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1 Introduction

The author intends to outline and clarify a basic application of mixed distributions. The equa-
tions are based on a life insurance publication written more than fifty years ago. By a change in
perspective, the same model can be applied to workers compensation insurance for the fitting of
probability density curves to a mixture of injury types.1

The original life insurance research paper did not consider workers compensation as an appli-
cation; we can in the following way. Our example will be cash flows and their stopping times for
different workers compensation and employers liability injury types. In this model, the cash flow
stops or fails when the claim is closed. The WC and EL application is not necessarily based on
mortality tables. The claim can close when the employee is healed and returns to work.

It should be noted that although mixed distributions are in use countrywide for workers com-
pensation business, the application described in this paper may or may not be the same as the
countrywide model.

The basic equations for the life insurance model are taken from statistical methods in the testing
of failure rates. The failures can be due to a variety of causes. As one example, think of a group of
cohorts in health insurance, each group of claimants having a certain illness. As another example,
think of a population of automobiles, each failing due to a mechanical failure, electrical failure or
normal deterioration.

First, we address basic notation.

Consider a mixture of failure sub populations. Denote the number of sub populations by the
variable s. There will be s=5 different types of claims in our model and Employers Liability claims
also, in a separate 6th sub population. Let ri be the number of units belonging to the ith sub
population. For example, the first sub population contains r1 units, the second sub population
contains r2 units, the ith sub population contains ri units, and the last sub population contains rs
units. Given a random sample of n units, the failure of r1 units is due to cause (1), r2 units fail
due to cause (2), and so on up to rs.

1”Estimation of Parameters of Mixed Exponentially Distributed Failure Time Distributions from Censored Life
Test Data” by William Mendenhall and R.J. Hader Source: Biometrika Vol. 45 No. 3/4 (Dec., 1958) pp. 504-520
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A random sample of n units is tested up to time t = T . Then Σsi=1 ri = r is the total number of
units failing before time T and (n− r) units which can’t be identified as to sub population survive
the test. The data is similar to censored life data.

In visual terms, think of the size of loss distribution as a matrix. Column (1) shows the fatalities,
column (2) shows permanent total claims, column (3) all permanent partial, column (4) temporary
total, column (5) medical only claims; here an additional column (6) will be included for Employers
Liability. The rows of the matrix are the loss limits. The loss limits can start as low as 5, 000 and
end as high as 10, 000, 000. Note that the subscript i refers to the columns, the sub populations.

The matrix is populated with the number of claims by injury type whose ultimate payout is
the size of the loss limit. The cash flow stops or fails when the claim is closed and the loss has
reached a limit. We make one assumption to adapt property and casualty insurance to this model,
that the claim incurred amounts increase with time. We’ll ignore subrogation or other types of
reimbursement. In other words, the claims are at their ultimate value. Recall from page 2 that the
survival function G(x) accounts for IBNR claims.

Back to notation.

Denote the failure times for the ith sub population by tij . Then the ri claims which close in
sub population (1) can be ordered as t11, t12,. . . , t1j ,. . . , t1r1 . In other words, there are r1 claims
in sub population (1) and they close in a certain order in time. The r2 claims in the second sub
population can be ordered as t21, t22,. . . , t2j ,. . . , t2r2 . The ith sub population contains ri claims
ordered as ti1, ti2,. . . , tij ,. . . , tiri .

Let the sub populations be mixed in proportions p1, p2,. . . , ps. The pi are constants.

Note that the number of different ways the claims can be ordered is:
n!

r1!r2! . . . ri! . . . rs!(n− r)!

To simplify the computation, define a new variable xij = tij/T . Recall that T is the total
allotted time for the experiment and that the tij are times to failure for each individual cash flow.
Necessarily, each tij is less than the total time T . Then each xij is less than unity.

Now consider an arbitrary cumulative distribution function Fi(x), the associated density func-
tion fi(x), and the survival function Gi(x) = 1− Fi(x). This general CDF can be either the expo-
nential, the Weibull or the log normal distributions. Let F (x) = Σsi=1piFi(x) and G(x) = 1−F (x).
In the model below, the survival function G(x) will account for the IBNR claims.

It should be noted that we are accustomed to thinking of F (1) = 1 and G(1) = 0 for F (x) and
G(x) valued at x = 1. Here it isn’t true because the xij have a maximum value of unity

As an example, consider the exponential distribution: Fi(x) = 1− exp[−x/βi]

G(1) = 1− Σsi=1piFi(1) = 1− Σsi=1pi + Σsi=1 exp[(−1/βi))] = Σsi=1 exp[(−1/βi)]

since Σsi=1pi = 1. Thus G(1) is not equal to zero.
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2 The Basic Theory

We consider an arbitrary cumulative distribution function in this section. The calculation of
the likelihood function will be clearer without specific detail. Some of the terms in the numerator
and denominator of the likelihood function will cancel. The cancellations will be seen more clearly
if detail is left out.

In Sections 3, 4, and 5, we consider examples of the mixed exponential, the mixed Weibull, and
the mixed log normal distributions. The basic theory holds for an arbitrary CDF.

We need:

1. The probability of the ordered sequences of failure times,

2. The joint probability density functions,

3. The conditional probability of the ordered observations,

4. The likelihood function, and

5. The maximum likelihood estimates of the parameters.

The formula for the probability of the ordered sequences includes the number of possible ordered
sequences, the probability of failure for claims in each of the sub populations, and the survival
probability at time T for claims still open at the end of the experiment. The probability is evaluated
at time x = t/T for t = T . The value of x is then x = 1.

Given a random sample of n units comprised of i sub populations and total number of claims
r = r1 + r2 + . . .+ ri + . . .+ rs, the probability that r1 units will fail due to cause (1), that r2 units
will fail due to cause (2), that ri units will fail due to cause (i), and that (n− r) units will survive
the test is given by a multinomial distribution.

Denote the above probability by P (r1, r2, . . . , rs|n) then for x = 1 at time T :

P (r1, r2, . . . , rs|n) =
n!

r1!r2! . . . rs!(n− r)!

s∏
i=1

[piFi(1)]ri [G(1)](n−r) (1)

At this point, the reader may want to review the joint density functions of order statistics.
Good references may be found in the CAS Exam 1 syllabus. Recall that the joint probability
density function is equal to the product of the density functions if and only if the random variables
are independent.

Now we select the ith sub population conditional on the event that there are ri claimants in
that sub population in order to derive a likelihood equation.

Denote the conditional probability distribution by P (xi1, xi2, ..., xiri |ri) and the conditional
probability density function by p(xi1, xi2, ..., xiri |ri).
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For the ith sub population the joint density function for the ordered statistics conditional on
the probability of ri claimants in the ith sub population at the end of the experiment is:

p(xi1, xi2, ..., xiri |ri) = ri!

ri∏
j=1

fi(xij)/[Fi(1)]ri

The joint conditional density for all of the s sub populations is the product of the s sub populations:

s∏
i=1

p(xi1, xi2, ..., xiri |ri) =
s∏
i=1

ri!

ri∏
j=1

fi(xij)/[Fi(1)]ri (2)

The likelihood function is the product of equations (1) and (2) above:

p(r1, r2, . . . , rs|n)
∏s
i=1 p(xi1, xi2, ..., xiri |ri) =

n!

r1!r2! . . . rs!(n− r)!

s∏
i=1

[piF1(1)]ri [[G(1)](n−r)
s∏
i=1

ri!

ri∏
j=1

fi(xij)/[Fi(1)]ri

Notice that the terms [Fi(1)]ri in both numerator and denominator cancel. The same is true for
the product of the ri!.

We are left with the likelihood and the log likelihood functions:

L =
n!

(n− r)!

s∏
i=1

prii

ri∏
j=1

fi(xij)[G(1)](n−r) (3)

lnL = ln
n!

(n− r)!
+ Σsi=1p

ri
i + Σrij=1 ln fi(xij) + (n− r) ln[G(1)] (4)

The pi will be redefined here to clarify their relationship in the curve fitting process. It’s
important to note that there is no effect on the model or the calculations. As we will see in the
maximum likelihood examples below, redefining the pi clarifies that the most weight in the tail is
given to the serious injury types. For instance, at some point in the actuarial data, the proportion
p2 of permanent total claims dominates the other injury type weights. Stay tuned...

Thus, we define a new functional form for the proportions pi. Define pi(x) = piGi(x)/G(x) for
G(x) the survival function as defined in the Introduction above. The proportions of the injury type
curves now depend on the survival function. Define ki = pi(1) = piGi(1)/G(1).

At this point, maximum likelihood estimates will be computed for specific examples. The MLEs
depend on the number of parameters in the distribution and we continue with specific forms of the
equations.
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3 The Mixed Exponential Distribution

Take the case of the mixed exponential distribution with s = 2 sub populations.

The number of distinct sequences of claims is
n!

r1!r2!(n− r)!

The density functions are f1(x1j) = (1/β1)exp[−(x1j/β1)] and f2(x2j) = (1/β2)exp[−(x2j/β2)]

The CDFs are F1(x1j) = 1− exp[−(x1j/β1)] and F2(x2j) = 1− exp[−(x2j/β2)]

The survival functions are G1(x1j) = exp[−(x1j/β1)] and G2(x2j) = exp[−(x2j/β2)]

Given a random sample of n units comprised of two sub populations and total number of claims
r = r1 + r2, the probability that r1 units will fail due to cause (1), that r2 units will fail due to
cause (2), and that (n− r) units will survive the test is given by a multinomial distribution.

Denote the above conditional probability by P (r1, r2|n) then for x = 1 at time T :

P (r1, r2|n) =
n!

r1!r2!(n− r)!
[p1F1(1)]r1 [p2F2(1)]r2 [G(1)](n−r) (5)

The joint distribution in this example before conditioning is given by the product of the f1(x1j)
and the f2(x2j) for the two sub populations i = 1, 2 and for all j.

For the 1st and 2nd sub populations the respective joint conditional density functions are:

p(x11, x12, ..., x1r1 |r1) = r1!

r1∏
j=1

f1(x1j)/[F1(1)]r1 (6)

p(x21, x22, ..., x2r2 |r2) = r2!

r2∏
j=1

f2(x2j)/[F2(1)]r2 (7)

Taking the product of the above three equations (5), (6) and (7) yields the likelihood function and
the log likelihood function:

L = p(r1, r2|n)
2∏
i=1

p(xi1, xi2, ..., xiri |ri) =
n!

(n− r)!

s∏
i=1

prii

r1∏
j=1

f1(x1j)

r2∏
j=1

f2(x2j)[G(1)](n−r) (8)

lnL = ln
n!

(n− r)!
+ Σsi=1ri ln pi + Σr1j=1 ln f1(x1j) + Σr2j=1 ln f2(x2j) + (n− r) ln[G(1)] (9)
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In order to derive maximum likelihood parameters, start by taking the partial derivative of the
log likelihood function with respect to the first parameter.

∂ lnL

∂β1
=

∂ ln
n!

(n− r)!
∂β1

+ Σsi=1

∂ri ln pi
∂β1

+ Σr1j=1

∂ ln f1(x1j)

∂β1
+ Σr1j=1

∂ ln f2(x2j)

∂β1
+
∂(n− r) ln[G(1)]

∂β1
(10)

Note that the first term in equation (9), the factorial, is a constant. The derivative of a constant is
zero and the first term in equation (10) will disappear. The same is true for the second term since
the pi are constants. The derivative of the function f2(x2j) with respect to β1 will also disappear
since it is a function of β2 but not β1.

The following terms in the derivative of the log likelihood function with respect to β1 remain:

∂ lnL

∂β1
= Σr1j=1

∂ ln f1(x1j)

∂β1
+ (n− r)∂ ln[G(1)]

∂β1
(11)

Consider the first term in equation (11):

f1(x1j) =
1

β1
exp[−(

xij
β1

)]

ln f1(x1j) = − lnβ1 −
x1j
β1

∂ ln f1(x1j)

∂β1
= − 1

β1
+
x1j
β2
1

Σr1j=1

∂ ln f1(x1j)

∂β1
= Σr1j=1 − (

1

β1
) + Σr1j=1(

x1j
β2
1

) = − r1
β1

+ (− r1
β2
1

)Σr1j=1(
x1j
r1

)

Σr1j=1

∂ ln f1(x1j)

∂β1
= − r1

β1
+ (

r1
β2
1

)x̄1 (12)

where x̄1 is the average of the r1 values x1j .

Consider the second term in the derivative of the log likelihood equation:

(n− r)∂ ln[G(1)]

∂β1
= (n− r)∂ ln[1− Σ2

i=1piFi(1)]

∂β1
=

(n− r)(p1/β2
1) exp[− 1

β1
]

(p1 exp[− 1
β1

] + p2 exp[− 1
β2

])
(13)

Substituting these results, equations (12) and (13) back into equation (11), we have so far:
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∂ lnL
∂β1

= − r1
β1

+ ( r1
β2
1
)x̄1 +

(n−r)(p1/β2
1) exp[− 1

β1
]

(p1 exp[− 1
β1

]+p2 exp[− 1
β2

])

To see the results more clearly, define the variable:

k1 =
(p1) exp[− 1

β1
]

(p1 exp[− 1
β1

] + p2 exp[− 1
β2

])
(14)

Then we have the result:

∂ lnL

∂β1
=
k(n− r)
β2
1

− r1
β1

+
r1x̄1
β2
1

(15)

We can compute the derivative with respect to β2 in a similar way:

∂ lnL

∂β2
= − r2

β2
+ (

r2
β2
2

)x̄2 +
(n− r)(p2/β2

2) exp[− 1
β2

]

(p1 exp[− 1
β1

] + p2 exp[− 1
β2

])

And since

k2 = (1− k1) = 1− p1 exp[−1/β1]

(p1 exp[−1/β1] + p2 exp[−1/β2])
=

p2 exp[−1/β2]

(p1 exp[−1/β1] + p2 exp[−1/β2])
(16)

we can then write:

∂ lnL

∂β2
=

(1− k)(n− r)
β2
2

− r2
β2

+
r2x̄2
β2
2

(17)

There remains one more derivative to take before setting the above derivatives in equations (15)
and (17) equal to zero and solving for the optimal parameters. Note that there is a constraint in
the system that the proportional amounts pi add to unity when summed.

Recall from the introduction that the pi will be redefined:

pi(x) = piGi(x)/G(x), that pi(1) = piGi(1)/G(1), and that 1 = Σsi=1pi.

Recall also that for the exponential distribution: Fi(x) = 1− exp[−x/βi]

Then, for the case of two sub populations where s = 2:

G(1) = 1−Σ2
i=1piFi(1) = 1−Σ2

i=1pi[1−exp[−x/βi]] = 1−Σ2
i=1pi+Σ2

i=1pi exp[− 1

βi
] = Σ2

i=1pi exp[− 1

βi
]

(18)
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ki = pi(1) =
piGi(1)

G(1)
=
pi[1− Fi(1)]

G(1)
=

pi exp−[ 1
βi

]

Σ2
i=1pi exp[− 1

βi
]

(19)

Before calculating the maximum likelihood equation in its entirety, firstly consider the term in the
log likelihood equation (9) that involves G(1). Utilizing equations (18) and (19):

∂ lnG(1)

∂pi
=

1

1− F (1)

∂ [1− p1F1(1)− p2F2(1)]

∂p1
=

1

1− F (1)

∂ [1− p1F1(1)− (1− p1)F2(1)]

∂p1

∂ lnG(1)

∂p1
=

[−F1(1) + F2(1)]

1− F (1)
=

exp(− 1
β1

)− exp(− 1
β2

)

p1 exp(− 1
β1

) + p2 exp(− 1
β2

)
=
k1
p1
− k2
p2

(20)

Now we’ll compute the entire equation for ∂ lnL
∂p1

to reflect the constraint in the system of two sub

populations.

∂ lnL

∂p1
= (n− r)∂ lnG(1)

∂p1
+
∂r1 ln p1
∂p1

+
∂r2 ln(1− p1)

∂p1
= (n− r)[k1

p1
− k2
p2

] +
r1
p1
− r2
p2

(21)

Gathering the terms together from equations (15), (17), and (21), we can state that the system of
maximum likelihood equations for two sub populations is the following. Each of these equations
will be set to zero to derive the optimal set of parameters with a constraint:

∂ lnL
∂β1

= k1(n−r)
β2
1
− r1

β1
+ r1x̄1

β2
1

= 0

∂ lnL
∂β2

= (1−k1)(n−r)
β2
2

− r2
β2

+ r2x̄2
β2
2

= 0

∂ lnL
∂p1

= (n− r)[k1
p1
− k2

p2
] + r1

p1
− r2

p2
= 0

At this point, let’s review which of the quantities are known and which are unknown.

The quantity n is the total number of cohorts in the population. The quantity r is the total
number of known claims at the end of the experiment t = T . The quantities r1 and r2 are the
number of known claims in the first and second sub populations respectively. The quantities x̄i are
the average values of the claims in each sub population. These are the known quantities.
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The unknown quantities are the optimal βi and the optimal pi. At this point, we have three
equations in three unknowns.

For the case of an arbitrary number of sub populations below, the seriously interested reader
can work out similar equations, following the same steps and techniques as above.

Here we state the equations for an arbitrary number of sub populations:

L =
n!

(n− r)!
[G(1)](n−r)

s∏
i=1

prii

s∏
i=1

ri∏
j=1

fi(xij) (22)

lnL = ln
n!

(n− r)!
+ (n− r) ln[G(1)] + Σsi=1ri ln pi + Σsi=1Σrij=1 ln fi(xij) (23)

∂ lnL

∂βi
= (n− r)∂ ln[G(1)]

∂βi
+ Σrij=1

∂ ln fi(xij)

∂βi
=
ki(n− r)

β2
i

− ri
βi

+
rix̄i
β2
i

= 0 (24)

∂ lnL

∂pi
= (n− r)∂ lnG(1)

∂pi
+
∂ri ln pi
∂pi

+
∂rs ln(1− Σs−1i=1 pi)

∂pi
= (n− r)[ki

pi
− ks
ps

] +
ri
pi
− rs
ps

= 0 (25)

Note that the equation for ∂ lnL
∂pi

holds for i = 1, 2, . . . , (s− 1). The partial derivative with respect

to ps has been eliminated by the constraint Σsi=1pi = 1.

4 The Mixed Weibull Distribution

The probability density function, cumulative distribution function, and survival function for the
Weibull distribution differs slightly in the exponential. Each of the functions is shown below.

The Weibull density functions are fi(xij) = (ci/βi)(xij/βi)
(ci−1)exp[−(x1j/β1)ci ]

The Weibull CDFs are Fi(xij) = 1− exp[−(xij/βi)
ci ]

The Weibull survival functions are Gi(xij) = exp[−(
xij

βi
)ci ] and G(1) = Σsi=1pi exp[−(1/βi)

ci ]

The likelihood and log likelihood functions are the same as before but the exact form of the
density and survival functions will differ:

L = p(r1, r2, . . . , ri|n)
∏s
i=1 p(xi1, xi2, ..., xiri |ri) =

n!

(n− r)!
∏s
i=1 p

ri
i

∏s
i=1

∏ri
j=1 fi(xij)[G(1)](n−r)

lnL = ln
n!

(n− r)!
+ Σs

i=1ri ln pi + Σs
i=1Σri

j=1 ln fi(xij) + (n− r) ln[G(1)]
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The derivatives with respect to βi and pi for both the Weibull and the exponential are similar
and will seem familiar to the reader. However, as we will see, the derivative with respect to ci is
very different for the Weibull than for the exponential. In practical terms, the implementation will
be more difficult.

Firstly, we’ll take the derivative with respect to βi:

∂ lnL

∂βi
= (n− r)∂ ln[G(1)]

∂βi
+ Σrij=1

∂ ln fi(xij)

∂βi

=
(n− r)

1− F (1)

∂Σsi=1pi exp[−( 1
βi

)ci ]

∂βi
+ Σrij=1

∂

∂βi
[ln ci − lnβi + (ci − 1)(lnxij − lnβi)− (

xij
βi

)ci ]

= (n− r)
pi(

ci
βi

)( 1
βi

)ci exp[−( 1
βi

)ci ]

Σsi=1pi exp[−( 1
βi

ci)]
+ Σrij=1[− 1

βi
− (

ci − 1

βi
) + (

ci
βi

)(
xij
βi

)ci ]

As before, define

ki =
pi exp[−( 1

βi
)ci ]

Σsi=1pi exp[−( 1
βi

ci )]

Then:

∂ lnL

∂βi
=
ciki(n− r)
βci+1
i

− ciri
βi

+ (
ci

βci+1
i

)Σrij=1x
ci
ij (26)

Secondly, we’ll take the derivative with respect to ci:

∂ lnL

∂ci
= (n− r)∂ ln[G(1)]

∂ci
+ Σrij=1

∂ ln fi(xij)

∂ci

=
(n− r)

1− F (1)

∂ ln Σsi=1pi exp[−( 1
βi

)ci ]

∂ci
+ Σrij=1

∂

∂ci
[ln ci − lnβi + (ci − 1)(lnxij − lnβi)− (

xij
βi

)ci ]

= (n− r)( 1

βi
)ci(lnβi)

pi exp[−( 1
βi

)ci ]

Σsi=1pi exp[−( 1
βi

ci)]
+ Σrij=1[

1

ci
+ (lnxij − lnβi)− (

xij
βi

)ci ln(
xij
βi

)]

= (n− r)(ki)(
1

βi
)ci(lnβi) +

ri
ci
− ri lnβi + Σrij=1[lnxij − (

xij
βi

)ci ln(
xij
βi

)] (27)

10

A Note On Mixed Distributions

Casualty Actuarial Society E-Forum, Fall 2012



The derivative of the Weibull with respect to pi is similar to the exponential since the density
function is not a function of pi.

∂ lnL

∂pi
= (n− r)∂ lnG(1)

∂pi
+
∂ri ln pi
∂pi

+
∂rs ln(1− Σs−1i=1 pi)

∂pi

= (n− r)[ki
pi
− ks
ps

] +
ri
pi
− rs
ps

(28)

Here we summarize the maximum likelihood equations for the mixed Weibull distribution, referring
back to equations (26), (27), and (28):

∂ lnL

∂βi
=
ciki(n− r)
piβ

ci+1
i

− ciri
βi

+ (
ci

βci+1
i

)Σrij=1x
ci
ij

∂ lnL

∂ci
= (n− r)(ki)(

1

βi
)ci(lnβi) +

ri
ci
− ri lnβi + Σrij=1[lnxij + (

xij
βi

)ci ln(
xij
βi

)]

∂ lnL

∂pi
= (n− r)[ki

pi
− ks
ps

] +
ri
pi
− rs
ps

Again, note that the equation for ∂ lnL
∂pi

holds for i = 1, 2, . . . , (s− 1).

5 The Mixed Log Normal Distribution

Each of the probability density functions, cumulative distribution functions, and survival func-
tions for both the normal and the log normal distributions will be shown below for easy reference.

The normal density function is given in the standard notation:

φ(t) =
1√
2π

exp[−t2/2]

By a change of variable, replacing t with w = (t−µ)/σ and replacing dt with dw =
1

σ
dt, the normal

density function is:

φ(
t− µ
σ

) =
1√
2π

exp[− (t− µ)2

2σ2
](

1

dt
)d(

t− µ
σ

) =
1

σ
φ(t)
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By a different change of variable, replacing t with w = (ln t− µ)/σ and dt with dw =
1

tσ
dt, the log

normal density function is:

φ(
ln t− µ
σ

) =
1√
2π

exp[− (ln t− µ)2

2σ2
](

1

tσdt
)d(

(ln t− µ)

σ
) =

1

tσ
φ(t) (29)

Now consider the normal distribution function, which is the integral of the density function:

Φ(x) =

∫ x

−∞
φ(t)dt =

1√
2π

∫ x

−∞
exp[−t2/2] dt

Continuing in our notation with the change of variables above:

Φi(
xij − µi
σi

) =

∫ (xij−µi)/σi

−∞
φ(t)dt =

1

σi

∫ wij

−∞
φ(t)dt

Φi(
lnxij − µi

σi
) =

∫ (ln xij−µi)/σi

−∞
φ(t)dt =

1

σi

∫ wij

−∞

1

t
φ(t)dt (30)

Notice in the first equality of each of the two equations immediately above, that the integrand is
the same as that for the normal distribution. What has changed is the upper limit of integration.
In practical terms, to calculate the value of the log normal distribution function for a given value
of xij , compute the value of wij = (lnxij − µi)/σi and then look up wij in a table for the normal
distribution. No additional tables are necessary for the log normal distribution function.

The survival function for the normal distribution is known as the Q-function in engineering
textbooks. The survival function for the log normal distribution is expressed similarly:

Q(x) =

∫ ∞
x

φ(t)dt =
1√
2π

∫ ∞
x

exp[−t2/2] dt = 1− Φ(x)

Q(
xij − µi
σi

) =

∫ ∞
(xij−µi)/σi

φ(t)dt =
1√
2π

∫ ∞
(xij−µi)/σi

exp[−t2/2] dt = 1− Φi(
xij − µi
σi

)

Q(
lnxij − µi

σi
) =

∫ ∞
(ln xij−µi)/σi

φ(t)dt =
1√
2π

∫ ∞
(ln xij−µi)/σi

exp[−t2/2] dt = 1−Φi(
lnxij − µi

σi
) (31)

We’ll continue the derivation focused only on the log normal distribution. The likelihood and log
likelihood functions are the same as before but the exact form of the density and survival functions
will differ for the log normal.
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Recall that equations (3) and (4) give us the likelihood and log likelihood functions for the general
mixed distribution. In the standard notation for the log normal density and distribution functions,
the analogous equations are now:

L =
n!

(n− r)!

s∏
i=1

prii

s∏
i=1

ri∏
j=1

φ(
lnxij − µi

σi
)[Q(
−µi
σi

)](n−r) (32)

lnL = ln
n!

(n− r)!
+ Σsi=1ri ln pi + Σsi=1Σrij=1 lnφ(

lnxij − µi
σi

) + (n− r) ln[Q(
−µi
σi

)] (33)

Where, as before: Φ(x) = Σsi=1piΦi(x) and Q(x) = 1− Φ(x).

The partial derivatives are taken with respect to the variables µi and σi. As before, the deriva-
tives of the first two terms in lnL vanish when the partials are taken. The first two terms in lnL
contain factorials and the variables pi but not the variables µi and σi.

∂ lnL

∂µi
= Σrij=1

∂ lnφi(
lnxij − µi

σi
)

∂µi
+ (n− r)

∂ ln[Q(
−µi
σi

)]

∂µi
(34)

Consider the partial with respect to µi of the density function in the first summation. By the chain
rule:

∂ lnφ(
lnxij − µi

σi
)

∂µi
=

1

φ(
lnxij − µi

σi
)

∂φ(
lnxij − µi

σi
)

∂µi
=

1

φ(
lnxij − µi

σi
)

[
1√
2π

][
2(lnxij − µi)

2σ2
i

] exp[
−(lnxij − µi)2

2σ2
i

]

∂ lnφ(
lnxij − µi

σi
)

∂µi
=

(lnxij − µi)
σ2
i

(35)

since the term φ(
(lnxij − µi)

σi
) cancels from both the numerator and the denominator.

Similarly, for the partial with respect to σi:

∂ lnφ(
lnxij − µi

σi
)

∂σi
=

1

φ(
lnxij − µi

σi
)

∂φ(
lnxij − µi

σi
)

∂σi
=

1

φ(
lnxij − µi

σi
)

[
1√
2π

][
(lnxij − µi)2

σ3
i

] exp[
−(lnxij − µi)2

2σ2
i

]

13

A Note On Mixed Distributions

Casualty Actuarial Society E-Forum, Fall 2012



∂ lnφ(
lnxij − µi

σi
)

∂σi
=

(lnxij − µi)2

σ3
i

(36)

Before proceeding, recall the operation of differentiation under the integral sign. Don’t feel bad
about looking it up in Wikipedia if you don’t remember the formula.

For the function F (x), with the proper conditions of continuity and differentiability allowing us to
interchange a derivative and an integral, we have from the fundamental theorem of calculus:

F (x) =

b(x)∫
a(x)

f(x, t)dt

∂F (x)

∂dx
= f(x, b(x))

∂b(x)

∂x
− f(x, a(x))

∂a(x)

∂x
+

∫ b(x)

a(x)

∂f(x, t)

∂x
dt (37)

Now consider the last term in equation (34), the term with the survival function. We’ll see
that keeping the integrand as a function of only the variable t is a definite advantage here. If the
integrand is not a function of µi or σi then differentiation under the integral sign will be particularly
easy since the partial with respect to the integrand will vanish.

Q(
−µi
σi

) = 1− Φ(
−µi
σi

) = 1− Σsi=1pi

∫ (−µi/σi)

−∞
φ(t)dt

For clarity, let’s first compute:

∂Q(
−µi
σi

)

∂µi
= −Σsi=1pi

∂

∂µi

∫ (−µi/σi)

−∞
φ(t)dt (38)

Then, insert (38) into:

∂ lnQ(
−µi
σi

)

∂µi
=

1

Q(
−µi
σi

)

∂Q(
−µi
σi

)

∂µi
= Σsi=1

−pi
Q(
−µi
σi

)

∂

∂µi

∫ (−µi/σi)

−∞
φ(t)dt

The integrand and the lower limit of integration are not functions of µi. By equation (37), the
differentiation reduces to that of the upper limit of integration:
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∂ lnQ(
−µi
σi

)

∂µi
= Σsi=1

−pi
Q(
−µi
σi

)

∂(−µi/σi)
∂µi

= Σsi=1

(pi/σi)

Q(
−µi
σi

)
(39)

Similarly, taking the partial with respect to σi, yields:

∂ lnQ(
−µi
σi

)

∂σi
= Σsi=1

−pi
Q(
−µi
σi

)

∂(−µi/σi)
∂σi

= Σsi=1

(−pi/σ2
i )

Q(
−µi
σi

)
(40)

Gathering the terms in equations (35) and (39), we have from equation (34), the derivative of
the log likelihood function with respect to µi:

∂ lnL

∂µi
= Σrij=1

∂ lnφi(
lnxij − µi

σi
)

∂µi
+ (n− r)

∂ ln[Q(
−µi
σi

)]

∂µi

= Σrij=1

1

σi
(
lnxij − µi

σi
) + (n− r)Σsi=1

(pi/qi)

Q(
−µi
σi

)
(41)

Gathering the terms in equations (36) and (40), we have the derivative of the log likelihood function
with respect to σi:

∂ lnL

∂σi
= Σrij=1

∂ lnφi(
lnxij − µi

σi
)

∂σi
+ (n− r)

∂ ln[Q(
−µi
σi

)]

∂σi

= Σrij=1

1

σi
(
lnxij − µi

σi
)2 + (n− r)Σsi=1

(−pi/σ2
i )

Q(
−µi
σi

)
(42)

The derivative of the Log Normal with respect to pi is similar to the exponential and Weibull
functions since the density function is not a function of pi.

∂ lnL

∂pi
= (n− r)

∂ lnQ(
−µi
σi

)

∂pi
+
∂ri ln pi
∂pi

+
∂rs ln(1− Σs−1i=1 pi)

∂pi
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= −(n− r)Σsi=1

1

Q(
−µi
σi

)
[
∂

∂pi
pi

∫ (−µi/σi)

−∞
φi(t)dt] +

ri
pi
− rs
ps

= −(n− r)Σsi=1

1

Q(
−µi
σi

)
[

∫ (−µi/σi)

−∞
φi(t)dt] +

ri
pi
− rs
ps

= −(n− r)[Σsi=1

Φi(
−µi
σi

)

Q(
−µi
σi

)
] +

ri
pi
− rs
ps

= −(n− r)[Σsi=1

Φi(
−µi
σi

)

1− Σsi=1piΦi(
−µi
σi

)
] +

ri
pi
− rs
ps

(43)

The maximum likelihood equations (41), (42), and (43) for the mixed log normal distribution
are a challenge. The integral in the formula of the distribution has no closed form solution. This
integral appears in both the numerator and denominator of the summation in equation (43). The
values Φ(x) can be approximated very accurately for asymptotic (large) values of x. However,
equation (43) could involve several approximations at each step of the MLE iteration. Thus, the
algorithm could be lengthy. Professional optimization software is highly advisable.

6 Summary

A model of mixed distributions pertinent to workers compensation insurance is adapted from
life insurance. Maximum likelihood equations for the mixed exponential, mixed Weibull, and mixed
log normal distributions are derived for the fitting of a mixture of probability density curves by
injury type. Implementation of the model requires optimization software.
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