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Loss Simulation Model Testing and Enhancement

Kailan Shang FSA, CFA, PRM, SCJP

Abstract. This paper is a response to the Casualty Actuarial Society’s call for papers on the topic of “Testing
Loss Reserving Methods, Models and Data Using the Loss Simulation Model.” Its goal is to test and improve
the Loss Simulation Model (LSM). The testing methods used are good sources for analyzing real claim data. A
two-state regime-switching feature is also built into the model to add an extra layer of flexibility to describe
claim data.

Motivation. The testing and enhancement of the Loss Simulation Model helps improve and refine the model.
The test method may also be a good reference for performing tests on real claim data.

Method. Statistical tests are applied to the data simulated by the Loss Simulation Model. Standard distribution
fitting methods such as maximum likelihood estimation are used to analyze real claim data. The open-soutce
software LSM is enhanced via programming in Visual Basic.

Results. The LSM is enhanced with two-state regime-switching capability. Testing of the Loss Simulation
Model according to the list suggested by the Loss Simulation Model Working Party is conducted. It shows the
consistency between model input and model output for the addressed issues except case reserve adequacy.
Conclusions. Categorical variable and two-state regime-switching capability are added to the LSM. Testing of
the LSM increases the confidence in the accuracy of this advanced and useful tool.

Keywords. simulation model; loss reserving; regime-switching; copula.
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Loss Simulation Model Testing and Enbancement
1. INTRODUCTION

This paper is a response to a call for papers by the Casualty Actuarial Society (CAS) on “Testing
Loss Reserving Methods, Models and Data Using the Loss Simulation Model.”

1.1 Research Context

The loss simulation model (LSM) is a tool created by the CAS Loss Simulation Model Working
Party (LSMWP)' to generate claims that can then be used to test loss reserving methods and
models.” The LSMWP paper suggests some model enhancement and additional tests of the LSM.’
Based on the suggested list, additional tests are performed on the simulated results to test the
correlation, severity trend, negative binomial distribution for frequency, and case reserve adequacy
distribution. Real claim data are used to fit into distributions to determine parameters in LSM. The
model is also enhanced by allowing a two-state regime-switching distribution model for both

frequency and severity.

1.2 Objective
A. Model Testing

1. Frequency distribution testing

Test the Negative Binomial frequency distribution using various goodness-of-fit testing

methods.
2. Test correlation

Test the frequency correlation between different lines for other copula types in addition to the
normal copula: Frank, Gumbel, Clayton, and T copula. Those types of copulas are very important
to capture the tail risk while the normal copula that has been tested by LSMWP assumes a linear

correlation behavior.
Test the correlation between report lag and size of loss under a normal copula.
3. Severity trend and Alpha testing

Apply time series analysis techniques to find the trend and alpha parameters from simulated

! For more information about LSM and LSMWP, please visit http://www.casact.org/research/lsmwp.

2 CAS Loss Simulation Model Working Party Summary Report,. pages 4-5,

3 CAS Loss Simulation Model Working Party Summary Report, page 33, The paper addresses the first suggestion about
model enhancement and tests 1, 2, 3, 5 of the LSM in the suggestion list.
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data and compared with parameter inputs to check the statistical credibility. Ordinary least square

(OLS) method and hypothesis testing are applied to the deterministic time trend model.
4. Case Reserve Adequacy
A 40% time point case reserve adequacy distribution is tested against simulation model input.

B. Real Data and Simulated Data

Marine claim data are used to fit the distribution for frequency and severity using Maximum
Likelihood Estimation (MLE) and OLS for trend and seasonality analysis. The correlation between
different lines is also estimated. The estimated distribution type and parameters can then be input
into Loss Simulation Model (LSM) for simulation and further testing of different reserve methods.
This illustrates how to use real data to determine inputs for the LSM. Unfortunately, only final claim
data are available and there is no detailed paid loss history. Therefore, the Meyers” Approach® is not
applied to test rectangles generated by the simulation model against those from the real data due to

the missing details.
C. Model Enhancement

A categorical variable is included to enable setting parameters/distribution type for different
states. A two-state regime-switching flexibility is then built in to enable moving from one state to the
other state. The transition matrix of states from one period to another is an input table in the user
interface. Hopefully, this can add the flexibility to mimic the underlying cycle we normally see in
P&C business. The enhancement is intended for frequency and severity distribution. The simulated

results based on this enhancement are also tested.

1.3 Outline

The remainder of the paper proceeds as follows. Section 2 will discuss the methodology and
results of testing LSM. Section 3 will fit real claim data to distribution and determine trend
parameters which are inputs for LSM. Section 4 will present the enhancement being made for the

LSM. Section 5 will discuss the conclusion and potential further improvement of the LSM.

2. MODEL TESTING

The LSM is used to simulate claim and transaction data for testing. Once the simulator is run

* CAS Loss Simulation Model Working Party Summary Report, pages. 7-8.
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with specified parameters, the relevant R code in Appendix A is applied to the claim file and
transaction file output from LSM. Running R code, process output data and apply statistical tests. A

conclusion based on the statistical test results is then drawn for the addressed issues.

2.1 Negative Binomial Frequency Distribution

This test is to check if the simulated frequency result is consistent with the LSM input parameters

for negative binomial distribution.’
Test Parameters:
One Line with annual frequency Negative Binomial (size = 100, probability = 0.4)
Monthly exposure: 1
Frequency Trend: 1
Seasonality: 1
Accident Year: 2000

Random Seed: 16807

AN N N N Y N N

# of Simulations: 1000

Firstly, we draw a histogram of the simulated frequency data to give an indication of the

distribution type.

5> Negative Binomial Distribution: “A discrete probability distribution of the number of successes in a sequence of

Bernoulli trials before a specified (non-random) number 7 of failures occurs.”

k+r-1
k

More details can be found at http://en.wikipedia.org/wiki/Negative binomial distribution.

probability mass function as { ],(1_ p) - p* P probability of success, & number of successes.
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Figure 1. Histogram of simulated frequency data (Negative Binomial)
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A QQ plot would also be a straightforward way to compare the simulated results with the
intended distribution — Negative Binomial (Size = 100, probability = 0.4). From Figure 2, we can see
that it is a good fit although the expected frequency distribution in the LSM has a slightly longer tail
than the simulated results.

Figure 2. QQ Plot — Simulated results vs. Negative Binomial (size = 100, prob. = 0.4)
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Goodness-of-fit test using Pearson’s Chi-squared statistic is performed. The results disallow

rejecting the null hypothesis that the simulated frequency follows negative binomial distribution.

Goodness-of-fit test for nbinomial distribution

Casualty Actuarial Society E-Forum, Summer 2011 6
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X2 df P> X"2)
Pearson 197.3816 205 6.360712¢-01

In addition, using maximum likelihood (ML) method to fit the negative binomial distribution and

calculate the likelihood ratio statistics implies the same conclusion.
Goodness-of-fit test for nbinomial distribution

X2 df P> X"2)

Likelihood Ratio 113.3462 94 0.08499854

Using ML method gives us an estimation of the parameters as follows:

size mu
Estimation 117.2378284 144.1840000
Standard deviation 9.5150285 0.5670163

Our LSM inputs (size = 100 and prob = 0.4) imply mu = 150 and variance = 375. The estimated
value gives us size = 117 and prob = 0.448. The variance is 321.5. Here prob = size/(size+mu) and

. — 2 . 6
variance = mu + mu”/size.

We can see that at the significance level of 5%, the confidence interval for size is (98.59, 135.89)
which includes the model input size = 100. The mean and variance of the model input and
simulated results are also not too far away. Those results together with the goodness-of-fit tests

indicate that simulated frequencies are consistent with the negative binomial distribution.

2.2 Correlation

In LSM, there are two places where correlation can be built between variables. One is the
correlation between frequencies of different product lines. The other is the correlation between
claim size and report lag. The method of modeling correlation in LSM is a copula, which can capture
tail risk better than standard linear correlation assumption. Available copula types in LSM include
Clayton, Frank, Gumbel, # and normal copula. A normal copula among different lines’ frequencies

was tested and summarized in LSMWP paper.’

Sections 2.2.1 to 2.2.4 discuss the correlations among frequencies of different lines. Section 2.2.5

¢ Package stats version 2.12.0, R Documentation, The Negative Binomial Distribution.
7 CAS Loss Simulation Model Working Party Summary Report, Section 6.2.3, pages 29-33.
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discusses the correlation between claim size and report lag. In each section, once the simulator is run
with these parameters, the R code in Appendix A.2 is applied to the output claim file and/or transaction
file. Running the code produces joint frequencies for two lines of correlated loss size and report lag.
Statistical methods are then applied to test the consistency between model inputs and model outputs. Each
section contains the model parameters used and a discussion of how well the copula fits the output of the
simulation.

2.2.1 Clayton Copula

This test is to check if the Clayton Copula® modeling in I.SM is appropriate for correlation

between frequencies of different lines.

Test Parameters:

Two Lines with annual frequency Poisson (A = 906)
Monthly exposure: 1

Frequency Trend: 1

Seasonality: 1

Accident Year: 2000

Random Seed: 16807

AN N N N Y N N

Frequency correlation: @ 5, 7 = 2 (see footnote 8)
v # of Simulations: 1000

A simple way to compare is to draw a scatter plot for the intended copula and simulated

frequency pairs. Figures 3 and 4 below show that they are of similar patterns.

8 Clayton Copula: CJ(u)=(u;? +u;? +---+u? —n+1)™"* 0 >0. Details can be found on page 153 of
Nelsen 20006.
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Figure 3. Clayton Copula (5) Figure 4. Simulated Frequencies
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Clayton copula parameter is then estimated based on simulated frequency data using two
methods.
(1) The estimation is based on the maximum likelihood and a sample of size 998.
Estimate Std. Error g value Pr(>1z])
parameter 4.112557 0.1441209 28.53546 0
The maximized loglikelithood is 822.3826.
(2) The estimation is based on the inversion of Kendall’s tau and a sample of size 998.
Estimate Std. Error g value Pr(>1z])
parameter 4.623835 0.2434634 18.99191 0

We can see that the model parameter ® as 5 is within 95% confidence interval based on inversion
of Kendall’s tau but not that for maximum likelihood estimation. This is also consistent with

goodness-of-fit test results as below. We use two methods to test whether the correlation between

simulated frequencies is consistent with assumed copula.
(1) Using Maximum Likelihood method for parameter estimation:

Parameter estimate(s): 4.112557

Casualty Actuarial Society E-Forum, Summer 2011
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Cramer-von Mises statistic:’ 0.03709138 with p-value 0.004950495
(2) Using Inversion of Kendall’s tau method for parameter estimation:
Parameter estimate(s): 4.623835
Cramer-von Mises statistic: 0.01276128 with p-value 0.2623762

Based on Inversion of Kendall’s tau method, we cannot reject the null hypothesis that the
simulated frequencies have a relationship as the Clayton copula with ® = 5. But using Maximum
Likelithood method, it is the opposite conclusion. It would be conservative for us not to reject the

null hypothesis given the mixture of statistical test results.

2.2.2 Frank Copula

This test is to check if the Frank Copulam modeling in LSM is appropriate for correlation

between frequencies of different lines.

Test Parameters:

Two Lines with annual frequency Poisson (A = 906)
Monthly exposure: 1

Frequency Trend: 1

Seasonality: 1

Accident Year: 2000

Random Seed: 16807

D N N N N A

Frequency correlation: ® =8, » = 2 (see footnote 10)
v # of Simulations: 1000

A simple way to compare is to draw the scatter plot for the intended copula and simulated

frequency pairs. Figures 5 and 6 below show that they are of the similar patterns.

n

? Sr(]k) = Z{Crsk) ("] i(k)) - Cér) (U] i(k) )}2 . Details can be found on page 6 of Kojadinovic and Yan 2010.
i=1

e - ™ -1---(e™ -1
(e—H _ l) n-1

10 Frank Copula: Cj(u)= _% In(l+ @ > 0 Details can be found on page 152

in Nelsen 2000,.
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Figure 5. Frank Copula (8) Figure 6. Simulated Frequencies
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Frank copula parameter is then estimated based on simulated frequency data using two methods.

(1) The estimation is based on the maximum likelihood and a sample of size 1000.
Estimate Std. Error g value Pr(>1z])

parameter 7.508134 0.2770857 27.09679 0

The maximized loglikelithood is 455.8911.

(2) The estimation is based on the inversion of Kendall’s tau and a sample of size 1000.
Estimate Std. Error g value Pr(>1z])

parameter 7.544506 0.3076033 24.52674 0

We can see that the model parameter ® as 8 is within the 95% confidence interval based on

either maximum likelthood or inversion of Kendall’s tau.

Goodness-of-fit Test

(1) Using Maximum Likelihood method for parameter estimation:
Parameter estimate(s): 7.508134

Cramer-von Mises statistic: 0.01648723 with p-value 0.3118812

(2) Using Inversion of Kendall’s tau method for parameter estimation:

Parameter estimate(s): 7.544506

Casualty Actuarial Society E-Forum, Summer 2011 11
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Cramer-von Mises statistic: 0.01664421 with p-value 0.2029703

Based on those testing results, we cannot reject the null hypothesis that the simulated results are

consistent with Frank Copula with ® equal to 8.

2.2.3 Gumbel Copula

This test is to check if the Gumbel Copula11 modeling in LSM is appropriate for correlation

among frequencies of different lines.

Test Parameters:

Two Lines with annual frequency Poisson (A = 906)
Monthly exposure: 1

Frequency Trend: 1

Seasonality: 1

Accident Year: 2000

Random Seed: 16807

D N N N N A

Frequency correlation: @ = 6, n = 2 (see footnote 11)
v # of Simulations: 1000

A simple way to compare is to draw the scatter plot for the intended copula and simulated

frequency pairs. Figures 7 and 8 below show that they are of similar patterns.

" Gumbel Copula: Cj (u) =exp(-[(—In ul)g +(=In uz)g +-+(=In un)g]“(’) 0 >1. Details can be found on
page 153 in Nelsen 2000.
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Figure 7. Gumbel Copula (6) Figure 8. Simulated Frequencies
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Gumbel copula parameter is then estimated based on simulated frequency data using two

methods.

(1) The estimation is based on the maximum likelihood and a sample of size 1000.
Estimate Std. Error g value Pr(>|z|)

parameter  4.223043 0.1111714 37.98677 0

The maximized loglikelihood is 1038.727.

(2) The estimation is based on the inversion of Kendall’s tau and a sample of size 1000.
Estimate Std. Error g value Pr(>|z|)

parameter  4.419024 0.1603205 27.56369 0

We can see that the model parameter ® as 6 is out of the 95% confidence interval based on

either maximum likelihood or inversion of Kendall’s tau.

Goodness-of-fit Test

(1) Using Maximum Likelihood method for parameter estimation:
Parameter estimate(s): 4.223043

Cramer-von Mises statistic: 0.01498423 with p-value 0.1237624

(2) Using Inversion of Kendall’s tau method for parameter estimation:

Casualty Actuarial Society E-Forum, Summer 2011 13
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Parameter estimate(s): 4.419024

Cramer-von Mises statistic: 0.01063169 with p-value 0.2623762

Based on those testing results, we would reject the null hypothesis that the simulated results are

consistent with Gumbel Copula with ® equal to 6.

2.2.4 ¢ Copula

This test is to check if the # Copula12 modeling in LSM is appropriate for correlation between

frequencies of different lines

Test Parameters:

Two Lines with annual frequency Poisson (A = 906)
Monthly exposure: 1

Frequency Trend: 1

Seasonality: 1

Accident Year: 2000

Random Seed: 16807

D N N N N A

Frequency correlation: v (degree of freedom) = 5, correlation = 0.8, # = 2 (see footnote 12)
v # of Simulations: 1000

A simple way to compare is to draw the scatter plot for the intended copula and simulated

frequency pairs. Figures 9 and 10 below show that they are of the similar patterns.

12 # Copula, or Student # copula, C\?,Z (u) = Tv,Z (Tvil (Ul),~ . ',TV71 (Un )) # degree of freedom, ¥: correlation matrix,

T: ¢ cumulative distribution function.
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Figure 9. # Copula (dof = 5, 0.8) Figure 10. Simulated Frequencies
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The # copula parameter is then estimated based on simulated frequency data using two methods.
(1) The estimation is based on the maximum likelihood and a sample of size 1000.

Estimate Std. Error g value Pr(>1z])
parameter 0.7614685 0.01254461  60.70086 0
The maximized loglikelithood is 444.3589.
(2) The estimation is based on the inversion of Kendall’s tau and a sample of size 1000.

Estimate Std. Error g value Pr(>1z])
parameter  0.7840726 0.01343576  58.35713 0

We can see that the correlation assumption of 0.8 is within the 95% confidence interval based on

inversion of Kendall’s tau and within the 99% confidence interval based on maximum likelihood.

Goodness-of-fit Test

(1) Using Maximum Likelihood method for parameter estimation:
Parameter estimate(s): 0.7614685
Cramer-von Mises statistic: 0.04547016 with p-value 0.01485149

(2) Using Inversion of Kendall’s tau method for parameter estimation:

Casualty Actuarial Society E-Forum, Summer 2011 15
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Parameter estimate(s): 0.7840726

Cramer-von Mises statistic: 0.0259301 with p-value 0.04455446

Based on those testing results, it is conservative for us not to reject the null hypothesis that the
simulated results are consistent with the # Copula that has correlation = 0.8 and degree of freedom =

5.

2.2.5 Correlation between claim size and report lag

This test is to check if the correlation between claim size and report lag in LSM is appropriately

modeled.

Test Parameters:

One Line with annual frequency Poisson (A = 120)

Monthly exposure: 1

Frequency Trend: 1.05

Seasonality: 1

Accident Year: 2000

Random Seed: 16807

Payment Lag: Exponential with rate = 0.002739726, which implies a mean of 365 days.

Size of entire loss: Lognormal with mu = 11.16636357 and sigma = 0.832549779

AN NI N W N N NN

Correlation between payment lag and size of loss: normal copula® with correlation = 0.85,

dimension 2 (See footnote 13)
v # of Simulations: 10"

A simple way to compare is to draw the scatter plot for the intended copula and simulated

frequency pairs. Figures 11 and 12 below show that they are of similar patterns.

13 Normal Copula, or Gaussian Copula, C; w=ao 5 (@ - (Ul),- -, D 1 (Un ) 2 correlation matrix

@: normal cumulative distribution function. Details can be found on pages 43-54 of Li 2000.

14 'The reason to use 10 simulations instead of 1000 simulations is that 120 claims are expected (Frequency distribution
with 1 = 120) in each simulation. The total expected number of pairs of data is 1200 with 10 simulations for correlation
analysis.
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Figure 11. Normal Copula (0.85)
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Figure 12. Simulated claim size vs. report lag

V1

The normal copula parameter is then estimated based on simulated frequency data using two

methods.

(1) The estimation is based on the maximum likelihood and a sample of size 1000.

Estimate

rho.1 0.8317376

The maximized loglikelithood is 694.6756.

(2) The estimation is based on the inversion of Kendall’s tau and a sample of size 1000.

Estimate

parameter 0.8538963

Std. Error

0.006878922

Std. Error

0.007917961

g value

120.9110

g value

107.8430

Pr(>|z])

0

Pr(>|z])

0

We can see that the correlation assumption (0.85) is within the 95% confidence interval based on

inversion of Kendall’s tau.

Goodness-of-fit Test

(1) Using Maximum Likelihood method for parameter estimation:

Parameter estimate(s): 0.8317376

Cramer-von Mises statistic: 0.06218935 with p-value 0.004950495

(2) Using Inversion of Kendall’s tau method for parameter estimation:

Parameter estimate(s): 0.8538963
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Cramer-von Mises statistic: 0.02898052 with p-value 0.01485149

Based on those testing results, we would reject the null hypothesis at the significance level larger
than 1.5% that the simulated results are consistent with Normal Copula that has correlation = 0.85.
The difference in the value of correlation coefficients between model input and model output is not

small. However, the simulated data still have a strong correlation as intended.

2.3 Severity trend

This test is to check if the severity trend in LSM is modeled as intended.

Test Parameters:

One Line with annual frequency Poisson (A = 96)

Monthly exposure: 1

Frequency Trend: 1

Seasonality: 1

Accident Years: 2000 to 2005

Random Seed: 16807

Size of entire loss: Lognormal with mu = 11.16636357 and sigma = 0.832549779

Severity Trend: 1.5

AN N N Y N N NN

# of Simulations: 300

Figure 13 shows the mean value of loss size over time. There is a clear consistent trend. Figure 14
shows that Seasonal Decomposition of Time Series by Loess (STL)," which decomposes a time
series into seasonal, trend, and irregular components using loess.'® It is very obvious there is no

seasonality and there exists an upward sloping trend. The residual errors behave like white noise.

15 Package stats version 2.12.0, R Documentation, Seasonal Decomposition of Time Series by Loess. A description of
STL is available in Cleveland et al., 1990.
16 Loess stands for Locally Weighted Regtession Fitting.
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Figure 13. Mean Loss Size Figure 14. STL

data

1e+05 2e+05 3e+05 4e+05 5e+05 6e+05 7e+05
| |
seasonal
e+
o —_ o
-5000 0 5000

tsl

trend

20000

I \‘\‘ \H

remainder

2000 2001 2002 2003 2004 2005 2006

T T T T T T T
2000 2001 2002 2003 2004 2005 2006

20000 0

Time time

Based on the log of mean loss size, a linear regression that estimates the linear trend factor

suppofts our assumptions.
Log(Mean Loss Size) = Intercept + trend * (time — 2000) + error term

We get the following results using R.

Residuals:

Min 1Q Median 3Q Max
-0.051579 -0.023194 -0.007886 0.023918 0.078750

Coefficients:

Estimate Std. Error tvalue Pr(>|#|)
(Intercept) 11.034162  0.007526 1466.1 <2e-16
trend 0.405552 0.002196 184.7 <2e-16
Residual standard error: 0.03226 on 70 degrees of freedom
Multiple R-squared: 0.998,  Adjusted R-squared: 0.9979
F-statistic: 3.412e+04 on 1 and 70 DF, p-value: < 2.2¢-16

We can see that the 7 test shows that the trend is not equal to O at a significant level less than

0.1%. The high adjusted R2 and the F test also show that the trend is obvious. The trend factor
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0.405552 is based on the log of the mean loss size and is equivalent to the trend factor of 1.5 for loss
size (exp(0.405552) = 1.50013). This is also our model input. Figure 15 shows a good fitting of the
regression. Residual graph (Figure 16) shows a white noise pattern. Autocorrelation Function (ACF)

and Partial Autocorrelation Function (PACF) also support the existence of linear trend.

Figure 15. Trend fitting Figure 16. Residual, ACF, PACF
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2.4 Alpha in Severity Trend

This test checks if the alpha that determines the persistency of the force of trend for severity in
LSM is modeled as intended. As described in LSM," the cumulative trend amounts (cum) are

calculated first and then the trend multiplier is calculated as
cum pmt _ date

a
1—
cum J = (Cumacc_date) “ (Cumpmt_date)a '

trend = (Cumacc_date )(

acc _date

Test Parameters:

One Line with annual frequency Poisson (A = 96)

v Monthly exposure: 1
v Frequency Trend: 1
4

Seasonality: 1

17 CAS Loss Simulation Model Working Party Summary Report, pages 66-67.
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Accident Years: 2000 to 2001
Random Seed: 16807
Size of entire loss: Lognormal with mu = 11.16636357 and sigma = 0.832549779
Severity Trend: 1.5

Alpha: 0.4

N N N N A

# of Simulations: 1000

We choose the sample loss payments with report date during the 1st month and payment date

during the 7th month.

Therefore, the severity trend multiple is (1.5"1)04 (1 5712)04 51122 for those chosen

claims.
The expected loss size is 1,122 g11166+083255/2 ~112175.
The histogram and QQ plot show that the fit is not perfect, but not too far away.
Figure 17. Histogram of severity Figure 18. QQ plot of severity

Histogram of observed data QQ-plot distr. Lognormal
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Figure 19. Histogram and fitted probability density function

Lognormal pdf and histogram
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Maximum likelihood estimation gives us the following fitted parameters and standard deviation.
The mean value of severity is 113,346. When only volatility of meanlog estimation is considered, the

mean loss derived by model input is within 95% confidence interval.

meanlog sdlog
Estimation 11.31595927 0.80279226
Standard Deviation 0.05171240  0.03656619

Results of Kolmogorov-Smirnov test and Anderson-Darling normality test support the

lognormal distribution of the sampled payments.

One-sample Kolmogorov-Smirnov test
D = 0.0405, p-value = 0.8249

alternative hypothesis: two-sided

Anderson-Darling normality test
A = 0.4114, p-value = 0.3384

2.5 Case Reserve Adequacy Distribution

In the LSM, the case reserve adequacy distribution parameters are intended to model
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characteristics of an insuret’s case loss reserving process. For example, some insurers set a nominal
reserve until a claim is investigated while others may set up a formula or “average” reserve initially.
The ultimate claim value may be the same in both cases, but the timing and amount of the reserve
changes may be quite different. The case reserve adequacy distribution attempts to model this
process by generating case reserve adequacy ratio at each valuation date. Case reserve is determined

by multiplying the generated final claim amount by case reserve adequacy ratio.

Notice that, for simulated data, the case reserve adequacy parameters do not affect the ultimate
claim value. However, in determining LSM parameters from real data where some of the accident

years are not fully developed, the case reserve adequacy assumption may be crucial.

This test is to check if the X% time point case reserve adequacy distribution in LSM is modeled

as intended. We choose the 40% time point18 in this paper.

Test Parameters

One Line with annual frequency Poisson (A = 96)

Monthly exposure: 1

Frequency Trend: 1

Seasonality: 1

Accident Years: 2000 to 2001

Random Seed: 16807

Size of entire loss: Lognormal with mu = 11.16636357 and sigma = 0.832549779
40% Case Reserve: Lognormal with mu = 0.25 and sigma = 0.05

Severity Trend: 1

P0) =04

AN NN Y N U N N N

Est P(0) = 0.4
# of Simulations: 8"

From the test assumption, we know that the mean 40% case reserve adequacy ratio is

18 The 40% time point is the date that is equal to the 60% Report Date + 40% Final Payment Date.
19 Similar reason as indicated in footnote 14 as the number of simulated claims is large enough for statistical testing with
8 simulations.
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e ~1.2856  The transaction output is used to calculate the case reserve at 40% of payment

lag using linear interpolation method. Those values are then used for testing purposes.

The histogram, QQ plot, and probability density function show that the fit is not good.

Figure 20. Histogram of severity

Histogram of observed data
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Figure 21. QQ Plot of severity

QQ-plot distr. Lognormal

15

1.4

13

&

04 06 08 10 12 14 16 18

a

. Histogram and fitted probability density function

Lognormal pdf and histogram
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Maximum likelihood estimation gives us the following fitted parameters and standard deviation.

The mean value of severity is 1.141. When only volatility of meanlog estimation is considered, the

mean loss derived by model input is within 95% confidence interval.

Estimation

meanlog

0.07973950

sdlog

0.32269631
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Standard Deviation 0.01435980  0.01015391

Results of Kolmogorov-Smirnov test and Anderson-Datling normality test do not support the

lognormal distribution of the sampled case reserve adequacy.

One-sample Kolmogorov-Smirnov test
D = 0.3869, p-value < 2.2¢-16

Anderson-Darling normality test
A = 33.2183, p-value < 2.2¢-16

Model input and output are not consistent for both the distribution type and the fitted
parameters. In the simulation, valuation dates of each claim are generated based on an assumption
of waiting period (inter-valuation lag assumption). Before the final payment, case reserve is
generated on the simulated valuation dates. Since valuation dates are randomly generated, it often
does not coincide with the 40% time point. In those cases, linear interpolation method is used to get
case reserve ratio at 40% time point for testing. On the first valuation date, i.e., the report date, a
case reserve of 2,000 will be allocated for each claim without any adjustment related to the claim
size. If the second valuation date happens after 40% time point, it is clear that linear interpolation
method can give us false estimation of what is assumed in the model inputs. Therefore, there is no

confident conclusion about whether the model is correct or not.

A way to overcome this is to change the way in which transaction date is determined. In current
coding, report date and final settlement date are generated before transaction date and case reserves
are generated. We can set a few transaction dates as report date + X%(payment date — report date)
instead of generating them based on waiting period distribution assumption. X% could be 40%,
70%, and 90% to be consistent with current case reserve adequacy model input setting. In this way,
linear interpolation is not needed anymore and the output data we got are also easier for testing the

model and reserve methods.

3. REAL DATA AND SIMULATED DATA

Marine claim data are used for distribution fitting, trend analysis, and correlation analysis. Those
estimated distributions and parameters could be input for LSM to generate stochastic claim data.

Based on those claim data, reserve methods can be tested and evaluated. Unfortunately, paid loss
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history data are not available in this example and Meyers’ Approach” cannot be applied due to the
lack of details. Below is a snapshot of the claim data used in this section. It has two product lines:
Property and Liability. The data period is from 2006 to 2010. The number of accidents is 317 for

Property Insurance and 428 for Liability Insurance. All the claims are closed with a final payment.

Accident Date |Payment data|Line Final Payment
12/31/2006 3/30/2008|Property 249
5/1/2006| 11/27/2006|Property 16,293
1/22/2010 4/22/2010|Property 65,130
1/22/2006 8/20/2006 |Liability 38,544
7/127/2010 2/22/2011 |Liability 13,206

3.1 Property Line

Fit the severity

1. Draw a histogram of logarithm of payment to find out the most appropriate claim-size

distribution type. Lognormal distribution seems to be a good candidate for describing claim size.

Figure 23. Histogram of Log (Claim Size)

Histogram of observed data
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Il

Frequency

log(dataProperty$Payment)
2. Use lognormal distribution fitting for claim size.

meanlog sdlog

Estimation 9.2848522 2.6269670

20 CAS Loss Simulation Model Working Party Summary Report, pages 7-8.
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Standard Deviation 0.1484850 0.1049947

3. Use 2 QQ plot to check the fitting. It is not a perfect fitting but this is probably the best we

can achieve.

Figure 24. QQ Plot of Log(Claim Size)

QQ-plot distr. Normal
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Fit the frequency

4. Draw a time series of frequency data and conduct a Seasonal Decomposition of Time Series.

There is no strong evidence of linear trend and seasonality during this period.

Figure 24. Frequency Figure 25. STL
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5. Perform a linear regression for trend analysis.

Log(Monthly Frequency) = Intercept + trend * (time — 20006) + error term.

Residuals:
Min 1Q Median 3Q Max
-1.48135 -0.36849 0.04697 0.38654 1.15768
Coefficients:
Estimate Std. Error tvalue Pr(>|#|)
(Intercept) 1.93060 0.15164 12.732 <2¢-16
trend -0.14570 0.05919 -2.462 0.0172

Residual standard error: 0.5649 on 52 degrees of freedom.
Multiple R-squared: 0.1044, Adjusted R-squared: 0.08715.
F-statistic: 6.06 on 1 and 52 DF, p-value: 0.01718.

Figure 26. Trend fitting Figure 27. Residual, ACF, PACF
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0. Detrend the frequency and fit to the frequency distribution.
It looks like that lognormal distribution fits the detrended data better.
meanlog sdlog

HEstimation 9.5539259 3.1311762
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Standard Deviation 0.4260991 0.3012976
Figure 28. Histogram of detrend freq. Figure 29. QQ Plot of detrend freq.
Histogram of as.numeric(detrend$Freq) QQ-plot distr. normal
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The Kolmogorov-Smirnov test result also supports lognormal distribution assumption.
One-sample Kolmogorov-Smirnov test is as follows:
D = 0.0814, p-value = 0.8384.
Therefore, we have all the parameters for frequency and severity distribution and trend of
frequency for property line.
3.2 Liability Line

Fit the severity

1. Draw a histogram of the logarithm of payments to find out candidates for the distribution type

of the claim size. Lognormal distribution seems to be a good candidate for describing claim size.
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Figure 30. Histogram of Log (Claim Size)

Histogram of observed data

20 25
Il |

Frequency
15
1

log(datalia$Payment)

2. Use lognormal distribution fitting for claim size:

meanlog sdlog
Estimation 9.50314718 1.42545383
Standard Deviation 0.06890191 0.04872101

3. Use a QQ plot to check the fitting. The fit is not good at the low end.

Figure 31. QQ Plot of Log (Claim Size)
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Fit the frequency

4. Draw a time series of frequency data and conduct a Seasonal Decomposition of Time Series.

There are no strong evidence of linear trend and seasonality during this period.

Figure 32. Frequency Figure 33. STL
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5. Use linear regression for trend analysis.

Log(Monthly Frequency) = Intercept + trend * (time — 2000) + error term.

Residuals:

Min 1Q Median 3Q Max
-1.74504 -0.36590 0.09695 0.42571 1.03941
Coefficients:

Estimate Std. Error tvalue Pr(>|¢|)
(Intercept) 2.3330 0.2060 11.327 9.03¢-16
trend -0.1357 0.0587 -2.311 0.0247

Residual standard error: 0.5759 on 53 degrees of freedom.
Multiple R-squared: 0.09158, Adjusted R-squared: 0.07444.

F-statistic: 5.343 on 1 and 53 DF, p-value: 0.02472.
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Figure 34. Trend fitting
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6. Detrend the frequency and fit it to

distribution fits the detrended data better.

Frequency

meanlog
Estimation 2.35724617
Standard Deviation 0.05184524

Figure 36. Histogram of detrend freq.
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The Kolmogorov-Smirnov test also supports the assumption of lognormal distribution.

One-sample Kolmogorov-Smirnov test

D = 0.0981, p-value = 0.6293,

Figure 35. Residual, ACF, PACF
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the frequency distribution. It looks like lognormal
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Figure 37. QQ Plot of detrend freq.
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therefore, we have all the parameters for frequency and severity distribution and trend of frequency

for liability line.

3.3 Correlation

First, we calculate the correlation coefficient between the two lines’ frequencies.

Linel Line2
Linel 1.0000000 0.2800634
Line2 0.2800634 1.0000000

The Frank copula parameter is then estimated based on simulated frequency data using two

methods. Other types of copula can and should also be used to determine the best fit.

(1) The estimation is based on the maximum likelihood and a sample of size 55.
Estimate Std. Error g value Pr(>|z|)

rho.1 1.512390 0.854729 1.769438 0.07682074

The maximized loglikelihood is 1.533443.

(2) The estimation is based on the inversion of Kendall’s tau and a sample of size 55.
Estimate Std. Error g value Pr(>|z|)

parameter 1.325654 0.918666 1.443020 0.1490148

A simple way to compare is to draw the scatter plot for the intended copula and simulated

frequency pairs. The figures below show that they are of the similar patterns.
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Figure 38. Frank Copula (1.325654) Figure 39. Simulated Frequencies
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Goodness-of-fit Test

(1) Using Maximum Likelihood method for parameter estimation:
Parameter estimate(s): 1.512390

Cramer-von Mises statistic: 0.02652859 with p-value 0.3514851

(2) Using Inversion of Kendall’s tau method for parameter estimation:
Parameter estimate(s): 1.325654

Cramer-von Mises statistic: 0.02780636 with p-value 0.4009901

Based on those testing results, we would not reject the null hypothesis that the real data are

consistent with the Frank copula with parameter 1.325654.

4. MODEL ENHANCEMENT

4.1 Two-State, Regime-Switching Distribution

Sometimes in the real world, one single distribution may not be able to represent the past

frequency and severity experience data well. There are normally three reasons behind this:

(1) Structural change: some exogenous impact causes distribution (disttibution type and/otr

parameters) to change drastically during a time period and last thereafter.

(2) Cyclical pattern: The business may have some cyclical characteristics. A normal case is the
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underwriting cycle where for a certain period of time, the claim frequencies and/or severities

will increase a lot and after that, it will return to a lower level.

(3) Idiosyncratic risk: The claim data cannot be described by available distribution types. The
randomness due to idiosyncratic characteristics makes it hard to fit a certain distribution

along the time.

In the LSM, if the structural change is predicted, it can be incorporated by setting
frequency/severity trend and even using different severity distributions for different months when

the distribution type is expected to change.

However, the current model does not have a direct solution for incorporating the cyclical pattern
and idiosyncratic characteristics. In order to add the flexibility of LSM to handle the modeling of
them, a categorical variable is included to enable setting parameters/distribution type for different
states. For all the variables that are modeled as distribution, two-state regime-switching capability is
built in to enable moving from one state to the other state. A two-state, regime-switching model is
commonly used in time series analysis. Here state means the status of the object such as frequency

and/or severity that is described as a certain distribution.

The user can set two distributions with different parameters and determine the transition
probability from one state to another. At the beginning of each month, the model will determine

which distribution/state it will be for this month based on the transition matrix.

Let’s take frequency distribution as an example to illustrate the process in the model.

Input

v" State 1: Poisson Distribution (A = 120)

v' State 2: Negative Binomial Distribution (size = 36, prob = 0.5)
v Assume the trend, monthly exposure, and seasonality are all 1
v' State 1 persistency: 0.5

v

State 2 persistency: 0.7
Seed: 16807
Markov Chain Transition Matrix

State persistency represents the probability that the variable will remain in the same state next
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month. Here we assume the transition follows discrete Markov Chain.”. It means that the state of
next month only depends on the state of the current month but does not depend on the state before

the current month. In other words, it is not path-dependent.

Another thing that needs to be determined is the state of the first month. In the current model

setting, steady-state probabilities are used. Let’s define some variables first:

v P,;: state 1 persistency, the probability that the state will be 1 next month given that it is 1

this month.
P,,: the probability that the state will be 2 next month given that it is 1 this month.
P,,: the probability that the state will be 1 next month given that it is 2 this month.

P,,: state 2 persistency, the probability that the state will be 2 next month given that it is 2

this month.
v" I1;: steady probability of state 1.
v" I, steady probability of state 2.

We have the following relationship held.

(1, Hz)(P” Plz]:(n1 11,)

P, P,
Py =1-P,
P, =1-P,
I, +11, =1

We can then derive the steady-state probabilities I, and I, based on state persistencies P;; and

Moo 1Pa 1507 o

2-P,-P, 2-05-07
_1-p, _ 1-07
2-P,-P, 2-05-07

Calculation Steps

11, = 0.625

(1) Generate uniform random number randf, on range [0,1].

2! http://en.wikipedia.org/wiki/Markov_chain
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(2) If randf < Iy, state of first month state is 1, else, it is 2.
(3) Generate uniform random number randf; on range [0,1].
(4) For previous month state I, if randf,<P,;, then state is 1, else it is 2.
(5) Repeat step 3 and 4 until the end of the simulation is reached.
Table 1 shows the two-state, regime-switching result for the first simulation.

Table 1. Two-State, Regime-Switching Example

Random Number (RN) State Criteria
0.634633548790589 2 RN>0.375
0.801362191326916 1 RN>0.7
0.529508789768443 2 RN>0.5
0.0441845036111772 2 RN<0.7
0.994539848994464 1 RN>0.7
0.21886122901924 1 RN<0.5
0.0928565948270261 1 RN<0.5
0.797880138037726 2 RN>0.5
0.129500501556322 2 RN<0.7
0.24027365935035 2 RN<0.7
0.797712686471641 1 RN>0.7
0.0569291599094868 1 RN<0.5

Based on those generated frequency states, the claim and transaction are populated. This
enhancement is intended for frequency and severity distribution although the flexibility is given to all

the variables that are modeled as distribution in the LSM.

4.2 Testing

The following model setting is used for testing two-state, regime-switching feature.

Test Parameters:

v Accident Year: 2000

v" Random Seed: 16807

v’ # of Simulations: 300

v" Frequency correlation: Normal Copula with correlation as 95%
Line 1

Annual frequency:
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State 1: Poisson (A = 120), State 2: Negative Binomial (Size = 36, prob = 0.5)
State 1 persistency: 0.15

State 2 persistency: 0.9. It is equivalent to I, = 10.53% and I1, = 89.47%. We can consider
state 2 as the long-term normal case while state 1 is the short period where the cases of claim

increase a lot compared to state 1.
Monthly exposure: 1
Frequency Trend: 1

Seasonality: 1

Size of entire loss

State 1: Lognormal with mu = 10 and sigma = 0.832549779

V' State 2: Lognormal with mu = 2 and sigma = 0.832549779

V' State 1 persistency: 0.3

V' State 2 persistency: 0.8. It is equivalent to I, = 22.22% and I, = 77.78%.
V" Severity Trend: 1

v P0)=0

V' Est P(0) =0

Line 2

Annual frequency:

v' State 1: Poisson (A = 120), State 2: Negative Binomial (Size = 36, prob = 0.5)
V' State 1 persistency: 0.2

V' State 2 persistency: 0.9. It is equivalent to I, = 11.11% and I, = 88.89%
v Monthly exposure: 1

v

Frequency Trend: 1

Seasonality: 1

Size of entire loss:

v

Lognormal with mu = 10 and sigma = 0.832549779
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V" Severity Trend: 1

v P0)=0
v' EstP0)=0
4.2.1 Frequency

We split the claim data according to the state of the monthly frequency and test whether the

distribution for each state follows our model assumption.

State 1
First, we draw a histogram of the simulated frequency data to give intuition of the distribution

type.

Figure 40. Histogram of simulated frequency data (State 1)
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A QQ plot would also be a straightforward way to compare the simulated results with the

intended distribution — Poisson (lambda = 10). In Figure 41, we can see that it is a good fit.
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Figure 41. QQ Plot — Simulated results vs. Poisson (lambda = 10)
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Comparing the probability distribution functions also gives us a vivid illustration of the fit.

Figure 42. PDF — simulated vs. assumption
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Goodness-of-fit test using Pearson’s Chi-squared statistic is performed. The results disallow

rejecting the null hypothesis that the simulated frequencies follow a Poisson distribution.
Goodness-of-fit test for Poisson distribution
X2 df P> X"2)
Pearson 15.30052 19 0.703315

In addition, using maximum likelihood (ML) method to fit the Poisson distribution and calculate

the likelihood Ratio statistics implies the same conclusion.
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Goodness-of-fit test for Poisson distribution
X2 df P> X"2)
Likelihood Ratio 20.27080 17 0.260613

Using ML method gives us an estimation of the parameters as follows:

lambda
Estimation 10.1329923
Standard deviation 0.1609832

Comparing with our LSM input: lambda = 120, which implies a monthly frequency as Poisson
distribution with lambda = 10. We can see that at significance level of 5%, the confidence interval

for size is (9.82, 10.45), which includes the model input (lambda = 10).

Two-sample Kolmogorov-Smirnov test
D = 0.0411, p-value = 0.7286

The Kolmogorov-Smirnov test also shows a reliable fit. Those results together with the

goodness-of-fit tests indicate that simulated frequencies are Poisson distribution.

State 2

Firstly, we draw a histogram of the simulated frequency data to have an indication of the

distribution type.

Figure 43. Histogram of simulated frequency data (State 2)
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A QQ plot would also be a straightforward way to compare the simulated results with the

intended distribution — Negative Binomial (size = 3, prob = 0.5). From the figure below, we can see
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that it is a good fit. The expected frequency distribution in the LSM has a slightly shorter tail than

the simulated results.

Figure 44. QQ Plot — Simulated results vs. Negative Binomial (size = 3, prob = 0.5)
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Comparing the probability distribution function also shows fit below.

Figure 45. PDF — simulated vs. assumption
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Goodness-of-fit test using Pearson’s Chi-squared statistic is performed. The results allow us to

reject the null hypothesis that the simulated frequencies follow negative binomial distribution.

Goodness-of-fit test for nbinomial distribution
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X2 df P> X™2)
Pearson  30.75979 19 0.042890443

In addition, using maximum likelihood (ML) method to fit the Poisson distribution and calculate

the likelihood ratio statistics also implies the same conclusion.
Goodness-of-fit test for Poisson distribution
X2 df P> X"2)
Likelihood Ratio 32.36216 16 0.008968028

Using ML method gives us an estimation of the parameters as follows:

size mu
Estimation 2.78375646 3.00250312
Standard deviation 0.14274338 0.04418285

The estimated value gives us size = 2.78 and prob = 0.48. The derived variance is 6.24
Where prob = size/(size+mu) and variance = mu + mu’/size”

Our LSM inputs of size = 36 and prob =0.5 implies a monthly frequency as negative binomial
distribution with size = 3, prob = 0.5. In comparison to estimated parameters based on simulated

frequencies, they are not too far away.

Those results are somewhat consistent with the negative binomial frequency distribution testing
results in section 2.1 as the p values are not very high but disallow us rejecting the null hypotheses at

low significance level.

Transition Matrix

The implied steady-state probability of the transition matrix is tested against the simulation result.
The results and calculation step are shown below. The simulation results show the similar steady-

state probability.

22 Package stats version 2.12.0, R Documentation, The Negative Binomial Distribution.
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Line 1 Frequency Line 2 Frequency

P, P,) (015 085 P, P,) (02 08
P, P,/ (01 09 P, P, (01 09

(1, 11,)=(10.53% 89.47%) (1, 11,)=(11.11% 88.89%)

Non Zero Cases:

State 1: 391 State 1: 410
State 2: 2797 State 2: 2733

Probability of Zero Cases:

State 1: 0.005% (&) State 1: 0.005% (¢'°)
State 2: 0.125 (prob’) State 2: 0.135 (¢%)
Estimated all Cases: Non Zero Cases/ (1 — Probability of Zero Cases)
State 1: 391 State 1: 410

State 2: 3188 (2797/(1-0.125)) State 2: 3161 (2733/(1-0.135))

Total Cases: # of simulations * 12 months = 3600
Steady-state probability (compared with I1; & I1,)
State 1: 391/3600 = 10.86% State 1: 410/3600 = 11.4%

State 2: 1-10.86% = 89.14% State 2: 1-11.4% = 88.6%

4.2.2 Severity

In testing Line 1 severity data, one thing worth noticing is that the size of loss assumption in the
LSM is based on report date. Accident date might be a better choice to link size of loss with date of
occurrence. For example, the size of loss might be more relevant to the time of catastrophic event
like the 2011 Japanese earthquake instead of the time that the loss caused by the event is reported.
From the modeling perspective, it also creates difficulties to realize the two-state, regime-switching
function as the simulation is looped around each accident date instead of reporting date. In this

testing, size of loss assumption is changed to be linked with accident date.

We split the claim data according to the state of the severity and test whether the distribution for

each state follows our model assumption.
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State 1

First, we draw a histogram of the simulated severity data to have an indication of the distribution
type.

Figure 46. Histogram of simulated severity data (State 1)
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A QQ plot compares the simulated results with the intended distribution — Lognormal (mu = 10
and sigma = 0.832549779). From Figure 47, we can see that it is a good fit although the expected

severity distribution as in the LSM has a slightly shorter tail than the simulated results.

Figure 47. QQ Plot — Simulated results vs. Lognormal (u = 10 and ¢ = 0.832549779)
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Comparing the probability distribution functions also gives us a vivid illustration of the fit.
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Figure 48. PDF — simulated vs. assumption
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Using ML method gives us an estimation of the parameters as follows:

meanlog sdlog
Estimation 10.00677788 0.85323121
Standard deviation 0.01536917 0.01086764

Compare with our LSM input: mu = 10 and sigma = 0.832549779. We can see that at

significance level of 5%, the confidence intervals for both parameters include the model input.
State 2

First, we draw a histogram of the simulated severity data to have an indication of the distribution

type.
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Figure 49. Histogram of simulated severity data (State .2)
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A QQ plot compares the simulated results with the intended distribution —Lognormal (mu = 2,
sigma = 0.832549779). From Figure 50, we can see that it is a good fit. The expected severity

distribution in the LSM also has a slightly shorter tail than the simulated results as in state 1.

Figure 50. QQ Plot — Simulated results vs. Lognormal (u = 2, 6 = 0.832549779)
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Comparing the probability distribution functions also shows the fit below.
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Figure 51. PDF — simulated vs. assumption
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Using the ML method gives us an estimation of the parameters as follows:

meanlog sdlog
Estimation 2.00714752 0.83957055
Standard deviation 0.00820275 0.00580022

In comparison to our LSM input of mu = 2 and sigma = 0.832549779, we can see at a significant

level of 5% that the confidence intervals for both parameters include the model input.

4.2.3 Correlation

Correlation is tested to make sure that the correlation modeling using Copula is not affected by a
two-state, regime-switching model. Correlation between frequencies of two lines is chosen for

testing. We have four sets of data to test:
Set 1: Line 1: State 1 and Line 2: State 1
Set 2: Line 1: State 1 and Line 2: State 2
Set 3: Line 1: State 2 and Line 2: State 1
Set 4: Line 1: State 2 and Line 2: State 2

Scatter plots for the intended copula and simulated frequency pairs are shown below. Figures

from 52 to 56 below show that they are of similar patterns.
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Figure 52. Normal Copula (0.95)
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For each set, we use maximum likelihood and inversion of Kendall’s tau for parameter estimation
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and goodness-of-fit test. Below are the results.

Set 1: State 1 for Line 1 and State 1 for Line 2

Normal copula parameter is estimated based on simulated frequency data using two methods.

(1) The estimation is based on the maximum likelihood and a sample of size 37.
Estimate Std. Error g value Pr(>|z|)

tho.1 0.9344341 0.01531399  61.01832 0

The maximized loglikelihood is 35.42264.

(2) The estimation is based on the inversion of Kendall’s tau and a sample of size 1000.
Estimate Std. Error g value Pr(>|z|)

parameter  0.9380688 0.02458959  38.14903 0

We can see that the model parameter 0.95 is within the 95% confidence interval based on either

of the two methods.

Goodness-of-fit Test

(1) Using Maximum Likelihood method for parameter estimation:
Parameter estimate(s): 0.9344341

Cramer-von Mises statistic: 0.01936648 with p-value 0.6980198

(2) Using Inversion of Kendall’s tau method for parameter estimation:
Parameter estimate(s): 0.9380688

Cramer-von Mises statistic: 0.01821279 with p-value 0.7079208
Kolmogorov-Smirnov test is also done for testing the copula.
Two-sample Kolmogorov-Smirnov test

D = 0.0423, p-value = 0.9995

Based on those testing results, we can conclude that the simulated results show the same

correlation as defined in model input.
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Set 2: State 1 for Line 1 and State 2 for Line 2

Normal copula parameter is estimated based on simulated frequency data using two methods.

(1) The estimation is based on the maximum likelihood and a sample of size 307.
Estimate Std. Error g value Pr(>|z|)

tho.1 0.8400551 0.01290163  65.1123 0

The maximized loglikelihood is 183.7114.

(2) The estimation is based on the inversion of Kendall’s tau and a sample of size 307.
Estimate Std. Error g value Pr(>|z|)

parameter 0.852917 0.01677851  50.83388 0

We can see that the model parameter 0.95 is out of the 95% confidence interval based on either

of the two methods.

Goodness-of-fit Test

(1) Using Maximum Likelihood method for parameter estimation:
Parameter estimate(s): 0.8400551

Cramer-von Mises statistic: 0.03961167 with p-value 0.01485149

(2) Using Inversion of Kendall’s tau method for parameter estimation
Parameter estimate(s): 0.852917

Cramer-von Mises statistic: 0.03370755 with p-value 0.01485149
Two-sample Kolmogorov-Smirnov test

D = 0.0213, p-value = 0.9837

The testing results show mixed information. One of the possible reasons for this is that we are
not using all the simulated data for Set 2 but truncated data. If the number of claim is zero for a
particular month, this data is not included in the claim output file from the LSM. Therefore, we are
testing against non-zero monthly data only. As state 2 has a 12.5% and 13.5% probability of zero
monthly claims for the two lines, respectively, we can see that except for Set 1, all other sets have

the similar problem. It is still safe to conclude that high correlation exists as desired by model input.
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Set 3: State 2 for Line 1 and State 1 for Line 2

Normal copula parameter is estimated based on simulated frequency data using two methods.

(1) The estimation is based on the maximum likelihood and a sample of size 329.
Estimate Std. Error g value Pr(>|z|)

tho.1 0.8644334 0.01056627  81.81065 0

The maximized loglikelihood is 222.0031.

(2) The estimation is based on the inversion of Kendall’s tau and a sample of size 329.
Estimate Std. Error g value Pr(>|z|)

parameter 0.893593 0.01178312  75.8367 0

We can see that the model parameter 0.95 is out of the 95% confidence interval based on either

of the two methods.

Goodness-of-fit Test

(1) Using Maximum Likelihood method for parameter estimation:
Parameter estimate(s): 0.8644334

Cramer-von Mises statistic: 0.07412085 with p-value 0.004950495

(2) Using Inversion of Kendall’s tau method for parameter estimation:
Parameter estimate(s): 0.893593

Cramer-von Mises statistic: 0.04756158 with p-value 0.004950495
Two-sample Kolmogorov-Smirnov test

D = 0.016, p-value = 0.9996

Similar with Set 2, high correlation exists in the simulated data.

Set 4: State 2 for Line 1 and State 2 for Line 2

Normal copula parameter is estimated based on simulated frequency data using two methods.
(1) The estimation is based on the maximum likelihood and a sample of size 2376.

Estimate Std. Error g value Pr(>|z])
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tho.1 0.8114362 0.005444864  149.0278 0
The maximized loglikelihood is 1270.765.
(2) The estimation is based on the inversion of Kendall’s tau and a sample of size 2370.
Estimate Std. Error g value Pr(>|z|)
parameter  0.845676 0.006024305  140.3773 0

We can see that the model parameter 0.95 is out of the 95% confidence interval based on either

of the two methods.

Goodness-of-fit Test

(1) Using Maximum Likelihood method for parameter estimation:
Parameter estimate(s): 0.8114362

Cramer-von Mises statistic: 0.5949188 with p-value 0.004950495

(2) Using Inversion of Kendall’s tau method for parameter estimation:
Parameter estimate(s): 0.845676

Cramer-von Mises statistic: 0.4380294 with p-value 0.004950495
Two-sample Kolmogorov-Smirnov test

D = 0.0289, p-value = 0.1900

Similar with Set 2, high correlation exists in the simulated data.

5. CONCLUSION AND FURTHER DEVELOPMENT

Based on the tests that have been conducted on the LSM, we cannot reject the assumption that
model input and output are consistent regarding the following:

(1) Negative binomial frequency distribution.

(2) All copula types for frequencies among different lines except Gumbel Copula.

(3) the correlation modeling between report lag and loss size based on Normal Copula.

(4) Severity trend.

(5) Alpha in severity trend.
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Though the statistical test results does not support Gumbel Copula applied to frequencies
correlation very well, it is safe to not reject the null hypothesis as at a lower significance level such as

1%; it still passes the goodness-of-fit test.

A case reserve adequacy test shows that the assumption is not consistent with simulation data.
This may be caused by the linear interpolation method used to derive 40% time point case reserve.
It is suggested revising the way in which valuation date is determined in the LSM. In addition to the
simulated valuation dates based on the waiting-period distribution assumption as in the LSM, some
deterministic time points can be added as valuation dates. The deterministic valuation dates are
interpolated between the report date and the payment date. In the LSM, 0%, 40%, 70%, and 90%
time-points, case reserve, adequacy distribution can be input into the model. Therefore, 0%, 40%,

70% and 90% time points may be added as deterministic valuation dates.

Marine claim data are used to fit the distribution for frequency and severity. Trend, seasonality,
and correlation analyses are also conducted to determine model parameters. These could be
examples of how we use real data to determine appropriate LSM input which can be used for
simulation and further testing of different reserve methods. If there are some data about paid loss
history of the claims, the LSM can be better utilized to test different reserving methods. This could

be an area for further research on the LSM.

Some enhancements have been made to the LSM. In the LSM, size of loss is linked to report
date. The accident date might be a better choice for linking the size of loss with date of occurrence
as the report lag would only have slight impact in loss size. From the modeling perspective, it also
creates difficulties to realize the two-state, regime-switching function as the simulation is looped

around each accident date instead of reporting date.

A categorical variable is included to enable setting parameters/distribution type for different
states. Two-state, regime-switching flexibility is built in to enable moving from one state to the other
state with a specified transition matrix. This, hopefully, can add the flexibility to mimic the
underlying cycle we normally see in P&C business. Relevant testing is performed on the simulation

data, which shows the consistency between model input and model output.
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APPENDIX A. R® CODE

Statistical software R is used for loss simulation testing purpose. Based on the claim and
transaction files output from the loss simulation model, R is used to process the data, conduct the
statistical test for copula and distribution, and draw graphics for viewing goodness of fit. The R
codes are listed below for each test. The input/output directory shall be revised if the codes atre to

be reused. Lines start with “#”” is the description of the codes below it.

A.1 Negative Binomial Frequency Distribution Testing

# Read raw data (Claim output file)
rawdata<-read.csv("F:/Research/copula/copula test/Negative Binomial Frequency 100
0.4/co.csv",skip=1,header=TRUE)

# Manipulate claim output file to retrieve annual frequency data for each simulation/line
fcn<-function(dataset){

x<-floor((dataset[4]-20000000)/100)

return(x)}

¢ apply fcn which returns the month of accident date

dataindex<-apply(rawdata,1,fcn)

rawdata2<-cbind(rawdata,dataindex)

rawdata3<-aggregate(rawdata2, list(rawdata2$Simulation.No), length)
rawdatad<-rawdata3[,1:2]

datafl<-rawdata4$Simulation.No

write.csv(datar,"F:/Research/copula/copula test/Negative Binomial Frequency 100 0.4/freg.csv")

#draw histogram
hist(dataf1,main="Histogram of observed data")

#/QQPlot
freq.ex<-(rnbinom(n=1000,size=100,prob=0.4))
qgplot(datafl,freg.ex,main="QQ-plot distr. Negative Binomial™)

abline(0,1) #+ a 45-degree reference line is plotted

#Histogram and PDF

h<-hist(dataf1,breaks=10)

xhist<-c(min(h$breaks),h$breaks)

yhist<-c(0,h$density,0)

xfit<-seq(min(datafl),max(datafl),by=1)

yfit<-dnbinom(xfit,size=100,prob=0.4)

plot(xhist,yhist,type="s",ylim=c(0,max(yhist,yfit)), main="Negative Binomial pdf and histogram™)
lines(xfit,yfit, col="red")

#/Goodness of fit test
library(vcd)
gf<-goodfit(datafl,type= "nbinom",par=list(size=100,prob=0.4))

2 R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria.

ISBN 3-900051-07-0, URL http://www.R-project.org/.

Casualty Actuarial Society E-Forum, Summer 2011

55



Loss Simulation Model Testing and Enbancement

summary(gf)

plot(gf)
gf<-goodfit(datafl,type= "nbinom",method= "ML")
fitdistr(dataf1, "Negative Binomial")

A.2 Correlation Test
Correlation among the frequencies of different lines

1. Clayton Copula
# Read raw data (Claim output file)
rawdata<-read.csv("F:/Research/copula/copula test/clayton 5/co.csv",skip=1,header=TRUE)

# Manipulate claim output file to retrieve annual frequency data for each simulation/line
fcn<-function(dataset){

x<-floor((dataset[4]-20000000)/100)

return(x)}
¢ apply fcn which returns the month of accident date
dataindex<-apply(rawdata,1,fcn)
rawdata2<-chind(rawdata,dataindex)
#1st month instead of one year occurrences
rawdata2m<-rawdata2[rawdata2$dataindex==1,]
rawdata3<-aggregate(rawdata2m, list(rawdata2m$Simulation.No,rawdata2m$L.ine), length)
rawdatad<-rawdata3[,1:3]
datal<-rawdata4[rawdata4$Group.2==1,]
data2<-rawdata4[rawdata4$Group.2==2,]
rawdatab<-merge(datal,data2,by="Group.1")
datar<-chind(rawdata5$Simulation.No.x,rawdata5$Simulation.No.y)
colnames(datar)<-c("Linel","Line2")
write.csv(datar,"F:/Research/copula/copula test/clayton 5/x.csv")

#copula test

n<-length(datar[,1])

set.seed(123)

x<- sapply(as.data.frame(datar), rank, ties.method = "random") / (n + 1)

plot(x)

#Load R packages
library(MASS)
library(methods)
library(mvtnorm)
library(scatterplot3d)
library(mnormt)
library(sn)
library(pspline)
library(copula)

#/Set up copula object for copula distribution and goodness-of-fit test later
clayton.cop <- claytonCopula(6, dim=2)

#Copula fit with prespecified type.
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fit.clayton<-fitCopula(clayton.cop,x,method="ml")
fit.clayton
fit.clayton<-fitCopula(clayton.cop,x,method="itau")
fit.clayton

#Copula Goodness-of-fit test
gofCopula(clayton.cop, x, N=100, method = "mpl")
gofCopula(clayton.cop, x, N=100, method = "itau")

2. Frank Copula
#* Read raw data (Claim output file)
rawdata<-read.csv("F:/Research/copula/copula test/frank 8/co.csv",skip=1,header=TRUE)
# Manipulate claim output file to retrieve annual frequency data for each simulation/line
fcn<-function(dataset){

x<-floor((dataset[4]-20000000)/100)

return(x)}
# apply fcn which returns the month of accident date
dataindex<-apply(rawdata,1,fcn)
rawdata2<-cbind(rawdata,dataindex)
##1st month instead of one year occurences
rawdata2m<-rawdata2[rawdata2$dataindex==1,]
#'rawdata3<-aggregate(rawdata2, list(rawdata2$Simulation.No,rawdata2$Line), length)
#+1st month instead of one year occurences
rawdata3<-aggregate(rawdata2m, list(rawdata2m$Simulation.No,rawdata2m$L.ine), length)
rawdatad<-rawdata3[,1:3]
datal<-rawdata4[rawdata4$Group.2==1,]
data2<-rawdata4[rawdatad$Group.2==2,]
rawdatab<-merge(datal,data2,by="Group.1")
datar<-chind(rawdata5$Simulation.No.x,rawdata5$Simulation.No.y)
colnames(datar)<-c("Linel","Line2")
write.csv(datar,"F:/Research/copula/copula test/frank 8/x.csv")

“copula test

n<-length(datar[,1])

set.seed(123)

x<- sapply(as.data.frame(datar), rank, ties.method = "random™) / (n + 1)

plot(x)

#Load R packages
library(MASS)
library(methods)
library(mvtnorm)
library(scatterplot3d)
library(mnormt)
library(sn)
library(pspline)
library(copula)

#"Set up copula object for copula distribution and goodness-of-fit test later
frank.cop <- frankCopula(8, dim=2)
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#/Copula fit with prespecified type.
fit.frank<-fitCopula(frank.cop,x,method="mI")
fit.frank
fit.frank<-fitCopula(frank.cop,x,method="itau")
fit.frank

#/Copula Goodness-of-fit test
gofCopula(frank.cop, x, N=100, method = "mpl")
gofCopula(frank.cop, x, N=100, method = "itau™)

3. Gumbel Copula
# Read raw data (Claim output file)

rawdata<-read.csv("F:/Research/copula/copula test/Gumbel 6/co.csv",skip=1,header=TRUE)

i Manipulate claim output file to retrieve annual frequency data for each simulation/line
fcn<-function(dataset){

x<-floor((dataset[4]-20000000)/100)

return(x)}
¢ apply fcn which returns the month of accident date
dataindex<-apply(rawdata,1,fcn)
#rawdata2<-cbind(rawdata,dataindex)
#+1st month instead of one year occurences
rawdata2m<-rawdata2[rawdata2$dataindex==1,]
#rawdata3<-aggregate(rawdata2, list(rawdata2$Simulation.No,rawdata2$Line), length)
#1st month instead of one year occurences
rawdata3<-aggregate(rawdata2m, list(rawdata2m$Simulation.No,rawdata2m$L.ine),
rawdata3[,1:3]
datal<-rawdata4[rawdata4$Group.2==1,]
data2<-rawdata4[rawdata4$Group.2==2,]
rawdatab<-merge(datal,data2,by="Group.1")
datar<-chind(rawdata5$Simulation.No.x,rawdata5$Simulation.No.y)
colnames(datar)<-c("Linel","Line2")
write.csv(datar,"F:/Research/copula/copula test/Gumbel 6/x.csv")

#copula test

n<-length(datar[,1])

set.seed(123)

x<- sapply(as.data.frame(datar), rank, ties.method = "random™) / (n + 1)

plot(x)

#Load R packages
library(MASS)
library(methods)
library(mvtnorm)
library(scatterplot3d)
library(mnormt)
library(sn)
library(pspline)
library(copula)

#Set up copula object for copula distribution and goodness-of-fit test later
gumbel.cop <- gumbelCopula(3, dim=2)
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#'Copula fit with prespecified type.
fit.gumbel<-fitCopula(gumbel.cop,x,method="mI")
fit.gumbel
fit.gumbel<-fitCopula(gumbel.cop,x,method="itau™)
fit.gumbel

#’Copula Goodness-of-fit test
gofCopula(gumbel.cop, x, N=100, method = "mpl")
gofCopula(gumbel.cop, X, N=100, method = "itau")

4. T Copula
# Read raw data (Claim output file)
rawdata<-read.csv("F:/Research/copula/copula test/t50.8/co.csv”,skip=1,header=TRUE)
# Manipulate claim output file to retrieve annual frequency data for each simulation/line
fcn<-function(dataset){

x<-floor((dataset[4]-20000000)/100)

return(x)}
¢ apply fcn which returns the month of accident date
dataindex<-apply(rawdata,1,fcn)
rawdata2<-chind(rawdata,dataindex)
#+1st month instead of one year occurences
rawdata2m<-rawdata2[rawdata2$dataindex==1,]
#+1st month instead of one year occurences
rawdata3<-aggregate(rawdata2m, list(rawdata2m$Simulation.No,rawdata2m$L.ine), length)
rawdatad<-rawdata3[,1:3]
datal<-rawdata4[rawdatad$Group.2==1,]
data2<-rawdata4[rawdatad$Group.2==2,]
rawdatab<-merge(datal,data2,by="Group.1")
datar<-chind(rawdata5$Simulation.No.x,rawdata5$Simulation.No.y)
colnames(datar)<-c("Linel","Line2")
write.csv(datar,"F:/Research/copula/copula test/t50.8/x.csv")

“copula test

n<-length(datar[,1])

set.seed(123)

x<- sapply(as.data.frame(datar), rank, ties.method = "random™) / (n + 1)

plot(x)

#Load R packages
library(MASS)
library(methods)
library(mvtnorm)
library(scatterplot3d)
library(mnormt)
library(sn)
library(pspline)
library(copula)

#"Set up copula object for copula distribution and goodness-of-fit test later
t.cop <- tCopula(c(0.8), dim=2, dispstr="un", df=5, df.fixed=TRUE)

Casualty Actuarial Society E-Forum, Summer 2011

59



Loss Simulation Model Testing and Enbancement

#/Copula fit with prespecified type.
fit.t<-fitCopula(t.cop,x,method="ml")
fit.t
fit.t<-fitCopula(t.cop,x,method="itau")
fit.t

#/Copula Goodness-of-fit test
gofCopula(t.cop, X, N=100, method = "mpl")
gofCopula(t.cop, X, N=100, method = "itau")

Correlation between claim size and report lag

# Read raw data (Claim and transaction output file)
rawdatap<-read.csv("F:/Research/copula/copula test/copula2/co.csv",skip=1,header=TRUE)
rawdataa<-read.csv("F:/Research/copula/copula test/copula2/to.csv",skip=1,header=TRUE)

# Manipulate transaction output file to retrieve final payment amount
rawdataa2<-rawdataa[rawdataa$Transaction=="CLS",]
datal<-rawdatap[,c(1,2,3,5)]

data2<-rawdataa2[,c(1,2,3,4,7)]
datan<-merge(datal,data2,by=c("Simulation.No","Occurrence.No","Claim.No"))

# Translate payment date in terms of years

fcn<-function(dataset){

x<-floor(dataset[5]/10000)-floor(dataset[4]/10000)
y<-floor(dataset[5]/100)-floor(dataset[5]/10000)*100-(floor(dataset[4]/100)-floor(dataset[4]/10000)*100)
z<-dataset[5]-floor(dataset[5]/100)*100-(dataset[4]-floor(dataset[4]/100)*100)
r<-x+y/12+z/365

return(n)}

paymentlag<-apply(datan,1,fcn)

rawdatap2<-cbind(datan,paymentlag)
datar<-chind(rawdatap2$paymentlag,rawdatap2$Payment)
write.csv(datar,"F:/Research/copula/copula test/copula2/100/x.csv")

#copula test

n<-length(datar[,1])

set.seed(123)

x<- sapply(as.data.frame(datar), rank, ties.method = "random") / (n + 1)

plot(x)

#’Load R packages
library(MASS)
library(methods)
library(mvtnorm)
library(scatterplot3d)
library(mnormt)
library(sn)
library(pspline)
library(copula)

#Set up copula object for copula distribution and goodness-of-fit test later
normal.cop <- normalCopula(c(0),dim=2,dispstr="un")
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#/Copula fit with pre specified type.
fit.normal<-fitCopula(normal.cop,x,method="ml")
fit.normal
fit.normal<-fitCopula(normal.cop,x,method="itau")
fit.normal

#/Copula Goodness-of-fit test
gofCopula(normal.cop, X, N=100, method = "mpl")
gofCopula(normal.cop, x, N=100, method = "itau")

A.3 Severity Trend

# Read raw data (Claim and transaction output file)
rawdatap<-read.csv("F:/Research/copula/copula test/strend/co.csv",skip=1,header=TRUE)
rawdataa<-read.csv("F:/Research/copula/copula test/strend/to.csv",skip=1,header=TRUE)

# Manipulate transaction output file to retrieve final payment amount
rawdataa2<-rawdataa[rawdataa$Transaction=="CLS",]
fcn<-function(dataset){

x<-floor((dataset[4]-20000000)/100)

return(x)}
# apply fcn which returns the month of accident date
dataindex<-apply(rawdatap,1,fcn)
rawdatap2<-cbind(rawdatap,dataindex)
datal<-rawdatap2[,c(1,2,8)]
data2<-rawdataa2[,c(1,2,7)]
datan<-merge(datal,data2,by=c("Simulation.No","Occurrence.No"))
rawdata3<-aggregate(datan, list(datan$dataindex), mean)
#rawdatad<-rawdata3[,c(3,5,6)]
rawdatad<-rawdata3[,c(4,5)]
colnames(rawdata4)<-c("Month","MeanPayment")
write.csv(rawdata4,"F:/Research/copula/copula test/strend/x.csv")
datar<-rawdatad$MeanPayment

'set up time series
ts1<-ts(datar,start=2000,frequency=12)
plot(ts1)
plot(stl(ts1,s.window="periodic"))

#linear trend fitting

trend = time(ts1)-2000

reg = Im(log(ts1)~trend, na.action=NULL)
summary(reg)

plot(log(tsl), type="0")

lines(fitted(reg), col=2)
par(mfrow=c(3,1))

plot(resid(reg))

acf(resid(reg),20)

pacf(resid(reg),20)
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A.4 Alpha in Severity Trend

# Read raw data (Claim and transaction output file)
rawdatap<-read.csv("F:/Research/copula/copula test/Alpha/co.csv”,skip=1,header=TRUE)
rawdataa<-read.csv("F:/Research/copula/copula test/Alpha/to.csv",skip=1,header=TRUE)

# Manipulate transaction output file to retrieve final payment amount
rawdataa2<-rawdataa[rawdataa$Transaction=="CLS"|]
fcn<-function(dataset){

x<-floor((dataset[4]-20000000)/100)

return(x)}
# apply fcn which returns the month of accident date
dataindex<-apply(rawdatap,1,fcn)
rawdatap2<-cbind(rawdatap,dataindex)
dataindex2<-apply(rawdataa2[,c(1:4)],1,fcn)
rawdataa3<-chind(rawdataa2,dataindex?2)
datal<-rawdatap2[,c(1,2,8)]
data2<-rawdataa3[,c(1,2,7,8)]
datan<-merge(datal,data2,by=c("Simulation.No","Occurrence.No"))
datam<-datan[datan$dataindex==1,]
b<-datam[datam$dataindex2==7,]
c<-b[b$Payment!=0,]
a<-c$Payment
length(a)

#draw histogram

hist(a,main="Histogram of observed data")
library(MASS)

fitdistr(a, "Lognormal")

#QQPIot
Seve.ex<-(rlnorm(n=1000,meanlog=-0.8726,sd10g=0.9567))
qgplot(a,Seve.ex,main="QQ-plot distr. Lognormal™)

abline(0,1) #+* a 45-degree reference line is plotted
#Histogram and PDF

h<-hist(a,breaks=10)

xhist<-c(min(h$breaks),h$breaks)

yhist<-c(0,h$density,0)

xfit<-seq(min(a),max(a),by=1)

yfit<-dInorm(xfit,meanlog=-0.8726,sdlog=0.9567)
plot(xhist,yhist,type="s",ylim=c(0,max(yhist,yfit)), main="Lognormal pdf and histogram")
lines(xfit,yfit, col="red")

#’Kolmogorov-Smirnov Tests
ks.test(a,"pIlnorm", meanlog=-0.8726,sdlog=0.9567)

#Anderson-Darling Test
datasl.norm<-log(a)
library(nortest) #++ package loading
ad.test(datas1.norm)
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A.5 Case Reserve Adequacy

# Read raw data (Claim output file)
rawdatap<-read.csv("D:/LS/RS/case reserve/025/to.csv",skip=1,header=TRUE)

# Manipulate transaction output file to retrieve final payment amount
rawdataa<-rawdatap[rawdatap$Simulation.No<101,]

i Calculate the number of days that have passed since Jan 1,2000 until the accident date
x<-(floor(rawdataa[4]/10000)-2000)*365+(floor(rawdataa[4]/100)-floor(rawdataa[4]/10000)*100)*30+rawdataa[4]-
floor(rawdataa[4]/100)*100
rawdatap2<-chind(rawdataa,X)
¢ Linear Interpolation of generated case reserves to get 40% time point case reserve
fcn<-function(dataset){

aa<-dataset$Date

b<-dataset$Case.Reserve

bb<-dataset$Case.Reserve

cc<-dataset$Payment

count<-length(dataset$Date)

temp<-0

for(k in 1:(count-1)){

bb[Kk]<-b[k]+temp

temp<-temp+b[K]

bb[count]<-cc[count]
f<-approxfun(aa,bb)
xmin<-min(dataset[5])
Xmax<-max(dataset[5])
X<-0.6*xmin+0.4*xmax
if(cc[count]==0){
return(0)

Yelse{
return(f(x)/cc[count]/0.6)}
}

rawdataO<-rawdatap2[,c(1,2,6,7,8)]

m<-max(rawdata0$Simulation.No)

a<-matrix(rep(0,m*134),nrow=134,ncol=m)

i+ Get 40% case reserve for all claims

for(iin 1:m) {
rawdata00<-rawdataO[rawdata0$Simulation.No==i,]
rawdata<-as.data.frame(apply(rawdata00,2,abs))
n<-max(rawdata$Occurrence.No)
for(jin 1:n) {
dataset<-as.data.frame(rawdata[rawdata$Occurrence.No==j,])
a[j,i]=fcn(dataset)
}

}

a<-as.vector(a)
a<-a[a!=0]

#’draw histogram

hist(a,main="Histogram of observed data")
library(MASS)
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fitdistr(a, "Lognormal")

#QQPlot
Seve.ex<-(rlnorm(n=1000,meanlog=0.25,sdlog=0.05))
qgplot(a,Seve.ex,main="QQ-plot distr. Lognormal™)

abline(0,1) #+ a 45-degree reference line is plotted

#Histogram and PDF

h<-hist(a,breaks=30)

xhist<-c(min(h$breaks),h$breaks)

yhist<-c(0,h$density,0)

xfit<-seq(min(a),max(a),by=1)

yfit<-dInorm(xfit,meanlog=0.25,sdlog=0.05)
plot(xhist,yhist,type="s",ylim=c(0,max(yhist,yfit)), main="Lognormal pdf and histogram")
lines(xfit,yfit, col="red")

#*Kolmogorov-Smirnov Tests
ks.test(a,"plnorm", meanlog=0.25,sdlog=0.05)

#/Anderson-Darling Test
datasl.norm<-log(a)
library(nortest) 7 package loading
ad.test(datas1.norm)

A.6 Real Claim Data Fitting

# Read raw data
rawdata<-read.csv("D:/LS/RS/PL/pl.csv",header=TRUE)
rawdatal<-rawdata[rawdata$Payment>0,]
dataPropertyO<-rawdatal[rawdatal$Line=="Property" ]
dataProperty<-dataProperty0[,-3]
dataliaO<-rawdatal[rawdatal$Line=="Liability",]
datalia<-dataliaO[,-3]

#Property

#draw histogram of claim
hist(log(dataProperty$Payment),breaks=100,main="Histogram of observed data")
library(MASS)

fitdistr(log(dataProperty$Payment), “normal")

#/QQPlot of claim
claim.ex<-(rlnorm(n=1000,mean=9.285,sd=2.267))
qgplot(log(dataProperty$Payment),claim.ex,main="QQ-plot distr. Normal")

rawdata3<-aggregate(dataProperty, list(dataProperty$dataindex), length)
rawdatad<-rawdata3[,1:2]

colnames(rawdata4)<-c("tMonth","Freq")

summary(rawdata4)

#'set up time series for frequency
ts1<-ts(rawdata4$Freq,start=2006,frequency=12)
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plot(ts1)
plot(stl(ts1,s.window="periodic"))

#trend analysis

trend = time(ts1)-2006

reg = Im(log(ts1)~trend, na.action=NULL)
summary(reg)

plot(log(tsl), type="0")

lines(fitted(reg), col=3, Iwd=3)

par(mfrow=c(1,1))
plot(resid(reg))
acf(resid(reg),20)
pacf(resid(reg),20)

trendreg<--0.136*rawdata4[1]
detrend<-rawdata4[2]-trendreg

hist(as.numeric(detrend$Freq))
fitdistr(detrend$Freq,"normal™)

#QQPIot of detrended frequency
freq.ex<-(rnorm(n=1000,mean=9.554,sd=3.131))
qgplot(detrend$Freq,freq.ex,main="QQ-plot distr. normal™)

abline(0,1) #+ a 45-degree reference line is plotted
ks.test(detrend$Freq,"pnorm"”, mean=9.554,sd=3.131)

#Histogram and PDF

h<-hist(detrend$Freq,breaks=15)

xhist<-c(min(h$breaks),h$breaks)

yhist<-c(0,h$density,0)

xfit<-seq(min(detrend$Freq),max(detrend$Freq),length=40)
yfit<-dnorm(xfit,mean=9.554,sd=3.131)
plot(xhist,yhist,type="s",ylim=c(0,max(yhist,yfit)), main="Normal pdf and histogram")
lines(xfit,yfit, col="red")

#Liability
#draw histogram of claim
hist(log(datalia$Payment),breaks=100,main="Histogram of observed data")

fitdistr(log(datalia$Payment), "normal™)

#/QQPlot of claim
claim.ex<-(rlnorm(n=1000,mean=9.5,sd=1.425))
qgplot(log(datalia$Payment),claim.ex,main="QQ-plot distr. Lognormal")

rawdata3<-aggregate(datalia, list(datalia$dataindex), length)
rawdatad<-rawdata3[,1:2]
colnames(rawdata4)<-c("tMonth","Freq")
summary(rawdata4)
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i/set up time series
ts1<-ts(rawdata4$Freq,start=2006,frequency=12)
plot(ts1)

plot(stl(ts1,s.window="periodic"))

#itrend analysis

trend = time(ts1)-2005

reg = Im(log(ts1)~trend, na.action=NULL)
summary(reg)

plot(log(tsl), type="0")

lines(fitted(reg), col=3,lwd=3)

par(mfrow=c(1,1))
plot(resid(reg))
acf(resid(reg),20)
pacf(resid(reg),20)

trendreg<--0.127*rawdata4[1]
detrend2<-rawdata4[2]-trendreg

¢*histogram of detrended data
hist(as.numeric(detrend$Freq))
fitdistr(detrend2$Freq,"lognormal')
fitdistr(detrend2$Freq,"normal®)

#’QQPIlot of detrended frequency
freq.ex<-(rlnorm(n=100,meanlog=2.357,sdlog=0.3845))
qgplot(detrend2$Freq,freq.ex,main="QQ-plot distr. Lognormal™)

abline(0,1) # a 45-degree reference line is plotted
ks.test(detrend2$Freq,"plnorm", meanlog=2.357,sdlog=0.3845)

#Histogram and PDF

h<-hist(detrend2$Freq,breaks=15)

xhist<-c(min(h$breaks),h$breaks)

yhist<-c(0,h$density,0)

xfit<-seq(min(detrend2$Freq),max(detrend2$Freq),length=40)
yfit<-dInorm(xfit,meanlog=2.357,sdlog=0.3845)
plot(xhist,yhist,type="s",ylim=c(0,max(yhist,yfit)), main="Normal pdf and histogram")
lines(xfit,yfit, col="red")

datar<-cbind(detrend$Freq,detrend2$Freq)
colnames(datar)<-c("Linel","Line2")

#copula test

n<-length(datar[,1])

set.seed(123)

x<- sapply(as.data.frame(datar), rank, ties.method = "random™) / (n + 1)

plot(x)

cor(datar)
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#Load R packages
library(MASS)
library(methods)
library(mvtnorm)
library(scatterplot3d)
library(mnormt)
library(sn)
library(pspline)
library(copula)

#Set up copula object for copula distribution and goodness-of-fit test later. Only Frank copula
#is shown here while in real testing different types of copula should all be tested against the data

frank.cop <- frankCopula(6, dim=2)

#Copula fit with pre specified type.
fit.frank<-fitCopula(frank.cop,x,method="mlI")
fit.frank
fit.frank<-fitCopula(frank.cop,x,method="itau")
fit.frank

#Copula Goodness-of-fit test
gofCopula(frank.cop, x, N=100, method = "mpl")
gofCopula(frank.cop, x, N=100, method = "itau")

A.7 Two-State, Regime-Switching Feature Testing

Frequency
# Read raw data (Claim output file)
rawdata<-read.csv("'D:/LS/RS/tsw/cc.csv",skip=1,header=TRUE)
# Manipulate claim output file to retrieve annual frequency data for each simulation/line
fcn<-function(dataset){

x<-floor((dataset[4]-20000000)/100)

return(x)}
¢ apply fcn which returns the month of accident date
dataindex<-apply(rawdata,1,fcn)
rawdatal<-cbind(rawdata,dataindex)
rawdata2<-rawdatal[rawdatal$Line==1,]

i State 1 Frequency Testing

rawdatasl<-rawdata2[rawdata2$State==1,]

rawdata3<-aggregate(rawdatasl, list(rawdatas1$Simulation.No,rawdatas1$dataindex), length)
dim(rawdata3)

rawdatad<-rawdata3[,1:3]

datafl<-rawdata4$Simulation.No

#draw histogram
hist(datafl,main="Histogram of observed data")

#QQPIot
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freq.ex<-(rpois(n=1000,lambda=10))
qgplot(datafl,freq.ex,main="QQ-plot distr. Poisson")

abline(0,1) #+* a 45-degree reference line is plotted

#Histogram and PDF

h<-hist(dataf1,breaks=20)

xhist<-c(min(h$breaks),h$breaks)

yhist<-c(0,h$density,0)

xfit<-seq(min(datafl),max(datafl),by=1)

yfit<-dpois(xfit,lambda=10)

plot(xhist,yhist,type="s",ylim=c(0,max(yhist,yfit)), main="Poisson pdf and histogram")
lines(xfit,yfit, col="red")

#’Goodness of fit test

library(vcd)

gf<-goodfit(datafl,type= "pois",par=list(lambda=10),method= "MinChisq")
summary(gf)

plot(gf)

fitdistr(dataf1, "Poisson")

#’Kolmogorov-Smirnov Tests

ks.test(dataf1,freg.ex,exact=NULL)

i State 2 Frequency Testing

rawdatas2<-rawdata2[rawdata2$State==2,]

rawdata3<-aggregate(rawdatas2, list(rawdatas2$Simulation.No,rawdatas2$dataindex), length)
dim(rawdata3)

rawdatad4<-rawdata3[,1:3]

datafsl<-rawdata4$Simulation.No

datafl<-c(rep(0,400),datafs1)

#draw histogram
hist(datafl,main="Histogram of observed data")

#QQPIot

freq.ex<-(rnbinom(n=1000,size=3,prob=0.5))
qgplot(datafl,freq.ex,main="QQ-plot distr. Negative Binomial")
abline(0,1) #+ a 45-degree reference line is plotted

#Histogram and PDF

h<-hist(dataf1,breaks=10)

xhist<-c(min(h$breaks),h$breaks)

yhist<-c(0,h$density,0)

xfit<-seq(min(datafl),max(datafl),by=1)

yfit<-dnbinom(xfit,size=3, prob=0.5)

plot(xhist,yhist,type="s",ylim=c(0,max(yhist,yfit)), main="Negative Binomial pdf and histogram™)
lines(xfit,yfit, col="red")

#/Goodness of fit test

library(vcd)

gf<-goodfit(datafl,type= "nbinom" par=list(size=3,prob=0.5),method= "MinChisq")
summary(gf)

plot(gf)
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fitdistr(dataf1, "Negative Binomial")

Severity
# Read raw data (Claim output file)
rawdatap<-read.csv("'D:/LS/RS/tsw/cc.csv",skip=1,header=TRUE)
rawdataa<-read.csv("'D:/LS/RS/tswi/tt.csv",skip=1,header=TRUE)
# Manipulate transaction output file to retrieve final payment amount
rawdataa2<-rawdataa[rawdataa$ Transaction=="CLS" ]
fcn<-function(dataset){

x<-floor((dataset[4]-20000000)/100)

return(x)}
¢ apply fcn which returns the month of accident date
dataindex<-apply(rawdatap,1,fcn)
rawdatap2<-cbind(rawdatap,dataindex)

datal<-rawdatap2[,c(1,2,6,9)]

data2<-rawdataa2[,c(1,2,7,8)]
datan<-merge(datal,data2,by=c("Simulation.No","Occurrence.No"))
datal<-datan[datan$Line==1,]

datam<-aggregate(datal, list(datal $Simulation.No, datal $dataindex), mean)
dim(datam[datam$State==1,])

dim(datam[datam$State==2,])

datall<-datan[datan$Line==1,]
datans1<-datal1[datal1$State==1,]
datans2<-datal1[datal1$State==2,]

i State 1 Severity Testing
datafl<-datans1$Payment

#draw histogram
hist(datafl,main="Histogram of observed data")

#QQPIot
claim.ex<-(rlnorm(n=1000,meanlog=10,sdlog=0.83255))
qgplot(datafl,claim.ex,main="QQ-plot distr. Lognormal")

abline(0,1) # a 45-degree reference line is plotted

#Histogram and PDF

h<-hist(dataf1,breaks=20)

xhist<-c(min(h$breaks),h$breaks)

yhist<-c(0,h$density,0)

xfit<-seq(min(datafl),max(datafl),by=1)

yfit<-dInorm(xfit,meanlog=10,sdlog=0.83255)
plot(xhist,yhist,type="s",ylim=c(0,max(yhist,yfit)), main="Lognormal pdf and histogram")
lines(xfit,yfit, col="red")

i State 2 Severity Testing
datafl<-datans2$Payment

#draw histogram
hist(dataf1l,main="Histogram of observed data")
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#QQPlIot
claim.ex<-(rlnorm(n=1000,meanlog=2,sdlog=0.83255))
qgplot(datafl,claim.ex,main="QQ-plot distr. Lognormal")

abline(0,1) #+ a 45-degree reference line is plotted

#Histogram and PDF

h<-hist(dataf1,breaks=20)

xhist<-c(min(h$breaks),h$breaks)

yhist<-c(0,h$density,0)

xfit<-seq(min(datafl),max(datafl),by=1)

yfit<-dInorm(xfit,meanlog=2,sdlog=0.83255)
plot(xhist,yhist,type="s",ylim=c(0,max(yhist,yfit)), main="Lognormal pdf and histogram")
lines(xfit,yfit, col="red")

Correlation
#* Read raw data (Claim output file)
rawdata<-read.csv("'D:/LS/RS/tsw/cc.csv",skip=1,header=TRUE)
# Manipulate claim output file to retrieve monthly frequency data for each simulation/line
fcn<-function(dataset){
x<-floor((dataset[4]-20000000)/100)
return(x)}
¢ apply fcn which returns the month of accident date
dataindex<-apply(rawdata,1,fcn)
rawdata2<-cbind(rawdata,dataindex)
rawdata3<-aggregate(rawdata2, list(rawdata2$Simulation.No,rawdata2$Line,rawdata2$dataindex,rawdata2$State),
length)
rawdatad<-rawdata3[,1:5]
datal<-rawdata4[rawdatad$Group.2==1,]
data2<-rawdata4[rawdatad$Group.2==2,]
rawdatab<-merge(datal,data2,by=c("Group.1","Group.3"))

# Test for Line 1 State 1 and Line 2 State 1. This can be changed to other combinations of states 1&2, #2&1, and
2&2

rawdata6<-rawdata5[rawdata5$Group.4.x==1,]

rawdata7<-rawdata6[rawdata6$Group.4.y==1,]
datar<-chind(rawdata7$Simulation.No.x,rawdata7$Simulation.No.y)

colnames(datar)<-c("Linel","Line2")

#copula test

n<-length(datar[,1])

set.seed(123)

x<- sapply(as.data.frame(datar), rank, ties.method = "random™) / (n + 1)

plot(x)

#Load R packages
library(MASS)
library(methods)
library(mvtnorm)
library(scatterplot3d)
library(mnormt)
library(sn)
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library(pspline)
library(copula)

##Set up copula object for copula distribution and goodness-of-fit test later
normal.cop <- normalCopula(c(0),dim=2,dispstr="un")

#/Copula fit with prespecified type.
fit.normal<-fitCopula(normal.cop,x,method="ml")
fit.normal
fit.normal<-fitCopula(normal.cop,x,method="itau")
fit.normal

#’Copula Goodness-of-fit test
gofCopula(normal.cop, X, N=100, method = "mpl")
gofCopula(normal.cop, x, N=100, method = "itau")

#K-S test.
normal.fit<-normalCopula(0.95, dim=2)
y<-rcopula(normal.fit,1000)

ks.test(x,y)

APPENDIX B. QUICK GUIDE FOR TWO-STATE REGIME-SWITCHING

The two-state, regime-switching feature is allowed for all variables that were modeled as
distribution in LSM. Below is a short description about the related model input and output.

Model Input
Figure 57 below shows the model input interface of the example in section 4.1. By checking the

checkbox “Two-state Switching,” two distribution set up panels will be shown. You would also need
to input the State 1 persistency and State 2 persistency. If only one distribution is desired, you could
cither uncheck the checkbox “Two-State Switching” or input the same distribution type and
parameters for the 1st and 2nd distributions. By default, frequency and severity has two-state regime
switching. For others like report lag, only one distribution is allowed. Those, however, can be
changed. XML import/export setting is also revised for this enhancement.
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Figure 57. Model input of two-state switching feature
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Model Output

Claim and transaction output files: A new column “State” is added to record the state of
frequency in claim output file and state of severity in transaction output file.

Claim output example snapshot

S mul ati on 2011/4/10 0: 30: 14
Smilation Gcurrence o QaimNo Accident Date Report Date Line Type Sate

1 1 1 20000126 20000701 1 1 2
1 2 1 20000101 20000318 1 1 2
1 3 1 20000106 20010105 1 1 2
1 4 1 20000123 20000823 1 1 2
1 5 1 20000116 20000129 1 1 2
1 6 1 20000223 20000514 1 1 1
1 7 1 20000213 20000327 1 1 1
1 8 1 20000218 20000530 1 1 1
1 9 1 20000223 20010209 1 1 1
1 10 1 20000222 20000823 1 1 1
1 11 1 20000210 20000309 1 1 1
1 12 1 20000326 20000413 1 1 2
1 13 1 20000307 20000614 1 1 2
1 14 1 20000412 20000528 1 1 2
1 15 1 20000422 20000816 1 1 2
1 16 1 20000402 20000626 1 1 2
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Transaction output example snapshot

Transacti ons 2011/4/10 0: 30: 14
Smilation Gcurrence o daimNo Date Transaction Case Reserve Payrent State
20000701 REP 2000
20000703 RES -1999
20000726 RES 0
20000804 RES 0
20000907 RES 0
20001023 RES 0
20001108 RES 0
20010115 RES 0
20010120 RES 0
20010501 A.S -1
20000318 R=P 2000
20000706 RES -1998
20000729 A.S -2
20010105 REP 2000
20010115 RES -1994
20010202 RES 0
20010424 RES 0
20010515 RES 0
20010812 A_S -6
20000823 REP 2000
20000907 RES -1998
20001129 A.S -2
20000129 REP 2000
20000228 RES -1992
20000301 A_S -8
20000514 REP 2000
20000524 RES -1990
20000907 RES 0
20000914 RES 0

-
OO0 O0OWOOOODODODODODOODOWOONOOOOOOOOO

R QA G G O QG G G G G G G G Y
R A UG G A G G QG G G G G Y
S L, A A NNNNNNNNNNNONNNNNONNNNDNNNNNNNNNNDNDDN

DO NN RBRRWWWWWWNNN-_ 2 A A aaaaa

In tab “Summary” of simulation results, the state of each month’s frequency and severity is

output for checking and records.

Figure 58. Frequency state output

" Start Simulation 4  OKB/S T OKB/S

Sunmary |Clains [Loss Triangles

Simulation Project Few Simulation Project
Bunber of Iterations
Start Date: 2000/1/1 0:00:00
End Daie 2000/12/31 0:00:00

requency Correlation Copula: normsl Corrslationsc() Dinsl
<<<<<<<<<<<<<<<<<:umuun BEDOS 3555555555553
Randon Seed: 16807
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Line: | month: 3 Frequency! Hegative Binomial (size=3, prob=0.5) state! 2 prastate! I pres:  rand: (0.52350GT837G3443
Tine' 1 month’ 4 Frequency' Hegative Binomial (size=3, prob=l 5] state 2 prestate: 2 pres’ 2 rand: 0. D441845035111772
Tine: 1 menth: 5 Frequency Foisson lambds=10 state: 1 prestate’ 2 pres: 1 rand: 0 994539843094484
Line: | menth: 6 Frequency: Poiszon lambds=10 state: | prestate: | pres: 1 rand: 0.2168S122001924
Line! | month: T Frequency! Poisson lambds=10 state! | prestate; | pres: 1 rand: 0 03285653452T0261
Tine: 1 month: B Frequency’ Negative Binomial (size=3, prob=.5) state: £ prestate’ 1 pres: 2 rand: 0.797080138037728
Tine: 1 menth: 9 Frequency Hegative Binomial (sire=3, prob=.5) state: 2 prestate: 2 bz 2 rand: 0. 129500501556322
Line: | menth: 10 Frequency: Negative Binemisl (zizes3, probs0.5) stats: 2 prestats 2 rand: 0. 24027365935035
Tine! | month: L1 Frequency: Poisson lanbds=10 state | prestate; 2 pres: i rand 0. 797712565471541
Tine! 1 month: 12 Frequency: Poissom lambda=1 state' 1 prestate’ 1 pres: 1 rand: 0 0568781593084868

Tear 200D

Line: O menth: | Loss Size: Lognormal meanlog=il. 18838357 =dlog=() 832540779 prestate | state | persistency: 1 state Z persistency: | state: 2 rand

m

Progress
Claim Output File| D:ALS\ES\TSShco. cav ,O| Transaction Output File' | D ALSWRSATSS\ts, cav ,o\
Humber of Tterations: 1 - ‘ Run | | | | Close
Ready
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Figure 59. Severity state output

¥ Start Simulation

{Sunmary | Clains | Loss Triangles|

Tear ; 2000
line: O month:
0. 7585233061 10874
line: O month: 2 Loss Sire! Lognormal meanlog=l0 sdlog=0. 532549779 prestate
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line: O menth: 3 Loss Size! Lognormal meanlog=l0 sdlog=0. B32543779 prestate
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line: O month: 8 Loss Size! Lognormal meanlog=l0 sdlog=0. 532549779 prestate
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Collect here in alphabetical order all abbreviations and notations used in the paper
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LSMWP, Loss Simulation Model Working Party ML, Maximum Likelihood
MLE, Maximum Likelihood Estimation OLS, Otrdinary Least Squate
QQ, Quantile-Quantile plot RN, Random Number
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Abstract: Those familiar with classic linear regression, as many actuaries are, are aware that, for any regression
including an intercept term, there is an exact balance (equality) between (weighted) fitted and (weighted)
observed values in aggregate over the whole dataset. Many are also aware that this balance also holds in
aggregate over any level of any classification variable appearing in the regression as a main effect. What many
may not be aware of is where these balances come from or the fact that they sometimes, but not always, extend
to the GLM setting. This paper will discuss the soutce of the balance conditions in the so-called GLM "Normal
Equations". In those cases where balance does not hold, the Normal Equations imply another invariance. The
paper will also discuss some applications of these invariants.

Keywords: Generalized Linear Models (GLMs), balance conditions, invariants.

1. INTRODUCTION

Again and again over the years I have heard actuarial students new to GLM modeling express
concern that, after fitting a GLM, their mean fitted values sometimes do not match their mean
observed values. For anyone raised on classical linear regression, this match between mean fitted
and mean observed is taken as a given, at least for regressions including an intercept term.
Furthermore, in classical linear regression the match between mean fitted and mean observed holds
for each and every level of any classification variable appearing as a model main effect, and this
match also frequently appears to vanish in the GLM setting. What is going on? There are invariants
for each GLM, depending on the distribution and the link function, but they aren't always the match

between mean fitted and mean observed.

The reason has to do with what are called the "GLM Normal Equations". With each GLM
combination of assumed distribution of the dependent variable and link function there is associated
a set of "Normal Equations", one equation for each model regressor. These can be rewritten in the
form of an equality between two quantities, one involving the observed values of the dependent
variable, the other where the observed values have been replaced by their fitted values. So these are
of the form of an invariance, where the GLM fit preserves some quantity when observed values are
replaced by their fitted values. Frequently, this invariance is of the form of an equality between a
weighted sum of fitted values and the same weighted sum of observed values. Actuaries would

recognize this as the balance condition they have come to expect from classic regression.
Indeed, classic regression, assuming normally distributed errors and an identity link, produces just

such balance conditions. So do Poisson count GLMs, assuming Poisson distributed dependent
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variables with a log link, and so do logistic regressions, assuming binomially distributed 0/1
dependent variables and a logit link. But, before we become complacent and start to think that
these balance conditions are universal, note that balance need not be preserved for severity model
GLMs assuming the dependent variable gamma distributed with a log link, which is a very common
actuarial model, not only for severities but also for pure premiums and loss ratios. The normal
equations for GLMs with gamma distributed dependent variable and log link produce a different set
of invariants other than classic balance. Even when balance is not preserved, however, the normal
equations can shed some light on the sign and magnitude of the off-balance, as well as some insight

as to the source of the off-balance.

It is also sometimes the case that we have available a number of possible weighting variables for
our GLMs, and diagnostic residual plots may fail to give clear guidance as to which of these might
be preferred. Sometimes the GLM normal equations and their implied invariants will indicate that
one weighting variable will come closer to preserving balance than its competitors, and this
admittedly extra-statistical, actuarial consideration may be enough to tip the balance in favor of

choosing this weight over its competitors.

1.1 Outline of Remainder of Paper

The remainder of this paper proceeds as follows. Section 2 will discuss GLM normal equations
and the invariants they imply. Section 3 will show what the normal equations can reveal in an off-
balance situation, at least with respect to the very common GLM with gamma distributed dependent
variable and log link. Section 4 will show how the normal equations can provide some guidance

with regard to choice of weights, and section 5 summarizes.

2. GLM NORMAL EQUATIONS AND THEIR RESULTING INVARIANTS

One solves for the regression coefficients associated with explanatory variables in a regression or
GLM by taking partial derivatives of the loglikelihood with respect to each of the regression
coefficients and equating them to zero, verifying that each local extremum is indeed a local max, and
hopefully a global max as well. These partial derivatives set to zero are the GLM "Normal
Equations". They ate a set of simultaneous equations, one equation for each regressor, actually one
equation for each column of the model design matrix X, where the classic linear regression is written
as the matrix expression Y~Xf (Y varies as X beta), where Y is an n-vector of observations, X is an
n by p matrix whose columns are the regressor values, for which each row represents one
observation, and  is a p-vector of the regression coefficients. If the model includes an intercept

term, then X includes a column of all ones to capture that intercept. Each model regressor is
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included as a column of X where the values in that column are the values of the regressor. If the
model includes classification variables, then there are columns in X that are indicator variables for

membership in each level of the class variable (1 if in that level, 0 otherwise), etc.

GLMs are based on distributions in the exponential family, which produce loglikelihoods and
normal equations of a particularly simple form. Letting x; represent a column of the model design
matrix, the normal equation associated with that x; is:
0= Z - HD

- V()9 ()
The sum is over all observations j. w is weight. y is observed value of the dependent variable. u is

fitted value in the original scale of the observation y and relates to the linear predictor via the link
function g, where g(u) equals the linear predictor, linear in x; and the other regressors. g'(w) is the
first derivative of the link function evaluated at the fitted value. V(p) is the so-called variance
function associated with the distribution being assumed for this particular GLM. It expresses
variance of the individual observations y as a function of their expected values. There is a variance
function associated with each distribution in the exponential family. For more on GLMs and their
associated loglikelthoods and normal equations, one could probably consult any standard text on

Generalized Linear Models, but my personal favorite is chapter 2 of McCullagh and Nelder [1].

One can think of the above normal equation (2.1) as an invariance, because one could express
this sum as a difference of two sums, one being a weighted mean y, the other being a weighted mean
n. And the normal equation says that these two sums are equal, in other words, here is a value

preserved by the fitting process, the same whether we plug observed values or fitted values into it.

Now assume that our GLM includes an intercept term and consider the normal equation
associated with the column of X that is all ones, the column representing the intercept term. Then
the sum remains over all observations but x; appears to drop out, because the x; are all identically
one. Next, assume the model includes a classification (as opposed to continuous regressor) main
effect where the classification has L levels. This class variable is encoded into the design matrix X
via the inclusion of columns for indicator variables for membership in each of the class levels. (For
a technical correction to this last statement and how it impacts the following argument, see the
appendix.) Let x; be one of those columns. x; has elements equal to 1 if the observation is in that
level and O otherwise. So the above sum becomes a sum over just the observations in that one level,
with x; again appearing to drop out, because it is identically 1 in that level and 0 elsewhere. In all the
cases discussed above in this paragraph, the normal equations associated with these variables

become:
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i —uj)
0= f— 2.2
j;b " V(1) () @2

The sum is over a subset of the data, either all the data or just the observations in one level of a class
variable appearing as a main effect in the model. The variable x; appears to have disappeared, but

not really; it was just an indicator variable that selected out the subset of data in the sum.

Now suppose that one has made a particularly judicious choice of link function relative to the
assumed distribution for the dependent variable such that V(u)g'(w)=1. (Although, admittedly, this
is not how one chooses a link. Rather one chooses a link based on some combination of a priori
reasoning and empirical evidence that under that link g(i) becomes at least approximately linear in

the explanatory variables.) Then:

0= ) w-n) @3)
jEsub

of, equivalently:
<y>sub,w = (.u)sub,w (2.4)
In other words, mean observed y is equal to mean fitted p, where the mean is taken over a certain

subset of the data weighting on w. This is the balance we sought.

When is it the case that V(u)g'(w)=1? For classical linear regression, the dependent variable is
assumed normally distributed (V(u)=1), and the identity link is assumed, g(w)=p, hence g'(w)=1.
Hence the condition is indeed satisfied, and we get our classical balance. The condition is also
satisfied for the following distribution/ link function pairs:

e Poisson count models with Poisson distributed dependent variables (V(u)=p) and log link
(g(w)=In(p), where In is the natural logarithm).

e Logistic regression with binomially distributed dependent variables (V(w)=p(1-w)) and logit link
(gW=In(w/(1-w)).

e GLMs with gamma distributed dependent variable (V ()=’ and reciprocal link (g(w)=1/w).

For more on distributions, their associated variance functions, and link functions, again see

reference [1]. Two important comments at this point: First, from the above, we can expect our

Poisson count models and logistic regressions to preserve classical balance. Second, although the

above gamma model will also preserve classical balance, it is not usually the case that we will expect

reciprocal expectations to be approximately linear in explanatory variables. So, although it would be

convenient for purposes of preserving classical balance to adopt a reciprocal link for gamma models,

we probably will not usually, because it will probably not preserve linear response. Whether the
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chosen link preserves linear response can be tested via various GLM diagnostics, including
diagnostic plots.

It is common to build gamma distribution models for severity, or pure premium (loss divided by
exposure), or loss ratio (loss divided by premium), but assuming a log link to yield a multiplicative

model. What are the normal equations, and what GLM invariants are preserved by such gamma
models (V(w)=p") with log link (g(w)=1n(w))?

(0 = 1) j — 1))
" V(g W) ——L (@5
j;b " V(ui)g' (1) j;b i (2.5)

of, equivalently:

<%)sub,w = 1 (2 6)

Recall that <y/p> need not equal <y>/<u>, depending on the distributions of y and p. So this
identity may not be the classical balance we were hoping for, close perhaps, but not exact. What this
says is that the w weighted mean of the ratio y/u over all the data or over any individual level of any
class effect appearing as a main effect in the model equals 1; the GLM fitting algorithm forces these
constraints. If, in a given subset of data, there are a few significantly peculiar values of either y or y,
the mean ratio would still be constrained to be 1, but the ratio of means <y>/<p> might be
significantly distorted from 1 by the fitting algorithm's attempts to satisfy the constraints. It might
prove interesting and possibly an important model diagnostic to drill in to see which individual

observations were the greatest source of that discrepancy.

For many of the same situations for which it is common to build gamma models, it is not
uncommon to also consider the alternative of a Tweedie distribution (V(n)=u") model with log link
(g(w=In(w)). pis frequently between 1 and 2, quite often 1.67. (I have heard this more than once at
Predictive Modeling and RPM Seminars, but I don't have a reference. My apologies.) A Tweedie
with p between 1 and 2 is a compound distribution with Poisson count process and gamma severity.
As p tends down to 1 from above, the Tweedie tends towards a pure Poisson process. As p tends

up to 2 from below, the Tweedie tends towards a pure gamma severity process. The relevant

B i) 0 —w)
°s Z V) ) Z " ur @

jEsub jEsub
, which imply yet another set of invariants, but close to those we have already considered.

normal equations are:
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3. OFF-BALANCE

As shown in the previous section, for many distribution/ link function combinations the normal
equations imply an exact balance between <y> and <p>. For other distribution/ link
combinations, even when the GLM invariants implied by the normal equations may differ from
exact balance, the normal equations may provide some insight into the cause, the sign, and the

magnitude of the off-balance.

The case of a gamma model with log link is particularly interesting. Suppose we measure off-
balance by the quantity <y>/<p>-1, where <> denotes means over subsets weighting on w, but I
have suppressed the sub,w subscripts of the previous section. Then:

\S2 W w_y w._yp pu y H
1=-a Lty B (2-1)

W W w W w ww W\

G G -en ) o0

On the second line, the second term in the mean vanishes because <y/u> equals 1 by equation
(2.6), and the first term is recognizable as a covariance because the means of both y/u and p/<p>
are 1. Equation (2.6) drives this derivation and is therefore the point of contact in trying to explain

off-balance via the normal equations.

This equating of an off-balance to a covariance is interesting. Suppose that for a particular subset
of the data (either the whole of the data or a particular level of a particular classification variable in
the model) the model is off-balance on the low side, in other words, <u> less than <y>. Then that
covariance is positive. Then, when p./<p> is on the high side of its mean 1, so is the ratio y/p, on
average. Likewise, on average y/ is less than its mean 1 when p/<p>is. These observations taken
together imply that y grows faster than p. on average in order to yield this behavior of the ratio y/,
in other words, there is something about the model such that y is tempered relative to y. On the
other hand, when the model (for a particular subset) is off-balance on the high side, in other words,
<u> greater than <y>, then the relevant covariance is negative, and the above argument cuts the
opposite way to imply that there is something about the model that causes p to be somewhat over-

responsive and to grow faster than y on average.

It is also possible, however, that the covariance tells us little about the behavior of the ratio y/p
on average but indicates only that there are some very anomalous values of either y or p that throw
off both the covariance and the approximate balance between <p> and <y>. This alternative

possibility was already noted in the commentary following equation (2.6). More research is probably
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needed to clarify what the covariance result (3.1) is telling us, but it is certainly interesting and

suggestive.

While on the subject of off-balance, there is a particularly useful scatterplot for flagging those
levels of those classification variables that are more off-balance than one might expect, those levels
most in need of investigation and explanation. Each data point in this scatterplot represents one
level of one classification variable, and every level of every classification variable in the model has a
representative point somewhere in the plot. On the y-axis we plot the ratio <y>/<p>, the means
taken over the observations in this level of this classification variable. We draw a horizontal
reference line at 1 to draw attention to deviations from 1. On the x-axis we plot class level aggregate
exposures (on a log scale because these aggregate exposures might vary over a few orders of
magnitude). The reason for this x-axis is that, with decreasing aggregate exposures in the level, we
expect increasing scatter of the ratio <y>/<p> about its hoped-for value of 1, just due to random
fluctuation. We label each point according to the classification variable and level it represents,
identify those variables and levels that appear to stand out from the overall pattern, and drill further

into them to see if we can understand the greater than expected degree of off-balance.

It was considering just such a scatterplot that led to the investigations that led to equation (3.1)
above. Certain extreme levels of one particular classification variable were flagged as excessively off-
balance, and, in hindsight, taking into account known issues with the data and the model, it became
clearer how under- or over-responsiveness of . to y (in those particular levels) was responsible for

that excessive off-balance.

4. IMPLICATIONS FOR WEIGHTS

Many models are built on dependent variables that are a ratio of aggregate loss to something else.
If the denominator is aggregate exposure, the ratio is pure premium; if premium, loss ratio. These
models are frequently built not on data at the level of individual risk but rather on data aggregated
into cells defined as crossings on all the classification rating variables. The volume of business in
these cells can frequently vary by orders of magnitude from one cell to the next, so some form of
weighting will be needed, as the dependent variable ratios will tend to be far more volatile in low
volume cells than in high. In actuarial circles it is generally assumed that a large volume cell can be
treated as a sum of "independent" smaller cells, leading to variance of the dependent variable
proportional to the reciprocal of some measure of business volume, which implies weights varying
as some measure of business volume. But which measure? Common actuarial intuition and practice

would argue for using the quantity already in the denominator of the ratio as the weight as well. It is
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useful to see how the normal equations and GLM invariants of this paper bear out this choice.

I have generally found in the past, when I have fit models using each of several candidate volume
measures for weights and then examined various residual plots hoping to see in those plots a
signature that one particular choice of weight "outperformed" the rest, that rarely, if ever, did the
plots clearly indicate one weighting scheme over the others. Some other extra-statistical, actuarial
criterion has had to be imposed in order to select one weight over the rest. The normal equations

can provide some guidance.

Consider first the case that our choice of distribution/ link function combination is such that
equations (2.3) and (2.4) hold. y is a ratio of loss to some denominator, L./D. y, the fitted ratio, can
similarly be thought of as a ratio of fitted loss to the same denominator, L/D. In effect, we define
the fitted loss L as the product uD. If we select the weights w equal to the D, then in equations
(2.3) and (2.4) the w and D cancel each other, and these equations say simply that aggregate fitted
losses are equal to (in balance with) aggregate observed losses. The equality between aggregate
observed and fitted losses is not a statistical necessity (Nothing in the statistical diagnostics argues
against a choice of weights other than the D from among a number of reasonable measures of
business volume, but only for the w equal to the D do we achieve balance), but it seems a reasonable
extra-statistical, actuarial constraint to impose as a means of rationally selecting one weighting
scheme over others. Then the aggregate fitted ratio, being the ratio of aggregate fitted losses to
aggregate D, equals the aggregate observed ratio, being the ratio of aggregate observed losses to
aggregate D. Choice of weights w other than the denominators D in equations (2.3) and (2.4) would
result in other "weighted mean fitted ratios" in balance with their corresponding "weighted mean
observed ratios", but the interpretation of those "weighted mean ratios" would be far more strained
than the interpretation of the more natural weighted mean ratios when w equals D. This is the gist

of the usual actuarial intuition regarding weights.

Consider next the Tweedie distribution/ log link normal equations (2.7). If we again select the w
equal to the D, w and D again cancel one another, we again have L-L, but now divided by u®™:

0= Z L-L (4.1)
H(p—l)

jeEsub j

If this denominator in u were a constant across the sum, we would again have aggregate fitted loss in
balance with aggregate observed loss, but it is not constant. How non-constant is it, because, if
close to constant, perhaps aggregate fitted loss and aggregate observed loss may not be far out of
balance? First, across much of the data, the range of g may be relatively modest. Second, in those

applications of Tweedie I have seen, p is rarely less than 1.5 or greater than 1.67, so the power of
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is something like 1/2 or 2/3, which further tempers the range of values in the denominator and so
brings ageregate fitted and obsetved losses closer to in balance. In Tweedie/ log link models, I have
seen aggregate fitted and observed losses in balance to within a few percent of one another when w
is selected equal to D, whereas out of balance by as much as a few tens of percent when another

weighting scheme is selected.

Lastly, considering the gamma/ log link model yielding equations (2.5) and (2.6), these look like
the Tweedie/ log link case of equation (2.7) but with a p of 2. Hence the exponent on p in the
denominator is 1 rather than the 1/2 to 2/3 of the Tweedie case, there is less tempering of the range
of the power of p, and aggregate fitted losses and aggregate observed losses can be more out of

balance than in the T'weedie case, even when we select the w equal to the D.

5. SUMMARY AND CONCLUSIONS

Many of us are familiar with the balance between weighted mean fitted values and weighted mean
observed values in standard linear regression settings. These same balance conditions extend to
many GLM settings with various combinations of assumed distribution of the dependent variable
and link function. The source of these balance conditions are the so-called "GLM Normal
Equations". Even for those GLMs with distribution/ link function combinations not preserving the
usual balance conditions, there is always another GLM invariance implied by the normal equations.
The normal equations can also help us to understand the direction and degree of off-balance when
off-balance exists as well as understand the consequences to balance or off-balance when choosing a

weighting scheme for our weighted GLM:s.

Appendix: A Technical Refinement of the Balance Equations Argument for Model Design
Matrices of Full Rank

In section 2 of this paper, the argument leading from the normal equations to the balance
equations assumed that, for each level of each classification variable appearing in the model as a
main effect, the model design matrix included a column equal to the indicator variable for that level
of that classification variable. For technical reasons this may not be quite true, and the argument

requires a technical refinement, but the conclusion re the balance equations is still true.

What could be wrong with the original argument? Suppose the design matrix includes a column
of ones, representing the intercept, and columns for indicator variables for each and every level of a
classification variable. Because the sum of all these indicator variable columns reproduces the

column of one's (because every observation is in precisely one level), there is a linear dependence
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among the design matrix columns, the design matrix is less than full rank, and its inverse is not
uniquely defined, which creates problems solving for the regression coefficients. To resolve this
issue, many stat packages arbitrarily select one of the levels of the classification variable to serve as
the reference level for that classification variable, remove the indicator variable for that level from
the design matrix, and peg the regression coefficient and standard error estimate for that level to
zero. The resulting reduced design matrix is now full rank and invertible, at the cost of having

arbitrarily selected a reference level and removed that indicator variable from the design matrix.

Because the design matrix still includes the column of all ones, the argument of section 2 of this
paper establishes that overall balance still holds. Also because of the section 2 argument, balance
still holds in each level of the classification variable for which there is still an indicator variable in the
design matrix, but does balance still hold for the reference level, given that there is now no indicator
variable for that level in the design matrix? One would think so, given overall balance and balance
in every other level, that this would imply balance in the reference level as well, and one would be
right, for the following reason. Because equation (2.1) holds for each column of the design matrix, it

also holds for all linear combinations of those columns:

i) DN
l l: l*0:0 A.l
Z JV(ﬂj)g () & T Z Z ’V(uj)g )" Za D

where j indexes the observatlons (the rows of the design matrix), i indexes the variables (the
columns of the design matrix), the order of summation can be reversed, and the inner sum of the
second expression is zero by equation (2.1). The indicator variable for the reference level of the
classification variable in question can indeed be expressed as a linear combination of the other
columns of the design matrix, which is why it was declared to be a reference level in the first place.
So balance holds for this reference level as well. QED. In fact, equation (A.1) establishes that a
normal equation holds not just for any column of the design matrix but also for any other variable

that can be expressed as a linear combination of the columns of the design matrix.
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Abstract

Given an n x n triangle of losses, Xayiag (AY = 1,..,n, Lag = 1,...,n, AY + Lag < n + 2), the goal of a
stochastic loss reserve model is to predict the distribution of outcomes, Xay1ag (AY + Lag > n +1),

and sums of losses such as Z Z Xav1ag - This paper will propose a set of diagnostics to

AY=2Llag=n+2—-AY

test the predictive distribution and illustrate the use of these diagnostics on American insurer
data as reported to the National Association of Insurance Commissioners (NAIC).

The data will consist of incremental paid losses for the commercial automobile line of
insurance. This data will come from a database containing both the original loss
triangles and the outcomes. This database will contain data for hundreds of American
insurers, and it will be posted on the Casualty Actuarial Society (CAS) website for all
researchers to access.

The retrospective tests are performed on the familiar stochastic loss reserve model, the
bootstrap chain ladder overdispersed Poisson model. The paper will also perform the
retrospective tests on a model proposed by the authors.

The authors’” model will assume that the incremental paid losses have a Tweedie
distribution, with the expected loss ratio and calendar year trend parameters following
an AR(1) time series model. The model will be a hierarchical Bayesian model with the
posterior distribution of parameters being estimated by Markov-Chain Monte-Carlo
(MCMC) methods.
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1. Introduction

In the classic reserving problem for property-casualty insurers, the primary goal of actuaries
is to set an adequate reserve to fund losses that have been incurred but not yet developed. In
this regard, the reserving actuaries are more interested in a reasonable reserve range rather
than a best estimate. Traditional deterministic algorithms are often sufficient for the best
estimation of outstanding liabilities, but often insufficient in estimating the downside potential
in loss reserves. Over the past three decades, stochastic claims reserving methods have

received extensive development, emphasizing the role of variability in claims reserves.

In claims reserving literature, different stochastic methods are proposed to calculate the
predictive uncertainty of reserves and, ideally, to derive a full distribution of outstanding
payments. The variability of claims reserves could be decomposed into two components, a
process error which is intrinsic to the stochastic model and an estimation error that describes
the uncertainty in parameter estimates. Both non-parametric and parametric approaches have
been discussed along this line of studies. The so-called non-parametric models (various Chain-
Ladder techniques among others) are considered by some to be distribution-free and focus on
(conditional) mean-squared prediction error to measure the quality of reserve estimates.
Parametric models, in contrast, are based on distributional families and thus could lead to a
distribution of outstanding claims. Because of the small sample size typically encountered in
loss reserving context, the bootstrapping technique and Bayesian method are often involved to
incorporate the uncertainty in parameter estimates and thus to provide a predictive
distribution for unpaid losses. We refer to Taylor (2000), England and Verrall (2002), and

Woithrich and Merz (2008) for excellent reviews on stochastic loss reserving methods.

With an increasing number of stochastic claims reserving methods emerging in the
literature, one critical question to ask is how to evaluate their predictive performance. This
guestion could only be answered based on retrospective tests using the actual realized claims in
the lower triangle. Unfortunately, such issue has rarely been addressed in the current

literature. Shi et al. (2011) is one recent example.
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The goals of this paper are threefold: 1) We will propose a stochastic loss reserving model
based on a Tweedie distribution that captures the calendar year trend in claims development.
2) A set of diagnostics will be discussed to test the predictive distribution of outstanding
liabilities. The retrospective evaluation will be performed for the proposed method as well as
standard formulas. 3) We emphasize the importance of retrospective testing in both loss
reserving and risk management practice, and we anticipate that this work will initialize more

relevant studies and draw attention from both practitioners and researchers in this perspective.

We note that the sparsity of studies on retrospective tests might be attributed to the
unavailability of the data on realized claims. Our access to a rich database from the National
Association of Insurance Commissioners (NAIC) provides us an opportunity to perform such
evaluation. A great deal of effort has been devoted to the preparation of a quality dataset for
loss reserve studies. The detailed summary of the loss reserve dataset is given in Section 2 and
the Appendix. We will also post the dataset on the website of the Casualty Actuarial Society
(CAS)™.

The NAIC database contains information on both posted reserves and subsequent paid
losses, which allows us to evaluate: 1) the performance of the predictive distribution based on
actual losses; 2) the predictive distribution based on posted reserves; 3) the sufficiency of the
posted reserves. We will compare the predictive performance between the proposed method
and a standard formula. Our analysis will focus on claims-reserve models for a single line of
business. It is worth mentioning the emerging reserve studies for dependent lines of business.
The retrospective tests for multivariate loss reserving methods could be a direction of future

research.

The structure of this article is as follows: Section 2 describes the run-off triangle data from
the NAIC and discusses the selection process for the insurers in our analysis. Section 3 presents
two stochastic loss reserving method, the chain-ladder over-dispersed Poisson and the Bayesian
Tweedie model. Section 4 and Section 5 report the results of retrospective tests for a single

insurer and multiple insurers, respectively. Section 6 concludes the paper.

! The link for these data is http://www.casact.org/research/index.cfm?fa=loss reserves data
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2. Data

The claims triangle data used for the retrospective test are from Schedule P of the NAIC
database. The NAIC is an American organization of insurance regulators that provides a forum
to promote uniformity in insurance regulation among different states. It maintains one of the
world's largest insurance regulatory databases, including the statutory accounting report for all

insurance companies in the United States.

We consider Schedule P of property-casualty insurers, which includes firm-level run-off
triangles of aggregated claims for major personal and commercial lines of business. And the
claims are available for both incurred and paid losses®. The triangles of paid losses in Schedule P
of year 1997 will be used to develop stochastic loss reserving models. Each triangle contains
losses for accident years 1988-1997 and at most ten development years. The net premiums
earned in each accident year are available for the measurement of business volume. For any
insurer, the triangle for a single line of business could be illustrated as in Figure 1. The crosses

indicate the data point extracted from 1997 Schedule P.

Figure 1. Schedule P of 1997

Settlement Lag
Accident Year Premium 1 2 3 4 5 6 7 8 9 10

1988 XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX

1989 XXX XXX &< 1998
1990 XXX XXX & 1999
1991 XXX XXX &< 2000
1992 XXX XXX < 2001
1993 XXX XXX < 2002
1994 XXX XXX < 2003
1995 XXX XXX < 2004
1996 XXX XXX &< 2005
1997 XXX XXX &< 2006

To perform the retrospective test, one needs the realized claims in the lower triangle. We

square the triangles from Schedule P of year 1997 with outcomes from the Schedule P of

2 By “losses” we mean “Incurred net losses and defense & cost containment expenses reported at year end” as
specified by the NAIC Schedule P instructions.
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subsequent years. To be more specific, as shown in Figure 1, the losses in accident year 1989
are pulled from the Schedule P of year 1998, the losses in accident year 1990 are pulled from
the Schedule P of year 1999, and so on. The overlapping observations from the Schedule P of
year 1997 and subsequent years are used to validate the quality of our data. The insurers with
inconsistency in the overlapping period are dropped from this study. The detailed process of
data preparation can be found in the Appendix. In addition to the actual losses in the lower
triangle, the NAIC database provides posted reserves of year 1997. The posted reserves
represent the actual amount of fund set by reserving actuaries, based on the predictions from

certain claim reserving models, as well as actuarial judgments.

We focus on the run-offs of commercial auto in the retrospective test. Commercial auto is a
relatively short tail line and thus the claims are very likely to be closed within ten years. This
fact makes the Schedule P data an appropriate first candidate for the retrospective evaluation.
The triangles consist of losses net of reinsurance, and quite often insurer groups have mutual
reinsurance arrangements between the companies within the group. Consequently, we limit

our analysis to single entities, be they insurer groups or true single insurers.

For the retrospective tests, we wanted to test only those insurers we deemed to be “going
concern” insurers. Our criterion for selecting insurers was that: (1) earned premium was not
subject to wide swings; and (2) the insurers were generally profitable. To implement these
criteria we first calculated the coefficient of variation for the earned premium over each of the
ten accident years. We then sorted the insurers in increasing order of this coefficient of
variation. Then we individually examined the profitability of each insurer, rejecting those

insurers that we deemed unprofitable. In the end we selected 50 insurers for this analysis.

Figure 2 shows the earned premiums and cumulative paid losses by accident year for the
first insurer we accepted, and Figure 3 shows the earned premium and losses by accident year
for the first insurer we rejected. Table 1 gives the Group Codes for all insurers included in this

analysis.
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Table 1

Insurer Group Codes

1236 353 14974 21270 1406 914 4839 7080 833 1767
37036 5428 26077 13641 86 1538 38733 2674 388 1759
3492 6947 11037 1090 4731 3240 2623 3034 18767 5185
2500 14176 2135 620 26433 31550 44130 2208 10022 310

2283 1066 8427 10839 19020 26905 671 13528 715 9504
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Premiums and Losses for Group Code 1236
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Figure 3

Premiums and Losses for Group Code 11118

= = Premiums
- = Losses

T T T T
2 4 6 8 10

Accident Year for Premiums
Seftlement Lag for Losses

Casualty Actuarial Society E-Forum, Summer 2011




The Retrospective Testing of Stochastic Loss Reserve Models

3. Two Loss Reserving Models

Our analysis focuses on incremental paid data. In each run-off triangle, we use Xay(qq to
indicate incremental paid losses for accident years, AY = 1,..,10 and settlement lags,
Lag = 1,...,10. Thus, the paid losses in the upper triangle (training data) and unpaid losses in the

lower triangle (test data) could be represented by X” and X', respectively:
XU={XAy,Lag :AY +Lag <11} and XL={XAy,Lag :AY + Lag > 11}.

The retrospective test will be performed for the predictive distributions of elements or

functions of elements in set X".

The predictive distribution of outstanding liabilities could be obtained either through
bootstrapping techniques or Bayesian methods. In this study, we will propose a Bayesian
Autoregressive Tweedie (BAT) model for the prediction of unpaid loss, which is described in the
next section. We compare the performance of the proposed method with an industry
benchmark, the bootstrap chain-ladder (BCL) model, where the predictive variability of unpaid
losses is derived through bootstrapping technique with an over-dispersed Poisson process
error. A common thread running through the two models is that they both treat parameter risk
by producing simulations of possible parameters for the model (BCL — bootstrap , BAT — Markov
Chain Monte-Carlo). Both models treat process risk (BCL — the overdispersed Poisson

distribution, BAT - the Tweedie distribution).
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3.1 The Bootstrap Chain Ladder (BCL) Model

Bootstrap chain-ladder is simply a chain-ladder algorithm where bootstrapping is employed
to accommodate estimation uncertainty. This technique has been applied to both univariate
and multivariate loss reserving context; for example, see England and Verrall (2002) and
Kirschner et al. (2008). To make this work self-contained, we briefly review the method as

follows:

o Apply chain-ladder algorithm to cumulative payments and obtain the fitted incremental

payments )A(Amg for AY+ Lag < 11.

e Calculate scale parameter and adjusted Pearson residual

X

~ 1 AY,Lag XAYLag AYLag AYLag
Q= TAvleg  TAVles | gng R
AY+Lag<n+1 AYLag ’
m-—p X b%
AY,Lag AY,Lag

respectively, where m = n(n + 1)/2=55 and p = 2n — 1=19.

e Resample the residuals R,(AsiLag (AY + Lag < 11) and create pseudo-triangle by
(s 5 [y 5 _
XAYLag RAVLag XAY,Lag +XAY,Lag fors=1,..,S.

e Apply chain-ladder algorithm to the cumulative pseudo-payments obtained from X%

AY,Lag
(AY + Lag < 11) and project the incremental payments in the lower triangle Xﬁ&iag for AY
+ Lag > 11.

e For each cell (AY,Lag) (AY + Lag > 11), simulate a payment from a process distribution

with mean X%ag and variance (pr,)aag, fors=1,..,5.

Commonly used process distributions include gamma and over-dispersed Poisson. We report
the results based on the latter process error since it is well known that the over-dispersed
Poisson model using incremental payments reproduces chain-ladder predictions under certain
regularity conditions (see Renshaw and Verrall (1998) and Verrall (2000) for details).
Furthermore, a preliminary analysis shows the difference in the predictions based on the two
types of process distributions is negligible. We implemented the bootstrap chain-ladder

method using the “ChainLadder” package in the statistical computing software R.
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3.2 The Bayesian Autoregressive Tweedie (BAT) Model

The objective of this model is given the observed data XY, predict the distribution of the sum of

all amounts in X.

The high-level considerations made in formulating this model include:

1.

The model should use the reported premiums as a measure of exposure. This
consideration has precedent with the Bornhuetter-Ferguson method, but it differs from
other popular models such as the chain-ladder. Given that the model uses premiums, it
should recognize that competitive conditions in the American insurance industry lead to

slowly changing loss ratios over time.

As the settlement lag increases, the payments follow no discernable natural pattern

other than ultimately, they approach zero.

The model should reflect inflationary changes in loss levels by calendar year. This
consideration has precedent with other models such as the one proposed by Barnett
and Zehnwirth (2000). The model should recognize that inflation can change slowly

over time.

Process risk is present and important for (AY,Lag) cells with low expected losses. In
general, the coefficient of variation of the process risk should decrease as the expected
loss increases, but it should never approach zero. Also, the process risk in the later

settlement lags should reflect the larger claims that take longer to settle.

The model is Bayesian. Loss reserve models tend to have many parameters. As
demonstrated by Meyers (2007a), loss reserve models fit by maximum likelihood with a
large number of parameters tend to understate the variance of the outcomes. Bayesian
approaches will correct for this by incorporating parameter risk into calculating the
variance of the outcomes. Other approaches, such as bootstrapping, also incorporate

parameter risk.
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The unknown parameters for this model are as follows.

ELR4y, for AY = 1,..,10. These parameters represent the expected loss ratio for

accident year AY.

Dev,qq, for Lag = 1,...,10. These parameters represent the paid incremental loss

development factors for settlement lag Lag. To prevent overdetermining the

10

model we imposed the constraint that Z Dev
Lag=1

_1'

Lag —

CYT;, for i = 1,..,19. These parameters represent the calendar year trend factor.
For a given (AY,Lag) cell, we have i = AY + Lag — 1. To prevent overdetermining the

model we set CYT; = 1.

Sev represents the claim severity for claims that settle in the 10" settlement lag.
For Lag < 10, the claim severity is given by Sev-(l—(l—Lag/lO)a) . This expression

for the claim severity guarantees that the claim severity increases as the

settlement lag increases.

c represents the contagion parameter as described in Meyers(2007b). Its role is to
keep the coefficient of variation of the process risk from decreasing to zero as the
expected loss increases. Its precise role will be specified in the likelihood function

below.

To allow the {ELR4y} parameters to change slowly over time, we impose the following AR(1)

structure on the parameters.

ELRay = pa* (1 - pa) + paELRay-1 + €a.

From the standard properties of the AR(1) model we have that:

e The long-term average of the ELR,y parameters = .

o Corr(ELRay, ELRayx) = pa~.

[ ] 8A

~ N(O,GA).
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The prior distribution of {{ELRay},l1a,pa,04} takes the form:

10
p({ELRAY}uuA'pA'O-A):f(,uA)'g(pA)'h(O-A)' Hq)(ELRAY —Hy '(1_pA)_pA 'ELRAY—l IO'O-A)

AY=2

where:
e @ is the standard normal distribution.
e fisagamma distribution with mean 0.7 and coefficient of variation 0.18.
e gisauniform (0,1) distribution.

e hisagamma distribution with mean 0.025 and coefficient of variation 0.5.

We impose a similar structure on {CTY;} with the prior distribution taking the form:

p({CYT}},,uC,,OC,O'C)=f(yc)~g(pc)-h(O'C)-HCD(CYE — Hc '(1_pc)_pc CYT, |O,O'C)

where:

e @ isthe standard normal distribution.
e fisagamma distribution with mean 1 and coefficient of variation 0.18.
e gisauniform (0,1) distribution.

e hisagamma distribution with mean 0.025 and coefficient of variation 0.5.

Casualty Actuarial Society E-Forum, Summer 2011
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The prior distributions for the remaining parameters were gamma distributions with the
parameters given in Table 2. These were derived by fitting a similar model by maximum

likelihood to a large number of insurers.

Table 2
Implied

Parameter o 0 Mean Std. Dev.

Sev 1.3676 136.248 186.3386 159.3400
c 0.074 0.1391 0.0103 0.0379
Dev, 15.81 0.0135 0.2137 0.0537
Dev, 42.8538 0.0059 0.2517 0.0385
Devs 56.4944  0.0036 0.2028 0.0270
Dev, 30.4528 0.0046 0.1403 0.0254
Devs 10.2309 0.0085 0.0870 0.0272
Devs 5.8094 0.0083 0.0480 0.0199
Devy 3.6954 0.0068 0.0250 0.0130
Devg 2.3934 0.0057 0.0135 0.0087
Devq 1.3559 0.0066 0.0090 0.0077
Devyy 0.4552  0.0200 0.0091 0.0135

The joint prior distribution for all the parameters is the product of all the individual prior

distributions given above.

We used the Tweedie distribution with index p = 1.67 to describe the process risk. For a

given (AY,Lag) cell, the expected loss is given by:

AY+Llag-1

E[XAY'L"Q :I = PremiumAY ’ ELRAY ’ DevLag ’ H CYT, .
i=1

The scale parameter for the Tweedie distribution for each (AY,Lag) cell is given by:

E[XAWQT‘” .Sev-(l—Lag

)3
¢= 5 0/ e E( Xy | -
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This expression for ¢ can be explained by noting that the variance for the Tweedie
distribution is usually written in the form ¢-u”. Substituting 1= E[Xay4e] and the value above
for ¢ into the expression for the Tweedie variance vyields a variance of
E[XAy,Lag]/(Z-p)+c-E[XAy,Lag]2. The coefficient of variation squared is then equal to

1
E[ Xuy o0 ](2-P)

E[Xay,1agl, increases.

+ ¢ . This coefficient of variation squared decreases to c as the expected loss,

The likelihood function for the data® in the upper triangle is the product of the Tweedie

density functions over all the (AY,Lag) cells in the upper triangle, X".

With the prior distribution and the likelihood function specified above, we used the
Metropolis Hastings algorithm® to generate a sample of size 1,000 parameter sets from the

posterior distribution.

Figures 4 to 14 below graphically show how the data reduces the uncertainty in the range in
the parameters by comparing the prior and posterior distributions of the parameters. We

produced these plots using the data of the insurer with group code 914.

*In fitting the data, we dropped all (AY,Lag) cells with negative paid incremental losses.

* See Meyers (2009) for an explanation of the Metropolis Hastings Algorithm. For each parameter, we used a
gamma distribution with a shape parameter, a = 2,000, for the proposal density function. To obtain convergence
and guard against autocorrelation, we ran 50,000 iterations and took a sample of size 1,000 from the last 25,000
iterations.
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Figure 4
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Figure 6

Prior Distribution of 'mu’ for ELR Model
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Figure 8
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Figure 10

Prior Distribution of ‘sigma’ for CYT Model
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Figure 12

Calendar Year Trend Parameters
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Figure 14

Prior Distribution of 'c' Parameter
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For each of the 1,000 randomly selected parameter sets {{ELRay}, {Deviqg}, Sev, c}, we then

calculated the mean and variance of the Tweedie distribution of Xay g for each (AY,Lag) cell in

10 10
the lower triangle and then took 10 different random simulations of z Z X,

AY=2lag=12-AY

These

Y,lagx *

simulations produced 10,000 samples of this sum. Given the amount of an outstanding liability,
we calculate the cumulative probability by counting the number of simulations that are less

than or equal to it.
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4. Retrospective Tests for Single Insurers

Loss reserve models are calibrated using the observed run-off triangle and then are used to
forecast outstanding liabilities. From the perspective of risk management, a reasonable reserve
range is of more interest to reserving actuaries and risk managers. Stochastic claims reserving
models achieve this goal by providing a best estimate as well as a variability measure of
reserves; for example, the conditional mean-squared prediction error. This paper focuses on
testing the predictive distribution of outstanding claims. We emphasize that a fair test should
be based on a retrospective evaluation using the realized claims of predictive interests. In this
study, the retrospective test will be performed at two levels: individual firm and portfolio of
insurers. This section focuses on the tests for single insurers and the next section performs tests

for multiple insurers.

At firm level, the retrospective test informs actuaries on the predictive performance of a
stochastic claims reserving method for each individual firm. For a specific insurer, we calculate
the percentile of realized unpaid losses xay 1o for each cell (AY,Lag) in the unobserved triangle,
by paviag = F (Xaviag), Where F (-) denotes the predictive distribution of Xayqg derived from a
certain stochastic reserving method. All these payiag (AY + Lag > 11) are expected to be a
random sample of a uniformly distributed variable on [0, 1], if the model assumptions of the
stochastic reserving method are appropriate for the insurer. The uniformity of percentiles could
be visualized through graphical tools such as Probability-Probability (PP) plot, or could be easily

tested using formal statistics such as a Kolmogorov-Smirnov (KS) test.

We perform the retrospective test for all the insurers in our sample individually. With the
BAT model, we observe that for all the insurers, the PP plots for the training data lie within the
KS bounds. It was with the test data that the PP plots often deviated outside the KS bounds.
The results for the BCL model are similar; i.e., the model fits data well but could produce bad
predictions. We demonstrate these analyses with three insurers. The group code for the three
insurers are 914, 2674 and 310. We present the following results from the BCL and the BAT
model for each insurer: 1) A PP-plot for training data; 2) The percentiles of training data for

accident year, settlement lag as well as calendar year; 3) A PP-plot for test data; 4) The
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percentiles of test data for accident year, settlement lag, as well as calendar year. If the model
fits well, we should expect the PP-plot to lie along the 45° line, and to see no pattern in the
remaining plots by accident year, settlement lag or calendar year. The results are summarized

in Figures 15 — 26.

In terms of goodness-of-fit, the PP-plots of training data suggest that both BCL and BAT
models fit training data well for all insurers. When examining the test data, the retrospective
test shows that the PP plots of both models are within the KS bounds for insurer 914, but
outside the KS bounds for insurer 310. For insurer 2764, the BCL model provides better
predictive distribution than the BAT model. We attribute such observations to the potential
overfitting of the two loss reserving models. Though not reported here, our analysis showed
that the loss development of insurer 914 is rather stable over time, while the payments for
insurer 2764 and 310 are more volatile from year to year, especially for insurer 310. The higher
variability explains the poor predictive performance of both models on insurer 310. Another
factor affecting the predictive performance of loss reserving models appears to be an
environmental change in the projecting period. Our analysis in the next section shows that the

BCL model somehow did a better job in the perceived changing environment.
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Figure 15 — BCL Model for Insurer 914 — Training Data
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Figure 16 — BCL Model for Insurer 914 — Test Data

PP Plot for Test Data AY vs Cell Percentiles
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Figure 17 — BAT Model for Insurer 914 — Training Data
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Figure 18 — BAT Model for Insurer 914 — Test Data
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Figure 19 — BCL Model for Insurer 2674 — Training Data

PP Plot for Training Data AY vs Cell Percentiles
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Figure 20 — BCL Model for Insurer 2674 — Test Data
PP Plot for Test Data AY vs Cell Percentiles
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Figure 21 — BAT Model for Insurer 2674 — Training Data
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Figure 22 — BAT Model for Insurer 2674 — Test Data
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Figure 23 — BCL Model for Insurer 310 — Training Data
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Figure 24 — BCL Model for Insurer 310 — Test Data
PP Plot for Test Data AY vs Cell Percentiles
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Figure 25 — BAT Model for Insurer 310 — Training Data
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Figure 26 — BAT Model for Insurer 310 — Test Data
PP Plot for Test Data AY vs Cell Percentiles
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5. Retrospective Tests for Multiple Insurers

The retrospective test could be performed for a portfolio of insurers as well. At portfolio
level, the retrospective test helps detect the potential under or over reserving issue if one
single stochastic method is applied to all insurers in the portfolio. The same idea could be
generalized to the industry level. Considering a portfolio of N property-casualty insurers, we
implement the test using total reserves. Specifically, for the k' (k = 1,..,N) insurer in the

portfolio, we calculate the percentiles of realized total unpaid losses in the lower triangle

p,” =F(r/”). Here F(-) and ry indicate the corresponding predictive distribution and realized

unpaid losses, respectively. Whether the stochastic reserving method is suitable for the insurer

portfolio could be answered by examining the uniformity of p**

This section compares the predictions of the Bayesian Autoregressive Tweedie (BAT) model
and the Bootstrap Chain Ladder (BCL) model. Our data also includes the reserve that each
insurer posted in the 1997 Annual Statement. The reserves posted by the insurer differ from
the models in that they are not tied to any particular method or model and can reflect insurer
judgment. Also, it is not difficult to imagine the various incentives that can influence the

judgments in either direction.

Figure 27 compares the predictive means and standard deviations of the total outstanding
losses using the BAT and BCL methods. This figure indicates that for the most part, the
predictive means are fairly close®. There are a noticeable number of instances where the

predictive standard deviation is smaller for the BAT model.

> In one case the mechanical application of the BCL model produced a negative mean because of a negative
incremental paid loss. Any actuary would reject this result, in practice. The BAT model dropped any cell that
contained a negative incremental paid loss.
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Figure 27
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Next, we compare the accuracy of the predictions of the BAT and BCL models with the
posted reserves. For both models, we use the predictive means for the test data. Figure 28
compares the percentage error of the three predictions.6 from the actual outcomes. The mean
absolute percentage error was largest for the BCL model, and smallest for the posted reserve.
It is worth noting that in most cases, all three estimates predicted losses that were high. It is
also worth noting that a previous study of this sort on different data (Meyers 2007c) found that

a Bayesian model produced smaller errors than the posted reserve.

® The BCL model produced one negative and one zero predicted mean. We set the percentage absolute
percentage error at -100% and 200% respectively.
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Figure 28
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When a stochastic loss reserve analysis is performed, a question commonly asked by
actuaries is “What percentile should one post a reserve.” While we do not intend to answer
that question, we can use the BAT and the BCL models to estimate the percentiles of the actual
posted reserve. Figure 29 provides the results. It appears that many insurers post conservative

estimates, while many others (correctly as it turns out) posted lower than expected reserves.
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Figure 29
BAT Model
(]
(o]
3 w
[ ~
it}
> o
& -
(1N
[Ty 4'7
(]
T T T T T 1
0 20 40 60 80 100
Percentiles of Posted Reserve
BCL Model
[Ty
&
C (=]
it} —
3
o
b
[T [Ty
(]
T T T T T 1
0 20 40 60 80 100

Percentiles of Posted Reserve

Casualty Actuarial Society E-Forum, Summer 2011



The Retrospective Testing of Stochastic Loss Reserve Models

If a loss reserve model is appropriate for all insurers, the predicted percentiles of the data
should be uniformly distributed. Figure 30 provides histograms for both models with the
training data and Figure 31 provides histograms for both models on the test data. All four
histograms indicate non-uniformity of the predicted percentiles. It should come as no surprise
that the percentiles tend to be around the middle ranges on the training. Because of the high
parameter to data point ratio, we attribute this to overfitting. We interpret the results for the
test data as an indication that either: (1) something changed in the environment that resulted
in lower claim settlements; or (2) no single model should be expected to apply for all insurers.
It appears that, for whatever reason, the BCL did a better job of picking up that environmental

change.

Figure 30
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Figure 31
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6. Concluding Remarks
The primary purpose of this paper was to introduce a new database that can be used to test
predictive distributions from different stochastic loss reserve models. We emphasized the
retrospective tests based on realized payments in the projecting periods. We then performed
some tests on an established model, bootstrap chain ladder (BCL) model, and a proposed new
model, Bayesian Autoregressive Tweedie (BAT) model. At this point in time, we are not ready
to declare a winner. These models, and perhaps other models, should be tested on other lines

of insurance. And the database is there that will permit further testing.

This particular study suggests that there might be environmental changes that no single
model can identify. If this continues to hold, the actuarial profession cannot rely solely on
stochastic loss reserve models to manage its reserve risk. We need to develop other risk

management strategies that do deal with unforeseen environmental changes.
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Appendix

This appendix describes the data set of loss triangles that we prepared for claims reserving
studies. The data cover major personal and commercial lines of business from U.S. property
casualty insurers. We extract the claims data from Schedule P — Analysis of Losses and Loss

Expenses in the National Association of Insurance Commissioners (NAIC) database.
A.1Schedule P

NAIC Schedule P contains information on claims for major personal and commercial lines for
all property-casualty insurers that write business in U.S. Some parts have sections that separate
occurrence from claims made coverages. We focus on the following six lines: (1) private
passenger auto liability/medical; (2) commercial auto/truck liability/medical; (3) worker’s
compensation; (4) medical malpractice — claims made; (5) other liability — occurrence; (6)

product liability — occurrence.

For each of the above six lines, the variables to be included in the dataset are pulled from

three different parts in Schedule P, including:

Part 1 - Earned premium and some summary loss data
Part 2 - Incurred net loss triangles
Part 3 - Paid net loss triangles

Part 4 - Bulk and IBNR Reserves

A.2 Data Preparation

The triangles consist of losses net of reinsurance, and quite often insurer groups have
mutual reinsurance arrangements between the companies within the group. Consequently, we
focus on records for single entities in the data preparation, be they insurer groups or true single

insurers. The process of data preparation takes three steps:

Step I: Pull triangle data from Schedule P of year 1997. Each triangle includes claims of 10
accident years (1988-1997) and 10 development lags. This data was the training data used for

model development.
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Step Il: Square the triangles from Schedule P of year 1997 with outcomes from Schedule P of
subsequent years. Specifically, the data for accident year 1989 was pulled from Schedule P of
year 1998, the data for accident year 1990 was pulled from Schedule P of year 1999, ...... , the
data for accident year 1997 was pulled from Schedule P of year 2006. The data in the lower

triangles could be used for model validation purposes.

Step lll: We performed a preliminary analysis to ensure the quality of the dataset. An insurer
is retained in the final dataset if all following criteria are satisfied: (1) the insurer is available in
both Schedule P of year 1997 and subsequent years; (2) the observations (10 accident years
and 10 development lags) are complete for the insurer; (3) the claims from Schedule P of year

1997 match those from subsequent years.
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A.3 Final Dataset

As a final product, we provide a dataset that contains run-off triangles of six lines of business
for all U.S. property casualty insurers. The triangle data correspond to claims of accident year
1988 — 1997 with 10 years development lag. Both upper and lower triangles are included so
that one could use the data to develop a model and then test its performance retrospectively. A

list of variables in the data is as follows:

Table A.1. Description of Variables

Variable Description

GRCODE NAIC company code (including insurer groups and single insurers)
GRNAME NAIC company name (including insurer groups and single insurers)
AccidentYear Accident year (calendar year)

DevelopmentYear | Development year (calendar year)
DevelopmentlLag | Development year - Incurral year + 1

IncurlLoss_ Incurred losses and allocated expenses reported at year end
CumPaidLoss_ Cumulative and paid losses and allocated expenses at year end
EarnedPremD_ Premiums earned at incurral year - direct and assumed
EarnedPremC_ Premiums earned at incurral year - ceded

EarnedPremN_ Premiums earned at incurral year - net

Single 1 indicates a single entity, 0 indicates a group insurer

Refers to lines of business

B Private passenger auto liability/medical
C Commercial auto/truck liability/medical
D Workers' compensation

F2 Medical malpractice - Claims made

H1 Other liability - Occurrence

R1 Products liability - Occurrence

Casualty Actuarial Society E-Forum, Summer 2011 37





