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Some Considerations With Regard To Inflation 

Matthew Ball, FIA, and Andy Staudt, FCAS, MAAA 

______________________________________________________________________________ 
Abstract  

The following paper presents and uses a simplified framework to explore the impact of inflation across various 
aspects of loss reserving, pricing, and capital management. The primary intent is to highlight some general 
principles which can be used to understand where, how, and by how much inflation risk may affect various 
aspects of actuarial modeling; but its intent is also to encourage actuaries of the importance in adequately 
reflecting future expectations of inflation in their models.  
 
Keywords. Inflation; insurance; reinsurance; collective risk model; reserving; ratemaking; capital modeling. 

______________________________________________________________________________ 

1. INTRODUCTION 

Inflation has become a problem again. Relatively stable since the mid-90s, 2009 was officially 

deflationary for the first time in many countries’ post-war histories and future trends are really 

anybody’s guess with fears of hyper-inflation vs. deflation sharply divided across political lines. For 

hyper-inflation, we have the amount of credit many governments are pumping into the private 

sector, exchange rates of purchasing economies falling relative to producing economies, and 

investors hedging bets by purchasing large amounts of more traditional commodities. Also 

interesting is the theory that rising commodity prices in local currencies are contributing to the 2011 

protests in the Near and Middle East as countries inflate their currencies in an attempt to maintain 

their pegs to the U.S. dollar. For deflation, we have high unemployment which should imply a lower 

than normal level of wage inflation (even wage deflation), an excess labor supply, property 

devaluation, decreased expenditure on “luxury” goods, and austerity. And this is just with regards to 

underlying index inflation—for insurance, material shifts in super-imposed claims inflation (judicial, 

social, labor, and otherwise) are already contributing to downward pressure on profits in many 

markets. Not to mention increased utilization of benefits as a result of a weak economy and all its 

associated problems. While these changing trends can wreak havoc on first-dollar insurance 

products, the effects can and have historically been catastrophic in higher layers where even the 

most subtle of shifts may be exacerbated. Given the increased importance of including inflation in 

actuarial models, the purpose of this paper is to explore and comment on the effect inflation can 

have on several key aspects of actuarial practice including loss development, dependence, credibility, 

decreased limits factors, loss distributions, and risk margins. Rather than merely considering the 

well-documented leveraged impact of inflation, our intention is to present practical results which will 

help actuaries understand where, how, and by how much inflation could affect their work and, as 

such, to stress the importance of modifying models to allow for inflation.  



Some Considerations With Regard To Inflation 
 

Casualty Actuarial Society E-Forum, Spring 2011 2 

2. EXECUTIVE SUMMARY 

The purpose of this paper is to explore the effect of inflation across several areas of actuarial 

practice so as to provide readers with the insight necessary to appropriately understand some of the 

general effects unexpected future inflation may have on different insured layers. Although the exact 

effect is totally dependent on each (re)insurer’s unique situation—and as such the following results 

should be considered general under “nice” conditions and not universal in all, “nice” as well as “not-

nice,”  circumstances—we will show the following broad rules-of-thumb:   

 Leveraged impact of inflation. The attachment point is the most important variable in 
determining the leveraged impact of inflation on reinsured layers (i.e., increasing the 
attachment will increase the impact of inflation) with the limit tempering the effect and co-
insurance having no impact.   

 Decreased limit factors. Although the amount of experience in excess relative to ground-
up or lower layers will typically increase quite quickly with inflation, the uncertainty around 
such relativities will typically decrease.   

 Loss development. Inflation in excess of that observed historically slows down loss 
development; conversely, deflation speeds up development. This effect is exacerbated for 
higher layers of insurance, longer-tailed lines and lines which are characterized by single 
lump-sum payments rather than those characterized by periodic payments. 

 Dependence. Volatile general inflation affecting all lines increases the dependence 
between risks whereas volatile super-imposed inflation affecting a single line decreases the 
dependence between lines.  

 Loss distributions. Although it is obvious that inflation will change the distribution of 
losses in the insured layers, the key result is that for layers with a reasonable enough 
amount of experience, increasing the inflation rate will decrease the volatility of loss 
experience in that layer relative to the mean—the implication of this finding is explored in 
other sections.   

 Credibility. Given a sufficient amount of historical experience by insured layer, inflation 
should increase the credibility of historical experience.  

 Risk Margins. As inflation increases, the relative risk margin decreases across most 
insured layers suggesting that risk margins for excess layers are relatively less affected by 
inflation than the best estimate of total loss or outstanding reserves.  
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3. METHODOLOGY 

3.1 Model 

The following results are based on simulation using extensions of the collective risk model. See 

Klugman et al. [6] for a basic description of the collective risk model. Essentially, for each trial and 

accident year, we simulated the number of claims based on an assumed frequency distribution. For 

each claim, we simulated the ultimate loss amount based on an assumed severity distribution. We 

paid that claim out based on assumed loss development patterns and knowledge of how the claims 

for certain lines pay (e.g., for liability lines, we primarily relied on lump-sum settlements; for the 

indemnity portion of workers compensation, we primarily relied on steady payments and so forth). 

See Butsic [2] for example. We then applied calendar-year inflation trends to the incremental 

payments. We considered both deterministic as well as stochastic inflation to assess the impact of 

increasing amounts of inflation as well as increasing uncertainty in future inflation, respectively. As a 

result, many of the results are delineated as being from the “deterministic scenario” or from the 

“stochastic scenario.”  

The above is easily enough programmed into most computer languages and the Casualty 

Actuarial Society’s (CAS) Public Loss Simulation Model contains much of the functionality required 

to explore these results further. In many situations, especially when trying to get reasonable 

parameter estimates in higher layers, this process can become quite time-consuming and the 

importance of efficient simulation and more complex techniques such as stratified sampling become 

necessary.  

3.2 Parameterization 

We present most of our results in terms of the following broad excess of loss (XOL) layers— 

ground-up, lower, working, and excess. To make the examples as consistent as possible, we set the 

lower layer, or retention, at a level where approximately 90% of the loss prior to inflation would fall. 

Similarly, we parameterized the working layer with the next 7.5% of the loss and then the excess 

layer with the final 2.5% of the loss. We also used several other splits, such as 75/15/10 and 95/3/2, 

to sensitivity test our results. Further, we parameterized our results using industry benchmark data 

and sensitivity tested the results using varying assumptions and parameters across several different 

lines of insurance. 
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3.3 Caveats 

We note that there are several caveats to our work. First, although we did attempt to sensitivity 

test our results to various parameterizations, lines of business, and reinsurance contracts, the infinite 

permutations make it impossible to present truly universal results using this type of empirical 

analysis. Therefore, it is important that these results only be considered general and used for 

reasonability checks or as an aid in assumption setting when the exact effect in the actuary’s unique 

situation can not be determined. Further, we note that in addition to the above, our analysis tended 

to rely on “nice” situations—medium-sized books of business with homogenous claim profiles 

coupled with reasonable reinsurance contracts. It will often be the case that reinsurance contracts do 

not satisfy these nicety conditions and “kinks” will arise in the results. This further indicates the 

importance of modeling each unique situation. As a continuation of the above, we tended to use 

”nice” continuous loss distributions without consideration of binary or CAT-type events which may 

further distort the results. Although, in any event, the effect of inflation on these types of events 

should be analyzed by event scenario rather than in aggregate.   
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4. DETAILED FINDINGS AND CONCLUSIONS 

4.1 Leveraged impact of inflation 

The leveraged impact of ground-up trends on higher layers is a well-documented phenomenon in 

actuarial literature. See for example Lange [6]. Essentially the theory shows that ground-up trends 

such as inflation are intensified in higher layers of insurance as small increases to ground-up losses 

result in relatively larger increases to losses within the layer. This effect is most pronounced for 

losses that were expected to fall below the attachment point and now trend into the excess layer as a 

result of inflation. For losses which have already or nearly exhausted the limit the effect is tempered 

and the impact of inflation on such losses can be minimal. Figure 1 below provides a simple 

illustration of this leveraged impact. Each panel shows the impact of 5% ground-up inflation on an 

excess layer reinsurance product by varying a single term of the contract.   
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Figure 1. Leveraged impact of inflation (5%) for varying attachment, limit, and share. 

Although shown in a very specific environment, these relationships will hold true in most 

situations and help illustrate four general principles with regard to (re)insurance and inflation. 

Namely, that (1) as the attachment increases from zero to unlimited, the expected layer inflation 

increases from the ground-up inflation rate to a theoretically unlimited amount (although in practice, 

for most reasonable excess layers, the leveraged inflation will appear to stabilize asymptotically at 

some large amount); (2) as the limit increases from zero to unlimited the layer inflation increases 

from 0% to the ground-up inflation rate; (3) the share does not affect inflation; and (4) the dominant 

determinant of the leveraged impact of inflation is the attachment point with the effect dampened 

by the limit. While the relative magnitude and exact impact are of course unique to any situation, 
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these four principles can be used to help understand the general impact of inflation on most general 

(re)insurance contracts. 

4.2 Decreased limits factors 

The purpose of this section is to address the relationship between inflation and increased limits 

factors (ILFs)/decreased limits factors (DLFs). Specifically, we show that although, as would be 

expected from the prior section, deterministic inflation increases the DLF for excess layers, 

deterministic inflation decreases the volatility around that DLF. We also show that the effect of 

stochastic inflation on the DLF will often be negligible.  

4.2.1 Some background on increased limits factors 

In his 1977 paper, “On the Theory of Increased Limits and Excess of Loss Pricing,” Robert 

Miccolis does an excellent job of developing simple mathematical formulas, still widely used today, 

for setting increased limits factors (ILFs). His approach is “moment-based” whereby the ILF is set 

equal to the ratio of the expected value of losses in layer A to the expected value of losses in layer B. 

Unfortunately, this approach results in a deterministic ILF as the expectation of a random variable is 

a fixed rather than variable quantity. As such, to answer the question as to whether inflation affects 

the volatility of the ILF, we rely on a stochastic variant of this deterministic ILF, namely the ratio of 

losses in layer A to losses in layer B prior to expectation. Although this quantity is not as useful in 

practice, it does provide a reasonable approximation under nice conditions and will allow us to 

address whether or not there is a leveraged impact of uncertainty as well as a leveraged impact of 

inflation.1 

4.2.2 The relationship between inflation and DLFs — deterministic scenario 

Figure 2 plots the 95th percent confidence interval around the working and excess layer DLFs 

computed using increasing amounts of deterministic inflation. Note that as expected, the DLF for 

these upper layers increases with the inflation rate, i.e., more losses trend into the layer. However, as 

the DLFs of the lower, working, and excess layers must by definition sum to 100%, it will not always 

be the case that both the working and excess layers DLFs will increase. A more universal 

comparison would be the lower layer vs. a single upper layer where the lower layer DLF will always 

                                                           
1 Namely, we conjecture that if aggregate losses are modeled using the collective risk model then the expectation of the 
ratio of losses in layer A to losses in layer B (i.e., E[A/B]), where A is a subset of the losses in B, will tend to the ratio of 
expectations (i.e., E[A]/E[B]) for sufficiently large number of independent and identically distributed insureds/claims.  



Some Considerations With Regard To Inflation 
 

Casualty Actuarial Society E-Forum, Spring 2011 7 

decrease due to the effect of the upper limit and the upper layer DLF would always increase. In the 

case of multiple upper layers, it is possible that the DLF for one or more upper layers may actually 

decrease given the right relationship of reinsurance terms and loss distribution. That aside, more 

importantly note that increasing the underlying inflation rate does not appear to impact the volatility 

of the DLF. In fact, although not obvious from the graphs, the volatility actually decreases relative to 

the mean in these examples. This will commonly be the case as while inflation increases the losses in 

the layer, the reinsurance terms will “squeeze” the losses in the layer.  
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 (a) Working layer (b) Excess layer 

Figure 2. Confidence interval around estimates of the working and excess layer DLFs for increasing 
levels of deterministic inflation.  

4.2.3 The relationship between inflation and DLFs — stochastic scenario 

In the case of stochastic inflation, the effect of increasing the volatility of ground-up inflation on 

both the best estimate DLF as well as uncertainty around the best estimate is generally somewhat 

negligible. As will be discussed in more detail in the section on loss distributions, the exact direction 

and amount of the effect is dependent on several, often contra-directional, changes to the volatility 

and mean of the underlying frequency and severity distributions determined by the relationship 

between the reinsurance terms and the loss distribution before and after the application of stochastic 

inflation. And at the end of the day, the effect becomes somewhat immaterial. Figure 3 helps to 

demonstrate these results plotting the DLF and funnel of doubt for various levels of volatility.  
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Figure 3. Confidence interval around estimates of the working and excess layer DLFs for increasing 
levels of stochastic inflation volatility keeping expected inflation constant at 5%.  

4.2.4 Going forward 

The most interesting conclusion of this section is that while the leveraged impact of inflation can 

be significant, if we can develop an adequate expectation as to future inflation, and incorporate it 

into our models as such, then we can usually develop a good understanding of future reinsurance 

losses— even if they are considerably larger than they have been historically. 

4.3 Loss development 

The purpose of this section is to discuss the relationship between inflation and loss development. 

Primarily, we show that inflation in excess of that observed historically slows down loss 

development and, conversely, deflation speeds up development. This effect is exacerbated for higher 

layers of insurance, longer-tailed lines, and lines which are characterized by single lump-sum 

payments (i.e., liability lines) rather than those characterized by periodic payments. 

4.3.1 The relationship between inflation and development— by reinsurance layer 

Calendar year inflation which is consistent from year to year will not impact the accuracy of loss 

development methodologies (i.e., the chain-ladder method). This is shown more explicitly in Boles 

et al. [1], but can be understood by noting that loss development methodologies, by virtue of taking 

the ratio of losses from one period to the next, cancel out the impact of calendar year inflation in the 

numerator and denominator. That said, loss reserving methods which aren’t ‘development’ 

methodologies all have to make some adjustment for inflation. Often this involves trending forward 

incremental amounts, adjusting the IELRs and so forth. But still, assuming the inflation is steady, 

and the adjustment is reasonable, the accuracy of these methods isn’t affected.  
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However, it is when the inflation rate changes abruptly and materially, that our estimates of 

ultimate loss and unpaid claim liabilities will be distorted. Inflation in excess of that shown 

historically will slow down development patterns and inflation less than that shown historically will 

speed up development patterns. Like the leveraged impact of base inflation, these impacts are also 

considerably more leveraged in excess layers of insurance. This is illustrated in Figure 4 which plots 

the first 10 years of the cumulative paid pattern in each of the lower, working, and excess layers. The 

dark black reference line indicates the pattern with historical inflation removed. The lines above this 

reference line show the development pattern with increasing magnitudes of deflation; and the lines 

below show the development pattern with increasing magnitudes of inflation. 
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Figure 4. Effect of inflation on loss development for various insured layers. 

4.3.2 The relationship between inflation and development—by type of pattern 

Not only is there a leveraged distortion on development in higher layers, the amount by which 

the pattern is distorted very much depends on the time of pattern. Taking the working layer as an 

example, Figure 5(a) compares the error2 in the chain-ladder method for a short-tailed, medium-

tailed, and long-tailed line of business and various levels of inflation. As expected, the long-tailed 

line is significantly more affected than the shorter-tailed lines as the distortion compounds with 

inflation at the later evaluations. Figure 5(b) compares the error in the chain-ladder method for a line 

of business primarily characterized by periodic payments (i.e., workers compensation indemnity) vs. 

a line of business primarily characterized by single lump-sum payments (i.e., medical malpractice). 

Note that development for the periodic payment class is much less affected than development for 

                                                           
2 Here, error specifically refers to the expected estimate of ultimate loss less the actual ultimate loss divided by the actual 
ultimate loss.  

Inflation 
 

    Deflation   
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the lump-sum class as lump-sums at later maturities bear the full-brunt of inflation whereas with 

periodic payments only a portion of the total claim is adjusted for inflation at these later maturities 

minimizing the overall impact on development. Both of these results imply that as the duration 

increases, so does the distortion. 
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Figure 5. Effect of unexpected inflation on various types of patterns.  

4.3.3 Going forward 

Of all the results shown in the paper, loss development, and the projection of ultimate loss, is the 

one most sensitive to the exact conditions. The degree to which a pattern slows down (or speeds up 

in the case of deflation) is significantly dependent on whether the data is short-tailed or long-tailed, 

how losses are paid, the degree to which inflation is present in historic data, the exact policy limits, 

the size of the book, and so forth. To this end, and especially as inflation departs from its historical 

norm, it is necessary to utilize reserving methodologies which both make an implicit or explicit 

adjustment for historical inflation as well as allow you to incorporate your own actuarial judgment as 

to future inflation into the projections.  

4.4 Dependence 

This section considers the relationship between inflation and dependence. We show that with 

regard to general economic inflation affecting all lines simultaneously, increasing the volatility of 

inflation will increase the dependence between lines. Conversely, with regard to specific by-line 

inflation affecting only a single line, increasing the volatility of inflation will decrease the dependence 

between lines. Finally, we note that here the key driver of these results is the volatility of inflation 

rather than the actual inflation rate. 
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4.4.1 Inflation, dependence, and systemic vs. non-systemic risk 

To understand these results, it is necessary to first take a step back and examine the relationship 

between inflation and dependence. Specifically, that it is not the magnitude of the expected inflation 

which matters, but rather it is the uncertainty around that expected magnitude. Without going into 

the mathematics, it is perhaps easiest to frame the problem by considering dependence as a function 

of the amount of systemic risk relative to the non-systemic risk. When the amount of systemic risk is 

substantially larger than the amount of non-systemic risk, dependence will generally be high as the 

systemic risk dominates and vice versa. Thus, by increasing the volatility of inflation which is 

exogenous to both lines of insurance, we are in turn increasing the amount of systemic risk relative 

to non-systemic risk and increasing the dependence between lines. On the other hand, by increasing 

the volatility of inflation for a single line, we are increasing the amount of non-systemic risk relative 

to systemic risk and as such decreasing the dependence between lines. While the direction is 

predictable, the rate at which the dependence changes depends on the initial ratio of systemic to 

non-systemic risk which is highly susceptible to the interrelationship between the reinsurance terms 

and the underlying frequency and severity distributions. As such, it will not always be the case that 

the dependence by layer changes in an ordered manner with predictable rates of change.   

4.4.2 The relationship between inflation and dependence—general inflation 

Figure 6 shows how inflation can change the dependence between lines by plotting the 

correlation3 between two lines in the scenario where general monetary inflation affects both lines 

simultaneously. Figure 6(a) shows the effect of increasing the inflation rate in the deterministic 

scenario and Figure 6(b) shows the effect of increasing the volatility of inflation in the stochastic 

scenario. In order to emphasize our findings, we started with two lines which were independent of 

one another and then added inflation. First note that in the case of varying the degree of 

deterministic inflation, there is no effect as fixed inflation does not distort the degree of systemic vs. 

non-systemic risk. However, as we increase the volatility of general economic inflation, the 

correlation between lines increases as the systemic risk increases relative to the non-systemic risk. 

Although the direction of the change is fairly easy to assess, the magnitude of change is quite 

difficult to predict without actually modeling the specific scenario.  

                                                           
3 As an aside, note that while we use correlation as our measure of dependence in this section, the correlation measure is 
not without its weaknesses and using such a measure to assess dependence may not always be appropriate.  
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Figure 6. Effect of general inflation on dependence by layer for various inflation rates and volatilities. 

4.4.3 The relationship between inflation and dependence – specific inflation 

Now, while the above results refer to the situation where inflation impacts several lines of 

insurance simultaneously, Figure 7 shows how specific by-line inflation affecting a single line, will 

decrease the dependence between lines. Figure 7(a) shows the effect of increasing the inflation rate 

in the deterministic scenario and Figure 7(b) shows the effect of increasing the volatility of inflation 

in the stochastic scenario. In order to emphasis our findings, we started with two lines which were 

perfectly correlated and then added inflation to one line. Again note that varying the level of 

deterministic inflation has little effect; but, with regard to varying the volatility of the inflation 

parameter, we see that the correlation between lines quickly decreases as the amount of non-

systematic risk increases relative to the systemic risk.  
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Figure 7. Effect of specific by-line inflation on dependence by layer for various inflation rates and volatilities. 
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4.4.4 Going forward 

These results are nothing new, in fact they are the basis of the Marshall-Olkin copula structure 

and often used for introducing dependence among independent events in actuarial science through 

the form of a “contagion” parameter in the collective risk model. See Klinker et al. [6] for example. 

However, they are not always considered when setting correlation assumptions resulting in capital 

models which may mis-specify the amount of dependence and degree of risk between lines. 

4.5 Loss distributions 

Like loss development, the effect of inflation on loss distributions by layer is highly speculative 

and depends primarily on the interaction between the reinsurance terms and the ground-up 

distributions. However, there are a few obvious effects—inflation will cause both the mean 

frequency in the upper layers and the severity in all layers to increase. While inflation will typically 

cause the volatility of frequency in the upper layers to increase, the effect of inflation on the 

volatility of severity in the upper layers is less definite and depends primarily on how much room 

losses in the layer have to play (i.e., is it a tight or wide layer). With regard to ground-up experience, 

the volatility of the severity distribution will increase with inflation; and in the lower layer, the 

volatility of the severity distribution will decrease with inflation. More interesting though is the effect 

inflation has on the volatility relative to the mean by insured layer. With regard to both frequency and 

severity in the upper layers, the CV will typically decrease as inflation increases. Although this is by 

no means always the case, it will generally be the case when the upper layers insure a non-

insignificant share of the loss (i.e., 5% is cutting it close, 10% is getting safer). Typically, the more 

loss experience there is in a layer, the more likely it is that the CV will decrease with inflation as the 

loss experience will be more stable and less likely to be affected by large loss “pops.” Table 1 below 

summarizes these points. We have attempted to illustrate confidence in the result by using a scale of 

one to three arrows for not confident to very confident with a question mark indicating no 

confidence in making an assessment.  

  Frequency Severity 
Layer  Mean SD CV Mean SD CV 

Ground-up  No change No change No change ↑↑↑ ↑↑↑ No change
Lower  No change No change No change ↑↑↑ ↓↓↓ ↓↓↓ 
Working  ↑↑↑ ↑↑ ↓ ↑↑↑ ? ↓* 
Excess  ↑↑↑ ↑↑ ↓ ↑↑↑ ? ↓* 
*Mostly depends on size of layer relative to loss. 

Table 1. Effect of increasing deterministic inflation on underlying frequency and severity distributions by layer. 
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Figure 8 illustrates these same points graphically by focusing on the aggregate loss distribution 

and plotting the probability density for various amounts of inflation. With regards to the ground-up 

distribution, note that the “location” of the density changes substantially, while the “shape” of the 

density appears to change only slightly for the various levels of inflation. This makes sense 

considering the effect of inflation on the component frequency and severity as described above. 

While inflation does not affect the frequency distribution, it does increase the mean of the severity 

distribution (i.e., change in location) and although it does increase the standard deviation of the 

distribution it doesn’t change the volatility relative the mean (i.e., similar shape). However, with 

regard to the upper layers (excess layer is pictured) note that the shape of the distribution, as well as 

location, changes substantially with inflation as would be indicated by the above.  
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Figure 8. Shift in aggregate distribution due to various inflation scenarios. 

These results are too broad for implementation in a specific situation, but are quite useful as an 

intermediate step for framing the following sections and so we have included them for 

completeness.  

4.6 Credibility 

The purpose of this section is to discuss the relationship between inflation and credibility as it 

relates to historical loss experience. Primarily, we show that (1) in the case of deterministic inflation, 

as the inflation rate increases, the credibility of ground-up experience will remain unchanged, but the 

credibility of experience by layer will increase; and that (2) in the case of stochastic inflation, as the 

amount of volatility increases, the credibility of ground-up experience will decrease although the 

change in credibility of experience by layer is typically minimal.    



Some Considerations With Regard To Inflation 
 

Casualty Actuarial Society E-Forum, Spring 2011 15 

4.6.1 Some background on credibility 

Without going into too much detail, credibility is the actuarial concept which refers to the 

amount of weight which should be assigned to historical experience. One of the most common 

credibility frameworks is Bühlmann credibility which gives the credibility weight as function of three 

different components—the amount of historical data, the variance of the hypothetical means 

(VHM) and the expected value of the process variance (EVPV). The relationship of the first 

component, the amount of data, on credibility is rather obvious in that as the amount of historical 

data increases so does the weight one should assign to it. For simplicity and without loss of 

generality, we consider just a single year of experience. The latter two components, the EVPV and 

the VHM, are rather more difficult to conceptualize, but are excellently illustrated in Steve 

Philbrick’s 1981 paper. “An Examination of Credibility Concepts,” in which he draws an analogy 

with marksmen shooting at targets. However, for our current purposes, it is more useful to think of 

these concepts within the framework of the collective risk model. Here, the EVPV is primarily 

driven by the variability in the size of losses (i.e., the coefficient of variation or CV for severity) and 

the VHM is primarily driven by the variability in the number of claims (i.e., the variance-to-mean 

ratio or VTM for frequency).  

Consider first the EVPV. As the variability in the size of losses increases, the EVPV also 

increases, but the credibility of actual experience decreases. To understand this, consider the 

following example: if losses aren’t variable and we observe a loss of $1,000, we can be 100% certain 

that all losses are $1,000. However, if losses are extremely variable and we observe a loss $1,000, we 

don’t actually know if other losses are $1,000 or $1,000,000. In Philbrick’s language, the more 

variability in losses, the more the targets overlap with one another and so with any one observation 

we are not very confident from which archer it came.  

Consider next the VHM. Now, as the variability in the number of claims increases, the VHM also 

increases and so does the credibility of actual experience. This relationship is a little bit more 

difficult to understand as it is somewhat counterintuitive, but consider the following example: 

suppose there is either 1 claim or 100 claims and that the cost per claim is about $50. If we observe 

aggregate losses of about $50 we can be pretty sure that the number of claims is 1 and if we observe 

aggregate losses of about $5,000 we can be pretty sure that the number of claims was 100. However, 

if the number of claims is either 9 or 11 and we observe aggregate losses of $500, we really don’t 

know whether the number of claims was 9 or 11. In Philbrick’s language, the more variability in the 

number of claims there is, the further apart the targets are pushed so that with any one observation 
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we can be more confident in which target the marksmen is aiming at.  

Table 2 summarizes these relationships. Note that by re-framing the EVPV and VHM in terms 

of the key statistic—CV for severity and VTM for frequency—we can easily utilize the results from 

section 4.5 to explain how changes in the inflation rate might be expected to impact the credibility of 

historical data.  

Driver 
Credibility 

Component Key Statistic Credibility

Variability of losses increases EVPV ↑ CV of severity ↓ 

Variability of the number of claims increases  VHM ↑ VTM of frequency ↑ 

Number of observations increases       N ↑ N/A ↑ 

Table 2. Drivers of credibility. 

Figure 9 highlights these relationships graphically. Panel (a) shows that as the CV of the severity 

distribution increases, the credibility decreases. Panel (b) shows that as the VTM of the frequency 

distribution increases, so does the credibility and Panel (c) shows that as the number of observations 

increases, so does the credibility of historical experience. Note that the relationship between each of 

these components and the credibility is in no way linear and is different for each component. This 

implies that the exact credibility depends very much on the relationship between attachment and 

limit as well as the interaction between these terms and the underlying frequency and size-of-loss 

distributions. 
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Figure 9. Drivers of credibility.  
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4.6.2 The relationship between inflation and credibility—deterministic scenario 

Figure 10 highlights the effect of increasing the rate of inflation on the credibility for the lower, 

working, and excess layers. Note that we have also included a black reference line on each graph to 

show the impact of credibility on the ground-up experience. With regard to ground-up experience, 

changing the rate of inflation does nothing to impact the credibility of historical data; whereas the 

credibility by layer increases with the rate of inflation. To some extent, these results make sense 

when considering layered (re)insurance contracts. The higher the inflation rate, the more losses we 

would expect to trend into upper layers and increase the amount of experience from which to 

project from. Further, this additional experience would act to stabilize the “attritional” component 

of losses in the layers relative to the “large” or “catastrophic” components. And finally, the higher 

the inflation, and without any indexation of limits and attachment, the more we would expect the 

reinsurance terms to come into play.  
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Figure 10. Effect of deterministic inflation on credibility by layer.  

However, that said, it is also easy to understand these results with reference to how inflation 

changes the distribution of the frequency and severity components by layer, keeping both Table 1 

and Table 2 in mind. Ground-up deterministic inflation will not change the underlying frequency 

and severity distribution and thus there is no impact on the credibility of experience. In the lower 

layer, although there is no change to the frequency distribution, the severity CV will decrease as 

inflation increases causing the credibility of experience to increase. In the upper layers, the effect is 

not so certain, but most typically, when these layers have a sufficient amount of experience, the 

severity CV will decrease with inflation causing the credibility of experience to increase. And 

although in the upper layers there is also a shift in the frequency distribution, this “frequency” effect 

is most often dominated by the “severity” effect and can be considered less material.  
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4.6.3 The relationship between credibility and inflation—stochastic scenario 

With regards to stochastic inflation, the results by layer are not nearly as nice. It is first easiest to 

note that the credibility of ground-up experience will decrease with increased volatility in the 

inflation parameter as the underlying coefficient of variation for the severity distribution will 

increase. This result would be expected as the more variable historical experience is, the less we will 

rely on it. With regards to the insured layers, the effect of inflation volatility on credibility is harder 

to predict. In general, the credibility will decrease although the exact change is quite uncertain. 

However, as the magnitude of the change will usually be quite small, increased volatility of the 

inflation parameter is not as worrying. 

4.6.4 Going forward 

Perhaps the key implication from this section is that for lines with high inflation we should 

probably be giving more weight to more recent years’ experience; whereas, where the claims 

inflation is largely uncertain, we should primarily rely on a longer history of data smoothing the 

results out based on long-term averages.   

4.7 Risk Margins 

The purpose of this section is to discuss the relationship between inflation and the risk margin. In 

a deterministic setting, we show that increasing the rate of inflation will actually lead to a lower 

relative risk margin4 for most layers of reinsurance. With regard to stochastic inflation, we note that 

the effect of changing the volatility of inflation will most often be negligible.  

4.7.1 Some background on risk margins 

The risk margin is generally defined as the amount in excess of expected loss which is added as a 

load to reasonably compensate for the risk associated in an insurance contract. There are a many 

ways to measure the risk margin, each with their own properties and advocates, but some of the 

most common measures include the standard deviation (SD), semi-deviation (Semi-SD), value at risk 

(VaR), and conditional tail expectation (CTE). Because there is no best measure of risk, a standard 

of “coherence” is often ascribed to those risk measures which possess some desirable 

characteristics—namely monotonicity, sub-additivity, positive homogeneity, and translation 

invariance. Here we consider positive homogeneity in detail as it will help frame the effect of 

                                                           
4 Here, risk margin refers to the percentage multiplicative load rather than a nominal additive load. While inflation will 
increase the nominal amount of risk margin, it will decrease the relative risk margin as a percentage of the mean.  
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inflation on risk margins. Simply put, positive homogeneity states that if the insured exposure grows 

by some percentage q, then our risk also grows by that same percentage q. Theoretically, this 

property makes sense—if we double the size of a portfolio, the risk should also double. Although, as 

we will discuss, this property, at least on the face of it, does not hold in the case of inflation.5 

4.7.2 The relationship between inflation and risk margins—deterministic scenario 

If we let q represent inflation, then for a given risk measure we might expect that 5% inflation 

would increase our estimate of risk by 5%. And if we were to apply a fixed inflation factor to 

aggregate losses by layer, this certainly would be true. However, with regard to non-proportional 

reinsurance, the policy terms absorb some of the inflation shock and in turn limit the increase in risk 

margin. In short, while the insurable exposure gets q% bigger, the risk associated with that exposure 

only gets (q-ε)% bigger. This implies that when considering the effect of inflation, the mean is 

substantially more leveraged than the risk associated with the mean. Figure 11 demonstrates this 

phenomenon. For comparison purposes, this figure normalizes the risk margin relative to the risk 

margin with no inflation in each of the layers as indicated by the cross-hairs. Here, the effect is most 

pronounced for the excess layer and almost negligible for the lower layer.  
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Figure 11. Percentage change in risk measure for increased levels of inflation (measured relative to no inflation). 

4.7.3 The relationship between inflation and risk margins—stochastic scenario 

The results with regard to stochastic inflation are less straightforward although the magnitude of 

results will not usually be that material. In this specific situation, Figure 12 shows that the risk 

                                                           
5 Technically, positive homogeneity does hold in this situation; however, it only appears to not hold because by 
modelling inflation on a per-occurrence basis and subjecting each loss to the reinsurance terms of the layer we are in 
effect distorting the distribution rather than just “doubling the exposure base.”  
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margin decreases as the volatility of inflation increases. This will not always be the case (i.e., the risk 

margin could increase) with the exact result depending on the relationship between the mean and 

volatility of losses in the layer relative to the reinsurance terms before and after the stochastic 

inflation is modeled. However, note that here as well as in most situations, the relative magnitude of 

the effect will be rather negligible both in relative and nominal terms. 
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Figure 12. Percentage change in risk premium for increasing levels of inflation volatility (as measured 
relative to deterministic inflation).6 

4.7.4 Going forward 

The key implication of this section is that as the amount of ground-up inflation increases, 

insurers playing in higher layers need to worry more about their best estimate liability and less about 

their risk margin, relatively speaking.  

                                                           
6 Note that the VaR amount is not shown here because, when dealing with relative amounts so small in magnitude, it is 
difficult to precisely estimate VaR using simulation techniques.  
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5. CONCLUSION 

The primary intention of this paper was to explore the effect of inflation on several common 

areas of actuarial modeling. Where possible, we tried to present certain basic rules of thumb which 

might help provide general guidance to actuaries when working with inflation. However, we note 

that the exact magnitude and effect of inflation on losses is highly uncertain and will heavily depend 

on the actuary’s unique situation; so we would hope that this paper will be used as proof that 

inflation should in a real, and non-trivial manner, be incorporated into most actuarial models.   
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Conditional Probability and the Collective Risk Model 

Leigh J. Halliwell, FCAS, MAAA 

________________________________________________________________________ 
Abstract. One of the most powerful and profound tools of casualty actuarial science is the collective 

risk model NXXS ++= K1 .  It is widely used by casualty actuaries, especially by those in the field 

of reinsurance.  Nearly one hundred pages of one standard textbook (Klugman, [1998], Chapter 4) 
hardly suffice to survey the ingenuity with which actuaries and scholars have analyzed it.  Much of their 
analysis proceeds from the application of conditional probability to the so-called individual risk 

model nXXS ++= K1 .  This paper penetrates deeper into both conditional probability and the 

collective risk model, deriving new insights into higher moments and their generating functions.  
Particular attention is devoted to the fourth moment of the collective risk model, for which no formula 
seems previously to have been published.  An appendix extends conditional probability to a novel 
technique of loss development. 

Keywords: conditional probability, moments, cumulants, collective risk model. 

________________________________________________________________________ 

1. INTRODUCTION 

This paper applies conditional probability to the moments of the collective risk model.  

In the next section we will set forth definitions of conditional moments and co-moments, 

and in third section will derive formulas in which unconditional moments are expressed in 

terms of conditional ones.  Next, in the fourth section, after explaining why moments higher 

than the third are not additive, we will introduce an additivity-restoring adjustment known as 

a cumulant.  In the fifth section we will apply conditional cumulant formulas to the 

collective risk model to seize the prize of a manageable formula for its fourth cumulant.  

Finally, in the sixth section we will explain the cumulant generating function, and show its 

usefulness in relating cumulants to moments and in deriving cumulants of the collective risk 

model. 
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2. DEFINITIONS 

Let X be a random variable with finite mean [ ] µ=XE .  For positive integer n, define 

the nth moment of X as [ ] ( )[ ]n

n
XEXM µ−= .1  Here we have defined what probability 

theory calls the central moments of X.  Of course, the first central moment is zero.  The 

second moment is the variance, and the third is the skewness.  We shall call the fourth 

moment the kurtosis.2  Now let Θ denote an event which conditions the probability 

distribution of X.  We can then speak of the conditional nth moment 

[ ] ( )[ ]Θµ−=Θ Θ

n

n XEXM , where [ ]Θ=µΘ XE .3 

Furthermore, as a multivariate extension, we can define the nth co-moment 

as [ ] ( )







µ−= ∏

=

n

k

kkn XEXXCM
1

1 ,,K .  Since the order of the co-moment is the number 

of its arguments, it is superfluous to subscript the definition as CMn.
4  The first co-moment 

is zero; the second is the covariance.  We shall call the third and the fourth co-moments the 

co-skewness and the co-kurtosis.  A co-moment of random variables is zero, if any of them 

is constant, since in that case one of the factors in the Π operator will always be zero.  The 

same random variable may appear in the argument list more than once; as a special 

                                                
1 The reader should not confuse Mn[X] for the nth moment with MX(t), the moment generating function of X. 

2 Some define kurtosis as the fourth cumulant, ( )[ ] ( )[ ]224
3 µ−−µ− XEXE , also known as excess 

kurtosis because the kurtosis of the normal distribution is three times the square of its variance.  Sometimes 
(e.g., Daykin [1994], 24) skewness and kurtosis are defined as what we would call coefficients of skewness and 
kurtosis, i.e., the moments or cumulants stripped of dimension by dividing them by the third and fourth 
powers of the standard deviation. 

3 In general, [ ]( )[ ] [ ]( )[ ]ΘΘ−≠Θ−
nn

XEXEXEXE .  Conditioning at one level of expectation 

should by default cascade into the next or nested level, and so on.  The tendency to disregard this inequality 
may indicate a defect in the accepted notation.   It helps (at least it helps this author) to regard unconditional 

expectation as conditional upon the universal event V: [ ] [ ]VXEXE = . 

4 One must be wary of such mistakes as equating [ ]YXXCM ,,  and [ ]YXCM ,2
, which confuses a third 

co-moment with a second. 
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case, ( ) ( )[ ] [ ]XMXEXEXXCM n

n
n

k

n

=µ−=







µ−=















∏
=1

times

,,
48476

K .  The conditional co-

moment is [ ] [ ]( ) 







ΘΘ−=Θ ∏

=

n

k

kkn XEXEXXCM
1

1 ,,K . 

3. UNCONDITIONAL MOMENTS IN TERMS OF CONDITIONAL 

Our purpose here is to derive formulas that express unconditional moments in terms of 

moments and co-moments conditional upon Θ.  This begins with the key sequence: 

[ ] ( )[ ] ( )[ ][ ] ( ) ( ){ }[ ][ ]Θµ−µ+µ−=Θµ−=µ−= ΘΘ
ΘΘ

nnn

n XEEXEEXEXM  

Next we expand this according to the binomial theorem: 

[ ] ( ) ( ){ }[ ][ ]

( ) ( )

( ) ( )[ ][ ]

( )[ ]( )[ ]

[ ]( )[ ]∑

∑

∑

∑

=
Θ−

Θ

Θ

−

Θ
Θ

=

Θ

−

Θ
Θ

=

=

Θ

−

Θ
Θ

ΘΘ
Θ

µ−µΘ







=

µ−µΘµ−







=

Θµ−µµ−







=
























Θµ−µµ−








=

Θµ−µ+µ−=

n

k

k

kn

kkn
n

k

kkn
n

k

n

k

kkn

n

n

XME
k

n

XEE
k

n

XEE
k

n

X
k

n
EE

XEEXM

0

0

0

0

 

The fourth line follows from the third because ( )k
µ−µΘ  behaves as a constant within the 

nested expectation, and so can be taken outside it.  Of these 1+n  terms, the (n–1)th is zero, 

since  ( )[ ] [ ] 011 =Θ=Θ−− XMXM nn .  Hence, in this binomial form, the nth moment has n 

non-vanishing terms, namely: 
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[ ] [ ]( )[ ]

[ ][ ] [ ]( )[ ] ( )[ ]n
n

k

k

knn

n

k

k

knn

EXME
k

n
XME

XME
k

n
XM

µ−µ+µ−µΘ







+Θ=

µ−µΘ







=

Θ
Θ

−

=
Θ−

ΘΘ

=
Θ−

Θ

∑

∑

2

1

0

 

However, at this point we have not expressed the unconditional moment in terms of 

conditional moments and co-moments; we must express the expectation within the Σ 

operator as a co-moment.  Letting [ ][ ]Θ=ζ −
Θ

− XME knkn
, and remembering that first central 

moments are zero, we derive: 
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Hence, for n ≥ 2, to express the nth unconditional moment in the desired conditional 

form requires ( )3,0max −+ nn  non-vanishing terms.  The first Σ operator does not come 
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into play until n ≥ 3, and the second until n ≥ 4.  At least the complexity does not increase 

after the fourth moment. 

The second, third, and fourth moments follow readily from the general formula: 
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4. MOMENTS VERSUS CUMULANTS 

That the conditional expression of the nth moment requires ( )3,0max −+ nn  terms 

indicates a “bend in the road” between 3=n  and 4=n .  It is hardly coincidental that 

moments beyond the third are not additive.  If X and Y are independent random variables 

with means µ and ν, the nth moment of their sum is: 
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The Σ operator disrupts the additivity when its range is non-empty, i.e., when 22 ≥−n , or 

4≥n .  So, with independence, the first three moments are additive; in the fourth moment 

the term [ ] [ ] [ ] [ ] [ ] [ ]YVarXVarYMXMYMXM 66
2

4
22224 ==








−  disrupts the additivity, a 

term analogous to [ ][ ] [ ][ ]ΘΘ
ΘΘ

XEVarXVarE6  in the kurtosis formula. 

Nevertheless, adjustments to moments higher than the third can obviate the disruption 

and restore additivity.  Such adjusted moments are known as cumulants.  The fourth-order 

adjustment is: 
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Thus, the fourth cumulant, [ ] [ ] [ ] [ ] [ ]2

4

2

244 33 XVarXKurtXMXMX −=−=κ  is 

additive.5 

Since the collective risk model involves sums of independent random variables, the 

fourth cumulant, which we shall call the excess kurtosis, will prove more useful than the 

fourth moment.  Its conditional expression is: 
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5 The formulas for higher-order cumulants become increasingly more complicated.  The reader can verify the 
additivity of the next two cumulants according to the definitions (cf. Section 6): 
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5. MOMENTS OF THE COLLECTIVE RISK MODEL 

The collective risk model, which casualty actuaries must study for their examinations, is 

stock-in-trade, especially in the field of reinsurance.  It considers aggregate loss S as the sum 

of a random number N of independent, identically distributed claims: NXXS ++= K1 .  

Here we will apply our conditional formulas6 to derive the first four cumulants of S in terms 

of those of X and N.  Because the Xi are independent and identically distributed, as well as 

due to the additivity of cumulants, [ ] [ ]XENNSE = , [ ] [ ]XVarNNSVar = , 

[ ] [ ]XSkewNNSSkew = , and [ ] [ ]XXsKurtNNSXsKurt = .  Because [ ]XE , 

[ ]XVar , [ ]XSkew , and [ ]XXsKurt  are constants, we may remove them from moments 

conditional upon N, being careful to raise them to the power of the conditional moments.  

The first cumulant, the mean, is trivial: [ ] [ ][ ] [ ][ ] [ ] [ ]XENEXENENSEESE
NN

=== .  

For the second, the variance: 
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Every actuary at some time learned this formula; to many it remains familiar. 

However, the third moment is not studied, and hence, not commonly known: 
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6 We will change the nomenclature of these formulas so as to agree with that of the collective risk model, i.e., S 

will appear instead of X, and N instead of Θ.  In this section X will represent the severity of a claim. 
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Nonetheless, this formula appears in Patrik [1996, 377] and Klugman [1998, 298]. 

Last, we derive the excess kurtosis, whose formula we have not seen in print before: 
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6. THE CUMULANT GENERATING FUNCTION 

The moment generating function of a sum of independent random variables equals the 

product of their moment generating functions.  Since logarithms convert multiplication into 

addition, it is natural to consider the logarithm of the moment generating function, which 

has come to be known as the cumulant generating function ψ  (c.g.f.), i.e., ( ) [ ]tX

X eEt ln=ψ .  

Its derivatives at zero are called cumulants:7 [ ] [ ]( )0i

Xi X ψ=κ .  If the Xi are independent of 

one another: 
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7 In Section 4 we introduced cumulants as “moments adjusted to restore additivity.”  This hardly suffices for a 
definition, and we have not proven the existence and the uniqueness of the adjustment.  The derivatives of the 
c.g.f. at zero constitute a proper definition of cumulant, and the Taylor-series argument of this section can be 
made into a rigorous proof of the uniqueness of the adjustment. 
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Since differentiation is a linear operator, the cumulant of a sum of independent random 

variables equals the sum of the cumulants of the random variables.  The first three 

cumulants equal the mean, the variance, and the skewness.  But equality ceases with the 

fourth cumulant: [ ] [ ] [ ] ( )[ ] [ ]242

244 33 XVarXEXMXMX −µ−=−=κ  (Daykin [1994, 23] 

and Halliwell [2003, 65]).  Here we will show the relevance of the c.g.f., to (1) the expression 

of cumulants in terms of moments and (2) the moments of the collective risk model. 

First, the Taylor-series expansion of the c.g.f. embeds the cumulants: 
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The central moments of X, [ ] ( )[ ]n

n XEXM µ−= , are similar coefficients in the Taylor-

series expansion of the moment generating function of µ−X : 
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We can combine these two equations to relate the cumulants and the moments: 
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But the logarithm has its own Taylor-series expansion for 11 ≤<− x , viz.: 

 ( ) ( ) .14321ln
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So the relationship can be expressed as two polynomials in t: 
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Matching coefficients of identical polynomials must be equal.  It is the last expression on the 

right side of the final equation that complicates the matching; however, it is quartic and 

higher in t.  Hence, the first three cumulants must be the mean, the variance, and the 

skewness.  And the formula for higher cumulants begins as [ ] [ ] K+=κ XMX jj . 

As an example of higher-order matching, we will derive the kurtosis formula.  A fourth 

power of t arises in the last expression only from 2=k powers of two, or as 2+2: 

[ ] [ ] ( ) [ ]( ) [ ]( ){ }

[ ] [ ]

[ ] [ ] [ ] .3

8!4

2!2!21!4!4

2

244

42

2

4

4

2

2

2

2

124

4

4

4

XMXMX

tXMtXM

tXMtXMtXMtX

−=

−=

−+=
−

κ

κ

 

The fifth cumulant is a little more complicated, still involving 2=k , but obtained twice as 

2+3 and 3+2.  The sixth cumulant involves 2=k  as 2+4, 3+3, and 4+2, as well as 3=k  as 

2+2+2.  This c.g.f. technique is arguably the easiest way to derive the formulas of footnote 5. 

Second, we will derive the c.g.f. of the collective risk model NXXS K+= 1 , being 

mindful of the change in nomenclature (cf. footnote 6): 

( ) ( ) ( )[ ] ( )[ ] ( )( ) ( )( ).lnlnln tteEeEet XNXN

Nt

N

t

N

t

S
XNSS ψψ=ψψ====ψ ψψψ

o  

So the c.g.f. of the aggregate loss is the composition of the cumulant generating functions of 

frequency and severity (Daykin [1994, 59]).  This is the most elegant way to derive the 



Conditional Probability and the Collective Risk Model 

Casualty Actuarial Society E-Forum, Spring 2011 12 

aggregate cumulants, and it is more efficient than the conditional-moment technique of 

Section 5.  To show this, we will derive the first two moments. 

( ) ( )( ) ( )
[ ] ( ) ( )( ) ( ) ( ) ( ) [ ] [ ]

( ) ( )( ) ( ) ( )( ) ( )
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Curious and ambitious readers, performing the third and fourth derivatives, can verify the 

formulas in Section 5 for the aggregate skewness and excess kurtosis. 

7. CONCLUSION 

We have shown how unconditional moments can be expressed in terms of conditional 

moments and co-moments.  Adjusting moments into cumulants allowed us to form fairly 

simple formulas for the skewness and the excess kurtosis of the collective risk model.  These 

formulas can also be derived directly from the cumulant-generating function.  Actuaries who 

have been reluctant to apply the method of moments to just the first two moments of the 

collective risk model can now with these formulas fit more versatile distributions to more 

than two moments.  One ought to be more comfortable with extrapolations into the right 

tail of an aggregate loss distribution after having considered its skewness and kurtosis. 

Aside from the collective risk model, a conditioning partition Θ can change the 

moments of a sum of independent random variables without changing their unconditional 

moments.  The appendix shows how this can be done in loss reserving.  Moreover, if some 

amount of capital or risk margin were allocated to a moment, conditioning would allow a 

sub-allocation to the partitions. 
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APPENDIX A 

Conditional Probability and Claim Development 

A recent assignment spurred our interest in the subject of this paper.  We had a list of 

the case reserves of about 200 claims, and were satisfied that the total IBNER8 for them was 

zero, i.e., [ ] 0IBNER =E .  But in addition, we wanted some measure of the variance.  The 

claims stemmed from an unusual exposure, and we deemed no other data sources 

appropriate.  Since we assumed the average development to be zero, the claim list itself 

could serve as an empirical distribution Xf  with moments σ±µ .  Regarding the n claims as 

independent, we might decide the moments of the total unpaid loss (i.e., case plus IBNER) 

to be σ±µ nn , or total IBNER to be σ± n0 .  But this ignores the likelihood of rank 

correlation, i.e., that after development large claims tend to stay large, and small claims tend 

to stay small.  Hence, σn  is a maximal value. 

Therefore, we decided to order the claims by their case reserves and to stratify them 

into 10 groups of approximately 20 claims.  Belonging to a stratum is the event Θ that 

conditions a claim’s probability density as 
ΘX

f .  Since stratification provides no new 

information, ( ) ( )[ ]xfExf
XX Θ

Θ
= .  Then we assumed that each claim would develop as 

follows: with probability p its distribution would remain that of its stratum and with 

probability pq −= 1  it would migrate randomly. 

Consequently, the distribution of a developed claim is a mixture of distributions; with 

probability p the developed claim is distributed as 
ΘX

f  and with probability q as Xf .  Let Y 

be the developed amount of claim X.  Mixing is easy with moment generating functions.  

                                                
8 IBNER means “Incurred But Not Enough Reported (or Reserved).”  Cf. Patrik [1996], 350. 
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The moment generating function of Y conditional upon the stratum of X is 

( ) ( ) ( )tqMtpMtM XXY
+=

ΘΘ
.  The overall, or unconditional, moment generating function 

of a developed claim is: 

( ) ( )[ ]

( ) ( )[ ]

( )[ ] ( )
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=

+=

+=

+=
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Θ
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Since equality of moment generating functions implies identical distributions, Y is distributed 

as X.  Since we have provided no new information, this “conservation of distribution” is 

fitting. 

But the reader may now be wondering how the variance of total IBNER can change 

despite the conservation of the overall distribution.  The paradox is resolved with a 

distinction: variance pertains to the sum of claims, whereas conservation pertains to their 

mixture, more accurately, to the mixture of their distributions.  The overall or unconditional 

variance [ ]XVar  is conserved, but its apportionment between [ ][ ]Θ
Θ

XVarE  and 

[ ][ ]Θ
Θ

XEVar  depends on Θ.  At the one extreme, a blunt or non-discriminating 

stratification Θ tells nothing about X: [ ] [ ]XVarXVar =Θ .  In this case: 

[ ][ ] [ ] [ ][ ]
[ ] [ ][ ]

[ ] [ ]
.0=

−=

−=

Θ−=Θ

Θ

ΘΘ

XVarXVar

XVarEXVar

XVarEXVarXEVar
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Conversely, if the variance of the conditional mean is zero, [ ]ΘXE  must be constant, or 

[ ] [ ]XEXE =Θ .  So the conditional distributions of a blunt stratification tend to be 

indistinguishable as to their first two moments.  In this case the variance of the sum tends 

toward the maximal σn .  At the opposite extreme, Θ is so fine or discriminating that 

[ ] 0=ΘXVar .  Then: 

[ ][ ] [ ] [ ][ ]

[ ] [ ]

[ ].

0

XVar

EXVar

XVarEXVarXEVar

=

−=

Θ−=Θ

Θ

ΘΘ

 

This means that the all the variance is between the strata, no variance is within a stratum.  In 

this case the variance of the sum tends toward the minimal value of zero.  To borrow and 

mix notions from optics and credibility, the blunt stratification passes the white light of zero 

credibility; the fine stratification like a prism refracts light into the spectrum of full 

credibility. 

Since we will be conditioning on migration Μ, we will drop Θ and speak of the ith 

stratum.  Let there be s strata, and let 0>πi  be the probability for a claim to be in the ith 

stratum, as determined by the actual portion of claims in that stratum.  Though the strata 

need not to be balanced, or of equal population, 1
1

=π∑
=

s

i

i .  We may model developed claim 

Yi of the ith stratum as follows.  Randomly draw one undeveloped claim from each stratum’s 

distribution; these X1, …, Xs are independent.  Then form an “unstratified” or average claim 

X as the choice of Xj with probability πj.  Finally, flip a “Bernoulli coin” with probability p of 

heads.  If the coin lands heads, let Yi equal Xi; otherwise, let it equal X. 
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The mean of the developed claim is [ ] [ ][ ] [ ] [ ]XqEXpEYEEYE iii +=Μ=
Μ

.  According 

to the formula of Section 3, the variance is: 
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Since considerations of rank correlation drew us to this model, we should also 

determine the covariance of Yi with Xi.  Taking the next formula without proof,9 we have: 

[ ] [ ][ ] [ ] [ ][ ].,,, ΜΜ+Μ=
ΜΜ

iiiiii XEYECovXYCovEXYCov  

The second term on the right side of the equation is zero.  For the migration Μ does not 

affect the expectation of Xi, and the covariance of something with a constant is zero. Hence, 

[ ] [ ][ ]Μ=
Μ

iiii XYCovEXYCov ,, .  In the following reduction, we must consider that the 

random migration can return (Ρ) with probability πi to the ith stratum.  Again, a covariance 

term becomes zero due to the immunity of Xi to Ρ: 

                                                

9  The proof hinges on [ ] ( ) ( ){ } ( ) ( ){ }[ ][ ]Θν−ν−ν−µ−µ−µ−=Θ ΘΘΘΘ
Θ

YXEEYXCov , . 
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The covariance of the developed claim amount with the undeveloped is positive, but the 

correlation coefficient is more informative: 

[ ] [ ]
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+=

+
==  

The correlation increases with respect to p, the probability that the distribution of a 

developed claim remains that of its stratum, from a minimum of  
[ ]
[ ]XVar

XVar i

iπ  for 0=p  to 

a maximum of 1 for 1=p .  It seems that [ ] pXYCorr ii ≈, .  However, this is Pearson 

correlation, whereas we are concerned with rank, or Spearman, correlation. 

Because an analytic answer eluded us, we resorted to simulation.  Keeping with the 

assignment that spurred our interest, we simulated 1,000 iterations of the “development” of 

the integers from 1 to 200 in 10=s  groups of 20 consecutive integers over a range of non-

migration probabilities p from 0% to 100% in steps of 5%.  We randomly permuted the 

integers within each group – this alone would suffice if 1=p  and inter-group migrations 

were impossible.  But then we flipped the Bernoulli coin for each integer, marked which 

places were the migrating “tails,” and randomly permuted among those places their integers.  
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Then we calculated the rank correlation for that iteration, and averaged it over all the 

iterations.  The table below contains the result: 

#Iter #Goups #InGrp p RankCorr

1,000 10 20 0% 0.000

1,000 10 20 5% 0.046

1,000 10 20 10% 0.100

1,000 10 20 15% 0.146

1,000 10 20 20% 0.201

1,000 10 20 25% 0.250

1,000 10 20 30% 0.302

1,000 10 20 35% 0.349

1,000 10 20 40% 0.396

1,000 10 20 45% 0.446

1,000 10 20 50% 0.497

1,000 10 20 55% 0.550

1,000 10 20 60% 0.601

1,000 10 20 65% 0.648

1,000 10 20 70% 0.696

1,000 10 20 75% 0.747

1,000 10 20 80% 0.797

1,000 10 20 85% 0.844

1,000 10 20 90% 0.895

1,000 10 20 95% 0.944

1,000 10 20 100% 0.990  

Indeed, it seems that the rank correlation approximates p.  Nonetheless, it cannot exactly 

equal p.  For at a near 100% probability of not migrating, permutation within each group still 

disrupts a perfect correlation.  Therefore, we suspect RankCorr(p) to start out at zero with a 

slope of unity, but to be slightly concave (i.e., to have a negative second derivative) so that it 

loses ground to  p as p increases to one. 

In sum, as p, the probability of not migrating (i.e., the probability for the distribution of 

a claim to remain that of its stratum) approaches zero, stratification becomes irrelevant.  

Regardless of how the claims are stratified, they will all develop according to the overall 

distribution.  This will produce an aggregate standard deviation approaching the maximal 

σn .  And if there were only one stratum, migration would be from overall to overall, and 
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the aggregate standard deviation again would be σn .  But as p increases, and as the strata 

become narrower, the aggregate standard deviation decreases.  In the extreme, with one 

claim per stratum (better, with zero variance within each stratum) and 1=p , the aggregate 

standard deviation is zero. 

Pondering these relations with two moments led us to the idea of adding higher 

moments to the conditional distributions, and thence to treating the higher moments of the 

collective risk model.  Although we do not intend for this to be a paper on a new 

development method, the reader can see how this claim-by-claim method can be employed 

to apportion moments of loss that mesh with any desired aggregate moments, as well as to 

obtain useful subtotals, e.g., by accident year. 



A Method for Efficient Simulation of the Collective Risk Model

david l. homer and richard a. rosengarten

Abstract

The Collective Risk Model (CRM) constructs aggregate losses from a claim count distribution

and a claim size distribution. The aggregate losses are Z = X1 + ...+XN , where the Xi are

independent and identically distributed as well as independent from the claim counts N .

Simulating individual claims can be a lengthy process when the expected number of claims

is large. Often it is sufficient to collect only individual claims greater than some threshold

τ together with the aggregate smaller claims. This is the case when modeling the effects of

excess of loss reinsurance.

The simulation run time can be significantly reduced, therefore, by simulating large losses

individually and small losses in aggregate. The challenge in doing this is to preserve the risk

characteristics of the original CRM, because the small losses and the large losses are not

generally independent.

This paper shows how to do this by first simulating the total claim counts and then

conditionally simulating both the individual large losses and an approximation to the aggregate

small losses. In the case where the claim count distribution is a mixed Poisson, it is shown

that the distribution of losses simulated from this method converges to the CRM distribution.

This result is a generalization of the principle that the limiting behavior of a mixed Poisson

CRM is controlled by the mixing distribution.

1 Introduction

The Collective Risk Model (CRM) constructs aggregate losses from a claim count distribution

and a claim size distribution. The aggregate losses are Z = X1 + ...+XN , where the Xi are

independent and identically distributed as well as independent from the claim counts N .

Simulating individual claims can be a lengthy process when the expected number of

claims is large. Often it is sufficient to collect only individual claims greater than some

threshold τ together with the aggregate smaller claims. This is the case when modeling the

effects of excess of loss reinsurance, for example.

The simulation run time can be significantly reduced, therefore, by simulating large

losses individually and small losses in aggregate. The challenge in doing this is to preserve



the risk characteristics of the original CRM, because the small losses and the large losses

are not generally independent. This paper shows how to do this by first simulating the

total claim counts and then conditionally simulating both the individual large losses and an

approximation to the aggregate small losses. The small losses are drawn from a Conditional

Aggregate Distribution (CAD) so this method is referred to as the CAD method.

Section 2 provides a brief review of other methods of reflecting the dependence between

large and small losses.

After providing some notation, definitions, and basic facts, Section 3 describes the CAD

method for generating large and small losses in the CRM. An illustrative example shows

that the method can be highly accurate.

Section 4 discusses mixed Poisson claim count distributions and proves a theorem that

shows the distribution simulated from the CAD method converges to the CRM distribution

when the claim counts arise from a mixed Poisson distribution. This provides theoretical

support for the practical observation that the CAD method seems to work. Additionally,

the theorem supports two other practical observations: (1) the particular choice of the con-

ditional aggregate distribution used to approximate the small losses is to some extent im-

material and (2) the mixing distribution seems to control the overall aggregate distribution.

These are related to ideas presented by Mildenhall [12] and their connections are discussed.

Section 5 provides a reinsurance application that uses only the total aggregate loss mean

and variance together with large the claim size and count distributions.

Section 6 illustrates a multi-line example.

2 Brief Review of Methods for Reflecting Large-Small

Dependence

Dependence between large and small losses as well as more general methods of reflecting

dependencies have been discussed by several authors. The methods include: recursion,

Fourier Transform, numerical integration, and simulation with copulas, as well as the Iman-

Connover method [5].

Using two-dimensional Panjer recursions, Walhin [17] illustrates how different results

are obtained when small and large losses are modelled independently as opposed to the

dependence structure implicit in the CRM. Homer and Clark [3] perform similar calculations

using two-dimensional Fourier Transforms. These methods are powerful and convenient when

the expected claim counts are relatively small.

Other techniques discuss more generally the modeling of dependencies between random

variates, but not specifically between the large and small losses of the CRM. Homer [4]



shows how to extend Heckman and Meyers’ [2] numerical integration to two dimensions.

Numerical integration works effectively when the claim counts are high but requires extensive

programming and lacks the flexibility of simulation.

Dependencies can be imposed in simulation exercises with tools like copulas or the Iman-

Connover method. Wang [22] and Venter [16] discuss the use of copulas and Mildenhall [12]

generalizes the Iman-Connover method to provide additional dependence structures.

3 The Conditional Aggregate Distribution (CAD) Method

The basic idea is to simulate the total claim count N and then conditionally simulate the

large claim count NL. The small claim count NS follows as N − NL. Large claims are

simulated individually. Small claims are conditionally simulated in the aggregate from an

approximating distribution, the conditional aggregate distribution.

It will be helpful to establish some notation and recall some basic facts of the CRM in

order to describe the CAD method and show how the losses from the CAD method reproduce

various moments of the CRM losses as well as the correlation between large and small losses.

3.1 Notation

The CRM losses are Z = X1 + ... + XN where the Xi are independent, identically dis-

tributed (iid) severities with common distribution FX(x), N is the random claim count with

distribution QN(n), and independent of the Xi.

The losses Xi are partitioned into losses smaller than some threshold τ and losses greater

than or equal to τ . The small claim count is NS and the large count NL with N = NS +NL.

The aggregate large losses are the sum of the individual large losses ZL = XL,1 + ...+XL,NL

and similarly for small losses ZS, with Z = ZS + ZL.

The distributions of the individual small and large claim sizes respectively are

FXS(x) =
FX(x)

FX(τ)
, x ∈ (0, τ), (1)

and

FXL(x) =
FX(x)− FX(τ)

1− FX(τ)
, x ∈ [τ,∞). (2)

The large claim count distribution conditional onN total claims is a Binomial distribution

because the claim sizes are iid and independent from the claim counts:

Pr(NL = m|N = n) = B(n,m, q) =

(
n

m

)
qm(1− q)(n−m), (3)

where q = 1− FX(τ) is the probability of a large loss.



Correlation of large and small losses: Large and small losses are correlated through

the claim count random variable (r.v.). The value of the correlation coefficient [15] is given

by

ρ(ZS, ZL) =
q(1− q)E[XS]E[XL](σ2(N)− E[N ])

σ(ZS)σ(ZL)
, (4)

where σ(Y ) denotes the standard deviation of the r.v. Y .

3.2 The CADk Algorithm

The pseudo-code for a single trial is as follows:

1. Draw N the number of total claims from the total claim count distribution QN .

2. Draw NL the number of large claims from the large claim count distribution conditional

on N total claims using equation (3).

3. Set the small claims NS = N −NL.

4. Draw the individual large claims {X1, ..., XNL} from the claim size distribution condi-

tional on Xi > τ , given by equation (2).

5. Draw the aggregate small claims from a distribution parameterized by matching the

first k moments of ZS|NS.

3.2.1 Preservation of Means, Variances and Correlations

To see how means, variances and large-small correlations are preserved consider how the large

and small losses are constructed. The simulated losses in steps 1-4 are completely consistent

with the CRM. In the last step an approximation is used: the small aggregate claims ZS are

simulated from an aggregate distribution with the matching k conditional moments. Denote

this method with k matching moments by CADk. Further, let F represent the distributional

family used in step 5, and set

Ẑ := CADk(N,X,F)

to mean the total loss r.v. generated by CADk. Similarly, ẐS is the small loss r.v. generated

by CADk. The notation ẐL is not needed since, by construction, ẐL = ZL.

For k ≥ 2, CADk preserves the mean, variance, and correlation of large and small losses:

Claim 3.1 For j ≤ k, E[Ẑj
S] = E[Zj

S], and for k ≥ 2,

ρ(ẐS, ZL) = ρ(ZS, ZL). (5)



Proof

E[Ẑj
S] = E

N,NL
[E[Ẑj

S|N,NL]] = E
N,NL

[E[Zj
S|N,NL]] = E[Zj

S], (6)

by construction. To see that correlation is preserved, it suffices to show that E[ẐSZL] =

E[ZSZL]. This follows as above since ẐS, ZL are independent given N, NL. 2

3.2.2 Selecting a Conditional Aggregate Distribution

The central limit theorem promises that the conditional small losses are asymptotically nor-

mal, but in fairly typical insurance situations, the r.v. ZS|NS will carry significant skewness.

It seems natural, then, to consider non-normal two-parameter families as well as three-

parameter families to match the conditional moments of the aggregate small claims; i.e.,

consider CAD2 and CAD3 models.

The statistics used for fitting are generally the mean, variance, and skewness. The mean,

variance, and skewness of conditional small claims are given by:

E[ZS|NS] = NSE[XS], (7)

σ2(ZS|NS) = NSσ
2(XS), (8)

γ(ZS|NS) = γ(XS)/
√
NS. (9)

Table 10 of Appendix A shows the parameterizations and method of moment fits for vari-

ous distributions. In several instances, a shift is used to provide an extra parameter. Section

4 develops some theory showing that the form of the conditional aggregate distribution is in

some sense immaterial.

3.3 Basic Example

The following example provides a comparison between direct simulation of the CRM and

simulation using the CAD.

The severity distribution is a 1ognormal (µ = 9 and σ = 2) censored at $1,000,000. The

frequency distribution is a negative binomial (mean=526.99 and variance=17884). These

are the same parameters used by Mildenhall in [12], section 4.1.

The conditional aggregate distribution is a lognormal. (See formulae in Appendix A.)

Tables 1 and 2 summarize the claim size and claim count distributions.



Table 1: Claim Size Distribution
Claim Incremental Cumulative

Size Probability Probability
0 0.0% 0.0%

10,000 54.2% 54.2%
20,000 13.2% 67.4%
30,000 6.9% 74.4%
40,000 4.4% 78.8%
50,000 3.1% 81.9%
60,000 2.3% 84.2%
70,000 1.8% 86.0%
80,000 1.4% 87.4%
90,000 1.2% 88.6%

100,000 1.0% 89.6%
200,000 5.0% 94.6%
300,000 1.9% 96.5%
400,000 1.0% 97.4%
500,000 0.6% 98.0%
600,000 0.4% 98.4%
700,000 0.3% 98.7%
800,000 0.2% 98.9%
900,000 0.2% 99.1%

1,000,000 0.9% 100.0%

Table 2: Negative Binomial Parameters
Mean 526.99

Variance 17,885

Table 3 provides a comparison of percentiles and statistics for the aggregate small and

large losses, while Table 4 compares the total losses. CRM large and CAD large losses are

drawn from the same distribution so they only differ due to different simulations. CRM

small and CAD small losses look equally close; the CAD approximation seems to work well.

The correspondence in Table 4 suggests that the dependence structure is preserved and this

is further supported by Table 5 which shows the simulated and theoretical correlation for

large and small losses. Table 6 shows the improved run-time using methods programmed

in R [14].



Table 3: CRM and CAD Simulated Losses
CRM CAD CRM CAD

Cumulative Small Small Large Large
Probability Losses Losses Losses Losses

1.0% 8.0 8.0 1.9 2.0
2.0% 8.7 8.8 2.4 2.5
3.0% 9.3 9.3 2.8 2.8
4.0% 9.7 9.7 3.1 3.1
5.0% 9.9 10.0 3.4 3.4

10.0% 11.1 11.2 4.3 4.3
20.0% 12.7 12.7 5.5 5.4
30.0% 13.9 13.9 6.4 6.4
40.0% 15.0 15.0 7.3 7.3
50.0% 16.1 16.1 8.2 8.1
60.0% 17.3 17.3 9.0 9.0
70.0% 18.5 18.5 10.0 9.9
80.0% 20.2 20.0 11.2 11.1
90.0% 22.5 22.4 13.1 13.0
95.0% 24.5 24.6 14.6 14.5
99.0% 28.7 28.8 18.0 17.8
99.9% 33.5 33.4 22.3 21.5
Mean 16.5 16.5 8.5 8.4

Std 4.5 4.5 3.5 3.4

Table 4: CRM and CAD Simulated Losses
CRM CAD

Cumulative Total Total
Probability Losses Losses

1.0% 11.3 11.2
2.0% 12.5 12.4
3.0% 13.3 13.3
4.0% 14.0 13.9
5.0% 14.6 14.6

10.0% 16.5 16.5
20.0% 19.0 18.9
30.0% 20.9 20.8
40.0% 22.7 22.6
50.0% 24.3 24.3
60.0% 26.2 26.1
70.0% 28.3 28.1
80.0% 30.7 30.6
90.0% 34.3 34.3
95.0% 37.5 37.3
99.0% 44.0 43.9
99.9% 53.1 51.5
Mean 25.0 24.9

Std 7.1 7.0



Table 5: Theoretical, CRM, and CAD Small-Large Linear Correlation
Correlation

Theoretical 57.3%
CRM 58.4%
CAD 57.0%

Table 6: CRM and CAD Simulation Run-Times
Trial Count CRM CAD x Faster

5,000 1.08 0.13 8.31
10,000 2.15 0.22 9.77
20,000 4.33 0.44 9.84

Before moving on to some underlying theory, we note several properties of the CAD

method for loss simulation modeling:

1. It captures individual large losses.

2. It is easy to program (wtih Excel\@Risk, or in R, for example) with fast run times.

3. It works well no matter the size of λ = E[N ] (as long as λL = E[NL] is manageable.)

4. It reflects the joint distribution of large and small losses.

5. It can be adapted to situations with incomplete knowledge (specifically when the sever-

ity distribution is not known or assumed; see the example in Section 5).

6. It is easy to incorporate into complex models (For example, CAD can be used for

multiple lines of business correlated via the claim count r.v.; see the example in Section

6).



4 CAD with the Mixed Poisson Claim Count

The losses simulated from the CAD method can be shown to converge to the losses in the

CRM when the claim count is a mixed Poisson. The particular conditional aggregate dis-

tribution used is somewhat immaterial while the mixing distribution of the Poisson controls

the unconditional aggregate shape.

This section discusses mixed Poisson distributions and then proves a convergence theorem

for the losses simulated with the CAD method.

4.1 Mixed Poisson Claim Counts

A Mixed Poisson distribution is just a Poisson distribution with a random parameter. For-

mally,

Definition: N is a mixed Poisson r.v. (QN is a mixed Poisson distribution) if N ∼
Poisson(λG) for λ = E[N ] and non-negative G such that E[G] = 1 and σ2(G) = c. In

this case we write N = MP (λ,G).

The r.v. G is referred to as the mixing distribution, and c the contagion parameter. Note

that for N = MP (λ,G),

σ2(N) = λ(1 + cλ) (10)

and

γ(N) =
1 + cλ(3 + λ

√
cγ(G))√

λ(1 + cλ)3/2
. (11)

Thus mixed Poisson claim counts carry positive contagion in the sense that c ≥ 0 and

the variance-to-mean ratio d = (1 + cλ) ≥ 1.

A convenient aspect of the mixed Poisson for ground-up claims is that large and small

claim counts are also mixed Poisson with the same mixing distribution. Using CRM(N,X) =

Z = X1+...+XN as notation for the CRM losses and abbreviating the coefficicent of variation

(c.v.) as ν(Y ) = σ(Y )/E[Y ],

Claim 4.1 If Z = CRM(MP (λ,G), X), then

ZS = CRM(MP ((1− q)λ,G), XS), and

ZL = CRM(MP (qλ,G), XL),

where q is the probability of a large loss. Furthermore,

ρ(ZS, ZL) = c/[ν(ZS)ν(ZL)]. (12)



Proof See Mildenhall [12]. Equation (12) follows from equation (4). 2

Recall that for Z = CRM(N,X),

E[Z] = λµ(X) (13)

σ2(Z) = λσ2(X) + µ2(X)2σ2(N) (14)

γ(Z) =
[
µ3(X)γ(N)σ3(N) + 3µ(X)σ2(X)σ2(N)

+λγ(X)σ3(X)
]
/σ3(Z) (15)

Here and later it is convenient, in particular, to have λ = E[N ] and, in general, to have µ(Y )

denote E[Y ] and µ′j(Y ) denote E[Y j] for a r.v. Y .

We may now use equations (10) and (11) and (13)–(15) to derive expressions for the c.v.

and skewness of Z = CRM(MP (λ,G), X):

ν(Z) =

√
c+

1 + ν2(X)

λ
(16)

γ(Z) =
µ′3(X)/(µ3(X)

√
λ) + 3c

√
λ(1 + ν2(X)) + (cλ)3/2γ(G)

(1 + ν2(X) + cλ)3/2
. (17)

It follows that as long as G and X do not depend on λ, ν(Z) → ν(G) =
√
c, and

γ(Z) → γ(G) as λ → ∞. We may thus infer that the choice of G wields critical influence

on the properties of a mixed Poisson CRM. This intuition is confirmed by the convergence

theorem and examples in section 4.4 (as well as by Proposition 1 of [12]).

4.2 Negative Binonial

The most common example of a mixed Poisson is the negaive binomial, arising from G ∼
gamma. The gamma mixing distribution has parameters α = 1/c and β = c. We specify the

negative binomial in terms of the mean and variance-to-mean ratio, and write N ∼ NB[λ, d].

Its pdf is given by

Pr(N = n) =
Γ(n+ λ/(d− 1))

n!Γ(λ/(d− 1))
d−λ/(d−1)

(
d− 1

d

)n
.

In the mixed Poisson formulation (d = 1 + cλ) the Negative Binomial pdf becomes

Pr(N = n) =
Γ(n+ 1/c)

n!Γ(1/c)
(1 + cλ)−1/c

(
cλ

1 + cλ

)n
.

This is the parameterization given in [10]. In [12], Mildenhall notes two types of negative

binomial models, distinguished by their behavior as λ varies. In the over-dispersed Poisson

(ODP) model, the variance-to-mean ratio is independent of λ. This forces the c parameter

to depend on λ as c = cλ = (d − 1)/λ. In this case the c.v. ν(N) =
√
cλ + 1/λ → 0 as

λ→∞ (and G = Gλ
D−→ 1). The contagion model, on the other hand, holds c fixed so that

d = dλ →∞ and ν(N)→
√
c as λ→∞.



4.3 Other Mixing Distributions

Tables 11–13 in Appendix B show various choices for the mixing distribution G. A twist

is that Tables 11–12 add shift and slope parameters s and m. So, the general form for G

is G = s + mH, where H is the named distribution. Refer to the appendices of [6] for the

standard parameterizations of the H-distributions. The parameters of H are then expressed

in terms of the contagion c, and the (optional) parameters s and m. The parameters m and

s are constrained by 0 <= s < 1 and m > 0. They may be redundant or determined by the

conditions µ(G) = 1 and σ2(G) = c.

Table 13 shows various ways to construct G from components Gi. In this case, c is

expressed in terms of the contagions ci of the components.

The second columns of Tables 11–13 show the skewness of G. Note the relationship

µ′3(G) = 1 + 3c + c3/2γ(G) so that the symmetric distributions have third moment equal

to 1 + 3c. The skewness γ(G) for a component distribution is expressed in terms of the

γi = γ(Gi)

See the notes after Table 13 for a more detailed discussion.

Returning to our main context, the practitioner may have trustworthy estimates for the

mean and c.v. of ZS. This will rarely, if ever, be the case for the skewness γ(ZS). By equation

(17), and Claim 4.1, the choice of G affords the opportunity to “take a view” of γ(ZS) in the

limit λ → ∞. For example, if one believes that the skewness will diversify away, then the

continuous or discrete uniform might be the proper choice for G. Otherwise, consideration

could be given to the ratio κ(G) = γ(G)/ν(G) = γ(G)/
√
c (the “skew-nu” ratio). For the

unshifted Poisson, gamma, and inverse Gaussian, κ is constant (κ = 1, 2, 3, respectively).

For the lognormal, κ = 3 + c. Choosing the shifted exponential or Pareto will result in much

higher skewness for ordinarily encountered values of c. Adding the shift parameter allows for

higher skewness with the more traditional choices. For example, the shifted gamma allows

any skew-nu ratio ≥ 2. Another reason to add a shift is to reflect an assumption on the

effective mimimum value of ZS. That is, adding a shift to G will tend to increase the effective

minimum of NS and, therefore, of ZS (Compare the simulated minimum values in Appendix

C, Exhibit 5 to those in Exhibit 2).

4.4 Convergence Theorem

For the convergence theorem, we need the notions of characteristic function and weak con-

vergence of distributions:

Definition:

1. The characteristic function of the r.v. Y is the complex-valued φY (t) = E[eitY ], t >



0, i =
√
−1.

2. A sequence of distribution functions is said to converge weakly to a limit F (written

Fn
D−→ F ) if Fn(y) → F (y) for all y that are continuity points of F. A sequence of

random variables Yn is said to converge weakly or converge in distribution to a limit

Y (Yn
D−→ Y ) if their distribution functions FYn(y) converge weakly.

Theorem 4.2 Suppose we are given Nλ = MP (λ,G), and r.v.’s Yn such that µ(Yn) = nm,

σ2(Yn) <= njs2 for some j, 0 <= j < 2, and fixed s. Define YNλ by YNλ |(Nλ = n) = Yn.

Then

YNλ/(λm)
D−→ G as λ→∞.

Proof Without loss of generality we may assume m = 1, so that µ(Yn) = n. Set

Ȳλ = YNλ/λ.

Applying the Continuity theorem (see Durrett, Theorem 3.4 [1], for example), which

states that convergence of characteristic functions implies convergence in distribution, we

need to show

L := lim
λ→∞

φȲλ(t) = φG(t).

Note that φȲλ(t) = φYλ(t̄), where t̄ = t/λ. Define NG
λ and LGλ by

NG
λ = Nλ|G (∼ Poisson(λG)),

LGλ = E
NG
λ

[φYn(t̄)|G,NG
λ = n].

Then L = limλ→∞ E
G

[LGλ ], and |LGλ | ≤ 1 so by the Bounded Convergence Theorem it suffices

to show that

lim
λ→∞

LGλ = eiGt.

Now, if Zn = Yn − n then µ(Zn) = 0 and µ′2(Zn) = σ2(Yn) = njs2. So, by Durrett,

Theorem 3.8 [1],

lim
λ→∞

LGλ = lim
λ→∞

E
NG
λ

[eit̄nφZn(t̄)|G,NG
λ = n]

= lim
λ→∞

E
NG
λ

[eit̄n(1 + njO(t̄2))|G,NG
λ = n]

= lim
λ→∞

E
NG
λ

[eit̄n|G,NG
λ = n]

+ lim
λ→∞

E
NG
λ

[eit̄nnjO(t̄2)|G,NG
λ = n]. (18)



Note that NG
λ ∼ Poisson(λG) implies that E[(NG

λ )r] = O((λG)r), for all r ≥ 0. With a

second application of Durrett, Theorem 3.8 [1] to eit̄n, we can evaluate the second term in

18 as

L∗ = lim
λ→∞

E
NG
λ

[eit̄nnjO(t̄2)|G,NG
λ = n]

= lim
λ→∞

E
NG
λ

[(1 + it̄n+ n2O(t̄2))njO(t̄2)|G,NG
λ = n]

= lim
λ→∞

[O((λG)j)O(t̄2) + iO((λG)1+j)O(t̄3) +O((λG)2+j)O(t̄4)]

= 0, as 0 ≤ j < 2.

Finally, the Poisson characteristic function φ(t) = eλ(eit−1) and one more application of

Durrett, Theorem 3.8 [1] show that

lim
λ→∞

LGλ = lim
λ→∞

E
NG
λ

[eit̄n|G,NG
λ = n]

= lim
λ→∞

eλG(eit̄−1)

= lim
λ→∞

eλG(it̄+O(t̄2))

= eiGt. 2

4.4.1 Convergence of CAD and CRM

If we set Yn =
∑n

i=1 Xi, Xi iid, then σ2(Yn) = nσ2(X) and we have Proposition 1 of [12],

i.e., for Z = CRM(MP (λ,G), X),

Z/µ(Z)→ G,

no matter the choice of X (“severity is irrelevent” 1). In our context, setting Yn = ẐS|NS = n

shows that for k >= 2 and ẐS = CADk(MP (λ(NS), G), XS,F),

ẐS/µ(ẐS)→ G

no matter the choice of X or F (severity and conditional aggregate distribution are irrele-

vant). Putting the two cases together supports ẐS as a good approximation for ZS as each of

these r.v.’s converge to G when normalized by the mean. The theorem equally applies to the

CAD total losses Ẑ by setting Yn = ẐS + ZL|(NS = n− B,NL = B), where B ∼ Bin(n, q).

Thus, the CAD small, large (by construction), and total losses converge to those of the CRM.

1Mildenhall [12] explains in the context of a CRM that, “in some cases the actual form of the severity
distribution is essentially irrelevant to the shape of the aggregate distribution.”



4.4.2 Convergence to G - Examples

Of course, the theorem also applies to ZL, but this is irrelevant to most insurance situations,

due to the relatively small expected claim count. In this case, severity may be quite relevant.

On the other hand, ZS will take on the characteristics of G for moderately sized insurance

portfolios. The top chart of Appendix C, Exhibit 1 shows the pdf of ZS for a portfolio

similar to the one in the Basic Example of Section 3.3 - with µ(Z) = $25, 000, 000 and large

loss threshold of $200,000 (solid area). The mixing distribution G is the three-point Hermite

(Appendix B, notes). Overlaid is the pdf of ẐS where ẐS|NS ∼ shifted exponential (as

in Appendix A, Table 10). It’s interesting that the highly skewed, monotonic exponential

distribution diversifies away to the symmetric, tri-modal Hermite. In fact the Table 10 shifted

exponential, as a CAD2 model, satisfies the convergence theorem with j = 1. If we match

only the mean (i.e., use a CAD1 model) we may reparameterize the shifted exponential as

Nsµ(XS)−
√
N j
Sσ(XS) + Exp[

√
N j
Sσ(XS)],

and this also satisfies the convergence theorem as long as j < 2. The bottom chart of

Appendix C, Exhibit 1 shows the case j = 1.5 converging to G, but more slowly. Of course,

a (CAD1) model with j = 0 would converge to G too quickly to be useful in approximating

the actual CRM. For example, such a model would have ν2(ẐS) = ν2(XS)/λ2 + c + 1/λ, so

that the severity component → 0 as 1/λ2 rather than 1/λ as in equation (16).

Exhibits 2-5 in Appendix C expand on the Basic Example in Section 3 in light of the

convergence theorem. The claim count distribution in this example was a negative binomial

wtih mean λ = 527 and and variance-to-mean ratio d = 33.94. Equivalently, this is a mixed

Poisson with gamma mixing distribution and contagion c = 0.0625. This is the subject of

Appendix C, Exhibit 2. We ran the CAD algorithm using the @Risk software with 30,000

iterations. We also simulated the small losses directly from the assumed claim count and

lognormal severity distributions as a basis for comparison.

The top chart of Exhibit 2.1 shows the simulated pdf of the “true” losses (solid region)

versus six different choices for the CAD distributional family F . These include both CAD2

and CAD3 models. Visually the fits are excellent, even for exotic choices such as the shifted

exponential and the (CAD3) distribution on two points. The table at the bottom of Exhibit

2.1 is adapted from the standard @Risk “Detailed Statistcs” output. It shows moment

and percentile statistics for each distribution. Convergence to the mixing distribution is

evidenced by considering the ratio of skewness to the c.v. (the skew-nu ratio). For a gamma

distribution, this ratio is equal to 2.

Exhibit 2.2 shows scatterplots of simulated large versus small losses. The top chart shows

the true small losses (ZL vs. ZS), while the bottom chart generates small losses via tha CAD



algorithm (ZL vs. ẐS). The close similarity of the two plots indicates that CAD does a good

job of reflecting the overall dependence of large and small losses, as well as matching the

numerical correlation per Claim 3.1.

Exhibits 3-5 repeat Exhibit 2 for different choices of the mixing distribution. A lognor-

mal mixing distribution is used in Exhibit 3 with similar results. Here, convergence to G

is evidenced by a skew-nu ratio in the 3-ish range. Exhibits 4 and 5 reflect more unusual

choices for the mixing distribution - a uniform and a three-point shifted binomial, respec-

tively. The shifted binomial is parameterized to match the skewness of the gamma mixing

distribution, i.e., γ(G) = 0.5. In these cases, due to the distinctive shapes of the pdf graphs,

visual inspection serves as evidence of convergence to G. Once again, the large vs. small loss

scatterplots match up extremely well. The scatterplot for the shifted binomial has three

distinct regions, corresponding to the three possible values of G. Each region appears very

nearly symmetric, reflecting the fact that ρ(ZS|G,ZL|G) = 0 by equation (4).

In [12] Mildenhall uses the Iman Conover (IC) method to model the dependence of large

and small losses. This is a rank-order correlation method that has the advantage of being

easy to use in spreadsheets and simulations. To apply IC, Mildenhall uses simulated output

from method of moments fitted curves for both small and large losses. The curve used is a

shifted gamma, i.e., a fit to the first three moments of the unconditional losses. In Appendix

C, Exhibit 6-7, the IC method is applied with the shifted gamma fitted curve for small losses,

but the actual CRM simulated output for large losses. For the gamma mixing distribution,

IC appears to do a good job matching the pdf graphs and scatterplots from Exhibit 2. Note,

however, that as long as the first three moments are kept constant, the small loss curve fit

will not vary with a change in the mixing distribution. The result is a poor fit to the small

loss pdf for the shifted binomial mixing distribution (Exhibit 7.1). The IC method also will

not reproduce the three distinct regions of the large vs. small loss scatterplots in Exhibit 5.2.

If we “cheat” by applying IC to CRM simulated output for both large and small losses, the

resulting scatterplot will show three distinct regions (Exhibit 7.2). However, the rank-order

construction will not replicate ρ(ZS|G,ZL|G) = 0, as can be seen by noting the positive slope

within each region. That is, the CAD method reflects the conditional small/large indepence

correctly, but the IC method does not.



5 CAD with Limited Information - A Reinsurance Ex-

ample

The example considered in this section is typical of a reinsurance pricing exercise requiring

simultaneous modeling of large and small losses. It is a reinsurance coverage with two sections

- (1) a stop-loss on the cedant’s “net” losses and (2) excess-of-loss (XoL) coverage. Here,

net losses are losses limited to the large loss threshold τ . Excess losses include all amounts

exceeding τ and limited to the policy limit. Aggregate net and excess loss are thus given by:

ZNet = ZS +NLτ

and

ZXoL = ZL −NLτ.

The stop-loss covers net losses excess of an annual aggregate deductible (AAD) and

limited to the annual aggregate limit (AAL), that is

ZSL = min(AAL,max(0, ZNet − AAD)).

Finally, the reinsurance coverage will reimburse the total of the two coverage sections:

ZRe = ZSL + ZXoL.

To evaluate and price such a reinsurance contract, it is clearly important to accurately

reflect the dependence of large and small losses. For example, the large-small dependence

may significantly impact downside risk measures such as Tail Value-at-Risk (TVaR). The

CAD methodology is thus an excellent candidate for the loss modeling. We will continue

to assume the underlying losses follow a mixed Poisson CRM, with contagion parameter

c=0.0625. Various choices for the mixing distribution G will be considered.

To this point, the CAD method as presented requires the full (ground-up) severity and

claim count distributions. In reinsurance applications, however, the available data may be

insufficient to reasonably parameterize these distributions. We will demonstrate how to

apply CAD with more limited input information.

For this example, the input data is limited to the mean and c.v. of total aggregate losses

(µ(Z), ν(Z)), the mean λ(NL) of the large loss claim count, and the large loss severity distri-

bution FXL . This information set-up is fairly typical in reinsurance pricing. The parameters

µ(Z), ν(Z) may have been estimated using aggregated data such as loss development tri-

angles and historical loss ratios. The distribution FXL may have been derived by fitting a

curve to the supplied large loss listing, with λ(NL) based on historical excess claim counts.



Alternatively, FXL may be an empirical distribution developed to replicate selected loss costs

for several XoL layers. In this example, we do assume an empirical distribution for FXL ,

with the large loss threshold τ = $200, 000. The large loss distribution and other parameter

values are shown in Table 7.

Table 7: Initial Parameters for Reinsurance Example
Parameter Value

τ $200,000
AAD $25,000,000
AAL $20,000,000
µ(Z) $25,000,000
ν(Z) 0.28

λ(NL) 21.5
Contagion c 0.0625

Large Loss Severity(F (XL))
Claim Incremental Cumulative

Size Probability Probability
200,000 19.6% 19.6%
300,000 25.2% 44.8%
400,000 14.1% 58.9%
500,000 8.9% 67.8%
600,000 6.1% 73.9%
700,000 4.4% 78.3%
800,000 3.3% 81.6%
900,000 2.6% 84.2%

1,000,000 15.8% 100.0%
Implied Large Loss Statistics

µ(XL) $490,900
ν(XL) 0.5691
µ(ZL) $10,554,350
ν(ZL) 0.3522

The large loss values in the bottom portion of Table 7 are easily computed from F (XL),

λ(NL), and c. The c.v. ν(ZL) is derived with equation (16) for ZL and XL, noting that ZL

is also a mixed Poisson CRM with contagion c.

The CAD algorithm also requires a value for the mean total claim count λ. It may be

that sufficient historical data is available for a reliable estimate of λ. If this is not the case,

we posit a value for λ. For this example, we set λ = 500.

Given a choice for the mixing distribution G, CAD steps 1-4 may now be executed. This

will generate simulated values for ZL, NL, and NS. To simulate values for ZS in step 5, we

need to derive expressions for the mean and c.v. of ZS|NS. Note that µ(ZS) = µ(Z)−µ(ZL),

λ(NS) = λ(N)− λ(NL), and

µ(ZS|NS) = NSµ(XS) = NSµ(ZS)/λ(NS). (19)



By equations (8) and (9), ν(ZS|NS) = ν(XS)/
√
NS. Equation (16) applied to ZS can

be used with equations (12) and (19) and the fact that σ2(ZS) = σ2(Z) − σ2(ZL) −
2ρ(ZS, ZL)σ(Z)σ(ZL) to eliminate ν(XS) from the expression for ν(ZS|NS). After some

algebra, the formula for ν(ZS|NS) becomes:

ν(ZS|NS) =√
λ(NS) [µ2(Z)(ν2(Z)− c)− µ2(ZL)(ν2(ZL)− c)]− µ2(ZS)

NSµ2(ZS)
. (20)

Equations (19) and (20) now allow for the method of moments fit in step 5 without

referring to the small loss severity r.v. XS. This limited information version of the algorithm

is strictly a CAD2 excercise. To derive an expression for γ(ZS|NS), say, would involve an

a priori estimate of the skewness γ(Z) - rarely, if ever, available. Table 8 substitutes the

known values from Table 7 into equations (19) and (20).

Table 8: Small Loss Model
µ(ZS) $14,455,650
λ(NS) 478.50

µ(ZS |Ns) = 30, 189.45NS
ν(ZS |NS) = 2.46/

√
NS

We may now run the CAD algorithm to determine an appropriate premium for the

coverage of ZRe. The premium P is set as P = µ(ZRe) + uΦ, where Φ is a downside risk

measure and u is the load factor. For this exercise, Φ = TV aR(ZRe, 0.99), the Tail Value-

at-Risk of ZRe at the 99th percentile. The load factor is set equal to 10%. Table 9 shows

the results of running the CAD algorithm with 30,000 iterations and various choices of the

mixing distribution G. There is some variation in µ(ZSL) and significant variation in the

TVaR values as G varies. This results in a smaller, but still significant variation in indicated

premium.

Care should be taken in applying the limited information CAD method. The choice of

the parameters λ, and c, along with the input information will impute values for some of

the other loss statistics. The preceding example imputes values for the small loss statistics

µ(XS), σ2(XS), µ(ZS), σ2(ZS), and also for σ2(ZL) (through the choice of c). However, there

is no a priori guarantee that, say, σ2(XS) > 0. There may also be a more subtle inconsistency,

such as µ(XS) > µ(XL). The practitioner should include these types of consistency checks

when applying the limited information CAD.

It is possible that input information such as found in Table 7 is internally consistent but

inconsistent with the mixed Poisson CRM. Informally, we say that the input information

admits a mixed Poisson CRM if there is a choice of λ and c resulting in no inconsistencies.



Table 9: Simulation Results from Different Mixing Distributions
Mixing Log- Shifted S. Log- Expo- S. Bi-

Distribution Uniform Gamma normal Gamma normal nential Pareto Beta nomial
µ(ZL) 10.5 10.6 10.6 10.6 10.5 10.6 10.5 10.6 10.5
µ(ZS) 14.4 14.4 14.4 14.4 14.4 14.4 14.4 14.4 14.4

µ(ZNet) 18.7 18.7 18.7 18.7 18.7 18.7 18.7 18.7 18.7
µ(ZXoL) 6.2 6.3 6.3 6.3 6.2 6.3 6.2 6.3 6.2
µ(ZSL) 1.6 1.5 1.5 1.4 1.2 1.4 1.1 1.5 1.7
µ(ZRe) 7.8 7.7 7.7 7.7 7.5 7.7 7.4 7.7 7.9

TVaR(ZRe, 99) 22.3 27.3 28.5 33.0 34.6 33.1 34.3 31.8 26.5
Premium 10.1 10.5 10.6 11.0 10.9 11.0 10.8 10.9 10.6

6 CAD with Multiple Lines of Business

This section adapts the CAD method to model multiple lines of business and impose cor-

relation between lines. In this context, let Zi, i = 1 . . .m, be the aggregatee loss r.v.

for the ith line, and τi the large loss threshhold. All other notations (Zi,S, Zi,L, etc.)

carry through. As in the previous section we allow for limited information, but say that

Zi admits a mixed Poisson CRM with parameters λi and ci. Note that by equation (16),

ci < min(ν2(Zi)− 1/λ(Ni), ν
2(Zi,S)− 1/λ(Ni,S), ν2(Zi,L)− 1/λ(Ni,L)).

6.1 Common Shock CAD

Of course, one can extend the CAD method to m lines of business simply by iterating

m times. For the multi-line mixed Poisson CRM, it’s natural to impose correlation via a

common shock component on the mixing distributions Gi [11]. As noted in Appendix B, the

twisted product construction is well-suited to this purpose.

With notation as above set cmin = min {ci, i = 1 . . .m}, and take w such that 0 ≤ w ≤ 1.

The parameter w is the weight given to the common shock component. We now assume that

the mixing distribution Gi has the form

Gi[ci] = G1 •G2,i = G1[wcmin]G2,i[(ci − wcmin)/G1].

Here, G1 is the common (or industry) component and G2,i is the line-specific component,

with contagion parameter “distorted” by G1. By the discussion in Appendix B, σ2[Gi] =

wcmin + ci − wcmin = ci, as required.

Programatically, step 1 of the CAD algorithm becomes

Step 1CS: Draw G1 from G1[wcmin]. Then, for each i, draw Ni from MP (λiG1, G2,i[(ci −
wcmin)/G1]).

Steps 2-5 then proceed unchanged for each line. By analogy with equation (12), the

common shock CAD results in the following correlations for i 6= j:



ρ(Ẑi,S, Ẑj,S) = wcmin/(ν(Zi,S)ν(Zj,S))

ρ(Ẑi,S, Zj,L) = wcmin/(ν(Zi,S)ν(Zj,L))

ρ(Zi,L, Zj,L) = wcmin/(ν(Zi,L)ν(Zj,L)).

6.2 Common Shock CAD with Conditional Correlation

In [11], Meyers employs a common shock model acting on the severity distributions, in ad-

dition to a claim count model similar to that described above. The CAD method suppresses

reference to the small loss severity, especially in the case of limited information. To gener-

ate a second source of between-line correlation, we specify a fixed correlation matrix to be

applied to the Zi,S|Ni,S in step 5 of the CAD algorithm. Step 5 is then replaced by

Step 5Corr: Draw aggregate small losses for each line from a joint distribution [Ẑ1,S|N1,s . . . Ẑm,S|Nm,s]

with correlation matrix Γ = [rij] and such that the marginals Ẑi,S|Ni,s are parameterized by

matching the first k moments of Zi,S|Ni,S.

For i 6= j, Step 5Corr implies that

Cov(Ẑi,S|Ni,S, Ẑj,S|Nj,S) = rij
√
Ni,SNj,Sσ(Xi,S)σ(Xj,S).

It follows that for common shock CAD with conditional correlation:

E
Ni,S ,Nj,S

[Cov(Ẑi,S|Ni,S, Ẑj,S|Nj,S)] ≈ hijrij

√
λ(Ni,S)λ(Nj,S)σ(Xi,S)σ(Xj,S),

where hij = E[
√
GiGj] = E

G1

[
√
G2,iG2,j|G1], using E[

√
N ] ≈

√
λ for N Poisson. Further-

more,

Cov[E[Ẑi,S|Ni,S],E[Ẑj,S|Nj,S]] = µ(Xi,S)µ(Xj,S)Cov[Ni,s, Nj,s]

= µ(Xi,S)µ(Xj,S)wcminλ(Ni,S)λ(Nj,S)

= wcminµ(Zi,S)µ(Zj,S).

Using equation (16) to eliminate the small loss severity we find;

ρ(Ẑi,S, Ẑj,S) =

E
Ni,S ,Nj,S

[Cov(Ẑi,S|Ni,S, Ẑj,S|Nj,S)] + Cov[E[Ẑi,S|Ni,S],E[Ẑj,S|Nj,S]]

σ(Zi,s)σ(Zi,s)

≈
wcmin + hijrij

∏
ι=i,j

√
ν2(Zι,S)− cι − 1/λ(Nι,s)

ν(Zi,S)ν(Zj,S)
. (21)



Note that hij = 1 if w = 1 and ci = cj = cmin. In particular, if Zi and Zj are identical,

then write ci = cj = t(ν2(Zi,S)− 1/λ(Ni,S)), and (21) reduces to

ρ(Ẑi,S, Ẑj,S) ≈ (t+ rij(1− t))[1− 1/(ν2(Zi,S)λ(Ni,S))]

≈ (t+ rij(1− t)),

if λ(Ni,S) >> 1/ν2(Zi,S).

7 Conclusion

The CAD method provides a way to efficiently simulate the CRM while preserving the

inherent dependencies between large and small losses. These dependencies are fundamentally

driven by the claim counts and the theorem presented herein shows how the mixed Poisson

CRM and CAD method model will converge as the expected claim count grows. This

provides theoretical support for the practical oservation that the CAD method does a good

job approximating the CRM.
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A Conditional Aggregate Distributions

Table 10: CAD2 and CAD3 Fits to ZS|NS

Distribution Statistics Fit
Normal µ = µ̂ µ̂ = NSµ(XS)

(µ̂, σ̂) σ2 = σ̂2 σ̂ =
√
NSσ(XS)

Uniform µ = µ̂ µ̂ = NSµ(XS)
on (µ̂− r̂, µ̂+ r̂) σ2 = r̂2/3 r̂ =

√
3NSσ(XS)

Lognormal µ = eµ̂+σ̂
2/2 µ̂ = ln[NSµ(XS)]− σ̂2/2

(µ̂, σ̂) σ2 = µ2(eσ̂
2 − 1) σ̂ =

√
ln[1 + σ2(XS)/(NSµ2(XS))]

Gamma µ = α̂β̂ α̂ = NS/ν
2(XS)

(α̂, β̂) σ2 = α̂β̂2 β̂ = µ(XS)ν2(XS)

Shifted µ = θ̂ + ŝ θ̂ =
√
NSσ(XS)

Exponential σ2 = θ̂2 ŝ = NSµ(XS)− θ̂
(ŝ, θ̂)

2-Point (CAD3) µ = µ̂ µ̂ = NSµ(XS)

(P(µ̂− â) = p σ2 = pâ2 + (1− p)̂b2 ŝ =
√
NSσ(XS)

P(µ̂+ b̂) = 1− p ) γ =
(1− p)̂b3 − pâ3

σ3/2
p =

(
1 + γ(XS)

√
1

4NS + γ2(XS)

)/
2

â = ŝ
√

(1− p)/p
b̂ = âp/(1− p)

Shifted µ = ŝ+ eµ̂+σ̂
2/2 µ̂ = ln(NSµ(XS)− ŝ)− σ̂2/2

Lognormal σ2 = (eσ̂
2 − 1)(µ− ŝ)2 σ̂ =

√
ln

[
1 +

NSσ
2(XS)

(NSµ(XS)− ŝ)2

]
γ = η(η2 + 3), where ŝ = NSµ(XS)−

√
NSσ(NS)/(ζ − 1/ζ), where

(µ̂, σ̂, ŝ) η =
√
eσ̂2 − 1 ζ = [

√
4 + γ2(XS)/NS + γ(XS)/(2

√
NS)]1/3

Shifted µ = ŝ+ α̂β̂ α̂ = 4NS/γ
2(XS)

Gamma σ2 = α̂β̂2 β̂ = γ(XS)σ(XS)/2

(α̂, β̂, ŝ) γ = 2/
√
α̂ ŝ = NSµ(XS)− α̂β̂

Generalized µ = α̂m̂/(α̂+ β̂) α̂ = (1− 1/ζ)NS/ν
2(XS)− 1/ζ

Beta σ2 = µ3β̂/[α̂(µ+ α̂β̂)] β̂ = α̂(ζ − 1)

(α̂, β̂, m̂(=max)) γ = 2µσ(α̂− β̂)/η, m̂ = ζNSµ(XS), where

(min=0) η = σ2α̂+ µ2β̂ ζ = 1 + ν(XS)
γ(XS)ν(XS) + 2NS

2ν(XS)− γ(XS)



B Poisson Mixing Distributions

B.1 Tables of distributions

Table 11: Continuous Mixing Distributions
Family and Equation Skewness
Gamma:

G = s+ Gamma

[
(1− s)2

c
,

c

(1− s)

]
2
√
c

1− s
Lognormal (Logn):

G =

√
c

1− s

(
3 +

c

(1− s)2
)

s+ Logn

[
ln

(
(1− s)2√

(1− s)2 + c

)
,

√
ln
(

1 +
c

(1− s)2
)]

Exponential (Exp):
G = 1−

√
c+ Exp[

√
c], c < 1 2

Inverse Gaussian (IG):

G = s+ IG
[
(1− s), (1− s)3

c

] 3
√
c

1− s
Pareto (Par):

G = 1−
√
c

k
+ Par

[√
c

k

(
k + 1

k − 1

)
,

2k

k − 1

]
2√
k

(
3k − 1

3− k

)
where max(1, c) < k < 3
Uniform (U):

G = U
[
1−
√

3c, 1 +
√

3c
]
, c < 1/3 0

Generalized Beta on (s,M+s) (GB):

G = GB [α, (M − 1 + s)α/(1− s), s,M + s], where
2
√
c(M − 2(1− s))

((1− s)(M − 1 + s) + c)
α = (1− s)[(1− s)(M − 1 + s)/c− 1]/M



Table 12: Discrete Mixing Distributions
Family and Equation Skewness
Discrete Uniform on 2m+1 points:
G = D[∆, p,m], defined by 0

P(1) = p, P(1± j∆) =
1− p
2m

, j ≤ m

∆ =

√
6c/(1− p)

(m+ 1)(2m+ 1)
, 1−m∆ > 0

Poisson (Psn):

G = s+
c

(1− s)
Psn[(1− s)2/c]

√
c

1− s
Negative Binomial (NB[λ,d]):

G = s+
c

d(1− s)
NB[d(1− s)2/c, d]

(2− 1/d)
√
c

1− s
M an integer ≥ 1
Binomial (Bin):

G = s+
(1− s)2 + cM

M(1− s)
Bin

[
M,

(1− s)2

(1− s)2 + cM

] √
c

1− s
− 1− s
M
√
c

M an integer ≥ 1

Table 13: Component Mixing Distributions
Family and Equation Skewness
Weighted Sum:

G[c] = pG1[c1] + (1− p)G2[c2]
pc

3/2
1 γ1 + (1− p)c3/22 γ2

c3/2
c = p2c1 + (1− p)2c2
Straight Product:

G[c] = G1[c1]G2[c2], G1, G2 independent.
c1c2[6 + 3(

√
c1γ1 +

√
c2γ2) +

√
c1c2γ1γ2]

c3/2
c = c1 + c2 + c1c2
Twisted Product:

G[c] = G1[c1]G2[c2/G1]
µ′
3(G1)f(G1, G2)− 1− 3c

c3/2
, where

c = c1 + c2 f(G1, G2) = E
G1

(µ′
3(G2[c2/G1]|G1))



B.2 Additional Notes

1. Products of Mixing Distributions. In several papers ([8],[10], for example), Meyers

presents count r.v.’s of the form N = N∗[G1[c1]λ, d(G1))], where G1 is a mixing distribution,

and N∗ is a family depending on λ, and d (i.e., N∗ ∼ NB[λ, d]). We consider the case

N∗ ∼ MP (λ,G2[c2]), with d = d2 = 1 + c2λ. Then N is also mixed Poisson, with N ∼
MP (λ,G1G2). If G1 and G2 are independent then we call G = G1G2 a straight product. In

this case the contagion parameter for G is c = c1 + c2 + c1c2. The conditional r.v. N |G1 has

variance-to-mean ratio d(G1) = 1 + c2G1λ. Should we wish to hold d(G1) constant, we may

drop the independence of G1, G2, and assume that G2 depends on G1 as G2 = G∗2[c2/G1]

where G∗2 is a family of mixing distributions. With a slight abuse of notation, we drop the ∗

and define the twisted product as G1 •G2 = G1G2[c2/G1]. For a twisted product, c = c1 + c2,

and d|G1 = d2 = 1 + c2λ.

The claim count presented in [8] is concisely described as N = NB[G1λ, d]. As d is

fixed with respect to G1, this is equivalent to N = MP (λ,G1 • G2), with G2 ∼ Gamma

and c2 = (d − 1)/λ. Now, its also the case that d is fixed with respect to λ, and thus the

underlying negative binomial model (i.e., N |G1 = 1) is of the ODP type. On the other hand,

if G1 ∼ gamma, then N1 = MP (λ,G1) is a negative binomial model of the contagion type.

If we set c1 = wc, for some 0 <= w <= 1, then c = c1 + c2 implies that c2 = (1−w)c. Thus

N can be considered a sort of credibility weighting between the ODP and contagion models.

The straight product formulation is seen in the “common shock” method for modeling

correlation over several lines of business. This method assigns to the ith line of business

the claim count Ni = MP (λi, G1G2,i). Here, G1 is the common (“industy-based” in [10])

component and the G2,i are the line-specific components. As in equation (12), this generates

a correlation of ρij = c1/(νiνj) between lines i and j, i 6= j. A twisted product is also well-

suited to this purpose, and produces the same correlations. As above, c = c1 + c2 allows us

to consider the model as a credibility weighting, now between the common and line-specific

components.

We do not have a closed-form formula for the skewness of G = G1 • G2. However,

suppose µ′3(G2) =
∑3

i=0 aic
i
2. This is the case for G2 ∼ gamma, and several others, but not

for G2 ∼ exponential. (The exponential is not a special case of gamma–unless c = 1–as the

shift s = 1−
√
c is forced.) Then µ′3(G) = a0µ

′
3(G1) + a1(1 + c1)c2 + a2c

2
2 + a3c

3
2, from which

γ(G) can be computed.

2. Discrete Mixing Distributions - The three-point “Hermite” distribution given by

Pr(1 + k
√

3c) = 2/3− |k|/6, k = −1, 0, 1 is used in [10]. This is an instance of the general

discrete uniform with a mass at G = 1. A Poisson mixing distribution is an important

limiting case of the framework presented in [19] and [18]. This is one example of infinitely



divisible mixing distributions, in which case the claim count can also be represented as a

compound Poisson in the sense of [6].

The shifted binomial is a very flexible choice for G. It converges to a Poisson as the

the integer parameter M → ∞, s fixed. For a given value of M , with M ≤ 1/c, setting

s = 1 −
√
Mc results in a symmetric distribution different from the discrete uniform. In

fact, G→ normal as c→ 0 with M = [1/c], and s = 1−
√
Mc. In general, for any skewness

value γ > 0, there is s such that γ(G) = γ, as long as M
√
c(
√
c − γ) < 1. (Note that this

condition is satisfied trivially for γ ≥
√
c.)

In [21], Simar gives an algorithm for constructing a non-parametric maximum likelihood

estimator (NPMLE) based on claim count observations. The NPMLE is then a finite mixing

distribution whose size depends on the number of observations.

3. Other Continuous Mixing Distributions - The inverse Gaussian as a mixing

distribution is the subject of [20] and is mentioned in [22], [18], and [12]. The resulting claim

count is the Poisson-inverse Gaussian, or PIG. Given its populartiy as a model for aggregate

distributions the lognormal is also a natural candidate as a mixing distribution.



C CAD Examples
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Detail Stats - Gamma Mixing

Loss Type Large Small Small Small Small Small Small

Method "True" (CRM Sim) CAD Logn. CAD S. Gamma CAD S. Logn CAD Exponential CAD 2-pt. "True" (CRM Sim)

Minimum 1,385,975                         2,398,609           2,808,190                  2,685,245           2,998,957                     3,045,139         2,682,782                         

Maximum 39,042,540                       25,898,300         27,588,630                25,894,870         25,626,020                   26,605,610       25,627,990                       

Mean 14,140,170                       10,938,800         10,937,300                10,943,990         10,939,010                   10,937,040       10,931,920                       

Std Deviation 4,652,660                         2,898,627           2,893,873                  2,895,765           2,894,886                     2,891,107         2,889,024                         

Variance 2.16473E+13 8.40204E+12 8.3745E+12 8.38546E+12 8.38037E+12 8.3585E+12 8.34646E+12

Skewness 0.532 0.5071                0.5040                       0.4819                0.4904                          0.5250              0.4949                              

CV 0.329 0.2650                0.2646                       0.2646                0.2646                          0.2643              0.2643                              

Skew-Nu 1.618 1.9139                1.9050                       1.8213                1.8531                          1.9860              1.8725                              

Mode 11,839,840                       10,443,110         10,444,170                9,741,620           9,137,559                     10,569,540       10,023,330                       

5% Perc 7,280,964                         6,617,527           6,616,314                  6,616,352           6,625,957                     6,646,187         6,628,636                         

10% Perc 8,478,519                         7,405,594           7,398,611                  7,405,873           7,405,128                     7,443,271         7,402,793                         

15% Perc 9,427,957                         7,977,141           7,977,279                  7,996,510           7,976,839                     7,995,743         7,983,588                         

20% Perc 10,153,280                       8,455,025           8,456,465                  8,461,667           8,455,437                     8,454,707         8,465,613                         

25% Perc 10,815,190                       8,869,101           8,878,454                  8,888,060           8,855,242                     8,867,610         8,873,186                         

30% Perc 11,444,160                       9,251,367           9,269,360                  9,269,123           9,255,394                     9,250,547         9,259,721                         

35% Perc 12,006,930                       9,625,078           9,627,173                  9,644,261           9,634,785                     9,618,922         9,630,174                         

40% Perc 12,584,930                       9,981,641           9,984,575                  9,983,185           9,993,351                     9,983,671         9,988,756                         

45% Perc 13,161,940                       10,341,280         10,341,520                10,339,860         10,323,750                   10,333,640       10,332,560                       

50% Perc 13,720,500                       10,687,030         10,689,310                10,694,390         10,687,300                   10,673,790       10,677,960                       

55% Perc 14,293,300                       11,059,730         11,045,600                11,041,930         11,070,400                   11,032,790       11,041,920                       

60% Perc 14,890,360                       11,433,110         11,409,440                11,445,670         11,436,400                   11,406,070       11,427,120                       

65% Perc 15,557,820                       11,838,890         11,807,440                11,862,800         11,844,620                   11,814,010       11,830,620                       

70% Perc 16,231,410                       12,259,280         12,251,480                12,282,940         12,255,120                   12,252,290       12,260,860                       

75% Perc 17,038,840                       12,749,390         12,735,450                12,767,710         12,742,260                   12,740,690       12,741,150                       

80% Perc 17,900,140                       13,276,090         13,296,010                13,312,140         13,294,120                   13,272,500       13,256,540                       

85% Perc 18,937,040                       13,942,170         13,935,960                13,938,120         13,950,790                   13,907,760       13,903,870                       

90% Perc 20,365,650                       14,781,560         14,794,910                14,778,790         14,808,720                   14,764,230       14,745,370                       

95% Perc 22,465,010                       16,101,710         16,124,400                16,093,960         16,095,310                   16,130,030       16,089,070                       

CAD Method - Gamma Mixing Distribution
Small Losses

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

0 5 10 15 20 25 30

Values in Millions

Va
lu

es
 x

 1
0^

-7

True Losses

Lognormal

Shift Gamma

Shift Logn

Exponential

2-Pt

rosengr
Typewritten Text
Exhibit 2.1



Z

Large vs Small Losses - Gamma Mixing Distribution
"True" Losses (ZL vs. ZS)

0

5

10

15

20

25

30

35

40

0 5 10 15 20 25 30

Small Losses
Values in Millions

La
rg

e 
Lo

ss
es

Va
lu

es
 in

 M
ill

io
ns

Large vs Small Losses - Gamma Mixing Distribution
CAD Method (ZL vs. ẐS)

0

5

10

15

20

25

30

35

40

0 5 10 15 20 25 30

Small Losses
Values in Millions

La
rg

e 
Lo

ss
es

Va
lu

es
 in

 M
ill

io
ns

rosengr
Typewritten Text
Exhibit 2.2



Detail Stats - Lognormal Mixing

Loss Type Large Small Small Small Small Small Small

Method "True" (CRM Sim) CAD Logn. CAD S. Gamma CAD S. Logn CAD Exponential CAD 2-pt. "True" (CRM Sim)

Minimum 2,354,636                        3,279,025         3,784,197                 3,671,143           3,656,671                    3,801,383           3,686,909                        

Maximum 37,452,880                      29,297,280       28,652,320               30,017,500         27,943,100                  29,091,590         29,686,280                      

Mean 14,086,670                      10,905,680       10,904,890               10,901,090         10,899,620                  10,897,280         10,906,430                      

Std Deviation 4,663,644                        2,896,549         2,898,968                 2,905,355           2,888,524                    2,884,288           2,899,240                        

Variance 2.17496E+13 8.39E+12 8.40402E+12 8.44109E+12 8.34357E+12 8.31912E+12 8.40559E+12

Skewness 0.657 0.7345              0.7532                      0.7511                0.7555                         0.7820                0.7548                             

CV 0.331 0.2656              0.2658                      0.2665                0.2650                         0.2647                0.2658                             

Skew-Nu 1.985 2.7654              2.8332                      2.8182                2.8509                         2.9546                2.8393                             

Mode 13,312,870                      9,229,467         10,256,040               10,247,740         9,900,903                    9,298,220           9,593,592                        

5% Perc 7,379,982                        6,807,512         6,786,931                 6,814,347           6,839,257                    6,830,828           6,783,801                        

10% Perc 8,522,062                        7,512,230         7,506,557                 7,503,218           7,531,037                    7,537,819           7,511,076                        

15% Perc 9,390,949                        8,032,948         8,046,047                 8,007,588           8,034,989                    8,046,408           8,052,007                        

20% Perc 10,102,340                      8,449,887         8,447,854                 8,445,220           8,455,437                    8,468,788           8,484,241                        

25% Perc 10,756,510                      8,834,509         8,828,217                 8,834,182           8,813,141                    8,837,245           8,866,154                        

30% Perc 11,354,550                      9,198,359         9,198,009                 9,201,309           9,186,013                    9,198,724           9,204,506                        

35% Perc 11,937,640                      9,551,106         9,542,255                 9,528,743           9,529,370                    9,527,572           9,562,121                        

40% Perc 12,484,700                      9,891,079         9,887,307                 9,866,483           9,868,970                    9,867,238           9,890,388                        

45% Perc 13,034,730                      10,224,090       10,223,390               10,216,780         10,210,100                  10,201,090         10,234,600                      

50% Perc 13,589,010                      10,570,880       10,557,930               10,549,800         10,563,310                  10,539,160         10,571,090                      

55% Perc 14,173,760                      10,913,890       10,924,320               10,898,780         10,914,400                  10,887,340         10,918,910                      

60% Perc 14,742,170                      11,276,170       11,304,320               11,270,320         11,281,810                  11,266,530         11,280,100                      

65% Perc 15,378,140                      11,680,180       11,694,860               11,669,240         11,685,900                  11,647,070         11,666,960                      

70% Perc 16,102,160                      12,113,640       12,118,480               12,111,900         12,106,920                  12,094,540         12,089,420                      

75% Perc 16,888,410                      12,602,800       12,576,840               12,575,800         12,572,790                  12,572,670         12,563,000                      

80% Perc 17,763,110                      13,162,890       13,152,030               13,162,970         13,135,720                  13,120,340         13,138,160                      

85% Perc 18,831,010                      13,835,790       13,811,970               13,845,860         13,791,750                  13,804,000         13,818,980                      

90% Perc 20,265,510                      14,747,880       14,734,090               14,753,650         14,695,780                  14,693,850         14,735,270                      

95% Perc 22,529,300                      16,170,290       16,180,220               16,216,460         16,162,980                  16,163,700         16,199,130                      
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Large vs Small Losses - Lognormal Mixing Distribution
"True" Losses (ZL vs. ZS)
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Large vs Small Losses - Lognormal Mixing Distribution
CAD Method (ZL vs. ẐS)
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Detail Stats - Uniform Mixing

Loss Type Large Small Small Small Small Small Small

Method "True" (CRM Sim) CAD Logn. CAD S. Gamma CAD S. Logn CAD Exponential CAD 2-pt. "True" (CRM Sim)

Minimum 2,622,778                        4,238,870         4,287,148                 4,468,165           4,670,314                    4,702,374           4,487,489                        

Maximum 32,122,340                      18,258,020       18,495,580               19,186,070         17,875,910                  22,198,040         18,737,170                      

Mean 14,053,220                      10,889,670       10,907,560               10,898,670         10,890,100                  10,895,280         10,893,480                      

Std Deviation 4,635,183                        2,851,964         2,868,312                 2,871,454           2,853,996                    2,866,448           2,870,310                        

Variance 2.14849E+13 8.1337E+12 8.22722E+12 8.24525E+12 8.14529E+12 8.21653E+12 8.23868E+12

Skewness 0.317 0.0601              0.0552                      0.0624                0.0553                         0.1008                0.0575                             

CV 0.330 0.2619              0.2630                      0.2635                0.2621                         0.2631                0.2635                             

Skew-Nu 0.960 0.2295              0.2099                      0.2367                0.2108                         0.3832                0.2182                             

Mode 13,955,570                      11,017,940       6,980,460                 10,483,140         8,609,236                    14,108,960         12,211,590                      

5% Perc 7,048,361                        6,452,205         6,455,139                 6,397,590           6,378,900                    6,456,264           6,419,141                        

10% Perc 8,138,355                        7,055,768         7,013,859                 7,003,973           7,048,737                    7,014,243           7,021,224                        

15% Perc 9,061,992                        7,556,159         7,537,291                 7,552,863           7,552,022                    7,506,401           7,519,121                        

20% Perc 9,832,303                        8,057,059         8,037,449                 8,029,881           8,068,227                    7,994,043           8,006,109                        

25% Perc 10,508,630                      8,513,653         8,513,914                 8,529,380           8,570,468                    8,496,666           8,504,713                        

30% Perc 11,221,460                      9,005,443         9,001,551                 8,979,073           9,023,686                    8,992,163           9,005,018                        

35% Perc 11,867,710                      9,487,384         9,519,624                 9,481,191           9,508,290                    9,477,224           9,504,768                        

40% Perc 12,520,510                      9,952,474         9,959,408                 9,980,229           9,972,253                    9,973,597           9,957,272                        

45% Perc 13,151,170                      10,395,700       10,469,080               10,447,890         10,437,390                  10,457,010         10,423,910                      

50% Perc 13,770,240                      10,893,210       10,916,910               10,885,080         10,868,990                  10,902,820         10,891,530                      

55% Perc 14,387,300                      11,351,630       11,342,420               11,337,470         11,302,950                  11,362,770         11,371,680                      

60% Perc 15,052,900                      11,818,450       11,799,030               11,827,650         11,747,140                  11,827,170         11,831,270                      

65% Perc 15,751,770                      12,266,250       12,275,180               12,301,380         12,233,950                  12,246,880         12,247,990                      

70% Perc 16,481,540                      12,716,240       12,744,370               12,728,420         12,705,610                  12,714,500         12,729,500                      

75% Perc 17,263,490                      13,187,060       13,228,660               13,177,340         13,203,610                  13,171,750         13,199,210                      

80% Perc 18,107,500                      13,637,550       13,672,250               13,665,560         13,675,010                  13,672,670         13,665,310                      

85% Perc 19,074,990                      14,168,400       14,169,310               14,175,580         14,130,870                  14,144,830         14,148,740                      

90% Perc 20,253,470                      14,693,240       14,774,350               14,737,180         14,695,780                  14,665,920         14,733,240                      

95% Perc 22,030,010                      15,450,310       15,511,660               15,494,220         15,508,650                  15,398,370         15,511,520                      
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Large vs Small Losses - Uniform Mixing Distribution
"True" Losses (ZL vs. ZS)
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Large vs Small Losses - Uniform Mixing Distribution
CAD Method (ZL vs. ẐS)
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Detail Stats - Shifted Biniomial

Loss Type Large Small Small Small Small Small Small

Method "True" (CRM Sim) CAD Logn. CAD S. Gamma CAD S. Logn CAD Exponential CAD 2-pt. "True" (CRM Sim)

Minimum 2,029,372                        5,480,892           5,220,685                 5,438,516           6,086,327                    6,125,506           5,578,668                        

Maximum 36,899,030                      20,782,580         20,297,310               20,802,180         19,114,040                  23,614,350         20,532,800                      

Mean 14,126,680                      10,956,630         10,947,030               10,951,330         10,953,510                  10,946,910         10,949,270                      

Std Deviation 4,631,549                        2,889,085           2,882,983                 2,889,601           2,896,795                    2,889,096           2,880,868                        

Variance 2.14513E+13 8.34681E+12 8.31159E+12 8.3498E+12 8.39142E+12 8.34688E+12 8.2994E+12

Skewness 0.515 0.4845                0.4885                      0.4872                0.4863                         0.5301                0.4920                             

CV 0.328 0.2637                0.2634                      0.2639                0.2645                         0.2639                0.2631                             

Skew-Nu 1.571 1.8374                1.8550                      1.8465                1.8386                         2.0086                1.8700                             

Mode 12,964,350                      8,087,866           8,148,018                 8,147,161           7,299,558                    8,102,896           8,147,660                        

5% Perc 7,483,617                        7,227,355           7,225,197                 7,235,228           7,216,417                    7,361,047           7,229,344                        

10% Perc 8,535,075                        7,570,712           7,577,371                 7,579,443           7,468,091                    7,599,695           7,574,011                        

15% Perc 9,306,652                        7,828,013           7,841,232                 7,836,373           7,677,954                    7,797,241           7,843,340                        

20% Perc 9,965,355                        8,066,383           8,081,884                 8,077,192           7,929,945                    7,978,476           8,080,636                        

25% Perc 10,604,400                      8,292,712           8,314,742                 8,302,414           8,350,285                    8,161,311           8,308,913                        

30% Perc 11,226,030                      8,556,097           8,553,878                 8,543,078           8,707,333                    8,385,700           8,549,825                        

35% Perc 11,833,320                      8,867,372           8,849,983                 8,827,609           8,980,929                    8,692,694           8,862,549                        

40% Perc 12,426,840                      9,308,444           9,295,946                 9,276,051           9,299,908                    9,299,985           9,303,648                        

45% Perc 13,021,220                      10,554,790         10,493,120               10,543,550         10,690,050                  10,919,380         10,509,370                      

50% Perc 13,661,470                      11,250,190         11,224,580               11,240,710         11,176,100                  11,368,280         11,244,800                      

55% Perc 14,291,840                      11,625,320         11,602,130               11,615,890         11,450,980                  11,632,780         11,611,090                      

60% Perc 14,945,040                      11,923,280         11,906,950               11,918,820         11,725,980                  11,850,840         11,900,920                      

65% Perc 15,622,390                      12,183,350         12,177,440               12,192,390         12,085,760                  12,071,050         12,163,850                      

70% Perc 16,370,580                      12,450,640         12,452,890               12,462,020         12,593,970                  12,294,140         12,441,100                      

75% Perc 17,150,500                      12,752,340         12,755,160               12,758,750         12,977,290                  12,571,500         12,758,940                      

80% Perc 17,999,210                      13,127,510         13,112,140               13,122,760         13,294,120                  12,960,450         13,111,080                      

85% Perc 19,036,000                      13,675,010         13,649,720               13,648,090         13,678,680                  13,653,300         13,627,890                      

90% Perc 20,423,720                      15,070,390         15,084,120               15,098,890         15,033,470                  15,360,840         15,105,940                      

95% Perc 22,467,470                      16,539,630         16,510,020               16,539,500         16,659,090                  16,393,870         16,502,230                      
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Large vs Small Losses - Shifted Binomial Mixing Distribution
"True" Losses (ZL vs. ZS)
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Large vs Small Losses - Shifted Binomial Mixing Distribution
CAD Method (ZL vs. ẐS)
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IC Method - Gamma Mixing Distribution
Small Losses
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IC Method (ZL vs. ẐS)
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IC Method - Shifted Binomial Mixing Distribution
Small Losses
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Large vs. Small Losses - Shifted Binomial Mixing Distribution
IC "Cheat"  Method (ZL vs. ZS)
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International Evidence on Medical Spending 

Robert D. Lieberthal 

______________________________________________________________________________ 
Abstract 

U.S. medical spending is high by measures including the level of spending, level of spending per capita, and 
level of spending as a share of GDP.  U.S. medical spending growth is average by measures including the 
annual growth rate, annual growth rate per capita, and annual growth in spending as a percent of GDP.  The 
volatility of U.S. medical spending growth is low by measures including the standard deviation, skew, and 
excess kurtosis. 

Foreign healthcare systems, with a much larger government involvement, have not been able to control medical 
spending growth better than the U.S. with its mixed system.  Foreign cost curves start at a lower level, but 
increase as quickly or even faster.  In many countries, the variance around the trend is high, or a single trend 
over time does not exist.  The implication is that it is difficult to find a foreign solution to the U.S.’s problems 
with high medical spending, and that the U.S. may be a world leader in terms of minimizing medical spending 
volatility. 

If the U.S. healthcare cost curve comes to resemble that of other countries, the risk of long-tailed lines of 
insurance linked to the cost of medical care will increase.  The healthcare cost curve is a macroeconomic 
process, so there may be no ways for insurers to bend their cost curve.  Insurers may be able to use market 
solutions, such as prediction markets, inflation-indexed bonds, and futures contracts, to improve prediction 
and hedging of long-term medical spending growth.  My recommendations for insurers are cognizance and 
caution when writing long-tailed lines of insurance linked to medical spending. 

______________________________________________________________________________ 

INTERNATIONAL MEDICAL SPENDING DATA 

Unique aspects of U.S. medical spending 

U.S. medical spending is high relative to spending in other countries.  The healthcare sector is a 

larger share of the U.S. economy than any other economy.  Since the U.S. economy is the largest, 

with one of the highest levels of income per capita, that means that the U.S. also spends the most 

per capita on medical care. 

As U.S. medical spending continues to rise, it is unclear whether the rest of the world will follow.  

U.S. medical spending could continue to be idiosyncratic.  The U.S. has the highest spending, so as 

long as the U.S. spending growth rate equals or exceeds that of other developed countries, the U.S. 

will always have the highest level of medical spending.  The U.S.’s unusually large private healthcare 

sector could generate a highly volatile cost curve.  If the U.S. truly is idiosyncratic, then the U.S. will 

have limited success in applying foreign solutions for controlling medical spending to the U.S. 

economy. 

One difference between U.S. and foreign healthcare systems that could inform forecasts of cost 

control is the lack of universal health insurance.  Other developed countries have universal or near 
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universal healthcare.  Studying the effect of universal coverage on healthcare cost curves in other 

countries could help us understand the effect of health insurance expansion in the U.S.  

Identification of the effect of the level of insurance on medical costs would require variation over 

time in the level of healthcare coverage in several countries.  My data does not include such variation 

(see Table 1).  Even in countries that changed to universal insurance relatively recently, other 

contemporaneous health policy changes and general issues of low numbers of observations make it 

almost impossible to observe how changes in coverage affect the growth rates for medical spending. 

Country Year of implementation Notes 

Austria 1965 (92% insurance) 
Big jump in reported percentage in 1965, numbers 
continued to rise to 100% 

Canada Entire sample  
Finland 1964 One time jump to 100% in 1964 
Iceland Entire sample  
Ireland 1980 One time jump to 100% in 1980 
Japan Entire sample  
Norway Entire sample  

Spain 1987 (97% insurance) 
Spotty reporting; 1987 is the first year with near 
universal coverage reported 

Switzerland Continuous Rises from 74% to 99% by 1987 
U.K. Entire sample  
U.S. N/A Flat at 84-85% from 1997-2008 
Min Pre-1960  
Max N/A  
Table 1: Introduction of national healthcare system 

One problem that the U.S. shares with other developed countries is that medical spending seems 

to be growing at a high rate.  The notion of bending the cost curve implies a smooth function that 

generates future spending as a multiple of current spending (Orszag 2009).  The terminology of 

medical trend is similar, implying a given rate of growth that actuaries must factor into the 

calculation of long-term liabilities that will continue until we reach a resistance point (Getzen 2007).  

It is difficult to find an example of a country that has hit the resistance point for healthcare as a 

share of the economy.  Any decline in medical spending growth in the U.S. and other countries 

seems to be temporary or is associated with outside factors, such as economic contraction, rather 

than through efficiencies or cost cutting measures. 

OECD data 

The Organization for Economic Cooperation and Development (OECD) provides data on 
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medical spending, demographics, and population health variables starting in 19601 (OECD 2010).  I 

focus on 11 countries that have reported annual spending data since 1960.  The countries are 

Austria, Canada, Finland, Iceland, Ireland, Japan, Norway, Spain, Switzerland, the United Kingdom, 

and the United States. 

The OECD breaks down medical spending data by currency and by source.  The spending data is 

available in the national currency unit of each country, on a dollar basis using annual exchange rates, 

on a dollar basis using the exchange rate in 2000, and on a purchasing power parity basis.  The 

OECD reports data split out by funding source, including a breakdown of public and private 

medical spending.  The OECD also provides spending per capita and as a share of GDP. 

The main drawback of the OECD data is the variability of reporting across countries and change 

in reporting standards over time.  The OECD takes the data as given by member countries, and then 

reports it without an extensive set of edits and checks.  In addition, the OECD does not standardize 

what constitutes medical spending, nor does it promulgate mandatory reporting standards for the 

way different countries choose to break down the data (Ward 2005). 

I difference out any time invariant differences between different countries’ reporting standards in 

my rate of change calculations.  For example, say that observed medical spending Ŝ  is 

overestimated by 3% at time 0 and time 1 compared to the true level of spending S .  In this case, 

the observed medical spending growth rate 1̂  is equal to the true growth rate 1  because the error 

is time invariant.  See Equation 1 below. 
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Equation 1: Time invariant errors in spending 

I also assume that errors or differences in reporting are not correlated with the reported rates of 

change or the distributions of the rate of change.  This assumption is more difficult to justify, since 

it is entirely possible that countries that experience a large run-up in medical spending will change 

their reporting systems to collect and disseminate data that are more detailed.  Given the small 

number of data points that I have, I do not have the degrees of freedom to make additional 

modifications to the data. 

                                                 
1Not all variables are available for the entire period 1960-2009, not all countries provide data going back to 1960 for each 
variable, and not every variable is reported annually since 1960—for instance, some are reported quadrennially. 
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High U.S. medical spending 

Per capita spending data shows that over time there is no single trend for many countries.  Figure 

1 shows the spending of four countries, Iceland, Switzerland, the U.K, and the U.S., in each 

country’s national currency unit.  I graphed the spending on a log scale in order to make exponential 

rates of growth appear linear rather than curved.  I chose the four countries as representative of 

different trends over time.  Switzerland has the most even growth in medical spending.  The U.K. 

has the median rate of spending growth.  The experience of Iceland is like an S-curve with slower 

growth followed by faster growth and then slower growth again.  The U.S. is just behind the U.K. in 

compound annual growth in medical spending.  The graph does obscure the variation in trend rates 

that occurs during flat periods of exponential growth because of the scaling by national currency 

units. 
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Figure 1: Medical spending in four OECD countries 

Absolute spending may be less important for health policy than healthcare’s share of the overall 

economy.  Normalizing medical spending by nominal GDP also removes one of the problems with 

the spending data, which is that the use of national currency units can conflate medical spending 

changes with other macroeconomic changes (see Figure 2).  On the other hand, the percent of GDP 

measure conflates GDP growth and medical spending growth, and the two variables have a 

complicated causal relationship (Amiri & Ventelou 2010).  Insurance companies write policies based 
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on medical spending rather than spending as a proportion of GDP, so predicting the share of GDP 

may not help in writing insurance.  
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Figure 2: Medical spending as a share of GDP in four OECD countries 

It is also unclear from a health policy point of view which variable to target.  There is one view 

that rising medical spending as a share of GDP does not matter as long as GDP is rising.  Medical 

care is a superior good, so we should expect it to rise as a share of rising incomes (Pauly 2003).  The 

level of medical spending may be easier to target, for example with a “global budgeting” system 

where the amount of spending in a given year is fixed (Long & Marquis 1994).  The problem with 

global budgeting is that unknowable factors, whether political, economic, or demographic, can 

induce a great deal of year-to-year volatility in spending.  The volatility will in turn hamper planning 

as well as adversely affect insurance lines linked to medical spending.  Higher growth rates may be 

acceptable to insurers if the trade-off is lower volatility in the spending growth rate. 

INTERNATIONAL MEDICAL SPENDING TRENDS 

Moderate U.S. spending growth 

U.S. spending growth rates are average and they display a low volatility.  The mean and standard 
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deviation of U.S. spending are equal to or below the median over the 1961-2007 and the 1982-2007 

periods.  The skew and excess kurtosis of U.S. spending growth are below the median for the 1961-

2007 and the 1982-2007 periods.  The mean and standard deviation of spending growth for the 

median country have been more moderate recently than over the entire 1961-2007 period.  The 

skew and excess kurtosis of spending growth for the median country have been more moderate 

recently than over the entire 1961-2007 period, so medical spending growth has continued to display 

low volatility, at least up until the beginning of the Great Recession (see Figure 3). 

 
Figure 3: Summary statistics of spending growth 

In Table 2, I summarize the mean, standard deviation, skewness, and excess kurtosis of spending 

growth rates on a continuous, logarithmic basis in all countries in my sample.  The spending growth 

rates in the U.S. are within international norms.  The U.S. rate of spending growth is low relative to 

other countries (tied for 8th overall with Austria and Canada), the standard deviation of the U.S. is 

the lowest of 11 countries, the skew is ranked 10th out of 11 countries (and lowest overall in 

absolute value terms), and the excess kurtosis is the lowest out of 11 countries.  From an insurer’s 

point of view, the relative risk associated with fluctuations in U.S. medical spending appears to be 

lower, especially given the relatively thin tails of the distribution. 
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Country Mean SD Skew Excess Kurtosis
Austria 0.08 0.06 1.57 5.81 
Canada 0.08 0.04 0.24 0.26 
Finland 0.10 0.06 -0.45 0.98 
Iceland 0.21 0.16 0.74 -0.45 
Ireland 0.12 0.07 0.93 0.81 
Japan 0.09 0.08 1.25 1.34 
Norway 0.10 0.06 0.80 0.93 
Spain 0.15 0.09 0.86 0.65 
Switzerland 0.06 0.04 0.88 0.18 
U.K. 0.10 0.05 1.74 3.66 
U.S. 0.08 0.03 0.10 -1.06 
Min 0.06 0.03 -0.45 -1.06 
Max 0.21 0.16 1.74 5.81 
Table 2: Summary statistics of medical spending growth (national currency unit basis) 

I adjust spending for a U.S. dollar exchange weighted value to show how much of the U.S.’s low 

medical spending volatility could be driven by the reserve status of the U.S. dollar (Krugman 1984).  

The currency adjustment reduces the range of statistics, but not the U.S.’s ranks in spending growth 

and volatility.  The U.S. continues to have the lowest standard deviation and excess kurtosis, as well 

as one of the lowest average annual rates of growth in spending when dollar adjusted.2 

One concern I have is that blending public and private spending drives the apparent low 

variability in the U.S. data.  For insurers, private spending is more important than the rate of change 

in public spending.  Public spending can still be important, especially if it causes the changes in 

private spending.  For policymakers, the rate of change in public spending is more important than 

private spending.  Private spending can still be important to policymakers, especially if it leads to 

political pressure to change the system. 

In every system I studied, public growth rates exceed private growth rates.3  It also appears that 

public spending is driving a great deal of the volatility in overall spending, or at least that public 

spending is more variable on several measures.  The standard deviation of spending is higher for 

private than public spending in six out of nine countries, whereas in the U.S. and Finland, it is lower 

and the statistics are equal for Iceland.  The skew and excess kurtosis in public systems is higher in 

many countries despite public spending being much larger.  For the U.S., every statistic is higher for 

the public portion of spending, suggesting that public spending may be driving much of the volatility 

in U.S. medical trend (see Table 3). 

                                                 
 
2 Table available from the author on request. 
3 Canada did not report public/private breakouts of spending until 1971, while Switzerland did not report public/private 
breakouts of spending until 1986, so I excluded both from the analysis. 
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 Mean SD Skew Excess Kurtosis
Country Public Private Public Private Public Private Public Private
Austria 0.08 0.07 0.06 0.09 2.82 -1.26 11.38 7.43
Finland 0.11 0.09 0.08 0.06 -0.09 0.74 1.55 0.48
Iceland 0.22 0.20 0.17 0.17 0.59 -0.37 -0.69 2.51
Ireland 0.12 0.12 0.07 0.14 0.51 1.03 -0.16 6.11
Japan 0.09 0.07 0.08 0.14 1.12 0.90 0.84 3.19
Norway 0.11 0.10 0.06 0.34 0.70 2.94 0.38 12.28
Spain 0.15 0.13 0.13 0.15 1.91 0.98 5.89 3.44
U.K. 0.10 0.10 0.06 0.08 1.41 0.39 3.44 -0.62
U.S. 0.10 0.07 0.06 0.03 2.64 -0.05 9.41 -0.67
Min 0.08 0.07 0.06 0.03 -0.09 -1.26 -0.69 -0.67
Max 0.22 0.20 0.17 0.34 2.82 2.94 11.38 12.28 
Table 3: Summary statistics of public and private medical spending growth (national currency unit basis) 

It is also possible that medical spending volatility is merely a reflection of general volatility in the 

macroeconomy.  One way to look at aggregate economic fluctuations is nominal GDP growth.  The 

U.S. is one of the lowest volatility countries, with a mean growth rate on the lower end and the 

lowest standard deviation of growth rate.  In addition, the skewness is low and the excess kurtosis is 

strongly negative, surpassed only by Japan.  The U.S. could be a low volatility country, in which case 

there is no additional lesson for reducing the volatility in medical spending through health policy 

(see Table 4). 

Country Mean SD Skew Excess Kurtosis
Austria 0.06 0.03 0.40 0.40 
Canada 0.08 0.04 0.58 0.23 
Finland 0.08 0.06 -0.34 1.23 
Iceland 0.20 0.14 0.65 -0.48 
Ireland 0.11 0.06 -0.71 2.55 
Japan 0.07 0.06 0.33 -1.04 
Norway 0.08 0.04 -0.59 1.43 
Spain 0.11 0.05 -0.06 0.73 
Switzerland 0.05 0.04 0.64 -0.12 
U.K. 0.08 0.04 0.93 2.47 
U.S. 0.07 0.02 0.40 -0.53 
Min 0.05 0.02 -0.71 -1.04 
Max 0.20 0.14 0.93 2.55 
Table 4: Summary statistics of nominal GDP growth (national currency unit basis) 

Another explanation for the volatility in spending could be demography.  Unlike fiscal statistics, 

demography changes too slowly to explain the volatility in spending growth (White 2007).  Most 

countries have had a slowly aging population as measured by the percent of population above age 

65.  Japan is the most rapidly aging country.  All countries have a small standard deviation of rate of 

aging.  The skews vary much more widely between countries, with the U.S. and Canadian skews 
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closest to zero.  There are also high excess kurtoses for a few countries, especially Ireland, reflecting 

the fact that most years of data contain zero change for the 65 and older population, with a few 

years of positive (or negative) growth.  Measured by excess kurtosis, the U.S. is again a low volatility 

country from the perspective of aging (see Table 5). 

Country Mean SD Skew Excess Kurtosis
Austria 0.01 0.01 -0.77 2.18
Canada 0.01 0.01 -0.09 -0.48
Finland 0.02 0.01 0.62 0.52
Iceland 0.01 0.01 -0.26 0.32
Ireland 0.00 0.01 3.44 17.80
Japan 0.03 0.01 -0.29 -0.56
Norway 0.01 0.01 -0.37 -1.27
Spain 0.02 0.01 -0.70 -0.19
Switzerland 0.01 0.01 1.50 4.37
U.K. 0.01 0.01 -1.33 4.54
U.S. 0.01 0.01 -0.13 -0.32
Min 0.00 0.01 -1.33 -1.27
Max 0.03 0.01 3.44 17.80 
Table 5: Summary statistics of growth in population 65 and over 

Modeling spending growth over time 

Medical spending growth is hard to predict year-to-year using simple linear regression.  For 

example, the R2 on a regression of current year spending growth on prior spending growth is only 

50%.4  Regressions using data for a more recent period show less predictability, with an R2 below 

40%. 

It is also unclear how far back we should be looking in trying to model medical spending growth.  

There are so few data points at our disposal, so it seems that more data is better.  On the other 

hand, the U.S. healthcare system today is vastly different from the healthcare system of 50 years ago, 

so it is not clear whether we should use older data at all.  Time series econometrics can help, but 

ultimately the decision of which data and model to use is a judgment call. 

One problem with the time horizon I chose is the possibility that the time series of medical 

spending, or even medical spending growth, is nonstationary.  Even accounting for a linear time 

trend, it would be difficult to believe that the average medical spending, and trends in spending, 

would not change over time because healthcare has changed so radically in all countries.  In the U.S., 

the last 50 years have coincided with major medical innovation, the rise of private health insurance, 

the rise of public health insurance, and major demographic changes (Folland, Goodman, & Stano 

                                                 
4 Calculated using U.S. data over the past 50 years. 
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2010).  Similar developments have occurred in other developed countries, some of which have also 

experienced other major macroeconomic disruptions that may have affected medical spending.5 

I test the stationarity of spending Ŝ , spending growth ̂ , and one difference in spending growth 

1ˆˆˆ  tt  .  By inspection, it seems that no country has had a stationary time series in spending 

over the past 50 years (see Figure 1; other countries available by request).  The plot of spending 

growth rates is tighter, although there are some outlier countries such as Iceland (see Figure 4).  The 

plot of once differenced spending growth appears stationary for all countries, although it is more 

volatile for Iceland and the U.K. than Switzerland and the U.S.  This suggests that, even accounting 

for nonstationarity, some countries have higher volatility in medical spending than others (see 

Figure 5). 
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Figure 4: Medical spending growth in four OECD countries 

 

                                                 
5 A consideration of financial crises is beyond the scope of this paper, but one example would be the IMF bailout of the 
U.K. in the 1970s. 
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Figure 5: Once differenced medical spending growth in four OECD countries 

A Dickey-Fuller test for unit roots suggests that five of the countries have stationary spending 

growth rates, while the other six have a unit root in spending growth.  Among those countries where 

I fail to reject the null of a unit root is the U.S (see Table 6).  Therefore, the observed high 

correlation between last year and current year spending growth may be an artifact of the 

nonstationarity of the time series.  Japan is the only country with a stationary spending growth time 

series and high autoregressive element in spending growth.  Japan gets close to the ideal of a country 

where past data is useful for forecasting future spending growth, and the correlation year-to-year is 

high. 
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Country Spending Spending growth ∆ Spending growth
Austria 1.00 <0.01 <0.01
Canada 1.00 0.30 <0.01
Finland 1.00 0.21 <0.01
Iceland 1.00 0.05 <0.01
Ireland 1.00 <0.01 <0.01
Japan 0.98 <0.01 <0.01
Norway 1.00 <0.01 <0.01
Spain 1.00 <0.01 <0.01
Switzerland 1.00 0.10 <0.01
U.K. 1.00 0.04 <0.01
U.S. 1.00 0.57 <0.01 
Table 6: Dickey-Fuller test for unit root 

Summary statistics for medical spending point to overall low relative volatility in the U.S.  

Summary statistics do not account for structural breaks, macroeconomic changes in other variables, 

demography, and the organization and financing of healthcare.  The next step is to account for these 

changes within the framework of a time series regression.  I decided to fit an autoregressive (AR) 

model because of the high degree of persistence in U.S. spending growth year-on-year.  I chose an 

AR(1) model because of the small amount of data I have. 

The main problem with fitting an AR(1) model to all the countries’ data is the nonstationarity I 

observed.  The time series for the level of spending in every country likely has a unit root.  The 

graphs of spending for almost every country contain at least two trend lines if not more; to the 

extent that they do not, it is because the scaling of the graph obscures so much of the variation.  The 

AR(1) parameter will be close to 1 not because spending is highly autoregressive and predictable but 

because the time series is nonstationary.  Nonstationarity biases upward the statistical tests for the 

strength of correlations over time, such as t-tests.  The result is that not only is the time series for 

spending misestimated, but any explanatory variables added to the AR(1) models are likely to show 

power to explain the growth in spending whether or not the relationship truly exists (Ferson, 

Sarkissian, & Simin 2003). 

One way to deal with the problem of nonstationarity is through differencing.  I fit the medical 

spending growth series directly for Austria, Ireland, Japan, Norway, and Spain, and I fit the once 

differenced spending growth rate for Canada, Finland, Iceland, Switzerland, the U.K., and the U.S.6  

The AR(1) parameter is 0.42 for Austria, 0.56 for Ireland, 0.72 for Japan, 0.30 for Norway, and 0.47 

for Spain.  In addition to the relatively low AR(1) coefficient, the p-value for Norway is 0.05, leading 

me to the conclusion that the summary statistics may be as good as, or better than, the AR(1) model 

when forecasting the growth rate in medical spending in Norway.  More complicated time series 

                                                 
6 Full AR(1) results are available upon request. 
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models are not appropriate in all cases. 

Of all these countries, Japan is the one where forecasts of future growth using current and prior 

growth rates are the most informative.  Planning for future medical spending budgets, and writing 

insurance based on medical claims, could be easier in Japan than in Austria, Ireland, Norway, and 

Spain, where future spending growth rates are less persistent. 

The AR(1) results for spending growth and differenced spending growth series for countries with 

a unit root in spending growth show the importance of using the correct time series model.  The 

AR(1) parameter for a regression of spending growth is 0.82 for Canada, 0.79 for Finland, 0.69 for 

Iceland, 0.74 for Switzerland, 0.66 for the U.K., and 0.91 for the U.S.  The AR(1) parameter for 

once differenced medical spending growth is 0.14 for Canada, 0.14 for Finland, -0.48 for Iceland,     

-0.13 for Switzerland, -0.15 for the U.K., and 0.17 for the U.S.  The p-value is high for Canada, 

Finland, Switzerland, and the U.K. so the AR(1) model may be inferior to simple summary statistics.  

The coefficient is negative for Iceland, Switzerland, and the U.K., so the time series of interest 

(medical spending growth) may return to a given level over time.  The U.S. coefficient is small but 

significant, so the model is valid but may not help with long-term spending growth forecasts. 

IMPLICATIONS FOR LONG-TAILED MEDICAL INSURANCE 

Examples of long-tailed lines with medical exposure 

Guaranteed renewable health insurance is one long-tailed insurance line specifically based on the 

risk of medical spending growth.  Guaranteed renewable insurance includes a given medical trend 

factor for the life of the policy.  Forecast errors that lead to higher than expected medical spending 

must come out of reserves, and can expose an insurer to ruin if reserves are not high enough.  The 

guarantee of class average underwriting can be for 10 years or more at the time that the insurer 

forms the pool of insured lives, so a single year of forecast error can be very costly if it occurs in the 

early years of the contract (Lieberthal ND). 

Workers compensation is a long-tailed line of property and casualty insurance that is exposed to 

the risk of medical spending growth.  In the case of workers compensation insurance, the insurer 

must pay for the medical care arising from on-the-job injuries, potentially for a long period.  As the 

standard of care changes, and becomes more expensive, the workers compensation insurer may have 

to provide benefits that meet the current standard of medical care, even if it is much better, and 

much more expensive, than care that was available at the time the policy was written, an effect called 

“social inflation” (Feldblum 1993). 
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Medical spending growth can have an even greater effect on excess casualty reinsurance.  The 

reason is the “leveraged effect of limits on severity trend” (Werner and Modlin 2010, pp.117-118).  

Leverage comes from the fact that, for claims below the limit, the trend on excess claims is 

unobserved.  When losses are high enough to trigger excess claims, losses jump from zero to a 

positive number, and the trend is undefined.  Then, excess trend can either be above trend on total 

losses, or dampened below the trend on total losses, depending on what portion of the risk the 

reinsurer takes and whether there is an upper limit to the exposure (Keatinge 1989). 

Example of a 10-year tail of claims 

Take as an example an insurer who receives $12,000 in premiums up front for an insurance 

liability that is worth $10,005 in present value terms.  The insurer expects to pay out the liability over 

10 years (see Table 7).  The insurer expects to pay out $863 at the end of year 1, rising an expected 

7% per year on an annual compound basis in future years due to medical spending growth.  The 

insurer calculated the expected claims in year 1 by observing that claims for a similar exposure were 

$807 in the prior year, and then inflating prior experience by the 7% forecast trend.  The insurer 

uses a 3% discount rate and expects to earn 3% on invested reserves.  The gross loading factor is 

20%, which is worth $1,995 at time 0 and $2,681 (10 years compounding at 3%) at the end of year 

10.  The $2,681 is the final expected gross surplus before accounting for costs associated with the 

policy. 

(A) (B) (C) (D) (E)
Year Nominal claims Discounted claims Reserves Surplus

0 0 0 10005 1995
1 863 838 9442 2055
2 923 870 8802 2117
3 988 904 8078 2181
4 1057 939 7263 2246
5 1131 976 6350 2313
6 1210 1013 5331 2382
7 1295 1053 4196 2453
8 1386 1094 2936 2527
9 1483 1137 1541 2603
10 1587 1181 0 2681
Totals 11923 10005   
Table 7: Base case insurance 

Next, I assume that the insurer forecast year 1 incorrectly but the forecast claims in dollar terms 

for every other year remains the same.  The trend for year 1 is 9%, which is 7% average U.S. trend 

plus 2%, one standard deviation of U.S. trend in the summary statistics.  Instead of $863, the claims 

for year 1 are now $880, $17 higher.  The claims for year 2 are still $923, and the claims for every 
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other year after year 2 do not change (see Table 8). 

In this case, the trend rates year-by-year are 9% in year 1, 5% in year 2, and then 7% thereafter.  

The trend is mean-reverting, and the only loss is because of the single year’s higher payment and 

absence of investment returns on the deviation from year 1 experience.  The adverse experience 

hardly makes a dent in the final gross surplus of the contract, which is $2,659, only $22 less than 

originally expected.  The equivalent is the $17 deviation from expectations compounded nine years 

at 3%, which is $22.  If the insurer had known ahead of time what the future would be, it would see 

that at the beginning of the contract the gross load was $1,979 rather than $1,995. 

(A) (B) (C) (D) (E)
Year Nominal claims Discounted claims Reserves Surplus

0 0 0 10021 1979
1 880 854 9442 2038
2 923 870 8802 2099
3 988 904 8078 2162
4 1057 939 7263 2227
5 1131 976 6350 2294
6 1210 1013 5331 2363
7 1295 1053 4196 2434
8 1386 1094 2936 2507
9 1483 1137 1541 2582
10 1587 1181 0 2659
Totals 11940 10021   
Table 8: One bad year of 9% trend followed by base case claims thereafter 

Next, I assume that changes in the level of spending are permanent.  The year-by-year rates of 

medical trend are 9% in year 1, and then 7% in year 2 and thereafter.  At the end of year 10, the 

gross surplus is only $2,400, which means that had the insurer known the future at time 0, it would 

have seen that the gross load was only 17% rather than 20%, and that a single-year deviation from 

experience knocked three percentage points off the anticipated loading factor.  The true gross 

surplus at the beginning of the contract is $1,785 rather than $1,995 (see Table 9). 
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(A) (B) (C) (D) (E)
Year Nominal claims Discounted claims Reserves Surplus

0 0 0 10215 1785
1 880 854 9641 1839
2 942 888 8988 1894
3 1008 922 8250 1951
4 1079 959 7419 2010
5 1155 996 6487 2070
6 1236 1035 5446 2132
7 1323 1076 4286 2196
8 1416 1118 2999 2262
9 1515 1161 1574 2330
10 1621 1206 0 2400
Totals 12175 10215   
Table 9: One bad year of 9% trend followed inflated by 7% trend thereafter 

Finally, I assume that the spending growth rate is autoregressive, so that a single year’s increase in 

spending growth rates leads to a permanent change in the level of spending growth.  The year-by-

year rates of medical trend are 9% in year 1, and then 7.5% in year 2 and thereafter.  This could be 

because of an innovation that was very costly upfront and leads to continuing increases in costs that 

are above expectations. 

At the end of year 10, the gross surplus is only $2,101, which means that had the insurer known 

the future at time 0, it would have seen that the gross load was only 15% rather than 20%.  A single-

year deviation from experience knocked five percentage points off the anticipated loading factor 

because the growth rate settles at a level that is 0.5 percentage points higher.  The true gross surplus 

at the beginning of the contract is $1,564 (see Table 10).  The persistence of higher trend takes an 

additional three percentage points off the anticipated gross loading factor beyond the effect of the 

single-year claims mistake compounded over the life of the insurance policy.  If the time 0 expected 

gross load, including the reserves and the costs of underwriting, marketing, and capital, had been less 

than 15%, the insurer might have defaulted on the contract. 
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(A) (B) (C) (D) (E)
Year Nominal claims Discounted claims Reserves Surplus

0 0 0 10436 1564
1 880 854 9869 1611
2 946 892 9219 1659
3 1017 931 8479 1709
4 1093 971 7640 1760
5 1175 1014 6694 1813
6 1263 1058 5632 1867
7 1358 1104 4443 1923
8 1460 1153 3116 1981
9 1570 1203 1639 2040
10 1688 1256 0 2101
Totals 12450 10436   
Table 10: One bad year of 9% trend followed by autoregressive spending growth of 7.5% trend thereafter 

The forecast error problem is much worse if the insurer is writing excess reinsurance.  Say that a 

reinsurer agrees to pay claims in excess of $9,266.  This translates into expected payments of $2,657: 

$1,070 in year 9 and $1,587 in year 10.  In present value terms, the reinsurer expects to pay out 

$2,001, and the reinsurer accepts $2,400 as the premium, which represents a 20% gross load. 

Leverage comes in to the base case as year 10 nominal payments are 48% higher than year 9 

payments.  In the one bad year scenario, excess claims start in year 9, and are $13 more than 

expected on a present value basis, and the gross load falls to 19%.  Year 10 nominal payments are 

only 46% higher than year 9 payments because year 10 payments cannot exceed $1,587 in year 10.  

In the one bad year followed by 7% trend example, excess claims start in year 9, and are $192 more 

than expected on a present value basis.  Leverage causes the gross load to fall to 9%.  Year 10 

nominal payments are only 26% higher than year 9 payments because year 10 payments cannot 

exceed $1,621 in year 10. 

The autoregressive trend example ends with a small deficit.  In the autoregressive trend example, 

payments start in year 9 and are $403 more than expected on a present value basis.  Year 10 nominal 

payments are 13% higher than year 9 payments.  The expected 20% gross load with a 7% trend at 

the beginning of the contract was only $399, so the unexpected claims cause the contract to end 

with a 0% final gross load ($3 deficit).  I summarize the full insurance case and present summarized 

results for the reinsurance case in Table 11. 
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Scenario 
Naive 

premium 

Total 
discounted 

claims 

Final 
gross 

surplus 

Time 0 
gross 

surplus 

Time 0 
gross 
load 

Full insurance 
Base case insurance 12000 10005 2681 1995 20%
One bad year of 9% trend followed 
by base case claims thereafter 12000 10021 2659 1979 20%
One bad year of 9% trend followed 
inflated by 7% trend thereafter 12000 10215 2400 1785 17%
One bad year of 9% trend followed 
by autoregressive spending growth of 
7.5% trend thereafter 12000 10436 2101 1564 15%
20% excess reinsurance 
Base case insurance 2400 2001 536 399 20%
One bad year of 9% trend followed 
by base case claims thereafter 2400 2014 519 386 19%
One bad year of 9% trend followed 
inflated by 7% trend thereafter 2400 2193 278 207 9%
One bad year of 9% trend followed 
by autoregressive spending growth of 
7.5% trend thereafter 2400 2403 -3 -3 0%
Table 11: Summary of full insurance and 20% reinsurance cases 

Solutions to forecast errors in medical spending 

Prediction markets have the potential to help insurance companies with long-tailed lines linked to 

medical spending.  Currently, Intrade.com has contracts covering macroeconomic indicators 

including the unemployment rate, the U.S. federal budget deficit, and health reform indicators 

including such market prediction polls as “Individual mandate to be ruled unconstitutional by U.S. 

Supreme Court.”  There are three contracts on the individual mandate with different expiration 

dates: October 2011, December 2012, and December 2013 (Intrade.com 2011). 

Prediction market contracts might be more appropriate for the less severe examples I have given 

of forecast errors.  For a single year of adverse experience, the insurer could make a hedging bet 

each year and could factor the annual costs into the single premium through the reserve calculation.  

The main obstacles would be deciding how contract outcomes map onto forecast errors, and 

making sure that the prediction market is thick enough to allow for as much hedging as the insurer 

needs. 

Dealing with the situation where spending is autoregressive would be much more difficult with 

prediction markets.  The insurer would have to make a much larger bet on medical spending rising 

in the earlier rather than the later years of the contract in order to deal with compound investment 

losses.  Dealing with the situation where spending growth is autoregressive is even more difficult 
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using short-term prediction contracts.  It would take an extreme amount of financial engineering to 

figure out how to use the single year bets to hedge multiple years of higher trend. 

Asset markets could be a more appropriate way to handle the trend risk.  Financial products that 

would be helpful include insurance-indexed futures and macro markets based on trading national 

income shares (Cox & Schwebach 1992; Shiller 1993).  Indexed futures on health insurance would 

give any insurer with an exposure to rising medical claims the kind of hedge that they need.  

Unfortunately, health insurance futures have foundered along with most private futures markets for 

macroeconomic variables.  Macro markets have also not succeeded widely yet,7 but given the need 

for improved forecasting, there is reason to try again.  It may be that the failure of markets to insure 

macroeconomic risks is due to market failure. 

Inflation hedging and forecasting took a major leap forward in many countries after the 

introduction of inflation-indexed bonds called TIPS (Treasury Inflation-Protected Securities) in the 

U.S. (Chen & Terrien 2001).  One proposal is for the government to reduce the basis risk between 

overall inflation and medical inflation by issuing TIPS indexed to specific portions of inflation, in 

this case medical care (Jennings 2006).  Insurer’s claims are generally linked to overall medical 

spending, not prices; insurers could not hedge increases in claims due to changes in the quantity with 

a TIPS bond.  That said, TIPS give a market-based forecast of inflation that improves upon expert 

opinion alone, because markets can often aggregate information for forecasting better than 

individuals do. 

If it is the case that only the government can backstop medical spending growth, it is not 

necessarily true that TIPS is the only or best way for the government to be involved.  One possibility 

is that the government should focus on health policies and other interventions that would tame 

medical spending growth.  The OECD data suggests that that effort has not been successful in the 

U.S. or other countries.  The federal government could also provide reinsurance, say on health 

insurance claims for any individual that exceed $36,000 in a year (Antos, King, Muse, Wildsmith, & 

Xanthopoulos 2004).  The reinsurance policy would not help other non-health insurers with medical 

claims, and might actually harm them if government reinsurance fuels greater medical spending 

growth. 

Acknowledging unsolved problems 

In 2009, negative GDP growth reduced the growth of medical spending to one of the lowest 

rates ever, but the percent of the economy devoted to medical care still grew (Martin, Lassman, 

Whittle, Catlin, & The National Health Expenditure Accounts Team 2011).  In other words, even 

                                                 
7 The Case-Shiller indices for real estate are an exception. 
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though the economy shrank, medical care continued to increase its share of the pie, which goes 

against the idea that medical care was increasing its share of the pie because it is a superior good.  

While one year does not prove or disprove any model, it shows the difficulty of forecasting spending 

growth based on so little data. 

The good news is that over the long term, the growth rates in U.S. medical spending are not 

outrageous.  Table 12 shows that medical spending growth is generally explainable by the 

combination of economic growth and population aging.  The combination does not always add up 

perfectly.  In addition, the evidence on the nonstationarity of many countries’ medical spending 

growth indicates that differenced medical spending growth, rather than spending growth itself, may 

be the correct dependent variable.  The point is that the cost curve is not an outrageous fact of the 

economy to be explained, but rather part of the macroeconomy of developed countries and the 

organization of their healthcare systems. 

Country 

Growth in medical 
spending per 
capita (%) (A) 

Growth in 
GDP per 

capita (%) 
(B) 

Growth in 
population 65 
and older (%) 

(C) 

Annual 
excess 

growth (%) 
(A–B–C) 

Austria 0.08 0.06 0.01 0.01
Canada 0.08 0.08 0.01 -0.01
Finland 0.10 0.08 0.02 0.00
Iceland 0.21 0.20 0.01 0.00
Ireland 0.12 0.11 0.00 0.01
Japan 0.09 0.07 0.03 -0.01
Norway 0.10 0.08 0.01 0.01
Spain 0.15 0.11 0.02 0.02
Switzerland 0.06 0.05 0.01 0.00
U.K. 0.10 0.08 0.01 0.01
U.S. 0.08 0.07 0.01 0.00
Table 12: Components of medical spending growth8 

The problem for newly created and existing insurers and reinsurers under the latest change to the 

U.S. healthcare system is daunting.  The Patient Protection and Affordable Care Act will bring a new 

form of health insurer, the Accountable Care Organization, into existence.  Accountable Care 

Organizations are integrated delivery systems that share risk with payers, and so will face the risk 

that unforeseen increases in medical spending will severely deplete or wipe out their capital base.  

The previous managed care explosion of the 1990s led to some reinsurance of capitated physician 

practices, but many practices were too small or too specialized to utilize reinsurance arrangements 

(Simon & Emmons 1997).  Hospitals, with large and sophisticated risk management departments, 

may be more interested in utilizing reinsurance as part of their Accountable Care Organization 

                                                 
8 Table style adapted from (White, 2007) 
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efforts, but may also have the market power to drive harder bargains.  As a result, reinsurers will face 

an important opportunity to sell risk management to new healthcare organizations, but will have 

little prior data to rely on. 

In the short term, it is important to keep spending levels, growth, volatility, and difficulties in 

forecasting future growth rates in mind when writing insurance.  We should be upfront about the 

true duration of the liabilities of the policies we write, not only if things go well but also if they go 

badly.  This may make more risks uninsurable than we previously thought, but it is better not to take 

on an uninsurable risk than expose policyholders to the possibility of firm ruin.  The risks are 

especially great in the U.S., which will be undertaking massive healthcare system changes in the next 

three years with unforeseeable effects on the cost curve. 

It is harder to determine what actions insurers should take over the medium and long term to 

manage the rate and volatility of spending growth.  No country in my data was able to arrest the rate 

of growth in spending through the direct application of health policy.  The best insurers can do is to 

accept the cost curve as it is and try to deal with their modeling challenges.  It may be that the best 

that policymakers can work towards is economic growth, which can at least make medical spending 

affordable.  Making changes to health policy does not always reduce spending, and could cause 

volatility that disrupts many types of insurance markets. 
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Index Clause for Aggregate Deductibles and Limits in 
Non-Proportional Reinsurance 

Ka Chun Yeung, FCAS, FIAA, CCRA 

_____________________________________________________________________________ 
Abstract 
Index clauses currently in place in the market do not specify how Annual Aggregate Deductibles (AAD) and 
Annual Aggregate Limits (AAL) should be indexed, which result in inconsistency when indexed deductibles and 
limits are in place.  
In this paper, concepts of indexed deductible and limit will be revisited for developing indexing methods for 
AAD and AAL. Formal mathematical proofs and numerical examples will be presented. The introduced AAL 
indexing methods enable determination of paid reinstatement premium when index clause for per-claim 
deductible and limit is in place. 
The choice of appropriate method for indexing AAD and AAL shall take into account both theoretical and 
practical soundness. 
 
Keywords. Reinsurance; Excess (Non-Proportional); Deductibles, Retentions and Limits. 

_____________________________________________________________________________ 

1. INTRODUCTION 

Index clause (or “Stability clause”) have become a standard clause in non-proportional (NP) 

reinsurance contracts for long-tail classes in many international markets. Index clause handles the 

leveraged effect of inflation on excess layer loss cost by adjusting the per-claim deductible and limit 

so that effect of inflation is shared between the primary insurer and NP reinsurer equally. 

However, most index clauses do not specify how Annual Aggregate Deductibles (AAD) and 

Annual Aggregate Limits (AAL) should be adjusted for inflation. In practice many NP reinsurance 

contracts try to mitigate this inherent problem by 

(a) Specifying unlimited reinstatements or an AAL that is much greater than the per-claim limit, 

or 

(b) Simply endorsing that the AAL is “un-indexed”, although per-claim deductible and limit are 

still subject to index clause adjustment 

While AAD’s are becoming more common for long-tail NP reinsurance (for various purposes, 

e.g., reinsurance premium saving or fulfilling sufficient risk transfer), the above mitigating measures 

do not provide good solutions for AAD’s.  

 

1.1 Research Context 

The method for indexing a per-claim deductible and limit has been explained in Ferguson [1]. It 
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has become a standard calculation method specified in the index clause of long-tail excess of loss 

reinsurance contracts in many markets. Implementation of index clause, wording, and pricing has 

been discussed in that paper as well. 

 Feldblum [6] and Feldblum [8] suggested a different method for indexing per-claim deductibles 

and limits, by making use of internal rate of return concept. However this method has not been 

widely adopted. Further, calculation procedures with this method can be complicated in a varying 

inflation environment.  

1.2 Objective 

This paper will propose two methods for indexing AAD’s and AAL’s, both based on achieving 

the goals of “equitable share of inflation effect” and “equitable share of deflated payments and 

actual payments” between primary insurer and reinsurer. The current per-claim deductibles and limit 

indexation method will be briefly revisited. The proposed methods for indexing AAD’s and AAL’s 

will be developed in a manner consistent with the per-claim indexing approach.  

1.3 Outline 

The remainder of the paper proceeds as follows. In section 2 the concept of index clause 

currently in place in the market will be revisited. In section 3 two methods for indexing AAD’s and 

AAL’s will be introduced, first through intuitive arguments from a retrocessionaire’s point of view, 

then numerical examples and formal mathematical proofs will be presented. In section 0 practical 

issues will be discussed, including implementing an AAD and AAL index clause, pricing approaches, 

and calculating paid-reinstatement premium. 

2. INDEX CLAUSE – REVISITING THE CONCEPTS 

The following is an example of index clause wording that explains how per-claim deductibles and 

per-claim limits are indexed: 

Each loss payment shall be brought back separately to its respective value at the base date according to the indices 

prevailing on the date the loss payments are made, by means of the following formula: 

value payment adjusted
payment of date at index

date base at indexpayment of amount actual



 

All actual payments and adjusted payment values shall then be separately totaled and deductible and limit shall be 

multiplied by the following fraction: 
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values payment adjusted of Total

payments actual of Total
 

in order to determine the overall indexed deductible and, where applicable, limit of indemnity, and thus the amount 

recoverable in accordance with the provisions of this clause. 

2.1 Index Clause in Practice – An Example 

An excess of loss reinsurance program has a per-claim deductible of $3 million and per-claim 

limit of $5 million, both subject to an index clause. Let time 0 denote the base date for index clause 

calculation. Two incremental payments have been made for a claim at time 1 and 2 (in years), as 

shown in the following table. 

Incremental Actual Payment ($000s) 

payment time 0 1 2 row sum 

claim 1 $0.0 $3,180.0 $1,308.0 $4,488.0 

Next, adjusted payments are calculated: 

Incremental Adjusted Payment ($000s) 

payment time 0 1 2 row sum 

claim 1 $0.0 $3,000.0 $1,200.0 $4,200.0 

Index 100 106 109    

For example, adjusted payments for time 1 = $3.18 million  100/106 = $3 million, which can be 

interpreted as the deflated value at time 0 of an actual payment $3.18 million paid at time 1 

according to the specified index. Hereafter in this paper, the author will use the term “deflated 

value” or “deflated payment” which take the same technical calculation steps as “adjusted payment” 

presented above, but the author believes the term “deflated” better represents inflation 

measurement and sharing concepts underlying index clause calculations.   

In the third step, the indexed deductible and indexed limit are calculated. 

Indexed deductible = $3 million  4,488/4,200 = $3.206 million. 

Indexed limit = $5 million  4,488/4,200 = $5.343 million. 

In the final step, the amount to be paid by the NP reinsurer to the primary insurer for claim 1 = 

($4.488 – $3.206) million = $1.282 million. 
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In practice, at time 2 when the primary insurer notifies claim 1 to the NP reinsurer, the indexed 

deductible and limit will be calculated immediately, whether the claim is fully settled at time 2 or not. 

The NP reinsurer then needs to make a payment to the primary insurer if the total of all actual 

payments exceeds the indexed deductible calculated at time 2.  

At time 3 another payment is made: 

Incremental Actual Payment ($000s) 

payment time 0 1 2 3 row sum 

claim 1 $0.0 $3,180.0 $1,308.0 $2,808.0 $7,296.0 

Similarly, adjusted payments are calculated: 

Incremental Adjusted Payment ($000s) 

payment time 0 1 2 3 row sum 

claim 1 $0.0 $3,000.0 $1,200.0 $2,400.0 $6,600.0 

Index 100 106 109 117   

Indexed deductible = $3 million  7,296/6,600 = $3.316 million. 

Indexed limit = $5 million  7,296/6,600 = $5.527 million. 

The cumulative amount to be paid by NP reinsurer to primary insurer for claim 1 = ($7.296 – 

$3.316) million = $3.980 million. Therefore NP reinsurer pays ($3.980 – $1.282) million = $2.698 

million at time 3 to primary insurer. 

To check whether effect of inflation is shared between the primary insurer and NP reinsurer 

equally, first consider inflation for the gross claim: 

 payments deflatedall  ofTotal 

 paymentsactual all  ofTotal 
 

(2.1) 

Inflation of gross claim = 7.296M / 6.600M – 1 = 10.5% 

Similarly, consider inflation of NP reinsurer’s excess of loss payments: 

deductible unindexedpayments deflatedall  ofTotal 

deductible indexedpaymentsactual all  ofTotal 




 
(2.2) 

Finally, inflation of primary insurer’s retained claim: 

deductibleunindexed

deductible indexed
 

(2.3) 
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Inflation of the NP reinsurer’s payment = 3.980M / 3.600M – 1 = 10.5%  

Inflation of the primary insurer’s retained claim = 3.316M / 3.000M – 1 = 10.5% 

2.2 Generalizing the Principles of Index Clause 

In the numerical example in section 2.1, inflation for the gross claim, inflation for the NP 

reinsurer’s payment, and inflation for the primary insurer’s retained claim are the same. It can be 

verified that the three inflation measurements in equations (2.1), (2.2), and (2.3) are equal in general. 

Notations: 

i = claim identifier, i = 1, 2, 3, …   

t = time of payment, t = 0, 1, 2, 3, … base date is denoted by t = 0 

vt = deflating factor for payment made at time t 

 = value of index clause index at time 0  value of index clause index at time t 

Xi,t = Actual dollar payment of i th claim at time t 

Xi
T =  


T

t tti vX
1 , = Total of all deflated payments made between time 0 and time T 

d = un-indexed deductible per claim 

l = un-indexed limit per claim 

2.2.1 Indexed Deductible and Indexed Limit 

According to equation (2.1), given incremental payment information up to time T for the i th 

claim, indexed deductible is calculated as: 









 T

t tti

T

t ti'
Ti

vX

X
dd

1 ,

1 ,
,  

(2.4) 

Similarly, indexed limit for the i th claim is calculated as: 









 T

t tti

T

t ti'
Ti

vX

X
ll

1 ,

1 ,
,  

(2.5) 

2.2.2 Cumulative Payments Paid by NP Reinsurer and Incremental Payments Paid by 
Primary Insurer 

Cumulative payments paid by the NP reinsurer to the primary insurer at time T for the i th claim 

is: 
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}})min{max{( ,,1 ,,
'

Ti
'

Ti

T

t tiTi ldXY ,0,  
 (2.6) 

It can be proved that, under the conditions 0, 1TiX  and Ttvv t1t  , then '
Ti

'
1Ti dd ,,  , 

'
Ti

'
1Ti ll ,,   and Ti1Ti YY ,,  . Proof of the third inequality is shown in Appendix A. The third 

inequality means that if the following two conditions are fulfilled:  

(1) The primary insurer’s incremental payment for the next period is a net outflow for any claim, 

and 

(2) There is no deflation along the claim payment time horizon  

then in the next period, incremental payments made by the NP reinsurer to the primary insurer is 

net outflow as well, meaning that the NP reinsurer would not request a payback from primary 

insurer. It is desirable to observe the third inequality because the primary insurer may be concerned 

that an increase in the indexed deductible over time could offset or exceed the increase in 
cumulative gross payment. That would not happen as indicated by the inequality Ti1Ti YY ,,  . 

Next, consider incremental payments paid by primary insurer net of recoveries from the NP 

reinsurer at time T+1 for the i th claim: 

Ti1Ti1Ti YYX ,,,    (2.7) 

Under the conditions 0, 1TiX  and Ttvv t1t  , then  0)( ,,,   Ti1Ti1Ti YYX . That 

means at time T+1 primary insurer’s gross incremental payment is always greater than the 

incremental recovery from the NP reinsurer. The proof is shown in Appendix A.  

Sections 3.2 and 3.3 will discuss whether indexed AAD and AAL demonstrate similar desirable 

properties as well. 

2.2.3 Inflation of Gross Claims, NP Reinsurer’s Payments and Primary Insurer’s Retained 
Claims 

In Ferguson [1], “equitable share of inflation effect” means that applying the indexed deductible 

and indexed limit on gross claims will result in equal inflations for the primary insurer’s retained 

claim and the NP reinsurer’s claim payments. 

According to equation (2.1), at time T, inflation for the i th gross claim can be rewritten as: 

Ti
T

t tti

T

t ti

wvX

X

,
1 ,

1 , 1







  
(2.8) 

The notation wi,T represents the reciprocal of inflation at time T for the i th gross claim.  

Inflation for NP reinsurer’s excess of loss payments is as follows: 
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}0})min{max{(

}0})min{max{(

1 ,

,,1 ,

ldvX

ldX

t

T

t ti

'
Ti

'
Ti

T

t ti

,,

,,










  
(2.9) 

Inflation for the primary insurer’s retained claim is as follows: 

}),min{

}),min{(

1 ,

,1 ,

dvX

dX

t

T

t ti

'
Ti

T

t ti









 

(2.10)

It can be proved that, at time T for the i th claim, the gross claim’s inflation equals inflation for the 

NP reinsurer’s excess of loss payments and also equals inflation for the primary insurer’s retained 

claim. That means: 

}),min{

}),min{(

}0})min{max{(

}0})min{max{(1

1 ,

,1 ,

1 ,

,,1 ,

1 ,

1 ,

, dvX

dX

ldvX

ldX

vX

X

w
t

T

t ti

'
Ti

T

t ti

t

T

t ti

'
Ti

'
Ti

T

t ti

T

t tti

T

t ti

Ti 































,,

,,
 

(2.11)

The proof is shown in Appendix B. 

2.2.4 An Alternative View: Indexing Deductibles and Limits by Principle of Equitable 
Sharing of Deflated Payments and Actual Payments 

In Ferguson [1], “equitable share of deflated payments and actual payments” means that the ratio 

of the NP reinsurer’s actual claim payment to actual gross claim equals the ratio of the NP 

reinsurer’s deflated claim payment to deflated gross claim. This concept can be applied to explain 

equations (2.4) and (2.5). 

If the index clause’s selected index correctly reflects claims inflation at each payment time, then 

the following expression represents the value of the i th claim as if all its future partial payments were 

paid at time 0. 

 


T

t tti vX
1 ,  (2.12)

Similarly, the following expression represents the NP reinsurer’s payment to primary insurer as if 

all future partial payments of the i th claim were paid at time 0:  

}0})min{max{(
1 , ldvX t

T

t ti ,, 
 (2.13)

That means that the un-indexed deductible and limit are directly applied to the total of all 

deflated payments for calculating excess layer loss. 

What should be the NP reinsurer’s share in the total actual payment of the i th claim ( 

T

t tiX
1 , )? 

The NP reinsurer should pay the proportion of  

T

t tiX
1 , , which is the same as the ratio of 

expression in (2.13) to expression in (2.12). That means NP reinsurer’s share in the total actual 

payment is as follows: 
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





 


 T

t tti

t

T

t tiT

t ti
vX

ldvX
X

1 ,

1 ,

1 ,

}0})min{max{( ,,
 

(2.14)

It can be verified that the above expression is identical to the right-hand side of equation (2.6), 

and therefore results in the same formulas for indexed deductible and indexed limit in equations 

(2.4) and (2.5). 

Also, equation (2.14) shows the following relationships between the NP reinsurer’s actual 

cumulative payment (Yi,T) and the total deflated gross payments ( 


T

t tti vX
1 , ) for the i th claim: 

(1) 0, TiY  when  dvX
T

t tti  1 ,  

That is, the NP reinsurer makes no payment if the total of deflated gross payments is below 

the un-indexed deductible. 

(2) 0, TiY  when  dvX
T

t tti  1 ,  

That is, the NP reinsurer makes payment if the total of deflated gross payments is greater 

than the un-indexed deductible. 

(3) '
Ti

T

t ti dX ,1 ,  
 if and only if  dvX

T

t tti  1 ,  

That is, total deflated gross payments equal the un-indexed deductible if and only if the total 

actual gross payments equal the indexed deductible. Once reaching this condition for a 

particular claim, the NP reinsurer will start paying immediately after the primary insurer 

makes another payment for that claim in the future. 

The third relationship is particularly useful for understanding reasonableness of the indexed 

deductible and limit formula. In section 3, in order to verify the formulas for indexing AAD’s and 

AAL’s, it will be checked whether total actual payments and total deflated payments on aggregate 

basis hold similar relationships. 

3. INDEX CLAUSE FOR AGGREGATE DEDUCTIBLES AND LIMITS  

AAD’s are becoming more common for long-tail NP reinsurance. Without a proper index clause 

for AAD’s, many NP reinsurance contracts simply endorse an “un-indexed” AAD, however, the 

per-claim deductible and limit are still subject to index clause adjustment. Such un-indexed AAD’s in 

practice are simple to implement, but there are two problems. First, an un-indexed AAD may 

provide a misleading picture of how the NP reinsurer’s expected loss will be reduced relative to “no-
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AAD”. Second, while an index clause for per-claim deductible and limit is used to share effect of 

inflation equitably between primary insurer and reinsurer, the goal cannot be achieved without an 

indexed AAD. 

Consider this example: a NP reinsurance contract has per-claim limit of $5 million and per-claim 

deductible of $3 million both subject to an index clause adjustment, but with an un-indexed AAD of 

$5 million in place. Inflation is 4% per annum. If a claim is settled at $10 million by single payment 

in year 5, this claim is a total loss to the excess of loss layer. The per-claim limit and per-claim 

deductible are indexed to become $6.083 million and $3.650 million, respectively. If there was no 

AAD in place, the NP reinsurer would have paid $6.083 million to the primary insurer for this claim. 

With the $5 million un-indexed AAD, the NP reinsurer now pays $1.083 million. In this example, 

the primary insurer’s additional retention under the un-indexed AAD provision is less than the 

occurrence of first total loss to the excess layer. This is not the expected outcome if one simply and 

carelessly interprets the structure to be $5mil xs $3mil xs $5mil, ignoring the gap between an indexed 

per-claim limit and un-indexed AAD.  

3.1 Intuitive Arguments: Retrocessionaire’s Point of View 

Consider this example: a primary insurer purchases NP reinsurance $5 million xs $3 million with 

unlimited free reinstatements. An index clause will be applied to both per-claim deductible and limit.  

The reinsurer wants to limit its potential frequency risk arising from this NP reinsurance contract, 

and decides to purchase a retrocession that caps the aggregate loss amount to the NP contract at an 

AAL equivalent to four times the per-claim-limit, which is $20 million.  From the retrocessionaire’s 

point of view, there should be an index clause for AAL as well, in order to share the effect of 

inflation between the reinsurer and retrocessionaire equitably.  

The retrocessionaire now considers what factors shall and shall not enter into the AAL indexing 

formula. To start with, consider how the original index clause affects the transactions between the 

NP reinsurer, the primary insurer, and the original policyholder(s). If the original policy has a $5,000 

policyholder retention, and the policyholder incurs one loss of $5,000,000, then the primary insurer 

will only pay $4,995,000. From the NP reinsurer’s point of view, the actual amount paid by the 

primary insurer, $4,995,000, should be used for calculating the indexed per-claim deductible instead 

of the original policyholder’s incurred loss of $5,000,000. Similarly, the retrocessionaire will only use 

the actual amount paid by the NP reinsurer (i.e., the difference between $4,995,000 and the indexed 

per-claim deductible) for calculating the indexed AAL, not the ground-up claim size of $4,995,000 

paid by the primary insurer. Therefore, all claims below the indexed per-claim deductible should not 
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be used for calculating the indexed AAL. 

Following similar logics, the retrocessionaire makes a comparison between the original excess of 

loss program and the retrocession program: 

 Original Excess of Loss program Retrocession program 

Deductible and 

Limit 

Deductible and limit applied per claim. 

 

“Aggregate” means that AAL is 

applied to sum of all excess layer 

losses. 

The sum of all excess layer losses is 

determined with index-clause-

adjusted deductibles and limits 

applied to each claim separately 

Basis of 

Inflation 

Measurement 

Measured separately for each “claim”, 

depending on the coverage basis.  

For example, if it is a per accident excess 

of loss, a “claim” may involve multiple 

claimants from the same accident and the 

sum of all claimant’s claim amounts is used 

to determine loss to layer for each 

accident.  

Measured for all losses to the excess 

of loss program combined together.

Measuring 

Inflation 

Ratio of sum of all actual payments paid 

by the primary insurer to the 

policyholder(s) that belong to a “claim”, to 

sum of all deflated payments that belong 

to the “claim” 

Ratio of sum of all actual payments 

paid by the reinsurer to primary 

insurer according to the excess of 

loss program, to sum of all deflated 

payments to the excess of loss 

program 

Conclusively, the AAL will be indexed by the formula: 

 layer  lossof excess to payments deflatedall  ofTotal 

 layer  lossof excess to paymentsactual all  ofTotal 
AAL unindexed   

(3.1) 

Note that potential claim payouts by the above retrocessionaire are identical to the situation 

where a reinsurer sells a NP reinsurance $5 million xs $3 million with AAD $20 million all subject to 

index clause. The method for indexing AAL can be applied for indexing AAD as well. 
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3.2 Indexing AAD and AAL Method 1: Matching Deflated Excess Loss with 
Deflated Gross Loss Per Claim 

Additional notations are introduced, along with the notations in section 2.2: 

D = un-indexed AAD  

L = un-indexed AAL 

'
TD  = indexed AAD, given payment information up to time T for all claims 

'
TL  = indexed AAL, given payment information up to time T for all claims  

The numerator of the fraction in equation (3.1), total of all actual payments to excess of loss 

layer, equals:  

i TiY ,  (3.2) 

Next, consider the denominator of the fraction in equation (3.1), total of all deflated payments to 

excess layer. If gross, excess layer and retained claims are matched together, then deflated excess 

layer loss equals the difference between deflated gross loss and primary insurer’s retention (un-

indexed). For the ith claim, deflated excess layer loss equals }0})min{max{(
1 , ldvX t

T

t ti ,, 
, which 

is identical to TiTi wY ,,  . As a result the denominator is: 

.,,   
 i TiTii t

T

t ti wYldvX ,,1 , }0})min{max{(  (3.3) 

The formula for indexed AAL is as follows: 

.






i TiTi

i Ti'
T

wY

Y
LL

,,

,  
(3.4) 

The formula for indexed AAD is as follows: 

.






i TiTi

i Ti'
T

wY

Y
DD

,,

,  
(3.5) 

3.2.1 Inflation of Claims Before and After Application of Indexed AAD and AAL 

Taking the retrocessionaire’s point of view as described in section 3.1, the objective is to show 

that the following three programs have equal average inflation: 

(1) Average inflation of total payments made by the NP reinsurer underlying the original excess 
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of loss contract, assuming unlimited reinstatements, equals: 

.




i TiTi

i Ti

wY

Y

,,

,  
(3.6) 

(2) Average inflation of total payments of the retrocession program that indemnifies the NP 

reinsurer portion of aggregate loss exceeding the indexed AAL equals: 

.
,0})max{(

,0})max{(

,,

,

LwY

LY

i TiTi

'
Ti Ti






  

(3.7) 

(3) Average inflation of total payments made by the NP reinsurer underlying the original excess 

of loss contract, with the aggregate payments capped by the indexed AAL, equals: 

.
,

,

})min{(

})min{(

,,

,

LwY

LY

i TiTi

'
Ti Ti





 

(3.8) 

As illustrated in section 3.1, inflation is measured for all claims to the excess of loss program 

combined, not measured for each claim separately. The three expressions in equations (3.6), (3.7), 

and (3.8) have very similar forms compared to the expressions in equations (2.8), (2.9), and (2.10) 

respectively. 

Proof of the following equality: 

})min{(

})min{(

,0})max{(

,0})max{(

,,

,

,,

,

,,

,

LwY

LY

LwY

LY

wY

Y

i TiTi

'
Ti Ti

i TiTi

'
Ti Ti

i TiTi

i Ti

,

,



















 

(3.9) 

is outlined below. A detailed proof is shown in Appendix C. 

First consider equation (3.8). It can be shown that '
Ti Ti LY  )( ,  if and only if 

LwY
i TiTi  )( ,, . Therefore, when the expression in (3.8) equals LL'

T  , by using definition of 

'
TL  in equation (3.4), it can be shown that LL'

T   equals )()( ,,,  
i TiTii Ti wYY , which is equal 

to the expression in (3.6). Otherwise, the expression in (3.8) equals )()( ,,,  
i TiTii Ti wYY . Again, 

this equals the expression in (3.6). 

After proving equality of expressions in (3.6) and (3.8), it can be noted that the numerator in (3.6) 

equals the sum of the numerators in (3.7) and (3.8). Similarly, the denominator in (3.6) equals the 

sum of the denominators in (3.7) and (3.8) as well. Based on these facts, the expressions in (3.7) 
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must equal the expressions in (3.6). 

Conclusively, the equality in (3.9) holds. Inflation of the NP reinsurer’s claims before and after 

application of indexed AAL (and AAD) are the same. 

3.2.2 An Alternative View: Indexing AAD and AAL by Principle of Equitable Sharing of 
Deflated Payments and Actual Payments 

First, note that the NP reinsurer’s deflated aggregate excess layer payments without any AAL 

equal the total of the deflated gross partial payments with un-indexed deductibles and un-indexed 

limits applied to each claim separately. This can be represented by equation (3.3), 

  
i

T

t ttii TiTi ldvXwY }})min{max{(
1 ,,, ,0, . 

Similarly, the following expression represents the retrocessionaire’s payment to the NP reinsurer 

if future partial payments of all claims were paid at time 0: 

,0}.)}})min{max{(max{(,0})max{(
1 ,,, LldvXLwY

i

T

t ttii TiTi    
,0,  (3.10)

What should be the retrocessionaire’s share in the total actual excess layer payment )( , i TiY ? 

The retrocessionaire should pay the proportion of i TiY ,  that is same as the ratio of expression in 

(3.10) to expression in (3.3). That means that the retrocessionaire’s share in the total actual payment 

is: 

.
,0,

,0,

 
 










i

T

t tti

i

T

t tti

i Ti
ldvX

LldvX
Y

}})min{max{(

,0})}})min{max{(max{(

1 ,

1 ,
,  

(3.11)

It can be verified that the above expression is identical to the numerator of the expression in (3.7) 

and therefore results in the same formulas for indexed AAL in equation (3.4). 

Also, equation (3.11) shows the following relationships between the retrocessionaire’s actual 

cumulative payment ,0}))(max{( ,
'
Ti Ti LY   and the NP reinsurer’s deflated aggregate excess layer 

loss before applying AAL )}})min{max{((
1 ,  

i

T

t tti ldvX ,0, : 

(1) 0,0})max{( ,  '
Ti Ti LY  when  .,0,  

i

T

t tti LldvX }})min{max{(
1 ,  

That is, the retrocessionaire makes no payment if the NP reinsurer’s aggregate deflated 

payments (before applying AAL) is below the un-indexed AAL. 

(2) 0,0})max{( ,  '
Ti Ti LY  when  L.ldvX

i

T

t tti   
}})min{max{(

1 , ,0,  

That is, the retrocessionaire makes payment if the NP reinsurer’s aggregate deflated payments 
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(before applying AAL) is greater than the un-indexed AAL. 

(3) '
Ti Ti LY  ,  if and only if  L.ldvX

i

T

t tti   
}})min{max{(

1 , ,0,  

That is, the NP reinsurer’s aggregate deflated payments (before applying AAL) equals the un-

indexed AAL if and only if the NP reinsurer’s aggregate actual payments (before applying 

AAL) equals the indexed AAL. Once reaching this condition, the retrocessionaire will start 

paying immediately after the NP reinsurer makes another payment in the future. 

3.2.3 Monotonicity Property of Retrocessionaire’s Cumulative Payments  

Incremental payments that the retrocessionaire makes to the NP reinsurer in the next period are 

considered net outflow and the retrocessionaire will not request a payback from the NP reinsurer, as 

long as the following two conditions are fulfilled:  

(1) No deflation occurs along the claim payment time horizon. 

(2) The total of all actual claims payments exceed the indexed deductible during current payment 

period. 

The notation S'
T represents the retrocessionaire’s cumulative actual payments to NP reinsurer at 

time T: 

,0}.)max{( ,
'
Ti Ti

'
T LYS    (3.12)

Therefore, the proposition means that, '
T

'
1T SS   under the conditions Ttvv t1t   and 

iX 1Ti  0,  (implying that 0)()( ,,    i Tii 1Ti YY ). The retrocessionaire’s cumulative 

payment with indexed AAD and AAL is monotonically increasing over time. The proof is shown in 

Appendix D. 

3.2.4 Monotonicity Property of Indexed AAD and AAL 

In section 2.2.2, it was indicated that '
Ti

'
1Ti dd ,,   and '

Ti
'

1Ti ll ,,   under the conditions 

Ttvv t1t   and iX 1Ti  0, . The proof is shown in Appendix E. 

Indexed AAD and AAL calculated using equations (3.4) and (3.5), however, are not 

monotonically increasing over time, even given the conditions vt+1  vt t  T and Xi,T+1  0 i. 

Indexed AAD and AAL are neither monotonically increasing nor decreasing over time. This is an 

undesirable property under practical considerations, which will be illustrated with a numerical 

example in section 3.4.4. 
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3.3 Indexing AAD and AAL Method 2: Deflating Incremental Excess Loss 
According to Payment Time 

Another method to calculate deflated excess of loss payment is to multiply the deflating factor vt 

with incremental actual payments of the NP reinsurer )( ,, 1titi YY   and use as denominator of 

equation (3.1). Therefore: 

.    
i

T

t t1titi vYY
1 ,, )(layer  loss of excess to payments deflatedall  ofTotal  (3.13)

The formula for indexed AAL and AAD becomes: 

.
 


  


i

T

t t1titi

i Ti"
T

vYY

Y
LL

1 ,,

,

)(
 

(3.14)

 

.
 


  


i

T

t t1titi

i Ti"
T

vYY

Y
DD

1 ,,

,

)(
 

(3.15)

By rewriting the numerator i TiY , as   
T

t i 1titi YY
1 ,, )( , equation (3.14) can be compared 

with equation (2.5): 

 Equation (2.5): Indexed per-claim limit Equation (3.14): Indexed AAL 

Indexed limit 
'

Til ,  "
TL  

Numerator  

T

t tiX
1 ,    

T

t i 1titi YY
1 ,, ])([  

Denominator  


T

t tti vX
1 ,     

T

t i t1titi vYY
1 ,, ])([  

Therefore, the concepts in sections 2.2.2, 2.2.3, and 2.2.4 can be applied to verify properties of 

the retrocessionaire’s payment underlying the formula for indexed AAL in equation (3.14). 

3.3.1 Inflation of Gross Claims, NP Reinsurer’s Payments and Primary Insurer’s Retained 
Claims 

The following three programs have equal average inflation: 

(1) Average inflation of the total payments made by the NP reinsurer underlying the original 

excess of loss contract, assuming unlimited reinstatements: 
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.
 


  

i

T

t t1titi

i Ti

vYY

Y

1 ,,

,

)(
 

(3.16)

(2) Average inflation of total payments of the retrocession program that indemnifies the NP 

reinsurer portion of aggregate loss exceeding the indexed AAL: 

.
,0}))(max{(

,0})max{(

1 ,,

,

LvYY

LY
T

t i t1titi

"
Ti Ti





 


 

 
(3.17)

(3) Average inflation of total payments made by the NP reinsurer underlying the original excess 

of loss contract, with the aggregate payments capped by the indexed AAL: 

.
,

,

}))(min{(

})min{(

1 ,,

,

LvYY

LY
T

t i t1titi

"
Ti Ti

 


  
 

(3.18)

3.3.2 Indexing AAD and AAL by Principle of Equitable Sharing of Deflated Payments and 
Actual Payments 

The following expression represents the retrocessionaire’s payment to the NP reinsurer if future 

partial payments of all claims were paid at time 0: 

,0}.))(max{(
1 ,, LvYY

T

t i t1titi     (3.19)

The retrocessionaire should pay the proportion of ,i TiY ,  which is the same as the ratio of the 

expression in (3.19) to the expression in (3.13). That means that the retrocessionaire’s share in the 

total actual payment is: 

.
 
 

 

 






i

T

t t1titi

T

t i t1titi

i Ti
vYY

LvYY
Y

1 ,,

1 ,,
,

)(

,0}))(max{(
 

(3.20)

It can be verified that the above equation agrees with the formula for indexed AAL in equation 

(3.14), therefore showing the following relationships between the retrocessionaire’s actual 

cumulative payment ,0})max{( ,
"
Ti Ti LY   and NP reinsurer’s aggregate deflated payments 

according to the original excess of loss program before applying AAL (    
i

T

t t1titi vYY
1 ,, )( ): 

(1) 0,0})max{( ,  "
Ti Ti LY  when  L.vYY

i

T

t t1titi    1 ,, )(  

That is, the retrocessionaire does not make any payment if the NP reinsurer’s aggregate 
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deflated payments (before applying AAL) is below the un-indexed AAL. 

(2) 0,0})max{( ,  "
Ti Ti LY  when  L.vYY

i

T

t t1titi    1 ,, )(  

That is, the retrocessionaire makes payment if NP reinsurer’s aggregate deflated payments 

(before applying AAL) is greater than the un-indexed AAL. 

(3) "
Ti Ti LY  ,  if and only if  L.vYY

i

T

t t1titi    1 ,, )(  

That is, the NP reinsurer’s aggregate deflated payments (before applying AAL) equals the 

un-indexed AAL if and only if the NP reinsurer’s aggregate actual payments (before applying 

AAL) equals the indexed AAL. Once reaching this condition, the retrocessionaire will start 

paying immediately after the NP reinsurer makes another payment in the future 

3.3.3 Monotonicity Properties of Retrocessionaire’s Cumulative Payments, Indexed AAD 
and AAL 

The notation "
TS  represents the retrocessionaire’s cumulative actual payments to the NP reinsurer 

at time T: 

,0}.)max{( ,
"
Ti Ti

"
T LYS    (3.21)

It can be proved that "
T

"
1T SS   under the conditions Ttvv t1t   and iX 1Ti  0, . 

Retrocessionaire’s cumulative payment with indexed AAD and AAL [using equations (3.14) and 

(3.15)] is monotonically increasing over time. The proof is similar to the proof of Yi,T+1  Yi,T, shown 

in Appendix A. 

Also under the conditions Ttvv t1t   and tiX ti  and0, , the two sequences 

}{L"
t and }{D"

t  are both monotonically increasing on t. 

3.3.4 Incremental Payments Paid by the NP Reinsurer Net of Recoveries from the 
Retrocessionaire 

Consider incremental aggregate payments paid by the NP reinsurer net of recoveries from the 

retrocessionaire at time T+1: 

."
T

"
1Ti Tii 1Ti SSYY    )( ,,  (3.22)

Under the conditions iX 1Ti  0,  and Ttvv t1t  , then 

0)( ,,    "
T

"
1Ti Tii 1Ti SSYY . That is, at time T+1 the NP reinsurer’s incremental payment to 

the primary insurer is always greater than the incremental recovery from the retrocessionaire. 
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Practically, if the NP reinsurer is not making a recovery from the primary insurer, then any claims 

emerging from the original excess of loss program will not result in a net cash-inflow for the NP 

reinsurer with the retrocession program in place. 

3.4 A Numerical Example 

The original excess of loss reinsurance program has a per-claim deductible of $3 million and per-

claim limit of $1 million, both subject to the index clause. The original program has unlimited free 

reinstatements. 

At time T = 4, there are three large claims, as shown in the following table. 

Incremental Actual Gross Payment ($000s) 

payment time 0 1 2 3 4 row sum 

claim 1 $0.0 $2,120.0 $1,090.0 $0.0 $1,230.0 $4,440.0 

claim 2 $0.0 $2,120.0 $2,180.0 $0.0 $0.0 $4,300.0 

claim 3 $0.0 $0.0 $0.0 $4,680.0 $0.0 $4,680.0 

 

Adjusted payments (or deflated payments) are calculated as follows: 

Incremental Adjusted Gross Payment ($000s) 

payment time 0 1 2 3 4 row sum 

claim 1 $0.0 $2,000.0 $1,000.0 $0.0 $1,000.0 $4,000.0 

claim 2 $0.0 $2,000.0 $2,000.0 $0.0 $0.0 $4,000.0 

claim 3 $0.0 $0.0 $0.0 $4,000.0 $0.0 $4,000.0 

Index 100 106 109 117 123  
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All three claims have deflated values equal to the un-indexed ceiling (sum of un-indexed 

deductible and limit). According to the three relationships among the NP reinsurer’s actual 

cumulative payment per claim and total deflated gross payments per claim illustrated in section 2.2.4, 

all three claims are total losses to the excess of loss program after the deductible and limit are 

indexed. However, the NP reinsurer’s cumulative actual payments at time T = 4 are different for 

these three claims, as shown in the following table: 

NP Reinsurer’s Cumulative Actual Payments ($000s) at time T = 4  

Cumulative Actual 

Payments 

Indexed 

Deductible Indexed      Limit 

NP Reinsurer’s 

Cum. Payment 

claim 1 $4,440.0 $3,330.0 $1,110.0 $1,110.0 

claim 2 $4,300.0 $3,225.0 $1,075.0 $1,075.0 

claim 3 $4,680.0 $3,510.0 $1,170.0 $1,170.0 

Total  $13,420.0 - - $3,355.0 

3.4.1 Indexed AAL with Method 1: Matching Deflated Excess Loss with Deflated Gross 
Loss Per Claim 

Assume that the NP reinsurer purchases a retrocession capping its potential aggregate payments 

at $3 million AAL subject to indexed clause. From the above table, it seems straight forward that 

indexed AAL should be $3.355 million at time 4, that is, the total of the losses to excess layer of the 

three claims. 

For time periods before T = 4, what are the values of indexed AAL at each stage? And what if 

other un-indexed AAL ($2 million, $1 million) were chosen instead? 

Table 3-1: Indexed AAL with Method 1 at Each Payment Time ($000s) 

payment time 1 2 3 4 

un-indexed AAL = $3mil $3,000.0 $3,225.0 $3,367.5 $3,355.0 

un-indexed AAL = $2mil $2,000.0 $2,150.0 $2,245.0 $2,236.7  

un-indexed AAL = $1mil $1,000.0 $1,075.0 $1,122.5 $1,118.3  

The above table is compared with the NP reinsurer’s cumulative actual payments and cumulative 
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deflated payments at each time.   Deflated payment to excess of loss layer for the i th claim is 

calculated using equation (3.3). 

Table 3-2: NP Reinsurer’s Cumulative Actual Payment ($000s) 

payment time 0 1 2 3 4 

claim 1 $0.0 $0.0 $0.0 $0.0 $1,110.0 

claim 2 $0.0 $0.0 $1,075.0 $1,075.0 $1,075.0  

claim 3 $0.0 $0.0 $0.0 $1,170.0 $1,170.0  

Total $0.0 $0.0 $1,075.0 $2,245.0 $3,355.0  

 

Table 3-3: NP Reinsurer’s Cumulative Deflated Payment with Method 1 ($000s) 

payment time 0 1 2 3 4 

claim 1 $0.0 $0.0 $0.0 $0.0 $1,000.0 

claim 2 $0.0 $0.0 $1,000.0 $1,000.0 $1,000.0  

claim 3 $0.0 $0.0 $0.0 $1,000.0 $1,000.0  

Total $0.0 $0.0 $1,000.0 $2,000.0 $3,000.0  

3.4.2 Observations: Why Indexed AAL Changes over Time upon New Claims  

From Table 3-3, the NP reinsurer’s aggregate cumulative deflated payment equals $1 million at 

time 2. If an un-indexed AAL = $1 million was chosen, then indexed AAL at time 2 equals $1.075 

million according to Table 3-1. 

At time 3, the indexed AAL increases to $1.1225 million from $1.075 million at time 2. The 

increase in index AAL may sound intuitively incorrect, because if the purpose of AAL is to “limit” 

the NP reinsurer’s aggregate payment, then it seems contradictory to observe an increase in the 

indexed AAL, even after one total loss has been observed at time 2. The phenomenon can be 

explained by considering the concepts of indexed per-claim deductible and limit as follows: 

 Recall that '
Ti

'
1Ti dd ,,   and '

Ti
'

1Ti ll ,,   under the conditions Ttvv t1t   and 

iX 1Ti  0, . Therefore, indexed per-claim deductible and limit can increase over time, 

even if a claim is already a “total loss to excess layer” at a certain stage.  
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 To measure the effect of inflation, the formulas for indexed per-claim deductible and limit 

consider all gross payments known for a claim, irrespective of whether the claim has already 

become a total loss to excess layer in the past.  

Similar arguments can be used to explain why indexed AAL can increase upon new payments 

made by the NP reinsurer at time 3. 

3.4.3 Observations: Conditions when Indexed AAL by Method 1 Decreases upon New 
Claims 

Now if un-indexed AAL = $2 million was chosen, then indexed AAL at time 3 equals $2.245 

million according to Table 3-1. This is consistent with Table 3-3, indicating that two total losses are 

observed and that the NP reinsurer’s aggregate cumulative actual payment equals $2.245 million at 

time 3. However, at time 4, indexed AAL drops down to $2.2367 million.  

In general, if one can accept that per-claim indexed deductible and limit can increase over time 

when there is no deflation and that there is no gross claims recovery, it is reasonable to expect that 

similar monotonicity property shall be observed for indexed AAL. However, the above numerical 

example disproves any monotonicity property. It can be explained from two angles: 

(1) In order to analyze why the indexed AAL at time 4 decreases, consider the change in average 

inflation. At time 3, claim 1 is still not observed as a loss to excess layer, and average inflation 

for claim 2 and claim 3 combined is 12.25% (= $2.245mil  $2.000mil – 1). At time 4, claim 1 

is observed as a total loss to the excess layer with average inflation 11.0%, which is lower than 

12.25%. Average inflation for claims 1, 2, and 3 combined decreases to 11.83%, and therefore 

indexed AAL decreases accordingly. 

(2) From Table 3-3, two total losses to excess layer are observed at time 3, therefore the NP 

reinsurer retains all cumulative actual payments to the excess of loss program (= $2.245mil 

for claim 2 and claim 3 combined). At time 4, the NP reinsurer shall retain two-thirds of the 

aggregate cumulative actual payments to the excess of loss program when three total losses to 

excess layer are observed. Since claim 1’s actual payment ($1.110 million) is less than claims 2 

and 3 combined average ($1.1225 million), therefore two-thirds of the NP reinsurer’s 

cumulative aggregate actual payment is only $2.2367 million (= $3.355 million  2/3) and 

indexed AAL is adjusted downward accordingly. 

Conclusively, from time T to T+1, indexed AAL decreases when the average inflation of 

aggregate claims to the original excess of loss program paid at time T+1 (e.g., consider claim 3, claim 

2 and claim 1 combined) is lower than average inflation of aggregate claims to the original excess of 
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loss program up to time T (e.g. consider claim 3 and claim 2 combined). 

Although Method 1 for indexing AAL has no monotonicity property, the indexed AAL are at 

each stage correctly reflecting the split between the NP reinsurer’s and the retrocessionaire’s 

payments, according to principles of equitable sharing of inflation and equitable sharing of deflated 

payments, assuming that deflated value of gross, excess layer, and retained claims should be matched 

together. 

3.4.4 Indexed AAL with Method 2: Deflating Incremental Excess Loss According to 
Payment Time 

A deflating factor vt is multiplied with incremental excess loss according to payment time. 

Resulting in tables of indexed AAL’s and NP reinsurer’s cumulative deflated payments that are 

different from the corresponding tables in section 3.4.1. 

Table 3-4: Indexed AAL with Method 2 at Each Payment Time ($000s) 

payment time 1 2 3 4 

un-indexed AAL = $3mil $3,000.0 $3,270.0 $3,390.8 $3,484.3 

un-indexed AAL = $2mil $2,000.0 $2,180.0 $2,260.6 $2,322.9  

un-indexed AAL = $1mil $1,000.0 $1,090.0 $1,130.3 $1,161.4  

 

Table 3-5: NP Reinsurer’s Cumulative Deflated Payment with Method 2 ($000s) 

payment time 0 1 2 3 4 

claim 1 $0.0 $0.0 $0.0 $0.0 $902.4 

claim 2 $0.0 $0.0 $986.2 $986.2 $986.2  

claim 3 $0.0 $0.0 $0.0 $1,000.0 $1,000.0  

Total $0.0 $0.0 $986.2 $1,986.2 $2,888.7  

 

To compare Method 2 with Method 1, consider if the un-indexed AAL = $2 million was chosen.  

Under Method 2, the NP reinsurer’s cumulative aggregate deflated payment at time 3 equals 

$1.9862 million, which is less than the un-indexed AAL of $2 million. Therefore, at time 3, indexed 

AAL ($2.2606 million) should be greater than the NP reinsurer’s cumulative aggregate actual 
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payment ($2.245 million).  

However, Table 3-2 indicates that the NP reinsurer’s actual payments for claim 2 and claim 3 are 

both total loss to excess layer, since both payments equal their corresponding indexed per-claim 

limit. Ideally, indexed AAL should equal $2.245 million at this stage, such that the retrocessionaire 

will start to pay immediately after another excess layer claim is observed. Comparing the two 

methods for indexing AAL, Method 1 can always satisfy such a requirement, because when deflating 

excess layer loss, Method 1 takes into account matching of gross, retained, and excess layer 

payments. Method 2, however, generally cannot satisfy such a requirement as it ignores the link 

between gross and excess layer payments. 

Despite the above advantage, Method 1 has a major shortcoming. At time 4, the NP reinsurer 

pays $1.110 million to the primary insurer but receives $1.1183 million (= $3.355mil – $2.2367mil) 

from the retrocessionaire, therefore resulting in net cash-inflow for the NP reinsurer despite claim 

emergence. Scenarios similar to this are problematic because often the primary insurer practically 

takes up the role of the retrocessionaire: that means the NP reinsurer is only liable up to the indexed 

AAL and then the primary insurer will be responsible for the portion of aggregate claims above. In 

this numerical example, the primary insurer makes a payment of $1.230 million to its policyholder 

for claim 1, and also makes a net payment of $8,300 (= $1.1183mil – $1.110mil) to the NP reinsurer. 

Practically, the primary insurers may not be convinced to make the payment to NP reinsurer under 

an indexed AAL, especially since they will not need to do so if the AAL is simply un-indexed. Under 

Method 2, however, the situation becomes different: at time 4, the NP reinsurer makes a net 

payment of $77,900 to the primary insurer (= $1.110mil – [$3.355mil – $2.3229mil]). As illustrated in 

section 3.3.4, the NP reinsurer’s incremental payment to the primary insurer is always greater than 

the incremental recovery from the retrocessionaire.  
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4. PRACTICAL ISSUES 

4.1 Which Method to Use for Indexing AAD and AAL: Method 1 or Method 
2? 

It is not straightforward to decide whether Method 1 or Method 2 is the correct method simply 

by relying on principles of equitable sharing of inflation and equitable sharing of deflated payments. 

Each method uses its own way to determine deflated excess loss, therefore, equitable sharing can be 

“achieved by definition”. A comparison from both a theoretical and practical point of view is shown 

below: 

 Method 1:  Method 2:  

 Matching Deflated Excess Loss with 

Deflated Gross Loss Per Claim 

Deflating Incremental Excess Loss 

According to Payment Time 

Advantages (1) Theoretical: Indexed AAL match 

with Indexed per-claim limit 

(2) Practical: If un-indexed AAL is 

chosen to be k times un-indexed 

per-claim limit, then occurrence of k 

total losses, but not more, will be 

exactly covered under indexed AAL 

(1) Practical: As long as no deflation, 

indexed AAD and AAL increase 

over time when claims emerge 

(2) Practical: NP reinsurer always has 

net cash-outflow when claims 

emerge which sounds reasonable 

Disadvantages (1) Practical: Indexed AAD and AAL 

may decrease over time, which can 

be difficult to explain to primary 

insurers 

(2) Practical: Decreasing AAL may 

require the primary insurer (who 

takes the retrocessionaire’s role) to 

make extra payment to the NP 

reinsurer besides paying the gross 

claim 

(1) Theoretical: Indexed AAL mismatch 

with Indexed per-claim limit 

(2) Practical: If un-indexed AAL is 

chosen to be k times un-indexed 

per-claim limit, occurrence of k total 

losses generally result in indexed 

AAL greater than total of the 

indexed per-claim limit of the k total 

losses  

Although Method 1 appears to be more appropriate from a theoretical point of view by matching 

both actual and deflated excess loss with gross loss and retained loss, in practice the importance of 

such theoretical advantage is not easily observable. Generally, when AAL is exhausted it is more 
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likely to observe a mix of partial losses and total losses to the excess layer rather than purely total 

losses. The theoretical advantage only has more meaning in terms of coverage interpretation: un-

indexed AAL equals k times un-indexed per-claim limit implies that exactly k total losses will be 

covered. 

Practically Method 2 will likely receive higher level of acceptance by the market. It is because 

under Method 2 indexed AAL retains most of the desirable properties that are observed in indexed 

per-claim deductible and limit, including: 

 Equitable sharing of inflation and equitable sharing of deflated payments (although “equitable 

sharing” depends on excess loss deflating method assumption). 

 Indexed AAL “increases with claims inflation” (indexed AAL increases over time when 

claims emerge and inflation is positive). 

 All parties (primary insurer, NP reinsurer, retrocessionaire) have net cash-outflow when 

claims emerge (and inflation is positive). 

Indexed AAD and AAL under Method 2 are generally greater than that under Method 1. 

Therefore primary insurer may prefer to use Method 2 for indexed AAL, and the NP reinsurer may 

prefer to use Method 2 for indexed AAD. 

4.2 Pricing Excess of Loss Reinsurance with Indexed AAD and AAL 

The objective of pricing is to estimate expected loss cost for the prospective quotation year, and 

express the estimated value as a percentage of Gross Net Premium Income (GNPI) for the 

quotation year. This percentage is often called risk rate of the reinsurance program. 

In this section, the view of the retrocessionaire as illustrated in section 3 will be taken. In taking 

this view, the objective is to estimate the expected value of aggregate loss cost to the original excess 

layer program that exceed the “indexed AAL”. Using the notations in section 3, the expected value 

of the random variable "
TS  (or '

TS  if Method 1 for indexing AAL is chosen) will be calculated. In the 

following discussion of various pricing approaches, it is assumed that Method 2 for indexing the 

AAL is chosen. Nevertheless most procedures and observations are appropriate for both Method 1 

and Method 2. 

Additional assumptions and notations are as follows: 

T = time when all claims to the original excess of loss program are settled, assuming that T 

is not a random variable (e.g., one can choose T to be 50 years or even 100 years if the 

line of business has an extremely long tail, but practically 20 years or 25 years shall be 
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reasonable choices) 

Xi,t = random variables for incremental loss payment, from losses that occur during the 

prospective quotation year (but revalued as if the occurrence date is the average accident 
date). As a result, Yi,T (loss to excess layer) and "

TS  (aggregate loss excess of indexed 

AAL) are random variables too. In addition, '
tid , , '

til ,  (indexed deductible and limit) and 
"
TL  are random variables as well. 

In practice the distribution of  

T

t tiX
1 ,  (ultimate ground-up loss random variable) is 

often modeled first, then the payment pattern at time t (  


T

t titi XX
1 ,, ) is estimated. 

N = number of loss random variable for the prospective quotation year. The definition of 

“loss occurrence” needs to match with the distribution of  

T

t tiX
1 , . For modeling 

convenience, loss occurrence can be defined as the event when  

T

t tiX
1 ,  exceeds the 

indexed deductible, therefore it is then only necessary to model the severity of large 

losses that hit the excess of loss program. 

p = GNPI for the prospective quotation year. Assume that p can be forecasted accurately 

at inception. 

"
TS  = ,0})max{(

1 ,
"
T

N

i Ti LY  
 = the random variable of aggregate loss cost to the original 

excess layer program that exceeds the indexed AAL (i.e., aggregate loss cost to the 

retrocession program) 

p
S"

T ]E[
 = risk rate of the retrocession program = ratio of expected value of "

TS  to GNPI of 

the prospective quotation year 

4.2.1 Empirical Approach 

The empirical approach (also called burning cost approach) uses claims and GNPI in historical 

observation year(s): 

 Step 1: historical ground-up claim sizes are revalued for claims inflation. For long-tail classes, 

claim payments for future development years and Pure IBNR need to be forecasted. 

 Step 2: by using the deductible and limit for the prospective quotation year, indexed 

deductibles and limits are determined for calculating excess layer loss for each claim. 

 Step 3: aggregate (as-if) actual excess loss is determined for each payment time, and therefore 
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aggregate (as-if) deflated excess loss can be determined for each payment time as well, in 

order to determined indexed AAL ( "
TL ) at final settlement time T. 

 Step 4: risk rate of the retrocession program is estimated as the ratio of aggregate (as-if) actual 

excess loss exceeding "
TL  to on-level GNPI of a historical year. If more than one historical 

year is available, weighted average of the ratios is taken as the risk rate of the retrocession 

program. 

Notations 

Nh = number of loss random variable for a historical observation year 

h
TiY ,  = random variable for as-if loss to the excess layer, by revaluing historical ground-up loss 

random variable in an observation year for claims inflation 

ph = on-level GNPI for a historical observation year 

Underlying the empirical approach, it is assumed that if on-level GNPI and claim sizes are 

revalued appropriately, then expected historical loss frequency (= number of claims per on-level 

GNPI) equals prospective quotation year’s expected loss frequency: 

.
p
N

p
N

h

h ]E[]E[
  

(4.1) 

Generally ph  p. For example, when portfolio growth is not due to rate increases, then ph < p and 

E[Nh] < E[N]. For this reason, if one uses the following expression to estimate risk rate of the 

retrocession program: 

,0}].
)(

)max{([E
1

1 1 1,,

1 ,

1 ,

 


  





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h
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i
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h
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h
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(4.2) 

Then risk rate will likely be underestimated since ][E
1 , 

hN

i

h
TiY  is less than ][E

1 , 

N

i TiY  but the 

same L (= un-indexed AAL) is used. 

 Often a conventional solution is to modify L by multiplying with ph/p. As a result risk rate of the 

retrocession program is estimated by the expression: 

,0}].
)(
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1

1 1 1,,

1 ,
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(4.3) 

However, the expression in (4.3) is still a biased estimator of the risk rate. The proof is 

straightforward by considering the short-tail case, which means per-claim deductible, limit, and AAL 
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will not be indexed. 

There are other shortcomings with the empirical approach. For example, when pricing an excess 

of loss layer without any AAD or AAL, often more than one claim is observed in each accident year 

on average. Observing 10-years experience can generally provide a reasonably large sample size. 

However, under the empirical approach, each observation year is only considered to be one sample. 

Overall, the empirical approach is not highly accurate for estimating the risk rate for the retrocession 

program. 

4.2.2 Simulation Approach 

One option is to apply a “historical simulation” approach: 

 Step 1: realized values of pairs of  h
TiY ,  (revalued ultimate actual excess loss) and 

   
T

t t
h
ti

h
ti vYY

1 1,, )(  (revalued ultimate deflated excess loss) from all observation years are 

collected to form a pool of sample losses. Forecast of future claim payment development 

may be needed. Equal weights can be assigned to each realized pair. 

 Step 2: on-level GNPI (ph) and realized values of Nh are used to estimate E[N] and/or other 

parameters for distribution of N. An allowance for Pure IBNR may be needed. 

 Step 3: in each simulated scenario, the number of losses are simulated from distribution of N. 

Then loss sizes are sampled randomly from the pool of actual and deflated loss pairs, which 

would then allow calculation of simulated values of  

N

i TiY
1 ,  (aggregate actual loss cost to 

the original excess layer program),     
hN

i

T

t ttiti vYY
1 1 1,, )(  (aggregate deflated loss cost to 

the original excess layer program), and "
TL  (indexed AAL) and finally "

TS  (aggregate loss cost 

to the retrocession program).  

 Step 4: repeat scenario generations in Step 3 until sufficiently large number of scenarios are 
generated. Then take the average of the simulated "

TS  divided by p as the risk rate for the 

retrocession program. 

Historical simulation approach can be viewed as a refinement of empirical approach, by making 

use of empirical distribution of historical loss sizes (actual and deflated) while matching with 

prospective quotation year’s loss frequency through the simulation procedure. Historical simulation 

approach is an appropriate choice when a large reliable sample of historical losses is available. 

Another simulation approach alternative is to model the severity distribution of 

T

t tiX
1 ,  

(ultimate ground-up loss random variable) as well as the payment pattern at time t 
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). 


T

t titi X(X
1 ,,  After ground-up severity and payment pattern are simulated,  

N

i TiY
1 ,  and 

    
hN

i

T

t ttiti vYY
1 1 1,, )(  can be calculated as well. 

Options for modeling payment pattern include: 

(1) Deterministic payment pattern: every simulated ground-up loss has the same payment pattern 

between time t = 1 and T. 

(2) Stochastic payment pattern that is independent of  

T

t tiX
1 ,  

(3) Stochastic payment pattern that varies with  

T

t tiX
1 , . For example, large claims generally 

take a longer time to reach full settlement than small claims. However, the modeler should 

judge the strength of dependency between claim size and payment pattern for claims that 

penetrate the excess layer, and thus whether it is necessary to insert such extra complexity in 

the simulation procedure. 

If it is decided to model the payment pattern stochastically, one simplification is to model 

“average settlement time”. It is assumed that each claim is settled fully with a single payment at some 

time between 1 and T. However, remember that with this simplification, the indexed AAL calculated 

under Method 2 will always be the same as the indexed AAL calculated under Method 1. Therefore, 

it is not recommended to use such simplification if Method 2 for indexing AAL is chosen. 

Even if the same deterministic payment pattern is applied for all ground-up claims, different 

excess layer payment patterns will still be observed for claims of different sizes: larger claims will 

have shorter average excess layer payment patterns. The implications are very different for indexing 

AAL with Method 1 or Method 2. If Method 1 for indexing AAL is chosen, then for each claim the 
ratio of actual excess loss to deflated excess loss equals )( ,,, TiTiTi wYY   and is the same for all 

ground-up claim sizes. However, if Method 2 for indexing AAL’s is chosen, then for each claim the 

ratio of actual excess loss to deflated excess loss equals ))((
1 1,,,    

T

t ttitiTi vYYY , and the ratio is 

higher for smaller claims to the excess layer. The above observations do not add extra complexity to 

the simulation approach if Method 2 for indexing AAL is chosen, but it is necessary to consider 

whether the implications reasonably reflect the reality. 

4.2.3 Collective Risk Model 

For short-tail classes, in order to estimate expected aggregate loss cost to the original excess layer 

program that exceed an un-indexed AAL, it is often convenient to adopt a collective risk model 

approach as follows: 
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 Step 1: the distribution of actual loss to excess layer random variable Yi,T is approximated by a 

discrete distribution. 

 Step 2: some choice of distribution for number of loss random variable N (e.g., any (a,b,0) 

class distribution) allows a recursive formula to be used for determining distribution of 

aggregate loss cost to the original excess layer program  

N

i TiY
1 , . 

 Step 3: since un-indexed AAL is a constant, it is straightforward to calculate expected value of 

,0}.)max{(
1 , LY

N

i Ti  
  

For long-tail classes, however, it is not that straightforward to calculate the expected value of 

,0})max{(
1 ,

"
T

N

i Ti
"
T LYS   

 because "
TL  is a random variable dependent on Yi,t’s. Similar to 

section 4.2.2, there are several options to model payment patterns such that the distribution of "
TL  

can be simplified as follows: 

(1) Modeling "
TL  stochastically:  assume "

TL  equals L multiplied by a random variable M. The 

expected value of M shall equal the average ratio of actual aggregate excess loss to deflated 

aggregate excess loss, and M is assumed to be independent of Yi,t’s. It is reasonable to choose 
M to be lower bounded by 1 and to have an upper bound. Then the expected value of ]E[ "

TS  

can be calculated using conditional expectation: 

]. ]|,0})E[max{( [E] ]|E[ [E]E[
1 , MMLYMSS

N

i TiM
"
TM

"
T   

 (4.4) 

(2) Deterministic payment pattern (Excess): every excess layer loss has the same payment pattern 

between time t = 1 and T. This is appropriate when Method 2 is chosen for indexing AAL, 
because "

TL  is then no longer a random variable. "
TL  is calculated as L multiplied by the 

reciprocal of deflated value of $1 using the selected deterministic payment pattern. Expected 
value of "

TS can then be calculated easily like in the short-tail case. 

(3) Deterministic payment pattern (Ground-up): every ground-up loss has the same payment 

pattern between time t = 1 and T. This is appropriate when Method 1 is chosen for indexing 
AAL, because '

TL  is then no longer a random variable. 

4.2.4 Allowance for Investment Income 

Most loss payments of the retrocession program are paid long after the quotation year. Risk 

premium of the retrocession program calculated by any of the pricing approaches in section 4.2.1 to 

4.2.3 shall be reduced by investment income that can be earned by the retrocessionaire between the 

time of premium installments and the time of loss payments. 
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One option is to determine an average payment pattern of the retrocession program’s loss 

payments. Then a discount for investment income can be calculated deterministically, and multiplied 
with ]E[ "

TS  determined from the selected pricing approach. 

A second option is to incorporate investment income allowance directly into stochastic modeling 

of loss to the retrocession program. Recall that ,0})max{(
1 ,

"
T

N

i Ti
"
T LYS   

is the random variable 

of aggregate loss cost to the retrocession program before including allowance for investment 
income, then ]E[ 1

"
T

"
T SS   equals the expected loss payment of the retrocession program at time T. 

Therefore, assuming all retrocession premiums are received on the base date, risk premium for the 

retrocession program including investment income allowance equals: 

.



T

t t
t

"
t

"
t

r
SS

1
1

)(1
]E[]E[

 
(4.5) 

Where rt denotes the annualized investment return from time 0 to t.  

The second option is more practical if simulation pricing approach is used, for which not much 

extra modeling complexity will be added to the simulation procedures. 

If a collective risk model pricing approach is used with "
TL  modeled stochastically, much effort is 

needed in determining ]E[]E[ 1
"
t

"
t SS   for all t between 1 and T, since it is necessary to define 

distributions of t
"
t MLL   for all t between 1 and T. 

4.3 Limited Reinstatement and Calculating Paid Reinstatement Premium 
with Indexed AAL 

4.3.1 Revision: Calculating Paid Reinstatement Premium for Short-Tail Classes 

In short-tail classes, paid reinstatement premium are most often paid “at 100% additional 

premium as to time but pro rata as to amount reinstated only” (also called “100% pro-rata capita”). 

It means that upon occurrence of any claim to the excess layer with ground-up size X, irrespective 

of the time of loss occurrence or loss payment, the primary insurer pays an additional reinstatement 

premium to the NP reinsurer of the following amount: 

.
l

ldX },min{
 ratepremium ereinsurancGNPI


  

(4.6) 

 Paid reinstatement provision is often associated with limited number of reinstatements. For 

example, if “two full reinstatements” are offered, it is identical to state that the excess layer has an 

AAL that equals three times the per-claim limit. In general, relationship between annual aggregate 

limit L, per-claim limit l and number of reinstatements k can be represented by the equation: 
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1.ments reinstateofnumber 
l
L

k  
(4.7) 

The maximum possible amount of total reinstatement premium paid by the primary insurer 

equals: 

.
l

lL 
  ratepremium ereinsurancGNPI  

(4.8) 

Therefore, the primary insurer is not required to pay reinstatement premium for the portion of 

aggregate excess layer loss that exceeds (L – l). Here the author introduces the term “Annual 

Aggregate Reinstatement Limit”, or AARL, to describe the value (L – l). 

To generalize, if N claims are observed each with ground-up size Xi, then total reinstatement 

premium paid by primary insurer equals: 

}.)
}0}min{max{

min{( ratepremium ereinsurancGNPI
1

k,
l

l,d,XN

i
i


  

(4.9) 

4.3.2 Calculating Paid Reinstatement Premium for Long-Tail Classes with Indexed Per-
Claim Deductible, Limit and Method 1 for Indexing AAL  

Recall that in equation (2.6), }})min{max{( ,,1 ,,
'

Ti
'

Ti

T

t tiTi ldXY ,0,  
 represents the cumulative 

excess layer loss at time T for the i th claim, and that '
Til ,  represents the indexed limit for the i th 

claim. Modifying equation (4.9) so as to fit into long-tail environment implies that, at time T, the 

cumulative total reinstatement premium paid by the primary insurer equals: 

}.)min{( ratepremium ereinsurancGNPI
1

,

, k,
l

YN

i '
Ti

Ti
  

(4.10)

It can be easily verified that equation (4.10) is identical to the following: 

}.)min{( ratepremium ereinsurancGNPI
1

,

l
lL

,

L
l

L

YN

i
'
T

Ti 


  

 
(4.11)

Equation (4.11) indicates that the primary insurer is not required to pay reinstatement premium 

for the portion of aggregate excess layer loss that exceeds 
L

L
lL

'
T )(  (= indexed value of AARL). 

In practice, equation (4.10) is the easier method to represent how paid reinstatement should be 

calculated, but it brings up several issues: 

(1) It is possible and reasonable that under some circumstances the NP reinsurer is required to 

pay the primary insurer for excess claim, but the primary insurer is not required to pay any 
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reinstatement premium at the same time.  

To demonstrate this, use the numerical example in section 3.4. For example,  if four full 

reinstatements each at 100% pro-rata capita is offered. At time 4, three total excess layer 

losses are observed, therefore  


N

i

'
TiTi lY

1 ,, )(  equals 300%. Assume at time 5, no other 

claims are reported, but the primary makes another payment for claim 1. As a result, indexed 

limit for claim 1 at time 5 (= 'l1,5 ) is greater than that at time 4 (= 'l 1,4 ), and the NP reinsurer 

is required to pay primary insurer the difference between 'l1,5  and 'l 1,4 . However, 

100%)()( 1,41,41,51,5  '' lYlY  and therefore  


N

i

'
TiTi lY

1 ,, )(  at time 5 is unchanged at 

300%, which means that primary insurer is not required to pay additional reinstatement 

premium at time 5.  

The above observation sounds contradictory to the reinstatement premium calculation 

performed in the short-tail case, where reinstatement premium is received by the NP 

reinsurer every time an excess claim is paid until the AARL is used up. 

The author suggests, however, that a broader view should be taken to interpret the 

reinstatement premium calculation if it is to compare with the short-tail case. The 

reinstatement premium is received by the NP reinsurer every time a per-claim limit needs to 

be reinstated. In the numerical example, the difference between 'l1,5  and 'l 1,4  simply reflects an 

adjustment of claim 1’s indexed limit due to the updated average inflation information for 

this claim, but does not involve any portion of the limit being used from time 4 to 5. 

Therefore no limit needs to be reinstated. The portion of per-claim limit is used and needs to 

be reinstated if and only if )()( 1,1,,,
'

titi
'

titi lYlY    but not just under the condition 

1,,  titi YY . 

(2) As a result, the NP reinsurer’s loss payment should not be constrained by whether the 

condition klY
N

i

'
TiTi  1 ,, )(  has been met at a particular point of time, but should only be 

capped by the AAL. 

(3) Method 1 for indexing AAL is the method that is consistent with equation (4.10). This means 

that when  


N

i

'
TiTi lY

1 ,, )(  (= total of ratios of actual excess claim to indexed per-claim limit) 

exactly equals the number of full reinstatements offered, then the remaining “unused AAL” 

will be sufficient to pay exactly one more total loss to the excess layer (or equivalent) that will 

emerge in the future. 
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(4) When an index clause applies to per-claim deductible and limit only but not AAL, it can be 

problematic if paid reinstatement provision is in place. For example, it is possible that 

aggregate excess layer loss exceeds the un-indexed AAL, but cumulative total reinstatement 

premium has not yet reached the maximum according to equation (4.10). Further, if aggregate 

excess layer loss is less than the un-indexed AAL at time T–1 but exceeds the un-indexed 

AAL at time T, then what should be the amount of reinstatement premium to be paid at time 

T? 

4.3.3  Calculating Paid Reinstatement Premium for Long-Tail Classes with Indexed Per-
Claim Deductible, Limit and Method 2 for Indexing AAL  

When Method 2 for indexing AAL (that means "
TL  calculated using equation (3.14) ) is chosen, 

then  


N

i

'
TiTi lY

1 ,, )(   is not a measure of “used limit” that is consistent with "
TL . Consider an 

example, when the number of total excess layer losses occurred equals k (= number of full 

reinstatements offered), then the remaining “unused AAL” is sufficient to pay future occurrences of 

one more total excess layer loss plus another partial loss to the excess layer. 

Attempting to correct the inconsistency, modifying equation (4.11) can result in the following 

formula for cumulative total reinstatement premium paid by the primary insurer at time T: 

}.)min{( ratepremium ereinsurancGNPI
1

, k,

L
l

L

YN

i
"
T

Ti


  
(4.12)

However, the above formula only corrects the inconsistency partially. Further comparing with 

equation (4.10), it is much more difficult to explain the concept and reasonableness of equation 

(4.12) when the calculation of the reinstatement premium in short-tail case had already been widely 

accepted in the market. 

Conclusively, it is still reasonable in practice to use equation (4.10) to calculate reinstatement 

premium even if Method 2 for indexing AAL is chosen.  
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5. CONCLUSIONS 

Two methods for indexing AAD and AAL are presented in this paper: Method 1 matches 

deflated excess loss with deflated gross loss per claim, and Method 2 deflates incremental excess loss 

according to payment time. The two methods are developed with concepts that are closely linked to 

the concepts underlying indexation of per-claim deductible and limit.  

In comparing the advantages and disadvantages of the two methods from a practical point of 

view, indexed AAL’s with Method 2 retain most of the desirable properties that are observed in the 

indexed per-claim deductible and limit. Method 2 will likely receive a higher level of acceptance by 

the market. 

For the various proposed pricing approaches, the empirical approach (burning cost approach) is 

less preferable than the simulation or collective risk model approaches. In fact, the accuracy of the 

empirical approach is questionable even in the short-tail case with un-indexed AAD and AAL. 

Finally, the method for calculating reinstatement premium is applicable whether Method 1 or 

Method 2 for indexing AAD and AAL is chosen. 
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Appendix A : Monotonicity Properties of NP Reinsurer’s Cumulative Payment and Primary 

Insurer’s Net Cash-flow under Indexed Per-Claim Deductible and Limit  

Proposition 1: NP reinsurer’s cumulative payment made to primary insurer is monotonically 

increasing, that is, TiTi YY ,1,  , under the conditions TtvvX ttTi      11, and0 . 

Proof:  

By using equations (2.4), (2.5) , and (2.6), express Yi,T in terms of Xi,t , vt , d, and l : 

}})min{max{()(
1 ,1 ,1 ,, ldvXvXXY

T

t tti

T

t tti

T

t tiTi ,0,  
 

And similarly }})min{max{()(
1

1 ,

1

1 ,

1

1 ,1, ldvXvXXY
T

t tti

T

t tti

T

t tiTi ,0,  









  

 

Next, consider three cases of  

T

t tiX
1 , . (I) '

Ti
'

Ti

T

t ti dlX ,,1 ,  
 ; (II) '

Ti

T

t ti dX ,1 ,  
; and (III) 

'
Ti

'
Ti

T

t ti
'

Ti dlXd ,,1 ,,  
; 
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Case (I): when .'
Ti

'
Ti

T

t ti dlX ,,1 ,  
 

From equations (2.4) and (2.5)  )()(
1 ,1 ,1 ,  


T

t tti

T

t ti

T
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Case (II): when .'
Ti

T

t ti dX ,1 ,  
  

From equations (2.4) and (2.5)  dvX
T

t tti  1 ,   .0TiY ,  

 .TiTi YY ,1,   

Case (III): when .'
Ti

'
Ti

T

t ti
'

Ti dlXd ,,1 ,,  
 

From equations (2.4) and (2.5)  l.dvXd
T
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Conclusion:  

Combining cases (I), (II), and (III), under all situations Yi,T+1  Yi,T holds, when the conditions Xi,T+1 

 0 and vt+1  vt t  T can be fulfilled. 
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Proposition 2: 0,,,   Ti1Ti1Ti YYX  under the conditions T.tvvX ttTi      11, and0   

Proof:  

First, by using equations (2.4), (2.5), and (2.6): 
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Next, consider five cases: 
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Case (II): when .ldvXdvX
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Case (III): when .ldvXdvX
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Conclusion:  

Combining the five cases: 0,,,   Ti1Ti1Ti YYX  under the conditions 

T.tvvX ttTi      11, and0  
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Appendix B : Equal Inflation of Gross Claims, NP Reinsurer’s Payments under Indexed 

Per-Claim Deductible and Limit, and Primary Insurer’s Retained Claim 

Proposition: at time T for the i th claim, gross claim’s inflation equals inflation for NP reinsurer’s 

excess of loss payments and also equals inflation for the primary insurer’s retained claim, which is 

represented by equation (2.11): 
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Appendix C: Equal Inflation of Claims Before and After Application of Indexed AAD and 

AAL with Method 1 

Proposition: equal inflation of claims before and after application of indexed AAD and AAL can be 

represented by the equation in (3.9): 
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Case (I): when .'
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This case can be ignored because the retrocessionaire makes no payment. 

 

Case (II): when .'
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Conclusion: 

The equality in (3.9) holds: 
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Appendix D: Monotonicity Property of Retrocessionaire’s Cumulative Payment with 

Indexed AAD and AAL with Method 1 

Proposition: According to section 3.2.2, under two conditions: 

(1) iX Ti   01, , and 

(2) T,tvv tt   1  

then '
T

'
1T SS  , where ,0})max{( ,

'
Ti Ti

'
T LYS    as defined in equation (3.12). S'

T represents 

retrocessionaire’s cumulative payment at time T. 

 

Proof:  

First it is to prove three inequalities: 
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.iww 1TiTi  ,,  (D.3) 

For (D.1), it has been proved in Appendix A that Ti1Ti YY ,,  . 

Therefore   i Tii 1Ti YY ,,  is trivial. 

For (D.2), consider TiTi1Ti1Ti wYwY ,,,,    and refer to equation (3.3): 
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Next for proving '
T

'
1T SS  , consider both cases of '

T
'

1T LL   and '
T

'
1T LL  : 

Case (I): when .'
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Conclusion: 

Combining cases (I), (II), and (III), under all situations '
T

'
1T SS   holds, when the conditions vt+1  vt 

t  T and Xi,T+1  0 i can be fulfilled. 
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Appendix E: Monotonicity Properties of Indexed Per-Claim Deductible and Limit 

Proposition: According to section 3.2.4, under two conditions: 

(1) Xi,T+1  0 i, and  

(2) vt+1  vt t  T 

then '
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1Ti dd ,,   and '
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Til ,  as defined in equations (2.4), (2.5) 
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Similar logic can be applied for proving '
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'
1Ti ll ,,  . 
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The Conditional Validity of  Risk-Adjusted Discounting 

Leigh J. Halliwell, FCAS, MAAA 
 

Abstract: The constellation of the initiatives of ERM, Solvency II, and International Accounting traces back 
through capital management to modern finance and portfolio theory.  These supposedly dynamic and market-
oriented initiatives will eventually disappoint the (re)insurance industry, if they uncritically endorse risk-adjusted 
discounting.  One’s job is rendered more difficult, if not impossible, without the right tools.  Building on earlier 
papers, the author will here show how a seminal academic paper from the 1960s contains the seeds of the 
downfall of risk-adjusted discounting.  It is too much to expect a retraction, but hopefully, the emerging 
standards for these initiatives at least will not force risk-adjusted discounting upon the practitioners. 

Keywords:  present value, risk-adjusted discounting, stochastic cash flow. 

 

1. INTRODUCTION 

One standard textbook begins with this clear pronouncement about risk-adjusted discounting: 

To calculate present value, we discount expected payoffs by the rate of return offered by the 
equivalent investment alternative in the capital market.  The rate of return is often referred to as the 
discount rate, hurdle rate, or opportunity cost of capital. [Brealey and Myers, 2002, p 15] 
 

Having published several critiques of this principle,1 we have challenged others to show where in 

the academic literature it has been rigorously derived.  At length, someone directed our attention to 

Robichek and Myers [1966], whose co-author, Stewart C. Myers, is the same as the co-author of the 

textbook just cited.2  To our surprise, this brief paper, far from deriving the principle, actually points 

out its “conceptual problems,” as its title reveals.  We are wholly in accord with its second 

paragraph: 

Since time and risk are logically separate variables, summing up their effects in the one number k 
requires a particular assumption about the actual relationship between the effects of time and risk on 
present value.  The main purpose of this communication is to uncover this assumption and to point 
out that valuation errors may result if the risk-adjusted discount rate is used when this assumption 
does not hold. 
 

After treating a simple example, its authors conclude: 

… the general conclusion [is] that the rate at which income is expected to be realized over time 
depends on the rate at which uncertainty is expected to be resolved over time.  If uncertainly is 

                                                 
1 See the author’s publications in the References, especially Halliwell [2003], Appendix A. 
2 He is also the co-inventor of the Myers-Cohn insurance-pricing model, which has been used in Massachusetts rate 
hearings.  Introductions to this model may be found in D’Arcy and Doherty [1988], Mahler [1998], and D’Arcy [1999]. 
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expected to be resolved at a constant rate over time, then the required rate of return k predicts 
accurately the rate at which income is expected to be realized.  But this need not always be the case. 
 

To this conclusion Philbrick [1994] agrees.  But if risk-adjusted discounted depends on a certain 

resolution of uncertainty, how should one value a project (i.e., a stochastic cash flow) whose 

uncertainty resolves otherwise?3  But putting this aside for now, we will test our theory, deriving 

risk-adjusted discounting from it in the case of a dividend-paying stock on the assumption of 

continuous risk resolution.  First, we value the stock according to the prevailing theory. 

2. THE DIVIDEND-GROWTH MODEL 

The dividend-growth model (also called the Gordon, or Gordon-Shapiro, model) is the 

commonly accepted method of valuing a dividend-paying stock (Bowlin [1990, pp 96f], Brealey and 

Myers [2002, Chapter 4]).  Because we will deal with continuous risk resolution, we will formulate a 

continuous version of this model.  At time t the stock is expected to pay out a dividend at the rate: 

  dtetdC t 0  

We use ‘C’ for cash instead of ‘D’ for dividend, to avoid confusion with the differential ‘d’ and 

the force of interest ‘’.  0 is the instantaneous dividend flow (in units of currency per time) at time 

zero, from which it is expected continuously to grow at rate  (in units of time1).  We will discount 

this expected dividend stream at the cost of capital , so the discount function is te  .  Hence, 

according to the principle of risk-adjusted discounting, the value of the stock at time t is: 

       









 
tu

utu

tu

tu dueeudCetV  0  

Then we work out the integral: 

                                                 
3 Halliwell [2001, Appendix D] shows that an asset should appreciate at a risk-free rate while uncertainly is not resolving, 
or more accurately “the price of an asset whose uncertainty is not changing remains proportional to the price of an asset 
whose future payment is certain.” 
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Of course, for the integral to converge, the cost of capital must exceed the dividend growth rate, 

or  . 

What is the instantaneous (expected) total return on the stock at time t, which we will call (t)?  It 

must consider both the dividend and the price appreciation.  Therefore: 
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The first term is the instantaneous dividend yield, which we will call y, and the second is the 

instantaneous price appreciation.  Simplifying to the utmost, we have: 

 

   
 

 
 

 
















































t

t

t

t

e

e

e

e

dt

tdV

tVdt

tdC

tV
t

0

0

0

0

11

 

Accordingly, the total return is the dividend yield ( y ) plus the rate of appreciation .4 

                                                 
4 Halliwell [1999, p 412]: ‘[A cash flow] is always earning its cost of capital ρ, or working at “ρ-power.”’ 
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3. THE ALTERNATIVE MODEL: STOCHASTIC CASH FLOWS 

Next, we value the stock with our stochastic-cash-flow theory.  The dividend stream we now 

regard as the Wiener process    tdXedtetdC tt   00 , whose mean equals the dC(t) of the 

dividend-growth model. 5   Although the drift and volatility functions are exponential in t, this 

equation represents arithmetic Brownian motion, rather than geometric.  The arithmetic form allows 

for us to discount the increments and for their sum to be normally distributed. 

Now dC(t), the actual dividend received during interval  dttt , , is normally distributed with 

mean dte t0  and variance dte t 22
0 , where the dimension of 2

0  is currency squared per time.  If 

we let  represent a flat and persistent risk-free force of interest, the discount function is   tetv  .  

Hence, the present value of the stock at time t, which, we maintain [Halliwell, 2003, Section 3], 

should be considered as a random variable, is: 
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The discounted dividend received during interval  duuu ,  from the standpoint of time t is 

normally distributed with mean   duee utu  0  and variance   duee utu   22
0

2 .  Therefore, PV is 

normally distributed with mean: 
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This agrees with the dividend-growth formula, except that  takes the place of .  Again, for 

                                                 
5 We will not need the stochastic calculus, but introductions to it can be found in Wilmott [1995, pp 20-29] and Panjer 
[1998, Section 10.13]. 
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convergence,  .6  Similarly, and due to the independence of the dC(t), the variance of PV is: 
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So finally, the present value of the stochastic dividend flow at time t is a normal random variable 

with mean  te 


0  and variance  

te 


 2

2
0

2
. 

We showed (Halliwell [2003, p. 66]) that the price of a quantum, or stand-alone, N(, 2) present-

valued stochastic cash flow X is 2
XXX aq   for an economic agent whose risk-aversion 

parameter is a.  Accordingly, at time t such an agent will value the stock as: 

     
tt etaetV 
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


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
 2
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6 It augurs well for our treatment of “time and risk [as] logically separate variables,” as quoted above from Robichek and 
Myers, that it places a realistic constraint on growth, viz., that perpetual growth must be less than risk-free growth, a 
constraint that risk-adjusted discounting does not impose. 
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Furthermore, we argued elsewhere [Halliwell, 2001, Section 5 and Appendix D] that the product 

of one’s risk aversion and expected wealth should remain constant.  In this stand-alone realm, in 

which expected wealth is increasing by a factor of te  ,   teata  0 .  Therefore: 
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The agent, in addition to receiving the dividend, will receive price appreciation at rate , as 

happens also according to the dividend-growth model.7 

For the dividend-growth model and our theory to agree, the valuations must be equal, i.e., 
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Therefore, there is a number  defined in terms of the parameters of the stochastic-cash-flow 

model (i.e., in terms of 0, a0, 0, , and ) at which one can discount the expected dividend stream 

and arrive at the “correct” value.  Furthermore, we can give a simple and meaningful interpretation 

to the right side of the last equation.  The expected instantaneous dividend yield of the stock at time 

t, according to the stochastic theory, is: 

                                                 
7 As a check, V(t) decreases with increasing a.  Since dividends can be negative in arithmetic Brownian motion, sufficient 
risk aversion will make V(t) negative.  In the case of risk-neutrality, when a  0, V(t) = E[PV[C(t)]]. 
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Obviously, since both the expected dividend and the price are growing at rate , the expected 

dividend rate E[y{t)] is constant, or just E[y].  And this allows us to see that the expected total 

return, which Brealey and Myers call inter alia the cost of capital, is: 
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Therefore, risk-adjusted discounting is a special case of our theory.  It is approximately correct, 

even as Newtonian mechanics is approximately correct vis-à-vis Special Relativity (and would 

be exactly correct, if the speed of light were infinite).  The trouble is that the approximation is 

taken for the truth. 
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4. CONCLUSION 

Therefore, risk-adjusted discounting is conditionally valid, sc., valid on the condition that the 

stochastic cash flow is continuously replicating itself on an exponentially-increasing scale.8  To the 

reader we will leave to decide how often this condition applies to actual financial decisions, 

particularly to underwriting decisions.  For some to counter that in the grand scheme every risk is 

but a drop in the ocean is as specious as for actuaries to argue from the central limit theorem that 

every distribution may be deemed normal.  Robichek and Myers correctly state that “time and risk 

are logically separate variables.”9  We’ve all heard of a distinction without a difference.  However, 

their claim that “valuation errors may result if … this assumption does not hold”10 implies that this 

is one distinction that does make a difference. 

                                                 
8 One might also add as ancillary conditions the independence of the flow from the (rest of) the agent’s stochastic 
wealth, and the flatness of the yield curve. 
9 Even here, the adverb ‘logically’ is timid; time and risk are truly separate variables.  So far as we know, the separation, 
or distinction, of time and risk is a basic principle only in Van Slyke [1995 and 1999] and Schnapp [2001].  Mango [2003] 
is ambiguous.  However, agreement on this principle does not ensure agreement in toto.  Van Slyke, in particular, urges 
that capital markets can and do synthesize the views of their participants into higher truths, a belief to which we do not 
subscribe.  Nevertheless, Van Slyke [1995, p 587] is correct in rating the effect on finance of this principle as nothing 
short of revolutionary.  Terms such as ‘radical’ and ‘revolutionary’ are bandied and overused; however, we regard this as 
much a revolution as the Copernican, which took a century finally to be settled.  As the evidence mounted for 
heliocentrism, the old guard must have resorted to ploys like “Geo or helio, what’s the difference?  The day looks the 
same, anyway.”  So it is today in financial theory.  But when the camel’s nose gets under the tent, soon it will be 
overturned. 
10 Here again (see previous footnote), the auxiliary verb ‘may’ tones down.  More accurately, valuation errors will result if 
the assumption does not hold, and it’s just a matter of how serious these errors may be.” 
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