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GAP Insurance—Techniques and Challenges 

Lee Bowron, ACAS, MAAA, and John Kerper, FSA, MAAA 

______________________________________________________________________________ 

Abstract: GAP (Guaranteed Asset Protection) insurance is an insurance product that insures the difference (if 
any) between the loan balance and the actual value of the underlying asset.  Typically, this insurance is sold in 
conjunction with a traditional insurance product and guarantees that an insurable event will be sufficient to 
satisfy any lien upon the asset.  While this type of insurance is used to cover a variety of exposures, the largest 
asset class is private passenger vehicles.  

______________________________________________________________________________ 

1. WHAT IS GAP INSURANCE? 

The origins of GAP insurance are a little murky—the product has existed for about 25 years and 

originally may have been underwritten by car dealers as a sort of “quasi-insurance” product. 

GAP is similar to credit life and credit A&H because it pays the vehicle loan in the event of 

certain contingencies, namely the car being deemed a “total loss” by the physical damage insurer.  

GAP will cover the shortfall between the loan payoff and the insurance recovery (typically book 

value less the deductible.)   

While the term for gap coverage matches the term of the loan, the possibility of a claim is zero 

once the book value (less the deductible) of the vehicle exceeds the loan payoff.  Also, there can be 

only one claim on a GAP policy—once a claim has been made the policy is expired and any 

remaining unearned premium is fully earned. 

The regulatory framework for GAP differs from state to state.  In some states it is not technically 

considered insurance.  Other states may require that an insurance policy ultimately back the liabilities 

of a program (contractual liability), while others may consider the full premium insurance.  

Regardless of the regulatory framework, the techniques developed in this paper would be applicable 

since the consideration for pricing applications should be the ultimate projection of the underlying 

losses. 

GAP products are structurally different from most other property/casualty products and an 

understanding of the structure and terminology may be helpful for the actuary who is unfamiliar 

with the business. 

GAP is generally sold for a single payment for the entire term of the underlying loan and the sale 

is made at the time that the covered vehicle is purchased.  A GAP policy can be cancelled and a 

refund processed.  This will happen if the vehicle is sold or the policyholder requests a cancellation.  
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The refund method varies by state, with most using a Rule of 78s amortization due to the declining 

value of the coverage, but some, notably Texas, requiring pro rata for the return of premium.  In 

addition, some lienholders may specifically require pro rata refunds in order to finance the GAP 

policy with the auto loan. 

In addition to GAP, the consumer may encounter several other ancillary products during the 

inevitable visit to the dealer’s finance and insurance department.  These products include pre-paid 

maintenance, a vehicle service contract, VIN etch, etc.  All of these products are almost always 

financed with the vehicle. 

In states where GAP is not regulated as an insurance product, the price charged by the dealer is 

made up of three components: (1) GAP reserve, (2) administrative fees, and (3) dealer markup.  It’s 

also important to note that component (1) is the only portion that is paid to the insurer.  

Components (2) and (3) are not paid to the insurer, nor are they included in premium for purposes 

of calculating premium tax or risk-based capital.  The portion of the price remitted to the insurance 

company may be the entire GAP reserve (1) or the GAP reserve may be placed in trust and a 

contractual liability policy can be issued to guarantee the performance of the trust. 

An administrator typically will perform all the processing and servicing of the GAP contract.  An 

agent will represent the administrator to the dealer clients.  The GAP reserve may be remitted to an 

insurance company, or it may not be considered insurance in a regulatory sense.  For the actuary, 

there are two items of note: 

The terminology of reserve is misleading because “reserve” in GAP typically refers to all funds 

used to pay claims, not just the outstanding portion, and is more analogous to written premium.  For 

our purposes, we will use the term premium.   

Since the majority of expenses are paid prior to the remittance of funds to the insurance 

company, the expected loss ratio on net of expense premium on a book is higher than other 

property/casualty products.  Often, a book will be priced at an expected loss ratio of 80 to 90 

percent. 

One should also note that GAP insurance represents a “moral hazard” since, after a loss, the 

insured will be in a better financial position than before since the negative equity on the vehicle has 

been removed.  Of course, this is not different than replacement cost on homeowners insurance.  

Based on reviews of proprietary data, there is evidence of this hazard by the noticeable rise in 

frequency of GAP claims during the recession of 2008/2009. 
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2. CONSIDERATIONS WHEN PRICING GAP 

GAP claims are dependent on two criteria:  the occurrence of a total loss by the contract holder 

and the loan balance at the time of loss exceeding the book value of the vehicle. 

Since the underlying product is private passenger insurance, we would expect that the same rating 

variables that are prevalent in private passenger pricing would also be predictive for the GAP 

pricing. 

However, one must remember that a claim is only generated by a total loss, which would indicate 

that the frequency of more expensive or higher symbol vehicles might be lower than budget-priced 

vehicles, since they may be less likely to be declared a total loss by the insurance company.  Even a 

state insurance department may not fully understand this difference.  Texas, for example, mandates 

GAP rates by the amount of the loan, which has little correlation with loss. 

GAP losses on vehicles will be driven more by the depreciation of the vehicle, which historically 

has been faster for American-made sedans and slower for some of the European and Japanese 

makes.  Depreciation rates can fluctuate and are often a function of consumer preference.  So the 

current depreciation rate for a vehicle may be subject to change in the future. 

The severity of the loss will, of course, depend on the loan balance and the book value at the 

time of loss.  Since the loan will amortize more slowly on a longer-term loan (and provide a greater 

length of coverage), the length of the loan is a factor in the severity. It also may affect the frequency 

because, once the value of the vehicle exceeds the loan, the claim would not be compensated. 

Another major factor is the book value of the vehicle at the time of the purchase.  While one 

might assume that the price of the vehicle would be equal to its underlying value, this is not 

necessarily true. 

In many sales, the purchasers will owe more on their existing vehicles than the trade-in values.  In 

the industry, this is known as “negative equity” or being “upside down.”  These customers are 

typically offered more for their trade than the vehicle is worth and the difference is reflected in the 

retail price.   This inflated purchase price creates an immediate GAP exposure at the inception of the 

policy. 

For example, suppose that a customer’s current vehicle is worth $8,000 but the customer owes 

$12,000 on the vehicle.  The new vehicle can be purchased for $25,000, which is the book value of 

the vehicle.  In this case, a dealer may increase the price of the new vehicle to $29,000 and the value 

of the trade to $12,000.  This will allow the existing note to be settled and a new loan for $29,000 

will be originated.  Therefore, the negative equity is “rolled” into the new loan.  If a total loss 

occurred immediately on this new vehicle, the purchaser would face a shortfall of $4,000. 
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While these types of transactions may not be the majority of overall vehicle purchases, they will 

be a substantial part of a GAP portfolio, because these purchasers recognize their negative equity 

situations and will seek to insure the exposures. 

In general, used vehicles will show fewer propensities for initial negative equity than new 

vehicles, and the frequency and the severity will be lower. 

Unfortunately, many GAP insurance writers do not capture both the loan amount and the vehicle 

value at the time of purchase, which makes the analysis difficult.  If loan amount and terms are 

captured, one can model the potential GAP severities on the book by examining the difference 

between the amortized value of the loan and the book value of the vehicle less the deductible. 

While the typical automobile liability rating variables (such as age, credit score, marital status, 

driving record, garaging zip code, etc.) would likely be predictive for GAP coverage, in reality the 

rating plans for GAP coverage are currently very simple, with the vast  majority only varying on the 

term of the loan. 

Finally, the actuary must consider the catastrophe exposure for this line, which would include the 

typical catastrophe perils that affect the automobile physical damage coverage.  Hail, wind and flood 

would by typical causation factors—the largest exposure is likely flood as most other catastrophes 

would not result in total losses to the vehicle and because most states require a vehicle that has been 

flooded to be declared a total loss.  There was a significant amount of GAP catastrophe loss 

associated with Hurricane Katrina, although this was mitigated by insureds driving their vehicles out 

of the flood zones prior to the hurricane.  Since vehicles with significant GAP exposure are also 

likely newer vehicles, they may be more prone to be removed from a potential catastrophe exposure. 

3. THE LEVERAGED IMPACT OF USED VEHICLE PRICING 

The biggest uncertainty with the analysis of a GAP program is the future direction of used 

vehicle pricing.  Used vehicle prices are subject to volatile shifts.  This occurs because of economic 

shifts that can impact the market value of used vehicles.   

It is important to note that for GAP pricing, late-model used vehicle prices are more important, 

as the sale prices of older vehicles (more than three years from the current model year) will not be 

subject to significant GAP claims. 

Since GAP will cover the difference between the book value and the loan balance, the difference 

between book value and loan amount acts like a very high deductible in a traditional automobile 

physical damage insurance policy.  As the Table 1 below shows, changes in used vehicle values are 

significantly leveraged up into changes in the GAP severity. 
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Table 1 
(1)  (2) (3) (4) (5)  (6)

Loan 
Amount 

Book 
Value 

GAP 
Deductible 

GAP 
Coverage 

Change 
in Book Value 

Change
in GAP 

Coverage 

Base  16,000  13,000 500 3,500

Increase in Book Value  16,000  14,300 500 2,200 10%  ‐37%

Decrease in Book Value  16,000  11,700 500 4,800 ‐10%  37%

(4)  (1) ‐ (2) + (3) 
(5)  (2) / Base (2) 
(6)  (4) / Base (4) 

Another issue is shifting vehicle preference among types of vehicles, such as the definite 

relationship between small vehicle prices and gasoline prices.  Alternatively, there is an inverse 

relationship between large trucks prices and gasoline prices.  Dramatic shifts in consumer 

preferences will cause GAP claims to increase, even if overall prices remain stable.  This is because 

increases in underlying asset prices are capped by the amount of the loan while decreases remain 

uncapped. 

Figure 1 
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As Figure 1 above shows, the index of used vehicle prices is subject to significant variation.  

Vehicles in the index are compiled from auction sales which focus mostly on late model used 

vehicles. 

For example, in the aftermath of 9/11, vehicle manufacturers began to heavily incentivize the 

purchase of new vehicles through “zero percent financing” and other enticements.  The result was a 

strong decline in the value of used vehicles, as these prices adjusted to the corresponding new 

vehicle price.   

The “great recession” officially began in December 2007, which is the beginning of a decrease in 

the price of used vehicles.   

In late 2008, used vehicle prices showed a dramatic improvement.  There is some evidence that 

this increase may be more due to a lower supply of late model used vehicles in the marketplace 

rather than an increase in demand.  This supply constraint may be due to decreased new vehicle sales 

in the prior years, as well as less leasing of vehicles (which generates a sale when the lease 

terminates).  In addition, rental car fleets (who are a major source of late-model used vehicles) 

purchased fewer vehicles. 

Figure 2 
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The chart in Figure 2 shows the same data, but is broken out by popular vehicle segments.  For 

example, compact cars have shown significant price appreciation since 2001.   

In conclusion, GAP is a leverage product in which small changes in the underlying book value of 

the asset will cause large swings in projected results.  In addition, private passenger vehicles are 

subject to dramatic and somewhat unpredictable changes in price due to economic forces, petroleum 

prices, and consumer preferences.  Furthermore, future regulatory requirements such as increased 

mileage standards may affect asset prices.  Forecasting future GAP claims is subject to significant 

variation. 

4. EARNINGS PATTERNS 

GAP is a multi-year policy for which premium is earned through the use of earnings factors or 

earnings curves.  These earnings are subject to actuarial review during evaluation before issuing a 

loss reserve opinion. 

Typically, earnings are done on a “Rule-of-78s”-basis, which implies a quicker earnings pattern 

than a pro rata or even earnings typical for most property casualty products. The Rule-of-78s will 

earn premium as a function of the sum of the digits of the remaining term with the sum of digits of 

all term values.  

Earnings for Rule-of-78s 

N = Term in months. 

M = Evaluated month. 

Earnings factor to apply to written premium for this contract: 

Earnings Factor = .
)1)((

)1(2

1

 

N

M NN

MN
 

As the Table 2 below shows, this pattern closely resembles the balance of a loan.  Research 

indicates that this pattern is slower than the actual emerging experience.1 A more accurate earnings 

pattern can be obtained by assuming a reduction in the term of the loan by 25% (Term Elimination 

Factor) and using the Rule-of-78s pattern on these numbers). 

Abbreviating the term for GAP insurance also makes sense when determining earned premium.  

GAP insurance does not cover the loan balance; it covers the difference between the loan balance 

and the book value.  Once the loan amortizes to the point which the loan balance plus the 

                                                 
1 The 25% reduction is suggested by industry data in the 2009 CCIA GAP Study which was based on approximately 
489,000 exposures and 5,800 claims.  Several methods were employed, with the 25% reduction having the best fit if one 
refunds based on Rule-of78s.  Mature books may also be analyzed directly for the underlying claim distribution pattern. 
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deductible is less than the book value of the vehicle, there is no severity associated with a claim.  

Therefore, we would expect that the severity of a GAP policy to reach zero more quickly than the 

loan balance. 

Earnings for Abbreviated Rule-of-78s 

N = Term in months. 

M = Evaluated month. 

A = Term Elimination Factor (0 < A <= 1). 

Earnings factor to apply to written premium for this contract: 

Z = (N x (1 -  A). 

For M < Z. 

Earnings Factor = 
.

)1)((

)1(2

1

 

Z

M ZZ

MZ

 

Else 1. 

Table 2 illustrates these calculations for a 60-month loan. 

Table 2 

Month 

(1) 
Balance 

(2) 
Balance 
Earnings 

(3)
Rule of 
78s 

(4)
Abbreviat
ed Rule 
of 78s 

(5)
Example 
Book 
Value 

(6)
Deduct 

(7) 
GAP 

Severity 

(8)
Example 
Book 
Value 

Earnings 

1  10,000  3.1%  3.3%  4.3%  8,000  500  2,500  3.0% 

2  9,860  3.1%  3.2%  4.3%  7,840  500  2,520  3.0% 

3  9,720  3.0%  3.2%  4.2%  7,683  500  2,537  3.0% 

4  9,579  3.0%  3.1%  4.1%  7,530  500  2,549  3.1% 

5  9,436  2.9%  3.1%  4.0%  7,379  500  2,557  3.1% 

6  9,293  2.9%  3.0%  3.9%  7,231  500  2,562  3.1% 

7  9,150  2.8%  3.0%  3.8%  7,087  500  2,563  3.1% 

8  9,005  2.8%  2.9%  3.7%  6,945  500  2,560  3.1% 

9  8,859  2.7%  2.8%  3.6%  6,806  500  2,553  3.1% 

10  8,713  2.7%  2.8%  3.5%  6,670  500  2,543  3.1% 

11  8,566  2.7%  2.7%  3.4%  6,537  500  2,529  3.0% 

12  8,418  2.6%  2.7%  3.3%  6,406  500  2,512  3.0% 
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Month 

(1) 
Balance 

(2) 
Balance 
Earnings 

(3)
Rule of 
78s 

(4)
Abbreviat
ed Rule 
of 78s 

(5)
Example 
Book 
Value 

(6)
Deduct 

(7) 
GAP 

Severity 

(8)
Example 
Book 
Value 

Earnings 

13  8,269  2.6%  2.6%  3.2%  6,278  500  2,491  3.0% 

14  8,119  2.5%  2.6%  3.1%  6,152  500  2,467  3.0% 

15  7,969  2.5%  2.5%  3.0%  6,029  500  2,439  2.9% 

16  7,817  2.4%  2.5%  2.9%  5,909  500  2,409  2.9% 

17  7,665  2.4%  2.4%  2.8%  5,790  500  2,374  2.9% 

18  7,511  2.3%  2.3%  2.7%  5,675  500  2,337  2.8% 

19  7,357  2.3%  2.3%  2.6%  5,561  500  2,296  2.8% 

20  7,202  2.2%  2.2%  2.5%  5,450  500  2,252  2.7% 

21  7,046  2.2%  2.2%  2.4%  5,341  500  2,205  2.7% 

22  6,889  2.1%  2.1%  2.3%  5,234  500  2,155  2.6% 

23  6,731  2.1%  2.1%  2.2%  5,129  500  2,102  2.5% 

24  6,573  2.0%  2.0%  2.1%  5,027  500  2,046  2.5% 

25  6,413  2.0%  2.0%  2.0%  4,926  500  1,987  2.4% 

26  6,252  1.9%  1.9%  1.9%  4,828  500  1,925  2.3% 

27  6,091  1.9%  1.9%  1.8%  4,731  500  1,860  2.2% 

28  5,928  1.8%  1.8%  1.7%  4,637  500  1,792  2.2% 

29  5,765  1.8%  1.7%  1.6%  4,544  500  1,721  2.1% 

30  5,600  1.7%  1.7%  1.5%  4,453  500  1,648  2.0% 

31  5,435  1.7%  1.6%  1.4%  4,364  500  1,571  1.9% 

32  5,269  1.6%  1.6%  1.4%  4,277  500  1,492  1.8% 

33  5,102  1.6%  1.5%  1.3%  4,191  500  1,410  1.7% 

34  4,933  1.5%  1.5%  1.2%  4,107  500  1,326  1.6% 

35  4,764  1.5%  1.4%  1.1%  4,025  500  1,239  1.5% 

36  4,594  1.4%  1.4%  1.0%  3,945  500  1,149  1.4% 

37  4,423  1.4%  1.3%  0.9%  3,866  500  1,057  1.3% 

38  4,250  1.3%  1.3%  0.8%  3,788  500  962  1.2% 

39  4,077  1.3%  1.2%  0.7%  3,713  500  865  1.0% 
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Month 

(1) 
Balance 

(2) 
Balance 
Earnings 

(3)
Rule of 
78s 

(4)
Abbreviat
ed Rule 
of 78s 

(5)
Example 
Book 
Value 

(6)
Deduct 

(7) 
GAP 

Severity 

(8)
Example 
Book 
Value 

Earnings 

40  3,903  1.2%  1.1%  0.6%  3,638  500  765  0.9% 

41  3,728  1.2%  1.1%  0.5%  3,566  500  662  0.8% 

42  3,551  1.1%  1.0%  0.4%  3,494  500  557  0.7% 

43  3,374  1.0%  1.0%  0.3%  3,424  500  450  0.5% 

44  3,196  1.0%  0.9%  0.2%  3,356  500  340  0.4% 

45  3,016  0.9%  0.9%  0.1%  3,289  500  228  0.3% 

46  2,836  0.9%  0.8%  0.0%  3,223  500  113  0.1% 

47  2,655  0.8%  0.8%  0.0%  3,159  500  –  0.0% 

48  2,472  0.8%  0.7%  0.0%  3,095  500  –  0.0% 

49  2,288  0.7%  0.7%  0.0%  3,033  500  –  0.0% 

50  2,104  0.7%  0.6%  0.0%  2,973  500  –  0.0% 

51  1,918  0.6%  0.5%  0.0%  2,913  500  –  0.0% 

52  1,731  0.5%  0.5%  0.0%  2,855  500  –  0.0% 

53  1,543  0.5%  0.4%  0.0%  2,798  500  –  0.0% 

54  1,354  0.4%  0.4%  0.0%  2,742  500  –  0.0% 

55  1,164  0.4%  0.3%  0.0%  2,687  500  –  0.0% 

56  973  0.3%  0.3%  0.0%  2,633  500  –  0.0% 

57  781  0.2%  0.2%  0.0%  2,581  500  –  0.0% 

58  587  0.2%  0.2%  0.0%  2,529  500  –  0.0% 

59  393  0.1%  0.1%  0.0%  2,479  500  –  0.0% 

60  197  0.1%  0.1%  0.0%  2,429  500  –  0.0% 

(1) Loan Balance for 60-month loan, 7% interest rate 
(2) Earnings based on (1) 
(3) Traditional Rule of 78s 
(4) Rule of 78s reducing term to 45 months from 60 

months 

(5) Book value assuming monthly 2% depreciation 
(7) Maximum of (1) - (5) + (6) and 0 
(8) Using (7) to form earnings curve. 
 

A mature book of business can be analyzed to see the indicated underlying earnings patterns 

without relying on formulaic earnings patterns, but results should be reasonably close to an 

abbreviated Rule of 78s. 
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5. PROJECTING THE RESULTS 

Once an appropriate earned premium has been calculated using either the Rule of 78s, the 

Abbreviated Rule of 78s, or actual historical data, the actuary should project the losses.  It would be 

incorrect to merely assume that the current loss ratio will continue into the future; explicit 

assumptions should be made about future frequencies and severities.  In addition, the book should 

be analyzed separately by credible class, such as term, initial GAP (if available), vehicle type and 

other relevant private passenger rating variables. 

Of course, one should be careful because GAP is subject to volatile results due to fluctuations in 

the financing and used-vehicle market. GAP pure premiums will increase when financing standards 

become more lax because lenders will allow more negative equity (as described above) to be rolled 

into new loans.  In addition, changes in used vehicle pricing will affect future loss rates. 

Ideally, the book would contain loan amounts, terms, and book values (both historical and 

current).  With this information, every current GAP could be modeled and the future GAP could be 

forecasted using different economic scenarios.  On a more practical level, it is easier to calculate the 

earned contracts (using the same earnings factors described above) for different policy years and 

compare the results under different economic conditions. 

A generalized linear model can be utilized to forecast the frequency and severity by class.  For 

frequency, a logistic regression model is appropriate (since there can be only either zero or one 

claim.) 

A logistic model would be specified by the claims divided by the earned contracts—with the 

earned factor calculated above applied to the contract.  Contracts that have incurred a claim could 

be considered fully earned. 

Logistic regression uses the natural logs of the frequencies of claims. 

 
Where p = observed frequency and Β = parameters and x = observed values for significant rating 

variables.  

For severity, a gamma model provides a decent fit since there is not a significant tail on the 

severity amounts. 

Unless the data set contains a long time period with periods of inflation and deflation in used-

vehicle pricing, it is not possible through statistical models to capture all the variability associated 

with GAP claims. 
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Therefore, one could explicitly model various used vehicle pricing scenarios to better understand 

the potential variability of the results. 

Profit provisions for GAP should recognize the variability of results due to economic conditions.  

This may imply a larger profit and contingencies provision than for more stable lines of insurance.  

Analyzing the proper profit and contingencies provision for GAP is beyond the scope of this paper, 

but would be a good topic for further research. 

6. ENHANCEMENTS TO GAP 

Recently, companies have introduced enhancements or added features to GAP products that 

offer down payment assistance or additional consideration when an insured files a claim.  For 

example, a product might offer an additional $1,000 for any total loss during the policy period.  In 

this case, the earnings curve would substantially be reversed, since it is more likely that a vehicle 

would be declared a total loss at the end of the contract. 

These cases must be analyzed independently.  Ideally, one could forecast the expected pure 

premium at each month in the contact for the additional coverage.  This could be combined with 

the expected pure premium for the traditional GAP coverage and a new earnings curve would be 

formed. 

7. SIMILAR PRODUCTS 

Other asset classes that may have GAP policies are boats, recreational vehicles, and commercial 

equipment.  In addition, financial institutions such as banks may purchase a GAP policy to cover 

their entire portfolio of loans when the borrower is unable to satisfy the lien after a total loss. 

Another type of insurance similar to GAP is called Residual Value Insurance (RVI).  RVI is often 

purchased in situations where an owner is leasing some type of property to another party.  Examples 

of property that may be covered by RVI are rental real estate, leased automobiles, rolling stock of 

railroads (i.e., train cars), and leased airplanes. RVI will cover the difference between actual book 

value of the property at the end of the lease and the residual value specified in the lease.  The 

specified residual value will be a forecast of the book value at the time of the purchase of the 

property. 

In the past, RVI products have incurred significant underwriting losses and may not currently be 

available for all types of property.  This is likely due to the difficulty of forecasting future residual 

values. 

These products may be analyzed in similar fashion, though the terms may differ by product since 
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they can be customized.  In addition, less data will typically be available for asset classes other than 

private passenger vehicles. 
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Credibility for a Tower of  Excess Layers 

David R. Clark, FCAS, MAAA 

______________________________________________________________________________ 
Abstract: 

In pricing excess of loss reinsurance, the traditional method for applying credibility is as a weighted average 
of two estimates of expected loss: one from experience rating and a second from exposure rating.  This paper 
will show how this method can be improved by incorporating loss estimates from lower layers, thus producing a 
multi-factor, credibility-weighted estimate of expected loss. 

The method described is based on minimum variance criteria, whereby the resulting credibility-weighted 
estimator has a lower variance than any other combination of the individual estimators.  It is shown that the 
multi-factor credibility model can be presented as a simple recursive procedure for practical application. 
 
Keywords. Excess of loss reinsurance, exposure rating, credibility. 

______________________________________________________________________________ 

1. INTRODUCTION 

This paper will address a particular problem in pricing excess reinsurance that can benefit from 

an application of credibility theory. 

In reinsurance, an actuary or underwriter is required to estimate losses in a per-occurrence excess 

layer.  For example, a treaty may cover loss occurrences that exceed a retention of $1,000,000 up to a 

limit of an additional $1,000,000; this would be referred to as a $1,000,000 xs $1,000,000 layer. 

In order to estimate the expected losses in the excess layer, there may be several tools available.  

The first is a pure experience rating, sometimes called a “burn cost” because of its use in rating fire 

policies.  An experience rating looks at the actual historical losses for the ceding company that have 

penetrated the excess layer – including adjustments for trend and development – relative to the 

historical exposures. 

In addition to the experience rating, there is usually an industry-based, size-of-loss distribution 

available.  This size-of-loss distribution gives the probability of a loss penetrating into the excess 

layer and the expected severity in the layer.  It is the basis for an “exposure rating” estimate.  More 

precisely, it is the basis for multiple exposure rating estimates, because there are a variety of ways 

that the size-of-loss distribution can be used. 

The exposure rating curve can be used to divide an overall (primary or ground-up) expected loss 

into the losses expected in various layers.  The overall expected loss can be a permissible loss ratio 

(for example, 100% minus expenses) applied to manual premium.   More often, it is calculated from 

the ceding company’s experience.  In such case, the exposure rating is clearly not independent from 

the experience rating. 
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Alternatively, the size-of-loss curve can be applied to an estimate of total claim counts for the 

ceding company.  It could also be applied to a lower excess layer; for example, we use the size-of-

loss distribution to estimate the $1,000,000 xs $1,000,000 layer relative to the $500,000 xs $500,000 

layer. 

We see, therefore, that the analyst has a collection of estimators available.  These estimators are 

not independent from one another but instead are related in many ways.  Our goal is to select 

among these estimators, or combine them, in an optimal way. 

Credibility theory can help us accomplish this goal. 

1.1 Research Context 

This paper builds upon existing credibility theory.  However, much of the past literature has been 

concerned with primary ratemaking, comparing loss experience in one class of business with others.  

For the reinsurance context, our concern will be “vertical” rather than “horizontal,” as we look at a 

tower of contiguous excess layers. 

The excess reinsurance problem was taken up by Mashitz and Patrik (1990), who limited their 

discussion to the problem of layer counts.  More recently, papers by Cockroft (2004), Goulet, 

Forgues and Lu (2006), Parodi and Bonche (2008), and Marcus (2010) have included analysis that 

addresses severity as well as frequency.  In general, these papers do not include methods that capture 

all the ways that exposure and experience ratings are interrelated.1 

The present paper will examine expected losses to excess layers including some of the 

interrelationships between how exposure and experience rating are applied in practice.  The focus 

will be on showing how the credibility procedure actually reduces the variance in the estimate of 

expected loss. 

1.2 Objective 

The goal is to outline a procedure that will produce an optimal or best estimate of expected loss 

for the excess layer being priced.  “Best” will mean a minimum variance unbiased estimator. 

Informally stated, the minimum variance criterion says that an estimate that incorporates all 

available information is more reliable than one that ignores some information (such as losses in 

lower excess layers). 

                                                           
1 See for example the “Practical considerations” (section 6) in Cockroft (2004). 
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1.3 Outline 

The remainder of the paper proceeds as follows. 

Section 2 will describe the basics of credibility theory supporting the proposed method. 

Section 3 will show how this theory can be applied in practice as a recursive credibility method.  

In order to illustrate the technique, a simple example using a Pareto distribution will be traced 

throughout the paper. 

The final result of this paper will be a very practical method for applying credibility that works 

recursively.  It starts with a simple weighting of experience and exposure rates for a low layer and 

then uses a layer relativity from the exposure curve to provide an estimate for the next layer up.  

This practical implementation can be used even without direct reference to the theoretical model 

that is demonstrated. 

2. BACKGROUND AND METHODS 

Our goal in setting up a credibility procedure is to find the best possible estimate of future 

expected losses, making use of all available relevant information.  A best estimate will generally have 

two main properties: 

 The estimate will be unbiased; meaning that its expected value will be equal to the true 

expected value. 

 The estimate will have minimum variance; meaning informally that it will tend to be 

closer to the true expected value than other possible estimates. 

We will assume that all of the estimators used in our discussion are unbiased.  If some are biased, 

then they need to be adjusted to an unbiased basis before they are included in a credibility-weighted 

average.2 

The focus of this paper will be on the minimum variance criterion.  The best combination of 

estimators will be one that minimizes the overall variance.  For this reason, this approach is also 

known as “least squares” or “greatest accuracy” credibility (cf. Boor 1992, Venter 2003, Marcus 

2010). 

If we have two or more estimates available that make use of different information, the best 

estimate may be some combination of those estimates.  Credibility theory allows us to properly 

                                                           
2 See Section 3 of Marcus (2010) for a good discussion on testing the validity of the unbiasedness assumption. 
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combine these different estimates, so that we have a single final estimate that makes the best use of 

all of the available information. 

2.1   The Two-Factor Model 

We can begin with the familiar case in which credibility is applied as the weighted average of two 

estimators, ߤଵෞ and ߤଶෞ, which are assumed to be unbiased estimators of a true value μ.  

௖௪ෞߤ  ൌ ݓ · ଵෞߤ ൅ ሺ1 െ ሻݓ · ଶෞ. (2.1)ߤ

The assumption that these estimates are unbiased is expressed as follows. 

ଵෞሻߤሺܧ ൌ ଶෞሻߤሺܧ ൌ (2.2) .ߤ

The variance of the credibility-weighted (cw) average of the two estimators is a linear 

combination of the variances and covariances.  

௖௪ෞߤሺݎܸܽ ሻ  ൌ ଶݓ   · ଵෞሻߤሺݎܸܽ ൅ ݓ2 · ሺ1 െ ሻݓ · ଵ,ෞߤሺݒ݋ܥ ଶ,ෞߤ ሻ ൅ ሺ1 െ ሻଶݓ · ଶෞሻ.  (2.3)ߤሺݎܸܽ

The optimal value of the credibility weight can be found by least squares by setting: 

  
డ ௏௔௥ሺఓ೎ෟೢሻ

డ ௪
ൌ 0.  This produces the following weight. 

ෝݓ  ൌ   
ଶෞሻߤሺݎܸܽ െ ଵ,ෞߤሺݒ݋ܥ ଶ,ෞߤ ሻ

ଵෞሻߤሺݎܸܽ ൅ ଶෞሻߤሺݎܸܽ െ 2 · ଵ,ෞߤሺݒ݋ܥ ଶ,ෞߤ ሻ
. (2.4)

The calculated weights can be substituted back into the formula for the variance of the 

credibility-weighted estimator (formula 2.5).  This form is instructive because it shows that the 

variance of the credibility-weighted estimator is less than either of the individual estimators’ 

variances.  We can therefore see the value in a rigorous credibility formula as improving our ability 

to estimate an expected loss more accurately. 

௖௪ෞߤሺݎܸܽ ሻ  ൌ   
ଵෞሻߤሺݎܸܽ · ଶෞሻߤሺݎܸܽ · ሺ1 െ ଶሻߩ

ଵෞሻߤሺݎܸܽ ൅ ଶෞሻߤሺݎܸܽ െ 2 · ଵ,ෞߤሺݒ݋ܥ ଶ,ෞߤ ሻ
. (2.5)

In this expression, the correlation coefficient is defined as follows.  

ൌ ߩ  
ଵ,ෞߤሺݒ݋ܥ ଶ,ෞߤ ሻ

ඥܸܽݎሺߤଵෞሻ · ଶෞሻߤሺݎܸܽ
. 

(2.6)
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2.2   Multi-factor Model 

The multi-factor theory can be expanded to include multiple estimators.  In this case, we need to 

define a covariance matrix, Σ, which includes the variances and covariances between each pair of 

estimators. 

઱ ൌ   ൦

ଵෞሻߤሺݎܸܽ ,ଵෞߤሺݒ݋ܥ ଶෞሻߤ
,ଶෞߤሺݒ݋ܥ ଵෞሻߤ ଶෞሻߤሺݎܸܽ

ڮ ,ଵෞߤሺݒ݋ܥ ௡ෞሻߤ
ڮ ,ଶෞߤሺݒ݋ܥ ௡ෞሻߤ

ڭ ڭ
,௡ෞߤሺݒ݋ܥ ଵෞሻߤ ,௡ෞߤሺݒ݋ܥ ଶෞሻߤ

ڰ ڭ
ڮ ௡ෞሻߤሺݎܸܽ

൪. 

(2.7)

The credibility-weighted average of the ݊ unbiased estimators is again a linear function of the 

individual estimators.  

௖௪ෞߤ  ൌ ଵݓ   · ଵෞߤ ൅ ଶݓ · ଶෞߤ ൅ ڮ ൅ ௡ݓ · ௡ෞ. (2.8)ߤ

The set of these weights is defined as a vector of parameters. 

ሬሬሬሬറ்ࢃ ൌ ۃ ,ଵݓ ,ଶݓ … , (2.9) .ۄ௡ݓ

The constraint that these weights must add up to 1.00 (or 100%) can be written as 1 ൌ ሬሬሬሬറ்ࢃ · ૚௡ 

where ૚௡ is a column vector of ones. 

The variance of the credibility-weighted estimator is then a weighted average of the variance and 

covariance terms in Σ. 

௖௪ෞߤሺݎܸܽ ሻ ൌ ሬሬሬሬറ்ࢃ · ઱ · ሬሬሬሬറ. (2.10)ࢃ

The least-squares estimate for these weights can be found by solving the equation above.  The 

result is that the weights are proportional to the row (or column) totals of the inverse of the 

covariance matrix.3 

ሬሬሬሬറࢃ  ൌ   ሺ૚௡
் · ઱ିଵ · ૚୬ሻିଵ · ઱ିଵ · ૚୬. (2.11)

For the special case in which all of the estimators are independent, this reduces to having the 

weights proportional to the inverse of each estimator’s variance.4 

௜ݓ  ൌ
పෝߤሺݎܸܽ ሻିଵ

∑ ௞ෞሻିଵ௡ߤሺݎܸܽ
௞ୀଵ

. 
(2.12)

One final observation before showing how this applies to excess pricing is that the multivariate 

                                                           
3 This result is well known in other branches of finance and represents the solution to the minimum variance or efficient 
portfolio weights.  See for example Theorem 17.1 in Hardle and Hlavka (2007). 
4 This result is given as Theorem A.3 in Bühlmann and Gisler (2005),  p.280.  It is also a standard feature of weighted 
regression theory. 
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case can alternatively be written in a recursive form.  For example, a three-variable case can be 

viewed as a weighted average between one variable and the weighted average of the other two 

variables.  

௖௪ෞߤ  ൌ ଵݓ   · ଵෞߤ ൅ ଶݓ · ଶෞߤ ൅ ଷݓ · ଷෞߤ  
 
               

                     ൌ ଵݖ  · ଵෞߤ ൅ ሺ1 െ ଵሻݖ · ሼݖଶ · ଶෞߤ ൅ ሺ1 െ ଶሻݖ ·  .ଷෞሽߤ

(2.13)

3.  CREDIBILITY APPLIED TO EXCESS-OF-LOSS REINSURANCE 

The specific problem that we are examining is to find the best estimate of expected loss in an 

excess layer. 

In order to make this discussion more practical, we will make an assumption that the true severity 

distribution is a single parameter Pareto, defined as in Section 3.1.  In Section 3.2, we will then show 

first how exposure and experience rating estimates are combined.  Finally, in Section 3.3, we will 

show how lower excess layers can also be incorporated in the method using a recursive form of the 

multi-factor credibility formula. 

3.1   Defining the Reinsurance Problem 

In order to describe the expected loss in the reinsurance application, we need to start with some 

definitions: 

ܺ   random variable representing a single loss event 

 ሻ   Cumulative Distribution Function; probability that a loss is x or lessݔሺܨ

ܴ    Retention taken by the ceding company 

 Limit above the Retention covered by the reinsurer    ܮ

 Function representing loss taken by the reinsurer  ݎ݁ݕܽܮ

Defined as: ݎ݁ݕܽܮ ൌ ݔሺܺܣܯሼܰܫܯ   െ ܴ, 0ሻ,  ሽܮ

ܰ   Random variable representing the number of losses in the historical period 

In order to make this discussion more realistic, we will define a simple curve form to use in the 

calculation of the credibility factors.  For our example, we will use the single parameter Pareto 
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distribution,5 defined as follows: 

ሻݔሺܨ ൌ 1 െ ቀఏ

௫
ቁ

ఈ
  for ݔ ൒ (3.1) .ߠ

The value theta, ߠ, is known as the loss threshold, and represents the smallest loss amount that is 
part of the analysis.  For example, in a reinsurance submission, we might ask for all losses of 
$500,000 and greater. 

The expected loss in an excess layer is calculated as follows: 

ሻݎ݁ݕܽܮሺܧ  ൌ   

ە
ۖ
۔

ۖ
൬ۓ

ߠ
ߙ െ 1

൰ · ቈ൬
ߠ
ܴ

൰
ఈିଵ

െ ൬
ߠ

ܴ ൅ ܮ
൰

ఈିଵ

቉ ߙ ് 1

ߠ · ln ൬1 ൅
L
R

൰ ߙ ൌ 1

 

(3.2)

Similarly, the second moment of an excess layer is calculated as follows: 

 ଶሻݎ݁ݕܽܮሺܧ

 ൌ   

ە
ۖ
ۖ
ۖ
۔

ۖ
ۖ
ۖ
ቆۓ

ଶߠ2

ሺߙ െ 1ሻ · ሺߙ െ 2ሻ
ቇ · ቈ൬

ߠ
ܴ

൰
ఈିଶ

െ ቆ
ܴ ൅ ሺߙ െ 1ሻܮ

ܴ ൅ ܮ
ቇ · ൬

ߠ
ܴ ൅ ܮ

൰
ఈିଶ

቉ ߙ         ് 1,2

ߠ2 · ൜L െ R · ln ൬1 ൅
L
R

൰ൠ ߙ                                             ൌ 1

ଶߠ2 · ൜ln ൬1 ൅
L
R

൰ െ ൬
L

R ൅ L
൰ൠ ߙ ൌ 2

 

 

(3.3)

For our example, we will have the following information available: 

 All losses above a threshold  $500,000 = ߠ. 

 Experience rating for the $500,000 xs $500,000 (or $500xs$500) layer ሺݎ݁ݕܽܮଵሻ. 

 Experience rating for the $1,000,000 xs $1,000,000 (or 1Mxs1M) layer ሺݎ݁ݕܽܮଶሻ. 

 An insurance industry-based, Pareto distribution with parameter ߙ଴. 

 An estimate of the expected number of losses above ߠ, denoted ݊଴. 

                                                           
5 This distribution, along with the formulas for capped moments related to (3.2) and (3.3), can be found in Appendix 
A.4.1.4 of Klugman et al. (2004). 
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(This estimate ݊଴ comes from manual rating, not from account experience.) 

3.2   Combining Exposure and Experience Rating Estimates 

We now proceed to define exposure and experience rating models and how they can be 

combined. 

3.2.1  Exposure Rating 

An exposure rate is an estimate of expected losses in an excess layer based on external insurance 

data.  It is sometimes called the “prior estimate” because it can be calculated prior to seeing the 

actual loss experience for the ceding company. 

The exposure rate requires two pieces of information: a severity (size-of-loss) curve from 

industry-wide data, and an expected number of total losses.  Because we are assuming that the 

severity follows a Pareto distribution, we only need a single parameter ߙ଴ to describe it.  For the 

expected number of losses in the prospective period, we likewise have a prior estimate ො݊଴. 

In addition to our prior estimates ߙ଴ and ො݊଴, we also need to have estimates of the variances 

around these estimates ܸܽݎሺߙ଴ሻ and ܸܽݎሺ ො݊଴ሻ.  The coefficient of variation (CV) related to the 

frequency is given below. 

ܥ ௡ܸబ
ൌ

ඥܸܽݎሺ ො݊଴ሻ
ො݊଴

. 
(3.4)

We can also approximate the variance of the severity using the “delta method”6 relative to the 

variance of the parameter ߙ଴: 

଴ሻ൯ߙ|ݎ݁ݕܽܮሺܧ൫ݎܸܽ ൎ ଴ሻߙሺݎܸܽ · ቈ
߲ ଴ሻߙ|ݎ݁ݕܽܮሺܧ

߲ ଴ߙ
቉

ଶ

. 
(3.5)

The derivative with respect to the Pareto alpha is easily calculated. 

                                                           
6 A multivariate version of the delta method is described in Loss Models (Klugman et al).  For the single parameter 
Pareto, the variance approximation is much simpler. 
The univariate delta method is based on approximating a function using the first two terms of the Taylor series 
expansion, ݃ሺݔሻ ൎ ݃ሺܽሻ ൅ ݃Ԣሺܽሻ · ሺݔ െ ܽሻ, which results in ܸܽݎሺ݃ሺݔሻሻ ൎ ሺ݃ᇱሺܽሻሻଶ ·  ሻ.  This method wouldݔሺݎܸܽ
provide an exact result if the Layer formula were a linear function of ߙ; because is it not, our results are only 
approximate. 
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଴ሻߙ|ݎ݁ݕܽܮሺܧ ߲

଴ߙ ߲
  

ൌ   
ߠ

ሺߙ଴ െ 1ሻ
· ቊ݈݊ ൬

ߠ
ܴ

൰ · ൬
ߠ
ܴ

൰
ఈబିଵ

െ ݈݊ ൬
ߠ

ܴ ൅ ܮ
൰ · ൬

ߠ
ܴ ൅ ܮ

൰
ఈబିଵ

ቋ         

െ  
ߠ

ሺߙ଴ െ 1ሻଶ · ቊ൬
ߠ
ܴ

൰
ఈబିଵ

െ ൬
ߠ

ܴ ൅ ܮ
൰

ఈబିଵ

ቋ . 

(3.6)

The exposure rate and the variance7 around the exposure rate are therefore estimated as follows: 

௘௫௣௢௦ෟߤ ൌ ො݊଴ ·  .଴ሻߙ|ݎ݁ݕܽܮሺܧ
 

(3.7)

௘௫௣௢௦ෟߤ൫ݎܸܽ ൯  ൌ    ො݊଴
ଶ · ܥ ௡ܸబ

ଶ · ଴ሻଶߙ|ݎ݁ݕܽܮሺܧ ൅ ො݊଴
ଶ · ൫ܥ ௡ܸబ

ଶ ൅ 1൯ · ଴ሻ൯. (3.8)ߙ|ݎ݁ݕܽܮሺܧ൫ݎܸܽ

From these expressions for the exposure rate, we may observe that both the mean and standard 

deviation are proportional to the expected number of losses above the threshold ߠ.  This allows us 

to scale the exposure rate for any change in subject premium. 

Having defined the components of exposure rating, it is useful to show representative values8 for 

these calculations. 

Following our earlier introduction, we will assume that the severity is a single parameter Pareto 

with a threshold ߠ of $500,000.   For the parameter ߙ, we will select a value of 1.500.  The variance 

around this Pareto parameter can be roughly estimated by first selecting a range of possible values.  

For our example, we will assume that the variance is .05, with this amount selected by the user. 

For expected counts ො݊଴ above the threshold for the future period, we will select an average value 

of five losses.  The variance around this number is more difficult to estimate, as it may be dependent 

on how much variance there is for risks within a manual rating classification.  If the frequency is 

more judgmentally selected, then there may be even more uncertainty.  To illustrate the calculations, 

we will assume a coefficient of variation (CV) of .300 or 30%. 

From these selected values, we can estimate the severity for both excess layers, the exposure rate 

(frequency times severity), and the parameter variance around our estimated exposure rate. 

  

                                                           
7 This formula assumes that the estimates for frequency and severity are independent, and then makes use of the 
relationship:  ܸܽݎሺܺ · ܻሻ ൌ ሺܺሻଶܧ · ሺܻሻݎܸܽ ൅ ሺܺሻݎܸܽ · ሺܻሻଶܧ ൅ ሺܺሻݎܸܽ ·  .ሺܻሻݎܸܽ
8 For all of these numerical examples, the numbers are purely for illustration purposes and should not be taken as 
recommendations for pricing. 
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 Table 1  -  Variance around Exposure Rate 

Description Notation Value 

Pareto Threshold 500,000 ߠ 

Pareto Alpha ߙ଴ 1.500 

Variance around Alpha ܸܽݎሺߙ଴ሻ .05 

Expected Severity 500xs500 ܧሺݎ݁ݕܽܮଵ|ߙ଴ሻ 292,893 

Expected Severity 1Mxs1M ܧሺݎ݁ݕܽܮଶ|ߙ଴ሻ 207,107 

Variance around Layer 2 Severity ܸܽݎ൫ܧሺݎ݁ݕܽܮଶ|ߙ଴ሻ൯ 2.230E+09 

Expected Counts at Threshold  ො݊଴ 5.0 

Coefficient of Variation of Counts ܥ ௡ܸబ
 .300 

Exposure Rate for 1Mxs1M ߤ௘௫௣௢௦ෟ  1,035,535 

Variance around Exposure Rate ܸܽݎ൫ߤ௘௫௣௢௦ෟ ൯ 1.573E+11 

3.2.2  Experience Rating 

An experience rate is an estimate of expected losses in an excess layer based on the actual loss 

experience for the ceding company.  For our notation, this will be denoted a “burn cost” with the 

subscript “bc.” 

In our estimate of the experience rate, we need to adjust the sum of historical losses in the layer 

to the prospective period based on the relative exposure volumes (V). 

௕௖ෞߤ   ൌ   ௣ܸ௥௢௦௣௘௖௧௜௩௘

௛ܸ௜௦௧௢௥௜௖௔௟
· ෍ ଶ,௞ݎ݁ݕܽܮ

ே

௞ୀଵ

. 
(3.9)

This expression is therefore simply the sum of the historical losses that penetrate into the second 

layer ($1,000,000 xs $1,000,000) adjusted to the volume of premium in the prospective period.  It is 

assumed that these losses are trended to the future level and that the historical premium is likewise 

adjusted (“onleveled”) to the future level. 

The excess development can be built into this calculation by using as the historical exposure 

volume the onlevel premium divided by excess development: 
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௛ܸ௜௦௧௢௥௜௖௔௟ ൌ ෍ ௧ܸ

௧௒௘௔௥௦ୀ௧ܨܦܮ

. 
(3.10)

If we assume that the frequency distribution is Poisson, then we can estimate an expected 

variance around the experience rate.  

௕௖ෞߤሺݎܸܽ ሻ   ൌ   ൬ ௣ܸ௥௢௦௣௘௖௧௜௩௘

௛ܸ௜௦௧௢௥௜௖௔௟
൰

ଶ

· ሺܰሻܧ · ଶݎ݁ݕܽܮሺܧ
ଶ|ߙ଴ሻ. 

(3.11)

This variance is based on the expected process variance9 of the severity from the exposure rating 

model.  The relationship between the prospective expected counts and the expected counts for the 

historical period is based on the assumption that the claim frequency relative to the onlevel premium 

is unchanged. 

ሺܧ ො݊଴ሻ

௣ܸ௥௢௦௣௘௖௧௜௩௘
ൌ

ሺܰሻܧ

௛ܸ௜௦௧௢௥௜௖௔௟
. 

(3.12)

We can estimate the expected losses in the historical period, ܧሺܰሻ, by making use of the 

prospected expected losses from exposure rating, ܧሺ ො݊଴ሻ, and formula (3.12). 

The table below shows the results of these calculations. 

Table 2  -  Variance around Experience Rate 

Description Notation Value 

Expected Severity 1Mxs1M ܧሺݎ݁ݕܽܮଶ|ߙ଴ሻ 207,107 

Second Moment ܧሺݎ݁ݕܽܮଶ
ଶ|ߙ଴ሻ 1.716E+11 

Expected Prospective Counts ܧሺ ො݊଴ሻ 5.0 

Prospective Premium ௣ܸ௥௢௦௣௘௖௧௜௩௘ 2,000,000 

Historical Onlevel Premium ௛ܸ௜௦௧௢௥௜௖௔௟ 10,000,000 

Expected Historical Counts ܧሺܰሻ 25.0 

Experience Rate for 1Mxs1M ܧሺߤ௕௖ෞ ሻ 1,035,534 

Variance around Experience Rate ܸܽݎሺߤ௕௖ෞ ሻ 1.716E+11 

                                                           
9 We are making an approximation in this paper that the expected process variance ܧఈሾܸܽݎሺߙ|ݎ݁ݕܽܮሻሿ can be 
approximated as ܸܽݎ൫ܧ|ݎ݁ݕܽܮሺߙሻ൯.  Without this approximation, we would need to specify a complete prior 
distribution for the ߙ instead of just the variance.  Alternatively, the process variance could be estimated from the 
empirical experience rating. 
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3.2.3  Credibility weighting these two estimates 

The experience and exposure rating models produce estimates of the future expected loss to an 

excess layer.  Because they are working with very different information, they can be considered 

independent. 

௖௪ෞߤ   ൌ ݓ   · ௕௖ෞߤ ൅ ሺ1 െ ሻݓ · ௘௫௣௢௦ෟߤ . (3.13)

The credibility weight for the experience rate is then written in a familiar form, based on the 

expected number of claims in the historical period (substituting in formulas 3.8 and 3.11). 

ൌ ݓ    
௘௫௣௢௦ෟߤ൫ݎܸܽ ൯

௕௖ෞߤሺݎܸܽ ሻ ൅ ௘௫௣௢௦ෟߤ൫ݎܸܽ ൯
ൌ

ሺܰሻܧ

ሺܰሻܧ ൅ ݇
 

(3.14)

where 

݇  ൌ    
ଶݎ݁ݕܽܮሺܧ

ଶ|ߙ଴ሻ

ܥ ௡ܸబ
ଶ · ଴ሻଶߙ|ݎ݁ݕܽܮሺܧ ൅ ൫ܥ ௡ܸబ

ଶ ൅ 1൯ · ଴ሻ൯ߙ|ݎ݁ݕܽܮሺܧ൫ݎܸܽ
 . 

(3.15)

All of the elements of this credibility weight can be evaluated prior to actually estimating the 

experience rating.  To illustrate, we continue with the numerical example. 

Table 3  -  Variance around Credibility Rate 

Description Notation Value 

Variance Around Experience Rate ܸܽݎሺߤ௕௖ෞ ሻ 1.716E+11 

Variance Around Exposure Rate ܸܽݎ൫ߤ௘௫௣௢௦ෟ ൯ 1.573E+11 

Expected Historical Counts ܧሺܰሻ 25.0 

Credibility “k” ݇ 27.3 

Credibility Weight to Experience 47.8 ݓ% 

Variance around Credibility Rate ܸܽݎሺߤ௖௪ෞ ሻ 8.206E+10 

As expected, the variance around the credibility-weighted rate is less than the variance of either of 

the individual estimates from exposure or experience rating.  This is consistent with our goal of 

finding an estimator with minimum variance. 

We can illustrate the concept of the credibility weighting of experience and exposure rates by the 

graphic below. 
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Experience Rating Exposure Rating Credibility-Weighted

Example of Standard Credibility Procedure

1,000,000

500,000

Layer 2 
1Mxs1M

Layer 2 
1Mxs1M

Layer 2 
1Mxs1M

Layer 1 
500xs500

Layer 1 
500xs500

Layer 1 
500xs500

2,000,000

w  + w) =

This illustrates the concept that the credibility weighting is based solely on the rates in the 

$1,000,000 xs $1,000,000 layer and makes no use of the information in the lower layer.  We now 

proceed to show how the information in this lower layer can be used. 

3.3   Including Losses from a Lower Layer 

As noted above, the experience and exposure rating models make use of different sources of 

information.  However, they do not make use of all the information that is available to the analyst.  

We are also able to price layers of insurance below the layer being quoted. 

An additional estimate of expected loss is made by applying relativities from the exposure rating 

model to the expected loss in the first layer $500,000 xs $500,000.  This is our “relativity” (rel) 

method. 

௥௘௟ෞߤ   ൌ   ൝ ௣ܸ௥௢௦௣௘௖௧௜௩௘

௛ܸ௜௦௧௢௥௜௖௔௟
· ෍ ଵ,௞ݎ݁ݕܽܮ

ே

௞ୀଵ

ൡ ·
଴ሻߙ|ଶݎ݁ݕܽܮሺܧ

଴ሻߙ|ଵݎ݁ݕܽܮሺܧ
. 

(3.16)

In this formula, we continue to use the shorthand notation: 

ଵ,௞ݎ݁ݕܽܮ    ൌ ௞ݔሺܺܣܯሼܰܫܯ   െ 500,000;    0ሻ;  500,000ሽ  for loss ݇ 

and ݎ݁ݕܽܮଶ,௞  ൌ ௞ݔሺܺܣܯሼܰܫܯ   െ 1,000,000;   0ሻ;   1,000,000ሽ for loss ݇. 

The graphic below illustrates how the relativity method makes use of the experience in the lower 

layer. 
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Experience Rating Exposure Ratings Lower Layer times Relativity

Using Exposure-Rating Relativities

2,000,000

1,000,000

500,000

Layer 2 
1Mxs1M

Layer 2 
1Mxs1M

Layer 2 
1Mxs1M

Layer 1 
500xs500

Layer 1 
500xs500

Layer 1 
500xs500



=

 

This relativity-based estimate is not independent from either the pure exposure rate ߤ௘௫௣௢௦ෟ  or 

from the pure experience burn cost ߤ௕௖ෞ .  It shares dependence on the industry size-of-loss 

distribution with the exposure rate.10  The experience rates for first and second layers are also clearly 

related (for example, there can be no losses in the second layer without at least one loss in the first 

layer with limit L1). 

The remainder of this section will provide detailed formulas using the Pareto severity and 

Poisson frequency model.  These formulas allow us to create a tractable numerical example that can 

be reproduced by the ambitious reader and may be helpful for gaining intuition about the sensitivity 

of the credibility weights to the variance assumptions. 

However, the key result is not the Pareto/Poisson model itself but the recursive form of 

credibility that results.  The more practical-minded reader can skip the detailed formulas and not 

miss this key result. 

  

                                                           
10 Here we deviate from Marcus (2010), who assumes independence of the exposure rating and the severity curve 
underlying the ILF.  While that assumption avoids the need to calculate this additional covariance term, it does not lead 
to the practical implementation in a recursive form. 
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As a starting point, we may observe the covariance between the experience rates in the two 

layers.11 

ݒ݋ܥ ൭෍ ଵݎ݁ݕܽܮ

ே

௞ୀଵ

, ෍ ଶݎ݁ݕܽܮ

ே

௞ୀଵ

൱ ൌ ሺܰሻܧ · ଵܮ ·  .ଶሻݎ݁ݕܽܮሺܧ
(3.17)

The covariance of the relativity-based estimate and the experience rate for the second layer is 

given as follows: 

௥௘௟ෞߤሺݒ݋ܥ , ௕௖ෞߤ ሻ   ൌ   ൬ ௣ܸ௥௢௦௣௘௖௧௜௩௘

௛ܸ௜௦௧௢௥௜௖௔௟
൰

ଶ

· ሺܰሻܧ · ଵܮ · ଶሻݎ݁ݕܽܮሺܧ ·
଴ሻߙ|ଶݎ݁ݕܽܮሺܧ

଴ሻߙ|ଵݎ݁ݕܽܮሺܧ
. 

(3.18)

The severity used in the exposure rate and the layer relativity are closely dependent and may be 

treated as perfectly correlated. 

ݒ݋ܥ ቆܧሺݎ݁ݕܽܮଶ|ߙ଴ሻ,
଴ሻߙ|ଶݎ݁ݕܽܮሺܧ
଴ሻߙ|ଵݎ݁ݕܽܮሺܧ

ቇ ൌ ඨܸܽݎ൫ܧሺݎ݁ݕܽܮଶ|ߙ଴ሻ൯ · ݎܸܽ ቆ
଴ሻߙ|ଶݎ݁ݕܽܮሺܧ
଴ሻߙ|ଵݎ݁ݕܽܮሺܧ

ቇ .
(3.19)

The bases to which these exposure rating factors apply are independent, so that the covariance 

between the exposure rate and the relativity-based estimate is as follows: 

௘௫௣௢௦ෟߤ൫ݒ݋ܥ , ௥௘௟ෞߤ ൯   

ൌ  ො݊଴
ଶ · ଴ሻߙ|ଵݎ݁ݕܽܮሺܧ · ඨܸܽݎ൫ܧሺݎ݁ݕܽܮଶ|ߙ଴ሻ൯ · ݎܸܽ ቆ

଴ሻߙ|ଶݎ݁ݕܽܮሺܧ
଴ሻߙ|ଵݎ݁ݕܽܮሺܧ

ቇ . 

(3.20)

From the formulas given above, it is interesting to note that we can calculate all of the needed 

covariances without introducing any additional correlation assumptions into the model.  All of the 

correlation is implied directly by the structure of the layers themselves. 

The variance around the relativity-based estimate can also be estimated. 

௥௘௟ෞߤ ሺݎܸܽ ሻ   ൌ  ൬ ௣ܸ௥௢௦௣௘௖௧௜௩௘

௛ܸ௜௦௧௢௥௜௖௔௟
൰

ଶ

· ൝ܧሺܰሻ · ଵݎ݁ݕܽܮሺܧ
ଶ|ߙ଴ሻ · ቆ

଴ሻߙ|ଶݎ݁ݕܽܮሺܧ

଴ሻߙ|ଵݎ݁ݕܽܮሺܧ
ቇ

ଶ

          

                   ൅൫ܧሺܰሻଶ · ଴ሻଶߙ|ଵݎ݁ݕܽܮሺܧ ൅ ሺܰሻܧ · ଵݎ݁ݕܽܮሺܧ
ଶ|ߙ଴ሻ൯

· ݎܸܽ ቆ
଴ሻߙ|ଶݎ݁ݕܽܮሺܧ
଴ሻߙ|ଵݎ݁ݕܽܮሺܧ

ቇቋ . 

(3.21)

                                                           
11 This formula is valid if the two layers are not overlapping – that is, the retention on the second layer is higher than the 
retention plus limit on the first layer. 
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As with the exposure rate, the variance of the relativity factor can be approximated via the “delta 

method.” 

ݎܸܽ ቆ
଴ሻߙ|ଶݎ݁ݕܽܮሺܧ

଴ሻߙ|ଵݎ݁ݕܽܮሺܧ
ቇ ൎ ଴ሻߙሺݎܸܽ · ൦

߲
଴ሻߙ|ଶݎ݁ݕܽܮሺܧ
଴ሻߙ|ଵݎ݁ݕܽܮሺܧ

߲ ଴ߙ
൪

ଶ

. 

(3.22)

For the Pareto distribution, the relativity ratio is calculated as follows: 

 
଴ሻߙ|ଶݎ݁ݕܽܮሺܧ

଴ሻߙ|ଵݎ݁ݕܽܮሺܧ
ൌ ቊ

ܴଶ
ଵିఈబ െ ሺܴଶ ൅ ଶሻଵିఈబܮ

ܴଵ
ଵିఈబ െ ሺܴଵ ൅ ଵሻଵିఈబܮ

ቋ . 
(3.23)

The derivative with respect to the Pareto alpha is easily calculated. 

߲ 
଴ሻߙ|ଶݎ݁ݕܽܮሺܧ
଴ሻߙ|ଵݎ݁ݕܽܮሺܧ

଴ߙ ߲
  

ൌ   
଴ሻߙ|ଶݎ݁ݕܽܮሺܧ
଴ሻߙ|ଵݎ݁ݕܽܮሺܧ

· ቈቊ
݈݊ሺܴଵሻ · ܴଵ

ଵିఈబ െ ݈݊ሺܴଵ ൅ ଵሻܮ · ሺܴଵ ൅ ଵሻଵିఈబܮ

ܴଵ
ଵିఈబ െ ሺܴଵ ൅ ଵሻଵିఈబܮ

ቋ         

െ  ቊ
݈݊ሺܴଶሻ · ܴଶ

ଵିఈబ െ ݈݊ሺܴଶ ൅ ଶሻܮ · ሺܴଶ ൅ ଶሻଵିఈబܮ

ܴଶ
ଵିఈబ െ ሺܴଶ ൅ ଶሻଵିఈబܮ

ቋ቉ . 

(3.24)

The variance around the layer relativity is calculated below. 

Table 4  -  Variance around Relativity-based Rate 

Description Notation Value 

Expected Severity 500xs500 ܧሺݎ݁ݕܽܮଵ|ߙ଴ሻ 292,893 

Expected Severity 1Mxs1M ܧሺݎ݁ݕܽܮଶ|ߙ଴ሻ 207,107 

Layer Relativity 
଴ሻߙ|ଶݎ݁ݕܽܮሺܧ

଴ሻߙ|ଵݎ݁ݕܽܮሺܧ
 .7071 

Variance of Layer Relativity ܸܽݎ ቆ
଴ሻߙ|ଶݎ݁ݕܽܮሺܧ

଴ሻߙ|ଵݎ݁ݕܽܮሺܧ
ቇ .0120 

Variance of Relativity-based Rate ܸܽݎሺߤ௥௘௟ෞ ሻ 8.788E+10 

The covariance matrix for the three estimators is: 
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઱ ൌ   ቎
௘௫௣௢௦ෟߤ൫ݎܸܽ ൯ 0 ௘௫௣௢௦ෟߤ൫ݒ݋ܥ , ௥௘௟ෞߤ ൯

0 ௕௖ෞߤሺݎܸܽ ሻ ௕௖ෞߤሺݒ݋ܥ , ௥௘௟ෞߤ ሻ
௥௘௟ෞߤ൫ݒ݋ܥ , ௘௫௣௢௦ෟߤ ൯ ௥௘௟ෞߤሺݒ݋ܥ , ௕௖ෞߤ ሻ ௥௘௟ෞߤሺݎܸܽ ሻ

቏. 

(3.25)

The inverse of this covariance matrix provides the credibility weights for the three estimates of 

expected loss.  We calculate the inverse of the covariance matrix and then assign the credibility 

weights proportional to the row (or column) totals. 

As the example below shows, this final three-factor credibility estimator has a smaller variance 

than any of the three individual variances.  The resulting variance is also less than the variance from 

the two-factor credibility calculation (Table 3). 

 

Expos bc Relativity
Covariance 1.573E+11 0 3.790E+10
Matrix: 0 1.716E+11 7.322E+10

3.790E+10 7.322E+10 8.788E+10

Inverse: 7.580E-12 2.165E-12 -5.073E-12
2.165E-12 9.663E-12 -8.986E-12

-5.073E-12 -8.986E-12 2.105E-11

Column Total: 4.672E-12 2.843E-12 6.996E-12
Weights: 32.2% 19.6% 48.2%

Total Variance: 6.891E+10  

The credibility-weighted estimate is a weighted average of the three separate estimates. 

௖௪ෞߤ ൌ ଵݓ · ො݊଴ · ଴ሻߙ|ଶݎ݁ݕܽܮሺܧ

൅ ݓଶ · ௣ܸ௥௢௦௣௘௖௧௜௩௘

௛ܸ௜௦௧௢௥௜௖௔௟
· ෍ ଶ,௞ݎ݁ݕܽܮ

ே

௞ୀଵ

                                 

൅ ݓଷ · ൝ ௣ܸ௥௢௦௣௘௖௧௜௩௘

௛ܸ௜௦௧௢௥௜௖௔௟
· ෍ ଵ,௞ݎ݁ݕܽܮ

ே

௞ୀଵ

ൡ ·
଴ሻߙ|ଶݎ݁ݕܽܮሺܧ

଴ሻߙ|ଵݎ݁ݕܽܮሺܧ

 

(3.26)

This can be rearranged in the recursive form discussed earlier.  In this form, we see that a 

credibility weighting is performed between the exposure and experience rates for the first ($500,000 

xs $500,000) layer.  This credibility-weighted estimate for the first layer is then adjusted to the level 

of the second ($1,000,000 xs $1,000,000) layer using relativities, and that amount is weighted with 
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the experience rate for the second layer. 

௖௪ෞߤ ൌ ሺ1 െ ଶሻݖ · ቄሺ1 െ ଵሻݖ · ො݊଴ · ଴ሻߙ|ଵݎ݁ݕܽܮሺܧ                

൅ ݖଵ · ௣ܸ௥௢௦௣௘௖௧௜௩௘

௛ܸ௜௦௧௢௥௜௖௔௟
· ෍ ଵ,௞ݎ݁ݕܽܮ

ே

௞ୀଵ

ଶൡݓ  ·
଴ሻߙ|ଶݎ݁ݕܽܮሺܧ

଴ሻߙ|ଵݎ݁ݕܽܮሺܧ
 

൅ݖଶ · ௣ܸ௥௢௦௣௘௖௧௜௩௘

௛ܸ௜௦௧௢௥௜௖௔௟
· ෍ ଶ,௞ݎ݁ݕܽܮ

ே

௞ୀଵ

.              

 

(3.27)

If we had additional layers above the second layer, then this recursive procedure could be 

repeated. 

As a practical matter, the variances needed for the rigorous multi-factor model are not known 

with certainty.  Further, the pricing analyst may want to modify the weights based on other 

considerations such as data quality or potential changes in the underlying exposures that require 

expert judgment.  The recursive form can still be used with judgmentally selected weights as a 

systematic way to incorporate all of the information from the lower layers. 

4. RESULTS AND DISCUSSION 

We have seen that a minimum variance or “best” estimate of expected losses in an excess layer is 

one that makes use of all the available information from both experience and exposure rating 

models.  The combination of estimates from simple methods is conveniently performed in a linear 

credibility framework.  

The final procedure derived from this credibility framework starts with a lower excess layer and 

credibility weights it with a complement from industry sources.  The exposure distribution produces 

an expected layer relativity that can be applied to this lower layer to produce the complement for a 

second layer.  Higher layers are likewise estimated by climbing recursively up the tower of excess 

layers. 

This recursive procedure is grounded in credibility theory, but it also allows for a high degree of 

judgment as the analyst can adjust the credibility percentages for each step. 

Some outstanding questions left from this research are: 

 How can we improve on the estimate of the uncertainty in the exposure rating 

distribution? 
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 How can we include other sources of uncertainty, such as variability in trend, 

development or onlevel factors? 

 Is there an optimal way of dividing the layers so that the best of all possible credibility-

weighted averages is created? 

5. CONCLUSIONS 

The credibility procedure outlined in this paper should be useful for excess-of-loss reinsurance or 

other applications in which expected losses in excess layers need to be estimated.  While this 

procedure was not invented by the author, the grounding in linear credibility theory gives a sound 

theory for systematically estimating expected losses. 
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Deductibles, Policy Limits, and Reinsurance: 
A Case Study in Malaysia 

Noriszura Ismail, Ph.D., and Ansar Asnawi Ahmad Anuar 

Abstract 
In developing countries such as Malaysia, the availability of reinsurance arrangements provides several 
advantages to primary insurers, such as keeping their risk exposures at prudent levels by having large risk 
exposures reinsured by another company, meeting client requests for larger insurance coverage by having their 
limited financial sources supported by another company, and acquiring another company’s underwriting skills, 
experience and complex claim handling ability. These are essential considerations for primary insurers that wish 
to expand their insurance business and reduce the size of their loss exposure, especially in countries like 
Malaysia, where the number of primary insurers is large and the size of their resources is small. This paper aims 
to model the amount of insurance loss, to provide a range of deductibles and policy limits based on Loss 
Elimination Ratios (LER), to compute insolvency probabilities via linear loading and PH-Transform 
assumptions, to calculate Increased Limit Factors (ILF), to apply a frequency and severity approach to pricing 
excess-of-loss layers, and to assess the insolvency probability of a reinsurance treaty. In particular, the PH-
Transform assumption is applied throughout as a means of incorporating a risk load, thus lowering the 
insolvency probability of a single excess-of-loss layer as well as multiple layers of a reinsurance treaty. 
 
Keywords: Loss elimination ratio; insolvency probability; reinsurance; general insurance, PH-Transform. 

1. INTRODUCTION 

Reinsurance premiums in the Malaysian non-life insurance industry may be categorized into those 

ceded abroad and those ceded within Malaysia. In 1965 and 1975, for instance, reinsurance 

premiums ceded abroad were RM12 million and RM60 million, equivalent to 17% and 21% of 

written premiums respectively. These amounts increased to RM296 million and RM1223 million in 

1985 and 1995, equivalent to 24% and 27% of written premiums respectively, but decreased to 

RM957 million in 2005, equivalent to 10% of written premiums (Lee [9], Bank Negara Malaysia [1], 

Bank Negara Malaysia [2]). Figures 1-2 show the reinsurance premiums ceded abroad (1965-2005) in 

terms of volume and proportion of written premium. It should be noted that the currency of Ringgit 

Malaysia (RM) was pegged at RM3.80=USD1 on 2 September 1998 and shifted to a managed float 

against a basket of currencies as of 21 July 2005.  
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Figure 1: Volume of reinsurance premium ceded abroad (RM million) 
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Figure 2: Proportion of reinsurance premium ceded abroad (% of written premium) 

 

Based on the proportion of written premiums, there was a marked deterioration in 1985 and 

1995 in terms of domestic retention compared to 1965 and 1975, due to the fact that Malaysia never 

imposed restrictions on foreign exchange outflows for reinsurance purposes. For most companies, 

their limited financial resources and expertise in underwriting and handling complex claims increased 

their dependence upon outside reinsurers, leading to the issue of unsatisfactory domestic retention 

of premium (Lee [9]). The level of retention improved in 2005, however, largely due to the 

continuous efforts taken by regulatory bodies and industry players, especially in encouraging 

domestic insurers and reinsurers to absorb higher proportions of large risks. 

Over the past decade, there were many discussions on trade liberalization not only in 

Malaysia but also in the rest of the world, involving the removal of trade barriers or easing of 

regulations that inhibit the workings of the free market (Lau [8]). In March 2001, the central bank of 
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Malaysia, Bank Negara Malaysia (BNM), launched the Financial Sector Masterplan (FSMP). This 

fairly extensive ten-year road map for the banking and insurance sectors includes specific 

recommendations that are to be implemented in phases over a ten-year period to deregulate and 

liberalize the country’s financial industry (Bank Negara Malaysia [3]). Even though the local tariff on 

motor and fire insurance has served its purpose well since its implementation, it is now considered 

outdated and not reflective of market realities (Lau [8]). The tariff mechanism specified floor rates 

for various risk classes, but sometimes resulted in cross-subsidization among risk classes, and also 

within risk classes, whereby better risks subsidized the worse ones (Cummins [9]). In addition, 

limitations on deductibles and limits have not been appropriately revised to reflect inflation and 

other economic changes (Rao [10]). 

This study aims to model the amount of insurance loss, to provide a range of deductibles 

and policy limits based on Loss Elimination Ratios (LER), to compute insolvency probabilities via 

linear loading and PH-Transform assumptions, to calculate Increased Limit Factors (ILF), to apply a 

frequency and severity approach to pricing excess-of-loss layers, and to assess the insolvency 

probability of a reinsurance treaty. In particular, the PH-Transform assumption is applied 

throughout as a means of incorporating a risk load, thus lowering the insolvency probability of a 

single excess-of-loss layer as well as multiple layers of a reinsurance treaty. 

Several studies focusing on reinsurance, deductibles and policy limits have been carried out 

in the insurance and actuarial literature. Zhuang [14] established orderings of optimal allocations of 

policy limits and deductibles with respect to the distortion of risk measures; Hua and Cheung [9] 

applied the equivalent utility premium principle and studied the worst allocations of policy limits and 

deductibles; Dimitriyadis and Oney [5] modeled loss distributions using the Allianz tool pack, 

derived premiums at different levels of deductibles, and computed ruin probabilities; and Wang [12] 

introduced the Proportional Hazard (PH) Transform and applied this method to price ambiguous 

risks, excess-of-loss coverage, increased limits, risk portfolios and reinsurance treaties.   

In this study, the modeling of loss amount, the computation of insolvency probability and 

the pricing of excess-of-loss layers are based on loss data obtained from one of the leading insurers 

in Malaysia. The approach suggested in this study can be considered to be fair, as it serves to lower 

insolvency probability. The suggested approach can also be considered to be efficient, since it can be 

computed in a straightforward manner using R programming. 
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2. LOSS MODEL 

2.1 Maximum Likelihood Method 

Claims data on health insurance’s critical illnesses was obtained from one of the leading insurers in 

Malaysia, providing information on gender (male and female) and age of policyholders (below 25, 

25-50 and above 50) in year 2008. In particular, the loss data of sample size n =192 for female aged 

25-50 is fitted using a maximum likelihood method. Preliminary analysis has been conducted prior to 

the fitting procedure to ensure that the sample data is trended and does not contain any anomalies 

or outliers.  

 The likelihood function for complete individual data is 

            



n

i
ixfL

1

)|()(  ,                      (1) 

where )|( ixf  denotes the probability density function (p.d.f.) with parameters k ,...,, 21 . 

 The maximum likelihood estimators are obtained by maximizing the
t
log likelihood function: 

          




n

i
ixfL

1

)|(ln)(ln  .            (2) 

 Table 1 shows the estimated parameters and the log likelihood of several parametric 

distributions fitted on the amount of loss, sorted by decreasing values of log-likelihood within the 

number of parameters. The best models for one-parameter, two-parameter and three-parameter 

distributions are selected by choosing the largest value of the log likelihood function, )(ln L .  

2.2 Model Selection 

The next step to select the best model is to perform the Kolmogorov-Smirnov (K-S) and Anderson-

Darling (A-D) tests. The K-S statistical test is defined as (Klugman et al. [7]) 

                 *max  ( ) ( ) ,                1, 2, ... , t x u n i iD F x F x i n                            (3) 

where *( )iF x  denotes the parametric cumulative distribution function (c.d.f.), and ( )n iF x  the 

empirical c.d.f. evaluated at ix  respectively. The best model is chosen by selecting the lowest D . 
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Table 1: Estimated parameters  

Parametric 
distribution  

Number of 
parameters

Estimated 
parameters    

)(ln L  

    
Exponential 1 0.000025  

 
-2,207 

Best one-parameter model 
Inverse exponential 1 8582.61  -2,349 
    
    
Gamma 2 4637.1  

57.279,26  
-2199.9 

Best two-parameter model 
Weibull 2 46.256,41  

2401.1  
-2200.4 

 
Loglogistic 2 99.628,29  

9801.1  
-2,205 

 
Pareto 2 3.026,350  

8929.9  
-2,211 

 
Inverse Paralogistic 2 54.728,20  

4871.1  
-2,219 

 
Lognormal 2 1786.10  

0639.1  
-2,227 

 
Inverse Pareto 2 44.487,13  

8890.1  
-2,243 

 
Inverse Weibull 2 71.301,14  

6626.0  
-2,291 

 
Inverse Gamma 2 5573.0  

70.782,4  
-2,321 

 
Inverse Gaussian 2 16.607,8  

000,000,6  
-2,322 

 
    
    
Burr 3 43.426,86  

5169.1  
7783.3  

-2,197 
Best three-parameter model 

 
 

Generalized Pareto 3 4.790,731  
5305.1  

1434.30  

-2,200 
 
 

Transformed Gamma 3 96.270,30  
0664.1  
3183.1  

-2,200 
 
 

Inverse Transformed 
Gamma 

3 
 

12108   
1684.0  

3012.27  

-2,238 
 
 

    

 



Deductibles, Policy Limits, and Reinsurance: A Case Study in Malaysia 

Casualty Actuarial Society E-Forum, Winter 2011-Volume 2 6 

 The A-D statistical test, defined as the weighted average of the squared differences of the 

empirical and parametric c.d.f.s, emphasizes the goodness of fit of the tail over the middle of 

distribution (Klugman et al. [7]), 

         

2 2
1

0

2
1

1

*( ) (1 ( )) ln(1 *( )) ln(1 *( ))

        ( ) ln( *( )) ln( *( )) , 

k

n j j j
j

k

n j j j
j

A nF u n F y F y F y

n F y F y F y







        

   




                    (4)            

where uyyyy kk  110 ...  denote the unique non-censored data, *( )jF y  the parametric 

c.d.f. and ( )n jF y  the empirical c.d.f. The best model is chosen by selecting the lowest  2A .
 

 Finally, the Schwarz Bayesian Criterion (SBC) penalizes models having a greater number of 

parameters. The SBC is defined as (Klugman et al. [7]) 

           ln ln
2

r
SBC L n  ,                              (5) 

where r  denotes the number of parameters and n  the sample size. The best model is chosen by 

selecting the highest
 
SBC. Table 2 shows the results of the K-S, A-D and SBC tests carried out on 

loss data. The best-fitting distribution for the loss amount is Burr with parameters 86,426.43  , 

1.5169   and 3.7783   and thus, the following discussion will use this distribution. 

 

Table 2: Results of K-S, A-D and SBC tests  

Parametric 
distribution 

Numbers of 
parameters 

K-S test A-D test SBC 

     
Exponential 1 0.18655 389.31 -2209.63 
Gamma 2 0.11098 384.68 -2205.16 
Burr 3 0.09454 383.87 -2204.40 
     

 

 

3. LOSS ELIMINATION RATIO (LER) 

The Loss Elimination Ratio (LER) is the ratio of the decrease in expected loss for an insurer writing 

a policy with a deductible and/or policy limit to the expected loss for an insurer writing a full-

coverage policy. 
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3.1 Deductible Policy  

When an insurer introduces a deductible to a policy, say at the value of d , the loss retained by the 

insured may be represented by the random variable Y , where 

                                                     








dXd

dXX
Y

,

,
   ,                                                (6) 

whereas the loss covered by the insurer and paid as claim may be represented by the random 

variable W , where 

                                                   








dXdX

dX
W

,

,0
  ,                                                   (7) 

so that X Y W  . 

Therefore, in terms of an insurer’s perspective, the Loss Elimination Ratio (LER) is equal to 

             
)(

);(

XE

dXE
LER  ,                              (8) 

where 

         
0

( ; ) ( ) ( )
d

d

E X d xf x dx d f x dx


   ,   

and 

0 0

( ) ( ) ( )E X xf x dx S x dx
 

   , 

where ( )S x  denotes the survival function, which is equal to 1 ( )F x . 

Table 3 shows the LER, written in the currency of Ringgit Malaysia (RM), for several 

deductible values, assuming individual losses follow a Burr distribution with parameters 

43.426,86 , 5169.1  and 7783.3 . As an example, the LER at d RM10,000  is 0.25, 

implying that 25% of insurer’s losses is eliminated by introducing a deductible of RM10,000. 

Appendix 1 shows the calculation of LER using R programming with the assistance of the actuar 

package. 
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Table 3: Values of d  and LER 

Burr distribution, ( ) 38,131E X RM  

 d (RM) ( ; )E X d  (RM) LER LER
    
0 0 0.000 - 

1000 998.27 0.026 0.026 
2000 1990.13 0.052 0.026 
3000 2972.73 0.078 0.026 
4000 3944.03 0.103 0.025 
5000 4902.40 0.129 0.026 
6000 5846.51 0.153 0.024 
7000 6775.27 0.178 0.025 
8000 7687.74 0.202 0.024 
9000 8583.16 0.225 0.023 
10000 9460.91 0.248 0.023 
11000 10320.45 0.271 0.023 
12000 11161.40 0.293 0.022 
13000 11983.42 0.314 0.021 
14000 12786.30 0.335 0.021 
15000 13569.87 0.356 0.021 
16000 14334.05 0.376 0.020 
17000 15078.82 0.395 0.019 
18000 15804.21 0.414 0.019 
19000 16510.29 0.433 0.019 
20000 17197.19 0.451 0.018 

    

 

 

The graph of LER vs. d  is shown in Figure 3, indicating that the ratio of eliminated loss is 

directly proportional to the deductible. However, after a certain point, a higher deductible can no 

longer provide a significant proportion of eliminated loss to an insurer. 

In practice, the criteria for deductible may differ depending on the requirements and 

preferences of each insured. Nevertheless, an insurer may use the values shown in Table 3 and the 

graph shown in Figure 3 to indicate whether the deductible proposed by the insured provides a 

significant proportion of eliminated losses to the insurer. The insurer should also recognize that a 

high deductible is not attractive to policyholders since they have to retain a large portion of losses on 

their own. 
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Figure 3: Graph of LER vs. deductible 

 

 

3.2 Policy Limit 

When an insurer introduces a policy limit in its coverage, say at the value of u , the loss covered by 

the insurer and paid as claim may be represented by the random variable K , where 

                                                        








uXu

uXX
K

,

,
,                                                     (9) 

whereas the loss covered by a reinsurer may be represented by the random variable L , where 

                                                     








uXuX

uX
L

,

,0
 ,                                                 (10) 

so that X K L  . 

 

Therefore, in terms of an insurer’s perspective, the Loss Elimination Ratio (LER) is 

         
)(

);()(

XE

uXEXE
LER


 ,                    (11) 

where 

                   
0

( ; ) ( ) ( )
u

u

E X u xf x dx u f x dx


   ,          
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and 

            
0 0

( ) ( ) ( )E X xf x dx S x dx
 

   .                                                   

Table 4 shows the LER for several policy limit values, assuming individual losses follow a 

Burr distribution with parameters 43.426,86 , 5169.1  and 7783.3 .  

 

Table 4: Values of u and LER  

Burr distribution,  ( ) 38,131E X RM  
u  (RM) ( ; )E X u  (RM) LER LER

    
40000 27332.77 0.283 -0.010 
41000 27686.41 0.274 -0.009 
42000 28028.2 0.265 -0.009 
43000 28358.49 0.256 -0.009 
44000 28677.63 0.248 -0.008 

    
60000 32528.78 0.147 -0.005 
61000 32705.46 0.142 -0.005 
62000 32876.09 0.138 -0.004 
63000 33040.89 0.133 -0.005 
64000 33200.05 0.129 -0.004 

    
80000 35123.51 0.079 -0.002 
81000 35212.36 0.077 -0.002 
82000 35298.28 0.074 -0.003 
83000 35381.36 0.072 -0.002 
84000 35461.7 0.07 -0.002 

    

 

 

As an example, the LER at u =RM60,000 is 0.15, implying that 15% of losses can be 

eliminated by introducing a policy limit of RM60,000. The graph of LER vs. u  is shown in Figure 4, 

indicating that the ratio of eliminated loss is inversely proportional to the limit. However, after a 

certain point, a higher limit can no longer provide a significant proportion of eliminated loss to an 

insurer. 
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Figure 4: Graph of LER vs. policy limit 

 

 

In practice, the criteria for policy limit may also differ depending on the requirements and 

preferences of both insurers and reinsurers. Nevertheless, an insurer may use the values shown in 

Table 4 and the graph illustrated in Figure 4 to indicate whether the proposed limit provides a 

significant proportion of eliminated losses.  

 

4. LINEAR LOADING ASSUMPTION  

4.1 Insolvency Probability of Deductible Policy 

When an insurer introduces a policy with a deductible, at the value of d , the loss covered by insurer 

and paid as a claim may be represented by the random variable W as shown in equation (7). For an 

individual risk model, the aggregate claims of a deductible policy, with a deductible of d , may be 

defined as 

            nWWWS  ...21 ,               (12) 

where nWWW ,...,, 21  denote independent and identically distributed (i.i.d.) random variables. 

 The conditional mean and variance of iW , respectively, are           
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                       ( | 0)i WE W X                                  (13) 

and 

           2( | 0)i WVar W X   ,                          (14) 

where the probability of loss greater than zero or equivalently the probability of incurring a claim is 

equal to 

                Pr( 0)X q  .                          (15) 

 Therefore, for a deductible policy, )0|( XWE  and )0|( 2 XWE  can be written as 

               ( | 0) ( ) ( ) ( ) ( ; )W

d

E W X x d f x dx E X E X d


                  (16) 

and 

               

2 2 2 2( | 0) ( ) ( ) ( ) (( ; ) ) 2 ( ) 2 ( ; )
d

E W X x d f x dx E X E X d dE X dE X d


       ,       (17) 

so that 

                  2 2 2( | 0) ( ( | 0))W E W X E W X     .                            (18) 

 Finally, the distribution of aggregate claims, S , for a single portfolio of risk in an individual 

risk model may be estimated by applying Central Limit Theorem (CLT). In particular, if the number 

of policies, n , is large, the distribution of S  may be estimated by a normal distribution with mean,  

               qnSE WWS   )(, ,               (19) 

and variance, 

                      
2 2 2

, ( ) ( (1 ))S W W WVar S n q q q      .                    (20) 

 The same approach can also be applied to multiple portfolios of risks, whereby equation (19) 
is rewritten as 

i
iiWiWS qnSE ,, )(   where i  denotes the i th portfolio. Equivalently, equation 

(20) can be rewritten as 2 2 2
, , ,( ) ( (1 ))S W i W i i W i i i

i

Var S n q q q      . 

  If the premium is calculated using a linear loading assumption, i.e., premium= )1(,  WS , 

where   denotes the relative loading, a simple definition of the probability of insolvency for a single 
portfolio of risk may be expressed as the probability of having aggregate claims larger than aggregate 
premiums, or, equivalently,  

               , , , ,
,

, , ,

(1 )
Pr( (1 ) ) Pr 1 PrS W S W S W S W

S W
S W S W S W

S
S Z

    
  

  
     

            
   

.          (21) 
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It should be noted that when  =0, the premium is equivalent to the expected aggregate claims of 

policies with a deductible at d . The linear loading assumption indicates that the relative loading,  , 

is fixed as a constant proportion of ,S W  regardless of any values of d . 

Tables 5-7 show the values of the insolvency probability for several values of  , n  and q , 

assuming the amount of loss follows Burr with parameters 43.426,86 , 5169.1 , and 

7783.3 .  

The graphs of insolvency probability vs. deductible for several values of d ,  , n , and q  are 

shown in Figures 5-7, indicating that under the assumption of linear loading, the insolvency 

probability increases as the deductible increases. One possible justification for this increase in the 

insolvency probability can be explained by observing the values of WS ,  and WS ,  displayed in 

Table 5. Even though both WS ,  and WS ,  decrease when the deductible increases, WS ,  decreases 

faster than WS , , causing the quantity 1
, ,( )S W S W    to decrease. Based on equation (21), the 

probability of insolvency is therefore expected to increase. 

In addition, the graphs in Figures 5-7 also show that the insolvency probability: 

 decreases as the relative loading,  , increases 

 decreases as the probability of incurring claim, q , increases 

 decreases as the number of policies, n , increases 

When the probability of incurring a claim or the number of policies increases, WS ,  

increases faster than WS , , causing the quantity 1
, ,( )S W S W    to increase. Therefore, based on 

equation (21), the probability of insolvency is expected to decrease.  

Appendix 2 shows the calculation of the insolvency probability for a deductible policy using 

R programming with the assistance of the actuar package, assuming the amount of loss follows a 

Burr distribution. 
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Table 5: Values of d and insolvency probability ( 3000n , 2.0q ) 

 
d  ,S W ,S W  0.25   0.20   0.15   0.10   0.05   0.00   

(RM) (RM) (RM) Insolvency 
probability

 Insolvency 
probability

 Insolvency 
probability

 Insolvency 
probability

 Insolvency 
probability

 Insolvency 
probability

 

         
5,000 19,937,056 1,071,492 0.000002 0.000099 0.002627 0.031395 0.176097 0.50 
10,000 17,201,950 998,232 0.000008 0.000284 0.004871 0.042422 0.194448 0.50 
15,000 14,736,570 929,117 0.000037 0.000757 0.008677 0.056360 0.213877 0.50 
20,000 12,560,178 864,187 0.000140 0.001826 0.014624 0.073055 0.233703 0.50 

         

 

Table 6: Values of d and insolvency probability ( 3000n , 15.0 ) 

 
d  0.40q   0.30q   0.20q   
 

,S W
 ,S W

 
Insolvency 
probability

 ,S W
 ,S W

 
Insolvency 
probability

 ,S W
 ,S W

 
Insolvency 
probability

 

          
5,000 39,874,112 1,425,201 0.000014 29,905,584 1,273,880 0.000215 19,937,056 1,071,492 0.002627 
10,000 34,403,900 1,340,023 0.000059 25,802,925 1,191,941 0.000583 17,201,950 998,232 0.004871 
15,000 29,473,141 1,257,672 0.000220 22,104,856 1,113,820 0.001460 14,736,570 929,117 0.008677 
20,000 25,120,356 1,178,332 0.000692 18,840,267 1,039,610 0.003280 12,560,178 864,187 0.014624 
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Table 7: Values of d and insolvency probability ( 15.0 , 2.0q ) 

 
d  3000n   2000n   1000n   
 

,S W
 ,S W

 
Insolvency 
probability

 ,S W
 ,S W

 
Insolvency 
probability

 ,S W
 ,S W

 
Insolvency 
probability

 

          
5,000 19,937,056 1,071,492 0.002627 13,291,371 874,869 0.011338 6,645,685 618,626 0.053546 
10,000 17,201,950 998,232 0.004871 11,467,967 815,053 0.017406 5,733,983 576,329 0.067801 
15,000 14,736,570 929,117 0.008677 9,824,380 758,621 0.026035 4,912,190 536,426 0.084785 
20,000 12,560,178 864,187 0.014624 8,373,452 705,606 0.037533 4,186,726 498,939 0.104071 

          

 

 

 
Figure 5: Graph of insolvency probability vs. deductible ( 3000n , 2.0q ) 
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Figure 6: Graph of insolvency probability vs. deductible ( 3000n , 15.0 ) 

 

 

 
Figure 7: Graph of insolvency probability vs. deductible ( 15.0 , 2.0q ) 
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4.2 Insolvency Probability of Policy Limit 

When an insurer introduces a policy limit, say at the value of u , the loss covered by insurer and paid 

as a claim may be represented by the random variable K  as shown in equation (9). For an individual 

risk model, the aggregate claims of a policy with limit u  may be defined as 

         nKKKS  ...21 ,               (22) 

where nKKK ,...,, 21  denote independent and identically distributed (i.i.d.) random variables. 

 The conditional mean and variance of iK  respectively are 

                     ( | 0)i KE K X   ,                               (23) 

and 

         2( | 0)i KVar K X   .                          (24) 

 Therefore, for a policy limit, )0|( XKE  and )0|( 2 XKE  can be written as 

         
0

( | 0) ( ) ( ) ( ) ( ; )K

u

E K X xf x dx x u f x dx E X u
 

                               (25) 

and 

                      

2 2 2 2

0

( | 0) ( ) ( ) ( ) (( ; ) )
u

E K X x f x dx x u f x dx E X u
 

      ,                           (26) 

so that 

        2 2 2( | 0) ( ( | 0))K E K X E K X     .                                         (27) 

 The distribution of S , by applying Central Limit Theorem (CLT), may be estimated by 

normal distribution with mean,  

           qnSE KKS   )(, ,               (28) 

and variance, 

                  
2 2 2

, ( ) ( (1 ))S K K KVar S n q q q      .              (29) 

 If the premium is calculated using a linear loading assumption, i.e. premium= )1(,  KS , 

the probability of insolvency for a single portfolio of risk may be equated as the probability of 

having aggregate claims larger than aggregate premiums, or, equivalently,  

         
, , , ,

,
, , ,

(1 )
Pr( (1 )) Pr 1 PrS K S K S K S K

S K
S K S K S K

S
S Z

    
  

  
     

            
   

.          (30) 
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It should be noted that when  =0, the premium is equivalent to the expected aggregate claims of 

policies with a policy limit at u . The linear loading assumption indicates that the relative loading,  , 

is fixed as a constant proportion of ,S K  regardless of any values of u . 

Tables 8-10 show the values of the insolvency probability for several values of u ,  , n  and 

q , assuming the amount of loss follows Burr with parameters 43.426,86 , 5169.1  and 

7783.3 .  

The graphs of insolvency probability vs. policy limit for several values of  , n  and q  are 

shown in Figures 8-10, indicating that under the assumption of linear loading, the insolvency 

probability increases as the policy limit increases. Based on values of ,S K  and ,S K  displayed in 

Table 8, even though both ,S K  and ,S K  increase when the limit increases, ,S K  increases faster 

than ,S K  causing the quantity 1
, ,( )S K S K    to decrease. Based on equation (30), the probability of 

insolvency is expected to increase. 

In addition, the graphs in Figures 8-10 also show that insolvency probability 

 decreases as the relative loading,  , increases; 

 decreases as the probability of incurring claim, q , increases; and 

 decreases as the number of policies, n , increases. 

When the probability of incurring a claim or the number of policies increases, ,S K  

increases faster than ,S K  causing the quantity 1
, ,( )S K S K    to increase. Therefore, based on 

equation (30), the probability of insolvency is expected to decrease.  
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Table 8: Values of u and insolvency probability ( 3000n , 2.0q ) 

 
u  ,S K ,S K  0.25   0.24   0.23   0.22   0.21   

(RM) (RM) 
 

(RM) 
 

Insolvency 
probability 

Insolvency 
probability

 Insolvency 
probability

 Insolvency 
probability

 Insolvency 
probability

 

        
40,000 16,399,665 674,696 6.13E-10 2.71E-09 1.13E-08 4.46E-08 1.66E-07 
60,000 19,517,266 849,996 4.72E-09 1.79E-08 6.42E-08 2.19E-07 7.11E-07 
80,000 21,074,104 956,995 1.84E-08 6.28E-08 2.04E-07 6.34E-07 1.88E-06 
100,000 21,866,758 1,022,471 4.48E-08 1.43E-07 4.35E-07 1.27E-06 3.54E-06 
        

 

Table 9: Values of u and insolvency probability ( 3000n , 15.0 ) 

 
u  0.40q   0.30q   0.20q   
 

,S K
 ,S K  Insolvency 

probability
 ,S K

 ,S K  Insolvency 
probability

 ,S K
 ,S K

 
Insolvency 
probability

 

          
40,000 32,799,329 855,061 0.0000000 24,599,497 784,592 0.0000013 16,399,665 674,696 0.0001332
60,000 39,034,532 1,091,347 0.0000000 29,275,899 994,238 0.0000050 19,517,266 849,996 0.0002863
80,000 42,148,208 1,239,193 0.0000002 31,611,156 1,123,712 0.0000122 21,074,104 956,995 0.0004780
100,000 43,733,516 1,331,212 0.0000004 32,800,137 1,203,592 0.0000218 21,866,758 1,022,471 0.0006685

          

 

 

 

 



Casualty Actuarial Society E-Forum, Winter 2011-Volume 2 20 

Table 10: Values of u and insolvency probability ( 15.0 , 2.0q ) 

 
u  3000n   2000n   1000n   

(RM) 
,S K

 
(RM) 

,S K
 

(RM)
 

Insolvency 
probability

 ,S K
 ,S K  Insolvency 

probability
 ,S K

 ,S K
 

Insolvency 
probability

 

          
40,000 16,399,665 674,696 0.000133 10,933,110 550,887 0.001456 5,466,555 389,536 0.017644 
60,000 19,517,266 849,996 0.000286 13,011,511 694,019 0.002460 6,505,755 490,746 0.023376 
80,000 21,074,104 956,995 0.000478 14,049,403 781,383 0.003498 7,024,701 552,521 0.028255 
100,000 21,866,758 1,022,471 0.000668 14,577,839 834,844 0.004406 7,288,919 590,324 0.032006 

          

 

 

 
Figure 8: Graph of insolvency probability vs. policy limit ( 3000n , 2.0q ) 
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Figure 9: Graph of insolvency probability vs. policy limit ( 3000n , 15.0 ) 

 

 

 
Figure 10: Graph of insolvency probability vs. policy limit ( 15.0 , 2.0q ) 
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5. PH-TRANSFORM ASSUMPTION 

The determination of expected loss or mean severity based on the Proportional Hazard Transform 

(PH-Transform) assumption introduced by Wang [12] may be used as an alternative to reduce the 

probability of insolvency at a higher deductible or policy limit. In particular, the PH-Transform 

assumption incorporates an “appropriate” risk load in the severity distribution at a higher deductible 

or policy limit, and thus allows the probability of insolvency to be lower.  

  The mean severity under the PH-Transform assumption can be calculated as (Wang [12]-

[13])  

             
0

( ) ( ( ))  ,              0 1rH X S x dx r


   ,                                    (31) 

where r  denotes the index of ambiguity degree. The PH-mean shown in equation (31) represents a 

risk-adjusted premium and is quite sensitive to the choice of r . Index r  can be assigned to the level 

of confidence in the estimation of loss, where a lower value of r  implies a more ambiguous 

situation. For example, a non-ambiguous scenario for the best estimate could occur when there is 

little ambiguity regarding the best estimate of the severity distribution, such as when all experts agree 

with confidence in the estimate, whereas an ambiguous scenario could occur when there is 

considerable ambiguity regarding the best estimate of the severity distribution, such as when experts 

disagree and have little confidence in such estimate. From a broader perspective, examples of 

conditions contributing to greater ambiguity include uncertainty of the underlying loss distribution, 

incomplete information, insufficient data, changes in claim generating mechanisms, extra expenses 

associated with risk-sharing transactions, and difference in local market climates due to differences 

in geographic areas and/or lines of insurance (Wang [11]). 

 The PH-Transform can also be applied using subjective guidelines for the error of 

estimation; an actuary may construct his own table for index r  to reflect different levels of 

ambiguity. One such example is given by Wang [11]: 
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Table 11: Ambiguity level and index r  

Ambiguity level Index r  
  
Slightly ambiguous 0.96 – 1.00 
Moderately ambiguous 0.90 – 0.95 
Highly ambiguous 0.80 – 0.89 
Extremely ambiguous 0.50 - 0.79 
  

Source: Wang [11] 

 

  In addition to the severity distribution, the PH-Transform assumption can be applied on the 

frequency distribution where appropriate. As an example, in pricing a reinsurance contract, the PH-

Transform can be applied separately on the severity and frequency distributions. The choice of r  

depends on the level of confidence in the estimate of claim severity and frequency. If the actuary has 

higher confidence in the estimate of claim frequency distribution but lower confidence in the 

estimate of claim severity distribution, he should chose a higher r  for claim frequency, say 0.95, and 

a lower r  for claim severity, say 0.85. For example, higher confidence for the frequency distribution 

and lower confidence for the severity distribution should be applied on types of insurance risks that 

provide considerable past data on the probability of occurrence but much uncertainty on the size of 

loss due to arbitrary court awards.  

5.1 Insolvency Probability of Deductible Policy 

The same approach may be used to find the expected loss of a deductible policy, 

            ( ) ( ( ))  ,              0 1r

d

H W S x dx r


   .                                    (32) 

where W  is defined as equation (7). 

 For example, assume that the amount of loss follows a Burr distribution with parameters 

( , , )   . The survival function is equal to 

           ( )S x
x



 



 

   
,                                    (33) 

and if the PH-Transform assumption is applied, the survival function also follows a Burr 

distribution, but with parameters ( , , )r   , 
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          ( )
r

S x
x



 



 

   
.                                          (34) 

Therefore, the equation of expected loss shown by equation (32) can also be rewritten as 

);()()( dXEXEWH  , this time assuming that the loss distribution follows a Burr distribution 

with parameters ( , , )r   . In addition, )(WH  can be rewritten as a function of )(WE , 

   )()1()( WEWH                 (35) 

where ( ) ( )  
d

E W S x dx


  , and    denotes the equivalent relative loading of a policy with deductible 

valued at d . 

Table 12 shows the expected loss, )(WH , and the equivalent relative loading,  , under the 

PH-Transform assumption for several values of r . For example, the expected loss with no loading, 

i.e. the expected loss at 1r , for a deductible valued at RM5,000 is equivalent to RM33,228. If the 

PH-Transform assumption with 0.9r   is applied, the expected loss is RM36,804 and the 

equivalent relative loading,  , is equal to 0.11.  

 

Table 12: Expected loss and relative loading (deductible policy) 

d  
(RM) 

Expected loss 

1r  
(RM) 

Expected loss
0.9r   

(RM) 

Relative 
loading 

Expected loss 

0.7r   
(RM) 

Relative 
loading 

      
5,000 33,228 36,804 0.11 47,426 0.43 
10,000 28,670 32,203 0.12 42,740 0.49 
15,000 24,561 28,013 0.14 38,382 0.56 
20,000 20,934 24,267 0.16 34,389 0.64 

      

 

 

Figure 11 shows the graph of expected loss vs. deductible for several values of r  under the 

assumption of PH-Transform. It can be seen that the expected loss calculated under the PH-

Transform ( 0.9r   and 0.7r  ) is higher than the basic expected loss  ( 1r ), implying that the 

expected loss is higher when the estimation of loss amount becomes more ambiguous. 
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Figure 11: Graph of expected loss vs. deductible 

 

 

If the probability of insolvency is calculated using equation (21), the linear loading 

assumption and PH-Transform assumption can be compared by using   as the relative loading for 

linear assumption and   as the relative loading for PH-Transform assumption. The main difference 

between the assumptions is that the relative loading for PH-Transform increases when d  increases, 

whereas for linear loading, the relative loading remains fixed when d  increases. Table 13 shows the 

values for insolvency probability for several values of   and   assuming 3000n  and 2.0q . 

Figure 12 shows the graph of insolvency probability vs. deductible under several linear loading and 

PH-Transform assumptions, also assuming 3000n  and 2.0q . It can be seen that the 

insolvency probability is lower for higher deductibles under the PH-Transform assumption. Thus, 

the PH-Transform can be used as an alternative to reduce the probability of insolvency at higher 

deductible values by incorporating an “appropriate” risk load in the severity distribution. 

Appendix 3 uses R programming with the assistance of the actuar package  to calculate the 

expected loss for a deductible policy under the PH-Transform assumption, assuming the amount of 

loss follows a Burr distribution. 
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Table 13: Insolvency probability for linear loading and PH-Transform 

d  Linear loading PH-Transform 
(RM)  0.9r 

   Insolvency    Insolvency   Insolvency 
  probability  probability  probability 
       

5,000 0.15 0.003 0.10 0.031 0.11 0.023 
10,000 0.15 0.005 0.10 0.042 0.12 0.017 
15,000 0.15 0.009 0.10 0.056 0.14 0.013 
20,000 0.15 0.015 0.10 0.073 0.16 0.010 

       

 

 

 

 
Figure 12: Graph of insolvency probability vs. deductible 

 

 

5.2 Insolvency Probability of Policy Limit 

Similar to a deductible policy, the expected loss of a policy limit under PH-Transform assumption 

can be calculated as 

        ( ) ( ( ))  ,              0 1
u

r

o

H K S x dx r   ,                                          (36) 
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where K  is defined as equation (9). 

If the amount of loss follows a Burr distribution with parameters ( , , )   , the equation of 

expected loss shown by equation (36) can be rewritten as );()( uXEKH  , this time assuming that 

the loss distribution follows a Burr distribution with parameters ( , , )r   . In addition, )(KH  can 

be rewritten as a function of )(KE , 

    )()1()( KEKH  ,               (37) 

where ( ) ( )  
u

o

E K S x dx  , and   denotes the equivalent relative loading of a policy with limit valued 

at u . 

Table 14 provides the expected loss, ( )H K , and the equivalent relative loading,  , under 

the PH-Transform assumption for several values of r  assuming 3000n  and 2.0q . Figure 13 

shows the graph of expected loss vs. policy limit for several values of r  under the PH-Transform 

assumption, also assuming 3000n  and 2.0q . It can be seen that the expected loss calculated 

under the PH-Transform assumption ( 0.8r   and 0.7r  ) is higher than the basic expected loss 

( 1r ), also implying that the expected loss is higher when the estimation of loss amount becomes 

more ambiguous.  

 

Table 14: Expected loss and relative loading (policy limit) 

u  
(RM) 

Expected loss 

1r   
(RM) 

Expected loss
0.8r   

(RM) 

Relative 
loading 

Expected loss 

0.7r   
(RM) 

Relative 
loading 

      
40,000 27,333 29,286 0.07 30,353 0.11 
60,000 32,529 36,068 0.11 38,106 0.17 
80,000 35,124 39,960 0.14 42,875 0.22 
100,000 36,445 42,228 0.16 45,849 0.26 

      
 

 



Deductibles, Policy Limits, and Reinsurance: A Case Study in Malaysia 

Casualty Actuarial Society E-Forum, Winter 2011-Volume 2 28 

 
Figure 13: Graph of expected loss vs. policy limit 

 

 

If the probability of insolvency is calculated using equation (30), the linear loading 

assumption and PH-Transform assumption can also be compared by using   as the relative loading 

for the linear assumption and   as the relative loading for PH-Transform assumption. The main 

difference between the assumptions is that the relative loading for PH-Transform increases when u  

increases, whereas for linear loading, the relative loading remains fixed when u  increases. Table 15 

shows the values for insolvency probability for several values of   and  .  

 

Table 15: Insolvency probability for linear loading and PH-Transform 

u  Linear loading PH-Transform 
(RM)  0.8r 

   Insolvency    Insolvency  Insolvency 
  probability  probability  probability 
       

40,000 0.15 0.0001 0.10 0.0075 0.07 0.0412 
60,000 0.15 0.0003 0.10 0.0108 0.11 0.0062 
80,000 0.15 0.0005 0.10 0.0138 0.14 0.0012 
100,000 0.15 0.0007 0.10 0.0162   0.16 0.0003 
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Figure 14 shows the graph of insolvency probability vs. policy limit under several linear 

loading and PH-Transform assumptions. It can be seen that the insolvency probability is lower for 

higher limits under the PH-Transform assumption. Thus, the PH-Transform can be used as an 

alternative to reduce the probability of insolvency at higher limit values by incorporating an 

“appropriate” risk load in the severity distribution. 

 
 

 
Figure 14: Graph of insolvency probability vs. policy limit 

 

 

 

6. EXCESS LAYERS OF A SINGLE RISK 

6.1 Pricing of Excess Layers 

In an insurance contract containing both a deductible d  and a policy limit u , the loss of a layer 

],( udd   of a risk X  can be defined by the random variable M , where 

0,

,

,

X d

M X d d X d u

u X d u


    
  

.              (38) 

Therefore, the average loss or mean severity of a layer ],( udd   may be written as 
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          ( ) ( ) 
d u

d

E M S x dx


  ,               (39) 

whereas under the PH-Transform assumption, the average loss of the same layer is 

                                                      ( ) ( ( ))  
d u

r

d

H M S x dx


  .               (40) 

If the amount of loss follows a Burr distribution with parameters ( , , )   , the equation of expected 

loss or mean severity shown by equation (39) can also be rewritten as 

         
);();()( dXEudXEME  ,              (41) 

whereas under the PH-Transform assumption, equation (40) can also be rewritten as 

         
);();()( dXEudXEMH  ,              (42) 

this time assuming the amount of loss follows a Burr distribution with parameters ( , , )r   .. 

For a single risk, the expected aggregate claims shown by equations (19) and (28) can be 

simplified into 

          qMESE )()(  ,               (43) 

i.e., assuming 1n . 

Under the PH-Transform assumption, the expected aggregate claim amount can also be 

calculated, and it is equal to 

                                                          ( ) ( )E S H M q .          (44) 

( )H M q  can also be rewritten as a function of ( )E M q , 

     ( ) (1 ) ( )H M q E M q  ,                                  (45) 

where   denotes the equivalent relative loading of a policy with deductible d  and limit u . 

Table 16 shows the expected aggregate claims and equivalent relative loading,  , for several 

values of d  and u  under the PH-Transform assumption, where 1n  , 1.0q  and the individual 

loss amount follows a Burr distribution with parameters 43.426,86 , 5169.1 , and 

7783.3 . For example, the expected aggregate claim amount or the premium with no loading, 

i.e., 1r , for layer (0, 5000], is equivalent to RM490.24. If the PH-Transform assumption with 

92.0r  is applied, the premium is RM491.01 and the equivalent relative loading is  =0.002. It can 

be observed from the table that the relative loading,  , under the PH-Transform assumption 

increases as the layer, ],( udd  , increases. 
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Figure 15 shows the graph of expected aggregate claim amount vs. layer for several values of 

the ambiguity index, r , assuming 1.0q  for the same loss distribution assumption. The graph 

shows that the expected aggregate claim amount decreases when the value of the layer, ],( udd  , 

increases. Equations (39) and (40) imply that the expected aggregate claim amount depends on the 

integrals of )(xS  and rxS )( . Since )(xS  is a decreasing function, the areas under the curves of 

)(xS  and rxS )(  are smaller as the value of ],( udd   is higher, which causes the expected 

aggregate claim amount to decrease. In addition, the graph also shows that the expected aggregate 

claim amount increases when the ambiguity index, r ,  decreases, indicating that the relative loading, 

 , is higher when the estimation of loss is more ambiguous.  

 

Table 16: Expected aggregate claim amount and relative loading (single risk, PH Transform) 

d  
(RM) 

ud   
(RM) 

Aggregate 
claims (RM) 

( 1)r   

Aggregate 
claims (RM) 
( 0.92)r   

Relative 
loading 

Aggregate 
claims (RM) 
( 0.90)r   

Relative 
loading 

       
0 5,000 490.24 491.01 0.002 491.20 0.002 

5,000 10,000 455.85 459.22 0.007 460.07 0.009 
10,000 15,000 410.90 417.38 0.016 419.02 0.020 
20,000 25,000 315.38 327.20 0.037 330.23 0.047 
40,000 45,000 165.32 180.61 0.092 184.65 0.117 
80,000 85,000 41.59 50.74 0.220 53.33 0.282 
100,000 105,000 21.68 27.87 0.285 29.67 0.368 
160,000 165,000 3.93 5.80 0.473 6.39 0.623 
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Figure 15: Graph of expected aggregate claim amount vs. layer (single risk, 1n  , 1.0q ) 

 

 

Appendix 4 shows the calculation of the expected aggregate claim amount for a single risk 

and a single layer using R programming with the assistance of the actuar package, assuming that the 

severity follows a Burr distribution. 

 

6.2 Increased Limit Factor (ILF) 

In liability insurance, a policy generally provides coverage up to a specified maximum amount that 

will be paid on any individual loss. In the U.S., it is general practice to publish rates for some 

standard limit, the “basic limit” (for example, USD$100,000), to which rates the increased limit 

factors (ILF) are applied to calculate increased limit rates (Wang [11]). In Malaysia, however, the 

practice has not been implemented; therefore, the ILF calculated in this study may be used as some 

indication or basis for possible basic and increased rates. 

If the basic limit is valued at RM100,000,  the ILF can be calculated as the expected loss at 

the increased limit divided by the expected loss at the basic limit, 

    
( ; )

( )
( ;100000)

E X a
ILF a

E X
 .               (46) 
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 If a risk load is to be included, equation (46) can be rewritten as 

                                            
( ; ) ( )

( )
( ;100000) (100000)

E X a RL a
ILF a

E X RL





,                               (47) 

where ( )RL a  and (100000)RL  denote the risk load. 

Under the PH-Transform assumption, equation (47) can be rewritten as 

                                                        
( ; )

( )
( ;100000)

H X a
ILF a

H X
 ,         (48) 

where ( ; )H X a  and ( ;100000)H X  denote the mean severity calculated under the PH-Transform 

assumption. Since );();( aXEaXH   and ( ;100000) ( ;100000)H X E X , the equivalent risk load 

for the PH-Transform assumption can be calculated. Table 17 shows the ILFs under the PH-

Transform assumption assuming that the loss distribution follows a Burr distribution with 

parameters 43.426,86 , 5169.1  and 7783.3 . However, the ILFs calculated appear to be 

extremely flat, indicating that larger claims may be under-represented by fitting a Burr distribution. 

Additional treatment is needed in this situation, such as considering a mixed distribution which may 

produce a more appropriate result for fitting large claims.  

Figure 16 shows the graph of ILF vs. a  under the PH-Transform assumption for the same 

severity distribution. The graph shows that the ILFs increase when a  increases but remain at a fixed 

value for large values of a . In addition, the graph shows that the ILFs increase when the ambiguity 

index, r , decreases, implying that the risk load is higher when loss estimation is more ambiguous. 

 

Table 17: ILF 

a  
(RM) 

( ; )E X a  
(RM) 

ILF 
without 

RL 

Risk Load 
(RM) 

( 0.9)r   

ILF 
( 0.9)r 

 

Risk Load 
(RM) 

( 0.85)r   

ILF 
( 0.85)r 

 
       

100,000 36,444.60 1.000000 2,678.91 1.000000 4,172.73 1.000000
200,000 37,960.89 1.041605 3,412.12 1.057497 5,401.38 1.067581
300,000 38,097.00 1.045340 3,535.89 1.064140 5,624.74 1.076431
400,000 38,120.88 1.045995 3,566.56 1.065534 5,683.37 1.078462
500,000 38,127.10 1.046166 3,576.64 1.065951 5,703.53 1.079112
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Figure 16: Graph of ILF vs. a  

    
 

Appendix 5 shows the calculation of ILFs using R programming with the assistance of actuar 

package, assuming that the amount of loss follows a Burr distribution. 

 
 
7. EXCESS-OF-LOSS FOR REINSURANCE TREATY 

In a developing country such as Malaysia, we seldom have a single local insurer covering a single 

large risk, especially in non-life insurance businesses. In practice, a large risk is usually divided into 

several excess-of-loss layers shared and insured by several local or multinational insurers or 

reinsurers. The pricing of layers, therefore, is crucial, especially in the process of dividing risk and 

pricing risk fairly for each insurer. In this paper, we would like to introduce an approach which may 

be considered as fair and efficient for pricing excess-of-loss layers of a reinsurance treaty. The 

fairness in pricing may be achieved by implementing a PH-Transform assumption whereby the 

insolvency probability is lowered. In addition, the efficiency in pricing may be obtained by using R 

programming with the actuar package to allow the pricing by layer to be computed with less effort.  

Let N  denote the random variable for claim frequency. Hence, the expected frequency can 

be calculated as 

     ,...1,0  ,)()(
0

 




kkSNE
k

,          (49) 
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whereas under a PH-Transform assumption, the expected frequency is equivalent to (Wang [11], 

            
0

( ) ( ( ))r

k

H N S k




 .               (50) 

 Let X  denote the random variable for loss severity. The expected severity is 





0

)()( dxxSXE , whereas under the PH-Transform assumption, the expected severity is equal to 

0

( ) ( ( ))rH X S x dx


  . 

By implementing both frequency and severity approaches, the expected aggregate claims can 

be calculated as 

           )()()( XENESE  ,                     (51) 

whereas under the assumption of PH-Transform, the expected aggregate claims is equal to 

    )()( XHNH .          (52) 

The same approach may also be implemented for calculating the price of several excess-of-

loss layers. The mean severity for layer ],( udd   is the same as equation (41) whereas under a PH-

Transform assumption, the mean severity for the same layer is the same as equation (42). Therefore, 

the expected aggregate claims is 

           )()()( MENESE  ,                     (53) 

whereas under a PH-Transform assumption, the expected aggregate claims is 

     )()( MHNH .          (54) 

If the amount of loss follows a Burr distribution with parameters ( , , )   , the calculation of 

)(MH  in equation (54) also follows a Burr distribution, this time with parameters ( , , )r   .  

If the claim frequency follows a Poisson distribution with parameter  , the aggregate claims, 

S , follow a compound Poisson distribution whereby the variance of aggregate claims can be written 

as 

              )()( 2MESVar  ,                     (55) 

where 2 2 2( ) (( ; ) ) (( ; ) ) 2 ( ; ) 2 ( ; )E M E X d u E X d dE X d u dE X d      . 

Table 18 shows the mean severity, mean frequency, burning cost, loaded rate, and relative 

loading under a PH-Transform assumption for several excess-of-loss layers, assuming N  is Poisson 

with parameter 100  , X  is Burr with parameters 43.426,86 , 5169.1  and 7783.3 , 

and 0.95r   for both frequency and severity distributions. 
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Table 18: Mean severity, mean frequency, burning cost, loaded rate and relative loading 

Layer 
(RM) 

( )E M  
(RM) 

( )H M  
( 0.95)r   

(RM) 

( )E N ( )H N  
( 0.95)r 

Burning 
Cost 

 

Loaded 
Rate 

Relative 
Loading

        
(100 ,300 ]k k  1,652.40 2,033.77 100 100.47 0.016524 0.020434 0.24 
(300 ,500 ]k k  30.10 46.15 100 100.47 0.000301 0.000464 0.54 
(500 ,700 ]k k  2.91 5.04 100 100.47 0.000029 0.000051 0.74 
(700 ,900 ]k k  0.56 1.06 100 100.47 0.000006 0.000011 0.90 

        
(100 ,900 ]k k  1,685.97 2,086.01 100 100.47 0.016860 0.020959 0.24 

        

 

 

The burning cost is calculated as (Wang [11]) 

    
SEP

NEME )()(
,           (56) 

where SEP denotes the subject earned premium. In this study, the SEP is assumed to be 

RM10,000,000. 

The loaded rate is calculated as (Wang [11]) 

    
SEP

NHMH )()(
,           (57) 

whereby it can also be written as a function of the burning cost, 

              
SEP

NEME

SEP

NHMH )()(
)1(

)()(  ,                    (58) 

where   denotes the equivalent relative loading. Based on Table 18, the relative loading,  , under a 

PH-Transform assumption increase as the excess-of-loss layer, ],( udd  , increase. In addition, the 

values of ( )E M  and ( )H M decrease when the layer, ],( udd  , increases. 

The distribution of aggregate claims, S , by applying Central Limit Theorem, may be 

estimated by the Normal distribution with mean )()( MESE   and variance )()( 2MESVar  . 

The probability of insolvency, i.e. the probability of having aggregate claims larger than aggregate 

premiums, for a PH-Transform assumption can be calculated as 
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( )

Pr( ( ) ( )) Pr( (1 ) ( )) Pr
( )

E S
S H N H M S E S Z

Var S
 

 
       

 
.              (59) 

In terms of insolvency probability, the main difference between a linear loading assumption 

and a PH-Transform assumption is that the relative loading for a PH-Transform increases when the 

layer ],( udd   increases, whereas the relative loading remains fixed at   for all layers under the 

linear loading. 

Table 19 provides the value of mean severity, mean frequency, mean aggregate claims, and 

variance aggregate claims. It should be noted that both )(SE  and )(SVar  decrease when excess-of-

loss layer, ],( udd  , increases. 

Table 20 shows the values of premium and relative loading for several excess-of-loss layers 

under the PH-Transform assumptions ( 0.95r  , 0.90r   and 0.85r  ). It should be noted that 

the lower the ambiguity index, r , the higher the premium layer, implying that the relative loading is 

higher when ambiguity increases. In addition, the premium is lower when the layer, ],( udd  , 

increases. The relative loading is also higher when the layer, ],( udd  , increases. 

Table 21 shows the values of insolvency probability under a linear loading assumption for 

several values of relative loading ( 0.10  , 0.15   and 0.20  ), and a PH-Transform 

assumption for several values of ambiguity index ( 0.95r  , 0.90r   and 0.85r  ). The table 

shows that the insolvency probability for the PH-Transform is lower than the linear loading for all 

layers, but the difference is lower when the layer of ],( udd   increases. Therefore, a PH-Transform 

assumption may be used as an alternative to reduce insolvency probability of excess-of-loss layers in 

reinsurance treaties by incorporating “appropriate” risk loads in the frequency and severity 

distributions of all layers. 
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Table 19: Mean severity, mean frequency, mean aggregate claims and variance aggregate claims  

Layer ( )E M  
(RM) 

( )E N )()( MESE 
(RM) 

)()( 2MESVar   
(RM) 

   
(100 ,300 ]k k  1,652.40 100 165,240 12,596,760,695 

(300 ,500 ]k k  30.10 100 3,010 356,232,253 

(500 ,700 ]k k  2.91 100 291 41,096,487 

(700 ,900 ]k k  0.56 100 56 8,650,994 
     

(100 ,900 ]k k  1,685.97 100 168597 14,506,333,740 
   

 

 

Table 20: Premium and relative loading (PH-Transform) 

Layer ( ) ( )H M H N  
(RM) 

( 0.95)r   

Relative 
loading 

( ) ( )H M H N  
(RM) 

( 0.9)r   

Relative 
loading 

( ) ( )H M H N  
(RM) 

( 0.85)r   

Relative 
loading 

 

(100 ,300 ]k k  204,337 0.24 253,397 0.53 315,181 0.91 
(300 ,500 ]k k  4,637 0.54 7,154 1.38 11,055 2.67 
(500 ,700 ]k k  507 0.74 884 2.04 1,543 4.31 
(700 ,900 ]k k  106 0.90 201 2.60 383 5.84 

       
(100 ,900 ]k k  209,587 0.24 261,635 0.55 328,162 0.95 
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Table 21: Insolvency probability 

Layer Linear loading PH-Transform 
(RM) Pr( ( )(1 ))S E S  

 
1.0  

Pr( ( )(1 ))S E S  
 

15.0  
Pr( ( )(1 ))S E S  

 
2.0  

Pr( ( ) ( ))S H X H N
( 0.95)r   

Pr( ( ) ( ))S H X H N
( 0.9)r   

Pr( ( ) ( ))S H X H N
( 0.85)r   

       
(100 ,300 ]k k  0.4415 0.4126 0.3842 0.3638 0.2161 0.0908 
(300 ,500 ]k k  0.4936 0.4905 0.4873 0.4657 0.4131 0.3350 
(500 ,700 ]k k  0.4982 0.4973 0.4964 0.4866 0.4632 0.4226 
(700 ,900 ]k k  0.4992 0.4989 0.4985 0.4932 0.4803 0.4558 

       
(100 ,900 ]k k  0.4443 0.4168 0.3898 0.3668 0.2199 0.0926

       
 



Casualty Actuarial Society E-Forum, Winter 2011-Volume 2 40 

Figures 17-20 show the graphs of insolvency probability for several values of   (under a 

linear loading assumption) and r  (under a PH-Transform assumption) for each layer of ],( udd  . 

Figure 21 shows the graph of insolvency probability for all layers. The equivalent loading,  , for 

each r  is also shown in the figures. As an example, when 0.95r   under the PH-Transform, the 

equivalent   for layer ]300,100( kk  is 0.24  , as shown in Figure 17. 

 

 
Figure 17: Graph of insolvency probability (layer ]300,100( kk ) 

 
 

 
Figure 18: Graph of insolvency probability (layer ]500,300( kk ) 
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Figure 19: Graph of insolvency probability (layer ]700,500( kk ) 

 

 

 
Figure 20: Graph of insolvency probability (layer ]900,700( kk ) 

 

 

The graphs show that under the linear loading assumption, insolvency probability decreases 

when relative loading increases. When the PH-Transform assumption is applied, the insolvency 

probability is reduced to a lower level compared to the linear loading assumption, and the reason for 

this is that the equivalent risk load is higher under the PH-Transform.  
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Figure 21: Graph of insolvency probability (all layers) 

 

 

Appendix 6 shows the calculation of mean severity, mean frequency, mean aggregate claims, 

variance aggregate claims and insolvency probability under linear loading and PH-Transform 

assumptions, using R programming with the assistance of actuar package, assuming the severity 

distribution is Burr and the frequency distribution is Poisson. 
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8. CONCLUSION 
 

In this paper, we have modeled individual loss amount, selected the best model using Kolmogorov-

Smirnov, Anderson-Darling and Schwarz Bayesian Criterion, provided a range of deductible and 

policy limits based on Loss Elimination Ratio (LER), calculated insolvency probability under linear 

loading and PH-Transform assumptions, priced excess-of-loss of layer ],( udd   assuming a single 

risk, calculated increased limit factors (ILF), priced layers of a reinsurance treaty using a frequency 

and severity approach, and calculated the insolvency probability of a reinsurance treaty. Our 

proposed approach may be considered fair and efficient for two main reasons; the PH-Transform 

assumption may be implemented to lower the insolvency probability, and the R programming with 

the actuar package may be used for pricing excess-of-loss layers with less effort. In particular, the 

PH-Transform assumption is applied as a means of incorporating a risk load in the severity and/or 

frequency distributions and can be used to lower the insolvency probability of a single excess-of-loss 

layer as well as multiple layers of a reinsurance treaty. In addition, the ILF calculated in this study 

may be used as some indication or basis for possible basic and increased rates of the Malaysian 

insurance losses.  

  It is noteworthy that different distributions for loss severity and frequency can also be 

applied. Besides Burr distribution, Wang [12] showed that the PH-Transform assumption can be 

applied to several loss amount distributions such as exponential, uniform, Pareto and Weibull. The 

mean severity for a PH-Transform assumption, i.e., ( ) ( ( ))
d u

r

d

H M S x dx


  , can easily be computed 

using R programming with actuar package for such distributions. In addition, the computation of 

mean frequency for a PH-Transform assumption, i.e., 
0

( ) ( ( ))r

k

H N S k




 , for other frequency 

distributions such as binomial or negative binomial, can be also be implemented using R 

programming with the actuar package.   
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Appendix 1: R programming for LER (deductible policy, Burr distribution) 

deduktibel <- function(alfa, gama, teta) 

{ 

# to calculate E(X), d, E(X:d) and LER 

EX <- mburr(1, alfa, gama, 1, teta) 

d <- seq(0, 20000, by=1000) 

EX.d <- levburr(d, alfa, gama, 1, teta, 1) 

LER.d <- EX.d/EX 

result.d <- cbind(d, EX.d, LER.d) 

# to plot LER vs. d 

plot.LERvsD <- plot(d, LER.d, type="p") 

# to print result 

list(EX=EX, result.d=result.d, plot.LERvsD) 

} 

deduktibel(alfa=3.778263226, gama=1.516886923, teta=86426.43339) 

 

Appendix 2: R programming for insolvency probability (deductible policy, Burr distribution, 

linear loading) 

insolvent.prob <- function(alfa, gama, teta, n, prob.claim, loading) 

{ 

# to calculate d, E(W), E(W2), Var(W), E(S), Var(S) and insolvency probability 

 d <- seq(0, 20000, by=1000) 
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 EW <- mburr(1,alfa,gama,1,teta) - levburr(d,alfa,gama,1,teta,1) 

 EW2 <- mburr(2,alfa,gama,1,teta) - levburr(d,alfa,gama,1,teta,2) -   

  2*d*mburr(1,alfa,gama,1,teta) + 2*d*levburr(d,alfa,gama,1,teta,1) 

 VW <- EW2 - (EW^2) 

 ES <- n*EW*prob.claim 

 VS <- n*(VW*prob.claim+(EW^2)*prob.claim*(1-prob.claim)) 

 sigmaS <- VS^0.5 

 insolven.prob <- pnorm(ES*loading/sigmaS, 0, 1, FALSE, FALSE) 

 result <- cbind(d, ES, sigmaS, insolven.prob) 

# to plot insolvency probability vs. deductible 

plot.PROBvsD <- plot(d,insolven.prob,type="p") 

# to print result 

 list(n=n, prob.claim=prob.claim, loading=loading, result=result, plot.PROBvsD) 

} 

insolvent.prob(alfa=3.778263226, gama=1.516886923, teta=86426.43339, n=3000, prob.claim=0.2, 

loading=0.25) 

 

Appendix 3: R programming for expected loss (deductible policy, Burr distribution, PH 

Transform) 

explossPH <- function(alfa, gama, teta, r) 

 { 

 # to compute d, E(X) and loading 

  d <- seq(0, 20000, by=1000) 

  EX.basic <- mburr(1,alfa,gama,1,teta) - levburr(d,alfa,gama,1,teta,1) 

  EX.r <- mburr(1,r*alfa,gama,1,teta) - levburr(d,r*alfa,gama,1,teta,1) 

  loading <- (EX.r-EX.basic)/EX.basic 

  result <- cbind(d, EX.basic, EX.r, loading) 

  # to plot E(X) vs. deductible 

  plot.EXvsD <- plot(c(d,d), c(EX.basic, EX.r), type="p") 

  # to print result 

  list(r=r, result=result, plot.EXvsD) 

 } 

explossPH(alfa=3.778263226, gama=1.516886923, teta=86426.43339, r=0.8) 
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Appendix 4: R programming for expected aggregate premium (single layer, single risk, Burr 

distribution, PH Transform) 

layer <- function(alfa, gama, teta, d, u, prob.claim, r) 

{ 

# to compute E(S) and loading 

ES <- prob.claim*(levburr(u,alfa,gama,1,teta,1) - levburr(d,alfa,gama,1,teta,1)) 

ESr <- prob.claim*(levburr(u,r*alfa,gama,1,teta,1) - levburr(d,r*alfa,gama,1,teta,1)) 

loading <- (ESr-ES)/ES 

result <- cbind(d, u, ES, ESr, loading) 

# to print result 

list(prob.claim=prob.claim, r=r, result=result) 

} 

d<-scan(n=8) 

0 5000 10000 20000 40000 80000 100000 160000  

u<-d+5000 

layer(alfa=3.778263226, gama=1.516886923, teta=86426.43339, d, u, prob.claim=0.1, r=0.92) 

 

Appendix 5: R programming for ILF (Burr distribution)  

ILF <- function(alfa, gama, teta, r) 

{ 

# to calculate a, E(X), risk load and ILF 

a <- seq(100000,2000000,by=100000) 

EX.a <- levburr(a,alfa,gama,1,teta,1) 

EX.ar <- levburr(a,alfa*r,gama,1,teta,1) 

EX.100k <- levburr(100000,alfa,gama,1,teta,1) 

EX.100kr <- levburr(100000,alfa*r,gama,1,teta,1) 

riskload <- EX.ar - EX.a 

ILF <- EX.a/EX.100k 

ILF.r <- EX.ar/EX.100kr 

result <- cbind(a, EX.a, ILF, riskload, ILF.r) 

# to print result 

list(r=r, result=result) 

} 

ILF(alfa=3.778263226, gama=1.516886923, teta=86426.43339, r=0.9) 
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Appendix 6: R programming for mean severity, mean frequency, mean aggregate claims, 

variance aggregate claims and insolvency probability (excess-of-loss layers, Burr and 

Poisson distributions) 

reinsurans <- function(alfa, gama, teta, lamda, d, u, r, SEP, loading) 

{ 

# to compute E(M), H(M), E(N) and H(N) 

EM <- levburr(d+u,alfa,gama,1,teta,1) - levburr(d,alfa,gama,1,teta,1) 

HM <- levburr(d+u,r*alfa,gama,1,teta,1) - levburr(d,r*alfa,gama,1,teta,1) 

data.diskret <- 0:10000 

EN <- lamda 

HN <- sum((1-ppois(data.diskret,lamda))^r) 

# to compute E(S), Var(S) and insolvency probability 

ES <- EM*EN 

VS <- lamda*(levburr(d+u,alfa,gama,1,teta,2)-levburr(d,alfa,gama,1,teta,2)- 

          2*d*levburr(d+u,alfa,gama,1,teta,1)+2*d*levburr(d,alfa,gama,1,teta,1)) 

insolvency.prob <- pnorm(ES*loading/(VS^(0.5)),0,1,FALSE,FALSE) 

insolvency.probr <- pnorm(((HM*HN)-ES)/(VS^(0.5)),0,1,FALSE,FALSE) 

# to compute H(M)H(N), burning cost, loaded rate and relative loading 

HMHN <- HM*HN 

burning.cost <- (EM*EN)/SEP 

loaded.rate <- (HM*HN)/SEP 

relative.loading <- (loaded.rate-burning.cost)/burning.cost 

result <- cbind(d, d+u, EM=EM, HM=HM, EN=EN, HN=HN, HMHN=HMHN, 

burning.cost=burning.cost, loaded.rate=loaded.rate, relative.loading=relative.loading, ES=ES, VS=VS, 

insolvency.prob=insolvency.prob, insolvency.probr=insolvency.probr) 

# to print output 

list(r=r, loading=loading, SEP=SEP, result=result) 

} 

d <- scan(n=5) 

100000  300000  500000  700000  100000 

u <- scan(n=5) 

200000  200000   200000  200000  800000 

reinsurans(alfa=3.778263226, gama=1.516886923, teta=86426.43339, lamda=6, d, u, r=0.9, SEP=10000000, 

loading=0.1) 
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Abstract. Predictive models are used by insurers for underwriting and ratemaking

in personal lines insurance. Focusing on homeowners insurance, this paper provides a

systematic comparison of many predictive generalized linear models. We compare pure

premium (Tweedie) and frequency/severity models based on single perils as well as mul-

tiple perils. With multiple perils, we also introduce instrumental variable models that

account for dependencies among perils. We calibrate these models using a database of

detailed individual policyholder experience.

To evaluate these many alternatives, we emphasize out-of-sample model comparisons.

We show how to use Gini indices for economic validation. We also consider a nonparamet-

ric regression that is used extensively by the statistical learning community. We find that

different validation measures can help the actuary critically evaluate the effectiveness of

alternative scoring procedures.
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1 Introduction

This paper explores the use of predictive models that can be used for underwriting and

ratemaking in homeowners insurance. Homeowners represents a large segment of the

personal property and casualty insurance business; for example, in the US, homeowners

accounted for 13.6% of all property and casualty insurance premiums and 26.8% of per-

sonal lines insurance, for a total of over $57 billions of US dollars (I.I.I. Insurance Fact

Book 2010 ). Many actuaries interested in pricing homeowners insurance are now decom-

posing the set of dependent variables (ri, yi) by peril, or cause of loss (e.g., Modlin, 2005).

Homeowners is typically sold as an all-risk policy, which covers all causes of loss except

those specifically excluded.

Decomposing risks by peril is not unique to personal lines insurance nor is it new.

For example, it is customary in population projections to study mortality by cause of

death (e.g., Board of Trustees, 2009). Further, in 1958, Robert Hurley (Hurley, 1958)

discussed statistical considerations of multiple peril rating in the context of homeowner

insurance. Referring to “multiple peril rating,” Hurley stated: “The very name, whatever

its inadequacies semantically, can stir up such partialities that the rational approach is

overwhelmed in an arena of turbulent emotions.”

Rating by multiple perils does not cause nearly as much excitement in today’s world.

Rollins (2005) argues that multi-peril rating is critical for maintaining economic efficiency

and actuarial equity. Decomposing risks by peril is intuitively appealing because some

predictors do well in predicting certain perils but not in others. For example, “dwelling in

an urban area” may be an excellent predictor for the theft peril but provide little useful

information for the hail peril.

Current multi-peril rating practice is based on modeling each peril in isolation of the

others. From a modeling point of view, this amounts to assuming that
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• perils are independent of one another and that

• sets of parameters from each peril are unrelated to one another.

Although allowing sets of parameters to be unrelated to one another (sometimes called

functionally independent) is plausible, it seems unlikely that perils are independent. Event

classification can be ambiguous (e.g., fires triggered by lightning) and unobserved latent

characteristics of policyholders (e.g., cautious homeowners who are sensitive to potential

losses due to theft-vandalism as well as liability) may induce dependencies among per-

ils. Our prior empirical investigations reported in Frees, Meyers, and Cummings (2010)

demonstrated statistically significant dependence among perils.

To accommodate potential dependencies, we introduce an instrumental variables ap-

proach. Instrumental variables is an estimation technique that is commonly used in econo-

metrics to handle dependencies that arise among systems of equations. In this paper, we

hypothesize that multiple peril models are jointly determined and that a methodology

such as instrumental variables can be used to quantify these dependencies.

Although examining the multiple peril nature of homeowners insurance is intuitively

plausible, not all insurers will wish to consider this complex model. In homeowners,

consumers are charged a single price meaning that the decomposition by peril may not

be necessary for financial transactions. Moreover, from statistical learning it is well-

known (e.g., Hastie, Tibshirani, and Friedman, 2001) that there is a price to be paid for

complexity; other things equal, more complex models fare poorly compared to simpler

alternatives for prediction purposes.

Thus, in this paper we compare our many alternative models using out-of-sample val-

idation techniques. To set the stage, Section 2.1 introduces our data and several baseline

models. We consider both pure premium as well as frequency-severity approaches in this

work. Thus, Section 2.1 introduces these approaches in both a single- and multi-peril
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modeling framework. Section 3 introduces the instrumental variable approach, in both

the pure premium and frequency-severity context. We then show how these competing

approaches fare in the context of a held-out validation sample in Section 4.

Loss distributions are not even approximately symmetric nor normally distributed; to

illustrate, for our data 94% of the losses are zeros (corresponding to no claims) and when

losses are positive, the distribution tends to be right-skewed and thick-tailed. Thus, the

usual mean square metrics, such as variance and R2, are not informative for capturing

differences between predictions and held-out data. Thus, we use recent developments

(Frees, Meyers, and Cummings, 2010b) on a statistical measure called a Gini index to

compare predictors in Section 5. Section 6 explores nonparametric regression, an alter-

native validation measure. Both approaches allow us to compare, among other things, a

single peril pure premium model with one dependent variable to a multiple peril model

with many dependent variables. Section 7 closes with a summary and a few additional

remarks.

2 Data and Notations

2.1 Data

To calibrate our models, we drew two random samples from a homeowners database

maintained by the Insurance Services Office. This database contains over 4.2 million

policyholder years. It is based on the policies issued by several major insurance companies

in the United States, thought to be representative of most geographic areas. These policies

were almost all for one year and so we will use a constant exposure (one) for our models.

Our in-sample, or “training,” dataset consists of a representative sample of 404,664

records taken from this database. The summary measures in this section are based on this
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training sample. In Section 4, we will test our calibrated models on a second held-out, or

“validation,” subsample that was also randomly selected from this database.

For each record, we have information on whether there was one or more claims due to

a peril and the amount associated with that peril. Table 1 displays summary statistics for

nine perils from our sample of 404,664 records. This table shows that WaterNonWeather

is the most frequently occurring peril whereas Liability is the least frequent. (WaterNon-

Weather is water damage from causes other than weather, e.g., the bursting of a water

pipe in a house.) When a claim occurs, Hail is the most severe peril (according to the

median severity) whereas the Other category is the least severe. In Table 1, we note that

neither the frequency nor the number sum to the totals due to jointly occurring perils

within a policy.

In this work, we consider two sets of explanatory variables. The goal is to show

how the predictive modeling techniques work over a range of information available to the

analyst. The first “basic” set consists of amount of insurance dwelling coverage, a building

adjustment, the construction age of the building, policy deductibles, the homeowners

policy form, and base cost loss costs.

The second set is an “extended” list of variables that consists of many (over 100)

explanatory variables to predict homeowners claims. These are a variety of geographic-

based plus several standard industry variables that account for:

• weather and elevation,

• vicinity,

• commercial and geographic features,

• experience and trend, and

• rating variables.
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The Web site http://www.iso.com/Products/ISO-Risk-Analyzer/ISO-Risk-Analyzer-

Homeowners.html provides more information on these explanatory variables.

Our previous work in Frees, Meyers, and Cummings (2010) established statistically

significant dependence among perils. Appendix Section A gives readers a feel for the type

of dependencies discussed in that work.

2.2 Notations and Baseline Models

In a multi-peril model, one decomposes the risk into one of c types (c = 9 in Table 1). To

set notation, define ri,j to be a binary variable indicating whether or not the ith record has

an insurance claim due to the jth type, j = 1, . . . , c. Similarly, yi,j denotes the amount of

the claim due to the jth type. To relate the multi- to the single-peril variables, we have

ri = 1− (1− ri,1)× · · · × (1− ri,c) (1)

and

yi =
c∑

j=1

ri,j × yi,j. (2)

We interpret ri to be a binary variable indicating whether or not the ith policyholder has

an insurance claim and yi describes the amount of the claim, if positive.

Single-Peril Frequency-Severity Model

In homeowners, insurers typically have available many home and a few policyholder

characteristics upon which rates are based. For notation, let xi be a complete set of

explanatory variables that is available to the analyst. In the frequency-severity approach,

models are specified for both the frequency and severity components. For example, for the

frequency component we might fit a logistic regression model with ri as the dependent

variable and xFi as the set of explanatory variables. Denote the corresponding set of
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regression coefficients as βF . For the severity component, we condition on the occurrence

of a claim (ri = 1), and might use a gamma regression model with yi as the dependent

variable and xSi as the set of explanatory variables. Denote the corresponding set of

regression coefficients as βS. In this paper, we call this the single-peril frequency-severity

model. Beginning in Section 4, we label the resulting insurance scores as “SP FreqSev.”

Single-Peril Pure Premium Model

An alternative approach is to model the claim amount yi directly using the entire

dataset. Because the distribution of {yi}ni=1 contains many zeros (corresponding to no

claims) and positive amounts, it is common to use a distribution attributed to Tweedie

(1984). This distribution is motivated as a Poisson mixture of gamma random variables.

Moreover, because it is a member of the linear exponential family, it may be readily

estimated using generalized linear model techniques. In our empirical work, we use a

logarithmic link function so that the mean parameter may be written as µi = exp(x′
iβ),

thus incorporating all of the explanatory variables. We call this the single-peril pure

premium model. For readers wishing a review of the Tweedie distribution, see Frees

(2010, Chapter 13). We will label the resulting insurance scores as “SP PurePrem.”

Multi-Peril Independence Models

In both the frequency-severity and pure premium approaches, dependent variables can

be readily be decomposed by peril. From our database, explanatory variables have been

selected by peril j for the frequency, xF,i,j, and severity, xS,i,j, portions, j = 1, . . . , 9. For

example, these variables range in number from eight for the Other peril to nineteen for

the Water Weather peril. A multi-peril frequency-severity approach is:

• For frequency, we fit a logistic regression model with ri,j as the dependent variable

and xF,i,j as the set of explanatory variables, with corresponding set of regression

coefficients βF,j.
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• For severity, after conditioning on the occurrence of a claim (ri,j = 1), we use a

gamma regression model with yi,j as the dependent variable and xS,i,j as the set of

explanatory variables, with corresponding set of regression coefficients βS,j.

• We do this for each peril, j = 1, . . . , 9.

From a modeling point of view, this amounts to assuming that perils are independent of

one another and that sets of parameters from each peril are unrelated to one another.

Thus, we call these the “independence” frequency-severity models. We will label the

resulting insurance scores as “IND FreqSev.”

Following a similar set of reasoning, for pure premium modeling we define the union

of the frequency xF,i,j and severity xS,i,j variables to be our set of explanatory variables

for the jth peril, xi,j . With these, one can estimate a pure premium model for each peril,

j = 1, . . . , 9. We call these the “independence” pure premium models. We will label the

resulting insurance scores as “IND PurePrem.”

To compare the basic (single-peril) and independence (multi-peril) models, we will

look to out-of-sample results beginning in Section 4. In Frees et al. (2010), we introduced

a multivariate binary model that accounts for dependencies among the peril frequencies.

This work established statistical significance among the perils. Thus, for completeness,

in Section 4 we will include these scores labeled as “DepRatio1” and “DepRatio36”, for

1 and 36 dependency parameters, respectively. Additional details on this method are in

Frees et al. (2010).

3 Multi-Peril Models with Instrumental Variables

When modeling systems of c = 9 perils, it seems reasonable to posit that there may be

associations among perils and, if so, attempt to use these associations to provide better
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predictors. For example, in our prior work (see Appendix A), we established statistically

significant associations between claims from fire and theft/vandalism.

In this paper, we introduce an instrumental variable method of estimation to improve

upon the predictions under the independence models. For example, suppose that we are

interested in predicting fire claims and believe that there exists an association between

fire and theft/vandalism claims. One would like to use the information in theft/vandalism

claims to predict fire claims; however, the number and severity of theft/vandalism claims

are unknown when making the predictions. We can, however, use estimates of theft/vandalism

claims as predictors of fire claims. This is the essence of the instrumental variable esti-

mation method where one substitutes proxies for variables that are not available a priori.

To keep this paper self-contained, Appendix Section B provides an introduction to

instrumental variable estimation as it appears in a classical linear system of equations.

Sections 3.1 and 3.2 describe the estimation procedures in the pure premium and fre-

quency/severity contexts, respectively.

3.1 Pure Premium Modeling

Under our independence pure premium model framework, we assume that the claim

amount follows a Tweedie distribution. The shape and dispersion parameters vary by

peril and the mean parameter is a function of explanatory variables available for that

peril. Using notation, we assume that

yij ∼ Tweedie(µi,j, ϕj, pj), i = 1, . . . , n = 404, 664, j = 1, . . . , c = 9. (3)

Here, ϕj is the dispersion parameter, pj is the shape parameter and µi,j = exp(x′
i,jβj) is

the mean parameter using a logarithmic link function. There are many procedures for

estimating the parameters in equation (3), we use maximum likelihood.
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Estimating independence pure premium models with equation (3) allows us to de-

termine regression coefficient estimates bIND,j. These coefficients allow us to compute

(independence model) pure premium estimates of the form µ̂IND,i,j = exp(x′
i,jbIND,j).

For instrumental variable predictors, we use logarithmic fitted values from other perils

as additional explanatory variables. For example, suppose we wish to estimate a pure

premium model for the first peril. For the j = 1st peril, we already have predictors xi,1.

We augment xi,1 with the additional predictor variables

ln µ̂IND,i,j, j = 2, . . . , c = 9.

We then estimate the pure premium model in equation (3) using both sets of explanatory

variables.

We summarize the procedure as follows.

• Stage 1 - For each of the nine perils, fit a pure premium model in accordance with

equation (3). These explanatory variables differ by peril. Calculate fitted values,

denoted as µ̂IND,i,j. Because these fits are unrelated to one another, these are called

the “independence” pure premium model fits.

• Stage 2 - For each of the nine perils, fit a pure premium model using the Stage 1

explanatory variables as well as logarithmic fitted values from the other eight perils.

Denote the predictions resulting from this model as µ̂IV,i,j.

Table 2 summarizes the regression coefficient estimates for the fit of the instrumental

variable pure premium model. This table shows results only for the additional instru-

ments, the logarithmic fitted values. This is because our interest is in the extent that

these additional variables improve the model fit when compared to the independence

models. Table 2 shows that the additional variables are statistically significant, at least
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when one examines individual t-statistics. Although we do not include the calculations

here, this is also true when examining collections of variables (using a likelihood ratio

test). However, this is not surprising because we are working a relatively large sample

size, n = 404, 664. We defer our more critical assessment of model comparisons to Section

4 where we compare models on an out-of-sample basis. There, we will label the resulting

insurance scores as “IV PurePrem.”

We use logarithmic fitted values because of the logarithmic link function; in this way

the additional predictors are on the same scale as the fitted values. Moreover, by using

a natural logarithm, they can be interpreted as elasticities, or percentage changes. For

example, to interpret the lightning coefficient of the fire fitted value, we have

0.220 =
∂ ln µ̂IV,FIRE

∂ ln µ̂IND,LIGHT

=

(
∂µ̂IV,FIRE

µ̂IV,FIRE

)
/

(
∂µ̂IND,LIGHT

µ̂IND,LIGHT

)
.

That is, holding other variables fixed, a 1% change in the fitted value for lightning is

associated with a 0.22% change in the fitted value for fire.

3.2 Frequency and Severity Modeling

The approach to instrumental variable estimation for frequency and severity modeling

is similar to the pure premium case but more complex. At the first stage, we calculate

independence frequency and severity fits; we now have many instruments that can be

used as predictor variables for second stage instrumental variable estimation. That is, in

principle it is possible to use both fitted probabilities and severities in our instrumental

variable frequency and severity models.

Based on our empirical work, we have found that the fitted probabilities provide better

predictions than using both fitted probabilities and severities as instruments. Intuitively,

coefficients for fitted severities are based on smaller sample sizes (when there is claim)
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and may contain less information in some sense than fitted probabilities. Thus, for our

main model we feature fitted probabilities and include fitted severities for a robustness

check (Appendix Section C).

The algorithm is similar to the pure premium modeling in Section 3.1. We summarize

the procedure as follows.

• Stage 1 - Compute independence frequency and severity model fitted values. Specif-

ically, for each of the j = 1, . . . , 9 perils:

– 1a. Fit a logistic regression model using the explanatory variables xF,i,j. These

explanatory variables differ by peril j. Calculate fitted values to get predicted

probabilities, denoted as π̂IND,i,j.

– 1b. Fit a gamma regression model using the explanatory variables xS,i,j with

a logarithmic link function. These explanatory variables may differ by peril

and from those used in the frequency model. Calculate fitted values to get

predicted severities (by peril), denoted as Ê yIND,i,j.

• Stage 2. Incorporate additional instruments into the frequency model estimation.

Specifically, for each of the j = 1, . . . , 9 perils:

– 2. Fit a logistic regression model using the explanatory variables xF,i,j and the

logarithm of the predicted probabilities developed in step 1(a), ln π̂IND,i,k, k =

1, . . . , 9, k ̸= j .

In Section 4 we will label the resulting insurance scores as “IV FreqSevA.” We remark

that this procedure could easily be adapted to distributions other than the gamma as well

as link functions other than logarithmic. These choices simply worked well for our data.
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As with the Section 3.1 pure premium instrumental variable model, we found many

instruments to be statistically significant when this model was estimated with our in-

sample data. This is not surprising because it is common to find effects that are “sta-

tistically significant” using large samples. Thus, we defer discussions of model selection

to our out-of-sample validation beginning in Section 4. In this section, we examine alter-

native instrumental variable models. In particular, using additional instruments in the

severity model (instead of the frequency model) will result in insurance scores labeled

as “IV FreqSevB.” Use of additonal instruments in frequency and severity, described in

detail in Appendix Section C, will result in insurance scores labeled as “IV FreqSevC.”

4 Out-of-Sample Analysis

Qualitative model characteristics will drive some modelers to choose one approach over

another. However, others will seek to understand how these competing approaches fare

in the context of empirical evidence. As noted earlier, in-sample summary statistics are

not very helpful for model comparisons. Measures of (in-sample) statistical significance

provide little guidance because we are working with a large sample size (404,664 records);

with large sample sizes coefficient estimates tend to be statistically significant using tra-

ditional measures. Moreover, goodness-of-fit measures are also not very helpful. In the

basic frequency-severity model, there are two dependent variables and in the multi-peril

version, there are 18 dependent variables. Goodness-of-fit measures typically focus on a

single dependent variable.

We rely instead on out-of-sample comparisons of models. In predictive modeling, the

“gold standard” is model validation through examining performance of an independent

held-out sample of data (e.g., Hastie, Tibshirani, and Friedman, 2001). Specifically, we

use our in-sample data of 404,664 records to compute parameter estimates. We then use
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the estimated parameters from the in-sample model fit as well as predictor variables from

a held-out, or validation subsample of 359,454 records, whose claims we wish to predict.

For us, the important advantage of this approach is that we are able to compare models

with different dependent variables by aggregating predictions into a single score for a

record.

To illustrate, consider the independence frequency severity model with 18 dependent

variables. We can use estimators from this model to compute an overall predicted amount

as

IND FreqSevi =
c∑

j=1

P̂robi,j × F̂iti,j =
c∑

j=1

exp(x′
F,i,jbF,j)

1 + exp(x′
F,i,jbF,j)

× exp(x′
S,i,jbS,j). (4)

Here, P̂robi,j is the predicted probability using logistic regression model parameter esti-

mates, bF,j, and frequency covariates xF,ij, for the jth peril. Further, F̂iti,j is the predicted

amount based on a logarithmic link using gamma regression model parameter estimates,

bS,j, and severity covariates xS,i,j, for the jth peril. This predicted amount, or “score,”

provides a basic input for ratemaking. We focus on this measure in this section.

In the following, Section 4.1 provides global comparisons of scores to actual claims.

Section 5 provides cumulative comparisons using a Gini index. Section 6 provides local

comparisons using nonparametric regression.

4.1 Comparison of Scores

We examine the 14 scores that are listed in the legend of Table 3. This table summarizes

the distribution of each score on the held-out data. Not surprisingly, each distribution is

right-skewed.

Table 3 also shows that the single-peril frequency severity model using the extended
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set of variables (SP FreqSev) provides the lowest score, both for the mean and at each

percentile (below the 75th percentile). Except for this, no model seems to give a score

that is consistently high or low for all percentiles. All scores have a lower average than

the average held-out actual claims (TotClaims).

Table 3 shows that the distributions for the 14 scores appear to be similar. For an

individual policy, to what extent do the scores differ? As one response to this question,

Table 4 provides correlations among the 14 scores and total claims. This table shows

strong positive correlations among the scores, and a positive correlation between claims

and each score. Because the distributions are markedly skewed, we use a nonparametric

Spearman correlation to assess these relationships. Recall that a Spearman correlation

is a regular (Pearson) correlation based on ranks, so that skewness does not affect this

measure of association.

Table 4 shows strong associations within scores based on the basic explanatory vari-

ables (SP FreqSev Basic, SP PurePrem Basic, IND PurePrem Basic, and

IV PurePrem Basic). In contrast, associations are weaker between scores based on basic

explanatory variables and those based on the extended set of explanatory variables. For

scores based on the extended set of explanatory variables, there is a strong association

between the single peril scores (0.892, for SP FreqSev and SP PurePrem). It also shows

strong associations within the multi-peril measures, particularly those of the same type

(either frequency-severity or pure premium). The weakest associations are between the

single- and multi-peril measures. For example, the smallest correlation, 0.798, is between

SP FreqSev and IND FreqSev.

Although strongly associated, do the different scoring methods provide economically

important differences in predictions? To answer this, Figure 1 shows the relationship

between SP FreqSev and IND FreqSev. So that patterns are not obscured, only a 1%

sample is plotted. This figure shows substantial variation between the two sets of scores.
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Particularly for larger scores, we see percentage differences that are 20% and higher.

5 Out-of-Sample Analysis Using a Gini Index

In insurance claims modeling, standard out-of-sample validation measures are not the

most informative due to the high proportions of zeros (corresponding to no claim) and

the skewed fat-tailed distribution of the positive values. We use an alternative validation

measure, the Gini index, that is motivated by the economics of insurance. Properties of

the insurance scoring version of the Gini index have been recently established in Frees,

Meyers, and Cummings (2011). Intuitively, the Gini index measures the negative covari-

ance between a policy’s “profit” (P−y, premium minus loss) and the rank of the relativity

(score divided by premium).

Comparing Scoring Methods to a Selected Base Premium

Assume that the insurer has adopted a base premium for rating purposes; to illustrate,

we use the “SP FreqSev Basic” for this premium. Recall from Section 2.1 that this method

uses only a basic set of rating variables to determine insurance scores from a single-peril,

frequency and severity model. Assume that the insurer wishes to investigate alternative

scoring methods to understand the potential vulnerabilities of this premium base; Table 5

summarizes several comparisons using the Gini index. This table includes the comparison

with the alternative score IND FreqSev as well as twelve other scores.

The standard errors were derived in Frees et al. (2011) where the asymptotic normality

of the Gini index was proved. Thus, to interpret Table 5, one may use the usual rules of

thumb and reference to the standard normal distribution to assess statistical significance.

For the three scores that use the basic set of variables, SP PurePrem Basic,

IND PurePrem Basic, and IV PurePrem Basic, all have Gini indices less than two stan-

dard errors, indicating a lack of statistical significance. In contrast, the other Gini indices
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all are more than three standard errors above zero, indicating that the ordering used by

each score helps detect important differences between losses and premiums.

The paper of Frees, Meyers, and Cummings (2011) also derived distribution theory

to assess statistical differences between Gini indices. Although we do not review that

theory here, we did perform these calculations for our data. It turns out that there is

no statistically significant differences among the ten Gini indices that are based on the

extended set of explanatory variables.

In summary, Table 5 suggests that there are important advantages to using extended

sets of variables compared to the basic variables, regardless of the scoring techniques used.

6 Out-of-Sample Analysis Using Local Comparisons

of Claims to Scores

As described in Section 5, one interpretation of the Gini index is as the covariance between

y − P (loss minus premium) and the rank of relativities. Another interpretation is as an

area between cumulative distributions of premiums and losses. Through the accumulation

process, models may be locally inadequate and such deficiencies may not be detected by a

Gini index. Thus, this section describes an alternative graphical approach that can help

us assess the performance of scores locally.

One method of making local comparisons used in practice involves comparing averages

of relativities and loss ratios for homogenous subgroups. Intuitively, if a score S is a good

predictor of loss y, then a graph of scores versus losses should be approximately a straight

line with slope one. This is also true if we rescale by a premium P . To illustrate, let

(Si, yi) represent the score and loss for the ith policy and, when rescaled by premium Pi,

let Ri = Si/Pi and LRi = yi/Pi be the corresponding relativity and loss ratio. To make
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homogenous subgroups, we could group the policies by relativity deciles and compare

average loss ratios for each decile.

The left-hand panel of Figure 2 shows this comparison for the premium

“SP FreqSev Basic” and score “SP FreqSev”. A more primitive comparison of relativities

and loss ratios would involve a plot of Ri versus LRi; however, personal lines insurance

typically has many zero losses rendering such a graph ineffective. For our application,

each decile is the average over 35,945 policies, making this comparison reliable. This

panel shows a linear relation between the average loss ratio and relativity, indicating that

the score SP FreqSev is a desirable predictor of the loss.

Summarizing the plot of relativities to loss ratios is analogous to the Gini index cal-

culation. In the former, the relationship of interest is LR = y
P
versus R; in the latter, it

is y − P versus rank(R). The differences are (a) the rescaling of losses by premiums and

(b) the use of rank relativities versus relativities.

Of course, extensive aggregation such as at the decile level may hide important pat-

terns. The middle and right-hand panels of Figure 2 shows comparisons for 20 and 50

bins, respectively. In the right-hand panel, each of the 50 bins represents an average of

2% of our hold-out data ( = 7,189 records per bin). This panel shows substantial variabil-

ity between the average relativity and loss ratio, so we consider alternative comparison

methods.

Specifically, we use nonparametric regression to assess score performance. Although

nonparametric regression is well-known in the predictive modeling community (e.g., Hastie

et al., 2001), it is less widely used in actuarial applications. The ideas are straight-forward.

Consider a set of relativities and loss ratios of the form (Ri, LRi), i = 1, . . . , n. Suppose

that we are interested in a prediction at relativity x. Then, for some neighborhood about

x, say, [x− b, x+ b], one takes the average loss ratio over all sets whose score falls in that
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neighborhood. Using notation, we can express this average as

m̂(x) =

∑n
i=1 w(x,Ri)LRi∑n

i=1 w(x,Ri)
, (5)

where the weight function w(x,Ri) is 1 if Ri falls in [x − b, x + b] and 0 otherwise. By

taking an average of all those observations with scores that are “close” to R = x, we get

a good idea as to what one can expect LR to be - that is E(LR|R = x), the regression

function. It is called “nonparametric” because there is no assumption about a functional

form such as linearity.

To see how this works, Figure 3 provides a plot for the basic frequency severity score,

SP FreqSev, and its multi-peril version assuming independence, IND FreqSev. To calcu-

late the nonparametric fits, this figure is based on b = 0.1. For our data, this choice of b

(known as a “bandwidth”) means that the averages were calculated using at least 13,000

records. For example, at x = 0.6, there were 27,492 policies with relativities that fell

in the interval [0.5,0.7]. These policies had an average loss ratio of 0.7085, resulting in

a deviation of 0.1085. We plot the fits in increments of 0.05 for the value of x meaning

that there is some overlap in adjacent neighborhoods. This overlap is not a concern for

estimating average fits, as we are doing here. We plot only relativities in the interval [0.6,

1.6] because the data become sparse outside of that interval. Figure 3 shows that the

deviations from IND FreqSev and SP FreqSev are comparable, it is difficult to say which

score is uniformly better.

Figure 4 provides additional comparisons. The left panel compares the error in

IND FreqSev to one of the instrumental variable alternatives, IV FreqSevA. Here, the

IV FreqSevA error is smaller for low relativities (0.6 through 0.8) and medium size rela-

tivities (1.2 through 1.4) and approximately similar elsewhere. The right panel compares

the error in IND FreqSev to the basic pure premium score, SP PurePrem, showing that
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these two measures perform about the same for most of the data.

For our application, we interpret m̂(x)−x to be the deviation when using the relativity

R to predict loss ratios LR. Compared to Gini indices, this measure allows us to see the

differences between relativities and loss ratios locally over regions of x.

7 Summary and Concluding Remarks

In this paper, we considered several models for predicting losses for homeowners insurance.

The models considered include:

• single versus multiple perils and

• pure premium versus frequency-severity approaches.

Moreover, in the case of multiple perils, we also compared

• independence to instrumental variable models.

The instrumental variable estimation technique is motivated by systems of equations,

where the presence and amount of one peril may affect another. We showed in Section 3

that instrumental variable estimators accommodate statistically significant relationships

that we attribute to associations among perils.

For our data, each accident event was assigned to a single peril. For other databases

where an event may give rise to losses for multiple perils, we expect greater association

among perils. Intuitively, more severe accidents give rise to greater losses and this severity

tendency will be shared among losses from an event. Thus, we conjecture that instrumen-

tal variable estimators will be even more helpful for companies that track accident event

level data.

This paper applies the instrumental variable estimation strategy to homeowners in-

surance, where a claim type may be due to fire, liability, and so forth. One could also
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use this strategy to model homeowners and automobile policies jointly or umbrella poli-

cies that consider several coverages simultaneously. As another example, in healthcare,

expenditures are often broken down by diagnostic related groups.

Although an important contribution of our work is the introduction of instrumental

variable techniques to handle dependencies among perils, we do not wish to advocate one

technique or approach as optimal in all situations. Sections 2.2 and 3 introduced many

models, each of which has advantages compared to alternatives. For example, the “basic”

models that do not decompose claims by peril have the advantage of relative simplicity and

hence interpretability. The “independence” multi-peril models allow analysts to separate

claims by peril, thus permitting greater focus in the choice of explanatory variables.

The instrumental variable models allow analysts to accommodate associations among

perils. When comparing the pure premium to the frequency-severity approaches, the

pure premium has the advantage of relative simplicity. In contrast, the frequency-severity

has the advantage of permitting greater focus, and hence interpretability, on the choice

of explanatory variables.

This paper supplements these qualitative considerations through quantitative com-

parisons of predictors based on a held-out, validation, sample. For our data, we found

substantial differences among scoring methods, suggesting that the choice of methods

could have an important impact on an insurer’s pricing structure. We found that the in-

strumental variable alternatives provided genuine “lift” compared to baseline multi-peril

rating methods that implicitly assume independence, for both the pure premium and

frequency-severity approaches. We used nonparametric regression techniques to explore

local differences in the scores. Although we did not develop this point extensively, we con-

jecture that insurers could use the nonparametric techniques to identify regions where one

scoring method is superior to an alternative (using covariate information) and possibly

develop a next stage “hybrid” score.
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Part I

Appendices

A Summary Statistics of the Homeowners Data

This section displays summary statistics of the frequency portion of the homeowners data, the purpose
being to illustrate the dependence among perils. There were relatively few joint claims and so it is
difficult to intuitively argue for a severity dependency. Many of these statistics appeared in Frees, Meyers
and Cummings (2010). To keep this paper self-contained, these summary measures are provided here to
familiarize readers with our data.

Table 6 gives the number of joint claims among perils. For example, we see that there were only
three records that had a Lightning and a Liability claim within the year.

To measure association among perils, Table 7 provides the dependence ratios among perils. A depen-
dence ratio is the ratio of the joint probability to the product of the marginal probabilities. For example,
for perils 1 and 2, the dependence ratio is

dependence ratio =
Pr(r1 = 1, r2 = 1)

Pr(r1 = 1)Pr(r2 = 1)
.

For example, from Table 6, we would calculate this as

11/404664

1254/404664× 2134/404664
= 1.663.

A dependence ratio equal to one indicates independence among perils.
Table 7 suggests dependence among perils. However, these statistics do not control for the effects of

explanatory variables. For example, combinations of explanatory variables that mean a high probability of
one peril may also induce a high probability of another peril, thus leading to seeming positive association.

For assessing frequency dependencies in the presence of explanatory variables, recall that r denotes
the binary variable that indicates a claim (y = 1). Let qij be the corresponding probability of a claim. The
number of claims that is joint between the jth and kth perils is

∑n
i=1 rij × rik. Assuming independence

among perils, this has mean and variance

E

(
n∑

i=1

rij × rik

)
=

n∑
i=1

qij × qik

and

Var

(
n∑

i=1

rij × rik

)
=

n∑
i=1

qijqik − (qijqik)
2.

To assess dependencies among the claim frequencies, we employ the t-statistic

tjk =

∑n
i=1 rij × rik −

∑n
i=1 qij × qik√∑n

i=1 qijqik − (qijqik)2
. (6)

The t-statistic in equation (6) would be a standard two-sample t-statistic except that we allow the
probability of a claim to vary by policy i. To estimate these probabilities, we fit a logistic regression
model for each peril j, where the explanatory variables are peril-specific. Each model was fit in isolation
of the others, thus implicitly using the null hypothesis of independence among perils.
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Table 8 summarizes the test statistics for assessing independence among the frequencies. Not surpris-
ingly, the strongest relationship was between water damage due to weather and water damage from causes
other than weather. The largest dependence ratio in Table 7, between fire and the “Other” category,
was the second largest t-statistic – this indicates strong dependence even after covariates are introduced.
Interestingly, the only significant negative relationship was between hail and the “Other” category.

For the degrees of freedom of the t-statistic, we have followed the usual rule of the number of
observations minus the number of parameters. Because our sample size is large (n = 404, 664) relative to
the number of parameters, the reference distribution is essentially normal.

B Overview of the Instrumental Variables Approach

To keep this paper self-contained, this section provides a brief introduction of the instrumental variable
methods of estimation that is widely used in econometrics. Our treatment follows that in Frees (2004).

To motivate this approach, consider a classical economic demand and supply problem that is sum-
marized by two equations:

y1i = β1y2i + γ10 + γ11x1i + ε1i (price) (7)

y2i = β2y1i + γ20 + γ21x2i + ε2i (quantity).

Here, we assume that quantity (y2) linearly affects price (y1), and vice-versa. Further, let x1 be the
purchasers’ income and x2 be the suppliers’ wage rate. These other explanatory variables (x ’s) are
assumed to be exogenous for the demand and supply equations.

For simplicity, assume that we have i = 1, . . . , n independent observations that follow display (7).
One estimation strategy is to use ordinary linear regression. As we will see, this strategy yields biased
regression coefficients estimates. This is because on the right-hand side of display (7), the “conditioning”
or explanatory variables, contains a y variable that is also a dependent variable.

One estimation approach is to organize all of the dependent variables on the left-hand side and
estimate the model using likelihood inference. Specifically, with some algebra, we could re-write display
(7) as

yi =

(
y1i
y2i

)
= B

(
γ10 γ11 0
γ20 0 γ21

) 1
x1i

x2i

+B

(
ε1i
ε2i

)

where B =

(
1 −β1

−β2 1

)−1

. Then, parameters of this equation could be estimated using, for example,

maximum likelihood.
A simpler approach, that has advantages in many situations, is to use ordinary least squares with

approximate values for the right-hand side dependent variables. To see how this approach works, we focus
on the price equation and assume that we have available “instruments” w to approximate y2. Then, we
employ the following two-stage strategy:

1. Run a regression of w on y2 to get fitted values of the form ŷ2.

2. Run a regression of x1 and ŷ2 on y1.

As one would expect, the key difficulties are coming up with suitable instruments w that provide the
basis for creating reasonable proxies for y2 that do not have endogeneity problems. In our example, we
might use x2, the suppliers’ wage rate, as a our instrument in the stage 1 estimate of y2, the quantity
demanded. This variable is exogenous and not perfectly related to x1, purchaser’s income.
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The difficulty with ordinary least squares estimation of the model in display (7) is that the right-hand
side variables are correlated with the disturbance term. For example, looking the price equation, one can
see that quantity (y2) is correlated with ε1. This is because y2 depends on y1 (from the supply equation)
which in turns depends on ε1 (from the demand equation). This circular dependency structure induces
the correlation that leads to biased regression coefficient estimation.

Extending this line of thought, suppose that theory suggests a linear equation of the form

yi = x′
iβ + εi.

We may consider an explanatory variable to be endogenous if it is correlated with the disturbance term.
Because zero covariance implies zero correlation and because disturbance terms are mean zero, we require
only that E εixi = 0 for exogeneity. When not all of the regressors are exogenous, the instrumental
variable technique employs a set of variables, wi, that are correlated with the regressors specified in the
structural model. Specifically, we assume

E εiwi = E (yi − x′
iβ)wi = 0

for the instruments to be exogenous. With these additional variables, an instrumental variable estimator
of β is of the form bIV = (X′PWX)

−1
X′PWy. Here, PW = W(W′W)−1W is a projection matrix and

W = (w1, . . . ,wn) is the matrix of instrumental variables.
In many situations, instrumental variable estimators can be easily computed using two-stage least

squares. In the first stage, one regresses each endogenous regressor on the set of exogenous explanatory
variables and calculates fitted values of the form X̂ = PWX. In the second stage, one regresses the
dependent variable on the fitted values using ordinary least squares to get the instrumental variable
estimator, that is, bIV = (X̂′X̂)−1X̂′y .

Although we will not go into the details, there are conditions on the instruments. Typically, they
may include a subset of x but must also include additional variables. For example, if they did not
include additional variables, then linear combinations of instruments yield perfect linear combinations of
x, resulting in perfect collinearity and non-identifiability of the coefficients. Further, the new explanatory
variables in w must also be exogenous (unrelated to ε), otherwise we have done nothing to solve our initial
problem.

Instrumental variables are employed when there are (1) systems of equations, (2) errors in variables
and (3) omitted variables. For the applications in this paper, we will use this concept for both systems of
equations and for omitted variables. Extensions to non-linear systems are readily available in standard
econometric texts including Arellano (2003) and Wooldridge (2002).

C Frequency and Severity Instrumental Variable Es-

timation

Section 3.2 described the instrumental variable approach focusing on the frequency portion of the model.
We also found that fitted probabilities of a peril help to predict the severity from that peril (and vice-
versa, fitted severities help to predict probabilities). To provide intuition, we focus on the severity model
to begin and, as we will see, we will be able to easily reverse the roles of frequency and severity. In our
database, we have a variable “base cost loss costs” that we use approximate PREMj , pure premium, in
our empirical work.

• Pure premium is expected frequency times severity, that is, PREMj = πj × E yj

• This suggests that a good explanatory variable for the severity portion is PREMj/πj .

• Of course, we do not know πj but can estimate it from a stage 1 regression as, say, π̂j .
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• Because we use a log-link function, this suggests including ln(PREMj/π̂j). Often, logarithmic
base cost loss costs are already in the regression, so we

• Include ln π̂j as a predictor of severity.

An interesting aspect of this logic is that the instrumental variable approach provides motivation for
using frequency to predict severity.

Now, reverse the roles of frequency and severity – include ln Ê yj as a predictor of frequency. We
remark that when one does this, it is not quite as clean an argument because we typically use the logit
link with logistic model. However, for small probabilities, these two are quite close and so a log fitted
severity works well at this stage.

We summarize the procedure as follows.

• Stage 1 - Compute independence frequency and severity model fitted values. Specifically, for each
of the j = 1, . . . , 9 perils:

– 1a. Fit a logistic regression model using the explanatory variables xF,i,j . These explanatory
variables differ by peril j. Calculate fitted values to get predicted probabilities, denoted as
π̂IND,i,j .

– 1b. Fit a gamma regression model using the explanatory variables xS,i,j with a logarithmic
link function. These explanatory variables may differ by peril and from those used in the
frequency model. Calculate fitted values to get predicted severities (by peril), denoted as

Ê yIND,i,j .

• Stage 2. Incorporate additional instruments into the model estimation. Specifically, for each of
the j = 1, . . . , 9 perils:

– 2a. Fit a logistic regression model using

∗ the explanatory variables xF,i,j ,

∗ the logarithm of the predicted probabilities developed in step 1(a), ln π̂IND,i,k, k =
1, . . . , 9, k ̸= j and

∗ the logarithm of the fitted values in step 1(b), ln Ê yIND,i,j .

– 2b. Fit a gamma regression model using

∗ the explanatory variables xS,i,j and

∗ the logarithm of the fitted predicted probabilities in step 1(a), ln π̂IND,i,j .
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Table 1: Homeowners Summary Statistics
Peril Frequency Number Median

(in percent) of Claims Claim Amount
Fire 0.310 1,254 4,152
Lightning 0.527 2,134 899
Wind 1.226 4,960 1,315
Hail 0.491 1,985 4,484
WaterWeather 0.776 3,142 1,481
WaterNonWeather 1.332 5,391 2,167
Liability 0.187 757 1,000
Other 0.464 1,877 875
Theft-Vandalism 0.812 3,287 1,119
Total 5.889 23,834 1,661
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Figure 1: Single versus Multi-Peril Frequency-Severity Scores. This graph is based on a 1 in
100 random sample of size 3,594. The correlation coefficient is only 79.4%.
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Table 2: Instrumental Variable Pure Premium Model Coefficients.
Shown are coefficients associated with the instruments, logarithmic fitted values.

Dependent Variables

Fire Lightning Wind
Explanatory Variables Estimate t-statistic Estimate t-statistic Estimate t-statistic
Log Fitted Fire 0.3313 25.10 -0.0184 -1.52
Log Fitted Lightning 0.2200 15.49 0.4120 28.81
Log Fitted Wind -0.0468 -3.16 0.2238 15.43
Log Fitted Hail -0.0196 -4.08 0.0702 14.04 -0.1021 -23.74
Log Fitted WaterWeather 0.2167 14.16 -0.2120 -11.98 -0.0706 -4.20
Log Fitted WaterNonWeat -0.0568 -4.66 0.2822 12.54 0.3442 18.51
Log Fitted Liability -0.0696 -6.05 -0.1667 -12.82 -0.0330 -2.82
Log Fitted Other -0.0147 -1.34 0.0081 0.80 -0.2229 -20.45
Log Fitted Theft 0.7854 37.76 -0.1107 -4.77 -0.1815 -10.20

Dependent Variables

Hail Water Weather Water NonWeather
Explanatory Variables Estimate t-statistic Estimate t-statistic Estimate t-statistic
Log Fitted Fire -0.0786 -7.08 0.1162 7.13 0.3789 33.24
Log Fitted Lightning 0.1291 9.36 0.0062 0.51 -0.0555 -3.58
Log Fitted Wind 0.1194 5.43 0.0504 3.76 0.0329 2.49
Log Fitted Hail -0.0437 -8.74 0.0007 0.14
Log Fitted WaterWeather 0.2794 12.64 -0.2504 -16.37
Log Fitted WaterNonWeat -0.1302 -7.48 0.2833 18.16
Log Fitted Liability -0.4527 -35.37 -0.1764 -14.95 -0.1297 -11.58
Log Fitted Other -0.2411 -21.72 0.2419 20.33 0.0449 4.49
Log Fitted Theft 0.4334 27.43 0.2642 14.36 0.0827 5.10

Dependent Variables

Liability Other Theft
Explanatory Variables Estimate t-statistic Estimate t-statistic Estimate t-statistic
Log Fitted Fire 0.6046 50.38 -0.2285 -19.20 0.2881 25.72
Log Fitted Lightning 0.3883 31.83 0.1874 19.73 0.1567 11.36
Log Fitted Wind -0.6248 -46.63 -0.1297 -11.09 -0.0907 -7.75
Log Fitted Hail 0.0822 16.12 -0.2128 -56.00 -0.0258 -6.00
Log Fitted WaterWeather -0.4337 -22.71 0.2708 27.92 0.2515 18.22
Log Fitted WaterNonWeat -0.2227 -12.80 0.5306 28.99 -0.2138 -15.06
Log Fitted Liability -0.0341 -3.88 -0.1174 -11.40
Log Fitted Other 0.1258 12.21 0.1555 16.37
Log Fitted Theft 0.1447 7.13 -0.0658 -3.45
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Table 3: Summary Statistics of Fourteen Scores and Total Claims

Mini- Percentiles Maxi-
Score Mean mum 1st 5th 25th 50th 75th 95th 99th mum

SP FreqSev Basic 291.10 20.48 85.00 120.25 182.74 240.37 334.62 618.37 1,025.88 8,856.79
SP PurePrem Basic 289.91 33.01 89.48 127.80 189.87 246.44 329.79 586.33 1,050.15 5,467.41
IND PurePrem Basic 290.91 37.49 92.08 124.04 182.68 240.30 328.87 612.47 1,087.06 13,577.91
IV PurePrem Basic 293.55 36.61 93.91 128.21 187.57 241.29 327.75 616.05 1,122.84 15,472.82

SP FreqSev 287.79 8.78 71.55 105.39 171.55 237.95 339.40 631.98 1,039.19 6,864.46
SP PurePrem 290.00 10.23 72.17 107.90 175.83 242.17 338.64 616.64 1,113.73 7,993.52
IND FreqSev 294.93 33.05 97.14 126.61 185.07 244.99 333.68 606.03 1,106.17 22,402.49
IND PurePrem 292.18 28.04 86.53 119.74 181.22 240.52 326.60 592.07 1,078.25 49,912.59
IV PurePrem 294.06 12.42 78.41 113.14 178.62 240.38 330.21 614.22 1,095.70 107,158.09

IV FreqSevA 290.91 23.99 88.70 121.70 182.29 241.42 327.81 606.23 1,096.86 18,102.93
IV FreqSevB 295.32 28.52 94.58 124.77 184.29 245.26 335.38 606.63 1,100.61 24,394.06
IV FreqSevC 291.17 20.88 84.78 118.21 180.63 241.57 329.92 608.28 1,098.40 20,046.03

DepRatio1 301.12 33.38 98.80 128.95 188.73 249.97 340.64 619.79 1,129.96 23,255.94
DepRatio36 302.39 33.48 99.27 129.65 189.87 251.41 342.30 620.38 1,132.36 23,092.35

TotClaims 332.89 0.00 0.00 0.00 0.00 0.00 0.00 660.00 5,916.33 350,000.00

Legend:
Score Interpretation

Scores using the basic set of explanatory variables
SP FreqSev Basic Single-peril, frequency and severity model
SP PurePrem Basic Single-peril, pure premium model
IND PurePrem Basic Multi-peril independence, pure premium model
IV PurePrem Basic Instrumental variable multi-peril pure premium model
Scores using the extended set of explanatory variables
SP FreqSev Single-peril, frequency and severity model
SP PurePrem Single-peril, pure premium model
IND FreqSev Multi-peril frequency and severity model assuming independence among perils
IND PurePrem Multi-peril pure premium model assuming independence among perils
IV PurePrem Instrumental variable multi-peril pure premium model.
Instrumental variable multi-peril frequency and severity models, using the extended set of explanatory variables
IV FreqSevA Uses instruments in frequency model
IV FreqSevB Uses instruments in severity model
IV FreqSevC Uses instruments in frequency and severity models
Dependence ratio multi-peril frequency and severity models, using the extended set of explanatory variables
DepRatio1 Uses a single parameter for frequency dependencies
DepRatio36 Uses 36 parameters for frequency dependencies
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Table 5: Gini Indices and Standard Errors
Alternative Standard Alternative Standard
Score Gini Error Score Gini Error
SP PurePrem Basic 4.89 2.74 IV FreqSevA 12.59 2.50
IND PurePrem Basic 4.01 2.77 IV FreqSevB 10.61 2.54
IV PurePrem Basic 4.33 2.75 IV FreqSevC 12.80 2.49
SP FreqSev 11.15 2.54 DepRatio1 10.09 2.56
SP PurePrem 9.97 2.59 DepRatio36 10.06 2.56
IND FreqSev 10.03 2.56
IND PurePrem 10.96 2.57
IV PurePrem 11.29 2.55
Note: Base Premium is SP FreqSev Basic.
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Figure 2: Average Relativities and Loss Ratios, by Groups of Scores.
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Figure 3: Comparison of Single and Multi-Peril Frequency-Severity Loss Ratios.
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Figure 4: Comparison of Loss Ratios from several Scoring Methods. The left panel compares
the independence to an instrumental variable frequency-severity approach. The right panel com-
pares the independence frequency-severity approach to the single peril pure premium (Tweedie)
method.
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Table 6: Joint Claim Counts Among Perils
Light Water Water Non Theft

Fire ning Wind Hail Weather Weather Liability Other Vand
Lightning 11
Wind 23 17
Hail 7 11 23
WaterWeather 23 12 62 13
WaterNWeath 27 32 92 43 93
Liability 4 3 17 3 7 16
Other 16 18 45 2 18 48 13
TheftVand 20 25 55 16 38 71 9 31
Totals 1254 2134 4960 1985 3142 5391 757 1877 3287
Note: Totals refer to all claims from a peril, not just those occurring jointly with another peril.

Table 7: Dependence Ratios Among Perils
Light Water Water Non

Fire ning Wind Hail Weather Weather Liability Other
Lightning 1.663
Wind 1.496 1.338
Hail 1.138 1.051 0.945
WaterWeath 2.362 0.724 1.610 0.843
WaterNWeath 1.616 1.126 1.392 1.626 2.222
Liability 1.705 0.751 1.832 0.808 1.191 1.587
Other 2.751 1.818 1.956 0.217 1.235 1.920 3.702
TheftVand 1.963 1.442 1.365 0.992 1.489 1.621 1.464 2.033

Table 8: Test Statistics From Logistic Regression Fits
Light Water Water Non

Fire ning Wind Hail Weather Weather Liability Other
Lightning 1.472
Wind 1.662 1.530
Hail 0.754 0.247 -1.240
WaterWeath 3.955 -1.166 3.185 -0.100
WaterNWeath 2.732 0.837 3.369 1.697 7.429
Liability 1.023 -0.485 2.436 -0.303 0.333 1.825
Other 4.048 2.229 3.919 -2.616 0.478 4.004 4.929
TheftVand 3.085 1.816 2.270 -0.235 2.227 3.503 1.147 3.766
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Generalized Linear Mixed Models for Ratemaking: A Means 
of  Introducing Credibility into a Generalized Linear Model 

Setting 

Fred Klinker, FCAS, MAAA 

______________________________________________________________________________ 
Abstract: GLMs that include explanatory classification variables with sparsely populated levels assign large standard 

errors to these levels but do not otherwise shrink estimates toward the mean in response to low credibility.  
Accordingly, actuaries have attempted to superimpose credibility on a GLM setting, but the resulting methods do 
not appear to have caught on.  The Generalized Linear Mixed Model (GLMM) is yet another way of introducing 
credibility-like shrinkage toward the mean in a GLM setting.  Recently available statistical software, such as SAS 
PROC GLIMMIX, renders these models more readily accessible to actuaries.  This paper offers background on 
GLMMs and presents a case study displaying shrinkage towards the mean very similar to Buhlmann-Straub 
credibility. 
 

Keywords: Credibility, Generalized Linear Models (GLMs), Linear Mixed Effects (LME) models, Generalized 
Linear Mixed Models (GLMMs). 

______________________________________________________________________________ 

1. INTRODUCTION 

Generalized Linear Models (GLMs) are by now well accepted in the actuarial toolkit, but they 

have at least one glaring shortcoming--there is no statistically straightforward, consistent way of 

incorporating actuarial credibility into a GLM. 

Explanatory variables in GLMs can be either continuous or classification.  Classification variables 

are variables such as state, territory within state, class group, class within class group, vehicle use, etc. 

that take on a finite number of discrete values, commonly referred to in statistical terminology as 

“levels.”  The GLM determines a separate regression coefficient for each level of a classification 

variable.  To the extent that some levels of some classification variables are only sparsely populated, 

there is not much data on which to base the estimate of the regression coefficient for that level.  The 

GLM will still provide an estimated coefficient for that level but will assign it a large standard error 

of estimation.  In effect, the GLM warns the user to exercise considerable care in interpreting that 

coefficient but doesn’t otherwise adjust the estimated coefficient to take into account the low 

volume of data.  When faced with this situation, the natural inclination of an actuary is to shrink low 

credibility levels towards the mean, but the GLM quotes a large standard error of estimation and 

leaves it at that. 

There have been a number of responses to this unsatisfactory state of affairs.  Some actuaries 

have been known to apply an ad hoc credibility adjustment to coefficients output by a GLM.  In 

some cases this even produces results similar to those arrived at by more statistically rigorous 
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methods.  If so, then what is so wrong with the ad hoc credibility adjustment of GLM output?  First, 

we cannot guarantee the ad hoc results will always agree closely with results from those other 

methods.  Second, the statisticians who designed our GLMs were unaware we intended to subject 

GLM estimates to the violence of a subsequent round of ad hoc credibility adjustments.  If they had 

known, they might have suggested a better starting point than GLM estimates.  This gets back to the 

old issue that a sequence of steps, each optimal individually, may not be optimal in the aggregate. 

Turning to other, more statistically rigorous attempts to incorporate credibility in a GLM setting, 

it would be desirable to find a method that estimates both the GLM and the credibility adjustment in 

a single, statistically consistent step where each GLM estimation and credibility adjustment takes into 

account the fact that the other estimation process is also going on.  A number of authors have 

indeed produced models that combine GLM and credibility, for example, Nelder and Verrall (1997), 

Ohlsson and Johansson (2004 and 2006), and Ohlsson (2006).  Given the importance of the issue 

these papers address, why have these models not caught on in actuarial circles (at least not that I am 

aware)?  I might hazard two guesses.  First, their math is somewhat complex and perhaps 

intimidating.  Second, their algorithms are iterative and require a nontrivial degree of programming 

from their users. 

There are alternative statistical models, quite similar in theory to Nelder and Verrall and Ohlsson 

and Johansson, known as Generalized Linear Mixed Models (GLMMs).  Statisticians actually 

developed these models some time ago, but it has only been very recently that popular stat software 

(like SAS, R, and S-Plus) has been enhanced to provide us with the means to readily estimate these 

models.  Furthermore, it should be noted that models much like GLMMs have even been 

introduced into the actuarial literature.  See, for example, Guszcza (2008), which admittedly 

introduced these models in a reserving rather than ratemaking setting, but that paper does provide a 

good introduction and intuition regarding what is going on in the guts of a GLMM, or something 

much like a GLMM. 

I will not argue that GLMMs provide better models than Nelder and Verrall and Ohlsson and 

Johansson, but the newly available software makes it easier to implement these GLMM models. 

1.1 Objectives of This Paper 

The objectives of this paper are to: 

 Introduce Linear Mixed Effects (LME) models and their generalization to Generalized Linear 

Mixed Models (GLMMs). 
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 Show how the LME, at least when applied to simple models, can be solved in closed form 

and leads directly to shrinkage of random effects towards the mean of the form of 

Buhlmann-Straub credibility.  This motivates at least the hope that a similar shrinkage might 

be expected from a GLMM, where the math is no longer tractable in closed form. 

 Demonstrate the application of a GLMM to a case study in which the hoped-for shrinkage is 

indeed observed and does indeed approximate the form of Buhlmann-Straub credibility. 

 Demonstrate along the way (in Appendix A) SAS code that implements the GLMM. 

In one sense, the central point of the paper is Table 4 and Figure 1.  These show the shrinkage 

observed in the case study and the fact that this shrinkage is of form approximately Buhlmann-

Straub.  The reader who takes nothing else away from this paper should at least keep this Table and 

Figure in mind as motivation for wanting to learn more about GLMMs as a means of implementing 

credibility in a GLM setting in a manner very reminiscent of credibility theory they already know. 

The reader should also keep in mind what this paper is not, and the following comments are 

offered as a means to managing readers’ expectations.  What this paper is not is a general review 

article on the various means by which credibility has been incorporated into a GLM setting.  I will 

not discuss the various ad hoc credibility adjustments to GLM output alluded to earlier, nor Nelder 

and Verrall, nor Ohlsson and Johansson, nor other more overtly Bayesian or Empirical Bayes 

methods.  I will not discuss the subtle theoretical points in which Nelder and Verrall and Ohlsson 

and Johansson differ from GLMMs nor examine the differences in results produced by applying ad 

hoc credibility adjustments vs. Nelder and Verrall vs. Ohlsson and Johansson vs. GLMMs to the 

case study of this paper.  What this paper is intended to say is, “Here is one very interesting way of 

implementing credibility in a GLM setting.  It might or might not be the best from among those 

methods currently available, but it is certainly promising.  It produces credibility-like shrinkage very 

similar to credibility you, the actuary, are already familiar with.  And it has the added advantage of 

ready implementation via software only recently available.” 

This paper is also not intended to be a comparison of GLMM implementations in different stat 

packages.  SAS PROC GLIMMIX is likely to be available to many of the readers of this paper, and it 

happens to be the means I chose to implement GLMMs.  But there are also implementations in R, 

S-Plus, etc., and I don’t mean to imply that SAS PROC GLIMMIX is superior to these others. 

I leave to another, more energetic and ambitious author the task of writing the general review 

article that some readers might have been hoping for.  Indeed, I would hope that this paper serve as 
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the impetus for such a review article. 

1.2 Prerequisites 

It will be assumed that the reader is already familiar with the theory of GLMs and their 

application to actuarial problems at the level of McCullagh and Nelder (1989), Anderson et al. 

(2004), and de Jong and Heller (2008). 

1.3 Outline of Remainder of This Paper 

The remainder of this paper proceeds as follows. Section 2 will introduce the Linear Mixed 

Effects (LME) model, a simpler cousin of the GLMM, as a means of introducing many features of 

GLMMs before I discuss their complications.  Section 3 will show how, in a very simple case, 

Buhlmann-Straub credibility emerges directly from the LME model.  This is done to motivate the 

connection between GLMMs and credibility.  The LME is generalized to the GLMM in Section 4. 

Section 5 presents a case study on live ISO data for an unspecified line of business.  By 

comparing GLM and GLMM runs on essentially the same model form and same data, it is shown 

that the GLMM introduces a shrinkage of sparsely populated classification variable levels towards 

the mean.  This shrinkage is not seen in the GLM.  Furthermore, it is shown that the credibility 

implied by this shrinkage is very close to the form of Buhlmann-Straub credibility.  Section 6 

concludes.  SAS code implementing the Section 5 case study as well as a discussion of some of the 

output from that code has been deferred to Appendix A. 

2. THE LINEAR MIXED EFFECTS (LME) MODEL 

The Linear Mixed Effects model is nothing other than classical linear regression (more correctly, 

the classical general linear model) with the addition of “random” effects to the “fixed” effects 

already treated in classical linear regression.  The error distribution is assumed normal.  Expected 

values are assumed linear in explanatory variables.  In the language of GLMs, the error distribution 

in the “exponential” family is the normal distribution, and the link function is the identity function. 

Especially because it is so central to the understanding of the rest of this paper, more needs to be 

said about the distinction between “fixed” and “random” effects.  The classic fixed effect is a 

classification variable with relatively few levels, those being the only levels we are interested in.  The 

classic random effect is a classification variable with potentially many levels, only some of which 

appear in our dataset by design of the sample that produced our dataset from the overall population.  

Re random effects, the focus is frequently on the variance among the levels rather than on the values 
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of the levels themselves, which are assumed to have expectation zero.  Even when there is interest in 

the values of the levels of the random effects, the inferential algorithm that predicts those levels 

must first estimate the random effects variances.  It should also be noted that to some extent the 

distinction between fixed and random effects depends on the context of the study; the very same 

effect treated as fixed in one study might reasonably be treated as random in another, given the 

different goals of the two studies. 

Consider the following example.  Suppose you want to test the relative efficacy of a number of 

drugs, so your model includes a drug main effect.  The levels of that drug main effect test whether 

some drugs are better than others, better than a control, better than a placebo, etc. in terms of some 

response that serves as the dependent variable in your model.  You run your drug trials at a number 

of test centers.  This suggests that you include test center as another main effect in your model to 

control for possible test center differences.  If you treat test center as a fixed effect, you end up 

drawing inferences for drug main effects appropriate for those test centers but not validly extendible 

to medical centers other than those at which you ran the tests.  On the other hand, if you drew your 

test centers relatively at random from a much larger universe of possible centers, and you reflect that 

fact by treating test center as a random main effect in your model, then you end up drawing drug 

main effect inferences that can validly be extended to centers other than the ones at which you 

actually did the tests.  Quoted standard errors of the drug effects will be somewhat larger because of 

the additional uncertainty attributable to the treatment center random effect.  For further 

enrichment re random effects, see Littell et al. (2006) or any one of many texts on random or mixed 

effects models. 

The above describes the classical statistical motivation for random effects, but the actuarial 

motivation for considering random effects actually differs somewhat from this.  If we treat state, or 

territory within state, as random, is that because we want to extend our model results to states or 

territories we didn’t actually have in our data?  No, not usually.  If we want our model results to 

apply to a given state or territory, we usually include that state or territory in our data.  But the zero 

expectation of random effects models creates a natural drift towards zero when data is thin.  This 

shrinkage towards zero looks a lot like credibility with the complement of credibility being the 

overall mean, and we invoke the statistical machinery of random effects to exploit that shrinkage. 

Turning to the description of the LME model, the basic equation is: 

.eZuXY    (2.1)
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This would be the classic linear regression equation (expressed in matrix form) except for the 

additional random effects term Zu.  This is a matrix equation.  If there are n observations, Y is an n-

vector of the observed values of the dependent variable.  X is an n by p matrix, referred to as the 

model structure (or design) matrix, for the fixed effects.  If the model includes an intercept term, 

there is a column of X consisting of all ones to capture the intercept.  For each continuous 

explanatory variable, there is a column of X consisting of the values for that variable.  For each main 

effect classification variable with m levels, there are m columns of X which are indicator variables 

for membership in each of the m levels (except that certain full rank parameterizations of the model 

suppress one of the columns).  The indicator variable for the ith level takes the value one if the 

observation is indeed in that level, zero otherwise.  Interaction terms contribute more complex 

columns to X.  β is the p-vector of regression coefficients for the fixed effects.  This is not to say 

that there are a total of p fixed effect variables in the model, only that, taking into account the 

intercept and the fact that classification variables contribute multiple columns to the structure 

matrix, it requires a total of p regression coefficients to fully specify the fixed effects part of the 

model. 

Z is the n by q design matrix for the model random effects.  The columns of Z are indicator 

variables for membership in classification variable levels for those classification variables treated as 

random effects.  The q-vector u is the equivalent of β and can be thought of as the vector of 

regression coefficients for the random effects.  The n-vector e is the vector of random measurement 

errors. 

Further structure is imposed by the following assumptions.  Both u and e vectors are multivariate 

normally distributed with expectations 0.  The variance of u is a q by q matrix Var[u]=G.  The 

variance of e is an n by n matrix Var[e]=R.  The u and e vectors are assumed uncorrelated: 

Cov[u,e]=0.  The structure of G specifies the structure of correlation among the random effects.  G 

is frequently assumed diagonal or block diagonal.  Other types of correlational structure among the 

observations, such as autocorrelated time series or spatial structure, are specified through the 

structure of the R matrix.  The user will most likely specify the structure of G and R, but these 

matrices may include unknown parameters that have to be estimated as part of the LME algorithm.  

It is common to speak of G side and R side covariance structure to distinguish between correlation 

arising through random effects vs. other time series or spatial processes.  These G side and R side 

covariance structures tend to be specified in different places in the model specification syntax. 

This model structure gives rise to two relevant distributions.  (The reader is forewarned that this 
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dichotomy will become more important when the LME is generalized to the GLMM in a later 

section.)  The first is the conditional distribution, Y|u, of the dependent variable Y conditional on 

actually knowing the random effects u.  This distribution has expectation Xβ+Zu and variance R.  

The second distribution is the marginal distribution for Y not knowing the random effects, which is 

the conditional distribution integrated over the random effects.  It has expectation Xβ (because u 

has expectation 0) and variance V=Var[Zu+e]=ZGZ'+R, where Z' denotes the transpose of the Z 

matrix.  Note that the total variance V has G side and R side contributions.  In a normal world, 

where both u and e are multivariate normal, so are both the conditional and marginal distributions 

for Y, but this result need not extend to the GLMM. 

The LME is solvable in closed form via generalized least squares.  The estimator for β is BLUE, 

Best Linear Unbiased Estimator (or EBLUE, Estimated or Empirical Best Linear Unbiased 

Estimator, if the total variance matrix, V, includes unknown parameters that have to be estimated as 

part of the solution.  For a discussion of BLUE and related terms, see Littell et al. (2006)), and is 

given by 

  .ˆ 111 YVXXVX    (2.2)

 

The predictor for the random effects is the expectation of the random effects u conditional on the 

observed Y, is BLUP, Best Linear Unbiased Predictor (or EBLUP, Estimated or Empirical Best 

Linear Unbiased Predictor), and is given by 

            .ˆVar,Cov| 11 XYVZGYEYYYuuEYuE    (2.3)

 

Discussion of how the unknown parameters in V are estimated would take us too far afield, nor is it 

necessary for the following argument. 

The reader seeking further enrichment re LME models can consult such books as Littell et al. 

(2006).  This book also provides discussion of such standard statistical terminology as BLUE and 

BLUP, the distinction between estimators for fixed effects and predictors for random effects, the 

generalization from LME to GLMM, as well as numerous examples of implementations of LMEs 

and GLMMs via SAS software. 
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3. HOW BUHLMANN-STRAUB CREDIBILITY EMERGES FROM THE 
LME MODEL 

A key point of this paper is that random effects in LME and their generalization to GLMMs 

entail a credibility-like shrinkage.  This result is exact for LME and particularly easy to see in the 

following simple example. 

Let us assume that class is the only explanatory variable, so we are looking at a one-way 

ANOVA, treating the grand mean as a fixed effect and the class offsets about the grand mean as 

random effects.  We assume data has been aggregated, so there is only one observation per class, the 

class i average response yi.  Y is the vector of the yi.  Exposures for class i are wi.  X is the fixed 

effects design matrix appropriate for an intercept only model, hence a single column of identical 

ones.  β, the vector of fixed effects regression coefficients, is only a 1-vector with the single entry the 

intercept.  The random effects design matrix, Z, has columns that are indicator variables for the 

various levels of the class variable.  If we assume our observations are in class order (first 

observation in the first class, second observation in the second class, etc.), then Z is just an identity 

matrix. 

We turn next to the structure of the R side and G side variance matrices.  R is the variance of the 

random errors e.  We assume the e are independent of one another from class to class, so R is 

diagonal.  Furthermore, we assume the ith class error variance is equal to a proportionality constant 

known as the within variance, σw
2, divided by the exposure volume wi.  In other words, the error 

variance declines with increasing volume.  So R is diagonal with diagonal elements σw
2/wi.  The 

random effects u are also assumed independent from class to class, so G is also diagonal with 

diagonal elements equal to the so-called between variance σb
2.  Then the total variance matrix 

V=ZGZ'+R is also diagonal with diagonal elements 

.
2

2

i

w
bi w

V


   
(3.1)

 

We will not here address the estimation of the unknown within and between variances but treat 

them for present purposes as known.  In fact, with only one observation per class, the within 

variance may not even be estimable.  The reader should also note that by reference to “within” and 

“between variance” we have slipped into actuarial jargon; to my knowledge “within” and “between 

variance” are not common statistical terms. 
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The estimator for the grand mean becomes, with very little algebra, exploiting the many structural 

simplifications of this particular example, 
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Defining credibility as 
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equation (3.2) becomes 

.ˆ



i i

i ii

z
yz

  
(3.4)

 

So the BLUE estimator of the fixed effects grand mean is none other than the credibility weighted 

average of the class means. 

Turning next to the prediction of the random class effects, we already know by assumption that 

the unconditional expectations of the random effects vanishes, E[u]=0, and we know the total 

variance Var[Y]=V is diagonal.  We can also show in the present case that the covariance matrix 

Cov[u,Y] is diagonal. 

     
      .0,Cov,Cov,Cov

.Var,Cov,Cov 2




jijjiji

biiiiii

uueuuyu

ueuuyu


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(3.5)

Collecting these results into the generic BLUP predictor of equation (2.3), the diagonality of the 

matrices on the right-hand side of (2.3) causes the matrix equation to collapse to a collection of 

scalar equations in which ui depends only on yi. 
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(3.6)

So the posterior predictor of the random effect represents a shrinkage of the observed class mean 

towards the fixed effects grand mean by a factor that amounts to Buhlmann-Straub credibility.  (For 

the reader needing a refresher on Buhlmann-Straub credibility, see chapter 4 of Goovaerts and 

Hoogstad (1987).)  This might give us reason to hope that a similar result might hold at least 

approximately when LME is generalized to GLMM. 

4. GENERALIZATION OF LME TO THE GENERALIZED LINEAR 
MIXED MODEL (GLMM) 

For actuarial applications, the most restrictive assumptions in the LME model are that errors are 

normally distributed and that expected values are linear in explanatory variables.  We already know 

how much power is gained by generalizing the classical linear model to the GLM and would hope 

for a similar gain in power on applying similar generalizations to the LME model. 

 In the notation of the previous section, the conditional distribution Y|u is now assumed to be in 

the exponential family rather than normal.  Recall that the normal is a special case of the 

exponential family. 

 Rather than assuming the conditional expectation linear in explanatory variables, we assume 

there is at least a link function g such that the g transform of the conditional expectation is 

linear: g(E[Y|u])=Xβ+Zu.  Note that the identity link is a special case of this assumption. 

 We still assume u multivariate normal with mean 0, variance matrix G, and uncorrelated with the 

random measurement error Y-E[Y|u]. 

The resulting model is the Generalized Linear Mixed Model (GLMM).  Because the normal 

distribution is a special case of the exponential family, and the identity link is a special case of a more 

general link function, the LME model is a special case of the more general GLMM. 

However, there are a number of important features of the LME model that do not carry over to 

the GLMM.  One of them has to do with marginal distributions.  In LME, the conditional 

distribution Y|u is normally distributed.  So is u.  The marginal distribution Y, being the integration 

of Y|u over u, is also normal.  This does not always extend to the GLMM.  Y|u is distributed in the 
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exponential family.  The random effect u is still assumed normally distributed.  But the marginal 

distribution Y may not even be in the exponential family.  Keep that in mind as you interpret 

GLMM output. 

A second complication is that GLMM equations are not usually solvable in closed form.  Instead, 

there are iterative solution algorithms, much as for the GLM.  As a further consequence, there is no 

closed form algebra producing Buhlmann-Straub credibilities as we observed above in the LME 

case.  But we can compare a GLM and a GLMM run on the same data and essentially the same 

model form to find evidence of shrinkage in the GLMM not present in the GLM.  By plotting this 

shrinkage against measures of volume, we find evidence that the shrinkage is fit closely by credibility 

of Buhlmann-Straub form.  This is demonstrated in the case study of the next section of this paper. 

5. A CASE STUDY 

5.1 Structure of the Problem 

This case study is based on live, not simulated, ISO data.  I have masked both line of business as 

well as names of potential explanatory variables to preserve ISO’s intellectual property.  The 

dependent variable being modeled is experience ratio, the ratio of observed losses to expected losses 

under the current rating plan, the latter denoted as ALCCL.  The data are not at the level of 

individual risks but rather aggregated into cells defined as crossings on all relevant explanatory 

variables, producing about 300,000 cells.  As a consequence, some cells contain only a few risks; 

others contain thousands.  One might therefore expect choice of proper weights to be important.  

Classical actuarial reasoning would lead us to expect, just as in the case of loss ratios, that the 

variance of experience ratios be inversely proportional to volume.  In other words, the weights 

should be some measure of volume of business.  I tested a number of possible weights and observed 

the best weight diagnostics when I used ALCCL as weights. 

Before delving further into detail, we might fruitfully give some brief thought to what it means to 

model on experience ratios as the dependent variable.  The denominator of the experience ratio is in 

effect the current rating plan.  If the current rating plan is entirely adequate, we would expect to see 

no statistically significant evidence of structure in the experience ratio across the explanatory variable 

space, so any statistically significant evidence of structure is evidence for changes to the current 

rating plan, and the model parameters indicate the degree of change. 

I limited the case study model to four explanatory variables so as not to swamp the case study 

with too much detail.  The variable of primary interest is a classification variable, CLASS1, with 
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twelve levels.  Some of these levels are sparsely populated, and we will therefore want to treat 

CLASS1 as a random effect in a GLMM so as to shrink those levels towards the grand mean.  There 

are two other classification variables, COVARIATE1 and COVARIATE2, each with four levels, 

which we will treat as fixed effects.  There is also a continuous variable, COVARIATE3. 

By default, SAS encodes classification variable effects in linear models (and their generalizations, 

such as GLM and GLMM) as contrasts between each level and the last level in the list for that 

variable.  So, for each of CLASS1, COVARIATE1, and COVARIATE2, I have selected a well-

populated level to serve as the base level for that variable and recoded it to “9” or “99” to force it to 

the end of the list of levels for that variable.  This means that all contrasts will be expressed relative 

to stable bases. 

Note that we are not modeling frequency and severity separately but rather their joint impact on 

experience ratio.  We therefore need a distribution with positive mass at zero (to capture those cells 

with no loss) as well as a continuous density on the positive reals to capture cells with loss.  It has 

recently become popular to model such cases with a Tweedie distribution with exponent p between 

1 and 2.  An exponent p=1.67 is a popular choice, and that is what I have chosen for the present 

case study. 

Finally, we assume the ever-popular natural log link so as to yield a multiplicative model. 

5.2 The GLM 

The GLM model as summarized above was estimated via SAS PROC GENMOD.  Further detail 

re code, etc. is deferred to Appendix A.  The resulting parameter estimates from that model are 

summarized in the following Table 1. 
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Table 1 

Analysis Of Maximum Likelihood Parameter Estimates 

Parameter  DF Estimate 
Standard 

Error
Wald 95% 

Confidence Limits 
Wald Chi-

Square Pr > ChiSq

Intercept  1 -0.2963 0.0329 -0.3608 -0.2317 80.96 <.0001

class1 01 1 0.3346 0.0413 0.2538 0.4155 65.78 <.0001

class1 02 1 0.2585 0.1674 -0.0696 0.5865 2.38 0.1225

class1 03 1 0.3056 0.0463 0.2149 0.3963 43.59 <.0001

class1 04 1 -0.1181 0.0774 -0.2697 0.0335 2.33 0.1267

class1 05 1 0.4388 0.1278 0.1882 0.6894 11.78 0.0006

class1 06 1 0.2196 0.0487 0.1242 0.3149 20.36 <.0001

class1 07 1 0.4695 0.0885 0.2960 0.6430 28.12 <.0001

class1 08 1 0.4268 0.0928 0.2449 0.6086 21.15 <.0001

class1 10 1 0.2978 0.0708 0.1591 0.4366 17.71 <.0001

class1 11 1 -0.1779 0.1198 -0.4126 0.0569 2.20 0.1376

class1 13 1 -0.0423 0.1865 -0.4077 0.3232 0.05 0.8207

class1 99 0 0.0000 0.0000 0.0000 0.0000 . .

covariate1 2 1 0.0704 0.0367 -0.0014 0.1423 3.69 0.0548

covariate1 3 1 -0.0507 0.0840 -0.2152 0.1139 0.36 0.5460

covariate1 4 1 -0.3958 0.1005 -0.5927 -0.1989 15.52 <.0001

covariate1 9 0 0.0000 0.0000 0.0000 0.0000 . .

covariate2 3 1 -0.1554 0.0531 -0.2595 -0.0514 8.57 0.0034

covariate2 4 1 -0.0778 0.0406 -0.1574 0.0019 3.66 0.0557

covariate2 5 1 0.0617 0.1423 -0.2172 0.3407 0.19 0.6646

covariate2 9 0 0.0000 0.0000 0.0000 0.0000 . .

covariate3  1 -0.3652 0.0697 -0.5019 -0.2285 27.42 <.0001

Scale  0 670.2088 0.0000 670.2088 670.2088  

Note first that CLASS1 level 99, COVARIATE1 level 9, and COVARIATE2 level 9 all have 0 

degrees of freedom (DF) and 0.0000 estimates and standard errors of those estimates, because these 

are the base levels for their respective classification variables, are therefore pegged at 0.0000, and all 

other levels are expressed as contrasts off these.  Second, some of the CLASS1 levels have much 

larger standard errors than others.  These are the poorly populated levels most in need of credibility 

treatment.  More will be said about the Scale parameter in Appendix A. 
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5.3 The GLMM 

Now it is desired to give CLASS1 a credibility treatment, so the GLMM model as summarized 

above was estimated via SAS PROC GLIMMIX, treating CLASS1 as a random effect.  Again, 

further detail re code, etc. is deferred to Appendix A, but considerably more detail is provided for 

the GLMM relative to the GLM, given that the primary focus of this paper is on GLMMs. 

Table 2 displays the resulting fixed effects parameter estimates and Table 3 the random effects 

parameter estimates, specifically for the CLASS1 variable. 

Table 2 

Solutions for Fixed Effects 

Effect covariate1 covariate2 Estimate
Standard 

Error DF t Value Pr > |t|

Intercept   -0.08888 0.06507 11 -1.37 0.1993

covariate1 2  0.07203 0.03666 312E3 1.96 0.0494

covariate1 3  -0.04689 0.08411 312E3 -0.56 0.5772

covariate1 4  -0.3965 0.1006 312E3 -3.94 <.0001

covariate1 9  0 . . . .

covariate2  3 -0.1547 0.05310 312E3 -2.91 0.0036

covariate2  4 -0.07826 0.04070 312E3 -1.92 0.0545

covariate2  5 0.05959 0.1421 312E3 0.42 0.6749

covariate2  9 0 . . . .

covariate3   -0.3643 0.06961 312E3 -5.23 <.0001

These estimates are quite similar to those from the GLM (compare Tables 1 and 2) with the 

exception of the intercept.  This is because CLASS1 is treated as a fixed effect in the GLM, centered 

about its level 99, and is treated as a random effect in the GLMM, centered about a mean value of 

approximately 0.  The different centering of CLASS1 between GLM and GLMM results in 

offsetting adjustments to the intercepts in the two models.  Standard errors of the fixed effects are 

also quite similar between the two models. 
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Table 3 

Solution for Random Effects 

Effect class1 Estimate
Std Err 

Pred DF t Value Pr > |t| 

class1 01 0.1241 0.06917 312E3 1.79 0.0729 

class1 02 0.03040 0.1334 312E3 0.23 0.8198 

class1 03 0.09508 0.07121 312E3 1.34 0.1818 

class1 04 -0.2898 0.08770 312E3 -3.30 0.0010 

class1 05 0.1674 0.1161 312E3 1.44 0.1492 

class1 06 0.01150 0.07222 312E3 0.16 0.8735 

class1 07 0.2229 0.09499 312E3 2.35 0.0190 

class1 08 0.1836 0.09723 312E3 1.89 0.0589 

class1 10 0.08142 0.08468 312E3 0.96 0.3363 

class1 11 -0.2876 0.1106 312E3 -2.60 0.0093 

class1 13 -0.1349 0.1391 312E3 -0.97 0.3322 

class1 99 -0.2040 0.06847 312E3 -2.98 0.0029 

Note that there is no preferred base level; a parameter is quoted for every level, and the parameters 

appear to be approximately mean zero. 

5.4 Inferred Credibility 

We now extract the CLASS1 credibilities implicit in the GLMM by comparing the CLASS1 

parameter output from the GLMM to that from the GLM.  We do this in the following Table 4. 
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Table 4 

Inferred Credibility 

            

   Fixed Effects  Random Effects  (9) 

   (3)  (5)  (6)  (8)  Inferred 

(1) (2)  Class1 (4) Class1  Class1 (7) Class1  Class1 

Class1 ALCCL  Effect exp(effect) Relativity  Effect exp(effect) Relativity  Credibility 

01 484,185,185  0.3346 1.3974 1.1417  0.1241 1.1321 1.1399  0.9877 

02 16,832,999  0.2585 1.2950 1.0580  0.0304 1.0309 1.0380  0.6545 

03 359,748,011  0.3056 1.3574 1.1090  0.0951 1.0998 1.1073  0.9845 

04 103,293,336  -0.1181 0.8886 0.7260  -0.2898 0.7484 0.7536  0.8994 

05 27,864,645  0.4388 1.5508 1.2671  0.1674 1.1822 1.1904  0.7129 

06 324,592,379  0.2196 1.2456 1.0176  0.0115 1.0116 1.0185  1.0506 

07 60,941,612  0.4695 1.5992 1.3066  0.2229 1.2497 1.2583  0.8426 

08 55,682,170  0.4268 1.5323 1.2519  0.1836 1.2015 1.2098  0.8328 

10 108,633,028  0.2978 1.3469 1.1004  0.0814 1.0848 1.0923  0.9190 

11 39,019,053  -0.1779 0.8370 0.6839  -0.2876 0.7501 0.7552  0.7742 

13 15,101,361  -0.0423 0.9586 0.7832  -0.1349 0.8738 0.8798  0.5542 

99 664,914,612  0.0000 1.0000 0.8170  -0.2040 0.8155 0.8211  0.9777 

 2,260,808,391   1.2240 1.0000   0.9932 1.0000   

 

Fixed effect parameter estimates (from GLM) are tabulated in column (3), random effect 

parameter estimates (from GLMM) in column (6).  But these parameters reside in the space of the 

linear predictor.  To put them in the scale of the original observations, we invert the log link in 

columns (4) and (7).  As already noted, the fixed effect parameters are expressed as contrasts to level 

99, which was chosen for its volume, and hence stability, rather than for its being relatively centered 

among the levels.  So we would not expect the mean of fixed parameters to be near 0, nor the mean 

of their exponentials to be near 1, and indeed they are not.  Dividing the column (4) exponentials by 

their mean (weighted on ALCCL) produces relativities relative to a mean relativity of 1 in column 

(5).  Due to the manner in which they were predicted, the random effect parameters are far closer to 

mean 0, but we still adjust column (7) to a mean relativity of 1 in column (8). 

The column (5) and column (8) relativities are now directly comparable.  If credibility is implicit 

in a GLMM, the column (8) random effect relativities should have shrunk towards 1 relative to the 

column (5) fixed effect relativities.  Defining inferred credibility as column (9) = (column (8) - 

1)/(column (5) - 1), the evidence is there.  Furthermore, plotting these inferred credibilities against 
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ALCCL reveals evidence of declining credibility with declining volume.  (See Figure 1.  The two 

curves will be discussed in the next subsection of this paper.) 

Figure 1 
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One anomaly clearly stands out, CLASS1 level 06, for which the credibility is considerably in 

excess of 1.000.  If we examine Table 4, we find that, for level 06, both fixed and random effect 

relativities are so close to 1.000 that even small errors or distortions in those relativities are 

magnified in the ratio that defines the inferred credibility.  Among possible sources of error in the 

credibilities could be the fact that the renormalization of relativities to a mean of 1.0000 from 

column (3) to (5) and from column (6) to (8) in Table 4 introduces correlations among the CLASS1 

level parameters not present in the output from the GLM and GLMM. 
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5.5 Inferred Credibility Is Approximately in Buhlmann-Straub Form 

Are the above credibilities in approximately Buhlmann-Straub form 

kw

w
c


  

(5.1)

 

where c is credibility, w is a volume measure, and k is a constant?  The trick is to determine k.  If we 

assume Buhlmann-Straub form, then we can rework equation (5.1) into the following form: 

w

k

c
1

1
 

(5.2)

 

This suggests we define a dependent variable equal to the reciprocal of our inferred credibilities 

minus 1 and regress this against an explanatory variable equal to reciprocal ALCCL in a regression 

through the origin (no intercept).  The resulting regression coefficient would be our desired k.  

Applying this program to our Table 4 results, we find a k of 10.8 million (dollars).  This regression is 

a simple, unweighted one.  One could perhaps argue whether a weighted regression would be more 

appropriate, but this first approximation should suffice. 

One can alternatively estimate k from certain parameters in the GLMM output.  Appendix B 

derives a value of 11.5 million, in close agreement with the 10.8 million from the above regression. 

Returning to expression (5.1) we substitute ALCCL for w and the two estimates for k, and plot 

the two resulting curves on Figure 1.  The two curves are very close to each other and fit the 

inferred credibilities quite nicely.  One may conclude that the implicit GLMM credibilities, at least 

for this case, are close to Buhlmann-Straub form. 

6. SUMMARY AND CONCLUSIONS 

GLMs signal, by quoting large standard errors, uncertain estimates for sparsely populated levels 

of classification explanatory variables, but they do not also adjust those estimates closer to the mean 

in response to low credibility.  As a consequence, actuaries have desired for some time to introduce 

credibility into a GLM setting.  There have been various attempts, both ad hoc and statistically 

rigorous, but none appear to have become popular, for reasons not always obvious. 

The Generalized Linear Mixed Model (GLMM) provides yet another means of introducing 

credibility-like shrinkage into a GLM setting.  Recently available statistical software, including SAS 

PROC GLIMMIX as well as new R and S-Plus functions, brings these models within reach of 
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actuaries. 

This paper first introduced the reader to the Linear Mixed Effects (LME) model, a simpler cousin 

of the GLMM, as a means of introducing issues important for GLMMs but in a less complex 

environment.  It was shown how Buhlmann-Straub credibility falls directly out of the LME math, at 

least for a simple case.  The LME was then generalized to the GLMM, and a case study 

demonstrated how to use GLMM software and showed that the GLMM preserved shrinkage to the 

mean in a form at least approximating Buhlmann-Straub credibility. 

It is hoped that this paper will give actuaries sufficient knowledge, incentive, and courage to 

experiment with GLMMs in their next GLM project.  New software, such as SAS PROC 

GLIMMIX, provides them the means to do this. 
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Appendix A: SAS Implementation of the GLM and GLMM of the Case Study: Additional 
Detail 

I have included this appendix for those readers who would like more detail on how to implement 

the GLMM of the case study in at least one stat package.  This is not to imply that the SAS 

implementation of GLMMs is better than others, only that SAS is the package I chose.  There are 

implementations of GLMM in R and S-Plus as well as other stat packages. 

The reader should recall the model basics.  The dependent variable is EXPRATIO, or experience 

ratio, assumed Tweedie distributed with exponent p equal to 1.67.  Explanatory variables are 

classification variables CLASS1, COVARIATE1, and COVARIATE2, as well as the continuous 

variable COVARIATE3.  CLASS1 is treated as a fixed effect in the GLM and a random effect in the 

GLMM.  All other explanatory variables are treated as fixed effects in both the GLM and the 

GLMM.  The regressions are weighted on ALCCL, a measure of business volume in each record.  

The link is log. 
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A.1 The GLM 

The SAS code for the GLM is as follows: 

PROC GENMOD DATA=INDATA;  
 P=1.67;          
 Y=_RESP_;            
 A=_MEAN_;            
 VARIANCE BAR=A**P;    
 DEVIANCE DEV=2*((Y**(2-P)-Y*A**(1-P))/(1-P)-(Y**(2-P)-A**(2-P))/(2-P)); 
CLASS CLASS1 COVARIATE1 COVARIATE2;                            
WEIGHT ALCCL;                                                      
MODEL EXPRATIO= CLASS1 COVARIATE1 COVARIATE2 COVARIATE3/ 
 LINK=LOG SCALE=PEARSON;   
RUN; 

SAS PROC GENMOD does not naturally support the Tweedie distribution, but it does support a 

facility to allow users to specify their own distributions (by specifying both a variance and a deviance 

function for their distribution of choice).  Lines 2 through 7 of the above code are what specify the 

Tweedie.  The SCALE=PEARSON option in the MODEL statement is also important.  The 

variance law for the Tweedie (which specifies the functional form of the observation variances) is 

Var[y]=φμp/w, where y is the observation, μ is the fitted value, p is the Tweedie exponent, w is the 

weight, and φ is the so-called dispersion coefficient.  We are here telling the GLM to use a Pearson 

chi-squared estimator of the dispersion coefficient rather than assuming it equal to 1.  The 

dispersion coefficient is fundamental, because it is the basis for the standard error estimates of the 

GLM coefficients.  The Scale parameter of Table 1 of this paper is the square root of the estimated 

dispersion coefficient, and, at 670, is certainly quite far from 1. 

A.2 The GLMM 

Now we want to give CLASS1 a credibility treatment.  The following code fits a GLMM to the 

same data to which we previously fit a GLM, and with as much of the same model form as before as 

possible, with the exception that CLASS1 is now treated as a random effect. 

PROC GLIMMIX MAXOPT=50 PCONV=.000015 DATA=INDATA;  
 _VARIANCE_=_mu_**1.67;    
CLASS CLASS1 COVARIATE1 COVARIATE2;                            
WEIGHT ALCCL;                                                      
MODEL EXPRATIO= COVARIATE1 COVARIATE2 COVARIATE3/ LINK=LOG SOLUTION; 
RANDOM CLASS1/ SOLUTION; 
RANDOM _RESIDUAL_; 
RUN; 

Because a secondary purpose of this paper is to convince the reader that GLMMs are now within 

reach of actuaries via currently available software, we will spend more time on this code and its 
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resulting output than we did on the prior GLM.  First, technically, GLIMMIX doesn’t fit a 

maximum likelihood but rather a maximum pseudo-likelihood.  This means that, although you still 

need to specify the variance law of the Tweedie distribution (see line 2 of the code), you do not also 

need to specify a deviance function.  Had you been interested in one of the distributions supported 

by GLIMMIX rather than the user-defined Tweedie, just as in GENMOD you would have specified 

that distribution via a DIST= option in the MODEL statement. 

The MODEL statement specifies the fixed effects part of the model (and an option to the 

MODEL statement specifies the optional R side of the variance model).  The random effects, which 

determine the G side of the variance model, are specified by the RANDOM statements.  PROC 

GENMOD automatically gives you tables of parameter estimates and their standard errors, but, if 

you want those from PROC GLIMMIX as well, you have to ask for them via the SOLUTION 

options in the MODEL statement (for the fixed effects regression parameters) and in the 

RANDOM statement (for random effects regression parameters). 

The RANDOM _RESIDUAL_ statement is crucial.  GLIMMIX estimates a dispersion 

coefficient only for non-user-defined distributions, and even then only for those with a dispersion 

coefficient in their definition; otherwise, GLIMMIX pegs the dispersion coefficient at 1.000 by 

default.  The RANDOM _RESIDUAL_ statement is the way in which you force GLIMMIX to still 

estimate the dispersion coefficient for user-defined distributions. 

Lastly, note the MAXOPT and PCONV options in the PROC GLIMMIX statement.  By default, 

GLIMMIX attempts 20 iterations of a certain outer iteration (the fact that there is also an inner 

iteration will be noted momentarily) before giving up.  Furthermore, it determines model 

convergence when the percentage change of certain parameters from one iteration to the next is less 

than about 10-8.  The case study data was sufficiently volatile that the algorithm was never able to 

attain this high standard, but, by examining iteration history details, it was found that convergence 

could be achieved with a slightly relaxed standard of 50 iterations specified by the MAXOPT option 

and a convergence criteria of 1.5x10-5 specified by the PCONV option. 

Before discussing GLIMMIX output, I will sketch an outline of what GLIMMIX is actually 

doing when it estimates the model, as this will aid interpretation of subsequent output.  Unlike other 

familiar SAS model-building PROCs, GLIMMIX does not build models on the original data but 

rather on pseudo-data.  At the beginning of each iteration, it constructs new pseudo-data by 

linearizing the original data about the expected values from the prior iteration.  It then maximizes 

the pseudo-likelihood on that pseudo-data.  It should also be noted that the iteration referred to 
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here is the outer iteration. 

The algorithm doesn’t even solve simultaneously for the variance components (the unknown 

parameters of the total variance matrix V) and the fixed and random effects parameters.  Rather, it 

starts the iteration with a pseudo-likelihood that is a function of variance components, fixed effects, 

and the dispersion coefficient and is able to adjust out (“profile” out) the fixed effects and 

dispersion coefficient to produce an objective function that is a function of just the variance 

components.  It then enters an inner iteration to optimize this modified objective function over just 

the variance components.  Armed with estimates of the variance components from the inner 

iteration it then estimates fixed effects and predicts random effects, then returns to the outer 

iteration for another pass through, starting with producing the next pseudo-data set, and so on until 

convergence.  Although we will not examine an iteration history table output by our GLIMMIX run, 

if you were to examine such a table, you would note reference to iterations, restarts, and 

subiterations, which hints at the structure of inner iterations (subiterations) nested within outer 

iterations mentioned above. 

Turning to the output of the above SAS PROC GLIMMIX code, following a first table that 

summarizes the dataset, the dependent variable, the assumed distribution, the link function, the 

weights, and a few other model assumptions, there are tables of additional model dimensions, shown 

as Tables 5 and 6, that are highly useful for checking that the model estimated is the one the user 

intended to estimate, and that there hasn’t been some misinterpretation through some syntax error. 

 
Table 5 

Dimensions 

G-side Cov. Parameters 1

R-side Cov. Parameters 1

Columns in X 10

Columns in Z 12

Subjects (Blocks in V) 1

Max Obs per Subject 312131

Table 5 is crucial for verifying that GLIMMIX correctly interpreted our model specification.  We 

did indeed want one G side parameter to be estimated, the between variance for the CLASS1 

random effect.  We did indeed want one R side variance parameter, the dispersion coefficient.  

There should indeed be ten columns in the fixed effects design matrix, one for the intercept term, 
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four for each of COVARIATES 1 and 2, and one for COVARIATE 3.  There should indeed be 

twelve columns in the random effects design matrix because CLASS1 has twelve levels. 

Table 6 

Optimization Information 

Optimization Technique Dual Quasi-Newton 

Parameters in Optimization 1 

Lower Boundaries 1 

Upper Boundaries 0 

Fixed Effects Profiled 

Residual Variance Profiled 

Starting From Data 

Table 6 reminds us that the inner iteration does indeed profile out both fixed effects and the 

dispersion coefficient (Residual Variance), and optimization is only over the remaining G side and R 

side variance components, in this case, over the single unknown parameter of the between variance 

of the CLASS1 random effect.  Hence the optimization is only over one parameter.  Because this 

parameter represents a variance, it is bounded below by zero, hence the reference to one lower 

boundary.  But it is unbounded above. 

Table 7 displays the resulting estimated variance component parameters. 

Table 7 

Covariance Parameter Estimates 

Cov Parm Estimate
Standard 

Error

class1 0.04050 0.02095

Residual (VC) 449268 1137.28

As already noted, only two parameters were requested, the between variance of the CLASS1 random 

effect and the dispersion coefficient (Residual).  The dispersion coefficient is in close agreement 

with that from the previous GLM.  (Recall that the GLM dispersion coefficient is the square of the 

Scale parameter in Table 1: 6702 = 448,900.)  The CLASS1 between variance is about .04.  Its square 

root of about .2 (interpretable as approximately 20% because of the log link and because the random 

effects reside in the space of the linear predictor, in other words, in the logged space) indicates that 

levels of the CLASS1 variable fall a few tens of percent above and below the grand mean.  This 

seems reasonable. 
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Following these tables presented above the SAS output provides fixed effects and random effects 

parameters already presented and discussed as Tables 2 and 3 of this paper.  The reader seeking 

further detail is referred to the SAS PROC GLIMMIX online manual. 

 

Appendix B: Inferring a Buhlmann-Straub k Parameter from GLIMMIX Output 

Buhlmann-Straub credibility is of the form of equation (5.1).  The k parameter in that equation is 

frequently written as a ratio of within variance to between variance, which is how it appears in 

equation (3.3).  Can we read from our GLIMMIX output the numbers we would need to estimate 

within and between variance, and hence the k parameter?  Yes, but the reader is forewarned that the 

following is not a strict derivation but rather a plausibility argument.  It should be enough to support 

the approximate magnitude of the k parameter but not its precise value. 

First, if one studies derivations of Buhlmann-Straub credibility (see chapter 4 of Goovaerts and 

Hoogstad (1987)), one finds that what is referred to as the within variance is actually the 

proportionality constant in the relationship: observation variance proportional to reciprocal weights.  

Recall the Tweedie variance law: Var[y]=φμp/w, where φ is the dispersion coefficient, μ the expected 

value of y, p the Tweedie exponent, and w the weight.  Strictly speaking, the numerator of this law is 

not a constant because μ is not, being a function of explanatory variables.  Nevertheless, it might be 

reasonable to equate the within variance in the Buhlmann-Straub k to φ<μ>p, where <μ> is mean 

expectation. 

Next, the variance component indicated by GLIMMIX for the classification variable in question 

is almost the desired between variance, except that it is measured in the space of the linear predictor, 

where the random effects live, and not in the original scale of the observations, as needed for the 

Buhlmann-Straub k.  We just have to back-transform via the inverse link function, invoking the 

following approximation: Var[g(x)]≈g'(E[x])2Var[x].  In other words, the variance of the g transform 

of x is approximately the variance of x times the square of the derivative of g evaluated at mean x.  

Here, x is the linear predictor, Var[x] is the variance component from GLIMMIX, g is the inverse 

log link, in other words, the exponential.  Its first derivative is also the exponential.  E[x] is the mean 

linear predictor.  The exponential (the inverse link) of the mean linear predictor is approximately 

<μ>.  Then the between variance we seek is approximately <μ>2 times the variance component. 

Now, we assumed the Tweedie exponent p to be 1.67.  The GLIMMIX output tells us the 

dispersion coefficient φ is 449,000 and the CLASS1 variance component is .0405.  GLIMMIX 

doesn’t tell us, but we know from other checks of our dataset that <μ> is approximately .9, in which 
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Reserving in the Age of  Obesity 

Chris Laws and Frank Schmid 

______________________________________________________________________________ 
Abstract 
Motivation.  There is increasing evidence that obesity contributes to the cost of medical care in workers 
compensation, and that this contribution is significant in magnitude.  For instance, a recent study of workers 
compensation claims of Duke University employees shows that, for the morbidly obese, the medical costs per 
100 full-time equivalent employees are nearly seven times as high as for employees of recommended weight.  In 
the following study, the evidence of the contribution of obesity to the medical costs of workers compensation is 
generalized to a set of claims that comprises 36 U.S. States and nine injury years.  Further, it is shown how the 
cost difference between “obese claims” and comparable “non-obese claims” develops as claims mature—this 
evidence of the difference in development offers important guidance for both reserving and ratemaking.  The 
study is confined to the effect of obesity on severity—the effect of obesity on claim frequency is beyond the 
scope of this analysis. 
Method.  The study makes use of a matched-pairs research framework.  Every obese claim in the data set is 
matched with a non-obese claim.  Exact matching applies to all claim characteristics, except age at injury, where 
proximity matching is employed.  The set of matched pairs is then analyzed using a semiparametric Bayesian 
multilevel model, the nonparametric component of which accounts for the possible nonlinear influence of age.  
Aside from age, the covariates comprise the injury year, the nature of injury, the U.S. state, and the industry—
these four covariates enter the model as random effects.  Further, the gender of the claimant and cross-state 
differences in the legislative environment, as they manifest themselves in mandatory utilization review and 
mandatory bill review, are accounted for using indicator variables.  The model is estimated by means of MCMC 
(Markov Chain Monte Carlo simulation).  The reversible jump concept of Bayesian modeling averaging is used in 
determining the functional form of the nonparametric component that captures the influence of age. 
Results.  The study shows that, in the aggregate, obese claims are 2.8 times more expensive than non-obese 
claims at the 12-month maturity, but this cost difference climbs to a factor of 4.5 at the three-year maturity and 
to 5.3 at the five-year maturity.  Further, the cost difference (at the five-year maturity) is less for females than for 
males.  Mandatory utilization review and, in particular, mandatory bill review significantly reduce the cost 
difference between obese and non-obese claims. 
Availability.  The semiparametric multilevel model was estimated using JAGS with R.  JAGS (Just Another 
Gibbs Sampler, http://www-ice.iarc.fr/~martyn/software/jags/) is an open-source platform for Gibbs 
sampling, developed by Martyn Plummer at the International Agency for Research on Cancer of the World 
Health Organization in Lyon, France.  The reversible jump routine was written as a C++ JAGS module.  R is an 
open-source statistical modeling platform (http://www.r-project.org/), which is administered by the Technical 
University of Vienna. 
 
Keywords.  Obesity, Multilevel Model, Partial Linear Model, Reversible Jump MCMC, Semiparametric Model, 
Workers Compensation 

______________________________________________________________________________ 

1. INTRODUCTION 

In July 2009, the Centers for Disease Control and Prevention (CDC) held its inaugural 

conference “Weight of the Nation,” thus calling to public attention the mounting problem that 

obesity poses for the health of the American people.  A research paper presented at this conference 

by Finkelstein et al. [4] called the “link between rising rates of obesity and rising medical spending” 

nothing short of “undeniable.”  These authors estimate that obesity accounts for “almost 10 percent 

of all medical spending and could amount to $147 billion per year in 2008.”  This is about twice the 
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cost estimate of $78.5 billion that Finkelstein, Fiebelkorn, and Wang [3] had established for the year 

1998 in an earlier study. 

Obesity may also have significant implications for workers compensation.  In a recent study of 

Duke University employees, Truls, Dement, and Krause [9] found that employees in the highest 

obesity class, when compared with employees of recommended weight on an FTE (full-time 

equivalent) basis, filed twice as many claims, had 13 times as many lost workdays, and experienced 

medical and indemnity costs that were 7 and 11 times as high, respectively. 

The Duke University study aimed at estimating the differences in medical and indemnity costs 

between obese and non-obese employees.  To this end, the cumulative payments for every claim 

were tallied at the end of the study, which is December 31, 2004; for open claims, which amount to 

2.8 percent of the total number of claims, estimated reserves were used that had been provided by 

the competent workers compensation actuary—these details have been confirmed in writing by the 

corresponding author of the Duke University study, Dr. Truls Østbye.  Thus, for the purpose of 

arriving at total costs, the Duke University study does not rest entirely on observed payments but 

(for open claims) also includes reserve estimates. 

In what follows, we take a different approach than the one pursued by Truls, Dement, and 

Krause [9].  For one, the nature of our data set is quite different, as will be discussed.  But most 

importantly, it is not our objective to provide a measurement for the difference in ultimate costs 

between obese and non-obese claimants—such a measurement would have to make use of reserve 

estimates for open (and potentially re-opening) claims.  Instead, we try to shed light on the 

difference in development between claims from obese and non-obese employees; this way, we are 

able to provide guidance (on a per claim basis) on the divergence in cumulative payments between 

these two types of claims for reserving (and ratemaking) purposes. 

Because of potential dissimilarities in development between claims of obese and non-obese 

employees, the difference in the costs per claim may not be apparent early on (e.g., at the 12-month 

maturity) but may take time to reveal itself.  As is shown in this study, the ratio in the medical costs 

per claim of obese to non-obese claimants indeed develops; whereas this ratio stands at 2.8 at the 

12-month maturity, it climbs to 4.5 at the 36-month maturity, and to 5.3 at the 60-month maturity.  

A possible reason for such dissimilarity in development may be the longer duration of obese claims; 

another reason may be that the distribution of medical costs, as claims develop, differs between 

obese and non-obese claims as obesity may raise the likelihood of medical complications.  Due to 

data limitations, no definite statement can be made as to why the ratio of medical costs between 
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obese and non-obese claims increases over time.  Future research on differences in claim duration 

between obese and non-obese claims may provide an answer to this question. 

1.1 Research Context 

The Duke University study by Truls, Dement, and Krause [9] is to date the only comprehensive 

statistical analysis of the effect of obesity on the cost of workers compensation.  This study makes 

use of a longitudinal data set, which was obtained by monitoring a cohort of 11,728 employees of 

Duke University and the Duke University Health System from January 1, 1997, through December 

31, 2004.  The cohort was defined by all employees that had at least one HRA (health risk 

assessment) during this time period; taking an HRA is voluntary and available to employees eligible 

for health care benefits.  (Note that the number of members in the study may have shrunk over time 

due to employee termination or disability.)  The members of this cohort were assigned to body mass 

index (BMI) categories based on the first HRA they participated in during the time of the study. 

At the end of the eight-year time window, the number of claims, the number of work days, and 

the indemnity and medical costs were tallied for each employee; then, this information was matched 

up with the BMI category (and other characteristics) of the claimant.  There are six BMI categories, 

ranging from underweight to recommended weight, overweight, and three classes of obesity.  The 

highest level of obesity is class III, which comprises the morbidly obese, identified by a BMI of 40 

or higher.  The Duke University study finds that for the morbidly obese employees, the medical 

costs are 6.8 times as high as for employees of recommended weight; at the same time, an employee 

in this group is twice as likely to have a claim.  For obese classes II (BMI of at least 35 but less than 

40) and I (BMI of at least 30 but less than 35), the medical costs per employee are (respectively) 3.1 

and 2.6 times as high as for employees of recommended weight; the respective multiples for the 

number of claims read 1.9 and 1.5.  (The numbers cited above rest on the bivariate analysis 

presented in Truls, Dement, and Krause [9], Table 3.) 

Another way of presenting the findings of the Duke University study is on a per claim basis.  

Transforming the medical costs per 100 FTE employees into costs per claim shows that this amount 

is 3.4 (obesity class III), 1.7 (obesity class II), and 1.7 (obesity class I) times the magnitude recorded 

for employees of normal weight.  The corresponding numbers for indemnity read 5.5 (obesity class 

III), 3.4 (obesity class II), and 2.9 (obesity class I).  As is apparent in the data, on a per claim basis, 

the percentage difference between obese employees and employees of normal weight is even higher 

for indemnity payments than it is for medical costs.  (Here, too, the numbers rest on the bivariate 

analysis presented in Table 3 of Truls, Dement, and Krause [9].) 
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1.2 Objective 

The effect of obesity on the medical cost per workers compensation claim is quantified at 

different maturities, thus showing how the (percentage) cost difference between obese and non-

obese claims develops as claims mature.  Further, it is shown how the dissimilarity in development 

between obese and non-obese claims varies with the legislative environment, as such manifests itself 

in mandatory utilization review (MUR) and mandatory bill review (MBR).  Quantifying differences 

in development patterns across obese and non-obese claims is important for reserving and 

ratemaking in workers compensation. 

1.3 Outline 

What follows is an account of how the data set was prepared, followed by descriptive statistics.  

Section 3 then offers a discussion of the Bayesian semiparametric multilevel model, which is 

followed in Section 4 by a presentation of the findings for the random effects (injury year, U.S. state, 

industry, and nature of injury), gender, and age.  Section 5 presents estimates of the effects of the 

legislative environment (MUR and MBR).  Section 6 concludes. 

2. THE DATA 

We use a large sample of workers compensation claims provided by select insurance companies.  

The data base comprises records from 36 states (AK, AL, AR, AZ, CO, CT, DC, FL, GA, HI, IA, 

ID, IL, IN, KS, KY, LA, MD, ME, MO, MS, MT, NC, NE, NH, NM, NV, OK, OR, RI, SC, SD, 

TN, UT, VA, and VT) and nine injury years (1998-2006).  Claims are studied at three different 

maturities: 12 months, 36 months, and 60 months.  Clearly, not all maturities are available for all 

injury years.  For instance, observations at the 36-month and 60-month maturities are available only 

up to injury years 2004 and 2002, respectively. 

For each claim, cumulative medical payments are tallied at each of the chosen maturity dates.  

The observed cumulative payment at a given maturity is flagged as pertaining to an obese claimant if, 

at that maturity, there has been a record of a co-morbidity indicator pointing to obesity.  Specifically, 

an observation is flagged as “obese” if the three leading digits of an ICD-9 code serving as a co-

morbidity indicator equal 278.  We refer to such an observation as an “obese claim.” 

It is worth noting that a claim that qualifies as obese at the 36-month maturity may not qualify as 

obese at the 12-month maturity if the co-morbidity indicator 278 does not show up before the 12-

month maturity (but shows up no later than the 36-month maturity).  On the other hand, such a 
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claim does not qualify as non-obese at the 60-month maturity, even if the co-morbidity indicator 278 

fails to show up again after the 36-month maturity.  In summary, a claimant is treated as obese only 

after actually having been diagnosed as such.  There may be instances where a claimant turns obese 

after the injury; and there may be instances where a claimant is diagnosed as obese only after the 

claimant’s being obese has given rise to medical complications. 

For the purpose of proper cost comparison between obese and non-obese observations, claims 

are dropped once a lump sum payment has been observed among the transactions.  For instance, a 

claim may be included at the 12- and 36-month maturities, but excluded at the 60-month maturity if 

a lump sum payment was observed later than 36 months (but no later than 60 months) into the 

duration of the claim.  The reason for excluding claims following a lump sum payment is that such 

transactions represent the present value of a stream of payments that may extend past the maturity 

date of interest. 

The data base offers no information on the BMI, which is a standard measure of obesity (see 

Truls, Dement, and Krause [9]).  As a result, this study does not differentiate between degrees of 

obesity.  At the same time, it can be assumed that the co-morbidity indication identifies the claimant 

as severely obese, which puts him into one of the higher obesity classes.  The small proportion of 

obese observations in the total number of claims supports this conjecture; for instance, at the 12-

month maturity, the proportion of obese observations ranges between 0.1 percent (injury years 

1998–2003) and 0.2 percent (injury years 2004–2006).  By comparison, the proportion of morbidly 

obese claimants in the mentioned study of Duke University employees amounts to 4.9 percent. 

The small percentage of obese claims in the total number of claims, along with the very high total 

number of claims (3,834,891 claims for the 12-month maturity; 2,956,285 claims for 36 months; and 

2,079,225 claims for 60 months) is most suited for a matched-pairs research framework.  In such an 

analytical setting, each obese observation in the data set is matched with a non-obese claim of the 

same maturity based on injury year, U.S. state, industry, ICD-9 code, gender, and age at injury.  

Except for age at injury, all matching criteria are categorical in nature, which allows for exact 

matching (thus obviating the need for propensity matching).  At the same time, extending the 

concept of exact matching to age at injury (which is measured on a scale of whole numbers) leaves 

many obese claims without matches.  Thus, for age at injury, we use proximity matching. 

Proximity matching rests on the concept of the nearest neighbor.  When exact matching for age is 

not feasible (for lack of exact matches when using whole numbers for years of age), researchers 

often resort to matching by age brackets.  In matching by age bracket, an obese claim is paired up 
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with a non-obese claim that belongs to the same (for instance) five-year age bracket (subject to being 

identical in all exact-matching characteristics).  A disadvantage of matching by age bracket is that 

many claims are not matched with the closest neighbor.  For instance, a 20-year-old obese claimant 

may be matched (within the 20-24 age bracket) with a 24-year-old non-obese claimant, but is 

prevented from being matched with an otherwise identical 19-year-old claimant.  Proximity 

matching avoids this problem by looking for the nearest neighbor.  At the same time, it may not be 

appropriate to have the concept of the nearest neighbor rest on the simple age difference.  Because 

aging is a nonlinear process, it may be preferable to match an obese 25-year-old claimant with a 35-

year-old, instead of a 16-year-old.  Similarly, matching an obese 55-year-old with a non-obese 35-

year-old may be more appropriate than matching this person with a non-obese 74-year-old.  For this 

reason, we use a sigmoid function to create a fuzzy set for old age; the sigmoid function has the 

form 1/(1 exp(- ( - 45)))h  , where h is the age at injury and σ was chosen to be equal to 0.12.  (For 

the concept of fuzzy sets see, for instance, Kasabov [7].)  Chart 1 shows the fuzzy set for old age 

(and its complement, young age); the degree of oldness is set to 50 percent at age 45 and then, in an 

“S-shaped” manner, this degree of oldness approaches zero and 100 percent as the years of age 

approach zero and 100, respectively.  The nearest neighbor of an obese claim to an otherwise 

identical non-obese claim is defined by the smallest difference (in absolute value terms) in the degree 

of oldness. 
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Chart 1: Degree of Oldness, Defined by Sigmoid Function 
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process.  (For details on credible intervals, see Carlin and Lewis Error! Reference source not 

found..) 

In Table 1, there are two reasons why the number of obese claims (and hence the number of 

non-obese neighbors) varies by maturity.  First, claims are dropped following lump sum payments, 

as mentioned.  Second, claims are added upon obesity showing up as a co-morbidity indicator in a 

transaction. 

Table 1: Numbers of Obese Claims and (Potentially Tying) Non-Obese Nearest Neighbors 

 
Injury Year 

Obese Non-
Obese 

Obese Non-
Obese 

Obese Non-
Obese 

Maturity 
12 months 36 months 60 months 

1998 250 537 266 518 271 529 
1999 282 565 313 573 304 545 
2000 343 802 365 831 364 831 
2001 417 1,058 430 1,018 413 953 
2002 467 1,108 481 1,106 459 1,049 
2003 553 1,290 517 1,157 — — 
2004 630 1,464 656 1,414 — — 
2005 722 1,514 — — — — 
2006 836 1,744 — — — — 

 

The concepts of matching by age bracket and matching by proximity of age share the 

characteristic of matching toward the center of the age distribution.  These matching techniques, 

unlike exact matching (which, for instance, pairs up a 55-year-old obese claimant with a 55-year-old 

non-obese claimant when using whole numbers), tend to pair up old claimants with claimants of 

lesser age, and young claimants with claimants of higher age; this is because the claimants on the 

edges of the age distribution turns are sparse.  For instance, within the age bracket 60-64, the 

number of observations tends to decline with age.  Thus, a claimant at the center of this age bracket 

has a comparatively high chance of being “matched down the age distribution,” as opposed to being 

“matched up;” this is simply because the number of potential matches within this bracket is higher 

at lower ages than at higher ages.  Conversely, young claimants tend to be “matched up the age 

distribution.”  Note that this matching toward the center (of the age distribution) is not unique to 

proximity matching but is also characteristic of the traditional approach of matching by age bracket. 
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Matching toward the center of the age distribution poses no difficulty for the statistical analysis 

(because age is included as a covariate in a nonparametric setting, which accommodates potential 

nonlinearities), but it does affect the interpretation of the regression results for age (and age alone).  

For instance, if the medical costs of workers compensation claims increase with age, then the 

influence of age on the cost of obesity is underestimated for young claimants and overestimated for 

old claimants.  As a consequence, the estimated effect of age may be distorted on the edges of the 

age distribution, taking on an “S-shaped” form.  For this reason, the nonparametric regression 

finding for age has to be interpreted with care. 

Exact matching by maturity, injury year, U.S. state, ICD-9 code, and gender is straightforward.  

Matching by industry relies on an NCCI industry classification; the five industries comprise 

Manufacturing, Contracting, Office and Clerical, Goods and Services, and Miscellaneous. 

There are a total of 1,560 obese observations (or 14.3 percent of the total number of obese 

observations) going unmatched, because no match is available by maturity, injury year, ICD-9 code, 

U.S. state, industry, and gender. 

Chart 2 offers a distribution of age at injury of the set of studied (obese and non-obese) claims 

for all three maturities; the observations are pooled over the nine injury years.   

Chart 2: Relative Frequency of Claims by Age at Injury and Maturity 
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Chart 3 presents for all studied claims at the 60-month maturity a breakdown of gender by age 

(thus comprising only injury years 1998-2002); the majority of claimants are male, as expected.  

Further, Chart 4 details for all three maturities the relative claim frequency by U.S. state.  Florida is 

the most highly represented state, and Rhode Island is the least highly represented.  The 

representation of a state in the data set depends primarily on the size of its labor force, but also on 

the combined market share of the insurance companies that contribute to the mentioned data base; 

another contributing factor is the share of the self-insured. 

Chart 3: Relative Frequency of Claims at 60-Month Maturity by Gender and Age at Injury 
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Chart 4: Relative Frequency of Claims by State and Maturity 
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Chart 5: Box Plots for the Ratios of Total Obese to Total Non-Obese Cumulative Payments for 50 

Sets of Matched Claims at Alternative Maturities 
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although, at this point, due to data limitations, this cannot be confirmed with confidence.  Clearly, 

the Duke University study points to longer durations for obese claimants. 

3. THE STATISTICAL MODEL 

The purpose of the statistical modeling is to quantify the effect of claim characteristics on the 

percentage cost difference between obese claims and comparable non-obese claims.  Thus, the 

dependent variable in the statistical analysis is the natural logarithm of the ratio (or log ratio, for 

short) of the cost of an obese claim to the cost of a comparable non-obese claim.  Comparable non-

obese claims are identified by means of pair-wise matching, as detailed above. 

The statistical model has a semiparametric (or, synonymously, partially linear) structure.  

Generically, a semiparametric model may be written as 

 

( )i i iy f z  x β  , (1) 

 

where iy  is the dependent variable, i x β  is the parametric, standard linear regression component, 

and ( )if z  is a smoother that constitutes the nonparametric component.  The purpose of the 

semiparametric structure is to accommodate a potentially nonlinear influence of the covariate z . 

The semiparametric model makes use of a Bayesian multilevel (hierarchical) approach, which is 

estimated using MCMC (Markov Chain Monte Carlo simulation).  At the first level, there is the log 

ratio of obese to non-obese medical costs at a given maturity.  At the second level, there are four 

(non-nested) attributes that are modeled as random effects; these attributes are the injury year, the 

nature of injury (by aggregated ICD-9 code), the U.S. state, and the industry.  The purpose of 

random effects in multilevel modeling is to shrink the multiple measurements within a second-level 

category (e.g., within a category in the group nature of injury) toward the weighted mean of group 

means (e.g., toward the weighted mean of the means of the categories within nature of injury).  The 

fewer observations there are within a category (e.g., the fewer observations there are of a certain 

nature of injury) and the less precisely these observations are measured, the more the estimated 

mean of this category is shrunk toward the (weighted) mean of the category means within the group 

(e.g., the weighted mean of the means of the 22 categories within the group nature of injury).  

Conversely, the more observations there are within a category and the more precisely these 

observations are measured, the closer the estimated mean for this category is to its sample mean (see 
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Gelman and Hill [5]).  This concept of shrinkage is closely related to the actuarial concept of 

credibility, as discussed by Guszcza [6]. 

For the purpose of statistical modeling (but not for matching), the multitude of observed ICD-9 

codes are aggregated into 22 injury categories; such aggregation prevents an undue proliferation of 

regression coefficients.  Table 2 details the aggregation rule.  ICD-9 codes not covered in Table 2 are 

conditions that are typically not related to workplace injuries and illnesses (and, for this reason, are 

either very rare or do not show up at all in the raw claims data set).  Among these conditions are 

mental disorders, complications of pregnancy, congenital anomalies, and others. 

Random effects modeling is available only for categorical variables for which more than two 

values are observed.  Gender, MUR, and MBR can take on only two alternative values and, hence, 

are modeled as indicator variables.  These three indicator variables equal unity if (respectively) the 

claimant is female, is subject to MUR, and subject to MBR. 

Table 2: Injury Category (Aggregated ICD-9 Codes) 

Category ICD-9 Codes Description 
1 001–289.9 and 

390–629.9 
Diseases other than diseases of the musculoskeletal system and connective 
tissue and diseases of the nervous system and sense organs 

2 320–389.9 Diseases of the nervous system and sense organs 
3 710–739.9 Diseases of the musculoskeletal system and connective tissue 
4 800–829.1 Fractures 
5 830–839.9 Dislocation 
6 840–848.9 Sprains and strains of joints and adjacent muscles 
7 850–854.1 Intracranial injury, excluding those with skull fracture 
8 860–869.1 Internal injury of thorax, abdomen, and pelvis 
9 870–897.7 Open wounds 
10 900–904.9 Injury to blood vessels 
11 905–909.9 Late effects of injuries, poisonings, toxic effects, and other external causes 
12 910–919.9 Superficial injury 
13 920–924.9 Contusion with intact skin surface 
14 925–929.9 Crushing injury 
15 930–939.9 Effects of foreign body entering through orifice 
16 940–949.5 Burns 
17 950–957.9 Injury to nerves and spinal cord 
18 958–959.9 Certain traumatic complications and unspecified injuries 
19 960–979.9 Poisoning by drugs, medicinal, and biological substances 
20 980–989.9 Toxic effects of substances chiefly nonmedical as to source 
21 990–995.94 Other and unspecified effects of external causes 
22 996–999.9 Complications of surgical and medical care, not elsewhere classified 
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Finally, the influence of age is potentially nonlinear.  (Age is the only continuous variable in the 

model and, hence, the only variable the influence of which may be nonlinear.)  Thus, age is modeled 

in the nonparametric component of the model, which is implemented as a linear spline using 

reversible jump MCMC.  Reversible jump MCMC is a concept of Bayesian model averaging, which 

is applied to the number of knots of the spline; knots in linear splines are locations where the linear 

function changes slopes.  The model averages over a set of specifications with alternative numbers 

of knots; the location of these knots are determined by the model.  For details on reversible jump 

MCMC in the context of linear splines, see Lunn, Best, and Whittaker [7]. 

We use a normal likelihood for the dependent variable (which is defined as the log ratio of obese 

to non-obese claim costs, by pair of matched claims, as discussed).  This likelihood for claim i  reads 

 

N( , )i iy  ~  , (2) 

 

where i  is the expected value and   is the precision.  (As is common practice in Bayesian 

modeling, the notation is in term of precision, which is defined as the reciprocal value of the 

variance.)  We use a gamma prior, Ga(1,0.001) , for the precision. 

The fixed effect of indicator variable j  (which, for instance, equals unity for female claimants 

and zero otherwise) reads 

 

N(0,0.001)j ~  . (3) 

 

The random effect specification for a given set k  of indicator variables (such as those that 

represent the 22 categories of the group nature of injury) reads 

 

, N(0, )k m k ~  , (3) 
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where ,k m  is the effect of attribute m  within group k  (e.g., category 20 within the group nature of 

injury).  Again, the prior distribution for the precision reads Ga(1,0.001) .  Note that the random 

effects are draws from a common distribution, and that these effects are centered on zero. 

Finally, reversible jump MCMC is implemented using a linear spline on age at injury; the prior for 

the number of knots is a uniform categorical distribution on the integers in the interval 

[0,trunc(range(age)/2)+1], where age is the set of observed values for age at injury (measured in 

whole years), “range” determines the difference between the maximum and minimum values, and 

“trunc” rounds down to the nearest integer.  The prior distribution for the location of knots is 

uniform on the interval defined by the minimum and maximum observed age. 

It is worthy of note that in the model outlined above, the (percentage) effect of obesity is allowed 

to vary with all covariates; this is because the dependent variable is the log ratio of the cost of an 

obese claim to the cost of a comparable non-obese claim.  Thus, instead of postulating a uniform 

percentage effect of obesity across all claims, the percentage cost impact of obesity is allowed to vary 

by injury year, nature of injury, U.S. state, industry, gender, and age (and, where applicable, by the 

legislative environment).  This approach is in keeping with the approach taken by Truls, Dement, 

and Krause [9] in their multivariate modeling of the claim costs of Duke University employees. 

Before applying the statistical model, we plot the empirical distribution of the dependent variable 

(for one of the 50 randomized data sets) against the normal.  As Chart 6 shows, the normal 

likelihood is a fair assumption for modeling the log ratio of obese to non-obese claim costs at the 

60-month maturity, in spite of some degree of skewness; the distributions for the shorter maturities 

are similarly close to normal.  (The whiskers at the bottom of Chart 6 indicate the locations of the 

observations.) 
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Chart 6: Kernel Density Estimate for a Randomized Set of Log Ratios (for Pairs of Matched 

Claims) of Obese to Non-Obese Cumulative Payments at the 60-Month Maturity 
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the legislative environment over time and across states are absorbed by the random effects of injury 

year and state, respectively. 

All findings shown in this section pertain to the 60-month maturity.  Chart 7 offers a graphical 

exposition of the estimated random effects of the injury years 1998 through 2002 (which are the 

only injury years available for the 60-month maturity).  The gray dots and whiskers indicate the mean 

and 80 percent credible intervals for 50 randomized data sets.  The black dots and whisker signify 
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the mean and 80 percent credible intervals after aggregating across all 50 data sets.  Clearly, there is 

variation across injury years, and there appears to be a mild time trend in the ratio of obese to non-

obese medical claim costs.  Remember that, by definition, random effects are centered on zero. 

Chart 7: Mean and 80 Percent Credible Intervals for the Random Effect of the Injury Year in a 

Partial Linear Multilevel Regression on the Ratio of Cumulative Payments of Obese to Non-Obese 

Claims for 50 Sets of Pairs of Matched Claims at a Maturity of 60 Months 

 

Chart 8 presents the random effect estimates for the 22 injury categories (of which only 19 are 

observed at the 60-month maturity).  The mean of the estimated effect of a given injury category is 

indicated by the location of the number of the category.  The fewer observations there are in a given 

category and the “noisier” these observations are, the wider the credible intervals.  The injury 

categories with the highest percentage cost contributions to obesity are 7 (intracranial injury, 

excluding those with skull fracture), 9 (open wounds), 11 (late effects of injuries, poisonings, toxic 

effects, and other external causes), 14 (crushing injury), 17 (injury to nerves and spinal cord), and 18 

(certain traumatic complications and unspecified injuries).  At the same time, some of these injury 

categories are among those with the widest credible intervals; exceptions are categories 9 and 18.  

The scale of differences among injury categories is quite large.  For instance, an estimated displayed 
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effect of 50 percent for a given injury category implies that for this category, the effect of obesity on 

the ratio of claim costs is 50 percent higher than the average across categories. 

Chart 8: Mean and 80 Percent Credible Intervals for the Random Effect of the Injury Category in a 

Partial Linear Multilevel Regression on the Ratio of Cumulative Payments of Obese to Non-Obese 

Claims for 50 Sets of Pairs of Matched Claims at a Maturity of 60 Months 

 

Chart 9 displays the random effect estimates for the 36 U.S. states included in the analysis.  Here 

again, the states with above or below-average estimated effects of obesity also tend to be the ones 

with large credible intervals.  Finally, Chart 10 shows the random effect estimates for the five NCCI 

industries. 
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Chart 9: Mean and 80 Percent Credible Intervals for the Random Effect of the U.S. States in a 

Partial Linear Multilevel Regression on the Ratio of Cumulative Payments of Obese to Non-Obese 

Claims for 50 Sets of Pairs of Matched Claims at a Maturity of 60 Months 

 

Chart 10: Mean and 80 Percent Credible Intervals for the Random Effect of the Industry in a Partial 

Linear Multilevel Regression on the Ratio of Cumulative Payments of Obese to Non-Obese Claims 

for 50 Sets of Pairs of Matched Claims at a Maturity of 60 Months.  Industry codes: (1) 

Manufacturing; (2) Contracting; (3) Office and Clerical; (4) Goods and Services; (5) Miscellaneous 
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The random effects for the injury year and the industry are quite small compared to those of the 

injury category.  This finding is summarized in Chart 11, which offers a comparison of the variances 

of the four random effects.  As shown in this chart, the injury year and the industry have 

comparatively little explanatory power.  There is more variation across states than there is over time 

and across industries.  But the most explanatory power originates in the injury categories. 

Chart 11: Boxplots for the Means of the Posteriors of the Variances of the Random Effects 

 

Chart 12 displays the effect of the female gender on the difference between obese and 

comparable non-obese claims.  Here again, the gray whiskers (and “Female” label indicating the 

mean) pertain to the 50 individual, randomized data sets, whereas the black whiskers (along with the 

black “Female” label) indicate the results obtained when aggregating over these 50 runs.  Although 

the mean estimate of the female gender is negative, the credible interval includes the zero value.  

Then again, the negative effect of the female gender on the ratio of obese to non-obese claim costs 

agrees with the findings of Truls, Dement, and Krause [9] in the Duke University study. 
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Chart 12: Mean and 80 Percent Credible Intervals for the Effect of Gender in a Partial Linear 

Multilevel Regression on the Ratio of Cumulative Payments of Obese to Non-Obese Claims for 50 

Sets of Pairs of Matched Claims at a Maturity of 60 Months 

 

Finally, Chart 13 presents the effect of age.  (Note that this effect is centered on zero.)  As 

discussed, if the medical costs of workers compensation increase with age, then, due to matching 

toward the center, the effect of age shows up as “S-shaped.”  This is in fact the case.  As a 

consequence, the displayed effect should be read as an effect of matching toward the center, instead 

of an effect of age, on the percentage cost difference between obese and comparable non-obese 

claims. 
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Chart 13: Mean and 80 Percent Credible Interval for the Influence of Age in a Partial Linear 

Multilevel Regression on the Ratio of Cumulative Payments of Obese to Non-Obese Claims for 50 

Sets of Pairs of Matched Claims at a Maturity of 60 Months 

 

5. FINDINGS FOR THE LEGISLATIVE ENVIRONMENT 

As discussed, in a second version of the model, we add MUR and MBR as covariates.  

Information on MUR and MBR is provided by the Workers Compensation Research Institute 

(WCRI) for calendar years 1997 and 2001.  For injury years 2001 and later, the 2001 value applies; 

for earlier injury years, the 1997 value is used.  The covariates are coded as indicator variables that 

are equal to unity for U.S. states with MUR and MBR (respectively) in place, and zero otherwise. 

WCRI [10] puts a state in the “mandated utilization review/management category” if such 
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days lost from work or a dollar limit on medical care costs; the statute mandates the examination of 

bills by payers; or an exclusive state fund does regular bill review.” 

Table 3 details the MUR and MBR categorization of states for the two available years.  In 1997, 

twelve states had MUR, eight states had MBR, and six jurisdictions had both legislative provisions in 

place.  By 2001, the number of states with MUR had dropped to nine, those with MBR had risen to 

ten, and those with both provisions had decreased to five. 

Chart 14 offers boxplots for the estimated 50 values of the influence of MUR, as obtained when 

analyzing the 50 randomized data sets.  Clearly, MUR significantly reduces the ratio in the medical 

costs per claim of obese to non-obese claimants.  For the 12-month maturity, MUR reduces this 

difference by 15.8 percent.  For the 36-month maturity, the effect of MUR grows to 18.8 percent, 

before reaching 28.5 percent at the 60-month maturity.  This evidence attests to the importance of 

the legislative setting for the medical cost of workers compensation claims. 

Chart 15 offers boxplots for the 50 estimated effects of MBR.  Although the cost containment 

effect of MBR is substantial, its influence is weaker than MUR.  For the 12-month maturity, MBR 

reduces the ratio in the medical costs per claim of obese to non-obese claimants by 9.4 percent.  For 

the 36-month maturity, the effect of MUR grows to 16.6 percent, before dropping back to 12.2 

percent at the 60-month maturity.  Clearly, the maximum cost containment effect is achieved where 

both of the two legislative provisions are in place: The combined effect MBR and MUR (not shown) 

at the 12-month maturity amounts to a negative 24.0 percent, before growing to a negative 33.0 

percent at the 36-month maturity and reaching a negative 37.4 percent at the 60-month maturity. 
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Table 3: MUR and MBR by State 

Year 
State 1997 2001 
 MUR MBR MUR MBR 
AL No No No No
AK No No No No
AZ No No No No
AR Yes Yes No Yes 
CO Yes Yes Yes Yes 
CT No No No No
DC No No No No
FL Yes Yes Yes Yes 
GA No No No No
HI No No No No
ID No No No No
IL No No No No
IN No No No No
IA No No No No
KS No No No No
KY Yes No Yes Yes 
LA Yes Yes Yes Yes 
ME Yes No Yes No 
MD No No No No
MS Yes Yes Yes Yes 
MO No No No No
MT Yes No No No
NE No No No No
NV Yes Yes No Yes 
NH No No No No
NM Yes No Yes No 
NC No No No Yes 
OK No No No No 
OR No Yes No Yes 
RI No No No No 
SC No Yes No Yes 
SD No No No No
TN Yes No Yes No
UT Yes No Yes No
VT No No No No
VA No No No No

Source: WCRI [10][11]. 
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Chart 14: Box Plots for the Means of the Influence of MUR in a Partial Linear Multilevel 

Regression on the Ratio of Cumulative Payments of Obese to Non-Obese Claims for 50 Sets of 

Pairs of Matched Claims 

 

Chart 15: Box Plots for the Means of the Influence of MBR in a Partial Linear Multilevel Regression 

on the Ratio of Cumulative Payments of Obese to Non-Obese Claims for 50 Sets of Pairs of 

Matched Claims 
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As discussed, including MUR and MBR as covariates subtracts from the random effects of injury 

year and state.  This is because some of the variation over time and across states is due to these two 

legislative provisions.  It is therefore of interest to revisit the random effects of states and to 

investigate how much of the variation across states is due to these two covariates. 

Chart 16 displays the random effects for the states when MUR and MBR are included in the 

regression equation.  Clearly, the cross-state variation of the ratio in the medical costs per claim of 

obese to non-obese claimants is now much smaller than previously.  In fact, the variance of the state 

random effects drops to 0.00579 from the previous level of 0.01406, which implies that MUR and 

MBR explain about 59 percent the cross-state variation in the percentage cost effect of obesity. 

Chart 16: Mean and 80 Percent Credible Intervals for the Random Effect of U.S. States in a Partial 

Linear Multilevel Regression on the Ratio of Cumulative Payments of Obese to Non-Obese Claims 

for 50 Sets of Pairs of Matched Claims at a Maturity of 60 Months when Controlling for Differences 

in the Legislative Environment 

 

6. CONCLUSIONS 

Studying a large data set of obese claims, which comprises 36 U.S. states and nine injury years, we 

are able to provide evidence on the effect of obesity on the medical cost per claim.  We showed that 
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the effect of obesity is substantial, and that the entirety of the effect of obesity reveals itself only 

over time, as claims mature.  Most importantly, we were able to quantify the effect of the legislative 

environment on the effect of obesity on claim costs. 

Our methodology differs in important ways from the Duke University study by Truls, Dement, 

and Krause [9].  In part, this dissimilarity in approach is necessitated by a difference in the nature of 

the data set, but also by a difference in objective.  Although our data set is considerably larger (as it 

comprises millions of claims), it is also more limited in the scope of the data items.  Most 

importantly, we have no information on the BMI.  Instead of having an objective criterion for 

obesity (and having obesity differentiated by degree), our data set offers an obesity categorization 

that relies on the physician’s decision to list obesity as a co-morbidity indication. 

This difference between subjective and objective categorization of obesity has potential 

implications for the legislative findings of our model.  For instance, it may be argued that the 

decision of the physician to diagnose a claimant as obese is influenced by the legislative 

environment, thus causing an endogeneity bias in our measurement of the effects of MUR and 

MBR.  Although we cannot refute such a proposition with confidence, it is important to note that 

the potential endogeneity is likely to cause the effects of MUR and MBR to be underestimated 

(instead of overestimated).  This is because if the increased scrutiny of MUR and MBR raises a 

physician’s propensity of coding claimants as obese (in order to provide better documentation 

supportive of the treatment), the implied broader definition of obese claims diminishes the recorded 

cost difference between obese and comparable non-obese claims in the data set. 

Finally, the proportion of claims with obesity as a co-morbidity indicator is comparatively small 

(0.1 to 0.2 percent) when compared with the proportion of the obese in the workforce.  It is likely 

that obesity serves as a co-morbidity indicator primarily where complications from obesity are highly 

probable (e.g., when claimants are morbidly obese) or have already materialized.  From this 

perspective, the measured effect of obesity on claim severity may be viewed as an upper bound. 
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Towards Multivariate Ratemaking: Claim 
Frequency Analysis Examples 

Hernán L. Medina, CPCU, API, AU, AIM, ARC 

______________________________________________________________________________ 
Abstract  

Motivation. Test how changes in level and distribution of exposures affect different ratemaking models. 
Actuaries are well aware that loss trend can be distorted by changes in exposure level and business mix. They are 
trained to recognize situations in which these distortions may arise, and how to adjust for them. Multivariate 
models are another way of handling these distortions. Using claim frequency as an example, the paper illustrates 
the design of multivariate analyses resistant to changes in exposure level and business mix. 
Method. Simulate data in which the predominant sources of variation are changing exposure levels and changes 
in the distribution of exposures. Determine indicated trend, development, and classification factors using 
multivariate and univariate models. Compare the results. 
Results. Trend, development factors, and relativity indications from 30 samples having different levels of 
variation in exposure levels and distribution are obtained by different methods. 
Conclusions. Multivariate analyses that incorporate all available information are more robust than other analyses 
when data have significant changes in exposure levels or changes in mix of business.  
Availability. 
Input data sets and model outputs are available at www.casact.org.  
Keywords. Ratemaking, Trend and Loss Development, Rating Class Relativities, Generalized Linear Models  

______________________________________________________________________________ 

1. INTRODUCTION 

Actuaries began to develop the art and science of property and casualty insurance ratemaking 

long before computers were invented. At a time when calculations were done with pencil and paper, 

it was natural to use methods that relied on total sums and averages. When computers were first 

introduced, storage media were very expensive and processing speeds were relatively slow by today’s 

standards. Thus ratemaking databases were designed to contain totals and averages, and rating 

systems continued to rely for the most part on univariate analyses based on aggregate data. 

Actuaries are well aware of the pitfalls one might encounter using methods that rely on aggregate 

data. Part of actuarial training is learning to recognize the distortions that might arise, and how these 

might be corrected or minimized. For example, the CAS’ Basic Ratemaking textbook indicates that if 

calendar year data is used to measure loss trend and the book of business is changing significantly in 

size, the trend can be over or underestimated.1 An illustration of this situation follows in Table 1.1.  

  

                                                           
1 Werner, Geoff and Claudine Modlin, Basic Ratemaking, 3rd ed., Arlington, VA: Casualty Actuarial Society, January 2010, 
p. 113. 
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Table 1.1 

Calendar  
Year 

Earned 
Car Years 

Calendar Year Claims 
Closed With Payment

Claim 
Frequency Years Trend 

2004 198,017 12,504 6.31461 6 3.0% 
2005 215,837 13,770 6.37981 5 3.4% 
2006 232,026 14,972 6.45273 4 3.8% 
2007 225,064 15,304 6.79984 3 3.1% 
2008 211,559 14,928 7.05619   
2009 192,520 13,911 7.22574   

 

 Claims Closed With Payment Development Factors  
Accident 
Year 

Age 
12 

Age 
24 

Age 
36

Age 
48

12 to 
24

24 to 
36

36 to 
48 

Ultimate 
Claims

2002 5,435 8,696 10,870 10,870 1.600 1.250 1.000 10,870
2003 6,007 9,611 12,013 12,013 1.600 1.250 1.000 12,013
2004 6,726 10,762 13,452 13,452 1.600 1.250 1.000 13,452
2005 7,332 11,733 14,665 14,665 1.600 1.250 1.000 14,665
2006 7,881 12,609 15,764 15,764 1.600 1.250 1.000 15,764
2007 7,644 12,230 15,288 15,288 1.600 1.250  15,288
2008 7,187 11,500 1.600  14,375
2009 6,540  13,080
Selected Age to Age   1.600 1.250 1.000  
Selected Age to Ultimate   2.000 1.250 1.000  

 

Accident 
Year 

Earned 
Car Years 

Ultimate Accident 
Year Claim Count

Claim 
Frequency Years Trend 

2004 198,017 13,452 6.79336 6 0.0% 
2005 215,837 14,665 6.79448 5 0.0% 
2006 232,026 15,764 6.79407 4 0.0% 
2007 225,064 15,288 6.79273 3 0.0% 
2008 211,559 14,375 6.79479   
2009 192,520 13,080 6.79410   

 

In the example above, development factors are constant across accident year, so we can be 

reasonably certain of the estimated ultimate claim counts and the trend based on accident year data. 

Therefore we can conclude the trend based on calendar year data is overstated. In a real-world 
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situation, however, development factors may be more volatile, and the selection of loss development 

factors, “introduces some subjectivity into the [accident year] trend analysis.”2 

The CAS’ Basic Ratemaking electronic textbook explains that the reason for the distortion in the 

calendar year trend is that as exposure levels change, the distribution of calendar year claims by 

accident year changes.3 In fact, the effect of exposure level changes on calendar year trend is a 

special case of a more general phenomenon: the effect of changes in business mix on frequency and 

severity, which can affect both calendar year trend as well as accident year trend. Consider the 

example in Table 1.2. 

Table 1.2 

 

 

                                                           
2 Werner and Modlin, p. 113. 
3 Werner and Modlin, Basic Ratemaking, p. 113. 
 

Area 
Accident 
year 

Earned 
Car 

Years

Ultimate 
Claims With 

Payment
Claim 

Frequency Years Trend 
Territory A 2004 220,500 18,820 8.53515 6 3.0% 
  2005 231,527 20,353 8.79077 5 3.0% 
  2006 243,100 22,011 9.05430 4 3.0% 
  2007 255,256 23,803 9.32515 3 3.0% 
  2008 268,019 25,745 9.60566   
  2009 281,420 27,844 9.89411     
Territory B 2004 179,500 5,105 2.84401 6 3.0% 
  2005 168,476 4,936 2.92979 5 3.0% 
  2006 156,900 4,735 3.01785 4 3.0% 
  2007 144,744 4,501 3.10963 3 3.0% 
  2008 131,981 4,225 3.20122   
  2009 118,580 3,911 3.29820     
Statewide 2004 400,000 23,925 5.98125 6 5.8% 
  2005 400,003 25,289 6.32220 5 5.9% 
  2006 400,000 26,746 6.68650 4 5.9% 
  2007 400,000 28,304 7.07600 3 5.9% 
  2008 400,000 29,970 7.49250   
  2009 400,000 31,755 7.93875     
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In the example above in Table 1.2, each territory has a 3% trend, but the statewide data shows a 

trend that is almost twice as high, close to 6%. The reason for this is that the distribution of 

exposures in the state has been changing. “Distributional changes in a book of business also affect 

frequencies and severities. If the proportion of risky policies is growing, loss costs will be expected 

to increase.”4 

Although the issues above are well known, they are generally handled on an ad hoc basis, and not 

much has changed in the basic rate review process. Generally, it involves two major steps: (1) 

determination of the overall indicated rate level change, and (2) determination of indicated 

classification relativities. Loss development and trend are two of the processes involved in 

determining the overall indicated rate level change. Thus, a basic rate review often involves at least 

three databases and systems: (1) loss development database and system, (2) loss trend database and 

system, and (3) and classification review database and system. 

When accident year trends are used in the rate review, the loss development and loss trend 

processes are intertwined. For example, determining the accident year claim frequency trend typically 

involves the following steps: developing claim counts to ultimate, calculating ultimate claim 

frequency for each accident year, and analyzing the trend using a linear or exponential regression 

model. So the same database could be used for loss development and trend for rate reviews using 

accident year trend. In most cases, however, the database has been summarized in such a way that it 

cannot be used to review classification relativities. 

From a data management perspective, as well as a business point of view, it is desirable to have a 

single database as the source for the analyses involved in the rate review process. This helps simplify 

data quality reviews and helps ensure that the data used in the different analyses balances. This could 

easily be accomplished. Appendix G of A Practitioner’s Guide to Generalized Linear Models5 presents 

several forms of data organization that can be used for generalized linear model (GLM) analysis, as 

well as their advantages and disadvantages. Using personal auto property damage liability as an 

example, we will expand one of those forms of data organization into a database that can be used as 

the source for development, accident year trend, and indicated classification relativity analyses. 

Furthermore, we will see how to integrate all of these processes into one single model using 

generalized linear models (GLM) and generalized estimating equations (GEE). 

                                                           
4 Werner and Modlin, p. 109. 
5 Anderson, D., et al., “A Practitioner’s Guide to Generalized Linear Models,” 3rd Ed., CAS Study Note, 2007. 
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Using a single database for loss trend, loss development, and risk classification requires 

thoughtful consideration. A company may have some exclusion or adjustments currently used for 

trend analyses that are not used for loss development or classification analyses, and so on. In a 

multivariate model, however, you must consider whether it is preferable to adjust the data a priori, 

or to introduce variables that would control for the factor that would have made an adjustment or 

exclusion necessary in a univariate analysis. For example, certain vehicle models were recalled in 

2010 because of problems involving sudden uncontrollable acceleration.6 If a large number of such 

claims are in the data, one option would be to exclude them from the analysis. Another option 

would be to leave them in the data and add a control variable to identify these claims in the 

multivariate model. The coefficient of the control variable would provide the actuary with a way to 

estimate the effect this unusual event had on the experience. The control variable would be equal to 

1 for claims related to the recalled vehicles, and 0 for all other vehicles. If all affected vehicles have 

been recalled and repaired and no further losses related to this event are expected in the future, then 

the control variable is set to zero when the model is used to project expected claim counts or losses. 

Differences in exclusions or adjustments may arise because different types of data are used for 

different types of analyses. For example, it is quite common for companies to use calendar year paid 

claim data for trend analysis, and accident year reported claim data for loss development in personal 

auto property damage liability rate reviews. Presumably, since different types of data are used for the 

univariate analyses of trend and loss development, some situation might arise that would make it 

necessary to adjust the trend data while the loss development data needs no adjustment (or vice 

versa). If this situation arises in a multivariate context in which loss trend, development and 

classification factors are estimated simultaneously, an adjustment or control variable would be 

needed for a model based on paid claim data, but no adjustment would be needed for a model based 

on reported claim data (or vice versa). As will be shown later, the database can be designed in such a 

way that it contains both paid and reported claim data. Consequently, it would be easy and advisable 

to perform two multivariate analyses: one using paid claim data and the other using reported claim 

data. 

1.1 Research Context 

We focus on three elements of a basic rate review: loss trend, loss development, and rating class 

relativities. The actuarial literature on loss trend and loss development generally considers these 

elements in isolation. An exception involves accident year trends, since the latter require that data 

                                                           
6 Bunkley, Nick, and Bill Vlasic, “Carmakers Initiating More Recalls Voluntarily,” The New York Times, August 24, 2010. 
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are developed to ultimate. Even in this case, however, the loss development and loss trend analyses 

are performed sequentially instead of simultaneously. 

Similarly, papers on risk classification tend to consider their subject in isolation. For example, in 

“A Practitioner’s Guide to Generalized Linear Models” the discussion of loss trend and loss 

development occurs in Appendix F. The Guide suggests using a calendar/accident year method of 

organization and a dummy calendar year variable as a way to “absorb trends in claims experience 

that purely relate to time.”7 The Guide also suggests three options for dealing with loss development: 

 Ignoring it — assuming it does not affect the classification factors. 

 Including a dummy variable in the model to absorb time-related influences,  removing it 

once the model is finalized, and adjusting the modeled results based on a separate 

calculation. 

 Performing a series of GLM analyses, and comparing GLM relativities based on data at 

different development periods in order to obtain multivariate development factors.8 

Styrsky noted that loss trend can be underestimated or overestimated when calendar year data are 

used in the analysis if the size of the portfolio increases or decreases significantly. He proposed an 

approach for dealing with this effect by matching each calendar year’s claims by accident year to the 

exposures that produced them.9 Werner and Modlin propose additional solutions to this problem: 

(1) using econometric models or generalized linear models to measure trend or (2) using accident 

year data (developed to ultimate) for trend analysis. They note that the loss development process 

“may introduce some subjectivity” in trend analyses, and state that the use of econometric models 

and generalized linear models for quantifying loss trends is beyond the scope of the text.10  

Werner and Modlin point out a number of factors that can influence loss trends, such as 

inflation, technological advances, societal changes, and distributional changes. They suggest we can 

estimate the effect of distributional changes by looking at the trend in average premium at present 

rate level (PPR).11 Why do that? The reason is that distributional changes affect both premiums and 

losses. For example, youthful drivers generally have higher loss costs than adult drivers, and insurers 

                                                           
7 Anderson et al., p. 107. 
8 Anderson et al., p. 108. 
9 Styrsky, Chris, “The Effect of Changing Exposure Levels on Calendar Year Loss Trends,” Casualty Actuarial Society 
Winter Forum, 2005, pp. 125-151. 
10 Werner and Modlin, pp. 111-114. 
11 Werner and Modlin, pp. 8, 81. 
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generally charge them higher premiums than adult drivers. Thus, if the proportion of youthful 

drivers in an insurance portfolio increases, both losses and premiums will increase. 

As can be seen by the examples and citations above, the effect of changes in exposure level and 

distribution of exposures on commonly used univariate analysis of loss trend has been well studied 

and documented. The remaining question is what effect, if any, these exposure changes have on 

multivariate models.  

1.2 Objectives 

The objectives of this paper are (1) to illustrate how to expand a driver classification analysis 

database into a database that can also be used for univariate loss trend and loss development 

analyses as well as multivariate analyses involving all of these factors, (2) to compare results of using 

univariate and multivariate models for analyzing ratemaking parameters, (3) to show that 

multivariate analyses that account for all ratemaking parameters are robust to changes in exposure 

level and exposure distribution, and (4) to propose a framework for a rate review process completely 

based on multivariate analyses.  

We begin by considering a line of insurance such, as property damage liability, with a relatively 

simple rating plan involving only territory and driver class. For simplicity, we assume any other 

rating factors such as anti-lock brake discounts or vehicle symbols are not applicable. We define 

subjects identified by policy ID and accident year, assuming that each policy insures one driver and 

one vehicle. Depending on rating manual rules, policies may insure multiple drivers and multiple 

vehicles. Some rating manuals specify rules for assigning a single driver classification to each vehicle. 

Other rating manuals assign a weighted average class factor, based on all drivers in the household, to 

each vehicle. When reviewing the rates and rating factors for a rating manual, the definition of a 

subject ID should be selected based on the entity to which manual rates and rating factors apply. 

SAS uses the keyword SUBJECT, but it can handle subjects as well as panels. A panel is a closely 

related group of subjects such as a household, or all vehicles and drivers insured by one policy, for 

which observations are expected to be correlated.  

We will observe subjects across accident year evaluations, with cumulative claim counts per 

policy ID and accident year recorded at successive evaluation dates. For example, subject A, 

identified by policy ID 110000020 and accident year 2004, may have 0 claims as of 12 months, 1 

claim as of 24 months, and 1 claim as of 36 months. In contrast, subject B, identified by policy ID 

110000020 and accident year 2005, may have 0 claims at all evaluations (12, 24, and 36 months). 

This form of data organization is an example of longitudinal data, which Molenberghs and Verbeke 
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describe as the case where “the same characteristic is measured repeatedly over time, and time itself 

is, at least in part, a subject of scientific investigation.”12 Please note that we are considering 

observations of the same policy on two different accident years as two different subjects. We could 

have considered the subject as identified only by policy ID and tracked the claim counts across both 

accident years and evaluation dates. However, the evaluations for 2005 as of 12 months and 2004 as 

of 24 months occur at the same time. Similarly, the 24-month evaluation of 2005 and the 36-month 

evaluation of 2004 are simultaneous. Having some observations precede each other in time while 

others are simultaneous makes model parameterization more complicated and beyond the scope of 

this paper. 

Methods for analyzing longitudinal data include generalized estimating equations (GEE) and 

generalized linear mixed-effects models. We focus on population averaged GEE (PA GEE), which 

are closely related to generalized linear models (GLM). PA GEE can be thought of as “GLM” in 

which the variance function includes a covariance matrix that represents the correlation between 

repeated observations of the same subject or panel. Another difference is that the estimating 

equations for GLM involve likelihood functions, while GEE use quasilikelihood functions. GLM 

have become standard tools in property and casualty insurance ratemaking. Thus, as we begin to 

think of insurance data as longitudinal data, it seems natural to use GEE as a tool for analyzing risk 

classification and time-related effects simultaneously. We will analyze claim frequency trend, claim 

count development, and claim frequency risk classification factors using SAS PROC GENMOD. 

We use PA GEE that model the marginal expectation for observations having the same covariate 

values (time index, evaluation age, territory, and driver class codes). Consequently, even though the 

inputs are observations from specific policyholders, the model provides information about 

“average” policyholders. 

1.3 Outline 

Section 2 of this paper outlines the theoretical background of population averaged generalized 

estimating equations (PA GEE), and introduces the database organization used as the common 

starting point for the analysis techniques discussed in this paper. Section 3 presents the results of 

applying several analysis techniques to simulated data to estimate classification effects (territory and 

driver class factors) and time-related effects (trend and loss development). The results compared and 

discussed include accident year claim frequency trend, percentage of cumulative claims closed with 

payment, and claim frequency relativities by risk classification.  

                                                           
12 Molenberghs, G., and G. Verbeke, “Models for Discrete Longitudinal Data,” New York: Springer Series in Statistics, 
Springer Science+Business Media, Inc., 2005, p. 3.  
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PA GEE analyses involve making initial assumptions about the correlation structure of 

measurements taken on the same subject at different times. Therefore, two GEE analyses are 

presented and discussed: one assuming autoregressive correlation AR(1), and the other assuming all 

measurements related to the same subject are equally correlated — exchangeable correlation. The 

output of the model is a set of coefficients for the variables in the estimating equation, and a 

correlation matrix. For examples of correlation matrices output by these models see Section 2.2.1. 

Since the models use a log link, the exponential of the coefficients of the fully specified models 

correspond to the annual trend factor, territory and classification relativity factors, and percentage 

paid (closed with payment) factors. 

2. THEORETICAL BACKGROUND AND DATA ORGANIZATION 

This section provides a brief description of the mathematical structure of generalized linear 

models (GLM) and population averaged generalized estimating equations (PA GEE), describes the 

method of data organization used as the starting point for the analyses described in this paper, and 

shows how to prepare the data for application of the analysis techniques discussed in the paper. This 

paper uses only one type of GEE models: PA GEE. There are other types of GEE models, which 

are beyond of the scope of this paper. For more information, see Hardin and Hilbe.13 

2.2 Generalized Linear Models 

A Practitioner’s Guide to Generalized Linear Models defines a GLM in terms of three components:14  

 A random component Y in which each element yi is assumed to be independent and a 

member of the exponential family of distributions, for which the variance is a function of 

the expected value of Y, a scale parameter, and a weight assigned to each observation.  

 A systematic component consisting of a set of explanatory or predictive variables, such as 

territory and driver classification, represented by a vector X and a set of coefficients 

represented by a vector β.  

 A link function g such that 

g(E[Y]) = Xβ = x1β1 + x2β2 + … + xnβn. (2.1)

                                                           
13 Hardin, James W. and Joseph M. Hilbe, Generalized Estimation Equations, Boca Raton, FL: Chapman & Hall/CRC, 
2003. 
14 Anderson et al., pp. 13, 14. 
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For example, if we used the natural logarithm as the link function g, then E(Y) = exp(Xβ). Thus, 

if x1 represents whether or not a policyholder resides in territory 1, the relativity for that territory 

would be given by exp(β1). 

2.2.1 The Independence Assumption 

Suppose we are using the latest three accident years (e.g., 2007 to 2009) to evaluate driver 

classification factors for an insurance portfolio, and each policy insures one driver and one vehicle. 

Then, if a policyholder has been insured for three years the vector Y has three entries for this 

policyholder corresponding to 2007, 2008, and 2009. For purposes of the GLM, it is customary to 

treat these observations as independent. There is no way to do otherwise, because this is one of the 

fundamental assumptions of GLM. However, they are likely to be correlated because they are 

observations of the same subject. Furthermore, the prevalence of safe driver insurance plans, 

accident and violation surcharges, and merit rating plans suggests that actuaries believe these 

observations are not really independent. In fact, most actuaries believe a policyholder who has had a 

claim is more likely to have claim in the future than a policyholder who has had no claims. 

2.2 Population Averaged Generalized Estimating Equations 

Suppose we observe cumulative claims closed with payment by policyholder by accident year 

from 2004 to 2009, at 12, 24, and 36 months. Further, assume all claims are closed by 36 months. 

Then we have 15 observations for each policyholder: three for each of the first four years, two for 

2008 and one for 2009. Conversely, we have three missing observations: two for 2009 (the 24- and 

36-month evaluations), and one for 2008 (the 36-month evaluation). The 18 total missing and non-

missing observations correspond to six years and three evaluation dates for a policy in-force 

throughout the entire experience period. In this way we can see a policyholder’s experience as 

longitudinal data in which the number of claims is observed at different points in time. We are 

interested in the relationship between time (accident year and evaluation date) and claim count, as 

well as the relationship between classification variables (territory and driver class) and claim count. 

For the purposes of this paper, we will continue to assume independence across accident years, as 

is generally assumed when using GLM. Therefore we will define our subjects by policy ID and 

accident year, once again assuming each policy insures only one driver and one vehicle. It is easy to 

see that claims closed at different evaluation dates are correlated. For example a policyholder with 

one claim closed with payment as of 12 months for accident year 2007 will generally have at least 

one claim closed with payment at each successive evaluation date for that year. The way in which a 

company codes reopened claims can make this relationship more complicated. An actuary pricing a 
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book of business would have to understand how reopened claims are coded, and whether or not 

there has been a change in claim reopening patterns during the experience period. For the purposes 

of this paper, we assume there are no reopened claims. We will seek only to model the correlation 

among claims closed with payment at different evaluation dates. A more general correlation 

structure incorporating correlation across accident years could be formulated, but it is beyond the 

scope of this paper. 

The data for an insurance portfolio observed at subsequent accident years and evaluation dates can 

be seen as having the random and systematic components of a GLM as well as a correlated 

component for which the GLM does not account. SAS PROC GENMOD can model the systematic 

component for data with both independent and correlated observations using the same linear 

predictor, variance function, and link function as the independent case, but it can also model the 

correlation structure of the correlated observations.15 

Let Yi represent the vector of ni observations for policyholder i, Xij the vector of covariates 

(explanatory or predictive variables) for the jth observation of the ith policyholder, β the vector of 

coefficients, and Vi the covariance matrix of the ni correlated observations in Yi. Then the GEE 

model can be specified by the following equations: 

g(E[Yi]) = Xijβ = xij1β1 + xij2β2 + … + xijpβp. (2.2)
 
 Vi =φAi

1/2 Wi
-1/2R(α) Wi

-1/2Ai
1/2.  (2.3)

Where φ is a dispersion parameter, A is a diagonal matrix of variance functions v(µij), W is a 

diagonal matrix of weights, and R(α) is a working correlation matrix. When no weights are specified 

by the user, W defaults to a matrix of 1s, and all observations receive equal weight. When R(α) is the 

identity matrix, equation 2.3 reduces to the variance function of the independent case. 

2.2.1 Working Correlation Matrix 

Six working correlation structures are available in SAS PROC GENMOD: fixed, identity, m-

dependent, exchangeable, unstructured, and auto regressive AR(1). In the fixed case, the correlation 

matrix is specified by the user. The identity is the special case with 1s in the diagonal and 0s 

elsewhere, and it is equivalent to the independence case. M-dependent means that only m of the 

observations for a given subject are correlated, and the rest are not. Exchangeable is the case where 

all observations for a given subject are equally correlated. Unstructured implies that the correlation 

between any pair of observations is different from, and unrelated to, the correlation between any 

other pair of observations. The autoregressive structure is more appropriate for observations where 
                                                           
15 SAS/STAT® 9.2 User’s Guide, SAS Institute Inc., 2008, pp. 1984, 1985. 
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the correlation decays as time elapses. Following are illustrations of the autoregressive and 

exchangeable correlation structures for a PA GEE model with simulated counts of personal auto 

property damage liability claims closed with payment observed at 12, 24, and 36 months per policy 

ID and accident year. 

Autoregressive 

ቌ
1 ߩ ଶߩ

ߩ 1 ߩ
ଶߩ ߩ 1

ቍ ൌ ൭
1 0.8323 0.6927

0.8323 1 0.8323
0.6927 0.8323 1

൱. 

The autoregressive correlation matrix above would indicate that the correlation between two 

successive evaluations (12 months and 24 months or 24 months and 36 months) is roughly 83%, 

while the correlation between the 12-month and 36-month evaluations is about 69%. In contrast, 

the exchangeable correlation matrix below would indicate that all evaluations have a correlation of 

roughly 79%. 

Exchangeable 

൭
1 ߩ ߩ
ߩ 1 ߩ
ߩ ߩ 1

൱ ൌ ൭
1 0.7916 0.7916

0.7916 1 0.7916
0.7916 0.7916 1

൱. 

For a given accident year, the claim count at 36 months is theoretically more correlated with the 

claim count at 24 months than with the count at 12 months. This would support using an 

autoregressive correlation structure. Nevertheless, both correlation structures shown above are 

tested in this paper for comparison purposes. 

2.2.2 Missing Values 

As mentioned previously, when one observes claim counts for a policyholder by accident year at 

different evaluation dates, some evaluation dates are missing. In the examples used in this paper, the 

latest year only has the 12-month evaluation, and the previous year has the 12- and 24-month 

evaluations. In cases such as this, the GENMOD procedure uses the “all available pairs” method to 

estimate the moments for the working correlation parameters. This method depends on the 

“missing completely at random (MCAR)” assumption.16  

The pattern of missing values for a policyholder’s claim counts by accident year and evaluation 

date is somewhat systematic. For each accident year, either all evaluation dates are present, or they 

are all missing after some point. This is called a “dropout” missing pattern. It is similar to that of a 

                                                           
16 SAS/STAT® 9.2 User’s Guide, p. 1987. 
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patient who stops participating in a medical study. Additionally, policies may be written or non-

renewed in the middle of the experience period, which creates another source of missing values. A 

non-renewed policy acts as a dropout. A new policy, on the other hand acts as a drop-in, where the 

earlier values are missing. Also, as some individuals become older or move, they may become part of 

another driver class or territory. Finally, insurance companies may not renew policies of people who 

have had many claims, or they may re-underwrite an insurance portfolio switching policyholders 

from one class to another if they are found to have been misclassified. Therefore, some of the 

factors causing missing values are systematic, while others are random. Determining whether or not 

the pattern of missing values for an insurance book meets the MCAR assumption is beyond the 

scope of this paper. Readers may refer to section 4.6 of Hardin and Hilbe’s Generalized Estimating 

Equations.17 

The data simulations run for this paper contain no missing values other than the ones that would 

correspond to future evaluation dates for the most recent accident years. The modeling results 

indicate that the inclusion of evaluation age parameters adequately accounts for the missing 

evaluation dates. Furthermore, movement of policyholders from one class or territory to another as 

a result of aging, moving, re-underwriting or non renewal can be seen as a distributional shift in 

exposures rather than a source of missing values. The data simulations do include samples with 

significant distributional changes, and the modeling results show that the claim frequency PA GEE 

models are not affected by distributional shifts in exposure. Therefore we can conclude that the 

missing values encountered when fitting a claim frequency PA GEE model to an insurance portfolio 

are not likely to adversely affect the modeling results. 

2.3 Data Organization 

Many companies have begun to build data warehouses or ratemaking databases with very detailed 

information including policy effective and expiration dates, driver attributes, vehicle attributes, date 

of accident, date of report, date closed, amounts paid, amounts in reserve, etc. At the start of a basic 

rate review, however, separate summarizations are extracted from this database for the trend system, 

loss development system, statewide indication, and territory and classification analysis review. 

Appendix G of A Practitioner’s Guide to Generalized Linear Models18 presents several forms of data 

organization that can be used for generalized linear model (GLM) analysis, as well as their 

advantages and disadvantages. One of these is the calendar/accident year method in which each 

record has claim counts and loss amounts as of the latest evaluation. A simple expansion of this 

                                                           
17 Hardin and Hilbee. 
18 Anderson et al. 
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database is to include separate columns for each evaluation age. This kind of setup can be used as a 

starting point from which, with very little manipulation, several univariate and multivariate analyses 

can be performed. The following table illustrates this method of organization for a hypothetical 

rating plan using only territory and driver classification and insuring only one driver and vehicle per 

policy. A real database would contain many other attributes identifying the policies, drivers and 

vehicles insured as well as rating characteristics associated with them. 

Table 2.3.1 

Policy 
Id 

Accident 
Year Territory

Driver
Class 

Earned
Exposure

Claims
With 

Payment
Age 12

Claims 
With 

Payment 
Age 24 

Claims
With

Payment
Age 36

110000020 2004 1 1 1 0 1 1
110000020 2005 1 1 1 0 0 0
110000020 2006 1 1 1 0 0 0
110000020 2007 1 1 1 0 0 0
110000020 2008 1 1 1 1 1 
110000020 2009 1 1 1 0  

 

Paid 
Loss 

Amount 
Age 12 

Paid 
Loss 

Amount 
Age 24 

Paid 
Loss 

Amount 
Age 36 

Claims
Reported

Age 12

Claims
Reported

Age 24

Claims
Reported

Age 36

Reported
Losses
Age12

Reported 
Losses 
Age24 

Reported
Losses
Age36

0 25,000 25,000 1 1 1 20,000 25,000 25,000
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

15,000 15,000  1 1 15,000 15,000 
0   0 0  

 

The example above illustrates a policy for which the territory and driver class have not changed 

during the experience period. The only missing values are future evaluation dates for the latest two 

accident years, assuming that all claims have been reported by age 36. Suppose another policy had 

been written in 7/1/2005, then the earned exposure for that policy in 2005 would be 0.5 and the 

exposure and claim counts for 2004 would be missing. 

Throughout this paper we assume each policy insures only one driver and one vehicle. Therefore, 

we use policy ID and year as the subject for our PA GEE models. In reality, most policies actually 

insure more than one driver and one vehicle. Some companies assign a specific driver to each 

vehicle on the policy, while others use an average driver factor for all vehicles in the policy. 

Actuaries wishing to use PA GEE models need to be mindful of the driver and vehicle assignment 
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procedure use in their specific book of business, and they may need to add driver ID or vehicle ID 

or both to the subject definition. An alternative is to analyze the data in terms of panels including all 

drivers and vehicles in each insured household. 

Another issue that may arise involves claims not related to a specific driver or vehicle. For 

example, a minor child who is not a driver may be injured as a pedestrian and covered by medical 

payments. This could be handled in a number of ways: the claims may be excluded, the claims may 

be coded with a dummy policy ID and the driver and vehicle attributes of the at-fault driver, or they 

may be coded with a dummy policy ID and the base driver and vehicle attributes. The best course of 

action would have to be determined by the actuary working on a particular book of business, based 

on the available information. 

Starting with a database structure such as the one above, it is very easy to summarize claim counts 

for different evaluation dates by accident year to obtain a claim count triangle for chain-ladder 

development. For details see Appendix C. 

For a traditional classification analysis using a GLM with accident year as a dummy variable, the 

data can be summarized by keeping only the cumulative claims reported as of the latest evaluation 

date, as illustrated in the Table 2.3.2 below. This leads to one of the types of data organization in 

Appendix G of the Practitioners Guide to GLM in which there is some loss of some information for 

policies with multiple claims in the same accident year, but this is generally not material.19 Data such 

as the one illustrated below will be used for two types of models investigated in this paper: (1) GLM 

for claims closed with payment as the dependent variable and territory and classification as 

independent variables, and (2) GLM for claims closed with payment as the dependent variable and 

territory, classification, and dummy year as independent variables. As will be shown in Section 3.4, 

the dummy year parameter captures both trend and development effects. Immature year claim 

counts can be drastically lower than fully mature year claim counts. Trend, on the other hand, tends 

to be a gradual change. Therefore, modeling the combined effect of trend and development with a 

single continuous variable can be difficult. For this reason, it is better to use dummy year as a 

categorical variable. 

  

                                                           
19 Anderson et al., p. 109. 
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Table 2.3.2 

Policy 
Id 

Accident 
Year Territory

Driver
Class 

Earned
Exposure

Cumulative Claims  
Closed With Payment  

As of 12/31/2009 
110000020 2004 1 1 1 1 
110000020 2005 1 1 1 0 
110000020 2006 1 1 1 0 
110000020 2007 1 1 1 0 
110000020 2008 1 1 1 1 
110000020 2009 1 1 1 0 

 

For GLM and PA GEE analyses involving loss development parameters in addition to trend and 

classification factors, we are interested in the repeated observations across evaluation dates, so we 

would stack the evaluation dates into one column in order to get one observed claim count per 

record as illustrated below in Table 2.3.3. Note that the earned exposure needs to be repeated so 

that the cumulative claims at each age can be associated with the corresponding accident year’s 

earned exposure for the policy.   

Table 2.3.3 

Policy 
ID 

Accident 
Year 

Evaluation
Date Territory

Driver
Class 

Earned 
Exposure

Closed 
With 

Payment 
110000020 2004 12 1 1 1 0 
110000020 2004 24 1 1 1 1 
110000020 2004 36 1 1 1 1 
110000020 2005 12 1 1 1 0 
110000020 2005 24 1 1 1 0 
110000020 2005 36 1 1 1 0 
110000020 2006 12 1 1 1 0 
110000020 2006 24 1 1 1 0 
110000020 2006 36 1 1 1 0 
110000020 2007 12 1 1 1 0 
110000020 2007 24 1 1 1 0 
110000020 2007 36 1 1 1 0 
110000020 2008 12 1 1 1 1 
110000020 2008 24 1 1 1 1 
110000020 2009 12 1 1 1 0 

 

The reason for converting from the triangular format in Table 2.3.1 to a stacked format is that 

the software expects only one dependent variable. Three multivariate models explored in this paper 

involve the count of claims closed with payment as the dependent variable, and time index (for 

trend), territory, driver class, and evaluation date as independent variables. The first one is a GLM. 

The second one is a PA GEE with policy ID and accident year as subject identifiers and 
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autoregressive working correlation. The third one is a PA GEE with policy ID and accident year as 

subject identifiers and exchangeable working correlation. 

3. CLAIM SIMULATIONS AND RESULTS 

This section presents and compares the results of applying different techniques to 30 synthetic 

personal auto property damage portfolios: 10 scenarios for each of three hypothetical states X, Y, 

and Z. These portfolios have a very simple classification plan with only three territories and three 

driver classes. Details of the procedure used to create the portfolios and simulate the claim counts 

are provided in Appendix A. 

The reasons for using synthetic portfolios are: (1) to generate claim databases with parameters 

known a priori, (2) to eliminate as much as possible random variation of the expected claim 

frequencies, and (3) to make change in exposure levels and distribution the predominant source of 

variation. The objective is to gauge the effect of changes in exposure level and exposure distribution 

on different analysis methods while holding everything else as constant as possible. To achieve this 

end, we select the following parameters: base claim frequency, annual frequency trend, percentage of 

claims closed with payment as of each evaluation age, territory relativity, and driver-class relativity. 

We then use these selected parameters to determine the expected claim frequency for each territory, 

driver class, accident year, and evaluation age. For example, given the following parameters:  

 base frequency = 0.05. 

 territory 1 relativity = 1.50. 

 driver class 1 relativity = 1.00. 

 percentage of claims paid (closed with payment) as of 12 months = 0.50. 

We calculate the 2002 expected claim frequency for State X, Scenario 1, territory 1 and driver 

class 1, at age 12 as: 0.05 × 1.50 × 1.00 × 0.50 = 0.0375. With a 3% annual trend, the 2003 claim 

frequency at 12 months would be 0.0375 × 1.03 = 0.038625, and the 2004 claim frequency at 12 

months would be 0.0375 × 1.032 = 0.03978375. 

Next, we multiply the expected claim frequencies times the corresponding earned exposures in 

the portfolio to determine expected claim counts for each accident year, territory, and driver class 

combination. Once we have used the selected parameters to determine the expected claim count for 

each territory, driver class, accident year, and evaluation age, we select policies at random with 

replacement up to the number of expected claim counts. We consider a policy not selected to have 
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zero claims, a policy selected once to have one claim, a policy selected twice to have two claims, and 

so on. The synthetic portfolios with claim emergence simulations are available for downloading 

from the CAS Web Site.  

State X scenarios assume the annual trend in claim frequency is zero. The main source of 

variation is changing exposure level from one year to the next. Changes in claim frequency 

distribution between territories and driver classes are limited to roughly one-tenth of a percentage 

point. Base frequency is 0.05 (for territory 2 and driver class 1); claim frequency relativities are 

constant—1.50 for territory 1, 0.80 for territory 3, 2.00 for driver class 2, and 0.75 for driver class 3. 

Cumulative percentages of claims paid are 50% at 12 months, 80% at 24 and 100% at 36. 

State Y scenarios assume a 3% annual trend in claim frequency and increasing exposure from one 

year to the next. State Y Scenario 1 has essentially the same distribution of exposures across 

territories and driver class for each accident year as State X scenario 1. The rest of the State Y 

scenarios show more random variation than State X scenarios in the distribution of exposures 

among territories and driver classes from one accident year to the next. Base frequency is 0.06 (for 

territory 2 and driver class 1); claim frequency relativities and cumulative percentages of claims paid 

are the same as State X Scenario 1. 

State Z scenarios assume a 3% annual trend in claim frequency and decreasing exposure from 

one year to the next. State Z Scenario 1 has essentially the same distribution of exposures across 

territories and driver class for each accident year as State X scenario 1. The rest of the State Z 

scenarios have increasing systematic variation in the distribution of exposures among territories and 

driver classes across accident years. Each accident year, the territory 1 class 1 earned car years 

decrease while the territory 3 class 3 earned car years increase, and the magnitude of this changes 

increases from scenario 2 to scenario 10. Base frequency is 0.02 (for territory 2 and driver class 1); 

claim frequency relativities and cumulative percentages of claims paid are the same as State X 

Scenario 1. 

The following sections compare parameter estimates obtained by different methods for 

percentage of claims paid (closed with payment) by evaluation age, accident year trend, claim 

frequency relativities, quasi-likelihood information criterion, correlation matrices, and covariance 

matrices, where applicable. 

3.1 Percentage of Claims Paid (Closed With Payment) 

As mentioned earlier, the claim count simulation parameters were selected so the payment 

pattern would be approximately 50%, 80%, 100% of claims paid by 12, 24, and 36 months, 
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respectively. Since the number of claims must be a whole number, some deviation from those 

percentages is to be expected. For example, if the expected claim frequency for a given accident 

year, evaluation age, territory and driver class is 0.0375 and there are 1,000 earned car years, we can 

simulate either 37 or 38 claims, not 37.5. 

The percentage paid estimate for the chain ladder method is the reciprocal of the age-to-ultimate 

development factor. Details of the calculation are shown in Appendix C. The percentage paid 

estimates for the GLM and GEE models are based on the parameter estimates for the levels of the 

evaluation age. Details are provided in Appendices D and E. The simulations used in this paper 

assumed stable development patterns. In a real-world situation, changes in claim adjustment 

patterns, system changes, etc., may cause development factors to change between years. If the 

change is gradual over several years, a marginal interaction term (based on time index and evaluation 

age) can be added to the model to account for these changes. If the change is more abrupt, so that 

accident years after a certain point are different from earlier accident years, a (0, 1) control variable 

could be introduced to account for the change. An actuary pricing a specific book of business would 

have to determine an appropriate course of action based on the available information.  

The following Table 3.1.1 presents the resulting estimates of percentage of claims paid (closed 

with payment) by evaluation date using the chain ladder method (CLM), generalized linear model 

(GLM Full), generalized estimating equations with autoregressive correlation (GEE AR), and 

generalized estimating equations with exchangeable correlation (GEE Ex). All four methods 

produced estimates that are close to each other and close to the percentages used to set up the claim 

payment simulations. 
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Table 3.1.1 

Percentage of Claims Paid by Age 12 Percentage of Claims Paid by Age 24 
Sample CLM GLM Full GEE AR GEE Ex CLM GLM Full GEE AR GEE Ex
X-01 0.49997 0.50000 0.49998 0.49998 0.79998 0.80001 0.79999 0.79999 
X-02 0.49999 0.50001 0.50000 0.50000 0.79999 0.80002 0.79999 0.80000 
X-03 0.49999 0.50000 0.49999 0.50000 0.80000 0.80001 0.80000 0.80000 
X-04 0.49996 0.49996 0.49996 0.49996 0.79997 0.79998 0.79998 0.79997 
X-05 0.49999 0.50001 0.50000 0.50000 0.79999 0.80001 0.80000 0.80000 
X-06 0.50001 0.50002 0.50001 0.50001 0.79999 0.79999 0.79999 0.79999 
X-07 0.50003 0.50001 0.50002 0.50001 0.79999 0.79998 0.79999 0.79998 
X-08 0.50002 0.50003 0.50002 0.50002 0.80002 0.80002 0.80002 0.80002 
X-09 0.49999 0.49998 0.49999 0.49999 0.80002 0.80000 0.80001 0.80001 
X-10 0.50000 0.49998 0.49999 0.49999 0.79999 0.79998 0.79998 0.79997 
Y-01 0.50001 0.50002 0.50001 0.50002 0.79999 0.80000 0.80000 0.80000 
Y-02 0.50000 0.49999 0.50000 0.50000 0.79999 0.79999 0.79999 0.80000 
Y-03 0.50003 0.50003 0.50002 0.50003 0.80003 0.80004 0.80002 0.80003 
Y-04 0.50002 0.50004 0.50002 0.50002 0.79999 0.80003 0.80000 0.80001 
Y-05 0.50000 0.50000 0.50000 0.50000 0.79999 0.79998 0.79999 0.79999 
Y-06 0.50003 0.50000 0.50002 0.50002 0.80001 0.79999 0.80000 0.80000 
Y-07 0.50000 0.50002 0.50000 0.50000 0.80003 0.80003 0.80002 0.80002 
Y-08 0.49997 0.49996 0.49997 0.49997 0.79999 0.79996 0.79998 0.79998 
Y-09 0.50000 0.50002 0.50000 0.50000 0.79998 0.79999 0.79998 0.79998 
Y-10 0.50000 0.50002 0.50001 0.50001 0.80000 0.80000 0.80000 0.80000 
Z-01 0.49992 0.49988 0.49990 0.49990 0.80003 0.79997 0.80001 0.80001 
Z-02 0.49993 0.49986 0.49991 0.49992 0.80001 0.79994 0.80000 0.80001 
Z-03 0.49997 0.49997 0.49997 0.49996 0.80014 0.80010 0.80014 0.80012 
Z-04 0.50005 0.50000 0.50004 0.50003 0.79999 0.79993 0.79998 0.79997 
Z-05 0.50003 0.50009 0.50004 0.50004 0.80013 0.80019 0.80014 0.80015 
Z-06 0.50007 0.50003 0.50006 0.50007 0.79996 0.79991 0.79995 0.79996 
Z-07 0.49992 0.49983 0.49990 0.49991 0.80000 0.79992 0.79998 0.80000 
Z-08 0.49990 0.49992 0.49991 0.49991 0.79997 0.79995 0.79997 0.79997 
Z-09 0.50011 0.50007 0.50008 0.50009 0.80018 0.80026 0.80019 0.80021 
Z-10 0.50004 0.50005 0.50004 0.50003 0.79997 0.79998 0.79998 0.79997 
Average 0.50000 0.49999 0.50000 0.50000 0.80001 0.80001 0.80001 0.80001 
Std Dev 0.00004 0.00006 0.00004 0.00004 0.00005 0.00007 0.00005 0.00005 
Min 0.49990 0.49983 0.49990 0.49990 0.79996 0.79991 0.79995 0.79996 
Max 0.50011 0.50009 0.50008 0.50009 0.80018 0.80026 0.80019 0.80021 
Range 0.00021 0.00026 0.00018 0.00019 0.00022 0.00035 0.00024 0.00025 

 

3.2 Claim Frequency Trend 

The calendar year trend analysis is based on calendar year data — claim counts are assigned to 

the year in which the claim was paid. Details are provided in Appendix B. The accident year trend 

analysis is based on an exponential regression on ultimate claim frequencies, so it depends on the 

results of the chain ladder method. Details are shown in Appendix C. The accident year trend 
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estimates for the GLM Full, GEE AR, and GEE Ex models are based on the coefficient for a time 

index. Details of GLM and GEE models are provided in Appendices D and E.  

The samples were intended to simulate changes in exposure level and changes in the distribution 

of exposures — two issues the basic ratemaking textbook mentions among the ones that can affect 

the results of univariate trend analyses, and illustrated in the introduction to this paper. Therefore, it 

is not surprising that the calendar year (Cal Yr) and accident year (Acc Yr) trend estimates deviate 

from the actual annual trend used to generate the simulated data: 0% for State X and 3% for States 

Y and Z.  

The multivariate methods include a generalized linear model (GLM Full), generalized estimating 

equations with autoregressive correlation (GEE AR), and GEE with exchangeable correlation (GEE 

Ex). These methods are resistant to the changes in exposure level and distribution simulated in these 

samples. The following Table 3.2.1 summarizes the results. 

Table 3.2.1 

 6-Point Annual Trend Estimates
Sample Cal Yr Acc Yr GLM Full GEE AR GEE Ex 
X-01 2.98% 0.00% 0.00% 0.00% 0.00% 
X-02 2.97% -0.04% 0.00% 0.00% 0.00% 
X-03 2.96% -0.02% 0.00% 0.00% 0.00% 
X-04 2.96% 0.00% 0.00% 0.00% 0.00% 
X-05 3.02% -0.04% 0.00% 0.00% 0.00% 
X-06 3.10% 0.10% 0.00% 0.00% 0.00% 
X-07 2.86% 0.05% 0.00% 0.00% 0.00% 
X-08 3.02% 0.02% 0.00% 0.00% 0.00% 
X-09 2.97% 0.01% 0.00% 0.00% 0.00% 
X-10 2.85% -0.05% 0.00% 0.00% 0.00% 
Average 2.97% 0.00% 0.00% 0.00% 0.00% 
Std Dev 0.07% 0.05% 0.00% 0.00% 0.00% 
Min 2.85% -0.05% 0.00% 0.00% 0.00% 
Max 3.10% 0.10% 0.00% 0.00% 0.00% 
Range 0.25% 0.15% 0.00% 0.00% 0.00% 
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Table 3.2.1, continued 

Sample 
6-Point Annual Trend Estimates

Cal Yr Acc Yr GLM Full GEE AR GEE Ex 
Y-01 3.00% 3.00% 3.00% 3.00% 3.00% 
Y-02 3.09% 3.42% 3.00% 3.00% 3.00% 
Y-03 2.80% 3.58% 3.00% 3.00% 3.00% 
Y-04 3.26% 2.97% 3.00% 3.00% 3.00% 
Y-05 3.24% 3.54% 3.00% 3.00% 3.00% 
Y-06 3.97% 4.09% 3.00% 3.00% 3.00% 
Y-07 2.64% 2.83% 3.00% 3.00% 3.00% 
Y-08 2.76% 3.04% 3.00% 3.00% 3.00% 
Y-09 3.52% 4.42% 3.00% 3.00% 3.00% 
Y-10 2.76% 3.46% 3.00% 3.00% 3.00% 
Average 3.10% 3.44% 3.00% 3.00% 3.00% 
Std Dev 0.41% 0.51% 0.00% 0.00% 0.00% 
Min 2.64% 2.83% 3.00% 3.00% 3.00% 
Max 3.97% 4.42% 3.00% 3.00% 3.00% 
Range 1.33% 1.59% 0.00% 0.00% 0.00% 
Z-01 3.71% 3.01% 3.01% 3.01% 3.01% 
Z-02 2.88% 2.47% 2.99% 2.98% 2.98% 
Z-03 2.39% 2.28% 2.98% 2.99% 2.99% 
Z-04 3.13% 2.39% 2.99% 2.99% 2.99% 
Z-05 3.80% 3.33% 3.00% 3.01% 3.01% 
Z-06 2.82% 3.00% 3.01% 3.01% 3.01% 
Z-07 3.11% 2.07% 3.01% 3.00% 3.00% 
Z-08 3.68% 3.04% 3.00% 3.00% 3.00% 
Z-09 2.03% 1.62% 3.02% 3.02% 3.02% 
Z-10 3.49% 2.29% 3.01% 3.01% 3.01% 
Average 3.10% 2.55% 3.00% 3.00% 3.00% 
Std Dev 0.59% 0.53% 0.01% 0.01% 0.01% 
Min 2.03% 1.62% 2.98% 2.98% 2.98% 
Max 3.80% 3.33% 3.02% 3.02% 3.02% 
Range 1.77% 1.71% 0.04% 0.04% 0.04% 

3.3 Claim Frequency Relativities 

 This section compares the results of six different multivariate models for claim frequency 

relativities — four generalized linear models and two generalized estimating equation (GEE) 

models. The autoregressive correlation model (GEE AR) makes more sense intuitively than the 

exchangeable correlation model (GEE Ex), since we would expect the correlation between 36-

month and 24-month claim counts to be larger than the correlation between 36-month and 12-

month claims counts. 
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Table 3.3.1 

Model Description 
GLM 6Yr Generalized linear model with latest 6 years of data and territory and driver class as 

independent variables 
GLM 3Yr Generalized linear model with latest 3 years of data and territory and driver class as 

independent variables 
GLM AYC Generalized linear model with latest 6 years of data, territory and driver class as 

independent variables, and accident year as control variable 
GLM Full Generalized linear model with latest 6 years of data, territory, driver class, time index, 

and evaluation age as independent variables 
GEE AR Generalized estimating equation model with latest 6 years of data, territory, driver 

class, time index, and evaluation age as independent variables and autoregressive 
working correlation 

GEE Ex Generalized estimating equation model with latest 6 years of data, territory, driver 
class, time index, and evaluation age as independent variables and exchangeable 
working correlation 

The first two models, which ignore differences across accident year, are less reliable than the last 

four models — the range of expected values they produce is wider. Additionally, the base frequency 

(intercept) estimated by these models, which is the expected value across the 6-year or 3-year period, 

respectively, is understated because these models ignore the fact that the latest two years are not 

fully developed The understatement is more pronounced for the 3-year model because two out of 

three years are not fully developed. 

The model with accident year as a control variable (GLM AYC) and the fully specified models 

(GLM full, GEE AR, and GEE Ex) quite accurately predict the base frequency of 0.05 for State X, 

0.06 × 1.032 for State Y, and 0.02 × 1.032 for State Z. The reason for the factor of 1.03 squared in 

States Y and Z is that a 3% annual trend was assumed in the simulation. Eight accident years were 

simulated starting with 2002, so to get the base frequency for 2004 we must multiply times 1.03 

squared.  

Following are the indicated base frequencies and the indicated factors for territories 1 and 3 as 

well as driver classes 2 and 3. Since the states have different base frequencies, the statistics (average, 

standard deviation, minimum, maximum, and range) for the intercept are by state. On the other 

hand, territory and driver class relativities are the same for all states so the statistics are across all 30 

samples. 
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Table 3.3.2 

 Sample 
Indicated Base Frequency (Intercept) 

GLM 6Yr GLM 3Yr GLM AYC GLM full GEE AR GEE Ex 
X-01 0.04456 0.03899 0.04999 0.05000 0.05000 0.05000 
X-02 0.04458 0.03900 0.05000 0.05000 0.05000 0.05000 
X-03 0.04458 0.03900 0.04999 0.05000 0.04999 0.05000 
X-04 0.04457 0.03902 0.05000 0.05000 0.05000 0.05000 
X-05 0.04454 0.03898 0.05000 0.05000 0.05000 0.05000 
X-06 0.04455 0.03894 0.05000 0.05000 0.05000 0.05000 
X-07 0.04459 0.03900 0.04999 0.05000 0.05000 0.05000 
X-08 0.04461 0.03904 0.05000 0.05000 0.05000 0.05000 
X-09 0.04458 0.03904 0.05000 0.05001 0.05001 0.05001 
X-10 0.04455 0.03897 0.04999 0.05000 0.05000 0.05000 
Average 0.04457 0.03900 0.05000 0.05000 0.05000 0.05000 
Std Dev 0.00002 0.00003 0.00001 0.00000 0.00000 0.00000 
Min 0.04454 0.03894 0.04999 0.05000 0.04999 0.05000 
Max 0.04461 0.03904 0.05000 0.05001 0.05001 0.05001 
Range 0.00007 0.00010 0.00001 0.00001 0.00002 0.00001 
Y-01 0.05942 0.05405 0.06365 0.06365 0.06365 0.06365 
Y-02 0.05939 0.05395 0.06364 0.06364 0.06365 0.06365 
Y-03 0.05952 0.05394 0.06365 0.06365 0.06365 0.06365 
Y-04 0.05915 0.05322 0.06365 0.06365 0.06365 0.06365 
Y-05 0.05987 0.05428 0.06366 0.06366 0.06366 0.06366 
Y-06 0.05946 0.05418 0.06365 0.06365 0.06366 0.06366 
Y-07 0.05919 0.05355 0.06365 0.06366 0.06366 0.06366 
Y-08 0.05942 0.05398 0.06365 0.06365 0.06365 0.06365 
Y-09 0.05979 0.05438 0.06366 0.06366 0.06366 0.06366 
Y-10 0.06004 0.05444 0.06364 0.06364 0.06364 0.06364 
Average 0.05953 0.05400 0.06365 0.06365 0.06365 0.06365 
Std Dev 0.00029 0.00038 0.00001 0.00001 0.00001 0.00001 
Min 0.05915 0.05322 0.06364 0.06364 0.06364 0.06364 
Max 0.06004 0.05444 0.06366 0.06366 0.06366 0.06366 
Range 0.00089 0.00122 0.00002 0.00002 0.00002 0.00002 
Z-01 0.02039 0.01855 0.02120 0.02121 0.02121 0.02121 
Z-02 0.02048 0.01878 0.02123 0.02123 0.02123 0.02123 
Z-03 0.02033 0.01845 0.02123 0.02123 0.02123 0.02123 
Z-04 0.02049 0.01877 0.02123 0.02122 0.02123 0.02123 
Z-05 0.02058 0.01882 0.02122 0.02122 0.02122 0.02122 
Z-06 0.02054 0.01887 0.02122 0.02122 0.02122 0.02122 
Z-07 0.02048 0.01877 0.02122 0.02122 0.02122 0.02122 
Z-08 0.02057 0.01868 0.02123 0.02122 0.02122 0.02122 
Z-09 0.02048 0.01870 0.02122 0.02121 0.02121 0.02121 
Z-10 0.02055 0.01871 0.02121 0.02121 0.02121 0.02121 
Average 0.02049 0.01871 0.02122 0.02122 0.02122 0.02122 
Std Dev 0.00008 0.00013 0.00001 0.00001 0.00001 0.00001 
Min 0.02033 0.01845 0.02120 0.02121 0.02121 0.02121 
Max 0.02058 0.01887 0.02123 0.02123 0.02123 0.02123 
Range 0.00025 0.00042 0.00003 0.00002 0.00002 0.00002 
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Table 3.3.3 

  Indicated Rating Factors for Territory 1 
Sample GLM 6Yr GLM 3Yr GLM AYC GLM full GEE AR GEE Ex 
X-01 1.49993 1.49999 1.49993 1.49995 1.49992 1.49991 
X-02 1.50005 1.50007 1.50019 1.50010 1.50018 1.50024 
X-03 1.49988 1.49958 1.50008 1.50005 1.50007 1.50007 
X-04 1.49945 1.49933 1.49979 1.49987 1.49979 1.49976 
X-05 1.50103 1.50050 1.50011 1.50012 1.50010 1.50009 
X-06 1.49981 1.50208 1.50010 1.50010 1.50011 1.50012 
X-07 1.49841 1.49927 1.50006 1.49999 1.50005 1.50004 
X-08 1.49819 1.49945 1.49982 1.49982 1.49981 1.49978 
X-09 1.49848 1.49521 1.49985 1.49982 1.49982 1.49982 
X-10 1.49993 1.49660 1.49996 1.50001 1.49995 1.49995 
Y-01 1.50014 1.50002 1.50014 1.50010 1.50014 1.50015 
Y-02 1.50996 1.52085 1.50002 1.50004 1.50002 1.50003 
Y-03 1.48432 1.48797 1.49996 1.49997 1.49996 1.49998 
Y-04 1.51082 1.53509 1.50015 1.50015 1.50014 1.50013 
Y-05 1.49118 1.49591 1.49992 1.49987 1.49993 1.49994 
Y-06 1.49503 1.48626 1.50006 1.50004 1.50005 1.50005 
Y-07 1.49821 1.48654 1.50004 1.50005 1.50005 1.50008 
Y-08 1.50404 1.50523 1.50006 1.50009 1.50005 1.50004 
Y-09 1.49080 1.50031 1.49992 1.49991 1.49992 1.49991 
Y-10 1.48157 1.47763 1.50024 1.50023 1.50024 1.50027 
Z-01 1.50076 1.50097 1.50076 1.50048 1.50060 1.50054 
Z-02 1.49198 1.47865 1.49935 1.49905 1.49924 1.49932 
Z-03 1.51716 1.52657 1.49950 1.49934 1.49944 1.49943 
Z-04 1.48905 1.46689 1.49996 1.49987 1.49994 1.50001 
Z-05 1.48917 1.47332 1.50004 1.50002 1.50005 1.50006 
Z-06 1.49382 1.46522 1.49948 1.49946 1.49952 1.49951 
Z-07 1.50011 1.47678 1.50008 1.49989 1.50009 1.50018 
Z-08 1.50212 1.50813 1.49975 1.49973 1.49977 1.49988 
Z-09 1.50589 1.49210 1.50026 1.50002 1.50020 1.50025 
Z-10 1.50486 1.50288 1.49970 1.49987 1.49965 1.49964 
Average 1.49854 1.49598 1.49998 1.49993 1.49996 1.49997 
Std Dev 0.00755 0.01569 0.00026 0.00027 0.00026 0.00026 
Min 1.48157 1.46522 1.49935 1.49905 1.49924 1.49932 
Max 1.51716 1.53509 1.50076 1.50048 1.50060 1.50054 
Range 0.03559 0.06987 0.00141 0.00143 0.00136 0.00122 
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Table 3.3.4 

  Indicated Rating Factors for Territory 3 
Sample GLM 6Yr GLM 3Yr GLM AYC GLM full GEE AR GEE Ex 
X-01 0.80010 0.80006 0.80010 0.80002 0.80008 0.80009 
X-02 0.79978 0.80021 0.80012 0.80011 0.80013 0.80016 
X-03 0.80027 0.80159 0.80020 0.80014 0.80019 0.80017 
X-04 0.79964 0.79893 0.79978 0.79982 0.79981 0.79983 
X-05 0.79959 0.80026 0.80022 0.80020 0.80024 0.80026 
X-06 0.80058 0.79988 0.80002 0.79997 0.80001 0.80002 
X-07 0.79895 0.79799 0.80004 0.79988 0.80001 0.80004 
X-08 0.80119 0.80236 0.80008 0.80005 0.80011 0.80010 
X-09 0.80050 0.79748 0.80002 0.80003 0.80001 0.79999 
X-10 0.80284 0.80567 0.80004 0.80007 0.80004 0.80002 
Y-01 0.80008 0.80014 0.80008 0.80009 0.80008 0.80007 
Y-02 0.80474 0.81198 0.80020 0.80025 0.80022 0.80022 
Y-03 0.79996 0.79703 0.80004 0.80004 0.80005 0.80005 
Y-04 0.80056 0.81225 0.79999 0.79999 0.79999 0.79998 
Y-05 0.79223 0.78969 0.79993 0.79991 0.79992 0.79992 
Y-06 0.80515 0.80170 0.80005 0.80013 0.80005 0.80003 
Y-07 0.79247 0.79569 0.79997 0.79992 0.79996 0.79995 
Y-08 0.81657 0.82273 0.80005 0.80004 0.80006 0.80009 
Y-09 0.80232 0.80505 0.80002 0.79998 0.80003 0.80006 
Y-10 0.80437 0.81305 0.80009 0.80014 0.80009 0.80007 
Z-01 0.80078 0.80073 0.80078 0.80047 0.80073 0.80071 
Z-02 0.79741 0.78948 0.79980 0.79989 0.79974 0.79977 
Z-03 0.79353 0.78907 0.79999 0.79989 0.80000 0.80003 
Z-04 0.80211 0.80804 0.80009 0.80003 0.80003 0.80003 
Z-05 0.80568 0.81250 0.79969 0.79969 0.79972 0.79977 
Z-06 0.79660 0.79430 0.79915 0.79923 0.79908 0.79895 
Z-07 0.79043 0.77850 0.80080 0.80080 0.80080 0.80082 
Z-08 0.79660 0.80615 0.79973 0.79970 0.79974 0.79977 
Z-09 0.79301 0.79431 0.79983 0.80021 0.79987 0.79988 
Z-10 0.80309 0.81325 0.79956 0.79970 0.79949 0.79945 
Average 0.80004 0.80134 0.80002 0.80001 0.80001 0.80001 
Std Dev 0.00504 0.00897 0.00030 0.00027 0.00031 0.00032 
Min 0.79043 0.77850 0.79915 0.79923 0.79908 0.79895 
Max 0.81657 0.82273 0.80080 0.80080 0.80080 0.80082 
Range 0.02614 0.04423 0.00165 0.00157 0.00172 0.00187 
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Table 3.3.5 

  Indicated Rating Factors for Driver Class 2 
Sample GLM 6Yr GLM 3Yr GLM AYC GLM full GEE AR GEE Ex 
X-01 2.00009 1.99986 2.00009 2.00004 2.00012 2.00014 
X-02 2.00066 2.00230 1.99982 1.99989 1.99986 1.99985 
X-03 1.99854 1.99650 2.00006 2.00007 2.00006 2.00005 
X-04 2.00077 1.99887 2.00003 1.99996 2.00005 2.00009 
X-05 2.00279 2.00338 1.99985 1.99990 1.99989 1.99991 
X-06 1.99924 2.00293 1.99977 1.99975 1.99979 1.99979 
X-07 1.99568 1.99215 2.00015 2.00013 2.00014 2.00016 
X-08 1.99883 1.99855 2.00006 2.00004 2.00005 2.00007 
X-09 2.00018 1.99959 1.99974 1.99969 1.99974 1.99975 
X-10 2.00015 1.99842 2.00013 2.00013 2.00017 2.00020 
Y-01 2.00006 2.00005 2.00007 2.00002 2.00007 2.00009 
Y-02 1.97740 1.97396 1.99992 1.99996 1.99993 1.99993 
Y-03 1.98442 1.99056 2.00009 2.00014 2.00011 2.00014 
Y-04 2.01840 2.04209 2.00028 2.00028 2.00027 2.00028 
Y-05 1.98411 1.99068 1.99987 1.99986 1.99987 1.99987 
Y-06 1.99856 1.99691 1.99970 1.99975 1.99971 1.99968 
Y-07 1.99981 1.99845 1.99983 1.99983 1.99983 1.99984 
Y-08 1.97674 1.96067 1.99988 2.00000 1.99988 1.99985 
Y-09 1.97072 1.97999 1.99995 2.00000 1.99995 1.99996 
Y-10 1.98134 1.98471 2.00005 2.00008 2.00005 2.00007 
Z-01 2.00018 2.00082 2.00018 1.99964 2.00001 1.99996 
Z-02 1.99715 1.97901 2.00017 1.99982 1.99999 2.00000 
Z-03 2.00068 1.99935 2.00027 2.00033 2.00028 2.00029 
Z-04 2.00443 1.99737 1.99930 1.99991 1.99926 1.99908 
Z-05 1.97562 1.96000 1.99954 1.99945 1.99958 1.99958 
Z-06 1.97755 1.95312 1.99959 1.99968 1.99968 1.99964 
Z-07 2.00170 1.99607 1.99935 1.99957 1.99943 1.99957 
Z-08 1.97254 1.96864 1.99958 1.99958 1.99950 1.99936 
Z-09 1.98454 1.94168 1.99926 1.99915 1.99917 1.99920 
Z-10 1.98520 1.97520 2.00101 2.00086 2.00103 2.00110 
Average 1.99294 1.98940 1.99992 1.99992 1.99992 1.99992 
Std Dev 0.01170 0.01931 0.00035 0.00031 0.00035 0.00037 
Min 1.97072 1.94168 1.99926 1.99915 1.99917 1.99908 
Max 2.01840 2.04209 2.00101 2.00086 2.00103 2.00110 
Range 0.04768 0.10041 0.00175 0.00171 0.00186 0.00202 
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Table 3.3.6 

  Indicated Rating Factors for Driver Class 3 
Sample GLM 6Yr GLM 3Yr GLM AYC GLM full GEE AR GEE Ex 
X-01 0.75033 0.75020 0.75033 0.75022 0.75031 0.75035 
X-02 0.74927 0.74938 0.74990 0.74997 0.74989 0.74987 
X-03 0.74992 0.74999 0.75041 0.75039 0.75040 0.75042 
X-04 0.75011 0.74824 0.75026 0.75015 0.75026 0.75031 
X-05 0.75116 0.75143 0.75005 0.75002 0.75003 0.75006 
X-06 0.75119 0.75154 0.74996 0.74991 0.74993 0.74992 
X-07 0.74900 0.74611 0.75025 0.75023 0.75023 0.75024 
X-08 0.75114 0.75338 0.75010 0.75009 0.75010 0.75010 
X-09 0.75032 0.75210 0.75000 0.75003 0.75001 0.75004 
X-10 0.74825 0.74701 0.74994 0.74999 0.74994 0.74994 
Y-01 0.75017 0.75013 0.75017 0.75015 0.75017 0.75018 
Y-02 0.75196 0.75315 0.75008 0.75004 0.75006 0.75005 
Y-03 0.75468 0.76405 0.74997 0.74997 0.74996 0.74994 
Y-04 0.75830 0.76694 0.75007 0.75005 0.75006 0.75004 
Y-05 0.73462 0.72896 0.75014 0.75010 0.75015 0.75020 
Y-06 0.76605 0.77589 0.74993 0.74997 0.74994 0.74993 
Y-07 0.75268 0.75035 0.75004 0.75009 0.75004 0.75002 
Y-08 0.73668 0.72737 0.74982 0.74983 0.74982 0.74982 
Y-09 0.74774 0.73586 0.74995 0.74992 0.74994 0.74994 
Y-10 0.74138 0.74617 0.75010 0.75009 0.75011 0.75011 
Z-01 0.74969 0.74946 0.74969 0.74972 0.74964 0.74959 
Z-02 0.75050 0.75676 0.74997 0.75015 0.75003 0.74995 
Z-03 0.74261 0.73244 0.74954 0.74963 0.74956 0.74957 
Z-04 0.74387 0.73412 0.74948 0.74961 0.74953 0.74961 
Z-05 0.73876 0.74166 0.74960 0.74985 0.74964 0.74954 
Z-06 0.73622 0.72883 0.75042 0.75055 0.75044 0.75038 
Z-07 0.74471 0.74383 0.75039 0.75055 0.75041 0.75044 
Z-08 0.74853 0.74874 0.75010 0.75020 0.75006 0.74996 
Z-09 0.74277 0.74448 0.74966 0.74974 0.74971 0.74971 
Z-10 0.74335 0.74649 0.75037 0.75014 0.75043 0.75053 
Average 0.74787 0.74750 0.75002 0.75005 0.75003 0.75003 
Std Dev 0.00659 0.01083 0.00025 0.00023 0.00025 0.00026 
Min 0.73462 0.72737 0.74948 0.74961 0.74953 0.74954 
Max 0.76605 0.77589 0.75042 0.75055 0.75044 0.75053 
Range 0.03143 0.04852 0.00094 0.00094 0.00091 0.00099 

3.4 Accident Year as a Control (Dummy or Nuisance) Variable 

What happens when we use accident year as a control variable? We get an indicated factor for 

each accident year that combines trend and development effects. For State X, which has 0% trend, 

the factors are 1.00 for accident years 2005 through 2007, 0.80 for 2008 (80% of claims paid or 1.25 

development factor) and 0.50 for 2009 (50% of claims paid or 2.00 development factor). For States 

Y and Z, which have 3% trend, the factors are 1.03 for 2005, 1.032 for 2006, 1.033 for 2007, 1.034 × 
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0.80 for 2008, and 1.035 × 0.50 for 2009. Thus, the trend and development factors could be derived 

from the accident year parameters. Nevertheless, it would be preferable to model them explicitly as 

shown in Section 3.3 for the GLM full, GEE AR, and GEE Ex models. Following are the accident 

year parameters for the GLM AYC model with accident year as control variable. 

Table 3.4.1 

  Indicated Accident Year Control Factors 

Sample 2005 2006 2007 2008 2009 

X-01 1.00016 1.00010 0.99991 0.80016 0.50005

X-02 0.99983 0.99995 0.99983 0.80006 0.49987

X-03 1.00018 1.00013 1.00012 0.80018 0.50005

X-04 1.00032 1.00020 1.00014 0.80019 0.50011

X-05 1.00018 1.00018 0.99977 0.80007 0.49998

X-06 1.00001 1.00009 0.99995 0.79997 0.50011

X-07 1.00022 1.00007 1.00009 0.80001 0.50004

X-08 1.00005 1.00002 0.99983 0.80000 0.50001

X-09 0.99999 1.00018 1.00004 0.79992 0.49997

X-10 1.00032 1.00021 1.00018 0.80012 0.49999

Average 1.00013 1.00011 0.99999 0.80007 0.50002

Std Dev 0.00016 0.00008 0.00015 0.00009 0.00007

Min 0.99983 0.99995 0.99977 0.79992 0.49987

Max 1.00032 1.00021 1.00018 0.80019 0.50011

Range 0.00049 0.00026 0.00041 0.00027 0.00024

Y-01 1.02995 1.06083 1.09256 0.90034 0.57961

Y-02 1.03005 1.06105 1.09284 0.90055 0.57973

Y-03 1.03008 1.06092 1.09273 0.90055 0.57965

Y-04 1.03000 1.06084 1.09261 0.90049 0.57963

Y-05 1.03005 1.06085 1.09274 0.90027 0.57961

Y-06 1.03019 1.06108 1.09301 0.90051 0.57969

Y-07 1.03016 1.06102 1.09268 0.90051 0.57969

Y-08 1.03000 1.06105 1.09291 0.90042 0.57975

Y-09 1.02998 1.06085 1.09248 0.90031 0.57962

Y-10 1.03006 1.06093 1.09275 0.90044 0.57972

Average 1.03005 1.06094 1.09273 0.90044 0.57967

Std Dev 0.00008 0.00010 0.00016 0.00010 0.00005

Min 1.02995 1.06083 1.09248 0.90027 0.57961

Max 1.03019 1.06108 1.09301 0.90055 0.57975

Range 0.00024 0.00025 0.00053 0.00028 0.00014
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  Indicated Accident Year Control Factors 

Sample 2005 2006 2007 2008 2009 

Z-01 1.03016 1.06112 1.09339 0.90049 0.57971

Z-02 1.03020 1.06086 1.09261 0.89975 0.57907

Z-03 1.02959 1.05993 1.09240 0.89959 0.57929

Z-04 1.02926 1.06157 1.09253 0.89975 0.57948

Z-05 1.03017 1.06099 1.09287 0.90103 0.57993

Z-06 1.02962 1.06147 1.09307 0.90042 0.57999

Z-07 1.03019 1.06115 1.09327 0.90025 0.57953

Z-08 1.02930 1.06042 1.09280 0.90002 0.57956

Z-09 1.02966 1.06144 1.09347 0.90176 0.57975

Z-10 1.03018 1.06104 1.09301 0.90066 0.58002

Average 1.02983 1.06100 1.09294 0.90037 0.57963

Std Dev 0.00039 0.00050 0.00037 0.00067 0.00031

Min 1.02926 1.05993 1.09240 0.89959 0.57907

Max 1.03020 1.06157 1.09347 0.90176 0.58002

Range 0.00094 0.00164 0.00107 0.00217 0.00095

3.5 Quasi-Likelihood Information Criterion 

The quasi-likelihood information criterion (QIC) provides a means for choosing between 

working correlation assumptions for GEE models. A model with a lower QIC is preferable. Based 

on the QIC results, the GEE with autoregressive correlation fits the synthetic data slightly better 

than the GEE with exchangeable correlation. As mentioned at the beginning of section 3.3, 

arguments can be made for using an autoregressive working correlation when the repeated measures 

are cumulative claim counts at different evaluation ages, so the results are not surprising. 
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Table 3.5.1 

State Scenario GEE AR GEE Ex Smaller
X 01 368,314.52 368,314.76 AR 
X 02 368,739.38 368,739.62 AR 
X 03 369,161.31 369,161.55 AR 
X 04 369,083.32 369,083.56 AR 
X 05 368,673.52 368,673.76 AR 
X 06 367,446.39 367,446.62 AR 
X 07 367,186.50 367,186.74 AR 
X 08 366,262.28 366,262.52 AR 
X 09 367,637.24 367,637.47 AR 
X 10 368,568.34 368,568.58 AR 
Y 01 538,890.02 538,890.25 AR 
Y 02 530,240.61 530,240.84 AR 
Y 03 531,000.33 531,000.55 AR 
Y 04 538,734.71 538,734.93 AR 
Y 05 534,610.13 534,610.36 AR 
Y 06 536,405.47 536,405.70 AR 
Y 07 540,098.23 540,098.45 AR 
Y 08 530,921.97 530,922.20 AR 
Y 09 540,988.29 540,988.52 AR 
Y 10 531,617.72 531,617.95 AR 
Z 01 130,980.23 130,980.46 AR 
Z 02 125,526.50 125,526.72 AR 
Z 03 125,799.49 125,799.72 AR 
Z 04 126,938.68 126,938.91 AR 
Z 05 125,043.45 125,043.68 AR 
Z 06 125,115.15 125,115.37 AR 
Z 07 125,787.05 125,787.27 AR 
Z 08 126,253.36 126,253.59 AR 
Z 09 127,081.81 127,082.04 AR 
Z 10 127,521.55 127,521.78 AR 

 

SAS PROC GENMOD also calculates the QICu. This is an approximation to the QIC that can 

be used to choose between models, but it is not appropriate for choosing between working 

correlations. The theory of quasi-likelihood functions and the details of the QIC are beyond the 

scope of this paper. Interested readers are encouraged to consult McCullagh and Nelder’s Generalized 

Linear Models, Hardin and Hilbe’s Generalized Estimating Equations, or Pan’s Akaike’s Information 

Criterion in Generalized Estimating Equations. For complete bibliographical information see the 

references section.  
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3.6 Covariance Matrices 

The REPEATED statement in SAS PROC GENMOD has the options MCOVB and ECOVB. 

When these options are used, the procedure outputs both the model-based (also called naïve) 

covariance matrix and the empirical (also called robust) covariance matrix for the model’s 

parameters. If these two matrices are similar, it is a sign that the choice of working correlation matrix 

is adequate. If they are substantially different, then a different working correlation structure would 

be more appropriate. The GEE models used in this paper had eight parameters, corresponding to 

the variables and classification levels listed below. Therefore, each covariance matrix is an 8x8 

matrix, and with thirty simulations and two models there are thirty pairs of matrices to compare. 

Unfortunately, there is no automated way of doing this. It requires visual inspection and judgment. 

Table 3.6.1 

Parameter Effect class Territory eval_date 
Prm1 Intercept 
Prm2 time_index 
Prm3 territory 1
Prm4 territory 3
Prm5 driver_class 2
Prm6 driver_class 3
Prm7 eval_date 12 
Prm8 eval_date 24 

 

Both the autoregressive and exchangeable working correlations resulted in models where the 

model-based and empirical correlation matrices were similar. This implies that both the 

autoregressive and exchangeable working correlations result in models that fit the simulated data 

reasonably well. As mentioned in section 3.5, however, the autoregressive correlation is preferable 

both in terms of the QIC results as well as from an intuitive understanding of development factors. 

The covariance matrices are not listed in this paper, but they can be downloaded from the CAS web 

site as Excel files. 

3.7 Confidence Intervals 

SAS PROC GENMOD provides confidence intervals for the parameter estimates for the models 

discussed in this paper. This output will be available for downloading from the CAS web site. A 

potential use of these confidence intervals would be to develop risk loads to take into consideration 

when developing final rates, or as input to an enterprise risk management model, but such topics are 

beyond the scope of this paper. 
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3.8 Quarterly Data 

For simplicity, the examples and database used in this paper used accident year data. A company 

may decide to design a database containing accident quarters instead. When working with quarterly 

data one of the considerations is the effect of seasonality. A common way to deal with seasonality is 

to work with 12-month rolling averages. This would tend to complicate the calculations needed to 

produce the input files for GLM or GEE models taking into account trend, development and 

classification. A more simple solution would be to use control variables to account for seasonal 

differences in accident quarters. Dickmann and Merz did so in a paper about loss trend.20 

3.9 Why Go Back When We Can Go Forward? 

This paper has shown that multivariate frequency models incorporating all available information 

are resistant to changes in exposure level and changes in distribution of exposures. A next step 

would be to examine the resistance of different models to things that can affect estimates of ultimate 

claim severity and ultimate losses such as changes in loss payment patterns or changes in reserving 

practices.  

Once we have multivariate estimates of trend and loss development, should we go back and 

apply them to total losses by accident year to perform a statewide indication? Why not use the 

estimates of trend, development, territory relativities and driver class relativities to calculate 

prospective loss costs directly? For example, the parameter estimates (coefficients) for the State Y, 

Scenario 1 GEE AR frequency model result in the equation: 

 

lnሺܧሾ݂ሿሻ ൌ െ2.75436 ൅ 0.4056 ଵܶ െ 0.2230 ଷܶ ൅ ଶܥ0.6932 െ ଷܥ0.2875 ൅  .ݐ0.0295

 

From which it follows that the expected frequency is: 

 

ሾ݂ሿܧ ൌ 0.06365 ൈ 1.500 భ் ൈ 0.800 య் ൈ 2.000஼మ ൈ 0.750஼య ൈ 1.030௧. 

 

Where T1 and T3 are variables that take the value 0 or 1 depending on whether or not a policy is 

from Territory 1 or Territory 3. Similarly, C2 and C3 are 0 or 1 depending on whether or not the 

                                                           
20 Dickmann, Kurt S., and James R. Merz, “Consideration in Estimating Loss Cost Trends,” Casualty Actuarial Society 
Forum, Winter 2001, pp. 21-60. 
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driver classification code is 1 or 3, and t is a time index that increases by 1 every year. The 

parameters corresponding to the percentage of claims paid by 12 months and 24 months have been 

omitted since we are only interested in the ultimate claim frequency. By picking an appropriate value 

for the time index we can project the expected frequency appropriate for the future period in which 

rates will be in effect. A similar equation can be determined for claim severity as well as pure 

premium. Thus it is possible to obtain four estimates of prospective loss costs: 

 Prospective Frequency × Prospective Severity based on paid data 

 Prospective Loss Costs based on paid data 

 Prospective Frequency × Prospective Severity based on reported data 

 Prospective Loss Costs based on reported data 

4. CONCLUSIONS 

By organizing data as illustrated in Section 2.3 we can easily fit univariate and multivariate models 

for both time-dependent effects, such as loss trend and loss development, as well as classification 

effects such as territory and driver class. 

Univariate models of loss trend can over- or underestimate the trend when there are significant 

changes in the level or in the distribution of exposures. 

Modeling trend and development explicitly is preferable to using accident year as a control or 

dummy variable. 

Multivariate models that incorporate all the available information — differences across accident 

years such as trend and loss development, and differences among classification groups — are 

resistant to changes in exposure level and changes in exposure distribution. 
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Supplementary Material 
The synthetic datasets used as inputs for the models in this paper, and the covariance matrices output by the 

generalized estimating equation models are stored electronically on the CAS Web Site and available for downloading. 
SAS code is provided in the appendices. 
 
Appendix A – Claim Emergence Simulations 

The synthetic data sets used in this paper were created using a two step process: (1) generate an 

exposure scenario, and (2) generate paid claim counts. The synthetic data consist of 30 scenarios 

divided into three hypothetical states (X, Y, and Z) with 10 scenarios per state. They are meant to 

approximate what one might see for a short tail line of business such as personal auto property 

damage liability. 

The objective of the States X, Y, and Z simulations was to test the sensitivity of models to 

changes in exposure level and changes in exposure distribution. In order to achieve that goal it was 

necessary to find a claim count generation process that approximated as much as possible the 

expected claim counts, leaving changes in exposure level and exposure distribution as the 

predominant sources of variation.  

The first step was to generate an exposure scenario. This was accomplished by preparing an input 

file with total exposures per year, and the percentage of exposures corresponding to each 

combination of territory and driver class, as shown below for State X, Scenario 01. 

Table A.1 

Calendar 
Accident 

Year 

Earned 
Car 

Years 
Terr 1 
Class 1 

Terr 1 
Class 2

Terr 1 
Class 3

Terr 2 
Class 1

Terr 2 
Class 2

Terr 2 
Class 3

Terr 3 
Class 1 

Terr 3 
Class 2 

Terr 3 
Class 3

2002 160000 0.17 0.08 0.07 0.23 0.14 0.10 0.12 0.05 0.04 

2003 176800 0.17 0.08 0.07 0.23 0.14 0.10 0.12 0.05 0.04 

2004 198016 0.17 0.08 0.07 0.23 0.14 0.10 0.12 0.05 0.04 

2005 215837 0.17 0.08 0.07 0.23 0.14 0.10 0.12 0.05 0.04 

2006 232025 0.17 0.08 0.07 0.23 0.14 0.10 0.12 0.05 0.04 

2007 225064 0.17 0.08 0.07 0.23 0.14 0.10 0.12 0.05 0.04 

2008 211560 0.17 0.08 0.07 0.23 0.14 0.10 0.12 0.05 0.04 

2009 192520 0.17 0.08 0.07 0.23 0.14 0.10 0.12 0.05 0.04 

 

In the example above, the objective was to generate claim counts in which the predominant 

source of variation was the change in exposure level. Hence the distribution of exposures was kept 

constant across accident years. For other State X scenarios the percentage was allowed to change 

across years by roughly one-tenth of one percent. So for example, in some years the Territory 1 
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Class 1 percentage may have been 17.1% while in others it might have been 16.9%. The reason for 

the small allowed change in exposure distribution was that the main objective of the State X 

scenarios was to test the effect of changes in overall exposure level. On the other hand, for State Y 

Scenario 02, the percentage of exposures for Territory 1 Class 1 was allowed to decrease from 15.9% 

in 2002 to 13.0% in 2009. For States Y and Z, both the level of exposures and the distribution of 

exposures were allowed to change. 

The percentage for a territory and driver class combination was multiplied times the total 

exposures, to get the subtotal corresponding to that combination. For example, in Table A.1 above, 

10% of exposures correspond to Territory 2 Class 3, and the total accident year 2002 earned 

exposures are 160,000. Therefore, 16,000 exposures correspond to Territory 2 Class 3. The process 

generated 16,000 records with one earned car-year each. This is not entirely realistic, since for most 

companies some policies are cancelled midyear. However, midyear cancellations are a small 

proportion of the book for most companies. The following SAS code excerpt illustrates the process 

of generating the exposure records. 

 
do territory = 1 to 3; 
  do class = 1 to 3; 
   exposure_percentage = exposure_portion{ territory, class }; 
   car_years = round( exposure * exposure_percentage , 1 ); 
   do k = 1 to car_years; 
    policy_id = put( territory, z1. ) || put( class, z1. ) || put( k, z7. ); 
    earned_exposure = 1; 
    output; 
   end; 
  end; 
 end; 

 

For states X, Y, and Z, the next step was to calculate the expected claim counts for each accident 

year, territory, driver class and evaluation age based on the parameters selected for base frequency, 

territory relativities, driver class relativities, and percentage of claims paid (closed with payment) at 

each evaluation age for each accident year. Table A.2 shows the parameters selected for State X, 

Scenario 01. For example, for Territory 2 Class 3 as of 12 months the expected claim count is 16,000 

exposures × 0.05 base frequency × 1.00 Territory 2 factor × 0.75 Class 3 factor × 0.50 percentage 

reported as of 12 month evaluation age = 300.  
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Table A.2 

Calendar 
Accident 

Year 
Base 

Frequency Terr 1  Terr 2 Terr 3 Class 1 Class 2 Class 3
Age 

12 
Age 

24 
Age 

36

2002 0.05 1.50 1.00 0.80 1.00 2.00 0.75 0.50 0.30 0.20

2003 0.05 1.50 1.00 0.80 1.00 2.00 0.75 0.50 0.30 0.20

2004 0.05 1.50 1.00 0.80 1.00 2.00 0.75 0.50 0.30 0.20

2005 0.05 1.50 1.00 0.80 1.00 2.00 0.75 0.50 0.30 0.20

2006 0.05 1.50 1.00 0.80 1.00 2.00 0.75 0.50 0.30 0.20

2007 0.05 1.50 1.00 0.80 1.00 2.00 0.75 0.50 0.30 0.20

2008 0.05 1.50 1.00 0.80 1.00 2.00 0.75 0.50 0.30 0.20

2009 0.05 1.50 1.00 0.80 1.00 2.00 0.75 0.50 0.30 0.20

 

The expected claim counts were stored in a variable called _NSIZE_. This is a special variable 

used by PROC SURVEYSELECT to determine how many records to select from each stratum 

(accident year, territory, driver class, and evaluation age combination). The amount is rounded to the 

nearest whole number because claim counts are whole numbers. 

 
_NSIZE_ = round( earned_exposure * base_frequency * terr_factor * class_factor 
  * age_percentage , 1 ); 

 

The expected claim counts are used to randomly select policies with replacement from each 

stratum using SAS PROC SURVEYSELECT. Policies not selected are considered to have zero 

claims, those selected one or more times are considered to have one or more claims. The number of 

hits determines the number of claims.   

 
proc surveyselect data=for_selection ( drop = earned_exposure ) 
 out=work.policies_with_claim  
 method=urs 
 sampsize=work.expected_claim_counts  
  ( index = ( ytcpa = ( year territory class age policy_id ) ) ) 
; 
 strata year territory class age; 
 id year territory class age policy_id ; 
run; 

 

The 30 synthetic data sets in policy detail, as well as summaries by territory, driver class, accident 

year, and evaluation age, are available for downloading from the Casualty Actuarial Society’s Web 

Site. 
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Appendix B – Calendar Year Trend 

Calendar year calculations were used in this paper only to illustrate the distorting effect of 

changing exposure levels on calendar year trend analysis. Only claim frequency trend examples were 

provided, but the phenomenon occurs for claim severity trend and pure premium trend as well. For 

more details, the reader should refer to the CAS “Basic Ratemaking” electronic textbook or to Chris 

Styrsky’s paper “The Effect of Changing Exposure Levels on Calendar Year Trend,” which are 

listed in the references. To prepare for calendar year trend analysis, diagonals must be subtracted to 

determine the claims paid during the year. It is also necessary to include only complete calendar 

years in the analysis. Since calendar year claims may relate to prior accident years, the database may 

not have enough prior accident years to get a complete calendar year. For example, if the database 

includes accident years 2002 through 2009 and it takes three years for an accident year to develop to 

ultimate, then the first calendar year for which complete claim counts can be calculated is 2004. This 

means that only six complete calendar years can be calculated from the database. This number can 

be specified in a macro variable to ensure that only complete calendar years are used. See SAS code 

below. 

 
%let state = X; 
%let scenario = 01; 
%let complete_cal_years = 6; 
 
* calculate difference in diagonals ; 
data for_cal_yr_trend; 
 set mylib.state&state.&scenario.d; 
 retain last_cal_year 0;  
 cal_year = year; 
 paid_count = paid_count12; 
 output; 
 if paid_count24 not = . then do; 
  earned_exposure = 0; 
  paid_count = paid_count24 - paid_count12; 
  cal_year = year + 1; 
  output; 
 end; 
 if paid_count36 not = . then do; 
  earned_exposure = 0; 
  paid_count = paid_count36 - paid_count24; 
  cal_year = year + 2; 
  output; 
 end; 
 if last_cal_year < cal_year then do; 
  last_cal_year = cal_year; 
  call symput(‘last_cal_year’,put(last_cal_year,4.)); 
 end; 
run; 
 
* sum diagonal differences corresponding to each calendar years ;  
* include only calendar years with a comlete set of differences ; 
%let first_year = %eval(&last_cal_year. - &complete_cal_years. + 1);  
proc summary nway missing data=for_cal_yr_trend 



Towards Multivariate Ratemaking—Claim Frequency Analysis Examples 

Casualty Actuarial Society E-Forum, Winter 2011-Volume 2 39 

 ( where = ( cal_year not < &first_year. ) ); 
 class cal_year; 
 var earned_exposure paid_count; 
 output out=cal_yr sum=; 
run; 
 
* calculate claim frequency for each calendar year ; 
data cal_yr_freq; 
 set cal_yr ( drop = _type_ _freq_ ); 
 claim_frequency = paid_count / earned_exposure; 
 log_claim_frequency = log ( claim_frequency ); 
 time_index = cal_year - &last_cal_year.; 
run; 
 
title “Calendar Year Frequency Trend Data, State &state., Scenario &scenario.”; 
proc print label noobs data=cal_yr_freq split=‘_’; 
 var cal_year earned_exposure paid_count  
  claim_frequency log_claim_frequency; 
 format earned_exposure paid_count comma9. 
  claim_frequency log_claim_frequency 7.5; 
 label cal_year = ‘Calendar Year’  
  earned_exposure = ‘Earned Car Years’ 
  paid_count = ‘Paid Claim Count’ 
  claim_frequency = ‘Claim Frequency’ 
  log_claim_frequency = ‘Log of Claim Frequency’; 
run; 
 
* fit exponential regression model; 
proc reg data=cal_yr_freq outest=cy_trend; 
 trend_model: model log_claim_frequency = time_index / noprint; run; 
quit; 
 
* calculate annual trend based on model output ; 
data freq_factor; 
 set cy_trend; 
 time_index = round(time_index, 0.0000001 ); 
 trend_factor = round( exp( time_index ), 0.0000001 ); 
 annual_trend = trend_factor - 1; 
 format time_index trend_factor 10.7 annual_trend percentn7.2;; 
 label trend_factor = ‘Annual Trend Factor’ time_index = ‘Time Index Parameter’ 
  annual_trend = ‘Annual Trend’; 
 keep time_index trend_factor annual_trend; 
run; 
 
title “Calendar Year Frequency Trend, State &state., Scenario &scenario.”; 
proc print noobs label data=freq_factor; 
run; 

 

Appendix C – Chain Ladder Development and Accident Year Trend 

To prepare for chain ladder claim count development, the claim counts were summarized by 

accident year. Next, age-to-age factors were calculated based on the claim count triangle. The 

average of all years was calculated and used as the selected link ratio. In practice, an actuary might 

select a different loss development factor based on knowledge of the book of business, changes in 

claim practices, or other information. However, this is just simulated data, so the only factor 

affecting the data is random variation.  
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The age-to-ultimate link ratios are the cumulative product of the selected link ratios, and the 

percentage reported estimates are the reciprocal of the age to ultimate factors. The SAS code below 

illustrates this process. 

 
%let state = S; 
%let scenario = 01; 
 
* calculate claim triangle ; 
proc summary nway missing data=mylib.state&state.&scenario.d; 
 class year; 
 var earned_exposure paid_count12 paid_count24 paid_count36 paid_count48; 
 output out=claim_triangle sum=; 
run; 
 
* calculate age to age factors ; 
data age_to_age; 
 set claim_triangle; 
 call symput(‘last_year’,put(year,4.)); * macro var to be used for evaluation date ; 
 if paid_count24 > 0 then f12 = round( paid_count24 / paid_count12, 0.0000001 ); 
 else delete; 
 if paid_count36 > 0 then f24 = round( paid_count36 / paid_count24, 0.0000001 ); 
 if paid_count48 > 0 then do; 
  f36 = round( paid_count48 / paid_count36, 0.0000001 ); 
  f48 = 1; 
 end; 
 format f12 f24 f36 f48 10.7; 
 length factor_type $ 16; 
 factor_type = ‘Age to Age’; 
 label factor_type = ‘Factor Type’ f12 = ‘Age 12’ f24 = ‘Age 24’  
  f36 = ‘Age 36’ f48 = ‘Age 48’; 
run; 
 
* calculate average of all available years ; 
proc summary nway missing data=age_to_age; 
 var f12 f24 f36 f48; 
 output out=z_averages mean=; 
run; 
 
* calculate age to ultimate link ratios and percentage reported ; 
data link_ratios; 
 set age_to_age( in = a keep = factor_type year f12 f24 f36 f48 )  
  z_averages ( keep = f12 f24 f36 f48 ); 
 if a then output; 
 else do; 
  factor_type = ‘All-Year Average’; 
  f12 = round( f12, 0.0000001 ); 
  f24 = round( f24, 0.0000001 ); 
  f36 = round( f36, 0.0000001 ); 
  f48 = round( f48, 0.0000001 ); 
  output; 
  factor_type = ‘Age to Ultimate’; 
  f12 = round( f12 * f24 * f36 * f48 , 0.0000001 ); 
  f24 = round( f24 * f36 * f48 , 0.0000001 ); 
  f36 = round( f36 * f48 , 0.0000001 ); 
  output; 
  factor_type = ‘Percent Reported’; 
  f12 = round( 1 / f12, 0.0000001 ); 
  f24 = round( 1 / f24, 0.0000001 ); 
  f36 = round( 1 / f36, 0.0000001 ); 
  f48 = round( 1 / f48, 0.0000001 ); 
  output; 
 end; 
run; 



Towards Multivariate Ratemaking—Claim Frequency Analysis Examples 

Casualty Actuarial Society E-Forum, Winter 2011-Volume 2 41 

Ultimate claim counts are the product of claim counts reported as of the last evaluation times the 

age-to-ultimate factor. The estimated ultimate claim counts are used to calculate the claim frequency 

for each year. Then an exponential regression is fit to these claim frequencies to determine the claim 

frequency trend. See SAS code below. 

 
data developed_claims; 
 set claim_triangle; 
 if _n_ = 1 then set link_ratios ( drop = year where = ( factor_type = ‘Age to Ultimate’ ) ) ; 
 time_index = year - &last_year.; 
 eval_year = &last_year.; 
 eval_date = ‘12/31/’||put(eval_year,4.); 
 select ( year ); 
  when ( &last_year.     ) do; age_to_ult = f12; cumulative_claims = paid_count12; end; 
  when ( &last_year. - 1 ) do; age_to_ult = f24; cumulative_claims = paid_count24; end; 
  when ( &last_year. - 2 ) do; age_to_ult = f36; cumulative_claims = paid_count36; end; 
  otherwise                do; age_to_ult = f48; cumulative_claims = paid_count48; end; 
 end; 
 ultimate_claims = round( cumulative_claims * age_to_ult, 1 ); 
 claim_frequency = round( ultimate_claims / earned_exposure, 0.0000001 ); 
 log_claim_frequency = round( log( claim_frequency ), 0.0000001 );; 
 label  
  time_index = ‘Time Index’ 
  eval_date = ‘Evaluation Date’ 
  claim_frequency = ‘Claim Frequency’ 
  cumulative_claims = “Reported Claim Count” 
  age_to_ult = ‘Age to Ultimate Development Factor’ 
  ultimate_claims = ‘Ultimate Claim Count’ 
 ; 
 format earned_exposure comma9. cumulative_claims ultimate_claims comma7.0  
  claim_frequency log_claim_frequency age_to_ult 10.7; 
 keep eval_date year time_index earned_exposure cumulative_claims age_to_ult  
  ultimate_claims claim_frequency log_claim_frequency; 
run; 
 
title2 ‘Claim Frequency Trend Analysis’; 
proc reg data=developed_claims outest=cf_parms; 
 model log_claim_frequency = time_index;  
 ods select ParameterEstimates; 
 run; 
quit; 
 
data freq_factor; 
 set cf_parms; 
 time_index = round(time_index, 0.0000001 ); 
 trend_factor = round( exp( time_index ), 0.0000001 ); 
 annual_trend = trend_factor - 1; 
 format time_index trend_factor 10.7 annual_trend percentn7.2;; 
 label trend_factor = ‘Annual Trend Factor’ time_index = ‘Time Index Parameter’ 
  annual_trend = ‘Annual Trend’; 
 keep time_index trend_factor annual_trend; 
run; 
 
data for_exhibit; 
 merge claim_triangle ( keep = year earned_exposure paid_count12 paid_count24 paid_count36 ) 
  link_ratios ( keep = factor_type f12 f24 f36 ) 
  developed_claims ( keep = time_index ultimate_claims ); 
run; 
 
title “Claims Closed With Payment, State &state., Scenario &scenario.”; 
proc print data=for_exhibit noobs label; 
 var year paid_count12 paid_count24 paid_count36 factor_type f12 f24 f36 ultimate_claims; 
 format paid_count12 paid_count24 paid_count36 ultimate_claims comma8.0 f12 f24 f36 8.5; 
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 label year = ‘Accident Year’ paid_count12 = ‘Paid Count Age 12’  
  paid_count24 = ‘Paid Count Age 24’ paid_count36 = ‘Paid Count Age 36’ 
 ;  
run; 
 
proc print noobs label data=freq_factor; 
run; 

 

Appendix D – Generalized Linear Models 

Four generalized linear models (GLM) were tested for this paper as shown in Table D.1. 

Table D.1 

GLM 6Yr  Generalized linear model with latest 6 years of data and 
territory and driver class as independent variables 

GLM 3Yr  Generalized linear model with latest 3 years of data 
and territory and driver class as independent 
variables 

GLM AYC  Generalized linear model with latest 6 years of data, 
territory and driver class as independent variables, and 
accident year as control variable 

GLM Full  Generalized linear model with latest 6 years of data, 
territory, driver class, time index, and evaluation age as 
independent variables 

 

The first three models use only the latest evaluation for each calendar/accident year. The fourth 

model (GLM Full) uses territory, driver class, a time index (for trend), and evaluation age (for 

development) as independent variables and claim count as the dependent variable. In order to 

include evaluation age in the model, it is necessary to transpose the evaluation age columns into 

rows, and to create a variable to identify the evaluation age. The data are assumed to reach ultimate 

value at 36 months. Therefore, a policy that has been in force for the entire experience period has 

three observations for each mature accident year, two for the penultimate accident year, and one for 

the latest accident year. The 36-month evaluation is the reference level, so the 12-month and 24-

month parameters are relativities to the 36-month or ultimate claim count. This means that they 

correspond to the percentage paid as of 12 or 24 months respectively. The age-to-ultimate 

development factor is the reciprocal of the percentage reported. The SAS code below performs the 

data preparation and model fitting.  

 
%let state = X; 
%let scenario = 01; 
%let first_year = 2004; 
%let ref_year = 2007; 
%let last_year = 2009; 
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%let evals = 3; 
 
* prepare data for claim frequency Generalized Linear Models ; 
* for territory and driver class only ; 
* for territory and driver class with accident year as control variable ; 
data sample_glm; 
 set mylib.state&state.&scenario.d; 
 if year < &first_year. or year > &last_year. then delete; 
 select; 
  when ( year = &last_year.     ) paid_claim_count = paid_count12; 
  when ( year = &last_year. - 1 ) paid_claim_count = paid_count24; 
  when ( year = &last_year. - 2 ) paid_claim_count = paid_count36; 
  otherwise paid_claim_count = paid_count48; 
 end; 
 Driver_Class = class; 
 log_exposure = log( earned_exposure ); 
 keep year territory driver_class policy_id earned_exposure  
  paid_claim_count log_exposure  
 ; 
run; 
 
title1 “Paid Claim Frequency GLM for Territory and Driver Class Only”; 
title2 “State &state, Scenario &scenario., Six Accident Years”; 
proc genmod data=sample_glm; 
 class driver_class ( ref = ‘1’ ) territory ( ref = ‘2’ ) 
  / param = ref; 
 model paid_claim_count = territory driver_class 
  / link=log dist=Poisson offset=log_exposure scale=p; 
run; 
 
title1 “Paid Claim Frequency GLM for Territory and Driver Class Only”; 
title2 “State &state, Scenario &scenario., Three Accident Years”; 
%let starting_year = &Last_Year. - 2 ; 
proc genmod data=sample_glm ( where = ( year >= &starting_year. ) ); 
 class driver_class ( ref = ‘1’ ) territory ( ref = ‘2’ ) 
  / param = ref; 
 model paid_claim_count = territory driver_class 
  / link=log dist=Poisson offset=log_exposure scale=p; 
run; 
 
title1 “Paid Claim Frequency GLM for Territory and Driver Class”; 
title2 “With Accident Year as Control Variable”; 
title3 “State &state, Scenario = &scenario.”; 
proc genmod data=sample_glm; 
 class driver_class ( ref = ‘1’ ) territory ( ref = ‘2’ ) year ( ref = “&ref_year.” ) 
  / param = ref; 
 model paid_claim_count = territory driver_class year 
  / link=log dist=Poisson offset=log_exposure scale=p; 
run; 
 
* prepare data for Generalized Linear Model  ; 
* for territory factors, driver class factors ; 
* trend factor and loss development factors   ; 
data sample_glm2; 
 set mylib.state&state.&scenario.d ( where = ( year not < &first_year. ) ); 
 array paid_cnt {4} paid_count12 paid_count24 paid_count36 paid_count48; 
 array eval_dates {4} $ (‘12’ ‘24’ ‘36’ ‘48’); 
 time_index = year - &ref_year.; 
 Years = “&First_Year. to &Last_Year.”;  
 driver_class = class; 
 label  
  time_index = ‘Time Index’  
  log_exposure = ‘Natural Log of Exposure’ 
  driver_class = ‘Driver Class’  
  paid_claim_count = “Paid Claim Count” 
 ; 
 do k = 1 to &evals.; 
  eval_date = eval_dates{k}; 
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  if k = &evals. then call symput(‘last_eval’,eval_date); 
  if paid_cnt{k} > . then do; 
   paid_claim_count = paid_cnt{k}; 
   log_exposure = log ( earned_exposure ); 
   output; 
  end; 
 end; 
 keep Years year territory driver_class earned_exposure  
  log_exposure time_index eval_date paid_claim_count  
 ; 
run; 
 
title1 “Paid Claim Frequency GLM for State &state, Scenario = &scenario.”; 
title2 “Territory, Driver Class, Trend and Loss Development”; 
proc genmod data=sample_glm2; 
 class driver_class ( ref = ‘1’ ) territory ( ref = ‘2’ ) eval_date ( ref = “&last_eval.” ) 
  / param = ref; 
 model paid_claim_count= territory driver_class time_index eval_date 
  / link=log dist=Poisson offset=log_exposure scale=p; 
run; 

 

Appendix E – Generalized Estimating Equations 

The first step in fitting generalized estimating equations (GEE) was to create a modeling sample. 

The GEE algorithm depends on the definition of a subject or panel. A database with a large number 

of policies, each treated as a subject or panel, can cause the program to run out of memory on a 

desktop personal computer. The sampling algorithm shown below first classifies policies depending 

on whether or not they had a claim reported, even if it was closed without payment. Then it selects 

the entire six accident year history for the policy. All policies with a reported claim are included in 

the modeling sample, but only ten percent of the claim-free policies are selected for each territory 

and driver class combination.  

The hypothetical ratemaking database used in this paper has only territory and driver class as 

rating factors. A real database would have other rating variables. If other variables are used in the 

rating plan, they should be included in the definition of the strata from which the ten percent 

samples are taken. They should also be included in the generalized estimating equation, either as 

predictors or as part of the offset term.  

Additionally, sampling weights must be calculated to reflect the original number of observations 

in the database. The procedure uses the ratio of the original number of observations to the number 

of observations in the sample. So for policies that had at least one reported claim in the six-year 

accident history, the weight is 1, and for policies that were claim-free the weight is close to 10. The 

reason the weight is not always exactly equal to 10 for the claim-free policies is that the original 

number of observations may not have been a multiple of 10, so ten percent would not have been a 

whole number. Therefore the nearest whole number of policies had to be selected. SAS procedure 

SURVEYSELECT was used to select the 10% of claim-free policies. The SURVEYSELECT 
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procedure calculates sampling weights, but those weights were not used because the input to the 

procedure was just the list of claim-free policies. Some of them may have had 15 observations (all 

six-accident years), while other policies may have had less. Therefore, the percentage of policies does 

not exactly equal the percentage of observations selected, and the weights had to be calculated 

manually once the entire history for each policy had been selected. The SAS code below performs 

the sampling procedure and calculates the sampling weights.  

 
%let state = X; 
%let scenario = 01; 
%let first_year = 2004; 
%let ref_year = 2007; 
%let last_year = 2009; 
%let evals = 3; 
 
* prepare data sample containing ; 
* * all policies with at least one reported claim ; 
* * 1 out of every 10 policies with no reported claim ; 
 
 proc sql noprint; 
  * find all policies with at least one reported claim in experience period ; 
  create table id_with_claim as select unique policy_id 
  from mylib.state&state.&scenario.d 
  where ( incurred_loss12 > 0 or incurred_loss24 > 0  
   or incurred_loss36 > 0 or incurred_loss48 > 0 ) 
  order by policy_id; 
  * sort data by policy id ; 
  create table scenario as select * 
  from mylib.state&state.&scenario.d 
  where ( year not < &first_year. )  
  order by policy_id; 
 quit;   
 
 * split data into policies with at least one reported claim and those claim free ; 
 data with_claim claim_free; 
  merge scenario ( in = a ) id_with_claim ( in = b ); 
  by policy_id; 
  driver_class = class; 
  if a and b 
  then output with_claim; 
  else if a then output claim_free; 
 run; 
 
 * determine all combinations of territory, driver ; 
 * class, and policy id for claim free policies    ; 
 proc sql noprint; 
  create table id_claim_free as select unique territory, driver_class, policy_id 
  from claim_free 
  order by territory, driver_class, policy_id; 
 quit;   
 
 * select 10% of the claim-free policies for each territory and driver class ; 
 proc surveyselect data=id_claim_free 
  out=claim_free_sampled method=SRS rate=0.10; 
  STRATA territory driver_class; 
 run; 
 
 * now that we have a list of selected policies for each territory ; 
 * and driver class, select all the data for those policies ; 
 proc sort data=claim_free_sampled ( drop = SelectionProb SamplingWeight ); 
  by policy_id; 
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 run; 
 data claim_free_selected; 
  merge claim_free(in = a ) claim_free_sampled( in = b ); 
  by policy_id; 
  if a and b; 
 run; 
 
 * combined the selected claim free data and the data with ; 
 * at least one reported claim to create modeling sample ; 
 data selected; 
  set claim_free_selected( in = a ) with_claim( in = b ); 
  if a then with_claim = 0; 
  if b then with_claim = 1; 
  unity = 1; 
 run; 
  
 * count the number of observations in each stratum in the sample ; 
 proc summary nway missing data=selected; 
  class year territory driver_class with_claim; 
  var unity; 
  output out=sample_counts sum(unity)=sample_record_count; 
 run; 
 
 * classify all the original data depending on whether  
 * or not the policy had a reported claim ; 
 data original; 
  set claim_free( in = a ) with_claim( in = b ); 
  if a then with_claim = 0; 
  if b then with_claim = 1; 
  unity = 1; 
 run; 
 
 * count the number of observations in each stratum in the original data ; 
 proc summary nway missing data=original; 
  class year territory driver_class with_claim; 
  var unity; 
  output out=original_counts sum(unity)=original_record_count; 
 run; 
   
 * calculate weights equal to the ratio of the number of observations ; 
 * in the original data to the number of observations in the sample ;  
 * for each stratum ; 
 data sample_weights; 
  merge original_counts ( drop = _type_ _freq_ ) 
   sample_counts ( drop = _type_ _freq_ ); 
  by year territory driver_class with_claim; 
  sampling_weight = original_record_count / sample_record_count; 
 run; 
 
 * merge sampling weights with modeling sample ; 
 proc sort  
  data=selected( drop = unity )  
  out=selected_for_merge; 
  by year territory driver_class with_claim; 
 run; 
 data modeling_sample; 
  merge selected_for_merge sample_weights; 
  by year territory driver_class with_claim; 
 run; 

 

The next step in preparing the data for GEE is to transpose the accident year evaluation dates 

into rows. A new variable, eval_date, identifies the evaluation date for each record. Furthermore, the 

policy ID and year date are concatenated into one variable, policy_id_year, which will be used to 
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identify each subject; the evaluation age identifies the repeated claim count observations for each 

policy-id-year subject. For the latest three years, some of the claim counts are missing because they 

correspond to evaluation dates that will occur in the future. These records are omitted.  

 
* prepare data for Generalized Estimating Equations ; 
data sample_gee; 
 set modeling_sample; 
 array paid_cnt {4} paid_count12 paid_count24 paid_count36 paid_count48; 
 array eval_dates {4} $ (‘12’ ‘24’ ‘36’ ‘48’); 
 time_index = year - &ref_year.; 
 Years = “&First_Year. to &Last_Year.”;  
 driver_class = class; 
 policy_id_year = policy_id || put( year, 4. ); 
 label  
  time_index = ‘Time Index’  
  log_exposure = ‘Natural Log of Exposure’ 
  driver_class = ‘Driver Class’  
  paid_claim_count = “Paid Claim Count” 
  eval_date = ‘Evaluation Date’ 
  policy_id_year = ‘Policy Id and Year’ 
 ; 
 do k = 1 to &evals.; 
  eval_date = eval_dates{k}; 
  if k = &evals. then call symput(‘last_eval’,eval_date); 
  if paid_cnt{k} > . then do; 
   paid_claim_count = paid_cnt{k}; 
   log_exposure = log ( earned_exposure ); 
   output; 
  end; 
 end; 
 keep Years year territory driver_class policy_id_year eval_date 
  earned_exposure log_exposure sampling_weight time_index paid_claim_count 
 ; 
run; 

 

Two GEE models are tested in this paper. The first one uses an autoregressive working 

correlation structure, and the second one uses exchangeable working correlation. The autoregressive 

correlation structure assumes the correlation between successive evaluation ages is stronger than the 

correlation between evaluation ages that are further apart. The exchangeable working correlation 

assumes the correlation between any two of evaluation ages is the same. Following is the SAS code 

for these two models. Proc TEMPLATE is used to increase the number of decimal places output 

for the parameter estimate. 

 
proc template; 
 edit Stat.GENMOD.GEEEst; 
  define Estimate; 
   header = “Estimate”; 
   format = 10.6; 
  end; 
 end; 
run; 
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title1 “Paid Claim Frequency GEE with Autoregressive Working Correlation”; 
title2 “For Territory, Driver Class, Trend and Loss Development”; 
title3 “State &state, Scenario &scenario.”; 
proc genmod data=sample_gee; 
 weight sampling_weight; 
 class policy_id_year eval_date 
  driver_class ( ref = ‘1’ ) territory ( ref = ‘2’ ) eval_date ( ref = “&last_eval.” ) 
  / param = ref; 
 model paid_claim_count= territory driver_class time_index eval_date 
  / link=log dist=Poisson offset=log_exposure scale=p; 
 repeated subject = policy_id_year  
  / withinsubject = eval_date corr=AR corrw mcovb ecovb; 
run; 
 
title1 “Paid Claim Frequency GEE with Exchangeable Working Correlation”; 
title2 “For Territory, Driver Class, Trend and Loss Development”; 
title3 “State &state, Scenario &scenario.”; 
proc genmod data=sample_gee; 
 weight sampling_weight; 
 class policy_id_year eval_date 
  driver_class ( ref = ‘1’ ) territory ( ref = ‘2’ ) eval_date ( ref = “&last_eval.” ) 
  / param = ref; 
 model paid_claim_count = territory driver_class time_index eval_date 
  / link=log dist=Poisson offset=log_exposure scale=p; 
 repeated subject = policy_id_year  
  / withinsubject = eval_date corr=exch corrw mcovb ecovb; 
run; 
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Multi-Year Policy Pricing 
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______________________________________________________________________________ 
Abstract: Currently, the pro rata method is widely used to price policy extensions and other changes to policy 
length. However, there are several other methods that an actuary can use in pricing policy-length changes, such as 
option and forward pricing, or modeling. There is little discussion in the literature about the relative merits of 
these different methods, leaving the pricing actuary potentially unsure of which method to use in a given 
situation. This paper seeks to resolve some of that ambiguity by identifying the features of a contract that would 
indicate the need to select a certain method over others. The goal of this discussion is to provide the pricing 
actuary with a framework that can be used to select the most appropriate method for the particular contract that 
is being priced. The paper then provides simple examples of how these methods might be applied in different 
situations. Finally, it compares the results obtained using the recommended method to the results from the pro 
rata method, and points out the potential for pricing insufficiencies when the pro rata method is applied 
universally. These results should encourage the reader to consider pricing techniques aside from the standard pro 
rata method. 

Availability: The @Risk™ workbook used for example purposes is available on the CAS Web Site at  
http://www.casact.org. 

Keywords: Policy extension, pro rata, option, forward, simulation, multi-year, pricing. 

______________________________________________________________________________ 

1. INTRODUCTION 

Policy extensions are likely the most common premium bearing change to a policy. When faced 

with the task of pricing a policy extension, actuaries will often immediately turn to the pro rata 

method.  For example, one can purchase a physical “Pro Rata Wheel” and there are an abundance of 

free “Pro Rata Wheel” calculators.  This paper will demonstrate that, unfortunately, simply using the 

pro rata method is often inadequate.  In fact, as the paper will show, there is no one method that is 

sufficient to price all policy extensions. Rather, there are several different pricing methods that are 

most appropriately used depending on the particulars of the situation. The paper will attempt to 

guide the pricing actuary through the process of selecting the optimal pricing method by creating a 

framework detailing which types of policy extensions are most accurately priced by which method 

and presenting the theory supporting the use of the different methods in these different contexts.  

1.1 Research Context 

This paper lays out the theoretical underpinnings of pricing policy extensions and provides a 

framework for selecting the appropriate policy-extension pricing method in a variety of situations.  

This framework is intended to be used any time a policy duration differs from the standard policy 

length.  Examples of changing policy lengths are six-month policies written on an annual basis, 

annual policies written on a six-month basis, single-year policies written on a multi-year basis, and 
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multi-year policies written on a single-year basis, among others.  For simplicity all of these various 

changes to policy length will be referred to in this paper as “policy extensions.” 

A brief review of the literature reveals a variety of methods in use today to price policy 

extensions, including discounts [7], pro rata [5][6][8], option-based approaches [11], and pricing 

ranges [3].  The idea that there are different methods that should be used to price policy extensions 

is not inherently wrong; however, the potential source of confusion for the pricing actuary is that 

these different sources cannot agree on which methods to use when. Even within a single source, a 

variety of methods can be found such as ISO rules requiring short-rate return of premium, pro rata 

extension premium, or a combination of short-rate and pro rata return of premium [5].   

1.2 Objective 

This goal of this paper is to provide the pricing actuary with a framework for selecting the most 

appropriate method of pricing policy extensions.  This framework is based on the premise that it is 

policy language that largely determines the appropriate pricing method. It is not the goal of this 

paper to reinvent the wheel, for that reason the examples will remain simple and the discussion will 

not address expenses.  The paper will not delve into significant detail about the technicalities of 

pricing policy extensions using any particular method.  There are many better sources of information 

on using those techniques in other financial, actuarial, and mathematical literature. 

1.3 Outline 

Section 2 presents the four ways to price policy extensions (option, forward, simulation, and pro 

rata) and discusses when each should be used.  Section 3 illustrates the pricing implications of 

writing each type of endorsement and the potential for variation in loss costs based upon different 

contractual terms.  

2. BACKGROUND AND METHODS 

  The four methods that can be used to price policy extensions are option, forward, simulation, and 

pro rata.  This section provides a brief overview of each pricing method and identifies which 

method should be used in which circumstances.  For further descriptions of the type of policy 

provisions that would require each of these methods to be used, please refer to Appendix 1. 
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2.1 Policy Extension Using Option Pricing  

An option is a contract that gives the purchaser the right, but not the obligation, to buy a good at 

an agreed-upon price in the future.  In essence, when an insured purchases an option to renew a 

policy at a fixed price in the future, they are betting that the price of the option is less than the 

present value of the expected rate increase.   

Option-pricing methodology is appropriate when the insured has the option to accept a 

guaranteed future price or to decline and receive better terms if market conditions are favorable [11].  

See Appendix 1 for an example of policy language that would indicate this.    

Once it has been determined that the policy language indicates that option-based pricing is 

appropriate, the actuary can use the following basic formula to price the policy extension. For 

simplicity, we will assume that the option can only be exercised on the policy expiration date, so that 

we can use a European call option to price the policy.   Using the notation from Hull [4], the value 

of the option at expiration can be expressed as: 

Max(ST  – K, 0) (2.11)

Where ST is the market price of the insurance contract at renewal and K is the guaranteed renewal 

price.  The expected future value of the option at expiration can then be obtained by: 

       .0, dxxfKSKSMaxE TkT    (2.11)

Where f(x) is the probability distribution function of rate change for an insured and ST – K 

represents the option value at each rate change.  From this formulation it can be observed that the 

option to renew will expire worthless if the renewal market price ST is less than the guaranteed price 

K.  Further, if the renewal market price at expiration is greater than K, then the value of the option 

will be the difference in the market price and guaranteed price K. 

This same valuation method can be extended to a multi-period scenario in the event of longer-

term renewal guarantees [11].   

2.2 Policy Extension Using Forward Pricing 

This section will seek to identify which types of contracts should be viewed as a forward contract 

and will outline the basic formulas necessary to price these contracts.  Unlike an option, which is a 

right to buy or sell without any obligation to do so, a forward contract is both the right and 

obligation to buy or sell a good at some future time.  The important feature of a forward agreement 
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is that the insured and the insurer lock in a price in the future regardless of what the market price 

might be at the future date. It is appropriate to use forward pricing when the insurer and insured are 

required to enter into a policy at some point in the future.  An example of a forward agreement 

would be a non-cancelable, automatic policy extension. See Appendix 1 for an example of policy 

language that would indicate this.  If the actuary determines that the policy language indicates that 

forward pricing should be used, he can price the policy extension as follows. 

The value of a forward contract at expiration can be expressed as: 

ST – K. (2.20)

Where S is the market price of the insurance contract at time T, the renewal date, and K is the 

guaranteed renewal price.  Using the distribution of future changes to policy prices, f(x), the 

expected future value of the forward contract at expiration can then be expressed as: 

. (2.21) 

As this formula indicates, a key difference between a forward contract and an option is that a 

forward contract allows for potentially positive and negative outcomes for both parties.  However, 

the seller of an option (in this case the insurer) is the only party able to lose money at the option 

expiration. 

2.3 Policy Extension Using Modeling 

Any time that policy extensions result in changes to the claim payment process and not just to 

the collection of premium, it becomes necessary to model these changes.  Changes to the claim 

payment process can occur through alteration of deductibles, limits, or the effective attachment 

point.  Use of a simulated approach allows for the pricing of any possible type of policy once the 

claim process and contract are understood.  Due to the complexity of contracts and claim processes, 

it is not possible to present a single model that will address all possibilities.  Instead, a simple 

example is presented in Section 3 to demonstrate the importance of building a model appropriate to 

the contract and the loss process. 

2.4 Policy Extension Pro Rata 

No discussion of policy extension is complete without the inclusion of the pro rata method.  It is 

the most popular method of policy extension due to ease of computation.  Pro rata policy 

extensions are appropriate when all loss and other expenses vary proportionately with premium or 
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with changes to loss and expense that directly offset the cost of the option or forward contract.  

Due to the likelihood of changes to loss or expense over an extension period, it is often not the 

theoretical pricing considerations that cause an actuary to use the pro rata method, but the result of 

operational considerations. 

The calculation of pro rata premium is relatively straightforward and can be expressed as: 

Policy cost total = (Policy cost annual / 365) * (Expiration Date – Inception Date). 

With this simple formulation, each additional day of coverage costs 1/365th of the cost of a one 

year policy and a two year policy costs double what a one year policy costs. 

2.5 Other Costs of Risk Transfer 

It is important to consider all costs of risk transfer when pricing multi-year policies and not just 

changes in premium and losses.  Some potential areas for consideration are policy initiation expense, 

client retention rates, and capital requirements.  These are important considerations when pricing 

multi-year policies.  However, an appropriate treatment is outside the scope of this paper. 

3. RESULTS AND DISCUSSION 

This section will compare the pricing implied by option, forward, and simulation techniques to 

the pro rata method.  The divergence from the pro rata implied pricing will demonstrate the 

importance of pricing policy extensions in accordance with the contract terms.  In order to make 

these comparisons using easy-to-follow examples, it will be necessary to make some simplifying 

assumptions. 

For policy extensions that can be priced as an option or forward contact, we will use the 

following assumptions: 

1) Rate per exposure for all insureds is expected to increase on average 5% per annum. 

2) Rate change for individual insureds is uniformly distributed from -5% to +15%. 

3) Exposures are identical in both periods. 

4) Premium for the first policy year is $100. 

5) The discount rate is 10%. 

For policy extensions that result in changes to contract terms, frequency, and severity 
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assumptions will be made.  Frequency will be assumed to be binomial and severity will be assumed 

to be lognormal.  The assumption of distributions will enable concrete examples and demonstrate 

the importance of applying a model when appropriate and are not meant to imply that these 

assumptions are appropriate in all circumstances.    

3.1 Policy Extension Using Option Pricing 

The cost of issuing a renewal option is determined by the present value of the option at 

expiration.  Using Equation 2.11 and the assumptions laid out in Section 3 above, we can calculate 

the value of an option with the guaranteed renewal price of $100 in one year as:  

 (3.12) 

 (3.13) 

 (3.14) 

 (3.14 

Here, the value of the option is greater than zero and the appropriate premium charges for a two-

year contract would be as follows: 

Price year 1 + Price year 2 + value of option = 100 + 100 + $5.11 = $205.11.Here the price of 

the year 1 contract is known, the price of the second year is guaranteed to be $100 and the value of 

the option the insurer sells to the insured is $5.11.  Comparing this to the pro rata method, we see 

that a pro rata extended policy would generate $200 over two years or $100 per year, resulting in a 

potentially inadequate price. 

Not accounting for the value of the option and using pro rata pricing may be acceptable if it 

strengthens customer relationships, reduces transaction costs, or provides some other benefit to the 

insurer to offset the decreased premium collection.  However, with any potential upside the 

downside must be considered as well.  One potentially significant risk is that option exercise is 

correlated between insureds and with a hard insurance market.  Hard insurance markets are in turn 

associated with financial distress among insurance companies.  Thus, it is easy to imagine a situation 

in which many policyholders might choose to exercise the guaranteed renewal option simultaneously 

and at a time of inadequate pricing. 
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3.2 Policy Extension Using Forward Pricing 

The price of a forward contract is calculated from the present value of the forward contract at 

expiration.  Using Equation 2.21 and the assumptions laid out in Section 3 above, we can calculate 

the value of a forward contract with the guaranteed renewal price of $100 in one year as: 

 

 

(3.21)

 (3.23)

 (3.24)

Here, the value of the forward contract is greater than zero and the appropriate premium charges 

for a two-year contract would be: 

Price year 1 + Price year 2 + value of forward = $100 + $100 + $4.55 = $204.55. 

Here the price of the year 1 contract is known, the price of the second year is guaranteed to be 

$100, and the value of the forward contract the insurer sells to the insured is $4.55.  In this case the 

value of the forward contract is greater than zero and less than the value of the option contract.  At 

the same strike price, the absolute value of a forward contract will always be between the absolute 

value of the option contract and zero.  Once again, when comparing the forward contract to pro 

rata extension the pro rata policy generates an inadequate price.  The pro rata pricing may be 

acceptable if other benefits to the insurer exist.  Potential benefits mirror those outlined in Section 

3.1.  However, forward contracts, unlike option contracts, will always be executed at expiration.  

Thus, the exercise of the forward contract will not be more highly correlated with periods of 

economic distress for the insurer, but the risk will still exist.  The insured will exercise the contract 

regardless of the underwriting cycle, which should make cash flows more predictable.  However, the 

insurer will not have the ability to quickly increase profitability through rate increases after a period 

of inadequate pricing. 

3.3 Policy Extension Using Monte Carlo Simulation 

Pricing a policy extension that changes the limits, deductible, or the effective attachment point 

should be based upon the present value of future cash flows and often requires a simulation to 

model.  An expeditious way to tackle this problem is through the use of common modeling software 
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or simplified equations, like those that were used for option and forward contract pricing in Sections 

3.1 and 3.2.  Here, a straightforward model using @Risk™ was built to demonstrate the importance 

of modeling simple situations. 

The policy extension that we will model involves the extension of a single aggregate limit, after a 

claim has been reported in the first year and will be referred to as an aggregate extension 

endorsement.  To price this extension, the model will assume: 

A claim reported in the first year. 

65% chance reported claim will become an incurred loss. 

Probability of a claim in the second year will be 2%. 

Claim size in year 1 and 2 is log-normally distributed with a mean of $31.2 million and a median 

of $8 million.   

The occurrence of claims and the size of claims will be assumed to be independent. 

Graph 1 compares the percentage difference in loss costs for a new limit of liability to the 

extension of the aggregate limit of liability for the entire tower.  It is seen in Graph 1 that expected 

loss costs for the lowest $20 million in coverage decrease relative to a fresh limit of liability, while 

exposure for all layers higher on the tower increases.   
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Graph 1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Primary carriers are incentivized to pursue this endorsement because of the high-severity and 

low-frequency nature of claims.  With the aggregate extension endorsement the primary carrier is 

offering less coverage, while carriers higher up the tower, with less pricing control, essentially drop 

down to a lower attachment point in response to an unrelated second claim.  The excess carriers’ 

acceptance of this increased exposure is due to the perception of decreased risk and a weak 

negotiating position.  The model suggests that a pro rata premium charge for this policy extension 

overcharges for the primary and undercharges for the excess limits.  

3.3 Discussion of Results 

This paper explores three different methods for pricing policy extensions: option, forward, and 

modeling.  Although modeling and option pricing methods had been used previously by Wacek [11] 

and Berens [1] to confront aspects of policy extensions, in this paper, these pricing methods were 

brought together and combined with forward contracts to create a coherent framework. This paper 

further demonstrates that option, forward, and simulation methods often produce pricing 

recommendations that stand in sharp contrast to the standard pro rata method of policy extension.  
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By using these three basic techniques, or a combination of the techniques, an actuary can 

appropriately price any change to policy length.   

4. CONCLUSIONS 

Several different methods are available for pricing policy extensions and selecting the appropriate 

method from among these is essential. In this paper, I have provided some guidance to the pricing 

actuary regarding when to use option, forward, and modeling methods. As we have seen, option 

pricing should be used whenever the insured has the option to accept a guaranteed future price or to 

decline and receive better terms if market conditions are favorable. This paper demonstrates that if 

the policy language implies that option-based pricing is most appropriate, but the pro rata method is 

used instead, the result can be a pricing insufficiency. By contrast, forward pricing should be used 

when the policy language implies that the insurer and insured are required to enter into a policy at 

some point in the future. I have shown that using the pro rata method in cases that clearly warrant 

forward pricing can over- or under-price the policy extension, though not as severely as in the case 

when option pricing is required. Both option and forward pricing methods are specific cases of the 

generalized modeled result and can simplify the process of estimating the cost of the policy 

extension.  If, on the other hand, the policy extension results in changes to the claim payment 

process, then these simple pricing methods will be inadequate.  In these cases, I suggest that the 

actuary create a model to determine the appropriate price for the policy extension. A simple example 

of a model is presented herein and is also compared to pricing using the pro rata method.  While the 

exact results will vary depending on the situation, in the simple modeled example given, we discover 

yet another case in which the pro rata method suggests an inaccurate price.  

Overall, this paper has explored some of the different methods by which policy extensions might 

be priced. I have also provided several examples in which applying the pro rata method to policy 

extensions is inappropriate, and results in a potential erosion of the insurer’s financial stability.  It is 

the hope of this author that actuaries will be able to use the information provided here to select the 

most appropriate method for pricing any policy extension that they encounter. 

Acknowledgment 

I would like to thank Deena Bernett for many suggestions and revisions, the CAS volunteers who 

reviewed the paper, and many colleagues who provided early feedback on my pricing ideas and this 

paper.  Any errors or ambiguities that remain in this paper are solely the responsibility of the author. 



Multi-Year Policy Pricing 

Casualty Actuarial Society E-Forum, Winter 2011 Volume 2 11 

APPENDIX 1 

Part 1: Contract Language 

The examples below are meant to provide a guide as to where to look in the policy for changes 

that can affect how to price changes to policy length.  It is not a comprehensive list, but instead a 

starting point for a closer examination of the complex policy language that we work with everyday. 

Declarations 

Policy length can be changed from the standard policy length.  For example, if a policy is normally 

six months long, the declarations page can change the policy length to one year. 

Limits can be defined as per claim, per policy period (aggregate), or some other alternative. 

Deductibles can be defined as per claim, per policy period (aggregate), or some other alternative. 

Premium can be fixed at policy inception or auditable based upon exposure.  Premium can be paid 

in advance for the entire policy period or paid periodically.   

Premium earning can specify that premium is fully earned at inception of the policy period, earned 

uniformly over the policy period, and subject to a variety of other conditions. 

Cancellation provisions can vary from non-cancelable to fully cancelable.  Upon policy cancelation, 

premium can be returned to the policy holder on a pro rata basis, a short-rate basis, or another 

contractually specified basis. 

Definitions 

Limits can be defined as per claim, per policy period (aggregate), or some other alternative. 

Deductibles can be defined as per claim, per policy period (aggregate), or some other alternative. 

Endorsements 

Endorsements can alter any or all provisions in a policy form. 

Part 2: Policy Examples 

The examples below are meant to provide a guide as to how to price a stylized policy.  It is not a 

comprehensive list or a definitive pricing manual, but instead a starting point for thinking about how 

the claims process interacts with policy language to determine expected changes to loss costs as 

policy periods change. 
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Option Example 

Rate Guarantee 

XYZ insurance company agrees to renew policy number 12345678 effective from 1/1/2010 to 

12/31/2010 for an additional one-year term at a premium of $1,000 per auto. 

Policy Provisions 

Initial policy term: 1/1/2010 to 12/31/2010. 

Premium: $1,000 per auto. 

Cancellation: Cancelable at any time with a pro rata return of premium. 

Limits: Each policy period has separate limits. 

Deductible: Each policy period has separate deductibles  

Why is this rate guarantee an option? 

The insured has a right, but not an obligation to purchase the second year policy at a 

predetermined price, which is the definition of an option.  For simplicity, the policy provisions were 

set up to be identical, but this is not a necessary condition for the second policy period to include an 

imbedded option.   

Forward Example 

Automatic Policy Extension 

XYZ insurance company and ACME Car Driving LLC agree to an automatic extension of policy 

number 12345678 effective from 1/1/2010 to 12/31/2010 for an additional one-year term at a 

premium of $1,000 per auto. 

Policy Provisions 

Initial policy term: 1/1/2010 to 12/31/2010. 

Automatic extension period: 1/1/2011 to 12/31/2011. 

Premium: $1,000 per auto. 

Cancellation: Non-cancelable by either the insurer or the insured, except in cases of insurer 

downgrade below an AM Best “A” rating. 

Limits: Each policy period has separate limits. 
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Deductible: Each policy period has separate deductibles.  

Why is the automatic extension a forward contract? 

The insured has a right and obligation to purchase the second year policy at a predetermined 

price.  Neither party can cancel the contract.  The second year of the policy has losses that will 

interact with the limits and deductible in a manner similar to any single year policy.   

A practical concern with this type of forward contract, that might argue for treating as an option 

is the collectability of premium for the renewal period.  One way of addressing this issue is to price 

the expected future premium in a manner consistent with other types of counter party risk. 

Modeled Example 

Policy Extension Post Claim 

In consideration of the additional premium of $100,000, it is agreed that the policy period 

1/1/2009 to 1/1/2010 is deleted and replaced by 1/1/2009 to 1/1/2011. 

This extension of the policy period shall not increase the insurer’s maximum aggregate limit of 

liability for loss under the policy.  All the other terms and conditions of the policy remain 

unchanged. 

Policy Provisions 

Initial policy term: 1/1/2009 to 1/1/2010. 

Premium: $1,000 per doctor. 

Cancellation: Premium for extension fully earned immediately.  Non-cancelable. 

Limits: Policy period and extension share limits. 

Deductible: Policy period and extension have separate deductibles.  

Why is a model required to price an extension after a claim? 

In this instance, a tower of insurance exists, a claim has been reported and the size of the claim is 

unknown.  Consequently, it is unclear how much of the aggregate limit on the policy or any 

underlying policy limits will be impaired.  In effect, the limit and attachment point for the second 

year period are unknown at the time the endorsement is written and must be estimated by 

simulation techniques and expert input.   
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Pro Rata Example 

Uniform Exposure to Loss and no Lag before Inception 

A workers compensation policy was written from 1/1/2009 to 1/1/2010 and a policy extension 

from 1/1/2010 to 1/1/2011.   

Policy Provisions 

Policy Term: 1/1/2009 to 1/2/2010. 

Premium: Per dollar of audited payroll. 

Cancellation: Cancelable. 

Limits: Statutorily unlimited. 

Deductible: Per claim. 

Why can a policy be priced using the pro rata method? 

In this instance, the limits are unlimited and the deductible is per claim.  So each day has the 

same expected loss.  Premiums are auditable, which automatically adjusts for any deviations from 

the constant force of claims over the year.  If no change has occurred to the expected loss per dollar 

of audited payroll, then it would be appropriate to use the same rates for the second one-year 

period.  In essence the second-year period has all the same characteristics as the first year and should 

be priced the same.  It is difficult to find real-world cases where all the factors align to support pro 

rata policy extensions.  Pro rata extensions are rarely theoretically correct, but are likely to continue 

to be used regularly due to their simplicity for insurers, insureds, and regulators. 

Disclaimer 

Any examples in this article are for illustrative purposes only and any similarity to actual 

individuals, entities, places or situations is unintentional and purely coincidental. This material is not 

intended to establish any standards of care, to serve as legal advice appropriate for any particular 

factual situations, or to provide an acknowledgement that any given factual situation is covered 

under any CNA insurance policy. Please remember that only the relevant insurance policy can 

provide the actual terms, coverages, amounts, conditions and exclusions for an insured. 

Supplementary Material 

On the CAS Web Site, the @Risk™ worksheet will be available for those who have access to 
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@Risk™ and without the @Risk™ formulas to those without access to the software. 
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Indemnity Benefit Duration, Maximum Weekly Benefits, and 
Claim Attributes 

Frank Schmid 

______________________________________________________________________________ 
Abstract 
Motivation.  Pricing legislative changes is an integral part of NCCI ratemaking.  An increase in the maximum 
weekly indemnity benefit for temporary total disability claims increases indemnity payments for given injury 
durations, but, at the same time, these injury durations may increase as well (among claimants affected by the 
benefit change), thus giving rise to an additional cost effect. 
Method.  The study makes use of a research framework developed by Krueger [13] (and subsequently employed 
in several studies) on the effect of changes in the maximum weekly benefit on injury duration.  This research 
framework is a natural experiment, where the treatment effect is measured as the difference in the “post-reform 
minus pre-reform” differences between treatment and control groups.  Two partial linear regression models 
(generalized additive regression and quantile regression) are used to validate the measured treatment effect.  
Further, quantile regression is applied to quantify the effect on injury duration of claim attributes such as age and 
gender. 
Results.  Using data sets provided by the Oregon Department of Consumer and Business Services and the New 
Mexico Workers’ Compensation Administration, it is shown that an increase in the maximum weekly benefit of 
temporary total disability claims leads to a lengthening of the average benefit duration in the group of affected 
claimants.  This increase in the utilization of indemnity benefits contributes to about 30 percent of the total cost 
impact of the reform. 
Availability.  Computing and bootstrapping the difference in the “post-reform minus pre-reform” differences 
between treatment and control groups is explained in detail and is straightforward to execute.  The generalized 
additive model was implemented using the R package mgcv, which was developed by Simon Wood (http://cran.r-
project.org/web/packages/mgcv/index.html).  The partial linear quantile regression model was implemented 
using the R package quantreg, which was created by Roger Koenker (http://cran.r-
project.org/web/packages/quantreg/index.html). 
 
Keywords.  Generalized Additive Model, Indemnity Utilization, Injury Duration, Legislative Reform, Quantile 
Regression. 

______________________________________________________________________________ 

1. INTRODUCTION 

Pricing legislative reforms in workers compensation is an integral component of NCCI 

ratemaking.  A possible manifestation of a legislative reform is an increase in the maximum weekly 

benefit for temporary total disability (TTD) claims, as has been observed in several U.S. states over 

the past decades.  In a pioneering study, Krueger [13] quantified the impact of such a benefit change 

for Minnesota.  The experimental research framework developed by this author was subsequently 

applied to analyzing increases in the maximum weekly benefit of TTD claims in Kentucky and 

Michigan (in 1980 and 1982, respectively; see Meyer, Viscusi, and Durbin [14], and Connecticut 

(1987; see Gardner [4]); further, Curington [3] employed this approach when quantifying the impact 

on Permanent Partial Disability (PPD) claims of legislative changes that occurred in New York 

between 1965 and 1978.  In all instances, the researchers established evidence of an increase in 
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utilization in response to an increase in benefits for the time of absence from work.  At the same 

time, Curington [3] shows that an increase in PPD benefits that apply after the claimant returns to 

work (while benefits during work absence remain unaltered) shortens the time away from work 

among severely impaired claimants. 

What follows is a study on the effects on injury duration of an increase in the maximum weekly 

benefit for TTD claims in Oregon and New Mexico.  In Oregon, effective January 1, 2002, the 

maximum weekly benefit rose from 100 to 133 percent of the state average weekly wage.  It is 

shown that this hike in the maximum weekly benefit increased total indemnity payments on TTD 

claims by 3.82 percent; 31 percent of this increase (or, equivalently, 1.17 percentage points) were due 

to a utilization increase (as caused by an expansion of the injury duration of TTD claimants whose 

weekly benefits increased due to the hike in the weekly maximum).  In New Mexico, effective 

January 1, 2000, the weekly maximum benefit increased from 85 to 100 percent of the state average 

weekly wage.  The accompanying increase in total indemnity payments on TTD claims amounted to 

4.50 percent, 29 percent of which (or, equivalently, 1.30 percentage points) was due to a utilization 

increase.  The duration/benefit elasticity (defined as the percentage change in benefit duration, 

divided by the percentage change in the maximum weekly benefit) equals 0.53 for Oregon and 0.43 

for New Mexico.  Because Oregon and New Mexico display similar elasticities and similar 

proportions of the cost effect of the utilization increase, only the Oregon findings are going to be 

discussed in detail.  Further, the Oregon data are available in greater number and detail, thus 

allowing a more comprehensive statistical analysis. 

For Oregon, the measured treatment effect is validated using a generalized additive regression 

model (GAM).  Further, to get a more differentiated picture of the increase in benefit duration than 

a regression on the mean can offer, a partial linear quantile regression model is estimated.  This 

quantile regression approach shows that the increase in injury duration in response to the legislative 

reform is mostly confined to short durations. 

Finally, a partial linear quantile regression model is used to study the effect on benefit duration of 

age and gender.  It is shown that the median injury duration is about log-linear in age within the age 

bracket 20 through 60; within this bracket, on average, benefit duration increases for every year of 

age by 1.0 percent for Oregon and 0.72 percent for New Mexico.  Further, for Oregon, it is shown 

that among TTD claims with long durations, the durations of female claimants exceed those of male 

claimants by about 20 percent. 
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The generalized additive model was implemented using the R package mgcv, developed by Simon 

Wood of the University of Bath (England); the package is available for download at http://cran.r-

project.org/web/packages/mgcv/index.html.  The partial linear quantile regression model was 

implemented using the R package quantreg, developed by Roger Koenker from the University of 

Illinois at Urbana-Champaign; this package is available at http://cran.r-

project.org/web/packages/quantreg/index.html.  The statistical software platform R is a GNU 

project of the Free Software Foundation and is administered by the Technical University of Vienna, 

Austria. 

1.1 Research Context 

Studies on the impact of benefit changes on TTD claim durations can be divided into cross-

sectional and event studies.  In cross-sectional time series and pooled time series cross-sectional 

studies, differences in legislative provisions across states are modeled in attempts to gauge the 

impact of these differences on claimant behavior; examples of such studies are Butler and Worrall 

[2] and Worrall, Butler, Borba, and Durbin [16], and, for PPD claims, Johnson and Ondrich [8]; see 

also Brooks [1] and, most recently, Guo and Burton [6].  Krueger [13] expresses skepticism about 

the ability of cross-sectional studies to discern the influence of specific legislative provisions on 

claimant behavior—this is because of the multitude of cross-sectional variations at any given point 

in time.  As an alternative to the cross-sectional research framework, Krueger [13] suggests using 

event studies.  Instead of focusing on variations across states at a given point in time, event studies 

home in on variation over time in a given state—the event is defined by the legislative change.  In 

order to isolate the impact of this event, a time window surrounding the reform has to be specified; 

also, the framework is available only if both a treatment group (claimants affected by the legislative 

change) and a control group (unaffected claimants) can be identified.  If this condition is met, the 

time window creates a quasi-experimental setting in which the legislative reform can be studied as a 

natural experiment. 

1.2 Objective 

The objective of this study is twofold.  First, the treatment effect is quantified, both in terms of 

its expected value and its probability distribution.  This treatment effect is broken down into (1) an 

increase in payments due to the hike in the maximum weekly benefit at given durations and (2) an 

increase in payments due to lengthened injury durations of the claimants affected by the benefit 

change.  The measured treatment effect is validated using generalized additive and quantile 
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regression approaches.  Second, a partial linear quantile regression model is applied to quantify for 

the post-reform period the effect on benefit duration of claim attributes such as age and gender. 

1.3 Outline 

What follows is a presentation of the experimental research framework proposed by Krueger 

[13].  Section 3 offers a description of the data, which is followed in Section 4 by a presentation of 

the findings for the treatment effect.  Section 5 presents estimates of the treatment effect that are 

arrived at by means of generalized additive and, alternatively, quantile regression models.  The 

quantile regression model of the effect on benefit duration of age and gender are displayed in 

Section 6.  Section 7 concludes. 

2. BACKGROUND AND METHODS 

In a seminal study on the effects of an increase in the maximum weekly benefit for TTD claims 

in Minnesota in 1986, Krueger [13] suggested an experimental research framework where the impact 

of the benefit change on injury duration is measured as a treatment effect.  The author identifies as 

the treatment group the claimants whose benefits were constrained by the legal weekly maximum 

both before and after the legislative reform—this group of claimants experiences an increase in 

weekly benefits equal to the stipulated increase in the maximum weekly benefit.  As the control 

group, Krueger [14][13] chooses claimants whose benefits were unconstrained by the weekly 

maximum both before and after the reform; thus, the weekly benefits of the control group were 

unaltered by the reform.  The treatment effect, which is defined as the increase in injury duration for 

the treatment group that is causal to the benefit change, is measured as the difference between the 

differences in post-reform and pre-reform durations of the treatment and the control groups.  

Conceptually, the difference between post-reform and pre-reform durations equals the treatment 

effect plus any change common to all claims; an example of such common effects may be changes in 

injury duration due to variations in economic activity (possibly related to the business cycle) or due 

to structural economic change (which may manifest itself in a time trend).  In order to eliminate 

such common effects from the treatment group’s difference between post-reform and pre-reform 

durations, the corresponding difference in duration for the control group is subtracted.  The 

resulting difference in differences delivers the treatment effect. 

Chart 1 illustrates the TTD benefit schedule for Oregon during the time window surrounding the 

benefit change; the legislative reform became effective on January 1, 2002.  Up to a pre-injury 

weekly wage of $55.56, the weekly benefit equaled 90 percent of that weekly wage.  For claimants 
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with a pre-injury weekly wage in excess of $55.56 but not more than $75, the average weekly benefit 

equaled $50.  Claimants with a pre-injury weekly wage in excess of $75 collected the maximum 

weekly benefit or two-thirds of the pre-injury weekly wage, whichever is lower; the reform raised the 

maximum weekly benefit from 100 percent of the official state average weekly wage (which was 

$645 at the time) to 133 percent.  In Oregon, the official state average weekly wage becomes 

effective on July 1. 

The increase in the maximum weekly benefit was not retroactive.  This means that for a claimant 

who sustained an injury before January 1, 2002, the applicable maximum weekly benefit equals 100 

percent of the state average weekly wage for the duration of the claim; increases in benefits are 

confined to the annual increase in the official state average weekly wage. 

The treatment (T) group comprises all claimants whose benefits were constrained by the legal 

maximum both before and after the reform; that is, all claimants that had a pre-injury weekly wage 

of more than 1.5 times 133 percent of the state average weekly wage.  The control (C) group 

consists of all claimants whose benefits were not altered by the reform (that is, whose pre-injury 

weekly wage was less than 150 percent of the state average weekly wage) and, at the same time, had a 

pre-injury weekly wage of more than $75.  The treatment effect, which gauges for the treatment 

group the change in injury duration that is causal to the benefit change, is defined as “mean injury 

duration in post-reform treatment group minus mean injury duration in pre-reform treatment 

group” minus “mean injury duration in post-reform control group minus mean injury duration in 

pre-reform control group.” 
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Chart 1: TTD Benefit Schedule on the Day the Legislative Reform Took Effect, Oregon 
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Chart 2 exhibits the TTD benefit schedule for New Mexico that was effective on the day of the 

legislative reform, which was January 1, 2000.  On the same day, the official state average weekly 

wage experienced its annual adjustment.  According to this schedule, up to a pre-injury weekly wage 

of $36, the weekly benefit equals 100 percent of that weekly wage.  For claimants with a pre-injury 

weekly wage in excess of $36 but not more than $54, the average weekly benefit equals $36.  

Claimants with a pre-injury weekly wage in excess of $54 collect the minimum of the maximum 

weekly benefit and two-thirds of the pre-injury weekly wage.  The reform raised the maximum 

weekly benefit from 85 percent of the state average weekly wage to 100 percent; this change in 

benefit level implied a maximum weekly benefit of $480.47 on the day the reform took effect, up 

from the $408.40 that would have applied otherwise.  Similar to Oregon, the increase in the 

maximum weekly benefit in New Mexico was not retroactive. 
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Chart 2: TTD Benefit Schedule on the Day the Legislative Reform Took Effect, New Mexico 
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3. THE DATA 

Claim records were supplied upon request by the Oregon Department of Consumer and Business 

Services and the New Mexico Workers’ Compensation Administration.  The next section offers a 

description of the Oregon data with a focus on data cleansing and descriptive statistics.  This is 

followed by a brief section on the New Mexico data set. 

3.1 The Oregon Data 

The Oregon data set comprises all records pertaining to claims that collect lost-time benefits with 

injury dates between (and inclusive of) January 1, 1999 and December 31, 2004.  This way, the data 

set provides for a 36-month pre-reform window that is followed by a 36-month post-reform 
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window.  The total number of records of award type TTD/TPD (which comprise TTD and 

Temporary Partial Disability records) equals 98,311 (thus corresponding to 62.52 percent of the total 

157,246 lost-time claims records). 

Due to reopening (with or without new condition), 731 claim records (or 0.46 percent of the 

original 157,246 records) were removed from the data.  Further, seven TTD/TPD records with 

injury durations of more than three years were removed due to data quality concerns; six of these 

claims (of which four are pre-reform) belonged to the control group, whereas the remaining single 

(pre-reform) claim belonged to the group located between control and treatment groups.  (Although 

Oregon has no statutory limit on the duration of TTD/TPD claims, correspondence with the data 

provider indicated that claims of this award type, when showing durations of several years, may be 

of impaired data quality.)  In conclusion, all claims in the data set may be considered closed, which 

implies that there is no problem of right-censoring in the statistical analysis. 

Further, for the purpose of data cleansing, we excluded claim records indicative of a claim 

disposition agreement (CDA); for such claims, there is no breakdown into indemnity and medical 

costs available.  Of claims with multiple closures, we retain only the record with the most recent 

closure date.  We exclude claims where the injury date equals the closure date; such claims may 

initially have been accepted as nondisabling (medical only), but aggravation later in the life of the 

claim initiated a TTD claim record. 

Benefit and injury durations were measured in weeks of calendar time.  The benefit duration was 

computed as the ratio of total time-loss days for which the claimant received TTD or TPD benefits 

and the pre-injury number of days the claimant worked during a week.  For the purpose of obtaining 

the injury duration, the benefit duration was adjusted for a waiting period of three days (which 

comes with a retroactive period of 14 days).  This means that for every claim the benefit duration of 

which is less than two weeks, the injury duration exceeds the benefit duration by three-sevenths of a 

week. 

The data set lumps TTD and TPD claims into a single award type.  In order to eliminate TPD 

claims (and ensure data quality for TTD claims), we judgmentally excluded records where the 

observed weekly TTD paid falls short of 85 percent of the indicated weekly benefit.  The indicated 

weekly benefit was computed from the reported pre-injury weekly wage based on the applicable 

benefit schedule. 
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Finally, to ensure data quality and exclude claims with lump-sum payments, we judgmentally 

excluded records where the observed weekly TTD paid exceeds 115 percent of the indicated weekly 

benefit.  The final number of TTD claims for the six-year window equals 53,681. 

Chart 3 displays a histogram of the pre-injury weekly wage (with a bin size of $100).  For the 

purpose of this histogram, all observations of the pre-injury weekly wage are inflation-adjusted based 

on the rate of inflation embedded in the official state average weekly wage effective at the time of 

the reform.  Inflation-adjusted, the minimum pre-injury weekly wage is $3.96; the maximum equals 

$7,469.46; the median and mean values equal $454.02 and $516.20, respectively.  Clearly, the 

distribution of the pre-injury weekly wage is strongly skewed to the right. 

Chart 4 is a combination of the histogram in Chart 3 and the benefit schedule displayed in Chart 

1.  The frequency distribution in Chart 4 has a residual bin for a pre-injury weekly wage of $1,500 or 

higher.  Chart 4 indicates that only a small proportion of the claims are in the treatment group (pre-

reform: 350 claims or 0.65 percent; post-reform: 284 claims or 0.53 percent).  The control group, on 

the other hand, is heavily populated (pre-reform: 27,375 or 51.00 percent; post-reform: 22,442 or 

41.81 percent).  When control and treatment groups are taken together, they add up to 50,451 claims 

(which amount to 93.98 percent of the total 53,681 TTD claims).  The group of claimants located 

between the control and treatment groups comprises 3.09 percent of claims pre-reform and 2.35 

percent post-reform. 

Chart 5 exhibits the age distribution of the claimants in single-year age bins.  For the purpose of this 

chart, 166 claims with zero values for the age of the claimant were removed, thus leaving the data set 

with 53,515 observations.  The minimum age in years is 13; the maximum equals 96; the median and 

mean values equal 38 and 38.1, respectively.  Chart 6 displays the relative frequency distribution of 

gender by age; in this chart, too, 166 claims with zero values for the age of the claimant were 

removed.  Of the 53,515 claimants, 68.9 percent are male. 
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Chart 3: Histogram of Pre-Injury Weekly Wage (Wage Level at Time of Reform), Oregon 
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Chart 4: Population of Treatment and Control Groups, Oregon 
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Chart 5: Histogram of Age of Claimant, Oregon 
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Chart 6: Relative Frequency of Gender by Age, Oregon 
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3.2 The New Mexico Data 

The New Mexico data set comprises all claims that collect lost-time benefits with injury dates 

between (and inclusive of) January 1, 1997, and December 31, 2002.  Just like Oregon, the data 

cover a 36-month pre-reform window, followed by a 36-month post-reform window. 

The data for New Mexico were provided at the level of the claim (unlike the Oregon data, which 

consisted of claim records and necessitated aggregation where there was more than one record per 

claim).  The lost-time claims in this data set are identified by positive payments in the categories 

TTD, TPD, PPD, PTD, “Death,” or “Lump sum;” this way, 36,997 claims were identified as 

collecting lost-time benefits.  Of these lost-time claims, there are 2,866 claims (or 7.75 percent) that 

were categorized as “R” (“Reopened”) or “X” (“Reopened/Closed”). 

For the purpose of identifying the set of TTD claims in the population of lost-time claims and 
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with the intent of cleansing these identified claims, we implemented four rules of exclusion (in the 

order stated).  First, we excluded claims with positive payment entries for TPD, PPD, PTD, 

“Death” or “Lump sum,” as well as claims with nonpositive payment entries for TTD.  Second, we 

excluded claims with nonpositive entries for TOTAL WEEKS OF LOST TIME and TOTAL 

DAYS OF LOST TIME.  Third, we excluded claims the “Claim Status” of which is not “O” 

(“Open”), or “C” (“Closed”); this rule excluded claims that were categorized as “R” (“Reopened”) 

or “X” (“Reopened/Closed”).  Fourth, to ensure data quality, we judgmentally excluded claims 

where the reported TTD duration falls short of 90 percent or exceeds 110 percent of the ratio of 

TTD PAID and the indicated TTD weekly benefit. 

An inspection of the claims shows that all of them can be assumed as closed; such does not 

necessarily apply to reopened claims, which had been eliminated during the data-cleansing process. 

Chart 7 displays the benefit schedule of New Mexico with a histogram that illustrates the wage 

distribution.  As with Oregon, the wage data have been inflation-adjusted to the date the reform 

took effect, and the histogram has a residual bin for a pre-injury weekly wage of $1,500 or higher.  

Compared to Oregon, the proportion of claims in the treatment group is larger (pre-reform: 565 

claims or 3.82 percent; post-reform: 831 claims or 5.62 percent), but the control group is again the 

most heavily populated category (pre-reform: 5,935 or 40.16 percent; post-reform: 6,339 or 42.89 

percent).  Taken together, control and treatment groups comprise 13,670 claims (or, equivalently, 

92.50 percent of the total 14,778 TTD claims).  The group of claimants located between the control 

and treatment groups comprises 3.21 percent of claims pre-reform and 3.86 percent post-reform. 
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Chart 7: Population of Treatment and Control Groups, New Mexico 
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4. QUANTIFYING THE TREATMENT EFFECT 

In what follows, the treatment effect is calculated for benefit duration (measured in calendar 

time, as mentioned) and, alternatively, for the amount of benefit payments.  As discussed, the 

benefit duration differs from the injury duration by the waiting period (as applicable).  Unless stated 

otherwise, all findings in this section apply to Oregon. 

The treatment effect in benefit duration is computed as the difference between two differences 

or, when measured in relative (percentage) terms, as the ratio of two ratios.  The first difference 

pertains to the treatment group and equals the mean of the post-reform benefit duration less the 

mean of the pre-reform benefit duration.  The second difference is the corresponding difference in 
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such means for the control group.  Calculated in this way, the treatment effect equals 0.76 weeks or, 

when the treatment effect is calculated in ratios instead of differences, 17.49 percent.  In other 

words, there is an average increase in the benefit duration among claimants of the treatment group 

of 0.76 weeks (or, equivalently, 17.49 percent), and this increase can be considered causal to the 

increase in the maximum weekly benefit.  The computation of the treatment effect in weeks and 

relative terms is detailed in the following two subsections. 

4.1 Treatment Effect in Weeks 

To illustrate the importance of employing a control group for the purpose of isolating the 

treatment effect, Chart 8 displays the behavior of the benefit duration for the pre-reform (1999–

2001) and post-reform (2002–2004) time windows; the chart shows the control group only, as the 

treatment group is affected by the reform.  In this chart, economic recessions (as defined by the 

National Bureau of Economic Research, www.nber.org) are represented by gray bars, which cover 

the time window between the months that formed the peak and trough of economic activity, 

respectively; peak and trough are treated as occurring mid-month.  Both the mean and the median 

benefit durations exhibit a positive trend over the six-year time period—this trend is interrupted 

(median duration) and temporarily reversed (mean duration) during the 2001 recession (peak to 

trough: February through November). 

Studying Chart 8 indicates that it is the economic recovery (as opposed to the economic 

recession) that (temporarily) disrupts the upward trend in injury duration—the same can be said for 

the displayed downward trend in frequency, as measured by the Bureau of Labor Statistics lost-time 

incidence rate (rate of injury and illness cases per 100 full-time workers; cases involving days away 

from work, job restriction, or transfer).  Further research will have to investigate the link between 

frequency and injury duration, both with regards to their trends and their business cycle behavior. 

In order to obtain a probability distribution for the treatment effect, the difference in differences 

may be bootstrapped, alternatively with and without stratification.  In the unstratified bootstrap, 

50,451 claims are drawn with replacement from the total of 50,451 claims that comprises 

(exclusively) the pre- and post-reform periods and the control and treatment groups.  Then, the 

difference in differences (or, alternatively) ratio of ratios is calculated.  This procedure is carried out 

a total of 2,000 times. 
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Chart 8: Incidence Rate (1976–2007) and Mean and Median Benefit Durations (1999–2004), 
Oregon 

1980 1985 1990 1995 2000 2005

3
4

5
6

7

Calendar Year (Tick Marks Indicate Beginning of Year)

In
ci

de
nc

e 
R

at
e

P
re

-R
ef

or
m

 P
er

io
d

P
os

t-
R

ef
or

m
 P

er
io

d

0
1

2
3

4
5

B
en

ef
it 

D
ur

at
io

n 
(W

ee
ks

 o
f 

C
al

en
da

r 
T

im
e)

Mean Duration
Median Duration

Lost-Time Incidence Rate

 

Whereas in the unstratified bootstrap the claims are allocated to their respective group (pre- and 

post-reform, control and treatment) after drawing, in the stratified bootstrap, the drawing itself is 

done from the individual groups—the difference in differences (or ratio of ratios) is computed after 

drawing from each group (with replacement) according to their respective sample populations. 

Chart 9 displays the treatment effect in weeks of calendar time—both its mean and its probability 

distribution are shown.  There are two alternative distributions displayed, one being from an 

unstratified bootstrap and the other from a stratified bootstrap.  Chart 10 presents the treatment 

effect in relative (percentage) terms, again along with bootstrapped probability distributions. 
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Chart 9: Bootstrapped Change of Benefit Duration in Weeks (of Calendar Time), Oregon 
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Chart 10: Bootstrapped Relative Change of Benefit Duration (in Calendar Time), Oregon 
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4.2 Treatment Effect in Relative Terms 

Calculating the treatment effect in terms of a relative (percentage) change in the indemnity 

payments is more complex than calculating the treatment effect in terms of benefit duration.  For 

one, in order to quantify the total dollar impact, the group of claimants located between control and 

treatment groups (see Chart 1) can no longer be ignored; this group is partially affected by the hike 

in the weekly maximum benefit.  Further, because inflation-adjustment necessitates information on 

the timing of the payments, the treatment effect in dollar terms is preferably computed using 

indicated (instead of recorded) benefit payments.  Indicated benefit payments are obtained by 

applying the benefits schedule to the claimant’s pre-injury weekly wage, scaled by the computed 
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benefit duration in calendar time.  For the purpose of calculating indicated benefits, all observations 

of the pre-injury weekly wage are inflation-adjusted to the official state average weekly wage effective 

at the time of the reform (as mentioned, such normalization also applies to Chart 3 and Chart 4). 

When calculating the treatment effect in dollar terms, the benefit duration of each claim in the 

pre-reform treatment group is scaled up according to the measured percentage treatment effect on 

benefit duration.  Yet, such cannot be done directly, as benefit durations (in calendar time) of 11, 12, 

and 13 days are unobservable (because of the 14-day retroactive period).  For instance, a claimant 

with a 13-day injury duration has a benefit duration (in calendar time) of at most 10 days (depending 

on how many days per week this claimant worked, and on which day the claimant was injured), due 

to the three-day waiting period; on the other hand, a claimant with a 14-day injury duration always 

has a benefit duration (in calendar time) of 14 days, due to the 14-day retroactive period.  For this 

reason, the treatment effect (in calendar time) is calculated for injury duration (instead of benefit 

duration); then, the injury durations of the claimants in the pre-reform treatment group are scaled up 

according to the resulting relative (percentage) treatment effect.  Having obtained the injury 

durations in such way, the benefit durations (in calendar time) of the individual claims can be 

calculated (by factoring in the 14-day retroactive period); finally, by applying the benefit schedule, 

the indicated benefits can be computed from these benefit durations. 

Computing the increase in nominal benefits for the treatment group does not suffice for 

computing the relative (percentage) increase in indemnity payments; this is because the group 

located between the control and treatment groups (as shown in Chart 1) is also affected by the 

benefit change.  In order to capture this effect, these claims are subjected to a weighted treatment 

effect (in injury time) when calculating the change in benefit duration.  For a given claim, this weight 

equals the proportion by which the claimant experienced an increase in the weekly benefit due to the 

hike in the weekly maximum; based on the numbers displayed in Chart 1, the weight 

equals ( 967.50) / (1286.78 967.50)w  , where w  is the pre-injury weekly wage of the claimant after 

inflation-adjusting this wage to the average weekly wage applicable at the time of the reform. 

In conclusion, when scaling up the benefit payments of the pre-reform claims in the treatment 

group and the group located between control and treatment groups in the way detailed above, then 

the resulting treatment effect in dollar terms relative to the total indemnity payments equals 1.17 

percent.  In other words, the lengthening of the benefit duration as caused by the increase in the 

maximum weekly benefit from 100 to 133 percent of the state average weekly wage produced an 
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increase in total indemnity payments for TTD claims (within award type category TTD/TPD) of 

1.17 percent.  Chart 11 displays this effect, along with a bootstrapped probability distribution. 

Chart 11: Relative Increase in Payments on TTD Claims due to Treatment Effect, Oregon 
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Finally, in order to obtain the total effect of the benefit change on payments going to claims of 

award type TTD, the benefit change itself (at given injury durations) has to be factored in; this effect 

is in addition to the discussed treatment effect (which quantifies the increase in payments caused by 

an increase in duration).  When adjusting the pre-reform claims of the treatment group and the 

group between the control and the treatment groups for the increased duration, while at the same 

time applying the benefit schedule with the increased maximum weekly benefit, the percentage 
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increase in total indemnity payments on claims of award type TTD is 3.82 percent.  Thus, about 31 

percent of the total effect of the benefit change is due to an increase in utilization (as caused by an 

increase in benefit duration among claimants affected by the benefit increase).  Chart 12 displays the 

total effect alongside the treatment effect (that is, the utilization effect of increased duration), again 

with bootstrapped probability distributions. 

In the analysis above, the treatment effect was applied to the pre-reform benefit durations before 

the post-reform benefit schedule was administered to the ensuing post-reform durations for the 

purpose of calculating the total effect; the resulting percentage of the utilization effect (as caused by 

the increase in durations) equals 31 percent.  An alternative way of breaking down the (same) total 

effect is to apply first the post-reform benefit schedule to the pre-reform durations before scaling up 

these pre-reform durations by the treatment effect; when doing so, the percentage effect of 

increased benefits at given, pre-reform durations equals 2.36 percent, thus delivering a utilization 

effect that measures 38 percent of the total dollar impact. 

The second approach of breaking down the total effect has the advantage of delivering a ready-

to-use formula for arriving at the total effect once the post-reform benefit schedule has been applied 

to the observed pre-reform durations.  Let b  be the relative (percentage) increase in costs due to the 

change in the benefit schedule for observed pre-reform durations, let u  be the proportion of the 

utilization impact in the total effect (as calculated using the second approach), and let pre reformd   and 
post reformd   be the dollar amounts of pre-reform and post-reform indemnity payments, respectively.  

Then, we can write:   1 / 1post reform pre reformd d b u     . 
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Chart 12: Relative Increase in Payments on TTD Claims: Treatment Effect and Total, Oregon 
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When calculating the treatment effect for New Mexico, we obtain as the total effect on indemnity 

payments of the change in the maximum weekly benefit a 4.50 percent increase (compared to 3.82 

percent for Oregon).  Of this total effect, 1.30 percentage points are due to the utilization increase, 

which amounts to about 29 percent of the total effect and, thus, is close to the 31 percent 

established for Oregon.  Note that for New Mexico, the waiting period equals 7 days (compared to 3 

days for Oregon), and the retroactive period equals 28 days (compared to 14 days for Oregon).  

Chart 13 exhibits the means and probability distributions of the total impact and the utilization 

effect, using 4,000 draws for the bootstrapped distributions. 
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Chart 13: Relative Increase in Payments on TTD Claims: Treatment Effect and Total, New Mexico 
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Finally, Table 1 summarizes the findings for Oregon and New Mexico.  Columns 9 and 10 offer 

alternative ways of calculating the proportion of the utilization effect in the total effect.  For the 

purpose of adjusting the direct cost effect of a reform (which is obtained by applying the post-

reform benefit schedule to the pre-reform durations) using the discussed formula, the values in 

column 10 have to be used. 
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Table 1: Summary of Estimated Cost Effects 

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) 
 Legislative 

Reform: 
Percentage 
increase in 
maximum 
weekly 
benefit 

Increase 
in benefit 
duration 
in 
treatment 
group 
(measured 
in weeks) 

Percentage 
increase in 
benefit 
duration 
in 
treatment 
group 

Resulting 
duration/benefit 
elasticity 
(column 4, 
divided by 
column 2) 

Total cost 
increase in 
percent 

Percentage 
points of 
total cost 
increase that 
are due to 
utilization 
increase at 
pre-reform 
benefit 
levels 

Percentage 
points of 
total cost 
increase that 
are due to 
increase in 
benefits at 
pre-reform 
duration 
levels 

Percentage of 
utilization 
increase in 
total cost 
increase 
(column 7, 
divided by 
column 6) 

Alternative 
concept of 
utilization 
increase as a 
percentage of 
total cost 
increase 
(column 6 
minus column 
8, divided by 
column 6) 

Oregon 33.00 0.76 17.49 0.53 3.82 1.17 2.36 31 38 

New Mexico 17.65 0.41 7.64 0.43 4.50 1.30 3.00 29 33 

Note: All computations rest on unrounded numbers.  Columns (7) and (8) do not add up to column (6) due to the changes not being 
infinitesimally small.  For instance, let 0 0 0 z x y , then we can write: 0 0   dz x dy y dx .  This relation holds at equality if dx  and dy  are 
infinitesimally small. 
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5. REGRESSION APPROACH TO TREATMENT EFFECT 

The “difference in differences approach” to gauging the effect of the increase in the 

maximum weekly benefit on benefit duration (the “treatment effect”) assumes that changes 

in economic activity or an underlying trend in benefit duration bear on the control and 

treatment groups in similar ways.  This assumption may be violated if the impact of an 

economic recession (or the subsequent economic recovery) affects the treatment group 

(which consists of high-wage earners) and the control group differently.  As Chart 8 

indicates, for Oregon, the time window prior to the reform was characterized by an 

economic slowdown, whereas the time window following the reform coincided with an 

economic expansion.  The findings presented in the section pertain to Oregon. 

In order to validate the 17.49 percent benefit increase obtained with the “difference in 

differences” approach, a partial linear regression model is estimated.  This model reads 

 

( )i i iy f z  x β , (1)

 

where iy  is the (natural) logarithm of the benefit duration of claimant i .  In this 

semiparametric model, the vector ix  comprises the covariates in the linear, parametric 

component, whereas the smoother ( )if z  models the (single) covariate in the nonparametric 

part.  Here, the covariates in the parametric component are exclusively indicator variables, 

which represent the claimant’s gender, occupation, injury year, affiliation with the control 

group, and affiliation with the post-reform treatment group.  The covariate in the 

nonparametric component, the influence of which is allowed to be nonlinear, is the 

claimant’s age at injury, measured in full years; this covariate was centered.  Occupation is 

categorized into nine major groups based on the U.S. Census Bureau Occupation Codes, as 

used in the 1990 Census of Population and Housing (see www.census.gov).  The reference 

group consists of male claimants that are employed in a service occupation, sustain a 

workplace-related injury in 2002 and belong to the post-reform treatment group.  As in the 

“difference in differences” approach, only claims that belong to the control or treatment 

group are included in the analysis. 

Model (1) is estimated using a generalized additive framework, as provided by the R 

package mgcv (http://cran.r-project.org/web/packages/mgcv/index.html; version 1.5-5, May 
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15, 2009), authored by Simon Wood.  The smoother ( )if z  is a thin plate regression spline; 

see Wood [15] for details.  The business cycle effect on injury duration is controlled for by 

the set of year indicator variables.  Variation in the composition of claimants by occupation, 

gender, or age is accommodated by the respective covariates.  The treatment effect equals 

the regression coefficient of the post-reform treatment group indicator variable, after 

adjustment for the logarithmic nature of the dependent variable; for details on this 

adjustment, see Halvorsen and Palmquist [7] (and Kennedy [9], for a discussion of the 

properties).  Chart 14 displays the transformed regression coefficient (as a gray dashed line) 

alongside the result of the “difference in differences” approach (black dashed line).  The 

treatment effect of 11.1 percent, as obtained from the generalized additive model, is 

somewhat smaller than the treatment effect of 17.49 percent delivered by the “difference in 

differences” approach. 

Standard regression approaches (such as least squares, iteratively reweighted least squares, 

or maximum likelihood approaches) typically regress on the mean of the distribution of the 

dependent variable.  Although regression on the mean of the distribution offers important 

insights into the average effect, it also obscures a possible nonuniform influence across the 

range of observed benefit durations.  Quantile regression, as developed by Koenker and 

Basset [11], offers a means of uncovering such a possible nonuniform influence.  Thus, the 

partial linear specification of model (1) is reestimated following Koenker, Ng, and Portnoy 

[12]; in that approach, the smoother ( )if z  rests on total variation regularization.  Software 

for estimating the partial linear model is available as part of the R package quantreg 

(http://cran.r-project.org/web/packages/quantreg/index.html; version 2.6, February 5, 

2009), authored by Roger Koenker. 

Quantile regression minimizes the sum of absolute errors; this problem is solved using 

linear programming techniques (such as the family of interior point algorithms).  If positive 

and negative errors receive equal weight, then quantile regression quantifies the effect of the 

covariates on the median of the dependent variable.  If, on the other hand, errors are 

weighted asymmetrically, regression on quantiles other than the median becomes available.  

For instance, if underestimating the observed value is penalized (at the margin) three times 

higher than overestimating it, then the solution that emerges is for the 75th percentile (see 

Koenker [10]). 
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Chart 14: Regression Approaches to Measuring the Treatment Effect, Oregon 
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The quantile regression estimates of the treatment effect are displayed in Chart 14.  There 

are estimates for the 10th, 20th,…, and the 90th quantiles.  Whereas the legislative reform 

increases the benefit duration for very short durations by more than 40 percent, the effect on 

long durations is essentially nil. 

6. BENEFIT DURATION AND CLAIM ATTRIBUTES 

Quantile regression, due to its ability to offer a more differentiated picture of the 

behavior of the dependent variable in response to covariates, is a suitable framework for 

studying the effect on injury duration of the claimant’s age and gender.  Then again, when it 

comes to interpreting these regression results, it is important to remember that the TTD 
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claims studied here are selected based on their final categorization.  Many PTD (and even 

some Fatal) claims may have been categorized as TTD claims originally; such claims are not 

included in the analysis, as there is no information available on the initial categorization.  

Most importantly, claim attributes that are manifestations of the outcome of the event of 

injury (such as nature of injury or part of body) may be causal to the final categorization into 

TTD and PTD claims.  For this reason, only covariates unrelated to the outcome of the 

injury, such as age and gender, are chosen in the following analysis.  Unless stated otherwise, 

the findings presented in the section pertain to Oregon. 

The impact of age is studied for the post-reform period, using model (1).  To reduce 

noise, the data is pooled over the three post-reform years, with indicator variables 

controlling for differences among those years.  A further covariate in the parametric 

component is gender.  Age enters the nonparametric component, as before.  The reference 

group consists of male claimants being injured in 2002. 

Chart 15 displays the influence of age on claim severity as obtained for model (1) in a 

regression on the 10th percentile, the median, and the 90th percentile.  There is a symbol for 

every year of age (where there is an observation for this age), except for the minimum age of 

13, which serves as a reference; 18 claims with zero values for age were removed, thus 

resulting in 24,108 observations for the three-year time period.  Note that the displayed 

effect of age includes the intercept (which is immaterial for the slope of the displayed 

duration trajectories).  Also, at the bottom of the chart, there is a frequency distribution of 

claims by age; this distribution indicates that the data set is sparsely populated for claimant 

exceeding age 60; the maximum age is 91. 

As Chart 15 shows, for the median, the benefit duration is roughly log-linear in age from 

the early twenties through the late fifties.  An M estimator, applied to the estimated age 

effect at the median duration within the age bracket 20 through 60 delivers a geometric mean 

rate of growth per year of age of 1.0 percent.  (A similar analysis for New Mexico delivers a 

geometric mean rate of growth of 0.72 percent.)  The estimated age impact beyond the 

sixties is not meaningful due to the sparse number of claims.  At the same time, there is no 

need to exclude these claims from the analysis, because the smoother adapts to the local 

environment.  The measured age impact is less than the value established by Krueger [13] for 

Minnesota; using indicator variables for multi-year age brackets, this author finds an impact 

on the mean duration per one year of age to be about 1.6 percent (see his Table 3; calculated 
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as ((exp(0.385)-1)/28.8 from the regression coefficient for the age group 45–54, relative to 

the reference group 18–24).  The age effects presented by Meyer, Viscusi, and Durbin [14] 

are elasticities and, due to their nature of being partial derivatives, cannot be generalized to 

large age intervals. 

Chart 15: Quantile Regression: Effect of Age on Benefit Duration, Oregon 
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Finally, the effect of gender on benefit duration is analyzed for the post-reform period, 

again using the partial linear framework of model (1).  Here, every year is estimated in 

isolation.  Gender enters the parametric component of the regression model, along with 

indicator variables for occupation.  Age is again included in the nonparametric component.  

The reference group consists of male claimants that are employed in a service occupation.  

Chart 16 presents the influence of the female gender on benefit duration for the 10th, 

20th,…, and 90th percentiles.  This chart indicates that there is essentially no difference in 
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benefit duration between female and male claimants up to the 40th quantile.  But for claims 

of very long benefit duration, female claimants are on indemnity benefits about 20 percent 

longer than male claimants. 

Chart 16: Quantile Regression: Effect of Female Gender on Benefit Duration, Oregon 
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As mentioned, because claims “self-select” (by final categorization) into TTD, PTD, and 

Fatal, the effects of claim attributes on TTD benefit duration (and the effect of gender, in 

particular) have to be interpreted with caution.  For instance, it is conceivable that the longer 

benefit duration of females is related to a higher proportion of PTD claims for males.  Put 

differently, whereas a female claimant may be on benefits for an extended period of time (as 

a TTD claim) but may eventually return to work, the corresponding male claimant may end 

up in the PTD category. 
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7. CONCLUSIONS 

Studying temporary total disability claims, the impact of 33 percent (Oregon) and 17.65 

percent (New Mexico) increases in the maximum weekly indemnity benefit on benefit 

duration and the associated percentage increase in indemnity payments were analyzed in a 

quasi-experimental setting.  The effect on benefit duration was measured using a “difference 

in differences” approach applied to pre-reform and post-reform treatment and control 

groups.  The resulting 17.49 percent (Oregon) and 7.64 percent (New Mexico) increases in 

benefit duration (the “treatment effects”) translate into duration/benefit elasticities of 0.53 

(Oregon) and 0.43 (New Mexico).  These values agree with the rule of thumb suggested by 

Gardner [5], which states that a 20 percent increase in benefits comes with a (minimum) 

increase in utilization of 10 percent.  At the same time, these elasticities are close to the 

values reported by Meyer, Viscusi, and Durbin [14] for TTD benefit increases of about 50 

percent in Kentucky and Michigan; these authors’ elasticities ranged from 0.27 to 0.62, but 

clustered mostly within the range of 0.3 to 0.4.  On the other hand, the elasticities of 0.43 

and 0.53 are considerably lower than the value of 1.67 that Krueger [13] established in his 

study of a 5 percent TTD benefit increase in Minnesota.  Then again, Gardner [4], who 

studied a 50 percent TTD benefit increase in Connecticut, found that for every 20 percent 

increase in benefits, utilization increases by about 18 percent, thus resulting in an elasticity 

located between the values established by Meyer, Viscusi, and Durbin [14] and Krueger [13]. 

For Oregon, the treatment effect was validated using a generalized additive regression 

model, which yielded a somewhat lower increase of 11.1 percent.  Further, using quantile 

regression on the Oregon data, it was demonstrated that most of this benefit duration 

increase originates in a lengthening of short durations; long benefit durations are nearly 

unaffected by the reform.  This finding is consistent with evidence established by Krueger 

[13], Figure 3; further, Curington [3] found that the duration of PPD claims with minor 

impairment are more responsive to benefit changes than those with major impairment. 

An increase in the maximum weekly benefit may give rise not only to longer benefit 

durations, but also to a higher number of indemnity claims, which would add to the cost of 

the reform.  For instance, Gardner [4] finds in a study for Connecticut that a 50 percent 

increase in the maximum weekly benefit was associated with an increase in the number of 

indemnity claims of 5 percent.  On the other hand, a recent study by Guo and Burton [6] 

arrives at the conclusion that the overall benefit elasticity (change in duration and frequency 
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taken together) is in fact negative, which implies that frequency or duration (or both) drop in 

response to more generous benefit provisions. 

No statement can be made with confidence on how the 33 percent increase in the 

maximum weekly benefit studied here may have affected the claim count.  This is because 

the data-cleansing algorithms that separate TTD and TPD claims in the Oregon data set, 

while improving data quality for the study of duration, may adversely affect the validity of 

the claims count information.  Further, the reform of interest, which is the increase in the 

maximum weekly benefit for TTD claims, was accompanied by an increase in compensation 

for both scheduled and nonscheduled PPD injuries; this change in PPD benefits may also 

have influenced the incentive to file claims, apart from the increase in the maximum weekly 

benefit of TTD claims. 

Further research is necessary for a better understanding of the effect of benefit changes 

on claim counts and of the effect of socioeconomic attributes (beyond age and gender) on 

the duration/benefit elasticity. 

 

Appendix 

A generalized additive regression model (GAM) is a semiparametric (or, synonymously, 

partial linear) generalized linear model (GLM), specified as the sum of nonparametric and 

parametric regression components.  The purpose of the nonparametric regression 

component is to accommodate a possibly nonlinear influence of a covariate (or a set of 

multiple covariates).  The estimation of the nonparametric component requires a smoother. 

Similar to generalized additive models, partial linear regression models consist of 

nonparametric and parametric components.  Unlike traditional regression approaches 

(including generalized linear additive models), which quantify the influence of covarariates 

on the mean of the dependent variable, quantile regression models gauge the influence of 

covariates on quantiles of interest, such as the median. 

The design of a quasi-experiment differs from that of a (controlled) experiment in that 

the assignment to control group and treatment group is not random (but still outside the 

control of the person conducting the experiment). 
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The thin plate regression spline is a smoother that finds its analogy in the bending of 

sheets of metal.  A major advantage of the thin plate spline is that it has no free parameters 

that need tuning.  Like other smoothers, the purpose of the thin plate regression spline is to 

discern a (potentially) nonlinear functional form in the data. 

Total variation regularization is a method of “de-noising” data, that is, a way of discerning 

the underlying structure in data points observed with error.  In the semi-parametric quantile 

regression model discussed here, total variation regularization serves as a smoother. 

M estimation is a technique where extreme deviations from the conditional mean of the 

dependent variables are downweighted.  That way, the estimated coefficients are robust to 

outliers (in the dependent variable).  By contrast, least squares regression, which has a 

quadratic objective function, affords the same weight to all observations. 
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Mortality Trend Models 

Gary G. Venter 

______________________________________________________________________________ 
Abstract  

Every 50 years or so a study of workers compensation mortality patterns is done, generally finding that after 
medical stabilization – 10 or more years after injury – mortality for seriously injured workers is comparable to 
that of the overall population. It has been about 25 years since the latest study, so we might be half way to the 
next one. But in the meanwhile there are trends in population mortality, and these impact loss reserve risk.  

Mortality data over time can be arranged in triangles, and models fit to such data are similar to those used in ca-
sualty loss development – particularly those that model trends in the three dimensions of calendar year of finali-
zation, age at finalization, and origin year. We fit such models to U.S. population male and female mortality data 
for death (finalization) ages 55 to 89, with several distributions of residuals. The information matrix is used to es-
timate parameter standard deviations.  

Although there is an extensive literature on fitting these models, most of the papers do not address parameter 
significance through t statistics, etc. and doing so finds problems with the standard models. One problem is over-
parameterization, and a conclusion here is that parameter reduction methods such as smoothing should be used. 
Other authors have tried this, but a sticky issue is finding parameter reduction methods that actually produce im-
provements in goodness of fit, as measured by AIC, etc. This is an open problem as far as we know and a direc-
tion for future research. 

Typically the starting point for the distribution of model residuals is Poisson, but several authors have found that 
negative binomial fits better. Unfortunately, some of these have misinterpreted the derivation of the negative bi-
nomial as a gamma-mixed Poisson to conclude that the negative binomial arises because there are different sub-
populations each with different Poisson distributions. But a sum of subpopulations each Poisson distributed is it-
self Poisson distributed. The mixture becomes interesting when you are drawing at random from a subpopulation 
whose parameter you do not know. Probably the negative binomial arises from other contagion effects, like 
weather, disease outbreaks, etc. Unfortunately, these also make residuals across cells not independent, and this ef-
fect has been found in other studies as well. 

A few alternative ways of parameterizing negative binomial residuals are discussed, and these are also applied to 
the Poisson-Inverse Gaussian distribution and its generalization, the Sichel. For females the negative binomial fits 
best but the male data is a bit more skewed than the negative binomial. However the Poisson inverse-Gaussian 
appears to be too skewed for this data. The Sichel is more flexible, with one more parameter, and fits best. 

Further insight into the shifts in mortality over time is provided by fitting Makeham-like curves to each year of 
death. One implication from this exercise is that male mortality trends at the older ages had a shift in 1988, pos-
sibly data related. Probably data older than that is not reliable, or at minimum comes from a different process. 
The overall conclusion is that more work is needed to come up with reasonable models for mortality trend, with 
parameter reduction a leading candidate. 

For trending, ARIMA models have often been fit to the calendar-year parameters after first differencing for sta-
bility. But since the parameters are estimated with error, differencing induces an autocorrelation, so the ARIMA 
models could be mostly fitting this artifact. Alternatives are discussed. 

Keywords: Mortality Risk; Lee-Carter Model; Cohort Effects; Parameter Risk; Model Risk 

______________________________________________________________________________ 

MORTALITY TREND MODELS 

The general categories of process, parameter and model risk are applicable to mortality projec-

tion. Model risk is particularly problematic, as it turns out that the better fitting models have aspects 

that make them questionable for projection purposes. Lee-Carter models with and without cohort 
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effects with a few distributions of residuals are fit to the population mortality data from the Human 

Mortality Database (HMD) and are compared based on penalized maximum likelihood.  

The models were fit to years of death starting with 1971. Preliminary analysis found different 

trends for ages of death below 55, due perhaps to reproductive health issues and the impact of HIV 

during some of this period. Female mortality below age 55 improved dramatically in the 1970s and 

has changed little since, whereas for males there was a sharp increase in mortality in the 1990s that 

has since recovered. The oldest age used is 89, as older ages had quite unusual mortality patterns be-

fore 1990—mortality reducing with age, etc. These could be data issues. The data available for this 

study ends with year of death 2006. This resulted in using year-of-birth cohorts 1882 to 1951. The 

cohort is year of death minus latest attained age at death, so is close to year of birth. 

The fits with cohort parameters turn out to be problematic in part because the oldest cohorts 

have only a few observations, which makes their parameters very responsive to just a few data 

points, and this in turn creates distortions in other parameters. Adding the data for all years of death 

55 – 89 for cohorts 1882 and later, reduces this problem. Another problem with the fits is that in the 

case of female death rates, the correlations among parameter estimates is high, which reduces the 

significance of the parameters and leads to questionable values. 

Section 1 discusses the models used; Section 2 looks at the fits; Section 3 tries to interpret the pa-

rameters; Section 4 address adding more years of death; Section 5 looks at Makeham-like fits; and 

Section 6 gets to projection risk. 

1. MODELS 

HMD data comes in the form of number of deaths and number of living, who are considered the 

exposures to death. These are in cells by year of death and age at death. Subtracting age from year 

gives the cohort, which is approximately the year of birth, but can be slightly different depending on 

the time of year that birth and death occurred. Data is also available by actual year of birth but in 

most models that is considered less important, and cohort is used instead.  

Here arrays are taken to have rows for year of death and columns for age at death. The years are 

1971 to 2006, and the ages 55 to 89, so the arrays are 36x35, with 1260 elements. The years are in-

dexed by t and the ages by d. The cohort is t – d and is constant along the NW-SE diagonals of the 

arrays. 

The starting point for recent models of mortality is the LC model from Lee and Carter (1992). It 

models the mortality ratio m, which is deaths divided by exposures, in log form the mean is: 

log mt,d = ad + bdht. (1.1)
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Here ad is the base mortality for age d, ht is the trend level at year t, which generally goes down 

over time as mortality decreases, and bd allows different ages to have trend rates that are factors 

times the overall trend. This is useful in the case of male mortality, for example, where mortality 

rates for ages 55 to 60 have improved at a greater rate than those for 85 to 89. However, this is 

where the LC model can run into differences from actual data, as some ages might trend faster or 

slower for a while but not always. 

A popular extension of LC is LC plus cohorts, from Renshaw-Habermann (2006) (RH): 

log mt,d = ad + bdht + cdut–d. (1.2)

The cohort term u allows for mortality to also vary by year of birth, independently of year of 

death and age. It is not always clear why it should, but allowing it to seems to substantially improve 

the goodness of fit of the models. The c factor allows the cohort effect to vary by age; e.g., it might 

wash out at older ages, or it might be stronger at older ages. 

There are some identifiability problems with these models. For instance, increasing every b by a 

factor and reducing every h by the same factor does not change the fitted values. This is similar for c 

and u. Here the constraints used for this are to set b1955  =  c1955 = 1 and h1971 = u1917 = 0. The cohort 

1917 was chosen as it is the last cohort that includes all calendar years. It is also one of the highest 

mortality cohorts for both males and females. The result of these constraints is that in the LC model 

ad is the fitted mortality for t = 1971 and ht is the trend level for age 55. All the other parameters are 

relative to these. In the RH model, every u is the cohort effect at age 55, where the cohort values are 

relative to cohort 1917. Traditionally sums of parameters have been constrained as a way to address 

the identifiability problems, but the approach here eliminates a few parameters, which is necessary to 

make the information matrix non-singular. 

Fitting is done by maximum likelihood estimation (MLE). Denote the exposures in the t,d cell by 

Et,d and the deaths by Dt,d. The Poisson model is that Dt,d is Poisson in mt,dEt,d, where mt,d could 

come from either the LC or RH model. With mean , the log of the Poisson probability at k is 

klog() – – log(k!). The loglikelihood is then: 

t,d{Dt,dlog[mt,dEt,d] – mt,dEt,d – log[Dt,d!]}. (1.3) 

Two forms of the negative binomial distribution are also fit. The negative binomial has two pa-

rameters r and, with mean r and variance r(1+). But in modeling a whole array of negative bi-

nomial variates it is customary to make the mean a parameter and model it with the covariates. In 

this case the mean would still be t,d = mt,dEt,d, as in the Poisson case. 

To make the mean a parameter, set  = r. The two forms arise by either eliminating r by setting 

r = , or eliminating  by setting  = r. Here these are called NB1 and NB2, respectively. Both 
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have mean , but NB1 has variance (1+) and NB2 has variance (1+/r), which are linear and 

quadratic in , respectively. Denoting the log of the gamma function by lgamma, the log of the 

probability at k for the negative binomial in r and  is: 

lgamma(r+k) +klog() – lgamma(r) –lgamma(1+k) – (r+k)log(1+). (1.4)

The loglikelihoods for NB1 and NB2 can be obtained by substituting  for r or r for , then 

Dt,d  for k and mt,dEt,d for , and summing over the observations. 

2. FITS 

Goodness of fit of different models can be compared using penalized likelihood. The traditional 

comparison is to start with the negative loglikelihood (NLL) and add a penalty. Here the traditional 

criteria divided by 2 are used, as these are more directly related to the NLL, but the standard names 

are retained. Thus the Akaike Information Criterion (AIC) uses a penalty of 1 for each parameter. If 

N is the sample size (number of observed cells), the Bayesian Information Criterion (BIC) uses a 

penalty of ½ log N for each parameter. There is some feeling among information theorists that the 

AIC is too lenient on extra parameters, but the BIC is too punitive. The Hannan-Quinn Information 

Criterion (HQIC) is intermediate. It gives a penalty of log log N for each parameter. It turns out that 

most of the conclusions are the same for each criterion, so until a difference arises, only the BIC will 

be used, but HQIC will be the fallback if there is a difference. For N = 1260, the penalty is about 

3.57 per parameter. Thus an extra parameter has to improve the NLL by that much to be justified. 

LC and RH Poisson models were fit to male and female mortality. For both datasets, the RH 

model fit quite a bit better than LC. The RH NB1 and NB2 models were then fit. Table 1 shows the 

NLL for each model and the improvement in NLL required to meet the BIC requirement for the 

extra parameters from the model above it. After the parameter constraints there are 35 a parameters, 

34 b parameters and 35 h parameters, so the LC model has 104 parameters. In the RH model there 

are 34 c parameters and 69 u parameters, for cohorts 1882 to 1951, ex 1946. Thus it has 207 para-

meters. The negative binomial versions have yet one more parameter. 
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Table 1. Fit Comparisons 

 NLL 

Parameters 
Added 

BIC Needed NLL 
Improvement 

NLL Improvement 

Model Female Male Female Male 

LC Pois 13670 14868  

RH Pois 9598 10081 103 368 4072 4787 

RH NB1 8798 8996 1 3.6 800 1085 

RH NB2 8748 8972 0 0 50 24 

 

The LC model fits considerably worse for males, with an NLL 1198 higher than for females. The 

RH model fits much better for both, with an improvement in NLL of 4072 for females and 4787 for 

males, compared to an improvement of 368 required to justify the extra parameters according to 

BIC. The difference between males and females is narrowed to 483, so RH is an even more substan-

tial improvement for males. Adding the extra parameter for NB1 also significantly improves both 

fits, and NB2 is a bit better yet. The  parameter for NB1 is about 2.5 for females, and 3 for males, 

so the variance for each cell is 3.5 to 4 times the cell mean, compared to equal to the mean for Pois-

son. That is a substantial difference, and with variances that big it is no wonder the Poisson fit is not 

as good. The r for NB2 is about 8600 for females and 7500 for males, which for this data translates 

to variances of 2 to 7 times the mean, with the higher ratios going to the larger cells.  

The best NB NLLs for LC were 9444 for females and 9652 for males, so Poissoness is the bigger 

culprit for LC – Poisson than the lack of cohort parameters. Still the NB RH model is better than 

NB LC for females by 696 and for males by 680, which are still well above the BIC need of 368, al-

though nowhere near the NLL improvements of 4000+ for the Poisson models. 

To give a visual impression of the fits, the empirical and modeled values of log m are graphed for 

a few years of death by age at death for the Poisson models. The graphs do not look much different 

for the negative binomial models, and in fact the parameters are not that different either. The advan-

tage of the negative binomial models is more in the error distributions than in the fitted means. Es-

sentially the cells with higher variance are not penalized as much in the likelihood functions for be-

ing different from their means, so the fit gets better for the smaller cells. This is not enough to be 

very noticeable in the graphs, however. 

Figures 1 and 2 show the female data and fits. The mortality rates increase by age and this is close 

to a linear function for the log rates. In a graph of the rates for several calendar years of death, most 
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of the vertical range is taken up by this increasing trend, which makes it difficult to see the differ-

ences among the calendar years. To look at goodness of fit, the linear trend by age is not so critical, 

so in the graphs this is eliminated by subtracting age at death / 11 from each log mortality rate, es-

sentially rotating the graph to make the lines roughly horizontal. This makes all the vertical range 

available to compare the actual and fitted rates for the various calendar years. A constant of 10.5 has 

been added to make the resulting numbers start near zero on the vertical axis. Rates have been de-

clining over time, so the most recent calendar year is at the bottom of the graph. The dotted lines 

are the data, and the solid lines are the model.  

Figures 3 and 4 are similar for males, but more years are able to be shown as the trends are 

greater for males, which separates the years a bit. Also, since the male mortality rates are higher, the 

rotated rates start around 0.45 instead of zero. 

Figure 1. Rotated Graph of LC Female Mortality Rates 
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Figure 2. Rotated Graph of RH Female Mortality Rates 
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Figure 3. Rotated Graph of LC Male Mortality Rates 
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Figure 4. Rotated Graph of RH Male Mortality Rates 
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3. INTERPRETING THE PARAMETERS 

The best-fitting NB2 parameterizations are used in this section. Does the fact that NB2 fits better 

than NB1 have any implications? NB2 is the form that comes from mixing a Poisson by a gamma 

distribution. This arises in experience rating, for instance, if each policy is Poisson-distributed, but 

there is a gamma distribution of Poisson means across the population. Taking a policy at random, its 

claims are conditionally independent given its Poisson mean, but unconditionally correlated due to 

the common Poisson mean. This is a way of modeling non-independent claims, or contagion.  

It is tempting then to argue that the population as a whole is a mixture of groups with different 

mortality, due to different lifestyles, access to medical care, etc., and that is the source of the conta-

gion observed. However that is a different kind of mixture. The population as a whole consists of all 

the groups taken together, not one drawn at random. The sum of independent Poisson distributions 

is itself Poisson, so the mixture argument does not explain contagion at the level of the entire popu-

lation. Moreover, the number of deaths is the sum of Bernoulli processes and would be binomial, 

not Poisson, if there were not already some source of contagion to begin with. 

There are factors affecting mortality rates for the population as a whole, such as weather, flu out-

breaks, etc., that make deaths not independent. This could be the principal source of contagion at 

the population level. The NB1 model makes the variance about 4 times the mean for each cell in the 

data, whereas for the NB2 model it ranges from about 2 to 7 times the mean, with the factor larger 

for the larger cells. The fact that NB2 fits better suggests that the contagion events hit the larger 

cells harder. That is, the ages with the greatest number of deaths also have the greatest increases in 

deaths when adverse conditions arise. 

Figure 5 graphs the ad parameters, which represent the base log mortality rate by age, before ap-

plication of trends and cohort effects, for males and females. Male mortality is higher than female at 

all ages, but that does not show with these parameters. The calendar-year parameters and cohort pa-

rameters interact with these so in themselves they are not that meaningful. 
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Figure 5. ad Parameters 

 
 

Figure 6 shows the calendar-year trends as reflected in the ht parameters. These were forced to be 
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Figure 6. ht Parameters 
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Figure 7. The surprise here is the accentuation of the trend effect for male octogenarians, whose 

trend has actually been less than for other ages. In the model the cohort effects offset this effect to 

match the data. The last cohort that affects ages 87, 88 and 89 is 1899, and cohorts prior to 1900 do 

not get into this dataset at ages less than 72, leaving room for the parameters to adjust themselves to 

produce the best possible fit at older ages without affecting younger ages. This raises questions, 

however, about the applicability of the parameters beyond this data range. 

Figure 7. Trend Age Modifiers bd 
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Figure 8. Cohort Parameters ut-d 
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Figure 9. Cohort Effect by Age Parameters cd 

 
 

The observed slower trend in mortality at older ages for males is modeled in this RH parameteri-

zation by an underlying higher trend at older ages (b parameters), offset by a starting group of co-

horts who had lower mortality rates to begin with (u parameters), the effects of which increased 

sharply at older ages (c parameters). The LC plus cohorts model for female mortality is an even 

stranger combination of offsetting effects. 

4. FIXING THE FITS 

One of the problems with the fits above is the sparsity of data in many cohorts. Another is the 

high correlation among parameters in the female model, which is discussed later. For the recent co-

horts, the only way to add data is to wait. For the older cohorts, however, there is data available. Ex-

tending the data to include all calendar years of death for cohorts 1882 to 1915 with death ages 55 to 

89 is possible, and this increases the number of observations to 35 for each such cohort. This would 

be expected to give better estimates for those cohort parameters ut–d, but also for the cd parameters 

that modify the cohort parameters for age effects, and indirectly on all the other parameters, which 

may have less flexibility to fit to random fluctuations in the data. The original data will be referred to 

as the partial data and the expanded set as the full data. 

The per-parameter penalty log(N)/2 for BIC goes up to 3.763, with 1855 observations, from 

3.569 for the 1260 observations in the partial data. The full data need calendar-year parameters ht 

0

1

2

3

4

5

6

7

8

9

10

55 60 65 70 75 80 85 90

c Parameter ‐ Age Impact on Cohorts

Female

Male



Mortality Trend Models 

Casualty Actuarial Society E-Forum, Winter 2011-Volume 2 15 

starting with 1937 (assuming zero at 1936) instead of from 1972, so the models have 33 more para-

meters. There are no additional a, b, c or u parameters. Thus the LC model now has 137 parameters, 

and the RH negative binomial models have 242 parameters. The full sequence of models above was 

fit, but now the NB1 fits better for males. To resolve this, more distributions were fit for the RH 

model. The NB3 is intermediate between the NB1 and NB2; the Poisson-inverse Gaussian (PiG) is 

similar to the negative binomial, but is more skewed; and the Sichel is a three-parameter generaliza-

tion of the PiG, which can be more or less skewed than the PiG but not less skewed than the NB. 

These distributions are discussed further in Appendix 1. The results are: 

Table 2. Triangle Fit Comparisons 

 NLL Parameters 
Added 

BIC Needed 
Improvement 

BIC Improvement 
Model Female Male Female Male 

LC Pois 21,726 24,047     

RH Pois 15,452 16,630 103 388 6274 7417 

RH NB1 13,176 13,567 1 3.8 2276 3063 

RH NB2 13,172 13,576 0 0 4 -9 

RH NB3 13,163 13,568 0 0 9 -1 

RH PiG 13,172 13,567 0 0 -0.4 0.015 

RH Sichel 13,172 13,565 1 3.8 0 2.2 

Again the RH model provides a tremendous improvement in the Poisson fit, as does moving 

from Poisson to negative binomial. The NB3 is the best fit for females, but the NB1 is the best NB 

for males. The difference between the NB models is that VM, the variance/mean ratio, is fixed at 

1+ for the NB1, is 1+/r for the NB2, and is 1+ (/r)½ for the NB3. For females the cell means 

range from 6000 to 44,000. With the fitted parameters, this gives VM of 5.1 for NB1, 2.4 to 11.1 for 

NB2, and 3.4 to 7.4 for NB3, which gives the best fit. For males the NB1 VM is 6.1. Another ver-

sion of the NB discussed in Appendix 2 fits slightly better with a range for VM of 5.3 to 6.7, but 

uses an additional parameter which does not give enough better fit to justify it.  

The improvements shown for the last three models are from the better of NB1 and NB2. The 

PiG and Sichel models also have 1, 2 and 3 versions like the NB. For females, the 2 version of the 

PiG was found to be slightly worse than the NB2, indicating that the additional skewness was not 

helpful. The corresponding Sichel has the NB2 as a limiting case, but otherwise has higher skewness 

than the NB2 with the same mean and variance. The fact that it did not give any improvement over 

the NB2 suggests that, if anything, less skewed distributions may fit better for females. 

For males the PiG, version 1, was very slightly better than the NB1. The Sichel fit even better 

with an intermediate skewness. However, the improvement in NLL is problematic. At 2.2 it is less 
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than the 3.8 required by the BIC, but better than 1, which the AIC requires, or 2.0, which the HQIC 

calls for. There is a good deal of literature suggesting that BIC is too stringent in rejecting parame-

ters. Burnham and Anderson (2004) make a strong push for AIC and the small sample AIC, based 

on the idea that the sample is not generated from the model being fit, but rather the model is a fairly 

compact representation of a more complex process. For a sample size of N and p parameters, the 

small sample AIC penalizes the NLL by Np/(N–p–1). With N = 1855, the additional penalty for the 

243rd parameter over the 242nd is 1.32. Thus the AIC, HQIC and small sample AIC all support the 

additional parameter for the Sichel distribution in this case. Thus it will be taken as the best-fitting 

model. 

The parameters shown below are from the best-fitting Sichel model for males and NB3 model 

for females. It appears that the full data helps with the male model but does not solve the problems 

with correlation in the female model. 

Figure 10. Base Mortality—a Parameter  

 
 

The a parameters in Figure 10 look reasonable for males but strange for females, especially the 

decline for the oldest ages. The calendar-year h parameters in Figure 11 also appear reasonable for 

males but trend upward for females. In this parameterization for females, the downward mortality 

trend over time ends up as a cohort trend, partially offset with an opposing calendar-year trend.  
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Figure 11. Calendar-Year h Parameters 

 
 

Figure 12. Trend Effect by Age at Death – b Parameters 

 
 

For the b parameters in Figure 12, the sharp upward movement at the oldest ages for females 

probably has something to do with the lower base mortality at the corresponding points. 

The female cohort trend is in Figure 13, which shows a sharp downward trend in mortality in the 
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direction of later years. This overwhelms the upward trend by calendar year to produce an overall 

downward trend in mortality, which matches the data, but is not intuitive as an explanation of the 

data. The h and u parameters with the full cohorts for females are mirror images of what they are for 

the partial cohorts. This is discussed further below. 

Figure 13. Female Cohort Effect u 

 
 

The male cohort parameters are on a completely different scale and so are graphed separately in 

Figure 14. The full and partial cohort parameters are consistent for males and so can be graphed to-

gether. The effect of conditioning on attaining various ages is clearer in the partial cohorts, where 

the conditioning is on progressively older ages, peaking in about 1910. There is a similar but much 

smaller effect in the full cohorts, perhaps due to a changing significance on the fact of attaining age 

55. In both cases, there is an increase in the mortality in the most recent cohorts, but this is based on 

very few data points. Also for the male model, the c parameter, set to 1 at age 55, stays that low only 

for a few ages then goes to much higher values at older ages, as shown in Figure 15. Thus, the high-

er cohort parameters for the latest cohorts are getting relatively low c parameters applied, and are 

not likely to remain so low when more data comes in, with higher c parameters.  
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Figure 14. Male Cohort Effects for Partial and Full Cohorts 

 

Figure 15. Age Impact on Cohorts—c Parameter 
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An idea of the statistical significance of the parameters can be gained by estimating the parameter 

covariance matrix as the inverse of the Fisher information matrix from the MLE estimation. Recall 

that this is the matrix of all 2nd partial derivatives of the NLL. This yields parameter standard devia-

tions and so t-statistics for each parameter and also covariances, and so correlations, among parame-

ters. 

For the male triangle parameters, virtually all the parameters had t-statistics with absolute values 

above 2. The few exceptions are parameters very close to zero, usually near points that were forced 

to be zero. With 242 parameters, there are over 25,000 correlations, so they are not printed here. 

However, the averages of the absolute value of the correlations by type of parameter (excluding pa-

rameters with themselves) are shown in Table 3 for males and Table 4 for females.  

Table 3. Average Absolute Value of Correlations by Parameter Types—Males 

  a h b u c 

a 52.7% 31.9% 36.1% 43.7% 25.3% 

h 31.9% 35.6% 22.3% 45.9% 37.3% 

b 36.1% 22.3% 42.7% 27.3% 22.0% 

u 43.7% 45.9% 27.3% 79.0% 67.3% 

C 25.3% 25.3% 22.0% 67.3% 67.4% 

Table 4. Average Absolute Value of Correlations by Parameter Types—Females 

  a h b u c 

a 98.9% 98.2% 9.4% 97.6% 34.1% 

h 98.2% 98.9% 8.4% 98.4% 31.6% 

b 9.4% 8.4% 40.9% 8.5% 30.5% 

u 97.6% 98.4% 8.5% 97.9% 31.3% 

c 34.1% 34.1% 30.5% 31.3% 56.5% 

 

The extremely high correlations among the a, h and u parameters in the female model make the 

individual parameters highly questionable. There could be many local maxima of the likelihood func-

tion, and there is no guarantee that the parameters found are a global maximum. Even if they are, 

the correlations make the parameter values unstable. In fact, the partial and full datasets gave oppo-
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site but similarly offsetting directions for the female calendar-year and cohort trends. 

This shows up in the t-statistics as well, which are near 1 in absolute value, so not significant, for 

all the h and u parameters in the female model. 

Moving to the full cohorts then appears to improve the male model, which has reasonable para-

meters and correlations among parameters, as well as significant t-statistics. For the female model, 

the high correlations (which, though not shown, are similar for the partial cohorts) make the fit 

problematic.  

Usually when there are high correlations, the solution is to leave out some variables. But the 

greatly improved fit of the RH model over the LC model appears to rule out omitting the cohort 

parameters. Parameter reduction through smoothing would still leave quite problematic parameter 

values as well. One option may be to keep the cohort parameters but not the calendar-year parame-

ters, making the trend a purely cohort matter. It does not seem likely that this would give a good fit, 

but it might be worth trying.  

Another option would be to set the base mortality a parameters as the average or some weighted 

average of the mortality rates for each age in the full data. This was actually Lee and Carter’s initial 

recommendation. This would give the other parameters less opportunity for mischief. A similar ap-

proach could be to use a parameterized curve, like Makeham or splines, for the base mortality. Yet 

another possibility might be to multiply the cohort and calendar-year parameters, and then apply a 

single age parameter to the product. This type of model is used extensively in casualty loss reserving, 

but has had mixed results (informally communicated) in mortality studies. 

5. MORTALITY CURVES 

The raw mortality rates for each year of death are somewhat noisy, and so cannot be readily 

compared graphically. However fitting mortality curves, like Makeham curves, to each year 

smoothes the data and lets the trends stand out more clearly. Here a generalized Makeham (GM) 

function is fit to the raw death rates, although fitting to force of mortality is more typical. Richards 

(2008) discusses some such generalizations, based on earlier work by Beard (1959) and Perks (1932). 

Using a curve to fit the ad parameters requires a log transform, and the form used here takes 4 para-

meters : 

ad =  + log[(1+d)/(1+d)]. (5.1)

Fitting such curves with four parameters to the log death rates in each year 1971 – 2006 results in 

the use of 144 parameters, compared with 104 for LC and 207 for RH with partial cohorts. Using 

the best-fitting negative binomial, the following values of the NLL were produced: 
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Table 5. Comparative Fits Including GM 

 NLL Parameters 
Added 

HQIC Needed 
Improvement 

NLL Improvement 

Model Female Male Female Male 

LC 9444 9652     

GM 9482 9553 40 79 -38 99 

RH 8748 8972 63GM, 103LC 124GM, 202LC 696 LC 581 GM 

The goodness of fit test here is the HQIC, which requires an improvement in NLL of 

log(log(sample size)) for each extra parameter, where here the sample size is 1260, requiring an im-

provement of 1.96555 per parameter. This is intermediate between the AIC and BIC. As can be 

seen, every model fit the female data better than the male data, and the RH model gave the best fit 

to both data sets, even though it is of dubious interpretation here. The generalized Makeham curve 

fit better than LC for the males, where the mortality curve was changing more over time, but LC fit 

better for females. 

Nonetheless, for both males and females, the curves provide continuous versions of the mortality 

functions for each year which are smooth enough to show all years on a chart, thus providing some 

insight into what the changes in the mortality functions have been.  

The male curves in Figure 16 (with age/12 subtracted) actually divide into three periods. First for 

1971 until 1987, which is the light line with the square markers, the curves are straight or downward-

curving. Then starting in 1988 (dark with diamond markers) the curves bend upward. Until around 

2001 or 2002 (first dotted curve) the mortality at age 55 is steadily improving, but the improvement 

at the other end of the curves is slower and sometimes non-existent. Then somewhere around 2000 

to 2002 the improvement at age 55 stops and the improvement at the older ages accelerates. The last 

three years show a different shaped curve from the earlier years.  

The changes in shape show why LC has problems fitting this data, but the fact that the biggest 

changes were at the ends of the lines shows why RH can give a big, albeit artificial, improvement in 

the fit. The graph suggests that projecting future changes in longevity has a high degree of uncertain-

ty involved. Should you just project the last five years, or from 1988 on, or average improvements in 

mortality over all the data? This could make quite a difference, especially at some ages. 
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Figure 16. Generalized Makeham Male 

 
 

The recent lack of improvement at age 55 is particularly problematic. That could be related to the 

recent reduced access to health care in the US for people under 65. If so, you would expect it to 

eventually improve over time as access improves. At the other end of the curve, it might be reason-

able to assume that the older ages will improve at the same rate as most of the curve, as there seems 

to be a trend in that direction over quite some time. Nonetheless this is an assumption imposed on 

the projection process and thus adds to the projection uncertainty. 

The generalized Makeham model did not fit as well as LC for females, but the fits in Figure 17 

still provide some insights. Here age/10 was subtracted to remove the upward trend. It is apparent 

that there has not been as much change in the shapes of the curves as in the male model. What does 

stand out, however, is variation in the rate of mortality improvements across the age groups. For 

instance, for ages 75 and above, there were fairly long periods with very little improvement in mor-

tality, punctuated here and there with years of substantial improvement. Ages 65 and below, on the 

other hand, had much more steady generally small improvements. As with the male data, there has 

been little improvement at age 55 in the latest few periods. Also since about 2000 there has been 

somewhat similar year-to-year improvements in the male and female graphs, even by age.  
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Figure 17. Generalized Makeham Female 

 
 

As with the male model, this graph brings out some problems in projecting future trends. Can 

you assume the greater improvement in the last 5 or 6 years will now continue? Would a time-series 

model with highly fluctuating rates of improvement be better at the older ages? Perhaps in both 

genders it would be appropriate to calculate trends under different assumptions then include all the 

scenarios, with selected weights, in the overall longevity improvement uncertainty model. 

6. PROJECTION RISK 

Projection risk can be calculated for a particular dataset of annuitants, which is not what is availa-

ble here, but some general observations on how to carry out such a calculation using LC and RH 

models are presented. 

To begin, the calendar-year trend levels have to be projected. Standard time-series methodologies 

produce ever-widening ranges as the trend continues. However, here there is another wrinkle, as the 

h parameters being trended are estimated parameters, and so are observed with error. An area of 

regression studies is errors-in-variables models, which has a number of potential methods. If the va-

riances of the h parameters have been estimated and they are relatively constant, then a simple rea-

sonable simulation of a future level could assume that same variance, and first simulate the future 
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levels with errors and then simulate actual future levels from there using that variance. 

A number of mortality modelers have used AR1 models for the annual difference in levels, usual-

ly with a negative autocorrelation, to project the trend. Most of these do not take into account the 

errors-in-measurement issue, however. For an independent series measured with a constant error 

variance, differencing induces an autocorrelation of -50 percent, arising from the same error having 

opposite signs in consecutive observations, so the AR1 model may be distorted by the induced auto-

correlation. Other mortality projection studies have used the Kalman filter, which recognizes mea-

surement errors, to project the levels, but the simple Kalman filter is based on a random walk, which 

can have too much autocorrelation. An alternative to AR1 and the Kalman filter is state-space mod-

els, which provide common generalizations of both.  

If projections are needed for cohorts not in the study, then trending of cohorts also has to be 

considered. Even the use of the recent cohort parameters should take into account their potential 

measurement errors, perhaps with a state-space model. 

Parameter uncertainty can be implemented by simulating the parameters from the covariance ma-

trix from the Fisher information matrix, which gives an estimate of the covariance matrix of the pa-

rameters. Asymptotically the parameters have a multivariate normal distribution with this covariance 

matrix, so they can be simulated using the normal copula, Cholesky decomposition, etc. However, 

even though the error distributions are asymptotically normal, they may not be normal for a finite 

sample, and other distributions could be used to simulate parameter risk, perhaps gamma, which is 

the exact error distribution for some models, and approaches the normal asymptotically. Other dis-

tributions that approach the normal could also be used. One criterion is that the normal should not 

be used if there is too much probability that a parameter that has to be positive could be simulated 

as negative from the normal. 

Once a routine is in place to simulate parameters and to trend the h and u parameters, the num-

ber of deaths can be simulated from the negative binomial or Sichel distribution. If a routine to do 

this is not available, probably simulating from a transformed gamma with the same first three mo-

ments would not be too far off. 

Model risk is a more difficult issue. The RH-Sichel model appears fairly reasonable for the male 

data, but the cohort parameters for the last several cohorts are questionable, being based on few ob-

servations. Parameter uncertainty would be large for such parameters. Perhaps using the models but 

including extra parameter uncertainty for model risk would give usable results. 
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7. SUMMARY AND FUTURE DIRECTIONS 

The Lee-Carter model allows only highly constrained shifts in the shape of the mortality curve 

over time, and adding cohort effects gives much better fits. However these are found to generate 

new problems, such as potential over-fitting, instability for projections, and highly correlated and 

insignificant parameters. Also, the negative binomial fits better than the Poisson, which has been 

seen before and is likely to be a standard result. The best form for the NB is not consistent, howev-

er, and may differ for different datasets, depending on how contagion actually applies. For males, 

the Sichel distribution is better still.  

Model risk is an issue, since the RH model can fit well at the ends of the age range using cohort 

parameters based on few observations. Using full cohorts can reduce this possibility at the older ages 

but not at the youngest ages. Also the RH parameters can be highly correlated, as in the female 

model, suggesting that some other model should be found, possibly by reducing the number of pa-

rameters. 

Projections of mortality risk under current methodologies are thus likely to be unreliable. But bet-

ter-fitting models are not likely to solve this problem as the RH model fits extremely will. Perhaps 

other models can be found with fits intermediate between LC and RH but with more parameter sta-

bility than RH. 

ADDENDUM 

Now 2007 data is available, and some of the recent trends are continuing. Mortality for ages 65+ 

continued to improve compared to 2006, but for ages in the mid-50s, the lack of improvement con-

tinued. Whether this is just a random fluctuation or some underlying trend, such as obesity or re-

duced access to medical treatment, is yet to be established. 
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APPENDIX 1. COUNT DISTRIBUTIONS 

The negative binomial distribution has two parameters, r and, with mean r and variance 

r(1+). In the full data there are 1855 cells, and when the negative binomial is used, each cell has a 

value of r and . The mean  = r is the value given by the RH model, but how r and  vary across 

cells depends on how the model is set up. In the NB1, it is assumed that every cell has the same val-

ue of , so the ratio of variance to mean is 1+ for every cell. In the NB2, every cell is assumed to 

have the same value of r, with  set to /r, which gives variance to mean ratio 1+/r, which is 

higher for the cells with higher means. However there are many other ways the parameters can vary 

across cells. For instance, suppose there is a constant q for all cells, with r and  given by r = q½ 

and  = ½/q. Then the mean is still r = , and the variance to mean ratio for a cell is 1+ ½/q. 

This is what is called the NB3 in the text. Its variance/mean ratio is still higher for the larger cells, 

but not by as much as in the NB2. 

This can be generalized to the NBp distribution, which adds a parameter p to control the va-

riance/mean ratio. It sets r = q1 – p and  = p/q. The mean is again r = , but now the variance 

to mean ratio for a cell is 1+ p/q. The value of p can be found by MLE. For males, the resulting 

value of p is 0.2, but the NLL is not enough better to justify the additional parameter by any of the 

information criteria. For females, the p is 0.53, but again this did not improve the NLL enough to 

justify the extra parameter. It might be argued that the NB3 already has an extra parameter of p = 

½, but this is a bit ambiguous as the parameter is not free to be fit. In this case the NB3 fits the fe-

male data by enough better to justify an additional parameter. 

When fitting a single NB distribution to a dataset, all of these forms are the same. The difference 

comes when fitting a number of distributions to a number of cells where a common relationship of 

variance and mean is desired. The NBp forms discussed here by no means exhaust the possible such 

relationships. In general, if the variance/mean ratio desired is 1+G(), just set r = /G() and  = 

G(). For instance, G() = q log() might work in some cases, possibly even for the male data in 

this paper. 

The Poisson—inverse Gaussian (PiG) distribution can be derived analogously to the NB as a 

Poisson mixture, but now the Poisson parameter is mixed by the inverse Gaussian instead of the 

gamma. Again it has 1, 2, 3 and p versions, etc. The inverse Gaussian is 50 percent more skewed 

than the gamma with the same mean and variance, and the PiG inherits this greater skewness, al-

though not by the same ratio. The third central moment divided by the mean is the 3rd moment ana-

logue of variance/mean for count distributions. For the negative binomial this is 1+3+22, while 

for the PiG it is 1+3+32. For =5, which is fairly typical in the fits here, that gives 66 for the NB 

and 91 for the PiG, both of which would have variance/mean = 6. 
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The Sichel distribution is a generalization of the PiG and is a Poisson mixed by a generalized in-

verse Gaussian. It can be more or less skewed than the PiG but not less than the NB, which is a li-

miting case. It uses the modified Bessel function of the second kind (sometimes called the third 

kind), ܭఔሺݐሻ ൌ
ଵ

ଶ
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The Sichel distribution with parameters r,  and  can be most readily expressed with two aux-

iliary parameters c and s, with c = K(r)/K+1(r) and s2 = 1+2c. The probability function at j is: 
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This is a reformulation of the version given in Rigby et al. (2008). Their parameters can be 

mapped from these by taking = rs,  = 1/r,  = r, and c = 1/c. 

The PiG is just the case  = –½, for which c = 1. The Sichel mean is still r and the variance is 

(1+h) with h = 2c(+1) + (c2 – 1). For the PiG, this simplifies to h = . The Sichel ratio of the 

third central moment to the mean is 3/ = 1+ 2(c–h) + 3h +2ch(+2). 

The  parameter can be very different than –½, and for the male data here was estimated as 

2155. The  parameter was close to 6, and r was set at /. The resulting third moments were usual-

ly intermediate to those of the PiG and NB. 

APPENDIX 2. FITTING NOTES 

With several distributions to be fit, routines were sought that did not use derivatives of the NLL 

or could use numerical derivatives. The R package subplex uses an efficient form of the simplex al-

gorithm, and was found useful in getting rapid improvement in the NLL from initial guesses. How-

ever it seemed to have difficulty in final convergence, often ending up in a region where the NLL 

was changing very slowly but was not near a minimum. Running subplex two or three times with 

default settings usually helped a good deal.  

From there the optim routine in the Stats package was found to be useful in proceeding more 

toward a minimum. The optim option used most often was BFGS with gr=NULL, which takes fast 

approximate numerical derivatives of the NLL to find the best direction for improvement. Usually it 

would start off with only small improvements, but usually ended up finding a region where more 

rapid improvement was possible, then slowing down again near to convergence. Relative and abso-

lute convergence criteria of 1e-17 and 1e-12 were used, which may be beyond machine precision. 

However the routine would converge, although usually not to a true minimum.  

The next step was to define a gradient function of the parameters using numerical derivatives 

from the numDeriv package. This is a slower but more accurate gradient, and using BFGS with it 

always improved the fit. The problem is that the convergence is defined by the NLL not changing 
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much, which does not always end up with all derivatives very close to zero. Since the 2nd derivatives 

at the minimum are needed for the information matrix, it seemed a good idea to make the deriva-

tives reasonably close to zero. For this the routine dfsane from the BB package was found helpful. 

In perhaps 50 iterations it could find points close to the optim parameters but with a reduction of 2 

or 3 orders of magnitude in the largest (absolute) derivatives. It usually produced only very small 

changes in the NLL from what optim had yielded, however. 

For the Bessel functions, the base R package function does not work with high values of the in-

dex (say  > 1500). There is a Bessel package available for Windows in R-Forge. It has a function 

besselK.nuAsym that does work for large values of the index, but not for small values. It needs an 

additional package Rmpfr, which is available on CRAN. 

There are recursive formulas for the PiG and Sichel probabilities, but these are awkward at best 

for probabilities for tens of thousands of events. 

The parameter constraints that force some parameters to be zero or one are different from much 

of the literature, which uses constraints on the sums of parameters. However doing it this way helps 

guarantee that the information matrix is not singular, which is necessary for its inversion. 

(Yilu Zhang and Lina Ma helped research the R methodology for fitting distributions used here.) 

 




