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______________________________________________________________________________ 
Abstract: This paper presents a practical study of how to bootstrap a development triangle using a generalized linear 

model (GLM) and deviance residuals. We also point out some limitations inherent in bootstrapping approaches. 
(Interested readers can contact the author and request a copy of an MS Excel application to further explore the 
concepts discussed in this paper.) First we demonstrate how Pearson residual bootstrapping can fail when applied 
to GLMs because of their linear rescaling properties. Next we describe an algorithm for rescaling deviance 
residuals based on the identity variance function. We continue with an example where Pearson residual 
bootstrapping fails, while deviance residuals bootstrapping works.  We then present bootstrap simulation results 
for two GLMs: one where both approaches work and the original example where only deviance residuals can be 
applied. Subsequently we prove that deviance residuals based on the identity variance function are bounded 
below for any given data point with the lower bound depending on the fitted value for the data point. We then 
give an example of a GLM where deviance residual bootstrapping fails because of this property. The paper 
concludes with a discussion “distribution-free” versus parametric resampling. 

 
Keywords. Bootstrapping and Resampling Methods, Generalized Linear Modeling, Reserve Variability, Reserving 

Methods, Nonparametric Methods. 
              

1. INTRODUCTION 

In the context of stochastic reserving, several authors (e.g., [4], [7] and [9]) have stressed the need 

of casting the task of projecting reserves in a rigorous way as a regression problem. Several authors 

(e.g., [4], [7] and [9]) have also pointed out that performing an all-years, volume weighted, link-ratio 

estimate leads to the same result as fitting a GLM with the logarithmic link function and the identity 

variance function. Some papers (e.g., [4]) and many practitioners have exploited this equivalence to 

implement spreadsheet based applications for deriving a distribution of possible reserve outcomes 

based on bootstrap simulations by repeated resampling and application of the link-ratio estimate. 

While suitable to illustrate the concept of bootstrapping, these applications are typically not flexible 

enough to deal with practical judgments reserving analysts have to make about which cells of the 

triangle are deemed to be representative of future development (e.g., use data from last n diagonals 

or exclude obvious abnormalities). In [5] the author of this paper presented a practical account of 

how to rigorously translate such judgments into a well-defined regression problem using the 

apparatus of GLM theory. This paper builds on the framework established in [5] and presents a case 

study to give a practical demonstration of some limitations inherent in non-parametric 

bootstrapping approaches based on Pearson or deviance residuals.  
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1.1 Research Context 

General accounts of how to apply bootstrapping methods to a GLM for a incremental 

development triangle have been provided in [4] and [7]. Details on how to apply bootstrapping to a 

GLM can also be found in chapter 7.2 of [3]. This paper demonstrates that the common 

Boostrapping approach based on Pearson residuals does break down when the linear rescaling of 

residuals leads to negative incremental values in the resampling distribution for some triangle cells. 

In [3], [4], and [7] the authors do mention that there are also alternative ways of defining residuals. 

We illustrate that a bootstrapping approach based on deviance residuals (using the identity variance 

function) may succeed where bootstrapping based on Pearson residuals fails. As we demonstrate, 

this alternative approach also has practical limitations. At least for the identity variance function, 

deviance residuals are technically not identically distributed, and it may not be possible to rescale all 

residuals for resampling purposes. Throughout this paper we use the GLM framework for 

incomplete development triangles established in [5]. Our case study suggests that there may be good 

practical reasons to prefer parametric resampling over nonparametric resampling. 

1.2 Objective 

Bootstrapping has become a popular method for deriving distributions of reserve outcomes 

based on development triangles. This paper provides a case study to demonstrate some inherent 

limitations of applying versions of this method to a GLM for an incremental development triangle. 

These practical limitations point to the need for further research into alternative resampling 

schemes. We also hope that the case study and the discussion of the issues encountered will provide 

readers with a better understanding of what bootstrapping really is. 

1.3 Outline 

The remainder of the paper proceeds as follows. Section 2 explains the difference between linear 

and non-linear rescaling of residuals, introduces a version of a Newton-Raphson algorithm for 

rescaling deviance residuals based on the identity variance function, and presents an example of a 

GLM for an incremental development triangle for which bootstrapping with deviance residuals is 

possible while bootstrapping with Pearson residuals fails. In section 3 we analyze a limitation of 

bootstrapping with deviance residuals based on the identity variance function. We demonstrate that 

the theoretical distribution of deviance residuals for a given triangle cell is bounded below, and that 

the bound varies with the square root of the expected mean. This means that negative deviance 

residuals for triangle cells with larger expected means may be “out of bounds” for some triangle cells 

with smaller expected means. We provide an example of a GLM for an incremental development 
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triangle where bootstrapping with deviance residuals is not possible for this reason. In the summary 

and discussion section we review our results provide and invite the reader to explore the concepts 

presented with the accompanying MS Excel file. In the conclusion we reflect on the “distribution 

free” or “non-parametric” attributes of bootstrapping approaches. We suggest that in the context of 

GLMs (or other stochastic models) for development triangles “parametric” resampling may be just 

as useful while avoiding some of the limitations demonstrated in this paper.  

2 RESCALING OF RESIDUALS FOR RESAMPLING 

In general bootstrapping deals with the heteroscedasticity of the underlying stochastic model by 

rescaling the residuals obtained from a specific data point so they can be applied to the expected 

means of other data points. The procedure for rescaling depends on the definition of residual used. 

While various residuals are mentioned in [4] and [7], the examples presented in these papers use 

Pearson residuals. Here we demonstrate a limitation imposed by the linear rescaling of Pearson 

residuals and contrast this with the non-linear rescaling properties of deviance residuals. 

2.1 Linear vs. non-linear rescaling 

We assume that we have a collection of suitably standardized residuals that were obtained by 

fitting a GLM to an incremental development triangle using pseudo-likelihood with the identity 

variance function and the natural logarithm as the link function. Suitably standardized means that 

the standardized residuals for various triangle cells can be considered as being approximately 

independent identically distributed (iid). We will return to the question of whether deviance residuals 

can be considered iid in section 3 of this paper. For the time being we simply follow the 

standardization suggested by equations 12.4 and 12.5 on page 397 in [6]. So, in continuing we 

assume that we a have vector of standardized residuals denoted by s. Note that technically this 

vector will be defined differently for Pearson and deviance residuals, but we will not distinguish this 

in our notation. For any given data point we can think of the residuals as a measure of how much an 

actual observation differs from the expected value for that observation. If the expected value, ŷ, for 

the observation is considered a constant parameter the residual, r, is a function of the actual 

observation, y, alone: 

 yr ŷH . (2.1)
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In abstract terms the rescaling of the standardized residuals, s, is accomplished by applying the 

functional inverse of Hŷ to the elements of s. So the vector of resampling values y* can be defined 

by: 

 sy -1
ŷH . (2.2)

Noting that V(ŷ) stands for the variance function of the expected mean of a data point, equation 

(2.1) for Pearson residuals becomes: 

 ŷV

ŷ
P




y
r . 

(2.3)

As one can seem this is a linear function of y, and equation (2.2) therefore also takes linear form: 

  sy  ŷVŷP . (2.4)

So the distribution of resampling values is a linear transformation of the standardized residuals, 

with the same rescaling factor being applied to all standardized residuals. 

 Since the standardized residuals have a mean of zero,1 this also means that for sufficiently small 

expected values, ŷ, there will always be negative values in the resampling distribution. For a GLM 

with a logarithmic link function, this represents a violation of the fundamental model assumption of 

positive incremental values and the MLE algorithm cannot be applied since we cannot take the 

logarithm of a negative number. 

In the context of quasi-likelihood estimation, equation (2.1) for deviance residuals can generally 

be expressed as follows (see equation 9.4 on page 327 in [6]): 

 



y

dt
t

ty
yr

ŷD V
2)ŷsign( . 

(2.5)

Needless to say that dealing with this sort of expression is mathematically more complex than the 

relatively simple functional form of equation (2.3). In particular it is not possible to give a general 

expression for the functional inverse analogous to equation (2.4). We will explain how to approach 

this task numerically for the identity variance function in the next subsection. We conclude this 

subsection by noting that while highly non-linear, deviance residuals are perfectly well-behaved, and 

provided that V(t) goes to 0 sufficiently fast as t goes to 0, we are guaranteed that inverting the 

function will not result in negative resampling values. 

                                                           
1 If necessary we will make a centering adjustment to guarantee that this is the case. 
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2.2 Rescaling deviance residuals based on the identity variance function 

With the identity variance function (i.e., V(ŷ)= ŷ) the integral in equation (2.6) can be given in 

closed form and we get the following expression (see expression for Poisson distribution on page 39 

in [6]) for the deviance residuals: 

  ŷŷ/log2)ŷsign(D  yyyyr . (2.6)

We are still not in a position to give a closed-form expression for the functional inverse, but we 

can numerically solve this using a variant of the Newton-Raphson algorithm (combined with the 

bisection method) based on the code provided on pages 366/7 in [8].2 Since this is a well 

documented standard algorithm we will not go into all implementation details here. We will, 

however, give some details on the modifications we have made to tweak this to the concrete task at 

hand. Firstly, to simplify treatment of the sign of the residual and to get rid of the square root, we 

actually just invert the right-hand side of the following equation: 

    1ŷ/ŷ/logŷ/ŷ22
D  yyyr . (2.7)

Note that the right-hand side of this equation does not define a one-on-one function, so we need 

to choose an appropriate domain (i.e., upper and lower bound for y) based on the sign of the 

residual in question. To further simplify, we substitute x = y/ŷ and w =  

(rD)2 / (2·ŷ) - 1, and thus arrive at: 

  xxxw  log . (2.8)

In order to numerically solve this for x, we need upper and lower bounds depending on the value 

of w. With negative residuals, it suffices to restrict x to (0,1). For positive residuals the lower bound 

for x is clearly 1, but our algorithm uses more refined initial estimates as detailed in appendix 1. With 

this set-up, we solve for x in terms of w by using the Newton-Raphson algorithm to find the zero of 

the function f(x) defined by: 

  wxxxxf  log)( . (2.9)

For those readers not familiar with the Newton-Raphson method, the algorithm proceeds by 

iterating over x until convergence is achieved, using the following formula: 

)(

)(
1

i

i
ii xf

xf
xx


 . 

(2.10)

 

                                                           
2 A pdf of the cited section is freely available at http://www.nrbook.com/a/bookcpdf/c9-4.pdf. 



Bootstrapping Generalized Linear Models for Development Triangles Using Deviance Residuals 

Casualty Actuarial Society E-Forum, Fall 2010  6 

For completeness, in our case the derivative of f(x) is given by: 

 xxf log)(  . (2.11)

As indicated above the actual algorithm implemented is mixing the Newton-Raphson method 

with the bisection method to prevent x from jumping out of bounds or to improve the speed of 

convergence when f(x)<< f’(x). 

The interested reader can contact the author and request a copy of the companion MS Excel 

application to study and explore the source code of user defined function 

VB_PoissonDevianceResidual_Inverse. Also note that, as implemented here, the algorithm assumes 

that residuals have not been adjusted (i.e., normalized) for the dispersion factor. 

Now that we know how to compute resampling distributions using both Pearson and deviance 

residuals, we can apply this apparatus to real-life data.  

2.3 Example 

We are using a data set that the authors of [7] attribute to Taylor and Ashe (1983). Here is the 

data in incremental form: 

357,848  766,940  610,542  482,940 527,326 574,398 146,342 139,950  227,229  67,948 

352,118  884,021  933,894  1,183,289 445,745 320,996 527,804 266,172  425,046  

290,507  1,001,799  926,219  1,016,654 750,816 146,923 495,992 280,405  
 

310,608  1,108,250  776,189  1,562,400 272,482 352,053 206,286 
 

443,160  693,190  991,983  769,488 504,851 470,639 
 

396,132  937,085  847,498  805,037 705,960 
 

440,832  847,631  1,131,398  1,063,269 
 

359,480  1,061,648  1,443,370  
 

376,686  986,608  
  

344,014 
   

To avoid visual clutter we have omitted row and column labels. There are no non-positive or 

missing data points, but we have chosen only to include the latest five diagonals of incremental 

values and to exclude three further triangle cells that were identified as outliers in preliminary 

analysis. Excluded data points from the original data set have been indicated by “strikethrough” 

formatting. 



Bootstrapping Generalized Linear Models for Development Triangles Using Deviance Residuals 

Casualty Actuarial Society E-Forum, Fall 2010  7 

Fitting a GLM with the logarithm as link function and the identity variance function results in the 

following fitted values: 

140,801 338,807 431,201 358,694 242,579 197,553 185,516 116,383 211,622 67,948 

293,186 705,487 897,876 746,898 505,115 411,359 386,295 242,341 440,653 141,486 

396,579 954,279 1,214,515 1,010,295 683,246 556,426 522,523 327,803 596,051 191,382 

214,098 515,178 655,669 545,419 368,858 300,393 282,090 176,968 321,785 103,319 

307,853 740,778 942,791 784,261 530,383 431,937 405,619 254,464 462,697 148,564 

343,763 827,188 1,052,766 875,744 592,251 482,321 452,933 284,146 516,669 165,893 

386,316 929,583 1,183,083 984,148 665,564 542,025 509,000 319,320 580,625 186,429 

442,821 1,065,549 1,356,128 1,128,096 762,913 621,305 583,450 366,025 665,551 213,697 

400,230 963,064 1,225,695 1,019,595 689,536 561,548 527,333 330,821 601,538 193,143 

344,014 827,792 1,053,534 876,383 592,684 482,673 453,264 284,354 517,046 166,014 

As the author of this paper has demonstrated in [5], this type of GLM does not only project 

expected values for future triangle cells but also extrapolates the expected values for all past triangle 

cells that were excluded from the analysis. In the above table, we show all fitted values that 

correspond to included data points in bold letters. All values in italics correspond to 

projections/extrapolations based on the fitted parameters for the model. Since we have chosen the 

identity variance function the reader can also verify that fitted values in bold preserve the row and 

column sums of the original data points for the included triangles cells. 

To bootstrap this GLM, we repeatedly generate pseudo-data for each of the included triangle 

cells (see bold-face fitted values in the above table). During each iteration step we re-estimate the 

GLM based on the pseudo-data generated. For a stochastic reserving application we also calculate 

the estimated reserve and save the total by accident year or in aggregate to get a simulated 

distribution of reserve estimates to evaluate the inherent parameter error. Typically one would 

similarly simulate future development amounts to account for the process error. 

 Effectively this resampling process defines a resampling distribution for each data point, which 

is obtained by rescaling all available standardized residuals and applying them to the fitted values as 

described in the previous two subsections. These resampling distributions can be pre-computed and 

stored both to save execution time during each bootstrap iteration, and to evaluate them for 

consistency with the underlying model assumptions. Here our main concern is with negative 

incremental values, since these prevent us from fitting the model with the MLE algorithm. On the 

following two pages we graph the resampling distributions for two of the triangle cells. Figure 1 

shows the results obtained based on Pearson residuals and Figure 2 shows the corresponding results 

using deviance residuals. 
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Resampling Distributions with Pearson Residuals 
Triangle Cell (1,7)—Fitted Mean = 185,516 
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Figure 1 
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Resampling Distributions with Deviance Residuals 
Triangle Cell (1,7)—Fitted Mean = 185,516 
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Figure 2 
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Overall the two sets of resampling distributions are very similar. Comparing the top graphs for 

triangle cell (1,7) one can see that the smallest value obtained by Pearson residual resampling is 

below that obtained by deviance residual resampling. The same holds true for the largest value. The 

fact that both distributions nevertheless have the same mean of 185,516 (and approximately the 

same variance) is the first indication that deviance residuals are subtly different. 

Comparing the middle graphs for triangle cell (1,10) to the corresponding top graphs for cell (1,7) 

one notices how the spread from minimum to maximum resampling value is smaller for triangle cell 

(1,7) than for triangle cell (1,10). This is the effect of the rescaling to ensure that each resampling 

distribution has the appropriate variance as defined by the variance function assumed in the GLM 

specification. 

Since our main concern here is with negative incremental values we have included slightly larger 

scale graphs of the lower part of the resampling distribution for triangle cell (1,10) at the bottom of 

figure 1 and 2. As we can see, Pearson resampling leads to one negative resampling value, while 

deviance resampling stays positive for the corresponding residual. 

In this particular example the negative resampling value for cell (1,10) is actually the only negative 

value resulting from Pearson resampling. Nevertheless it does mean that the GLM as specified 

cannot be bootstrapped using Pearson residuals. One alternative would be to exclude cell (1,10) 

from the model specification. In this particular case this leads to a model that projects a reserve of 

versus a reserve of for the original model including cell (1,10). Noting that excluding cell (1,10) 

amounts to assuming zero development for the 10th development period, it is not surprising that the 

projected reserve is smaller. 

To demonstrate the differences in outcomes, we conclude this section with output obtained by 

bootstrapping the model excluding cell (1,10) both with Pearson and with deviance residuals. We 

also include the bootstrapping results for the model including cell (1,10). The “Modeled Reserve” 

column of each output table shows the reserve projection representing the expected future 

development amounts that result from fitting the GLM. The “Bootstrap Projection” column shows 

the mean of the reserve projections based on simulated data. Note that the “Bootstrap Projection” 

distribution defines the parameter error. The “Simulated Future Development” column shows the 

mean of the simulated future development amounts used to incorporate process error. Comparing 

the “Modeled Reserve” to “Simulated Future Development” also allows one to gauge whether we 

have sufficiently many bootstrap iterations to keep bias resulting from sampling error to an 

acceptable level. The “Standard Prediction Error” is the root of the mean square error of simulated 
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reserve outcomes (i.e., projected reserve based on pseudo-data less simulated future development). 

All the way to the right we also show a confidence interval based on empirical percentiles of 

simulated reserve outcomes. Note that a positive number represents a reserve projection above the 

simulated future development amount. 
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Bootstrapping Results with 10,000 Iterations 
Excluding Cell (1,10)—Pearson Residuals 

Accident Modeled Bootstrap Sim. Future Standard 5%-ile Sim. 95%-ile Sim.
Period Reserve Projection Development Pred. Error Outcome Outcome

1 -              -              -              -              -              -              
2 -              -              -              -              -              -              
3 596,051      603,398      595,127      166,522      (254,940)     288,038      
4 498,753      504,064      498,789      135,273      (214,047)     231,751      
5 1,122,779   1,134,746   1,125,780   224,917      (345,901)     394,656      
6 1,736,070   1,751,181   1,734,825   302,852      (467,485)     522,686      
7 2,616,534   2,640,194   2,612,849   407,758      (613,245)     724,636      
8 4,127,340   4,164,901   4,132,367   586,633      (892,087)     1,040,074   
9 4,956,065   4,990,267   4,959,138   801,618      (1,232,452)  1,417,929   

10 5,087,731   5,161,854   5,082,052   1,393,141   (2,030,612)  2,510,119   
Total 20,741,324 20,950,606 20,740,927 2,504,915 (3,645,668) 4,603,584    

Excluding Cell (1,10)—Deviance Residuals 

Accident Modeled Bootstrap Sim. Future Standard 5%-ile Sim. 95%-ile Sim.
Period Reserve Projection Development Pred. Error Outcome Outcome

1 -              -              -              -              -              -              
2 -              -              -              -              -              -              
3 596,051      601,425      595,682      165,133      (254,824)     283,543      
4 498,753      502,686      497,483      135,937      (213,619)     233,681      
5 1,122,779   1,130,897   1,122,776   225,374      (348,761)     388,058      
6 1,736,070   1,748,560   1,735,691   300,235      (460,344)     514,240      
7 2,616,534   2,636,940   2,619,302   409,205      (630,112)     709,919      
8 4,127,340   4,156,304   4,128,423   582,196      (885,958)     1,016,114   
9 4,956,065   5,002,022   4,962,549   802,422      (1,215,009)  1,405,855   

10 5,087,731   5,169,300   5,088,560   1,404,841   (2,048,259)  2,501,894   
Total 20,741,324 20,948,135 20,750,465 2,530,813 (3,764,693) 4,599,894    

Including Cell (1,10)—Deviance Residuals 

Accident Modeled Bootstrap Sim. Future Standard 5%-ile Sim. 95%-ile Sim.
Period Reserve Projection Development Pred. Error Outcome Outcome

1 -              -              -              -              -              -              
2 141,486      148,558      141,810      99,435        (142,027)     181,427      
3 787,433      802,512      786,345      227,758      (332,132)     415,547      
4 602,073      612,774      600,459      168,556      (252,157)     302,197      
5 1,271,343   1,290,547   1,271,004   266,900      (394,291)     476,089      
6 1,901,963   1,926,750   1,906,391   343,783      (513,444)     607,984      
7 2,802,963   2,834,990   2,804,315   448,446      (679,871)     795,858      
8 4,341,037   4,384,089   4,338,730   639,559      (958,332)     1,144,621   
9 5,149,209   5,209,231   5,145,549   844,468      (1,259,637)  1,509,566   

10 5,253,745   5,354,869   5,249,988   1,444,013   (2,074,331)  2,567,191   
Total 22,251,251 22,564,319 22,244,592 2,868,629 (4,054,094) 5,235,817    

Figure 3 



Bootstrapping Generalized Linear Models for Development Triangles Using Deviance Residuals 

Casualty Actuarial Society E-Forum, Fall 2010 13 

3 A PRACTICAL LIMIT OF DEVIANCE RESIDUALS 

In the previous section we demonstrated that the non-linear rescaling properties of deviance 

residuals allow us to bootstrap a GLM in some instances where Pearson residuals lead to negative 

values in the resampling distribution for some data points. This does not mean that any GLM for an 

incomplete development triangle can be bootstrapped using deviance residuals. In this brief section 

we explore the mathematical reason for why this is the case for deviance residuals based on the 

identity variance function. We also give an example of a GLM based on the same data set used in 

the previous section where deviance residual resampling cannot be applied. 

3.1 Taking the limit 

For convenience we repeat the definition of deviance residuals based on the identity variance 

function (i.e., equation 2.):  

  ŷŷ/log2)ŷsign(D  yyyyr . (3.1)

Here we are interested in the lower limit as y  0, hence we can substitute -1 for sign(y-ŷ). After 

some rearranging we obtain:  
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(3.2)

Dealing with the easy parts we get: 
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(3.3)

The remaining part goes to -/ as y  0, so we can use l’Hôpital’s rule to evaluate it, leading 

to:  
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ŷ/
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(3.4)

This simplifies to: 

  ŷ2ŷŷlim2lim
0

D
0




yr
yy

. (3.5)

So we can see that for any given triangle cell the smallest theoretical value for the deviance 

residual is -(2ŷ).5. Obviously this result is dependent on the particular functional form of the 

deviance residual, which in the case of the identity variance function is given by equation 3.1. 

This does raise the question of whether deviance residuals can be considered approximately iid, 

which is a fundamental underlying assumption of resampling methods. Theory aside, we are left with 
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a practical issue when trying to use deviance residuals for bootstrapping: a deviance residual 

obtained from a data point with a larger expected mean may be below the lower bound for deviance 

residuals for a data point with a smaller expected mean. If this happens we cannot rescale the 

deviance residual in question for the purpose of resampling. So, if ŷmin is the smallest fitted value for 

a particular GLM with the identity variance function, we can only use deviance residual 

bootstrapping, if for all data points included in the model we have   

minD ŷ2 r . (3.6)

We will now demonstrate that it is not difficult to come up with an example where this 

relationship does not hold for all data points. 

3.2 Example 

The GLM used as an example here is not very different from the one introduced in section 2.3. 

We include cells (1,6) and (3,6) which were previously excluded: 

357,848  766,940  610,542  482,940 527,326 574,398 146,342 139,950  227,229  67,948 

352,118  884,021  933,894  1,183,289 445,745 320,996 527,804 266,172  425,046  

290,507  1,001,799  926,219  1,016,654 750,816 146,923 495,992 280,405  
 

310,608  1,108,250  776,189  1,562,400 272,482 352,053 206,286 
  

443,160  693,190  991,983  769,488 504,851 470,639 
  

396,132  937,085  847,498  805,037 705,960 
  

440,832  847,631  1,131,398  1,063,269 
  

359,480  1,061,648  1,443,370  
  

376,686  986,608  
   

344,014 
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As before we fit a GLM with a logarithmic link function and the identity variance function. This 

results in the following fitted values: 

254,672 611,704 774,193 665,389 434,726 320,588 299,529 184,715 283,087 67,948 

332,131 797,756 1,009,667 867,770 566,950 418,096 390,632 240,897 369,188 88,615 

359,730 864,049 1,093,569 939,880 614,062 452,839 423,093 260,915 399,867 95,978 

223,757 537,449 680,214 584,618 381,955 281,672 263,169 162,293 248,723 59,700 

311,253 747,608 946,198 813,221 531,310 391,814 366,076 225,754 345,981 83,044 

343,043 823,968 1,042,841 896,282 585,577 431,833 403,467 248,812 381,319 91,526 

384,679 923,974 1,169,412 1,005,065 656,650 484,245 452,436 279,011 427,600 102,635 

444,666 1,068,059 1,351,772 1,161,796 759,049 559,759 522,990 322,520 494,280 118,640 

400,741 962,553 1,218,240 1,047,030 684,067 504,464 471,327 290,660 445,454 106,920 

344,014 826,299 1,045,792 898,818 587,234 433,055 404,608 249,516 382,397 91,785 

We can see that if ŷmin = 67,948 from cell (1,10). For bootstrapping purposes this results in a 

lower bound of -368.64 for (unscaled) deviance residuals. Applying equation 3.1 to cell (3,6) with 

y = 146,923 and ŷ = 452,839 we get the following (unscaled) deviance residual: 

16.530D r . (3.7)

Hence we can see that it is not possible to bootstrap this GLM using deviance residuals. Finally, 

our discussion has focused on the resampling of included data points. If the residuals are also used 

for simulating the process error, the allowable minimum would also depend on the smallest 

expected value for future development periods. 

4. RESULTS AND DISCUSSION 

In section 2.1 we showed how resampling with Pearson residuals can lead to negative incremental 

values in the resampling distribution. This in turn means that we cannot apply the MLE algorithm to 

for fitting the GLM during bootstrap iterations. We also presented the concept of deviance residuals 

and explained how these hold the promise of avoiding the issue of negative incremental values.  

Section 2.2 provided details on how to compute the inverse of the deviance residual function 

based on the identity variance function. The algorithm is based on a variation of the Newton-

Raphson method. 

In section 2.3 an example of a GLM was presented, where bootstrapping with Pearson residuals 

is not possible, but bootstrapping with deviance residuals works. The crucial difference in the 

resampling distributions resulting from the different techniques was graphically illustrated. We also 

showed bootstrapping output for a slightly modified model where both approaches work and for 
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the main example where only the deviance residual approval can be applied. It should be noted that 

deviance residuals therefore can broaden the scope of bootstrapping approaches. 

In section 3.1 we proved that for any given data point, the deviance residuals for log-link GLMs 

with the identity variance function are bounded below -(2ŷ).5, where ŷ is the fitted value for that data 

point. This result means that Boostrapping with deviance residuals can only work if all standardized 

deviance residuals exceed the lower bound for the smallest fitted value. In section 3.2 we presented 

another GLM (again a slightly modified version of the example in section 2.3) where this condition 

is indeed violated. 

The material in this paper is based on standard GLM theory and standard numerical methods. 

We hope this paper contributes to making more actuaries aware of how these powerful methods can 

practically be applied in the context of stochastic reserving. Given the popularity of bootstrapping 

approaches, we also feel that it is also important to draw attention to some of their inherent 

limitations.  

Interested readers are encouraged to contact the author and request a copy of the companion MS 

Excel application to further explore the concepts and algorithms presented in this paper. Interacting 

with this application should prove a useful aid to gaining a deeper understanding of what regression 

models can accomplish in the context of development triangles. As far as the bootstrapping 

functionality is concerned, the application follows the approach outlined in [7]. In particular we use 

“procedure 2” as outlined in Figure 2 of that paper. As pointed out in [7], this is also the approach 

described in [3]. 

We want to conclude this section reflecting on “distribution-free” (or “non-parametric”) versus 

parametric approaches to bootstrapping. Before bootstrapping was applied in an actuarial context, it 

was introduced as stochastic modeling techniques for detecting bias for estimators or to derive 

confidence intervals for parameter estimates in cases where standard regression may not work well 

because the underlying error structure is not normally distributed (or does not follow other known 

error distributions, for which specialized regression techniques are available). Especially in cases 

where there is a decent number of observations which all can be assumed to come from the same 

underlying distribution, bootstrapping can provide results that are superior to those obtained by 

applying standard regression techniques, based on assumptions not satisfied by the data at hand. 

This is the context in which “distribution-free” approaches shine.  

The question to consider here is “What makes bootstrapping attractive in the context of 

stochastic reserving?” One advantage is that bootstrapping can derive a distribution for just about 
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any function one may want to calculate based on an observed sample of data points. Note that the 

estimated reserves technically are not the fitted model itself, but a projection of expected amounts 

for future (i.e., out of sample) development periods. Hence bootstrapping is useful, because we can 

just recalculate the reserve based on the pseudo data generated for each iteration, and thus we 

simulate an empirical distribution of reserve estimates. There is no need to theoretically understand 

how the errors in the parameter estimates of the underlying model (and their correlations) might 

affect the distribution of reserve estimates. 

The “distribution free” aspect of bootstrapping does not appear to be particularly important in 

the context of stochastic reserving based on development triangles. Often the data sample (number 

of triangle cells) is not particularly large in relation to the number of parameters we are trying to 

estimate. Furthermore, it is not obvious that the error structure for incremental development in the 

first year, for example, is in anyway systematically related to the error structure in the fifth year. 

Variation in the first year may be due to subtle variation in the mix of claims for subcoverages, while 

fifth-year development might be caused by sporadic late reporting claims, or an unexpected judicial 

decision for a single open claim. Non-parametric bootstrapping is based on the assumption that 

(after standardization and dealing with heteroscedasticity) the residuals are the best available 

approximation for the error structure driving the underling stochastic process. 

 So, can we harvest the power of bootstrapping as a simulation technique for deriving a 

distribution of reserve estimates while not implicitly relying on treating the residuals as our best 

approximation to the “true” error structure? The answer is “yes.” If we can make educated guesses 

about how the error structure for various development periods should look like (preferably in the 

shape of assumed parametric distributions), we can generate pseudo-data based on these educated 

guesses and then continue with calculating the resulting reserve and thus build up an empirical 

distribution of reserve estimates Monte Carlo style. This type of approach also avoids the practical 

limitations of Pearson or deviance residual bootstrapping we demonstrated in this paper. 

5. CONCLUSIONS 

Our case study of GLM-based bootstrapping for incremental development triangles reveals a 

serious limitation of the standard approach based on Pearson residuals: the possible existence of 

negative resampling values due to the linear nature of the rescaling procedure. We demonstrated that 

the obstacle of negative resampling value can be overcome by using deviance residuals that rely on 

non-liner rescaling. We also proved that deviance residuals based on the identity variance function 

cannot be used for resampling under all circumstances. A practical example of this was provided. In 
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our discussion, we suggested that in a stochastic reserving context the main advantage of 

bootstrapping is that it can generate a distribution of reserve estimates that accounts for parameter 

correlations imposed by the estimation process. To use this advantage, we can also employ 

resampling schemes that are based on assumed parametric distributions and thus circumvent the 

limitations of non-parametric resampling revealed by this case study. Further research may also 

reveal more robust non-parametric resampling schemes. 
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APPENDIX A 

In the case of positive deviance residuals we use the following upper and lower bounds to 

initialize the inversion algorithm: 
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We do not provide a formal proof that these bounds are valid, but x, w, and the lower and upper 

bounds can easily be plotted to visually demonstrate that this is case (see next page). 
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