
Casualty Actuarial Society 
E-Forum, Summer 2012 

 
 



Casualty Actuarial Society E-Forum, Summer 2012 ii 

 

The CAS E-Forum, Summer 2012 
 

The Summer 2012 Edition of the CAS E-Forum is a cooperative effort between the CAS E-Forum 
Committee and various other CAS committees, task forces, or working parties. This E-Forum 
includes papers from two call paper programs and four additional papers.  

The first call paper program was issued by the CAS Committee on Reserves (CASCOR). Some of 
the Reserves Call Papers will be presented at the 2012 Casualty Loss Reserve Seminar (CLRS) on 
September 5-7, 2012, in Denver, CO.  

The second call paper program, which was issued by the CAS Dynamic Risk Modeling 
Committee, centers on the topic of “Solving Problems Using a Dynamic Risk Modeling Process.” 
Participants were asked to use the Public Access DFA Dynamo 4.1 Model to illustrate how the 
dynamic risk modeling process can be applied to solve real-world P&C Insurance problems. The 
model and manual are available on the CAS Public-Access DFA Model Working Party Web Site.  

Committee on Reserves 
Lynne M. Bloom, Chairperson 

 

John P. Alltop 
Bradley J. Andrekus 
Nancy L. Arico 
Alp Can 
Andrew Martin Chandler 
Robert F. Flannery 
Kofi Gyampo 
Dana F. Joseph 

Weng Kah Leong 
Glenn G. Meyers 
Jon W. Michelson 
Marc B. Pearl 
Susan R. Pino 
Christopher James Platania 
Vladimir Shander 
Hemanth Kumar Thota 

Bryan C. Ware 
Ernest I. Wilson 
Jianlu Xu 
Cheri Widowski, CAS Staff 

Liaison 
 

Committee on Dynamic Risk Modeling 
Robert A. Bear, Chairperson 

Christopher Diamantoukos, Vice Chairperson 
 

Jason Edward Abril 
Fernando Alberto Alvarado 
Yanfei Z. Atwell 
Rachel Radoff Bardon 
Steven L. Berman 
Morgan Haire Bugbee 
Alp Can 
Chuan Cao 
Patrick J. Crowe 
Charles C. Emma 

Sholom Feldblum 
Stephen A. Finch 
Robert Jerome Foskey 
Bo Huang 
Ziyi Jiao 
Steven M. Lacke 
Zhe Robin Li 
Christopher J. Luker 
Xiaoyan Ma 
Joseph O. Marker 

John A. Pagliaccio 
Alan M. Pakula 
Ying Pan 
Theodore R. Shalack 
Zhongmei Su 
Min Wang 
Wei Xie 
Kun Zhang 
Karen Sonnet, Staff Liaison 

http://www.casact.org/research/drm/�


Casualty Actuarial Society E-Forum, Summer 2012 iii 

CAS E-Forum, Summer 2012 

Table of Contents 

2012 Dynamic Risk Modeling Call Papers 

Stochastic GMB Methods for Modeling Market Prices 
James P. McNichols, ACAS, MAAA, and Joseph L. Rizzo, ACAS, MAAA ...................................... 1-18 

Effects of Simulation Volume on Risk Metrics for Dynamo DFA Model 
William C. Scheel and Gerald Kirschner .................................................................................................. 1-22 

2012 Reserves Call Papers 

A GLM-Based Approach to Adjusting for Changes in Case Reserve Adequacy 
Decker Exhibits 
Decker_2009 Claims 
Decker_All Open Claims 
Decker_Restated Claims 
Decker_Script R 

Looking Back to See Ahead:  A Hindsight Analysis of Actuarial Reserving Methods 
Susan J. Forray, FCAS, MAAA .................................................................................................................. 1-33 

Larry Decker, FCAS, MAAA ..................................................................................................................... 1-17 

Back-Testing the ODP Bootstrap of the Paid Chain-Ladder Model with Actual 
Historical Claims Data 
Jessica (Weng Kah) Leong, Shaun Wang, and Han Chen ..................................................................... 1-34 

The Leveled Chain Ladder Model for Stochastic Loss Reserving 
LCL1 Model.R 
LCL2 Model.R 
LCL1-JAGS 
LCL2-JAGS 

A Practical Way to Estimate One-Year Reserve Risk 

Glenn Meyers, FCAS, MAAA, CERA, Ph.D .......................................................................................... 1-33 

Robbin Exhibits 

A Total Credibility Approach to Pool Reserving 
Frank Schmid................................................................................................................................................ 1-22 

Ira Robbin, Ph.D. ........................................................................................................................................ 1-34 

Two Symmetric Families of Loss Reserving Methods 
Staudt Exhibit  

Closed-Form Distribution of Prediction Uncertainty in Chain Ladder Reserving  
by Bayesian Approach 
Ji Yao, Ph.D., FIA, CERA .......................................................................................................................... 1-25 

Andy Staudt, FCAS, MAAA ...................................................................................................................... 1-29 

http://www.casact.org/pubs/forum/12sumforum/Decker_Exhibits.xls
http://www.casact.org/pubs/forum/12sumforum/Decker_2009_Open_Claims.csv
http://www.casact.org/pubs/forum/12sumforum/Decker_All_Open_Claims.csv
http://www.casact.org/pubs/forum/12sumforum/Decker_Restated_Claims.csv
http://www.casact.org/pubs/forum/12sumforum/Decker_call_paper_script.R.txt
http://www.casact.org/pubs/forum/12sumforum/Robbin_Exhibit.xls
http://www.casact.org/pubs/forum/12sumforum/Staudt_Exhibit.xls
http://www.casact.org/pubs/forum/12sumforum/LCL1-Model.R.txt
http://www.casact.org/pubs/forum/12sumforum/LCL2-Model.R.txt
http://www.casact.org/pubs/forum/12sumforum/LCL1-JAGS.txt
http://www.casact.org/pubs/forum/12sumforum/LCL2-JAGS.txt


Casualty Actuarial Society E-Forum, Summer 2012 iv 

Additional Papers 

Sustainability of Earnings: A Framework for Quantitative Modeling of Strategy,  
Risk, and Value 
Neil M. Bodoff, FCAS, MAAA ................................................................................................................. 1-14 
A Common Subtle Error: Using Maximum Likelihood Tests to Choose between Different 
Distributions 
Gyasi Dapaa .................................................................................................................................................... 1-2 

Loyalty Rewards and Gift Card Programs: Basic Actuarial Estimation Techniques 
Tim A. Gault, ACAS, MAAA, Len Llaguno, FCAS, MAAA, and  
Martin Ménard, FCAS, MAAA .................................................................................................................. 1-40 

A Note on Parameter Risk 
Gary Venter, FCAS, MAAA, and Rajesh Sahasrabuddhe, FCAS, MAAA ......................................... 1-16 

 

 

E-Forum  Committee 
Windrie Wong, Chairperson 

Cara Blank 
Mei-Hsuan Chao  
Mark A. Florenz 

Karl Goring 
Dennis L. Lange 

Donna R. Royston, Staff Editor 
 Shayan Sen 
Rial Simons 

Elizabeth A. Smith, Staff Liaison/Staff Editor 
John Sopkowicz 

Zongli Sun 
Yingjie Zhang 

 

For information on submitting a paper to the E-Forum, visit 

 

http://www.casact.org/pubs/forum/. 



Casualty Actuarial Society E-Forum, Summer 2012 1 
 

Stochastic GBM Methods for Modeling Market Prices 

James P. McNichols, ACAS, MAAA 
Joseph L. Rizzo, ACAS, MAAA 

 
______________________________________________________________________________ 
Abstract  

Motivation. Insurance companies and corporations require credible methods in order to measure and manage 
risk exposures that derive from market price fluctuations.  Examples include foreign currency exchange, 
commodity prices and stock indices. 
 
Method. This paper will apply Geometric Brownian Motion (GBM) models to simulate future market prices.  
The Cox-Ingersoll-Ross approach is used to derive the integral interest rate generator. 
 
Results. Through stochastic simulations, with the key location and shape parameters derived from options 
market forward curves, the approach yields the full array of price outcomes along with their respective 
probabilities. 
 
Conclusions. The method generates the requisite distributions and their parameters to efficiently measure 
capital risk levels as well as fair value premiums and best estimate loss reserves. The modeled results provide 
credible estimators for risk based and/or economic capital valuation purposes.  Armed with these distributions of 
price outcomes, analysts can readily measure inherent portfolio leverage and more effectively manage these types 
of financial risk exposures.  
 
Availability. An Excel version of this stochastic GBM method is available from the CAS website, E-Forum 
section under filename MPiR.xlsm. 
 
Keywords. Dynamic risk models; capital allocation; geometric Brownian motion; options market volatility; 
stochastic process; Markov Process, Itō’s lemma, economic scenario generator. 

______________________________________________________________________________ 

1. PRICE FORECASTING AND ECONOMIC CAPITAL MODELS 

There are various methods actuaries may use to generate future contingent market prices. This 
paper provides the theoretical construct and detailed calculation methodology to model market 
prices for any asset class with a liquid exchange traded options market (i.e., foreign currency 
exchange, oil, natural gas, gold, silver, stocks, etc.).  

The critical input parameters used in this approach are taken directly from the options market 
forward curves and their associated volatilities.  For example, an insurer wants to determine the 
range of likely price movements over the next year for the British Pound (GBP) versus the U.S. 
Dollar (USD).  The requisite mean and volatility input assumptions for this approach are readily 
available from real time financial market sources (i.e., Bloomberg, Reuters, etc.). 

There are two fundamentally different approaches to modeling financial related risks, namely, 
fully integrated and modular.  
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The fully integrated approach applies an enterprise-wide stochastic model that requires complex 
economic scenario generator (ESG) techniques and the core inputs are aligned to either real-world 
or market-consistent parameters.  

Real-world ESGs generally reflect current market volatilities calibrated via empirical time series 
better suited to long-term capital requirements.  Market consistent ESGs reflect market option 
prices that provide an arbitrage-free process geared more toward derivatives and the analytics to 
manage other capital market instruments. Market consistent ESGs have fatter tails in the extreme 
right (i.e., adverse) side of the modeled distributions.   

Outputs from the ESGs provide explicit yield curves that allow us to simulate fixed income 
“bond” returns.  Interest rates (both real and nominal) are simulated as core outputs and the 
corresponding equity returns are derived as a function of the real interest rates.   

Fully integrated models provide credible market price forecasts but they are complex and require 
highly experienced analysts to both calibrate the inputs and translate the modeled outputs. The 
findings derive from an apparent “black box” and are not always intuitive or easily explained to 
executive managers and third-party reviewers (i.e., rating agencies or regulators).   

Proponents of the fully integrated approach assert that it provides an embedded covariance 
structure, reflecting the causes of dependence. However, a pervasive problem arises when using the 
fully integrated approach in that no matter how expert the parameterization of the ESG, the model 
by necessity will reflect an investment position on the future market performance.   

Appendix A provides sample input vectors for a typical ESG.  A cursory review of the input 
parameters confirms that any resulting simulation reflects the embedded investment position on the 
myriad of financial market inputs including short-term rates, long-term rates, force of mean 
reversion, variable correlations, jump-shift potential, etc.  

The approach described in this paper is geared to analyze asset (and liability) risk components 
that are modeled individually.  This is referred to as the modular approach.  In this approach capital 
requirements are determined at the business unit or risk category level (e.g., market, credit and 
liquidity risk separately) and then aggregated by either simple summation of the risk components 
(assuming full dependence) or via covariance matrix tabulations (which reflect portfolio effects).   

The main advantage of the modular approach is that it provides a simple but credible 
spreadsheet-based solution to economic capital estimation.  Other advantages include ease of 
implementation, clear and explicit investment position derived from the market and covariance 
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assumptions, and communication of basic findings. 

Consider the financial risk exposure that derives from stock/equity investments. The expected 
returns originate from non-stationary distributions and the correlation parameters of the various 
equities likely derive from non-linear systems.  Thus, it may be more appropriate to simulate stock 
prices with a model that eliminates any need to posit future returns but rather simply translates the 
range of likely outcomes defined by the totality of information embedded within open market 
trades. Selecting the location and scale parameters from the options markets data yields price 
forecasts which are devoid of any actuarial bias on the expected “state” of the financial markets. The 
results provide reliable measures of the range of price fluctuation inherent in these capital market 
assets. 

Financial traders may scrutinize buy/sell momentum and promulgate their own view of the 
dependency linkages amongst and in between these asset variables, attempting to determine where 
arbitrage opportunities exist.  The net sum of all of the option market trades collectively reflects an 
aggregate expectation.  The market is deemed credible and vast amounts of trade data are embedded 
within these two key input parameters. 

2. PRICE MODELING—THEORY 

Markov analysis looks at sequences of events and analyzes the tendency of one event to be 
followed by another. Using this analysis, one can generate a new sequence of random but related 
events that will mimic the original.  Markov processes are useful for analyzing dependent random 
events whereby likelihood depends on what happened last.  In contrast, it would not be a good way 
to model coin flips, for example, because each flip of the coin has no memory of what happened on 
the flip before as the sequence of heads and tails is fully independent.  

The Weiner process is a continuous-time stochastic process, W(t) for t ≥ 0  with W(0) = 0 and 
such that the increment W(t) – W(s) is Gaussian (e.g., normally distributed) with mean = 0 and 
variance “t - s” for any 0 ≤ s ≤ t, and the increments for non-overlapping time intervals are 
independent.  Brownian motion (i.e., random walk with random step sizes) is the most common 
example of a Wiener process. 

Changes in a variable such as the price of oil, for example, involve a deterministic component, 
“a∆t”, which is a function of time and a stochastic component, “b∆z”, which depends upon a 
random variable (here assumed to be a standard normal distribution).  Let S be the price of oil at 
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time = t and let dS be the infinitesimal change in S over the infinitesimal interval of time dt.  Change 
in the random variable Z over this interval of time is dz. This yields a generalized function for 
determining the successive series of values in a random walk given by dS = adt + bdz, where “a” and 
“b” may be functions of S and t. The expected value of dz is equal to zero so thus the expected value 
of dS is equal to the deterministic component, “adt”. 

The random variable dz represents an accumulation of numerous random influences over the 
interval dt. Consequently, the Central Limit Theorem applies which infers that dz has a normal 
distribution and hence is completely characterized by mean and standard deviation.  

The variance of a random variable, which is the accumulation of independent effects over an 
interval of time is proportional to the length of the interval, in this case dt. The standard deviation of 
dz is thus proportional to the square root of dt. All of this means that the random variable dz is 
equivalent to a random variable √W(dt), where W is a standard normal variable with mean equal to 
zero and standard deviation equal to unity. 

Itō’s lemma1

∆X = a(x,t)∆t + b(x,t)∆z 

 formalizes the fact that the random (Brownian motion) part of the change in the log 
of the oil price has a variance that is proportional to the square root of this time interval.  
Consequently, the second order (Taylor) expansion term of the change of the log of the oil price is 
proportional to the time interval. This is what allows the use of stochastic calculus to find the 
solutions. The formula for Itō’s Lemma is as follows:   

 

(2.1) 

Itō’s Lemma is crucial in deriving differential equations for the value of derivative securities such 
as options, puts, and calls in the commodity, foreign exchange and stock markets.  A more intuitive 
explanation of Itō’s Lemma that bypasses the complexities of stochastic calculus is given by the 
following thought experiment: 

Visualize a binomial tree that goes out roughly a dozen steps whereby the price at 
each step is determined by, drift +/- volatility. The average of returns at the end of 
these steps will be (drift - ½ volatility2) x dt. This is as Itō’s Lemma would expect.  
However, when you do this averaging to get that number, all of the outcomes (i.e., 
each of the individual returns) have the same weighting.  It is as though you weighted 
each outcome by its beginning value or price. Since all of the paths started at the 
same price, it turns out being a simple average (actually, a probability-weighted 
average with equivalent weights). 

                                                           
1 Kiyoshi Itō (1951). On stochastic differential equations. Memoirs, American Mathematical Society 4, 1–51. 
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Now run the experiment again, but this time by averaging each of the outcomes by their ending 
value, which will yield an average mean = (drift + ½ volatility2) x dt.  Note the change in the sign 
from - to +.  Consequently, the formula has a minus sign if you use beginning value weights and a 
plus sign if you use ending value weights. Conceivably, somewhere in the middle of the process (or 
maybe the average drift of the process) is just the initial drift with no volatility adjustment. Why is 
this? When you weight by initial price, all of the paths share equal weightings – the bad performance 
paths carry the same weight as the good, in spite of the fact that they get smaller in relative size. 
Consequently they are bringing down the average return (thus the “minus ½ sigma2”). The opposite 
happens when you use ending values as weights, whereby the top paths get really large versus the 
bottom paths and appear to artificially lift up the returns (in a manner similar to that often observed 
with some stock indices). 

The “reality” is likely somewhere in between, where the number is the initial drift and thus, in 
this context, Itō’s Lemma is just a weighted averaging protocol. 

By inserting Itō’s Lemma into the generalized formula yields a Geometric Brownian Motion 
(GBM) formula for price changes of the form:  

 

∆S = µS∆t + σS∆z; such that St+1= St + St [µ∆t+σεN(0,1)√∆t]. 

 

(2.2) 

µ is the expected price appreciation, which can be taken directly from the forward mean curves 
for any liquid market option (i.e., F/X, Oil, Gold, etc.). 

σ is the implied volatility, which can also be taken directly from the option markets price data 
available on Bloomberg (for example).  

S is typically assumed to follow a lognormal distribution and this process is used to analyze 
commodity and stock prices as well as exchange rates.  

A critical input to this market price modeling approach is the interest rate assumption.   

A general model of interest rate dynamics may be given by:  

 

∆rt = k(b-rt)∆t + σrγt∆zt. (2.3) 

In this method we utilize the Cox-Ingersoll-Ross Model (CIR) as follows: 
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ri = ri-1 + a(b-ri-1)∆t + σ√ri-1 ε 

ri = spot rate at time = i. 

ri-1 = spot rate at time = i-1. 

a = speed of reversion = 0.01. 

b = desired average spot rate at end of forecast: set to spot rate on n-year high-grade, corporate-
zero, coupon bond at beginning of forecast; therefore, there is no expectation for a change in the 
level of yields over the forecast period. 

σ = volatility of interest rate process = .85% (the historical standard deviation of the Citigroup 
Pension Discount Curve n year spot rate). 

∆t = period between modeled spot rates in months = 1. 

ε = random sampling from a standard normal distribution. 

The CIR interest rate model characterizes the short-term interest rate as a mean-reverting 
stochastic process. Although the CIR model was initially developed to simulate continuous changes 
in interest rates, it may also be used to project discrete changes from one time period to another. 

The CIR model is similar to our market price model in that it has two distinct components: a 
deterministic part k(b-rt) and a stochastic part σrγt . The deterministic part will go in the reverse 
direction of where the current short-term rate is heading. That is, the further the current interest rate 
is from the long-term expected rate, the more pressure the deterministic part applies to reverse it 
back to the long-term mean. 

The stochastic part is purely random; it can either help the current interest rate deviate from its 
long-term mean or the reverse. Since this part is multiplied by the square root of the current interest 
rate, if the current interest rate is low, then its impact is minimal, thereby not allowing the projected 
interest rate to become negative. 

3. PRICE MODELING—APPLICATION AND PRACTICE 

When implementing this modular approach to model these types of risks, there are key 
considerations that need be thought through by the actuary.  The first and most important is 
correlation.  For this paper, we are assuming independence for simplicity and clarity in the approach.  
A fully independent view does have value in that it defines a lower boundary region of the result and 
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a fully dependent view defines an upper boundary.  Correlation of financial variables is difficult 
because they are hard to estimate and can be unstable.  For example, consider the chart below, 
which tracks the relationship between stocks and bonds over time. 

 

Source: GMO as of January 2011. 

Another key consideration is the form of the random walk variable.  For this example, we are 
using a normal distribution to model the random walk of the results.  The normal distribution is 
commonly used in financial modeling and does simplify the ideas shown.  Depending on the use and 
application of the model, consideration should be given to this assumption and possible 
modifications. 

The data for this sample exercise is from the forward call options for the British Pound (GBP) 
versus the U.S. Dollar (USD) currency pair from June 2010 through December 2011.  This time 
interval was selected so that the user can compare the modeled results to the actual results. 
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GBP v USD Foreign Exchange Futures 

Source: (Bloomberg) 

Ticker Month Option 
Mean Volatility 

NRM0 Comdty Jun-10 1.4558 14.890 
NRN0 Comdty Jul-10  14.920 
NRQ0 Comdty Aug-10  14.860 
NRU0 Comdty Sep-10 1.4557 14.850 
NRV0 Comdty Oct-10   
NRX0 Comdty Nov-10  14.830 
NRZ0 Comdty Dec-10 1.4556  
NRF1 Comdty Jan-11   
NRG1 Comdty Feb-11  14.795 
NRH1 Comdty Mar-11 1.4555  
NRJ1 Comdty Apr-11   
NRK1 Comdty May-11  14.730 
NRM1 Comdty Jun-11 1.4554  
NRN1 Comdty Jul-11   
NRQ1 Comdty Aug-11   
NRU1 Comdty Sep-11 1.4553  
NRV1 Comdty Oct-11   
NRX1 Comdty Nov-11  14.760 

 

The first step is to complete the columns for the missing data fields with simple linear 
interpolation.  Other interpolation options are available and should be reviewed when doing the 
analysis.  In this case, a linear interpolation was selected due to the small changes expected in the 
mean market forward curve.  When larger relative price movements are expected, then different 
interpolations may be used such as geometric means.  
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Interpolating the missing values generates the following table: 

 

Ticker Month Option 
Mean Volatility 

NRM0 Comdty Jun-10 1.4558 14.890 
NRN0 Comdty Jul-10 1.4558 14.920 
NRQ0 Comdty Aug-10 1.4557 14.860 
NRU0 Comdty Sep-10 1.4557 14.850 
NRV0 Comdty Oct-10 1.4556 14.840 
NRX0 Comdty Nov-10 1.4556 14.830 
NRZ0 Comdty Dec-10 1.4556 14.818 
NRF1 Comdty Jan-11 1.4556 14.807 
NRG1 Comdty Feb-11 1.4555 14.795 
NRH1 Comdty Mar-11 1.4555 14.773 
NRJ1 Comdty Apr-11 1.4555 14.752 
NRK1 Comdty May-11 1.4554 14.730 
NRM1 Comdty Jun-11 1.4554 14.735 
NRN1 Comdty Jul-11 1.4554 14.740 
NRQ1 Comdty Aug-11 1.4553 14.745 
NRU1 Comdty Sep-11 1.4553 14.750 
NRV1 Comdty Oct-11  14.755 
NRX1 Comdty Nov-11  14.760 

 

The CIR interest rate model is then applied in this example as follows: 

r(i) = (ab - (a+y) x r(i-1))dt + srgdZ 
a = 0.25 
b = 0.06 

y = 0 
s = 0.05 
g = 0.50 

dt = 1/12 
r(0) = 0.0028 (1 month LIBOR). 

The above parameterization was provided by life actuarial advisors. Derivation of the CIR 
parameters is beyond the scope of this paper.  
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Adding the interest rate calculation expands the table as follows: 

Month 
Market 
Forward 

GBP/USD 

Implied 
Volatility 

Interest 
Rate Z 

Jun-10 1.4558 14.89%   
Jul-10 1.4558 14.92% 0.28% 0.00% 

Aug-10 1.4557 14.86% 0.40% 0.00% 
Sep-10 1.4557 14.85% 0.52% 0.00% 
Oct-10 1.4556 14.84% 0.63% 0.00% 
Nov-10 1.4556 14.83% 0.74% 0.00% 
Dec-10 1.4556 14.82% 0.85% 0.00% 
Jan-11 1.4556 14.81% 0.96% 0.00% 
Feb-11 1.4555 14.80% 1.06% 0.00% 
Mar-11 1.4555 14.77% 1.17% 0.00% 
Apr-11 1.4555 14.75% 1.27% 0.00% 
May-11 1.4554 14.73% 1.37% 0.00% 
Jun-11 1.4554 14.74% 1.46% 0.00% 
Jul-11 1.4554 14.74% 1.56% 0.00% 

Aug-11 1.4553 14.75% 1.65% 0.00% 
Sep-11 1.4553 14.75% 1.74% 0.00% 

 

Where Z is N(0,1). 

This currency model has the following basic structure: 

Currency price (end of month) = currency price (beginning of month) x (random walk) x (1 + 
drift rate adjustment). 

The first two elements are typical of standard GBM models.  The third component adjusts the 
model so that the mean of the modeled currencies match the market forward curve.  By 
implementing this adjustment factor, the model is transformed to be price taking. That is, the GBM 
model is modified to realign the simulated forward means with the current options market 
expectation2

  

.   

                                                           
2 The GBM model may be adjusted to use different forward curves than the market aggregate expectation, but then the 
model would by definition be taking a market pricing position on the variable.  However, if that is the case use caution 
since that analysis may be construed as offering investment advice. Please note the relevant actuarial statements of 
practice related to investment advice. 
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Next we introduce the Brownian motion component.   

random walk = exp((r(i)- ½ x σ2)dt + σ (dt)½dZ). 

Where dZ, dt, r(i) are from the interest rate calculation, and σ is the implied volatility of the 
currency prices from the Bloomberg table. 

Adding these calculations to the table yields the following: 

 

Month 

Market 
Forward 
GBP/ 
USD 

Implied 
Vol. 

Interest 
Rate Z 

Price in 
Month 

Weiner 
Drift 
Rate 
Adj. 

Modeled 
Mean 

 

Beg End 

Target v. 
Modeled 

Mean 
Difference 

Jun-10 1.4558 14.89%    1.4558     
Jul-10 1.4558 14.92% 0.28% 0.00% 1.4558 1.4548 0.9993 0.00% 1.4548 0.0006715 

Aug-10 1.4557 14.86% 0.40% 0.00% 1.4548 1.4539 0.9994 0.00% 1.4553 0.0003007 
Sep-10 1.4557 14.85% 0.52% 0.00% 1.4539 1.4532 0.9995 0.00% 1.4560 (0.0001773) 
Oct-10 1.4556 14.84% 0.63% 0.00% 1.4532 1.4527 0.9996 0.00% 1.4568 (0.0007546) 
Nov-10 1.4556 14.83% 0.74% 0.00% 1.4527 1.4522 0.9997 0.00% 1.4577 (0.0014195) 
Dec-10 1.4556 14.82% 0.85% 0.00% 1.4522 1.4519 0.9998 0.00% 1.4589 (0.0022343) 
Jan-11 1.4556 14.81% 0.96% 0.00% 1.4519 1.4518 0.9999 0.00% 1.4602 (0.0031548) 
Feb-11 1.4555 14.80% 1.06% 0.00% 1.4518 1.4517 1.0000 0.00% 1.4616 (0.0041686) 
Mar-11 1.4555 14.77% 1.17% 0.00% 1.4517 1.4518 1.0001 0.00% 1.4633 (0.0053047) 
Apr-11 1.4555 14.75% 1.27% 0.00% 1.4518 1.4520 1.0001 0.00% 1.4651 (0.0065532) 
May-11 1.4554 14.73% 1.37% 0.00% 1.4520 1.4524 1.0002 0.00% 1.4670 (0.0078706) 
Jun-11 1.4554 14.74% 1.46% 0.00% 1.4524 1.4528 1.0003 0.00% 1.4690 (0.0092570) 
Jul-11 1.4554 14.74% 1.56% 0.00% 1.4528 1.4534 1.0004 0.00% 1.4712 (0.0107382) 

Aug-11 1.4553 14.75% 1.65% 0.00% 1.4534 1.4541 1.0005 0.00% 1.4735 (0.0123158) 
Sep-11 1.4553 14.75% 1.74% 0.00% 1.4541 1.4549 1.0005 0.00% 1.4760 (0.1403333) 

 

The final step is to determine the Drift Rate Adjustment values, which is accomplished with a 
recursive iteration technique.  The first drift rate adjustment calculation is found in the last column 
(“Target vs. Modeled Mean Difference”).  The formula in that column is equal to: (Market Forward 
Price) / (Modeled Mean) – 1. 

The modeled mean is the average of the month ending prices from the simulation results.  The 
first value shown is input into the Drift Rate Adjustment field, and then the GBM model is rerun to 
calculate the next adjustment factor, and so on until all the monthly forward means are aligned and 
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the differences are all zero.   

This can be seen in the following table, shown mid-adjusting: 

 

Month 

Market 
Forward 
GBP/ 
USD 

Implied 
Vol. 

Interest 
Rate Z 

Price in 
Month 

Weiner 
Drift 
Rate 
Adj. 

Modeled 
Mean 

 

Beg End 

Target v. 
Modeled 

Mean 
Difference 

Jun-10 1.4558 14.89%    1.4558     
Jul-10 1.4558 14.92% 0.28% 0.00% 1.4558 1.4558 0.9993 0.07% 1.4558 0.0000000 

Aug-10 1.4557 14.86% 0.40% 0.00% 1.4558 1.4544 0.9994 (0.04%) 1.4557 0.0000000 
Sep-10 1.4557 14.85% 0.52% 0.00% 1.4544 1.4530 0.9995 (0.05%) 1.4557 0.0000000 
Oct-10 1.4556 14.84% 0.63% 0.00% 1.4530 1.4516 0.9996 (0.06%) 1.4557 0.0000000 
Nov-10 1.4556 14.83% 0.74% 0.00% 1.4516 1.4502 0.9997 (0.07%) 1.4556 0.0000000 
Dec-10 1.4556 14.82% 0.85% 0.00% 1.4502 1.4487 0.9998 (0.08%) 1.4556 0.0000000 
Jan-11 1.4556 14.81% 0.96% 0.00% 1.4487 1.4485 0.9999 0.00% 1.4569 (0.0009225) 
Feb-11 1.4555 14.80% 1.06% 0.00% 1.4485 1.4485 1.0000 0.00% 1.4584 (0.0019386) 
Mar-11 1.4555 14.77% 1.17% 0.00% 1.4485 1.4486 1.0001 0.00% 1.4600 (0.0030773) 
Apr-11 1.4555 14.75% 1.27% 0.00% 1.4486 1.4488 1.0001 0.00% 1.4618 (0.0043286) 
May-11 1.4554 14.73% 1.37% 0.00% 1.4488 1.4491 1.0002 0.00% 1.4637 (0.0056489) 
Jun-11 1.4554 14.74% 1.46% 0.00% 1.4491 1.4496 1.0003 0.00% 1.4657 (0.0070384) 
Jul-11 1.4554 14.74% 1.56% 0.00% 1.4496 1.4501 1.0004 0.00% 1.4679 (0.0085230) 

Aug-11 1.4553 14.75% 1.65% 0.00% 1.4501 1.4508 1.0005 0.00% 1.4702 (0.0101040) 
Sep-11 1.4553 14.75% 1.74% 0.00% 1.4508 1.4516 1.0005 0.00% 1.4727 (0.0118254) 

 

It is also possible to derive the drift rate adjustment values directly from an analytic approach 
applied to second differences but the recursive iterative technique was used here for ease of 
explanation.   
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After completing the drift rate adjustment process, the results are summarized as follows: 

 

Month 

Market 
Forward 
GBP/ 
USD 

Implied 
Vol. 

Interest 
Rate Z 

Price in 
Month 

Weiner 
Drift 
Rate 
Adj. 

Modeled 
Mean 

 

Beg End 

Target v. 
Modeled 

Mean 
Difference 

Jun-10 1.4558 14.89%    1.4558     
Jul-10 1.4558 14.92% 0.28% 0.00% 1.4558 1.4558 0.9993 0.07% 1.4558 0.0000000 

Aug-10 1.4557 14.86% 0.40% 0.00% 1.4558 1.4544 0.9994 (0.04%) 1.4557 0.0000000 
Sep-10 1.4557 14.85% 0.52% 0.00% 1.4544 1.4530 0.9995 (0.05%) 1.4557 0.0000000 
Oct-10 1.4556 14.84% 0.63% 0.00% 1.4530 1.4516 0.9996 (0.06%) 1.4557 0.0000000 
Nov-10 1.4556 14.83% 0.74% 0.00% 1.4516 1.4502 0.9997 (0.07%) 1.4556 0.0000000 
Dec-10 1.4556 14.82% 0.85% 0.00% 1.4502 1.4487 0.9998 (0.08%) 1.4556 0.0000000 
Jan-11 1.4556 14.81% 0.96% 0.00% 1.4487 1.4472 0.9999 (0.09%) 1.4566 0.0000000 
Feb-11 1.4555 14.80% 1.06% 0.00% 1.4472 1.4457 1.0000 (0.10%) 1.4555 0.0000000 
Mar-11 1.4555 14.77% 1.17% 0.00% 1.4457 1.4441 1.0001 (0.11%) 1.4555 0.0000000 
Apr-11 1.4555 14.75% 1.27% 0.00% 1.4441 1.4425 1.0001 (0.13%) 1.4555 0.0000000 
May-11 1.4554 14.73% 1.37% 0.00% 1.4425 1.4409 1.0002 (0.13%) 1.4554 0.0000000 
Jun-11 1.4554 14.74% 1.46% 0.00% 1.4409 1.4394 1.0003 (0.14%) 1.4554 0.0000000 
Jul-11 1.4554 14.74% 1.56% 0.00% 1.4394 1.4378 1.0004 (0.15%) 1.4554 0.0000000 

Aug-11 1.4553 14.75% 1.65% 0.00% 1.4378 1.4362 1.0005 (0.16%) 1.4553 0.0000000 
Sep-11 1.4553 14.75% 1.74% 0.00% 1.4362 1.4344 1.0005 (0.17%) 1.4553 0.0000000 

 

This modified GBM model has generated a 15-month market aligned foreign exchange price 
forecast. Each of the month ending values are the means from a probability density function unique 
to that point in time. 
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The graph below depicts the modeled end of month prices for GBP/USD. 

 

 The apparent horizontal line is the mean forward curve for this currency pair. The area bounded 
by the light shading represents +/- 1 Standard Deviation and roughly accounts for two-thirds of the 
outcomes. The area bounded by the darker shading is determined as the 5th and 95th percentile 
amounts over time. Note the modest asymmetry whereby price appreciation is expected to be 
greater than price depreciation over time.  This asymmetry is even more pronounced out in the 
extreme tails as summarized in the table that follows. 
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This table relates the modeled prices to their confidence levels modeled as of July, August, 
September, and the subsequent quarter ends: 

 

 Modeled End of Month Price 
Confidence 

Level Jul-10 Aug-10 Sep-10 Dec-10 Mar-10 Jun-10 Sep-10 

0.01% 1.4558 1.2396 1.1606 1.0223 0.9232 0.8566 0.7815 
0.05% 1.4558 1.2626 1.1903 1.0502 0.9832 0.8905 0.8372 
10.00% 1.4558 1.3762 1.3431 1.2787 1.2321 1.1938 1.1583 
20.00% 1.4558 1.4025 1.3806 1.3350 1.3006 1.2720 1.2463 
30.00% 1.4558 1.4219 1.4072 1.3763 1.3525 1.3317 1.3118 
40.00% 1.4558 1.4386 1.4304 1.4132 1.3991 1.3858 1.3735 
50.00% 1.4558 1.4544 1.4531 1.4485 1.4429 1.4384 1.4333 
60.00% 1.4558 1.4703 1.4754 1.4849 1.4893 1.4937 1.4949 
70.00% 1.4558 1.4876 1.5000 1.5249 1.5404 1.5549 1.5643 
80.00% 1.4558 1.5081 1.5294 1.5710 1.6027 1.6286 1.6518 
90.00% 1.4558 1.5370 1.5708 1.6409 1.6945 1.7379 1.7813 
99.50% 1.4558 1.6252 1.7010 1.8607 1.9980 2.1148 2.2281 
99.90% 1.4558 1.6613 1.7553 1.9512 2.1243 2.2844 2.4654 

 

This provides the requisite estimators for risk-based or economic capital valuation purposes. For 
example, under Solvency II type risk level constraints, the 99.50% confidence level estimate at 
December is $1.8607.  Consequently, the 1:200 stress level risk capital charge for this risk 
component is required to provide for the net losses that derive from a 28% weakening of the U.S. 
dollar (= 1.8607/1.4558). 

Note:  Actuaries must use caution in the display and communication of results from this 
modified GBM approach. Recall that we seek to provide an unbiased view of the range of future 
price outcomes. That is, we have not taken an independent view rather we have simply translated the 
aggregate market expectation. 

In the U.S., professionals are licensed specifically to give investment advice to individuals and 
companies.  Although actuaries may present the quantitative results of the GBM model and its 
effects, use caution in providing any qualitative summarization of the findings.  Providing qualitative 
assessments of the company’s expected future performance may be construed as giving unqualified 
investment advice.  
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4. CONCLUSIONS 

The method generates probability distribution functions and their parameters to efficiently 
measure capital risk levels as well as fair value premiums and best estimate loss reserves. The model 
yields credible estimates of either risk-based or economic capital requirements or both.  Equipped 
with these distributions of price outcomes, analysts can readily measure inherent portfolio leverage 
and more effectively manage these types of financial risk exposures.  
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Appendix A 

This exhibit provides a sample of the types of complex inputs required to run economic scenario 
generators. 
  



Stochastic GBM Methods for Modeling Market Prices

Appendix A
ESG Prototype: Model Parameters
US Economy : Sample Parameters

Valuation Date 2010.12 Observed Term Structure (linearly interpolated between key rates)
1-yr 2-yr 3-yr 4-yr 5-yr 6-yr 7-yr 8-yr 9-yr 10-yr

Projection Period 50             time steps 0.29 0.62 1.06 1.49 1.93 2.20 2.47 2.75 3.02 3.29
Time Step 1.000        in years

Real Estate Time Step 1.000        in years 11-yr 12-yr 13-yr 14-yr 15-yr 16-yr 17-yr 18-yr 19-yr 20-yr
3.35 3.40 3.46 3.52 3.57 3.63 3.69 3.74 3.80 3.86

Current Risk Free Term Structure
Current 3-mo rate 0.14% per year 21-yr 22-yr 23-yr 24-yr 25-yr 26-yr 27-yr 28-yr 29-yr 30-yr
Current 1-yr rate 0.29% 3.91 3.97 4.02 4.08 4.14 4.19 4.25 4.31 4.36 4.42
Current 2-yr rate 0.62%
Current 5-yr rate 1.93% 31-yr 32-yr 33-yr 34-yr 35-yr 36-yr 37-yr 38-yr 39-yr 40-yr

Current 10-yr rate 3.29% 4.43 4.44 4.45 4.46 4.47 4.47 4.48 4.49 4.50 4.51
Current 30-yr rate 4.42%

50-yr Selection 4.60% 41-yr 42-yr 43-yr 44-yr 45-yr 46-yr 47-yr 48-yr 49-yr 50-yr
4.52 4.53 4.54 4.55 4.56 4.56 4.57 4.58 4.59 4.60

Real Rate Parameters Inflation Parameters
Long INT Reversion Mean 0.0432 Long INT Volatility 2.33% Initial Inflation 0.0148

Long INT Reversion Speed 0.3516 INF Mean 0.0259 INF Volatility 0.0215
Short INT Reversion Speed 0.1382 Short INT Volatility 2.18% INF Reversion Speed 0.3852

Large and Small Stock Parameters
Medical Inflation Parameters Prob

Initial MED INF 0.0324 Stage0 Mean LS Return 9.00% Stage0 LS Volatility 10.12% stage: 1 0.9760
Stage1 Mean LS Return -26.16% Stage1 LS Volatility 27.12% stage: 2 0.8507

MED INF Mean 0.0271
MED INF Volatility 0.0088 Stage0 Mean SS Return 8.16% Stage0 SS Volatility 13.86% stage: 1 0.9760

MED INF Reversion Speed 0.0709 Stage1 Mean SS Return 3.60% Stage1 SS Volatility 57.50% stage: 2 0.9000

Dividend Parameters
DIV Reversion Mean 4.17% DIV Volatility 0.85%

DIV Reversion 0.13          Correlation Parameters
Initial DIV 1.83% Correl LS, SS Regime Switch 90% Dependence method to use?

Correl LS, SS Return 90%
Real Estate Parameters Correl DIV, LS -25%

RE Reversion Mean 2.22% RE Volatility 2.82%
RE Reversion Speed 0.87          Correl INF, DIV -50%

Initial RE 4.62%
Correl Short, Long INT 68%

Correl INF, Short Real INT 2%

Correl INF, MED INF 72%

Rank Dependence

Casualty Actuarial Society Forum Spring, 2012
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 _________________________________________________________________________________________  
Abstract: Of necessity, users of complex simulation models are faced with the question of “how many 
simulations should be run?” On one hand, the pragmatic consideration of shortening computer runtime with 
fewer simulation trials can preclude simulating enough of them to achieve precision.  On the other hand, 
simulating many hundreds of thousands or millions of simulation trials can result in unacceptably long run times 
and/or require undesirable computer hardware expenditures to bring run times down to acceptable levels. 
Financial projection models for insurers, such as Dynamo, often have complex cellular logic and  many random 
variables.   Users of insurance company financial models often want to further complicate matters by considering 
correlations between different subsets of the model’s random variables.  Unfortunately, the runtime / accuracy 
tradeoff becomes even larger when considering correlations between variables. 
Dynamo version 5, written for use in high performance computing (HPC)1

This paper begins by examining the effect that varying the number of simulations has on aggregate distributions 
of a series of seven right-tailed, correlated lognormal distributions.  Not surprisingly, the values were found to be 
more dispersed for smaller sample sizes.  What was surprising was finding that the values were also lower when 
using smaller sample sizes.  Based on the simulations we performed, we conclude that a minimum of 100,000 
trials is needed to produce stable aggregate results with sufficient observations in the extreme tails of the 
underlying distributions. 

, as used for this paper, has in excess 
of 760 random variables, many of which are correlated.  We have used this model to produce probability 
distribution and risk metrics such as Value at Risk (VaR), Tail Value at Risk (TVaR) and Expected Policyholder 
Deficit (EPD) for a variety of modeled variables.  In order to construct many of the variables of interest, models 
such as Dynamo have cash flow overlays that enable the projection of financial statement accounting structures 
for the insurance entity being modeled.  The logic of these types of models is enormously complex and even a 
single simulation is time consuming.  

Similar conclusions are drawn for the modeled variables simulated with Dynamo 5.  Sample sizes under 100,000 
produce potentially misleading results for risk metrics associated with projected policyholders surplus.  Based on 
the quantitative values produced by the HPC version of Dynamo 5 used in this article, we conclude that sample 
sizes in excess of 500,000 are warranted.  The reason for the higher number of simulations in Dynamo 5 as 
compared to the seven variable example is the greater complexity of Dynamo, specifically the much larger 
number of random variables and the complexity of the correlated interactions between variables.  As support for 
this, we observe that simulated metrics for Policyholders Surplus decreased by 2% to 3% when simulations were 
increased from 100,000 to 700,000.  They decreased by 3% to 6% when simulations were increased from 10,000 
to 700,000.  
 _________________________________________________________________________________________  
 

. 

                                                 
1 High performance computing involving the parallelization of the Dynamo model so it would run in computer clusters 
offers a potential solution to the trade-off between precision and runtime.  A small HPC cluster can reduce runtime by 
1/3 for 100,000 trials, from about 1.5 hours to 33 minutes. 
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INTRODUCTION 

Dynamo is an open access dynamic financial analysis (DFA)2 model built in Microsoft Excel.  It 
is available on the Casualty Actuarial (CAS) web site.3

Participants are encouraged to develop any needed enhancements, such as add-on 
programs/macros to Dynamo 4.1. This call for papers is intended to foster the use of 
Dynamo 4.1 and to generate publicly available improvements to the model. 

  The call paper program (herein after referred 
to as Call) encouraged model redesign but probably did not anticipate the reformation of the model 
to run in a high performance computing (HPC) environment. 

HPC Dynamo4 still retains standalone properties, but it was redesigned to run with high-volume 
simulations in the hundreds of thousands5 instead of a few thousand6

In this fashion it is possible to run simulations with as many as 750,000 trials on a moderate-sized 
cluster in about 30 minutes.

 simulations.  The model was 
parallelized and runs in a services oriented architecture (SOA) wherein server computers 
simultaneously use multiple instances of Excel and the Dynamo model.  Empirical probability 
distributions are built from the simulations being done in parallel across many computers.  A pool of 
such computers is called an HPC cluster.  Further, any single computer in the cluster may have many 
processing units or cores.  So, where a cluster has 100 computers, each with four cores, it would be 
possible to run 400 instances of Excel in parallel. 

7

To facilitate the evaluation of what we considered to be interesting and relevant metrics, we 
extended HPC Dynamo to calculate value at risk (VaR), tail value at risk (TVaR) and expected 

  The technology affords an interesting opportunity to examine the 
effects of sample size on various risk metrics being calculated in the Dynamo model. 

                                                 
2 DFA involves simulation to obtain an empirical probability distribution for accounting metrics.  As such, an accounting 
convention such as statutory or GAAP is required.  Cash flows are generated for many dependent random variables, and 
these cash flows are evaluated within the accounting framework.  Realizations of financial values from balance sheets or 
income statements obtained during the simulations are used to construct probability distributions for the financial 
values. 
3 Dynamo model, version 4.1 and documentation can be obtained at:  
http://www.casact.org/research/index.cfm?fa=padfam. 
4 HPC Dynamo version 5.x can be obtained at: http://www.casact.org/research/index.cfm?fa=dynamo.  Please note 
there is a vast amount of both written material and video clips available on-line for version 5.x.  This help 
documentation is directly accessible to users of Dynamo 5x from some new dialogs. 
5 HPC Dynamo must be run in Excel 2010 (Microsoft Office version 14). 
6 Dynamo 4, the model from which HPC Dynamo 5 was created, can, in theory, also generate several hundred thousand 
scenarios, but this may not be practical when it takes approximately three hours to run 5,000 simulations. 
7 The work done for this paper was generated on two clusters.  One had about 240 cores and a smaller one had about 24 
cores.  There was a mixture of computer types involving both 64- and 32-bit computers.  Two operating systems were 
used: Windows Server 2008 R2 and Windows 7.  In our experience, neither of these platforms would be considered large 
HPC clusters.  Each computer supporting the cluster had eight cores.  As noted, HPC Dynamo also can be run on single 
instance of Excel 2010 without HPC functionality. 

http://www.casact.org/research/index.cfm?fa=padfam�
http://www.casact.org/research/index.cfm?fa=dynamo�
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policyholder deficit (EPD) values for the DFA variables.  We have extended HPC Dynamo in this 
manner in response to the direction that global insurance company solvency and financial 
regulations (i.e., Solvency II, IFRS) appear to be headed.  Other standard statistics also are 
computed. 

SECTION 1: COMPARISON OF SOLVENCY II AND OTHER RISK 
METRICS USING MULTIVARIATE SIMULATION OF LOGNORMAL 
DISTRIBUTIONS 

Introduction 
In this section we illustrate sampling phenomena for lognormal distributions that are correlated.  

This section is a simplification of the Dynamo 5 example that will be the focus of the next section.  
In this section we focus on a series of seven lognormally distributed variables.  In the next section, 
we will work with the Dynamo model and its 760 random variables, of which only some are 
lognormally distributed. 

We also use this occasion to review several risk metric constructs, including those being used for 
Solvency II (S II).   

Solvency II Risk Aggregation 
The Solvency II regime’s standard formula is predicated on risk aggregation of different capital 

charges through an approach similar to classical portfolio theory, i.e., there is an assumed reduction 
in volatility arising from risk diversification.  The derivation of the Basic Solvency Capital 
Requirement (BSCR)8 Table 1 uses a subjective correlation matrix similar to the one shown in  to 
capture this reduction in volatility, and it is calculated using (1). 

                                                 
8 European Commission Internal Market and Services DG, Financial Institutions, Insurance and Pensions, “QIS4 
Technical Specifications (MARKT/2505/08), Annex to Call for Advice from CEIOPS in QIS4(MARKT/2504/08),” 
pp. 286.  This document is hereinafter referred to as QIS4.  The CEIOPS Solvency II Directive is the globally operative 
document.  It can be found, with highlights for “easy reading” in English, at http://www.solvency-ii-
association.com/Solvency_ii_Directive_Text.html.   The Committee of European Insurance and Occupational Pensions 
Supervisors (CEIOPS) web site has the latest rendering of the Solvency II Framework Directive.  
http://www.europarl.europa.eu/sides/getDoc.do?pubRef=-//EP//TEXT+TA+P6-TA-2009-
0251+0+DOC+XML+V0//EN. 

http://www.solvency-ii-association.com/Solvency_ii_Directive_Text.html�
http://www.solvency-ii-association.com/Solvency_ii_Directive_Text.html�
http://www.europarl.europa.eu/sides/getDoc.do?pubRef=-//EP//TEXT+TA+P6-TA-2009-0251+0+DOC+XML+V0//EN�
http://www.europarl.europa.eu/sides/getDoc.do?pubRef=-//EP//TEXT+TA+P6-TA-2009-0251+0+DOC+XML+V0//EN�
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Table 1:  QIS5 Correlation Matrix for BSCR9 

CorrSCRr,c SCRmarket SCRdefault SCRlife SCRhealth SCRnon-liife 

SCRmarket 1     

SCRdefault 0.25 1    

SCRlife 0.25 0.25 1   

SCRhealth 0.25 0.25 0.25 1  

SCRnon-life 0.25 0.5 0 0.25 1 

 

 

 ,r c r crxc
BSCR CorrSCR SCR SCR= ⋅ ⋅∑  (1) 

where 

CorrSCRr,c = the cells of the correlation matrix mandated by Solvency II10

SCRr, SCRc 

 

= Capital charges for the individual SCR risks according to the rows 
and columns of the correlation matrix CorrSCR 

Portfolio Risk Aggregation 
The Solvency II expression for BSCR is identical to the standard deviation of a portfolio of 

equally weighted risks when the marginal standard deviations are the same as the capital charges. This statement 
follows from the definition of the variance of a portfolio shown in (2). 

 

 

2
p i j i j ij

i j
w wσ σ σ ρ=∑∑

 (2) 

Where 

iσ = standard deviation of the i-th risk component. 

                                                 
9 QIS5 Correlation Matrix for BSCR, p. 96.  
https://eiopa.europa.eu/fileadmin/tx_dam/files/consultations/QIS/QIS5/QIS5-
technical_specifications_20100706.pdf 
10 The SCRi shown in Table 1 are defined across broad risk categories identified within the S II.  Each risk component is 
functionally related to a VaR metric.  For example,  SCRnon-life is the non-life (i.e., property/casualty) component.  It is a 
function of geographic and other risk attributes and is intended to calculate parameters of a lognormal distribution and 
VaR associated with that distribution.  Other SCR components attempt to identify market (SCRmarket), life (SCRlife), health 
(SCRhealth) and operational risks (SCRdefault) confronting insurers. 
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When the weights, iw equal 1, equations (1) and (2) are identical.  And, iσ = iSCR , when the i-th 
capital charge in SCR is the standard deviation of some random variable.   

The limiting properties of large numbers of component risks may be thought to have the 
convergence properties of the Central Limit Theorem.  Applying this assumption, a VaR measure 
for a portfolio of risks with mean, pµ , and portfolio standard deviation, pσ  can then defined by (3). 

 *p pVaRα αµ σ= +Θ  (3) 
Where, 

αΘ = standard normal value at a cumulative probability of α . 

The assumption of a Gaussian process in (3) has rankled many observers.  N.N. Taleb, for 
example, sees “Black Swans” showing up as extreme realizations in risk processes that are distinctly 
non-normal.11 (3)  The chance-constrained metric in  for a portfolio of risks may understate the 
chance-constrained point derived without Gaussian assumptions.  We believe Taleb would 
characterize marginal distributions for many insurance-related loss processes to be Black Swan 
candidates. 

The aggregation method for BSCR indicated in  is likely predicated on a methodology in which 
each component SCR can be thought of as a portfolio component standard deviation.  This same 
approach is widely used among all of the SCRx risk components throughout most S II capital 
charges.  

A solvency capital charge can be a chance-constrained portfolio value such as a multiple of 
standard deviations as shown in (4). 

 ' * pSCR α σ= Θ  (4) 

But, the portfolio mean pµ is defined by (5). 

 
p i i

i
wµ µ=∑  (5) 

So, the portfolio capital charge, SCR’, is given by (6)  after substitution of   and  into  and noting 
that the weights in   equal 1. 

 ' pSCR VaRα µ= −  (6) 
And, as noted at the beginning of this section, the Solvency II expression for BSCR is the 

standard deviation of a portfolio of equally weighted risks when the marginal standard deviations are the same 

                                                 
11 Black Swan theory explains high-impact, hard-to-predict, and rare events.  They arise from non-normal, non-Gaussian 
expectations.  N.N. Taleb, The Black Swan: The Impact of the Highly Improbable, ISBN-13: 9781400063512, 2007, 400 pp.  Taleb is 
not without his critics. A summary of the more cogent ones is found at 
http://en.wikipedia.org/wiki/Taleb_distribution#Criticism_of_trading_strategies 

http://en.wikipedia.org/wiki/Taleb_distribution%23Criticism_of_trading_strategies�
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as the capital charges.   

Solvency II and Portfolio Aggregation 
If we assume that SCR capital charges will, in practice, be larger than the marginal standard 

deviations of the SCR components, it means that the SCR, in equation (1) will be larger than iσ  in 
equation (2).  This, in turn, would mean that the Solvency II standard formula approach to deriving 
a capital requirement would be inflated relative to the portfolio approach for defining a capital 
charge.   The capital charges used in S II aggregation are typically more complex measurements than 
are illustrated in (7).  Here the capital charge is a standard normal multiple, αΘ , of the distribution’s 
standard deviation.  

 ( )i i i i iSCR α αµ σ µ σ= +Θ − = Θ  (7) 
 

We will examine this in the context of a portfolio of lognormal random variables with known 
parameters, { iµ , iσ }.  The values of these parameters appear in Table 2.  Please note that the term, 
“Var x” means a lognormally distributed variable and does not mean value at risk or variance.  The 
correlation matrix used both for the S II and portfolio approaches to developing capital charges is 
shown in Table 3. 

Table 2:  Parameters for Lognormal Distributions  
Name Var 1 Var 2 Var 3 Var 4 Var 5 Var 6 Var 7 
Risk Model Log 

Normal 
Log 
Normal 

Log 
Normal 

Log 
Normal 

Log 
Normal 

Log 
Normal 

Log 
Normal 

Mean 10000 50000 90000 130000 170000 210000 250000 
Standard 
Deviation 

5000 6000 7000 8000 9000 10000 11000 

Table 3:  Correlation Matrix for Lognormal Distributions 
 Var 1 Var 2 Var 3 Var 4 Var 5 Var 6 Var 7 

Var 1 1.0000 0.1315 -0.0986 0.1972 0.3945 0.1972 -0.0723 
Var 2 0.1315 1.0000 -0.1972 0.1315 0.3944 0.3945 0.0328 
Var 3 -0.0986 -0.1972 1.0000 0.3287 0.1315  0.3945 0.1972 
Var 4 0.1972 0.1315 0.3287 1.0000 0.0000 -0.0657 0.1315 
Var 5 0.3945 0.3945 0.1315 0.0000 1.0000 0.0328 0.0131 
Var 6 0.1972 0.3945 0.3945 -0.0657 0.0328 1.0000 0.5260 
Var 7 -0.0723 0.0328 0.1972 0.1315 0.0132 0.5260 1.0000 

 

In the next section we describe aggregation based on a third approach to a capital charge—the 
difference between VaR and the mean of the multivariate aggregate loss distribution for the lognormal 
marginal variates described in Table 2 and rank correlated by Table 3.  
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However, at this point it is instructive to present all three values for these aggregation approaches 
using this simplified seven variable model.   The capital charges appear in Table 4.  These capital 
charges reflect the range of outcomes achieved after 750,000 simulations and taking the .995 
percentile of the resulting aggregate distribution. 

Table 4:  Capital Charges Under Solvency II, Portfolio, and Aggregate Loss Aggregation 
Methods 
Method of Aggregation Capital Charge 

Aggregate Loss 81,268 

Solvency II BSCR 85,654 

Portfolio 77,597 

The capital charge using the S II methodology exceeds the portfolio approach, and by a sizable 
margin.  Of course, in actual application, this margin will depend on the underlying loss distributions 
and the correlation matrix. 

Aggregate Loss Distribution Using the Iman-Conover Method of Inducing 
Correlations 

The multivariate simulation methods we deploy use the Iman-Conover approach for inducing 
correlation into independent distributions.12

Table 5

 The first step is to simulate values from each of the 
seven lognormal variables independently of one another to produce a table of n rows by seven 
columns, where each row represents one scenario in the overall simulation exercise. The second step 
is to reorder the rows by sorting them from low to high using the values in the first column as the 
sort field. The matrix being illustrated in  show the results of 10 scenarios after reordering 
them based on the simulated values for Var 1.13

Table 3
 The matrix is then shuffled so that the 

rearrangement has the Spearman rank correlations shown in . The result of this Iman-
Conover induction of correlation into independent distributions appears in Table 6. This approach 
is particularly useful when correlation is subjective, and the loss processes are developed and 
parameterized by independent groups of actuaries. It is especially useful for multivariate simulation.  
Each row of Table 6 contains an n-tuple from a multivariate distribution with Spearman correlations 
shown in Table 3. The rows are realizations for the seven variables that may be used for different 
trials in a simulation. 

                                                 
12 The Iman-Conover method is described in the report of the Casualty Actuarial Society’s  Working Party on 
Correlations and Dependencies Among All Risk Sources found at 
http://www.casact.org/pubs/forum/06wforum/06w107.pdf.  Also see Kirschner, Gerald S., Colin Kerley, and Belinda 
Isaacs, "Two Approaches to Calculating Correlated Reserve Indications Across Multiple Lines of Business," Variance 2:1, 
2008, pp. 15-38. 
13 The table shows the first ten rows of 25,000 used with the Iman-Conover method. 

http://www.casact.org/pubs/forum/06wforum/06w107.pdf�
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Table 5:  Lognormal Variates Before Induction of Rank Correlation 
Var 1 Var 2 Var 3 Var 4 Var 5 Var 6 Var 7 

1,261 56,244 86,464 139,679 184,313 207,222 220,879 

1,350 41,798 82,325 125,670 177,085 201,510 260,059 

1,404 53,743 91,548 119,955 167,478 233,410 246,224 

1,525 44,553 80,663 142,115 158,827 208,627 235,541 

1,620 47,549 77,273 127,529 157,531 197,469 247,044 

1,671 47,671 82,639 125,521 183,718 208,845 237,500 

1,721 54,840 86,908 132,476 173,432 224,805 265,150 

1,734 61,729 83,191 122,804 176,781 201,987 249,738 

1,743 55,287 91,678 130,586 169,779 207,816 251,302 

1,808 52,759 97,670 133,850 181,218 206,202 266,005 

 

Table 6:  Lognormal Variates After Induction of Rank Correlation  
Var 1 Var 2 Var 3 Var 4 Var 5 Var 6 Var 7 Aggregate 

1,261 48,005 97,603 128,608 151,988 212,276 261,124 900,866 

1,350 53,071 103,625 121,782 160,720 224,589 259,898 925,035 

1,404 40,877 87,598 125,819 153,027 189,504 249,399 847,627 

1,525 51,668 96,151 135,583 169,766 191,346 238,395 884,434 

1,620 50,617 91,693 127,287 161,166 202,703 255,470 890,555 

1,671 50,021 90,844 123,747 149,731 208,077 244,267 868,359 

1,721 58,834 83,220 122,938 147,002 219,338 261,585 894,638 

1,734 39,731 102,377 129,503 153,077 200,082 244,553 871,057 

1,743 38,745 85,285 121,838 143,780 192,489 243,678 827,558 

1,808 44,030 89,124 130,296 153,196 190,989 240,596 850,038 

 

Each of the variables in a row of Table 6 is added to produce an observation in the aggregate loss 
distribution as shown in the final column of each row.  This is a multivariate empirical distribution, 
but there is no available multivariate probability distribution that defines it.  That is, the aggregate 
loss distribution is not constructed with a variance/covariance matrix, and it does not use 
Pearsonian correlation.  Nevertheless, it is an aggregate distribution based on independently derived 
probability distributions that are observed to have pairwise Spearman rank correlations.  It is 
multivariate in that sense. 

We note that this empirical probability distribution is not directly used in Dynamo.  Instead, the 
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multivariate Iman-Conover trials are available for use in Dynamo.  The multivariate variables may be 
used in dependent cells so that a simulation in Dynamo is using random variates that are correlated.  
It is possible to have many clusters of such correlated variables where each is used for different cell 
dependencies.14  For example, new business growth among lines of business could be a function of 
random variables within a pod or cluster that are correlated. 15

  

  DFA variables dependent on them 
will be generated with the underlying correlation structure of the pod or cluster. 

                                                 
14 The technique is very useful when the underlying correlation structure of a cluster of variables is subjective.  It is 
important to remember, however, that subjective correlations must be reckoned as rank correlations. 
15 The term “pod” and “cluster” are used interchangeably in this paper.  Each refers to a collection of variables with a 
correlation structure and multivariate properties defined within the Iman-Conover methodology.  
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Sensitivity to Sample Size 
We begin our discussion of simulation volume effects, or sample size effects, with the example in 
Table 2.   Except for small sample sizes, both the S II and portfolio methodologies should be 
relatively insensitive to sampling error because they depend on first and second moments of 
distributions and sampling error will rapidly diminish with simulation volume.  But, because the 
underlying distributions are lognormal, we would expect sampling error to have a more profound 
impact on the variables with the highest second moments, i.e., Var 6 and Var 7.  This expectation is 
confirmed in Table 7.   

Table 7:  Capital Charges for Different Trial Volumes 
 Capital Charge Methods  

Name Mean Standard 
Deviation 

VaR Aggregate 
Loss 
Method 

Solvency 
II BSCR 
Method 

Port-
folio  
Method 

Trials 

Var 1 9,843 4,918 27,280 17,436   1,000 
Var 1 9,995 4,993 31,076 21,081   5,000 
Var 1 9,928 5,042 31,394 21,467   10,000 
Var 1 9,952 5,013 30,702 20,750   25,000 
Var 1 9,987 5,051 30,802 20,815   50,000 
Var 1 9,990 5,045 30,663 20,673   100,000 
Var 1 10,005 5,017 30,261 20,256   250,000 
Var 1 10,005 5,006 30,207 20,202   500,000 
Var 1 10,004 5,006 30,233 20,228   750,000 
⁞ ⁞ ⁞ ⁞ ⁞    
Var 7 250,062 11,305 278,418 28,356   1,000 
Var 7 250,128 11,065 279,004 28,877   5,000 
Var 7 250,023 10,926 279,204 29,181   10,000 
Var 7 250,028 10,937 279,340 29,312   25,000 
Var 7 250,000 10,977 279,778 29,778   50,000 
Var 7 249,976 10,980 279,963 29,987   100,000 
Var 7 249,985 10,997 279,866 29,881   250,000 
Var 7 249,986 11,002 279,776 29,790   500,000 
Var 7 249,992 11,005 279,722 29,730   750,000 
        
Aggregate 909,344 30,092 987,239 77,895 82,780 78,377 1,000 
Aggregate 910,016 29,796 990,112 80,096 85,222 77,357 5,000 
Aggregate 909,866 30,135 992,724 82,858 85,856 77,526 10,000 
Aggregate 909,972 30,079 990,519 80,547 85,238 77,419 25,000 
Aggregate 910,065 30,122 991,457 81,392 86,266 77,683 50,000 
Aggregate 909,925 30,063 991,227 81,301 86,184 77,604 100,000 
Aggregate 909,979 30,008 991,009 81,030 85,773 77,549 250,000 
Aggregate 910,005 30,062 991,133 81,128 85,584 77,588 500,000 
Aggregate 910,004 30,045 991,272 81,268 85,654 77,597 750,000 

 



Effects of Simulations Volume on Risk Metrics for Dynamo DFA Model 

Casualty Actuarial Society E-Forum, Summer 2012 10 

The aggregate distribution capital charge is also affected by sample size as can be seen at the bottom 
box of Table 7.  Visual comparison of the two segments of this box show aggregate capital charges 
(left column of box) to be both lower and more dispersed for smaller sample sizes.  (For example, 
the average of the Variables and Aggregate column that aggregates for between 1,000 and 50,000 
trials is 80,558 as compared to an average of 81,182 for the simulations’ runs that used between 
100,000 and 750,000 trials.) 

Higher sample sizes for the lognormal distributions result in more observations in the extreme tails.  
This effect is clearly evident by examining the tail areas of Table 7  where more extreme 
observations occur with the 750,000 sample size relative to a sample size of only 5,000.  The increase 
in sample size from 100,000 to 750,000 (charts B and C) illustrates how significant shifts in 
distribution statistics can unfold even when increasing from a comparatively high sample size of 
100,000 to extreme sampling sizes such as 750,000.  This impact is documented in Table 7 for Var 7.  
The mean increases from 249,976 to 249,992.  However, VaR declines from 279,963 to 279,722.   

Figure 1A:   High-Variance Lognormal Distribution for Different Sample Sizes16

 
 

 
 
  

                                                 
16 The graphics used in this paper are produced by Dynamo 5 for any simulated variable.  The term “Int” in the legend 
refers to interval.  The mean and median intervals are overlaid in their frequency intervals as visualization of where these 
central tendency measures fall.  This information is not particularly useful for this paper, but can be a useful for heavily 
skewed distributions. 
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Figures 1B and 1C: High-Variance Lognormal Distribution for Different Sample Sizes17

 
 

 
 

 
 

Because prior versions of Dynamo were formulated for sample sizes of only 1,000, the frequency 
distribution graph for this 1,000 sample size appears in Figure 2.  The effects of low sample size are 
clearly evident both in fewer extreme values and discontinuities in shape of the frequency 
distribution as compared to the higher sample volumes shown in Figures 1A, 1B, and 1C. 

                                                 
17 The graphics used in this paper are produced by Dynamo 5 for any simulated variable.  The term “Int” in the legend 
refers to interval.  The mean and median intervals are overlaid in their frequency intervals as visualization of where these 
central tendency measures fall.  This information is not particularly useful for this paper, but can be a useful for heavily 
skewed distributions. 
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Figure 2:  High-Variance Lognormal Original Dynamo 1K Sample Size 
 

 
 

The impact of sample size also occurs for the aggregate loss distribution.  Here, too, more 
extreme values emerge with the 750,000 sample size.  The .995 VaR for the aggregate loss 
distribution with a sample size of 5,000 is 990,112 as compared to 991,272 for the 750,000 sample 
trial.  But, this leads into the question of how many simulations is enough?  A comparison of Figures 
3A and 3B illustrates visually the effects of the central limit theorem.  Highly skewed lognormal 
distributions when aggregated will, with sufficient sample sizes, produce a normally distributed sum.  
As we move from a clearly insufficient sample size of 1,000 shown in Figure 2 to 750,000 shown in 
Figure 3B we find an unfolding of increasing precision throughout the probability distribution.  
Sample size matters.  The added precision obtained by using Excel in an HPC cluster is valuable, but 
at the same time there is an asymptotic collapse of sampling error.  At some point, enough is 
enough.   If insurance company modeling were as simple as the seven variable example being used in 
this section, one might be tempted to conclude that the time and effort and expense required to 
increase the number of trials from 1,000 to 750,000 does not justify the 0.1% increase in the .995 
VaR.  However, insurance company modeling is not this simple. We now turn to the analysis of 
sample size on Dynamo DFA variables to examine a more complex modeling situation. 
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Figures 3A and 3B:  Effect of Sampling Size on Aggregate Loss Distribution 
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SECTION 2:  EFFECT OF SAMPLE SIZE ON DYNAMO DFA 
VARIABLES DISTRIBUTIONS 

Introduction 
Because Excel is used for Dynamo, it can be relatively easy to model complex interactions for a 

large number of different DFA variables.  Business operations can be modeled with complex cash 
flow and accounting dependencies using many random variables.   Given a set of random variates 
(Dynamo has in excess of 760 inverse probability functions),  a single calculation of the Dynamo 
workbook produces an empirical realization for the DFA variables being monitored.  The 
parallelization of this process results in these realizations being calculated simultaneously in a 
computer cluster.  Hence, HPC Dynamo can produce probability distributions with 500,000 or more 
observations in a short time relative to what time would be required were these observations to be 
done serially in a single instance of Excel.  We have seen in the previous section the effects of 
sample size in the context of a portfolio of lognormal variables, and we now turn to similar 
experiments for DFA variables. 

High-Volume Sampling Illuminates Extremities in Both Tails of a Distribution 
Often we are more concerned about the extreme tail that represents adverse experience.  High-

volume observations enabled by parallelization of the simulation produces enhanced precision 
throughout the probability distribution.  We have more observations at both extremities and, of 
course, a bevy of additional results that are largely unnecessary in the interior of the distribution.  At 
some point, sampling error affecting moments of the distribution decays to a materially insignificant 
amount.  More simulations do not necessarily produce a better answer.  Error in estimating extreme 
percentiles or even moments required for solvency measurement is materially changed at simulation 
volumes that might be considered exceedingly large if attempted in a stand-alone computing 
environment.18

Consider the 0.995 value at risk (VaR) column in 

 

Table 8.  This table contains various statistics 
and risk metrics for the fifth year projection of policyholders’ surplus.  This variable is the result of a 
complex set of cell dependencies in Dynamo.  All of the DFA variables that can be assembled using 

                                                 

18 Recall that the original Dynamo only simulated 1,000 observations.  And, the results reported by Burkett et al. 2010 
were based on 5,000 simulations using Dynamo version 4.1.  Version 4.1 required about 2.0078 sec/simulation on a fast 
desktop computer.  It took about three hours to produce 5,000 trials.  At that rate, over 16 days would be needed to 
create 700,000 simulations.     In addition to the use of HPC, there have been substantial improvements in Dynamo 
VBA coding, all of which enhance performance.  In a small HPC cluster running 29 simultaneous instances of HPC 
Dynamo (a core resource allocation one of several types for HPC jobs), three hours is reduced to 1.25 minutes for 5,000 
trials.  A single trial takes about .015 seconds compared to over two seconds.  And, this calculation involves multivariate 
simulation not available in Dynamo 4.1.  



Effects of Simulations Volume on Risk Metrics for Dynamo DFA Model 

Casualty Actuarial Society E-Forum, Summer 2012 15 

Dynamo have this property.  There is no closed form solution for measuring statutory or GAAP 
variables that are based on cash flows which, by themselves have no closed solution.  Simulation is 
the only viable approach to deriving probability distributions on these DFA variates.   

The rows of Table 8 contain results for increasing simulation volumes.  Although measurements 
are shown for samples sizes under 10,000, these small sample sizes have 0.995 VaRs that are heavily 
affected by the algorithm used to extrapolate this extreme percentile.  The number of observations is 
smaller than the precision sought for that extremity.  This algorithmic effect can be seen in the 
bowing of the VaRs between 1,000 and 10,000 observations.  Beginning at 10,000 observations, 
however, a secular decline in VaR values occurs with increased simulation counts.  The VaR for the 
10,000 trial simulation is 12,898. By the time the 700,000 trial simulation is run, the VaR has reduced 
to 12,130, i.e., a 6% reduction.  This 6% reduction is very likely to be considered material when 
considering minimum capital requirements.  Similarly, one observes a 1% reduction in the VaR 
when moving from 500,000 to 700,000—this change may, too, be considered material. 

Statistics relating to central tendency, such as the mean and median, also change, and change 
materially when moving from 100,000 to 700,000 trials.  Both the mean and median are reduced by 
2.3%.    

The effect of moving from 10,000 to 700,000 trials is large.  And, it is larger for extreme 
percentiles...profoundly so.  VaR is reduced by about 6%.  The mean is reduced by about 2%.  The 
benefit of increased trial counts is higher at distribution tails than for central tendency.  
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Table 8: Effects of Sample Size on Policyholders Surplus19

Observations 

 

Mean 
Standard 
Deviation 

Coef of 
Variation Minimum Maximum 

.010 
Percentile Median 

.990 
Percentile EPD20 TVaR 21 VaR 22

1,000 
 

21,762 3,277 0.151 11,609 30,682 13,550 21,856 28,604 9,290 3,401 12,188 
5,000 21,678 3,238 0.149 9,311 33,723 13,824 21,719 28,827 9,391 3,415 12,891 

10,000 21,607 3,222 0.149 6,975 33,723 13,769 21,697 28,667 9,203 3,399 12,898 
20,000 21,547 3,231 0.150 6,975 33,723 13,644 21,643 28,511 9,171 3,382 12,749 
30,000 21,519 3,237 0.150 -1,368 33,723 13,592 21,599 28,597 9,224 3,379 12,653 
40,000 21,496 3,242 0.151 -1,368 33,723 13,522 21,572 28,619 9,201 3,373 12,515 
50,000 21,478 3,248 0.151 -1,368 33,918 13,531 21,547 28,628 9,204 3,368 12,545 
60,000 21,463 3,252 0.152 -1,621 33,918 13,507 21,533 28,634 9,194 3,365 12,572 
70,000 21,445 3,259 0.152 -1,621 33,918 13,471 21,521 28,662 9,180 3,359 12,545 
80,000 21,437 3,262 0.152 -1,621 33,918 13,448 21,520 28,651 9,149 3,356 12,503 
90,000 21,429 3,262 0.152 -1,621 33,918 13,427 21,513 28,645 9,142 3,354 12,515 

100,000 21,419 3,263 0.152 -1,621 33,918 13,409 21,504 28,632 9,131 3,351 12,494 
200,000 21,340 3,278 0.154 -15,412 34,368 13,318 21,432 28,584 9,071 3,331 12,405 
250,000 21,312 3,283 0.154 -15,412 34,447 13,264 21,399 28,559 9,063 3,324 12,359 
300,000 21,287 3,285 0.154 -15,412 34,447 13,260 21,375 28,537 9,049 3,318 12,347 
400,000 21,242 3,289 0.155 -15,412 34,643 13,215 21,332 28,512 9,026 3,308 12,317 
500,000 21,201 3,295 0.155 -15,412 34,643 13,150 21,291 28,480 9,003 3,298 12,257 
600,000 21,161 3,301 0.156 -31,483 34,643 13,097 21,251 28,456 8,984 3,289 12,195 
700,000 21,116 3,308 0.157 -31,483 34,643 13,043 21,207 28,427 8,960 3,278 12,130 

 

                                                 
19 Table 8 illustrates the type of statistics available for all Dynamo-simulated variables.  Statutory policyholders surplus for a company with two multi-peril and workers compensation 
lines of business is illustrated in the open source version of Dynamo 5.  This is the source of Table 8, and the lognormal distributions used in Section 1 are among the Dynamo 
distributions used for variates leading to policyholders surplus.  It is available on Casualty Actuarial Society web site http://www.casact.org/research/index.cfm?fa=dynamo. 
20 Expected Policyholder Deficit for area bounded between 0.5 and 0.8. 
21 Tail Value at Risk for tail above 0.995. 
22 Value at Risk for 0.995. 

http://www.casact.org/research/index.cfm?fa=dynamo�
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How Many Simulation Trials Are Enough? 
The results for various statistics and risk metrics shown in Table 8 are clearly impacted by 

simulation volume.  The importance of a high performance computational environment becomes 
apparent when attempting to pragmatically answer the question of how many trials is enough.  In all 
of metrics in Table 8, we believe a minimum of 100,000 trials is essential to reduce sampling error to 
an acceptable minimum level.  A strong argument can be made for 700,000 trials.  The precision 
obtained when increasing trial count from 100,000 to 700,000 is a difference of 1.88%, 2.20%, and 
2.90%, respectively for expected policyholder deficit, tail value at risk and value at risk.  There is no 
risk metric that is immune from a reduction in sampling error achieved with high-volume 
simulations. 

An HPC approach is highly desirable when simulation volumes reach a range of 100,000 and a 
necessity when they reach 700,000.  A single machine just cannot run fast enough to produce this 
volume of trials.  Precision is achieved in a reasonable time frame only by using high-performance 
computing.   

Performance Benchmarks 
The runtimes shown in Table 9 reflect calculation overhead relating to calculation of multivariate 

pods and statistics/risk metrics.  The former occurs at the beginning of each HPC job whereas the 
latter is incurred at job conclusion.  Both of them are done on the client computer.  The simulations 
are done on cluster compute nodes, and they involve primarily the generation of random variables, 
including the lookup of pre-calculated multivariate simulations that were done by the client when the 
Excel workbook is prepared for upload to the HPC cluster.  In order to improve cluster 
performance, the simulations received by the client from the compute nodes is written to disk rather 
than inserted immediately into the client worksheet.   When the simulations are complete, this file is 
read and, at that time, the results are written to the simulation output worksheet.   For trial counts in 
excess of 100,000, the insertion of new rows of data into this output area is a slow operation in 
Excel.  This transfer and the subsequent derivation of statistics add time to the end of the job. 

The calculation of multivariate simulation variates, particularly for large simulation counts can be 
relatively slow. The setup of multivariate random variables using the Iman-Conover methodology 
requires a Choleski decomposition and a potentially large matrix inversion. When the trial count 
approaches 100,000, this process is relatively slow because it has not been converted yet into 
compiled code in HPC Dynamo 5. The Iman-Conover code implementation relies on VBA code.  
Counts over 100,000 are commensurately slower. Similarly, when the trial counts are large the 
development of statistics and risk metrics after simulations are complete is also relatively slow. The 
effects of this overhead are apparent in Table 9. The simulations per second decline somewhat with 
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increased simulation count. 

 

Table 9: Runtimes for HPC Dynamo 523

 

 

Trials 

Small HPC 
Cluster Runtime 
(27  core 
allocations over 
5 nodes)24

Approximate 
Runtime 
Standalone 
(2 cores 
single node)  

10000 1.15 mins 9 mins 

25000 3.43 mins 22.5 mins 

50000 9.53 mins 45 mins 

100000 33.27 mins 90 mins 

500000 407.34 mins ??? 

700000 946.56 mins ??? 

 

The potential power of parallelization and use of a computer cluster can be seen in Table 9. The 
runtimes using HPC are faster than running on a single computer and, for the larger sample sizes 
most appropriate for risk metrics the improvement is dramatically so.  HPC cluster performance is 
never linear, and this is evident in Table 9.  A substantial overhead occurs in loading an instance of 
Excel for each core and when the Dynamo workbook is opened by each core instance.  There is an 
additional overhead for higher simulation volumes because of additional system activity in 
scheduling those simulations across the cluster.  When a simulated array of DFA variables is 
completed by a cluster computer, it must be inserted into the client Excel instance of Dynamo.  This 
too is an additional and significant source of overhead directly related to simulation volume.   
Pragmatically, even if the small cluster were only two times faster than a single computer for very 
high simulation volumes, 0.66 days for 700,000 simulations of 74 DFA variables is better than an 
estimated 1.31 days it might otherwise take for a single computer. 

                                                 
23 The runtimes are for the simulation of 74 DFA variables and two multivariate pods.  The time includes preparation of 
statistical and risk metric output for these variables.  When simulation counts are large, the derivation of multivariate 
deviates takes more time because of sorting requirements involved in the Iman-Conover method.  The runtimes are for 
the complete setup of multivariate values, simulations and derivation of statistics and risk metrics for all DFA variables. 
24 This is a very small HPC cluster.  The performance gains over a single actuarial workstation are even more impressive 
given that they are derived from a modest extension of the workstation from 1 (standalone) to 5 nodes (computers).   
However, several of the additional computers are multiple-core servers.   
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CONCLUSION 

This paper has used HPC Dynamo to identify the effects of sample size on DFA variable 
probability distributions.  The impact of sampling error is so profound that a dilemma occurs.  The 
number of trials needed to reduce the material impact of sampling error on risk metrics exceeds 
100,000 trials.  On a single computer the runtime becomes prohibitively large.  The parallelization of 
simulations and their calculation on many simultaneous instances of Excel necessitates added 
expenditure for the cluster computers and multiple copies of Excel required for each of the node 
computers in the cluster.  And, of course, each cluster computer must have an operating system.  
HPC Excel requires at least one server computer.  The dilemma arises in that a reduction in 
sampling error to materially insignificant levels requires more trials that only can be achieved for 
increased costs.25

We have set out to answer the question of “How many simulations is enough.”  It is unlikely that 
any analysis of DFA variables involving less than 100,000-500,000 trials should be used, particularly 
when these variables are used to measure the effects of capital attribution or are used as proxies for 
risk-bearing measurements. 

 

In the first part of this paper, the effects of sample size were examined within the context of 
aggregate probability distributions for correlated lognormal variables.  This measurement was done 
using an aggregate loss distribution.  We showed material impacts of sample size on the aggregate 
loss distribution and risk metrics such as Solvency II-styled calculations that rely on the properties of 
the aggregate loss distribution.  The same observation applies across both parts of this paper—
simulation volumes must be large and will require the use of high-performance computing.  DFA 
variables in Dynamo can be constructed from any statutory, GAAP or cash flow variable.   The 
probability distributions for these variables are highly sensitive to the number of simulation trials 
used in their estimation.  Expected policyholder deficit, tail value at risk and value at risk decreased 
by 2% to 3% when simulations were increased from 100,000 to 700,000.  They decrease by three to 
6% when simulations were increased from 10,000 to 700,000.  Variables such as VaR that are used 
in solvency compliance metrics have extreme sensitivity to simulation volume. 

End Notes 
In their 2009 paper, “A Holistic Approach to Setting Risk Limits,” Burkett et al. observed that 

Dynamo 4.1 contained some inaccurate reconciliations among balance sheet, income statement, and 
cash flow statement values. Those inconsistencies remain in the Dynamo 5 model that has been 

                                                 
25 At the time of this writing, HPC Excel running in Azure is only possible using an on-premise head node.  The head 
node is a server computer.  This computer is required if Azure is used and deployed in the VM Node role required for 
HPC Excel. 
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used for this paper. In the authors’ views, these inconsistencies do not change the conclusions we 
have reached in this paper, but we do recommend that any user of Dynamo consider the potential 
effect of these inconsistencies on the results being produced and the usage of the results by their 
organization. 
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A GLM-Based Approach to Adjusting for Changes in Case 
Reserve Adequacy  

Larry Decker, FCAS, MAAA 
 
______________________________________________________________________________ 

Abstract 
This paper will address adjusting incurred loss triangles for changes in case reserve adequacy. This proposal is an 
attempt to improve upon the traditional Berquist-Sherman Method by using a generalized linear model of case 
reserves as the basis for restating case reserves at earlier evaluations rather than using average case reserves as the 
basis. 
 
Keywords:  Case reserve adequacy; generalized linear modeling; reserving; reserve strengthening 

______________________________________________________________________________ 

1. INTRODUCTION 

This paper describes a method for adjusting incurred loss triangles for changes in case reserve 
adequacy using a Generalized Linear Model (GLM). In a similar fashion to the Berquist-Sherman 
method for adjusting case reserves (BSM), this method restates case reserves at prior evaluations 
based on the case reserves of the most recent evaluation. Instead of simply using the average case 
reserves of the most recent evaluation of a column to represent current claims handling practice as 
the BSM does, this method uses a generalized linear model of reserves using all open claims at the 
most recent evaluation. The individual case reserve by claim at the most recent evaluation is the 
dependent variable and various characteristics of each claim are the independent variables for the 
GLM. Independent variables could be any variable that could be associated with a claim such as 
claimant age, geographic region, pricing variables from the associated policy, etc. 

The resulting GLM is understood to be a model of current claims handling practice. Once 
developed, the GLM is applied to all individual open claims at current and prior evaluations to 
restate their reserves to what they would be under the current practice. These restated reserves are 
then aggregated and added to the corresponding paid losses at each evaluation in order to create the 
restated loss incurred triangle. At this point typical loss development methods can be applied. 

1.1 Objective 
This method has several advantages over the BSM: 

In practice the application of the BSM often results in loss development patterns that are “wavy” 
with alternating large jumps and drops. This is due to variation in average claim reserves by accident 
year. In any given column of the triangle, if the most recent point is from an accident year that by 
chance has types of claims with higher reserves, the whole column will be restated at a high level 
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using this most recent point as the basis. The converse would be true for a column where the most 
recent point is from an accident year with low reserves. The alternation of columns with high and 
low restated reserves across the triangle creates the “wavy” effect. It can be difficult to select a 
smooth loss development pattern under this scenario. 

In the proposed method, the reserves for each accident year and evaluation in the triangle are 
restated using the characteristics of the claims open for that accident year at that evaluation. This is 
an improvement in accuracy compared to using one accident year with potentially different claim 
characteristics to restate the reserves of a different accident year. An accident year with types of 
claims with higher reserves will typically have higher reserves in every column. This leads to 
consistency across each accident year row of the triangle, eliminating the “wavy” effect.  

In the BSM, for each of the points in a given column of the triangle, the average reserves of the 
most recent accident year in that column is the only source for information to represent the level of 
case reserves under the current claims handling practice. By applying the GLM, the proposed 
method uses information from all of the open claims in all columns at the most recent evaluation. 

The exercise of developing the GLM for case reserves at the current evaluation increases 
understanding of the drivers of case reserve levels. If certain characteristics lead to higher case 
reserve levels, there is potential for the claims department to target claims with those characteristics 
in order to mitigate losses. The results of the model can also suggest changes to be made to rates.   

1.2 Outline 
The remainder of the paper proceeds as follows. Section 2 will describe in more detail the steps 

of the GLM based method. An example of the method using simulated data will be provided in 
Section 3. Also in Section 3, the BSM will be applied to the same data in order to compare the two 
methods. 

2. STEPS OF THE GLM-BASED METHOD 

2.1 Data Collection 
Three sets of data need to be created: 
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Paid Losses 

Paid losses will be needed to add to the restated case reserves in order to create the incurred loss 
triangle. The paid losses can be aggregated as a paid loss triangle. Individual claim detail is not 
necessary unless partial paid losses for individual claims are used as one of the independent 
variables. 

Earlier Evaluation Points 

The data required to restate the triangle once the GLM is created includes the independent 
variables for every claim that was ever open at an evaluation date included in the loss development 
triangle. This data set should include a record for each open claim and evaluation date. The 
independent variables listed in each record should be what they were as of the evaluation date for 
that record. For each such claim, it would also be helpful to have the historical case reserve to assist 
in testing the GLM. Time-sensitive variables, such as claimant age at the evaluation date, should be 
recalculated for each prior evaluation date. 

Most Recent Evaluation Point 

The data required to create the GLM include the case reserve and any characteristics to be used 
as independent variables for every claim open as of the most recent evaluation period (latest 
“diagonal”). As mentioned above, independent variables could be any variables that could be 
associated with a claim such as claimant age, geographic region, pricing variables from the associated 
policy, etc. In lines of business with partial payments, paid losses may also be a helpful variable. Care 
must be taken to choose characteristics that are available for open claims at prior evaluation dates. 
This data set should include a record for each claim open as of the most recent evaluation period.  

2.2 Create the GLM 
Use the data set from the most recent evaluation point mentioned in Section 2.1 above to create 

a GLM using case reserves as the dependent variable and the characteristics selected to be the 
independent variables. In-depth instruction regarding the creation of GLMs is beyond the scope of 
this paper. Two excellent resources for those desiring a better understanding of GLMs can be found 
in the references section. For “hands on” instruction, the CAS Predictive Modeling Limited 
Attendance Seminar is highly recommended.  
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2.3 Use the GLM to Restate Historical Case Reserves by Claim 
Apply the GLM created in Section 2.2 to the second data set from Section 2.1 to restate the case 

reserves for all of the claims that were open during any of the evaluation dates in the triangle. If 
accident year and/or age of claim are used as independent variables, inflation trend may be reflected 
in the model. In this case, the selection of a separate trend factor and de-trending may not be 
required.  

If the actual case reserves for each open claim at each evaluation are available, compare them to 
the restated case reserves. Differences should make sense based on conversations with claims 
management regarding why the case reserve adequacy has changed. Claims with large unexplained 
differences should be scrutinized in the claims system in order to discover similarities between them 
that may lead to potential new independent variables for the GLM. If found, they can be used to 
enhance the GLM and reduce the differences. 

It is possible that the new independent variables found cannot be successfully added to the GLM 
if they cannot pass testing for significance. In this case, the actual historical case reserve may be a 
better representation of the claim than the restated modeled case reserves and should be substituted 
as the restated case reserve. This is especially true if discussions with claims management indicate 
that the causes of change in the level of case reserve adequacy do not apply to these claims.  

One situation that may arise is that there are claims that have been settled with payment, yet 
remain open with a small case reserve for follow-up items such as legal expenses, unpaid medical 
bills not part of the settlement, etc. The model may generate a large case reserve on these claims 
based on their characteristics. If settled claims can be identified, an attempt should be made to add a 
settlement variable to the GLM. If this attempt is unsuccessful, it is best to leave them at the actual 
case reserve rather than using the modeled reserve.  

2.4 Create the Restated Incurred Loss Development Triangle 
Sum the restated case reserves from Section 2.3 by accident year and age to create a restated case 

reserve triangle. Add these to the paid loss triangle from Section 2.1 to create the restated case 
incurred triangle. This triangle can now be used for typical loss development methods.  
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3. EXAMPLE OF THE GLM-BASED METHOD 

3.1 Overview 
The example provided below is intended to illustrate the steps of the GLM based method and is 

somewhat simple for the sake of brevity. It is not intended to prove the superiority of the proposed 
method over the BSM, but simply to disclose the new method.  

3.2 Creation of Simulated Data 
The data for this example was created using the CAS Public Loss Simulator Model (CASPLSM). 

This model is publicly available software that can be used for the simulation of loss data. More 
information on this model can be found at 
http://www.casact.org/research/lsmwp/lossinstruct/index.cfm?fa=main. The data was completely 
fabricated to represent a generic line of business. The parameters discussed below were not based on 
any empirical data. The only rationale for the selection of these parameters is to simply provide 
simulated data that looks as realistic as possible. Data was simulated for accident years 2000 – 2009 
with annual evaluations.  Each claim had the following characteristics used as independent variables: 
Injury, Gender, and Claimant Age at time of accident. Injury includes the following levels: Back, 
Burn, Spinal Cord, and Other.  For accident year 2000 the average severities selected for these injury 
types were: 

Back 200 

Burn 100 

Spinal Cord 500 

Other 50 

For subsequent accident years, a 5% inflation trend was applied. These severities were adjusted by 
the following relativities for Gender and Claimant Age: 

Male 0.80 

Female 1.20 

 

Age Under 16 0.50 
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Age 16-25 0.75 

Age 26-45 1.00 

Age 46-65 1.50 

Age 66 and Over 2.00 

 

For each accident year there are 40 different combinations of Injury, Gender, and Claimant Age, 
resulting in 40 different expected severities. These severities were used to create parameters for the 
CASPLSM in combination with the following coefficients of variation by injury: 

Back 2.0 

Burn 0.5 

Spinal Cord 2.0 

Other 1.0 

 

Gamma distributions were used for simulating size of loss in the CASPLSM simulations, which 
require shape and scale parameters. The shape parameter is calculated as the reciprocal of the square 
of the coefficient of variation. The scale parameter is the expected severity divided by the shape 
parameter. 

For accident year 2000, mean claim counts were randomly assigned to each of the 40 claim types 
with an expected total number of claims of 600. This number was selected in consideration of 
finding a balance between having enough data to create an analysis and keeping the simulated data 
small enough to be manageable. For subsequent accident years the total number of claims was 
increased using a 10% growth rate (e.g., 660 for 2001, 726 for 2002). The resulting mean claim 
counts were used as parameters for the Poisson distributions used for frequency in the CASPLSM 
simulations. 

The CASPLSM includes specification of parameters for setting the level of case reserve adequacy. 
Two simulations were run for each accident year, one with a lower level of case reserve adequacy 
and one with a higher level of case reserve adequacy. Output from the CASPLSM includes 
transaction level detail of when payments were made and case reserves were changed. This output 
was consolidated by claim and evaluation date (12/31/2000 through 12/31/2009) to create the data 
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used in the example. For evaluations 12/31/2000 through 12/31/2008, the output from the 
simulations with a lower level of case reserve adequacy were used. For the 12/31/2009 evaluation, 
the simulations with a higher level of case reserve adequacy were used (thus creating the change in 
adequacy that is the subject of this paper).  

The GLM modeling is done in R.  R is a free software environment for statistical computing and 
graphics that is gaining wide use among actuaries. R was used in order to allow anyone to step 
through the GLM used in the example. R is readily available for download from http://www.r-
project.org. For those unfamiliar with R, a good place to start is the “An Introduction to R” paper in 
the “Manuals” section of the above website. The Casualty Actuarial Society Open-Source Software 
Committee maintains a website, http://opensourcesoftware.casact.org, with some useful resources 
for R. Also, the CAS Predictive Modeling Limited Attendance Seminar provides a “hands-on” 
opportunity for using R and assumes no previous R experience. See Appendix A for the R code that 
created the GLM used in this paper. 

3.3 Electronic Files Provided 
• 2009 Open Claims.csv: Claim detail for all open claims as of 12/31/2009. This is the data 

set for the most recent evaluation point described in Section 2.1. 

• All Open Claims.csv: Claim detail for all open claims as of all evaluations. This is the data 
set for earlier evaluation points described in Section 2.1 above. 

• call_paper_script.R: This is the R script used to create the GLM from “2009 Open 
Claims.csv” and apply it to the data in “All Open Claims.csv” in order to restate the case 
reserves. 

• Restated Claims.csv: This file has the restated case reserves generated by 
“call_paper_script.R”. This is one column of numbers with an entry for each record in 
“All Open Claims.csv”. 

• Exhibits.xls:  This Excel workbook uses the raw data and the restated reserves to create 
the restated case incurred triangle and results for the GLM method. The restated case 
incurred triangle and results for the BSM are also created in this file. This file has the 
following tabs: 

• Exhibits: This tab includes the paid loss triangle, reserves and development factors 
generated by the GLM Method, and the calculations and development factors derived 
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for the same claim data set using the BSM formatted for printing as (Appendix B). 

• WORK: This tab includes the work to support the Exhibits tab. 

• All Data Table: This tab includes all paid losses and case reserves by claim for all 
evaluations. This tab is the source for the paid loss triangle mentioned in Step 2.1. 

• All Open and Restated Reserves: This tab includes the data from “All Open 
Claims.csv” in columns A thru M. Column N has the restated reserves from 
“Restated Claims.csv”. 

3.4 Applying the Steps 
Step 2.1 has already been completed by the provision of the electronic files mentioned above. 

Steps 2.2 and 2.3 are completed in R using the commands in the “call_paper_script.R” file. This 
script uses the files “2009 Open Claims.csv” and “All Open Claims.csv” as inputs and creates the 
file “Restated Claims.csv.” A detailed description of each of the commands in this script is provided 
in Appendix A. As indicated in Section 2.2, in depth instruction on the creation of GLMs is beyond 
the scope of this paper. However, it is worth mentioning some important steps in a typical GLM 
process that were omitted to keep the example simple. These include: 

• Initial review of potential independent variables for inclusion in the model. There are often a 
large number of potential independent variables that must be limited to a manageable 
number for modeling. An initial step is often performing “one-way” analyses on potential 
independent variables. 

• Creating hold out samples from the data for the purpose of testing the model. 

• Testing the independent variables for significance. 

• Performing analysis of the residuals and other model diagnostics in order to determine the 
appropriateness of the model.  

Step 2.4 is completed in the Exhibits.xls file. The data from “All Open Claims.csv” is copied into 
the “All Open and Restated Reserves” tab and the restated reserves from “Restated Claims.csv” are 
copied into the same tab.  The first pivot table in the WORK tab is the paid loss triangle created 
from the data in the “All Data Table” tab. The second pivot table is the triangle of case reserves 
restated from the GLM method. These two triangles are added together to create the restated 
incurred loss triangle. 



A GLM Based Approach to Adjusting for Changes in Case Reserve Adequacy 
 

Casualty Actuarial Society E-Forum, Summer 2012 9 

This triangle is now used to create report to report factors based on weighted averages. The tail 
factor used was calculated by dividing the actual ultimate losses for accident year 2000 obtained 
from the simulation process by the case incurred losses for accident year 2000. The resulting report 
to ultimate factors are applied to actual case incurred losses to calculate ultimate losses by accident 
year. The paid loss, restated reserve, and restated incurred triangles are shown on Page 1 of 
Appendix B along with the calculations used to arrive at an estimate of ultimate losses.  

3.5 Calculation of the Berquist-Sherman Method 
Appendix B Pages 2 and 3 show the calculations for the BSM.  On Page 2 the average case 

reserves are calculated and a trend factor of 1.05 selected. On Page 3 average case reserves are 
restated by de-trending the average case reserves for the latest diagonal. These average case reserves 
are then multiplied by the open claims and added to paid losses to create the restated incurred loss 
triangle. This triangle is now used to create report to report factors based on weighted average. The 
tail factor is the same as the one used for the GLM method. The resulting report to ultimate factors 
are applied to case incurred losses to calculate an estimate of ultimate losses by accident year.   

4. RESULTS AND DISCUSSION 

The results of the proposed GLM method and the BSM can be compared in Appendix B.  Rows 
labeled “Actual Ultimate” and “Actual RTRs” are included in Appendix B and, due to the process 
used for simulating the data, the ultimate losses are known. The actual RTR factors are weighted 
averages calculated based on a triangle created by using the simulations with a higher level of case 
reserve adequacy for all evaluations. The GLM method can be observed to provide ultimate losses 
and RTRs that are closer to the actual values than the BSM method. This is not necessarily a fair 
comparison since the independent variables used in the GLM model were also used in the creation 
of the simulated data. 

However, examination of the BSM example illustrates the “wavy” effect described in the 
introduction. In particular, there is a huge drop in RTR factors at age 5 and a jump at age 6.  In 
comparing accident year 2004 average case reserves for ages 1 to 5 to other accident years, it is clear 
that 2004 is a “good” year with claims that have relatively lower severity than other years. In the 
BSM the average case reserve for 2004 at age 6 is the basis for the estimates of the average case 
reserves for all of the prior years at age 6. This causes the restated losses for these prior years to be 
understated leading to a drop in the RTR at age 5 and a jump in the RTR at age 6. This shows a 
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weakness in the BSM, as it assumes the same mix of claim characteristics for all accident years. 

The “wavy” effect is not observed with the proposed GLM method because it reflects variation 
of claim characteristics by accident year, assuming predictive claim characteristics can be found and 
incorporated into the GLM as independent variables. 

It should be noted that the use of accident year as an independent variable in the GLM method 
accounted for the inflation trend in the data. In this case, the selection of a separate trend factor was 
unnecessary.  

5. CONCLUSIONS 

The GLM method proposed in this paper offers a new approach to adjusting loss development 
triangles for a change in case reserve adequacy. In cases where detailed claim and claimant 
information is available for evaluation points at current and historical periods, this approach may 
offer a significant improvement over the BSM. 

For high frequency, low severity lines of business, the proposed method should work well, since 
enough data should be available in order to create an accurate GLM. On the other hand, the GLM 
method may not produce a significant improvement over the BSM, since the weaknesses inherent in 
the BSM are not as pronounced in these lines. There is less variation in average claim reserves by 
accident year and the latest accident year in a given column of the triangle is more likely to be 
representative of prior accident years. 

For low frequency, high severity lines of business, it may be more challenging to create an 
accurate GLM due to the limited amount of data. However, for these lines the GLM method offers 
the most opportunity for improvement over the BSM due to the increased variation in average claim 
reserves by accident year. 
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Appendix A 
Appendix A includes the R script used for this paper. 

Appendix B 
Appendix B includes the calculations described in Section 3. 
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Appendix A: R Script Used to Create GLM Example 
 

The “statmod” package is required for the Tweedie distribution as it is used for the GLM error 
distribution in this example. It must be installed in order for the command loading it to work. The 
command below loads this package. 
# load the package with the Tweedie distribution. This may have to be installed. 

library(statmod)  

 

The next command reads the “2009 Open Claims.csv” file into the data frame “Open2009”. Note 
that the path must be changed to the location of this file. Also note that the forward “/” must be 
used in the path since “\” is a special character in R. 
#Read in the 2009 open claims data (latest evaluation) 

Open2009<-read.csv("c:/callpaper/2009 Open Claims.csv",sep=",") 

 

The next two commands set the levels to be used as the base levels for injury and claimant age. This 
was done in order to set the base levels to be the same as those used to create the simulated data. 
When “real” data is used the base level is typically set to be the one with the largest number of 
observations. This step is not necessary to run the model, but if it is omitted R uses the first level in 
alphabetical order as the base level. This can create erratic results if this level has a low number of 
observations. 
#Change the base level for Injury and Clmt.Age 

Open2009$Injury<-relevel(Open2009$Injury,"Other") 

Open2009$Clmt.Age<-relevel(Open2009$Clmt.Age,"26-45") 

 

The next command creates the GLM “OpenGLM” using Reserve as the dependent variable and 
accident year, gender, claimant age, and injury as the independent variables. The Tweedie 
distribution is used with variance power equal to 2 and link power equal to zero. This distribution 
was selected because it seems to work well in a variety of situations. The link power of zero results 
in a log link, which is often used. The variance power of 2 was selected based on judgment and was 
subject to less analysis and testing than would usually be done in practice. 
#Create the GLM  

OpenGLM<-glm(Reserve~Accident.Year+Gender+Clmt.Age+Injury, 

 data=Open2009, family=tweedie(var.power=2,link.power=0)) 

 

The next command shows a summarization of the GLM with coefficient estimates and goodness-of-
fit statistics. This completes Step 2.2. 
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 #Show the results of the GLM 

summary(OpenGLM) 

 

The output from the summary command is shown below. 
 
Call: 

glm(formula = Reserve ~ Accident.Year + Gender + Clmt.Age + Injury,  

    family = tweedie(var.power = 2, link.power = 0), data = Open2009) 

 

Deviance Residuals:  

       Min          1Q      Median          3Q         Max   

-3.9339130  -1.6120198  -0.4569802   0.2380754   6.4625565   

 

Coefficients: 

                         Estimate    Std. Error   t value   Pr(>|t|)     

(Intercept)         -96.914820682  18.142193797  -5.34196 9.5743e-08 *** 

Accident.Year         0.050666820   0.009042205   5.60337 2.2070e-08 *** 

GenderM              -0.302648091   0.040644581  -7.44621 1.1132e-13 *** 

Clmt.Age16-25        -0.313418574   0.066329026  -4.72521 2.3575e-06 *** 

Clmt.Age46-65         0.332054992   0.066226809   5.01391 5.5052e-07 *** 

Clmt.Age66 and Over   0.585376897   0.065969382   8.87346 < 2.22e-16 *** 

Clmt.AgeUnder 16     -0.672501602   0.064194852 -10.47594 < 2.22e-16 *** 

InjuryBack            1.453199179   0.061068655  23.79615 < 2.22e-16 *** 

InjuryBurn            0.754684943   0.058116036  12.98583 < 2.22e-16 *** 

InjurySpinal Cord     2.277638842   0.058428812  38.98143 < 2.22e-16 *** 

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1  

 

(Dispersion parameter for Tweedie family taken to be 2.179067388) 

 

    Null deviance: 18844.622  on 5373  degrees of freedom 

Residual deviance: 14355.060  on 5364  degrees of freedom 

AIC: NA 

 

Number of Fisher Scoring iterations: 17 
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Step 2.3 is completed in the next two steps. In this command “All Open Claims.csv” is read in to 
the data frame “OpenAll”.  
#Read in the data for all of the open claims at all evaluations 

OpenAll<-read.csv("c:/callpaper/All Open Claims.csv",sep=",") 

 

In the next command the GLM “OpenGLM” is applied to this data set to obtain the restated 
reserves in the “OpenRestated” array. 
#Obtain the restated values for all of the open claims at all evaluations 

OpenRestated<-predict(OpenGLM,newdata=OpenAll,type='response') 

 

The next command sets the option for how many digits will be written. A few more than the default 
of 7 was desired. 
#set the number of digits to be written out 

options("digits"=10) 

 

The final command writes the restated reserves to the file “Restated Claims.csv”. 
#Write the restated values to a file 

write(OpenRestated,"c:/callpaper/Restated Claims.csv",sep=",",ncolumns=1) 
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Appendix B: Ultimate Losses Using GLM Based Method and Berquist-Sherman Method Page 1

PAID LOSSES
Age

Accident Year 1 2 3 4 5 6 7 8 9 10
2000 11,859 24,975 44,312 60,972 73,490 82,477 94,199 98,595 101,078 105,467
2001 13,916 46,989 71,368 86,520 103,005 120,614 134,482 146,104 157,391
2002 10,726 26,710 47,271 78,252 118,524 135,367 146,345 156,631
2003 6,386 20,919 46,540 61,770 92,823 111,674 128,699
2004 14,668 23,949 37,889 85,848 100,959 120,804
2005 6,117 26,869 58,434 110,236 145,030
2006 22,453 59,637 95,094
2007 19,338 60,820 112,036
2008 28,672 90,411
2009 54,424

GLM BASED METHOD

Restated Reserves
Age

Accident Year 1 2 3 4 5 6 7 8 9 10
2000 204,127 196,620 163,974 131,223 105,900 83,082 67,252 51,749 44,014 30,681
2001 285,696 266,167 218,144 181,627 145,959 119,263 91,578 69,423 51,877
2002 257,074 250,931 212,368 168,226 123,193 95,581 73,843 57,067
2003 269,409 250,686 204,074 162,771 126,908 96,332 76,484
2004 282,101 266,584 225,028 178,128 145,528 115,911
2005 354,078 333,633 276,596 222,185 176,404
2006 381,173 357,873 307,448 254,882
2007 508,896 490,213 410,455
2008 708,427 653,411
2009 764,927

Restated Incurred
Age

Accident Year 1 2 3 4 5 6 7 8 9 10
2000 215,986 221,595 208,286 192,195 179,390 165,559 161,451 150,344 145,092 136,148
2001 299,612 313,156 289,512 268,147 248,964 239,877 226,060 215,527 209,268
2002 267,800 277,641 259,639 246,478 241,717 230,948 220,188 213,698
2003 275,795 271,605 250,614 224,541 219,731 208,006 205,183
2004 296,769 290,533 262,917 263,976 246,487 236,715
2005 360,195 360,502 335,030 332,421 321,434
2006 403,626 417,510 402,542 254,882
2007 528,234 551,033 522,491
2008 737,099 743,822
2009 819,351

Report to Report Factors
Age

Accident Year 1 2 3 4 5 6 7 8 9
2000 1.026 0.940 0.923 0.933 0.923 0.975 0.931 0.965 0.938
2001 1.045 0.924 0.926 0.928 0.964 0.942 0.953 0.971
2002 1.037 0.935 0.949 0.981 0.955 0.953 0.971
2003 0.985 0.923 0.896 0.979 0.947 0.986
2004 0.979 0.905 1.004 0.934 0.960
2005 1.001 0.929 0.992 0.967
2006 1.034 0.964 0.633
2007 1.043 0.948
2008 1.009

Wtd Avg 1.018 0.936 0.888 0.954 0.951 0.963 0.954 0.969 0.938 0.958
Cumulative 0.614 0.603 0.644 0.725 0.760 0.799 0.830 0.870 0.899 0.958
Case Incurred 843,192 712,769 535,091 335,810 329,777 208,510 212,847 221,876 217,227 131,181
Ultimate 517,568 429,608 344,502 243,598 250,715 166,613 176,671 193,104 195,199 125,622
Actual Ultimate 574,974 492,017 364,166 278,450 266,085 178,339 180,345 201,849 197,819 125,622
Difference -57,406 -62,409 -19,664 -34,852 -15,370 -11,726 -3,674 -8,745 -2,620 0
Actual RTR 0.996 0.931 0.927 0.945 0.956 0.957 0.974 0.968 0.978 0.958  
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Appendix B: Ultimate Losses Using GLM Based Method and Berquist-Sherman Method Page 2

BERQUIST-SHERMAN METHOD

Case Reserves
Age

Accident Year 1 2 3 4 5 6 7 8 9 10
2000 65,093 63,292 51,526 41,860 34,300 29,156 21,467 18,619 15,540 25,714
2001 110,790 103,274 90,761 79,514 67,777 57,927 45,727 39,413 59,836
2002 104,149 105,569 96,960 78,728 54,134 43,471 37,343 65,245
2003 110,813 107,534 94,923 84,790 66,479 55,609 84,148
2004 93,277 95,674 88,720 60,268 52,178 87,706
2005 147,552 146,874 132,356 102,975 184,747
2006 146,093 138,584 117,743 225,574
2007 197,305 200,143 423,055
2008 265,840 622,358
2009 788,768

Open Claim Count
Age

Accident Year 1 2 3 4 5 6 7 8 9 10
2000 606 569 479 385 310 245 191 148 123 88
2001 656 620 511 416 330 265 209 154 108
2002 724 706 601 464 350 274 223 172
2003 753 700 580 466 365 274 211
2004 740 712 614 494 404 315
2005 939 895 740 603 462
2006 939 885 743 607
2007 1,169 1,116 935
2008 1,221 1,158
2009 1,318

Average Reserves
Age

Accident Year 1 2 3 4 5 6 7 8 9 10
2000 107 111 108 109 111 119 112 126 126 292
2001 169 167 178 191 205 219 219 256 554
2002 144 150 161 170 155 159 167 379
2003 147 154 164 182 182 203 399
2004 126 134 144 122 129 278
2005 157 164 179 171 400
2006 156 157 158 372
2007 169 179 452
2008 218 537
2009 598

Latest 598 537 452 372 400 278 399 379 554 292
Selected Trend 1.05  
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Appendix B: Ultimate Losses Using GLM Based Method and Berquist-Sherman Method Page 3

BERQUIST-SHERMAN METHOD (Continued)

Restated Avg. Reserve (Latest Average Reserve Detrended)
Age

Accident Year 1 2 3 4 5 6 7 8 9 10
2000 386 364 322 277 313 229 345 344 528 292
2001 405 382 338 291 329 241 362 361 554
2002 425 401 355 306 345 253 380 379
2003 447 421 372 321 363 265 399
2004 469 442 391 337 381 278
2005 492 464 410 354 400
2006 517 487 431 372
2007 543 512 452
2008 570 537
2009 598

Restated Incurred
Age

Accident Year 1 2 3 4 5 6 7 8 9 10
2000 245,637 231,956 198,339 167,736 170,619 138,598 159,999 149,517 165,979 131,181
2001 279,635 283,798 243,900 207,649 211,571 184,352 210,083 201,739 217,227
2002 318,653 309,850 260,337 220,112 239,427 204,565 231,044 221,876
2003 342,660 315,689 262,442 211,365 225,211 184,331 212,847
2004 361,660 338,763 277,875 252,361 254,820 208,510
2005 468,437 442,384 362,129 323,653 329,777
2006 507,889 491,053 415,267 225,574
2007 653,894 632,044 535,091
2008 724,593 712,769
2009 843,192

Report to Report Factors
Age

Accident Year 1 2 3 4 5 6 7 8 9
2000 0.944 0.855 0.846 1.017 0.812 1.154 0.934 1.110 0.790
2001 1.015 0.859 0.851 1.019 0.871 1.140 0.960 1.077
2002 0.972 0.840 0.845 1.088 0.854 1.129 0.960
2003 0.921 0.831 0.805 1.066 0.818 1.155
2004 0.937 0.820 0.908 1.010 0.818
2005 0.944 0.819 0.894 1.019
2006 0.967 0.846 0.543
2007 0.967 0.847
2008 0.984

Wtd Avg 0.963 0.839 0.860 1.035 0.835 1.143 0.953 1.091 0.790 0.958
Cumulative 0.541 0.562 0.670 0.778 0.752 0.900 0.787 0.826 0.757 0.958
Ultimate 456,304 400,580 358,407 276,699 248,009 187,698 167,563 183,202 164,409 125,622
Actual Ultimate 574,974 492,017 364,166 278,450 266,085 178,339 180,345 201,849 197,819 125,622
Difference -118,670 -91,437 -5,759 -1,751 -18,076 9,359 -12,782 -18,647 -33,410 0
Actual RTR 0.996 0.931 0.927 0.945 0.956 0.957 0.974 0.968 0.978 0.958  



Casualty Actuarial Society E-Forum, Summer 2012 1 

Looking Back to See Ahead:  A Hindsight Analysis of  
Actuarial Reserving Methods 

Susan J. Forray, FCAS, MAAA 
 
________________________________________________________________________ 
Abstract  

Thirty actuarial reserving methods are evaluated empirically against an extensive database of Schedule P data.  
The metric of method skill is used to evaluate the historical performance of the methods.  Results are provided 
by company size and line of business.  The effect of correlation on the usefulness of additional methods is 
considered.  Results suggest the use of several methods not common in actuarial practice, as well as a refinement 
of weights typically assigned to the more common methods. 
 

Keywords. reserving; reserving methods; management best estimate; suitability testing. 
             

1. INTRODUCTION 

Actuarial reserve analyses typically rely on a number of different estimation methods to develop 
indicated ultimate loss1.  The paid and incurred (i.e., paid plus case) chain ladder methods are surely 
the most common.  Other actuarial reserving methods2

 

 include the following: 

• Backward Recursive • Claims Closure 
• Benktander • Frequency/Severity 
• Berquist-Sherman • Hindsight Outstanding/IBNR 
• Bornhuetter-Ferguson • Incremental Additive 
• Brosius • Incremental Multiplicative 
• Cape Cod • Loss Ratio 
• Case Development Factor • Munich Chain Ladder 

 

Of course most of these methods have both paid and incurred versions and many have several other 
variations as well. 

Oftentimes, these methods diverge significantly, and actuarial judgment is used in selecting 
ultimate loss.  A need exists for empirical evidence to support the use of particular methods over 
others. 

                                                           
1 Within this monograph the term “loss” should be taken to refer either just to loss or more generally to loss and ALAE. 
2 Descriptions of these methods as used within the current analysis can be found in Appendix A. 
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1.1 Outline 
The remainder of this paper proceeds as follows.  Section 2 will provide an overview of the 

analysis, including the data available as well as a discussion of the metric.  Section 3 will discuss the 
results of the analysis, including results by company size and line of business.  Section 4 will discuss 
the effect of correlation between methods on the results and the practical implications of this 
correlation.  Section 5 will provide additional discussion on the approach to the analysis, and, in 
particular, the metric selected.  Lastly, Section 6 will offer some conclusive remarks. 

2. OVERVIEW OF ANALYSIS 

2.1 Data for Analysis 
The current analysis relies on a large database of Schedule P3

 

 triangular data.  Thirty methods, as 
listed in Appendix A, were applied to the triangular data given within Schedule P to develop 
indications of ultimate loss by coverage year and method for each line of business available for a 
given property & casualty insurance company.  The most recent evaluation date available at the time 
of the analysis was December 31, 2010.  Consequently this functioned as the date as of which 
“actual” ultimate loss would be determined.  Indications based on data as of prior valuations were 
then evaluated against the ultimate loss as of this most recent valuation date.  This is summarized in 
Table 1. 

TABLE 1 
VARIABLE COMBINATIONS FOR ULTIMATE LOSS DEVELOPMENT 

Variables Companies 
Lines of 
Business Methods 

Evaluation 
Dates 

Accident / 
Report Years 

Description P&C 
Writers 

10-year triangle 
Schedule P lines 

As Above, 
Including 
Variations 

1996-2009 10 Years Preceding 
Evaluation Date 

Approximate 
Number 3,100 16 30 14 10 

 

 
 

                                                           
3 Schedule P is a section of the U.S. Statutory Annual Statement in which triangular data, including paid and case reserve 
loss and ALAE as well as closed and open claim counts, are reported.  The current analysis uses only those lines of 
business for which 10-year triangles are provided in Schedule P. 
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Note that only individual companies were considered within this analysis.  Company groups were 
excluded as their data would have overlapped with that of the individual writers.  The indicated 
ultimate loss has been developed under an automated procedure for each of the above combinations 
for which data is available.  Details of the calculations for each method are given in Appendix A. 

In theory, the above combinations for which data is available could have resulted in as many as 
208 million records of ultimate loss indications.  In practice, most companies do not write many of 
the lines of business.  Data for many of the companies is not available at all evaluation dates and, 
even when it is, the Schedule P triangles are occasionally found to be inconsistent at different 
evaluation dates and consequently unusable.  Ultimate loss indications are available for 49 million of 
the above variable combinations. 

2.2 Method Skill 
The concept of method skill is a recent introduction to the actuarial profession, having first been 

discussed by Jing, Lebens, and Lowe in [8].  It will be discussed at a high level here. However, it may 
be useful for the reader to have further understanding of the calculation of method skill as applied 
to the analysis at hand.  This is provided in Appendix B. 

The skill of method m at development age d is calculated as 

Skillm(d) = 1 – msem
(d) / msa(d) 

where msem
(d) is the mean squared error of the method m at development age d and msa(d) is the mean 

squared anomaly of the data, also evaluated as of development period d, where anomaly is measured 
between the coverage years based on “actual” unpaid loss.  Error is measured as the difference 
between the actual unpaid loss and the unpaid loss estimated by the method m as of development 
age d.  These concepts are discussed further in Appendix B and in [8]. 

 A method tends to exhibit one of two patterns with regard to its skill as the development age 
d increases (i.e., as more data for the coverage year at hand becomes available).  The first pattern is 
exhibited by methods that reflect emerging experience, such as the LDF method.  This pattern 
consists of an increase in the skill of the method, with the rate of increase typically declining over 
development periods and reaching an evaluation at which the skill has effectively plateaued.  Chart 1 
is an example of this pattern, displaying the median skill of the LDF-I method across all companies 
and lines of business within the analysis. 
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The second pattern is a decline in skill as the development age d increases, which does not appear 
to level off.  This pattern is typical of methods that do not respond to the experience of the given 
coverage year, such as the FS or LR method.  Chart 2 is an example of this pattern, shown for the 
median skill of the LR1 method, again across all companies and lines of business within the analysis. 
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Chart 1
Median Skill – LDF-I Method

All Lines of  Business, All Companies
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Note that in Chart 1 the skill increases noticeably from 96 to 108 months.  Most likely this is not 

indicative of a “true” increase in skill at this evaluation, but is the result of the size of the triangles 
available from Schedule P, which terminate at 120 months.  This causes the indicated skill at 108 
months to be greater than the likely true skill at this evaluation. 

2.3 Magnitude of Skill 
Some commentary is warranted regarding the magnitude of indicated skill, in particular given the 

negative values shown in Charts 1 and 2.  In general, skill should be viewed as a relative value with 
no inherent meaning of its own.  In other words, the comparison of the skill of two methods can be 
very meaningful, but the skills themselves have no such meaning. 

In practice, methods are seen frequently to have a negative skill.  Mathematically, this means that 
the mean squared error in our methods typically exceeds the mean squared anomaly in our data.  In 
other words, our methods are more volatile than the data itself, which may partly be the result of an 
insufficient volume of data.   

A greater volume of (applicable) data would allow for greater stability in loss development factors 
and other method parameters, which would reduce the error in the methods.  However, the 
additional data would not be fully correlated with the data previously available, and would 
consequently serve to reduce the anomaly in the overall data set.  Thus it is not clear that skill would 
necessarily improve (or be positive) for larger data sets. 
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Additional insight can be gained by observing that the concept of skill originates in meteorology4

We may assume that the meteorological method described above has 0% skill because the new 
information provided by tomorrow’s high temperature will have very little impact on the calculation 
of the mean squared anomaly.  This is strongly in contrast to a typical reserving scenario, in which 
estimates of development factors and loss ratios, to take two examples, often change significantly 
with the introduction of one new data valuation.  Consequently, because the true anomaly of our 
data sets remains unknown, actuarial reserving methods will often exhibit negative skill. 

.  
It seems reasonable that if we were to estimate tomorrow’s high temperature as the average of the 
historical high temperatures for the same date, such a method might have a skill of 0%, with an 
expected mean squared error equal to the historical mean squared anomaly in the temperatures.  
Consequently a method that incorporates additional information, such as today’s high temperature, 
into the prediction of tomorrow’s high temperature would presumably represent an improvement 
and thus have positive skill. 

2.4 How to Interpret an Improvement in Skill 
It is helpful to have an intuitive understanding of skill and, in particular, what an increase in skill 

means regarding the volatility of a given method.  As an example of this, consider as hypothetical 
examples Companies A, B, and C.  These companies each write different volumes of what are 
otherwise similar books of business.   

At a given month of development, Companies A, B, and C each have an expected unpaid loss 
ratio (i.e., unpaid loss relative to earned premium for the given coverage year) of 10%.  Company A 
writes the most business, and Company A’s data therefore exhibits the least variation.  Company C 
writes the least business, and its data therefore exhibits the most variation.  The mean squared 
anomalies of Companies A, B, and C’s data at the given month of development are given in Table 2.  
This represents a fairly common range of mean squared anomalies when the expected unpaid loss 
ratio is approximately 10%. 

  

                                                           
4 Additional discussion regarding the origins of skill can be found in [8]. 
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TABLE 2 
MEAN SQUARED ANOMALY – HYPOTHETICAL EXAMPLES 

Company Mean Squared Anomaly 

A 0.1% 

B 0.4% 

C 1.6% 

 

With this information we can calculate the impact of an increase in skill for a given method on 
the expected error in the unpaid loss, relative to the expected unpaid loss itself.  The percentages in 
Table 3 are calculated algebraically based on the formula for skill.  The square root of the mean 
squared error (RMSE) as a percent of unpaid loss is then equal to the RMSE as a percent of 
premium divided by the unpaid loss ratio.   

   

TABLE 3 
COMPANY A:  CHANGE IN MEAN ABSOLUTE ERROR RELATIVE TO 

UNPAID LOSS, GIVEN A CHANGE IN SKILL 
Skill Mean Squared 

Error 
RMSE* as a 
Percent of 
Premium 

RMSE* as a 
Percent of Unpaid 

Loss 

1% 0.00% 0.3% 3.2% 

2 0.00 0.4 4.5 

5 0.01 0.7 7.1 

10 0.01 1.0 10.0 

15 0.02 1.2 12.2 

20 0.02 1.4 14.1 

30 0.03 1.7 17.3 

50 0.05 2.2 22.4 

*  Square root of the mean squared error. 
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When expressed in this manner the impact of a change in skill becomes more apparent.  For 
example, if we were able to improve the skill of an actuarial analysis for Company A by 50%, the 
RMSE within such an analysis would decline by approximately 22%, relative to the unpaid loss.  The 
relationship between a change in skill for Companies A, B and C is shown in Chart 3.  Thus for 
Companies B and C, whose books of business exhibit greater variation than Company A’s, the 
reduction in RMSE is proportionally greater for the same change in skill than is the case for 
Company A.  This implies, in a practical sense, that method skill becomes more important as the 
data becomes thinner. 

 

 

 

0.0%

10.0%

20.0%

30.0%

40.0%

50.0%

60.0%

70.0%

80.0%

90.0%

100.0%

0% 2% 4% 6% 8% 10
%

12
%

14
%

16
%

18
%

20
%

22
%

24
%

26
%

28
%

30
%

32
%

34
%

36
%

38
%

40
%

42
%

44
%

46
%

48
%

50
%

Change in Skill

Chart 3
Change in Square Root of  the Mean Squared Error

As a Percent of  Unpaid Loss

Company A

Company B

Company C



Looking Back to See Ahead:  A Hindsight Analysis of Common Actuarial Methods 
 

Casualty Actuarial Society E-Forum, Summer 2012 9 
  

3. DISCUSSION OF RESULTS 

The best-performing methods (i.e., the methods with the greatest skill) in the analysis were 
observed to satisfy the following two criteria: 

1. Each relies at least in part on case reserves (“Criterion 1”). 

2. Amounts paid to date do not directly influence the indicated unpaid loss (“Criterion 2”). 

As a general example of this, consider Chart 4, which compares three common loss development 
methods, the LDF-I, LDF-P, and CDF methods.  Results are shown across all companies and lines 
of business. 

 
Thus the skill of the LDF-I method is seen clearly to exceed that of the LDF-P method.  Results 

for the LDF-I method and CDF method are similar at earlier evaluations, although beginning at the 
84-month evaluation the CDF method outperforms the LDF-I method.  Differences in skill for the 
LDF-P and LDF-I methods exceed 100% at the first evaluation but remain close to or above 60% at 
later evaluations. 

However, there are various methods that meet Criterion 1 and Criterion 2, and the CDF method 
is not necessarily the best of these.  Consider the comparison given in Chart 5 across most of the 
methods that meet these characteristics.  Of the five methods shown, the BF1-I method appears 
somewhat superior to the other methods considered.  However, for any given company, this will 
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depend on the applicability (more accurately, the skill) of the a priori loss ratio indications available.   

 
 

It should be noted that the BT-I, BF2-I, CC-I, and IM-I methods are excluded from the above 
chart due to space constraints, although they each satisfy Criteria 1 and 2.  The IM-I method 
significantly underperformed the other methods considered.  Presumably this is due to the leveraged 
nature of the parameters on which this method relies.  The other three methods on this list each 
underperformed the methods included in Chart 5, but only somewhat.   
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A similar comparison of the LDF-I method is made in Chart 6 with other methods that possess 

Criterion 1 but not Criterion 2.  The LDF-I method is seen in Chart 6 to outperform the other 
incurred-based methods.  At the earliest two evaluations, the BLS-I method outperforms the other 
incurred-based methods considered.  However, the BLS-I method becomes too leveraged at later 
evaluations (beginning at 36 months) and underperforms the MCL-I and BS methods at this point.   

The paid-based methods can be similarly compared, which shows that these methods generally 
underperform the LDF-P method.  The paid-based methods that outperform the LDF-P method 
are the BF1-P, BT-P, and HS-P methods.  However, these methods underperform the LDF-I 
method.5

3.1 Results by Company Size 

  Note that these three methods satisfy Criterion 2 but not Criterion 1 (the remainder of the 
paid-based methods considered do not satisfy either of the criteria).  Thus we could conclude that, 
while both criteria are important to method skill, Criterion 1 is more important than Criterion 2. 

Results were similarly considered by company size, in which each company was segregated into a 
“Small,” “Medium,” or “Large” category.  Companies were not permitted to migrate segments 
between evaluations, and were segregated according to their average annual net earned premium 

                                                           
5 All three methods underperformed the LDF-I method at 24 months of development and subsequent.  At 12 months 
of development, the BF1-P and BT-P methods outperformed the LDF-I method, while the HS-P method did not. 
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across all years considered.  Table 4 provides the average 2010 net earned premium for the 
companies in each category. 

 

TABLE 4 
AVERAGE 2010 NET EARNED PREMIUM BY CATEGORY 

Company Size Average 2010 Net Earned Premium 

Small $4.2 million 

Medium $17.5 million 

Large $350.0 million 

 

In general, Criterion 2 was seen to be more important for small companies and less important for 
large companies, relative to all companies considered as a whole.  In other words, for small 
companies, methods in which paid loss directly influences unpaid loss (e.g., the LDF-I method) are 
seen to have less skill, relative to other methods, than was the case when considering all companies 
as a whole.  For large companies, methods such as the LDF-I method perform as well as methods 
such as the CDF method, and in some cases outperform these methods.   

However, the general relationship between the various methods satisfying Criteria 1 and 2 that 
was present for all companies appears to hold when large companies are considered on their own.  
This is seen in Chart 7.  Note that results in Chart 7 are shown through 36 months and that results 
subsequent to 36 months are similar. 
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Analogous results are given in Chart 8 for small companies.  These show that for small 

companies methods that satisfy Criteria 1 and 2 outperform the LDF-I method.  This 
outperformance is more apparent than it was when considering all companies as a whole.  
Presumably this suggests that small companies are more affected by the leveraged nature of methods 
such as the LDF-I method, in which paid loss to date that is greater than or less than the historical 
average paid loss affects the indicated unpaid loss for the book of business.  Intuitively this seems 
reasonable, as small companies will exhibit more variable experience as a whole, including amounts 
paid to date. 
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3.2 Results by Line of Business 
Results were also considered by line of business, where line of business was defined by the 

segments used within Schedule P.  In general the results discussed above did not vary significantly 
by line of business.  However, there are two apparent exceptions to this observation, specifically for 
the Homeowners and Workers Compensation lines of business. 

Chart 9 displays the observed results for Homeowners coverage.  In general the directional 
relationships between the methods are similar as when all lines are considered in tandem.  However, 
the relative performance of the CDF method as compared to the LDF-I method is clearly different, 
with the CDF method outperforming the LDF-I method (as well as the LDF-P method).  This may 
be the result of the fast-paying nature of Homeowners coverage for most claims.   

When all lines of business were considered together, we saw that at later months of development 
(in particular, at 84 months of development and subsequent) the CDF method outperformed the 
LDF-I method.  At this evaluation, the majority of claims are paid for most lines of business.  For 
the Homeowners line of business, this point in time (when the majority of claims are paid) is 
reached much earlier.  In general, it appears that the CDF method and other methods satisfying 
Criteria 1 and 2 may be most useful at “later” evaluations (where the definition of “later” varies by 
line of business according to the rate of payments). 
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Chart 10 demonstrates a very different situation for Workers Compensation.  For this line of 

business, the LDF-I method clearly outperforms the CDF method.  Two possible reasons exist for 
this observation.  The first is that the rate of payment for Workers Compensation claims is slower 
than for property & casualty coverages considered as a whole, and certainly slower than for 
Homeowners claims.  This suggests a reason analogous to that observed for Homeowners, and that 
at a “later” evaluation the CDF method would outperform the LDF-I method for Workers 
Compensation.  (This “later” evaluation would requisitely be at some point past 108 months, as the 
LDF-I method outperforms the CDF method for Workers Compensation at all evaluations made 
available by the Schedule P data.)   
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The second reason is the regular pattern of payments exhibited by Workers Compensation 

claims, as this rate of payments is largely determined by legislation.  For most other lines of business, 
the rate of payments can be raised by efforts to settle claims more quickly, and the observed rate of 
payments can be altered by a particular large claim.  Workers Compensation payments are largely 
immune to this phenomenon, as even a claim with a large medical component will often exhibit a 
rate of payments similar to other claims.  Consequently the disadvantage of the LDF-I method that 
was observed earlier – that this method is easily biased up or down by the presence of absence of a 
large claim or larger than usual number of paid claims – does not apply to Workers Compensation.   

While the number of claims with amounts paid to date for Workers Compensation in a particular 
coverage year may be greater or lesser than average, the paid loss on these claims is predictive of 
unpaid loss.  Any Workers Compensation claim open 12 months after its accident date is generally a 
claim on which payments have been made to date and on which payments will be made for several 
years into the future (and perhaps for the lifetime of the claimant).  Similarly, any Workers 
Compensation claim closed within this timeframe will generally have had a relatively small amount 
of payments (relative to the claims remaining open), making the impact of paid loss on such claims 
on unpaid loss within the LDF-I method largely immaterial.  While the larger paid loss on claims 
remaining open would impact the indication of unpaid loss, these paid amounts, separated by an 
accounting date, would be reasonably expected to be highly correlated.  Thus, under this reasoning, 
the CDF method is not necessarily a “worse” method for Workers Compensation, but the LDF-I 
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method is a relatively “better” method, when compared to its performance for other lines of 
business. 

This reasoning begs the question as to why the LDF-P method underperforms for the Workers 
Compensation line of business, similar to its performance for other lines.  It is possible that if a 
much larger triangle of payments were available for Workers Compensation, the LDF-P method 
would not underperform, and might even outperform the LDF-I method.  As discussed in 
Appendix A, to develop paid loss to the same level as incurred loss, it is necessary within the LDF-P 
method to apply a ratio of incurred-to-paid loss to the paid loss developed to a 10th report.   

The ratio of paid-to-incurred loss will typically be greater than the ratio that is applied for other 
lines of business, and will typically be subject to greater volatility than for other lines of business.  
This ratio would not be necessary in the more common reserving scenario in which a larger triangle 
of paid Workers Compensation loss was available.  Consequently, particular caution should be taken 
in inferring the applicability of these results for Workers Compensation onto the skill of methods in 
a reserve analysis for which a greater history of paid loss data is available. 

4. EFFECT OF CORRELATION 

An interesting observation can be made in comparing the skill of three methods highlighted 
previously: the LDF-I, LR1, and BF1-I methods.  Chart 11 shows the skill of these three methods 
on a logarithmic scale6

Recall that the BF1-I method is a weighted average of the LDF-I methods and LR1 methods, in 
which the weights are determined by the loss development factors of the LDF-I method.  Yet the 
skill of the BF1-I method is clearly greater than the skill of either of the two methods of which it is 
comprised.  This is the result of correlation, and in particular the observation that the LR1 and 
LDF-I methods are partially but not fully correlated.  Consequently the BF1-I method takes more 

.  A logarithmic scale was used due to the vast disparity between the skill of 
the LR1 method and the other two methods (see Chart 2 and prior discussion concerning the LR1 
method, and note that despite the logarithmic scale the skill of the LR1 appears within the range of 
the chart for only the first two evaluations).   

                                                           
6 More precisely, the translation used given a median skill of S to a logarithmic (median) skill of L was L = – Ln [– (S – 
1)].   Thus, since S must be less than or equal to 1, L was well-defined for all values of S.  Negating the value of the 
logarithm ensures that L will exhibit the same property as S, in that if the skill of a given method is greater than another, 
its logarithmic skill will be greater as well. 
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information into account than either of these methods on their own, and the weighting of these two 
methods is such that the resulting observed skill is greater. 

  
This observation holds for any method calculated as the weighted average of other methods.  As 

additional examples, consider Charts 12 and 13.  The first of these charts compares the skill of the 
LDF-I and LDF-P methods with a new method for estimating unpaid loss calculated as 90% of the 
unpaid loss indication from the LDF-I method and 10% of the unpaid loss indication from the 
LDF-P method.  For earlier evaluations, this new method performs comparably to the LDF-I 
method.  For later evaluations (beginning at 60 months, as shown in Chart 12), the new method 
represents an improvement in skill.  (Note that a 50/50 weighting of the LDF-I and LDF-P 
methods produced a method that underperforms relative to the LDF-I method.) 

-300%

-250%

-200%

-150%

-100%

-50%

0%
36 48 60 72 84

Chart 11
Logarithmic Skill

All Companies, All Lines of  Business

LDF-I LR1 BF1-I



Looking Back to See Ahead:  A Hindsight Analysis of Common Actuarial Methods 
 

Casualty Actuarial Society E-Forum, Summer 2012 19 
  

 

 
Chart 13 similarly shows the skill of four methods, the LDF-I and HS-I methods, a 50/50 

weighting of these two methods, and a 90/10 weighting of these two methods (in which 90% of the 
weight is given to the HS-I method).  It is easily seen that each of the weighted average methods 
outperform the two component methods (results before 36 months and after 84 months are similar 
to these respective observations).  This suggests that the use of multiple methods (provided they are 
properly chosen) is very important to the skill of any actuarial analysis.  The LDF-I and HS-I 
methods are two of the best-performing methods from the analysis, yet we are easily able to 
improve on the skill of these methods with a straight average of the two, and able to improve even 
more by judgmentally refining the weights.  
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5. APPROACH TO ANALYSIS 

Some discussion regarding the selection of method skill as the appropriate metric for the current 
analysis is warranted.  Various techniques have been suggested for use in evaluating the hindsight 
performance of actuarial methods.  These have historically fallen in three categories: 

1. “The Scorecard System” compares the indicated ultimate loss for an individual entity or 
data set, where the comparison is made either from one evaluation to the next or from a 
given evaluation to the “true ultimate” loss, once that is known.  References [10] and [16] 
are both examples of this technique.  An advantage of this technique is its simplicity and 
ease of explanation, but a disadvantage is that it provides no way of aggregating observed 
results for a single method or entity, or across multiple methods or entities.  For this 
reason the technique has typically been used for single entities or data sets only. 

2. Calculating the mean and standard deviation of the prediction errors, and similar 
statistical calculations related to the prediction error’s distribution, is another evaluation 
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method.  Here, prediction error is defined as the difference between true ultimate loss 
and the ultimate loss indicated by a given method as of a given evaluation.  References 
[3], [12], [13], and [15] are examples of this technique.  In each of these monographs, 
triangular data sets are simulated under a set of assumptions and standard actuarial 
methods are applied to the simulated data in a mechanical fashion.  Hence, given the 
underlying assumptions, the distribution of prediction error is readily known, provided 
that a sufficient number of triangular data sets are simulated.   

The assumptions used in the simulation are typically specific to a given line of 
business or amount of business written, however, and consequently the results may not 
be applicable to other lines of business or situations when a greater or lesser amount of 
business is written.  For example, claims may be assumed to be reported promptly after 
occurrence, or it may be assumed that there is a significant lag in claim reporting, and 
both assumptions can have a significant impact on the performance of claim-based 
methods.  Similarly, the amount of business written will clearly impact the standard 
deviation of prediction error, and some methods may be impacted more than others. 

For the analysis considered here, multiple lines of business were analyzed across 
various company sizes.  Consequently any attempt to derive statistics concerning the 
distribution of prediction error would either need to consider each line of business and 
company size grouping separately, or would need to attempt to normalize for these 
differences.  Even if data were segregated, differences in company size would still exist 
between different companies in the group, and any attempt at additional segmentation to 
mitigate this issue would likely result in a statistically insignificant sample size.   Any 
attempt at normalization across companies or lines of business would ideally consider the 
amount of business written as well as the inherent volatility of that business. 

3. Method skill has the advantage of normalizing for differences in premium earned and the 
resulting volatility in unpaid loss by company (a disadvantage in the discussion of the 
distribution of prediction error above).  Taking the form of a single numeric value can be 
seen as both an advantage and a disadvantage.  Method skill will not provide additional 
information on the distribution of prediction error, and in particular will not indicate 
whether a method is biased.  Taking the form of a single numeric value, however, allows 
more easily for comparison across different companies and lines of business. 

One final aspect of method skill that should be considered is that, by itself, it 
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provides no statistical significance of its indication.  Observations regarding statistical 
significance could be added to an analysis such as this by segregating data triangles 
randomly into two or three groups, then comparing the indicated skill for each group.  
While this random segmentation is outside the scope of the current analysis, 
segmentation of results has been done by company size and line of business, as discussed 
above.  The general similarity of results by line of business (with the exception of the 
Homeowners and Workers Compensation lines) suggests a meaningful level of statistical 
significance for the results, although this cannot be measured with precision.   

6. CONCLUSIONS 

The results of this empirical analysis suggest three conclusions: 

A. In most situations, the methods with greatest skill are those satisfying Criteria 1 and 2, 
first defined in Section 3 above: 

1. Each relies at least in part on case reserves (“Criterion 1”). 

2. Amounts paid to date do not directly influence the indicated unpaid loss (“Criterion 
2”). 

B. These methods (those possessing the greatest skill) are not commonly in use. 

C. The weighting schemes most commonly in use are not supported by the current analysis. 

Consider that the LDF-I and LDF-P methods are ubiquitous throughout reserve analyses.  While 
the best reserve analyses will almost always contain other methods as well, significant weight is 
typically given to these two methods.  However the above results suggest that many more valuable 
methods exist, and that the LDF-P method in particular should receive little to no weight in most 
analyses.  This is noticeably in contrast to the 50/50 weighting used in many reserve analyses for the 
LDF-I and LDF-P methods. 

Where not already in use, we could greatly improve our analyses by use of methods satisfying 
Criteria 1 and 2.  In particular, the CDF, IA-I, BR, and HS-I methods would all serve in many cases 
to enhance and improve our work.  Various versions of the BF method are commonly in use now, 
although this analysis suggests that greater weight should likely be given to the BF methods than is 
typical currently.  Often BF methods are viewed as appropriate for “middle” years, yet the current 
analysis suggests that giving weight to the BF methods can improve our analyses for all years.   
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Additional work in the area of method weights would be helpful, as this paper has merely 
touched the surface of that topic.  Results shared here suggest that the selection of method weights 
is significant to the skill of an analysis, perhaps more so than the methods themselves.  Consider, for 
example, that little improvement in skill is gained by switching from the LDF-I method to the HS-I 
method.  However, a 25% additive improvement in skill is gained at all evaluations by using a 90/10 
weighted average of the HS-I and LDF-I methods, respectively. 

Another topic not addressed here is the weighting of more than two methods, as would be done 
in practice.  It is likely that as any method is added to an analysis already consisting of several 
methods, the incremental skill achieved by giving weight to such a method will decline as the 
number of methods already incorporated into the weighted average increases.  However, the 
number of methods required before this incremental skill becomes minimal is an open question, as 
is whether this number could be reduced by appropriate selection and weighting of the methods.  
Additional research in this area is welcome. 
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Appendix A – Loss Reserving Methods 
The following provides a list of the methods considered in the analysis, including the 

abbreviation used to refer to each method (note that for methods for which there are paid and 
incurred versions, multiple abbreviations are given).  Also included is any relevant information as to 
how the method is applied within the current analysis, given the data limitations of Schedule P.  As 
discussed further in Appendix B, the methods outlined below develop indications of loss at a 10th 
report (i.e., the last evaluation included within the Schedule P triangles) rather than indications of 
loss at ultimate. 

1. Backward Recursive Case Development (BRC) 
 

This method is discussed by Marker and Mohl in [11].  The paid-on-prior-case and case-on-
prior-case factors selected for our analysis are each the weighted average of the columns of these 
factors as given by the triangles, where the weights are proportional to the prior case.  At a 10th 
report, we have assumed a paid-on-prior-case factor of 1.00 and a case-on-prior-case factor of 
0.00. 

2. Benktander (BT) 
 

The Benktander method, discussed in [9], is often referred to as the “iterated Bornhuetter-
Ferguson method.”  In the BT method, a priori loss is equal to the indication from the BF 
method (in our case, BF1-I for the incurred method, and BF1-P for the paid method).  The 
calculation of indicated loss then proceeds as described for the BF method, with calculations of 
the percent unpaid for the BT-P method and the percent IBNR for the BT-I method. 

3. Berquist-Sherman Case Adjustment (BS) 
 

The BS method is the first of the two methods given in [2], in which an adjustment is made to 
the incurred loss in the prior diagonals of a given triangle for assumed changes in case reserve 
adequacy.  This adjustment is made by de-trending the average case reserve along the most 
recent diagonal of the triangle (in the case of the current analysis, at a rate of 5.0% per annum).  
The result is multiplied by the number of open claims within prior diagonals in order to obtain 
an indication of case reserves from prior diagonals at the approximate level of case reserve 
adequacy as the most recent diagonal.  Incurred loss development factors are then developed 
and applied to loss along the most recent diagonal as for the LDF-I method. 

4. Bornhuetter-Ferguson 1 (BF1) 
 

The first of the BF methods included in the analysis uses the indicated loss from the first loss 
ratio method (LR1), described below, as the a priori indicated loss.  The percent unpaid and 
percent IBNR are then calculated as described in [4], producing both paid (BF1-P) and incurred 
(BF1-I) versions of this method. 
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5. Bornhuetter-Ferguson 2 (BF2) 
 

The second of the BF methods is an iterative procedure in which the a priori indicated loss is 
based on the weighted average loss ratios of preceding accident years, as based on the BF2 
method indications for these years.  The oldest accident year in the triangle, as well as any other 
accident year for which loss ratios of older accident years are not available, relies on the same a 
priori loss ratio as the BF1 method.  Both paid (BF2-P) and incurred (BF2-I) versions of this 
method are calculated. 

6. Brosius Least Squares (BLS) 
 

The BLS method considers that there may be both additive and multiplicative aspects of loss 
development.  Thus the method iteratively develops both a multiplicative loss development 
factor, to be applied to losses paid or incurred to date, and an additive factor, to be included 
subsequent to the multiplication.  The factors are based on a least squares regression, where the 
incurred loss ratio at a 10th report is the dependent variable and the paid or incurred loss ratio at 
the given evaluation is the independent variable.  The use of loss ratios rather than loss is a 
difference from the methodology as presented in [5], and was done so as to normalize for 
changes in exposure across accident years.  Both paid (BLS-P) and incurred (BLS-I) versions are 
included. 

7. Brosius Least Squares – Weighted (BLSW) 
 

Having observed certain indications produced by the BLS method, we sought to enhance the 
reliability of this method by giving more credibility in the regression process to years with greater 
premium, and presumably greater exposure.  The Weighted Brosius Least Squares method that 
resulted uses a regression process weighted by premium, in contrast to the unweighted 
regression used in the BLS method itself.   

8. Cape Cod (CC) 
 

The Cape Cod method is very similar to the BF method, but develops a priori loss under the 
assumption that in total across accident years it should be equal to the CC method indication.  
For the CC method as included in this analysis, we have assumed the same loss ratio for each 
accident year (i.e., unlike certain of the loss ratio methods discussed below, there is no a priori 
difference assumed by year).  Both paid (CC-P) and incurred (CC-I) versions of the method are 
included. 

 
9. Case Development Factor (CDF) 
 

The CDF method is based on the loss development factors from the LDF method, discussed 
below.  In the CDF method an indicated unpaid-to-case ratio is derived from the relationship 
between unpaid loss and case loss implicit in the selected paid and incurred loss development 
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factors.  This factor is then applied to the case reserve to derive an indication of unpaid loss, 
which is added to paid loss to date for an indication of loss incurred through the 10th report. 

 
10. Frequency/Severity (FS) 

 
The FS method is based on a projection of reported claims at a 10th report and a severity applied 
to these claims.  Reported claims are based on the company’s triangular reported claims data 
(i.e., Section 3 of Part 5 of Schedule P for the given line of business) developed to a 10th report 
using weighted average reported claim development factors.  Given the relatively favorable 
performance of the LDF-I method as well as its general acceptance within actuarial practice, we 
took the LDF-I method to be the “preliminary” selected method for use in selecting severities.   
 
Thus the severity for each accident year is calculated as the incurred loss at a 10th report 
indicated by the LDF-I method divided by the indicated reported claims at a 10th report.  For a 
given accident year, a severity is selected based on the weighted average severities of all prior 
accident years, where the weights are proportional to the projected reported claims.  In this 
process, the severities are trended to the accident year in question at a rate of 5.0% per annum. 

 
11. Hindsight Outstanding/IBNR (HS) 
 

The HS method is similar to the FS method in that it relies on an equivalent projection of 
reported claims as well as a preliminary selected loss method (also the LDF-I method).  
However within the HS method, the projection of reported claims is used to calculate a triangle 
of “hindsight outstanding” claims, which are the difference between the projection of reported 
claims at a 10th report and closed claims to date.  Similarly, the preliminary selected loss method 
is used to calculate a triangle of hindsight outstanding loss, which is the difference between the 
preliminary method loss projections and the paid or incurred loss to date.  Thus the difference 
represents unpaid loss for the HS-P method and IBNR loss for the HS-I method.   
 
The ratios of the values within the hindsight outstanding loss triangle to the corresponding 
values within the hindsight outstanding claims triangle produces a triangle of hindsight 
outstanding severities (unpaid severities for the HS-P method and IBNR severities for the HS-I 
method).  For a given accident year, severities from the preceding years are trended at 5.0% per 
annum to the accident year in question.  A weighted average of these severities, where the 
weights are proportional to hindsight outstanding claims, is selected.   
 
The weighted average hindsight severity is then applied to the number of projected outstanding 
claims for the given accident year to produce indications of unpaid loss for the HS-P method 
and IBNR loss for the HS-I method.  These are then added to paid loss or incurred loss, 
respectively, to derive indications of incurred loss at a 10th report.  This method is also referred 
to as the “ultimate unclosed claim severity technique” within [7]. 
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12. Incremental Additive (IA) 
 

In this method, incremental (i.e., calendar year) changes in paid or incurred loss are observed by 
accident year and compared to the premium for that year.  A weighted average ratio of 
incremental loss to premium is selected, where the weights are proportional to the premium.  
These ratios are accumulated to derive an IBNR-to-premium or unpaid-to-premium ratio at the 
given evaluation.  The ratios are applied to premium to derive IBNR or unpaid loss itself, then 
added to incurred loss or paid loss, respectively, for the IA-I and IA-P methods.  So that the IA-
P method will produce an indication of incurred loss at a 10th report, the unpaid-to-premium 
ratio at a 10th report is set equal to the case-to-premium ratio at a 10th report of the earliest year 
in the triangle. 

 
13. Incremental Claims Closure (ICC) 
 

The incremental claims closure method is described by Adler and Kline in [1].  In this method, 
reported claims at a 10th report are projected based on the reported claims triangle and weighted 
average reported claims development factors selected from this triangle (as above for the FS and 
HS methods).  A closing pattern is then selected based on historical weighted average 
incremental closed-on-prior-open factors, where the weights are proportional to the number of 
claims open.  These factors are then applied iteratively to project incremental closed claims, with 
the difference between the projected reported claims at the 10th report and the projected closed 
claims at the 10th report being the number of claims projected to close after the 10th report. 
 
As the next step, historical incremental paid loss is compared to incremental closed claims to 
derive incremental paid loss per closed claim by time period.  These amounts are then trended at 
5.0% per annum to the relevant time period and a weighted average of the indications selected 
(where the weights are proportional to the number of closed claims).  Prospective incremental 
paid loss by accident year is then projected as the product of the projected incremental closed 
claims and the projected paid loss per closed claim, each for the same time period.  Ultimate loss 
is then the sum of these projections with paid loss to date.  Within the current analysis, claims 
that are projected to close after the 10th report are assumed to have a severity equal to that of the 
claims that close between the 9th and 10th reports, but trended one additional year. 
 

14. Incremental Multiplicative (IM) 
 

The incremental multiplicative method is similar to the incremental additive method in that both 
methods consider incremental loss triangles.  However, the IM method calculates development 
factors that are ratios of incremental loss in one time period to the incremental loss in the 
preceding time period.  Weighted averages of these development factors are calculated, where 
the weights are proportional to the incremental loss in the preceding time period.   
 
The development factors are then applied iteratively to project incremental loss in subsequent 
time periods.  Projections of unpaid loss and IBNR loss are derived for the IM-P and IM-I 
methods, respectively, by accumulating the indications of incremental paid and incremental 
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incurred loss by time period.  These projections of unpaid loss and IBNR loss are added to paid 
loss to date and incurred loss to date, respectively, to derive distinct indications of ultimate loss.   
 
Within the IM-P method, a tail factor from paid loss at a 10th report to a level reflecting incurred 
loss at a 10th report is selected based on the oldest accident year in the triangle and the 
assumption that the case loss within this accident year will be paid as is.  In other words, the tail 
factor is the case loss for this year divided by the incremental paid loss for this year in the time 
period preceding the 10th report.  If incremental paid loss for this time period is zero, then such 
a ratio is undefined and assumed to be zero for purposes of our analysis. 

 
15. Loss Development Factor (LDF) 

 
The LDF methods are based on the calculation of historical loss development factors from the 
paid and incurred triangles.  The weighted average loss development factor from all available 
years within the triangle is applied to loss at the given evaluation date to derive indicated loss at a 
10th report.  Both paid (LDF-P) and incurred (LDF-I) versions of this method are included 
within the analysis.  For the paid method, a tail factor to develop the losses from paid at a 10th 
report to incurred at a 10th report is equal to the incurred-to-paid ratio at a 10th report for the 
earliest year in the triangle. 

 
16. Loss Ratio – Based on A Priori Assumption (LR1) 
 

Three versions of the loss ratio method are included within our analysis.  Each relies on net 
earned premium by calendar year, consistent with the use of net paid and incurred loss within 
the triangles.  The first of these (LR1) is based on a priori industry indications of the loss ratio 
for the given coverage year.  These loss ratios were derived from historical A.M. Best Review & 
Preview reports. 

 
17. Loss Ratio – Based on Preliminary Selected for Prior Years (LR2) 
 

The remaining two loss ratio methods are each based on the use of preliminary selected incurred 
loss at a 10th report, which for both is set equal to the results of the LDF-I method, consistent 
with the preliminary selected loss in the FS and HS methods.  For the LR2 method, the loss 
ratio for a given accident year is set equal to the weighted average of the loss ratios produced by 
the preliminary selected method within the preceding accident years of the triangle, where the 
weights are proportional to net earned premium.  This loss ratio is then multiplied by net earned 
premium for the given calendar year to derive indicated incurred loss at a 10th report for the LR2 
method. 

 
18. Loss Ratio – Based on Preliminary Selected for Most Recent Three Prior Years (LR3) 
 

The LR3 method is very similar to the LR2 method, but rather than relying on all preceding 
accident years within the triangle, relies on at most the preceding three accident years.  Thus this 
method is more responsive to recent loss ratio experience, but potentially more volatile. 
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19. Munich Chain Ladder (MCL) 
 

The MCL method is described by Quarg and Mack in [14].  Similar to the LDF method, 
discussed above, there are paid (MCL-P) and incurred (MCL-I) versions of the MCL method.  In 
practice, these indications often converge on each other, although the indications are rarely equal.  
Due to the convergence of the two methods, no adjustment factor is included in the calculation 
of the MCL-P method, which is distinct from the LDF-P method.  
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Appendix B – Example of Method Skill Calculation 
An extensive discussion of the calculation of method skill is provided in [8], which I will not 

replicate here.  However, given the limitations of Schedule P data as well as the volume of such data 
considered within the analysis discussed here, there were certain requisite judgments that needed to 
be made in implementing the necessary calculations.  First, some background on terminology and 
the requisite calculations is appropriate. 

Using terminology similar to that given in [8], the skill of a method m applied to a given data set 
as of development period d is calculated as 

 
Skillm(d) = 1 – msem

(d) / msa(d) 
 

where msem
(d) is the mean squared error of the method and msa(d) is the mean squared anomaly, a 

property of the data independent of the method.  Both msem
(d) and msa(d) are calculated as of 

development period d and can be expected to vary by development period.  Typically the method m 
will be a function of the triangular matrix [Ci,j], in which rows would most often represent coverage 
years and columns the development periods.  Each Ci,j would typically represent cumulative paid loss 
in coverage year i through development period j.  The method m could also be a function of an 
analogous triangular matrix of case reserve loss, in addition to the matrix [Ci,j].   

For each coverage year i, the method m produces an estimate of ultimate loss as of development 
period d of Ĉi

(d,m).  This should be distinguished from Ci, the true ultimate loss for the coverage year i.  
Given earned premium of Ei for year i, the error of method m for year i as of development period d 
is 

 
Errori,m

(d) = [Ĉi
(d,m) - Ci] / Ei.  

 
The mean squared error for the method as of development period d is then 

 
msem

(d) = ∑i Pi × [Errori,m
(d)]2 / ∑i Pi 

 
where the sums are taken over all coverage years i.  This is a weighted average in which the weights 
are the percent paid for each coverage year at the “actual” evaluation, denoted by Pi. 

The calculation of the anomalies requires a weighted average of the “actual” unpaid loss ratios for 
the given book of business, which is 

 
ULR = ∑i {Pi × Ci × [1 - Pi] / Ei.} / ∑i Pi. 

 
Then the anomaly of the unpaid loss ratio for a given coverage year i is 
 

Ai = Ci × [1 - Pi] / Ei - ULR 
 
and the mean squared anomaly for the data set is 
 

msa = ∑i [Pi × Ai
2] / ∑i Pi. 
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The above calculations require the ultimate loss Ci to be known.  In practice, however, this is 
often not known, especially for more recent coverage years.  Hence the calculation of skill 
incorporates the use of what is effectively a credibility-weighting procedure, in which each of the 
averages that is taken above is a weighted average in which the weights are proportional to Pi, the 
portion estimated to be paid (assuming Ci is correct) for each coverage year. 

While any claims data set will exhibit uncertainty in {Ci}, this issue is somewhat more 
pronounced for any claims data set consisting of Schedule P triangles, such as the data set 
underlying the current analysis.  This is because the triangles within Schedule P contain at most 10 
years of data, and quite often the ultimate loss for a given coverage year remains unknown at 10 
years of development.  Therefore, within this analysis, we have requisitely based the calculations of 
skill discussed above on the paid plus case loss as of 10 years of development.  In other words, the 
“ultimate” loss for purposes of the current analysis is the paid plus case loss as of 10 years of 
development, and no “tail” factor has been included in the analysis to estimate development 
subsequent to this evaluation.  We believe the use of paid plus case loss as opposed to paid loss or 
an amount in between the two is reasonable given the consistent historical adverse development on 
case reserves (and IBNR) for the U.S. property & casualty industry as a whole after 10 years of 
development (see [6]). 

The paid plus case loss at 10 years of development is known with certainty for any coverage year 
that has reached this maturity.  This amount can be forecast for less mature coverage years by the 
various methods.  However these forecasts will typically vary between the methods.  Consequently a 
forecast of Ci must be selected for any coverage year of less than 10 years maturity.  Within the 
current analysis we have varied the selected forecast of Ci according to the method m whose skill is 
being calculated.   

For example, in calculating the skill of the LDF-I method, Ci is forecast based on the most recent 
indication of Ci based on this method.  In calculating the skill of the LDF-P method, the forecast of 
Ci would differ, and be based upon the most recent indication as given by the LDF-P method.  An 
alternative approach would be to select a fixed method for purposes of defining Ci.  However, this 
would presumably bias the analysis in favor of that method, and so has not been chosen.  Varying 
the selection of Ci serves to place the methods on a more equal footing with each other within the 
analysis.  

Varying Ci by method works for any method whose indication converges on the true ultimate loss 
as the development period increases.  This is true for most of the methods considered within the 
current analysis, but does not hold for the FS method or any of the LR methods.  For these 
methods, in the more recent years where the paid plus case loss at 10 years of maturity is unknown, 
we used the forecast of this amount as given by the LDF-I method.  This method was selected given 
its standard acceptance as well as its generally favorable performance within the current analysis. 
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I, incurred 
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Model with Actual Historical Claims Data 
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Abstract 

This paper will back-test the popular over-dispersed Poisson (ODP) bootstrap of the paid chain-ladder model, 
as detailed in England and Verrall (2002), using real data from hundreds of U.S. companies, spanning three 
decades. The results show that this model produces distributions that underestimate reserve risk. Therefore, we 
propose two methods to increase the variability of the distribution so that it passes the back-test. In the first 
method, a set of benchmark systemic risk distributions are estimated by line of business that increase the 
variability of the bootstrapped distribution. In the second method, we show how one can apply a Wang 
Transform to estimate the systemic bias of the chain-ladder method over the course of the underwriting cycle.   
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1. INTRODUCTION 
 
Reserve risk is one of the largest risks that non-life insurers face. A study done by A.M. Best 

(2010) identified deficient loss reserves as the most common cause of impairment1

The over-dispersed Poisson (ODP) bootstrap of the chain-ladder method, as described in 
England and Verrall (2002) is one of the most popular methods used to obtain reserve 
distributions.

 for the U.S. non-
life industry in the last 41 years. It accounted for approximately 40% of impairments in that period. 
This, as well as encouragement from Solvency II regulation in Europe, has resulted in the growing 
popularity of the estimation of reserve distributions. 

2

Before relying on a method to estimate capital adequacy, it is important to know whether the 
method “works.”  That is, is there really a 10% chance of falling above the method’s estimated 90th 
percentile? There have been many papers on different ways to estimate reserve risk, but very few 
papers on testing whether these methods work, and even fewer of these papers test the methods 
using real (as opposed to simulated) data.  

 In the rest of this paper, we will simply refer to this as the “bootstrap model.”  

In this paper, we test if the model works by back-testing the bootstrap model using real data 
spanning three decades on hundreds of companies. This paper differs from other papers on this 
topic to date because: 

• We use real data, rather than simulated data. 
• We test the reserve distribution in total – the sum of all future payments, not just the next 

calendar year’s payments. 
• We test the distribution over many time periods — this is important due to the existence of 

the reserving cycle. 
• We test multiple lines of business. 

We suspect that other papers have not attempted this due to a lack of data of sufficient depth 
and breadth. In contrast, we have access to an extensive, cleaned U.S. annual statement database, as 
described in Section 3. 

2. SUMMARY OF EXISTING PAPERS 
 
There have been a limited number of papers on the back-testing of reserve risk methods. Below 

is a summary of two such papers. 

                                                           
1 A.M. Best defines an impairment to be when the regulator has intervened in an insurer’s business because they are 
concerned about its solvency. 
2 In 2007 a survey of the members of the Institute of Actuaries (U.K.), it was identified it as the most popular method. 



Back-Testing the ODP Bootstrap of the Paid Chain-Ladder Model with Actual Historical Claims Data 

Casualty Actuarial Society E-Forum, Summer 2012 3 
 

General Insurance Reserving Oversight Committee (2007) and (2008) 
In 2007 and 2008, the General Insurance Reserving Oversight Committee, under the 

Institute of Actuaries in the U.K., published two papers detailing their testing of the Mack and the 
ODP bootstrap models. They tested these models with simulated data that complied with all the 
assumptions under each model. The ODP bootstrap model tested by the committee is the same as 
the bootstrap of the paid chain-ladder model being tested in this paper, as detailed in England and 
Verrall (2002). The results showed that even under these ideal conditions, the probabilities of 
extreme results could be under-stated using the Mack and the ODP bootstrap models. The 
simulated data exceeded the ODP bootstrap model’s 99th percentile between 1% and 4% of the 
time. The 1% result was from more stable loss triangles.  The simulated data exceeded the Mack 
model’s 99th percentile between 2% and 8% of the time. 

The Committee also tested a Bayesian model (as detailed in Meyers (2007)) with U.K. motor 
data (not simulated data). The test fitted the model on the data excluding the most recent diagonal, 
and the simulated distributions of the next diagonal are compared to the actual diagonal. The model 
allows for the error in parameter selection that can help overcome some of the underestimation of 
risk seen in the Mack and ODP bootstrap models. However, “it is no guarantee of correctly 
predicting the underlying distribution.” 

Meyers, G., Shi, P. (2011) “The Retrospective Testing of Stochastic Loss Reserve Models”  
This paper back-tests the ODP bootstrap model as well as a hierarchical Bayesian model, using 

commercial auto liability data from U.S. annual statements for reserves as of December 2007. Two 
tests were performed. The first was to test the modeled distribution of each projected incremental 
loss for a single insurer. The second was to test the modeled distribution of the total reserve for 
many insurers, which is very similar to the test in this paper, however limited to only one time 
period (reserves as of December 2007). They conclude: “[T]here might be environmental changes 
that no single model can identify. If this continues to hold, the actuarial profession cannot rely solely 
on stochastic loss reserve models to manage its reserve risk. We need to develop other risk 
management strategies that do deal with unforeseen environmental changes.” 

3. Data 
 
The data used for the back-testing are from the research database developed by Risk Lighthouse 

LLC and Guy Carpenter. In the U.S., (re)insurers file annual statements each year as of December 
31. The research database contains annual statement data from the 21 statement years 1989 to 2009.3

• A paid loss triangle by development year for the last 10 accident years 

 
Within the annual statement is a Schedule P that, net of reinsurance, for each line of business, 
provides the following: 

                                                           
3 The database is updated annually 
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• Booked ultimate loss triangle by year of evaluation, for the last 10 accident years, showing 
how the booked ultimate loss has moved over time 

• Earned premium for the last 10 accident years 

Risk Lighthouse has cleaned the research database, by: 

• Re-grouping all historical results to the current company grouping as of December 31, 2009 
to account for the mergers and acquisitions activities over the past 31 years. 

• Restating historical data (e.g., under new regulations a previous transaction does not meet 
the test of risk transfer and must be treated as deposit accounting). 

• Cleaning obvious data errors such as reporting the number not in thousands but in real 
dollars. 

For the purposes of our back-testing study, we refined our data as follows: 

• We used company groups rather than individual companies since a subsidiary company 
cedes business to the parent company or sister companies and receives its percentage share 
of the pooled business. 

• To ensure we had a reasonable quantity of data to apply the bootstrap model, we used up to 
100 of the largest company groups for each line of business. For each line we began with the 
largest4 100 company groups and removed those with experience that cannot be modeled 
due to size or consistency (some companies are missing random pieces of data). The 
resulting number of companies ranges from a high of 78 companies for Private Passenger 
Auto, to a low of 21 companies for Medical Professional Liability.5

• We used losses net of reinsurance, rather than gross. As a practical issue, the paid loss 
triangles are only reported net of reinsurance, and this also avoids the inter-company pooling 
and possible double counting issue of studying gross data for company groups. Additionally, 
loss triangles gross of reinsurance can be created, but this data covers around half of the 
time span of the data net of reinsurance. 

 

• We concentrated on the following lines of business: 

1. Homeowners (HO) 
2. Private Passenger Auto (PPA)  
3. Commercial Auto Liability (CAL) 
4. Workers Compensation (WC) 
5. Commercial Multi Peril (CMP) 
6. Medical Professional Liability — Occurrence and Claims Made (MPL) 
7. Other Liability — Occurrence and Claims Made (OL) 

 

                                                           
4 Size was determined by average premium from accident years 1989 to 2010 
5 To clarify, there was an average of 78 companies per accident year for Private Passenger Auto and an average of 21 
companies per accident year for Medical Professional Liability. 
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The Other Liability and Medical Professional Liability lines have only been split into Occurrence 
and Other Liability subsegments since 1993. Therefore, to maintain consistency pre- and post-1993, 
we have combined the two subsegments for these lines.  

4. THE METHOD BEING TESTED 
 
We are testing the reserve distribution created using the ODP bootstrap of the paid chain-ladder 

method, or simply the “bootstrap model” as described in Appendix 3 of England and Verrall (2002). 
We feel it is the most commonly used version of the model. How it specifically applies in our test is 
outlined below, and the steps with a numerical example are shown in Appendix A.  

1. Take a paid loss and ALAE, 10 accident year by 10 development year triangle. 
 

2. Calculate the all-year volume-weighted average age-to-age factors. 
 

3. Estimate a fitted triangle by first taking the cumulative paid loss and ALAE to date from (1).  
 

4. Estimate the fitted historical cumulative paid loss and ALAE by using (2) to undevelop (3). 
 

5. Calculate the unscaled Pearson residuals, rp  (from England and Verrall (1999)). 
 

𝑟𝑟𝑝𝑝 =
𝐶𝐶 −𝑚𝑚
√𝑚𝑚

 

 
where  

𝐶𝐶 = incremental actual loss from step (1) and 
𝑚𝑚 = incremental fitted loss from step (4). 

 
6. Calculate the degrees of freedom and the scale parameter: 

 
𝐷𝐷𝐷𝐷𝐷𝐷 = 𝑛𝑛 − 𝑝𝑝 

where 
𝐷𝐷𝐷𝐷𝐷𝐷 = degrees of freedom 
𝑛𝑛 = number of incremental loss and ALAE data points in the triangle in step 
1, and 
𝑝𝑝 = number of parameters in the paid chain-ladder model (in this case, 10 
accident year parameters and 9 development year parameters). 

 

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝑃𝑃𝑆𝑆𝑟𝑟𝑆𝑆𝑚𝑚𝑆𝑆𝑃𝑃𝑆𝑆𝑟𝑟 =
∑𝑟𝑟𝑝𝑝2

𝐷𝐷𝐷𝐷𝐷𝐷
. 
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7. Adjust the unscaled Pearson residuals (𝑟𝑟𝑝𝑝) calculated in step 5: 

𝑟𝑟𝑝𝑝
𝑆𝑆𝑎𝑎𝑎𝑎 = � 𝑛𝑛

𝐷𝐷𝐷𝐷𝐷𝐷
× 𝑟𝑟𝑝𝑝 . 

 
8. Sample from the adjusted Pearson residuals 𝑟𝑟𝑝𝑝

𝑆𝑆𝑎𝑎𝑎𝑎  in step 7, with replacement. 
 

9. Calculate the triangle of sampled incremental loss 𝐶𝐶. 
 

𝐶𝐶 = 𝑚𝑚 + 𝑟𝑟𝑝𝑝
𝑆𝑆𝑎𝑎𝑎𝑎 √𝑚𝑚. 

 
10. Using the sampled triangle created in 9, project the future paid loss and ALAE using the paid 

chain-ladder method. 
 

11. Include process variance by simulating each incremental future loss and ALAE from a Gamma 
distribution with the following: 
 

mean = projected incremental loss in step 10, and 
variance = mean x scale parameter from step 6. 

 
We assume that each future incremental loss is independent from each other. Note that 
theoretically we assume an over-dispersed Poisson distribution; however, we are using the 
Gamma distribution as a close approximation. 
 

12. Estimate the unpaid loss and ALAE by taking a sum of the future incremental losses from step 
(10). 
 

13. Repeat steps 8 to 12 (in our case, 10,000 times to produce 10,000 unpaid loss and ALAE 
estimates resulting in a distribution). 

It is important to note that we are only testing the distribution of the loss and ALAE that is unpaid 
in the first 10 development years. This is to avoid the complications in modelling a tail factor. 

5. BACK-TESTING 

5.1 Back-testing as of December 2000 
 

The steps in our back-testing are detailed below. First, we detail the steps for one insurer at one 
time period and then expand this to multiple insurers over many time periods. 
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1. Create a distribution of the unpaid loss and ALAE by using the bootstrap model as of 
December 2000, as detailed in the prior section 4, using Schedule P paid loss and ALAE data 
for a particular company A’s homeowners book of business.  
 

2. Isolate the distribution of unpaid loss and ALAE for the single accident year 2000, as shown 
in Figure 1. We do this so that we can test as many time periods as possible. 

 
Figure 1 

Company A’s distribution of unpaid loss & ALAE, net of reinsurance as of 12/2000 
Data in $ millions 

 
 

3. The unpaid loss and ALAE is an estimate of the cost of future payments. Eventually, we will 
know how much the actual payments cost. In this case, the actual payments made total $38 
million6

  

 (sum of the payments for accident year 2000 from development periods 24 to 120). We 
call this the “actual” unpaid – what the reserve should have been, with perfect hindsight. This 
falls at the 91st percentile of the original distribution. 

                                                           
6 We have scaled all the numbers shown in this example by the same factor, to disguise the company. 
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Figure 2 
Company A’s distribution of unpaid loss & ALAE, net of reinsurance as of 12/2000 

Data in $ millions 
 
 
 
 
 
 
 

  

 
 

4. We can repeat steps 1 to 3 for another 74 companies. Some of the percentiles for these 
companies are listed in Figure 3.  
 

Figure 3 
Percentile where the actual unpaid falls in the distribution created as of 12/2000, by company. 

 Company Percentile 
Company A 91% 
Company B 55% 
Company C 88% 
Company D 92% 
Company E 39% 
Company F 75% 
Company G 67% 

…  … 
 

Results 
If the bootstrap model gives an accurate indication of the probability of the actual outcome, we 

should find a uniform distribution of these 75 percentiles. For example, the 90th percentile is a 
number that the insurer expects to exceed 10% of the time (that is the definition of the 90th 
percentile). Therefore, we should find 10% of the companies have an actual outcome that falls 
above the 90th percentile. And similarly, there should be a 10% chance that the actual reserves fall in 
the 80th to 90th percentile and so on. That is, ideally we should see Figure 4 when we plot these 
percentiles. 
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Figure 4 
Ideal histogram of percentiles 

 

 
When we plot the percentiles in Figure 3, what we actually see is shown in Figure 5: 

Figure 5 
Histogram of percentiles for Homeowners as of 12/2000 

 
 

 
 

This shows that 46 out of 75 companies had actual reserves that fell above the 90th percentile of 
the original distributions created in 12/2000. For 46 out of 75 companies, the reserve was much 
higher than they initially expected. 
 

5.2 Back-Testing as of December 1996 
 
The test can be repeated at another time period — instead of December 2000, we can try 

December 1996. That is, we repeat steps 1 to 4, but this time, we are creating reserve distributions 
for 76 companies as of December 1996.  
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Results 
The histogram of the resulting percentiles is shown in Figure 6. 
 

Figure 6 
Histogram of percentiles for Homeowners as of 12/1996 

 

 
 

In this case, 45 out of 76 companies had actual reserves that fell below the 10th percentile of 
the original distributions created in 12/1996. For 45 out of 76 companies, the reserve was much 
lower than they initially expected. This is the opposite of the result seen in 12/2000.  
 

These results, where most insurers are either under- or over-reserved at each point in time, 
are perhaps not surprising. At any one point in time, the reserve is estimated with what is currently 
known. As the future unfolds and the claims are actually paid, some systemic effect can cause the 
claims environment to move away from the historical experience, causing most insurers to be either 
under- or over-reserved. For example, at the time of writing (2012) inflation has been historically 
low, and actuaries set their current reserves in this environment. If, as the future unfolds, claims 
inflation increases unexpectedly, then the reserves for most insurers will be deficient, similar to what 
is seen in Figure 5. 
 

Therefore, testing one time period at a time may not result in a uniform distribution of 
percentiles. However, if many time periods are tested, and all the percentiles are plotted in one 
histogram, this may result in a uniform distribution. 

5.3 Back-Testing Multiple Periods 
 
For this test, repeat steps 1 to 4 in section 5.1, each time estimating the reserve distribution 

as of 12/1989, 12/1990, 12/1991… to 12/2002. Note that at the time of testing, we only had access 
to data as of 12/2009. The actual unpaid for accident year 2002 should be the sum of the payments 
for that accident year from the 24th to the 120th development period. However, as of 12/2009 we 
only have payments from the 24th to the 96th development period. The remaining payments had to 
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be estimated. A similar issue exists for the test as of 12/2001. We use the average of company’s 
accident year 1998 to 2000, 96th to 120th development factors to estimate the remaining payments. 

Results 
The test for an average of 74 companies for 14 accident years results in 1,038 percentiles, shown in a 
histogram in Figure 7. 
 

Figure 7 
Histogram of percentiles for Homeowners as of 12/1989, 12/1990… and 12/2002 

 

 

 
Figure 7 shows that, around 20% of the time, the actual reserve is above the 90th percentile of 

the bootstrap distribution, and 30% of the time the actual reserve is below the 10th percentile of the 
distribution.  When you tell management the 90th percentile of your reserves, this is a number they 
expect to be above 10% of the time. Instead, when using the bootstrap model, we find that 
companies have exceeded the modeled 90th percentile, 20% of the time. In this test, the bootstrap 
model appears to be underestimating reserve risk. 

5.4 Back-Testing of Other Lines of Business 
 

The test can be repeated for the other lines of business. When this is done, the results are shown in 
Figure 8. 
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Figure 8 
Histogram of percentiles as of 12/1989, 12/1990… and 12/2002 
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The histograms above do not follow a uniform distribution. In this test, for most of these lines 
of business, using the bootstrap model has produced distributions that underestimate reserve risk. 
However, for medical professional liability and private passenger auto in particular, it appears that 
the paid chain-ladder method is producing reserve estimates that are biased high. 

6. ANALYSIS OF THE RESULTS 
 
A reserve distribution is a measure of how the actual unpaid loss may deviate from the best 

estimate. By applying the ODP bootstrap to the paid chain-ladder method, we can get such a reserve 
distribution around a paid chain-ladder best estimate. 
 

However, it is rare to rely solely on this method to determine an actuarial central reserve 
estimate. For better or worse, it is common practice for actuaries to estimate a distribution by using 
a similar ODP bootstrap of the chain-ladder method outlined here, and then “shift” this distribution 
by multiplication so that the mean is the same as an actuarial best estimate reserve or booked 
reserve.  
 

We do not condone this practice, but it is so common that a natural question is whether the 
“shifting” of the distributions produced in our back-testing would result in a more uniform 
distribution. Booked reserve estimates use more sophisticated methods than the paid chain-ladder 
model, and therefore may be more accurate, so the width of the distributions being produced in this 
study may be perfectly suitable. If we used the booked reserve then we may not have seen the 
under- and over-reserving in the December 2000 and December 1996 results, respectively  
 

In reality, the industry does under- and over-reserve, sometimes significantly. In comparison to 
the paid chain-ladder method, the industry is sometimes better or worse at estimating the true 
unpaid loss. In Figure 9, we show the booked ultimate loss at 12, 24, 36… and 120 months of 
evaluation, divided by the booked ultimate loss at the 12-month evaluation, for the U.S. industry, in 
aggregate for the seven lines of business tested in this paper.  
 

The “PCL” line on this graph shows the cumulative paid loss and ALAE at 120 months of 
evaluation divided by the PCL estimate at 12 months of evaluation (using an all year weighted 
average on an industry 10 accident year triangle by line of business and excluding a tail factor). 
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Figure 9 
Booked ultimate loss at t months of evaluation / Booked ultimate loss at 12 months of evaluation, 

in aggregate for the industry for seven lines of business, net of reinsurance 
 

 
 
 

For example, for accident year 2000, the booked ultimate loss estimate as of 12/2009 ended 
up 12% higher than the initial booked ultimate loss as of 12/2000. In contrast, the paid chain-ladder 
estimate of the ultimate loss as of 12/2009 was the same as the estimate as of 12/2000 – that is, the 
paid chain-ladder reserve estimate as of 12/2000 was more accurate than the booked reserve.7

 
  

Shifting a distribution around another mean is not a sound practice. Even ignoring this, we did 
not feel that shifting the mean to equal the booked reserve at the time would have materially 
changed the broad result of our back-testing. 

6.1 Why are we seeing these results? 
 

In an Institute of Actuaries of Australia report titled, “A Framework for Assessing Risk 
Margins,” 8

 

 the sources of uncertainty in a reserve estimate are grouped into two parts: independent 
risk and systemic risk. 

1. Independent risk = “risks arising due to the randomness inherent in the insurance process.” 
2. Systemic risk = a risk that affects a whole system. “Risks that are potentially common across 

valuation classes or claim groups.”8 Even if the model is accurately reflecting the claims 
process today, future trends in claims experience may move systematically away from what 

                                                           
7 Note that the comparison is not exact – the “PCL” line excludes all payments after 120 months whereas the booked 
reserves include those payments, which must add to the difficulty of estimation. Additionally, the booked reserve is 
estimated at a company level where as the “PCL” line was estimated using a whole industry loss triangle by line of 
business. 
8 IAAust Risk Margins Task Force (2008). 
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was experienced in the past. For example, unexpected changes in inflation, unexpected tort 
reform or unexpected changes in legislation. 

 
They state that the traditional quantitative techniques, such as bootstrapping, are better at 

analyzing independent risk but aren’t able to adequately capture systemic risk. This is because, even 
if there are past systemic episodes in the data, “a good stochastic model will fit the past data well 
and, in doing so, fit away most past systemic episodes of risk…leaving behind largely random 
sources of uncertainty.” 8 
 

The distributions produced in this paper using the bootstrap model may be underestimating 
reserve risk because they only capture independent risk, not systemic risk. 

7. POSSIBLE ADJUSTMENTS TO THE METHOD 
 
If the ODP bootstrap of the paid chain-ladder method is producing distributions that 

underestimate the true reserve risk, then what adjustments can be made so that it more accurately 
captures the risk? 
 

7.1 Commonly used possible adjustments 
 

Bootstrapping the incurred chain-ladder method 
 

Using the method outlined in this paper on incurred loss and ALAE data instead of paid loss 
and ALAE data produces reserve distributions with a smaller variance. This is understandable if you 
assume that the case reserves provide additional information about the true cost of future payments. 
We back-tested the incurred bootstrap model for the Workers Compensation line of business. The 
process was the same as for the paid bootstrap model, but incurred loss and ALAE was substituted 
for the paid loss and ALAE data, resulting in distributions of IBNR. The resulting percentiles are in 
Figure 10. 
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Figure 10 
Histogram of percentiles for Workers Compensation as of 12/1989, 12/1990….. 12/2002 based on 

incurred loss & ALAE 

 
 

From Figure 10, it appears that the incurred bootstrap model is also underestimating the risk of 
falling in these extreme percentiles. 

 

Using more historical years of paid loss and ALAE data 
 

Our back-testing used paid loss and ALAE triangles with 10 historical accident and 
development years. A loss triangle with more historical accident years may result in a wider 
distribution.  
 

We applied the bootstrap model on 20 accident year x 10 development year homeowners 
paid loss and ALAE triangles, but this resulted in distributions that sometimes had more and 
sometimes had less variability than the original distributions from the 10 x 10-year datasets.  
 

Making Other Adjustments 
 

There are other additions to the bootstrap model that we have not considered here, and can be 
areas of further study: 
 

• Parametric bootstrapping. It is possible to simulate the accident year and development year 
parameters from a multivariate normal distribution using a generalized linear model, which 
closely follows the structure of the ODP bootstrap of the paid chain-ladder model. This is 
commonly called parametric bootstrapping. Re-sampling the residuals, as outlined in section 
3, may be limiting, and simulating from a normal distribution may result in wider reserve 
distributions. 

• Hat matrix. The hat matrix can be applied to standardize the Pearson residuals and make 
them identically distributed, as per Pinheiro, Andrade e Silva, and Centeno (2003). 

• Multiple scale parameters to account for heteroskedasticity in residuals. 
 

None of these commonly used adjustments are specifically designed to account for systemic risk. 
Also, the method we are testing significantly underestimates the true risk and so requires an 
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adjustment that significantly widens the distribution. Therefore, we outline below two methods that 
can be applied to the bootstrap model that account for systemic risk. 

7.2 Two methods to account for systemic risk 
 

We have derived two methods to adjust the ODP bootstrap of the paid chain-ladder model so 
that the resulting distributions of unpaid loss and ALAE describe the true reserve risk – that is, it 
passes our back-testing, so that, for example, 10% of the time the actual reserve falls above the 90th 
percentile of our estimated distribution. These two methods are explicitly attempting to model 
systemic risk – the risk that the future claims environment is different from the past. 
 

The two methods are: 
1. The systemic risk distribution method 
2. Wang transform adjustment 

  
The two methods are based on two different assumptions. The systemic risk distribution 

method does not adjust the actuary’s central estimate over the reserving cycle. The Wang transform 
adjustment does not assume that the central estimate reserve is unbiased and tries to estimate the 
systemic bias of the chain-ladder method over the course of reserving cycle.  

 
Both methods are applied and the resulting distribution is back-tested again. 

Systemic Risk Distribution Method 
As outlined in section 6.1, reserve risk can be broken down into two parts: (1) independent 

risk and (2) systemic risk. We believe that the bootstrap model only measures independent risk, not 
systemic risk. Systemic risk affects a whole system, like the market of insurers. It includes risks such 
as unexpected changes in inflation and unexpected changes in tort reform – in short, the risk that 
the future claims environment could be different from the past. 
 

In this method, we estimate a benchmark systemic risk distribution by line of business, and 
combine this with the independent risk distribution (from the bootstrap model) to obtain the total 
reserve risk distribution. To combine the distributions we assume that they are independent from 
each other, and take one simulation from the systemic risk distribution and multiply this by one 
simulation from the independent risk distribution, and repeat for all 10,000 (or more) iterations.  
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Figure 11  
Example of one iteration of the systemic risk distribution adjustment 

 

 
Each of the outcomes from the systemic risk distribution, such as the 1.13 in Figure 11, can 

be thought of as a systemic risk factor. We can calculate historical systemic risk factors for each year 
and for each company by the following procedure: 
 

1. Take the mean of the bootstrap model’s reserve distribution for each company, as of 
12/1989 for accident year 1989. 

2. Calculate what the reserve should have been for accident year 1989, back in 12/1989 (= the 
ultimate loss and ALAE as of 12/2008 less the paid as of 12/1989). 

3. The systemic risk factor = (2)/(1). 
4. Repeat 1 to 3 as of 12/1990, 12/1991, ….to 12/2002. 

  
The systemic risk benchmark distribution is estimated by fitting a distribution to the 

historical systemic risk factors. Through a curve-fitting exercise, we found that a Gamma 
distribution was the best candidate to model systemic risk, with differing parameters by line of 
business. This results in uniform distributions of percentiles when the method outlined above is 
back-tested, as shown in Figure 12. 
 

Admittedly, the fitted systemic risk distribution may differ depending on the back-testing 
period. However, we took care to span a time period that incorporated one upwards and one 
downwards period of the reserve cycle, in an attempt to not bias the results. 
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Figure 12 
Histogram of Percentiles as of 12/1989, 12/1990… to 12/2002 
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As an example, for Homeowners, the systemic risk distribution is a gamma distribution with 
a mean of 0.98 and a standard deviation of 19%. Note that this is intended to adjust the distribution 
of the reserve for a single accident year at 12 months of evaluation. 

Systemic risk has its roots in the reserving cycle and underwriting cycle. Indeed, there are 
documented evidences of the linkage between reserving cycle and underwriting cycle. Archer-Lock 
et al. (2003) discussed reserving cycle in the U.K. The authors conclude that the mechanical 
application of traditional actuarial reserving methods may be one of the causes for reserve cycle. In 
particular, the underwriting cycle may distort claims development patterns and that premium rates 
indices may understate the magnitude of the cycle. The Wang transform adjustment is an alternative 
systemic risk adjustment that explicitly accounts for the reserve cycle. 

Wang-Transform Adjustment 
 

The Wang transform adjustment method does not assume that the unpaid loss and ALAE 
estimate is unbiased and tries to estimate the systemic bias over the course of reserving cycle. The 
reserving cycle shown in Figure 13 is an interesting phenomenon that indicates that reserve risk is 
cyclical, and the Wang transform adjustment method tries to capture this “systemic” bias.  

We use the workers compensation line of business for illustration. The data used in back-
testing is the workers compensation aggregated industry data net incurred loss and ALAE. A series 
of back-tests (these back-tests are different from the test in section 4) are done using the chain-
ladder method for industry loss reserve development.  For accident years after 2001, we use the 
latest reported losses instead of the projected ultimate losses, since reported losses for those accident 
years are not yet fully developed.   

In the following figures, which represent the entire non-life industry workers compensation 
line of business, Ultimate Losses (UL) stand for the 120-month incurred loss and ALAE for each 
accident year (AY) from the latest report year (RY), not including IBNR. Initial Losses (IL) 
represent the projected 120-month net incurred loss and ALAE for each AY from first report year, 
using the chain-ladder reserving method. Ultimate Loss Ratio (ULR) represents the ultimate 
reported incurred loss and ALAE ratio for each AY and Initial Loss Ratio (ILR) represents the 
initial reported incurred loss ratio for each AY.  A more detailed explanation of the back-testing 
method is given in Appendix B. 
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Figure 13  
Chain-Ladder Method Back-Testing Error versus (ULR-ILR) for Workers Compensation 

 

For the workers compensation line of business, the chain-ladder reserving method has 
systematic errors that are highly correlated with the reserving cycle.  The contemporary correlation 
between the estimation error and the reserve development (ULR-ILR) is 0.64 for the chain-ladder 
method.  More noticeably, the one-year lag correlation is 0.91.  The estimation error leads the loss 
reserve development by one-year. 

In this study, we apply the Wang transform to enhance the loss reserve distribution created 
using the bootstrap of the chain-ladder method. Different from the systemic risk distribution 
method, the Wang transform adjustment method will first adjust the variability of the loss reserve 
then give each company group’s loss reserve distribution a shift, respectively. 

The procedures below describe how to apply the Wang-Transform adjustment: 

1. After bootstrapping each paid loss triangle with 10,000 iterations, we apply the ratio of double 
exponential over normal to adjust the chain-ladder reserve distribution to be wider than the 
original distribution. The formula is shown below: 

𝑥𝑥∗ = (𝑥𝑥 − 𝑢𝑢) ∗ ratio + 𝑢𝑢 

ratio(𝑞𝑞) = exponential−1(𝑞𝑞)/ϕ−1(𝑞𝑞) 

      Where: 

1) ϕ is a normal distribution with mean 0 and standard deviation 1. 
2) Exponential stands for a double exponential distribution with density function 

𝑓𝑓(𝑥𝑥) = 0.5 ∗ λ ∗ e−λ∗|𝑥𝑥|,−∞ < 𝑥𝑥 < ∞. 
3) q is the quantile of each simulated reserve. 
4) u is the median of 10,000 simulated reserves. 
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5) x is the simulated reserve. 
6) x* is the reserve after adjustment. 

 
2. β is calculated for each company to measure the correlation between the company and industry. 

The method to calculate the β is described below: 
 
For each AY, if the industry systemic risk factor is significantly different from one (greater than 
1.01 or less than 0.99), we use an indicator of +1 if a company’s corresponding AY systemic risk 
ratio is in the same direction as the industry systemic risk factor, otherwise we use an indicator 
of -1. For example, say the industry systemic risk factor for AY 2000 is 1.122, which is greater 
than 1. If company A’s AY 2000 systemic risk factor is greater than 1, we assign an indicator of 
+1 to company A AY 2000. If company B’s AY 2000 systemic risk factor is less than 1, we 
assign an indicator of -1 to company B AY 2000.  
 
At last, for a company, 
β = (sum of indicators of all AYs) / (count of indicators of all AYs). 
If β is less than zero, we force it to zero. 
 

3. The Wang transform is finally applied to adjust the mean of the reserve distribution. The 
formula is shown below: 

F2(x) = ϕ�ϕ−1�F1(x)� + β ∗ λ�. 
Where: 
1) F1(x) is reported reserve’s percentile in the reserve distribution after step 1 

adjustment. 
2) Each company has its own β value. 
3) ϕ is a normal distribution with mean 0 and standard deviation 1. 

We change λ to result in the most uniformly distributed percentiles as measured by a chi-square 
test, when the adjusted reserve is back-tested. λ here is the fitted shift value of loss reserve 
distribution for each accident year.  

The final λs are shown in the following figures. 
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Figure 14 
Lambda for Each Accident Year 

 
 

Comparing the fitted lambdas and the ultimate loss ratios (ULRs), we find that the loss 
reserve estimation error of the chain-ladder method is highly correlated with the non-life 
insurance market cycle. The correlation between lambda and ultimate loss ratio is -0.87. 

Figure 15 
Lambda vs. ULR 

 
 

For other lines of business, the estimated lambdas and ULRs by year are also negatively 
correlated, but the magnitude of correlation is not as strong as for workers compensation. 

Areas of Future Research 
In this paper we have demonstrated that different lambda values can be estimated at various 

stages of the reserve cycle. However, more research is needed in the future to illustrate the practical 
application of lambda in the Wang transform to the reserve cycle, and how well lambda along with 
the beta work for individual companies versus the industry as a whole.   
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In this paper, we have focused mostly on the paid loss development method. Another area of 
future research is to investigate the difference between using paid methods in isolation versus paid 
loss development methods in conjunction with case incurred loss development methods, exposure-
based methods, and judgment. 

Yet another area of future research is to investigate the reserve cycle illustrated in Figure 9. 

8. SUMMARY 
 
The genesis and popularity of a reserve risk method lies in its theoretical beauty. However, as 

more insurers rely on actuarial estimates of reserve risk to manage capital, estimating a reserve 
distribution is no longer a purely theoretical exercise. Methods should be tested against real data9

In this back-test, we see that the popular ODP bootstrap of the paid chain-ladder method is 
underestimating reserve risk. We believe that it is because the bootstrap model does not consider 
systemic risk, or, to put it another way, the risk that future trends in the claims environment —  such 
as inflation, trends in tort reform, legislative changes, etc. — may deviate from what we saw in the 
past. We suggest two simple solutions to incorporate systemic risk into the reserve distribution so 
that the adjusted reserve distribution passes the back-test. 

 
before they can be relied upon to support the insurance industry’s solvency.  

We hope to encourage more testing of models so that the profession has a more defensible 
framework for measuring risks for solvency and profitability. 

  

                                                           
9 We advocate the use of real versus simulated data. In this paper, we have found that the bootstrap model, for most 
lines, materially underestimates the probability of falling above the 90th percentile. In contrast, the same model when 
tested against simulated data in GIRO, found that the same bootstrap model identified a 99th percentile that was 
exceeded only 1% to 4% of the time by the simulated data. 
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Appendix A: The ODP bootstrap of the paid chain-ladder method that was tested 
 

We are testing the reserve distribution created using the bootstrap of the paid chain-ladder 
method. The model we are using is described in Appendix 3 of England and Verrall (2002). We 
detail this, with a numerical example, below: 

1. Take a paid loss and ALAE, 10 accident year by 10 development year triangle 
 

Figure A1 
Company A, paid Loss & ALAE, net of reinsurance as of 12/2000 

Data in $ millions 

AY 1  2  3  4  5  6  7  8  9  10  
1991 94  119  124  128  130  132  133  133  133  134  
1992 101  131  135  139  141  143  143  144  145   
1993 82  107  112  116  119  119  120  121    
1994 110  139  146  152  154  155  156     
1995 68  99  105  108  111  114      
1996 119  151  157  158  162       
1997 72  99  99  99        
1998 71  101  106         
1999 71  96          
2000 62           
 

2. Calculate the all-year, volume-weighted age-to-age factors. 
 

Figure A2 

 1 - 2 2 - 3 3 - 4 4 - 5 5 - 6 6 - 7 7 - 8 8 - 9 9 - 10  
 1.32  1.04  1.02  1.02  1.01  1.00  1.00  1.00  1.00   
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3. Estimate a fitted triangle by taking the cumulative paid loss and ALAE to date from (1).  
 

Figure A3 
Company A, paid Loss & ALAE to date, net of reinsurance as of 12/2000 

Data in $ millions 

AY 1  2  3  4  5  6  7  8  9  10  
1991          134  
1992         144   
1993        121    
1994       156     
1995      114      
1996     162       
1997    99        
1998   106         
1999  96          
2000 62           

 
4. Estimate the fitted historical cumulative paid loss and ALAE by using (2) to un-develop (3). 

 
Figure A4 

Company A, paid Loss & ALAE, net of reinsurance as of 12/2000 
Data in $ millions 

AY 1  2  3  4  5  6  7  8  9  10  
1991 90  120  125  128  130  132  132  133  133  134  
1992 98  129  135  138  141  143  143  144  144   
1993 82  108  113  116  118  120  120  121    
1994 107  141  147  150  153  155  156     
1995 78  103  108  110  112  114      
1996 112  149  155  159  162       
1997 70  93  97  99        
1998 77  102  106         
1999 72  96          
2000 62           

 

5. Calculate the unscaled Pearson residuals, 𝑟𝑟𝑝𝑝  (from England and Verrall 1999). 
 

𝑟𝑟𝑝𝑝 = 𝐶𝐶−𝑚𝑚
√𝑚𝑚

, 
 

  

= 96 / 1.32 
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where  
𝐶𝐶 = incremental actual loss from step (1) and 
𝑚𝑚 = incremental fitted loss from step (4). 

 
Figure A5 

Company A, unscaled residuals, net of reinsurance as of 12/2000 

AY 1  2  3  4  5  6  7  8  9  10  
1991 0.35  (0.76) 0.13  0.55  (0.38) 0.14  0.44  (0.37) (0.06)  
1992 0.35  (0.39) (0.39) 0.12  (0.42) 0.32  (0.61) 0.05  0.05   
1993 (0.03) (0.18) 0.07  0.55  0.73  (0.92) 0.07  0.33    
1994 0.32  (0.89) 0.52  1.21  (0.64) (0.43) 0.12     
1995 (1.14) 1.12  1.03  0.24  0.51  0.94      
1996 0.65  (0.79) (0.08) (1.27) 0.31       
1997 0.16  1.00  (1.92) (1.49)       
1998 (0.67) 0.97  0.51         
1999 (0.23) 0.40          
2000           

 

 

6. Calculate the degrees of freedom and the scale parameter: 
 

𝐷𝐷𝐷𝐷𝐷𝐷 = 𝑛𝑛 − 𝑝𝑝 
                = 55 −  19 

     = 36 

where 
𝐷𝐷𝐷𝐷𝐷𝐷 = degrees of freedom, 
𝑛𝑛 = number of incremental loss and ALAE data points in the triangle in step 1, and 
𝑝𝑝 = number of parameters in the paid chain-ladder model (in this case, 10 accident 
year parameters and 9 development year parameters). 
 

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝑃𝑃𝑆𝑆𝑟𝑟𝑆𝑆𝑚𝑚𝑆𝑆𝑃𝑃𝑆𝑆𝑟𝑟 =
∑𝑟𝑟𝑝𝑝2

𝐷𝐷𝐷𝐷𝐷𝐷
 

 

                                    =
24.1
36

 

 
                                      = 0.669. 

 

 
7. Adjust the unscaled Pearson residuals (𝑟𝑟𝑝𝑝) calculated in step 5: 

=
(71 − 72)
√72
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𝑟𝑟𝑝𝑝
𝑆𝑆𝑎𝑎𝑎𝑎 = �

𝑛𝑛
𝐷𝐷𝐷𝐷𝐷𝐷

× 𝑟𝑟𝑝𝑝  

 

     = �55
36

× 𝑟𝑟𝑝𝑝  

 
     = 1.24 × 𝑟𝑟𝑝𝑝 . 

 
Figure A6 

𝑟𝑟𝑝𝑝
𝑆𝑆𝑎𝑎𝑎𝑎 : Company A, unscaled residuals, net of reinsurance as of 12/2000 

AY 1  2  3  4  5  6  7  8  9  10  
1991 0.43  (0.94) 0.17  0.68  (0.47) 0.17  0.55  (0.45) (0.07)  
1992 0.43  (0.48) (0.48) 0.15  (0.52) 0.39  (0.76) 0.07  0.07   
1993 (0.04) (0.22) 0.09  0.68  0.90  (1.14) 0.09  0.40    
1994 0.40  (1.09) 0.64  1.49  (0.79) (0.53) 0.15     
1995 (1.41) 1.38  1.27  0.30  0.63  1.17      
1996 0.80  (0.98) (0.10) (1.58) 0.39       
1997 0.19  1.23  (2.38) (1.85)       
1998 (0.83) 1.20  0.63         
1999 (0.28) 0.50          
2000           
 

8. Sample from the adjusted Pearson residuals 𝑟𝑟𝑝𝑝
𝑆𝑆𝑎𝑎𝑎𝑎  in step 7, with replacement. 

 
Figure A7 

Company A, Sampled adjusted residuals, net of reinsurance as of 12/2000 

AY 1  2  3  4  5  6  7  8  9  10  
1991 (1.09) (0.28) (0.04) 0.07  0.17  (0.07) 1.20  0.63  1.27  (0.28) 
1992 (0.28) 0.43  0.39  0.80  (0.53) 1.17  0.19  (0.98) (0.48)  
1993 0.09  0.39  (0.94) 1.20  (0.83) (0.53) 0.63  (0.76)   
1994 0.68  (2.38) 1.23  (0.98) 0.30  0.43  (1.14)    
1995 (0.47) (0.94) 0.50  (0.48) 0.15  (0.94)     
1996 0.63  0.15  (1.14) 1.49  1.49       
1997 0.07  0.07  0.17  (2.38)       
1998 0.15  0.63  0.39         
1999 1.20  0.50          
2000 0.50           

 

9. Calculate the triangle of sampled incremental loss, 𝐶𝐶. 
 

= (0.23) 
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𝐶𝐶 = 𝑚𝑚 + 𝑟𝑟𝑝𝑝
𝑆𝑆𝑎𝑎𝑎𝑎 √𝑚𝑚. 

Figure A8 

Company A, sampled incremental paid Loss & ALAE, net of reinsurance as of 12/2000 
Data in $ millions 

AY 1  2  3  4  5  6  7  8  9  10  
1991 80  28  5  3  3  2  1  1  1  0  
1992 95  34  6  5  2  4  1  (0) 0   
1993 83  28  3  5  1  1  1  (0)   
1994 114  20  9  2  3  3  (0)    
1995 74  20  5  2  2  0      
1996 119  37  3  6  6       
1997 71  23  4  (1)       
1998 78  28  5         
1999 83  26          
2000 65           
 
 

 
10. Project the future paid loss and ALAE, using the paid chain-ladder method. 

 
Figure A9 

Company A, cumulative paid Loss & ALAE, net of reinsurance as of 12/2000 
Data in $ millions 

AY 1  2  3  4  5  6  7  8  9  10  
1991 80  108  113  116  118  120  121  122  124  124  
1992 95  129  136  140  142  146  146  146  146  147  
1993 83  111  114  118  119  120  121  121  122  122  
1994 114  134  143  145  148  151  151  151  152  152  
1995 74  94  100  102  104  104  105  105  106  106  
1996 119  156  160  166  172  175  175  176  177  177  
1997 71  94  98  97  99  101  101  101  102  102  
1998 78  106  112  114  117  118  119  119  120  120  
1999 83  108  113  116  118  120  121  121  122  122  
2000 65  86  89  92  93  95  95  96  96  96  

 
Weighted average age-to-age factors 

 1 - 2 2 - 3 3 - 4 4 – 5 5 - 6 6 - 7 7 - 8 8 - 9 9 - 10  
 1.31 1.04 1.02 1.02 1.02 1.00 1.00 1.01 1.00  

 
11.  Include process variance by simulating each incremental future loss and ALAE from a Gamma 

distribution with: 
 

= 72 + 1.20 ∗ √72 

= 65 × 1.31 
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mean = projected incremental losses in step 10, 
variance = mean x scale parameter from step 6. 

 
We assume that each future incremental loss is independent from each other. Note that 
theoretically we assume an over-dispersed Poisson distribution, however, we are using the 
Gamma distribution as a close approximation. 
 

Figure A10 
Company A, incremental paid Loss & ALAE, with process variance, net of reinsurance as of 

12/2000 
Data in $ millions 

AY 1  2  3  4  5  6  7  8  9  10  
1991 82  28  5  3  3  2  1  1  1  0  
1992 96  34  6  4  2  3  1  0  0  0  
1993 83  28  3  4  1  1  1  0  1  0  
1994 112  23  8  2  3  3  (0) 0  2  1  
1995 75  21  5  2  2  1  0  1  1  0  
1996 118  37  4  6  5  4  2  0  0  0  
1997 71  23  4  (1) 2  4  0  1  1  1  
1998 78  27  5  4  2  0  1  0  0  0  
1999 81  25  3  2  1  1  0  0  0  1  
2000 65  18  5  2  1  1  1  0  0  0  
 
 
 
 

  

= 𝐺𝐺𝑆𝑆𝑚𝑚𝑚𝑚𝑆𝑆(𝑚𝑚𝑆𝑆𝑆𝑆𝑛𝑛 = 21,𝑣𝑣𝑆𝑆𝑟𝑟𝑣𝑣𝑆𝑆𝑛𝑛𝑆𝑆𝑆𝑆 = 0.669 ∗ 21)  
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12. Estimate the unpaid loss and ALAE by taking a sum of the future incremental losses from step 
11. 
 

Figure 11 
 Unpaid 
Accident Loss 

year and ALAE 
1991 0 
1992 0 
1993 1 
1994 3 
1995 2 
1996 6 
1997 9 
1998 7 
1999 8 
2000 28 

  
Total 64  

 
13. Repeat steps 8 to 12. In our case, 10,000 times to produce 10,000 unpaid loss and ALAE 

estimates resulting in an unpaid loss and ALAE distribution when plotted in a histogram. 
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Appendix B Methodology for Reserving Back-Testing 
The method used in back-testing in the Wang transform adjustment uses 10 accident year by 10 
development year incurred loss and ALAE triangles, net of reinsurance. 

 

 

The UL is the 120-month, case-incurred loss for each AY. For example, for AY 2001, the UL is 
yellow highlighted cell below. 

 

 

IL stands for the projected 120-month, case-incurred loss for each AY from first RY. For example, 
for AY 2001, the IL is projected from the triangle below. 

 

 

  

AY NetCaseIncurred
2001 10,597,343        15,121,875        17,148,317        18,030,720        18,315,025        18,663,494        18,963,470        19,274,423        19,492,073        19,691,532        
2002 9,880,312          14,375,596        16,125,066        16,778,143        17,329,085        17,651,826        17,996,103        18,251,653        18,518,021        
2003 10,369,458        14,334,644        15,837,509        16,594,323        17,191,600        17,714,263        17,992,600        18,339,834        
2004 10,616,734        14,461,802        15,894,418        16,644,316        17,253,999        17,678,604        18,059,807        
2005 11,234,028        14,723,765        16,219,677        17,166,414        17,739,780        18,273,742        
2006 11,762,138        15,866,737        17,804,050        18,942,686        19,777,903        
2007 12,189,806        16,932,637        19,062,769        20,387,578        
2008 12,394,686        17,351,056        19,656,367        
2009 11,230,304        15,726,363        
2010 11,564,142        
2000 10,300,006        15,323,250        17,359,275        18,504,064        19,310,172        19,727,612        20,024,743        20,349,723        20,416,586        20,626,383        
2001 10,597,343        15,121,875        17,148,317        18,030,720        18,315,025        18,663,494        18,963,470        19,274,423        19,492,073        
2002 9,880,312          14,375,596        16,125,066        16,778,143        17,329,085        17,651,826        17,996,103        18,251,653        
2003 10,369,458        14,334,644        15,837,509        16,594,323        17,191,600        17,714,263        17,992,600        
2004 10,616,734        14,461,802        15,894,418        16,644,316        17,253,999        17,678,604        
2005 11,234,028        14,723,765        16,219,677        17,166,414        17,739,780        
2006 11,762,138        15,866,737        17,804,050        18,942,686        
2007 12,189,806        16,932,637        19,062,769        
2008 12,394,686        17,351,056        
2009 11,230,304        

2001 10,597,343        15,121,875        17,148,317        18,030,720        18,315,025        18,663,494        18,963,470        19,274,423        19,492,073        19,691,532        
2002 9,880,312          14,375,596        16,125,066        16,778,143        17,329,085        17,651,826        17,996,103        18,251,653        18,518,021        
2003 10,369,458        14,334,644        15,837,509        16,594,323        17,191,600        17,714,263        17,992,600        18,339,834        
2004 10,616,734        14,461,802        15,894,418        16,644,316        17,253,999        17,678,604        18,059,807        
2005 11,234,028        14,723,765        16,219,677        17,166,414        17,739,780        18,273,742        
2006 11,762,138        15,866,737        17,804,050        18,942,686        19,777,903        
2007 12,189,806        16,932,637        19,062,769        20,387,578        
2008 12,394,686        17,351,056        19,656,367        
2009 11,230,304        15,726,363        
2010 11,564,142        

1992 13,577,454        18,324,228        19,318,317        19,887,417        20,329,004        20,578,733        20,829,649        21,093,165        21,251,010        21,445,507        
1993 11,629,774        15,072,352        16,240,909        17,019,006        17,377,062        17,817,291        17,991,759        18,151,739        18,369,115        
1994 10,064,429        13,048,331        14,255,204        14,761,320        15,191,420        15,488,568        15,640,632        15,907,265        
1995 9,091,097          12,075,438        13,156,052        13,952,635        14,395,087        14,703,283        14,936,659        
1996 9,272,956          12,274,028        13,702,650        14,407,800        14,920,371        15,315,039        
1997 9,322,137          13,169,560        14,673,981        15,446,460        16,059,155        
1998 10,192,450        14,078,543        15,775,394        16,820,701        
1999 9,840,268          13,948,976        15,911,651        
2000 10,300,006        15,323,250        
2001 10,597,343        



Back-Testing the ODP Bootstrap of the Paid Chain-Ladder Model with Actual Historical Claims Data 

Casualty Actuarial Society E-Forum, Summer 2012 33 
 

The red bold cells below are projected by chain-ladder method and the yellow highlighted cell is the 
IL. 

 

 

 

 

  

1992 13,577,454        18,324,228        19,318,317        19,887,417        20,329,004        20,578,733        20,829,649        21,093,165        21,251,010        21,445,507        
1993 11,629,774        15,072,352        16,240,909        17,019,006        17,377,062        17,817,291        17,991,759        18,151,739        18,369,115        18,537,236        
1994 10,064,429        13,048,331        14,255,204        14,761,320        15,191,420        15,488,568        15,640,632        15,907,265        16,059,355        16,206,336        
1995 9,091,097          12,075,438        13,156,052        13,952,635        14,395,087        14,703,283        14,936,659        15,125,933        15,270,552        15,410,313        
1996 9,272,956          12,274,028        13,702,650        14,407,800        14,920,371        15,315,039        15,493,651        15,689,983        15,839,995        15,984,968        
1997 9,322,137          13,169,560        14,673,981        15,446,460        16,059,155        16,419,983        16,611,482        16,821,978        16,982,814        17,138,246        
1998 10,192,450        14,078,543        15,775,394        16,820,701        17,422,664        17,814,128        18,021,886        18,250,255        18,424,746        18,593,376        
1999 9,840,268          13,948,976        15,911,651        16,820,875        17,422,844        17,814,313        18,022,073        18,250,444        18,424,936        18,593,568        
2000 10,300,006        15,323,250        17,243,980        18,229,336        18,881,709        19,305,957        19,531,113        19,778,606        19,967,710        20,150,461        
2001 10,597,343        15,145,457        17,043,901        18,017,824        18,662,628        19,081,953        19,304,497        19,549,118        19,736,028        19,916,659        
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The Leveled Chain Ladder Model for Stochastic Loss 
Reserving 

Glenn Meyers, FCAS, MAAA, CERA, Ph.D. 

_____________________________________________________________________________________________ 

Abstract: The popular chain ladder model forms its estimate by applying age-to-age factors to the latest reported 
cumulative claims amount – fixed numbers.  This paper proposes two models that replace these fixed claim amounts 
with estimated parameters, which are subject to parameter estimation error.  This paper uses a Bayesian Markov-Chain 
Monte Carlo (MCMC) method to estimate the predictive distribution of the total reported claims amountsfor these 
models.  Using the CAS Loss Reserve Database, it tests its performance in predicting the distribution of outcomes on 
holdout data, from several insurers, for both paid and incurred triangles on four different lines of insurance.  Their 
performance is compared with the performance of the Mack model on these data.  

 
Key Words – Chain Ladder Model, Bayesian MCMC estimation, JAGS, Mack Model, Retrospective Testing of 
Loss Reserve Estimates, The R ChainLadder Package 

_____________________________________________________________________________________________  

1. INTRODUCTION 

This paper presents two more stochastic loss reserving models.  Probably the most generally 
accepted stochastic models, as evidenced by their inclusion in the CAS Syllabus of Examinations, are 
those of Mack [3] and England and Verrall [1].  The former paper estimates the moments of the 
predictive distribution of ultimate claims based on cumulative triangles of claims data.  While 
providing a nice overview of the research to date, the latter paper focuses on estimating the 
predictive distribution of ultimate claims based on incremental triangles using a Generalized Linear 
Model (GLM).     

While each of the models has a reasonable rationale and when implemented produce a predictive 
distribution of outcomes, large scale testing of the predictive distributions on actual outcomes was 
almost nonexistent until recently.  One of the first to address the problem was Jessica Leong in her 
2010 CLRS presentation1 where she concluded that the predictive distribution was too narrow for 
the homeowners’ data she analyzed. Last year, Meyers and Shi [6] created the CAS Loss Reserve 
Database.2

                                                           
1Ms. Leong’s presentation can be downloaded from the CAS website at 

 This database was constructed by linking Schedule P reported losses over a period of ten 
years to outcomes of predictions made based on data reported in the first year.  Meyers and Shi then 
tested two different models based on paid incremental losses and found that the performance of 

http://www.casact.org/education/clrs/2010/handouts/VR6-Leong.pdf. 

2The data and a complete description of its preparation can be found on the CAS Web site 
athttp://www.casact.org/research/index.cfm?fa=loss_reserves_data 

http://www.casact.org/education/clrs/2010/handouts/VR6-Leong.pdf�
http://www.casact.org/research/index.cfm?fa=loss_reserves_data�
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these predictions left much to be desired.  Moreover, they also compared the mean of their 
predictive distributions to the reserves actually posted by the insurers in their original statement and 
found that the reserves posted were closer to the reported outcomes than the means estimated by 
the two models.  One has to wonder what the insurers saw that we did not see in the data. 

I see two ways to try to remedy this situation.  First, we can try to improve the model.  Second, 
we can add information that we previously did not include.  This paper attempts to do both.  My 
proposals for improving the model will be described below.  The new information is to use the 
reported losses that include both paid claims and the case reserves, which will be referred to as 
incurred claims.  In Schedule P, this means the reported claims in Part 2 (Incurred Net Losses) 
minus the corresponding reported claims in Part 4 (Bulk and IBNR Reserves). 

In my mind, using incurred claims should rule out the use of models based on incremental 
claims.  Negative incremental claims cause a problem with these models and they are much more 
common in incurred claim data than they are in paid claim data.  Thus this paper focuses on 
cumulative claims data and uses models that are appropriate for cumulative claims.  A good place to 
start is with the popular chain ladder model. 

This paper’s proposed new models will make two departures from the standard chain ladder 
model as identified in Mack [3].  Its goal is to improve upon the performance of the predictive 
distribution given by Mack’s formulas, as measured by the outcomes of 50 insurers in four separate 
lines of insurance in the CAS Loss Reserve Database. 

As we proceed, the reader should keep in mind that this paper describes an attempt to solve a 
math problem – i.e., predict the distribution of the reported losses after ten years of development.  
This paper does not address the issue of setting a loss reserve liability.  The loss reserve liability 
could be as simple as subtracting the claims already paid from the projected ultimate losses, but it 
could also involve discounting and a risk margin.  These topics are beyond the scope of this paper.  
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2. THE HIDDEN PARAMETERS IN THE CHAIN LADDER MODEL. 

First, let’s describe the chain ladder model.  Following Mack [3], let Cw,d denote the accumulated 
claims amount, either paid or incurred, for accident year, w, and development period, d, for 
1 ≤ w ≤ K and 1 ≤ d ≤ K.  Cw,d is known for w + d ≤ K + 1.  The goal of the chain ladder model is to 
estimate Cw,Kfor w  = 2,…, K.  The chain ladder estimate of Cw,K is given by 

 Cw,K= Cw,K+1-w∙fK+1-w∙…∙fK-1  (2.1) 

where the parameters {fd}, generally called the age to age factors, are given by     

 
, 1

1

,
1

K d

w d
w

d K d

w d
w
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=
−

=

=
∑

∑
. (2.2) 

It will be helpful to view the chain ladder model in a regression context.  In this view, the chain 
ladder model links K – 1 separate, one for each d, weighted least-squares regressions through the 
origin with dependent variables {Cw,d+1}, independent variables {Cw,d}, and parameters fd for w=1,…, 
K – 1.  Since each parameter fd is an estimate, it is possible to calculate the standard error of the 
estimate, and the standard error of various quantities that depend upon the set {fd}.  Mack [3] 
derives formulas for the standard error of each Cw,K  given by Equation (1) and of the sum of the 
Cw,Ks for w = 2,…, K.   

Given a cumulative claims triangle {Cw,d}, the R “ChainLadder”  package calculates the chain 
ladder estimates for each Cw,K and the standard errors for each estimate of each Cw,K and the sum of 
all the Cw,Ks.  This paper will use these calculations in the chain ladder examples that follow. 

Now let’s consider an alternative regression type formulation of the chain ladder model.  This 
formulation treats each accident year, w, and each development year, d, as independent variables.  
The proposed models work in logarithmic space, and so the dependent variable will be the logarithm 
of the total cumulative (paid or incurred) claim amount for each w and d 3

  

.  The first model takes the 
following form. 

                                                           

3If the reported claim amount is zero, we set the logarithm of the claim amount equal to zero.  This should not be a 
serious problem as it is rare for reported claim amount to be zero, and in most cases, the claim amounts are much larger 
than zero. 
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Cwd~ lognormal(αw +βd, σd),                                            (2.3) 

i.e., the mean of the logs of each claim amount is given byαw + βd and the standard deviation of the 
logs of each claim amount claim amount is given by σd.   

Let’s call the parameters {αw} the level parameters and the parameters {βd} the development 
parameters.  Also set β1 = 0.  As more claims are settled with increasing d, let’s assume that σd 
decreases as d increases.    

If we assume that the claim amounts have a lognormal distribution, we can see that this new 
model is a generalization of the chain ladder model in the sense that one can take the quantities on 
the right hand side of Equation (2.1) and algebraically translate them into the parameters in 
Equation 2.3 to get exactly the same estimate.  One way to do this is to set 

( )
1

1

log
d

d i
i

f
−

=

β = ∑ ford=2, …, K 

( ) ( ), 1
1

log log
K w

w w K w i
i

C f
−

+ −
=

α = − ∑  (2.4) 

 0dσ = . 

Note that the chain ladder model treats the claims amounts {Cw,K+1-w} as independent variables, 
that is to say, fixed values.  In this model, the role of the claims amounts, {Cw,K+1-w}, is (indirectly) 
taken by the level parameters, {αw}, that are estimates and subject to error. From the point of view 
of this model, the chain ladder model “hides” the level parameters, and hence the title of this 
section.  Due to its similarity with the chain ladder model and the fact that it explicitly recognizes the 
level parameters, let’s now refer to the models in this paper as Leveled Chain Ladder (LCL), 
Versions 1 and 2, models. 

Cross classified models such as the LCL models have been around for quite some time.  For 
example, Taylor [8] discusses some of these models in his 1986 survey book.  The cross classified 
model is often confused with the chain ladder model, but Mack [4] draws a clear distinction between 
the two types of models. 
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3. BAYESIAN ESTIMATION WITH MCMC SIMULATIONS 

This paper uses a Bayesian Markov Chain Monte Carlo (MCMC) program, called JAGS (short for 
“Just Another Gibbs Sampler”), implemented from an R program to produce a simulated list of 
{αw}, {βd} and {σd} parameters from the posterior distribution.  Meyers [7] illustrates how to use 
JAGS and R to produce such a list. 

In an attempt to be unbiased, I chose the prior distributions for the {αw}, {βd} and {σd} 
parameters to be wide uniform distributions.  Specifically, 

αw ~ uniform(0, log(2·max(Cw,d) forw+ d≤ K + 1)) 

βd ~ uniform (-5,5) for d = 2,…,10                                                                                          (3.1) 

10

d i
i d

a
=

σ = ∑  , ai ~ uniform (0,1).   (This forces σd to decrease as d increases.) 

The R/JAGS code distributed with this paper produces 10,000 parameters sets{αw}, {βd} and 
{σd}for 10 x 10 loss development triangles that are in the CAS Loss Reserve Database.  For each set 
of parameters, it simulates 10 claim amounts, Cw,10 for w = 1,…,10 from a lognormal distribution 
with log-mean = αw + β10 and log-standard deviation σ10.  At a high-level, the code proceeds as 
follows. 

1. The R code reads the CAS Loss Reserve Database, such as that given in Table 3.1, and 
arranges the data into a form suitable for exporting to the JAGS software. 

2. The JAGS code contains the likelihood function (Equation 2.3) and the prior 
distributions of the parameters (Equation 3.1).  JAGS produces 10,000 samples from the 
posterior distributions of{αw}, {βd} and {σd}.  

3. The R code takes the {αw}, {βd} and {σd} from the JAGS program and calculates 10,000 
simulated losses from the lognormal distribution implied by these parameters. 

4. With the 10,000 losses it calculates various statistics of interest such as the mean and 
standard deviation of the claims amounts, either by accident year or in total. 

Let’s consider a specific example.  Table 3.1 has a triangle of incurred losses for the Commercial 
Auto line of insurance taken from the CAS Loss Reserve Database. 
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Table 3.1 

w\d 1 2 3 4 5 6 7 8 9 10 
1 1,722 3,830 3,603 3,835 3,873 3,895 3,918 3,918 3,917 3,917 
2 1,581 2,192 2,528 2,533 2,528 2,530 2,534 2,541 2,538 

 3 1,834 3,009 3,488 4,000 4,105 4,087 4,112 4,170 
  4 2,305 3,473 3,713 4,018 4,295 4,334 4,343 

   5 1,832 2,625 3,086 3,493 3,521 3,563 
    6 2,289 3,160 3,154 3,204 3,190 

     7 2,881 4,254 4,841 5,176 
      8 2,489 2,956 3,382 

       9 2,541 3,307 
        10 2,203 

         

Table 3.2 gives the first three (of 10,000) parameter sets {αw}, {βd} and {σd}that were calculated 
by the JAGS program.  Table 3.3 shows the calculation of the mean of the lognormal distribution 
for the 10th development period.  Table 3.4 shows the simulated claims amounts, {Cw,10}, given the 
log-means from Table 3.3 and the log-standard deviations, σd, in Table 3.2.  This table also gives the 
mean and standard deviation of the claims amounts over all 10,000 simulations. 
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Table 3.2 
Parameter 1st 3 of 10,000 

 α1 7.6199 7.6098 7.6223 … 
α2 7.1817 7.1806 7.1965 … 
α3 7.6588 7.6434 7.6720 … 
α4 7.7178 7.7072 7.7280 … 
α5 7.5112 7.5143 7.4643 … 
α6 7.4168 7.4145 7.4853 … 
α7 7.9104 7.8930 7.9435 … 
α8 7.6811 7.5237 7.6143 … 
α9 7.7174 7.6937 7.8590 … 
α10 7.8280 7.7604 7.8515 … 
β1 0 0 0 … 
β2 0.4836 0.4783 0.4069 … 
β3 0.5203 0.5545 0.5303 … 
β4 0.6348 0.6230 0.6285 … 
β5 0.6511 0.6593 0.6286 … 
β6 0.6518 0.6633 0.6731 … 
β7 0.6661 0.6689 0.6509 … 
β8 0.6615 0.6555 0.6460 … 
β9 0.6663 0.6607 0.6440 … 
β10 0.6580 0.6638 0.6534 … 
σ1 0.2270 0.3140 0.2790 … 
σ2 0.1736 0.1853 0.1198 … 
σ3 0.0956 0.0632 0.0597 … 
σ4 0.0373 0.0363 0.0520 … 
σ5 0.0186 0.0140 0.0455 … 
σ6 0.0180 0.0122 0.0430 … 
σ7 0.0169 0.0113 0.0210 … 
σ8 0.0157 0.0102 0.0188 … 
σ9 0.0155 0.0063 0.0142 … 
σ10 0.0055 0.0035 0.0121 … 

 

Table 3.3 
Calculation 1st 3 of 10,000 

 α1+β10 8.2779 8.2736 8.2757 … 
α2+β10 7.8398 7.8444 7.8499 … 
α3+β10 8.3168 8.3072 8.3254 … 
α4+β10 8.3759 8.3710 8.3814 … 
α5+β10 8.1692 8.1781 8.1177 … 
α6+β10 8.0749 8.0783 8.1387 … 
α7+β10 8.5685 8.5567 8.5969 … 
α8+β10 8.3391 8.1874 8.2677 … 
α9+β10 8.3754 8.3574 8.5124 … 
α10+β10 8.4861 8.4241 8.5049 … 

Table 3.4 

 
1st 3 of 10,000 

 
Mean 

Std. 
Dev. 

C1,10 3,949 3,929 3,922 … 3,917 72 
C2,10 2,542 2,556 2,525 … 2,545 60 
C3,10 4,103 4,060 4,143 … 4,113 107 
C4,10 4,339 4,304 4,272 … 4,309 123 
C5,10 3,507 3,577 3,375 … 3,548 113 
C6,10 3,186 3,209 3,364 … 3,316 136 
C7,10 5,247 5,218 5,502 … 5,313 270 
C8,10 4,193 3,575 3,967 … 3,777 300 
C9,10 4,304 4,275 5,065 … 4,203 564 
C10,10 4,768 4,569 4,900 … 4,081 1,112 
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4. COMPARISIONS WITH THE MACK MODEL 

This section compares results obtained on the example above from Version 1 of the LCL models 
with those obtained from the Mack [3] model as implemented in the R “ChainLadder” package.  A 
summary of these results are in Table 4.1. 

Table 4.1 

 Leveled Chain Ladder – V1 Mack Chain Ladder  
w Estimate Std. Error CV Estimate Std. Error CV Actual 
1 3,917 72 0.0184 3,917 0 0.0000 3,917 
2 2,545 60 0.0236 2,538 0 0.0000 2,532 
3 4,113 107 0.0260 4,167 3 0.0007 4,279 
4 4,309 123 0.0285 4,367 37 0.0085 4,341 
5 3,548 113 0.0318 3,597 34 0.0095 3,587 
6 3,316 136 0.0410 3,236 40 0.0124 3,268 
7 5,313 270 0.0508 5,358 146 0.0272 5,684 
8 3,777 300 0.0794 3,765 225 0.0598 4,128 
9 4,203 564 0.1342 4,013 412 0.1027 4,144 
10 4,081 1,112 0.2725 3,955 878 0.2220 4,181 

Total 
w=2,…,10 35,206 1,524 0.0433 34,997 1,057 0.0302 36,144 

What follows is a series of remarks describing the construction of Table 4.1 

• The estimates in both models represent the expected claims amounts for d = 10. 
• The LCL estimates and standard errors were calculated as described in Section 3 above. 
• The Mack [3] standard errors represent, as described in the ChainLadder package user 

manual, “the total variability in the projection of future losses by the chain ladder 
method.” 

• The Mack [3] standard error for w = 1 will, by definition, always be zero.  Since the α1 
and β10 parameters are estimates and hence have variability, the standard error for C1,10 

given by the LCL models will be positive.  How to make use of this feature (e.g., 
uncertainty in further development) might make for an interesting discussion, but since 
our goal is to predict {Cw,10}, I chose to omit consideration of the variability of C1,10 in any 
analyses of variability of the totals. 

• The CAS Loss Reserve Database contains the completed triangles for the purpose of 
retrospective testing.  The actual outcomes for {Cw,10} are included here for those who 
might be curious. 
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Figure 4.1 is a graphical representation of the information in Table 4.1. 

Figure 4.1 

 

 

 

 

 

 

 

The actual claims amounts points are connected by the line.  The darker colored points slightly to 
the right of the “actual” points are the result of a sample of 100 simulated claims amounts taken 
from the LCL model.  The lighter colored points slightly to the left of the “actual” points are from 
100 simulations from a lognormal distribution matching the first two moments given by the 
Mack [3] model. 

The simulated points from the Mack [3] model have smaller standard errors than the standard 
errors of simulated points from the LCL model.  This is to be expected, since the LCL model has 
more “estimated” parameters. In inspecting other triangles I have found that this is almost always 
the case, as illustrated in Figure 4.2,  where most of the standard errors of the Mack [3] model lie 
below the diagonal line that represents equality of the standard errors.  

At least for this triangle, the span of the simulated points from both models contains the actual 
outcomes.  But for some accident years, this is barely the case. 

For the total claims amount over w going from 2 to 10, the actual total, 36,144, lies at the 76th 
percentile as measured by the LCL predictive distribution.  It lies at the 86th percentile as measured 
by the Mack predictive distribution.  The Mack predictive distribution was determined by fitting a 
lognormal distribution to the first two moments of the total estimate and standard error.  Taken by 
themselves, these observations do not favor one model over the other.  To measure the relative 
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performance of the models, we turn to fitting these models to a large number of triangles taken 
from the CAS Loss Reserve Database. 

Figure 4.2 
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5. RETROSPECTIVE TESTS OF THE PREDICTIVE DISTRIBUTIONS 

This section tests considers the LCL – Version 1 model that predict the distribution of unsettled 
claims using holdout data that is in the CAS Loss Reserve Database. As stated above, the model 
provides predictions for the sum of the losses {Cw,10} for w = 2, …,10 using {Cw,d} for w + d ≤ 11 as 
observations.  The database contains the actual outcomes available for testing. 

This paper’s goal is not to produce the smallest error.  Instead it is to accurately predict the 

distribution of outcomes.  For a given sum of claims amounts, 
10

,10
2

,w
w

C
=

∑ the model can calculate its 

percentile.  If the model is appropriate, the set of percentiles that are calculated over a large sample 
of insurers should be uniformly distributed.  And this is testable. 

The most intuitive test for uniformity is to simply plot a histogram of the percentiles and see if 
the percentiles “look” uniform.  If given a set of percentiles {pi} for i = 1,  , n, a more rigorous test 
would be to use PP plots.  To do a PP plot, one first sorts the calculated percentiles, {pi}, in 
increasing order and plots them against the expected percentiles, i.e., the sequence {i/(n+1)}.  If the 
model that produces the actual percentiles is appropriate, this plot should produce a straight line 
through the origin with slope one.  In practice, the sorted percentiles will not lie exactly along the 
line due to random variation.  But we can appeal to the Kolmogorov-Smirnov test. See, for example, 
Klugman [2] to account for the random variation.  This test can be combined with the PP plot by 

adding lines with slope one and intercepts ± 1.36/ n   to form a 95% confidence band within 
which the points in the PP plots must lie. 

This section shows the results of the above uniformity tests for both paid and incurred losses 
reported in Schedule P for four lines of insurance, Commercial Auto, Personal Auto, Workers 
Compensation and Other Liability.  After filtering out bad data, I selected 50 insurers for each line 
of insurance from the CAS Loss Reserve Database.  Appendix A lists the insurers selected and 
describes the filtering criteria. 

The results of the uniformity tests are in Figures 5.1-5.10. 
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Figure 5.1 
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Figure 5.2 
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Figure 5.3 
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Figure 5.4 
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Figure 5.5 
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Figure 5.6 
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Figure 5.7 
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Figure 5.8 
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Figure 5.9 
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Figure 5.10 
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The results are mixed when looking at the individual lines of insurance for these incurred claims 
data.  The PP-plots lie within the 95% confidence bands for three of the four lines for the LCL 
Version 1 model.  They lie within two of the 95% confidence bands for the four lines for the Mack 
model.  The results are less mixed for these paid claims data.  The PP-plots lie within the 95% 
confidence bands for only the line “Other Liability” for the Mack model.  The remaining PP-plots 
for paid claims data lie well outside the 95% confidence bands. 

The picture become clearer when we combine the percentiles in all four lines, as is done in 
Figures 5.9 and 5.10.  While outside the 95% confidence bands, the PP-plots for the incurred claims 
are close to the band, with the Version 1 model performing somewhat better than the Mack model.  
The histograms of the percentiles indicate that there are more outcomes than expected in both the 
high and the low percentiles, i.e., the ranges indicated by both models are too narrow.  As indicated 
by Figure 4.2, the Version 1 model estimates of the standard error are higher than the Mack model 
estimates, so it should come as no surprise that the Version 1 model performs better than the Mack 
model on these incurred claims data. 

The plots for these paid claims data indicate that neither model is appropriate.  I consider that the 
most likely explanation is that the paid data is missing some important information, some of which 
is included in the incurred data. 

6. CORRELATION BETWEEN ACCIDENT YEARS 

One possible reason that the LCL Version 1 model produces ranges that are too narrow is that it 
fails to recognize that there may be positive correlation between claims payments between accident 
years.  In this section I will propose a model that allows for such correlations, and test the 
predictions of this model on the holdout data. 

To motivate this model, let’s suppose we are given random variables X and Y with means µX and 
µY  with common standard deviation σ.  If we set Y = µY + z·(X – µX) we can calculate the 
coefficient of correlation between X and Y as 

( ) ( ) ( ) ⋅ − µ− µ ⋅ − µ    ρ = = =
σ σ

2

2 2

XX Y
E z XE X Y

z . 

The proposed model will be one where the logarithms of the claims are correlated between 
successive accident years.  We will refer this model as the LCLVersion 2 model. 
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( )
( )( )

1, 1

, 1, 1

~ lognormal ,

~ lognormal ,  for  = 2,...,

d d d

w d w d w d w d d

C

C z C w K− −

α + β σ

α + β + ⋅ − α −β σ
           (6.1) 

Equation 6.1 in Version 2 replaces Equation 2.3 in Version 1.  The coefficient of correlation, z, is 
treated as a random variable with its prior distribution being uniformly distributed between -1 and 
+1.  All other assumptions in Version 2 remain the same as in Version 1.  The Bayesian MCMC 
simulation in Version 2 proceeds pretty much the same as described in Section 3, with the sole 
difference being the presence of the additional parameter z.  Here is a more detailed description of 
the simulation. 

1. Similar to Table 3.2, the JAGS program returns 10,000 vectors {αw}, {βd}, {σd} and z.  
2. Similar to Table 3.3, the R program calculates the mean logs

( )1, 1w d w d w dz C − −α + β + ⋅ − α −β  . 

3. Similar to Table 3.4, the R program simulates claims (sequentially in order of increasing w) 

from a lognormal distribution with mean log ( )1, 1w d w d w dz C − −α + β + ⋅ − α −β  and 

standard deviation log σd. 

While hypothesizing correlation between successive accident years, by choosing the prior 
distribution for z to be uniform between -1 and 1, this model does not force the correlation to be 
any particular value.  If the correlation was spurious, the zs would cluster around zero.  I ran the 
model on the data in Table 3.1. Figure 6.1 provides a histogram that strongly supports the presence 
of positive correlation.  Table 6.1 shows that the predicted standard errors for Version 2 are 
significantly larger than those predicted by Version 1. 

Tables 6.2 – 6.6 provide PP plots for Version 2 that are analogous to the Version 1 plots in 
Section 5.  These plots show that the LCL Version 2 model percentile predictions lie within the 
bounds specified by the Kolmogorov-Smirnov test at the 95% level for incurred claims, but do not 
lie within the bounds for the paid claims. 
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Figure 6.1 

 

Table 6.1 

 
Leveled Chain Ladder V2 Leveled Chain Ladder V1 

 w Estimate Std. Error CV Estimate Std. Error CV Actual 
1 3,918 86 0.0219 3,917 72 0.0184 3,917 
2 2,546 74 0.0291 2,545 60 0.0236 2,532 
3 4,113 135 0.0328 4,113 107 0.0260 4,279 
4 4,324 162 0.0375 4,309 123 0.0285 4,341 
5 3,565 154 0.0432 3,548 113 0.0318 3,587 
6 3,338 179 0.0536 3,316 136 0.0410 3,268 
7 5,237 356 0.0680 5,313 270 0.0508 5,684 
8 3,736 377 0.1009 3,777 300 0.0794 4,128 
9 4,122 699 0.1696 4,203 564 0.1342 4,144 
10 3,937 1,367 0.3472 4,081 1,112 0.2725 4,181 

Total  
w=2,…,10 34,918 2,192 0.0628 35,206 1,524 0.0433 36,144 
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Figure 6.2 
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Figure 6.3 
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Figure 6.4 
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Figure 6.5 
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Figure 6.6 
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7. CONCLUDING REMARKS 

When a model fails to validate on holdout data one has two options.  First, one can improve the 
model.  Second, one can search for additional information to include in the model.  This paper is the 
result of an iterative process where one proposes a model, watches it fail, identifies the weaknesses, 
and proposes another model.  Successful modeling requires both intuition and failure.   

The successful validation of the LCL Version 2 model on the incurred claims data was preceded 
by the failure of a quite elaborate model, Meyers-Shi [6], built with paid incremental data.  This led 
to the decision to try a model based on cumulative incurred claims, and continued through Versions 
1 and 2 of the LCL model.4

The simultaneous successful validation of Version 2 on incurred claims and the failure of any 
model (that I tried) to validate with paid claims suggest that there is real information in the case 
reserves that cannot be ignored in claims reserving. 

   

A key element in the success of the LCL model is its Bayesian methodology.  The simulations 
done in Meyers [5] suggest that models with a large number of parameters fit by maximum 
likelihood will understate the variability of outcomes, and that a Bayesian analysis can, at least in 
theory, fix the problem.  The recent developments in the Bayesian MCMC methodology make the 
Bayesian solution practical. 

The LCL models were designed to work with Schedule P claims data.  Individual insurers often 
have access to information that is not published in their financial statements.  We should all recall 
that stochastic models produce conditional probabilities that are not valid in the presence of 
additional information.That being said, I suspect that many insurers will find the LCL model useful, 
as it reveals what the outside world could see. 

To the best of my knowledge, no stochastic loss reserve model has ever been validated on such a 
large scale.  In any modeling endeavor, the first is always the hardest.  Now that we have some idea 
of what it takes to build a successfully validated model, I would not be surprised to see better 
models follow. 

 

 

                                                           

4There were numerous other modeling attempts that will remain unreported. 
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8. The R/JAGS CODE 

The code that produced Tables 4.1 and 6.1 and Figure 4.1 is included in the CAS eForum along 
with this paper.  The code is written in R (freely downloadable from www.r-project.org) and JAGS 
(freely downloadable from www.mcmc-jags.sourceforge.net).  The code requires that the CAS Loss 
Reserve Database (www.casact.org/research/index.cfm?fa=loss_reserves_data) be downloaded and 
placed on the user’s computer.  The code requires the use of the “rjags” and the “ChainLadder” 
packages in R. 

The user should place the files “LCL1 Model.R,” “LCL2 Model.R,”“LCL1-JAGS.txt,” and 
“LCL2-JAGS.txt” into a working directory.  In the first four lines of the R code the user should 
specify: (1) the name of the working directory; (2) the name and location of the file in the CAS Loss 
Reserve Database; (3) the group code for the insurer of interest; and (4) the type of loss – either paid 
or incurred.  Then run the code.  The code takes about a minute to complete and two progress bars 
indicate how much of the processing has completed. 

The code should work for any complete 10 x 10 triangle.  Similar code has run for all the group 
ids listed in Appendix A.   

 

 

  

http://www.r-project.org/�
http://www.casact.org/research/index.cfm?fa=loss_reserves_data�
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APPENDIX A – GROUP CODES FOR SELECTED INSURERS 

Commercial Personal Workers’ Other 
Auto Auto Comp Liab 
353 353 86 620 
388 388 337 671 
620 620 353 683 
671 671 388 715 
833 715 671 833 
1066 965 715 1066 
1090 1066 1066 1090 
1538 1090 1252 1252 
1767 1538 1538 1538 
2003 1767 1767 1767 
2135 2003 2135 2003 
2208 2143 2712 2135 
2623 3240 3034 2143 
2712 4839 3240 2208 
3240 5185 5185 2348 
3492 5320 6408 3240 
4839 5690 7080 5185 
5185 6947 8559 5320 
5320 8427 9466 6408 
6408 8559 10385 6459 
6459 10022 10699 6807 
6777 11037 11126 6947 
6947 11126 11347 8079 
7080 13420 11703 10657 
8427 13439 13439 11118 

Commercial Personal Workers’ Other 
Auto Auto Comp Liab 
8559 13501 13501 11126 
10022 13641 13528 11460 
10308 13889 14176 12866 
11037 14044 14257 13501 
11118 14257 14320 13641 
13439 14311 14370 13919 
13641 14443 14508 14044 
13889 15199 14974 14176 
14044 15407 15148 14257 
14176 15660 15199 14370 
14257 16373 15334 14974 
14320 16799 16446 15024 
14974 18163 18309 15571 
18163 18791 18767 16446 
18767 23574 18791 18163 
19020 25275 21172 18686 
21270 25755 23108 18767 
26077 27022 23140 26797 
26433 27065 26433 27065 
26905 29440 27529 28436 
27065 31550 34576 35408 
29440 34509 37370 37052 
31550 34592 38687 38733 
37036 35408 38733 41459 
38733 42749 41300 41580 

 

Selection Criteria 

1. Removed all insurers with incomplete 10 x 10 triangles. 
2. Sorted insurers in order of the coefficient of variation of the premium. 
3. Visually inspected insurers and removed those (very few) with “funny behavior.” 
4. Kept the top 50. 
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A Practical Way to Estimate One-year Reserve Risk 

Ira Robbin, PhD 
 
______________________________________________________________________________ 
Abstract  

The advent of Solvency II has sparked interest in methods for estimating one-year reserve risk.   This paper 
provides a discussion of the one-year view of reserve risk and some of the methods that have been proposed for 
quantifying it.  It then presents a new method that uses ultimate reserve risk estimates, payment patterns, and 
reporting patterns to derive one-year reserve risk values in a systematic fashion.  The proposed method is a more 
refined version of the simplistic approach used in the Standard Formula.   Yet, it is also practical and robust: 
triangles, regressions, or simulations are not required.    
 
Keywords:  Solvency II, One-year Reserve Risk, Best Estimate, Loss Reserves, Technical Provision. 
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1. INTRODUCTION 

One-year reserve risk is a relatively new concept, especially for actuaries in the United States.   
Historically, actuaries have been concerned with whether the reserve is adequate to cover ultimate 
loss.  With the advent of Solvency II, actuaries have now also begun to consider the one-year 
perspective.  Under Solvency II, the capital requirement for unpaid loss is defined as the amount 
sufficient to cover risk over a single year.  Solvency II also features a market-consistent approach to 
the valuation of unpaid loss liabilities.1

What is one-year reserve risk and how is it computed? Conceptually, it is a measure of how much 
an initial unbiased mean estimate of the reserve might change in one year. Under European 
Insurance and Occupational Pensions Authority (EIOPA)  regulations, such risk can be computed 
either with a carefully delineated Standard Formula or, alternatively, with an approved, enterprise-
specific internal model.

  Under this approach to valuation, unbiased estimates of 
unpaid loss are discounted and then loaded with an explicit risk margin. This risk margin depends on 
the projected capital requirements over the run-off period. So, under Solvency II, one-year risk 
dictates not only the capital requirement, but also the valuation of the reserve.    

2

The Standard Formula assumes a lognormal distribution of one-year retrospective results for 
each EIOPA line of business.  Each line is assigned a single coefficient of variation (CV) that applies 

         

                                                           
1 There is no market in which loss liabilities are openly traded.  So the market-based approach is really a mark-to-model 
approach.  Not enough is disclosed about loss portfolio transfers to fit pricing on these deals to a model.    
2 Partial use of an internal model is also allowed subject to regulatory approval.   
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to all its unpaid losses and to each year of run-off.    The CVs are promulgated by EIOPA.3

An internal model tailored to the business written by a company should provide a more accurate 
estimate of its capital requirement.  Yet, a firm may be reluctant to use an internal model.  Building 
such a model is costly.  The model must be supported by extensive documentation and it must pass 
validation checks.   It must clear imposing regulatory hurdles.   After all that, the model might well 
show the firm needs more capital than would be indicated by the Standard Formula.

   The 
regulator also mandates a correlation matrix and prescribes algorithmic procedures for arriving at the 
all-lines aggregated estimate of one-year reserve risk.   

4

Even with an internal model, a company must still derive the required reserve capital based on 
one-year reserve risk.   Several authors have presented methods for deriving one-year reserve risk.

    

5

The paper will first provide an intuitive explanation of one-year reserve risk and outline the key 
conceptual factors that determine its magnitude.  Then there will be a brief overview of how one-
year reserve risk is used in computing Solvency II Solvency Capital Requirements (SCR) and the 
related Risk Margins in the Technical Provision for unpaid loss.   Following that, the paper will 
summarize how one-year reserve risk is quantified in the Standard Formula.   Next there will be 
discussion of the challenges faced in using Schedule P reserve tests or reserve ranges to derive 
Solvency II consistent one-year reserve risk values.    Then, the paper will survey various methods 
that have been proposed to quantify one-year reserve risk in an internal model context.   The paper 
will examine some of the difficulties in implementing such models and applying them to long-tailed 
lines of business with sparse data.    

   
This paper provides another technique.  It is a bit more sophisticated than the Standard Formula, 
while being more practical and robust than many of the other proposed internal model approaches.   

This will lead to a presentation of the proposed algorithm.  It is very similar to the Standard 
Formula in that it uses lognormal distributions and CVs.   Yet, it has two key features that 
distinguish it from the Standard Formula.   First, it employs systematically derived CVs that vary 
based on the decomposition of the unpaid loss between IBNR and Case Outstanding (Case O/S) 

                                                           
3 In December 2011, the Joint Working Group (JWG)[5] recommended revisions in the proposed factors based on its 
calibration analysis.  
4 It is unclear whether Solvency II will increase or decrease in required funds relating to unpaid losses  For long-tailed 
lines, the one-year view of risk may tend to produce a fairly small capital requirement, even if the ultimate risk is quite 
large.  Discounting with an illiquidity premium, as dictated by Solvency II, also reduces the funds backing the unpaid loss 
liability.     
5 See Merz and Wuthrich [8], Ohlsson and Lauzeningks [10], and Rehmann and Klugman [11].  



A Practical Way to Estimate One-year Reserve Risk 
 

Casualty Actuarial Society E-Forum, Summer 2012    4 

reserves.  This leads to CVs that may change each year as the reserve runs off.   Depending on the 
expected evolution of the mix of unpaid loss, the “Varying CV” model being proposed in this paper 
could arrive at capital requirements and risk margins higher or lower than the Standard Formula. 
The other key feature of the proposed algorithm is that it uses the expected change in ultimate 
reserve risk in order to derive one-year reserve risk.  This is a natural approach that automatically 
reconciles ultimate reserve risk with the series of one-year views.    

2.   ONE-YEAR RESERVE RISK  

What is one-year reserve risk?   Intuitively, it is a gauge of how much the estimated ultimate loss 
might change over one year.   Conceptually, it is equivalent to the variability in estimates of ultimate 
loss made one year later.  In the context of Solvency II, the expected unpaid loss is called the 
undiscounted Best Estimate and it is assumed to be unbiased and have no built-in prudential margin.  
To restate with a bit more precision, one-year reserve risk is an assessment made at the current 
evaluation date of the variability that could exist in retrospective Best Estimate reserve valuations 
made one year later.   

2.1 One-year Reserve Risk Illustrative Example  
To clarify the concept, assume the set of scenarios and probabilities shown in Table 1.  At the 

initial evaluation date, there is no way of knowing which scenario holds. What is known is that the 
mean unpaid is $100 over the four scenarios.  Thus $100 is the initial undiscounted Best Estimate.    

 
 Table 1  

 

 
 

( 1 ) ( 2 ) ( 3 ) ( 4 ) ( 5 ) ( 6 ) ( 7 ) ( 8 ) ( 9 ) ( 10 )

Scenario Prob

Initial 
Case 
O/S

Initial 
IBNR

 Initial 
Estimate 
Unpaid

Yr 1
 Paid

End of 
Yr 1
 Case 
O/S

End of 
Yr 1
IBNR

End of 
Yr 1 
Est'd 
Unpaid

Retro 
Estimate  
Intial 
Unpaid

(3) + (4) (7) + (8) (6) + (9)
1 25% $40 $60 $100 $10 $45 $40 $85 $95
2 25% $40 $60 $100 $10 $30 $35 $65 $75
3 25% $40 $60 $100 $30 $45 $50 $95 $125
4 25% $40 $60 $100 $30 $30 $45 $75 $105

Avg $40 $60 $100 $20 $38 $43 $80 $100
Stnd Dev $18
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   In each scenario, a retrospective (retro) estimate of the initial unpaid is obtained by adding the 
year one paid amount to the estimate of mean unpaid loss as of the end of year one.  One-year 
reserve risk arises from the volatility of these retro estimates. The $18 standard deviation of the retro 
estimates is a quantification of the one-year reserve risk.      

The example highlights the importance of the information to be gained over one year and the 
yearly movement in the distribution of the estimates of unpaid loss.  It also demonstrates the 
importance of IBNR estimation.  In this example, the calculation of the IBNR has been left 
deliberately vague.  A different IBNR calculation might have produced IBNR estimates different 
from the ones shown in Column 8 of Table 1 and thus led to a different standard deviation value.   

2.2 Conceptual Drivers of One-year Reserve Risk  
There are three conceptual drivers of one-year reserve risk.   

• First is the inherent volatility of the ultimate unpaid loss.  Both the amount and timing 
will in general differ from current mean estimates.   The difference can be due to random 
statistical fluctuation, systematic movement in underlying claims processes, and inherent 
estimation error in the initial undiscounted Best Estimate.     

• Second is the amount of information that will be gained over one year.  This information 
could include claim data such as paid loss, reported loss, claims closed, claims reported, 
and so forth, as well as external information such as a new judicial ruling or a medical 
treatment that could influence subsequent claims settlements.   The information we gain 
is subject to statistical fluctuations.   

• Third is the methodology and data used to derive an updated Best Estimate one year 
later.  Actuaries often work up indications with a variety of methods and data.  They may 
have a set of default weights for averaging the methods to get a final pick.  Such weights 
would usually vary by accident year maturity. 

2.2.1 Long-Tailed Lines  

When reserving long-tailed lines, actuaries generally opt for stability over responsiveness, at least 
for the first few years of development.  This is entirely appropriate: wild swings in the valuation of 
reserves would justifiably undermine confidence in such valuations.  However, one consequence is 
that long-tailed lines with the largest reserve risk at ultimate might have one-year reserve risk values 
that are relatively small in magnitude.  It has been noted that the overall conceptual basis of one-year 



A Practical Way to Estimate One-year Reserve Risk 
 

Casualty Actuarial Society E-Forum, Summer 2012    6 

reserve risk could lead to a relatively low capital requirement for long-tail business, especially over 
the first few years of development.6

3. SOLVENCY II TECHNICAL PROVISION CALCULATION 

    

The Solvency II Technical Provision (TP) as detailed in [4] is the sum of the Best Estimate (BE) 
plus a Risk Margin (RM).   

𝑇𝑇𝑇𝑇= 𝐵𝐵𝐵𝐵+ 𝑅𝑅𝑅𝑅   (3.1) 

By definition under Solvency II, the “Best Estimate” is the discounted mean of possible 
scenarios.7   The discounting is done using risk-free yield curves by currency as promulgated by 
EIOPA.   The rates used for discounting are increased by “illiquidity” premiums that are also 
promulgated by EIOPA.8

𝐵𝐵𝐵𝐵= 𝐵𝐵[𝑇𝑇𝑃𝑃 𝑜𝑜𝑜𝑜 𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈 𝐿𝐿𝑜𝑜𝐿𝐿𝐿𝐿] 

    

(3.2) 

The Risk Margin is the present value of Cost of Capital charges for the projected Reserve 
Solvency Capital Requirements (SCRs) over the run-off period.9

𝑅𝑅𝑈𝑈𝐿𝐿𝑅𝑅 𝑅𝑅𝑈𝑈𝑀𝑀𝑀𝑀𝑈𝑈𝑈𝑈=  � 𝑀𝑀𝐶𝐶𝐶𝐶𝐶𝐶∙𝑆𝑆𝐶𝐶𝑅𝑅𝑦𝑦 ∙𝑣𝑣(𝑦𝑦)𝑦𝑦−1 

   

(3.3) 

Here rCOC is the required cost-of-capital rate10

The SCR each year is defined as the one-year reserve risk for that year.  Thus computing the 
Technical Provision requires the actuary to project the series of one-year reserve risk values, year-by-
year, over the run-off period.      

 and v(y) is the discount factor for year y. 

4. STANDARD FORMULA RESERVE CAPITAL   

Under EIOPA regulation [4], there are ten non-life Lines of Business (LOB).  An SCR is 

                                                           
6 Ohlsson and Lauzeningks[10] observe, “ … a problem with the one-year is that reserves for long tail business might 
…require less solvency capital than some short tail business…. This is a general problem with the one-year horizon”.     
7 Most property and casualty actuaries find this terminology confusing and inconsistent with common usage in the 
profession.  One, England [6], memorably noted the need to “retune your mind” in connection with the Best Estimate 
definition.  As needed for clarity we will refer to Undiscounted Best Estimates and Discounted Best Estimates.     
8 Objections have been raised by property and casualty actuaries (See Schmidt [12]) to the use of Illiquidity Premiums.  
The effect of an Illiquidity Premium is to reduce the Best Estimate below the risk-free present value of unpaid loss.  
While Illiquidity Premiums may be used to explain market pricing of different investment instruments, there is no 
market of insurance liabilities with pricing data to validate whether this concept applies to property and casualty 
insurance liabilities.     
9 See SCR 9.2 in [4].    
10 Currently set by EIOPA at 6.0%. 
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computed for the combination of Premium Risk and Reserve Risk for the aggregated LOBs.   

4.1 Standard Formula Premium and Reserve Risk  
Under the Standard Formula, one-year reserve risk for each LOB is determined using a 

lognormal distribution with a CV as mandated by EIOPA.   A lognormal assumption and a CV are 
also provided for Premium Risk for each LOB.  Formulas are used to define Premium Volume and 
Reserve Volume measures.  A Premium-Reserve covariance assumption is used along with these 
volume measures to arrive at a CV and a volume measure for the combined premium and reserve 
risk.  This is done for each LOB.  A combined lines CV is then derived using a correlation matrix 
supplied by EIOPA along with the individual LOB CVs and volume measures.  An overall volume 
measure is also computed.   This is done with a formula that gives credit for geographical diversity.11

4.2 CVs and Risk Margins by LOB 

  
The SCR for premium and reserve risk is computed by multiplying the volume measure against the 
99.5% percentile excess of the mean.   The overall SCR is then used to generate the cost-of-capital 
and the overall risk margin.   This extremely brief overview is intended to give the reader a general 
introduction to the Standard Formula reserve risk algorithm.  This provides the context for 
understanding the computation of the standalone reserve SCRs.             

To allocate the overall risk margin by line, standalone SCRs at the LOB level are computed using 
the CVs provided by EIOPA.  Then the guidance states, “The allocation of the risk margin to the 
lines of business should be done according to the contribution of the lines of business to the overall 
SCR during the lifetime of the business.”12

The original one-year CVs provided by EIOPA vary by LOB in a reasonable fashion as do the 
latest set of recalibrated factors produced by the JWG [5].   However, the use of one CV per line 
over the whole run-off period is a notable simplifying assumption.   As reserves move from IBNR 
to a mix of IBNR and Case Outstanding and then to just Case Outstanding, it is not likely that the 
CV of the one-year development distribution would remain unchanged.  However, the use of a 
single factor for each LOB is not uncommon in reserve capital requirement calculations.  Rating 

   In Appendix A, we provide the derivation of a 
standalone SCR for reserves assuming the one-year distribution is lognormal as is done under the 
Standard Formula.   

                                                           
11 See SCR.9.2 in the QIS5 Technical Specifications [4] for more detail.  
12 See TP.5.26 in the QIS5 Technical Specifications [4].  
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agency reserve capital formulas typically use a single factor for each line of business, irrespective of 
the mix of reserves or the age of development.   Perhaps the key advantage of a “one factor per 
line” approach is that it makes the calculations tractable.   Further, if appropriately calibrated, it 
should yield reasonable indications for a company with an established book of business that has 
maintained an average pattern of growth over time.   

4.3 Size Independent Formula  
The Reserve SCR under the Solvency II Standard Formula is implicitly based on the assumption 

that all risk is parameter risk.   This follows because the formula does not reflect the size of the 
reserve.   

A size independent method is certainly practical and convenient.  It dispels issues of fairness 
between large and small companies.  Size independent methods have been used and are being used 
in other capital requirement calculations.  In particular, rating agency capital requirements for 
reserves are also typically computed by applying factors to the line of business reserve balances.   
The factors typically do not depend on the volume of reserves.     

While convenience and consistency are advantages in using a fixed factor, size independent 
approach, such an approach implicitly ignores process risk.   Ignoring process risk is the only way 
the same factor can be used for all companies, large and small.  Yet, the actual risk for any given 
company includes both process and parameter risk.   Depending on the type of business, volume of 
business, and the limits involved, either parameter or process risk may predominate. With a large 
volume of high frequency-low severity business, process risk will approach zero.  On the other hand, 
process risk can be huge for a relatively small volume of low frequency-high severity business.   

4.4 Standard Formula Calibration to Average Size Portfolio   
In calibrating factors for the Standard Formula, analysts have had to sidestep the contradiction in 

using a size-independent formula to model a type of risk that is partly size dependent. The latest 
EIOPA JWG report on calibration [5] noted, “… volatility factors for premium and reserve risks are 
typically impacted by the size of the portfolio (in the sense that with increasing size the volatility will 
typically decrease).  However, the JWG was mandated to derive single factors for each of the 
individual lines of business (separately for premium and reserve risk), irrespective of portfolio size 
since this is consistent with the current design of the standard formula approach”.  The 
recommended factors are based on a portfolio of average size. The JWG recognized that any fixed 
factor “… will imply that the SCR will be too large for the larger portfolios and too small for the 
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smaller ones”.   

5. ONE-YEAR RESERVE RISK DATA 

Data from various countries and regulatory accounting paradigms have been examined by 
analysts [5] in deriving factors for the Solvency II Standard Formula.  For possible use in internal 
models, we will briefly examine two sources of reserve volatility data that U.S. actuaries are familiar 
with.    

5.1 Schedule P One-year Reserve Tests 
In the United States, the one-year reserve test in the NAIC Statutory Annual Statement is a 

retrospective comparison providing information about current estimates of the adequacy of Booked 
Reserves one year ago.  Results are shown by Schedule P line and by accident year.  The one-year 
test would, in principle, provide an empirical measurement of undiscounted one-year reserve risk.    

The problem is that Booked Reserves are not necessarily Best Estimates.  Further, there may not 
be enough information disclosed to directly derive a Best Estimate.  The Booked Reserves may 
include an implicit prudential margin.  They may also be discounted at an undisclosed rate.  As well, 
the adequacy of booked IBNR may vary over the underwriting cycle as companies build up and 
deplete reserve cushions in order to manage calendar year results.13   If that is the case, it may be 
effectively impossible to disentangle inherently random statistical and projection error from systemic 
non-random error due to cycle management of the booked reserves.14

5.2 Ranges 

  This could also partly explain 
high correlations between different lines of business.   Solvency II measures risk with respect to the 
one-year change in the mean estimate of ultimate.   If posted estimates of ultimate are not equal to 
the mean, one could argue that risk estimates derived from posted reserve data might systematically 
overstate or understate the “true” amount of Solvency II risk.      

Actuaries in the United States have some considerable experience in estimating ranges for 
ultimate unpaid loss.  The prior version of the relevant Actuarial Standard of Practice required an 
opining actuary to have such a range when judging whether a reserve was adequate, deficient, or 

                                                           
13 See Boor [2]. 
14 In calibrating Standard Formula risk factors, the EIOPA JWG [5] noted “the possible existence of an underwriting 
cycle but did not find it practicable to incorporate or embed an explicit recognition of such cycles into the calibration 
methodology.” 
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redundant.15

Several problems need to be solved in order to use ranges to derive one-year reserve risk values. 
First an assumption is needed about how to translate a reserve range into a statement about statistics 
of the ultimate unpaid loss random variable.  Sometimes, ranges are derived by looking at the range 
of estimates resulting from different reserving methodologies or different sets of parameters.  For 
Solvency II applications the reserve range needs to be related to statistics of the unpaid loss 
distribution.  For example, the range might be defined as two standard deviations under and over 
the mean or it might be the interval from the 25th percentile to the 75th percentile.  Even after the 
range is related to a statement about the statistics of the ultimate loss random variable, additional 
significant assumptions may be needed to arrive at the 99.5% percentile.  One common assumption, 
for instance, is that the distribution is lognormal. The next major problem is to figure out how to 
use the ultimate view to derive the series of one-year views.  The variability at ultimate should lead to 
variability in the series of annual results over the run-off period. Volatility in the estimation process 
may add additional year-by-year movement. Another key challenge is practical: how to produce a 
consistent set of ranges in fine enough detail.  Depending on the level of detail in an internal model, 
ranges might be needed by line, business unit, or by accident year.  Usually ranges are not produced 
at such a level.   Even if an actuary has a method for producing ranges at a high level of aggregation, 
an approach is needed to ensure ranges at a more granular level are consistent.      

  

6. ONE- YEAR RESERVE RISK FROM AN INTERNAL MODEL 

Solvency II regulations allow for partial or complete use of an internal model, subject to approval 
by supervisory authorities.   Our focus is on use of an internal model to quantify one-year reserve 
risk.  With an internal model, a firm may cut data in categories different those proscribed under the 
Standard Formula.  It may also employ algorithms different from those used in the Standard 
Formula.      

6.1 Size Dependence and Modeling Refinements  
An internal model may allow for consideration of process and parameter risk and it may be 

implicitly or explicitly dependent on the volume of reserves.  For large companies this may 
legitimately produce a relative capital requirement lower than that produced by the Standard 
Formula.  
                                                           
15 Under the latest ASOP #43 [1], ranges are not required if an actuary judges the reserves to be adequate.   
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An internal model might incorporate finer line of business breakouts than the Solvency II 
defaults.  Such finer breakouts should result in a model that more closely matches the actual 
organizational and line of business divisions of a company.  This is important if the internal model is 
ever to be employed for anything beyond computing regulatory capital requirements.  Other uses 
need to be found if an internal model is to pass the “Use Test,” a requirement for approval of under 
Solvency II.16

An internal model can also reflect different levels of risk by accident year within a particular line 
of business. As was true for line of business refinement, accident year refinement should provide a 
more accurate model of the Best Estimate reserves.    

    

With each refinement, the size of individual reserve cells gets smaller.  A size-dependent internal 
model would assign each cell a relatively larger amount of process risk.   However, after being added 
together, the aggregated result may have a lower amount of risk than if it had been left as an 
undivided whole. It all depends on the correlation assumptions.    

6.2 One-year Reserve Risk Estimation Methods   
Several general ways have been proposed for estimating one-year reserve risk.    

6.2.1 One-year Variance in Chain Ladder Projection Ultimate 

Merz and Wuthrich [8] derive estimates for the variance in the one-year claims result17

However, the method does not directly generate the 99.5% percentile needed for Solvency II 

 based on 
the Distribution-Free Chain-Ladder framework.  They built on work done by Mack on estimating 
variance at ultimate in projections made with the Chain-Ladder method.   A key assumption is that 
unbiased estimates of ultimate losses can be obtained by applying age-to-latest age factors to the 
latest diagonal of cumulative paid losses.   The age-to-latest age factors are derived from the triangle 
of paid loss data.  Merz and Wuthrich arrive at closed-form estimators of the one-year prediction 
error with terms that depend only on the actual triangle of data.  This work was ground-breaking 
and showed that results from a one-year perspective could be obtained with a standard reserving 
methodology.   

                                                           
16 Since an internal model is inappropriate or too cumbersome for either pricing business or estimating unpaid losses, 
the Use Test may be difficult to pass.   Evaluating capital required for different business units may be a “use”, but that 
would vanish if the internal model is not done at the business unit level.     
17 The one-year claims result is defined by Merz and Wuthrich as the difference between the retrospective estimate and 
the initial estimate of unpaid loss.  
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calculations.  An additional assumption is needed.  For example, as is often done in Standard 
Formula derivations, one could assume the distribution is lognormal.  With the variance the method 
does generate and a lognormal assumption for the one-year claims result, the computation is 
straightforward.  Another serious concern is that the method does not handle tail factors.  Therefore 
it may not work on very long-tailed lines. In addition, it does not readily generalize beyond the 
Chain-Ladder framework.    

6.2.2 Triangle Regression Analysis 

Rehman and Klugman [11] analyze triangles of estimated ultimate losses.  They assume the age-
to-age ratios of the estimated ultimates are lognormal.   They define the natural logs of the ratios as 
error random variables,  𝑒𝑒𝑈𝑈

𝑗𝑗 = ln(𝑈𝑈𝑈𝑈
𝑗𝑗+1/𝑈𝑈𝑈𝑈

𝑗𝑗 )  where  𝑈𝑈𝑈𝑈
𝑗𝑗  is the estimate of ultimate for accident year, 

i, as of calendar year j.  The development year is d = j- i +1.  Under the lognormal assumption and 
assuming the lognormal parameters depend only on the development period (column), it follows 
that  𝑒𝑒𝑈𝑈

𝑗𝑗~𝑁𝑁(𝜇𝜇𝑈𝑈 ,𝜎𝜎𝑈𝑈2) .   If an estimator is unbiased, one would have: 𝐵𝐵�𝑈𝑈𝑈𝑈
𝑗𝑗+1/𝑈𝑈𝑈𝑈

𝑗𝑗  � = 1.  For an 
unbiased estimator it would follow that  𝜇𝜇𝑈𝑈 =  −.5 ∗  𝜎𝜎𝑈𝑈2 .  However, the method does not require 
the estimators be unbiased.  The “µ” parameters are estimated by taking the average of error 
random variables in a column.  The “σ” parameters are estimated by computing the sample variance 
(with bias adjusted denominator) in a column.   Using the lognormal assumption one can compute 
the 99.5% percentile of the one-year error distribution as is needed for Solvency II.  Rehman and 
Klugman [11] also compute overall error for an accident year and for a calendar year diagonal using 
empirical covariance estimates from the triangle.    

The method of Rehman and Klugman is an analysis of results produced by an algorithm, but it 
does not require that the algorithm be specified.  Of course, it is required that the same algorithm be 
used throughout the historical triangle and it is assumed the same algorithm will be used for the 
projection.   Because it does not require the analyst to know just what algorithm is being used and 
because it is focused solely on the results that have been obtained, the methodology can be fairly 
described as a general and solidly empirical approach.18

Miccolis and Heppen [9] applied this approach to data from a number of insurance groups and 

   However the method does require as many 
evaluations as are needed for at least a few years to be fully developed.  Otherwise the later 
evaluation age parameters may be very erratic.   

                                                           
18 As was noted by Rehman and Klugman [11], it can even be applied to paid or reported data as well as to the projected 
ultimates. 
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obtained good results for most lines.  However, they noted problems could arise when data was 
sparse or subdivided into small business units.  They suggested combining data for variance analysis.        

6.2.3 Simulation of Next Diagonal and Actuary-in-a-Box Revaluation  

Ohlsson and Lauzeningks [10] outline a simulation methodology that starts with an estimated 
unpaid amount that is assumed to be the actuary’s undiscounted Best Estimate.  They further 
assume it is derived from a specified algorithm.  This algorithm does not need to be a simple 
formula.  It may encompass use of different particular methods that can vary by accident year 
maturity.19  The reserve computation algorithm is called the “actuary-in-a-box”.20

While the Ohlsson and Lauzeningks framework makes sense as a constructive way to estimate 
one-year reserve risk based on given assumptions supplied by the modeler, the user needs to be 
aware that the answer is based on those underlying assumptions.     

  Under the 
Ohlsson and Lauzeningks framework, a simulation model is then used to generate the next diagonal.  
Ohlsson and Lauzeningks did not specify distributional assumptions or forms: they left that to the 
modeler.  All the simulation needs to do is to produce what the actuary-in-a-box requires to arrive at 
the updated Best Estimate.  Then the model computes the retrospective Best Estimate of the initial 
unpaid.   After running the simulation thousands of times, one will obtain a simulated distribution of 
one-year claim development results and the 99.5% percentile of this distribution is the initial capital 
requirement.  This is a very general framework.  By embedding it within a simulation model context, 
it allows the developer of an internal model to simulate correlations between accident years and 
between lines of business.    

6.2.4 Bootstrapping and Extended Simulation Results   

Boumezoued, Angoua, Devineau, and Boisseau [3] describe various general models within the 
simulation framework.  One of particular interest is a bootstrapping simulation method that yields 
one-year (expected) simulated variance equal to the Merz and Wuthrich variance formula.   
However, their simulation does more than provide a way to approximate the variance.  It also 
provides a direct way to estimate the 99.5% percentile.21   Boumezoued, Angoua, Devineau, and 
Boisseau also extend the one-year recursive bootstrap method to include a tail factor.22

                                                           
19 Ohlsson and Lauzeningks mention for example a development factor and regression extrapolation method for older 
years and Generalized Cape Cod for the latest years.   

  

20 The phrase “actuary-in-a-box” has been attributed to Ohlsson.  
21 One could make a lognormal assumption and use the variance computed via the method of Merz and Wutrich to 
derive the CV.  With the CV, one could then calculate the 99.5% percentile.    
22  Recall the Merz and Wuthrich algorithm does not explicitly contemplate a tail factor. 
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Boumezoued, Angoua, Devineau, and Boisseau also analyze process error and perform simulations 
using different copulas to capture dependence between different accident years and lines of 
business.  In addition, they compute the distribution for each year of the run-off period until 
ultimate.  This set of computations for each of the years is needed for the Risk Margin calculation 
under Solvency II.    

6.2.5 Recognition Factor Methods   

A class of popular methods23

The idea can also be applied in a simulation context.  First, an ultimate value of unpaid is 
simulated.  Then a fraction of the deviation of the simulated ultimate from the initial mean unpaid is 
recognized as dictated by the first year recognition factor.   If the mean unpaid was $100 and a 
simulated unpaid was $150, then with a first year recognition factor of 40%, the recognized 
retrospective estimate of unpaid after one year would be $120 [ =$100+ 40%* ($150-$100)].    

 starts with ultimate volatility and then uses “recognition factors” to 
estimate the one-year risk.  Perhaps the simplest variant of this approach is to start with an estimate 
of the variance at ultimate and then apply a one-year recognition factor to estimate the variance 
recognized after one year. If the mean unpaid was $100 and the ultimate variance was 400, then with 
a first year recognition factor of 40%, the recognized variance after year one would be 160.      

There are a few different ways to employ a recognition factor approach beyond the first year.  In 
one approach, there are a set of factors by run-off year and the factors sum to unity.  If the factor 
for a particular run-off year is 15%, then 15% of the initially estimated variance would be recognized 
in that year.   An alternative is to apply the factors to the remaining unrecognized variance as of the 
end of the prior year.  With this alternative, the factors would not need to sum to unity.  With run-
off factors of 60% and 50% for the first two years, 60% of the initial variance would be recognized 
the first year and 20% the second year.  The 20% is obtained as 50% of the 40% remaining after the 
60% has been recognized the first year. 

Other variations utilize beta distributions to model recognition factors or employ more 
sophisticated year-by-year sequential simulation algorithms.  

An advantage of the recognition factor methods is that they connect directly to the estimated 
distribution of ultimate unpaid.  However, if the recognition factors are not in some way connected 
to the reserve run-off, one could well end up with CVs that vary erratically by year.  Partly to 

                                                           
23  The Lloyds Solvency II workshop slides [7] stated that “Most approaches … fall into one of two categories” and then 
listed “Recognition pattern” methods as the second of the two.  
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prevent such anomalies, recognition factors chosen in practice vary between long-tail and short-tail 
lines.   Property recognition factors tend to be fairly large the first year or two. They then decline 
sharply so that the run-off of unpaid loss does not outpace the run-off of the variance.  Casualty 
recognition factors are typically modest the first few years. Then they increase and finally decline.   
While sensible ad hoc rules ameliorate the potential mismatch between the remaining unpaid loss 
and the remaining unrecognized variance, they do not always eliminate it.   A better approach would 
be to tie the recognition factors to the reserve run-off pattern so the resulting one-year risk CVs are 
always reasonable.   

While recognition factor approaches have some intuitive appeal, it is not clear how to obtain 
them from data.  Discussion of recognition factor methods can sometimes become confused since 
the word “recognition” is subject to misinterpretation.  From one perspective, it seems to imply that 
the ultimate is already known to management and that management has decided it will recognize in 
financial reports only a portion of what is known.  This is not a correct interpretation of 
“recognition” in the context of computing Solvency II one-year reserve risk.   In that context, the 
concept of “recognition” describes all that can reasonably be known and projected, given the 
inherent lack of knowledge at the evaluation date.   

After the possible confusion from terminology is dispelled, there still remains the question of 
how to compute a recognition factor from data.  Historic booked reserves reflect a complex mix of 
prudential margins, implicit discounting, systematic trends, noise, biased methods, and cycle 
management.  So, the movement of booked reserves alone does not provide data on recognition in 
the Solvency II context.     

6.3 Comparative Summary of One-year Reserve Risk Methods   
Surveying the field, we see a variety of methods with different strengths and weaknesses.    

Basing a model on a triangle of loss data, whether by making Chain-Ladder projections or fitting 
natural logs of ratios of estimates of ultimate, is a fine approach when there is enough data, when 
that data is well-behaved, and when there is no tail.   A key advantage is that no exogenous 
parameters or assumptions are needed: the data dictates the answer.  However, triangle-based 
models often become erratic with sparse long-tailed data or on low-frequency, high-severity 
businesses.  Combining data from several lines could temper volatility and thus produce less erratic 
parameter estimates. However, the practice of combining nonhomogeneous lines is questionable.   
While ostensibly leading to better-behaved risk estimates, it may also implicitly underestimate the 
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risk for particular segments of the combined business and also for the combined total.   This 
tradeoff between stability and accuracy needs to be carefully considered when combining data.          

The actuary-in-a-box technique is more robust.  It can be applied to businesses for which the 
triangle is not complete.  However, it depends on assumptions that may or may not be reasonable.  
Bootstrapping can work fairly well and connects with actual data by construction, but it may give a 
misleading picture if there is insufficient data to work from or if data does not go to ultimate.    

Calibration is an issue with simulation methods.  One suggestion is to follow Boumezoued, 
Angoua, Devineau, and Boisseau and run the simulation out for every diagonal until run-off is 
complete.  Then the modeler can gauge the variability at ultimate and calibrate accordingly.   

Recognition Factor methods are practical and they do tie to ultimate, but how the factors are 
chosen is unclear.  Further, unstable CV patterns can result if the recognition factors are not 
appropriately related to the run-off of reserves.      

Many of the concerns are compounded when looking at any particular company and line.  There 
may not be a full history: the business may be new and the actuary-in-a-box method may not work 
well on a bootstrap of available data.    

One possible idea to solve a host of problems is to fit models to industry data triangles and then 
use the results to estimate risk for individual companies.  However, it is not clear what adjustments 
are needed to translate industry risk estimates to risk estimates for a particular line and company.   
Due to process risk, an adequate solvency requirement for the industry as a whole might lead to 
serious solvency problems if applied to individual companies.   

In summary, we have a mixed picture.  With a full triangle of data for a well-behaved and 
relatively short-tailed line of business, the triangle methods should work quite well.  These methods 
are not as simple as the Standard Formula, but they are not extraordinarily complicated.  Yet, for 
long-tailed business, for low frequency, high-severity businesses, or for new businesses, it may be 
necessary to use simulation or recognition factors or other methods.        

7. PROPOSED FORMULA    

The formula proposed in this paper produces CVs for one-year reserve risk by LOB.  In that 
sense, it yields the same output as the Standard Formula.   However, it arrives at the CV for one-year 
reserve risk in a systematic fashion based on estimates of ultimate risk.  Ultimate risk in this context 
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is the 99.5% percentile of unpaid loss in excess of the mean of unpaid loss.  It is also assumed that 
unpaid loss follows a lognormal distribution and that the CV of the ultimate unpaid loss has already 
been previously derived.  The proposed method differs from the Standard Formula in that it 
produces CVs that vary by year over the run-off period.  Recall that each year’s reserve risk capital is 
needed in calculating the Risk Margin component of the Technical Provision.  The proposed 
method can also be recast as a form of a recognition factor approach with a built-in systematic way 
of deriving the recognition factors based on the reserve run-off.  The proposed method produces 
results that directly depend on the mix of Case O/S and IBNR.  It is a conceptual advantage of this 
approach that it differentiates levels of risk based on the relative amount of Case O/S versus IBNR.  
Since the split between Case O/S and IBNR can be projected by standard actuarial techniques, the 
method is also eminently practical.      

7.1 CV for Ultimate Unpaid 
The proposed formula starts with the selection of a CV for undiscounted unpaid loss for a line of 

business in the internal model.  This could be done using ranges or any other method the user feels 
is appropriate.   Note this is not the CV for one-year risk.   

Actuaries have experience dealing with ultimate risk.  Also many models produce estimates of the 
variance of the unpaid loss.  The other key advantage of dealing with ultimate is that it mitigates 
much of the concern about biases in the booked reserves.   

7.2 CV of Case O/S Reserves vs. IBNR 
A key aspect of the proposed method is that it differentiates risk between Case O/S and IBNR.  

Most actuaries would agree that IBNR is more variable than Case O/S.   For example, if $1,000 is 
the mean estimate of unpaid loss and the entire amount is IBNR, the variance of unpaid loss will be 
greater than if the entire $1,000 was due to Case O/S.  In the proposed method, an assumption is 
made relating the CV of ultimate loss per dollar of IBNR and the CV of ultimate loss per dollar of 
Case O/S.  To illustrate this, it might be assumed that the CV of IBNR is 125% of the CV of Case 
O/S.  With such an assumption and with the split of reserves into IBNR and Case O/S 
components, one can derive how much of the variance in the estimate of ultimate is due to IBNR 
and how much is due to Case O/S.   Further, if one assumes these CVs by reserve type stay constant 
over the run-off period, and if projections of the run-off of IBNR and Case O/S have been 
separately derived, then one can also project how the variance of ultimate loss will evolve over time.   
To summarize, our initial goal is to arrive at a robust way of estimating the variance of estimated 
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unpaid loss year by year as a function of the projected IBNR and projected Case O/S.  Since 
actuaries often make projections of IBNR and Case O/S run-off for various business units, the 
resulting method will provide a practical way of estimating year-by-year variance for whatever lines 
of business are used in an internal model.     

In pursuit of this goal, we may make whatever mathematical assumptions are needed to arrive at 
a cogent formula.  We will then observe the method can be used in a wide variety of cases, even if it 
has been proved valid only in more limited circumstances.   We note that the fundamental idea that 
there is a clean split of variance into Case O/S and IBNR related components is debatable on 
theoretical grounds.  Since some of the IBNR may be related to development on known cases, there 
is some conceptual overlap between the risk associated with IBNR and the risk associated with Case 
O/S.  Our approach will be to ignore all complexities and simply focus on the goal of writing total 
variance of unpaid loss as the sum of a term related to IBNR and a term related to Case O/S.   In 
the end, this approach will be more intuitively appealing and theoretically superior to the Standard 
Formula and to methods that utilize judgmentally selected recognition patterns.      

To begin the mathematical development, let R(t) be the ultimate unpaid loss at the end of 
evaluation year t.   Let COS be the Case O/S.   The undiscounted Best Estimate is then given as 

𝐵𝐵[𝑅𝑅(𝑡𝑡)] = 𝐶𝐶𝐶𝐶𝑆𝑆(𝑡𝑡) + 𝐼𝐼𝐵𝐵𝑁𝑁𝑅𝑅(𝑡𝑡). (7.2.1) 

Let CVCOS denote the CV of the unpaid associated with Case O/S and CVIBNR the corresponding 
CV associated with IBNR.  Suppose these CVs do not vary with the evaluation date.   To simplify 
notation, we will now suppress the dependence of the reserves on the evaluation year, t, but later 
reintroduce it as needed  

Assume we can decompose the ultimate variance in unpaid so it is valid to write 

𝑃𝑃𝑈𝑈𝑀𝑀[𝑅𝑅] = (𝐶𝐶𝑃𝑃𝐶𝐶𝐶𝐶𝑆𝑆∙𝐶𝐶𝐶𝐶𝑆𝑆)2 + (𝐶𝐶𝑃𝑃𝐼𝐼𝐵𝐵𝑁𝑁𝑅𝑅∙𝐼𝐼𝐵𝐵𝑁𝑁𝑅𝑅)2. (7.2.2) 

This is a key assumption.  It says total variance is the sum of the variance on Case O/S and the 
variance on IBNR.  The lack of a cross-term in Equation 7.2.2 implicitly indicates IBNR and Case 
O/S are assumed to be independent.   This is one of those assumptions made to ensure the formula 
is simple and robust.     

Now let κ be the ratio of the CVs: 

𝜅𝜅= 𝐶𝐶𝑃𝑃𝐼𝐼𝐵𝐵𝑁𝑁𝑅𝑅
𝐶𝐶𝑃𝑃𝐶𝐶𝐶𝐶𝑆𝑆

. (7.2.3) 
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For example, if we select κ =1.50, then when the CV of Case O/S is 0.10, the CV of IBNR will 
be 0.15.  Given that we have already determined the variance in our estimate of ultimate and given 
that we have made a selection of κ, we can solve for the various CV parameters.  Consider  

𝑃𝑃𝑈𝑈𝑀𝑀[𝑅𝑅] = (𝐶𝐶𝑃𝑃𝐶𝐶𝐶𝐶𝑆𝑆∙𝐶𝐶𝐶𝐶𝑆𝑆)2 + (𝜅𝜅∙𝐶𝐶𝑃𝑃𝐶𝐶𝐶𝐶𝑆𝑆∙𝐼𝐼𝐵𝐵𝑁𝑁𝑅𝑅)2. (7.2.4) 

It follows that 

 𝐶𝐶𝑃𝑃𝐶𝐶𝐶𝐶𝑆𝑆
2 = 𝑃𝑃𝑈𝑈𝑀𝑀[𝑅𝑅]

𝐶𝐶𝐶𝐶𝑆𝑆2+𝜅𝜅2𝐼𝐼𝐵𝐵𝑁𝑁𝑅𝑅2 
. (7.2.5) 

For example, suppose Case O/S is $400 and IBNR is $200 and assume the ultimate unpaid has a 
25% CV.   So the ultimate unpaid has a mean of $600, a standard deviation of $150, and a variance 
of 22,500.  Now assume κ =1.50 so that each unit of IBNR has 150% of the CV as a corresponding 
unit of Case O/S.  Then the square of the CV for Case O/S is equal to 0.09= 22,500/(160,000 + 
2.25*40,000) =22,500/250,000.  So the CV for Case O/S is 0.30 =.09.5 and the CV for IBNR is .450 
= 1.50 * 0.30.   Based on those CVs, the total variance of 22,500 can be decomposed into a portion 
related to Case O/S equal to 14,400 ( (.3*400)2) and a component related to IBNR equal to 8,100 ( 
(.45*200)2). 

The point is that with the Case O/S and IBNR at the current evaluation and an estimate of the 
variance of ultimate unpaid loss, one can decompose ultimate variance into a portion related to Case 
O/S and a portion related to IBNR.   As part of the derivation, one obtains CVs for each type of 
unpaid loss.    We can then project the run-off of these different categories and use the CVs to 
arrive at a consistent year-by-year series of ultimate variance estimates for total unpaid loss.       

7.3 Projected Evolution of Case O/S and IBNR 
Actuaries often project the run-off  of Case O/S and IBNR.   This can be done with an Accident 

Year breakout of Case O/S and IBNR and with accident year paid and reported patterns.  Such data 
would usually be included in a reserve review.  Exhibits 1-3 provide an example of how this can be 
done.   Exhibit 1 shows Premium and Loss data by accident year and includes the breakout of Case 
O/S and IBNR.    
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Not atypically, the latest accident years have reserves that are mostly IBNR and their current 
estimated ultimate loss ratios are within a relatively narrow band.   On the other hand, the more 
mature years have reserves that are predominantly Case O/S and their ultimate loss ratios display 
larger variations.   

Exhibit 2 shows paid and reported loss development factors (LDFs) and how these are used to 
derive one-year age-to-age reserve decay factors.  These are defined, for example, so that an 80% 
decay factor implies the reserve declines on average by 20% from one age to the next. 

 

  

Premium and Loss Data

( 1 ) ( 2 ) ( 3 ) ( 4 ) ( 5 ) ( 6 ) ( 7 ) ( 8 ) ( 9 ) ( 10 ) ( 11 )

AY

Eval 
Age 

(Years) Prem

Loss 
Paid to 
Date

Case 
O/S

Reptd 
to Date

Reptd 
LR to 
Date IBNR

Current 
Estd Ult

Estd Ult 
LR

Expected 
Unpaid 

Loss
(4)+(5) (6)/(3) (6) +(8) (9)/(3) (9)-(4)

2002 10 1,995   2,125   55       2,180   109% -      2,180   109% 55          
2003 9 2,005  1,250   132     1,382   69% 25       1,407   70% 157        
2004 8 1,950   800     50       850      44% 65       915      47% 115        
2005 7 2,000  1,550   277     1,827   91% 93       1,920   96% 370        
2006 6 2,250  550     395     945      42% 148     1,093   49% 543        
2007 5 3,800  2,500  605     3,105   82% 361     3,466   91% 966        
2008 4 3,200  900     530     1,430   45% 446     1,876   59% 976        
2009 3 3,750  750     650     1,400   37% 1,000   2,400   64% 1,650     
2010 2 4,250  150     750     900      21% 1,750   2,650   62% 2,500     
2011 1 4,000  25       250     275      7% 2,000  2,275   57% 2,250     

Total 3,694  5,888  69% 9,582     

Exhibit 1 
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Exhibit 3 shows the standard run-off triangles and the derivation of projected paid losses, Case 
O/S, and IBNR by calendar year.   To explain the sequence of the calculation, we first use the 
Unpaid Decay factor for an accident year to figure out how much should be unpaid on average as of 
the next evaluation.  This is shown in Exhibit 3-Table 1, while Exhibit 3-Table 2 shows the resulting 
estimates of paid loss by year.    

  

Development Patterns to Decay Factors

( 1 ) ( 2 ) ( 3 ) ( 4 ) ( 5 ) ( 6 ) ( 7 ) ( 8 ) ( 9 ) ( 10 ) ( 11 )

Age

Reptd 
ATU 
LDF

Paid
 ATU 
LDF

Cumul 
Reptd

Cumul 
Paid

Increm 
Reptd

Increm 
Paid

Unreptd 
PCT

Unpaid
 PCT

IBNR
 -1 year 
Decay 
Factor

Unpaid -
 1 yr 

Decay 
Factor

1.0/(2) 1.0/(3)  ∆(4)  ∆(5) 1.0-(4) 1.0-(5) Col (8) 
Row ratios 

Col (9) 
Row ratios 

11 1.000 1.000 100.0% 100.0% 0.1% 1.0% 0.0% 0.0%
10 1.001 1.010 99.9% 99.0% 0.4% 1.0% 0.1% 1.0% 0.000 0.000
9 1.005 1.020 99.5% 98.0% 1.5% 2.8% 0.5% 2.0% 0.201 0.505
8 1.020 1.050 98.0% 95.2% 1.9% 6.0% 2.0% 4.8% 0.254 0.412
7 1.040 1.120 96.2% 89.3% 4.4% 9.3% 3.8% 10.7% 0.510 0.444
6 1.090 1.250 91.7% 80.0% 4.8% 13.3% 8.3% 20.0% 0.466 0.536
5 1.150 1.500 87.0% 66.7% 7.0% 33.3% 13.0% 33.3% 0.633 0.600
4 1.250 3.000 80.0% 33.3% 13.3% 13.3% 20.0% 66.7% 0.652 0.500
3 1.500 5.000 66.7% 20.0% 33.3% 10.0% 33.3% 80.0% 0.600 0.833
2 3.000 10.000 33.3% 10.0% 16.7% 6.7% 66.7% 90.0% 0.500 0.889
1 6.000 30.000 16.7% 3.3% 16.7% 3.3% 83.3% 96.7% 0.800 0.931

Exhibit 2
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Next we project IBNR by applying the IBNR decay factors to current IBNR. The resulting 
projections for our example are shown in Exhibit3 -Table 3.   

  

Projected Unpaid Loss 
Evaluation Lag

AY
Eval 
Age

Current 
Unpaid 1 2 3 4 5 6 7 8 9 10

2002 10 55        -    -    -    -    -    -    -    -    -    -    
2003 9 157      79      -    -    -    -    -    -    -    -    -    
2004 8 115       47      24      -    -    -    -    -    -    -    -    
2005 7 370      164    68      34      -    -    -    -    -    -    -    
2006 6 543      291    129    53      27      -    -    -    -    -    -    
2007 5 966      580    311    138    57      29      -    -    -    -    -    
2008 4 976      488    293    157    70      29      14      -    -    -    -    
2009 3 1,650    1,375 688    413    221    98      40      20      -    -    -    
2010 2 2,500   2,222 1,852 926    556    298    132    54      28      -    -    
2011 1 2,250   2,095 1,862 1,552 776    466    249    111    46      23      -    

CY total 9,582   7,342 5,226 3,272 1,706 919    437    186    73      23      -    

Exhibit 3 -  Table 1

Projected Incremental Paid Loss 
Evaluation Lag

AY
Eval 
Age 1 2 3 4 5 6 7 8 9 10

2002 10 55      -    -    -    -    -    -    -    -    -    
2003 9 78      79      -    -    -    -    -    -    -    -    
2004 8 68      23      24      -    -    -    -    -    -    -    
2005 7 206    97      34      34      -    -    -    -    -    -    
2006 6 252    162    76      26      27      -    -    -    -    -    
2007 5 386    269    173    81      28      29      -    -    -    -    
2008 4 488    195    136    87      41      14      14      -    -    -    
2009 3 275    688    275    192    123    58      20      20      -    -    
2010 2 278    370    926    370    258    165    78      27      28      -    
2011 1 155    233    310    776    310    216    139    65      23      23      

CY total -       2,240 2,116 1,953 1,567 787    482    251    113    50      23      

Exhibit 3 -  Table 2
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Taking differences we arrive at projections of incremental reported loss as shown in Exhibit 3-
Table 4. 

  

 
 

Then we take differences to get the projected Case O/S (COS) using the formula 

 
𝐶𝐶𝐶𝐶𝑆𝑆= 𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈−𝐼𝐼𝐵𝐵𝑁𝑁𝑅𝑅. (7.3.1) 

 

Projected IBNR
Evaluation Lag

AY
Eval
 Age

Current 
IBNR 1 2 3 4 5 6 7 8 9 10

2002 10 -       -    -    -    -    -    -    -    -    -    -    
2003 9 25        5       -    -    -    -    -    -    -    -    -    
2004 8 65        16      3       -    -    -    -    -    -    -    -    
2005 7 93        47      12      2       -    -    -    -    -    -    -    
2006 6 148      69      35      9       2       -    -    -    -    -    -    
2007 5 361      229    106    54      14      3       -    -    -    -    -    
2008 4 446      291    184    86      44      11      2       -    -    -    -    
2009 3 1,000    600    391    248    115    59      15      3       -    -    -    
2010 2 1,750    875    525    342    217    101    51      13      3       -    -    
2011 1 2,000   1,600 800    480    313    198    92      47      12      2       -    

CY total 5,888   3,732 2,057 1,221 704    372    161    63      15      2       -    

Exhibit 3 -  Table 3

Projected Incremental Reported Loss 
Evaluation Lag

AY
Eval 
Age 1 2 3 4 5 6 7 8 9 10

2002 10 -    -    -    -    -    -    -    -    -    -    
2003 9 20      5       -    -    -    -    -    -    -    -    
2004 8 49      13      3       -    -    -    -    -    -    -    
2005 7 46      35      10      2       -    -    -    -    -    -    
2006 6 79      34      26      7       2       -    -    -    -    -    
2007 5 132    122    52      40      11      3       -    -    -    -    
2008 4 155    107    98      42      33      9       2       -    -    -    
2009 3 400    209    144    132    57      44      12      3       -    -    
2010 2 875    350    183    126    116    49      38      10      3       -    
2011 1 400    800    320    167    115    106    45      35      10      2       

CY total -       2,156 1,675 836    517    333    211    98      49      12      2       

Exhibit 3 -  Table 4
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Note Case O/S in some cases can reasonably be projected to increase the first few years during 
the run-off period.  On the other hand, IBNR will typically decrease year by year. 

7.4 Projecting Ultimate Risk by Year  
To decompose the ultimate risk into Case O/S and IBNR components, selections are made for 

the ultimate CV and the κ parameter.  Then with the initial Case O/S and IBNR balances, the 
respective CVs for Case O/S and IBNR may be derived as shown in Exhibit 4.    

  

CV Coefficient Derivation

Item Value Source
(1) CY 2011
(2) Mean of Full Value of Ultimate Unpaid Loss 9,582 Ex 3 Tbl 1
(3) Case O/S 3,694 Ex 3 Tbl 5
(4) Mean IBNR 5,888 Ex 3 Tbl 3
(5) CV of Ultimate Unpaid Loss 20.0% User selection
(6) k =  CV of IBNR versus CV of Case O/S 150.0% User selection
(7) Stnd Dev of Ultimate Unpaid 1,916 (2)*(5)
(8) Case OS CV Coefficient 0.200 sqrt{(7)2)/[(3)2+ ((6)*(4))2 ]}
(9) IBNR CV Coefficient 0.300 (8)*(6)

Exhibit 4 

 

Projected Case OS Loss 
Evaluation Lag

AY
Eval 
Age

 Current 
Case OS 1 2 3 4 5 6 7 8 9 10

2002 10 55        -    -    -    -    -    -    -    -    -    -    
2003 9 132      74      -    -    -    -    -    -    -    -    -    
2004 8 50        31      21      -    -    -    -    -    -    -    -    
2005 7 277      117    56      32      -    -    -    -    -    -    -    
2006 6 395      222    94      44      25      -    -    -    -    -    -    
2007 5 605      351    204    84      43      26      -    -    -    -    -    
2008 4 530      197    109    71      26      18      12      -    -    -    -    
2009 3 650      775    296    165    106    39      26      17      -    -    -    
2010 2 750      1,347 1,327 584    339    197    81      41      25      -    -    
2011 1 250      495    1,062 1,072 463    267    157    64      34      21      -    

CY total 3,694   3,609 3,168 2,051 1,001 547    276    123    59      21      -    

Exhibit 3 -  Table 5
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Note that Equation 7.2.5 is used in Row 8 of Exhibit 4 and the selected κ is used to obtain Row 
9. 

Next, assume the respective CVs for Case O/S and IBNR are applicable for each year over the 
whole run-off period.  Recall the Standard Formula uses a single CV for one-year reserve risk for 
each line of business and that this same CV applies for each year of the run-off period.  The CVs 
under our method will evolve over the run-off period because the mix of Case O/S and IBNR will 
evolve.   Because it reflects the changing mix of reserves, the proposed method should result in 
more accurate reserve risk estimates in any particular year than that produced using the single CV 
method of the Standard Formula.24

 

  The calculation of the year-by-year variances is shown in 
Exhibit 5.      

 

 
  

7.5 From Ultimate Risk to One-year Risk 
Next we derive one-year variance estimates by taking the difference between successive ultimate 

variance projections.  Figure 1 depicts the idea.     

                                                           
24 An even more sophisticated model could be developed in which the CVs of Case O/S and IBNR also evolve over 
time.   

Projection of Year by Year Variance of Ultimate Unpaid 

( 1 ) ( 2 ) ( 3 ) ( 4 ) ( 5 ) ( 6 ) ( 7 ) ( 8 ) ( 9 ) ( 10 )

CY
Eval 
Lag Case O/S IBNR

Total 
Unpaid 

Stnd Dev 
from

 Case O/S

Stnd Dev 
from

 IBNR Variance Stnd Dev CV
(3)+(4) (3)*CVCOS (4)*CVIBNR (6)2+(7)2 (8)1/2 (9)/(5)

2011 0 3,694     5,888     9,582        739          1,768         3,672,589    1,916     0.200
2012 1 3,609     3,732     7,342        723          1,121         1,777,969    1,333     0.182
2013 2 3,168     2,057     5,226        634          618            783,872      885        0.169
2014 3 2,051     1,221     3,272        411          367            303,081      551        0.168
2015 4 1,001     704       1,706        200          212            84,925        291        0.171
2016 5 547        372       919           109          112            24,451        156        0.170
2017 6 276        161       437           55            48             5,380          73         0.168
2018 7 123        63         186           25            19             962            31         0.167
2019 8 59          15         73            12            4               157            13         0.171
2020 9 21          2           23            4              1               18              4           0.182
2021 10 -        -        -           -           -            -             -        0.000

Exhibit 5 
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Figure 1  

 

The differencing formula is based on three major assumptions:   

• First, it presumes the estimates of mean unpaid loss subsequent to each evaluation do not 
change as the result of the intervening observations.  This is behavior of unpaid loss 
estimates derived using the Bornheutter-Ferguson method, when LDFs and expected loss 
ratios (ELRs) are frozen.   

• Second, it assumes the incremental paid losses from separate run-off years have no 
covariance with one another.  This could likely be derived from the first assumption.   

• Third, it assumes there is no change in the estimate of variance of paid loss for any year 
of run-off.    

With these assumptions, differencing of the variances between ultimate unpaid for two 
consecutive year-end valuations produces the one-year variance during the year. A mathematical 
derivation is provided in Appendix B.      

  

Reserve 
Risk 

Year 1

Reserve Risk 
at Ultimate

End of  Year 1

Reserve 
Risk 

Year …

Reserve 
Risk 

Year 2

Reserve Risk 
at Ultimate

Initial 
Estimate

Reserve 
Risk 

Year …

Reserve 
Risk 

Year 2

Reserve 
Risk 

Year 1
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One-year variance calculations for our example are shown in Exhibit 6.   The first one-year 
variance is 1,894,620, which is the difference between the initial variance of 3,672,589 and the year-
end variance of 1,777,969.  With the variance and the mean, it is straightforward to derive the CV 
and other parameters of the associated one-year reserve risk lognormal as is done in columns (6) and 
(7) of Exhibit 6.  In this table, the notation E[R] in column 5 stands for the expected total unpaid 
displayed in Exhibit 5.   After the CV is calculated in column 5 of Exhibit 6, the lognormal 
parameters, µ and σ, are found separately for each year using the formulas shown in the calculation 
notes.  Please see Appendix A for more detail.  With the parameters, the 99.5th percentile may be 
readily computed and it is then straightforward to compute the amount excess of the mean as shown 
in column 10 of Exhibit 6.   This is the standalone undiscounted SCR.  It is useful to express the 
SCR as a percentage of the mean reserve as is done in column 11 of Exhibit 6.   For any particular 
year, the calculations are similar to what would be done using the Standard Formula.  The major 

Projection of One -Year Variance and SCRs

( 1 ) ( 2 ) ( 3 ) ( 4 ) ( 5 ) ( 6 ) ( 7 ) ( 8 ) ( 9 ) ( 10 ) ( 11 )

CY
Ultimate 
Variance

One-Year 
Variance

One- 
Year 
Stnd 
Dev

One-Year 
CV σ µ Mean

Full 
Value  

99.50th  
percentile

Full 
Value 
SCR

SCR as 
% of 

reserve
 ∆(2) (3)1/2 (4)/E[R] (9) -(8) (10)/(8)

2011 3,672,589    1,894,620  1,376  0.144       0.14    9.16  9,582   13,706   4,124   43.0%
2012 1,777,969    994,097    997     0.136       0.14    8.89  7,342   10,305   2,963   40.4%
2013 783,872      480,790    693     0.133       0.13    8.55  5,226   7,280     2,054   39.3%
2014 303,081      218,156    467     0.143       0.14    8.08  3,272   4,670     1,398   42.7%
2015 84,925        60,473      246     0.144       0.14    7.43  1,706   2,443     737     43.2%
2016 24,451        19,071      138     0.150       0.15    6.81  919      1,335     416     45.3%
2017 5,380          4,419        66       0.152       0.15    6.07  437      637       201     46.0%
2018 962            805          28       0.153       0.15    5.21  186      271       86       46.2%
2019 157            139          12       0.161       0.16    4.28  73       109       36       49.1%

Percentage for SCR Percentile 99.5%
Standard Normal Percentile 2.576

Calculation notes
 (6) σ = [ ln( 1+CV2)] 1/2

 (7) µ = ln( E[R]) - 1/2 σ2

 (8) Mean = E[R] = exp(µ + 1/2 σ2 )
 (9) 99.5th percentile = exp(µ + 2.576 σ )

Exhibit 6 
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difference is that the Standard Formula SCR calculation uses the same CV for all years of run-off 
whereas the proposed approach has CVs that vary by year because the mix of Case O/S and IBNR 
changes by run-off year.    

7.6 Discounted SCR and Technical Provision 
We compute the discounted mean unpaid loss for each year of run-off and then the associated 

standalone SCR by applying the undiscounted SCR factor.  This is similar to the approach taken in 
the Standard Formula where a fixed CV is used to get factors that are applied to discounted reserves.   
With the SCRs we compute the cost of capital amounts by year and discount those to get the 
standalone risk margin in the Technical Provision.  Exhibit 7 shows these calculations.  

  

 
 

Exhibit 8 shows the interest rates used in discounting.  They are derived by summing the risk-
free-rate and the illiquidity premium.  While the rates were loosely taken from EIOPA charts, they 
are meant to be used here only for illustrative purposes.   They should not be used in real 
applications.   However, they do provide a rough idea of the magnitudes and shape of yield curve 

Calculation of Discounted Reserve and Standalone Risk Margin

( 1 ) ( 2 ) ( 3 ) ( 4 ) ( 5 ) ( 6 ) ( 7 ) ( 8 )

CY Paid Loss

Full value
 Unpaid 

Loss

Discounted
 Unpaid 

Loss
SCR

 Factor SCR
Cost of 
Capital

Discounted 
Cost of 
Capital

from Ex 3 
Table 2

from Ex 3 
Table 1

(3) *
Ex 8 Col 5

from Ex 6 (5)*(4) CocRate*(6) (7) *
Ex 8 Col 5

2011 -           9,582        9,056        43.0% 3,897        234             231           
2012 2,240        7,342        7,020        40.4% 2,834        170             166           
2013 2,116        5,226        5,042        39.3% 1,982        119             114           
2014 1,953        3,272        3,175        42.7% 1,357        81               75             
2015 1,567        1,706        1,659        43.2% 717           43               38             
2016 787           919           897           45.3% 407           24               21             
2017 482           437           428           46.0% 197           12               10             
2018 251           186           182           46.2% 84             5                4              
2019 113           73             72             49.1% 35             2                2              
2020 50             23             23             56.6% 13             1                1              
2021 23             -           -           0.0% -           -             -           

Total 9,582        7,613        457             429           

6.00%Cost of Capital Rate

Exhibit 7
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and the impact of the illiquidity premium.     

  

 
 

Exhibit 9 shows the derivation of the final standalone Technical Provision for unpaid loss.25

 

 

 

 
 

Note that in this example that the effect of discounting more than offsets the explicit inclusion of 
a risk margin.   In other examples, such as those for short tail lines, the risk margin often exceeds the 
magnitude of the discount.   Stepping back, the overall impact is generally to arrive at a Technical 
                                                           
25  The impact of reinsurance has been omitted in this discussion. 

Yield Curve, Illiquidity Premiums, and PV  Factors

( 1 ) ( 2 ) ( 3 ) ( 4 ) ( 5 )

time
Risk-free

 yield
Illiquidity 
Premium

Rate for 
Discounting PV Factor

yrs  (2)+(3) (1.0+ (4))^-(1)

1 0.331% 0.710% 1.041% 0.9897            
2 0.385% 0.710% 1.095% 0.9785            
3 0.773% 0.710% 1.483% 0.9568            
4 1.220% 0.710% 1.930% 0.9264            
5 1.678% 0.710% 2.388% 0.8887            
6 2.090% 0.710% 2.800% 0.8473            
7 2.441% 0.710% 3.151% 0.8048            
8 2.721% 0.710% 3.431% 0.7635            
9 2.953% 0.710% 3.663% 0.7234            
10 3.128% 0.710% 3.838% 0.6862            
11 3.384% 0.710% 4.094% 0.6432            

Exhibit 8

Derivation of Standalone Technical Provision for Unpaid Loss

Item Value Source
(1) Mean of Full Value Ult Unpaid Loss 9,582              Ex 7 Col 3
(2) Mean of Discounted Unpaid Loss 9,056              Ex 7 Col 4
(3) Effect of Discount (526)                (2) - (1)
(4) Risk Margin 429                 Ex 7  Col 8
(5) Technical Provision 9,485              (1) + (3) + (4)

Exhibit 9
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Provision not far off from the original mean of undiscounted unpaid losses.   However, this result 
depends highly on the interest rate.  Currently, interest rates are at historic lows.  If they move up a 
few points, the Technical Provision for many long-tail lines could fall well below the undiscounted 
mean unpaid loss.   

8. CONCLUSION    

Our proposal is a very practical refinement of the Standard Formula.  It is focused on finding 
one-year CVs that can be directly related to estimates of ultimate risk and to the types of reserves 
and how they evolve.  In that sense it is a bridge between various known variables about which 
actuaries have some intuition and a new quantity, one-year reserve risk, about which actuaries know 
little.   It provides a coherent framework within which recognition can be projected in a systematic 
and logical manner.   Other methods do not use the information about risk contained in knowing 
the split between Case O/S and IBNR: this one does.  

The method is also applicable in a wide range of circumstances as it employs user-selected 
patterns that need not be derived from data.  For new businesses such data may not yet exist, but 
reserving actuaries may have selected paid patterns and reporting patterns to be used in reserving 
analysis.  Another plus is that the method works well for long-tailed lines of business. Note that the 
proposed method is flexible, as it can be used at the level of business at which the enterprise is 
managed.  There is no need to aggregate the data to make the algorithm work. In conclusion, this is 
a practical way to compute one-year reserve risk in an internal model.   It is one of several methods 
to consider when deciding on how to quantify one-year reserve risk for Solvency II requirements.     

 

APPENDIX A –LOGNORMAL STANDARD FORMULA CALCULATIONS 

For a lognormal, X, with parameters (µ, σ), it is well known that 

𝐵𝐵[𝑋𝑋] = 𝑒𝑒𝜇𝜇+1
2𝜎𝜎

2
  𝑈𝑈𝑈𝑈𝑈𝑈     𝐵𝐵[𝑋𝑋2] = 𝑒𝑒2𝜇𝜇+2𝜎𝜎2    . (A.1) 

Following the standard derivation we have 

𝐶𝐶𝑃𝑃2 = 𝑒𝑒𝜎𝜎2 − 1. (A.2) 

Thus we can derive: 

𝜎𝜎=  �ln(1 + 𝐶𝐶𝑃𝑃2). (A.3) 
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 To get the 99.5% percentile, πp , we evaluate 

𝑇𝑇𝑀𝑀𝑜𝑜𝑃𝑃�𝑋𝑋< 𝜋𝜋𝑈𝑈� =  .995. (A.4) 

Taking natural logs we see 

𝑇𝑇𝑀𝑀𝑜𝑜𝑃𝑃�ln (𝑋𝑋)−𝜇𝜇
σ

<    ln�𝜋𝜋𝑈𝑈�−𝜇𝜇
σ

�=  .995. (A.5) 

The left hand side of the probability is the standard unit normal, so we have 

𝑧𝑧𝑈𝑈 = Φ−1(. 995) = 2.576 =  ln�𝜋𝜋𝑈𝑈�−𝜇𝜇
σ

. (A.6) 

Therefore  

ln�𝜋𝜋𝑈𝑈� = 𝜇𝜇+ 2.576 ∙𝜎𝜎, (A.7) 

from which it follows that 

𝜋𝜋𝑈𝑈 = 𝑒𝑒𝜇𝜇+2.576∙𝜎𝜎. (A.8) 

Therefore the Standalone Solvency Capital Requirement (SCR) is  

𝑆𝑆𝐶𝐶𝑅𝑅=  𝜋𝜋𝑈𝑈 −𝐵𝐵[𝑋𝑋] = 𝑒𝑒𝜇𝜇+2.576∙𝜎𝜎−  𝑒𝑒𝜇𝜇+1
2𝜎𝜎

2  
= 𝐵𝐵[𝑋𝑋](𝑒𝑒2.576∙𝜎𝜎−.5𝜎𝜎2 − 1). 

(A.9) 

Note the model breaks down for large CV, where σ >5.152.   

 

APPENDIX B –ONE-YEAR RESERVE RISK FORMULAS AND 
DERIVATIONS 

Let Xy(t) denote the paid loss in year t after the end of calendar year y for claims incurred as of 
the end of calendar year y.   It is the payout in the tth year of run-off.  Use t=0 to indicate the balance 
at the end of calendar year y.  This is the start of the run-off period.  

 Write Cy(t) for the cumulative payments in the run-off period up to and including the tth year.   
Set Ry(t) = Cy(ω) - Cy(t) so that R is the remaining run-off payments subsequent to the tth year.  We 
will suppress the subscript y to simplify notation. 

The initial undiscounted Best Estimate is the mean of the unpaid loss, E[R(0)|t=0] .   

At the end of the first year of run-off, we will be able to make a Retrospective Estimate of the 
initial unpaid.  We will denote this as E[R(0)|t=1].   It is equal to the sum of the paid over the first 
year plus the mean unpaid as of the end of the first year: 
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𝐵𝐵[𝑅𝑅(0)|𝑡𝑡 = 1] = 𝑋𝑋(1) + 𝐵𝐵[𝑅𝑅(1)|𝑡𝑡 = 1] (B.1) 

The one-year variance is equal to:  

𝐶𝐶𝑈𝑈𝑒𝑒−𝑦𝑦𝑒𝑒𝑈𝑈𝑀𝑀 𝑃𝑃𝑈𝑈𝑀𝑀𝑈𝑈𝑈𝑈𝑈𝑈𝑉𝑉𝑒𝑒=   𝐵𝐵 [ (𝐵𝐵[𝑅𝑅(0)|𝑡𝑡 = 1] −   𝐵𝐵[𝑅𝑅(0)|𝑡𝑡 = 0])2 ] (B.2) 

Under the Bornheutter-Ferguson (BF) method, the expected value at a given evaluation data of 
unpaid loss beyond a given subsequent date is independent of the evaluation date.  In particular: 

𝐵𝐵[𝑅𝑅(1)|𝑡𝑡 = 1] = 𝐵𝐵[𝑅𝑅(1)|𝑡𝑡 = 0] (B.3) 

This implies: 

 

𝐶𝐶𝑈𝑈𝑒𝑒 𝑌𝑌𝑒𝑒𝑈𝑈𝑀𝑀 𝑃𝑃𝑈𝑈𝑀𝑀𝑈𝑈𝑈𝑈𝑈𝑈𝑉𝑉𝑒𝑒=   𝐵𝐵 [ (𝑋𝑋(1) −   𝐵𝐵[𝑋𝑋(1)|𝑡𝑡 = 0])2 ] = 𝑃𝑃𝑈𝑈𝑀𝑀(𝑋𝑋(1)) 
 

(B.4) 

 
Now consider the ultimate variance of the initial unpaid run-off is: 

 
𝑃𝑃𝑈𝑈𝑀𝑀(𝑅𝑅(0)| 𝑡𝑡 = 0) = 

 

� 𝑃𝑃𝑈𝑈𝑀𝑀(𝑋𝑋(𝐿𝐿)|𝑡𝑡 = 0) + � 𝐶𝐶𝑜𝑜𝑣𝑣(𝑋𝑋(𝑀𝑀),𝑋𝑋(𝐿𝐿)|𝑡𝑡 = 0)
𝑀𝑀≠𝐿𝐿

 
𝜔𝜔

𝐿𝐿=1
  

 

(B.5) 

 
Similarly, the ultimate variance of the unpaid run-off at the end of year one is: 

 
𝑃𝑃𝑈𝑈𝑀𝑀(𝑅𝑅(1)| 𝑡𝑡 = 1) = 

 

� 𝑃𝑃𝑈𝑈𝑀𝑀(𝑋𝑋(𝐿𝐿)|𝑡𝑡 = 1) + � 𝐶𝐶𝑜𝑜𝑣𝑣(𝑋𝑋(𝑀𝑀),𝑋𝑋(𝐿𝐿)|𝑡𝑡 = 1)
𝑀𝑀≠𝐿𝐿,𝑀𝑀>1,𝐿𝐿>1

 
𝜔𝜔

𝐿𝐿=2
  

 

(B.6) 

 
Now assume all the covariances in B.5 and B.6 are zero.  This is a generalization of the 

Bornheutter-Ferguson assumption.   Subtracting B.6 from B.5 and using this vanishing covariance 
assumption, we obtain: 
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𝑃𝑃𝑈𝑈𝑀𝑀(𝑅𝑅(0)| 𝑡𝑡 = 0) −𝑃𝑃𝑈𝑈𝑀𝑀(𝑅𝑅(1)| 𝑡𝑡 = 1) =  
 

� 𝑃𝑃𝑈𝑈𝑀𝑀(𝑋𝑋(𝐿𝐿)|𝑡𝑡 = 0) −
𝜔𝜔

𝐿𝐿=1
 � 𝑃𝑃𝑈𝑈𝑀𝑀(𝑋𝑋(𝐿𝐿)|𝑡𝑡 = 1)

𝜔𝜔

𝐿𝐿=2
 

(B.7) 

Finally, we suppose that the variances of the incremental unpaid amounts do not change from 
one evaluation to the next. Under these admittedly stringent assumptions we have: 

 

𝑃𝑃𝑈𝑈𝑀𝑀(𝑅𝑅(0)| 𝑡𝑡 = 0) −𝑃𝑃𝑈𝑈𝑀𝑀(𝑅𝑅(1)| 𝑡𝑡 = 1) =  𝑃𝑃𝑈𝑈𝑀𝑀(𝑋𝑋(1)). 
 

(B.8) 

Comparing B.8 to B.4 leads to the result shown in Figure 1.  
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Standalone One‐year Reserve Risk Calculation

Company Currency

Business Unit/LOB  Units

Evaluation at end of year

Reserves and Development Patterns Yield Rates

( 1 ) ( 2 ) ( 3 ) ( 4 ) ( 5 ) ( 6 ) ( 7 ) ( 8 ) ( 9 ) ( 1 ) ( 2 ) ( 3 )

AY

Eval Age 
(Years) Prem

Loss 
Paid to 
Date

Case 
O/S IBNR

Expected 
Unpaid 
Loss

Reptd 
ATU LDF

Paid

ATU 
LDF Duration

Risk‐free
 yield

Illiquidity 
Premium

(5)+(6) yrs

2002 10 1,995         2,125    55          ‐       55             1.001 1.010 1 0.331% 0.710%

2003 9 2,005         1,250    132        25        157           1.005 1.020 2 0.385% 0.710%

2004 8 1,950         800        50          65        115           1.020 1.050 3 0.773% 0.710%

2005 7 2,000         1,550    277        93        370           1.040 1.120 4 1.220% 0.710%

2006 6 2,250         550        395        148      543           1.090 1.250 5 1.678% 0.710%

2007 5 3,800         2,500    605        361      966           1.150 1.500 6 2.090% 0.710%

2008 4 3,200         900        530        446      976           1.250 3.000 7 2.441% 0.710%

2009 3 3,750         750        650        1,000  1,650        1.500 5.000 8 2.721% 0.710%

2010 2 4,250         150        750        1,750  2,500        3.000 10.000 9 2.953% 0.710%

2011 1 4,000         25          250        2,000  2,250        6.000 30.000 10 3.128% 0.710%

Total 3,694    5,888  9,582       11 3.384% 0.710%

Risk Parameters Color codes

(1) CV of Ultimate Unpaid Loss 20.0%

(2) k =  CV of IBNR versus CV of Case O/S 150.0%

(3) Cost‐of‐capital rate  6.0%

Name/alpha data

Numeric data/user selections 

Numeric data from regulator 

000

Input Sheet ‐ A Practical Way to Estimate One‐year Reserve Risk

USDPC Company

ABC Casualty Unit

2011

Page 1



Standalone One‐year Reserve Risk Calculation

PC Company

ABC Casualty Unit

Premium and Loss Data

( 1 ) ( 2 ) ( 3 ) ( 4 ) ( 5 ) ( 6 ) ( 7 ) ( 8 ) ( 9 ) ( 10 ) ( 11 )

AY

Eval 
Age 

(Years) Prem

Loss 
Paid to 
Date

Case 
O/S

Reptd to 
Date

Reptd LR 
to Date IBNR

Current 
Estd Ult

Estd Ult 
LR

Expected 
Unpaid 
Loss

(4)+(5) (6)/(3) (6) +(8) (9)/(3) (5)+(8)

2002 10 1,995     2,125     55         2,180   109% ‐       2,180   109% 55          
2003 9 2,005     1,250     132       1,382   69% 25        1,407   70% 157        
2004 8 1,950     800        50         850      44% 65        915      47% 115        
2005 7 2,000     1,550     277       1,827   91% 93        1,920   96% 370        
2006 6 2,250     550        395       945      42% 148      1,093   49% 543        
2007 5 3,800     2,500     605       3,105   82% 361      3,466   91% 966        
2008 4 3,200     900        530       1,430   45% 446      1,876   59% 976        
2009 3 3,750     750        650       1,400   37% 1,000   2,400   64% 1,650     
2010 2 4,250     150        750       900      21% 1,750   2,650   62% 2,500     
2011 1 4,000     25          250       275      7% 2,000   2,275   57% 2,250     

Total 3,694     5,888   69% 9,582     

Exhibit 1 
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Standalone One‐year Reserve Risk Calculation

PC Company

ABC Casualty Unit

Development Patterns to Decay Factors

( 1 ) ( 2 ) ( 3 ) ( 4 ) ( 5 ) ( 6 ) ( 7 ) ( 8 ) ( 9 ) ( 10 ) ( 11 )

Age

Reptd 
ATU LDF

Paid

 ATU 
LDF

Cumul 
Reptd

Cumul 
Paid

Increm 
Reptd

Increm 
Paid

Unreptd 
PCT

Unpaid

 PCT

IBNR

 ‐1 year 
Decay 
Factor

Unpaid ‐
1 yr 

Decay 
Factor

1.0/(2) 1.0/(3)  ∆(4)  ∆(5) 1.0‐(4) 1.0‐(5) Col (8) 
Row ratios 

Col (9) 
Row ratios 

10 1.001 1.010 99.9% 99.0% 0.4% 1.0% 0.1% 1.0% 0.000 0.000

9 1.005 1.020 99.5% 98.0% 1.5% 2.8% 0.5% 2.0% 0.201 0.505

8 1.020 1.050 98.0% 95.2% 1.9% 6.0% 2.0% 4.8% 0.254 0.412

7 1.040 1.120 96.2% 89.3% 4.4% 9.3% 3.8% 10.7% 0.510 0.444

6 1.090 1.250 91.7% 80.0% 4.8% 13.3% 8.3% 20.0% 0.466 0.536

5 1.150 1.500 87.0% 66.7% 7.0% 33.3% 13.0% 33.3% 0.633 0.600

4 1.250 3.000 80.0% 33.3% 13.3% 13.3% 20.0% 66.7% 0.652 0.500

3 1.500 5.000 66.7% 20.0% 33.3% 10.0% 33.3% 80.0% 0.600 0.833

2 3.000 10.000 33.3% 10.0% 16.7% 6.7% 66.7% 90.0% 0.500 0.889

1 6.000 30.000 16.7% 3.3% 16.7% 3.3% 83.3% 96.7% 0.800 0.931

Exhibit 2
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Standalone One‐year Reserve Risk Calculation

Projection Triangles 

PC Company

ABC Casualty Unit

Projected Unpaid Loss 

Evaluation Lag

AY

Eval 
Age

Current 
Unpaid 1 2 3 4 5 6 7 8 9 10

2002 10 55           ‐      ‐      ‐    ‐    ‐    ‐    ‐    ‐      ‐     ‐   
2003 9 157         79        ‐      ‐    ‐    ‐    ‐    ‐    ‐      ‐     ‐   
2004 8 115         47        24        ‐    ‐    ‐    ‐    ‐    ‐      ‐     ‐   
2005 7 370         164      68        34      ‐    ‐    ‐    ‐    ‐      ‐     ‐   
2006 6 543         291      129      53      27      ‐    ‐    ‐    ‐      ‐     ‐   
2007 5 966         580      311      138    57      29      ‐    ‐    ‐      ‐     ‐   
2008 4 976         488      293      157    70      29      14      ‐    ‐      ‐     ‐   
2009 3 1,650      1,375  688      413    221    98      40      20      ‐      ‐     ‐   
2010 2 2,500      2,222  1,852  926    556    298    132    54      28        ‐     ‐   
2011 1 2,250      2,095  1,862  1,552 776    466    249    111    46        23       ‐   
CY total 9,582      7,342  5,226  3,272 1,706 919    437    186    73        23       ‐   

Projected Incremental Paid Loss 

Evaluation Lag

AY

Eval 
Age 1 2 3 4 5 6 7 8 9 10

2002 10 55        ‐      ‐    ‐    ‐    ‐    ‐    ‐      ‐     ‐   
2003 9 78        79        ‐    ‐    ‐    ‐    ‐    ‐      ‐     ‐   
2004 8 68        23        24      ‐    ‐    ‐    ‐    ‐      ‐     ‐   
2005 7 206      97        34      34      ‐    ‐    ‐    ‐      ‐     ‐   
2006 6 252      162      76      26      27      ‐    ‐    ‐      ‐     ‐   
2007 5 386      269      173    81      28      29      ‐    ‐      ‐     ‐   
2008 4 488      195      136    87      41      14      14      ‐      ‐     ‐   
2009 3 275      688      275    192    123    58      20      20        ‐     ‐   
2010 2 278      370      926    370    258    165    78      27        28       ‐   
2011 1 155      233      310    776    310    216    139    65        23       23     
CY total ‐          2,240  2,116  1,953 1,567 787    482    251    113      50       23     

Exhibit 3 ‐  Table 1

Exhibit 3 ‐  Table 2
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Standalone One‐year Reserve Risk Calculation

Projection Triangles 

PC Company

ABC Casualty Unit

Projected IBNR

Evaluation Lag

AY

Eval

 Age
Current 
IBNR 1 2 3 4 5 6 7 8 9 10

2002 10 ‐          ‐      ‐      ‐    ‐    ‐    ‐    ‐    ‐      ‐     ‐   
2003 9 25           5          ‐      ‐    ‐    ‐    ‐    ‐    ‐      ‐     ‐   
2004 8 65           16        3         ‐    ‐    ‐    ‐    ‐    ‐      ‐     ‐   
2005 7 93           47        12        2        ‐    ‐    ‐    ‐    ‐      ‐     ‐   
2006 6 148         69        35        9        2        ‐    ‐    ‐    ‐      ‐     ‐   
2007 5 361         229      106      54      14      3        ‐    ‐    ‐      ‐     ‐   
2008 4 446         291      184      86      44      11      2        ‐    ‐      ‐     ‐   
2009 3 1,000      600      391      248    115    59      15      3         ‐      ‐     ‐   
2010 2 1,750      875      525      342    217    101    51      13      3          ‐     ‐   
2011 1 2,000      1,600  800      480    313    198    92      47      12        2         ‐   
CY total 5,888      3,732  2,057  1,221 704    372    161    63      15        2         ‐   

Projected Incremental Reported Loss 

Evaluation Lag

AY

Eval 
Age 1 2 3 4 5 6 7 8 9 10

2002 10 ‐      ‐      ‐    ‐    ‐    ‐    ‐    ‐      ‐     ‐   
2003 9 20        5         ‐    ‐    ‐    ‐    ‐    ‐      ‐     ‐   
2004 8 49        13        3        ‐    ‐    ‐    ‐    ‐      ‐     ‐   
2005 7 46        35        10      2        ‐    ‐    ‐    ‐      ‐     ‐   
2006 6 79        34        26      7        2        ‐    ‐    ‐      ‐     ‐   
2007 5 132      122      52      40      11      3        ‐    ‐      ‐     ‐   
2008 4 155      107      98      42      33      9        2         ‐      ‐     ‐   
2009 3 400      209      144    132    57      44      12      3          ‐     ‐   
2010 2 875      350      183    126    116    49      38      10        3         ‐   
2011 1 400      800      320    167    115    106    45      35        10       2       
CY total ‐          2,156  1,675  836    517    333    211    98      49        12       2       

Exhibit 3 ‐  Table 3

Exhibit 3 ‐  Table 4
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Standalone One‐year Reserve Risk Calculation

Projection Triangles 

PC Company

ABC Casualty Unit

Projected Case OS Loss 

Evaluation Lag

AY

Eval 
Age

 Current 
Case OS 1 2 3 4 5 6 7 8 9 10

2002 10 55           ‐      ‐      ‐    ‐    ‐    ‐    ‐    ‐      ‐     ‐   
2003 9 132         74        ‐      ‐    ‐    ‐    ‐    ‐    ‐      ‐     ‐   
2004 8 50           31        21        ‐    ‐    ‐    ‐    ‐    ‐      ‐     ‐   
2005 7 277         117      56        32      ‐    ‐    ‐    ‐    ‐      ‐     ‐   
2006 6 395         222      94        44      25      ‐    ‐    ‐    ‐      ‐     ‐   
2007 5 605         351      204      84      43      26      ‐    ‐    ‐      ‐     ‐   
2008 4 530         197      109      71      26      18      12      ‐    ‐      ‐     ‐   
2009 3 650         775      296      165    106    39      26      17      ‐      ‐     ‐   
2010 2 750         1,347  1,327  584    339    197    81      41      25        ‐     ‐   
2011 1 250         495      1,062  1,072 463    267    157    64      34        21       ‐   
CY total 3,694      3,609  3,168  2,051 1,001 547    276    123    59        21       ‐   

Exhibit 3 ‐  Table 5
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Standalone One‐Year Reserve Risk Calculation

PC Company

ABC Casualty Unit

CV Coefficient Derivation

Item Value Source

(1) CY Year End 2011

(2) Mean of Full Value of Ultimate Unpaid Loss 9,582                Ex 3 Tbl 1
(3) Case O/S 3,694                Ex 3 Tbl 5
(4) Mean IBNR 5,888                Ex 3 Tbl 3
(5) CV of Ultimate Unpaid Loss 20.0% User selection
(6) k =  CV of IBNR versus CV of Case O/S 150.0% User selection
(7) Stnd Dev of Ultimate Unpaid 1,916                (2)*(5)

(8) Case OS CV Coefficient  0.200                (7)2)/[(3)
2
+ ((6)*(4))2 ]

(9) IBNR CV Coefficient  0.300                (8)*(6)

Exhibit 4 
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Standalone One‐year Reserve Risk Calculation 

PC Company

ABC Casualty Unit

Projection of Year by Year Variance of Ultimate Unpaid 

( 1 ) ( 2 ) ( 3 ) ( 4 ) ( 5 ) ( 6 ) ( 7 ) ( 8 ) ( 9 ) ( 10 )

CY

Eval 
Lag Case O/S IBNR

Total 
Unpaid 

Stnd Dev 
from

 Case O/S

Stnd Dev 
from

 IBNR Variance Stnd Dev CV
(3)+(4) (3)*CVCOS (4)*CVIBNR (6)2+(7)2 (8)1/2 (9)/(5)

2011 1 3,694        5,888       9,582           739            1,768          3,672,589   1,916       0.200

2012 2 3,609        3,732       7,342           723            1,121          1,777,969   1,333       0.182

2013 3 3,168        2,057       5,226           634            618              783,872       885           0.169

2014 4 2,051        1,221       3,272           411            367              303,081       551           0.168

2015 5 1,001        704          1,706           200            212              84,925         291           0.171

2016 6 547           372          919             109            112              24,451         156           0.170

2017 7 276           161          437             55              48                5,380            73            0.168

2018 8 123           63            186             25              19                962                31            0.167

2019 9 59             15            73                12              4                  157                13            0.171

2020 10 21             2               23                4                 1                  18                  4              0.182

2021 11 ‐            ‐           ‐              ‐             ‐               ‐                 ‐           0.000

Exhibit 5 
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Standalone One‐year Reserve Risk Calculation

PC Company

ABC Casualty Unit

Projection of One ‐Year Variance and SCRs

( 1 ) ( 2 ) ( 3 ) ( 4 ) ( 5 ) ( 6 ) ( 7 ) ( 8 ) ( 9 ) ( 10 ) ( 11 )

CY

Ultimate 
Variance

One‐Year 
Variance

One‐ 
Year 
Stnd 
Dev

One‐Year 
CV   Mean

Full Value  
99.50th  
p'ctile

Full 
Value 
SCR

SCR as 
% of 

reserve
 ∆(2) (3)1/2 (4)/E[R] (9) ‐(8) (10)/(8)

2011 3,672,589     1,894,620   1,376    0.144        0.14   9.16  9,582   13,706       4,124    43.0%

2012 1,777,969     994,097      997       0.136        0.14   8.89  7,342   10,305       2,963    40.4%

2013 783,872        480,790      693       0.133        0.13   8.55  5,226   7,280         2,054    39.3%

2014 303,081        218,156      467       0.143        0.14   8.08  3,272   4,670         1,398    42.7%

2015 84,925           60,473        246       0.144        0.14   7.43  1,706   2,443         737       43.2%

2016 24,451           19,071        138       0.150        0.15   6.81  919      1,335         416       45.3%

2017 5,380             4,419           66         0.152        0.15   6.07  437      637             201       46.0%

2018 962                805              28         0.153        0.15   5.21  186      271             86         46.2%

2019 157                139              12         0.161        0.16   4.28  73        109             36         49.1%

Percentage for SCR Percentile 99.5%

Standard Normal Percentile 2.576

Calculation notes
 (6) = [ ln( 1+CV2)] 1/2

 (7)  = ln( E[R]) ‐ 1/2 2

 (8) Mean = E[R] = exp(2 )
 (9) 99.5th percentile = exp()

Exhibit 6 
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Standalone One‐year Reserve Risk Calculation

PC Company

ABC Casualty Unit

Calculation of Discounted Reserve and Standalone Risk Margin

( 1 ) ( 2 ) ( 3 ) ( 4 ) ( 5 ) ( 6 ) ( 7 ) ( 8 )

CY Paid Loss
Full value

 Unpaid Loss
Discounted

 Unpaid Loss
SCR

 Factor SCR

Cost of 
Capital

Discounted 
Cost of 
Capital

from Ex 3 
Table 2

from Ex 3 
Table 1

(3) *
Ex 8 Col 5

from Ex 6 (5)*(4) CocRate*(6) (7) *
Ex 8 Col 5

2011 ‐                9,582           9,056          43.0% 3,897         234                231             
2012 2,240           7,342           7,020          40.4% 2,834         170                166             
2013 2,116           5,226           5,042          39.3% 1,982         119                114             
2014 1,953           3,272           3,175          42.7% 1,357         81                  75               
2015 1,567           1,706           1,659          43.2% 717             43                  38               
2016 787               919               897              45.3% 407             24                  21               
2017 482               437               428              46.0% 197             12                  10               
2018 251               186               182              46.2% 84               5                     4                 
2019 113               73                 72                49.1% 35               2                     2                 
2020 50                 23                 23                56.6% 13               1                     1                 
2021 23                 ‐                ‐               0.0% ‐              ‐                 ‐              

Total 9,582           7,613         457                429             

6.00%Cost of Capital Rate

Exhibit 7
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Standalone One‐year Reserve Risk Calculation

PC Company

ABC Casualty Unit

Yield Curve, Illiquidity Premiums, and PV  Factors

( 1 ) ( 2 ) ( 3 ) ( 4 ) ( 5 )

time

Risk‐free
 yield

Illiquidity 
Premium

Rate for 
Discounting PV Factor

yrs  (2)+(3) (1.0+ (4))^‐(1)

1 0.331% 0.710% 1.041% 0.9897             
2 0.385% 0.710% 1.095% 0.9785             
3 0.773% 0.710% 1.483% 0.9568             
4 1.220% 0.710% 1.930% 0.9264             
5 1.678% 0.710% 2.388% 0.8887             
6 2.090% 0.710% 2.800% 0.8473             
7 2.441% 0.710% 3.151% 0.8048             
8 2.721% 0.710% 3.431% 0.7635             
9 2.953% 0.710% 3.663% 0.7234             
10 3.128% 0.710% 3.838% 0.6862             
11 3.384% 0.710% 4.094% 0.6432             

Exhibit 8
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Standalone One‐year Reserve Risk Calculation

PC Company

ABC Casualty Unit

Derivation of Standalone Technical Provision for Unpaid Loss

Item Value Source

(1) Mean of Full Value Ult Unpaid Loss  9,582                 Ex 7 Col 3
(2) Mean of Discounted Unpaid Loss  9,056                 Ex 7 Col 4
(3) Effect of Discount  (526)                   (2) ‐ (1)
(4) Risk Margin 429                    Ex 7  Col 8
(5) Technical Provision 9,485                 (1) + (3) + (4)

Exhibit 9
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A Total Credibility Approach to Pool Reserving 

Frank Schmid 

______________________________________________________________________________ 
Abstract 
Motivation.  Among other services in the assigned risk market, NCCI provides actuarial services for the 
National Workers Compensation Reinsurance Pooling Mechanism (NWCRP), the Massachusetts Workers’ 
Compensation Assigned Risk Pool, the Michigan Workers’ Compensation Placement Facility, and the New 
Mexico Workers’ Compensation Assigned Risk Pool.  Pool reserving triangles pose specific challenges as they 
may be sparsely populated; this is because states may have left the NWCRP, recently joined it, or re-joined it after 
several years of absence.  Furthermore, triangles of partial coverage states may have unpopulated cells due to not 
having experienced a claim in a given policy year. 
Method.  There are two credibility aspects to Pool reserving to be addressed.  First, the degree of variability of 
the link ratios may differ across states, possibly (but not necessarily entirely) due to differences in size of the 
assigned risk market across states.  Second, the number of link ratios available varies greatly across states, from 
fully populated diagonals to very few observations per diagonal or, for some partial coverage states, to no 
observations at all.  To address these challenges, a comprehensive credibility approach has been developed, 
where the credibility-adjustment applies to the data-generating process as opposed to the outcome.  This new 
concept, called Total Credibility, rests on multilevel (hierarchical) modeling, which implies that the Pool triangles 
of all states are estimated simultaneously. 
Results.  The model is applied to the logarithmic paid plus case link ratios of the latest five diagonals of the Pool 
triangles of 45 jurisdictions, some of which are partial coverage states.  Diagnostic charts of in-sample fit show 
that the model is well suited for replicating the observed data.  Further, diagnostic charts of forecast errors 
indicate that the structure of the model is a proper representation of the data-generating process. 
Availability.  The model was implemented in R (http://cran.r-project.org/) using the sampling platform JAGS 
(Just Another Gibbs Sampler, http://www-ice.iarc.fr/~martyn/software/jags/).  JAGS was linked to R by 
means of the R package rjags (http://cran.r-project.org/web/packages/rjags/index.html). 
 
Keywords.  Pool Reserving, Growth Curve, Total Credibility 

______________________________________________________________________________ 

1. INTRODUCTION 

Among other services in the assigned risk market, NCCI provides actuarial services for the 

National Workers Compensation Reinsurance Pooling Mechanism (NWCRP), the Massachusetts 

Workers’ Compensation Assigned Risk Pool, the Michigan Workers’ Compensation Placement 

Facility, and the New Mexico Workers’ Compensation Assigned Risk Pool.  Pool reserving triangles 

pose specific challenges as they may be sparsely populated; this is because states may have left the 

NWCRP, recently joined it, or re-joined it after several years of absence.  Furthermore, triangles of 

partial coverage states may have unpopulated cells due to not having experienced a claim in a given 

policy year. 

There are two credibility aspects to Pool reserving to be addressed.  First, the degree of variability 

of the link ratios may differ across states, possibly (but not necessarily entirely) due to differences in 



A Total Credibility Approach to Pool Reserving 

Proposal 2012 Reserves Call Paper Program 2 

© Copyright 2012 National Council on Compensation Insurance, Inc.  All Rights Reserved. 

size of the assigned risk market.  Second, the number of link ratios available varies greatly across 

states, from fully populated diagonals to very few observations per diagonal or, for some partial 

coverage states, to no observations at all.  To address these challenges, a comprehensive credibility 

approach has been developed, where the credibility-adjustment applies to the data-generating 

process, as opposed to its outcome.  This new concept, called Total Credibility, rests on multilevel 

(hierarchical) modeling.  The parameters of the data-generating process of all states are estimated 

simultaneously, with each state-level parameter being drawn from a parent distribution.  This way, all 

state-level parameters incorporate information from all states. 

1.1 Research Context 

Gelman and Hill [3] offer a textbook introduction to multilevel (hierarchical) modeling.  In 

multilevel modeling, credibility is implemented by means of partial pooling (or, synonymously, 

shrinkage).  The concept of partial pooling is akin to (and, in specific instances equivalent to) 

Bühlmann credibility. 

Let   be one of the parameters that govern the data-generating process.  In partial pooling, the 

parameter   is allowed to vary across the units of observations; in NCCI Pool reserving, these units 

are U.S. states.  With partial pooling, the state-specific  ’s are draws from the same, common 

distribution—the parameters that define this common distribution are called hyperparameters.  

Shrinkage is an adjustment toward the expected value of the  ’s (that is, the expected value of the 

common distribution). 

In the normal linear model, partial pooling is equivalent to Bühlmann credibility.  Following 

Gelman and Hill [3], let y  be a normally distributed variable: 

2
[ ]~ N( , ) ,i j i yy    (1) 

where i  indicates the observation and j , for instance, indicates the jurisdiction in which this 

observation occurred.  (In multilevel modeling, it is common to make use of double-indexing.) 

Multilevel modeling assumes that the state-level parameter j  is a draw from a distribution that 

is common to all states: 

2~ N( , ) j     . (2) 

Casualty Actuarial Society E-Forum, Summer 2012
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It can be shown that the multilevel estimator for j  reads (see Gelman and Hill [3]): 

2

2
2

ˆ (1 )   , 1j j j j j
y

j

y

n







    




     



 , 
(3) 

where jy  is the sample mean for state j  based on jn  observations.  Clearly, Equation (3) is 

equivalent to Bühlmann credibility. 

Guszcza [4], Zhang, Dukic, and Guszcza [8], and Meyers [6] discuss the use of multilevel 

modeling in reserving.  Guszcza [4] fits growth curves to cumulative losses using frequentist 

methods with random effects in parameters.  Zhang, Dukic, and Guszcza [8] take a Bayesian 

approach to fitting growth curves to cumulative losses—the authors estimate multiple triangles 

simultaneously, thus accounting for correlation across loss triangles within an industry.  Meyers [6], 

in reference to Guszcza [4] and Zhang, Dukic, and Guszcza [8], fits an autoregressive process to loss 

ratios in a Bayesian model—yet, there is no concept of shrinking built into the model. 

Neither the models discussed by Guszcza [4] nor the one suggested by Meyers [6] serve our 

purpose—whereas the former cannot handle missing values, the latter is not multilevel.  The 

approach closest to the Total Credibility model presented below is the Bayesian framework 

developed by Zhang, Dukic, and Guszcza [8]. 

1.2 Objective 

The objective of the Total Credibility Model (TCM) is to provide credibility-adjusted link ratios 

for the Pool reserving triangles of all jurisdictions that are serviced by NCCI, either directly or 

through NWCRP.  Specifically, these link ratios are to be derived from the latest n (for instance, 

five) diagonals.  Some of these diagonals are sparsely populated to the point of being devoid of any 

observations.  Some states may have left the NWCRP, and some of these states may be partial 

coverage states (the exposure of which was very limited).  Partial coverage states are jurisdictions in 

which the respective (competitive or monopolistic) state fund offered assigned risk coverage but 

was, under its charter, precluded from providing required Federal Act coverage; examples of Federal 

Act coverage are USL&H (United States Longshore and Harbor Workers’ Compensation Act) 

coverage and occupational disease coverage related to the Federal Coal Mine Health and Safety Act.  

In certain policy years, this federal coverage was provided through the NWCRP. 

Casualty Actuarial Society E-Forum, Summer 2012
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1.3 Outline 

The next section describes the data.  Section 3 presents the model; Section 4 discusses the results.  

Section 5 concludes. 

2. THE DATA 

The data set consists of (paid plus case and, alternatively, paid) link ratios of the latest five 

diagonals (2005–2009) of the Pool triangles of 45 jurisdictions.  The paid link ratio from time t  to 

time 1t   is defined as the ratio of cumulative payments up to (and inclusive of) time 1t   to the 

cumulative payments up to (and inclusive of) time t ; for the paid plus case link ratio, it is the 

cumulative payments plus the applicable case reserves.  For research purposes, the policy year data 

are annual (instead of quarterly), which means that the data are as of the fourth quarter of the 

calendar year. 

For many states, the data are sparse, particularly for the eight partial coverage states: CA, CO, 

MD, MT, OK, UT, WA, and WY.  A total of 18 jurisdictions (or 40 percent) have a complete 

history of link ratios (AK, AL, AR, CT, DC, DE, GA, IA, IL, KS, MI, NC, NH, NJ, NM, SD, VA, 

and VT); there are four states for which all available link ratios are unity (between 4 and 13 unity link 

ratios per diagonal—CO, OK, WA, and WY); there are two states with one observation (CA and 

WV); and there are two states with no data (MT and UT).  Of the 45 analyzed jurisdictions, 20 states 

(among which are the mentioned partial coverage states) are no longer in the NWCRP. 

Charts 1 through 5 display box plots for the empirically observed logarithmic paid plus case link 

ratios of the set of 45 jurisdictions for the diagonals 2009 through 2005.  The box comprises 50 

percent of the data—its upper and lower hinges indicate the interquartile range (IQR).  The 

horizontal bar inside the box represents the median.  The whiskers at the end of the stems indicate 

the smallest (bottom) and largest (top) observed value that is within 1.5 IQRs from the box limits.  

Observations beyond the whiskers are plotted as dots and constitute outliers as judged by the 

normal distribution. 

The boxplots shown in Charts 1 through 5 indicate that the (logarithmic) paid plus case link ratio 

distributions are heavy-tailed, yet not skewed.  This is in contrast to the (logarithmic) paid link ratios, 

which are displayed in Charts 6 through 10.  The (logarithmic) paid link ratios are highly skewed to 

the right, which implies that, despite the logarithmic transformation, there are more outliers on the 

upside than on the downside. 

Casualty Actuarial Society E-Forum, Summer 2012
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Chart 1: Logarithmic Paid Plus Case Link Ratio Boxplots, 45 Jurisdictions, 2009 Diagonal 

 

Chart 2: Logarithmic Paid Plus Case Link Ratio Boxplots, 45 Jurisdictions, 2008 Diagonal 
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Chart 3: Logarithmic Paid Plus Case Link Ratio Boxplots, 45 Jurisdictions, 2007 Diagonal 

 

Chart 4: Logarithmic Paid Plus Case Link Ratio Boxplots, 45 Jurisdictions, 2006 Diagonal 
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Chart 5: Logarithmic Paid Plus Case Link Ratio Boxplots, 45 Jurisdictions, 2005 Diagonal 

 

Chart 6: Logarithmic Paid Link Ratio Boxplots, 45 Jurisdictions, 2009 Diagonal 
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Chart 7: Logarithmic Paid Link Ratio Boxplots, 45 Jurisdictions, 2008 Diagonal 

 

Chart 8: Logarithmic Paid Link Ratio Boxplots, 45 Jurisdictions, 2007 Diagonal 
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Chart 9: Logarithmic Paid Link Ratio Boxplots, 45 Jurisdictions, 2006 Diagonal 

 

Chart 10: Logarithmic Paid Link Ratio Boxplots, 45 Jurisdictions, 2005 Diagonal 
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3. THE STATISTICAL MODEL 

At the center of the TCM is a growth curve that feeds into a double exponential likelihood.  The 

growth curve is motivated by the fact that logarithmic link ratios represent logarithmic rates of 

growth of cumulative losses, thus resembling a biological growth process. 

The three-parameter growth curve employed in the model reads: 

log( ) (1 ) ( 1)
, ,  1,..., ,  0,  0 1,  0 1i iq j q j

i j i i i i iy j N q                , (1) 

where i  indicates the state and j  indicates the maturity (year); ,i jy  is the (natural) logarithm of the 

link ratio, and N stands for the number of observations (per state) in the data set. 

The parameter   delivers an estimate of the first-to-second link ratio; the parameter q  is a 

weighting factor between log-linear and linear influences. 

All three parameters of the growth curve are subject to partial pooling.  For the parameter  , 

this is accomplished by means of a half-normal distribution; both the location parameter of the 

parent distribution and the draws for the individual states are generated by normal distributions that 

are truncated on the left at zero.  For the parameter  , the partial pooling of the location parameter 

is implemented using beta distributions, which implies that both the location parameter of the 

parent distribution and the draws for the individual states are generated by beta distributions.  For 

the parameter q ,  the location parameter of the parent distribution is again a beta distribution, but 

the draws for the individual states are from a normal distribution that is left-truncated at zero and 

right-truncated at unity.  The use of a truncated normal (instead of a beta) distribution is motivated 

by an easier convergence of the Markov chains in the Bayesian estimation process. 

The growth curve stated in Equation (1) is a generalization of a functional form, the Bayesian 

estimation of which has first been discussed by Gelfand and Carlin [2]. 

The likelihood consists of a double exponential (or, equivalently, Laplace) distribution.  The 

double exponential distribution is heavy-tailed and minimizes the sum of absolute errors (as 

opposed to the sum of squared errors), which makes this distribution robust to outliers.  Minimizing 

the sum of absolute errors implies estimating the conditional median (as opposed to the traditional 

approach of modeling the conditional mean).  The double exponential likelihood, in its standard 

form, does not account for skewness, which makes it unsuitable for studying (logarithmic) paid link 

ratios. 
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The precision (which is the reciprocal of the variance) of the double exponential is credibility-

adjusted.  The variance of the log link ratios is allowed to vary across states.  Credibility-adjusting 

these variances is critical when it comes to simulating data for states that have no observations.  

Further, the likelihood allows for heteroskedasticity, as the variances of the first and second log link 

ratios are allowed to differ from each other and from the variance that applies to all subsequent link 

ratios. 

Generally, the model can be extended to accommodate more complex error structures, especially 

with regards to heteroskedasticity but also with respect to the time series behavior of link ratios.  For 

instance, the error variance in the likelihood can be modeled as a function of the number of open 

claims.  Further, an autoregressive process similar to the one implemented by Meyers [6] could be 

considered.  However, given the sparseness of the data, such additional complexity was not deemed 

desirable for annual data.  Implementation of the model for quarterly data may offer additional 

modeling options due to the higher number of observations. 

4. RESULTS 

The model is estimated by means of Markov-chain Monte Carlo simulation (MCMC).  The JAGS 

code of the core model is displayed in the appendix. 

As mentioned, there are four states for which all link ratios are equal to unity.  As a result of there 

being no variation in the data for these states, the sampling process breaks down.  For this reason, 

the data set is jittered by adding a normally distributed error term to the logarithmic link ratios that 

are equal to zero (for any state).  The standard deviation of the added error term equals 0.0001. 

Although the added error term is close to zero (due to the small standard deviation), in order to 

have it average out to (approximately) zero, 30 jittered data sets are created and the model is run on 

all of them independently.  For the purpose of obtaining the posterior distributions, the codas of the 

30 runs are pooled. 

Three Markov chains are employed in the estimation.  After a burn-in phase of 20,000 draws, 200 

samples are collected per chain (from 20,000 draws per chain with a thinning parameter of 100).  

The 200 samples from three chains of 30 jittered data sets then amount to 18,000 draws per 

parameter.  The link ratios are obtained from the logarithmic link ratio by exponentiating draw by 

draw. 
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Charts 11 through 16 present the estimated (and observed) link ratios for New Jersey, 

Massachusetts, Michigan, New Mexico, Tennessee, and West Virginia.  These states were selected to 

test the efficacy of the model for jurisdictions with differing characteristics.  New Jersey is the largest 

member of the NWCRP by Reinsurance Pool Premiums Written [7].  Massachusetts left the 

NWCRP effective 1/1/1991 and formed its own pool, for which NCCI provides actuarial services.  

Similarly, Michigan left the NWCRP effective 1/1/1983 to form its own pool; here too, NCCI 

provides actuarial services.  New Mexico has its own pool (without ever having been with the 

NWCRP); NCCI provides actuarial services.  Tennessee is of interest because this state left the Pool 

effective 1/1/1998; for the post-NWCRP policy years, NCCI provides no actuarial services for the 

residual market, which creates an incomplete data set.  Finally, West Virginia is of interest because it 

recently joined the NWCRP; only a single link ratio is available. 

Charts 11 through 16 show that there is clearly more variance in the logarithmic link ratios at the 

first maturity (Year 1 on the horizontal axis) than there is at the second (Year 2); there is little 

variation in the variance thereafter, as assumed in the model.  The states vary greatly by the degree 

of convexity (curvature) in the link ratio trajectory.  For instance, for Michigan the decline is gentler 

than for New Mexico, where the link ratios drop precipitously from Year 1 to Year 2. 

Tennessee (Chart 15) does not have its first link ratio before Year 9.  Thus, prior to this maturity, 

the trajectory draws heavily on the common distributions of the growth curve parameters.  This 

holds even more so for West Virginia (Chart 16), which sports only a single observation.  As the 

chart shows, the estimated value falls short of the observed value, which is due to shrinkage. 
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Chart 11: Paid Plus Case Link Ratios, New Jersey, Five Diagonals 

 

Chart 12: Paid Plus Case Link Ratios, Massachusetts, Five Diagonals 
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Chart 13: Paid Plus Case Link Ratios, Michigan, Five Diagonals 

 

Chart 14: Paid Plus Case Link Ratios, New Mexico, Five Diagonals 
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Chart 15: Paid Plus Case Link Ratios, Tennessee, Five Diagonals 

 

Chart 16: Paid Plus Case Link Ratios, West Virginia, Five Diagonals 
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Charts 17 through 21 provide in-sample error diagnostics for the diagonals 2009 through 2005.  

The displayed residuals are standardized, thus accounting for the heteroskedasticity that has been 

built into the model.  There is no discernible pattern in these errors.  Specifically, it appears that the 

growth curve is capable of accounting for the various degrees of convexity in the link ratio 

trajectories across states.  Also, due to the errors being symmetric around zero along the entire 

horizontal axis, the model does not systematically underpredict or overpredict at certain maturities.  

Finally, the errors are not widening or narrowing in systematic ways with maturity (that is, along the 

horizontal axis). 

Some of the residuals are comparatively large, thus pointing to outliers in the data.  This supports 

the choice of a double exponential likelihood, which, due to the modeling of the conditional median 

(as opposed to the mean), shows little sensitivity to outliers. 

Chart 17: In-Sample Diagnostics, Paid Plus Case, 2009 Diagonal 
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Chart 18: In-Sample Diagnostics, Paid Plus Case, 2008 Diagonal 

 

Chart 19: In-Sample Diagnostics, Paid Plus Case, 2007 Diagonal 
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Chart 20: In-Sample Diagnostics, Paid Plus Case, 2006 Diagonal 

 

Chart 21: In-Sample Diagnostics, Paid Plus Case, 2005 Diagonal 
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The model is validated using a one-year holdout period.  The model is fit to the diagonals of 

Calendar Years 2004 through 2008.  Based on the estimated model parameters, link ratios for 

Calendar Year 2009 are simulated.  By comparing the simulated link ratios to the 2009 observed 

values, the mean absolute forecast error is calculated.  The process of model validation is 

repeated using the diagonals of Calendar Years 2003 through 2007—the forecast errors are 

calculated based on the observed 2008 diagonal. 

Chart 22 displays the forecast errors for the 2009 diagonal; Chart 23 provides this information 

for the 2008 diagonal.  Clearly, in Chart 22, for the first maturity (Year 1 on the horizontal axis), the 

high degree of volatility in the link ratios in these maturities leaves the median forecast error 

noticeably greater than zero; this is because in that year, several states had considerably higher link 

ratios in Year 1 than usual.  At the same time, in Chart 23, the forecast for the link ratio at maturities 

Year 1 performs considerably better.  Beyond the first two maturities, the forecasts offer a high 

degree of accuracy; the forecast errors are clearly symmetric. 

Chart 22: Forecast Diagnostics, Paid Plus Case, 2009 Diagonal 
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Chart 23: Forecast Diagnostics, Paid Plus Case, 2008 Diagonal 
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6. APPENDIX 

JAGS Code (Core Model) 

model 
{ 
 
#shrinkage 
beta.mu ~ dnorm(0,1.E-2)T(0,) 
beta.tau <- pow(beta.sigma,-2) 
beta.sigma ~ dunif(0,2) 
 
gamma.mu ~ dbeta(1,1) 
gamma.sigma ~ dunif(0,1) 
gamma.tau <- pow(gamma.sigma,-2) 
gamma.alpha <- gamma.mu * gamma.tau 
gamma.beta <- (1-gamma.mu) * gamma.tau 
 
q.mu ~ dbeta(1,1) 
q.sigma~ dunif(0,1) 
q.tau <- pow(q.sigma,-2) 
#q.alpha <- q.mu * q.tau 
#q.beta <- (1-q.mu) * q.tau 
 
for(m in 1:3){ #different variances for first two development years 
    tau.alpha[m] ~ dexp(1.0) 
    tau.beta[m] ~ dgamma(0.1,0.1) 
    } 
 
#likelihood 
 
for(i in 1:L){ #rows (states) 
 
   beta[i] ~ dnorm(beta.mu,beta.tau)T(0,) 
   gamma[i] ~ dbeta(gamma.alpha,gamma.beta) 
   q[i] ~ dnorm(q.mu,q.tau)T(0,1) #using normal instead of beta eases convergence 
 
   for(m in 1:3){ 
       tau[i,m] ~ dgamma(tau.alpha[m],tau.beta[m]) 
       sigma[i,m] <- sqrt(2)/tau[i,m] #double exponential errors 
       } 
 
   for(j in 1:T){ #columns (development years) 
 
        y.pred[i,j] ~ ddexp(mu[i,j],tau[i,tau.index[j]]) #double-indexing for tau 
        cdf[i,j] <- sum(mu[i,j:T]) 
        mu[i,j] <- beta[i]*pow(gamma[i],q[i]*log(j)+(1-q[i])*(j-1)) 
 
        } 
 
   for(j in 1:N){ #columns (development years) 
 
        y.2009[i,j] ~ ddexp(mu[i,j],tau[i,tau.index[j]]) #double-indexing for tau 
        y.2008[i,j] ~ ddexp(mu[i,j],tau[i,tau.index[j]]) 
        y.2007[i,j] ~ ddexp(mu[i,j],tau[i,tau.index[j]]) 
        y.2006[i,j] ~ ddexp(mu[i,j],tau[i,tau.index[j]]) 
        y.2005[i,j] ~ ddexp(mu[i,j],tau[i,tau.index[j]]) 
 
     } 
   } 
} 
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Two Symmetric Families of  Loss Reserving Methods 

Andy Staudt, FCAS, MAAA 
________________________________________________________________________ 

Abstract.  
In this paper, we introduce two families of loss reserving methods – the Actual vs. Expected family and the 
Mean-Reverting family. The Actual vs. Expected family can be used to credibly adjust prior expectations, 
either in terms of a fixed initial estimate or just a prior period’s estimate, for deviations between actual and 
expected experience in the same direction as the deviation. In this regard, methods within this family are 
useful as an alternative to a fixed a priori expectation and when rolling-forward estimates of ultimate loss. 
Conversely, the Mean-Reverting family can be used to credibly adjust a posteriori estimates for deviations 
between actual and expected experience in the opposite direction of the deviation. In this regard, methods 
within this family are useful in situations where either the occurrence (or absence) of events decreases (or 
increases) the likelihood of similar events in the future. 
 
Keywords.  
Reserving; Bornhuetter-Ferguson; Chain-Ladder; Benktander; Actual vs. Expected; Mean-Reversion. 

             

1. INTRODUCTION 

In this paper, we introduce two families of loss reserving methods – the Actual vs. Expected 
family and the Mean-Reverting family. The Actual vs. Expected family can be used to credibly adjust 
prior expectations, either in terms of a fixed initial estimate or just a prior period’s estimate, for 
deviations between actual and expected experience in the same direction as the deviation. In this 
regard, methods within this family are useful as an alternative to a fixed a priori expectation and when 
rolling-forward estimates of ultimate loss. Conversely, the Mean-Reverting family can be used to 
credibly adjust a posteriori estimates for deviations between actual and expected experience in the 
opposite direction of the deviation. In this regard, methods within this family are useful in situations 
where either the occurrence (or absence) of events decreases (or increases) the likelihood of similar 
events in the future.  

Although the primary characterization and purpose of these families are different, they can be 
expressed generally using the symmetric formulations shown in Table 1. 

Table 1. General formulations of the Actual vs. Expected and Mean-Reverting families of loss reserving methods. 

Family Formulation 

Actual vs. Expected (AE) Family  ( )00 UpCwUU kkiAEi −+=  
Mean-Reverting (MR) Family  ( )0UpCwUU kkiiMRi −−=  

Here kp  is the percentage of ultimate loss developed at time k , kC  is the actual loss at time k  and 

iw  is a weighting function.1
iU We use  as a generic estimate of ultimate loss using method i  where 

                                                           
1 For the purposes of this paper, we take the development pattern and the selection of percentage to ultimate figures pk 
as a given rather than discuss the computation or updating of such patterns based on experience. 
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0U  is our initial expectation of ultimate and AEiU  and MRiU  represent the Actual vs. Expected and 
Mean Reverting variants of projection method i , respectively. When referring to projections of 
ultimate loss, we drop the time k  subscript for simplicity.  

To roughly understand these families, note that 0UpC kk −  is an actual vs. expected adjustment 
as kC  is the actual loss at time k  and 0Upk  is the amount of loss expected at time k  based on our 
initial expectation and the loss development pattern. So, where the Actual vs. Expected family takes 
as its starting point our a priori expectation and credibly adjusts this amount upward for the difference 
between actual and expected experience to date, the Mean-Reverting family takes as its starting point 
our a posteriori estimate of ultimate loss and adjusts this amount downward for the difference between 
actual and expected experience to date.   

In this regard, and considering Table 1 in detail, the symmetry of the methods is somewhat 
obvious. We should note, however, that this symmetry is primarily a mathematical nicety which 
proves useful in later sections as we derive key members and properties for each of the individual 
families, rather than a characteristic which intrinsically links these two families. And indeed, each of 
these families can be considered and used independently of one another. However, as will be 
discussed in Section 3.3, the Actual vs. Expected family can be used to solve a key shortcoming of 
the Mean-Reverting family.   

1.1 Notation, Abbreviations and a Recap of Common Loss Reserving Methods 
Notation and abbreviations will play an important role in this paper, both to understand the 

methods presented and to reflect their commonalities and lineage. For ease of reading and clarity 
then, it is useful to include a short but comprehensive discussion on the notation and abbreviations 
which will be subsequently used.  

The basic notation is taken from Mack [2] with the key elements already defined above. But to 
recap, we define kp  as the percentage of ultimate loss developed at time k , kC  as the actual loss at 
time k , iU  is the estimate of ultimate loss using loss reserving method i  at time k  (recall that we 
have dropped the k  subscript for simplicity) where 0U  represents the fixed a priori expectation of 
ultimate; and iw  is a weighting function. 

For the remainder of the paper, the subscript i  in the term iU  will be replaced with the initials 
of the loss reserving method used. So, for the Chain-Ladder Method we use CL, for the 
Bornhuetter-Ferguson we use BF and for the Gunnar-Benktander Method we use GB. We will also 
use the abbreviation IE, standing for Initial Expected method, and notation IEU , as well as 0U , to 
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refer to our fixed a priori expectation of ultimate loss. The former usage is practical as it formalizes 
our initial expectation as a loss projection method comparable to the CL or BF method. And the 
latter usage is to be consistent with Mack [2] which defines the a priori expectation as the estimate at 
time 0=k . But also, the term 0U , indexed by the time k  subscript, will become useful in later 
sections where we discuss rolling forward a prior period’s estimates of ultimate loss (not to be 
confused with the initial a priori estimate). In these cases we use the notation kU  to reflect our 
current estimate of ultimate loss at time k  and 1−kU  to reflect our prior estimate of ultimate loss at 
time 1−k  regardless of the method selected.  

For each basic loss reserving method described in the preceding paragraph, the following paper 
will define an Actual vs. Expected variant and a Mean-Reverting variant. To differentiate the basic 
loss reserving methods from their variants, we will precede the subscript i  in iU  with AE for 
members of the Actual vs. Expected family and MR for members of the Mean-Reverting family. For 
instance, we will use the abbreviation AEBF and the notation AEBFU  to refer to the Actual vs. 
Expected Bornhuetter-Ferguson method and the abbreviation MRBF and the notation MRBFU  to 
refer to the Mean-Reverting Bornhuetter-Ferguson method. 

1.2 Common Loss Reserving Methods and the Experience Adjusted Method 
As a refresher, Table 2 below shows the calculations underlying each of the basic loss reserving 

methods used in this paper with both the traditional as well as the credibility formulations shown to 
highlight the relationships between these methods.  
Table 2. Notation and formulations of common loss reserving methods as well as the Experienced Adjusted method. 

Abbrev. Name Traditional Formulation Credibility Formulation 

IE Initial Expected  0UU IE =  N/A 

EA Experience Adjusted  ( )00 UpCpUU kkkEA −+=  ( ) 01 UpUp kBFk −+=  

BF Bornhuetter-Ferguson 0)1( UpCU kkBF −+=  ( ) 01 UpUp kCLk −+=  

GB Gunnar Benktander  ( ) BFkkGB UpCU −+= 1  BFkCLk UpUp )1( −+=  

CL Chain-Ladder  
k

k
CL p

CU =  N/A 

While the IE, CL, BF, and GB methods should be familiar to most actuaries, this paper 
introduces a new method which we call the Experience Adjusted method, denoted using EA. The 
EA method, although to the best of our knowledge not defined in the actuarial literature, is useful 
for presenting an evenly-spaced spectrum of potential members of the Actual vs. Expected and 
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Mean-Reverting families; and is defined as 

( )00 UpCpUU kkkEA −+= . (1) 

Where the CL and IE methods are polar opposites, and the BF method is the credibility-
weighted average of these two methods, the EA method is the polar opposite of the GB method. To 
understand this note that the GB method can be expressed as the credibility weighted average of the 
BF and CL methods as shown in Table 2 or Mack [2], whereas the EA method can be expressed as 
the credibility-weighted average of the BF and IE methods. Working backwards, we shows this as 

( ) ( )[ ] ( )
( ) ( )

( )( )
( )

( )
EA

kkk

kkk

kkk

kkkk

kkkkk

kkkkkBFk

U
UpCpU

UpUCp
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UppCp
UpUppCp

UpUpCpUpUp

=
−+=
−+=

−+=
−++=

−+−+=
−+−+=−+

00

0
2

0

0
2

0

00

000

1
11

11
111

 

(2) 

And thus, these five methods – the IE, EA, BF, GB, and CL – form a spectrum from no credibility 
to full credibility with respect to current experience.  

1.3 Outline 
The remainder of the paper is structured as follows. In Section 2 we present the Actual vs. 

Expected family and in Section 3 we present the Mean-Reverting family. Generally these sections 
follow the same outline where we first present the general formulation of the family and then 
discuss the family’s “generator function” which is used to derive specific members of that family. 
We then discuss considerations when selecting a specific member of each family before focusing on 
the practical uses of each family and note any contra-indications. We will also introduce extensions 
to the basic versions of these families as defined in Table 1. In Section 2, we introduce the 
Generalized Actual vs. Expected family which can be used to roll forward prior estimates of ultimate 
loss. And in Section 3, we introduce the Adjusted Mean-Reverting family which corrects for a flaw 
in the basic version of the Mean-Reverting family. Finally, in Section 3, we also comment upon the 
relative accuracy of the Mean-Reverting family using hindsight testing. The conclusion of this paper 
highlights the four members of these families which might prove most useful to the actuary in a 
practical setting. We also include an Appendix which discusses the motivation for this paper 
(Appendix A) and attach an Excel file which shows how to implement these methods (Appendix B).  
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2. THE ACTUAL VS. EXPECTED FAMILY 

In this section, we focus on the Actual vs. Expected family. This family can be used to credibly 
adjust prior expectations, either in terms of a fixed initial estimate or just a prior period’s estimate, 
for deviations between actual and expected experience in the same direction as the deviation. In this 
regard, methods within this family are useful as an alternative to a fixed a priori expectation and when 
rolling forward estimates of ultimate loss.  

2.1 General Formulations 

2.1.1 The actual vs. expected formulation 

As discussed above, the Actual vs. Expected family is defined as 

( )00 UpCwUU kkiAEi −+= . (3) 

Without any loss of generality, Equation (3) can be used to develop any data triangle (i.e., paid or 
incurred losses as well as reported or closed claim counts). For the purpose of understanding this 
family, note that 0UpC kk −  is an actual vs. expected adjustment as kC  is the actual loss at time k  
and 0Upk  is the amount of loss expected at time k  based on our initial expectation and the loss 
development pattern. For example, if actual losses are more than expected, this family would adjust 
the initial expectation upward allowing for some portion, iw , of this deviation, and vice versa.  

From this interpretation, it is obvious that the critical factor is the weighting function iw  which 
determines the amount of reliance we place on the actual vs. expected adjustment relative to initial 
expectations. If we were to set 1=iw , then we would adjust the a priori expectation fully for the 
deviation between actual and expected experience. On the other hand, if we were to set 0=iw , 
then Equation (3) would reduce to the a priori expectation, ignoring actual experience. This loosely 
suggests that the weighting function iw  can be viewed as the credibility of the actual vs. expected 
adjustment and that an acceptable constraint is ]1,0[∈iw . 

Consider the following example. Suppose that the historical percentage of loss developed at time 
k  is 25%, the initial expectation of ultimate is $200, and the current loss amount is $150. In 
Equation (3), suppose that we set the weighting factor equal to the percentage of loss developed at 
time k  (i.e., ki pw = ). As will be shown in the next section, this is actually a special case of the 
Actual vs. Expected family – namely the Actual vs. Expected Bornhuetter-Ferguson (AEBF) 
method. Table 3 below compares our fixed initial expectation against the AEBF method. From this 
comparison, we see that as actual losses were $100 more than expected ($150 less 25% of $200), but 
only 25% credible according to the weighting function defined above, we only adjust our initial 
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expectation upward by $25 (25% of 100).  

Table 3. Simple example comparing IE method with the AEBF method.  

IE Method AEBF Method 

200
0

=
= UU IE  

( )
( )

225
100%25200

200%25150%25200
00

=
×+=

×−×+=
−+= UpCpUU kkkAEBF

 

2.1.2 The credibility formulation 

Even restricting ]1,0[∈iw , there are still an infinite number of members of the Actual vs. 
Expected family, which, practically, isn’t a very useful result. Rather, it is more constructive to limit 
ourselves to a finite subset of the family. One or two methods which could be used regularly during 
a reserve review. To this end, consider the following credibility formulation: 

0)1( UpUpU kikAEi −+= . (4) 

Equation (4) takes the standard form of credibility-weighted averages defined in the actuarial 
literature (see Mahler and Dean [3]) where we use kp  to weight together our “observation” iU  
based on experience with our initial estimate 0U  based on “other information.” Although it is not 
immediately obvious, this credibility equation defines a subset of members of the Actual vs. 
Expected family. Similar to the moment or probability generating functions in statistics, this 
equation can be used as a “generator function” for the Actual vs. Expected family, where, by 
inserting common loss reserving methods into the iU  term, the resulting formula (rearranged) 
returns a member of this family.  

For example, suppose we were to insert the BF method into Equation (4). Then we can derive 
what we will call the AEBF method as 

[ ]
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(5) 

Or, to show another derivation, consider inserting the EA method into Equation (4) to derive what 
we will call the AEEA method as 
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(6) 

Table 4 below presents three other distinct members of this family, along with the AEBF and 
AEEA methods, which were all derived in a similar manner – by inserting the named loss reserving 
method into the generator function in Equation (4) and rearranging. Table 4 also explicitly presents 
the weight function which defines each of these methods within the actual vs. expected formulation. 
This function reflects weight or credibility each method gives the actual vs. expected adjustment, 
with the AEIE method placing no weight on the adjustment and the AEEA, AEBF, AEGB, and 
AECL methods placing increasing weight on actual relative to expected experience.   

Table 4. Members of the Actual vs. Expected family of loss reserving methods differentiated by their weight function.   

Method Credibility Formulation Actual vs. Expected Formulation Weight 
Function 

AEIE 0)1( UpUpU kIEkAEIE −+=  ( ) IEkkAEIE UUpCUU ⇒−+= 00 0  0  
AEEA 0)1( UpUpU kEAkAEEA −+=  ( )0

2
0 UpCpUU kkkAEEA −+=  2

kp  
AEBF 0)1( UpUpU kBFkAEBF −+=  ( ) EAkkkAEBF UUpCpUU ⇒−+= 00  kp  
AEGB 0)1( UpUpU kGBkGB −+=  ( )( )0

2
0 2 UpCppUU kkkkAEGB −−+=  22 kk pp −  

AECL 0)1( UpUpU kCLkAECL −+=  ( ) BFkkAECL UUpCUU ⇒−+= 00 1  1 

The table above begins to indicate an important relationship. Namely, the Actual vs. Expected 
family is fundamentally a generalization of the BF method. Table 5 below illustrates this by placing 
the credibility formulation of the Actual vs. Expected family as defined in Equation (4) next to the 
credibility formulation of the BF method. Rather than restricting our “observation” within the 
credibility formula to the CL method, the Actual vs. Expected family lets us use any alternative 
method. In fact, we note that if we use the BF method as our plug-in estimator, than the resultant 
Actual vs. Expected variant is the EA method discussed in Section 1.2.  

Table 5. Comparison of the Actual vs. Expected family and the BF method. 

Family Formulation 

Credibility Formulation of Actual vs. Expected Family 0)1( UpUpU kikAEi −+=  
Bornhuetter-Ferguson Method ( ) 01 UpUpU kCLkBF −+=  
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As a result of this exercise, we have gone from an infinite set of members defined by the 
weighting function in Equation (3), to an infinite subset defined by the credibility formulation in 
Equation (4), to a finite subset of five members which can each be expressed as a variant of a 
common loss reserving method. Figure 1 illustrates this progression graphically. 

Actual vs. Expected Bornhuetter-Ferguson (AEBF) Method
Actual vs. Expected Chain-Ladder (AECL) Method
Actual vs. Expected Gunnar Benktander (AEGB) Method
Actual vs. Expected Initial Expected (AEIE) Method

Actual vs. Expected Experience Adjusted (AEEA) Method

Infinite set of all members defined 
by the pure formulation:

Infinite subset of members defined 
by the generator function:

Finite members…

 
Figure 1. Graphical representation of possible members of the Actual vs. Expected family.    

Although the methods shown in Table 4 are by no means the optimal members of the Actual vs. 
Expected family, the fact that we can express each of these methods as a credibility-weighted 
average of common loss reserving methods, with our fixed a priori expectation as the complement of 
credibility, makes them a sensible first choice.  

2.2 Selecting a Specific Member 
The primary motivation for the Actual vs. Expected family is the obvious inability of a fixed a 

priori expectation to learn with experience updating expectations with new information. Because the 
Actual vs. Expected family is effectively our a priori expectation 0U  with an adjustment for 
experience ( )0UpCw kki − , this family is quite useful as an alternative seed to the BF method with 
the weight function controlling the degree of responsiveness relative to stability when updating 
initial expectations, and thus providing us with a natural heuristic to choose between alternative 
members of the Actual vs. Expected family. 

2.2.1 Using the weight function to select a method – in general 

Considering the five distinct members shown in Table 4, the first and most obvious way to 
choose a member of this family is with reference to the weight function iw , which describes the 
reliance we place on deviations between actual and expected experience. Consider the AEBF 
method as defined by Equation (5). Here, as losses develop to ultimate (i.e., %100→kp ), the 
AEBF method tends toward the ultimate loss amount rather than staying fixed at the initial 
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expectation. Now, in this instance, we do not apply the full actual vs. expected adjustment, rather 
the rate at which we adjust the a priori expectation for actual experience is commensurate with the 
percentage of loss developed ki pw =  at time k .  

Figure 2 below illustrates the weight each of the defined Actual vs. Expected methods place on 
the actual vs. expected adjustment as a function of the amount of developed experience.  
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Actual vs. Expected Initial Expected (AEIE)

 
Figure 2. The weight these members of the Actual vs. Expected family give the actual vs. expected adjustment.  

From this illustration, we can see that the AEGB method is more responsive than the AEEA 
method. As was discussed in Section 1.1, this makes sense, given that the GB method places more 
weight on developed experience than the EA method which places more weight on the initial 
expectation. And the AEBF method, as with its namesake, takes the middle ground and places 
“equal” weight on the actual vs. expected adjustment as on the a priori expectation. In contrast, the 
AECL method makes a full allowance for the actual vs. expected adjustment.   

Or, presented another way, return for a moment to the previous example (i.e., the percentage 
developed at time k  is 25%, the initial expectation is $200, and the current loss amount is $150). 
Table 6 shows the estimate of ultimate loss in this example using each of the five defined Actual vs. 
Expected methods. Note that we have also explicitly specified the weight given to developed 
experience as a means of indicating the relative responsiveness / stability of each method.   
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Table 6. Projections of ultimate loss using various members of the Actual vs. Expected family.   

Method Ultimate Loss Projection Weight Function 

AEIE ( )00 0 UpCUU kkAEIE −+=  =  00.200$  0=IEw  =  %00.0  
AEEA ( )0

2
0 UpCpUU kkkAEEA −+=  =  25.206$  2

kEA pw =  =  %25.6  
AEBF ( )00 UpCpUU kkkAEBF −+=  =  00.225$  kBF pw =  =  %00.25  
AEGB ( )( )0

2
0 2 UpCppUU kkkkAEGB −−+=  =  75.243$  22 kkGB ppw −=  =  %75.43  

AECL ( )00 1 UpCUU kkAECL −+=  =  00.300$  1=CLw  =  %00.100  

2.2.2 Using the weight function to select a method – more specifically 

While there is not a most accurate member of the Actual vs. Expected family, it is useful to take a 
position. For the moment, let us consider the AEBF, as the weight it gives to the difference between 
actual and expected losses is directly proportionate to the amount of experience, so that neither 
prior expectations nor actual relative to expected losses are unduly favored.  

Or, put another way, actuaries will be familiar with actual vs. expected diagnostics which compare 
the change in ultimate to actual less expected experience. In these diagnostics, if the actuary is using 
the BF method, the change in ultimate will perfectly mirror the actual vs. expected statistic. Or if the 
actuary is pegging loss to a prior or initial estimate, then the change in ultimate will be zero 
regardless of actual experience. However, as is very often the case when reviewing these diagnostics, 
the change in ultimate generally lies somewhere between zero and the actual vs. expected statistic 
indicating that partial credibility has been given to actual vs. expected experience in the period. This 
makes sense, given that actuaries will often select an estimate of ultimate loss based on not just one 
projection method but a variety of methods utilizing averaging, rounding, and potentially manual 
adjustments to the methods where necessary. To this end, the Actual vs. Expected family is useful 
for formalizing the results of these diagnostics into a projection method, where at one extreme, the 
diagnostic is ignored, and, at the other extreme, the diagnostic is believed. And in between, the 
diagnostic is given a degree of credibility proportional to the amount of experience in the period.  

In the case of the AEBF method, using the percentage of expected loss development in the 
period kp  as the degree of credibility seems like a natural and sensible choice. Note that this 
construction allows the credibility we place on actual loss experience to be linearly proportional to 
our expectation of loss emergence over the same period. 

2.3 The Generalized Actual vs. Expected Family 
Alternatively, a natural use of the Actual vs. Expected family arises when rolling forward prior 
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actuarial work. Consider the situation where full reserve reviews are done periodically (perhaps 
annually or quarterly) and actual vs. expected diagnostics are used in the interim to adjust for 
experience over the period. Most often, actuaries tend to one extreme or the other and either allow 
for 100% of the experience in the period (as updating estimates of ultimate loss using the BF 
method would) or make no adjustment for the experience in the period (as fixing estimates of 
ultimate loss at prior selections would). In the case of the former instance, the change in ultimate 
would exactly mirror the actual vs. expected statistic, and in the case of the latter, the change in 
ultimate would be zero regardless of the actual vs. expected statistic.  

In these situations, given the all-or-nothing nature of movements over what are potentially short 
and not fully credible time intervals, it is perhaps more useful to first assess the credibility of 
experience in the period and then adjust our estimates of ultimate as such. Hopefully, this process 
more appropriately balances the need for responsiveness with the need for stability, or at least 
provides a formalized means of doing so. Equation (7) generalizes the AEBF method for exactly this 
purpose – to string together estimates of ultimate loss in subsequent development periods 
controlling for the random volatility vs. credibility of loss emergence within relatively short intervals. 
We call this method the Generalized Actual vs. Expected Bornhuetter-Ferguson method or the 
GAEBF method. 
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Here the subscript k  refers to the current period and the subscript 1−k  refers to the prior 
period. Note that for development from time 0=k  where 01 =−kp , 01  UUk =−  and 01 =−kC , 
Equation (7) reduces to the AEBF method described in Equation (5). And as with Equation (5), this 
projection method adheres to the general principle that the longer the period over which actual 
experience is measured, the more weight given to actual experience relative to prior expectations, 
either with regard to a prior estimate or an initial expectation.  

To help understand how the AEBF method works in this situation, it is useful to further develop 
the simple example of the previous section. Suppose that one month has elapsed since our previous 
actuarial review where we ended up selecting $225 (i.e., the amount as projected under the AEBF 
method) and the incurred loss amount is now $195 (i.e., actual incurred in the period of $45) and the 
percentage developed is now 40% (i.e., expected percentage developed in the period of 15%). From 
Equation (7), we can roll forward our prior estimate of ultimate loss of $225 as 
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Actual development in the period was $45 and expected development was 20% of the unreported 
amount of $75, or $15; thus, the actual vs. expected adjustment is $30. However, as this was a short 
period with only 20% expected development on unreported, we only adjust the ultimate loss amount 
by 20% of total implied adjustment, or $6, for an ultimate of $231. Note that the degree of 
credibility depends both on the length of the period as well as the shape of the paid or incurred 
development patterns.  

2.4 Contra-Indications 
With regard to using a member of the Actual vs. Expected family in either of the situations listed 

above, there aren’t necessarily any obvious contra-indications.  

In the former instance, when using a non-trivial member of the Actual vs. Expected family as an 
alternative to a fixed a priori expectation, this family will often be preferable to fixing an initial 
expectation and failing to update this expectation as more evidence becomes available. Additionally 
useful, this family allows the actuary to determine the extent to which they wish to peg their a priori 
estimate to initial expectations with the AEEA being the most sticky and the AEGB being the most 
aggressive (ignoring the trivial case of the AEIE method).  

Similarly, in the latter instance, when using a non-trivial member of the Generalized Actual vs. 
Expected family to roll-forward prior estimates, it is perhaps more a judgment call (rather than a 
case of selecting a “most accurate” method) when deciding between allowing for 0% of the actual 
vs. expected experience as is true of fixing estimates of ultimate loss at prior selections, 100% of 
actual vs. expected experience as is the case with updating BF projections or somewhere in the 
middle taking into consideration the credibility of experience over the time interval. In any event, 
this approach should provide the actuary with more freedom when it comes to balancing 
responsiveness and stability. 
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3. THE MEAN-REVERTING FAMILY 

This section introduces the Mean-Reverting family of loss reserving methods. As the 
doppelganger of the Actual vs. Expected family, the Mean-Reverting family can be used to credibly 
adjust a posteriori estimates for deviations between actual and expected experience in the opposite 
direction of the deviation. In this regard, methods within this family are useful in situations where 
the occurrence of events decreases the likelihood of similar events in the future, or likewise, when the 
absence of events increases the likelihood of similar events in the future.  

Put another way, this family effectively relaxes the independence assumption of the BF method 
and the positive dependence assumption of the CL method and allows for the potential of some 
negative dependence between current and future losses.  

3.1 General Formulations 

3.1.1 The actual vs. expected formulation 

Similar to the Actual vs. Expected family, members of the Mean-Reverting family are grounded 
in an actual vs. expected adjustment. However, where in respect of the Actual vs. Expected family, 
the adjustment is used to fine-tune a priori expectations for actual experience, in respect of the Mean-
Reverting family, the adjustment is used to bring a posteriori projections back toward some long-run 
estimate of the mean. Mathematically, this is formulated as 

( )0UpCwUU kkiiMRi −−= . (9) 

 To understand the name and purpose of the Mean-Reverting family, note that through some 
simple manipulations (adding and subtracting kC ) we can rearrange Equation (9) as 

( ) ( )[ ]0UpCwCUCU kkikikMRi −−−+= . (10) 

This arrangement is useful as it isolates both the unadjusted and adjusted outstanding reserve, 
( )ki CU −  and ( ) ( )[ ]0UpCwCU kkiki −−− , respectively, from the current amount of loss kC . In 
doing so, it becomes clear that the Mean-Reverting family offsets the unadjusted outstanding reserve 
for the amount by which actual losses deviated from expected losses (subject to some weight iw ). 
For example, if losses to date were more than expected, the outstanding reserve would be decreased 
to reflect the propensity for future losses to be less than expected, and vice versa. It is this type of 
“mean-reversion” from which the name of the family is derived.   

To understand the mechanics of this family, we return again to the simple example from the 
previous section. Remember that the percentage developed is 25%, current incurred loss is $150, 
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and our initial expectation of ultimate is $200. In Equation (9), assume that we are using the BF 
method as our unadjusted estimate of ultimate loss (i.e., BFi UU =  and MRBFMRi UU = ) and set the 
weighting factor equal to the percentage developed at time k  (i.e., kk pw = ). As will be shown in 
the next section, this is actually a special case of the Mean-Reverting family – namely the Mean-
Reverting Bornhuetter-Ferguson (MRBF) method. From Table 7, which compares the BF method 
with its Mean-Reverting variant, we see that as actual losses were more than expected, the MRBF 
method adjusts the BF outstanding reserve/ultimate liability downward back toward initial 
expectations allowing for a degree of mean-reversion over the future experience period.  

Table 7. Simple example comparing BF method with the MRBF method.  

BF Method MRBF Method 

300
200%)251(150

)1( 0

=
×−+=

−+= UpCU kkBF

 
( )

( )

275
100%25300

200%25150%25300
0

=
×−=

×−×−=
−−= UpCpUU kkkBFMRBF

 

Here, although the difference between actual and expected experience is $100, we only adjust the 
BF projection by 25% of this amount representing the credibility we assign the degree of mean-
reversion. It is this weight, as well as the basis of the a posteriori projection, which distinguishes 
members of the Mean-Reverting family. We explore the link between these two components in the 
next section.   

3.1.2 The credibility formulation2

Similar to as was done with the Actual vs. Expected family, we can define a generator function 
for the Mean-Reverting family that isolates a subset of this family and expresses these members as 
the credibility-weighted average of the fixed a priori expectation and the unadjusted loss reserving 
method. This generator function is shown below in Equation (11). What is immediately obvious, 
and to some extent reasonable, given the relationship between the Actual vs. Expected and Mean-
Reverting families, is that this formulation is the mirror opposite of the credibility formulation of the 
Actual vs. Expected family.  

 

ikkMRi UpUpU )1(0 −+=  (11) 
                                                           
2 Technically, the generator function formulation presented in Equation (11) is the opposite of a credibility-weighted 
projection where the estimate of ultimate loss tends toward the complement of credibility U0 and away from experience 
as losses develop to ultimate. This is obviously not ideal and will be addressed Section 3.3, where we present an adjusted 
version of this family which tends toward experience and away from prior expectations as losses develop to ultimate.  
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Using the same basic loss reserving methods as above, Table 8 shows both the actual vs. 
expected and credibility formulations of the Mean-Reverting variants for the IE, EA, BF, GB, and 
CL methods. As in Section 2, each of these methods were derived by plugging the unadjusted 
method into the generator function in Equation (11) and solving for the weight in the pure 
formulation shown in Equation (9).  

Table 8. Five members of the Mean-Reverting family of loss reserving methods.  

Method Credibility Formulation Actual vs. Expected Formulation Weight 
Function 

MRIE IEkkMRIE UpUpU )1(0 −+=  )(0 0UpCUU kkIEMRIE −−=  0  
MREA EAkkMREA UpUpU )1(0 −+=  )( 0

2 UpCpUU kkkAEMREA −−=  2
kp  

MRBF BFkkMRBF UpUpU )1(0 −+=  )( 0UpCpUU kkkBFMRBF −−=  kp  
MRGB GBkkMRGB UpUpU )1(0 −+=  ))(2( 0

2 UpCppUU kkkkGBMRGB −−−=  22 kk pp −  
MRCL CLkkMRCL UpUpU )1(0 −+=  )(1 0UpCUU kkCLMRCL −−=  1 

There are two items of interest concerning Table 8. The first is that the method which is plugged 
into the generator function in Equation (11) is the same method which is used as the a posteriori 
projection in the actual vs. expected formulation. This is useful, as it reduces the complexity of this 
family from two free parameters (the a posteriori projection and the weight given the actual vs. 
expected adjustment) to a single free parameter (the a posteriori projection) which fully defines 
members of this family. The second is that the weights given to the actual vs. expected (or mean-
reverting) adjustments are identical to the weights given the adjustments in the Actual vs. Expected 
family; however, the starting points, the a priori expectation in terms of the Actual vs. Expected 
family and the a posteriori estimates in terms of the Mean-Reverting family, are different. We explore 
this symmetry in the next section.  

3.2 Selecting a Specific Member 

3.2.1 The notion of relative mean-reversion 

For completeness, in Table 8 we also show the trivial case of the MRIE, noting that this method 
reduces to the a priori expectation. This is useful, as it highlights that members of the Mean-
Reverting family, as with the Actual vs. Expected family, form a spectrum from 0 to 100% weight 
on the actual vs. expected adjustment.  

With that said, it is important when interpreting these methods that the weight given the actual 
vs. expected adjustment is not mistaken for the degree of mean-reversion. In contrast to the Actual 
vs. Expected family, where each method applies a different adjustment to the same starting point 
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(i.e., the a priori expectation), each member of the Mean-Reverting family applies a different 
adjustment to a different starting point (i.e., the chosen a posteriori estimator). In this regard, each 
member of the Mean-Reverting family should primarily be considered in relation to its unadjusted 
variant, rather than with respect to other actuarial methods or some absolute reference.  

To explore this concept further, we define the coefficient of mean-reversion as 

0UU
UU

C
i

MRii
MRi −

−
= . (12) 

To understand this equation, note that the denominator expresses the amount by which the 
unadjusted method deviates from our a priori expectation and the numerator expresses the amount 
by which the Mean-Reverting variant of the unadjusted method pulls the answer back toward the 
mean or initial expectation.  

We derive the coefficient of mean-reversion for the MRBF and MRCL methods in Table 9. 

Table 9. Derivation of coefficient of mean-reversion for MRBF and MRCL methods.  

MRBF Coefficient of Mean-Reversion MRCL Coefficient of Mean-Reversion 
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Note that the coefficient of mean-reversion is the same for both these methods. And indeed, using 
this definition, we can easily demonstrate that the relative mean-reversion for each of the Mean-
Reverting methods shown in Table 8 (or derived via Equation (11)) will always be equivalent and 
equal to the percentage developed kp  at time k . This makes intuitive sense, given that the mean to 
which the ultimate loss reverts in Equation (11) is our a priori expectation and the credibility 
assigned to this initial expectation is kp . 

3.2.2 The notion of absolute mean-reversion 

Although each member of the Mean-Reverting family introduces the same degree of mean-
reversion relative to its unadjusted variant, this does not necessarily imply that each method has the 
same absolute mean-reversion. Rather, the absolute mean-reversion of the family (i.e., the degree of 
negative dependence between current and future losses) depends not just on the mean-reverting 
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adjustment, but also on the degree of dependence between current and future losses in the 
underlying method. For instance, consider the BF and CL methods. Where the BF method assumes 
that future losses are independent of losses to date, the CL method assumes a large degree of 
positive dependence between current and future losses with the unearned reserve leveraged for 
experience to date.  

We can demonstrate this roughly by considering a slightly unusual version of the outstanding 
reserve ( )ki CU −  for each of these methods as shown in Table 10. 

Table 10. Comparison of the CL and BF estimates of the outstanding reserve.  

Method Outstanding Reserve  Dependence 

CL Method ( ) ( )00
1

1 UpC
p

p
pU kk

k

k
k −







 −
+−  Positivepk ⇒∈ ]1,0(   

BF Method ( ) ( )( )00 01 UpCpU kkk −+−  tIndependenpk ⇒∈ ]1,0(   

Here we split the outstanding reserve into two components – the “independent” reserve ( )kpU −10  
which bears no relationship to loss experience kC  and the “dependent” reserve ( )0UpC kk −  which 
is the actual vs. expected adjustment. This is a useful formulation, as we can easily assess the 
dependence of the outstanding reserve on experience to date. For the BF method, as the dependent 
reserve is zero, this method assumes future loss experience is fully independent of current loss 
experience. But for the CL method, as the independent reserve adjustment factor ( ) kk pp /1−  is 
always positive, the CL method assumes that future loss experience is positively dependent on 
current loss experience adjusting the independent reserve upward.  

Now consider Table 11 which shows a similar comparison for the MRCL and MRBF methods. 

Table 11. Comparison of the MRCL and MRBF estimates of the outstanding reserve.  

Method Outstanding Reserve  Dependence 

MRCL Method ( ) ( )00
21

1 UpC
p

p
pU kk

k

k
k −







 −
+−  









⇒
⇒
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∈
Negative

tIndependen
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]1,5.0(
5.0

)5.0,0(
  

MRBF Method ( ) ( )( )00 1 UpCppU kkkk −−−  { Negativepk ⇒∈ ]1,0(   

Here it becomes evident that while each Mean-Reverting method does introduce some negative 
dependence or mean-reversion into its unadjusted variant, the final absolute dependence between 
future and current loss experience is not necessarily negative. Rather it depends on the interaction 
between the dependence of future and current loss experience in the underlying method and the 
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strength of the mean-reversion adjustment.  

For the MRBF method, because the underlying BF method assumes that current and future loss 
experience is independent, applying a mean-reverting adjustment to this method will obviously 
produce estimates of the outstanding reserve which are negatively dependent on experience to date. 
And from Table 11 we can see that, at all stages of loss development, this is indeed the case. For the 
MRCL method, however, the result is a little bit trickier, as the CL estimate of the outstanding 
reserve is positively dependent on losses to date. Thus, the absolute degree of mean-reversion 
depends on the interaction between the credibility given the negative dependence in the mean-
reverting adjustment and the credibility given the positive dependence in the CL method. 
Specifically, when %50<kp , the positive dependence of the CL method dwarfs the mean-reversion 
adjustment and the estimate of the outstanding liability is still positively dependent on experience to 
date (however, less so than with the CL method). When %50>kp ,  the mean-reversion adjustment 
is more influential than the leveraged effect of the CL projection and the estimate of the outstanding 
liability is negatively dependent on experience to date. And when %50=kp , there is balance and 
the estimate of the outstanding liability and experience to date are largely independent. 

The summation of these two sections implies that there are two layers of interpretation regarding 
the Mean-Reverting family. The first is that each member of the Mean-Reverting family introduces a 
relative degree of mean-reversion into its underlying variant. The second is that the absolute mean-
reversion in the final result depends on the relationship between the underlying method chosen and 
the credibility given the mean-reversion adjustment. This is a useful result, as these two 
interpretations begin to hint at a two-step procedure for selecting a member of the Mean-Reverting 
family. First, select a best unadjusted method, and then, if the situation warrants, adjust that method 
for some degree of mean-reversion. This is discussed in the next section and will be illustrated using 
actual data in Section 3.4.  

3.2.3 Putting it all together 

As mentioned above, the Mean-Reverting family is most useful in situations where either the 
occurrence or the absence of an event has the opposite impact on the likelihood of similar events in 
the future. These situations arise when reserving for a variety of lines characterized by total / near-
total losses or some notion of risk aging or mortality. Such examples might include marine, crop, 
credit disability, construction defect, and extended warranty.  

For instance, consider an extended warranty policy. As the policy ages, the loss potential generally 
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increases with product wear and tear. And, although we may try to take this into account through 
our earning pattern, if losses to date are less than expected, it may become necessary to make an 
adjustment for the increased future loss propensity given the weighted aging of the account. 
Conversely, if losses are more than expected, then it may become necessary to reduce the future 
possibility of losses, as policies either exit the portfolio or the products are replaced with newer 
versions and the weighted age of the account decreases. 

When deciding whether to use, say, the BF or CL method or their mean-reverting variants, it is 
useful to query why actual losses were more or less than expected. Continuing with the example of 
extended warranty insurance, suppose that there is no discernable reason why losses were more than 
expected. In this case, we are implying that, although losses were more than expected, we do not 
expect such trends to continue. Here the BF method is potentially more useful than the CL method, 
as the estimate of the outstanding liability is independent of current experience to date. However, 
although losses were more than expected, we might reasonably expect some degree of mean-
reversion associated with the replacement of products, and the MRBF method is potentially more 
useful than the BF method.  

On the other hand, suppose that losses were more than expected due to a “catastrophe” event 
such as a substantial product defect. In this case, the CL method is probably more useful than the 
BF method, as we should probably expect a higher number of future losses because of the defect. 
However, in this situation there is still potentially a degree of mean-reversion associated with the 
policy exit or product replacement decreasing the future propensity to claim on at least that portfolio 
of the book which has had a loss. In this situation then, the MRCL method is potentially more 
useful than the CL method.   

Generalizing this exposition, selecting a member of the Mean-Reverting family is effectively a 
two-step process. In situations where losses are more (or less) than expected, we first select the best 
unadjusted method, given our understanding of the situation and loss drivers. Then, in situations 
also involving a degree of mean-reversion, we make an adjustment to this method to allow for the 
decreased (increased) loss potential associated with losses to date being more (or less) than expected.  

3.3 Contra-Indications (or the Adjusted Mean-Reverting Family) 
Unlike the Actual vs. Expected family, there is one near-fatal flaw to the Mean-Reverting family – 

namely that as %100→kp , the Mean-Reverting estimate of ultimate loss approaches the initial 
expectation 0U . In many regards, this is not as significant a problem at younger maturities when 
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losses are not yet fully developed and the a priori expectation is an as-reasonable if not more-
reasonable estimate of ultimate than actual losses to date. However, at later maturities, where actual 
losses approach ultimate losses, this becomes an undesirable characteristic. In fact, it practically 
becomes a nuisance, because it forces the actuary to define some rule-of-thumb regarding the 
percentage developed at time k , above which the actuary should not typically rely on a Mean-
Reverting method, but below which it is reasonable (that is, if the situation involves some degree of 
mean-reversion).  

This, however, is not necessarily a shortcoming of the Mean-Reverting family. Rather it is a 
limitation of using a fixed a priori expectation which ignores actual experience. And as such, the 
mirror image of the Mean-Reverting family, the Actual vs. Expected family, offers a simple solution. 
Rather than using a fixed initial expectation as the mean to which this family reverts, instead use a 
member of the Actual vs. Expected family of loss reserving methods in place of 0U  in Equation (3) 
or (4). By doing so, note that as %100→kp , except in the trivial case where 0=iw , the estimate 
of ultimate loss will tend toward actual.  

So far, we have discussed five distinct members of the Actual vs. Expected family and five 
distinct members of the Mean-Reverting family, and so the above combinations potentially give us 
twenty-five methods, which is – admittedly – a bit much to digest. Instead, we propose considering 
just two combinations – the Adjusted MRBF (AMRBF) method, which uses the AEBF method in 
place of the fixed a priori expectation, and the Adjusted MRCL (AMRCL) method, which uses the 
AECL method in place of the fixed a priori expectation. We derive the AMRBF method as 
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 (13) 

Importantly, from Equation (13), we can see that as %100→kp , 03 →− kk pp , and thus this 
method approaches the BF method (which in turn approaches actual as losses develop). However, 
more interestingly, note that the weight this method places on the mean-reversion relative to the 
unadjusted projection is given as 3

kk pp − , whereas the amount of weight the MRBF method places 
on the mean reversion is kp . In this regard, the AMRBF method not only tends toward actual 
ultimate losses, but acts as a mechanical rule of thumb, determining the point at which the fixed a 
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priori estimate of ultimate loss becomes less relevant relative to developed experience. Figure 3 
shows this graphically, comparing the amount of weight the AMRBF method gives to the initial 
expectation relative to the MRBF method.  
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Figure 3. Amount of weight the MRBF and AMRBF methods assign initial expectations. 

Similarly, we can derive the AMRCL method as 
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Here, as with the AMRBF method, the AMRCL method tends to the CL method and thus actual 
losses as the percentage developed tends to 100%.    

3.4 Hindsight Testing 
To further explore the relevance of the Mean-Reverting family, it is useful to consider the 

performance of this family in a real-world situation. To do so, we test how the AMRCL and 
AMRBF methods (as described in the previous section) would have performed historically relative 
to their bases – the CL and BF methods, respectively. Using crop insurance as an example, we 
consider data from the Risk Management Agency (RMA) of the United States Department of 
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Agriculture (USDA), which administrates the Federal Crop Insurance Program (FCIP). Specifically, 
we consider claims frequency (defined as policies indemnified to total policies) over the ten-year 
period from 2001 to 2010 in Texas. For reference, the data used is summarized  in Table 12.  

Table 12. Total policies vs. policies indemnified by month / year from 2001 through 2010 for Texas.   

Year 
Total 

Policies 
Policies 

Indemnified Frequency 
Cumulative Policies Indemnified by Month 

Mar Apr May Jun Jul Aug Sep Oct Nov Dec 
2001 232 95 41% 7  12  18  31  53  71  82  88  91  95  
2002 225 86 38% 10  19  28  39  58  69  78  81  84  86  
2003 228 87 38% 3  9  17  25  56  66  78  84  86  87  
2004 207 38 19% 5  8  12  16  26  28  30  33  35  38  
2005 194 36 18% 1  3  7  13  22  26  29  31  33  36  
2006 196 104 53% 15  24  37  55  78  90  95  98  101  104  
2007 226 37 17% 7  12  17  21  29  33  35  35  36  37  
2008 245 115 47% 15  27  35  51  83  97  102  104  111  115  
2009 237 98 42% 17  33  50  60  80  90  94  96  97  98  
2010 203 21 10% 1  2  4  6  11  15  17  18  20  21  
Total 2,194 718 33% 81  149  225  318  497  586  641  669  696  718  

Hindsight testing most typically involves projecting historical amounts on an as-if basis and then 
using the benefit of hindsight to evaluate the performance of these projections. Here, specifically, we 
projected ultimate claim amounts, using each of the BF, CL, AMRBF and AMRCL methods, for 
each year at each evaluation month March through December. We then computed the mean-
squared error (MSE) by month as the squared difference between projected and actual claims 
normalized by the actual number of ultimate claims averaged over all years.  

Of course, as we didn’t actually project ultimate loss amounts at each of the historic points in 
time, this hindsight test is on a somewhat artificial basis and of course dependent on our selection of 
the initial expected frequency and frequency development pattern. To these ends, we used 35% as 
our initial frequency for all years, which appears fairly reasonable given the above ultimate 
frequencies, and we estimated the development pattern as the volume-weighted average of all years. 
However, we sensitivity tested the following results based on several different sets of reasonable 
assumptions and, while the exact estimates of error change, the same key results hold. 

Given the two-step process for selecting a member of the Mean-Reverting family, it is useful to 
first compare the performance of the BF method relative to the CL method to select the best 
unadjusted method. Figure 4 below plots the normalized MSE for each month averaged across all 
years for the BF and CL methods. Note that the error is largest when the year is most immature (i.e., 
March), but as the years age to ultimate (i.e., December), the error tends to zero.  
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Figure 4. Hindsight testing of the BF and CL methods. 

Here we see that the CL method performs better than the BF method. As discussed above, this 
comparison is actually quite useful as it indicates a key loss driver here – namely, that losses beget 
losses. For instance, a heavy rainfall in April or a drought in May will certainly cause losses during 
those months, but they will probably also cause losses in subsequent months due to late reporting or 
knock-on effects which became more apparent toward harvest. The CL method performs better 
than the BF method, as it assumes a degree of positive dependence between current and future 
losses gearing-up future losses to be more than would have initially been expected as experience to 
date was more than expected.  

Now, this analysis may seem slightly at odds with the fundamental message of the Mean-
Reverting family, but it isn’t. Remember, the Mean-Reverting family does not produce in all 
situations an absolute level of mean-reversion; rather it applies a mean-reverting adjustment to an 
unadjusted projection of loss (i.e., the CL or BF method). So in this case, although a dominant loss 
driver appears to be that losses beget losses, we can now evaluate the AMRCL and the AMRBF 
methods to assess whether in addition to this market force there is also a degree of mean-reversion 
at work. The results of this analysis are shown in Figure 5, where Panel (a) shows the AMRCL 
method relative to the CL method and Panel (b) shows the AMRBF method relative to the BF 
method.  
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 Panel (a) Panel (b) 
Figure 5. Hindsight testing of the CL method vs. the AMRCL method; and the BF method vs. the AMRBF method. 

Considering Panel (a) first, note that the AMRCL method performs substantially better than the 
CL method. This result indicates that although there is a degree of positive dependence between 
current and future losses, there is also a degree of mean-reversion where the occurrence (absence) of 
losses now decreases (increases) the potential of similar losses later. Because of this mean-reversion, 
the AMRCL method is more accurate than the CL method as well as the BF method by transitivity. 
This is similar to the example of extended warranty insurance discussed above, where a hypothetical 
product defect caused both an increase in losses to date as well as a potential uptick in future loss 
experience, but there was also a degree of mean-reversion associated with policy exit and product 
replacement. 

Panel (b) compares the AMRBF method with the BF method. Here, the BF method is more 
accurate than the AMRBF method. This is an interesting result, as it indicates in this particular 
situation that the losses beget losses force is stronger than the mean-reversion force. In order to 
understand this, note that the BF method assumes that future losses are fully independent of current 
losses, whereas the MRBF method assumes negative dependence between future and current losses. 
However, if the mean-reversion force was stronger in this instance, the BF method would be more 
accurate than the CL method and the AMRBF method would be the most accurate. 
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4. CONCLUSION 

In this paper, we introduced two families of loss reserving methods – the Actual vs. Expected 
family and the Mean-Reverting family. We showed that the Actual vs. Expected family is useful as 
an alternative to a fixed a priori expectation and when rolling forward prior estimates of ultimate loss. 
And we showed that Mean-Reverting family is useful in situations where either the occurrence (or 
absence) of an event decreases (or increases) the likelihood of similar events in the future.  

To distill the above into something which is most useful for the practicing actuary, the four key 
methods to take to take away from this paper are the Actual vs. Expected Bornhuetter-Ferguson 
(AEBF) method, the Generalized Actual vs. Expected Bornhuetter-Ferguson (GAEBF) method, the 
Adjusted Mean-Reverting Bornhuetter-Ferguson (AMRBF) method, and the Adjusted Mean-
Reverting Chain-Ladder (AMRCL) method. These methods are shown in Table 13.   

Table 13. Key methods to take away from this paper. 

Method Formula 
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The AEBF method is a solid alternative to a fixed a priori expectation in that the AEBF method 
credibly updates initial expectations for actual experience balancing responsiveness with stability. 
Furthermore, the AEBF method can easily be generalized (i.e., the GAEBF) in order to credibly roll 
forward prior estimates of ultimate loss while balancing responsiveness with stability. The AMRBF 
method introduces an absolute degree of mean-reversion into projections of ultimate loss and is 
particularly useful in situations which involve some degree of mean-reversion, but the occurrence (or 
absence) of losses to date are roughly independent of one another. The AMRCL method introduces 
a relative, but not always absolute, degree of mean-reversion into projections of ultimate loss and is 
useful in situations which involve some degree of mean-reversion and the occurrence (or absence) 
of losses to date are predicated on some underlying force which is expected to effect future events 
as well.  
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Appendix A. Author’s Note 

To better understand the substance of this paper, it is useful to understand the motivation for 
writing it. Although only briefly alluded to in the text, the Actual vs. Expected Bornhuetter-
Ferguson (AEBF) method is equivalent to the Experience Adjustment (EA) method. The original 
motivation for this paper was to present the EA method as an artificially intelligent version of a 
fixed a priori expectation. However, it soon became apparent that the EA method as well as the IE 
and BF method could be generalized as members of the same family indexed using the weight each 
method assigns to an actual vs. expected adjustment. This seemed to be a more useful and pliable 
result as it not only defines the EA method, but also presents an entire spectrum of methods which 
take as their seed a fixed a priori expectation and update that expectation for experience with varying 
degrees of responsiveness.  

Then, while writing this paper, the question of reserving for a crop insurance program arose. 
Specifically a situation where floods had knocked out a large portion of crops and an adjustment was 
needed to make an allowance for the reduced future potential of losses within the loss projections. 
Although the obvious solution involves making an adjustment to the unearned exposure, given the 
importance of mechanizing loss reserving techniques as well as the importance of mean-reversion in 
many traditional actuarial time-series models, the Mean-Reverting Chain-Ladder (MRCL) and Mean-
Reverting Bornhuetter-Ferguson (MRBF) methods were born. Again, similar to the Actual vs. 
Expected family, it soon became apparent that these methods could be generalized into a family of 
loss reserving methods which interestingly enough bore a striking resemblance to the Actual vs. 
Expected family. Hence this paper, and the title: Two Symmetric Families of Loss Reserving Methods. 
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Appendix B. Supporting Excel File 

Included with this paper is an Excel file showing how to program these various methods.  

The first tab – Projection – compares the unadjusted projections (i.e., the BF method) with their 
Actual vs. Expected variants (i.e., the AEBF method), Mean-Reverting variants (i.e., the MRBF 
method) and Adjusted Mean-Reverting Variants (i.e., the AMRBF method).   

The second tab – Roll-Forward – shows how to extend the AEBF method in order to roll-
forward prior estimates of ultimate loss for development during interim periods (i.e., the GAEBF 
method). A comparison is also done to roll-forwards using the IE method which gives 0% 
credibility to actual experience in the period and the BF method which gives 100% credibility to 
actual experience in the period. In contrast, the AEBF gives partial credibility to the experience in 
the period proportionate to the expected percentage of developed loss in the period.  

The third and fourth tabs – Example_BFvsMRBF and Example_CLvsMRCL – contain the 
calculations underlying the hindsight testing performed in Section 3.4.  
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Closed-Form Distribution of  Prediction Uncertainty in 
Chain Ladder Reserving by Bayesian Approach 

Ji Yao, PhD, FIA, CERA 

 
________________________________________________________________________ 
Abstract 

Bayesian approach is applied to evaluate the prediction uncertainty in chain ladder reserving.  First, the 
philosophy of the Bayesian approach to prediction uncertainty is introduced and compared with the 
Frequentist approach.  All parameters in the model are then estimated using the Bayesian approach, 
with multiple types of prior distributions.  A closed-from posterior distribution is derived under non-
informative and conjugate prior distribution for key parameters in the model.   Finally, the theory is 
illustrated by numerical examples.  The paper demonstrates that it is possible to derive closed-form 
estimates for the prediction uncertainty in chain ladder reserving using the Bayesian approach and that, 
for certain prior distributions, the estimated uncertainty could be much higher than estimates of 
uncertainty produced under the Frequentist approach.  
 
Keywords. Bayesian approach; Prediction uncertainty; Chain ladder; Reserving; Student t distribution; 
Inverse Gamma distribution. 

             

1. INTRODUCTION 

The prediction uncertainty of chain-ladder claim reserving has been widely studied in the 
last twenty years.  Based on three key assumptions, a closed-form formula is derived in [1].  
In [2] a recursive formula solution is provided, and it gives slightly different results to [1] 
under three similar key assumptions.  [3] and [4] present a nice picture of stochastic claim 
reserving but the formula used to calculate prediction uncertainty is the same as [1].  More 
recently the BBMW’s closed-form formula in [5] is based on time-series model and gives the 
same numerical results as [2].  The debate on which formula gives most accurate estimation 
of prediction uncertainty attracts lots of interest [6]-[8]. 

The approach taken so far to derive prediction uncertainty is classified as the Frequentist 
approach, which believes that the truth is fixed and the estimator has a distribution.    
Typically there are two types of error that leads to prediction uncertainty: the process error 
and the parameter error.  The maximum likelihood estimation (MLE) is used to estimate all 
parameters in the model and the process error is calculated based on these MLE parameters.  
Then by assuming all MLE parameters are random variables, the parameter errors are 
calculated as the variance of the MLE parameters around their true values. 

Paralleling the Frequentist approach, the Bayesian approach is another statistical 
approach.  In the Bayesian approach, the true value of an unknown parameter can be 
thought of as being a random variable to which a prior probability distribution is assigned.  
The observed sample data is then synthesized with the prior probability distribution by a 
likelihood function to give the posterior probability distribution. Statistical measures, such as 
mean and variance, are derived from the posterior probability distribution. 

The debate between the proponents of these two approaches (Frequentist and Bayesian) 
has lasted for nearly a century without a clear outcome [13].  However, in the context of 
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prediction uncertainty for chain ladder claims reserving, there have been limited studies on 
the Bayesian approach, to author’s knowledge.  The Bayesian approach is mentioned and 
studied in [3], [4], [8] and [9].  However, not all parameters are analyzed in a Bayesian 
approach: for example, although the parameter 2  in Mack’s model [1] is defined as 
unknown, it is assumed as known in [8] or estimated by MLE and used as a known 
parameter in [3] and [4].  These approaches are termed as a semi-Bayesian approach in this 
paper.  In [9], although the 2  is included in the Bayesian analysis, the author mainly uses 
simulation techniques, such as the bootstrap method, to estimate the parameter. 

The purpose of this paper is two-fold.  The first intention is to apply the Bayesian 
approach in estimation of parameters as well as evaluation of prediction uncertainty.  The 
Bayesian approach has a notorious reputation of making mathematics really difficult and 
almost always ends up with open-form solutions and simulation.  However, it will be 
shown that, under certain prior assumptions, it is possible to have closed-form solutions. 

The second intention of this paper is to provide more evidence into the debate of which 
formula gives the most accurate estimation of prediction uncertainty [6]-[8].  It might not be 
fair to compare results from the Frequentist and Bayesian approaches. However, the fact 
that the Bayesian approach can make assumptions more explicit might help to understand 
the difference between these approaches. 

There are different models and assumptions about stochastic reserving, see for example 
[3] and [4].  This paper focuses on the Mack’s model as one of the most widely used, but the 
general theory could be applied to other models. 

The remainder of the paper proceeds as follows. Section 2 introduces the basic claim 
reserving model and the Bayesian approach to prediction error.  Section 3 illustrates the 
assumptions of the model.  Section 4 calculates the prediction uncertainty under the 
assumptions consistent with the Mack’s model.  Section 5 estimates the parameters in the 
model using a Bayesian approach.   Numerical examples are presented in Section 6 and 
finally conclusions are made in Section 7. 

2. THE BAYESIAN APRROACH TO PREDICTION 
UNCERTAINTY  

Let ,i jX  be the random variables of accumulated claim amounts of the accident year 

i  1 i N  and development year j  1 j N  .  By the end of N th year, the variables in 

the upper left-hand section of the rectangle of ,i jX  have been observed, as illustrated in (2.1).  

These variables are denoted in lower case as all are observed and therefore fixed.  The whole 
observed triangle is denoted as x .  The task of claims reserving is to project the ultimate 
claim amounts based on this observation.  In this paper it is assumed that the claim amount 
in the 1st year has fully developed and therefore ,i NX   2 i N   are considered the 

ultimate claim amounts to be estimated. 
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Among various reserving methods, chain-ladder method is the most widely used.  Given 
x , the development factor jf  is estimated by 

 , 1 ,
1 1

ˆ
N j N j

j i j i j
i i

f x x
 


 

  x  (2.2) 

and the ultimate claim amount for the i th  2i   year, denoted as ,ˆi Nx , is estimated as 

 
1

, , 1
1

ˆˆ
N

i N i N i j
j N i

x x f


 
  

 x . (2.3) 

(2.2) is only one of the common choices to estimate the development factors. Other 
calculations, such as a straight average of the observed ratios, can be used to come up with 
development factors in (2.2). It is important to note that (2.2) and (2.3) are deterministic in 
nature, given the observation x , at least from the Bayesian point of view. 

Having estimated the ultimate claim amount using (2.2), it is important to know how 
accurate this estimator is and what the prediction uncertainty is.  One measure commonly 
employed for this purpose is the mean square error (MSE).  Although this measure is initially 
formulated in the Frequentist approach, it can be adjusted to the Bayesian approach and has 
been widely used to evaluate the prediction uncertainty in [3], [4], [8] and [9].  For each 
individual year, MSE is defined as 

  2

, ,ˆi i N i NMSE E x X    
x , (2.4) 

and for the aggregation of all years, MSE is defined as 

 
2

, ,
2 2

ˆ
N N

i N i N
i i

MSE E x X
 

     
   
  x , 

where the summation starts from 2nd year because the ultimate claim amount of 1st year has 
already been observed. 

Because ,ˆi Nx  is a fixed number given x , (2.4) becomes 

 2

, ,ˆi i N i NMSE E x X    
x  
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            2 2

, , , , , , , ,ˆ ˆ2i N i N i N i N i N i N i N i NE x E X x E X X E X X E X         
x  

     2 2

, , , ,ˆi N i N i N i Nx E X E X E X      
x x x .  (2.5) 

If ,ˆi Nx  is an unbiased estimate of ,i NX , that is 

  , ,ˆi N i Nx E Xx x  

which is the case for chain ladder reserving method under the assumptions of [1], MSE of 
the i th year is further simplified as 

     2

, , ,vari i N i N i NMSE E X E X X     
x x , (2.6) 

If ,ˆi Nx  is biased, (2.6) only gives a lower bound of MSE as the second term in (2.5) above 

represents an additional bias error necessary to calculate the total MSE [10].  Similarly, the 
minimum MSE for the aggregate ultimate claim amount is 

 ,
2

var
N

i i N
i

MSE X


 
  

 
 x . (2.7) 

A comparison with the Frequentist approach is interesting at this stage.  In the 
Frequentist approach, as explained in [1], MSE is split into two parts, that is 

     2

, , ,ˆvari i N i N i NMSE X E X x  x x . (2.8) 

Comparing (2.6) with (2.8) suggests that the Bayesian approach misses one term.  However, 

this is not the case because of the different meaning of  ,var i NX x .  In the Frequentist 

approach,  ,var i NX x  is actually the variance of ,i NX  conditional on the MLE of all 

parameters.  So stringently it is better to express (2.8) in this way 

     2

, , ,ˆvari i N i N i NMSE X MLE parameters E X x  x . 

By contrast, the Bayesian approach includes all uncertainty in  ,var i NX x .  So the key to 

the Bayesian approach is to calculate the posterior distribution of all the model parameters 
which contain uncertainty, and therefore the posterior distribution of the ultimate claims 
amount ,i NX . 
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3. MODEL ASSUMPTIONS 

To proceed with this analysis, a particular model has to be chosen.  The Mack model is 
used in this paper, but the methodology can be applied to other models.  The key 
assumptions are 

 , 1 ,1 , ,,...,i j i i j j i jE X X X f X  ; 

 ,1 ,,...,i i NX X ,  ,1 ,,...,k k IX X  are independent;  (3.1) 

and   2
, 1 ,1 , ,var ,...,i j i i j j i jX X X X  . 

Mack’s model is claimed to be distribution-free, that is, the results from Mack’s model don’t 
depend on the assumption of the conditional distribution of ,i jX .  However , to make this 

model comparable to other models and make simulation possible, it is often slightly changed 
to assume that  , 1i jX   is Normally distributed with mean  ,j i jf X  and variance  2

,j i jX  [3], 

[8], that is 

    2
, 1 ,1 , , ,,..., ,i j i i j j i j j i jX X X N f X X  . (3.2) 

Let , , 1 ,i j i j i jY X X , then this assumption is equivalent to 

   2
, ,1 , ,,..., ,i j i i j j j i jY X X N f X . 

Lower case ,i jy  is also defined as , 1 ,i j i jx x  if both ,i jx  and , 1i jx   are known. 

The Normal distribution is not the only  distribution possible.  Moreover, the assumption 
of normality is not the best from a theoretical standpoint, as the Normal distribution could 
take negative values while cumulative claims amount usually cannot.  However, in common 
parameterization of the distribution, the probability to take negative value is fairly low.  This 
assumption also provides a mathematically tractable result and was widely used in [3], [4] and 
[8].  

As the distribution of ,i jX  is defined by parameters  2,j jf  , the posterior distribution 

of  2,j jf  will be first calculated so that the posterior distribution of ,i jX  can be evaluated.  

To simplify further denotation, these vectors are defined 

  1 2 1, ,..., Nf f f f   

and   2 2 2
1 2 1, ,..., N   2σ . 
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4. CALCULATION OF PREDICTION ERROR 

To calculate (2.6), the first step of the Bayesian approach is to calculate the posterior 
distribution of all parameters by 

      p p p 2 2 2f,σ x x f,σ f,σ  (4.1) 

where  p 2f,σ  is the joint prior distribution of f  and 2σ , and  p 2f,σ x  is the joint 

posterior distribution.   p 2x f,σ  is determined by the assumptions of model.   Assuming 

independence in (3.1) and (3.2), this probability is 

   ,1 ,2 , 1
1

, ,...,
N

i i i N i
i

p p x x x  


2 2x f,σ f,σ  

   
1

,1 , ,1 ,2 , 1
1 2

, ,..., ,
N N i

i i j i i i j
i j

p x p x x x x
 


 

 
  

 
 2 2f,σ f,σ  

   
1

,1 , , 1 , 2 ,1
1 2 1

, ..., ,
N jN N

i i j i j i j i
i j i

p x p x x x x
 

 
  

  
   
   
  2 2f,σ f,σ  
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, 1 , 1

22
2 1 1 , 11 , 1

1
exp

22
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i j j i j

j i j i jj i j

x f x

xx  

 
 

    

               
   

 
 

2
1

,

22
1 1 ,

1
exp

2

N jN
i j j

j i j i jj

y f

x



 

               
  .  (4.2) 

There are several options for the prior distribution  p 2f,σ , which will be discussed in 

detail in Section 5.  By definition,  p 2f,σ  is a multi-dimensional distribution and generally 

there is no guarantee of independency between pairs  2,j jf  .  However, in the Bayesian 

theory, any appropriate distribution can be chosen as prior distribution, so it is reasonable to 
assume that the chosen prior distribution have the feature of independency, i.e., any  pair 

 2,j jf   is independent to other pair, so that 

    
1

2

1

, ,
N

j j
j

p p f 




2f σ . (4.3) 
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Note that the non-informative prior distributions used in [3], [4] and [8] satisfy this 
assumption and all prior distributions used in Section 5 meet this criteria as well. Substituting  
(4.2) and (4.3) into (4.1), results in: 

    
   

2
1

, 2

22
1 1 ,

1
, exp ,

2

N jN
i j j

j j
j i j i jj

y f
p p f

x






 

                   
 2f σ x  (4.4) 

which shows that the joint posterior distribution can be factorized.  This gives an important 
conclusion that if the prior distribution is independent, the joint posterior distribution of the 

pair  2,j jf  x  is also independent of other pairs.  And each pair has a similar formation as 

    
   

2

,2 2

22
1 ,

1
, exp ,

2

N j
i j j

j j j j
i j i jj

y f
p f p f

x
 







           
x  

                              2 22 2
, ,2

1

1
exp ,

2

N j
N j

j i j i j j j j
ij

x y f p f 


 



 
    

  
 . (4.5) 

So the analysis on (4.4) can be done individually on each component. 

The second step of the Bayesian approach is to calculate the marginal posterior 

distribution  jp f x  and  2
jp  x .  This could be calculated by integrating out the 

unwanted variables in the joint posterior distribution as 

      2 2 2

0
,j j j j jp f p f p d  


 x x x  

  2 2

0
,j j jp f d 


  x  (4.6) 

and similarly 

      2 2

0
,j j j j jp p f p f df 


 x x x  

  2

0
,j j jp f df


  x . (4.7) 

In cases where the integration in (4.6) and (4.7) cannot be performed analytically, numerical 
techniques have to be used to calculate the posterior marginal distribution.  This is where the 
Bayesian approach becomes tricky and has to resort to simulation techniques.    However, as 
will be shown in section 5, these two integrations could give closed-form distribution under 
certain prior distributions, which gives interesting standard statistical distributions. 

Having derived the marginal posterior distribution, the final step is to calculate the 

variance in (2.6). In this paper, this is done in a recursive way.  Because any pair  2,j jf  x  
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is independent of another pair  2,k kf  x  j k ,  2,j jf  x  is also independent of 

, 1i kX  x  if j k .  Using this independence, the mean of  , 1i jX  x  (for j i ) is 

        , 1 , ,i j j i j j i jE X E f X E f E X  x x x x  (4.8) 

and the second central moment is 

    22 2
, 1 , ,i j j i j j i jE X E f X X

    
x x        2 2 2

, ,j i j j i jE f E X E E X x x x x . 

So the variance of , 1i kX  x  is 

     2 2
, 1 , 1 , 1var i j i j i jX E X E X   x x x  

           2 2 2 2 2
, , ,j i j j i j j i jE f E X E E X E f E X  x x x x x x  

           2 2 2
, , ,var varj i j j i j j i jf E X E f X E E X  x x x x x x . (4.9) 

The value of  jE f x ,  var jf x  and  2var j x  can be calculated from the posterior 

distribution in (4.6) and (4.7).  

A boundary condition is needed to calculate (4.9) properly.  For the first term , 1i N iX    in 

the recursive formula, because  

 , 1 , 1i N i i N iX x   x , 

its  mean is 

  , 1 , 1i N i i N iE X x   x  (4.10) 

and its variance is 

  , 1var 0i N iX   x . (4.11) 

So by recursive formula (4.8), (4.9) and boundary condition (4.10), (4.11), MSE in (2.6) can 
be calculated for any i . 

A comparison with the results from MLE approach is very interesting.  One difference is 
the value of 2

j , which is due to the different philosophy between the Frequentist and 

Bayesian approaches.  In the Frequentist approach, the MLE 2ˆ j  is used while in the 

Bayesian approach the mean of 2
j x  is used.  As will be shown in Section 5, this difference 

is very large when there are few data points available, such as at the tail of reserving triangle. 
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Another difference is that MSE of the Bayesian approach is larger than that of the 
Frequentist approach.  Because the Frequentist approach always splits the total MSE into 
process error and parameter error, for comparison purposes, (4.9) is artificially split into a 

process component and a parameter component, denoted as  ,varpro i jX x  and 

 ,varpar i jX x , respectively.  That is 

      , , ,var var vari j pro i j par i jX X X x x x  (4.12) 

Substitute (4.12) into (4.9) and (4.9) becomes 

   , 1 , 1var varpro i j par i jX X x x  

             2 2 2
, , , ,var var varj i j j i j j pro i j par i jf E X E E X E f X X      x x x x x x x . 

  (4.13) 

If it is assumed that the process component follows the same recursive formula for the 
process risk as in the Frequentist approach [2], [10], then 

  , 1varpro i jX  x        2 2
, ,varj pro i j j i jE f X E E X x x x x . (4.14) 

Substituting (4.14) into (4.13) gives the recursive formula for the parameter component 

 , 1varpar i jX  x  

           2 2
, , ,var var var varj i j j pro i j j par i jf E X f X E f X  x x x x x x . (4.15) 

The equivalent recursive formula for Mack’s formula [10] is 

  , 1varpar i jX  x    2
,var j i jf E X x x    2

,varj par i jE f X x x , (4.16) 

which doesn’t have the term    ,var varj i jf Xx x  compared with (4.15).   Murphy’s 

formula [2], which is the recursive formula underlying BBMW’s formula [5], is  

  , 1varpar i jX  x    2
,var j i jf E X x x    2

,varj par i jE f X x x , (4.17) 

which doesn’t have    ,var varj pro i jf Xx x  compared with (4.15).  So the parameter error 

component of the Bayesian approach is always larger than parameter error of the Frequentist 
approach.  However, because this separation of process component and parameter 
component is artificial for the Bayesian approach, the only conclusion that can be made is 
that the total MSE of the Bayesian approach is larger than that of the Frequentist approach.  
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To calculate the variance of the aggregate claim amount in (2.7), a new sequence of 
random variables jZ  are introduced to express the aggregate ultimate claim amount in 

another way.  jZ  is defined as 

 1, ,
2

N

j N j j i j
i N j

Z x X 
  

    (4.18) 

It is apparent that NZ  is the aggregate ultimate claim amount.  Based on (3.2), it is shown in 
Appendix A that  

    2
1 2, 3, , , 1, ,... ,j N j j N j j N j j j N j j j jZ X X X N f Z x Z       . (4.19) 

Then the total risk can be calculated in the same way as the individual year claims amount.  
For the boundary condition, 1 ,1NZ x , which is fixed, so the mean and variance of 1Z  are 

  1 ,1NE Z xx  

and  

  1var 0Z x , 

respectively. 
The recursive formula for mean of 1jZ   is 

        1 , 1 , 1j j j N j j j j N j jE Z E f Z x E f E Z x       x x x x  (4.20) 

and for variance is 

     2 2
1 1 1var j j jZ E Z E Z   x x x  

           2 2 2 2 2
j j j j j jE f E Z E E Z E f E Z  x x x x x x  

           2 2 2var varj j j j j jf E Z E f Z E E Z  x x x x x x , (4.21) 

which is exactly same as the recursive formula for individual year. 

5. PARAMETER ESTIMATION 

As shown in last section, the posterior distributions for each pair of parameters  2,j jf   

can be calculated individually and the posterior distributions in (4.5) have similar forms for 
different j ’s.  To make the notation in further analysis more concise, the analysis in this 
section focuses on the term 
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        2 22 2 2
2

1

1
, exp ,

2

KK

i i
i

p f x y f p f  






      
x , (5.1) 

with K  replacing N j  in (4.5). In this paper, f  is always assumed unknown, while 2  
could be known or unknown. 

5.1 Known 2  
For completeness and in order to make the comparison, this section includes a brief 

analysis of the case when 2  is known, even though that was already been done in [8].  With 
known 2 , (5.1) is simplified to 

      2

2
1

1
exp

2

K

i i
i

p f x y f p f
 

      
x  (5.2) 

One typical non-informative prior distribution is  

   1p f  . (5.3) 

By substituting (5.3) into (5.2), there is 

    2

2
1

1
exp

2

K

i i
i

p f x y f
 

     
x  

              2

2
1

1 ˆexp
2

K

i
i

f f x
 

     
 , 

where  

 
1 1

ˆ
K K

i i i
i i

f x y x
 

  . (5.4) 

So the posterior distribution of f  is a Normal distribution 

 2

1

ˆ ,
K

i
i

f N f x


 
 
 

x  , (5.5) 

and the mean is 

   ˆE f fx  (5.6) 

and the variance is 

   2

1

var
K

i
i

f x


 x  (5.7) 
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If there is prior knowledge of f , it is useful to use an informative prior distribution.  
One common option is the Normal distribution, i.e., 

    2

0
22
00

1
exp

22

f
p f




 
  

  
 (5.8) 

where 0  is the prior knowledge of f  and 2
0  indicates the confidence about the prior 

knowledge - a larger variance implying lower confidence.  By this prior, the posterior 
distribution in (5.2) becomes 

      2 2

02 2
1 0

1 1
exp

2 2

K

i i
i

p f x y f f 
 

 
     

 
x  

                     

2

0
2 2

1 0
2 2

1 0
2 2

1 0

ˆ

1 1
exp

1 12 2

K

iK
i

i K
i

i
i

f
x

x f
x


 

 
 







  
               
   





 

which shows that posterior distribution is Normal distribution 

 

0
2 2

1 0

2 2 2 2
1 10 0

ˆ

1
,

1 1 1 1

K

i
i
K K

i i
i i

f
x

f N
x x


 

   



 

 
 

 
 

  
 



 
x  . 

5.2 Unknown 2  

When the parameter 2  is unknown, there are usually three types of prior distributions 
depending on the philosophical view of the prior distribution. 

5.2.1 Non-informative Prior 

In a non-informative prior approach, the intention is to use a prior distribution as simple 
as possible, which provides the smallest amount of information.  One option would be 

  2 2, 1p f   . (5.9) 

which is an improper prior distribution. Substitute this prior distribution into (5.1), the joint 
posterior distribution becomes 

        2 2 22 2
2

1

1
, exp

2

KK

i i
i

p f x x y f 


 



     
  (5.10) 
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As shown in Appendix B, the marginal posterior distribution f  is 

 
 
 

2
2

1
2

ˆ

1
1

KK

i
i

f f x
p f

K s





      
  


x , (5.11) 

where f̂  is defined in (5.4) and 

  2
2

1

1 ˆ
1

K

i i
i

s x y f
K 

 
  , (5.12) 

which is the MLE of variance 2  that is widely used in [1]-[8] for the Frequentist and semi-
Bayesian approach.  The distribution shown in (5.11) is the standard t -distribution [10] with 

shift and scale, that is,   2

1

ˆ
K

i
i

f f s x


   has the standard t -distribution with 

1K  degrees of freedom.  So the posterior distribution of f  is the t -distribution 

 2
1

1

ˆ ,
K

K i
i

f t f s x


 
 
 

x  . (5.13) 

By feature of the t -distribution, the mean of f  is 

   ˆE f fx  (5.14) 

and the variance is 

    2

1

1
var

3

K

i
i

K
f s x

K 

    
x . (5.15) 

So  var f x  is not defined for 3K  . 

Similarly, Appendix C shows the marginal distribution of 2  is 

         2
1 22 2

2

1
exp

2

K K s
p  


   

  
 

x  (5.16) 

which indicates that 2  has inverse Gamma distribution with parameter  1 2K   and 

  21 2K s , that is, 

     2 21 2, 1 2IG K K s  x  . 

So the mean of 2  is 
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2
2 21 1

32 1 2 1

K s K
E s

KK


         
x . (5.17) 

Similar to  var f x , this is not defined for 3K  . 

5.2.2 Conjugate Prior 

In the conjugate prior approach, the philosophy is to choose a prior distribution that 
provides convenience of calculation.  Typically the conjugate distribution will be used, that is 
the distribution which makes prior and posterior belong to same distribution family.  For the 
likelihood formation as in (5.1), the conjugate distribution is the Normal-Inverse-Gamma 
distribution, which is defined as 

      2 2 2,p f p f p    (5.18) 

where 2  has inverse Gamma distribution 

  2 2
0 02, 2IG    

and f  has Normal distribution with variance related to 2  

  2 2
0 0,f N    . 

0 , 2
0 ,  0  and 0  are all parameters that can be chosen based on prior knowledge.  In 

this prior distribution, f  is no longer independent of 2 . 

By these prior distributions, the posterior distribution (5.1) becomes 

       2
2 2 0 02 2

2 22
1

1 1
, exp exp

2 22

KK

i i
i

f
p f x f y

 
 

 





             
x  
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2

2 12 0
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       0 3 2 2 22 2
0 0 02

1

1
exp

2

KK

i i
i

f x f y


   


  



           
 . (5.19) 

As shown in Appendix D, the marginal distribution of f  is 

        1 22 2

1

K

K K K K

K

f
p f


   



 
 
  
  

x  (5.20) 

where  
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, (5.21) 

 0
1

K

K i
i

x 


  , (5.22) 

 0K K   , (5.23) 

and    2
2 2 2 0

0 0
1

ˆ1
K

K i
iK

K s f x
  
 

      . (5.24) 

So   2
K K K Kf      has the standard t -distribution with K  degrees of freedom, 

that is   

  2,
K K K K Kf t    x  , 

which gives the mean 

   KE f x  (5.25) 

and the variance 

    
2 2

var
2 2

K K K

K K K K K

f
  

    
  

 
x . (5.26) 

Similarly, the marginal posterior distribution of 2  is 

       2
2 22 2

2
exp

2
K Kp

  


   
  

 
x  (5.27) 

which is proved in Appendix E.  (5.27) shows that 2  has inverse Gamma distribution with 
parameter 2K  and 2 2K , i.e., 

  2 22, 2K KIG  x  . 

So the mean is 

 
2

2

2
K

K

E



    

x . (5.28) 
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5.2.3 Other priors 

The third option is to use any distribution that is ‘subjectively’ chosen based on prior 
knowledge.  One commonly used prior distribution is that f  and 2  are independent while 

f   has normal distribution and 2  has inverse Gamma distribution, that is, 

      2 2,p f p f p   (5.29) 

where 

  2
0 0,f N    

and  

  2 2
0 02, 2IG   . 

This prior is quite similar to conjugate prior distribution in (5.18) but f  and 2  are 
independent.   Substitute this into (5.1), the joint posterior distribution is 

       2
2 2 02 2

2 22
1 00

1 1
, exp exp

2 22

KK

i i
i

f
p f x f y
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. (5.30) 

So the marginal posterior distribution is 
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exp
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KK

i i
i

f
x f y






 



            
 , 

which doesn’t follow any standard distribution but is still a closed-form distribution.  The 
marginal distribution of 2  could be calculated in a similar way, but it does not give a closed-
form result.  However, the mean and variance of f  and 2  can be calculated by numerical 
technique based on marginal posterior distribution.  This approach is not developed further 
in this paper. 
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6. NUMERICAL EXAMPLE AND RESULTS 

The data from Taylor and Ashe [12], which is in Table 1, is used to illustrate the analytical 
results from previous sections.   

Table 1.  Cumulative claims amount triangle. 

i  j  1 2  3  4  5  6  7  8  9  10  

    
1  

   
357,848  

   
1,124,788  

   
1,735,330  

  
2,218,270 

  
2,745,596 

  
3,319,994 

  
3,466,336 

   
3,606,286  

   
3,833,515  

  
3,901,463 

    
2  

   
352,118  

   
1,236,139  

   
2,170,033  

  
3,353,322 

  
3,799,067 

  
4,120,063 

  
4,647,867 

   
4,914,039  

   
5,339,085  

  

    
3  

   
290,507  

   
1,292,306  

   
2,218,525  

  
3,235,179 

  
3,985,995 

  
4,132,918 

  
4,628,910 

   
4,909,315      

    
4  

   
310,608  

   
1,418,858  

   
2,195,047  

  
3,757,447 

  
4,029,929 

  
4,381,982 

  
4,588,268       

    
5  

   
443,160  

   
1,136,350  

   
2,128,333  

  
2,897,821 

  
3,402,672 

  
3,873,311         

    
6  

   
396,132  

   
1,333,217  

   
2,180,715  

  
2,985,752 

  
3,691,712           

    
7  

   
440,832  

   
1,288,463  

   
2,419,861  

  
3,483,130             

    
8  

   
359,480  

   
1,421,128  

   
2,864,498  

              

    
9  

   
376,686  

   
1,363,294  

                

  
10  

   
344,014  

                  

 

Four prior distributions are used; they are: 

Prior 1: (5.3) with known variance 2 equaling 2s  defined in (5.12). For the last variance 
of 2

9 , the formula does not work as there is only one observation of development factor, a 

common issue in the Frequentist approach as well.  The 2
9  is estimated according to 

Mack’s suggestion in [1] as 

   2 4 2 2 2
9 8 7 7 8min ,min ,     ; 

Prior 2: (5.9) 

Prior 3: (5.18)  with parameters  0 0  , 0 0.001  , 0 0.001   and 0 0.001  

Prior 4: (5.18) with parameter 0 0  , 0 0.001  , 0 1.001   and 0 0.001 

Prior 1 is the prior used by [3], [4], and [8] and served as benchmark in this example.  Prior 2-4 
are the priors where 2  is unknown.  Prior 2 gives the least information about jf  and 2

j , 

which is  often called non-informative.  Prior 3 is almost non-informative for 2
j , but it does 

give more information for jf  compared with Prior 2 because the variance of jf  could be 
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very small when 2
j  is small.  Prior 4 has same implication for jf  as Prior 3, and it gives 

more information about 2
j . 

It is important to note that the chosen parameters uniquely define the prior distribution.  
However, that does not necessarily guarantee that statistical measures of the distribution, 
such as the mean and variance, exist.  For example, for a non-informative prior, it is common 
to have infinite mean or variance. 

First, the mean and variance of parameters jf  and 2
j  are calculated.  Equations (5.4), 

(5.14), and (5.25) are used to calculate the mean of jf , shown in Table 2.  As expected, the mean 

is very similar among the different prior distributions. 

Table 2.  Results of  jE f x  

j  Prior 1 Prior 2 Prior 3 Prior 4 

1 3.4906065 3.4906065 3.4906055 3.4906055 

2 1.7473326 1.7473326 1.7473325 1.7473325 

3 1.4574128 1.4574128 1.4574127 1.4574127 

4 1.1738517 1.1738517 1.1738516 1.1738516 

5 1.1038235 1.1038235 1.1038235 1.1038235 

6 1.0862694 1.0862694 1.0862693 1.0862693 

7 1.0538744 1.0538744 1.0538743 1.0538743 

8 1.0765552 1.0765552 1.0765551 1.0765551 

9 1.0177247 1.0177247 1.0177245 1.0177245 
 

The variance of jf  is calculated using (5.7), (5.15) and (5.26), and is presented in Table 3.  

In the tail of the triangle, the formula might not work--a similar issue when estimating 2
9 .  

(5.15) and (5.26) do not work when the number of observation is small, which does not 
mean that the variance does not exist but that there is not enough information to estimate it 
under a non-informative prior.  In such case, the approach suggested in [8] is used: the 
variance is estimated by multiplying the result of Prior 1 with a constant factor. 

The multiplicative factor is chosen, subjectively, as the ratio of estimator of this Prior to 

the estimator of Prior 1 at the nearest year where  var jf x  can be estimated.  So for Prior 

2, the factor is the ratio at year 6, which is 3.  For Prior 3, it is the ratio at year 8, which is 2.  

 var jf x  calculated by these factor are highlighted in Italic in the Table 3.  Table 3 shows 

that the differences in the variance between different prior distributions are quite large, while 

Prior 4 gives very similar results to Prior 1 except that last term of  9var f x .  This is 
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because at the extreme tail of triangle, the observed information is not enough to estimate 
the variance and the estimation largely depends on the prior information.  As stronger prior 
is assumed in Prior 1, so the variance is lower. 

Table 3. Results of  var jf x . 

j  Prior 1 Prior 2 Prior 3 Prior 4 

1 0.04817026 0.06422701 0.05504437 0.04816468 

2 0.00368120 0.00515367 0.00429406 0.00368071 

3 0.00278879 0.00418318 0.00334590 0.00278834 

4 0.00082302 0.00137170 0.00102854 0.00082287 

5 0.00076441 0.00152882 0.00101890 0.00076424 

6 0.00051306 0.00153917 0.00076923 0.00051291 

7 0.00003505 0.00010514 0.00007011 0.00003507 

8 0.00013466 0.00040399 0.00026932 0.00013466 

9 0.00011650 0.00034951 0.00023301 0.00027045 
 

The mean of 2  is calculated using (5.17) and (5.28).  For Prior 1, it is a fixed value given 
by (5.12).  For Prior 2 and 3, if the formula does not work in the tail of triangle, the same 

approach - multiplying results for Prior 1 by a factor - as for  var jf x  is used. All results

are shown in Table 4, which indicates the difference between prior distributions is also quite 
large. 

Table 4. Results of  2
jE  x . 

j  Prior 1 Prior 2 Prior 3 Prior 4 

1 160,280.327 213,707.103 183,153.093 160,261.818 

2 37,736.855 52,831.597 44,019.503 37,731.901 

3 41,965.213 62,947.820 50,348.611 41,958.574 

4 15,182.903 25,304.838 18,974.230 15,180.142 

5 13,731.324 27,462.648 18,302.737 13,728.197 

6 8,185.772 24,557.315 1,2273.111 8,183.437 

7 446.617 1,339.850 893.451 446.949 

8 1,147.366 3,442.098 2,294.732 1,147.379 

9 446.617 1,339.850 893.233 1,036.763 
 

Then the MSE can be calculated.  First, the recursive formulas by Mack (4.16) and 
BBMW/Murphy (4.17) are compared to the Bayesian approach (4.9) under Prior 1, with 
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results presented in Table 5.  The results are exactly matched to results in [1], [3], [4] and [10], 
which shows that the Bayesian approach under Prior 1 is very similar to the Frequentist 
approach with a difference of 0.01% in reserve amount.   

Table 5. MSE by Frequentist and Bayesian approaches under Prior 1. 

Year Mack Murphy/BBMW Bayesian 
2 75,535 75,535 75,535 
3 121,699 121,700 121,703 
4 133,549 133,551 133,556 
5 261,406 261,412 261,436 
6 411,010 411,028 411,111 
7 558,317 558,356 558,544 
8 875,328 875,430 875,921 
9 971,258 971,385 972,234 
10 1,363,155 1,363,385 1,365,456 

Total 2,447,095 2,447,618 2,449,345 
Total MSE in % 13.10% 13.10% 13.11% 

 

Finally, the MSE under four different prior distributions are calculated in Table 6.  The 
MSE under the non-informative prior distribution, i.e., Prior 2, is about 38% larger than that 
under Prior 1 or the MSE of the Frequentist approach, which shows that the MSE is greatly 
underestimated if the variance is assumed known or fixed. 

The MSE is about a 3% different between Prior 1 and Prior 4 although the parameters 
estimated in Table 2-4 are very similar between these two prior distributions.  This indicates 
that MSE is quite sensitive to parameters in the tail. 

Table 6.  MSE of different prior distributions. 

Year Prior 1 Prior 2 Prior 3 Prior 4 
2 75,535 130,831 106,823 115,086 
3 121,703 210,810 172,120 149,104 
4 133,556 231,348 188,890 158,383 
5 261,436 452,921 332,284 273,259 
6 411,111 641,245 495,957 419,342 
7 558,544 816,905 655,425 565,685 
8 875,921 1,184,204 995,294 882,037 
9 972,234 1,259,424 1,085,789 976,334 
10 1,365,456 1,664,613 1,488,920 1,367,860 

Total 2,449,345 3,383,619 2,830,505 2,527,166 
Total MSE in % 13.11% 18.11% 15.15% 13.53% 
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7. CONCLUSIONS 

The general Bayesian approach to evaluate prediction uncertainty is first explained and 
compared with the Frequentist approach.  The key difference is that the Bayesian approach 
evaluates the posterior distributions of unknown parameters, rather than point estimates as 
in the Frequentist approach.  Due to this different philosophy, it has been shown that the 
total prediction uncertainty of the Bayesian approach is different from that of the 
Frequentist approach, and under certain assumptions the Bayesian approach gives a higher 
estimate. 

In parameter estimation, the Bayesian approach also takes a different approach.  Closed-
form distributions for f  and 2  are derived for several prior distributions in Mack’s model, 
which is one of the key results of this paper.  It is shown that under non-informative and 
conjugate prior distribution, the posterior distribution of development factor f  is the 

standard t -distribution while 2  has inverse Gamma distribution.  For some other prior 
distributions, it is possible to derive a closed-form distribution which doesn’t match any 
standard statistical distribution.  It is also shown that if the parameter 2  is considered 
known and fixed, which is a very strong prior distribution assumption, the Bayesian 
approach gives the same result as the Frequentist approach.  This indicates that the widely 
used Frequentist approach could underestimate the prediction uncertainty because it doesn’t 
full reflect the uncertainty of 2 .   

The numerical results based on Taylor and Ashe data [12] are presented to confirm these 
conclusions.  The Bayesian approach with strong prior distribution gives essentially the same 
results as Mack’s and Murphy/BBMW’s results.  However, the prior distribution has a 
significant impact on the prediction uncertainty: a non-informative prior could increase 
aggregate prediction uncertainty by as much as 38%.  Most of the difference comes from 

 var jf x  and  2
jE  x .  This highlights the problem of parameter estimations in chain 

ladder method: with no prior knowledge, the estimation of development factor could be very 
volatile. 
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Appendix A. Proof of Equation (4.19) 

It will be proved in recursive approach.  By the assumptions of the model from (3.2), 
there is  

    2
1, 1 1,1 1, 1, 1,,..., ,N j N N j j N j j N jX X X N f X X       

and     2
, 1 ,1 , , ,,..., ,N j N N j j N j j N jX X X N f X X  . 
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So the distribution of    1, 1 , 1 1,1 1, ,1 ,,..., , ,...,N j N j N N j N N jX X X X X X      is 

    1, 1 , 1 1,1 1, ,1 ,,..., , ,...,N j N j N N j N N jp X X x X X X X       

     1, 1 1,1 1, , 1 ,1 ,,..., ,...,N j N N j N j N N jp X t X X p X x t X X dt
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2 22 2
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j N j j N j
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dt
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X XX X 





        

, 

which shows that it is Normal distributed with mean  1, ,j N j N jf X X   and variance 

 2
1, ,j N j N jX X   .  Recursively, 2, 1N jX   , 3, 1N jX   ,…, 1, 1N j jX     can be put into 

summation and the sum , 1
1

N

i j
i N j

X 
  
  is Normal distribution with mean ,

1

N

j i j
i N j

f X
  
  and 

variance 2
,

1

N

j i j
i N j

X
  
 .  So by the definition of 1jZ   in (4.18), there is 

 2
1 , 1 , 1 , , 1 ,

1 1 1

,
N N N

j N j j i j j i j N j j j i j
i N j i N j i N j

Z x X N f X x X     
        

 
   

 
    

                      2
, 1,j j N j j j jN f Z x Z  .   

Appendix B. Proof of Equation (5.11) 

By substituting (5.10) into (4.6), the posterior distribution of f  is  
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Appendix C. Proof of Equation (5.16) 

By substituting (5.10) into (4.7), the posterior distribution is 
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Appendix D. Proof of Equation (5.20) 

Substituting (5.19) into (4.6), there is 
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where K , K , K  and 2
K  are defined in (5.21)-(5.24). 

 

Appendix E. Proof of Equation (5.27) 

Substitute (5.19) into (4.7), the posterior distribution of 2  is 

         0 1 2 1 2 22 2 2
0 0 02

1

1
exp

2

KK

i i
i

p f x f y df


    


    




           
x  

         2 21 2 22 2
0 0 02

1 1

1 ˆ ˆexp
2

K
K K

i i i
i i

f x f f x f y df


   


 


 

             
   

     1 2 22 2
2

1
exp

2
K

K K Kf df


   


 



          

    22
1 22

2

2
exp

2
K K

K

 
 

   
  

 
 

    2
2 22

2
exp

2
K K

 


   
  

 
.    



Bayesian Approach for Prediction Error 
 

Casualty Actuarial Society E-Forum, Summer 2012  25 

REFERENCES 

[1] Mack T., “Distribution-free calculation of the standard error of chain-ladder reserve estimates,” ASTIN 
Bulletin, 23(2), 213-225. 

[2] Murphy D. M., “Unbiased loss development factors,” PCAS 81, 154-222. 
[3] England P. D. and Verrall R. J., “Stochastic claims reserving in general insurance,” British Actuarial Journal, 8, 

443-544. 
[4] England P. D. and Verrall R. J., “Predictive distributions of outstanding liabilities in general insurance,” 

Annual of Actuarial Study, 1, 221-270. 
[5] Buchwalder M., Buhlmann H., Herz M., and Wuthrich M. V., “The mean square error of prediction in the 

chain ladder reserving method”, ASTIN Bulletin, 36(2), 521-542. 
[6] Mack T., Quarg G., and Braun C., “The mean square error of prediction in the chain ladder reserving 

method – a comment,” ASTIN Bulletin, 36(2), 543-552. 
[7] Venter G., “Discussion of mean square error of prediction in the chain-ladder reserving method,” ASTIN 

Bulletin, 36(2), 566-572. 
[8] Gisler A., “The estimation error in the chain-ladder reserving method: a Bayesian approach,” ASTIN 

Bulletin, 36(2), 554-565. 
[9] Scollnik D. P. M., “Bayesian reserving models inspired by chain ladder methods and implemented using 

WinBUGS,”  
[10] Murphy D. M., “Chain ladder reserve risk estimators,” CAS E-Forum Summer, 2007.  
[11] Patel J. K., Kapadia C. H., and Owen D.B., “Handbook of statistical distributions,” Marcel Dekker, Inc, 1976.  
[12] Taylor G. and Ashe G., “Second moments of estimates of outstanding claims,” Journal of Econometrics, 23, 

37-61. 
[13] Bayarri M. J. and Berger J. O., “The Interplay of Bayesian and Frequentist Analysis,” Statistical Science 
Vol. 19, No. 1 (Feb., 2004), pp. 58-80. 
 
 
Biography of the Author  

Dr. Ji Yao is a manager of European Actuarial Services at Ernst & Young LLP.  Since he graduated with a 
PhD in mathematics and statistics in 2005, he mainly practices in general insurance and specializes in 
statistical modeling and pricing. He qualified as a Fellow of Institute of Actuaries in 2008. He has also 
participated in various research projects, including reserving and Solvency II, and is a frequent speaker at 
international actuarial conferences. 
 



1 

Sustainability of  Earnings: A Framework for 
Quantitative Modeling of  Strategy, Risk, and Value 

Neil M. Bodoff, FCAS, MAAA 
 
________________________________________________________________________ 
Abstract 

The value of a firm derives from its future cash flows, adjusted for risk, and discounted to present 
value. Much of the existing literature addresses the quantitative techniques for calculating probability 
distributions of future cash flows, calculating values of risk adjustment factors, and calculating values of 
discount factors. Yet strategy and strategic risk – for example, the risk of adverse consequences arising 
from the actions of new competitors, governmental intervention, customer changes, etc. – often cannot 
easily be incorporated into this quantitative framework. As a result, strategic concerns are addressed in a 
parallel track of qualitative analysis, which supplements the quantitative analysis but never integrates 
with it. The goal of this paper is to propose in detail a quantitative framework in which strategic 
considerations can be incorporated into a quantitative model of the value of the firm. The resulting 
framework seeks to measure not only the amount, growth rate, and variability of earnings, but also the 
firm’s “sustainability of earnings” and value in the face of strategic forces. 
 
Keywords. Strategy, Risk, Value, ERM, Sustainability of Earnings. 

             

1. INTRODUCTION 

Strategy is a source of risk to the firm and thus ought to be included within enterprise risk 
management (ERM), enterprise risk analysis, and measurement of the firm’s value. Yet while 
detailed quantitative models describe other sources of risk such as financial risk, operational 
risk, and hazard risk, the quantitative apparatus for incorporating strategy into a model of the 
firm is often underdeveloped or simply lacking. As a result, analysts address strategic forces 
in a parallel track of qualitative analysis, which supplements the quantitative analysis but 
cannot integrate with it. 

This paper proposes a detailed framework in which strategic considerations can be 
incorporated into a quantitative model of the firm. Such a framework incorporates a 
scenario-based paradigm, which allows one to develop a range of future strategic conditions; 
one must estimate the likelihood of such conditions materializing and what the ramifications 
would be for the firm’s earnings. This framework thus requires one to reflect upon and 
estimate the relative vulnerability of the firm’s earnings to changes in the strategic landscape; 
or, equivalently, the invulnerability or “sustainability” of the firm’s earnings with respect to 
strategic forces. By incorporating strategic forces into the quantitative risk model, one 
captures a broader range of variability in future earnings. Such a model could be used for 
measuring risk and volatility in a classic risk modeling framework; further, following the 
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paradigm of Panning [4], one can use such a framework to calculate the value of a business 
based on its future earnings. This has particular application to the problem of estimating the 
relative value of two businesses with differing degrees of earnings sustainability in the face of 
strategic forces. It also provides a pathway towards quantifying a cost-benefit evaluation of 
expenditures on strategic maneuvers designed to enhance the firm’s strategic posture. 

1.1 Research Context 

Slywotzky and Drzik [7] address strategy and strategic risk, but their focus is on deploying 
countermeasures to strategic risk. Their treatment is mostly qualitative; although they state 
the importance of estimating the likelihood and severity of various strategic risks, this 
recommendation leads only to a risk map that does not integrate into an overall quantitative 
risk model of the firm. Mango [3] provides a general introduction to strategic risk issues, 
with a focus on scenario planning and risk modeling; he notes the lack of precision in the 
terms “strategy” and “strategic risk”. Schelling [6] serves as our starting point for how 
strategy is defined in this paper, leading to the crystallization by Porter [5]. We incorporate 
our risk model of strategy into the framework for the value of the firm developed by 
Panning [4], who was not addressing strategy per se but rather the risk of downside financial 
variability; the framework nevertheless is suitable for our purposes. Finally, we note that an 
antecedent to the proposed model can be found in Feldblum [2], who proposed the 
approach at a more granular policy level rather than at the business unit or firm level. 

1.2 Objective 

The objective of this paper is to describe a practical framework that can incorporate the 
quantitative modeling of risks emanating from a firm’s strategic position. 

2. STRATEGY 

2.1 Schelling and the Theory of Games 

In this paper, we will use as a starting point the description presented by Schelling [6]. He 
notes that in the field of Game Theory, a game of strategy refers to:  

“[a situation] in which the best course of action for each player depends on what the 
other players do. The term is intended to focus on the interdependence of the 
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adversaries’ decisions and on their expectation about each other’s behavior”.  

Schelling directs our attention to how the firm’s results can be affected by other players 
whose rational actions interact with and impact upon the firm. This point is crucial because 
so much of current practice in the property-casualty insurance industry focuses on modeling 
the variability of a firm’s financial results based on fortuitous events, for example property 
damage claims from natural catastrophes or liability claims from car crashes. Thus Schelling’s 
definition of strategy, focusing on the actions of competing players, leads us to consider a 
category of risk that is not currently encapsulated in other risk categories such as operational 
risk, hazard risk, or financial risk. 

2.2 Buffet’s Economic Moat and Porter’s Five Forces 

Our focus on the actions of other players leads us to consider competition and 
competitive forces. How do competitive forces potentially affect the firm? One vivid 
metaphor, articulated by Warren Buffet, is the “economic moat”. The idea behind this 
metaphor is to consider the relative safety or vulnerability of a business’s earnings and value 
in the face of competitive forces.  

In order to gain greater insight into competitive forces, we invoke the classification 
system devised by Porter [5]. To describe competition, he details the Five Forces that govern 
the competitive landscape: 

1. Threat of new entrants 

2. Jockeying for position among current competitors 

3. Bargaining power of suppliers 

4. Bargaining power of customers 

5. Threat of substitute products 

6. [Threat of government intervention] 

2.3 Sustainability of Earnings 

Porter’s classification accentuates that a firm’s current earnings and value are potentially 
vulnerable to the competitive forces of suppliers, customers, and new competitors. Thus in 
evaluating a business, one must consider not only the amount of the business’s earnings and 
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the growth rate of its earnings, but also its “sustainability of earnings”.  

We define “sustainability of earnings” as the likelihood that a business’s earnings will not 
be eroded by the strategic moves of competitive forces.  

Sustainability of earnings provides a framework for evaluating the value of a firm, the 
price of an acquisition, and the value of a business unit or product line within a 
conglomerate. 

For example, in the property-casualty insurance industry, one can ask of each line of 
business: 

1. Threat of new entrants:  

a. What kind of barriers to entry does this line of business have?  

i. To what extent does it require hard to obtain, specialized, 
technical underwriting skills? 

ii. To what extent does it require access to distribution channels? 

iii. To what extent does obtaining business require a proven track 
record of claims paying and reliability? 

2. Bargaining power of suppliers: 

a. To what extent do the suppliers of capital have pricing power and 
availability power over this business? 

i. To what extent does writing this line of business require the 
support of suppliers of reinsurance capital? 

ii. Could the business easily switch to alternative forms of capital, 
including capital markets instruments such as cat bonds, or, 
alternatively, rely on the firm’s held equity capital? 

3. Bargaining power of customers:  

a. To what extent do customers have the ability to change their purchasing 
behavior? 

i. Do they have the ability and willingness to choose not to 
purchase the insurance product that the firm offers and simply 
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retain the risk for themselves? 

All of these questions are relevant whenever: 

1. A conglomerate’s senior management is measuring the value of various 
subsidiaries or lines of business in its portfolio of products and businesses. 

2. A company is estimating how much to pay to acquire another company or to 
pay for new talent to develop a new line of business. 

3. Senior management is evaluating strategic moves to enhance the value of the 
firm and thus to increase its stock price. 

3. MODELING 

One might desire to describe strategy and competitive forces via a quantitative or even a 
probabilistic model, especially a probabilistic model that incorporates other sources of risk to 
the firm, such as financial risk and hazard risk. How might one go about doing so? By 
focusing on sustainability of earnings, we can begin to develop such a framework. 

3.1 Modeling the Risk to the Firm: Single Period Variability of Earnings 

We can model any of the competitive forces described by Porter as a random variable. As 
an example, let’s focus on one particular competitive force: the threat of new entrants. 

Let X be a random variable with a Bernoulli probability distribution: 

Probability Outcome State Description 

p 1 success No new competitor enters the business 

1-p 0 failure A significant new competitor enters the business 

 

In order to implement such a model, one would need to estimate the probability of a new 
competitor entering the business. Some examples of how to estimate this probability, 
including using expert opinion, can be found in Appendix B of the monograph “Overview 
of Enterprise Risk Management” [1]. 

In addition to estimating the probability of a new competitor entering the business, one 
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should also evaluate the severity of such an event on business’s amount of earnings, as noted 
by Slywotzky and Drzik [7]. In the context of a full probability distribution model of 
earnings, a new competitor could affect not only the firm’s mean level of earnings but also 
the shape, volatility, and downside of its earnings. 

Thus one could stipulate as follows: 

Probability Description Ramification 

P No new competitor enters the 
business 

Company earnings follow distribution 
function F1(x) 

1-p A significant new competitor enters 
the business 

Company earnings follow distribution 
function F2(x) 

 

For example: 

1. Simulate a uniform distribution on [0,1] 

a. If simulated output is on the interval [0,p] then you have a “success”, no 
new competitor has entered. 

i. Simulate the business’s earnings via probability distribution #1. 

b. If simulated output is on the interval (p,1] then you have a “failure”, a 
significant new competitor has entered the business. 

i. Simulate the business’s earnings via probability distribution #2. 
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Exhibit 1 
 

0.000%

0.100%

0.200%

0.300%

0.400%

0.500%

0.600%

‐200 ‐170 ‐140 ‐110 ‐80 ‐50 ‐20 10 40 70 100 130 160 190

Pr
ob

ab
ili
ty

Earnings

Probability Density Function of Company Earnings #1: 
No New Entrant

Probability Density Function of Company Earnings #2: 
Significant New Entrant

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

While this example deals with the probability of a significant new competitor entering the 
business, a similar approach can be used for the other forces, such as the probability of a 
major shift in pricing by suppliers or a major shift in purchasing behavior by customers. 

3.2 Modeling the Value of the Firm 

Until now we have focused on the sustainability of earnings in one future period, which 
accentuates the range of outcomes for the firm. How can measuring the sustainability of 
earnings translate into measuring value? 

Here we invoke the framework developed both by Feldblum [2] and Panning [4], albeit in 
modestly different contexts. Feldblum addresses customer persistency, the probability that a 
particular customer will continue to purchase the insurance product, in evaluating the 
profitability of various types of customer segments and insurance contracts. Panning 
addresses the larger question of the value of the firm; he focuses on the probability of the 
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firm having sufficient capital to survive its own downside financial events. Here we will 
deploy the same approach in order to measure the value of the firm in the face of a 
competitive force such as a potential new entrant to the business. 

Following Panning’s model, we set the value of the firm equal to the present value of its 
future expected earnings: 

Let: 

E = expected earnings at time 1 

DF = 1 / (1+r) = earnings discount factor 

Value = ∑ E * DFt 

Value = E * DF/(1-DF) = E * (1/r) 

Now let’s introduce an earnings growth factor: 

GF = (1+g) 

Value = ∑ E * GFt-1 * DFt 

Value = E * DF/(1-GF * DF) = E * (1/(r-g)) 

These equations for value mimic the standard results in financial textbooks. They 
incorporate earnings, discounting, and growth. 

Now let’s introduce strategic concerns and sustainability of earnings in the face of 
competitive forces. 

Let: 

• p = annual probability of “success” = no significant new competitor enters the 
business in a given year. 

• 1-p = annual probability of “failure” = a significant new competitor enters the 
business in a given year 

We’ll also make two simplifying assumptions: 

1. The company’s earnings become zero when a significant new competitor enters 
the business 

2. Once a new competitor enters the business, no competitors drop out, and the 
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company’s earnings prospects remain thereafter at zero. 

Now we can say that in order for the company to realize earnings at time t, it must have a 
string of strategic “successes” such that no significant new competitor has entered the field. 

Therefore: 

Et = pt * E * GFt-1 + (1-pt) * 0 = pt * E * GFt-1 

Then: 

Value = ∑ E * pt * DFt * GFt-1 

Value = E * p * DF / (1 – GF * p * DF)  

Therefore, when p, the “sustainability of earnings” against competitive forces, is higher, 
the value of the business under consideration is higher. 

Exhibit 2 shows a simplified numerical example of two hypothetical businesses. Firm A 
has higher earnings than Firm B, but Firm B has a forecast higher likelihood of sustaining its 
earnings in the face of competitive threats. Therefore, Firm B has a higher value; Firm A’s 
higher earnings are offset by a lower Price-to Earnings (P/E) multiple, while Firm B’s wider 
“economic moat” is reflected in its higher P/E multiple. Thus deploying Panning’s model 
allows one to estimate, within a quantitative model of the firm’s value, how much a firm’s 
strategic position is worth. 
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Exhibit 2 
 

Firm A Firm B
(1) E = expected earnings 100.0 90.0
(2) r 10.0% 10.0%
(3) DF = 1/(1+r) 90.9% 90.9%
(4) g = growth rate 5.0% 5.0%
(5) GF = 1+g 1.05              1.05              
(6) p 96.0% 98.0%
(7) 1-p 4.0% 2.0%
(8) Value 1043.5 1242.3
(9) P/E multiple 10.4 13.8

Notes
(8) = (1) * { (6) * (3) } / {1 - (5) * (6) * (3) }
(9) = (8) / (1)  

 

 

 

3.3 Modeling the Value of Strategic Maneuvers 

We can use the model of the value of the firm not only to compare two different 
businesses, but also for a given firm to evaluate two alternative strategic moves. 

Let’s say a firm is considering whether or not to increase its expenditures on initiatives 
that will increase the sustainability of earnings. For example, it might be considering 
increasing expenditures on advertising to enhance brand name recognition. Or it might be 
thinking about increasing research and development expenditures; the product 
enhancements from the additional R&D are not foreseen as increasing the firm’s earnings, 
but rather the enhanced product offering could serve as a barrier to entry to potential 
competitors. Or the firm might be contemplating spending more money on customer loyalty 
programs.  

In all of these instances, the firm ought to forecast whether the benefit of the plan 
exceeds the cost. While ultimately there would be several different perspectives influencing 
the final decision, one would ideally like to be able to contribute a quantitative analysis as 
one component of the decision making process.  

First we would need a basic description of the key aspects of the firm in its current state. 
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We’ll start with the same information for Firm A as in Exhibit 2: we assume the firm has 
earnings of 100 and an annual probability p of sustainability of 96%, i.e. (1-p) probability of 
4% that a new competitor will enter the business and decimate the firm’s earnings. Now the 
firm is considering how much (if any) additional expenditures it should make to strengthen 
its strategic position and reduce the likelihood of a new entrant to the market. Since the firm 
is currently spending some money on these activities and its probability p of sustainability is 
96%, we assume that the additional expenditures will increase this probability from 96% at a 
minimum towards a maximum of 100%.  

Let’s estimate a function that will help describe this relationship: 

p = initial probability of sustainability 

1-p = complement of p; maximum amount of improvement in p 

x = additional new expenditures (as a % of current earnings) to enhance sustainability 

f(x) = additive amount of percentage points of improvement in p = (1-p) * x / (x + k) 

k = estimated parameter; for example, 10% 

g(x) = improved probability p of sustainability = p + f(x) = p + (1-p) * x / (x + k) 

 

In our example: 

p = 96% 

1-p = 4% 

k = 10% 

 

Then: 

f(x) = 4% * x / (x + 10%) 

g(x) = 96% + 4% * x / (x + 10%) 
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Exhibit 3 
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Exhibit 4 
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Now recall from Section 3.2 that the formula for the value of the firm depends upon 
earnings, growth, discount factor, and probability p of sustainability: 
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Value = E * p * DF / (1 – GF * p * DF) 

Therefore, each choice of additional expenditure will generate not only a revised amount 
of earnings and a revised parameter p, but also a revised quantity for the value of the firm: 

Exhibit 5 
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Exhibit 5 highlights that in this numerical example, choosing to increase expenditures on 
strategic moves would increase the value of the firm, so long as the expenditure does not 
consume too much of the firm’s earnings. At some tipping point, however, one reaches a 
level such that further increases in expenditure actually reduce the value of the firm. This 
decrease in value occurs because the additional enhancement to sustainability is more than 
offset by the reduction in earnings. Yet for small and medium sized increases in 
expenditures, the value of the firm increases. The analysis framework allows one to calculate 
the optimal amount to invest in new strategic maneuvers in order to maximize the value of 
the firm. 

4. CONCLUSIONS 

A firm ought to be concerned about strategy and competitive forces. It should therefore 
integrate strategy considerations both when measuring holistically the firm’s total risk as well 
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as when seeking to maximize the firm’s total value. In order to do so, we introduce the 
framework of “sustainability of earnings”; the various strategic forces that are described 
qualitatively in the strategy literature can thus be quantified as sources of risk whose 
outcomes can be described via probabilistic models. Such an approach allows one to 
incorporate strategic forces into the existing framework of probabilistic enterprise risk 
models. It also allows one to incorporate strategic considerations when calculating the value 
of a business, when comparing the relative attractiveness of two different businesses, and 
when calculating the benefits of various strategic maneuvers. 
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The Maximum Likelihood Estimation (MLE) is one of the most popular methodologies used to fit a 
parametric distribution to an observed set of data. MLE’s popularity stems from its desirable 
asymptotic properties. Maximum Likelihood (ML) estimators are consistent, which means that as 
the sample size increases the researcher becomes increasingly confident of obtaining an estimate that 
is sufficiently closer to the true value of the parameter; they are asymptotically normal with the 
lowest possible variance (achieve the Cramer-Rao lower bound on variance), which makes inference 
tests relatively easy and statistically more powerful. In addition, they are translation-invariant, which 
means that all  functions of the ML estimates are by default the MLE predictors of the respective 
functions. For instance, if a pricing analyst computes pure premium from relativities estimated by 
MLE, the predicted pure premium is also an ML estimate and, hence, satisfies all the desirable 
aforementioned properties. 
 
Because of the known asymptotic distribution of ML estimators, there are numerous asymptotic 
tests to help researchers make statistical inferences about their ML estimates: examples include, 
among others, the Likelihood Ratio Test, the Lagrange Multiplier Test, and the Schwarz Bayesian 
Criterion (SBC).  In general, all of these aforementioned tests are used to determine if the measured 
signals (the ML estimates) are statistically different from some pre-specified values. For instance, 
suppose a researcher believes that frequency follows a Poisson distribution with mean λ, and 
computes the sample mean as the MLE for λ. To test whether or not the measured signal is noise, 
the researcher may use one of these tests to check whether the ML estimate is statistically different 
from zero. In addition, the researcher may use one of these tests to check whether the ML 
estimate(s) is (are) statistically different from some pre-conceived or historic values. However, the 
aforementioned tests may not be used to make inferences about the functional form of the 
distribution of the data. In other words, as an example, one may not compare the ML values (as is 
implicitly done by these tests) to choose between a Poisson and a Negative Binomial distribution.  
This article argues why such a comparison is incorrect and would be no better than an apple to 
orange comparison. 
 
A critical assumption underlying MLE is that the researcher knows everything but a finite number of 
parameters of the specified distribution. (The functional form of a distribution has an infinite 
dimension). An implication of this is that this estimation technique could only be used after the 
functional form of the distribution (hence forth, simply referred to as the distribution) has 
been pre-specified. That is, a researcher needs to first specify whether the data is Poisson, Negative 
Binomial, Exponential, Lognormal, etc. before she could use the MLE technique to estimate the 
unknown parameters of the pre-specified distribution. Hence, the reader should easily see that the 

                                                 
1 The author holds a Master’s degree in Economics with a concentration in Econometrics and is currently an actuarial 
candidate. 
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MLE technique doesn't have the capability to determine the distribution of an observed data; 
otherwise, such a pre-specification of distribution would be unnecessary. 
 
There is even a subtle contradiction invoked by comparing ML values obtained under different 
distribution assumptions as these tests implicitly do. For instance, if we assume data follows a 
Normal distribution and hence use the sample mean as the MLE of the shape parameter, it is easy to 
see that the sample mean would no longer be an MLE upon discovery that our data actually follows 
a Pareto distribution. In other words, since a given data could only follow one distribution and 
since the ML estimator is valid only when the assumed distribution is right, comparing 
MLEs obtained under different distributions is self-contradictory! 
 
The reader should note, however, that distributions with different names do not necessarily have 
different functional forms. For instance, the Exponential and the Gamma distributions have the 
same functional form but differ only in the value of the shape parameter. (In other words, they 
differ in a finite number of parameters.) In fact, the Exponential distribution is a special form of the 
Gamma distribution. Hence, the ML tests are valid and can be used to make inferences about 
whether or not the shape parameter is one (and hence Exponential). However, when the two 
distributions are rather distinct in functional form, but not in parameter values (such as the 
Weibull and Lognormal distributions), the ML tests are invalid!2

 
 

In light of the above argument, all MLE inference tests such as the Likelihood Ratio Test, the 
Lagrange Multiplier Test, and the Schwarz Bayesian Criterion (SBC) are not appropriate under 
different distributions. Unfortunately, many researchers unknowingly misapply these tests to choose 
between distributions, e.g., Poisson vs. Negative Binomial). Even in much of the exam oriented  
actuarial literature such as Manuals for Actuarial Exam 4/C, as well as some past exams, have 
questions that mistakenly ask candidates to use one of these ML tests to make inferences about 
different distributions. It is also worthy to point out that, under such scenarios, the inference 
statistics such as the Likelihood Ratio Statistic and the SBC are not only meaningless, but do not 
even follow a Chi-square distribution (as they traditionally do); hence, using the Chi-square critical 
regions to accept or reject the null hypothesis is erroneous.  
 
An important question, therefore, is what tests can a researcher use to choose between different 
distributions. There are numerous statistical tests of distribution fit: Kolmogorov-Smirnov tests and 
Chi-square Goodness of Fit tests are examples of such tests. These tests tell the modeler whether or 
not there is good reason to trust the fitted distribution. Unfortunately, each of these tests could 
accept multiple distributions as good fits. When this happens, the modeler could choose the 
distribution with the maximum3

                                                 
2 There is, however, a hot debate about the validity of MLE when functional forms are parameterized so that they differ 
by a finite number of parameters. For instance, the Tweedie distribution could be parameterized by a p-parameter so 
that,  by changing the p-parameter, the assumed functional form of the distribution changes.  

 p-value.  

3 Notice that for most inference tests about distributions, a high p-value is  support for the null hypothesis (the 
distribution being tested). 
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Abstract 

In this paper we establish an actuarial framework for loyalty rewards and gift card programs. Specifically, 
we present models to estimate redemption and breakage rates as well as to estimate cost and value for use 
in both accrued cost and deferred revenue accounting methodologies. In addition, we provide guidance 
on various issues and considerations that may be required of an analyst when working with loyalty 
rewards and gift card programs. 
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1. INTRODUCTION 

The size and scope of loyalty reward programs has grown immensely over the last several 

decades. Since the rise of airline frequent flyer programs in the 1980s, loyalty programs in 

their modern form have become deeply intertwined within corporate marketing strategies. 

From the financial services industry with its rewards-based credit cards, to the hospitality 

services industry with hotel reward programs, to gift cards and other coupons issued by 

common brick and mortar industries such as food services and clothing retailers, to the 

frequent flyer airline miles programs, reward programs can now be found almost 

everywhere. While rewarding frequent customers with perks, benefits, discounts or 

complimentary product has been a long-standing business practice in marketing spheres, it 

has become ever more important to other areas of business practices within companies. In 

fact, member loyalty and gift card programs have moved into upper managements’ 

companywide purview as a core component of brand strategies and are furthermore now 

often an integral part of corporate identities themselves. The elevation of importance now 

requires practitioners to stretch across the sometimes siloed practices of marketing, finance, 

accounting, and information technology departments within a company.  

Reward programs essentially consist of promises made today to deliver something 

tomorrow, or next year, or potentially never. The nature of reward programs often brings 

with it significant challenges. Many reward programs’ structures are built around uncertain 
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future events: contingencies of “how much,” “when,” and “if.” Additionally, a program’s 

terms and conditions can change as the program evolves, leading to material changes to the 

benefits that participating members can obtain, or to the costs that sponsors will encounter. 

These uncertainties often obfuscate the value or costs that a sponsor is promising. 

Furthermore, these uncertainties can often challenge one’s ability to estimate the future 

benefits and costs of a program in an accurate and substantive way.  

Fortunately, the amount of information collected and available to program providers 

presents an exceptional opportunity to truly understand the costs and revenue drivers of 

their programs and to measure them in an accurate and timely manner. This large amount of 

information can be used to design programs that provide better “rewards” to their members, 

maximize the value of the program to its sponsor by generating incremental revenue due to 

increased members’ loyalty, and help in providing quantified feedback to management and 

other financially interested players. 

 It is our hope that the tools presented in this paper can provide guidance to an analyst 

(and an actuary!) as to how to think about some of the economic fundamentals of loyalty 

rewards and gift cards programs, and to place a more structured quantitative framework 

around understanding and measuring their impact on the companies that offer them. 

  

2. OVERVIEW OF REWARD PROGRAMS 

2.1 Program Basics 

The basic premise of reward programs consists of “members” purchasing goods or 

services in exchange for a promise, by the reward program sponsor, to provide additional 

future goods, services, or value to the member. One of the most important issues when 

attempting to understand the workings of a reward program is to understand the Terms & 

Conditions (T&C) that underlie the program. The T&C are essentially laws of the program 

from which all members’ individual and aggregate behaviors emerge. The importance of the 

T&C cannot be overstated. For example, there is generally no requirement that members 

actually claim the goods or services promised to them and in many cases, T&Cs are in place 

that make the promises disappear through expiration and forfeiture rules. Therefore, there is 

no guarantee that the sponsors will ever be required to make good on their promises. In fact, 
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it is usually the case in reward programs that less than 100% of the rewards promised will 

ever be claimed, or “redeemed” by the members 

On a program sponsor level, understanding the potential for reward redemptions, as well 

as the incurred cost when a reward is redeemed, is a critical exercise. The underlying “costs” 

of the program (or the quantification of the relative fair value being provided to members) 

should be treated just as importantly as the associated “lift” in revenues that is expected to 

be driven by the program. Together the two components drive profitability, or lack thereof, 

for the program’s sponsor. In fact, this understanding can enhance decision making 

surrounding the most profitable members and open up the potential to expand that 

profitability. On the other hand, high cost/low revenue centers or ineffective promotional 

marketing campaigns can be phased out in a timely, cost-effective, and customer perception-

sensitive manner. 

The uncertainties surrounding the cost of the promises made by the sponsor, which are 

themselves estimated based upon redemption rates and costs at redemptions, can lead to 

poor financial decision making and even poorer disclosure of the economic impacts that 

these programs have on the sponsor. The lack of guidance and established evaluation 

standards and methods, the uncertainties surrounding the ultimate costs, as well as the fact 

that potential benefits on promises may be immediate whereas the associated costs can be 

deferred, sometimes into the far distant future, may have created an environment for some 

sponsors where it is easier to address the issue “later rather than now.”  

Due to the apparent challenges of understanding how best to estimate and measure the 

uncertainties of both redemption frequency and redemption cost/value, it may sometimes 

appear to be a daunting task to estimate either. However, actuaries and their techniques are 

uniquely prepared to tackle these issues. By applying many commonly accepted actuarial 

approaches, with appropriate modifications to address the uniqueness of reward programs, 

robust estimates of both redemption rates and costs can be derived. 

In this paper we will generically refer to the currency of reward programs as “points,” the 

main benefactors of the programs as “members,” and the entities that create and manage the 

program on an ongoing capacity as “sponsors.” In addition, we will generically refer to the 

value or cost of the award simply as the “cost,” though the specific terminology that would 
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be used would be dependent on the accounting standards under which the program 

operates. In practice, there is a great diversity of names for these things but for clarity and 

simplicity we will standardize them in this paper.  

2.2 Total Cost in Reward Programs 

In its most basic form, a reward program’s total cost can generally be broken out into 

three components: a currency component, a redemption rate component, and a cost 

component.  

Points x Redemption Rate x Cost per Point = Total Cost  (2.1) 

This generic equation will be used in a variety of applications. Generally the first item, the 

currency, “points,” or “miles,” is a known value. In fact it is typically the only number 

known at the time that an analysis is performed. 

The redemption rate represents the percentage of points which are expected to be utilized 

or redeemed by the program members.  

The cost per point represents the economic value of each point given that such point will 

be redeemed. 

This formula can be used in balance sheet contexts where an analyst is interested in 

valuing either the accrued costs or the associated deferred revenue of a program. 

The formula can also be used in income statement contexts where the analyst is 

interested in valuing either the incremental cost of an issued award or the incremental 

deferred revenue at point of sale.  

When considering the formula above, it is important to maintain a common basis for all 

three components. For example, one should not apply a redemption rate expressed as a 

percentage of issued points to an outstanding point balance.  

In the subsequent sections we will discuss the redemption rate and cost per point 

components of the model in further detail. 
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3. REDEMPTION RATE ESTIMATION APPROACHES 

One of the key components of nearly every loyalty reward or gift card program is the 

redemption rate. The redemption rate is also frequently the single most challenging 

component to estimate. Developing a functional and predictive redemption rate model can 

be an exercise requiring significant time and effort. In many instances the degree of difficulty 

can be greatly increased by data quality and availability issues or, on the opposite end of the 

spectrum, overwhelmingly large quantities of data that are difficult to manipulate and 

organize. 

Redemption rates are generally expressed as a function of one of two different bases; as 

the percentage of the points that are outstanding (points that have neither been redeemed 

nor forfeited) as of the valuation date or as a percentage of the cumulative amount of points 

issued to date to program members. As such it is important to keep in mind the basis on 

which redemption rates are expressed.  

There are specific qualities by which every redemption rate must abide. Redemption rates, 

when expressed as a percentage of cumulative points issued, must always be bounded by a 

minimum of zero and by a maximum of unity. This can be interpreted to mean that there 

can never be more point redemptions in the future than the number of points issued to date 

or outstanding as of the evaluation date, and that there can never be negative redemptions, 

in aggregate. A situation where historical redemption rates are below zero or greater than 

unity would likely be due to data anomalies or exceptional situations related to a program’s 

T&C that need to be better understood and corrected before moving forward with the 

projection of ultimate redemption rates. 

Breakage is frequently a factor of interest. Breakage represents the portion of points 

issued (or outstanding) that will never be redeemed. Points that are “broken” will either 

forfeit out of the program or sit dormant until the program itself ceases to exist. The exact 

fate of the broken points is determined by the T&C of the program. The breakage rate is, by 

definition, the complement of the redemption rate. Therefore, unity less the redemption rate 

represents the breakage rate. Because of the simple relationship between redemption and 

breakage rates, we will focus on the redemption rate hereafter with the knowledge that we 

can readily convert the redemption rate into the breakage rate as needed. It should be noted 
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that while out of the scope of this paper, an analyst may be required to consider applicability 

of relevant laws relating to escheat property and how these laws may potentially affect the 

proper treatment of breakage.  

The approaches for estimating an ultimate redemption rate for loyalty reward and gift 

card programs illustrated in this paper provide an estimate of the ultimate redemption rate 

expressed as a percentage of cumulative points issued as of the valuation date of the analysis. 

This redemption rate on issued points can be converted to a redemption rate on outstanding 

points, if needed. In addition, it should be noted that there are alternative approaches which 

may be more appropriate given a program’s structure, data availability, or other reasons that 

could be comparably reasonable to the methods contained in this paper.  

3.1 Point Issuance Period Method 

The Point Issuance Period method is built on the premise that points can be tracked 

from the period in which they were earned by members until their ultimate redemption or 

dormancy/forfeiture, and that the “lifecycle” of a point from older issuance periods can be 

applied to points issued in subsequent periods. While it can be exceedingly difficult for a 

program’s sponsor to track individual points and to come up with meaningful predictions of 

how, or even if, the points will be used, grouping points by issuance periods can make the 

underlying process statistically more practical and provide accurate aggregate estimates. 

Constructing Point Redemption Triangles 

The first step to this method consists of constructing historical point redemption 

triangles. Redeemed points are grouped by issuance period, and cumulative point 

redemptions associated with that issuance period (at multiple evenly spaced evaluations) are 

obtained in order to effectively track how historical redemptions are related to time since the 

original issuance period. Constructing triangles in this manner is analogous to constructing a 

cumulative loss development triangle, but instead of using an “accident period” we use an 

“issuance period.”  

In the triangle below, t
iR  represents the cumulative number of redeemed points, out of 

the total points issued in issuance period i at time t. 
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We divide the cumulative point redemptions for each issuance period by the respective 

number of points that were issued in that period to generate a cumulative redemption rate 

triangle. 

In the triangle shown below, t
ir  represents the cumulative number of redeemed points 

issued in period i at time t divided by the total number of points issued in that issuance 

period. It should be noted that the issued points in each issuance period are effectively 

“frozen” so that the denominator across each row is constant. 

  

 

 

 

 

 

There are two primary benefits to immediately converting the redeemed points into 

redemption rates. First, this removes the effect of changing volumes of issued points 

between issuance periods and it also normalizes the redemption activities between periods 

making them more easily comparable. Second, this approach focuses directly on redemption 

rates from the outset of the analysis, which allows the analyst to immediately verify the 

boundary conditions so that redemption rates can neither exceed unity (i.e., 100%) nor be 

below 0%.  

 

 

Issuance   Evaluation Age   

Period 1 2 3 4 

20X1 
1

120 XR 2
120 XR 3

120 XR 4
120 XR  

20X2 
1

220 XR 2
220 XR 3

220 XR  

20X3 
1

320 XR 2
320 XR  

20X4 
1

420 XR  
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Casualty Actuarial Society E-Forum, Summer 2012 7



Loyalty Rewards and Gift Card Programs: Basic Actuarial Estimation Techniques 
 

    

Estimating Ultimate Redemption Rates 

Using the redemption rate triangle that was developed in the previous step, it should be 

immediately clear that one can apply standard actuarial projection methods (such as the 

chain ladder approach) to obtain estimates of the ultimate redemption rates by issuance 

period. There is generally no significant difference in methodology between estimating 

ultimate redemption rates on issued points and estimating ultimate losses in an insurance 

application, though there can be different considerations that an analyst may need to 

contemplate (e.g., loyalty programs may require consideration of promotions and expansion 

of enrollment into new classes of members instead of insurance considerations of claim 

handling stability and changes in underlying mix of coverages). Standard actuarial projection 

techniques on triangular data are covered in many other sources of actuarial literature and as 

such we will not expand on that topic in this paper. 

At the end of the analysis one should have a completed triangle as is shown below. 

 

Issuance   Evaluation Age     

Period 1 2 3 4 Ult 

20X1 
1

120Xr 2
120Xr 3

120Xr 4
120Xr  ult

Xr 120  

20X2 
1

220 Xr 2
220 Xr 3

220 Xr 4
220 Xr  ult

Xr 220  

20X3 
1

320 Xr 2
320 Xr 3

320 Xr 4
320 Xr  ult

Xr 320  

20X4 
1

420 Xr 2
420 Xr 3

420 Xr 4
420 Xr  ult

Xr 420  

 

The ultimate redemption rates by issuance year can be used “as is” for each individual 

issuance year or, alternatively, a single volume weighted redemption rate on all issued points 

can be calculated if the analyst is focused on the overall ultimate redemption rate (“URR”) 

for all points issued by a loyalty reward or gift card program. 

We note that this approach can be successfully applied to loyalty reward or gift card 

programs that include a point expiration policy in their T&C. In cases where issued points 

only remain valid for a fixed period after issuance, an analyst can quickly obtain the actual 

URR for each issuance period. Such an expiration policy can significantly facilitate the URR 

estimation for more recent issuance periods since the ultimate period is defined by the 

program sponsor. 
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For programs without a point expiration policy, additional work may be needed to obtain 

an estimated URR. For example, in many instances there will be no historical information 

available upon which to base future expected point redemption activities beyond the most 

recent evaluation date. Often, this is simply a result of a reward program not being 

sufficiently mature to have reached its point redemption ultimate in any historical issuance 

period as of the evaluation date. Such an issue is comparable to determining a “tail” factor in 

conventional loss development triangles. In such instances an analyst may find that fitting a 

curve that exhibits decay characteristics is the most appropriate method to apply. Obviously, 

multiple such curves can be used to provide multiple projections. In such instances, it is also 

recommended that the analyst additionally apply a testing or ranking approach in order to 

determine which curve might provide the best fit to historical data. 

For a full numerical example of this method please refer to Appendix 7.1. 

3.2 Aggregate Member Join Period Method 

The Aggregate Member Join Period method assumes that program members’ cumulative 

redemption activity at any given time is related to the time elapsed since the members have 

joined the program. Members are typically combined into join period cohorts so that points 

earning or redemption activity over the lifetime of the cohort can be related to the age or 

maturity of the members included in the cohort. Activities can be traced from the date that 

members first enroll into the reward program (join period) until their ultimate lapse (i.e., 

forfeiture), departure, or dormancy. We will generically refer to this as “dormancy,” though 

the program-specific T&C will dictate if points actually do get forfeited out of members’ 

accounts or not. 

In this method, the triangle construction includes member join period cohort activity for 

both dormant and active members. As a result, any observed changes in cumulative 

redemption activity between evaluation ages are only attributable to members who remained 

active between evaluation periods. 
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Constructing Point Redemption and Points Issued Triangles 

The first step to the Member Join Period method consists of constructing historical point 

redemption triangles. Redemption triangles in this method use cumulative member point 

redemptions at various maturities. Multiple evenly spaced evaluations of the cumulative 

redeemed points are obtained so that one can effectively track how redemptions are related 

to time passed since the original members join period. This triangle construction, similar to 

the Point Issue Period approach described earlier, is also analogous to constructing a 

cumulative loss development triangle, but instead of using an “accident period” approach we 

use a join period approach.  

In the triangle below, t
jR  represents the cumulative number of redeemed points, out of 

the cumulative points issued to members joining in period j, at time t after the join date. 

 

 

 

 

 

 

 

In the triangle below, t
jI  represents the cumulative issued points associated with 

members who joined in period j, at time t after the join date.  

 

 

 

 

 

 

By dividing the cumulative redeemed point triangle by the cumulative issued point 

triangle we obtain the triangle shown below, which represents the cumulative redemption 

Join   Evaluation Age   
Period 1 2 3 4 

20X1 
1
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120 XR 3

120 XR 4
120 XR  

20X2 
1

220 XR 2
220 XR 3

220 XR  

20X3 
1

320 XR 2
320 XR  

20X4 
1

420 XR  

Join   Evaluation Age   

Period 1 2 3 4 

20X1 
1
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20X2 
1

220 XI 2
220 XI 3

220 XI  

20X3 
1

320 XI 2
320 XI  

20X4 
1

420 XI  
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rates ( t
jr ) for members, by join period. The cumulative redemption rates are expressed as a 

percentage of cumulative issued points. Unlike the Point Issuance Period method where the 

points included in the denominator are constant, the points included in this denominator 

continue to grow at each evaluation period, as long as at least one member included in a join 

period cohort continues to be active in the program and earns more points. 

  

 

 

 

 

 

Given this triangle, an actuary can apply standard actuarial projection methods to estimate 

the pattern of future estimated cumulative redemption rates at ultimate for each join period. 

Projected values correspond to the areas within the boxed region in the triangle below. 
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Terminal Redemption Period Considerations 

The Member Join Period Method does not mathematically resolve itself to provide a clear 

“cut-off” where the analyst can cease development. In fact, because of the curve-like nature 

of the underlying cumulative data, mechanical development could perpetuate indefinitely 

with this method were an analyst to project out to infinity. Therefore, it is necessary to 

establish a terminal period (or maturity) out to which the projection should be performed. In 

general, there is no reason that the terminal period used cannot vary by join period. 
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An actuarial analyst should consider multiple factors before establishing a terminal 

redemption period for the redemption rate projection. Generally, considerations include, but 

are not limited to: 

 Current program Terms & Conditions 

 Expected future changes in  program Terms and Conditions 

 Member, or points, dormancy patterns and trends 

 Relative contribution of point activities associated with members at each 

respective expected dormancy period 

Additionally, an actuary should discuss the issue with the program sponsor’s management 

in order to ensure a thorough understanding of the program before implementing a specific 

maturity at which to end development. 

Lastly, it should be mentioned that in some instances, an analyst may want to avoid 

projecting out to the estimated time of dormancy for the last active member(s) in a join year 

in the Member Join Period method (i.e., the time at which all members are dormant). The 

reason is that, were one to do this, the redemption rate provided by the model could 

overestimate the true redemption rate since that estimated time would implicitly account for 

points which would not yet have been earned as of the time of the evaluation. This would be 

inconsistent with the nature of establishing liability estimates as of a determined evaluation 

date for the points outstanding as of that date. 

For a full numerical example of the Member Join Period approach please refer to 

Appendix 7.2. 

3.3 Point Inventory Method and Choice of Redemption Estimation 
Method 

It would be natural for individuals to try to draw comparisons between conventional 

inventory systems and loyalty programs. While such constructions are helpful in placing 

loyalty program operations into a well established and understood framework of 

conventional inventory systems, there exists a notable difference between conventional 

inventory and a loyalty program inventory system. The primary reason that the comparison 

is not perfect is due to the fact that tangible inventory typically has a value that is generally 
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quantifiable via actual transactional evidence at the time of acquisition or manufacture (i.e., 

the cost of purchasing or producing an item included in the inventory is known) whereas the 

value of an issued and unredeemed point in a loyalty reward program will not actually have a 

known cost until the date that that point is actually redeemed (if ever) sometime in the 

future. 

Nevertheless, constructing an inventory system that works for both financial reporting 

purposes and as a tool for the analyst estimating the associated liability can still be a very 

useful endeavor. 

Basic Overview of Inventory Systems 

Inventory systems in loyalty programs have similar structures to conventional inventory 

systems. Below is a brief summary of the types.  

1- First In, First Out: In this method, the oldest points owned by a member are the first 

to get withdrawn.   

2- Last In, First Out: In this method, the newest points owned by a member are the first 

to get withdrawn.   

3- Average Weighted Cost Method (a.k.a. “Piggy Bank” Method): In this method, the time 

at which a point is issued is ignored and points go in and out of members’ accounts 

irrespective of when they were issued (either because these dates are intentionally 

disregarded or due to actual database constraints making them unavailable). As such, it is not 

possible to identify the exact issue time of any specific point and therefore, it is neither 

possible to identify the time of issuance for any point that was redeemed or forfeited. In 

essence, every point is completely impossible to distinguish from every other point. 

Nevertheless, the average future cost and average time of redemption can still be 

determined. Generally such a point inventory system is constructed specifically to focus on 

member point balances at any given time rather than to focus on the series of transactions 

that result in a given balance. 

Inventory Systems and Redemption Rate Estimation 

While there is no specific rule as to the best redemption rate approach to be used for each 

inventory system, or even which inventory system should or should not be used, we believe 

that some methods more naturally accommodate the different inventory systems and make 
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analyses more tractable and more easily explained. For example, the Point Issuance Period 

approach generally works well under a FIFO system. However, the reviewing analyst may 

frequently be required to consider issues which fall outside the scope of this paper before 

constructing or recommending any specific inventory system for a given program. 

3.4 Understanding Redemption Rate Bases and Their Application 

As noted previously, redemption rates can be expressed in terms of either percentage of 

outstanding points or percentage of issued points. Both measurements are potentially of 

interest to an actuary and to a program sponsor’s management team. Up until this point, we 

have focused on estimating redemption rates stated on a points issued basis. Since there is a 

quantifiable relationship between the two bases, one can generally convert between the two 

as needed.  

Typically, redemption rates expressed as percentage of issued points are utilized in an 

income statement context, either for deferred revenue or expense recognition calculations as 

they occur through the accounting period. Conversely, redemption rates expressed as a 

percentage of outstanding points are typically used in a Balance Sheet context, either for 

determining unpaid liabilities or in estimating cumulative deferred revenue at the financial 

reporting date. 

Converting Redemption Rate on Issued Points to Redemption Rate on Outstanding 

Points 

For the Point Issue Period method, the total redemption rate on outstanding points can 

be determined using the following equation: 

                           T
ii

T
ii

Ult
i

TOS
i RIRIrr  /,

                     (3.4.1) 

The above equation can be interpreted as redemption rate on outstanding points for issue 

period i is the product of the total ultimate redemption rate on issued points for issue period 

i and the cumulative issued points less those points that have already been redeemed as of 

the evaluation date. This is then divided by the total outstanding points as of the evaluation 

date, which is itself equal to the total issued points less the total redeemed points. T 

represents the evaluation date. 
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In programs that include forfeiture rules, the actuary must also subtract previously 

forfeited points from the denominator when expressing redemption rates as a percentage of 

outstanding points.  

As the conversion from issued to outstanding for the Member Join Period approach is 

analogous to the method shown above, we have chosen not to show the equation.  

3.5 Application to Gift Cards 

As previously noted, the redemption rate approaches described above can also be applied 

to the estimation of gift card programs’ redemption rates. The estimation method that is 

most appropriate is dependent on the nature of the program.  

For gift card programs where cards are typically not reused (i.e., additional value is never 

or infrequently added back to the card after initial issuance), the Point Issue Period method 

is preferred. 

For gift card programs where card users add value back to cards after the initial card 

issuance (i.e., cards can be “reloaded”), the Aggregate Member Join Period method is 

preferred. 

3.6 Considerations of the Intended Use of the Redemption Rate 
Estimate 

While it is generally not the responsibility of the actuary to determine the appropriate use 

of the redemption rate in an accounting context, it is the responsibility of the actuary to 

convey an appropriate understanding of the nature of the redemption rate estimate to 

management. It should be kept in mind that the redemption rate estimate is exactly that, an 

estimate. In some cases, the determination of a range of reasonable estimates around the 

actuarial central estimate provided to management may also be appropriate. 

The potential risk of underfunding the liability related to the outstanding points (or 

unredeemed gift cards) may make management more cautious when it comes to selecting the 

ultimate redemption rate to use in their financial statements. As such, management may need 

to consider whether the expected value or potentially a higher confidence level estimate (or a 

selection toward the high end of the range of reasonable estimates) is a more appropriate 

estimate to use. 
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Please refer to the Appendix for further discussion on the potential accounting treatment 

of the methods. 

 

4. COST OF REDEMPTION/VALUE OF DEFERRED REVENUE 
ESTIMATION APPROACHES 

In order to fully understand the economic nature of the transactions related to loyalty 

rewards or gift card programs, it is necessary to consider the costs incurred by the plan 

sponsor for point redemptions (in an accrued cost accounting approach) or the value placed 

on the promised future redemptions (in a deferred revenue accounting approach). We will 

generically use the terms “cost” and “value” interchangeably hereafter, though the 

appropriate terminology will be determined by the accounting approach that the sponsor 

uses for financial reporting purposes. 

In some instances there is little uncertainty surrounding the value or cost of a point 

redemption as the point redemption opportunities might be limited or priced in a fixed 

manner (i.e., a fixed number of points = a fixed amount of rewards). As such, no estimate of 

value is necessary. For example, in gift card programs the value of the transaction is generally 

already expressed in a currency (i.e., the value that remains outstanding on the card) and so 

the value to the cardholder is self-evident, regardless of when a redemption may ever occur. 

However, in many reward programs, redemptions will occur in the future and at a time when 

the value or cost of redemptions could be different from today and at values that are not 

necessarily already expressed in an easily valuated form. Since variations over time in cost 

and value are relatively common, it is important to consider how these change over the 

duration of the expected redemptions. Costs can change for a variety of reasons: changes in 

T&C of the program, changes in redemption options available to members, or even price 

inflation of providing loyalty rewards to members at time of the redemption. Likewise, the 

actual value of rewards to the members may also change over time for many of the same 

reasons. To complicate matters more, many programs offer multiple redemption options, 

many of which can vary, perhaps significantly, in cost or value from each other. 

A final complication relates to the determination of the correct value of a point under 

varying accounting systems. Recent changes in international standards have introduced the 
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concept of "fair value" of a point to customers. This can be significantly different from the 

value that a program sponsor believes to be reasonable to use when estimating its 

outstanding liability, under current US GAAP accounting standards. Since the objective of 

this paper is not to take a "deep dive" into the accounting world, we will not discuss this 

issue any further. However, an analyst should consider this issue and seek appropriate 

guidance when determining the value of a point. 

Any forward looking estimation of the potential cost of a point or of the value of a point 

requires a solid understanding of the past, a thorough understanding of expected future 

changes, and a deep knowledge of the T&C of the program. The value of a point at time of 

issuance is a function of the value that the point will have at the time that it will actually be 

redeemed. In instances where the value is constant over time there is no need to estimate 

that value (so long as the value is known today). When the value varies, however, the value 

of a point at time of issuance is not likely to be the same as when that point is going to be 

redeemed.  

Under these conditions, we can build a framework that accommodates many potential 

scenarios of varying values or costs. The basic purpose of the approaches outlined in this 

paper is to determine the expected cost or value of a point at the time of issuance in order to 

include this variable in the current liability estimate. 

4.1 Effectively Constant Cost/Value Per Point Model – Single 
Redemption Option 

This is the trivial example where the value to the member or cost to the company remains 

constant, or at least effectively constant, over time. While, in this context, “constant” is 

relatively self-explanatory, “effectively constant” deserves more explanation. When we refer 

to “effectively constant,” we refer to the fact that even though the cost or value of the 

reward will change over time, it is not expected to change between the issuance of the 

reward promise (i.e., the points) and the expected redemption of the points in return for that 

reward. In such instances the value or cost of the promised deliverable goods today, is the 

best indicator of the future cost or value.  
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4.2 Varying Cost/Value Per Point Model – Single Redemption Option 

In many instances, the cost or value of a reward could vary over time in a manner that is 

reasonably estimable. Examples of such situations are plane tickets or hotel room rewards, 

both of which are impacted by relatively predictable seasonal changes as well as general 

inflationary pressures. To incorporate changes in cost or value of points over time into a 

predictive framework we can create a simple model. The model requires the following 

assumptions: 

1) A redemption pattern, where t  is the percentage of total point redemptions 

occurring in period t, and where 0.1
1




n

t

t . 

2) An estimation of the costs or values that overlap with the point redemption pattern, 

where we define tc  as the cost or value of points redeemed at time t.  

With these two items an analyst can estimate the current average cost per point as: 

                                                                

t
n

t

t c
1


                                         

(4.2.1) 

4.3 Multiple Redemption Options 

This approach essentially adds an extra level of complexity to the preceding method. This 

method includes a third component, i.e., the “utilization.” This is stated in terms of the 

relative percentages of all points that are expected to be redeemed on each redemption 

option, in each future period.  

This component reflects the fact that most rewards programs offer multiple redemption 

options to their members. The objective is to capture the mix of future point redemptions 

across a “basket of goods” that is available to members. Once the utilization component has 

been defined, an analyst can apply this component to expected future cost or value of each 

available award type in each future period to obtain the current weighted average cost per 

point redeemed in each prospective period. In this way, the analyst can combine the 

estimated mix of redemptions with the respective costs associated at each expected time of 

redemption to obtain the total average cost or value per point redeemed in the future. 

For example, hotel programs often allow their members to use their earned points to 

redeem for hotels, airline tickets and other merchandise. Airline programs frequently allow 
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their members to redeem for free flights and miscellaneous merchandise. In many instances, 

the cost or value of the multiple redemption options may vary significantly when viewed in a 

by-point basis. While members usually decide how to use their points based on their 

individual needs, that decision has a direct impact on the costs incurred by a loyalty program 

sponsor. Some reward options can be significantly more costly to a program than others and 

therefore it is crucial for any program to have a good understanding of its customers 

expected redemption behavior. 

The model requires the following assumptions; 

1) A redemption pattern, where t  is defined as the percentage of total point 

redemptions occurring in period t, and where 0.1
1




n

t

t . 

2) Estimation of costs or values for each redemption options that overlap with the point 

redemption pattern, defined t
qc  as the cost or value of each redemption options at 

time t for redemption option q. 

3) Utilization percentage, defined as t
qu , which represents the percentage of total points 

redeemed at time t, for redemption option q. t
qu  can vary over time, however, 

0.1
1




k

q

t
qu  at each t, where k is the total number of redemption options. 

With these three items an analyst can estimate the total average cost per point as: 

                                      

t
q

t
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(4.3.1) 

4.4 Additional Considerations in Cost/Value per Point Models 

Redemption Pattern 

The redemption pattern can be estimated using either of the redemption rate methods 

described in Section 3. Alternatively, other estimation approaches not covered in this paper 

may be used. Since redemption patterns can be expressed as either a percentage of 

outstanding points or a percentage of issued points, care should be taken by the analyst to 

ensure that the appropriate pattern is estimated and applied in a manner that is consistent 

with the intended purpose. 
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Value or Cost at Time of Redemption 

There is not necessarily any a priori relationship between tc  and xtc  , where x is some time 

displacement from t, though frequently the program T&C, business cycles, seasonal effects, 

and/or economic environment will create some framework into which to generalize future 

costs. In addition, considering expected future inflation or projected price changes may be a 

reasonable benchmark against which to determine changes in the value or cost of future 

reward redemptions. 

Utilization 

Utilization is generally expressed on a “of the points expected to be redeemed” basis. 

Therefore it generally ignores future points breakage. 

 

5. ADDITIONAL GENERAL CONSIDERATIONS 

5.1 Data Segmentation 

Just as with traditional actuarial analyses, data segmentation is very important to consider 

in the analysis of any loyalty rewards or gift card program. Utilizing well understood data 

segments serves two roles. First, distortions can potentially occur when changes in the “mix 

of business” happen and appropriate segmentations can address and correct for these 

potential distortions. Second, it allows the actuary to “dial in” on smaller segments of the 

population and to better identify the individual behavior of each segment. This knowledge, 

besides being of use to the actuarial analyst, can be incredibly useful to internal parties such 

as a sponsor’s marketing, accounting or finance department, as well as with management 

reporting. Specifically, segmentation can help to understand how things such as targeted 

mailings, promotions, and program structure changes impact members’ behavior, and can 

ultimately influence cost/benefit analyses of the activities. 

Identifying appropriate segmentations can be a significant task. This can be made even 

more challenging when the segments are fluid, such as in situations where transfers between 

segments are possible (or frequent). Often, such transfers are observed in hotel or airline 
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programs where members can change membership levels (upgrade or downgrade) due to 

their recent activities within their program. 

Some potential segmentation criterions that are often used are: Membership 

level/category, Product type, Average spend by members, and/or Geographic location. 

This list is by no means intended to be comprehensive but rather a selected number of 

options which may be considered by the analyst. 

5.2 Data Quality 

Many programs have been in operation for several decades and, for all intents and 

purposes, pre-date the modern computing era and comprehensively managed database 

capabilities. As such, historical data may not be complete or may simply not be available 

anymore. Even in programs that are relatively young, the data may exhibit serious 

shortcomings or distortions. As a result, there may be limitations as to how the data can be 

provided to an analyst and, doubts may exist regarding data integrity.  

Given the importance of data in actuarial analyses, it is important to make consideration 

of what is needed for the analysis and compare that to what is actually available from the 

program. In some cases, analytical decisions will be made based on data availability rather 

than theoretical optimization. In such instances, an analyst should consider and 

communicate to vested parties how data shortcomings may influence the estimated results or 

increase the uncertainty around the full understanding of the program.  

5.3 Changes in Program Terms & Conditions 

The Terms & Conditions of a program are one of the single most important parts of a 

loyalty rewards program and they need to be well understood before proceeding with an 

analysis of the estimated URR (or any other component of such program for that matter). In 

essence, the T&C are the rules by which the members and the program’s sponsor must abide 

(at least in theory). It is imperative that the analyst gains a full understanding of the T&C of 

any program that is under review. It is also important to understand how strictly these rules 

are actually applied by the program sponsor. 
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Changes in T&C can create large variations in a program’s cost structure, members’ 

redemption behavior, membership profile, and more. In some instances, changes may 

impact the fundamentals of a program to the extent that an analyst’s ability to rely on 

historical data to support a URR analysis may be limited, at least without including 

significant adjustments to the original data. From an insurance point of view, changes in 

T&C can often be compared to legislative changes that affect all insurance policies in force 

(or even retroactively apply to all policies ever written). These changes can fundamentally 

change the “rules of the game” to the extent that the past’s emergence may provide only 

limited assistance in predicting the future. An actuarial analyst would likely apply some 

adjustment techniques to the historical data prior to using it in an analysis. Similar 

adjustments can be made to historical point accumulation or redemption activities. 

An analyst must be able to anticipate how a change (defined) can impact an analysis to 

avoid producing biased URR results.  

5.4 Marketing 

As touched upon briefly above, marketing decisions (e.g., point promotions) can 

introduce large shifts or spikes in member behavior and therefore can have an impact on 

actuarial analyses. In addition, it is not uncommon that these marketing campaigns will 

influence only portions of the membership populations, work in “calendar year” manner 

(i.e., across entire diagonals when actuarial triangles are used) or have effects that were very 

different from the intended outcome. As such, an actuary should work closely with a 

program’s marketing department to understand the upcoming plans or campaigns, if 

possible. 

More importantly, the insights that can be gained from quantitative analysis of the 

program can provide useful feedback to a company’s marketing department as to the 

effectiveness (and costs) of various marketing programs.  
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In fact, the confluence of marketing and fundamental data analysis to more deeply 

understand costs and rewards is an area that the authors believe to be a natural extension of 

the ideas contained in this paper. 

5.5 Seasonal Effects 

Many programs are heavily impacted by seasonal effects. For example, airline tickets 

typically tend to cost more in summer months than in the fall or spring. Another example is 

that credit card companies typically issue significantly more points in the holiday season due 

to the large increases in spending by members. As such it is important to understand how 

seasonal effects influence a reward program from both a member perspective as well as from 

the sponsor’s perspective.  

The good news for an analyst is that it is likely that these effects are consistent year after 

year, which should help gain a precise understanding of their timing and their potential 

impact on calendar year results. This would also be helpful information when performing a 

partial year analysis, with a roll-forward approach to the upcoming year-end evaluation date.  

As with any actuarial analysis relying on historical data, data consistency through time is a 

key component of a loyalty rewards analysis.  
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6. CONCLUSION 

The expansion in the universe of loyalty programs has opened a new opportunity for 

actuaries to expand the application of their traditional insurance practice body of knowledge 

into another area of expertise. The quantitative framework developed by actuaries and the 

associated actuarial projection methods are exceptionally well suited to address these non-

traditional topics. 

While this paper focused on basic estimation techniques and their application to loyalty 

rewards and gift cards programs, we acknowledge that more advanced techniques (including 

predictive modeling methods) might also be successfully applied to the questions and 

problems brought to us by these programs. We purposely decided to exclude that discussion 

from this paper in order to maintain our focus on the more basic approaches.  

  It is always exciting to venture into a new space and attempt to answer new questions. We 

hope that with this paper we will help the actuarial community continue its progression and 

remain at the forefront of these new challenges.  
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7. APPENDIX 

7.1 Point Issue Period Approach - Numerical Example 

Below we outline a simple case study example of how to obtain the estimated URR, 

expressed as a percentage of total issued points, for a hypothetical gift card program.  

Step 1 – Understand the program 

The program of interest involves the issuance of point gift cards which are charged with a 

specified point value at time of purchase. The gift card value can be redeemed by the 

cardholder for goods at the issuer’s stores as if the value on the card were a cash equivalent. 

Cardholders cannot add additional value to the card after the original time of issuance. The 

accounting standards under which the reporting entity operates allows for the recognition of 

the associated breakage revenue if the likelihood of non-redemption is probable and the 

amount of breakage is reasonably estimable.  

In this example, we assume that the card issuer has the capability to provide transactional 

level information showing the time and amount of all transactions well as the associated card 

number for each and every historical point redemption and issuance on a per card basis. 

Step 2 – Obtain Data 

The key data elements required for this approach are as follows:  

The total value of issued gift cards grouped by issuance period and the incremental 

redemptions over time that correspond to the same issuance period – This information is 

shown on Tables A and B of Appendix 7.1. 

Step 3 – Manipulate Data into Usable Format 

This approach uses cumulative redemptions as a percentage of the total issued value. As 

such we first need to accumulate the incremental redemption triangle. Table C in Appendix 

7.1 contains the result of this exercise. In our example the cumulative redemption percentage 
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corresponding to 20X2 at 36 months is calculated using the total incremental redemptions 

(37 + 25 + 7 = 69) for that issuance period as of the evaluation date.  

The next step is to divide the cumulative redeemed points for each issuance period by the 

cumulative issued points for each respective issuance period to obtain the cumulative 

redemption percentages at each evaluation period. The result of this is shown on Appendix 

7.1, Table D. This table is the result of dividing Table C by Table A. As an example, the 

55.2% on Table D is derived by dividing the 69 points redeemed at 36 months by the 125 

points originally issued in that period. 

Step 4 – Project Ultimate Redemption Rate 

We can project the ultimate redemption rate using one of many commonly accepted 

actuarial projection methods. For this example, we have opted to use an exponential curve 

fitted on mortality basis redemptions for our ultimate projection. The benefit of this method 

is that we can use the curve to provide us with an estimate that extends beyond the oldest 

available data point (in this case actual data only extends to 48 months). The estimate of the 

tail portion is particularly important in this hypothetical example because we have assumed 

in this example that there can be no forfeitures of value in this program. As such, 

redemptions can theoretically happen beyond our latest data point, and perhaps significantly 

farther. 

The first step for the exponential curve fit is to convert our cumulative redemption 

percentages into incremental redemption percentages. This can be seen on Appendix 7.1, 

Table E. We additionally create a triangle of the cumulative amount that has not been 

redeemed at any given maturity (done by subtracting the cumulative redeemed percentages 

from 100.0%) The result is shown in Appendix 7.1, Table F. We then calculate the mortality 

rate by dividing the incremental percentage redeemed in a given period by the cumulative 

“unredeemed” at the beginning of that period. Mortality rates are shown on Appendix 7.1, 

Table G and corresponds to Table E divided by Table F. We calculate the average mortality 

at each maturity (for example average mortality rate at 24 months is 26.6% which is equal to 

[24.7% + 28.4% + 26.7%]/3).  In this example we have chosen to fit an exponential decay 

Casualty Actuarial Society E-Forum, Summer 2012 26



Loyalty Rewards and Gift Card Programs: Basic Actuarial Estimation Techniques 
 

function to the average mortality rates, though numerous other extrapolation techniques 

could be used. Table H of Appendix 7.1 shows the result of this exercise. .Having estimated 

a mortality curve we can then project out the ultimate redemption rate for later maturities. 

Table I, on Appendix 7.1 shows the full projection of ultimate redemption rates for each 

issuance period. For example, the projection of cumulative redemption percentage of 53.8% 

for 20X4 at 36 months of maturity is calculated as (100.0% - 47.4%) x 12.1% + 47.4%. 

Having just estimated the ultimate redemption rate on issued gift card value, we can easily 

convert this into the redemption rate on outstanding value, if needed (please see Appendix 

7.4 for an example of this conversion). 

7.2 Aggregate Member Join Period Approach - Numerical Example 

Below we outline a simple case study example of how to obtain the estimated URR, 

expressed as a percentage of total issued points, for a hypothetical hotel loyalty program.  

Step 1 – Understand the program 

This example program involves a hotel loyalty program where members earn points on 

every purchase that they make at a participating property. These earned points can then be 

redeemed in the future for hotel rewards. All members leave the program within three years 

of their original date of enrollment. 

Step 2 – Obtain Data 

  The key data elements required for this approach are as follows:  

  Cumulative issued and redeemed points, by join period at fixed interval periods - These are 

shown on Appendix 7.2, Tables A and B, respectively.  

Step 3 – Manipulate Data into Usable Format 

Taking the raw data elements, we can divide the cumulative redeemed points shown on 

Table B by the cumulative issued points shown on Table A. The cumulative redemption rate 
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results are shown on Table C of Appendix 7.2. As an example, the 18.6% shown in join 

period 20X4 at 12 months is equal to the cumulative redemptions made by members who 

joined the program in 20X4 divided by the cumulative issued points for the same members, 

i.e., 84 / 452 = 18.6%. 

Step 4 – Project Redemption Rates 

For our example we will use simple averages down columns. The results of these 

calculations are shown on Appendix 7.2, Table D. For this example, we will assume that 48 

months of maturity is the appropriate terminal redemption maturity for all join periods.  

7.3 Redemption Rate Basis Conversion - Numerical Example 

In Appendix 7.3, we have included an example of converting ultimate redemption rates 

on issued points to ultimate redemption rates on outstanding points. 

7.4.1 Varying Cost/Value Per Point Model – Single Redemption 
Option- Numerical Example 

As noted above, this approach is appropriate when there is only a single point redemption 

option available to a loyalty program’s members, and when the cost/value of points at 

redemption are expected to vary over time. If the cost does not vary over time, then an 

analyst may simply use the current value. In instances where there is more than one 

redemption option, an analyst should consider using the multiple redemption options model 

instead. 

In the following example, we are faced with a program where we see that the expected 

value per point is expected to be diluted over time. This is due to the fact that the program 

has had significant “point inflation” in the past, i.e., the number of points needed to obtain a 

reward has been increasing through time, and the analyst expects this to continue in the 

future over the prospective redemption horizon. Therefore, if the company were to simply 

use the current value (of $1.00) it would be over-estimating the value per point.  
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The required data components are an estimated overall redemption pattern and a cost 

schedule that coincides with the expected redemption pattern timeline, and estimates of 

point utilization between award types over time. The example is shown on Appendix 7.4, 

Item 7.4.1 . 

The expected value per point at time of redemption is equal to $0.94, which is equal to 

[35.0% x $1.00 + 30.0% x $0.95 +20.0% x $0.91 +10.0% x $0.86 +5.0% x $0.82]. 

7.4.2 Varying Cost/Value Per Point Model – Multiple Redemption 
Options- Numerical Example 

As noted above, this approach is appropriate when there are multiple reward redemption 

options. Furthermore, the approach can accommodate variations in value per point over 

time and or variations in the relative expected utilization of the points over time. 

The required data components are an estimated overall redemption pattern, a cost 

schedule that coincides with the expected redemption pattern timeline, and estimates of 

point utilization between award types over time. Utilization can be constant over all future 

periods or it can also vary, if the analyst believes that to be reasonable. The example shown 

on Appendix 7.4, Item 7.4.2 assumes constant utilization over time. 

In this example, the cost per redeemed point is expected to increase over time to reflect 

an expectation that long-term inflation will be greater than 0% in each future period. Here, 

using the current average cost per point in each future period would materially understate 

the estimated value. 

7.5 Accounting for Loyalty Programs 

This paper is not intended to express any opinion on the appropriate accounting 

treatment for loyalty rewards or gift cards programs. However, having an understanding of 

the underlying accounting treatment is important to understand the purpose and application 

of the methods described in this paper. As such we will briefly describe two predominant 

Casualty Actuarial Society E-Forum, Summer 2012 29



Loyalty Rewards and Gift Card Programs: Basic Actuarial Estimation Techniques 
 

    

approaches (the accrued cost approach and the deferred revenue approach) and describe 

how the tools in this paper can be used. 

Accrued Cost Approach: This approach takes the point of view that the promise of 

future delivery of goods and services to the member represents a future sacrifice of 

economic resources by the sponsor. Given that the future sacrifice is both probable and 

reasonably estimable, a liability must be accrued at the time of point issuance. When the 

redemption does occur, the accrued liability can be relieved. 

Deferred Revenue Approach: This approach takes the point of view that transactions 

giving rise to the issuance of loyalty awards should be viewed as contingent sales whereby 

the member is purchasing goods or services with the expectation that he will receive 

additional goods and services from the sponsor in the future. As such, this approach 

assumes that the earnings process inherent to revenue recognition is tied to the future 

performance (sometimes referred to as contingent performance) or future delivery of goods 

or services. Furthermore, until that performance or delivery is actually completed by the 

sponsor, the revenue associated with that transaction should not be fully recognized. As 

such, a deferred revenue account must be estimated and established.  

The primary difference between the two approaches is simply the resulting timing of revenue 

and expense recognition. In order to help understand the differences between the two 

methods we are providing a hypothetical example in Appendix 7.6 that shows the 

transactional journal entries as well as the final financial statements resulting from the 

transactions under both accounting systems. 
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The ¡Burrito Fresco! Program – An Illustrative Frequent Burrito-Eater Loyalty 

Program 

  ¡Burrito Fresco! Program description is as follows: 

1) Burritos cost the program sponsor (¡Burrito Fresco!) $2.00 each, 2) Burritos are sold to 

members (Frequent Burrito-Eaters) for $4.00, 3) Program terms and conditions: Frequent 

Burrito-Eaters receive one burrito point for every burrito that they purchase. Frequent 

Burrito-Eaters can redeem 10 burrito points for one free burrito and 4) Expected 

Redemption Rate of burrito points: 75.0% 

For simplicity, we assume that the cost and the sale price of burritos do not change 

through the years and that all buyers of burritos are members of the ¡Burrito Fresco!  

Loyalty Program (therefore every burrito sold yields the issuance of a burrito point). 

Additionally, assume that Frequent Burrito-Eaters purchase 500 burritos in period 1 and 

500 burritos in period 2. All of the free burrito redemptions occur at the very end of period 

2 and none in period 1. 

The journal entries for both of these examples are shown on Appendix 7.5, Sheet 2.  

Accrued Cost Approach: 

Using this approach we see that every burrito point that the sponsor issues will cost $0.15. 

This is determined by the fact that every burrito sold yields one burrito point and a single 

burrito point can effectively buy one tenth of a burrito. This costs ¡Burrito Fresco! $0.20 = 

1/10 x $2.00. In addition, only 75.0% of the burrito points issued will be redeemed by 

members for free burrito rewards. Therefore, the effective cost that must be accrued for 

each burrito sold is $0.15 = 0.750 x $0.20. In general, we can see that the cost per point is 

cr * , where r  is the redemption rate and c  is the cost of the redemption.  
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Deferred Revenue Approach: 

Using this approach, we see that every burrito sold requires ¡Burrito Fresco! to defer 

$0.279 of the $4.00 of revenue. The $0.279 is derived using the following approach: 

 ]*/0.1[* rcSSS   

Where   is the deferred revenue per transaction, S is the sale price (in this case $4.00), c is 

the value of an issued reward (here it is one-tenth the price of a burrito, $0.40), and r  is the 

redemption rate (75.0%). 

We will discuss in the next section how the $0.279 gets spread across the earnings period. 

Financial Statement Comparison: 

We can construct income statements and balance sheets for periods 1 and 2 under each of 

the accounting approaches for ¡Burrito Fresco!. These are shown on Appendix 7.5, Page 1.  

As we can see, on the income statement on Appendix 7.5, Page 1, the deferred revenue 

approach yields lower revenue and net income in period 1 than the accrued cost approach 

($1,860.47 compared to $2,000.00) due to the fact that $0.279 of revenue per burrito sold 

(i.e., 500 in period 1) gets deferred. However, in period 2, once the free burrito rewards 

redemptions are made, the deferred revenue can be recognized. At that time, the revenue 

and the corresponding net income are higher under the deferred revenue approach. This 

example illustrates that under the deferred revenue approach, revenue and net income will 

generally be less in earlier years and greater in later years than what the accrued cost 

approach would produce. It should also be noted that in our example, we have opted to 

show both cost and deferred revenue on a net-of-breakage basis. However, it would also be 

expected to see companies recording gross-of-breakage values with a contra-account posting 

that explicitly captures the associated breakage. 

We can also contrast the two methods effects on the balance sheets shown on Appendix 

7.5, Page 1. Under the deferred revenue approach, we see that at the end of period 1, the 

equity produced is lower than for the accrued cost approach. This is a result of the reduced 
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period 1 revenue and net income that this method generates. Also note that the deferred 

revenue approach carries no accrued expenses and conversely the accrued cost approach 

involves no deferral of revenue. Both methods ultimately provide the same resulting final 

equity. 
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Point Issuance Period Approach Appendix 7.1

Table A Table B

Issued Points Incremental Redemptions
Issuance Issued Issuance Evaluation Age

Period Points Period 0 - 12 12 - 24 24 - 36 36 - 48
20X1 105 20X1 32 18 6 3
20X2 125 20X2 37 25 7
20X3 150 20X3 45 28
20X4 115 20X4 34

Table C Table D

Cumulative Redemptions Cumulative Redemptions (% of Issued)
Issuance Evaluation Age Issuance Evaluation Age

Period 12 24 36 48 Period 12 24 36 48
20X1 32 50 56 59 20X1 30.5% 47.6% 53.3% 56.2%
20X2 37 62 69 20X2 29.6% 49.6% 55.2%
20X3 45 73 20X3 30.0% 48.7%
20X4 34 20X4 29.6%

Table E

Incremental Point Redemptions (% of Issued)
Issuance Evaluation Age

Period 0 - 12 12 - 24 24 - 36 36 - 48
20X1 30.5% 17.1% 5.7% 2.9%
20X2 29.6% 20.0% 5.6%
20X3 30.0% 18.7%
20X4 29.6%

Table F Table G

Unredeemed at Beginning of Period Mortality Rates
Issuance Evaluation Age Issuance Evaluation Age

Period 0 12 24 36 48 Period 0 - 12 12 - 24 24 - 36 36 - 48
20X1 100.0% 69.5% 52.4% 46.7% 43.8% 20X1 30.5% 24.7% 10.9% 6.1%
20X2 100.0% 70.4% 50.4% 44.8% 20X2 29.6% 28.4% 11.1%
20X3 100.0% 70.0% 51.3% 20X3 30.0% 26.7%
20X4 100.0% 70.4% 20X4 29.6%

Table H

Mortality Rates
Evaluation Age

12 - 24 24 - 36 36 - 48 48 - 60 60 - 72 72 - 84 84 - 96 96 - 108 108 - 120 120 - Ult
Avg. Mortality Rate 26.6% 11.0% 6.1% n.a. n.a. n.a. n.a. n.a. n.a. n.a. 
Fitted Mortality Rate 25.3% 12.1% 5.8% 2.8% 1.3% 0.6% 0.3% 0.1% 0.1% 0.0%

Table I

Cumulative Point Redemptions (Percentage of Issued)
Issuance Evaluation Age

Period 12 24 36 48 60 72 84 96 108 120 Ultimate
20X1 30.5% 47.6% 53.3% 56.2% 57.4% 58.0% 58.3% 58.4% 58.4% 58.5% 58.5%
20X2 29.6% 49.6% 55.2% 57.8% 59.0% 59.5% 59.8% 59.9% 60.0% 60.0% 60.0%
20X3 30.0% 48.7% 54.9% 57.5% 58.7% 59.3% 59.5% 59.7% 59.7% 59.7% 59.7%
20X4 29.6% 47.4% 53.8% 56.5% 57.7% 58.3% 58.5% 58.7% 58.7% 58.7% 58.7%
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Table A Table B

Cumulative Issued - Aggregate Cumulative Redemptions - Aggregate
Join Evaluation Age Join Evaluation Age

Period 12 24 36 48 Period 12 24 36 48
20X1 436 445 528 555 20X1 73 192 334 379
20X2 525 573 609 20X2 78 214 401
20X3 475 486 20X3 90 193
20X4 452 20X4 84

Table C Table D

Cumulative Redemption Rates - Aggregate Projected Cumulative Redemption Rates - Aggregate
Join Evaluation Age Join Evaluation Age

Period 12 24 36 48 Period 12 24 36 48
20X1 16.7% 43.1% 63.3% 68.3% 20X1 16.7% 43.1% 63.3% 68.3%
20X2 14.9% 37.3% 65.8% 20X2 14.9% 37.3% 65.8% 68.3%
20X3 18.9% 39.7% 20X3 18.9% 39.7% 64.6% 68.3%
20X4 18.6% 20X4 18.6% 40.1% 64.6% 68.3%
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Point Issuance Period Approach Appendix 7.3
Redemption Rate on Issued to Redemption Rate on Outstanding Points

Points Ultimate Cumulative Estimated Un-redeemed Ultimate
Issued Redemption Expected Redeemed Points Points Redemption

Issuance As of Rate On Ultimate Points As of Redeemed As of Rate On
Period 12/31/20X4 Issued Redemptions 12/31/20X4 In Future 12/31/20X4 Outstanding

(1) (2) (3) (4) (5) (6) (7) (8)

20X1 105 58.5% 61 59 2 46 5.2%
20X2 125 60.0% 75 69 6 56 10.7%
20X3 150 59.7% 90 73 17 77 21.6%
20X4 115 58.7% 68 34 34 81 41.4%

Total 495 294 235 59 260 22.5%

Notes:
(2), (5) From database. (6) (4) - (5).

(3) Estimated ultimate redemptions using PIP method. (7) (2) - (5).
(4) (2) x (3). (8) (6) / (7).

Casualty Actuarial Society E-Forum, Summer 2012 37



Value Per Point Redemption Estimation Approaches Appendix 7.4

7.4.1: Value Per Point - Single Redemption Option - Example

Redemption Period
1 2 3 4 5

(1) Redemption Pattern 35.0% 30.0% 20.0% 10.0% 5.0%

(2) Value At Time of Redemption $1.00 $0.95 $0.91 $0.86 $0.82

(3) Estimated Weighted Value of Unredeemed Points $0.94

7.4.2: Value Per Point - Multiple Redemption Option - Example

Redemption Period Utilization
1 2 3 4 5 (6)

(4) Redemption Pattern 15.0% 15.0% 20.0% 25.0% 25.0%

(5) Value at Time of Redemption:
Option A $1.05 $1.10 $1.16 $1.22 $1.20 50.0%

Option B $0.90 $0.99 $1.09 $1.20 $1.32 45.0%

Option C $0.25 $0.25 $0.25 $0.25 $0.25 5.0%

(7) Estimated Weighted Value of Unredeemed Points $1.10

Notes:
(3) [ Sumproduct of (1) and  (2) at each respective maturity ] / [ Sum of (1) at each respective maturity ]

(7)
  [ Sum of (4) at each respective maturity ]

[ Sumproduct of (4) and  (5) at each respective maturity x (6) for each respective utilization option ]
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Hypothetical Financial Statements Appendix 7.5
¡Burrito Fresco! Page 1
Balance Sheet and Statement of Income

Balance Sheet Balance Sheet
Accrued Cost Approach Deferred Revenue Approach

Beginning End of End of Beginning End of End of
Of Period 1 Period 1 Period 2 Of Period 1 Period 1 Period 2

Cash $0.00 $2,000.00 $4,000.00 $0.00 $2,000.00 $4,000.00
Burrito Inventory $2,150.00 $1,150.00 $0.00 $2,150.00 $1,150.00 $0.00

Total Assets $2,150.00 $3,150.00 $4,000.00 $2,150.00 $3,150.00 $4,000.00

Accrued Expenses $0.00 $75.00 $0.00 n.a. n.a. n.a. 
Deferred Revenue n.a. n.a. n.a. $0.00 $139.53 $0.00

Equity $2,150.00 $3,075.00 $4,000.00 $2,150.00 $3,010.47 $4,000.00

Total Liabilities & Equity $2,150.00 $3,150.00 $4,000.00 $2,150.00 $3,150.00 $4,000.00

Statement of Income Statement of Income
Accrued Cost Approach Deferred Revenue Approach

Period 1 Period 2 Cumulative Period 1 Period 2 Cumulative

Revenue $2,000.00 $2,000.00 $4,000.00 $1,860.47 $2,139.53 $4,000.00
Expenses $1,075.00 $1,075.00 $2,150.00 $1,000.00 $1,150.00 $2,150.00

Net Income $925.00 $925.00 $1,850.00 $860.47 $989.53 $1,850.00
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Appendix 7.5
Page 2

Hypothetical Financial Statements
Journal Entries

Accrued Cost Method

Period 1: Sales and Burrito Point Cost Accruals
Sales of Burritos and Issuance of Associated Burrito Points

Db Cash $2,000.00

          Cr Revenue $2,000.00

Db Expenses (Cost of Goods Sold) $1,000.00

          Cr Burrito Inventory $1,000.00

Db Expenses (Issued Burrito Points) $75.00

          Cr Accrued Burrito Point Liability $75.00

Period 2: Sales and Burrito Point Accrued Expenses and Burrito Point Redemptions
Sales of Burritos and Issuance of Associated Burrito Points

Db Cash $2,000.00

         Cr Revenue $2,000.00

Db Expenses (Cost of Goods Sold) $1,000.00

          Cr Burrito Inventory $1,000.00

Db Expenses (Issued Burrito Points) $75.00

          Cr Accrued Burrito Point Liability $75.00

Redemptions of Outstanding Burrito Points

Db Accrued Burrito Point Liability $150.00

          Cr Burrito Inventory $150.00

Deferred Revenue Method

Period 1: Sales and Burrito Point Deferred Revenue
Sales of Burritos and Issuance of Associated Burrito Points

Db Cash $2,000.00

          Cr Revenue $1,860.47

          Cr Deferred Revenue $139.53

Db Expenses (Cost of Goods Sold) $1,000.00

          Cr Burrito Inventory $1,000.00

Period 2: Sales and Burrito Point Deferred Revenue and Burrito Point Redemptions
Sales of Burritos and Issuance of Associated Burrito Points

Db Cash $2,000.00

          Cr Revenue $1,860.47

          Cr Deferred Revenue $139.53

Db Expenses (Cost of Goods Sold) $1,000.00

          Cr Burrito Inventory $1,000.00

Redemptions of Outstanding Burrito Points

Db Deferred Revenue $279.06

          Cr Revenue $279.06

Db Expenses (Cost of Goods Sold) $150.00

          Cr Burrito Inventory $150.00
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1 Introduction

For most actuarial modeling applications, model parameters are unknown and
must be estimated. If the associated parameter estimation error is not recog-
nized in the modeling, there is a good chance that a substantial portion of the
adverse (and favorable) loss potential will appear to be diversified away in the
aggregation process.

There is an old fable about buying eggs at 10¢ each and selling them for $1.00
per dozen, making up the difference by doing high volume. The misestimation
of the required price is not diversified by volume. Rather, it is a systematic
risk that has to be analyzed separately. Similarly parameter risk is a form of
systematic risk that does not diversify with volume, although it may diversify
across portfolios to some degree.

1.1 Sources of Uncertainty

Parameter risk is the uncertainty as to whether the parameters are appropriate
for the phenomenon that we are attempting to model. This uncertainty results
from the following factors:

Sampling risk Parameters are estimated from an observed sample. Parameter
uncertainty results from differences between that sample and the popula-
tion.

Data bias Parameters that are used to model outcomes of events that occur
during an exposure period are estimated from observations from an expe-
rience period. We often adjust these observations in an attempt to correct
for differences between the experience and exposure periods. The most
common such adjustment is the trending of claims amounts. This ad-
justment is intended to remove this bias created by cost level differences.
However, if the data are not adjusted correctly then a bias may persist
or possibly even be exacerbated. Furthermore, if the amount of the ad-
justment itself is uncertain, then it should be treated as an additional
parameter in the model.

The purpose of this Study Note is to demonstrate that for common approaches
for determining mean estimates of actuarial model parameters there exist asso-
ciated parameter uncertainty models. These uncertainty models are intended to
address Sampling Risk. However, this Study Note does not include details re-
garding the theory and derivation of those uncertainty models. Readers should
consult appropriate sources for that information.

There are (at least) four additional sources of uncertainty that should be rec-
ognized.
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Process risk refers to the inherent uncertainty of the insurance claims process.
Process risk can diversify away as discussed in Section 1.2.

Model misspecification is the risk that the wrong model is being estimated
and applied. For example, this is the risk that we use an exponential
model when the phenomenon follows a Pareto distribution. Insufficient
parameter identification is also a type of model misspecification.

Actuarial model risk is a broad form of misspecification risk that results
from the possibility that the entire actuarial modeling framework may not
be appropriate for the phenomenon being modeled. For example, we may
model ultimate losses using a loss development model when ultimate claim
amounts are not proportional to claim amounts as of the valuation date.
Discussion of this risk, which may be significant, is beyond the scope of
this Study Note.

Insufficient parameter identification results when we fail to recognize re-
lationships in our models or fail to recognize that certain elements of our
model are subject to uncertainty. Examples include:

� Our model may not recognize correlations between development fac-
tors in adjacent intervals.

� We may not recognize that relativity between the frequency for a
class and the frequency for a base class is an estimated parameter.

1.2 Principles of Diversification

One ad-hoc adjustment sometimes applied in order to capture parameter risk is
to add further spread to the frequency and severity distributions. However this
approach only adds process risk which will wash out with diversification.

To illustrate the problem, consider applying uncertain trend to the collective
risk model. Let N be the random variable for the number of claims, and denote
amount of the jth claim as Xj , where the claims amounts are all independent
and identically distributed (IID) and independent of N. We then have:

L =
N∑
j=1

Xj (1.1)

E(L) = E(N)E(X) (1.2)

V ar(L) = E(N)V ar(X) + E(X)2V ar(N) (1.3)

To understand the effect of diversification, consider the coefficient of variation
(CV, the ratio of standard deviation to mean) of L as a proxy for model uncer-
tainty. It is more convenient to calculate square of the CV s [CV (L)2] which is
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the ratio of the variance divided by the mean squared = V ar(L)/E(L)2:

CV (L)2 =
V ar(L)

E(L)2
(1.4)

=
E(N)V ar(X) + E(X)2V ar(N)

E(N)2E(X)2

=
V ar(X)

E(N)E(X)2
+
V ar(N)

E(N)2
(1.5)

Actuaries often assume that the CV is constant for severity distributions.

Likewise, for frequency distributions the ratio of variance to mean is often as-
sumed to be constant. We denote that ratio as VM and offer the following
examples:

� For a Poisson Distribution , VM is equal to 1.

� For the negative binomial distribution with parameters r and β, with mean
r and variance r(1 + β), VM is 1 + β, which is often taken as a constant
as volume changes.

In any case, VM is constant under the addition of IID exposure units.

By substitution, we have

CV (L)2 =
CV (X)2

E(N)
+

VM

E(N)
(1.6)

The numerators of (1.6) are constant under increase in exposure units and infla-
tion, so CV (L)2 decreases proportionally to the inverse of the expected number
of claims, and thus can get quite small as volume increases. This is the problem
with the collective risk model without parameter uncertainty. The volatility can
get unrealistically low leading the actuary to believe that there is no risk in large
insurance portfolios. This is a dangerous conclusion as it would lead the insurer
to write more business. If we also consider the risk that models for X and N
may be incorrectly specified (see the example of the eggs), we understand that
potential financial loss actually increases with volume.

1.2.1 Uncertain Trend Example

We provide the following example to demonstrate how the aggregate claims
random variable is affected by uncertain trend. Including the risk of uncertain
trend or other systematic risk will put a minimum on CV (L) that cannot be
reduced by diversification (i.e. it is not inversely proportional to E(N)).

Let J denote a random trend factor with mean 1.00. We then have the following
relationships:
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E(J) = 1 (1.7)

CV (J)2 =
V ar(J)

E(J)2

= V ar(J) (1.8)

Our claims model and its characteristic functions for the trended claim amount
K may be expressed as follows:

K = JL (1.9)

E(K) = E(JL)

= E(J)E(L)

= E(L) (1.10)

V ar(K) = V ar(JL)

= E(J)2V ar(L) + E(L)2V ar(J) + V ar(J)V ar(L)

= V ar(L) + E(L)2CV (J)2 + CV (J)2V ar(L) (1.11)

CV (K)2 =
V ar(L) + E(L)2CV (J)2 + CV (J)2V ar(L)

E(L)2

= CV (L)2 + CV (J)2 + CV (L)2 × CV (J)2 (1.12)

We can now observe that CV (K) has a minimum of CV (J) even if CV (L)2

goes to zero (as E(N) is large). That is, the uncertainty in the trend parameter
is not diversified away.

2 Parameter Estimation Methods

We address three common approaches of parameter estimation in this Study
Note. For the first two approaches there is a formal methodology for modeling
the distribution of parameter fitting errors. This provides quantification of
estimation risk.

Regression analysis is used to estimate the parameters of a dependency rela-
tionship. Although the category of regression analysis includes non-linear
approaches, this Study Note focuses on linear approaches.
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Maximum likelihood estimation is most commonly used in estimating fre-
quency and severity distributions. The resulting parameters are referred
to as maximum likelihood estimators (MLEs).

Although the last approach is less formal, it is no less subject to parameter risk
and in fact, it may be subject to greater parameter risk.

Model free methods are commonly used by actuaries in certain applications
such as estimation of claim development factors.

3 Parameter Uncertainty Models

3.1 Uncertainty in Regression Parameters

When the data displays dependencies and is (approximately) normally dis-
tributed after accounting for those dependencies, actuaries will often use re-
gression to estimate parameters. A common example exists with the modeling
of the relationship between claim amounts (X ) and time (t) which is often
modeled using the following relationship:

Yi = lnXi = β0 + β1ti + εi (3.1)

where β0 is often referred to as the intercept and β1 is often referred to as the
slope or regression coefficient.

We observe the following about this relationship:

� Using the log-transform of claim amounts implies that claim values are log-
normally distributed. This may be appropriate if the Xis are individual
claim observations but possibly not if they are averages.

It also implies that the growth in claim amounts is exponential rather than
linear. This is a generally accepted assumption.

� Exponentiation of the regression coefficient β1 less unity (i.e. eβ1 − 1)
represents an estimate of the annual rate of severity trend.

� E(Yi|ti) = β0 + β1ti, often written as µi, is the mean of the distribution
of the logs of the claim amounts at time ti.

We should recognize that regression techniques not only provide estimates of
parameters such as β1 and quantities such as µi but also the uncertainty of those
estimates. More specifically, for a regression on N data points, the estimated
standard deviation of the regression error term, εi, of the regression may be
expressed as:

σ̂y =

√
SSE

N − 2
(3.2)
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We denote the sample standard deviation1 of the observed times (tis) as σt. The
estimators then have the following properties which are discussed in textbooks
on regression.

� The standard error of b1 (the estimator of β1) may be estimated as

σ̂b1 =
σ̂y

σt
√
N − 1

. (3.3)

The residuals of b1 after subtracting β1 and scaling by the standard error
of b1 follow a Student’s t-distribution with N − 2 degrees of freedom.

� The (1− α)% confidence interval is equal to

b1 ± tN−2,1−α
2
σ̂b1 (3.4)

� The standard error of mi, the estimator of µi obtained by substituting bs
for βs, is calculated as follows:

σ̂µi = σ̂y

√
1 +

1

N
+

(ti − t)2
(N − 1)σ2

t

(3.5)

Similar to equation 3.3, the scaled residuals of µi also follow Student’s
t-distribution with N -2 degrees of freedom.

- We can observe that, as N becomes large, σ̂µi approaches σ̂y.

- The standard error increases as ti is further from t.

- The (1− α)% prediction interval is equal to

Ŷi ± tN−2,1−α
2
σ̂µi (3.6)

Particularly when fitting regression models to average values, N (and, by ex-
tension, (N − 2)) may be “small” which leads to a Student’s t-distribution with
considerable dispersion. This may result in “unreasonable” parameter values for
the regression parameters at higher or lower percentile levels. Excessive disper-
sion of estimators of parameters is consistent with lack of statistical significance
of regression parameters. Issues related to the significance of regression parame-
ters are outside the scope of this Study Note. Readers should consult textbooks
on regression analysis for the derivation of the formulae above or for a more
complete understanding of the development of the uncertainty model.

1This is the unbiased standard deviation with denominator N − 1.
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3.2 Uncertainty in Parameters Estimated by Maximum
Likelihood

The likelihood function (L) represents the probability that a sample is observed
given a model and parameters. It is calculated as the product of probability
functions in the discrete case or density functions in the continuous case. As
it is computationally more efficient, we generally work with the negative of the
log-likelihood (NLL) which is the negative value of the sum of the logarithms
of the probability (density) functions . Specifically for a continuous model with
density function f , we have:

L(x; θ) =
∏

f(xi) (3.7)

NLL(x; θ) = −
∑

ln f(xi) (3.8)

The maximum of L occurs at the minimum of NLL. The minimum of NLL can
often be calculated by setting its derivatives with respect to the parameters of
the probability (density) function to zero and solving for the parameters. How-
ever in more complicated models the minimization must be done numerically.

3.2.1 Large Samples

As described in Loss Models [2], for large N , the distribution of the parameter
estimates is asymptotically normal and the inverse of the Hessian matrix
(also referred to as the Hessian and denoted H ) provides the variances and
covariances of the parameters. The Hessian is comprised of the second partial
derivatives of a function of interest, in this case the NLL. The Hessian of the
NLL function is also referred to as the information matrix.2

3.2.2 Pareto Example

In this section, we demonstrate the calculation for the Pareto distribution with
the following properties:

F (x) = 1− x−α (3.9)

f(x) = αx−α−1 (3.10)

ln(f(x)) = ln(α) + (−α− 1) ln(x) (3.11)

2Most optimization software will numerically calculate the information matrix.
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We then calculate the NLL as follows:

NLL = −
n∑
i=1

ln f(xi)

= −
n∑
i=1

(ln(α) + (−α− 1) ln(xi))

= −
n∑
i=1

ln(α) + (α+ 1)
n∑
i=1

ln(xi)

= −nln(α) + (α+ 1)
n∑
i=1

ln(xi) (3.12)

To solve for the MLE of α, we taking the derivative of the NLL with respect
to α and solve:

dNLL

dα
=
−n
α

+
n∑
i=1

ln(xi) = 0

α̂ =
n∑n

i=1 ln(xi)
(3.13)

To determine the variance of the MLE, we take second partial derivatives of the
NLL as follows:

∂2NLL

∂α2
=

n

α2
(3.14)

With only one parameter, the H is a 1× 1 matrix.

H =
[

n
α2

]
(3.15)

H−1 =
[

α2

n

]
(3.16)

So for large n, the maximum likelihood estimator of the Pareto parameter is
normally distributed with mean = α̂ and estimated variance = α̂2/n.

�

We leave it to the reader to verify the uncertainty models for the exponential
and lognormal distributions below.

3.2.3 Limited Samples Sizes

For insurance samples the sample size is usually not asymptotic to infinity and
the normal distribution often is inappropriate. For instance, a normal distribu-
tion might imply too high a probability of negative values for parameters and
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Table 1: Examples

Model Lognormal(µ, σ) exponential(λ)

Mean eµ+σ
2/2 1/λ

MLE µ̂ =

∑
lnxi
n

, λ̂ =
n∑
xi

σ̂ =

∑
(lnxi − µ̂)2

n

H

 n

σ2
0

0
2n

σ2

 n

λ2

H−1

 σ2

n
0

0
σ2

2n

 λ2

n

functions of parameters that have to be positive. A reasonable alternative in
that case is to use the gamma distribution for each parameter, with the cor-
relation structure of the multivariate normal. This can be implemented using
the normal copula with gamma marginal distributions. As the sample sizes get
larger, the gamma approaches the normal, so using it is consistent with the
asymptotic theory.

3.2.4 The Pareto Example

Returning to our Pareto example, we recall that the log of a Pareto variate is
exponentially distributed and the sum of exponentials is gamma. From 3.13,
we recognize that the Pareto variates are in the denominator of the MLE of
α. As a result, we understand that α̂ is inverse gamma distributed with mean
and variance of estimators being α̂ and α̂2/n, respectively. This agrees what
was calculated is Section 3.2.2. The associated inverse gamma shape and scale
parameters would be n+ 2 and α(n+ 1), respectively.

It would be tempting to use this inverse gamma as the distribution of the true
parameter given the fit. However it is just the opposite - that inverse gamma
is the distribution of the estimator given the true parameter. Especially with
skewed distributions like the inverse gamma, these two distributions are not the
same.

This is a natural setup for Bayesian analysis. We know the distribution of the
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estimator given the parameters but want the distribution of the parameters
given the estimator. If the MLE were also the Bayes estimate from some prior
distribution of the parameters, then Bayes Theorem would provide the posterior
distribution of the parameters given the estimate. This happens in one setting,
and the resulting posterior distribution of the parameters turns out to be gamma
in that case.

3.2.5 Bayes Theorem

Bayes Theorem provides a formula for the posterior distribution for Y given X,
using the distributions of X, Y and X given Y . That is:

f(Y |X) = f(X|Y )
f(Y )

f(X)
(3.17)

We can think of Y as the true parameter, which is considered a random variable
since it is not known, and X as the data. Then, the prior distribution of
Y is f(Y ) and f(X|Y ) is the conditional distribution of the data given the
parameter. We want to find the conditional distribution of Y given X, and in
that context f(X) in equation 3.17 can be considered as a normalizing constant
(not a function of Y) needed to make the distribution integrate to unity. As
such, Bayes Theorem can also be expressed as:

f(Y |X) ∝ f(X|Y )f(Y ) (3.18)

Where ∝ indicates proportionality - meaning equal up to factors not containing
Y . This formulation allows the use of so-called non-informative priors - such as,
in this case f(Y ). The prior f(Y ) is thus expressed by suppressing factors not
containing Y . This allows the prior f(Y ) itself to be expressed up to a constant
factor, and in fact does not even have to integrate to a finite number as long
as f(Y |X) does. This gives the possibility of prior distributions that are very
spread out on the real line and so have little or no impact on the estimated
parameters.

Common examples are f(Y ) ∝ 1 on the whole real line, or f(Y ) ∝ 1/Y on the
positive reals. These can be expressed as limits of the same distributions on
(−M,M) or (1/M,M) as M grows without limit. Thus they are very diffuse.
Such non-informative priors can give insights into the estimation uncertainty.

For the Pareto, the prior is for the parameter α, and for a positive parameter
a useful non-informative prior is f(α) ∝ 1/α . The anti-derivative of this prior
is ln(α), which slowly diverges at both ends of the positive real line. Thus it
has infinite weight at both ends of the range, and as a result does not bias
the parameter either up or down. In comparison, for a positive parameter, the
prior f(α) ∝ 1 only diverges at the right end of the range, and tends to pull
parameters up.
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In this example f(X|α) is the distribution of the observations given α. If P is
the product of the observations, it is easy to show that

f(X|α) ∝ αn/Pα+1 (3.19)

If we substitute β = −ln1/P , we have:

f(X|α) ∝ αn exp (−βα) (3.20)

Comparing this to the gamma density shows that the distribution of the param-
eter given the data is a gamma distribution with shape parameter n and mean
= 1/average[lnxj ]. This mean is the MLE for α, which supports the use of this
particular non-informative prior. This gamma distribution is thus the posterior
distribution for the true α, with mean equal to the MLE estimate.

A similar exercise for the Poisson with mean λ and n samples which have sum
of observations S gives a gamma posterior distribution for λ with mean S/n
and shape parameter S. This again agrees with the MLE and has a gamma
distribution for the true parameter. Both examples support the idea of using
gamma distributions for the parameter uncertainty.

3.3 Uncertainty in Model Free Estimators

Development factors can be calculated within a parametric or model-free frame-
work. The factors themselves are parameters, but the distinction is whether or
not a distribution is assumed for the deviation of the losses from what would be
estimated by applying the factors, that is, for the distribution of the residuals
of the development factor approach.

One method for quantifying the estimation errors of the factors is bootstrapping.
This method resamples the residuals and uses them to create new, artificial
triangles. The factors are repeatedly estimated from these artificial triangles,
and an empirical distribution of the factors is thus built up. Bootstrapping is a
straightforward approach but has potential pitfalls that require some care.

� For example, it should be recognized that there are a different number of
observations used in the estimation of successive incremental development
factors, so each “parameter” has its own number of degrees of freedom.
The degrees of freedom is an input to the resampling process.

In nonlinear models, the degrees of freedom can be estimated by Ye’s
method of generalized degrees of freedom[3] (gdf). The gdf for an observed
point, for an estimation procedure, is the derivative of the fitted point with
respect to the observed point. If that derivative is one, the observed point
has the power to pull the model to it with an exact match. This would
show up for instance in fitting a quintic polynomial to 6 points, which
it can fit exactly, using up all the degrees of freedom. The gdf agrees
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with the usual notion of degrees of freedom in linear models, and is more
appropriate in nonlinear models.

Even when using the gdf degrees of freedom for each point’s residual, how-
ever, bootstrapping is regarded as unreliable in small samples (e.g., less
than 40 observations per fitted parameter). There are too few residuals
to get a representative resample. This leads to the method of parametric
bootstrapping, which draws from fitted distributions instead of the ob-
served residuals. This would only be applicable in the case where there
is a parametric model for the residuals. For instance, if residuals are as-
sumed to be over-dispersed Poisson, resampling can be done from this
distribution.

� The approach outlined in England and Verall (2002) uses Pearson residu-
als, rp, which are calculated using the following approach:

rp =
observation− estimated parameter

estimated parameter1/2
(3.21)

� A technical problem is that bootstrapping gives the distribution of the
estimated parameters given the true parameters, but what is needed is
the distribution of the true parameters given the estimated parameters.
This difference will be important especially with asymmetric distributions.
This is the same problem that was encountered in the Pareto example,
and which there led to replacing the inverse gamma distribution by the
gamma. This is a known problem with bootstrapping which is addressed
in textbooks on the subject, but is beyond the scope of this Study Note.

� In development triangles another pitfall of resampling is that the model
might not hold for the data.

- For instance, in slowly developing lines, the first report claim amounts
might often be near zero. The second report might then be well
modeled as a constant (for the initial valuation of claims that are
true IBNR at the first report) plus a factor times first report (for
development of the small number of reported claims). If the model
uses just a factor, there might be some very high observed factors that
would not apply in general but might when the first report is very
low. Resampling can generate obviously inappropriate development
in this case - such as a large residual combined with a large initial
value - basically because the wrong model is being used to estimate
claims at second report.

- Also if there are calendar-year effects in the data but not in the
model, bootstrapping can again be distorted because it is resampling
residuals of a model that does not apply.

If the development factors are estimated by MLE from a parametric model,
the inverse of the Hessian (information matrix) can be used to quantify the
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parameter uncertainty in the factors, just as in any other MLE case. Clark(2006)
[1] gives an example of this. Comparison studies have found the results of this
method to be comparable to bootstrapping the parameter uncertainty, and using
the information matrix in this way avoids many of the pitfalls of bootstrapping.

4 Incorporating parameter risk
in simulation models

Actuaries typically use simulation to model risk and uncertainty. Parameter es-
timation is easily incorporated in a simulation through a two-stage process: in
each scenario, we first simulate the parameters from the parameter-risk distribu-
tions, and then simulate the process from the simulated parameters. Examples
of this approach are as follows:

� In our example of uncertain trend from Section 2, we would first simulate
aggregate claims from the collective risk model, and then simulate J which
is then multiplied by the aggregate claims. This approach results in a
similar floor imposed on the simulated claims CV (K).

� In our Pareto example, we first simulate the parameter value and then
simulate claims based on that parameter.

Even if the process risk diversifies away, the parameter risk will not.

5 Conclusion

It should be noted that this approach assumes that:

Parameter risk is one of the principal elements that have to be quantified to
obtain reasonable representations of risky processes. As we demonstrated, in
a loss simulation environment, simulating from the collective risk model with-
out recognizing parameter risk can wash out most of the actual risk. This is
particularly true for high-volume lines.

In this Study Note, we have provided an overview of approaches to estimate
parameter uncertainty based on the manner in which the parameters are esti-
mated. Interested readers should consult textbooks and other papers for details
related to the theory on the parameter uncertainty models.
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