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ABSTRACT 

Motivation. Tail factors are used by actuaries to estimate the additional development that will 
occur after the eldest maturity in a given loss development triangle, or after the eldest credible link ratio. 
Over the years, many valuable contributions have been made to the CAS literature that describes 
various methods for calculating tail factors. The CAS Tail Factor Working Party prepared this paper on 
the methods currently used by actuaries to estimate loss development ‘tail’ or ‘completion’ factors. 
Standard terminology for discussing aspects of link ratios and tail development is communicated within 
the paper. Descriptions of the advantages and disadvantages of each method are included as well 
general indications of what types of entities (companies, rating bureaus, or consulting firms) typically 
use each method. 

Method. An extensive survey of existing CAS literature was performed, along with surveys of 
methods currently in use by various rating bureaus, insurers, and consulting organizations. The methods 
identified by the Working Party are grouped into six basic categories:  (1) “Bondy Methods”; (2) 
algebraic methods that focus on relationships between paid and incurred loss; (3) methods based on use 
of benchmark data; (4) curve-fitting methods; (5) methods based on remaining open counts; (6) 
methods based on peculiarities of the remaining open claims; and (7) the remaining unclassified 
methods. 

Results. Comparisons of the results of several key tail factor methodologies to the actual post-ten 
year development for a number of long-tail lines using multiple realistic data sets are included, along 
with the advantages and vulnerabilities of each method. 

Availability. A copy of the Working Party’s paper and companion Excel template can be found on 
the CAS website at http://www.casact.org/pubs/forum/13fforum/. 

Keywords. Tail Factors; Completion Factors; Link Ratios; Age-to-Age Factors; Development 
Factors; Loss Reserving; Curve Fitting; Bondy Method; Benckmark; Loss Development. 
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1. INTRODUCTION 

1.1 Importance of Loss Development Tail Factors 

The loss development tail factors (sometimes referred to as completion factors) are an 

important part of any reserve analysis. They have a highly leveraged impact since they form a 

portion of the loss development applied to each of the accident years being analyzed. 

However, the discussions of tail factor estimation methods used, when they are contained in 

the CAS literature at all, are generally just as adjuncts to the main topics of papers. Further, 

some methods are used in practice that are not described in the CAS literature at all. 

Therefore, the CAS Committee on Reserving sponsored a Tail Factor Working Party to 

undertake an exhaustive survey of the tail factor estimation methods in use and describe and 

comment on each method. 

1.2 Research Context 

As stated above, tail factors have a highly leveraged impact on loss development since they 

form a portion of the loss development of all accident years analyzed. Further, tail loss 

development reflects development occurring after the last development period in the 

reserving data triangle and is therefore somewhat more difficult to estimate than the various 

link ratios developed from the data triangle. For both those reasons, the Tail Factor Working 

Party believes it is helpful to provide information concerning tail factor estimation methods 

to practitioners. 

1.3 Objective 

This paper is designed to be as exhaustive a listing of methods used to estimate tail loss 

development as is reasonably possible at the time of its writing. The Tail Factor Working 

Party hopes this will expose the various approaches to a wider audience, and help actuaries 

choose the best method for each reserving circumstance from a larger toolkit. Further, this 

paper lists at least some of the advantages and disadvantages of each method, which could 

help the practitioner decide which method to use in a given circumstance. 

1.4 Disclaimer 

While this paper is the product of a CAS Working Party, its findings do not represent the 

official view of the Casualty Actuarial Society. Moreover, while we believe the approaches we 

describe are very good examples of how to estimate tail development in reserving, ratemaking 

and selecting the best method for a given circumstance, we do not claim they are the only 

acceptable ones or that we have ultimately addressed all of the issues that must be considered 

in selecting a tail factor or tail factor methodology. 
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1.5 Section References to Methods 

The classes of methods presented are discussed in the next sections. Within each class of 

method, an introduction to the class of method, a summary of the methods, any particular 

findings, and conclusions are presented.  

1.6 Alternate Grouping of Methods Included in the Paper 

While organizing this paper, working party members noted that the groupings of methods 

were not inherently absolute and that the methods could be grouped in alternate ways. The 

commentary and listing in Appendix A represents an alternate but still logical view of how the 

various methods relate to each other. 

1.7 Notation 

This paper describes many tail factor methods identified in the actuarial literature and 

elsewhere. For the sake of uniform notation, where appropriate we have adopted (and 

expanded) the notation used by the CAS Working Party on Quantifying Variability in Reserve 

Estimates. In the paper produced by that Working Party, some models visualize loss statistics 

as a two-dimensional triangle array. In the notation, the row dimension is the period 0F

1 by 

which the loss information is subtotaled, most commonly an accident period. 1F

2 For each 

accident period w , development age d the ),( dw  element of the array is the total of the loss 

information as of development age d.2F

3 

 For this discussion, we assume that the loss information available is an upper left 

triangular subset of the two-dimensional array for rows nw ,,2,1  . For each row w , the 

information is available for development ages 1 through 1wn . If we think of period n  as 

the latest accounting period for which loss information is available, the triangle represents the 

loss information as of accounting dates 1 through n . The diagonal for which dw  equals a 

constant k  represents the loss information for each accident period w  as of accounting 

                                                           

 

1 Most commonly the periods are annual (years), but as most methods can accommodate periods other than 
annual we will use the more generic term “period” to represent year, half-year, quarter, month, etc. unless noted 
otherwise. 
2 Other exposure period types, such as policy period and report period, also utilize tail factor methods.  For 
ease of description, we will use the generic term “accident” period to mean all types of exposure periods, unless 
otherwise noted. 
3 Depending on the context, the ),( dw cell can represent the cumulative loss statistic as of development age 

d  or the incremental amount occurring during the d th development period. 
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period k . 3F

4 

In general, the two-dimensional array will also extend to columns 1,2, ,d n . For 

purposes of calculating tail factors, we are interested in understanding the development 

beyond the observed data for periods 1, 2, ,d n n u   , where u  is the ultimate time 

period for which any claim activity occurs – i.e., u  is the period in which all claims are final 

and paid in full. 

The paper uses the following notation for certain important loss statistics:  

),( dwc : cumulative paid or incurred loss from accident period w  as of 

development ages d . ( w  and d  may be thought of as representing  

“when” and “delay,” respectively.)  In the context of this and other 

notation, ),( dwcPaid  denotes cumulative paid loss and ),( dwcInc   denotes 

cumulative case incurred loss. 

( , )q w d : incremental paid or incurred loss on accident period w  during the 

development age from 1d  to d . Also denoted as ( , )Paidq w d  or

( , )Incq w d . 

),( dws : case reserves at end of development age d  for  accident period w . 

( , ) ( )c w u U w : total loss from accident period w  when at the end of ultimate 

development. 

( )R w : future development after age 1d n w    for accident period w , i.e., = 

( ) ( , 1)U w c w n w   . 

)(dS : estimated ratio of unpaid costs to case reserves at the end of the triangle 

data d . 

S : estimated ratio of unpaid costs to case reserves as of the end of the 

triangle data. 

)(1)( dvdf  : factor applied to ),( dwc  to estimate ( , 1)c w d   or more generally any 

factor relating to age d . This is commonly referred to as a link ratio. )(dv  

is referred to as the ‘development portion’ of the link ratio, which is used 

to estimate ( , 1)q w d  . The other portion, the number one, is referred to 

                                                           

 

4 For a more complete explanation of this two-dimensional view of the loss information see the Foundations of 

Casualty Actuarial Science [5], Chapter 5, particularly pages 210-226. 
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as the ‘unity portion’ of the link ratio. 

)(ˆ1)(ˆ dvdf  : an estimate of the link ratio for development age to development age 

1d  . 

)(1)( dVdF  : ultimate development factor relating to development age d . The factor 

applied to ),( dwc  to estimate ( , )c w u  or more generally any cumulative 

development factor relating to development age d . The capital indicates 

that the factor produces the ultimate loss level. As with link ratios, )(dV  

denotes the ‘development portion’ of the loss development factor, the 

number one is the ‘unity portion’ of the loss development factor. ( )G d  is 

used interchangeably with ( )F d  and by convention, G  
may also be used 

to denote the ultimate loss development factor needed for period w  when 

written as )(wG . 

)(nTT  : tail factor at end of triangle data. 

T̂ : estimate of the tail factor. 

)( dwh  : factor relating to the diagonal k  along which dw  is constant. 

),( dwe : a mean zero random fluctuation that occurs at the w , d  cell. 

)(kr : annual rate of loss cost inflation, in this case related to payment period, 

although in cases where r  is either constant or estimated as a constant, r   

is the cumulative impact  over k  years 
kr)1(  . 

r̂ : an estimate of the rate of annual loss cost inflation. 

m : development or delay time in months. 

)(mD : rate of loss cost inflation per  month, when D  is constant over m , the 

impact over m  months is 
mD)1(  . 

D̂ : an estimate of the rate of monthly loss cost inflation. 

l : lag until payouts start. Used in McClenahan and Sherman methods. 

)(1)( dbdB  : notation for a benchmark link ratio and the ‘development portion’ of the 

benchmark. Note that TT bB 1  represents the benchmark tail factor. 

i : a specific accident month, similar to w . 

ip : the month-to-month decay rate of the pre-inflation loss payouts for a 

given accident month, also used as a constant over all months, p . 

1i iq p  : the complement of p , also used as a constant over all months, q . 
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)(iA : constant of proportionality reflecting total expected pre-inflation losses in 

a given accident month i . 

)(wH : a constant of proportionality used in curve-fitting. Often, for global curve-

fitting across an entire triangle, simply used as H . 

a  and b : constant terms representing the multiplier and exponent of an inverse 

power curve, respectively. 

RE :  the reinsurance retention applying to a given triangle. ( )RE w  refers to the 

retention of a specific period w . 

)(xE : the expectation of the random variable x . 

)(xVar : the variance of the random variable x . 

( )U w : ultimate loss amount in accident period w  = c(w,u). 

Also, for some methods, additional or slightly different notation is used. 

2. BONDY-TYPE METHODS 

2.1 Introduction and Description of Bondy-Type Methods 

This class of methods is discussed first due to its simplicity. Martin Bondy suggested this 

method of just repeating the last observed link ratio for use as the tail factor. Note, that at the 

time Bondy developed his method in the 1960s, most lines of insurance were believed to be 

“short-tailed” in nature compared to assumptions assumed for many casualty lines of 

insurance today. Bondy’s Original Method (see section 2.2) may seriously understate the 

needed tail factor for “long-tail” lines or  for any case where substantial development occurs 

in the tail. Several alternate versions of the Bondy approach have been developed in an 

attempt to mitigate the original method’s shortcomings. 

The formulas for the Bondy-Type methods are described in the sub-sections below. 

Starting with the original method, we move through modifications that lead to a fully 

generalized method. 

2.2 Bondy’s Original Method 

Bondy’s Original Method used the link ratio ( 1)f n  at the last observed development 

age, n , to develop losses to ultimate; that is 

( ) ( 1)F n f n  . (2.1) 

The assumption for age-to-age development factors in the tail is that  
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( ) ( 1)f d f d  . (2.2) 

2.3 Modified Bondy Method 

In these revisions of Bondy’s Original Method, some recognition is given to more 

extended development patterns; the first approach is multiplicative, the second additive.  

The first approach consists of simply squaring the last link ratio, rather than just repeating 

it: 

2( ) ( 1)F n f n  . (2.3) 

The second approach, utilized by some practitioners, is to merely double the development 

portion of the last link ratio:  

( ) 1 [2 ( 1)]F n v n    . (2.4) 

2.4 Generalized Bondy Method 

Subsequently, Weller [16] suggested a generalization by setting ( ) ( 1)Bf n f n  , where B 

is a number between 0 and 1. We call B the Bondy exponent. It follows that 

2 /(1 )( ) ( 1) ( 1) ( 1)B B B BF n f n f n f n      . (2.5) 

Thus, if 
2

1
B , we recover the original Bondy method.  

Let ( )f d  be the development ratio chosen for age 1d   to age d .  In his paper, Weller 

used the average of the latest three observed development ratios for ( )f d . (Fewer or more 

observations could be utilized.) Set log ( )dl f d , B̂  the estimated Bondy parameter, ˆ ( )f i  

the estimated development ratio for the earliest development period used to estimate the 

parameters, and ˆ ˆlog ( )il f i . The parameters, ˆ ( )f i  and B̂ , are chosen to minimize 

 
2

1ˆ ˆ
n

d

d i

d i

l l B 



 . (2.6) 

The parameters,  ˆ ( )f i  and B̂ , can be calculated easily using a readily available spreadsheet 

optimization function such as the “Solver” function in Microsoft® Excel.  

2.5 Fully Generalized Bondy Method 

Gile [6] devised a further generalization by letting the estimated development ratios vary 

by accident period, while using the same estimated Bondy parameter for each accident period. 

Two parameters, as well as the development ratios, are chosen for each accident period by 

minimizing the sum of squared differences using more than one development period for each 

accident period.  
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2.6 Examples 

See Appendix B, Section B.2. 

2.7 Advantages and Disadvantages of the Bondy Methods 

The method is easily implemented using standard spreadsheet functions. It only uses the 

data in cumulative paid or incurred loss triangles. Finally, loss development is described in 

terms of only one factor, the Bondy exponent. 

The fully generalized Bondy method is not always useful for incurred loss data because it 

may produce Bondy exponents not in the range from 0 to 1. For this same reason, the 

method fails to give meaningful answers when the pattern of development factors is 

increasing. Since the Bondy method describes loss development in terms of only one 

parameter, the method may also fail if the development pattern is complicated in some other 

way. 

2.8 Users 

The Bondy-type methods (including the specific forms discussed above) are widely 

accepted and used in current practice. 

2.9 Summary 

Bondy methods give a simple solution to the problem of determining tail factors. They are 

easy to explain and to implement. However, they describe loss development in terms of only 

one parameter so that complicated development patterns may not be accurately projected.  

3. ALGEBRAIC METHODS 

3.1 Introduction to Algebraic Methods 

Algebraic methods are methods that focus on the relationships between the paid and 

incurred loss triangles. They are based on relatively simple calculations in the sense that 

complex mathematical formulae and curve fitting, etc. is not required. Additionally, ancillary 

information beyond readily available paid and incurred data is not required for any of these 

methods. 
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3.2 Equalizing Paid and Incurred Development Ultimate Losses 

This method is one of the oldest tail factor methods used and also has perhaps the 

broadest usage of all the methods. It was designed to provide an easy methodology for 

determining a paid loss tail factor when the incurred loss tail factor is available. 

3.2.1 Description4F

5 

This method is most useful when incurred loss development essentially stops after a 

certain stage (i.e., the link ratios are near to unity or are equal to unity). Then, due to the 

absence of continuing development, the current case incurred (e.g., case incurred as of end of 

most recent accounting period, sometimes called reported) losses are a good predictor of the 

ultimate losses for the older or oldest years without the need for additional tail factor 

development. A tail factor suitable for paid loss development can then be computed as the 

ratio of the case incurred for the oldest accident period in the triangle divided by the paid 

losses to date for the same accident period. This results in a paid to ultimate development 

factor estimate which when multiplied by the cumulative paid equals the ultimate (which are 

also the current) incurred losses for that oldest accident year. 

This method relies on one axiomatic (meaning plainly true rather than an assumption as 

such) assumption and two true assumptions. The axiomatic assumption is that the paid loss 

and incurred loss development estimates are estimating the same quantity, therefore the 

ultimate loss estimates they produce should be equal. The second assumption (the first true 

assumption) is that the incurred loss estimate of the ultimate losses for the oldest accident 

period is accurate. The last assumption is that the other periods will show the same 

development in the tail as the oldest period. An appropriate way to test this assumption is to 

estimate the paid loss tail based on several accident periods. 

This method may also be generalized to the case where the current case incurred is still 

showing development near the tail. In this situation, the implied paid loss tail factor is  

 

                                                                          

                                                  
, or 

(1, )

(1, )

Inc

Paid

c u

c n
. (3.1) 

                                                           

 

5 Section 3.2.1 is reproduced from [1] with permission.  Minor edits have been made for consistency with the 

rest of this Report. 
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In this instance, the incurred loss development estimate for the oldest accident period is 

usually the current case incurred losses for the oldest period multiplied by an incurred loss tail 

factor developed using other methods. 

3.2.2 Example 

We are given the following selected incurred loss development factors: 

12-24 months 2.000 

24-36  1.500 

36-48  1.250 

48-60  1.125 

60-72  1.063 

72-84  1.031 

84-96  1.016 

96-108  1.008 

108-120  1.004 

Incurred losses for the oldest year in the triangle as of 120 months is $50,000,000 and the 

corresponding paid loss is $40,000,000. The incurred estimated ultimate using the 1.004 tail 

factor is $50,200,000. The paid loss tail factor to equalize the paid estimated ultimate to the 

incurred estimated ultimate would be $50,200,000 divided by $40,000,000 or 1.255. 

3.2.3 Advantages and Disadvantages 

This method has a substantial advantage in that it is based solely on the information in the 

triangle itself. One of its weaknesses is that a reliable estimate of the ultimate loss for the 

oldest year is needed before it can be used. In addition, if the ultimate incurred loss 

development of the oldest accident year is estimated using a tail factor estimate, then this 

method also relies on the incurred loss tail factor. Lastly, there is an assumption that the ratio 

of the case incurred loss to the paid loss will be the same for less mature years once they 

reach the level of maturity used initially to calculate the paid tail. This assumption can be 

tested by looking at the stability of the paid to incurred ratio. 

3.2.4 Users 

This method is such a basic part of most loss development analyses that it is probably 

under-reported on surveys. For example, most users will attempt to at least compare the 

estimated ultimate paid and estimated ultimate incurred loss for the oldest years. 
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3.2.5 Summary 

This method is both simple and widely used. However, a major limitation is that unless 

development of the oldest accident period is complete at least one tail factor (incurred or 

paid) must be calculated by other means before this approach can be used. 

3.3 Sherman-Boor Method 

This method was developed by Sherman in [13], and later by Joseph Boor in the course of 

analyzing very long tail workers compensation data during the 1987-1989 periods. Although it 

was originally published some time ago as an adjunct to other tail factor methods, it has only 

recently received much attention. Thus, a comparatively small percentage of practicing 

actuaries are aware of it. It was developed largely to provide an alternative to the use of fitted 

curves and their heavy reliance on theoretical assumptions. 

3.3.1 Description 

This method relies solely on the triangles themselves and does not require a pre-existing 

ultimate loss estimate, involve curve-fitting assumptions, or require external data. For data 

triangles with high statistical reliability as predictors, this can represent a powerful and reliable 

predictor of tail development. 

This method involves simply determining the ratio of case reserves to paid loss for the 

oldest period in the triangle, then adjusting the case reserves by an estimate of the ratio of the 

unpaid loss to carried case reserves. In essence, the case reserves of the oldest accident period 

are ‘grossed up’ to estimate the true unpaid loss using a factor. The estimate of the (true 

unpaid loss)/(case reserves) factor is based on how many dollars of payments are required to 

‘eliminate’ a dollar of case reserve. 

The mathematical formula requires computing a triangle containing incremental rather 

than cumulative paid losses. The formula for incremental paid losses for accident period w , 

from development age 1d   to d  is: 

( , ) ( , ) ( , 1)Paid Paid Paidq w d c w d c w d   . (3.2) 

The next step begins with a triangle of case reserves. The incremental case reserve 

disposed of in a development period is calculated as the beginning case reserve of that period 

minus the ending case reserve of that period. The formula for case reserves disposed of is 

essentially a decrement-type process (process of reduction rather than process of increase), so 

it is stated in negative terms as: 

( , ) ( , ) ( , 1)Caseq w d s w d s w d    . (3.3) 

Alternately, it may be stated positively as: 
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( , ) ( , 1) ( , )Caseq w d s w d s w d   , (3.3.1) 

where ),( dws  represents case reserves at the end of development age d  for accident period

w . Next the ratios of incremental paid to reserve disposed for each element in the triangles is 

computed. Noting that the case decrement at the first column (which may be either 0d  or 

1d  in context) is essentially undefined, we get a triangle relating the costs of disposing of 

case reserves to the amount of case reserves that are disposed of 

Relative Disposal Costs ( , ) ( , ) / ( , )paid Casew d q w d q w d  (3.4) 

 Reviewing the above matrix (triangle) of relative disposal costs, a final adjustment ratio 

for ending case reserves, S  is selected.5F

6 The final step involves multiplying that selected S   

ratio times the ratio of the remaining case reserves of the oldest accident period (which 

provides an estimate of remaining payments) and dividing by the cumulative paid loss of the 

oldest accident period. The result is an estimate of the development portion of the paid loss 

tail factor. The tail factor formula is: 

(1, )ˆ 1.0
(1, )

Paid
inc

s n
T S

c n
    (3.5) 

For the incurred tail factor, it must be recognized that the unity (1.0) portion of the case is 

already accrued in the incurred loss. So, the incurred tail factor formula is: 

(1, )ˆ 1.0 ( 1)
(1, )

Inc
inc

s n
T S

c n
     (3.6) 

3.3.2 Example 

See Appendix B, Section B.3.1. 

3.3.2.1 Considerations 

It is important to consider the primary activity within each development stage. 

When using multiple periods to estimate a tail factor, it is relatively important that the 

periods reflect the same general type of claims department activity as that which takes place in 

the tail. For example, in the early 12 to 24 month stage of workers compensation, the primary 

development activity is the initial reporting of claims and the settlement and closure of small 

claims. The primary factors influencing development are how quickly the claims are reported 

and entered into the system, and the average reserves (assuming the claims department 

                                                           

 

6 However, it is important to focus the review on the period in the triangle where the same ‘type’ of activity is 

occurring, as will be discussed later.   
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initially just sets a ‘formula reserve’, or a fixed reserve amount for each claim of a given type 

such as medical or lost time) used when claims are first reported. 

In the 24 to 36-48 month period, claims department activity is focused on ascertaining the 

true value of long-term claims and settling claims. After 48-60 months most of the activity 

centers on long-term claims. So, the 12-24 link ratio has relatively little relevance for the tail, 

as the driver behind the link ratio is reporting and the size of initial formula reserves rather 

than the handling of long-term cases. Similarly, if the last credible link ratio in the triangle is 

the 24 to 36 or 36 to 48 link ratio, that triangle may be a poor predictor of the required tail 

factor. 

Another consideration that could improve this method is using multiple years to estimate 

the tail factor. This method assumes that the current ratio of case incurred loss to paid loss 

that exists in the oldest year will apply to the other years when they reach that same level of 

maturity. For a large, high dollar volume triangle with relatively low underlying policy limits 

that may be a reasonable assumption, but for many reserving applications the 120-month 

ratio of case incurred to paid loss may depend on whether a few large, complex claims remain 

open or not. Therefore, it may be wise to supplement the tail factor derived from the oldest 

available accident period with that implied by the following accident period or even the 

second following accident period. This method is particularly useful when the later 

development portion of the triangle has some credibility, but the individual link ratio 

estimates from the development triangle are not fully credible. 

The process is fairly straightforward: compute the tail factor for each succeeding accident 

period by the method above, and divide each such tail factor by remaining link ratios in the 

triangle. 

An example using the data in Appendix B may help clarify matters. The 2000 accident 

period at development age 108 has $7,934 of paid loss and $584 of case reserves. Assume that 

the best estimate of the 108-120 paid loss link ratio is (using 2000 accident period data) 1.024. 

Assuming S  is 3.073, then the 108-month paid loss tail would be 1.0+ (3.073*584/7,934) = 

1.226. Then, dividing out the 108-120 link ratio of 1.024 would give a 108-month paid tail 

factor of 1.226/1.024=1.197. By comparison, the analysis in the Appendix using 2000 instead 

of 2001 gives a 120-month tail factor estimate of 1.149. Both indicate tail factors in the 1.15-

1.20 range and averaging the estimates would be reasonable. The use of averaging greatly 

limits the impact of any unusually low or high case reserves that may be present in the oldest 

year in the triangle. 

Note also, that the improvement above involved computing an alternate tail factor using 

the accident period with one year less development age than the oldest accident period. A 
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similar analysis could also be performed on the next oldest year, except that two paid 

development link ratios plus the tail factor are needed to estimate the paid loss tail factor. 

3.3.3 Advantages and Disadvantages 

The significant strengths of this method are that it requires only the data already in the 

triangles. The weakness is that it can be distorted if the adequacy of the ending case reserve 

has changed significantly over time. 

3.3.4 Users 

At present this method has not been published and as such is not widely known or used. 

3.3.5 Summary 

This method can be a reasonable approach in predicting tail factors without reliance on 

extensive assumptions, but it needs to be focused on data mature enough so that the 

overwhelming majority of claims have been reported. 

3.4 NCCI Method 

This section describes the methodology used by the National Council on Compensation 

Insurance (NCCI) to derive an indicated 19th-to-ultimate tail factor for use in aggregate 

ratemaking specifically for workers compensation. NCCI applies this method in most states 

where it provides ratemaking services. 

3.4.1 Introduction  

NCCI uses the Accident Year Call for Experience (Call 5) submitted by its affiliates for the 

calculation of the accident year incurred 19th-to-ultimate tail factor used for ratemaking. The 

loss data collected on Call 5 includes cumulative paid losses, case loss reserves, bulk reserves, 

and IBNR for the most recent 20 accident years individually, and in total for years prior to 

the 20th accident year. 6F

7 Throughout the examples in this section, the notation ),( dwc  will be 

used to denote cumulative incurred losses including paid, case, bulk and IBNR reserves for 

accident year w  and development period d . Similarly, ( , )q w d  will be used to denote 

incremental incurred (paid plus change in case, bulk and IBNR) losses for accident year w  

during the period from 1d   to d . 

                                                           

 

7 Beginning with data valued as of December 31, 2007, NCCI began the process of expanding Call 5 by adding 

an additional accident year each reporting year until 30 accident years are reported individually, with years 

prior to the 30th accident year reported in total. However, as of the time of this writing, NCCI continues to 

calculate a 19th-to-ultimate tail factor as described in this section. 
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3.4.2 Calculation of the Accident Year Incurred 19th-to-Ultimate Tail Factor 

An estimate of all future incurred development beyond 19th report for a given accident 

year is estimated as the sum of i) reported incurred development from 19th to 20th report on 

the given accident year and ii) adjusted reported incurred development during the same 

calendar year for all prior accident years. 7F

8 The incurred development on prior accident years is 

adjusted by a “growth factor” to reflect the difference in overall loss levels between those 

years and the given accident year.  

The incurred 19th-to-ultimate tail factor for a given accident year is then obtained by 

adding unity to the ratio of a) estimated future incurred development beyond 19th report to b) 

incurred losses at 19th report for the given accident year: 

 

 

Where: 

Estimated AY 
incurred 

development 
beyond 19th 

= 

Incurred 
development on 
given AY from 

19th to 20th 

+ 
Nominal CY incurred  

development on all prior AYs 
Growth factor 

     

 = (a) + 
(b) 
(c). 

OR: 

( )
(19) 1

( ,19)

R w
F

c w
  . (3.7) 

Where: 

21

( 1, )

( ) ( ,20)

n

d

q n d d

R w q w
g



 

 


. 
(3.8) 

This is best illustrated by an example. Displayed below is a historical incurred loss triangle 

through 2010 evaluated at 12/31/2010. Note that values to the right of the jagged line (for 

                                                           

 

8 The development on all prior accident years during a calendar year, i.e., calendar year development, is a 

reasonable approximation of the future development on the given accident year assuming development 

patterns and exposure levels are constant. 

 
AY incurred 

19th-to-ultimate 
tail factor 

= 1 + 
Estimated AY incurred development beyond 19th 

AY incurred losses at 19th 
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development periods beyond 20th) are not available individually, but are shown for the 

purpose of this example. 

 

Cumulative Incurred Loss Triangle ),( dwc  

 1 … 19 20 21 22 23 … 

1986 (1986,1)c  … (1986,19)c  (1986,20)c  (1986,21)c  (1986,22)c  (1986,23)c  … 

1987 (1987,1)c  … (1987,19)c  (1987,20)c  (1987,21)c  (1987,22)c  (1987,23)c  … 

1988 (1988,1)c  … (1988,19)c  (1988,20)c  (1988,21)c  (1988,22)c  (1988,23)c   

1989 (1989,1)c  … (1989,19)c  (1989,20)c  (1989,21)c  (1989,22)c    

1990 (1990,1)c  … (1990,19)c  (1990,20)c  (1990,21)c     

1991 (1991,1)c  … (1991,19)c  (1991,20)c      

1992 (1992,1)c  … (1992,19)c       

         

2010 (2010,1)c         
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The values below are shown for illustrative purposes and are not intended to reflect 

realistic incurred loss development patterns. 

Cumulative Incurred Loss Triangle ),( dwc  

 1 … 19 20 21 22 23 … 

  …       

1986 6,000 … 30,000 30,600 30,906 31,061 31,154 … 

1987 8,000 … 40,000 40,800 41,208 41,414 41,538 … 

1988 10,000 … 50,000 51,000 51,510 51,768 51,923  

1989 12,000 … 60,000 61,200 61,812 62,121   

1990 14,000 … 70,000 71,400 72,114    

1991 16,000 … 80,000 81,600     

1992 18,000 … 90,000      

         

2010 50,000        

Note that in this example, accident year 1991 is the most recent accident year for which 

data is available at 20th report. The 19th-to-ultimate tail factor for this accident year is 

calculated below. Since the underlying data is evaluated as of 12/31/2010, the formula uses 

incurred loss development on all prior accident years that occurred during calendar year 2010. 

The components of formula (3.8) are calculated as follows: 

(a) Incurred development on given AY from 19th to 20th report 

)19,1991()20,1991( cc   
000,80600,81   

.600,1  

(b) Incurred development on all prior AYs 

 
21

2010 1,
n

d

q d d


    

     1990,21 1989,22 1988,23q q q     

                22,198823,198821,198922,198920,199021,1990 cccccc

       768,51923,51812,61121,62400,71114,72  
 155309714  

000,3    (datapoints not shown). 
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(c) Growth factor, g  (the rationale for the selection of the elements used to calculate g  

is discussed below.) 

          

 19,1991

19,199019,198919,198819,198719,1986
5

1

c

ccccc 








  

 

000,80

000,70000,60000,50000,40000,30
5

1










  

625.0 . 

Substituting, 

(3.8) 
Estimated AY incurred 

development beyond 19th 
= (a) + 

(b) 
(c) 

  = 1,600 + 
3,000 
0.625 

  = 6,400.   

 

(3.7) 
AY incurred 19th-

to-ultimate tail 
factor 

= 1 + 
Estimated AY incurred development beyond 19th 

AY incurred losses at 19th 

  = 1 + 
6,400 
80,000 

 

  = 1.08.   

3.4.3 Derivation of the Formula 

Assuming that all claims are closed and all losses paid out at nth report, the actual incurred 

development on accident year 1991 from 19th report to ultimate is: 

(1991,19)F  
 
 19,1991

,1991

c

nc
   

 
     

 
21

1991,19 1991,20 1991,

1991,19

n

d

c q q d

c



 




 

 
     

 

1991,20 1991,21 1991,22 ...
1

(1991,19) 1991,19

q q q

c c

 
    

  

 

 
 
 

 
 
 

 

1991,21 1991,22
1990,21 1989,22 ...

1990,21 1989,221991,20
1

1991,19 1991,19

q q
q q

q qq

c c

   
      

       

  

 

 
 

 

 
21

1991,
2010 1,

2010 1,1991,20
1

1991,19 1991,19

n

d

q d
q d d

q d dq

c c



 
   

    


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  

 

 

 
21

2010 1,
1991,20

1
1991,19 1991,19

n

d

q d d
q

h
c c



 

   


, 
(3.9) 

where 

 
 

 

 

21

21

1991,
2010 1,

2010 1,

2010 1,

n

d

n

d

q d
q d d

q d d
h

q d d





 
   

  

 




, (3.10) 

which can be described as a weighted average of the terms 

 

 

1991,

2010 1,

q d

q d d 
, 

using as weights 

 

 
21

2010 1,

2010 1,
n

d

q d d

q d d


 

 
. 

Each of the terms in this series is a ratio of incremental incurred losses for accident year 

1991 relative to an earlier accident year. However, in each term the numerator is unknown 

(because this development has yet to occur), and the denominator is not available (because 

only 20 development years of data are reported individually). Therefore, NCCI approximates 

these terms by measuring accident year 1991 incurred losses against each of the earlier 

accident years at an earlier, known report level. Because the incremental incurred losses for 

one report can vary widely, cumulative losses are compared in each of the terms, as follows: 

,...
)19,1988(

)19,1991(
,

)19,1989(

)19,1991(
,

)19,1990(

)19,1991(

c

c

c

c

c

c

 

Substituting into formula (3.10): 
 

 
 

 

 

21

21

1991,19
2010 1,

2010 1,19

2010 1,

n

d

n

d

c
q d d

c d
h

q d d





 
   

  

 




. (3.11) 

For a given term (which measures accident year 1991 against a given accident year) in the 

weighted average described by formula (3.11), the weight applied to that term is the given 

accident year’s proportion of calendar year incurred development on all accident years prior 

to 1991. Since the calendar year incurred development on accident years prior to 1991 is only 

available in total and not by accident year, NCCI approximates the weighted average on the 

right-hand side of equation (3.11) with a simple average of a subset of the first k  terms. With 

this approximation, equation (3.11) simplifies to: 
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 
.

19,12010
1

)19,1991(
)1(21

21









k

d

dc
k

c
h  

Currently, NCCI uses a simple average of the first five terms ( 5k  ) to approximate this 

“growth factor.” This selection is discussed in further detail below. With 5k  , we have: 

 
.

19,12010
5

1

)19,1991(1
25

21








d

dc

c

g
h  

(3.12) 

Substituting into formula (3.9):  

(1991,19)F   

 

 

 
21

2010 1,
1991,20 1

1
1991,19 1991,19

n

d

q d d
q

c c g



 

   


 
 

 
   

 
21

1
1991,20 2010 1,

1
1991,19

n

d

q q d d
g

c



 
    
  


. 

(3.13) 

Formula (3.13) is the form used by NCCI. 8F

9  

3.4.3.1 Growth Factor 

The tail factor method used by NCCI has evolved since its initial implementation. While 

the derivation of the formula above accurately describes the rationale underlying the current 

approach, the method originated from a simpler form that initially did not incorporate the 

growth factor adjustment. Using the current formula (3.13), removing the growth adjustment 

would be equivalent to setting 1g  . In an environment of increasing exposure (loss 

volume), failure to incorporate a growth adjustment would result in an understated tail factor. 

Conversely, the tail factor would be overstated if exposure is decreasing and 1g  .  

Since it is not possible to calculate the growth adjustments shown in formulas (3.10) or 

(3.11) with the data collected on financial calls, NCCI approximates the growth adjustment 

using formula (3.12). This approximation compares the cumulative incurred losses at 19th 

report for the most recent accident year to the average cumulative incurred losses at 19th 

report for the five prior accident years. 9F

10 The five-year average was selected (as opposed to 

                                                           

 

9 The discussion above illustrates the calculation of the incurred 19th-to-ultimate tail factor for a single 

accident year using the most recent data. In NCCI filings, the final tail factor is selected based on a review of 

at least the most recent five accident year tail factors. 
10 For tail factors using data valued prior to December 31, 2008, NCCI used 8th report losses in the calculation 
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shorter- or longer-term averages) judgmentally with consideration given to the following 

items: 

1. Incurred loss development pattern beyond 19th report – Workers 

compensation is a long-tailed line of insurance in which the ultimate cost of claims 

incurred during a given accident year may not be known for several decades. When 

using a simple average of a fixed number of accident years for the growth factor 

adjustment, a longer tail would suggest using more years in the average. 

Conversely, a shorter tail would suggest using fewer years in the average. 

2. Exposure growth rates – Exposure (loss volume) can increase or decrease over 

time due to a number of factors (e.g., inflation, benefit changes). Given constant 

incurred loss development beyond 19th report for all accident years, a higher rate of 

exposure growth would suggest using a fewer number of years in the average for 

the growth factor adjustment. 

3. Impact of the growth factor adjustment – In some states, incurred loss 

development beyond 19th report may be minimal (especially for indemnity benefits, 

which are typically limited in duration by statute). In these cases, the growth factor 

has little to no impact on the calculated tail factor, making the number of years 

used in calculating the growth factor an immaterial selection. 

4. Data constraints – The number of years used in the average for the growth 

adjustment is limited on the upper end by data constraints. Specifically, the oldest 

accident year for which data was reported individually at 19th report is 1979. 

3.4.3.2 Conversion Ratios 

In determining 1st-to-19th loss development factors, NCCI organizes loss data in a variety 

of ways (policy year or accident year, on a paid or paid + case basis). Therefore, a “conversion 

ratio” is required to convert the accident year incurred 19th-to-ultimate tail factor to the 

corresponding 1st-to-19th loss development basis. For instance, in a state where link ratios 

from 1st-to-19th report are based on accident year paid + case losses, a paid + case-to-incurred 

                                                                                                                                                   

 

of the growth factor. When the growth adjustment was introduced to the formula in the late 1980s, data 

reported to NCCI included only eight individual accident years. Over time, the financial calls were expanded 

to include 20 individual accident years of data—adding one additional accident year at each subsequent 

reporting date. Growth factors could not be calculated using data at a 19th report until there were six 

valuations of data that each included 20 individual accident years of loss experience. 
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conversion ratio at 19th report is divided into the accident year incurred 19th-to-ultimate tail 

factor to calculate an accident year paid + case 19th-to-ultimate tail factor. 

For 1st-to-19th development on a policy year basis, the 18th-to-19th policy year link ratio 

is first raised to the two-thirds power to approximate accident year experience at 19th 

report.10F

11  

The various conversions are illustrated in the following table: 

As part of ongoing efforts to improve its ratemaking methodologies, NCCI continues to 

research alternative methods to address tail development. As of the time of this writing, 

NCCI is currently considering the following potential changes to the method described 

above: 

1. Elimination of bulk and IBNR reserves from the calculation 11F

12 

2. Change to the number of years used in the growth factor 

3. Algebraic revision to the growth factor formula  

  

                                                           

 

11 The justification of the two-thirds power adjustment to bring the maturity level of the policy year experience 

more in line with the maturity level of the accident year experience is beyond the scope of this paper. 
12 Calculating the tail factor using paid + case losses would eliminate the need for the paid + case-to-incurred 

conversion ratios. In addition, without the need for IBNR data (only reported on an accident year basis), a 

policy year 19th-to-ultimate tail factor could be calculated directly, eliminating the need for the “two-thirds 

power” adjustment. 

 

1 st 
-to-19 th 

  Loss  

Development Basis 18 th 
-to-19 th 

 Link Ratio Tail Factor Conversion Formula 

Incurred 19 th -to-Ult Tail 

AY Paid+Case-to-Inc Conv Ratio @ 19 th 

Incurred 19 th -to-Ult Tail 

AY Paid-to-Inc Conv Ratio @ 19 th 

Incurred 19 th -to-Ult Tail 

AY Paid+Case-to-Inc Conv Ratio @ 19 th 

Incurred 19 th -to-Ult Tail 

AY Paid-to-Inc Conv Ratio @ 19 th 

AY Paid+Case 18 th -to-19 th 

Link Ratio 
AY Paid+Case: x 

AY Paid: 
AY Paid 18 th -to-19 th 

Link Ratio 
x 

PY Paid+Case: 
(PY Paid+Case 18 th 

-to-19 th 

Link Ratio) 2/3 x 

PY Paid: 
(PY Paid 18 th -to-19 th 

Link Ratio) 2/3 x 
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3.4.3.3 Adjustment for Capped Methodology  

In 2004, NCCI enhanced its aggregate ratemaking methodology to mitigate the possible 

distortions that catastrophic events and extremely large individual claims can create in state 

premium level indications. 12F

13 NCCI uses this large loss ratemaking procedure in most of the 

states where it provides ratemaking services. Essentially, the methodology derives ultimate 

losses using reported losses capped at a given dollar threshold per claim and later adds a 

provision for expected losses in excess of that threshold.  

In order to develop capped losses to ultimate, loss development factors on a capped basis 

are needed. From 1st to 19th report, NCCI caps individual claims prior to calculating loss 

development factors. However, individual claim detail for large claims is only reported for 

claims with accident dates on or after January 1, 1984. Therefore, to calculate the capped 19th-

to-ultimate tail factor, NCCI derives a factor to adjust the selected uncapped paid + case tail 

factor to a capped basis.  

In general terms, the tail adjustment factor is the ratio of capped (for a given threshold) to 

uncapped paid + case loss development beyond 19th report on a countrywide basis. NCCI 

uses excess ratios and excess loss development factors to calculate the adjustment factor by 

threshold and then applies the factor as follows: 13F

14 

Capped 19th-to-
ultimate paid + case 

tail factor 
= 1 + [ 

Tail 
adjustment 

factor 
X ( 

Uncapped 19th-
to-ultimate paid 
+ case tail factor 

_ 
1)] 

3.4.4 Advantages and Disadvantages 

One strong advantage of this method is that it uses the total for all prior accident years 

(the ‘prior’ row) available in the financial call data submitted to NCCI. Further, although this 

calculation may appear relatively complex, the core approach of the method (looking at one 

year’s runoff of all prior years during the current calendar year) is actually fairly simple. A 

disadvantage is that the growth factor used by NCCI is an approximation, and the number of 

years of data used in the calculation is selected judgmentally. Also of note, this method 

requires that a sufficient history of accident years and volume of loss activity exists in the 

                                                           

 

13 In this paper, discussion of NCCI’s large loss methodology is restricted to that portion affecting the tail 

factor calculation. For a more thorough treatment of the procedure used by NCCI, see “Catastrophes and 

Workers Compensation Ratemaking,” by Tom Daley, CAS Forum, Winter 2007. 
14 If the selected uncapped 19th-to-ultimate paid + case tail factor is less than 1.0, the tail adjustment factor is 

set equal to 1 so that the capped tail factor equals the uncapped tail factor. 
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‘prior’ row. 

3.4.5 Users 

This method is used most by its developers, NCCI, but it is sometimes used by consulting 

firms as well. 

3.4.6 Summary 

At its core, this method was designed by a rating bureau for their specific situation. 

However, it has evolved from a fairly simple and understandable concept. Therefore, as long 

as there is an adequate volume in the runoff from prior years and an appropriate and reliable 

growth correction can be made, it can be a very useful method. 

3.5 Summary of Algebraic Methods  

The algebraic methods key off basic and very reasonable assumptions about the 

relationship of development in the tail to quantities which are relatively simple to compute 

from basic reserving data. As such, they are very useful reserving tools. 

4. BENCHMARK-BASED METHODS  

4.1 Introduction to Benchmark-Based Methods 

If a suitable benchmark can be found, the use of benchmark data from a larger pool of 

losses, typically those that contain development detail at greater maturity than the data being 

developed, can supplement the data being developed. This can feature advantages due to a 

higher credibility of the link ratios near the tail, or may have more years of development than 

a start-up type program. 

4.2 Directly Using Tail Factors from Benchmark Data 

4.2.1 Description 

Many actuaries review benchmark data when selecting a tail factor. Benchmark data can be 

used in place of or as a supplement to more company-specific data when selecting the tail 

factor. In some cases, the benchmark is comprised of industry data triangles and the tail must 

be derived; in other cases the tail factor and development pattern have been selected by the 

organization producing the benchmark data. At its simplest, the benchmark method involves 

copying the benchmark age to ultimate development factor at the maturity desired for the tail 

factor. If the tail factor needed is a different age than available, it will be necessary to 

interpolate (assuming the age is in between two ages available in the benchmark) or 

extrapolate (if the age needed is outside the range of ages available in the benchmark data). 
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For extrapolation, it may be possible to use one of the other methods described in this paper. 

If the source does not directly compute a tail factor, it will be necessary to derive a tail factor. 

4.2.2 Data Sources 

Perhaps the most common benchmark data triangles are those that can be developed from 

Best’s Aggregates and Averages for each of the Schedule P lines. This source presents 

summarized development triangles on an industry basis out to 120 months. Triangles are 

available for Paid, IBNR and Total Incurred (paid loss + case reserves + IBNR) to 120 

months for the last 10 accident years. An incurred loss triangle excluding IBNR can be 

derived by subtracting the IBNR triangle from the Total Incurred triangle. Aggregates and 

Averages do not generate a tail factor or development pattern directly; a tail factor must be 

calculated. This can be done using one of the other methods described in this paper (on what 

should be a very credible set of data) or a tail factor can be inferred based on the IBNR 

booked by the industry. For example, if one needed a paid tail factor from 96 months to 

ultimate for a particular period, you could compute the ratio of the ultimate losses of the 

accident period at 96 months to paid loss at 96 months to determine the tail factor. 

Alternatively, you could use the ratio of ultimate loss for all accident periods older than 96 

months to the sum of paid loss at 96 months for those same accident periods.  

The two larger rating bureaus, the National Council on Compensation Insurance (NCCI) 

and Insurance Services Office (ISO), as well as the Reinsurance Association of America 

(RAA), all publish benchmark loss development data. Benchmarks are also available from the 

state workers compensation rating bureaus. The rating bureaus will generally select a 

development pattern and tail factor based on the statistical data reported to them by 

insurance companies and other writers in the case of workers compensation coverage.  

Another source of benchmark data is the annual statements of individual insurance 

companies. This data is basically in the same form as Aggregates and Averages. The annual 

statements can be found at each state’s insurance department. Tail factors can be derived as 

described above, but this method is more heavily dependent upon the adequacy of the reserve 

estimates for a single company, and would be less credible. On the other hand, this data 

would more specifically capture the reserving practices of the company used. Also, the annual 

statement of a company known to be writing business on risks similar to those of the 

company under review may be of particular interest. 

4.2.3 Usage 

This method is very commonly used by consulting actuaries and actuaries at smaller 

companies where data either are inadequate or do not exist.  
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4.2.4 Advantages and Disadvantages 

One key advantage of using tail factors from benchmark data is that benchmark data is 

easily available through common industry sources. In addition, benchmark tail factors are 

typically based on a high volume of data, which can help reduce process variance that is often 

inherent in smaller data sets. 

The primary disadvantage of this method is that the benchmark tail development may not 

be representative of the book of business being analyzed. Considerations such as differences 

in the way claims are adjusted or reserved, differences in the types or mix of types of claims 

(medical vs. indemnity), differences in the potential for long-developing high-value claims, 

differences in the initial reporting pattern of claims (claims-made vs. occurrence, whether or 

not there is an innately long discovery period, etc.), and differences in the adjudication 

process of litigated claims can all cause differences in development patterns. It is important to 

consider those factors along with the statistical reliability of the benchmark triangle when 

selecting the most appropriate benchmark tail factor. 

4.2.5 Summary 

This is the most basic and most common of the benchmark-based methods. It is 

dependent on the benchmark data being a ‘good match’ to the data in question. However, for 

low-credibility data, where it is most often used, any mismatch in data must be measured 

against the unreliability of the data in the triangle being analyzed.  

4.3 Use of Benchmark Tail Factors Adjusted to Match Pre-Tail Link Ratios  

4.3.1 Description 

One way to address differences between the benchmark development pattern and the 

development pattern of a given book of business is to try to adjust the benchmark data to 

take into account differences in the subject book of business. One common practice is to 

compare the age-to-age link ratios from the subject data to the benchmark age-to-age link 

ratios prior to the tail development stage. The relativities from those stages are used to 

estimate an adjustment multiplier for the benchmark tail factor. Of note, generally just the 

development portions of the link ratios ( ( )v d  of 1 ( )v d ) are compared. 

4.3.2 An Example  

An example will help to illustrate how the process works. Consider the following two 

patterns where we simply compute the ratio of the development portion of our triangle-based 

link ratios to the development portion of the matching benchmark link ratios:  
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(1) (2) (3) (4) (5) (6) 

 Selected Link Ratio Benchmark Link Ratio 
Selected to 
Benchmark 

Ratio = 

(3)/ (5) 

Maturity 

 

Estimated by 
Triangle 

f(d)=1+v(d) 

Development 
portion v(d) 

Ratio 

Development 
portion 

v(d) 

12 2.000 1.000 2.000 1.000 100% 
24 1.450 .450 1.350 .350 129% 
36 1.200 .200 1.150 .150 133% 
48 1.150 .150 1.100 .100 150% 

60 1.100 .100 1.050 .050 200% 
72 1.080 .080 1.030 .030 267% 
84 1.050 .050 1.025 .025 200% 
96 1.035 .035 1.020 .020 175% 
108 1.010 .010 1.010 .010 100% 

      
Tail   1.050   

Chosen Ratio  200% 

T(n) = 1+.050*200% =1 + .100 = 1.100 

In the example above, 200% is chosen as the ratio of subject development portions of the 

age-to-age factors to the benchmark based on the 60- through 108-month relativities. 

The underlying assumption of this adjustment is the underlying processes in our subject 

data that are causing the (in this case) higher development than seen in the benchmark data 

will continue throughout the life of the claim. This may or may not be the case. From a 

practical standpoint, it is generally not possible to examine all aspects of claims handling to 

the degree necessary to make this determination. The example above is representative of a 

reasonable adjustment one might make based on the data, but it is a qualitative adjustment, 

not a statistically based adjustment. 

4.3.3 Usage of This Method 

This method is very commonly used by consulting actuaries and actuaries at smaller 

companies where data either are inadequate or do not exist. 

4.3.4 Advantages and Disadvantages 

The main advantages of this method are (1) it is easy to apply and (2) it presents a very 

broad representation of the potential outcomes of the subject data. Industry-wide benchmark 

data represents an industry-wide view of the possible outcomes of the claims adjustment 
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process. Even a complete set of data for a smaller company may not adequately represent the 

potential for very long-term claims. This broad perspective can also be one of the major 

weaknesses of this method. The benchmark may be too broad, as it is often difficult to find a 

perfect match in terms of all the factors (claims handling, case reserving, potential for large 

claims, etc.) that affect loss development. 

Another issue with benchmarks is the availability of data beyond 120 months. Most 

available benchmark data does not extend beyond 108 or 120 months. Deriving a tail factor 

for an age beyond this time frame would require some form of extrapolation. 

4.3.5 Summary 

This method is a relatively simple way to improve the tail predictions generated by 

benchmark data. It is used a little less commonly than the ‘straight benchmark,’ though, there 

are many different ways to adjust benchmark data. Presumably, adjustment can improve the 

effectiveness of benchmark data significantly. 

4.4 Benchmark Average Ultimate Severity Method 

4.4.1 Description  

This method relies on a benchmark average severity and the reported average severity near 

the tail to derive a tail factor. It requires two key assumptions. Specifically, one must first 

assume that the average ultimate severity of the oldest accident period being analyzed is equal 

to or similar to some benchmark ultimate severity. Second, one must assume that the number 

of reported claims is equal to the total ultimate number of claims (or, equivalently, one must 

be able to derive a highly reliable estimate of the total ultimate number of claims generated by 

the oldest period). The method then involves the simple act of using the ratio of the 

benchmark average ultimate severity to the reported severity as the tail factor. If, for an 

accident period, the estimate of the ultimate number of claims is higher than the oldest 

period’s number of reported claims, then the ratio of benchmark ultimate severity to the 

reported average severity must be multiplied by the reported claims count tail factor to derive 

the tail factor. 

In mathematical terms, the first case may be stated as: 

(1, )
( ) ( ) /

(1, )

inc

reported count

c n
T n Average Severity u

c n
 . (4.1) 

The second case may be stated as: 

'( ) ( ) ( )reported countT n T n T n  , (4.2) 

where we recall that n  represents the last development age of a given accident period as well 
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as the most recent accounting period for which data is available. ( )reported countT n  is the 

development factor to ultimate for reported claim counts for the oldest maturity in the 

triangle n . 

When using this method it is absolutely imperative that the benchmark severity be 

appropriate for the eldest period. Note that when the triangle data has low or medium 

credibility, the true average severity may be strongly affected by the vicissitudes of fortune 

with respect to large, late settling claims. If more than the average number of large claims are 

present in the data, this test may improperly suggest negative development in the tail. If the 

oldest period contains fewer large claims than average (which is more common), then this 

method will suggest more development than actually occurs. On the other hand, in the rare 

cases where a large number of large claims emerge and balance out the average number of 

large claims, the development will be relatively greater than this method implies. Of note, if 

only a limited amount of development is available in the triangle (say four to five periods in 

long tail lines), and the larger claims all occur after the oldest maturity n , then (as long as the 

benchmark is appropriate) this test may have higher relative reliability. That is because this 

test can comfortably assume an average number of large losses without the data being 

distorted by variance in the number of large losses already reported. Further, note that the 

class of business must be such that a reliable benchmark that matches the type of data in the 

triangle is available. For example, if one has a large volume of private passenger auto data all 

from standard classes, for which benchmark data is readily available, this method may prove 

to be useful. 

4.4.3 Example 

Consider a triangle going out 10 periods (120 months) containing private passenger auto 

data. Suppose that all the claims are clearly reported by 120 months but some remain 

unsettled. Specifically, suppose that the total incurred loss for the oldest period is  

(1,10)incc  = $120 million. 

Further, suppose the corresponding reported counts are 

(1,10)reported countc  = 6,000. 

So, the reported severity at 120 months is $20,000. If the benchmark average ultimate   

severity is $20,200, then the implied tail factor would be 

(10)T  = 20,200/20,000 = 1.01. 

4.4.3.1 A Second Example 

The other utility mentioned for this approach involves long-tail data that requires a tail for 



The Estimation of Loss Development Tail Factors: A Summary Report 

Casualty Actuarial Society E-Forum, Fall 2013 33 

a medium term triangle. Say, for example, that a workers compensation triangle is available, 

but it only has five 12-month periods of data and hence stops at 60 months. Suppose you 

know that the average severity benchmark data, for the hazard group mix contained in your 

data, at ultimate is $50,000 per claim, counting both initial claims closed with any type of 

payment and reopened claims closed with any type of payment separately in the denominator. 

Further, suppose that this larger benchmark workers compensation data says that the 

reported claims count tail factor at 60 months is 1.02. 

Then all you need from your data are the reported counts and incurred losses for the 

oldest period. (Again, all reported count figures only include those with payment, and count 

reopened claims as claims in themselves in this example). Suppose they are: 

(1,5)incc  = $4 million, and 

(1,5)reported countc  = 100 claims.  

Then the current reported severity of the oldest period would be $4 million/100 = 

$40,000 per claim; 

and the implied tail factor would be  

1.02 ×$50,000/40,000 = 1.02 ×1.25 = 1.275. 

4.4.4 Advantages and Disadvantages 

As mentioned above this method is only suitable when a reliable benchmark average 

severity is available and when the presence or absence of a few large losses are not factors in 

the eldest period’s data. Due to the relative rarity of those situations, this method is not 

widely used. 

4.4.5 Users 

This method does not currently have widespread usage. A few actuaries in consulting and 

primary company actuaries have been observed to use this method. 

4.4.6 Summary 

This method involves applying an average severity from benchmark data to correct the 

severity shown in the case incurred data. Because of the difficulty in finding reliable 

benchmark severities, its utility and use in practice is somewhat limited. 

4.5 Use of Industry-Booked Tail Factors 

This method is also referred to as the “industry-booked” method, as it relies on the 

adequacy of booked industry IBNR in older accident years to determine the tail factor. While 
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it can be argued that this factor should represent the “best” estimate of the industry actuaries 

of the additional reserve need, history has shown that this figure has often been inadequate. 

This would suggest that tail factors based on this method would be understated. 

4.5.1 Description 

The general practice while using this method is to simply look at the (direct or net) IBNR 

booked by the industry (per Best’s Aggregates and Averages, or other sources) for the oldest 

year in schedule P, then divide that by the (direct or net) case incurred loss for that year. The 

result forms the industry booked incurred tail. Similarly, dividing the (direct or net) case 

reserves + IBNR for the oldest year by the (direct or net) paid loss for that year yields the 

industry-booked paid loss tail. 

4.5.2 Example 

Assume that the industry Schedule P for the year 2007 shows the following values for 

accident year 1998 (the oldest year in that Schedule P): 

A. Direct Paid Loss        5,000,000 

B. Direct Loss Case Reserves       2,500,000  

C. Direct IBNR        2,500,000  

Then, we first compute some intermediate values (the total incurred and total reserve): 

D. Total Case Incurred Loss (= A+B)       7,500,000  

E. Total Reserves (Case + IBNR) (= B+C)       5,000,000  

We then can compute the development portions of the tail factors as described above, and 

the tail factors themselves. 

F. Development Portion of Incurred Tail Factor (= C/D) 0.33 

G. Incurred Loss Tail Factor (= 1.0 + F)  1.33 

H. Development Portion of Paid Tail Factor (= E/A) 1.00 

I. Paid Loss Tail Factor (= 1.0 + H) 2.00 

4.5.3 Usage of this Method 

In spite of the potential problems with industry reserve inadequacy, this method is in 

broad usage in consulting firms and by actuaries at small- to medium-sized insurance 

companies. Generally, larger companies tend to have better alternatives. There is a smaller 

group of large firms that prefer to benchmark relative to their peers that may use this 
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approach. 

4.5.4 Advantages and Disadvantages of this Method 

The pros and cons of this method revolve around two main points:  first, the data is easy 

to obtain and the method itself is easy to perform; but, second, for many lines it may be 

unrealistic to expect industry booked IBNR to be adequate. Another important concern 

would be whether or not the industry would be a suitable benchmark for the book of 

business being analyzed. 

4.5.5 Summary 

It must be noted that this method is based on what may be an incorrect assumption (that 

industry IBNR is adequate). Nonetheless, many actuaries use this method. That is perhaps a 

tribute to its simplicity. 

4.6 Benchmark Tail Factors Adjusted for Company-Specific Case Reserving 

The use of benchmark data, as discussed earlier, is often necessary due to lack of 

credibility in triangles with low data volume near the tail. However, this can be problematic 

when the entity handling claims for the subject book of business uses different case reserving 

standards than the industry at large. In such cases, it is common to include a correction to the 

benchmark tail factors to reflect the specific case reserve adequacy of the subject book of 

business. 

4.6.1 Description 

This method is very similar to the use of benchmark tail factors, excepting that a 

secondary factor is included that adjusts the case reserves near the tail to industry level. Most 

commonly, the adjustment will be generated by a claims audit. That will involve sending a 

highly experienced claims person, preferably one specializing in claims audits, to the claims 

handling office for a formal audit. Typically, such a claims auditor will review a sample of the 

claim files and, based on what is in the file and his or her claims expertise, estimate what case 

reserve should be carried on the file at industry standard case reserve levels. Such efforts may 

be focused on the tail by sampling solely from the most mature years in the triangle. That is 

because the case adequacy may be different near the tail than it is an early and intermediate 

maturity. Using the results of the audit, one can compute a case reserve adjustment factor to 

industry reserving levels as the ratio of the total case reserves suggested by the claims auditor 

divided by the carried case reserves on the claims in the sample. 

As the final step in producing the corresponding tail factor, one need only multiply the 

benchmark tail factor by a factor to adjust the business’ total case incurred losses to industry 
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levels. To compute that factor to adjust the business’ total case incurred to industry levels we 

sum up the ratio of the eldest years’ cumulative paid losses to its case incurred losses plus the 

claims auditor’s case reserve adjustment factor times the eldest years’ ratio of case reserves to 

case incurred losses. So, in total we have the following equation. 

)]}([){(ˆ
IncurredIncurredPaidBenchmark csFactorAdjccTT 

. 
(4.3) 

4.6.2 Example 

Suppose the benchmark tail factor is 1.2. Further, suppose the cumulative paid loss for the 

eldest year is 85% of the case incurred, so the case reserves (‘s’ above) are 15% of the case 

incurred at the tail. Then suppose a claims audit says that in order to bring case reserves in 

line with industry reserve adequacy, the case reserves should be twice what they are. Then, the 

adjusted benchmark tail is: 

1.2 × (.85 + 2 × .15) = 1.2 × 1.15 = 1.38. 

4.6.3 Advantages and Disadvantages 

This method offers a significant opportunity to improve the accuracy of benchmark tail 

factors. However, claims audits can impose a significant cost and, more importantly, require 

the use of highly trained claims auditors. These resources are not available to every actuary. 

Further, the auditors need not only to be highly trained but also have to be extremely 

objective, or else the results will be misleading. Perhaps another approach would be to ask an 

objective auditor for ‘industry best practices,’ which might be different from the ‘industry 

average.’ In order to recognize that difference, claims adjusted using industry best practices 

could be developed using a benchmark that is more mature than the data. Certainly the more 

experience an actuary has in working with an auditor and watching the tails develop, the more 

trust he or she can place in this method. Also the fact that history has shown benchmark 

IBNR data is often inadequate must be considered. 

4.6.4 Users 

This method is used primarily by large commercial and reinsurance carriers that must 

reserve data from a multitude of different claims handlers. Some actuarial firms that work 

with data from many different claims entities use it as well. 

4.6.5 Summary 

In summary, this method can be a useful adjunct to the use of benchmark tail factors, but 

does require an extensive set of resources. Further, it requires a great deal of vetting of not 

just the case reserves but the claims auditor as well. 
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4.7 Summary of Benchmark-Based Methods 

Benchmark data can serve a useful function, especially in the small-to-medium credibility 

situations. One must be careful, though, to make sure that either the benchmark data is a 

good match for the book of business being analyzed, or that appropriate adjustments are 

applied either to the benchmark data or the book of business being analyzed.  

CURVE-FITTING METHODS 

5.1 Introduction to Curve-Fitting Methods 

One strategy for developing tail factors is to posit some relationship between the link 

ratios at various development ages (or, some similar quantity such as incremental paid by 

development age), and use that relationship as an assumption to fit a curve to the link ratios. 

Projected link ratios in the development ages covered by the tail factor can then be generated. 

All those projected link ratios can then be multiplied together to provide an estimate of the 

tail factor. The methods below represent only those methods where curve-fitting is the 

primary source of the tail factor. There are several methods (e.g., Mueller’s method, which is 

discussed later) that involve curve-fitting but are not solely curve-fitting type methods. 

The topic of modeling loss development for various purposes such as projecting ultimate 

losses or estimating variability in development factors has been discussed in various actuarial 

articles and papers such as McClenahan [9], Finger [4] and Hayne [8]. A common 

characteristic of probability distributions selected for modeling is that they indicate that 

incremental losses emerge or are paid out at a monotonically decreasing rate (decay function). 

The exponential distribution is one of many probability distributions used in practice for 

modeling a decay process. 

5.2 Exponential Decay Method 

5.2.1 Description 

The method utilizes link ratios, ( )if d , as opposed to cumulative or incremental paid loss. 

Define the function ( )iv d , the development portion of the link ratio, as follows: 

( ) 1 ( )i if d v d  . In contrast to the McClenahan method (see section 5.3) and Skurnick 

method (see section 5.4), this method assumes that the ( )iv d ’s decay at a constant rate, r , 

i.e., 1( ) ( )i iv d v d r   .  

The process consists of first fitting an exponential curve to ( )iv d ’s. This can be 

accomplished by using a regression to the natural logarithms (natural log) of ( )iv d ’s. Next, 

the decay constant r can be estimated as the inverse natural log of the slope of the fitted 
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curve. The remaining development, from a given development age d , can be estimated as: 

1

( ) (1 ( ) )m

m

T d v d r




    . (5.1) 

For small ( )v d , remaining development can be approximated by: 

( )

1

( ) 1 ( ) 1 (0) (1 )m d

m

T d v d r v r r




       . (5.2) 

5.2.2 Example 

Appendix B, Section 5.2, shows a contrived example of fitting the following link ratios:  

Age in  Link 

Months Period Ratio 

12 1 1.5 

24 2 1.25 

36 3 1.125 

48 4 1.0625 

60 5 1.03125 

72 6 1.015625 

84 7 1.007813 

 

The outputs from the curve fit and actual and approximated tail calculations are shown 

below: 

 

 

 

 

5.2.2.1 Another Example (Appendix B, Section 4.1) 

The above example was contrived for purposes of demonstrating the method. A more 

realistic data pattern helps highlight certain issues that can arise when using this method.  

In the Appendix example the “error in fit” (actual minus fitted) suggests a possible poor fit 

of the curve to the data. In the next section, a method of addressing the issue of less than 

optimal fit is presented.  

From curve fit to column (5) in the Appendix 

ln( )r   -0.6931 r   0.5000 

ln[ (0)]v   0.0000 (0)v   1.0000 

Product of Age 8 to Age 22 Link Ratios 1.007830 (8)T   

Approximation formula 1.007813 
81 (0) (1 )v r r     
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5.2.2.2 Adjustment to Exact Fitting  

In this enhancement, the development portion of the derived tail factor is adjusted by the 

“actual to fitted ratio” from the last stage. For example, suppose that the development 

portion of the 108-month tail factor is 0.03 and the ratio of the actual-to-fitted link ratio is 

1.7. The adjusted tail factor is now 1 + (0.03) x (1.7) = 1.051. This ‘adjustment’ increases the 

tail factor, but this resulting value is considerably different from the tail factor produced by 

the method. Without further knowledge of the underlying data, such as what is the line of 

business, what are the claims department’s reserving/payment practices, etc., there remains 

uncertainty as to which result is the better estimate or whether either estimate is appropriate. 

5.2.2.3 Fitting Curve to Mature Periods Only 

Since the focus of the curve-fitting is in estimating the development in the more mature 

ages, one possible enhancement to the methodology is to only fit the curve to the latter 

development periods. 

5.2.3 Advantages and Disadvantages of Exponential Decay Method 

This method is fairly straightforward to construct, intuitive in nature and there exists a 

closed-form approximation, which can be applied in most situations. The assumptions 

underlying the method are: (1) loss development from period to period decays in a constantly 

decreasing pattern, (2) the exponential decay rate is constant throughout the entire loss 

development pattern.  

Exponential decay can produce relatively fast development compared to the development 

resulting from other distributional models. In certain circumstances (for instance high excess 

lines or long tail liability lines) other models might produce a more appropriate development 

result. In addition, in the case where paid losses do not continue to decay at a constant rate 

such as workers compensation indemnity, an alternative approach might be more appropriate. 

This method is not generally applicable to incurred losses for such reasons as (1) changing 

reserve patterns and (2) negative development, which would refute the decay constant 

assumption and can produce erroneous results from the fitting, if any at all. 

5.2.4 Users 

This method is used to a varying extent by consulting actuaries and actuaries at smaller 

companies where data either are inadequate or do not exist, or when development experience 

to date for a newly underwritten line of business does not reflect patterns from alternative 

sources such as industry aggregated data. Since a key assumption of this technique is a 

constant decay rate this might generally run contrary to other assumptions underlying the 

development patterns assumed in a reinsurance application. 
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5.2.5 Summary of Exponential Decay Method 

The exponential decay method is based on a few assumptions concerning the rate of decay 

in incremental loss paid. From these assumptions, a curve can be fit to the development 

portion of age-to-age factors, which are calculated from observed paid loss data, and a 

resulting tail factor can be developed from the slope of the fitted curve. This method will 

produce suboptimal results for lines of business for which the decay rate “stalls out” or varies 

by development period, but adjustments such as fitting the curve to the most mature 

development periods will sometimes improve results. 

5.3 McClenahan’s Method 

This method is derived from Charles McClenahan’s loss model [9], which assumes 

incremental paid losses decay at a constant monthly rate after an initial few months lag in 

which no claims are paid.  

5.3.1 Description  

Let the monthly decay rate, p , be defined as the ratio of {accident month m  incremental 

losses paid during month d  to 1d  } to {accident month m  incremental losses paid during 

month 1d   to d }, 

* *( , 1) / ( , )Paid Paidp q m d q m d   (5.3) 

for all accident months m  and accident maturities (in months) d a , where a  is the average 

lag time (in months) until a claim begins to be paid. Since total loss from accident month m  

can be expressed as the sum of all monthly payments made on these claims over time, we 

have 

* *( ) ( , )Paid

d a

U m q m d




 . (5.4) 

Since we assume a constant monthly decay rate, for some constant A , the incremental 

losses paid in month a can be expressed as ( , ) (1 )Paidq m a A p   . Using the theorem 

0

1/(1 )n

n

p p




  , it can be shown the constant A  is in fact the ultimate or total loss 

incurred in  accident month m . 

*

0

( ) (1 ) d

d

U m A p p A




     . (5.5) 

Under this assumption, additional payments are theoretically determined once the 

parameters p  and a  are estimated. The monthly decay rate is constant, so the annual decay 

rate, r , for annual periods after the initial lag period in which no claims are paid is also a 

constant, 
12r p . Given an average annual decay rate, the monthly decay rate p  can be 
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estimated as the 12th root of the average annual decay rate. McClenahan suggests estimation 

of a  can be derived from the average report lag (average date of report – average date of 

occurrence). In any event, the final selection of the parameter a  should consider the overall 

fit of the decay curve to the selected link ratios. 

For any accident period at d  months development, the tail factor is just unity divided by 

the percentage of total losses paid at d  months, or  

T(d/12) = 1 / (1 – percentage unpaid at d  months). (5.6) 

In his paper, McClenahan presents several closed-form formulas for various loss 

statistics. 14F

15 

Assuming 
*( )U m  is constant for all m , and letting 1q p  , we can derive the following 

expressions for the total loss for year w , and future development of accident year w  

respectively, 

11
*

0

( ) ( ) (12 ) /(1 )
m

U w U m A q p


     , (5.7) 

 10 12 2( , ) ( ) (1 ) /(1 )
12

m amR w U w q p p p       . (5.8) 

Substituting (5.7) and (5.8) into equation (5.6) produces the closed-form expression for a 

tail factor at m  months in terms of a , m , and p  

   10 12( ) 12 (1 ) / 12 (1 ) (1 )
12

m amT p p p p          (5.9) 

R  is used here with the same meaning as in McClenahan’s work, rather than as defined in 

Section 1.7. 

5.3.2 Example (An additional example is in Appendix B, Section 4.2) 

Reviewing an example may help the reader follow the application of the model discussed 

above. Even though this method is presented as applicable to incremental paid loss, with 

actual loss data, it would be highly unlikely that paid incremental losses for different accident 

periods will be the same, therefore we begin with the selection of age-to-age factors from an 

eight year (96-month) triangle:  

Selected Age-to-age Factors 

                                                           

 

15 For the purpose of this exercise, the variables McClenahan incorporates in his model for trend in severity, 

frequency, etc. can be collapsed into the decay rate and total loss for the accident period, hence there can be 

certain simplifications utilized in applying McClenahan’s formulas for ( )U w
 
and ( , )

12
R w m . 
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12-24 24-36 36-48 48-60 60-72 72-84 84-96 

5.7720 1.5290 1.1870 1.0851 1.0424 1.0220 1.0116 

Next we convert these to cumulative paid loss amounts by selecting a base amount for the 

first development period paid loss, for simplicity sake we use $100 in our example. To 

determine incremental paid losses by period we subtract successive cumulative loss amounts, 

and then we have the following table: 
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DEVELOPMENT DATA 

(1) (2) (3) (4) (5) 
Development 

Age 
Selected Age-to-

age Factors 
Age in 
Months Cumulative Paid Incremental Paid 

  12 100.00 100.00 
12-24 5.7720 24 577.20 477.20 
24-36 1.5290 36 882.54 305.34 
36-48 1.1870 48 1,047.57 165.03 
48-60 1.0851 60 1,136.72 89.15 
60-72 1.0424 72 1,184.92 48.20 
72-84 1.0220 84 1,210.99 26.07 
84-96 1.0116 96 1,225.04 14.05 

Taking successive ratios of incremental paid amounts for the accident periods produces 

estimates of the annual decay constant r . This example was contrived to produce an estimate 

of r , but in practice any of a variety of curve-fitting techniques using the incremental paid 

loss regressed on age can be employed to develop an estimate of r  from Column 5.  

In order to avoid distortions in the “true” annual decay rate caused by the payment lag, for 

our example we will next fit the curve to incremental accident period losses starting with the 

third annual development period. 

By definition 
1 12p r , and for the sake of the example, we will assume a lag constant of 

7a   months (see above discussion on estimating a ). Once the value of r  is calculated, 

with the value of p  estimated, we can develop an estimate of (8)T  using equation (5.7) 

above. 

(1) (2) (3) (4) (5) (6) (7) 

 Selected     Fitted 

 Age-to-age Age in 0BCumulative Incremental Incremental 

Age Factors Months Paid Paid Age-to-age Paid 
  12 100.00 100.00   

12-24 5.7720 24 577.20 477.20 4.7720  
24-36 1.5290 36 882.54 305.34 0.6399 306.02 
36-48 1.1870 48 1047.57 165.03 0.5405 165.35 
48-60 1.0851 60 1136.72 89.15 0.5402 89.35 
60-72 1.0424 72 1184.92 48.20 0.5407 48.28 
72-84 1.0220 84 1210.99 26.07 0.5409 26.09 
84-96 1.0116 96 1225.04 14.05 0.5389 14.09 

       
 r =0.5403  From Curve Fit to column (5) 

 p = 0.9500 

 a = 7 
 m = 96 

    10 12(8) 1.0135 12 / 12 (1 )m aT q q p p         

5.3.2.1 Exact Fitting to the Oldest Period 
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Curve fitting commonly has the problem of producing parameters that result in a less than 

desired fit in the tail of the curve, relative to actual results observed for these older periods. 

This can be due to a variety of factors relating to the assumptions underlying the structure or 

parameters of the fitted curve or random fluctuations within the actual data in earlier 

development periods. By comparing actual incremental paid loss to fitted results at the latest 

stage of development, we can usually improve the quality of the tail prediction. 

In the above example, assume the actual link ratio for the development stage 84-96 was 

1.0175 producing an incremental paid amount significantly greater than the overall annual 

decay rate r  which is still expected to be 0.5403. In this case, the actual decay rate is less in 

the older development periods, hence the incremental paid loss in these latter development 

stages maybe expected to be higher than is implied by the model. 

One approach would be to adjust the development portion of the initial estimate of the tail 

factor { ( 12) 1T m  } by the ratio of the actual to the fitted incremental paid loss, 

 ( 12 ) 1 ( ) ( 12) 1Actual Fitted

Paid PaidA
T m q q T m    . (5.10) 

Applying this adjustment to the example above, we have the following table: 

(1) (2) (3) (4) (5) (6) (7) 

 Selected     Fitted 

 Age-to-age Age in Cumulative Incremental Incremental 

Age Factors Months Paid Paid Age-to-age Paid 
  12 100.00 100.00   

12-24 5.7720 24 577.20 477.20 4.7720  
24-36 1.5290 36 882.54 305.34 0.6399 306.00 
36-48 1.1870 48 1047.57 165.03 0.5405 165.33 
48-60 1.0851 60 1136.72 89.15 0.5402 89.33 
60-72 1.0424 72 1184.92 48.20 0.5407 48.27 
72-84 1.0220 84 1210.99 26.07 0.5409 26.08 
84-96 1.0175 96 1232.18 21.19 0.8128 14.09 

       

(8) 1.0135T   From initial Example 

/ 150% 21.19/14.09Act Fit    

(8) 1.0203 1 ( / ) [ (8) 1]AT Act Fit T      

5.3.2.2 Using Multiple Periods to Estimate the Tail 

This enhancement is similar to exact fitting to the oldest period adjustment, but provides 

an alternative in situations when the “tail” of the triangle is believed to possess some 

credibility, but individual link ratios are less than fully credible.  

For example, assume as above, the actual (selected) link ratio for the 84-96 development 

period is 1.0175. In addition, assume the actual link ratio for the 72-84 period is 1.0440 
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instead of 1.0220. As in the prior example, the ratio of actual to fitted incremental paid loss 

for the 72-84 development period is now significantly different than 1.000. It should be noted 

the change in the link ratio for the 72-84 development period also has an effect on the paid 

incremental loss for the 84-96 development period, hence changes the adjustment ratio 

(actual to fitted) for this development period as well. These two adjustment ratios can be 

credibility-weighted to reflect the predictive accuracy of each factor. For the purpose of the 

example, each factor is assigned 50% weight. This results in an estimate of the tail factor as 

outlined in the following table: 

(1) (2) (3) (4) (5) (6) (7) 

 Selected     Fitted 

 Age-to-age Age in Cumulative Incremental Incremental 

Age Factors Months Paid Paid Age-to-age Paid 
  12 100.00 100.00   

12-24 5.7720 24 577.20 477.20 4.7720  
24-36 1.5290 36 882.54 305.34 0.6399 306.00 
36-48 1.1870 48 1047.57 165.03 0.5405 165.33 
48-60 1.0851 60 1136.72 89.15 0.5402 89.33 
60-72 1.0424 72 1184.92 48.20 0.5407 48.27 
72-84 1.0440 84 1237.06 52.14 1.0817 26.08 
84-96 1.0175 96 1258.71 21.65 0.4152 14.09 

        

 (8) 1.0135T   From initial Example 

 2( / ) 200% 52.14/ 26.08Act Fit    

 1( / ) 154% 21.65/14.09Act Fit    

 ( / ) 177%AvgAct Fit   

 2(8) 1.0239 1 ( / ) [ (8) 1]A AvgT Act Fit T      

5.3.3 Advantages and Disadvantages 

This method is relatively easy to apply and produces a closed-form solution. The 

assumptions underlying the method are: (1) for a given accident period, losses decay at a 

constant decreasing pattern after an initial payment lag; (2) the reduction in paid incremental 

losses is proportional to the most current payout; and (3) the exponential decay rate is 

constant throughout the entire payout pattern (all accident periods, all development periods). 

If little is known about the “true” development pattern for the data, these assumptions 

appear to be minimal and reasonable, but care should be taken to assure that these 

assumptions do apply to the situation in which the method is being applied.  

This method is subject to many of the same disadvantages as the exponential decay 

method such as (1) not being applicable to incurred loss or lines with potential for negative 

development between evaluation periods, (2) exponential decay at an indicated rate developed 
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from the observed data that can produce a relatively faster development than other models 

for certain long tail liability lines, and (3) a suboptimal fit would be obtained for lines with 

variable decay rates across evaluation periods such as workers compensation or if the decay 

rate varies by accident period. 

5.3.4 Users 

This method is a variation of the exponential decay method utilizing incremental paid loss 

in place of the development portion of the link ratio. Usage of this method or similar variants 

of the exponential decay method (for example see Skurnick’s method in section 5.4) are used 

to varying extents by consulting actuaries and actuaries at smaller companies where data 

either is inadequate or does not exist or when development experience to date for a newly 

underwritten line of business does not reflect patterns from alternative sources (i.e., industry 

aggregated data). Usage by reinsurance actuaries is assumed to be infrequent due to the 

constant rate of decay assumption. 

5.3.5 Summary  

Based on most of the assumptions underlying McClenahan’s loss model along with the 

rate of decay estimated from the incremental paid experience data, a closed form equation for 

the tail factor can be developed. The results of the method can be adjusted in cases where the 

fit using all periods is less than optimal (different decay rate at later maturities) or credibility in 

the older development periods is less than fully credible. 

5.4 Skurnick’s Method 

This method is derived from the loss model developed by David Skurnick [15] in his 

discussion of Charles McClenahan’s loss model [9].  

5.4.1 Description 

This method is based on the same underlying loss model as McClenahan’s method 

discussed in section 5.3 with a few simplifying assumptions. First, the model is developed on 

annual incremental payments and an annual decay rate. Second, no average delay constant is 

assumed (i.e., no delay between accident occurrence and accident payment). Third, we assume 

the annual rate of decay can vary by accident period (this assumption is not necessarily a 

simplifying one). 

More formally stated, the annual decay rate, wr , is defined as ratio of {accident year w  

incremental losses paid during development period d  to 1d  } to {accident year w  

incremental losses paid during development period 1d   to d }, i.e., 

( , 1) / ( , )Paid Paidq w d q w d . Since total loss from accident period w  can be expressed as the 
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sum of all annual payments made on these claims over time we have, 

0

( ) ( , )Paid

d

U w q w d




 . (5.11) 

Given a constant rate of decay, the incremental losses paid in period 0 can be expressed in 

terms of some constant A  and the decay rate, ( ,0) (1 )Paidq w A r   . Using the theorem  

0

1/(1 )d

w w

d

r r




  , (5.12) 

we can show the constant A  is the total loss for accident period w ,  

0 0

( ) ( , ) (1 ) d

Paid w w

d d

U w q w d A r r A
 

 

       . (5.13) 

For any accident year w  at D  period’s development, by definition, the tail factor times 

the sum of the incremental loss paid to date will produce an estimate of the ultimate loss for 

accident year w . In equation format this can be expressed as: 

0

( ) ( ) (1 ) ( )
D

d

w w

d

T D U w r r U w


     . (5.14) 

Based on the following theorem for finite summations: 

1

0

/( 1)
D

i D

d

ar ar a r



       if 1r   (5.15) 

 we can develop a closed form solution for the tail factor as: 

1( ) 1/(1 )D

wT D r   . (5.16) 

5.4.2 Example 

Assume the following incremental loss payouts for an accident period: 

Age in  Incremental 
Months Period Paid 

12 0 4,000 
24 1 2,000 
36 2 1,000 
48 3 500 
60 4 250 
72 5 125 
84 6 62.5 
96 7 31.25 

Fitting a line to the natural logarithms of the incremental paid losses in each development 

period, we can develop the estimates for ln( )wr  and  ln ( ) (1 )wU w r   by using the identity 

derived above: 

( ,0) ( ) (1 ) d

Paid wq w U w r r    ,   hence 
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     ln ( ,0) ln ( ) (1 ) lnPaid wq w U w r d r     . 

 

(1) (2) (3) (4) (5) (6) 

    Fitted  

Age in  Incremental  Incremental Fit 
Months Period Paid Log of (3) Loss Error 

12 0 4000 8.294050 4000 0 
24 1 2000 7.600902 2000 0 
36 2 1000 6.907755 1000 0 
48 3 500 6.214608 500 0 
60 4 250 5.521461 250 0 
72 5 125 4.828314 125 0 
84 6 62.5 4.135167 62.5 0 
96 7 31.25 3.442019 31.25 0 

 ln( )r   -0.6931 r   0.5000   

 From Curve Fit to column (4)  

ln[ ( ) (1 )]U w r    8.294 ( ) (1 )U w r    4000  

   (6)wT   1.0079 

   (7)wT   1.0039  

Taking the exponential of the estimate of the natural log of r  produces estimates of the 

annual decay constant, from which we can estimate the tail factor at given development stages 

for this accident period. This example was contrived to produce an estimate of r  with no 

error term (column (6) = column (3) minus column (5)). The next example demonstrates the 

effect of an increase in incremental loss in an early development period, followed by a return 

to a constant decay pattern. 
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(1) (2) (3) (4) (5) (6) 
    Fitted  

Age in  Incremental  Incremental Fit 
Months Period Paid Log of (3) Loss Error 

12 0 1000 6.907755 2,245 -1,245 
24 1 2000 7.600902 1,260 740 
36 2 1000 6.907755 707 293 
48 3 500 6.214608 397 103 
60 4 250 5.521461 223 27 
72 5 125 4.828314 125 0 
84 6 62.5 4.135167 70 -8 
96 7 31.25 3.442019 39 -8 

 ln( )r   -0.5776 r   0.5612  

 From Curve Fit to column (4)  

ln[ ( ) (1 )]U w r    7.7164 ( ) (1 )U w r    2245  

   (6)wT   1.0178 11/[1 ]Dr    

   (7)wT   1.0099  

The resulting curve does not fit the incremental losses as well in the earlier development 

periods. The tail factor produced by the estimated decay constant, r , is much larger than in 

the previous example, though the observed decay rate in the incremental losses in the later 

development periods are the same for both examples. 

5.4.2.1 Limit Curve Fitting to the More Mature Development Periods 

Increases in incremental paid losses from period to period, especially in early stages of 

development, are a common phenomenon. As demonstrated in the second example above, 

this can lead to less than an optimal curve fit, and possible distortions in the estimated tail 

factor. Putting more emphasis on the behavior of losses in the latter stages of development, 

at a point where a strictly monotonic decease in incremental paid losses is observed, is one 

approach that can provide a more optimal fit. An example of fitting a curve to actual 

incremental paid loss, only in the latter stages of development, is shown below: 
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(1) (2) (3) (4) (5) (6) 

    Fitted  

Age in  Incremental  Incremental Fit 
Months Period Paid Log of (3) Loss Error 

60 4 250 5.521461 250.00 0 
72 5 125 4.828314 125.00 0 
84 6 62.5 4.135167 62.50 0 
96 7 31.25 3.442019 31.25 0 

 ln( )r   -0.6931 r   0.5000  

 From Curve Fit to column (4)  

ln[ ( ) (1 )]U w r    8.294 ( ) (1 )U w r    4000  

   (6)wT   1.0079 11/[1 ]Dr    

   (7)wT   1.0039  

In this example, the tail factors produced for the 84- and 96-month development periods 

are the same as those produced in the original, contrived example. 

5.4.2.2 Excluding the Latest Development Periods to Estimate the Tail 

This enhancement can be used when the last development period incremental data is 

believed to be less than credible. The procedure is to (1) fit the curve to all periods but the 

last development period incremental paid loss, (2) compute the corresponding tail factor for 

the next to last stage of development, and (3) divide this result by the last observed link ratio. 

5.4.2.3 Adjustment to Exact Fitting 

In this enhancement, the development portion of the derived tail factor is adjusted by the 

“actual-to-fitted ratio” from the last stage. Using the second example above, the development 

portion of the 96-month tail factor is 0.0099 and the actual to fitted ratio is 31.25/39 = 0.795. 

The adjusted tail factor is now 1 + (.0099) * (0.795) = 1.0079. Given the observed data 

utilized in these examples, this ‘correction’ appears to move the factor in the right direction. 

This is an example of a situation in which the type of curve fitted to the data is not 

appropriate, based on the pattern of the data. 

5.4.3 Advantages and Disadvantages 

This method is simpler in construction than the McClenahan model, and produces a 

closed-form solution. The assumptions underlying the method are: (1) for a given accident 

period losses decay at a constant decreasing pattern; (2) the reduction in paid incremental 

losses is proportional to the most current payout; (3) the exponential decay rate, though 

constant over evaluation periods for a given accident period, may be a different rate for other 

accident periods; and (4) there is no lag between accident occurrence and accident payment.  
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Some of the draw backs to this method include: (1) Exponential decay assumes a 

monotonically decreasing function, therefore this method does not accommodate increases in 

incremental paid losses from one period to the next (hump-shaped patterns) very well; (2) 

The method breaks down when, in a given accident period, there are periods of no payments 

or negative payments; (3) This method is not applicable to incurred losses since they are often 

subject to negative development or changes in reserving practices (refutes constant decay 

rate); (4) For less mature accident periods with few valuations, the regression line fit could be 

less than optimal; and (5) This method is subject to most of the potential pitfalls of the 

McClenahan method such as the fitted exponential decay rate might be faster than is 

appropriate for the line of business, or the decay rate might vary by development period for 

lines such as workers compensation. 

5.4.4 Users 

This method is a variation of the exponential decay method utilizing incremental paid loss 

in place of the development portion of the link ratio. Usage of this method or similar variants 

of the exponential decay method (for example see McClenahan’s method in section 5.3) are 

used to varying extents by consulting actuaries and actuaries at smaller companies where data 

either is inadequate, does not exist or when development experience to date for a newly 

underwritten line of business does not reflect patterns from alternative sources (i.e., industry-

aggregated data). Usage by reinsurance actuaries is assumed to be infrequent due to the 

constant rate of decay assumption. 

5.4.5 Summary 

This method is similar in many respects to the McClenahan method (see section 5.3). 

Differences of this method from the McClenahan method include that (1) simplifications that 

reduce the calculations required in the closed-form solution, (2) the ability to vary the decay 

rate by accident periods, and (3) there is no need for payment lag in the calculation.  

5.5 Sherman’s Method 

This method, first articulated by Richard Sherman [14], relies on fitting “inverse power” 

curves to link ratios. 

5.5.1 Description 

5.5.1.1 Sherman’s Original Method  

In this method, we fit “inverse power” curves of the form bad1  ( d  representing 

development age) to the link ratios. The identity below enables us to base the fitted curve on 

a simple regression.  
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Unfortunately, there does not appear to exist a simple closed-form approximation to the 

tail this curve generates. The tail factor must then be estimated by multiplying together 

successive link ratios after the tail begins, until the impact of additional link ratios is 

negligible. 

5.5.1.2 Sherman’s Revised Method 

In his study of the inverse power curve, Sherman [14] noted that the fit could sometimes 

be improved by adding a lag parameter to the curve. He used the formula 

bcda )(1 v(d)1  f(d)  . (5.18) 

In this case, the mechanics of fitting the curve are somewhat more complex. 

5.5.2 Example (See Appendix B, Section B.4.3 for additional example)  

The following illustrative data will be used in the appendix to illustrate Sherman’s 

Methods. 

First determine the development portion, )(dv , of each link ratio. The natural logarithms 

of )(dv  and the age d  then represent the dependent and independent variables in our 

regression, respectively. 

(1) (2) (3) (4) (5) 

Development 
Age d  

Link Ratio 

)(1)( dvdf   

Development 
Portion 

)(dv  

‘X’ 

]ln[d  

‘Y’ 

)](ln[ dv  
1 2.034 1.034 0.000 0.034 

2 1.560 0.560 0.693 (0.580) 

3 1.321 0.321 1.099 (1.137) 

4 1.184 0.184 1.386 (1.692) 

5 1.106 0.106 1.609 (2.240) 

6 1.074 0.074 1.792 (2.601) 

7 1.047 0.047 1.946 (3.065) 

8 1.032 0.032 2.079 (3.438) 

9 1.024 0.024 2.197 (3.731) 

The fitted parameters of the dependent and independent variables of the fitted curve then 

are: 

Fitted-Curve Parameters 

Slope = b  (2.386) 

Intercept 4.806 
Interceptea   1.137 

The tail factor (T ) is then estimated as the product of link ratios for development ages 10 

 )ln(ln()ln(11ln( ln(v(d))  1)-ln(f(d) dbaadad bb

. (5.17) 
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through d , where d  is sufficiently large that the fitted age-to-age is close 1.00. 

Several possible alternatives to Sherman’s method exist. For example, in determining the 

appropriate curve, we could rely on link ratios of only the first 5 or 10 development ages or 

we could rely on the link ratios of only “mature” development ages. In addition, as discussed 

above, Sherman’s revised formula introduces a lag parameter to the curve. 

5.5.3 Advantages and Disadvantages 

As with all curve-fitting methods, Sherman’s method of fitting inverse-power curves to 

link ratios has advantages and disadvantages. The primary advantage is its relative simplicity 

and flexibility in evaluating multiple variations, once established in spreadsheet form. The 

primary disadvantage, on the other hand, is that it makes specific mathematical assumptions 

about the link ratio pattern when there is no compelling reason for the link ratios to follow 

any pattern whatsoever. 

Sherman’s revised formula has an added level of complexity. The modeler must evaluate 

whether the resulting degree of accuracy warrants the added level of complexity and work. 

5.5.4 Users 

This method enjoys fairly broad acceptance both with consulting firms and within 

insurance companies. It is not used quite as often as some of the other methods (e.g., industry 

booked tail), but is perhaps the most common medium complexity method in use. 

5.5.5 Summary 

Per Sherman’s analysis in the paper describing this method, this method does appear to fit 

link ratio data better than the various exponential approaches (exponential decay of 

development, McClenahan’s method, and Skurnick’s method). The calculations, though they 

are readily doable by most actuaries, involve a little more mathematics than most audiences 

are prepared for. Nevertheless, this generates a very useful estimator of the tail factor.  

5.6 Pipia’s Method  

This method determines the tail factor that best fits selected age-to-age factors by fitting a 

Weibul curve to the historical age-to-age data. The best fitting curve is determined by 

minimizing the squared ratio of the difference between the fitted age-to-age factors derived 

from the curve and the historical age-to-age factors. The curve represents the age to ultimate 

factor. The indicated age-to-age factor from the curve is found by dividing the value of the 

curve at time d  by the value at time 1d  . 

5.6.1 Description  



The Estimation of Loss Development Tail Factors: A Summary Report 

Casualty Actuarial Society E-Forum, Fall 2013 54 

Age-to-age factors are selected from historical data or from an industry source; age to 

ultimate factors are calculated from this data. A tail factor is selected that minimizes the 

squared differences between selected age-to-age factors and the age-to-age factors implied by 

the curve representing the age to ultimate factors. For workers compensation, the Weibul 

distribution, 
( )1

td ce   , has been found to provide a good fit to age-to-ultimate factors. The 

age to ultimate factor at time d  equals 
( )1/1

td ce    where c  is a shift parameter. 

5.6.2 Pipia’s Example (See Appendix B, Section B.4.4) 

5.6.3 Advantages and Disadvantages 

This method is relatively easy to apply and produces a tail factor consistent with the 

underlying historical observations. It is also easily adaptable to alternative selections of the 

distribution to be used for other lines of business. A good starting point may be the 

underlying loss distribution for the line of business since development is often related to the 

claim size distribution. This method, although it does not produce development factors less 

than 1.000, does not fail when actual factors below unity are in the historical data being fitted. 

Another advantage is that the historical data need not be complete or have consistent 

evaluation dates for each accident year. It provides a means to calculate development factors 

for a risk that only has scattered loss reports at different and inconsistent evaluation dates. 

This model can also be used to calculate development factors at intermediate points as well as 

points prior to or after the historical data. This last item is useful when one is using some 

benchmark data such as the NCCI Annual Statistical Bulletin, which provides incremental 

development factors at annual evaluations through 96 months. 

This method is subject to many of the same disadvantages as all loss development 

methods such as changes in case reserving, payout pattern, statutory changes that affect loss 

development and the appropriateness of the selected distribution for a line of business. 

5.6.4 Users 

It is understood that the developer has used this method to provide another estimate of 

the tail factor in conjunction with other methods, and that he has also used it when using 

benchmark data such as Schedule P data from the annual statement. However, due to its 

limited distribution to date, the specific Weibull-curve method is only used by a few actuaries. 
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5.6.5 Summary  

The method fits expected incremental development factors to the actual historical factors 

to generate an age to ultimate curve. The curve provides the age to ultimate for the average 

age of an accident year. The average age input can be outside the historical data range as well 

as at an intermediate point within the historical data period. It provides an alternative estimate 

of development factors as well as a tail factor. This should be used as one of several 

alternative methods in making a tail factor selection. 

5.7 England-Verrall Method 

For an excellent introduction to this method, see Section 8, “Discussion And 

Conclusions,” of the research paper itself. Sections of the paper are quoted in their entirety 

below, although not in the same order in which they appear in the research paper. For 

consistency, the notation in the following subsections differs slightly from the notation of 

Section 1.7. The notation of this section follows that of mathematical probability while the 

notation of Section 1.7 is that of loss development in actuarial science. Table 5.7.2.1 below 

retains the notation of Section 1.7. 

5.7.1 Description 

Currently, given a triangle of data, a simple reserving exercise might proceed by fitting a 

chain ladder model (usually a 3, 4, or 5 period volume-weighted average chain ladder) and 

looking at the resultant development factors. It would then be common to smooth the factors 

and consider the necessity of a tail factor for projecting beyond the range of data observed. A 

number of methods, including judgment might be used to smooth the factors with the aim of 

smoothing out random variations, particularly in the later stages of development, while 

leaving the systematic trend intact. A tail factor might be chosen, by a variety of methods. 

To construct a flexible framework for stochastic claims reserving, within which several of 

the models can be regarded as special cases, for incremental paid claims ( , )c w d  define  

  ,( , ) w dE c w d m , (5.19) 

  ,( , ) w dVar c w d m  (5.20) 

and  

, , ,ln( ) ( ) ( ) (ln( ))w d w d w d w d dm k c s w s d s d            . (5.21) 

Equations (5.19), (5.20), and (5.21), which correspond to Equations (3.3), (3.4), and (3.5) 

on page 16 of the original research paper, specify a generalized additive model with power 

variance function and constant scale parameter. The power   dictates the choice of error 

distribution, with normal, Poisson, gamma and inverse Gaussian specified by  = 0, 1, 2, and 
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3, respectively. The predictor is linked to the expected value of the response through the 

logarithmic link function. The offsets ,w d  and inflation term k  are optional (where 

k w d  ), and may be suggested by a particular context. The function ( )s w  represents a 

smooth of accident period w , obtained using a smoothing spline with smoothing parameter 

w . Similarly, the functions ( )s d  and (ln( ))s d  represent smoothing splines specifying the 

shape of the runoff pattern, with smoothing parameter d  chosen (for simplicity) to be the 

same for both functions. In practice, it may not be necessary to include smoothers in both d  

and ln( )d . It should be noted that both accident period w  and development age d  are 

considered as continuous covariates.  

When w  is zero, there is no smoothing and the model is forced to pass through each 

value of w , which treats accident period w  as though it is a factor. The same is true of d ; 

when d  is zero, the model is forced to pass through each value of d , and development time 

is treated as though it is a factor. When d  tends to infinity, the part of the model relating to 

development time is linear in d  and ln( )d , giving the Hoerl curve. It is also necessary to 

choose the power function   to complete the model specification. 

Having chosen the model specification, the model can be fitted using maximum quasi 

likelihood to obtain parameter estimates (and their approximate standard errors). At this 

point the authors make use of standard statistical software packages which have the facility to 

fit generalized additive models. Currently the choice is limited, although greater choice is 

likely in the future as the popularity of generalized additive models increases. The authors 

used S-PLUS for the example. 

Having fitted the model, reserve estimates are obtained by summing the appropriate 

predicted values in the southeast region of the claims rectangle. All that remains is the 

estimation of variability in the reserve estimates. 

One of the principal advantages of stochastic reserving models is the availability of 

estimates of precision. Commonly used in prediction problems is the standard error of 

prediction, also known as the prediction error, or root mean square error of prediction. For 

claim payments in development period d  for accident period w  (yet to be observed), the 

mean square error of prediction is given by 

     
2

ˆ ˆ( , ) ( , ) ( , ) ( , )E c w d c w d Var c w d Var c w d   
 

. (5.22) 

Note that the mean square error of prediction can be considered as the sum of two 

components: variability in the data (process variance) and variability due to estimation 

(estimation variance).  

For the general model defined above, the process variance is given by Equation (5.20). For 
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the estimation variance, note that 

,ˆ

,
ˆ ˆ( , ) w d

w dc w d m e


  . (5.23) 

 
2

, , ,
ˆˆ ˆ ˆ( , ) ( , ) p p

w d w d w dE c w d c w d m m Var         
. (5.24) 

The final component of Equation (5.24), the variance of the (linear) predictor, is usually 

available directly from statistical software packages, enabling the mean square error to be 

calculated without difficulty. The standard error of prediction is the square root of the mean 

square error of prediction. 

The mean square error of prediction of the origin period reserve, the total reserve 

estimate, and the mean square error of prediction of the total reserve are found in the original 

research paper as Equations (4.3) and (4.4). 

Although Equations 4.3 and 4.4 of the original research paper look fairly complex, they are 

relatively easy to calculate by summing the appropriate elements. The only components not 

readily available from statistical software packages are the covariance terms. Provided the 

design matrix and variance-covariance matrix of the parameter estimates can be extracted 

from the statistical software package used, a full matrix of the covariance terms can be 

calculated without difficulty for any specification of the predictor  . Indeed, the variances of 

the (linear) predictors are simply the diagonal of such a matrix. Although natural in stochastic 

claims reserving, it is unusual to focus on the shape of the decay of incremental claims using 

traditional actuarial methods, in which it is common to focus on the relative increase in 

cumulative claims through development factors, the traditional “parameters” in a standard 

chain ladder exercise. After fitting a stochastic claims reserving model, it is straightforward to 

obtain equivalent development factors by applying the standard chain ladder model to the 

fitted values of the stochastic model. If the model is fully parametric, it may be possible to 

obtain a relationship between the model parameters and the chain ladder development 

factors. 

Incremental paid losses from an aggregation of classes of business are shown in Table 6.1 

on page 23 of the paper, and are used to illustrate the methodology. The incremental claims 

fall fairly rapidly, but are not completely run-off by the end of the tenth development period, 

implying the necessity for a tail factor greater than 1.0 when using the traditional chain ladder 

model.  

5.7.2 Example (See Appendix B, Section B.4.5) 

5.7.3 Advantages and Disadvantages 

Advantages of this procedure are that it is extremely flexible, and it forces the actuary to 
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look at the data. Disadvantages are that it is time-consuming and statistically inefficient. 

The main strength of the method presented in this paper is that both the smoothing and 

extrapolating can be performed at the same time in the same model. The actuary simply has 

to choose one parameter for smoothing across the whole range of development time, choose 

an error distribution, and choose how far to extrapolate (an additional parameter is necessary 

if smoothing over accident years). Further advantages are that it is also possible to obtain 

measures of precision of the reserve estimates, and investigate where the data deviate from 

the fitted model by viewing residual plots. Choosing smoothing parameters at the extremes is 

a useful additional feature since at one extreme the model may be considered over-

parameterized, and at the other the structure may be too rigid. 

Incremental data are used for the method put forward in this paper: This is both an 

advantage and a disadvantage. It is advantageous since the method can be used when the data 

history is incomplete. If incremental data were recorded by accident year only after a certain 

date, accident years prior to that date will have incomplete runoff information, and a section 

of the claims triangle in the northwest corner will be missing (this is a reasonably common 

occurrence). This presents difficulties using standard deterministic techniques that rely on 

cumulative data, but is not a problem for stochastic techniques, which treat the unobserved 

data as “missing” and estimate the data as part of the fitting procedure. The disadvantage is 

that negative incremental values sometimes occur in data based on paid losses, and frequently 

occur in data based on incurred losses where case estimates are often set on a conservative 

basis and overestimated. The method proposed is robust to a small number of negative 

incremental claims (as in the example), but will always produce positive fitted values (due to 

the use of the logarithmic link function) and hence will always produce development factors 

greater than one. For this reason, the techniques are often not suitable for use with incurred 

data, which often include a series of negative incremental losses in the later stages of 

development requiring development factors less than one. 

5.7.4 Users 

As a newly developed method, there were no known users identified in our survey at this 

time.  
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5.7.5 Summary 

Stochastic models have been constructed with the aim of producing exactly the same 

reserve estimates as the traditional deterministic chain ladder model. Advantages are that 

measures of precision are readily available, and the assumptions underlying the chain ladder 

model are clarified. More importantly, the models provide a bridge between traditional 

methods and stochastic methods, which is useful for the practitioner who is familiar with 

traditional methods and needs a starting point for exploring stochastic methods. 

The aim of the England-Verrall paper is to present a flexible framework for stochastic 

claims reserving which allows the practitioner to choose whether to use the basic chain ladder 

model, or to apply some smoothing, or to use a parametric curve for the runoff. Several of 

the models proposed to date fit within this framework, and further extensions are possible 

that have not yet been tried. 

5.8 Summary of Curve-Fitting Methods 

Several curve-fitting methods were presented, three that involve some sort of exponential 

decay process, and one that involves alternate assumptions about the decay of the 

development portion of the link ratios. It must be recognized that, by their very nature, the 

exponential decay methods will all tend to produce similar answers. So, the addition of the 

Sherman method is a welcome improvement. However, it must be recognized that all curve-

fitting methods make some very significant assumptions as to how development factors will 

decay. In using curve-fitting methods, it is a good idea to compare the results of several 

different curve-fitting techniques, considering the potential for bias in (1) the choice of the 

function, (2) actual points used in the fit and, (3) estimation of parameters. So, the user is 

cautioned to not just use them blindly. 

6. METHODS BASED ON REMAINING OPEN COUNTS 

6.1 Introduction to Open-Count Based Methods 

There is a class of methods that involve first estimating an average cost per open count for 

each calendar period and multiplying by the projected number of claims remaining open in 

that period. Summing together the results for all calendar periods in the tail gives the unpaid 

loss at the tail period. Dividing that by the paid loss up to the tail produces a paid loss tail 

factor. As it happens, the two methods presented use mortality to project the claims 

remaining open, although other approaches are possible. 
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6.2. Static Mortality Method 

The static mortality method is also known as the incremental paid to prior open method. 

It separately treats changes in workers compensation incremental severities (due to annual 

rates of medical cost escalation) and the slow decline in the number of open claims (due to 

mortality). It is an adaptation of the (classic) structural methods of Fisher/Lange and 

Adler/Kline. 

6.2.1 Description 

Incremental payments for every development year are estimated by taking the product of 

the number of open claims at the end of the prior development year and an estimated claim 

severity. For mature development years, future incremental payments are essentially a 

function of how many claims are still open and the average size of incremental payments per 

open claim. Changes in the number of open claims can be estimated beyond years in the 

triangle via mortality rates and inclusion of the small number of newly reported claims and net 

closures for other reasons. Analogous incurred loss development patterns can be estimated if 

one defines total case reserves as the product of the latest year’s incremental payments times 

the average annuity factor for all living permanent disability (PD) claimants.  

6.2.2 Example 

Section 3 of the Sherman-Diss paper includes a detailed example of this method.  

While the static mortality method is of limited value for early development periods, its 

merit relative to other reserving methods is substantial in estimating reserves for future MPD 

payments (the medical component of permanent disability claims) for more mature 

development periods. For such mature development periods, future incremental payments are 

essentially a function of how many claims are still open and the average size of incremental 

payments per open claim. In contrast, future incremental MPD payments have almost no 

causal linkage to payments for rapidly settled claims during early development periods. 

The specific steps to be taken in applying the incremental paid per prior open claim 

method are: 

(1) Incremental paid losses and open counts are compiled by accident year and 

development period. 

(2) Historical averages of incremental paid per prior open are compiled in triangle format 

starting at 24 months, computed using the above incremental paid and open count data. 

(3) Each historical average is trended to the expected severity level for the first calendar 

year after the evaluation date.  
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(4) Development factors of open counts at successive period-ends are computed. 

(5) The selected ratios from (4) by development period are used to project the number of 

open claims for each future development period of each accident year, thereby completing 

the triangle of open counts. 

(6) Future values of incremental paid per prior open are selected for each development 

period based on the trended data in (3) above. 

(7) Projections of incremental paid losses for future development periods for each 

accident year are determined as the product of the projected open counts from the completed 

triangle and the projected values of incremental paid per prior open selected in (6). 

The percentage declines in prior open counts reflect the composite effects of three factors 

affecting the number of open claims: (1) increases due to newly reported claims, (2) decreases 

due to the death of a few claimants, and (3) net decreases due to other reasons (including 

increases due to reopened claims). After 20 periods of development, newly reported claims 

and net claim closures (1 and 3 above) become negligible. Thus, after 20 periods of 

development, virtually all claim closures are attributable to the death of claimants. 

Consequently, changes in the number of open claims at the end of each development period 

beyond 20 periods can be predicted almost entirely on the basis of mortality rates. And 

changes in the number of open claims can be estimated beyond 15 periods via mortality rates 

and inclusion of the small number of newly reported claims and net closures for other 

reasons. This is subject to fine-tuning due to the possibility that the mortality rates of disabled 

claimants might be higher than those of the general populace, although recent improvements 

in medical technology have reduced the influence of medical impairment on mortality rates. 

If the historical database includes only the total number of closed claims, the number of 

claimant deaths may be estimated based on mortality tables and any additional claim closures 

are presumed to be for other reasons. In the Sherman-Diss model of Section 8.5, the 

breakdown is derived by estimating the number of claim closures due to death from the 2000 

Social Security Administration (SSA) mortality tables. 

Just as the authors have modeled the expected paid loss development factor (PLDF) 

patterns for MPD losses, analogous incurred loss development factor (ILDF) patterns can be 

estimated by defining total case reserves as the product of the latest period’s incremental 

payments times the average annuity factor for all living PD claimants. 

6.2.3 Advantages and Disadvantages 

 While this method is of limited value for early development years, its merit relative to 

other reserving methods is substantial in estimating reserves for future MPD (medical 
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permanent disability) payments for more mature development periods. The method is subject 

to fine-tuning due to the possibility that the mortality rates of disabled claimants might be 

higher than those of the general populace. In other words, a substandard mortality table may 

be required. It is important to note that the applicability of the method is not only dependent 

on the open claim count retention level, but also (1) the presence (or absence) of PD 

claimants with ongoing medical costs, and (2) the specific provisions of state workers 

compensation laws. However, the Sherman-Diss paper focuses primarily on MPD claims, 

which generally do not vary significantly between states.  

6.2.4 Users 

The method is utilized by the SAIF Corporation and the Oregon State Fund. 

6.2.5 Summary 

 After 20 years of development, virtually all workers compensation claim closures are 

attributable to the death of claimants. Consequently, changes in the number of open claims at 

the end of each development year beyond 20 years can be predicted almost entirely on the 

basis of mortality rates. Medical cost escalation rates and the force of mortality are the key 

drivers of MPD tail factors. The paid loss development method is not designed to treat these 

two influences separately. This method (incremental paid per prior open) provides for the 

separate, explicit treatment of the effects of these two drivers. The above method can be 

applied satisfactorily to workers compensation total medical loss experience for development 

years 20 and higher. 

6.3 Trended Mortality Method 

 The trended mortality method is an adaptation of the (classic) structural methods of 

Fisher/Lange and Adler/Kline. The model explicitly accounts for the compounding effects 

of downward trends in future mortality rates and persistently high rates of future medical cost 

escalation.  

6.3.1 Description 

The method is similar to the static mortality method of Section 6.2. The key difference is 

that the change in the number of open claims for every future development period of every 

accident year is determined by applying mortality tables forecasted by the SSA for the 

appropriate future development year. The rest of the method is essentially unchanged. The 

use of forecasted mortality is the distinctive feature of the trended mortality method.  

6.3.2 Example 

An example of the method is given in Section 6.2, the static mortality method. A few 
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comments should be made, which refer specifically to the trended mortality method. 

Small improvements in the annual survival rate of remaining claimants result in major 

differences in the number of claims still open at higher development periods. Given that the 

greatest differences occur during development periods in the distant future, when the effects 

of medical inflation have had an opportunity to compound over decades, the total reserve 

indicated by the trended mortality method is decidedly greater than that indicated by the static 

mortality method. 

Paid loss development factors for earlier (as well as middle) development periods will not 

hold constant over successive accident periods. However, it is also evident that the rate of 

increase over the short to middle term in these paid development factors on account of 

mortality is small. It is small enough that it would not be detectable to an experienced actuary 

reviewing historical PLDFs (paid loss development factors). 

Even though it is true that past declines in mortality rates are implicitly embedded in 

historical PLDFs, it would be incorrect to assume that the selection of historical factors as 

estimates of future PLDFs would implicitly incorporate the effects of future declines in 

mortality rates. With respect to mortality, the past experience of the data under review may 

very well not be a good indication of future mortality. What would be more appropriate 

would be to select representative PLDFs for each development period based on recent 

historical factors and then to trend these upward in a manner parallel to the PLDFs indicated 

by a realistic model such as mortality tables forecasted by SSA. 

6.3.3 Advantages and Disadvantages 

Advantages and disadvantages are similar to those for the static mortality method of 

Section 6.2.  

6.3.4 Users 

The method is utilized by the SAIF Corporation and the Oregon State Fund. 

6.3.5 Summary 

The Trended Mortality Method is similar to the Static Mortality Method described above 

but additionally, incorporates the compounding effects of the drivers. The above method can 

be applied satisfactorily to workers compensation total medical loss experience for 

development years 20 and higher. 

6.4 Summary of Future Remaining Open Claims Methods 

Two methods were presented, both of which rely on mortality to estimate open claim 
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counts. These methods are correct to point out that workers’ compensation link ratios can 

actually increase at certain durations due to medical inflation and the slow rate of 

withdrawals/deaths from the system. 

7. METHODS BASED ON PECULIARITIES OF THE 

REMAINING OPEN CLAIMS 

7.1 Introduction 

Although tail factors are generally intended to cover ‘average’ development beyond the 

data triangle, the actual development of the oldest year may be heavily driven by whether 

some particularly difficult claims are left in the oldest year. So, while these methods do not 

generally result in a tail factor applicable to the less mature years (that may or may not have a 

similar open claim portfolio when they become the oldest year in the triangle), it can be very 

useful for analyzing the oldest year and other years near the top of the triangle. 

7.2 The Maximum Possible Loss Method 

7.2.1 Description 

This method is a variant of the unclosed count method. However, it does not create a tail 

factor per se but establishes a maximum tail for the older years. The core idea of this method 

is that, given that the maximum net liability of an insurer is some net retention R , the liability 

for all the open claims should not be more than the sum of R  minus paid to date across all 

the open claims. For simplicity we assume the coverage period of the pertinent reinsurance 

agreement coincides to an accident period. To use this method, given that an accident year is 

sufficiently mature that no IBNR claims are reasonably possible, the remaining amounts to 

reach the retention ( R - paid-to-date) are summed across all remaining open claims in the 

accident year to produce the liability of open claims. 

The result is an upper bound on tail development for that specific year. So, if application 

of the tail factor to a given year suggests more development than is ‘possible’ per the 

remaining amounts to reach the retention in the accident year, the ultimate unpaid loss for 

that accident year might be capped at the amounts remaining to reach the retention.  

In the (fairly unusual) event that there are enough claims left open for this to be a 

statistically valid predictor of the development of the more recent years, it could be used in 

estimating the tail factor for all the accident years. But, one would have to be certain that this 

finding was statistically consistent with the initial tail factor analysis. For example, if the initial 

tail factor came from a curve fitting, it might be statistically reasonable that the curve fitting 

was simply using the wrong curve. However, if the initial tail factor came from a ‘paid 
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overdisposed’ method that also used the actual data in the triangle itself, the tail findings 

would suggest the data is internally inconsistent. In that case, greater care must be taken to 

understand which method is most accurate for the tail factor to be applied to the more recent 

years. 

7.2.2 Example 

Consider the following list of claims remaining open for the oldest year in a triangle 

(assumed to be 1991) 

Claims Remaining Open in Oldest Year (1991) 
Claim Number Retention Paid at Year-End 

1 300,000 150,000 
2 300,000 200,000 
3 300,000 250,000 
4 300,000 275,000 

Total  875,000 

Note that retention is the same for all claims as it is presumed that one reinsurance 

program was in place throughout all of accident year 1991. Then, we compute the total 

amount unpaid up to the retention, on each individual claim. 

Claim Number Retention 
Retention- 

Paid at Year-End 

1 300,000 150,000 

2 300,000 100,000 

3 300,000 50,000 

4 300,000 25,000 

Total  325,000 

In the event that no closed claims reopen, the total of the remainders to hit the retention is 

the maximum possible unpaid loss. Continuing in that vein, we divide the total possible 

maximum loss by the paid-to-date on all 1991 claims, and get a corresponding maximum 

possible tail factor. 

Paid-to-Date (All Claims) for Oldest Year (1991) 

2,000,000 

Cap on Development Portion (Total Max Unpaid/Paid All Claims) 

0.16 

Maximum Possible Tail Factor for 1991 (1+Cap) 

1.16 

A similar process can be used to compute maximum IBNR, using case-incurred loss 

instead of paid losses. 

7.2.3 Advantages and Disadvantages 

This method improves on the average unpaid loss method by dint of the fact that the 
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amount to reach the retention need not be estimated. Rather, it is fact. However, it only 

produces an upper bound, not an actual best estimate.  

Like the average unpaid loss method, there are often statistical reliability issues when 

making inferences about the tail factors of the more recent years. But, one cannot readily 

dispute the results as an upper bound for the older years on which the method is applied, at 

least as long as one is certain the prospect of additional IBNR claims is immaterial. So, like 

the average unpaid loss method, one must be very careful to make sure the proper 

assumptions hold when using it. But, unlike the average unpaid loss method, it has far more 

certainty surrounding the loss sizes. 

7.2.4 Users 

This method is used by some consulting firms and some insurance companies.  

7.2.5 Summary 

As stated, this method may be a powerful tool for setting an upper bound on development 

on the oldest year or years. Yet, it does not generalize well to the more recent years. So, it 

does not lend itself to a tail factor that can be applied to all the years. 

7.3 Judgment Estimate Method 

7.3.1 Description 

A method to derive the tail for the oldest claims is to examine the particular fact pattern of 

each reported outstanding claim and rely upon claims evaluation expertise to estimate the 

remaining settlement value for each claim. The sum of the estimated outstanding reported 

remaining settlement values by accident period is added to the cumulative payments by 

accident period to derive estimated ultimate settlement values by accident period. The 

estimated ultimate settlement value divided by the reported (or cumulative paid) losses to date 

by accident period results in the incurred (or paid) tail factors implied by this method. As this 

method is essentially a claims audit for the oldest claims, the method should probably not be 

strictly classified as an actuarial method. 

The method is intended to be applied only to the oldest periods where there is no 

reasonable expectation that additional claims will be reported. Of course, the resulting 

estimate of the tail will only be as useful as the quality of the claims expertise used to evaluate 

remaining claim settlement values. 

7.3.1.2 Example 

Consider the following cumulative paid loss triangle: 
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Cumulative Paid Loss Triangle ),( dwcPaid  

 12 24 36 48 60 72 

1991 1,000 2,000 2,500 2,800 2,950 3,100 

1992 1,100 2,400 3,000 3,500 3,900  

1993 1,300 2,500 3,000 3,400   

1994 1,200 2,300 3,100    

1995 1,400 2,800     

1996 1,490      

By 72 months of development, it is believed that all claims have been reported for the 

oldest accident year—1991. There are six (6) claims outstanding for accident year 1991 as of 

72 months of development. A professional claims examiner is engaged to evaluate the fact 

pattern of each of the six claims in order to derive an estimate of the remaining settlement 

value for each outstanding claim.. The claims examiner estimates are as follows:  claim #1- 

100; claim #2- 300 (the policy limit); claim #3- 0 (i.e., expected to be closed without 

payment); claim #4- 300; claim #5- 250; and claim #6- 250. The actuary reviews the claims 

examiner estimates for possible additional adjustments. Although claim #2 is expected to 

settle at the policy limit, the actuary believes there will be some loss adjustment expense to 

settle the case and, as such, adds 50 to the estimate for this claim. Similarly, the actuary adds 

50 to the claim #3 estimate to reflect future allocated loss adjustment expenses. Claim #6 is 

expected to be settled in several years and the actuary believes the claims examiner has not 

fully reflected severity inflation through time of settlement. The actuary adds 50 to this claim 

in order to account for additional severity inflation beyond which has been reflected by the 

claims examiner. After actuarial adjustment, the individual claim estimates are as follows:  

claim #1- 100; claim #2- 350; claim #3- 50  claim #4- 300; claim #5- 250; and claim #6- 300. 

These claim estimates total 1,350. Accordingly, the 72-ultimate payment tail development 

factor is derived as  

(3,100+1,350)/3,100=1.435 

The actuary further notes that the payment tail factor is only based upon an evaluation of 

six (6) claims and, as such, may not have full credibility. 

7.3.2 Advantages and Disadvantages 

Strengths of this method are:   

(1) The tail estimate is based upon the particulars of actual reported outstanding claims 

without reliance on theoretical models. 

(2) The tail estimates may be improved by better claims settlement evaluation expertise. 

(3) The method is readily understood by nontechnical users of the resulting actuarial 
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work product. 

(4) The method may provide insight into the plausible upper and lower bounds for the 

tail by period. A lower bound may be derived by assuming all reported remaining outstanding 

claims are closed without payment. An upper bound may be obtained by assuming all 

reported remaining outstanding claims are settled at the retention or policy limits. However, 

the use of these upper and lower bounds has its limitations, as discussed below. 

Weaknesses of this method are: 

(1) The method is only applicable: where there is access to individual claim information; 

when individual claim evaluation expertise is available; and for periods where there is no 

reasonable expectation that additional claims will be reported.  

(2) The results of the method are highly subject to the expertise and judgment of the 

examiner/auditor performing the claim evaluation. There is typically no fitting or testing of 

historical experience and no statistical support for the assumptions used in the claim 

evaluation.  

(3) Claims that are subject to worsening of claimant condition, such as long-term workers 

compensation (or short-term benefits that are escalated to long-term), or liability claims 

where adverse facts may have yet to emerge, are difficult or impossible to quantify. A claims 

examiner/auditor estimate may have a tendency to underestimate the liability for such claims 

as the emergence of adverse facts might be difficult for a claims examiner/auditor to justify 

for any particular claim. Additional actuarial adjustments would be required to the extent that 

the examiner/auditor has omitted consideration of the potential for future adverse facts. 

(4) Claims examiners/auditors may have a tendency to perform their evaluation on the 

basis of the estimated current value to dispose of the claim. Claims estimated on this basis 

tend to be underestimated since severity inflation through the time of final settlement is not 

considered. Additional actuarial adjustments would be required to the extent that the claims 

examiner/auditor has omitted consideration of severity inflation through final settlement. 

(5) Even where there is reasonable expectation that all claims have been reported, there 

may be risk that additional claims may emerge due to unexpected new claims; reopened 

claims (e.g., for workers compensation); changes or broadening in interpretation of coverage; 

changes in classification of claims by period; or other unforeseen circumstances. Additional 

actuarial adjustments would be required to the extent that the examiner/auditor has omitted 

these considerations. 

(6) Even where there is reasonable expectation that all claims have been reported, there is 

risk that the remaining settlement value of outstanding claims may be effectively less than 
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zero because of changes in classification of claims by period; salvage and subrogation 

recoveries; other recoveries on prior claims; or other unforeseen circumstances. 

(7) Even where there is reasonable expectation that all claims have been reported, there is 

risk that the remaining settlement value of outstanding claims may be greater than the sum of 

the remaining policy limit amounts for each claim by period as a result of the emergence of 

additional claims; ALAE costs (if included in the reserve provision); changes or broadening in 

interpretation of coverage; bad faith claims; punitive damage awards; or other unforeseen 

circumstances. 

7.3.3 Users 

One of the key hurdles to overcome in using this approach is the need for experienced 

claims auditors. So, this method tends to be used the most often by those with access to 

claims auditors, which includes, insurance companies that work with multiple third-party 

administrators, consulting firms, and, occasionally, state insurance solvency regulators. 

7.3.4 Summary 

 This method has the advantage of reflecting only the claims left open, even if the 

judgment estimate may sometimes be biased. It can certainly be used, though, in conjunction 

with tail factors developed from industry benchmark data. It is perhaps better thought of as a 

method for developing older years, than as a method for developing greener years that may 

have a different open claims pattern near the tail. It has its disadvantages in terms of the 

limits of what a claims auditor can reasonably ascertain. But, it is also fairly easy to explain to 

lay people. 

7.4 Summary of Methods Based on Peculiarities of the Remaining Open Claims 

These methods can produce significant improvements in estimates of the total costs of the 

oldest years, especially when only a few claims remain open in those years. But, the user is 

cautioned to avoid assuming that similar tail factors will be accurate for the less mature years. 

8. OTHER METHODS 

8.1 Introduction 

There are several other methods discussed below that do not fall into any of the previous 

classes. 

8.2 Restate Historical Experience Method 

8.2.1 Description 
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When the historical reported losses are inconsistent (e.g., there has been a substantive 

change in the claim counting or case reserving philosophy) and/or incompatible with industry 

benchmark experience (e.g., the most recent case reserves are substantially lower than 

comparable industry case reserves), it may be useful to attempt to restate the historical 

experience using concepts from the judgment estimate method .  

One possibility is to restate the entire reported loss history using claims evaluation 

expertise to estimate the case reserves of the outstanding reported losses as of each stage of 

development. After restatement of historical reported losses in this manner, the tail factor 

may be estimated using many of the methods described in this summary report. Indeed, once 

the historical reported losses have been restated on a consistent basis, all development factors 

may be estimated using traditional actuarial methods. This method shares several of the 

strengths and weaknesses of the judgment estimate method. However, this method has 

several serious additional weaknesses: (1) it is ordinarily extremely difficult to reconstruct the 

contemporaneous claim file information as of each previous historical development period; 

(2) in order to properly implement this method, the claims auditor must ignore claim 

developments that are known or knowable subsequent to each development period; and (3) 

in order to properly implement this method, the claims auditor must evaluate each previous 

open claim as if the evaluation were performed at a prior historical date corresponding to the 

development period. 

Generally, a more practical approach is to use claims evaluation expertise to estimate the 

current value of all open claims only as discussed in the judgment estimate method and apply 

comparable industry tail development factors. If the current open claims are estimated at 

industry standard levels and the industry development factors are truly comparable, then this 

method is applicable for all periods rather than only the oldest periods where there is no 

reasonable expectation that additional claims will be reported. 
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8.2.2 Example 

Consider the following cumulative paid loss triangle: 

Cumulative Paid Loss Triangle ),( dwcPaid  

 12 24 36 48 60 72 

1991 1,000 2,000 2,500 2,800 2,950 3,100 

1992 1,100 2,400 3,000 3,500 3,900  

1993 1,300 2,500 3,000 3,400   

1994 1,200 2,300 3,100    

1995 1,400 2,800     

1996 1,490      

Remaining claims open as of 72 months for accident year 1991 and remaining claims open 

as of 60 months for accident year 1992 are evaluated at industry standard levels. A claims 

examiner estimates that the industry standard value of the six (6) accident year 1991 

outstanding claims as 1,000 and the eleven (11) accident year 1992 outstanding claims as 

1,400. An appropriate source of compatible industry-incurred development factors indicates 

that the 72-ultimate comparable industry incurred development factor is 1.100 and the 60-

ultimate comparable industry incurred development factor is 1.150. Accordingly, the indicated 

accident year 1991 72–ultimate payment tail development factor is: 

[(3,100 + 1,000)/(3,100)] x 1.100= 1.455. 

 Similarly, the indicated accident year 1992 60-ultimate payment tail development factor is 

[(3,900 + 1,400)/(3,900)] x 1.150= 1.563. 

A similar procedure could be adopted for each accident year. 

The actuary considers whether the industry is truly reserving up to the levels of the claims 

examiner industry standard. If the actuary believes that the industry is not reserving up to the 

level of the claims examiner industry standard, then the actuary would increase the indicated 

tail development factors to reflect additional expected development. 

8.2.2 Advantages and Disadvantages 

Strengths of this method are:   

(1) Estimates of ultimate losses may be improved by better claims settlement evaluation 

expertise at the industry standard. 

(2) The method of adjustment is more readily understood by non-technical users of the 

resulting actuarial work product than highly theoretical models.  

(3) The method relies upon industry development factors which are often compiled and 
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may be readily available. 

Weaknesses of this method are:  

(1) The method is only applicable where there is access to individual claim information 

and when individual claim evaluation expertise is available. 

(2) The results of the method are highly subject to the expertise and judgment of the 

examiner/auditor performing the claim evaluation. Evaluation of claims at the industry 

standard is subjective. There is often no fitting or testing of historical experience and no 

statistical support for the assumptions used in the claim evaluation.  

(3) Appropriate industry development factors may not be readily available. Selection of 

appropriate industry development factors is not always clear in consideration of policy limits, 

mix of business, reinsurance, deductibles, etc. There is often considerable judgment required 

to select appropriate industry development factors. It may be appropriate to use a weighted 

average of several industry development factors in order to improve the comparability of the 

development factors with the restated historical experience. The appropriate weighting 

scheme of industry development factors itself may also be subject to a high degree of 

judgment. 

(4) Industry standard may be a higher value than the industry actuarial reserves. An 

adjustment (i.e., increase) to industry development factors may be required to reflect that the 

industry may actually reserve at values lower than industry standard levels. 

8.2.3 Users 

As with the judgment estimate method, one of the key hurdles to overcome in using this 

approach is the need for experienced claims auditors. So, this method tends to be used the 

most often by those with access to claims auditors, which includes insurance companies that 

work with multiple third-party administrators, consulting firms, and, occasionally, state 

insurance solvency regulators. 

8.2.4 Summary 

This subsection is a brief summary of the method and its utility. This method has the 

advantage of reflecting only the claims left open, even if the judgment estimate may 

sometimes be biased. Successful application of the method requires that the claims auditor 

accurately tracks the industry standard and that the industry development factors selected are 

appropriate for the line of business under consideration. Its disadvantages are the limits of the 

claims auditor’s ability to ascertain industry standard and the uncertainty in the appropriate 

industry development factor to apply to develop the auditor’s recast incurred loss to ultimate. 
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As with most methods, the uncertainty is greatest for the least mature years. On the other 

hand, the method is relatively easy to explain to non-technical users. 

8.3 Mueller Incremental Tail Method 

Named in recognition of the work done by Conrad Mueller, ACAS, the Mueller 

Incremental Tail (MIT) method was developed by Mueller internally at the SAIF Corporation.  

8.3.1 Description 

The MIT method is used in the Sherman-Diss model to calculate empirical 37 to 65 tail 

factors using paid incremental data on old accident years. See Section 8.5 of this paper for a 

synopsis of the Sherman-Diss paper. The method involves three stages: 

1. Incremental age-to-age factors 

2. Anchored decay factors 

3. Tail factors 

8.3.2 Example 

In the following example, table and figure numbers shown in parentheses refer to the 

original research paper by Sherman and Diss. Figure 8.3.2.1 provides a graphic summary of 

the portions of the incremental medical component of permanent disability claims (MPD) 

payments experience of the SAIF Corporation that are available. A complete triangle of MPD 

payments exists for AYs 1966-2002. This region is the triangle labeled “C” to designate that 

cumulative paid losses are available for all of these AYs. In addition, since calendar period 

1985, incremental MPD payments have been captured for AYs 1926-1965 for  development 

years 29 and higher. This region is the diagonally shaped area labeled “I” to designate that 

only incremental payments are available. 

Figure 8.3.2.1 (Figure 2.1) Configuration of SAIF’s MPD Paid Loss Data 

 

AY 1926-1965 

 

 

 

        AY 1966-

2002 

AY 2002 

 

Since paid MPD for AYs 1926-1965 has only been available for calendar periods since 

1985, it was necessary to construct an actuarial method of estimating the tail factor based on 
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decay ratios of incremental payments. This method is called the MIT method.  

The MIT method was used to calculate empirical 37 to ultimate tail factors using the 

incremental data on old accident periods. The empirical data ended at 65 years of 

development, which, for purposes of this section, will be considered to be ultimate. The 

method is described in three stages mentioned earlier: 

(1) Incremental age-to-age decay ratios 

(2) Anchored decay factors 

(3) Tail factors 

f(d)=cPaid(w,d)/cPaid(w,d-1)=[cPaid(w,d-1)+qPaid(w,d)]/cPaid(w,d-1)=1+qPaid(w,d)/cPaid(w,d-1) 

 

Then, ( ) 1 ( , ) / ( , 1)Paid Paidf d q w d c w d   , which is equal to ( )v d . 

1. Incremental age-to-age decay ratios. The first step is to calculate incremental age  to 

age decay ratios: 

 

( , 1) / ( , )Paid Paidq w d q w d , ( , 2) / ( , 1)Paid Paidq w d q w d  , ( , 3) / ( , 2)Paid Paidq w d q w d  , 

etc. 

With the SAIF data, Sherman and Diss were are able to calculate ratios of incremental paid 

at age 1d   to incremental paid at age d , for d  ranging from 29 to 65 years, using 20-year-

weighted averages. Because of the sparseness of claims of this age, the empirical development 

ratios needed to be smoothed before they could be used. The smoothing was done using five-

year centered moving averages.  

2. Anchored decay factors. After calculating incremental age-to-age decay ratios, the 

factors are anchored to a base year and thereafter termed anchored age-to-age factors. In 

the illustration that follows, development year d  is the anchor year.  

( , ) / ( , ) 1d Paid Paidd q w d q w d  , 1 ( , 1) / ( , )d Paid Paidd q w d q w d   , 

2 ( , 2) / ( , )d Paid Paidd q w d q w d   , …  all relative to ( , )Paidq w d . 

In general  

( , ) / ( , ) ( , 1) / ( , ) ( , 2) / ( , 1) ...Paid Paid Paid Paid Paid Paidq w d r q w d q w d q w d q w d q w d      

( , ) / ( , 1)Paid Paidq w d r q w d r    .
 

The anchored decay factors are cumulative products of the age-to-age decay ratios and 

represent payments made in year d r  relative to payments made in the anchor year d . 

Table 8.3.2.2 shows the anchored decay factors for payments made in accident years of age 
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40, 45, 50, and 55 relative to payments made in an accident years of age 37 (our anchor year). 

Table 8.3.2.2 (Table 2.3) 

Indicated Decay Factors Relative to Anchor Year 37 Incremental Payments 

Year of Development Decay Factors 

55 .962 
50 1.880 
45 1.724 
40 1.211 

Anchor Year 37 1.000 

For example, payments made in development year 50 are, on average, almost double 

(88.0% greater) the payments made in development year 37.  

Payments made in ages 38 to 65 relative to payments made in year 37 are obtained by 

summing the anchored decay factors from 38 to ultimate. The authors refer to these as 

anchored cumulative decay factors, dD s, where 

1 ( , 1) / ( , ) ( , 2) / ( , ) ...d Paid Paid Paid Paid iD q w d q w d q w d q w d d        for 1i d   to 

65. 

The sums of the decay factors are similar to tail factors, but instead of being relative to 

cumulative payments they are relative to the incremental payments made in the anchor year.  

The process can be repeated using a different anchor year. In addition to anchor year 37, 

the calculations were also performed using anchor years 36, 35, 34 and 33. In each case, the 

payments from 38 to ultimate were compared to the payments made in the selected anchor 

year. Table 8.3.2.3 shows the cumulative decay factors for each of these anchor years: 

Table 8.3.2.3 (Table 2.4) 

Cumulative Decay Factors Relative to Incremental Payments During Different Anchor 

Years  

Anchor Year Cumulative Decay Factors 

37 30.071 

36 30.115 

35 29.508 

34 28.280 

33 26.961 

The cumulative decay factors can be interpreted as follows:  Payments made from ages 38 
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to ultimate are 30.071 times the payments made in age 37. Similarly, payments made in ages 

38 to ultimate are 30.115 times the payments made in age 36, etc.  

3. Tail Factors. To convert these cumulative decay factors into tail factors, the authors 

make use of the selected cumulative loss development factors from the customary 

cumulative paid loss development triangle.  

The Tail Factor from d  to ultimate 
65

1

( , ) ( , ) / ( , )Paid Paid Paid

d

c w d q w d c w d


  
   

  
 ,  

65

1

1 ( , ) / ( , )Paid Paid

d

q w d c w d


 
   

 
  

1 ( , 1) / ( , ) ( , 2) / ( , ) ...Paid Paid Paid Paidq w d c w d q w d c w d       

   1 ( , ) / ( , ) ( , 1) / ( , ) ( , 2) / ( , ) ...Paid Paid Paid Paid Paid Paidq w d c w d q w d q w d q w d q w d      

. 

But    ( , ) / ( , ) ( , ) / ( , 1) / ( , ) / ( , 1)Paid Paid Paid Paid Paid Paidq w d c w d q w d c w d c w d c w d   = 

( ( ) 1) / ( )f d f d . 

So the tail factor is 11 [( ( ) 1) / ( )] df d f d D     where ( )f d  is the paid loss development 

factor for the dth year of development, and 1dD   is the cumulative decay factor for payments 

made during years ( 1d  ) to ultimate relative to payments made in anchor year d . 

In a similar way, an age-to-age loss development factor (less 1.0) extending beyond the 

cumulative triangle is 

  1( 1) 1 [( ( ) 1)] / ( )nd d f d d f d     , 

where 1nd   is the decay factor for payments made in year ( 1n ) relative to payments 

made in anchor year n . 

This method is sensitive to nf , the 37:36 paid loss development factor less 1. For this 

reason the analysis can be repeated using the 36, 35, 34 or 33 anchor years. Table 8.3.2.4 

shows the 37 to 65 tail factor calculated using each of these anchor years. 

Table 8.3.2.4 (Table 2.5) 

37 to Ultimate MPD Tail Factors Based on Different Anchor Years  

AnchorYear 37 to Ultimate MPD Tail Factors 

37 1.964 
36 1.808 
35 1.496 
34 1.439 
33 1.369 
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Selected 1.581* 

* Average excluding the high and low.  

The empirically calculated 37 to ultimate MPD tail factors range from a low of 1.369 to a 

high of 1.964. The value is sensitive to relatively small changes either in incremental age-to-

age factors in the tail or in the cumulative age-to-age factors at the end of the cumulative 

triangle. 

8.3.3 Advantages and Disadvantages 

The Mueller Incremental Tail method can be applied satisfactorily to workers 

compensation total medical loss experience for development years 20 and higher since 

virtually all medical payments are MPD payments at such maturities. A disadvantage is that it 

may be sensitive to the anchor year. However, the process may be repeated with various 

anchor years to reduce the high volatility of the tail data. This method may not be predictive 

if the payment patterns are changing over time but this is a disadvantage of any tail factor 

methodology.  

8.3.4 Users 

The method is utilized by the SAIF Corporation, Oregon’s State Fund. 

8.3.5 Summary 

Workers compensation tail data is often difficult to obtain and may be of dubious quality. 

The Mueller method is based on decay ratios of incremental paid data and may be used to 

anchor a tail factor at 20 to 35 years of maturity.  

8.4 Corro’s Method 

Daniel R. Corro published this method in his 2003 research paper titled “Annuity 

Densities with Application to Tail Development.”  

8.4.1 Description 

The paper considers the task of modeling “pension” claims whose durations may vary, but 

whose payment pattern is uniform and flat. The aggregate payout pattern is derived from the 

duration density and can be applied to calculating tail development factors. 

For consistency, the notation in the following subsections differs slightly from the 

notation of Section 1.7. The tail factor notation is the same as in Corro’s original research 

paper.  

The following assumptions are made. All payments on all claims are of the same amount. 

Payments are made periodically at a common uniform time interval immediately following a 
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common time of loss, 0t  , to claim closure. For every claim of duration x , the model 

assumes a continuous and constant payment rate of $1 until the claim closes. For pension 

claims, as described here, the entire payment schedule of a claim is completely determined by 

the claim duration. With the assumption that for any time t , 0 t b  , all claims with 

duration t  have the same predetermined and differentiable payment pattern. 

Let ( )S t  denote a survival function on the time interval (0, )b . Regard ( )S t  as a 

distribution of closure times and let ( ) 1 ( )F t S t   be the corresponding cumulative 

distribution function [CDF]. In effect, all claims are assumed to close on or before time b. 

We are interested in a related CDF, denoted by ( )F t  to emphasize its relation with ( )F t , 

which models the paid loss development as a function of time. More precisely, ( )F t  is the 

proportion of total loss paid by time t , i.e., the proportion paid out during (0, )t  (without any 

discount adjustment). ( )F t  is the reciprocal of the paid to ultimate loss development factor 

and ( )F t  is referred to as the paid loss development divisor [PLDD]. 

Consider the case when aggregate paid losses are followed over a series of N  time units 

with N b . The usual paid loss development patterns built from these N  evaluations will 

not account for the “tail paid loss development” beyond the final evaluation at time t N . 

With this notation, observe that this tail development factor is just 1( )F N  . 

It is reasonable to assume that workers compensation payments beyond some valuation, 

say after 10 periods, will be primarily made on pension-like claims. A model suited to such 

pension claims may be helpful in projecting the full payout pattern beyond 10 periods. 

Suppose you have a collection of PLDDs that covers the portion of the loss “portfolio” that 

is expected to develop beyond 10 periods. That is, for each type of claim you have a PLDD 

that is appropriate, at least over the time frame beyond 10 periods. The paper illustrates how 

to translate the mix of claims in the loss portfolio into a mixed distribution of those PLDDs. 

That mixed distribution then provides an estimated tail factor. 

In the workers compensation work that motivated this paper, the author seeks to find a 

19th to ultimate paid loss development factor. Consider a weighted sum (mixture) of PLDDs 

of the form  

1 2( ; ) (1 ) ( ; )wF b t w F b t    for 0 1w  . (8.1) 

The assumption here is that all claims close after 1 2( , )Max b b  periods;  one part of the loss 

portfolio closes by time 1t b  and the complement by 2t b .  

Empirical loss development factor data is used to fit a non-linear model in which the 

mixing weight variable w  is a parameter. When these simple functions are used with 1b , 2b  as 

selected constants, it is straightforward to set up the calculation so as to assure a closed form 
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solution for the value of w  that gives the best fit to the data. 

8.4.2 Example 

See the example in the Excel spreadsheet that accompanyies this paper. 

8.4.3 Advantages and Disadvantages 

Advantages of the method include that it is a nonsubjective, nonlinear “fit” of the tail data, 

which has a closed-form solution. The subjectivity of curve fitting is removed, at least to 

some extent, since the same mathematical assumptions are made for any tail data to which the 

method is applied. Tail factors calculated empirically are often significantly greater than those 

derived from extrapolation techniques. The greater weight given to tail data in this method 

reduces the likelihood of underestimation of reserves. The added complexity of the nonlinear 

fit involves no added work on the part of the user. The sum of squared difference 

minimization is easily calculated and is a well-known procedure. Another advantage is that the 

procedure addresses the nature of workers compensation tail data, comprised largely of 

permanent disability claims. 

A disadvantage of the method is that the mathematical notation may not be readily 

understood. 

8.4.4 Users 

As a newly developed method, there may be few users of the method at this time.  

8.4.5 Summary 

This paper considers the task of modeling “pension” claims whose durations may vary, but 

whose payment pattern is uniform and flat. The authors derive the aggregate payout pattern 

from the duration density, provide examples to show how this idea can be applied to 

calculating tail development factors and discuss the process. 

8.5 Sherman-Diss Method 

The workers compensation tail largely consists of the medical component of permanent 

disability claims (MPD). Yet the nature of MPD payments is not widely understood and is 

counter to that presumed in common actuarial models. In the Sherman-Diss paper, it is 

shown that common actuarial methods tend to underestimate the true MPD loss reserve. 

This is a serious concern because MPD loss reserves make up the bulk of total workers 

compensation loss reserves for all but the most recent accident periods. The authors state 

that the need to develop and apply new methods that directly reflect the characteristics of 

MPD payments is substantial. 
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8.5.1 Description 

The Sherman-Diss paper presents an analysis of medical payments based on 160,000 

permanently disabled claimants for accident periods 1926-2002, and a method utilizing 

incremental payment data prior to the standard triangle to extend development factors 

beyond the end of the triangle. 

Presented is an analysis of the extensive paid loss development database of the SAIF 

Corporation, Oregon’s state fund, extending out to 77 periods of development, separately for 

medical and indemnity, and separately by injury type. Medical paid loss development factors  

compiled by the California Workers Compensation Insurance Rating Bureau (WCIRB) and 

the medical paid loss history of the Washington Department of Labor and Industries (WA 

LNI) are presented as additional support. 

Ordinarily, it would be expected that paid loss development factors for subsequent 

development periods would slowly decline below the last factor as a continuation of the 

pattern of slowly decreasing factors exhibited, for example, during development periods 10 

through 15. Since common actuarial methods assume that the pattern of declining factors for 

these development periods will continue in the future, the projected paid loss development 

factors fall increasingly below the actual historical factors. This pattern of divergence 

continues during development periods 27 through 37, as shown in Table 8.5.1.1. Table and 

figure numbers shown in parentheses throughout this section refer to the original research 

paper. 

Table 8.5.1.1  (Table 1.3) A Comparison of Historical MPD  Paid Loss Development 

Factors with Projections Based on Development Periods 10 through 15 

 Development Period 

 27 28 29 30 31 32 33 34 35 37 38 

Historical 1.020 1.023 1.027 1.026 1.022 1.018 1.015 1.017 1.018 1.029 1.033 

Projections Based on Development Periods 10 – 15 

Linear Decay 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

Exp. Decay 1.004 1.004 1.003 1.003 1.003 1.003 1.003 1.002 1.002 1.002 1.002 

Inverse Power 1.006 1.005 1.005 1.005 1.005 1.004 1.004 1.004 1.004 1.004 1.003 

Paid loss development factors for MPD are not monotonically decreasing. Because of this 

seemingly anomalous behavior, estimates of the MPD tail by common actuarial methods 

could be seriously understated. This potentially surprising behavior is due to the fact that 

medical inflation rates are expected to be greater than the rate of closure of permanent 

disability claims due to death during these periods of development. For the most mature 

periods of development, the increasing force of mortality overtakes the effects of medical 

inflation and causes a slow reduction in incremental payments. That rate of reduction is 

surprisingly small. 
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This paper presents a reserving model that largely explains the seemingly anomalous 

behavior of increasing paid loss development factors at “mature” development years. The 

Sherman-Diss model explicitly accounts for the separate effects of inflation and mortality on 

paid MPD during all periods of development. This is done by directly incorporating recent 

mortality rates into an incremental paid per prior open loss reserving method. It will be 

referred to as the static mortality model. 

A second reserving model is presented that explicitly accounts for the compounding 

effects of downward trends in future mortality rates and persistently high rates of future 

medical inflation. It will be referred to as the trended mortality model. 

In Figure 8.5.1.1, the paid loss development factors indicated by the static mortality model 

are compared with SAIF’s empirical paid loss development factors.  
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Two additional methods may also be applied. Each of these produces much higher, and 

more accurate, estimates of the expected value of the case reserve: 

3. Third Method: Expected Total Payout Weighted by Probability of Occurrence Over Scenarios of 

All Possible Periods of Death. This method yields an expected reserve of $2,879,000. 

4. Fourth Method: Expected Value of Trials from a Markov Chain Simulation. This method 

yields an expected reserve of $2,854,000. 

8.5.3.3 Estimating the Variability of the MPD Reserve with a Markov Chain 

Simulation 

The size of loss distribution for the medical component of a single permanent disability  

claim is far more skewed to the right than can be modeled by distributions commonly used by  

actuaries. In attempting to find a distribution to produce a reasonable fit, the authors found it 

necessary to first transform the ultimate cost amounts by taking the natural log of the natural 

log of the natural log and then taking the n th root—before a common distribution could be 

found. Taking the fifth root of the triple natural log appears to produce a distribution of 

ultimate costs that conforms well with an extreme value distribution. The fact that such 

intense transformations were needed suggests that a totally different approach than fitting 

commonly used distributions should be used. 

Simulating the variability of the MPD reserve for unreported claims is naturally more 

complicated. First, the total number of IBNR claims should be represented by a Poisson (or 

similar) distribution. Then census data of the age at injury of recent claimants can be used to 

randomly generate these ages for unreported claimants. Then, future payments for each 

unreported claimant can be simulated. The degree of variability of the MPD reserve for 

unreported claimants is exceptionally high—because some of those claimants may have been 

quite young when injured, and the total expected future payment for workers injured at a 

young age is dramatically higher than for those injured at an older age. Estimates also vary 

dramatically according to the gender and age of each claimant at the time of the analysis. This 

suggests that the variability of the total MPD reserve can best be modeled by simulating the 

variability of the future payout for each claim separately. 

8.5.4 Advantages and Disadvantages 

The methods presented in the Sherman-Diss paper were tested against actual historical 

data and provide a reasonable estimate of future loss development extending out to 85 years 

of development. Such development is possible; a worker could be injured at age 16 and live to 

be over 100. No other method in the actuarial literature has been successful in doing so. One 

disadvantage is that total medical loss experience for development years 20 and higher is 
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needed to successfully implement the methods. Such data may be difficult for a user to 

obtain. Another disadvantage is that medical and mortality rates may be difficult to obtain or 

estimate. A sub-standard mortality table may be necessary. 

8.5.5 Users 

The method is currently utilized by the SAIF Corporation, Oregon’s State Fund.  

8.5.6 Summary 

The Sherman-Diss paper presents an analysis of medical payments based on 160,000 

permanently disabled claimants—for accident years 1926-2002, and a method utilizing 

incremental payment data prior to the standard triangle to extend development factors 

beyond the end of the triangle, up to 85 years of development. 

9. COMPARISON OF SELECTED RESULTS 

9.1 Discussion 

The working party obtained data from a number of different sources with the goal of 

applying the methods presented in order to (1) provide a comparison of results, and (2) 

enhance the discussion of each the method’s value and validity under various circumstances. 

To the extent possible, we used a common data set to illustrate the various methods and also 

used this data in the companion Excel workbook (which illustrates, where possible, many of 

the examples shown in the appendix). One exception to this approach involves methods 

previously detailed in CAS papers. In these cases, we generally used the data as originally 

presented in the paper. 

In general, the methods discussed may require different types of data – such as different 

historical periods, differing granularity of data (i.e., separate medical versus indemnity losses), 

incremental versus cumulative, absence of incurred data and completeness of data, as 

examples. As a result, it was not always meaningful to use the same data set for each method. 

 Even using the same data set, different methods produce a range of results. In addition to 

differences caused by the dynamics of the methods themselves, individual judgments and 

selections may also contribute to differences in results. For example, methods that require an 

assumption of link ratios or ratios of incurred loss to paid loss for each evaluation point may 

require actuarial judgment of the most appropriate “average” to differ between methods. To 

the extent possible, we have held actuarial judgment and assumptions consistent among the 

various methods for testing and comparison purposes. The actuary should be aware that 

differences in indicated tail factors can vary both as a result of the method used as well as due 
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to the underlying assumptions which rely on actuarial judgment or selection. 

The table below shows the indicated ten-period to ultimate (120 months) paid loss 

development tail for the methods using the common 10 year loss history shown in the 

appendix. 

Method Indicated Paid Tail 

Generalized Bondy Method 1.025 

Fully Generalized Bondy Method 1.043 

Sherman-Boor 1.096 

Exponential Fit  

     Using all Points 1.032 

     Using last 6 Points 1.044 

McClenahan’s Method 1.055 

McClenahan’s Adjusted Method 1.040 

Sherman’s Method 1.137 

Sherman’s Method with Lag Adjustment 1.135 

Pipia’s Method (Weibull Fit) Using all Factors  

Using all historical factors 1.098 

Using selected development factors 1.049 

As is evidenced by the range of indicated tail factors, it is important for the actuary to 

understand the underlying exposure being evaluated and to use judgment in determining the 

most appropriate method(s) for each situation. The coverage being evaluated, the layer (i.e., 

excess versus primary), and claims handling practices are examples of items that should be 

considered in selecting the appropriate methodology for calculating a tail factor. As discussed 

in the sections above, each method has its own specific advantages and disadvantages and 

therefore, some advice was provided on whether each specific method is optimum in the 

reserving context of specific situations; this is intended to be helpful when selecting a method 

to estimate tail loss development (i.e., a method to compute a tail factor). 

9.2 Future Research 

The Working Party believes that this is an area of future research using simulated data 

wherein the ultimate values of the simulated data are also known. Thus testing of the various 

methods would provide a clearer sense of which methods work best based on the different 

types of data aberrations built into the simulations. One key point is to create as many varying 

simulations as possible to properly test all methods. 

10. CONCLUSIONS 

The Tail Factor Working Party undertook an exhaustive study of all the methods for 

computing tail factors that are believed to be available to actuaries. While it is possible that 

some methods in use were not identified by the working party, this document is believed to 
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present the vast majority of the available methods. As the document shows, each method has 

its own specific advantages and disadvantages.  

It should also be noted that many methods were identified that had only a handful of 

current users. Therefore this document can serve an important function by introducing these 

new approaches to a broader actuarial audience. 

Again, as this document is primarily a survey paper, listing and describing all or most of 

the methods in existence, it is difficult to draw conclusions on tail factor methods in general. 

The most appropriate approach for a given analysis is likely to depend on the circumstances 

of the analysis. As stated above, it is certainly reasonable to conclude that there are more 

methods available to actuaries than are in general use. Hopefully this document will act to 

expand the repertoire of tail factor methods in the resources of the typical actuary. 
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APPENDIX A – Alternative Organization of the Methods 

Many methods in this report could conceivably be placed in different categories than the 

ones the working party assigned them in this document. We have listed some alternate 

groupings below (along with each method’s reference section within this document).  

A.1  Bondy-Type & Decay Methods 

 Bondy methods (2.1.1-2.1.4) 

 Exponential decay method (5.2) 

 McClenahan’s loss model (5.3) 

 Skurnick method (5.4) 

 Mueller Incremental tail method (8.3) 

In reviewing the relationships between these distinct, but related methods, the Working 

Party has the following comments about the underlying decay concept and how it weaves 

through the methods. Of note, other methods use similar decay concepts, but may not show 

an explicit year-to-year decay. 

Bondy methods decay the last estimated development factor over time. This is in 

accordance with a half-life type function where the rate of decay is assumed to be constant 

over time. The most common form of this method assumes a decay rate of 0.5 (i.e., each 

successive factor is the square root of the previous), which generates a result where the tail 

factor is equal to the last estimated development factor. 

The physical interpretation is that the claims are being settled at a rate proportional to the 

current outstanding claims. This is probably not an accurate model of how claims 

departments work in practice but does have the benefit of generating a smooth function.  

Other variations of this method include decaying with a constant number between 0 and 1. 

Certain lines of business are expected to exhibit thicker tails.  

The exponential decay method is a way of obtaining an appropriate factor using curve-

fitting techniques. It is described more fully in section 5.1.1.  

The McClenahan and Skurnick methods are variations on this basic concept. With the 

Skurnick method the decay rate is allowed to vary by accident period.  

Similar drawbacks apply, to a varying extent, to all these methods. These include:  

 They are generally not applicable to lines with negative development between 

evaluation periods without additional adjustment – i.e., they will generally fail on 
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incurred data. 

 Exponential decay assumes a monotonically decreasing function, therefore these 

methods do not accommodate increases in incremental losses from one period to 

the next (“hump” shaped patterns). 

 Exponential decay at an indicated rate developed from the observed data can 

produce a relatively faster development than other models for certain long tail 

liability lines. 

 A sub-optimal fit will be obtained for lines with variable decay rates across 

evaluation periods such as workers compensation. 

The Mueller Incremental Decay Method and the Generalized Bondy Method tackle some 

of the first couple of points above by considering a variety of decay factors based on differing 

anchor periods and estimating tail factors. It is to be noted however that this method is 

relatively sensitive to the choice of anchor periods and small changes in the incremental age-

to-age factors. 

A.2 Algebraic Methods that Focus on Relationships between Paid and Incurred 

 Equalizing Paid and Incurred Development (3.2) 

 Sherman-Boor Method (3.3) 

 NCCI Method (3.4) 

 Static Mortality Method (6.2) 

 Trended Mortality Method (6.3) 

 Judgment Estimate Method (7.3) 

This batch of methods considers the information available from the case handlers 

estimates of outstanding claim reserves in estimating a tail factor for the paid claims data.  

Assumptions:  

 The case reserves for the final year are a true reflection of the reserves required.  

 Settlement and reporting patterns are unchanged over time and claims department 

reserving is similar over time.  

 No future pure IBNR claims will materialize for the benchmark year.  

The static and trended mortality methods examine the incremental paid per prior open to 

estimate the paid tail going forward. The number of open claims in any period is determined 
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using mortality tables. These two methods have been applied in practice only to the medical 

component of permanent disability claims. Other algebraic methods may use alternate 

projection techniques to estimate the number of open claims. 

By their nature, algebraic methods that focus on the paid to incurred loss amounts cannot 

be used to estimate an incurred tail. However, once a payment stream is calculated by means 

of the static or trended mortality methods, expected values of case reserves may be estimated 

for the same payment stream. The Sherman-Diss model of Section 8.5 describes the 

procedure. 

A.3  Methods Based on Benchmark Data 

 Benchmark Data Based Methods (4.2-4.6) 

 Restate historical experience (8.2) 

Benchmark methods are used when the data/experience of the book is not robust. This 

could be due to a number of reasons including data scarcity, change in the mix of business 

over time or where the historical development has been distorted by changes in 

settlement/reporting or claims estimation practices.  

In addition these methods are often used as fall-back to test the reasonability of other 

approaches.  

The major disadvantage of this approach is that appropriate industry development factors 

are not always available. In addition the performance of the book may be faster/slower than 

the industry average; for this reason it is often instructive to compare the actual historical 

development to that indicated by the benchmark data and adjust as required.  

A.4  Stochastic and Curve-Fitting Methods 

 Exponential decay method (5.2)  

 McClenahan’s loss model (5.3) 

 Skurnick’s method  (5.4) 

 Sherman’s method (5.5) 

 Pipia’s method (5.6) 

 England and Verrall (5.7) 

This selection of methods aims to fit curves to the data and extrapolate an appropriate tail 

factor. The process is similar and involves four stages: 

(a) specification of the functional form (this is normally defined by the method) 
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(b) optimizing function and assessment of goodness of fit 

(c) estimation of parameters using curve-fitting techniques 

(d) reading off the curve to develop an implied tail factor.  

Most of the curves that tend to be used are exponential/logs based and are generally 

monotonically decreasing. As such they do not allow for “humps” or negative developments 

in the data. Specific features like these, or even structural breaks in the development, are 

smoothed out as part of the fitting process; these curves do not capture these phenomena 

even if they are a consequence of a true underlying process rather than just as a result of 

random data volatility. 

The Sherman-Diss Method of Section 8.5 allows for breaks in structural development. In 

fact, the static and trended mortality methods of the Sherman-Diss model bear much 

resemblance to the classic structural methods developed by Fisher/Lange and Adler/Kline. 

The England-Verrall Method allows for humps and negative development by the 

stochastic nature of the method although the development may also be judgmentally 

smoothed. Stochastic methods are an enhancement of traditional methods in this respect. 

The England-Verrall Method simulates paid claim amounts by stochastic means. Traditional 

chain ladder reserving techniques may then be applied to the triangle of simulated claims 

payments. 

The curve-fitting methods do have the advantage that they tend to consider the entire loss 

development, rather than focusing on the northwest corner of the triangle, where arguably 

there is the most volatility.  

A.5  Methods Based on Future Remaining Open Counts 

 Static mortality method: incremental paid per open count (6.2) 

 Trended mortality method (6.3) 

The static and trended mortality methods examine the incremental paid per prior open to 

estimate the paid tail going forward. The number of open claims in any period is determined 

using mortality tables. These two methods have been applied in practice only to the medical 

component of permanent disability claims. Other algebraic methods may use alternate 

projection techniques to estimate the number of open claims. Once a payment stream is 

calculated by means of the static or trended mortality methods, expected values of case 

reserves may be estimated for the same payment stream. The Sherman-Diss Method of 

Section 8.5 describes the procedure. 
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A.6  Methods Based on the Peculiarities of the Remaining Open Claims 

 Maximum Possible Loss Method (7.2) 

 Judgment Estimate Method (7.3) 

While these methods do not generally result in a tail factor for the less mature years (that 

may or may not have a similar open claim portfolio when they become the oldest year in the 

triangle), they can be very useful for analyzing the oldest year and other years near the top of 

the triangle. 

A.7  Other Methods 

 Restate Historical Experience Method (8.2) 

 Mueller Incremental Tail Method (8.3) 

 Corro’s Method (8.4) 

 Sherman-Diss Method  (8.5) 

Corro’s technique can be used to estimate tail factors for claims, which are duration 

dependent but whose payment period is flat and uniform (e.g., credit insurance claims). A 

“mixing weight parameter” is calculated to allocate probabilities to two specified durations.  
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Accident Year 12 24 36 48 60 72 84 96 108 120

2000 1,202 2,685 4,132 5,323 6,059 6,406 6,812 7,208 7,440 7,618

2001 1,297 2,712 4,232 5,314 6,062 6,786 7,375 7,687 7,934

2002 1,342 2,566 4,058 5,388 6,480 7,141 7,801 8,109

2003 1,293 2,716 4,228 5,587 6,661 7,626 8,040

2004 1,387 2,555 4,017 5,460 6,743 7,479

2005 1,487 2,738 4,125 5,683 6,793

2006 1,499 2,920 4,781 6,285

2007 1,587 3,287 5,006

2008 1,221 2,775

2009 1,321

Accident Year 12-24 24-36 36-48 48-60 60-72 72-84 84-96 96-108 108-120

2000 2.234 1.539 1.288 1.138 1.057 1.063 1.058 1.032 1.024

2001 2.092 1.560 1.256 1.141 1.119 1.087 1.042 1.032

2002 1.911 1.582 1.328 1.203 1.102 1.092 1.039

2003 2.100 1.557 1.321 1.192 1.145 1.054

2004 1.842 1.572 1.359 1.235 1.109

2005 1.841 1.507 1.378 1.195

2006 1.948 1.637 1.314

2007 2.071 1.523

2008 2.272

Straight Average 2.034 1.560 1.321 1.184 1.106 1.074 1.047 1.032 1.024

Volume Weighted Average 2.026 1.559 1.320 1.185 1.107 1.074 1.046 1.032 1.024

5 Year Volume Weighted 1.988 1.559 1.339 1.193 1.107 1.074 1.046 1.032 1.024

3 Year Volume Weighted 2.085 1.555 1.349 1.207 1.119 1.077 1.046 1.032 1.024

Selected LDF 2.034 1.560 1.321 1.184 1.106 1.074 1.047 1.032 1.024

Paid Loss Development Triangle

Cumulative Paid Loss Data

APPENDIX B – Examples 

B.1 Introduction 

This appendix will show additional details and illustrations of specific methods discussed 

in the main body of the paper. To the extent possible, the examples shown in this appendix 

reference a single data set, which is shown below. This data is also included in the 

accompanying Excel file. 

B.1.1 Paid Loss 
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Selected Paid Loss Development Factor

12 24 36 48 60 72 84 96 108 Tail

Selected 2.034 1.560 1.321 1.184 1.106 1.074 1.047 1.032 1.024

Bondy Estimated Age-Ultimate

Original 6.680 3.283 2.105 1.594 1.346 1.217 1.133 1.082 1.049 1.024 = Prior A-A

Modified 1 6.840 3.362 2.156 1.632 1.379 1.246 1.160 1.108 1.074 1.049 = (Prior A-A)^2

Modified 2 6.837 3.360 2.154 1.631 1.378 1.245 1.159 1.108 1.073 1.048 = (Prior A-A) * 2

Generalized 6.632 3.260 2.092 1.586 1.334 1.197 1.119 1.073 1.045 1.028

Fully Generalized 8.119 3.574 2.264 1.695 1.413 1.243 1.153 1.102 1.067 1.043

B.1.2 Incurred Loss 

 

 

 

 

 

 

 

 

 

 

 

 

 

B.1.3 Case Reserves 

 

 

 

 

 

 

B.2 Bondy-Type Methods 

Using the paid loss data shown above and specifically the selected paid loss development 

pattern, we can estimate the tail factor based on the various Bondy methods. A summary of 

those results and the cumulated development pattern is shown below. 

Accident Year 12 24 36 48 60 72 84 96 108 120

2000 2,539 4,479 5,650 6,639 7,224 7,224 7,464 7,778 7,892 7,987

2001 2,672 4,667 6,049 6,988 7,355 7,819 8,171 8,296 8,518

2002 2,808 4,676 6,207 7,064 7,601 7,984 8,390 8,628

2003 3,073 5,099 6,292 7,237 7,749 8,386 8,604

2004 3,070 4,527 5,915 6,986 7,780 8,197

2005 2,932 4,750 6,041 7,144 7,771

2006 3,095 5,104 6,770 7,821

2007 3,228 5,526 7,204

2008 2,877 5,122

2009 2,890

Accident Year 12-24 24-36 36-48 48-60 60-72 72-84 84-96 96-108 108-120

2000 1.764 1.261 1.175 1.088 1.000 1.033 1.042 1.015 1.012

2001 1.747 1.296 1.155 1.053 1.063 1.045 1.015 1.027

2002 1.665 1.327 1.138 1.076 1.050 1.051 1.028

2003 1.659 1.234 1.150 1.071 1.082 1.026

2004 1.474 1.307 1.181 1.114 1.054

2005 1.620 1.272 1.183 1.088

2006 1.649 1.326 1.155

2007 1.712 1.304

2008 1.781

Straight Average 1.675 1.291 1.162 1.081 1.050 1.039 1.029 1.021 1.012

Volume Weighted Average 1.671 1.291 1.162 1.081 1.050 1.039 1.028 1.021 1.012

5 Year Volume Weighted 1.646 1.289 1.161 1.080 1.050 1.074 1.046 1.032 1.024

3 Year Volume Weighted 1.712 1.301 1.172 1.090 1.062 1.040 1.028 1.032 1.024

Selected 1.675 1.291 1.162 1.081 1.050 1.039 1.029 1.021 1.012

Cumulative Incurred Loss Data

Incurred Loss Development Triangle

Accident Year 12 24 36 48 60 72 84 96 108 120

2000 1,337 1,795 1,518 1,316 1,164 817 652 570 452 369

2001 1,376 1,955 1,816 1,674 1,293 1,033 796 609 584

2002 1,466 2,111 2,149 1,677 1,121 843 589 520

2003 1,780 2,384 2,063 1,650 1,087 760 565

2004 1,684 1,972 1,899 1,526 1,036 718

2005 1,445 2,012 1,916 1,460 978

2006 1,596 2,184 1,988 1,537

2007 1,640 2,239 2,199

2008 1,656 2,348

2009 1,569

Case Reserve
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Fully Generalized Bondy:Parameters, Development Factors, and Squared Error

Accident Parameter

Year Estimate (d) 12-24 24-36 36-48 48-60 60-72 72-84 84-96 96-108 108-120

2000 2.090          0.000          0.000          0.000         

2001 1.969          0.000          0.000          0.000          

2002 1.835          0.000          0.000          0.000          

2003 1.932          0.000          0.000          0.000          

2004 2.070          0.000            0.000          0.001          

2005 1.954          0.001          0.002            0.000          

2006 1.994          0.001          0.002          0.000            

2007 2.023          0.001          0.001          

2008 2.272          0.000          

Bondy: 0.648          = B

Index 1 2 3 4 5 6 7 8 9

0.009 Note: Must use "Solver" to minimize least squares [Sum of triangle]

Period 12-24 24-36 36-48 48-60 60-72 72-84 84-96 96-108 108-120 Tail

Fitted LDF 2.272 1.579 1.336 1.200 1.137 1.078 1.046 1.033 1.023

Factor to Ultimate 8.119 3.574 2.264 1.695 1.413 1.243 1.153 1.102 1.067 1.043

=[Ln(Actual AA) - Ln(d)*B^(Index - 1)]^2

Minimum Least Squares

Generalized Bondy: Parameters and Development Factors

(1) (2) (3) (4) (5) (6) (7)

Period LDF Ln (2) Formula 2.6 Fitted A-A Fitted A-U Index i

12-24 2.034 0.710 0.000000 2.034 6.632 1

24-36 1.560 0.444 0.000001 1.558 3.260 2

36-48 1.321 0.278 0.000001 1.319 2.092 3

48-60 1.184 0.169 0.000017 1.189 1.586 4

60-72 1.106 0.101 0.000048 1.114 1.334 5

72-84 1.074 0.072 0.000016 1.070 1.197 6

84-96 1.047 0.046 0.000012 1.043 1.119 7

96-108 1.032 0.032 0.000028 1.027 1.073 8

108-120 1.024 0.024 0.000052 1.017 1.045 9

1.028 = [Last AA ^ (B / 1 - B)]

Total 0.000175 Note: Must use "Solver" to minimize least squares [Sum of (4)]

0.625 = B

2.034 = dˆEstimated Ratio for 12-24

Bondy Parameter 

The calculation of the generalized Bondy method is shown in the table below. Column 4 

in this table uses formula 2.6 from the main body of the report and the sum of column 4 is 

minimized using the Excel “solver” function. 

The fully generalized Bondy method allows the estimated development ratios (d) to vary 

by accident period, while using the same Bondy parameter (B). In example shown below, the 

formula 2.6 is calculated for each of the last three accident periods at every maturity and the 

sum of the entire triangle is minimized using Excel. 
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Accident

Year 12 24 36 48 60 72 84 96 108 120

2000 1,202 1,483 1,448 1,191 736 347 406 396 232 178

2001 1,297 1,416 1,520 1,082 748 723 589 312 247

2002 1,342 1,223 1,493 1,329 1,093 661 659 308

2003 1,293 1,422 1,513 1,359 1,074 965 413

2004 1,387 1,168 1,462 1,443 1,283 736

2005 1,487 1,251 1,387 1,559 1,109

2006 1,499 1,421 1,861 1,503

2007 1,587 1,700 1,719

2008 1,221 1,553

2009 1,321

Accident

Year 12 24 36 48 60 72 84 96 108 120

2000 (457) 277 202 151 347 166 82 118 83

2001 (579) 139 142 381 260 237 187 25

2002 (644) (38) 472 556 278 254 70

2003 (604) 320 414 562 327 196

2004 (289) 74 373 489 318

2005 (567) 96 456 482

2006 (588) 195 452

2007 (598) 40

2008 (692)

2009

Incremental Paid Loss (Formula 3.2)

Incremental Case Reserves Disposed Of (Formula 3.3)

B.3 Algebraic Methods 

B.3.1 Sherman-Boor Method 

This method requires two triangles, one of paid loss and one of case reserves. Using the 

triangle shown in the introduction and the formulas from the main body of the paper, we can 

then calculate triangles of the incremental paid loss and incremental disposed case reserves. 

Specifically, the incremental paid loss triangle is computed as: given a cell in the cumulative 

paid loss triangle, then we subtract the previous cell in the same row of the cumulative paid 

loss triangle. Subtracting the current cell from the previous cell in the case reserve triangle to 

obtain the triangle of case reserves disposed of. The incremental triangles are shown below: 

Then divide the incremental paid loss by the case reserves eliminated. These ratios will be 

used to calculate estimators of ‘ S ’. 
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Accident

Year 12 24 36 48 60 72 84 96 108 120

2000 (3.241)     5.232      5.885      4.862      1.000      2.446      4.846      1.965      2.151      

2001 (2.444)     10.950    7.612      1.964      2.781      2.486      1.670      9.972      

2002 (1.898)     (39.244)   2.815      1.965      2.378      2.601      4.427      

2003 (2.355)     4.725      3.285      1.910      2.949      2.113      

2004 (4.047)     19.857    3.871      2.622      2.314      

2005 (2.206)     14.469    3.419      2.302      

2006 (2.416)     9.522      3.326      

2007 (2.841)     42.912    

2008 (2.244)     

3.073 ='S', which is selected here as

as average of last 5 columns

Oldest Period, Current Case Reserve 369

Older Period, Cumulative Paid 7,618

Paid Tail Factor 1.149 Formula 3.5

Incurred Tail Factor 1.096 Formula 3.6

Adjustment Factor

Relative Disposal Costs (Formula 3.4 = Ipaid(w,d) / Icase(w,d))

Because the early development involves not just elimination of case reserves through 

payments, but also substantial emergence of IBNR claims, the early maturities could be 

potentially distorted. Looking at the various ratios at the ‘mature’ development stage it would 

appear that they average around 3.0, so we will use that as our adjustment factor ‘S’ for the 

case reserves. 

Utilizing $369 of case left on the 2000 accident period at 120 months development, and 

the cumulative paid on 2000 accident period of  $7,618, the development portion of the paid 

loss tail factor would be ($369/$7,618)×3.079 = .149  So, the paid loss tail factor would be 

1.149. 

For the incurred loss tail factor, first note that only the ‘development portion’ of the S  

=3.073, or 1S  =2.073, need be applied (the remaining case is already contained in the 

incurred). Second, a ratio of the case reserves to incurred loss is needed (which is 

(1, ) / (1, ) (2000,120) / (2000,120)Incurred Incurredc n c n c c   $369/$7,987 = .046. Multiplying the 

two numbers creates an estimate of the development portion of the tail at 2.073 ×.046 = 

0.096. So, the incurred loss tail factor estimate would be 1.096. 
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(1) (2) (3) (4) (5) (6) (7) (8) (9)

Selected v(d) ln [v(d)]

LDF = (2) - 1 = ln(3) Fitted A-A Fit Error Fitted A-A Fit Error

1 12-24 2.034 1.034 0.034 1.855 0.180

2 24-36 1.560 0.560 -0.580 1.532 0.027

3 36-48 1.321 0.321 -1.137 1.332 -0.011

4 48-60 1.184 0.184 -1.692 1.207 -0.023 1.169 0.015

5 60-72 1.106 0.106 -2.240 1.129 -0.022 1.113 -0.006

6 72-84 1.074 0.074 -2.601 1.080 -0.006 1.075 -0.001

7 84-96 1.047 0.047 -3.065 1.050 -0.003 1.050 -0.003

8 96-108 1.032 0.032 -3.438 1.031 0.001 1.033 -0.001

9 108-120 1.024 0.024 -3.731 1.019 0.005 1.022 0.002

10 1.012 1.015

11 1.008 1.010

12 1.005 1.007

13 1.003 1.004

14 1.002 1.003

15 1.001 1.002

16 1.001 1.001

17 1.000 1.001

18 1.000 1.001

19 1.000 1.000

20 1.000 1.000

Curve Fit Results

Development Period
Using All Periods Using Last 6 Periods

B.4 Curve-Fitting Methods 

B.4.1 Exponential Method 

The main body of the report illustrates an exponential fit using data provided by Joe Boor. 

Below, the exponential fit is applied to the same data used in other sections of this appendix 

to illustrate the fit two different ways. Specifically, the table below develops the fit using all of 

the selected development factors (result in column 6) and a fit using only the 6 most mature 

periods (with result in column 8). 

 

 

 

 

 

 

 

 

 

Fitting a line to the natural logarithms of the development portion of the link ratios 

(column 6), we estimate the slope and intercept of the fitted line. The inverse natural 

logarithm of the slope parameter becomes the decay constant, r . The complete fitted 

parameters are shown below. Note that for this data set and truncating the age-to-age factors 

through period 20, the tail factor based on the approximate formula and the cumulative of 

the age-to-age factors is very similar. 

Curve Fit Parameters 

  

Tail Factor 

 

Decay 

 

At Period 10 

 

Rate Coefficient Truncated Approximate 

Using All Points 0.623 1.372 1.032 1.032 

Using Last 6 Points 0.666 0.863 1.044 1.044 

     Decay = e^[slope of the linear fit of (1) and (5)] 

  Coefficient = intercept of linear fit of (1) and (5) 

  Truncated Tail = Product of remaining fitted A-A 

  Approximate = 1 + Coefficient  x Decay ^ [Period / (1-Decay)] 

 

From Formula 5.2 
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(1) (2) (3) (4) (5) (6)

Selected Cumulative Incremental

Age A-A Factor Paid Paid

1 12 100 100

2 12-24 24 2.034 203 103

3 24-36 36 1.560 317 114

4 36-48 48 1.321 419 102

5 48-60 60 1.184 496 77

6 60-72 72 1.106 549 53

7 72-84 84 1.074 590 41

8 84-96 96 1.047 617 28

9 96-108 108 1.032 637 20

10 108-120 120 1.024 652 15

Development Period

B.4.2 McClenahan’s Method 

Here we have replicated the McClenahan method discussed in the body of the report using 

the same data shown here in the Appendix. Specifically, we are using selected paid loss 

development factors and again converting these to cumulative paid loss amounts by selecting 

a base amount for the first development period paid loss, for simplicity sake we use $100. To 

determine incremental paid losses by period we subtract successive cumulative loss amounts, 

and then we have the following: 

 

 

 

 

 

 

 

 

We can continue this table by taking successive ratios of incremental paid amounts for the 

accident periods to produces estimates of the annual decay constant r . In practice any of a 

variety of curve-fitting techniques using the incremental paid loss regressed on age can be 

employed to develop an estimate of r  from Column 8, in this example we have used a linear 

fit of the natural log of the r ’s. 
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Months

Initial Lag in Reporting 6

Tail at 120 1.055 From Formula 5.7

Adjusted Tail at 120 1.040 Calculated Tail, Adjusted for Actual / Fitted Ratio

Formula 5.7: T(m/12) = {12 x (1 – p)} / {12 x (1 –p) – p
m – a – 10

 x (1 – p
12

)}        

 

 

 

 

 

 

 

 

 

 

 

 

The decay rates shown are the result of a linear fit of the boxed values in column 8. The 

monthly decay uses monthly maturities in column 3 and the annual decay uses in period 

number in column 1. Note that .973^12 = .724 (when accounting for decimals rounded off), 

however, McLenahan’s formula uses the monthly decay rate to calculate the tail (where p  is 

the monthly decay rate and (1/12)r ).  

For the sake of the example, we will assume a lag constant of 6a  . Once the value of p  

is calculated, we can develop an estimate of the tail at 120 months or (10)T  using equation 

5.7. We can also estimate an adjusted tail using the actual to fitted ratio from column 10. 
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Selected LDF Development Portion

Log of 

Development Age

Log of Development 

Portion

1 12-24 2.034 1.034 0.000 0.034

2 24-36 1.560 0.560 0.693 (0.580)

3 36-48 1.321 0.321 1.099 (1.137)

4 48-60 1.184 0.184 1.386 (1.692)

5 60-72 1.106 0.106 1.609 (2.240)

6 72-84 1.074 0.074 1.792 (2.601)

7 84-96 1.047 0.047 1.946 (3.065)

8 96-108 1.032 0.032 2.079 (3.438)

9 108-120 1.024 0.024 2.197 (3.731)

10

11

12

13

14 Exponent = slope (2.386)

15 Coefficient = e ^ Intercept 4.806

16 Tail Factor 1.137

17

18

19

20

21 Lag Parameter (0.076)

22 Minimal Squared Error 0.000

23 Tail Factor 1.135

24

25 Note: Must use "Solver" to minimize squared error each time new ratios are selected 

Curve Fit Using An Inverse Power Function

Development Period

I. Curve Fit With No Lag Parameter

II. Curve Fit With Optimal Lag Parameter

B.4.3 Sherman’s Method 

Given the selected paid loss ink ratios, we first determine the development portion, ( )v d , 

of each link ratio. The natural logarithms of the age d  and ( )v d  then represent the 

dependent and independent variables in our regression, respectively. 

The fitted parameters of the curve are based on a linear regression of the boxed factors. 

The tail factor is the determined by cumulating the estimated age-to-age factors for each 

future period, where the factor ( ) 1f d  coefficient * age slope. 

Several possible alternatives to the above example exist. For example, we might have 

chosen a to rely on link ratios of only the first 5 or 8 development ages, we could rely on the 

link ratios of only “mature” development ages, etc. 

To estimate the optimum lag, you can use a bisection process, specifically following the 

process above using different potential lags; finding the lowest value of the squared error 

across a group of values; and progressively narrowing the range. Alternatively, you can also 

use the ‘solver’ Excel function. 
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1.560 1.321 1.184 1.106 1.074 1.047 1.032 1.024

3.219 1.597 1.298 1.176 1.112 1.073 1.049 1.033 1.023

10.889 3.383 2.119 1.632 1.388 1.249 1.163 1.109 1.073 1.049

12-24 24-36 36-48 48-60 60-72 72-84 84-96 96-108 108-120

0.0039 0.0058 0.0022 0.0021 0.0001 0.0030 0.0015 0.0027

0.0212

-0.218

0.000

1.175

Implied Tail 1.049

Curve ParametersTotal Squared Difference

Curve Fit Using Selected Factors Only

Fitted Age to Ultimate

Fitted Age to Age

Selected

Squared Difference


c
t

Accident Year 12-24 24-36 36-48 48-60 60-72 72-84 84-96 96-108 108-120

2000 0.100 0.001 0.004 0.031 0.240 0.037 0.001 0.048 0.047

2001 0.156 0.006 0.003 0.026 0.004 0.011 0.062 0.049

2002 0.245 0.014 0.043 0.044 0.008 0.032 0.090

2003 0.153 0.005 0.034 0.021 0.085 0.095

2004 0.285 0.010 0.105 0.161 0.001

2005 0.286 0.001 0.154 0.027

2006 0.226 0.050 0.025

2007 0.166 0.000

2008 0.088

Total Squared Difference 3.2776 -0.231

0.000

Note: Must use "Solver" to minimize least squares each time new ratios are selected 1.044

Implied Tail 1.098

Squared Difference 

Curve Parameters


c
t

12 24 36 48 60 72 84 96 108 120

0.5 1.5 2.5 3.5 4.5 5.5 6.5 7.5 8.5 9.5

2.806 1.521 1.271 1.168 1.112 1.078 1.056 1.041 1.031

9.454 3.369 2.215 1.742 1.492 1.342 1.244 1.178 1.131 1.098

Average Age of Claim

Fitted Age to Ultimate

Fitted Age to Age

Curve Fit Using All Historical Development Factors

Age

B.4.4 Pipia’s Method 

The following example is based the cumulative paid loss; the method can also be applied to 

incurred losses. In addition, other choices for the dimensions of the triangle can easily be 

substituted. 

The parameter being minimized is the square of the ratio of the difference between the 

actual and fitted incremental development to the expected incremental development. As 

shown in the triangle below, the difference is taken for each of the age-to-age factors and the 

total difference for the triangle is minimized using Excel. 

The above estimated tail is only one way to minimize the squared difference. The 

estimated tail shown below was determined after minimizing the difference between the fitted 

and selected factors for only the 24 to 108 age-to-age factors, rather than the entire triangle.  
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B.4.5 England-Verrall 

Sections 6 and 7 of the England-Verrall paper present examples to illustrate the 

methodology. A comparison of predictor structures is included in Section 6. The Tables 

shown below include original table numbers in parentheses. Three models are fitted utilizing 

an over-dispersed Poisson model ( 1   in Equation (5.20)) with a logarithmic link function. 

For all three models: 

  ,( , ) w dE c w d m , (5.19) 

  ,( , ) w dVar c w d m  (5.20) 

, ,ln( )w d w dm 
 

(5.21) 

The models differ only in the choice of the predictor, w  and d .  

Model 1: ,w d w dc    
 

(5.21.1) 

Model 2: , ln( )w d d w du c d       
 

(5.21.2) 

Model 3: , ln( )w d d w du c s d     
 

(5.21.3) 

Models 1 and 2, shown in Table 5.7.2.1, can be fitted in any statistical software package 

that fits generalized linear models. Model 3 can only be fitted in statistical software packages 

that fit generalized additive models. Equivalent development factors are shown in 

Table5.7.2.2, together with the actual development factors obtained by applying the standard 

chain ladder model to the data in Table5.7.2.1. The reserve estimates implied by Models 1, 2 

and 3 are shown in Table 5.7.2.4, together with their prediction errors (as a percentage of the 

reserves). 

TABLE 5.7.2.1 (TABLE 6.1) 

Inc rementa l  Paid Losses Formed by Aggregating Across Dif fe rent  Cla sses  

 1 2 3 4 5 6 7 8 9 10 

1 45,630 23,350 2,924 1,798 2,007 1,204 1,298 563 777 621 
2 53,025 26,466 2,829 1,748 732 1,424 399 537 340  
3 67,318 42,333 1,854 3,178 3,045 3,281 2,909 2,613   
4 93,489 37,473 7,431 6,648 4,207 5,762 1,890    
5 80,517 33,061 6,863 4,328 4,003 2,350     
6 68,690 33,931 5,645 6,178 3,479      
7 63,091 32,198 8,938 6,879       
8 64,430 32,491 8,414        
9 68,548 35,366         
10 76,013          
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TABLE 5.7.2.2 (TABLE 6.2) 

Equ iva lent  Development Fac to rs :  Overdisper sed-Poisson Model 

Delay 
Standard 

Chain 
Model 1 

Stochastic Model 2 Model 3 
Year Ladder Chain Ladder Hoerl Curve GAM (dof = 5) 

2 1.4906 1.4906 1.4496 1.489 1 

3 1.0516 1.0516 1.0796 1.0537 

4 1.0419 1.0419 1.0372 1.0395 

5 1.0268 1.0268 1.0238 1.0292 

6 1.0254 1.0254 1.0180 1.0224 

7 1.0149 1.0149 1.0150 1.0163 

8 1.0130 1.0130 1.0135 1.0120 

9 1.0067 1.0067 1.0127 1.0091 

10 1.0078 1.0078 1.0124 1.0071 

11   1.0125 1.0057 

12   1.0129 1.0047 

13   1.0135 1.0039 

14   1.0144 1.0033 

15   1.0156 1.0029 

16   1.0171 1.0025 

A comparison of error structures is included in Section 7 of the original paper. The same 

three model predictors are used, but with a Gamma error structure ( 2  ) giving: 

  ,( , ) w dE c w d m , (5.19) 

  2

,( , ) w dVar c w d m  (5.20) 

, ,ln( )w d w dm 
 

(5.21) 

and 

Model 4: ,w d w dc    
 

(5.21.4) 

Model 5: , ln( )w d d w du c d       
 

(5.21.5) 

Model 6: , ln( )w d d w du c s d     
 

(5.21.6) 

Equivalent development factors are shown in Table 5.7.2.3 
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TABLE5.7.2.3 (TABLE7.1) 

Equ iva lent  Development Fac to r s :  Gamma Model 

Delay Standard 
Model 4 

Stochastic Model 5 Model 6 
Period Chain Ladder Chain Ladder Hoerl Curve GAM (dof = 5) 

2 1.4906 1.4969 1.4515 1.4771 
3 1.0516 1.0470 1.0799 1.0512 
4 1.0419 1.0381 1.0372 1.0357 
5 1.0268 1.0259 1.0237 1.0280 
6 1.0254 1.0251 1.0178 1.0221 
7 1.0149 1.0154 1.0148 1.0165 
8 1.0130 1.0131 1.0131 1.0125 
9 1.0067 1.0084 1.0123 1.0098 
10 1.0078 1.0086 1.0119 1.0079 
11   1.0119 1.0066 
12   1.0122 1.0055 
13   1.0127 1.0048 
14   1.0135 1.0041 
15   1.0145 1.0036 
16   1.0157 1.0032 

Reserve estimates and prediction errors are shown in Table 5.7.2.5 

TABLE 5.7.2.4 (TABLE 6.3) 

Reserve Estimates and Predic t ion  E r r o r s :  Overdispersed -Poisson Model 

 Reserve Estimates Prediction Error 

Accident 

Model 1 
Stochastic 

Chain 
Model 2 
Hoerl 

Model 3 
GAM 

Model 1 
Stochastic 

Chain 
Model 2 
Hoerl 

Model 3 
GAM 

Period Ladder Curve (dof = 5) Ladder Curve (dof = 5) 

1 0 0 0 — — — 
2 683 1,085 622 159% 95% 110% 
3 1,792 3,101 1,998 100% 61% 62% 
4 4,363 6,129 4,470 63% 46% 43% 
5 5,657 7,173 5,940 50% 43% 38% 
6 8,209 8,689 8,106 40% 39% 33% 
7 10,914 11,031 11,106 34% 34% 29% 
8 15,199 14,765 15,112 28% 30% 25% 
9 21,135 24,002 21,293 24% 23% 22% 
10 60,335 59,625 60,377 17% 17% 16% 

Total 128,286 135,600 129,024 15% 15% 12% 
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TABLE 5.7.2.5 (TABLE 7.2) 

Reserve  Estimates And Prediction E r ro r s :  Gamma Model 

 Reserve Estimates Prediction Error 

Accident 

Model 4 
Stochastic 

Chain 
Model 5 
Hoerl 

Model 6 
GAM 

Model 4 
Stochastic 

Chain 
Model 5 
Hoerl 

Model 6 
GAM 

Period Ladder Curve (dof = 5) Ladder Curve (dof = 5) 

1 0 0 0 — — — 
2 488 675 450 62% 46% 43% 
3 2,086 3,296 2,205 43% 36% 33% 
4 5,240 6,818 5,300 36% 32% 29% 
5 6,169 7,061 6,313 32% 30% 28% 
6 9,750 9,305 9,427 31% 29% 28% 
7 15,080 13,029 15,097 31% 29% 29% 
8 18,498 15,069 17,671 32% 30% 31% 
9 20,470 24,400 20,896 36% 35% 35% 
10 60,043 59,576 58,519 52% 48% 48% 

Total 137,824 139,229 135,878 25% 23% 24% 
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