. And while convexity is not an essential property of a successful optimization model,
it is worthwhile to be aware of the trade-off between efforts to make a model more realistic and
ensuing difficulties with numerical methods. To quote Y. Nesterov [], one of the key figures in
the development of convex programming:

Every year I meet Ph.D students of different specializations who ask me for advice
Equality constraints are omitted for brevity but are implied, i.e. an equality constraint fi(x) = 0 can be represented

as fi(x) ≥ 0 and−fi(x) ≥ 0.

Casualty Actuarial Society Forum, Spring  
CAS E-Forum, Spring 2013 
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on reasonable numerical schemes for their optimization models. And very oen they
seem to have come too late. In my experience, if an optimization model is created
without taking into account the abilities of numerical schemes, the chances that it will
be possible to find an acceptable numerical solution are close to zero.

.. Convex calculus

It is generally labor intensive to check convexity of a function directly from the definition. Inmost
cases it ismuch easier to seewheteher a given function is built up of known convex functions using
transformations that preserve convexity, just as classical calculus permits effective computation
without explicitly working with infinite series.

Familiarity with the basics of convex analysis and a few heuristics will permit effective creation
of custommodels formany applications. e tedious (andultimatelymechanical) task of convert-
ing the resulting formulation to one of standard forms understood by solvers can be handled by
the modelling system [].

We describe some convex functions of one and many variables together with operations that
maintain convexity inAppendixA.Muchmore detailed treatments can be found in [, , , ].

. Convex optimization and statistical estimation
Statistical inference can oen reduced to solving certain optimization problems. Belowwe discuss
two such principles.

.. Maximum likelihood and loss minimization:

A familiy of probability density functions on Rn denoted p(y;w) with parameter vectorw ∈ Rm

is called a likelihood function when taken as a function of w only for a fixed y. It is, however,
oenmore convenient to deal with the logarithmof the likelihood function or the log-likelihood,
log p(y;w). e negative log-likelihood is sometimes also called the “loss function”:

L(y;w) = − log p(y;w). ()

It is worth noting, however, that not all loss functions are directly motivated by a priori distribu-
tional assumptions e.g. quantile loss ().

A remarkably effectivemethod for estimating the parameterw given an observation y consists
of maximizing the log-likelihood (equivalently, minimising the loss function) with respect tow:

w∗ = argmin
w

L(y;w). ()

Inmany practical applicationswe have prior information that can be represented in the formof
constraints on the admissible values ofw. ese constraints can be defined explicitly by specifying
a set C ⊆ Rm such thatw ∈ C or incorporated into the likelihood function by setting p(y;w) = 0

and correspondingly L(y;w) = ∞ for all w /∈ C. When C is given, the constrained maximum
likelihood estimation problem can be written as follows:

minimize
w

L(y;w)

subject to w ∈ C.
()

While computationally intractable in general, maximum likelihood estimation is reduced to a
convex optimization problem if the loss function L(y;w) is convex inw and C is a convex set.

 Casualty Actuarial Society Forum, Spring 
CAS E-Forum, Spring 2013 



Conex optimizion in premium ring

.. Bayesian estimation

Maximum likelihood procedure has an analogue in the Bayesian setting known as maximum a
posteriori estimation. Here the parameter vectorw and the observation y are both considered to
be random variables with a joint probability density p(y,w). e density ofw is then given by

p(w) =

∫
p(y,w) dy1 . . . dyn. ()

is is referred to as the prior distribution ofw and represents the information aboutw before y
is observed. We can similarly define p(y), the prior distribution of y. e conditional probability
density of y givenw is as follows:

p(y|w) =
p(y,w)

p(w)
. ()

Being a function ofw, it is equivalent to the likelihood function in employed in maximum likeli-
hood estimation. e conditional probability density ofw given y can then be written as:

p(w|y) = p(y|w)p(w)

p(y)
()

If we substitute the observed value of y into p(w|y) we obtain the posterior density of w, repre-
senting the updated information aboutw. emaximum a posteriori estimate ofw is the one that
maximizes the posterior probability (p(y) does not depend onw and can be omitted):

w∗ = argmax
w

p(w|y) = argmax
w

p(y|w)p(w). ()

Aer taking the logarithm the expression forw∗ can be written as:

w∗ = argmax
w

log
(
p(y|w)p(w)

)
= argmin

w
− log

(
p(y|w)

)
− log

(
p(w)

)
. ()

is is equivalent tominimising a data dependent loss function− log (p(y|w))with the additional
regularization term − log (p(w)).

It is also a basic consequence of Lagrange duality [, Chapter ] that under somemild regular-
ity conditions () has the same solution w∗ as the following constrained optimization problem
for some instance dependent value of ϵ:

minimize
w

− log
(
p(y|w)

)
subject to − log

(
p(w)

)
≤ ϵ.

()

For example if the prior density of w has support over a a set C and is uniform then finding the
maximum a posteriori estimate is the same as loss minimization subject to the constraintw ∈ C.

For any estimation problem with a convex loss function we can add a convex regularization
term (corresponding to a prior density on w that is log-concave) and the resulting optimization
problem will be convex.

. Convex loss functions
A large number of statistical problems can be reduced to minimizing convex loss functions, with
conditional exponential families being perhaps the key example. Several approaches not based
directly on the maximum likelihood principle are also mentioned.

Casualty Actuarial Society Forum, Spring  
CAS E-Forum, Spring 2013 
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.. Conditional exponential families

It is a standard result that the log-likelihood of distributions in the exponential families is concave
in the natural parameters [, ]. Below we discuss convexity properties of conditional exponen-
tial families, closely related to generalized linear models.

Consider an exponential family distribution on Y × X :

p(y, x|w) = h0(y, x) exp
( m∑

k=1

wkϕk(y, x)−A(w)
)

= h0(y, x)
exp

(∑m
k=1 wkϕk(y, x)

)
exp

(
A(w)

) .

()

In this context the non-negative function h0 is the base or carriermeasure,w ∈ Rk are the model
parameters, ϕ(y, x) = [ϕ1(y, x), . . . , ϕk(y, x)]

T is the vector of sufficient sttics and A(w) is the
logarithm of the normalizing constant or the log-partition function, namely:

A(w) = log
(∫

(y,x)∈Y×X
exp

( m∑
k=1

wkϕk(y, x)
)
h0(y, x) dx dy

)
, ()

with summation replacing the integral for discrete distributions. For reasons such as data and
computational limitations, we may instead wish to directly estimate the conditional probability:

p(y|x,w) = h0(y, x) exp
( m∑

k=1

wkϕk(y, x)−A(w|x)
)
, ()

with conditional log-partition function given by:

A(w|x) = log
(∫

y∈Y
exp

( m∑
k=1

wkϕk(y, x)
)
h0(y, x) dy

)
. ()

Note that the sufficient statistics that do not depend on y can effectively be omitted as the choices
of associated parameters do not influence the conditional densities. Given a collection of inde-
pendent samples (yi, xi) ∈ Y ×X for i = 1, . . . , n, the joint conditional probability can be written
as:

n∏
i=1

p(yi|xi,w) =
n∏

i=1

(
h0(yi, xi) exp

( m∑
k=1

wkϕk(yi, xi)−A(w|xi)
))

, ()

giving rise to the following maximum log-likelihood estimation problem to find parametersw:

minimize
w

n∑
i=1

(
A(w|xi)−

m∑
k=1

wkϕk(yi, xi)
)
. ()

e above objective is convex being a sum of linear terms and the convex log-partition functions.
e latter are convex inw by an extension of the so max rule (see A.).

In this formulationY is not restricted to be equal toR or to a small set of discrete outcomes but
can also represent more complex structured objects, e.g. all possible parts of speech assignments
for a particular sentence. is type of models is commonly referred to as a conditional random
field [] and is likely to prove quite fruitful in insurance applications.

To recover the (now classical) generalized linear models ofWedderburn and Nelder, consider
At least in computer science literature on “machine learning” (a variant of computational statistics with a strong focus

on out of sample performance) and natural language processing.

 Casualty Actuarial Society Forum, Spring 
CAS E-Forum, Spring 2013 
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the case whenX = Rk, the carrier measure h0 does not depend on x and with a particularly simple
choice of sufficient statistics:

ϕk(y,x) = yxk. ()

We can then rewrite () as a single parameter exponential family with respect to wTx in the
following way:

p(y|x,w) = p(y|wTx)

= h0(y) exp
(
ywTx−B(wTx)

)
,

()

with the log partition function:

B(θ) = log
(∫

y∈Y
exp

(
θy

)
h0(y) dy

)
()

and giving rise to the following maximum likelihood parameter estimation problem:

minimize
w

L(y;Xw) =
n∑

i=1

(
B(wTxi)− yiw

Txi

)
. ()

e usual relation between the natural parameter and the expected value of y obtains:

E(y|x,w) = ∇θB(wTx), ()

with∇θB
−1 being the canonical link function.

ere are two remaining incompatibilities between conditional randomfields and generalized
linear models, however. Firstly GLMs are based on the so called exponential dpersion families
[]:

p(y|x,w, λ) = h0(y, λ) exp
(
λ
(
ywTx−B(wTx)

))
, ()

rather than exponential families considered up to this point.
For the fixed dispersion parameter σ2 = λ−1 this class of models coincides with single pa-

rameter exponential families. is is oen the case, e.g. when σ2 represents a known number of
observations for the binomial distribution. If σ2 is not known and is to be estimated, the resulting
log-likelihood is not in general jointly concave in w and σ2, unlike that for conditional random
fields. One way to overcome this limitation is to consider the overlapping class of two parameter
exponential families, which includes many standard distributions and also provides means to deal
with overdispersion [].

Another difficulty is with regard to the link function - convexity of the negative log-likelihood
does not necessarily hold for choices other than the canonical link. Even in this case, however, for
all of themodels described in this paper local solutions can be obtained using sequential quadratic
approximation (variants of which are known as iteratively reweighted least squares and Fisher
scoring). It is worth remembering that none of the methods implemented in existing statistical
soware provide guarantees of global optimality in this situation either.

Convex formulations for parameter estimation in some common GLMs are shown in Ap-
pendix B.

.. Huber loss

Huber loss function [] is oen used to make least squares estimates more robust to outliers, see
also [, Chapter ] for an illuminating informal discussion. It agrees with the squared ℓ2-loss ()
for |u| < M and for |u| ≥ M the Huber loss function reverts to linear growth which gives lowest

Casualty Actuarial Society Forum, Spring  
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attainable sensitivity to outliers while still maintaining convexity.

L(y;Xw) =
n∑

i=1

ϕ(yi −wTxi), ϕ(u) =

{
u2, |u| < M

M(2|u| −M), |u| ≥M.
()

.. uantile loss

One interpretation of the least squares procedure () is that it estimates the conditional mean
of yi given the data vector xi. Regression with the asymmetric quantile [] loss function ρτ on
the other hand results in estimates approximating the conditional τ -th quantile of the response
variables yi:

L(y;Xw) =
n∑

i=1

ρτ (yi −wTxi), ρτ (u) =

{
τu, u > 0

−(1− τ)u, u ≤ 0.
()

When τ is equal to 0.5 and corresponds to the median, quantile regression is equivalent to the
method of least absolute deviations which estimates w by seeking to minimize 1

2∥y −Xw∥1. We
should note that quantile regression appears quite attractive for insurance applications [] as
it can provide a non-parametric estimate of the full conditional distribution of the dependent
variable and can deal with such issues as concetration of probability mass at a certain point. In
addition to directly modelling claim costs per policy, it may also be applicable in situations when
mean of the dependent variable is not easily interpreted, e.g. when fitting a model to a sample of
competitor rates.

 Applications in premium rating

. Variable selection
One compelling application of constrained parameter estimation is variable selection. Consider a
regression type problem with an arbitrary convex loss function L(y;Xw) where y is the vector of
response variables,X is the designmatrix andw a vector of parameters to be estimated. is can be
accomplished by restricting the ℓ1-norm of the coefficient vector (assuming that the explanatory
variables are standardized with mean 0):

minimize
w

L(y;Xw)

subject to ∥w∥1 ≤ ϵ.
()

is generally results in a sparse estimate w∗ with the number of non zero entries controlled by
the magnitude of ϵ. It is possible to motivate this formulation as a convex approximation (or
relaxion) of the computationally intractable best subset selection problem []. Using an ℓ1-
norm penalty to obtain a sparse solution has been a well known heuristic in optimization and its
applications going back at least to the s [, ]. Itwas popularized in the statistics literature as
the “lasso” byTibshirani []. Under somemild conditions the above problem canbe equivalently
formulated as:

minimize
w

L(y;Xw) + λ∥w∥1 ()

where λ ≥ 0 corresponds to the optimal Lagrange multiplier associated with the inequality con-
straint in (). In this form the “lasso” procedure has a Bayesian interpretation as a maximum a
posteriori estimate with a Laplacian prior on w with mean zero and variance 2

λ2 . e value of λ
controls the sparsity ofw∗ and can be chosen via cross-validation.

 Casualty Actuarial Society Forum, Spring 
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Figure : Le: Solutions of optimization problem () for different choices of D - “fused lasso”,
D(1,n) (top) and “ℓ1-trendfiltering”,D(2,n) (bottom). Right: Solutions of theWhittaker graduation
problem () with the same choices ofD. We set λ to give the same squared error ∥y − w∥22 as the
corresponding solutions on the le.

In the presence of correlated covariates “lasso” will tend to select only one of them. To alleviate
this problem we can trade off between penalising ℓ1 and squared Euclidean norms ofw:

minimize
w

L(y;Xw) + λ
(
α∥w∥1 + (1− α)∥w∥22

)
, ()

where 0 ≤ α ≤ 1. is method is known as “elastic net” [] in the statistics literature. e
“elastic net” performs variable selection while at the same time pushing together coefficient values
of correlated variables. Indeed, for α = 0 it is equivalent to ridge regression, a classical procedure
for dealing with collinearity:

minimize
w

L(y;Xw) + λ∥w∥22, ()

see [] for connections with credibility.

. Graduation or curve fitting

.. One dimensional data

Before we discuss further extensions to generalized linearmodels wemotivate our approach by ex-
amining the classical setting of non-parametric graduation. e goal of the graduation procedure
is to smooth a sequence of observations y = [y1, y2, . . . , yn]

T which are usually indexed by time or
age. As pointed out in [], as early as  Bohlmann had proposed [] to perform graduation
by solving the following convex optimization problem:

minimize
w

∥y −w∥22 + λ∥Dw∥22, ()
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Figure : Le: Original residuals (motor portfolio). Center: Solution to () using the incidence
matrix of the nearest neighbors graph for regularization. Right: Solutionusing the graphLapla-
cian.

with λ ≥ 0 andD = D(1,n) being the (n− 1)× n first order finite differences matrix:

D(1,n) =


−1 1

−1 1

· · ·
−1 1

 . ()

Heuristically, the “fidelity” term ∥y − w∥22 encourages the solution w to be close to the original
datay and the smoothness term ∥D(1,n)w∥22 penalizes non-zero entries ofD(1,n)w , first order finite
differences (or the discretized first derivative) of w. e value of the parameter λ determines the
relative importance of the smoothness term. By Lagrange duality we can obtain the same solution
as for () with any value of λ ≥ 0 by solving either of the following constrained optimization
problems for some values of ϵ1 and ϵ2:

minimize
w

∥y −w∥22

subject to ∥Dw∥22 ≤ ϵ1

minimize
w

∥Dw∥22

subject to ∥y −w∥22 ≤ ϵ2,
()

i.e. the objective and the constraint can be freely interchanged.
Bohlmann’s procedure () can be extended to penalize k-th order finite differences. In this

case the k-th order finite differences matrixD(k,n) ∈ R(n−k)×n can be defined recursively:

D(k,n) = D(1,n−k)D(k−1,n), k = 2, 3, . . . ()

e second order finite differences matrix would then, for example, is as follows:

D(2,n) =


−1 2 −1

−1 2 −1

· · ·
−1 2 −1

 . ()

Whittaker [] had described the underlying probabilistic model and an approximate solution
method for the case of third order differences and weighted fidelity term. A Bayesian interpreta-
tion of Whittaker graduation is also given by Taylor []. Among many extensions toWhittaker
graduation most relevant to the present discussion are the work of Schuette [] and Chan et
al. [, ]. In his remarkable paper, Schuette proposed the formulation using ℓ1-norm penalties
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(weights omitted to simplify presentation):

minimize
w

∥y −w∥1 + λ∥D(k,n)w∥1, ()

Aer applying a standard transformation this optimization problem can be reformulated as a lin-
ear program. In the discussion following [], S. Klugman had pointed out that the method at-
tempts to make most of the entries of D(k,n)w (or k-th order differences ofw) zero but several of
them could be large. is “sparsity inducing” property of ℓ1-norm penalty motivates its use in the
“lasso” variable selection procedure .

Chan et al. [] show that for p, q ∈ {1, 2,∞} the mixed ℓp and ℓq norm graduation problem:

minimize
w

∥y −w∥p + λ∥D(k,n)w∥q, ()

canbe formulated as a linear programwhenever p, q ∈ {1,∞} and as a quadratic programwhenever
either p or q is 2.

Smoothing techniques equivalent toWhittaker graduation are known under different names
in many fields e.g. “Hodrick-Prescott filter” in economics []. More recently, a variant of ():

minimize
w

∥y −w∥22 + λ∥D(1,n)w∥1, ()

with p = 2 (or equivalently squared ℓ2-norm) and q = 1 has been popularized in applied statistics
literature as “fused lasso” []. In signal processing the same formulation is called “total varia-
tion denoising”. is procedure usually gives a piecewise constant solutions w∗ i.e. discrete first
derivative D(1,n)w∗ has mostly zero entries (see top le section of Fig. ). Similarly, using second
order differencesD(2,n) oen results in a piecewise linearw∗ (see bottom le panel of Fig. ) and
has been described as “ℓ1 trend filtering” [] and “quantile splines” [], the latter replacing the
quadratic term with quantile loss. ese are effective approaches to change point detection and
are considerably simpler than many methods proposed to date.

.. Multidimensional data, spatial smoothing and clustering

We can also apply ℓq-norm penalized formulation () in situations when the samples y are over a
regular grid or indeed an arbitrary graph (e.g. a k-nearest neighbors graph for objects embedded
in a metric space).

To obtain a piecewise constant solution we can use q = 1 and the graph incidence matrix for
regularization (instead of the first order finite differences matrixD(1,n) in one dimensional case).
e incidence matrix A for a graph with n nodes and m edges is a m × n matrix, with each row
representing an edge and composed of a 1 and a −1 in the columns corresponding to the two
connected nodes and zeroes elsewhere. See Figure  for an example.

To get an equivalent of graduation with second order differences over a regular grid we can
consider horizontal and vertical second order differences. As in the one dimensional case, we
minimize a weighted sum of the fitting error and,for q = 1, a penalty on absolute value of slope
changes in the horizontal and vertical directions. e resulting solution tends to be affine over
connected regions. e boundaries between regions can be interpreted as curves along which the
gradient of the underlying function changes quickly. e approach can not be extended directly
to arbitrary graphs. Instead we can use the suitably normalized graph Laplacian (which can be
interpreted as a discretization of the Laplace operator) defined as:

L = ATA. ()
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..

1

.

2

. 3. 4.

5

A =


1 −1 0 0 0
0 1 −1 0 0
0 0 −1 1 0
0 0 −1 0 1

 L = ATA =


1 −1 0 0 0

−1 2 −1 0 0
0 −1 3 −1 −1
0 0 −1 1 0
0 0 −1 0 1


Figure : A simple directed graph (le), its incidence matrix A (center) and Laplacian L (right).

Figure  shows the results of ℓ1-norm spatial smoothing applied to geocoded residuals using the
incidencematrix of 10 nearest neighbors graph and its Laplacian. e former provides a piecewise
constant solution over connected regions, where the regions with the constant fitted value can be
interpreted as clusters, and the latter a piecewise affine solution. In the actuarial literature the use
of Whittaker graduation to perform spatial smoothing with irregular regions has been proposed
by Taylor [].

It is worth pointing out that the formulation () is in fact quite general, given a free choice of
matrix D, as it can viewed as a reparametrization of regularized regression. So for the squared ℓ2
norm penalty the following problems are equivalent (taking a = Xw and providedX has full row
rank):

minimize
w

∥y −Xw∥22 + λ∥w∥22, minimize
a

∥y − a∥22 + λ∥a∥2K , ()

where ∥a∥2K = aTKa = ∥Da∥22 forK = (XXT )−1 = DTD. e second form is knownas “Gaussian
process regression” [], or “kriging”[] in geostatistics literature.

. Additive models
Additive models were first introduced, perhaps, by Ezekiel in s [] and extended by Hastie
some years later [, ]. Generalized linearmodels formpredictions based on a linear function
of the features:

g(Ey) = w0 + w1x1 + w2x2 + · · ·+ wmxm, ()

where xi ∈ R, i = 1, . . . ,m are explanatory variables, g is the link function and µ is the expected
value of the dependent variable y. Additive models replace the linear combination with a sum of
arbitrary functions of explanatory variables:

g(Ey) = w0 + f1(x1) + f2(x2) + · · ·+ fm(xm). ()

e richer class of models can lead to overfitting without suitable regularization. e latter is
usually achieved by requiring the functions fi to be (piecewise) smooth.

A similar approach is oen followed in the practical applications of GLMs. Continuous vari-
ables are discretized into a number of bins. For ordered categorical variables, “natural” levels can
be used or if the number of levels is deemed too large, binning is applied to reduce the number of
distinct levels. If the total number of bins is not controlled this approach can lead to overfitting
and poor predictive performance so it is a standard practice to examine the initial fit and then
either manually reduce the number of categories or select a suitable collection of basis functions
(e.g. linear or cubic splines) [].

We observe that it is possible to largely automate this process by casting it into the convex
optimization framework and taking advantage of regularization (see Figure  for an example). Let
X ∈ Rn×m be the design matrix for the original problem, then we follow the standard procedure
and transform thedata bybinning each feature into k intervals of equal length (we assume the same
number of intervals for every feature for simplicity). is gives a new design matrix X ′ ∈ Rn×km
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Figure : Le: e additive effect of sum insured on claims frequency in a motor portfolio. e
outer band shows the 90% confidence interval calculated via the bootstrap. Right: e additive
effect of policyholder age. e anomaly around age 45 could be, for example, due to teenage
children driving the family car (also see Figure ).

and a new parameter vectorw ∈ Rkm, withwi ∈ Rk:

X ′ =
[
X ′

1 , . . . , X ′
m

]
, w =

 w1

· · ·
wm

 ()

whereX ′
p is defined as follows (with [X]i,j denoting xij):

[X ′
p]i,j =

{
1, [X]i,p falls into the j-th bin
0, otherwise

()

Each observation is now transformed into a sparse vector of dimension kmwithmnon-zero terms.
While we lose some information about the features, we can nowmodel non-linear effects in each
coordinate. We can write down the parameter estimation problem as:

minimize
w

L(y;X ′w)

subject to ∥Dw∥q ≤ ϵ
()

or in the equivalent Lagrangian form for some problem specific value of λ:

minimize
w

L(y;X ′w) + λ∥Dw∥q ()

where L(y;X ′w) is an exponential family negative log-likelihood or some other convex loss func-
tion and D is a block matrix which evaluates discretized derivatives of the coefficients for each
binned explanatory variable:

D =


D1

D2

· · ·
Dm

 . ()

As shown in section ., we can choose appropriateDi depending on the structure of the problem
and our objectives. Finite difference matrices of up to third order are likely to be sufficient for
most applications. e parameter λ can then be chosen by cross-validation. Sometimes itmay also
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Figure : Le: Sum insured vs. age interaction for claim frequency in a motor portfolio (same
data as Figure ) using the incidence matrix penalty (“fused lasso”). Right: Same interaction but
penalising the second order discrete derivative in both coordinates.

be appropriate to introduce independent smoothing parameters (but will make their estimation
more difficult):

minimize
w

L(y;X ′w) + λ1∥D1w1∥q + . . . + λm∥Dmwm∥q. ()

Notably we can still perform variable selection analogous to the standard ℓ1-norm regularisation
() by adding a “group lasso” penalty []:

minimize
w

L(y;X ′w) + λ∥Dw∥q + µ
m∑
i=1

∥wi∥2. ()

Here the term∑m
i=1 ∥wi∥2 encourages the individual components ofw to go uniformly to zero as

the parameter µ is increased.

.. Variable interactions

In a Gaussian additive model with identity link function the effect of all the explanatory variables
is a sum of their individual effects. Individual effects show how the expected response varies as
any single explanatory variable is changed with the others held constant at arbitrary values. For
example in order to maximize the expected response we only need to separately maximize each of
the component functions of the additive model.

In general there are no guarantees that an additive model will provide a satisfactory fit in any
given situation. Non-additivity means that, as one explanatory variable is varied, the effect on the
expected response depends on the fixed values of the other variables. Below is an example of how
we would change equation () if the model is non-additive in variables x1 and x2:

g(µ) = w0 + h(x1, x2) + f3(x3) + · · ·+ fm(xm). ()

We can model non-additivity by including the corresponding interactions. Using the notation
from equation  we can define the interactionX ′

(1,2) as:

[X ′
(1,2)]i,∗ = [X ′

1]i,∗ ⊗ [X ′
2]i,∗, ()

where e.g. [X ′
1]i,∗ denotes the i-th row ofX ′

1 and ⊗ is the Kronecker product.
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In the resulting model, we can penalize first, second or higher order derivatives in x1 and x2
coordinates (see Figure ), cf. smoothing over a regular grid in section (.). Another possibility
is to work with the graph Laplacian, which in this case has a particularly simple form:

L(1,2) = I ⊗D′ +D′ ⊗ I, ()

withD′ a k × k variant of the second differences matrixD(2,k) with zero padding.

.. Spatial smoothing and clustering

As geographic regions are not usually arranged in a regular grid the approach in the previous sec-
tion is not directly applicable for spatial smoothing. Instead, we can introduce indicator variables
for each geographic grouping present in the data (postcode, census zone or even unique coor-
dinates) and use a suitably constructed graph representing distance and adjacency information
for regularization. Depending onwhether we use the graph incidencematrix or the Laplacian, for
q = 1we can obtain either a piecewise constant or a smoothly varying surface (see Figure ) jointly
with the other model parameters:

minimize
w

L(y;X ′w) + λ ∥Dw∥1 , ()

whereD is a block diagonal matrix (cf. equation ) and one of the blocks is either the aforemen-
tioned graph incidence matrix or the graph Laplacian. As before, the value of λ can be chosen by
cross-validataion.

. Kalman filter and dynamic models
Kalman filter [] and related ideas have played a central role in the development of state space
methods in engineering control through out s (culminating in the linear quadratic Gaussian
theory). Remarkably, the first practical application of the Kalman filter was to improve the ac-
curacy of navigation for the Apollo program, quickly followed by adoption for a wide range of
aerospace problems. In these applications the goal is typically to track the “state” of a missile or
a spacecra obeying Newtonian dynamics. e state vector would contain the current position
together with velocity and acceleration vectors and the goal would be to repeatedly re-estimate
the state using measurements coming in from a range of sensors, such as inertial, optical, ground
based radar etc.

Kalman filter also has quite a long history in the actuarial literature both as a generalization of
the classical linear credibility models [, ] and applied to optimal updating of claim reserves
[, ]. Below we formulate the Kalman filter as an optimization problem and describe some in-
tuitive extensions thatmake the technique directly applicable to tasks such as ongoingmonitoring
of conversion rates, claim frequencies or other aspects of portfolio performance.

.. Kalman filter as an optimization problem

Consider the standard least squares problem (see also Appendix B.):

minimize
w

∥y −Xw∥22, ()
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and partition the design matrixX and the response vector y intom row blocks, corresponding to
time periods:

X =

 X1

· · ·
Xm

 , y =

 y1

· · ·
ym

 . ()

We can then equivalently transform () by introducing m copies of the parameter vector and
some linear equality constraints:

minimize
w1,...,wm

m∑
t=1

∥yt −Xtwt∥22

subject to wt+1 −wt+1 = 0, t = 1, . . . ,m− 1.

()

e above model can also be written in the state space form with the identity state transition
matrix, no state transitionnoise and i.i.d. Gaussianobservationnoise, wherewt is the unobserved
state vector and yt are the observations associated with time dependent observationmatricesXt:

wt+1 = wt, yt = Xtwt + ϵt,

ϵt ∼ N (0, I).
()

By introducing i.i.d. Gaussian state transition noise:

wt+1 = wt + νt, yt = Xtwt + ϵt,

νt ∼ N (0, I), ϵt ∼ N (0, I)
()

we effectively relax the equality constraints in () replacing themwith a squared ℓ2-norm penalty
term. It is then possible to perform estimation by solving the following convex optimisation prob-
lem:

minimize
w1,...,wm

m∑
t=1

∥yt −Xtwt∥22 +
m−1∑
t=1

∥wt+1 −wt∥22, ()

which amounts to substituting every independent variable in the model by its interaction with
the time index variable t and regularizing the differences in the corresponding parameters. e
estimation problem can be either solved directly or transformed back to the standard least squares
form:

minimize
w

∥y′ −X ′w∥22, ()

where the design matrixX ′ and the response vector y′ are redefined as follows:

X ′ =


X1

−I I

· · ·
−I I

Xm

 , y′ =


y1

0

· · ·
0

ym

 , w =

 w1

· · ·
wm

 . ()

e formulation in () simultaneously performs both “filtering” and “smoothing” condi-
tional on all the observations up to timem. If new information becomes available the augmented
optimization problem should be solved again to obtain new estimates of the entire history of state
transitionsw∗ = [w∗

1, . . . ,w
∗
m,w

∗
m+1]

T . StandardKalmanfilter given informationup to timem+1,
on the other hand, only updates the estimate of the current state w∗

m+1 and requires a backward
Wecan in fact avoid theGaussianity assumptionbypositing a quadratic loss function instead. eestimators obtained

are the same in both cases.
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“smoothing” pass to update estimates of past statesw1, . . . ,wm.
Indeed, the Kalman filter followed by a “smoothing” step can be viewed as a computationally

efficient recursive procedure for solving the normal equations of the least squares problem ()
which exploits block tri-diagonal structure of the matrix X ′. With advances in numerical linear
algebra routines for sparse matrices and increasing computer speeds very large problems of this
kind can be solved directly.

So far we focused on the special case with the identity state transition matrix and i.i.d noise,
however state estimation in the the general linear Gaussian state space model:

wt+1 = Fwt + νt, yt = Xtwt + ϵt,

νt ∼ N (0,Σν), ϵt ∼ N (0,Σϵ)
()

can also be expressed as a convex optimisation problem. Denoting ∥a∥P = (aTPa)
1
2 , P -quadratic

norm for a positive definite matrix P , it is:

minimize
w1,...,wm

m∑
t=1

∥yt −Xtwt∥2Σ−1
ϵ

+
m−1∑
t=1

∥wt+1 − Fwt∥2Σ−1
ν
. ()

Notably we can recover bothWhittaker graduation and Jones-Gerber “evolutionary” credibil-
ity [] as state space models by choosing a one dimensional state vector wt with the observation
matrixXt a constant vector 1 [, ]:

minimize
w1,...,wm

m∑
t=1

∥yt − 1wt∥22 +
m−1∑
t=1

∥wt+1 − wt∥22. ()

When there is only a single observation per time step, this is identical to Whittaker graduation
with first order differences as in (), while the Gerber-Jones model allows multiple observations
per time period.

.. Some extensions to the dynamic models:

We can use any convex loss for the observations, such as quantile or logistic, and still end up with
a convex optimization problem:

minimize
w1,...,wm

m∑
t=1

L(yt;Xtwt) +

m−1∑
t=1

∥wt+1 −wt∥22. ()

In the context of dynamic generalized linear models this corresponds to posterior mode estima-
tion as proposed by Fahrmeier [, ]. Non-Gaussian state noise is another possibility. It may be
appropriate to apply ℓ1-norm penalty to state changes provided most of the time parameters stay
constant with occasional large jumps (cf. Figure ):

minimize
w1,...,wm

m∑
t=1

L(yt;Xtwt) +
m−1∑
t=1

∥wt+1 −wt∥1. ()

Another possibility is a combination of norms, e.g. an approach combining squared ℓ2-norm and
ℓ1-norm penalties will attempt to decompose the state trajectory into a smooth and a piecewise
constant component:

minimize
w,c

m∑
t=1

L(yt;Xt(wt + ct)) + λ
m−1∑
t=1

∥wt+1 −wt∥1 + µ
m−1∑
t=1

∥ct+1 − ct∥22. ()
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Wecan also allow linear trends in the parameters (this formulation can be reduced to the standard
state space model by expanding the state vector):

minimize
w1,...,wm

m∑
t=1

L(yt;Xtwt) +
m−2∑
t=1

∥wt+2 − 2wt+1 +wt∥1. ()

Finally it is possible to add arbitrary convex inequality and linear equality constraints (see section
..), so e.g. seasonality adjustments can be handled by introducing new variables c1, . . . , cm and
equality constraints:

minimize
w,c

m∑
t=1

L(yt;Xt(wt + ct)) +

m−1∑
t=1

∥wt+1 −wt∥22

subject to ct = ct+k, t = 1, . . . ,m− k
m∑
t=1

ct = 0.

()

Formulating state space models as regularized regression can make them considerably more intu-
itive for those lucky not to have a background in control theory.

. Other applications

.. Hierarchical credibility

We can describe hierarchical credibility [, ] models (closely related to both “random effects”
from statistics literature [, ] and linear filtering [, ]) in the optimization framework pro-
vided variances are known. is can be achieved by introducing additional variables to the opti-
mization problem. Consider a simple setup with two risks I1 and I2 with observations yi, i ∈ Ij ,
for j ∈ {1, 2} with unit variance and the following group mean:

Eyi = wj , ∀i ∈ Ij , ()

where wj are themselves random variables with group mean w and known variance:

Ewj = w, Var(wj) = σ2, j = 1, 2. ()

We can then obtain the linear credibility estimator as a solution of the following optimization
problem:

minimize
w1,w2,w

2∑
j=1

∑
i∈Ij

(yi − wj)
2 +

1

σ2

2∑
j=1

(wj − w)2. ()

While the notation above is rather cumbersome, complex models are easy to implement in prac-
tice. is can be achieved by augmenting the data with indicator variables for the lowest level of
the hierarchy and regularizing by the squared Euclidean norm of the product of the (tree) graph
incidence matrix representing the hierarchical structure and the parameter vector.

.. Constraints on relativities

Treating maximum likelihood estimation of GLM parameters as a convex optimization prob-
lem allows us to introduce arbitrary convex constraints on rate relativities in addition to various
smoothness penalties described earlier. One such constraint in the classical GLM theory is the
“offset”, used e.g. to allow for exposure in Poisson models. It amounts to setting the coefficient
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associated with the offset term xi equal to one:

minimize
w

L(y;Xw)

subject to wi = 1.
()

Given the range of practical insurance applications of this simple device [], the overall approach
seems promising.

Consider for example an additive model with binned variables and the associated regulariza-
tion term (). Possible constraintswould include bounds on the absolutemagnitude of the effect
wi associated with the i-th risk factor or its rate of growth (first differences):

minimize
w

L(y;X ′w) + λ∥Dw∥1

subject to wi ≥ −ϵ11

wi ≤ ϵ11

minimize
w

L(y;X ′w) + λ∥Dw∥1

subject to D(1,k)wi ≥ −ϵ21

D(1,k)wi ≤ ϵ21.

()

In the above≥ denotes entrywise vector inequality and the constraints can alternatively bewritten
as:

|wij | ≤ ϵ1, i = 1, . . . , k |wi,j+1 − wij | ≤ ϵ2, i = 1, . . . , k − 1. ()

We can also directly control the shape of the additive effect in a particular variable, requiring it,
for example, to be non-decreasing or convex (these twomight be appropriate for sum insured and
driver age respectively):

minimize
w

L(y;X ′w) + λ∥Dw∥1

subject to D(1,k)wi ≥ 0

minimize
w

L(y;X ′w) + λ∥Dw∥1

subject to D(2,k)wi ≥ 0
()

Here monotonicity constraints can be written without matrix notation as:

wi1 ≤ wi2 ≤ . . . ≤ wik ()

and similarly for convexity we obtain:

wij − 2wi,j+1 + wi,j+2 j = 1, . . . , k − 2. ()

Finally consider a problem where there are two known risks ξ1 and ξ2 for which we want the
percentage difference in premium tobewithin a certain range ϵ (either due tomarket or regulatory
considerations). Assuming the model uses the log link, this yields:

minimize
w

L(y;Xw)

subject to |wT ξ1 −wT ξ2| ≤ log(1 + ϵ).
()

.. Demand based pricing

In recent years optimization has most oen been mentioned in insurance context in relation to
various aspects of “demand driven” pricing which amounts to varying margins in order to maxi-
mize underwritingprofit. Belowwepresent a very simplemodel for pricing renewalswhich admits

Remarkably, there are entire monographs devoted to this topic under the name of otonic regression.
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Figure : Le: Logistic demand ψi(pi) and revenue ri(pi) = (pi − ci)ψi(pi) as functions of price
pi. Right: Revenue r(di) =

(
ψ−1
i (di)− ci

)
di as a function of demand di is concave for di ∈ [0, 1].

a convex reformulation:
maximize
p1,...,pn

n∑
i=1

(pi − ci)ψi(pi)

subject to
n∑

i=1

ψi(pi) ≥ C.

()

emodel maximizes the total revenue objective for a cohort of n policies subject to a constraint
on minimum retention level, where for i-th policyholder pi is the proposed premium, di = ψi(pi)

is the expected demand as a function of premium and ci is the expected cost of claims. is opti-
mization problem is not convex in general, however, for monotone demand functions from cer-
tain parametric families e.g. logistic and probit (see [] for a detailed discussion) we can obtain a
convex equivalent (or rather a maximization problem with a concave objective) parametrized by
expected demand di (see Figure ):

maximize
d1,...,dn

n∑
i=1

(
ψ−1
i (di)− ci)

)
di

subject to 0 ≤ di ≤ 1, i = 1, . . . , n
n∑

i=1

di ≥ C.

()

Here ψ−1
i (di) is the inverse demand function which can be uniquely defined for di ∈ [0, 1].

It is worth noting that both claim costs and demand are usually not known precisely or even
with reasonable accuracy and the rates obtained from () do not in fact maximize the expected
revenue, but rather the “certainty equivalent” objectivewherewe have replaced stochastic demand
and claim costswith their expected values. Amore accuratemodelwouldhave the following form:

maximize
p1,...,pn

Eω

( n∑
i=1

(pi − ci(ωi))ψi(pi, ωi)
)

subject to Eω

( n∑
i=1

ψi(pi, ωi)
)
≥ C,

()

where the expectation is with respect to the joint distribution of individual demand functions and
claims costs. Clearly some simplifying assumptions about the distribution will need to be made
in order to make its estimation tractable. e interpretation of the volume constraint holding in
expectation is also quite difficult. To address the latter point it may be appropriate to consider e.g.
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the expected shortfall (reminiscent of conditional risk measures):

Eω

([
C −

n∑
i=1

ψi(pi, ωi)
]
+

)
≤ ϵ. ()

Techniques that attempt to address this type of problems usually go under the name of stochastic
optimization [].

 S   
Until recently, solving convex optimization problems required not inconsiderable subject mat-
ter expertise and even increasing availability of high quality open source and commercial solvers
(, , , ) did not allay the situation. e reason for this is that these
solvers require problems to be converted to one of several restrictive standard forms (e.g. a second
order cone program). In some cases such a transformation is not possible and it may be necessary
to develop a custom solver. For a potential user with a focus on applications these requirements
are challenging to say the least.

is has recently changed with the introduction of  [, ], a high level specification
language for general convex optimization. It provides a convenient interface for specifying con-
vex optimization problems and then automates underlying mathematical steps for analysing and
solving them. e underlying solvers can oen handle sparse instances with millions of variables.
While the idea of a an optimization modelling language is not new (e.g. ), existing com-
mercial offerings can not handle general convex problems.

Below is sample / code for the problem ():

n = length(y); %length of timeseries y
m = n-2; %length of Dw
lambda = 15;

I2 = speye(m,m);
O2 = zeros(m,1);
D = [I2 O2 O2]+[O2 -2*I2 O2]+[O2 O2 I2];

cvx_begin
variable w(n)
minimize(sum_squares(y-w)+lambda*norm(D*w,1))

cvx_end

Due to some limitations in the way the current version of  deals with problems that are not
SDP representable (e.g. loss functions involving logarithms and exponentials) for large problems
it may sometimes be necessary to implement an iterative reweighting scheme similar to Fisher
scoring, such as in [], with  in the inner loop. For very large problems decompositionmeth-
ods are available, see [] for an accessible introduction and examples.

Please contact the author for larger examples described in this paper.
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A

A B   
As mentioned earlier, it is oen the easiest to verify convexity by checking whether a given func-
tion is composed from known convex primitives by applying convexity preserving transforma-
tions. Below we list a subset of these sufficient to verify convexity of problems described in this
paper.

A. Functions of a single variable:
• Exponential. eαx is convex on R for any α ∈ R.

• Powers. xα is convex on (0,+∞) for α ≥ 1 or α ≤ 0, and concave for 0 ≤ α ≤ 1.

• Logarim. log x is concave on (0,+∞).

A. Vector norms:
All vector norms on Rn are convex. A function f : Rn → R is called a norm if:

• f(x) ≥ 0 for all x ∈ Rn,

• f(x) = 0 only if x = 0,

• f(αx) = |α|f(x), for all x ∈ Rn and α ∈ R,

• f satisfies the triangle inequality: f(x+ y) ≤ f(x) + f(y), for all x,y ∈ Rn.

Such functions are usually denoted ∥x∥ rather than f(x) with a subscript to indicate the exact
norm being used. ey can be interpreted as measuring the length of the elements of Rn. Most
common is the Euclidean or the ℓ2-norm defined as:

∥x∥2 =
√
xTx =

(∑
i

x2i

) 1
2

. ()

Two other examples of norms on Rn are the absolute value or ℓ1-norm:

∥x∥1 =
∑
i

|xi| ()

and the max or ℓ∞-norm, given by:

∥x∥∞ = max (|x1|, . . . , |xn|) . ()

ese can be generalized as the ℓp-norm, for p ≥ 1:

∥x∥p =
(∑

i

|xi|p
) 1

p

, ()

where ℓ∞-norm obtains as p→ ∞. It is easy to check convexity of norms from the definition.
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A. Other functions on Rn

• Max function. e function max(x1, . . . , xn) is convex on Rn. Note that it is distinct from
the ℓ∞-norm.

• So max. e so called “so max” function log(ex1 + · · · + exn) is convex on Rn. It can be
viewed as a differentiable approximation ofmax(x1, . . . , xn).

• Geomric mean. e geometric mean f(x) = (
∏n

i=1 xi)
1
n is concave for xi > 0, i = 1, . . . , n.

A. Transformations that preserve convexity
Convexity is maintained for certain compositions of convex functions, for example:

A.. Weighted sums:

Aweighted sum of convex functions

f = α1f1 + · · ·+ αnfn ()

is convex if all the weights are non-negative, αi ≥ 0, i = 1, . . . , n. Similarly a weighted sum of
concave functions is concave for non-negative weights.

A.. Composition with an affine function:

If f is a convex function, f : Rm → R, A is anm× nmatrix and b a vector in Rn then g : Rn → R:

g(x) = f(Ax+ b) ()

is also a convex function. Similarly, g is concave if f is concave.

A.. Composition of multivariable functions:

Suppose that a function f : Rn → R has the following form:

f(x) = h(g(x)) = h(g1(x), . . . , gm(x)), ()

where gi : Rn → R, i = 1, . . . ,m. en the following holds:

• f is convex if functions gi are convex and h is convex and non-decreasing in each argument,

• f is convex if gi are concave and h is non-increasing in each argument.

B S GLM   

B. Gaussian
Assume yi ∈ R follows a Gaussian distribution with known variance σ2 and mean µi then its
probability density function is:

p(yi) =
1√
2πσ2

exp

(
−(yi − µi)

2

2σ2

)
. ()
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We can then express µi as a linear function (ignoring the intercept term for clarity) of the vector
of explanatory variables xi ∈ Rm, parametrized byw ∈ Rm :

µi = wTxi. ()

e likelihood function for n independent observations (yi,xi) is given by:

p(y;Xw) =
n∏

i=1

1√
2πσ2

exp

(
−(yi −wTxi)

2

2σ2

)
, ()

where X is the design matrix with rows xi for i = 1, . . . , n and the loss or negative log-likelihood
function is as follows:

L(y;Xw) = −
n∑

i=1

log

(
1√
2πσ2

exp

(
−(yi −wTxi)

2

2σ2

))

=
n∑

i=1

1

2σ2
(yi −wTxi)

2 +
1

2
log(2πσ2).

()

We can obtain an estimate ofw by solving a convex optimization problem (to check convexity in
w, observe that it is a square of ℓ2-norm composed with an affine function):

minimize
w

n∑
i=1

(yi −wTxi)
2, ()

which in matrix notation can be restated as:

minimize
w

∥y −Xw∥22. ()

B. Poisson
Take yi ∈ Z+ to be a random variable with Poisson distribution and mean µi > 0:

P (yi = k) =
e−µiµk

i

k!
. ()

e mean µi can be modelled via the log link as a linear function of the vector of explanatory
variables xi ∈ Rm:

µi = exp(wTxi). ()

Herew ∈ Rm is the parameter vecor. Given n independent observations (yi,xi), i = 1, . . . , n, the
likelihood function is as follows:

p(y;Xw) =
n∏

i=1

exp
(
− exp(wTxi)

)
exp(wTxi)

yi

yi!
, ()

with the corresponding loss or negative log-likelihood:

L(y;Xw) =
n∑

i=1

(
exp(wTxi)− yiw

Txi + log(yi!)
)
. ()
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Amaximum likelihood estimate of w can then be obtained by solving the convex loss minimiza-
tion problem (convexity follows directly from the composition rules defined in A.):

minimize
w

n∑
i=1

(
exp(wTxi)− yiw

Txi

)
. ()

B. Logistic
Consider a random variable yi ∈ {0, 1}, with the binomial distribution:

P (y = 1) = µi, P (y = 0) = 1− µi, ()

where µi ∈ [0, 1] is the expected value of yi. It depends on a linear function of a vector of explana-
tory variables xi ∈ Rm via the logistic link:

µi =
exp(wTx)

1 + exp(wTx)
, ()

where w ∈ Rm is the vector of model parameters. Given n independent observations (yi,xi), i =

1, . . . , n and defining I0 = {i | yi = 0} and I1 = {i | yi = 1} we obtain the following likelihood
function:

p(y;Xw) =
∏
i∈I1

exp(wTxi)

1 + exp(wTxi)

∏
i∈I0

(
1− exp(wTxi)

1 + exp(wTxi)

)
. ()

e corresponding negative log-likelihood or loss function has the form:

L(y;Xw) = −
∑
i∈I1

log

(
exp(wTxi)

1 + exp(wTxi)

)
−

∑
i∈I0

log

(
1− exp(wTxi)

1 + exp(wTxi)

)

= −
∑
i∈I1

wTxi +
n∑

i=1

log
(
1 + exp(wTxi)

) ()

It is easy to check that L(y;Xw) is a convex function in w (composition of so max and affine).
Maximum likelihood estimation for logistic regression is then equivalent to a convex loss mini-
mization problem:

minimize
w

−
∑
i∈I1

wTxi +
n∑

i=1

log
(
1 + exp(wTxi)

)
. ()
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