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Abstract: The goal of this paper is to demonstrate how publicly available data can be used to calculate the 
technical provisions in Solvency II. This is a purely hypothetical exercise, since the publicly available data is in 
America, and Solvency II applies to the European Union. Using American Schedule P data, this paper:  

Develops “prior information” to be used in an empirical Bayesian loss reserving method. 

Uses the Metropolis-Hastings algorithm to develop a posterior distribution of parameters for a Bayesian Analysis. 

Develops a series of diagnostics to assess the applicability of the Bayesian model. 

Uses the results to calculate the best estimate and the risk margin in accordance with the principles underlying 
Solvency II. 

Develops an ongoing process to regularly compare projected results against experience. 

The paper includes analyses of the Schedule P data for four American Insurers based on its methodology.  

Keywords: Solvency II, reserving methods, reserve variability, uncertainty and ranges, Bayesian estimation  
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1. INTRODUCTION 

In 2009 the European Parliament passed a new act for regulating insurers known as Solvency II. 

Its objectives include: 

 Increased focus on effective risk management, control, and governance, 

 Market consistent valuation of  assets and liabilities, 

 Increased disclosure and transparency. 

This act will become effective on October 31, 2012. Because of the growing international nature 

of the business of insurance, the development of the provisions in this act has been watched and 

debated by interested parties worldwide.  

This paper focuses on calculating the “technical provisions” specified in this act1. The “technical 

provisions” refer to the insurer’s liability for unpaid losses. Specifically: 

 “The value of the technical provisions shall be equal to the sum of a best estimate and a 

risk margin.”2 

                                                 
1The provisions quoted below are stated in Section 2 of Chapter VI of the act, p 222, 
http://register.consilium.europa.eu/pdf/en/09/st03/st03643-re01.en09.pdf. 
2 Article 77 
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 “The best estimate shall correspond to the probability-weighted average of future cash 

flows, taking account of the time value of money using the relevant risk-free interest rate 

term structure.”3 

 “The risk margin shall be calculated by determining the cost of providing an amount of 

eligible own funds equal to the Solvency Capital Requirement necessary to support the 

insurance obligations over the lifetime thereof.”4 

 “Insurance undertakings shall segment their insurance obligations into homogeneous risk 

groups, and as a minimum by lines of business, when calculating the technical 

provisions.”5 

With regard to technical provisions, the act also requires insurers to have “processes and 

procedures in place to insure that best estimates, and the assumptions underlying the calculation of 

the best estimates, are regularly compared against experience.  

When the comparison identifies systematic deviations between the experience and the best 

estimate, the insurer shall make appropriate adjustments to the actuarial methods and/or the 

assumptions being made.”6  

These provisions of the act implicitly, if not explicitly, call for a stochastic model of the loss 

development process. Details such as the particular models and the data being used are not 

specified. 

In America, insurers are required to report very detailed data to regulators. Relevant to the topic 

of technical provisions is Schedule P of the National Association of Insurance Commissioners 

(NAIC) Annual Statement.7 This data contains net premiums, along with paid and incurred loss 

triangles spanning a period of ten accident years. The data is organized into 36 specific lines of 

insurance such as Personal Auto, Commercial Auto, Homeowners, and Workers’ Compensation. 

Note that all dollar amounts are in thousands. 

This paper describes how to use data provided by the NAIC to develop a stochastic model for 

the loss development process. A feature of this model will be that it draws on the information 

provided by several insurers to provide “prior information” for use in the Bayesian estimation of the 

model parameters. The Bayesian methodology will also quantify the uncertainty in the parameters. 

                                                 
3 Article 77 
4 Article 77 
5 Article 80 
6 Article 83 
7 One can purchase an electronic copy of the Annual Statements for all American insurers for a 
nominal price from the NAIC. http://www.naic.org/store_financial_home.htm. 
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This paper will then show how to use this model to carry out the calculations required for the 

technical provisions of Solvency II. In watching parts of the debate that led to Solvency II, I have 

seen reasonable alternatives to its methodology. This paper will explore some of those alternatives.  

The data in Schedule P is available to the public for all American insurers and thus the 

calculations described in this paper can be done by external interested parties. The intent of this 

paper is not to replace the more detailed analysis that insurers can do internally. Instead its intent is 

to do a credible analysis with publicly available data.  

2. A STOCHASTIC MODEL OF THE LOSS DEVELOPMENT PROCESS 

The stochastic model in this paper describes the random incremental paid loss, XAY,Lag, for 

accident year AY, and settlement lag, Lag. The data used to fit the model will consist of a loss 

triangle of ten accident years of incremental paid net losses and the net earned premium for each 

accident year. The model can be used to predict the distribution of losses paid in future settlement 

lags through the tenth year. It can also be used to predict the distribution of sums of losses for any 

given combination of future settlement lags in the given accident years.  

For a given accident year, AY, and settlement lag, Lag, the expected loss is equal to 

 1
,

AY Lag
AY Lag AY AY LagPremium ELR Dev t      

,
 (1) 

where:  

 PremiumAY is the accident year premium obtained from the data, 

 ELRAY is a parameter representing the expected loss ratio for the accident year, 

 DevLag is a parameter representing the incremental paid loss development factor for the 

settlement lag, 

 t is a parameter representing the calendar year trend for the claim frequency. 

The claim severity, Z, in this model is a random variable with a gamma distribution, 

    
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.
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The claim severity distribution will vary by settlement lag with its mean given by the parameter 

Lag= ·Lag and a fixed shape parameter,  = 1/2. In accordance with the general observation that 

claim severity increases with the settlement lag, this model sets 
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As was done in Meyers (2007a), the claim count, N, in this model has a distribution with its mean 
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given by AYLag = AY,Lag/Lag, and its variance given by  

   2
, ,AY Lag AY LagVar N c   

.
 (4) 

The model, as described by Equations 1-4, depends upon the unknown parameters 

 ELRAY, for AY = 1,2,…,10. 

 DevLag, for Lag = 1,2,…,10. 

 sev (the claim severity for the 10th settlement lag). 

 t (the calendar year frequency trend factor). 

 c (the contagion parameter). 

My selection of the fixed parameters in the model (i.e. the Lag parameters used to describe 

variation by settlement lag and the  parameter in the gamma claim severity distribution) was based 

on a combination of prior experience and sensitivity testing. 

The expected loss in each (AY,Lag) cell is given by Equation (1). The variance of the loss in each 

cell is given by: 

   2
, , ,1 1 /AY Lag AY Lag Lag AY LagVar X c           . (5) 

For each (AY,Lag) cell, the model will be approximated by a Tweedie distribution with the same 

mean and variance8. The mean and variance of the Tweedie distribution are given by  and ·p, 

respectively, with p = (+2)/(+1). Using the value of p that is implied by the value of and 

solving for the  that forces the variances to be equal yields: 

 ,

1

2
, ,

2
AY Lag

p
Lag p

AY Lag AY Lagc
p




  
   


. (6) 

Note that the approximation is exact if N has a Poisson distribution with (implied) c = 0. 

3. BAYESIAN ESTIMATION OF THE MODEL PARAMETERS 

It is generally regarded as good statistical practice to use models with as few parameters as 

possible. As illustrated by Meyers (2008), too many parameters can lead to overfitting problems 

when estimating the parameters by maximum likelihood. Attempts such as Clark (2006) and Meyers 

(2009) to formulate models for loss reserving, with a small number of parameters have not found 

                                                 
8 See Meyers (2009) and/or Smyth and Jørgensen (2002) for an introduction to the Tweedie distribution. 
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general use in the actuarial community.9 

In the same paper, Meyers (2008) suggests, by way of example, that a Bayesian analysis can 

overcome the problems associated with overfitting. The paper recommends using a mixture of 

models over the posterior distribution of parameters. This paper takes a similar Bayesian approach.  

Let Parm denote the set of unknown parameters     , , , , .AY LagELR Dev sev t c  

Let  , , 1,...,10, 1,...,11AY Lagx AY Lag AY   X  denote the observed incremental paid losses from 

a 10x10 Schedule P loss development triangle. According to Bayes’ Theorem: 

      |f Parm Parm f Parm X X|  (7) 

where:  

  f Parm X|  is the posterior distribution of Parm. 

  |ParmX  is the likelihood function of X. 

  f Parm  is the prior distribution of Parm. 

The likelihood function is given by 

    
10 11

, , ,
1 1

| | , , ,
AY

AY Lag AY Lag AY Lag
AY Lag

Parm dtweedie x p


 

   X  (8) 

where: 

 dtweedie is the probability density function for the Tweedie distribution. 

 p is the power parameter. p = (+2)/(+1) = 1.67. 

 AY,Lag and AY,Lag are calculated from Parm and Equations 1 and 6. 

Following Meyers (2009) this paper uses the Metropolis-Hastings algorithm to generate a sample 

of 500 parameter sets that represent the posterior distribution. Appendix A describes how that 

algorithm was implemented in this paper. That appendix also provides the code (written in the R 

programming language) used for this paper. 

This paper uses a gamma distribution (Equation 2) to represent its prior distributions. Table 1 

gives the  and  parameters of the prior distribution for each parameter in Parm. 

                                                 
9 I intend no disparagement here. I consider Clark’s paper to be a very good introduction to the use of maximum 
likelihood methods for fitting loss reserve models.  
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Table 1 

   Implied 
Parameter α  θ Mean Std. Dev. 

sev 1.3676 136.2478 186.3386 159.34 
t 1290.2307 0.0008 0.9931 0.0276 
c 0.0740 0.1391 0.0103 0.0379 

ELR1 29.8506 0.0237 0.7073 0.1295 
ELR2 33.8347 0.0227 0.7674 0.1319 
ELR3 35.3338 0.0214 0.7545 0.1269 
ELR4 24.4908 0.0285 0.6981 0.1411 
ELR5 28.6618 0.0254 0.7272 0.1358 
ELR6 25.6341 0.0304 0.7790 0.1539 
ELR7 16.8043 0.0501 0.8417 0.2053 
ELR8 14.3680 0.0602 0.8650 0.2282 
ELR9 9.3053 0.1017 0.9465 0.3103 
ELR10 6.3667 0.1609 1.0246 0.4061 
Dev1 15.8100 0.0135 0.2137 0.0537 
Dev2 42.8538 0.0059 0.2517 0.0385 
Dev3 56.4944 0.0036 0.2028 0.0270 
Dev4 30.4528 0.0046 0.1403 0.0254 
Dev5 10.2309 0.0085 0.0870 0.0272 
Dev6 5.8094 0.0083 0.0480 0.0199 
Dev7 3.6954 0.0068 0.0250 0.0130 
Dev8 2.3934 0.0057 0.0135 0.0087 
Dev9 1.3559 0.0066 0.0090 0.0077 
Dev10 0.4552 0.0200 0.0091 0.0135 
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These prior distributions were obtained by the following steps. 

1. Obtain the maximum likelihood estimates (MLEs) of the parameters for 50 large active 

insurers using Schedule P data. 

2. Using the MLEs obtained in Step 1 as prior means, run the Metropolis-Hastings 

algorithm to get a sample of 100 parameter sets. 

3. Using the 5,000 parameter sets obtained from the Steps 1 and 2 above, fit the gamma 

distributions by matching the mean and standard deviation of the gamma distribution 

with the sample mean and standard deviation for each parameter in the set. 

Loss reserving is considered by many to be an art that depends on the data and actuarial 

judgment. The experience gained from many reserving analyses often forms the basis of such 

judgments. These steps taken to derive the prior distribution are an attempt to capture the 

experience needed for such judgments in a repeatable and transparent way. The Bayesian approach 

taken by this paper merges the data with the “judgment” supplied by the prior distribution. 

For a given insurer, the iterations generated by the Metropolis-Hastings algorithm can be thought 

of as a sample of equally likely parameter sets describing the posterior distribution of their loss 

development process. Denote the nth parameter set by: 

     , ,, , , ,n n n n n AY n LagParm sev t c ELR Dev . (9) 

Each Parmn can be used to construct “statistics of interest” that can be either used to describe 

parameter risk, or be averaged to get an overall expected value. The sections below provide several 

examples of statistics of interest that involve model diagnostics, prediction intervals, and items in a 

financial statement, such as a best estimate and a risk margin.  
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4. EXAMPLES WITH FOUR ILLUSTRATIVE INSURERS 

This paper has illustrative analyses with data from four real insurers. The paid loss triangles were 

taken from the 1997 Schedule P each insurer reported to the NAIC for the commercial auto line of 

insurance. The data are reported in the form of cumulative paid losses for each accident year. 

Incremental paid losses were obtained by taking the difference of the cumulative paid losses by 

settlement lag. Occasionally, the cumulative paid losses decreased with subsequent settlement lag. 

My understanding of the reporting instructions is that this should not happen, but when it did 

happen, I removed the negative incremental paid loss from the data, and fit the models without that 

data point. The data used for fitting the model consisted of the earned net premium, the incremental 

paid losses indexed by accident year and settlement lag. These data are tabulated in Appendix B. 

Table 2 gives an indication of the size of each insurer. 

Table 2 

Insurer 1997 Net Premium

1 73,359 

2 24,030 

3 99,940 

4 241,228 

 

Before selecting the particular insurers to put in this paper, I fit the model to the data from 

several insurers. I selected these insurers to illustrate the variety of stories that these kinds of data 

can tell. I would discourage any attempts to draw conclusions about the Commercial Auto line of 

business or about other insurers not analyzed in this paper. 

Let us start by looking at the variability of each parameter in the model. Exhibits 1-3 plot 

histograms of the sev, t and c parameters. The top of each exhibit has a histogram of a sample of 

parameters taken from the prior distribution. This shows how much of the initial uncertainty in the 

parameters is reduced by each insurer’s data. Here are some casual observations about the sev, t, and 

c parameters 

The width of the histograms indicates uncertainty in the parameters. An inspection of the 

exhibits indicates that there is no apparent relationship between the parameter uncertainty and the 

size of the insurer. 

Exhibit 2 confirms a general industry trend of a slight decrease in claim frequency over time for 

commercial auto. Given that the trend factor of 1.00 is close to the center of the histograms, one 
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might be tempted to drop the trend parameter but, in light of the industry trend, I chose to keep it 

in. 

As indicated in Meyers (2007a), a positive c parameter indicates that there is a random external 

factor that affects all claims at once. The c parameter is the coefficient of variation squared of the 

external factor. For insurers 2 and 3, the minimal size of the c parameter indicates that the external 

factor is something usual, such as changing inflation rates. The c parameter for Insurer 4 is 

enormous. Something is systematically affecting large blocks of claims. 

Exhibit 4 shows the {ELR} and {Dev} parameters expressed as paths over time for both the 

prior and posterior distributions. One general observation is that the uncertainty in the {ELR} 

parameters decreases as we gain information over time. In other words, we have better information 

about the loss ratio for earlier years. 

It might seem natural to define the “parameter estimates” as the mean of the parameter sets 

Parmn. But the analyses below do not make any use of such a parameter estimate. Instead they create 

“statistics of interest” as functions of each parameter set. They then combine them by either: 

1. taking an average “statistic of interest” over all the Parmns; 

2. plotting related statistics of interest; or 

3. simulating predicted losses derived from a random selection of Parmns.    
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Exhibit 1a 
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Exhibit 1b 
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Exhibit 2a 
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Exhibit 2b 
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Exhibit 3a 
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Exhibit 3b 
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Exhibit 4a 
ELR and Dev Paths for Insurer #1 
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Exhibit 4b 
ELR and Dev Paths for Insurer #2 
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Exhibit 4c 
ELR and Dev Paths for Insurer #3 
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Exhibit 4d 
ELR and Dev Paths for Insurer #3 
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5. MODEL DIAGNOSTICS 

The model specified in Sections 2 and 3 predicts that the losses in each (AY, Lag) cell are a 

mixture of 500 Tweedie distributions. For a given value x in an (AY, Lag) cell, the cumulative 

probability is given by:  

    
500

, , , , ,
1

1
| , , ,

500
AY Lag n AY Lag n AY Lag

n

F x ptweedie x p


    (10) 

and the mean loss for each (AY, Lag) cell is given by: 

 
500

, , ,
1

1
,

500
AY Lag n AY Lag

n

    (11) 

where n,AY,Lag and n,AY,Lag are given by Equations 1 and 6 for each Parmn, and ptweedie is the 

cumulative distribution function for the Tweedie distribution. 

Denote the cumulative probabilities of each observed data point xAY,Lag by pAY,Lag = FAY,Lag(xAY,Lag). 

Both the AY,Lags and the pAY,Lags are given in Appendix B. Table 3 shows that the sum of the actual 

losses and the predicted losses are in excellent agreement. 

Table 3 

 Actual Expected Ratio 

Insurer 
10 10

,
1 11

AY Lag
AY Lag AY

x
  
   

10 10

,
1 11

AY Lag
AY Lag AY  

   
Actual

Expected
 

1 269,804 269,916  0.9996 

2 114,873 114,202  1.0059 

3 394,629 394,854  0.9994 

4 1,793,604 1,822,626  0.9841 

 

For a well-fitting model one should expect that the collection of probabilities {pAY,Lag} will be 

uniformly distributed on the interval from zero to one. Following Meyers (2007b) this can be 

checked graphically with P-P plots. These plots compare the sorted probabilities, {pAY,Lag}, with the 

expected probabilities. If the sorted probabilities are indeed uniform, the points in these plots will lie 

on a 45o line.  

Exhibits 5a-5d provide P-P plots for each of the four insurers. One should expect random 

variation from the 45o line, and so the P-P plots also include confidence bands at the 99% and the 

95% level based on the Kolmogorov-Smirnov test. 
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If the probabilities, {pAY,Lag}, are truly random, one should also expect these probabilities to be 

independent of accident year, settlement lag, and calendar year (i.e., AY+Lag – 1). Exhibits 5a-5d 

also contain plots of the probabilities against these variables. These plots are analogous to those 

described by Barnett and Zehnwirth (2000).  

Here are some casual observations about the diagnostics. 

 The P-P plots for all four insurers lie within the 99% confidence bands. The plots for 

Insurers 1, 2 and 3 all lie within the 95% confidence band, although the plot for Insurer 1 

is just barely inside that band. The plot for Insurer 4 lies outside the 95% band. 

 For Insurer 1, the set {pAY,Lag} for the first two accident years appears to be less spread 

out than expected. 

 For Insurer 3, the small amount of overlap in the pAY,Lags in the later calendar years shows 

evidence of instability in the calendar year trend. 

 For Insurer 4, the clearly nonrandom pattern in the calendar year plot leads to rather 

strange-looking patterns in the accident year and settlement lag plots.  

In spite of the excellent agreement between the sum of the actual and the expected losses as 

identified in Table 3, the statistical diagnostics identify some potential problems with the model fits.   
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Exhibit 5a 
Diagnostic Plots for Insurer #1 
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Exhibit 5b 
Diagnostic Plots for Insurer #2 
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Exhibit 5c 
Diagnostic Plots for Insurer #3 
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Exhibit 5d 
Diagnostic Plots for Insurer #4 
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6. RETROSPECTIVE TESTS 

As stated in the introduction, Solvency II requires insurers to have “processes and procedures in 

place to insure that best estimates, and the assumptions underlying the calculation of the best 

estimates, are regularly compared against experience.” This section shows how to use the model to 

predict the distribution of paid loss outcomes for the next calendar year. Observing the next 

calendar year’s total paid loss, 
10

,12
2

AY AY
AY

x 

 , one can check to see if the cumulative probability of 

that sum, as determined by its predictive distribution, lies within a normal range, say 0.05 to 0.95. 

One way to determine this predictive distribution is to take a large sample, say 10,000 or so, of 

random Xs from the following simulation algorithm. 

Simulation Algorithm 1 

1. Select a random parameter set from the list,     , ,, , , ,n n n n n AY n Lagsev t c ELR DevP . 

2. For each (AY,Lag) cell in next calendar year (AY = 2,…,10, Lag = 12 – AY): 

a. Calculate AY,Lag from Equation 1. 

b. Calculate AY,Lag from Equation 6.  

c. Select a random loss XAY,Lag from a Tweedie distribution with parameters p = 

1.67, AY,Lag, and AY,Lag.  

3. Set AYAY
AY




  12,

10

2

 

Following Meyers (2009), this paper uses the fast Fourier transform (FFT) to calculate the 

predictive distributions. It is faster and more numerically precise, but admittedly harder to 

implement. The R code for doing this is included in Appendix A. 

When comparing the predictive distributions of this paper with predictive distributions derived 

from formulas in other papers, e.g., Mack (1993), one should be careful to distinguish between the 

predictive distribution of estimates,
10

,12
2

AY AY
AT




 
 

 
 , and the predictive distribution of outcomes, 

10

,12
2

AY AY
AY

X 


 
 
 
 . For retrospective tests we need the latter. Exhibits 6a-6d below provide the 

predictive distributions for both random variables.  

After fitting the model to the 1997 paid loss triangle, I then obtained test data consisting of 

incremental paid loss data from the 1998 Schedule P and calculated the implied p-value for 
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10

,12
2

AY AY
AY

x 


 
 
 
 . That and other summary statistics are in Table 4. P-values for individual cell losses 

in the test data are given in Appendix B.  

Table 4 

 Actual Expected Ratio  

Insurer 
10

,12
2

AY AY
AY

x 

  

10

,12
2

AY AY
AY




  
Actual

Expected
 p-value 

1 41,403 40,240 102.89% 0.6408 

2 11,082 13,089 84.67% 0.1080 

3 46,735    57,389   81.44% 0.0019 

4 102,257 212,926 48.02% 0.0000 

 

Here are some casual observations about the results. 

 The agreement between actual and expected results is not as good as obtained when 

fitting the data. Taken by itself, that is not necessarily a bad result. The test data contained 

only a single calendar year of data, while the data used for fitting contained 10 calendar 

years of data. The law of large numbers does not have a large enough number to work its 

magic. 

 The p-values for Insurers 1 and 2 appear to be in the normal range. Thus, no change in 

assumptions seems necessary at this time. 

 The p-value for Insurer 3 appears to be out of the normal range. If we examine the cell p-

values for the test data in Appendix B, we see that all except the (AY,Lag) = (9,3) appear 

to be normal. The abnormality for the total calendar year loss appears to be caused by 

one bad cell. To test this, I calculated the predictive distribution for that same calendar 

year without the (9,3) cell. The results of this calculation are in Table 5 below. With that 

adjustment, the p-value moves into the normal range. An investigation into the (9,3) cell 

is called for. It may be a simple miscode, or some unusual event that caused the outlier. 
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Table 5 

 Actual Expected Ratio  

Insurer 
10

,12
2, 9

AY AY
AY

x 
 
  

10

,12
2, 9

AY AY
AY


 

  
Actual

Expected
 p-value 

3 35,861 39,063 91.80% 0.1646 

 

 The extraordinarily low p-value for Insurer 4 cannot be explained by a single outlier. In 

looking at the cell p-values for the test data in Appendix B, one can see several cells with 

low p-values. This indicates there is something wrong with the structure of the model. 

This was apparent in the diagnostics, Exhibit 5d, of the previous section. The 

extraordinarily high c parameter and the very noticeable swings in the cell p-values by 

calendar provide an early indication of the problems with the model when applied to 

Insurer 4.  
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Exhibit 6a 
Predictive Distributions for Insurer #1 
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Exhibit 6b 

Predictive Distributions for Insurer #2 
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Exhibit 6c 

Predictive Distributions for Insurer #3 
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Exhibit 6d 

Predictive Distributions for Insurer #4 
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7. BEST ESTIMATES AND RISK MARGINS 

As stated in the introduction, according to the Solvency II Framework Directive: 

“The value of the technical provisions shall be equal to the sum of a best estimate and a risk 

margin.” 

“The best estimate shall correspond to the probability-weighted average of future cash flows, 

taking account of the time value of money using the relevant risk-free interest rate term structure.” 

“The risk margin shall be calculated by determining the cost of providing an amount of eligible 

own funds equal to the Solvency Capital Requirement necessary to support the insurance obligations 

over the lifetime thereof.” 

This section shows how to use the model developed above to calculate the current estimate and 

the risk margin.  

Let’s start with the best estimate. Given that the future cash flows generated by the Metropolis-

Hastings algorithm are equally likely, the formula for the best estimate becomes. 

 
 

10 10 500

, , 11.5
2 12 1

1 1
,

500 1
n AY Lag AY Lag

AY Lag AY n i
 

   

 
  

 
    (12) 

where i is the “relevant risk-free interest rate.” This formula assumes that the liabilities expire 

mid-year. 

Articles 104 and 105 of the Framework Directive call for the Solvency Capital Requirement to 

have sufficient capital to cover losses over the next 12 months with a probability (Value-at-Risk or 

VaR) of 99.5%. Both the time horizon of one year and the VaR standard are controversial among 

actuaries. 

Instead of the VaR requirement, many actuaries prefer the Conditional Tail Expectation (CTE), 

which is the average of all outcomes above a given percentile (say 99%) of the outcomes. Another 

common name for the CTE is the Tail Value at Risk (TVaR). My speculation on why the EU chose 

the VaR requirement is that many feel uncomfortable calculating tail probabilities at the high end of 

the distribution of outcomes. I believe that when one calculates the distribution of outcomes as 

described above, the VaR and TVaR calculations are equally reliable. So the examples in this paper 

will use the TVaR at 99% to calculate the Solvency Capital Requirement. 

A rationale for the one-year time horizon is that it will provide regulators sufficient time to take 

corrective action if necessary. Not everybody agrees. As we shall see below, the choice of the time 

horizon can make a significant difference in the risk margin. This paper will calculate the risk margin 

assuming both a single year and a 100-year time horizon.  
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The first risk margin formula discussed here is called the Capital Cash Flow (CCF) risk margin. In 

words, this formula assumes that the insurer’s investors need to put up capital to take on the loss 

reserve risk. As claims are settled, the insurer expects to release capital over time. The CCF risk 

margin is the profit that the insurer’s investors would need to be persuaded to take on this risky 

venture. 

We will now discuss the details. Let: 

 i = Risk-free rate of return on investments. 

 r = Total rate of return demanded by the reinsurer for taking additional insurance risk. 

 t = Time the loss reserve liability is set. 

 Ct = Amount of capital required to support an insurance portfolio at time t. 

First look at the cash flow of the insurance transaction. 

 At time t = 0, investors contribute a sum of C0 to the insurer, which earns a risk-free rate 

of return, i, over the next year. 

 At time t = 0, the investors collects a (market value) risk margin, MVMCCF. Equivalently, 

one could say that the investor contributes C0 − MVMCCF to the insurer. 

 At time t = 1, the investors expect to keep C1 invested in the insurer, and they expect to 

receive a cash flow C0(1+i) – C1 at the end of year 1. Since the loss the insurers are 

required to pay and C1 is uncertain, the investors discount the value of the amount 

returned at the risky rate of return r > i. 

 Continuing on to time t, the investors expect to keep Ct invested in the insurer, and they 

expect a cash flow of Ct-1(1+i) – Ct at the end of year t.  

Since the cash flows are uncertain, it is appropriate to discount the cash flow at the risky rate of 

return, r. This leads to the following expression,  

 
 
 
1

0
1

1

1

t t
CCF t

t

C i C
C MVM

r






 
 


 . (13) 
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This equation implies 

 
 
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 
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 
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(14)

 

There are two other risk margin formulas that involve slightly similar calculations. Let’s call the 

next formula MVMSST because of its similarity to that used in the Swiss Solvency Test 

  
  1

1

.
1

t
SST t

t

C
MVM r i

i






  


  (15) 

MVMSST differs from MVMCCF in two ways. First it discounts the Cts at the risk-free rate i, rather 

than the risky rate r. Second, it starts at time t = 1 rather than at time t = 0. 

Let’s call the last risk margin formula MVMQIS4 because of its resemblance to that used by some 

in their response to the CEIOPS Quantitative Impact Survey #4, 

  
 4 1

0

  .
1

t
QIS t

t

C
MVM r i

i






  


  (16) 

MVMQIS4 differs from MVMSST in that it starts at time t = 0. 

I used the term “resemblance” in the description of MVMSST and MVMQIS4 because we now use a 

different calculation of Ct.. 

For a one-year time horizon, C0 depends upon the distribution of the sum of outcomes in calen- 

dar year 11, i.e., 




10

2
12,

AY
AYAYX  . Simulation Algorithm 1 describes the distribution of these losses. 

Other calendar years and other time horizon involve random sums over different sets of (AY,Lag) 

cells, and Simulation Algorithm 1 can be modified to accommodate any given set of cells. As in the 

previous section, this paper uses the FFT methodology to calculate the predictive distribution of 

outcomes and the TVaR statistics.  
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Tables 7 and 8 below describe the calculation of the Cts for the one year and the 10 year time 

horizons for Insurer 1. The calculation accounts for the time value of money. Table 6 shows the 

result of the best estimate and risk margin calculations for Insurer 1 for two time horizons and the 

three risk margin formulas above. 

Table 6 

Insurer 1 

r = 
10% i =4%  Best Estimate = 91,220 

Time 
Horizon MVMCCF % 

MVMS

ST % 
MVM
QIS4 % 

1 1,994 2.2% 1,854 2.0% 2,411 2.6% 

10 5,082 5.6% 4,736 5.2% 6,129 6.7% 
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Table 7 

(1) (2) (3) (4) (5) (6) (7) (8) 

t Nom
tL  Nom

tL  Disc
tL  TVaRNom

t  TVaRNom
t TVaRDisc

t  Ct 

0 40,375 13,882 37,526 52,875 15,933 48,415 10,889

1 26,493 12,004 24,870 36,942 15,641 34,103 9,233 

2 14,490 6,867 13,624 21,301 8,603 19,516 5,893 

3 7,622 3,661 7,165 12,698 4,741 11,524 4,358 

4 3,962 1,919 3,719 7,957 2,606 7,150 3,432 

5 2,042 766 1,910 5,352 834 4,779 2,869 

6 1,276 484 1,205 4,517 230 4,119 2,914 

7 792 341 760 4,287 190 4,050 3,290 

8 451 451 442 4,097 4,097 4,017 3,575 

 

(1) The time, t, after the liability is set. 

(2) The expected value of payments in the next calendar year, 
10

,12
2

t

Nom
AY t AY

AY t

L  
 

  . 

(3) 1
Nom Nom Nom
t t tL L L    . 

(4) The discounted liability, 
 

8

0.5
1

t

Nom
Disc k

k t
k t

L
L

i
 







 . 

(5) The Tail-Value-at-Risk, i.e., the conditional expected value of the random loss, 

10

,12
2

AY t AY
AY t

X  
 
 , given that the loss exceeds the 99th percentile. 

(6) ΔTVaR
Nom
t =TVaR

Nom
t -TVaR

Nom
t 1 . 

(7) The discounted TVaR
 







8

5.01tk
tk

Nom
kDisc

t
i

TVaR
. 

The needed capital at time t is expected to be TVaRDisc Disc
t t tC L  .  
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Table 8 

(1) (2) (3) (4) (5) (6) (7) (8)

t Nom
tL  Nom

tL
Disc
tL TVaRNom

t
TVaRNom

t TVaRDisc
t  Ct

0 97,503 40,375 91,220 128,894 48,491 118,529 27,309
1 57,128 26,493 53,695 80,403 31,742 73,819 20,124
2 30,635 14,490 28,824 48,661 17,133 44,401 15,576
3 16,145 7,622 15,201 31,528 9,412 28,705 13,504
4 8,523 3,962 8,035 22,116 6,225 20,255 12,219
5 4,561 2,042 4,317 15,891 4,321 14,717 10,400
6 2,519 1,276 2,407 11,570 3,673 10,899 8,493
7 1,243 792 1,202 7,898 3,801 7,590 6,388
8 451 451 442 4,097 4,097 4,017 3,575

(1) The time, t, after the liability is set. 

(2) The expected value of all future payments, 
10 10

,
2 12

t

Nom
AY Lag

AY t Lag t AY

L
    

   . 

(3) 1
Nom Nom Nom
t t tL L L    . 

(4) The discounted liability, 
 

8

0.5
1

t

Nom
Disc k

k t
k t

L
L

i
 







 . 

(5) The Tail-Value-at-Risk, i.e., the conditional expected value of the random loss, 

 
10 10

,
2 12

AY Lag
AY t Lag t AY

X
    
  , given that the loss exceeds the 99th percentile. 

(6) 1TVaR TVaR TVaRNom Nom Nom
t t t   . 

(7) The discounted  
8

0 . 5

T V a R
T V a R

1

N o m
D i s c k
t k t

k t i
 









. 

(8) The needed capital at time t is expected to be TVaRDisc Disc
t t tC L  .  
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8. NEXT STEPS 

The goal of this paper was to demonstrate how publicly available data can be used to calculate the 

technical provisions in Solvency II. This is a purely hypothetical exercise, since the publicly available 

data is in America, and Solvency II applies to the European Union. 

Even if the Americans were to adopt something like Solvency II, or the Europeans were to adopt 

reporting requirements similar to the American Schedule P, there is more work to be done. The 10 

years of paid data reported in Schedule P are reasonably close to final for commercial auto. But 

losses in other lines of insurance can take longer than 10 years to settle. Schedule P does have 

incurred data that can be useful in getting estimates of outstanding losses beyond the 10-year 

maturity reporting limit of Schedule P. There are loss reserving methods now available that integrate 

both paid and incurred data. See, for example, Quarg and Mack (2008) or Posthuma, Cator, 

Veerkamp, and van Zwet (2008). One thing that could be done is to integrate Schedule P incurred 

losses into the empirical Bayesian framework developed in this paper. 
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APPENDIX A – ANNOTATED R CODE 

The methodology in this paper follows that of Meyers (2009). This appendix assumes that the 

reader is familiar with the methodology of that paper. I think the methodology needs further 

development before it can be considered to be mature. This paper makes a few evolutionary steps 

along that path.  

This paper makes two improvements over the code in Meyers (2009). 

First it adds the sev, t, and c parameters to the model. Note that Simulation Algorithm 4 or Meyers 

(2009) introduces the {ELR} and {Dev} parameters into the Metropolis-Hastings algorithm in two 

separate steps. This paper introduces the sev and t parameters into the algorithm as an additional 

step, and then introduces the c parameter as a second additional step. 

Next it revises the “speedy Tweedie” approximation of Appendix B of Meyers (2009). The 

function “dtweedie” in R’s Tweedie package is relatively slow compared to other density functions 

available in R. Appendix B makes use of the fact that the dtweeedie works nearly as fast on vectors 

as it does on single numbers. So it calculates the function dtweedie(y,p,y,) over a vector y that 

spans the range needed. It then approximates the function by a single cubic polynomial. This paper 

attains a more accurate approximation with a piecewise cubic interpolation that is just as fast. 

To run the program, you input the name of a comma separated value file containing the first four 

columns of the data in Appendix B. You then specify the names of the various output files 

(identified with various tables in the paper. Finally you have to provide a list of cells whose random 

sum you want to predict. It generally consists of cells that make up one or more calendar years. 

When testing against holdout data, you must take care to match the cells in the holdout data with the 

list of cells the go into the predictive distribution.  

Hopefully the program comments make this clear.  
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# 
# Input 
# 
insurer="Insurer 1 Data.csv"        # input file 
adata=read.csv(insurer) 
outname="Insurer 1 Summary"         # Table 3 and Table 6 
#outname2="Insurer 1 Cells.csv"     # Appendix B  comment out if not testing 
#outname3="Insurer 1 Test.csv"      # Table 4     comment out if not testing 
tweedie.p=1.67 
npost=500 
# 
# set up the (AY,Lag) pairs included in the predictive distribution 
# 
# in ayXX and lagXX below, the XX refers to the calendar year 
# 
ay11=2:10 
lag11=12-ay11 
ay12=3:10 
lag12=13-ay12 
ay13=4:10 
lag13=14-ay13 
ay14=5:10 
lag14=15-ay14 
ay15=6:10 
lag15=16-ay15 
ay16=7:10 
lag16=17-ay16 
ay17=8:10 
lag17=18-ay17 
ay18=9:10 
lag18=19-ay18 
ay19=10:10 
lag19=20-ay19 
# 
# select which (AY,Lag) cells to include in predictive distribution 
# 
# examples 
# use for the next calendar year 
pred.ay=ay11 
pred.lag=lag11 
# use for all outstanding losses 
#pred.ay=c(ay11,ay12,ay13,ay14,ay15,ay16,ay17,ay18,ay19) 
#pred.lag=c(lag11,lag12,lag13,lag14,lag15,lag16,lag17,lag18,lag19) 
# use for insurer 1 retro test (missing ay=3) 
#ayins1=c(2,4,5,6,7,8,9,10) 
#lagins1=12-ayins1 
# use for insurer 3 retro test (missing ay=2) 
#ayins3=3:10 
#lagins3=12-ayins3 
cys=unique(pred.lag+pred.ay-1) 
# 
# discretized gamma severity distribution 
# 
library(actuar) 
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discrete.gamma<-function(tau,p,h,fftn){ 
    alpha=(2-p)/(p-1) 
    theta=tau/alpha 
    m=2^fftn 
    dpar<-rep(0,m) 
    x<-h*0:(m-1) 
    lev=levgamma(x,alpha,scale=theta) 
    dpar[1]=1-lev[2]/h 
    dpar[2:(m-1)]=(2*lev[2:(m-1)]-lev[1:(m-2)]-lev[3:(m)])/h 
    dpar[m]=1-sum(dpar[1:(m-1)]) 
    return(dpar) 
    } # end discrete.gamma function 
# 
# model with variable dev,elr,sev,con 
# 
fact.crm.llike1=function(dev,elr,sev,con){ 
  cyt=sev[2]^(rdata$ay+rdata$lag-1) 
  eloss=rdata$premium*dev[rdata$lag]*elr[rdata$ay]*cyt 
  phi=(eloss^(1-tweedie.p)*sev[1]*tau[rdata$lag])/(2-tweedie.p)+ 
              con*eloss^(2-tweedie.p) 
  llike=ldtweedie.scaled(rdata$loss,eloss,phi) 
  return(sum(llike)) 
  } 
num=250 
front=matrix(0,num,10) 
log.y1=front 
log.ybot=0 
library(statmod) 
library(tweedie) 
ldtweedie.front=function(y,lyf,lf){ 
  ly=log(y) 
  del=lyf[2]-lyf[1] 
  low=pmax(floor((ly-lyf[1])/del),1) 
  d01=(lf[low+1]-lf[low])/del 
  d12=(lf[low+2]-lf[low+1])/del 
  d23=(lf[low+3]-lf[low+2])/del 
  d012=(d12-d01)/2/del 
  d123=(d23-d12)/2/del 
  d0123=(d123-d012)/3/del 
  ld=lf[low]+(ly-lyf[low])*d01+(ly-lyf[low])*(ly-lyf[low+1])*d012+ 
             (ly-lyf[low])*(ly-lyf[low+1])*(ly-lyf[low+2])*d0123 
  return(ld) 
  } 
# 
ldtweedie.scaled=function(y,mu,phi){ 
  dev=y 
  ll=y 
  k=(1/phi)^(1/(2-tweedie.p)) 
  ky=k*y 
  yp=ky>0 
  dev[yp]=2*((k[yp]*y[yp])^(2-tweedie.p)/((1-tweedie.p)* 
     (2-tweedie.p))-k[yp]*y[yp]*(k[yp]*mu[yp])^(1-tweedie.p)/ 
     (1-tweedie.p)+(k[yp]*mu[yp])^(2-tweedie.p)/(2-tweedie.p)) 
  ll[yp]=log(k[yp])+ldtweedie.front(ky[yp],log.y1,front)-dev[yp]/2 
  ll[!yp]=-mu[!yp]^(2-tweedie.p)/phi[!yp]/(2-tweedie.p) 
  return(ll) 
  } 
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# 
# log prior and proposal density functions 
# 
log.prior=function(dev,elr,sev,con){ 
  ld=dgamma(dev,alpha.dev,scale=theta.dev,log=T) 
  le=dgamma(elr,alpha.elr,scale=theta.elr,log=T) 
  ls=dgamma(sev,alpha.sev,scale=theta.sev,log=T) 
  lc=dgamma(con,alpha.con,scale=theta.con,log=T) 
  return(sum(ld,le,ls,lc)) 
  } 
 
log.proposal.den=function(x,m,alpha){ 
  d=dgamma(x,alpha,scale=m/alpha,log=T) 
  return(sum(d)) 
  } 
# 
# main program 
# 
# initialize variables for metropolis hastings 
# 
set.seed(12345) 
nmh=11000                    # number of MH scenarios 
# 
# parameters for the prior distribution 
# 
alpha.sev=c(1.367644674,1290.230651) 
theta.sev=c(136.2478465,0.00076972) 
alpha.con=0.074005011 
theta.con=0.139142639 
alpha.elr=c(29.85060994,33.8347283, 35.33377535,24.49077508,28.66183085, 
           25.63407528,16.80427236,14.36801632,9.305348568,6.366703316) 
theta.elr=c(0.023695076,0.022680106,0.021353992,0.028504884,0.025371532, 
       0.030388169,0.050089616,0.060203232,0.101715232,0.160927171) 
alpha.dev=c(15.80995889,42.85381689,56.49438570,30.45284406,10.23093999, 
            5.809417079,3.695390712,2.393367923,1.355938768,0.455240196) 
theta.dev=c(0.013514659,0.005874493,0.003588986,0.004605868,0.008501860, 
            0.008263645,0.006753167,0.005653256,0.006622295,0.020023956) 
tau=1-(1-(1:10)/10)^3 
alpha.prop.elr=500 
alpha.prop.sev=500 
alpha.prop.con=500 
alpha.prop.dev=2000*alpha.dev*theta.dev 
# 
# get insurer data and set up tweedie model 
# 
rdata=subset(adata,adata$ay+adata$lag<12) #separate test data from fitting 
data 
# 
# set up the 'speedy tweedie' calculation 
# 
eloss.max=max(rdata$loss) 
phi.min=eloss.max^(1-tweedie.p)*tau[1]/2/(2-tweedie.p) 
k.max=(1/phi.min)^(1/(2-tweedie.p)) 
log.ytop=log(eloss.max*k.max) 
log.ybot=0 
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del=(log.ytop-log.ybot)/num 
log.y1=seq(from=log.ybot,to=log.ytop,length=num) 
front=log(dtweedie(exp(log.y1),tweedie.p,exp(log.y1),1)) 
# 
# initialize metropolic hastings arrays and select starting values 
# 
mh.dev=matrix(0,nmh,10) 
mh.elr=mh.dev 
mh.sev=matrix(0,nmh,2) 
mh.con=mh.sev 
mh.dev[1,]=alpha.dev*theta.dev  # use prior mean for mh starting values 
mh.elr[1,]=alpha.elr*theta.elr 
mh.sev[1,]=alpha.sev*theta.sev 
mh.con[1]=alpha.con*theta.con 
prev.log.post=fact.crm.llike1(mh.dev[1,],mh.elr[1,],mh.sev[1,],mh.con[1])+ 
              log.prior(mh.dev[1,],mh.elr[1,],mh.sev[1,],mh.con[1]) 
# 
# generate samples using mh algorithm 
# 
  for (i in 2:nmh){ 
    devmh=rgamma(10,shape=alpha.prop.dev,scale=mh.dev[i-1,]/alpha.prop.dev) 
    devmh=devmh/sum(devmh) 
    u=log(runif(1)) 
    log.post=fact.crm.llike1(devmh,mh.elr[i-1,],mh.sev[i-1,],mh.con[i-1])+ 
                   log.prior(devmh,mh.elr[i-1,],mh.sev[i-1,],mh.con[i-1]) 
    r=log.post-prev.log.post+ 
      log.proposal.den(mh.dev[i-1,],devmh,alpha.prop.dev)- 
      log.proposal.den(devmh,mh.dev[i-1,],alpha.prop.dev) 
    mh.dev[i,]=mh.dev[i-1,] 
    if(u<r){ 
      mh.dev[i,]=devmh 
      prev.log.post=log.post 
      } 
    # 
    elrmh=rgamma(10,shape=alpha.prop.elr,scale=mh.elr[i-1,]/alpha.prop.elr) 
    u=log(runif(1)) 
    log.post=fact.crm.llike1(mh.dev[i,],elrmh,mh.sev[i-1,],mh.con[i-1])+ 
                   log.prior(mh.dev[i,],elrmh,mh.sev[i-1,],mh.con[i-1]) 
    r=log.post-prev.log.post+ 
      log.proposal.den(mh.elr[i-1,],elrmh,alpha.prop.elr)- 
      log.proposal.den(elrmh,mh.elr[i-1,],alpha.prop.elr) 
    mh.elr[i,]=mh.elr[i-1,] 
    if(u<r){ 
      mh.elr[i,]=elrmh 
      prev.log.post=log.post 
      } 
    # 
    sevmh=rgamma(2,shape=alpha.prop.sev,scale=mh.sev[i-1,]/alpha.prop.sev) 
    u=log(runif(1)) 
    log.post=fact.crm.llike1(mh.dev[i,],mh.elr[i,],sevmh,mh.con[i-1])+ 
                   log.prior(mh.dev[i,],mh.elr[i,],sevmh,mh.con[i-1]) 
    r=log.post-prev.log.post+ 
      log.proposal.den(mh.sev[i-1,],sevmh,alpha.prop.sev)- 
      log.proposal.den(sevmh,mh.sev[i-1,],alpha.prop.sev) 
    mh.sev[i,]=mh.sev[i-1,] 
    if(u<r){ 
      mh.sev[i,]=sevmh 
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      prev.log.post=log.post 
      } 
    conmh=rgamma(1,shape=alpha.prop.con,scale=mh.con[i-1]/alpha.prop.con) 
    u=log(runif(1)) 
    log.post=fact.crm.llike1(mh.dev[i,],mh.elr[i,],mh.sev[i,],conmh)+ 
                   log.prior(mh.dev[i,],mh.elr[i,],mh.sev[i,],conmh) 
    r=log.post-prev.log.post+ 
      log.proposal.den(mh.con[i-1],conmh,alpha.prop.con)- 
      log.proposal.den(conmh,mh.con[i-1],alpha.prop.con) 
    mh.con[i]=mh.con[i-1] 
    if(u<r){ 
      mh.con[i]=conmh 
      prev.log.post=log.post 
      } 
    } 
# 
# sample mh parameters 
# 
samp=sample(1001:nmh,size=npost) 
# 
# calculate predited percentiles of observed losses in training data 
# 
pctloss=rep(0,dim(rdata)[1]) 
meanloss=pctloss 
tpct=rep(0,npost) 
for (i in 1:dim(rdata)[1]){ 
  cyt=mh.sev[samp,2]^(rdata$ay[i]+rdata$lag[i]-1) 
  mu=rdata$premium[i]*mh.elr[samp,rdata$ay[i]]*mh.dev[samp,rdata$lag[i]]*cyt 
  meanloss[i]=mean(mu) 
  phi=(mu^(1-tweedie.p)*mh.sev[samp]*tau[rdata$lag[i]])/(2-tweedie.p)+ 
       mh.con[samp]*mu^(2-tweedie.p) 
  for (j in 1:npost){ 
    tpct[j]=ptweedie(rdata$loss[i],tweedie.p,mu[j],phi[j]) 
    } 
  pctloss[i]=mean(tpct) 
  if (rdata$loss[i]==0) pctloss[i]=pctloss[i]*runif(1) 
  } 
# 
# plot results 
# 
windows(record=T) 
# 
# trace plot of estimates 
# 
nmh.pred=rep(0,nmh) 
ay.prem=rep(0,10) 
for (j in unique(pred.ay)){ 
  ay.prem[j]=mean(rdata$premium[rdata$ay==j]) 
  } 
pred.mean=rep(0,nmh) 
for (i in 1:nmh){ 
  for (j in unique(pred.ay)){ 
    ayp=(pred.ay==j) 
    for (k in pred.lag[ayp]){ 
      cyt=mh.sev[i,2]^(j+k-1) 
      nmh.pred[i]=nmh.pred[i]+ay.prem[j]*mh.elr[i,j]*mh.dev[i,k]*cyt 
      } 
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    } 
  } 
plot(1:nmh,nmh.pred,type="l",main="Trace Plot for Mean Loss") 
# 
# plot of elr paths 
# 
set.seed(12345) 
prior.elr=matrix(0,1000,10) 
for (j in 1:1000){ 
  prior.elr[j,]=rgamma(10,shape=alpha.elr,scale=theta.elr) 
  } 
par(mfrow=c(2,1)) 
plot(1:10,prior.elr[1,],ylim=range(0,1.5*prior.elr), 
       main="ELR Paths", 
       xlab="Accident Year",ylab="ELR",type="n") 
legend("topleft",legend=c("Posterior","Prior"), 
       col=c("black","grey"),lwd=c(3,3)) 
for (j in 1:1000){ 
  par(new=T) 
  plot(1:10,prior.elr[j,],ylim=range(0,1.5*prior.elr),main="", 
         xlab="",ylab="",col="grey",type="l") 
  } 
for (j in samp){ 
  par(new=T) 
  plot(1:10,mh.elr[j,],ylim=range(0,1.5*prior.elr),main="", 
         xlab="",ylab="",col="black",type="l",lwd=1) 
    } 
# 
# plot of dev paths 
# 
prior.dev=matrix(0,1000,10) 
for (j in 1:1000){ 
  prior.dev[j,]=rgamma(10,shape=alpha.dev,scale=theta.dev) 
  } 
 
plot(1:10,prior.dev[1,],ylim=range(0,prior.dev), 
       main="Dev Paths", 
       xlab="Settlement Lag",ylab="Dev",type="n") 
legend("topright",legend=c("Posterior","Prior"), 
       col=c("black","grey"),lwd=c(3,3)) 
for (j in 1:1000){ 
  par(new=T) 
  plot(1:10,prior.dev[j,],ylim=range(0,prior.dev),main="", 
         xlab="",ylab="",col="grey",type="l") 
  } 
for (j in samp){ 
  par(new=T) 
  plot(1:10,mh.dev[j,],ylim=range(0,prior.dev),main="", 
         xlab="",ylab="",col="black",type="l",lwd=1) 
    } 
# 
# plot of severity parameters 
# 
par(mfrow=c(2,1)) 
prior.sev1=rgamma(1000,alpha.sev[1],scale=theta.sev[1]) 
hist(prior.sev1,main="Prior Distribution of 'sev' Parameter",  
  xlim=range(prior.sev1,mh.sev[,1]),xlab="sev") 
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hist(mh.sev[samp,1],xlim=range(prior.sev1,mh.sev[,1]),xlab="sev", 
 main="Posterior Distribution of 'sev' Parameter") 
# 
# plot of calendar year trend parameters 
# 
par(mfrow=c(2,1)) 
prior.sev2=rgamma(1000,alpha.sev[2],scale=theta.sev[2]) 
hist(prior.sev2,main="Prior Distribution 't' Parameter", 
  xlim=range(prior.sev2,mh.sev[,2]),xlab="t") 
hist(mh.sev[samp,2],xlim=range(prior.sev2,mh.sev[,2]),xlab="t", 
 main="Posterior Distribution of 't' Parameter") 
# 
# plot of contagion parameters 
# 
par(mfrow=c(2,1)) 
prior.con=rgamma(1000,alpha.con,scale=theta.con) 
hist(prior.con,main="Prior Distribution of 'c' Parameter", 
  xlim=range(prior.con,mh.con),xlab="c") 
hist(mh.con[samp],xlim=range(prior.con,mh.con),xlab="c", 
 main="Posterior Distribution of 'c' Parameter") 
# 
# pp plot of cell loss percentiles for training data 
# 
par(mfrow=c(2,2)) 
# 
# pp plot of cell loss percentiles for training data 
# 
plot(sort(pctloss),1:length(pctloss)/ 
    (1+length(pctloss)), 
    xlim=c(0,1),ylim=c(0,1),xlab="Predicted P",ylab="Observed P", 
    main="PP Plot") 
crit.val1=1.63/sqrt(length(pctloss)) # 1.36 for 5%, 1.63 for 1% 
crit.val2=1.36/sqrt(length(pctloss)) 
abline(0,1,lwd=3) 
abline(crit.val1,1) 
abline(-crit.val1,1) 
abline(crit.val2,1) 
abline(-crit.val2,1) 
# 
#  plots of ay, lag and calendar year vs percentile for training data 
# 
plot(rdata$ay,pctloss,main="AY vs Cell Percentiles",ylim=c(0,1), 
     xlab="AY",ylab="Observed P") 
plot(rdata$lag,pctloss,main="Lag vs Cell Percentiles",ylim=c(0,1), 
     xlab="Lag",ylab="Ovserved P") 
plot(rdata$ay+rdata$lag-1,pctloss,main="CY vs Cell Percentiles", 
     ylim=c(0,1),xlab="CY",ylab="Observed P") 
# 
# calculate predictive distributions of outcomes - takes some time 
# 
 
fftn=14 
h=max(rdata$premium)*10/2^fftn 
niceh=c(5,10,20,25,40,50,75,100,125,150,200,250,500,750,1000) 
h=min(subset(niceh,niceh>h)) 
x=h*(0:(2^fftn-1)) 
phiz=matrix(0,2^fftn,9) 
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phix=complex(2^fftn,0,0) 
postnum=0 
eloss=matrix(0,length(samp),length(pred.ay)) 
for (k in 1:npost){ 
  i=samp[k] 
  phixp=complex(2^fftn,1,0) 
  for (j in 1:length(pred.ay)){ 
    ay=pred.ay[j] 
    lag=pred.lag[j] 
    premium=min(subset(rdata$premium,rdata$ay==ay)) 
    tau1=mh.sev[i,1]*tau[lag]*mh.sev[i,2]^(ay+lag-1) 
    phiz=fft(discrete.gamma(tau1,tweedie.p,h,fftn)) 
    eloss[k,j]=premium*mh.elr[i,ay]*mh.dev[i,lag]*mh.sev[i,2]^(ay+lag-1) 
    lam=eloss[k,j]/tau1 
    phixp=phixp*exp(lam*(phiz-1)) 
    }  
  phix=phix+phixp 
  postnum=postnum+1 
  print(postnum) 
  } 
pred=round(Re(fft(phix/npost,inverse=TRUE)),12)/2^fftn 
mean.outcome=sum(x*pred) 
sd.outcome=sqrt(sum(x*x*pred)-mean.outcome^2) 
pred.range=(x>.6*mean.outcome)&(x<1.4*mean.outcome) 
# 
# plot distribution of estimates 
# 
par(mfrow=c(2,1)) 
pred.mean=rowSums(eloss) 
hist(pred.mean, 
   main="Posterior Distribution of Estimates", 
   xlim=range(x[pred.range]),xlab="Reserve Estimate (000)", 
   sub=paste("Mean =",format(round(mean(pred.mean)),big.mark=","), 
   " Standard Deviation =",format(round(sd(pred.mean)),big.mark=","))) 
# 
# plot distribution of outcomes 
# 
xb=(x[cumsum(pred)>.99]) 
pb=pred[cumsum(pred)>.99] 
tvar=sum(xb*pb)/sum(pb) 
predb=pred[pred.range] 
plot(x[pred.range],predb/h,type="l",col="black",lwd=3, 
     ylim=c(0,max(predb/h)), 
     xlim=range(x[pred.range]), 
     main="Predictive Distribution of Outcomes", 
     xlab="Reserve Outcome (000)",ylab="Predictive Probability Density", 
     sub=paste("Mean =",format(round(mean.outcome),big.mark=","), 
     "  Standard Deviation =",format(round(sd.outcome),big.mark=","))) 
# 
# write out summary statistics including tvar 
# 
outlab=c("input data","train sum actual","train sum predicted","train sum 
ratio") 
outlab=c(outlab,"pred mean","pred sd est","pred.sd out","pred tvar","cyid") 
results=rep(0,9) 
results[1]=insurer 
results[2]=sum(rdata$loss) 
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results[3]=sum(meanloss) 
results[4]=sum(rdata$loss)/sum(meanloss) 
results[5]=mean.outcome 
results[6]=sd(pred.mean) 
results[7]=sd.outcome 
results[8]=tvar 
results[9]=sum(unique(pred.ay+pred.lag-1)) 
df.results=data.frame(outlab,results) 
df.results 
outname=paste(outname,results[9],".csv") 
write.csv(df.results,file=outname,row.names=F) 
# 
# calculate predited percentiles of observed losses in test data 
# 
edata=subset(adata,adata$ay+adata$lag>11) #separate test data from fitting 
data 
e.pctloss=rep(0,dim(edata)[1]) 
e.meanloss=e.pctloss 
tpct=rep(0,npost) 
for (i in 1:dim(edata)[1]){ 
  cyt=mh.sev[samp,2]^(edata$ay[i]+edata$lag[i]-1) 
  mu=edata$premium[i]*mh.elr[samp,edata$ay[i]]*mh.dev[samp,edata$lag[i]]*cyt 
  e.meanloss[i]=mean(mu) 
  phi=(mu^(1-tweedie.p)*mh.sev[samp]*tau[edata$lag[i]])/(2-tweedie.p)+ 
       mh.con[samp]*mu^(2-tweedie.p) 
  for (j in 1:npost){ 
    tpct[j]=ptweedie(edata$loss[i],tweedie.p,mu[j],phi[j]) 
    } 
  e.pctloss[i]=mean(tpct) 
  if (edata$loss[i]==0) e.pctloss[i]=e.pctloss[i]*runif(1) 
  } 
# 
# calculate p-value for test data 
# 
actual=sum(edata$loss) 
predicted=round(sum(e.meanloss)) 
ratio=round(100*actual/predicted,2) 
b=(x<actual) 
pvalue=round(max(cumsum(pred)[b]),4) 
pvalue 
testout=data.frame(actual,predicted,ratio,pvalue) 
write.csv(testout,file=outname3,row.names=F) 
# 
# reproduce Insurer X Data 
# 
test=rep(0,dim(rdata)[1]) 
e.test=rep(1,dim(edata)[1]) 
ay=c(rdata$ay,edata$ay) 
lag=c(rdata$lag,edata$lag) 
premium=c(rdata$premium,edata$premium) 
loss=c(rdata$loss,edata$loss) 
pctloss=c(pctloss,e.pctloss) 
meanloss=c(meanloss,e.meanloss) 
test=c(test,e.test) 
cell.results=data.frame(ay,lag,premium,loss,pctloss,meanloss,test) 
cell.results 
write.csv(cell.results,outname2,row.names=F) 
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APPENDIX B – INSURER DATA 

This appendix contains the data for the four insurers analyzed in this paper, along with selected 

results particular to the accident year and settlement lag. The first four columns were used to fit the 

model. What follows is a description of each data element. 

1. Accident Year (1987=1)  

2. Settlement Lag 

3. Net Premium 

4. Incremental Paid Net Loss 

5. P-value – FAY,Lag(xAY,Lag) (Equation 10) 

6. Mean of the predictive distribution –μAY,Lag (Equation 11) 

7. Test Indicator (= 0 if used for fitting, =1 in used for testing) 
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APPENDIX B – INSURER #1 

AY Lag Premium Loss p-value E[Loss] Test 
1 1 29,701 5,234 0.62800  4,979.25 0 
1 2 29,701 5,172 0.59792  4,978.05 0 
1 3 29,701 3,708 0.40137 4,025.16 0 
1 4 29,701 1,783 0.25697  2,297.84 0 
1 5 29,701 923 0.31750  1,224.53 0 
1 6 29,701 537 0.47430 627.50 0 
1 7 29,701 175 0.45819  266.75 0 
1 8 29,701 145 0.58558 175.37 0 
1 9 29,701 8 0.36715 110.23 0 
2 1 27,526 5,234 0.46129  5,383.23 0 
2 2 27,526 5,683 0.62545  5,385.46 0 
2 3 27,526 4,392 0.54172 4,355.15 0 
2 4 27,526 2,134 0.35274 2,485.43 0 
2 5 27,526 1,377 0.58789 1,323.74 0 
2 6 27,526 673 0.56343  678.62 0 
2 7 27,526 155 0.38298  287.97 0 
2 8 27,526 81 0.40826 189.45 0 
2 9 27,526 47 0.50786 118.20 0 
3 1 30,750 5,702 0.37457 6,117.66 0 
3 2 30,750 5,865 0.44487 6,111.99 0 
3 3 30,750 7,966 0.98836 4,945.90 0 
3 4 30,750 2,472 0.36650 2,822.51 0 
3 6 30,750 143 0.03003 770.53 0 
3 7 30,750 152 0.32027 326.31 0 
3 8 30,750 73 0.33895 215.34 0 
4 1 35,814 6,349 0.73986 5,706.63 0 
4 2 35,814 4,611 0.18397 5,704.71 0 
4 3 35,814 3,959 0.29187 4,617.25 0 
4 4 35,814 2,522 0.47976 2,635.60 0 
4 5 35,814 1,924 0.82504 1,402.37 0 
4 6 35,814 622 0.46919 719.95 0 
4 7 35,814 206 0.45015  303.85 0 
5 1 42,277 8,377 0.80655 7,291.36 0 
5 2 42,277 6,890 0.41615 7,290.34 0 
5 3 42,277 4,055 0.06994 5,897.94 0 
5 4 42,277 3,795 0.70103 3,363.19 0 
5 5 42,277 1,292 0.24508 1,791.99 0 
5 6 42,277 1,422 0.85865  918.92 0 
6 1 50,088 9,291 0.13432 11,322.40 0 
6 2 50,088 13,836 0.88970 11,316.67 0 
6 3 50,088 12,441 0.95467 9,154.43 0 
6 4 50,088 4,086 0.19012 5,224.03 0 
6 5 50,088 2,293 0.31767 2,780.94 0 
7 1 56,921 12,029 0.51493 12,071.18 0 
7 2 56,921 12,462 0.59261 12,068.66 0 
7 3 56,921 8,369 0.24543 9,759.61 0 
7 4 56,921 7,034 0.85965  5,567.06 0 
8 1 61,406 13,119 0.65267 12,416.19 0 
8 2 61,406 12,618 0.56142 12,410.83 0 
8 3 61,406 9,117 0.33922 10,037.48 0 
9 1 67,983 15,860 0.56056 15,630.32 0 
9 2 67,983 14,893 0.41787 15,622.43 0 
10 1 73,359 16,498 0.51160 16,687.70 0 
2 10 27,526 0 0.36054 143.28 1 
4 8 35,814 194 0.62159 201.01 1 
5 7 42,277 324 0.51047 390.57 1 
6 6 50,088 1,769 0.74071 1,427.91 1 
7 5 56,921 4,783 0.95281 2,972.68 1 
8 4 61,406 7,954 0.92811 5,735.63 1 
9 3 67,983 12,655 0.52867 12,650.30 1 
10 2 73,359 13,724 0.20078 16,718.34 1 
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APPENDIX B – INSURER #2 

AY Lag Premium Loss p-value E[Loss] Test 
1 1 15,274 3,718 0.63752 3,538.62 0 
1 2 15,274 3,243 0.68616 2,962.24 0 
1 3 15,274 1,889 0.25142 2,350.47 0 
1 4 15,274 1,697 0.45221 1,826.75 0 
1 5 15,274 731 0.39982 904.88 0 
1 6 15,274 770 0.85561 434.59 0 
1 7 15,274 287 0.67785 242.21 0 
1 8 15,274 1,086 0.98831 245.97 0 
1 9 15,274 49 0.58684 97.24 0 
1 10 15,274 20 0.55321 89.22 0 
2 1 15,722 3,844 0.53156 3,819.48 0 
2 2 15,722 4,196 0.92276 3,197.64 0 
2 3 15,722 2,806 0.67816 2,536.67 0 
2 4 15,722 2,310 0.72096 1,973.39 0 
2 5 15,722 414 0.09853 977.83 0 
2 6 15,722 78 0.08000 467.88 0 
2 7 15,722 232 0.56845 261.61 0 
2 8 15,722 36 0.18582 265.54 0 
2 9 15,722 5 0.38171 104.54 0 
3 1 16,266 3,854 0.68477 3,594.26 0 
3 2 16,266 3,378 0.72771 3,010.23 0 
3 3 16,266 1,860 0.21581 2,387.61 0 
3 4 16,266 1,736 0.45833 1,857.23 0 
3 5 16,266 662 0.32273 920.45 0 
3 6 16,266 697 0.81186 439.60 0 
3 7 16,266 20 0.14912 245.46 0 
3 8 16,266 228 0.58356 249.83 0 
4 1 17,017 3,184 0.66632 2,975.79 0 
4 2 17,017 1,948 0.18750 2,493.52 0 
4 3 17,017 1,670 0.32708 1,979.80 0 
4 4 17,017 1,257 0.33866 1,538.59 0 
4 5 17,017 1,433 0.92792 761.65 0 
4 6 17,017 217 0.37523 364.88 0 
4 7 17,017 190 0.60559 203.25 0 
5 1 18,016 2,837 0.19607 3,335.78 0 
5 2 18,016 3,180 0.74147 2,793.63 0 
5 3 18,016 1,794 0.26688 2,216.25 0 
5 4 18,016 2,923 0.96200 1,723.16 0 
5 5 18,016 1,035 0.70247 853.66 0 
5 6 18,016 136 0.19534 408.70 0 
6 1 18,395 3,380 0.44921 3,482.92 0 
6 2 18,395 2,394 0.21652 2,916.78 0 
6 3 18,395 2,859 0.80912 2,313.58 0 
6 4 18,395 1,836 0.56140 1,798.69 0 
6 5 18,395 763 0.44185 891.65 0 
7 1 18,932 4,948 0.64629 4,715.55 0 
7 2 18,932 3,288 0.20046 3,948.47 0 
7 3 18,932 4,385 0.93990 3,130.72 0 
7 4 18,932 2,024 0.30727 2,437.57 0 
8 1 20,857 5,116 0.60750 4,936.96 0 
8 2 20,857 4,466 0.67641 4,131.59 0 
8 3 20,857 2,659 0.22562 3,276.81 0 
9 1 24,348 5,702 0.63089 5,466.01 0 
9 2 24,348 3,953 0.24678 4,577.60 0 
10 1 24,030 5,450 0.48231 5,527.01 0 
2 10 15,722 0 0.32000 95.88 1 
3 9 16,266 124 0.73523 99.20 1 
4 8 17,017 99 0.42612 207.58 1 
5 7 18,016 42 0.23582 228.69 1 
6 6 18,395 497 0.66174 427.07 1 
7 5 18,932 1,118 0.48390 1,208.99 1 
8 4 20,857 2,558 0.53458 2,553.63 1 
9 3 24,348 2,531 0.09281 3,632.89 1 
10 2 24,030 4,113 0.30838 4,635.13 1 
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APPENDIX B – INSURER #3 

AY Lag Premium Loss p-value E[Loss] Test 
1 1 39,383 7,701 0.32545 8,174.66 0 
1 2 39,383 7,072 0.32563 7,615.81 0 
1 3 39,383 8,473 0.94002 6,589.57 0 
1 4 39,383 3,549 0.34291 3,969.54 0 
1 5 39,383 3,327 0.85339 2,512.85 0 
1 6 39,383 1,804 0.64478 1,630.75 0 
1 7 39,383 817 0.69365 669.91 0 
1 8 39,383 330 0.64372 298.40 0 
1 9 39,383 105 0.33264 281.69 0 
1 10 39,383 63 0.48387 160.76 0 
2 1 44,770 9,609 0.78559 8,816.87 0 
2 2 44,770 9,540 0.86835 8,213.95 0 
2 3 44,770 5,755 0.12805 7,108.68 0 
2 4 44,770 3,198 0.12712 4,282.46 0 
2 5 44,770 1,898 0.15681 2,711.84 0 
2 6 44,770 1,912 0.63151 1,756.90 0 
2 7 44,770 602 0.45221 723.08 0 
2 8 44,770 122 0.29190 320.84 0 
2 9 44,770 462 0.76641 303.63 0 
3 1 50,914 10,780 0.70914 10,187.56 0 
3 2 50,914 8,570 0.24187 9,491.07 0 
3 3 50,914 7,062 0.19366 8,214.06 0 
3 4 50,914 5,220 0.62343 4,946.45 0 
3 5 50,914 4,849 0.95961 3,134.63 0 
3 6 50,914 2,220 0.63779 2,031.78 0 
3 7 50,914 488 0.24846 834.47 0 
3 8 50,914 239 0.41814 371.71 0 
4 1 56,904 9,098 0.32524 9,619.73 0 
4 2 56,904 8,974 0.51734 8,959.88 0 
4 3 56,904 8,522 0.73617 7,753.12 0 
4 4 56,904 4,985 0.63832 4,672.87 0 
4 5 56,904 2,864 0.48789 2,955.96 0 
4 6 56,904 1,576 0.33841 1,917.89 0 
4 7 56,904 857 0.62105 787.71 0 
5 1 62,551 9,446 0.19963 10,441.16 0 
5 2 62,551 9,620 0.48453 9,727.04 0 
5 3 62,551 10,928 0.96008 8,417.18 0 
5 4 62,551 5,506 0.67673 5,069.52 0 
5 5 62,551 1,973 0.07126 3,209.63 0 
5 6 62,551 1,858 0.41349 2,082.31 0 
6 1 67,205 13,791 0.67421 13,226.53 0 
6 2 67,205 11,656 0.34160 12,322.62 0 
6 3 67,205 11,664 0.75153 10,661.42 0 
6 4 67,205 5,323 0.18643 6,421.71 0 
6 5 67,205 3,731 0.39758 4,067.67 0 
7 1 74,056 16,783 0.53513 16,707.39 0 
7 2 74,056 17,370 0.85083 15,560.35 0 
7 3 74,056 10,413 0.03875 13,467.69 0 
7 4 74,056 9,144 0.77486 8,113.31 0 
8 1 81,035 17,389 0.62141 16,946.46 0 
8 2 81,035 15,132 0.36836 15,783.79 0 
8 3 81,035 13,653 0.51292 13,658.91 0 
9 1 90,568 22,871 0.54331 22,723.13 0 
9 2 90,568 20,819 0.45069 21,167.46 0 
10 1 99,940 22,916 0.47903 23,057.99 0 
3 9 50,914 169 0.35782 352.10 1 
4 8 56,904 372 0.62074 351.26 1 
5 7 62,551 607 0.34127 856.37 1 
6 6 67,205 2,079 0.26920 2,638.39 1 
7 5 74,056 6,121 0.79950 5,138.10 1 
8 4 81,035 8,253 0.52544 8,230.16 1 
9 3 90,568 10,874 0.00027 18,325.98 1 
10 2 99,940 18,260 0.10827 21,496.17 1 
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APPENDIX B – INSURER #4 

AY Lag Premium Loss p-value E[Loss] Test 
1 1 267,666 33,810 0.23507 45,787.91 0 
1 2 267,666 45,318 0.34147 54,471.20 0 
1 3 267,666 46,549 0.60459 44,198.73 0 
1 4 267,666 35,206 0.71245 30,137.93 0 
1 5 267,666 23,360 0.84899 16,758.58 0 
1 6 267,666 12,502 0.68697 10,818.72 0 
1 7 267,666 6,602 0.65542 5,883.45 0 
1 8 267,666 3,373 0.64375 3,018.67 0 
1 9 267,666 2,373 0.63989 2,176.39 0 
1 10 267,666 778 0.50883 1,138.65 0 
2 1 274,526 37,663 0.36921 44,076.07 0 
2 2 274,526 51,771 0.53039 52,532.45 0 
2 3 274,526 40,998 0.50420 42,610.85 0 
2 4 274,526 29,496 0.56482 29,101.82 0 
2 5 274,526 12,669 0.32337 16,191.71 0 
2 6 274,526 11,204 0.62130 10,418.89 0 
2 7 274,526 5,785 0.58105 5,664.48 0 
2 8 274,526 4,220 0.80284 2,908.03 0 
2 9 274,526 1,910 0.54331 2,088.72 0 
3 1 268,161 40,630 0.44228 44,604.21 0 
3 2 268,161 56,318 0.61502 53,036.35 0 
3 3 268,161 56,182 0.82143 43,011.27 0 
3 4 268,161 32,473 0.65752 29,363.66 0 
3 5 268,161 15,828 0.52041 16,328.33 0 
3 6 268,161 8,409 0.35092 10,522.64 0 
3 7 268,161 7,120 0.73419 5,721.56 0 
3 8 268,161 1,125 0.13471 2,948.32 0 
4 1 276,821 40,559 0.54905 40,480.52 0 
4 2 276,821 49,755 0.58209 48,176.91 0 
4 3 276,821 39,323 0.55355 39,099.08 0 
4 4 276,821 24,081 0.44189 26,694.41 0 
4 5 276,821 13,209 0.43920 14,806.69 0 
4 6 276,821 12,655 0.79588 9,561.64 0 
4 7 276,821 2,921 0.19429 5,198.07 0 
5 1 270,214 37,515 0.47765 39,993.47 0 
5 2 270,214 51,068 0.62719 47,562.16 0 
5 3 270,214 34,410 0.42354 38,619.62 0 
5 4 270,214 25,529 0.51768 26,323.12 0 
5 5 270,214 19,433 0.80611 14,676.52 0 
5 6 270,214 5,728 0.17976 9,452.97 0 
6 1 280,568 41,454 0.47870 44,192.46 0 
6 2 280,568 53,552 0.57022 52,642.06 0 
6 3 280,568 40,599 0.49452 42,665.27 0 
6 4 280,568 40,026 0.85032 29,100.24 0 
6 5 280,568 6,750 0.04135 16,206.07 0 
7 1 344,915 57,783 0.50911 60,172.70 0 
7 2 344,915 68,136 0.49687 71,598.64 0 
7 3 344,915 86,915 0.90859 58,013.32 0 
7 4 344,915 18,328 0.04564 39,731.67 0 
8 1 371,139 62,011 0.43460 69,225.13 0 
8 2 371,139 132,553 0.94135 82,082.69 0 
8 3 371,139 21,083 0.00703 66,759.41 0 
9 1 323,753 112,592 0.91665 72,997.37 0 
9 2 323,753 33,783 0.02117 87,133.82 0 
10 1 221,448 38,181 0.44006 43,939.91 0 
2 10 274,526 887 0.56864 1,116.16 1 
3 9 268,161 1,662 0.46527 2,132.64 1 
4 8 276,821 1,043 0.15090 2,686.03 1 
5 7 270,214 2,898 0.19996 5,153.72 1 
6 6 280,568 5,513 0.11725 10,453.71 1 
7 5 344,915 11,551 0.09181 22,134.60 1 
8 4 371,139 17,129 0.01972 45,665.08 1 
9 3 323,753 24,089 0.01220 70,644.07 1 
10 2 221,448 37,485 0.28817 52,940.26 1 

 


