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Abstract: The goal of this paper is to demonstrate how publicly available data can be used to calculate the
technical provisions in Solvency II. This is a purely hypothetical exercise, since the publicly available data is in
America, and Solvency II applies to the European Union. Using American Schedule P data, this paper:

Develops “prior information” to be used in an empirical Bayesian loss reserving method.
Uses the Metropolis-Hastings algorithm to develop a posterior distribution of parameters for a Bayesian Analysis.
Develops a series of diagnostics to assess the applicability of the Bayesian model.

Uses the results to calculate the best estimate and the risk margin in accordance with the principles underlying
Solvency II.

Develops an ongoing process to regularly compare projected results against experience.
The paper includes analyses of the Schedule P data for four American Insurers based on its methodology.
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1. INTRODUCTION

In 2009 the European Parliament passed a new act for regulating insurers known as Solvency II.

Its objectives include:
e Increased focus on effective risk management, control, and governance,
e  Market consistent valuation of assets and liabilities,
e Increased disclosure and transparency.

This act will become effective on October 31, 2012. Because of the growing international nature
of the business of insurance, the development of the provisions in this act has been watched and

debated by interested parties worldwide.

This paper focuses on calculating the “technical provisions” specified in this act'. The “technical

provisions” refer to the insurer’s liability for unpaid losses. Specifically:

e “The value of the technical provisions shall be equal to the sum of a best estimate and a

risk margin.”2

"The provisions quoted below are stated in Section 2 of Chapter VI of the act, p 222,
http:/ /register.consilium.europa.cu/pdf/en/09/st03/st03643-re01.en09.pdf.
? Article 77
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e “The best estimate shall correspond to the probability-weighted average of future cash
flows, taking account of the time value of money using the relevant risk-free interest rate

3
term structure.”

e “The risk margin shall be calculated by determining the cost of providing an amount of
eligible own funds equal to the Solvency Capital Requirement necessary to support the

insurance obligations over the lifetime thereof.”*

e “Insurance undertakings shall segment their insurance obligations into homogeneous risk
groups, and as a minimum by lines of business, when calculating the technical

.. 5
provisions.”

With regard to technical provisions, the act also requires insurers to have “processes and
procedures in place to insure that best estimates, and the assumptions underlying the calculation of

the best estimates, are regularly compared against experience.

When the comparison identifies systematic deviations between the experience and the best
estimate, the insurer shall make appropriate adjustments to the actuarial methods and/or the

assumptions being made.”*

These provisions of the act implicitly, if not explicitly, call for a stochastic model of the loss
development process. Details such as the particular models and the data being used are not

specified.

In America, insurers are required to report very detailed data to regulators. Relevant to the topic
of technical provisions is Schedule P of the National Association of Insurance Commissioners
(NAIC) Annual Statement.” This data contains net premiums, along with paid and incurred loss
triangles spanning a period of ten accident years. The data is organized into 36 specific lines of
insurance such as Personal Auto, Commercial Auto, Homeowners, and Workers’ Compensation.

Note that all dollar amounts are in thousands.

This paper describes how to use data provided by the NAIC to develop a stochastic model for
the loss development process. A feature of this model will be that it draws on the information
provided by several insurers to provide “prior information” for use in the Bayesian estimation of the

model parameters. The Bayesian methodology will also quantify the uncertainty in the parameters.

? Article 77

* Article 77

> Article 80

¢ Article 83

" One can purchase an electronic copy of the Annual Statements for all American insurers for a
nominal price from the NAIC. http://www.naic.org/store_financial home.htm.
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This paper will then show how to use this model to carry out the calculations required for the
technical provisions of Solvency II. In watching parts of the debate that led to Solvency II, I have

seen reasonable alternatives to its methodology. This paper will explore some of those alternatives.

The data in Schedule P is available to the public for all American insurers and thus the
calculations described in this paper can be done by external interested parties. The intent of this
paper is not to replace the more detailed analysis that insurers can do internally. Instead its intent is

to do a credible analysis with publicly available data.
2. ASTOCHASTIC MODEL OF THE LOSS DEVELOPMENT PROCESS

The stochastic model in this paper describes the random incremental paid loss, X, for

Y,Lap
accident year AY, and settlement lag, .4g. The data used to fit the model will consist of a loss
triangle of ten accident years of incremental paid net losses and the net earned premium for each
accident year. The model can be used to predict the distribution of losses paid in future settlement
lags through the tenth year. It can also be used to predict the distribution of sums of losses for any

given combination of future settlement lags in the given accident years.

For a given accident year, 4Y), and settlement lag, Lag, the expected loss is equal to

. tAY+Lag—1 (1)

bl

Way 1o = Premium,, -ELR,, -Dev,
where:
®  Preminm ,y is the accident year premium obtained from the data,

e FEI R, is a parameter representing the expected loss ratio for the accident year,

® Der,, is a parameter representing the incremental paid loss development factor for the

settlement lag,
e /is a parameter representing the calendar year trend for the claim frequency.
The claim severity, Z, in this model is a random variable with a gamma distribution,
a1 _-2/0

fl2)=5 @

The claim severity distribution will vary by settlement lag with its mean given by the parameter

T, = @0, and a fixed shape parameter, o = 1/2. In accordance with the general observation that
claim severity increases with the settlement lag, this model sets
3
La
Tiog = SEV 1—(1—1—Ogj forlag =1,2..,10. 3)

As was done in Meyers (2007a), the claim count, NN, in this model has a distribution with its mean
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given by A iy, = Wayr,/Tr,, and its variance given by
Var[N]="Xay 100 + € May 1og 4

The model, as described by Equations 1-4, depends upon the unknown parameters
e FEILR,,forAY=12,...10.
* Dey,, for Lag=1.2,...,10.
e sev (the claim severity for the 10" settlement lag).
e /(the calendar year frequency trend factor).
e /(the contagion parameter).

My selection of the fixed parameters in the model (i.e. the t,, parameters used to describe
variation by settlement lag and the o parameter in the gamma claim severity distribution) was based

on a combination of prior experience and sensitivity testing.

The expected loss in each (AY,Lag) cell is given by Equation (1). The variance of the loss in each

cell is given by:

Varl:XAY,Lag:I =Way ag " Viag (1 +1/ OL) +C- ”‘i\Y,Lag . (5)

For each (AY,Lag) cell, the model will be approximated by a Tweedie distribution with the same
mean and variance’. The mean and variance of the Tweedie distribution are given by p and ¢ W,
respectively, with p = (a+2)/(a+1). Using the value of p that is implied by the value of o and

solving for the ¢ that forces the vatiances to be equal yields:

1-p .
AY lag

u

TLag 2—
(I)AY,Lag = +c- “AY‘,JLag . (©)

Note that the approximation is exact if [N has a Poisson distribution with (implied) ¢ = 0.

3. BAYESIAN ESTIMATION OF THE MODEL PARAMETERS

It is generally regarded as good statistical practice to use models with as few parameters as
possible. As illustrated by Meyers (2008), too many parameters can lead to overfitting problems
when estimating the parameters by maximum likelihood. Attempts such as Clark (2006) and Meyers

(2009) to formulate models for loss reserving, with a small number of parameters have not found

8 See Meyers (2009) and/or Smyth and Jetgensen (2002) for an introduction to the Tweedie disttibution.
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. . . 9
general use in the actuarial community.

In the same paper, Meyers (2008) suggests, by way of example, that a Bayesian analysis can
overcome the problems associated with overfitting. The paper recommends using a mixture of

models over the posterior distribution of parameters. This paper takes a similar Bayesian approach.
Let  Pamn denote the set of unknown parameters {{ELRAY},{Devmg},sev,t,c}.

LetX= {X

AY,lag’

AY =1,..,10,Lag = 1,...,11—AY} denote the observed incremental paid losses from
a 10x10 Schedule P loss development triangle. According to Bayes’ Theorem:

f(Parm| X)oc £(X|Parm)- f(Parm) @
where:
e  f(Parm| X) is the posterior distribution of Parm.
o / (X | Parm) is the likelihood function of X.
e f(Parm) is the prior distribution of Parm.
The likelihood function is given by
10 11-Ay
e(x1parm)=T11 1] dtweedie(xAylmg 122 May tag» P v 1ag ), (8)
AYZ1 lag=1
where:
o diweedie is the probability density function for the Tweedie distribution.
e pis the power parameter. p = (a+2)/(a+1) = 1.67.
® Wy, and ., are calculated from Parm and Equations 1 and 6.

Following Meyers (2009) this paper uses the Metropolis-Hastings algorithm to generate a sample
of 500 parameter sets that represent the posterior distribution. Appendix A describes how that
algorithm was implemented in this paper. That appendix also provides the code (written in the R

programming language) used for this paper.

This paper uses a gamma distribution (Equation 2) to represent its prior distributions. Table 1

gives the o and 0 parameters of the prior distribution for each parameter in Par.

% I intend no disparagement here. I consider Clark’s paper to be a very good introduction to the use of maximum
likelihood methods for fitting loss reserve models.
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Table 1
Implied
Parameter o 0 Mean  Std. Dev.
sev 1.3676  136.2478 186.3386 159.34
7 1290.2307 0.0008 0.9931 0.0276
¢ 0.0740 0.1391 0.0103 0.0379
ELK, 29.85006 0.0237 0.7073 0.1295
ELR, 33.8347 0.0227 0.7674 0.1319
ELR, 35.3338 0.0214  0.7545 0.1269
ELR, 24.4908 0.0285 0.6981 0.1411
ELR 28.6618 0.0254  0.7272 0.1358
ELR; 25.6341 0.0304  0.7790 0.1539
ELR, 16.8043 0.0501 0.8417 0.2053
ELR, 14.3680 0.0602 0.8650 0.2282
ELR, 9.3053 0.1017 0.9465 0.3103
ELR,, 6.3667 0.1609 1.0246 0.4061
Dev, 15.8100 0.0135 0.2137 0.0537
Dev, 42.8538 0.0059 0.2517 0.0385
Dev, 56.4944 0.0036 0.2028 0.0270
Dev, 30.4528 0.0046 0.1403 0.0254
Dev, 10.2309 0.0085 0.0870 0.0272
Dev 5.8094 0.0083 0.0480 0.0199
Dev, 3.6954 0.0068 0.0250 0.0130
Devg 2.3934 0.0057 0.0135 0.0087
Dev, 1.3559 0.0066 0.0090 0.0077
Dev,,, 0.4552 0.0200 0.0091 0.0135
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These prior distributions were obtained by the following steps.

1. Obtain the maximum likelithood estimates (MLEs) of the parameters for 50 large active

insurers using Schedule P data.

2. Using the MLEs obtained in Step 1 as prior means, run the Metropolis-Hastings

algorithm to get a sample of 100 parameter sets.

3. Using the 5,000 parameter sets obtained from the Steps 1 and 2 above, fit the gamma
distributions by matching the mean and standard deviation of the gamma distribution

with the sample mean and standard deviation for each parameter in the set.

Loss reserving is considered by many to be an art that depends on the data and actuarial
judgment. The experience gained from many reserving analyses often forms the basis of such
judgments. These steps taken to derive the prior distribution are an attempt to capture the
experience needed for such judgments in a repeatable and transparent way. The Bayesian approach

taken by this paper merges the data with the “judgment” supplied by the prior distribution.

For a given insurer, the iterations generated by the Metropolis-Hastings algorithm can be thought
of as a sample of equally likely parameter sets describing the posterior distribution of their loss

development process. Denote the #” parameter set by:
Parm = {sevn,tn,cn,{ELRn,Ay } ,{Devn,mg }} . )

Each Parm, can be used to construct “statistics of interest” that can be either used to describe
parameter risk, or be averaged to get an overall expected value. The sections below provide several
examples of statistics of interest that involve model diagnostics, prediction intervals, and items in a

financial statement, such as a best estimate and a risk margin.
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4. EXAMPLES WITH FOUR ILLUSTRATIVE INSURERS

This paper has illustrative analyses with data from four real insurers. The paid loss triangles were
taken from the 1997 Schedule P each insurer reported to the NAIC for the commercial auto line of
insurance. The data are reported in the form of cumulative paid losses for each accident year.
Incremental paid losses were obtained by taking the difference of the cumulative paid losses by
settlement lag. Occasionally, the cumulative paid losses decreased with subsequent settlement lag.
My understanding of the reporting instructions is that this should not happen, but when it did
happen, I removed the negative incremental paid loss from the data, and fit the models without that
data point. The data used for fitting the model consisted of the earned net premium, the incremental
paid losses indexed by accident year and settlement lag. These data are tabulated in Appendix B.

Table 2 gives an indication of the size of each insurer.

Table 2
Insurer 1997 Net Premium
1 73,359
2 24,030
3 99,940
4 241,228

Before selecting the particular insurers to put in this paper, I fit the model to the data from
several insurers. I selected these insurers to illustrate the variety of stories that these kinds of data
can tell. I would discourage any attempts to draw conclusions about the Commercial Auto line of

business or about other insurers not analyzed in this paper.

Let us start by looking at the variability of each parameter in the model. Exhibits 1-3 plot
histograms of the ses, # and ¢ parameters. The top of each exhibit has a histogram of a sample of
parameters taken from the prior distribution. This shows how much of the initial uncertainty in the
parameters is reduced by each insurer’s data. Here are some casual observations about the ses, 7 and

¢ parameters

The width of the histograms indicates uncertainty in the parameters. An inspection of the
exhibits indicates that there is no apparent relationship between the parameter uncertainty and the

size of the insuret.

Exhibit 2 confirms a general industry trend of a slight decrease in claim frequency over time for

commercial auto. Given that the trend factor of 1.00 is close to the center of the histograms, one
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might be tempted to drop the trend parameter but, in light of the industry trend, I chose to keep it
in.

As indicated in Meyers (2007a), a positive ¢ parameter indicates that there is a random external
factor that affects all claims at once. The ¢ parameter is the coefficient of variation squared of the
external factor. For insurers 2 and 3, the minimal size of the ¢ parameter indicates that the external
factor is something usual, such as changing inflation rates. The ¢ parameter for Insurer 4 is

enormous. Something is systematically affecting large blocks of claims.

Exhibit 4 shows the {ELLR} and {Dev} parameters expressed as paths over time for both the
prior and posterior distributions. One general observation is that the uncertainty in the {ELR}
parameters decreases as we gain information over time. In other words, we have better information

about the loss ratio for eatrlier years.

It might seem natural to define the “parameter estimates” as the mean of the parameter sets
Parm,. But the analyses below do not make any use of such a parameter estimate. Instead they create

“statistics of interest” as functions of each parameter set. They then combine them by either:
1. taking an average “statistic of interest” over all the Parn,s;
2. plotting related statistics of interest; or

3. simulating predicted losses derived from a random selection of Pa,s.
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Exhibit 1a
Prior Distribution of 'sev' Parameter
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Exhibit 1b
Prior Distribution of 'sev' Parameter
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Exhibit 2a

Prior Distribution 't' Parameter
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Exhibit 2b

Prior Distribution 't' Parameter
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Exhibit 3a
Prior Distribution of 'c’ Parameter
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Exhibit 3b
Prior Distribution of 'c’ Parameter
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Exhibit 4a
ELR and Dev Paths for Insurer #1
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Exhibit 4b
ELR and Dev Paths for Insurer #2
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Exhibit 4c¢
ELR and Dev Paths for Insurer #3
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Exhibit 4d
ELR and Dev Paths for Insurer #3
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5. MODEL DIAGNOSTICS

The model specified in Sections 2 and 3 predicts that the losses in each (AY, Lag) cell are a
mixture of 500 Tweedie distributions. For a given value x in an (AY, Lag) cell, the cumulative
probability is given by:

500

1 .
FAY,Lag (X) = %letweedle(x | P, W aviag '(I)n,AY,Lag )' (1 O)

and the mean loss for each (AY), Lag) cell is given by:

1 50
Hay tag = 500 Z WU av tag? (11)
n=1

where W, 4y, and ¢, 4y, ate given by Equations 1 and 6 for each Pamm,, and ptweedie is the

cumulative distribution function for the Tweedie distribution.

Denote the cumulative probabilities of each observed data point x4y, bY Py = Fayvi(Xayra)-
Both the W ;s and the p ., s are given in Appendix B. Table 3 shows that the sum of the actual

losses and the predicted losses are in excellent agreement.

Table 3
Actual Expected Ratio
L 0 0 L Actual
1 269,804 269,916 0.9996
2 114,873 114,202 1.0059
3 394,629 394,854 0.9994
4 1,793,604 1,822,626 0.9841

For a well-fitting model one should expect that the collection of probabilities {py.,} will be
uniformly distributed on the interval from zero to one. Following Meyers (2007b) this can be
checked graphically with P-P plots. These plots compare the sorted probabilities, {p .}, with the
expected probabilities. If the sorted probabilities are indeed uniform, the points in these plots will lie

on a 45° line.

Exhibits 5a-5d provide P-P plots for each of the four insurers. One should expect random
variation from the 45° line, and so the P-P plots also include confidence bands at the 99% and the

95% level based on the Kolmogorov-Smirnov test.
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If the probabilities, {p.y,,,}, ate truly random, one should also expect these probabilities to be
independent of accident year, settlement lag, and calendar year (i.e., AY+ILag— 1). Exhibits 5a-5d
also contain plots of the probabilities against these variables. These plots are analogous to those
described by Barnett and Zehnwirth (2000).

Here are some casual observations about the diagnostics.

e The P-P plots for all four insurers lie within the 99% confidence bands. The plots for
Insurers 1, 2 and 3 all lie within the 95% confidence band, although the plot for Insurer 1
is just barely inside that band. The plot for Insurer 4 lies outside the 95% band.

e Tor Insurer 1, the set {p,,,} for the first two accident years appears to be less spread

out than expected.

e For Insurer 3, the small amount of overlap in the p ;.1 s in the later calendar years shows

evidence of instability in the calendar year trend.

e For Insurer 4, the clearly nonrandom pattern in the calendar year plot leads to rather

strange-looking patterns in the accident year and settlement lag plots.

In spite of the excellent agreement between the sum of the actual and the expected losses as

identified in Table 3, the statistical diagnostics identify some potential problems with the model fits.
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Exhibit 5a

Diagnostic Plots for Insurer #1
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Exhibit 5b

Diagnostic Plots for Insurer #2
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Exhibit 5¢

Diagnostic Plots for Insurer #3
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Exhibit 5d

Diagnostic Plots for Insurer #4
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6. RETROSPECTIVE TESTS

As stated in the introduction, Solvency II requires insurers to have “processes and procedures in
place to insure that best estimates, and the assumptions underlying the calculation of the best
estimates, are regularly compared against experience.” This section shows how to use the model to
predict the distribution of paid loss outcomes for the next calendar year. Observing the next

10

calendar year’s total paid loss, Z X4y 12-ay » One can check to see if the cumulative probability of
AY=2
that sum, as determined by its predictive distribution, lies within a normal range, say 0.05 to 0.95.

One way to determine this predictive distribution is to take a large sample, say 10,000 or so, of

random Xs from the following simulation algorithm.
Simulation Algorithm 1
1. Select a random parameter set from the list, P, = {sevn,tn,cn,{ELRn,AY} ,{Devn,wg }} .
2. TFor each (AY,Lag) cell in next calendar year (AY = 2,...,10, Lag = 12 —_A4Y):
a. Calculate p,y,;,, from Equation 1.
b. Calculate ¢ 4, from Equation 6.

c. Select a random loss X ., from a Tweedie distribution with parameters p =

1.67, Wiy, and (I)/IY,Ldg‘

10
3. Set X=3 Xy par

AY =2

Following Meyers (2009), this paper uses the fast Fourier transform (FFT) to calculate the
predictive distributions. It is faster and more numerically precise, but admittedly harder to

implement. The R code for doing this is included in Appendix A.
When comparing the predictive distributions of this paper with predictive distributions derived
from formulas in other papers, e.g., Mack (1993), one should be careful to distinguish between the
10 AT=2
{Z Xuy 1oy (- For tetrospective tests we need the latter. Exhibits 6a-6d below provide the

AY=2
predictive distributions for both random variables.

10
predictive distribution of estimates,{z Way 15 4y ¢» and the predictive distribution of outcomes,

After fitting the model to the 1997 paid loss triangle, I then obtained test data consisting of

incremental paid loss data from the 1998 Schedule P and calculated the implied p-value for
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10
{ Z X,y 15 ay ¢+ That and other summary statistics are in Table 4. P-values for individual cell losses
AY=2

in the test data are given in Appendix B.

Table 4
Actual Expected Ratio
L S Actual
Insurer MZ::Z Xay 12-ay ;;2 Hay 12-ay Expem p-value
1 41,403 40,240 102.89% 0.6408
2 11,082 13,089 84.67% 0.1080
3 46,735 57,389 81.44% 0.0019
4 102,257 212,926 48.02% 0.0000

Here are some casual observations about the results.

e The agreement between actual and expected results is not as good as obtained when
fitting the data. Taken by itself, that is not necessarily a bad result. The test data contained
only a single calendar year of data, while the data used for fitting contained 10 calendar
years of data. The law of large numbers does not have a large enough number to work its

magic.

e The p-values for Insurers 1 and 2 appear to be in the normal range. Thus, no change in

assumptions seems necessary at this time.

e The p-value for Insurer 3 appears to be out of the normal range. If we examine the cell p-
values for the test data in Appendix B, we see that all except the (AY,Lag) = (9,3) appear
to be normal. The abnormality for the total calendar year loss appears to be caused by
one bad cell. To test this, I calculated the predictive distribution for that same calendar
year without the (9,3) cell. The results of this calculation are in Table 5 below. With that
adjustment, the p-value moves into the normal range. An investigation into the (9,3) cell

is called for. It may be a simple miscode, or some unusual event that caused the outlier.
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Table 5
Actual Expected Ratio
& L Actual
Insurer X,y o [T _ p-value
Aygig AY ,12-AY AY:Z2;¢9 AY ,12-AY Expected
3 35,861 39,063 91.80% 0.1646

e The extraordinarily low p-value for Insurer 4 cannot be explained by a single outlier. In
looking at the cell p-values for the test data in Appendix B, one can see several cells with
low p-values. This indicates there is something wrong with the structure of the model.
This was apparent in the diagnostics, Exhibit 5d, of the previous section. The
extraordinarily high ¢ parameter and the very noticeable swings in the cell p-values by
calendar provide an early indication of the problems with the model when applied to

Insurer 4.

Casualty Actuarial Society E-Forum, Fall 2010 28



Technical Provisions in Solvency 11: What EU Insurers Could Do if They Had Schedule P

Exhibit 6a

Predictive Distributions for Insurer #1
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Exhibit 6b
Predictive Distributions for Insurer #2
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60 100

20

0.00015

0.00000

Posterior Distribution of Estimates

o | =

| I I I I |

8000 10000 12000 14000 16000 18000
Reserve Estimate (000)
Mean =12 996 Standard Deviation = 891
Predictive Distribution of Qutcomes

I I I I I I

8000 10000 12000 14000 16000 18000

Reserve Qutcome (000)
Mean =12 996 Standard Deviation=1,639

Casualty Actuarial Society E-Forum, Fall 2010

30



Technical Provisions in Solvency 11: What EU Insurers Could Do if They Had Schedule P

Exhibit 6¢

Predictive Distributions for Insurer #3

Posterior Distribution of Estimates
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Predictive Distributions for Insurer #4
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7. BEST ESTIMATES AND RISK MARGINS

As stated in the introduction, according to the Solvency II Framework Directive:

“The value of the technical provisions shall be equal to the sum of a best estimate and a risk

margin.”

“The best estimate shall correspond to the probability-weighted average of future cash flows,

taking account of the time value of money using the relevant risk-free interest rate term structure.”

“The risk margin shall be calculated by determining the cost of providing an amount of eligible
own funds equal to the Solvency Capital Requirement necessary to support the insurance obligations

over the lifetime thereof.”

This section shows how to use the model developed above to calculate the current estimate and

the risk margin.

Let’s start with the best estimate. Given that the future cash flows generated by the Metropolis-
Hastings algorithm are equally likely, the formula for the best estimate becomes.
10 10 1 500 1
Z Z Zun,AY,Lagj. AY+Llag—115 ’ (12)
AY=2 Lag=12AY( 500 .= (1 + I)
where 7 is the “relevant risk-free interest rate.” This formula assumes that the liabilities expire

mid-year.

Articles 104 and 105 of the Framework Directive call for the Solvency Capital Requirement to
have sufficient capital to cover losses over the next 12 months with a probability (Value-at-Risk or
VaR) of 99.5%. Both the time horizon of one year and the VaR standard are controversial among

actuaries.

Instead of the VaR requirement, many actuaries prefer the Conditional Tail Expectation (CTE),
which is the average of all outcomes above a given percentile (say 99%) of the outcomes. Another
common name for the CTE is the Tail Value at Risk (TVaR). My speculation on why the EU chose
the VaR requirement is that many feel uncomfortable calculating tail probabilities at the high end of
the distribution of outcomes. I believe that when one calculates the distribution of outcomes as
described above, the VaR and TVaR calculations are equally reliable. So the examples in this paper

will use the TVaR at 99% to calculate the Solvency Capital Requirement.

A rationale for the one-year time horizon is that it will provide regulators sufficient time to take
corrective action if necessary. Not everybody agrees. As we shall see below, the choice of the time
horizon can make a significant difference in the risk margin. This paper will calculate the risk margin

assuming both a single year and a 100-year time horizon.
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The first risk margin formula discussed here is called the Capital Cash Flow (CCF) risk margin. In
words, this formula assumes that the insurer’s investors need to put up capital to take on the loss
reserve risk. As claims are settled, the insurer expects to release capital over time. The CCF risk
margin is the profit that the insurer’s investors would need to be persuaded to take on this risky

venture.
We will now discuss the details. Let:
e /= Risk-free rate of return on investments.
e r=Total rate of return demanded by the reinsurer for taking additional insurance risk.
e /= Time the loss reserve liability is set.
e (C,= Amount of capital required to support an insurance portfolio at time #
First look at the cash flow of the insurance transaction.

e At time # = 0, investors contribute a sum of C; to the insurer, which earns a risk-free rate

of return, 7, over the next year.

e At time 7 = 0, the investors collects a (market value) risk margin, MM . Equivalently,

one could say that the investor contributes C;, — MI”"M_ ;. to the insurer.

e At time 7 = 1, the investors expect to keep C, invested in the insurer, and they expect to
receive a cash flow C(1+7) — C, at the end of year 1. Since the loss the insurers are
required to pay and C; is uncertain, the investors discount the value of the amount

returned at the risky rate of return > 7

e Continuing on to time # the investors expect to keep C, invested in the insurer, and they

expect a cash flow of C,;(1+7) — C, at the end of year %

Since the cash flows are uncertain, it is appropriate to discount the cash flow at the risky rate of

return, 7. This leads to the following expression,

C=MVM +3 al +')t_ “ (13)
t=1 1+ r)
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This equation implies

T (1)
CC(1+r-1-i) C(1+r-1-i) C,(1+r-1-i) (14
1+r (1+r)2 (1+r)

There are two other risk margin formulas that involve slightly similar calculations. Let’s call the

next formula MVMSST because of its similarity to that used in the Swiss Solvency Test
N <
MVM, =(r—i)- > ——. (15)
t=1 (1 + I)
MUM;q, differs from M1/ M in two ways. First it discounts the Cgs at the risk-free rate 7 rather

than the risky rate . Second, it starts at time # = 1 rather than at time #= 0.

Let’s call the last risk margin formula M1”M,,, because of its resemblance to that used by some

in their response to the CEIOPS Quantitative Impact Survey #4,

A €
MVM s, =(r—i)- > ——. (16)
t:o(l—i-l)

MV'M,, differs from M1"M;g, in that it starts at time # = 0.

'used the term “resemblance” in the description of M1"Mjy, and M1’M,,;, because we now use a

different calculation of C...

For a one-year time horizon, C;, depends upon the distribution of the sum of outcomes in calen-

10
dar year 11, i.e., Z Xayo_ay - Simulation Algorithm 1 describes the distribution of these losses.
AY—2

Other calendar years and other time horizon involve random sums over different sets of (AY,[.ag)
cells, and Simulation Algorithm 1 can be modified to accommodate any given set of cells. As in the

previous section, this paper uses the FFT methodology to calculate the predictive distribution of

outcomes and the TVaR statistics.
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Tables 7 and 8 below describe the calculation of the Cys for the one year and the 10 year time
horizons for Insurer 1. The calculation accounts for the time value of money. Table 6 shows the

result of the best estimate and risk margin calculations for Insurer 1 for two time horizons and the

three risk margin formulas above.

Table 6
Insurer 1
7/‘ p—

10% i=4% Best Estimate = 91,220
Time MVMq MVM

Horizon MVM¢cr % - % Qis4 %
1 1,994 2.2% 1,854 2.0% 2,411 2.6%
10 5,082 5.6% 4736 5.2% 6,129 6.7%
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@ o) @ 5 © )
per AL R TVaR!®"  ATVaR{"  TVaR>*
40,375 13,882 37,526 52,875 15,933 48,415
26,493 12,004 24870 36,942 15,641 34,103
14490 6,867 13,624 21301 8,603 19,516
7,622 3,661 7,165 12,698 4,741 11,524
3,962 1,919 3,719 7,957 2,606 7,150
2,042 766 1,910 5,352 834 4,779
1,276 484 1,205 4,517 230 4119
792 341 760 4,287 190 4,050
451 451 442 4,097 4,097 4,017

(1) The time, # after the liability is set.

10
(2) The expected value of payments in the next calendar year, L':'om = Z Hay 1246-ay -

AY=2+t

3) AL =L _Ltirln

(4) The discounted liability, [ =)

ALC"

8

(5) The Tail-Value-at-Risk, i.e., the conditional expected value of the random loss,

10
Z Xy 121e_ay » given that the loss exceeds the 99" percentile.

AY=2+t

Nom Nom Nom

(6) ATVaRt* =TVaRt -TVaRu"! .

(7) The discounted TVaR 7= )"

The needed capital at time #is expected to be C, = TVaR?* —

8 ATVaR"
= (1 4 i)kfnoAs :

Disc
Lt
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10,889
9,233
5,893
4,358
3,432
2,869
2,914
3,290
3,575
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Table 8
M @ ©) *) ® ©) )
t L AL 17 TVaR!®™ ATVaR¥"  TVaR}*
0 97503 40375 91220 128894 48491 118,529
1 57128 26493 53,695 80,403 31,742 73819
2 30635 14490 28824 48,661 17,133 44,401
3 16,145 7622 15201 31,528 9412 28,705
| 8,523 3,962 8035 22,116 6,225 20,255
5 4,561 2042 4317 15891 4321 14717
6 2,519 1276 2407 11570 3,673 10,899
7 1,243 792 1,202 7898 3,801 7,590
8 451 451 442 4097 4097 4017

(1) The time, #, after the liability is set.

10 10
Nom __
L™= Z Z Hav tag -

AY=2+t Lag=12+t-AY

(2) The expected value of all future payments,

3) AL =L _Lrirln

) 8 A LNom
(4) The discounted liability, 17 =» ——% .
=y & )

(5) The Tail-Value-at-Risk, i.e., the conditional expected value of the random loss,

10 10
z z Xy 1aq » given that the loss exceeds the 99" percentile.

AY=2+t Lag=12+t—-AY

ATVaR" =TVaR}*"—TVaR}y"

t+1

©)

ATVaRy°"

8
TVaR}" =
t ;1 (1 + i)kfz+0.5

(7) The discounted

(8) The needed capital at time 7is expected to be C, =TVaR*—L7*
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20,124
15,576
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12,219
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8,493
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8. NEXT STEPS

The goal of this paper was to demonstrate how publicly available data can be used to calculate the
technical provisions in Solvency II. This is a purely hypothetical exercise, since the publicly available

data is in America, and Solvency II applies to the European Union.

Even if the Americans were to adopt something like Solvency 11, or the Europeans were to adopt
reporting requirements similar to the American Schedule P, there is more work to be done. The 10
years of paid data reported in Schedule P are reasonably close to final for commercial auto. But
losses in other lines of insurance can take longer than 10 years to settle. Schedule P does have
incurred data that can be useful in getting estimates of outstanding losses beyond the 10-year
maturity reporting limit of Schedule P. There are loss reserving methods now available that integrate
both paid and incurred data. See, for example, Quarg and Mack (2008) or Posthuma, Cator,
Veerkamp, and van Zwet (2008). One thing that could be done is to integrate Schedule P incurred

losses into the empirical Bayesian framework developed in this paper.
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APPENDIX A - ANNOTATED R CODE

The methodology in this paper follows that of Meyers (2009). This appendix assumes that the
reader is familiar with the methodology of that paper. I think the methodology needs further
development before it can be considered to be mature. This paper makes a few evolutionary steps

along that path.
This paper makes two improvements over the code in Meyers (2009).

First it adds the sev, 7 and ¢ parameters to the model. Note that Simulation Algorithm 4 or Meyers
(2009) introduces the {ELR} and {Dev} parameters into the Metropolis-Hastings algorithm in two
separate steps. This paper introduces the sev and # parameters into the algorithm as an additional

step, and then introduces the ¢ parameter as a second additional step.

Next it revises the “speedy Tweedie” approximation of Appendix B of Meyers (2009). The
function “dtweedie” in R’s Tweedie package is relatively slow compared to other density functions
available in R. Appendix B makes use of the fact that the dtweeedie works nearly as fast on vectors
as it does on single numbers. So it calculates the function dtweedie(y;p,y;¢) over a vector y that
spans the range needed. It then approximates the function by a single cubic polynomial. This paper

attains a more accurate approximation with a piecewise cubic interpolation that is just as fast.

To run the program, you input the name of a comma separated value file containing the first four
columns of the data in Appendix B. You then specify the names of the various output files
(identified with various tables in the paper. Finally you have to provide a list of cells whose random
sum you want to predict. It generally consists of cells that make up one or more calendar years.
When testing against holdout data, you must take care to match the cells in the holdout data with the

list of cells the go into the predictive distribution.

Hopefully the program comments make this clear.
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#

# Input

#

insurer="Insurer 1 Data.csv" # 1nput File

adata=read.csv(insurer)

outname="Insurer 1 Summary"' # Table 3 and Table 6
#outname2=""Insurer 1 Cells.csv" # Appendix B comment out if not testing
#outname3=""Insurer 1 Test.csv" # Table 4 comment out if not testing
tweedie.p=1.67

npost=500

#

# set up the (AY,Lag) pairs included in the predictive distribution
#

# 1In ayXX and lagXX below, the XX refers to the calendar year
#

ayl1=2:10

lagll=12-ayll

ay12=3:10

lagl2=13-ayl12

ayl1l3=4:10

lagl3=14-ayl3

ayl4=5:10

lagl4=15-ayl4

ay15=6:10

lagl5=16-ay15

ayl1l6=7:10

lagl6=17-ayl6

ayl17=8:10

lagl7=18-ayl7

ay18=9:10

lag18=19-ayl18

ay19=10:10

lag19=20-ay19

#

# select which (AY,Lag) cells to include in predictive distribution
#

# examples

# use for the next calendar year

pred.ay=ayll

pred.lag=lagll

# use for all outstanding losses
#pred.ay=c(ayll,ayl2,ayl3,ayl4,ayl5,ayl6,ayl7,ayl8,ayl9)
#pred.lag=c(lagll,lagl2,1ag13,lagl4,lagl5,l1agl6,lagl7,lagl8,1agl9)
# use for iInsurer 1 retro test (missing ay=3)
#ayinsl=c(2,4,5,6,7,8,9,10)

#laginsl=12-ayinsl

# use for iInsurer 3 retro test (missing ay=2)

#ayins3=3:10

#lagins3=12-ayins3

cys=unique(pred.lag+pred.ay-1)

#

# discretized gamma severity distribution

#
library(actuar)
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discrete.gamma<-function(tau,p,h,fftn){

#
#
#

alpha=(2-p)/(p-1)

theta=tau/alpha

m=2"Fftn

dpar<-rep(0,m)

x<-h*0:(m-1)
lev=levgamma(x,alpha,scale=theta)
dpar[1]=1-lev[2]/h
dpar[2:(m-1)]=C2*lev[2:(m-1)]-lev[1:(m-2)]-lev[3:(m)])/h
dpar[m]=1-sum(dpar[1:(m-1)])
return(dpar)

} # end discrete.gamma function

model with variable dev,elr,sev,con

fact.crm.llikel=Function(dev,elr,sev,con){

cyt=sev[2]"(rdata$ay+rdata$lag-1)
eloss=rdata$premium*dev[rdata$lag]*elr[rdata$ay]*cyt
phi=(eloss™(1-tweedie.p)*sev[1]*tau[rdata$lag])/(2-tweedie.p)+

con*eloss™(2-tweedie.p)
Ilike=ldtweedie.scaled(rdata$loss,eloss,phi)
return(sum(llike))

}
num=250
front=matrix(0,num,10)
log.yl=front
log.ybot=0
library(statmod)
library(tweedie)
Idtweedie.front=function(y, lyf,IT){

#

ly=log(y)

del=lyf[2]-1yf[1]

low=pmax(floor((ly-1yf[1])/del),1)

do1=CIf[low+1]-1F[low])/del

di2=(If[low+2]-1f[low+1])/del

d23=CIf[low+3]-1f[low+2])/del

d012=(d12-d01)/2/del

d123=(d23-d12)/2/del

d0123=(d123-d012)/3/del

Id=1f[low]+(ly-lyf[low])*dO1+(ly-lyf[low])*(ly-lyf[low+1])*d012+
(ly-lyf[low])*(ly-lyf[low+1])*(ly-lyf[low+2])*d0123

return(ld)

}

Idtweedie.scaled=function(y,mu,phi){

dev=y

1=y

k=(1/phi)~(1/(2-tweedie.p))

ky=k*y

yp=ky>0
devlyp]=2*((kLypl*yLyp]D"(2-tweedie.p)/((1-tweedie.p)>

(2-tweedie.p))-kLyp]*yLyp]l*(kLyp]*mulyp])"(1-tweedie.p)/
(1-tweedie.p)+(kLyp]l*mulypD"(2-tweedie.p)/(2-tweedie.p))

11 [yp]l=log(k[yp])+ldtweedie.front(ky[yp].,log.yl,front)-dev[yp]/2
H['yp]=—-mu[lyp]*(2-tweedie.p)/phi[lyp]/(2-tweedie.p)
return(ll)

Casualty Actuarial Society E-Forum, Fall 2010

43



Technical Provisions in Solvency 11: What EU Insurers Could Do if They Had Schedule P

#

# log prior and proposal density functions

#

log.prior=function(dev,elr,sev,con){
Id=dgamma(dev,alpha.dev,scale=theta.dev, log=T)
le=dgamma(elr,alpha.elr,scale=theta.elr,log=T)
Is=dgamma(sev,alpha.sev,scale=theta.sev, log=T)
Ic=dgamma(con,alpha.con,scale=theta.con,log=T)
return(sum(ld, le, s, Ic))

}

log.proposal .den=function(x,m,alpha){
d=dgamma(x,alpha,scale=m/alpha, log=T)
return(sum(d))
}

3+

# main program

initialize variables for metropolis hastings

HHH

set.seed(12345)

nmh=11000 # number of MH scenarios

#

# parameters for the prior distribution

#

alpha.sev=c(1.367644674,1290.230651)

theta.sev=c(136.2478465,0.00076972)

alpha.con=0.074005011

theta.con=0.139142639

alpha.elr=c(29.85060994,33.8347283, 35.33377535,24.49077508,28.66183085,
25.63407528,16.80427236,14.36801632,9.305348568,6.366703316)

theta.elr=c(0.023695076,0.022680106,0.021353992,0.028504884,0.025371532,
0.030388169,0.050089616,0.060203232,0.101715232,0.160927171)

alpha.dev=c(15.80995889,42_85381689,56.49438570,30.45284406,10.23093999,
5.809417079,3.695390712,2.393367923,1.355938768,0.455240196)

theta.dev=c(0.013514659,0.005874493,0.003588986,0.004605868,0.008501860,
0.008263645,0.006753167,0.005653256,0.006622295,0.020023956)

tau=1-(1-(1:10)/10)"3

alpha.prop.elr=500

alpha.prop.sev=500

alpha.prop.con=500

alpha.prop.dev=2000*alpha.dev*theta.dev

#

# get insurer data and set up tweedie model

#

rdata=subset(adata,adata$ay+adata$lag<l?) #separate test data from fFfitting
data

#

# set up the "speedy tweedie®™ calculation

#

eloss.max=max(rdata$loss)
phi._min=eloss.max”(1-tweedie.p)*tau[l]/2/(2-tweedie.p)
k_max=(1/phi .min)™(1/(2-tweedie.p))
log.ytop=log(eloss.max*k.max)

log.ybot=0

Casualty Actuarial Society E-Forum, Fall 2010 44



Technical Provisions in Solvency 11: What EU Insurers Could Do if They Had Schedule P

del=(log.ytop-log.ybot)/num
log.yl=seq(from=log.ybot,to=log.ytop, length=num)
front=log(dtweedie(exp(log.yl) ,tweedie.p,exp(log.-yl),1))
#
# initialize metropolic hastings arrays and select starting values
#
mh.dev=matrix(0,nmh,10)
mh._.elr=mh_dev
mh.sev=matrix(0,nmh,2)
mh.con=mh._sev
mh.dev[1l,]=alpha.dev*theta.dev # use prior mean for mh starting values
mh.elr[1,]=alpha.elr*theta.elr
mh.sev[1,]=alpha.sev*theta.sev
mh.con[1]=alpha.con*theta.con
prev.log.post=fact.crm.llikel(mh.dev[1,],mh.elr[1,],mh.sev[1,],mh.con[1])+
log.prior(mh.dev[1,],mh.elr[1,],mh.sev[1,],mh.con[1])
#
# generate samples using mh algorithm
#
for (i in 2:nmh){
devmh=rgamma(10,shape=alpha.prop.dev,scale=mh.dev[i-1,]/alpha.prop.dev)
devmh=devmh/sum(devmh)
u=log(runif(l))
log.post=fact.crm_llikel(devmh,mh_elr[i-1,],mh_sev[i-1,],mh_con[i-1])+
log.prior(devmh,mh.elr[i-1,],mh_.sev[i-1,],mh.con[i-1])
r=1og.post-prev. log.post+
log.proposal .den(mh.dev[i-1,],devmh,alpha.prop.dev)-
log.proposal .den(devmh,mh_dev[i-1,],alpha.prop.dev)
mh.dev[i,]=mh.dev[i-1,]
iT(u<r){
mh.dev[i,]=devmh
prev.log.post=log.post
}
#
elrmh=rgamma(10,shape=alpha.prop.elr,scale=mh.elr[i-1,]/alpha.prop.elr)
u=log(runif(l))
log.post=Fact.crm.llikel(mh.dev[i,],elrmh,mh.sev[i-1,],mh.con[i-1])+
log.prior(mh.dev[i,],elrmh,mh_sev[i-1,],mh.con[i-1])
r=log.post-prev.log.post+
log.proposal .den(mh.elr[i-1,],elrmh,alpha.prop.elr)-
log.proposal .den(elrmh,mh_elr[i-1,],alpha.prop.elr)
mh.elr[i,]=mh.elr[i-1,]
if(u<r){
mh.elr[i,]=elrmh
prev.log.post=log.post

#
sevmh=rgamma(2,shape=alpha.prop.sev,scale=mh.sev[i-1,]/alpha.prop.sev)
u=log(runif(l))
log.post=fact.crm.llikel(mh.dev[i,],mh.elr[i,],sevmh,mh.con[i-1])+
log.prior(mh.dev[i,],mh.elr[i,],sevmh,mh.con[i-1])

r=1og.post-prev. log.post+

log.proposal .den(mh.sev[i-1,],sevmh,alpha.prop.sev)-

log.proposal .den(sevmh,mh_sev[i-1,],alpha.prop.sev)
mh_sev[i,]=mh.sev[i-1,]
if(u<r){

mh.sev[i,]=sevmh
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prev.log.post=log.post

}
conmh=rgamma(1,shape=alpha.prop.con,scale=mh.con[i-1]/alpha.prop.con)
u=log(runif(l))
log.post=fact.crm.llikel(mh.dev[i,],mh.elr[i,],mh_.sev[i,],conmh)+

log.prior(mh.dev[i,],mh.elr[i,],mh.sev[i,],conmh)

r=1og.post-prev. log.post+

log.proposal .den(mh.con[i-1],conmh,alpha.prop.con)-

log.proposal .den(conmh,mh_con[i-1],alpha.prop.con)
mh._con[i]=mh.con[i-1]
if(u<r){

mh.con[i]=conmh

prev.log.post=log.post

}
}
#
# sample mh parameters
#

samp=sample(1001:nmh,size=npost)
#

# calculate predited percentiles of observed losses in training data
#
pctloss=rep(0,dim(rdata)[1])
meanloss=pctloss
tpct=rep(0,npost)
for (i in l:dim(rdata)[1]){
cyt=mh_sev[samp,2]*(rdata$ay[i]+rdata$lag[i]-1)
mu=rdata$premium[i]*mh_elr[samp, rdata$ay[i]]1*mh.dev[samp,rdata$lag[i]]*cyt
meanloss[i]=mean(mu)
phi=(mur(1-tweedie.p)*mh.sev[samp]*tau[rdata$lag[i]])/(2-tweedie.p)+
mh.con[samp]*mu™(2-tweedie.p)
for (J in 1l:npost){
tpct[j]=ptweedie(rdata$loss[i],tweedie.p,mulj],.phi[j]1)
}

pctloss[i]=mean(tpct)
if (rdatas$loss[i]==0) pctloss[i]=pctloss[i]*runif(l)
}

#

# plot results

#

windows(record=T)

#

# trace plot of estimates

#

nmh_pred=rep(0,nmh)

ay.prem=rep(0,10)

for (J in unique(pred.ay)){
ay.prem[j]=mean(rdata$premium[rdata$ay==j])

pred.mean=rep(0,nmh)
for (i in 1:nmh){
for (J in unique(pred.ay)){
ayp=(pred.ay==j)
for (k in pred.lag[ayp]){
cyt=mh_sev[i,2]"(+k-1)
nmh_pred[i]=nmh_pred[i]+ay.prem[j]*mh_elr[i,j]*mh_dev[i,k]*cyt
}

Casualty Actuarial Society E-Forum, Fall 2010



Technical Provisions in Solvency 11: What EU Insurers Could Do if They Had Schedule P

}

plot(1:nmh,nmh_pred, type="1",main="Trace Plot for Mean Loss")
#

# plot of elr paths

#

set.seed(12345)

prior.elr=matrix(0,1000,10)

for (J in 1:1000){
prior.elr[j,]=rgamma(10,shape=alpha.elr,scale=theta.elr)

}
par(mfrow=c(2,1))
plot(1:10,prior.elr[1,],ylim=range(0,1.5*prior.elr),
main="ELR Paths",
xlab=""Accident Year",ylab="ELR",type="n"")
legend(*""topleft", legend=c('Posterior","Prior'"),
col=c("'black","grey"'), lwd=c(3,3))
for (J in 1:1000){
par(new=T)
plot(1:10,prior.elr[j,],ylim=range(0,1.5*prior.elr),main=""",
xlab=""",ylab=""",col="grey", type="1")

}

for (J in samp){
par(new=T)
plot(1:10,mh.elr[j,],ylim=range(0,1.5*prior.elr),main=""",

xlab="",ylab=""",col="black", type=""1", lwd=1)
}
#
# plot of dev paths
#

prior.dev=matrix(0,1000,10)
for (J in 1:1000){
prior.dev[]j,]=rgamma(10,shape=alpha.dev,scale=theta.dev)

}

plot(1:10,prior.dev[l,],ylim=range(0,prior.dev),
main=""Dev Paths",
xlab="Settlement Lag",ylab="Dev",type="n"")
legend(*"topright™, legend=c(*'Posterior","Prior'),
col=c("'black","grey'), lwd=c(3,3))
for (J in 1:1000){
par(new=T)
plot(1:10,prior.dev[],],.ylim=range(O,prior.dev),main=""",
xlab=""",ylab=""",col=""grey", type="1")
}
for (J in samp){
par(new=T)
plot(1:10,mh.dev[]},],ylim=range(O,prior.dev),main=""",
xlab=""",ylab=""",col="black", type="1", lwd=1)

}
#
# plot of severity parameters
#

par(mfrow=c(2,1))

prior.sevl=rgamma(1000,alpha.sev[1],scale=theta.sev[1])

hist(prior.sevl,main="Prior Distribution of "sev" Parameter",
xlim=range(prior.sevl,mh.sev[,1]),xlab="sev")
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hist(mh.sev[samp,1],xlim=range(prior.sevl,mh.sev[,1]),xlab="sev",
main=""Posterior Distribution of "sev" Parameter™)

#

# plot of calendar year trend parameters

#

par(mfrow=c(2,1))

prior.sev2=rgamma(1000,alpha.sev[2],scale=theta.sev[2])

hist(prior.sev2,main="Prior Distribution "t" Parameter",
xlim=range(prior.sev2,mh_sev[,2]),xlab="t")

hist(mh.sev[samp,2],xlim=range(prior.sev2,mh.sev[,2]),xlab="t",
main=""Posterior Distribution of "t" Parameter')

#

# plot of contagion parameters

#

par(mfrow=c(2,1))

prior.con=rgamma(1000,alpha.con,scale=theta.con)

hist(prior.con,main="Prior Distribution of "c" Parameter",
xlim=range(prior.con,mh.con),xlab="c")

hist(mh.con[samp],xlim=range(prior.con,mh_con) ,xlab="c",
main=""Posterior Distribution of "c" Parameter')

#

# pp plot of cell loss percentiles for training data

par(mfrow=c(2,2))
#
# pp plot of cell loss percentiles for training data

plot(sort(pctloss),1:length(pctloss)/
(1+length(pctloss)),
xlim=c(0,1),ylim=c(0,1),xlab="Predicted P",ylab="0Observed P",
main="PP Plot")

crit.vall=1.63/sqrt(length(pctloss)) # 1.36 for 5%, 1.63 for 1%

crit.val2=1.36/sqrt(length(pctloss))

abline(0,1, Iwd=3)

abline(crit.vall,l)

abline(-crit.vall,l)

abline(crit.val2,1)

abline(-crit.val2,1)

#

# plots of ay, lag and calendar year vs percentile for training data

#

plot(rdata$ay,pctloss,main="AY vs Cell Percentiles",ylim=c(0,1),
xlab="AY",ylab=""0bserved P')

plot(rdata$lag,pctloss,main="Lag vs Cell Percentiles",ylim=c(0,1),
xlab="Lag",ylab=""0vserved P')

plot(rdata$ay+rdata$lag-1,pctloss,main="CY vs Cell Percentiles",
ylim=c(0,1),xlab="CY",ylab=""0bserved P')

#

# calculate predictive distributions of outcomes - takes some time

#

fftn=14

h=max(rdata$premium)*10/2"fftn
niceh=c(5,10,20,25,40,50,75,100,125,150,200,250,500,750,1000)
h=min(subset(niceh,niceh>h))

x=h*(0: (2"fftn-1))

phiz=matrix(0,2"fftn,9)
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phix=complex(2"fftn,0,0)
postnum=0
eloss=matrix(0, length(samp), length(pred.ay))
for (k in 1:npost){
i=samp[Kk]
phixp=complex(2"fftn,1,0)
for (J in l:length(pred.ay)){
ay=pred.ay[j]
lag=pred.lag[j]
premium=min(subset(rdata$premium, rdata$ay==ay))
taul=mh.sev[i,l]*tau[lag]*mh.sev[i,2]*(ay+lag-1)
phiz=Fft(discrete.gamma(taul,tweedie.p,h,fftn))
eloss[k, j]=premium*mh_elr[i,ay]*mh_dev[i,lag]*mh.sev[i,2]"(ay+lag-1)
lam=eloss[k,j]/taul
phixp=phixp*exp(lam*(phiz-1))
}

phix=phix+phixp
postnum=postnum+1
print(postnum)

pred=round(Re(fft(phix/npost, inverse=TRUE)),12)/2"fftn

mean .outcome=sum(x*pred)

sd.outcome=sgrt(sum(x*x*pred)-mean.outcome”2)

pred.range=(x>.6*mean.outcome)&(x<1l.4*mean.outcome)

#

# plot distribution of estimates

#

par(mfrow=c(2,1))

pred.mean=rowSums(eloss)

hist(pred.mean,
main=""Posterior Distribution of Estimates",
xlim=range(X[pred.range]),xlab="Reserve Estimate (000)",
sub=paste(*'"Mean =",format(round(mean(pred.mean)),big.mark=","),

#
# plot distribution of outcomes
#
Xb=(x[cumsum(pred)>_99])
pb=pred[cumsum(pred)>.99]
tvar=sum(xb*pb)/sum(pb)
predb=pred[pred.range]
plot(X[pred.range],predb/h,type="1",col="black", lwd=3,
ylim=c(0,max(predb/h)),
xlim=range(x[pred.range]),
main="Predictive Distribution of Outcomes",
xlab=""Reserve Outcome (000)",ylab="Predictive Probability Density",
sub=paste("'"Mean =",format(round(mean.outcome),big.mark=","),
Standard Deviation =", format(round(sd.outcome),big.-mark=",")))
#
# write out summary statistics including tvar
#
outlab=c("input data","train sum actual","train sum predicted”,"train sum
ratio')
outlab=c(outlab,pred mean","pred sd est",'"pred.sd out","pred tvar','"cyid")
results=rep(0,9)
results[1]=insurer
results[2]=sum(rdata$loss)
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results[3]=sum(meanloss)

results[4]=sum(rdata$loss)/sum(meanloss)

results[5]=mean.outcome

results[6]=sd(pred.mean)

results[7]=sd.outcome

results[8]=tvar

results[9]=sum(unique(pred.ay+pred.lag-1))

df.results=data.frame(outlab,results)

df.results

outname=paste(outname, results[9],".csv")

write.csv(df.results, file=outname, row.names=F)

#

# calculate predited percentiles of observed losses in test data

#

edata=subset(adata,adata$ay+adataslag>11l) #separate test data from TFitting

data

e.pctloss=rep(0,dim(edata)[1])

e.meanloss=e.pctloss

tpct=rep(0,npost)

for (i in l:dim(edata)[1]){
cyt=mh_sev[samp,2]*(edata$ay[i]+edata$lag[i]-1)
mu=edata$premium[i]*mh_elr[samp,edata$ay[i]]1*mh.dev[samp,edata$lag[i]]*cyt
e.meanloss[i1]=mean(mu)
phi=(mur(1-tweedie.p)*mh.sev[samp]*tau[edata$lag[i]])/(2-tweedie.p)+

mh.con[samp]*mu~(2-tweedie.p)
for (J in 1l:npost){
tpct[j]=ptweedie(edata$loss[i],tweedie.p,muj].phi[J1)
}

e._pctloss[i]=mean(tpct)
if (edata$loss[i]==0) e.pctloss[i]=e.pctloss[i]*runif(1)
}
#
# calculate p-value for test data
#
actual=sum(edata$loss)
predicted=round(sum(e.meanloss))
ratio=round(100*actual/predicted, 2)
b=(x<actual)
pvalue=round(max(cumsum(pred)[b]),4)
pvalue
testout=data.frame(actual,predicted,ratio,pvalue)
write.csv(testout, file=outname3, row.names=F)
#
# reproduce Insurer X Data
#
test=rep(0,dim(rdata)[1])
e.test=rep(l,dim(edata)[1])
ay=c(rdata$ay,edata$ay)
lag=c(rdata$lag,edata$lag)
premium=c(rdata$premium,edata$premium)
loss=c(rdata$loss,edata$loss)
pctloss=c(pctloss,e.pctloss)
meanloss=c(meanloss,e._meanloss)
test=c(test,e.test)
cell _results=data.frame(ay, lag, premium, loss,pctloss,meanloss, test)
cell _results
write.csv(cell.results,outname2,row.names=F)
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APPENDIX B — INSURER DATA

This appendix contains the data for the four insurers analyzed in this paper, along with selected

results particular to the accident year and settlement lag. The first four columns were used to fit the

model. What follows is a description of each data element.

1.

2.

Accident Year (1987=1)

Settlement Lag

Net Premium

Incremental Paid Net Loss

P-value — F ., (x4y,,,) (Equation 10)

Mean of the predictive distribution — 4y, ,, (Equation 11)

Test Indicator (= 0 if used for fitting, =1 in used for testing)
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APPENDIX B — INSURER #1

'S
~

Lag Premium
29,701
29,701
29,701
29,701
29,701
29,701
29,701
29,701
29,701
27,526
27,526
27,526
27,526
27,526
27,526
27,526
27,526
27,526
30,750
30,750
30,750
30,750
30,750
30,750
30,750
35,814
35,814
35,814
35,814
35,814
35,814
35,814
42,277
42,277
42,277
42,277
42,277
42,277
50,088
50,088
50,088
50,088
50,088
56,921
56,921
56,921
56,921
61,406
61,406
61,4060
67,983
67,983
73,359
27,526
35,814
42,277
50,088
56,921
61,406
67,983
73,359
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Loss
5,234
5,172
3,708
1,783

923
537
175
145

5,234
5,683
4,392
2,134
1,377
673
155

81

47
5,702
5,865
7,966
2,472
143
152

73
6,349
4611
3,959
2,522
1,924
622
206
8,377
6,890
4,055
3,795
1,292
1,422
9,291
13,836
12,441
4,086
2,293
12,029
12,462
8,369
7,034
13,119
12,618
9,117
15,860
14,893
16,498
0

194
324
1,769
47783
7,954
12,655
13,724

p-value
0.62800
0.59792
0.40137
0.25697
0.31750
0.47430
0.45819
0.58558
0.36715
0.46129
0.62545
0.54172
0.35274
0.58789
0.56343
0.38298
0.40826
0.50786
0.37457
0.44487
0.98836
0.36650
0.03003
0.32027
0.33895
0.73986
0.18397
0.29187
0.47976
0.82504
0.46919
0.45015
0.80655
0.41615
0.06994
0.70103
0.24508
0.85865
0.13432
0.88970
0.95467
0.19012
0.31767
0.51493
0.59261
0.24543
0.85965
0.65267
0.56142
0.33922
0.56056
0.41787
0.51160
0.36054
0.62159
0.51047
0.74071
0.95281
0.92811
0.52867
0.20078

E[Loss]
4,979.25
4,978.05
4,025.16
2,297.84
1,224.53

627.50
266.75
175.37
110.23
5,383.23
5,385.46
4,355.15
2,485.43
1,323.74
678.62
287.97
189.45
118.20
6,117.66
6,111.99
4,945.90
2,822.51
770.53
326.31
215.34
5,706.63
5,704.71
4,617.25
2,635.60
1,402.37
719.95
303.85
7,291.36
7,290.34
5,897.94
3,363.19
1,791.99
918.92
11,322.40
11,316.67
9,154.43
5,224.03
2,780.94
12,071.18
12,068.66
9,759.61
5,567.06
12,416.19
12,410.83
10,037.48
15,630.32
15,622.43
16,687.70
143.28
201.01
390.57
1,427.91
2,972.68
5,735.63
12,650.30
16,718.34
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Technical Provisions in Solvency 11: What EU Insurers Could Do if They Had Schedule P

APPENDIX B — INSURER #2

AY Lag Premium Loss p-value E[Loss] Test
1 1 15,274 3,718 0.63752 3,538.62 0
1 2 15,274 3,243 0.68616 2,962.24 0
1 3 15,274 1,889 0.25142 2,350.47 0
1 4 15,274 1,697 0.45221 1,826.75 0
1 5 15,274 731 0.39982 904.88 0
1 6 15,274 770 0.85561 434.59 0
1 7 15,274 287 0.67785 242.21 0
1 8 15,274 1,086 0.98831 245.97 0
1 9 15,274 49 0.58684 97.24 0
1 10 15,274 20 0.55321 89.22 0
2 1 15,722 3,844 0.53156 3,819.48 0
2 2 15,722 4,196 0.92276 3,197.64 0
2 3 15,722 2,806 0.67816 2,536.67 0
2 4 15,722 2,310 0.72096 1,973.39 0
2 5 15,722 414 0.09853 977.83 0
2 6 15,722 78 0.08000 467.88 0
2 7 15,722 232 0.56845 261.61 0
2 8 15,722 36 0.18582 265.54 0
2 9 15,722 5 0.38171 104.54 0
3 1 16,266 3,854 0.68477 3,594.26 0
3 2 16,266 3,378 0.72771 3,010.23 0
3 3 16,266 1,860 0.21581 2,387.61 0
3 4 16,266 1,736 0.45833 1,857.23 0
3 5 16,266 662 0.32273 920.45 0
3 6 16,266 697 0.81186 439.60 0
3 7 16,266 20 0.14912 245.46 0
3 8 16,266 228 0.58356 249.83 0
4 1 17,017 3,184 0.66632 2,975.79 0
4 2 17,017 1,948 0.18750 2,493.52 0
4 3 17,017 1,670 0.32708 1,979.80 0
4 4 17,017 1,257 0.33866 1,538.59 0
4 5 17,017 1,433 0.92792 761.65 0
4 6 17,017 217 0.37523 364.88 0
4 7 17,017 190 0.60559 203.25 0
5 1 18,016 2,837 0.19607 3,335.78 0
5 2 18,016 3,180 0.74147 2,793.63 0
5 3 18,016 1,794 0.26688 2,216.25 0
5 4 18,016 2,923 0.96200 1,723.16 0
5 5 18,016 1,035 0.70247 853.66 0
5 6 18,016 136 0.19534 408.70 0
6 1 18,395 3,380 0.44921 3,482.92 0
6 2 18,395 2,394 0.21652 2,916.78 0
6 3 18,395 2,859 0.80912 2,313.58 0
6 4 18,395 1,836 0.56140 1,798.69 0
6 5 18,395 763 0.44185 891.65 0
7 1 18,932 4,948 0.64629 4,715.55 0
7 2 18,932 3,288 0.20046 3,948.47 0
7 3 18,932 4,385 0.93990 3,130.72 0
7 4 18,932 2,024 0.30727 2,437.57 0
8 1 20,857 5,116 0.60750 4,936.96 0
8 2 20,857 4,466 0.67641 4,131.59 0
8 3 20,857 2,659 0.22562 3,276.81 0
9 1 24,348 5,702 0.63089 5,466.01 0
9 2 24,348 3,953 0.24678 4,577.60 0
10 1 24,030 5,450 0.48231 5,527.01 0
2 10 15,722 0 0.32000 95.88 1
3 9 16,266 124 0.73523 99.20 1
4 8 17,017 99 0.42612 207.58 1
5 7 18,016 42 0.23582 228.69 1
6 6 18,395 497 0.66174 427.07 1
7 5 18,932 1,118 0.48390 1,208.99 1
8 4 20,857 2,558 0.53458 2,553.63 1
9 3 24,348 2,531 0.09281 3,632.89 1
10 2 24,030 4113 0.30838 4,635.13 1
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Technical Provisions in Solvency 11: What EU Insurers Could Do if They Had Schedule P

APPENDIX B - INSURER #3
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Premium
39,383
39,383
39,383
39,383
39,383
39,383
39,383
39,383
39,383
39,383
44,770
44,770
44,770
44,770
44,770
44,770
44,770
44,770
44,770
50,914
50,914
50,914
50,914
50,914
50,914
50,914
50,914
56,904
56,904
56,904
56,904
56,904
56,904
56,904
62,551
62,551
62,551
62,551
62,551
62,551
67,205
67,205
67,205
67,205
67,205
74,056
74,056
74,056
74,056
81,035
81,035
81,035
90,568
90,568
99,940
50,914
56,904
62,551
67,205
74,056
81,035
90,568
99,940
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Loss
7,701
7,072
8,473
3,549
3,327
1,804

817
330
105
63
9,609
9,540
5,755
3,198
1,898
1,912
602
122
462

10,780
8,570
7,062
5,220
4,849
2,220

488

239
9,098
8,974
8,522
4,985
2,864
1,576

857
9,446
9,620

10,928
5,506
1,973
1,858

13,791

11,656

11,664
5,323
3,731

16,783

17,370

10,413
9,144

17,389

15,132

13,653

22,871

20,819

22,916

169
372
607
2,079
6,121
8,253
10,874
18,260

p-value
0.32545
0.32563
0.94002
0.34291
0.85339
0.64478
0.69365
0.64372
0.33264
0.48387
0.78559
0.86835
0.12805
0.12712
0.15681
0.63151
0.45221
0.29190
0.76641
0.70914
0.24187
0.19366
0.62343
0.95961
0.63779
0.24846
0.41814
0.32524
0.51734
0.73617
0.63832
0.48789
0.33841
0.62105
0.19963
0.48453
0.96008
0.67673
0.07126
0.41349
0.67421
0.34160
0.75153
0.18643
0.39758
0.53513
0.85083
0.03875
0.77486
0.62141
0.36836
0.51292
0.54331
0.45069
0.47903
0.35782
0.62074
0.34127
0.26920
0.79950
0.52544
0.00027
0.10827

E[Loss]
8,174.66
7,615.81
6,589.57
3,969.54
2,512.85
1,630.75
669.91
298.40
281.69
160.76
8,816.87
8,213.95
7,108.68
4,282.46
2,711.84
1,756.90
723.08
320.84
303.63
10,187.56
9,491.07
8,214.06
4,946.45
3,134.63
2,031.78
834.47
371.71
9,619.73
8,959.88
7,753.12
4,672.87
2,955.96
1,917.89
787.71
10,441.16
9,727.04
8,417.18
5,069.52
3,209.63
2,082.31
13,226.53
12,322.62
10,661.42
6,421.71
4,067.67
16,707.39
15,560.35
13,467.69
8,113.31
16,946.46
15,783.79
13,658.91
22,723.13
21,167.46
23,057.99
352.10
351.26
856.37
2,638.39
5,138.10
8,230.16
18,325.98
21,496.17

Test
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Technical Provisions in Solvency 11: What EU Insurers Could Do if They Had Schedule P

APPENDIX B — INSURER #4
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ag Premium
267,666
267,666
267,666
267,666
267,666
267,666
267,666
267,666
267,666
267,666
274,526
274,526
274,526
274,526
274,526
274,526
274,526
274,526
274,526
268,161
268,161
268,161
268,161
268,161
268,161
268,161
268,161
276,821
276,821
276,821
276,821
276,821
276,821
276,321
270,214
270,214
270,214
270,214
270,214
270,214
280,568
280,568
280,568
280,568
280,568
344915
344915
344915
344915
371,139
371,139
371,139
323,753
323,753
221,448
274,526
268,161
276,821
270,214
280,568
344915
371,139
323,753
221,448
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Loss
33,810
45,318
46,549
35,206
23,360
12,502
6,602
3,373
2,373
778
37,663
51,771
40,998
29,496
12,669
11,204
5,785
4,220
1,910
40,630
56,318
56,182
32,473
15,828
8,409
7,120
1,125
40,559
49,755
39,323
24,081
13,209
12,655
2,921
37,515
51,068
34,410
25,529
19,433
5,728
41,454
53,552
40,599
40,026
6,750
57,783
68,136
86,915
18,328
62,011
132,553
21,083
112,592
33,783
38,181
887
1,662
1,043
2,898
5,513
11,551
17,129
24,089
37,485

p-value
0.23507
0.34147
0.60459
0.71245
0.84899
0.68697
0.65542
0.64375
0.63989
0.50883
0.36921
0.53039
0.50420
0.56482
0.32337
0.62130
0.58105
0.80284
0.54331
0.44228
0.61502
0.82143
0.65752
0.52041
0.35092
0.73419
0.13471
0.54905
0.58209
0.55355
0.44189
0.43920
0.79588
0.19429
0.47765
0.62719
0.42354
0.51768
0.80611
0.17976
0.47870
0.57022
0.49452
0.85032
0.04135
0.50911
0.49687
0.90859
0.04564
0.43460
0.94135
0.00703
0.91665
0.02117
0.44006
0.56864
0.46527
0.15090
0.19996
0.11725
0.09181
0.01972
0.01220
0.28817

E[Loss]
45,787.91
54,471.20
44,198.73
30,137.93
16,758.58
10,818.72

5,883.45

3,018.67

2,176.39

1,138.65
44,076.07
52,532.45
42,610.85
29,101.82
16,191.71
10,418.89

5,664.48

2,908.03

2,088.72
44,604.21
53,036.35
43,011.27
29,363.66
16,328.33
10,522.64

5,721.56

2,948.32
40,480.52
48,176.91
39,099.08
26,694.41
14,806.69

9,561.64

5,198.07
39,993.47
47,562.16
38,619.62
26,323.12
14,676.52

9,452.97
44,192.46
52,642.06
42,665.27
29,100.24
16,206.07
60,172.70
71,598.64
58,013.32
39,731.67
69,225.13
82,082.69
66,759.41
72,997.37
87,133.82
43,939.91

1,116.16

2,132.64

2,686.03

5,153.72
10,453.71
22,134.60
45,665.08
70,644.07
52,940.26
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